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INTRODUCTION EN FRANÇAIS

Au cours des dernières décennies, la masse de données mondiale n’a eu de cesse de
prendre de l’ampleur [30] 1. Dans nombre de domaines pour lesquels l’Informatique est
un support d’aide à la décision, comme le transport, l’industrie ou même la recherche,
les données sont devenues un outil crucial et stratégique. Avec une croissance continue
des données générées annuellement ainsi que des capacités de stockage, les nouvelles don-
nées désormais massives avec l’émergence du Big Data sont devenues une mine d’or pour
quiconque dispose des capacités et du matériel nécessaires pour en extraire des informa-
tions. En particulier, l’existence de données diverses et interopérables, notamment sur
les villes intelligentes, rend raisonnable l’utilisation d’outils d’apprentissage automatique
pour l’aide à la décision de problèmes jusqu’alors difficiles à modéliser.

Cependant, il faut savoir qu’il existe des verrous techniques et scientifiques qui rendent
délicates ce type d’approche. Tout d’abord, les données provenant du monde réel (c’est
à dire des données non-synthétiques) sont rarement utilisables sans pré-traitements [49].
Les valeurs manquantes, erronées, dupliquées ou même aberrantes au coeur des jeux de
données sont autant d’exemples communs à de nombreuses sources de données issues du
monde réel, que ce soit l’industrie, les services publics, etc. De plus, la fusion de deux
ou plusieurs sources de données souvent nécessaire pour consolider les jeux de données
n’est en général pas exempte de complexité technique car les données de ces différentes
sources peuvent diverger dans leur format, leur encodage, leur langage, etc. L’ensemble
des verrous techniques évoqués ci-avant justifient à eux seuls le coût potentiellement élevé
de ces traitements, que ce soit en termes de temps de calcul (pour du prétraitement ou de
la conception), mais aussi en temps de travail humain, et donc, pécunier. [41, 57, 60, 70].
Deuxièmement, des problèmes de capacités de stockage peuvent se poser pour les projets
qui nécessitent l’usage de masses de données conséquentes. Il n’est en effet plus rare d’avoir
à traiter des gigaoctets de données pour une simple tâche d’apprentissage automatique [21]
qui, une fois enrichis, nécessitent en retour au moins autant d’espace de stockage pour
être correctement sauvegardés et utilisés pour répondre à diverses problématiques métier.
Troisièmement, et pour finir, la manne de personnes disposant des connaissances et savoir-

1. Statista Digital Economy Compass 2019
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faire techniques nécessaires pour rassembler, traiter et extraire les informations de ces
masses de données est faible [46]. En effet, les data scientists et autres spécialistes de
la donnée sont des ingénieurs / chercheurs de haut niveau dont la formation exige de 5
à 8 années à temps plein, ce qui restreint d’autant le nombre potentiel de candidats à
l’embauche.

Dans les domaines industriels pour lesquels l’Informatique possède en premier lieu une
fonction de support, il existe un problème que nous appellerons “le problème de l’avalanche
de données”. Ce problème se caractérise par l’existence de systèmes d’information de plus
en plus complexes qui génèrent des quantités de données qui croissent à minima linéaire-
ment dans le temps. Ajoutons à cela que ces systèmes d’information sont souvent main-
tenus en condition opérationnelle par une petite équipe d’ingénieurs et techniciens Infor-
matiques spécialisés qui y consacrent tout leur temps de travail, les rendant indisponible
pour des tâches supplémentaire d’exploitation des données. Cette situation tend à rendre
l’utilisation des données que l’entreprise possède tout à fait impossible sans l’intervention
de personnels experts de la données ayant accès à du matériel performant et un espace
de stockage correctement proportionné au regard de la masse de données générée par
l’entreprise.

Les transports publics sont typiquement un domaine industriel faisant un usage impor-
tant d’outils informatisés en tant que support de leurs activités. Les réseaux de transports
publics sont de plus en plus connectés et intégrés dans les villes et métropoles qui les ac-
cueillent. En effet, les métros, les tramways, les bus, etc. sont surveillés 24 heures sur 24,
7 jours sur 7, grâce à de nombreux capteurs embarqués ou sur le terrain et qui produisent
des données en grande quantité et de façon quasi continue [41]. Ces données sont var-
iées et composées de multiples indicateurs tels que la vitesse des véhicules, le temps de
passage à un arrêt/station, les informations d’embarquement/débarquement ou même la
consommation de carburant. Il est de plus en plus commun que les villes soient amenées à
utiliser tout ou partie de ces données afin de fournir des applications web ou smartphone
aux voyageurs proposant des outils de planification des déplacements, en leur donnant des
informations telles que, par exemple, les horaires théoriques et l’heure d’arrivée prévue du
prochain bus/metro/tram à la station où ils vont attendre [36]. Cependant, les systèmes
d’information des transports publics sont souvent complexes et composés de multiples
logiciels fonctionnant en silo, et donc indépendamment les uns des autres. Ceci rend
leur maintenance techniquement complexe et exigeante en termes de ressources humaines
et d’interfaçage. De plus, si les données qu’ils génèrent semblent être théoriquement in-
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teropérables , le coût et la charge de travail nécessaire à l’enrichissement de ces données
afin d’obtenir un jeu de données consolidées peut-être rapidement étouffants [41, 57].

Prenons l’exemple d’un réseau de bus urbain, celui-ci fournit des données à différents
niveaux de granularité dans les dimensions spatiales (ex. ligne de bus) et temporelles (ex.
heure de pointe du soir), allant par exemple du passage d’un bus à un arrêt en temps
réel à la vitesse moyenne d’une ligne de bus sur une année. Au vu de la quantité et de
la richesse des données générées, on pourrait être tenté de les exploiter pour accélerer
la prise de décisions ou effectuer des analyses stratégiques dans l’objectf d’améliorer les
performances du réseau de bus. Toutefois cela exige de se confronter au problème de
l’avalanche de données, et donc de trouver un moyen de traiter efficacement ces données
pour les intégrer dans un outil d’aide à la décision, qui devra lui-même être capable de
fournir des moyens d’exploiter ces données.

Si le nettoyage des données est un problème qui n’est pas généralisable parce que
spécifique à chaque source de données et cas d’utilisation, on peut s’attendre à ce qu’il
existe des moyens de faciliter l’intégration des données spatio-temporelles pour l’analyse
stratégique et la prise de décision. Par exemple, en créant un cadre technique qui perme-
tte l’intégration transparente d’outils d’analyse statistique des données passées et temps
réel, mais aussi de modèles prédictifs pour aider la planification et la prise de décisions
stratégiques.

Contributions

Cette thèse propose quatre contributions principales:
Tout d’abord, nous affirmons que le nettoyage des données est nécessaire si l’on veut

s’assurer que les décisions prises au travers d’outils support le soient via des données
véritablement représentatives du monde réel. De fait, selon les besoins de l’utilisateur,
différents niveaux de nettoyage des données peuvent être utilisés, en fonction d’un seuil
établi sur la base d’un compromis coût de calcul/niveau de qualité de la donnée souhaité.
Pour ce faire, nous avons analysé et qualifié les données générées par le réseau de bus
STAR de Rennes Metropole puis nous avons évalué l’impact des variations de la qualité
des données sur la précision des modèles prédictifs. Les ensembles de données massifs issus
du SI du réseau de bus STAR, que nous avons enrichis par l’usage de règles de gestion
métier et par croisement avec des jeux de données internes complémentaires ont été utilisés
pour mener ces expérimentations. Les résultats obtenus montrent que l’augmentation de la
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qualité des données et la réduction du bruit améliorent la précision des modèles prédictifs,
mais qu’une sur-qualification des jeux de données est contre productive car chère en coût
de calcul, et n’améliorant pas ou peu la précision des modèles prédictifs.

Deuxièmement, nous analysons un ensemble de facteurs qui sont connus pour avoir
un impact sur la vitesse commerciale des bus tels que le trafic routier, l’infrastructure
routière, la fréquentation, etc. Nous évaluons l’existence de ces facteurs à l’aide de don-
nées hétérogènes massives, et levons une série d’hypothèses sur la pertinence de ces fac-
teurs. En enrichissant les données issues du réseau de bus STAR avec des jeux de données
exogènes incluant l’infrastructure routière, le matériel des bus, la météo et la fréquen-
tation, nous avons mis en lumière les interactions entre la vitesse commerciale des bus
et l’environnement, et détecté les caractéristiques importantes pour l’apprentissage au-
tomatique. Nous avons pu suggérer l’impact de certains de ces facteurs, notamment grâce
aux données issues du confinement de 2020, ayant généré une situation unique sur le
réseau avec des variables proches de 0 (traffic et fréquentation). Ceci aboutissant à la
levée d’un certain nombre d’hypothèses permettant aux opérateurs de réseau de bus de
mieux maîtriser la vitesse commerciale des bus, et donc de maintenir le réseau de bus
attractif.

Troisièmement, nous proposons une approche générique d’apprentissage automatique
multi-niveau pour prédire la vitesse sur tout ou partie de nouvelles lignes de bus, pour
lesquelles aucune donnée n’existe. Cette approche exploite les caractéristiques spatio-
temporelles des ensembles de données du réseau de bus, que l’on modélise sous forme
de multi-graphes temporels et fait appel aux règles d’agrégation inhérentes à ce modèle.
Ceci permet de prédire la vitesse des bus au niveau des inter-arrêts (qui consistent en
deux arrêts de bus contigus sur une ligne de bus) jusqu’aux lignes de bus entières en
agrégeant les prédictions des inter-arrêts. Ici, notre objectif est de proposer une méthode
permettant d’estimer de manière fiable et réaliste quelle vitesse commerciale il est possible
d’atteindre sur n’importe quel endroit du réseau de bus et à n’importe quelle échelle,
y compris pour de nouvelles lignes de bus. Ces travaux font appel aux résultats des
deux contributions précédentes et ont permis de mettre en évidence que 1) les modèles
micro-prédictifs appliqués à la prédiction de vitesse des bus proposent non seulement une
méthode permettant de prédire la vitesse sur le réseau sans contrainte géographique ou
temporelle (possibilité de prédire la vitesse sur tout ou partie de lignes de bus), mais qu’en
plus 2) il est possible de les utiliser pour prédire la vitesse de lignes de bus pour lesquelles
aucune donnée n’existe, avec une précision égalant au moins les méthodes traditionnelles
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à gros grain (i.e à l’échelle d’une ligne de bus complète).
Notre dernière contribution est le résultat des trois premières et consiste en un cadre

technique qui permet l’intégration des données massives conjointement avec des outils
d’analyse et de prédiction. L’objectif alors défendu est de rendre l’apprentissage automa-
tique et l’analyse statistique facilement accessibles aux utilisateurs non spécialisés, tout en
suggérant que les systèmes multi-outils non intégrés utilisés pour la gestion des données
vont devenir caducs. Nous proposons un cadre technique de manipulation des données
appelé DataTime, basé sur les trois contributions précédentes de cette thèse, qui intègre
le passé, le présent et le futur dans un système d’information traditionnel contenant des
modèles a priori. A travers une application de ce concept via des développements en Scala,
et l’exploitation des données acquises jusqu’alors, un outil a été conçu pour démontrer
que l’intégration des données et des dimensions spatio-temporelles dans un seul utilitaire
est possible. Cet outil permet la manipulation des données dans l’espace (réseau de bus,
à n’importe quelle granularité), et dans le temps (passé, présent, futur) en intégrant di-
rectement et de manière transparente les modèles de gestion des données, d’analyse, et
de prédiction. Cette dernière contribution contient la revendication principale que cette
thèse défend, à savoir que l’intégration de divers ensembles de données hautement qual-
ifiées provenant du monde réel dans un modèle spatio-temporel unique offre un moyen
qualitatif, efficace et peu coûteux de faire des analyses, des prédictions et d’aider à la
prise de décisions stratégiques pour les réseau de bus.

Liste des publications en date du 23 septembre 2021

— "Impact of data cleansing on bus commercial speed prediction", accepté
dans le journal Springer-Nature computer science, en révision mineure.

— "On the Quality of Compositional Prediction for "What If" Analytics on
Graphs" Accepté chez MLKGraphs Workshop 2021, présenté en septembre 2021.

— "DataTime: a Framework to smoothly Integrate Past, Present and Fu-
ture into Models" Accepté chez MODELS21, présenté en octobre 2021.
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INTRODUCTION

Over the last decades, there has been more and more data generated all over the
world [30] 2. In every domain for which computer science could help decision making, such
as transportation, industry or even research, data has become a crucial and strategical
tool. With a continuous growth of yearly generated data while the storage capacity of
hardware was growing too, the newly massively available data of the Big Data era has
become a gold mine for anyone who has the capabilities and the hardware to extract infor-
mation out of it. In particular, the existence of various and inter-operable data including
smart-cities [50] makes the use of machine learning focused tools reasonable for decision
helping systems.

However, one must know that there are obstacles that make the creation of integrated
decision tools quite tricky to achieve. Firstly, real-world data is dirty [49]. Missing, wrong,
duplicated or even aberrant values are as many examples of dirty information that can be
found in real world data. Also, merging two or more data sources is a harsh task because
they can diverge in their format, encoding, language, etc. Thus the merging becomes costly
in terms of computing time or pre-processing/conception [41, 57, 60, 70]. Secondly, there
might be a storage issue for project that need large scale datasets. One can quickly have to
process gigabytes of data for a simple machine learning task or even terabytes of data [21]
that require at least as much storage to be kept for other purposes such as business or
research. Thirdly, there are few people who have the knowledge that is necessary to gather,
process and extract information of this massively available data [46]. Indeed, experts like
data scientists are high-level engineers / researchers for which education takes 5 to 7 years
to complete, yielding a very tense employment market in this specific domain.

In industrial fields that are not computer-science focused there is an issue that we
call "the data overwhelming problem" which consist of having more and more complex
information systems that generate more and more data with a small team of IT engineers
who are already busy keeping the information system in good condition. Thus the use of
data that the company owns becomes quite often a lost opportunity.

One example of such an industrial field is the public transportation domain. Public

2. Statista Digital Economy Compass 2019

15



Introduction

transport are more and more interlaced with smart cities. Indeed subways, tramways,
bus, etc are monitored 24/7 through numerous sensors that yield data [41]. This data
is quite various, including speed, dwell time at a stop/station, boarding / unboarding
information or even fuel consumption. Moreover, cities often use this data to furnish web
or smartphone applications that are used by travelers to plan their trips, giving them
information such as time of arrival of the next shuttle at the station they will wait at [36].
However, those information systems are often complex and made of multiple software that
are independent from one another, making their maintenance tricky and demanding in
terms of human resources. Thus, the data they generate usually suffer from the problem
of being theoretically inter-operable, yet in practice this can become costly to achieve [41,
57].

Lets take a bus network as an example. Such a network yields data at different level
of granularity in both space and time dimensions, e.g from a bus passing at a bus stop in
real time to the average speed of a bus line over a year. Given the amount and richness
of the data generated, it might be tempting to use it for decision making or strategic
analysis with the objective of improving the performance of the bus network. However,
this requires to face the data overwhelming problem, and thus to find a way to efficiently
process this data to integrate it in a decision support tool.

If data cleansing is a problem that can not be fully generalized because it is specific to
each data source and use case[49], we can expect that there are means to facilitate the use
of spatio-temporal data for strategical analysis for such a case by creating a framework
that seamlessly embeds analysis tools like statistical analysis of past data and real time
observations; but also predictions for strategical decisions and planning using predictive
models.

Contributions

First, we claim in chapter 2 that data cleansing is needed if one wants to make sure
that decisions are made over data that represent what actually happens in the real world.
Depending on the need of the user, different levels of data cleansing can be leveraged,
based on a threshold built over a computing cost / desired quality trade-off.

Second, in chapter 3, we analyze a set of factors such as traffic, road infrastructure,
ridership, etc. that are told to be impacting the bus commercial speed. We assess the
existence of those factors with the help of massive heterogeneous data, and finally raise a
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series of hypotheses about those factors.
Third, we propose a generic multilevel machine learning approach to predict the speed

on all or part of new bus lines, for which no data exists, in chapter 4. This approach
exploits the spatio-temporal characteristics of the bus network datasets, which are hereby
modeled as a temporal multi-graph; and makes use of the aggregation rules inherent in
this model. This allows the predicting of bus speeds at inter-stations (which consist of two
contiguous bus stops on a bus line) up to entire bus lines by aggregating the predictions
of the inter-stations. Here, our goal is to propose a method to reliably and realistically
estimate what commercial speed can be achieved at any location in the bus network and
at any scale, including new bus routes.

Chapter 5 describes our last contribution, which is the result of the first three. It
consists of a technical framework that allows the integration of massive data with anal-
ysis and prediction tools. The goal is to make machine learning and statistical analysis
easily accessible to non-specialized users, while suggesting that non-integrated multi-tool
systems used for data management will become obsolete.

Finally we defend the thesis that the integration of various highly qualified real world
dataset in a single spatio-temporal model offers an efficient, cheap and qualitative way to
seamlessly make analysis, predictions and strategical decisions for bus networks, depre-
cating the use of non-integrated multi-tools systems for data management.
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Chapter 1

STATE OF THE ART

Establishing the state of the art of the scientific domains to which this manuscript
belongs is a mandatory first step towards the presentation of our contributions. Its aim is
to highlight what problems exist, and why our contributions propose approaches to tackle
them.

1.1 Context and motivation

1.1.1 Context

Keolis Rennes is the company that manages the Urban Public Transportation Network
(UPTN) of the city of Rennes, France. This network, named STAR 1, is based on a central
subway line, and a wide bus network that serves both the city of Rennes and all the
suburban areas. In total, the bus network covers more than 550km2 The company manages
a total of 116 bus lines over which more than 600 buses can be traveling during rush
hours. The bus network information system is made of several sub systems including an
Automatic Vehicle Location (AVL) that yields large amount of fine-grain data (inter-
station) both in real and delayed time.

Industrial fields that are not computer-science focused, like public transportation, often
face an issue that we could call "the data overwhelming problem". This consists of having
more and more complex information systems that generate more and more data, with
a small team of IT engineers who are already too busy keeping the information system
healthy. Thus the management and the use of the massive data that the company owns
becomes quite impossible. In companies like Keolis Rennes that rely on stable and well
known technologies such as standard relational databases and spreadsheets to analyze
them, such an amount of data yields the impossibility to study large samples of data.
It gets worse if those companies core workforce is made of domain experts for which

1. https://www.star.fr/
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computers are tools and services providers only.

For the case of the bus network of Rennes, it generates nearly 2GB of data per month
for the sole AVL system, and more than 10GB if we consider all the stakeholders of the
bus network information system. Thus, for the domain experts of Keolis Rennes who are
provided low/middle end computers, with spreadsheets software and no access to big data
solutions, the analysis of large samples of data is quite a challenge when it is not merely
out of reach.

1.1.2 Motivation

The current situation in Keolis Rennes is the following:

— The bus network information system generates flows of erroneous data that has
to be governed. That is to say that data management systems dedicated to data
cleansing, enriching and centralizing have to be built while keeping them out of
the existing information system in order not to have any side effect on it.

— The planning of the bus network day to day life is based on domain experts knowl-
edge, which are not able yet to make use of the massive amount of data they have
under their feet to precisely build bus scheduling and bus lines travel time scheme.

— The strategic decisions such as the creation of new bus lines ex-nihilo are made
upon domain experts knowledge without reliable ways to predict e.g. speed, travel
time, etc.

— There are no integrated tool that could help the operators making decisions based
on the historical knowledge that data offers.

It appears that a tool that integrates data management, data analysis, and prospec-
tive/predictive models would be a great breakthrough for Keolis Rennes, making the use
of its massive data possible by its operators.

In order to understand why those problem are yet to be handled, this chapter explores
the state of the art of Urban Public Transportation Networks design, optimization, infor-
mation systems but also simulation and prediction tools. In addition, we take a look at the
state of the art of model-driven / data-centric models in software engineering, domain that
offers promising ways to produce new software tooling for Urban Public Transportation
Networks.
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Acronym Full name
UPTN Urban Public Transportation Network
UBN Urban Bus Networks
PTIS Public Transportation Information Systems
IPTS Intelligent Public Transportation Systems

UTNDP Urban Transportation Network Design Problem
RNDP Road Network Design Problem

PTNDSP Public Transit Network Design and Scheduling Problem
AVL Automatic Vehicle Location system
SCD Smart Card Data system
TIS Travelers Information Systems
BRT Bus Rapid Transit

Table 1.1 – Public transportation network glossary

1.2 Urban Public Transportation Networks, their in-
formation system and related data

Urban Public Transportation Networks (UPTN), amongst other complex transporta-
tion networks are more and more integrated within smart cities. Hence they can be consid-
ered as both large scale probes that generates data about what happens in a city (people
traveling, traffic congestion, air quality, ...), and levers on which one can act to evaluate
the impact of, e.g the rerouting of a bus line on passengers flow and/or traffic jams, etc.
This section is dedicated to existing work leveraging public transportation networks in
all their aspects, from public transportation networks structure and optimization, Pub-
lic Transportation Information Systems (PTIS) and Automatic Vehicle Location Systems
(AVLS) to data issues.

1.2.1 Urban Public Transportation Networks

Urban Public transportation networks are complex socio-technical systems [51, 58]
that involve humans (drivers / operators, passengers, pedestrians,...), economic entities
(cities or companies), laws and specific rules (speed limitations, fees, schedule, ...), hard-
ware (vehicles, roads / public infrastructure) and software (fleet management, Automatic
Vehicle Location systems (AVL)[2, 56]) Entities that manage this kind of network have
to tackle the Urban Transportation Network Design Problem (UTNDP) as presented in
the reviewing works of [20, 34]. This issue is two sided. First, the Road Network Design
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Problem (RNDP) which consists in optimizing the creation of new streets and/or the
expansion of existing streets. Second, the Public Transit Network Design and Scheduling
Problem (PTNDSP), that aims at offering the best trade off between performance (high
number of passengers per vehicle, low number of vehicles, fast traveling) and costs [8].
Hence, decisions included in UTNDP can be reduced to 3 major domains:

— Strategic, which contains the long term decisions such as the building of new streets
or new bus routes.

