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Introduction

One of the most challenging ambition of modern physics is to unify the realms of the infinitely
small and infinitely large, currently described by quantum field theory and general relativity.
This unification could be achieved through a still hypothetical unique quantum gravity theory
that aims at describing physics at the Planck scale (EP ∼ 1919 GeV) where the two realms should
connect. Several tentative models have been proposed, amongst which string theories and loop
quantum gravity appear as the most matured and popular approaches to build a universal the-
ory. At present, no Earth based instrument is capable to attain the colossal energies typically
involved in quantum gravity theories. Moreover, extracting observable predictions from these
tentative models has been notoriously difficult. Constraining or rejecting such models is there-
fore a highly non trivial effort.

Nevertheless, specific models can give rise to effects that can be indirectly probed at cur-
rently accessible energies. One of which is a possible departure from the Lorentz symmetry at
Planckian energies. This effect, which usually takes the form of a Lorentz invariance violation
(LIV), can manifest through the alteration of the propagation of photons in vacuum. This leads
to energy-dependent velocities inducing delays in the arrival time of gamma-ray photons with
different energies. Provided very high energy photons propagate through very long distances,
such delays are expected to be detectable.

A strategy currently in use to search for LIV signatures is to look for energy-dependent time
delays in the gamma-ray signal coming from remote and variable cosmic sources such as active
galactic nuclei (AGN), pulsars (PSR) and gamma-ray bursts (GRB) detected at TeV energies
with imaging atmospheric Cherenkov telescopes. However, time delays can also be generated
from the intrinsic radiative processes at work in the sources which are yet to be properly dis-
entangled from LIV-induced time delays. One way to address this issue is the study of these
intrinsic effects through the modelisation of sources emission mechanisms. Considering intrinsic
time delays are not expected to directly depend on the distance, contrary to LIV-induced ones,
another discrimination strategy relies on population studies involving a large number of sources
over a broad range of redshifts.

This thesis attempts to explore these two approaches and proposes analysis tools for the
discrimination between LIV and intrinsic effects. This manuscript is separated in three parts.

Part I focuses on the scientific framework. We start with an introduction on quantum gravity,
LIV and the associated phenomenology in Chapter 1. We then continue with a presentation of
blazars and discuss their emission properties in Chapter 2, followed by the different methods of
detection brought by contemporary gamma-ray astronomy in Chapter 3.

Part II focuses on the interpretation of intrinsic time delays arising from blazar modeling
along with tools that can be used for discrimination. The model, based on a leptonic synchrotron
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self-Compton scenario, is specified in the first part of Chapter 4. The associated intrinsic time
delays are then fully characterised and interpreted in the second part of this chapter. Chapter 5
presents a multi-frequency study highlighting for the first time a strong correlation and symmetry
between intrinsic time delays in the X-ray (unaffected by LIV) and gamma-ray (where LIV effects
could arise) domains. Analysis tools are proposed to achieve proper discrimination.

Finally, Part III focuses on population studies. Chapter 6 summarises the current state of
the art when it comes to LIV time-of-flight studies, with the different analysis techniques and
most notable results. A preparation for actual population studies is reported on Chapter 7 with
the presentation and testing of a new multi-source analysis tool, along with the first results
obtained from realistic simulations of GRB, AGN and PSR signals and their interpretation.
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Chapter 1

Quantum gravity and departures
from Lorentz invariance tested with
photons from astrophysical sources
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Quantum gravity and departures from Lorentz invariance tested with photons from
astrophysical sources

The four fundamental interactions known to exist today have been described by two con-
temporary theories. On the one hand, general relativity describes the dynamic of large scale
objects governed by gravitation understood as the manifestation of spacetime curvature. On
the other hand, quantum field theory (QFT) gave rise to the standard model of particle physics
that classifies elementary particles and describes their interactions - electromagnetic, strong and
weak forces - as quantised fields mediated by bosons - photons, gluons, and W and Z bosons
respectively. Both theories have proven to be extremely successful and are today the best con-
firmed set of fundamental theories with notably the recent discoveries of gravitational waves [1]
and of the Higgs boson [2, 3].

They however both suffer from some failures indicating they are incomplete, especially when
quantum and gravitational effects are at the same scale. This limit is known as the Planck scale
and is defined by characteristic time tP , length lP , mass mP and energy EP :

tP =
√
h̄G

c5 ∼ 5.39×10−44 s, (1.1)

lP =
√
h̄G

c2 ∼ 1.6×10−35 m, (1.2)

mP =
√
h̄c

G
∼ 2.18×10−8 kg, (1.3)

EP =

√
h̄c5

G
∼ 1.22×1019 GeV, (1.4)

with c∼ 3×108 m.s−1 the speed of light in vacuum, h̄ = h/2π ∼ 6.58×10−16 eV.s the reduced
Planck constant and G∼ 6.67×10−11 m3.kg−1.s−2 the universal gravitational constant. In par-
ticular, general relativity allows the existence of singularities where spacetime curvature becomes
infinite, typically in the very early universe and inside black holes. Alternatively, the standard
model is built on special relativity where spacetime is assumed to be flat (Minkowski space-
time). Since gravity can only arise from a curved spacetime, gravitational interaction are made
impossible in this formalism.

One could expect to circumvent these issues by simply combining general relativity and QFT
in a single framework that describes all four interactions. Unifying formalisms are generally la-
beled quantum gravity (QG) theories. Two approaches can be explored: either understand the
quantum gravity theory as a properly quantised general theory of relativity completed by the
standard model; or view general relativity and QFT as effective field theories i.e. a low en-
ergy/large scale limit of a more general and yet unknown theory of quantum gravity.

Generally speaking, the first approach aims at combining theories with dramatically opposed
properties. On the one hand, general relativity is a classical, deterministic and background in-
dependent (i.e. where spacetime is a physical entity that can interact with other entities) frame-
work. On the other hand, QFT is quantum, probabilistic and relies on a fixed non-dynamical
background (i.e. spacetime is a scene or setting that does not interact with physical entities). It
so happens we do know how to infuse quantum mechanical effects into gravity, but only up to
the Planckian scale. As the energy (or the distance) gets closer to the Planck scale, the theory
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can be renormalised modulo an increasing number of parameters to absorb the infinities that
occur in calculations. Past the Planckian limit, the number of parameters grows to become
infinite and the theory is no longer renormalisable. As a consequence, it loses its predictivity
and becomes unavailing. Alternatively, gravity has been introduced in the QFT formalism by
modifying the presupposed flat spacetime to a curved one. The most notable success of this
approach was the discovery of the Hawking radiation evaporating from black holes. However, it
suffers from similar issues, the theory becoming non-renormalisable nearing the Planckian scale.

In the next section, we instead explore the second approach by viewing general relativity
and QFT as effective field theories.

1.1 Quantum gravity built on effective field theories

This section benefits from reading [4], [5], [6], [7] and [8].

At present, there are many approaches to the open question on how to quantise gravity,
amongst which string theories (ST) and loop quantum gravity (LQG) are considered the most
popular and matured effective field theories as of today. Non-commutative geometry [9], asymp-
totic safety [10], group field theory [11] or causal dynamical triangulation [12] are examples of
other notable approaches. For a complete review on quantum gravity searches, the reader is
invited to refer to [13]. In this section, I give an overview of string theories and LQG which go
beyond the scope of this thesis.

String theories and LQG both solve the renormalisation issue by introducing elementary
objects with a finite size, getting rid of infinities brought by point-like objects or smooth geometry
in general relativity or QFT. They however tackle the problem starting from two very distinct
philosophies which leads them to diverge on results. While ST easily recovers low energy limits
theories, it struggles to describe Planck scale quantum spacetime. In contrast, LQG manages to
quantise spacetime and describe it at Planckian scale but struggles to link it to the low energy
physics.

1.1.1 String theories

String theories (ST) provide a picture where fundamental particles are no longer viewed as
point-like but one-dimensional objects with a finite extent [7]. These objects, called strings,
evolve in a smooth and continuous background spacetime and have vibrational modes which are
interpreted as particles (perturbation theory). In that sense, string theories are closer in nature
to QFT rather than to general relativity. They were initially developed by particle physicists to
describe the strong interaction before Quantum Chromodynamics was favored in the standard
model. It was nonetheless soon realised the string formalism necessarily includes a massless par-
ticle of spin 2 that can be identified as a graviton, a boson carrying the gravitational interaction.
String theories then naturally became candidates for a quantum theory of gravity.

Strings can be either open or closed, and of bosonic or fermionic nature. Depending on
their characteristics, different theories can be built. However, physical and theoretical consis-
tency systematically requires strings to live in a spacetime with a number of dimensions that is
not compatible with the observed 3+1 dimensions accessible at current energies: 26 for bosonic
strings, 11 for the M-theory or 10 for the supersymmetric strings. To correct for this discrepancy,
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the extra dimensions are compactified with processes that introduce large amount of arbitrari-
ness in the predicted mass and spin of particles. Furthermore, all of these theories require the
use of supersymmetry which is progressively being ruled out as predictions are disputed by ob-
servations from the large hadron collider (LHC) experiment [14].

Then again, contrary to any other approaches, string theories provide with a truly unified
view of the four fundamental interactions, instead of considering quantum gravity as a separate
problem. Furthermore, it is able to describe everything there is with a single "master entity".
There is only one unknown and adjustable parameter, the string length ls. This parameter,
which is the only measurement that would be needed to make predictions on gravitational in-
teractions at arbitrary distances, has to be determined by experiment. The string length is
however expected to be of the order of the Planck length lP ∼ 10−35 m which is way beyond any
contemporary detector capability.

Interestingly enough, string theories come up with their own cosmology. They introduce a
class of extended objects called D-branes (hypersurfaces of D-dimension) evolving in a higher-
dimensional space called bulk. Open strings must be attached to these branes from which they
cannot escape, and make up for the matter contained in the brane they are linked to. Closed
strings on the other hand can freely travel between branes. As a consequence, since our Universe
is presumed to be a compactified three-dimensional brane, it is impossible to check whether other
D-branes exist or not. The origin of time and matter (Big Bang) is then supposed to be the
result of a collision between our universe and another D-brane [15].

1.1.2 Loop quantum gravity

LQG starts from a radically different concept. This picture gives up on the notion of smooth
and continuous background geometry, and replaces it with one that is discrete and built out of
elementary quantum objects [8]. This theory does not attempt to unify the fundamental interac-
tions, but rather build a background independent QFT (diffeomorphism invariant). Although it
is built on quantum mechanics fundamentals (Hilbert space, quantum field operators, transition
amplitudes, etc.), LQG concept of spacetime is closer to the general relativity one as it stands
as a non-perturbative theory.

The elementary objects used to build spacetime are "simplices", i.e. elementary geometric ob-
jects (vertex, line segment, triangle, tetrahedron, etc.), that are linked together with holonomies
(operators) to create loop states. As a way to oversimplify the underlying concepts, we can view
spacetime as a collection of these loops stacked together like Lego® bricks. Distance would then
be given by the number of lined-up loops, while time is assimilated to how these loops continu-
ously transform in one another or the number of steps needed for these transformations. In this
theory, as there is no fixed background, only coordinates independent quantities are physical:
only the relative position of a loop with respect to others is significant.

Although LQG is successful at describing a non-perturbative discrete spacetime at Planck
scale, one will find difficulties in recovering the low energy classical limit (i.e. general relativity).
More precisely, difficulties arise when it comes to building a smooth and continuous spacetime
out of simplices. Furthermore, there remains the open question on how to describe elementary
particles (e.g. quarks, electrons, neutrinos) in terms of quanta of geometry.
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Similarly to string theories, LQG comes up with its own cosmology which gave birth to the
subfield known as loop quantum cosmology (LQC). It gives a minimal size to the initial state
of the Universe, getting rid of the Big Bang singularity. Instead, LQC formulates a periodic
cosmological model involving what is called the "Big Bounce". In this picture, the Universe
alternates between the Big Bang (expansion up a maximal size) and the so-called Big Crunch
(collapse down to a minimal size). The Big Bounce then describes events where the Big Bang
immediately follows the Big Crunch. However, LQC requires for the Universe to decelerate
following a Big Bang episode in order for the Big Crunch to take over and initiate, which are in
contradiction with actual observations of the Universe accelerating expansion.

1.2 Departures from Lorentz invariance
This section benefits from reading [13]

Special relativity, which is the building foundation for both general relativity and QFT, make
all physical phenomena appear the same to inertial observers. It relates long wavelengths to short
ones through Lorentz symmetry, thus implying spacetime should be the same at all length scales.
As indicated above, quantum gravity theories give a different picture of spacetime with an either
foamy or discrete nature that becomes perceptible to physical objects at lengths or energies near
the Planck scale. This fuzzy structure occurs as a consequence of spacetime discreteness, its
non-commutativity or dimension reduction. A small number of very specific quantum gravity
models predict a departure from Lorentz invariance, either breaking or deforming the symmetry,
when physical objects interact with spacetime fuzziness. Lorentz invariance is then viewed as
an emergent symmetry at low energies (in effective field theories) which is lost beyond Planck
scale.

1.2.1 Breaking Lorentz symmetry

Rather than deforming Lorentz symmetry, the few quantum gravity models that tamper
with Lorentz invariance tend to break it, leading to a proper Lorentz invariance violation (LIV).
Observers connected by a Lorentz boost1 would then describe different laws of physics. This
implies the existence of a preferred frame of reference in which Lorentz violation is small and
these laws take a specific form. Contemporary cosmology suggests this frame could be the ref-
erence system at rest with respect to the cosmic microwave background (CMB).

LIV has been introduced in several ways in quantum gravity models, with different ways to
describe spacetime fuzziness. String theories allows for Lorentz symmetry to be spontaneously
broken in the early Universe. It can introduce small relic background fields (vacuum expectations
value) which point in a chosen direction and spread through spacetime. This implies there should
exist preferred directions in spacetime for particles interaction leading to a modification of their
dispersion relation. This effect has been studied in the standard model extended (SME) [16]
which describes all particles interaction when Lorentz invariance is broken for particles while
being retained for observers.

Alternatively, another approach to string theory labeled "Liouville cosmology" [17] introduces
fluctuations to spacetime (aka "foam") in the form of point-like D0-branes resulting in the vacuum

1Lorentz transformations include both boosts and rotations. Most of the time, quantum gravity models that
break the symmetry only suffer from a loss of boost invariance while retaining the rotational one.
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behaving as a dispersive medium. Elementary particles are then predicted to undergo stochastic
effects leading to a modification of dispersion relations and violations of Lorentz invariance.

LQG models should predict a similar dispersion effect due to the discrete nature of spacetime
they work with. One can refer to the semi-classical approach introduced by Gambini and Pullin
[18] which steers such dispersion effects along with an intrinsic birefringence of spacetime.

1.2.2 Deforming Lorentz symmetry

A more recent approach to departure from Lorentz invariance called doubly special rela-
tivity (DSR) modifies special relativity to introduce a second invariant quantity [19, 20]. In
addition to the in-vacuo speed of light c, there is now a fundamental inverse-momentum (or
equivalently a length) we will denote here lDSR. This picture aims to conciliate the contradict-
ing concepts of unbound length contraction in special relativity and minimal length (quanta of
distance) in quantum gravity. This formalism introduces a curved momentum space with con-
stant curvature, which is associated to the observer-independent inverse-momentum lDSR. As a
consequence, the energy-momentum dispersion relation would be different for each observer. In
order to retain Lorentz invariance, the laws of transformation between inertial frames and com-
position of momenta need to be modified. In other words the energy-momentum conservation
laws are necessarily deformed in this formalism and become observer-dependent (i.e. depend on
lDSR).

DSR models are commonly viewed as effective (i.e. low energy) descriptions of a flat-
spacetime limit of quantum gravity. In this picture, the minimal length is replaced by an
energy or momentum cut-off, and the spacetime fuzziness vanishes (preventing any stochastic
effect breaking Lorentz symmetry) while maintaining momentum space curvature (leading to a
deformation of Lorentz symmetry). Current searches on the DSR formalism aim at generalising
this picture to a curved spacetime.

1.3 Phenomenology

The ST and LQG models considered above yield a departure from Lorentz invariance as a
consequence of a modified energy-momentum dispersion relation (MDR). Each formalism pre-
dicts a specific MDR which affects given elementary massless (or nearly so) particles depending
on the underlying modification of Lorentz symmetry, leading to a similar but not identical set of
phenomenological predictions. Most notably, MDR can steer time-of-flight difference between
matter fields, a modification of kinematics for particles interaction, but also a birefringent, fuzzy
or foamy nature of vacuum. Processes forbidden in the special relativity framework will also be
forbidden in DSR approaches, but may be allowed in LIV formalisms. In contrast, processes
allowed in both formalisms will yield more virulent phenomenological effects with formalisms
incorporating a broken (LIV) rather than deformed (DSR) Lorentz symmetry.

Nevertheless, the family of MDR yielded by these distinct models can be represented with
a single toy-model built from the standard low-energy dispersion relation for massless particles
corrected over n orders of magnitude:

E2 ' p2c2×
[
1±

∞∑
n=1

(
E

EQG

)n]
(1.5)
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with EQG the characteristic quantum gravity energy scale expected to approach the Planck en-
ergy EP . One can therefore anticipate very tiny phenomenological effects at currently accessible
energies2. Having negligible LIV or DSR effects is equivalent to EQG →∞ where correction
terms vanish and one recovers the standard dispersion relation.

The observation of a deviation from the standard dispersion relation would indicate quantum
gravity models breaking Lorentz invariance are on the right track. However, it would not
be enough to properly distinguish between them. Alternatively, measuring EQG � EP would
indicate these models should be rejected. Considering the sensitivity of current experiments,
this phenomenology is limited to the first two orders of correction n= 1 and n= 2.

1.3.1 Time delays

From Equation 1.5 one can derive the group velocity of massless particles propagating in
vacuum:

vg(E) = ∂E

∂p
' c×

[
1± n+ 1

2

(
E

EQG

)n]
. (1.6)

The ± sign allows both subluminal and superluminal velocities. This new expression allows
massless (or nearly so) particles - photons, neutrinos and gravitational waves - with distinct
energies to propagate with a different speed through an LIV or DSR modified nature of vac-
uum. As a consequence, it is expected for two massless particles i and j with energies Ei < Ej
differing by amount ∆E =Ej−Ei, supposedly emitted simultaneously from a source located at
a euclidian distance d from the detector, to be observed with a time delay ∆t 6= 0. First intro-
duced by Amelino-Camelia et al. [21], the relative time lag between particles can be obtained
by integrating Equation 1.6 over time and reads:

∆t=±n+ 1
2

∆En
EnQG

× d
c

(1.7)

with ∆En = Enj −Eni the particles energy difference at order n. As both time and energy are
measured quantites, it is a common practice to work instead with the time delay over energy
difference noted τn and defined as:

τn = ∆t
∆En =±n+ 1

2
1

EnQG
×κ(d) (1.8)

where a new notation for the propagation term is introduced as κ(d) = d/c. The quantity τn
will usually be given in units of s.TeV−n.

As mentionned above, since it is generally expected to have EQG =O(EP ), the phenomeno-
logical effects are expected to be tiny at currently accessible energies. For the sake of illustration,
let’s consider two photons of energy Ei = 1 TeV and Ej = 2 TeV, and take EQG =EP ∼ 1016 TeV.
This yields a time difference between the respective time-of-flight at first order correction n= 1
of ∆t∼ d×10−24 s. In comparison, the typical unit for extragalactic distance is either the parsec
(pc) where 1 Mpc ∼ 3× 1022 m, or the redshift z where z = 1 is approximately equivalent to
1026 m. Taking for instance a source located at 100 Mpc (z ∼ 0.024), the time difference would

2Hundreds of TeV for massless particles emitted by astrophysical sources, or tens of TeV when generated in
Earth-based accelerators.
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be of order ∆t=O(10−2) s. This simple calculation suggests astrophysical emittors are natural
candidates for time-of-flight studies.

