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Résumé 

De nos jours, plus de la moitié de la population mondiale vit dans des zones urbaines. La prévision et 

l’analyse de la qualité de l'air dans les zones urbaines est un sujet d'actualité. L'amélioration des 

modèles de transport chimique à méso-échelle passe généralement par le développement de 

paramétrisations plus avancées en termes de dynamique et mécanismes chimiques. Dans la première 

partie de l'étude, trois configurations du coefficient de diffusion verticale (Kz) basées sur la théorie de 

fermeture de premier ordre (k-theory) sont testées avec le modèle CHIMERE alimenté par les données 

Européennes météorologiques IFS pendant une année. Ces configurations, bien que jugées efficaces 

pour les simulations de qualité de l'air à méso-échelle, montrent une surestimation significative du 

mélange vertical dans les zones urbaines avec des différences faibles entre les trois schémas. Il 

convient de noter que le modèle ainsi configuré a surestimé le rapport PM2.5/PM10 d'environ 20% 

quelle que soit la saison. L'étude de l'impact de la paramétrisation de la diffusion verticale confirme 

bien que la modélisation météorologique est d'une importance majeure pour la modélisation de la 

qualité de l'air. Par la suite, le modèle Weather Research and Forecast (WRF) couplé au modèle de 

transport de la chimie (CTM) CHIMERE a été utilisé pour comprendre l'impact des paramétrisations 

physiques sur la simulation de la qualité de l'air sur épisode de pollution en la région parisienne. Les 

différents schémas de canopée testés montrent des différences importantes avec une surestimation 

globale des concentrations pendant l'épisode de pollution. Les tests de sensibilité des schémas de la 

couche limite montrent une sous-estimation de la hauteur de la couche limite qui a pour conséquence 

une forte surestimation de la concentration des polluants pendant l'épisode de pollution. Le schéma de 

Boulac-BEP montre des performances significativement meilleures que les autres schémas pour la 

simulation de cette hauteur de couche limite ainsi que pour les concentrations en polluants, ce qui 

confirme bien que les schémas de canopée urbaine et de couche limite ont un effet critique sur la 

modélisation de la qualité de l'air dans la région urbaine. La troisième partie de ce travail porte sur 

l’impact de la résolution verticale de la grille et la hauteur de la première couche qui jouent également 

un rôle très important dans la modélisation du transport. Les trois configurations testées démontrent 

les capacités du modèle à simuler des journées normales hors épisodes de pollution. Cependant, lors 

d'un épisode de pollution, l'affinement de la résolution verticale et de la hauteur de la première couche 

entraîne une nette amélioration des résultats de modélisation en comparaison avec la configuration 
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initiale du modèle. La simulation et la prévision de la qualité de l'air en région urbaine sont donc 

influencées par les caractéristiques de la canopée urbaine, la couche limite et les conditions de 

diffusion, le modèle de surface terrestre ayant un léger impact sur la simulation météorologique et la 

qualité de l'air. Dans la dernière partie de ce travail, la diffusivité turbulente de WRF issue d’un 

schéma de fermeture de la diffusivité d'ordre 1.5 basé sur l'énergie cinétique de la turbulence est 

intégrée dans CHIMERE afin de représenter un mélange vertical plus réaliste près de la surface pour 

les applications de pollution urbaine. Une simulation haute résolution de 15 jours en hiver a été 

réalisée sur Paris, Lyon et Bordeaux avec des résolutions horizontale et verticale fines de 1,67km et 

12m respectivement. Il est à noter que la nouvelle diffusion verticale (NED) a amélioré la simulation 

du NO2 pour chaque site urbain par rapport à la diffusion Kz initiale (IKD). Les améliorations 

moyennes en termes de RMSE sont de 18,77%, 24,51% et 9,52% à Paris, Lyon et Bordeaux, 

respectivement. La simulation des PM2.5 et PM10 a donné les mêmes résultats que celle du NO2, avec 

des améliorations de 13,47% et 19,08% respectivement dans la zone urbaine de Paris. La simulation 

avec un coefficient de diffusion turbulente plus réaliste est meilleure qu’avec le Kz initial utilisé dans 

le CTM. 

Outre l’analyse de paramétrisations à l’échelle urbaine et leur influence sur la qualité de l’air à 

l’échelle urbaine, Ce travail de thèse permet donc à l'utilisateur d'identifier plus facilement les 

paramètres essentiels pour la configuration des modèles atmosphériques dans l’objectif d’une 

utilisation opérationnelle optimisée afin de simuler la qualité de l'air pendant les épisodes de pollution 

ou pour des analyses sur le long terme en zone urbaine. 

Mots-clés : Qualité de l'air ; modélisation ; urbain ; diffusion ; haute résolution 
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Abstract 

Nowadays, more than half of the world’s population lives in urban areas, air quality prediction in urban 

areas is therefore flagship topic. The improvement of mesoscale chemical transport models generally 

focused on the dynamics, physical parameterization processes, and chemical reaction mechanisms. In 

the first part of the study, three configurations of vertical diffusion coefficient (Kz) based on fisrt 

order closure K-theory are tested within CHIMERE model fed by IFS meteorology over one year. 

Although, all these Kz configurations are known to be efficient for mesoscale air quality simulations 

and the results show small differences between the three schemes, they all overestimated vertical 

mixing in urban areas. It is worth noting that the model used overestimates the ratio of PM2.5/PM10 

by approximately 20% for all seasons. Discrepancies on emission inventories could be a relevant 

explanation. Many studies on the impact of physical parameterizations indicates the need of more 

accurate simulations of meteorological conditions for air quality modeling at urban scale. Also, for the 

second part of this work, the Weather Research and Forecast (WRF) model coupled with the chemistry 

transport model (CTM) CHIMERE has been used to understand the impact of physics 

parameterizations on air quality simulation during a short-term pollution episode on the Paris region. 

Large differences were found between different canopy schemes, showing an overall overestimation of 

concentrations during the pollution episode. The boundary layer schemes sensitivity tests display an 

underestimation of the boundary layer height which leads to a strong overestimations of pollutants 

concentration. The Boulac–BEP scheme had significantly better performances than the other schemes 

for the simulation of both the PBL height and the pollutants concentrations, indicating that both the 

canopy schemes and boundary layer schemes have a critical effect on air quality prediction in the urban 

region. The third part of this work focuses on the vertical resolution of the grid and the height of the 

first layer which also plays a very important role in the transport modeling. The three configurations 

tested demonstrate the model's ability to simulate regular days without pollution episodes. However, 

during a pollution episode, the refinement of the vertical resolution and of the height of the first layer 

leads to a clear improvement of the modeling results compared to the initial configuration of the 

model. The air quality predictions in urban regions are mainly influenced by the urban canopy, the 

boundary layer and the diffusion conditions. The land surface model had a slight impact for both 

meteorological and air quality simulation. In the last part of this work, the eddy diffusion of WRF from 

a 1.5 order diffusivity closure scheme based on the kinetic energy of turbulence is directly integrated 

into CHIMERE in order to represent a more realistic vertical mixing near the surface for urban 

pollution applications. A two weeks high resolution simulation was performed in Paris, Lyon and 

Bordeaux with finest horizontal and vertical resolution of 1.67km and 12m respectively. The new eddy 

diffusion (NED) integrated in this research improves NO2 simulations at all urban site compared to the 

original Kz diffusion (IKD) on board CHIMERE. The average improvements in terms of RMSE are 
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18.77%, 24.51% and 9.52% in Paris, Lyon and Bordeaux, respectively. PM2.5 and PM10 simulation 

provided similar results with NO2, 13.47% and 19.08% improvements were found in the urban area of 

Paris. The simulation with more realistic eddy viscosities is better than initial Kz parameterization 

which has been widely used in CTM. This work illuminates the user to identify the best settings of 

atmospheric models for appropriate operational uses to simulate the air quality during pollution 

episodes or for long term analyses in urban areas. 

 

Keywords: Air quality; modeling; urban; diffusion; high-resolution 
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AQS Air Quality monitoring Stations 

ARW-WRF Advanced Research Weather Research and Forecasting model 
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BL Boundary layer 
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EPA Environmental Protection Agency 
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FALL3D three-dimensional Eulerian model 

GAINS Greenhouse gas - Air pollution Interactions and Synergies 

GFS Global Forecasting System 

h Boundary layer height 

IARC International Agency for Research on Cancer 

IFS Integrated Forecasting System 

IKD Initial K Diffusion scheme 

INS The French National Spatialized Inventory 

ISC Industrial Source Complex model 

K diffusion coefficient 

k von Karman constant 



 

Kz Vertical diffusion coefficient 

L Monin–Obukhov length 

LSM Land surface model 

LW Longwave radiation 

MB Mean bias 

MO Monin–Obukhov scheme 

MOS Meteorological observation stations 

MYJ Mellor–Yamada–Janjic scheme 

NCAR National Center for Atmospheric Research  

NCEP National Centers for Environmental Prediction 

NED New Eddy Diffusion scheme 

NH3 Ammonia 

NO Nitric oxide 

NO2 Nitrogen dioxide 

NOx Nitrogen oxides 

NWP Numerical Weather Prediction  

O3 Ozone 

PBL Planetary boundary layer 

PBLH Planetary boundary layer height 

PE Pollution Episode 

PM Particulate Matter 

PM10 Particulate Matter that have a diameter of less than 10 micrometers 

PM2.5 Particulate Matter that have a diameter of less than 2.5 micrometers 

PREV’AIR the French national air quality forecasting platform 

R Mean linear correlation coefficient 

RADM Regional Acid Deposition Model 

RB Relative bias 

RD Regular days 

RF Radiative forcing 

RH Relative humidity 



 

RMSE Root mean square error 

RRTMG Rapid radiative transfer model for GCMs scheme 

SHERPA Screening for High Emission Reduction Potential on Air 

SHF Surface heat flux 

SL Surface layer 

SO2 
Sulfur dioxide 

SOx Sulfur oxides 

SR Sunrise 

SS Sunset 

SW Shortwave radiation 

T2 2m temperature 

TKE Turbulent Kinetic Energy 

u* Friction velocity 

UAM Urban Air shed Model  

UCM Single layer urban canopy scheme 

UHI Urban heat island 

URB Urban canopy 

URBAN-PAM Urban parameterization 

VOCs Volatile organic compounds 

w* Convective velocity 

W10 10m windspeed 

WHO World Health Organization 

WP Whole period 

WRF Weather Research and Forecast model 

YSU YonSei University scheme 

z Altitude 
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Chapter I: Introduction 
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1.1 Air pollutants in the Atmosphere 

The atmosphere of Earth is schematically divided into four different sub layers: the 

troposphere, the stratosphere, the mesosphere, and the thermosphere, each of them with 

different chemical and physical properties (Mohanakumar, 2008; Williams and Avery, 1992). 

The troposphere is the lowest layer of the atmosphere which extends approximately up to 10 

to 15km from the surface of Earth and contains most of the atmosphere’s mass and human 

activities. Fossil fuels such as oil and coal have been powering the industrial development and 

daily life since the first industrial revolution (Najjar, 2011). Anthropogenic emissions of 

gaseous and particulate matters changed the share of many species in the atmosphere, causing 

air pollution, climate change and other environmental issues (Meng et al., 2009). Gaseous 

pollutants can be divided into primary pollutants and secondary pollutants (Nazaroff and 

Weschler, 2004). Primary pollutants refer to the original pollutants discharged directly from 

the pollution source into the atmosphere (Fisher, 2017). Secondary pollutants refer to a series 

of chemical or photochemical reactions between primary pollutants and existing components 

in the atmosphere, or several primary pollutants (Jenkin and Clemitshaw, 2000). Primary 

pollutants that have received general attention in air pollution control include sulfur oxides, 

nitrogen oxides, carbon oxides and organic compounds; secondary pollutants include sulfuric 

acid and photochemical compounds (WHO, 2006). 

The presence in the atmosphere of particles with different sizes, which are usually defined as 

aerosols with their specific chemical composition, is of particular interest. They are 

ubiquitous in the Earth’s atmosphere, but their distribution patterns are extremely variable, 

due to complex cycles of different aerosol types from various sources and with different 

lifetimes from a few days to a few weeks (Seinfeld and Pandis, 2016). Some aerosols can be 

directly emitted from both anthropogenic emissions (traffic emissions, industrial activities, 

biomass burning, etc.) and natural sources (vegetation, volcanoes, oceans, deserts, etc.) which 

are called primary particles, or later formed by physical and chemical mechanisms like the 

condensation of low-volatility gases, nucleation or chemical reactions, described as secondary 

particles (Hallquist et al., 2009). The size and chemical composition of an aerosol mixture 

present in the atmosphere is determined by its source and formation pathways (Colbeck and 
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Lazaridis, 2010). As shown in Figure1.1, particles with an aerodynamic diameter greater than 

2.5μm are usually produced by mechanical processes (coarse mode) whereas for nucleation 

mode particles (less than 10nm) homogeneous nucleation is the main source (Xu et al., 2011). 

In between these size ranges, at 10-100nm (Aitken mode) and 0.1-2.5μm (accumulation 

mode), particles are generated via coagulation from the nucleation mode which can further 

grow through condensation (Finlayson-Pitts and Pitts.Jr, 1999).  

 

Figure1.1 Typical sources, formation, removal pathways and size distributions of 

atmospheric aerosol(Finlayson-Pitts and Pitts.Jr, 1999). 

1.2 Effects of air pollution on climate 

Human activities, particularly fuel combustion increase the concentration of greenhouse gases, 

leading to global warming. This has also led to rising sea levels and melting of glaciers caps. 

As the temperature continues to rise, more environmental changes will inevitably occur (Bai 

et al., 2018). Studies have demonstrated that the average global temperature is expected to 

rise by 2 °C to 4.5 °C while the sea levels will increase about 28 cm until 2100 (Desonie, 

2007; Kemp et al., 2011). Aerosols also have significant impacts in climate change (Prather, 
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2009). These impacts are generally described in terms of radiative forcing (RF) ( Bond et al., 

2013; Charlson et al., 1992; IPCC 2013; Kok, 2011; Scott et al., 2018). Some pollutants 

mainly scatter solar radiation have a direct cooling effect, associated to negative RF (Myhre et 

al., 2013). In contrast, absorbing pollutants have a direct warming effect, it could darken the 

surface of snow and ice, reducing their albedo then hastening melting (Hansen et al., 2005). 

The largest contribution to RF is caused by increasing fossil fuel combustion, mostly of 

carbon dioxide (Andres et al., 2012). Those greenhouse gases and particles increased as a 

result of human activities especially in the past century. As illustrated by Figure1.2, 

semi-direct and indirect effects are also important processes on climate changes. The 

semi-direct effect corresponds to rapid adjustments induced by aerosol radiative effects on the 

surface energy. It enhances the heating of the surrounding air while reducing the amount of 

solar radiation reaching the ground that can stabilize the atmosphere and reduce convection, it 

could also increase the atmospheric temperature which reduce the relative humidity, inhibit 

cloud formation, and enhance the evaporation of existing clouds (Myhre et al., 2013).  

 

Figure1.2 Direct, semi-direct and indirect effects of aerosols on climate(IPCC. 2013). 

Figure1.3 summarizes the mean net RF estimated for the major air pollutants with uncertainty 

levels - as compared to reference conditions prevailing before the industrial age. Gaseous 

species globally display an increase of positive RF, uncertainties remains low (Shindell et al., 

2009). In contrast, climate change effects caused by aerosols are strongly associated with their 

chemical composition, with opposite influences, as well as much higher uncertainties. For 

example, inorganic species like nitrate and sulfate, globally exhibit negative RF, while black 
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carbon shows a strong positive RF through aerosol - radiation interactions organic aerosol are 

associated with a net negative RF at global scale (Corbera et al., 2016). However, it could also 

participate in local to regional positive RF due to brown carbon light absorption (Liu et al., 

2017). Overall, with the breakthrough in observation measurements and atmospheric model, 

researchers made a great improvement in the understanding of characteristics of atmospheric 

aerosols and their climate effect over the last decades, uncertainty in the total direct aerosol 

effect is reduced based on a combination of global aerosol models and observation-based 

methods. But for a single component of particulate matter, especially the influence of 

carbonaceous aerosol, the effect on RF remains uncertain. Meanwhile, as shown in Figure1.4, 

aerosols optical depth obtained from remote sensing is highly inhomogeneous, and the global 

aerosol composition varies greatly in space and time (Remer et al., 2008). Therefore, the 

regional differences in the impact of aerosols on climate change and the propagation process 

are also worthy of more in-depth study. Overall, effective climate change mitigation and 

adaptation strategies depend on the enhancement of our understanding of their sources and 

optical properties.  

 

Figure1.3 Change in RF effects caused by atmospheric pollutants for the period 1750–2011, 

associated with individual confidence range (IPCC, 2013) 
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Figure1.4 MODIS aerosol optical depth averaged over the 10-year period 2001–2010Pie 

charts shows the contribution of different aerosols to the total aerosol optical depth for 

different regions (Myhre et al., 2013). 

1.3 Health effect of air pollution 

Ambient air pollution is a complex mixture of aerosols and gases. PM2.5 and ozone are two 

important indicators for air quality (White, 2009; You et al., 2018). PM2.5 is a consistent and 

robust predictor for health effects from studies of long-term exposure to air pollution (Danesh 

Yazdi et al., 2020; Kloog et al., 2013). Studies indicate that a 10μg/m
3 

increase in ambient 

PM2.5 was expected to increase admissions in hospitals by 4.5% (Kwon et al., 2019). Ozone 

has been associated with increased respiratory mortality (Zhang et al., 2019) 

According to the World Health Organization (WHO), air pollution represents one of the 

greatest risks to public health (WHO., 2016), it attributes 3.7 million premature deaths to 
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outdoor air pollution and 4.3 million to indoor air pollution. Formation of air pollution 

episodes is caused by the harmful emission or excessive quantities of air pollutants combined 

with a lack of atmospheric dispersion (Florentina and Io, 2011; Watson et al., 1988a). This 

association between air pollution exposure and the risks to human health has been a public 

health concern for over 700 years (Yin et al., 2020). Despite this early recognition of the 

health risks associated with poor air quality it has only become a global topic over the last 80 

years (Manisalidis et al., 2020). Issues related to air quality has emerged in the human 

conscious with severe events like such as the Los Angeles smog in 1949, the Great London 

fog in 1952, and the Beijing haze in 2013 (Huang, 2018; Li and Svarverud, 2018; McNeill 

and Engelke, 2016; Xiao, 2015). Chronic exposure  also remaining risks, with air pollution 

leading to premature death of about 3 million population per year over the world (Anderson et 

al., 2012; Fang et al., 2013). In Europe, aerosols are assessed as the most worrying 

atmospheric pollutants along with nitrogen oxides and ozone (―Consolidated Annual Activity 

Report 2018 (CAAR) - EEA annual report — European Environment Agency,‖ n.d.). Health 

effects include difficulty in breathing, wheezing, coughing, asthma and worsening of existing 

respiratory and cardiac conditions (Kim et al., 2013; Levy et al., 2006). These effects result in 

increased medication use and premature death (Liu et al., 2018). Some studies are also 

showing air pollution impacts on fertility, pregnancy, premature birth, dementia, and/or 

obesity (Koman et al., 2018; Olsson et al., 2013). 

The various biological mechanisms beyond pollutants health effects still remains uncertainties 

(Samet and Krewski, 2007), but it also has been generally recognized that particle size and 

chemical composition are major factors determining their health effects (Lighty et al., 2000; 

Natusch and Wallace, 1974). Exposure to fine particulate matter has largest health risk (Bell 

et al., 2010; Power et al., 2015), since those small particles could join into the deepest regions 

of the lungs and transport the toxic compounds into the bloodstream. For instance, Quan et al 

(2010) indicated that PM2.5 was responsible for plaque exacerbation, causing vascular 

inflammation and atherosclerosis. (Feng et al., 2016) reported that PM2.5 promotes the 

initiation and progression of diabetes and driving adverse birth outcomes. Recognizing the 

dangers of air pollutants to public health, the European Commission has proposed to fix the 

ceiling of the annual average concentration of 25μg/m
3
 for PM2.5. The European Union 
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member states shall comply with this value since 2015 and the is reflecting to adopt more 

stringent standards in line with WHO guidelines. Furthermore, some compounds such as 

black carbon are suspected to be carcinogenic which have been recently classified in the 2A 

(probably carcinogenic to human) and 2B (possibly carcinogenic to human) groups by IARC 

(International Agency for Research on Cancer)(Baan, 2007; Lauby-Secretan et al., 2016). Air 

pollution is one of the greatest social and environmental problems, with terrible consequences 

(Koolen and Rothenberg, 2019a). Therefore, an efficient air quality simulation and forecast 

model especially in urban region can be a key tool to assess health risks for humans exposed 

to airborne pollutants. 

1.4 The development of atmospheric models 

Atmospheric models are mathematical representations based on a complete set of dynamic 

equations that can generate physical and numerical data of climate and chemical parameters 

(Li et al., 2016). Today, an atmospheric model becomes an essential tool in a variety of 

atmospheric sciences applications. Early in 1904, the Norwegian scientist Vilhelm Bjerknes 

listed seven basic variables (temperature; pressure; air density; humidity; the three 

components of wind velocity) and set down a two-step scientific viewpoint for the weather 

prediction: (i) the initial state of the atmosphere is determinates by observation giving the 

distribution of the variables at different levels in the diagnostic step first, (ii) then the changes 

over time calculated using the law of motion in the prognostic step (Lynch, 2008). By about 

1922, the British scientist Lewis Fry Richardson presaged the numerical weather prediction 

after the advent of electronic computers in his book Weather Prediction by Numerical 

Process (Inness and Dorling, 2012; Somerville, 2011). In those days, the weather forecasting 

was a haphazard process, the forecaster used rough techniques of extrapolation based on their 

knowledge of local climatology and intuition, but the principles of theoretical physics played 

little role in practical forecasting, weather forecasting was more an art than a science (Lynch, 

2002, 2008). Since the 1960s, with the development of computers and network 

communication techniques, the atmospheric model arises at the historic moment (Hersbach et 

al., 2015; Paine, 2019). For the past half century, with the rapid development of 
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high-performance computers, satellite detection and the continuous in-depth research of 

numerical prediction theory, numerical prediction has achieved great success and has become 

an important symbol of the atmospheric science and the main methods of weather forecasting 

operations (Meng et al., 2019). Although the processes of climate change are of global 

proportions, there are significant differences in its specific manifestations between regions 

(temperature; precipitation and land-use changes). Thus, atmospheric mesoscale models are 

being embedded to provide specific guidance to policy makers at all administrative levels. 

The development of mesoscale models goes back to the 1960’s, in which with a grid size of 

tens of kilometers to simulate regional weather over a few days (Dudhia, 2014). With the 

evolution of dynamics and physical representations and the availability of cheaper computing 

resources, high resolution simulation and forecast became possible and various ―local 

customized‖ models began to emerge. For example, a mesoscale meteorological model 

coupled with a chemical transport model (CTM) is an essential tool to provide the regional 

airshed information to help government develop strategies for manage regional air quality. In 

the past two decades, those models have been used to provide information for integrated 

models like GAINS (Greenhouse gas - Air pollution Interactions and Synergies) for key 

negotiations on the air pollution control agreements (Amann et al., 2011). New approaches 

based on statistics are in use or under development like the Screening for High Emission 

Reduction Potential on Air (SHERPA) tool. In SHERPA (Pisoni et al., 2017; Thunis et al., 

2016a), a different approach is undertaken that reproduces the grid-cell-to-grid-cell approach 

but does not require anywhere near as many CTM runs. SHERPA assumes that the unknown 

parameters vary on a cell-by-cell basis but are no longer independent of each other. 

According to the model design concepts and parameters, the development of CTM is roughly 

divided into three generations (Casado, 2013). The first generation of CTM originated in the 

1970’s which mainly include the box model based on the law of conservation of mass 

(Seinfeld, 1988) such as Empirical Kinetic Modeling Approach (EKMA), the Gaussian 

dispersion model based on the statistical theory of turbulence diffusion (Atkinson et al., 1997) 

like Industrial Source Complex model (ISC). These models use simple, parameterized linear 

mechanisms to describe complex atmospheric physical processes, which are suitable for 

simulating the long-term average concentration of inert pollutants (Watson et al., 1988b). In 
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the early 1980s, with the study of the turbulence characteristics of the atmospheric boundary 

layer, researchers found that the Gaussian model could not answer many questions, which 

gradually promoted the development of the second generation. The second generation of 

CTM considers nonlinear response mechanism and incorporates the treatment of gas and 

aqueous phase chemistry. These models divide the simulated domain into many 

three-dimensional grid cells, the cloud, fog and precipitation scavenging processes are 

calculated in each cell (Carey Jang et al., 1995; Liu et al., 1984; Stockwell et al., 1990). 

Representative models in this category include the Urban Air shed Model (UAM), the 

Regional Acid Deposition Model (RADM), etc. The second generation CTM are only 

designed to address individual pollutant issues such as ozone and acid deposition, which does 

not fully consider the mutual transformation and mutual influence of various pollutants (Reis 

et al., 2005). However, the physical and chemical reaction processes among various pollutants 

are complex in the real atmosphere. In 1990’s, the US Environmental Protection Agency 

(EPA) developed the third-generation air quality simulation platform Models-3 based on the 

concept of "one atmosphere" (Byun and Schere, 2006a). At present, the most widely used are 

the third-generation comprehensive CTM in clouding WRF-Chem, the Comprehensive 

Air-quality Model with extensions (CAMx), Community Multiscale Air Quality Model 

(CMAQ), CHIMERE, etc.  

The WRF-Chem is a regional atmospheric dynamic-chemical coupling model developed by 

the US National Center for Atmospheric Research (NCAR), which is integrated with the 

atmospheric chemistry module in the mesoscale Weather Research and Forecast model (WRF) 

(Grell et al., 2005). The WRF provides online large airflow fields for CTM, simulating 

pollutant transportation, dry and wet deposition, gas phase chemistry, aerosol formation, 

radiation, biological radiation, etc. (Lin et al., 2020). The advantage of WRF-Chem is that the 

meteorology mode and the chemical transport mode are fully coupled in time and space 

resolution to achieve true online feedback. The CAMx model is a comprehensive CTM 

developed by ENVIRON on the basis of the UAM model. In addition to the typical features 

of the third-generation air quality model, the most famous features of CAMx include: 

two-way nesting and flexible nesting, grid plume module, ozone source allocation technology, 

particulate source allocation technology(Bove et al., 2014; Pepe et al., 2016). The CMAQ, 
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emission inventory processing model (SMOKE), mesoscale meteorological model (MM5 or 

WRF.) together constitute the Models-3 platform, of which CMAQ is the core of the entire 

system (Hanna, 2008). The CMAQ was originally designed to comprehensively deal with 

complex air pollution problems such as tropospheric ozone, acid deposition, and visibility. 

For this reason, the design concept of CMAQ can systematically simulate various scales and 

various complicated air pollution issues. The CMAQ model has become a quasi-regulatory 

model used by the US EPA in environmental planning, management and decision-making. 

The characteristics of this model are: simultaneously simulate the behavior of a variety of air 

pollutants, including ozone, PM, acid deposition, and visibility and other air quality problems 

in different spatial scales; make full use of the latest Computer hardware and software 

technologies, such as high-performance computing, modular design, visualization technology, 

etc., make air quality simulation technology more efficient and accurate, and the application 

fields tend to be diversified. Since CMAQ 5.0, the model has realized the on-line coupling of 

meteorological model, absorbing the advantages of WRF-CHEM model (Kong et al., 2015). 

CHIMERE is a three-dimensional CTM driven by meteorological drivers like MM5 or WRF. 

More than 80 kinds of species more than 300 reactions are described in the model. Processes 

include chemistry, transportation, vertical diffusion, photochemistry, dry deposition, 

absorption in and below clouds, and SO2 oxidation. Clouds are included in the process model. 

It can simulate processes including gas-phase chemistry, vertical diffusion, photochemistry, 

aerosol formation, deposition and transport at regional and urban scales (Bessagnet et al., 

2004; Vautard et al., 2005). A new version CHIMERE-V2019 has realized the online 

coupling of meteorological model like WRF-Chem and CMAQ (Bessagnet et al., 2020). 

Compare to the first and second generation CTM, the third generation CTM has distinct 

advances in:  

(i) full consideration of various atmospheric physical processes, chemical reactions 

between pollutants and gas-solid two-phase transformation process (San José et al., 

2009); 

(ii) based on nested grid design, it can be used as a multi-scale atmospheric simulation 

and prediction tool (Xue et al., 2001); 
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(iii) simultaneously simulate the variety of air pollutants, including ozone, PM, acid 

deposition, visibility and other environmental pollution problems; 

(iv) make full use of the latest computer technologies, such as high-performance 

computing, modular design, visualization technology to make air quality 

simulation technology more efficient and accurate (Reis et al., 2005). 