— Tactical, which consists of the optimization of the already existing infrastructure
and bus fleet, e.g determining whether electrical buses should be used on a specific
bus line regarding its overall steepness, or turning a road portion into an exclusive
bus lane.

— Operational, which is the ensemble of short terms decisions such as the scheduling
of traffic lights, roadworks, etc...

The work of [11] describes the Bus Network Design Problem, which is directly related
to UTNDP, more specifically to PTNDSP. Urban Bus Networks (UBN), as urban public
transportation networks that are intertwined into their host city’s traffic and public in-
frastructure, are particularly sensitive to internal and external factors such as traffic load,
bicycles, road infrastructure, transportation demand, fleet size, weather, payment system,
etc [55, 32, 35, 23, 44, 65, 15]. This implies that in addition to UTNDP, the building and
transformation of all or parts of most of such a network ask for solid theories and domain
expert not to reduce its performance and attractiveness [11].

Urban Transport Networks optimization

The optimizing of an UPTN requires to tackle the Urban Transportation Network
Design Problem as stated by [20]. This problem can be apprehended in several ways
amongst the following: Greenhouse gaz emission and environmental impact minimization,
station spacing optimization, passenger flow optimization, cost optimization, travel time
optimization, fleet optimization, transit optimization, etc. Its major goal is to provide the
best possible service with a minimized service cost (economical and environmental) and
travel time and a maximized number of passengers per vehicle.[11, 20]

Weng et.al [71] proposed a visual analytics approach named BNVA (Bus Network
VisualAnalytics system). This work aims at providing domain experts a tool that helps
to find candidates for either new bus routes or inefficient bus routes (that they also
identify thanks to BNVA). They used 3 different datasets, the first one being the bus
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stops dataset which contains bus stops meta data, the second one the bus routes dataset,
consisting of bus stops sequences and the last one the trips dataset made out of travelers
card validations bound to bus routes. Those datasets feed a graph model that generates
candidates routes based on an optimum defined as a given ratio between passenger flow,
service cost and short transit distances from stop to stop. This ratio is computed by a
Pareto-optimal searching algorithm based on a Monte-Carlo search tree. This work is a
first step towards centralized data systems to tackle UTNDP thanks to its visual tool and
the using of real data at the inter-station granularity. However it misses data inputs such
as traffic, infrastructure, fuel consumption, etc. Also its optimization algorithm is Pareto
based, which is probably less suitable than using machine learning with real data because
Pareto decisions are not directly correlated to what happens in the real world. i.e some
silent biases can be manually introduced while tweaking the Pareto algorithm.

Markellos et.al [42] worked on a Multi-layer Perceptron (MLP) Neural Network (NN)
approach to evaluate the efficiency of Public Transportation Networks. They focused on
the maximization of miles per year with a restricted amount of drivers and vehicles. The
efficiency definition in this work is probably out of date as of 2021 as long as climate
change and social issues imply to enlarge this definition to include air quality, servicing
low population areas, extending service hours, etc.

Tirachini et.al [66, 67, 65] worked on the estimation of bus travel time and the impact
of fare payment technology and bus floor level in urban bus services. Their findings is that
card payment systems seems to be always better than cash payment systems, but also
that off-board payment systems are best suited when one needs to operate fast buses,
regardless from the existence of dedicated bus lanes. They also consider infrastructure
impact on bus network performance in dedicated bus corridors and studied the impact
of station spacing, running speed, bus capacity and frequency, congestion amongst buses
and infrastructure cost per kilometer on the demand regarding the fare payment system.
The goal is to assess which feature to act on depending on the demand and maximum
operational cost while keeping a low travel time. Their models are based on empirical
studies with manually collected data on a sub portion of the Sydney’s bus network. This
system lacks large scale automatic data gathering.

Yu et.al [73] proposed an Ant colony approach for the transit optimization problem,
which consists of building a bus network in which transfers of passengers between bus lines
is minimal. This approach is tackling only part of the UTNDP, it would be interesting to
extend this experiment by adding more variables like air quality, servicing low population
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areas, extending service hours, etc.
Gormez et al [26] worked on an emerging problem which is the optimization of the

charging cost of a fleet of electrical buses deployed over a bus network. They proposed
an algorithm that takes in account physics (vehicle mechanics, elevation, wind/air condi-
tion,batteries degradation cycle and capacity) in order to optimize energy consumption,
charging time and overall cost but also to minimize the batteries degradation over time
and yet keep a satisfying operational speed over the bus network. However this opti-
mization works better if charging is possible at each bus stop, allowing the lightening
of batteries and spreading of charging loads. This work is one of the few which propose
an approach to optimize electrical buses usage in a bus network. However, depending on
the city bus policy and financial means, it might be necessary to adjust their proposal
in order to make it fit any situation, typically cities in which charging at each bus stop
is not feasible. Also, the optimization process asks for data that can be tricky to obtain
at a large scale in time and space amongst road grade, passengers, road conditions, wind
velocity, and traffic regulation.

Bel and Host [7] worked on the evaluation of the impact of Bus Rapid Transit (BRT)
on air pollution in the city of Mexico. They found that BRT systems seem to help the
enhancement of air quality. Jointly, Sun et al. [61] led an empirical study in china cities
to measure the variation of air quality with the providing of more buses in bus networks.
They found that adding more buses (resp. services) helps the enhancement of air quality
by a significant margin whilst it tends to be underestimated by cities. These works are
amongst the few that tries to tackle the air quality problem related to urban bus networks.
More data should be collected and used in decision models to assess their work in other
places in the world, for example by placing air quality sensors on buses as proposed by [37].

As we can see, these works tackle different parts of the same problem: the UTNDP.
Yet, none of them offered a way to consider this problem as a whole with a direct and
on-line connection to operational data.

1.2.2 Urban Public transportation networks’ information sys-
tems, and data

In the previous section, we exposed the basics of urban public transportation networks
and their optimization. Here we discuss their operational aspects. As cities get bigger
and more crowded, UPTN get wider and more complex too. Thereby, it is of uttermost
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importance to use computerized means to ensure a correct management of those networks.
Digital tools that, consequently, generate loads of data useful for broad studies of UPTNs
are then deployed.

PTIS

Automatic Vehicles Location systems (AVLS) [56], Smart Card Systems (SCD) [53]
and Travelers Information Systems (TIS) [1] are computerized management systems used
as follows:

— AVLs help the handling of a public transportation network’s vehicles fleet by gath-
ering data about vehicles positions, speeds, dwell times at stops, and other various
metrics or meta-data. This data can then be sent in real-time via wireless technol-
ogy (GSM or other large scale wireless networks) to the data center of the network
manager. It is also possibly kept on board until the vehicles return to the depot
and then upload the data they acquired using wireless technology (e.g WiFi) to
the data centers [2, 56].

— SCDs collect data about the usage of the network by gathering travelers card
validation data, in order to measure the ridership of the different lines of the
network and acquire a better knowledge on how the network is used. Eventually this
data can help to optimize the offer and services regarding the actual demand. [53]

— TISs provide information to travelers all over the network, e.g the arrival of the
next vehicle at a station, or even planning a trip via a mobile application [36].

In standard situations, AVLs, and TIS are embedded and working alongside each other
within a Public Transportation Information System (PTIS), also called Intelligent Public
Transportation Systems (IPTS) as explained by Elkosantini and Darmoul [18]. However
SCD and other tools such as fuel management systems, geographical information systems
or scheduling systems can be totally independent from the PTIS, yielding heterogeneity.

Data errors and data quality issues

PTIS and analogous systems are made out of hundreds of sensors and communication
systems deployed all over the UPTN. Hence, such a quantity of various and connected
hardware is a heavy task for maintainers. Also, the bigger the system is, the higher the
system is prone to errors. The large amount of different pieces of hardware combined with
the use of wireless technologies for data transfer result in a high risk of errors in data.
The sensors can be miscalibrated, faulty, or even out of order, yielding erroneous data or

25



Partie , Chapter 1 – State of the art

merely none. In the other hand, wireless data transfer between e.g. vehicles and servers
can be failing and part of the data can be lost if there is no fault tolerant system that
prevents the data from being lost permanently during the transferring. Hence, there is a
need to improve the quality of this very noisy data in order to enhance the precision of the
machine learning algorithms that make use of it. Indeed, the noise tolerance of machine
learning algorithms might be insufficient in this very context and the use of non-cleansed
data can result in poor predictive models.

Smith et al. [60] proposed a set of statistical tools to handle missing data in trans-
portation management systems. Their work shows that it is possible to infer missing data
with a satisfying error rate, as long as the correct heuristic is used for this purpose.

Ma and Chen [41] explored the data quality of smart card and GPS systems. They
claim that it is needed to use redundant data when it is available to recover or correct
missing values and that any useless field should be removed from the smart card data
sets. Also, they claim that the error identification is made harder by the complexity
of transportation systems that are often made of software blocks managed by different
manufacturers and stakeholders. They say that this should urge the data manager to work
on the data consistency before data collection to make sure that all the production data
is based on the same units, definitions and same accuracy level.

Robinson et al. [57] studied methods to improve data quality of smart card systems.
They identify different sources of error in 4 investigation domains that are software, hard-
ware, data and user. They proposed a method to identify boarding and unboarding data
errors and faulty data supplies. They claim that taking care of smart card data quality
can reduce costs and enhance the service quality offered by the transportation network.

1.2.3 Conclusion

In this section, we explored the public transportation networks state of the art. The
observations we made yielded several points. First, as complex socio-technical systems,
the optimization, planning and modification of PTNs are difficult tasks for which there are
no simple or perfect solutions. Second, their operational systems, including Information
Systems and management systems tend to be highly heterogeneous, asking for a high
domain knowledge and competency. Third, the data generated by PTIS tend to be full of
errors. In the same way external public sources one could use can be difficult to manage
or obtain at a larger scale than a portion of road or a single bus line. This makes the
usage of the data of PTIS to address the UTNDP a heavy task for which there is no out
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of the box toolset yet.

1.3 Predictive analytics of bus networks

A major issue of public bus network is the prediction of either the existence of a future
section of a network (e.g a path between two bus stops that should be considered by the
operator) or of an event and its properties (e.g the speed of a bus on a given line with a
given timestamp). In this section we explore the state of the art of analytical, simulation
and machine learning based models for public transportation networks.

1.3.1 Analytical models

There only are few analytical models for public bus networks: Fernandez and Valen-
zuela [23] proposed an efficient analytical model to predict bus commercial speed anywhere
on a bus network, for any kind of bus line. They upgraded a state of the art function based
on exponential decay to take in account more influencing parameters such as dwell time at
bus stop, passenger density or even time periods or bus technology. Their model must be
precisely parameterized by tweaking weights in order to produce satisfying result regard-
ing the reality. Thus, one who wants to use this model would have to gather a lot of data
and domain knowledge in order to obtain satisfying results. In the same way, Valencia
and Fernandez [69] developed a similar approach dedicated to bus corridors (bus lanes).
Their work presents similar characteristics, hence pros and cons, as the model described
before.

Analytical models are built by and for specific issues. In these particular contexts they
can be very powerful when adequately tweaked. If one wants, for example, to predict the
travel time of a bus line for which all the properties are known in advance using a perfectly
configured model, these models can provide an interesting answer. The other side of the
coin is that these models are very static, hence non applicable to others issues without
a total rethinking of their behavior. Moreover each model is tweaked to fit a specific
situation, making their portability to other instances of the same problem probably not
advised.
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1.3.2 Simulations

Simulations are dynamic models that aim at providing estimations obtained from a
simulated environment. The closer the environment is to the actual environment, the
better the estimations are expected to be. This kind of tool is usually dedicated to a
specific task at a given granularity. Indeed, simulations are usually classified in 3 different
categories [5]:

— Macroscopic: Simulation of a whole city (or even more), emulating traffic flow
dynamics (inspired by fluids physics)

— Mesoscopic: Simulation of a district, involving explicit treatments of intersections
— Microscopic: Simulation of a crossroad or a few roads. Multi-agent based with

complex rules and interactions between agents.
In Public Transportation Networks, because macro and meso simulations are not as

precise and fine-grained as microsimulation, the latter is preferred [10]. It is used for
strategic purposes such as the placing of bus stops before or after a crossroad, the width
of the roads, etc.

Fellendorf [22] proposed VISSIM, a microscopic simulation tool to evaluate actuated
signal control including bus priority. His work proposes to build simulations to assess
whether a traffic light equipped crossroad is properly configured for bus priority or not.
As a microscopic simulation, it is designed for small scale evaluation, a few crossroads
maximum, also an important amount of time and effort has to be dedicated to configura-
tion [74].

Esser and Schreckenberg [19] worked on an urban traffic simulation based on cellular
automaton. They built a simulation in which cellular automaton are used to describe
roads as arrays of cells connected to each other. A free portion of road is represented by
en empty cell while a vehicle occupies one or more cells depending on its size (e.g one cell
for a car, 3 for a truck, etc.). This simulation is traffic focused and aims at providing a
step by step simulation behaving in accordance with traffic rules defined in the system.
It is able to gather data about vehicle flows, travel time at different point of view (e.g
vehicle → road → district).

This simulation is certainly useful for network scale simulations, as they managed to
simulate days of traffic on a virtual network totaling 165 km of road over 22059 cells in
20 minutes on a computer of the late 90’s, although the creation of the model can be
very time consuming (each road and specific properties has to be manually built into the
system). In the end with modern hardware the computing cost of a simulation containing
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hundreds of thousands of cells on which thousands of vehicles are represented is certainly
not a problem. However the design of the simulation might be the bottleneck here.

Cats et al. [10] worked on a mesoscopic model for bus public transportation. Their
system is based on Mezzo, an object-oriented and event-based mesoscopic traffic simula-
tion model. Their tool is used to simulate operational bus lines and control their behavior
(headway, delay, etc). They manage to simulate the behavior of bus line 51 in Tel Aviv,
Israel. Their model ran in 10 seconds on a low end computing device as of 2010. The re-
sults of the experiment show that the model is quite capable for running time prediction,
but not as good for headway prediction. Yet, they claim their model can be extended to
simulate other issues. However this model is focused on single bus lanes and does not sim-
ulate the whole bus network at once, even if this might be possible regarding the model’s
low computing cost, provided it is feasible to implement multiple bus lines at once.

Matsumoto et al [43] worked on bus line optimization using multi-agent simulation
model and origin-destination data. Their model can be considered has mesoscopic: It
represents a 65.63 km2 portion of the city of Toyama, Japan. However, it is nearly the
surface of the whole city and their model is multi-agent based so it is actually more like a
microscopic model applied at a meso/macro scale. In terms of performance, their model
performed quite well with a 50 hours running time for 181’000 agents, which is quite
acceptable knowing the complexity of the simulation. Eventually, they built an application
example for community buses in Imizu, Japan. It appears that their model is able to
propose new optimized routes regarding the Origin-Destination needs and behaviors of
agents in the system. However, they use mathematical workarounds in order to reduce
computing time and candidates selection, which possibly obliterates valuable candidates.
Moreover, this model needs a lot of modeling and configuration to fit each environment
and situation.

Barcelo et al [5] tried to tackle the macro/meso/micro junction problem which consists
on building a model capable of doing simulations at macro, meso and micro scale. Their
work lies on AIMSUN NG simulator which is a traffic simulator. They built a common
database that allows the transitioning between the 3 levels of simulation, solving the
consistent network representation problem. It appears that the system is quite consistent
when it comes to calculate shortest path using either micro or meso simulation, which
indicates that the database is well built. However, this system lacks real world data: only
voluntarily generated jams, intersections and traffic signals are taken into account in the
core of the model.
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1.3.3 Machine learning approaches

Machine learning models are broadly used for bus networks problems modelling.
Among other pros, machine learning models hardly ask for heavy configuration and/or
wide domain knowledge. On the other hand, a major caveat of ML is its dependency to
data. Consequently, and knowing that real world data tends to be dirty [49, 60], data
quality (truth, consistency, accuracy, etc.) must be considered for these models.

Data issues in machine learning applied to public transportation networks

There are only a few studies on data quality in transportation. Brian L. Smith et al. [60]
proposed a set of statistical tools to handle missing data in transportation management
systems. Their work shows that it is possible to infer missing data with a satisfying error
rate, as long as the correct heuristic is used for this purpose. Their work is part of the
world of global transport, which is close to urban public transportation, yet there might
be differences in the approaches depending on what kind of data is available and the
desired outcome.

Ma and Chen [41] explored the data quality of smart card and GPS systems. They
claim that it is needed to use redundant data when it is available to recover or correct
missing values and that any useless field should be removed from the smart card data
sets. Also, they claim that the error identification is made harder by the complexity of
transportation systems that are often made of many manufacturers and stakeholders.
They say that this should urge the data manager to work on the data consistency before
data collection to make sure that all the production data is based on the same units,
definitions and same accuracy level.

Robinson et al. [57] studied methods to improve data quality of smart card systems.
They identify different sources of error in four investigation domains that are software,
hardware, data and user. They proposed a method to identify boarding and unboarding
data errors and faulty data supplies. They claim that taking care of smart card data
quality can reduce costs and enhance the service quality offered by the transportation
network.

In the light of their arguments, it appears that the IT systems of transport networks
are rich and complex. However, the data that emanates from them should be viewed with
caution as the presence of errors within them is prevalent, making any work based on
them inherently delicate.
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Machine learning based models

Machine learning models are mostly used for travel time prediction in the literature:
Altinkaya and Zontul [3] reviewed the computational models used in Urban Bus Arrival
Time Prediction as of 2013. Their work covers the use of historical data and statistical
models, time-series, regressions, neural networks and hybrids models. They explain that
the existence of that many models in this field of research is due to the fact that predicting
travel time of buses is a complex task for which no model in particular has proven its
superiority yet. However, they claim that hybrid models (e.g combine neural networks
with Kalman filters) are on the roll. Moreover, they add that predictions might be better
if one splits the datasets into sub-datasets in which data represents similar conditions,
restricting the models prediction scope.

Some other interesting machine learning must be noticed too: Zaki et al. [75] worked
on a hybrid neural network and Kalman filter model to predict online bus arrival time.
Their method is a hybrid scheme that combines a neural network (NN) that infers decision
rules from historical data with Kalman filter (KF) that fuses prediction calculations with
current GPS measurements of buses. They feed the neural network with the following
features: Day, Direction, Stations, days category, weather, average speed and traffic status.
They conducted an experiment to test their approach by creating virtual bus line and a
set of random data generated through Matlab dedicated process. Their results show that
this model can perform reasonably well with simulated data. However, the discussion lacks
validation metrics and a real world application to assess the model portability. Napiah
and Kamaruddin [48] worked on Auto-regressive Integrated Moving Average (ARIMA)
models to predict bus travel time. They tested their model in a case study over Ipoh-
Lumut corridor in Malaysia, that link the Ipoh city to the port of Lumut. The bus line
they studied was 83 km long, hence it can be considered as suburban / middle range bus
line. They collected data through a survey, gathering information for 48 trips over a year.
They obtained satisfying results with their models while predicting full line travel time,
with Mean Absolute Relative Error (MARE) and Mean Absolute Percentage Predicting
Error (MAPPE) respectively below 8 minutes and 6.5%. Those results are quite good if we
take in account the length and travel time of the bus line. Their work showed that ARIMA
models perform reasonably well when one does not have detailed data of affecting factors
such as traffic, weather, etc. However, their result analysis lack other validation measures
that emphasize outliers such as Root Mean Squared Error (RMSE), hence it is hard to
tell if the model performs steadily or if it can predict aberrant travel times. Cristobal et
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al. [16] proposed a bus travel time prediction model based on profile similarity. They used
a k-medoids clustering algorithm to build historical travel time profiles using historical
data. Then they compare the profile of the bus they want to predict travel time with the
built profiles set to obtain a predicted travel time. One major advantage of this model
is that it does not require recent travel time data to provide a prediction, which makes
it suitable for onboard prediction. Also their result showed that their model has a 13%
Mean Absolute Percentage Error (MAPE) margin, which is on par with neural networks
methods they compete with. However this margin of error can be important depending
on the length and total travel time of bus lines. Also, other validation methods like
RMSE should be computed to assert whether the model is stable or not. Mendes-Moreira
and Barachi [45] imagined a prediction model for networks by predicting sub parts of
the networks and re-conciliate the aggregated predictions of the sub-parts with the path
they are part of. They do this using a method they called Reconciliation For Regression
(R4R) by weighing every sub-predictions using a constraint least square algorithm. Their
results show that they reach state of the art performance for bus travel time prediction.
However, it is unclear on how far from the reality their model perform without MAPE.
One could also raise the following statement: the added complexity of R4R is questionable
because it shows that it seems to never offer a better improvement than 3% in prediction
precision when compared to other models, including simple ones such as Multivariate
Linear Regression (MLR).

1.3.4 Conclusion

In this section, we exposed the state of the art of prediction tools and models for
UPTN, specifically bus networks. We showed that there are plenty of methods that are
being explored by researchers, yet none of them has been able to make a significant
difference amongst them. Also, we observed that most of those models are designed for
either a specific environment (modeled by and for a given city / bus line) or a given target
(travel time, optimized bus path, ...) It seems that if it is probably out of reach to produce
a prediction model that definitely surpasses all the others, it could be possible to produce
a set of methods that offer a flexible prediction tool set for bus networks operators. As of
today, those predictive models are used independently from data management and analysis
systems. Moreover, they seem to be designed for either mono-dimensional predictions
(e.g. whole bus line travel time, inter-station time of arrival, etc.) and/or single targeted
predictions (travel time, speed, arrival time, etc.). Thereby, there might be a need for
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integrated multi dimensional and multi target predictive models.

1.4 Software Engineering models

Software engineering techniques can be leveraged to tackle UPTNs design problems.
Thanks to the many data UPTN generate, the creation of virtual representations is desir-
able for, e.g. spatio-temporal data analysis, and even predictions using predictive models.
To do so, there are some existing works that can help clearing the path.