Now that we are considering astrophysical sources and cosmological distances, it is necessary
to modify Equation 1.7 to account for the Universe expansion. The computation of time-of-flight
difference that incorporates cosmological corrections was first proposed in [22] and later corrected
by Jacob and Piran in [23]. The propagation term was derived starting from the MDR given in
Equation 1.5, making it an especially fitting description of the comoving trajectories of massless
and ultrarelativistic particles when LIV effects are at play. It was however pointed out this
calculation may be too simplistic as it presupposes translations not to be affected by Planck-
scale effects [24]. The term κ(d) = d/c in Equation 1.8 is now replaced by an expression that
depends on both the correction order n and the redshift z:

κJ&P
n (z)≡ 1

H0

∫ z

0

(1 +z′)ndz′√
Ωm (1 +z′)3 + ΩΛ

(1.9)

with H0 the Hubble constant, Ωm the matter density parameter and ΩΛ the dark-energy
density parameter. Although there is no consensus yet on the values they should be as-
signed with, the precision on LIV studies blurs these uncertainties on cosmological parame-
ters and does not strongly affect their final results. In the rest of the manuscript, we will use
H0 = 67.74±0.46 km.s−1.Mpc−1, Ωm = 0.3089±0.0062 and ΩΛ = 0.6911±0.0062 as given in [25].

In DSR approaches the in-vacuo Lorentz invariant dispersion relation is more complex as
it accounts for both momentum space curvature and cosmological expansion. The associated
empirical time delay formula was first introduced by Rosati et al. in [20] where, once again,
only the propagation term κ(d) = d/c in Equation 1.8 is replaced by a more complex expression
given by:

κDSRn (z)≡
∫ z

0

1
(1 +z′)n

h2n(z′)dz′√
Ωm (1 +z′)3 + ΩΛ

(1.10)

with
h(z′)≡ 1 +z′−

√
Ωm (1 +z′)3 + ΩΛ

∫ z′

0

dz′′√
Ωm (1 +z′′)3 + ΩΛ

. (1.11)

Amongst the massless (or nearly so) particles cited above, neutrinos and gravitational waves
are particularly hard to detect, leaving only photons as serious candidates and target of choice
for such studies. Time-of-flight studies with astrophysical photonic emission and search for
time delays in the observational data will be the main focus of this work. We still present in
more details the modification of particle interaction kinematics as it could be coexisting with
time-of-flight effects.

1.3.2 Kinematic interactions and threshold effects

A MDR can lead to a modification of kinematic interactions between particles. In particular,
it can change the energy threshold at which a given physical process is allowed to happen. As
mentioned before, the extent of these modifications depends on whether the Lorentz invariance
is properly broken or simply deformed. LIV and DSR formalisms will therefore steer different
phenomenological predictions. Processes that are forbidden by special relativity - i.e. for which
the energy threshold is not defined - are also forbidden in DSR approaches. In contrast, LIV
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approaches can steer a new energy threshold thanks to the existence of a preferred frame of
reference. Newly allowed processes notably include vacuum Cherenkov radiation (e±→ e±γ),
photon decay in vacuum (γ→ e+e−) or photon splitting (γ→ 3γ). As a consequence, Lorentz
symmetry breaking formalisms are of particular interest for this type of phenomenology.

Amongst the processes allowed with both approaches, a notable effect is the modification
of the pair production (γγ → e+e−) energy threshold. The LIV-modified (first order) energy
threshold for pair production from a head-on collision with both leptons at rest is given by:

εth = (mec
2)2

Eγ

[
1± 1

4

(
Eγ
ELIV

)n+2
]
, (1.12)

with Eγ the incident photon energy,mec
2 the electron rest mass and ELIV = 29.6×(EQG,1/EP )1/3

TeV. The threshold is allowed to be either increased or decreased by the ± sign. The classical
limit can be recovered for ELIV →∞ leading the correction terms to vanish. Similarly to the
time delay effects, the modification of the energy threshold is expected to be tiny at currently
accessible energies. This effect can be efficiently tested with the monitoring of high energy pho-
ton flux propagating through cosmological distances. In such case, a correction term accounting
for cosmological effects must be added and Equation 1.12 is modified as follows:

εth −→
εth

1 +z
(1.13)

with z the source redshift.

Particles emitted by astrophysical sources encounter absorbing medium on their way to
Earth. In particular, high energy photons can interact with what is known as the extragalactic
background light (EBL), a diffuse emission filling the Universe and made up of all the light
produced by all the sources throughout cosmic history3 which spectrum can be seen in Figure
1.1. As a consequence, the high energy flux tends to be attenuated by the EBL absorption. In
the classical limit, interactions with the EBL opens for Eγ between4 10 GeV and 100 TeV and
can significantly absorb the VHE photons depending on the source distance5. In the equivalent
superluminal case, the threshold is lowered and photons undergo a stronger absorption lead-
ing to steeper energy spectra. Alternatively, the equivalent subluminal case (which is generally
preferred) yields a higher threshold leading to a reduction of very high energy (VHE) photon
absorption and less attenuated energy spectra. Figure 1.2 shows the pair production interaction
energy threshold for various values of EQG at linear order.

3The CMB constitutes a fraction of the EBL spectrum defined in the 0.03 - 100 cm wavelength domain.
4From Equation 1.12 at first order, Eγ ∼ 10−11/εth. From Figure 1.1, the EBL is in the wavelength window

defined by 10−7 m<λebl< 10−3 m, which is equivalent to the energy window 10eV>εth,ebl> 10−3 eV. Interactions
with the EBL is therefore allowed for photons with energy 1010 eV<Eγ < 1014 eV. At energies smaller than ∼ 10
GeV, the X-ray and gamma-ray diffuse photon field are taking over the interaction process.

5There exists a distance zh(Eγ) (the gamma-ray horizon) at which point the Universe becomes optically thick
to photons with energy larger than Eγ along the line of sight. This horizon gets closer as Eγ gets larger. The
observation of extragalactic and cosmological sources are usually limited to photons energy reaching up to a few
TeV at maximum while observed galactic source photons can reach tens or hundreds of TeV. At energies smaller
than ∼ 10 GeV, the diffuse photon field becomes nearly optically transparent to incident photons, regardless of
the source’s redshift.

13



Quantum gravity and departures from Lorentz invariance tested with photons from
astrophysical sources

Although these two phenomenological aspects - differences in time-of-flights and the modi-
fication of kinematic interactions - are usually treated and studied separately, one could expect
massless particles to be affected by both effects simultaneously. Such a scenario is briefly ex-
plored and discussed in a later chapter. We invite the reader to refer to Section 5.3 for more
details.
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Figure 1.1: Intensity of the extragalactic background light as a function of the wavelength.
Interaction with EBL photons (wavelength between ∼ 10−7 and 10−3 m) opens for gamma-rays
between 10 GeV and 100 TeV. Figure extracted from [26].

1.4 Astrophysical probes

As mentioned above, the quantum gravity and related phenomenological effects are expected
to be small. It is of interest to choose sources of photons which help maximise them. The
measurable quantity associated to time-of-flight studies is given in Equation 1.8, which can be
maximised for sources emitting photons:

• over large distances, ideally cosmological;

• distributed over a high-valued and large energy band, to maximise the term ∆En.

Moreover, the measurement of time delays can only be performed over photon emissions that
show some variability. The higher the variability, the better the precision on that measurement.
Transient or periodic astrophysical sources emitting VHE photons (E > 1 GeV) are therefore
of particular interest for LIV time-of-flight studies. Three candidate sources fit this description:
gamma-ray bursts, pulsars and flaring active galactic nuclei. This section gives a brief overview
of these objects. A review on the state of art for LIV studies performed with such sources can
be found in Chapter 6.
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1.4 Astrophysical probes

Figure 1.2: Evolution of the background photon energy threshold εth (here noted ε) for pair pro-
duction reaction as a function of a gamma-ray energy Eγ (here noted E). Left panel: evolution
of εth for various LIV effects at first order encoded by EQG,1 for redshift z = 0. Right panel:
spectral energy distribution of the cosmic background light in the optical (COB), infrared (CIB)
and microwave (CMB) domains. Credit: [27].

1.4.1 Gamma-ray bursts

Gamma-ray bursts (GRB) [28] are extra-galactic transient and random phenomena releasing
a tremendous amount of energy reaching typically 1054 ∼ 1054 erg.6 They are characterised by
a short burst of intense emission (prompt phase) lasting from miliseconds to a few hundred of
seconds, followed by a long-lasting phase (afterglow) where the observed flux and photon en-
ergy quickly decrease over a period of hours up to several days. The widely accepted picture
describes GRBs as newborn black holes associated to a relativistic jet (i.e. a collimated outflow
of relativistic particles) as shown in Figure 1.3.

GRBs are sorted out into two distinct classes depending on their duration. Long GRBs
characterised by a prompt emission lasting typically longer than 2 seconds represent the vast
majority of these objects. Since they are thought to be associated with nearby supernovae, long
GRBs are believed to originate from the collapse of fast rotating massive stars. The rest of
the population is gathered in the short GRB class. Their rare occurrence makes it difficult to
determine their origin. They are however believed to be connected to the merging of compact

61 erg is equivalent to 10−7 J generally used to characterise astrophysical phenomena. For comparison, the
total energy radiated by a supernova typically reaches 1049 erg.
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objects (two neutron stars or a neutron star and a black hole)7.

In light of their cosmological distance (observed up to z = 9.4), highly energetic emission and
fast variability, they are ideal sources to probe LIV. However, the redshift cannot be measured
or estimated for all bursts. Furthermore their random and sporadic appearance makes them
particularly difficult to catch, especially for ground-based detectors due to their narrow field of
views. Alternatively, they can be easily detected with satellite-embarked wide-field detectors,
but their small collection area greatly limits the highly energetic photon detection. More details
will be given on this subject in Chapter 3.

1.4.2 Pulsars

Pulsars [30], also noted PSR8, are highly magnetised and fast rotating neutron stars created
from the death of a massive star that exploded into a supernova. While the outer layers are
blown out into a supernova remnant, the core of the star collapses under the action of grav-
ity. The leftover electrons and protons combine to form neutrons highly condensed in a newly
formed neutron star. The angular momentum being conserved during the process, the neutron
star rotates with a very short period ranging from tens of seconds down to a few milliseconds. A
part of the rotational energy is lost under the form of electromagnetic radiation, making pulsars
comparable to a magnetic dipole emitting highly energetic particles in the form of collimated
outflows originating at each magnetic pole. As a consequence, the pulsar rotation slows down
with time. When these poles are not aligned with the rotation axis, pulsars are seen as pulsating
objects with a periodic emission. An illustration can be seen in Figure 1.4.

Contrary to GRBs, pulsars are fixed and continuously emitting sources. The very fast
variability - and consequently sharply peaked photon emission - allows for a very good precision
on time delay measurement. On the down side, they are "local" galactic objects located at short
distances such that lesser LIV effects are to be expected. However, this locality lessens the EBL
absorption resulting in energy spectra being less attenuated at TeV energies.

1.4.3 Flaring active galactic nuclei

Active galactic nuclei (AGN) are the core of distant galaxies hosting a central supermassive
black hole fed by a surrounding accretion disc mainly made up of gas and dust. About 10% of
the observed galaxies possess such a system which is referred as the central engine. It is further
surrounded by a larger torus of gas and dust, along with the so-called broad and narrow line
region (BLR and NLR) made up of ionised gas. The accretion disc which emits light in the op-
tical/UV spectrum can be obscured by the surrounding torus, which emits in the IR spectrum,
depending on the viewing angle. The BLR and NLR reprocess the disc emission into spectral
emission lines. The central engine emission is intense enough (typically between 1051 and 1054

erg.s−1.cm−2) to overshadow the light emitted by the galaxy itself.

In roughly 10% of AGNs, a fraction of the accreted gas infalling into the black hole is ejected
in the form of two luminous extended jets of relativistic and magnetised plasma. Such AGNs are
labeled as radio loud, as opposed to radio quiet AGNs where the jet, if any, would emit very low

7This has been further confirmed by the detetion of GRB 170817A that followed the gravitational wave merger
event GW 170817 [29]

8PSR is actually the name of a catalog of pulsar sources, used in this work as an acronym for pulsars.
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Figure 1.3: Illustration of the commonly accepted view of a gamma-ray burst (prompt phase
and afterglow), displaying a core black hole and a relativistic jet. The merger and supernovae
scenarii are the two phenomena thought to be at the origin of GRBs. Credit: [28].

Figure 1.4: Illustration of a pulsar, a fast rotating neutron star displaying two beams of particles
at each magnetic pole. The pulsation is a consequence of the misalignment between the magnetic
poles and the rotation axis. Credit: [31].
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Figure 1.5: Illustration of an AGN and its classification. Categories depend on the presence of
a jet, the visibility of the broad line region, the visibility of the jet beamed radiations and the
power of the AGN. Abbreviations used: NLRG - Narrow Line Radio Galaxy; BLRG - Broad
Line Radio Galaxy; QSO - Quasi Stellar object; FSRQ - Flat Spectrum Radio Quasar. Credit:
[32].
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fluxes which cannot be observed. The core where the jets originate can be detected in the radio
spectrum. In addition, the jets end into so-called radio-lobes (emitting in the radio spectrum)
created from the interaction between the jet plasma and the interstellar medium. The jet itself
on the other hand generates a beamed emission covering a large fraction of the electromagnetic
spectrum. The jets structure and underlying processes at the origin of this beamed emission
will be covered in extended details in Chapter 2.

Many objects, gathered today under the AGN label, were originally given different names
depending on the observation technique and wavelength at which they were detected. For in-
stance, while VHE photons are absorbed by the EBL limiting the range of detection to redshift
z = 1, radio surveys can detect sources up to redshift z = 6. Additionally, the source configura-
tion (structure, orientation, etc.) is key and can lead to dramatically different observed spectra.
As a consequence, more than 50 categories of AGN were created. A full review on the selection
effects and AGN properties can be found in [33].

A unified picture of AGN was later introduced by Antonucci [34] and Urry & Padovani [35],
reducing the classification to the following properties:

• presence of a jet;

• bolometric luminosity Lbol;

• orientation of the central engine and/or jet with respect to the observer line of sight.

Figure 1.5 shows an illustration of an AGN and its classification according to these three
criteria. The AGNs of interest in the context of LIV searches are grouped under the label of
"blazar", namely AGNs comprising a jet which is oriented in the direction of the line of sight
emitting highly variable TeV spectra. An extended discussion on blazars will be given in Chapter
2. Such objects occasionally undergo flaring episodes when their emission is heighten as com-
pared to their continuous emission (quiescent state). Such episodes usually have a time scale
ranging between a few minutes up to several hours.

In view of blazars being extra-galactic sources emitting potentially large fluxes of highly
energetic photons, they appear as promising candidates for LIV studies when in flaring state.
However, even though their location is fixed, there is no way to predict when a flaring episode
will occur and become random events that are rather difficult to catch. This problem is partly
answered by monitoring campaigns and alert systems established by gamma-ray astronomy ex-
periments. As a consequence they appear as the best compromise between GRBs and pulsars.

1.5 LIV vs source intrinsic effects

Probing LIV by studying the time-of-flight of photons emitted by astrophysical sources relies
on the crucial assumption that there is no correlation between photons energy and the times
at which they are emitted. However, there is no absolute certainty on the sources emission
mechanisms and nothing guarantees the simultaneity of emission for photons with different
energies. Quite on the contrary, there is now rising evidence that source physical processes
can induce energy-dependent time delays between photons at the moment of emission. These
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intrinsic time delays will be added to LIV-induced ones leading to a total measured time delay
decomposing as follows:

∆tn(total) = ∆tn(LIV) + ∆tn(source)(z+ 1) (1.14)

or equivalently
∆τn(total) = ∆τn(LIV) + ∆τn(source)(z+ 1). (1.15)

The LIV term incorporates a correction for the cosmological effects induced by the source dis-
tance or redshift. While LIV-induced time delays are a consequence of a propagation effect which
cumulates with the distance travelled by the test particles, intrinsic time delays are generated
at the source and stay constant whichever distance the test particles travel (see Figure 1.6).

As a matter of fact, the presence of energy-dependent time delays in GRBs was investigated
by Norris & Bonnell, and is now a well-established fact. Although no significant time delay was
found in short GRB data [36], they found a correlation between intrinsic time delays and the
luminosity in long GRB data [37] and extracted the following relationship

L53 ∼ 1.3
(

τ

0.01s

)−1.14
(1.16)

where L53 is the luminosity in units of 1053 erg.s−1 and τ is the spectral lag. A recent survey
by the Fermi collaboration leading to the second GRB catalog [38] further established this lag-
luminosity correlation as can be seen in Figure 1.7. LIV-induced time delays could therefore be
distinguished from intrinsic ones in long GRB data, while such distinction will be more difficult
to make for short GRBs.

Regarding pulsars, no intrinsic delay at very high energies has been found so far. Never-
theless, they could easily be distinguished from LIV-induced ones thanks to the periodicity of
the signal and the increasing rotational period. Any intrinsic time delay expressed in rota-
tional phase - i.e. in terms of the phase φ = t/rp, with rp ≡ rp(t) the time-dependent rotation
period - will not vary as the pulsar slows down and yield ∆φ(source) = cst.9 In contrast, a LIV-
induced time delay would increase with time, as a function of the rotational period variation
∆φn(LIV ) ≡ f(rp) [39].

Lastly, intrinsic effects in AGNs appear as the least known and most difficult to distinguish
from LIV ones. This is mostly due to the source complexity and its emission mechanisms being
not well-enough constrained to efficiently extract and isolate intrinsic time delays from measured
ones. In this work, we perform a deep study on time delays generated via blazar emission
processes (leptonic model) in order to find a way to discriminate intrinsic from LIV-induced lags
in AGN data. We explore two possible ways to achieve this goal:

• On the source side, by modeling blazar emission mechanisms and study the steered
energy-dependent time delays. This approach will be discussed in Part II.

• On the data analysis side, by performing a population study combining the data from
sources sitting at various distances in order to blur or even suppress noise-like intrinsic
time delays. This approach will be discussed in Part III.

9Ephemerides (astronomical tables) are used to express the temporal emission in terms of rotational phase rp
(t−→ φ). This transformation encodes the phase variation and corrects it, along with any intrinsic effect.
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1.5 LIV vs source intrinsic effects

(a) LIV effect. (b) Intrinsic effect.

Figure 1.6: Illustration of the difference between LIV-induced and intrinsic effects. (a): Photons
are emitted without time delay. LIV-induced delays appear and cumulate as photons travel
large distances. (b): Intrinsic delays are generated at the emission and unchanged by the source
distance. Photons arrive at the observer with the same delay as they had at the moment of
emission.
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Figure 1.7: Lag-luminosity correlation established from a sample of 34 GRBs in the 10 MeV to
100 GeV range. Each color represents a separate GRB. The solid line shows a linear fit giving
a decay of 1.25±0.03, while the dashed line shows a decay of 10/7. Credit: [38].
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Blazars

Following the discussion on blazars given in Section 1.4.3, a more detailed presentation will
now be provided. They were introduced as some of the most promising canditate sources for
LIV time-of-flight studies: extra galactic sources undergoing flaring episodes lasting down to
the minute scale and emitting a large spectrum of very high energy photons. The underlying
processes at the origin of such emission will be reviewed in this chapter.

2.1 Characteristics
As mentionned in Section 1.4.3, AGNs are classified with respect to their radio loudness,

partly defined by the presence or absence of well-developed radio jets. Blazars make up for a
fraction of the radio loud AGNs which have their jets pointing very close to the observer line
of sight, an approaching one and a receding one. As a consequence of this specific orientation,
the detailed observation of blazars’ jet can be difficult. Their interpretation partly rely on their
counterpart radio loud AGNs, which jets are oriented farther from the line of sight (quasars,
Seyferts and radio galaxies).

Radio-interferometry techniques, in particular very long baseline interferometry (VLBI),
allowed to resolve and map the jets structure down to their launching region neighbouring the
core black hole. They are believed to be a consequence of a spinning blackhole, ejecting a fraction
of the accreted matter tightly collimated at its base by a powerful magnetic field. Observations
indicate jets to be non uniform, featuring bright regions called "knots" moving within a dimmer
and larger scale structure. Since AGNs detected at TeV energies mostly fall within the blazar
category, the TeV emission is associated to the jet’s relativistic beaming. Moreover the fast
variability implies compact emission zones and tends to indicate the jet’s knots are mainly
responsible for the high energy emission. These knots, which are assumed to be highly dense
and magnetised regions of the jet, appear to emit in various energy bands up to TeV, with a
prominent flux in the X-ray energy domain. Both energy bands - radio and X-ray - show so to
speak universal power law spectra indicating underlying non-thermal1 processes.