Today, around ninety nations run their own mesoscale models until 2016 either for specific 

regions or for specific applications such as local air quality, dust transport, agricultural 

production, airport weather, solar ultraviolet radiation and hydrology according to World 

Meteorological Organization technical progress report 

(https://www.wmo.int/pages/prog/www/DPFS/GDPFS-Progress-Reports.html). Despite the 

remarkable advances of atmospheric model over the past decades, formidable challenges 

remain. The effective coupling between the dynamical processes and physical 

parameterizations during the short-term weather changes and extremes is still a significant 

challenge. Under the background of global warming, the chaotic nature of the atmosphere 

becomes stronger, which puts forward higher requirements for long-term accurate forecasting, 

a stronger fusion between model and observations for its data assimilation and bias 

corrections are needed. Maybe the next-generation model with a focus on chemical and 

physical processes, neural networks, machine learning are the ways in the future model 

evolution. 

1.5 Urbanization and air quality 

In recent decades, air pollution in urban areas, especially megacities, have aroused people's 

attention (Baklanov et al., 2016b). With the accelerating process of industrialization and 

urbanization, an increasing number of people will be affected by such process especially in 

developing regions (Beirle et al., 2011; Fang et al., 2015; Hopke et al., 2008). Urbanization 

was positively related to global health in the short term and long term. In the short run, 1% 

increase in urbanization was associated with reduced mortality, under-five mortality, and 

infant mortality of 0.05%, 0.04%, and 0.04%, respectively, as well as increased life 

expectancy of 0.01 year (Wang, 2018). However, the process of urbanization has also made 

https://www.wmo.int/pages/prog/www/DPFS/GDPFS-Progress-Reports.html
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important contributions to regional climate changes and has caused a bad effect on ecosystem 

and extreme climate significantly increased (Changnon et al., 1996; Semenza et al., 1996). 

Since the end of World War II, the world’s population has grown from 2.5 billion to about 7 

billion today, the urban pollution has risen from below 30% to 58% in the past seventy years. 

Air pollution in cities is exacerbated by increased human activity in urban areas due to 

population growth (Miranda et al., 2015). The recent global lockdown events response to 

COVID-19 pandemic have reduced the NO2concentrations and particulate matter levels by 

about 60% and 31% respectively by using satellite data and a network of more than 10000 air 

quality observation stations in 34 countries (Venter et al., 2020), the NO2 and PM2.5 

concentration in China was reduced by around 20% and 17% for 30–50 days (Z. Liu et al., 

2020; Zinke, 2020). Using the mesoscale meteorological and chemical transport model, 

Menut et al.(2020) noted a decrease of -30% to -50% for NO2 and -5% to -15% for particulate 

matter in all western Europe counties during the lockdown events. In general, air pollution is 

positively correlated with the initial and acceleration stages of urbanization, with pollution in 

major cities tending to increase during the construction phase, passing through a maximum 

pollution level and then again decreased at the end of the urbanization process as abatement 

strategies are developed (Fenger, 1999). In the industrialized Europe countries, urban air 

pollution is in some respects in the last stage with effectively reduced levels of many 

pollutants such as Sulphur dioxide, carbon monoxide and lead (Fenger, 2002). Figure1.5 

shows that ground‐level concentrations of almost all pollutants have declined steadily since 

2000 in 28 countries Europe Union (EU28). The two notable results concerning emission 

reductions are the total SOx from the EU28 member states were cut by 69 % since 2000 and 

the almost no changes of total ammonia (Koolen and Rothenberg, 2019). 
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Figure1.5 Emission trends in the EU28 on the basis of fuel sold (Koolen and Rothenberg, 

2019) 

Besides, geographical condition also plays an important role in transportation and dispersion 

of pollutants. Pollutants dispersion processes over the valley-basin city are much more 

complicated than over flat areas. Therefore, pollution episodes have been frequently 

witnessed over complex terrain, especially in wintertime (Chen et al., 2019; Sabatier et al., 

2020). In coastal cities, shipping emissions contribute to air quality degradation. Viana et al. 

(2014) found that shipping emissions contribute with 1% to 7% for PM10, with 1% to 20% 

for PM2.5, and with 7% to 24% for NO2 annual mean concentrations in European coastal 

areas. In addition, continuing urbanization has resulted in cities that are almost always 

warmer than the surround, which are known as urban heat island (UHI). A recent research 

shows that urban region has higher heat index than rural areas by a difference of about 1.5–

2°C (Bhati and Mohan, 2018). Compared with the natural vegetation canopy, the city has its 

unique features: taking buildings as an example, different buildings have different functions, 

shapes, heights, orientations, styles, etc. (Wong and Chen, 2008). Figure1.6 shows the 

differences in surface temperature between buildings and vegetation canopy. Meanwhile, UHI 

can significantly exacerbate building energy consumption (Palme et al., 2017). The growing 

cooling energy consumption caused by UHI will increase CO2 emissions by up to five times 

in 2050 than in 2000 for buildings in cities (Y. Liu et al., 2020). Besides, there are various 

types of artificial surfaces in urban areas, such as asphalt roads, concrete sidewalks, glass 
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curtain walls, parking lots, and green spaces which have impact on urban air quality (Wise, 

2016). For example, computational fluid dynamics studies indicated that the flow resistance 

of tree crowns decreased wind speed and the dispersion of pollutants is limited in the ground 

level and the particulate matter concentrations accumulate within the canyon (Gromke and 

Blocken, 2015). These diversified types of artificial areas appear alternately, leading to 

complex, diverse, and non-uniform urban canopy characteristics, which give more complex 

turbulent airflows in urban region, increased the difficulty of air quality simulation and 

forecast in cities than in other regions. The urban canopy, urban street canopy and urban 

boundary layer consist of the urban micro environment. The boundary layer is the 

atmospheric structure closest to the underlying surface. The meteorological conditions within 

the boundary layer play an important role in the formation of air pollution (Bianco et al., 

2008). The wind field determines the regional transportation of pollutants. The height of the 

atmospheric boundary layer determines the amount of ventilation and the dilution capacity of 

pollutants. Heavy pollution episodes are always accompanied by a low boundary layer 

height(Quan et al., 2014; Yin et al., 2019).  In cities, urbanization causes thermodynamic 

perturbations and facilitates the development of the boundary layer (Miao et al., 2019). 

Moreover, some aerosols like black carbon can warm the upper PBL which help to stabilize 

the boundary layer height and weaken turbulent mixing, resulting in a decrease of the 

boundary layer height (BLH), which enhances the accumulation of air pollutants (Ding et al., 

2016; Li et al., 2017).  

Overall, cities are highly sensitive to the impact of meteorological disasters. How to be 

efficient in extreme climates risk analysis and early warning, firmly keeping the bottom line 

of city safe operation and ecological environment protection is a concern of scientists and 

politicians. The impact of the accelerated urbanization process on the regional climate and 

atmospheric environment mainly includes the following aspects: 

(1) The urban underlying surface is defined as the part of the city in direct exchange with 

the atmosphere (Y. Li et al., 2020), the changes of the urban underlying surface have 

changed the environmental properties of the natural underlying surface; 



Chapter I 

16/191 

(2) The urban canopy has a "shading effect" on solar radiation, which reduces the solar 

radiation reaching the surface. At the same time, there is the exchange and storage of 

radiation energy between the buildings in the canopy, which affects the surface energy 

balance; 

(3) Human activities will increase atmospheric pollutants and artificial heat generation. In 

short, in addition to bringing economic and social benefits to humanity, urbanization 

has also brought many problems to the urban climate and atmospheric environment 

Statement. 

The climate effect brought by urbanization and its impact on the atmospheric environment is 

becoming one of the key issues of the world. 

 

Figure1.6 Urban heat island in cities. 

1.6 Objectives and outline of the PhD thesis 

The main goal of this PhD work is to improve the air quality simulation and forecast in 

France especially in urbanized areas. For its operational requirements, the system requires 

continuous improvements, particularly the ability to better predict certain types of episodes 

and exceedances of limit values for criteria pollutants. Patterns of urban air pollution are 

rather variable and spatially heterogeneous. Turbulence plays an important role on the vertical 

mixing of physical parameters and pollutants.. Understanding the impact of multiple 

parameterization schemes on air quality simulation can help improve model configuration to 

address local areas. 
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The third generation of CTM system generally has three basic modules: a meteorological 

process module (input information from mesoscale meteorological models), emission 

inventory pre-processor and the core air quality simulation module. Studies indicate that the 

physics parameterizations play the key role in both meteorological and air quality simulation 

particularly in urban areas. The buildings and cement pavement form the urban canopy layers 

and surface roughness, therefore change thermal and dynamic characteristics of the surface 

layer. These changes will significantly influence the surface heat accumulation that has a 

negative effect of the planetary boundary layer (PBL) height and surface wind speed which 

affect the transport and dispersion of pollutants. The PBL height is a key factor on the 

formation and evolution of pollutants. A low boundary layer height is regarded as a major 

meteorological process for haze formation. Thus, a smart selection of physics 

parameterizations plays a crucial role in urban air quality prediction.  

With the development of computer performances, high resolution meteorological and air 

quality simulations become possible. However, studies demonstrate that the higher resolution 

does not represent better simulation results, horizontal resolution below 1km is not necessary. 

Meanwhile, the building clusters modified surface roughness and zero-plane displacement 

height, an overestimated vertical resolution can cause unreasonable wind flows near surface. 

The K-theory shows certain advantages in dealing with the dispersion of air pollution at the 

mesoscale. It can use the observed wind speed profile data to obtain the concentration 

distribution of pollutants without assuming a certain form of distribution. However, high 

pollutants concentrations are frequently found under stable and cold weather conditions, such 

conditions are characterized by a stratified lower atmosphere and weak turbulent diffusion. In 

cities, traffic, residential and local industrial emissions have a major share of the pollutants; 

those emissions can accumulate and have longer residence times near the ground level due to 

the inefficient transport and mixing. The transient turbulent flow plays an important role on 

the transportation and deposition of pollutants, thus, an advanced vertical eddy coefficient 

may helpful to provide an accurate prediction of pollution during the short-term episode. It is 

noteworthy that meteorological sciences have focused on extreme events to forecast heavy 

precipitations, thunderstorms, high wind speed conditions while air quality is mainly driven 
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by stable and calm meteorological situations and these latter conditions are difficulty captured 

by meteorological models. 

Different geographical areas will be investigated in France, especially mainly for short-term 

pollution episodes. The ability of models to assess air quality management strategies is also 

important, it will be appropriate during this study to perform the diffusion and dispersion of 

main pollutants and possibly improve the vertical diffusion coefficient in the selected CTM 

(CHIMERE here) (Menut et al., 2013; Mailler et al., 2017). 

The objectives of this work are to provide clues and answers to the following questions: 

1) Which formulae for computing the vertical diffusion coefficient based on K-theory gives the 

best performances on air quality simulation? 

2) How well do physics parameterizations impact the urban air quality simulation and 

forecast? 

3) How does vertical grid resolution and first layer height impact the meteorological and 

chemistry transport modelling? 

4) Can we improve the vertical mixing through the use of turbulence kinetic energy sub-grid 

eddy coefficient? 

To tackle these issues, the present work has been breakdown in four main steps detailed in the 

various chapters. 

Chapter II addresses the results of the one-year air quality simulation that was determined by 

three K-theory vertical diffusion coefficient. Inter-annual trends, seasonal and daily variations 

of main pollutants concentrations are presented. Here, it has been chosen to focus both on 

cities and surroundings over the whole France.  

In Chapter III, the impact of physics parameterizations on high-resolution meteorological 

and air quality simulations over the urban region will be analyzed, with a focus on a winter 

pollution episode in Paris region. Three canopy schemes, three boundary layer schemes, two 

land surface schemes will be tested in this part. Benefits as well as drawbacks and specific 

issues of the considered approaches are discussed and compared. Finally, the most reasonable 

physics parameterizations will be used in the subsequent chapters. 
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In Chapter IV, the impact of vertical gird resolution and first layer height on meteorological 

and chemistry transport modelling will be analyzed; three vertical resolution configurations 

and three first layer height will be applied in a fifteen days winter episode including a 

pollution event.  

In Chapter V, we use a 1.5-order turbulence kinetic energy-based eddy diffusivity closure 

scheme from WRF defined as NED on the urban air quality context to assess consequences of 

surface-level pollutants concentrations in Paris, Lyon and Bordeaux regions.  
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2.1 General principle of the chemical transport model 

The chemical transport model (CTM) is a mathematical tool used for air quality research. It 

uses numerical methods to describe the dispersion, diffusion, chemical reactions and removal 

process of pollutants in the atmosphere (Karl, 2018). Emission sources, topography and 

meteorological data of the studied area are the key elements for an air quality simulation. In 

other words, the tool used for air quality simulation and forecast not only the CTM itself, but 

a simulation system with CTM as the core, including multiple related components. An air 

quality simulation system usually consists of five parts: meteorological field, pollutant 

emissions, boundary conditions, post-analysis procedures and the CTM core (Sarath K. 

Guttikunda et al., 2011). The framework of the system is shown in Figure2.1. 

 

Figure2.1 General principle of the air quality simulation system 

For a limited-area simulation, the model cannot solve for points on the edge of the grid 

because there are no points beyond the boundary to use for evaluating the derivative 

perpendicular to it (Warner, 2011). Therefore, the lateral-boundary condition need specified 

for the value of dependent variables at these boundary points. In addition, the upper and lower 

boundary conditions also must be specified in mesoscale model. For urban and regional scale 
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numerical simulations, the usual method for determining boundary conditions is to use the 

results of larger-scale regional models or global-scale models as boundary conditions. The 

meteorological field provides the meteorological data with a certain temporal and spatial 

resolution, such as wind field, temperature, mixed layer height, radiation, vertical diffusion 

coefficient, cloud characteristics, etc. (Rao et al., 2003). Usually, in air quality models, the 

atmospheric motion control equation is independent of the pollutant chemical dynamics 

equation. Thus, the formation of pollutants in the atmosphere will not significantly change the 

meteorological conditions and the simulation of meteorological field is independent of air 

quality simulation, this case is called as offline approach (Baklanov et al., 2016a; Seo et al., 

2018). However, changes of pollutants concentrations have a non-negligible impact on 

meteorological conditions in some cases, in this case online approach is required. Study on 

the coupling of mesoscale meteorological models and CTM have shown that changes in 

pollutant concentration have slight impact on meteorological conditions (Bessagnet et al., 

2020; Jacobson, 1997). Therefore, most air quality simulation systems use offline approach. 

Also, an identified drawback regarding the boundary conditions is a possible inconsistency of 

the model species and chemical regimes between the large-scale model and the nested 

regional model if they are different. 

Accurate emission inventories play a crucial role in the simulation results. The list of species 

should satisfy the chemical reaction mechanism and temporal and spatial resolution of the 

model. For Eulerian models, gridded hourly emission data is usually required. The main 

pollutants include CO; NOx; SO2; NH3; PM; VOCs; etc (Crippa et al., 2018). For practical 

applications to support decisions and policy making, the purpose of air quality modeling is to 

grasp the characteristics and laws of pollution, explore its causes, and finally provide 

scientific control countermeasures (Zhang and Na, 2018). The post-analysis program uses the 

observational data of the ground observation stations to analyze the simulation results which 

provide information toassess the impact on the environment and the economy and formulate 

corresponding control plans. In general, the principle of CTM should following those steps: (i) 

understand and determine the physical processes are needed for the simulation; (ii) choose a 

sufficiently small horizontal grid increment to resolve all the processes to be simulated on the 
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grid, numerically a finer resolution is supposed to be better; (iii) select the most suitable 

projection map for the range of the model grid, (iv) ensure the vertical resolution is 

reasonably compatible with the horizontal resolution, and can accurately define important 

vertical structures (Warner, 2011).  

2.2 Urban meteorology  

In the past centuries, humans are increasingly gathering in large settlements, as well as the 

urban population exceeded the rural (Morais et al., 2018). The population is concentrated in 

less than 3% of the Earth’s land area (Baklanov et al., 2018). It is expected that two-thirds of 

the world’s population will live in cities by 2050 (WUP 2014), therefore general knowledge 

of climatic characteristics of typical cities and differences with rural areas are becoming more 

and more crucial (Karlický et al., 2020).  

Urbanization has a major impact on urban meteorology. It can change the atmospheric 

diffusion capacity thereby affecting the concentration of pollutants (Liu et al., 2015), weather 

and climate at local, regional and global scales (Baklanov et al., 2007). First, the urban 

surface are mostly characterized by buildings, roads and permeable natural surfaces, where 

various physical processes such as radiation trapping, atmospheric flow, turbulent heat 

exchange, and underground heat conduction occur, resulting in a unique local meteorology 

(Kim et al., 2020; Uehara et al., 2000). Second, changes in chemical emissions and feedbacks 

of atmospheric pollutants affect the weather and climate both locally and further afield 

(Reinmuth-Selzle et al., 2017). The main examples includes: (i) the distribution of rough 

elements which can affect the turbulence state, speed and flow direction; (ii) the extensive use 

of impervious materials which generally reduces vegetation coverage in urban areas thereby 

affecting the hydrological and meteorological conditions and the deposition of pollutants; (iii) 

the urban canopy affecting the flow and heat exchange between different land covers; (iv) the 

release and diffusion of pollutants can affects radiation transmission and the formation of 

clouds and precipitation (Baklanov et al., 2018). The most well-known urban meteorology is 

the so-called urban heat island (UHI), which was first described by Oke and Maxwell (Oke 

and Maxwell, 1975) in the year 1975 and has been extensively studied in the following 
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decades (Baklanov et al., 2016c; Karlický et al., 2020; KIM, 1992; Oke, 1982; Zhang et al., 

2017). In short, it can be described as urban temperature is higher than in the countryside. 

UHI not only affects the microscale and mesoscale circulation to a large extent, but also cause 

the formation of convection (Dixon et al., 2003;). Several studies have demonstrated that the 

increase in the number of convection phenomena in cities were related to the increase in the 

convergence of the lower-level over urban areas (Fujibe, 2003). Theeuwes et al. (2019) found 

the cloud cover enhancement over urban region of Paris and London during summer because 

of increased convection caused by UHI. With the rapid improvement of computer capabilities 

and the widespread application of remote sensing technology in meteorology, geographic 

information on urban surfaces can be obtained with higher precision, which makes it possible 

to develop and apply high-resolution urban boundary layer models. Some studies indicate that 

meteorological variables are significantly affected by the urban canopy. For example, the 

impact of urban boundary layer structure causes changes in dispersion conditions (Karlický et 

al., 2018), which have considerable consequences for primary or secondary pollutant 

concentrations (Huszar et al., 2020; Li et al., 2019). Manola et al. (2020) found the overall 

precipitation increased in the urban areas of Amsterdam in comparison to rural surroundings.  

In general, the relationship between meteorology and city is mutual: meteorology affects how 

urban space is used such as the different concerns between coastal cities and landlocked cities 

(Pelling and Blackburn, 2013) or tropical cities and boreal cities. In turn, the city has changed 

the regional meteorology conditions, resulting in differences in cloud cover, solar radiation, 

temperature and wind speed between the city and its surrounding areas thereby resulting the 

transport, diffusion, and chemical transformation of particulates and gases. Figure2.2 

summarized the main linkages between cities, air quality and climate. Specifically: (i) 

non-linear interaction and its feedback between emissions, land use, reaction and meteorology; 

(ii) complex spatial scales from local to global and time scales from minutes to centuries; (iii) 

mixing of pollutants from multiple pollution sources; (iv) interaction between city 

characteristics and emissions (Baklanov et al., 2010). 
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Figure2.2 The main linkages between megacities, air quality and climate (Baklanov et al., 

2010) 

2.3 Urban canopy modeling 

There are numbers of methods used to represent the dynamic and thermodynamic effects of 

urban areas on the atmosphere and each city has its unique spatial structure and urban 

metabolism characteristics (Ching, 2013). The smartest solution is to use a computational 

fluid dynamics (CFD) model, which clearly expresses the influence of each building on the 

atmospheric structure (Kirkil et al., 2012; Letzel et al., 2008). However, those fine-precision 

CFD models are extremely computationally luxurious to use. Based on the comprehensive 

consideration of model performance and computing resources, mesoscale meteorological and 

CTM models are increasingly being applied up to urban areas (Burian et al., 2007) with fine 

grids up to 1km resolutions (Tong et al., 2005).  

In contrast to the fine-precision CFD models, for meteorological and air quality simulations in 

urban areas, all the normal mesoscale needed is the overall contribution of the bulk effects of 
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built-up areas on the mesoscale processes. The mesoscale model defines surface properties 

through adjusting parameter attributes associated with land use and other surface covers 

datasets to represent the altered morphological, reflective, and anthropogenic heating aspects 

so that they approximate the artificial surface conditions in cities (Beltran-Przekurat et al., 

2012). For example, the roughness length can be used to indicate the resistance of the 

building. The albedo can be reduced to account for the existence of dark roofs and shortwave 

radiation capture in street canyons. The heat capacity and thermal conductivity of the 

substrate can be increased to solve the problem of heat storage in the walls of buildings; 

reduce the water capacity of the substrate to reflect the universality of impervious surfaces 

(Liu et al., 2006). The six key physical parameters of land-use categories are albedo, 

emissivity, surface thermal inertia, roughness length, soil moisture availability and soil heat 

capacity, respectively (H. Li et al., 2020). However, given the complexity of the urban system, 

those similarity frameworks may encounter problems when applied in the urban context (Roth, 

2007), some other schemes are needed to represent more complex processes related to the 

presence of buildings and non-natural substrates. Oke (1988) provided a concept of the 

atmospheric regimes overlying urban areas for the first time. Since the flow convection and 

atmospheric processes respond to the heterogeneity of the urban surface, the boundary layer 

structure over urban areas are necessarily multi-scale (Klein et al., 2007). The varying 

buildings heights, distribution densities and varying street widths create a mean condition in 

the urban canopy. The layers above urban canopy is continuously adjusted by the vertical flux 

caused by the horizontal changes and gradients of the underlying land use and canopy 

structure. This situation produces countless internal boundary layers, and the turbulence 

generated in each boundary layer is balanced by dissipation. Urban canopy parameterizations 

with varying complexities were developed and coupled with the model to improve its skills in 

capturing fine-scale urban processes and in assessing the environmental issues (Kondo et al., 

2005; Kusaka et al., 2001; Kusaka and Kimura, 2004; Liao et al., 2014). The single layer 

urban canopy scheme (UCM) parameterizes the aggregate effects of the urban morphology, 

but does not explicitly represent the effects of individual buildings and street canyons 

(Kusaka et al., 2001). The UCM considered radiation capture and wind shear in urban canopy 

affected by the geometry of buildings and roads (Huang et al., 2019). However, the UCM is a 



Chapter II 

38/191 

single layer parameterization, which means moisture, heat and momentum fluxes are defined 

at the bottom boundary of the lowest atmosphere in the model (Warner, 2011). Thus, a 

multiple layer building effect parameterization scheme (BEP) was developed by (Martilli et 

al., 2002) in order to account for the three-dimensional nature of urban surfaces and the fact 

that buildings distribute sources and heat, moisture and momentum vertically throughout the 

urban canopy. The impact of urban canopy schemes will be discussed in the Chapter III of the 

manuscript. 

2.4 The basic equations and dispersion in the urban canopy layer 

In the atmospheric context, anthropogenic emissions are mainly influential on the lower urban 

atmosphere layers and communicated to regional, global, and smaller scales via transport and 

turbulence processes (Fernando et al., 2010). The understanding of the wind flows in an urban 

region and the concomitant dispersion of material released in that flow is gaining importance. 

Britter and Hanna, (2003) suggested that the dispersion in urban area should be classified in 

four scales of domain coverages: (i) 100km to 200km defined as regional scale; (ii) 10km to 

20km defined as city scale; (iii) 1km to 2km defined as neighborhood scale; (iv) 100m to 

200m defined as building scale.  

Although there are a large diversity of Eulerian models, most of them are built on the same 

pollutant continuity equation as (4.1):  
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This general equation describes the chemical reaction, transport and diffusion, deposition and 

emission of pollutants. With ρ the concentration of gas; t the time; u, v, w the component of 

wind speed in x, y, z direction; Kx, Ky, Kz the horizontal and vertical diffusion coefficient; S 

the source and sink of pollutants; R chemical reaction term, determined by the chemical 

reaction mechanism of pollutants in the atmosphere. Figure2.3 gives an example of mass 

conservation, taking the x direction as an example, the input and output wind speeds are u1 
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and u2, respectively, the gas concentrations at the left and right boundaries of the cube are ρ1 

and ρ2. Then, the flux densities of the input and output cubes are Fx1 = u1ρ1 and Fx2 = u2ρ2, 

respectively.  

  

Figure2.3 Example of mass conservation (Jacobson, 2005).  

However, because atmospheric motion is a turbulent motion, that is, irregular motion. 

Therefore, it is difficult to characterize the transport flux density F = uρ. Especially in the 

vertical direction, the turbulent motion causes the gas concentration and vertical wind speed 

to fluctuate rapidly over time. 

In the simulation processes, what is interesting is not the instantaneous flux value, but the 

average flux over a certain period. Therefore, Reynolds decomposition can be used to deal 

with the problems caused by turbulence. Decompose the value of ρ and u, v, w into two parts: 

the average value and the disturbance value relative to the average value as the equation (1.2): 
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(1.2) 

With   ,   ,   ,   the average value of ρ, u, v, w in a certain period of time; ρ’(t), u’(t), v’(t), 

w’(t) the disturbance value relative to the average value. According to the definition (1.3): 

  ’ 0,  ’ 0 ,  ’ 0,  ’ 0 (1.3) 

In x, y, z directions (1.4):  
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 (1.4) 

With        the advection flux, produced by the transport of average wind;     the turbulent 

flux, produced by the covariance of wind speed and concentration. In the vertical direction, 

the upward and downward motions caused by turbulence are generally close, the average 

wind speed often smaller than the disturbance value. This causes      to be usually greater 

than     , which is the main part that affects the vertical transport. In the horizontal direction, 

it is the opposite (Jacobson, 2005).  

In CTMs, empirical parameterization methods are required to estimate the turbulent fluxes 

(Dwivedi et al., 2020). One of the widely used methods is so called K-theory. Assuming that 

the diffusion process caused by turbulent motion is similar to molecular diffusion, analogy to 

the law of molecular diffusion defines an empirical diffusion coefficient K, as the equation 

(1.5): 
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With   ,   ,    the diffusion coefficient in x, y, z direction, respectively. Such scheme 

only retains the prognostic equations for the zero order mean variables like temperature, wind 

speed and humidity, which is also called first order local closure scheme (Stull, 1988). This 

scheme works well when the turbulent eddies are relatively small and locally generated. 

This chapter addresses the results of the one-year air quality simulation that was performed 

with three different first order local closure scheme (K-theory scheme) to estimate the vertical 

diffusion coefficient (Kz) within the boundary layer The initial Kz in CHIMERE is defined as 

the equation (1.6): 
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 (1.6) 

where k is the von Karman constant set to 0.41 in the model, z is the altitude, h is the 

boundary layer height, and ws is the vertical scale given by the similarity formulae. 

Convective turbulence driven by buoyancy dominates during the day, while turbulence driven 

by wind shear at night is more dominant (Warner, 2011). Figure2.4 shows the typical diurnal 

variation of the boundary layer structure. The boundary layer height during the day is 

determined by vertical extent of the turbulent mixing. During the daytime, sunshine increases 

the surface temperature, buoyancy generates turbulence and extends to the troposphere, and 

the convective mixing layer increases. Usually the thickness is about 1000m. This period is 

called an unstable condition in the vertical mixing (Troen and Mahrt, 1986). At night, as the 

temperature decreases, the buoyancy gradually disappears. The energy of the turbulence near 

the surface can only calculated from the vertical wind shear of the horizontal wind. Therefore, 

in most cases, the boundary layer is much higher during the day than at night, which is 

so-called stable condition in mixing process. 

 

Figure2.4 Typical diurnal variation of the boundary layer structure(Oke, 1982). Sunrise (SR), 

Sunset (SS). 

In stable conditions (h/L ≥ 0), the ws is defined as (1.7):  

     
  

       ⁄
 (1.7) 

In unstable conditions (h/L < 0), the ws is defined as (1.8):  

    (  
         

 )    (1.8) 
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where e = max (0.1, z/h). The Monin–Obukhov similarity theory widely used in mesoscale 

CTM model and it has many expressions. For the k-theory in the Community Multiscale Air 

Quality Model (CMAQ), the Kz is defined by (Holtslag and Boville, 1993) as (1.9):  
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In stable conditions, the ws is defined as (1.10):  
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In unstable conditions, the ws is defined as (1.11):  
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In a three-dimensional Eulerian model (FALL3D), Kz is defined as (Costa et al., 2006) (1.12): 
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In stable conditions, the ws is defined as (1.13):  
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In unstable conditions, the ws is defined as (4.1):  
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 (1.14) 

All three schemes use the friction velocity (u*), convective velocity (w*) and the Monin–

Obukhov length (L) but in different configurations for stable and unstable conditions. 