Combemale et al. [13] proposed the conceptual models and data (MODA) framework.
They aim at providing a reference for model-driven and data-driven modelling issues.
Their work proposes a data-centric and model-driven approach to integrate heterogeneous
models and data into a single framework for the entire life-cyle of socio-technical systems.
Depending on the structure of the considered socio-technical system, its whole life-cycle
might be impossible to integrate. Actually, the proposed framework is pretty flexible,
thereby one who wants to produce an instance of it for a specific need can ignore parts
of the model that are optional, such as descriptive and predictive models. Moreover this
work proposes a solid way to evaluate and build a model that gathers internal/external
data into a single framework that would manage whole or part of the life-cycle of the
system depending on the needs. Actual applications of this framework have yet to be
built in order to assess its portability to real world issues.

Hartmann et al. [29, 27] worked on temporal graphs to analyze data in spatio-temporal
dimensions, which embed historical analysis and predictions. Their model, Greycat, is a
scalable graph-oriented data model that allows the building and analysis of multiple par-
allel worlds (forks of graphs) in a single framework. Their model is meant to be used for
fast evolving networks such as smart-grids, cyber-physical systems or IoT systems that
yield a lot of data and that can physically evolve quickly. The strengths of their model are
the following: their model is totally and quickly scalable with reasonable resource needs;
they embedded machine learning seamlessly in order to predict events on the graph and
even build what-if scenarii by forking graphs, yielding new instances with inherited prop-
erties; moreover, they took a look at the interest of applying the "divide and conquer"
paradigm in order to make predictions over the smaller parts of the graph (Nodes). Their
findings is that for complex data models that are made of an aggregation of smaller parts,
machine learning models that are trained using fine-grained data outperforms models
trained with coarse-grained data (i.e parts or whole graph). Greycat has been successfully
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tested on a smart-grid application in Luxembourg, and is an interesting way of thinking
the interactions between data and models at large scale on evolving environments. Un-
fortunately, Greycat was not fully available when this thesis was written, and probably
too tricky to integrate in a research environment for yet non-built applications such as
urban public transportation networks. However, one can further validate the fine-grained
and temporal-graph approaches for socio-technical systems by applying them to use cases
that differs from smart-grids.

Another meta-modelling work of Hartmann et al. [28] tackled the issue of meta-learning
for machine learning. Meta-learning for a given prediction task consists of auto-selecting
the best predictive model, auto-extracting the features from the training dataset and
finding the best configuration for the selected model. This issue is both complex and costly
because as of today there are multiple machine learning algorithms with various cost of
use and predicting performance. Meta-learning enabled meta-models would be a way to
reduce the endeavour data scientists have to furnish when it comes to build predictive
models over specific datasets, but this would probably ask for a high computational cost.

Bordeleau et al. [9] suggested that models at runtime are key for implementing digital
twins. From a Model-Driven Engineering (MDE) point of view, they are virtual represen-
tations of Cyber Physical Systems (CPS). Digital Twins have to be tightly bound with
the data that is generated by the CPS in order to be a consistent virtual representation of
this very CPS. However, this raises challenges such as bi-directional synchronization with
the actual system, the management of heterogeneous models, and the collaborative de-
velopment throughout the system life-cycle. Finally, their work highlighted open research
challenges that one should consider when creating any digital twin (meta) model.

Kirchof et al. [38] worked on the inter-connectivity of Digital Twins, their related
Information System and the Cyber Physical System they are the virtual image of. They
claim that a significant part of digital twins development is due to the creation of interfaces
that are in charge of the data exchanges between the digital twin and its relative CPS.
Their work could be used to enhance the inter-connectivity of any digital twin and the
CPS they are the virtual representation.

1.4.1 Conclusion

In recent years, data and software engineering models built for networks (Smart-
Grids, Cyber-Physical Systems, Socio-Technical Systems,...) are emerging. Researchers
have started to imagine models that can fit different situations from smart-grids to Crisis
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management systems. Those models propose new seamless approaches, with embed data
exploration, prediction and prospective. However real-world applications are technically
difficult to build because numerous issues have to be handled: data gathering, model adap-
tation, software development, non-regression regarding the existing systems, etc. Hence,
a framework that allows seamless integration of data along with spatio-temporal data
analysis tools into models has yet to be imagined.

1.5 Overall conclusion

In this chapter we studied the state of the art of Urban Public Transportation Net-
works (UPTN) and their existing issues. We also exposed state of the art tools for bus
networks optimization and prediction. Finally we discussed the existing software engi-
neering methods and frameworks that exist to address data-driven issues similar to those
we try to tackle in this thesis.

It appears that UPTN optimization issues are both complex and many-fold: from struc-
tural optimizations (roads, bus stop spacing, ...), to operational optimizations (schedule,
fleet management, headway optimization, ...), there are plenty of problems to address with
as many different tools for that. Moreover, for both optimization and prediction tasks,
there are no best-suited tools yet. Thus, human intervention is still necessary to properly
tackle those issues.

Feature Simulations Analytics Machine Learning
Needs domain knowledge 3 3 ∼
Heterogeneous data sources 7 7 3

Uses real data 7 7 ∼
Spatio-temporal 3 7 ∼
Data analysis ∼ 7 7

Multi-targets predictions 3 7 ∼
Evolutive 7 ∼ 7

Scalable 7 3 ∼
Portable 7 7 ∼

Table 1.2 – The thesis positioning in the predictive analytics of bus networks state of the
art

Table 1.2 shows the current predictive analytics of bus networks approaches in the
state of the art. It exposes eight features for each of the different approaches :
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— Needs domain knowledge Describes the need in knowledge related to the ap-
proach itself and UPTN to design, feed and use a model.

— Heterogeneous data sources Describes the capabilities of the approach to make
use of heterogeneous data sources (i.e different databases, different formats, etc.).

— Uses real data Shows the ability of the approach to make use of data extracted
from the real world (AVL, smart card data, etc.).

— Spatio-temporal Represents the ability of the approach to be used for any period
in time and any scale on the bus network, without requiring reconfiguration.

— Data analysis Represents the capabilities of the approach to analyse the data it
uses, contains or represents.

— Multi-targets predictions Corresponds to the ability of the approach to predict
multiple targets (e.g speed, travel time, etc.) and configuring prediction for new
targets at run time.

— Evolutive Represents the way the approach can evolve through, e.g the adding of
data sources, predictive models, etc.

— Scalable Represents the way the approach can keep on working when a lot more
data, predictive models, etc. are added to it, without significantly deteriorating the
performance.

— Portable Represents the ability of the approach to be used for issues different
than UPTN.

The different symbols 3, ∼ and 7used in Table 1.2 have different meanings:
— 3: Feature totally supported by the approach.
— ∼: Feature partially supported by the approach. i.e an endeavour is needed to

support the feature.
— 7: Feature unsupported by the approach. i.e an intense endeavour is required to

support the feature, if the approach design authorizes the implementing of the
feature.

If we summarize Table 1.2, we can say the following things:
— Simulations approaches [5, 10, 22, 74, 19, 10, 43, 5] need a lot of domain knowledge.

The building of a simulation is a complex task that requires to virtualize the rules
of the real world. By design, a simulation has to be configured for a specific target
(in a set of available targets), in both space and time aspects and run. This implies
that the use of heterogeneous data or real world data to run the simulation is nearly
impossible. However, in some cases, it might be possible to analyze the data the
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simulation produces, but it is probably not easy to merge this data with exogenous
data for broader analysis. Simulations are complicated to evolve, because of the
inherent complexity of the models, hence scalability has to be integrated by design
if one wants the model to be scalable. Finally simulations are dedicated to a specific
task, hence it is quite impossible to use it for any other unrelated issue.

— Analytics approaches [23, 69] need a lot of domain knowledge because the designing
of analytical model requires to master and understand what one wants to represent.
However, the model itself is not able to use heterogeneous data sources or real data.
Indeed, it only uses local variables, hence it does not integrate data analysis tools
nor spatio-temporal abilities. Moreover, analytical models are designed for a single
target (speed, travel time, etc.) and cannot be used to predict multiple targets, by
design. On the other hand, as it is very light (just a simple equation), it is totally
scalable. Finally, this approach yields models that are evolutive, but evolution of
the models requires an important effort.

— Machine learning approaches [3, 75, 48, 16, 45] can be used without domain knowl-
edge by, e.g feeding a CSV to a predictive model and hope it will work. That
is to say, the domain knowledge needed here is more related to machine learn-
ing approaches themselves than the domain one applies those models to. On the
other hand, one can feed machine learning models with heterogenous datasets that
come from the real world or that are artificially built. However, the predicting of
multiple targets over space and time with machine learning approaches requires
those models to be designed for this. i.e, wrapped in a component that manages
the spatio-temporal stuff and multi-targets with e.g. a set of different predictive
models for the different targets. Moreover, machine learning approaches are not
evolutive, in the sense that the evolution of machine learning models consists of
depreciating the current model and training a new one with the new data. In the
same manner, the portability of machine learning approaches is not "out-of-the-
box" as long as the gathering of new data is required along with feature selection
and re-configuration of the models. Finally, machine learning approaches are not
designed for data analysis and their scalability depends on the design of the mod-
els, which sometimes are (e.g.: random forests), and sometimes are not (e.g. linear
regression).

With the spreading of cities areas, bus networks are prone to yield more and more data
through time. Hence, data-driven analysis and decision models are probably intended to be
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created and deployed in the upcoming years. in Section 1.2, we saw that the management
and optimization of UPTN is composed of complex issues that cannot be handled without
proper domain knowledge and data. Section 1.3 gave us hints about the use of predictive
models for UPTN problems such as travel time prediction, highlighting the fact that
the use of data generated by PTIS can help to reduce the level of domain-knowledge and
expertise needed to make good predictions. Finally, Section 1.4 tells us that the integration
of predictive models in models at runtime research is still in its infancy. Thereby, we were
able to formulate the statement that this thesis defends:

Integrated tools for data analysis and decisions making has become
a requirement to cope with smart cities development. To fulfill this
requirement, the designing of a system that helps for the UTNDP,
relying on bus network data (AVL, smart card, ...) and exogenous
data (road infrastructure, traffic, ...) through the integration of data
analysis and predictive models is now possible. Our thesis is that
this opens new path towards better integrated tools for decision
making in the context of spatio-temporal models.

Main statement

In this thesis, we propose four contributions, which support all the features of Table 1.2
when assembled. We propose a software engineered solution towards data centric decision
models for Urban Public Transportation Networks, with a real-world application on the
bus network of the city of Rennes, France. The first contribution addresses the data
quality issues in UPTN. The second one assesses the impact of exogenous factors on bus
speed using large-scale real world data. The third one proposes a fine-grained prediction
approach using real world data to predict bus speed. The fourth and last one proposes
a framework that provides spatio-temporal data analysis and prediction tools for bus
networks operators.
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DATA QUALITY AND INTEGRATION

2.1 Introduction

Current Public Transportation Information Systems (PTIS) produce a huge amount
of heterogeneous data on a daily or even real-time basis. For example, smartcard systems,
on-board bus units (AVLs 1), schedule, referential, and real time radio bus monitoring
systems are a gold mine to manage the bus network, useful to understand how it works
and what to act on to improve it. For example, the average trip travel time, the schedule,
the amount of km per year, the average bus stop spacing, etc. can be considered as inputs
that, when properly processed, help the creation of service quality indicators for bus
networks [23, 15, 14].

Many organizations are thus interested in trying to apply machine learning techniques
to a wide part of their PTIS. These could be used to predict local and global behavior of
the network, such as arrival time for each station [3], ridership [17] or even to elaborate
what-if scenarios when considering road works or network enhancements.

However, the results of any prediction task may be inaccurate, due to omissions and
errors in the input data set. PTIS are a typical example of error prone systems, for
numerous reasons [41, 57]. PTIS are made of many independent software and hardware
that (try to) communicate using different, ad hoc protocols. Bus fleet are composed of
hundreds of buses that embed numerous sensors and wireless communication systems that
can fail. Risks of data loss come from the wireless communication system, the embedded
hardware on buses and the number of buses in the fleet that have a variety of hardware to
maintain. That variety increases the risk of errors, but also makes it difficult to identify
the exact source of the error when it happens. Overall, cleansing this heterogeneous data
is costly [70].

In this chapter, we investigate the question of data cleansing for a typical machine
learning task in PTIS and a key issue for the Keolis company: predicting bus commercial

1. Automatic Vehicle Location
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speed.

The commercial speed is the average travel speed of public trans-
port vehicles between one origin and one destination stop, including
any delay encountered during the trip [23].

Commercial speed definition

We ground our analysis on the PTIS of Keolis Rennes that exploits the bus network of
the city of Rennes, France, yielding 18GB of data per year.

In this specific domain, little is known [41, 60] about the amount of effort one has
to make to obtain accurate predictions. We consider a global data cleansing strategy
with various levels of quality, ranging from easy/cheap ones to computational intensive
ones, and observe their impact on prediction quality. We demonstrate experimentally
that cleansing is mandatory, but also that a complete alignment/completion of all the
available data sets, involving data synchronization and complex joins, is of little interest.
More precisely, our contributions are the following:

— We define a datalake gathering all the information from the operation PTIS of
Keolis, for a middle-size metropolis, Rennes, in France (730k inhabitants);

— We identify the errors in this datalake;
— We present a dedicated data cleansing strategy capable of yielding different levels

of data quality;
— We evaluate the resulting commercial speed prediction precision on several, real

size data sets.
The rest of this chapter is organized as follows. In Section 2, we present the information

system and the data sets we got from Keolis Rennes. In Section 3 we explain the various
kinds of transformation and cleansing we can apply on the data. In Section 4 we compare
the results of commercial speed predictions on two of our data sets with different level of
data quality. In Section 5 we discuss the results and expose our threats to validity. Section
6 presents the related work before we conclude.

2.2 Data sources

Taking the Keolis Rennes example, we gathered data on a 6 months period between
early July 2018 and late January 2019. The data collected are based on the bus network
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which contains 116 bus lines.
We had access to three data sets from the PTIS’s AVL system of Keolis Rennes:

1. The referential and schedule: REF;

2. The on-board central units data set: OCU;

3. The radio real-time monitoring data set: RT.

The referential data set (REF) contains topological information over time. It describes
the network as an oriented graph in which vertices are bus stops and edges are inter-
stations. An inter-station is a path between two bus stops. Bus lines are defined as paths
through inter-stations within the network graph. The schedule contains temporal infor-
mation about the bus services, e.g scheduled time of arrival at bus stops over time. The
referential and schedule volume of data per year is usually around 1 GB.

The on-board central units data set (OCU) contains a posteriori data. It is the record
of bus trips structured as a table in which each row is a record of metrics of a bus serving
an inter-station (or inter-stop), at a given instant. On-board sensors provide the data
of this data set, hence it is expected to be accurate, but for reasons explained above, it
is also incomplete and full of errors. It provides meta data such as bus, line, schedule
information and metrics like commercial speed, travel time, traveled distance, etc. Most
sensitive among these for contractual reasons, the commercial speed is the speed of the
bus between two points, including travel time and dwell time at the origin point [23]. The
OCU data set is made of 35 fields and represents around 10GB of data per year with daily
file sizes varying between 9 to 40 MB. Some of the missing data from the OCU data set
however could be inferred from the radio real-time monitoring data set (that collects real
time data by radio). Indeed, RT contains 13% more recordings than OCU.

The radio real-time data set (RT) is an historized data set. It is the record of real-time
data traveling through TETRA 2: it contains data that is somehow a duplicate of the
data from the on-board units data set. However since it is a monitoring data set with a
20 seconds period, it only contains temporal information with little meta data, making
it poorer, less precise and harder to use than OCU. Yet they are compatible with one
another. The RT data set has 20 fields and represent around 7GB of data per year with
daily file sizes varying between 5 to 35 MB.

It is worth noting that both RT and OCU data sets contain commercial and deadhead
trips. A bus trip is commercial when the bus is transporting passengers within a bus line

2. Terrestrial Trunked Radio
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service. Deadheads are network management trips that do not transport people, e.g trips
between a deposit and the origin terminal of a bus line. This means that any kind of trip
can be analyzed using these data sets.

2.3 Data Cleansing Strategy

In the OCU data set, readings for which bus speed was lower than 1 km/h or higher
than the legal speed limit of 70 km/h, which respectively are low speed limit we defined
and legal maximum speed for buses in France, can represent up to 5.4% of the data of
OCU. Such information is absent from the RT data set that contains no metrics.

Still, considering the richer information available in OCU, it appears that it is the only
production data set we have that can directly be used as a source for prediction tasks. To
evaluate how much error correction is needed before prediction can be done efficiently, we
ran 4 experiments, with the following data sets:

— H0) raw OCU;
— H1) Cleaned OCU, by applying business rules:

— Illegitimate bus speed (< 1km/h or > 70km/h) are deleted;
— null meta-data values that cannot be inferred are deleted;

— H2) inter-stations
— Enriching OCU by merging with RT to complete missing timestamps for stop

arrival and stop; departure recordings
— Joining with REF to update empty distances and add meta-data;
— Identifying and isolating trips to infer primary keys (trip departure, bus line,

...);
— Recomputing commercial speed metrics with the new raw values;

— H3) Cleaned H2 using the same rules as H1.
Building this data set is costly because RT does have little metadata. Hence meta data

such as starting hour of each trip, trip identification, etc. must be inferred "trip by trip",
making N computing tasks with N being the number of trips to recompute. Table 2.1
shows an overview of the process on a sample of data for a trip of the bus line 51. It
shows that the base OCU data set is rich and ordered while base RT is poor and messy.
Base RT needs to be ordered to extract individual trips and process them. Then the trips
primary keys that include different fields such as trip departure information are rebuilt
according to the minimum stop order within the trip, allowing the identification of missed

42



2.3. Data Cleansing Strategy

trip starts (delayed or unplanned). Finally, the resulting enriched RT is merged with base
OCU, keeping data from base OCU when it is valid.

H0 and H2 data sets are available here 3 in an anonymized and reduced version, in
order to make the experiment reproducible.

3. https://github.com/Tritbool/STAR_datasets
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Table 2.1 – H2 Creation process overview
Base OCU (lost tuples, missing values, erroneous measures)

line time_start direction stop_id previous_stop_id arrival departure travel_time distance speed ...
? ? ? ? ? ? ? ? ? ? ...
? ? ? ? ? ? ? ? ? ? ...
51 17:34:00 A 1000 ? 17:36:32 17:36:40 43 317 26.5 ...
51 17:34:00 A 2346 1000 17:37:41 17:37:51 79 380 17.3 ...
51 17:34:00 A 2347 2346 17:38:55 17:39:03 82 430 18.9 ...
51 17:34:00 A 2356 2347 17:42:18 17:42:18 203 521 9.2 ...
51 17:34:00 A 1981 2356 lost lost 201 0 768.0 ...
... ... ... ... ... ... ... ... ... ... ...•

Base RT
line direction stop_id arrival departure ...
51 A 1000 17:36:32 17:36:40 ...
3 R 3452 11:21:22 11:21:25 ...
51 A 2347 17:38:55 17:39:02 ...
12 A 1234 13:21:02 13:21:17 ...
51 A 4021 17:32:00 17:34:00 ...
1 R 1000 8:02:00 8:02:21 ...
51 A 1001 17:35:07 17:35:18 ...
1 A 1287 8:03:00 8:03:01 ...
51 A 2356 17:42:18 17:42:18 ...
51 A 2346 17:37:41 17:37:55 ...
51 A 1981 17:42:52 17:43:01 ...
... ... ... ... ... ...

⇓
Enriched RT (requires to locate & synchronize trips using REF database)

line time_start direction stop_id order arrival departure travel_time distance ...
1 8:02:00 A 3657 1 8:02:00 8:02:21 0 0 ...
1 8:03:00 R 1287 4 8:03:00 8:03:01 -1 457 ...
3 11:00:00 R 3452 16 11:21:22 11:21:25 77 298 ...
51 17:34:00 A 4021 1 17:32:00 17:34:00 0 0 ...
51 17:34:00 A 1001 2 17:35:07 17:35:18 78 316 ...
51 17:34:00 A 1000 3 17:36:32 17:36:40 43 317 ...
51 17:34:00 A 2346 4 17:37:41 17:37:55 49 267 ...
51 17:34:00 A 2347 5 17:38:55 17:39:02 69 430 ...
51 17:34:00 A 2356 6 17:42:18 17:42:18 67 521 ...
51 17:34:00 A 1981 7 17:42:52 17:43:01 43 282 ...
... ... ... ... ... ... ... ... ... ...

⇓
Base OCU × Enriched RT

line time_start direction stop_id order arrival departure travel_time distance speed ...
... ... ... ... ... ... ... ... ... ... ...
51 17:34:00 A 4021 1 17:32:00 17:34:00 0 0 -1.0 ...
51 17:34:00 A 1001 2 17:35:07 17:35:18 78 316 14.6 ...
51 17:34:00 A 1000 3 17:36:32 17:36:40 43 317 26.5 ...
51 17:34:00 A 2346 4 17:37:41 17:37:51 79 380 17.3 ...
51 17:34:00 A 2347 5 17:38:55 17:39:03 82 430 18.9 ...
51 17:34:00 A 2356 6 17:42:18 17:42:18 203 521 9.2 ...
51 17:34:00 A 1981 7 17:42:52 17:43:01 43 282 23.6 ...
... ... ... ... ... ... ... ... ... ... ...
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2.4 Quality Experiments

2.4.1 Experimental setting

Table 2.2 – data sets properties

data set Population Average
speed

Speed
standard
deviation

Minimum
speed

Maximum
speed

Speed er-
ror rate

H0 16793293 20.31
km/h

11.6 km/h -996 km/h 130 km/h 5.4%

H1 15880770 21.33
km/h

9.76 km/h 1 km/h 70 km/h 0%

H2 17496142 20.77
km/h

10.3 km/h 0 km/h 70 km/h 2.6%

H3 17038432 21.33
km/h

9.9 km/h 1.1 km/h 70 km/h 0%

data set Number of inter-stations Average Population per inter-station
H0 10262 1636
H1 8398 5041
H2 3363 5234
H3 3329 5149

Total H0,H1,H2 and H3 common inter-stations
3119

Table 2.2 shows the statistics and data quality variation of H0, H1, H2 and H3 data
sets. It contains statistics about the bus network (i.e every inter-stations in each data set)
such as the total population of the data set (number of recordings), average commercial
speed, commercial speed standard deviation, minimum and maximum commercial speed
metrics in the data set (outliers), commercial speed error percentage (metrics that are
under 1 km/h or over 70 km/h), number of identified inter-stations in the data set and
their average number of recordings. Finally, this table contains the number of inter-stations
that are common to H0, H1, H2 and H3, that is the inter-stations core we use for the
study.