2.1.1 Superluminal motion and relativistic beaming

Superluminal motion

From consecutive observation campaigns targeting specific blazars, it is possible to track and
monitor the evolution of knots within a jet. Over the course of several months or a few years,
one can witness the birth and disappearance of one or several knots, travelling several kpc from
the jet base (nuclear jet) to the lobes2. The knots usually appear to move in the nuclear jet with
apparent superluminal velocity, which arise from relativstic and geometrical effects induced by
the jet orientation as illustrated in Figure 2.1.

Consider an observer positionned such that its line of sight makes a small angle θ with respect
to the jet orientation. Let a knot move along the direction θ at speed v and emit two photons at
coordinates (t1,d1) and (t2,d2). Within the time window ∆t= t2−t1, the knot travels a distance
∆d = d2−d1 = v∆t along the direction θ while the two photons travel along the line of sight.

1This widely used terminology can lead to confusion regarding the nature of the radiation which is thermal.
In practice, it refers to a continuum emission which cannot be described by a black-body radiation.

2In practice, the knots can only be tracked with VLBI-interferometry over parsec scales when they are the
brightest i.e. in the nuclear jet. The propagation over kpc or Mpc scales is then estimated with various physical
models.

24



2.1 Characteristics

Figure 2.1: Illustration of the geometrical effect inducing apparent superluminal motion of knots
(yellow sphere) in blazar jets.

The observer has only access to the projection of this displacement such that ∆dobs = ∆dsinθ.
As the knot moves towards the observer, the time difference ∆tobs does not reflect the true
emission time difference ∆t. From the path difference we have

∆tobs = c∆t−v∆tcosθ
c

= ∆t(1−β cosθ)<∆t (2.1)

leading to the observed apparent velocity

vobs = ∆dobs
∆tobs

= v sinθ
1−β cosθ > v (2.2)

The maximum apparent velocity is reached for cosθ ≡ β in which case vobs ≡ Γv with Γ = (1−
β)−1/2 the associated Lorentz boost. The knots superluminal velocity provide strong evidence
of their relativistic motion within the jet.

Relativistic beaming

Although radio loud AGNs feature two opposite relativistic jets, blazars display highly
anisotropic patterns and are usually observed with only one visible jet (the one approaching) as
a consequence of their specific orientation. A relativistic beaming (or Doppler boosting) is ap-
plied to the jet emission as a consequence of special relativity effects, i.e. from the time dilation
and spatial compression induced by Lorentz transformation. When observed at small angle θ,
the emission coming from an object moving at a relativistic speed v = βc with corresponding
Lorentz boost Γ = (1−β)−1/2 is affected by the Doppler factor that reads

δ = 1
Γ(1−β cosθ) . (2.3)

It results in alterations where the observed time scales are reduced while the observed frequencies
are amplified:

tobs = t

δ
⇐⇒ νobs = δν ⇐⇒ Eobs = δE. (2.4)
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This alteration has a direct influence on the observed flux. Starting from the specific intensity
I(ν)/ν3 being a Lorentz invariant, the observed emission intensity is transformed as follows:

Iobs(νobs) = I

(
νobs
ν

)3
= δ3I(ν). (2.5)

The corresponding total intensity is then given by

Iobs =
∫ ∞

0
Iobs(νobs)dνobs =

∫ ∞
0

δ3I(ν)δdν = δ4I(ν). (2.6)

The emitted flux is linked to the radiated intensity through the following relationship:

F =
∫ ∞

0
I(ν)dν, (2.7)

and the observed flux writes
Fobs = δ4F. (2.8)

The jet emission is therefore highly amplified and tends to overshadow almost entirely the galaxy
emission. In contrast, the receding jet is heavily dimmed and does not appear as visible to the
observer.

To summarise, the jet emission undergoes a relativistic beaming which amplifies the observed
photon flux, photon energy and source variability. This tends to greatly benefit LIV time of
flight studies (see Section 1.4) and explains the particular interest for blazars rather than other
types of AGNs.

2.1.2 Blazar emission

Since the relativistic beaming makes the jet emission so prominent, the typical blazar emis-
sion is generally attributed to processes happening within the jet, and more specifically within
the knots. Although the temporal distribution of photons (or light curve) is variable and specific
to each blazar, the spectral distribution tends to follow a characteristic pattern. Blazar energy
distributions span over more than 15 decades in energy, from radio to TeV gamma-rays, and can
entirely be described with only broken power laws. The corresponding spectral energy distribu-
tions (SEDs), which are simply another way to present energy distributions, are characterised
by a two-bump structure.

The low energy bump, usually spanning between radio and X-ray energies, is attributed to a
synchrotron emission as charged particles move through the knot magnetic field. Since protons
are deemed inefficient at synchrotron processes due to their larger mass, the most plausible
source of synchrotron light is found in light leptons (i.e. electrons and positrons). Knots are
therefore believed to be filled with a hot, dense and relativistic plasma of either leptons only, or
a mixture of leptons and protons.

The high energy bump on the other hand stretches up to TeV energies. Contrary to the
low energy emission, there is yet to be a consensus on the physical processes at the origin of
the high energy emission. The most common view involves inverse Compton scatterings where
plasma leptons transfer part of their energy to soft (IR to X-ray) photons and accelerate them
to gamma-ray energies. The dominant photon fields for such scattering are two folds:
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2.2 Physical processes in relativistic jets

• the synchrotron field produced by the plasma leptons in the knot. As leptons are believed to
scatter on the very synchrotron photons they generated, this process is called synchrotron
self-Compton (SSC).

• photon fields external to the jet. They can be generated by the blazar structure itself
including most notably the accretion disc thermal emission, the optical/UV BLR emission
or IR emission from the torus. They can also be external to the blazar’s central engine and
come from its environment such as the EBL or the CMB. This type of process is therefore
labeled as external inverse Compton (EIC).

Other photon fields can contribute to both EIC processes and the overall blazar emission. In
particular significant contributions to the radio and optical components are brought by the large
scale jet and the host galaxy respectively.

2.1.3 Blazar sequence: BL Lac vs. FSRQ

From a statistical study based on a large selection of blazars (126 in total), Fossati et al. [40]
found out the observed radio luminosity and the synchrotron (low energy bump) peak within
blazars SED are anti-correlated. This study brought to existence the "blazar sequence" shown
in Figure 2.2 (right) which unified the two classes of blazars: from bright and low frequency
flat spectrum radio quasar (FSRQ) to dim and high frequency BL Lacertae (BL Lac). A more
detailed classification of the blazar sequence is defined with respect to the synchrotron peak
frequency νpeak,s:

• FSRQ with νpeak,s ∼ 1012−1013 Hz;

• LBL (low frequency BL Lac) with νpeak,s ∼ 1013−1014 Hz;

• IBL (intermediate frequency BL Lac) with νpeak,s ∼ 1015−1016 Hz;

• HBL (high frequency BL Lac) with νpeak,s ∼ 1017−1018 Hz.

Later on, Ghisellini et al. [41] performed a revision of this sequence with a total of 747
blazars, also shown in Figure 2.2 (left). In this re-edition, the gamma-ray luminosity is pre-
ferred to the radio one for the classification. This choice is motivated by current understanding
of physical processes at the origin of the high energy emission. Although there is no general
consensus, it is commonly believed the especially large flux observed in FSRQs at high energy
is caused by the presence of important external photons fields. They thus introduce a signifi-
cant inverse Compton emission which boosts the SED high energy bump. Alternatively, SSC
processes are usually enough to model BL Lacs emission and make up for a standard picture.

Either way, although HBLs emit the most energetic photons and are therefore the most
interesting types of blazar for LIV studies, they tend to be observed at the low redshifts due to
their lower luminosity. Other types of blazars are therefore still considered as strong candidates
as they offer an acceptable compromise between energy and distance.

2.2 Physical processes in relativistic jets
This section will be dedicated to the blazars emission mechanisms, focusing on one of the

most commonly accepted scenario. As discussed above blazars SED are dominated by two non-
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Figure 2.2: Sequences of blazar SEDs. The original sequence (right) provides a classification
based on the radio luminosity (low energy synchrotron bump) while the revised version (left) is
based on the gamma-ray luminosity (high energy inverse Compton bump). Credit: [41].

thermal components, the low energy one being attributed to synchrotron processes while the
high energy one is believed to arise from inverse Compton processes involving leptons found in
the knot plasma. Either way, the two components can only be explained when particles are
found to be highly energetic, which indicates the presence of efficient and powerful acceleration
mechanisms. Only the leptonic processes will be discussed in this work, providing with a brief
overview and essential concepts and formulae that will be used later on. We invite the reader to
refer to [42, 43] for a broader and more detailed review of current knowledge on blazar emission
mechanisms (including hadronic and lepto-hadronic models).

2.2.1 Acceleration

Extragalactic jets usually extend over tens or hundreds of kpc, up to a few Mpc3 for the
most powerful AGNs, as indicated by their non-thermal emission. This implies the relativistic
particles must undergo acceleration processes within the jet and be injected locally if they are to
continuously cool down over such distances. We briefly present here three acceleration mecha-
nisms often invoked to explain in-jet processes. As we will not be referring to it in the rest of the
manuscript, we choose to focus on the underlying ideas rather than to develop the full calculation
which can easily be found in many publications (including the ones referenced here) or textbooks.

Second order Fermi acceleration: stochastic mechanism

Fermi proposed two mechanisms resulting in the acceleration of charged particles from their
repeated reflection on a magnetic mirror [44], now viewed as the primary mechanisms by which

31 kpc ∼ 3×1019 m. For comparison, galaxies have a typical diameter ranging from 1 to 100 kpc. Relativistic
jets scale can therefore be several orders above their host galaxy size.
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astroparticles gain non-thermal energies. One scenario describes how a charged particle can
gain energy from its relativistic motion in the presence of a randomly moving magnetic mirror
(non relativistic motion) as illustrated in Figure 2.3 (left). It can be shown with changes of
reference frame that a reflection occurring as the mirror moves towards the particle (head-on
"collision") will lead to a gain in energy for the particle. The particle will however lose energy
as the reflection occurs while the mirror is receding (head-tail "collision"). Since the probability
for a head-on collision is slightly larger than the head-tail one, the average variation of energy
is non zero and particles will gain energy in second order of βm = vm/c:

<
∆E
E

>∝ β2
m, (2.9)

with vm the magnetic mirrror velocity. In the knotted relativistic jet picture, the magnetic mirror
is assimilated to the knot’s magnetic field turbulences that accelerates the leptons and/or the
protons in the knot plasma. It is however a slow acceleration process which requires "pre-
accelerated" particles.

First order Fermi acceleration: shock mechanism

A second and more efficient scenario enables particle acceleration through shock waves. In
this picture, the magnetic mirror is played by the inhomogeneities in the shocked (upstream)
and inert (downstream) media as illustrated in Figure 2.3 (right). Once again, this process is
better grasped with the help of changes of reference frame. Whether we are placing ourselves
in the upstream or downstream reference frame (i.e. where the corresponding medium is at
rest), the moving medium will have a head-on motion. A particle coming from the downstream
(resp upstream) medium at rest and passing through the shock front will then see the upstream
(resp. downstream) medium as a magnetic cloud coming towards it. From the second order
Fermi mechanism, this head-on motion induces an energy gain for the particle. The diffusion
effects provoked by the magnetic turbulences (inhomogeneities) in the medium decreases the
probability of particle escape. Changing the reference to the rest frame of the upstream (resp
downstream) medium, the particle is likely to be once again reflected on the other medium,
which is also seen with a head-on motion. As a consequence, as long as the particle cannot
escape the shock system, it will undergo multiple reflections. The critical difference with the
second order mechanism is that all the collisions are now head-on. For each round-trip, the
particle will gain an average energy

<
∆E
E

>∝ r−1
r

vshock
c
∝ ∆v

c
≡ βshock, (2.10)

with r the compression factor between the upstream and downstream media, ∆v= vup−vdown >
0 the relative velocity between the upstream and downstream media, and vshock = βshockc the
shock front velocity. In the knotted relativistic jet picture, the shock front is for instance assimi-
lated to the transition between a knot and the large scale jet. Although this process also requires
"pre-accelerated" particles, it provides faster acceleration than the second oder Fermi mechanism.

Magnetic reconnection

Other acceleration mechanisms can occur in astrophysical sources. The currently most com-
mon mechanism (aside Fermi ones) involves magnetic reconnection. It describes events where

29



Blazars

         


B

B

B V

Shock front

UpstreamDownstream V

plasma turbulence plasma turbulence 

2nd order Fermi-acceleration. 
Cosmic rays are accelerated by 
random moving magnetic clouds.


1st order Fermi-acceleration. Particles 
are accelerated by shock waves.

Figure 2.3: Illustration for the second (left) and first (right) order Fermi acceleration. Credit:
[45].

magnetic lines can overlap and fuse, leading to a new magnetic topology. As they do so, the
magnetic lines liberate magnetic energy which is converted and transferred to the surrounding
plasma, enabling an efficient acceleration of particles. This phenomenon is invoked in AGNs
where magnetic field lines are frozen in the highly conductive plasma (found for instance in the
accretion disc) and thus governed by the plasma motion; or in pulsars to explain the energy
dissipation, for instance via striped wind or wind nebulae [46].

2.2.2 Leptonic radiation processes

Leptonic models are able explain and represent blazar SEDs from the evolution of a single
population of particles. Compared to hadrons, light leptons (electrons and positrons) care easier
to accelerate with the above mechanisms. The two relevant interactions enabled by the system -
synchrotron and inverse Compton processes - can then each fully explain one of the SED bumps.

2.2.2.1 Synchrotron

The accelerated leptons immediately start to radiate as they move through the magnetic
field present in the jet and the knot. In the classical picture this radiation arises from the rather
simple process called cyclotron, and occurs at a specific frequency given by

νcyclo = qB

mc
, (2.11)

with q and m the charge and mass of the moving particle, and B = || ~B|| the magnetic field
strength, and c the speed of light in vaccum. For relativistic motions, the process which is
now called synchrotron yields a more complex frequency spectrum. We only provide the core
expressions that will be needed later in the manuscript. Detailed mathematical derivations can
be found in Rybicky & Lightman [47], Longair [48] or many other textbooks.
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2.2 Physical processes in relativistic jets

Assuming knots are spherical objects of radiusRk, the radiated multi-wavelength synchrotron
spectrum can be obtained by solving the following transfer equation:

Is(ν) = js(ν)
ks(ν)

(
1− 2

τ2 [1−e−τ (τ −1)]
)
, (2.12)

where τ = 2Rkks(ν) is the optical depth. js(ν) and ks(ν) are the synchrotron emission (or emis-
sivity) and self-absorption coefficients.

Both coefficients are expressed in terms of the emitted power P . In the specific case of
ultra-relativistic leptons or protons (β ∼ 1) with Lorentz factor γ = E/mc2, the emitted power
per unit frequency ν for each particle is given by

P (γ,ψ,ν) =
√

3q3B sinψ
mc2 ·

(
ν

νc

)∫ ∞
ν/νc

dx K5/3(x), (2.13)

where νc = 3
4π

γ2qB sinψ
mc , and ψ is the pitch angle i.e. the angle between the magnetic field lines

and the particle trajectory (~v · ~B = cosψ). K5/3(x) is a modified Bessel function of the second
kind of order 5/3, i.e. solution of the Bessel differential equation that have a singularity at the
origin (x= 0). In the specific case of leptons with isotropically distributed velocities and pitch
angles, the averaged emitted power per lepton is given by

Ps(γ) = 4
3cβ

2γ2σTUB, (2.14)

with UB = B2

8π the magnetic energy density, σT = 8πr2
e

3 the Thomson cross section, and re = e2

mec2

the classical electron radius.

In the knot frame, the emission and auto-absorption coefficient for a distribution of particles
N(γ) and an isotropic distribution of pitch angle ψ write:

js(ν) = 1
8π

∫ 2π

0
sinψ dψ

∫ γmax

γmin
dγ N(γ)P (γ,ψ,ν), (2.15)

ks(ν) =− 1
16πmν2

∫ 2π

0
sinψ dψ

∫ γmax

γmin
dγ γ2 d

dγ

[
N(γ)
γ2

]
P (γ,ψ,ν). (2.16)

From the solution of Equation 2.12, one can derive the total emitted flux as seen in the
knot’s rest frame by integrating over the solid angle Ω:

Fs(ν) =
∫
dΩ Is(ν). (2.17)

The observed flux can then be obtained following the transformation given in Equation 2.8 and
reads

Fs,obs(νobs, t) = πR2
k

d2 (1 +z)δ3Is(ν), (2.18)

where Rk is the emitting zone radius, d = 2c(1 + z−
√

(1 + z))/H0 is the luminosity distance
with z the redshift, H0 the Hubble constant and νobs = ν× (δ/1 +z).
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2.2.2.2 Inverse Compton

The inverse Compton scattering (see Figure 2.4) is the interaction between a high energy
(hard) lepton and a low energy (soft) photon, during which the lepton transfers part of its
energy to the photon. The interaction therefore results in the boost of soft photons such that
Eγ,f >Eγ,i. From energy and momentum conservation laws, it can be shown the photon energy
in the lepton rest frame after the scattering E′γ,f is given by

E′γ,f =
E′γ,i

1 + E′γ,i
mec2 (1− cosθ′)

, (2.19)

with θ′ the scattering angle in the lepton rest frame and mec
2 the electron rest mass. The

corresponding energy in the laboratory frame is obtained from the following transformation:

Eγ,f = E′γ,f ×γ(1− cosθ′). (2.20)

The probability of such an interaction is given by the Klein-Nishina cross section:

σKN = σT .
3
4

[1 + ε

ε3

(2ε(1 + ε)
1 + 2ε − log(1 + 2ε)

)
+ 1

2ε log(1 +2ε)− 1 + 3ε
(1 + 2ε)2

]
, (2.21)

with ε = E′γ,i/mec
2 the reduced energy. In the limit of the Thomson regime where ε� 1, the

probability of such an interaction reduces to the Thomson cross section σT . Furthermore, the
low energy regime leads to E′γ,i ' E′γ,f such that the initial and final energies as seen by the
observer obey the following relationship:

Eγ,f ∝ γ2Eγ,i. (2.22)

Such an energy gain is enough to accelerate soft photon to gamma-ray energies.

Figure 2.4: Schematic of an inverse Compton scattering between an incident low energy photon
and an electron.
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2.2 Physical processes in relativistic jets

Conversely in the high energy regime - called Klein-Nishina regime - where ε� 1, the cross
section reduces to

lim
ε→∞

σKN = 3
8
σT
ε

(
log2ε+ 1

2

)
, (2.23)

meaning the cross section decreases with the reduced energy as σKN ∼ log(ε)/ε. Furthermore,
we get that E′γ,f 'mec

2, that is to say the photon ends up transferring its excess energy to the
electron4, and the final photon energy seen by the observer is given by

Eγ,f ∝ γmec
2. (2.24)

To summarise, while soft photons are boosted by a factor γ2 and proportional to their initial
energy, hard photons are boosted by a factor γ and proportional to the electron rest mass mec

2.
In other words, the higher the energy of the incident photon, the smaller the probability it will
interact through inverse Compton scattering and the lesser the boost it will receive.

The very high energy photon emission in blazars is therefore believed to be mainly generated
through inverse Compton scatterings undergone by soft photon fields. In the case where this
field is made up the synchrotron photons emitted by the leptons accelerated in the knot, the
scattering process is referred as the synchrotron self-Compton (SSC) process. The inverse Comp-
ton spectrum can be described following a similar treatment to the one used for the synchrotron
spectrum. The central difference resides in the expression of the inverse Compton emissivity
coefficient. Considering a population of leptons N(γ) and a photon field described by its initial
density n(ε0) at energy ε0, the inverse Compton emissivity for SSC processes is given by

jIC(ν) = h

4πεq(ε). (2.25)

q(ε) is the differential photon production rate given by

q(ε) =
∫
dε0 n(ε0)

∫
dγ N(γ)C(γ,ε,ε0), (2.26)

with C(γ,ε,ε0) a Compton kernel. Its expression was derived by Jones in [49]:

C(γ,ε,ε0) = 2πr2
ec

γ2ε0

[
2κ logκ+ (1 + 2κ)(1−κ) + (4ε0γκ)2

2(1 + 4ε0γκ)(1−κ)
]
, (2.27)

where κ= ε
4ε0γ(γ−ε) . The reduced energy ε of the outgoing inverse Compton photon is bound in

an allowed kinematic range determined by the photon initial energy ε0 and the lepton Lorentz
boost γ:

ε0 ≤ ε≤
4ε0γ

1 + 4ε0γ
. (2.28)

The lower bound indicates only energy transfers from leptons to photons are allowed, therefore
forbidding conventional Compton scatterings. On the other hand, the upper bound indicates
the scattered photon cannot gain more than the excess energy carried by the scattered lepton.