2.5 Preliminary study – Model setup 

As a first analysis, a long-term simulation covering the entire year 2016 has been performed 

with three Kz parameterizations as previously mentioned. The Kz from CHIMERE, CMAQ and 

FALL3D are defined as Kz1, Kz2 and Kz3 respectively. The Kz1 scheme is the initial vertical 

diffusion scheme of the CHIMERE model. The Kz2 and Kz3 schemes are the two most 

reasonable schemes selected on the basis of sensitivity experiments. A minimal Kz is setup to 
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0.01m
2
/s in the dry boundary layer and 1m

2
/s in the cloudy boundary layer in three schemes 

to avoid unreasonable low mixing (Menut et al., 2013a). 

The simulation is performed from 1
st
 January to 31

st 
December 2016 at 7km resolution over 

France. The domain is discretized vertically with 20 vertical levels from 999.5hPa to 500hPa, 

with the lowest level at about 4m and 14 levels below 1000m. Meteorological input data were 

taken from the Integrated Forecasting System (IFS) model from the European Centre for 

Medium-Range Weather Forecasts (ECMWF). Chemical boundary conditions were obtained 

from a lower (25km) resolution simulation performed on a European domain. The sector 

specific European Monitoring and Evaluation Program (EMEP) inventory (details can be 

found in https://www.emep.int/) has been used for anthropogenic emissions in the model, at a 

resolution of 0.1x 0.1. 

The air quality monitoring data are taken from the French national air quality forecasting 

platform (PREV’AIR)(Honore et al., 2006). 57 urban background air quality monitoring 

stations and 15 rural background air quality monitoring stations includes the hourly surface 

concentrations of criteria pollutants (NO2, PM2.5, and PM10) are used to assess the 

performances of the models with the various Kz parameterizations, the locations of stations is 

shown in Figure2.5.  

 

Figure2.5 Locations of air quality monitoring stations. Red points: urban background 

stations. Green points: rural background stations 

To quantify the difference between model and instruments data, the relative bias (RB), mean 

bias (MB), mean linear correlation coefficient (R) and root mean square error (RMSE) is used 

as statistical estimation and calculated as:  
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Where      refers to the modelled value and      refers to the results from instruments 

with     ̅̅ ̅̅ ̅̅ ̅and     ̅̅ ̅̅ ̅̅  their mean values respectively. N is the number of the data. 

2.6 Results and Discussions 

A sensitivity test using the same model configurations, but different vertical diffusion 

coefficients was performed to understand the role of each Kz in stable and unstable conditions. 

As shown in Figure2.6, three schemes display similar Kz at low levels in stable condition, 

with a relatively high surface diffusion rate in Kz3 and relatively low surface diffusion rate in 

Kz2, the Kz1 shows a slightly higher Kz in all levels. However, Kz3 has obviously stronger Kz 

since the fifth level than other two schemes. Under unstable conditions, the surface Kz shows 

a completely opposite trend to stable condition, with Kz2 > Kz1 > Kz3. In the middle levels, 

the difference between the different schemes is significantly higher than the stable condition, 

and the diffusion rates of Kz2 and Kz3 begin to reverse in the ninth level. According to this 

sensitivity test, three conclusions can be drawn: the differences between each scheme is small; 

the RB of pollutants concentrations from Kz3 will be higher than other two; and the RB of 

pollutants concentrations between three schemes will be higher in the nighttime than the 

daytime.  
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Figure2.6 Sensitivity test of vertical profile of Kz (m
2
/s) in stable and unstable conditions.  

Figure2.7 displays averaged vertical profiles of Kz, NO2, O3, PM2.5 and PM10 for the year 

2016. The Kz profiles show similar shapes from surface to the top, with an upward trend 

within 13 levels (approximately 550m). Table2.1 lists detail information of Kz for the first 10 

levels, the Kz1 displays lowest Kz at all levels, Kz2 and Kz3 begin to reverse from the seventh 

level (approximately 82m). The vertical NO2, PM2.5 and PM10 concentration profiles show 

that the increasing mass concentrations from surface to the top because of the anthropogenic 

emissions, highest concentrations are simulated in the Kz1 at low levels. The average RB 

between Kz1 and Kz2, Kz1 and Kz3 are 2.2% and 7.3% approximately. Kz2 provides stronger 

diffusion rate than Kz3 in the first layers, however, the pollutants concentrations at low levels 

are higher in Kz2. This indicates that surface pollutants concentrations are not only depend on 

the corresponding Kz. The transport also plays an important role in the low levels pollutants 

concentrations. The vertical profile of O3 concentrations are different than for other pollutants, 

it shows lower concentrations in the surface than for upper layers. The vertical O3 

concentrations are different compared to other species, with the highest concentration in Kz3 

scheme at surface. The reason is the fast titration by NOx and deposition processes close to 

the surface. 
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Figure2.7 Vertical profiles of Kz (m
2
/s); NO2 (µg/m

3
); O3 (µg/m

3
) PM2.5 (µg/m

3
) and PM10 

(µg/m
3
) over the France domain. The profiles are averaged from January 1

st
 to December 31

st
, 

2016.  

Table2.1 The Kz (m
2
/s) values for the 10 levels. 

Level 1 2 3 4 5 6 7 8 9 10 

Kz1 0.76 1.35 2.09 2.94 3.86 4.78 5.61 6.29 6.93 7.97 

Kz2 0.79 1.48 2.41 3.59 5.04 6.71 8.52 10.23 11.66 12.87 

Kz3 0.77 1.41 2.27 3.37 4.75 6.45 8.53 10.95 13.63 16.55 

 

Figure2.8 displays the seasonal mean first layer Kz over France domain. Results show that the 

regional patterns are similar for three schemes. The Kz1 shows a slightly higher surface Kz 

than Kz3 at the Alps and the Pyrenees. However, Kz3 gives a relative higher surface Kz than 

Kz1 over mainland France in autumn and winter. In general, Kz2 scheme has slightly higher 

vertical diffusion rate than other two schemes, the three schemes give the trend of spring > 

summer > autumn > winter of surface Kz in the France domain, and coastal areas are 

generally display higher Kz than inland areas, due to the sea breezes which enhance the 

dispersion of pollutants (Reid and Steyn, 1997). The seasonal profiles of surface NO2, PM2.5 

and PM10 concentrations between observation and simulation are illustrated in Figure 2.9. 

Model underestimated NO2 concentrations whatever the season, but particularly during 

wintertime. The negative biases are -6.05µg/m
3
, -6.16µg/m

3 
and -7.09µg/m

3 
for Kz1, Kz2 and 
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Kz3 in winter respectively. Compare with the model performances of PM simulations, the 

three schemes display higher biases for NO2 simulations in spring, autumn and winter. NO2 

mainly comes from vehicle exhaust emission in cities, it can indicate the model may 

overestimate vertical diffusion rate in urban region. The model displays relatively better 

performance in PM2.5 simulation, with slight negative biases in summer and positive biases 

in the rest of seasons. However, three schemes underestimated PM10 concentrations in every 

season. As shows in Table2.2, the observed PM10 concentrations are approximately the 

double of the simulation in summer. This could indicate the underestimation of coarse 

particles in the emission inventory. 
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Figure2.8 Maps of the seasonal mean vertical diffusion coefficient (m
2
/s) over the France 

domain. 
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Figure2.9 Seasonal changes between observed and modelled NO2, PM2.5 and PM10 mass 

concentrations (µg/m
3
) in France domain. 

Table2.2 Seasonal average mass concentration of NO2, PM2.5 and PM10 (µg/m
3
) between 

observation and three schemes. 

 Spring Summer Autumn Winter 

NO2 

Obs 13.70 10.10 17.04 18.15 

Kz1 10.05 9.59 13.72 12.10 

Kz2 9.36 8.91 13.41 11.99 

Kz3 8.59 8.14 12.18 10.86 

PM2.5 

Obs 10.75 7.76 10.52 12.49 

Kz1 12.55 6.14 11.69 14.58 

Kz2 12.42 6.02 10.79 14.09 

Kz3 11.51 6.26 11.13 13.62 

PM10 

Obs 15.26 13.64 15.69 17.14 

Kz1 13.30 6.91 13.06 15.28 

Kz2 13.17 6.77 12.13 14.75 

0

5

10

15

20

N
O

2 
(u

g/
m

3 )
 

Obs Kz1 Kz2 Kz3

Spring                    Summer               Autumn                 Winter 

0

5

10

15

20

P
M

2.
5
 (

u
g/

m
3 )

 

Obs Kz1 Kz2 Kz3

Spring                    Summer               Autumn                 Winter 

0

5

10

15

20

P
M

1
0 

(u
g/

m
3
) 

Obs Kz1 Kz2 Kz3

Spring                    Summer               Autumn                 Winter 



Chapter II 

50/191 

Kz3 12.25 6.99 12.41 14.29 

 

In order to better evaluate the impact of vertical diffusion coefficients on the air quality 

predictions, modelled time series of the pollutants concentrations compared with the 

observations for urban and rural region are displayed in Figure2.10. In urban areas, the 

models capture the time variability quite well for NO2, PM2.5 and PM10 simulations, 

particularly for the PM2.5, model almost perfectly reproduced the seasonal variability. 

However, the model tends to underestimate the NO2 and PM10 concentrations of PM10in 

urban areas especially during wintertime for NO2 and summertime for PM10. Comparing the 

model performance of PM2.5 and PM10 simulations, the model displays a slight negative bias 

of PM10 concentration than PM2.5 for the whole period. The yearly average surface mass 

concentrations of PM2.5 and PM10 are 10.37µg/m
3
 and 15.41µg/m

3
 from the observation 

over the France domain. PM2.5 comprised 67.30% of total PM10. In the cases of simulations, 

PM2.5 surface concentrations are 10.79µg/m
3
, 11.21µg/m

3
, 10.60µg/m

3
 and PM10 surface 

concentrations are 11.66µg/m
3
, 12.10µg/m

3
, 11.45µg/m

3
 from Kz1, Kz2 and Kz3, respectively. 

The ratios of PM2.5/PM10 are almost the same which is approximately 92.5% for three 

schemes, the bias is approximately 25.3%. This result indicates the models could have a large 

overestimation of fine mode emissions or that coarse emissions are lacking. All three schemes 

in rural areas display a quite good reproduction of the evolution of pollutant concentrations 

and better capture the fluctuations of pollutants in the wintertime than urban areas. The model 

underestimate PM10 concentration particularly in summertime. Table2.3 provides an overall 

evaluation of three schemes in urban and rural areas including R, MB and RMSE. In general, 

the models present a better performance in rural than the model performances in urban areas. 

Concentrations of NO2 and PM10 are stronger underestimated in urban areas than for rural 

areas. This indicates the three schemes tend to overestimate the local vertical diffusivity in 

urban region compared to the rural areas. The value of exponent p is considered as 2 (the 

―square‖ in the equation) in equation (1.6) and (1.9). The range of this value has been 

considered from 1 to 3 by Troen and Mahrt (Troen and Mahrt, 1986), the vertical mixing 

varies considerably correspond to the range of p from 1 to 3 (Hu et al., 2010). Therefore, the 

results show that setting p value to 2 is applicable in rural areas, but the p value is 
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overestimated in urban areas. The easiest way to improve such a first order local closure 

scheme is to set p according to types of land use. Comparing the performances of three 

k-theory schemes and taking RMSE as the criterion for judging the ability of the model, in 

urban areas lead to the following outcomes on concentrations: Kz1 > Kz2 > Kz3 for NO2; 

Kz3 > Kz2 >Kz1 for PM2.5 and Kz1 > Kz3 > Kz2 for PM10; in rural areas, Kz1 > Kz2 > Kz3 

for NO2, Kz3 > Kz2 >Kz1 for PM2.5 and Kz2 > Kz3 > Kz1 for PM10. However, the 

differences between the test results are low. Therefore, it cannot be expected to significantly 

improve the mesoscale model for air quality simulation and forecast through the modification 

of diffusion coefficient based on first order local closure scheme.  

 

Figure2.10 Time series between observed and modelled NO2, PM2.5 and PM10 mass 

concentrations (µg/m
3
) in Urban and Rural areas. 

Table2.3 Statistics of surface variables: mean linear correlation coefficient (R); mean bias 

(MB) and root mean square error (RMSE) between the simulations and observations of NO2, 

PM2.5 and PM10 in Urban and Rural areas 
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 NO2 PM2.5 PM10 

Kz1 Kz2 Kz3 Kz1 Kz2 Kz3 Kz1 Kz2 Kz3 

Urban 
R 0.73 0.76 0.74 0.83 0.83 0.84 0.74 0.75 0.76 

MB -6.39 -7.13 -8.38 0.56 0.16 -0.10 -4.31 -4.71 -5.01 

RMSE 9.32 9.58 10.64 4.77 4.50 4.32 7.42 7.62 7.50 

Rural 
R 0.72 0.73 0.73 0.88 0.88 0.87 0.78 0.77 0.77 

MB -0.47 -0.62 -1.31 1.11 0.67 0.56 -2.35 -2.83 -2.95 

RMSE 2.07 2.10 2.36 3.68 3.29 3.26 5.18 5.13 5.17 

 

In Figure2.11 the results from urban and rural areas are illustrated for surface NO2, PM2.5 and 

PM10 concentrations. The diurnal cycles of NO2, PM2.5 and PM10 have a similar behavior at 

urban areas, with two peaks occurred in the morning and evening rush hours. In rural areas, 

the evening peak did not appear, with show a gradual accumulation at nighttime. Compared 

with observations, the simulation results have more significant diurnal differences for all 

pollutants, and the model significantly underestimates the NO2 and PM10 concentration 

during daytime. This indicates that the K-theory may overestimate the vertical diffusion rate 

under unstable conditions. The model performance between the three schemes shows higher 

biases in nighttime than for daytime, especially for the NO2 simulation, which proved the 

conclusion in the sensitivity test that the RB between three schemes will be higher in absolute 

values in the nighttime than the daytime. 

 

Figure2.11 Diurnal cycles for surface concentrations (µg/m
3
) of NO2, PM2.5 and PM10 in the 

year 2016 

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0M
a

s
s
 C

o
n

c
e

n
tr

a
ti
o

n
 (

µ
g

/m
3
)

2015105

Hours of day

NO2 Rural

40

30

20

10

0

M
a

s
s
 C

o
n

c
e

n
tr

a
ti
o

n
 (

µ
g

/m
3
)

2015105

 Observation
 Kz1
 Kz2
 Kz3

NO2 Urban
18

16

14

12

10

8

2015105

PM2.5 Urban

13.0

12.0

11.0

10.0

9.0

8.0

7.0

2015105

Hours of day

PM2.5 Rural

25

20

15

10

2015105

PM10 Urban

14

12

10

8

6

2015105

Hours of day

PM10 Rural



Chapter II 

53/191 

2.7 Conclusions 

The micro meteorology over built-up areas differs from the non-urban landscape in many 

aspects: wind-flows, radiation, humidity, precipitation and air quality. The dispersion of 

pollutants in urban areas is an actual topic and the modelling approaches depend on the 

involved atmospheric processes. Initially we focused on the dispersion of pollutants in the 

urban canopy, three vertical diffusion coefficients based on first order local closure scheme 

have been investigated in a one-year simulation over France. Comparing the model 

performances of three scheme in urban and rural areas, it is found that the three schemes 

perform better in rural than in urban areas. The vertical mixing is relatively overestimated in 

urban areas. One idea is to decrease the p value (the ―square‖ in the Kz equation) on urban 

land use. The results also indicate such simplest scheme is an effective way to reproduce the 

dispersion of pollutants both in urban canopy and surroundings in mesoscale chemistry 

transport model, but it cannot be expected to significantly improve the mesoscale model by 

this simple modification based on the first-order local closure Reynolds decomposition 

scheme. Further improvements should start with a more accurate turbulence process. Another 

problem to be solved is the ratio of PM2.5 / PM10 that exceeds 90% in all seasons in the 

models, while the ratio is usually around 70% in the observations, the emission inventory 

requires notable improvements with probably a lack of coarse particles anthropogenic or 

biogenic in origins. 

This first screening of usual K-theory diffusion parameterizations over a long-term simulation 

was a first step to identify limitations and possible improvements. The next chapter focuses at 

urban scale on pollution event in November-December 2016. 
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Abstract 

The accurate simulation of meteorological conditions, especially within the planetary 

boundary layer (PBL), is of major importance for air quality modeling. In the present work, 

we have used the Weather Research and Forecast (WRF) model coupled with the chemistry 

transport model (CTM) CHIMERE to understand the impact of physics parameterizations on 

air quality simulation during a short-term pollution episode on the Paris region. A lower first 

model layer with a 4m surface layer could better reproduce the transport and diffusion of 

pollutants in a real urban environment. Three canopy models could better reproduce a 2m 

temperature (T2) in the daytime but present a positive bias from 1°C to 5°C during the 

nighttime; the multi-urban canopy scheme ―building effect parameterization‖ (BEP) 

underestimates the 10m windspeed (W10) around 1.2m/s for the whole episode, indicating the 

city cluster plays an important role in the diffusion rate in urban areas. For the simulation of 

pollutant concentrations, large differences were found between three canopy schemes, but 

with an overall overestimation during the pollution episode, especially for NO2 simulation, 

the average mean biases of NO2 prediction during the pollution episode were 40.9 µg/m
3
, 62.2 

µg/m
3
, and 29.7µg/m

3 
for the Bulk, urban canopy model (UCM), and BEP schemes, 

respectively. Meanwhile, the vertical profile of the diffusion coefficients and pollutants 

indicated an important impact of the canopy model on the vertical diffusion. The PBL scheme 

sensitivity tests displayed an underestimation of the height of the PBL when compared with 

observations issued from the Lidar. The YonSei University scheme (YSU) and Boulac PBL 

schemes improved the PBL prediction compared with the Mellor–Yamada–Janjic (MYJ) 

scheme. All the sensitivity tests, except the Boulac–BEP, could not fairly reproduce the PBL 

height during the pollution episode. The Boulac–BEP scheme had significantly better 

performances than the other schemes for the simulation of both the PBL height and pollutants, 
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especially for the NO2 and PM2.5 (particulate matter 2.5 micrometers or less in diameter) 

simulations. The mean bias of the NO2, PM2.5, and PM10 (particulate matter 10 micrometers 

or less in diameter) prediction were −5.1µg/m
3
, 1.2µg/m

3
, and −8.6µg/m

3
,
 
respectively, 

indicating that both the canopy schemes and PBL schemes have a critical effect on air quality 

prediction in the urban region. The air quality simulation and forecast in urban region mainly 

influenced by the urban canopy, boundary layer and diffusion conditions, land surface model 

had a slight impact for both meteorological and air quality simulation. 

Résumé 

La simulation précise des conditions météorologiques, en particulier dans la couche limite 

planétaire (PBL), est d'une importance majeure pour la modélisation de la qualité de l'air. 

Dans le présent travail, nous avons utilisé le modèle Weather Research and Forecast (WRF) 

couplé au modèle de transport de la chimie (CTM) CHIMERE pour comprendre l'impact des 

paramétrages de la physique sur la simulation de la qualité de l'air pendant un épisode de 

pollution de court terme sur la région parisienne. Un premier niveau vertical du modèle a 4m 

permettrait de mieux reproduire le transport et la diffusion des polluants dans un 

environnement urbain. Trois modèles de canopée pourraient mieux reproduire une 

température de 2m (T2) dans la journée mais présentent un biais positif de 1°C à 5°C pendant 

la nuit ; le schéma de canopée multi-urbain "building effect parameterization" (BEP) 

sous-estime la vitesse du vent à 10m (W10) d'environ 1.2m/s pour l'ensemble de l'épisode, 

indiquant que le cluster de la ville joue un rôle important dans la diffusion des polluants en 

zones urbaines. Pour la simulation des concentrations de polluants, de grandes différences ont 

été constatées entre les trois schémas de canopée, mais avec une surestimation globale 

pendant l'épisode de pollution, en particulier pour la simulation du NO2, les biais moyens de 

la prédiction du NO2 pendant l'épisode de pollution étaient de 40,9µg/m
3
, 62,2µg/m

3
 et 

29,7µg/m
3
 pour les schémas Bulk, urban canopy model (UCM) et BEP, respectivement. 

Parallèlement, le profil vertical des coefficients de diffusion et des polluants indique un 

impact important du modèle de canopée sur la diffusion verticale. Les tests de sensibilité du 

schéma PBL ont montré une sous-estimation de la hauteur de la PBL par rapport aux 

observations fournies par le Lidar. Les schémas PBL de l'Université YonSei (YSU) et Boulac 

ont amélioré la prédiction de la PBL par rapport au schéma Mellor-Yamada-Janjic (MYJ). 

Tous les tests de sensibilité, à l'exception du Boulac-BEP, n'ont pas pu reproduire fidèlement 

la hauteur de la PBL pendant l'épisode de pollution. Le schéma Boulac-BEP a eu des 
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performances significativement meilleures que les autres schémas pour la simulation de la 

hauteur de la CLP et des polluants, en particulier pour les simulations de NO2 et PM2.5 

(particules de 2,5 micromètres de diamètre ou moins). Le biais moyen des simulations de NO2, 

PM2.5 et PM10 (particules de 10 micromètres ou moins de diamètre) était de -5,1µg/m
3
, 

1,2µg/m
3
 et -8,6µg/m

3
, respectivement, ce qui indique que les schémas de canopée urbaine et 

de PBL ont un effet critique sur la prévision de la qualité de l'air dans la région urbaine. La 

simulation et la prévision de la qualité de l'air dans la région urbaine sont principalement 

influencées par la canopée urbaine, la couche limite et les conditions de diffusion, le modèle 

de surface terrestre ayant un plus léger impact sur la simulation météorologique et la qualité 

de l'air. 

Keywords: modeling; high resolution; air quality; urban canopy; surface layer 

3.1 Introduction 

Nowadays, around 55% of the world’s population lives in urban areas, and this number is 

expected to increase by 68% by 2050. The European Environment Agency annual report has 

pointed out around 25% of the European urban population are exposed to air quality 

exceeding the European Union air quality standards (EEA, 2018), and air pollution is the 

leading preventable risk factors for premature death in Europe, being responsible for 400,000 

deaths per year directly or indirectly. In addition, built-up surfaces that are mainly composed 

of artificial buildings and cement pavement which are clearly distinguished from natural 

surfaces favor heat accumulation (Sarrat et al., 2006; Coseo et al., 2015). Recent research 

shows that in urban regions, Urban Heat Island (UHI) can be observed by a difference of 

about 1.5–2°C compared to rural area temperatures, and about 2.0–2.5°C difference can be 

observed over densely built-up areas (Falasca et al., 2018). The UHI has a negative effect on 

the planetary boundary layer (PBL) height (Lin et al., 2008a) and surface wind speed, which 

affects the transport and dispersion of pollutants. Overall, the UHI changes the local 

atmospheric dynamic (Falasca et al., 2016), significantly influences local air pollution, 

reduces visibility, increases water usage, and enhances heat-related morbidity (Gedzelman et 

al., 2003; Lai et al., 2009). In modeling studies, detailed information on urban parameters is 

critical for the simulation of the UHI effect. Studies conducted in Taiwan have found that the 

urban canopy model can improve the prediction of UHI intensity, boundary layer 

development, land–sea breeze (Lin et al., 2008b), and precipitation (Lin et al., 2008a). Air 

pollution prediction is crucial in order to inform a large fraction of the population and take 
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adequate short- and long-term measures to improve air quality. The use of air quality 

modelling tools at high resolution is now common but remains a challenge, because buildings 

create local modifications in air flows and modify surface energy budgets and roughness, 

leading to very complex processes which make air quality simulation particularly difficult in 

the near-ground layers (Best et al., 2005; Liu et al., 2006; Bessagnet et al., 2014; Barlage et al., 

2016). Chemical transport models usually require numerical weather prediction (NWP) 

models, which provide meteorological input data (Molteni et al., 1996; Tuccella et al., 2012). 

High-resolution urban canopy parameters databases are becoming more and more available 

for cities (Salamanca et al., 2009a; Salamanca et al., 2009b). NWP models with different 

physics parameterizations have been widely used in recent decades to simulate air quality 

over urban regions, especially the widely used community mesoscale Advanced Research 

Weather Research and Forecasting (ARW-WRF) model. Studies show that physics 

parameterizations play a critical role both in meteorological and air quality simulation or 

forecast (Miao et al., 2010; Fan et al., 2008; Liu et al., 2014; Valari et al., 2014; Markakis et 

al.,2016). For example, the Planetary Boundary Layer (PBL) height is determined by the heat 

and momentum exchanges between the PBL and the surface. In meteorological models, the 

PBL height is calculated by the PBL scheme. Therefore, the PBL scheme is a crucial factor in 

simulating the formation and evolution of air pollution (He et al., 2015; Wang et al., 2014; 

Wang et al., 2019). Studies on different PBL parameterization schemes have shown that an 

accurate description of the meteorological conditions within the PBL via an appropriate 

parameterization scheme is important for air pollution modeling (Hu et al., 2010). Some 

studies have presented the influences of meteorological models on pollutant concentrations; 

they estimate that uncertainties of PBL heights from the different models are one of the major 

sources of the differences in Particulate Matter (PM) concentrations (Hariprasad et al., 2014; 

Tyagi et al., 2018). Kleczek et al. compared three non-TKE (Turbulent Kinetic Energy) 

schemes and four TKE closures schemes; they found that non-TKE schemes tend to produce 

higher temperatures and wind speeds than in TKE schemes, especially during nighttime. 

Barlage et al. also had a similar result between TKE and non-TKE schemes at night and found 

that PBL schemes have little effect on model performances in urban locations during daytime. 

Some other studies indicate that most PBL schemes slightly overestimate near-ground wind 

speed (Borrego et al., 2013); a possible reason could be the omission of the effect of 

unresolved topographic features on the momentum flux (Anderson et al., 2010).  
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For the first time, the chemistry transport model CHIMERE model has been used with a very 

low first layer of about 4m to simulate the air quality. In order to understand the impact of 

physics parameterizations and improve high-resolution air quality simulation, various WRF 

configurations have been tested over the Paris region during a critical pollution episode 

occurring from 27
th

 November to 4th December 2016. In this study, we examine three 

different PBL schemes: (1) the Mellor–Yamada–Janjic scheme (MYJ), (2) the YonSei 

University scheme (YSU), and (3) the Bougeault and Lacarrere scheme (Boulac); and three 

canopy schemes, (1) a reference scheme (Bulk) which does not consider urban canopy 

parameters, (2) a single urban canopy model (UCM) which simply defines the urban 

geometry as two-dimensional street canyons but considers the three-dimensional nature of 

urban morphologies, and (3) a multilayer urban canopy model considering building effect 

parameterization (BEP). BEP was developed by Martilli et al (2002). and allows the direct 

interaction between buildings and low atmospheric layers and therefore is more realistic in 

reproducing urban effects (Salamanca et al., 2009a). This work will inform the air quality 

community on our ability to assess and understand the atmospheric transport of air pollutants 

over cities for operational forecast with air quality models. 

3.2 Model Description and Experiment Design 

3.2.1 WRF Model Description 

Several studies (Flaounas et al., 2010; Patricola et al., 2012; Vigaud et al., 2009) demonstrate 

the importance of physics parameterizations in driving air quality modelling outputs. As the 

first step of this work, the WRF model (Version 3.9.1) is used to simulate the meteorological 

conditions. The WRF model provides several options for the parameterizations (details can be 

found in the WRF user manual) of physical processes, including multiple longwave and 

shortwave radiation schemes, surface layer schemes, land surface schemes, urban canopy 

schemes, and boundary layer schemes. The initial and boundary conditions are issued from 

the Global Forecasting System (GFS) analysis data from the National Centers for 

Environmental Prediction (NCEP), available at a 0.25° × 0.25° resolution at six-hourly time 

steps. The spectral nudging in WRF simulation is a way to constrain large-scale circulation 

and constrain the model to be more consistent with observations (Bowden et al., 2012). 

However, strong nudging may filter out extreme episodes, since nudging pushes the model 

toward a relatively smooth state (Glisan et al., 2013). Therefore, a weak spectral nudging 
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above PBL has been tested to improve the accuracy of the downscaled fields but not filter out 

the simulation of extreme episodes. 

The experiment set includes 11 simulations, which are conducted for a winter period from 

27
th

 November to 4
th

 December 2016 and are designed to test the sensitivity of the surface 

meteorological variables and pollutant concentrations at these different physics 

parameterizations.  