Below is the global population variation. In accordance with Table 2.2, H2 and H3
are more populated than H0, and H1 and filtering a data set reduces the population of
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the resulting data set in all the cases.
— H0 → H1 : - 5,434 %
— H2 → H3 : - 2,616 %
— H1 → H3 : + 7,29 %
All of the data cleansing steps were done using a 4 cores 8 threads CPU @ 3.0 GHz

with 32GB of ram @ 2933 MHz laptop running a 64 bits version of Ubuntu 19.04
— Preparing a sample of H0 or H1 data for a single day takes less than 5 minutes of

computing and manual manipulations.
— Preparing a sample of H2 or H3 data for a single day takes around 2 hours of

computing, involving a bottleneck of 1h+ for the RT preparation before merging
with OCU.

2.4.2 Commercial speed prediction experiments

As set in the introduction, our stated goal is to measure the impact of data quality
level on the prediction models’s precision. For H0, H1, H2 and H3 we learn and predict
bus commercial speed over 3119 common inter-stations given built-in features:

— Bus line ID
— Type of day
— Period in the day
— Month in the year
— Holidays time
All the features were selected knowing that the most important one we have built-in is

the period in day[39], then normalized and missing values were imputed using K-Nearest
Neighbours imputation, withK set to 10. Thus, the missing data is imputed using the data
of the 10 nearest neighbours of the erroneous row, according to which class of neighbours
is more numerous within the bench of neighbours.

We learned the speed on the different inter-stations of the network in such a manner
that the output is the predicted bus speed for a given bus line at a given period of the
day on a given and already known inter-station. Hence, we predict the speed using only
temporal and categorical built-in features, ignoring the spatial information 4 knowing that
inter-stations are only 607 meters long in average, begin and end with a bus stop.

Using the data sets presented before, we trained a set of 6 different prediction models

4. That we do not have anyway.
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from the Scala SMILE framework 5 in its 1.5.2 version:

1. Random Forest;

2. Decision Tree;

3. Lasso;

4. Bayesian Ridge;

5. Gradient Boosting;

6. Ordinary Least Square.

We chose these regression models because they are common and long known as well
as for their ease of use and overall performance. We used 10-fold cross validation on each
model to configure the models hyper-parameters and kept the best resulting prediction’s
RMSE amongst them.

The Root Mean Squared Error is the standard deviation of the predictions errors :
√√√√ 1
N

N∑
1

(Yt − Ŷt)2. (2.1)

N is the population of the test data set, Yt the observed commercial speed and Ŷt

the predicted commercial speed. A low RMSE (i.e near 0) indicates a good prediction
accuracy. The RMSEs results are compared in Figures 2.1, 2.2, 2.3, 2.4 and 2.5.

Figures 2.1 to 2.4 compare the resulting RMSE for different pairs of data sets, respec-
tively H0-H1, H2-H3, H0-H2 and H1-H3. On x axis are presented the inter-stations ordered
by name (for a better readability of the legend, only a few names are displayed over the
3119 inter-stations). On y axis are presented the RMSE values for each inter-station.

Figure 2.5 summarizes the RMSEs of H0, H1, H2 and H3 in order to facilitate the
analysis of results

Also we compared RMSEs normalized on scatter indicator of input data (here standard
deviation, and mean) in Tables 2.4 and 2.5. The nearer to 0 it is, the better the fit is.
De facto, it is harder to get a normalized RMSE close to 0 normalizing with standard
deviation than with mean.

The prediction models were trained on a different and more powerful machine with 64
cores @ 3.4Ghz and 64 Gb RAM @ 2933Mhz, running Manjaro 18.1 in its KDE version.

Computation time for the 3119 inter-stations of each data set is around 14 hours and
detailed as follows:

5. http://haifengl.github.io/
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— 3h30 data preparation;
— 10h30 of training for 3119 inter-stations * 6 models.
During prediction experiments, some inter-stations training would fail, either because

of data issues (like insufficient amount of data, malformed data), or tweaking issues (as we
tweaked each model only once in accordance to the average statistics of the inter-stations).
Table 2.3 shows the failing statistics for each input data set.

Table 2.3 – inter-stations learning failures

data set Amount of failures
H0 160
H1 160
H2 126
H3 186

Figure 2.5 shows the variation of prediction accuracy between the different data sets.

Figure 2.1 – RMSE variation over 3119 inter-stations common to H0 and H1

2.5 Discussion

Figure 2.1 shows the RMSESs of the inter-stations of H0 and H1. The content of
Figure 2.5 supports the fact that the quality enhancement done from H0 to obtain H1
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Figure 2.2 – RMSE variation over 3119 inter-stations common to H2 and H3

Figure 2.3 – RMSE variation over 3119 inter-stations common to H0 and H2

implies a statistically significant boost in predictions with the average RMSE of predicted
H1 being 21.34% smaller than predicted H0. In the same way, the 95th percentile in
predicted H1 is 33.09% smaller than the 95th percentile of H0. In the same way, the
standard deviation of the RMSE of H1 benefits from a 57.87% drop in comparison to the
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Figure 2.4 – RMSE variation over 3119 inter-stations common to H1 and H3

Table 2.4 – NRMSE of H1

SD normalized RMSE Mean normalized RMSE
0.84 0.2

standard deviation of the RMSE of H0..
In Table 2.2, the filtering of H0, yielding H1, shows that the average population per

inter-station dramatically raises, while the number of represented inter-stations drops by
18.16%. We note that the global population varies in the exact same proportion as the
input data error rate. This is due to the fact that the amount of faulty data in the global
population is equal to the error rate of the global population.

Figure 2.3 shows the RMSESs of the inter-stations of H0 and H2. Figure 2.5 contains
insights that let us think that the quality enhancement done from H0 to obtain H2 does
not really enhance the prediction precision. Indeed, with an increase of 1.14% of the
average RMSE from H0 to H2, it seems to be of little interest when contrasted with the

Table 2.5 – NRMSE of H3

SD normalized RMSE Mean normalized RMSE
0.91 0.23
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Figure 2.5 – Prediction results comparison chart

computational time needed to process a single day of data for H2. Indeed, processing a
day of data for H2 is 24 times longer than computing a day of data for H0.

However, as shown in Table 2.2, the speed error rate is lowered by around 51,85%
from H0 to H2. In the same way, H0 outliers are far more distant from the mean than H2’s.
On the other hand, it is worth noting that even if the average inter-station population
is more than doubled from H0 to H2, the standard deviation of the commercial speed
only varies by around 10%. Also, the mean speed is quite steady between those two data
sets. We observe that the average population per inter-station of H1 and H2 is not much
different with only 2% of variation. Added to the heavy computing needed to build H2
from H0, as stated before, those results make it quite obvious that the cleansing from H0
to H2 is somehow an overkill compared to the cleansing from H0 to H1 in terms of data
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set statistics and prediction performance.
Figure 2.5 confirms that H2 is somehow not suitable for commercial speed prediction,

as stated before. Also, Figure 2.5 highlights the evidence that the cleansing from H2 to
H3 is worthy, filtering H2 being less costly in computing time than building it. Filtering
a day of data from H2 yielding H3 takes a few minutes. The global population varies in
the exact same proportion as the error rate, following the same rules and trends of the
population evolution between H0 and H1.

Finally, Figure 2.5 shows that even if H3 is more populated than H1 (cf. Table 2.2), the
enhancement of the standard deviation and 95th percentile of RMSEs are not sufficient to
make it worth the cost to compute H2 and H3 for prediction. Worse, the average RMSE’s
of H3 increases even if the average speed and standard deviation of H1 and H3 are similar
as stated in Table 2.2, and the normalized RMSEs in Tables 2.4 and 2.5 supports the
idea that H1 is the best choice for prediction in this specific context.

2.5.1 Threats to validity

Construct

In this particular context, construct validity implies that the data chosen for the
experiment is representative enough regarding the original data and the data quality rules
created on purpose. Also the prediction models should behave evenly when an experiment
is led several times using the same datasets.

Prediction models were not tuned using grid search because of time issues and com-
patibility in the SMILE API. This implies that the results could be better with enhanced
hyper-parameters, yielding less training failures. In our investigation, we found that many
of the inter-stations for which prediction failed were poor in data. Also, the amount of
failures in our study represent less than 6.5% of the 3119 inter-stations we had in av-
erage. Recovering all of the failures could change the overall result, yet, probably not
dramatically even with a better tweaking of hyper parameters.

We assumed that the inter-stations were small enough not to consider the spatial
information. May be it would be interesting to confirm whether this was right or not in
our further work. Usually [23], the ratio of elements (such as traffic lights, stops, etc)
per kilometer is considered to estimate their impact on bus commercial speed. Our inter-
stations being smaller than 1 km, they probably are short enough for those elements not
to impact the commercial speed significantly. However, adding the spatial data to our
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data set in further studies is needed to confirm this claim.
inter-stations that are exclusive to each data set were not tested and may have changed

the interest of H2 and H3, hence the global result of the study. If one wants to learn and
predict commercial speed over the whole network (commercial and deadhead trips), then
H0 would be the way to go according to the fact that it contains far more inter-stations
information. However, if one wants to work on commercial trips only, H1 or H3 would
be better. Hence, depending on the goal, the outcome might be different. In our case,
we aimed at predicting the commercial speed regardless of the commercial or deadhead
aspect of the input trips data.

Internal threats to validity

We selected features among dozens of fields based on what others studies have used
to predict commercial speed. It is unlikely that other features that the one we used would
have significantly enhanced the prediction results, yet it is still a threat to consider.

We assumed that the 20 seconds temporal resolution of the data in RT has no specific
impact on the bus travel time, the amount of trips smoothing it out. We somehow validate
that there is indeed a smoothing effect when we compare the average speed of H1 and
H3 in Table 2.2 which are equal. However the standard deviation evolution shows that
the 20 second resolution has an impact, even if it is quite low. If we had to recover more
than 13% of data from RT, may be the resolution would have a greater impact unless the
whole data set was recomputed from RT only.

We did not control the data quality of timestamped data and odometer distances
metrics. More generally, we have no mean to assess the accuracy level of the AVL that
provides us with this data. Even if we cannot control the data upstream, we observe that
the data consistency is quite good: as already discussed, H0 only has 5.4% of errors (cf
Table 2.2). If the odometer were to fail massively, we would probably observe a rise in
speed error rate, making it clear that we should not use this data as an input for our
experiments.

External threats to validity

Cleansing rules were chosen based on what is known about legal bus speeds in France
and it is possible that the filtering could be better done. Typically, each inter-station would
probably be predicted more accurately if they were to have their data filtered against their
own specific legal maximum speed, which was not possible to consider in this study. Based
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on the fact that bus driver are urged to respect speed limits in the different areas the bus
travel through and that this is a professional condition, it is probably legitimate to assume
that the speed recorded within the different inter-stations stays within the legal limits in
almost all of the cases. Yet a significant rise of the commercial speed would be an indicator
of driving issues.

This study was based on the bus data of a single city, Rennes (France), for a single
period of time. We mitigated the single period of time issue by running the same experi-
ment in varying periods, without noticeable impact on our results. The Rennes metropolis
is typical of Western European cities, with a crowded medieval downtown, less crowded
suburbs, and some reserved ways for public transportation, so we foresee that most of
what we have learnt here could be applied to similar cities. The same goes for the data
quality issues: as we have seen before, most of Public Transportation Information Systems
suffer from similar data quality issues. Still before being able to generalize our results, it
would be necessary to run similar experiments with other cities bus networks. This could
be easy to do since our data processing methods could be reused out of the box for a new
data set.

2.6 Conclusion

In this chapter we worked on 4 different data sets that gather 6 months of data from
the Public Transportation Information System of the bus network of Rennes, France. We
used different data quality enhancing techniques and compared the resulting statistics,
and prediction usability of those data sets. It appeared that, in this context, data quality
is needed to ensure acceptable data sets statistics and prediction accuracy. However, over
qualifying the data implies a high ratio of computational cost against performance gain,
making it unadvised for non-production purposes like prediction experiments. Finally,
one would have to define a threshold for the ratio between computation cost of data
quality enhancement versus gain in prediction accuracy over which it is considered counter
productive to enhance more the data quality of the input data set.

In the following chapter, we consider exogenous data sets, that contain meaningful
data for commercial speed interpretation.
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Chapter 3

DATA ANALYSIS AND ASSESSMENT OF

BUS COMMERCIAL SPEED IMPACTING

FACTORS AT INTER-STATION LEVEL

3.1 Introduction

Commercial speed, that is the speed of the bus felt by the passengers while they travel,
is among the major indicators used by operators to evaluate the efficiency of bus lines
and assess the state of health and quality / attractiveness of a bus network. This measure
is computed using the total travel time over any section on which the indicator has to
be computed, including boarding and alighting time at bus stops, traffic perturbation,
and any time related factors that impact the travel time, hence the speed of buses as
stated by [23, 55, 32, 44, 14, 15]. Studies have been made on what to act on to both
understand and control bus commercial speed fluctuations. It appears that time in day
is a major factor (rush hour, etc.) but the list of factors is probably not exhaustive,
especially since the commercial speed is measured from buses operating in a rich and
complex environment [42, 66, 67, 65, 35, 55]. However, different previous works have en-
ligthened some other impacting factors. Hofmann et.al. [32] Observed the weather impact
on buses performance, especially regarding rainy conditions over the whole bus network
of an anonymous Irish city. They reported that the buses travel time seems to be globally
higher under heavy rain conditions. Shared bicyles services impact on public transport
travel times has been explored by Jäppinen, Toivonon and Salonen [35]. They assessed
this impact in the city of Helsinki, Finland. Traffic influence on buses travel time have
also be reported to be prominent, as mentioned by Mazloumi [44] and Cortes [14]. How-
ever, the gathering of valuable traffic data seems to be a possible challenge. Tirachini et
al. [65] did a survey on how the fare payment system, bus floor level and passengers age
can impact buses dwell time, thereby bus commercial speed. Their work reported some
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correlations among those factors and buses dwell time. Finally Fernandez [23] and Valen-
cia [69] built some analytical models that leverage bus network infrastructure variables
such as traffic lights, bus stop spacing in and out of bus corridors, vehicles hardware, etc.,
thanks to which they could build accurate (when properly tweaked) predictive analytical
models. This previous work has yet to be compiled in a single macro survey, that could
summarize the importance of different identified bus commercial speed impacting factors,
at a bus network scale. In this chapter, we propose to evaluate a set of known factors, for
which we gathered data either at the bus network scale, or a distributed sample over the
bus network, from various and heterogeneous data sources. In particular, we observe data
of the lockdown that occurred in France between the 17th of march 2020 and may 12th
2020 during which the bus network was in degraded mode and the traffic, ridership and
global mobility were drastically diminished, and if these changes are visible on the bus
commercial speed. We had access to the internal data of the bus network of the city of
Rennes, a medium sized European city (∼210’000 inhabitants in the main city, ∼450’000
inhabitants at metropolis scale as of 2018). This network, named STAR 1, is a star-shaped
urban transportation network based on a central subway line, and a wide bus network
that serves both the city of Rennes and all its suburban areas. In total, the bus network
covers more than 550km2. The transportation network is managed by the Keolis Rennes
company that is responsible for the main subway, a transportation service dedicated to
disabled people, bikes (rent and sharing), and a total of 116 bus lines over which more
than 600 buses can be traveling during rush hours.

The remaining of this chapter is organized as follows: i) We expose our datasets, their
properties, qualities and default. ii) We analyze the impact of the factors we gathered data
against the bus commercial speed using correlation tests and visual analytics, including
a closer look at the data of the first COVID19 lockdown. iii) We discuss our results and
findings, and we conclude in iv).

3.2 Data sources

3.2.1 Automatic Vehicle Location data

The bus network information system is made of several independent subsystems in-
cluding (among others) fuel manager, smart card data and an Automatic Vehicle Location

1. https://www.star.fr/
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(AVL) systems. The latter yields large amount of stop to stop fine-grained data (inter-
station) both in real and delayed time. This data contains metadata to identify bus line,
direction, vehicles, etc. and timestamped and located information such as buses speed,
travel time, dwell time, start time, etc. A year of data typically weighs around 20GB, cf.
chapter 2.

3.2.2 Ridership

We gathered ridership data using the smart card data system of the bus network. This
system gathers timestamped boarding only information at each bus stop. The boarding
information discriminates smart card boardings from ticket boardings (the onboard hard-
ware centralizes tickets and smart cards validation). Hence it is possible to make different
measures of the impact of each of those fare payment systems. In Rennes, tickets can be
bought either in affiliated shops or directly onboard, by asking the driver who then sells
them, implying a trade of cash. On the other hand, the only interaction with smartcards
in buses is NFC validation when boarding, the payment being made in agencies or vending
machines. The data we collected has around 20’240’000 readings and covers a seventeen
months period from 2019-01-01 to 2020-05-12, over 2293 commercial inter-stations (i.e
deadheads are not represented in this data).

3.2.3 OpenStreetMaps data

Bus networks are particularly intricated within the cities infrastructure they are part
of. Unless dedicated equipment such as traffic signal priority or bus lanes are built, most
of the time the buses are running within the traffic like any other vehicle. Hence things
such as travel time (speed), delay, or even fuel consumption are dependent of the road
infrastructure [20, 34]. A problem with road infrastructure is that it is quite complicated
to get a satisfying and global view of it because of its richness and complexity. As an
example, one could try to gather information about traffic lights all over a given city,
but there is little chance that this will be achievable in a reasonable time (hundreds
to thousands of traffic lights to identify and map to infrastructure used by buses). A
solution to this problem is to mine online databases that are reliable, up to date, and
open sourced OpenStreetMaps (OSM), is the most known database that contains road
infrastructure, and that lets anyone download free dumps of the database or query its
knowledge base, which is groingly qualitative [6, 24]. Moreover, its representation system is
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quite complete since it allows, among other things, to represent public transport networks
by linking them directly to the existing road representations 2. Thus, we developed a tool
that thereby extracts road information directly from the OSM dumps, using this built-in
linking system. We could gather the following data for 1400 inter-stations :

— Number of traffic lights, stops, giveways, roundabouts, crossings;
— Proportion of road for which buses share it with bikes, are in a bus lane, are in

one-way road;
— The legal speed all along the ways;
— the length of the ways.
This software however has limitations:
— The path finding is returning the smallest path. In some cases it might return an

incomplete path (when the bus takes a one way loop for example);
— There might be data redundancy as long as two different trips that travels through

the same roads will yield similar/identical data;
— When a non-terminal bus stop is located somewhere along a road, we arbitrarily

split the road’s length in two for the current and its neighbouring inter-station.
However, we do keep all the traffic signals, crossing, etc bound to this road in both
of the inter points 3.

3.2.4 Traffic

Traffic is told to be one of the most important disturbance generator for bus net-
works [23, 15]. Thus, gathering traffic data that is compatible with bus network data
is mandatory to actually measure the impact of the traffic on bus speed. In the city of
Rennes, there are plenty of sensors managed by the metropolis. However, the data yielded
by this sensors fleet is not freely accessible. Fortunately, there is an open-data platform
hosted by public services, that proposes a traffic Floating Cellular Data traffic status
database with a 3 minutes time granularity 4 The data available on this service represents
the status of the traffic every 3 minutes, with the following information in each row:

— predefined location reference: the identifier of the road section.
— date time: the timestamp at which the measures were taken.

2. https://wiki.openstreetmap.org/wiki/Public_transport
3. To reduce this unwanted noise, an evolution would be to split the roads according to the actual

bus stop’s position and try to keep the infrastructure elements that are matching the split. Please see
https://gitlab.inria.fr/glyan/osm_bus_extractor for more details

4. https://data.rennesmetropole.fr/explore/dataset/etat-du-trafic-en-temps-reel/information/
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— travel time the estimated travel time to cross the road section.
— travel time reliability: the reliability of the travel time estimation from 0.0 to

1.0.
— average vehicle speed: The average vehicles speed on the road section
— traffic status: the status of the traffic that can be free, heavy, congested or im-

possible.

One major concern with this dataset is that the sections represented in the data have
to be manually identified and bound to the AVL data. Finally, we could match data for
a total of 140 inter-stations, totaling 1’362’000 readings over the period 2019-01-17 to
2020-04-22.

3.2.5 Bicycles

Bicycles and other means of soft mobility such as electric scooters will be more and
more present in our cities due to the ecological transition that humanity is trying to
make. Furthermore, bicycles sharing systems have been shown to have an impact on
buses performance [35].

The proportion of road shared with bicycles that we extracted from OSM is an inter-
esting source to demonstrate the impact of bikes on bus speed at a large scale. To assess
that, we deployed a traffic counter and proceeded to a series of measures of the number
of bikes per 5 minutes on a portion of shared lanes for a 2 months period, yielding 9100
readings (including outliers).

3.2.6 Weather

We gathered weather data for a 14 months period. This data comes from a single
weather station located at the St-Jacques de la Lande airport, Rennes. Its data granularity
is one hour based and is mainly useful to measure the amount of rain during the last hour.
It is worth mentioning that the region in which Rennes is situated is hardly affected by
snowfall. The local weather can be rainy, with low amount of rain often falling. In other
words significant rainfall, flooding or storms can occur at different times of the year, but
they are rare events.
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3.2.7 Bus hardware

The bus fleet is made out of different type of buses with different sizes: from standard
to articulated, powered by electricity or fuel. Keolis Rennes has the direct responsibility
for a bus fleet of 282 different buses from different manufacturers. This data comes from
specific reference files, and is accurate enough to enlighten how bus hardware can yield
bus commercial speed discrimination.