In contrast, the absorption by leptons of highly energetic scattered photons can be neglected
such that kIC(ν)∼ 1. The inverse Compton photons boosted at energy Eγ may however interact

4We are no longer in an inverse Compton but a standard Compton process.
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back with the knot’s synchrotron field of energy ε∈ [ε1, ε2] via pair production. The optical depth
τIC associated to this phenomenon for an isotropically distributed synchrotron field is given by:

τIC(ε) =Rk

∫ ε2

ε1
dε n(ε)σγγ(Eγ , ε), (2.29)

with Rk the knot’s radius and σγγ(E,ε) the pair production cross section. Aharonian et al. [50]
provided an approximated expression for that cross section which reads

σγγ(s) = 3σT
2s2

[(
s+ 1

2 logs− 1
6 + 1

2s

)
log(
√
s+
√
s−1)−

(
s+ 4

9 −
1
9s

)√
1− 1

s

]
, (2.30)

with s = Eγε
m2
ec

4 . This process can be accounted for by introducing τIC in the radiated intensity,
expressed similarly to that of Equation 2.12:

IIC(ν) = jIC(ν)
(

1− 2
τ2
IC

[1−e−τIC (τIC −1)]
)
. (2.31)

The observed emitted flux can then be obtained similarly to that of the synchrotron process,
following the transformation given in Equation 2.18.

Finally, the power emitted by one lepton through inverse Compton processe can be obtained
by integrating Equation 2.25. For an electron with Lorentz boost γ, the emitted power averaged
over isotropically distributed velocities in the Thomson regime is given by

PIC(γ) = 4
3σT cβ

2γ2Uph, (2.32)

with Uph the energy density associated to the photon field. In the SSC framework, Uph is taken
as the energy density associated to the synchrotron photon field. (see Equations 4.10).

2.2.2.3 External inverse Compton

Other than the synchrotron field, inverse Compton processes can occur in blazars from the
interaction between leptons and a photon fields external to the jet or the AGN itself. The
additional number of photons brought by external fields will contribute to generate very high
energy photons and boost the flux in the SED inverse Compton bump. External photon fields
can originate from

• the accretion disc radiating in the optical to UV spectrum;

• the BLR as it scatters the accretion disc radiation in the UV spectrum with a possible
extension to X-rays;

• the dust torus radiating in the IR and radio spectrum;

• the large scale jet radiating in the radio spectrum from synchrotron processes possibly
up to X-rays;

• the host galaxy mostly in the optical spectrum;

• the EBL mostly in the microwave to optical spectrum.
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2.2 Physical processes in relativistic jets

Although the large scale jet emission would take the form of a power law, external photon
fields can generally be modeled with a blackbody emission centered on a specific temperature.
A fraction of the external photons - those that are directed or reflected head-on towards the
knot - should be blue-shifted in the knot’s rest frame. As a consequence, the external photons
can reach higher energies. In particular, photons emitted by the accretion disc or scattered by
the BLR can reach keV energies (X-rays) and therefore be boosted up to TeV energies through
inverse Compton interactions with the knot’s leptons.

We give here the example for the accretion disc emission. We consider two frames of reference:
the knot "k" and the accretion disc "ad". The derivation is very similar to that of the inverse
Compton from the SSC process. The only difference lies within the photon field distribution n(ε0)
introduced in Equation 2.26, used to compute the emissivity and radiated intensity. Following
Inoue and Takahara [51], we introduce the accretion disc photon field as a diluted blackbody
centered at the external temperature TAD which intensity in the disc frame writes

IEIC,ad = τLAD
4πd2 fν,ad(TAD). (2.33)

τ is the optical depth for Thomson interaction, LAD is the accretion disc luminosity, and d is the
distance between the accretion disc and the knot. The blackbody spectrum can be expressed
with the specific normalised Planck distribution that writes

fν,ad(TAD) = π

σSBT 4
AD

2hν3
ad

c2
1

ehνad/kBTAD −1
, (2.34)

with σSB the Stefan-Boltzman constant and kB the Boltzman constant. The transformation to
go from the disc to the knot frame is done by applying a Doppler boosting to the intensity:

Iν,k(νk) = 1
4π

∫
dΩk δ

3
kIν,ad(νad) = Γk

τLAD
4πR2 fν,ad(TAD), (2.35)

with δk the knot’s Doppler factor (see Equation 2.3) and Γk the knot’s Lorentz boost in the
disc frame. We applied the transformation dΩk = δ2

kdΩad, and made the assumption of an ultra-
relativistic head-on collision leading to δk ∼ 2Γk. The observed emitted flux can then be obtained
similarly to that of the SSC process, following the transformation given in Equation 2.18.
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Gamma-ray astronomy with imaging atmospheric Cherenkov telescopes

In this chapter we introduce gamma-ray astronomy and the detection principles, either di-
rect with space observatory or indirect with ground astronomy through imaging atmospheric
Cherenkov telescopes. We then present one of the leading IACT, the high energy stereoscopic
system (H.E.S.S.) experiment, from its structure to the data acquisition and the analysis strate-
gies. Finally, we give an overview of the future of ground-based gamma-ray astronomy with the
Cherenkov telescope array (CTA).

3.1 VHE gamma-ray astronomy
Typically ranging from a few hundred keV to hundreds of TeV, gamma-rays are the most

energetic form of light. Most photons are produced through thermal processes. The hotter
the source, the higher the frequency of the radiated light. However, objects can hardly get hot
enough to produce highly energetic gamma-rays1 such that they are mostly generated through
non-thermal mechanisms including:

• radioactive decay typically procuding Eγ ∼ MeV gamma-rays;

• electron-positron annihilation (e+ +e−−→ γ+γ) creating two photons of minimum energy
Eγ = 511 keV in the annihilation rest frame;

• pion decay (π0 −→ γ+γ) with an energy distribution peaking at Eγ ∼ 70 MeV;

• synchrotron radiation producing gamma-rays with energies that depend on the energy of
the charged particle moving in the magnetic field, and the magnetic field strength (c.f.
Section 2.2.2.1);

• inverse Compton scattering producing gamma-rays which energies depend on the initial
photon and lepton energies (c.f. Section 2.2.2.2);

• bremsstrahlung radiation by decelerating charged particles which produce gamma-rays with
energies that depend on the degree of deceleration.

Gamma-ray astronomy focuses on the most energetic photons with the goal to uncover the
nature of objects, and phenomena at their origin. As they propagate through the cosmos, these
gamma-rays may interact with non relativistic matter via three interaction channels:

• photoelectric effect (ionisation of an atom) - dominant up to Eγ ∼ 50 keV;

• Compton scattering (γ+e− −→ e−+γ) - dominant in the range Eγ ∼ 0.1−5 MeV;

• pair production (γ+γ −→ e−+e+) - dominant above Eγ ∼ 5 MeV.

The fraction of emitted gamma-rays that survived their trip en route to Earth are later massively
screened by the Earth atmosphere. As a consequence, direct gamma-ray detection with ground-
based instruments is impossible. There are two ways to work around this issue: either bypass
the atmosphere with space-based direct detection, or ground-based indirect detection with by-
products of gamma-ray interactions with the atmosphere.

1FromWien’s law: 0.2898 (cm K) = λmaxT . The most brilliant objects known today (e.g. 3C273 quasar) reach
∼ 1013 K corresponding to 23 GeV. For comparison, the Sun’s core temperature Tsun = 15×106 K corresponds
to ∼ 10 keV.
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3.1 VHE gamma-ray astronomy

3.1.1 Direct detection: satellite-embarked instruments

Typical setup

Direct detection while bypassing the atmosphere requires to send a detector in space, em-
barked on board a satellite. Due to financial and technical reasons, the weight and size of such
detectors is greatly limited by rocket standards, with typical scales of ∼ 1 m3 and a few hundred
kilograms. The detectors’ collection area and internal structure are therefore limited in size and
weight, greatly restricting their potential. However, the field of view (FoV) of such instruments
is generally very large (typically a few steradians2) such that a large fraction of the sky can be
monitored at each orbit.

The gamma–ray flux emerging from the ensemble of astrophysical gamma-ray sources is char-
acterised by a decreasing power law energy spectrum. As a consequence, this flux gets dimmer
as photon energy increases. Therefore, a collection area close to 1 m2 in size has a very small
probability to catch photons with energy exceeding a few hundreds GeV.

The detection principle is a destructive one where gamma-rays go through a limited number
of heavy material layers in order to provoke interactions, and die out by depositing all or part
of their energy in the detector. The penetration depth - distance at which the photon starts to
interact with the medium - increases with photon energy such that very energetic gamma-rays
can cross the detector through and through, and go undetected. This major limitation inherent
to gamma-ray space-telescopes defines a differenciation between high energy (HE) and very high
energy (VHE) photons. Direct detections are limited to the detection of HE photons only.

Leading satellite-based experiments

Fermi-LAT: Large Area Telescope One of two instruments mounted on the low orbit
(∼ 550 km altitude) Fermi Gamma-ray space telescope launched in 2008 [52]. Fermi-LAT has
a 0.8 m2 collection area along a 2 sr FoV, and it is sensitive between 20 MeV and 300 GeV. This
experiment is mainly managed by US, italian, french and japanese institutions.

Swift-BAT: Burst Alert Telescope One of the three instruments mounted on the Neil
Gehrels Swift observatory [53], launched in 2004 and orbiting at ∼ 550 km altitude. Swift-BAT
has a 1.4 sr FoV, for a sensitivity on energy ranging between 15 and 150 keV. This experiment
is essential as it triggers an alert to other experiments when it detects a burst. It is mainly
managed by US, UK and italian institutions.

3.1.2 Indirect detection: ground-based imaging atmospheric Cherenkov tele-
scopes

The composition of Earth’s atmosphere allows for different levels of penetration provided par-
ticles nature and characteristics. Photons being no exception, the level of penetration depends
on their frequency, and in particular TeV gamma-rays rarely reach below 10 km altitude.
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Figure 3.1: Schematic view of an electromagnetic (left) and hadronic (right) extensive air shower.
Credit: [54].

3.1.2.1 Extensive air showers

A VHE gamma-ray penetrating the upper atmosphere will inevitably interact with air
molecules via pair creation. The secondary electron and positron undergo bremsstrahlung emis-
sion resulting in new gamma-rays of smaller energy, which in turn will interact via pair creation.
In a dense medium like the atmosphere, the process repeats itself countless times resulting in a
shower made up of sometimes billions of particles as shown in Figure 3.1 (left). When secondary
photons fall below a critical energy Ecrit ∼ 85 MeV, ionisation losses become more important
than bremsstrahlung emission. As a result, the process is stopped and particles end up being
absorbed by the medium. The atmosphere behaves as a natural inhomogeneous calorimeter
from which gamma-rays can hardly escape. This process is called extensive air shower. In the
case of incoming photons or leptons, we talk about electromagnetic air showers.

Similarly, there exists hadronic air showers which are started by heavier particles such as
protons (e.g. cosmic rays) or more complex nuclei. The process is started by the splitting of
nuclei resulting in the production of hadrons, excited nuclei, kaons and pions. Charged pions
interact with the atmosphere resulting in muonic leptons3, while neutral pions decay into two
gamma-rays which dissipate their energy into electromagnetic showers as shown in Figure 3.1
(right). The process stops when charged pions reach a critical energy leading to their decay
into muons, and when gamma-rays reach the pair-creation threshold. The overall development
and decay of hadronic showers is more complex than electromagnetic ones, leading to a more
asymmetrical and wide-spread shower profile.

21 sr = 3283 deg2
3(π+ −→ µ+ +νµ) and (π− −→ µ− + ν̄µ)

40



3.1 VHE gamma-ray astronomy

3.1.2.2 Cherenkov radiation

Whether it is an electromagnetic or hadronic air shower, highly energetic particles such as
gamma-rays result in secondary charged particles travelling at velocities close to the classical
in-vacuo speed of light c, often taking over the speed of light in the medium such that v > c/n,
with n is the refractive index of said medium. As they move through the medium these charged
particles induce a pertubation in the electron shells of each atom they encounter. Electrons
move away from their initial position as they get polarised, then fall back to their ground state
as the charged particle moves away. De-excitation gives rise to a radiation prominent at small
wavelengths - blue to UV light in the visible spectrum - which fades away as successive waves
combine in destructive interferences. At velocities v > c/n, successive waves start to interfere in
a constructive way and end up in phase at the surface of a cone producing a visible effect that
is called Cherenkov radiation.

From simple trigonometry, the characteristic cone angle θ - called Cherenkov angle - can be
expressed as a function of the charged particle velocity v:

cosθ = c

vn
. (3.1)

Since both the refractive index n for air and the low-energy speed of light in vacuum c are
known, measuring the Cherenkov angle gives direct access to the charged particles velocity v.
Furthermore, the particle continuously slows down as it travels through the medium. When its
velocity falls below the speed of light in the medium c/n, the Cherenkov emission stops.

3.1.2.3 Imaging atmospheric Cherenkov telescopes

Detection principle

Air showers are characterised by what is called the shower maximum - altitude at which the
number of particles in the shower is maximal - typically located at ∼ 10 km. At such altitude,
the refractive index of air is nmax = 1+ ε with ε∼ 10−4. Starting from the Cherenkov inequality
v > c/n, we can derive the minimum energy (threshold) needed by a particle to start a Cherenkov
radiation: Eth >m/2ε. For electrons or positrons, this energy threshold is ∼ 35 MeV which is
below the critical energy Ecrit = 85 MeV that stops the shower. In other words, the particles
in air showers continuously emit Cherenkov radiation such that the pool of light projected on
the ground is not a ring but a full disc. Furthermore, from Equation 3.1 we find the Cherenkov
angle can be expressed as θ ∼

√
2ε∼ 0.8◦ such that the disc has a typical radius of ∼ 120 m. An

illustration of this layout can be found in Figure 3.2.

Indirect detection takes advantage of EAS by sampling this projected Cherenkov light using
imaging atmospheric Cherenkov telescopes (IACTs) allowing for reconstruction of the primary
particles main properties including nature, energy, time of incidence or direction. The light pool
properties impose the location, disposition, size and optical techniques used for such telescopes.
However, even if showers start to develop for gamma-rays with energy above Ecrit = 85 MeV,
the Cherenkov signal is too weak to be detected by this method and a much higher threshold is
required, typically about tens of GeV. This limitation defines yet another but similar differen-
ciation between high energy (HE) and very high energy (VHE) photons. IACTs are limited to
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Figure 3.2: Popular illustration of the layout for indirect detection in gamma-ray astronomy.
Extensive air showers form at ∼ 10 km above the ground level, resulting in a cone of Cherenkov
light illuminating the ground over a circular area of radius ∼ 120 m. An imaging atmospheric
Cherenkov telescope located in the pool of light records the shower profile.

the detection of VHE photons only.

Typical setup

A typical IACT will consist of a large dish made up of multiple segmented mirrors installed
on a mount controlling the pointing direction. The mirrors add up to form detection areas
of hundreds of m2 and allow photon detection down to tens of GeV and up to tens of TeV.
They are used to reflect the Cherenkov light onto a camera to record the EAS image patterns.
Given each primary particle generates a very fast (a few nanoseconds) and very faint flash of
Cherenkov light, IACT cameras are usually made up of photomultipliers (PMT) coupled with
fast electronics in order to resolve nanoesecond events and amplify the originally faint signal.4

Such a detection technique therefore imposes observations to be made at night in the absence
of strong moonlight, greatly limiting the observational times and duty cycles of IACTs, as op-
posed to satellite-embarked instruments. Furthermore, it imposes small field of views typically
reaching a few degrees generally preventing the simultaneous monitoring of multiple sources.

IACTs are usually built on high altitude grounds (1 to 3 km high) in order to get closer to the
EAS maximum and therefore detect larger (in the sense of less diluted) fluxes. Moreover, such
location brings the telescope above the level of certain types of clouds and reduces the chances
of absorption or scattering of Cherenkov photons. IACTs should however not be placed higher
than 3 km as mirrors would then be in the reach of shower particles and suffer heavy damages.

4A classic CCD camera could not be used as their typical time resolution of microsecond and typical sensitivity
could not resolve such events.
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Such altitude further reduces the number of detectable showers as the light pool becomes smaller.

Leading IACT experiments

MAGIC: Major Atmospheric Gamma-ray Imaging Cherenkov telescopes Sys-
tem of two 17 m-dish IACTs built in 2004 at La Palma in the Canary Islands (Spain) at 2200 m
altitude [55]. From the 236 m2 detection area and 3.5 degrees FoV, MAGIC is sensitive be-
tween 25 GeV and 30 TeV. This experiment is mainly managed by spanish, italian and german
institutions.

VERITAS: Very Energetic Radiation Imaging Telescope Array System System
of four 12 m-dish IACTs operating since 2007 from Arizona, USA at 1268 m altitude [56].
VERITAS has a 260 m2 detection area and 3.5 degrees FoV with a sensitivity between 100 GeV
and 50 TeV. It is maintained by US institutions.

H.E.S.S.: High Energy Stereoscopic System An extensive description of this experi-
ment is provided in the next section.

3.2 H.E.S.S.: the high energy stereoscopic system

3.2.1 Overview of the H.E.S.S. array

The H.E.S.S. array, shown in Figure 3.3, consists of five telescopes located at 1800 m altitude
in the Khomas highlands region in Namibia. As such, it is the only IACT currently in operation
in the southern hemisphere making it especially suited for the study of galactic sources and the
galactic center. The namibian overall dry and clear climate along with its excellent atmospheric
quality and absence of light pollution is furthermore particularly favourable for ground-based
astronomy.

H.E.S.S started operations in 2003 with four identical 13 m-dish telescopes - CT1-4 for the
first phase HESS-I (CT stands for Cherenkov Telescope) [57]. They are arranged in a square,
each separated from the neighbouring one by 120 m to optimise the sensitivity at low energies,
leading to a detection range between 100 GeV and 10 TeV. The fifth very large 28 m-dish
telescope - CT5 for the second phase HESS-II - now sitting at the center of the square, was
built and commissioned nearly ten years later, in 2012 [58]. Its much larger mirror enables
detection at lower energies5, the array now reaching a sensitivity down to 30 GeV. The four
small telescopes operate in stereo-vision only, while CT5 can operate either in monoscopic mode
(by itself) or stereoscopic mode with the other telescopes.

3.2.2 Structure and optical system

The five H.E.S.S. telescopes are single dishes installed on alt-azimuthal steel mounts. The
small telescopes are equipped with 380 spherical mirrors of 60 cm diameter, adding up to a 13
m diameter for an effective reflective surface of 107 m2. The mirrors are arranged following
a Davies-Cotton design, i.e. they are positionned along a spherical surface which focal length

5The lower the primary particle’s energy, the fainter the flux of Cherenkov light. A larger detection area
enables to collect more Cherenkov photons and yield higher flux that is in excess against the background light.
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Figure 3.3: The H.E.S.S. array. Credit: H.E.S.S. collaboration.

corresponds to exactly half that of the mirrors (f = 15 m).

A parabolic design was preferred for CT5. Indeed, the Davies-Cotton design induces a
temporal dispersion of the Cherenkov photons that increases with the dish diameter. On the
very large telescope, such a design would lead to a significant dilution of the signal and thus
greatly deteriorate the signal to noise ratio. With a paraboloid design, the arrival time of
Cherenkov photons in the focal plane is isochronous. On the down side, this design tends to
foster optical aberration which requires to perform observations on a limited field of view. The
large telescope is equipped with 876 hexagonal mirrors of 90 cm diameter, for a total reflective
dish of 28 m and an effective area of 614 m2.

Camera

Each small telescope is supplied with a camera made of an octogonal network of 960 PMTs
(pixels), arranged in 60 units (drawers) of 16 pixels. Each PMT is equipped with a Winston
cone to guide and focus Cherenkov photons on the photocathode, and consequently reduce the
loss of signal between PMTs. These cameras reach a total field of view of 5 degrees, enabling
the observation of extended sources.