 

Table3.1 Summary of the physics parameterizations used
a
 

 LW SW SL LS URB BL 

BULK RRTMG RRTMG MO Noah No MYJ 

UCM RRTMG RRTMG MO Noah UCM MYJ 

BEP RRTMG RRTMG MO Noah BEP MYJ 

MYJ-BULK RRTMG RRTMG MO Noah No MYJ 

YSU-BULK RRTMG RRTMG MO Noah No YSU 

MYJ-UCM RRTMG RRTMG MO Noah UCM MYJ 

YSU-UCM RRTMG RRTMG MO Noah UCM YSU 

MYJ-BEP RRTMG RRTMG MO Noah BEP MYJ 

BOULAC-BEP RRTMG RRTMG MO Noah BEP Boulac 

NOAH RRTMG RRTMG MO Noah BEP Boulac 

NOAH-MP RRTMG RRTMG MO Noah-MP BEP Boulac 

a 
LW= longwave radiation; SW= shortwave radiation; SL= surface layer; LS= land surface; URB= 

urban canopy; BL= boundary layer; RRTMG= rapid radiative transfer model for GCMs scheme; MO= 

Monin–Obukhov scheme; UCM= single-layer urban canopy scheme; BEP= multi-layer urban canopy 

scheme; MYJ= Mellor–Yamada–Janjic scheme; YSU= Yonsei University scheme; Boulac= Bougeault 

and Lacarrere scheme. 

 
WRF provides several urban canopy schemes options, the UCM and BEP has been chosen in 

this study and its structure diagram is shown in Figure3.1. The UCM is a single urban canopy 

layer model used to consider the effects of urban geometry on the surface energy balance and 

wind shear for urban regions (Kusaka et al., 2001; Kusaka et al., 2004). This model includes 

shadows from buildings; canyon orientation; the diurnal variation in the azimuth angle; the 

reflection of short and long wave radiation; wind profiles in the canopy layer; anthropogenic 

heating associated with energy consumption by human activities; and multi-layer heat transfer 

equations for roof, wall, and road surfaces. The BEP is the multilayer canopy layer scheme. 

This scheme considers the sub-grid wall, roof, and road effects on radiation and fluxes but 

does not include the energy exchange between the inside and outside of buildings. 
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The MYJ PBL scheme uses the 1.5-order turbulence closure model of Mellor and Yamada 

(Mellor et al., 1982) to represent turbulence above the surface layer (Janjic et al., 1990; Janjic 

et al., 2002). The MYJ scheme determines eddy viscosity K-coefficients from prognostically 

calculated turbulent kinetic energy. The YSU PBL scheme is a first-order non-local scheme 

that uses a parabolic K-profile in an unstable mixed layer with the addition of an explicit term 

to treat the entrainment layer at the top of the PBL (Tyagi et al., 2018). Hong et al. enhanced 

mixing in the stable boundary layer by increasing the critical Bulk Richardson number from 

zero to 0.25. The Boulac PBL scheme was developed by Bougeault and Lacarrère (Bougeault 

et al., 1989) and is also a TKE prediction scheme and designed to work with a multi-layer 

urban model. 

The Noah‐mp land surface model (Niu et al., 2011) is the successor of the Noah model (Chen 

et al., 1996; Chen and Dudhia, 2001). There are multiple options for land‐atmosphere 

interaction processes in Noah‐mp, which users can select (Barlage et al., 2015). These options 

include a variety of formulations of processes such as stomatal conductance, runoff 

generation, snow and soil parameterizations, and radiative transfer in the canopy. 

 

 

Figure3.1 The structure diagram of UCM (left) and BEP (right) urban canopy scheme. Ta: 

Atmospheric temperature at Za meters height; Tg: Pavement temperature; H : Sensible heat 

exchange; Tr: Temperature of the roof; Tw: Temperature of the wall; Tg: Temperature of the 

street; Ts: Atmospheric temperature at Zs meters height; Ha: Sensible heat flux from street 

canyon to atmosphere; Hw: Sensible heat flux from wall to street canyon; Hg: Sensible heat 

fiux from road to street canyon; Hr: Sensible heat fiux from roof to atmosphere. 

 

3.2.2 Description of the CHIMERE Model 

The chemistry transport model (CTM) CHIMERE (Version 2013) (Menut et al., 2013) is used 

for air quality modeling in the present study. CHIMERE is a state-of-the-art Eulerian offline 

CTM model; it requires pre-calculated boundary conditions, emission fluxes, and 
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meteorological variables. For the studied period, 27
th

 November to 4
th

 December 2016, an 

8-day spin-up period is performed for initialization issues. The vertical turbulent mixing in 

CHIMERE takes place only within the boundary layer, which is calculated by meteorological 

parameters such as surface temperature and the wind speed issued from the WRF simulation. 

The first CHIMERE layer is set to 4 m. The vertical dispersion in CHIMERE is mostly 

controlled by the PBL height and a turbulent flux modeled by a vertical eddy diffusion 

coefficient (Kz). The horizontal diffusion is neglected in CHIMERE. The PBL height is 

directly taken from the WRF output and capped at a minimal value of 20m to avoid 

unrealistic simulations. In CHIMERE, the Kz is calculated using the parameterization of 

Troen and Mahrt (1986) in Equation (3.1): 

       (  
 

 
)
 

#(   )  

where k is the von Karman constant set to 0.41, z is the altitude, h is the boundary layer height, 

and ws is the vertical scale given by the similarity formulae. 

The emissions of pollutants include several different gaseous and aerosol species. Those 

emissions can be split into four parts: anthropogenic emissions, biogenetic emissions, mineral 

dust emissions, and fire emissions. The anthropogenic emissions play a critical role in the 

CTM model, since they include all human activities, especially in megacities, and they are the 

only source we can reduce. For Europe region studies, anthropogenic emissions of gases and 

PM are generated with the French National Spatialized Emission Inventory (INS) 

(Hamaoui-Lague et al., 2014), which is updated every six months. Biogenic emissions are 

estimated with the Model of Emissions and Gases and Aerosols from Nature (MEGAN). 

Mineral dust emissions are parameterized by Menut et al (2013). The resolution INS emission 

inventory is approximately 1 × 1 km, and the spatial resolutions of the emission data are 

recomputed from the INS emission inventory for each domain. Driven by those input data, 

CHIMERE provides the hourly concentrations of tens of species at a regional scale; detailed 

descriptions of the model can be found in several previous studies (Bessagnet et al., 2004; 

Menut et al., 2012; Bessagnet et al., 2017; Mailler et al., 2017). The aerosol module accounts 

for both inorganic and organic species, such as sulfate, nitrate, ammonium, primary organic 

matter, element carbon, secondary organic aerosol, sea salt, dust, and water. The aerosol size 

is assuming discrete aerosol size sections and that the particles are internally mixed. Nine 

diameter bins, from 10nm to 10μm, with 5 bins below 1 μm, are used (Couvidat et al., 2018). 
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3.2.3 Domains Setup and Observations Data 

In order to calculate realistic meteorological input variables and pollutant concentrations, the 

system is configured with four nested-grid domains (Figure3.2) over Europe, France, the 

north of France, and Ile-de-France, with cell sizes of 45 (d01), 15 (d02), 5 (d03), and 1.67km 

(d04), respectively. The finest grid domain (d04) used has 83 × 77 grid points and covers the 

whole Ile-de-France region, including urban, sub-urban, and rural areas. The WRF simulation 

is discretized vertically on 52 vertical levels from the surface to the top (50hPa), with 20 

levels below 1000m and the lowest level at 2m. In order to take full advantage of the physical 

parameterizations, the CHIMERE simulation is performed with the same horizontal domains 

as the WRF; the 52 vertical levels from the WRF simulation are projected onto 20 levels in 

CHIMERE. The ground layer of the CHIMERE domains is at 999.5hPa from about 4m up to 

over 5000m, with 15 levels below 1000m. Such a low ground level could effectively 

reproduce the transport and diffusion of pollutants in a real urban environment. 

 

Figure3.2 Four nested domains—from d01, the largest one, at a low resolution to d04, the 

finest one, at a high resolution. 

Two types of observation data are used in the present study: (i) three meteorological 

observation stations operated by METEO FRANCE and SIRTA were used to evaluate the 

simulated surface meteorological variables from the model; and (ii) the hourly surface 

concentrations of criteria pollutants (NO2, PM2.5, and PM10) issued from AIRPARIF, the 

official Paris air quality network. The location of the three meteorological observation 

stations (Montsouris, Roissy, Sirta) and the four air quality monitoring stations can be found 

in Figure3.3; they are urban or sub-urban background stations. The FR04143 air quality 

monitoring station is located in the city center. ―Roissy‖ is a synoptic station of the Paris 
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international Airport; ―Montsouris‖ is an historical meteorological station located within Paris, 

operating since 1869; ―Sirta‖ is a recent station located in a suburban environment. 

 

Figure3.3 Maps of the meteorological and air quality monitoring stations. 

3.3. Results and Discussions 

3.3.1 Urban Parameters and Nudging Tests 

The urban canopy model in the WRF simulation affects the modeling of several important 

meteorological variables for air quality issues (e.g., 10m wind speed W10, 2m surface 

temperature T2, and PBL height). It changes the vertical distribution of atmospheric 

pollutants by modifying the boundary layer height and mixing. Geometric and thermal 

parameters, including anthropogenic heat, thermal conductivities, and heat capacity, have a 

significant effect on the transfer of momentum between the atmosphere and urban surface 

(Kim et al., 2015). However, the representativeness of these parameters aggregated over a 

CTM grid cell remains highly uncertain, especially with a limited number of urban land-use 

types. The urban parameters (Table S1) used here are based on a previous study in Paris 

region (Allen et al., 2010; Kim et al., 2013) and default urban parameterization 

(URBAN-PAM). The TBL tables in the WRF code are defined as URBAN-PAM1 and 

URBAN-PAM2, respectively. The RRTMG shortwave and longwave radiation scheme, MO 

similarity surface layer scheme, Noah land surface model, BEP urban canopy model, and 

MYJ boundary layer scheme are used for all simulations in this section. Figure3.4 presents the 

time series of hourly-averaged T2 and W10 at Sirta station. The results show that simply 

modifying the values of the parameters has a strong impact on the outputs. The T2 presents a 

more positive correlation (0.86 than 0.81) in URBAN-PAM1 than in URBAN-PAM2, while 

the W10 has a more negative bias (−1.51m/s than −1.42m/s) in URBAN-PAM1 than in 
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URBAN-PAM2. A weak spectral nudging above the boundary layer for all the domains is 

also tested in this part.  

Figure3.5 indicates that the spectral nudging technique is effective in improving the model 

skills. The performance benefits in Paris from the assimilation of meteorological data at 

Roissy airport in the global meteorological fields. Thus, URBAN-PAM1 and spectral nudging 

are used for all our sensitivity tests, which are discussed in the following sections. 

 
Figure3.4 Time series of 2m temperature and 10m wind speed at Sirta station. 

 
Figure3.5 Time series of 2m temperature and 10m wind speed at Montsouris station. 

3.3.2 Impact of the Urban Canopy Model 
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3.3.2.1. Ground Meteorological Variables 

The RRTMG shortwave and longwave radiation schemes, the MO similarity surface layer 

scheme, and the Noah land surface model are used for all the simulations in this section. The 

whole period (27
th

 November to 4
th

 December 2016) is divided into two periods: a pollution 

episode (PE) from 30
th

 November to 2
nd

 December; and other days than the PE, which are 

defined as regular days (RD). No rainfall occurred over both then PE and the RD. Figure3.6 

presents the maps of averaged T2 simulated based on the Bulk, UCM, and BEP schemes in 

this period. All the schemes show a higher T2 in the urban region than the rural, and the BEP 

scheme displays the strongest UHI effect in the urban region, which gives a positive bias of 

up to 1°C compared to the other two schemes. The Bulk and BEP schemes perform similarly in 

rural areas and display a negative bias (1–3°C by Bulk and 1–4°C by BEP) compared with urban 

areas, but the UCM scheme gives the highest T2 in rural areas, displaying a negative bias of 

about 0.5–1°C compared with urban regions. A possible reason could be the overestimation of 

surface heat flux (SHF) in the rural areas. Figure3.7 presents the averaged SHF in this period. 

The Bulk and BEP schemes display obvious differences between urban and rural regions, 

with a negative bias (around −25W/m
2
 to −35W/m

2
) in rural compared to urban areas. The 

UCM scheme just produces a negative bias of −10W/m
2
 and −15W/m

2
, respectively, in rural 

and urban areas, which could give an explanation of the overestimation of T2 in rural areas. 

 

Figure3.6 Maps of the mean 2m temperature (°C) over the period from 27
th

 November to 4
th

 

December. 

 

Figure3.7 Maps of the mean surface heat flux (W/m
2
) over the period from 27

th
 November to 

4
th

 December. 
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Results at the three meteorological stations are compared with the observations to evaluate the 

canopy scheme’s performance. Figure3.8 presents the time series of hourly-averaged T2 

during the whole period. The observed T2 varies between −1.4°C and 9.3 °C, −3.9°C and 

7.8 °C, and −2.1°C to 8.4°C, with an average of 4.0°C, 2.6°C, and 4.9°C at Montsouris, 

Roissy, and Sirta stations, respectively. Compared with the observations, all three schemes 

tended to underestimate the T2 during the period 16:00 pm–10:00 am UTC on the 27
th

 and 

28
th

 for all stations, while higher positive values were observed around midnight of the 1st 

December for Montsouris and Roissy stations, especially at Roissy, with a positive bias from 

1.8°C to 4.9°C during the PE. The BEP scheme simulates relatively higher T2 at PE for all 

the stations because the BEP scheme simulates a stronger UHI than the other two schemes. 

All the schemes have the best performance at the Sirta site. Compared with the observations 

from three stations, the differences in the modelled T2 are minimal between three stations 

during the PE. However, there are significant differences in the observed T2 between the 

stations. For example, the minimum observed T2 are −1.4°C, −3.9°C, and −0.3°C during the 

midnight of 1
st
 December at Montsouris, Roissy, and Sirta stations, respectively. A possible 

reason could be the use of a single urban category in our WRF simulations, but in the real 

environment Montsouris and Sirta stations are closer to commercial and residential areas and 

Roissy is a synoptic station close to the airport, which could be assimilated as a rural 

environment with a weaker UHI effect, especially during nighttime. 
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Figure3.8 Time series of 2m temperature (°C) between observations and different urban 

schemes at Montsouris, Roissy, and Sirta stations. 

Figure3.9 shows the maps of the averaged W10 simulated for the Bulk, UCM, and BEP 

schemes in this period. All the schemes give a higher surface wind speed in rural areas than in 

urban regions; the Bulk scheme shows the weakest gradient from urban to rural areas, with a 

negative bias for 0.51m/s; UCM gives a relative higher negative bias than Bulk from 1m/s
 
to 

2m/s; and the BEP scheme had an obviously strongest impact from cities, displaying a 

negative bias around 3.5m/s. The comparison between the observations and models for W10 

are displayed in Figure3.10. The observed W10 varied between 0.6m/s to 7.6m/s, 0.1m/s to 

9.4m/s, and 0.2m/s to 5.5m/s, with an average of 2.3m/s, 1.5m/s, and 2.8m/s in three 

meteorological observation stations (Montsouris, Roissy, Sirta), respectively. Both the 

observed and modelled W10 display much lower values during the PE than the RD. In 

contrast with the T2, the W10 does not display remarkable differences between stations. The 

BEP scheme tends to produce the lowest W10 throughout the whole period for all the stations. 

Bulk and UCM performed well for both the PE and RD. A possible reason could be due to the 

roughness length, which is not directly dependent on urban morphology for the UCM scheme, 

while the momentum sinks and drag force estimated by the BEP scheme depend on urban 

morphology in this study. Low wind speed leads to weak natural circulation and the 

accumulation of heat in the lower urban boundary layer, which in turn enhances the warming 

of the urban area (Wu et al., 2017). This would explain why BEP has a relative higher T2 
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simulation than the other schemes during the PE. This sensitivity test indicates that more 

realistic urban morphologies are needed to improve the model performance, because the 

parameters used in the urban canopy scheme (e.g., albedo, heat capacity, and roughness 

length) strongly influence the surface energy balance and heat absorption. 

 

Figure3.9 Maps of the mean 10m wind speed (m/s) over the period from 27
th

 November to 4
th

 

December. 

 

Figure3.10 Comparison of the time series of 10 m wind speed (m/s) between the observations 

and different urban schemes at Montsouris, Roissy and Sirta stations. 

3.3.2.2. Air Quality Modeling 

In this study, NO2, PM2.5, and PM10 concentrations are used to evaluate the impact of 

physics parameterizations on air quality simulations. NO2, which comes mainly from 

automobile exhaust emissions in cities, is selected to be an indicator of local pollution. 

Comparing the evolution and spatial patterns of NO2 versus the PM2.5 and PM10 gives an 
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indication of the local contribution during this episode. Figure3.11 presents the differences in 

pollutants distribution between each canopy scheme. The results show that, compared to the 

Bulk scheme, the pollutant concentrations from the BEP scheme were lower in the city center, 

but displayed an opposite behavior compared to the UCM scheme. The UCM scheme 

displayed higher pollutant concentrations in the urban area and lower pollutant concentrations 

in rural areas. Figure3.12 presents the time series of NO2 mass concentrations for all the 

experiments compared to the observations for the four stations (the time series of PM2.5 and 

PM10 mass concentrations can be found in Annex A Figure S1). The average biases of the 

four stations are given in Table3.2, and the time series of the biases are displayed in Figure S2. 

The results show that the BEP scheme gives the best performance for almost the whole period, 

especially during the PE. All the schemes can effectively predict air pollution during the RD, 

but they usually overestimate pollutant concentrations for all the stations during the PE; all 

the schemes had their worst performance in NO2 prediction, which means that the canopy 

schemes do not simulate well the emission of local air pollution. Figure3.13 gives the vertical 

diffusion coefficient at daytime and nighttime in the RD and PE. The Bulk scheme has the 

highest vertical diffusion rate among the three schemes during the RD. Figure3.14 presents 

the vertical profile of the NO2 and PM2.5 mass concentrations under 200m; both NO2 and 

PM2.5 show the lowest vertical mass concentrations at low layers by the Bulk scheme and the 

highest vertical mass concentrations by the BEP scheme during the RD, which agrees with the 

vertical profile of Kz in CHIMERE. At 06:00 UTC on 30
th

 November, the Kz displays very 

low values at ground layers for all three schemes but rises rapidly in the BEP scheme from the 

third layer. Figure 3.14c also presents high pollutant concentrations at the ground layer for all 

three schemes but decreases rapidly in the BEP scheme from the third layer. Looking at the 

NO2 concentrations, there is clearly an added value of using a low first model layer in the 

model to enhance the concentrations close to emission sources related to ground sources such 

as road traffic. In the models, it is more common to use a first layer of about 20m to 50m 

(Toll et al., 2000; Baklanov et al., 2008).  

Figure S3 presents the hourly time series of NO2 as an average of all the air quality 

monitoring stations between the observations and simulations, with first layers of about 4m, 

18m, and 40m (based on the best physics parameterizations in this study). An extremely low 

vertical diffusion rate leads to high concentrations of pollutants, which is one reason for the 

strong overestimations at the surface layers at this time. In general, the BEP scheme has the 

best performance among the three schemes, but all the schemes strongly overestimate the 
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concentrations at the beginning of the PE, especially the UCM scheme. A low near-ground 

wind speed usually indicates low diffusion rates, which means the BEP scheme involves 

higher pollutant concentrations than for the other two schemes, but our study shows the 

pollutants concentrations is not found to be positively correlated with the W10. A possible 

explanation could be the underestimation of PBL height, which leads to a low diffusion rate at 

this period; a detail discussion about the impact of the PBL height is in the next section. 

 

 

 

 

 

 

 

  

 

Figure3.11 The differences in the daily averaged NO2 (μg/m
3
), PM2.5 (μg/m

3
), and 

PM10 (μg/m
3
) between different schemes from 27

th
 November to 4

th
 December 2016. 
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Figure3.12 Time series of NO2 mass concentrations (µg/m
3
). No1, 2, 3, 4 represent station 

FR04002, FR04034, FR04143, and FR04156, respectively. 

 

Table3.2 Statistics of surface pollutants: mean bias between the simulations and 

observations of NO2, PM2.5, and PM10 during Whole Period (WP) and Pollution 

Episode (PE). 

 Bulk UCM BEP 

WP PE WP PE WP PE 

NO2 21.5 40.9 29.8 62.2 18.4 29.7 

PM2.5 21.8 31.4 24.9 37.7 19.1 21.1 

PM10 12.6 13.7 15.2 18.9 10.1 4.2 
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Figure3.13 Vertical profiles of the CHIMERE Kz extracted at the FR04143 station. The 

profile is extracted at 06:00 and 22:00 UTC for both Regular Days (RD) and the Particulate 

Episode (PE). 
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Figure3.14 Vertical profiles of the NO2 and PM2.5 mass concentration (µg/m
3
) at the 

FR04143 station. The profiles are extracted at 06:00 and 22:00 UTC for both Regular Days 

(RD) and the Particulate Episode (PE). Columns (a), (b), (c), and (d) represent the vertical 

mass NO2 and PM2.5 concentration of at 28th November 06:00, 28
th

 November 22:00, 30
th

 

November 06:00, and 30
th

 November 22:00 UTC, respectively. 

3.3.3 Impact of Mixing Boundary Layer Height 

3.3.3.1. PBL Height 

WRF version 3.9.1 provides 14 options for the PBL scheme, following the approach of 

LeMoine et al. Briefly, they can be categorized as TKE schemes and non-TKE schemes 

(LeMone et al.,2006; LeMone et al., 2013). Two TKE-based schemes and one 

non-TKE-based PBL scheme are selected for these PBL sensitivity simulations. The TKE 

schemes chosen in this assessment are the MYJ and Boulac schemes, and the non-TKE 

scheme is the YSU scheme. Unified PBL sensitivities are not possible in this section with the 

canopy schemes from the previous section, because the BEP urban canopy scheme requires 

the simultaneous use of a TKE scheme and the Boulac PBL scheme is designed for coupling 

with the multi-urban canopy model. Regarding the configuration of the canopy models in 

Section 3.3.2, each canopy scheme will be coupled with two PBL schemes, giving the YSU–

Bulk and MYJ–Bulk schemes, the YSU–UCM and MYJ–UCM schemes, and the Boulac–

BEP and MYJ–BEP schemes. All the other physics options are the same. For the observed 

PBL height, we have the complete dataset for Roissy station and the last four days data for 

Sirta station. Figure3.15 displays a comparison between the observed Lidar data and the 15 
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min averaged modeled output of PBL height. Generally, all the PBL schemes systematically 

underestimate PBL height for the whole time series, especially during the PE and the 

beginning of RD (from 27
th

 November 00:00 UTC). This explains the strong overestimations 

of pollutants during the PE in Section 3.3.2 and is consistent with the positive biases of 

pollutant concentrations at the beginning of the RD in Figure3.11. If we consider the 

simulation of PBL during the PE, the average observed PBL height was around 110m and is 

only relatively well reproduced by the Boulac–BEP, scheme even though it still 

underestimates the PBL height by around 40m on average. The other PBL schemes reach the 

minimum PBL height (set up to 20m in the model) during the whole PE and strongly 

underestimate PBL height, especially at night and early in the morning. In general, the 

Boulac–BEP scheme gives the best performance, and it is the only option which can 

effectively estimate the evolution of the PBL height during the PE in this sensitivity test. For 

the other PBL schemes, the agreement between the simulations and observations is poor. 

MYJ displays the poorest correlation compared to the observed soundings, regardless of other 

parameter settings. 
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Figure3.15 Time series of the observed and modelled mixing boundary layer height: (a) and 

(b) represent Roissy and Sirta station, respectively; 1, 2, and 3 represent each PBL scheme 

coupled with each urban canopy scheme. 

3.3.3.2. Ground Meteorological Variables 

A comparison of the performances of various PBL schemes in simulating the surface 

meteorological variables (T2 and W10) is presented in this section. Figure3.16 and Figure3.17 

shows the time series of T2 and W10 based on several PBL schemes. The YSU–Bulk and 

Boulac–BEP have a slight positive bias compared to MYJ, but the YSU–UCM scheme had a 

cooling effect compared to the MYJ–UCM scheme during the PE. In the MYJ–BEP and 

Boulac–BEP schemes, it can be observed that the models always underestimate the wind 

speed compared to the observations in this period. The Boulac–BEP scheme produces a lower 

W10 than MYJ–BEP throughout the whole period, especially during RD. In contrast, W10 

does not show significant differences between the MYJ and YSU schemes coupled with the 

other two Bulk and UCM canopy models. Table3.3 summarizes the performances of the 
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meteorological variables. These schemes display a high correlation which approximately 
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reproduces the measured trend. The three experiments with the MYJ boundary layer scheme 

display a negative bias in W10 in Roissy and a negative bias in T2 in both Roissy and Sirta 

stations. A less negative bias is noticed with the simulations using the Boulac–BEP scheme 

compared with the others for the whole period, but it still produces a positive bias during 

nighttime in the PE. The reason could be that the Boulac PBL scheme takes the turbulent 

exchange affected by complex terrain into account in the calculation of the turbulent diffusion 

coefficient, leading to a smaller bias in T2 prediction (Li et al., 2006). The Boulac–BEP 

scheme slightly improves the results with respect to the MYJ–BEP scheme for the W10, but 

still strongly underestimates by 1.53m/s at Roissy station. The correlation indicates the PBL 

schemes coupled with the urban canopy schemes (MYJ–UCM, YSU–UCM, MYJ–BEP, and 

Boulac–BEP) are more accurate than those with no urban canopy scheme (MYJ–Bulk and 

YSU–Bulk). In contrast to the PBL height results, the model performances for T2 and W10 

based on various PBL schemes are mixed. Therefore, it is not straightforward to agree on a 

definitive best choice for the PBL scheme. 

 

Figure3.16 Time series between the observed and modelled T2: (a) and (b) represent Roissy 

and Sirta station, respectively; 1, 2, and 3 represent each PBL scheme coupled with each 

urban canopy scheme. 
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Figure3.17 Time series between the observed and modelled W10: (a) and (b) represent Roissy 

and Sirta station, respectively; 1, 2, and 3 represent each PBL scheme coupled with each 

urban canopy scheme. 

 

Table3.3 Statistics of surface variables: mean bias (MB) and mean linear correlation 

coefficient (R) between the simulations and observations of 2 m temperature (T2) and 

10 m wind speed (W10) at Roissy and Sirta stations. 

 Roissy Sirta 

T2 W10 T2 W10 

 MB R MB R MB R MB R 

MYJ−Bulk −0.69 0.83 −0.29 0.86 −1.13 0.88 0.53 0.84 

YSU−Bulk 0.23 0.77 −0.30 0.78 0.20 0.82 0.62 0.74 

MYJ−UCM −0.22 0.90 −0.38 0.87 −1.08 0.90 0.24 0.91 

YSU−UCM −0.51 0.92 −0.46 0.90 −1.31 0.93 0.18 0.88 

MYJ−BEP −0.56 0.82 −2.23 0.89 −0.89 0.86 −1.52 0.90 

Boulac−BEP 0.40 0.84 −1.53 0.88 −0.03 0.90 −0.90 0.92 
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3.3.3.3. Air Quality Simulations 

The impacts of the PBL schemes on air quality are analyzed in this section. The time series of 

the model predictions of the NO2, PM2.5, PM10 concentrations for all the schemes are 

compared with the observations (the NO2 can be found in Figure3.18; the PM2.5 and PM10 

can be found in Figures S4 and S5). In general, all the schemes have a better performance for 

the RD than the PE period, and almost all the schemes strongly overestimate pollutant 

concentrations at the beginning of the PE, except the Boulac–BEP scheme. The bias between 

the modelled and observed pollutant concentrations can be found in Figures S6, Figure S7, 

and Figure S8. All the schemes give a worse performance for NO2 and PM2.5 prediction than 

for PM10. The PBL height reaches the minimum value at 18:00 UTC on 29th November, 

with the YSU–Bulk scheme corresponding to an underestimation of 500 m; such a difference 

creates a large bias in air pollutant concentrations. The same phenomenon occurs for the 

MYJ–Bulk, MYJ–UCM, YSU–UCM, and MYJ–BEP schemes at 00:00 UTC on 30
th

 

November. However, the overestimation of pollutant concentrations does not occur at this 

time but at 06:00 UTC on 1st December, because this episode is largely influenced by local 

sources (road traffic and residential heating). On 1st December 2016 at 06:00 UTC (a 

weekday), the morning rush hour leads to a lag effect in the bias, explaining why all the 

schemes have their worst performance for the NO2 and PM2.5 predictions. The averaged 

statistics for the four air quality monitoring stations are summarized in Table3.4. Figure3.19 

gives the scatterplot between the observed and modelled NO2; the scatterplot for the PM2.5 

and PM10 can be found in Figure S9. Overall, the MYJ scheme overestimates the mass 

concentrations of all pollutants, whatever the selected urban canopy model. The Boulac–BEP 

scheme has a significantly better performance than other schemes for all the evaluated 

variables. The YSU–Bulk scheme has the lowest mean bias (−1.3 µg/m
3
) in PM10 prediction, 

but its mean linear correlation coefficients of NO2, PM2.5, and PM10 were 0.52, 0.40, and 

0.53, respectively. The mean biases for the NO2 and PM2.5 prediction were 17.63µg/m
3
 and 

46.0µg/m
3
, respectively. The low correlation for all the analyzed variables, positive biases for 

NO2 and PM2.5 prediction, and negative bias for PM10 prediction indicate that this scheme 

under and over-estimates the concentrations simultaneously, which means that the YSU–Bulk 

scheme cannot be performed effectively for the prediction of short-term PE in urban regions. 

