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The SysML/KAOS method allows to model system requirements through goal hierarchies. B System is a formal method used to construct, verify and validate system specifications. A B System model consists of a structural part (abstract and enumerated sets, constants with their associated properties, and variables with their associated invariant) and a behavioral part (events). Correspondence links are established in previous work between SysML/KAOS and B System to produce a formal specification from requirements models. This specification serves as a basis for formal verification and validation tasks to detect and correct inconsistencies. However, it is required to manually provide the structural part of the B System specification.

This thesis aims at enriching SysML/KAOS with a language that allows to model the application domain of the system and which would be compatible with the requirements modeling language. This includes the definition of the domain modeling language and of mechanisms for leveraging domain modeling to provide the structural part of the B System specification obtained from requirements models. The defined language uses ontologies to allow the formal representation of system domain. Moreover, the established correspondence links and rules, formally verified, allow both propagation and backpropagation of additions and deletions, between domain models and B System specifications. An important part of the thesis is also devoted to assessment of the SysML/KAOS method on case studies. Furthermore, since the systems naturally break down into subsystems (enabling the distribution of work between several agents: hardware, software and human), SysML/KAOS goal models allow the capture of assignments of requirements to subsystems responsible of their achievement. This thesis therefore describes the mechanisms required to formally guarantee that each requirement assigned to a subsystem will be well achieved by the subsystem, within the constraints defined by the high-level system and subsystem specifications.

Sommaire

La méthode SysML/KAOS permet de modéliser les exigences d'un système sous forme d'hiérarchies de buts. B System est une méthode formelle qui permet de construire, vérifier et valider la spécification d'un système. Un modèle B System est constitué d'une partie structurelle (ensembles abstraits et énumérés, constantes et leurs propriétés, et variables et leur invariant) et d'une partie comportementale (évènements). Lors de travaux antérieurs, des liens de correspondance ont été établis entre SysML/KAOS et B System afin de produire une spécification formelle à partir de la modélisation des exigences. Cette spécification sert de base pour les tâches de vérification et de validation formelle afin de détecter et corriger les potentielles erreurs de spécification. Toutefois, il est nécessaire de fournir manuellement la partie structurelle du modèle B System.

L'objectif de cette thèse est d'enrichir SysML/KAOS avec un langage permettant de modéliser le domaine du système et qui serait compatible avec le langage de modélisation des exigences. Ceci inclut non seulement la définition du langage, mais aussi des mécanismes permettant d'exploiter la modélisation du domaine pour fournir la partie structurelle de la spécification B System issue de la formalisation des exigences. Le langage défini exploite la notion d'ontologie pour permettre la représentation formelle du domaine. Bien plus, les liens et règles de correspondance établis et formellement vérifiés permettent tant la propagation que la rétropropagation des ajouts et suppressions, entre modèles de domaine et spécifications B System. Un autre aspect essentiel de la thèse réside dans l'évaluation de la méthode SysML/-KAOS sur des études de cas. Par ailleurs, les systèmes, au vu de leur complexité, se doivent d'être décomposés en sous-systèmes. La thèse décrit en conséquence des mécanismes permettant de garantir formellement que chaque exigence affectée à un sous-système sera bien satisfaite par ce dernier, dans la limite définie par la spécification du système et des sous-systèmes.

La méthode SysML/KAOS, ainsi enrichie, a été implémentée au sein d'un outil libre en utilisant la plateforme de fédération de modèles Openflexo, et a été évaluée sur différentes études de cas d'envergure industrielle. Elle permet la vérification formelle des exigences et facilite leur validation par des parties prenantes non spécialistes i Sommaire de méthodes formelles. Toutefois, les tâches de spécification des formules logiques du modèle de domaine, qui donnent lieu aux propriétés et invariants du modèle B System, et du corps des évènements B System, ainsi que les tâches de vérification et validation formelles sont coûteuses en temps et nécessitent l'implication d'experts en méthodes formelles. Il s'agit là du prix à payer pour des exigences formellement correctes. 

Mots

Introduction Contexte

L'ingénierie des exigences est la partie du génie logiciel qui s'intéresse aux activités d'élicitation, d'analyse, de spécification et de validation des exigences relatives à un système à mettre en place. Elle désigne les activités qui constituent la pierre angulaire de tout projet de développement logiciel ou système. L'occurrence de défaillances au cours de l'une de ces étapes a souvent des conséquences extrêmement désastreuses [START_REF] Gil | Axiomatic design and fabrication of composite structures-applications in robots, machine tools, and automobiles[END_REF][START_REF] Micouin | Property Model Methodology : A Landing Gear Operational Use Case[END_REF]. Par exemple, en à peine six mois, deux vols, Lion Air 610 et Ethiopian Airlines 302, se sont écrasés quelques minutes après le décollage. La cause de ces crashs successifs, impliquant des avions de type Boeing 737 Max 8 et ayant engendré plus de 300 pertes en vie humaine, réside dans un conflit d'exigences (conjonction inadéquate de buts) impliquant le pilote et le système de stabilisation MCAS (Maneuvering Characteristics Augmentation System) [114]. En effet, le MCAS changeait sans cesse l'orientation de l'appareil en se basant sur une mesure éronnée de l'angle d'incidence, sans vraiment tenir compte des corrections effectuées par le pilote. Bahill et al. [START_REF] Terry | Requirements development, verification, and validation exhibited in famous failures[END_REF] font état de plusieurs autres désastres d'envergure liés à des défaillances impliquant l'ingénierie des exigences.

Le projet FORMOSE [START_REF]Formose ANR Project[END_REF], financé par l'Agence Nationale de la Recherche (ANR) française, s'intéresse à cette problématique et vise l'élaboration d'une méthode outillée pour la modélisation, la vérification et la validation formelle des exigences de systèmes critiques et complexes. Cette méthode s'appuie sur SysML/KAOS [START_REF] Gnaho | Modeling the Impact of Non-functional Requirements on Functional Requirements[END_REF][START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF]. SysML/KAOS permet la modélisation des exigences d'un système sous forme de hiérarchies de buts. Afin de vérifier et valider formellement ces exigences, les travaux décrits dans [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF] définissent une correspondance entre le langage SysML/KAOS de modélisation des exigences et la méthode formelle Event-B [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF] permettant ainsi de produire des spécifications formelles à partir des modèles d'exigences. Cette spécification sert ensuite de base aux tâches de vérification et de validation formelles afin de détecter et corriger les potentielles défaillances. Il est à noter que ces tâches sont réalisables grâce aux outils associés aux méthodes Event-B voire B [START_REF] Abrial | The B-book : assigning programs to meanings[END_REF], outils largement éprouvés et utilisés sur des projets industriels depuis plus de 25 ans [START_REF] Thierry Lecomte | Applying a Formal Method in Industry : A 25-Year Trajectory[END_REF].

Introduction

B System désigne une variante syntaxique d'Event-B proposée au sein de l'environnement de développement intégré AtelierB édité par ClearSy [START_REF] Clearsy | Atelier B : B System[END_REF], un partenaire industriel au sein du projet FORMOSE [START_REF]Formose ANR Project[END_REF]. C'est cette variante syntaxique, sémantiquement équivalente à Event-B, qui est considérée, tout au long de ce travail de thèse, pour produire une spécification formelle à partir des modèles SysML/KAOS. ne permet de garantir formellement que les comportements propres aux différents sous-systèmes ne violeront pas les invariants décrivant un comportement adéquat du système de plus haut niveau, comme cela a été le cas pour les accidents des vols Lion Air 610 et Ethiopian Airlines 302 [114].

Objectifs

Étant donné que la partie structurelle d'une spécification B System constitue une caractérisation des propriétés du domaine d'application du système, l'objectif de ce travail de thèse est d'enrichir SysML/KAOS avec une approche ergonomique mais structurée et non ambigüe, supportée par un outil libre, permettant de modéliser le domaine du système et compatible avec le langage de modélisation des exigences. En effet, le choix du niveau de détail de la modélisation du domaine et des éléments qui doivent y figurer au regard des buts à satisfaire est du ressort de l'expert du domaine [START_REF] Arora | An Empirical Study on the Potential Usefulness of Domain Models for Completeness Checking of Requirements[END_REF][START_REF] Bjrner | Domain Analysis and Description Principles, Techniques, and Modelling Languages[END_REF]. Par conséquent, le langage de modélisation du domaine se doit d'être suffisamment simple et expressif afin de faciliter son utilisation par des personnes non expertes de méthodes formelles, en l'occurrence les experts du domaine. Par ailleurs, la modélisation du domaine permet également d'exhiber les potentielles omissions et incomplétudes introduites lors de l'élicitation des exigences [START_REF] Arora | An Empirical Study on the Potential Usefulness of Domain Models for Completeness Checking of Requirements[END_REF].

Il s'agit également de définir et implémenter des mécanismes permettant d'exploiter la modélisation du domaine pour obtenir automatiquement la partie structurelle et maintenir l'adéquation entre cette dernière et les modèles SysML/KAOS auxquels elle est associée. En effet, comme l'affirment Lamsweerde et al. [START_REF] Van Lamsweerde | Goal-directed elaboration of requirements for a meeting scheduler : problems and lessons learnt[END_REF], spécifier formellement le corps des buts, de même que vérifier et valider cette spécification, conduit très souvent à des ajouts et modifications au sein de la partie structurelle, et donc des modèles de domaine.

Notons que la correction de ces approches et mécanismes doit être vérifiée formellement, au vu de la criticité des systèmes et domaines considérés, afin d'assurer que la méthode n'introduit pas d'incohérences ; c'est-à-dire que toute modélisation réalisée en respectant les contraintes établies doit être en mesure de produire, en temps fini, une spécification B System syntaxiquement correcte et sémantiquement équivalente et qui reste en adéquation avec les modèles auxquels elle est associée au fil des mises à jour effectuées.

Finalement, ce travail de thèse décrit des mécanismes permettant de garantir formellement que chaque exigence affectée à un sous-système sera bien satisfaite par ce dernier, dans la limite définie par la spécification formelle du système et des sous-systèmes.

Introduction

Il est à préciser que différentes études de cas d'envergure industrielle ont été menées afin d'éprouver et valider la méthode SysML/KAOS ainsi enrichie.

Méthodologie

En ce qui concerne la modélisation du domaine, le travail décrit dans cette thèse a débuté par une étude approfondie des approches existantes afin de recenser les forces et faiblesses des langages actuellement exploités pour la modélisation du domaine dans le contexte de l'ingénierie des exigences, ainsi que leur adéquation visà-vis des objectifs formulés. Il s'est ensuite agit de définir un langage de modélisation du domaine, compatible avec le langage de modélisation des exigences, et conforme aux objectifs formulés. Par la suite, une étude a été réalisée afin de définir des liens de correspondance entre le nouveau langage et B System. Il est à noter que chaque définition (langage et règles) a été spécifiée et vérifiée formellement afin de garantir la prise en compte des objectifs formulés. Les définitions du langage et des règles ont finalement été intégrées à la plateforme Openflexo [109] qui fédère les diverses contributions au sein du projet FORMOSE [START_REF]Formose ANR Project[END_REF]. Transversalement, plusieurs études de cas ont été réalisées aux fins d'évaluation, de robustification et de validation : le langage de modélisation initialement défini a connu plusieurs ajustements, au fil des études de cas, afin de lui assurer une expressivité, une utilisabilité ainsi qu'une sémantique formelle suffisantes.

La méthodologie ainsi décrite se décline en :

• Une étude approfondie des approches de modélisation du domaine dans le sillage de l'ingénierie des exigences (Chapitre 2). • La définition, informelle puis formelle, d'un langage de modélisation de domaine répondant aux objectifs formulés (Chapitres 2 et 5). • La définition, informelle puis formelle, des liens de correspondance entre le langage de modélisation introduit et la méthode B System (Chapitres 3 et 5 pour les règles de traduction et Chapitres 4 et 5 pour les règles permettant la prise en compte des mises à jour effectuées au sein d'un modèle B System). • La vérification formelle du langage et des liens de correspondance introduits (Chapitres 2, 4 et 5). • L'implémentation du langage et des liens de correspondance au sein d'Openflexo (Chapitre 9). • L'évaluation et la validation de la méthode sur des études de cas, en l'occurrence celles décrites aux Chapitres 7 et 8, certaines ayant conduit à des ajustements du langage et des règles définis (conception itérative). Afin de définir les mécanismes permettant de garantir la satisfaction des exigences affectées à des sous-systèmes, il a été question :

• D'étudier les approches de décomposition d'un modèle formel (Chapitre 6).

• De définir une approche permettant la décomposition du modèle formel d'un système en plusieurs sous-modèles correspondant aux sous-systèmes, tout en tenant compte des exigences propres aux sous-systèmes, de manière à garantir la satisfaction des exigences affectées aux sous-systèmes (Chapitre 6). • D'évaluer l'approche introduite sur des études de cas.

Contributions

Ce travail de thèse a conduit à la mise en oeuvre :

1. D'un langage de modélisation de domaine structuré et non ambigu (formalisé avec Event-B), supporté par un outil libre et compatible avec le langage de modélisation d'exigences de SysML/KAOS. Ce langage est fondé sur OWL (Ontology Web Language) [START_REF] Sengupta | Web Ontology Language (OWL)[END_REF] et PLIB (Part Library) [112] et permet de représenter le domaine à l'aide d'ontologies. En outre, il permet d'expliciter les éléments variables du modèle de domaine, les changements d'états de ces variables, à mesure que le système satisfait ses exigences, pouvant être représentés graphiquement au travers de diagrammes d'états-transitions à l'exemple des diagrammes d'états-transitions algébriques (ASTDs) [START_REF] Frappier | Extending statecharts with process algebra operators[END_REF]. La version initiale du langage (Chapitre 2) a été étendue et ajustée (Chapitre 5), à travers les études de cas. La proposition initiale, évaluée sur l'étude de cas Landing Gear System (système de contrôle du train d'atterissage d'un avion) [START_REF] Boniol | The Landing Gear System Case Study[END_REF], a fait l'objet d'un article accepté et publié [START_REF] Jeffrey | Towards Using Ontologies for Domain Modeling within the SysML/KAOS Approach[END_REF] dans le cadre de la 7 e édition du workshop international Model-Driven Requirements Engineering (MoDRE) qui s'est tenu en marge de la 25 e édition de la conférence internationale Requirements Engineering (RE). Une extension de l'article dans laquelle la proposition est évaluée sur une étude de cas liée à la spécification du composant de localisation du véhicule autonome Cycab, a fait l'objet d'une soumission pour parution dans un livre qui tient lieu de compte rendu des échanges du colloque international NII Shonan, organisé par l'Institut National d'Informatique du Japon (NII), qui s'est tenu au Japon en Novembre 2016. La version ajustée du langage, évaluée sur l'étude de cas Saturn [129] (Chapitre 5), a pour sa part fait l'objet d'un article accepté et publié [START_REF] Jeffrey | A Formal Requirements Modeling Approach : Application to Rail Communication[END_REF] dans le cadre de la 14 e édition de la conférence internationale International Conference on Software Technologies (ICSOFT). Une réédition de cet article, rédigée en français, a fait l'objet d'un article accepté et publié [START_REF] Jeffrey | Modélisation du Domaine au Sein d'une Méthode Formelle d'Ingénierie des Exigences[END_REF] dans le cadre des 18 e journées Introduction Approches Formelles dans l'Assistance au Développement de Logiciels (AFADL). En outre, elle introduit et illustre l'utilisation des diagrammes d'états-transitions algébriques (ASTDs) [START_REF] Frappier | Extending statecharts with process algebra operators[END_REF] afin de représenter graphiquement les changements d'états des variables du modèle de domaine au fur et à mesure que le système satisfait ses buts.

2. Des règles, formellement vérifiées et supportées par un outil libre, permettant d'exploiter la modélisation du domaine pour obtenir automatiquement la partie structurelle d'une spécification B System issue de la formalisation de modèles de buts SysML/KAOS. L'outil Rodin [START_REF] Michael | Rigorous Development of Complex Fault-Tolerant Systems[END_REF] a été utilisé pour spécifier et vérifier formellement le langage et les règles, ce qui a fait l'objet d'un article accepté et publié [START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF] dans le cadre de la 6 e édition de la conférence internationale ABZ (ASM, Alloy, B, TLA, VDM, Z) qui s'est déroulée à Southampton, Royaume-Uni en juin 2018 (ABZ2018). Les annexes A et B présentent le contenu complet de la spécification formelle du langage et des règles.

Le langage de modélisation introduit et les règles ont été évalués, conjointement au langage de modélisation des buts, dans le cadre de la spécification formelle des exigences du protocole de transport ferroviaire hybrid ERTMS/ETCS level 3 [START_REF] Thai | The Hybrid ERTMS/ETCS Level 3 Case Study[END_REF] (Chapitre 7). Cette évaluation a fait l'objet d'un article accepté et publié [START_REF] Jeffrey | Modeling the Hybrid ERTMS/ETCS Level 3 Standard Using a Formal Requirements Engineering Approach[END_REF] dans le cadre de la conférence ABZ2018. Sous invitation, une extension de l'article a fait l'objet d'une publication dans une édition du journal international STTT (International Journal on Software Tools for Technology Transfer) [START_REF] Jeffrey | Modeling the hybrid ERTMS/ETCS level 3 standard using a formal requirements engineering approach[END_REF]. Le protocole hybrid ERTMS/ETCS level 3 a également été spécifié, directement en Event-B, afin de mieux évaluer les avantages et limites inhérents à l'utilisation de la méthode SysML/KAOS. Cette approche classique de spécification d'un système avec Event-B a fait l'objet d'un article accepté et publié [START_REF] Mammar | An Event-B Model of the Hybrid ERTMS/ETCS Level 3 Standard[END_REF] dans le cadre de la conférence ABZ2018. Cet article a également fait l'objet d'une publication dans une édition du journal international STTT. La méthode SysML/KAOS, ainsi enrichie, a également été évaluée dans le cadre de la spécification formelle des exigences d'un système de transport urbain pour le compte de la Ville de Montréal (Chapitre 8). Cette évaluation a fait l'objet d'un article accepté et publié dans le cadre de la 21 e édition de la conférence internationale sur les méthodes formelles d'ingénierie ICFEM (International Conference on Formal Engineering Methods).

Introduction 3. Des règles, formellement vérifiées, contribuant à maintenir l'adéquation entre la partie structurelle d'une spécification B System et les modèles SysML/KAOS auxquels elle est associée. Ces règles, évaluées sur l'étude de cas steam-boiler control specification problem (problème de spécification du contrôleur d'une chaudière à vapeur) [START_REF] Bauer | Specification for a software program for a boiler water content monitor and control system[END_REF], ont fait l'objet d'un article accepté et publié [START_REF] Jeffrey | Back Propagating B System Updates on SysML/KAOS Domain Models[END_REF] dans le cadre de la 23 e édition de la conférence internationale ICECCS (International Conference on Engineering of Complex Computer Systems).

4. D'une approche permettant la décomposition du modèle formel d'un système en plusieurs sous-modèles correspondant aux sous-systèmes, tout en tenant compte des exigences propres aux sous-systèmes, de manière à garantir la satisfaction des exigences affectées aux sous-systèmes. Cette approche (Chapitre 6), évaluée sur l'étude de cas steam-boiler control specification problem, a fait l'objet d'un article accepté et publié [START_REF] Jeffrey | Formalisation of SysML/KAOS Goal Assignments with B System Component Decompositions[END_REF] dans le cadre de la 14 e édition de la conférence internationale iFM (integrated Formal Methods).

Plan de la thèse

Le Chapitre 1 présente succinctement les éléments fondamentaux sur lesquels repose ce travail de thèse. Par la suite, le Chapitre 2 introduit, justifie et illustre la version initiale du langage de modélisation de domaine tandis que les chapitres 3 et 4 se focalisent sur la définition, informelle puis formelle, et la vérification, des règles de correspondance entre modèles de domaine et spécifications B System. Le Chapitre 5 décrit quant à lui les principaux ajustements réalisés au sein du langage, au fil des études de cas. Finalement, tandis que le Chapitre 6 introduit la spécification et la vérification formelle des assignations d'exigences fonctionnelles, les Chapitres 7 et 8 décrivent les principales études de cas réalisées et le Chapitre 9 décrit succinctement l'outillage de la méthode SysML/KAOS construit sous Openflexo.

Il est à noter que les annexes A et B complètent les définitions informelle et formelle du langage de modélisation du domaine et des règles de correspondance. L'annexe C décrit quant à elle le scénario principal d'utilisation de l'outil Openflexo qui supporte la méthode SysML/KAOS.

Chapitre 1 Préliminaires

Résumé

Ce chapitre présente succinctement les éléments fondamentaux sur lesquels repose ce travail de thèse. Il s'agit en l'occurrence des méthodes Event-B et B System et des langages SysML/KAOS de modélisation des buts fonctionnels et non-fonctionnels. Le chapitre s'achève sur des définitions, générales puis contextuelles, de la notion d'ontologie.

Méthodes formelles

Méthodes formelles

Pour Bjørner [START_REF] Bjørner | Domain Analysis and Description Principles, Techniques, and Modelling Languages[END_REF], une spécification formelle est un ensemble constitué d'une part de définitions de collections ou types et de leurs éléments, de fonctions et comportements et, d'autre part, des axiomes et obligations de preuve qui contraignent ces définitions. Chaque spécification formelle est construite en conformité avec les règles lexicales, syntaxiques et sémantiques d'un langage formel. Les contextes et principes de spécification sont quant à eux décrits par la méthode formelle associée au langage. Cette section présente succinctement les méthodes et langages formels sélectionnés dans le cadre du projet FORMOSE, en l'occurrence Event-B et B System, et considérés tout au long de ce travail de thèse.

Event-B

La méthode B est une méthode formelle proposée par J. R. Abrial pour la spécification, la vérification et la validation de logiciels critiques [START_REF] Abrial | The B-book : assigning programs to meanings[END_REF]. Elle repose sur la théorie des ensembles et la logique des prédicats et a permis la mise en place de systèmes d'envergure dans des domaines aussi divers que variés [START_REF] Behm | Météor : A Successful Application of B in a Large Project[END_REF][START_REF] Dehbonei | Formal Methods in the Railways Signalling Industry[END_REF]. L'approche utilisée permet de garantir un fonctionnement correct du logiciel spécifié et d'aboutir à une implémentation de ce dernier conforme à sa spécification. Elle est supportée par l'environnement de développement intégré Atelier B édité par ClearSy [START_REF] Clearsy | ClearSy Systems Engineering[END_REF], un partenaire industriel au sein du projet FORMOSE [START_REF]Formose ANR Project[END_REF].

Tout modèle B est construit de façon incrémentale, par raffinements successifs. Il est constitué de composants appelés machines. Chaque raffinement permet de concrétiser la spécification d'une machine dite abstraite au sein d'une autre dite concrète. La correction du raffinement est apportée par un ensemble d'obligations de preuve [START_REF] Abrial | The B-book : assigning programs to meanings[END_REF], la génération et le déchargement des obligations de preuve étant supportés par l'Atelier B.

Chaque machine B est constituée d'une partie statique et d'une partie dynamique. La partie statique décrit les types et éléments constants contraints par des propriétés. La partie dynamique décrit quant à elle les variables contraintes par des invariants ainsi que les opérations qui définissent les conditions de mise à jour de l'état des variables. D'autres obligations de preuve sont définies afin de garantir la nonviolation des invariants à chaque exécution d'une opération. Chaque opération est caractérisée par une précondition qui est un préalable à son exécution et par une postcondition qui décrit l'impact de l'exécution sur l'état des variables. Le raffinement B préserve le nombre d'opérations définies au sein de la machine abstraite. De 1.1. Méthodes formelles plus, lorsqu'une opération Oc définie au sein d'une machine concrète raffine une opération abstraite Oa, il est nécessaire que la précondition de Oc soit plus faible que celle de Oa contrairement à la postcondition de Oc qui peut être plus forte que celle de Oa.

La méthode Event-B est quant à elle une méthode formelle utilisée pour la modélisation de systèmes critiques [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF] ; un système étant défini comme un agglomérat d'éléments (matériels, logiciels, humains, etc.) en interaction suivant des règles bien précises. Elle repose sur les mêmes concepts mathématiques que la méthode B et a été utilisée dans de nombreux projets industriels pour la construction incrémentalle des spécifications formelles de systèmes et la vérification de propriétés [START_REF] Thierry Lecomte | Applying a Formal Method in Industry : A 25-Year Trajectory[END_REF]. Toutefois, la sémantique du langage Event-B repose sur le déclenchement d'évènements au sein d'un système tandis que celle de B repose sur l'exécution d'opérations au sein d'un logiciel. La méthode Event-B est supportée par l'environnement de développement intégré Rodin [START_REF] Michael | Rigorous Development of Complex Fault-Tolerant Systems[END_REF] qui permet tant l'édition et la validation des modèles Event-B que la génération et la décharge des obligations de preuve.

Un modèle Event-B comprend une partie statique définie au sein de contextes et une partie dynamique définie au sein de machines. Le contexte contient la définition des ensembles abstraits et énumérés, des constantes et de leurs propriétés. La machine, quant à elle, contient la définition des variables contraintes par des invariants et des évènements agissant sur l'état des variables. Chaque évènement est caractérisé par une garde qui est un préalable à son déclenchement et par une postcondition qui décrit l'impact du déclenchement sur l'état des variables. L'état initial des variables est défini par un évènement spécial appelé évènement d'initialisation. Un lien de raffinement défini entre une machine dite abstraite et une autre dite concrète permet à la machine concrète d'accéder au contenu de la machine abstraite afin d'enrichir ou concretiser la dynamique du système. De la même manière, un lien d'extension peut être défini entre deux contextes afin de permettre à l'un d'accéder au contenu de l'autre dans le but de les étendre. Il est enfin possible de préciser, au sein d'une machine, un ensemble de contextes afin de permettre à la machine d'accéder aux éléments qui y sont définis. Des invariants dits de collage, définis au sein d'une machine, permettent de caractériser la relation entre les variables introduites au sein de cette dernière et celles introduites dans des machines plus abstraites.

Contrairement à B, un raffinement Event-B peut augmenter le nombre d'évènements définis au sein de la machine abstraite. Chaque nouvel évènement défini est supposé raffiner un évènement spécial appelé skip qui est supposé maintenir l'état des variables abstraites inchangé. De plus, lorsqu'un évènement Ec défini au sein d'une machine concrète raffine un évènement abstrait Ea, il est nécessaire que les garde et postcondition de Ec ne soient pas plus faibles que les garde et postcondition de Ea respectivement.

B System

B System désigne une variante d'Event-B proposée au sein de l'environnement de développement intégré Atelier B. Les langages B System et Event-B partagent la même sémantique mais diffèrent par leurs syntaxes. La Figure 1.1 présente les principaux éléments du langage B System considérés dans le cadre du travail décrit dans cette thèse. Une spécification B System est constituée de composants. Un composant B System peut être un système ou un raffinement (s'il raffine un autre composant). De plus, chaque composant peut servir à définir des éléments de la partie statique (ensembles abstraits et énumérés, constantes et propriétés) ou des éléments de la partie dynamique (variables, invariant et évènements).

Variable

SysML/KAOS

De la même manière qu'Event-B, chaque évènement B System G = SELECT X WHERE G Guard THEN Act END est caractérisé par sa garde G Guard, qui représente la condition qui doit être vérifiée avant que G ne soit déclenché, et par sa post-condition G Post, qui représente l'état du système après que l'action Act de G ait été effectuée.

SysML/KAOS

SysML/KAOS [START_REF] Gnaho | Modeling the Impact of Non-functional Requirements on Functional Requirements[END_REF][START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF] est une méthode formelle d'ingénierie des exigences. Elle permet initialement la modélisation, sous forme de buts, des exigences (1) fonctionnelles et [START_REF]Road Transportation System : Description of the Functional Goal Model[END_REF] non-fonctionnelles d'un système. La formalisation du modèle des buts fonctionnels permet d'obtenir une spécification B System qui sert de base aux tâches de vérification et de validation formelles afin de détecter et corriger les potentielles incohérences.

Modélisation des exigences fonctionnelles

Une exigence fonctionnelle décrit un comportement attendu du système, à l'occurrence d'une condition précise. Le langage de modélisation des exigences fonctionnelles de SysML/KAOS [START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF] associe la traçabilité offerte par SysML [START_REF] Hause | The SysML modelling language[END_REF] à l'expressivité du langage de modélisation d'exigences de KAOS [START_REF] Van Lamsweerde | Requirements Engineering -From System Goals to UML Models to Software Specifications[END_REF]. Il permet la représentation des exigences fonctionnelles d'un système ainsi que des attentes vis-à-vis de l'environnement sous forme d'hiérarchies de buts. Parmi les opérateurs intervenant dans la hiérarchisation des buts, on distingue l'opérateur And (Et), l'opérateur Or (Ou) et l'opérateur Milestone (Séquence). L'opérateur And apparaît lorsque la condition nécessaire et suffisante, pour la réalisation d'un but, est la réalisation de chacun de ses sous-buts. Lorsque la condition nécessaire et suffisante pour la réalisation d'un but se limite à la réalisation de l'un de ses sous-buts, alors c'est l'opérateur Or qui apparaît. L'opérateur Milestone permet quant à lui de séquencer un ensemble de sous-buts dont la réalisation ordonnée est nécessaire pour garantir la satisfaction du but parent. SysML/KAOS considère également le raffinement de données qui intervient lorsque des buts apparaissant dans un niveau de raffinement sont réexprimés, au sein d'un niveau de raffinement subséquent, du fait du raffinement de certains éléments de données intervenant dans leur spécification.

Pour tenir compte de la complexité des systèmes, la méthode SysML/KAOS considère que le "premier" diagramme de buts fonctionnels construit, ou diagramme de plus haut niveau, est celui du système principal. La décomposition en sous-buts prend fin lorsqu'il est possible d'affecter chaque but de plus bas niveau, dit but 1.2. SysML/KAOS élémentaire, à un composant ou agent du système ou de l'environnement (soussystème). Par la suite, au besoin, des diagrammes de buts peuvent être définis pour les différents sous-systèmes. Ceux-ci peuvent en outre comporter des buts propres, en plus de ceux provenant du système de niveau supérieur. figure 1.2 -Extrait du diagramme des buts fonctionnels d'un système de gestion du train d'atterrissage d'un avion La Figure 1.2 illustre l'utilisation du langage de modélisation des buts fonctionnels de SysML/KAOS sur une étude de cas intitulée Landing Gear System [START_REF] Boniol | The Landing Gear System Case Study[END_REF] proposée dans le cadre de la 4 e édition de la conférence ABZ (ASM, Alloy, B, TLA, VDM, Z). L'objectif de l'étude de cas est de spécifier un système en charge de l'extension et de la rétraction du train d'atterrissage d'un avion. Le diagramme de la Figure 1.2 est axé sur l'objectif fonctionnel d'extension du train d'atterrissage (but fonctionnel makeLGExtended). L'opérateur de raffinement And est utilisé afin de spécifier les sous-buts à satisfaire pour garantir la satisfaction du but parent : pour satisfaire l'extension du train d'atterrissage, il faut abaisser la poignée de commande (but putHandleDown) et effectuer l'extension (but makeLSExtended). De même, la satisfaction du but makeLSExtended passe par l'ouverture de la porte du train d'atterrissage (but makeDoorsOpen), par l'extension du dispositif physique train d'atterrissage (but makeGearsExtended) et par la fermeture de la porte (but makeDoorsClosed). Par contre, l'abaissement de la poignée de commande peut se faire automatiquement (but putHandleDownAutomatically), par un automate système, ou manuellement (but putHandleDownManually), par le pilote.

SysML/KAOS

Formalisation des buts fonctionnels

La formalisation des modèles de buts fonctionnels SysML/KAOS est décrite dans [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF]. Les règles proposées permettent de générer un modèle B System dont la structure réflète la hiérarchie du modèle des buts fonctionnels : un composant est associé à chaque niveau de raffinement de la hiérarchie, ce composant définissant le squelette d'un évènement pour chaque but du niveau de raffinement. La méthode B System est choisie dans le cadre de la formalisation des modèles de buts fonctionnels SysML/KAOS car, contrairement à B, elle permet de modéliser les évènements qui ponctuent le cycle de vie d'un système et auxquels les buts fonctionnels correspondent naturellement. De plus, le raffinement B System permet l'ajout de nouveaux évènements de la même manière que le raffinement SysML/KAOS fait apparaître de nouveaux buts. Par ailleurs, B System est supportée par l'Atelier B édité par ClearSy [START_REF] Clearsy | ClearSy Systems Engineering[END_REF], un partenaire industriel au sein du projet FORMOSE [START_REF]Formose ANR Project[END_REF]. Bien plus, une simple réécriture syntaxique permet de convertir une spécification B System en spécification Event-B afin de profiter également de l'outillage offert par la plateforme Rodin [START_REF] Michael | Rigorous Development of Complex Fault-Tolerant Systems[END_REF].

En B System, la sémantique des liens de raffinement entre buts est exprimée par de nouvelles obligations de preuve, qui sont fonction des opérateurs de raffinement utilisés, et qui complémentent les obligations de preuve classiques de préservation d'invariant et de faisabilité d'action définies dans [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF]. Par exemple, pour un but G se décomposant en deux sous-buts G 1 et G 2 , les obligations de preuve sont 1 :

• Dans le cas d'un raffinement And (les variables intervenant dans la spécification des sous-buts doivent être distinctes) :

• G 1 Guard ⇒ G Guard : si la garde de G 1 est vraie, alors la garde de G doit l'être aussi.

• G 2 Guard ⇒ G Guard • (G 1 Post ∧ G 2 Post
) ⇒ G Post : si la conjonction des post-conditions de G 1 et G 2 est vraie, alors la post-condition de G doit l'être aussi. • Dans le cas d'un raffinement Or :

• G 1 Guard ⇒ G Guard • G 2 Guard ⇒ G Guard • G 1 Post ⇒ G Post • G 2 Post ⇒ G Post • (G 1 Guard ∧ G 1 Post) ⇒ ¬G 2
Guard : la satisfaction de G 1 ne doit pas conduire le système dans un état où G 2 peut être déclenché.

• (G 2 Guard ∧ G 2 Post) ⇒ ¬G 1 Guard • Dans le cas d'un raffinement Milestone : • G 1 Guard ⇒ G Guard • G 2 Post ⇒ G Post 1.2. SysML/KAOS
• ((G 1 Guard ∧ G 1 Post) ⇒ ♦G2 Guard) : la satisfaction de G 1 doit être suivie, directement ou indirectement, par le déclenchement de G 2. • Dans le cas d'un raffinement de données, les obligations de preuve correspondent aux obligations de preuve classiques de renforcement de la garde et de simulation de l'action [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF].

Modélisation des exigences non-fonctionnelles

Une exigence non-fonctionnelle désigne une propriété ou une caractérisation du système [START_REF] Gnaho | Une extension SysML pour l'ingénierie des exigences non fonctionnelles orientée but[END_REF]. Elle permet de définir des contraintes sur la façon avec laquelle le système atteint ses objectifs.

La méthode SysML/KAOS représente les exigences non-fonctionnelles à travers un langage similaire à celui utilisé pour la représentation des exigences fonctionnelles [START_REF] Gnaho | bCMS requirements modelling using SysML/KAOS[END_REF][START_REF] Gnaho | An overview of a SysML extension for goal-oriented NFR modelling[END_REF] et qui réutilise des notions du NFR Framework [START_REF] Chung | Non-functional requirements in software engineering[END_REF]. Ainsi, la hiérarchie des buts non-fonctionnels est construite par raffinements successifs à l'aide des opérateurs de raffinement And et Or. Toutefois, cette hiérarchie est construite au sein d'un modèle distinct de celui qui structure les buts fonctionnels. Chaque but non-fonctionnel est représenté sous la forme NFRType[Sujet] où NFRType désigne le type de la contrainte définie par le but (sécurité, sureté, etc.) et Sujet désigne l'entité du système ciblée par la contrainte. Un but NFRType[Sujet] peut être raffiné soit par les sous-buts NFRType i [Sujet] (raffinement par type) ou par les sous-buts NFRType[Sujet i ] (raffinement par sujet), sachant que NFRType i est un sous-type de NFRType et Sujet i est une sous-entité de Sujet. Par exemple, le but non-fonctionnel Sécurité[Système] peut être raffiné par les sous-buts Confidentialité[Système], Intégrité[Système] et Disponibilité[Système] en conformité avec la taxonomie des types de buts non-fonctionnels [START_REF] Chung | Non-functional requirements in software engineering[END_REF]. Il s'agit là d'un raffinement par type. Un raffinement par sujet du but Sécurité[Système] produirait les sous-buts Sécurité[Hardware] et Sécurité[Software] pour un système constitué d'une partie matérielle (Hardware) et d'une partie logicielle (Software). Le processus de raffinement prend fin lorsqu'il est possible de proposer des solutions de satisfaction, appelées buts de contribution, aux buts feuilles du modèle des buts non-fonctionnels.

Chaque but de contribution identifié peut contribuer positivement (+) ou négativement (-) à la satisfaction d'un but non-fonctionnel. De même, chaque but de contribution peut avoir un impact positif (+) ou négatif (-) sur la satisfaction d'un but fonctionnel. Les impacts des buts de contribution sont représentés au sein d'un modèle distinct appelé modèle intégré qui fédère les modèles de buts fonctionnels et non-fonctionnels [START_REF] Gnaho | bCMS requirements modelling using SysML/KAOS[END_REF]. Ils peuvent représenter (1) une contrainte de raffinement d'un but fonctionnel, (2) l'introduction d'un but fonctionnel ou (3) une contrainte sur la façon avec laquelle un but fonctionnel élémentaire est satisfait par l'agent à qui il est assigné.

Ontologies

Ontologies

Dans son article [START_REF] Thomas R Gruber | A translation approach to portable ontology specifications[END_REF], Gruber définit une ontologie comme une spécification explicite d'une conceptualisation. Bjørner [START_REF] Bjørner | Domain Analysis and Description Principles, Techniques, and Modelling Languages[END_REF] quant à lui définit une ontologie comme une représentation formelle des catégories, propriétés et relations caractérisant des entités d'un ou plusieurs domaines. Il est à noter qu'une entité désigne un phénomène ou un élément descriptible d'un domaine.

Les ontologies sont principalement utilisées pour représenter la connaissance d'un domaine. Suivant le formalisme de définition adopté, il est possible de bénéficier de mécanismes automatiques d'inférence (déduction de nouvelles assertions) et de vérification (contrôle de la cohérence). Les ontologies se répartissent en trois grandes catégories : (1) les ontologies fondamentales qui sont des ontologies de haut-niveau indépendantes de tout domaine ; (2) les ontologies de domaine qui se restreignent à un domaine donné ; et (3) les ontologies d'application définies dans le contexte d'une application particulière. En représentation de connaissances, l'objectif d'une ontologie de domaine est de permettre l'interopérabilité sémantique entre plusieurs systèmes opérant au sein du même domaine : permettre des échanges d'informations entre différents systèmes de telle sorte que le sens d'une information produite par un système puisse être automatiquement inféré par tout autre système de façon à la rendre exploitable par ce dernier [START_REF] Arp | Building ontologies with Basic Formal Ontology[END_REF]. Une telle ontologie peut être conçue ou interprétée sous l'hypothèse Closed World Assumption (CWA) ou sous l'hypothèse Open World Assumption (OWA). L'hypothèse CWA est considérée lorsque tout fait ne se déduisant pas de l'ontologie est supposé faux jusqu'à ce qu'il soit explicitement déclaré vrai. En ce qui concerne l'hypothèse OWA, un fait n'est considéré comme étant faux que s'il est possible de déduire son invalidité à partir de l'ontologie.

Dans le cadre de ce travail, les ontologies sont exploitées non pas pour représenter de la connaissance, comme par exemple dans le cas du web sémantique, ou pour formaliser le sens des choses, mais pour modéliser les domaines de systèmes d'ingénierie. Une conséquence immédiate de cette distinction est que chaque ontologie doit permettre de distinguer les entités dynamiques du domaine, dont l'état est succeptible d'être modifié par action du système, des entités statiques. L'ontologie désigne alors un modèle formel représentant des entités d'un domaine (en l'occurrence le système et son environnement dans le cas de systèmes ouverts ou le système tout court dans le cas de systèmes fermés), pouvant être regroupées en catégories à travers des relations de généralisation/spécialisation, leurs instances, leurs contraintes et attributs ainsi que les relations existantes entre elles. Un attribut définit une caractéristique objectivement mesurable d'une entité [START_REF] Bjørner | Domain Analysis and Description Principles, Techniques, and Modelling Languages[END_REF]. Pour Jackson 1.3. Ontologies [START_REF] Jackson | Software Abstractions : logic, language, and analysis[END_REF], seul un attribut peut être déclaré dynamique : l'attribut est dit dynamique lorsque sa valeur est succeptible de varier. Les termes classes ou concepts peuvent être utilisés pour désigner des entités et le terme individu pour désigner une instance d'entité.

Première partie

Modélisation du domaine

Chapitre 2

Langage SysML/KAOS de modélisation du domaine Résumé Un moyen de construire des systèmes critiques sûrs consiste à modéliser formellement les exigences formulées par les parties prenantes et à assurer leur cohérence en tenant compte des caractéristiques du domaine d'application.

Ce chapitre enrichit la méthode SysML/KAOS en introduisant un langage de spécification d'ontologies, défini par son métamodèle, pour la modélisation du domaine d'application d'un système dont les exigences sont capturées au moyen des langages de buts de SysML/KAOS. Il est construit à partir d'OWL et PLIB. L'explicitation et la vérification formelles de la sémantique des langages SysML/KAOS se font à travers la méthode B System : les modèles de buts fournissent les composants et la partie comportementale (évènements) de la spécification B System, tandis que les modèles de domaine fournissent sa partie structurelle.

La proposition est illustrée à travers une étude de cas portant sur la spécification du composant de localisation du véhicule autonome Cycab.

Commentaires

La contribution ici réside dans la définition, au sein de la méthode SysML/-KAOS, d'un langage de spécification d'ontologies pour la modélisation du domaine d'application d'un système. Le langage est défini de façon à (i) garantir sa compatibilité avec les langages SysML/KAOS de modélisation des exigences et (ii) assurer que tout modèle de domaine pourra être exploité afin de produire la partie structurelle de la spécification B System issue de la formalisation des modèles d'exigences SysML/KAOS.

La proposition, évaluée sur l'étude de cas Landing Gear System (système de contrôle du train d'atterissage d'un avion) [START_REF] Boniol | The Landing Gear System Case Study[END_REF], a fait l'objet d'un article accepté et publié [START_REF] Jeffrey | Towards Using Ontologies for Domain Modeling within the SysML/KAOS Approach[END_REF] dans le cadre de la 7 e édition du workshop international Model-Driven Requirements Engineering (MoDRE) qui s'est tenu en marge de la 25 e édition de la conférence internationale Requirements Engineering (RE) qui s'est déroulée à Lisbon, Portugal en septembre 2017. Le contenu de ce chapitre est une extension de cet article dans laquelle la proposition est évaluée sur une étude de cas liée à la spécification du composant de localisation du véhicule autonome Cycab. Cette extension a fait l'objet d'une soumission pour parution dans un livre qui tient lieu de compte rendu des échanges du colloque international NII Shonan, organisé par l'Institut National d'Informatique du Japon (NII), qui s'est tenu au Japon en Novembre 2016.

Cette contribution et les articles sus-cités ont été élaborés par mes soins en tenant compte des remarques et commentaires issus de mon équipe d'encadrement.

Introduction

Computer science is a relatively young science, but it does not prevent it from tackling huge challenges such as implementation of critical and complex software or cyberphysical systems. Such systems require careful analysis and design to ensure they do not cause disasters. Literature is full of disasters caused by failures at one of these stages [START_REF] Van Lamsweerde | Requirements Engineering -From System Goals to UML Models to Software Specifications[END_REF]. The purpose of the ANR FORMOSE project [START_REF]Formose ANR Project[END_REF] is to design a formally-grounded, model-based requirements engineering method, for critical and complex systems, supported by an open-source environment. Modeling a system according to the defined requirements engineering method requires the representation of its requirements as well as of entities and properties of its application domain. This representation implicitly implies a semantics that must be defined explicitly through a formal method in order to be verified and validated and thus to prevent potential failures. The SysML/KAOS goal modeling language [START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF] focuses on modeling of functional and non-functional requirements through goal hierarchies. Furthermore, Matoussi et al. [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF] report on the explicit representation of the semantics of SysML/KAOS goal models with Event-B [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF].

This paper complements the aforementioned studies with the definition of a domain modeling language. We first synthesize the body of knowledge related to the concrete representation of the semantics of SysML/KAOS goal models. Then, we analyse existing domain modeling approaches and describe the defined SysML/KAOS domain modeling language. The illustration is performed on TACOS [START_REF]TACOS ANR Project[END_REF], a case study dealing with the specification of a localization software component that uses GPS, Wi-Fi and sensor technologies for the realtime localization of the Cycab vehicle [START_REF] Sekhavat | The Cycab robot : a differentially flat system[END_REF], an autonomous ground transportation system.

The remainder of this paper is structured as follows: Section 2 briefly describes Event-B and SysML/KAOS. Section 3 summarises existing work [START_REF] Mammar | On the Use of Domain and System Knowledge Modeling in Goal-Based Event-B Specifications[END_REF][START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF] on the explicit representation of the semantics of SysML/KAOS models. Section 4 presents the relevant state of the art on domain modeling in requirements engineering and defines our expectations regarding the SysML/KAOS domain modeling language. Finally, Section 5 describes and illustrates the domain modeling language while Section 6 reports our conclusions and discusses future work. 22 2.2. Background

Background

Event-B and B System

Event-B [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF] is a formal method created by J. R. Abrial for system modeling. It is used to incrementally build a specification of a system that preserves a set of properties expressed through invariants. Event-B is mostly used to model closed systems: the modeling of the system is accompanied by that of its environment and of all interactions likely to occur between them. An Event-B model includes a static part called context and a dynamic part called machine. Contexts contain declarations of abstract and enumerated sets, constants, axioms and theorems. Machines contain variables, invariants and events. Moreover, a machine can access the definitions of a context. Each event has a guard and an action. The guard is a condition that must be satisfied for the event to be triggered and the action describes updates of state variables. The system specification can be constructed using stepwise refinement, by refining machines. Proof obligations are defined to prove invariant preservation by events (invariant has to be true at any system state), event feasibility, convergence and machine refinement [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF].

Through this paper, we use B System [START_REF] Clearsy | Atelier B : B System[END_REF], a variant of Event-B proposed by ClearSy, an industrial partner in the FORMOSE project, in its integrated development environment Atelier B [START_REF] Atelier | the industrial tool to efficiently deploy the B Method[END_REF]. B System and Event-B share the same semantics but are syntactically different.

SysML/KAOS

SysML/KAOS [START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF] is a requirements engineering method which combines the traceability provided by SysML [START_REF] Hause | The SysML modelling language[END_REF] with goal expressiveness provided by KAOS [START_REF] Van Lamsweerde | Requirements Engineering -From System Goals to UML Models to Software Specifications[END_REF]. It allows the representation of requirements to be satisfied by a system and of expectations with regards to the environment through a hierarchy of goals. The goal hierarchy is built through a succession of refinements using different operators: AND, OR and MILESTONE. An AND refinement decomposes a goal into subgoals, and all of them must be achieved to realise the parent goal. An OR refinement decomposes a goal into subgoals such that the achievement of only one of them is sufficient for the accomplishment of the parent goal. A MILESTONE refinement is a variant of the AND refinement which allows the definition of an achievement order between goals.

KAOS captures domain entities and properties within a model called the object model which is a UML class diagram. Its expressiveness is however considered insufficient by FORMOSE industrial partners [START_REF]Formose ANR Project[END_REF], regarding the complexity and the criticality of the systems of interest.

Background

Within SysML/KAOS, a functional goal describes the expected behaviour of the system once a certain condition holds [START_REF] Mammar | On the Use of Domain and System Knowledge Modeling in Goal-Based Event-B Specifications[END_REF]: [if CurrentCondition then] sooner-orlater TargetCondition. A functional goal can also be defined without specifying a CurrentCondition. In this case, the expected behaviour can be observed from any system state. 

B System Explicitation of the Semantics of SysM-L/KAOS Models

Semantics of Goal Models

The formalisation of SysML/KAOS goal models is the purpose of the work of Matoussi et al. [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF]. Each refinement level of a goal diagram gives a B System component. Each goal gives an event. The semantics of refinements links between goals is explicited using proof obligations that complement classic proof obligations for invariant preservation and for event actions feasibility defined in [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF]. The other classic proof obligations are not relevant for our purpose [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF]. Regarding the added proof obligations, they depend on the refinement pattern used. For an abstract goal G and two concrete goals G 1 and G 2 : 1-For an AND refinement, the proof obligations are

• G 1 Guard ⇒ G Guard • G 2 Guard ⇒ G Guard • (G 1 Post ∧ G 2 Post) ⇒ G Post -For an OR refinement, they are • G 1 Guard ⇒ G Guard • G 2 Guard ⇒ G Guard • G 1 Post ⇒ G Post • G 2 Post ⇒ G Post • G 1 Post ⇒ ¬G 2 Guard • G 2 Post ⇒ ¬G 1 Guard -For a MILESTONE refinement, they are • G 1 Guard ⇒ G Guard • G 2 Post ⇒ G Post • (G1 Post ⇒ ♦G2 Guard) (each
system state, corresponding to the post condition of G 1, must be followed, at least once in the future, by a system state enabling G 2) Figure 2.2 and 2.3 represent the B System components obtained respectively from the root level of the goal diagram of Fig. 2.1 and from its first refinement level. The structural part of the B System specification (constants constrained by properties and variables constrained by an invariant) and the body of events must be manually provided. The objective of our study is to automatically derive the structural part from a rigorous modeling of the domain of the system.

Proof obligations related to the AND refinement link between the root and the first refinement levels are: 

CaptureRawlocalizations Guard ⇒ LocalizeVehicle Guard (2.

Towards a Formal Expression of the Semantics of Domain Models

A domain model is a conceptual model capturing the topics related to a specific problem domain [START_REF] Broy | Domain Modeling and Domain Engineering : Key Tasks in Requirements Engineering[END_REF]. The main difference between requirements and domain models is that domain models are independent of stakeholders. They must conform to the operational context of the system. In [START_REF] Bjørner | Compositionality : Ontology and Mereology of Domains[END_REF], a domain description primarily specifies semantic entities of the domain intrinsics, semantic entities of support technologies already "in" the domain, semantic entities of management and organisation domain entities, syntactic and semantic of domain rules and regulations, syntactic and semantic of domain scripts and semantic aspects of human domain behaviour. In [113], Pierra defines a domain model as a set of categories represented as classes, their properties and their logical relationships. Modeling the domain of a system consists in giving a representation of the set of concepts that the system will be called upon to manipulate and the set of properties and constraints associated with them. A first attempt at modeling domains within SysML/KAOS is achieved in [START_REF] Mammar | On the Use of Domain and System Knowledge Modeling in Goal-Based Event-B Specifications[END_REF]. Domain modeling involves UML class diagrams, UML object diagrams and ontologies. The case study presented reveals the use of ontologies for domain knowledge representation; the model obtained is the domain model. Furthermore, UML object and class diagrams are used to represent the system structure and constraints in a model known as the structural model which must conforms to the domain model. A set of rules is proposed to translate some domain model elements to Event-B. However, the proposal involves UML diagrams which are semi-formal graphical representations [START_REF] Mcumber | A General Framework for Formalizing UML with Formal Languages[END_REF][START_REF] Tuong Huan Nguyen | KBRE : a framework for knowledge-based requirements engineering[END_REF]. Moreover, it uses several languages which is an extra source of complexity.
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Existing Domain Modeling Approaches

In KAOS [START_REF] Van Lamsweerde | Requirements Engineering -From System Goals to UML Models to Software Specifications[END_REF], the domain of a system is specified with an object model using UML class diagrams. An object within this model can be (1) an entity if it exists independently of the others and does not influence the state of any other object, [START_REF]Road Transportation System : Description of the Functional Goal Model[END_REF] an association if it links other objects on which it depends, (3) an agent if it actively influences the system state by acting on other objects or (4) an event if its existence is instantaneous, appearing to impulse an update of the system state. This approach, which is essentially graphic and semi-formal, as argued in [START_REF] Mcumber | A General Framework for Formalizing UML with Formal Languages[END_REF], is difficult to exploit in case of critical systems [START_REF] Tuong Huan Nguyen | KBRE : a framework for knowledge-based requirements engineering[END_REF].

In [START_REF] Devedzic | Knowledge modeling -State of the art[END_REF], Devedzic proposes to model the domain knowledge through either formulae of first-order logic or ontologies. He considers ontologies as a more structured and extensible representation of domain knowledge.

In [START_REF] Kitamura | An Integrated Tool for Supporting Ontology Driven Requirements Elicitation[END_REF], domain models are built around concepts and relationships: each definition of a domain model consists of an assertion linking two instances of Concept through an instance of Relationship. A categorisation is proposed for concepts and relationships: a concept can be a function, an object, a constraint, an actor, a platform, a quality or an ambiguity, while a relationship can be a performative or a symmetry, reflexivity or transitivity relation. However, the proposed metamodel is missing some relevant domain entities such as datasets, predicates to express domain constraints and relation cardinalities. Moreover, it does not propose modularisation mechanisms between domain models.

In [START_REF] Tuong Huan Nguyen | KBRE : a framework for knowledge-based requirements engineering[END_REF], ontologies are used not only to represent domain knowledge, but also to model and analyze requirements. The proposed methodology is called knowledge-based requirements engineering (KBRE) and is mainly used for detection and processing of inconsistencies, conflicts and redundancies among requirements. In spite of the fact that KBRE proposes to model domain knowledge with ontologies, the proposal focuses on the representation of requirements. A similar approach called GOORE is proposed in [START_REF] Shibaoka | GOORE : Goal-Oriented and Ontology Driven Requirements Elicitation Method[END_REF].

In [START_REF] Dermeval | Applications of ontologies in requirements engineering : a systematic review of the literature[END_REF], Dermeval et al. proposes a systematic literature review related to usages of ontologies in requirements engineering. They end up describing ontologies as a standard form of formal representation of concepts within a domain, as well as of relationships between those concepts. These approaches suggest that ontologies are relevant for modeling the domains of systems.

A Study of Ontology Modeling Languages

An ontology can be defined as a formal model representing concepts that can be grouped into categories through generalisation/specialisation relations, their instances, constraints and properties as well as relations existing between them. Ontology modeling languages can be grouped into two categories: Closed World Assumption (CWA) for those considering that any fact that cannot be deduced from what is declared within the ontology is false and Open World Assumption (OWA) for those considering that any fact can be true unless its falsity can be deduced from what is declared within the ontology. As [START_REF] Aït Ameur | Ontologies in engineering : the OntoDB/OntoQL platform[END_REF], we consider that accurate modeling of the knowledge of engineering domains, to which we are interested, must be done under the CWA assumption. Indeed, this assumption improves the formal validation of the consistency of system's specifications with respect to domain properties. Moreover, systems of interest to us are so critical that no assertion should be assumed to be true until consensus is reached on its veracity. Similarly, we also advocate strong typing [START_REF] Aït Ameur | Ontologies in engineering : the OntoDB/OntoQL platform[END_REF] because our domain models must be translatable to Event-B specifications.

Several ontology modeling languages exist. The main ones are OWL (Ontology Web Language) [START_REF] Sengupta | Web Ontology Language (OWL)[END_REF], PLIB (Part LIBrary) [112] and F-Logic (Frame Logic) [START_REF] Kifer | F-Logic : A Higher-Order language for Reasoning about Objects, Inheritance, and Scheme[END_REF]. A summary of similarities and differences between these languages is described in -The knowledge modeled using OWL, PLIB and F-Logic is always considered static because there is no distinguishing mechanism. It is for instance impossible to specify that the localization of a vehicle can change dynamically while its brand cannot. As stated in [START_REF] Li Zong-Yong | The Domain Ontology and Domain Rules Based Requirements Model Checking[END_REF], all the studied languages emphasize more on modeling static domain knowledge. None of these languages allows to specify that knowledge described must remain unchanged or that it is likely to be updated. Moreover, none of the languages fully meets our requirements. For instance, OWL assumes the OWA assumption, PLIB is weakly expressive, etc. The most aligned are OWL and PLIB.

Our Approach for Domain Modeling

We choose to represent domain knowledge using ontologies since they are semantically richer and therefore allow a more explicit representation of domain characteristics. Thus, in this Section, we propose a metamodel, based on that of OWL and PLIB while filling their shortcomings, to represent the domain of a system whose requirements are captured using the SysML/KAOS method. The domain 2.5. Our Approach for Domain Modeling modeling language makes the Unique Name Assumption (UNA) [START_REF] Aït Ameur | Ontologies in engineering : the OntoDB/OntoQL platform[END_REF]: the name of an element is sufficient to uniquely identify it among all others. Furthermore, the metamodel is designed to allow the specification of knowledge that is likely to evolve over time.

Presentation

Figures 2.4, 2.5, 2.6 and 2.7 present the main part of the metamodel associated with the SysML/KAOS domain modeling language. The yellow elements are those that have an equivalence in OWL, while the red ones are the ones that have been inserted or customized. In addition, some constraints and associations, such as the parentConcept association, come from the PLIB metamodel. Due to space consideration, we will not highlight all the elements and constraints of the metamodel.

Concepts and Individuals, Data Sets and Data Values

Domain models are built around instances of Concept which represent sets of individuals sharing common characteristics (Fig. 2.4). A concept can be variable (isVariable=true) when the set of its individuals is likely to be updated through addition or deletion of individuals. Otherwise, it is constant (isVariable=false). A concept can be associated with another one, known as its parent concept, through the parentConcept association, from which it inherits properties. As a result, any individual of the child concept is also an individual of the parent concept. It should be noted that when a variable concept CO is a subconcept of another variable concept PCO, the set of elements that CO can contain, over its whole existence, is included in the set of elements that PCO can contain. However, this version of the domain modeling language allows that, at some point, because of the variability of CO and PCO, an element present in CO is not present in PCO. The adjusted version of the domain modeling language considers a different approach in which inclusion of a variable concept into another one implies that at any point, elements of the variable subconcept must be elements of the variable parent concept.

Data sets (instances of DataSet) are used to group data values (instances of DataValue) having the same type (Fig. 2.5). Default data sets are INTEGER, NATURAL for positive integers, FLOAT, STRING or BOOL for booleans. The easiest way to build a data set is to list its elements. This can be done by defining instances of EnumeratedDataSet. 

Our Approach for Domain Modeling

Relations and Attributes

Relations (instances of Relation) are used to capture links between concepts (Fig. 2.6) while attributes (instances of Attribute) capture links between concepts and data sets (Fig. 2.7). A relation (Fig. 2.6) or an attribute (Fig. 2.7) can be variable if its set of maplets can be updated through addition or deletion. Otherwise, it is constant. Relations are characterized by their cardinalities: DomainCardinality and RangeCardinality (Fig. 2.6). Each instance of DomainCardinality (respectively RangeCardinality) makes it possible to define, for a relation re, the minimum and maximum limits of the number of individuals, having the domain (respectively range) of re as type, that can be put in relation with one individual, having the range (respectively domain) of re as type. The following constraints are associated with these limits: (minCardinality ≥ 0) ∧ (maxCardinality = ∞ ∨ maxCardinality ≥ minCardinality), knowing that if maxCardinality = ∞, then there is no maximum limit. Relation maplets (instances of RelationMaplet) define associations between individuals through relations. In an identical manner, attribute maplets (instances of AttributeMaplet) define associations between individuals and data values through attributes.

Optional characteristics can be specified for a relation (Fig. 2.6): transitive (isTransitive, default false), symmetrical (isSymmetric, default false), asymmetrical (isASymmetric, default false), reflexive (isReflexive, default false) or irreflexive (isIrreflexive, default false). It is said to be transitive (isTransitive=true) when the relation of an individual x with an individual y which is in turn in relation to z results in the relation of x and z. It is said to be symmetric when the relation between an individual x and an individual y results in the relation of y to x. It is said to be asymmetric when the relation of an individual x with an individual y has the consequence of preventing a possible relation between y and x, with the assumption that x = y. It is said to be reflexive when every individual of the domain is in relation with itself. It is finally said to be 

Functions and Predicates

Data functions (Instances of DataFunction) (Fig. 2.5) define operations which allow to determine data values at the output of a set of processes on some input data values. At each tuple of data values of the domain, the data function assigns a tuple of data values of the range, and this assignement cannot be changed dynamically. Example: a data function named multiply can be defined to produce, given two integers (individuals of INTEGER) x and y, the integer representing x * y. On the other side, predicates (instances of Predicate) (Fig. 2.4) represent constraints between different elements of the domain model as horn clauses: each predicate has a body which represents its antecedent and a head which represents its consequent, body and head designating conjunctions of atoms. A typing atom defines the type of a term: ConceptAtom for individuals and DataSetAtom for data values (Fig. 2.8). An association atom defines an association between terms: RelationAtom for associations through instances of Relation, AttributeAtom for ). For each case, types of the related terms must correspond to domains/ranges of the considered link. A comparison atom defines comparison relationships between terms: EqualityAtom for equality and InequalityAtom for difference (Fig. 2.8). Built in atoms are specialized atoms, characterized by identifiers captured through the AtomType enumeration, and used to represent special constraints between terms (Fig. 2.8) such as arithmetic constraints between several integers (eg: a + b < c). Predicates can also be used to represent constraints required for parameterized/dependent relations or attributes. For example, knowing that each material resistance depends on medium temperature, resistance and temperature are dependent attributes.

Domain Model and Goal Model

Each domain model is associated with a refinement level of the SysML/KAOS functional goal model and can have, as its parent, another domain model (Fig. 2.4). This allows the child domain model to access and extend some elements defined within the parent domain model. It should be noted that the parent domain model must be associated with the refinement level directly above the one to which the child domain model is associated. 

Illustration

We have identified two graphical syntaxes to represent ontologies: the syntax proposed by OntoGraph [START_REF] Falconer | Protégé -OntoGraph[END_REF] and the one proposed by OWLGred [136]. The OntoGraph syntax is the one used in [START_REF] Mammar | On the Use of Domain and System Knowledge Modeling in Goal-Based Event-B Specifications[END_REF]. Unfortunately, it does not allow the representation of some domain model elements such as attributes or cardinalities. For this illustration, we have thus decided to use the OWLGred syntax. For readability purposes, we have decided to represent the isVariable property only when it is set to true and to remove optional characteristics representation. In ontology localization component 0 (Fig. 2.10), a vehicle is modeled as an instance of Concept named Vehicle and its localization is represented through an instance of Concept named Localization. Since it is possible to dynamically add or remove vehicle localizations, the property isVariable of Localization is set to true, which is represented by the stereotype «isVariable». Since the system is designed to control a single vehicle, it is not possible to dynamically add new ones. The involved vehicle is thus modeled as an instance of Individual named v1 having Vehicle as type. Localization is the domain of two attributes: the latitude modeled as an instance of Attribute named loc latitude and the longitude modeled as an attribute named loc longitude. Attribute loc latitude has, as range, an instance of Cus-tomDataSet named Latitude and loc longitude an instance of CustomDataSet named Longitude. Since it is possible to dynamically change the localization of a vehicle, the property isVariable of loc latitude and that of loc longitude are set to true, which is represented by the stereotype «isVariable». The association between 2.5. Our Approach for Domain Modeling an individual of Vehicle and an individual of localization is represented through an instance of Relation named estimated location. Its associated domain cardinality has minCardinality=maxCardinality=1, and its associated range cardinality has minCardinality=0 and maxCardinality=1.

Ontology Associated with the First Refinement Level

Sensor
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Ontology Associated with the Second Refinement Level

Ontology localization component 2 (Fig. 2.12) has ontology localization component 1 (Fig. 2.11) as parent. This third abstraction level represents child concepts of SubComponent and Sensor. A subcomponent is either a GPS, represented through an instance of Concept named Gps, or a Wi-Fi, represented through an instance of Concept named Wifi. A sensor is either an accelerometer, represented through an instance of Concept named Accelerometer, or a speed sensor, represented through an instance of Concept named SpeedSensor. Finally, v1 is associated to an instance of Individual of type Gps named g1 and to an instance of Individual of type Wifi named w1 through vehicle subcomponents, an instance of Relation introduced in localization component 1. It is also associated to a speed sensor called s1 and to an accelerometer called a1.

The constraint "a GPS is more precise than a Wi-Fi" is translated into an instance of Predicate represented through formula 2.5: If an instance of Term, named x, having Wifi as its type, has px as its precision and an instance of Term, named y, having Gps as its type, has py as its precision, then py > px.

Conclusion

greaterThan(py, px) ← Wi f i(x) ∧ precision(x, px) ∧ Gps(y) ∧ precision(y, py) (2.5)

Conclusion

In this paper, we have first presented the explicitness of the semantics of SysML/KAOS goal models in Event-B. Then, we have drawn up the state of the art related to domain modeling in requirements engineering. After positioning ourselves as to the existing, we have presented our domain modeling approach consisting in representing domain entities and constraints using an ontology modeling language for which a metamodel is defined. The proposal is illustrated through the specification of a localization component for a Cycab vehicle.

Work in progress is aimed at developing mechanisms for the explicitness of the semantics of SysML/KAOS domain models in Event-B. We are also working on integrating the language within the open-source platform Openflexo [109] which federates the various contributions of FORMOSE project partners [START_REF]Formose ANR Project[END_REF].

Chapitre 3

Du modèle de domaine vers une spécification B System

Résumé

Ce chapitre traite de la traduction des modèles de domaine SysML/KAOS en spécifications B System. Ses contributions sont de deux ordres. La première réside dans la définition d'une sémantique formelle pour le langage SysML/KAOS de modélisation du domaine. Ce dernier, nous le rappelons, permet la représentation des éléments caractéristiques du domaine d'application d'un système à l'aide d'ontologies. La deuxième contribution réside dans l'élaboration d'une définition, d'abord informelle puis formelle, des règles de traduction de modèles de domaine SysML/KAOS en spécifications B System. Ces règles permettent d'exploiter la modélisation du domaine afin de produire la partie structurelle de la spécification B System issue de la formalisation des modèles d'exigences SysML/KAOS.

Tant le langage que les règles sont formellement définis en utilisant la méthode Event-B. Leur cohérence, leur complétude ainsi que diverses propriétés caractéristiques ont été prouvées sous Rodin. Il ressort que les règles sont convergentes. Bien plus, elles préservent la structure : les correspondances de deux éléments liés au sein d'un modèle de domaine sont également liées au sein du modèle B System correspondant.

Commentaires

La première contribution ici réside dans l'utilisation de la méthode Event-B afin de définir formellement, d'un point de vue syntaxique et sémantique, le langage SysML/KAOS de modélisation du domaine. Elle est suivie par l'élaboration d'une définition, d'abord informelle puis formelle, des règles permettant d'exploiter la modélisation du domaine afin de produire la partie structurelle de la spécification B System issue de la formalisation des modèles d'exigences SysML/KAOS. Il s'agit également ici de décrire les activités ayant permis de prouver la cohérence, la complétude, la convergence et l'isomorphisme des règles au travers de la plateforme Rodin. L'annexe A étend les définitions introduites dans ce chapitre à l'entièreté du langage et des règles.

Les contributions décrites dans ce chapitre ont fait l'objet d'un article accepté et publié [START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF] dans le cadre de la 6 e édition de la conférence internationale ABZ (ASM, Alloy, B, TLA, VDM, Z) qui s'est déroulée à Southampton, Royaume-Uni en juin 2018.

Les contributions et l'article sus-cités ont été élaborés par mes soins en tenant compte des remarques et commentaires issus de mon équipe d'encadrement.