3.2.8 Lockdown period

We could gather all the previous data during the lockdown period that happened in
France between 2020 march 17th and 2020 may 12th. This actually was a chance for us
because the lockdown resulted in a massive drop in traffic, ridership and urban mobility
due to the lockdown policy.

3.3 Factors impact analysis

The data we gathered have been collected, enriched and analyzed using Apache SPARK
3.1.1 and R. Those were also used to build Spearman correlation matrix and/or tables
and visual analytics if relevant for particular cases. Note that the Spearman correlation
coefficient p-values have all been verified to be under 0.05. In addition, it is worth men-
tioning that because bus networks are complex models, involving multiple relations and
entities, the Spearman correlation coefficients of speed impacting factors are expected to
be quite low (under +/- 0.4).

3.3.1 Weather

We made some correlation tests between our weather data and our AVL data, over a
total of 8’535’000 readings. The results we obtained enlightened an absence of correlation
between the amount of rain and the bus commercial speed. The fact that the average
amount of non-null rainfall is around 2mm per hour 5 can explain why there is no relation
between those data. On the other hand, when we focus on the 2122 readings of heavy
rainfall (>= 8.0 mm per hour), we observe a very weak -0.1 negative correlation coefficient
between heavy rainfall and bus commercial speed. We have to note that the few amount

5. (considered as low by Meteo France: http://pluiesextremes.meteo.fr/france-metropole/Intensite-de-
precipitations.html)
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of readings let us think that a survey involving more data is needed to assess that heavy
rainfall has an actual impact on bus commercial speed in Rennes, as weak as it is.

3.3.2 Infrastructure

Fig. 3.1 shows the correlation matrix of the road infrastructure and bus commercial
speed. The data we used to build this matrix is composed of AVL data and OSM data.
It spans over fourteen months from january 2019 to march 2020, for a total of around
29’800’000 readings all over the bus network, including urban, sub urban and metropolitan
areas. Table 3.1 details the matrix rows and columns names, and the input characteristics.
If we take a look at the row dedicated to bus speed, name speed, we can see that there

Figure 3.1 – Correlation matrix of road infrastructure, weather and bus commercial speed

are weak negative correlations between bus commercial speed and the growth of (in
order of importance):

1. The number of traffic lights (-0.33).

2. The proportion of bus lane (-0.13).

3. The amount of pedestrian crossings (-0.1).
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Column/row Data represented
speed Bus commercial speed (in km/h)
lspeed Maximum legal speed over the inter-station (in km/h)
length Length (in meter) of the inter-station
bikes Proportion of road shared with bicycles over the inter-station (∈ [0.0; 1.0])
b_lane Proportion of bus lane over the inter-station (∈ [0.0; 1.0])
ow Proportion of one way road over the inter-station (∈ [0.0; 1.0])
t_lights Number of traffic lights over the inter-station
stops Number of stops signals over the inter-station
ra Number of roundabouts over the inter-station
xs Number of pedestrian crossings over the inter-station
gws Number of giveways signals over the inter-station

Table 3.1 – Fig. 3.1 related data and characteristics

According to this, traffic lights are, by far, the the first trigger of a lower bus speed,
followed by the proportion of bus lane and number of pedestrian crossings. Some very low
negative correlation coefficient are also visible for:

1. The proportion of one way roads (-0.06).

2. The number of stops signs (-0.01).

It appears that the impacts of the proportion of one way roads and the number of stop
signs on the bus commercial speed are negligible. However we observe one unforeseen
and counter-intuitive result that is the negative correlation between the bus commercial
speed and the proportion of inter-station that benefits of a bus lane. We should expect
dedicated bus lane to enhance bus speed as long as it helps to get rid of the influence
of many disturbances like, e.g. traffic, pedestrians or complex crossroads. Thus a positive
correlation is expected here. One way to get a clue of what yields this is to take a closer
look at the row dedicated to bus lane and traffic lights in Fig. 3.1. One should see that
there is a weak positive correlation between the proportion of bus lane and the amount
of traffic lights (+0.21). That is to say that, in Rennes, the creation of bus lane seems
to come along with the building of traffic lights. Considering that traffic lights are the
major reasons of lower bus speed in our data, this thereby can give a hint of the reason
why bus lanes seem to yield a lower bus speed. Moreover, there is a very weak negative
correlation (-0.07) between the proportion of bus lane and a lower maximum legal speed.
This can be explained by the fact that bus corridors are often built in downtown areas
in which very low speed policy (30 km/h) is applied. Finally pedestrian crossings seem to
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be very lowly correlated to the lowering of bus commercial speed (-0.17), hence the use
of pedestrian crossings should also be reduced on dedicated bus lanes if this came to be
a valid hypothesis.

In the contrary, we observe weak positive correlations between bus commercial
speed and the growth of (in order of importance):

1. The inter-stations length (+0.32).

2. The inter-stations maximum legal speed (+0.2).

3. The number of roundabouts (+0.18).

4. The number of giveway signs (+0.12).

The positive correlation between inter-stations lengths (also known as bus stops spac-
ing) confirms what the literature already tells [23]. In the same manner, the rise of the
maximum legal speed seems to positively impact the commercial speed of buses. The exis-
tence of what seems to be a very weak correlation between roundabouts (that often come
along with giveway signs) enlightens the hypothesis that roundabouts should be favored
instead of traffic lights when creating a crossroad that involves the passing of buses.

Bus hardware

We used 22’512’158 readings from our AVL data enriched with the buses hardware
metadata, covering january 2019 to late may 2020. We were able to classify data using
buses manufacturer/power source, and size (13 meters long standard vs 18 meters, ar-
ticulated). Table 3.2 summarizes the speed variation and data distribution between each
manufacturer, bus size and power source.

Bus
brand/power/length

avg bus commercial
speed

% of data

A (fuel) 21.0 km/h 9.5%
B (fuel) 19.0 km/h 75.5%
C (fuel) 19.2 km/h 12.3%
D (electric) 16.8 km/h 2.7%
13 meters 20.6 km/h 37.8%
18 meters 18.3 km/h 62.2%
Fuel 19.2 km/h 97.3%
Electricity 16.8 km/h 2.7%

Table 3.2 – Bus hardware data summary
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We can see that bus built by manufacturers B and C represent the majority of the
buses that are used on the network (87.8% of readings) and have an average commercial
speed of around 19 km/h. on the other hand, buses from manufacturer A yield the highest
commercial speed in the sample (21.0 km/h). Electrical buses built by manufacturer D
yield the lowest commercial speed, reaching only 16.8 km/h in average. If we take a look
at the length of the buses, we can see that most of the readings are generated by 18
meters long, articulated buses (62.2% of readings) while smaller buses are less used in the
network (37.8% of readings). The articulated buses apparently have a lower commercial
speed (18.3 km/h) than standard buses (20.6 km/h). Finally, we can observe a gap of
commercial speed between fuel powered buses (19.2 km/h) and electrical buses (16.8
km/h).

Our observations show that if we create groups of readings from the data using buses
hardware, variations in bus commercial speed appear. However, this is yet erroneous to
say that the buses hardware is actually responsible of the variations without further
observations including:

1. The distribution of buses on the network, for buses that are reserved for downtown
areas vs buses that are reserved for express / suburbans areas will thereby yield a
constant bias in the data.

2. Specificities of the driving of some buses like, e.g. electrical buses, that benefit from
regenerative braking [31], inciting the drivers to be more proactive.

Bicycles

Bicycles tend to be more used during spring and summer days, when the weather
is warmer and less rainy. Thus, we targeted a portion of data for the period that goes
from June 2019 to October 2019 from our dataset built upon AVL and OSM data, on
urban areas only. This represents a total of 4’526’000 readings. We observed a very weak
correlation (-0.06) between the portion of inter-stations that are common to bicycles and
buses and the bus commercial speed. This correlation is computed using all the data
available, including normal roads, bus lanes and bicycles lanes. Hence a better indicator
would be to know if bicycles should be avoided on dedicated bus lanes or not. We led
a survey as described in section 3.2.5 for which the results are visible in Fig. 3.2 It is a
mixed boxplot-line chart, with boxes width varying with the size of the data sample they
represent. The correlation coefficient is of -0.26 and is way more important in this survey
than over the whole network. This suggests that there is a chance that the presence of

64



3.3. Factors impact analysis

bicycles in bus lane is deleterious for the bus commercial speed. Once again, surveys on
other areas have to be done in order to make this claim valid on other areas than the
place the survey was led on.

Figure 3.2 – Chart of bikes per 5 minutes vs bus commercial speed

3.3.3 Traffic

Nominal

We call nominal period the time period out of lockdown, when the bus network was in
its nominal state, with all the day to day activities of the city. Using the 1’246’000 readings
made over 140 inter-stations we collected for the nominal period between may 2019 to
march 2020, we could build the following results. Fig 3.3 shows the correlation matrix of
bus commercial speed and the traffic load and average speed of vehicles. As we can see,
there is a weak negative correlation (-0.25) between the bus commercial speed and the
traffic load. On the other hand, there is a weak positive correlation (+0.29) between the
bus commercial speed and the average speed of the vehicles. This totally makes sense as
long as when the buses are inserted in the traffic flow, their speed varies with the average
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traffic speed, thereby, when the traffic gets heavy, the vehicles speed gets lower along with
the bus commercial speed, and vice-versa. Table 3.3 represents summarizes the points of
interest in the data we collected for the nominal period. As we can see, the average bus
commercial speed in data is of 20.4 km/h and the average traffic load is quite important
with a 33% average load. Moreover, the amount of data for which readings shows that
traffic is starting to get heavy (>= 50%) represent more than 20% of the data we get.
Finally 2.6% of the data are corresponding to jam readings.

avg bus com-
mercial speed

avg traffic
load

avg speed on
road

traffic load >
50%

traffic load =
100%

20.4 km/h 33% 37 km/h 21.5% of data 2.6% of data

Table 3.3 – Traffic data summary for nominal period.

Figure 3.3 – Correlation matrix of bus commercial speed and traffic for a nominal time
period.
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Lockdown

Using the 116’532 readings made over 135 inter-stations we collected for the nominal
period between April 22nd 2019 to may 10th 2020, we could build the following results.
We can see on Fig. 3.4 that the correlation we observed for the nominal period are still
present, yet the coefficients are much lower. In the same way, if we take a look at Table 3.4
we can observe that not only the average bus commercial speed is more than 3km/h higher
than in nominal condition, but also that the average traffic load as dropped by 39.4% while
the average speed as increased by 5 km/h. In addition, we observe that the amount of
readings for which the traffic load is at least 50% as been divided by more than 2 and
that traffic jams have almost disappeared with a 73% drop.

Figure 3.4 – Correlation matrix of bus commercial speed and traffic during the COVID19
1st lockdown in 2020 in France.

Our observations show that traffic has a real impact on bus commercial speed, not
only by the existence of a correlation between traffic load, traffic average speed and bus
commercial speed, but by showing that when there is nearly no traffic (during lockdown),
the bus commercial speed tends to increase.
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avg bus com-
mercial speed

avg traffic
load

avg speed on
road

traffic load >
50%

traffic load =
100%

23.7 km/h 20% 42 km/h 10% of data 0.7% of data

Table 3.4 – Traffic data summary for lockdown period.

3.3.4 Ridership and fare-payment system

Nominal

We collected 20’042’000 readings for the nominal period starting from 2019-01-01 to
2020-03-16. Fig. 3.5 is the correlation matrix of the bus commercial speed and amount of
smart card or ticket boardings for the nominal period. One can see that there are two very
weak negative correlation (resp 0.18 for smart cards and -0.1 for tickets) for both smart
card and ticket boardings. Table 3.5 shows that there are around 4 times more smart card
boardings per stops in average than ticket boardings. We would expect ticket boardings
to be more impacting because of ticket being sold onboard from time to time, yet smart
card boardings impact on bus commercial speed looks higher here.

avg bus commercial speed avg smart card at stop avg ticket at stop
18.6 km/h 2.9 0.6

Table 3.5 – Ridership data summary for nominal period.

Lockdown

We collected 196’000 readings for the lockdown period starting from 2020-03-17 to
2020-04-30. Fig. 3.6 is the correlation matrix of the bus commercial speed and amount of
smart card or ticket boardings for the lockdown period. It appears that the impact of smart
card boardings is still visible with a smaller correlation coefficient (-0.12), accompanied
with a 2 times decay in smart card boardings, as shown by Table 3.6. On the other
hand the ticket boardings impact has totally disappeared, while ticket boardings have not
totally disappeared as confirmed by Table 3.6. An hypothesis to explain this is that the
onboard selling of tickets have been completely stopped during the lockdown, hence the
tickets wearers would have necessarily bought their transport title outside of the buses.
Table 3.6 also shows that the average bus commercial speed of the buses have slightly
improved during the lockdown with an enhancement of around 2 km/h
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Figure 3.5 – Correlation matrix of bus commercial speed and ridership during nominal
period.

avg bus commercial speed avg smart card at stop avg ticket at stop
20.7 km/h 1.4 0.1

Table 3.6 – Ridership data summary for lockdown period.

Our observations show that ridership has a real impact on bus commercial speed, not
only there seem to be correlations between smart card boardings, ticket boardings and
bus commercial speed, but moreover, when the ridership is reduced, the bus commercial
speed rises.

3.4 Discussion

The previous section showed that bus commercial speed impacts are numerous and
complex to gather and analyze. Yet, we suggest that we can yield a few learnings from
that. Understanding and mastering the roads infrastructure is probably a good way to
know how to act on the equipment, hence which of them should be avoided or favored
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Figure 3.6 – Correlation matrix of bus commercial speed and ridership during the
COVID19 1st lockdown in 2020 in France.

if one wants a high bus commercial speed, for road infrastructure is usually managed
by cities themselves. A broader study, over other cities would be a good way to assess
whether this suggestion is relevant or not. The tool we developed to gather infrastructure
from bus network is available here and could help others to repeat this experiment in
other areas.

The weather is probably an important factor in cities that are subject to snowfall
or heavy rainfall. However, what we obtained from our data was showing that, in the
particular case of Rennes, the weather impact on bus commercial speed is most of the
time negligible.

Bus hardware has also been identified as a potential factor to take care of. We were able
to highlight that bus commercial speed can vary if we classify readings using bus hardware
and properties. However, this data have to be completed with operational information
such as bus driving particularities (e.g. electrical buses / articulated buses), and the fleet
distribution over the network, for buses can be dedicated to serve specific bus lines or
areas only during their whole life, creating bias in hardware analysis.
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Bicycles seem to have an impact on bus commercial speed, at least during hot seasons.
We confirmed this assertion partially and locally, with a survey we led on a single inter-
station. Thus there is a need of broader surveys to understand at what extent bicycles
are impacting the bus commercial speed on various areas.

The traffic data we analyzed suggested that traffic have a real impact on bus commer-
cial speed. We had an opportunity to compare the bus commercial speed when the bus
network is in a nominal state, and in degraded state like during the first lockdown of 2020.
This situation, comparable with a quasi removal of the traffic from the city, helped us
to assess our hypothesis about the traffic impact on bus commercial speed. However the
survey could not be led all over the network because of data availability and completeness
issues, which is a risk to the generalization of the hypothesis.

Ridership was also found to have an actual impact on bus commercial speed. As for
the traffic data, we attested this hypothesis by comparing the ridership impact on bus
commercial speed when the bus network is in its nominal state, and when the ridership
is hugely reduced, yielding a higher bus commercial speed.

All those observations helped us to raise the following hypotheses about the under-
standing of the impacting factors of bus commercial speed :

— H1: Road infrastructure have a major impact on bus commercial speed, both
negative (traffic lights, pedestrian crossings) and positive (bus stop spacing, speed
limit, roundabouts).

— H2: The combination of bus lane and traffic lights can result in the lowering of
bus commercial speed.

— H3: Bicycles can have an impact on bus commercial speed when authorized on bus
lanes.

— H4: Ridership have an impact on bus commercial speed.
— H5: The impacts of smart card boardings and tickets boardings on bus commercial

speed are alike if tickets are sold off-board.
— H6: Heavy rain can have an impact on bus commercial speed.
— H7: Electrical buses driving specificities can yield a lower bus commercial speed.

Finally, the fact that all our analysis were made at inter-station level generates the
possibility that some observations that are not visible at this scale, would be if the same
analysis were led at e.g. bus line scale.
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3.5 Conclusion

In this chapter we used heterogeneous datasets to analyze the impacts of factors that
are supposed to vary the bus commercial speed. We led our survey on the bus network of
the city of Rennes, France. We were able to test the impacts of road infrastructure, rider-
ship, road traffic, bicycles, and weather. Our results provided evidence for the existence
of these impacts, but we were unable to provide formal and definitive proof. However,
the 2020 containment was an opportunity to collect data that allowed us to compare the
impact of traffic and ridership when the bus network is in a nominal state, or in a de-
graded state with almost no traffic and ridership. The results reinforced the assumptions
that traffic and ridership have a negative impact on bus commercial speed. Finally, we
formulate a series of hypotheses that could help bus networks operators. However this will
need them to be validated or not through larger studies in the future.
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Chapter 4

QUALITY OF COMPOSITIONAL

PREDICTION FOR WHAT-IF SCENARIOS

ON GRAPHS

4.1 Introduction

In the previous chapter we focused on the factors impacting the bus commercial speed.
Our findings helped the writing of this chapter, in which we study the prediction of
bus commercial speed using so called micro-prediction and heterogeneous data. Indeed,
knowing which data to use to feed the predictive models is a paramount step for quality
predictions.

Machine learning techniques have been applied on static, graph-based applications,
such as transportation networks or energy grids, to name a few [29, 4, 62]. These applica-
tions have in common an a priori topological model, i.e. a graph, where practical measures
are performed on nodes and edges. In a a bus transportation network for example, it is
possible nowadays to predict the awaiting time in a station or the probable duration of a
trip with an acceptable accuracy [75, 68].

Recently, micro-learning approaches have been successfully applied to more dynamic,
what-if scenarios (e.g. power grid management[27]). In these approaches, ad hoc models
of local data are built instead of one large model on the overall data set. Micro-learning
is typically useful for incremental, what-if scenarios, where one has to perform step-by-
step decisions based on local properties. Going back to our bus transportation example, a
typical what-if scenario applies when some roadworks (or other unforeseen condition such
as flood) happens on a street, and the bus network should reconfigure itself (self-heal) by
diverting the impacted bus lines. In order to find the best new routes, a straightforward
algorithm is then to perform a greedy search on the next road segment, using a prediction
of a bus trip duration on this segment.
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This step by step, greedy approach is natural in graphs. A common feature of these
graph-based applications is that the predicted properties (such as speed of a bus line)
are compositions of smaller parts (e.g. the speed on each bus inter-stops along the line).
But up to our knowledge, little has been written about the quality of such composite
predictions using micro-models, when generalized at a larger scale.

In this chapter we propose a generic technique, graph-based compositional prediction,
that allows 1) the prediction of the behaviour of composite objects, based on the pre-
dictions of their sub-parts and appropriate composition rules, and 2) the production of
rich what-if analytics scenarios, where new objects never observed before can be predicted
based on their simpler parts. We show that the quality of such predictions compete with
macro-learning ones, while enabling what-if scenarios. We assess our work on synthetic
data and a real size, operational bus network data set.

The rest of the chapter in organized as follows. In Section 4.2 we present our motiva-
tional scenario. Our model is outlined in Section 4.3. Section 4.4 shows our experiments.
Finally, we present our conclusion and future work in Section 4.5.
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4.2 Data Model and Motivation Scenario: Rennes City
Bus Transportation

Our running example is the bus network of the French city of
Rennes, forming a directed graph G = (V,E), where V is the set
of bus stops and E ⊆ V × V is the set of possibles one-stop trips.
Such a graph can be considered as a static graph as long as most of
its structure does not evolve in the short term (few months to few
years). However, its edges generate a lot of data over time. We con-
sider a non-empty set of features F , associated to each edge, with
their corresponding types TF . A typical set of features associated to
each element of E is F = (time, line, length, road − type, bicycle),
where time is a timestamp, line is an integer denoting a bus line
number, length is the length of the inter-stop section, road− type
indicates the kind of road the bus runs on (dedicated road or not),
and bicycle indicates whether bicycles are allowed. Figure 4.1 gives
an overview of a bus network graph in which green vertices are de-
parture terminals, blue vertices are transition/departure bus stops,
white vertices are transitional bus stops and red vertices are ending
terminals.

Figure 4.1 – A bus network with featured edges (F : length of the road, type of line, etc.)

Let us consider a measureM of the graph, defined on paths p in G. Let D be a learning
data set of examples ofM. Let us consider a decision problem in the graph, e.g. rerouting
due to roadworks. Given a source and target vertex, two approaches can be envisioned:

75



Partie , Chapter 4 – Quality of compositional prediction for what-if scenarios on graphs

— Classical prediction scenario: enumerate possible path p from source to target
and predictM(p) for a given timestamp, and choose the best option.

— What-if prediction scenario: starting from the source, make a local prediction
using the micro-model on outgoing edges, choose the best option and continue in a
step-by-step greedy search towards the target. The prediction on the new path p,
M(p), is the composition of these micro-predictions. Figure 4.2 gives an example
of such a task, where we want to predict the duration for a given timestamp of trip
S0− S10 through S0− S5 and S5− S7 ( detours), edges that do not exist in the
example data set.

Figure 4.2 – What-if scenario: predict S0 − S10 while edges S0 − S5, S5 − S7 and S7 − S10
do not exist in the data set

In the next section we detail the corresponding learning problem associated with the
what-if scenario.