The Boulac–BEP scheme was better for all the analyzed variables, both in terms of bias and 

correlation statistics; its mean biases for NO2, PM2.5, and PM10 prediction were −5.13µg/m
3
, 
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1.23µg/m
3
,
 
and −8.63µg/m

3
,
 
respectively. This indicates that both the urban canopy and PBL 

schemes play an important role in the PE forecast for urban regions. 

Table3.4 Statistics of surface variables: mean bias (MB), root mean square error (RMSE), 

and mean linear correlation coefficient (R) between the simulations and observations of NO2, 

PM2.5, PM10. 

 NO2 PM2.5 PM10 

MB R RMSE MB R RMSE MB R RMSE 

MYJ-Bulk 19.1 0.77 3.40 21.9 0.74 2.37 12.5 0.77 2.39 

YSU-Bulk 17.6 0.52 1.28 46.0 0.40 1.12 −1.3 0.53 2.34 

MYJ-UCM 29.6 0.73 2.21 24.9 0.60 2.07 15.2 0.64 2.01 

YSU-UCM 14.6 0.76 2.03 15.2 0.64 1.88 5.6 0.68 1.93 

MYJ-BEP 20.0 0.80 2.35 19.2 0.72 1.91 10.1 0.76 1.93 

Boulac-BEP −5.1 0.79 2.93 1.2 0.74 1.70 −8.6 0.76 1.71 
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Figure3.18 Time series of NO2 mass concentrations: No 1, 2, 3, and 4 represent station 

FR04002, FR04034, FR04143, and FR04156, respectively. 
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Figure3.19 Liner fit between the observed and modelled NO2. 

3.3.4 Impact of Land surface model  

In order to understand the impact of land surface model (LSM), a widely used Noah LSM 

scheme (version 3.0) and an advanced LSM model (Noah-mp) are analyzed in this section. 

Compared with Noah, Noah-mp separating the vegetation canopy from the ground surface 

which could solve the critical problems such as overestimation of runoff, too dry deep soil, 

too impermeable frozen soil, and too rapid ablation of snow, etc. Other physical 

parameterizations were based on the formal study which means BEP urban canopy model and 

Boulac PBL model (Bou-BEP) are selected in this section. 

We evaluated the modelled T2 and W10 against observations in three stations. As illustrated 

by Figure3.20, Noah-mp scheme gives a warmer surface skin temperature compared to the 

Noah scheme and its improved T2 simulation in the nighttime during the PE. Some researches 

(Niu et al., 2011; Salamanca et al, 2018) reported that Noah-mp produces a weaker surface 

exchange coefficient that Noah scheme leads a higher heating of the land surface during the 

midday hours. 

Modeled mean 10m wind speed across the three stations is shown in Figure3.21. The results 

show Noah-mp almost had no effect in the W10. The possible reason is the Noah-mp improve 

the vegetation canopy from the surface which could be more efficient in vegetated areas 

through plant stomata and root uptakes of soil water then better account for the surface energy 

balance. The surface wind speed in urban region mainly influenced by the city clusters and 

250

200

150

100

50

0

N
O

2
-O

b
s
e

rv
a

ti
o

n

250200150100500

NO2-MYJ-BEP scheme

R = 0.80
y = 1.41x + 3.2

250

200

150

100

50

0

N
O

2
-O

b
s
e

rv
a

ti
o

n

250200150100500

NO2-MYJ-UCM scheme

R = 0.73
y = 2.39x - 31.7

250

200

150

100

50

0

N
O

2
-O

b
s
e

rv
a

ti
o

n

250200150100500

NO2-MYJ-Bulk scheme

05/12/2016

03/12/2016

01/12/2016

29/11/2016

27/11/2016

R = 0.77
y = 1.94x - 19.2

250

200

150

100

50

0

N
O

2
-O

b
s
e

rv
a

ti
o

n

250200150100500

NO2-YSU-Bulk scheme

R = 0.52
y = 0.87x + 40.5

250

200

150

100

50

0

N
O

2
-O

b
s
e

rv
a

ti
o

n

250200150100500

NO2-YSU-UCM scheme

R = 0.76
y = 1.49x - 0.89

250

200

150

100

50

0

N
O

2
-O

b
s
e

rv
a

ti
o

n

250200150100500

NO2-Boulac-BEP scheme

R = 0.79
y = 0.55x + 30.6



Chapter III 

88/191 

diffusion conditions, the use of the Noah‐mp scheme makes negligible differences in W10 

simulation. 

 

Figure3.20 Time series of 2m temperature (°C) between observations and different urban 

schemes at Montsouris, Roissy, and Sirta stations. 

 

Figure3.21 Comparison of the time series of 10m wind speed (m/s) between the observations 

and different urban schemes at Montsouris, Roissy and Sirta stations. 

The impacts of the LSM on NO2 and PM2.5 simulation is illustrating in Figure3.22 (The 

PM10 can be found in Figure S10). The results show a very slight difference during regular 

days in all four station for both NO2 and PM2.5 simulation but gives some differences at the 

PE in FR04034 and FR04143 station. The possible reason could be the Noah-mp model 

produces stronger amplitude of ground heat flux by removing the exponential decay of the 

surface soil thermal conductivity with vegetation cover fraction (Niu et al., 2011). Overall, 

Noah‐mp is demonstrated to be a viable research tool through which the role of a specific 
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process in controlling surface temperature and fluxes. But for the air quality simulation and 

forecast, Urban canopy and PBL schemes may plays a more important role than LSM. 

 

Figure3.22 Time series of NO2 and PM2.5 mass concentrations: No 1, 2, 3, and 4 represent 

station FR04002, FR04034, FR04143, and FR04156, respectively. 
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CHIMERE chemical transport model. This study aims at understanding those impacts on the 

short-term pollution episode in the Paris region, France. 

For the first time, chemistry transport models have been used with a first layer at 4m to better 

account for physical processes within the suburban layer in relation to ground emissions such 

as road traffic. Clearly, the sharp gradient of concentrations shows the added value of using 

such a low level in urban areas. This study shows the high sensitivity of air quality simulation 

to meteorological model outputs during stable conditions favorable to the occurrence of PM 

episodes. 

Three urban canopy models could reproduce the T2 effectively in the daytime; the Bulk and 

UCM model reproduced the W10 well, but the BEP model underestimates W10 for the whole 

episode, indicating an important impact of buildings on the diffusion rate for this scheme. The 

UCM scheme overestimates the surface heat index in rural areas, leading to a slight negative 

bias for T2 in rural versus urban areas. T2 displays ambiguous results, while all schemes 

reproduced results well at Sirta station but overestimated during nighttime at Montsouris and 

Roissy during a pollution episode. This could be due to the use of a single urban category in 

this study, which leads to a discrepancy that causes more spatial variability in urban 

parameters. NO2, PM2.5, and PM10 were selected to evaluate the effect of physics 

parameterizations on air quality simulation. Large differences were found in the simulation of 

pollutant concentrations, with an overall overestimation during the pollution episode. 

The six PBL sensitivity tests display an underestimation of the PBL height when compared 

with the observations issued from the Lidar. All the sensitivity tests, except Boulac–BEP, 

could not effectively simulate the PBL height during the pollution episode. The two PBL 

schemes coupled with the BEP scheme still underestimated the W10 for the whole period, but 

the Boulac–BEP scheme improved the simulations compared with the MYJ–BEP scheme. 

The Boulac–BEP scheme had a significantly better performance than the other schemes for 

the simulation of pollutant concentrations, indicating that both the canopy parametrization and 

PBL schemes have a positive effect on air quality simulation in urban regions, especially 

during pollution episodes. The Noah-mp land surface scheme has slightly impact for both 

meteorological and air quality simulation. An advanced urban category could improve air 

quality prediction in urban regions. 
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Abstract  

The mesoscale Weather Research and Forecasting (WRF) and chemistry transport model 

(CTM) CHIMERE models were used to evaluate the impact of vertical grid resolution and first 

layer height in meteorological and chemistry transport modelling. Three model configuration 

(L4, L12 and L40) were investigated: (i) L4: 53 vertical layers in WRF and 20 vertical levels in 

CHIMERE are defined, the first layer height is about 4m; (ii) L12: 51 vertical layers in WRF 

and 20 vertical levels in CHIMERE, the first layer height approximately at 12m; (iii) L40: 36 

vertical layer in WRF and 9 vertical levels in CHIMERE, the first layer height is approximately 

at 40m. A fifteen days simulation including a three-day heavy pollution episode (PE) illustrates 

the impact of vertical grid resolution. The first layer height has a relatively small impact on 

meteorological simulation and the main differences of meteorological variables were observed 

at nighttime. However, a consistent improvement in chemistry transport modelling were 

displayed with refined vertical resolutions and the first layer height, compared to L12 and L40, 

the average improvement from L4 case in terms of RMSE are 23.26% and 25.09% on regular 

days (RD) defined as ―without pollution episodes‖ and 62% and 129% during PE respectively. 

In general, the ability of the model with low vertical grid resolution to correctly predict air 

quality is reasonable on RD or light pollution events, while it fails to predict correctly the 

pollutant concentrations for heavy polluted situations. The performances were improved with 

refined vertical resolutions particularly with extra fine first layer height at 4m. 
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Résumé  

Les modèles à méso-échelle CHIMERE et Weather Research and Forecasting (WRF) ont été 

utilisés pour évaluer l'impact de la résolution de la grille verticale et de la hauteur de la 

première couche dans la modélisation chimie transport. Trois configurations de modèles (L4, 

L12 et L40) ont été étudiées : (i) L4 : 53 couches verticales dans WRF et 20 niveaux verticaux 

dans CHIMERE sont définis, la hauteur de la première couche est d'environ 4m ; (ii) L12 : 51 

couches verticales dans WRF et 20 niveaux verticaux dans CHIMERE, la hauteur de la 

première couche est d'environ 12m ; (iii) L40 : 36 couches verticales dans WRF et 9 niveaux 

verticaux dans CHIMERE, la hauteur de la première couche est d'environ 40m. Une 

simulation sur quinze jours en hiver incluant un épisode de forte pollution (PE) de trois jours 

illustre l'impact de la résolution de la grille verticale. La hauteur de la première couche a un 

impact relativement faible sur la simulation météorologique et les principales différences de 

variables météorologiques ont été observées la nuit. Cependant, une amélioration significative 

de la modélisation du transport des polluants a été constatée avec des résolutions verticales 

raffinées et la hauteur de la première couche. Ainsi, l’amélioration moyenne du cas L4 par 

rapport à L12 et L40 en termes de RMSE est de 23,26% et 25,09% sur les jours réguliers (RD) 

sans épisodes de pollution et 62% et 129% pendant PE respectivement. En général, la capacité 

du modèle à faible résolution verticale à reproduire correctement les concentrations de 

polluants est raisonnable sur les RD ou les épisodes de pollution légère, alors qu'il ne parvient 

pas à reproduire correctement les concentrations de polluants pour les situations de forte 

pollution. Les performances ont été améliorées avec une résolution verticale affinée, en 

particulier avec une hauteur de première couche très fine. 

Keywords: air quality; vertical resolution; first layer height; diffusion; urban 

4.1 Introduction 

The prevention and control of environmental pollution has become an important task in the 

development and construction of the country, and the prevention and control of air pollution 

has become the top priority (Lu et al., 2020). Over the past decades, European countries 

deepen efforts to decouple air pollution from economic growth and the goal is to build an 

ecological civilization society (Ivanova, 2011; Koolen and Rothenberg, 2019b; Nam et al., 

2010). Studies show many air pollutants have decreased substantially since mid-1980’s 

(Grennfelt et al., 2020; Lelieveld et al., 2019; Renzi et al., 2017), for example, observation 
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data show that in Europe, the concentration of PM2.5 drops by 2.5μg/m
3
 per year over the 

past decades (Gozzi et al., 2017). However, some reports indicate more than 400,000 people 

die prematurely due to air pollution each year in Europe and this number is one million in 

1990 (Guerreiro et al., 2015). Air pollution is still one of the biggest threats to the health of 

Europeans. In many European cities, the concentration of main pollutants still exceeds the 

reference value of European Union (Barsova et al., 2019; Xu et al., 2017) and over the 

hemispherical background concentrations (Vautard et al., 2009). Therefore, regional joint 

prevention and control play an important role in improving air quality. At region and urban 

scale, mesoscale chemistry transport model (CTM) are widely used to assess the efficiency of 

such policies in controlling air pollution (Ma et al., 2020). With the continuous improvement 

of pollution sources and meteorological knowledge, many studies have proved the important 

role of horizontal resolution in improving model capabilities (Jensen et al., 2017; Martins, 

2012; Russell et al., 2019; Thunis et al., 2016b). However, there is still a lack of research on 

the effect of vertical grid resolution on the chemical transport processes. Accurate simulations 

of near-surface parameters particularly the representation of turbulence is difficult but very 

important on vertical mixing of meteorological and chemistry transport modelling. A spatial 

resolution increase enhances the variability of the concentrations, but also the amplitude of 

the errors due to meteorology, vertical resolution, land use or other factors (Aligo et al., 2009; 

Vautard et al., 2007). Since human activities are mainly concentrated within 50 meters from 

the ground, it is particularly important to improve the model's representation of pollutants in 

low boundary height. Research found that adding an extra vertical layer close to the surface is 

important for high nocturnal concentrations under stable boundary layers (Menut et al., 

2013b). 

In this chapter, an evaluation of three vertical grid resolution configurations and a first layer 

height, used to simulate a winter period including a short heavy pollution event in Paris region 

is proposed.  

4.2 Method 

The mesoscale Weather Research and Forecasting (WRF) model in Version3.9.1 and CTM 

model CHIMERE in Version2013 are used to simulate the meteorological parameters and 

pollutant concentrations over Paris. The horizontal domain setting is same as that of in 

Chapter II, with four nested-grid domains over Europe, France, the north of France, and 

Ile-de-France, with horizontal resolutions of 45km, 15km, 5km, and 1.67km, respectively. 
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The horizontal resolution of CHIMERE is consistent with WRF. Details can be found in 

Chapter III. A winter pollution event occurred between 30
th

 November to 1
st
 December 2016. 

In Chapter III, we analyzed the impact of physical parameterizations on high resolution 

meteorological and chemistry transport modelling and summarized the best parameter settings. 

Which means the rapid radiative transfer model for GCMs (RRTMG) shortwave and 

longwave radiation scheme; Monin–Obukhov (MO) similarity surface layer scheme; 

multi-layer urban canopy (BEP) scheme and Bougeault and Lacarrere (Boulac) boundary 

layer scheme are used as the physical parameter settings in this study. In order to better 

evaluate the impact of the vertical grid resolution and the first layer height on the air quality 

prediction on Regular days (RD) and Pollution episode (PE), the time series has been 

extended from eight days to fifteen days (from 20
th

 November to 4
th

 December) compared to 

the Chapter III, including 12 days RD from 20
th

 November to 29
th

 November and 3
rd

 

December to 4
th

 December, and a three days heavy winter PE from 30
th

 November to 2
nd

 

December .  

The vertical resolution of WRF is projected over CHIMERE. WRF having more vertical 

layers than CHIMERE. Therefore, three different vertical resolutions are defined for 

CHIMERE and WRF individually, and the configurations of the first layer height of the two 

models remain the same: 

 L4: 53 vertical layers are defined in WRF and 20 vertical layers are defined in 

CHIMERE. The first layer of the two model is at 999.5 hPa (approximately 4m) up to 

over 500hPa.  

 L12: 51 vertical layers are defined in WRF and 20 vertical layers are defined in 

CHIMERE, with the first layer at 998.5 hPa (approximately 12m) up to over 500hPa.. 

 L40: 36 vertical layers are defined in WRF and 9 vertical layers are defined in 

CHIMERE, the vertical layers are from 995 hPa (approximately 40m) up to over 

500hPa. This is the low vertical grid resolution test with a high first layer height, a 

similar configuration of vertical resolution and first layer height used in the national 

air quality forecasting platform PREV’AIR. 

To assess the model abilities in simulating the vertical profiles of meteorological parameters 

and pollutant concentrations, two types of observation datasets including three meteorological 

observation stations operated by METEO FRANCE and SIRTA and four air quality 
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monitoring stations issued from AIRPARIF were used. Those stations are urban or sub-urban 

background stations, the locations of stations can be found in Figure4.1.  

 

Figure4.1 Locations of the meteorological and air quality monitoring stations. 

Here, taking the relative change in % of the RMSE as the evaluation criteria of the model 

performances which defined as (4.1): 

    (%)  
               

       
     (4.1) 

Where         refers to the RMSE of the test case and         refers to the RMSE of 

the reference case. 

4.3. Results and Discussion 

4.3.1 Surface meteorological and pollutants concentration 

4.3.1.1 Meteorology  

The aim of this study is to assess the ability of the WRF-CHIMERE suite in simulating 

meteorological parameters and the main pollutant concentrations with different vertical grid 

resolution. In Figure4.2, the maps of 2m temperature (T2), 10m wind speed (W10) and 

surface relative humidity (RH) are displayed for the finest domain over the whole period. 

Although the absolute values are different, the regional patterns are similar for the three cases. 

For the simulation of T2, all three cases show obvious urban heat island effects of the domain, 

the absolute values in urban regions are approximately 2°C higher than the surroundings, and 

proportional to the height of the first layer (T2L40 > T2L12 > T2L4). The W10 values increase 

with an increasing first layer height in rural areas. However, in urban areas, L12 displays the 

highest W10, and L4 trends to produce the lowest W10 in cities. The momentum sinks 

depend on urban morphology in BEP urban canopy scheme, this indicates that an ultra-fine 
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first layer height could overestimate the drag effect of the realistic urban morphologies. The 

regional pattern of surface RH is inversely proportional to T2, with the highest RH simulation 

both in urban and rural region for L4 and lowest for L40. Table4.1 lists the range and average 

values of meteorological parameters for the three cases. The relative bias (RB) of L12 and 

L40 compared to the reference case (L12-L4 and L40-L4) are 2.17% and 22.95% for T2, 4.01% 

and -12.69% for W10, -0.12% and -2.72% for RH, respectively. The RB of L40-L4 clearly 

shows that vertical grid resolution has a strong impact of meteorology particularly for T2 

simulation, but there is no obvious impact on meteorological parameters simulations by 

refining fine first layer according to the results of L12-L4.  

 

Figure4.2 Maps of the mean 2m temperature (°C); mean 10m wind speed (m/s) and mean 

surface relative humidity (%) over the period from 20
th

 November to 4
th

 December. Left 

column: results from L4; Middle column: results from L12; Right column: results from L40. 
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Table4.1 Range and average values of 2m temperature (°C); 10m wind speed (m/s) 

and surface relative humidity (%) over the period 

 L4 L12 L40 

Range Avg Range Avg Range Avg 

T2 5.35 – 9.78 6.45 5.41 – 10.10 6.59 6.11 – 11.54 7.93 

W10 1.38 – 8.79 4.49 2.08 – 7.57 4.67 1.44 – 6.73 3.92 

RH 61.06 – 80.52 73.88 55.87 – 79.72 73.79 56.50 – 79.99 71.87 

 

4.3.1.2 Surface pollutant concentrations 

NO2, PM2.5 and PM10 concentrations are considered as the main pollutants to evaluate model 

performances on air quality simulations in this winter case study. Figure4.3 shows the maps 

of simulated surface NO2, PM2.5 and PM10 concentrations. As expected and similarly with 

the performances of meteorological parameters simulation, all three cases display gradient 

concentrations between the urban and rural areas. In the case of NO2, the surface 

concentrations in urban area and near the traffic lines are much higher. Table4.2 shows that 

unlike the vertical grid resolution has a relatively small impact on meteorology, RB in L12-L4 

and L40-L4 are both substantial in air quality simulations. The RB are -10.68% and -39.34%, 

respectively. In the case of PM2.5 and PM10, surface concentrations from the individual cases 

again displays large differences. The RB of L12-L4 and L40-L4 are -4.61% and -36.98% for 

PM2.5, -4.01% and -35.85% for PM10, respectively. The dispersion of the particulate matters 

away from the cities are uneven. Regional patterns show the lowest surface particulate matters 

in near urban surroundings and southwest regions, this because those areas are mainly 

covered by broad-leaf forests. The range of pollutants provide by the individual cases are also 

worth noting. Taking NO2 as an example, the maximum concentrations values from L4, L12 

and L40 are 136.34μg/m
3
, 82.56μg/m

3 
and 62.87μg/m

3 
respectively. The value of the L4 case 

is 1.65 time than L12 and more than twice value of the L40. This indicates the potential 

improvement of the model's ability on pollution events prediction through an improvement of 

the vertical grid resolution.  
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Figure4.3 Maps of the mean NO2 (μg/m
3
); mean PM2.5 (μg/m

3
) and mean PM10 (μg/m

3
) mass 

concentrations over the period from 20
th

 November to 4
th

 December. Left column: results 

from L4; Middle column: results from L12; Right column: results from L40. 

 

Table4.2 Range and average values NO2 (μg/m
3
); PM2.5 (μg/m

3
) and PM10 (μg/m

3
) over the 

period 

 L4 L12 L40 

Range Avg Range Avg Range Avg 

NO2 10.01 - 136.34 25.65 10.40 – 82.56 22.91 7.16 – 62.87 15.56 

PM2.5 18.65 – 47.51 23.33 19.04 – 34.93 22.16 12.35 – 20.78 14.64 

PM10 19.82 – 51.96 24.94 20.42 – 38.32 23.94 13.51 – 22.95 16.00 

 

4.3.2 Vertical profiles 

The averaged vertical profiles of vertical diffusion coefficient Kz, NO2, PM2.5 and PM10 

concentrations for the corresponding first layer height to 1000m for the Paris region are 

displayed in Figure4.4. The vertical Kz profile shows similar shapes but different order of 

magnitudes from surface to the top. For all cases the Kz displays an inverse concentration-like 

distribution within the first 400m, low vertical grid resolution trend to produce stronger 

vertical mixing. The values of Kz at first layer are 1.48m
2
/s, 4.25m

2
/s and 15.37m

2
/s for L4, 
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L12 and L40 respectively, showing the model would generates a very poor mixing close to 

the surface. The pollutants profiles decrease with altitude. The vertical Kz in L12 is generally 

higher than L40, and the vertical distribution of pollutants is inversely proportional to Kz, 

which indicate that the main effect of increasing the vertical resolution is to increase the 

concentration of pollutants. Vertical profiles showing maximum concentrations of all 

pollutants at surface and decreasing faster with increasing altitude, this feature shows that 

adding an extra fine layer near surface may have an important impact on chemistry transport 

modelling. 

 

Figure4.4 Vertical profiles of Kz(m
2
/s), NO2, PM2.5 and PM10 (μg/m

3
) from 20

th
 Novermber 

to 4
th

 December over Paris region. 

4.3.3 Comparison of model results with observations 

4.3.3.1 Meteorological simulations 

The comparison of model simulated and observed T2 and W10, as well as planetary boundary 

layer height (PBLH) are presented in Figure4.5. During this period, a PE from 30
th

 November 

to 2
nd

 December was reported according to the PREV’AIR system. For L4 and L12 cases, the 

model reproduces well T2 on RD and overestimated T2 on PE by up to 3.08°C for L4 and 
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4.73°C for L12. The statistical evaluation (Table4.3) shows that differences of model 

performance for T2 between L4 and L12 are small, both with high correlation (0.97 and 0.96) 

and low root mean square error (RMSE) shows that those two cases results reproduced 

realistic T2 fields. However, there is an overall overestimation of T2 for L40 case up to 

9.08°C at night of 1
st
 December. Table4.3 shows that the mean bias (MB) for L40 case are 4 

and 3.49 times compared with L4 and L12. The second example of predictions refers to the 

simulation of W10. The L12 case simulated the highest W10 most of the time, three 

meteorological observation stations are all urban background stations. These results match 

with the maps of W10 in the urban region. All three cases underestimate W10 during the 

whole period, the negative biases are 1.95m/s, 1.23m/s and 1.96m/s respectively. The L12 

shows better performance on W10 prediction than other two cases. The observed Planetary 

Boundary Layer Height (PBLH) is very often below 200m, leading to a weak mixing of 

pollutants and therefore an accumulation of pollutants closes to the surface. For the PBLH, 

the model performance is poor, the highest correlation coefficient was found in L40, however, 

this case overestimated PBLH approximately 160m on PE, this will cause an overestimated 

mixing rate and thus underestimate the pollutant concentration. 

 

Figure4.5 Time series between the observed and modelled 2m temperature (°C); mean 10m 

wind speed (m/s) and planetary boundary layer height (PBLH)  

 

Table4.3 Statistics of surface variables: mean bias (MB), mean linear correlation 
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observations of 2m temperature (°C); mean 10m wind speed (m/s) and planetary 

boundary layer height (PBLH) 

 L4 L12 L40 

R MB RMSE R MB RMSE R MB RMSE 

T2 0.97 0.68 1.45 0.96 0.78 1.43 0.89 2.72 3.35 

W10 0.81 -1.95 2.25 0.92 -1.23 1.42 0.88 -1.96 2.23 

PBLH 0.66 -36.17 262.51 0.70 -54.91 238.03 0.77 81.8 213.92 

 

In order to better understand the main differences, diurnal cycles are presented in Figure4.6. 

The model tends to overestimate T2 all over the day, usually more overestimated at night 

compared to the daytime. The diurnal cycle of W10 is relatively flat and all three cases 

strongly underestimate W10. L12 shows good results compare with others regarding the MB 

throughout the day. Due to missing part of the observation data, the diurnal cycle of observed 

PBLH does not have absolute accuracy. Based on existing data, we can find that L40 tends to 

overestimate and L4, L12 tends to underestimate PBLH at night and the diurnal variation of 

L40 significantly smaller than the other two cases. The diurnal cycles of meteorological 

parameters indicate that the vertical grid resolution is important on meteorology. Refining the 

levels thicknesses near the surface mostly affect the wind speed calculation. 

 

 

Figure4.6 Diurnal cycles for surface 2m temperature (°C); mean 10m wind speed (m/s) and 

planetary boundary layer height (PBLH) from 20
th

 November to 4
th

 December. 
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The time evolution of hourly-averaged NO2, PM2.5 and PM10 between observation and three 

cases involved in the inter-comparison is provided in Figure4.7. The results show that all 

three cases captured fairly well the day-to-day variability of the surface pollutants 

concentrations on RD but generally underestimated the intensity during the PE days. A 

relatively small differences between cases can be found from 20
th 

to 29
th

 November. While 

refining the first layer height has not a very sensitive impact on meteorology, it has a 

significant beneficial impact on air quality simulation. As shown in Table4.4, L4 case gives a 

clear best performance for of pollutants. The agreement with observations is generally better 

than for the other two cases, the correlations are 0.87, 0.90 and 0.91 in the cases of NO2, 

PM2.5 and PM10 respectively. Compared to the observations, the peak of pollutants 

corresponding to the PE is well modeled in L4 simulation, although it still underestimates 

surface concentrations on PE. The changes of pollutants concentrations are small between RD 

and PE in L40, which indicates low vertical resolution can hardly predict the PE effectively. 

The model comparison in Figure4.8 presents the differences between cases. Positive biases 

are found in L12-L4 and negative biases are found in L40-L4 from 20
th

 to 28
th

 November. On 

reason is the relatively low PBLH of L12 and relatively high PBLH of L40 compare with L4 

over this period. Since 29
th

 November, the surface pollutants concentrations obtained from L4 

are mostly higher than other two cases. While the average PM2.5 and PM10 surface 

concentrations are 25.64μg/m
3
 and 36.25μg/m

3 
in the observations, in the simulations, the 

values are 27.42μg/m
3
 and 29.67μg/m

3
 from L4, 24.45μg/m

3
 and 26.69μg/m

3
 from L12, 

14.82μg/m
3
 and 16.24μg/m

3
 from L40 respectively. This result is consistent with our one-year 

simulation over French region in Chapter II, the ratio of PM2.5/PM10 generally over 90% in 

the model. The reason could originate from the overestimation of fine mode emissions, as 

well as the lack of natural coarse emissions (Im et al., 2010; Vautard et al., 2009). In general, 

emission inventory needs improvement.  
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Figure4.7 Time series between the observed and modelled NO2, PM2.5, PM10 (μg/m
3
). 