Up until october 2019, the large telescope was equipped with a bigger camera made of
2048 PMTs organised in 128 drawers of 16 pixels. It could therefore reach a much higher
resolution on the shower images. Each PMT was again equipped with Winston cones, adding
up to a total field of view of 3.2 degrees. It was recently replaced with a prototype camera
FlashCam [59] designed for the future Cherenkov telescope array observatory CTA (more in
Section 3.3). This new camera is equipped with 1758 PMTs arranged in hexagonal pattern,
with 588 drawers of 12 pixels for a total field of view of 3.4 degrees.
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3.2.3 Data acquisition

3.2.3.1 Trigger system

A typical observation night is divided in observation runs of 28 minutes during which the
received signal is recorded following a trigger strategy. The trigger system has three levels of
selection:

• 1st level: cleared when an event triggers the internal system of each individual telescope
with at least one pixel (PMT) having a collected charge exceeding a threshold of four
photo-electrons (p.e.).

• 2nd level: cleared when at least three pixels that exceeded the threshold are located
within four neighbouring drawers (called a sector), and the signal occurs within a 1.3 ns
window6.

• 3rd level: the signal correlation between each individual telescope is checked with a central
trigger with three possible outcomes.

– At least two telescopes triggered the event (passed the first two levels) within a
window of 80 ns7: the event is recorded in stereo mode;

– Only CT5 was triggered: the event is recorded in mono mode;

– Only one HESS-I telescopes (CT1-4) was triggered: the event is discarded.

This trigger strategy helps to decrease the load on the data aquisition system (DAQ) and reduce
dead time during event readout. With a typical trigger rate of ∼ 1 kHz over the whole array, the
average duration between two events is 1 ms such that the probability to record coincident noise
events with multiple telescopes is low. The third level therefore greatly contributes to night sky
background light (NSB) rejection in stereo mode.

3.2.3.2 Calibration

Before analysing the obtained data, a number of operations must be performed to convert
and calibrate the signal.

• Pedestal subtraction. The pedestal refers to the PMT output signal in absence of light
(i.e. noise). It is estimated with a pedestal run which is an observation run performed
while the camera lid is closed using an external trigger. The pedestal is then subtracted
to the signal.

• Flat fielding. A flat field run is an observation run where the camera pixels are homoge-
neously illuminated by light emitting diods (LEDs) mounted on the telescope dish. The
response of each pixel is corrected such that the PMT array yields a flat signal.

6Duration needed to take into account the difference of emission time and travelled distance of associated
photons.

7Duration needed to take into account the telescope separation (photons travel 400 m in 80 ns in optical fiber)
and electronic lag time.
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• Single p.e. conversion. It is estimated with a single p.e. run, an observation run where
LEDs send pulsed light flashes to the camera pixels. The LEDs light intensity is adjusted
for the photocathode of each PMT to emit on average one p.e. per flash. This is used to
evaluate the conversion factor between ADC counts and p.e.

• Pointing correction. Its role is to take into account the structural deformation of the
telescopes’ mount and positionning errors. This correction is estimated with pointing runs,
observations runs where the telescope points at a star with known position. The image
reflected by the mirrors is compared to an image obtained with a CCD camera located at
the back of the camera.

• Optical efficiency. Optical efficiency includes the transmittance of Cherenkov photons by
the atmosphere (heavily dependent on meteorological conditions), the photon collection
rate (geometric factor), the mirrors reflectivity, and the PMTs overall efficiency. This
estimation is done with muonic events which do not trigger showers of their own but
produce Cherenkov light by moving through the atmosphere and are seen by the cameras
as a ring or an arc image. The images obtained through observation are compared to
expected images generated with an analytical model.

3.2.4 Analysis

There are two independent analysis chains in H.E.S.S. - ParisAnalysis and H.E.S.S. analysis
package (HAP) - which provide cross-checks for every published analysis, but also help identify
and correct bugs in the softwares. Distinct algorithms were developped for each analysis chain:
Model++ for ParisAnalysis [60], ImPACT for HAP [61], and the Hillas model [62] used by both
analysis chains.

3.2.4.1 Event reconstruction

The event reconstruction is performed following the Hillas model. It is first preceded by a
two-stage image cleaning used to remove a maximum of NSB signal: all the pixels with a charge
lower than 5 p.e. are set to zero while pixels with a charge exceeding 10 p.e.8 are directly stored.
Pixels having a charge between 5 and 10 p.e. are stored only when the closest neighbouring
pixels also possesses a charge exceeding 5 p.e. The images are then ready to be analysed.

• First, the incident direction of the primary particle is retrieved from the image orienta-
tion in the camera plane. The images are modeled with 2D ellispes parameterised following
the Hillas parameters illlustrated in Figure 3.4:

– length of the semi-major L and semi-minor W axes;

– center of gravity of the shower image d;

– total number of photons contained within the ellipse (total charge or amplitude of
the shower image);

– position of the ellipse with respect to the camera center;

– distance from the center of gravity to the expected source position.
8This threshold is sometimes set to 7 p.e. when the signal is too faint.
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Figure 3.4: Illustration of the Hillas parameters. Credit: [63].

In mono mode, the incident direction is given by the vector along the 2D image ellipse
major axis. The incident position is therefore degenerate. A 3D image of the events can
be recovered from the different viewpoints offered by each telescope in the stereo mode. It
provides a higher accuracy on the incident direction of the primary particle. Its incident
position can then be precisely pin-pointed from the intersection of the major axes of each
image.

• Then, the type of the primary particle is judged based on the air shower image shape
and morphology. As EAS produced by hadronic primary particles are 105 times more
frequent than that generated by gamma-rays, hadronic showers tend to interfere with
observations and it is therefore crucial to efficiently discriminate them. While gamma-
ray events generate rather elliptical and uniform shower images, the ones generated by
hadrons are more irregular with in particular the presence of multiple islands due to the
sub-cascades. The cosmic-ray background can be suppressed by applying a threshold
(or cut value) on the spread of the photon angular distribution (L and W axes). The
events with a spread wider than the threshold are classified as hadrons and are rejected.
Therefore, only well-defined ellipses are kept in the analysis.

• Finally, the energy of the primary particle is estimated from the image total intensity.
The flux of Cherenkov light is correlated to the number of charged particles in the EAS,
and thus to the primary particle energy for a given distance and zenith angle.

The Model++ and ImPACT algorithms are improvements of the Hillas model aiming at
providing a finer estimation of the primary particle properties. Model++ predicts the amount
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of light collected by each pixel by comparing shower images detected by the camera and ones
that are simulated with a semi-analytical model with a statistical fit. The use of the information
provided by each individual pixel (rather than treating them as an ensemble) allows to avoid
the image cleaning. It therefore yields a more precise fitting of the shower image along with a
precise estimation of the NSB contribution in each pixel. The reconstructed energy and incoming
direction are therefore more precise than with the Hillas model. The ImPACTmodel on the other
hand is fully analytical which allows to include fine effects such as Earth magnetic field or biases
in the electronics. The NSB is however less precisely estimated than in Model++. Moreover,
both algorithms are able to predict the events type (either gamma-ray, hadron or muon) from
either Goodness-of-fit method (Model++) or a boosted decision tree method (ImPACT).

3.2.4.2 Signal extraction

Due to the large number of hadron events, some are inevitably misidentified as gamma-rays
and pass the selection cuts. The data thus shows a uniform background of events with a potential
excess from the target photon source. In H.E.S.S., this background is estimated with ON and
OFF regions. The ON region is believed to contain the signal originating from the target source
along with a background contribution, while the OFF regions (control regions) contain only
background signal. OFF regions are selected close to the ON region in order for all regions to
have a comparable background contribution. The excess of signal is then given by

E =NON −αNOFF , (3.2)

with NON and NOFF the number of events from the ON and OFF regions, and α a scaling
factor corresponding to the ratio of acceptance (c.f. Section 7.1.4.1) between the regions.

The main and most effective procedure to define OFF regions is the reflected background
method [64]. In this method, ON and OFF regions are of the same size and are all defined
with the same offset angle with respect to the camera center around the source position (see
Figure 3.5). This strategy guarantees the ON and OFF regions to have the same acceptance.
The scale factor α then simply becomes the inverse of the number of OFF regions, i.e. it can
be determined without knowing the telescope acceptance. In order to limit systematic errors
and work with a symmetric coverage around the source, the direction of the offset alternates
between observation runs.

Two other notable strategies include the ring background model [64] which uses a ring of
OFF regions around the source, and the template technique [65] where a background model is
fitted over the field of view.

3.2.4.3 Spectral and temporal analysis

The source energy spectrum and light curve - i.e. the energy and temporal distributions
of photons - can finally be determined. The standard spectral analysis is performed with a
forward-folding technique [66]. The reconstruction of the energy spectrum requires an initial
hypothesis on the spectral shape with a given set of free parameters. It is generally taken as
a power law that can be broken or have an exponential cutoff. Then, the photon detection
predicted with this model is generated while taking into account the instruments response and
atmospheric conditions. This step provides expected counts of gamma-rays and background
events. The predicted detection is then compared with the observed signal in the ON and OFF
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Figure 3.5: Reflective background technique applied to an observation with two runs. Credit:
[64].

regions to provide the likelihood of this model to be the real one. The set of free parameters
that maximises the likelihood function is finally taken as the "true" model parameters.

The light curve can then be determined from the reconstructed energy spectrum. For each
time step (bin), the number of signal events nγ and background events nbkg are obtained from
the reconstructed spectrum, and normalised based on the number of events observed in the ON
and OFF regions (NON and NOFF ), using either a statistical treatment or by using the excess
number of events. Each point in the light curve is then produced by integrating the renormalised
spectrum over the associated time step.

3.3 CTA: the Cherenkov telescope array
The Cherenkov telescope array (CTA) observatory9 is a global effort involving about 150 in-

stitutes from 25 countries. It is divided in two arrays of IACTs, one in each hemisphere, meant
to come after the currently operating experiments H.E.S.S., MAGIC and VERITAS. The North
site is located in La Palma (current location of MAGIC telescopes) while the South site will be
in the Atacama desert in Chile. The choice of a double array was made to achieve an almost
complete coverage of the night sky.

CTA flux sensitivity is expected to be at least one order of magnitude higher than that of
currently operating experiments as can be seen in Figure 3.6. It is meant to enable the detection
of fainter fluxes, with extended energy range, larger detection areas, improved angular resolution
and wider field of view. This is achieved with the implementation of multiple sizes of telescopes
as presented in Figure 3.7:

• Large sized telescopes (LST): with a 23 m diameter reflecting dish (370 m2 detection
area) and 4.3 degrees FoV, they are most sensitive to low energy showers ranging from 20

9Detailled informations about CTA can be found in the dedicated website https://www.cta-observatory.org/
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Figure 3.6: Comparison of the expected flux sensitivity of CTA (50h) with current experiments.
Credit: CTA collaboration (https://www.cta-observatory.org/science/ctao-performance/).

Figure 3.7: Illustrated view of the CTA telescopes. From left to right: SST, SCT, MST and
LST. Credit: CTA collaboration.
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to 150 GeV. They are designed to achieve short repositioning times (33 seconds for 360
degrees) to catch fast transient phenomena such as GRBs.

• Medium sized telescopes (MST): with a 12 m diameter reflecting dish (88 m2 detection
area) and ∼ 7.6 degrees FoV, they are most sensitive to the CTA core energies ranging from
150 GeV to 5 TeV. One of the two camera prototypes for MSTs, FlashCam, is currently
installed on the H.E.S.S. large telescope for benchmark testing. The other prototype,
NectarCAM, has been run and tested on a prototype of MST. An alternative design called
SCT (for Schwarzschild-Couder Telescope) was developed in parallel by the U.S. branch
and will most likely join the MST network.

• Small sized telescopes (SST): with a 4 m diameter reflecting dish (8 m2 detection
area) and 10.5 degrees FoV, they are most sensitive to the highest energies ranging from
5 to 300 TeV. A large number of these telecsopes will be deployed to sample a large area
(4.5 km2).

As many galactic sources are expected to be detectable in the energy range covered by SSTs, the
small telescopes will be placed in the southern site only. While the southern site aims to host 4
LSTs, 25 MSTs and 70 SSTs for a focus on galactic and extragalactic sources, the northern site
should only host 4 LSTs and 15 MSTs.

A core scientific programme has been defined by the CTA collaboration, expected to employ
40% of the available observing time over the first 10 years of operation [67]. The key science
projects include dark matter searches, galactic and extragalactic surveys, monitoring of tran-
sients, PeVatrons and AGNs, the study of star-forming systems, etc. The remaining is to be
employed for a variety of independent projects selected from observation proposals. All the data
collected by the observatory will subsequently be made available to the public. It is now in
construction phase. The first and only operating CTA prototype telescope up to date, LST1
(North site), was inaugurated in October 2018 and is currently in commissioning phase. The
remaining telescopes are expected to be completed and start operations around 2024. CTA will
then inevitably become of major importance in the future decades.
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Chapter 4

Intrinsic time delays in blazars
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In this chapter we present a blazar model based on a leptonic synchrotron self-Compton sce-
nario and derive all the steps needed to extract energy-dependent time delays. We then provide
a full characterisation and interpretation of the time delays and discuss their observability with
instruments operating at present or in the near future. The content introduced in this chapter
has been presented at the TeV Particle Astrophysics conference (TeVPA, 2019).

4.1 Time-dependent modeling of blazar

Several time dependent AGN emission models have been proposed in the litterature uncov-
ering the existence of intrinsic time delays generated from emission mechanisms [68, 69, 70, 71,
72, 73]. A full study on intrinsic delays in blazars (restricted to BL Lacs) has been proposed
by Perennes et al. [74] further interpreting their origin and highlighting the significant impact
model parameters can have on delays’ amplitude and behaviour. We reproduced the model
used for the aforementionned study and brought it a step further by presenting intrinsic delays
evolution under a new approach, as well as extend the model to a richer description. Further im-
provements have been incorporated to better compare intrinsic delays from LIV induced delays,
as will be discussed in Chapter 5.

4.1.1 Generating a flare

As discussed in Chapter 2, the gamma-ray spectrum emitted by blazars takes its origin
from knots i.e. compact zones of condensed ultra-relativistic matter (leptonic or lepto-hadronic
plasma) with a stronger magnetic field than that of the ambient jet. Due to the relativistic
beaming effect (see Section 2.1.1), blazars emission models can be limited to the description of
these knots.

To study intrinsic delays, ones that are inevitable and necessarily arising from emission
mechanisms, we first build a minimalist model based on the most fundamental processes needed
to generate a flare: acceleration and radiative SSC cooling. This will be used as a foundation
for the interpretation of intrinsic delays behaviour arising in BL Lacs, before adding adiabatic
expansion/compression and external photon fields to extend the description to FSRQs. For a
coherent approach to the minimalist restriction, we choose to work with leptonic models that
are extensively used in the litterature to describe flares evolution and are fairly constrained,
thus limiting the number of free parameters to juggle with. Although they start to show their
limitation, they are still considered as reference models by the astrophysics community providing
reliable descriptions of blazar flares.

4.1.1.1 Homogeneous one-zone SSC model

Working towards simplicity of the model, we choose to describe the emitting zone with only
one spherical bulk of dense leptonic plasma, the surrounding jet medium being neglected. A
generic transfer equation - the Ginzburg-Syrovatskii equation [75] originally intended to describe
the evolution of the number density N(~r, t,γ) of cosmic rays - can be used to describe our bulk’s
plasma evolution. For a type of particle i created at time t0 - in this case electrons or positrons
- the Ginzburg-Syrovatskii equation for Ni(~r, t,γ) with dependencies on position ~r, time t and
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Lorentz factor γ = (1−β2)−1/2 reads

∂Ni

∂t
−∇(Di∇Ni) + ∂

∂γ
(biNi)−

1
2
∂2

∂γ2 (diNi) =Qi−piNi+
∑
k

pkiNk. (4.1)

On the left hand side, Di(~r, t,γ) is the diffusion coefficient, bi(t,γ) = dγ/dt describes the system-
atic Lorentz boost change ∆γ, and di(t,γ) = d(∆γ)2/dt the fluctuations in this Lorentz boost
change. The right hand side deals with injection and loss of particles: Qi(~r, t,γ) is the source
term describing injection of particles, pi = nvσi is the probability particles i will suffer a de-
structive collision and pki = nvσik is the probability of appearance of particle i due to collisions
between particles k. n is the particle density, v = βc the particle velocity and σ the cross sec-
tion of the interaction. The plasma is considered as inert such that its volume stays constant
throughout time - i.e. there is neither expansion nor compression of the bulk. To simplify this
model, we make the following assumptions:

• the plasma is homogeneous and emitting isotropically, freeing ourselves from the spatial
component ~r and leading to ∇Ni = 0;

• the second order Lorentz boost changes (fluctuations) are neglected leading to di(t,γ) = 0;

• all injection, escape, creation and loss of particles are neglected freeing ourselves from the
right hand side of the equation.

The lepton number density in a minimal scenario is finally described by the following equation:

∂N(t,γ)
∂t

+ ∂

∂γ
{bi(t,γ)N(t,γ)}= 0, (4.2)

where N(t,γ) is given in cm−3.

Following Katarzynski et al. treatment [71, 76] an analytical solution can be found at the
expense of further simplifications.

Acceleration

Particle acceleration can be explained with shock and stochastic processes or magnetic recon-
nection (c.f. Section 2.2.1). These mechanisms can be approximated with a simple parametri-
sation which is no longer dependent on the particles Lorentz boost γ:

A(t) =A0

(
t0
t

)ma
, (4.3)

with A0 the initial acceleration amplitude given in s−1 and ma the evolution index. These two
parameters are taken as independent of other parameters that could induce an acceleration (e.g.
independent of the magnetic field). t0 is the characteristic evolution time expressed in seconds,
taken as the time needed for a sound wave to propagate through a spherical bulk of relativistic
plasma of radius r. In our specific case, r is the initial and constant radius we denote R0 and

t0 = R0

c/
√

3
. (4.4)
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The variation of Lorentz boost due to the acceleration can then be expressed as a function of
this parameterisation and reads

bacc(t,γ) = γA(t) = γCacc(t). (4.5)

Cooling

As they are accelerated, particles immediately start to cool down through synchrotron and
synchrotron self-Compton (SSC) processes as a result of their interaction with the bulk’s mag-
netic field B(t) (see Section 2.2.2). Following the above acceleration treatment, we parameterise
the magnetic field which then reads

B(t) =B0

(
t0
t

)mb
, (4.6)

with B0 the initial magnetic field strength given in mG, and mb the evolution index. From
Equations 2.14 and 2.32, both processes radiate with a power Prad ∝ γ2. Consequently, the
variation of Lorentz boost γ induced by the two cooling processes - synchrotron and inverse
Compton - can be expressed in the Thomson regime as follows:

bsyn(t,γ) = γ2 4σT
3mec

UB(t), (4.7)

bIC(t,γ) = γ2 4σT
3mec

Usyn(t), (4.8)

where σT is the Thomson cross-section and me is the electron rest mass. UB(t) =B2(t)/8π and
Usyn are the magnetic and synchrotron fields energy density. The energy density is related to
the radiated intensity as follows

U(t) = 4π
c

∫ ∞
0

dνI(ν). (4.9)

From Equations 4.9 and 2.12, it comes the energy density associated to the synchrotron photon
field is given by

Usyn(t) = 4π
c

∫ ∞
0

dνIsyn(ν)≡
∫ ∞

0
dγ bsyn(t,γ)N(t,γ), (4.10)

with N(t,γ) the bulk’s lepton density. We then introduce the function η(t) defined as

Usyn(t) = UB(t)
η(t) , (4.11)

from which we can rewrite the cooling parameter as follows:

brad(t,γ) = γ2 4σT
3mec

UB(t)
(

1 + 1
η(t)

)
= γ2Crad(t), (4.12)

where Crad(t)∝B2(t). The leptons transfer equation finally becomes

∂N(t,γ)
∂t

= ∂

∂γ

{[
Crad(t)γ2−Cacc(t)γ

]
N(t,γ)

}
. (4.13)
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However, the η(t) function is too complex to find an analytical solution to Equations 4.13. Ad-
ditional simplifications are therefore necessary. Although it is quite distant from reality, the
easiest simplification we can implement is to replace the η(t) function by a constant scalar η,
thus introducing a systematic error into the solution that is time-dependent. This error can be
kept to a minimum when the η term is kept large. In other words, the solution and subsequent
spectra we obtain are trustworthy and close to the real solution when the scalar term η is rela-
tively large. We consider the error on the solution to be acceptable for η ≥ 1.