Introduction

Our study, part of the FORMOSE project [START_REF]Formose ANR Project[END_REF], focuses on an approach for designing systems in critical areas such as railway or aeronautics. The development of such systems, in view of their complexity, requires several verifications and validation steps, more or less formal, with regard to the current regulations. In [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF], rules have been defined in order to produce a formal specification from SysML/KAOS goal models [START_REF] Gnaho | Modeling the Impact of Non-functional Requirements on Functional Requirements[END_REF][START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF]. Nevertheless, the generated specification did not contain the system state. This is why in [START_REF] Mammar | On the Use of Domain and System Knowledge Modeling in Goal-Based Event-B Specifications[END_REF], we have presented the use of ontologies and UML class and object diagrams for domain properties representation; we have also introduced rules to derive the system state from these domain representations. Unfortunately, the proposed approach raised several concerns such as the use of several modeling formalisms for the representation of domain knowledge or the disregard of the variability aspect of domain models. In addition, the proposed rules were incomplete and informal. We have therefore proposed in [START_REF] Jeffrey | Towards Using Ontologies for Domain Modeling within the SysML/KAOS Approach[END_REF] a language for domain knowledge representation through ontologies that meets the shortcomings of [START_REF] Mammar | On the Use of Domain and System Knowledge Modeling in Goal-Based Event-B Specifications[END_REF]. The language allows a high-level modeling of domain properties. This enables the expression of more precise and complete properties. In this paper, we propose rules for translating SysML/KAOS domain models into B System specifications. These rules have all been defined and the most relevant ones have been formally specified with Event-B [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF] and verified with Rodin [START_REF] Michael | Rigorous Development of Complex Fault-Tolerant Systems[END_REF]. The formalisation activity is necessary to assess the quality of the SysML/KAOS domain modeling language and of the translation rules, given the criticality of application domains. The Event-B method has been chosen because it involves intuitive mathematical concepts and has a powerful refinement logic. It has also been chosen because it is supported by industrial-strength tools. This work contributes to define a formal semantics for the SysML/KAOS domain modeling language, through the definition of its metamodel and its associated constraints in the form of Event-B specifications. In the paper, we provide the formal definition of some translation rules, chosen because they are representative of our work and summarise the benefits and difficulties of their expression and verification with Rodin. SysML/KAOS has been used to deal with the Hybrid ERTMS/ETCS level 3 case study [START_REF] Thai | The Hybrid ERTMS/ETCS Level 3 Case Study[END_REF]. It has also been applied on the landing gear system case study [START_REF] Boniol | The Landing Gear System Case Study[END_REF] and on other case studies (see [START_REF] Tueno | The SysML/KAOS Domain Modeling Language (Tool and Case Studies)[END_REF]). The presentation of the work done on the case studies is out of the scope of this paper, but we use an excerpt from the landing gear system case study to illustrate our work. The remainder of this paper is structured as follows: Section 2 briefly describes the key concepts related to the study. This is followed by a presentation, in Section 3, of the specification in Event-B, of the B System and SysML/KAOS domain modeling languages. In Section 4, we describe some representative translation rules and we

Context

provide their formal definition. Section 5 underlines the benefits of using the Event-B method to express and validate the rules and some challenges encountered. It ends with a positioning of our work with regard to the state of the art. Finally, Section 6 reports our conclusions and discusses future work.

Context

SysML/KAOS

SysML/KAOS [START_REF] Gnaho | Modeling the Impact of Non-functional Requirements on Functional Requirements[END_REF][START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF] is a requirements engineering method which extends the SysML UML profile with a set of concepts from KAOS [START_REF] Van Lamsweerde | Requirements Engineering -From System Goals to UML Models to Software Specifications[END_REF] allowing to represent functional and non-functional requirements. It combines the traceability features provided by SysML with goal expressiveness provided by KAOS. SysML/KAOS goal models allow the representation of requirements to be satisfied by the system and of expectations with regard to the environment through a goal hierarchy. The hierarchy is built through a succession of refinements using different operators: AND and OR. An AND refinement decomposes a goal into subgoals, and all of them must be achieved to realise the parent goal. An OR refinement decomposes a goal into subgoals such that the achievement of only one of them is sufficient for the accomplishment of the parent goal. The formalisation of SysML/KAOS goal models is detailed in [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF]. The proposed rules allow the generation of a formal model whose structure reflects the hierarchy of goal diagrams: one component is associated with each level of the goal hierarchy; this component defines one event for each goal. Proof obligations are defined to formalise the semantics of refinement links between goals.

In this paper, we use the landing gear system case study to illustrate some elements of our approach [START_REF] Boniol | The Landing Gear System Case Study[END_REF][START_REF] Tueno | The SysML/KAOS Domain Modeling Language (Tool and Case Studies)[END_REF]. Figure 3.1 is an excerpt from its goal diagram focused on the purpose of landing gear expansion (makeLGExtended). To achieve it, the handle must be put down (putHandleDown) and landing gear sets must be extended (makeLSExtended).

Domain Modeling in SysML/KAOS

The SysML/KAOS domain modeling language [START_REF] Jeffrey | Towards Using Ontologies for Domain Modeling within the SysML/KAOS Approach[END_REF][START_REF] Jeffrey | The SysML/KAOS Domain Modeling Approach[END_REF] uses ontologies to represent domain models. It is based on OWL [START_REF] Sengupta | Web Ontology Language (OWL)[END_REF] and PLIB [112], two well-known and complementary ontology modeling languages. common properties. A concept can be declared variable (isVariable=true) when the set of its individuals can be updated by adding or deleting individuals. Otherwise, it is constant (isVariable=false). Figure 3.2 gives an excerpt from the domain model associated to the root level of the landing gear system goal model. In the rest of this paper, source is used in place of SysML/KAOS domain model.

Context

Event-B and B System

Event-B [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF] is an industrial-strength formal method for system modeling. It is used to incrementally construct a system specification, using refinement, and to prove useful properties. B System is an Event-B syntactic variant proposed by ClearSy, an industrial partner in the FORMOSE project [START_REF]Formose ANR Project[END_REF], and supported by Atelier B [START_REF] Clearsy | Atelier B : B System[END_REF]. Event-B and B System have the same semantics defined by proof obligations [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF]. 1 is a metamodel of the B System language restricted to concepts that are relevant to us. A B System specification consists of components (instances of Component). Each component can be either a system or a refinement and it may define static or dynamic elements. A refinement is a component which refines another one in order to access the elements defined in it and to reuse them for new constructions. Constants, abstract and enumerated sets, and their properties, constitute the static part. The dynamic part includes the representation of the system state using variables constrained through invariants and initialised through initialisation actions. Properties and invariants can be categorised as instances of LogicFormula. Variables can be involved only in invariants. In our case, it is sufficient 3.3. Specification of Source and Target Metamodels in Event-B to consider that logic formulas are successions of operands in relation through operators. Thus, an instance of LogicFormula references its operators (instances of Operator) and its operands that may be instances of Variable, Constant, Set or SetItem. Operators include, but are not limited to 1 , Inclusion_OP which is used to assert that the first operand is a subset of the second operand ((Inclusion OP, [op 1 , op 2 ]) ⇔ op 1 ⊆ op 2 ) and Belonging_OP which is used to assert that the first operand is an element of the second operand ((Belonging OP, [op 1 , op 2 ]) ⇔ op 1 ∈ op 2 ). In the rest of this paper, target is used in place of B System. We have defined static elements of the target metamodel in a context named BSystem Metamodel Context and static elements of the source metamodel in the one named Domain Metamodel Context. The two machines have access to the definitions of the contexts. For the sake of concision, we provide only an illustrative excerpt of these Event-B specifications. For instance, the model Ontologies -BSystem specs translation ref 1 contains more than a hundred variables, a hundred invariants and fifty events and it gives rise to a thousand proof obligations. The full version can be found in annex A.

For the translation of some metamodel elements, we have followed the rules proposed in [START_REF] Laleau | An Overview of a Method and Its Support Tool for Generating B Specifications from UML Notations[END_REF][START_REF] Snook | UML-B : Formal Modeling and Design Aided by UML[END_REF], such as: classes which are not subclasses give rise to abstract sets, each class gives rise to a variable typed as a subset and containing its instances and each association or property gives rise to a variable typed as a relation. For example, in the following specification, class DomainModel of the source metamodel and class Component of the target metamodel give rise to abstract sets representing all their possible instances. Variables are introduced and typed (inv0 1, inv0 2 and inv0 3) to represent sets of defined instances. Variables are also used to represent attributes and associations [START_REF] Laleau | An Overview of a Method and Its Support Tool for Generating B Specifications from UML Notations[END_REF][START_REF] Snook | UML-B : Formal Modeling and Design Aided by UML[END_REF] such as the attribute isVariable of the class Concept in the source metamodel (inv1 5) and the association definedIn between the classes Constant and Component in the target metamodel (inv1 7). To avoid ambiguity, we have prefixed and suffixed each element name with that of the class to which it is attached (e.g. Concept_isVariable or Constant_definedIn_Component). Furthermore, for better readability of the specification, we have chosen to add "s" to the name of all Event-B relations for which an image is a set (e.g. Constant isInvolvedIn LogicFormulas or Invariant involves Variables). 

END

An association r from a class A to a class B to which the ordered constraint is attached is represented as a variable r typed through the invariant r ∈ (A → (N 1 → B)). This is for example the case of the association Invariant involves Variables of the target metamodel (inv1 11). If instances of B have the same sequence number, then the invariant becomes r ∈ (A → P 1 (N 1 × B)). This is for example the case of the association Constant isInvolvedIn LogicFormulas of the target metamodel (inv1 13). Invariant inv1 12 ensures that each variable is involved in at least one invariant and inv1 14 ensures the same constraint for constants.

Translation Rules

Overview of Translation Rules

Table 3.1 summarises the translation rules. They are fully described in annex A. These rules cover the formalisation of all elements of the source metamodel, from domain models with or without parents to concepts with or without parents, including relations, individuals or attributes. It should be noted that o x designates the result of the translation of x and that abstract is used for "without parent".

We are not interested in validating the transformation rules of predicates because both source and target metamodels express them using first-order logic notations. The translation of a predicate is a syntactic rewrite. The rules are outlined in [START_REF] Jeffrey | Formal Representation of SysML/KAOS Domain Model (Complete Version)[END_REF]. The translation of the ontology of Fig. 3.2 produces the specification below: SYSTEM landing gear system ref 0

SETS LandingGear

CONSTANTS

LG1

PROPERTIES

LG1 ∈ LandingGear ∧ LandingGear = {LG1}

END

The root domain model is translated into a system component named landing gearsystem ref 0 (line 1 of Table 3.

1). The abstract set LandingGear appears because

LandingGear is an instance of the class Concept (line 3). The individual LG1 gives rise to a constant LG1 ∈ LandingGear (line 8). The property LandingGear = {LG1} translates the fact that the isVariable property of LandingGear is set to false.

Event-B Specification of Translation Rules

The correspondence links between instances of a class A of the source metamodel and instances of a class B of the target metamodel are captured in a variable named A corresp B typed by the invariant A corresp B ∈ A B. It is an injection because each instance, on both sides, must have at most one correspondence. The injection is partial because all the elements are not translated at the same time. Thus, it is possible that at an intermediate state of the system, there are elements not yet translated. For example, correspondence links between instances of Concept and instances of AbstractSet are captured as follows

INVARIANTS inv1 8: Concept corresp AbstractSet ∈ Concept AbstractSet
Translation rules have been modeled as convergent events, this guarantees that each rule will be triggered a finite number of times [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF] (see Section 3.5.1). Each event execution translates an element of the source into the target. Variants and event guards and type have been defined such that when the system reaches a state where no transition is possible (deadlock state), all translations are done (see Section 3.5.1). Up to fifty events have been specified. The rest of this section provides an overview of the specification of some of these events in order to illustrate the formalisation process and some of its benefits and difficulties. The full specification can be found in annex A.

Translating a Domain Model with Parent (line 2 of table 3.1)

The corresponding event is called domain model with parent to component. It states that a domain model, associated with another one representing its parent, gives rise to a refinement component. The refinement component must be the one refining the component corresponding to the parent domain model. Guard grd1 is the main guard of the event. It is used to ensure that the event will only handle instances of DomainModel with parent and only instances which have not yet been translated. It also guarantees that the event will be enabled until all these instances are translated. Action act3 states that o DM refines the correspondent of PDM. To discharge, for this event, the proof obligation related to the invariant inv0 6, it is necessary to guarantee that, given a domain model m not translated yet, and its parent pm that has been translated into component o pm, then o pm has no refinement yet. This constraint is encoded by invariant inv0 7.

MACHINE Ontologies BSystem specs translation INVARIANT

Translating a Concept with Parent (line 4 of table 3.1)

This rule leads to two events: the first one for when the parent concept corresponds to an abstract set (the parent concept does not have a parent: line 3 of table 3.1) and the second one for when the parent concept corresponds to a constant (the parent concept has a parent: line 4 of table 3.1). Below is the specification of the first event 4 . 

END

The rule asserts that any concept, associated with another one, with the par-entConcept association, gives rise to a constant, typed as a subset of the B System element corresponding to the parent concept. We use an instance of LogicFormula, named o lg, to capture this constraint linking the concept and its parent correspondents (o CO and o PCO). Guard grd2 constrains the parent correspondent to be an instance of AbstractSet. Guard grd4 ensures that the event will not be triggered until the translation of the domain model containing the definition of the concept. The specification of the second event (when the parent concept corresponds to a constant) is different from the specification of the first one in some points. The three least trivial differences appear at guard grd2 and at actions act7 and act8. Guard grd2 constrains the parent correspondent to be an instance of Constant: PCO ∈ dom(Concept corresp Constant). Thus, the first and the second operands involved in o lg are constants:

act7: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -{ (o CO → {1 → o lg}), o PCO → Constant isInvolvedIn LogicFormulas(o PCO) ∪ {2 → o lg}} act8: LogicFormula involves Sets(o lg) : = ∅
This approach to modeling logic formulas allows us to capture all the information conveyed by the predicate which can then be used to make inferences and semantic analysis. It is especially useful when we deal with rules to propagate changes made to a generated B System specification back to the domain model (ie, propagate changes made to the target into the source). The study of these propagation rules will be the next step in our work. 

Discussion and Experience

The rules that we propose allow the automatic translation of domain properties, modeled as ontologies, to B System specifications, in order to fill the gap between the system textual description and the formal specification. It is thus possible to benefit from all the advantages of a high-level modeling approach within the framework of the formal specification of systems: decoupling between formal specification handling difficulties and system modeling; better reusability and readability of models; strong traceability between the system structure and stakeholder needs. Applying the approach on case studies [START_REF] Tueno | The SysML/KAOS Domain Modeling Language (Tool and Case Studies)[END_REF] allowed us to quickly build the refinement hierarchy of the system and to determine and express the safety invariants, without having to manipulate the formal specifications. Furthermore, it allows us to limit our formal specification to the perimeter defined by the expressed needs. This step also allowed us to enrich the domain modeling language expressiveness.

Benefits

Formally defining the SysML/KAOS domain modeling language, using Event-B, allowed us to completely fulfill the criteria for it to be an ontology modeling formalism [START_REF] Aït Ameur | Ontologies in engineering : the OntoDB/OntoQL platform[END_REF]. Furthermore, formally defining the rules in Event-B and discharging the associated proof obligations allowed us to prove their consistency, to animate them using ProB and to reveal several constraints (guards and invariants) that were missing when designing the rules informally or when specifying the metamodels. For instance: (1) if an instance of Concept x, with parent px does not have a correspondent yet and if px does, then, the correspondent of px should not be refined by any instance of Component (inv0_7 defined in Ontologies BSystem specs translation and described in Sect. 3.4.2); (2) elements of an enumerated data set should have correspondents if and only if the enumerated data set does; (3) if a concept, given as the domain of an attribute (instance of Attribute), is variable, then the attribute must also be variable; the same constraint is needed for the domain and the range of a relation. In case of absence of this last constraint, it is possible to reach a state where an attribute maplet (instance of AttributeMaplet) is defined for a nonexisting individual (because the individual has been dynamically removed). These constraints have been integrated in the SysML/KAOS domain modeling language in order to strengthen its semantics.

There are two essential properties that the specification of the rules must ensure and that we have proved using Rodin. The first one is that the rules are isomorphisms and it guarantees that established links between elements of the ontologies are preserved between the corresponding elements in the B System specification and vice versa. To do this, we have introduced, for each considered link between elements, 3.5. Discussion and Experience an invariant guaranteeing the preservation of the corresponding link between the correspondences and we have discharged the associated proof obligations. This leads to fifty invariants. For example, to ensure that for each domain model pxx, parent of xx, the correspondent of xx refines the correspondent of pxx and vice versa, we have defined the following invariants: To discharge the proof obligations related to inv0 8 and inv0 9, invariants inv0 10 and inv0 11 have been defined to guarantee an order between translation rules: the parent of xx is always translated before xx. The second essential property is to demonstrate that the system will always reach a state where all translations have been established (P0).

Discussion and Experience

To manually demonstrate P0, we have proven that all events can be disabled if and only if all translations have been done. For example, let's consider rules dealing about the translation of instances of DomainModel (lines 1 and 2 of table 3.1); the negation of guards results in To automatically prove it, we have introduced, within each machine, a variant defined as the difference between the set of elements to be translated and the set of elements already translated. Then, each event representing a translation rule has been marked as convergent and we have discharged the proof obligations ensuring that each of them decreases the variant. For each rule, the number of elements to be translated is defined and finite; since we are sure, regarding the event convergence, that each triggering of the rule translates an untranslated element, we are guaranteed that in a finite number of triggerings, all elements will be translated. For example, in machine Ontologies BSystem specs translation containing the definition of translation rules from domain models to B System components, the variant was defined as DomainModel \ dom(DomainModel corresp Component) Thus, at the end of system execution, we will have dom(DomainModel corresp Component) = DomainModel which will reflect the fact that each domain model has been translated into a component.

Challenges

There is no predefined type for ordered sets in Event-B. This problem led us to the definition of composition of functions in order to define relations on ordered sets. Moreover, because of the size of our model (about one hundred invariants and about fifty events for each machine), we noted a rather significant performance reduction of Rodin during some operations such as the execution of auto-tactics or proof replay on undischarged proof obligations that have to be done after each update in order to discharge all previously discharged proofs. Table 3.3 summarises the key characteristics of the Rodin project corresponding to the Event-B specification of 3.5. Discussion and Experience metamodels and rules. The proof obligations have been discharged using the Rodin tool extended with Atelier B provers [115] and SMT solvers [127]. The automatic provers seemed least comfortable with functions ( →, , →, → →) and become almost useless when those operators are combined in definitions as for ordered associations (r ∈ (A → (N 1 → B))). 

Related Work

The study of correspondence links between domain models or ontologies and formal methods has been the subject of numerous works.

In [START_REF] Bjørner | Compositionality : Ontology and Mereology of Domains[END_REF], domain models consist of entities and operations which can be atomic or composite. Atomic entities correspond to states of the formal model. Composite entities correspond to sets, groups, lists or associations of states. Furthermore, operations are translated into state-changing actions, composite operations corresponding to composition of actions.

The work presented in [START_REF] Bjørner | Compositionality : Ontology and Mereology of Domains[END_REF] is interested in describing entities, their mereology, their behaviours and their transformations. Rules are provided for the formalisation of these elements. On the other hand, our study is focused on the description of entities of a system application domain and their instances, of their constraints and of their attributes and associations. Moreover, our modeling is done through successive refinements and the translation rules integrate the refinement links between modules. In [START_REF] Wang | Enhanced Semantic Access to Formal Software Models[END_REF], an approach is proposed for the automatic extraction of domain knowledge, as OWL ontologies, from Z/Object-Z (OZ) models: OZ types and classes are transformed into OWL classes. Relations and functions are transformed into OWL properties, with the cardinality restricted to 1 for total functions and the maxCardinality restricted to 1 for partial functions. OZ constants are translated into OWL individuals. Rules are also proposed for subsets and state schemas. A similar approach is proposed in [START_REF] Song | Z Approach to Semantic Web[END_REF], for the extraction of DAML ontologies from Z models. These approaches are interested in correspondence links between formal 3.5. Discussion and Experience methods and ontologies, but their rules are restricted to the extraction of domain model elements from formal specifications. Furthermore, all elements extracted from a formal model are defined within a single ontology component, while in our approach, each ontology refinement level corresponds to a formal model component.

Some rules for passing from an OWL ontology representing a domain model to Event-B specifications are proposed in [START_REF] Alkhammash | Building traceable Event-B models from requirements[END_REF], in [13] and through a case study in [START_REF] Mammar | On the Use of Domain and System Knowledge Modeling in Goal-Based Event-B Specifications[END_REF]. In [START_REF] Alkhammash | Building traceable Event-B models from requirements[END_REF], domain properties are described through data-oriented requirements for concepts, attributes and associations and through constraint-oriented requirements for axioms. Possible states of a variable element are represented using UML state machines. Concepts, attributes and associations arising from data-oriented requirements are modeled as UML class diagrams and translated to Event-B using UML-B [START_REF] Snook | UML-B : Formal Modeling and Design Aided by UML[END_REF]: nouns and attributes are represented as UML classes and relationships between nouns are represented as UML associations. UML-B is also used for the translation of state machines to Event-B variables, invariants and events. The approaches in [START_REF] Alkhammash | Building traceable Event-B models from requirements[END_REF] and [13] require a manual transformation of the ontology before the possible application of translation rules to obtain the formal specifications: In [START_REF] Alkhammash | Building traceable Event-B models from requirements[END_REF], it is necessary to convert OWL ontologies into UML diagrams; in [13], the proposal requires the generation of an ACE (Attempto Controlled English) version of the OWL ontology which serves as basis for development of the Event-B specification. Furthermore, for this to be completed, the names of ontology elements must necessarily be expressed in English. Moreover, since the OWL formalism supports weak typing and multiple inheritance, the approaches define a unique Event-B abstract set named Thing. Thus, all sets, corresponding to OWL classes, are defined as subsets of Thing. Our formalism, on the other hand, imposes strong typing and simple inheritance; which makes it possible to translate some concepts into Event-B abstract sets. In [START_REF] Mammar | On the Use of Domain and System Knowledge Modeling in Goal-Based Event-B Specifications[END_REF], the case study reveals that each ontology class, having no individual, is modeled as an Event-B abstract set. If the class has individuals, then it is modeled as an enumerated set. Finally, each object property between two classes is modeled as a constant defines as a relation.

Several shortcomings are common to these approaches: the provided rules do not take into account the refinement links between model parts. Furthermore, they are provided in an informal way and they are not supported by tools. Finally, the approaches are only interested in static domain knowledge: they do not distinguish what gives rise to formal constants or variables.

Many studies have been done on the translation of UML diagrams into B specifications such as [START_REF] Laleau | An Overview of a Method and Its Support Tool for Generating B Specifications from UML Notations[END_REF][START_REF] Snook | UML-B : Formal Modeling and Design Aided by UML[END_REF]. They inspired many of our rules, like those dealing with the translation of concepts (classes) and of attributes and relations (associations). But, our work differs from them because of the distinctions between ontologies and UML diagrams: within an ontology, concepts or classes and their instances are represented within the same model as well as the predicates defining domain constraints. Moreover, these studies are most often interested in the translation of model elements and not really in handling links between models. Finally, in the case of the SysML/KAOS domain modeling language, the variability properties (attributes characterising the belonging of an element to the static or dynamic knowledge) are first-class citizens, as well as association characteristics. As a result, they are explicitly represented.

In [START_REF] Bodeveix | An Event-B framework for the validation of Event-B refinement plugins[END_REF], an approach to model the theoretical foundations of Event-B using Event-B is sketched in order to validate some Event-B extensions related to distribution, to composition and to decomposition. However, the proposal considers neither Event-B contexts (Sets, Constants, Properties) nor refinement links and the definition of predicates makes their representation too abstract.

Conclusion and Future Work

This paper proposes an Event-B formalisation of translation rules between SysML/KAOS domain models and B System specifications. Their consistency was proven through Rodin [START_REF] Michael | Rigorous Development of Complex Fault-Tolerant Systems[END_REF]. This allowed us to ensure some properties regarding rules such as convergence and isomorphisms and to determine some relevant guards and invariants missing in informal definitions. The rules are implemented within an open source tool [START_REF] Tueno | The SysML/KAOS Domain Modeling Language (Tool and Case Studies)[END_REF] which support construction of domain models and generation of the corresponding B System specifications. The tool is built on top of Jetbrains Meta Programming System [START_REF] Jetbrains | Jetbrains MPS[END_REF], a platform to design domain specific languages using language-oriented programming. It was assessed on three major case studies [START_REF] Tueno | The SysML/KAOS Domain Modeling Language (Tool and Case Studies)[END_REF].

This work allows the complete extraction of the structural part of the B System specification obtained from SysML/KAOS goal models and the initialisation of state variables. However, it remains necessary to manually provide the body of events, which can lead to updates of the specification obtained from domain models.

Work in progress is aimed at evaluating the impact of updates performed within a B System specification on the corresponding SysML/KAOS models. We are also interested in integration of the translation rules within the open-source platform Openflexo [109] which federates the various contributions of FORMOSE project partners [START_REF]Formose ANR Project[END_REF] and which currently supports the construction of SysML/KAOS goal and domain models.

Chapitre 4 Prise en compte de l'évolution d'un modèle B System : cas de la propagation des ajouts d'éléments structurels

Résumé

De nos jours, l'utilité des méthodes formelles pour la vérification et la validation formelles des spécifications de systèmes est bien établie, du moins en ce qui concerne les systèmes critiques. Toutefois, l'un des principaux obstacles à leur vulgarisation réside dans l'obtention de la spécification formelle du système, et, dans le cas d'une méthode formelle basée sur le raffinement à l'exemple de B System et d'Event-B, dans l'obtention de la spécification la plus abstraite. La méthode formelle d'ingénierie des exigences SysML/KAOS a été élaborée afin de surmonter cette difficulté. Elle comprend un langage de modélisation des buts permettant de représenter les exigences du système. Des règles de traduction ont de plus été définies afin d'obtenir une spécification B System à partir des modèles de buts SysML/KAOS : cette spécification constitue l'ossature de la modélisation formelle des exigences du système. Pour la compléter, un langage de modélisation du domaine d'application du système a été défini. La formalisation des modèles de domaine ainsi construits permet d'obtenir la partie structurelle de la spécification B System issue des modèles de buts. Il s'agit par la suite de spécifier le corps des évènements, puis de vérifier et valider le modèle B System obtenu.

Cependant, il apparaît très souvent que de nouveaux éléments doivent être ajoutés à la spécification B System issue des modèles SysML/KAOS. Cette nécessité peut survenir tant de la spécification du corps des événements que des tâches de vérification et de validation formelles. Ce chapitre définit en conséquence un ensemble de règles permettant de propager tout ajout d'élément au sein de la partie structurelle d'une spécification B System, vers les modèles de domaine impactés. Le chapitre décrit également comment les règles ont été spécifiées formellement en utilisant Event-B. Ceci a permis de prouver leur cohérence et leur convergence, au travers de la plateforme Rodin. Il a également été possible de démontrer qu'elles préservent la structure des modèles : les correspondances de deux éléments liés au sein d'un modèle B System sont également liées au sein du modèle de domaine correspondant.

Commentaires

La contribution ici réside dans l'élaboration d'une définition, d'abord informelle puis formelle, des règles permettant de propager des ajouts d'éléments au sein de la partie structurelle d'une spécification B System, vers les modèles de domaine correspondants. Il s'agit également ici de décrire les activités ayant permis de prouver la cohérence, la convergence et l'isomorphisme des règles au travers de la plateforme Rodin. L'annexe A étend les définitions introduites dans ce chapitre à l'entièreté des règles.

Les contributions décrites dans ce chapitre ont fait l'objet d'un article accepté et publié [START_REF] Jeffrey | Back Propagating B System Updates on SysML/KAOS Domain Models[END_REF] dans le cadre de la 23 e édition de la conférence internationale ICECCS (International Conference on Engineering of Complex Computer Systems) qui s'est déroulée à Melbourne, Australie en Décembre 2018.

Les contributions et l'article sus-cités ont été élaborés par mes soins en tenant compte des remarques et commentaires issus de mon équipe d'encadrement.

Introduction

in Event-B. Their consistency is proved using the Rodin tool. We show that they are structure preserving: two related elements within the B System specification remain related within the domain model. This is done by proving various isomorphisms between the B System specification and the domain models.

Introduction

Our work helps to bring three modeling activities closer together: requirements modeling, domain modeling and formal specification. It focuses on the formal requirements modeling of systems in critical areas such as railway or aeronautics. It is developed in the French research project, called FORMOSE [START_REF]Formose ANR Project[END_REF]. In [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF], Matoussi et al. have defined translation rules to produce formal specifications from SysML/KAOS goal models [START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF]. They generate a skeleton of the system specification. Nevertheless, it remains to define the structural part of the specification (such as user-defined types, variables or constants and their properties) and the body of events. Tueno et al. have therefore proposed in [START_REF] Jeffrey | Towards Using Ontologies for Domain Modeling within the SysML/KAOS Approach[END_REF] a language for domain knowledge representation which combines the expressivity of the Ontology Web Language (OWL), the constraints provided by the standard Part Library (PLIB) and the extensions needed to guarantee some relevant properties [START_REF] Jeffrey | Towards Using Ontologies for Domain Modeling within the SysML/KAOS Approach[END_REF]. Translation rules to obtain a B System specification from domain models have been defined and formally verified in [START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF]. They allow the completion of the formalisation of the SysML/KAOS goal model with the structural part of the formal specification and the initialisation of state variables. The specification of the body of events, as illustrated in [START_REF] Jeffrey | Modeling the Hybrid ERTMS/ETCS Level 3 Standard Using a Formal Requirements Engineering Approach[END_REF], completes the formal model. The B System specification, thus obtained from the needs formulated, can then be verified and validated using the whole range of tools that support the B method [START_REF] Abrial | The B-book : assigning programs to meanings[END_REF], largely and positively assessed on industrial projects for more than 25 years [START_REF] Thierry Lecomte | Applying a Formal Method in Industry : A 25-Year Trajectory[END_REF].

The work done on case studies [START_REF] Jeffrey | Modeling the Hybrid ERTMS/ETCS Level 3 Standard Using a Formal Requirements Engineering Approach[END_REF][START_REF] Tueno | The SysML/KAOS Domain Modeling Language (Tool and Case Studies)[END_REF] reveals that, very often, new elements need to be added to the structural part of the formal specification. These additions may be required during the specification of the body of events or during the verification and validation of the formal model (e.g. to define an invariant or a theorem required to discharge a proof obligation). Moreover, modeling is often done through several backwards and forwards between the B System specification and SysML/KAOS models. These lead us to the definition of a set of rules allowing the back propagation, within the domain model, of elements introduced in the structural part of the B System specification. They prevent these additions from introducing inconsistencies between a domain model and its B System specification. The most relevant rules have been formally specified with Event-B [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF] and verified 4.2. Context with Rodin [START_REF] Michael | Rigorous Development of Complex Fault-Tolerant Systems[END_REF]. We have proved that the back propagation rules are consistent and structure preserving, by discharging the proof obligations and by proving various isomorphisms between B System and domain models. The full Event-B specification can be found in annex A. The contribution of this paper is the description of these back propagation rules, based on the definition of metamodels of the SysML/KAOS domain modeling language and of the B System specification language. We also provide the formal definition of some rules, chosen because they are representative of our work, and we summarise the benefits and difficulties of their expression and verification with Rodin. Throughout this paper, we use an excerpt of the steam-boiler control specification problem, proposed by J. C. Bauer in [START_REF] Bauer | Specification for a software program for a boiler water content monitor and control system[END_REF] for the Dagstuhl workshop, to illustrate our proposal.

The remainder of this paper is structured as follows: Section 2 briefly describes the Event-B and B System formal methods, the SysML/KAOS requirements engineering method and its goal and domain modeling languages and the rules for translating the models into B System specifications. Section 3 describes and illustrates some representative back propagation rules with their formal definition. Section 4 discusses the Event-B verification of back propagation rules and the use of the SysML/KAOS method with regards to some related work. Finally, Section 5 reports our conclusion and discusses future work.

Context

Event-B and B System

Event-B [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF] is an industrial-strength formal method for system modeling. It is used to incrementally construct a system specification, using refinement, and to prove properties. An Event-B model includes a static part called context and a dynamic part called machine. A machine can refine another machine, a context can extend other contexts and a machine can see contexts. B System is an Event-B syntactic variant proposed by ClearSy, an industrial partner in the FORMOSE project [START_REF]Formose ANR Project[END_REF], and supported by Atelier B [START_REF] Clearsy | Atelier B : B System[END_REF].

Figure 4.1 is an excerpt from the metamodel of the B System specification language. A B System specification consists of components (instances of Component). Each component can be either a system or a refinement and it may define static or dynamic elements. Constants, abstract and enumerated sets, and their properties, constitute the static part. The dynamic part includes variables constrained through invariants. Properties and invariants are logic formulas (instances of LogicFormula). In our case, it is sufficient to consider that logic formulas are successions of operands in relation through operators. Thus, a logic formula references its operators (instances of Operator) and its operands that may be instances of [START_REF] Van Lamsweerde | Requirements Engineering -From System Goals to UML Models to Software Specifications[END_REF]. It combines the traceability features provided by SysML with goal expressiveness provided by KAOS. SysML allows for the capturing of requirements and the maintaining of traceability links between those requirements and design deliverables. KAOS defines a requirements modeling language for the representation of requirements to be satisfied by the system and of expectations with regards to the environment through a hierarchy of goals. The goal hierarchy is built through a succession of refinements using different refinement operators. For instance, an AND refinement decomposes a goal into subgoals, and all of them must be achieved to realise the parent goal.

Illustration

The challenge of the steam-boiler control specification problem [START_REF] Bauer | Specification for a software program for a boiler water content monitor and control system[END_REF] is to specify a system controlling the level of water in a steam-boiler. The system deals with a steam-boiler (SB), a water unit to measure the quantity of water in SB, a pump with its controller to provide SB with water and a steam unit to measure the quantity of steam flowing out of SB. The system can operate in several modes. For instance, in the normal mode, the system tries to keep the amount of water in a specific range, with all the units behaving correctly. When a failure occurs on the water unit, the mode is set to rescue. In the rescue mode, the system tries to keep the amount of water in a range different from the normal range, despite of a possible failure of the water unit. It estimates the water quantity, using the measurement of the pump controller and that of the steam unit. When all failures are repaired, the mode is set to normal. To illustrate the SysML/KAOS method, we focus on the water level determination feature, when system operates in the rescue mode (goal ReadInputsInRescueMode). To achieve it, the system must read values from the steam unit (ReadSteamUnit) and pump controller (ReadPumpController), in order to estimate the amount of water in the boiler, since the water unit is unavailable.

Context

In addition, SysML/KAOS includes a domain modeling language which combines the expressiveness of OWL [START_REF] Sengupta | Web Ontology Language (OWL)[END_REF], the constraints of PLIB [112] and the extensions needed to guarantee some relevant properties [START_REF] Jeffrey | Towards Using Ontologies for Domain Modeling within the SysML/KAOS Approach[END_REF].

The SysML/KAOS Domain Modeling Language

Presentation Domain models in SysML/KAOS are represented using ontologies. The domain modeling language [START_REF] Jeffrey | Towards Using Ontologies for Domain Modeling within the SysML/KAOS Approach[END_REF][START_REF] Jeffrey | The SysML/KAOS Domain Modeling Approach[END_REF] is built based on OWL [START_REF] Sengupta | Web Ontology Language (OWL)[END_REF] Relation) capture links between concepts. An attribute (instance of Attribute) captures a link between a concept and a data set, knowing that a data set represents a collection of data values (instances of DataValue). A relation is instantiated between two individuals with a relation maplet (instance of RelationMaplet). An attribute maplet (instance of AttributeMaplet) instantiates an attribute between an individual (the antecedent) and a data value (the image). A relation or an attribute can be variable (isVariable=TRUE), if the set of its maplets can be updated. Otherwise, it is constant (isVariable=FALSE). As in the case study, adding or deleting a steam-boiler is not considered, the property isVariable of SteamBoiler is set to false. The concept SteamBoiler has one individual named SB, representing the steam-boiler under the supervision of the system. The operating mode is modeled as an instance of Attribute named operatingMode, having SteamBoiler as domain, and as range, an instance of Enu-meratedDataSet containing two data values (normal and rescue). The isVariable property of operatingMode is set to true, since it is possible to dynamically change the mode in which the system operates. For SB, operatingMode is initialised to normal, since we consider that system starts in the normal mode. Associations between a steam-boiler and its sensors and actuators are modeled as instances of Relation. The relation named SteamBoilerSensors links the steam-boiler to its sensors and the one named SteamBoilerActuators links the steam-boiler to its actuators. Attribute sensorInput captures measurements obtained from sensors. Thus, its domain is the concept Sensor and its range is the instance of DefaultDataSet named NAT, representing the set of natural numbers1 . Since the case study does not consider the dynamic addition or deletion of devices to a steam-boiler, properties isVariable of SteamBoilerSensors and SteamBoilerActuators are set to false.

Illustration

At the root level, we consider that a steam-boiler has any number of sensors and any number of actuators, each of them belonging to one and only one steam-boiler. However, in the domain model of the first refinement level (steam boiler controller domain model ref 1), we refine these constraints by enforcing that each steam-boiler has exactly three sensors and exactly one actuator. Concept Sensor is specialised into concepts WaterUnit, SteamUnit and

Context

PumpController, while concept Actuator is specialised into concept Pump. We introduce three sensors (one individual of SteamUnit, one individual of PumpController, and one individual of WaterUnit) and one actuator (individual of Pump), linked to SB.

Translation of SysML/KAOS Goal and Domain Models to B System Specifications

Regarding the specification of the steam-boiler control system, the full B System model, verified using the Rodin tool [START_REF] Michael | Rigorous Development of Complex Fault-Tolerant Systems[END_REF], can be found in [START_REF] Tueno | Event-B Sources for the use of the SysML/KAOS Method on the Steam Boiler Controller Specification Case Study[END_REF]. Each refinement level is the result of the translation of goal and domain models, except the body of events that are provided manually.

Translation of Domain Models

The translation rules are fully described in annex A. 

inv1: operatingMode ∈ SteamBoiler → Data Set 1 inv2: sensorState ∈ Sensor → Data Set 2 inv3: sensorInput ∈ Sensor → N

Translation of Goal Models

The formalisation of SysML/KAOS goal models is detailed in [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF]. The proposed rules allow the generation of a formal model whose structure reflects the hierarchy of the SysML/KAOS goal diagram: one B System component is associated with each level of the goal hierarchy; this component defines one event for each goal. As the semantics of the refinement between goals is different from that of the predefined refinement between B System components, new proof obligations for goal refinement are generated in [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF]. They complete the classic proof obligations.

Event ReadInputsInRescueMode = any values where grd0: 

operatingMode(SB) = rescue grd1: values ∈ (SteamBoilerSensors -1 [{SB}] ∩ sensorState -1 [{nonde f ective}]) → N

. The specification includes event

ReadInputsInRescueMode which represents the root goal. Guard grd0 ensures that the event can only be triggered when the operating mode is rescue. In addition, guard grd1 ensures that measurements are obtained from sensors of SB that are not defective, as natural numbers, with respect to the definition of attribute sensorInput. Finally, action act updates attribute sensorInput with the new measurements (" -" is the overload operator used to update associations in a relation).

Back Propagation of New B System Elements Into Domain Models

Motivations

Regarding the steam-boiler controller, up to now, by strictly interpreting the description we provided, we have considered two operating modes for the system: normal and rescue. Each of these modes assumes that the system is still able to determine the water level: using the water unit (normal) or using the pump controller and the steam unit (for the rescue mode). However, if a failure occurs on all sensors, the system will not be able to determine the water level. To ensure the consistency of system behaviour in this configuration, we need to add another operating mode: the emergency mode. It is the mode where the system must enter when a critical failure occurs [START_REF] Bauer | Specification for a software program for a boiler water content monitor and control system[END_REF]. Another operating mode which is required is the degraded mode where the water unit is available while the other sensors are defective: the system is able to detect the water level, but cannot check other indicators.

When these missings/inconsistencies are identified during the verification/validation of the B System model, by experts used to handling formal specifications, a common and widely observed behavior among industrials (including our industrial partners [START_REF]Formose ANR Project[END_REF]) is to directly update the formal specification. To prevent these additions from introducing inconsistencies between a domain model and its B System specification, we must proceed with the back propagation of the updates. This is the purpose of the rules described in this section.

Other cases of additions, regarding the steam-boiler control specification problem, include: the addition of variables to distinguish between environment variables, which represent the actual state of the real environment and controller variables, which represent the measured value of the environment, as seen by the controller. This distinction becomes necessary when the specifier needs to handle measurement errors and control delays [START_REF] Lorge | Functional documents for computer systems[END_REF], in more concrete refinement levels. We could also consider

• the addition of the boiler length and width to allow the computation of its volume which is required for a better implementation of an estimation of the water level in case of a failure of the water unit; • the addition of backup pumps with their controllers since one pump is insufficient to handle a rapid water evaporation (the case study description [START_REF] Bauer | Specification for a software program for a boiler water content monitor and control system[END_REF] outlines the use of four pumps). Most of these updates are design choices introduced by experts who process the formal specification, during the system design process that is downstream of the requirements engineering process. These additions can also be needed to allow the construction of validation scenarios or the discharge of proof obligations.

Presentation of Back Propagation Rules

Up to now, we choose to support only the most common operations that can be performed within the formal specification, the domain model remaining the one to be updated in case of any major change such as additions or deletions of refinement levels. We are only interested here in the propagation of additions made within the B System specification. The back propagation rules are fully described in annex A.

This part provides an informal description of some typical back propagation rules with illustrations related to the specification of the steam boiler controller. The rules have been chosen because they reveal the subtleties related to back propagation concerns. Each rule defines its inputs (elements added to the B System specification) and constraints that inputs must fulfill. It also defines its outputs, that are elements introduced within domain models as a result of the application of the rule, and their respective constraints. It should be noted that, for an element b x of the B System specification, d x designates the domain model element corresponding to b x. In addition, when used, qualifier abstract denotes "without parent". For instance, the addition of an abstract set to represent the equipments of a steam-boiler, including its sensors and actuators, is back propagated with the introduction of a concept Equipment in the corresponding domain model. This allows for example to specify some event guards on all equipments to reduce the complexity and length of the specification. If b RE is a variable, then property isVariable of d RE must be set to true. For instance, the addition of variable lastMeasurementTimestamp ∈ Sensor → NAT, to represent the timestamp of the last measurement reported by a sensor, is back propagated with the definition of a variable attribute lastMeasurementTimestamp in concept Sensor. For instance, the addition of a constant to represent the subclass of sensors that are pump controllers is back propagated with the introduction of a concept PumpController linked to concept Sensor using parentConcept.

If b CO is a variable, then it is possible to dynamically add/remove individuals from concept d CO. Thus, property isVariable of d CO must be set to TRUE. For instance, the addition of items emergency and degraded in the enumerated data set containing the operating modes of the steam boiler controller is back propagated with the definition of two data values linked to attribute operatingMode of concept SteamBoiler.

Formal Specification of Back Propagation Rules

The Event-B method has been chosen because it involves intuitive mathematical concepts, has a powerful refinement logic and is supported by industrial-strength tools. We have modeled back propagation rules as Event-B convergent events; each triggering of an event propagates an addition. In an Event-B specification, a convergent event is an event that can only be activated a finite number of times [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF]. The system specification is consistent if it is proved that each convergent event will not be activated after a finite number of iterations. Thus, the system will always reach a state where all back propagations are done.

The formal specification of rules is based on the formal specification of B System and SysML/KAOS domain metamodels [START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF]. As a reminder, following the rules proposed in [START_REF] Laleau | An Overview of a Method and Its Support Tool for Generating B Specifications from UML Notations[END_REF][START_REF] Snook | UML-B : Formal Modeling and Design Aided by UML[END_REF], each class is translated into an Event-B variable, typed as a subset and containing the correspondences of the class instances. Furthermore, an association r from a class A to a class B to which the ordered constraint is attached is represented as a variable r typed through the invariant r ∈ (A → (N 1 → B)) (operator "→ " denotes a total function and operator " → " denotes a partial function). If instances of B may have the same sequence number, then the invariant becomes r ∈ (A → P 1 (N 1 × B)) ("P 1 (A)" denotes the set of non-empty parts of A). This is for example the case of association Constant isInvolvedIn LogicFormulas of the B System metamodel. To avoid ambiguity, the name of a variable, representing an attribute or association, is prefixed and suffixed with that of the class to which it is attached (e.g. Concept_isVariable or Constant_definedIn_Component).

Correspondence links between instances of a class A of the SysML/KAOS domain metamodel and instances of a class B of the B System metamodel are captured in a variable named A corresp B typed by the invariant A corresp B ∈ A B (symbol " " denotes a partial injective function). A partial injection is used because each instance, on both sides, must have at most one correspondence; it is partial because all additions are not back propagated at the same time. Moreover, we have proved that all additions made within a B System model will always be back propagated, in 4.3. Back Propagation of New B System Elements Into Domain Models a finite number of iterations of back propagation rules (See Section 4.4.1). Thus, the correspondence links will be total injections when the system will reach a deadlock state. The rest of this section provides an overview of the specification of some back propagation rules in order to illustrate the formalisation process and some of its benefits and difficulties. The full specification can be found in annex A.

Addition of a Constant, Subset of the Correspondence of an Instance of Concept (Rule 3)

This rule leads to two events: the first one is applied for a superset that is an abstract set and the second one for a superset that is a constant. Below is the specification of the first event. The rule asserts that in order to propagate the addition of a constant, we need to evaluate its typing predicate. When it is typed as a subset of the correspondence of an instance of Concept, then it gives rise to an instance of Concept. We use an instance of LogicFormula, named b lg, to represent the typing predicate of b CO (grd2). Guards grd3 and grd4 ensure that b CO is typed as a subset of b PCO: grd3 ensures that b lg is an inclusion predicate and grd4 ensures that b lg involves b PCO as second operand (Section 4.2.1). Guard grd5 ensures that the superset, b PCO, is an abstract set corresponding to an instance of Concept. Guard grd6 constrains 4.3. Back Propagation of New B System Elements Into Domain Models d PCO to be the correspondence of b PCO. Guard grd7 ensures that d CO is an instance of Concept which has never been used and action act2 defines b CO as its correspondence. Finally, act3 defines d PCO as its parent concept. Guard grd8 ensures that the event will be triggered only if the B System component, where b CO is defined, corresponds to an existing domain model. Action act5 ensures that d CO is defined in that domain model. In order to ensure the convergence of the rule, guard grd1 and action act2 ensure that the rule is triggered only for a constant which is already typed with a property and whose addition has not already been propagated (b CO / ∈ ran(Concept corresp Constant)). The specification of the second event (when the superset is a constant) is different from the specification of the first one in four points:

grd4: b PCO ∈ dom(Constant isInvolvedIn LogicFormulas) grd5: (2 → b lg) ∈ Constant isInvolvedIn LogicFormulas(b PCO) grd6: b PCO ∈ ran(Concept corresp Constant) grd7: d PCO = Concept corresp Constant -1 (b PCO)
Guard grd4 constrains the superset, b PCO, to be a constant involved in a logic formula. Guard grd5 ensures that b PCO is involved as the second operand of b lg. Finally, guard grd6 ensures that b PCO has a correspondence in the domain model and grd7 constrains d PCO to be the correspondence of b PCO.

Addition of a Variable, Subset of the Correspondence of an Instance of Concept (Rule 3 -dualed version)

Like the previous rule (Section 4.3.3), this rule leads to two events: the first one for when the superset is an abstract set and the second one for when the superset is a constant. Event specifications are different from the ones of the previous rule in four points:

grd1: b CO ∈ dom(Variable typing Invariant) \ ran(Concept corresp Variable) grd2: b lg = Variable typing Invariant(b CO) then act2: Concept corresp Variable(d CO) : = b CO act4: Concept isVariable(d CO) : = TRUE

Discussion

In order to propagate the addition of a variable b CO, we need to evaluate its typing invariant b lg (grd2). The evaluation is done as in 4.3.3, since invariants and properties are generalised as logic formulas. However, the isVariable property of the concept has to be set to TRUE (act4). In addition, in order to ensure the convergence of the rule, guard grd1 and action act2 ensure that the rule is triggered only for a variable which is already typed with an invariant and whose addition has not already been propagated.

Discussion

Formal Verification and Validation

The translation rules, proposed in [START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF], allow the automatic translation of domain properties, modeled as ontologies, to B System specifications. The back propagation rules that we propose in this paper allow the automatic propagation of the addition of formal elements, in the structural part of a B System specification, within the SysML/KAOS domain models to which it is associated. The rules contribute to maintain a strong consistency between the domain models and the associated B System specification. It should be noted that a back propagation rule does not generally correspond to the inverse of a translation rule. The differences include for instance the number of elements to evaluate before a rule can be applied. For example, a variable concept d CO results in the definition of an abstract set b CO and a variable x CO ⊆ b CO, within the B System specification, while (rule-i) the addition of an abstract set b CO is back propagated with the definition of a concept d CO; (rule-ii) the addition of a variable b x CO ⊆ b CO is back propagated with the definition of a variable concept d x CO having d CO as parent concept.

Formally verifying the back propagation rules allowed us to prove their consistency, and to reveal several constraints (guards and invariants) that were missing when designing the rules informally (Section 4.3.2). This is for instance the case of guard grd1 of event constant subset concept 1 (Section 4.3.3), needed to ensure the convergence of the back propagation rule (each activation of the rule will always treat a constant whose addition has not yet been propagated). It is also the case for guards grd7 and grd8 and actions act4 and act5 that were necessary to discharge proof obligations.

Discussion

We have proved that back propagation rules are isomorphisms (structure preserving), which guarantees that established links between elements of the B System specification are preserved between the corresponding elements in the domain models. These proofs have needed additional invariants. For instance, to prove that for each B System constant b xx (correspondence of the concept d xx), subset of the abstract set b pxx (correspondence of the concept d pxx), the concept d pxx is the parent of the concept d xx, considering that the parent concept corresponds to an abstract set (event constant subset concept 1 of Section 4.3.3), the following invariant has been defined: 

∀b xx, b pxx, b lg•((b xx ∈ dom(Constant typing Property) ∩ ran(Concept corresp Constant) ∧ b lg = Constant typing Property(b xx) ∧ LogicFormula uses Operators(b lg) = {1 → Inclusion OP} ∧ b pxx ∈ ran(Concept corresp AbstractSet) ∧ (2 → b pxx) ∈ LogicFormula involves Sets(b lg)) ⇒ (Concept corresp Constant -1 (b xx) ∈ dom(Concept parentConcept Concept) ∧ Concept corresp AbstractSet -1 (b pxx) = Concept parentConcept Concept(Concept corresp Constant -1 (b xx))))
Concept corresp AbstractSet -1 (b pxx) = Concept parentConcept Concept(Concept corresp Constant -1 (b xx)).
We have also proved that a finite number of additions of elements in a B System specification will be propagated in a finite number of iterations of back propagation rules. To prove it, we have defined variants that express the differences between the sets of added elements and the sets of elements already propagated. For instance, the part of the variant related to events handling the back propagation of variable subsets (Section 4.3.3), relations and attributes, is dom(Variable typing Invariant) \ (ran(Concept corresp Variable) ∪ ran(Relation corresp Variable) ∪ ran(Attribute corresp Variable))

Discussion

(the set of variables defined within the B System model minus the union of the sets of variables that are correspondences of variable concepts, variable relations and variable attributes). Thus, at each activation of one of these events, we ensure that the addition of a formal variable will be propagated (to a variable concept, to a variable relation or to a variable attribute) and a link will be added to Variable typing Invariant.

Table 4.1 summarises the key characteristics of the Rodin project corresponding to the Event-B specification of metamodels and rules (translation and back propagation rules). The specification includes two refinement levels. The validation of the consistency of the formal specification required the discharge of 1160 proof obligations of which 876 (75.52 %) have required manual proofs. Many proofs were not discharged automatically due to the use of function operators ( →, , →, → →) in variable definitions and in invariants.

Specification Process

.7 provides an overview of the specification process. The first step is to use SysML/KAOS languages to build models of the system and of its application domain. The SysML/KAOS goal modeling language [START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF] is used to extract and represent system requirements from artifacts that describe stakeholder needs. The SysML/KAOS domain modeling language [START_REF] Jeffrey | Towards Using Ontologies for Domain Modeling within the SysML/KAOS Approach[END_REF] is used to extract and represent application domain entities and their properties. The second step is to translate the goal model into a B System specification, following the rules provided in [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF], and to complete the specification with the result of the translation of domain models, following the formally verified rules provided in [START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF]. Goal models provide the behavioral part (events) of the specification and domain models provide its structural part (sets, constant and their properties, variables and their invariant) and the initialisation of state variables. It remains to manually specify the body of events and to formally verify and validate the specification with B System tools (step 3 of Fig. 4.7). Tueno et al. [START_REF] Jeffrey | Modeling the Hybrid ERTMS/ETCS Level 3 Standard Using a Formal Requirements Engineering Approach[END_REF] illustrate this part of the specification process on the hybrid ERTMS/ETCS level 3 case study. However, the structural part is very [START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF], to ensure consistency between models and their B System specifications. When updates are manually made so as to meet the preconditions of a rule, the rule is automatically triggered and propagates updates to the corresponding domain model. This paper also discuss how and why the back propagation rules have been formally verified.

To manage the complexity of the system, SysML/KAOS considers its decomposition into subsystems. Therefore, the goal modeling language allows the assignment of system requirements to subsystems responsible of their achievement. However, Matoussi et al. [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF] do not provide mechanisms to ensure that each subsystem specification is consistent with the specification of the high-level system and especially with requirements assigned to the subsystem. These mechanisms are defined in [START_REF] Jeffrey | Formalisation of SysML/KAOS Goal Assignments with B System Component Decompositions[END_REF] and illustrated on the steam-boiler control specification problem.

Related Work

The review summarised here completes the state of the art that Tueno et al. have introduced in [START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF]. In [START_REF] Crapo | Requirements Capture and Analysis in ASSERT(TM)[END_REF], a platform called ASSERT is proposed for requirements capture and analysis. Domain models are captured using a controlled-English modeling language called SADL (Semantic Application Design Language) based on OWL. A domain model is represented by its classes, class individuals, properties and axioms. However, the domain modeling approach does not allow the distinction between a static element (whose state is independent of the system behavior) and a dynamic element. The steam-boiler domain is modeled with two ontologies: the abstract ontology defines some basic entities such as System, component and Equipment; the concrete ontology defines entities related to the steam-boiler such as Pump and PumpController. Equipments are components of systems. It distinguishes the entity SteamBoiler which is a type of Equipment from the entity SteamBoilerSystem which is a type of System. The operating mode is a property of SteamBoilerSystem and the water level is a property of SteamBoiler. However, it only considers the maximum of the water level and not its minimum. Requirements are expressed with elements defined in domain models, using a controlled-English modeling language called SRL (SADL Requirements Language). For requirements analysis, [START_REF] Crapo | Requirements Capture and Analysis in ASSERT(TM)[END_REF] proposes the translation of SRL definitions into a first-order-logic if-then form, independent of the target analysis tool. Another step allows the conversion of requirements, in the intermediate form, to the target analysis tool representation. Some rules are provided, in an informal way, for the translation of requirements.

In [START_REF] Miguel | Automatically verifying an object oriented specification of the steam-boiler system[END_REF], Carreira et al. uses a UML object diagram to represent entities and associations related to the domain of a system. The representation includes a class Controller linked to a class Boiler which is composed of classes Pump, Valve, SteamMeasurer and WaterMeasurer. An object-oriented specification language named OBLOG [START_REF] Sernadas | OBLOG| Object-Oriented Logic : an informal introduction[END_REF] is used to represent requirements. The OBLOG specifications are then translated into a LOTOS model [START_REF] Bolognesi | Introduction to the ISO specification language LOTOS[END_REF] for formal verifications. As in [START_REF] Crapo | Requirements Capture and Analysis in ASSERT(TM)[END_REF], rules are provided, in an informal way, for the translation of requirements.

While in [START_REF] Miguel | Automatically verifying an object oriented specification of the steam-boiler system[END_REF][START_REF] Crapo | Requirements Capture and Analysis in ASSERT(TM)[END_REF], domain models are used to set a domain specific language for the expression of requirements, the SysML/KAOS method allows the models (goal models and domain models) to evolve independently. The models have only to follow the same refinement logic. A one step translation allows the generation of a B System specification from SysML/KAOS goal models. The specification is then completed with the result of the translation of SysML/KAOS domain models. Thus, we are able to precisely propagate an update on the B System specification within the corresponding SysML/KAOS model. This allows each expert to update/enrich the system specification using the formalism that suits him while ensuring the overall consistency of system models. The approach will be supported by a platform called Openflexo [109], allowing the federation of these goal, domain and formal models. The platform currently supports goal and domain modeling. The SysML/KAOS method also differs from that of [START_REF] Miguel | Automatically verifying an object oriented specification of the steam-boiler system[END_REF][START_REF] Crapo | Requirements Capture and Analysis in ASSERT(TM)[END_REF] on the formal method used for verifications and validations. Indeed, the SysML/KAOS method allows the generation of B System specifications, which make it possible to take advantage of the range of tools that support the B method [START_REF] Abrial | The B-book : assigning programs to meanings[END_REF], largely and positively assessed on industrial projects for more than 25 years [START_REF] Thierry Lecomte | Applying a Formal Method in Industry : A 25-Year Trajectory[END_REF]. Finally, the SysML/KAOS domain modeling language is certainly based on OWL [START_REF] Sengupta | Web Ontology Language (OWL)[END_REF], but it defines additional constraints and restrictions, based on PLIB [112], and enriched, allowing a more reliable representation of critical domains.

In [START_REF] Mashkoor | Utilizing Event-B for domain engineering : a critical analysis[END_REF], domain model elements are directly specified in Event-B. The SysM-L/KAOS method, on the other side, uses ontologies for the representation of domain entities, their relationships and their static and dynamic properties. They give the structure of the B System model. The use of high level graphical modeling languages, as stated in [START_REF] Jeffrey | Modeling the Hybrid ERTMS/ETCS Level 3 Standard Using a Formal Requirements Engineering Approach[END_REF][START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF], has several advantages, such as a better reusability, maintainability and readability of models. They also facilitate validations with stakeholders.

Conclusion and Future Work

Work done on case studies [START_REF] Jeffrey | Modeling the Hybrid ERTMS/ETCS Level 3 Standard Using a Formal Requirements Engineering Approach[END_REF][START_REF] Tueno | The SysML/KAOS Domain Modeling Language (Tool and Case Studies)[END_REF], regarding the SysML/KAOS requirements engineering method, and industrial returns reveal that it often appears that new elements need to be added to the B System specification obtained from SysML/KAOS models. This paper describes how elements manually added into the B System specification can be automatically back propagated to SysML/KAOS domain models. The rules contribute to maintain a strong consistency between domain models and their associated formal specification. They have been formalised and verified using Rodin [START_REF] Michael | Rigorous Development of Complex Fault-Tolerant Systems[END_REF], an industrial-strength tool supporting the Event-B method. We have proved that they are consistent and structure preserving.

Work in progress is aimed at studying the back propagation of updates on links between elements and element typings. We are also working on integrating the rules within the open-source platform Openflexo [109] which federates the various contributions of FORMOSE project partners [START_REF]Formose ANR Project[END_REF].

Chapitre 5 Ajustement du langage SysML/KAOS de modélisation du domaine

Résumé

Ce chapitre décrit les ajustements réalisés, sur le langage SysML/KAOS de modélisation du domaine, à la suite de l'évaluation de la méthode SysML/KAOS dans le cadre de la spécification formelle des exigences du protocole de communication ferroviaire Saturn. Le protocole Saturn est un protocole proposé par ClearSy Systems Engineering afin de garantir la robustesse des échanges entre agents au sein d'une infrastructure ferroviaire. Il a été développé et implémenté à partir d'exigences non structurées représentées par de volumineux documents textuels. Il a donc été question de spécifier, vérifier et valider les exigences de Saturn afin de garantir la cohérence de son comportement et faciliter la mise en oeuvre de variantes.

La méthode SysML/KAOS a permis de définir les cinq premiers niveaux de raffinement de la spécification B System du protocole. Toutefois, plusieurs manquements ont été identifiés. Ce chapitre décrit les ajustements réalisés au sein du langage de modélisation du domaine et des règles y afférentes afin de combler ces manquements. La méthode Event-B a permis de spécifier et vérifier la version ajustée du langage et des règles. Ces derniers ont par la suite été implémentés au sein de la plateforme Openflexo et au sein de l'outil JetBrains MPS de modélisation du domaine. L'implémentation JetBrains MPS permet de construire les modèles de domaine en utilisant une syntaxe textuelle pour en générer une spécification B System tandis que l'implémentation Openflexo permet d'utiliser une syntaxe graphique et assure la fédération entre modèles de domaine, modèles de buts, et modèles B System.

Commentaires

La contribution ici réside dans la définition d'une version ajustée du langage SysML/KAOS de modélisation du domaine nécessaire pour permettre la spécification des exigences de systèmes d'ingénierie (systèmes implémentant des processus ou supportant des activités d'ingénierie) à l'exemple du protocole Saturn. L'ajustement s'étend également aux règles de traduction (Chapitre 3) et de propagation (Chapitre 4) ; la méthode Event-B, supportée par la plateforme Rodin, ayant permis de prouver que les règles restent cohérentes, complètes, convergentes et isomorphes. L'annexe B décrit entièrement les définitions informelles puis formelles du langage et des règles ajustés. La vérification formelle des règles a nécessité la démonstration de 1416 obligations de preuve parmis lesquelles seul 275 ont nécessité une intervention manuelle (confère Sect. B.1 de l'annexe B). Ainsi, vérifier la version ajustée du langage et des règles a nécessité moins d'effort manuel. Ceci est dû (1) à la simplification des évènements Event-B (représentant les règles), dont le nombre a également été réduit, introduite par les ajustements réalisés, et (2) à la définition d'une tactique de preuve automatique plus efficace.

Dans un contexte où le domaine d'application du système est constitué d'une part de concepts ou entités et des liens entre eux, et d'autre part de leurs caractéristiques ou attributs quantifiés ou qualifiés par des données, la version initiale du langage est nécessaire. Elle permet en effet d'expliciter la distinction entre ce qui est tangible (concepts, individus et relations) et ce qui ne l'est pas (types de données, données, attributs et valeurs d'attributs) et qui sert juste à caractériser des éléments de la première catégorie [START_REF] Bjrner | Domain Analysis and Description Principles, Techniques, and Modelling Languages[END_REF]. C'est le cas de la grande majorité des systèmes d'information à l'exemple d'un système de gestion de librairies. Par contre, (i) lorsque les données regroupées en ensembles, leurs liens et les contraintes qui régissent leurs mises en relation, constituent un aspect essentiel du domaine d'application du système, (ii) ou lorsque la distinction entre tangible et intangible n'est pas claire ou nécessaire, la version ajustée du langage est plus appropriée. C'est le cas de la grande majorité des systèmes d'ingénierie et des systèmes industriels.

Cette version ajustée du langage, évaluée sur l'étude de cas Saturn [129], a fait l'objet d'un article accepté et publié [START_REF] Jeffrey | A Formal Requirements Modeling Approach : Application to Rail Communication[END_REF] dans le cadre de la 14 e édition de la conférence internationale International Conference on Software Technologies (ICSOFT). Une réédition de cet article, rédigée en français, a fait l'objet d'un article accepté et publié [START_REF] Jeffrey | Modélisation du Domaine au Sein d'une Méthode Formelle d'Ingénierie des Exigences[END_REF] dans le cadre des 18 e journées Approches Formelles dans l'Assistance au Développement de Logiciels (AFADL). Elle propose et illustre l'utilisation des diagrammes d'états-transitions algébriques (ASTDs) [START_REF] Frappier | Extending statecharts with process algebra operators[END_REF] afin de représenter les changements d'états des variables du modèle de domaine au fur et à mesure que le système satisfait ses buts. Il est à noter que les ASTDs peuvent être traduits en spécification B System [START_REF] Milhau | Systematic Translation Rules from ASTD to Event-B[END_REF] afin de compléter la spécification formelle issue de la traduction des modèles de buts et de domaine SysML/KAOS.

Par ailleurs, dans [START_REF] Jeffrey | A Formal Requirements Modeling Approach : Application to Rail Communication[END_REF], les modèles de domaine sont construits et traduits en spécifications B System en utilisant l'outil JetBrains MPS de modélisation du domaine [START_REF] Jeffrey | SysML/KAOS Domain Model Parser[END_REF] tandis que dans [START_REF] Jeffrey | Modélisation du Domaine au Sein d'une Méthode Formelle d'Ingénierie des Exigences[END_REF], c'est la plateforme Openflexo [109] qui est utilisée.

Ces contributions et les articles sus-cités ont été élaborés par mes soins en tenant compte des remarques et commentaires issus de mon équipe d'encadrement. En ce qui concerne l'étude de cas, le protocole Saturn a tout d'abord été spécifié par l'Ingénieur Hector Ruiz Barradas de ClearSy System Engineering. La spécification a ensuite été ajustée à l'issue de plusieurs séances de travail où j'étais impliqué ainsi que les Ingénieur Hector Ruiz Barradas et Professeure Régine Laleau. Les ajustements ont finalement été validés au cours d'une séance plénière de travail qui impliquait les partenaires du projet FORMOSE.

Introduction

ontology modeling language allows the specification of domain entities and properties. The domain models thus obtained are used to derive the structural part of the B System specification obtained from system requirements. The B System model, once completed with the body of events, can then be verified and validated using the whole range of tools that support the B method. Five refinement levels of the rail communication protocol were constructed. The method has proven useful. However, several missing features were identified. This paper also provides a formally defined extension of the modeling languages to fill the shortcomings.

Introduction

Refinement-based methods that support proof-by-construction help to progressively construct the specification of a complex system while ensuring its correctness. In recent years, these methods have been widely used on large scale projects in critical areas such as railway or aeronautics, thanks in particular to the emergence of industrial strength formal methods such as B [START_REF] Abrial | The B-book : assigning programs to meanings[END_REF] or Event-B [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF]. A major difficulty identified in such projects lies in the construction of the initial formal model, based on needs identified by stakeholders [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF][START_REF] Gil | Axiomatic design and fabrication of composite structures-applications in robots, machine tools, and automobiles[END_REF]. When poorly conducted, this step is responsible for the vast majority of critical failures [START_REF] Gil | Axiomatic design and fabrication of composite structures-applications in robots, machine tools, and automobiles[END_REF].

Our work focuses on the formal requirements modeling of critical and complex systems. SysML/KAOS [START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF], as a requirements engineering method, is chosen because it includes an expressive and intuitive goal modeling language [START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF] to represent system requirements extracted from artifacts that describe stakeholder needs. In addition, SysML/KAOS includes a domain modeling language [START_REF] Jeffrey | Towards Using Ontologies for Domain Modeling within the SysML/KAOS Approach[END_REF] to represent application domain entities and their properties using ontologies. Furthermore, the rules required to generate a B System specification [START_REF] Clearsy | Atelier B : B System[END_REF] from goal and domain models are defined and the most relevant ones have been formally verified [START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF]. Goal models give the behavioral part (events) of the specification [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF] while domain models provide its structural part (sets, constants and their properties, variables and their invariant) and the initialisation of state variables [START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF]. Once the event bodies are specified, the B System model can be formally verified and validated to assess the requirements. This can be done using the full range of tools that support the B method [START_REF] Abrial | The B-book : assigning programs to meanings[END_REF], largely and positively assessed on industrial projects for more than 25 years [START_REF] Thierry Lecomte | Applying a Formal Method in Industry : A 25-Year Trajectory[END_REF]. 91

Background

SysML/KAOS is supported by integrated development environments Openflexo [109] and Atelier B [START_REF] Clearsy | Atelier B : B System[END_REF]. Openflexo supports goal modeling while Atelier B supports the specification, verification and validation of B System models based on the semantics of SysML/KAOS modeling languages. Domain models, on the other hand, are constructed and translated to B System using a tool [START_REF] Jeffrey | SysML/KAOS Domain Model Parser[END_REF] implemented on top of Jetbrains MPS [START_REF] Jetbrains | Jetbrains MPS[END_REF] and PlantUML [START_REF] Roques | Plantuml : Open-source tool that uses simple textual descriptions to draw uml diagrams[END_REF].

Saturn [129] is a rail communication protocol, proposed by ClearSy, which deals with exchanges of communication frames between rail agents through a bus. The protocol was developed and implemented within a rail product widely used, without modeling, verifying and even documenting its requirements. This paper outlines the formal specification, verification and validation of Saturn's requirements in order to guarantee the correctness of its behavior and to allow the definition of slightly different product lines. SysML/KAOS has provided a methodical and structured way for the formal specification of requirements. Furthermore, it ensures a better reusability and readability of models and a strong traceability between models. The specification is decomposed into five refinements. The use of SysML/KAOS on this case study led us to extend the domain modeling language and make it more suitable for use in system modeling: the language, described in [START_REF] Jeffrey | Towards Using Ontologies for Domain Modeling within the SysML/KAOS Approach[END_REF][START_REF] Jeffrey | The SysML/KAOS Domain Modeling Approach[END_REF] has been adjusted to allow the definition of associations between associations and to support variable data items. This completes the definition of the domain modeling language: associations have been generalised into concepts and variability has been extended to individuals. In addition, the translation rules [START_REF] Jeffrey | Formal Representation of SysML/KAOS Domain Model (Complete Version)[END_REF][START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF] have been updated to match the adjusted language and formally verified.

The remainder of this paper is structured as follows: Section 2 briefly describes the B System formal method, the SysML/KAOS requirements engineering method and its goal and domain modeling languages, and the translation of SysML/KAOS models. Follows a presentation, in Section 3, of the work done on the case study and of updates performed on the SysML/KAOS domain modeling language. Finally, Section 4 discuss work done and Section 5 reports our conclusion and future work.

Background

Event-B and B System

Event-B [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF] is an industrial-strength formal method for system modeling. It allows the incremental construction of system specifications, using stepwise refinement, and the proof of useful properties. B System is an Event-B syntactic variant proposed by ClearSy, an industrial partner in the FORMOSE project [START_REF]Formose ANR Project[END_REF], and supported by Atelier B [START_REF] Clearsy | Atelier B : B System[END_REF]. It shares the same semantics with Event-B.

A B System specification consists of components. Each component can be either a system or a refinement and it may define static or dynamic elements. A refinement is a component which refines another one in order to concretise the system construction: addition of functionalities or specification of the achievement of some purposes. Constants, abstract and enumerated sets (user-defined types), and their properties, constitute the static part. The dynamic part includes the representation of system state using variables constrained through invariants (first-order predicates that constrain the possible values that the variables may hold) and updated through events.