4.3 Micro-learning and Compositional Prediction

As a possible way to envision the what-if scenario, we propose the notion of composi-
tional prediction using micro-learning:

— (Micro-learning) we first learn a model ofM on each individual edge of G.
— (Compositional prediction) Then we build the model of M on a new path by

composition.
More precisely, let p = (e1, . . . , en) be a path in the graph G. Our goal is to predict a

given measureM(p) on any path p on this graph. We possess local measures m(e) ofM
on any edge e along this path and, typically, a composition law C links these measures:

M(p) = C(m(e1), . . . ,m(en)).
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Consider that M is the trip duration for a precise bus and date,
from the start to the end of the line (the path p). We have obser-
vations for m(e), the duration of inter-stop trips on p for this bus.
Of course in this simple case the value ofM(p) can be obtained by
summing durations of trip duration m(ei) on all edges ei of p. Sim-
ilarly, the average speed could be obtained with a slightly different
composition law, weighting duration by distances. Besides additive
composition laws, multiplicative laws could be foreseen, such as the
probability of bus failure (which is a product of one minus the bus
failure probability on each edge).

We then define our compositional prediction approach:

Let G = (V,E) be a directed graph,M a target measure, a compo-
sition law C and a data set D of observations m(e) on edges of G.
Given a target path p = (e1, . . . , en), the compositional prediction
ofM(p) is given by:

— building a model m∗(e) to predict m(e) for each edge e ∈
V × V , according to edge features F (e);

— approximating the prediction ofM(p) by

M∗(p) = C(m∗(e1), . . . ,m∗(en)).

Compositional prediction
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Suppose that we want to estimate the end-to-end duration of trip
for a new bus line in a city. Given its path p, we would learn the
typical duration of existing bus lines on each inter-stops road frag-
ments (i.e. edges), and simply sum these predictions (the composi-
tion law). If a road fragment has never been visited by any other
bus in our observation data set, the model approximates it using
the most similar road fragment (according to its features such as
road type, number of traffic lights, and so on.)

The main advantage of this approach is that predictions are based on the underlying
structure of the graph, rather that on macro-observations on it. As shown in the examples,
it yields a large flexibility in predictions, without domain specific knowledge (e.g., in
the bus network context, multi-agent simulation requires complex modeling hand-made
tuning [43]).

But this method can also have its drawbacks. When an edge measure is missing, a
strategy has to be deployed to fill the missing data, and this is highly related to the
amount of describing features on the underlying graph. Also, the cost of building many
models for each edge could be tremendous, regarding its macro-level counterpart. Finally,
and more importantly, as each model bears its own approximations, errors may sum up
along the compositional law C, giving a potentially unusable prediction. We then identify
the following research questions:

— Q1: Does micro-learning offers good accuracy, and does a rich feature set is manda-
tory to fill missing edge observations in the data set?

— Q2: Can usable predictions (wrt. quality) can be obtained with the compositional
prediction strategy for the step-by-step, what-if scenarios, and does it compete
with traditional prediction methods (that apply in different contexts)?

In the following experiments, we evaluate and discuss these questions in depth, on two sets
of data. The first set comes from a synthetic bus network simulation, where timing data is
100% correct by construction. The second set is real data coming from a real bus network:
this data being quite imperfect as it is most often the case for real bus networks [41, 57].
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4.4 Experiments

4.4.1 Experimental settings

Reproducibility

All of the experiments are reproducible with code and resources available on a dedi-
cated repository 1.

Experimental environment

All experiments were run on a 16 cores 32 thread @ 3500MHz, 64GB DDR4 3200MHz
1TB SSD NVMe, running Ubuntu 20.04 (Budgie flavour). Data were gathered into a
normalized data lake built upon Apache Spark 2.4.5/Scala 2.11.12 jobs. All learning tasks
were performed using GraalVM 20.2 and Scala SMILE 2.5.3. It took around 70 minutes
for overall model training and 2 minutes for each of the following predictions.

Experiment on Synthetic Data

We created a data synthetizer that generates an artificial bus network based on real
world features evenly distributed over it using uniform random generation. Using this
code, we created an artificial bus network made of 2000 inter-stops (edges) representing
110 different bus lines, each made of 12 to 43 inter-stops. Hence some inter-stations are
shared between bus lines. Note that we do not need to generate nodes as long as nodes
features are not used in our model which is edge based (nodes are virtually represented
by the fact that edges are connected to each other within bus lines).

We then generated 25 to 150 virtual bus trips for each of those lines, generating a
target measure for each edge used in the trip. We used a negative exponential based
function that takes edges features into account (a typical modeling in bus networks).

Vc = (V0 + V ′0δD + V ′′0 δP + V ′′′0 δL)e−[(α+α′δfp)fp+(β+β′δtp)tp+(γ+γ′δfs)fs+(σ+σ′δts)ts] (4.1)

Equation 4.1 represents the commercial speed equation proposed by [23]. Because of
the efficacy of this equation, and the fact that it is easy to tune to make it close enough to

1. https://gitlab.inria.fr/glyan/compred
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the reality, we base our data generation equations on it, yielding Equations 4.2 and 4.3
.

Table 4.1 Exposes the variables we use in the equations, and the range of the value
they can randomly take. Each coefficient in the equations are manually tweaked in order
to obtain values that look correct to us. Once done, and for each scenario (travel time and
risk), we generate a value µ using the corresponding equation and apply it as the mean of
a normal law for which we generate a random standard deviation σ, corresponding to a
random value situated between 2.5 and 15% of the mean µ we generated earlier. We then
use this normal law normal(µ, σ) to generate random values for our datasets.

TravelT ime = 35 ∗ e−(0.03∗d+0.02∗h+0.05∗p+0.0002∗l+0.002∗s+0.001∗c+0.0002∗g+

0.0003∗ra+0.007∗st+0.01∗ts+0.0002∗pb−0.0001∗pc+0.0001∗po+0.0002∗ps)
(4.2)

Risk = 1 ∗ e−(0.00002∗d+0.00002∗h+0.000035∗p+0.000002∗l+0.000005∗s+0.000003∗c+

0.000005∗g+0.000003∗ra+0.000002∗st+0.000005∗ts+0.000002∗pb−0.000001∗pc+0.000001∗po+0.000002∗ps)
(4.3)

Variable Meaning
d day of the week ∈ [0, 6]
h holiday ∈ [0, 1]
p period in day ∈ [0, 2] with 0=free, 1=avg traffic, 2=rush hour
l length of the inter-stop in meters ∈ [150, 600]
s maximum speed ∈ [30, 55]
c number of crossings ∈ [0, 4]
g number of giveways ∈ [0, 3]
ra number of roundabouts ∈ [0, 2]
st number of stop signals ∈ [0, 1]
ts number of traffic signals ∈ [0, 3]
pb proportion of road shared with bikes ∈ [0.0, 1.0]
pc proportion of bus corridor ∈ [0.0, 1.0]
po proportion of one way road ∈ [0.0, 1.0]
ps proportion of slow zone ∈ [0.0, 1.0]

Table 4.1 – Variables of our equation used for data generation

Doing so we generated two datasets: one for which measure is the travel time in
seconds. Hence its compositional result is obtained by summing the travel time of each
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edge; another one for which measure is inter-stop reliability (i.e a real value between 0
and 1,. 0 being unreliable and 1 totally reliable), with its compositional rule being made
of product of edge reliability.

For each of those datasets, we applied a 30-fold cross-validation. For each fold, all of
the data of one random bus line is removed from the training dataset, and is then used
for testing.

Experiment with Real Data

We considered the bus transportation system of the French city of Rennes and its
metropolitan area (about 500,000 inhabitants) managed by the Keolis Rennes company.
Our graph is the graph of 2110 bus stops and 119 bus lines 2, and the features of road
portions are automatically extracted from OpenStreetMap (OSM in the sequel).

More specifically, the raw historical data set is composed of readings of bus travels
between two contiguous bus stops. Table 4.3 shows a sample of this data set. The major
columns are line_type (0 being high frequency, 1 urban, 2 metropolitan and 3 express
metropolitan lines); dwell_time, the time passed at the origin stop (taking and unboard-
ing passengers) and speed, the arithmetic speed between orig and dest. A single trip,
which consists of all the measures of a single bus passing through every single bus stop
of a bus line, can be identified by combining the columns trip_start which is the instant
at which the bus has left the first point of the bus line, sm which is the service identifier,
chaining which is the version of the bus line and dir which is the line direction. We
considered only real data: no imputation was made in our data set. We considered only
full trips for which all data points were present. We also filtered historical data used to
feed the model, dropping invalid speeds/nulls/values and outliers. Using these rules, we
gathered 12 month of data between January 2019 and December 2019, for a
total of around 15 millions tuples 3.

Prediction task

We targeted the prediction of the speed of a bus line depending on time (holidays
period, day, time of the day) and line type (urban bus line, metropolitan bus line). We
considered predictions for existing lines (classical prediction) and non-existing lines (what-
if scenarios, where the lines and some inter-stops data are absent in the training data set).

2. Rennes transportation network: https://data.rennesmetropole.fr
3. The data and more material is available at https://gitlab.inria.fr/glyan/compred
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Candidates

As experimental candidates, we chose 4 groups of bus lines for which we could gather
data all along their path. We tested 13 different bus lines in total. The four groups
contain different class of bus lines: urbans, inter-district, metropolitans and express.The
urban group is composed of urbans bus lines, that cross the city center along their path.
The inter-district group are urban bus lines that link different districts, avoiding the city
center. The metropolitan group is composed of metropolitan bus lines, that links cities
of the metropolitan area to the main city. Those lines contain urban, peri-urban and
metropolitan sections. Finally, the express group contain metropolitan lines that allows
a faster travel from and to external cities by servicing less bus stops. Note that in the
network, each line share some sub-paths with others. Table 4.2 shows the specifications
of each candidate bus line. For each bus line, its type is exposed (resp. urban/inter-
district/metropolitan/express) along with their identifier and chaining (variant identi-
fier) and direction. Other important data such as the number of inter-stations that com-
pose the bus line, the inter-stations that are not shared with other bus lines (noted as
nb_unknown_inter-stations) are also visible. Finally, the amount of candidate trips for
prediction test for compositional and macro models are shown.

Table 4.2 – Bus lines metadata

type id chaining direction nb_inter-stations nb_unknown inter-stations nb_trips_Compred nb_trips_macro
urban 858 1 R 40 16 3795 3794
urban 787 42 A 32 3 617 1352
urban 785 20 R 40 24 2207 2205
urban 889 5 A 28 5 3959 3960
urban 689 18 A 36 2 1961 1961

inter-district 696 1 A 33 11 1208 1209
inter-district 581 2 R 28 7 46 48
metropolitan 683 55 R 20 11 2472 2472
metropolitan 849 72 A 30 1 777 778
metropolitan 532 23 R 19 1 1689 1685
metropolitan 969 21 R 11 1 869 872

express 711 15 R 6 1 522 522
express 859 10 R 7 2 299 286

trip start line line type sm dir orig dest speed dwell time order orig order dest section chaining

2018-07-02 00:05:00 02 0 0221 A 2844 2842 25.8 0 1 2 1 21
2018-07-02 00:05:00 02 0 0221 A 2842 2804 21.0 23 2 3 1 21

Table 4.3 – Sample of the historical data set

Road features with OpenStreetMap

We have built a tool to look for a bus network in OpenStreetMap and to extract its
infrastructure information, road per road. We then aggregate the data grouping the roads
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period day holidays line type real speed dwell-time

1 0 2 0 32.1 10
4 0 5 0 23.8 8

legal speed length nb traf. signals nb crossings nb stops nb giveways nb lvl crossings nb roundabouts

50.0 507.5 0 4 0 0 0 1
50.0 584.5 0 8 0 3 0 2

proportion bus lane proportion bike on road proportion one way proportion slow zone

0.72 0.85 0.87 0.0
0.0 0.11 0.68 0.0

Table 4.4 – Sample of the training data set used for micro-learning

by inter-stops. We then sum the road lengths, number of traffic signals, stops, giveways,
roundabouts, level crossings, crossings, and add the average legal speed of the roads.

Time discretization

We categorized the time periods into six categories: No holidays, and Autumn/ Christ-
mas/Winter/ Spring/ Summer holidays. For each category we divided each day coded
from 0 (monday) to 6 (sunday) in 1 to 3-hours period (e.g. 1am-3am, or 7am-8am). This
division is due to obvious pace changes in bus usage, as confirmed by the Keolis company.

Micro-learning data set

The micro learning data set is made of measures for each inter-stop of the network.
We simply identified every distinct inter-stop and added meta data such as holidays, bus
line type, OSM data (that is constant through time), period of time in day and week day
(Table 4.4).

Macro-learning data set

The macro learning data set is built using the raw data set, from which we extract
only the overall speed of every complete trip (i.e trips for which we have data for
each inter-stop) of every bus line. We then add the bus line, its type and finally the OSM
data aggregated all along the line (i.e total number of traffic signals, stops, etc.). In order
to keep as much data as possible, we did not use traffic and ridership data due to the fact
that they cover smaller areas and periods in time.

83



Partie , Chapter 4 – Quality of compositional prediction for what-if scenarios on graphs

Learning method and validation methodology

Our models are built using a classical random forest algorithm parameterized for
regression and optimised using grid-search (this choice is motivated by its generality and
overall performance, after selecting it amongst others: Lasso, OLS ,SVR, Cart, bayesian
ridge and gradient boosting, testing their performance using a small sample of data. It
could be naturally adapted to more specific methods, but this is not our target here).
For micro-learning, we build a model of inter-stop speed. We then predict the speed of
any trip by the natural compositional prediction Cs (summing the road lengths divided
by the summed travel times, obtained with the predicted speeds). For macro-learning,
we build a model of full bus-line speeds (from start to stop). Learning is performed with
OpenStreetMap features, and without OpenStreetMap features on every bus lines in order
to assess the impact of these features on the model precision. For validation purposes, we
have removed all the data of candidates bus lines from the training data set of each model.
To evaluate the classical scenario, we predicted the speed of an entire line with macro
and compositional prediction. For the what-if scenario, we measured the compositional
prediction quality on non-existing paths in the data set.

In the next sections we are coming back to our initial questions from Section 4.3.

4.4.2 Micro-learning Accuracy (Q1)

The experiment we led using artificial data yielded the following results:

Prediction type RMSE MAE MAPE Average part of known inter-stops

Micro 4.78s 0.12s 7.49% 69.04%
Macro (Entire bus line) 62.36s 51.96s 3.76% 69.04%
Compred (Composition over entire bus line) 25.36s 3.23s 1.75% 69.04%

Table 4.5 – Prediction accuracy on a synthetic dataset for additive composition law (bus line
duration)

Prediction type RMSE MAE MAPE Average part of known inter-stops

Micro 0.019 0.001 1.50% 65.17%
Macro (Entire bus line) 0.073 0.012 7.69% 65.17%
Compred (Composition over entire bus line) 0.072 0.006 7.63% 65.17%

Table 4.6 – Prediction accuracy on a synthetic dataset for multiplicative compositional law
(product of probabilities)

Tables 4.5 and 4.6 show that predictions for our synthetic datasets, the accuracy of
our micro-model on edges is quite good for both speed and reliability prediction. But how
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would it behave with real, imperfect data that is typical of bus networks?

Accuracy We tested (predicted) ∼12’500 trips for the urban bus lines group, ∼1’250
trips for the inter-district group, ∼5’800 for the metropolitan group and ∼800 trips for
the express group. All those trips are distributed over the 6 holidays regime, 7 days and
17 periods in day over the 2019 year.

Figure 4.3 shows the predicted speed of one of the urban bus lines using micro-
learning. Each point represents the average predicted speed (purple) and average real
speed (dashed) of each inter-station of the line on all the time periods for which data
was available. The leftest point of each curve represents the beginning of the bus line, the
rightest one being the last stop. Observe that due to the bus line’s data deletion from the
training dataset, some inter-stops that are specific to this line are totally unknown to the
model (orange dots). We also considered metropolitan, express and inter-district bus lines
(not displayed) 4. Visually at first, we can see that micro-learning captures well the daily
behaviour of buses, even when the inter-stops are unknown to the model (orange dots).

Figure 4.3 – Speed of urban bus line 858 at inter-stations using micro-learning (purple) vs true
speed (dashed). Orange inter-stations where not used by any other bus, i.e. are absent from the
training set.

Table 4.7 sums up the models’s prediction errors for each bus line, group of lines (urban,
inter-district, metropolitan and express) and all the lines (global). For each model and
bus line (resp. group of lines), the table presents the Root Mean Squared Error (RMSE),

4. More material is available in the public deposit
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the Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE).
RMSE emphasizes large residuals (outliers) while MAE and MAPE are less sensitive to
residuals and easier to interpret [54]. RMSE and MAE unit is km/h while MAPE’s unit
is percentage (difference against truth in percents).
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group Compred standard dev. macro standard dev.
urban 1.0 0.5

inter-district 0.7 0.3
metropolitan 0.9 0.4

express 0.9 0.0
global 0.9 0.4

Table 4.8 – Models’s sensitivity to time features

If we take a look at micro predictions in Table 4.7, we observe that prediction errors for
known inter-stations (classical prediction) are better than prediction errors of unknown
inter-stations (what-if predictions), except for the express bus lines group. Indeed, RMSE,
MAE and MAPE can vary from a 1.2 to 2 factor between micro known and unknown. This
shows that the features set used for micro learning might need some enhancement to help
the model predicting better. Finally, we observe that global micro predictions precision
vary between bus lines groups. However, the urban group gets the best predictions in all
aspects when compared to other groups (RMSE:6.7, MAE:4.8, MAPE:26.5%), followed
by express (RMSE:6.1, MAE:4.3, MAPE:29.8%), metropolitan (RMSE:7.3, MAE:5.4,
MAPE:31.7%) and inter-district (RMSE:9.0, MAE:6.7, MAPE:33.3%) groups.

Urban bus lines are the major lines in the network, hence they produce a significant
part of the data used for training. This can explain why the models are more precise when
they predict speed for this group.

We noticed a huge prediction error for metropolitan bus line 532 with resp RMSE,
MAE and MAPE at 12.1, 11.9 and 427%. We investigated how can the model perform that
bad on some cases and found that the average speed of the only unknown inter-station
of the bus line 532 (cf. Table 4.2) is lower than 5km/h, while its features are alike others
inter-stations in the network. The speed calculation business rules used might yield such a
low speed, e.g if the bus has to wait at a bus stop for operational reasons. In other words,
inter-stations that have very low average speed with non specific features set is prone to
yield important predictions errors (i.e considered as an outlier).

Globally, micro-learning yields variable quality results, with a higher error rate for
unknown inter-stops. The features used for predictions probably need enhancement in
terms of noise reduction and/or external data addition such as smart-card data, traffic
status, etc.
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Sensitivity with respect to features We checked the models sensitivity to Open-
StreetMaps features and time features by training models with OSM-less datasets. Ta-
ble 4.9 shows the results of the predictions made without OSM features, hence using time
discretization and built-in features only (period, day, holidays, line type, dwell-time). Note
that black, green and red values are resp. identical results, better results and worse re-
sults than their counterparts in Table 4.7. We observed that, in most of the cases (i.e
individual bus lines and groups), OSM features play an important role for speed predic-
tion for micro, compositional and macro prediction. It seems that micro prediction has to
be done using OSM features 5. Indeed, the error is often 1.5 or more than 2 times larger
when compared to results of Table 4.7. Table 4.10 shows the speed prediction variation of
micro-learning model with and without OSM features. Clearly, the micro-learning model
trained with them is way more capable of predicting different speed for different inter-
stations, with a standard-deviation of predicted speeds that is nearly three times higher
than the micro-learning model trained without OSM features. However, predictions for
unknown inter-stations of lines 787 and 683 are way better without OSM features than
with it. Moreover, there are cases in which the removing of OSM features delivers better
results for compositional and macro prediction, and not by a margin (more than 5%).
This is the case for metroplitans bus lines and inter-district bus lines (Compred mostly).

Conclusion Micro-learning on graphs at edge level (e.g. bus-inter-stops level) yields
very good results on synthetic data. The accuracy turns out to be variable on a real data
set. Prediction error tends to be more important when no observations on this very edge
is available in the learning data set. These results point the importance of choosing the
right features set for the model. However, Figure 4.3 shows that the micro learning model
has a sensitivity to current features, hence this allows for what-if scenarios, when one
wants to predict the behaviour of a new unseen path.

If we understand that the addition of OSM features in the training datasets helps the
models to link the time features and speeds to the network topology, thereby enhancing
the predictions precision, an effort has yet to be made to explain the reasons of the
enhancement observed on some bus lines’s predictions when removing OSM features.