To fully work out the analytical solution, an initial condition must be provided. We choose
to impose a power law with a sharp cut-off at high Lorentz factor that reads

N(t0,γ) =N0γ
−n
[
1−

(
γ

γcut(t0)

)n+2
]
, (4.14)

where N0 is the initial lepton number density, γcut(t0) is the imposed Lorentz boost cut-off
and n is the power law index. We impose a minimum Lorentz factor γmin for leptons to start
with, and allow the acceleration to boost leptons up to an upper bound γsup. Using the above
parameterisations, simplifications and initial conditions, we can derive an analytical solution to
the transfer equation given in Equation A.1. For interested readers, the full derivation of this
solution can be found in Annex A).

4.1.1.2 Extended scenario

External Inverse Compton (EIC) process

The above model which is only fit to properly describe BL Lac emission can be extended to
FSRQs by introducing another contribution to the cooling term brad(t,γ). Following the example
of an external photon field generated by the accretion disc as presented in Section 2.2.2.3, we
compute the energy density associated to external inverse Compton processes. From Equations
4.9 and 2.35, it comes the energy density associated to the external photon field is given by

Uext = Γ2
b

τLAD
4πd2c

. (4.15)

The variation of Lorentz boost γ due to the cooling processes is therefore modified as follows

brad(t,γ) = γ2 4σT c
3mec

[
UB(t)

(
1 + 1

η

)
+Uext

]
= γ2Crad(t). (4.16)

Although the additional term Uext is not time-dependent, it results in a non trivial modification
of the analytical solution. Indeed, the solution is obtained after multiple integrations. As the
SSC and EIC contributions yield expressions with different dependencies, the solutions must be
computed separately and take distinct forms (refer to Annex A for more details).

Adiabatic processes

It is possible to relax the constraint on the bulk’s radius R0 previously considered as constant
and allow for slow expansion or compression. The radius is no longer a scalar but a time-
dependent function that reads

R(t) =R0

(
t0
t

)−mr
, (4.17)
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with R0 ≡ R(t = 0) the initial bulk’s radius given in cm, and mr the evolution index encoding
expansion for positive values and compression for negative ones.

Assuming a uniform adiabatic evolution and introducing ~v(t) = v(t) ~R(t)
R(t) , the adiabatic coef-

ficient and associated Lorentz boost evolution read

Cadia(t) = 1
3
~∇~v =−mr

t
, (4.18)

badia(t) = γCadia(t). (4.19)

Additionaly, the lepton densityN(t,γ) which is defined with respect to the bulk’s volume must be
modified accordingly. The bulk’s expansion/compression can be accounted for by introducting
an evolution term to the lepton number density:

N∗(t,γ) =N(t,γ)
(
t0
t

)3mr
, (4.20)

such that N∗(t,γ) =N(t,γ) for mr = 0, i.e. when the bulk’s radius stays constant through time.
The transfer equation finally becomes

∂N∗(t,γ)
∂t

= ∂

∂γ

{[
Crad(t)γ2− (Cacc(t)−Cadia(t))γ

]
N∗(t,γ)

}
. (4.21)

The extra cooling term brought by the external field contribution adds a simple and independent
term to the solution. The sign attributed to the adiabatic coefficient determines whether it
contributes to expanding or compressing the bulk’s volume. If negative, the bulk is expanding
and a loss of energy is embedded, working against the acceleration; if positive, the bulk is
compressing and contributes to energy gains together with the acceleration processes.

4.1.1.3 Domains of parameters

In addition to the conditional validity where we impose η > 1, the use of parameterisations
leads to forbidden areas in the parameter space for the analytical solution. All the validity
conditions discussed below are summarised in Table 4.1.

Minimalist scenario

The simplest form of the transfer equation involves only two parameterised functions, the
acceleration and the magnetic field. From the solution S (c.f. Equation A.1 of Annex A), we
must exclude the cases with evolution rates ma < 0 and mb < 0 that would otherwise lead to
divergent integrals. Besides, as A0 < 0 would lead to acceleration behaving as a random cooling
process, we impose A0 > 0. Furthermore, since we consider there is no particle injection, we
must have ma > 0. From the way we define the magnetic field, we necessarily have B0 > 0. As
it is bound to decay with time as the bulk moves away from the AGN core where the magnetic
field is at its strongest, we must have mb > 0.

Given the solution involves the integral of a term inversely proportional to ma, we need to
differentiate between the cases where ma = 1 and ma 6= 1.

When ma = 1 - the acceleration evolves linearly with time - the solution takes its simplest
form and the only requirement is to avoid divergences leading to mb−A0 6= 1. When ma 6= 1, an
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4.1 Time-dependent modeling of blazar

incomplete gamma function (c.f. Equation A.16) has to be involved to achieve a solution and
imposes ma > 1 and mb > 1.

Adiabatic processes

When introducing adiabatic processes, we make use of an extra parameterisation - the ra-
dius function R(t) - which takes a slightly different form from the others. The evolution rate
mr is allowed to take negative values to account for the bulk’s compression, but also be set to
zero which leads back to the most basic case governed by Equation 4.13. Let us add that this
description is valid for limited durations and limited radius variations only. Indeed, an indefinite
or excessive expansion (resp. compression) would lead to the bulk "evaporating" (resp. tending
towards a singularity) in which case the model would no longer hold.

While the derivation is not straight forward, the extra term in mr can be factorised with the
existing solution. A simple treatment is allowed where one can substitute mb with mb+mr.

Again, we need to differentiate between the cases ma = 1 and ma 6= 1. From this simple
substitution, we can easily retrieve the conditions from the basic equation case: ma = 1 requires
mb+mr−A0 6= 1 while ma 6= 1 requires ma > 1 and mb+mr > 1.

External inverse Compton processes (FSRQ treatment)

Even if the external photon field does not introduce another parameterisation, it does change
the solution and imposes new constraints on the parameter space.

Once again, the two cases where ma = 1 and ma 6= 1 need to be considered. For ma = 1,
the constraints are doubled: we need both mb−A0 6= 1 and mb+mr−A0 6= 1 meaning we also
must have mr 6= mb−A0. For ma 6= 1, a second incomplete gamma function is needed and
combining the forbidden parameter space we must now have ma > 1, mb+mr > 1 and mr > 1
which means we necessarily have adiabatic expansion when introducing external photon fields.
This also means we cannot have adiabatic compression together with EIC treatment which is a
reasonnable condition. Be that as it may, the model only requires a small expansion rate to fall
back to a valid description.

Conditions pure SSC SSC + adiabatic SSC + adiabatic + EIC
general η > 1 η > 1 η > 1

A> 0 A> 0 A> 0
B > 0 B > 0 B > 0
mb > 0 mb > 0 mb > 0

ma = 1 mb−A0 6= 1 mb+mr−A0 6= 1 mb−A0 6= 1
mb+mr−A0 6= 1
mr 6=mb−A0

ma 6= 1 ma > 1 ma > 1 ma > 1
mb > 1 mb+mr > 1 mb+mr > 1

mr > 1

Table 4.1: List of the necessary conditions on parameters for the model to be valid.
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4.1.2 Generating astrophysical observables: the AGNES simulator

The minimalist model described above was first implemented to a simulation code by Katarzynski
et al. [71, 76]. It was later on adapted to time delay studies by Perennes et al. [74] with the
introduction of temporal evolution and intrinsic time delay treatment. For this work, an op-
timisation was performed while being entirely re-written into a more stable and user-friendly
software called AGN Evolution Simulator (AGNES) that is planned to be made open to public.
This new version now incorporates the extended model with adiabatic and EIC processes, but
also a LIV treatment which will be introduced and fully exploited in Chapter 5.

Reference set of model parameters

We introduce here a reference set of model parameters listed in Table 4.2 to be used in the
simulations where we distinguish SSC emission, evolution and EIC parameters. The SSC set
has been formed based on the archetypal Mkn 501 TeV-emitting BL Lac, whereas the evolution
set has been chosen such that the generated flare would last a couple hours. In contrast, the
EIC set is chosen to translate conditions with an strong EIC component of various intensity. As
little to none time delays have been detected so far, the parameters have been chosen to yield
suppressed time delays which best represent current observations (more in Section 4.2.2.2).

SSC parameters Value Unit
Redshift z 0.03 -
Doppler boost δb 40 -
Magnetic field strength B0 87 mG
Bulk radius R0 5×1015 cm
Lepton density N0 300 cm−3

Lorentz boost min γmin 2 -
Lorentz boost cut-off γcut 4×104 -
Power law index n 2.4 -

Evolution parameters
Acceleration strength A0 4.5×10−5 s−1

Acceleration evolution rate ma 5.6 -
Magnetic field evolution rate mb 1 -
Bulk radius evolution rate mr 0 -

EIC parameters
Blackbody temperature T 1.5×105 K
Re-emission factor ρ 1 -
Accretion disc luminosity LAD 1×1041 erg.s−1

Bulk-disc distance d 5×1017 cm

Table 4.2: List of reference input parameters.

4.1.2.1 Lepton spectrum

From the analytical solution, we can build lepton spectra and track the lepton number
density evolution over time. Figure 4.1a shows the distribution for γ2Nt(γ) in logarithmic scale
for better graphical readability. As time increases, the sharp Lorentz boost cut γcut(t) is pushed
towards higher values while the overall flux increases until the most energetic leptons reach γmax
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4.1 Time-dependent modeling of blazar

at time tmax. Past this point, these leptons start to lose their energy and slowly decelerate.
By fitting a power law with a sharp cut-off over these spectra, we can retrieve the evolution of
γcut(t) translating into the maximal Lorentz boost reached by leptons as shown in Figure 4.1b
from which we can extract the quantity tmax.
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(a) Evolution of leptons spectra with time generated
with the reference set paramters listed in Table 4.2
(reads from light red to black curves).
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(b) Evolution of the Lorentz boost cut γcut(t) with
time. The vertical line denotes the time tmax at
which leptons reach their global maximum Lorentz
factor (here γmax ' 5.58 and γt=20000 ' 5.51).

Figure 4.1: Lepton spectra and tracking of gamma maximum value.

4.1.2.2 Energy spectrum

The next step is to build the energy spectrum that characterises the source. To do that,
we need the radiation transfer occurring in the bulk, involving both synchrotron and inverse
Compton processes derived in Section 2.2.2. The total radiated flux can be expressed as the
sum of synchrotron and inverse Compton fluxes with an EBL absorption correction following
Kneiske et al. model [77, 78]:

F (νobs, t) = Fsyn(νobs, t) +FIC(νobs, t)exp[−τebl(νobs,z)]. (4.22)

From this quantity, we can build spectral energy distributions as seen in the observer frame at
specific time t. This can be seen in Figure 4.2 with the evolution of νobsFt(νobs) as a function
of energy E = hνobs in logarithmic scale for a better graphical readability. Computing SEDs for
each time step allows for a visible evolution over time. We observe here a similar behaviour as
was found for lepton spectra. It begins with a fast acceleration phase translating into an increase
in flux and energy until a maximum is reached, and is followed by a strong cooling phase where
flux and energy slowly decrease.

4.1.2.3 Light curves and intrinsic time delays

While SEDs have been derived from the projection of the radiated flux Ft(νobs) on energy,
light curves use the couterpart projection on time Fνobs(t). Going from one form to the other
can be done by integrating over energy or time. More specifically, the light curves flux over a
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Figure 4.2: Evolution of observed spectral energy distributions with time, generated with the
reference set of parameters listed in Table 4.2 (reads from light red to black curves).

given energy band is obtained with the following transformation:

FLC,νobs(t) =
∫ νmax(t)

νmin
dνobs

F (νobs, t)
νobs

. (4.23)

Light curves

The evolution of light curves over energy can be seen in Figure 4.3, where the curves have
been normalised. As it was the case for lepton spectra and SEDs, temporal distributions are
characterised by a strong acceleration phase with an increase in flux, before reaching a maximum
where the cooling phase takes over leading to the flux decaying. Furthermore, as dictated by the
lepton spectra evolving according to a decreasing broken power law, light curve flux decreases as
energy increases. Above a certain energy threshold, the flux drops drastically (typically falling
from 10−15 to 10−50 erg.cm−2.s−1) and becomes too small to be significant.The light curves on
these energy bands are therefore excluded from the analysis and interpretations. Besides, from
Figure 3.6, current generation of IACTs have a flux sensitivity over a 50h run reaching down
to ∼ 10−12 erg.cm−2.s−1. The future observatory CTA will extend this threshold to ∼ 10−13

erg.cm−2.s−1. This cut is therefore approximately in accordance with contemporary instrument
performances.

Delays estimation

Each light curve can be characterised by a typical arrival time of photons, chosen to be the
time at which the light curve flux is peaking. The evolution over energy of light curves thus
gives access to the evolution over energy of the arrival times. To estimate temporal delays as
per energy band centered on E = hνobs, we need a reference arrival time we will write as tref .
The time delays are then given by

∆tE = tE− tref . (4.24)

• ∆tE < 0 when the light curve centered on E starts to decay before the reference light curve;
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Figure 4.3: Normalised light curves generated with the reference set of parameters listed in
Table 4.2 (reads from light red to black curves).

• ∆tE > 0 when the light curve centered on E starts to decay after the reference light curve.

In the specific case shown in Figure 4.4 where tref = tE=1MeV and the delays are flat, the photons
tend to arrive at the same time as the chosen reference arrival time. Note that since all light
curves start at t = 0, peaks necessarily occur at tE > 0 and the positiveness or negativeness of
the delays are solely dependent on the chosen reference time. We are primarily interested in the
time delay evolution with respect to energy.

Since we compute all observables over energy and time bands, light curves in particular are
binned such that the precision on the typical arrival time is defined by the chosen time step.
In theory we could greatly increase the precision by computing light curves over a very fine
time step. However, the smaller the time step in a given time window, the larger the number
of bins in that window and the longer the computational time. To obtain finer precision as
well as reasonable computational time, we introduced a new feature to the existing code which
performs a fitting of the light curves peak. Since light curve distributions can get complex forms
and the region of interest is only a small fraction of the curves, we chose to only focus on a very
small time window around the peak which can be fitted with a parabola function. A comparison
between these two extraction methods shows the fitting method provides better precision to
delay estimation than the binning method for equal or smaller time steps as can be seen in
Figure 4.4. The vertical and horizontal error bars correspond to respectively the width of time
and energy bins. Since the fitting method brings infinitesimal precision to the time estimation,
we deemed reasonable to remove the vertical error bars.

4.2 Properties of intrinsic time delays

Intrinsic delays navigate between two types of regimes in the SSC scenario. The notion of
positiveness or negativeness of ∆tE is no longer relevent when considering sets of delays as it
solely depends on the chosen reference time. Instead, we consider the trends where delays are
either increasing or decreasing.
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Figure 4.4: Comparison between two extraction methods of time delays generated with the
reference set of parameters listed in Table 4.2. Delays obtained by extracting the mean abscisse
value (time) from the bin with maximum value (flux) for both 100 s (a) and 20 s (b) time steps
in the light curves; and by fitting a parabola over a small time window around the light curve
peak (c) for 100 s time steps in the light curves.

4.2.1 Regimes in the SSC scenario

These two trends arise from an inbalance between the acceleration and the cooling processes.
Leptons start to emit photons as soon as they get accelerated such that both processes take ef-
fect simultaneously but with different strength or "efficiency", leading to one process dominating
the other. To explain the mechanisms at play, we make use of the time tmax at which the most
energetic leptons stop being accelerated (their energy losses start to dominate over their energy
gains) and compare it to the times tE at which light curves reach their maximum and start to
decay.

Increasing trend - slow acceleration regime

Increasing delays are associated with leptons reaching their γmax after light curves start to
decay: tmax > tE . The acceleration appears to be relatively slow respective to the decay processes.
Leptons take much longer to be accelerated and high energy photons are emitted later than low
energy ones. Light curves decay is then mostly induced by the magnetic field decay. Low energy
light curves peak while leptons are still accelerating towards the highest energies, hence before
high energy ones.

Decreasing trend - fast acceleration regime

Decreasing delays are associated with leptons reaching their γmax before light curves start to
decay: tmax < tE . The acceleration appears to be relatively fast respective to the decay processes
and the most energetic leptons soon stop accelerating. The decaying of the flare is then mostly
due to the radiative cooling. As the radiated power given in Equations 2.14 and 2.32 show a
proportionality to γ2, high energy leptons tend to lose their energy faster than low energy ones,
and cooling processes sooner take over acceleration ones. As a consequence, light curves at high
energy peak before low energy ones resulting in decreasing delays.
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4.2.2 Impact of model parameters on intrinsic delays

A third trend can arise from the combination and overall balance between the two others.
Delays do not evolve and seem to cancel out leading to a flat curve showing no variation. The
set of reference parameters has been chosen to reproduce this special case. We justify this choice
with two arguments: no significant time delay has been detected yet, with the exception of one
case (c.f. Section 4.2.3 or 6.2.1) such that flat trends are closest to observations. It brings a new
approach to the parameter study that was previously performed allowing us to extract further
information on intrinsic time delays. This state is found to be fairly unstable such that slight
variations in parameters can easily send delays along one trend or the other.

4.2.2.1 SSC scenario

We present here the new approach to this study where only parameters that have a significant
impact on regimes are discussed. All the evolution plots have been regenerated and shown in
Figure 4.5 (visible at the chapter). Parameters are being varied about their chosen reference
value (see Table 4.2) represented by the neutral black distribution within the validity domain
of parameters. Blue distributions correspond to lower values of the studied parameter, while red
distributions correspond to larger values.

Low energy domain - E . 100 MeV

The evolution in the lower energy domain is almost entirely determined by the minimum
Lorentz factor γmin as can be seen in Figure 4.5h. This energy domain was never properly
explored in previous studies as it is of little interest for LIV studies.

At low values (here γmin ∼ 1) there is no visible effect on the delays and the trend is flat. At
intermediate values (here 2 ≤ γmin ≤ 200) only the ∆tE.100MeV are affected while ∆tE>100MeV
are still plateauing. This is easily explained in terms of acceleration time scales. Indeed, a large
γmin means leptons start with intermediate energies (no acceleration needed up to this energy),
hence greatly reducing or canceling the acceleration time scales at low energies. We then place
ourselves in the fast acceleration regime where delays are decreasing. As γmin gets larger, higher
energy leptons start to become affected, and the fast acceleration regime extends towards higher
energy domains of intrinsic delays.

High energy domain - E > 100 MeV

Contrary to the γmin parameter, the vast majority of parameters only affect high energy
domains of intrisic delays.

• The acceleration is the only contributor to energy gain for leptons, hence one of the
parameters with the most important impact on regime determination.

– Acceleration strength A0. At low values, the acceleration is weak and leptons
take longer to reach high energies, hence evolving in the slow acceleration regime
where delays are increasing. For large values, leptons quickly reach high energies,
thus evolving in the fast acceleration regime where delays are decreasing (see Figure
4.5a).
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(b) Acceleration evolution rate
ma.
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(c) Initial acceleration B0.
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(d) Acceleration evolution rate
mb.
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(e) Power law index n.
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(f) Lorentz factor cut-off γcut.
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(g) Doppler factor δb.
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Figure 4.5: Time delays evolution with respect to various model parameters.
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– Acceleration evolution rate ma. In order to properly intiate the flare at a given
time, this parameter has been defined such that the acceleration can only decay with
time. At low values, the acceleration decays slowly, thus staying efficient over a long
time scale. Leptons reach the highest energies before the acceleration starts to become
relatively inefficient, hence evolving in the fast acceleration regime where delays are
decreasing. At large values, the acceleration decays quickly and stays efficient over a
short time scale. Leptons need more time to reach the highest energies, hence evolving
in the slow acceleration regime where delays are increasing (see Figure 4.5b).

• The magnetic field being the prime contributor to radiative cooling, it is also one of the
parameters with the most important impact on regime determination. A parallel can be
done between A0 and B0 as well as between ma and mb with inverse contributions.

– Magnetic field strength B0. At low values, the magnetic field is weak and radiative
cooling is not efficient. The light curves decay is then induced by the magnetic
field decay, thus placing ourselves in the slow acceleration regime where delays are
increasing. At large values, the magnetic field is strong and the light curve decay is
induced by radiative cooling thus switching to the fast acceleration regime resulting
in decreasing delays (see Figure 4.5c).