SysML/KAOS Goal Modeling

SysML/KAOS [START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF] is a requirements engineering method which combines the traceability provided by SysML [START_REF] Hause | The SysML modelling language[END_REF] with goal expressiveness provided by KAOS [START_REF] Van Lamsweerde | Requirements Engineering -From System Goals to UML Models to Software Specifications[END_REF]. It allows the representation of requirements to be satisfied by a system and of expectations with regards to the environment through a hierarchy of goals. The goal hierarchy is built through a succession of refinements using two main operators: AND and OR. An AND refinement decomposes a goal into subgoals, and all of them must be achieved to realise the parent goal. An OR refinement decomposes a goal into subgoals such that the achievement of only one of them is sufficient for the achievement of the parent goal.

SysML/KAOS Domain Modeling

Domain models in SysML/KAOS are represented using ontologies. These ontologies are expressed using the SysML/KAOS domain modeling language [START_REF] Jeffrey | Towards Using Ontologies for Domain Modeling within the SysML/KAOS Approach[END_REF][START_REF] Jeffrey | The SysML/KAOS Domain Modeling Approach[END_REF], which is built based on OWL [START_REF] Sengupta | Web Ontology Language (OWL)[END_REF] and PLIB [112].

Each domain model corresponds to a refinement level in the SysML/KAOS goal model. The parent association represents the hierarchy of domain models. A domain model can define multiple elements. Concepts (instances of Concept) denote collections of individuals (instances of Individual) with common properties. A concept can be declared variable when the set of its individuals can be updated by adding or deleting individuals. Otherwise, it is considered to be constant.

Relations (instances of Relation) are used to capture links between concepts, and attributes (instances of Attribute) capture links between concepts and data sets (instances of DataSet). Predicates (instances of Predicate) are used to represent constraints between different elements of the domain model in the form of Horn clauses.

Translation of SysML/KAOS Models

The formalisation of SysML/KAOS goal models is detailed in [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF]. The proposed rules allow the generation of a formal model whose structure reflects the hierarchy of the SysML/KAOS goal diagram: one component is associated with each level of the goal hierarchy; this component defines one event for each goal. As the semantics of the refinement between goals is different from that of the refinement between B System components, new proof obligations for goal refinement are defined in [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF]. They depend on the goal refinement operator used and complete the B System proof obligations for invariant preservation and for event feasibility. For instance, the following proof obligations formalise the AND refinement of an abstract goal G into two concrete goals G 1 and G 2 (for an event G, G Guard represents the guards of G and G Post represents the post condition of its actions):

• G 1 Guard ⇒ G Guard • G 2 Guard ⇒ G Guard • (G 1 Post ∧ G 2 Post) ⇒ G Post
It should be noted that variables updated by subgoals must be distinct.

However, the B System specification generated from goal diagrams does not contain the static part and the state variables. These elements are provided by the translation of SysML/KAOS domain models. The corresponding rules are fully described in [START_REF] Jeffrey | Formal Representation of SysML/KAOS Domain Model (Complete Version)[END_REF] and their formal verification is described in [START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF]. In short, domain models identify B System components. A concept without a parent gives a B System abstract set. Each concept C, with parent PC, gives a formal constant, subset of the correspondent of PC. Relations and attributes give formal relations.

Specification of the Saturn Communication Protocol

Main Characteristics of the Protocol

Saturn describes exchanges of communication frames between different agents connected via a bus so as to ensure high robustness and availability [129]. It deals with one active gateway (and possibly seven passive ones), several input/output agents (1-128) and an innovative ring network. Input/output agents can be secure or unsecure. Input agents provide boolean data. The data are periodically collected by the gateway, transformed and the result is made available to output agents through the ring network. Another difficulty has been encountered related to multiplicities of input and output agents (domain model associated with the third refinement level of the goal diagram of Fig. 5.1). Indeed, the array that represents input data needs to be modeled by a relation, ditto for the array that represents output data. Thus, the computation function needs to be modeled by a relation for which the domain and the range are relations, which is impossible with the current definition of the SysML/KAOS domain modeling language.

Goal Modeling

Domain Modeling

The Saturn case study also revealed the need to be able to:

• define domain and range cardinalities for attributes;

• define a named maplet (instance of RelationMaplet or AttributeMaplet) with or without antecedent and image; • define an initial value for a variable individual, maplet or data value;

• define associations between data sets and maplets between data values; • refine a concept with an association or a data set;

• refine an individual with a maplet or a data value. We have therefore identified the need to build a generalisation of the domain modeling language to enrich its expressiveness while preserving the fundamental constraints identified in [START_REF] Jeffrey | Towards Using Ontologies for Domain Modeling within the SysML/KAOS Approach[END_REF][START_REF] Jeffrey | The SysML/KAOS Domain Modeling Approach[END_REF]. A major contribution of this new metamodel is that it merges notions of concept, data set, attribute and relation as well as notions of individual, maplet and data value that have always been considered distinct by ontology modeling languages such as OWL [START_REF] Sengupta | Web Ontology Language (OWL)[END_REF]. Additional constraints are defined to preserve the formal semantics of the language and to ensure unambiguous transformation of any domain model to a B System specification (annex B). A concept can now be an enumeration (isEnumeration=TRUE) if all its individuals are defined within the domain model. An individual can be variable (isVariable=TRUE) if it is introduced to represent a system state variable: it can represent different individuals at different system states. Otherwise, it is constant (isVariable=FALSE).

The Revised Domain Modeling Language

Associations (instances of Association) are concepts used to capture links between concepts. Class Association is used to merge classes Relation and Attribute. Maplet individuals (instances of MapletIndividual) capture associations between individuals. Each named maplet individual can reference an antecedent and an image. When the maplet individual is unnamed, the antecedent and the image must be specified. Class LogicalFormula replaces class Predicate to represent constraints between domain model elements. A defined concept (instance of class DefinedConcept) is a concept for which the type is provided by a logical formula.

Additional constraints are required to preserve the formal semantics of the domain modeling language and to ensure an unambiguous transformation of any domain model to a B System specification. The constraints are fully defined in annex B using the B syntax [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF]. For instance:

• x ∈ Concept \ Association ⇒ individualO f -1 [{x}] ∩ MapletIndividual = ∅:
if a concept x is not an association, then no individual of x can be a maplet individual.

• x ∈ MapletIndividual ∩ dom(antecedent) ⇒ antecedent(x) ∈ domain(individualO f (x)):
antecedents of a maplet individual must be individuals of the domain of its association. 

DomainModel

• x ∈ Concept \ (Association ∪ dom(parentConcept)) ⇒ Concept isVariable(x) = FALSE:
every abstract concept (that has no parent concept) that is not an association must be constant. Abstract concepts that are associations can be variable.

• x ∈ Concept ∧ Concept isEnumeration(x) = TRUE ⇒ Concept isVariable(x) = FALSE:
every concept that is an enumeration must be constant. 

• (ind ∈ MapletIndividual ∩ dom(antecedent) ∩ dom(image) ∧ Individual isVariable(ind) = FALSE) ⇒ (Individual isVariable(antecedent(ind)) = FALSE ∧ Individual isVariable(image(ind)) = FALSE):
• (x ∈ Association ∧ Concept isVariable(x) = FALSE) ⇒ (Concept isVariable(domain(x)) = FALSE ∧ Concept isVariable(range(x)) = FALSE):
domains and ranges of constant associations must be constant. injective associations vec to in from VIN to T IN and vec to out from VOUT to T OUT: in = vec to in(s in), in r = vec to in(s in r), out = vec to out(s out), out r = vec to out(s out r). Finally, the computation function is modeled as a functional association named VBF from VIN to VOUT: VBF = vec to in; FB; vec to out -1 (operator ; is the association composition operator used in logical formula assertions).

The Saturn Protocol Domain Model

The B System Specification B System Specification Constructed from Domain Models

Updates performed on the SysML/KAOS domain modeling language have resulted in adjustments on translation rules defined in [START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF]. The adjusted rules are fully described in annex B. They have been formally verified with Event-B. The corresponding Event-B specification can be found in annex B. The rules are implemented within the SysML/KAOS Domain Modeling tool [START_REF] Jeffrey | SysML/KAOS Domain Model Parser[END_REF].

The specification below represents the B System specification obtained from the domain model of Each refinement level goal is translated into an event for which the body has been manually specified: event Get reads the input data, event Compute computes the output data and event Put outputs the result. The keyword ref and is used to specify that concrete events Get, Compute and Put refine abstract event Process, in accordance with SysML/KAOS goal refinements, through the AND operator. This allows the automatic generation of proof obligations related to usage of the AND operator between abstract and concrete refinement levels [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF] by the Atelier B tool:

(po1) Get Guard ⇒ Process Guard (po2) Compute Guard ⇒ Process Guard (po3) Put Guard ⇒ Process Guard 103 5.4. Discussion (po4) (Get Post ∧ Compute Post ∧ Put Post) ⇒ Process Post
For instance, the full specification of proof obligation (po4) is:

(b in r = b in ∧ b out r = b FB(b in r) ∧ b out = b out r) ⇒ b out = b FB(b in).
It expresses that when the input data is read and the output data is computed, the output data is the result of applying b FB to the input data.

The keyword ref or is used when the OR operator appears between an abstract and a concrete refinement levels.

Discussion

The specification of the Saturn protocol includes five refinement levels. It has been built, in a methodical and structured way, thanks to SysML/KAOS. Table 5.1 summarises the key characteristics related to proof obligations. Discharged using Atelier B, they allow the detection of omissions, ambiguities, redundancies and contradictions within requirements, while considering domain constraints. Furthermore, the domain modeling language has been extended in order to be more suitable for use in system modeling. 

Conclusion and Future Work

This paper focusses on assessment of the SysML/KAOS method through the formal modeling of requirements related to Saturn, a rail communication protocol proposed by ClearSy [129]. SysML/KAOS goal and domain modeling languages have been used to specify Saturn's requirements and application domain entities and properties. Translation rules, supported by tools [START_REF] Jeffrey | SysML/KAOS Domain Model Parser[END_REF][START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF], have then been used to obtain a B System specification. The SysML/KAOS method has proven its usefulness for the specification of the protocol and has been enhanced, especially the domain modeling language, to make it more suitable for use in system modeling.

Part II

Gestion de la complexité au sein de SysML/KAOS Chapitre 6

Formalisation des assignations d'exigences SysML/KAOS au travers des décompositions de composants B System

Résumé L'utilisation des méthodes formelles pour la vérification et la validation des spécifications de systèmes critiques et complexes est importante, mais peut s'avérer extrêmement fastidieuse en l'absence de mécanismes de modularisation. SysML/KAOS est une méthode formelle d'ingénierie des exigences qui comprend un langage de modélisation des exigences à partir des besoins exprimés par les parties prenantes. Elle comprend également un langage de modélisation du domaine, pour la représentation des éléments caractéristiques du domaine d'application sous forme d'ontologies, et des règles permettant la mise en correspondance entre modèles SysML/KAOS et spécifications B System. Par ailleurs, pour gérer la complexité des systèmes, SysML/KAOS rend possible leur décomposition en sous-systèmes. En effet, le langage SysML/KAOS de modélisation des buts permet de représenter les assignations d'exigences aux sous-systèmes (ou agents) responsables de leur satisfaction. La contribution de ce chapitre est une approche permettant de garantir formellement que chaque exigence affectée à un sous-système sera correctement satisfaite par ce dernier, conformément à la spécification du système de plus haut niveau. Cette approche repose sur les mécanismes de décomposition des composants B System. Un accent particulier est mis sur la préservation des invariants du système de plus haut niveau au sein des spécifications des sous-systèmes.

Commentaires

La contribution ici réside dans la définition d'une approche permettant de garantir formellement que chaque exigence SysML/KAOS affectée à un sous-système sera correctement satisfaite par ce dernier, dans la limite définie par la spécification formelle du système et des sous-systèmes.

La proposition, évaluée sur l'étude de cas steam-boiler control specification problem (problème de spécification du contrôleur d'une chaudière à vapeur) [START_REF] Bauer | Specification for a software program for a boiler water content monitor and control system[END_REF], a fait l'objet d'un article accepté et publié [START_REF] Jeffrey | Formalisation of SysML/KAOS Goal Assignments with B System Component Decompositions[END_REF] dans le cadre de la 14 e édition de la conférence internationale iFM (integrated Formal Methods) qui s'est déroulée à Maynooth, Ireland en septembre 2018.

Cette contribution et l'article sus-cités ont été élaborés par mes soins en tenant compte des remarques et commentaires issus tant du Professeur Michael Leuschel de l'Université de Düsseldorf que de mon équipe d'encadrement.

Introduction

The contribution of this paper is an approach to ensure that a requirement assigned to a subsystem is well achieved by the subsystem. A particular emphasis is placed on ensuring that system invariants persist in subsystems specifications.

Introduction

The research work presented in this paper is part of the FORMOSE project [START_REF]Formose ANR Project[END_REF] and focuses on the formal requirements modeling of systems in critical areas such as railway or aeronautics. System requirements are modeled using the SysML/KAOS goal modeling language [START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF]. Translation rules from goal models to B System specifications are defined in [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF]. They allow the automatic generation of the skeleton of the formal specification of the system [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF]. In addition, a language has been defined to express the domain model associated to the goal model, using ontologies [START_REF] Jeffrey | Towards Using Ontologies for Domain Modeling within the SysML/KAOS Approach[END_REF][START_REF] Jeffrey | The SysML/KAOS Domain Modeling Approach[END_REF]. Its translation gives the structural part of the B System specification [START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF]. Finally, it remains to specify the body of events1 . Once done, the B System specification can be verified, animated and validated using the whole range of tools that support the B method [START_REF] Abrial | The B-book : assigning programs to meanings[END_REF], largely and positively assessed on industrial projects for more than 25 years [START_REF] Thierry Lecomte | Applying a Formal Method in Industry : A 25-Year Trajectory[END_REF].

To ensure the distribution of work between several agents and a better maintenability, reusability and scalability of the system, SysML/KAOS allows its partitionning into subsystems: a goal diagram models the main system and further goal diagrams are built for subsystems. Actually, each subsystem is associated with an agent that is responsible for achieving its requirements. The contribution of this paper is an approach to ensure that a requirement assigned to a subsystem is well achieved. The approach uses formal decomposition mechanisms [START_REF] Abrial | Refinement, decomposition, and instantiation of discrete models : Application to Event-B[END_REF] to construct, from the formal specification of a high-level system, the interface of each of its subsystems. The interface of a subsystem describes the requirements that the high-level system expects from the subsystem. Proof obligations are defined to ensure that the invariants of each subsystem is consistent with that of the high-level system. The approach thus ensures that each subsystem achieves its expected goals with respect to constraints set by the high-level system. The proposed approach is illustrated on the steam-boiler control specification problem, proposed by J. C. Bauer in [START_REF] Bauer | Specification for a software program for a boiler water content monitor and control system[END_REF].

Context

The remainder of this paper is structured as follows: Section 2 briefly describes the SysML/KAOS requirements engineering method and its goal and domain modeling languages, the B System formal method, and the translation of SysML/KAOS models. Section 3 presents existing techniques interested in the achievement of system requirements by subsystems, and existing formal decomposition approaches. Finally, Section 4 presents our approach illustrated on the steam-boiler control specification problem and Section 5 reports our conclusions and discusses future work.

Context

SysML/KAOS Goal Modeling Presentation

SysML/KAOS [START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF][START_REF] Mammar | On the Use of Domain and System Knowledge Modeling in Goal-Based Event-B Specifications[END_REF] is a requirements engineering method based on SysML [START_REF] Hause | The SysML modelling language[END_REF] and KAOS [START_REF] Van Lamsweerde | Requirements Engineering -From System Goals to UML Models to Software Specifications[END_REF]. SysML allows for the capturing of requirements and the maintaining of traceability links between those requirements and design deliverables, but it does not define a precise syntax for requirements specification. KAOS is a requirements engineering method which allows the representation of requirements to be satisfied by a system and of expectations with regards to the environment through a hierarchy of goals. Despite of its goal expressiveness, KAOS offers no mechanism to maintain a traceability between requirements and design deliverables, making it difficult to validate them against the needs formulated. In addition, the expression of domain properties and constraints is limited by the expressiveness of UML class diagrams, which is considered insufficient by our industrial partners [START_REF]Formose ANR Project[END_REF], regarding the complexity and the criticality of the systems of interest. Therefore, for goal modeling, SysML/KAOS combines the traceability features provided by SysML with goal expressiveness provided by KAOS. In addition, SysML/KAOS includes a domain modeling language which combines the expressiveness of OWL [START_REF] Sengupta | Web Ontology Language (OWL)[END_REF] and the constraints of PLIB [112]. of them is sufficient for the accomplishment of the parent goal. An abstract goal is a functional goal which must be refined. A requisite is a functional goal sufficiently refined to be assigned to an operational agent. Environment agents are responsible of expectations and software agents are responsible of requirements.

Illustration

The challenge of the steam-boiler control specification problem [START_REF] Bauer | Specification for a software program for a boiler water content monitor and control system[END_REF] is to specify a system controlling the level of water in a steam-boiler. The system deals with a steam-boiler (SB), a water unit to measure the quantity of water in SB, a pump to provide SB with water, a pump controller and a steam unit to measure the quantity of steam flowing out of SB. In order to be concise, we limit the system operating modes to the three main ones: normal, degraded and rescue. We also consider two different minimum and maximum water quantities: (Min1 and Max1) for the normal mode and (Min2 and Max2), satisfactory levels for the abnormal modes (degraded and rescue). When all failures are repaired, the mode is set to normal. • In the rescue mode, the controller tries to maintain the quantity of water within Min2 and Max2, despite a possible failure of the water unit. It estimates the water quantity, using the measurement of the pump controller and that of the steam unit. When all failures are repaired, the mode is set to normal.

If the water unit is repaired and there is another failure, the mode is set to degraded. 2 is an excerpt from the SysML/KAOS goal diagram representing the functional goals of the steam-boiler control system. The main purpose of the system is to control the level of water in the boiler (abstract goal ControlWater-Level). To achieve it, the system must read inputs from the sensors (abstract goal ReadInputs), compute the next operating mode using available data (requisite ComputeNextSystemMode) and send an action command to the pump (abstract 6.2. Context goal SendActionCommand). The action may be the opening (requisite OpenPump) or the closing (requisite ClosePump) of the water pump. To ensure the achievement of goal ReadInputs, the system must be able to obtain water unit measurements, in case the water unit is behaving correctly (requisite ReadWaterUnit). However, since the water unit may become defective, the system must also be able to obtain measurements from the steam unit and pump controller, in order to estimate the quantity of water in the boiler (requisite ReadInputsInRescueMode). 6.2). To achieve it, the system must read values from the steam unit (ReadSteamUnit) and pump controller (ReadPumpController), in order to estimate the quantity of water in the boiler, in case of a failure of the water unit.

SysML/KAOS Domain Modeling

Context

Presentation

The SysML/KAOS domain modeling language [START_REF] Jeffrey | Towards Using Ontologies for Domain Modeling within the SysML/KAOS Approach[END_REF][START_REF] Jeffrey | The SysML/KAOS Domain Modeling Approach[END_REF] uses ontologies to represent domain models. It is based on OWL [START_REF] Sengupta | Web Ontology Language (OWL)[END_REF] and PLIB [112], two well-known ontology modeling languages. Each domain model corresponds to a refinement level in the SysML/KAOS goal model. The parent association represents the hierarchy of domain models. A domain model can define multiple elements. For our purposes, a domain model can define concepts and their individuals, relations, attributes, datasets and predicates [START_REF] Jeffrey | Towards Using Ontologies for Domain Modeling within the SysML/KAOS Approach[END_REF][START_REF] Jeffrey | The SysML/KAOS Domain Modeling Approach[END_REF]. A concept represents a collection of individuals with common properties. It can be declared variable (isVariable = TRUE ) when the set of its individuals can be dynamically updated by adding or deleting individuals. Otherwise, it is constant (isVariable = FALSE). A data set represents a collection of data values. A relation captures links between concepts, and an attribute, links between concepts and data sets. They can be variable or constant. Cardinalities are defined to represent restrictions on relations. A predicate expresses constraints between domain model elements, using the first order logic. (normal, degraded and rescue), representing the possible operating modes. For individual SB, operatingMode is initialised to normal, since we consider that the system starts in the normal mode. The associations between a steam-boiler and its sensors and actuators are modeled as relations: a relation named SteamBoilerSensors which links the steam-boiler to its sensors and a relation named SteamBoilerActuators which links the steam-boiler to its actuators. We have defined three sensors (a steam unit named SU, a pump controller named PC and a water unit named WU) and one actuator (a pump named P).

Illustration

The specification below expresses, using predicates, some domain constraints that have been captured. It should be noted that the variables represent internal states of the controller [START_REF] Lorge | Functional documents for computer systems[END_REF].

p2.1: sensorState(WU)= "defective" => operatingMode(SB) ="rescue" p2.2: (sensorState(WU)="nondefective" & sensorState(SU)= "defective")=> operatingMode(SB) ="degraded" p2.3: (sensorState(WU)="nondefective" & sensorState(PC)= "defective")=> operatingMode(SB) ="degraded" p2.4: (sensorState(WU)="nondefective" & actuatorState(P)= "defective")=> operatingMode(SB) ="degraded" Predicate p2.1 asserts that the operating mode must be rescue if the water unit is known to be defective and predicates p2.2 .. p2.4 assert that the operating mode must be degraded if a device is known to be defective, except for the water unit.

B System

Event-B is an industrial-strength formal method for system modeling [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF]. It is used to incrementally construct a system specification, using refinement, and to prove properties. An Event-B model includes a static part called context and a dynamic part called machine. Constants, abstract and enumerated sets, and their properties, constitute the static part. The dynamic part includes the representation of the system state using variables constrained through invariants and updated through events. Each event has a guard and an action. The guard is a condition that must be satisfied for the event to be triggered and the action describes the update of state variables. A machine can refine another machine, a context can extend other contexts and a machine can see contexts. Proof obligations are defined to prove invariant preservation by events (invariant has to be true at any system state), event feasibility, convergence and machine refinement [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF]. B System is an Event-B syntactic variant proposed by ClearSy, an industrial partner in the FORMOSE project [START_REF]Formose ANR Project[END_REF], and supported by Atelier B [START_REF] Clearsy | Atelier B : B System[END_REF]. A B System specification consists of components. Each component can be either a system or a refinement and it may define static or 6.2. Context dynamic elements. Although it is advisable to always isolate the static and dynamic parts of the B System formal model, it is possible to define the two parts within the same component. In the following sections, our B System models will be presented using this facility.

Translation of SysML/KAOS Models Presentation

The formalisation of SysML/KAOS goal models is detailed in [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF]. The proposed rules allow the generation of a formal model whose structure reflects the hierarchy of the SysML/KAOS goal diagram: one component is associated with each level of the goal hierarchy; this component defines one event for each goal. As the semantics of the refinement between goals is different from that of the refinement between B System components, new proof obligations for goal refinement are defined in [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF]. They complete the classic proof obligations for invariant preservation and for event feasibility. Nevertheless, the generated B System specification does not contain the system structure, that are variables, constrained by an invariant, and constants, constrained by properties. This structure is provided by the translation of SysML/KAOS domain models. The corresponding rules are fully described in annex A and their formal verification is described in [START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF]. In short, domain models identify formal components. A concept without a parent gives a B System abstract set. Each concept C, with parent PC, gives a formal constant, subset of the correspondent of PC. Relations and attributes give formal relations. The rules also allow the extraction of the initialisation of state variables.

Illustration

Each refinement level, of the B System specification of the steam-boiler control system, is the result of the translation of goal and domain models, except the body of events that are provided manually. The full specification, verified using the Rodin tool [START_REF] Michael | Rigorous Development of Complex Fault-Tolerant Systems[END_REF], can be found in [START_REF] Tueno | The SysML/KAOS Domain Modeling Language (Tool and Case Studies)[END_REF]. Its consistency is ensured with the discharge of 60 proof obligations, 20 % manually and the rest automatically. Interactive proofs were mostly required because of enumerated set definitions that involve partitions: several proof rules require partition rewrites. The generated specification includes three refinement levels. The first refinement level defines a component containing 6 variables, 7 invariants and 4 events (including the INITIALISATION event). The second refinement level (steam_boiler_controller3) defines a component containing the same set of variables (waterLevel, operatingMode, sensorState, sensorInput, actuatorState, and actua-torOutput), 4 invariants (p2.1..p2.4) and 6 events: INITIALISATION, ReadWaterUnit, ReadInputsInRescueMode, ComputeNextSystemMode, OpenPump and ClosePump.

The translation rules make it possible to obtain a B System specification which becomes complete after the definition of the body of events. The main system is associated with a B System model, and each subsystem is associated with another one. However, there are no mechanisms to ensure that subsystem goals are consistent with goals assigned to the high-level system. In the rest of this paper, we are interested in providing these mechanisms.

Existing Work

Section 6.3.1 presents relevant work related to the assignment of system goals to subsystems, with regard to mechanisms to ensure that subsystem goals are consistent with goals assigned to the high-level system; and Section 6.3.2 presents relevant formal model decomposition approaches.

Related Work on Goal Assignments

In [START_REF] Arne F Claassen | Active Rescheduling for Goal Maintenance in Dynamic Manufacturing-Systems[END_REF][START_REF] Gj Suski | The Nova Control System-Goals, Architecture, and System Design[END_REF]128], approaches are proposed to model a system made of several subsystems. Each subsystem has its own goals (local goals) that are under the responsibility of an agent (local agent). Each local agent has a degree of freedom in taking local actions to satisfy its local goals. Furthermore, it can negotiate with other agents in attempting to satisfy their local goals. However, to ensure the consistency between subsystem goals and system requirements, a specific subsystem is introduced, under the supervision of a global agent. The global agent focus on the satisfaction of global goals [START_REF] Arne F Claassen | Active Rescheduling for Goal Maintenance in Dynamic Manufacturing-Systems[END_REF]: it can suspend, reschedule or require the execution of an action by a local agent in order to ensure a satisfactorily achievement of system requirements. Although local agents are unaware of objectives of the overall system, they act, under the supervision of the global agent, to ensure the achievement of these overall goals. This approach guarantees a certain degree of freedom in updating the overall goals. However, it requires to implement replanning primitives within local agents and replanning strategies within the global agent.

In [START_REF] Alur | Alternating-time temporal logic[END_REF][START_REF] Goranko | Coalition games and alternating temporal logics[END_REF][START_REF] Van Der Hoek | Multi-agent systems[END_REF], strategies are presented, for a system made of subsystems under the responsibility of agents, to ensure that system requirements are achieved. Each agent evaluates its state and behaviours of other agents, and takes actions that enforce the achievement of system requirements. The decision tree that drives the evaluations made by agents can be internally encoded in each agent, or externally via shared data structures. Algebras are proposed for the representation of desired states. However, relevant changes in the internal structure of an agent require a complete review of established strategies. Furthermore, either the agents must have access to the full behavioral history of other agents, or the strategies must include what agents currently know and what they learn from their actions.

In [START_REF] Wayne | Evaluating Performance of Distributed Intelligent Control Systems[END_REF], Wayne only considers subsystems. Each subsystem has its own internal goals and can assign goals to other subsystems. A subsystem can accept or refuse to achieve a goal. Whenever a goal is accepted by a subsystem, the subsystem is responsible to provide feedbacks related to its achievement. The main system can be viewed as a subsystem which does not accept goals while a process can be viewed as a subsystem which does not assign goals. As in [START_REF] Arne F Claassen | Active Rescheduling for Goal Maintenance in Dynamic Manufacturing-Systems[END_REF]128], feedbacks allow one subsystem to monitor the achievement of the goal assigned to another subsystem and to ensure that it is satisfactorily achieved. However, this approach does not take into account the constraints common to goals assigned to different subsystems.

In our approach, formal subcomponents, called interfaces, are extracted from the specification of the high-level system to constrain the specification of subsystem goals. Interface definitions are automatically extracted using a formal model decomposition technique.

Formal Model Decomposition Definition

Model decomposition here consists in obtaining, from an initial model, a certain number of less complex models, which can be refined independently and such that the recomposition of subsequent refinement levels produces a model which conforms to the definition of the initial model [START_REF] Abrial | Refinement, decomposition, and instantiation of discrete models : Application to Event-B[END_REF]. We focuss on distribution of elements of the dynamic part of the high-level system formal specification because the fundamental difference, between two SysML/KAOS agents of the same goal diagram, lies in their behaviors. Recall that system behaviour is formally represented with a set of events and by all the variables that can be updated by these events along with their invariants. The decomposition with respect to the INITIALISATION event is trivial and will not be considered. Indeed, whatever the chosen decomposition strategy, a variable xx assigned to a subcomponent will be initialised within the subcomponent with the same action of the parent component, that initialises xx, since initialisation actions are independent. Similarly, if all events involve only disjoint sets of variables and each invariant involves only the variables appearing in events corresponding to goals of the same agent, the decomposition is trivial: each agent may be assigned a subcomponent defining the events corresponding to the goals assigned to the agent, as well as the associated variables and invariants. The difficulty lies in taking into account variables appearing in events corresponding to goals assigned to different agents (shared variables) and invariants involving variables that are assigned to different subcomponents (shared invariants).

Existing Approaches for the Decomposition of Formal Models

Abrial et al. [START_REF] Abrial | Refinement, decomposition, and instantiation of discrete models : Application to Event-B[END_REF] are interested in mechanisms allowing the decomposition of Event-B models, and specifically of Event-B machines. Indeed, at some point of the refinement process, an Event-B machine may have so many events and so many state variables that a further refinement may become difficult or even impossible to manage. Abrial et al. consider the decomposition as the distribution of the events of the machine to be split, between several sub-machines. An approach is proposed to handle the variables shared between several events, using external variables and events. Events assigned to a sub-machine are its internal events. A variable that is only involved in internal events of a sub-machine is an internal variable of the sub-machine. If a variable is involved in internal events of different sub-machines, then it is defined in each of them as an external variable. In a sub-machine, an external variable can be seen as the input and output channel, allowing the sub-machine to synchronise its activities with other sub-machines defining the same variable. An external variable cannot be data-refined. In a sub-machine A, an external event 6.3. Existing Work is an event introduced to simulate the way an external variable is handled, in another sub-machine B, by an internal event of B. External events simulate how external variables are handled in other sub-machines. They do so by abstracting the behaviour of events of the initial machine that involve the external variables. They cannot be refined. Iliasov et al. describe in [START_REF] Iliasov | Supporting Reuse in Event B Development : Modularisation Approach[END_REF] another method for decomposition in Event-B. The approach is a special case of the one proposed by Abrial et al. restricted to sequential systems for which functionalities can be distributed among several modules.

Iliasov et al. describe in [START_REF] Iliasov | Supporting Reuse in Event B Development : Modularisation Approach[END_REF] another method for decomposition in Event-B. The main goal of the approach is to enable parallel development of several independent parts of a system as well as formal reuse of developed modules in other developments. The proposed approach consists in completing the definition of the Event-B method with notions of operations, interfaces and modules. A module is a collection of operations that can be invoked by other operations. A module defines an interface that lists its operations as well as their pre and post conditions. Proof obligations are provided to ensure that the definition of the operations of a module respects the specification of its interface. Iliasov et al. present their approach as a special case of the approach proposed by Abrial et al.. Indeed, their approach targets sequential systems, even though their functionality is distributed among several modules, while the approach proposed by Abrial et al. targets distributed systems.

A decomposition approach, using shared events, is proposed in [START_REF] Butler | Synchronisation-based decomposition for event-B[END_REF]. It enables the variables of the initial machine to be distributed between sub-machines. When the variables of a global event are distributed between separate sub-machines, each sub-machine defines an event which is a partial version of the global event, and which simulates the action of the global event on the considered variables. The partial version of an event, defined within a sub-machine, consists in a copy of the original event, restricted to the considered variables (variables of the global event that are allocated to the sub-machine): only parameters, guards and actions referring to the specified variables are preserved from the global event [START_REF] Silva | Decomposition tool for event-B[END_REF].

Silva et al. in [START_REF] Silva | Decomposition tool for event-B[END_REF] have identified two methods for decomposition in Event-B: the first one considering shared variables and the second one considering shared events. The shared variable decomposition is the decomposition approach introduced in [START_REF] Abrial | Refinement, decomposition, and instantiation of discrete models : Application to Event-B[END_REF] and the shared event decomposition is the one introduced in [START_REF] Butler | Synchronisation-based decomposition for event-B[END_REF]. A tool is proposed to support the decomposition approaches. For Butler et al. [START_REF] Michael | An Approach to the Design of Distributed Systems with B AMN[END_REF], the shared event approach is suitable for developing message-passing distributed systems while the shared variable approach is suitable for designing parallel computing programs. Furthermore, it is easier to implement the shared variable approach compared to the shared event approach. Indeed, regarding the shared variable approach, once the events are assigned, the distribution of variables can be done automatically. The decomposition approach is implemented as a plug-in for the Rodin platform.

Mechanisms to Ensure the Consistency between Subsystems and System Requirements

The real difficulty lies in the determination of the refinement level from which to introduce the decomposition. Regarding the shared event approach, it may be difficult, once the distribution of variables has been done, to separate the guards and actions of events in order to construct the partial events (a variable cannot appear in two different sub-machines). Regarding invariants, actually, [START_REF] Silva | Shared Event Composition/Decomposition in Event-B[END_REF][START_REF] Silva | Decomposition tool for event-B[END_REF] let the user select which invariant predicate should be assigned to which subcomponent.

In [START_REF] Silva | Towards the composition of specifications in Event-B[END_REF], an approach is proposed for the construction of the specification of an Event-B machine from the combination of specifications of several other machines (basic machines). It assumes the partitioning of variables of basic machines, however events can be shared. The machine thus constructed is a composition of basic machines. Proof obligations are proposed in order to verify the composition of machines. The invariant of the composition of machines M 1 to M n with variables x 1 to x n respectively is defined as the conjunction of the individual invariants and the composition invariant

I CM (x 1 , ..., x n ): I(M 1 ||...||M n ) = I 1 (x 1 ) ∧ ... ∧ I n (x n ) ∧ I CM (x 1 , ..., x n ).
We reuse this definition for the determination of proof obligations associated with the verification of the decomposition of the system specification (Sect. 6.4.1): the system is seen as a composition of its subsystems.

Mechanisms to Ensure the Consistency between Subsystems and System Requirements

With translation rules, each SysML/KAOS model, whether for the main system or for a subsystem, gives a B System specification. To ensure that subsystem goals conform to system requirements, we propose the definition of B System components called interfaces that will bridge the gap between system and subsystem specifications. An interface of a subsystem defines events that correspond to goals that the system assigns to the subsystem. It also defines variables involved in these events as well as their constraints. The most abstract level of the formal specification of a subsystem is defined as a refinement of the subsystem interface; this ensures that the subsystem specification conforms to the interface specification. We propose the use of a formal decomposition strategy, applied at the most concrete level of the B System specification of the high-level system (parent component), to build subsystem interfaces. shared between the two events. We omitted the corresponding SysML/KAOS goal diagrams; however, the responsibility of E1 is assigned to S1 and the responsibility of E2 is assigned to S2. Thus, the decomposition strategy is used to define interfaces M1 i for S1 and M2 i for S2. The component representing the most abstract level of the specification of each subsystem (M1 for S1 and M2 for S2) is then defined as a refinement of the corresponding interface. 

Construction of Interfaces

Interfaces, Variables and Events

In the SysML/KAOS methodology, goals are assigned to agents. A decomposition of the parent component, based on these assignments, may therefore use the shared variable decomposition approach: each agent gives a formal subcomponent, representing the subsystem interface, and for which the internal events are the correspondences of goals assigned to the agent. For an interface M i corresponding to agent a i , internal events of M i are correspondences of goals assigned to a i . The variables of M i are the ones involved in internal events of M i . If a variable of M i appears in another interface, then it is an external variable; otherwise, it is an internal variable. Finally, external events are defined in M i , to emulate how external variables of M i are handled in other interfaces. Each external event of M i is an abstraction of an internal event defined in another interface.

Regarding the illustration of Fig. 6.7, each interface contains the event assigned to the corresponding subsystem (we omitted external events for a sake of clarity). For instance, event E1(x1, x3) appears in M1 i. Variables x1 and x3 also appears in M1 i because they are involved in E1(x1, x3). Variable x3 is defined as an external variable in M1 i and M2 i.

Invariants

It remains necessary to decompose the invariants involving variables assigned to different interfaces. Let a component M, containing the variables x 1 and x 2 and the invariant I(x 1 , x 2 ), that is decomposed into subcomponents M 1 containing x 1 without x 2 , and M 2 containing x 2 without x 1 . Based on the composed invariant defined in [START_REF] Silva | Towards the composition of specifications in Event-B[END_REF] (see Sect. 6.3.2), we advocate that the following conditions are necessary and sufficient, regarding shared invariants (we disregard here properties defined in contexts), in addition to classical requirements of the Event-B method [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF], to verify the decomposition of M into M 1 and M 2 :

• Subcomponent invariants do not contradict I(x 1 , x 2 ): If I 1 (x 1 ) is the invariant introduced in M 1 and I 2 (x 2 ) is the invariant introduced in M 2 , then we must prove that: ∃(x 1 , x 2 ).(I(x 1 , x 2 ) ∧ I 1 (x 1 ) ∧ I 2 (x 2 )). Thus, if we consider that x 1 is initialised to x0 1 in M 1 and that x 2 is initialised to x0 2 in M 2 (classical Event-B proof obligations ensure that predicate I 1 (x0 1 ) ∧ I 2 (x0 2 ) evaluates to TRUE), we must prove that I(x0 1 , x0 2 ) evaluates to TRUE. This, in addition, ensures that initialisations in subcomponents preserve the composed invariant.

Mechanisms to Ensure the Consistency between Subsystems and System Requirements

• Any subsystem event, that can update the value of a variable x introduced in the high-level system, must access x within a mutual exclusion context whenever it is triggered, so that no other event accessing the value of x can be triggered until its termination. Otherwise, it will not be possible to guarantee the accuracy of the value of a variable when an event is triggered within a component. Indeed, within the same Event-B component, events are triggered sequentially (to avoid possible inaccuracies in the state of the system), while subcomponents may have parallel behaviors. The constraint thus ensures the preservation of the sequentiality in the triggering of events coming from the high-level component, with regard to shared variables (the constraint is not necessary for events involving internal variables). • Subcomponent events simultaneously preserve global and local invariants: If an event E 1 , introduced in M 1 , updates x 1 , then we must prove that:

(I(x 1 , x 2 )∧I 1 (x 1 )∧I 2 (x 2 )∧E 1 Guard(x 1 )∧BA E 1 (x 1 , x 1 )) ⇒ (I(x 1 , x 2 )∧I 1 (x 1 )∧I 2 (x 2 )). E 1 Guard(x 1
) is a predicate denoting that the guard of E 1 is true for the current value of the state variable x 1 . BA E 1 is the before-after predicate corresponding to E 12 . For an event E 2 , introduced in M 2 , which updates x 2 , the proof obligation is:

(I(x 1 , x 2 ) ∧ I 1 (x 1 ) ∧ I 2 (x 2 ) ∧ E 2 Guard(x 2 ) ∧ BA E 2 (x 2 , x 2 )) ⇒ (I(x 1 , x 2 ) ∧ I 1 (x 1 ) ∧ I 2 (x 2 )
). Thus, shared invariants (see Sect. 6.3.2) can remain in the parent component. It is just necessary to maintain the link between the parent component and the interfaces, through the introduction of a new clause within each interface allowing the referencing of the parent component or through the definition of an external record, and to include the above mentioned proof obligations. The most abstract level of the formal specification of a subsystem is then defined as a refinement of the subsystem interface. It is even possible to add variables, invariants or events in an interface to further constrain the specification of the subsystem or to assign specific goals.

It is also possible to define each variable of an interface as a constant within the others interfaces, where the variable do not appear, and to define shared invariants in each interface. However, this approach carries several difficulties: the update of a shared invariant will have to be done not only within the system specification but also within the specification of each subsystem; and it will be difficult to animate/model-check the formal model, since some variables will be seen as constants. In addition, it will be difficult to ensure that subsystem invariants are always simultaneously preserved, when considering shared variables. 

(2a) (I(x1, x2, x3) ∧ I1(x1, x3) ∧ I2(x2, x3) ∧ E1 Guard(x1, x3) ∧ BA E1 (x1, x3, x1 , x3 )) ⇒ (I(x1 , x2, x3 ) ∧ I1(x1 , x3 ) ∧ I2(x2, x3 )); (2b) (I(x1, x2, x3) ∧ I1(x1, x3) ∧ I2(x2, x3) ∧ E2 Guard(x2, x3) ∧ BA E2 (x2, x3, x2 , x3 )) ⇒ (I(x1, x2 , x3 ) ∧ I1(x1, x3 ) ∧ I2(x2 , x3 )).
Example: (1)

Let
∃(x1, x2, x3).({x1, x2, x3} ⊂ N ∧ x1 + x2 = x3 ∧ x1 > 100 ∧ x2 > 100); (2a) ({x1, x2, x3} ⊂ N ∧ x1 + x2 = x3 ∧ x1 > 100 ∧ x2 > 100 ∧ x1 = x1 + 1 ∧ x3 = x3 + 1) ⇒ ({x1 , x2, x3 } ⊂ N ∧ x1 + x2 = x3 ∧ x1 > 100 ∧ x2 > 100); (2b) ({x1, x2, x3} ⊂ N ∧ x1 + x2 = x3 ∧ x1 > 100 ∧ x2 > 100 ∧ x2 = x2 + 1 ∧ x3 = x3 + 1) ⇒ ({x1, x2 , x3 } ⊂ N ∧ x1 + x2 = x3 ∧ x1 > 100 ∧ x2 > 100)
. They are dischargeable and guarantee that each action of a subsystem preserves not only its invariants, but also invariants of other subsystems and especially the invariant of the high-level system (the subsystems share a variable). They extend the classic proof obligation of invariant preservation [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF], which just ensures that each subsystem preserves its own invariants, in the case of several subsystems operating simultaneously to achieve high-level goals and sharing data.

External Events

External events are introduced in interfaces to simulate, in a subsystem, how its external variables are handled in other subsystems. They are proposed by Abrial et al. in [START_REF] Abrial | Refinement, decomposition, and instantiation of discrete models : Application to Event-B[END_REF], because no link is maintained between a high-level formal component and its subcomponents after a shared variable decomposition operation. By defining a link between subsystem interfaces and the most concrete component of the high-level system specification, as proposed in Sect. 6.4.1, it becomes redundant to define external events within interfaces. Through the link between an interface and the parent component, for an external variable x, it would suffice to evaluate the 6.4. Mechanisms to Ensure the Consistency between Subsystems and System Requirements events of the parent component involving x and which are not defined within the interface, to "observe" how x is handled in other subsystems. This approach avoids the difficulties lying in the definition of external events: (1) redundance of the same behavior, associated with an external variable, in each interface where the external variable appears; (2) partitioning of guards and actions of an event to consider only the variables of the interface where the external event must be defined. For the steam-boiler control system, the decomposition must be introduced in the second refinement level (steam_boiler_controller3), because it is the most concrete level of the B System specification of the main system. Table 6.1 presents the sharing of state variables between invariants and events of steam_boiler_controller3: variable waterLevel is shared between all agents, when considering events where it is involved; variable sensorState is shared between agents WaterUnitSensor, RescueSensors and ModeController; and variable actuatorOutput is owned by agent PumpActuator.

Illustration on the Steam-Boiler Case Study

We have defined interfaces of the subsystems: each SysML/KAOS agent gives an interface. Table 6.2 presents an overview of interfaces obtained from the decomposition of steam_boiler_controller3, along with their variables and events. For an interface I, elements in bold are those that are internal to I and the other elements are those that are external (shared). For instance, event ReadWaterUnit is an internal event in interface WaterUnitSensor i, while event ReadInputsInRescueMode is an external event that simulates, in WaterUnitSensor i, the behaviour of internal event ReadIn-putsInRescueMode, defined in interface RescueSensors i; variable actuatorOutput is an internal variable in interface PumpActuator i, while variable waterLevel is an external variable. Variable waterLevel is defined as an external variable in all interfaces because it is involved in internal events of the four interfaces. In addition, since variable waterLevel is involved in all events, each interface defines an external event that simulates the behaviour of each event not internal to the interface. Once it will be possible to define a link between each interface and its parent component, we believe that it will no longer be necessary to define these external events. Invariants p2.1..p2.4 remain in steam_boiler_controller3; however, if needed, invariants p2.1..p2.3 can be defined in interfaces WaterUnitSensor i, ModeController i and PumpActuator i, and invariant p2.4 can be defined in ModeController i. It is a refinement of interface RescueSensors i. We provide the specification of the event corresponding to goal ReadSteamUnit of the goal diagram of Fig. 6.4: when water unit WU is defective and steam unit SU and pump controller PC are non-defective (grd1), then a natural integer val1 is set as the input obtained from sensor SU (act2). Controller variable measures is used to take into account the non-simultaneity and the non scheduling of the measurement of values of sensors SU and PC, introduced in the goal diagram with the use of the AND operator between the root and first refinement levels. Within event ReadSteamUnit, variable measures allows the controller to consider the following cases: (1) when the measurement of values of SU and PC has not yet been achieved (SU / ∈ dom(measures) ∧ PC / ∈ dom(measures)), the value of SU is measured (grd4) and saved into variables sensorInput (act2) and measures (act3);

(2) when the value of PC has already been measured, the value of SU is measured and used, together with the value of PC, to estimate the water level (grd4 and act1). Action act3 allows, regarding the last case, to reset the content of variable measures for further measurements. The behavior of event ReadPumpController is identical to that of ReadSteamUnit, except that it performs the measurement of the value of PC.

Interface RescueSensors i provides variables waterLevel, sensorState and sensorInput and event ReadInputsInRescueMode to component RescueSensors. Theorems t1..t3 represent the SysML/KAOS proof obligations related to the use of the AND refinement operator3 (Fig. 6.4) [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF].

Discussion

The proposed approach uses the shared variable decomposition strategy and proof obligations to ensure that subsystems specifications conform to system requirements. The approach fits into the following process which is applicable for any system S made of subsystems S1..Sn, assuming that SysML/KAOS models of S, S1..Sn are already defined:

(1) Translate SysML/KAOS models of S into a B System specification made of components C S 0 , C S 1 , ..., C S p , where C S r is a refinement of C S r-1 (Sect. 6.2.4 and [START_REF] Jeffrey | Formal Representation of SysML/KAOS Domain Model (Complete Version)[END_REF][START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF][START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF]). ( 2) Complete the specification obtained from (1) by specifying the body of events (Sect. 6.2.4 and [START_REF] Jeffrey | Modeling the Hybrid ERTMS/ETCS Level 3 Standard Using a Formal Requirements Engineering Approach[END_REF]). (3) Use the formal decomposition strategy to construct, from C S p , the formal subcomponents S1 i..Sn i, where Sk i denotes the interface of subsystem Sk, containing the specification of goals that S assigns to Sk with their associated variables and constraints (Sect. 6.4.1). ( 4) For each subsystem Sk:

(i) IF Sk is made of subsystems THEN restart the whole process with Sk as the high-level system ELSE apply steps (1) and (2) on Sk (ii) Set component C Sk 0 as a refinement of Sk_i. The approach makes it possible to independently define, check and evolve the specifications of subsystems. It also allows centralised updates of constraints and goals assigned to subsystems: global update of the high-level system specification, which can be automatically propagated into interfaces, and/or local update of an interface, which is available for the whole subsystem specification.

Conclusion and Future Work

This paper focusses on an approach to ensure that a requirement assigned to a subsystem is well achieved by the subsystem. The approach uses a formal model decomposition strategy and proof obligations to guarantee that subsystem goals are consistent and meet system requirements expressed in SysML/KAOS models that are translated to B System specifications. The approach is appraised on the steam-boiler control specification problem [START_REF] Bauer | Specification for a software program for a boiler water content monitor and control system[END_REF], using Rodin [START_REF] Michael | Rigorous Development of Complex Fault-Tolerant Systems[END_REF], an industrial-strength tool supporting the Event-B method. Its advantages are discussed, with regard to some relevant related work.

Work in progress is aimed at studying the back propagation of updates on a B System specification within the associated SysML/KAOS model. We are also working on integrating the approach within the open-source platform Openflexo [109] which federates the various contributions of FORMOSE project partners [START_REF]Formose ANR Project[END_REF].

Part III

Études de cas

Chapitre 7

Spécification formelle des exigences d'un protocole de transport ferroviaire : cas du protocole hybrid ERTMS/ETCS level 3

Résumé

Ce chapitre décrit une spécification des exigences du protocole de transport ferroviaire hybrid ERTMS/ETCS level 3 dans le cadre de l'étude de cas proposée pour ABZ2018. Cette spécification est réalisée à partir de SysML/-KAOS. La spécification construite comprend sept niveaux de raffinement et sa cohérence a été vérifiée et validée à l'aide de la plateforme Rodin. Le langage SysML/KAOS de modélisation des buts est utilisé pour représenter les exigences du protocole et en extraire l'ossature d'une spécification B System. La partie structurelle de cette spécification B System est fournie par la traduction des modèles de domaine SysML/KAOS. La construction de la spécification est incrémentale, basée sur les mécanismes de raffinement existant au sein des méthodes SysML/KAOS et B System. La seule partie de la spécification qui doit être complétée manuellement est le corps des événements.

Commentaires

La contribution ici réside dans l'évaluation de la méthode SysML/KAOS sur une étude de cas d'envergure industrielle, en l'occurrence la spécification et la vérification formelle des exigences du protocole de transport ferroviaire hybrid ERTMS/ETCS level 3 [START_REF] Thai | The Hybrid ERTMS/ETCS Level 3 Case Study[END_REF]. Cette évaluation permet (i) d'illustrer l'usage de SysML/KAOS, (ii) d'identifier ses forces et faiblesses au regard des méthodes de spécification existantes et (iii) d'éprouver l'adéquation entre le langage de modélisation des buts fonctionnels et le langage de modélisation du domaine défini dans le cadre de cette thèse.

L'évaluation décrite dans ce chapitre a fait l'objet d'un article accepté et publié [START_REF] Jeffrey | Modeling the Hybrid ERTMS/ETCS Level 3 Standard Using a Formal Requirements Engineering Approach[END_REF] dans le cadre de la conférence ABZ2018. Sous invitation, une extension de l'article a fait l'objet d'une publication dans une édition du journal international STTT (International Journal on Software Tools for Technology Transfer) [START_REF] Jeffrey | Modeling the hybrid ERTMS/ETCS level 3 standard using a formal requirements engineering approach[END_REF]. Le protocole hybrid ERTMS/ETCS level 3 a également été spécifié, directement en Event-B, afin de mieux évaluer les avantages et limites inhérents à l'utilisation de la méthode SysML/KAOS. Cette approche classique de spécification a fait l'objet d'un article accepté et publié [START_REF] Mammar | An Event-B Model of the Hybrid ERTMS/ETCS Level 3 Standard[END_REF] dans le cadre de la conférence ABZ2018. Cet article a également fait l'objet d'une publication dans une édition du journal international STTT.

La spécification réalisée en utilisant la méthode SysML/KAOS et les articles afférents ont été élaborés par mes soins en tenant compte des remarques et commentaires issus de mon équipe d'encadrement. La spécification réalisée en utilisant l'approche classique a quant à elle été élaborée par la Professeure Amel Mammar de Télécom SudParis et les articles afférents ont été élaborés par le Professeur Marc Frappier de l'Université de Sherbrooke. Mon intervention dans ce dernier cas s'est limitée aux phases d'étude préliminaire (analyse et compréhension de la description de l'étude de cas, définition des abstractions de base) et de validation/comparaison.

Background

System share the same semantics. In addition, Rodin provides an intuitive interactive proof mechanism and allows not only to use Atelier B provers [115], but also other efficient proof tools such as SMT solvers [127]. The complete Rodin project can be found in [START_REF] Tueno | SysML/KAOS Approach on the Hybrid ERTMS/ETCS Level 3 case study[END_REF]. Compared to direct specification approaches using only plain Event-B such as [START_REF] Mammar | An Event-B Model of the Hybrid ERTMS/ETCS Level 3 Standard[END_REF], SysML/KAOS provides a more structured and methodological process to the formal specification of the system. Furthermore, it allows a better reusability and readability of models, and a strong traceability between the formal specification and SysML/KAOS models, which capture system and domain textual descriptions.

In comparison to the paper on the same topic published at the ABZ2018 conference [START_REF] Jeffrey | Modeling the Hybrid ERTMS/ETCS Level 3 Standard Using a Formal Requirements Engineering Approach[END_REF], this paper:

• is based on the revised version (version 1C) of the technical document [START_REF]Hybrid ERTMS/ETCS Level 3 : Principles[END_REF], which provides HEEL3's principles; • uses the revised version of the SysML/KAOS domain modeling language [START_REF] Tueno | The Generic SysML/KAOS Domain Metamodel[END_REF] to represent domain entities and constraints. A graphical representation of domain models is provided; • extends the discussion section with a comparison with the other case study specifications published in the ABZ2018 proceedings. The remainder of this paper is structured as follows: Section 2 briefly describes the B System formal method, the SysML/KAOS goal and domain modeling languages and the rules for obtaining a B System specification from SysML/KAOS models. Follows a presentation, in Section 3, of the identified requirements and of the modeling strategy and, in Section 4, of some relevant details related to the specification. Section 5 reports a discussion on the use of SysML/KAOS and compares the work described in this paper with related studies. Finally, Section 6 reports our conclusion and outlines future work related to the SysML/KAOS method.

Background

Event-B and B System

Event-B [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF] is an industrial-strength formal method for system modeling. It allows the incremental construction of system specifications and the proof of useful properties. Its main purpose is the modeling of closed systems: the modeling of the system is accompanied by that of its environment and of all interactions likely to occur between them. 137 7.2. Background B System is an Event-B syntactic variant proposed by ClearSy, an industrial partner in the FORMOSE project [START_REF]Formose ANR Project[END_REF], and supported by Atelier B [START_REF] Clearsy | Atelier B : B System[END_REF]. It shares the same semantics with Event-B. A B System specification consists of components. Each component can be either a system or a refinement and it may define static or dynamic elements. A refinement is a component which refines another one in order to concretise the system construction: addition of functionalities or specification of the achievement of some purposes. Constants, abstract and enumerated sets, and their properties, constitute the static part. The dynamic part includes the representation of system state using variables constrained through invariants and updated through events. Each event has a guard and an action. The guard is a condition that must be satisfied for the event to be triggered and the action describes the update of state variables.

As with Event-B, proof obligations are defined to prove invariant preservation by events (invariant has to be true at any system state), event feasibility (existence of a state where event can be triggered), convergence (for events that need only be triggered a finite number of times) and machine refinement (the specification of a concrete machine conforms to that of the refined machine) [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF]. This last proof obligation requires the guard and action of each concrete event to be stronger than that of the refined event (guard strengthening and action simulation), knowing that each concrete event either refines an abstract event or refines the skip event.

SysML/KAOS Goal Modeling

SysML/KAOS [START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF][START_REF] Mammar | On the Use of Domain and System Knowledge Modeling in Goal-Based Event-B Specifications[END_REF] is a requirements engineering method which combines the traceability provided by SysML [START_REF] Hause | The SysML modelling language[END_REF] with goal expressiveness provided by KAOS [START_REF] Van Lamsweerde | Requirements Engineering -From System Goals to UML Models to Software Specifications[END_REF]. It allows the representation of requirements that must be satisfied by a system and of expectations with regards to the environment through a hierarchy of goals. The goal hierarchy is composed of a succession of refinements using two main operators: AND and OR. An AND refinement decomposes a goal into subgoals, and all of them must be achieved to realise the parent goal. An OR refinement decomposes a goal into subgoals such that the achievement of only one of them is sufficient for the achievement of the parent goal.

SysML/KAOS Domain Modeling

Modeling the domain of a system consists in giving a representation of the set of entities that the system will be called upon to manipulate and the set of properties and constraints associated with them [START_REF] Arora | An Empirical Study on the Potential Usefulness of Domain Models for Completeness Checking of Requirements[END_REF][START_REF] Broy | Domain Modeling and Domain Engineering : Key Tasks in Requirements Engineering[END_REF][START_REF] De | An ontological approach to domain engineering[END_REF][START_REF] Hacid | Strengthening MDE and Formal Design Models by References to Domain Ontologies. A Model Annotation Based Approach[END_REF]. A significant feature in our case, concerned with the specification of engineering systems, is that domain models 138 7.2. Background distinguish static entities from dynamic ones while not distinguishing tangible entities from intangible ones. It should be noted that a static entity is an entity whose state cannot be changed by system actions while a dynamic entity is the one whose state is dependent of system actions [START_REF] Jackson | Software requirements and specifications -a lexicon of practice, principles and prejudices[END_REF]. Furthermore, an intangible entity is an entity which cannot normally be touched or seen but can be objectively measured or conceived while a tangible entity is an entity which can normally be touched or seen or is an abstraction of such an entity [START_REF] Bjrner | Domain Analysis and Description Principles, Techniques, and Modelling Languages[END_REF]. Domain models in SysML/KAOS are represented as ontologies. These ontologies are expressed using the SysML/KAOS domain modeling language [START_REF] Jeffrey | Towards Using Ontologies for Domain Modeling within the SysML/KAOS Approach[END_REF][START_REF] Tueno | The Generic SysML/KAOS Domain Metamodel[END_REF], based on OWL [START_REF] Sengupta | Web Ontology Language (OWL)[END_REF] and PLIB [112], two well-known and complementary ontology modeling formalisms. Domain models are used to automatically generate the structural part of the B System formalisation of system requirements (sets, constants, properties, variables and invariants).

Each domain model corresponds to a refinement level in the SysML/KAOS goal model. They can be linked together to form a hierarchy. A domain model can define multiple elements. Concepts designate collections of individuals with common properties. A concept can be declared variable when the set of its individuals can be updated by adding or deleting individuals. Otherwise, it is considered to be constant. In addition, a concept can be an enumeration if all its individuals are defined within the domain model. It should be noted that an individual can be variable if it is introduced to represent a system state variable: it can represent different individuals at different system states. Otherwise, it is constant. Associations are concepts used to capture links between concepts. Maplet individuals capture associations between individuals through associations. The variability of an association is related to the ability to add or remove maplets. Logical formulas are used to represent constraints between different elements of the domain model in the form of Horn clauses. They are specified using the B syntax. Gluing invariants are logical formulas used to represent links between data defined within a domain model and those appearing in more abstract domain models. They capture relationships between abstract and concrete data during refinement and are used to discharge proof obligations.

Translation of SysML/KAOS Models

The formalisation of SysML/KAOS goal models is detailed in [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF]. The proposed rules allow the generation of a formal model whose structure reflects the hierarchy of the SysML/KAOS goal diagram: one component is associated with each level of the goal hierarchy; this component defines one event for each goal. As the semantics of the refinement between goals is different from that of the refinement between B System components, new proof obligations for goal refinement are defined in [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF].

Requirements and Modeling Strategy

They depend on the goal refinement operator used and complete the classic proof obligations for invariant preservation and for event feasibility. For an abstract goal G and two concrete goals G 1 and G 2 (for an event G, G Guard represents the guards of G and G Post represents the post condition of its actions):

-For the AND operator (variables involved in subgoals must be distinct), the proof obligations are

• G 1 Guard ⇒ G Guard • G 2 Guard ⇒ G Guard • (G 1 Post ∧ G 2 Post) ⇒ G Post -For the OR operator, they are • G 1 Guard ⇒ G Guard • G 2 Guard ⇒ G Guard • G 1 Post ⇒ G Post • G 2 Post ⇒ G Post • (G 1 Guard ∧ G 1 Post) ⇒ ¬G 2 Guard • (G 2 Guard ∧ G 2 Post) ⇒ ¬G 1 Guard -For the MILESTONE operator, they are • G 1 Guard ⇒ G Guard • G 2 Post ⇒ G Post • (G1 Post ⇒ ♦G2
Guard) (each system state, corresponding to the post condition of G 1, must be followed, at least once in the future, by a system state enabling G 2) Nevertheless, the generated B System specification does not contain the system structure, that are variables with their associated invariant and constants with their associated properties. This structure is provided by the translation of SysML/KAOS domain models. The corresponding translation rules are fully described in annex B. In short, domain models identify formal components. Concepts give B System types while individuals give set elements. The rules also allow the extraction of the initialisation of state variables.

Requirements and Modeling Strategy

We have considered three reference documents throughout this work to define system requirements and characterise the application domain. The first one, [START_REF] Thai | The Hybrid ERTMS/ETCS Level 3 Case Study[END_REF], gives the general principles of the hybrid ERTMS/ETCS level 3 protocol (HEEL3) and defines requirements to be considered. Readers can refer to this document for a full description of the case study and of its requirements. The second one, [START_REF]Hybrid ERTMS/ETCS Level 3 : Principles[END_REF], offers a technical and detailed description of the protocol specification. It provides the safety requirements that the system must guarantee. The work described in this paper is consistent with the revisions made in [START_REF]Hybrid ERTMS/ETCS Level 3 : Principles[END_REF] after the ABZ2018 conference. The third one, [START_REF] Nicola | ERTMS Level 3 : the Game-Changer[END_REF], proposed by Network Rail, UK and ProRail, Netherlands describes HEEL3 while clarifying the specificities of the latter in comparison with the other protocols of the ERTMS/ETCS family. It concisely presents the high-level objectives related to the quality of rail transport and how each protocol of the ERTMS/ETCS family contributes to their achievements, along with their advantages and limitations.

As a reminder, HEEL3 has been proposed to optimize the use and occupation of railways [START_REF]Hybrid ERTMS/ETCS Level 3 : Principles[END_REF][START_REF] Thai | The Hybrid ERTMS/ETCS Level 3 Case Study[END_REF][START_REF] Nicola | ERTMS Level 3 : the Game-Changer[END_REF]. It thus proposes the division of the track into separate entities, each named Trackside Train Detection (TTD). In addition, each TTD is subdivided into sub-entities called Virtual Sub-Sections (VSS). A TTD has two possible states: free and occupied with a safety invariant stating that if a train is located on a TTD, then the state of the TTD must be set to occupied. In addition to these two states, a VSS may have the unknown or the ambiguous state. The ambiguous state is used when the information available to the system suggest that two trains are potentially present on the VSS. The unknown state is used when the system can guarantee neither the presence nor the absence of a train on the VSS. For an optimal safety, Movement Authorities (MA) are evaluated and assigned to each connected train. The MA of a train designates a portion of the track on which it is guaranteed to move safely. ERTMS (European Rail Traffic Management System) designates a protocol and a set of tools that allow a train to know and report its position. Similarly, TIMS (Train Integrity Monitoring System) designates the component that allows a train to know and report its integrity and its size. HEEL3 considers three kinds of trains: (1) trains equipped with TIMS (TIMS trains), which can report themselves as integer or not; (2) trains equipped with ERTMS (ERTMS trains), which can report their position (connected trains) or not (unconnected trains); and finally, (3) trains that are equipped neither with a ERTMS nor with a TIMS (unconnected trains).

Modeling Strategy

The SysML/KAOS requirements engineering method allows the progressive construction of system requirements from the refinement of stakeholder needs. Thus, even if the management of VSSs is the purpose of the case study [START_REF] Thai | The Hybrid ERTMS/ETCS Level 3 Case Study[END_REF], an essential part of our work is devoted to putting it into perspective with more abstract objectives that will explain what VSSs are useful for. We have chosen to consider that the general objective that the system must fulfil is: safely move trains on the track. The most abstract level of the formal specification that has been built is a translation of this general objective. Its concrete refinement levels are representations of the choices allowing the achievement of the objective. The specification includes seven refinement levels explicitly related to stakeholder needs through SysML/KAOS models. The SysML/KAOS method makes it possible to 7.3. Requirements and Modeling Strategy trace the source and justify the need for each formal component and its contents. Within the formal specification, the scheduling of events and the refinement strategy are enforced using proof obligations expressed as theorems. The specification is devoted to the formalisation of system functional goals and in their verification with regard to domain properties and safety invariants. The environment behavior is left nondeterministic with respect to domain constraints modeled in SysML/KAOS domain models. Finally, depending on the type of the ERTMS/ETCS level 3 implementation, it is possible to use or not the TTD states when computing the VSS states (Table 1 of [START_REF] Nicola | ERTMS Level 3 : the Game-Changer[END_REF]). Goal ComputeVSSStateswoTTDStates represents the case where TTD states are not required (virtual (without train detection) level 3 type), with the disadvantage of only allowing the circulation of trains equipped with TIMS. Goal ComputeVSSStatesFollowingTTDStates, on the other hand, represents the case where TTD states are used to compute VSS states (hybrid level 3 type). To compute the state of VSSs, it is necessary to take into account their previous status (Figure 7 of [START_REF]Hybrid ERTMS/ETCS Level 3 : Principles[END_REF]). For instance, goal ComputeStatesOfVSSinUnknownState deals with VSSs that were previously in the unknown state while goal ComputeStatesOfVSSinFreeState deals with those that were previously in the free state. Compared to [START_REF] Jeffrey | Modeling the Hybrid ERTMS/ETCS Level 3 Standard Using a Formal Requirements Engineering Approach[END_REF], Figure 7.2 has been updated to take into account the revisions made within [START_REF]Hybrid ERTMS/ETCS Level 3 : Principles[END_REF]. The last refinement level is focused on VSSs previously in the free state. Its goals come from requirements of the updated transition #1A of Table 2 of [START_REF]Hybrid ERTMS/ETCS Level 3 : Principles[END_REF]. When the TTD is free, then the VSSs remain free (ComputeStatesOfVSSinFreeStateWhenTTDisFree). When the TTD is occupied and no train is located on it while no MA is issued, then the VSSs move in the unknown state (ComputeStatesOfVSSinFreeState-whenTTDisOccupiedandNoTrainisLocatedandNoMAisIssued). Goal ComputeStates-

Requirements Modeling

Model Details

OfVSSinFreeStatewhenTTDisOccupiedandTrainisLocatedonTTD deals with VSSs previously in the free state when TTDs are occupied and trains are located on them while goal ComputeStatesOfVSSinFreeStatewhenTTDisOccupiedandMAisIssued is triggered when a TTD is occupied and a MA is issued.

Model Details

From the goal model, we distinguish seven refinement levels which are translated into seven B System components. The rest of this section consists of a presentation of SysML/KAOS domain models associated with the first three refinement levels of the main goal diagram and of a description of the B System specification obtained. We also provide an overview of the specification of the fifth refinement level, which introduces the four events in charge of updating VSS states. Domain models are illustrated using the syntax proposed by the SysML/KAOS domain modeling tool [START_REF] Jeffrey | SysML/KAOS Domain Model Parser[END_REF], a tool implemented on top of Jetbrains MPS [START_REF] Jetbrains | Jetbrains MPS[END_REF] and PlantUML [START_REF] Roques | Plantuml : Open-source tool that uses simple textual descriptions to draw uml diagrams[END_REF] to provide a proof of concept of the SysML/KAOS domain modeling language. It represents the entities needed for the specification of the movement of a train on the track and their characteristics. For instance, concept TRAIN models the set of trains. Association connectedTrain models the subset of TRAIN that broadcast their location at least once and for each, the current connection status. Concept Connected_Train is used to represent the set of trains for which the connection status is known. Association front models the estimated position of the front of each connected train. For each connected train equipped with a TIMS, association rear models the estimated position of its rear: the rear is deduced from the front and length of the train, since a train equipped with a TIMS broadcast its length and its integrity. Thus, dom( f ront) \ dom(rear) represents the set of trains equipped with a ERTMS and not equipped with a TIMS.

The Root Level

Logical formulas represent constraints on domain model elements. Each logical formula is prefixed with an identifier p<i>.<j> where <i> designates the refinement level number and <j> identifies the formula in the refinement level. For example, logical formula p0.2 defines TRACK, a subset of the set of natural numbers, as the data range a..b. In addition, logical formula p0.4 defines concept Connected_Train as the domain of association connectedTrain (dom(connectedTrain)). This definition allows each reference to Connected_Train to be replaced by dom(connectedTrain) in the B System specification. This replacement has to be manually done in current release of the SysML/KAOS domain modeling tool, but will be done automatically in future releases.

The Openflexo platform [109] is used to build a tool that federates all the models involved in the SysML/KAOS requirements engineering method. The tool, available at [110], currently allows to build goal models as the ones of 3. The domain model gives rise to sets, constants, properties, variables and invariants of the formal specification. Logical formulas involving variables give rise to invariants and the others to properties. No variable is defined to represent the variable concept Connected_Train because a logical formula, p0.4, defines it as equivalent to dom(connectedTrain). Thus, any reference to Connected_Train is replaced by dom(connectedTrain) in the B System specification. The root goal is translated into an event for which the body has been manually specified: the movement of a connected train (grd1) results in the incrementation of the position of its front (act1) and its rear (act2 in the case of an integer train: tr ∈ dom(rear)) of the value corresponding to the movement. Of course, the movement can only be done if the train stays on track (grd3). Another event is defined within the complete specification [START_REF] Tueno | SysML/KAOS Approach on the Hybrid ERTMS/ETCS Level 3 case study[END_REF] to handle train exits. 