5. Charts of micro-learning results with and without OSM features are available in the public reposi-
tory for a more visual feedback
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4.4. Experiments

group prediction variation
with OSM features 7.5 km/h

without OSM features 2.8 km/h

Table 4.10 – Micro-learning models’s sensitivity to OSM features

4.4.3 Compositional prediction efficiency (Compred) (Q2)

Comparison with macro predictions

Comparing compositional prediction results (Compred) with Macro prediction, raised
the following remarks:

For synthetic data, Tables 4.5 and 4.6 show that the compositional prediction (Com-
pred) performs at least as well as macro prediction (i.e over whole line), and quite often
much better. Hence we can hope that this trend will be the same for real world data

For urban group, Compred MAPE and RMSE differences are only of 0.5% and 0.2
km/h while Compred’s MAE is 0.2 km/h better than macro’s. That is to say, macro and
Compred are nearly on par when it comes to predict urban bus speed. In other groups,
compositional prediction performs slightly better than macro predictions, with MAE,
RMSE and MAPE lower for Compred than macro by around 2.5 to +25% depending
on the measure we compare. Hence, this suggests that compositional prediction seems
to be more capable of catching fine grain variations (i.e variation on inter-stations) than
macro does, as shown in Table 4.8. This table shows the average predicted speed variation
(standard deviation in km/h) of bus lines over time (holidays, days, period). We observed
that Compred model seems to be at least twice as sensitive to time features as macro
model. Hence, it confirms the claim we made in section 4.4.2

Conclusion To predict a measure on a path, we applied compositional prediction (here,
a weighted sum of the predicted measure at the edge level). It appears that the obtained
quality is good with respect to the macro-learning approach both on artificial and real
world data. Actually our method reaches state of the art performance if we compare
with [72]. However, real world data results are not as good as artificial ones. We interpret
this as follows: micro-learning is done for all edges, and glitches in observations may
perturb all these levels. Hence, the composition may aggregate all these errors. Conversely,
in macro-learning, fewer models are computed, which is less error prone. But again, macro-
learning does not allow the prediction of unknown path of any length, while compositional
prediction can.
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4.4.4 Threats to validity

As internal threats, we acquired the real data set ourselves using our own code, which
may be prone to errors. But this data are used in production by the Keolis company, and
has been controlled using business rules many times. Also, we used only complete data.
No imputation was done. Our code uses a high-level language and state-of-the art libraries
for data extraction and machine learning. As construct validity, we choose to use Random
forests as ensemble methods model for regression. The choice we made was based on
performance amongst a set of models tested on a small sample of data from which random
forests performed better (in terms of results and computing time). However, we assumed
that the models would behave in an analogous manner with a wider dataset, whereas there
is a small risk that this is not the case. Finally, the scope of this chapter is to assess the
quality of compositional prediction for composite objects in complex environment against
traditional macro approach, we then considered the machine-learning model selection as
a secondary issue, hence we probably could have different results with other models. Yet,
choosing better models for compositional prediction is another issue that probably needs
a dedicated work. As an external threat, our data set, time frame and targets selection
might have specificities that could prevent generalization beyond these lines or Rennes
Metropolis. On the other side, we gathered 15M tuples over a year from a large city
common bus transportation system. The chosen lines are typical and of different kind
(urban, inter-district, metropolitan and express).

4.5 Conclusion and Future work

In this work, we presented compositional prediction on graphs, an approach to infer
path properties from edge properties obtained by micro-learning. Based on a real-size ap-
plication, we evaluated this approach with respect to classical macro-learning. We showed
that is allows for prediction on an unknown path, enabling the study of what-if scenarios.
This approach exhibits at least comparable and often better quality than the classical
approach, while offering what-if capabilities. Finally, the importance of a rich feature set
is underlined. As a future work, we would like to finely understand the quality gap be-
tween macro-learning and compositional prediction: while good on small scales, it could
be reasonable to switch to macro-prediction on relevant sub-path of the graphs. Also our
model must be tested on other scenarios like predicting the fuel consumption along a line,
or with other composition methods such as product e.g.; computing the risk of accident
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along a path given its sub-parts individual risks. Eventually given the overestimation of
the model one would try to apply arbitrated ensemble methods [12] to re-qualify the model
output and enhance its precision. Finally, since the presented model could be embedded
within a data exploration model, this work can be seen as a first step toward declarative
languages for what-if scenarios.
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Chapter 5

DATATIME: A FRAMEWORK TO

SMOOTHLY INTEGRATE PAST, PRESENT

AND FUTURE INTO MODELS

5.1 Introduction

The previous chapters can be seen as preconditions to this one. Indeed, we had to be
able to gather quality data (Chapter 2), identify what data to collect in order to feed
predictive models (Chapter 3), and to build predictive models that could be used at any
point in space and time in a directed graph (Chapter 4). This chapter is the direct outcome
of the previous ones, since it makes use of the knowledge we acquired through them.

As seen in Chapter 1, so called Intelligent Public Transportation Systems (IPTS) are
complex socio-technical systems, involving people (e.g., the users of the networks) as well
as supporting infrastructures, from the transportation means themselves (e.g., buses) to
the IT supporting them [2, 56]. One key feature of IPTSs are their information systems
allowing a network operator to plan, analyze and manage the network with respect to
metrics such as transportation time (or commercial speed) (cf. 1.2), energy consumption
or accident rates. When an IPTS at least partially relies on buses, these metrics are
difficult to predict. Traffic indeed varies widely during the day, with rush hours further
slowing down bus loading and unloading and compromising planned connections, with a
significant impact on travel time, as seen in chapter 3. Furthermore, when some roadworks
(or other unforeseen condition such as flood) happen on a street, the IPTS should be
reconfigured by diverting the impacted lines using the best possible new routes, which
is not an easy task for many European cities, built around centuries old, crowded and
tortuous city centers.

Supporting IT systems for IPTSs are typically made of two relatively independent
parts, one organized around space and the second one around time. The spatial one is an a
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priori model of the network: what are the network topology (modeled as a directed graph),
the transportation means (e.g., bus, tramways, metros), their itineraries, the infrastructure
(e.g., kinds of roads), the scheduled departures, etc. The temporal one is made of the
(huge) time series of data gathered from the many sensors available in the IPTS. The
existing time series give the opportunity to not only provide a model at run-time [47], but
also a full-fledged digital twin [9] of the IPTS to analyze, plan and manage the operations
using machine learning techniques.

However these space and time parts of the supporting IT are most often not well
integrated, making it hard in practice for network operators to leverage the avalanche of
data gathered from the IPTS. For instance diverted lines (i.e., space modification) have no
historical data to learn from, so even machine learning techniques that have successfully
been applied on graph-based structures typical of an IPTS [29, 4, 62] cannot work out of
the box.

Moreover, as for many other network problems (e.g., electricity or water networks),
properties of interest (e.g., commercial speed of a bus along a line) are compositions of
smaller independent parts (e.g. the speed on each bus inter-stops along the line). This
enables the prediction on the behaviour of composite objects (a path in the graph), based
on the predictions of their sub-parts (i.e. on edges) and relevant composition laws. This
opens what-if analytics scenarios, where new objects never observed before can be pre-
dicted based on their simpler parts, and can then be used e.g., to optimize diversions in
case of unforeseen events such as roadworks or floods.

A possible direction for integrating these models (spatial, temporal and predictive)
would be to articulate them around the notion of digital twin and the concept of time,
i.e., digital twins extending themselves towards Past, Present, and Future [38]. For that
purpose, we propose a new framework, called DataTime, to implement models at run-
time which capture the state of the system according to both time and space, here modeled
as a directed graph. In this graph, both nodes and edges bear local and independent states
(ie. values of properties of interest). DataTime offers a unifying interface to query the
past, present and future (predicted) states of the system. This unifying interface provides
i) an optimized structure of the time series that capture the past states of the system,
possibly evolving over time, ii) the ability to get the last available value provided by the
system’s sensors, and iii) a continuous micro-learning over graph edges of a predictive
model to make it possible to query future states, either locally or more globally, thanks
to a composition law. We apply our framework in the context of an urban transportation
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system, and concretely deploy and evaluate it on the IPTS of the city of Rennes (France),
that is operated by the Keolis company.

The rest of this chapter is organized as follows. We first introduce the DataTime
framework (Section 2), and then we present its use in the context of an IPTS (Section
3). Then in Section 4 we describe how it was deployed at Keolis Rennes in the context
of the real bus network of the city of Rennes (France), and what lessons we have learned
from this experimentation. Section 5 discusses related work, before we conclude and raise
several perspectives in Section 6.

5.2 The DataTime Framework

Figure 5.1 – The DataTime framework (excerpt)

Figure 5.1 shows a simplified class diagram of DataTime. The objective of this frame-
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work is to enable graph-based seamless space and time exploration, through the analysis
of historical data, real time data and predicted data. It is composed of two main parts:
i) the spatial model and predictors configuration (part II of Fig. 5.1) that is dedicated to
the designers who implement adaptations of I and II for the end-users and ii) the digital
twin/shadow to reason over time about the spatial model (part I of Fig. 5.1), thus the
digital twin built by the designers is the end-users’ entry point to manipulate DataTime.
A third component has been added in the part III of Fig. 5.1 to represent the required
endeavour to use DataTime for the development of a particular IPTS (see Section 5.3).

5.2.1 Spatial model and prediction configuration

Graph

The spatial model is defined as a classical directed graph structure as seen in the part II
of Fig. 5.1, focusing on the graph package: a set of vertices that are nodes with individual
characteristics, and a set of edges that are one way connections between two vertices (a
bidirectional edge is simply represented with two directed edges). Graphs have a built-in
time_frame attribute that represents the time-frame for which corresponding referential
and historical data exist. Hence it is to the discretion of the designer to consider that
changes amongst a graph structure yield a new graph, or if it just changes its time_frame
by expanding or reducing it, or leaving it unchanged (e.g. when minor changes occur).

Edge and vertex characteristics (features) are made abstract in order to use any
kind of data. The package data contains the different features and metrics definitions.
In order to make those generic, we separated their identification from their actual data
and type (following the type-object design pattern). This package contains three abstract
classes that have to be specialized for a specific system: Features, VolatileFeatures and
Metrics. Features represent characteristics of the edges and vertices. VolatileFeatures
are characteristics that are not represented in the data, but that can be computed on the
go (e.g bus line type extrapolated from its identifier, electrical cable resistance computed
from its length, etc.). Metrics are data that are not characteristics, such as measures
(speed, volume of water per hour, etc.) or time related information. Hence, data instances
that extend those classes must be able to query data from the Digital Shadow (cf. 5.2.2).

The package path represents the abstraction of a path through the graph, that is,
a sequence of at least one edge for the thinnest grain. Paths are abstract, hence one
can easily create a path hierarchy if relevant for the targeted application domain (e.g
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transportation networks, supply chains, smart-grids, drinking water networks, ... ). Paths
allow the building of hierarchical structures within the graphs while offering analysis and
predictions scalability using micro-learning for the predictive aspects. Recently, micro-
learning approaches have been successfully applied to graphs structures to provide what-if
scenarios (e.g. in the context of power grid management [27]). In these approaches, specific
models of local data are built instead of one large model on the overall data set. Micro-
learning is typically useful for incremental predictive models, where one has to perform
step-by-step decisions based on local properties, while yielding quality predictions. For
instance for an IPTS, prediction of travel time or road reliability can be made using micro-
learning over each edge and then aggregating the results using a specific composition law
(sum for travel time, product for reliability, etc.).

In DataTime, data analysis and predictions are made at the level od edges (provided
a predictive model has been configured for this purpose). For graphs on which data can be
aggregated from edge level to different implementations of parent paths, the prediction or
analysis at edge level will be automatically aggregated to higher levels with specific user
defined composition laws (e.g speed of a bus between two bus stops, aggregated to the
whole bus line, water leaks at single pipes sections, aggregated to the whole pipe, etc.).

Predictors

The prediction package contains the abstract class Predictor that embodies the
predictive system of DataTime. It encapsulates predictive models and miscellaneous tools
that define the expected behaviors of predictive models, from training to predicting. A
specificity of this abstract class is that we included a way of managing the predictive
models behavior through time. It proposes the following services:

— Choice of the predictive model, in order to choose the best suited predictive model
depending on the prediction issue (using the strategy design pattern).

— Optimization of the model by searching for the best hyper-parameters . It embeds
a grid search system that can either use a set of properties to seek from, or a
random one (through the parameter optimize of Predictor.train() in Fig. 5.1).

— Training of the model, by feeding it with a training dataset, hyper-parameters and
choosing whether to optimize the predictive model using grid search (through the
parameters of Predictor.train() in Fig. 5.1).

— Saving and loading the predictors by transferring their data to the Digital Shadow
interfaces (through the Predictor.train() method in Fig. 5.1).
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— Model’s health monitoring, that takes care of the predictive model ability to predict
in a satisfying manner depending on its age and a prediction error threshold over
which a new model is trained. This service can be disabled if needed (using the
attribute Predictor.activate_healthcare in Fig. 5.1).

— Features extraction for prediction, that explores the edges features to make pre-
dictions (Predictor.extractFeatures() in Fig. 5.1).

— Predictions, by returning a PredictedRun when called (Predictor.predict() in
Fig. 5.1).

To configure a predictor, a designer has to extend Predictor and implement the prepareDoctorData()
method, whose work is to prepare data for the health check-up of the predictive model and
the training of a new one when needed. The doctor is called when one wants to predict
something and that the predictive model is more than obsolescence days old compared
to the current system date. The objective behind that is to keep predictors up to date and
efficient. We achieve this by comparing the residuals obtained predicting from a sample
of the last available data from now to back_days back in time with their base error (the
deviation of the predictive model obtained during the training phase). If the predictive
models yield an average residual that is over error_trigger times the base error, then a
new model is trained with the data yielded by prepareDoctorData(). The doctor can be
deactivated if needed (for example when the models are not subject to derivation because,
e.g. the data is quite consistent through time), by setting activate_healthcare to false.

Predictors can use different predictive models thanks to the abstract class PredictiveModel.
If one uses a single machine learning API in which predictive models are children of a
single interface, then any model of such an API should be made available by encapsu-
lating them in an extension of PredictiveModel, by tweaking the error() method for
each model (because the error computation varies, and the result is not always kept into
a trained model), that is necessary for the doctor(). Of course, if one wants to code her
own predictive model, the simplest way is to extend PredictiveModel and override the
relevant methods.

Predictors are referred by edges only, due to the fact that our system relies on com-
positional prediction. In order to make any prediction with any machine learning model,
predictors should have their own set of features, and prediction targets. Hence the edges
that call the predictors are responsible for giving them the right features by using their
inner method getFeaturesVector that transforms their features into a vector of doubles
for the predictor (with an ad hoc encoding for categorical data). Note that if some exter-
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nal features that have not been designed in the model have to be passed to the predictor,
a container should be built to contain them. Predictors should then take the data they
need directly within this object.

The training of predictors is made by the Edge class, that calls the method train(...)
of Predictor. This method has to be fed with a dataframe containing the appropriate
training data (i.e. in accordance with the predictor feature set, thereby the predictive
model formula), obtained by querying the digital shadow, and a set of hyper-parameters
through the parameters prop. The parameter optimize triggers a randomized grid search
algorithm when set to true in order to find the best configuration for the predictive models
hyper-parameters. Thanks to this, any machine learning model with any features set and
prediction target can be trained and used at any path level in the framework.

Finally, the class Graph is responsible for the manipulation in a single graph instance
such as seamless data analysis (through the method getMetric(...)), getting the corre-
sponding historical or real-time data from the Digital Shadow), what-if scenarii (creating
new edges, vertices, path and analysis against those new objects), and the orchestration
of the data between the different parts of the model such as instantiating and feeding
predictors with data when they need to be trained (through its edges). The main goal
of this class is to provide a way to obtain a set of runs when one calls the method
getMetric(...) by seamlessly returning historical or real time or predicted results from
historical runs or predicted runs over the given path and time period passed to the method
getMetric(...). Note that it does not matter if there is one or more instances of graphs
(e.g. a set of independent graphs distributed through time, with contiguous time-frames).
In both cases it is the getMetric(..) method of Digital Twin is used by the end-user
to explore data in time and space.

5.2.2 Digital twin/shadow description

The Digital Shadow is either the representation of an existing data environment on
which DataTime can be plugged in a read-only manner in order not to have any side
effect on the existing information system, or an actual fully managed data environment
dedicated to DataTime, making it responsible for the management of all the data flows
between the digital twin and the real system. The digital shadow should also be respon-
sible for the saving of the graphs instances and predictors instances. Moreover, it has
the responsibility of creating time-series used for data analysis while keeping them op-
timized and consistent through time. In short, any data that is yielded either by the
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Figure 5.2 – Sequence diagram for getMetric

Digital Twin of DataTime or the real system sensors, etc. should transit and be gov-
erned by Digital Shadow. Fig. 5.2 shows an example of how data transits through the
system when getMetric(...) is called.

The Digital Twin of DataTime represents the set of graph instances of the model,
over the time. It contains the time representation through the class TimePeriod that
embeds two timestamps. This class helps the representation of time frames and instants
(when periodStart == periodEnd), and time manipulation in the framework. The time
periods are used to request the set of graphs that are part of the class Digital Twin, when
calling the method getMetric(...), that returns a set of runs which represent the result
of the queries made by the Digital Twin over its set of graphs. In other words, runs
model the action of traveling through a path at a given time frame, or a specific event on
a path for a given time frame, e.g. a bus traveling along a bus line, an amount of water
traveling through a section of a pipe network, the loss of electrical current between two
poles, etc. Runs are built using historical data. Hence they consist of different measures
& metrics made on the network represented by an instance of the graph. Runs should be
atomic, hence they should be unique and they should be bound to edges only, with runs
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of longer paths built by aggregating runs of their edges. Runs can be historical / pseudo
real-time (historical data) or predicted (using machine learning). Depending on the size
of the historical data, runs should be lazily loaded when analyzed. However, saving the
runs can be a bad idea if the historical data is huge: it would lead to storage starving
in addition to duplicated data. However, this decision depends on the Digital Shadow
structure. The Digital Twin class is also responsible for the building of graphs instances
by querying the Digital Shadow for referential data, yielding Graph instances. Hence the
Digital Twin is the end-user entry point on the framework.

5.3 Application to an Intelligent Public Transporta-
tion System

To assess the applicability of DataTime, we developed a Scala implementation of the
framework adapted to urban bus networks.

IPTS such as modern urban bus networks are complex socio-technical systems made
of hundreds of stakeholders, including humans, sensors, vehicles, information system, etc.
Hence, a major concern with such an infrastructure is to gather, organize and normalize
data, analysis and decisions in integrated tools.

IPTS are slowly evolving networks, yet if an important part of the bus lines are non
changing for very long and continuous periods, there exists some variation within their
structure, such as the changes on bus lines when long-term roadworks are planned, the
creation of new bus lines, etc. Hence we considered that the time_frame of a single
instance of the bus network is corresponding to the period that was defined by the operator
(usually 1 to 2 weeks), during which there are no major modifications except for some
day to day bus line deviations.

In our applicative environment, the information systems were already provided, also
used by others. Hence, we plugged our framework on top of the existing Digital Shadow
in order to avoid any side effect on it. In our implementation, the Digital Twin is respon-
sible for the creation of as many graph instances corresponding to the different referential
files that exist in the data. Referential files contain actual definitions of the bus network
structure, as defined by the operator. i.e, if there are four sets of referential files, each of
them defining a bus network that is valid for a given period of time, four different graphs
instances will be created.
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5.3.1 Graph and paths adaptation

We specialized DataTime for bus networks issues as shown in the bottom part of
Fig. 5.1. The bus network is an extension of the class Graph, for which the longest path
within it are BusLines, made of Sections that are an ordered collection of InterStations
(Edges). The class Vertex is representing the bus stops (stations) in this context. All of
the elements of the graphs are immutable, in order to keep data consistency when one
wants to make, e.g. an analysis over a line/section/inter-station that exists in all the
members of a set of graphs.

5.3.2 Features adaptation

InterStations contain Features such as length of the inter-station (in meters), type
of road (one-way, two ways, reserved for buses, etc.), number of traffic lights, number of
pedestrian crossings, etc. All those features are physical features, extracted from Open-
StreetMaps 1 Section and line features are obtained by aggregating their respective sub-
part features. In order to manage features in the bus network implementation, we created
data instances that extend the abstract classes from the package data (following the
type-object design pattern). We then created several data features classes (e.g. Length,
TrafficSignalsCount, etc.), one VolatileFeature class, called LineType and as many
Metrics classes as needed amongst which Speed, TravelTime, etc.

5.3.3 Runs adaptation

If we take a look at Run, the data they correspond to in the Digital Shadow is the
data gathered from bus trips all over the network. We describe trips as follows:

— Trip in edges: Bus trips from bus stop origin to bus stop destination;
— Trip in sections: Bus trips origin to bus stop destination within its ordered

collection of edges;
— Trip in line: Bus trips from origin to destination (terminals).
Trips contain metrics such as start time, arrival time, travel time, speed, dwell time

(for sub paths only). One could easily add any external feature such as smart card data,
weather, traffic, etc.

1. https://gitlab.inria.fr/glyan/osm_bus_extractor
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5.3.4 Data mass and lazy loading

Since an IPTS typically produces several GigaBytes of data per month, we soon end
up with more data than can be managed on a local file system. We thus need a kind
of lazy loading mechanism when querying trip data. Accordingly, runs are "built" on
demand when a call is made through the method getMetric() from the !DigitalTwin.
The resulting trips can be kept in memory up to a certain extent, but not saved. An
advantage of lazy loading is that this allows the ingestion of data in pseudo-real time (e.g.
when there is a need to observe what is going on in the bus network with a reasonable
delay).

5.4 Experimentation at Keolis Rennes

5.4.1 Evaluation of the Predictive Model

The first stage in the deployment of DataTime at Keolis Rennes was to evaluate the
precision of the predictive model, in order to build confidence into the whole framework.
For that, we ran an experiment described as follows (outline of chapter 4):

1. We choose a set of 13 typical and different bus lines for which data could be gathered
all along their path. This includes express, urban, inter-district and suburban bus
lines;

2. We ran 13 experiments for each line, removing the respective line data from the
training dataset that gathers data over year 2019;

3. We predicted the speed of each bus line using micro and macro-learning (i.e the
training data consists of the set of full line trips data for macro-learning, while it
is made of inter-station trips data for micro-learning);

4. We compared the aggregated micro-predictions and the macro-predictions to assess
whether micro-learning is suitable for our model, and thus could be also used for
unforeseen lines (e.g. in cases of traffic diversions).

Table 5.1 shows the averaged results of the experiments. It presents three prediction
error measures for both macro and aggregated predictions. Those measures are the Root
Mean Squared Error (RMSE) in km/h (eq. 5.1), Mean Absolute Error (MAE) in km/h
(eq. 5.2) and Mean Absolute Percentage Error (MAPE) (eq. 5.3) in percent. All of these
measures are the result of the comparison of the predictions with their actual counterparts,

105



Partie , Chapter 5 – DataTime: a Framework to smoothly Integrate Past, Present and Future
into Models

hence, the lower the error, the better the prediction. Note that the RMSE is more sensitive
to outliers than MAE and MAPE, which are not quadratic.