– Magnetic field evolution rate mb. It has also been defined such that the magnetic
field decays with time. Remembering we need mb ≥ 1 and the reference value is set
to 1, we can only test larger values. As mb increases, the magnetic field decays faster
and radiative cooling effects quickly lose in efficiency. The light curves decay is then
induced by the magnetic field decay, thus placing ourselves in the slow acceleration
regime where delays are increasing (see Figure 4.5d).

• Lepton spectrum parameters have no impact on energy gains or losses over time and
do not change the balance between lepton acceleration and cooling effects. However they
govern the initial lepton distribution which can either establish a stepping stone or drag
down the acceleration process.

– Power law index n. It imposes the initial ratio between low and high energy leptons
such that the smaller n gets, the larger the population of leptons at high energy at t0.
However it has little to no effect on γmax and tmax, but it does change the duration
of the flare. At small n, the lepton population is on average more energetic leading
to shorter flares and time scales placing ourselves in the slow acceleration regime
where delays are increasing. At large values, the lepton population is on average
less energetic leading to longer flares and time scales placing ourselves in the fast
acceleration regime where delays are decreasing (see Figure 4.5e).

– Energy cut-off γcut. It defines the maximum energy leptons can reach at t0. At
small values, the gap between γcut and γmax is large. Leptons need to be accelerated
over a longer time scale, which is equivalent to a comparatively slow acceleration
regime where delays are increasing. At large values, the gap between γcut and γmax is
small and leptons need to be accelerated over a shorter time scale. This is equivalent
to a comparatively fast acceleration regime where delays are decreasing (see Figure
4.5f).
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Intrinsic time delays in blazars

• Finally the Transformation parameters have no impact on the temporal evolution in
the bulk’s frame. However, the emission seen from and by the bulk is different from the
one seen by the observer.

– Doppler boosting δb. It applies a Lorentz boost leading to time contraction in the
observer’s frame, but also a variation in energy and flux. As a consequence of time
contraction, time delays amplitude decreases as the Doppler factor increases while
having no effect on the regime imposed by the rest of the parameter set. In the case
of our set of parameters describing the balance between acceleration and cooling with
no visible trend, it has no effect whatsoever (see Figure 4.5g).

4.2.2.2 Extended scenario

A similar study is performed here taking into account the parameter validity domains intro-
duced in Section 4.1.1.3.

Adiabatic processes

Adiabatic processes can either contribute to acceleration or cooling processes depending on
the variation the bulk’s radius will undergo, as can be seen in Figure 4.5i. When the bulk’s
volume decreases with time, its plasma gets more condensed and is heated up. This rise in
energy translates into a gain in kinetic energy, and leptons are naturally accelerated placing
delays in the fast acceleration regime with a decreasing trend. On the contrary, when the bulk
expands with time, its plasma is diluted and leptons will diffuse their energy. This leads to
additional cooling effect placing delays in the slow acceleration regime with an increasing trend.

External inverse Compton processes

Due to the validity conditions that are specific to our description (c.f. Section 4.1.1.3), we
cannot have an external field without adiabatic expansion, and more precisely we need mr > 1,
we choose to keep the reference set while only modifying the radius evolution rate such that
mr = 1.001 now placing intrinsic delays in the slow acceleration regime. The black curve now
represents this new reference set where the external photon field is absent (see Figure 4.5j).

At small distances, the external photon field is condensed which has for effect to increase
the frequency of inverse Compton interactions and boost the radiating power, placing delays
in the fast acceleration regime with a decreasing trend. As the distance increases, the external
photon field gets diluted such that the inverse Compton interaction frequency diminishes until
they can no longer significantly contribute and only SSC processes are accountable for delays,
hence going back to the reference case represented by the black curve.

At intermediate distances, a strange behaviour appears with delays increasing at E < 1 GeV,
decreasing betweeen E = 1 GeV and E = 1 TeV, and increasing again at E > 1 TeV. We can
use two arguments to explain this peculiar behaviour. The external inverse Compton processes
are not dependent on synchrotron processes, as opposed to SSC processes which cannot exist
without a synchrotron field. Furthermore, the external photon field gets diluted as we go further
from the photon source - the accretion disc in this case.
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4.2 Properties of intrinsic time delays

In the SSC scenario, the synchrotron photon field takes some time to build up resulting
in the acceleration dominating over cooling processes at early times. As a consequence, we
systematically considered the acceleration to be comparatively fast respective to SSC cooling
processes at low energies (E < 100 MeV). However, the external photon field being static, the
frequency of inverse Compton interactions is constant over time and EIC processes compete
with the acceleration from the very beginning. The EIC then changes this approach and the
acceleration time scale is now comparatively slow compared to cooling ones resulting in increasing
delays.

At intermediate energies for such distances, the external photon field is still dense enough
to contribute to the cooling processes and boosts cooling effects leading to decreasing delays.

For the highest energies (E > 1 TeV), the external photons are too diluted to significantly
contribute to the high energy light curves. Therefore, only SSC processes are accountable for
the delay behaviour, thus switching once again towards an increasing trend.

4.2.3 Observability of non-zero intrinsic delays

From the above study, intrinsic delays appear to rise quite effortlessly from the variation
of sources’ physical quantities and properties. However, only one occurrence of significant time
delay (4±1 min over ∆E ∼ 1 TeV) has been detected so far [79]. This contradiction is usually
explained by a lack of precision of the measurements: the uncertainty on measurements are too
high and delays are systematically compatible with zero value. A typical uncertainty on mea-
sured time delays (equivalent to a 1σ confidence level) for Mkn 501 is ∼ 200 s/TeV (see Chapter
7 for a full derivation), the ∼ 240 s/TeV measured delay then being too small to be significant.

Time delays arising in AGN emission can only be precisely measured from a flaring episode,
as opposed to their quiescent state where no point of reference can be found. Going from one
state to the other necessarily involves a variation of physical parameter. Starting from a state
where delays are suppressed (reference parameters set), we have shown that intrinsic delays’
magnitude increases as parameters move away from their reference values. A natural question
arises from this statement: what would be the amount of variation in parameters needed to
reach significant detected delays?

As the reference case was built based on the source Mkn 501, a 1σ confidence level can be
reached when delays magnitude go beyond ∆t∼ 200 s/TeV. Although this level of significance is
not enough to have a proper detection of time delays with current detectors, this may be possible
with future instruments. Table 4.3 summarises the results obtained for this study, showing an
approached value of each individual parameter needed to generate intrinsic delays of ∆t ∼ 200
s/TeV at high energy. The time difference is taken between arrival times of photons at E = 1
TeV and E = 2 TeV for simplicity. We exclude three parameters from this study: γmin which
does not impact high energy delays; δb which does not generate intrinsic time delays but only
amplifies them; and the EIC with the parameter d which does not have a flat reference curve but
also shows a complex behaviour at TeV energies preventing from defining a clear detectability
threshold.

A number of parameters such as the magnetic field or the spectral index are well constrained
by theory and observations. In addition, extra constraints have been imposed on the reference
set of parameters to generate little to none intrinsic delays. In this specific case, reference param-
eters need to be multiplied or divided by a factor of approximately 1.5 for delays to reach ±200
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s/TeV, hence a variation of 50% in either direction. Other sources may need much larger varia-
tions in the parameters to achieve detectability. The need for such a variation can explain why
all flares do not provide detectable intrinsic time delays as it may induce quite a dramatic change.

A 50% increase in one or several parameters is still realistic and compatible with observa-
tions. For instance, a modeling of the 2006 intense flaring state of the BL Lac PKS 2155-304
suggested a variation by a factor 8 in the magnetic field strength B0, 1.7 for the Doppler factor δ
and 6 for the particle density N0 [80]. The above study only considered the impact of individual
parameters. However, a flaring state should induce variations in many parameters that could
lead subsequent intrinsic time delays to be amplified or even cancelled out. This more realistic
scenario could also explain the lack of time delay detection in actual observations. A natural
extent of this study would then focus on the effect brought on intrinsic delays by combined
parameters.

SSC parameters ∆tref ∆t& +200 s/TeV ∆t.−200 s/TeV Unit
scale value scale value

A0 4.5×10−5 0.78 < 3.5×10−5 1.67 > 7.5×10−5 s−1

ma 5.6 1.43 > 8 0.71 < 4 -
B0 87 0.46 < 40 1.38 > 120 mG
mb 1 1.5 > 1.5.0 - - -
γcut 4×104 0.63 < 2.5×104 5.00 > 20×104 -
n 2.4 0.63 < 1.5 1.33 > 3.2 -
mr 0 - > 1 - <−0.25 -

Table 4.3: Approximate threshold values for which intrinsic delays become significantly de-
tectable, as compared to their reference value (Mkn 501 case).
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Chapter 5

Discrimination between intrinsic and
LIV-induced time delays
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Discrimination between intrinsic and LIV-induced time delays

We have established the existence and significance of intrinsic delays in blazars in the pre-
vious chapter. The need to disentangle between intrinsic and LIV induced time delays is thus
getting more pressing in the eventuality of future time delay detection. The reader may have
noticed we performed intrinsic time delay studies over a limited energy range, covering in fact
only half of the energy range SEDs spread over (on the inverse Compton bump). We motivated
this limitation by the LIV framework which effects can only become significant at very high en-
ergies, and thus we overlooked the lowest energy ranges (the synchrotron bump). However, time
delays can also arise from the synchrotron emission as discussed for instance by Lewis et al. [73].

By choosing to work within the SSC scenario, we de facto imposed the inverse Compton
emission to be dependent on the synchrotron one. We can then expect SED bumps to evolve
together, in a similar fashion. This similarity between energy bands would then also appear in
light curves and more importantly in intrinsic time delays. Since LIV effects would only appear
in the high energy domain, finding a relationship between sets of intrinsic delays arising in low
and high energy domains may allow us to discriminate between intrinsic and LIV-induced time
delays. However, this could be hindered by the EBL and Klein-Nishina effects (c.f. Sections
1.3.2 and 2.2.2.2) that tend to suppress the highest energies and introduce an asymmetry be-
tween the two domains.

In this chapter, we will present tools developed for the new version of the simulation code
we call AGNES, making it a one-of-a-kind software specialising on time delays study and able
to treat both intrinsic and LIV effects simultaneously. Lastly, we will discuss the impact of
the EBL on this study and complement with observational perspectives. The tools and results
introduced in this chapter have been presented at the International Cosmic Ray Conference
(ICRC, 2021). A paper covering the content of this chapter is currently in preparation.

5.1 Multi-frequency study: gamma-rays vs. X-rays

Taking once again the reference set of parameters, we extend the previously derived intrinsic
delays to X-ray and infrared energies. Note that a standard EBL model (Kneiske et al. [77, 78])
has been taken into account for all the previous results, but also for the results that will follow.
To better identify and separate both energy domains, a special care is given to the choice of
the reference arrival time tref = tEref corresponding to a specific energy Eref . We use the energy
coordinate of SEDs crevice (low flux region) between the two bumps to specify this quantity.
Since the location of the crevice varies between all the generated SEDs, we choose to only con-
sider the one with the highest flux value νFν as reference. The energy Eref is then taken as
the crevice energy coordinate for that specific SED. Eref ususally varies between 0.01 and 1 MeV.

To highlight the relationship between the two energy domains, we vary one parameter to
send delays into one or the other regime. The resulting distributions are shown in Figure 5.1. A
clear similarity between the two energy domains (synchrotron and inverse Compton) appears.
Let us insist on this strong similarity being a systematic one. Both sets of delays always follow
the same trend whichever set of parameters is used to generate them. To fully exploit this po-
tential we want to better estimate and even quantify the degree of similarity, which we attempt
with a euclidian distance study. We will further extend this opportunity to SEDs with a study
on hysteresis patterns arising in hardness-intensity diagrams.
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5.1 Multi-frequency study: gamma-rays vs. X-rays
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(b) Decreasing regime.
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(c) Increasing regime.

Figure 5.1: Intrinsic delays extended to low energy spectrum. The synchrotron (low energy)
and inverse Compton (high energy) domains behave in a very similar fashion and conserve the
time delay trends.

Finally, the introduction of an external photon field would weaken the symmetry between
synchrotron and inverse Compton domains as we no longer place ourselves within the pure SSC
scenario. The inverse Compton emission would gain a component independent from the syn-
chrotron emission resulting in both domains interdependency being blurred out.

5.1.1 Euclidian distance study

Several methods can be used to estimate the degree of similarity between two distinct sets of
data. Although techniques such as cross-correlation, χ2 minimisation or likelihood maximisation
are commonly used for this type of analysis, we chose to work with a euclidian distance method
to treat this problem for its simplicity and straightforwardness. The LIV time-of-flight studies
which will be discussed at length in the next chapters need a similar treatment for which several
methods have been tested (more details in Sections 6.1 and 7.1).

5.1.1.1 Building a powerful tool

The euclidian distance between two data sets A[i](16i6n) and B[i](16i6n) containing n points
is simply written as:

dE =

√∑
i (A[i]−B[i])2√∑
i (A[i] +B[i])2

, (5.1)

where the denominator is a normalisation term we introduce for a better graphical representation
and readability. The scalar dE possesses two identities we define as follows:

• dE = 0 is the minimum indicating a perfect match between the two data sets, i.e. A=B;

• dE = 1 indicates that for all i we have A[i] = 0 or B[i] = 0.

For this multi-frequency study, we create two data sets: one that contains synchrotron de-
lays (with inverse Compton delays set to zero), and the other containing inverse Compton delays
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(with synchrotron delays set to zero). Both sets of delays are extended between log10E =−16
to log10E = 2 (expresssed in TeV), filling the areas where there is no information with zeros. To
maximise the sensitivity yielded with Equation 5.1, we rescale all the data points with the first
non-zero value ∆tfirst: ∆t −→∆t−∆tfirst. This is a treatment inspired from signal processing
zero-padding.

With such a configuration the two data sets non-zero values do not overlap and we would
necessarily have dE = 1. A solution is to shift one of the data sets over energy (i.e. horizontally)
towards the other one to provoke the overlapping and find the optimal displacement that will
minimise the euclidian distance dE .

To estimate this optimal displacement, we introduce a modified version of Equation 5.1
where dE now becomes a function of the displacement k:

dE(k) =

√∑
i (A[i−k]−B[i])2√∑
i (A[i−k] +B[i])2

, (5.2)

A being the displaced data set. For our study, we compute the distance in logarithmic scale by
displacing the synchrotron data set (≡A) over energy by a quantity ε= 10k towards the inverse
Compton set (≡B) such that Enew =E×10k. Although our data sets are discrete, we treat the
distributions of time delays as functions and retrieve values with linear interpolations between
consecutive points such that k can take any value (k ∈ R).

Behaviour at low redshift with z = 0.03

As a foreword, while the Klein-Nishina effect is inherent to quantum theory, the EBL effect
is redhisft-dependent and can thus be minimised by studying sources with small redshift. As
the reference set of parameters is inspired by the Markarian 501 blazar which sits at redshift
z = 0.03, the following results illustrate cases for small redshift and little EBL absorption, leav-
ing the highest energies fairly unaffected.

As was pointed out in Chapter 4, the inverse Compton domain can be separated into two
sub-domains of low and high energies. We estimated this separation to occur at E ∼ 100 GeV,
where delays shown mismatched behaviours and distinctive responses to parameters variation.
An equivalent seperation for the synchrotron domain seems to occur for E ∼ 0.1 keV. This leads
to the definition of four sub-domains:

• E < 0.1 keV: the low energy part of the synchrotron domain (optical-UV, at least 5 decades
in energy);

• E = 0.1∼ 100 keV: the high energy part of the synchrotron domain (X-rays, 3 decades in
energy);

• E = 0.1∼ 100 MeV: the low energy part of the inverse Compton domain (soft gamma-rays,
3 decades in energy);

• E > 1 GeV: the high energy part of the inverse Compton domain (hard gamma-rays, at
least 4 decades in energy).
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5.1 Multi-frequency study: gamma-rays vs. X-rays

In the context of LIV studies, we are most interested in very high energies (hard gamma-rays)
for which LIV effects start to become detectable. The synchrotron domain counterpart then
correspond to X-ray energies.

The euclidian distance between the synchrotron and inverse Compton data sets obtained
with the reference set of parameters is shown in Figure 5.2a. Let us dissect this curve:

• For k < 3, dE = 1 meaning the non-zero values of the two sets of delays do not overlap.

• For k= 3 to 8.5, data sets non-zero values start to overlap leading to the distance gradually
shifting away from one. Although we imposed a flat regime to the delays, there is a slight
decreasing trend such that the distance significantly shifts away from 1 as k increases.

• At k ∼ 8.5, the overlapping is maximised and the slope is modified.

• At k ∼ 9.2≡ kmin, the euclidian distance reaches a minimum of ∼ 0.42, i.e. we reached the
optimal displacement for which the two data sets are best matched.

• For k > 9.2, we start to lose in similarity and, combined with a shortened overlapping area,
the distance slowly tends towards dE = 1.

Let us emphasise that since dE,min and the maximum overlapping are reached for different
displacements k, the minimum is a true minimum and not an artefact due to the zero-padding.
In addition, this is a very specific case with little to no variation in the delays, which tends to
reduce the sensitivity on the euclidian distance. The distance functions for the two other regimes
shown in Figures 5.2b and 5.2c reach lower values (0.25 and 0.20 respectively against 0.42 for the
flat case). This is due to the amplified variation leading to a minimum in the distance function
which is better defined.
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Figure 5.2: Euclidian distance functions computed between delays from the synchrotron and
inverse Compton domains. Each diagram shows a clear minimum defining the optimal displace-
ment kmin for which we obtain the best match between the two sets of delays.

Behaviour at high redshift with z = 1

At high redshift, the EBL contribution is much stronger hence suppressing the very high
energy photon emission. Moreover, a large redshift also means the observed flux is much fainter.
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In order to be compatible with CTA sensitivity (c.f. Figure 3.6), only data sets with flux
F > 10−20erg.cm−1.s−1 are used in our analysis. In other words, a selection is made where a
threshold is applied to the observable flux. As a consequence, modifying the redshift changes
the selection on the data sets and leads in fine to slightly different time delay distributions.

These modifications mostly occur at high energies which are now almost completely sup-
pressed by the EBL absorption, but it also modifies the lower energy domain. Such discrepancies
can be seen in Figure 5.3 where the time delay distributions for the three illustration cases with
redshift z = 1 (orange) are compared to the ones with the reference redshift z = 0.03 (black).
While a large redshift simply eliminates information at VHE and thus removes the data points,
the regime and shape of the distributions are conserved.

The corresponding euclidian distance functions are also shown in Figure 5.3 (same colour
code) and better characterise these differences. The minimum is sensibly shifted with kmin tend-
ing towards lower values for large redshift. This is due to the missing data points at very high
energies that change the variation amplitude combined with a larger zero-padding area and lead
to euclidian distance curves rising at smaller k values. For large z the euclidian distance function
requires observational data with high sensitivity at TeV energies to be relevant. The time delay
distributions at low and high redshift behave in the same way and do not diverge much from one
another. We can therefore use the information from data sets generated with a small redshift to
extrapolate and recover time delays at very high energies for sources at large z. It is then also
possible to reproduce inverse Compton time delays from synchrotron time delays for sources at
large redshift with this circumventing method when sensitivity is lacking.

As was expected from the pure SSC scenario, a strong similarity arises between observables
in the synchrotron and inverse Compton domains despite the EBL and Klein-Nishina effects
that tend to suppress the highest energies. The closer to zero the value of dE,min, the stronger
the similarity between the two domains. Therefore, this study of euclidian distance may help us
build a predicting tool. A tool allowing us to predict intrinsic delays in the gamma-ray energies
from prior knowledge (e.g. observed data) on delays in the X-ray energies. It is however not
possible to estimate an absolute degree of similarity based on this tool, but rather a relative one.
Considering two data sets, labeled 1 and 2, that are characterised by euclidian distances such
that d1

E,min < d
2
E,min, this inequality indicates the domains in set 2 are more correlated than that

of set 1. This relative notion will nonetheless allow us to establish a threshold on the euclidian
distance and hint at the nature of the observed delays as will be discussed in Section 5.2.1.