The First Refinement Level

(p . . q ⊆ TRACK ∧ p ≤ q ∧ MA(tr) = p . . q))) p1.2: ∀tr•(tr ∈ dom(MA) ⇒ f ront(tr) ∈ MA(tr)) p1.3: ∀tr•(tr ∈ dom(rear) ∩ dom(MA) ⇒ rear(tr) ∈ MA(tr)) p1.4: ∀tr1, tr2•(({tr1, tr2} ⊆ dom(MA) ∧ tr1 = tr2) ⇒ MA(tr1) ∩ MA(tr2) = ∅) inv6: MAtemp ∈ dom(connectedTrain) → P (TRACK) inv7: ∀tr•(tr ∈ dom(MAtemp) ⇒ (∃p, q•(p . . q ⊆ TRACK ∧ p ≤ q ∧ MAtemp(tr) = p . . q))) theorem s1: ComputeTrainMA Guard ⇒ MoveTrainOnTrack Guard theorem s2: ComputeTrainMA Post ⇒ AssignMAtoTrain Guard theorem s3: AssignMAtoTrain Post ⇒ MoveTrainFollowingItsMA Guard theorem s4: MoveTrainFollowingItsMA Post ⇒ MoveTrainOnTrack Post Event ComputeTrainMA =
any tr p q len where grd1: tr ∈ connectedTrain -1 [{TRUE}] grd2: p . . q ⊆ TRACK ∧ p ≤ q grd3: f ront(tr) ∈ p . . q grd4: tr ∈ dom(rear) ⇒ rear(tr) ∈ p . . q grd5: p . . q ∩ union(ran({tr} -MA)) = ∅ 6. Each refinement level goal is translated into an event for which the body has been manually specified: the current MA of the train is computed and stored into a variable named MAtemp (event ComputeTrainMA). Because the computation of the MA is out of the scope of the case study [START_REF] Thai | The Hybrid ERTMS/ETCS Level 3 Case Study[END_REF], the event simply nondeterministically chooses an MA, with respect to the safety invariants. This MA is then assigned to the train by updating the variable MA (event AssignMAtoTrain) and taken into account for the train displacement (event MoveTrainFollowingItsMA). Theorems s1, s2, s3 and s4 represent the proof obligations related to the use of the MILESTONE operator between the root and the first refinement levels. Since each proof obligation has been modeled as a B System theorem, it has been proved based on system properties and invariants. To deal with the fact that B System does not currently support the temporal logic, we have used the proof obligation G1 Post ⇒ G2 Guard for invariants s2 and s3, instead of (G1 Post ⇒ ♦G2 Guard) (Sect. 7.2.4), since:

(G1 Post ⇒ G2 Guard) ⇒ ( (G1 Post ⇒ ♦G2 Guard))
By using this trick, we replace the proof obligation involving operators of the temporal logic with a more constraining proof obligation. The trick is only useful if it is possible and easier to discharge the newly introduced proof obligation.

To ease understanding of the represented B System specification, theorems related to SysML/KAOS refinements are symbolically represented. They are obviously fully represented in the Rodin project. For instance, the full specification of s1 is given below:

theorem s1: ∀tr, p, q, len•(((tr ∈ connectedTrain -1 [{TRUE}]) ∧ (p . . q ⊆ TRACK ∧ p ≤ q) ∧ ( f ront(tr) ∈ p . . q) ∧ (tr ∈ dom(rear) ⇒ rear(tr) ∈ p . . q) ∧ (p . . q ∩ union(ran({tr} -MA)) = ∅) ∧ (len ∈ N 1 ) ∧ ( f ront(tr) + len ∈ TRACK) ) ⇒ ( (tr ∈ connectedTrain -1 [{TRUE}]) ∧ (len ∈ N 1 ) ∧ ( f ront(tr) + len ∈ TRACK) ))
It expresses the fact that the activation of the guard of ComputeTrainMA for certain parameters is sufficient for the activation of the guard of MoveTrainOnTrack for this same group of parameters.

Model Details

ClearSy is currently working on a release of Atelier B that directly supports the specification of SysML/KAOS refinement operators, when refining B System events, such as ref_and and ref_or. These keywords are used by the proof generator to automatically generate the right proof obligations. .p2.8 define each TTD as a segment of the track and each VSS as a segment of a TTD. Logical formulas p2.9 and p2.10 are used to state that if a train tr is located on a TTD, then its state must be occupied: a train tr ∈ TRAIN is located on ttd ∈ TTD if f ront(tr) ∈ ttd (p2.9) or if tr is equipped with a TIMS (tr ∈ dom(rear)) and (rear(tr).. f ront(tr)) ∩ ttd = ∅ (p2.10). Finally, logical formulas p2.11..p2.13 state that two different trains must be on disjoint parts of the track: for two trains tr1 and tr2, if they are equipped with TIMS, then the track segments that they occupy should just be disjoint (p2.11); if they are on the same TTD and one of them, tr2, is not equipped with a TIMS, then, the second, tr1, must be equipped with a TIMS and tr2 must be in the rear of tr1 (p2.12); if none of them is an integer train, then they must be in two distinct TTDs (p2.13). Logical formulas p2.9 and p2.10 are gluing invariants, linking the concrete variable stateTTD with the abstract variables front and rear. The B System specification obtained from the translation of the second refinement level includes the result of the translation of the domain model of Figure 7.8, two new events (ComputeTrainMAFollowingTTDStates, ComputeTrainMAFol-lowingVSSStates), an extension of event MoveTrainFollowingItsMA taking into account the new safety invariants and theorems representing the proof obligations related to the usage of the OR operator between the first and second refinement levels.

The Second Refinement Level

The Fifth Refinement Level

For the fifth refinement level, corresponding to the first refinement level of the goal diagram of Figure 7.2, the B System specification introduces four events obtained from the translation of goals and five theorems representing the proof obligations related to the use of the AND operator between the fourth and the fifth refinement levels. These theorems are : The formal specification has been verified using Rodin [START_REF] Michael | Rigorous Development of Complex Fault-Tolerant Systems[END_REF]. We have in particular discharged all the proof obligations associated with safety invariants that were identified and with refinement operators used within goal diagrams. The full specification can be found in [START_REF] Tueno | SysML/KAOS Approach on the Hybrid ERTMS/ETCS Level 3 case study[END_REF].

Discussion

Validation And Verification

The SysML/KAOS method not only makes it possible to verify the consistency of requirements and their refinement logic, but also to better present and validate the requirements with the various stakeholders. Indeed, SysML/KAOS includes semi-formal languages for a high-level representation of system goals and application domain properties. This ensures a better reusability and readability of models. Improved readability of models was assessed among members of the FORMOSE project. Indeed, of the fifteen or so surveyed members representing various academic 1 and industrial2 partners, all found the readability of SysML/KAOS models much better than that of a B System specification. The improved readability was also confirmed by stakeholders of the Municipality of Montreal (la Ville de Montréal -VdM) 3

Discussion

where the SysML/KAOS method was used to deal with requirements of a road transportation system [START_REF]SysML/KAOS Requirements Modeling of a Road Transportation System[END_REF]: four validation sessions were organised and allowed to introduce SysML/KAOS to VdM stakeholders and to obtain their feedbacks related to the constructed SysML/KAOS models.

SysML/KAOS also includes rules for obtaining a B System specification and the proof obligations required to guarantee consistency of goal refinements and accuracy of requirements with respect to environment constraints. This ensures a strong traceability between the B System specification and goal diagrams which are abstractions of needs identified within the reference documents [START_REF]Hybrid ERTMS/ETCS Level 3 : Principles[END_REF][START_REF] Nicola | ERTMS Level 3 : the Game-Changer[END_REF].

The B System specification, however, remains quite abstract and needs to be further refined in order to come up with an implementable model. Indeed, the specification is in the problem space, focused on the justification (with regard to stakeholders needs) and verification of system requirements.

Using the SysML/KAOS method, we have quickly built the refinement hierarchy and we have determined and formally expressed the safety invariants. The method bridges the gap between the system textual description and its B System specification. Table 7.1 summarises the key characteristics related to the formal specification and to proof obligations. The expression of theorems representing proof obligations associated to SysML/KAOS refinement operators was difficult because there is no way in Rodin to designate the guard and the post condition of an event within logical formulas. The proofs have been discharged using the Rodin tool extended with Atelier B provers [115] and SMT solvers [127]. Customised auto-tactic/post-tactic profiles, including the added provers, with extended timeouts, have been defined. In previous version of the formal specification [START_REF] Jeffrey | Modeling the Hybrid ERTMS/ETCS Level 3 Standard Using a Formal Requirements Engineering Approach[END_REF], some proof obligations were difficult because of conditional actions such as rear : = ({TRUE → rear -{tr → rear(tr) + len}, FALSE → rear})(bool(tr ∈ dom(rear))) defined in component ertms etcs case study (Figure 7.5) to simulate an if-then-else. To simplify these proofs, we have introduced conditionally defined parameters such as parameter n rear of event MoveTrainOnTrack (component ertms etcscase study) which is defined with guards grd4 or grd5 following condition tr ∈ dom(rear). This has significantly increased the number of automatically discharged proof obligations. The use of ProB [START_REF] Leuschel | ProB : A Model Checker for B[END_REF] made it possible to better validate the adequacy between the B System specification and the needs identified in reference documents. Figure 7.9 -Overview of the animation of the formal specification through proB For example, Figure 7.9 is an overview of the animation of the specification of Figure 7.7. The top view presents an excerpt of the Event-B specification. The bottom view presents, from left to right, the current state of the system structure (view State Properties), the enabled operations (view Enabled Operations) and a summary of the performed operations (view History). View State Properties shows that a connected train TRAIN1 is present on track on segment 1 . . 3. Its assigned MA extends over segment 0 . . 3 (MA(TRAIN1) = {0, 1, 2, 3}). View History shows that TRAIN1 was connected while being on segment 0. .2. An MA has then been computed and assigned to it and, following its assigned MA, it has moved from segment 0 . . 2 to segment 1 . . 3. Finally, view Enabled Operations shows that it is possible to disconnect TRAIN1, to connect another train or to proceed with computation of MAs. One conclusion of the animation work is that the principles described in 7.5. Discussion documents [START_REF]Hybrid ERTMS/ETCS Level 3 : Principles[END_REF][START_REF] Thai | The Hybrid ERTMS/ETCS Level 3 Case Study[END_REF][START_REF] Nicola | ERTMS Level 3 : the Game-Changer[END_REF] do not guarantee the absence of train collisions. Indeed, as reported in [START_REF] Abrial | The ABZ-2018 Case Study with Event-B[END_REF], since the movement of unconnected trains is allowed, nothing is specified to guarantee that an unconnected train will not hit another train (connected or not). The only guarantee that the safety invariants expressed may bring is that a connected train will never hit another train.

Comparison with the Other Approaches

HEEL3 has been the purpose of several works presented at the ABZ2018 conference. Each work is characterised by the involved formal specification, verification and validation approach.

In Abrial's article [START_REF] Abrial | The ABZ-2018 Case Study with Event-B[END_REF], the Event-B method is used to specify the case study. This work, similar to ours, distinguishes the modeling of system requirements and of environment assumptions from the formal specification task. For Abrial [START_REF] Abrial | The ABZ-2018 Case Study with Event-B[END_REF], requirements modeling includes the elaboration of a reference document called the requirement document which defines two special kinds of elements namely environment requirements and system functionalities. Environment requirements are assumptions about the environment structure and behavior while system functionalities are statements about what is expected from the system. A refinement strategy is then defined to link elements of the requirement document to the four refinement levels of the specified Event-B model. However, this refinement strategy is informally specified and only slightly justified. The SysML/KAOS method makes it possible to explicit the refinement links through refinement operators. In addition, the proof obligations associated with these operators make it possible to ensure that the defined refinement strategy is formally correct when considering requirement specifications.

In [START_REF] Dghaym | Diagram-Led Formal Modelling Using iUML-B for Hybrid ERTMS Level 3[END_REF], Dghaym et al. use iUML-B state and class diagrams [START_REF] Snook | UML-B : Formal modeling and design aided by UML[END_REF] to define a high-level representation of HEEL3's principles. An Event-B specification is then semi-automatically deduced and verified. The high-level representation is built to improve specification validation by domain experts, since it is more readable than plain Event-B. Class diagrams are used to represent domain entities, their constraints and events where they are involved. However, there is no link between events. The state changes of system variables are modeled with statemachines. In SysML/KAOS, goal models are used to represent system requirements that produce events while domain entities and constraints are represented in domain models. This separation of concerns avoids conflicts during the generation of the formal specification as is the case with iUML-B class diagrams and statemachines when a variable appears in both models. Dghaym et al [START_REF] Dghaym | Diagram-Led Formal Modelling Using iUML-B for Hybrid ERTMS Level 3[END_REF] consider the controller as the component that receives messages from trains and TTD and calculates the free VSS sections; the other components (trains, trackside equipments) being part of 7.5. Discussion the environment. Two kinds of trains are considered: those that communicate with controller and those that do not. Our study, on the other side, considers the controller as the component that computes available VSSs, updates train MAs and ensures that trains move following their assigned MAs (Figure 7.1). This is necessary since we consider that the main aim of the controller is to ensure the safe movement of trains on track. We consider not only trains that communicate and trains that do not, but we also distinguish trains that only communicate their position (ERTMS trains that are non-TIMS) from trains that communicate their position, length and integrity (TIMS trains). As in [START_REF] Dghaym | Diagram-Led Formal Modelling Using iUML-B for Hybrid ERTMS Level 3[END_REF], the contiguity of VSSs is ensured through the modeling of VSSs as ranges of integers. Finally, as in [START_REF] Abrial | The ABZ-2018 Case Study with Event-B[END_REF], a refinement strategy is defined to provide a plan for how the Event-B specification is intend to be built. The Event-B model includes 8 refinement levels: 3 to model environment components, 4 for the controller and 1 for a component that computes and assigns MAs to trains. Rodin provers have been used to discharge proof obligations and, the ProB model checker, to find counter examples in case of proof failure and animate the Event-B model.

In [START_REF] Arcaini | Modelling the Hybrid ERTMS/ETCS Level 3 Case Study in Spin[END_REF], the SPIN model checker [START_REF] Holzmann | The SPIN Model Checker -primer and reference manual[END_REF] is used to formally verify and validate a specification of the case study made with PROMELA. The use of PROMELA to specify the case study makes it possible to better take advantage of SPIN potentialities, but it limits the expressiveness of the specification as well as its readability. Moreover, it is only possible to perform model checking, unlike specification languages like B or Event-B that allow in addition to perform theorem proving. Unlike specifications built using refinement-based formal methods, a specification in PROMELA is hardly organisable into abstraction layers, making it difficult to specify complex systems and to validate these specifications.

In [START_REF] Hansen | Using a Formal B Model at Runtime in a Demonstration of the ETCS Hybrid Level 3 Concept with Real Trains[END_REF], a B specification [7] is proposed for a function called Virtual Block Function that computes VSS states following the HEEL3's principles. The specification is validated and executed at runtime using ProB. VSS state transitions are encoded using B definitions and operations: each transition guard is modeled as a definition while the transition action is described in an operation. A special operation is defined to handle priorities between transitions. The specification includes 13 refinement levels and 14 definition files. As in [START_REF] Arcaini | Modelling the Hybrid ERTMS/ETCS Level 3 Case Study in Spin[END_REF], the behaviors and constraints of the environment are explicitly modeled in a separate part of the specification. The environment specification handles the real state of components such as physical positions of trains.

In [START_REF] Cunha | Validating the Hybrid ERTMS/ETCS Level 3 Concept with Electrum[END_REF], the case study is specified in Electrum [START_REF] Brunel | The Electrum analyzer : model checking relational first-order temporal specifications[END_REF], a lightweight formal specification language built on top of Alloy [START_REF] Jackson | Software Abstractions -Logic, Language, and Analysis[END_REF]. Electrum extends the Alloy model checker with mutable relations and temporal logic operators. The structure of the case study specification is modeled using Alloy signatures, the specificity of Electrum being that a signature can be variable or static. The system dynamics is modeled using Electrum declarative predicates that relate the values of state variables to their successors. As in [START_REF] Arcaini | Modelling the Hybrid ERTMS/ETCS Level 3 Case Study in Spin[END_REF], the specification is not organised into abstraction layers and can only be model checked. However, the Electrum Analyzer provides a graphical representation of explored scenarios, through graphs, which enhances validation with stakeholders.

We have also specified, in a companion paper [START_REF] Mammar | An Event-B Model of the Hybrid ERTMS/ETCS Level 3 Standard[END_REF], the case study using plain Event-B, in the traditional style. Two distinct specifiers (first author of [START_REF] Mammar | An Event-B Model of the Hybrid ERTMS/ETCS Level 3 Standard[END_REF] and first author of this paper) wrote each specification without interacting with each other during specification construction. Critical reviewing by the team was then conducted after the specifications were built. The specification in [START_REF] Mammar | An Event-B Model of the Hybrid ERTMS/ETCS Level 3 Standard[END_REF] includes four refinement levels. The TTDs and trains are introduced in the root level and the VSSs are introduced in the second refinement level, as refinements of TTDs. The MAs and VSS states are introduced in the third refinement level (M3), for train movement supervision. A strategy is proposed to prove the determinism of the transitions of VSS states. The state variables of [START_REF] Mammar | An Event-B Model of the Hybrid ERTMS/ETCS Level 3 Standard[END_REF] are partitioned into environment variables and controller variables, and similarly for events. Environment events only modify environment variables. Controller events read environment variables and update controller variables. In this paper, we only model controller events; state variables represent the controller view of the environment. The environment behavior is left nondeterministic with respects to domain constraints modeled in SysML/KAOS domain models. The execution ordering and the refinement strategy are enforced using proof obligations expressed as theorems, whereas in [START_REF] Mammar | An Event-B Model of the Hybrid ERTMS/ETCS Level 3 Standard[END_REF] there is no proof about these aspects. In [START_REF] Mammar | An Event-B Model of the Hybrid ERTMS/ETCS Level 3 Standard[END_REF], the safety properties are introduced in the last refinement level; here, we introduce them in the first (logical formula p1.4) and second (logical formulas p2.9 .. p2.13) refinements. The SysML/KAOS method makes it possible to trace the source and justify the need for each formal component and its contents, in relation with the SysML/KAOS goal and domain models. The method therefore represents a more structured and methodological process to the formal specification of system.

Conclusion and Future Work

This paper focusses on the use of the SysML/KAOS method for the high level modeling of system requirements, of domain properties and of safety invariants related to the hybrid ERTMS/ETCS level 3 protocol [START_REF]Hybrid ERTMS/ETCS Level 3 : Principles[END_REF][START_REF] Thai | The Hybrid ERTMS/ETCS Level 3 Case Study[END_REF][START_REF] Nicola | ERTMS Level 3 : the Game-Changer[END_REF]. Translation rules, supported by tools [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF][START_REF] Tueno | The SysML/KAOS Domain Modeling Language (Tool and Case Studies)[END_REF], have then been applied to obtain a formal specification containing the system structure and the skeleton of events. The Rodin tool [START_REF] Michael | Rigorous Development of Complex Fault-Tolerant Systems[END_REF] has been used to verify and validate the formal specification, especially to prove the safety invariants and the refinement logic, after the completion of the body of events. The full specification can be found in [START_REF] Tueno | SysML/KAOS Approach on the Hybrid ERTMS/ETCS Level 3 case study[END_REF]. A comparison with the other case study specifications published in the ABZ2018 proceedings has been done. This includes a companion paper [START_REF] Mammar | An Event-B Model of the Hybrid ERTMS/ETCS Level 3 Standard[END_REF] where the case study is specified using only plain Event-B.

The specification obtained using the SysML/KAOS method is in the problem space, focused on validation, with regard to stakeholders needs, and verification of system functional requirements. The environment behavior is left nondeterministic within the limits imposed by constraints defined in domain models. Of course, focusing on requirements in itself is not enough. It is necessary to ensure the feasibility of an iterative incremental process encompassing requirements management, architecture design and system development [108]. This requires links between the associated models/specifications such as refinement links between the B System formalisation of requirements and the B System specification, in the solution space, that integrates the necessary design choices to ensure system development. Studying these links is a next step in our study.

Work in progress also aims at improving the representation of logical formulas (to make them more user-friendly) and at studying the propagation of updates and proof errors from B System specifications to SysML/KAOS models.

Chapitre 8 Spécification formelle des exigences d'un système de transport urbain : cas de la Ville de Montréal

Résumé

Ce chapitre décrit un cas d'application de la méthode SysML/KAOS dans le cadre de la spécification des exigences d'un système de transport routier pour le compte de la Ville de Montréal (VdM), la deuxième plus grande ville du Canada et la plus grande ville du Québec. Le système de transport a initialement été développé à partir d'exigences non structurées représentées par de volumineux documents textuels et schématiques. La VdM a en conséquence émis le souhait d'explorer de nouveaux moyens d'organiser et d'analyser les exigences de projets routiers, afin d'augmenter le niveau de confiance quant à leur sureté, leur sécurité, leur utilisabilité et leur réutilisabilité. Ce chapitre présente la spécification, la vérification et la validation formelles des exigences identifiées.

La méthode SysML/KAOS a permis de définir les sept premiers niveaux de raffinement de la spécification. Elle a également permis d'expliciter la centaine d'exigences fonctionnelles et non-fonctionnelles des douze composants (humain, matériel, logiciel et cyber-physique) qui constituent le système de transport routier. En outre, l'utilisation de SysML/KAOS a permis de faciliter la validation des exigences avec les parties prenantes de la VdM qui n'avaient jamais été en contact ni avec les méthodes formelles, ni avec l'ingénierie des exigences. Les outils d'animation, en l'occurrence ProB et B-Motion Studio, ont également contribué à faciliter la validation de la spécification formelle avec les parties prenantes de la VdM. Ce chapitre décrit également les points d'amélioration de l'expressivité des langages SysML/KAOS, identifiés à l'issue des sessions de validation avec la VdM. Il s'agit en l'occurrence de l'introduction (1) d'un moyen de quantifier les impacts et contributions des buts, (2) d'une stratégie de raffinement des buts non-fonctionnels basée sur la définition de formules logiques, (3) d'une approche de raffinement des buts de contribution, et (4) d'un langage de modélisation d'obstacles.

Commentaires

La contribution ici réside dans l'évaluation de la méthode SysML/KAOS sur une étude de cas d'envergure industrielle, en l'occurrence la spécification, la vérification et la validation formelles des exigences d'un système de transport urbain. Cette évaluation a notamment permis de faire connaître et illustrer l'usage de SysML/KAOS et d'identifier des points d'amélioration de l'expressivité de ses langages.

L'évaluation décrite dans ce chapitre a fait l'objet d'un article accepté et publié dans le cadre de la 21 e édition de la conférence internationale sur les méthodes formelles d'ingénierie ICFEM (International Conference on Formal Engineering Methods).

La spécification réalisée et l'article afférent ont été élaborés par mes soins en tenant compte des remarques et commentaires issus de mon équipe d'encadrement et des parties prenantes de la Ville de Montréal.

Introduction

engineering method on an industrial-scale case study. The specification is performed according to SysML/KAOS, a formal requirements engineering method developed in the ANR FORMOSE project for critical and complex systems. SysML/KAOS is designed to bridge the gap between stakeholder needs and the formal specification of system functionalities and domain constraints. The method has proven useful to deal with the seven refinement levels, twelve components (human, hardware, software and cyber-physical) and a hundred functional and non-functional goals that constitute the specification of the road transportation system, mainly focused on the safe movement of vehicles on roads. It especially facilitated their validation with VdM stakeholders who had never dealt with formal methods and requirements engineering. Animation tools (ProB and B-Motion Studio) were also used to validate the formal specification with VdM stakeholders. This paper also reports improvements identified to enhance the expressiveness of SysML/KAOS goal modeling languages during validation sessions with VdM stakeholders. This includes the introduction of (1) a way to quantify impacts and contributions of goals, (2) a non-functional goal refinement strategy based on logical formulas, (3) an approach to refine contribution goals, and (4) an obstacle modeling language. The improvements are planned to appear in future releases of supporting tools.

Introduction

SysML/KAOS is a requirements engineering method which aims to emphasize the impact of formal specification and verification activities on the quality of requirements, while taking into account the domain constraints and improving validation with stakeholders. The main interest is on critical and complex areas such as railway, aeronautics or road transportation. The method involves a functional [START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF] and a non-functional [START_REF] Gnaho | bCMS requirements modelling using SysML/KAOS[END_REF][START_REF] Gnaho | An overview of a SysML extension for goal-oriented NFR modelling[END_REF] goal modeling languages to represent system requirements extracted from artifacts that describe stakeholder needs. The functional goal model represents system functionalities while the non-functional one represents constraints on their satisfaction. In addition, a domain modeling language [START_REF] Jeffrey | Towards Using Ontologies for Domain Modeling within the SysML/KAOS Approach[END_REF][START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF] is used to represent application domain entities and their properties. The system complexity is mastered in SysML/KAOS thanks to refinements and decompositions. In [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF], Matoussi et al. have defined translation rules to produce a B System specification [START_REF] Clearsy | Atelier B : B System[END_REF] from SysML/KAOS functional goal models. They provide the behavioral part (events) of the specification. Regarding domain models, rules have been defined and formally verified [START_REF] Jeffrey | Formal Representation of SysML/KAOS Domain Model (Complete Version)[END_REF][START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF] to generate the structural part (sets, constant and their properties, variables and their invariant) of the specification and the initialisation of state variables. Once the event bodies manually specified, the B System specification can be formally verified and validated to assess the requirements. This can be done using the full range of tools that support the B method [START_REF] Abrial | The B-book : assigning programs to meanings[END_REF], positively assessed on a number of industrial projects for more than 25 years [START_REF] Thierry Lecomte | Applying a Formal Method in Industry : A 25-Year Trajectory[END_REF].

In 2014, La Ville de Montréal (VdM) proceeded to replace the Bonaventure highway (A-10) with an urban boulevard [START_REF] Ville De | Annex 1 : Schematic view of the intervention area[END_REF][START_REF] Ville De | Final draft of the project to connect Duke and Nazareth Streets to the Ville-Marie highway[END_REF]. As part of this reconfiguration, the Québec Ministry of Transport (MTQ) emphasized the importance of ensuring that the interventions carried out do not reduce the safety of road users. In addition, the VdM requires ensuring the functionality of the municipal road network. To allow the identified requirements to be taken into account, a number of additional options have been developed including (1) the addition of signaling equipments such as thermal imaging cameras and traffic control radars, and (2) the setting up of an intelligent transportation system that includes an automated incident detection system [START_REF]Functional Description of the Automatic Incident Detector (AID) System[END_REF] provided by the MTQ. The transportation system was developed based on textual and schematic documents ( [START_REF] Ville De | Final draft of the project to connect Duke and Nazareth Streets to the Ville-Marie highway[END_REF] and its annexes, [START_REF]Functional Description of the Automatic Incident Detector (AID) System[END_REF], etc.). Not only does this documentation not allow a clear identification of requirements, but it rarely shows the justification and validity of the choices made. Therefore, the VdM wanted to investigate a way of organising and analysing the requirements of traffic projects, in order to increase the level of confidence in their safety, usability, reusability and efficiency. This paper describes the formal specification, verification and validation of requirements of the transportation system and of the supervisor in charge of ensuring optimal operation of the involved components. SysML/KAOS was chosen because it includes an expressive and intuitive goal modeling language to represent system requirements, and a domain modeling language to represent application domain entities and their properties using ontologies. Furthermore, the rules required to generate a B System specification from goal and domain models are defined and the most relevant ones have been formally verified [START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF]. This paper also reports improvements identified to enhance the expressiveness of SysML/KAOS goal modeling languages and validated with VdM stakeholders. This includes the introduction of (1) a way to quantify the impact or contribution of a goal (a contribution goal is a satisficity solution to a non-functional requirement [START_REF] Chung | Non-functional requirements in software engineering[END_REF]), (2) a non-functional goal refinement strategy based on logical formulas, (3) an approach to refine contribution goals similar to that of Chung et al. [START_REF] Chung | Non-functional requirements in software engineering[END_REF], and (4) an obstacle modeling language such as the one proposed by Lamsweerde in [139].

Context

The remainder of this paper is structured as follows: Section 2 briefly describes the B System formal method, the SysML/KAOS requirements engineering method and its goal and domain modeling languages, and the B System formalisation of SysML/KAOS models. Follows a presentation, in Section 3, of the work done on the case study. Section 4 discusses validation and verification of the formal specification and describes the relevant lessons learned from this case study. Finally, Section 5 reports our conclusion and future work.

Context

B System

Event-B [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF] is an industrial-strength formal method for system modeling. It allows the incremental construction of system specifications, using stepwise refinement, and the proof of useful properties. B System is an Event-B syntactic variant proposed by ClearSy, an industrial partner in the FORMOSE project [START_REF]Formose ANR Project[END_REF], and supported by Atelier B [START_REF] Clearsy | Atelier B : B System[END_REF]. It shares the same semantics with Event-B.

A B System specification consists of components. Each component can be either a system or a refinement and it may define static or dynamic elements. A refinement is a component which refines another one in order to concretise the system construction: addition of functionalities or specification of the achievement of some purposes. Constants, abstract and enumerated sets (user-defined types), and their properties, constitute the static part. The dynamic part includes the representation of system state using variables constrained through invariants (first-order predicates that constrain the possible values that the variables may hold) and updated through events.

SYSTEM S SETS T CONSTANTS C PROPERTIES P VARIABLES V INVARIANT Inv EVENTS E END

Each event has a guard G and an action

Act. An event is said to be enabled when its guard G holds. A system transition consists in the triggering of a single event, among all enabled ones. Action Act of an event describes the updates made to state variables.

E = SELECT X WHERE G THEN Act END 8.2. Context
The triggering of an event should maintain the invariant Inv. To this aim, a proof obligation is generated for each event: ∀T, C, X. (P ∧ G ∧ Inv ⇒ [Act]Inv). The expression [Act]Inv denotes the weakest precondition such that the execution of Act terminates in Inv. Other proof obligations include event feasibility (existence, for each event, of a state where it can be triggered) and system refinement (the specification of a refinement conforms to that of the refined component) [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF].

SysML/KAOS

SysML/KAOS is a requirements engineering method which defines a functional and non-functional goal modeling and a domain modeling languages. Figure 8.1 provides an overview of its specification process [START_REF] Jeffrey | Back Propagating B System Updates on SysML/KAOS Domain Models[END_REF].

The first step is to use SysML/KAOS languages to build models of the system and of its application domain. The second step is to translate the goal model into a B System specification, following the rules provided in [START_REF] Jeffrey | Formalisation of SysML/KAOS Goal Assignments with B System Component Decompositions[END_REF][START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF], and to complete the specification with the result of the translation of domain models, following the formally verified rules provided in [START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF][START_REF] Tueno | The Generic SysML/KAOS Domain Metamodel[END_REF]. Goal models provide the behavioral part (events) of the specification while domain models provide its structural part (sets, constant and their properties, variables and their invariant) and the initialisation of state variables. It remains to manually specify the body of 8.2. Context events and to formally verify and validate the specification with B System tools. When updates are performed within the B System specification, back propagation rules such as those described in [START_REF] Jeffrey | Back Propagating B System Updates on SysML/KAOS Domain Models[END_REF] are used to update SysML/KAOS models accordingly.

SysML/KAOS is supported by integrated development environments Openflexo [109] and Atelier B [START_REF] Clearsy | Atelier B : B System[END_REF]. Openflexo supports goal and domain modeling while Atelier B supports the specification, verification and validation of B System models. These last activities can also be carried out under Rodin [START_REF] Michael | Rigorous Development of Complex Fault-Tolerant Systems[END_REF] since Event-B and B System share the same semantics.

SysML/KAOS Functional Goal Modeling

The SysML/KAOS functional goal modeling language [START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF] combines the traceability provided by SysML [START_REF] Hause | The SysML modelling language[END_REF] with goal expressiveness provided by KAOS [START_REF] Van Lamsweerde | Requirements Engineering -From System Goals to UML Models to Software Specifications[END_REF]. It allows the representation of functional requirements to be satisfied by a system and of functional expectations with regards to the environment through a hierarchy of goals. A functional goal in SysML/KAOS describes the expected behaviour of the system once a certain condition holds: [if CurrentCondition then] sooner-or-later TargetCondition. A functional goal can also be defined without specifying a current condition. In this case, the expected behaviour can be observed from any system state. The functional goal hierarchy is built through a succession of refinements using two main operators: AND and OR. An AND refinement decomposes a goal into subgoals, and all of them must be achieved to realise the parent goal. An OR refinement decomposes a goal into subgoals such that the achievement of only one of them is sufficient for the achievement of the parent goal. The refinement process ends when it is possible to assign the leaf goals to a subsystem or to an agent (environment agent or software agent). Subsequently, if needed, further goal diagrams can be defined for the different subsystems.

SysML/KAOS Non-Functional Goal Modeling

Non-functional goals are represented in SysML/KAOS using a language similar to that of functional goals [START_REF] Gnaho | bCMS requirements modelling using SysML/KAOS[END_REF][START_REF] Gnaho | An overview of a SysML extension for goal-oriented NFR modelling[END_REF] and which borrows concepts from the NFR Framework [START_REF] Chung | Non-functional requirements in software engineering[END_REF]. As with functional goals, the non-functional goal hierarchy is built through a succession of refinements using operators AND and OR. However, the nonfunctional goal hierarchy is built in a model different from the one that structures the functional goals. Each non-functional goal is represented as NFRType[Topic] where NFRType identifies the constraint type (security, safety, etc.) and Topic identifies the system entity that the constraint targets. and Security[Software] for a system consisting of a hardware and a software. The refinement process ends when it is possible to provide satisficity solutions to leaf goals called contribution goals.

Each contribution goal can contribute positively (+) or negatively (-) to the satisfaction of a non-functional goal. Similarly, each contribution goal can have a positive (+) or negative (-) impact on the achievement of a functional goal. Impacts are represented in a distinct model called the integrated model [START_REF] Gnaho | bCMS requirements modelling using SysML/KAOS[END_REF]. They can ( 1) constrain the refinement of functional goals, (2) lead to the definition of new functional goals, or (3) constrain the way some leaf functional goals are achieved by agents to which they are assigned.

SysML/KAOS Domain Modeling

Domain models in SysML/KAOS are represented using ontologies. These ontologies are expressed using the SysML/KAOS domain modeling language [START_REF] Jeffrey | Towards Using Ontologies for Domain Modeling within the SysML/KAOS Approach[END_REF][START_REF] Tueno | The Generic SysML/KAOS Domain Metamodel[END_REF], based on OWL [START_REF] Sengupta | Web Ontology Language (OWL)[END_REF] and PLIB [112], two well-known and complementary ontology modeling formalisms. Each domain model corresponds to a refinement level in the functional goal model. Domain models can be linked together to form a hierarchy. A domain model can define multiple elements. Concepts designate collections of individuals with common properties. A concept can be declared variable when the set of its individuals can be updated by adding or deleting individuals. Otherwise, it is considered to be constant. In addition, a concept can be an enumeration if all its individuals are defined within the domain model. An individual can be variable if it is introduced to represent a system state variable: it can represent different individuals at different system states. Otherwise, it is constant. Associations are concepts used to capture links between concepts. Maplet individuals capture associations between individuals through associations. The variability of an association is related to the ability to add or remove maplets. Logical formulas are used to represent constraints between different elements of the domain model in the form of Horn clauses. Gluing invariants are logical formulas used to represent links between data defined within a domain model and those appearing in more abstract domain models. They capture relationships between abstract and concrete data during refinement and are used to discharge proof obligations.

B System Formalisation of SysML/KAOS Models

The formalisation of SysML/KAOS functional goal models is detailed in [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF]. The proposed rules allow the generation of a formal model whose structure reflects the hierarchy of the functional goal model: one component is associated with each level of the goal hierarchy; this component defines one event for each goal. As the semantics of the refinement between goals is different from that of the refinement between B System components, new proof obligations for goal refinement are defined in [START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF]. They depend on the goal refinement operator used and complete the B System proof obligations for invariant preservation and for event feasibility. For instance, the following proof obligations formalise the AND refinement of an abstract goal G into two concrete goals G 1 and G 2 (for an event G, G Guard represents the guards of G and G Post represents the post condition of its actions):

• G 1 Guard ⇒ G Guard • G 2 Guard ⇒ G Guard • (G 1 Post ∧ G 2 Post) ⇒ G Post
It should be noted that variables updated by subgoals must be distinct.

Nevertheless, the generated B System specification does not contain the system structure, that are variables with their associated invariant and constants with their associated properties. This structure is provided by the translation of SysML/KAOS domain models. The corresponding translation rules are fully described in annex B. In short, domain models identify B System components. Concepts give B System types while individuals give set items. Logical formulas give B System properties and invariants. The rules also allow the extraction of the initialisation of state variables.

Specification of the Road Transportation System

Main Characteristics of the System

The VdM needs to proceed with the replacement of the Bonaventure highway (A-10) with an urban boulevard while ensuring that the interventions carried out do not reduce the safety of road users (MTQ) and that the municipal road traffic is at least maintained (VdM) [START_REF] Ville De | Final draft of the project to connect Duke and Nazareth Streets to the Ville-Marie highway[END_REF]. Regarding the Nazareth street and especially the exit of the Ville-Marie highway to Nazareth street, it was difficult to respond to both the issues identified by the VdM and the safety issue formulated by the MTQ, especially because of the curvature of the highway exit (see [START_REF] Ville De | Annex 1 : Schematic view of the intervention area[END_REF]). Indeed, the accumulation of vehicles at the highway exit is likely to cause accidents because the curvature limits the line of sight of drivers that engage on the exit when they are at the upstream of the curvature. It is thus necessary (i) to determine the level of traffic at every moment, (ii) to regulate the traffic level in order to limit the exit congestion in reasonable proportions, and (iii) to notify drivers, especially those located at the upstream of the curvature, as to the level of the traffic and the expected behavior. The VdM has therefore decided the addition of: (1) two travel lanes for the Ville-Marie highway exit to Nazareth street to the three lanes of Nazareth street (see [START_REF] Ville De | Final draft of the project to connect Duke and Nazareth Streets to the Ville-Marie highway[END_REF]) and ( 2) sensors such as thermal imaging cameras and traffic control radars to ensure the determination of the level of traffic. Traffic regulation consists in defining the most appropriate traffic signal program, taking into account the level of traffic. It is performed by an automaton connected to VdM sensors. An urban mobility management center (CGMU) has been set up by the VdM to ensure that the level of traffic is properly regulated (traffic level supervision) and notify drivers (level of traffic and expected behavior). To ensure the satisfaction of its safety requirement, the MTQ has also set up a mobility management center (CIGC) and an intelligent transportation system that includes an automated incident detection system (AID). The AID is connected to the CGMU and provides a more accurate measurement of the level of traffic that helps to validate the inputs from VdM sensors. It uses thermal cameras and a software to analyse the traffic in real-time and detect road incidents. As the CGMU, the CIGC is responsible for sending some notifications to drivers through variable message signs (PMVs) or through GPS navigation softwares such as Waze or Google Maps.

The SysML/KAOS method is used to provide a framework for the specification, verification and validation of requirements of the integrated components and of the supervisor responsible for ensuring the optimal operation of these components.

Functional Goal and Obstacle Modeling

Functional Goal Modeling Figure 8.2 [START_REF]Road Transportation System : Description of the Functional Goal Model[END_REF] provides an overview of the goal diagram that represents the functionalities of the high-level system. The main identified purpose is to allow each vehicle on the Ville-Marie highway exit that connects to Nazareth street to exit. The purpose gives the most abstract goal BringOutEachVehiclePresentInTunnel of the goal diagram which is refined using the AND operator into two subgoals: drive vehicle according to road signing (goal MoveVehicle) and manage congestion (goal ManageCongestion). The leaf goal MoveVehicle is assigned to environment agent VehicleDriver (the vehicle driver) to state the assumption that the driver has the responsibility to drive its vehicle according to road signs. The assumptions are expressed in domain models as domain constraints. For instance, the previous assumption entails that "each vehicle speed does not exceed the speed limit". For congestion management, it is necessary to be able to: (1) determine the traffic level from sensors (goal DetermineTrafficLevel), Since the level of traffic is determined using VdM sensors and the MTQ's AID, goal DetermineTrafficLevel is AND-refined into subgoals DetermineTrafficLevel-FromVdMSensors, for VdM sensors, and DetermineTrafficLevelFromAID, for the MTQ's AID. The VdM sensors include a traffic control radar and a redundant sensor. Indeed, the highway exit is splitted into four zones, until the point where the last vehicle should be in case of maximum congestion lengthening (Xmax). The radar covers the four zones. However, a redundant sensor (ground sensor or thermal camera) is needed for the fourth zone (the one that ends at Xmax) to ensure that the maximum congestion lengthening will be detected even in case of a radar failure.
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Functional goal diagram of the Traffi-cRegulator subsystem [START_REF]Road Transportation System : Description of the Functional Goal Model[END_REF] (a)

Obstacle model related to the unreliability of links to CGMU [START_REF]Road Transportation System : Description of the Non-Functional Goal Model[END_REF] (b)

Knowing that the communication links from CGMU to VdM sensors and from CIGC to CGMU are subject to failure, an obstacle analysis was carried out based on the obstacle modeling language of KAOS [139].

Obstacle Modeling

An obstacle is an obstruction to the satisfaction of a functional goal. Obstacle modeling allows analysis of expected system behaviors when obstacles prevent the satisfaction of one or more functional goals [139]. Obstacles can be refined to specify their causes: an obstacle can be caused by a conjunction or disjunction of more specific ones. New functional goals or countermeasures can therefore be defined to prevent, detect or mitigate obstacles, thus ensuring adequate behavior of the system.

Figure 8.3b [START_REF]Road Transportation System : Description of the Non-Functional Goal Model[END_REF] illustrates the obstacle modeling, related to the unreliability of CGMU to VdM sensors and CIGC to CGMU links, that entailed the definition of the three supervision modes of Figure 8.2 (goals SuperviseTrafficLevelinNormalMode, Su-perviseTrafficLevelinDegradedMode1 and SuperviseTrafficLevelinDegradedMode2). Each black arrow goes from an introduced element (functional goal or obstacle) to the element that entails it.

Specification of the Road Transportation System

When all is well, the supervision is performed in normal mode (goal SuperviseTraf-ficLevelinNormalMode refined in another goal diagram [START_REF]Road Transportation System : Description of the Functional Goal Model[END_REF]): each management center (CGMU and CIGC) receives traffic data from its sensors and notifies the other as to its traffic knowledge. Since AID measurements are more accurate, in normal mode, they will be systematically used by CIGC and CGMU to undertake supervision actions: ensure the appropriateness of the traffic signal program and ensure the appropriateness of user notifications.

The normal mode traffic supervision may be obstructed by the impossibility for AID to send a precise traffic measurement to CGMU (obstacle PreciseTrafficLevel-NotCommunicatedToCGMU of Figure 8.3b). This can be due to the unavailability of the communication channel between the CGMU and the CIGC (obstacle CG-MUnotReachableFromCIGC) or by that of the one between AID and CIGC (obstacle CIGCnotReachableFromAID). A countermeasure to detect the occurrence of obstacle CGMUnotReachableFromCIGC is to regularly check the state of the communication channel between the CGMU and the CIGC (goal CheckCGMU-CIGCLinkState). Similarly, goal CheckCIGC-AIDLinkState is proposed as countermeasure to obstacle CIGCnotReachableFromAID. The functional goal SuperviseTrafficLevelinDegradedMode1 (Figures 8.2 and 8.3b) allows the supervision to be performed properly despite an occurrence of obstacle PreciseTrafficLevelNotCommunicatedToCGMU, by defining an alternative that allows the CGMU to perform the supervision without the need of the CIGC: only VdM sensors are considered to determine the level of traffic. However, an obstacle to the satisfaction of goal SuperviseTrafficLevelinDegradedMode1 is CGMUnotReachableFromVdMSensors, related to the impossibility for CGMU to obtain measurements from VdM sensors. A detection countermeasure therefore consists in regularly probing the state of the communication channel between CGMU and VdM sensors (goal CheckCGMU-VdMSensorsLinkState). An additional goal SuperviseTrafficLevelinDegradedMode2 (Figures 8.2 and 8.3b) is defined as a mitigation countermeasure and consists in sending a human agent for local traffic supervision.

Non-Functional Goal Modeling

Figure 8.3 [START_REF]Road Transportation System : Description of the Non-Functional Goal Model[END_REF] provides an overview of an integrated goal diagram that represents the main non-functional goals of the high-level system and some relevant contribution goals (in green) with their identified contributions (black arrows) and impacts (red arrows). The main non-functional goal that has been identified is to ensure a high quality of service to the entire system. To ensure a high quality of service, it is necessary to ensure high safety, security and performance [START_REF] Chung | Non-functional requirements in software engineering[END_REF]. This gives the goals of the first refinement level which are derived from a refinement by type of the root goal. Similarly, to ensure a high performance of the system, it is 8.3. Specification of the Road Transportation System Figure 8.3 -High-level system integrated goal diagram [START_REF]Road Transportation System : Description of the Non-Functional Goal Model[END_REF] necessary to minimise operating times and costs. Non-functional goals of the third refinement level, derived from a refinement by topic of goal Cost [System], express that system operating costs are distributed between operating costs of sensors (such as thermal cameras), actuators (such as variable message signs) and controllers (such as the traffic signal controller).

A way to ensure the system safety (non-functional goal Safety [System]) is to avoid collisions between vehicles due to the curvature of the highway exit (contribution goal AvoidCollisions). Thus, AvoidCollisions contributes positively to Safety [System]. In addition, AvoidCollisions has a significant impact on the satisfaction of functional goal BringOutEachVehiclePresentInTunnel and requires addition of a functional goal BlockVehicleEntrance to prevent engagement of vehicles on the highway exit. This new functional goal is required to ensure that the congestion can always be regulated and was found during non-functional goal modeling.

Ways to mimise operating costs of sensors include the use of the MTQ's AID (goal UseAID), of the VdM's thermal camera (goal UseVdMCamera) and of the VdM's traffic radar (goal UseVdMRadar). The use of a ground sensor (goal UseGroundSensor) does not contribute to the minimisation of operating costs of sensors because ground sensors are hardly maintainable and reusable since they are underground.
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Therefore, the redundant VdM sensor is a thermal camera: only goal Determine-TrafficLevelFromThermalCamera (Fig. 8.2) is retained in the OR decomposition of goal DetermineTrafficLevelAtTunnelCriticalPoint. Similarly, the use of GPS navigation softwares such as Waze or Google Maps contributes positively to the minimisation of operating costs of actuators. This is not the case for variable message signs (goal UsePMV) because their use requires their purchase and maintenance.

A non-functional goal diagram was built specifically for security requirements. It is not presented in this paper for space limitations.

Domain Modeling

Six domain models were constructed for the six refinement levels of the functional goal model [1]. For space limitations, we will focus only on the first two.

Root Level

Figure 8.4 [1] represents the domain model associated with the root goal BringOutEachVehiclePresentInTunnel of the diagram of Figure 8.2. The domain model introduces the entities required to represent the exit of the Ville-Marie highway to Nazareth street and to localise vehicles. Its aim is to enable the specification of vehicle exits. Therefore, a concept VEHICLE is defined to represent all vehicles likely to engage on the highway exit. Association Vehicle Length captures the length of each vehicle as a natural number. A variable concept named Vehicle is defined as a subconcept of VEHICLE to represent the vehicles currently engaged on the highway exit. Its cardinality is used to quantify the level of traffic [START_REF]Functional Description of the Automatic Incident Detector (AID) System[END_REF]. Each vehicle engaged on the highway exit is localised by the position of its front (variable association Vehicle Front Position) and by its travel lane (variable association Vehicle Travel Lane). Indeed, the highway exit has two travel lanes (see [START_REF] Ville De | Annex 1 : Schematic view of the intervention area[END_REF]): a main one represented by individual TRAVEL LANE I and a secondary one, represented by TRAVEL LANE II, which appears when the vehicle gets closer to the Nazareth street.

Logical formulas are defined to represent properties that need to be guaranteed in all system states. A logical formula can be defined to enforce (or represent) a contribution goal (non-functional goal model). For instance, the logical formula below ensures that the locations occupied by two distinct vehicles are always distinct (absence of collisions [START_REF] Mashkoor | Utilizing Event-B for domain engineering : a critical analysis[END_REF]): 
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The highway exit is represented by a concept Tunnel defined as a range of integers (Tunnel = aa . . cc). Association Speed Limit captures the speed limit (in KM/H) defined at each position of the highway exit. It is variable because the speed limit is likely to be updated depending on traffic level. Concept Tunnel part1 is the subpart of the highway exit that contains the curvature which limits the visibility of upstream vehicles (Tunnel part1 = aa . . bb, bb < cc). Therefore, an association named Visibility Limit is used to associate a visibility limit to parts of Tunnel part1: each user whose vehicle A has its front located at xx ∈ Tunnel is supposed to be able to see vehicle B in front of him (and consequently to act in a way to avoid a collision) unless xx ∈ dom(Visibility Limit) and the rear of vehicle B is located beyond Visibility Limit(xx). Finally, association Min Brake Distance sets a minimum braking distance for each speed defined as speed limit. Therefore, it is necessary to ensure that for each speed limit defined for a location xx, if a visibility limit is applicable at xx (xx ∈ dom(Visibility Limit)), the speed limit is defined such that the minimum braking distance is less than the distance between xx and Visibility Limit(xx): 8.4) and introduces the entities required to represent the traffic level which depends on vehicle speeds and locations [START_REF]Functional Description of the Automatic Incident Detector (AID) System[END_REF]. A natural number (individual MAXIMAL TUNNEL OCCUPATION) is defined to represent the maximum number of vehicles allowed at the highway exit and a variable association Vehicle Speed is defined to represent speeds of vehicles. We assume that the vehicles are driven according to road signing. The assumption is represented by a logical formula stating that the speed of any vehicle must always be lower than the speed limit associated with its location:

∀xx•(xx ∈ dom(Visibility Limit) ⇒ Visibility Limit(xx) > xx) First Refinement Level
∀xx•(xx ∈ Vehicle ⇒ Vehicle Speed(xx) ≤ Speed Limit(Vehicle Front Position(xx)))
Four traffic levels are considered: normal, dense, slowed and congestion [START_REF]Functional Description of the Automatic Incident Detector (AID) System[END_REF]. The variable individual traffic level is defined to represent the current known traffic level. Each traffic level is defined by an individual and a logical formula that specifies its requirements. For instance, the traffic level is normal when the highway exit is occupied at 40% or less and vehicle speeds are higher than 40 KM/H [START_REF]Functional Description of the Automatic Incident Detector (AID) System[END_REF]:

(tra f f ic level = NORMAL ⇒ (((card(Vehicle) * 100)/MAXIMAL TUNNEL OCCUPATION) < 40 ∧ (∀xx•(xx ∈ Vehicle ⇒ Vehicle Speed(xx) ≥ 40))))
The domain model associated with the second refinement level of the goal model introduces the entities required to distinguish between environment variables, which represent the actual state of the real environment and controller variables, which represent the measured value of the environment, as seen by the controller (measured vehicle front positions, measured vehicle speeds, etc.). This distinction is necessary to handle measurement errors and control delays [START_REF] Lorge | Functional documents for computer systems[END_REF]. The next domain model introduces the traffic level sensors and supervision modes (normal and degraded). It also introduces traffic lights and signaling programs to allow the specification of traffic regulation. Finally, the fifth and sixth domain models introduces the communication channels, from sensors to management centers (CGMU and CIGC) and between management centers, to allow the specification of traffic supervisions.

The B System Specification

The full specification, verified using the Rodin platform [START_REF] Michael | Rigorous Development of Complex Fault-Tolerant Systems[END_REF], can be found in [START_REF]Specification of the road transportation system -Rodin Project[END_REF]. Each refinement level is the result of the translation of goal and domain models, except the body of events that are provided manually. For instance, the root level of the goal diagram of 

END

This event states that when vehicles are present on the highway exit (grd0), we observe some exiting (act0) and others moving, by nondeterministically changing their traffic lanes (grd3 and act2) and front positions (grd2 and act1), while ensuring the preservation of safety invariants (grd4 and grd5). Guard grd1 ensures that each vehicle (x ∈ Vehicle) either exits (x ∈ Vehicle Out) or moves (x ∈ Vehicle In). In the first refinement level of the B System specification, event BringOutEachVehiclePre-sentInTunnel is refined by events ManageCongestion and MoveVehicle, the last being specified as 1 : 

Event MoveVehicle = SELECT newTravelLanes,
∧ (∀xx•(xx ∈ Vehicle In ⇒ newVehicleSpeeds(xx) ≥ 40)))) ••• THEN ••• act3: tra f f ic level : = tra f f icLevel act4: Vehicle Speed : = newVehicleSpeeds END 1.
Event specification restricted to show only the most relevant part with respect to the one of event BringOutEachVehiclePresentInTunnel. The full version can be found in [START_REF]Specification of the road transportation system -Rodin Project[END_REF].

Discussion

It states that after a certain delay delay (grd0), all vehicles present on the highway exit move a distance corresponding to the product of their speed by delay (grd2). Exiting vehicles (Vehicle Out) are those that are driven out of the highway by their displacement (grd4). The others (Vehicle In: vehicles that remain in the highway after their displacement (grd3)) nondeterministically change their speed (grd5, grd6 and act4) and lane (grd7) while ensuring the preservation of safety invariants. Finally, the traffic level is updated (act3) to reflect the new system state (grd9, grd10, ...).

Discussion

Validation and Verification

The SysML/KAOS method not only makes it possible to verify the consistency of requirements and their refinement logic, but also to better present and validate the requirements with the various stakeholders. Indeed, SysML/KAOS includes semiformal languages for a high-level representation of system goals and application domain properties. This ensures a better reusability and readability of models. Improved readability is confirmed by VdM stakeholders who were involved to assess each modeling deliverable during scheduled validation sessions: four validation sessions were organised and allowed to introduce SysML/KAOS to VdM stakeholders and to obtain their feedback related to the constructed SysML/KAOS models. The improved readability was also confirmed after an evaluation was conducted among members of the FORMOSE project, within the framework of another case study [START_REF] Jeffrey | Modeling the Hybrid ERTMS/ETCS Level 3 Standard Using a Formal Requirements Engineering Approach[END_REF]. Of the fifteen or so surveyed members representing various academic2 and industrial3 partners, all found the readability of SysML/KAOS models much better than that of a B System specification.

The method also includes rules for obtaining a B System specification and the proof obligations required to guarantee consistency of goal refinements and accuracy of requirements with respect to environment constraints. For instance, proof obligations related to SysML/KAOS refinements allowed us to identify a missing goal in goal diagrams. Indeed, the first version of the goal diagram of Fig. 8.3a was not defining a goal to ensure that vehicles are driven according to road signs. Therefore, it was impossible to ensure that a vehicle in the tunnel would be driven out. Thus, trying to formally ensure root goal satisfaction allowed us to introduce the MoveVehicle goal assigned to agent VehicleDriver.

Discussion

Using SysML/KAOS, we have methodically built the formal refinement hierarchy and we have determined and formally expressed the safety invariants. The method bridges the gap between the system textual description and its B System specification. Table B.1 summarises the key characteristics related to the formal specification of the first four refinement levels. The proof obligations have been discharged using the Rodin tool extended with Atelier B provers [115] and SMT solvers [127]. The interactive proof was more required for level L3 because of the introduction of a distinction between the real and measured (by traffic sensors) views of traffic level. Indeed, this introduction required several adaptations and additions, of invariants and events, related for example to order in measurement acquisitions (enforced using controlled variables), sensor coverages and measurement defects (handled with degraded modes). Mashkoor et al. [START_REF] Mashkoor | Utilizing Event-B for domain engineering : a critical analysis[END_REF][START_REF] Mashkoor | Validation of formal specifications through transformation and animation[END_REF] advocate the use of animation, supported by tools, to assist validation of a formal specification with non-expert stakeholders. ProB [START_REF] Leuschel | ProB : A Model Checker for B[END_REF] and B-Motion Studio [START_REF] Ladenberger | Visualising Event-B models with B-Motion Studio[END_REF] are industrial-strength tools used to animate and validate a B System specification. They provide a way to define a high-level graphical representation of the states of the system. We used them to validate the formal specification with VdM stakeholders, in addition to graphical models constructed using the SysML/KAOS goal and domain modeling languages.

The validation by animation was performed following the VTA (Verify-Transform-Animate) framework [START_REF] Mashkoor | Validation of formal specifications through transformation and animation[END_REF]. The SysML/KAOS functional goal model provides the way to group requirements into observation levels (each observation level corresponds to a refinement level) as required by the VTA. The specification obtained from SysML/KAOS models, once completed with event bodies, has been verified with Rodin provers, transformed and animated. The formal model transformation has for instance consisted in (1) transforming abstract sets into concrete ones such as VEHICLE in {V1, V2, V3, V4, V5} and Tunnel in 0 . . 30, and (2) introducing events to specify changes in environment structure such as ctrl ChangeSpeed used to change a vehicle speed during animation. In addition, units were converted (KM to M for distances, hours (H) to seconds (S) for times, KM/H to M/S for speeds) to precisely observe the system behavior. The transformed model can be found in [START_REF]Specification of the road transportation system -Transformed Rodin Project[END_REF]. For example, Figure 8.6 is an overview of a validation session with VdM stakeholders performed using ProB and B-Motion Studio. The top view presents an illustration of the traffic state on the highway exit while the bottom view presents a history of events triggered to reach this state. The maximum number of vehicles allowed is set to 4 and vehicles are not moving (speeds are set to 0). Therefore, the traffic level is congestion (highway exit occupied at 40% or more and vehicle speeds less than 15 KM/H [START_REF]Functional Description of the Automatic Incident Detector (AID) System[END_REF]).

The formal validation allowed us to detect inconsistencies in textual documents that describe the road transportation system. For instance, we have detected that the four defined traffic levels were not sufficient [START_REF]Functional Description of the Automatic Incident Detector (AID) System[END_REF]: normal (highway exit occupation is lower than 40% and vehicle speeds are greater than 40 KM/H), dense (occupancy lower than 40% and vehicle speeds between 35 and 39 KM/H), slowed (occupancy greater than 40% and vehicle speeds between 25 and 34 KM/H) and congestion (occupancy greater than 40% and vehicle speeds lower than 15 KM/H). Indeed, the
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ProB model checker has determined traffic states that do not correspond to any of the defined traffic levels. This is for instance the case when occupancy is exactly 40% or when the speeds are between 15 and 24 KM/H. The observations, validated with VdM stakeholders, were reported to document authors from VdM and MTQ.

Lessons Learned, Improvements and Related Work

The SysML/KAOS method makes it possible to correctly model the functional and non-functional goals and to analyse the various ways of satisfying them in order to justify the choices made.

It took three months (September-December, 2018: 16 hours per week) to formally specify, verify and validate requirements of the VdM's road transportation system with SysML/KAOS. The development team was composed of six members (the authors of this paper). Four are academia stakeholders with good expertise in the formal specification of complex systems while the others are VdM stakeholders with expertise neither in requirements engineering nor in formal methods. The specification of the body of formal events and logical formulas and the formal assessment (verification and validation) of the specification can only be manual and therefore required time, in addition to experts in formal methods. But this is the price to pay to achieve a formal verification and validation of requirements.

From the textual description of the road transportation system [START_REF] Ville De | Annex 1 : Schematic view of the intervention area[END_REF][START_REF] Ville De | Final draft of the project to connect Duke and Nazareth Streets to the Ville-Marie highway[END_REF] and of the AID [START_REF]Functional Description of the Automatic Incident Detector (AID) System[END_REF], seven goal model refinement levels with a hundred functional and nonfunctional goals were defined [START_REF]Road Transportation System : Description of the Functional Goal Model[END_REF][START_REF]Road Transportation System : Description of the Non-Functional Goal Model[END_REF]. This allowed us to specify and ensure consistency of the high level requirements of twelve components: humans, hardware (like radar or thermal camera), software (like the traffic supervisor) and cyber-physical systems (like CGMU or AID). Furthermore, six domain models were constructed to formally specify the entities and constraints of the application domain required to ensure satisfaction of functional requirements [1]. At each deliverable release, a plenary meeting was held with VdM stakeholders to validate the work done, through semi-structured interviews, and assess the method contributions and progress. We noted the need of:

• A way to quantify the impact or contribution of a goal, in addition to qualifying its nature (positive or negative). This would, for example, allow to distinguish positive contributions of goals UseAID (goal diagram of Figure 8.3), UseVdMCamera and UseVdMRadar to non-functional requirement Cost [Sensor], since the operating costs are not exactly the same. The quantification could be done for example using conditional probabilities on the requirement satisficity: a value between -1 and 1 to represent the probability that the requirement will be satisfied (or not) knowing that the contribution goal is selected; the sign qualifies the contribution/impact. UsePMV cannot be removed because it is the only alternative when user does not have a smart device. This can only be reflected when the non-funtional goal is considered with specific conditions. In fact, a combined use of GPS platforms and PMVs is the most satisfactory alternative. • A way to refine contribution goals similar to that of Chung et al. [START_REF] Chung | Non-functional requirements in software engineering[END_REF] in order to allow the definition of abstract contribution goals and of sub-contribution goals with specific impacts or contributions. This will, for instance, allow the definition of a contribution goal useVdMSensors that will be refined by goals useVdMCamera and UseVdMRadar. • An obstacle modeling language, such as the one proposed by Lamsweerde in [139], that distinguishes countermeasures used to detect the occurrence of an obstacle from those used to circumvent it. • A tool support of the propagation of errors and inconsistencies detected when discharging proof obligations, during the formal verification step, to the corresponding SysML/KAOS models. • A tool support of the propagation of changes made within a model (SysM-L/KAOS or B System model) to the corresponding one following rules similar to those proposed in [START_REF] Jeffrey | Back Propagating B System Updates on SysML/KAOS Domain Models[END_REF] for additions performed within a B System model. This work is closely related with the one of Mashkoor et al. [START_REF] Mashkoor | Utilizing Event-B for domain engineering : a critical analysis[END_REF]. While in [START_REF] Mashkoor | Utilizing Event-B for domain engineering : a critical analysis[END_REF], the transportation system is directly specified in Event-B, the SysML/KAOS method uses goal models to represent system requirements, and, as advocated in [START_REF] Broy | Domain Modeling and Domain Engineering : Key Tasks in Requirements Engineering[END_REF], ontologies to represent domain entities and constraints. Ontologies give the structural part of the B System model while goal models provide the behavioral part. The use of SysML/KAOS modeling languages has several advantages, such as a better reusability, maintainability and readability of models. They also facilitate validations with stakeholders while providing and enforcing the refinement logic.

Conclusion and Future Work

This paper focusses on the use and assessment of the SysML/KAOS method for the high level modeling of functional and non-functional requirements, of domain properties and of safety invariants related to a road transportation system for the City of Montreal (VdM) (see [START_REF] Ville De | Annex 1 : Schematic view of the intervention area[END_REF][START_REF] Ville De | Final draft of the project to connect Duke and Nazareth Streets to the Ville-Marie highway[END_REF]). Translation rules, supported by tools, were used to obtain a formal specification containing the system structure and the skeleton of events. The Rodin platform [START_REF] Michael | Rigorous Development of Complex Fault-Tolerant Systems[END_REF] was used to verify the specification and ProB [START_REF] Leuschel | ProB : A Model Checker for B[END_REF] and B-Motion Studio [START_REF] Ladenberger | Visualising Event-B models with B-Motion Studio[END_REF] to animate and validate it. Compared to other requirements engineering methods such as KAOS [139] or i* [START_REF] Eric | Towards Modeling and Reasoning Support for Early-Phase Requirements Engineering[END_REF], SysML/KAOS fills the gap between the goal and domain models on one hand and B System (and Event-B) models on the other hand, while being supported by an open-source tool.

VdM stakeholders were involved to assess the modeling deliverables and process and expressed the wish to see the method used in other VdM transportation projects. SysML/KAOS has proven its usefulness and the proposed improvements will be taken into account in next releases of supporting tools.

Chapitre 9 Outillage de la méthode SysML/KAOS à travers la plateforme Openflexo

Résumé

Ce Chapitre introduit la fédération de modèles, une approche qui permet de lier un ensemble de modèles issus de paradigmes hétérogènes. Il décrit également comment elle a été exploitée afin de construire un outil, FORMOD, supportant la méthode SysML/KAOS. Dans le cadre de l'application de SysML/KAOS, FORMOD supporte la construction graphique des modèles de buts et de domaine tout en assurant la fédération de ces modèles avec une spécification B System évoluant au sein d'un projet de spécification système Atelier B. Ceci passe par la fédération des langages de modélisation des buts et du domaine ainsi que du langage de spécification des modèles B System de l'Atelier B, l'environnement de développement intégré édité par ClearSy [START_REF] Clearsy | Atelier B : B System[END_REF]. Le lecteur qui souhaite utiliser l'outil FOR-MOD est prié de se reférer à l'annexe C pour une description illustrée des différentes étapes qui constituent son scénario principal d'utilisation.

Cette implémentation a été rendue possible grâce à Openflexo, une plateforme open source qui implémente les principes de la fédération de modèles. Openflexo définit les mécanismes techniques nécessaires pour maintenir un certain niveau de cohérence entre les divers modèles d'une fédération.

Généralités sur la fédération de modèles Openflexo

La fédération de modèles est une approche qui permet de lier un ensemble de modèles issus de paradigmes hétérogènes [START_REF] Fahad Rafique Golra | Bridging the Gap Between Informal Requirements and Formal Specifications Using Model Federation[END_REF] à travers la définition de liens de correspondance et de traçabilité. Cette liaison est définie de façon à assurer une cohabitation souple des modèles : chaque modèle peut continuer d'évoluer dans son paradigme d'origine.

Une fédération de modèles est un ensemble de modèles définissant des liens d'interdépendance. Les liens établis dépendent des objectifs de la fédération. Toute action effectuée sur un modèle est succeptible d'impacter tout ou partie de la fédération [START_REF] Fahad Rafique Golra | Bridging the Gap Between Informal Requirements and Formal Specifications Using Model Federation[END_REF].

Openflexo [109] est une plateforme open source qui implémente les principes de la fédération de modèles tels que décrits dans [START_REF] Fahad Rafique Golra | Addressing modularity for heterogeneous multi-model systems using model federation[END_REF]. Elle définit les mécanismes techniques nécessaires pour maintenir un certain niveau de cohérence (niveau succeptible de varier suivant les objectifs de la fédération) entre les divers modèles d'une fédération. Elle a été utilisée afin de fédérer les divers langages intervenant au sein de la méthode SysML/KAOS. La figure 9.1, adaptée de [START_REF] Fahad Rafique Golra | Addressing modularity for heterogeneous multi-model systems using model federation[END_REF], illustre la mise en place d'une fédération de modèles sous Openflexo. Une fédération de modèles comprend généralement un ensemble de modèles conceptuels ou modèles virtuels, internes à Openflexo, et un ensemble de modèles technologiques ou modèles fédérés, externes à Openflexo [START_REF] Fahad Rafique Golra | Bridging the Gap Between Informal Requirements and Formal Specifications Using Model Federation[END_REF]. Chaque modèle technologique évolue dans un espace technologique dédié (langage et outil spécifiques). Par contre, tout modèle virtuel est construit sous Openflexo en utilisant le langage de modélisation de fédérations FML (Federation Modeling Language). Chaque modèle virtuel représente un langage ; les instanciations du modèle virtuel représentent des modèles conformes au langage défini. Au coeur du langage FML se situe la notion de concept (flexo concept). Un concept est une entité caractérisée par des propriétés (roles) et comportements (behaviors) spécifiques. Chaque concept peut hériter des propriétés et comportements d'autres concepts et peut également contenir des concepts propres. Le modèle virtuel est un concept spécial qui ne peut être contenu que dans un autre modèle virtuel.

Un adaptateur technologique est une bibliothèque qui définit les connexions entre le moteur d'exécution FML et un espace technologique particulier [START_REF] Fahad Rafique Golra | Bridging the Gap Between Informal Requirements and Formal Specifications Using Model Federation[END_REF]. Ces adaptateurs permettent l'interfaçage entre des modèles virtuels définis sous Openflexo et des modèles évoluant dans des espaces technologiques spécifiques. Un model slot est une entité permettant, au sein d'un modèle virtuel, d'accéder aux éléments définis dans un autre modèle virtuel ou dans un autre espace technologique. Le model slot accède à un espace technologique en utilisant l'adapteur technologique associé. En fonction de l'implémentation de l'adaptateur technologique, le model slot peut donner accès à tout ou partie du modèle qu'il représente. Un comportement spécifique est défini au sein du modèle de fédération afin de : (i) détecter les éléments du modèle de domaine ou de buts nouvellement introduits et, pour chacun, déclencher la création d'une instance du flexo concept de correspondance associé au type de l'élément, ce qui a pour conséquence de déclencher la définition de l'élément B System correspondant ; (ii) détecter les éléments du modèle de domaine ou de buts supprimés afin de déclencher la suppression des instances qui leurs sont associées. De 

Vue détaillée

Au total, 10 flexo concepts ont été définis afin de capturer les diverses entités sur lesquelles repose la modélisation du domaine et 17 flexo concepts ont été définis pour ce qui a trait à la modélisation des buts. La suite de ce Chapitre décrit la définition des principaux éléments sur lesquels repose FORMOD.