 

 

Table4.4 Statistics of surface variables: mean bias (MB), mean linear correlation coefficient (R) 

and root mean square error (RMSE) between the simulations and observations of NO2, PM2.5, 

PM10. 

 L4 L12 L40 
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NO2 0.87 -4.30 17.18 0.75 -10.35 24.90 0.69 -21.12 33.33 

PM2.5 0.90 1.78 10.99 0.70 -1.19 17.53 0.62 -10.82 23.05 

PM10 0.91 -6.58 17.05 0.70 -9.56 25.42 0.63 -20.01 34.10 
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Figure4.8 Time series of bias between L12 to L4 (L12-L4) and L40 to L4 (L40-L4). 

In order to better evaluate the model performance during the PE, statistics of individual cases 

can be found in Table4.5. On RD, the RB of L12 to L4 is small, the values are -4.79%, 2.43% 

and 3.84% for NO2, PM2.5 and PM10 respectively. However, such values are large in L40-L4, 

which are -28.25%, -34.51% and -33.74%. The reason is the vertical mixing is much stronger in 

L40 than for L4 and L12 leading to more dispersion. Taking RMSE as the evaluation criteria of 

the model performances, L4 case improves the model ability by 23.26% and 25.09% on average 

compare with L12 and L40 on RD. Therefore, it also means the differences between L12 and 

L40 are relatively small. The average RMSE is 5.09% in L40-L12. This indicates that 

improving vertical grid resolution has relatively small impact during RD, but a fine first layer 

height is important for air quality simulation. Interestingly, during PE days, surface 

concentration of pollutants is much strongly influenced by the vertical resolution and first layer 

heights. The average NO2, PM2.5 and PM10 concentrations from L4 are respectively 1.92, 2.64, 

2.56 time than L40. The correlations in the case of L40 are reasonable on RD but poor on PE. 

Those results show that model configurations with low vertical grid resolutions and first layer 

height can reproduce pollutants well on RD, while for PE days the reproduction of amplitudes 

and variabilities will remain difficult. For the cases of L4, the simulation of all pollutants shows 

good agreement with observations. However, the amplitudes of pollutants remain 

underestimated, NO2 concentrations are underestimated on average by 15.98%, for PM2.5 by 

12.68% and for PM10 by 30.45%. The improvement of the model performance on PE by 

increasing the vertical resolution and refining first layer height is rather clear. Compare with 
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L12 and L40 cases, L4 improved model ability by 62.10% and 129.02% on average. The 

improvement is significantly higher than for RD. 

Table4.5 Statistics of surface variables: average mass concentration (μg/m
3
), mean bias (MB), 

mean linear correlation coefficient (R) and root mean square error (RMSE) between the 

simulations and observations of NO2, PM2.5, PM10 on regular days (RD) and pollution 

episode (PE). 

 

RD PE 

NO2 PM2.5 PM10 NO2 PM2.5 PM10 

L4 

Avg 36.57 20.08 21.34 88.97 56.61 62.80 

R 0.72 0.85 0.81 0.75 0.73 0.79 

MB -1.28 4.24 -1.40 -16.92 -8.22 -27.50 

RMSE 12.97 7.32 7.14 28.32 19.74 35.34 

L12 

Avg 34.82 20.58 22.16 66.02 39.93 44.82 

R 0.69 0.74 0.70 0.62 0.50 0.57 

MB -3.03 4.74 -0.58 -39.87 -24.90 -45.40 

RMSE 13.98 9.99 9.84 48.15 33.71 53.33 

L40 

Avg 26.24 13.15 14.14 46.39 21.43 24.52 

R 0.69 0.82 0.78 0.38 0.26 0.29 

MB -11.61 -2.69 -8.60 -59.50 -43.40 -65.78 

RMSE 15.83 9.25 10.45 67.46 50.21 73.33 

 

All the analysis results indicate the model configuration of L4 is significantly better than the 

other two in the simulation of the chemical transport process during this period, but it is difficult 

to state that L4 is the best model setting in all cases. 

Table4.6 reports the operational time consumed by the three cases for simulating a single day 

meteorological and chemical transport processes for all domains. The operating processes of 

WRF and CHIMERE both consist of two steps: a pre-processing step and a main operating step. 

The pre-processing step takes a very short time, ranging from tens of seconds to several minutes. 

Here, a single-day operational time often refers to the total time taken to complete these two 

steps. The difference between the L4 and L12 cases for meteorological modelling is small, only 

3 minutes but L40 can save 14 minutes compare with L4. For chemistry transport modelling, 

the difference between the L4 and L2 cases is similar with their meteorological process, while 

the difference for operational uses of the L40 case is more straightforward. Compared with the 

L4 case, 44 minutes are saved, the CPU time is divided at least by a factor 2.  
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Results show acceptable model ability at low vertical grid resolution on RD. Therefore, for the 

high-resolution small domain cases, it is obvious that high vertical grid resolution is a better 

setting. In particular, the reasonable first layer height may greatly improve the simulation 

results. For a long-term and large-scale simulation, considering the cost of computing resources, 

a low vertical resolution configuration should be a more suitable solution for practical use. 

Table4.6 Operational time (minutes) for a single day simulation in meteorological and 

chemistry transport modelling 

 WRF  

(min) 

CHIMERE 

(min) 

TOTAL 

(min) L4 70 84 154 

L12 67 82 149 

L40 56 40 96 

4.4 Conclusions 

This study presents a sensitivity analysis of the impact of vertical grid resolution and the first 

layer height in meteorological and chemistry transport modelling during a pollution episode at 

urban scale. The simulations are carried out over a fifteen days winter period from 20
th

 

November to 4
th

 December 2016 including a pollution episode (PE) from 30
th

 November to 1
st
 

December and the rest of days is defined as regular days (RD). 

The maps of meteorological parameters and main pollutants show similar regional patterns for 

the three cases. The differences between the different model configurations are relatively 

small on meteorological parameters. The relative bias (RB) of L12 and L40 compare with L4 

(L12-L4 and L40-L4) are 2.17% and 22.95% for 2m temperature (T2), 4.01% and -12.69% 

for 10m wind speed (W10), -0.12% and -2.72% for surface relative humidity (RH), 

respectively. The differences between three configurations in chemistry transport modelling 

are more obvious. The RB of L12-L4 and L40-L4 are -10.68% and -39.34% for NO2, -4.61% 

and -36.98% for PM2.5 and -4.01% and -35.85% for PM10, respectively. 

However, for the planetary boundary layer height (PBLH), L40 case reproduces higher PBLH 

than others in most of the time of this period and overestimated PBLH about 160m on PE, 

leading to a stronger vertical mixing than for L12 and L4 simulations. The differences 

between the three configurations in meteorological parameters simulations are larger during 

nighttime than that for daytime. 
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The comparisons between observed and modelled surface main pollutants concentrations 

were performed. Although the model performances are uneven, all three configurations 

demonstrate the ability of chemistry transport modelling on RD. The impact of vertical grid 

resolution and first layer height is moderate. Taking the root mean square error as the 

evaluation criteria, L4 improves the model ability by 23.26% and 25.09% than L12 and L40 

respectively. However, on PE, improving vertical grid resolution and first layer height results 

clearly improves the air quality prediction, average improvements are 62.10% and 129.02% 

from L12 to L4 and from L40 to L4 respectively. 

This study highlights the model ability both in meteorological and chemistry transport 

modelling with low vertical resolution on RD, but such a model configuration displays 

discrepancies in representing the amplitudes of pollutants concentrations on PE and 

increasing the vertical resolution and refining first layer height leads to clear improvement 

during pollution episodes.  
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Chapter V: Improvement of the vertical mixing in 

chemistry transport modelling based on a 1.5 order 

turbulence kinetic energy-based eddy diffusivity 

closure scheme  

 

This chapter has been designed to be considered for publication. 

  



Chapter V 

120/191 

Improvement of the vertical mixing in chemistry transport 

modelling based on a 1.5-order turbulence kinetic 

energy-based eddy diffusivity closure scheme 

Lei Jiang 
1,2, *

, Bertrand Bessagnet 
1, †

, Frederik Meleux 
1
, Frederic Tognet 

1
, Florian 

Couvidat 
1
 

1
 INERIS, National Institute for Industrial Environment and Risks, Parc Technologique 

ALATA, 60550 Verneuil-en-Halatte, France  
2
 Sorbonne University, UPMC Univ Paris 06, DE129, 75005 Paris, France 

†
 Now at European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy. 

Abstract 

In this study, a 1.5-order turbulence kinetic energy-based eddy diffusivity closure scheme 

called as the new eddy diffusion (NED) is embedded in the chemical transport model 

CHIMERE to describe more realistic diffusion processes near the surface for urban pollution 

applications. A 15 days simulation including a winter pollution episode were simulated for 

three major French cities with fine horizontal resolution of 1.67km and first layer height 12m 

respectively. The NED scheme improved NO2 simulations in every urban site compare with the 

initial K diffusion scheme (IKD). Taking the root mean square error as the evaluation criteria, 

the average improvements are 18.77%, 24.51% and 9.52% in Paris, Lyon and Bordeaux 

respectively for the whole period. PM2.5 and PM10 simulation achieved same results with NO2, 

a 13.47% and 19.08% improvement were found in the urban area of Paris respectively. 

However, the model performance for Particulate Matter in Lyon and Bordeaux probably 

indicate a huge underestimation of biomass burning emissions in wintertime. Sensitivity test 

shows that the model results are sensitive to changes of first layer height, over-refined first 

layer height will lead to unreasonable TKE simulations. Overall, preliminary outcomes of this 

study are encouraging. The simulation with more sophisticated and realistic eddy viscosities are 

better than IKD based on K-theory that is widely used in CTMs.  
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Résumé 

Dans cette étude, un schéma de fermeture d'ordre 1.5 de la diffusion turbulente basé sur 

l'énergie cinétique de la turbulence, défini comme la « new eddy diffusion » (NED), est intégré 

dans le modèle de transport chimique CHIMERE pour décrire des processus de diffusion plus 

réalistes près de la surface pour étudier pollution urbaine. Une simulation de 15 jours incluant 

un épisode de pollution hivernale a été réalisée pour trois grandes villes françaises avec une 

résolution horizontale fine de 1,67km et une hauteur de première couche de 12m. Le schéma 

NED améliore les simulations des concentrations de NO2 pour chaque site urbain par rapport au 

schéma de diffusion K initialement implante dans CHIMERE (IKD). En prenant l'erreur 

quadratique moyenne comme critère d'évaluation, les améliorations moyennes sont de 18,77%, 

24,51% et 9,52% à Paris, Lyon et Bordeaux respectivement pour toute la période. La simulation 

des PM2.5 et PM10 a donné les mêmes résultats que celle du NO2, avec une amélioration de 

13,47% et 19,08% respectivement dans la zone urbaine de Paris. Cependant, les performances 

du modèle pour les particules à Lyon et Bordeaux indiquent probablement une énorme 

sous-estimation des émissions de la combustion de la biomasse en hiver. Le test de sensibilité 

montre que les résultats du modèle sont sensibles aux changements de la hauteur de la première 

couche, une hauteur de première couche trop raffinée conduira à des simulations TKE 

déraisonnables. Dans l'ensemble, les résultats préliminaires sont encourageants dans cette étude. 

La représentation de schémas de turbulence plus sophistiqués et réalistes semble améliorer les 

simulations de chimie transport.  

Keywords: turbulence; urban; air quality; vertical diffusion; winter episode 

5.1 Introduction 

Air pollution is one of the biggest public health hazards worldwide responsible for over 6 

million deaths every year ( Forouzanfar et al., 2016; Lim et al., 2012; Valari et al., 2020). In 

cities, air quality is a major concern for citizens and city managers (Baklanov et al., 2007). 

With the development of computer performance and a better knowledge of the meteorology and 

pollution sources, meteorological and air quality modelling has been widely used in the last 
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decades, particularly in urbanized and industrialized areas (Mailler et al., 2013). Today, High 

resolution mesoscale chemistry–transport models (CTM) such as CMAQ, CAMx or 

CHIMERE have achieved sufficient accuracy to be considered for urban air quality predictions 

(Byun and Schere, 2006b; Fillingham, 2019; Sokhi et al., 2018; Terrenoire et al., 2015). 

However, patterns of urban air pollution are rather variable and spatially heterogeneous (Wolf 

et al., 2020), the interactions between urban and the atmosphere remains challenges (Letzel et 

al., 2008), especially on modelling airflow and dispersion within the urban canopy (Baker et al., 

2004). Turbulence plays an important role on the vertical mixing of pollutants and other 

physical parameters (Laurent Menut et al., 2013a; Pierce et al., 2010), but the representation of 

turbulence is difficult to predict particularly close to the ground levels. All CTMs must account 

the problem of turbulence, even if turbulent processes are still not fully understood: for example 

the statistical approaches of turbulence closure schemes used to solve the Navier-Stokes 

equations are not fully mature or are not always relevant for all scales due to the nonlinearity of 

these equations (Argyropoulos and Markatos, 2015; Novati et al., 2021). For mesoscale CTM 

models, the turbulent diffusion is mainly based on the gradient transport theory (K-theory) 

which is a first order turbulence closure. It defines the turbulence fluxes as analogous to 

molecular transport, assuming that the turbulence is a fluid cluster, which has the same 

properties as the molecular transport model, and a linear relationship between the gradient and 

the flux is thus obtained (Huang, 2019; Klimontovich, 1985). This local turbulence closure 

approach assumes that turbulence consists of only small eddies, causing diffusion-like 

transport. For example, the vertical kinematic flux     ̅̅ ̅̅ ̅̅  of a pollutant can be modeled as being 

equal to an eddy thermal diffusivity K times the vertical gradient of mean concentrations  ̅. 

    ̅̅ ̅̅ ̅̅    
  ̅

  
 

Also, the near-surface flow is complex process to simulate, the nature of turbulent transport is 

far from a simple linear relationship, it changes with the spatial scale of the atmospheric 

turbulence field and this notion of scale for turbulence is of major importance (He et al., 2019). 

In mesoscale model, the grid size Δ is considerably larger than the energy containing turbulence 

scale l, the turbulent energy is clearly in the unresolvable sub- scale. Therefore, the turbulence 

only needs to be parameterized instead of directly resolved. Currently, the most mainstream 
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turbulence parameterization method is based on the first-order local closure scheme. In Chapter 

II, three parameterizations were analyzed based on the first-order local closure scheme, and the 

results show that this concise method is feasible. However, the high pollutants concentrations 

are frequently found under stable atmospheric and cold weather conditions, such conditions are 

characterized by a stably stratified lower atmosphere and very low turbulent diffusion 

(Wolf-Grosse et al., 2017; Zilitinkevich and Esau, 2005). In cities, traffic and local industrial 

emissions have a significant share of the local pollutants, those emissions can accumulate and 

have longer residence times near the ground level due to low transport and mixing (Kurppa et 

al., 2018) which makes harder to provide an accurate prediction of pollution level and the early 

warning of pollution episode (PE). A way to improve the turbulence parameterization is to 

increase the order of the closure (Stull, 1988).  

In this study we use the eddy diffusion from the 1.5-order closure TKE embedded in the 

Weather Research and Forecasting (WRF) model as a new vertical diffusion coefficient (Kz) in 

the CTM CHIMERE to describe more realistic diffusion processes near the surface for urban 

pollution applications. Two schemes are defined: one as the initial K-theory diffusion scheme in 

CHIMERE (IKD) and one as the new eddy diffusion (NED) scheme from WRF respectively. A 

high spatial resolution simulation, which is conducted for a winter period from November 20
th

 

to December 4
th

, 2016 over three major cities (Paris, Lyon and Bordeaux) in France was 

performed with the WRF / CHIMERE suite. Based on our work presented in the previous 

chapters, the grid resolution of the models has strong influence on pollutants prediction 

(Punger and West, 2013). The first step of the study is to understand the impact of vertical grid 

resolution on the NED simulation and find the finest vertical resolution for the following steps. 

Second, examples of IKD and NED simulations are investigated for the different urban 

environments. The results are presented in terms of model performances between the 

configurations for the usual criteria pollutants. The final goal of this study is to propose a more 

advanced diffusion scheme to improve air quality simulations and forecast over urban and 

peri-urban area especially on the short-term pollution events. 
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5.2 Model Description and Experiment Design 

5.2.1 WRF and CHIMERE Model Description 

As the first step of this experiment, the WRF model (Version 3.9.1) is used to provide the 

meteorological input data for the CTM. The initial and boundary conditions of WRF are 

issued from the Global Forecasting System (GFS) analysis data from the National Centers for 

Environmental Prediction (NCEP), available at a 0.25° × 0.25° resolution at six-hourly time 

steps. In order to calculate realistic meteorological input variables and pollutant 

concentrations, the system is configured with four nested-grid domains in Paris, Lyon and 

Bordeaux (as shown in Figure5. 1) include 106 × 91, 118 × 115, 115 × 103 and 85 × 79 grid 

points, with cell sizes of 45 (d01), 15 (d02), 5 (d03), and 1.67km (d04) horizontal resolution, 

respectively. The domain size and resolution are the same in the three areas. Parameters 

setting come from the best case in Chapter III for the WRF simulation. It means: the rapid 

radiative transfer model for GCMs longwave radiation scheme, the rapid radiative transfer 

model for GCMs shortwave radiation scheme, Monin–Obukhov surface layer scheme, Noah 

land surface scheme, multi-layer urban canopy scheme and Bougeault and Lacarrere (Boulac) 

boundary layer scheme.  

 

Figure5. 1 Four nested domains—from d01, the largest one, at a low resolution to d04, the 

finest one, at a high resolution. 

The CTM model CHIMERE (Version 2013) (Menut et al., 2013) is used for air quality 

modeling in the present study. CHIMERE is a state-of-the-art Eulerian offline CTM model 
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use a mass conservative approach to reproduce pollutant chemical transformations and 

transport. The initial vertical diffusion of CHIMERE defined as IKD in this study is based on 

first order closure scheme, it is mostly controlled by the PBL height. The horizontal diffusion 

is neglected in CHIMERE. The PBL height is directly read from WRF and capped at a 

minimal value of 20m to avoid unrealistic simulations. In CHIMERE, the vertical movement 

diffusion is calculated using the parameterization of Troen and Mahrt (1986) but without 

counter-gradient term in Equation (5.1): 

        (  
 

 
)
 

 (5.1) 

where k is the von Karman constant set to 0.41, z is the altitude, h is the boundary layer height, 

and    is the vertical scale given by the similarity formulae, detailed explanation can be 

found in Chapter II. In this scheme, it can clearly see that the boundary layer height plays a 

crucial role in the vertical mixing, and have a direct impact on the mixing depth, height of 

maximum mixing and magnitude of mixing. Many studies indicate this first order closure 

K-theory is appropriate for mesoscale modeling particularly for neutral to weakly stable 

conditions. However, our previous studies have shown that during heavy pollution periods, 

there are huge differences in the boundary heights simulations according to different planetary 

boundary layer (PBL) schemes. Some of the PBL schemes cannot effectively simulate the 

height of the boundary layer during the pollution period, resulting in the simulation of 

pollutants concentrations several times the observation (Jiang et al., 2020). There are 

generally two ways to improve the mesoscale vertical mixing. The first is to use a 

higher-order local closure scheme to replace the first-order local closure. Second, the 

unknown quantity on the grid point can be determined by the known quantity on the grid 

point farther away in the vertical direction, which is called non-local closure scheme (Warner, 

2010).  

In WRF, the commonly used 1.5 order local mixing PBL schemes including 

Mellor-Yamada-Janjic (MYJ), Mellor-Yamada Nakanishi and Niino Level 2.5 (MYNN2) and 

Boulac scheme, the nonlocal mixing PBL schemes including Yonsei University (YSU) and 

asymmetric convective model V2 (ACM2) PBL schemes. The TKE order-1.5 model was 
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calculated from Boulac PBL scheme defined as NED scheme in this study. Figure5.2 shows 

the general principle of the NED simulation. The computation strategy of NED can be 

separated into the following sequential steps: 

i. Activation of  the vertical eddy viscosity in the WRF code as is not the default output 

variable of the model; 

ii. Calculate Kz of NED in WRF simulation based on Boulac PBL scheme; 

iii. Pre-processing in CHIMERE: Interpolate NED to CHIMERE; 

iv. Initialization phase of CHIMERE simulation, replacing IKD with NED; 

v. Launch the main step of CHIMERE simulation and get all output variables based on 

NED. 

 

Figure5.2 General principle of the NED simulation 

The Reynolds decomposition prognostic equation for TKE e under the assumptions of 

horizontal homogeneity can be written as (5.2): 

 

  

  
  

 

  
( '  

 ' '

  
)  

 

   
 '   ( ' '

  

  
  ' '

  

  
)

   

(5.2) 

Where u, v, w are the wind components,    is the mean virtual potential temperature, p is the 

pressure,   is the density, g is the gravitational acceleration and ε is the viscous dissipation of 

TKE (Stull, 1988). 
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The TKE order-1.5 is also constructed upon the gradient transport theory as (5.3): 

      
  

  
 (5.3) 

The left side represents the Reynolds-average operator, the vertical turbulent flux    is 

parameterized as the product of local gradient of analytical variable   and eddy diffusivity K. 

In Boulac scheme, vertical eddy diffusivity defined as (5.4): 

       √  (5.4) 

Where Ck is a constant set up to 0.7, l is the vertical length scale (Deardorff, 1980), and e is 

the TKE defined as (5.5): 

   
 

 
( '   '   ' ) (5.5) 

In the Boulac scheme, it is assumed that at individual level in the atmosphere, the length scale 

l may be related to the distance that the parcel originating from the corresponding level and 

having the initial kinetic energy equal to the average TKE of the layer which can move up and 

down before being prevented by the buoyancy effect. The     and       is defined as (5.6): 

  

∫  ( ( )   ( '))  '   ( )
     

 

∫  ( ( )   ( '))  '   ( )
 

       

 (5.6) 

Thus, the length scale l must be related to some value between     and      . In Boulac 

scheme, the l is written as (5.7): 

   √         (5.7) 

The advantage of this scheme is to allow for remote effects of stable zones to define the 

turbulence mixing length scale (Bougeault and Lacarrere, 1989). This scheme solves a 

prognostic TKE equation which includes TKE advection and parameterizes sources and sinks 

from shear production, buoyancy, mixing and dissipation (Simon et al., 2019). The model 

physical parameterizations remain the same as Boulac-BEP scheme detailed in Chapter III, 

(see Table3.1 of Chapter III). 
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5.2.2 Domains Setup and Observations Data 

Previous Chapter indicates the first layer height plays an important role in chemistry transport 

modelling. In order to understand the impact of the first layer height on TKE prediction, for 

the first step of this study, the WRF vertical grid is discretized vertically on 53, 51 and 49 

vertical levels from 999.5hPa, 998.5hPa and 995hPa to the top in Paris region. The three 

model configurations are defined:  

(i) H4: 53 vertical layers are defined in WRF and 20 vertical layers are defined in 

CHIMERE. The first layer of the two model is at 999.5hPa (approximately 4m) up 

to over 500hPa; 

(ii) H12: 51 vertical levels are defined in WRF and 20 levels are defined in CHIMERE, 

starting with the first vertical height at about 12 meters above the ground; 

(iii) H40: 49 vertical levels are defined in WRF and 20 vertical layers are defined in 

CHIMERE from 995hPa to 500hPa, starting with the first vertical height at about 40 

meters above the ground;  

To take full advantage of the physical parameterizations, the CHIMERE simulation is 

performed with the same horizontal resolution as the WRF; the vertical levels from the WRF 

simulation are projected onto 20 levels in CHIMERE the namelist can be found in Annex B 

List.1.  

Two types of observation data are used in the present study: (i) the meteorological 

observation stations (MOS) operated by METEO FRANCE were used to evaluate the 

simulated meteorological variables from the model; and (ii) the hourly surface concentrations 

of criteria pollutants (NO2, O3, PM2.5, and PM10) issued from AIRPARIF, the official Paris 

air quality monitoring network. It is not usual to discuss O3 during wintertime, but O3 can 

reacts with nitrogen oxide (NO) to form NO2, this will be insightful to better understand the 

chemical regimes. The location of the meteorological observation stations and the air quality 

monitoring stations (AQS) can be found in Figure5.3.  
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Figure5.3 Maps of the meteorological and air quality monitoring stations. Red dots represent 

urban background station; green dots represent suburban background station and blue dots 

represent rural background station. 

5.3 Results and Discussions 

5.3.1 Impact of the first layer height on NED modelling 

Three vertical grids are tested to study the sensitivity and impact of the first layer height 

performed with the WRF and CHIMERE, from 27
th

 November to 4
th

 December 2016 over Paris 

region.  
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The aim is to quantify the variability in the surface pollutants concentrations results by 

implementing the NED scheme in the mesoscale CTM which would be more representative to 

the simulation of air flow and pollutant dispersion in urban atmosphere particularly on the PE. 

Figure5.4 gives the vertical diffusion coefficient in urban and rural area. The Kz profiles show 

different shapes and magnitudes between H4, H12 and H40. The values of diffusivity are 

relatively poor at low levels from H4 scheme and do not exceed 0.12m
2
/s on the first layer in 

both urban and rural area. H12 gives 0.71m
2
/s and 0.25m

2
/s in urban and rural area with is 

approximately 7 and 2 times than H4. H40 reaches the maximum diffusion rate since the first 

layer and decreasing with the increasing altitudes. For all schemes and regions, the most 

important differences are in the low layers, showing that the point close to the surface 

generates a complex mixing under different first layer height. 

 

Figure5.4 Vertical profiles of the CHIMERE Kz from NED scheme extracted at the FR04143 

station.  

Taking NO2 as the reference pollutant, Figure5.5 gives the surface NO2 mass concentrations in 

urban and rural background station between observation and three sensitivity simulations. It is 

noteworthy that the models capture well the evolution of NO2 concentrations over the urban 

and rural stations, these first results show that implementing a more advanced scheme is 

feasible. H4 strongly overestimates NO2 concentrations for the whole period in the urban 

regions, the reason is the strong underestimation of Kz at lower levels. Table5.1 lists the 

correlation (R), mean bias (MB) and root mean square error (RMSE) of each sensitivity 
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studies. H12 displays a more reasonable behavior of NO2 than the two other grid and will be 

used as the model configuration of vertical grid resolution for the following steps. This 

sensitivity test indicates the first layer height is crucial on TKE parameterization, an extra fine 

first layer height at 4m does not produce better simulation results. 

 

Figure5.5 Time series between observed and modelled NO2 mass concentrations (µg/m
3
) from 

NED scheme in urban and rural background stations in Paris region. 

Table5.1 The correlation (R); mean bias (MB) and root mean square error (RMSE) between 

Observation and simulation of NO2 in four urban and rural background stations over Paris 

region. 

 L4 L12 L40 

R MB RMSE R MB RMSE R MB RMSE 

Urban 0.62 78.71 112.87 0.77 7.89 25.89 0.70 13.21 31.14 

Rural 0.37 5.40 21.90 0.44 -6.21 21.84 0.33 -1.73 24.31 

5.3.2 NO2 and O3 Simulations over Paris region 

5.3.2.1 NO2 and O3 simulations in urban background stations 

Road traffic emission is the largest contribution to NO2 concentrations in urban areas 

(Dragomir et al., 2015; Lee et al., 2014; Palmgren et al., 1996). The mean first layer NO2 and 

O3 mass concentrations and Kz over the period are shown in Figure5.6. The results show that 

the absolute values are different between the IKD and NED scheme, the regional patterns are 
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similar for the Kz and the two pollutants. It is clear that the results over urban areas exhibit the 

role NO2 emissions on NO2 concentrations. The Kz simulated by the NED method is 

significantly lower than the IKD scheme in the entire region. The average surface Kz from 

NED scheme is 1.13m
2
/s

 
in the urban region with is approximately half of the IKD scheme 

(2.50m
2
/s), this value is similar to our plan of dividing Kz by 2 in urban areas since the 

Version-2017 of CHIMERE. Consequently, the NED scheme runs generates remarkably 

higher surface NO2 concentration by 6.93µg/m
3 

on average in urban area. The spatial 

differences for O3 mass concentration between IKD scheme and NED scheme are more 

substantial than for NO2. The O3 and NO2 maps show that the area with maximum NO2 

increase coincide well with that of sharp O3 reduction due to the titration effect. (Yao et al., 

2005) indicated that the contribution of direct NO2 emissions to the atmospheric NO2 

concentration is low, the NO2 concentrations mainly comes from the oxidation of NO. The 

chemical reaction involving NO with O3 plays an important role in the formation of NO2 

(Song et al., 2011), even in winter.  