RMSE =

√√√√ 1
N

N∑
1

(Yt − Ŷt)2 Yt = actual, Ŷt = predicted (5.1)

MAE =
∑N

1 (Yt − Ŷt)
N

Yt = actual, Ŷt = predicted (5.2)

MAPE = 1
N

N∑
1

∣∣∣∣∣Yt − ŶtYt

∣∣∣∣∣ ∗ 100 Yt = actual, Ŷt = predicted (5.3)

For all measures, the precision obtained for the prediction is considered as good enough
from the point of view of the bus operator (i.e Keolis Rennes). Further, the micro-learning
approach is at least as good as macro learning approach 2 in terms of accuracy and of-
fers state of the art performance [berger-wolf_proceedings_2019]. The three micro-
learning approach predictions error indicators are lower than those of the macro learning
approach. Hence this experiment validated the use of micro-learning predictions for bus
networks such as the ones operated by Keolis in Rennes. Finally, the utmost interest of
micro-learning is the possibility to predict at the finest possible grain within the bus net-
work, hence build what-if scenarii such as the prediction of bus travel time on new or
diverted bus lines.

Table 5.1 – Prediction accuracy

Aggregated-micro Macro
RMSE MAE MAPE RMSE MAE MAPE

3.0 2.4 12.1% 3.2 2.9 12.2%

5.4.2 DataTime in Practice at Keolis

Our DataTime implementation was designed to be used by bus networks operators.
Thanks to the framework we could develop the following features:

— The creation of new elements over the bus network, i.e. bus lines (or new bus lines
sections), bus stops, inter-stations.

2. The full details of the validation experiments ia available at: https://gitlab.inria.fr/glyan/compred
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— The analysis of any event on the network at any place and anytime in the bus
network. For instance lines 1 to 20 in example 1 access past data using the method
getMetric() with a time period located in the past

— The prediction of any metric on the network at any place and anytime in the bus
network, e.g. Algorithm 1 lines 21 to 29 where the method getMetric() is call
with a parameter meaning now

— Providing the operators hints on which detour should be applied on a bus line de-
pending on, e.g. the expected speed of this detour. Even in a complex bus network
with multiple possible paths between two bus stops, finding alternative possible
routes is quite standard. It is typically solved with a search based greedy algo-
rithm, parameterized with a maximum number of paths of a maximum length.
The complex part is of course evaluating the suitability of the possible routes that
the search algorithm would yield. Depending on the goal of the network operator
(e.g. smallest travel time, best reliability, etc.), the system would then just have to
pick the best path among the existing ones. As long as the system is able to pre-
dict a metric (speed, reliability) on any known or unknown edge, along any path,
compositional prediction makes it possible to aggregate those predictions on any
number of different paths allowing it to choose the best way to propose a detour,
following one or more specific heuristics.
Algorithms 2 and 3 summarize the main steps of putting everything together to
automatically apply a bus detour if the bus operator asks the system to.Algorithm 2
explains how to find all possible paths between two vertices in the graph, with some
constraints on the number of iterations and paths found size. Algorithm 3 shows
how to call algorithm 2 to yield an optimized deviation for a bus line, searching to
maximize the speed of the deviation.

5.4.3 Lessons Learned

Performance and scalability

We fed our implementation of DataTime using Apache Spark v3.1.1. It was behaving
as a datasink, making it possible to query a datalake containing more than 2 years of data,
totaling nearly 40GB. As an example, the primo-execution of a query like the one visible
at lines 1-9 in Algo.1, which consists of querying over all the trips of a bus line for a 2
years period, takes around 40 seconds on a computer equipped with a middle end 8 cores
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Algorithm 1 Different call examples over the getMetric method
1: val busLine:Line = Graph.getLine("152", Direction.B)
2:
3: // TimePeriod for which historical data exists
4: var tp:TimePeriod = TimePeriod("2019-01-01 08:00:00","2021-02-01 00:00:00")
5: var metric:Metric = Speed
6:
7: // Will return all the runs found for line 152 over tp
8: var runs:Set[Run] = getMetric(busLine,tp,metric)
9: runs.foreach.displayMetric()
10:
11: // TimePeriod for real time Data
12: val now:Long = System.currentTimeMillis
13: tp.setPeriodStart(now)
14: tp.setPeriodEnd(now)
15:
16: /** Will return runs corresponding to the last data available
17: * in the digitalshadow, comparing with now
18: */
19: runs:Set[Run] = getMetric(busLine.getSections.head,tp,metric)
20: runs.foreach.displayMetric()
21:
22: // TimePeriod for future date
23: tp.setPeriodStart("2022-03-19 17:30:00")
24: tp.setPeriodEnd("2022-03-19 17:30:00")
25: metric = TravelTime
26:
27: // Will seamlessly return a predictedRun
28: runs:Set[Run] = getMetric(busLine.getInterStation(5),tp,metric)
29: runs.foreach.displayMetric()

x86 CPU. If one executes this query a second time, the result is almost instantaneous
provided the last request results were kept in memory. In a nutshell, the bigger the period
and the longer the path, the slower the querying will be. Hence, the performance and
design of the Digital Shadow services are paramount for querying to be efficient.

The predictors, that are able of continuous learning (by automatically training new
predictive models when needed), must be trained before being able to predict. The training
time depends on many factors but there are 3 of them that will have a significant impact.
Those are the size of the training dataset, the number of features and the hyper-parameters
tuning. The latter can be the worst one if, e.g. one uses grid search to find the best set of
hyper-parameters (using optimize=true in the method train(...)). We decided to train
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models with a training dataset that contains 1 or 2 month of data, with a set of 8 features
and the default set of hyper-parameters. The training of such a model takes no longer
than 10 minutes on a middle end computer (8 cores, 16GB RAM). Hence, the continuous
training if the predictive models eventually turn dull would be in the same time range.
This is rather acceptable knowing that a single model is able to yield predictions for the
whole system.

Finally, our implementation is scalable in those ways:

1. The digital shadow can rely on scalable databases, hence the storage and querying
can be distributed amongst different machines if needed.

2. The implementation of the framework can be used on any machine and does not
need a tremendous amount of computing power to analyze data or predict data:
The data collection for analysis relies on the digital shadow ability to scale, and
the predictive models training time is short even on a single machine.

Impact at Keolis

If we recall what we saw in section 1.1.2 of chapter 1, Keolis Rennes is in need of
a tool to centralize data management, data analysis, and prospective/predictive models.
Thereby, a framework such as DataTime favors the data centralizing with a focus on
scalability for data analysis, making it possible for domain experts to integrate past,
present and future within a traditional information system containing a priori models.
Moreover, DataTime could be even more user friendly with the providing of future DSLs,
for, e.g. facilitating the integration of new data sources, the edition of line topologies
or make data analysis more fluid, etc.In addition, DataTime allowed us to highlight
specificities of the bus networks that were yet not visible for the operator. Indeed, the use
of predictive models allowed the analysis of feature importance, hence to do sensitivity
tests for, e.g. speed and vehicle engine type. It appeared that the electrical buses that
were test running on the bus line 12 for a few months were systematically slower than
their combustion counterparts, which was later explained by their higher gravity center,
due to the presence of the traction batteries on the buses roofs.
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5.5 Conclusion and Perspectives

In this chapter we propose a framework called DataTime to implement models at
run-time which capture the state of a socio-technical system according to the dimensions
of both time and space. Space is modeled as a slowly evolving directed graph where both
nodes and edges bear local and independent states (i.e, values of properties of interest).
DataTime provides a unifying interface to query the past, present and future (predicted)
states of such socio-technical system, hiding the complexity and scalability issues of deal-
ing with huge time series and machine learning. We applied our framework in the context
of an urban transportation system, and concretely deployed and evaluated it on the IPTS
of the city of Rennes (France).

DataTime makes it possible for domain experts to integrate past, present and future
within a traditional information system containing a priori models. Still up to now, using
DataTime requires experts to work at the level of the chosen programming language,
here Scala, which is seldom known to the IT department of an IPTS operator such as
Keolis. We thus plan to make it easier to use the DataTime framework by providing a
set of DSL embodying its main abstractions, thus facilitating the integration of new data
sources, the edition of the network topology, or make data analysis more fluid.

As future work, we envision to apply our framework for other application domains that
bear structural and temporal similarities with IPTS, such as smart grids, water abduction
systems, or supply chains. As long as they fit the directed graph abstraction at the core of
DataTime, and as long as global properties of interest could be obtained by composing
atomic values associated to edges, we do not foresee any issue in specializing DataTime
towards these systems.Thi
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Algorithm 2 Detours finding (Scala inspired pseudo-code)
1: /** Call function **/
2: def detours(orig, dest, maxLength, maxDetours):
3: val detoursSet = new Set[Set[Edge]]()
4: /** Get the edges starting from orig **/
5: val possibleEdges:Set[Edge] = GRAPH.edges.filter(_.orig == orig)
6: val edgesSet = new Set[Edge]()
7: for (e: Edge in possibleEdges) do
8: _detours(e, dest, 1, maxLength, maxDetours, detoursSet)
9: end for

10: return detoursSet
11: end detours
12:
13: /** Recursive function **/
14: private def _detours(currentEdge, dest, order, maxLength, maxDetours, edgesSet, detoursSet):

15: if (detoursSet.length < maxDetours and order < maxLength) then
16: /** Non duplication check **/
17: val vertexInSet:Boolean = if (edgesSet.isEmpty) false
18: else edgesSet.map(_.orig == currentEdge.dest).reduce(_||_)
19: if (currentEdge.dest == dest and not vertexInSet and edgesSet.add(currentEdge))

then
20: /** FINAL CASE **/
21: detoursSet.add(edgesSet)
22: else if (not edgesSet.contains(currentEdge) and not vertexInSet) then
23: /** GREEDY CASE **/
24: val possibleEdges:Set[Edge] = GRAPH.edges.filter(_.orig == currentEdge.dest)
25: /** This loop should be parallel for better performance **/
26: for (e:Edge in possibleEdges) do
27: edgesSet.add(currentEdge)
28: if (not edgesSet.contains(e)) then
29: _detours(e, dest, order+1, maxLength, maxDetours, edgesSet.clone, detoursSet)
30: end if
31: end for
32: end if
33: end if
34: end _detours



Algorithm 3 Example of how to get the best detour on line A2 between A and B for
the morning rush hour of Tuesdays during working periods (Scala inspired pseudo-code)
1: val line:Line = GRAPH.lines.A2
2: val detourStart:Vertex = A
3: val detourEnd:Vertex = B
4: val originalRoute:Set[Edge] = line
5: .getSubRoute(detourStart,detourEnd)
6: val day = Days.TUESDAY
7: val holidays = Holidays.NONE
8: val period = Periods.MORNING_RUSH_HOUR
9: val metric = Metrics.SPEED
10: val possibleDetours:Set[Set[Edge]] =
11: detours(detourStart, detourEnd, 20, 10)
12: .except(originalRoute)
13: val metrics:Set[Double] = possibleDetours
14: .map(_.predict(metric,TimePeriod(holidays, day, period))
15: val bestDetour:(Set[Edge],Double) = possibleDetours
16: .zip(metrics).sortBy(_._2).last
17: GRAPH.enact(line,bestDetour)



CONCLUSION AND FUTURE WORK

This chapter is a conclusion to this thesis. It summarizes the main contributions of
this document and proposes some future work to tackle problems unsolved or raised by
this work.

5.6 Conclusion

Urban Transportation Networks are going to get closer to data and computing tech-
nologies with time. Not only because the use of sensors becomes easier and cheaper thanks
to better communication technologies and hardware production methods, but also because
cities and operators are willing to optimize their transportation networks, keeping them
efficient and attractive in upcoming smart-cities. However, all this will yield growing and
tremendous amount of data, for the more the system is cyber-equipped, the more data is
generated. Hence, more domain expert and IT engineers and researchers will be needed
to manage, handle, analyze and produce interpretations of this huge heterogeneous data.
Therefore, the building of data management systems, or even digital twins is desirable
to help bus networks operators tackle the problem of integrating massive heterogeneous
data, extract information from this data to yield quality analysis or predictions, and fi-
nally have a continuously available virtual representation of the bus network that makes
it possible the exploration of data through space and time.

In the first contribution, we proposed to evaluate the data quality of the Automatic
Vehicle Location (AVL) system of the bus network of the city of Rennes, France. Our find-
ings are that this system is error prone, and that a specific data management and data
qualification environment is needed for both production and research purposes. However,
the data quality level must be bound to the specific need of the users of this data, in order
not to over cleanse it, yielding potential high cleansing cost for minor quality improve-
ments.

The second contribution makes use of massive heterogeneous data to assess the ex-
istence of factors that supposedly have an impact on bus commercial speed. We could
gather data for traffic, bicycles, ridership, weather and roads infrastructure. We inves-
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tigated in depth traffic and ridership thanks to the lock-down period that was imposed
in France in spring 2020. We were able to assess the existence of impacting factors, but
the confirmation of the genericity of these factors could not be reached. However we were
able to raise a series of hypotheses that might be helpful for bus networks operators. Yet,
those hypotheses have yet to be validated on further works.

The third contribution makes use of the two previous ones. We use the data we ob-
tained using the processes described in the first contribution, and some of the factors
identified in the second contribution in order to make so called micro-predictions at the
inter-station level. We considered the bus network to be a directed graph, on which ver-
tices are bus stops and edges inter-stations. We rely our system on the fact that, e.g.
commercial speed over a given path is composed of the sum of edges lengths divided by
the sum of edges travel time. We targeted the prediction of bus commercial speed on both
known and unknown inter-stations in order to propose a system that seamlessly provides
predictions and what-if scenarii analysis (e.g. creation of a new bus routes and bus lines).
Finally, we have shown that micro-predictions are as good as predictions at terminal to
terminal (whole bus line) scale, while offering compositional properties making it way
more flexible for spatio-temporal predictions.

The fourth and final contribution proposes DataTime, a framework to implement
models at runtime which capture the state of the system according to both time and space
modeled as a directed graph. It is the direct outcome of the three previous contributions,
using our findings as inputs. In DataTime, a transportation network is modeled as a
slowly evolving directed graph where both nodes and edges bear local and independent
states (i.e., values of properties of interest). DataTime provides a unifying interface to
query the past, present and future (predicted) states of such a socio-technical system,
hiding the complexity and scalability issues of dealing with huge time series and machine
learning. We applied our framework in the context of an urban transportation system, and
concretely deployed and evaluated it on the Public Transportation Information System
(PTIS) of the city of Rennes (France).

In the end, our contributions aim at providing domain experts with methods for the
integration of heterogeneous data, data analysis abilities and predictive models in mono-
lithic frameworks. In addition, this work starts the depreciating of the use of multi-tools
systems for data management.
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5.7 Perspectives

5.7.1 Bus commercial speed impacting factors assertion and gen-
eralization

Our findings in Chapter 3 are a first step to formally identify factors that have an actual
impact on the bus commercial speed by using real world data. However, the use of accurate
and complete data is of need to strengthen the assumptions we raised. In particular, the
importance of the different factors is probably city-dependant, hence factors that are
prominent in Rennes can be minor in other cities. Hence a further work based on this
one would be to lead this kind of survey in various cities over the world to discriminate
factors that are global from those which are dependent of either a group of similar cities
or a city in particular.

5.7.2 Prediction in graphs: compute minimum paths size over
which micro-predictive models can be avoided

We saw in Chapter 4 that if micro-predictive models are as capable as predictive
models that consider the longest paths of a given graph for inputs, there seems to be
a path size threshold over which micro-predictive models should be avoided because of
noise amplification yield by the aggregation rules. This can be considered as an operational
research problem. For a given graph, a dedicated (greedy) algorithm should travel along
all the available paths, and train a predictive model and compute residuals for every
step in the paths. Doing this has at least two purposes. First it could be useful to assess
whether micro-predictive models are indeed limited over a given path size, if we do not
consider training data quality. Second, this could help to understand whether the so called
threshold is to be shared amongst all the paths of the graph, or if there are many local
thresholds, thereby enhancing the complexity of this issue.

5.7.3 DataTime domain specific language

The first shot of DataTime proposed in Chapter 5 of this thesis can be completed
by integrating a Domain Specific Language (DSL). This DSL would be plugged on top of
the core of the framework and propose a seamless way to, e.g.

— create/modify either the whole or its subparts;
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— query the graph for data (i.e a query sub-DSL);
— add/remove/modify data sources;
— manipulate the predictive components of the framework.

The adjunction of an integrated domain specific language to DataTime would enhance
the end-user experience, while preserving the genericity of the framework.

5.7.4 Data collection expansion for the current Intelligent Pub-
lic Transportation System (IPTS) implementation of Data-
Time

Currently, our IPTS implementation of DataTime can get data from OpenStreetMaps
for any bus line that has been reproduced on the online OSM servers by the community.
A limitation however is that if one wants to create a new bus line in our DataTime
IPTS implementation and get the road infrastructure data from online OSM, this new
line has to be designed on OSM too. This is a problem because OSM is intended to be a
virtual representation of the real world, thereby the design of non existing bus lines for
experiment purpose on online OSM has to be avoided.

However, there might be a way to link DataTime to a local OSM server using
osm2pgsql 3 (tool that populates postgresql with dumps from OSM) and OSMosis 4 (that
synchronizes postgresql databases and the local server). The harmonization of those tools
could make it possible to either modify bus lines directly from DataTime or even the local
OSM server, the changes being automatically synchronized between one another. Further-
more, OSMosis could be used to continuously integrate new data from online OSM while
keeping changes of the local OSM server safe. However, this would need a lot of work
to minutely adapt the local OSM instance so that it keeps the modification one makes
among its current database, while it should be able to pull new information from world
wide OSM database without pushing anything to it nor failing because of data conflicts.

5.7.5 Meta-learning and extrapolation of aggregation rules from
data for micro-predictive models

In the current state, as described in Chapter 5, our encapsulation of predictive models
proposes a way to use any predictive model with integrated model health management.

3. https://osm2pgsql.org/
4. https://wiki.openstreetmap.org/wiki/Osmosis
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The so called doctor is used to deprecate a predictive model and train a new one when
it is not able to predict with a satisfying accuracy among the last data to date. This
encapsulation could be further enhanced by adding meta-learning, as suggested in [28].
One other limitation of the micro-predictive model we proposed is that the pre-condition
needed to use it is the existence of aggregation rules. Indeed, micro-predictive models are
desirable to predict non-atomic models (that can be broken down into sub parts) only.
However those aggregation rules used to re-conciliate predictions made at the lowest level
to higher levels in the model have to be manually implemented in the tool that makes use
of micro-predictive models. Finding a way to extrapolate the aggregation rules directly
from the input data could help the integration of predictive models. Hence, the implemen-
tation of meta-learning systems along with aggregation rules extrapolation would make
it possible for the predictive components of DataTime to become a fully autonomous
system, thereby totally user friendly.
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Appendix A

SUPLEMENTARY MATERIAL

. remove before
final

A.1 Micro predictions charts

Figures A.1, A.2, A.3, A.4 and A.5 show broader results of the predictions results of
the experiments led in chapter 4.

A.2 Miscellaneous
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Figure A.1 – micro-predictions of bus line 532 with and without OSM features



Figure A.2 – micro-predictions of bus line 683 with and without OSM features



Figure A.3 – micro-predictions of bus line 711 with and without OSM features



Figure A.4 – micro-predictions of bus line 787 with and without OSM features



Figure A.5 – micro-predictions of bus line 849 with and without OSM features



Figure A.6 – Geographical view of the STAR bus network drawn from the data extracted
out of OpenStreetMap database dump. Red portions represent part of the network for
which traffic data could be matched
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Titre : Mobilité urbaine : Apprentissage automatique pour la construction de simulateurs à
l’aide de masses de données.

Mot clés : Systèmes Intelligents pour les Transports Publics, Science des données, Appren-
tissage automatique, Jumeaux digitaux

Résumé : L’ère des données dans laquelle
nous sommes entrés s’accompagne d’une ex-
plosion de ces dernières, tant en variété qu’en
quantité. Le transport public est un domaine
qui génère des données en masse, et les
systèmes d’information sont souvent soutenus
par des technologies anciennes qui peinent à
maintenir l’existant en place alors que la quan-
tité de données augmente continuellement.
Ceci pose deux problèmes. Premièrement, les
données massives générées par le réseau
de transport doivent être qualifiées et enri-
chies avec des sources de données externes
afin d’être utilisées pour la prise de décision.
Deuxièmement, afin de limiter le nombre d’ou-
tils et la complexité de maintenance, il est sou-
haitable d’intégrer la gouvernance des don-

nées avec les outils d’aide à la décision pour
permettre aux opérateurs non experts de ma-
nipuler ces données. A travers quatre contri-
butions aboutissant à la proposition d’un cadre
technique qui intègre le passé, le présent et
le futur dans un système d’information tradi-
tionnel contenant des modèles a priori, cette
thèse défend que l’intégration de divers en-
sembles de données hautement qualifiés pro-
venant du monde réel dans un modèle spatio-
temporel unique offre un moyen qualitatif, ef-
ficace et peu coûteux de faire des analyses,
des prédictions et d’aider à la prise de dé-
cisions stratégiques pour les réseau de bus
tout en dépréciant par ailleurs l’utilisation de
systèmes de gestion des données au format
multi-outils non intégrés.

Title: Urban mobility: Leveraging machine learning and data masses for the building of simu-
lators
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Abstract: The so called data era we have
entered in is accompanied by an explosion
of data, both in variety and quantity. Public
transportation is a data-intensive field, and re-
lated information systems are often supported
by old technologies that struggle to keep up
as the amount of data continually increases.
This poses two problems. First, the massive
data generated by the transportation network
must be qualified and enriched with exter-
nal data sources in order to be used for de-
cision making. Second, in order to limit the
number of tools and the complexity of main-
tenance, it is desirable to integrate data gov-
ernance with decision support tools to allow

non-expert operators to manipulate this data.
Through four contributions leading to the pro-
posal of a technical framework that integrates
the past, present and future into a traditional
information system containing a priori mod-
els, this thesis argues that the integration of
various highly qualified datasets from the real
world into a single spatio-temporal model pro-
vides a qualitative, efficient and low-cost mean
of analysis, prediction and strategic decision
support for bus networks while depreciating
the use of data management systems in a non
integrated multi-tool data management sys-
tems?
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