Modélisation du domaine

En ce qui concerne la modélisation du domaine, le modèle virtuel DomainModel implémente la classe DomainModel du métamodèle de la figure 5.3 et définit :

• Une propriété modelName ayant le rôle chaîne de caractères qui capture le nom du modèle de domaine. La cardinalité de cette propriété est définie de façon à garantir que tout modèle de domaine soit nommé.

• Une propriété parentDomainModel ayant le rôle instance de flexo concept qui permet de lier chaque modèle de domaine au modèle, dit parent, qu'il étend. Il est à noter que, par défaut, à la racine de toute hiérarchie de modèles de domaine se trouve un modèle appelé rootDomainModel qui définit les éléments de base présents au sein de tout modèle de domaine à l'exemple des types de données primaires (INTEGER, NATURAL, etc.). Chaque représentation est définie à travers un flexo concept de type graphique qui décrit les attributs graphiques de la forme. Ce flexo concept décrit également les comportements spécifiques attendus. Il s'agit par exemple du comportement attendu en cas de création, de suppression ou de glisser-déposer. Au total, 19 flexo concepts graphiques ont été définis afin d'assurer une représentation adéquate 

•

Modélisation des buts

Suivant le même principe que pour la modélisation du domaine, la modélisation des buts est implémentée à travers un modèle virtuel qui définit :

• Des propriétés permettant l'identification des diagrammes de buts et la construction des hiérarchies de diagrammes. La hiérarchisation repose sur une propriété parentModel qui, si instanciée, lie chaque diagramme de buts à son diagramme parent. Pour un diagramme donné, le diagramme parent est celui qui introduit son (ses) but(s) racine(s) [START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF]. • Un flexo concept FunctionalGoal pour les buts fonctionnels. Des propriétés y sont définies afin de lier chaque but fonctionnel élémentaire à l'agent auquel il est assigné. • Un flexo concept Refinement qui représente les raffinements entre buts. Des propriétés et comportements y sont définis afin de permettre l'identification et l'ajustement (i) du type de raffinement (cf Chapitre 1 : And, Or, Milestone et Data Refinement) et (ii) des buts abstrait et concret(s).

• Un flexo concept NonFunctionalGoal pour les buts non-fonctionnels, chaque but étant caractérisé par son type ainsi que par le sujet auquel il s'applique.

Il est à noter que le sujet désigne un concept ou un individu du modèle de domaine. • Des flexo concepts pour les buts de contributions, les niveaux de raffinement, les agents, etc. figure 9.5 -Formes graphiques associées aux principaux éléments d'une modélisation de buts Pour assurer une représentation adéquate des diagrammes de buts, 14 flexo concepts graphiques ont été définis. La figure 9.5 donne un aperçu des représentations graphiques associées aux principaux éléments d'une modélisation de buts. De la gauche vers la droite et du haut vers le bas, sont représentés : les buts fonctionnels (F-Goal) et non-fonctionnels (NF-Goal), les opérateurs de raffinement de buts (And, Or, Milestone (MLS) et Data Refinement (DTA), les buts de contributions (C-Goal) et les agents auxquels peuvent être assignés des buts fonctionnels élémentaires : agent externe au système (Env.Agent) et agent interne (Soft.Agent). Un but élémentaire affecté à un agent externe est une attente tandis qu'un but élémentaire affecté à un agent interne est une exigence.

Implémentation Openflexo de SysML/KAOS

Règles de fédération entre modèles SysML/KAOS et B System

Les règles permettant de fédérer les modèles SysML/KAOS et B System sont implémentées au sein d'un modèle virtuel de fédération. Ce modèle virtuel définit des model slots afin de permettre à chaque règle d'accéder (manipuler) tant aux modèles de domaine et de buts qu'aux projets Atelier B contenant la spécification B System. Il définit également :

• Un comportement de création assurant qu'à l'instanciation de la fédération, un contexte et une machine soient associés à chaque niveau de raffinement du modèle des buts fonctionnels. 

Conclusion

Cette thèse a consisté en l'extension, l'évaluation et l'outillage de la méthode d'ingénierie des exigences SysML/KAOS. Il a tout d'abord été question d'introduire un langage permettant de représenter le domaine d'un système dont les exigences sont capturées à travers le langage de modélisation des buts de SysML/KAOS. Il s'agit, de notre connaissance de la littérature, du premier langage de modélisation du domaine qui permet de distinguer les éléments statiques des éléments dynamiques, les changements d'états des éléments dynamiques, à mesure que le système satisfait ses exigences, pouvant être exprimés graphiquement au travers d'ASTDs [START_REF] Jeffrey | Modélisation du Domaine au Sein d'une Méthode Formelle d'Ingénierie des Exigences[END_REF]. Ceci permet de définir de façon non-ambigüe les aspects statique et dynamique de la partie structurelle de la spécification B System qui formalise les exigences du système. Le métamodèle du langage ainsi que les règles nécessaires pour l'établissement et le maintien des correspondances entre modèles de domaine et spécifications B System ont été spécifiés et vérifiés formellement en utilisant la méthode Event-B.

Couplé à la modélisation des buts SysML/KAOS, le langage a été évalué sur plusieurs études de cas d'envergure industrielle : spécification du protocole de transport ferrovier hybrid ERTMS/ETCS level 3 [START_REF] Jeffrey | Modeling the Hybrid ERTMS/ETCS Level 3 Standard Using a Formal Requirements Engineering Approach[END_REF], spécification du système de contrôle d'une chaudière à vapeur [START_REF] Jeffrey | Back Propagating B System Updates on SysML/KAOS Domain Models[END_REF], spécification d'un système de gestion du transport routier pour le compte de la Ville de Montréal, etc [START_REF] Tueno | The SysML/KAOS Domain Modeling Language (Tool and Case Studies)[END_REF]. La méthode ainsi définie permet la vérification formelle des exigences et facilite leur validation par des parties prenantes non spécialistes de méthodes formelles. Son passage à l'échelle est lié aux mécanismes de raffinement et de décomposition définis au sein des langages de modélisation de SysML/KAOS, étendus afin de permettre, à la suite de décompositions, la preuve formelle de la satisfaction des exigences et de la préservation des invariants. Toutefois, les tâches de spécification des formules logiques et du corps des évènements et de vérification et validation formelles nécessitent non seulement du temps, mais surtout l'implication d'experts en méthodes formelles. Il s'agit là du prix à payer pour des exigences formellement correctes.

Synthèse des contributions

La contribution majeure de ce travail de thèse réside dans la définition d'un langage de modélisation de domaine structuré, non ambigu et suffisamment expressif, supporté par un outil libre et compatible avec le langage de modélisation d'exigences de SysML/KAOS. La version initiale de ce langage (Chapitre 2), fondée sur OWL (Ontology Web Language) [START_REF] Sengupta | Web Ontology Language (OWL)[END_REF] et PLIB (Part Library) [112], a été ajustée au fil des études de cas (Chapitre 5).

Afin de permettre la génération automatique de la partie structurelle des spécifications B System d'exigences, des règles ont été définies. Ces règles ont également été formellement spécifiées et vérifiées afin de garantir des propriétés nécessaires liées à la criticité des systèmes considérés (Chapitre 3). Il s'agit notamment de la convergence, de la cohérence (vis-à-vis des invariants propres aux langages source et cible) et de l'isomorphisme.

Des règles ont également été définies et formellement vérifiées afin de maintenir l'adéquation, en cas d'ajout d'éléments, entre la partie structurelle d'une spécification B System et les modèles SysML/KAOS auxquels elle est associée (Chapitre 4).

Finalement, des mécanismes ont été définis afin de garantir formellement que chaque exigence SysML/KAOS affectée à un sous-système sera correctement satisfaite par ce dernier, dans la limite définie par les spécifications B System du système et des sous-systèmes (Chapitre 6).

Le langage de modélisation introduit et les règles ont été évalués, conjointement au langage de modélisation des buts, dans le cadre de la spécification formelle des exigences : (i) d'un protocole de transport ferroviaire hybrid ERTMS/ETCS level 3 [START_REF] Thai | The Hybrid ERTMS/ETCS Level 3 Case Study[END_REF] 

Menaces à la validité

Pour une meilleure analyse de l'utilité et de l'utilisabilité de la méthode formelle d'ingénierie des exigences proposée à l'issue de ce travail de thèse, il est nécessaire de l'évaluer sur d'avantage d'études de cas, d'échelles et de domaines plus divers. En effet, malgré la diversité des études de cas considérées dans le cadre de ce travail de thèse et ayant contribuées à affiner les méthode et langages proposés, il n'est pas possible de dire avec certitude que les résultats obtenus sontgénéralisables. Quelques facteurs contribuant à limiter la généralisabilité des résultats :

• Le nombre peu conséquent des parties prenantes : entre 6 (spécification formelle des exigences d'un système de transport urbain pour le compte de la Ville de Montréal) et 20 (spécification formelle des exigences du protocole de communication ferroviaire Saturn) ; • L'absence de séparation stricte entre les experts en charge respectivement (i) de modéliser les exigences du système, (ii) de modéliser le domaine et (iii) de formaliser et vérifier formellement les exigences ; • La faible diversité des domaines considérés : il s'est agit principalement du transport ferroviaire, de l'aéronautique, et du transport routier. Par ailleurs, la méthode requiert l'existence d'une description (textuelle, graphique, ...) du système considéré, comprenant des objectifs de haut niveau, ainsi que du domaine d'application, afin de permettre la spécification, la vérification ainsi que la validation formelle des exigences. Elle est donc difficilement exploitable, dans le cas de systèmes inexistants, sans une analyse préalable.

Perspectives

La spécification obtenue au travers de SysML/KAOS se situe dans l'espace des problèmes. En effet, elle se focalise sur la validation, au regard des besoins exprimés par les parties prenantes, et la vérification, au regard des propriétés du domaine et des contraintes de satisfaction, des exigences du système. Le comportement de l'environnement est en outre laissé non-déterministe, dans les limites imposées par les contraintes définies au sein des modèles de domaine. Bien entendu, se focaliser uniquement sur les exigences n'est pas suffisant. Il est nécessaire d'assurer la faisabilité d'un processus itératif englobant la gestion des exigences, la conception des architectures et le développement du système [108]. Ceci nécessite des liens entre les divers modèles associés à ces différentes phases. Il s'agit par exemple des liens de correspondance entre modèles SysML/KAOS et spécifications B System. Il s'agit également des liens de raffinement entre la spécification B System issue de la formalisation des exigences et la spécification, dans l'espace des solutions, qui intègre les choix de conception nécessaires à l'implémentation du système. Étudier l'existence, l'établissement et la préservation de ces liens constitue un prolongement des contributions de ce travail de thèse.

Conclusion

Une extension de ce travail de thèse se situe également dans la définition et l'outillage de mécanismes assurant la propagation des erreurs de preuve, d'une spécification B System, vers les modèles SysML/KAOS qui y sont associés. De tels mécanismes exploiteraient tant les liens de correspondance établis dans [START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF] que les études réalisées pour la propagation des ajouts d'éléments au sein d'une spécification B System [START_REF] Jeffrey | Back Propagating B System Updates on SysML/KAOS Domain Models[END_REF]. Il est à noter que la liste complète des liens de correspondance qui ont été définis est disponible à l'annexe B.

Une perspective plus pratique et industrielle réside dans l'évaluation de la méthode d'ingénierie des exigences définie sur une plus grande varieté d'études de cas afin de confirmer ou infirmer les observations rapportées dans cette thèse. 
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A.2 Definition of the Translation Rules

A.2.1 Informal Definition

In the following, we describe a set of rules that allow to obtain a formal specification from domain models associated with refinement levels of a SysML/KAOS goal model.

Table A.1 summarises the translation rules. It should be noted that o x designates the result of the translation of x. In addition, when used, qualifier abstract denotes "without parent". 

Generation of B System Components

Generation of B System Sets

Any concept that is not associated with another one through the parentConcept association, gives an abstract set (line 3 of Table A.1).

Any custom data set cds, defined through an enumeration (instance of Enumer-atedDataSet), gives a B System enumerated set. Otherwise, if cds is defined with a predicate P, then it gives a constant for which the typing axiom is the result of the translation of P. Finally, cds gives an abstract set if no typing predicate is provided.

Any default data set (instance of DefaultDataSet) is mapped directly to a B System default set: NATURAL, INTEGER, FLOAT, STRING or BOOL.

Generation of B System Constants

Any concept associated with another one through the parentConcept association, gives a constant typed as a subset of the B System element corresponding to the parent concept (line 4 of Table A.1).

Each relation having its isVariable property set to FALSE gives a B System constant (line 5 of Table A.1). The constant can be typed as a surjection, injection, etc. according to relation cardinalities [START_REF] Laleau | An Overview of a Method and Its Support Tool for Generating B Specifications from UML Notations[END_REF][START_REF] Snook | UML-B : Formal Modeling and Design Aided by UML[END_REF].

Similarly to relations, each attribute for which the isVariable property is set to FALSE gives a B System constant (line 6 of Table A.1). However, when the isFunctional property is set to TRUE, the constant type is defined as the set of functions between the B System element corresponding to the attribute domain and the one corresponding to the attribute range. Furthermore, when isFunctional is set to TRUE, the isTotal property is used to assert if the function is total (isTotal=TRUE) or partial (isTotal=FALSE).

Finally, each constant individual (resp. data value) gives a B System constant typed as an item of the correspondence of its concept (resp. data set) (lines 8 and 9 of Table A.1). In addition, each data function gives a B System constant typed as a function (line 13 of Table A.1).

Generation of B System Variables

A relation, a concept or an attribute, having its isVariable property set to TRUE gives a variable (Fig. A.2). For a concept, the variable represents the set of B System elements having this concept as type (line 7 of Table A.1). Thus, the fact that a variable concept CO is a subconcept of another variable concept PCO means that the set of elements that CO can contain, over its whole existence, is included in the set of elements that PCO can contain. However, it is possible in this approach that at some point, because of the variability of CO and PCO, an element present in CO is not The adjusted version of the domain modeling language considers a different approach in which the inclusion of a variable concept into another one implies that at any point, elements of the variable subconcept are elements of the variable parent concept.

For a relation or an attribute, the variable represents the set of pairs between individuals (in case of relation) or between individuals and data values (in case of attribute) defined through it (lines 5 and 6 of Table A.1).

In addition, each variable individual (resp. data value) gives a B System variable typed as an item of the correspondence of its concept (resp. data set) (lines 8 and 9 of Table A.1). Furthermore, a substitution is added to the initialisation event in order to define the constant individual to whom the variable must be initialised (association initialValue of the metamodel of Fig. 4.3).

Generation of B System Invariants and Properties

In this section, we are interested in translation rules between domain models and B System specifications that give invariants (instances of Invariant) or properties (instances of Property). Throughout this section, we will denote by logic formula (instance of LogicFormula) any invariant or property, knowing that a logic formula is a property when it involves only constant elements. Any other logic formula is an invariant. It should be noted that when the logic formula relates variables defined within the model and those defined within more abstract models, it is a gluing invariant.

When the isTransitive property of an instance of Relation re is set to TRUE, the logic formula (re ; re) ⊆ re must appear in the B System component corresponding to the domain model, knowing that ";" is the composition operator for relations (line 10 of Table A.1). For the isSymmetric property, the logic formula is (re -1 = re). For the isASymmetric property, the logic formula is (re -1 ∩ re) ⊆ id(dom(re)). For the isReflexive property, the logic formula is id(dom(re)) ⊆ re and for the isIrreflexive property, the logic formula is (id(dom(re)) ∩ re = ∅), knowing that "id" is the identity function and "dom" is an operator that gives the domain of a relation ("ran" is the operator that gives the range).

A domain cardinality (respectively range cardinality) associated with a relation re, with bounds minCardinality and maxCardinality (maxCardinality ≥ 0), gives the logic formula ∀x.(x ∈ ran(re) ⇒ card(re -1 [{x}]) ∈ minCardinality..maxCardinality) (respectively ∀x.(x ∈ dom(re) ⇒ card(re[{x}]) ∈ minCardinality..maxCardinality)).

When minCardinality = maxCardinality, then the logic formula is

∀x.(x ∈ ran(re) ⇒ card(re -1 [{x}]) = minCardinality) (respectively ∀x.(x ∈ dom(re) ⇒ card(re[{x}]) = minCardinality)).
Finally, when maxCardinality = ∞, then the logic formula is ∀x.

(x ∈ ran(re) ⇒ card(re -1 [{x}]) ≥ minCardinality) (respectively ∀x.(x ∈ dom(re) ⇒ card(re[{x}]) ≥ minCardinality)).
Relation maplets (respectively attribute maplets) associated with a relation (respectively attribute) RE give rise, in the case where the isVariable property of RE is set to FALSE, to property RE = {a 1 → i 1 , a 2 → i 2 , ..., a j → i j , ..., a n → i n }, where a j designates the constant individual linked to the j-th relation maplet (respectively attribute maplet), through association antecedent, and i j designates the constant A.2. Definition of the Translation Rules individual (respectively data value) linked through association image (lines 11 and 12 of Table A.1). When the isVariable property of RE is set to TRUE, it is the substitution RE : = {a 1 → i 1 , a 2 → i 2 , ..., a j → i j , ..., a n → i n } which is rather defined in the INITIALISATION clause of the B System component.

Finally, any predicate gives a B System logic formula. When the predicate is an instance of GluingInvariant, the logic formula is a B System gluing invariant. 

A.2.2 Event-B Specification

Informal Definition

The work done on case studies [START_REF] Jeffrey | Modeling the Hybrid ERTMS/ETCS Level 3 Standard Using a Formal Requirements Engineering Approach[END_REF][START_REF] Tueno | The SysML/KAOS Domain Modeling Language (Tool and Case Studies)[END_REF] reveals that, very often, new elements need to be added to the structural part of the formal specification. These additions may be required during the specification of the body of events or during the verification and validation of the formal model (e.g. to define an invariant or a theorem required to discharge a proof obligation). These lead us to the definition of a set of rules allowing the back propagation, within the domain model, of the new elements introduced in the structural part of the B System specification.

Table A.2 summarises the most relevant back propagation rules. Each rule defines its inputs (elements added to the B System specification) and constraints that each input must fulfill. It also defines its outputs (elements introduced within domain models as a result of the application of the rule) and their respective constraints. It should be noted that for an element b x of the B System specification, x designates the domain model element corresponding to b x. In addition, when used, qualifier abstract denotes "without parent". The addition of a non typing logic formula (logic formula that does not contribute to the definition of the type of a formal element) in the B System specification is propagated through the definition of the same formula in the corresponding domain model, since both languages use first-order logic notations. This back propagation is limited to a syntactic translation.

In what follows, we provide a description of some relevant rules. These rules have been chosen to make explicit the formalism used in Table A.2.

Addition of Abstract Sets

An abstract set b CO (instance of class AbstractSet of the metamodel of Fig. 4.1) introduced in the B System specification gives a concept CO (instance of class Concept of the metamodel of Fig. 4.3) having its property isVariable set to FALSE (line 1 of Table A.2). If b CO is set as the superset of a variable x CO, then it is possible to dynamically add/remove individuals from concept CO: thus, property isVariable of CO must be set to TRUE (line 2 of Table A.2).

Addition of Constants or Variables typed as relations

The introduction in the B System specification of a constant typed as a relation can be back propagated, within the domain model, with the definition of a constant attribute (instance of class Attribute) or relation (instance of class Relation): (1) if the range of the constant is the correspondence of a data set (instance of class DataSet), then the element added within the domain model must be an attribute (line 3 of Table A.2); (2) however, if the range is the correspondence of a concept (instance of class Concept), then the element added within the domain model must be a relation (line 4 of Table A.2). When the B System relation is a variable, then property isVariable of the relation or attribute introduced in the domain model is set to true.

Addition of Subsets of Correspondences of concepts

A constant b CO introduced in the B System specification and defined as a subset of b PCO, the correspondent of a concept PCO, gives a concept CO having PCO as its parent concept (association parentConcept of the metamodel of Fig. 4.3) (line 5 of Table A.2). If b CO is set as the superset of a variable x CO, then it is possible to dynamically add/remove individuals from concept CO: thus, property isVariable of CO must be set to TRUE (line 2 of Table A.2). 

Addition of Set Items

Description

Concepts (instances of Concept) designate collections of individuals (instances of Individual) with common properties. A concept can be declared variable (isVari-able=TRUE) when the set of its individuals can be updated by adding or deleting individuals. Otherwise, it is considered to be constant (isVariable=FALSE). In addition, a concept can be an enumeration (isEnumeration=TRUE) if all its individuals are B.2. Event-B Specification of the Adjusted SysML/KAOS Domain Modeling Language defined within the domain model. It should be noted that an individual can be variable (isVariable=TRUE) if it is introduced to represent a system state variable: it can represent different individuals at different system states. Otherwise, it is constant (isVariable=FALSE).

Associations (instances of Association) are concepts used to capture links between concepts. Maplet individuals (instances of MapletIndividual) capture associations between individuals through associations. Each named maplet individual can reference an antecedent and an image. When the maplet individual is unnamed, the antecedent and the image must be specified. The variability of an association is related to the ability to add or remove maplets. Each domain cardinality (instance of DomainCardinality) makes it possible to define, for an association re, the minimum and maximum limits of the number of individuals of the domain of re that can be put in relation with one individual of the range of re. In addition, the range cardinality (instance of RangeCardinality)) of re is used to define similar bounds for the number of individuals of the range of re.

Logical formulas (instances of LogicalFormula) are used to represent constraints between different elements of the domain model.Gluing invariants (instances of GluingInvariant), specialisations of predicates, are used to represent links between data defined within a domain model and those appearing in more abstract domain models, transitively linked to it through the parent association. Defined concepts (instances of DefinedConcept) are concepts built on existing elements of the domain model using logical formulas.

Additional Constraints

This section defines the most relevant constraints that are required to preserve the formal semantics of the domain modeling language and to ensure an unambiguous transformation of any domain model to a B System specification. The constraints are defined using the B syntax [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF]. For the complete list of constraints, please refer to invariants defined within the specification of Section B.2.2. ∩ Individual isVariable 

• x ∈ Concept \ Association ⇒ Individual individualOf Concept -1 [{x}] ∩ MapletIndividual = ∅: if concept x is not
= {1 → Inclusion OP} ∧ o pxx ∈ ran(Concept corresp Set) ∧ (2 → o pxx) ∈ LogicFormula involves Sets(o lg) ) ⇒ ( Concept corresp Constant -1 (o xx) ∈ dom(Concept parentConcept Concept) ∧ ( Concept corresp Set -1 (o pxx) = Concept parentConcept Concept(Concept corresp Constant -1 (o xx)) ∨ (∃o lg i, o pxx v•( o lg i ∈ Invariant ∧ o pxx v ∈ ran(Concept corresp Variable) ∧ Concept corresp Variable -1 (o pxx v) = Concept parentConcept Concept(Concept corresp Constant -1 (o xx)) ∧ Concept corresp Set -1 (o pxx) ∈ ran(Concept parentConcept Concept) ∧ LogicFormula uses Operators(o lg i) = {1 → Inclusion OP} ∧ (1 → o lg i) ∈ Constant isInvolvedIn LogicFormulas(o xx) ∧ (2 → o pxx v) ∈ Invariant involves Variables(o lg i) ) ) ) ) ) Concept corresp
= {1 → Inclusion OP} ∧ o pxx ∈ ran(Concept corresp Constant) ∧ (2 → o lg) ∈ Constant isInvolvedIn LogicFormulas(o pxx) ) ⇒ ( Concept corresp Constant -1 (o xx) ∈ dom(Concept parentConcept Concept) ∧ ( Concept corresp Constant -1 (o pxx) = Concept parentConcept Concept(Concept corresp Constant -1 (o xx)) ∨ (∃o lg i, o pxx v•( o lg i ∈ Invariant ∧ o pxx v ∈ ran(Concept corresp Variable) ∧ Concept corresp Variable -1 (o pxx v) = Concept parentConcept Concept(Concept corresp Constant -1 (o xx)) ∧ Concept corresp Constant -1 (o pxx) ∈ ran(Concept parentConcept Concept) ∧ LogicFormula uses Operators(o lg i) = {1 → Inclusion OP} ∧ (1 → o lg i) ∈ Constant isInvolvedIn LogicFormulas(o xx) ∧ (2 → o pxx v) ∈ Invariant involves Variables(o lg i) ) ) ) ) ) ∧ Concept corresp Constant -1 (o pxx) ∈ cls(Concept parentConcept Concept)[{Concept corresp Variable -1 (o pxx v)}] Variable included in an abstract set isom inv1 2 3: ∀o xx, o pxx, o lg•( ( o xx ∈ ran(Concept corresp Variable) ∧ o lg = Variable typing Invariant(o xx) ∧ LogicFormula uses Operators(o lg) = {1 → Inclusion OP} ∧ o pxx ∈ ran(Concept corresp Set) ∧ (2 → o pxx) ∈ LogicFormula involves Sets(o lg) ) ⇒ ( Concept corresp Variable -1 (o xx) ∈ dom(Concept parentConcept Concept) ∧ Concept corresp Set -1 (o pxx) = Concept parentConcept Concept(Concept corresp Variable -1 (o xx)) ) ) Variable included
o AS ∈ Constant ∪ Variable {o CO1, o CO2} ⊆ (Set ∪ Constant ∪ Variable) T o AS IF Concept isVariable(CO1) = FALSE ∧ Concept isVariable(CO2) = FALSE THEN T o AS ∈ Constant ELSE T o AS ∈ Variable IF {ra, ri, da, di} = {1} THEN LogicFormula: T o AS = o CO1 o CO2 ELSE IF {ra, ri, da} = {1} THEN LogicFormula: T o AS = o CO1 o CO2 ELSE IF {ra, ri, di} = {1} THEN LogicFormula: T o AS = o CO1 → → o CO2 ELSE IF {ra, di} = {1} THEN LogicFormula: T o AS = o CO1 → → o CO2 ELSE IF {ra, da} = {1} THEN LogicFormula: T o AS = o CO1 o CO2 ELSE IF {ra, ri} = {1} THEN LogicFormula: T o AS = o CO1 -→ o CO2 ELSE IF ra = 1 THEN LogicFormula: T o AS = o CO1 → o CO2 ELSE LogicFormula: T o AS = o CO1 ↔ o CO2 ∧∀x.(x ∈ CO2 ⇒ card(o RE -1 [{x}]) ∈ di..da) ∧∀x.(x ∈ CO1 ⇒ card(o RE[{x}]) ∈ ri..ra) LogicFormula: o AS ∈ T o AS 11 
Ind ∈ MapletIndividual AS = Individual individualOf Concept(Ind) 4 o AS ∈ Constant ∪ Variable Ind ∈ dom(MapletIndividual antecedent Individual) ⇒ Ant = MapletIndividual antecedent Individual(Ind) o Ant ∈ Constant ∪ Variable Ind ∈ dom(MapletIndividual image Individual) ⇒ Im = MapletIndividual image Individual(Ind) o Im ∈ Constant ∪ Variable {PPCO1, PPCO2} ⊆ Concept PPCO1 ∈ (closure1(Concept parent Concept))[{Association domain Concept(AS)}] PPCO2 ∈ (closure1(Concept parent Concept))[{MapletIndividual range Individual(AS)}] {o PPCO1, o PPCO2} ⊆ Set ∪ Constant o Ind IF Ind ∈ dom(Individual

B.3. Definition of the Adjusted Translation Rules

Each logical formula is translated with the definition of a B System logic formula corresponding to its assertion. Since both languages use first-order logic notations, the translation is limited to a syntactic rewriting. 

B.3.2 Event-B Specification

grd3: AS ∈ dom(Concept corresp Variable) ⇒ o AS v = Concept corresp Variable(AS) grd4: AS / ∈ (dom(Concept corresp Constant) ∪ dom(Concept corresp Variable)) ⇒ ( (Concept isVariable(AS) = FALSE ⇒ ((Constant Set \ Constant = ∅) ∧ (o AS c ∈ Constant Set \ Constant))) ∧ (Concept isVariable(AS) = TRUE ⇒ ((Variable Set \ Variable = ∅) ∧ (o AS v ∈ Variable Set \ Variable))) ) grd5: CO1 = Association domain Concept(AS) grd6: CO2 = Association range Concept(AS) grd7: (Concept isVariable(CO1) = FALSE ∧ Concept isVariable(CO2) = FALSE) ⇒ ((Constant Set \ Constant = ∅) ∧ (T AS c ∈ Constant Set \ Constant)) grd8: (Concept isVariable(CO1) = TRUE ∨ Concept isVariable(CO2) = TRUE) ⇒ ((Variable Set \ Variable = ∅) ∧ (T AS v ∈ Variable Set \ Variable)) grd9: dom(Concept corresp Set) ∪ dom(Concept corresp Constant) ∪ dom(Concept corresp Variable) = ∅ grd10: {CO1, CO2} ⊆ dom(Concept corresp Set) ∪ dom(Concept corresp Constant) ∪ dom(Concept corresp Variable) grd11: o CO1 s ∈ Set ∧ (CO1 ∈ dom(Concept corresp Set) ⇒ o CO1 s = Concept corresp Set(CO1)) grd12: o CO1 c ∈ Constant ∧ (CO1 ∈ dom(Concept corresp Constant) ⇒ o CO1 c = Concept corresp Constant(CO1)) grd13: o CO1 v ∈ Variable ∧ (CO1 ∈ dom(Concept corresp Variable) ⇒ o CO1 v = Concept corresp Variable(CO1)) grd14: o CO2 s ∈ Set ∧ (CO2 ∈ dom(Concept corresp Set) ⇒ o CO2 s = Concept corresp Set( CO2 
: = Constant ∪ ({TRUE → {T AS c}, FALSE → ∅}(bool(Concept isVariable(CO1) = FALSE ∧ Concept isVariable(CO2) = FALSE)))∪({TRUE → ({TRUE → {o AS c}, FALSE → ∅}(bool(Concept isVariable(AS) = FALSE))), FALSE → ∅}(bool(AS / ∈ (dom(Concept corresp Constant) ∪ dom(Concept corresp Variable))))) act2: Variable : = Variable ∪ ({TRUE → ∅, FALSE → {T AS v}}(bool(Concept isVariable(CO1) = FALSE ∧ Concept isVariable(CO2) = FALSE)))∪({TRUE → ({TRUE → ∅, FALSE → {o AS v}}(bool(Concept isVariable(AS) = FALSE))),
(CO1) = FALSE ∧ Concept isVariable(CO2) = FALSE))) act6: Association Type Variable : = Association Type Variable ∪ ({TRUE → ∅, FALSE → {AS → T AS v}}(bool(Concept isVariable(CO1) = FALSE ∧ Concept isVariable(CO2) = FALSE))) act7: Constant de f inedIn Component : = Constant de f inedIn Component∪({TRUE → {T AS c → o DM}, FALSE → ∅}(bool(Concept isVariable(CO1) = FALSE∧Concept isVariable(CO2) = FALSE)))∪({TRUE → ({TRUE → {o AS c → o DM}, FALSE → ∅}(bool(Concept isVariable(AS) = FALSE))), FALSE → ∅}(bool(AS / ∈ (dom(Concept corresp Constant) ∪ dom(Concept corresp Variable))))) act8: Variable de f inedIn Component : = Variable de f inedIn Component ∪ ({TRUE → ∅, FALSE → {T AS v → o DM}}(bool(Concept isVariable(CO1) = FALSE ∧ Concept isVariable(CO2) = FALSE))) ∪ ({TRUE → ({TRUE → ∅, FALSE → {o AS v → o DM}}(bool(Concept isVariable(AS) = FALSE))), FALSE → 
))))) ∪ ({TRUE → ({TRUE → ({TRUE → {o CO1 c → Constant isInvolvedIn LogicFormulas(o CO1 c)∪({1, 2}×{o lg type})}, FALSE → {o CO1 c → Constant isInvolvedIn LogicFormulas(o CO1 c) ∪ {1 → o lg type}, o CO2 c → Constant isInvolvedIn - LogicFormulas(o CO2 c)∪{2 → o lg type}}}(bool(CO1 = CO2))), FALSE → {o CO1 c → Constant isInvolvedIn - LogicFormulas(o CO1 c) ∪ {1 → o lg type}}}(bool(CO2 ∈ dom(Concept corresp Constant)))), FALSE → ({TRUE → {o CO2 c → Constant isInvolvedIn LogicFormulas(o CO2 c) ∪ {2 → o lg type}}, FALSE → ∅}(bool(CO2 ∈ dom(Concept corresp Constant))))}(bool(CO1 ∈ dom(Concept corresp Constant)))) ) act16: Invariant involves Variables : = Invariant involves Variables ∪ ({TRUE → ({TRUE → ∅, FALSE → {o lg item → {1 → o AS v}}}(bool(Concept isVariable(AS) = FALSE))), FALSE → { o lg item → {1 → o AS v, 2 → T AS v}, o lg type → ({1 → T AS v} ∪({TRUE → {2 → o CO1 v}, FALSE → ∅}(bool(CO1 ∈ dom(Concept corresp Variable)))) ∪({TRUE → {3 → o CO2 v}, FALSE → ∅}(bool(CO2 ∈ dom(Concept corresp - Variable)))) ) }}(bool(Concept isVariable(CO1) = FALSE ∧ Concept isVariable(CO2) = FALSE))) act17 
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 134 Figure 3.4 -Metamodel of the B System specification language

Figure 4 .

 4 Figure 4.1 is a metamodel of the B System language restricted to concepts that are relevant to us. A B System specification consists of components (instances of Component). Each component can be either a system or a refinement and it may define static or dynamic elements. A refinement is a component which refines another one in order to access the elements defined in it and to reuse them for new constructions. Constants, abstract and enumerated sets, and their properties, constitute the static part. The dynamic part includes the representation of the system state using variables constrained through invariants and initialised through initialisation actions. Properties and invariants can be categorised as instances of LogicFormula. Variables can be involved only in invariants. In our case, it is sufficient
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 335 Figure 3.5 -Structure of the Event-B specification

Figure 3 .

 3 5 represents the structure of the whole Event-B specification. This specification can only be split into two abstraction levels because all the translation rules use the class LogicFormula, except those related to the class DomainModel. The first machine, Ontologies BSystem specs translation, contains the rules for the translation of instances of DomainModel into instances of Component. The other rules are defined in the machine Ontologies BSystem specs translation ref 1.
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 6 Re f inement re f ines Component ∈ Re f inement Component inv0 7: ∀xx, px•( ( xx ∈ dom(DomainModel parent DomainModel) ∧ px = DomainModel parent DomainModel(xx) ∧ px ∈ dom(DomainModel corresp Component) ∧ xx / ∈ dom(DomainModel corresp Component) ) ⇒ DomainModel corresp Component(px) / ∈ ran(Re f inement re f ines Component) ) Event domain model with parent to component convergent = any DM PDM o DM where grd0: dom(DomainModel parent DomainModel) \ dom(DomainModel corresp Component) = ∅ grd1: DM ∈ dom(DomainModel parent DomainModel) \ dom(DomainModel corresp Component) grd2: dom(DomainModel corresp Component) = ∅ grd3: PDM ∈ dom(DomainModel corresp Component) grd4: DomainModel parent DomainModel(DM) = PDM 53 3.4. Translation Rules grd5: Component Set \ Component = ∅ grd6: o DM ∈ Component Set \ Component then act1: Re f inement : = Re f inement ∪ {o DM} act2: Component : = Component ∪ {o DM} act3: Re f inement re f ines Component(o DM) : = DomainModel corresp Component(PDM) act4: DomainModel corresp Component(DM) : = o DM END END

Event

  concept with parent to constant 1 convergent = any CO o CO PCO o lg o PCO where grd1: CO ∈ dom(Concept parentConcept Concept) \ dom(Concept corresp Constant) grd2: PCO ∈ dom(Concept corresp AbstractSet) grd3: Concept parentConcept Concept(CO) = PCO grd4: Concept de f inedIn DomainModel(CO) ∈ dom(DomainModel corresp Component) grd5: o CO ∈ Constant Set \ Constant grd6: o lg ∈ LogicFormula Set \ LogicFormula grd7: o PCO = Concept corresp AbstractSet(PCO) then act1: Constant : = Constant ∪ {o CO} act2: Concept corresp Constant(CO) : = o CO act3: Constant de f inedIn Component(o CO) : = DomainModel corresp Component( Concept de f inedIn DomainModel(CO)) act4: Property : = Property ∪ {o lg} act5: LogicFormula : = LogicFormula ∪ {o lg} act6: LogicFormula uses Operators(o lg) : = {1 → Inclusion OP} act7: Constant isInvolvedIn LogicFormulas(o CO) : = {1 → o lg}

3. 4 .

 4 Translation Rules act8: LogicFormula involves Sets(o lg) : = {2 → o PCO} act9: Constant typing Property(o CO) : = o lg

3. 5 .

 5 Discussion and Experience

inv0 8 : 9 :

 89 For each domain model pxx, parent of a domain model xx, when xx and pxx will be translated, then the correspondence of xx will refine the correspondence of pxx : ∀xx, pxx•( (xx ∈ dom(DomainModel parent DomainModel) ∧ pxx = DomainModel parent DomainModel(xx) ∧{xx, pxx} ⊆ dom(DomainModel corresp Component)) ⇒(DomainModel corresp Component(xx) ∈ dom(Re f inement re f ines Component) ∧Re f inement re f ines Component(DomainModel corresp Component(xx)) = DomainModel corresp Component(pxx)) ) Its dual version is defined by inv0 For each component o xx, which refines a component o pxx, if o xx and o pxx are introduced by translation rules, then the domain model corresponding to o pxx is the parent of the domain model corresponding to o xx: ∀o xx, o pxx•( (o xx ∈ dom(Re f inement re f ines Component) ∧ o pxx = Re f inement re f ines Component(o xx) ∧{o xx, o pxx} ⊆ ran(DomainModel corresp Component)) ⇒(DomainModel corresp Component -1 (o xx) ∈ dom(DomainModel parent DomainModel) ∧DomainModel parent DomainModel(DomainModel corresp Component -1 (o xx)) = DomainModel corresp Component -1 (o pxx)) )

inv0 10 :

 10 ∀xx, pxx•( (xx ∈ dom(DomainModel parent DomainModel) ∧ pxx = DomainModel parent DomainModel(xx) ∧ pxx / ∈ dom(DomainModel corresp Component)) ⇒ xx / ∈ dom(DomainModel corresp Component) ) inv0 11: ∀o xx, o pxx•( (o xx ∈ dom(Re f inement re f ines Component) ∧ o pxx = Re f inement re f ines Component(o xx) ∧ o pxx / ∈ ran(DomainModel corresp Component)) ⇒ o xx / ∈ ran(DomainModel corresp Component) )

  DomainModel \ (dom(DomainModel corresp Component) ∪ dom(DomainModel parent DomainModel)) = ∅ ∧ dom(DomainModel parent DomainModel) \ dom(DomainModel corresp Component) = ∅ ⇔ DomainModel ⊆ (dom(DomainModel corresp Component) ∪ dom(DomainModel parent DomainModel)) ∧ dom(DomainModel parent DomainModel) ⊆ dom(DomainModel corresp Component) ⇔ DomainModel ⊆ dom(DomainModel corresp Component) ⇔ DomainModel = dom(DomainModel corresp Component) because dom(DomainModel corresp Component) ⊆ DomainModel
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 41 Figure 4.1 -Excerpt from the metamodel of the B System specification language

Figure 4 . 2 -

 42 Figure 4.2 -Excerpt from the steam-boiler control system goal diagram

Figure 4 . 3 -

 43 Figure 4.3 -Excerpt from the metamodel associated with the SysML/KAOS domain modeling language

Figure 6 .

 6 Figure 6.5 represents the SysML/KAOS domain model associated with the root level of the goal diagram of Fig. 6.4. For readability purposes, we have decided to hide the representation of optional properties such as isTransitive or isFunctional. The steam-boiler entity is modeled as an instance of Concept named SteamBoiler.As in the case study, adding or deleting a steam-boiler is not considered, the property isVariable of SteamBoiler is set to false. The concept SteamBoiler has one individual named SB, representing the steam-boiler under the supervision of the system. The operating mode is modeled as an instance of Attribute named operatingMode, having SteamBoiler as domain, and as range, an instance of Enu-meratedDataSet containing two data values (normal and rescue). The isVariable property of operatingMode is set to true, since it is possible to dynamically change
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 44 Figure 4.4steam boiler controller domain model: ontology associated with the root level of the goal diagram of Fig. 6.4
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 45 Figure 4.5 -Excerpt of the B System specification obtained from the domain model of Fig. 6.5
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 4644 Figure 4.6 -Excerpt of the B System specification obtained from the root level of the goal diagram of Fig. 6.4

Rule 1 -

 1 Addition of Abstract Sets Description: back propagation of the addition of an abstract set in the B System specification AbstractSet: b CO gives rise to Concept: d CO Constraint 1: d CO is not associated to a parent concept Constraint 2: property isVariable of d CO is set to FALSE An abstract set b CO (instance of class AbstractSet of the metamodel of Fig. 4.1) introduced in the B System specification gives a concept d CO (instance of class Concept of the metamodel of Fig. 4.3) having its property isVariable set to FALSE.

4. 3 .

 3 Back Propagation of New B System Elements Into Domain Models Rule 2 -Addition of Constants or Variables Typed as Relations Description: back propagation of the addition of a constant relation in the B System specification Constant: b RE Property: b RE ∈ b CO1 ↔ b CO2 (resp. b RE ∈ b CO1 ↔ b DS) a Constraint 1: b CO1 is the correspondence of a concept (instance of class Concept) d CO1 Constraint 2: b CO2 (resp. b DS) is the correspondence of a concept d CO2 (resp. data set (instance of class DataSet) d DS) a. the type of b RE can be more constrained ( →, , → →, etc.) gives rise to Relation (resp. Attribute): d RE a Constraint 1: the domain of d RE is d CO1 Constraint 2: the range of d RE is d CO2 (resp. d DS) Constraint 3: property isVariable of d RE is set to FALSE a. properties of d RE are set according to the type of b RE ( →, etc.) The introduction in the B System specification of a constant b RE typed as a relation can be back propagated, within the domain model, with the definition of a constant attribute (instance of class Attribute) or relation (instance of class Relation) d RE: (1) if the range of b RE is the correspondence of a data set (instance of class DataSet), then d RE must be an attribute; (2) however, if the range of b RE is the correspondence of a concept (instance of class Concept), then d RE must be a relation. For instance, the addition of constant equipmentSteamBoiler ∈ Equipment → SteamBoiler, to link an equipment (individual of concept Equipment introduced in A.3.1) to its steam-boiler, is back propagated with the definition of a relation equipmentSteamBoiler between concepts Equipment and SteamBoiler.

4. 3 .

 3 Back Propagation of New B System Elements Into Domain Models Rule 3 -Addition of Constants or Variables, Subsets of Correspondences of Concepts Description: back propagation of the addition of a constant (resp. variable) typed as a subset of the correspondence of a concept Constant (resp. Variable): b CO Property (resp. Invariant): b CO ⊆ b PCO Constraint: b PCO is the correspondence of a concept d PCO gives rise to Concept: d CO Constraint 1: d CO is associated to d PCO with association parentConcept Constraint 2: property isVariable of d CO is set to FALSE (resp. TRUE) A constant b CO introduced in the B System specification and defined as a subset of b PCO, the correspondent of a concept d PCO, gives a concept d CO having d PCO as its parent concept (association parentConcept of the metamodel of Fig. 4.3).

Rule 4 -

 4 Addition of Set Items Description: back propagation of the addition of a set item in an enumerated set SetItem: b elt Constraint 1: b elt is an item of set b ES Constraint 2: b ES is the correspondence of an enumerated data set d ES gives rise to DataValue: d elt Constraint: d elt is defined as an element of d ES An item b elt (instance of class SetItem of the metamodel of Fig. 4.1) added to a set b ES gives a data value d elt (instance of class DataValue of the metamodel of Fig. 4.3) linked to the enumerated data set corresponding to b ES with association element.

Event

  constant subset concept 1 convergent = any d CO b CO d PCO b lg b PCO where grd1: b CO ∈ dom(Constant typing Property) \ ran(Concept corresp Constant) grd2: b lg = Constant typing Property(b CO) grd3: LogicFormula uses Operators(b lg) = {1 → Inclusion OP} grd4: (2 → b PCO) ∈ LogicFormula involves Sets(b lg) grd5: b PCO ∈ ran(Concept corresp AbstractSet) grd6: d PCO = Concept corresp AbstractSet -1 (b PCO) grd7: d CO ∈ Concept Set \ Concept grd8: Constant de f inedIn Component(b CO) ∈ ran(DomainModel corresp Component) then act1: Concept : = Concept ∪ {d CO} act2: Concept corresp Constant(d CO) : = b CO act3: Concept parentConcept Concept(d CO) : = d PCO act4: Concept isVariable(d CO) : = FALSE act5: Concept de f inedIn DomainModel(d CO) : = DomainModel corresp Component -1 (Constantde f inedIn Component(b CO)) END

For

  each constant b xx, typed by a property b lg which defines b xx as a subset of a constant b pxx: (1) b lg is an inclusion predicate: LogicFormula uses Operators(b lg) = {1 → Inclusion OP}; (2) b lg types b xx: b lg = Constant typing Property(b xx); (3) b lg involves b pxx as second operand: (2 → b pxx) ∈ LogicFormula involves Sets(b lg) the correspondence of b pxx in the domain model is the parent concept of the correspondence of b xx:
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 47 Figure 4.7 -Overview of the specification process
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 51 Figure 5.1 -Excerpt from the Saturn protocol goal diagram

Figure 5 . 2 -

 52 Figure 5.2 -Saturn 0: root level ontology

Figure 5 .

 5 Figure 5.2 (a) is an attempt to represent the domain model associated with the root level of the goal diagram of Fig.5.1 using the SysML/KAOS domain modeling language previously described. It is illustrated using the syntax proposed by the SysML/KAOS domain modeling tool[START_REF] Jeffrey | SysML/KAOS Domain Model Parser[END_REF]. For readability purposes, we have decided to hide the representation of optional characteristics. The type of input data is

Figure 5 .

 5 Figure 5.3 represents the revised SysML/KAOS domain metamodel. Major updates were made within the elements in pink. Classes Concept and DataSet have been merged into class Concept. In addition, classes Individual and DataValue have been merged into class Individual.A concept can now be an enumeration (isEnumeration=TRUE) if all its individuals are defined within the domain model. An individual can be variable (isVariable=TRUE) if it is introduced to represent a system state variable: it can represent different individuals at different system states. Otherwise, it is constant (isVariable=FALSE).Associations (instances of Association) are concepts used to capture links between concepts. Class Association is used to merge classes Relation and Attribute. Maplet individuals (instances of MapletIndividual) capture associations between individuals. Each named maplet individual can reference an antecedent and an image. When the maplet individual is unnamed, the antecedent and the image must be specified. Class LogicalFormula replaces class Predicate to represent constraints between domain model elements. A defined concept (instance of class DefinedConcept) is a concept for which the type is provided by a logical formula.Additional constraints are required to preserve the formal semantics of the domain modeling language and to ensure an unambiguous transformation of any domain model to a B System specification. The constraints are fully defined in annex B using the B syntax[START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF]. For instance:

Figure 5 . 3 -

 53 Figure 5.3 -The revised SysML/KAOS domain metamodel

99 5. 3 .

 993 Specification of the Saturn Communication Protocol antecedents and images of constant maplet individuals must be constant. A change in state of the antecedent or of the image of a maplet individual x leads to a change in state of x.

Figure 5 . 4 -

 54 Figure 5.4 -Saturn 1: ontology associated with the first refinement level

Figures 5 .Figure 5 . 5 -

 555 Figures 5.2 (b), 5.4 and 5.5 represent domain models associated with the refinement levels of the goal diagram of Fig. 5.1 using the updated SysML/KAOS domain modeling language.

  Fig. 5.2 (b). SYSTEM Saturn 0 SETS b T IN b T OUT CONSTANTS b FB PROPERTIES axm1: b FB ∈ b T IN → b T OUT VARIABLES b in b out INVARIANT inv1: b in ∈ b T IN inv2: b out ∈ b T OUT Event INITIALISATION = then act1: b in: : b T IN act2: b out: : b T OUT Concepts T IN and T OUT give abstract sets b T IN and b T OUT. Variable individuals in and out give B System variables b in and b out typed (inv1 and inv2) and initialised (act1 and act2) respectively as items of b T IN and b T OUT (rule 11 of Table B.2 of annex B). Finally, association FB gives a B System constant named b FB, typed (axm1) as a total function between b T IN and b T OUT (rule 10 of Table B.2 of annex B). The B System specification obtained from the domain model of Fig. 5.4 defines a refinement named Saturn 1 which refines Saturn 0 and introduces variables b out r and b in r with invariant b out r ∈ b T OUT ∧ b in r ∈ b T IN. The specification obtained from the domain model of Fig. 5.5 defines a B System refinement named Saturn 2 which refines Saturn 1. In Saturn 2, concepts MI and MO are defined as abstract sets. In addition, Saturn 2 defines agents in, agents out, VIN, VOUT, vec to in, vec to out and VBF as constants. Properties 5.3. Specification of the Saturn Communication Protocol axm1: b agents in ⊆ b MI axm2: b agents out ⊆ b MO define b agents in and b agents out as subsets of b MI and b MO (rule 5 of Table B.2 of annex B).

  axm3: b VIN = b agents in → BOOL axm4: b VOUT ∈ b agents out → BOOL axm5: b vec to in ∈ b VIN b T IN axm6: b vec to out ∈ b VOUT b T OUT axm7: b VBF ∈ b VIN → b VOUT axm8: b VBF = (b vec to in; b FB; b vec to out -1 ) Following rule 10 of Table B.2 of annex B, property axm5 defines b vec to in as a total injection from b VIN to b T IN. Constant b vec to out is typed in a similar manner by property axm6. Finally, the total function b VBF (axm7) is defined by property axm8 as the composition of functions b vec to in, b FB and b vec to out -1 (property axm8 results from the translation of a logical formula defined in domain model Saturn 2). The B System refinement Saturn 2 also defines variables such as b s in and b s out, along with their invariants and initialisations. B System Specification Constructed from the Goal Model The root level of the goal diagram of Fig. 5.1 gives the B System event Process specified as: Event Process = then b out : = b FB(b in) END Furthermore, the first refinement level of the goal diagram gives the following B System specification: Event Get ref and Process = then b in r : = b in END; Event Compute ref and Process = then b out r : = b FB(b in r) END; Event Put ref and Process = then b out : = b out r END

Figure 6 .

 6 Figure 6.1 -The SysML/KAOS functional goal metamodel [101]

  Figure 6.3 is a state diagram representing the steam boiler controller operating modes:6.2. Context• In the normal mode, the controller tries to maintain the quantity of water within Min1 and Max1, with all the units behaving correctly. When a failure occurs on the water unit, the mode is set to rescue. In case of any other failure, the mode is set to degraded. • In the degraded mode, the controller tries to maintain the quantity of water within Min2 and Max2, despite a possible failure other than a failure of the water unit. If a failure occurs on the water unit, the mode is set to rescue.

Figure 6 . 2 -

 62 Figure 6.2 -Excerpt from the steam-boiler control system goal diagram

  Four agents are defined for the achievement of requisites: WaterUnitSensor responsible of ReadWaterUnit, RescueSensors responsible of ReadInputsInRescueMode, ModeController responsible of ComputeNextSystemMode and PumpActuator responsible of OpenPump and ClosePump. normal rescue degraded [failure & not(water unit failure)] [not(failure)] [water unit failure] [not(failure)] [water unit failure] [failure & not(water unit failure)]
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 6364 Figure 6.3 -State diagram of the steam boiler controller operating modes
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 6526 Figure 6.5steam boiler controller domain model: ontology associated with the root level of the goal diagram of Fig. 6.2
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 66 Figure 6.6 -Root level of the B System specification of the steam-boiler control system

Figure 6 . 6 . 4 .Figure 6 . 7 -

 66467 Figure 6.7 represents an illustration of our approach for a main system S and two subsystems S1 and S2. The specification of S defines three components: M which corresponds to the root level and M_ref1 and M_ref2 which correspond to the first and second refinement levels. The component M_ref2 defines variables x1, x2 and x3, invariant I(x1, x2, x3) and events E1(x1, x3) and E2(x2, x3). Variable x3 is

123 6. 4 .

 1234 Mechanisms to Ensure the Consistency between Subsystems and System Requirements

6. 4 .

 4 Mechanisms to Ensure the Consistency between Subsystems and System Requirements Regarding the illustration of Fig. 6.7, each interface contains the definition of an invariant. Invariant I(x1, x2, x3) remains in M ref2 and the generated proof obligations are: (1) The invariants defined in M1 i and M2 i do not contradict the one defined in M ref2: ∃(x1, x2, x3).(I(x1, x2, x3) ∧ I1(x1, x3) ∧ I2(x2, x3)) (to be satisfied by the initialisation of variables); (2) actions of events E1(x1, x3) and E2(x2, x3) simultaneously preserve invariants defined in M1 i, M2 i and the global invariant defined in M ref2:

  M be a component defining invariant {x1, x2, x3} ⊂ N ∧ x1 + x2 = x3 and events E1 = then x1 : = x1 + 1||x3 : = x3 + 1 and E2 = then x2 : = x2 + 1||x3 : = x3 + 1. If we consider the decomposition of M into subcomponents M1 and M2 with M1 defining E1 and invariant x1 > 100 and M2 defining E2 and invariant x2 > 100, the proof obligations are:

Figure 6 .

 6 Figure 6.8 is an overview of the root level of the B System specification of the subsystem associated to agent RescueSensors. It is a refinement of interface RescueSensors i. We provide the specification of the event corresponding to goal ReadSteamUnit of the goal diagram of Fig.6.4: when water unit WU is defective and steam unit SU and pump controller PC are non-defective (grd1), then a natural integer val1 is set as the input obtained from sensor SU (act2). Controller variable measures is used to take into account the non-simultaneity and the non scheduling of the measurement of values of sensors SU and PC, introduced in the goal diagram with the use of the AND operator between the root and first refinement levels. Within event ReadSteamUnit, variable measures allows the controller to consider the following cases: (1) when the measurement of values of SU and PC has not yet been achieved (SU / ∈ dom(measures) ∧ PC / ∈ dom(measures)), the value of SU is measured (grd4) and saved into variables sensorInput (act2) and measures (act3);(2) when the value of PC has already been measured, the value of SU is measured and used, together with the value of PC, to estimate the water level (grd4 and act1).
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 468 Figure 6.8 -Overview of the root level of the B System specification of the subsystem RescueSensors

Figure 7 . 1 - 142 7. 3 .

 711423 Figure 7.1 -The SysML/KAOS goal diagram Figure 7.1 is an excerpt from the SysML/KAOS functional goal diagram focused on the main system purpose: safely move trains on the track (MoveTrainOnTrack). To achieve it, the system must ensure that the train has a valid MA (ComputeTrainMA). If the MA has been recomputed, then the system must assign the new MA to the train (AssignMAtoTrain). Finally, the train has to move following its assigned MA (MoveTrainFollowingItsMA). The second refinement level of the SysML/KAOS goal diagram focuses on data needed to determine the MA of a train : the MA computation can be based only on TTD states (ComputeTrainMAFollowingTTDStates) or following VSS states (ComputeTrainMAFollowingVSSStates)[START_REF]Hybrid ERTMS/ETCS Level 3 : Principles[END_REF]. When the computation is only based on TTD states, it corresponds to the ERTMS/ETCS Level 2 142

Figure 7 . 2 -

 72 Figure 7.2 -SysML/KAOS goal diagram of the VSS state computation purposes

Figure 7 .

 7 Figure 7.3 represents the domain model associated with the root goal MoveTrainOn-Track of the diagram of Figure 7.1.It represents the entities needed for the specification of the movement of a train on the track and their characteristics. For instance, concept TRAIN models the set of trains. Association connectedTrain models the subset of TRAIN that broadcast their location at least once and for each, the current connection status. Concept Connected_Train is used to represent the set of trains for which the connection status is known. Association front models the estimated position of the front of each connected train. For each connected train equipped with a TIMS, association rear models the estimated position of its rear: the rear is deduced from the front and length of the train, since a train equipped with a TIMS broadcast its length and its integrity. Thus, dom( f ront) \ dom(rear) represents the set of trains equipped with a ERTMS and not equipped with a TIMS.Logical formulas represent constraints on domain model elements. Each logical formula is prefixed with an identifier p<i>.<j> where <i> designates the refinement level number and <j> identifies the formula in the refinement level. For example, logical formula p0.2 defines TRACK, a subset of the set of natural numbers, as the data range a..b. In addition, logical formula p0.4 defines concept Connected_Train as the domain of association connectedTrain (dom(connectedTrain)). This definition

7. 4 .Figure 7 . 3 -

 473 Figure 7.3 -SysML/KAOS domain modeling of the root level of the goal diagram of Figure 7.1

Figure 7 .

 7 1 and 7.2 and to associate the related domain models. It was not used to build all domain models because it does not yet support rules to generate B System models. However, it has been used to represent the domain model associated with the root level of the diagram of Figure 7.1. An overview of the constructed domain model, similar to that of Figure 7.3, is provided by Figure 7.4. The upper black box contains the definition 7.4. Model Details of logical formulas that constrain domain model elements. Each blue rectangle represents a defined concept; each yellow rectangle represents an association; gray ovals represent default datatypes (like NATURAL) and red rectangles represent the other concepts. For instance, concepts Connected_Train and TRACK are defined concepts given by the first two logical formulas. Elements a and b are constant individuals (each represented by a green rectangle) while front and rear are associations.
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 747517 Figure 7.4 -Overview of the root domain model constructed with the Openflexo SysML/KAOS tool

Figure 7 .

 7 Figure 7.6 represents the domain model associated with the first refinement level of the SysML/KAOS goal diagram of Figure 7.1. It refines the one associated with the root level (Figure 7.3) and introduces an association named MA representing the MA assigned to a connected train. The MA of a train is modeled as a segment
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 76 Figure 7.6 -SysML/KAOS domain modeling of the first refinement level of the goal diagram of Figure 7.1

grd6: len ∈ N 1 Figure 7 . 7 -

 177 Figure 7.7 -B System specification of the first refinement level of the diagram of Figure 7.1

Figure 7 .

 7 Figure 7.8 represents the domain model associated with the second refinement level of the diagram of Figure 7.1. It refines the one associated with the first refinement level and introduces two concepts named TTD and VSS. Associations stateTTD and stateVSS represent the states of the corresponding concepts. Logical formulas p2.1..p2.8 define each TTD as a segment of the track and each VSS as a segment of a TTD. Logical formulas p2.9 and p2.10 are used to state that if a train tr is located on a TTD, then its state must be occupied: a train tr ∈ TRAIN is located on ttd ∈ TTD if f ront(tr) ∈ ttd (p2.9) or if tr is equipped with a TIMS (tr ∈ dom(rear)) and (rear(tr).. f ront(tr)) ∩ ttd = ∅ (p2.10). Finally, logical formulas p2.11..p2.13 state that two different trains must be on disjoint parts of the track: for two trains tr1 and tr2, if they are equipped with TIMS, then the track segments that they occupy should just be disjoint (p2.11); if they are on the same TTD and one of them, tr2, is not equipped with a TIMS, then, the second, tr1, must be equipped with a TIMS and tr2 must be in the rear of tr1 (p2.12); if none of them is an integer train, then they must be in two distinct TTDs (p2.13). Logical formulas p2.9 and p2.10 are gluing invariants, linking the concrete variable stateTTD with the abstract variables front and rear. The B System specification obtained from the translation of the second refinement level includes the result of the translation of the domain model of Figure7.8, two new events (ComputeTrainMAFollowingTTDStates, ComputeTrainMAFol-lowingVSSStates), an extension of event MoveTrainFollowingItsMA taking into account the new safety invariants and theorems representing the proof obligations related to the usage of the OR operator between the first and second refinement levels.
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 78 Figure 7.8 -SysML/KAOS domain modeling of the second refinement level of the goal diagram of Figure 7.1
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 81 Figure 8.1 -Overview of the SysML/KAOS specification process[START_REF] Jeffrey | Back Propagating B System Updates on SysML/KAOS Domain Models[END_REF] 

  A goal NFRType[Topic] can be refined either by NFRType i [Topic] (refinement by type) or by NFRType[Topic i ] (refinement by topic), 8.2. Context knowing that NFRType i is a subtype of NFRType and Topic i is a subentity of Topic. For instance, a non-functional goal Security[System] can be refined by subgoals Confidentiality[System], Integrity[System] and Availability[System] according to the taxonomy of non-functional goal types provided in [38] (refinement by type). A refinement by topic of goal Security[System] gives subgoals Security[Hardware]

8. 3 .

 3 Figure 8.2 -High-level system functional goal diagram[START_REF]Road Transportation System : Description of the Functional Goal Model[END_REF] 

  ∀xx1, xx2•((xx1 ∈ Vehicle ∧ xx2 ∈ Vehicle ∧ xx1 = xx2 ∧Vehicle Travel Lane(xx1) = Vehicle Travel Lane(xx2)) ⇒((Vehicle Front Position(xx1) -Vehicle Length(xx1)) . . Vehicle Front Position(xx1) ∩(Vehicle Front Position(xx2) -Vehicle Length(xx2)) . . Vehicle Front Position(xx2) = ∅))
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 84 Figure 8.4 -Ontology associated with the root level of the goal diagram of Fig. 8.2 [1]
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 85 Figure 8.5 -Ontology associated with the first refinement level of the goal diagram of Fig. 8.2 [1]

Fig. 8 .

 8 2 gives the B System event BringOutEachVehiclePresentInTunnel specified in the root machine as: Event BringOutEachVehiclePresentInTunnel = SELECT Vehicle Out, Vehicle In, newVehicleFronts, newTravelLanes WHERE grd0: Vehicle = ∅ grd1: partition(Vehicle, Vehicle Out, Vehicle In) grd2: newVehicleFronts ∈ Vehicle In → Tunnel grd3: newTravelLanes ∈ Vehicle In → TUNNEL TRAVEL LANE grd4: ∀xx•((xx ∈ Vehicle In ∧ newVehicleFronts(xx) ∈ Tunnel part1) ⇒ newTravelLanes(xx) = TRAVEL LANE I) grd5: ∀xx1, xx2•((xx1 ∈ Vehicle In ∧ xx2 ∈ Vehicle In ∧ xx1 = xx2) ⇒ ((newVehicleFronts(xx1) -Vehicle Length(xx1)) . . newVehicleFronts(xx1) ∩ (newVehicleFronts(xx2) -Vehicle Length(xx2)) . . newVehicleFronts(xx2) = ∅ ∨ newTravelLanes(xx1) = newTravelLanes(xx2))) THEN act0: Vehicle : = Vehicle \ Vehicle Out act1: Vehicle Front Position : = newVehicleFronts act2: Vehicle Travel Lane : = newTravelLanes

  updatedVehicleFronts, newVehicleSpeeds, Vehicle Out, Vehicle In, trafficLevel, newVehicleFronts WHERE grd0: delay ∈ N 1 grd1: Vehicle = ∅ grd2: updatedVehicleFronts = (λxx•xx ∈ Vehicle|Vehicle Front Position(xx) + Vehicle Speed(xx) * delay) grd3: Vehicle In = updatedVehicleFronts -1 [Tunnel] grd4: Vehicle Out = Vehicle \ Vehicle In grd5: newVehicleSpeeds ∈ Vehicle In → N grd6: ∀xx•(xx ∈ Vehicle In ⇒ newVehicleSpeeds(xx) ∈ 0 . . Speed Limit(updatedVehicleFronts(xx))) grd7: newTravelLanes ∈ Vehicle In → TUNNEL TRAVEL LANE grd8: newVehicleFronts = Vehicle Out -updatedVehicleFronts grd9: tra f f icLevel ∈ TRAFFIC LEVEL grd10: (tra f f icLevel = NORMAL ⇒ (((card(Vehicle In) * 100)/MAXIMAL TUNNEL OCCUPATION) < 40
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 86 Figure 8.6 -Overview of a validation session performed using ProB and B-Motion Studio

9. 2 .

 2 Implémentation Openflexo de SysML/KAOS Openflexo, étant lui aussi construit selon les principes de la fédération de modèles, permet un usage simultané des trois éditeurs sus-cités dans le contexte d'une même fédération de modèles. Ceci permet la construction de fédérations selon une approche top-down (du métamodèle d'un langage vers des modèles conformes à ce dernier), bottom-up (des modèles vers le métamodèle) et hybride (top-down et bottom-up).

Federation Virtual Model figure 9 . 2 -

 92 figure 9.2 -Illustration de l'implémentation Openflexo de SysML/KAOS

9. 2 .

 2 Implémentation Openflexo de SysML/KAOS Un troisième modèle virtuel, dit modèle de fédération, est défini afin d'établir les liens de correspondance entre modèles de domaine et de buts, d'une part, et modèles B System, d'autre part. Il accède aux différents modèles en passant par des model slots ; le model slot qui le lie aux modèles B System utilise un adaptateur technologique spécifique pour l'interaction avec des projets Atelier B, ce qui permet à la spécification B System d'être enrichie, vérifiée et validée en utilisant cet environnement de développement intégré ainsi que toute la pile de logiciels connexes. Chaque lien de correspondance (voir annexe B) est matérialisé par un flexo concept associé à deux autres de type mirroir : un qui représente un élément de la spécification B System et un autre qui représente un élément d'un modèle de domaine ou de buts.

  Un flexo concept Concept qui implémente la classe Concept du métamodèle de la figure 5.3 et définit des propriétés primitives représentant les nom, variabilité et énumérabilité de l'entité. Il définit également, en plus des comportements de création et de suppression, une propriété parentConcept ayant le rôle instance de flexo concept afin de lier chaque concept parent à son sous-concept. • Un flexo concept Association qui implémente la classe Association du métamodèle de la figure 5.3. Le langage FML permet de définir des liens d'héritage entre flexo concepts. Ainsi, le flexo concept Association est défini comme un sous-concept du flexo concept Concept. Il définit en outre des propriétés propres aux associations à l'exemple du domaine (source de l'association), du range (cible de l'association) et des cardinalités. • Un flexo concept Individual qui implémente la classe Individual du métamodèle de la figure 5.3 et définit des propriétés primitives représentant les nom et variabilité de l'instance. Il définit également, en plus des comportements de création et de suppression, des propriétés, instances de flexo concepts, afin de définir le concept d'appartenance de l'individu (propriété individualOf) ainsi que l'individu constant qui représente sa valeur initiale (propriété initialValue). Il est à noter que la notion de valeur initiale n'a de sens que lorsque l'individu est variable. • Un flexo concept MapletIndividual qui spécialise le flexo concept Individual et définit des propriétés propres aux couples d'individus à l'exemple de l'antécédent et de l'image. Il spécialise également la propriété individualOf afin de garantir que tout couple (instance de MapletIndividual) soit individu d'une association. L'utilisation de l'éditeur ViewEditor d'Openflexo a permis d'associer une représentation graphique à chaque flexo concept du modèle virtuel DomainModel. Par exemple, la figure 9.4 donne un aperçu des représentations graphiques associées aux flexo concepts sus-cités.
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 94 figure 9.4 -Formes graphiques associées aux principaux éléments d'une modélisation du domaine
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 2 figure 9.6 -Implémentation du flexo concept EventMapping

  (Chapitre 7) ; (ii) d'un système de transport urbain pour le compte de la Ville de Montréal [48] (Chapitre 8) ; (iii) d'un système de contrôle d'une chaudière à vapeur [22] (Chapitres 4, 6) ; (iv) et d'un protocole de communication proposé pour la transformation booléenne des données échangées entre plusieurs agents au sein d'une infrastructure ferroviaire [129] (Chapitre 5).