 

Figure5.6 Maps of the mean vertical diffusion coefficient (m
2
/s) at first layer; mean surface 

NO2 mass concentration (µg/m
3
) and mean surface O3 mass concentration (µg/m

3
) over the 

period from 20
th

 November to 4
th

 December. The first line: results from IKD scheme; the 

second line: results from NED scheme. 

Figure5.7 shows the time series of hourly averaged mass concentrations of NO2 and O3, from 

all urban background stations from November 20
th

 to December 4
th

 2016. The index of 
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agreement between observed and modelled NO2 can be found in Annex B Figure S5.1. 

Relatively high NO2 concentrations were observed in all four urban background stations, with a 

mean concentration of 53.45 µg/m
3
; 50.05 µg/m

3
; 52.47 µg/m

3
; 49.66 µg/m

3
 in FR04002; 

FR04034; FR04143; FR04156 station, respectively. Table5.2 lists the performances of NO2 

simulation for both schemes with their average mass concentration (Avg); correlation (R); 

mean bias (MB) and root mean square error (RMSE) at each station. The results show that the 

period is well modelled by the IKD scheme with the correlation from 0.62 to 0.74 among 

stations. However, this scheme seems underestimated NO2 concentration in all stations, this is 

mainly because of the underestimation during the PE. The performance of NED scheme is 

very satisfactory and improves NO2 simulations for most of stations. Taking the relative 

changes in RMSE as the evaluation criteria, the largest improvements occur for FR04034 

station (the improvement is of 19.22%). The averaged time series and statistics for the urban 

background stations are summarized in Figure S5.2 and Table S5.1. The two schemes capture 

quite well the evolution of NO2 concentration over the urban region, the R and MB are 0.74 

and -10.40µg/m
3 

for IKD scheme and 0.80 and -3.80 µg/m
3 

for NED scheme with the 

improvement is of 18.77% in the urban area. It is noteworthy that both schemes give a better 

performance in the city center station (FR40143) than others, it may indicates categories of 

urban area are not enough detailed in the model, which might help assessing the urban 

categories and roughness length for the model in the urban area. The performances of O3 

simulation from IKD and NED schemes are quite different according to their performances of 

NO2 simulation. The IKD scheme gives a clearly better performance in the first three days of 

the period. Subsequently, both schemes significantly overestimate the O3 concentration at all 

urban background stations until 27
th

 November. Previous researches reported that surface O3 

concentrations in wintertime are highly correlated to reduced photochemical activity (Chen et 

al., 2020; Peshin et al., 2017). Therefore, the overestimation of O3 may due to 

underestimation of cloud thickness in this period. Table5.3 provides an overall evaluation for 

IKD and NED schemes for the urban stations. O3 concentrations are on average overestimated 

particularly for the IKD scheme. However, the time series shows that the O3 concentration is 

strongly overestimated in some days, therefore the MB cannot well represent the simulation 

accuracy of two schemes for O3. Unlike the results of NO2 simulation, the IKD scheme gives 
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a better correlation and RMSE in all stations than NED scheme. The NED scheme resulted in 

4.05%, 9.12%, 1.27% and 13.86% drops in O3 simulation accuracy in four urban stations.  

Figure5.7 also shows the ability of the model to locate the pattern of the PE but also a clear 

underestimation of NO2 concentrations during the PE for all stations. At most of the sites, the 

peak NO2 concentration occurred during the daytime on December 1
st
, the NO2 exceeded 

200µg/m
3 

in the observations but the model does not effectively capture this moment with 

both schemes. The average mean bias in urban background stations for IKD and NED schemes 

during the PE are -39.88µg/m
3
 and -24.16µg/m

3 
respectively, showing a better ability of the 

NED simulation to reproduce primary pollutant concentrations 
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Figure5.7 Time series between observed and modelled NO2 and O3 mass concentrations 

(µg/m
3
) in urban background stations.
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Table5.2 Average modelled NO2 mass concentrations (Avg); the correlation (R); mean bias 

(MB) and root mean square error (RMSE) between Observation and simulation of NO2 in 

four urban background stations over Paris region. 

 IKD NED 

Avg R MB RMSE Avg R MB RMSE improvement
a
 

FR04002 48.34 0.62 -5.11 28.09 54.39 0.57 0.94 30.29 -7.83% 

FR04034 31.12 0.74 -18.93 32.05 40.04 0.78 -10.01 25.89 19.22% 

FR04143 47.98 0.67 -4.49 23.68 55.38 0.78 2.91 20.21 14.65% 

FR04156 36.79 0.69 -12.87 30.68 40.81 0.72 -8.85 28.23 7.99% 
a: The ―improvement‖ is the relative change in % of the RMSE by using the initial Kz diffusion (IKD) coefficient and by 

using the new eddy diffusion (NED) coefficient. 

Table5.3 Average modelled O3 mass concentrations (Avg); the correlation (R); mean bias 

(MB) and root mean square error (RMSE) between Observation and simulation of O3 in four 

urban background stations over Paris region. 

 IKD NED 

Avg R MB RMSE Avg R MB RMSE improvement 

FR04017 17.45 0.73 5.30 13.82 10.33 0.67 -1.82 14.38 -4.05% 

FR04023 35.81 0.70 14.05 22.25 31.16 0.64 9.40 24.28 -9.12% 

FR04098 35.81 0.63 16.23 23.64 28.62 0.54 9.04 23.94 -1.27% 

FR04143 19.25 0.73 5.83 13.35 11.59 0.66 -1.83 15.20 -13.86% 

 

5.3.2.2. Diurnal cycles of the surface Kz, NO2 and O3 

In order to deeply investigate the differences between the schemes, the diurnal cycles are 

calculated for Kz, NO2 and O3 for the corresponding surface observations at the urban 

background stations over the Paris region. Figure5.8(a) illustrates the mean diurnal Kz on 

urban regions. The diurnal variation of the surface Kz throughout the schemes shows 

similarities, Kz remains flat in the morning and nighttime and a peak is simulated around 

12:00. The average Kz on the unstable condition from IKD scheme is approximately 1.7 times 

than NED scheme and approximately three times higher on the stable condition. The bimodal 

distribution of the surface NO2 concentration are observed and simulated during this period, 

with the morning peak around 8:00–9:00 and the evening peak around 18:00–19:00. Both 

schemes capture the fluctuations quite well, but IKD scheme strongly underestimates NO2 

concentrations in the early morning. The results of the Chapter II prove that the IKD scheme 

overestimates the vertical diffusion rate in urban areas. This section further demonstrates that 
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the overestimation of vertical diffusion under stable conditions is higher than under unstable 

conditions in IKD. The NED scheme simulation overestimates NO2 concentration at 

nighttime, the reason should be the overestimation of Kz drop after 14:00. Figure5.8(c) 

displays the diurnal cycles of surface O3 concentrations, both schemes well predicts the 

diurnal evolution of O3 but with an overestimate all the day long. Due to the overestimation of 

the O3 diurnal cycles, the time series illustrates that the model strongly overestimates O3 

concentrations from 23
rd

 November to 27
th

 November. There is a positive correlation between 

peak values of NO2 and low values of O3 concentrations, this result once again confirmed that 

O3 take part in the oxidation reaction of NO. 

 

Figure5.8 Diurnal cycles for surface Kz and surface concentrations of O3 and NO2 (µg/m
3
) 

from 20
th

 November to 4
th

 December in urban background stations. 
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stations (FR04038; FR04048 and FR04158). Overall, both schemes show their ability capture 

the majority of fluctuations for NO2. The performance of O3 prediction in suburban and rural 

sites are similar with urban areas, both schemes significantly overestimates the O3 

concentration during daytime of 23
rd

 November to 27
th

 November. The NED scheme 

underestimates O3 concentration for the first three days. Table5.4 reports the average 

concentration, R, MB and RMSE for both schemes and the improvement by using the NED 

scheme compared with the IKD in suburban and rural sites over the Paris region. The NED 

scheme slightly improved the NO2 and O3 prediction in suburban area but displays a poor 

performance in rural areas. Figure5.6 indicates that average Kz from NED scheme is around 

0.3 m
2
/s

 
in rural areas, this value is underestimated in NED scheme. However, there is only 

one background rural station of NO2 in this region, therefore the result could be not robust 

enough. 

 

Figure5.9 Time series between observed and modelled NO2 and O3 mass concentrations 

(µg/m
3
) suburban background stations and rural background stations. 
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Table5.4 Average modelled NO2 and O3 mass concentrations (Avg); the correlation (R); 

mean bias (MB) and root mean square error (RMSE) between Observation and simulation of 

NO2 and O3 in suburban and rural background stations over Paris region. 

 IKD NED 

Avg R MB RMSE Avg R MB RMSE improvement 

Suburban-NO2 27.58 0.71 -10.40 24.95 32.76 0.69 -3.80 24.56 1.56% 

Rural-NO2 23.62 0.64 -9.62 17.13 19.50 0.61 -4.44 19.07 -11.33% 

Suburban-O3 37.77 0.61 17.65 21.33 21.80 0.45 1.68 20.97 1.69% 

Rural-O3 38.36 0.68 13.19 20.85 32.85 0.34 7.68 24.02 -15.02% 

 

5.3.3 PM2.5 and PM10 Simulations over Paris region 

In Figure5.10, surface PM2.5 and PM10 concentrations are illustrated for IKD and NED 

schemes. The surface concentration fields show a gradient between the urbanized area 

surroundings in both schemes but not as strong as for NO2 surface distributions, this result is 

expected because PM2.5 and PM10 is much more influenced by regional transport and 

peri-urban and rural emissions from biomass burning. The PM2.5 and PM10 surface 

concentrations from NED scheme is approximately 4.4µg/m
3
 and 4.2µg/m

3 
higher on average 

than the IKD scheme.  

 

 
Figure5.10 Maps of the mean surface PM2.5 and PM10 mass concentration (µg/m

3
); over the 

period from 20
th

 November to 4
th

 December. 
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Figure5.11 displays a comparison between the observed and modeled surface PM2.5 and 

PM10 at urban sites. The linear regression of PM2.5 and PM10 concentrations between 

observation and simulation can be found in Figure S5.3 and Figure S5.4 respectively. The 

direct comparison shows a fair reproduction of PM2.5 and PM10 concentrations during the 

RD but the models underestimate the concentrations on the PE. The fluctuations of PM2.5 

and PM10 at Paris center station (FR04143) is obviously different with others which indicate 

that the emissions of PM at the center of the city is different with other sites, traffic emissions 

should be the major source of the FR04143 station. This also can be confirmed throughout the 

comparison between the fluctuations of NO2 and PM in the corresponding station. Both 

schemes display similar behavior for the simulated period and display a reasonable 

representation of PM2.5 and PM10 observations. The simulation of PM10 is good on regular 

days but the model tends to slightly overestimate PM2.5 concentration at the same time. It 

indicates the slight overestimation of fine particles in the model. Two schemes 

underestimated PM concentration during the PE, the NED scheme gives a higher PM2.5 and 

PM10 concentrations than IKD scheme, which tends to be closer to the observations on the 

PE and the peaks of PM2.5 and PM10 are also enhanced from NED. As shows in Table5.5 

and  

Table5.6, the striking result is that the NED scheme impressively improves the PM2.5 and 

PM10 simulation at urban sites. Based on RMSE indicator, the improvements are almost 

more than 10% in every urban background station and the correlation are also significantly 

improved in the urban sites. At suburban sites, NED scheme slightly improved both PM2.5 

and PM10 simulation compared to the IKD scheme but IKD had slightly better performances 

in the rural areas. 

We also notice that the underestimation of PM10 is obviously higher than PM2.5 during the 

PE. Table5.7 reports the ratio between PM2.5 and PM10 during the whole period (WP) and 

PE in urban, suburban and rural areas. The location of suburban and rural PM2.5 monitoring 

stations are not completely matched with PM10 monitoring stations. Thus, the ratio 

PM2.5/PM10 for suburban and rural sites are given for guidance, we focus here on urban sites 

only. There is no evident variation of this ratio on the PE for both observation and simulations, 
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but the ratio is approximately 70% for the observation and around 90% for both simulations. 

Considering the overestimation of fine particles concentrations, this result shows that model 

have a strong underestimation of PM with particles exceeding 2.5µm. The model displays a 

reasonable behavior for both PM2.5 and PM10 on the PE, this indicates that the underestimation 

of pollutants on the PE is due to the underestimation of local urban pollutions sources, vehicle 

emission and other local sources should play important roles on this period. 

 

Figure5.11 Time series between observed and modelled PM2.5 and PM10 mass (µg/m
3
) in 

urban; suburban and rural background stations. Urban background stations: FR04002; 

FR04034; FR04143 and FR04156. Suburban background stations: FR04024 and FR04181 

for PM2.5 simulation and observation; FR04181 and FR04319 for PM10 simulation and 

observation. Rural background stations: FR04048 for PM2.5 simulation and observation; 

FR04158 PM10 simulation and observation. 
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Table5.5 Average modelled PM2.5 mass concentrations (Avg); the correlation (R); mean bias 

(MB) and root mean square error (RMSE) between Observation and simulation of PM2.5 in 

urban, suburban and rural background stations over Paris regions. 

 IKD NED 

Avg R MB RMSE Avg R MB RMSE improvement 

Urban 

FR04002 24.17 0.63 -1.35 18.23 27.69 0.74 2.17 16.22 11.03% 

FR04034 22.18 0.62 -3.34 20.27 27.28 0.81 1.76 15.59 23.09% 

FR04143 27.93 0.72 2.41 16.26 32.66 0.86 7.13 14.38 11.56% 

FR04156 23.53 0.66 -2.77 22.74 27.42 0.74 1.12 20.88 8.18% 

Suburban FR04024 21.82 0.64 -0.51 14.72 25.70 0.73 3.38 13.46 8.56% 

FR04181 20.98 0.75 1.10 12.27 23.66 0.77 3.78 12.02 2.04% 

Rural FR04048 21.61 0.70 2.82 10.96 24.71 0.84 5.92 11.51 -4.78% 

 

Table5.6 Average modelled PM10 mass concentrations (Avg); the correlation (R); mean bias 

(MB) and root mean square error (RMSE) between Observation and simulation of PM10 in 

urban, suburban and rural background stations over Paris regions. 

 IKD NED 

Avg R MB RMSE Avg R MB RMS

E 

improvement 

Urban 

FR04002 26.56 0.66 -10.98 25.76 29.7

2 

0.76 -7.82  

22.08 

14.29% 

FR04034 24.15 0.62 -13.42 30.38 29.26 0.80 -8.31 23.44 22.84% 

FR04143 30.34 0.70 -4.50 21.38 34.91 0.86 0.07 15.19 28.95% 

FR04156 25.70 0.70 -12.16 33.55 29.38 0.77 -8.48 30.11 10.25% 

Suburban FR04181 22.55 0.76 -4.76 14.35 24.86 0.78 -2.45 13.18 8.88% 

FR04319 25.34 0.57 -15.92 39.58 29.39 0.66 -11.87 36.60 7.53% 

Rural FR04158 24.91 0.81 -3.20 24.57 28.60 0.84 0.37 22.44 -8.07% 

 

Table5.7 Proportion between PM2.5 and PM10 in urban, suburban and rural background 

stations for the whole period (WP) and pollution episode (PE) over Paris regions. 

 WP PE 

Obs IKD NED Obs IKD NED 

Urban 70.73% 91.61% 93.31% 71.27% 88.35% 90.49% 

Suburban 61.73% 89.35% 90.96% 59.22% 85.04% 86.22% 

Rural 78.24% 86.75% 86.40% 86.19% 89.56% 92.29% 

 

5.3.4 Study in Lyon and Bordeaux regions 
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The IKD and NED schemes are also applied in Bordeaux and Lyon areas in order to 

understand whether the NED scheme can be used in other areas. Lyon is in the southeast of 

France and is located in the Rhone valley where the wind is meridional and often strong 

particularly in winter and is the second largest city in France. Bordeaux is close to the sea that 

is often influenced by oceanic flows and located in the southwest part of France. The period 

of interest remains the same from 20
th

 November to 4
th

 December.  

5.3.4.1. Ground Meteorological Variables  

Here, we compared observation of 2 meters temperature (T2) and 10 meters wind speed (W10) 

from four meteorological observation sites (three in Lyon and one in Bordeaux) to the 

simulations from WRF. The comparison is of hourly average values from observation sites 

with hourly average values from the nearest of each site location. Figure5.12 presents the 

maps of averaged T2 and W10 simulated in Lyon and Bordeaux over the period. Both regions 

show a UHI effect in the urban region, which gives positive bias of up to 3°C over the period 

in Lyon and 2.5°C in Bordeaux respectively compared to the rural areas. The maps of W10 

presents a higher surface wind speed in rural areas than in urban regions with a negative bias for 

3.2m/s in Lyon and 3.5m/s in Bordeaux respectively. The City of Lyon is formed by the core 

city of Lyon and its 58 suburban municipalities, so the UHI effect is more widespread than 

Bordeaux. 
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Figure5.12 Maps of the mean 2m temperature (°C) and 10m wind speed (m/s) over the period 

from 27
th

 November to 4
th

 December. 

Figure5.13 presents the time series of hourly-averaged T2 and W10 for the whole period. T2 

overall shows a decreased tendency throughout the period and the model effectively captures 

this trend. Compared with the observations, the model tends to overestimate the T2 for all 

stations, with a positive bias for 2.36°C in Lyon and 2.16°C in Bordeaux during this period 

and a positive bias for 3.09°C in Lyon and 2.70°C in Bordeaux on the PE. The diurnal 

differences for W10 are relatively low in Lyon, the models overestimate the wind speed in 

Lyon, with a positive bias for 2.76m/s
 
for the whole period and 0.77m/s on the PE, the main 

bias of W10 simulation come from the overestimation from the first four days of the period. 

In Bordeaux, W10 simulation is closed to the observation, with a negative bias for -0.48m/s 

for the whole period and 0.33m/s on the PE. 
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Figure5.13 Comparison of the time series of 2m temperature (°C) and 10m wind speed (m/s) 

between the observations and different urban schemes at Bron, Exupery, Brindas and 

Merignac stations. The Bron, Exupery and Brindas stations are located in Lyon region and 

Merignac station is located in Bordeaux region. 

5.3.4.2 NO2 Simulations over Lyon and Bordeaux regions 

5.3.4.2.1 Focus on urban areas 

The mean first layer Kz and NO2 mass concentrations for Lyon and Bordeaux domains over 

the period are displayed in Figure5.14 and Figure5.15 respectively. Both domains present 

similar regional distribution when compared to the Paris domain. The NO2 concentrations are 

higher within the urban area and become patchier in the suburban and rural area, these 

concentrations are higher near the traffic routes.  
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Figure5.14 Maps of the mean vertical diffusion coefficient (m
2
/s); over the period from 20

th
 

November to 4
th

 December. The first line: results from Lyon domain; the second line: results 

from Bordeaux domain. 

 

Figure5.15 Maps of the mean surface NO2 mass concentration (µg/m
3
); over the period from 

20
th

 November to 4
th

 December. The first line: results from Lyon domain; the second line: 

results from Bordeaux domain. 
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The time series of the model predictions of the NO2 mass concentrations compared to the 

observations for all urban background stations over Lyon and Bordeaux region can be found 

in Figure5.16. The Linear fit between observed and modelled NO2 can be found in Figure 

S5.5. The correction between observed and modelled NO2 in urban background stations over 

Lyon and Bordeaux regions. FR20XXX represents the station in Lyon region and FR31XXX 

represents the station in Bordeaux region. In general, the increase in NO2 mass 

concentrations during PE in Lyon and Bordeaux region are not as pronounced as the case in 

Paris. This demonstrates that the PE in Lyon and Bordeaux were not primarily caused by local 

sources. In Lyon, it seems that there are two slight NO2 pollution episodes during this period. 

One from 22
nd

 November to 26
th

 November and another from 30
th

 November to 3
rd

 December. 

Overall, both schemes capture the majority of fluctuations quite well in both two regions. In 

particular, the NED scheme almost perfectly captures the first peak of NO2, the 22
nd

 

December. However, despite the IKD scheme captures the fluctuations of NO2, the second 

light peak in Lyon since the nighttime of 30
th

 November in the observations and the IKD 

scheme underestimated NO2 concentration at this period.  

 

Table5.8 reports a detailed evaluation of NO2 simulation for both schemes at each urban 

background station. Similarly, to the focus in Paris, the IKD scheme underestimates NO2 

concentrations at all urban sites especially on the period of 30
th

 November to 3
rd

 December. 

Taking the RSME as the criterion, the use of the NED scheme improves NO2 simulation in 

every urban site especially in the three urban sites in the Lyon region with an average 

improvement of 24.51%. In general, the model has a better performance for NO2 simulation 

in Bordeaux than Lyon, that because the terrain of Lyon is more complex than in Bordeaux, 

the city is close to the Alps in a hilly region with sharp terrain gradients and the distribution of 

urban land use that is more scattered than Bordeaux.  
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Figure5.16 Time series between observed and modelled NO2 mass concentrations (µg/m
3
) in 

urban background stations. FR20XXX represents the station in Lyon region and FR31XXX 

represents the station in Bordeaux region. 
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Table5.8 Average modelled NO2 mass concentrations (Avg); the correlation (R); mean bias 

(MB) and root mean square error (RMSE) between Observation and simulation of NO2 in 

four urban background stations over Paris region. 

 IKD NED 

Avg R MB RMSE Avg R MB RMSE improvement 

FR20004 43.75 0.55 -7.81 26.85 61.06 0.60 9.40 19.24 28.34% 

FR20017 44.52 0.44 -3.10 29.00 62.93 0.53 15.31 20.64 28.83% 

FR20046 25.70 0.57 -12.55 20.79 40.58 0.63 2.34 17.39 16.35% 

FR31001 21.92 0.71 -1.23 13.78 34.10 0.74 7.94 11.34 17.70% 

FR31002 21.51 0.72 -6.27 14.30 33.52 0.77 5.12 14.29 0.01% 

FR31007 16.88 0.65 -7.22 14.18 27.06 0.66 2.96 12.64 10.86% 

 

Figure5.17 illustrates the diurnal cycles for surface Kz and surface concentrations of NO2 

during this period in urban sites for Lyon and Bordeaux domains. The diurnal variations of 

the surface Kz throughout both schemes shows similarities in Lyon but are very different in 

Bordeaux. In Bordeaux, the Kz from NED scheme remains stable only in the early morning 

and nighttime but Kz from IKD scheme had small changes throughout the day. Figure5.16(c) 

and Figure5.16(d) displays the diurnal cycles of surface NO2 concentrations in Lyon and 

Bordeaux respectively. Both schemes capture the fluctuations well in both regions, displaying 

a bimodal distribution with the morning peak around 8:00–9:00 and the evening peak around 

18:00–19:00 for observations and simulation. The IKD scheme tends to underestimate and the 

NED scheme tends to overestimate the surface NO2 concentrations all day long in urban areas 

of those three cities (Paris, Lyon and Bordeaux). 
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Figure5.17 Diurnal cycles for surface Kz and surface concentrations of NO2 (µg/m
3
) from 

20
th

 November to 4
th

 December in urban background stations. Left side are the diurnal cycles 

of Kz and NO2 in Lyon region and right side are the diurnal cycles of Kz and NO2 in 

Bordeaux region. 

 

5.3.4.2.2 NO2 simulations in suburban and rural areas 

The mean NO2 ground concentrations in suburban and rural area for Lyon and Bordeaux 

regions over the period are displayed in Figure5.18. Unfortunately, no observation data was 

available for background rural station in Lyon and for background suburban station in 

Bordeaux. Thus, the suburban site in this section only represents the average data from three 

background suburban stations (FR20037; FR20045 and FR20047) in Lyon domain and the 

rural site only represent the data from one background rural station (FR31008) in Bordeaux. 

Both schemes capture well the main variability in the suburban area of Lyon and rural area of 

Bordeaux. Similar performances are displayed in urban area of Lyon, the model captures the 

first NO2 peak value quite well by the NED scheme, the IKD tends to underestimate NO2 

since the 1
st
 December. Table5.9 reports that NED gives a better performance in both 

suburban sites of Lyon and rural sites of Bordeaux, with an improvement of 13.84% and 3.26% 

respectively. Even the performance of the model in suburban of Lyon cannot be compared 

with the rural of Bordeaux directly, the model should give better performances in the 

suburban and rural area in Bordeaux than Lyon. 
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Figure5.18 Time series between observed and modelled NO2 and O3 mass concentrations (µg 

m
−3

) suburban background stations and rural background station in Lyon and Bordeaux 

region. Suburban represents the average data from three background suburban stations 

(FR20037; FR20045 and FR20047) in Lyon domain and the rural site only represent the data 

from one background rural station (FR31008) in Bordeaux. 

 

Table5.9 Average modelled NO2 mass concentrations (Avg); the correlation (R); mean bias 

(MB) and root mean square error (RMSE) between Observation and simulation of NO2 in 

suburban background station over Lyon region and rural background station over Bordeaux 

region. 

 IKD NED 

Avg R MB RMSE Avg R MB RMSE improvement 

Suburban 27.12 0.57 -9.18 20.23 39.33 0.66 3.03 17.77 13.84% 

Rural 7.04 0.61 -3.93 8.60 12.13 0.67 1.16 8.32 3.26% 

 

5.3.4.3. PM2.5 and PM10 simulations over Lyon and Bordeaux  

The first layer PM2.5 and PM10 mean concentrations in Lyon and Bordeaux domains over the 

period are displayed in Figure5.19 and Figure5.20 respectively. It represents the surface 

concentrations of pollutants that are usually compared to the observation stations to test the 

accuracy of the model. Results shows the regional patterns of PM2.5 and PM10 are similar 

for both schemes. The simulated surface PM2.5 concentrations from NED scheme is 

approximately 1.6µg/m
3
 and 1.4µg/m

3 
higher on average than for the IKD scheme in Lyon 

and Bordeaux region respectively and gives approximately 1.6µg/m
3 

and 1.2µg/m
3 

higher 

PM10 surface concentration than IKD scheme in Lyon and Bordeaux respectively. The 
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differences mainly occurred on the urban sites with slight differences in rural areas for both 

Lyon and Bordeaux domains. 

 

Figure5.19 Maps of the mean surface PM2.5 mass concentration (µg/m
3
); over the period 

from 20
th

 November to 4
th

 December. The first line: results from Lyon domain; the second line: 

results from Bordeaux domain. 
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Figure5.20 Maps of the mean surface PM10 mass concentration (µg/m
3
); over the period 

from 20
th

 November to 4
th

 December. The first line: results from Lyon domain; the second line: 

results from Bordeaux domain. 

The comparison of simulated PM2.5 and PM10 concentrations by the IKD and NED schemes 

in Lyon and Bordeaux regions with observational data are presented in Figure5.21. The results 

show that the model could fairly capture the time variability of PM2.5 and PM10 on the 

regular days of Lyon domain but strongly underestimates the concentrations during the PE. In 

Bordeaux, the model could not reproduce the PM2.5 and PM10 well for the whole period, a 

huge underestimation occurred at all station. Previous study (Lanzafame. 2019) indicates that 

the biomass burning emissions are strongly underestimated in the model over the western 

cities of France, especially for the city of Bordeaux. The Alps region are also often submitted 

to pollution episodes in wintertime with a large contribution of wood burning (Bessagnet et 

al., 2020). Thus, the underestimation of the biomass burning emissions over Lyon regions 

should be a likely explanation of the issue on the PE. The specific quantitative analysis on the 

model performance of PM simulation is not confirmed in this section due to large 

uncertainties associated to emissions mainly. The model provides satisfactory results for NO2 

simulations but cannot gives a reasonable behavior of PM2.5 and PM10 when compared to 

the observations. This indicates the issue of PM simulation in Lyon and Bordeaux regions 
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should not due to the model configuration. Improvements on the emission inventories are 

required first in those regions. 

 

 

Figure5.21 Time series between observed and modelled PM2.5 and PM10 mass 

concentrations (µg m
−3

) in urban background stations. FR20XXX represents the station in 

Lyon region and FR31XXX represents the station in Bordeaux region. 

5.4 Conclusions 

The flow characteristics and dispersion mechanisms of pollutants are important for air quality 

predictions particularly over urban areas. However, the representation of turbulent diffusion 

in mesoscale models remains a challenge especially for transport chemistry models. This 

study used a 1.5-order turbulence kinetic energy-based eddy diffusivity closure scheme from 

WRF defined as NED on the urban air quality context to assess consequences of surface-level 

emission of nitrogen dioxide (NO2) and particulate matter (PM2.5 and PM10) in Paris, Lyon 

and Bordeaux and Ozone (O3) only in Paris. The performances of the NED and initial Kz 

diffusion (IKD) scheme were evaluated by ground observations both temporally and spatially. 
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The study in Paris indicates both two schemes can capture the evolution of the NO2, O3, 

PM2.5 and PM10 concentrations in urban, suburban, and rural areas even if some constitutive 

species are underestimated on the pollution episode (PE). The NED scheme shows a better 

ability on PE prediction and displays a better performance in urban areas for NO2, PM2.5 and 

PM10 simulation with an average improvement at 18.77%, 13.47% and 19.08% respectively. 