A. 1 . 5 : 6 :

 156 Event-B Specification of the SysML/KAOS Domain Modeling and B System Specification Languages axiom4: partition(Operator, {Inclusion OP}, {Belonging OP}, {BecomeEqual2SetO f OP}, {RelationSet OP}, {Maplet OP}, {Equal2SetO f OP}, {BecomeEqual2EmptySet OP}, {FunctionSet OP}, {RelationComposition OP}, {Inversion OP}, {Equality OP}) axiom5: f inite(Variable Set) ∧ f inite(Set Set) ∧ f inite(Constant Set) ∧ f inite(Component Set) ∧ f inite(LogicFormula Set) END MACHINE event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context VARIABLES Component System Refinement Refinement refines Component DomainModel DomainModel parent DomainModel DomainModel corresp Component INVARIANTS inv0 1: Component ⊆ Component Setinv0 2: partition(Component, System, Re f inement) Domain Model inv0 3: DomainModel ⊆ DomainModel Set inv0 4: DomainModel parent DomainModel ∈ DomainModel DomainModel inv0 DomainModel corresp Component ∈ DomainModel Component inv0 Re f inement re f ines Component ∈ Re f inement Component inv0 7: ∀xx•( ∀px•( ( xx ∈ dom(DomainModel parent DomainModel) ∧ px = DomainModel parent DomainModel(xx) ∧ px ∈ dom(DomainModel corresp Component) ∧ xx / ∈ dom(DomainModel corresp Component) ) ⇒ DomainModel corresp Component(px) / ∈ ran(Re f inement re f ines Component) ) ) inv0 8: ∀xx, pxx•( (xx ∈ dom(DomainModel parent DomainModel) ∧ pxx = DomainModel parent DomainModel(xx) ∧ {xx, pxx} ⊆ dom(DomainModel corresp Component)) ⇒ (DomainModel corresp Component(xx) ∈ dom(Re f inement re f ines Component) ∧Re f inement re f ines Component(DomainModel corresp Component(xx)) = DomainModel corresp Component(pxx)) ) inv0 9: ∀o xx, o pxx•( (o xx ∈ dom(Re f inement re f ines Component) ∧ o pxx = Re f inement re f ines Component(o xx) ∧ {o xx, o pxx} ⊆ ran(DomainModel corresp Component)) ⇒ (DomainModel corresp Component -1 (o xx) ∈ dom(DomainModel parent DomainModel) ∧DomainModel parent DomainModel(DomainModel corresp Component -1 (o xx)) = DomainModel corresp Component -1 (o pxx)) ) inv0 10: ∀xx, pxx•( (xx ∈ dom(DomainModel parent DomainModel)
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 1 Figure A.1 -Generation of B System components from SysML/KAOS domain models
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 2 Figure A.2 -Generation of B System variables from SysML/KAOS concepts, relations and attributes

MACHINE

  event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context EVENTS Event rule 1 convergent = correspondence of a domain model not associated to a parent domain model any DM o DM where grd0: DomainModel\(dom(DomainModel corresp Component)∪dom(DomainModel parent DomainModel)) = ∅ grd1: DM ∈ DomainModel grd2: DM / ∈ dom(DomainModel corresp Component) grd3: DM / ∈ dom(DomainModel parent DomainModel) grd4: Component Set \ Component = ∅ grd5: o DM ∈ Component Set grd6: o DM / ∈ Component then act1: System : = System ∪ {o DM} act2: Component : = Component ∪ {o DM} act3: DomainModel corresp Component(DM) : = o DM end Event rule 2 convergent = correspondence of a domain model associated to a parent domain model any DM PDM o DM where grd0: dom(DomainModel parent DomainModel) \ dom(DomainModel corresp Component) = ∅ grd1: DM ∈ dom(DomainModel parent DomainModel) grd2: DM / ∈ dom(DomainModel corresp Component) grd3: dom(DomainModel corresp Component) = ∅ grd4: PDM ∈ dom(DomainModel corresp Component) grd5: DomainModel parent DomainModel(DM) = PDM grd6: Component Set \ Component = ∅ grd7: o DM ∈ Component Set grd8: o DM / ∈ Component then act1: Re f inement : = Re f inement ∪ {o DM} act2: Component : = Component ∪ {o DM} act3: Re f inement re f ines Component(o DM) : = DomainModel corresp Component(PDM) act4: DomainModel corresp Component(DM) : = o DM end END MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context EVENTS Event rule 3 convergent = correspondence of a concept not associated to a parent concept any CO o CO where grd0: Concept \ (dom(Concept parentConcept Concept) ∪ dom(Concept corresp AbstractSet)) = ∅ grd1: CO ∈ Concept grd2: CO / ∈ dom(Concept parentConcept Concept) grd3: CO / ∈ (dom(Concept corresp AbstractSet) ∪ dom(Concept corresp Constant)) grd4: Concept de f inedIn DomainModel(CO) ∈ dom(DomainModel corresp Component) grd5: Set Set \ Set = ∅ grd6: o CO ∈ Set Set grd7: o CO / ∈ Set then act1: AbstractSet : = AbstractSet ∪ {o CO} act2: Set : = Set ∪ {o CO} act3: Concept corresp AbstractSet(CO) : = o CO act4: Set de f inedIn Component(o CO) : = DomainModel corresp Component(Concept de f inedIn DomainModel(CO)) end Event rule 4 convergent = correspondence of an instance of EnumeratedDataSet any EDS o EDS elements o elements mapping elements o elements where grd0: EnumeratedDataSet \ dom(DataSet corresp Set) = ∅ grd1: EDS ∈ EnumeratedDataSet grd2: EDS / ∈ dom(DataSet corresp Set) grd4: DataSet de f inedIn DomainModel(EDS) ∈ dom(DomainModel corresp Component) grd5: Set Set \ Set = ∅ grd6: o EDS ∈ Set Set grd7: o EDS / ∈ Set grd8: o EDS / ∈ {B NATURAL, B INTEGER, B FLOAT, B BOOL, B STRING} elements grd9: o elements ⊆ SetItem Set grd10: o elements ∩ SetItem = ∅ grd11: elements = DataValue elements EnumeratedDataSet -1 [{EDS}] grd12: card(o elements) = card(elements) grd13: mapping elements o elements ∈ elements o elements then act1: EnumeratedSet : = EnumeratedSet ∪ {o EDS} act2: Set : = Set ∪ {o EDS} act3: EnumeratedDataSet corresp EnumeratedSet(EDS) : = o EDS act4: Set de f inedIn Component(o EDS) : = DomainModel corresp Component(DataSet de f inedIn DomainModel(EDS)) elements act5: SetItem : = SetItem ∪ o elements act6: SetItem itemO f EnumeratedSet : = SetItem itemO f EnumeratedSet ∪ {(xx → yy)|xx ∈ o elements ∧ yy = o EDS} act7: DataValue corresp SetItem : = DataValue corresp SetItem ∪ mapping elements o elements act8: DataSet corresp Set : = DataSet corresp Set -{EDS → o EDS} end 213 A.2. Definition of the Translation Rules Event rule 5 convergent = correspondence of an instance of CustomDataSet which is not an instance of EnumeratedDataSet any CS o CS where grd0: CustomDataSet \ (EnumeratedDataSet ∪ dom(DataSet corresp Set)) = ∅ grd1: CS ∈ CustomDataSet grd2: CS / ∈ EnumeratedDataSet grd3: CS / ∈ dom(DataSet corresp Set) grd4: DataSet de f inedIn DomainModel(CS) ∈ dom(DomainModel corresp Component) grd5: Set Set \ Set = ∅ grd6: o CS ∈ Set Set grd7: o CS / ∈ Set then act1: AbstractSet : = AbstractSet ∪ {o CS} act2: Set : = Set ∪ {o CS} act3: CustomDataSet corresp AbstractSet(CS) : = o CS act4: Set de f inedIn Component(o CS) : = DomainModel corresp Component(DataSet de f inedIn DomainModel(CS)) act5: DataSet corresp Set : = DataSet corresp Set -{CS → o CS} end Event rule 6 1 convergent = correspondence of a concept associated to a parent concept (where the parent concept corresponds to an abstract set) any CO o CO PCO o lg o PCO where grd0: dom(Concept parentConcept Concept)\(dom(Concept corresp Constant)∪dom(Concept corresp AbstractSet)) = ∅ grd1: CO ∈ dom(Concept parentConcept Concept)\(dom(Concept corresp Constant)∪dom(Concept corresp AbstractSet)) grd2: dom(Concept corresp AbstractSet) = ∅ grd3: PCO ∈ dom(Concept corresp AbstractSet) grd4: Concept parentConcept Concept(CO) = PCO grd5: Concept de f inedIn DomainModel(CO) ∈ dom(DomainModel corresp Component) grd6: Constant Set \ Constant = ∅ grd7: o CO ∈ Constant Set \ Constant grd8: LogicFormula Set \ LogicFormula = ∅ grd9: o lg ∈ LogicFormula Set \ LogicFormula grd10: o PCO ∈ AbstractSet grd11: o PCO = Concept corresp AbstractSet(PCO) then act1: Constant : = Constant ∪ {o CO} act2: Concept corresp Constant(CO) : = o CO act3: Constant de f inedIn Component(o CO) : = DomainModel corresp Component(Concept de f inedIn DomainModel(CO)) act4: Property : = Property ∪ {o lg} act5: LogicFormula : = LogicFormula ∪ {o lg} act6: LogicFormula uses Operators(o lg) : = {1 → Inclusion OP} act7: Constant isInvolvedIn LogicFormulas(o CO) : = {1 → o lg} act8: LogicFormula involves Sets(o lg) : = {2 → o PCO} act9: LogicFormula de f inedIn Component(o lg) : = DomainModel corresp Component(Concept de f inedIn DomainModel(CO)) act10: Constant typing Property(o CO) : = o lg end Event rule 6 2 convergent = correspondence of a concept associated to a parent concept (where the parent concept corresponds to a constant) any CO o CO PCO o lg o PCO where grd0: dom(Concept parentConcept Concept)\(dom(Concept corresp Constant)∪dom(Concept corresp AbstractSet)) = ∅ grd1: CO ∈ dom(Concept parentConcept Concept)\(dom(Concept corresp Constant)∪dom(Concept corresp AbstractSet)) grd2: dom(Concept corresp Constant) = ∅ grd3: PCO ∈ dom(Concept corresp Constant) grd4: Concept parentConcept Concept(CO) = PCO grd5: Concept de f inedIn DomainModel(CO) ∈ dom(DomainModel corresp Component) grd6: Constant Set \ Constant = ∅ grd7: o CO ∈ Constant Set \ Constant grd8: LogicFormula Set \ LogicFormula = ∅ grd9: o lg ∈ LogicFormula Set \ LogicFormula grd10: o PCO ∈ Constant grd11: o PCO = Concept corresp Constant(PCO) then act1: Constant : = Constant ∪ {o CO} act2: Concept corresp Constant(CO) : = o CO act3: Constant de f inedIn Component(o CO) : = DomainModel corresp Component(Concept de f inedIn DomainModel(CO)) act4: Property : = Property ∪ {o lg} act5: LogicFormula : = LogicFormula ∪ {o lg} act6: LogicFormula uses Operators(o lg) : = {1 → Inclusion OP} act7: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -{(o CO → {1 → o lg}), o PCO → Constant isInvolvedIn LogicFormulas(o PCO) ∪ {2 → o lg}} act8: LogicFormula involves Sets(o lg) : = ∅ act9: LogicFormula de f inedIn Component(o lg) : = DomainModel corresp Component(Concept de f inedIn DomainModel(CO)) act10: Constant typing Property(o CO) : = o lg end Event rule 7 1 convergent = correspondence of an instance of Individual (where the concept corresponds to an abstract set) any ind o ind CO o lg o CO wheregrd0: dom(Individual individualO f Concept) \ dom(Individual corresp Constant) = ∅ grd1: ind ∈ dom(Individual individualO f Concept) \ dom(Individual corresp Constant) grd2: dom(Concept corresp AbstractSet) = ∅ grd3: CO ∈ dom(Concept corresp AbstractSet) grd4: Individual individualO f Concept(ind) = CO grd5: Concept de f inedIn DomainModel(CO) ∈ dom(DomainModel corresp Component) grd6: Constant Set \ Constant = ∅ grd7: o ind ∈ Constant Set \ Constant grd8: LogicFormula Set \ LogicFormula = ∅ grd9: o lg ∈ LogicFormula Set \ LogicFormula grd10: o CO ∈ AbstractSet grd11: o CO = Concept corresp AbstractSet(CO)then act1: Constant : = Constant ∪ {o ind} act2: Individual corresp Constant(ind) : = o ind act3: Constant de f inedIn Component(o ind) : = DomainModel corresp Component(Concept de f inedIn DomainModel(CO)) act4: Property : = Property ∪ {o lg} act5: LogicFormula : = LogicFormula ∪ {o lg} act6: LogicFormula uses Operators(o lg) : = {1 → Belonging OP} act7: Constant isInvolvedIn LogicFormulas(o ind) : = {1 → o lg} act8: LogicFormula involves Sets(o lg) : = {2 → o CO} act9: LogicFormula de f inedIn Component(o lg) : = DomainModel corresp Component(Concept de f inedIn DomainModel(CO)) act10: Constant typing Property(o ind) : = o lg end Event rule 7 2 convergent = correspondence of an instance of Individual (where the concept corresponds to a constant) any ind o ind CO o lg o CO where grd0: dom(Individual individualO f Concept) \ dom(Individual corresp Constant) = ∅ grd1: ind ∈ dom(Individual individualO f Concept) \ dom(Individual corresp Constant) grd2: dom(Concept corresp Constant) = ∅ grd3: CO ∈ dom(Concept corresp Constant) grd4: Individual individualO f Concept(ind) = CO grd5: Concept de f inedIn DomainModel(CO) ∈ dom(DomainModel corresp Component) grd6: Constant Set \ Constant = ∅ grd7: o ind ∈ Constant Set \ Constant grd8: LogicFormula Set \ LogicFormula = ∅ grd9: o lg ∈ LogicFormula Set \ LogicFormula grd10: o CO ∈ Constant grd11: o CO = Concept corresp Constant(CO) then act1: Constant : = Constant ∪ {o ind} act2: Individual corresp Constant(ind) : = o ind act3: Constant de f inedIn Component(o ind) : = DomainModel corresp Component(Concept de f inedIn DomainModel(CO)) act4: Property : = Property ∪ {o lg} act5: LogicFormula : = LogicFormula ∪ {o lg} act6: LogicFormula uses Operators(o lg) : = {1 → Belonging OP} act7: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -{(o ind → {1 → o lg}), o CO → Constant isInvolvedIn LogicFormulas(o CO) ∪ {2 → o lg}} act8: LogicFormula involves Sets(o lg) : = ∅ act9: LogicFormula de f inedIn Component(o lg) : = DomainModel corresp Component(Concept de f inedIn DomainModel(CO)) act10: Constant typing Property(o ind) : = o lg end Event rule 8 convergent = correspondence of an instance of DataValue (When the data set is an instance of CustomDataSet not instance of EnumeratedDataSet (for this last case, the rule for instances of EnumeratedDataSet also handles data values) ) any dva o dva DS o lg o DS where grd0: dom(DataValue valueO f DataSet)\(dom(DataValue corresp Constant)∪dom(DataValue corresp SetItem)) = ∅ grd1: dva ∈ dom(DataValue valueO f DataSet)\(dom(DataValue corresp Constant)∪dom(DataValue corresp SetItem)) Event rule 10 1 convergent = correspondence of an instance of Relation having its isVariable property set to false (case where domain and range correspond to abstract sets) any RE T RE o RE CO1 o CO1 CO2 o CO2 o lg1 o lg2 DM where grd0: Relation isVariable -1 [{FALSE}] \ dom(Relation Type) = ∅ grd1: RE ∈ Relation isVariable -1 [{FALSE}] \ dom(Relation Type) grd2: dom(Concept corresp AbstractSet) = ∅ grd3: CO1 = Relation domain Concept(RE) grd4: CO2 = Relation range Concept(RE) grd5: {CO1, CO2} ⊆ dom(Concept corresp AbstractSet) grd6: Relation de f inedIn DomainModel(RE) ∈ dom(DomainModel corresp Component) grd7: Constant Set \ Constant = ∅ grd8: {T RE, o RE} ⊆ Constant Set \ Constant grd9: LogicFormula Set \ LogicFormula = ∅ grd10: {o lg1, o lg2} ⊆ LogicFormula Set \ LogicFormula grd11: o CO1 = Concept corresp AbstractSet(CO1) grd12: o CO2 = Concept corresp AbstractSet(CO2) grd13: DM = Relation de f inedIn DomainModel(RE) grd14: T RE = o RE grd15: o lg1 = o lg2 then act1: Constant : = Constant ∪ {T RE, o RE} act2: Relation Type(RE) : = T RE act3: Relation corresp Constant(RE) : = o RE act4: Constant de f inedIn Component : = Constant de f inedIn Component ∪ {o RE → DomainModel corresp Component(DM), T RE → DomainModel corresp Component(DM)} act5: Property : = Property ∪ {o lg1, o lg2} act6: LogicFormula : = LogicFormula ∪ {o lg1, o lg2} act7: Constant typing Property : = Constant typing Property ∪ {T RE → o lg1, o RE → o lg2} act8: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas ∪ {T RE → {1 → o lg1, 2 → o lg2}, o RE → {1 → o lg2}} act9: LogicFormula uses Operators : = LogicFormula uses Operators ∪ {o lg1 → {1 → RelationSet OP}, o lg2 → {1 → Belonging OP}} act10: LogicFormula involves Sets : = LogicFormula involves Sets ∪ {o lg1 → {2 → o CO1, 3 → o CO2}, o lg2 → ∅} act11: LogicFormula de f inedIn Component : = LogicFormula de f inedIn Component ∪ {o lg1 → DomainModel corresp Component(DM), o lg2 → DomainModel corresp Component(DM)} end Event rule 10 2 convergent = correspondence of an instance of Relation having its isVariable property set to false (case where domain corresponds to an abstract set and range corresponds to a constant)any RE T RE o RE CO1 o CO1 CO2 o CO2 o lg1 o lg2 DM where grd0: Relation isVariable -1 [{FALSE}] \ dom(Relation Type) = ∅ grd1: RE ∈ Relation isVariable -1 [{FALSE}] \ dom(Relation Type) grd2: dom(Concept corresp AbstractSet) = ∅ grd3: CO1 = Relation domain Concept(RE) grd4: CO1 ∈ dom(Concept corresp AbstractSet) grd5: dom(Concept corresp Constant) = ∅ grd6: CO2 = Relation range Concept(RE) grd7: CO2 ∈ dom(Concept corresp Constant) grd8: Relation de f inedIn DomainModel(RE) ∈ dom(DomainModel corresp Component) end Event rule 11 1 convergent = correspondence of an instance of RelationMaplet any remap o remap RE antecedent image o lg o antecedent o image where grd0: RelationMaplet \ dom(RelationMaplet corresp Constant) = ∅ grd1: remap ∈ RelationMaplet \ dom(RelationMaplet corresp Constant) grd2: dom(Relation corresp Constant) ∪ dom(Relation corresp Variable) = ∅ grd3: RelationMaplet mapletO f Relation(remap) = RE grd4: RE ∈ dom(Relation corresp Constant) ∪ dom(Relation corresp Variable) grd5: Relation de f inedIn DomainModel(RE) ∈ dom(DomainModel corresp Component) grd6: Constant Set \ Constant = ∅ grd7: o remap ∈ Constant Set \ Constant grd8: LogicFormula Set \ LogicFormula = ∅ grd9: o lg ∈ LogicFormula Set \ LogicFormula grd10: antecedent = RelationMaplet antecedent Individual(remap) grd11: image = RelationMaplet image Individual(remap) grd12: {antecedent, image} ⊆ dom(Individual corresp Constant) grd13: o antecedent = Individual corresp Constant(antecedent) grd14: o image = Individual corresp Constant(image) grd15: o antecedent = o image then, for each relation already treated for which all the maplets have been processed, if it is variable, we generate the initialization, otherwise, we generate the closure property, knowing that the maplets give rise to variables in case of variable relation and constants in case of constant relationshipthen act1: Constant : = Constant ∪ {o remap} act2: RelationMaplet corresp Constant(remap) : = o remap act3: Constant de f inedIn Component(o remap) : = DomainModel corresp Component(Relation de f inedIn DomainModel(RE)) act4: Property : = Property ∪ {o lg} act5: LogicFormula : = LogicFormula ∪ {o lg} act6: LogicFormula uses Operators(o lg) : = {1 → Maplet OP} act7: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -{o remap → {1 → o lg}, o antecedent → {2 → o lg} ∪ Constant isInvolvedIn LogicFormulas(o antecedent), o image → {3 → o lg} ∪ Constant isInvolvedIn LogicFormulas(o image)} act8: LogicFormula involves Sets(o lg) : = ∅ act9: LogicFormula de f inedIn Component(o lg) : = DomainModel corresp Component(Relation de f inedIn DomainModel(RE)) act10: Constant typing Property(o remap) : = o lg end Event rule 11 2 1 convergent = correspondence of an instance of AttributeMaplet (case where the image (of type DataValue) corresponds to a constant (it can also corresponds to a set item) any atmap o atmap AT antecedent image o lg o antecedent o image where grd0: AttributeMaplet \ dom(AttributeMaplet corresp Constant) = ∅ grd1: atmap ∈ AttributeMaplet \ dom(AttributeMaplet corresp Constant) grd2: dom(Attribute corresp Constant) ∪ dom(Attribute corresp Variable) = ∅ grd3: AttributeMaplet mapletO f Attribute(atmap) = AT grd4: AT ∈ dom(Attribute corresp Constant) ∪ dom(Attribute corresp Variable) grd5: Attribute de f inedIn DomainModel(AT) ∈ dom(DomainModel corresp Component) grd6: Constant Set \ Constant = ∅ act4: Property : = Property ∪ {o lg} act5: LogicFormula : = LogicFormula ∪ {o lg} act6: LogicFormula uses Operators(o lg) : = {1 → Maplet OP} act7: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -{o atmap → {1 → o lg}, o antecedent → {2 → o lg} ∪ Constant isInvolvedIn LogicFormulas(o antecedent)} act8: LogicFormula involves Sets(o lg) : = ∅ act9: LogicFormula involves SetItems(o lg) : = {3 → o image} act10: LogicFormula de f inedIn Component(o lg) : = DomainModel corresp Component(Attribute de f inedIn DomainModel(AT)) act11: Constant typing Property(o atmap) : = o lg end Event rule 12 1 ordinary = closure property for constant relations any RE o lg o RE maplets o maplets where grd0: dom(Relation corresp Constant) = ∅ grd1: RE ∈ dom(Relation corresp Constant) grd2: o RE = Relation corresp Constant(RE) grd3: LogicFormula uses Operators -1 [{{1 → Equal2SetO f OP}}]∩ran(Constant isInvolvedIn LogicFormulas(o RE)) = ∅ grd4: RelationMaplet mapletO f Relation -1 [{RE}] = maplets grd5: maplets ⊆ dom(RelationMaplet corresp Constant) grd6: o maplets = RelationMaplet corresp Constant[maplets] grd7: Relation de f inedIn DomainModel(RE) ∈ dom(DomainModel corresp Component) grd8: LogicFormula Set \ LogicFormula = ∅ grd9: o lg ∈ LogicFormula Set \ LogicFormula grd10: o RE / ∈ o maplets then act1: Property : = Property ∪ {o lg} act2: LogicFormula : = LogicFormula ∪ {o lg} act3: LogicFormula uses Operators(o lg) : = {1 → Equal2SetO f OP} act4: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -({o RE → {1 → o lg} ∪ Constant isInvolvedIn LogicFormulas(o RE)} ∪ {co → lgs|co ∈ o maplets ∧ lgs = {2 → o lg} ∪ Constant isInvolvedIn LogicFormulas(co)}) appearence order does not matter act5: LogicFormula involves Sets(o lg) : = ∅ act6: LogicFormula de f inedIn Component(o lg) : = DomainModel corresp Component(Relation de f inedIn DomainModel(RE)) end Event rule 12 2 ordinary = closure action for variable relations any RE o ia o RE maplets o maplets ex o ia bij o maplets where grd0: dom(Relation corresp Variable) = ∅ grd1: RE ∈ dom(Relation corresp Variable) grd2: o RE = Relation corresp Variable(RE) grd3: Variable init InitialisationAction(o RE) / ∈ InitialisationAction uses Operators -1 [{{1 → BecomeEqual2SetO f OP}}] grd4: RelationMaplet mapletO f Relation -1 [{RE}] = maplets grd5: maplets ⊆ dom(RelationMaplet corresp Constant) grd6: o maplets = RelationMaplet corresp Constant[maplets] grd7: Relation de f inedIn DomainModel(RE) ∈ dom(DomainModel corresp Component) grd8: InitialisationAction Set \ InitialisationAction = ∅ end Event rule 14 3 convergent = correspondence of an instance of Attribute having its isVariable property set to false and its isFunctional property set to true (case where the domain corresponds to an abstract set, knowing that the range always corresponds to a set ) any AT T AT o AT CO o CO DS o DS o lg1 o lg2 DM where grd0: Attribute isVariable -1 [{FALSE}] \ dom(Attribute Type) = ∅ grd1: AT ∈ Attribute isVariable -1 [{FALSE}] \ dom(Attribute Type) grd2: dom(Concept corresp AbstractSet) = ∅ grd14: o DS = DataSet corresp Set(DS) grd15: DM = Attribute de f inedIn DomainModel(AT) grd16: T AT = o AT grd17: o lg1 = o lg2 grd18: AT ∈ Attribute isFunctional -1 [{TRUE}] then act1: Constant : = Constant ∪ {T AT, o AT} act2: Attribute Type(AT) : = T AT act3: Attribute corresp Constant(AT) : = o AT act4: Constant de f inedIn Component : = Constant de f inedIn Component ∪ {o AT → DomainModel corresp Component(DM), T AT → DomainModel corresp Component(DM)} act5: Property : = Property ∪ {o lg1, o lg2} act6: LogicFormula : = LogicFormula ∪ {o lg1, o lg2} act7: Constant typing Property : = Constant typing Property ∪ {T AT → o lg1, o AT → o lg2} act8: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -{T AT → {1 → o lg1, 2 → o lg2}, o AT → {1 → o lg2}, o CO → {2 → o lg1} ∪ Constant isInvolvedIn LogicFormulas(o CO)} act9: LogicFormula uses Operators : = LogicFormula uses Operators ∪ {o lg1 → {1 → FunctionSet OP}, o lg2 → {1 → Belonging OP}} act10: LogicFormula involves Sets : = LogicFormula involves Sets ∪ {o lg1 → {3 → o DS}, o lg2 → ∅} act11: LogicFormula de f inedIn Component : = LogicFormula de f inedIn Component ∪ {o lg1 → DomainModel corresp Component(DM), o lg2 → DomainModel corresp Component(DM)} end Event rule 15 1 ordinary = closure property for constant attribute any AT o lg o AT maplets o maplets where grd0: dom(Attribute corresp Constant) = ∅ grd1: AT ∈ dom(Attribute corresp Constant) grd2: o AT = Attribute corresp Constant(AT) grd3: LogicFormula uses Operators -1 [{{1 → Equal2SetO f OP}}] ∩ ran(Constant isInvolvedIn LogicFormulas(o AT)) = ∅ grd4: AttributeMaplet mapletO f Attribute -1 [{AT}] = maplets grd5: maplets ⊆ dom(AttributeMaplet corresp Constant) grd6: o maplets = AttributeMaplet corresp Constant[maplets] grd7: Attribute de f inedIn DomainModel(AT) ∈ dom(DomainModel corresp Component) grd8: LogicFormula Set \ LogicFormula = ∅ grd9: o lg ∈ LogicFormula Set \ LogicFormula grd10: o AT / ∈ o maplets then act1: Property : = Property ∪ {o lg} act2: LogicFormula : = LogicFormula ∪ {o lg} act3: LogicFormula uses Operators(o lg) : = {1 → Equal2SetO f OP} act4: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -({o AT → ({1 → o lg} ∪ Constant isInvolvedIn LogicFormulas(o AT))} ∪ {co → lgs|co ∈ o maplets ∧ lgs = {2 → o lg} ∪ Constant isInvolvedIn LogicFormulas(co)}) appearence order does not matter act5: LogicFormula involves Sets(o lg) : = ∅ act6: LogicFormula de f inedIn Component(o lg) : = DomainModel corresp Component(Attribute de f inedIn DomainModel(AT)) end Event rule 16 1 ordinary = handling the transitivity of a constant relation any RE o lg1 o lg2 o RE composition where grd0: (dom(Relation corresp Constant) ∩ Relation isTransitive -1 [{TRUE}]) = ∅ grd1: RE ∈ (dom(Relation corresp Constant) ∩ Relation isTransitive -1 [{TRUE}]) grd2: ({RE → isTransitive}) / ∈ dom(RelationCharacteristic corresp LogicFormula) grd3: o RE = Relation corresp Constant(RE) grd4: Relation de f inedIn DomainModel(RE) ∈ dom(DomainModel corresp Component) grd5: LogicFormula Set \ LogicFormula = ∅ grd6: {o lg1, o lg2} ⊆ LogicFormula Set \ LogicFormula grd7: partition({o lg1, o lg2}, {o lg1}, {o lg2}) grd8: Constant Set \ Constant = ∅ grd9: composition ∈ Constant Set \ Constant then act0: Constant : = Constant ∪ {composition} act1: Property : = Property ∪ {o lg1, o lg2} act2: LogicFormula : = LogicFormula ∪ {o lg1, o lg2} act3: Constant typing Property(composition) : = o lg1 act4: RelationCharacteristic corresp LogicFormula({RE → isTransitive}) : = o lg2 act5: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -{composition → {1 → o lg1, 1 → o lg2}, o RE → {2 → o lg1, 3 → o lg1, 2 → o lg2}∪Constant isInvolvedIn LogicFormulas(o RE)} act6: LogicFormula uses Operators : = LogicFormula uses Operators∪{o lg1 → {1 → RelationComposition OP}, o lg2 → {1 → Inclusion OP}} act7: LogicFormula involves Sets : = LogicFormula involves Sets ∪ {o lg1 → ∅, o lg2 → ∅} act8: LogicFormula de f inedIn Component : = LogicFormula de f inedIn Component ∪ {o lg1 → DomainModel corresp Component(Relation de f inedIn DomainModel(RE)), o lg2 → DomainModel corresp Component(Relation de f inedIn DomainModel(RE))} act9: Constant de f inedIn Component(composition) : = DomainModel corresp Component(Relation de f inedIn DomainModel(RE)) end Event rule 16 2 ordinary = handling the symmetrie of a constant relation any RE o lg1 o lg2 o RE inverse where grd0: (dom(Relation corresp Constant) ∩ Relation isSymmetric -1 [{TRUE}]) = ∅ grd1: RE ∈ (dom(Relation corresp Constant) ∩ Relation isSymmetric -1 [{TRUE}]) grd2: ({RE → isSymmetric}) / ∈ dom(RelationCharacteristic corresp LogicFormula) grd3: o RE = Relation corresp Constant(RE) grd4: Relation de f inedIn DomainModel(RE) ∈ dom(DomainModel corresp Component) grd5: LogicFormula Set \ LogicFormula = ∅ grd6: {o lg1, o lg2} ⊆ LogicFormula Set \ LogicFormula grd7: partition({o lg1, o lg2}, {o lg1}, {o lg2}) grd8: Constant Set \ Constant = ∅ grd9: inverse ∈ Constant Set \ Constant then act0: Constant : = Constant ∪ {inverse} act1: Property : = Property ∪ {o lg1, o lg2} act2: LogicFormula : = LogicFormula ∪ {o lg1, o lg2} act3: Constant typing Property(inverse) : = o lg1 act4: RelationCharacteristic corresp LogicFormula({RE → isSymmetric}) : = o lg2 act5: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -{inverse → {1 → o lg1, 1 → o lg2}, o RE → {2 → o lg1, 2 → o lg2} ∪ Constant isInvolvedIn LogicFormulas(o RE)} act6: LogicFormula uses Operators : = LogicFormula uses Operators ∪ {o lg1 → {1 → Inversion OP}, o lg2 → {1 → Equality OP}} act7: LogicFormula involves Sets : = LogicFormula involves Sets ∪ {o lg1 → ∅, o lg2 → ∅} act8: LogicFormula de f inedIn Component : = LogicFormula de f inedIn Component ∪ {o lg1 → DomainModel corresp Component(Relation de f inedIn DomainModel(RE)), o lg2 → DomainModel corresp Component(Relation de f inedIn DomainModel(RE))} act9: Constant de f inedIn Component(inverse) : = DomainModel corresp Component(Relation de f inedIn DomainModel(RE))

b 7

 7 Variable b CO ∈ ran(Concept corresp AbstractSet)∨ b CO ∈ ran(Concept corresp Constant) x CO ⊆ b CO Concept isVariable(CO) Constant (resp. Variable) b CO ∈ ran(Concept corresp AbstractSet)∪ ran(Concept corresp Constant) b DS ∈ ran(DataSet corresp Set) b AT ∈ b CO ↔ b DS AT AT ∈ Attribute Attribute domain Concept(AT) = CO Attribute range DataSet(AT) = DS Attribute isVariable(AT) = FALSE (The isVariable property is set to TRUE if b AT ∈ Variable) The properties of AT such as isFunctional are set according to the type of b AT (partial/total function, ...RE ∈ Constant (resp. Variable) {b CO1, b CO2} ⊂ ran(Concept corresp AbstractSet) ∪ ran(Concept corresp Constant) b RE ∈ b CO1 ↔ b CO2 RE RE ∈ Relation Relation domain Concept(RE) = CO1 Relation range Concept(RE) = CO2 Relation isVariable(RE) = FALSE (The isVariable property is set to TRUE if b RE ∈ Variable) As usual, the cardinalities of RE are set according to the type of b RE (function, injection, ...). Constant b PCO ∈ ran(Concept corresp AbstractSet) ∨ b PCO ∈ ran(Concept corresp Constant) b CO ⊆ b PCO CO CO ∈ Concept Concept parentConcept Concept(CO) = PCO Concept isVariable(CO) = FALSE 6 Set item b elt b ES b elt ∈ SetItem b ES = SetItem itemO f EnumeratedSet(b elt) b ES has a domain model correspondent elt elt ∈ DataValue DataValue elements -EnumeratedDataSet(elt) = ES Constant Constant b CO ∈ ran(Concept corresp AbstractSet)∨ b CO ∈ ran(Concept corresp Constant) b ind ∈ b CO ind ind ∈ Individual Individual individualO f Concept(ind) Constant b DS ∈ ran(DataSet corresp Set) b dva ∈ b DS dva dva ∈ DataValue DataValue valueO f DataSet(dva) = DS

  An item b elt (instance of class SetItem of the metamodel of Fig. 4.1) added to a set b ES gives a data value elt (instance of class DataValue of the metamodel of Fig. 4.3) linked to the enumerated dataset corresponding to b ES with the association element (line 6 of Table A.2). A.3.2 Event-B Specification MACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context EVENTS Event rule b1 convergent = handling the addition of a new abstract set (correspondence to a concept) any CO o CO where grd0: AbstractSet \ (ran(Concept corresp AbstractSet) ∪ ran(DataSet corresp Set)) = ∅ grd1: o CO ∈ AbstractSet \ (ran(Concept corresp AbstractSet) ∪ ran(DataSet corresp Set)) grd2: Set de f inedIn Component(o CO) ∈ ran(DomainModel corresp Component) grd3: Concept Set \ Concept = ∅ grd4: CO ∈ Concept Set \ Concept then act1: Concept : = Concept ∪ {CO} act2: Concept corresp AbstractSet(CO) : = o CO act3: Concept de f inedIn DomainModel(CO) : = DomainModel corresp Component -1 (Set de f inedIn Component(o CO)) act4: Concept isVariable(CO) : = FALSE end Event rule b2 convergent = handling the addition of a new abstract set (correspondence to a custom data set) any DS o DS where grd0: AbstractSet \ (ran(Concept corresp AbstractSet) ∪ ran(DataSet corresp Set)) = ∅ grd1: o DS ∈ AbstractSet \ (ran(Concept corresp AbstractSet) ∪ ran(DataSet corresp Set)) grd2: Set de f inedIn Component(o DS) ∈ ran(DomainModel corresp Component) grd3: DataSet Set \ DataSet = ∅ grd4: DS ∈ DataSet Set \ DataSet grd5: DS / ∈ { NATURAL, INTEGER, FLOAT, BOOL, STRING} then act1: CustomDataSet : = CustomDataSet ∪ {DS} act2: DataSet : = DataSet ∪ {DS} act3: CustomDataSet corresp AbstractSet(DS) : = o DS act4: DataSet de f inedIn DomainModel(DS) : = DomainModel corresp Component -1 (Set de f inedIn Component(o DS)) act5: DataSet corresp Set(DS) : = o DS end Event rule b3 convergent = handling the addition of an enumerated set any EDS o EDS elements o elements mapping elements o elements where grd0: EnumeratedSet \ ran(DataSet corresp Set) = ∅ grd1: o EDS ∈ EnumeratedSet \ ran(DataSet corresp Set) grd2: Set de f inedIn Component(o EDS) ∈ ran(DomainModel corresp Component) grd3: DataSet Set \ DataSet = ∅ grd4: EDS ∈ DataSet Set \ DataSet grd5: DataValue Set \ DataValue = ∅ grd6: elements ⊆ DataValue Set \ DataValue grd7: o elements = SetItem itemO f EnumeratedSet -1 [{o EDS}] grd8: card(o elements) = card(elements) grd9: mapping elements o elements ∈ elements o elements grd10: ran(DataValue corresp SetItem) ∩ o elements = ∅ grd11: EDS / ∈ { NATURAL, INTEGER, FLOAT, BOOL, STRING} then act1: EnumeratedDataSet : = EnumeratedDataSet ∪ {EDS} act2: DataSet : = DataSet ∪ {EDS} act3: EnumeratedDataSet corresp EnumeratedSet(EDS) : = o EDS act4: DataSet de f inedIn DomainModel(EDS) : = DomainModel corresp Component -1 (Set de f inedIn Component(o EDS)) act5: DataValue : = DataValue ∪ elements act6: DataValue elements EnumeratedDataSet : = DataValue elements EnumeratedDataSet ∪ {(xx → yy)|xx ∈ elements ∧ yy = EDS} act7: DataValue corresp SetItem : = DataValue corresp SetItem ∪ mapping elements o elements act8: DataSet corresp Set : = DataSet corresp Set -{EDS → o EDS} act9: DataValue valueO f DataSet : = DataValue valueO f DataSet ∪ {(xx → yy)|xx ∈ elements ∧ yy = EDS} act10: CustomDataSet : = CustomDataSet ∪ {EDS} end Event rule b4 convergent = handling the addition of a new element in an existing enumerated set any EDS o EDS element o element where grd0: dom(SetItem itemO f EnumeratedSet) \ ran(DataValue corresp SetItem) = ∅ grd1: o element ∈ dom(SetItem itemO f EnumeratedSet) \ ran(DataValue corresp SetItem) grd2: o EDS = SetItem itemO f EnumeratedSet(o element) grd3: o EDS ∈ ran(EnumeratedDataSet corresp EnumeratedSet) grd4: EDS = EnumeratedDataSet corresp EnumeratedSet -1 (o EDS) grd5: DataValue Set \ DataValue = ∅ grd6: element ∈ DataValue Set \ DataValue then act1: DataValue : = DataValue ∪ {element} act2: DataValue elements EnumeratedDataSet(element) : = EDS act3: DataValue corresp SetItem(element) : = o element act4: DataValue valueO f DataSet(element) : = EDS end Event rule b5 1 convergent = handling the addition of a constant, sub set of an instance of Concept (case where the concept corresponds to an abstract set) any CO o CO PCO o lg o PCO where grd0: dom(Constant typing Property) \ (ran(Concept corresp Constant) ∪ ran(Individual corresp Constant) ∪ ran(DataValue corresp Constant) ∪ ran(Relation corresp Constant) ∪ ran(Attribute corresp Constant) ∪ ran(RelationMaplet corresp Constant) ∪ ran(AttributeMaplet corresp Constant) ∪ ran(Attribute Type) ∪ ran(Relation Type)) = ∅ grd1: o CO ∈ dom(Constant typing Property) \ (ran(Concept corresp Constant) ∪ ran(Individual corresp Constant) ∪ ran(DataValue corresp Constant) ∪ ran(Relation corresp Constant) ∪ ran(Attribute corresp Constant) ∪ ran(RelationMaplet corresp Constant) ∪ ran(AttributeMaplet corresp Constant) ∪ ran(Attribute Type) ∪ ran(Relation Type)) grd2: o lg = Constant typing Property(o CO) grd3: LogicFormula uses Operators(o lg) = {1 → Inclusion OP} grd4: LogicFormula involves Sets(o lg) = ∅ grd5: (2 → o PCO) ∈ LogicFormula involves Sets(o lg) grd6: o PCO ∈ ran(Concept corresp AbstractSet) grd7: PCO = Concept corresp AbstractSet -1 (o PCO) grd8: Concept Set \ Concept = ∅ grd9: CO ∈ Concept Set \ Concept grd10: Constant de f inedIn Component(o CO) ∈ ran(DomainModel corresp Component) then act1: Concept : = Concept ∪ {CO} act2: Concept corresp Constant(CO) : = o CO act3: Concept de f inedIn DomainModel(CO) : = DomainModel corresp Component -1 (Constant de f inedIn Component(o CO)) act4: Concept parentConcept Concept(CO) : = PCO act5: Concept isVariable(CO) : = FALSE end Event rule b5 2 convergent = handling the addition of a constant, sub set of an instance of Concept (case where the concept corresponds to a constant) any CO o CO PCO o lg o PCO where grd0: dom(Constant typing Property) \ (ran(Concept corresp Constant) ∪ ran(Individual corresp Constant) ∪ ran(DataValue corresp Constant) ∪ ran(Relation corresp Constant) ∪ ran(Attribute corresp Constant) ∪ ran(RelationMaplet corresp Constant) ∪ ran(AttributeMaplet corresp Constant) ∪ ran(Attribute Type) ∪ ran(Relation Type)) = ∅ grd1: o CO ∈ dom(Constant typing Property) \ (ran(Concept corresp Constant) ∪ ran(Individual corresp Constant) ∪ ran(DataValue corresp Constant) ∪ ran(Relation corresp Constant) ∪ ran(Attribute corresp Constant) ∪ ran(RelationMaplet corresp Constant) ∪ ran(AttributeMaplet corresp Constant) ∪ ran(Attribute Type) ∪ ran(Relation Type)) grd2: o lg = Constant typing Property(o CO) grd3: LogicFormula uses Operators(o lg) = {1 → Inclusion OP} grd4: LogicFormula involves Sets(o lg) = ∅ grd5: o PCO ∈ dom(Constant isInvolvedIn LogicFormulas) grd6: (2 → o lg) ∈ Constant isInvolvedIn LogicFormulas(o PCO) grd7: o PCO ∈ ran(Concept corresp Constant) grd8: PCO = Concept corresp Constant -1 (o PCO) grd9: Concept Set \ Concept = ∅ grd10: CO ∈ Concept Set \ Concept grd11: Constant de f inedIn Component(o CO) ∈ ran(DomainModel corresp Component) then act1: Concept : = Concept ∪ {CO} act2: Concept corresp Constant(CO) : = o CO act3: Concept de f inedIn DomainModel(CO) : = DomainModel corresp Component -1 (Constant de f inedIn Component(o CO)) act4: Concept parentConcept Concept(CO) : = PCO act5: Concept isVariable(CO) : = FALSE end Event rule b6 1 convergent = handling the addition of an individual (case where the concept corresponds to an abstract set) any ind o ind CO o lg o CO where grd0: dom(Constant typing Property) \ (ran(Concept corresp Constant) ∪ ran(Individual corresp Constant) ∪ ran(DataValue corresp Constant) ∪ ran(Relation corresp Constant) ∪ ran(Attribute corresp Constant) ∪ ran(RelationMaplet corresp Constant) ∪ ran(AttributeMaplet corresp Constant) ∪ ran(Attribute Type) ∪ ran(Relation Type)) = ∅ grd1: o ind ∈ dom(Constant typing Property) \ (ran(Concept corresp Constant) ∪ ran(Individual corresp Constant) ∪ ran(DataValue corresp Constant) ∪ ran(Relation corresp Constant) ∪ ran(Attribute corresp Constant) ∪ ran(RelationMaplet corresp Constant) ∪ ran(AttributeMaplet corresp Constant) ∪ ran(Attribute Type) ∪ ran(Relation Type)) grd2: o lg = Constant typing Property(o ind) grd3: LogicFormula uses Operators(o lg) = {1 → Belonging OP} grd4: LogicFormula involves Sets(o lg) = ∅ grd5: (2 → o CO) ∈ LogicFormula involves Sets(o lg) grd6: o CO ∈ ran(Concept corresp AbstractSet) grd7: CO = Concept corresp AbstractSet -1 (o CO) grd8: Individual Set \ Individual = ∅ grd9: ind ∈ Individual Set \ Individual then act1: Individual : = Individual ∪ {ind} act2: Individual individualO f Concept(ind) : = CO act3: Individual corresp Constant(ind) : = o ind end Event rule b6 2 convergent = handling the addition of an individual (case where the concept corresponds to a constant) any ind o ind CO o lg o CO where grd0: dom(Constant typing Property) \ (ran(Concept corresp Constant) ∪ ran(Individual corresp Constant) ∪ ran(DataValue corresp Constant) ∪ ran(Relation corresp Constant) ∪ ran(Attribute corresp Constant) ∪ ran(RelationMaplet corresp Constant) ∪ ran(AttributeMaplet corresp Constant) ∪ ran(Attribute Type) ∪ ran(Relation Type)) = ∅ grd1: o ind ∈ dom(Constant typing Property) \ (ran(Concept corresp Constant) ∪ ran(Individual corresp Constant) ∪ ran(DataValue corresp Constant) ∪ ran(Relation corresp Constant) ∪ ran(Attribute corresp Constant) ∪ ran(RelationMaplet corresp Constant) ∪ ran(AttributeMaplet corresp Constant) ∪ ran(Attribute Type) ∪ ran(Relation Type)) grd2: o lg = Constant typing Property(o ind) grd3: LogicFormula uses Operators(o lg) = {1 → Belonging OP} grd4: LogicFormula involves Sets(o lg) = ∅ grd5: o CO ∈ dom(Constant isInvolvedIn LogicFormulas) grd6: (2 → o lg) ∈ Constant isInvolvedIn LogicFormulas(o CO) grd7: o CO ∈ ran(Concept corresp Constant) grd8: CO = Concept corresp Constant -1 (o CO) grd9: Individual Set \ Individual = ∅ grd10: ind ∈ Individual Set \ Individual then act1: Individual : = Individual ∪ {ind} act2: Individual individualO f Concept(ind) : = CO act3: Individual corresp Constant(ind) : = o ind end Event rule b7 convergent = handling the addition of a data value any dva o dva DS o lg o DS where grd0: dom(Constant typing Property) \ (ran(Concept corresp Constant) ∪ ran(Individual corresp Constant) ∪ ran(DataValue corresp Constant) ∪ ran(Relation corresp Constant) ∪ ran(Attribute corresp Constant) ∪ ran(RelationMaplet corresp Constant) ∪ ran(AttributeMaplet corresp Constant) ∪ ran(Attribute Type) ∪ ran(Relation Type)) = ∅ grd1: o dva ∈ dom(Constant typing Property) \ (ran(Concept corresp Constant) ∪ ran(Individual corresp Constant) ∪ ran(DataValue corresp Constant) ∪ ran(Relation corresp Constant) ∪ ran(Attribute corresp Constant) ∪ ran(RelationMaplet corresp Constant) ∪ ran(AttributeMaplet corresp Constant) ∪ ran(Attribute Type) ∪ ran(Relation Type)) grd2: o lg = Constant typing Property(o dva) grd3: LogicFormula uses Operators(o lg) = {1 → Belonging OP} grd4: LogicFormula involves Sets(o lg) = ∅ grd5: (2 → o DS) ∈ LogicFormula involves Sets(o lg) grd6: o DS ∈ ran(DataSet corresp Set) grd7: DS = DataSet corresp Set -1 (o DS) grd8: DataValue Set \ DataValue = ∅ grd9: dva ∈ DataValue Set \ DataValue then act1: DataValue : = DataValue ∪ {dva} act2: DataValue valueO f DataSet(dva) : = DS act3: DataValue corresp Constant(dva) : = o dva end Event rule b8 1 convergent = handling the addition of a variable, sub set of an instance of Concept (case where the concept corresponds to an abstract set)
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 1 Figure B.1 -The revised SysML/KAOS domain metamodel

  an association, then no individual of x can be a maplet individual. • x ∈ MapletIndividual ∩ dom(MapletIndividual antecedent Individual) ⇒ MapletIndividual antecedent Individual(x) ∈ Association domain Concept(Individual individualOf Concept(x)): if maplet individual x has an antecedent, then the antecedent is an individual of the domain of its association. • x ∈ MapletIndividual ∩ dom(MapletIndividual image Individual) ⇒ MapletIndividual image Individual(x) ∈ Association range Concept(Individual individualOf Concept(x)): B.2. Event-B Specification of the Adjusted SysML/KAOS Domain Modeling Language dm constr inv1 7: Concept isEnumeration( BOOL) = TRUE dm constr inv1 8: { TRUE, FALSE} ⊆ Individual dm constr inv1 9: Individual individualO f Concept( TRUE) = BOOL dm constr inv1 10: Individual individualO f Concept( FALSE) = BOOL dm constr inv1 11: De f aultDataType -Concept de f inedIn DomainModel ∈ (Concept\De f aultDataType) → DomainModel dm constr inv1 12: { TRUE, FALSE} -Individual de f inedIn DomainModel ∈ (Individual \ { TRUE, FALSE}) → DomainModel dm constr inv1 13: ∀ind•(ind ∈ Individual \ MapletIndividual ⇒ Individual isNamed(ind) = TRUE) dm constr inv1 14: ∀ind•((ind ∈ Individual ∧ Individual isNamed(ind) = FALSE) ⇒ Individual isVariable(ind) = FALSE) dm constr inv1 15: ∀ind•(ind ∈ dom(MapletIndividual antecedent Individual)∩dom(MapletIndividual image Individual) ⇒ (Individual isNamed(MapletIndividual antecedent Individual(ind)) = TRUE ∧ Individual isNamed(MapletIndividual image Individual(ind)) = TRUE)) dm constr inv1 16: ∀ind•((ind ∈ MapletIndividual ∧ Individual isNamed(ind) = FALSE) ⇒ ind ∈ dom(MapletIndividual antecedent Individual) ∩ dom(MapletIndividual image Individual)) dm constr inv1 17: ∀co•(co ∈ Concept \ (Association ∪ De f inedConcept ∪ dom(Concept parentConcept Concept)) ⇒ Concept isVariable(co) = FALSE) dm constr inv1 18: ∀co•((co ∈ Concept ∧ Concept isEnumeration(co) = TRUE) ⇒ Concept isVariable(co) = FALSE) dm constr inv1 19: ∀ind•((ind ∈ dom(MapletIndividual antecedent Individual)∩dom(MapletIndividual image Individual) ∧ Individual isVariable(ind) = FALSE) ⇒ (Individual isVariable(MapletIndividual antecedent Individual(ind)) = FALSE ∧ Individual isVariable(MapletIndividual image Individual(ind)) = FALSE)) dm constr inv1 20: ∀co•((co ∈ Association ∧ Concept isVariable(co) = FALSE) ⇒ (Concept isVariable(Association domain Concept(co)) = FALSE ∧ Concept isVariable(Association range Concept(co)) = FALSE)) dm constr inv1 21: Concept parentConcept Concept ∩ (Concept id) = ∅ added to discharge a proof dm constr inv1 22: Association domain Concept ∩ (Concept id) = ∅ added to discharge a proof dm constr inv1 23: Association range Concept ∩ (Concept id) = ∅ added to discharge a proof dm constr inv1 24: Individual initialValue Individual ∩ (Individual id) = ∅ added to discharge a proof dm constr inv1 25: MapletIndividual antecedent Individual ∩ (Individual id) = ∅ added to discharge a proof dm constr inv1 26: MapletIndividual image Individual ∩ (Individual id) = ∅ added to discharge a proof dm constr inv1 27: ∀co•((co ∈ Concept∧Concept isEnumeration(co) = TRUE)⇒Individual individualO f Concept -1 [{co}]

Set - 1

 1 (o pxx) ∈ cls(Concept parentConcept Concept)[{Concept corresp Variable -1 (o pxx v)}] Constant included in another constant (the correspondence of the parent concept or of its ancestor) isom inv1 2 2: ∀o xx, o pxx, o lg•( ( o xx ∈ ran(Concept corresp Constant) ∧ o lg = Constant typing Property(o xx) ∧ LogicFormula uses Operators(o lg)

MACHINEB. 3 .B. 3 .B. 3 .

 333 event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context EVENTS Event rule 3 convergent = Abstract concept that is not an enumeration any CO o CO where grd0: Concept isEnumeration -1 [{FALSE}]\(dom(Concept corresp Set)∪dom(Concept parentConcept Concept)∪ Association ∪ De f inedConcept ∪ De f aultDataType) = ∅ grd1: CO ∈ Concept isEnumeration -1 [{FALSE}]\(dom(Concept corresp Set)∪dom(Concept parentConcept Concept)∪ Association ∪ De f inedConcept ∪ De f aultDataType) grd2: Concept de f inedIn DomainModel(CO) ∈ dom(DomainModel corresp Component) grd3: Set Set \ Set = ∅ grd4: o CO ∈ Set Set \ Set then act1: AbstractSet : = AbstractSet ∪ {o CO} act2: Set : = Set ∪ {o CO} act3: Concept corresp Set(CO) : = o CO act4: Set de f inedIn Component(o CO) : = DomainModel corresp Component(Concept de f inedIn DomainModel(CO)) end Event rule 4 convergent = Abstract concept that is an enumeration any CO o CO elements o elements mapping elements o elements where grd0: Concept isEnumeration -1 [{TRUE}]\(dom(Concept corresp Set)∪dom(Concept parentConcept Concept)∪ Association ∪ De f inedConcept ∪ De f aultDataType) = ∅ 255 B.3. Definition of the Adjusted Translation Rules grd1: CO ∈ Concept isEnumeration -1 [{TRUE}]\(dom(Concept corresp Set)∪dom(Concept parentConcept Concept)∪ Association ∪ De f inedConcept ∪ De f aultDataType) grd2: Concept de f inedIn DomainModel(CO) ∈ dom(DomainModel corresp Component) grd3: Set Set \ Set = ∅ grd4: o CO ∈ Set Set \ Set grd5: o elements ⊆ SetItem Set grd6: o elements ∩ SetItem = ∅ grd7: elements = (Individual individualO f Concept -1 [{CO}] ∩ Individual isVariable -1 [{FALSE}]) grd8: card(o elements) = card(elements) grd9: mapping elements o elements ∈ elements o elements then act1: EnumeratedSet : = EnumeratedSet ∪ {o CO} act2: Set : = Set ∪ {o CO} act3: Concept corresp Set(CO) : = o CO act4: Set de f inedIn Component(o CO) : = DomainModel corresp Component(Concept de f inedIn DomainModel(CO)) act5: SetItem : = SetItem ∪ o elements @act6 SetItem itemOf EnumeratedSet : = SetItem itemOf EnumeratedSet ∪ {(xx → yy) |xx∈ o elements ∧yy=o CO} act6: SetItem itemO f EnumeratedSet : = SetItem itemO f EnumeratedSet ∪ (λxx•xx ∈ o elements|o CO) act7: Individual corresp SetItem : = Individual corresp SetItem ∪ mapping elements o elements end Event rule 5 convergent = Concept with constant parent any CO o CO c o CO v PCO o lg o PCO s o PCO c where grd0: dom(Concept parentConcept Concept) \ (De f aultDataType ∪ dom(Concept corresp Constant) ∪ dom(Concept corresp Variable)) = ∅ grd1: CO ∈ dom(Concept parentConcept Concept) \ (De f aultDataType ∪ dom(Concept corresp Constant) ∪ dom(Concept corresp Variable)) grd2: dom(Concept corresp Set) ∪ dom(Concept corresp Constant) = ∅ grd3: PCO ∈ dom(Concept corresp Set) ∪ dom(Concept corresp Constant) grd4: Concept parentConcept Concept(CO) = PCO grd5: Concept de f inedIn DomainModel(CO) ∈ dom(DomainModel corresp Component) grd6: Concept isVariable(CO) = FALSE⇒((Constant Set\Constant = ∅)∧(o CO c ∈ Constant Set\Constant))256 Definition of the Adjusted Translation Rulesgrd7: Concept isVariable(CO) = TRUE ⇒ ((Variable Set \ Variable = ∅) ∧ (o CO v ∈ Variable Set \ Variable)) grd8: LogicFormula Set \ LogicFormula = ∅ grd9: o lg ∈ LogicFormula Set \ LogicFormula grd10: o PCO s ∈ Set ∧ (PCO ∈ dom(Concept corresp Set) ⇒ o PCO s = Concept corresp Set(PCO)) grd11: o PCO c ∈ Constant∧(PCO ∈ dom(Concept corresp Constant)⇒o PCO c = Concept corresp Constant(PCO)) then act1: Constant : = {TRUE → Constant, FALSE → Constant ∪ {o CO c}}(bool(Concept isVariable(CO) = TRUE)) act2: Variable : = {TRUE → Variable ∪ {o CO v}, FALSE → Variable}(bool(Concept isVariable(CO) = TRUE)) act3: Concept corresp Constant : = {TRUE → Concept corresp Constant, FALSE → Concept corresp Constant ∪ {CO → o CO c}}(bool(Concept isVariable(CO) = TRUE)) act4: Concept corresp Variable : = {TRUE → Concept corresp Variable ∪ {CO → o CO v}, FALSE → Concept corresp Variable}(bool(Concept isVariable(CO) = TRUE)) act5: Constant de f inedIn Component : = {TRUE → Constant de f inedIn Component, FALSE → Constant de f inedIn Component∪{o CO c → DomainModel corresp Component(Concept de f inedIn DomainModel(CO))}}(bool(Concept isVariable(CO) = TRUE)) act6: Variable de f inedIn Component : = {TRUE → Variable de f inedIn Component ∪ {o CO v → DomainModel corresp Component(Concept de f inedIn DomainModel(CO))}, FALSE → Variable de f inedIn Component}(bool(Concept isVariable(CO) = TRUE)) act7: Property : = {TRUE → Property, FALSE → Property ∪ {o lg}}(bool(Concept isVariable(CO) = TRUE)) act8: Invariant : = {TRUE → Invariant ∪ {o lg}, FALSE → Invariant}(bool(Concept isVariable(CO) = TRUE)) act9: LogicFormula : = LogicFormula ∪ {o lg} act10: LogicFormula uses Operators(o lg) : = {1 → Inclusion OP} act11: Constant isInvolvedIn LogicFormulas : = {TRUE → ({TRUE → Constant isInvolvedIn LogicFormulas, FALSE → Constant isInvolvedIn LogicFormulas -{o PCO c → Constant isInvolvedIn LogicFormulas(o PCO c) ∪ {2 → o lg}}}(bool(PCO ∈ dom(Concept corresp Set)))), FALSE → ({TRUE → Constant isInvolvedIn LogicFormulas ∪ {o CO c → {1 → o lg}}, FALSE → Constant isInvolvedIn LogicFormulas -{(o CO c → {1 → o lg}), o PCO c → Constant isInvolvedIn LogicFormulas(o PCO c)∪{2 → o lg}}}(bool(PCO ∈ dom(Concept corresp Set))))} (bool(Concept isVariable(CO) = TRUE)) act12: Invariant involves Variables : = {TRUE → Invariant involves Variables ∪ {o lg → {1 → o CO v}}, FALSE → Invariant involves Variables}(bool(Concept isVariable(CO) = TRUE)) act13: LogicFormula involves Sets : = {TRUE → LogicFormula involves Sets ∪ {o lg → {2 → o PCO s}}, FALSE → LogicFormula involves Sets ∪ {o lg → ∅}}(bool(PCO ∈ dom(Concept corresp Set))) B.3. Definition of the Adjusted Translation Rules act14: LogicFormula de f inedIn Component(o lg) : = DomainModel corresp Component(Concept de f inedIn DomainModel(CO)) act15: Constant typing Property : = {TRUE → Constant typing Property, FALSE → Constant typing Property∪ {o CO c → o lg}}(bool(Concept isVariable(CO) = TRUE)) act16: Variable typing Invariant : = {TRUE → Variable typing Invariant ∪ {o CO v → o lg}, FALSE → Variable typing Invariant}(bool(Concept isVariable(CO) = TRUE)) end Event rule 6 convergent = Constant concept with variable parent any CO o CO PCO o PCO PPCO o lg p o lg i o PPCO s o PPCO c where grd0: (dom(Concept parentConcept Concept) ∩ Concept isVariable -1 [{FALSE}]) \ (De f aultDataType ∪ dom(Concept corresp Constant)) = ∅ grd1: CO ∈ (dom(Concept parentConcept Concept) ∩ Concept isVariable -1 [{FALSE}]) \ (De f aultDataType ∪ dom(Concept corresp Constant)) grd2: Concept parentConcept Concept(CO) = PCO grd3: PCO ∈ dom(Concept corresp Variable) grd4: o PCO = Concept corresp Variable(PCO) grd5: dom(Concept corresp Set) ∪ dom(Concept corresp Constant) = ∅ grd6: PPCO ∈ dom(Concept corresp Set) ∪ dom(Concept corresp Constant) grd7: PPCO ∈ cls(Concept parentConcept Concept)[{PCO}] grd7 1: PPCO ∈ ran(Concept parentConcept Concept) grd8: Concept de f inedIn DomainModel(CO) ∈ dom(DomainModel corresp Component) grd9: (Constant Set \ Constant = ∅) ∧ (o CO ∈ Constant Set \ Constant) grd10: LogicFormula Set \ LogicFormula = ∅ grd11: {o lg p, o lg i} ⊆ LogicFormula Set \ LogicFormula grd12: o lg p = o lg i grd13: o PPCO s ∈ Set ∧ (PPCO ∈ dom(Concept corresp Set) ⇒ o PPCO s = Concept corresp Set(PPCO)) grd14: o PPCO c ∈ Constant∧(PPCO ∈ dom(Concept corresp Constant)⇒o PPCO c = Concept corresp Constant(PPCO)) then act1: Constant : = Constant ∪ {o CO} act2: Concept corresp Constant(CO) : = o CO act3: Constant de f inedIn Component(o CO) : = DomainModel corresp Component(Concept de f inedIn DomainModel(CO)) 258 Definition of the Adjusted Translation Rules act4: Property : = Property ∪ {o lg p} act5: Invariant : = Invariant ∪ {o lg i} act6: LogicFormula : = LogicFormula ∪ {o lg p, o lg i} act7: LogicFormula uses Operators : = LogicFormula uses Operators ∪ ({o lg p, o lg i}×{{1 → Inclusion OP}}) act8: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -({o CO → {1 → o lg p, 1 → o lg i}} ∪ ({TRUE → ∅, FALSE → {o PPCO c → Constant isInvolvedIn LogicFormulas(o PPCO c) ∪ {2 → o lg p}}}(bool(PPCO ∈ dom(Concept corresp Set))))) act9: Invariant involves Variables(o lg i) : = {2 → o PCO} act10: LogicFormula involves Sets : = LogicFormula involves Sets ∪ {o lg i → ∅} ∪ {TRUE → {o lg p → {2 → o PPCO s}}, FALSE → {o lg p → ∅}}(bool(PPCO ∈ dom(Concept corresp Set))) act11: LogicFormula de f inedIn Component : = LogicFormula de f inedIn Component ∪ ({o lg p, o lg i} × {DomainModel corresp Component(Concept de f inedIn DomainModel(CO))}) act12: Constant typing Property(o CO) : = o lg p end Event rule 7 convergent = Variable concept with variable parent any CO o CO PCO o lg o PCO where grd0: (dom(Concept parentConcept Concept) ∩ Concept isVariable -1 [{TRUE}]) \ (De f aultDataType ∪ dom(Concept corresp Variable)) = ∅ grd1: CO ∈ (dom(Concept parentConcept Concept) ∩ Concept isVariable -1 [{TRUE}]) \ (De f aultDataType ∪ dom(Concept corresp Variable)) grd2: Concept parentConcept Concept(CO) = PCO grd3: PCO ∈ dom(Concept corresp Variable) grd4: o PCO = Concept corresp Variable(PCO) grd5: Concept de f inedIn DomainModel(CO) ∈ dom(DomainModel corresp Component) grd6: Variable Set \ Variable = ∅ grd7: o CO ∈ Variable Set \ Variable grd8: LogicFormula Set \ LogicFormula = ∅ grd9: o lg ∈ LogicFormula Set \ LogicFormula then act1: Variable : = Variable ∪ {o CO} act2: Concept corresp Variable(CO) : = o CO act3: Variable de f inedIn Component(o CO) : = DomainModel corresp Component(Concept de f inedIn DomainModel(CO)) 259 Definition of the Adjusted Translation Rules act4: Invariant : = Invariant ∪ {o lg} act5: LogicFormula : = LogicFormula ∪ {o lg} act6: LogicFormula uses Operators(o lg) : = {1 → Inclusion OP} act7: Invariant involves Variables(o lg) : = {1 → o CO, 2 → o PCO} act8: LogicFormula de f inedIn Component(o lg) : = DomainModel corresp Component(Concept de f inedIn DomainModel(CO)) act9: Variable typing Invariant(o CO) : = o lg act10: LogicFormula involves Sets(o lg) : = ∅ end Event rule 8 convergent = Enumerated concept with parent any CO o CO o lg inds o inds bij o inds where grd0: (dom(Concept parentConcept Concept)∩(Concept isEnumeration -1 [{TRUE}])∩dom(Concept corresp Constant))\ (De f aultDataType ∪ dom(ConcreteEnumeration corresp IndividualSetLogicalFormula)) = ∅ grd1: CO ∈ (dom(Concept parentConcept Concept)∩Concept isEnumeration -1 [{TRUE}]∩dom(Concept corresp Constant))\ (De f aultDataType ∪ dom(ConcreteEnumeration corresp IndividualSetLogicalFormula)) grd2: Concept de f inedIn DomainModel(CO) ∈ dom(DomainModel corresp Component) grd3: o CO = Concept corresp Constant(CO) grd4: LogicFormula Set \ LogicFormula = ∅ grd5: o lg ∈ LogicFormula Set \ LogicFormula grd6: inds = Individual individualO f Concept -1 [{CO}] ∩ Individual isVariable -1 [{FALSE}] grd7: inds ⊆ dom(Individual corresp Constant) grd8: o inds = Individual corresp Constant[inds] grd9: card(o inds) = card(inds) grd10: bi j o inds ∈ o inds 2 . . (card(o inds) + 1) then act0: ConcreteEnumeration corresp IndividualSetLogicalFormula(CO) : = o lg act1: Property : = Property ∪ {o lg} act2: LogicFormula : = LogicFormula ∪ {o lg} act3: LogicFormula uses Operators(o lg) : = {1 → Equal2SetO f OP} act4: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -(({o CO → Constant isInvolvedIn -LogicFormulas(o CO) ∪ {1 → o lg}}) ∪ (λo ind•o ind ∈ o inds|Constant isInvolvedIn LogicFormulas(o ind) ∪ {bi j o inds(o ind) → o lg})) act5: LogicFormula involves Sets(o lg) : = ∅ B.3. Definition of the Adjusted Translation Rules act6: LogicFormula de f inedIn Component(o lg) : = DomainModel corresp Component(Concept de f inedIn DomainModel(CO)) end Event rule 9 10 convergent = correspondence of an instance of association any AS o AS c o AS v T AS c T AS v CO1 o CO1 s o CO1 c o CO1 v CO2 o CO2 s o CO2 c o CO2 v o lg type o lg item o DM where grd0: ((Association\dom(Concept parentConcept Concept))∪(Association∩dom(Concept parentConcept Concept)∩ (dom(Concept corresp Constant) ∪ dom(Concept corresp Variable)))) \ (dom(Association Type Constant) ∪ dom(Association Type Variable)) = ∅ grd1: AS ∈ ((Association\dom(Concept parentConcept Concept))∪(Association∩dom(Concept parentConcept Concept)∩ (dom(Concept corresp Constant) ∪ dom(Concept corresp Variable)))) \ (dom(Association Type Constant) ∪ dom(Association Type Variable)) grd2: AS ∈ dom(Concept corresp Constant) ⇒ o AS c = Concept corresp Constant(AS)
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 2613 Definition of the Adjusted Translation Rules grd15: o CO2 c ∈ Constant ∧ (CO2 ∈ dom(Concept corresp Constant) ⇒ o CO2 c = Concept corresp Constant(CO2)) grd16: o CO2 v ∈ Variable∧(CO2 ∈ dom(Concept corresp Variable)⇒o CO2 v = Concept corresp Variable(CO2)) grd17: Concept de f inedIn DomainModel(AS) ∈ dom(DomainModel corresp Component) grd18: LogicFormula Set \ LogicFormula = ∅ grd19: {o lg type, o lg item} ⊆ LogicFormula Set \ LogicFormula grd20: o DM = DomainModel corresp Component(Concept de f inedIn DomainModel(AS)) grd21: partition({T AS c, o AS c, o CO1 c, o CO2 c}, {T AS c}, {o AS c}, {o CO1 c, o CO2 c}) grd22: partition({T AS v, o AS v, o CO1 v, o CO2 v}, {T AS v}, {o AS v}, {o CO1 v, o CO2 v}) grd23: o lg type = o lg item then act1: Constant

:B. 3 .B. 3 .grd7 1 :B. 3 .B. 3 .B. 3 .∩∩B. 3 .∩B. 3 .∩∩B. 3 .B. 3 .B. 3 .B. 4 .B. 4 B. 4 . 1 1 6 B. 4 .B. 4 .∧B. 4 .B. 4 .

 331333333334441164444 LogicFormula involves Sets : = LogicFormula involves Sets∪{o lg item → ∅} ∪{o lg type → ( ({TRUE → {2 → o CO1 s}, FALSE → ∅}(bool(CO1 ∈ dom(Concept corresp Set)))) ∪({TRUE → {3 → o CO2 s}, FALSE → ∅}(bool(CO2 ∈ dom(Concept corresp Set)))) )} B.3. Definition of the Adjusted Translation Rules act18: LogicFormula de f inedIn Component : = LogicFormula de f inedIn Component ∪ ({o lg type, o lg item} × {o DM}) end Event rule 11 convergent = Individual of a constant concept that is not an abstract enumeration any ind o ind c o ind v CO o lg o CO s o CO c where grd0: Individual \ (MapletIndividual ∪ dom(Individual corresp Constant) ∪ dom(Individual corresp Variable)) = ∅ grd1: ind ∈ Individual \ (MapletIndividual ∪ dom(Individual corresp Constant) ∪ dom(Individual corresp Variable)) grd2: dom(Concept corresp Set AbstractSet) ∪ dom(Concept corresp Constant) = ∅ grd3: CO ∈ dom(Concept corresp Set AbstractSet) ∪ dom(Concept corresp Constant) grd4: Individual individualO f Concept(ind) = CO grd5: Individual de f inedIn DomainModel(ind) ∈ dom(DomainModel corresp Component) grd6: Individual isVariable(ind) = FALSE ⇒ ((Constant Set \ Constant = ∅) ∧ (o ind c ∈ Constant Set \ Constant)) grd7: Individual isVariable(ind) = TRUE ⇒ ((Variable Set \ Variable = ∅) ∧ (o ind v ∈ Variable Set \ Variable)) grd8: LogicFormula Set \ LogicFormula = ∅ grd9: o lg ∈ LogicFormula Set \ LogicFormula grd10: o CO s ∈ Set ∧ (CO ∈ dom(Concept corresp Set) ⇒ o CO s = Concept corresp Set(CO)) grd11: o CO c ∈ Constant ∧ (CO ∈ dom(Concept corresp Constant) ⇒ o CO c = Concept corresp Constant(CO)) then act1: Constant : = {TRUE → Constant, FALSE → Constant ∪ {o ind c}}(bool(Individual isVariable(ind) = TRUE)) act2: Variable : = {TRUE → Variable ∪ {o ind v}, FALSE → Variable}(bool(Individual isVariable(ind) = TRUE)) act3: Individual corresp Constant : = {TRUE → Individual corresp Constant, FALSE → Individual corresp Constant ∪ {ind → o ind c}}(bool(Individual isVariable(ind) = TRUE)) act4: Individual corresp Variable : = {TRUE → Individual corresp Variable ∪ {ind → o ind v}, FALSE → Individual corresp Variable}(bool(Individual isVariable(ind) = TRUE)) act5: Constant de f inedIn Component : = {TRUE → Constant de f inedIn Component, FALSE → Constant de f inedIn -Component ∪ {o ind c → DomainModel corresp Component( Individual de f inedIn DomainModel(ind))}}(bool(Individual isVariable(ind) = TRUE)) 264 Definition of the Adjusted Translation Rules act6: Variable de f inedIn Component : = {TRUE → Variable de f inedIn Component∪{o ind v → DomainModel corresp -Component(Individual de f inedIn DomainModel(ind))}, FALSE → Variable de f inedIn Component}(bool(Individual isVariable(ind) = TRUE)) act7: Property : = {TRUE → Property, FALSE → Property ∪ {o lg}}(bool(Individual isVariable(ind) = TRUE)) act8: Invariant : = {TRUE → Invariant ∪ {o lg}, FALSE → Invariant}(bool(Individual isVariable(ind) = TRUE)) act9: LogicFormula : = LogicFormula ∪ {o lg} act10: LogicFormula uses Operators(o lg) : = {1 → Belonging OP} act11: Constant isInvolvedIn LogicFormulas : = {TRUE → ({TRUE → Constant isInvolvedIn LogicFormulas, FALSE → Constant isInvolvedIn LogicFormulas -{o CO c → Constant isInvolvedIn LogicFormulas(o CO c) ∪ {2 → o lg}}}(bool(CO ∈ dom(Concept corresp Set)))), FALSE → ({TRUE → Constant isInvolvedIn LogicFormulas ∪ {o ind c → {1 → o lg}}, FALSE → Constant isInvolvedIn LogicFormulas -{(o ind c → {1 → o lg}), o CO c → Constant isInvolvedIn Logic-Formulas(o CO c)∪{2 → o lg}}}(bool(CO ∈ dom(Concept corresp Set))))} (bool(Individual isVariable(ind) = TRUE)) act12: Invariant involves Variables : = {TRUE → Invariant involves Variables ∪ {o lg → {1 → o ind v}}, FALSE → Invariant involves Variables}(bool(Individual isVariable(ind) = TRUE)) act13: LogicFormula involves Sets : = {TRUE → LogicFormula involves Sets ∪ {o lg → {2 → o CO s}}, FALSE → LogicFormula involves Sets ∪ {o lg → ∅}}(bool(CO ∈ dom(Concept corresp Set))) act14: LogicFormula de f inedIn Component(o lg) : = DomainModel corresp Component(Individual de f inedIn DomainModel(ind)) act15: Constant typing Property : = {TRUE → Constant typing Property, FALSE → Constant typing Property ∪ {o ind c → o lg}}(bool(Individual isVariable(ind) = TRUE)) act16: Variable typing Invariant : = {TRUE → Variable typing Invariant ∪ {o ind v → o lg}, FALSE → Variable typing Invariant}(bool(Individual isVariable(ind) = TRUE)) end Event rule 12 convergent = Constant individual of a variable concept any ind o ind CO o CO PPCO o lg p o lg i o PPCO s o PPCO c where grd0: (Individual ∩ Individual isVariable -1 [{FALSE}]) \ (MapletIndividual ∪ dom(Individual corresp Constant)) = ∅ grd1: ind ∈ (Individual ∩ Individual isVariable -1 [{FALSE}]) \ (MapletIndividual ∪ dom(Individual corresp Constant)) grd2: Individual individualO f Concept(ind) = CO grd3: CO ∈ dom(Concept corresp Variable) 265 Definition of the Adjusted Translation Rules grd4: o CO = Concept corresp Variable(CO) grd5: dom(Concept corresp Set) ∪ dom(Concept corresp Constant) = ∅ grd6: PPCO ∈ dom(Concept corresp Set) ∪ dom(Concept corresp Constant) grd7: PPCO ∈ cls(Concept parentConcept Concept)[{CO}] PPCO ∈ ran(Concept parentConcept Concept) grd8: Individual de f inedIn DomainModel(ind) ∈ dom(DomainModel corresp Component) grd9: (Constant Set \ Constant = ∅) ∧ (o ind ∈ Constant Set \ Constant) grd10: LogicFormula Set \ LogicFormula = ∅ grd11: {o lg p, o lg i} ⊆ LogicFormula Set \ LogicFormula grd12: o lg p = o lg i grd13: o PPCO s ∈ Set ∧ (PPCO ∈ dom(Concept corresp Set) ⇒ o PPCO s = Concept corresp Set(PPCO)) grd14: o PPCO c ∈ Constant∧(PPCO ∈ dom(Concept corresp Constant)⇒o PPCO c = Concept corresp Constant(PPCO)) then act1: Constant : = Constant ∪ {o ind} act2: Individual corresp Constant(ind) : = o ind act3: Constant de f inedIn Component(o ind) : = DomainModel corresp Component(Individual de f inedIn DomainModel(ind)) act4: Property : = Property ∪ {o lg p} act5: Invariant : = Invariant ∪ {o lg i} act6: LogicFormula : = LogicFormula ∪ {o lg p, o lg i} act7: LogicFormula uses Operators : = LogicFormula uses Operators ∪ ({o lg p, o lg i}×{{1 → Belonging OP}}) act8: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -({o ind → {1 → o lg p, 1 → o lg i}} ∪ ({TRUE → ∅, FALSE → {o PPCO c → Constant isInvolvedIn LogicFormulas(o PPCO c) ∪ {2 → o lg p}}}(bool(PPCO ∈ dom(Concept corresp Set))))) act9: Invariant involves Variables(o lg i) : = {2 → o CO} act10: LogicFormula involves Sets : = LogicFormula involves Sets ∪ {o lg i → ∅} ∪ {TRUE → {o lg p → {2 → o PPCO s}}, FALSE → {o lg p → ∅}}(bool(PPCO ∈ dom(Concept corresp Set))) act11: LogicFormula de f inedIn Component : = LogicFormula de f inedIn Component ∪ ({o lg p, o lg i} × {DomainModel corresp Component(Individual de f inedIn DomainModel(ind))}) act12: Constant typing Property(o ind) : = o lg p end Event rule 13 convergent = Variable individual of a variable concept 266 Definition of the Adjusted Translation Rules any ind o ind CO o lg o CO where grd0:(Individual ∩ Individual isVariable -1 [{TRUE}]) \ (MapletIndividual ∪ dom(Individual corresp Variable)) = ∅ grd1: ind ∈ (Individual ∩ Individual isVariable -1 [{TRUE}]) \ (MapletIndividual ∪ dom(Individual corresp Variable)) grd2: Individual individualO f Concept(ind) = CO grd3: CO ∈ dom(Concept corresp Variable) grd4: o CO = Concept corresp Variable(CO) grd5: Individual de f inedIn DomainModel(ind) ∈ dom(DomainModel corresp Component) grd6: Variable Set \ Variable = ∅ grd7: o ind ∈ Variable Set \ Variable grd8: LogicFormula Set \ LogicFormula = ∅ grd9: o lg ∈ LogicFormula Set \ LogicFormulathen act1: Variable : = Variable ∪ {o ind} act2: Individual corresp Variable(ind) : = o ind act3: Variable de f inedIn Component(o ind) : = DomainModel corresp Component(Individual de f inedIn DomainModel(ind)) act4: Invariant : = Invariant ∪ {o lg} act5: LogicFormula : = LogicFormula ∪ {o lg} act6: LogicFormula uses Operators(o lg) : = {1 → Belonging OP} act7: Invariant involves Variables(o lg) : = {1 → o ind, 2 → o CO} act8: LogicFormula involves Sets(o lg) : = ∅ act9: LogicFormula de f inedIn Component(o lg) : = DomainModel corresp Component(Individual de f inedIn DomainModel(ind)) act10: Variable typing Invariant(o ind) : = o lg end Event rule 14 convergent = Variable individual of a concept that is an abstract enumeration any ind o ind CO o lg o CO where grd0: (Individual ∩ Individual isVariable -1 [{TRUE}]) \ (MapletIndividual ∪ dom(Individual corresp Variable)) = ∅ B.3. Definition of the Adjusted Translation Rules grd1: ind ∈ (Individual ∩ Individual isVariable -1 [{TRUE}]) \ (MapletIndividual ∪ dom(Individual corresp Variable)) grd2: Individual individualO f Concept(ind) = CO grd3: CO ∈ dom(Concept isEnumeration -1 [{TRUE}] Concept corresp Set)\dom(Concept parentConcept Concept) grd4: o CO = Concept corresp Set(CO) grd5: Individual de f inedIn DomainModel(ind) ∈ dom(DomainModel corresp Component) grd6: Variable Set \ Variable = ∅ grd7: o ind ∈ Variable Set \ Variable grd8: LogicFormula Set \ LogicFormula = ∅ grd9: o lg ∈ LogicFormula Set \ LogicFormula then act1: Variable : = Variable ∪ {o ind} act2: Individual corresp Variable(ind) : = o ind act3: Variable de f inedIn Component(o ind) : = DomainModel corresp Component(Individual de f inedIn DomainModel(ind)) act4: Invariant : = Invariant ∪ {o lg} act5: LogicFormula : = LogicFormula ∪ {o lg} act6: LogicFormula uses Operators(o lg) : = {1 → Belonging OP} act7: Invariant involves Variables(o lg) : = {1 → o ind} act8: LogicFormula involves Sets(o lg) : = {2 → o CO} act9: LogicFormula de f inedIn Component(o lg) : = DomainModel corresp Component(Individual de f inedIn DomainModel(ind)) act10: Variable typing Invariant(o ind) : = o lg end Event rule 15 0 convergent = correspondence of an unnamed maplet individual any ind AS o AS c o AS v ant o ant c o ant v im o im c o im v o lg o DM where grd0: (MapletIndividual ∩ Individual isNamed -1 [{FALSE}]) \ dom(UnnamedMapletIndividual corresp LogicalFormula) = ∅ grd1: ind ∈ (MapletIndividual ∩ Individual isNamed -1 [{FALSE}]) \ dom(UnnamedMapletIndividual corresp LogicalFormula) grd2: Association ∩ (dom(Concept corresp Variable) ∪ dom(Concept corresp Constant)) = ∅ grd3: AS ∈ Association ∩ (dom(Concept corresp Variable) ∪ dom(Concept corresp Constant)) 268 Definition of the Adjusted Translation Rules grd4: Individual individualO f Concept(ind) = AS grd5: o AS c ∈ Constant ∧ (AS ∈ dom(Concept corresp Constant) ⇒ o AS c = Concept corresp Constant(AS)) grd6: o AS v ∈ Variable ∧ (AS ∈ dom(Concept corresp Variable) ⇒ o AS v = Concept corresp Variable(AS)) grd7: Individual de f inedIn DomainModel(ind) ∈ dom(DomainModel corresp Component) grd8: ant = MapletIndividual antecedent Individual(ind) grd9: im = MapletIndividual image Individual(ind) grd10: dom(Individual corresp Constant) ∪ dom(Individual corresp Variable) = ∅ grd11: {ant, im} ⊆ dom(Individual corresp Constant) ∪ dom(Individual corresp Variable) grd12: o ant c ∈ Constant ∧ (ant ∈ dom(Individual corresp Constant) ⇒ o ant c = Individual corresp Constant(ant)) grd13: o ant v ∈ Variable ∧ (ant / ∈ dom(Individual corresp Constant) ⇒ o ant v = Individual corresp Variable(ant)) grd14: o im c ∈ Constant ∧ (im ∈ dom(Individual corresp Constant) ⇒ o im c = Individual corresp Constant(im)) grd15: o im v ∈ Variable ∧ (im / ∈ dom(Individual corresp Constant) ⇒ o im v = Individual corresp Variable(im)) grd16: LogicFormula Set \ LogicFormula = ∅ grd17: o lg ∈ LogicFormula Set \ LogicFormula grd18: o DM = DomainModel corresp Component(Individual de f inedIn DomainModel(ind)) grd19: partition({o AS c, o ant c, o im c}, {o AS c}, {o ant c, o im c}) grd20: partition({o AS v, o ant v, o im v}, {o AS v}, {o ant v, o im v}) then act1: Property : = Property ∪ ({TRUE → {o lg}, FALSE → ∅}(bool(ant ∈ dom(Individual corresp Constant) ∧ im ∈ dom(Individual corresp Constant) ∧ AS ∈ dom(Concept corresp Constant)))) act2: Invariant : = Invariant ∪ ({TRUE → ∅, FALSE → {o lg}}(bool(ant ∈ dom(Individual corresp Constant) ∧ im ∈ dom(Individual corresp Constant) ∧ AS ∈ dom(Concept corresp Constant)))) act3: LogicFormula : = LogicFormula ∪ {o lg} act4: LogicFormula uses Operators(o lg) : = {1 → Maplet OP, 2 → Belonging OP} act5: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -( ({TRUE → {o AS c → Constant isInvolvedIn LogicFormulas(o AS c)∪{3 → o lg}}, FALSE → ∅}(bool(AS ∈ dom(Concept corresp Constant)))) ∪ ({TRUE → ({TRUE → ({TRUE → {o ant c → Constant isInvolvedIn LogicFormulas(o ant c) ∪ ({1, 2} × {o lg})}, FALSE → {o ant c → Constant isInvolvedIn LogicFormulas(o ant c) ∪ {1 → o lg}, o im c → Constant isInvolvedIn LogicFormulas(o im c)∪{2 → o lg}}}(bool(o ant c = o im c))), FALSE → {o ant c → Constant isInvolvedIn LogicFormulas(o ant c)∪{1 → o lg}}}(bool(im ∈ dom(Individual corresp Constant)))), FALSE → ({TRUE → {o im c → Constant isInvolvedIn LogicFormulas(o im c) ∪ {2 → o lg}}, FALSE → ∅}(bool(im ∈ dom(Individual corresp Constant))))}(bool(ant ∈ dom(Individual corresp Constant)))) ) 269 Definition of the Adjusted Translation Rules act6: Invariant involves Variables : = Invariant involves Variables∪ ({TRUE → ∅, FALSE → {o lg → ( ({TRUE → ∅, FALSE → {1 → o ant v}}(bool(ant ∈ dom(Individual corresp Constant)))) ∪ ({TRUE → ∅, FALSE → {2 → o im v}}(bool(im ∈ dom(Individual corresp Constant)))) ∪ ({TRUE → ∅, FALSE → {3 → o AS v}}(bool(AS ∈ dom(Concept corresp Constant))))) }}(bool(ant ∈ dom(Individual corresp Constant)∧ im ∈ dom(Individual corresp Constant) ∧ AS ∈ dom(Concept corresp Constant))))act7: LogicFormula involves Sets(o lg) : = ∅ act8: LogicFormula de f inedIn Component(o lg) : = o DM act9: UnnamedMapletIndividual corresp LogicalFormula(ind) : = o lg end Event rule 15 1 convergent = correspondence of a named variable maplet individual any ind o ind AS o AS c o AS v ant o ant c o ant v im o im c o im v o lg type o lg item o DM where grd0:(MapletIndividual ∩ Individual isNamed -1 [{TRUE}] Individual isVariable -1 [{TRUE}]) \ dom(Individual corresp Variable) = ∅ grd1: ind ∈ (MapletIndividual ∩ Individual isNamed -1 [{TRUE}] Individual isVariable -1 [{TRUE}]) \ dom(Individual corresp Variable) grd2: Association ∩ (dom(Concept corresp Variable) ∪ dom(Concept corresp Constant)) = ∅ grd3: AS ∈ Association ∩ (dom(Concept corresp Variable) ∪ dom(Concept corresp Constant)) grd4: Individual individualO f Concept(ind) = AS grd5: o AS c ∈ Constant ∧ (AS ∈ dom(Concept corresp Constant) ⇒ o AS c = Concept corresp Constant(AS)) grd6: o AS v ∈ Variable ∧ (AS ∈ dom(Concept corresp Variable) ⇒ o AS v = Concept corresp Variable(AS)) grd7: Individual de f inedIn DomainModel(ind) ∈ dom(DomainModel corresp Component) grd8: Variable Set \ Variable = ∅ grd9: o ind ∈ Variable Set \ Variable grd10: ant ∈ Individual ∧ (ind ∈ dom(MapletIndividual antecedent Individual) ⇒ ant = MapletIndividual antecedent Individual(ind)) grd11: im ∈ Individual ∧ (ind ∈ dom(MapletIndividual antecedent Individual) ⇒ im = MapletIndividual image Individual(ind)) grd12: ind ∈ dom(MapletIndividual antecedent Individual)⇒(dom(Individual corresp Constant)∪dom(Individual corresp Variable) = ∅ ∧ {ant, im} ⊆ dom(Individual corresp Constant) ∪ dom(Individual corresp Variable)) grd13: o ant c ∈ Constant ∧ (ant ∈ dom(Individual corresp Constant) ⇒ o ant c = Individual corresp Constant(ant))270 Definition of the Adjusted Translation Rulesgrd14: o ant v ∈ Variable ∧ (ant ∈ dom(Individual corresp Variable) ⇒ o ant v = Individual corresp Variable(ant)) grd15: o im c ∈ Constant ∧ (im ∈ dom(Individual corresp Constant) ⇒ o im c = Individual corresp Constant(im)) grd16: o im v ∈ Variable∧(im ∈ dom(Individual corresp Variable)⇒o im v = Individual corresp Variable(im)) grd17: LogicFormula Set \ LogicFormula = ∅ grd18: {o lg type, o lg item} ⊆ LogicFormula Set \ LogicFormulagrd19: o DM = DomainModel corresp Component(Individual de f inedIn DomainModel(ind)) grd20: partition({o AS c, o ant c, o im c}, {o AS c}, {o ant c, o im c}) grd21: partition({o ind, o AS v, o ant v, o im v}, {o ind}, {o AS v}, {o ant v, o im v}) grd22: o lg type = o lg item then act1: Variable : = Variable ∪ {o ind} act2: Individual corresp Variable(ind) : = o ind act3: Variable de f inedIn Component(o ind) : = o DM act4: Invariant : = Invariant ∪ {o lg item} ∪ ({TRUE → {o lg type}, FALSE → ∅}(bool(ind ∈ dom(MapletIndividual antecedent Individual)))) act5: LogicFormula : = LogicFormula ∪ {o lg item} ∪ ({TRUE → {o lg type}, FALSE → ∅}(bool(ind ∈ dom(MapletIndividual antecedent Individual)))) act6: LogicFormula uses Operators : = LogicFormula uses Operators ∪ {o lg item → {1 → Belonging OP}} ∪ ({TRUE → {o lg type → {1 → Equality OP, 2 → Maplet OP}}, FALSE → ∅}(bool(ind ∈ dom(MapletIndividual antecedent Individual)))) act7: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -( ({TRUE → {o AS c → Constant isInvolvedIn LogicFormulas(o AS c)∪{2 → o lg item}}, FALSE → ∅}(bool(AS ∈ dom(Concept corresp Constant))))∪ ({TRUE → ({TRUE → ({TRUE → ({TRUE → {o ant c → Constant isInvolvedIn LogicFormulas(o ant c)∪ ({2, 3} × {o lg type})}, FALSE → {o ant c → Constant isInvolvedIn LogicFormulas(o ant c) ∪ {2 → o lg type}, o im c → Constant isInvolvedIn LogicFormulas(o im c) ∪ {3 → o lg type}}}(bool(o ant c = o im c))), FALSE → {o ant c → Constant isInvolvedIn LogicFormulas(o ant c)∪{2 → o lg type}}}(bool(im ∈ dom(Individual corresp Constant)))), FALSE → ({TRUE → {o im c → Constant isInvolvedIn LogicFormulas(o im c) ∪{3 → o lg type}}, FALSE → ∅}(bool(im ∈ dom(Individual corresp Constant))))}(bool(ant ∈ dom(Individual corresp -Constant)))) , FALSE → ∅}(bool(ind ∈ dom(MapletIndividual antecedent Individual)))) ) act8: Invariant involves Variables : = Invariant involves Variables ∪ {o lg item → ( {1 → o ind} ∪ ({TRUE → ∅, FALSE → {2 → o AS v}}(bool(AS ∈ dom(Concept corresp Constant)))) ) } ∪ ({TRUE → {o lg type → {1 → o ind} ∪ ({TRUE → ∅, FALSE → {2 → o ant v}}(bool(ant ∈ dom(Individual corresp Constant)))) ∪ ({TRUE → ∅, FALSE → {3 → o im v}}(bool(im ∈ dom(Individual corresp Constant)))) ) },FALSE → ∅}(bool(ind ∈ dom(MapletIndividual antecedent Individual)))) B.3. Definition of the Adjusted Translation Rules act9: LogicFormula involves Sets : = LogicFormula involves Sets ∪ {o lg item → ∅} ∪ ({TRUE → {o lg type → ∅}, FALSE → ∅}(bool(ind ∈ dom(MapletIndividual antecedent Individual)))) act10: LogicFormula de f inedIn Component : = LogicFormula de f inedIn Component ∪ {o lg item → o DM} ∪ ({TRUE → {o lg type → o DM}, FALSE → ∅}(bool(ind ∈ dom(MapletIndividual antecedent Individual)))) act11: Variable typing Invariant(o ind) : = o lg item end Event rule 15 2 convergent = correspondence of a named constant maplet individual (constant association) any ind o ind AS o AS ant o ant im o im o lg type o lg item o DM where grd0:(MapletIndividual ∩ Individual isNamed -1 [{TRUE}] ∩ Individual isVariable -1 [{FALSE}]) \ dom(Individual corresp Constant) = ∅ grd1: ind ∈ (MapletIndividual ∩ Individual isNamed -1 [{TRUE}] Individual isVariable -1 [{FALSE}]) \ dom(Individual corresp Constant) grd2: Association ∩ dom(Concept corresp Constant) = ∅ grd3: AS ∈ Association ∩ dom(Concept correspConstant) grd4: Individual individualO f Concept(ind) = AS grd5: o AS = Concept corresp Constant(AS) grd6: Individual de f inedIn DomainModel(ind) ∈ dom(DomainModel corresp Component) grd7: Constant Set \ Constant = ∅ grd8: o ind ∈ Constant Set \ Constant grd9: ant ∈ Individual ∧ (ind ∈ dom(MapletIndividual antecedent Individual) ⇒ ant = MapletIndividual antecedent Individual(ind)) grd10: im ∈ Individual ∧ (ind ∈ dom(MapletIndividual antecedent Individual) ⇒ im = MapletIndividual image Individual(ind)) grd11: ind ∈ dom(MapletIndividual antecedent Individual) ⇒ (dom(Individual corresp Constant) = ∅ ∧ {ant, im} ⊆ dom(Individual corresp Constant)) grd12: o ant ∈ Constant ∧ (ind ∈ dom(MapletIndividual antecedent Individual) ⇒ o ant = Individual corresp Constant(ant)) grd13: o im ∈ Constant ∧ (ind ∈ dom(MapletIndividual antecedent Individual) ⇒ o im = Individual corresp Constant(im)) grd14: LogicFormula Set \ LogicFormula = ∅ grd15: {o lg type, o lg item} ⊆ LogicFormula Set \ LogicFormula grd16: o DM = DomainModel corresp Component(Individual de f inedIn DomainModel(ind)) grd17: partition({o ind, o AS, o ant, o im}, {o ind}, {o AS}, {o ant, o im}) grd18: o lg type = o lg item 272 Definition of the Adjusted Translation Rules then act1: Constant : = Constant ∪ {o ind} act2: Individual corresp Constant(ind) : = o ind act3: Constant de f inedIn Component(o ind) : = o DM act4: Property : = Property ∪ {o lg item} ∪ ({TRUE → {o lg type}, FALSE → ∅}(bool(ind ∈ dom(MapletIndividual antecedent Individual)))) act5: LogicFormula : = LogicFormula ∪ {o lg item} ∪ ({TRUE → {o lg type}, FALSE → ∅}(bool(ind ∈ dom(MapletIndividual antecedent Individual)))) act6: LogicFormula uses Operators : = LogicFormula uses Operators ∪ {o lg item → {1 → Belonging OP}} ∪ ({TRUE → {o lg type → {1 → Equality OP, 2 → Maplet OP}}, FALSE → ∅}(bool(ind ∈ dom(MapletIndividual antecedent Individual)))) act7: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -( {o ind → ({1 → o lg item}∪({TRUE → {1 → o lg type}, FALSE → ∅}(bool(ind ∈ dom(MapletIndividual antecedent Individual)))))} ∪ {o AS → Constant isInvolvedIn LogicFormulas(o AS) ∪ {2 → o lg item}} ∪ ({TRUE → ({TRUE → {o ant → Constant isInvolvedIn LogicFormulas(o ant) ∪ ({2, 3} × {o lg type})}, FALSE → {o ant → Constant isInvolvedIn LogicFormulas(o ant)∪{2 → o lg type}, o im → Constant isInvolvedIn LogicFormulas(o im)∪ {3 → o lg type}}}(bool(o ant = o im))), FALSE → ∅}(bool(ind ∈ dom(MapletIndividual antecedent Individual)))) ) act8: LogicFormula involves Sets : = LogicFormula involves Sets ∪ {o lg item → ∅} ∪ ({TRUE → {o lg type → ∅}, FALSE → ∅}(bool(ind ∈ dom(MapletIndividual antecedent Individual)))) act9: LogicFormula de f inedIn Component : = LogicFormula de f inedIn Component ∪ {o lg item → o DM} ∪ ({TRUE → {o lg type → o DM}, FALSE → ∅}(bool(ind ∈ dom(MapletIndividual antecedent Individual)))) act10: Constant typing Property(o ind) : = o lg item end Event rule 15 3 convergent = correspondence of a named constant maplet individual (variable association) any ind o ind AS o AS ant o ant im o im PPCO1 o PPCO1 c o PPCO1 s PPCO2 o PPCO2 c o PPCO2 s o lg type o lg item i o lg item p o DM where grd0: (MapletIndividual ∩ Individual isNamed -1 [{TRUE}] Individual isVariable -1 [{FALSE}]) \ dom(Individual corresp Constant) = ∅ grd1: ind ∈ (MapletIndividual ∩ Individual isNamed -1 [{TRUE}] Individual isVariable -1 [{FALSE}]) \ dom(Individual corresp Constant) grd2: Association ∩ dom(Concept corresp Variable) = ∅ grd3: AS ∈ Association ∩ dom(Concept corresp Variable) grd4: Individual individualO f Concept(ind) = AS 273 Definition of the Adjusted Translation Rules grd5: o AS = Concept corresp Variable(AS) grd6: Individual de f inedIn DomainModel(ind) ∈ dom(DomainModel corresp Component) grd7: Constant Set \ Constant = ∅ grd8: o ind ∈ Constant Set \ Constant grd9: ant ∈ Individual ∧ (ind ∈ dom(MapletIndividual antecedent Individual) ⇒ ant = MapletIndividual antecedent Individual(ind)) grd10: im ∈ Individual ∧ (ind ∈ dom(MapletIndividual antecedent Individual) ⇒ im = MapletIndividual image Individual(ind)) grd11: ind ∈ dom(MapletIndividual antecedent Individual) ⇒ (dom(Individual corresp Constant) = ∅ ∧ {ant, im} ⊆ dom(Individual corresp Constant)) grd12: o ant ∈ Constant ∧ (ind ∈ dom(MapletIndividual antecedent Individual) ⇒ o ant = Individual corresp Constant(ant)) grd13: o im ∈ Constant ∧ (ind ∈ dom(MapletIndividual antecedent Individual) ⇒ o im = Individual corresp Constant(im)) grd14: LogicFormula Set \ LogicFormula = ∅ grd15: {o lg type, o lg item i, o lg item p} ⊆ LogicFormula Set \ LogicFormula grd16: o DM = DomainModel corresp Component(Individual de f inedIn DomainModel(ind)) grd17: {PPCO1, PPCO2} ⊆ (dom(Concept corresp Set) ∪ dom(Concept corresp Constant)) ∩ ran(Concept parentConcept Concept) grd18: PPCO1 ∈ cls(Concept parentConcept Concept)[{Association domain Concept(AS)}] grd19: PPCO2 ∈ cls(Concept parentConcept Concept)[{Association range Concept(AS)}] grd20: o PPCO1 s ∈ Set∧(PPCO1 ∈ dom(Concept corresp Set)⇒o PPCO1 s = Concept corresp Set(PPCO1)) grd21: o PPCO1 c ∈ Constant ∧ (PPCO1 ∈ dom(Concept corresp Constant) ⇒ o PPCO1 c = Concept corresp Constant(PPCO1)) grd22: o PPCO2 s ∈ Set∧(PPCO2 ∈ dom(Concept corresp Set)⇒o PPCO2 s = Concept corresp Set(PPCO2)) grd23: o PPCO2 c ∈ Constant ∧ (PPCO2 ∈ dom(Concept corresp Constant) ⇒ o PPCO2 c = Concept corresp Constant(PPCO2)) grd24: partition({o ind, o ant, o im, o PPCO1 c, o PPCO2 c}, {o ind}, {o ant, o im}, {o PPCO1 c, o PPCO2 c}) grd25: partition({o lg type, o lg item i, o lg item p}, {o lg type}, {o lg item i}, {o lg item p}) then act1: Constant : = Constant ∪ {o ind} act2: Individual corresp Constant(ind) : = o ind act3: Constant de f inedIn Component(o ind) : = o DM act4: Property : = Property ∪ {o lg item p} ∪ ({TRUE → {o lg type}, FALSE → ∅}(bool(ind ∈ dom(MapletIndividual antecedent Individual)))) act5: Invariant : = Invariant ∪ {o lg item i} 274 Definition of the Adjusted Translation Rules act6: LogicFormula : = LogicFormula ∪ {o lg item p, o lg item i} ∪ ({TRUE → {o lg type}, FALSE → ∅}(bool(ind ∈ dom(MapletIndividual antecedent Individual)))) act7: LogicFormula uses Operators : = LogicFormula uses Operators∪{o lg item i → {1 → Belonging OP}, o lg item p → {1 → Belonging OP, 2 → RelationSet OP}}∪({TRUE → {o lg type → {1 → Equality OP, 2 → Maplet OP}}, FALSE → ∅}(bool(ind ∈ dom(MapletIndividual antecedent Individual)))) act8: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -( {o ind → (({1} × {o lg item p, o lg item i})∪({TRUE → {1 → o lg type}, FALSE → ∅}(bool(ind ∈ dom(MapletIndividual antecedent Individual)))))} ∪ ({TRUE → ({TRUE → ({TRUE → {o PPCO1 c → Constant isInvolvedIn -LogicFormulas(o PPCO1 c) ∪ ({2, 3} × {o lg item p})}, FALSE → {o PPCO1 c → Constant isInvolvedIn -LogicFormulas(o PPCO1 c)∪{2 → o lg item p}, o PPCO2 c → Constant isInvolvedIn LogicFormulas(o PPCO2 c)∪ {3 → o lg item p}}}(bool(o PPCO1 c = o PPCO2 c))), FALSE → {o PPCO2 c → Constant isInvolvedIn LogicFormulas(o PPCO2 c)∪{2 → o lg item p}}}(bool(PPCO2 ∈ dom(Concept corresp Constant)))), FALSE → ({TRUE → {o PPCO2 c → Constant isInvolvedIn LogicFormulas(o PPCO2 c)∪{3 → o lg item p}}, FALSE → ∅}(bool(PPCO2 ∈ dom(Concept corresp Constant))))}(bool(PPCO1 ∈ dom(Concept corresp Constant)))) ∪ ({TRUE → ({TRUE → {o ant → Constant isInvolvedIn LogicFormulas(o ant)∪({2, 3}×{o lg type})}, FALSE → {o ant → Constant isInvolvedIn LogicFormulas(o ant) ∪ {2 → o lg type}, o im → Constant isInvolvedIn -LogicFormulas(o im)∪{3 → o lg type}}}(bool(o ant = o im))), FALSE → ∅}(bool(ind ∈ dom(MapletIndividual antecedent Individual)))) ) act9: Invariant involves Variables(o lg item i) : = {2 → o AS} act10: LogicFormula involves Sets : = LogicFormula involves Sets ∪ {o lg item i → ∅} ∪ {o lg item p → ( {TRUE → ∅, FALSE → {2 → o PPCO1 s}}(bool(PPCO1 ∈ dom(Concept corresp Constant))) ∪ {TRUE → ∅, FALSE → {3 → o PPCO2 s}}(bool(PPCO2 ∈ dom(Concept corresp Constant))) )} ∪ ({TRUE → {o lg type → ∅}, FALSE → ∅}(bool(ind ∈ dom(MapletIndividual antecedent Individual)))) act11: LogicFormula de f inedIn Component : = LogicFormula de f inedIn Component∪({o lg item p, o lg item i}× {o DM}) ∪ ({TRUE → {o lg type → o DM}, FALSE → ∅}(bool(ind ∈ dom(MapletIndividual antecedent Individual)))) act12: Constant typing Property(o ind) : = o lg item p end Event rule 18 convergent = handling the transitivity of an association any AS o AS c o AS v o lg where grd0: (Association ∩ (dom(Concept corresp Constant) ∪ dom(Concept corresp Variable)) ∩ Association isTransitive -1 [{TRUE}]) = ∅ grd1: AS ∈ (Association ∩ (dom(Concept corresp Constant) ∪ dom(Concept corresp Variable)) ∩ Association isTransitive -1 [{TRUE}]) grd2: ({AS → isTransitive}) / ∈ dom(AssociationCharacteristic corresp LogicFormula) 275 Definition of the Adjusted Translation Rules grd3: o AS c ∈ Constant ∧ (AS ∈ dom(Concept corresp Constant) ⇒ o AS c = Concept corresp Constant(AS)) grd4: o AS v ∈ Variable ∧ (AS ∈ dom(Concept corresp Variable) ⇒ o AS v = Concept corresp Variable(AS)) grd5: Concept de f inedIn DomainModel(AS) ∈ dom(DomainModel corresp Component) grd6: LogicFormula Set \ LogicFormula = ∅ grd7: o lg ∈ LogicFormula Set \ LogicFormula then act1: Property : = Property ∪ ({TRUE → {o lg}, FALSE → ∅}(bool(AS ∈ dom(Concept corresp Constant)))) act2: Invariant : = Invariant ∪ ({TRUE → ∅, FALSE → {o lg}}(bool(AS ∈ dom(Concept corresp Constant)))) act3: LogicFormula : = LogicFormula ∪ {o lg} act4: AssociationCharacteristic corresp LogicFormula({AS → isTransitive}) : = o lg act5: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -({TRUE → {o AS c → Constant isInvolvedIn LogicFormulas(o AS c) ∪ ({1, 2, 3} × {o lg})}, FALSE → ∅}(bool(AS ∈ dom(Concept corresp Constant)))) act6: Invariant involves Variables : = Invariant involves Variables ∪ ({TRUE → ∅, FALSE → {o lg → ({1, 2, 3} × {o AS v})}}(bool(AS ∈ dom(Concept corresp Constant)))) act7: LogicFormula uses Operators(o lg) : = {1 → RelationComposition OP, 2 → Inclusion OP} act8: LogicFormula involves Sets(o lg) : = ∅ act9: LogicFormula de f inedIn Component(o lg) : = DomainModel corresp Component(Concept de f inedIn DomainModel(AS)) end END MACHINE event b specs from ontologies ref 2 REFINES event b specs from ontologies ref 1 SEES EventB Metamodel Context,Domain Metamodel Context EVENTS Event rule 17 convergent = variable concept initialisation any CO o CO o ia inds o inds bij o inds where grd0: ran(Concept corresp Variable) \ ran(InitialisationAction inits Variable) = ∅ grd1: o CO ∈ ran(Concept corresp Variable) \ ran(InitialisationAction inits Variable) grd2: CO = Concept corresp Variable -1 (o CO) grd3: inds = Individual individualO f Concept -1 [{CO}] ∩ Individual isVariable -1 [{FALSE}] grd4: inds ⊆ dom(Individual corresp Constant) grd5: o inds = Individual corresp Constant[inds] 276 Definition of the Adjusted Back Propagation Rules grd6: InitialisationAction Set \ InitialisationAction = ∅ grd7: o ia ∈ InitialisationAction Set \ InitialisationAction grd8: card(o inds) = card(inds) grd9: bi j o inds ∈ 1 . . card(o inds) o inds then act1: InitialisationAction : = InitialisationAction ∪ {o ia} act2: InitialisationAction uses Operators(o ia) : = {1 → BecomeEqual2SetO f OP} act3: InitialisationAction inits Variable(o ia) : = o CO act4: InitialisationAction involves Constants(o ia) : = bi j o inds end END Definition of the Adjusted Back Propagation Rules Informal DefinitionTableB.3 presents the revised back propagation rules. Each rule defines its inputs (elements added to the B System specification) and constraints that each input must fulfill. It also defines its outputs (elements introduced within domain models as a result of the application of the rule) and their respective constraints. It should be noted that for an element b x of the B System specification, o x designates the domain model element corresponding to b x. In addition, when used, qualifier abstract denotes "without parent".Table B.3 -The revised back propagation rulesj ) j∈1..n b CO ∈ EnumeratedSet ∀j ∈ 1..n, b I j ∈ SetItem ∧SetItem itemOf EnumeratedSet(b I j ) = b CO o CO (o I j ) j∈1..n o CO ∈ Concept Concept isEnumeration(o CO) = TRUE ∀ j ∈ 1..n, o I j ∈ Individual ∧ Individual individualOf Concept(o I j ) = o CO 3 Set item b elt b ES b elt ∈ SetItem b ES = SetItem itemOf EnumeratedSet(b elt) o ES ∈ Concepto elt o elt ∈ Individual Individual individualOf Concept(o elt) = o ES 4 Constant typed as subset of the correspondent of a concept b CO b PCO b CO ∈ Constant b PCO ∈ AbstractSet ∪ Constant b CO ⊆ b PCO o PCO ∈ Concept o CO o CO ∈ Concept Concept parent Concept(o CO) = o PCO this rule does not consider constant concepts with variable parents (see rule 4 2 ). as subset of Constant b PCO ∈ Variable b CO ⊆ b PCO {o CO, o PCO} ⊆ Concept Concept parent Concept(o CO) = o PCO Constant b CO ∈ AbstractSet ∪ Constant b elt ∈ b CO o CO ∈ Concept o elt o elt ∈ Individual Individual individualOf Concept(o elt) = o CO this rule does not consider constant individuals of variable concepts. Another rule similar to rule 4 2 can be defined to handle them. Variable Variable b CO ⊆ b PCO o PCO ∈ Concept o CO o CO ∈ Concept Concept parent Concept(o CO) = o PCO Concept isVariable(CO) = TRUE 7 Variable typed as item of the correspondent of a concept b elt b COb elt ∈ Variable b CO ∈ AbstractSet∪Constant∪ Variable b elt ∈ b CO o CO ∈ Concept o elt o elt ∈ Individual Individual individualOf Concept(o elt) = o CO Individual isVariable(o elt) = TRUE Constant {b CO1, b CO2} ⊂ AbstractSet ∪ Constant b AS ∈ b CO1 ↔ b CO2 {o CO1, o CO2} ⊂ Concepto AS o AS ∈ Association Association domain Concept(o AS) = o CO1 Association range Concept(o AS) = o CO2 As usual, the cardinalities of o AS are set according to the type of b AS (function, injection, ...Variable {b CO1, b CO2} ⊂ AbstractSet ∪ Constant ∪ Variable b AS ∈ b CO1 ↔ b CO2 {o CO1, o CO2} ⊂ Concept o AS o AS ∈ Association Association domain Concept(o AS) = o CO1 Association range Concept(o AS) = o CO2 Association isVariable(o AS) = TRUE As usual, the cardinalities of o AS are set according to the type of b AS (function, injection, ...Constant {b ant, b im} ⊂ Constant b elt = b ant → b im {o ant, o im} ⊂ Individual o elt o elt ∈ Individual MapletIndividual antecedent Individual(o elt) = o ant MapletIndividual image Individual(o elt) = b im 11 Variable Variable {b ant, b im} ⊂ Constant ∪ Variable b elt = b ant → b im {o ant, o im} ⊂ Individual o elt o elt ∈ Individual MapletIndividual antecedent Individual(o elt) = o ant MapletIndividual image Individual(o elt) = b im Individual isVariable(o elt) = TRUE 12 Variable b init ∈ Constant Initialisation: b elt : = b init {o init, o elt} ⊆ Individual Individual initialValue Individual(o elt) = o initThe addition of a non typing logic formula (logic formula that does not contribute to the definition of the type of a formal element) in the B System specification is propagated through the definition of the same formula in the corresponding domain model, since both languages use first-order logic notations. This back propagation is limited to a syntactic translation.B.4. Definition of the Adjusted Back Propagation RulesA fresh B System constant or variable b x is defined within the domain model, by default, as a defined concept (instance of DefinedConcept), until a typing B System logical formula is introduced (subset of the correspondence of a concept, relation, item of the correspondence of a concept or maplet). The concept b x is defined with correspondence of B System logical formulas where it appears.B.4.2 Event-B SpecificationMACHINE event b specs from ontologies ref 1 REFINES event b specs from ontologies SEES EventB Metamodel Context,Domain Metamodel Context EVENTS Event rule b 1 convergent = Back propagating the addition of abstract sets any b CO o CO where grd0: AbstractSet \ ran(Concept corresp Set) = ∅ grd1: b CO ∈ AbstractSet \ ran(Concept corresp Set) grd2: Set de f inedIn Component(b CO) ∈ ran(DomainModel corresp Component) grd3: Concept Set \ Concept = ∅ grd4: o CO ∈ Concept Set \ Concept then act1: Concept : = Concept ∪ {o CO} act2: Concept corresp Set(o CO) : = b CO act3: Concept isVariable(o CO) : = FALSE act4: Concept isEnumeration(o CO) : = FALSE act5: Concept de f inedIn DomainModel(o CO) : = DomainModel corresp Component -1 (Set de f inedIn Component(b CO)) end Event rule b 2 convergent = Back propagating the addition of an enumerated set any b EDS o EDS b elements o elements mapping b elements o elements where grd0: EnumeratedSet \ ran(Concept corresp Set) = ∅ grd1: b EDS ∈ EnumeratedSet \ ran(Concept corresp Set) grd2: Set de f inedIn Component(b EDS) ∈ ran(DomainModel corresp Component) 279 B.4. Definition of the Adjusted Back Propagation Rules grd3: Concept Set \ Concept = ∅ grd4: o EDS ∈ Concept Set \ Concept grd5: Individual Set \ Individual = ∅ grd6: o elements ⊆ Individual Set \ Individual grd7: b elements = SetItem itemO f EnumeratedSet -1 [{b EDS}] grd8: card(o elements) = card(b elements) grd9: mapping b elements o elements ∈ o elements b elements grd10: ran(Individual corresp SetItem) ∩ b elements = ∅ then act1: Concept : = Concept ∪ {o EDS} act2: Concept corresp Set(o EDS) : = b EDS act3: Concept isVariable(o EDS) : = FALSE act4: Concept isEnumeration(o EDS) : = TRUE act5: Concept de f inedIn DomainModel(o EDS) : = DomainModel corresp Component -1 (Set de f inedIn Component(b EDS)) act6: Individual : = Individual ∪ o elements act7: Individual isVariable : = Individual isVariable ∪ (o elements × {FALSE}) act8: Individual isNamed : = Individual isNamed ∪ (o elements × {TRUE}) act9: Individual individualO f Concept : = Individual individualO f Concept ∪ (o elements × {o EDS}) act10: Individual corresp SetItem : = Individual corresp SetItem ∪ mapping b elements o elements act11: Individual de f inedIn DomainModel : = Individual de f inedIn DomainModel ∪ (o elements × {DomainModel corresp Component -1 (Set de f inedIn Component(b EDS))}) end Event rule b 3 convergent = Back propagating the addition of a new element in an existing enumerated set any EDS b EDS o element b element where grd0: dom(SetItem itemO f EnumeratedSet) \ ran(Individual corresp SetItem) = ∅ grd1: b element ∈ dom(SetItem itemO f EnumeratedSet) \ ran(Individual corresp SetItem) grd2: b EDS = SetItem itemO f EnumeratedSet(b element) grd3: ran(Concept corresp Set) = ∅ ∧ b EDS ∈ ran(Concept corresp Set) grd4: EDS = Concept corresp Set -1 (b EDS) grd5: Individual Set \ Individual = ∅ grd6: o element ∈ Individual Set \ Individual 280 Definition of the Adjusted Back Propagation Rules grd7: Set de f inedIn Component(b EDS) ∈ ran(DomainModel corresp Component) then act1: Individual : = Individual ∪ {o element} act2: Individual individualO f Concept(o element) : = EDS act3: Individual corresp SetItem(o element) : = b element act4: Individual isVariable(o element) : = FALSE act5: Individual isNamed(o element) : = TRUE act6: Individual de f inedIn DomainModel(o element) : = DomainModel corresp Component -1 (Set de f inedIn Component(b EDS)) end Event rule b 4 convergent = (rule b 4 1 & rule b 4 2) Back propagating the addition of a constant typed as subset of the correspondent of a concept any b CO o CO b PCO s b PCO c b PCO v b lg PCO olges olgis b inds o inds b inds map o inds where grd0: dom(Constant typing Property) \ (ran(Concept corresp Constant) ∪ ran(Individual corresp Constant) ∪ ran(Association Type Constant)) = ∅ grd1: b CO ∈ dom(Constant typing Property)\(ran(Concept corresp Constant)∪ran(Individual corresp Constant) ∪ ran(Association Type Constant)) grd2: b lg = Constant typing Property(b CO) grd3: LogicFormula uses Operators(b lg) = {1 → Inclusion OP} grd4: Concept = ∅ ∧ PCO ∈ Concept grd5: Constant = ∅ ∧ b PCO c ∈ Constant grd6: LogicFormula involves Sets(b lg) = ∅⇒(ran(Concept corresp Set) = ∅∧b PCO s ∈ ran(Concept corresp Set)∧ (2 → b PCO s) ∈ LogicFormula involves Sets(b lg) ∧ PCO = Concept corresp Set -1 (b PCO s) ∧ ∀co•(co ∈ Constant ⇒ (2 → b lg) / ∈ Constant isInvolvedIn LogicFormulas(co))) grd7: LogicFormula involves Sets(b lg) = ∅⇒(ran(Concept corresp Constant) = ∅∧b PCO c ∈ ran(Concept corresp Constant)∧ (2 → b lg) ∈ Constant isInvolvedIn LogicFormulas(b PCO c)∧PCO = Concept corresp Constant -1 (b PCO c) ∧ ∀co•(co ∈ Constant \ {b PCO c} ⇒ (2 → b lg) / ∈ Constant isInvolvedIn LogicFormulas(co))) grd8: Concept Set \ Concept = ∅ ∧ o CO ∈ Concept Set \ Concept grd9: Constant de f inedIn Component(b CO) ∈ ran(DomainModel corresp Component) grd10: b inds ⊆ dom(Constant typing Property) \ (ran(Concept corresp Constant) ∪ ran(Individual corresp Constant) ∪ ran(Association Type Constant) ∪ {b CO}) grd11: o inds ⊆ Individual Set \ Individual 281 Definition of the Adjusted Back Propagation Rules grd12: b inds map o inds ∈ Individual Set Constant grd13: olges = {o lge•( o lge ∈ LogicFormula\(ran(AssociationCharacteristic corresp LogicFormula)∪ran(ConcreteEnumeration corresp -IndividualSetLogicalFormula) ∪ ran(UnnamedMapletIndividual corresp LogicalFormula)) LogicFormula uses Operators(o lge) = {1 → Equal2SetO f OP} ∧ (1 → o lge) ∈ Constant isInvolvedIn LogicFormulas(b CO) ∧ b inds = ∅ ∧ card(o inds) = card(b inds) ∧ b inds map o inds ∈ o inds b inds ∧ b inds ∩ (ran(Concept corresp Constant) ∪ ran(Individual corresp Constant) ∪ ran(Association Type Constant)) = ∅ ∧ (∃bi j b inds•( bi j b inds ∈ b inds 2 . . (card(b inds) + 1) ∧ ∀b ind•( b ind ∈ b inds ⇒ (bi j b inds(b ind) → o lge ∈ Constant isInvolvedIn LogicFormulas(b ind)) ) ) ) )|o lge} grd14: card(olges) ≤ 1 grd16: Variable = ∅ ∧ b PCO v ∈ Variable grd17: olgis = {o lgi•(o lgi ∈ Invariant ∧ LogicFormula uses Operators(o lgi) = {1 → Inclusion OP} ∧ (1 → o lgi) ∈ Constant isInvolvedIn LogicFormulas(b CO) ∧ (2 → b PCO v) ∈ Invariant involves Variables(o lgi))|o lgi} grd18: olgis = ∅ ⇒ (ran(Concept corresp Variable) = ∅ ∧ b PCO v ∈ ran(Concept corresp Variable) ∧ PCO = Concept corresp Variable -1 (b PCO v)) then act1: Concept : = Concept ∪ {o CO} act2: Concept corresp Constant(o CO) : = b CO act3: Concept de f inedIn DomainModel(o CO) : = DomainModel corresp Component -1 (Constant de f inedIn Component(b CO)) act4: Concept parentConcept Concept(o CO) : = PCO act5: Concept isVariable(o CO) : = FALSE act6: Concept isEnumeration(o CO) : = bool(olges = ∅) act7: ConcreteEnumeration corresp IndividualSetLogicalFormula : = ConcreteEnumeration corresp IndividualSetLogicalFormula ∪ ({TRUE → {o CO} × olges, FALSE → ∅}(bool(olges = ∅))) act8: Individual : = Individual ∪ ({TRUE → o inds, FALSE → ∅}(bool(olges = ∅))) act9: Individual individualO f Concept : = Individual individualO f Concept ∪ ({TRUE → o inds × {o CO}, FALSE → ∅}(bool(olges = ∅))) act10: Individual isVariable : = Individual isVariable ∪ ({TRUE → o inds × {FALSE}, FALSE → ∅}(bool(olges = ∅))) act11: Individual isNamed : = Individual isNamed ∪ ({TRUE → o inds × {TRUE}, FALSE → ∅}(bool(olges = ∅))) 282 Definition of the Adjusted Back Propagation Rules act12: Individual corresp Constant : = Individual corresp Constant ∪ ({TRUE → b inds map o inds, FALSE → ∅}(bool(olges = ∅))) act13: Individual de f inedIn DomainModel : = Individual de f inedIn DomainModel ∪ ({TRUE → o inds × {DomainModel corresp Component -1 (Constant de f inedIn Component(b CO))}, FALSE → ∅}(bool(olges = ∅))) end Event rule b 5 convergent = (rule b 5 1 & rule b 5 2) Back propagating the addition of a constant typed as item of the correspondent of a concept any b ind o ind b CO s b CO c b CO v b lg CO olgis where grd0: dom(Constant typing Property) \ (ran(Concept corresp Constant) ∪ ran(Individual corresp Constant) ∪ ran(Association Type Constant)) = ∅ grd1: b ind ∈ dom(Constant typing Property)\(ran(Concept corresp Constant)∪ran(Individual corresp Constant) ∪ ran(Association Type Constant)) grd2: b lg = Constant typing Property(b ind) grd3: LogicFormula uses Operators(b lg) = {1 → Belonging OP} grd4: Concept = ∅ ∧ CO ∈ Concept grd5: Constant = ∅ ∧ b CO c ∈ Constant grd6: LogicFormula involves Sets(b lg) = ∅⇒(ran(Concept corresp Set) = ∅∧b CO s ∈ ran(Concept corresp Set) ∧ (2 → b CO s) ∈ LogicFormula involves Sets(b lg) ∧ CO = Concept corresp Set -1 (b CO s) ∧ ∀co•(co ∈ Constant ⇒ (2 → b lg) / ∈ Constant isInvolvedIn LogicFormulas(co))) grd7: LogicFormula involves Sets(b lg) = ∅⇒(ran(Concept corresp Constant) = ∅∧b CO c ∈ ran(Concept corresp Constant) ∧(2 → b lg) ∈ Constant isInvolvedIn LogicFormulas(b CO c)∧CO = Concept corresp Constant -1 (b CO c)∧ ∀co•(co ∈ Constant \ {b CO c} ⇒ (2 → b lg) / ∈ Constant isInvolvedIn LogicFormulas(co))) grd8: Individual Set \ Individual = ∅ ∧ o ind ∈ Individual Set \ Individual grd9: Constant de f inedIn Component(b ind) ∈ ran(DomainModel corresp Component) grd10: Variable = ∅ ∧ b CO v ∈ Variable grd11: olgis = {o lgi•(o lgi ∈ Invariant ∧ LogicFormula uses Operators(o lgi) = {1 → Belonging OP} ∧ (1 → o lgi) ∈ Constant isInvolvedIn LogicFormulas(b ind) ∧ (2 → b CO v) ∈ Invariant involves Variables(o lgi))|o lgi} grd12: olgis = ∅ ⇒ (ran(Concept corresp Variable) = ∅ ∧ b CO v ∈ ran(Concept corresp Variable) ∧ CO = Concept corresp Variable -1 (b CO v))then act1: Individual : = Individual ∪ {o ind} act2: Individual corresp Constant(o ind) : = b ind B.4. Definition of the Adjusted Back Propagation Rules act3: Individual de f inedIn DomainModel(o ind) : = DomainModel corresp Component -1 (Constant de f inedIn Component(b ind)) act4: Individual individualO f Concept(o ind) : = CO act5: Individual isVariable(o ind) : = FALSE act6: Individual isNamed(o ind) : = TRUE end Event rule b 6 convergent = Back propagating the addition of a variable typed as subset of the correspondent of a concept any b CO o CO b PCO s b PCO c b PCO v b lg PCO where grd0: dom(Variable typing Invariant) \ (ran(Concept corresp Variable) ∪ ran(Individual corresp Variable) ∪ ran(Association Type Variable)) = ∅ grd1: b CO ∈ dom(Variable typing Invariant)\(ran(Concept corresp Variable)∪ran(Individual corresp Variable) ∪ ran(Association Type Variable)) grd2: b lg = Variable typing Invariant(b CO) grd3: LogicFormula uses Operators(b lg) = {1 → Inclusion OP} grd4: Concept = ∅ ∧ PCO ∈ Concept grd5: Constant = ∅ ∧ b PCO c ∈ Constant grd6: LogicFormula involves Sets(b lg) = ∅⇒(ran(Concept corresp Set) = ∅∧b PCO s ∈ ran(Concept corresp Set) ∧ (2 → b PCO s) ∈ LogicFormula involves Sets(b lg) ∧ PCO = Concept corresp Set -1 (b PCO s) ∧ ∀co•(co ∈ Constant ⇒ (2 → b lg) / ∈ Constant isInvolvedIn LogicFormulas(co)) ∧ ∀co2•(co2 ∈ Variable ⇒ (2 → co2) / ∈ Invariant involves Variables(b lg))) grd7: LogicFormula involves Sets(b lg) = ∅⇒((ran(Concept corresp Constant) = ∅∧b PCO c ∈ ran(Concept corresp Constant) ∧(2 → b lg) ∈ Constant isInvolvedIn LogicFormulas(b PCO c)∧PCO = Concept corresp Constant -1 (b PCO c) ∧ ∀co1•(co1 ∈ Constant \ {b PCO c} ⇒ (2 → b lg) / ∈ Constant isInvolvedIn LogicFormulas(co1)) ∧ ∀co2•(co2 ∈ Variable ⇒ (2 → co2) / ∈ Invariant involves Variables(b lg))) ∨ (ran(Concept corresp Variable) = ∅ ∧ b PCO v ∈ ran(Concept corresp Variable) ∧ (2 → b PCO v) ∈ Invariant involves Variables(b lg) ∧ PCO = Concept corresp Variable -1 (b PCO v) ∧ ∀co2•(co2 ∈ Constant ⇒ (2 → b lg) / ∈ Constant isInvolvedIn LogicFormulas(co2)) ∧ ∀co3•(co3 ∈ Variable \ {b PCO v} ⇒ (2 → co3) / ∈ Invariant involves Variables(b lg)))) grd8: Concept Set \ Concept = ∅ ∧ o CO ∈ Concept Set \ Concept grd9: Variable de f inedIn Component(b CO) ∈ ran(DomainModel corresp Component) then act1: Concept : = Concept ∪ {o CO} act2: Concept corresp Variable(o CO) : = b CO B.4. Definition of the Adjusted Back Propagation Rules act3: Concept de f inedIn DomainModel(o CO) : = DomainModel corresp Component -1 (Variable de f inedIn Component(b CO)) act4: Concept parentConcept Concept(o CO) : = PCO act5: Concept isVariable(o CO) : = TRUE act6: Concept isEnumeration(o CO) : = FALSE end Event rule b 7 convergent = Back propagating the addition of a variable typed as item of the correspondent of a concept any b ind o ind b CO s b CO c b CO v b lg CO where grd0: dom(Variable typing Invariant) \ (ran(Concept corresp Variable) ∪ ran(Individual corresp Variable) ∪ ran(Association Type Variable)) = ∅ grd1: b ind ∈ dom(Variable typing Invariant)\(ran(Concept corresp Variable)∪ran(Individual corresp Variable) ∪ ran(Association Type Variable)) grd2: b lg = Variable typing Invariant(b ind) grd3: LogicFormula uses Operators(b lg) = {1 → Belonging OP} grd4: Concept = ∅ ∧ CO ∈ Concept grd5: Constant = ∅ ∧ b CO c ∈ Constant grd6: LogicFormula involves Sets(b lg) = ∅⇒(ran(Concept corresp Set) = ∅∧b CO s ∈ ran(Concept corresp Set) ∧ (2 → b CO s) ∈ LogicFormula involves Sets(b lg) ∧ CO = Concept corresp Set -1 (b CO s) ∧ ∀co•(co ∈ Constant ⇒ (2 → b lg) / ∈ Constant isInvolvedIn LogicFormulas(co))) grd7: LogicFormula involves Sets(b lg) = ∅⇒((ran(Concept corresp Constant) = ∅∧b CO c ∈ ran(Concept corresp Constant) ∧(2 → b lg) ∈ Constant isInvolvedIn LogicFormulas(b CO c)∧CO = Concept corresp Constant -1 (b CO c) ∧ ∀co•(co ∈ Constant \ {b CO c} ⇒ (2 → b lg) / ∈ Constant isInvolvedIn LogicFormulas(co))) ∨ (ran(Concept corresp Variable) = ∅ ∧ b CO v ∈ ran(Concept corresp Variable) ∧ (2 → b CO v) ∈ Invariant involves Variables(b lg) ∧ CO = Concept corresp Variable -1 (b CO v) ∧ ∀co•(co ∈ Constant ⇒ (2 → b lg) / ∈ Constant isInvolvedIn LogicFormulas(co)))) grd8: Individual Set \ Individual = ∅ ∧ o ind ∈ Individual Set \ Individual grd9: Variable de f inedIn Component(b ind) ∈ ran(DomainModel corresp Component) then act1: Individual : = Individual ∪ {o ind} act2: Individual corresp Variable(o ind) : = b ind act3: Individual de f inedIn DomainModel(o ind) : = DomainModel corresp Component -1 (Variable de f inedIn Component(b ind)) act4: Individual individualO f Concept(o ind) : = CO act5: Individual isVariable(o ind) : = TRUE 285 Definition of the Adjusted Back Propagation Rules act6: Individual isNamed(o ind) : = TRUE end END • L'utilisateur peut finalement instancier la méthodologie B System (Figure C.7), ce qui lui donne l'occasion de reférencer le projet Atelier B qui sera fédéré avec les modèles SysML/KAOS définis, conformément aux règles décrites à l'annexe B (Figure C.8). Le comportement Update the formal model (mettre à jour le modèle formel) permet de propager l'ajout et la suppression d'éléments au sein des modèles de buts et de domaine tandis que le comportement Back propagate structural part updates (propager les modifications de la partie structurelle) permet de propager l'ajout d'éléments au sein de la partie structurelle de la spécification B System.

  

  

  

  

  

  

  

  

  

  

  

  

  

Table 2 . 1

 21 Logic use the CWA assumption for constraint verification, OWL uses the OWA assumption.-OWL and F-Logic implement multiple inheritance and instantiation while PLIB implements simple inheritance and instantiation. On the other hand, with the is case of relation, a PLIB class can be a case of several other classes, each class bringing some specific properties. -PLIB and F-Logic allow the definition of parameterized attributes using context parameters, which is not possible with OWL. -PLIB allows several representations or view points for a concept while neither OWL nor F-Logic do.

	29

:

-PLIB, OWL and F-Logic implement modularisation mechanisms. PLIB supports partial import: a class of an ontology A can extend a class of an ontology B and explicitly specify the properties it wishes to inherit. Moreover, if nothing is specified, no property will be imported. On the other hand, OWL and F-Logic use the total import: when an ontology A refers to an ontology B, all elements of B are accessible within A. -PLIB and F-

Table 2 .

 2 1 -Comparative table of the three main ontology modeling languages

	Characteristics	OWL	PLIB	F-Logic
	Modularity		total	partial	total
	CWA vs OWA	OWA	CWA	CWA
	Inheritance		multiple	simple	multiple
	Typing		weak	strong (any ele-	weak
				ment belongs to one and	
				only one type)	
	Expressivity		strong	weak	weak
	Contextualization of a	-	+	+
	property	(parameterized			
	attributes)				
	Different views for an ele-	-	+	-
	ment				
	Graphic representation	+	-	-
	Domain	Knowledge	static	static	static
	(static vs dynamic)			

  2.5. Our Approach for Domain Modeling

		RangeCardinality
		+ minCardinality : integer
		+ maxCardinality : integer
		DomainCardinality
		+ minCardinality : integer
		+ maxCardinality : integer
	Relation	
	+ name : string	
	+ isVariable : boolean	Concept
	+ <<opt>> isTransitive : boolean + <<opt>> isSymmetric : boolean + <<opt>> isASymmetric : boolean	+ name : string + isVariable : boolean
	+ <<opt>> isReflexive : boolean	
	+ <<opt>> isIrreflexive : boolean	
	RelationMaplet	
		Individual
		+name

defined in BSystem Metamodel Context, class Operator of the target metamodel is represented as an enumerated set containing the constants Inclusion OP and Belonging OP. SETS Operator CONSTANTS Inclusion OP Belonging OP AXIOMS axiom1

  : partition(Operator, {Inclusion OP}, {Belonging OP}

	CONTEXT Domain Metamodel Context	MACHINE Ontologies BSystem specs translation
	SETS DomainModel Set	VARIABLES Component System Refinement
	END	DomainModel
		INVARIANT
		inv0 1: Component ⊆ Component Set
	CONTEXT BSystem Metamodel Context	inv0 2: partition(Component, System, Re f inement)
	SETS Component Set	inv0 3: DomainModel ⊆ DomainModel Set
	END	END
	UML enumerations are represented as Event-B enumerated sets. For example, in
	the following specification,	

  Constant isInvolvedIn LogicFormulas ∈ Constant → P 1 (N 1 × LogicFormula) inv1 14: ∀co•(co ∈ Constant ⇒ ran(Constant isInvolvedIn LogicFormulas(co)) ∩ Property = ∅)

	MACHINE Ontologies BSystem specs translation ref 1
	VARIABLES Concept isVariable Constant definedIn Component Invariant involves Variables
	Constant isInvolvedIn LogicFormulas
	INVARIANT
	inv1 5: Concept isVariable ∈ Concept → BOOL
	inv1 7: Constant de f inedIn Component ∈ Constant → Component
	inv1 11: Invariant involves Variables ∈ Invariant → (N 1 → Variable) inv1 12: ran(union(ran(Invariant involves Variables))) = Variable
	inv1 13:

Table 3 .

 3 1 -Summary of the translation rules

				Domain Model	B System
			Element	Constraint		Element	Constraint
	1	Abstract	DM	DM ∈ DomainModel	o DM	o DM ∈ System
		domain		DM	/ ∈	dom(DomainModel -
		model		parent DomainModel)	
						51

  Action act3 ensures that o CO is defined in the component corresponding to the domain model where CO is defined. Action act6 defines the operator used by o lg. Because the parent concept corresponds to an abstract set, o CO is the only constant involved in o lg (act7); o PCO, the second operand, is a set (act8). Finally, action act9 defines o lg as the typing predicate of o CO.

	Example:		
	SysML/KAOS domain model	B System specification
	concept pco	SETS	pco
		CONSTANTS	co
	concept co parent concept pco	PROPERTIES co ⊆ pco

Table 3 .

 3 3 -Key characteristics of the Event-B specification Rodin project

	Characteristics	Root level	First refinement level
	Events	3	50
	Invariants	11	98
	Proof Obligations (PO)	37	990
	Automatically Discharged POs	27	274 ( 86 for the INITIALISATION event)
	Interactively Discharged POs	10	716 (Most used provers: ML, PP, SMTs)

  Variable, Constant, Set or SetItem. For instance, operator Inclusion_OP is used to assert that the first operand is a subset of the second operand ((Inclusion OP, [op 1 , op 2 ]) ⇔ op 1 ⊆ op 2 ). Therefore, we are able to represent logic formulas involving one or more operators such as ([Inclusion OP, Cprod OP], [op 1 , op 2 , op 3 ]) ⇔ op 1 ⊆ op 2 × op 3 which involves operators Inclusion OP (inclusion: ⊆) and Cprod OP (cartesian product: ×) and operands op 1 , op 2 and op 3 . The full list of operators, that we consider, can be found in annex A.

	4.2. Context
	4.2.2 SysML/KAOS
	Presentation
	SysML/KAOS [92, 98] is a requirements engineering method based on SysML [78]
	and KAOS

  and PLIB [112].Figure 4.3 is an excerpt from its metamodel. Each domain model corresponds to a refinement level in the SysML/KAOS goal model. The parent association represents the hierarchy of domain models. It allows a child domain model to access and refine elements defined in the parent domain model. A concept (instance of Concept) represents a collection of individuals with common properties. It can be variable (isVariable=TRUE) when the set of its individuals can be updated by adding or deleting individuals. Otherwise, it is considered to be constant (isVariable=FALSE). Relations (instances of 4.2. Context

		DomainModel
		+ name : string
	Relation		
	+ name : string		
	+ isVariable : boolean	Concept	
	+ <<opt>> isTransitive : boolean + <<opt>> isSymmetric : boolean + <<opt>> isASymmetric : boolean + <<opt>> isReflexive : boolean	+ name : string + isVariable : boolean	Attribute
	+ <<opt>> isIrreflexive : boolean	+ name : string	
		+ isVariable : boolean
		+ <<opt>> isFunctional : boolean
		+ <<opt>> isTotal : boolean

Table 4 .

 4 1 -Key characteristics of the Event-B specification of rules

	Characteristics	Root level	First refinement level
	Events	3	50
	Invariants	11	104
	Proof Obligations (PO)	37	1123
	Automatically Discharged POs	27	257
	Interactively Discharged POs	10	866

Table 5 .

 5 1 -Key characteristics related to the formal specification

	Refinement level	L0 L1 L2 L3 L4 Summary
	Invariants	2	6	8	1	1	18
	Events	1	4	3	5	9	22
	Proof Obligations (PO)	1	3	10 9	25 48

Table 6 .