In suburban areas, the NED scheme improves the simulation, but the degree of improvement 

was not as strong as in the urban areas. The NED scheme is not performing as well as IKD in 

rural areas. Diurnal cycles indicate average vertical diffusion rate (Kz) based on IKD is 

approximately 2.5 times than the NED, the IKD scheme overall overestimates Kz in urban 

region and the NED scheme slightly underestimates Kz during nighttime. 

The model performance in Lyon and Bordeaux confirm the results obtained in Paris. The 

NED scheme improves the NO2 simulation approximately by 24.51% and 9.52% in the urban 

areas of Lyon and Bordeaux respectively. Due to data limitations, model performances are 

only evaluated in the suburban areas of Lyon and rural areas of Bordeaux. Differently to Paris, 

the NED scheme better captures the fluctuations of NO2 in the suburban of Lyon and Rural of 

Bordeaux than IKD scheme, with an average improvement at 13.84% and 3.26% respectively. 

However, PM simulations in Lyon and Bordeaux indicate that a strong underestimation of 

biomass burning emissions in wintertime could be the main reasons. The NED scheme 

gradually improves the air quality simulation from rural to urban areas. Although the overall 

performance of the proposed method is better than initial model configuration, the NED scheme 

still slightly overestimates the concentration of major pollutants on RD. The underestimation of 

Kz of NED is more pronounced in the nighttime than the daytime. Further improvements are 

necessary particularly under stables boundary conditions. In general, the 1.5-order turbulence 

kinetic energy-based eddy diffusivity closure scheme is an effective way to improve the CTM 

ability particularly under low stagnant conditions. It can be expected further improvement of 

the model ability through a higher-order turbulent closure calculation. 
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Conclusions and Perspectives 

 The first order K-theory is an effective way to reproduce the dispersion of pollutants in 

mesoscale chemistry transport model in most of time. However, this method sometimes 

lacks the ability to predict vertical mixing under a very low turbulent diffusion. 

 The urban canopy and boundary layer height plays a crucial role in the mesoscale 

chemistry transport modelling simulation, especially for the boundary layer height, it 

plays a key role in the early warning of pollution episode. 

 Geographical condition is also important in regional transport and dispersion of 

pollutants. Pollutant's dispersion processes over the valley-basin city are much more 

complicated than over flat areas.  

 Our study indicates the 1.5 order TKE-based eddy diffusivity closure scheme improved 

the CTM in every urban site. A way to improve the turbulence parameterization is to 

increase the order of the closure. 

 

With an increasing number of humans now living in urban areas, there are needs of 

investigating the role of urbanization on air pollution, local meteorology and climate change. 

With the increasing computing capacities, numerical tools have become attractive tools for 

simulating transport and dispersion of airborne materials in the urban canopy. The present 

thesis work uses mesoscale models for meteorological and air quality simulations, 

representative of background air quality in urban region and its surroundings. The main goal 

of the thesis is to evaluate and improve the ability of models to simulate and forecast air 

quality and in France over urban regions.  

Initially, three vertical diffusion schemes which have been used in multiple mesoscale 

chemical transport models (CTM) were tested over a one-year simulation covering the whole 

France. Those schemes are all based on first order local closure scheme, but the expressions 

differ. All three schemes present a fair reproduction of pollutant concentrations both in urban 

and rural areas, indicating it is an effective way to reproduce the dispersion of pollutants in 

chemistry transport modelling. However, the differences between test results are weak. 
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Therefore, it cannot be expected to significantly improve the vertical mixing in CTM under 

the first order closure scheme. 

In the second part of the study, the impact of physical parameterizations was evaluated 

through couple the CTM model CHIMERE with the Weather Research and Forecasting 

(WRF) mesoscale model. Three canopy schemes, including a single layer urban canopy 

scheme (UCM); a multiple layer urban canopy scheme (BEP) and a reference case (Bulk). 

Three boundary layer parametrization schemes coupled with urban canopy schemes (MYJ–

Bulk, YSU–Bulk, MYJ–UCM, YSU–UCM, MYJ–BEP, and Boulac–BEP) and two land 

surface schemes (Noah and Noah-mp) has been tested in this part. This study aims at 

understanding theimpacts on air quality simulation with focus on a short-term pollution 

episode (PE) in the Paris region. CTM have been used with a first layer at 4m to better 

account for physical processes within the suburban layer in relation to ground emissions. The 

results indicate three canopy schemes could reproduce the 2m temperature (T2) effectively in 

the daytime; the Bulk and UCM model reproduced the 10m windspeed (W10) well, but the 

BEP model underestimates W10 for the whole episode. The UCM scheme overestimates the 

surface heat index in rural areas, leading to a slight negative bias for T2 in rural versus urban 

areas. NO2, PM2.5, and PM10 were selected to evaluate the effect of physics 

parameterizations on air quality simulation. Large differences were found in the simulation of 

pollutant concentrations, with an overall overestimation during the pollution episode. The 

overall boundary layer schemes display an underestimation of the PBL height practically 

during PE. The Boulac–BEP is the only scheme that could relative effectively reproduce the 

PBL height during PE. The Boulac–BEP scheme gives a significantly better performance on 

air quality simulation than the rest, indicating that both the canopy parameterization and 

boundary layer schemes have a significantly positive effect on air quality simulation in urban 

regions. The study on the land surface scheme shows it has slightly impact for both 

meteorological and air quality simulation. An advanced urban category could improve air 

quality prediction in urban regions. 

Fifteen days sensitivity tests with multiple vertical grid resolution and first layer height 

defined as (i) L4: 53 vertical layers are defined in WRF and 20 vertical layers are defined in 

CHIMERE. The first layer of the two model is at 999.5hPa (approximately 4m) up to over 

500hPa; (ii) L12: 51 vertical levels are defined in WRF and 20 levels are defined in 

CHIMERE, starting with the first vertical height at about 12 meters above the ground; (iii) 
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L40: 49 vertical levels are defined in WRF and 20 vertical layers are defined in CHIMERE 

from 995hPa to 500hPa, the first layer is about 40m. Results show the impact is relatively 

small in meteorological simulations. The relative bias (RB) of L12 and L40 compare with L4 

(L12-L4 and L40-L4) are 2.17% and 22.95% for 2m temperature (T2), 4.01% and -12.69% 

for 10m wind speed (W10), -0.12% and -2.72% for surface relative humidity (RH), 

respectively. On regular days, all three configurations demonstrate the ability of chemistry 

transport modelling. L4 improved model ability of 23.26% and 25.09% compare with L12 

and L40 respectively. During pollution episodes, refined vertical grid resolution and first layer 

height produces a significant improvement in chemistry transport modeling, improvements 

are 62.10% and 129.02% in L4 compare with L12 and L40. 

The flow characteristics and dispersion mechanisms of pollutants are important for air quality 

simulation and forecast. The first part of the study illustrates the difficulties to improve the 

ability of the model through the simplest first order local closure schemes. 

In the last part of the study, a 1.5-order turbulence-resolve scheme defined as NED has been 

applied in the CHIMERE model on the urban air quality context to assess consequences of 

low-level emission of pollutants in Paris, Lyon and Bordeaux. The performances of NED and 

initial Kz diffusion scheme (IKD) were evaluated against ground observations both 

temporally and spatially. The study in Paris shows both two schemes can capture the 

evolution of the NO2, O3, PM2.5 and PM10 concentrations in urban, suburban, and rural areas 

even if some constitutive species are underestimated on the pollution episode (PE). Taking the 

relative change in % of the RMSE as the evaluation criteria, the NED scheme improved the 

ability of models to assess air quality with an average improvement at 18.77%, 13.47% and 

19.08% of NO2, PM2.5 and PM10 respectively. However, the IKD scheme reproduces the O3 

more effectively than NED. In suburban areas, NED scheme improved the simulation, but the 

degree of improvement was not as strong as in the urban areas. The NED scheme is not 

performing as well as IKD in rural areas. Diurnal cycles between the vertical diffusion 

coefficient and pollutants indicate the IKD scheme overall overestimate diffusion rate in 

urban region and NED scheme slightly underestimated it during the nighttime. The model 

performances in Lyon and Bordeaux are rather good over Paris, NED scheme improved the 
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NO2 simulation approximately 24.51% and 9.52% in the urban areas of Lyon and Bordeaux 

respectively. However, PM simulation results over those two latter areas could indicate a 

huge underestimation of biomass burning emissions in wintertime., Both schemes can capture 

the evolution of PM2.5 and PM10, the average concentrations are strongly underestimated 

particularly in Bordeaux and on the PE of Lyon. The NED scheme gradually improves the air 

quality simulation as it approaches the city center. Sensitivity tests to grid resolution showed 

that the model results are sensitive to the vertical resolution and do not tend to improve with 

increasing resolution, there configuration of parameters are weak under the displacement 

height, the aspect ratio is curial on eddy simulation. Overall, surface turbulent motions were 

better preserved by a 1.5-order turbulence kinetic energy-based eddy diffusivity closure 

scheme than those with the simplest ones.  

Since the 1970s, the CTMs have developed from the initial simple box model to today’s 

complex third generation CTM models. The configurations of CTM should be combined with 

the characteristics of the research problem, the time and space scale of the simulation, data 

availability, technical complexity, software and hardware platform requirements, etc. Not all 

simulations have to choose the highest model configuration. Advanced configurations 

generally have very strict requirements on basic data, hardware platform, professional 

threshold, etc., and the cost will be several times compared with the basic configurations. 

Therefore, choosing an appropriate model configuration is the key to achieving the goals with 

the lowest cost. From the perspective of air quality model application practice, it is often 

difficult for users to accurately grasp the applicable conditions of the model or simplify 

complex issues. 

With the rapid development of high-performance computers, high resolution numerical 

simulation has achieved great success. However, most high-resolution simulations are still at 

the research stage, the time span is usually from days to a month. Although computer 

resources are not extravagant, long time series high-resolution simulation is still difficult to 

achieve. Thus, a technique that could pass the costly high simulation is important. The 

uncertainty of the CTM mainly comes from five parts: chemical mechanism; chemical 

reaction rate; boundary layer; emission inventory and meteorological data. Take the model 

performance of particulate matter as an example, the ratio of PM2.5 to PM10 is above 90% in 
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every studies of this research, however, the value is approximately 70% in the real 

atmospheric. In coastal cities, the modeled particulate matter concentrations are far from the 

observation. The lack of emissions directly leads to the poor performance of models. The 

completeness of emission inventories particularly on residential emissions remains 

challenging for the air quality community. 

Urban-induced atmospheric circulations, though typically small scale, can have a significant 

impact on mesoscale dynamics. Many studies indicate that refining urban landuse categories 

helps improving the model's ability to simulate the processes in the urban canopy. However, it 

could present notable challenges for mesoscale models due to the tremendous horizontal and 

vertical variability of the urban landscape and the variety of surface forcing. A lower first 

model layer could better reproduce the transport and diffusion of pollutants in a real urban 

environment. However, urban canopy is an open canopy, a refined urban category could 

increase the displacement height in the cities leads a very weak configuration of parameters at 

low level, it requires more studies. Future works should also focus on the comparison of 

pollutant concentrations over the vertical within the urban canopy to better evaluate the 

performance of models. 

In recent years, due to the improvement of computing power, the interdisciplinary field of 

machine learning-statistics and computer science has flourished. At present, the application of 

Artificial Intelligence (AI) techniques to air quality simulation has been initially applied but is 

still in the exploratory stage. For example, use wavelet transform to split the pollutant time 

series into more regular sub-sequences, then use the artificial neural network to train 

independent models for them to further improve the accuracy. Or using AI techniques could 

be used to calculate higher-order turbulent kinetic energy makes it possible to apply direct 

numerical simulation to mesoscale models. How to combine CTM and AI techniques for air 

quality prediction will be a very active field in the future to allow fast high-resolution 

simulations at urban scale to monitor air quality. At last, let us remind that using neural 

network is complementary of developing more and more complex physical models with more 

layers and accurate urban schemes. They are good instruments to simplify complex models by 

developping surrogate associated models for operational uses at high resolution (by catching 

the main patterns) and offering the possibility to develop more and more sophisticated 

deterministic models representing the "real world". 
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Table.S3.1. The urban parameters for the urban canopy model 

Parameters URBAN-PAM1 URBAN-PAM2 

Buliding height 12 m 16.3 m 

Roof width 3.75 m 25 m 

Road width 11.25 m 16.6 m 

Urban area ratio for a grid 0.95 0.95 

Vegetation area ratio for a grid 0.95 0.95 

Diurnal maximum of anthropogenic heat 

flux 

50 w m-
2
 50 w m-

2
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Figure S3.1. Time series of PM2.5, PM10 mass concentrations (µg m
-3

): No1, 2, 3, 4 

represent station FR04002, FR04034, FR04143, FR04156, respectively. 
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Figure S3.2. Time series of bias of NO2, PM2.5, PM10 mass concentrations: No1, 2, 3, 4 

represent station FR002, FR034, FR143, FR156, respectively. 

 

Figure S3.3. Time series between observed and modelled NO2 with the first height of about 4 m, 

18m and 40 m, respectively. Both observation and simulations are the average of Station 

FR04002, FR04034, FR04143, FR04156, respectively. 
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Figure S3.4. Time series between observed and modelled PM2.5: a, b and c represent each PBL 

schemes coupled with each urban canopy schemes respectively; 1, 2, 3, and 4 represent Station 

FR04002, FR04034, FR04143, FR04156, respectively 

400

300

200

100

0

00:00
27/11/2016

00:00
28/11/2016

00:00
29/11/2016

00:00
30/11/2016

00:00
01/12/2016

00:00
02/12/2016

00:00
03/12/2016

00:00
04/12/2016

Date and Time 

150

100

50

0

P
M

2
.5

 M
a

s
s
 C

o
n

c
e

n
tr

a
ti
o

n
 (

µ
g

/m
3
)

500

400

300

200

100

0

240

200

160

120

80

40

0

1

2

3

4

 Observation-PM2.5
 MYJ-UCM scheme
 YSU-UCM scheme

150

100

50

0

00:00
27/11/2016

00:00
28/11/2016

00:00
29/11/2016

00:00
30/11/2016

00:00
01/12/2016

00:00
02/12/2016

00:00
03/12/2016

00:00
04/12/2016

Date and Time 

150

100

50

0

P
M

2
.5

 M
a

s
s
 C

o
n

c
e

n
tr

a
ti
o

n
 (

µ
g

/m
3
)

300

200

100

0

160

120

80

40

0

1

2

3

4

 Observation-PM2.5
 MYJ-BEP scheme
 Boulac-BEP scheme



Annex A 

178/191 

 

Figure S3.5. Time series between observed and modelled PM10: a, b and c represent each 

PBL schemes coupled with each urban canopy schemes respectively; 1, 2, 3, and 4 represent 

Station FR04002, FR04034, FR04143, FR04156, respectively. 
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Figure S3.6. Time series of bias between observed and modelled NO2: a, b and c represent 

each PBL schemes coupled with each urban canopy schemes respectively; 1, 2, 3, and 4 

represent Station FR04002, FR04034, FR04143, FR04156, respectively. 
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Figure S3.7. Time series of bias between observed and modelled PM2.5: a, b and c represent 

each PBL schemes coupled with each urban canopy schemes respectively; 1, 2, 3, and 4 

represent Station FR04002, FR04034, FR04143, FR04156, respectively. 
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Figure S3.8. Time series of bias between observed and modelled PM10: a, b and c represent 

each PBL schemes coupled with each urban canopy schemes respectively; 1, 2, 3, and 4 

represent Station FR04002, FR04034, FR04143, FR04156, respectively. 
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Figure. S3.9. Liner fit between observed and modelled PM2.5 and PM10 
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Figure s3.10. Time series of PM10 mass concentrations: No 1, 2, 3, and 4 represent 

station FR04002, FR04034, FR04143, and FR04156, respectively. 
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List.S1. Name list of WRF model 

&time_control 

run_days                            = 0, 

run_hours                           = 24, 

run_minutes                         = 0, 

run_seconds                         = 0, 

start_year                          = _Y1_, _Y1_, _Y1_,_Y1_, 

start_month                         = _M1_, _M1_, _M1_,_M1_, 

start_day                           = _D1_, _D1_, _D1_,_D1_, 

start_hour                          = 00,   00,   00,   00, 

start_minute                        = 00,   00,   00,   00, 

start_second                        = 00,   00,   00,   00, 

end_year                            = _Y2_, _Y2_, _Y2_,_Y2_, 

end_month                           = _M2_, _M2_, _M2_,_M2_, 

end_day                             = _D2_, _D2_, _D2_,_D2_, 

end_hour                            = 00,   00,   00,   00, 

end_minute                          = 00,   00,   00,   00, 

end_second                          = 00,   00,   00,   00, 

interval_seconds                    = 21600 

input_from_file                     = .true.,.true.,.true.,.true., 

history_interval                    = 60,   60,   60,   60, 

frames_per_outfile                  = 1000, 1000, 1000, 1000, 

restart                             = ._THIS_RST_., 

restart_interval                    = 1440, 

write_hist_at_0h_rst                = ._THIS_RST_., 

https://www.mdpi.com/2413-8851/2/1/18/htm#app1-urbansci-02-00018
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io_form_history                     = 2 

io_form_restart                     = 102 

io_form_input                       = 2 

io_form_boundary                    = 2 

debug_level                         = 0 

use_netcdf_classic                  = .true. 

 

&domains 

time_step                           = 60, 

time_step_fract_num                 = 0, 

time_step_fract_den                 = 1, 

max_dom                             = 2, 

s_we                                = 1,     1,      1,     1, 

e_we                                = 106,   118,    115,   85, 

s_sn                                = 1,     1,      1,     1, 

e_sn                                = 91,    115,    103,   79, 

s_vert                              = 1,     1,      1,     1, 

e_vert                              = 53,    53,     53,    53, 

p_top_requested                     = 5000, 

num_metgrid_levels                  = 32, 

num_metgrid_soil_levels             = 4, 

dx                                  = 45000, 15000, 5000, 1666.6667, 

dy                                  = 45000, 15000, 5000, 1666.6667, 

grid_id                             = 1,     2,     3,     4, 

parent_id                           = 1,     1,     2,     3, 

i_parent_start                      = 1,     24,    39,    44, 

j_parent_start                      = 1,     20,    66,    38, 

parent_grid_ratio                   = 1,     3,     3,     3, 

parent_time_step_ratio              = 1,     3,     3,     3, 

feedback                            = 1, 

smooth_option                       = 0, 

eta_levels for H4                        = 1.,  0.9995, 0.999,  0.9985, 0.9975, 

                                      0.996230185,   0.9949736,   0.993716955,   0.992334723, 

                                      0.990814209,  0.989141703,  0.987301886,  0.98527813, 

                                      0.983051956, 0.980603218, 0.977909565, 0.974946558, 

                                      0.971687257, 0.968101978, 0.964158237, 0.959820092, 

                                      0.955048144,  0.949799001,  0.94402492,  0.937673509, 

                                      0.930686891,  0.923001587, 0.914547801,  0.905248582, 

                                      0.895019472, 0.883767486, 0.871390283, 0.857775331, 

                                      0.842798889,  0.826324821,  0.80820334,  0.788269699, 

                                      0.7663427,   0.742223024,   0.715691328,   0.68650645, 

                                      0.65440315,  0.619089544,  0.580244482,  0.537514985, 

                                      0.49051252,  0.438809812,  0.381936818,  0.319376528, 

                                      0.250560224,  0.17486228,  0.0915945247, 0.0000, 

 

eta_levels for H12                        = 1.,  0.9985, 0.9975, 

                                      0.996230185,   0.9949736,   0.993716955,   0.992334723, 

                                      0.990814209,  0.989141703,  0.987301886,  0.98527813, 

                                      0.983051956, 0.980603218, 0.977909565, 0.974946558, 

                                      0.971687257, 0.968101978, 0.964158237, 0.959820092, 

                                      0.955048144,  0.949799001,  0.94402492,  0.937673509, 
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                                      0.930686891,  0.923001587, 0.914547801,  0.905248582, 

                                      0.895019472, 0.883767486, 0.871390283, 0.857775331, 

                                      0.842798889,  0.826324821,  0.80820334,  0.788269699, 

                                      0.7663427,   0.742223024,   0.715691328,   0.68650645, 

                                      0.65440315,  0.619089544,  0.580244482,  0.537514985, 

                                      0.49051252,  0.438809812,  0.381936818,  0.319376528, 

                                      0.250560224,  0.17486228,  0.0915945247, 0.0000, 

 

eta_levels for H40                      = 1.,  0.9949736,   0.993716955,   0.992334723, 

                                      0.990814209,  0.989141703,  0.987301886,  0.98527813, 

                                      0.983051956, 0.980603218, 0.977909565, 0.974946558, 

                                      0.971687257, 0.968101978, 0.964158237, 0.959820092, 

                                      0.955048144,  0.949799001,  0.94402492,  0.937673509, 

                                      0.930686891,  0.923001587, 0.914547801,  0.905248582, 

                                      0.895019472, 0.883767486, 0.871390283, 0.857775331, 

                                      0.842798889,  0.826324821,  0.80820334,  0.788269699, 

                                      0.7663427,   0.742223024,   0.715691328,   0.68650645, 

                                      0.65440315,  0.619089544,  0.580244482,  0.537514985, 

                                      0.49051252,  0.438809812,  0.381936818,  0.319376528, 

                                      0.250560224,  0.17486228,  0.0915945247, 0.0000, 

 

 

/ 

&physics 

mp_physics                          = 6,     6,     6,     6, 

ra_lw_physics                       = 4,     4,     4,     4, 

ra_sw_physics                       = 4,     4,     4,     4, 

radt                                = 30,    30,    30,    30, 

bldt                                = 0,     0,     0,     0, 

cu_physics                          = 1,     1,     1,     0, 

cudt                                = 5,     5,     5,     5, 

isfflx                              = 1, 

ifsnow                              = 1, 

icloud                              = 1, 

surface_input_source                = 3, 

num_soil_layers                     = 4, 

num_land_cat                        = 21, 

maxiens                             = 1, 

maxens                              = 3, 

maxens2                             = 3, 

maxens3                             = 16, 

ensdim                              = 144, 

sf_sfclay_physics                   = 2,     2,     2,     2, 

sf_surface_physics                  = 2,     2,     2,     2, 

sf_urban_physics                    = ( 0 for Bulk; 1 for UCM; 2 for BEP) 

bl_pbl_physics                      = ( 1 for YSU; 2 for MYJ; 8 for Boulac) 

num_urban_layers                    = 6400 

/ 

&fdda 

 grid_fdda                           = 1,   1,  0,   0, 

 gfdda_inname                        = "wrffdda_d<domain>", 
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 gfdda_end_h                         = 10000,  10000,  255,  255, 

 gfdda_interval_m                    = 360,  360,  360,  360, 

 io_form_gfdda                       = 2, 

 fgdt                                = 1,   1,   1,  1, 

 if_no_pbl_nudging_uv                = 0,   0,   0,  0, 

 if_no_pbl_nudging_t                 = 0,   0,   0,  0, 

 if_no_pbl_nudging_q                 = 0,   0,   0,  0, 

 if_zfac_uv                          = 1,   1,   1,  1, 

 k_zfac_uv                           = 12,  12,  12, 12, 

 if_zfac_t                           = 1,   1,   1,  1, 

 k_zfac_t                            = 12,  12,  12, 12, 

 if_zfac_q                           = 1,   1,   1,  1, 

 k_zfac_q                            = 12,  12,  12, 12, 

 if_zfac_ph                          = 1,   1,   1,  1, 

 k_zfac_ph                           = 12,  12,  12, 12, 

 guv                                 = 0.0003, 0.0003, 0.0003, 0.0003, 

 gt                                  = 0.0003, 0.0003, 0.0003, 0.0003, 

 gq                                  = 0.0003, 0.0003, 0.0003, 0.0003, 

 gph                                 = 0.0003, 0.0003, 0.0003, 0.0003, 

 xwavenum                            = 5,   5,   5,  5, 

 ywavenum                            = 5,   5,   5,  5, 

 if_ramping                          = 0, 

 dtramp_min                          = 60.0, 

/ 

&dynamics 

w_damping                           = 1, 

rk_ord                              = 3, 

diff_opt                            = 1,      1,      1,       2, 

km_opt                              = 4,      4,      4,       2, 

diff_6th_opt                        = 2,      2,      2,       2, 

diff_6th_factor                     = 0.12,   0.12,   0.12,    0.12, 

base_temp                           = 290, 

damp_opt                            = 1, 

zdamp                               = 5000.,  5000.,  5000.,   5000., 

dampcoef                            = 0.01,    0.01,    0.01,     0.01, 

khdif                               = 0,      0,      0,       0, 

kvdif                               = 0,      0,      0,       0, 

smdiv = 0.1, 0.1, 0.1, 

 emdiv = 0.01, 0.01, 0.01, 

 epssm = 0.1, 0.1, 0.1, 

non_hydrostatic                     = .true., .true., .true., .true., 

moist_adv_opt                       = 1,      1,      1,       2, 

scalar_adv_opt                      = 1,      1,      1,       2, 

tke_adv_opt                         = 1,      1,      1,       2, 

time_step_sound                     = 4,      4,      4,   4, 

 h_mom_adv_order                     = 5,      5,      5,   5, 

 v_mom_adv_order                     = 3,      3,      3,   3, 

 h_sca_adv_order                     = 5,      5,      5,   5, 

 v_sca_adv_order                     = 3,      3,      3,   3, 

 

/ 
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&bdy_control 

spec_bdy_width                      = 5, 

spec_zone                           = 1, 

relax_zone                          = 4, 

specified                           = .true., .false., .false., .false., 

nested                              = .false., .true., .true.,  .true., 

/ 

 

&grib2 

&namelist_quilt 

nio_tasks_per_group = 0, 

nio_groups = 1, 

 

 

 

 

Figure S5.1. The correction between observed and modelled NO2 in urban background 

stations over Paris region. 

220

200

180

160

140

120

100

80

60

40

20

0

N
O

2
-M

o
d
e
lle

d

20016012080400

NO2-Observed

FR04156 IKD
y = 0.43x + 15.20
R = 0.69

NED
y = 0.57x + 12.35
R = 0.72

220

200

180

160

140

120

100

80

60

40

20

0

N
O

2
-M

o
d
e
lle

d

20016012080400

NO2-Observed

IKD
y = 0.51x + 20.94
R = 0.67

NED
y = 0.71x + 17.96
R = 0.78

FR04143

220

200

180

160

140

120

100

80

60

40

20

0

N
O

2
-M

o
d
e
lle

d

20016012080400

NO2-Observed

NED
y = 0.63x + 8.54
R = 0.78

IKD
y = 0.44x + 9.35
R = 0.74

FR04034
220

200

180

160

140

120

100

80

60

40

20

0

N
O

2
-M

o
d
e
lle

d

20016012080400

NO2-Observed

IKD
y = 0.49x + 22.07
R = 0.62

NED
y = 0.49x + 28.12
R = 0.57

FR04002

05/12/2016

01/12/2016

27/11/2016

23/11/2016



Annex B 

189/191 

 

Figure S5.2. Time series between observed and modelled kz, NO2 and O3 mass concentrations 

in urban background station over Paris region. 

Table S5.1. Average modelled NO2 and O3 mass concentrations (Avg); the correlation (R); 

mean bias (MB) and root mean square error (RMSE) between Observation and simulation of 

NO2 and O3 in urban background stations over Paris region 

 
IKD NED 

Avg R MB RMSE Avg R MB RMSE improvement
a
 

Urban-NO2 41.06 0,74 -10.40 24.90 47.99 0.80 -3.80 20.40 18.77% 

Urban-O3 27.08 0.74 11.29 16.65 20.41 0.64 4.63 17.47 -4.80% 

a:  The ―improvement‖ is the relative change in % of the RMSE by using the initial kz diffusion coefficient and 

by using the new eddy diffusion coefficient. 
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Figure S5.3. The correction between observed and modelled PM2.5 in urban, suburban and 

rural background stations over Paris region. 

 

 

Figure S5.4. The correction between observed and modelled PM10 in urban, suburban and 

rural background stations over Paris region. 
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Figure S5.5. The correction between observed and modelled NO2 in urban background 

stations over Lyon and Bordeaux regions. FR20XXX represents the station in Lyon region 

and FR31XXX represents the station in Bordeaux region. 
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