 6 1 -Repartition of variables between events and invariants in steam boiler -controller3

	Variables	Invariants	Events
	waterLevel		INITIALISATION, ReadWaterUnit, ReadInputsInRescueMode, ComputeNextSys-
			temMode, OpenPump, ClosePump
	operatingMode	p2.1..p2.4	INITIALISATION, ReadWaterUnit, ComputeNextSystemMode, OpenPump,
			ClosePump
	sensorState	p2.1..p2.4	INITIALISATION, ReadWaterUnit, ReadInputsInRescueMode, ComputeNextSys-
			temMode
	sensorInput		INITIALISATION, ReadWaterUnit, ReadInputsInRescueMode
	actuatorState	p2.4	INITIALISATION, ComputeNextSystemMode, OpenPump, ClosePump
	actuatorOutput		INITIALISATION, OpenPump, ClosePump

Table 6 .

 6 6.4. Mechanisms to Ensure the Consistency between Subsystems and System Requirements 2 -Overview of interfaces obtained from the decomposition of steamboiler controller3

	Interfaces	Events	Variables
	WaterUnit-	ReadWaterUnit, ReadInputsInRescueMode, Com-	waterLevel, operatingMode, sen-
	Sensor i	puteNextSystemMode, OpenPump, ClosePump	sorState, sensorInput
	RescueSensors i	ReadInputsInRescueMode, ReadWaterUnit, Com-	waterLevel, sensorState, sensorIn-
		puteNextSystemMode, OpenPump, ClosePump	put
	ModeController i	ComputeNextSystemMode, ReadWaterUnit, ReadIn-	waterLevel, operatingMode, sen-
		putsInRescueMode, OpenPump, ClosePump	sorState, actuatorState
	PumpActuator i	OpenPump, ClosePump, ReadWaterUnit, ReadIn-	waterLevel, operatingMode, actua-
		putsInRescueMode, ComputeNextSystemMode	torState, actuatorOutput

Table 7 .

 7 1 -Key characteristics related to the formal specification

	Refinement level	L0 L1 L2 L3 L4 L5 L6
	Invariants	4	11 13 1	0	5	6
	Proof Obligations (PO)	28 58 78 10 0	9	28
	Automatically Discharged POs	26 54 58 10 0	8	18
	Interactively Discharged POs	2	4	20 0	0	1	10
	154						

Table 8 .

 8 1 -Key characteristics related to the formal specification

	Refinement level	L0 L1 L2 L3
	Invariants	8	8	14 26
	Proof Obligations (PO)	21 52 36 85
	Automatically Discharged POs	19 51 36 66
	Interactively Discharged POs	2	1	0	19

  • A non-functional goal refinement strategy based on logical formulas that allows to refine a non-functional goal NFG into (NFG, P 1 ), (NFG, P 2 ), ..., (NFG, P n ) where P 1 , P 2 , ..., P n are logical formulas: the satisfaction of NFG depends on the satisfaction of NFG when P 1 is true, of NFG when P 2 is true, ..., and of NFG when P n is true. For example, the satisfaction of goal Cost [Actuator] (goal diagram of Figure 8.3) depends on the satisfaction of Cost [Actuator] when the user has a smart device and when the user doesn't. Indeed, if we only consider goal Cost [Actuator], the contribution goal UsePMV seems useless. But it is better to send notifications through GPS platforms only when a user has a smart device. When a smart device is not available, the only viable option is to use variable message signs (goal UsePMV). Thus, goal

  même, un comportement est défini afin de détecter et propager les ajouts et suppressions d'éléments au sein d'une spécification B System. Il est à noter que pour des raisons techniques liées à Openflexo, seuls sont supportés les ajouts et suppressions d'ensembles abstraits et énumérés B System et d'éléments d'ensembles énumérés.

•

  Un comportement update structural part pour l'établissement des liens de correspondance entre modèles de domaine et spécifications B System. Il s'agit ici de (i) détecter les ajouts effectués au sein du modèle de domaine et pour chaque nouvel élément xx créer une instance du lien de correspondance associé au type de xx : l'instanciation du lien de correspondance se traduit par l'introduction d'un nouvel élément au sein de la spécification B System, conformément aux règles de correspondance (voir annexe B), lié à xx à travers l'instance du lien de correspondance ; (ii) détecter les suppressions et les propager par la suppression des instances de liens de correspondance associées : la suppression d'une instance de lien entraîne la suppression de l'élément B System correspondant. • Un comportement update behavioral part pour l'établissement des liens de correspondance entre buts fonctionnels et évènements B System. Ce comportement fait également la correspondance entre raffinements de buts et raffinements d'évènements : And ⇒ ref and, Or ⇒ ref or, Milestone ⇒ ref milestone et Data Refinement ⇒ ref. Les raffinements identifiés par ref and, ref or et ref milestone sont des raffinements intégrés dans l'Atelier B et dont la correction requiert l'établissement des obligations de preuve de raffinement SysML/KAOS [8]. • Un comportement back Propagate Structural Part Updates pour la propagation des ajouts et suppressions d'éléments, de la partie structurelle d'une spécification B System, vers les modèles SysML/KAOS correspondants. • 16 flexo concepts implémentant les liens de correspondance. Chaque flexo concept de correspondance définit une propriété qui référence un élément xx d'un modèle de domaine ou de but et une autre propriété qui référence l'élément de la spécification B System associé à xx. Il surcharge également ses constructeur et destructeur de façon à associer, pour chaque élément xx, sa création à l'insertion du correspondant de xx et sa suppression à celle du correspondant de xx.

Table A .

 A 1 -The translation rules Relation; (M j ) j=1..n are maplets of RE ∀j ∈ 1..n, a j is the antecedent of M j ∀j ∈ 1..n, i j is the image of M j RE and (a j , i j ) j=1..n have already been translated DataFunction; {DSd i } i=1..n ∪ {DSr j } j=1..m ⊆ DataSet (DSd i ) i=1..n form the domain of DF (DSr j ) j=1..m form the range of DF (DSd i ) i=1..n and (DSr j ) j=1..

	A.2. Definition of the Translation Rules		
	2 Domain model with parent 3 Abstract concept 13 Data function	DM PDM CO DF (DSd i ) i=1..n (DSr j ) j=1..m {DM, PDM} ⊆ DomainModel DM is associated with PDM through the parent association and PDM has already been translated CO ∈ Concept DF ∈ m have already	o DM o CO o DF	o DM ∈ Refinement o DM refines o PDM o CO ∈ AbstractSet o DF ∈ Constant LogicFormula: o DF ∈ ( n i=1 DSd i ) → ( m j=1 DSr j )
				CO is not associated with a parent con-been translated		
				cept		
	4 Concept	with	CO	{CO, PCO} ⊆ Concept	o CO	o CO ∈ Constant
	parent		PCO	CO is associated with PCO through the		LogicFormula: o CO ⊆ o PCO
				parentConcept association and PCO has		
				already been translated		
	5 Relation		RE	{CO1, CO2} ⊆ Concept	o RE	IF the isVariable property of RE is set to
			CO1	RE ∈ Relation		FALSE
			CO2	CO1 is the domain of RE		THEN o RE ∈ Constant
				CO2 is the range of RE		ELSE o RE ∈ Variable
				CO1 and CO2 have already been trans-		LogicFormula: o RE ∈ o CO1 ↔ o CO2
				lated		(As usual, this relation becomes a func-
						tion, an injection, ... according to the car-
						dinalities of RE)
	6 Attribute		AT CO			
			DS			
						o DS
	7 Concept change-	CO	CO ∈ Concept	X CO	X CO ∈ Variable
	ability			the isVariable property of CO is set to		LogicFormula: X CO ⊆ o CO
				TRUE		
				CO has already been translated		
	8 Individual		Ind CO	Ind ∈ Individual CO ∈ Concept	o Ind	IF Ind ∈ VariableIndividual
				Ind is an individual of CO		THEN o Ind ∈ Variable
				CO has already been translated		ELSE o Ind ∈ Constant
						LogicFormula: o Ind ∈ o CO
	9 Data value		Dva	Dva ∈ DataValue DS ∈ DataSet	o Dva	IF Dva ∈ VariableDataValue
			DS	Dva is a value of DS		THEN o Dva ∈ Variable
				DS has already been translated		ELSE o Dva ∈ Constant
						LogicFormula: o Dva ∈ o DS
	10 Relation transi-	RE	RE ∈ Relation		LogicFormula: (o RE ; o RE) ⊆ o RE
	tivity			the isTransitive property of RE is set to		(All other optional properties of an in-
				TRUE		stance of Relation are translated in the
				RE has already been translated		same way (Sect. A.2.1))
	11 Relation maplets	RE	RE ∈ IF the isVariable property of RE is set to
			(M j ) j=1..n			FALSE
			(a j ,			THEN	Property:	o RE	=
			i j ) j=1..n			{(o a j , o i j ) j=1..n }
						ELSE	Initialisation:
						o REbcmeq{(o a j , o i j ) j=1..n }
	12 Attribute		AT	AT ∈ Attribute; (M IF the isVariable property of AT is set to
	maplets Translation Of 1 Abstract domain	Domain Model Element Constraint (M j ) j=1..n (a j , DM DM ∈ DomainModel i j ) j=1..n	FALSE THEN Element Constraint B System Property: o DM {(o a j , o i j ) j=1..n } o DM ∈ System ELSE Initialisation:	o AT o AT	= : =
	model			DM is not associated with a parent do-main model		{(o a j , o i j ) j=1..n }
				206		

CO ∈ Concept DS ∈ DataSet AT ∈ Attribute CO is the domain of AT DS is the range of AT CO and DS have already been translated o AT IF the isVariable property of AT is set to FALSE THEN o AT ∈ Constant ELSE o AT ∈ Variable IF isFunctional and isTotal are set to TRUE THEN LogicFormula: o AT ∈ o CO → o DS ELSE IF isFunctional is set to TRUE THEN LogicFormula: o AT ∈ o CO → o DS ELSE LogicFormula: o AT ∈ o CO ↔ j ) j=1..n are maplets of AT ∀j ∈ 1.

.n, a j is the antecedent of M j ∀j ∈ 1..n, i j is the image of M j AT and (a j , i j ) j=1..n have already been translated

Table A .

 A 2 -back propagation rules in case of addition of an element in the B System specification

			B System		Domain Model
	Addition Of	Input	Constraint	Output Constraint
	1 Abstract set	b CO	b CO ∈ AbstractSet	CO	CO ∈ Concept
					Concept isVariable(CO) = FALSE
					Knowing that an abstract set introduced
					can correspond to a concept or to a cus-
					tom data set, to avoid non-determinism,
					we choose to define CO as an instance
					of Concept. The user may subsequently
					change his type.
	2 Variable typed as				
	subset of the cor-				
	respondent of a				
	concept				

  -1 [{FALSE}] = ∅) added to discharge a proof Correspondence links : typing invariants corr link typ inv1 1: Concept corresp Set ∈ Concept isVariable -1 [{FALSE}] Set corr link typ inv1 2: Association Type Constant ∈ Association Constant contient les types des associations; eg: LgOfLs Type = LandingSet -> LandingGear corr link typ inv1 3: Concept corresp Constant ∈ Concept isVariable -1 [{FALSE}] Constant corr link typ inv1 4: Concept corresp Variable ∈ Concept isVariable -1 [{TRUE}]Variable corr link typ inv1 5:Individual corresp Constant ∈ Individual isVariable -1 [{FALSE}] Constant corr link typ inv1 6: Individual corresp Variable ∈ Individual isVariable -1 [{TRUE}] Variable corr link typ inv1 7: Individual corresp SetItem ∈ (Individual individualO f Concept -1 [Concept isEnumeration -1 [{TRUE}]] Concept isEnumeration -1 [{TRUE}] Concept corresp Set ∈ Concept EnumeratedSet corr link constr inv1 2: Concept isEnumeration -1[{FALSE}] Concept corresp Set ∈ Concept AbstractSet corr link constr inv1 3: partition(dom(Concept corresp Set)∪dom(Concept corresp Constant)∪dom(Concept corresp Variable), dom(Concept corresp Set), dom(Concept corresp Constant), dom(Concept corresp Variable)) B.2. Event-B Specification of the Adjusted SysML/KAOS Domain Modeling Language Individual individualO f Concept -1 [{xx}] ∩ dom(Individual corresp SetItem) = ∅) corr link constr inv1 8: { NATURAL → B NATURAL, INTEGER → B INTEGER, FLOAT → B FLOAT, BOOL → B BOOL, STRING → B STRING} ⊆ Concept corresp Set corr link constr inv1 9:{ TRUE → B TRUE, FALSE → B FALSE} ⊆ Individual corresp SetItem corr link constr inv1 10: ∀co•(co ∈ Concept isEnumeration -1 [{TRUE}] \ (dom(Concept corresp Set) ∪ dom(Concept parentConcept Concept) ∪ Association ∪ De f inedConcept ∪ De f aultDataType) ⇒ (Individual individualO f Concept -1 [{co}] ∩ Individual isVariable -1 [{FALSE}]) ∩ (dom(Individual corresp SetItem) ∪ dom(Individual corresp Constant)) = ∅)added to discharge a proof corr link constr inv1 11: dom(Concept parentConcept Concept) ∩ dom(Concept corresp Set) = ∅ added to discharge a proof corr link constr inv1 12: partition(ran(Concept corresp Constant) ∪ ran(Individual corresp Constant) ∪ ran(Association Type Constant), ran(Concept corresp Constant), ran(Individual corresp Constant), ran(Association Type Constant)) corr link constr inv1 13: partition(ran(Concept corresp Variable) ∪ ran(Individual corresp Variable) ∪ ran(Association Type Variable), ran(Concept corresp Variable), ran(Individual corresp Variable), ran(Association Type Variable)) corr link constr inv1 14: partition(dom(Association Type Constant) ∪ dom(Association Type Variable), dom(Association Type Constant), dom(Association Type Variable)) corr link constr inv1 15: (Concept \ (dom(Concept parentConcept Concept) ∪ Association ∪ De f inedConcept)) ∩ (dom(Concept corresp Constant) ∪ dom(Concept corresp Variable)) = ∅ corr link constr inv1 16: ∀xx•(xx ∈ (Association∩(dom(Concept corresp Constant)∪dom(Concept corresp Variable)))\ dom(Concept parentConcept Concept)⇒xx ∈ dom(Association Type Constant)∪dom(Association Type Variable)) corr link constr inv1 17: Association ∩ dom(Concept corresp Set) = ∅ corr link constr inv1 18: partition(ran(AssociationCharacteristic corresp LogicFormula)∪ran(ConcreteEnumeration corresp -Variable subconcept linked to its abstract parent concept isom inv1 1 2: ∀xx, pxx, o lg•( ( xx ∈ dom(Concept parentConcept Concept) ∧ pxx = Concept parentConcept Concept(xx) ∧ xx ∈ dom(Concept corresp Variable) ∧ pxx ∈ dom(Concept corresp Set) ∧ o lg = Variable typing Invariant(Concept corresp Variable(xx)) ) ⇒ ( LogicFormula uses Operators(o lg) = {1 → Inclusion OP} ∧ (2 → Concept corresp Set(pxx)) ∈ LogicFormula involves Sets(o lg) ) ) Constant subconcept linked to its concrete constant parent concept isom inv1 1 3: ∀xx, pxx, o lg•( ( xx ∈ dom(Concept parentConcept Concept) ∧ pxx = Concept parentConcept Concept(xx) ∧ xx ∈ dom(Concept corresp Constant) ∧ pxx ∈ dom(Concept corresp Constant) ∧ o lg = Constant typing Property(Concept corresp Constant(xx)) ) .2. Event-B Specification of the Adjusted SysML/KAOS Domain Modeling Language isom inv1 1 5: ∀xx, pxx, o lg•( ( xx ∈ dom(Concept parentConcept Concept) ∧ pxx = Concept parentConcept Concept(xx) ∧ xx ∈ dom(Concept corresp Constant) ∧ pxx ∈ dom(Concept corresp Variable) ∧ o lg = Constant typing Property(Concept corresp Constant(xx)) ) ⇒ ( LogicFormula uses Operators(o lg) = {1 → Inclusion OP} ∧ ∃ppxx, o lg i•( ppxx ∈ ran(Concept parentConcept Concept) ∧ ( (ppxx ∈ dom(Concept corresp Constant) ∧ (2 → o lg) ∈ Constant isInvolvedIn LogicFormulas(Concept corresp Constant(ppxx))) ∨ (ppxx ∈ dom(Concept corresp Set) ∧ (2 → Concept corresp Set(ppxx)) ∈ LogicFormula involves Sets(o lg)) ) ∧ o lg i ∈ Invariant ∧ LogicFormula uses Operators(o lg i) = {1 → Inclusion OP} ∧ (1 → o lg i) ∈ Constant isInvolvedIn LogicFormulas(Concept corresp Constant(xx)) ∧ (2 → Concept corresp Variable(pxx)) ∈ Invariant involves Variables(o lg i) ) ) ) ppxx ∈ cls(Concept parentConcept Concept)[{pxx}] Variable subconcept linked to its concrete variable parent concept isom inv1 1 6: ∀xx, pxx, o lg•( ( xx ∈ dom(Concept parentConcept Concept) ∧ pxx = Concept parentConcept Concept(xx) ∧ xx ∈ dom(Concept corresp Variable) ∧ pxx ∈ dom(Concept corresp Variable) ∧ o lg = Variable typing Invariant(Concept corresp Variable(xx)) ) ⇒ ( LogicFormula uses Operators(o lg) = {1 → Inclusion OP} ∧ (2 → Concept corresp Variable(pxx)) ∈ Invariant involves Variables(o lg) ) ) Constant included in an abstract set (the correspondence of the parent concept or of its ancestor) isom inv1 2: ∀o xx, o pxx, o lg•( ( o xx ∈ ran(Concept corresp Constant) ∧ o lg = Constant typing Property(o xx) ∧ LogicFormula uses Operators(o lg)

	∩ Individual isVariable -1 [{FALSE}]) corr link typ inv1 8: AssociationCharacteristic corresp LogicFormula SetItem ∈ (Association → RelationCharacteristics Set) LogicFormula corr link typ inv1 9: Association Type Variable ∈ Association Variable corr link typ inv1 10: ConcreteEnumeration corresp IndividualSetLogicalFormula ∈ (dom(Concept parentConcept Concept) ∩ Concept isEnumeration -1 [{TRUE}] ∩ dom(Concept corresp Constant)) LogicFormula corr link typ inv1 11: UnnamedMapletIndividual corresp LogicalFormula ∈ (MapletIndividual ∩ Individual isNamed -1 [{FALSE}]) LogicFormula Correspondence links : various constraints corr link constr inv1 6: partition(dom(Individual corresp Constant) ∪ dom(Individual corresp Variable) ∪ dom(Individual corresp SetItem), dom(Individual corresp Constant), dom(Individual corresp Variable), dom(Individual corresp SetItem)) corr link constr inv1 7: ∀xx•((xx ∈ Concept isEnumeration -1 [{TRUE}]∧xx / ∈ dom(Concept corresp Set EnumeratedSet)) ⇒ IndividualSetLogicalFormula) ∪ ran(UnnamedMapletIndividual corresp LogicalFormula), ran(AssociationCharacteristic corresp LogicFormula), ran(ConcreteEnumeration corresp IndividualSetLogicalFormula), ran(UnnamedMapletIndividual corresp LogicalFormula)) added to discharge a proof isomorphisms constant subconcept linked to its abstract parent concept isom inv1 1: ∀xx, pxx, o lg•( ( xx ∈ dom(Concept parentConcept Concept) ⇒ ( LogicFormula uses Operators(o lg) = {1 → Inclusion OP} ∧ (2 → o lg) ∈ Constant isInvolvedIn LogicFormulas(Concept corresp Constant(pxx)) ) ) Variable subconcept linked to its concrete constant parent concept isom inv1 1 4: ∀xx, pxx, o lg•( ( xx ∈ dom(Concept parentConcept Concept) corr link constr inv1 1: corr link constr inv1 5: dom(Individual corresp Variable) ∩ Individual isNamed -1 [{FALSE}] = ∅ ∧ pxx = Concept parentConcept Concept(xx) ∧ xx ∈ dom(Concept corresp Variable)

∧ pxx = Concept parentConcept Concept(xx) ∧ xx ∈ dom(Concept corresp Constant) ∧ pxx ∈ dom(Concept corresp Set) ∧ o lg = Constant typing Property(Concept corresp Constant(xx)) ) ⇒ ( LogicFormula uses Operators(o lg) = {1 → Inclusion OP} ∧ (2 → Concept corresp Set(pxx)) ∈ LogicFormula involves Sets(o lg) ) ) ∧ pxx ∈ dom(Concept corresp Constant) ∧ o lg = Variable typing Invariant(Concept corresp Variable(xx)) ) ⇒ ( LogicFormula uses Operators(o lg) = {1 → Inclusion OP} ∧ (2 → o lg) ∈ Constant isInvolvedIn LogicFormulas(Concept corresp Constant(pxx)) ) ) Constant subconcept linked to its concrete variable parent concept B

  in a constant isom inv1 2 4: ∀o xx, o pxx, o lg•( ( o xx ∈ ran(Concept corresp Variable) ∧ o lg = Variable typing Invariant(o xx) ∧ LogicFormula uses Operators(o lg) = {1 → Inclusion OP} ∧ o pxx ∈ ran(Concept corresp Constant) ∧ (2 → o lg) ∈ Constant isInvolvedIn LogicFormulas(o pxx) ) .2. Event-B Specification of the Adjusted SysML/KAOS Domain Modeling Language isom inv1 2 5: ∀o xx, o pxx, o lg•( ( o xx ∈ ran(Concept corresp Variable) ∧ o lg = Variable typing Invariant(o xx) ∧ LogicFormula uses Operators(o lg) = {1 → Inclusion OP} ∧ o pxx ∈ ran(Concept corresp Variable) ∧ (2 → o pxx) ∈ Invariant involves Variables(o lg) ) ⇒ ( Concept corresp Variable -1 (o xx) ∈ dom(Concept parentConcept Concept) ∧ Concept corresp Variable -1 (o pxx) = Concept parentConcept Concept(Concept corresp Variable -1 (o xx)) ) ) invariants required to discharge isomorphisms each concept is translated after its parent concept isom inv1 3: ∀xx, pxx•( (xx ∈ dom(Concept parentConcept Concept) ∧pxx = Concept parentConcept Concept(xx) ∧xx ∈ (dom(Concept corresp Constant)∪dom(Concept corresp Variable)) ) ⇒ pxx ∈ (dom(Concept corresp Set) ∪ dom(Concept corresp Constant) ∪ dom(Concept corresp Variable)) ) each constant is back propagated after its type (abstract set) isom inv1 4: ∀o xx, o pxx, o lg•( ( o xx ∈ Constant ∧ o lg = Constant typing Property(o xx) ∧ LogicFormula uses Operators(o lg) = {1 → Inclusion OP} ∧ (2 → o pxx) ∈ LogicFormula involves Sets(o lg) ∧ o xx ∈ ran(Concept corresp Constant ) ⇒ o pxx ∈ ran(Concept corresp Set) ) each constant is back propagated after its type (constant) isom inv1 4 2: ∀o xx, o pxx, o lg•( ( o xx ∈ Constant ∧ o lg = Constant typing Property(o xx) ∧ LogicFormula uses Operators(o lg) = {1 → Inclusion OP} ∧ o pxx ∈ Constant ∧ (2 → o lg) ∈ Constant isInvolvedIn LogicFormulas(o pxx) ∧ o xx ∈ ran(Concept corresp Constant) ) ⇒ o pxx ∈ ran(Concept corresp Constant) ) each variable is back propagated after its type (abstract set) isom inv1 4 3: ∀o xx, o pxx, o lg•( ( o xx ∈ Variable ∧ o lg = Variable typing Invariant(o xx) B.3. Definition of the Adjusted Translation Rules Table B.2 -The adjusted translation rules

	B.3. Definition of the Adjusted Translation Rules		
	(9) Association	or	CO	CO ∈ (DefinedConcept ∪ Association)	o CO	IF Concept isVariable(CO) = FALSE
	defined concept Translation Of without parent 1 Abstract domain model 2 Domain model with parent 3 Abstract concept that is not an enu-10 Association meration	Domain Model ∈ dom(Concept parent Concept) 3 CO / Element Constraint DM DM ∈ DomainModel DM / To ensure that each variable or constant is typed, this rule has to be combined ∈ dom(DomainModel parent DomainModel) Element Constraint THEN o CO ∈ Constant B System ELSE o CO ∈ Variable o DM o DM ∈ System DM PDM {DM, PDM} ⊆ DomainModel PDM = DomainModel parent DomainModel(DM) o PDM ∈ Component o DM with either rule 10, for associations, or o DM ∈ Refinement with a translation of the defining logical Refinement refines Component(o DM) = formula (contained in definedWith), for o PDM CO CO ∈ Concept \ (Association ∪ o CO defined concepts. o CO ∈ AbstractSet AS {CO1, CO2} ⊆ Concept DefinedConcept ∪ DefaultDataType) CO1 AS ∈ Association CO / CO2 CO1 = Association domain Concept(AS) ∈ dom(Concept parent Concept) da di CO2 = Association range Concept(AS)
	4 Abstract concept that is an enumer-ation	ra ri CO (I j ) j∈1..n	da = Concept isEnumeration(CO) = FALSE CO ∈ Concept \ (Association ∪ DefinedConcept ∪ DefaultDataType) CO / ∈ dom(Concept parent Concept) Association DomainCardinality maxCardinality(AS) o CO di = (o I j ) j∈1..n Association DomainCardinality minCardinality(AS) ra = Association RangeCardinality maxCardinality(AS) ri = Concept isEnumeration(CO) = TRUE Association RangeCardinality minCardinality(AS)	o CO ∈ EnumeratedSet ∀j ∈ 1..n, o I j ∈ SetItem ∧SetItem itemOf EnumeratedSet(o I j ) = o CO
	5 Concept	with	CO	{CO, PCO} ⊆ Concept	o CO	IF Concept isVariable(CO) = FALSE
	constant parent	PCO	Concept parent Concept(CO) = PCO		THEN o CO ∈ Constant
				o PCO ∈ Set ∪ Constant		ELSE o CO ∈ Variable
						LogicFormula: o CO ⊆ o PCO
	6 Constant concept	CO	{CO, PCO, PPCO} ⊆ Concept	o CO	o CO ∈ Constant
	with variable par-	PCO	Concept isVariable(CO) = FALSE		Property: o CO ⊆ o PPCO
	ent		PPCO	Concept parent Concept(CO) = PCO		Invariant: o CO ⊆ o PCO
				o PCO ∈ Variable		
				PPCO ∈ (closure1(Concept parent Concept))[{PCO}] 1	
				o PPCO ∈ Set ∪ Constant		
	7 Variable concept	CO	{CO, PCO} ⊆ Concept	o CO	o CO ∈ Variable
	with variable par-	PCO	Concept isVariable(CO) = TRUE		Invariant: o CO ⊆ o PCO
	ent			Concept parent Concept(CO) = PCO		
				o PCO ∈ Variable		
	8 Enumerated con-	CO	CO ∈ dom(Concept parent Concept)		
	cept with parent	(I j ) j∈1..n			
	+ card(Set \ ran(Concept corresp Set)) Concept isEnumeration(CO) = TRUE		
	+ card(SetItem \ ran(Individual corresp SetItem)) ∀j ∈ 1..n, I j ∈ Individual + card(Constant \ (ran(Concept corresp Constant) ∧ Individual individualOf Concept(I j ) = ∪ ran(Individual corresp Constant) ∪ ran(Association Type Constant))) CO + card(Variable \ (ran(Concept corresp Variable) ∪ ran(Individual corresp Variable) ∪ ran(Association Type Variable))) ∧ Individual isVariable(I j ) = FALSE	
	+ card(Association \ (dom(Association Type Constant) ∪ dom(Association Type Variable))) + card((dom(Concept parentConcept Concept) o CO ∈ Constant 2
	∩ Concept isEnumeration -1 [{TRUE}]) \ dom(Concrete Enumeration corresp IndividualSetLogicalFormula)) + card(MapletIndividual \ dom(UnnamedMapletIndividual corresp LogicalFormula)) + card((Association → RelationCharacteristics Set) \ dom(AssociationCharacteristic corresp LogicFormula)) ∈ N card(Concept \ (dom(Concept corresp Set) VARIANT ∀j ∈ 1..n, o I Concept parent Concept
	2. Every concrete enumeration is a constant		

⇒ ( Concept corresp Variable -1 (o xx) ∈ dom(Concept parentConcept Concept) ∧ Concept corresp Constant -1 (o pxx) = Concept parentConcept Concept(Concept corresp Variable -1 (o xx)) ) ) Variable included in a variable B∧ LogicFormula uses Operators(o lg) = {1 → Inclusion OP} ∧ (2 → o pxx) ∈ LogicFormula involves Sets(o lg) ∧ o xx ∈ ran(Concept corresp Variable) ) ⇒ o pxx ∈ ran(Concept corresp Set) ) each variable is back propagated after its type (constant) isom inv1 4 4: ∀o xx, o pxx, o lg•( ( o xx ∈ Variable ∧ o lg = Variable typing Invariant(o xx) ∧ LogicFormula uses Operators(o lg) = {1 → Inclusion OP} ∧ o pxx ∈ Constant ∧ (2 → o lg) ∈ Constant isInvolvedIn

LogicFormulas(o pxx) ∧ o xx ∈ ran(Concept corresp Variable) ) ⇒ o pxx ∈ ran(Concept corresp Constant) ) each variable is back propagated after its type (variable) isom inv1 4 5: ∀o xx, o pxx, o lg•( ( o xx ∈ Variable ∧ o lg = Variable typing Invariant(o xx) ∧ LogicFormula uses Operators(o lg) = {1 → Inclusion OP} ∧ (2 → o pxx) ∈ Invariant involves Variables(o lg) ∧ o xx ∈ ran(Concept corresp Variable) ) ⇒ o pxx ∈ ran(Concept corresp Variable) ) theo var nat: theorem card(Concept \ (dom(Concept corresp Set) ∪ dom(Concept corresp Constant) ∪ dom(Concept corresp Variable))) + card(Individual \ (dom(Individual corresp Constant) ∪ dom(Individual corresp Variable) ∪ dom(Individual corresp SetItem))) ∪ dom(Concept corresp Constant) ∪ dom(Concept corresp Variable))) + card(Individual \ (dom(Individual corresp Constant) ∪ dom(Individual corresp Variable) ∪ dom(Individual corresp SetItem))) + card(Set \ ran(Concept corresp Set)) ∀j ∈ 1..n, I j ∈ Individual ∧ Individual individualOf Concept(I j ) = CO ∧ Individual isVariable(I j ) = FALSE j ∈ o CO Property: o CO = (o I j ) j∈1..n 1. closure1(Concept parent Concept) designates the transitive closure of relation

  Property ∪ ({TRUE → {o lg type, o lg item}, FALSE → ({TRUE → {o lg type}, Constant typing Property : = Constant typing Property ∪ ({TRUE → {T AS c → o lg type}, FALSE → ∅}(bool(Concept isVariable(CO1) = FALSE∧Concept isVariable(CO2) = FALSE)))∪({TRUE → ({TRUE →

	FALSE → ∅}(bool(Concept isVariable(CO1) = FALSE
	∧ Concept isVariable(CO2) = FALSE)))}(bool(Concept isVariable(AS) = FALSE)))
	act10: Invariant : = Invariant∪({TRUE → ({TRUE → ∅, FALSE → {o lg item}}(bool(Concept isVariable(AS) =
	FALSE))), FALSE → {o lg type,
	o lg item}}(bool(Concept isVariable(CO1) = FALSE ∧ Concept isVariable(CO2) = FALSE)))
	act11: LogicFormula : = LogicFormula ∪ {o lg type, o lg item}
	act12:

∅}(bool(AS / ∈ (dom(Concept corresp Constant) ∪ dom(Concept corresp Variable))))) 262 B.3. Definition of the Adjusted Translation Rules act9: Property : = {o AS c → o lg item}, FALSE → ∅}(bool(Concept isVariable(AS) = FALSE))), FALSE → ∅}(bool(AS / ∈ (dom(Concept corresp Constant) ∪ dom(Concept corresp Variable))))) act13: Variable typing Invariant : = Variable typing Invariant ∪ ({TRUE → ∅,

FALSE → {T AS v → o lg type}}(bool(Concept isVariable(CO1) = FALSE ∧ Concept isVariable(CO2) = FALSE))) ∪ ({TRUE → ({TRUE → ∅, FALSE → {o AS v → o lg item}}(bool(Concept isVariable(AS) = FALSE))), FALSE → ∅}(bool(AS / ∈ (dom(Concept corresp Constant) ∪ dom(Concept corresp Variable)))))

act14

: LogicFormula uses Operators : = LogicFormula uses Operators ∪ {o lg type → {1 → RelationSet OP}, o lg item → {1 → Belonging OP}} act15: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -( ({TRUE → {T AS c → {1 → o lg type, 2 → o lg item}}, FALSE → ∅}(bool(Concept isVariable(CO1) = FALSE∧Concept isVariable(CO2) = FALSE))) ∪({TRUE → ({TRUE → {o AS c → {1 → o lg item}}, FALSE → ∅}(bool(Concept isVariable(AS) = FALSE))), FALSE → ({TRUE → {o AS c → union(Constant isInvolvedIn -LogicFormulas[{o AS c}])∪{1 → o lg item}}, FALSE → ∅}(bool(AS ∈ dom(Concept corresp Constant))))}(bool(AS / ∈ (dom(Concept corresp Constant) ∪ dom(Concept corresp Variable

pour un évènement G, G Guard représente la garde de G et G Post représente sa post-condition

2.3. B System Explicitation of the Semantics of SysML/KAOS Models

For an event G, G Guard represents the guards of G and G Post represents the post condition of its actions.

2.4. State of the Art on Domain Modeling in Requirements Engineering

The full list can be found in annex A

As usual, this relation becomes a function, an injection, ... according to the cardinalities of RE.

Depending on attribute properties, this relation may become a partial or total function.

Some guards and actions have been removed for the sake of concision

Data set NAT is used for simplification purposes. A more rigorous domain modeling, would represent the range of sensorInput as an instance of CustomDataSet called INCH, representing the set of lengths expressed in inches.

This paper is about the formal specification of requirements of a rail communication protocol called Saturn, proposed by ClearSy systems engineering, a French company specialised in safety critical systems. The protocol was developed and implemented within a rail product, widely used, without modeling, verifying and even documenting its requirements. This paper outlines the formal specification, verification and validation of Saturn's requirements in order to guarantee its correct behavior and to allow the definition of slightly different product lines. The specification is performed according to SysML/KAOS, a formal requirements engineering method developed in the ANR FORMOSE project for critical and complex systems. System requirements, captured with a goal modeling language, give rise to the behavioral part of a B System specification. In addition, an

5.3. Specification of the Saturn Communication Protocol(a) (b)

See[START_REF] Jeffrey | Modeling the Hybrid ERTMS/ETCS Level 3 Standard Using a Formal Requirements Engineering Approach[END_REF][START_REF] Tueno | The SysML/KAOS Domain Modeling Language (Tool and Case Studies)[END_REF] for assessment case studies.

The before-after predicate of E 1 denotes the relationship holding between the state variable of machine M 1 just before (denoted by x 1 ) and after (denoted by x 1 ) the triggering of E 1[START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF] 

For an event G, G Guard represents the guard of G and G Post represents the post condition of its actions[START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF].
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A.2. Definition of the Translation Rules

If CO has a parent concept, o CO must be introduced by rule 5. It is therefore necessary to ensure that this is not the case.

figure C.3 -Utilisation de FORMOD : Étape 3

figure C.4 -Utilisation de FORMOD : Étape 4
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A.2. Definition of the Translation Rules

grd2: dom(CustomDataSet corresp AbstractSet) = ∅ grd3: DS ∈ dom(CustomDataSet corresp AbstractSet) grd4: DataValue valueO f DataSet(dva) = DS grd5: DataSet de f inedIn DomainModel(DS) ∈ dom(DomainModel corresp Component) grd6: Constant Set \ Constant = ∅ grd7: o dva ∈ Constant Set \ Constant grd8: LogicFormula Set \ LogicFormula = ∅ grd9: o lg ∈ LogicFormula Set \ LogicFormula grd10: o DS ∈ AbstractSet grd11: o DS = CustomDataSet corresp AbstractSet(DS) then act1: Constant : = Constant ∪ {o dva} act2: DataValue corresp Constant(dva) : = o dva act3: Constant de f inedIn Component(o dva) : = DomainModel corresp Component(DataSet de f inedIn DomainModel(DS)) act4: Property : = Property ∪ {o lg} act5: LogicFormula : = LogicFormula ∪ {o lg} act6: LogicFormula uses Operators(o lg) : = {1 → Belonging OP} act7: Constant isInvolvedIn LogicFormulas(o dva) : = {1 → o lg} act8: LogicFormula involves Sets(o lg) : = {2 → o DS} act9: LogicFormula de f inedIn Component(o lg) : = DomainModel corresp Component(DataSet de f inedIn DomainModel(DS)) act10: Constant typing Property(o dva) : = o lg end Event rule 9 1 convergent = handling the variability of a concept and initializing the associated variable (when the concept corresponds to an abstract set) any CO x CO o lg o CO o ia o inds bij o inds where grd0: (dom(Concept corresp AbstractSet) ∩ Concept isVariable -1 [{TRUE}])\dom(Concept corresp Variable) = ∅ grd1: CO ∈ (dom(Concept corresp AbstractSet)∩Concept isVariable -1 [{TRUE}])\dom(Concept corresp Variable) grd2: Concept de f inedIn DomainModel(CO) ∈ dom(DomainModel corresp Component) grd3: Individual individualO f Concept -1 [{CO}] ⊆ dom(Individual corresp Constant) grd4: Variable Set \ Variable = ∅ grd5: x CO ∈ Variable Set \ Variable grd6: LogicFormula Set \ LogicFormula = ∅ grd7: o lg ∈ LogicFormula Set \ LogicFormula grd8: o CO ∈ AbstractSet grd9: o CO = Concept corresp AbstractSet(CO) grd10: InitialisationAction Set \ InitialisationAction = ∅ grd11: o ia ∈ InitialisationAction Set \ InitialisationAction grd12: o inds = Individual corresp Constant[Individual individualO f Concept -1 [{CO}]] grd13: f inite(o inds) grd14: bi j o inds ∈ 1 . . card(o inds) o inds then act1: Variable : = Variable ∪ {x CO} act2: Concept corresp Variable(CO) : = x CO act3: Variable de f inedIn Component(x CO) : = DomainModel corresp Component(Concept de f inedIn DomainModel(CO)) act4: Invariant : = Invariant ∪ {o lg} act5: LogicFormula : = LogicFormula ∪ {o lg} 217 A.2. Definition of the Translation Rules act6: LogicFormula uses Operators(o lg) : = {1 → Inclusion OP} act7: Invariant involves Variables(o lg) : = {1 → x CO} act8: LogicFormula involves Sets(o lg) : = {2 → o CO} act9: LogicFormula de f inedIn Component(o lg) : = DomainModel corresp Component(Concept de f inedIn DomainModel(CO)) act10: InitialisationAction : = InitialisationAction ∪ {o ia} act11: InitialisationAction uses Operators(o ia) : = {1 → BecomeEqual2SetO f OP} act12: Variable init InitialisationAction(x CO) : = o ia act13: InitialisationAction involves Constants(o ia) : = bi j o inds act14: Variable typing Invariant(x CO) : = o lg end Event rule 9 2 convergent = handling the variability of a concept and initializing the associated variable (when the concept corresponds to a constant) any CO x CO o lg o CO o ia o inds bij o inds where grd0:

LogicFormula grd8: o CO ∈ Constant grd9: o CO = Concept corresp Constant(CO) grd10: InitialisationAction Set \ InitialisationAction = ∅ grd11: o ia ∈ InitialisationAction Set \ InitialisationAction grd12: o inds = Individual corresp Constant[Individual individualO f Concept -1 [{CO}]] grd13: f inite(o inds) grd14: bi j o inds ∈ 1 . . card(o inds) o inds then act1: Variable : = Variable ∪ {x CO} act2: Concept corresp Variable(CO) : = x CO act3: Variable de f inedIn Component(x CO) : = DomainModel corresp Component(Concept de f inedIn DomainModel(CO)) act4: Invariant : = Invariant ∪ {o lg} act5: LogicFormula : = LogicFormula ∪ {o lg} act6: LogicFormula uses Operators(o lg) : = {1 → Inclusion OP} act7: Invariant involves Variables(o lg) : = {1 → x CO} act8: Constant isInvolvedIn LogicFormulas(o CO) : = Constant isInvolvedIn LogicFormulas(o CO)∪{2 → o lg} act9: LogicFormula involves Sets(o lg) : = ∅ act10: LogicFormula de f inedIn Component(o lg) : = DomainModel corresp Component(Concept de f inedIn DomainModel(CO)) act11: InitialisationAction : = InitialisationAction ∪ {o ia} act12: InitialisationAction uses Operators(o ia) : = {1 → BecomeEqual2SetO f OP} act13: Variable init InitialisationAction(x CO) : = o ia act14: InitialisationAction involves Constants(o ia) : = bi j o inds act15: Variable typing Invariant(x CO) : = o lg end A.2. Definition of the Translation Rules grd9: Constant Set \ Constant = ∅ grd10: {T RE, o RE} ⊆ Constant Set \ Constant grd11: LogicFormula Set \ LogicFormula = ∅ grd12: {o lg1, o lg2} ⊆ LogicFormula Set \ LogicFormula grd13: o CO1 = Concept corresp AbstractSet(CO1) grd14: o CO2 = Concept corresp Constant(CO2) grd15: DM = Relation de f inedIn DomainModel(RE) grd16: T RE = o RE grd17: o lg1 = o lg2 then act1: Constant : = Constant ∪ {T RE, o RE} act2: Relation Type(RE) : = T RE act3: Relation corresp Constant(RE) : = o RE act4: Constant de f inedIn Component : = Constant de f inedIn Component ∪ {o RE → DomainModel corresp Component(DM), T RE → DomainModel corresp Component(DM)} act5: Property : = Property ∪ {o lg1, o lg2} act6: LogicFormula : = LogicFormula ∪ {o lg1, o lg2} act7: Constant typing Property : = Constant typing Property ∪ {T RE → o lg1, o RE → o lg2} act8: Constant isInvolvedIn LogicFormulas

end Event rule 10 3 convergent = correspondence of an instance of Relation having its isVariable property set to false (case where range corresponds to an abstract set and domain corresponds to a constant)

Constant(CO1) grd15: DM = Relation de f inedIn DomainModel(RE) grd16: T RE = o RE grd17: o lg1 = o lg2 then act1: Constant : = Constant ∪ {T RE, o RE} act2: Relation Type(RE) : = T RE A.2. Definition of the Translation Rules act3: Relation corresp Constant(RE) : = o RE act4: Constant de f inedIn Component : = Constant de f inedIn Component ∪ {o RE → DomainModel corresp Component(DM), T RE → DomainModel corresp Component(DM)} act5: Property : = Property ∪ {o lg1, o lg2} act6: LogicFormula : = LogicFormula ∪ {o lg1, o lg2} act7: Constant typing Property : = Constant typing Property ∪ {T RE → o lg1, o RE → o lg2} act8: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -{T RE → {1 → o lg1, 2 → o lg2}, o RE → {1 → o lg2}, o CO1 → {2 → o lg1} ∪ Constant isInvolvedIn LogicFormulas(o CO1)} act9: LogicFormula uses Operators : = LogicFormula uses Operators ∪ {o lg1 → {1 → RelationSet OP}, o lg2 → {1 → Belonging OP}} act10: LogicFormula involves Sets : = LogicFormula involves Sets ∪ {o lg1 → {3 → o CO2}, o lg2 → ∅} act11: LogicFormula de f inedIn Component : = LogicFormula de f inedIn Component ∪ {o lg1 → DomainModel corresp Component(DM), o lg2 → DomainModel corresp Component(DM)} end Event rule 10 4 convergent = correspondence of an instance of Relation having its isVariable property set to false (case where domain and range correspond to constants) any RE T RE o RE CO1 o CO1 CO2 o CO2 o lg1 o lg2 DM where grd0: Relation isVariable -1 [{FALSE}] \ dom(Relation Type) = ∅ grd1: RE ∈ Relation isVariable -1 [{FALSE}] \ dom(Relation Type) grd2: dom(Concept corresp Constant) = ∅ grd3: CO1 = Relation domain Concept(RE) grd4: CO2 = Relation range Concept(RE) grd5: {CO1, CO2} ⊆ dom(Concept corresp Constant) grd6: Relation de f inedIn DomainModel(RE) ∈ dom(DomainModel corresp Component) grd7: Constant Set \ Constant = ∅ grd8: {T RE, o RE} ⊆ Constant Set \ Constant grd9: LogicFormula Set \ LogicFormula = ∅ grd10: {o lg1, o lg2} ⊆ LogicFormula Set \ LogicFormula grd11: o CO1 = Concept corresp Constant(CO1) grd12: o CO2 = Concept corresp Constant(CO2) grd13: DM = Relation de f inedIn DomainModel(RE) grd14: T RE = o RE grd15: o lg1 = o lg2 grd16: o CO1 = o CO2 then act1: Constant : = Constant ∪ {T RE, o RE} act2: Relation Type(RE) : = T RE act3: Relation corresp Constant(RE) : = o RE act4: Constant de f inedIn Component : = Constant de f inedIn Component ∪ {o RE → DomainModel corresp Component(DM), T RE → DomainModel corresp Component(DM)} act5: Property : = Property ∪ {o lg1, o lg2} act6: LogicFormula : = LogicFormula ∪ {o lg1, o lg2} act7: Constant typing Property : = Constant typing Property ∪ {T RE → o lg1, o RE → o lg2} act8: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -{T RE → {1 → o lg1, 2 → o lg2}, o RE → {1 → o lg2}, o CO1 → {2 → o lg1}∪Constant isInvolvedIn LogicFormulas(o CO1), o CO2 → {3 → o lg1} ∪ Constant isInvolvedIn LogicFormulas(o CO2)} act9: LogicFormula uses Operators : = LogicFormula uses Operators ∪ {o lg1 → {1 → RelationSet OP}, o lg2 → {1 → Belonging OP}} act10: LogicFormula involves Sets : = LogicFormula involves Sets ∪ {o lg1 → ∅, o lg2 → ∅} act11: LogicFormula de f inedIn Component : = LogicFormula de f inedIn Component ∪ {o lg1 → DomainModel corresp Component(DM), o lg2 → DomainModel corresp Component(DM)} A.2. Definition of the Translation Rules grd7: o atmap ∈ Constant Set \ Constant grd8: LogicFormula Set \ LogicFormula = ∅ grd9: o lg ∈ LogicFormula Set \ LogicFormula grd10: antecedent = AttributeMaplet antecedent Individual(atmap) grd11: image = AttributeMaplet image DataValue(atmap) grd12: antecedent ∈ dom(Individual corresp Constant) grd13: image ∈ dom(DataValue corresp Constant) grd14: o antecedent = Individual corresp Constant(antecedent) grd15: o image = DataValue corresp Constant(image) grd16: o antecedent = o image then act1: Constant : = Constant ∪ {o atmap} act2: AttributeMaplet corresp Constant(atmap) : = o atmap act3: Constant de f inedIn Component(o atmap) : = DomainModel corresp Component(Attribute de f inedIn DomainModel(AT)) act4: Property : = Property ∪ {o lg} act5: LogicFormula : = LogicFormula ∪ {o lg} act6: LogicFormula uses Operators(o lg) : = {1 → Maplet OP} act7: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -{o atmap → {1 → o lg}, o antecedent → {2 → o lg} ∪ Constant isInvolvedIn LogicFormulas(o antecedent), o image → {3 → o lg} ∪ Constant isInvolvedIn LogicFormulas(o image)} act8: LogicFormula involves Sets(o lg) : = ∅ act9: LogicFormula de f inedIn Component(o lg) : = DomainModel corresp Component(Attribute de f inedIn DomainModel(AT)) act10: Constant typing Property(o atmap) : = o lg end Event rule 11 2 2 convergent = correspondence of an instance of AttributeMaplet (case where the image (of type DataValue) corresponds to a set item any atmap o atmap AT antecedent image o lg o antecedent o image where grd0: AttributeMaplet \ dom(AttributeMaplet corresp Constant) = ∅ grd1: atmap ∈ AttributeMaplet \ dom(AttributeMaplet corresp Constant) grd2: dom(Attribute corresp Constant) ∪ dom(Attribute corresp Variable) = ∅ grd3: AttributeMaplet mapletO f Attribute(atmap) = AT grd4: AT ∈ dom(Attribute corresp Constant) ∪ dom(Attribute corresp Variable) grd5: Attribute de f inedIn DomainModel(AT) ∈ dom(DomainModel corresp Component) grd6: Constant Set \ Constant = ∅ grd7: o atmap ∈ Constant Set \ Constant grd8: LogicFormula Set \ LogicFormula = ∅ grd9: o lg ∈ LogicFormula Set \ LogicFormula grd10: antecedent = AttributeMaplet antecedent Individual(atmap) grd11: image = AttributeMaplet image DataValue(atmap) grd12: antecedent ∈ dom(Individual corresp Constant) grd13: image ∈ dom(DataValue corresp SetItem) grd14: o antecedent = Individual corresp Constant(antecedent) grd15: o image = DataValue corresp SetItem(image) then act1: Constant : = Constant ∪ {o atmap} act2: AttributeMaplet corresp Constant(atmap) : = o atmap act3: Constant de f inedIn Component(o atmap) : = DomainModel corresp Component(Attribute de f inedIn DomainModel(AT)) A.2. Definition of the Translation Rules grd9: o ia ∈ InitialisationAction Set \ InitialisationAction grd10: ex o ia = Variable init InitialisationAction(o RE) grd11: Variable init InitialisationAction -1 [{ex o ia}] = {o RE} nous sommes certains que dans le cas d'espèce, l'action d'initialisation de o RE ne fait intervenir que o RE : en effet nous l'avons explicitement definie (rule 13) grd12: f inite(o maplets) grd13: bi j o maplets ∈ 1 . . card(o maplets) o maplets then act1: InitialisationAction : = (InitialisationAction \ {ex o ia}) ∪ {o ia} act2: InitialisationAction uses Operators : = (InitialisationAction uses Operators\{ex o ia → InitialisationAction uses -Operators(ex o ia)}) -{o ia → {1 → BecomeEqual2SetO f OP}} act3: Variable init InitialisationAction(o RE) : = o ia act4: InitialisationAction involves Constants : = (InitialisationAction involves Constants\{ex o ia → Initialisation-Action involves Constants(ex o ia)}) -{o ia → bi j o maplets} end Event rule 13 1 convergent = correspondence of an instance of Relation having its isVariable property set to true (case where domain and range correspond to abstract sets. The others cases will not explicitely included here, since they can easily be obtained based on rules 10 2, 10 3 and 10 4) any RE T RE o RE CO1 o CO1 CO2 o CO2 o lg1 o lg2 DM o ia where grd0: Relation isVariable -1 [{TRUE}] \ dom(Relation Type) = ∅ grd1: RE ∈ Relation isVariable -1 [{TRUE}] \ dom(Relation Type) grd2: dom(Concept corresp AbstractSet) = ∅ grd3: CO1 = Relation domain Concept(RE) grd4: CO2 = Relation range Concept(RE) grd5: {CO1, CO2} ⊆ dom(Concept corresp AbstractSet) grd6: Relation de f inedIn DomainModel(RE) ∈ dom(DomainModel corresp Component) grd7: Constant Set \ Constant = ∅ grd8: T RE ∈ Constant Set \ Constant grd9: Variable Set \ Variable = ∅ grd10: o RE ∈ Variable Set \ Variable grd11: LogicFormula Set \ LogicFormula = ∅ grd12: {o lg1, o lg2} ⊆ LogicFormula Set \ LogicFormula grd13: o CO1 = Concept corresp AbstractSet(CO1) grd14: o CO2 = Concept corresp AbstractSet(CO2) grd15: DM = Relation de f inedIn DomainModel(RE) grd16: o lg1 = o lg2 grd17: InitialisationAction Set \ InitialisationAction = ∅ grd18: o ia ∈ InitialisationAction Set \ InitialisationAction then act1: Constant : = Constant ∪ {T RE} act2: Variable : = Variable ∪ {o RE} act3: Relation Type(RE) : = T RE act4: Relation corresp Variable(RE) : = o RE act5: Constant de f inedIn Component(T RE) : = DomainModel corresp Component(DM) act6: Variable de f inedIn Component(o RE) : = DomainModel corresp Component(DM) act7: Property : = Property ∪ {o lg1} act8: Invariant : = Invariant ∪ {o lg2} act9: LogicFormula : = LogicFormula ∪ {o lg1, o lg2} act10: Constant typing Property(T RE) : = o lg1 act11: Variable typing Invariant(o RE) : = o lg2 A.2. Definition of the Translation Rules act12: Constant isInvolvedIn LogicFormulas(T RE) : = {1 → o lg1, 2 → o lg2} act13: Invariant involves Variables(o lg2) : = {1 → o RE} act14: LogicFormula uses Operators : = LogicFormula uses Operators ∪ {o lg1 → {1 → RelationSet OP}, o lg2 → {1 → Belonging OP}} act15: LogicFormula involves Sets : = LogicFormula involves Sets ∪ {o lg1 → {2 → o CO1, 3 → o CO2}, o lg2 → ∅} act16: LogicFormula de f inedIn Component : = LogicFormula de f inedIn Component ∪ {o lg1 → DomainModel corresp Component(DM), o lg2 → DomainModel corresp Component(DM)} act17: InitialisationAction : = InitialisationAction ∪ {o ia} act18: InitialisationAction uses Operators(o ia) : = {1 → BecomeEqual2EmptySet OP} act19: Variable init InitialisationAction(o RE) : = o ia act20: InitialisationAction involves Constants(o ia) : = ∅ end Event rule 14 1 convergent = correspondence of an instance of Attribute having its isVariable property set to false and its isFunctional property set to false (case where the domain corresponds to an abstract set, knowing that the range always corresponds to a set ) any AT T AT o AT CO o CO DS o DS o lg1 o lg2 DM where grd0: Attribute isVariable -1 [{FALSE}] \ dom(Attribute Type) = ∅ grd1: AT ∈ Attribute isVariable -1 [{FALSE}] \ dom(Attribute Type) grd2: dom(Concept corresp AbstractSet) = ∅ grd3: CO = Attribute domain Concept(AT) grd4: CO ∈ dom(Concept corresp AbstractSet) grd5: dom(DataSet corresp Set) = ∅ grd6: DS = Attribute range DataSet(AT) grd7: DS ∈ dom(DataSet corresp Set) grd8: Attribute de f inedIn DomainModel(AT) ∈ dom(DomainModel corresp Component) grd9: Constant Set \ Constant = ∅ grd10: {T AT, o AT} ⊆ Constant Set \ Constant grd11: LogicFormula Set \ LogicFormula = ∅ grd12: {o lg1, o lg2} ⊆ LogicFormula Set \ LogicFormula grd13: o CO = Concept corresp AbstractSet(CO) grd14: o DS = DataSet corresp Set(DS) grd15: DM = Attribute de f inedIn DomainModel(AT) grd16: T AT = o AT grd17: o lg1 = o lg2 grd18: AT ∈ Attribute isFunctional -1 [{FALSE}] then act1: Constant : = Constant ∪ {T AT, o AT} act2: Attribute Type(AT) : = T AT act3: Attribute corresp Constant(AT) : = o AT act4: Constant de f inedIn Component : = Constant de f inedIn Component ∪ {o AT → DomainModel corresp Component(DM), T AT → DomainModel corresp Component(DM)} act5: Property : = Property ∪ {o lg1, o lg2} act6: LogicFormula : = LogicFormula ∪ {o lg1, o lg2} act7: Constant typing Property : = Constant typing Property ∪ {T AT → o lg1, o AT → o lg2} act8: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas ∪ {T AT → {1 → o lg1, 2 → o lg2}, o AT → {1 → o lg2}} act9: LogicFormula uses Operators : = LogicFormula uses Operators ∪ {o lg1 → {1 → RelationSet OP}, o lg2 → {1 → Belonging OP}} act10: LogicFormula involves Sets : = LogicFormula involves Sets ∪ {o lg1 → {2 → o CO, 3 → o DS}, o lg2 → ∅} A.2. Definition of the Translation Rules act11: LogicFormula de f inedIn Component : = LogicFormula de f inedIn Component ∪ {o lg1 → DomainModel corresp Component(DM), o lg2 → DomainModel corresp Component(DM)} end Event rule 14 2 convergent = correspondence of an instance of Attribute having its isVariable property set to false and its isFunctional property set to false (case where the domain corresponds to a constant, knowing that the range always corresponds to a set ) any AT T AT o AT CO o CO DS o DS o lg1 o lg2 DM where grd0: Attribute isVariable -1 [{FALSE}] \ dom(Attribute Type) = ∅ grd1: AT ∈ Attribute isVariable -1 [{FALSE}] \ dom(Attribute Type) grd2: dom(Concept corresp Constant) = ∅ grd3: CO = Attribute domain Concept(AT) grd4: CO ∈ dom(Concept corresp Constant) grd5: dom(DataSet corresp Set) = ∅ grd6: DS = Attribute range DataSet(AT) grd7: DS ∈ dom(DataSet corresp Set) grd8: Attribute de f inedIn DomainModel(AT) ∈ dom(DomainModel corresp Component) grd9: Constant Set \ Constant = ∅ grd10: {T AT, o AT} ⊆ Constant Set \ Constant grd11: LogicFormula Set \ LogicFormula = ∅ grd12: {o lg1, o lg2} ⊆ LogicFormula Set \ LogicFormula grd13: o CO = Concept corresp Constant(CO) grd14: o DS = DataSet corresp Set(DS) grd15: DM = Attribute de f inedIn DomainModel(AT) grd16: T AT = o AT grd17: o lg1 = o lg2 grd18: AT ∈ Attribute isFunctional -1 [{FALSE}] then act1: Constant : = Constant ∪ {T AT, o AT} act2: Attribute Type(AT) : = T AT act3: Attribute corresp Constant(AT) : = o AT act4: Constant de f inedIn Component : = Constant de f inedIn Component ∪ {o AT → DomainModel corresp Component(DM), T AT → DomainModel corresp Component(DM)} act5: Property : = Property ∪ {o lg1, o lg2} act6: LogicFormula : = LogicFormula ∪ {o lg1, o lg2} act7: Constant typing Property : = Constant typing Property ∪ {T AT → o lg1, o AT → o lg2} act8: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas -{T AT → {1 → o lg1, 2 → o lg2}, o AT → {1 → o lg2}, o CO → {2 → o lg1} ∪ Constant isInvolvedIn LogicFormulas(o CO)} act9: LogicFormula uses Operators : = LogicFormula uses Operators∪{o lg1 → {1 → RelationSet OP}, o lg2 → {1 → Belonging OP}} act10: LogicFormula involves Sets : = LogicFormula involves Sets ∪ {o lg1 → {3 → o DS}, o lg2 → ∅} act11: LogicFormula de f inedIn Component : = LogicFormula de f inedIn Component ∪ {o lg1 → DomainModel corresp Component(DM), o lg2 → DomainModel corresp Component(DM)} A.2. Definition of the Translation Rules grd3: CO = Attribute domain Concept(AT) grd4: CO ∈ dom(Concept corresp AbstractSet) grd5: dom(DataSet corresp Set) = ∅ grd6: DS = Attribute range DataSet(AT) grd7: DS ∈ dom(DataSet corresp Set) grd8: Attribute de f inedIn DomainModel(AT) ∈ dom(DomainModel corresp Component) grd9: Constant Set \ Constant = ∅ grd10: {T AT, o AT} ⊆ Constant Set \ Constant grd11: LogicFormula Set \ LogicFormula = ∅ grd12: {o lg1, o lg2} ⊆ LogicFormula Set \ LogicFormula grd13: o CO = Concept corresp AbstractSet(CO) grd14: o DS = DataSet corresp Set(DS) grd15: DM = Attribute de f inedIn DomainModel(AT) grd16: T AT = o AT grd17: o lg1 = o lg2 grd18: AT ∈ Attribute isFunctional -1 [{TRUE}] then act1: Constant : = Constant ∪ {T AT, o AT} act2: Attribute Type(AT) : = T AT act3: Attribute corresp Constant(AT) : = o AT act4: Constant de f inedIn Component : = Constant de f inedIn Component ∪ {o AT → DomainModel corresp Component(DM), T AT → DomainModel corresp Component(DM)} act5: Property : = Property ∪ {o lg1, o lg2} act6: LogicFormula : = LogicFormula ∪ {o lg1, o lg2} act7: Constant typing Property : = Constant typing Property ∪ {T AT → o lg1, o AT → o lg2} act8: Constant isInvolvedIn LogicFormulas : = Constant isInvolvedIn LogicFormulas ∪ {T AT → {1 → o lg1, 2 → o lg2}, o AT → {1 → o lg2}} act9: LogicFormula uses Operators : = LogicFormula uses Operators ∪ {o lg1 → {1 → FunctionSet OP}, o lg2 → {1 → Belonging OP}} act10: LogicFormula involves Sets : = LogicFormula involves Sets ∪ {o lg1 → {2 → o CO, 3 → o DS}, o lg2 → ∅} act11: LogicFormula de f inedIn Component : = LogicFormula de f inedIn Component ∪ {o lg1 → DomainModel corresp Component(DM), o lg2 → DomainModel corresp Component(DM)} end Event rule 14 4 convergent = correspondence of an instance of Attribute having its isVariable property set to false and its isFunctional property set to true (case where the domain corresponds to a constant, knowing that the range always corresponds to a set ) any AT T AT o AT CO o CO DS o DS o lg1 o lg2 DM where grd0: Attribute isVariable -1 [{FALSE}] \ dom(Attribute Type) = ∅ grd1: AT ∈ Attribute isVariable -1 [{FALSE}] \ dom(Attribute Type) grd2: dom(Concept corresp Constant) = ∅ grd3: CO = Attribute domain Concept(AT) grd4: CO ∈ dom(Concept corresp Constant) grd5: dom(DataSet corresp Set) = ∅ grd6: DS = Attribute range DataSet(AT) grd7: DS ∈ dom(DataSet corresp Set) grd8: Attribute de f inedIn DomainModel(AT) ∈ dom(DomainModel corresp Component) grd9: Constant Set \ Constant = ∅ grd10: {T AT, o AT} ⊆ Constant Set \ Constant grd11: LogicFormula Set \ LogicFormula = ∅ grd12: {o lg1, o lg2} ⊆ LogicFormula Set \ LogicFormula grd13: o CO = Concept corresp Constant(CO)

Introduction

As highlighted by Lee et al. in [START_REF] Gil | Axiomatic design and fabrication of composite structures-applications in robots, machine tools, and automobiles[END_REF], many designers leave system requirements implicit and start working on design solutions without a clear definition of the purpose of the system. Therefore, they measure their success by comparing their design with the implicit design goals that they have in mind, which may or may not meet stakeholder needs. As a consequence, they spend a great deal of time improving and iterating the design solution without, most often, reaching consensus with stakeholders. The approach proves to be expensive, inefficient and source of many failures [START_REF] Clancy | The Standish Group CHAOS Report[END_REF], very often tragic in critical areas such as railway or aeronautics [START_REF] Gil | Axiomatic design and fabrication of composite structures-applications in robots, machine tools, and automobiles[END_REF][START_REF] Micouin | Property Model Methodology : A Landing Gear Operational Use Case[END_REF].

In this paper, we are interested in using the SysML/KAOS method, part of the FORMOSE project [START_REF]Formose ANR Project[END_REF], on the case study proposed for ABZ2018 [START_REF] Thai | The Hybrid ERTMS/ETCS Level 3 Case Study[END_REF]. This case study deals with the specification of the hybrid ERTMS/ETCS level 3 protocol (HEEL3) [START_REF]Hybrid ERTMS/ETCS Level 3 : Principles[END_REF][START_REF] Nicola | ERTMS Level 3 : the Game-Changer[END_REF]. The case study is described in two main documents. The first one, [START_REF] Thai | The Hybrid ERTMS/ETCS Level 3 Case Study[END_REF], gives the general principles of HEEL3 and defines requirements to be considered. The second one, [START_REF]Hybrid ERTMS/ETCS Level 3 : Principles[END_REF], offers a technical and detailed description of the protocol specification. It provides the safety requirements that the system must guarantee.

The SysML/KAOS method includes a requirements modeling language [START_REF] Laleau | A first attempt to combine SysML requirements diagrams and B[END_REF][START_REF] Mammar | On the Use of Domain and System Knowledge Modeling in Goal-Based Event-B Specifications[END_REF] to represent system requirements with goal diagrams. Domain entities and their related properties are represented with ontologies using a domain modeling language [START_REF] Jeffrey | Towards Using Ontologies for Domain Modeling within the SysML/KAOS Approach[END_REF][START_REF] Jeffrey | The SysML/KAOS Domain Modeling Approach[END_REF]. Once constructed, goal and domain models can be semi-automatically translated into a B system specification [START_REF] Clearsy | Atelier B : B System[END_REF] following a set of translation rules [START_REF] Jeffrey | Event-B Expression and Verification of Translation Rules Between SysML/-KAOS Domain Models and B System Specifications[END_REF][START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF], supported by tools [START_REF] Jeffrey | SysML/KAOS Domain Model Parser[END_REF][START_REF] Matoussi | A Goal-Based Approach to Guide the Design of an Abstract Event-B Specification[END_REF]. The goal models give the set of B System components, each goal gives an event. As the refinement links defined between these components have to represent the SysML/KAOS refinements, which differs from B System refinement, new proof obligations are generated. The domain models, on the other hand, give the structural part of the B System specification. It consists of variables, constrained by an invariant, and constants, constrained by properties. Once completed with event bodies, the B System specification can be formally verified and validated to assess the requirements. This can be done using the full range of tools that support the B method [7], largely and positively assessed on industrial projects for more than 25 years [START_REF] Thierry Lecomte | Applying a Formal Method in Industry : A 25-Year Trajectory[END_REF].

Regarding the case study, the development team is composed of four members (the authors of this paper) which all have a good expertise in the formal specification of complex systems. Other members of the FORMOSE project have been involved in providing feedback on improvements related to the use of the SysML/KAOS method. The Rodin platform [START_REF] Michael | Rigorous Development of Complex Fault-Tolerant Systems[END_REF] La construction d'une fédération de modèles sous Openflexo passe par l'utilisation de trois principaux éditeurs :

• L'éditeur de modèles virtuels appelé ViewPointModeller qui supporte le langage FML et permet la définition des langages fédérés et des règles de fédération. • L'éditeur FreeModellingEditor qui permet l'instanciation des modèles virtuels construits à travers le ViewPointModeller afin de définir des modèles conformes aux langages fédérés. 

the subset of logical formulas that can directly be expressed within the specification, without the need for an explicit constructor, will not be contained in this set. This is for example the case of equality between elements. Validating the consistency of the formal specification required the discharge of 1416 proof obligations of which only 275 (19.42 %) have required manual proofs. Thus, proving the new specification required less manual effort. This is due to the simplification of rules, whose number has also been reduced, introduced by the defined adjustments, and to the definition of better auto/post proof tactics.

B.2. Event-B Specification of the Adjusted SysML/KAOS Domain Modeling Language if maplet individual

x has an image, then the image is an individual of the range of its association.

• ind ∈ Individual \ MapletIndividual ⇒ ind ∈ dom(Individual name): every individual which is not a maplet individual must be named.

every unnamed individual must be constant.

antecedents and images of maplet individuals must be named.

⇒ ind ∈ dom(MapletIndividual antecedent Individual)∩dom(MapletIndividual image Individual): every unnamed maplet individual must have an antecedent and an image.

⇒ Concept isVariable(x) = FALSE: every abstract concept (that has no parent concept) that is not an association must be constant.

every concept that is an enumeration must be constant.

antecedents and images of constant maplet individuals must be constant.

domains and ranges of constant associations must be constant. 

B.2.2 Event-B Specification

B.3.1 Informal Definition

In the following, we informally describe a set of rules that allow to obtain a B System specification from domain models that conform to the adjusted SysML/KAOS domain modeling language.

Table B.2 gives the translation rules. It should be noted that o x designates the result of the translation of x. In addition, when used, qualifier abstract denotes "without parent". The rules have been implemented within the SysML/KAOS Domain Modeling tool [START_REF] Jeffrey | SysML/KAOS Domain Model Parser[END_REF] built on top of Jetbrains MPS [START_REF] Jetbrains | Jetbrains MPS[END_REF] and PlantUML [START_REF] Roques | Plantuml : Open-source tool that uses simple textual descriptions to draw uml diagrams[END_REF] to provide a proof of concept of the SysML/KAOS Domain Modeling Language. They have also been implemented within the Openflexo platform [109] which federates the various contributions of FORMOSE project partners [START_REF]Formose ANR Project[END_REF]. Rules 3, 4, 6. .8, and 12. .16 have undergone significant updates to the previously defined translation rules (see annex A). 

Annexe C Guide d'utilisation de l'outil FORMOD