5.1.1.2 Dependency on model parameters

The next step is to study the impact of the model parameters on distance functions. We
already illustrated how they can modify the minimum euclidian distance dE,min as delays are
amplified. We can imagine they could also shift the position kmin of this minimum. But first,
let us comment on the transition gap between the synchrotron and inverse Compton domains.

Transition gap

We attempt to explain the transition gap appearing between the two domains of delays (see
Figure 5.1) with a back-of-the-envelope calculation. The length of a flare is directly induced
by the SED flux variation over time: the faster the variation in the SED, the shorter the flare.
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(b) Decreasing regime delays.
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(c) Increasing regime delays.
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Figure 5.3: Time delays and corresponding euclidian distance functions between delays from
the synchrotron and inverse Compton domains obtained for small (z = 0.03, reference, black)
and large redshift (z = 1, orange) for the three illustrative cases. At large redshift, high ener-
gies are suppressed resulting in significantly modified euclidian distance function and minimum
coordinates.

While the synchrotron emissivity given in Equation 2.15 involves a linear contribution from
the lepton number density N∗(t,γ), the inverse Compton emissitivity given in Equation 2.25
involves both the lepton number density and the synchrotron field (itself proportional to the
lepton number density) leading to a quadratic contribution. The two SED bumps then evolve
at different "speeds" and the variation in SEDs flux over time is linked to the lepton number
density, thus to the bulk’s radius evolution parameter mr:

∆Fsed,syn ∝∆t−3mr , (5.3)

∆Fsed,IC ∝∆t−6mr . (5.4)

The evolution of the gap for various mr values can be found in Figure 5.4. For mr ∼ 1 both
bumps seem to vary at a similar pace such that light curves in the synchrotron and inverse
Compton domains peak in the same time window. The gap between synchrotron and inverse
Compton delays is then reduced to a minimum. As mr value shifts away from 1, the variations
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in SED synchrotron and inverse Compton fluxes become distinctive. For mr < 1, ∆Fsed gets
smaller resulting in longer flares. As the shift variation is more pronounced for the inverse
Compton domain than the synchrotron one, the light curves in the inverse Compton domain
will be the longest leading to larger ∆tE : ∆tsyn < ∆tIC . Conversely, for mr > 1, ∆Fsed gets
larger resulting in shorter flares, the inverse Compton ones being shorter than the synchrotron
ones for the same reasons finally leading to ∆tsyn >∆tIC .
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Figure 5.4: Evolution of the transition gap between synchrotron and inverse Compton domain
time delays, governed by the bulk’s radius time evolution.

Let us also comment on the difference in behaviour observed between the synchrotron and
inverse Compton domains for cases with mr < 0 (one is flat while the other is clearly decreas-
ing). We defined the lepton number such that it stays constant throughout the bulk’s evolution.
Having mr 6= 0 means only the lepton density is modified due to the change in volume of the
bulk. However, the synchrotron emission is governed by the lepton number density such that
varying mr should not modify the synchrotron spectrum1 and thus synchrotron time delays are
unchanged. On the other hand, the inverse Compton emission strongly depends on the lepton
density such that varying mr deeply modifies the inverse Compton spectrum and affects the
inverse Compton time delays, especially when it comes to adiabatic compression. It therefore
appears that adiabatic processes, and in particular compression effects, tend to decorrelate in-
trinsic time delays, and we can no longer make the assumption of a pure SSC scenario.

The minimum of euclidian distance coordinates dE,min and kmin

To track the evolution of its minimum, we computed the enclidian distance for all sets of
delays shown in Figure 4.5. The minimum coordinates dE,min and kmin are plotted as a function
of each one of the model parameters resulting in the diagrams shown in Figure 5.5. From this
reprensentation we can assess the following:

• the optimal displacement is always such that 8< kmin < 10;
1In practice this in not entirely true. For instance, in the case where the magnetic field is frozen within the

plasma, a variation in the bulk’s radius will induce a variation in the magnetic field strenght and therefore modify
the synchrotron spectrum. Such effects are however not taken into account in this model such that we can assume
mr does not modify the synchrotron spectrum.
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5.1 Multi-frequency study: gamma-rays vs. X-rays

• the minimum euclidian distance is always such that dE,min < 0.6, and reaches this maxi-
mum when delays are following a flat trend.
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(b) Acceleration evolution ratema.
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(c) Initial acceleration B0.
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(d) Acceleration evolution ratemb.
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(f) Lorentz factor cut-off γgut.
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(g) Doppler factor δb.
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(h) Minimum Lorentz factor cut-off γmin.

Figure 5.5: Minimum euclidian distance dE,min and optimal displacement kmin evolution with
respect to various model parameters. The dashed line indicates the parameter reference value
(overlapping with the left vertical axis in Figure (h)). From these diagrams we get 8<dE,min < 10
and kmin < 0.6.

5.1.2 Hysteresis study: a sensitive tool

So far we focused exclusively on time delays as this is the quantity of interest for our LIV
framework. However, the similarity between synchrotron and inverse Compton domains can also
be quantified directly from SEDs. Hardness-intensity diagrams (HID) showing the SED index
(hardness) against the SED flux (intensity) can give rise to hysteresis patterns. Such patterns
have been found in observed data (e.g. [81, 82, 83]) and simulated with AGN models (e.g. [84]),
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Discrimination between intrinsic and LIV-induced time delays

and ultimately help to constrain emission scenarii.

To produce such diagrams, we compute the hardness over a small energy window in both
synchrotron and inverse Compton bumps which needs to be the same for all SEDs. We want
the inverse Compton window to be at energies as high as possible. The intensity plotted in
the diagram is taken as the mean flux within the energy window. We want this window to be
relatively small for the intensity to vary as little as possible. Finally, we want the window not
to overlap with bumps’ maxima to prevent a change of sign in spectral indices. We thus choose
to define the inverse Compton window lower boundary as the position of the peak at highest
energies (i.e. far right inverse Compton bump peak) and spread the window over 1 decade in
energy to the right hand side. The synchrotron counterpart is chosen the same way. Ultimately,
we focus here on narrow windows in the X-ray and gamma-ray energy domains.

The resulting hysteresis pattern for the three illustration cases with flat, decreasing and
increasing regimes can be found in Figure 5.6. We can make several observations here.

• The X-ray domain hysteresis loop is much wider than the gamma-ray one. This is expected
as the flux amplitude variation in the SED is more important in the synchrotron domain
than in the inverse Compton one.

• Hysteresis patterns are the same for both domains: X-ray and gamma-ray hysteresis always
follow the same loop orientation. This is again expected as the inverse Compton bump is
closely related to the synchrotron bump.

• The loop orientation changes according to the delays regime:

– flat regime ⇐⇒ "flat" hysteresis;

– decreasing regime ⇐⇒ clockwise hysteresis;

– increasing regime ⇐⇒ counter-clockwise hysteresis.

As both SEDs and lightcurves are closely related, we also expected hysteresis patterns and
time delays to be related.

The detailed hysteresis pattern likely depends on the nature of the flare. Our approach, which
involves a simple and standard flare generation, still appears to provide a general description of
the dominant trends that could be observed. From the third item, observing non-flat hysteresis in
data means there also should be non-zero intrinsic time delays in the pure SSC scenario. Adding
to that the second item, one only needs to have information on the X-ray domain hysteresis to
predict the existence or not of gamma-ray domain intrinsic time delays. In order to go further,
we would need to develop a tool to quantify the relationship existing between hysteresis and
intrinsic time delays. Ultimately, this tool can be used to resolve the existence of intrinsic time
delays even though none is detected due to a lack of precision or because another phenomenon
(such as LIV effects) contributes to cancelling them out.

5.2 LIV injection
Now that we have a much more detailed view on intrinsic time delays and built useful tools,

we can introduce LIV effects and push this study to its final stage: find a way to discriminate
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5.2 LIV injection
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(b) Decreasing regime, clockwise.
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Figure 5.6: Hardness-intensity diagrams (HID) highlighting hysteresis patterns for X-ray (blue)
and gamma-ray (magenta) domains.

between intrinsic and LIV-induced time delays. Besides fundamental physics, LIV effects are
only dependent on the distance of the source, and not on its specific emission mechanisms. The
simplest way to account for them is then to shift light curves by a quantity dependent on their
energy. This quantity will then be specific to each light curve, shifting each point by a constant
value:

FELC (t)−→ FELC (t+ τnE
n
LC), (5.5)

where ELC is the mean value of the energy band on which a light curve is defined, n is the LIV
correction order and τn is the LIV term. τn is kept as a free parameter expressed in s/TeVn and
can take positive (subluminlal effect) or negative (superluminal effect) values. As a consequence,
there is no peak deformation. For the sake of illustration, we will only consider cases for the
linear case with n = 1. Considering the way it is incorporated to the existing light curves, the
quadratic case with n= 2 would give similar results only with a different amplitude.

5.2.1 Impact on delays and euclidian distances

As time delays are extracted from light curves, they are now automatically accounting for
both intrinsic and LIV effects simultaneously. As τn is a user defined free parameter, one simply
needs to set τn = 0 to revert back to previous sets of delays where only intrinsic effects were
accounted for. Time delays and the corresponding distance functions for the three illustrative
cases can be found in Figure 5.7. Intrinsic effects are shown in black, while intrinsic combined
with LIV effects are shown in red for τn > 0, and blue for τn < 0. The τn values have been chosen
based on the detectability study performed in Section 4.2.3 for the archetypal source Mkn 501
located at redshift z = 0.03.

As LIV contribution depends on energy, having τn > 0 tends to send inverse Compton delays
in the increasing regime while τn < 0 send them in the decreasing one. Therefore, LIV either
amplify time delays when both effects impose the same regime, or suppress time delays when
the two effects impose opposite regimes. For τn big enough, LIV effects can even change the
regime in the inverse Compton domain. In other words, LIV contribution tends to decorrelate
synchrotron and inverse Compton sets of delays. As a consequence, the distance function mini-
mum dE,min shifts away from 0 as τn diverges from 0. As the method has a fairly poor sensitivity
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Discrimination between intrinsic and LIV-induced time delays

when it comes to small changes in time delays, the introduction of LIV may leave the minimum
distance unchanged. Nevertheless, as the introduction of LIV or any other external effect tends
to decorrelate the time delays, it will always yield either equal or larger values of dE,min.

Contrary to cases with intrinsic effects only, we cannot use the euclidian distance to accu-
rately reconstruct or even predict inverse Compton time delays from synchrotron ones when LIV
effects are introduced. This is due to the poor correlation and lack of sensitivity. Furthermore,
the optimal diplacement kmin can be modified as a consequence of highly decorrelated sets. Fi-
nally, for an intermediate value of τn where the competition between LIV and intrinsic effects
result in delays both increasing and decreasing consecutively within a given energy domain, a
second peak can appear (see for example the case for τ1 = 200 s/TeV in Figures 5.7c and 5.7f).

However as was pointed out earlier, the minimum normalised euclidian distance does not fall
below dE,th = 0.6. If the minimum distance cannot fall below this threshold, it hints at another
effect being at play and time delays can no longer be explained by intrinsic effects from the pure
SSC model only.
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Figure 5.7: Time delays and euclidian distance function computed for the three illustrative cases
with various LIV contributions. The minimum euclidian distance dE,min is always reached by
the curve with no LIV effect (black).
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5.3 LIV-modified EBL absorption: extreme scenarii

5.2.2 Impact on hysteresis

To build hardness-intensity diagrams accounting for LIV effects, we first need to rebuild
SEDs from LIV-shifted light curves. This can be done by applying a transformation opposite to
the one of Equation 4.23:

FSED(νobs, t) =
∫ νmax

νmin
dν−1

obs FLC(νobs, t)νobs. (5.6)

Contrary to time delays, LIV contribution to SEDs is barely noticeable. However, as hystere-
sis patterns are very sensitive to any variation in SEDs, this modification can be highlighted
through hardness-intensity diagrams. Figure 5.8 illustrates this statement with the evolution
of the gamma-ray hysteresis pattern for the three regimes at various τn. At low flux the hard-
ness is greatly affected leading to dramatically different values, and slowly converges as the flux
increases where hysteresis patterns overlap. Now we want to resolve the pattern at high flux.
The hysteresis for X-ray energies (blue) is unaffected by LIV as could have been expected. Re-
membering hysteresis in the X-rays and gamma-rays systematically loop in the same orientation
when only intrinsic effects are considered, we can use the X-ray hysteresis as reference. Looking
at gamma-ray hysteresis, we can make the following correspondence:

• τn > 0⇐⇒ clockwise orientation (⇐⇒ increasing delays);

• τn < 0⇐⇒ counter-clockwise orientation (⇐⇒ decreasing delays).

Note that τn > 0 accounts for subluminal LIV effects and τn < 0 for superluminal ones. Similarly
to time delays, when τn is large enough, it can cause hysteresis to change orientation. As a
consequence, observing a difference of looping orientation between the X-ray and gamma-ray
hysteresis patterns strongly hints at a contribution other than intrinsic effects being at play.

5.3 LIV-modified EBL absorption: extreme scenarii
All the above results as well as the ones from Chapter 4 have been derived taking into ac-

count a standard model of EBL absorption. However, as was discussed in Section 1.3.2, LIV
effects are predicted to modify the EBL absorption as shown in Figure 1.2 for redshift z = 0.
Fairbairn et al. [85], provided an estimation of the arrival probability of photons emitted by a
source at redshift z = 0.5 as well as the expected spectrum of Markarian 501 blazar (z = 0.03)
for different values of the quantum gravity energy scale EQG (noted MLV in Figure 5.9). All
these figures indicate the EBL becomes more transparent as EQG gets smaller: LIV effects tend
to cancel the EBL absorption.

While the extreme case where EQG =∞ corresponds to scenarii with the standard EBL
we have studied before, the opposite extreme scenario where LIV effects completely cancel the
EBL absorption can be approximated by ignoring the EBL contribution. We have previously
discussed the impact of the EBL on intrinsic time delays: it eliminates high energy information
while the distributions behaviour is preserved and almost unchanged. We expect to draw the
same conclusions for time delays including LIV effects. A quantified variation between delays
computed with and without EBL correction for the three regimes with various LIV contributions
can be found in Figure 5.10. The variation amounts to less than 5% whichever the case such that
time delays behaviour should not be significantly affected by a LIV-modified EBL absorption,
even if it will certainly modify the threshold at which high energy can be observed. Note that
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(a) Flat regime.
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(b) Decreasing regime.
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(c) Increasing regime.
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(d) Flat regime for
τ1 = 400 s/TeV.
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(e) Decreasing regime for τ1 =
400 s/TeV.
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(f) Increasing regime for τ1 =
400 s/TeV.
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(g) Flat regime for
τ1 =−400 s/TeV.
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(h) Decreasing regime for τ1 =
−400 s/TeV.
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(i) Increasing regime for τ1 =
−400 s/TeV.

Figure 5.8: Hardness-intensity diagrams evolution for the three illustrative cases with various
LIV contribution showing LIV effects can cause a change in loop orientation in the gamma-ray
domain. Figures (a) to (c) show the gamma-ray hysteresis pattern for various LIV contributions.
Figures (d) to (i) compare X-ray and gamma-ray hysteresis patterns for positive and negative
LIV contribution. While the X-ray hysteresis pattern is left unchanged, a rotation pattern
appears in the gamma-ray one (either clockwise or counter-clockwise depending on τn sign).

this is an strong oversimplification, and this study would greatly benefit from properly taking
into account the predicted EBL absorptions shown in Figure 5.9.

86



5.4 Observational perspectives

(a) Photons arrival probability for a source at
z = 0.5.
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Figure 5.9: Consequence of LIV-modified EBL for various MLV (= EQG) values (both plots are
taken from Fairbairn et al. [85]).

(a) Flat regime. (b) Decreasing regime. (c) Increasing regime.

Figure 5.10: Variation of time delays with extreme cases of EBL models (standard model or no
EBL) for the three regimes and various LIV contributions. Time delays obtained with the two
EBL models undergo a variation of maximum 5%.

5.4 Observational perspectives

From the results derived in this chapter we can draw several conclusions.

We have found that time delays arising from the synchrotron processes are strongly corre-
lated to the ones arising from the inverse Compton processes when considering pure SSC models.
When time delays present strong variations, the minimum of the euclidian distance function in-
dicates the optimal displacement kmin to apply to one set of delays to reproduce the other set.
The accuracy on the reproduction is then indicated by the minimal distance dE,min. As we
generally lack information on the highest energies due to the EBL absorption and Klein-Nishina
effects, this can be used as a tool to predict the intrinsic time delays in the gamma-ray domain
with the knowledge we get from observing time delays in the X-ray domain. However, this is
only true for the pure one-zone SSC scenario. Introducing external or adiabatic processes tends
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to weaken this symmetry and hinders the reconstruction. When placed in the right conditions
and assumptions, the presence of such a symmetry could help validate the pure one-zone SSC
scenario.

We have further confirmed the break of symmetry between the synchrotron and inverse
Compton domains when introducing LIV effects in our simulations. This asymmetry can how-
ever be used to our advantage. Indeed in the eventuality where the pure one-zone SSC scenario
is validated with other observables, a break of this symmetry would hint that another effect
is at play and contributes to modify the time delays. In particular, it becomes very useful
when this effect contributes to only one or the other energy domain. In the case where in-
struments sensitivity allows it, this can also be further confirmed with the study of hysteresis
where a similar break of symmetry should arise. As the EBL absorption (LIV-modified or not)
and Klein-Nishina effects do not break such symmetry, we should be able to quantify the dis-
crepancies and discriminate between intrinsic and LIV contributions to the observed time delays.

Let us add that a prediction of the detectability of time delays and hysteresis patterns with
CTA instruments was deemed prematured for the work presented in this manuscript, but it is
indeed an important and planned perspective for the near future.
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Preparation for population studies
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Chapter 6

Searches for Lorentz invariance
violation signatures with time of
flight studies
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Searches for Lorentz invariance violation signatures with time of flight studies

In this chapter we provide an overview of the current state of the art for LIV time-of-flight
studies. We first present and compare the analysis methods developed and used so far, then
summarise the main results obtained with these methods and assess their performances for LIV
studies.

6.1 Analysis methods
Time of flight studies for LIV searches started in 1996 with the Whipple1 and EGRET2 exper-

iments, and continued with next generation experiments including H.E.S.S., MAGIC, VERITAS
and Fermi-LAT amongst others. During the past 25 years, many analyses methods have been
developed to look for time delays arising in light curves of various types of sources. In this
section, we review and briefly explain the underlying principle behind these methods. We dis-
tinguish two general approaches. One of them relies on finding the LIV term that best cancels
the propagation effects and transforms back the observed data to a non time-shifted form. The
other approach relies on comparing the approximated LIV-free emission with the observed LIV-
modified data and estimate the time delay that separates the two of them. The former makes
use of a single data set while the latter requires two distinct data sets.

6.1.1 Single data set transformation

The acronyms introduced in this section will be extensively used in the rest of this chapter,
for the mthod comparison and the discussion on results.

Energy cost function (ECF)

The energy cost function uses the fact that a signal pulse propagating through a dispersive
medium - the dispersion being caused by LIV effects - will be diluted [88]. As a consequence,
its power, i.e. the total energy per unit time, decreases as photons propagate through the
medium. The original power of the pulse can be recovered when applying a transformation that
reproduces the undispersed signal - i.e. the signal that would have been detected if there was
no LIV effect. The power of the pulse would then be maximised with this specific transformation.

The transformation is applied to a data sample representing the most active part of the flare
- i.e. the part that differs the most from a uniform distribution. The data sample is therefore
defined by a specific time window within the light curve, between time stamps noted t1 and
t2. Each photon i in the sample is characterised by an arrival time ti and an energy Ei. The
transformation consists in applying a time shift ∆t=±τnEn to each photon where τn is the LIV
modifying term at order n (either linear for n= 1, or quadratic for n= 2), that should cancel out
the propagation effect. With such a transformation, some photons are bound to end up outside
of the time window, while some others would enter it. The power of the signal is computed as
the sum of the energies of all the photons within the time window divided by the duration of
the time window:

P =
∑
i

Ei
t2− t1

, (6.1)

1In operation between 1968 and 2013, it was the first Earth-based instrument to detect TeV gamma-ray
sources with the Crab Nebula [86] and the AGN Mkn 421 [87].

2In operation between 1991 and 2000.
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for many values of τn. The energy cost function is then defined as the power P as function of τn,
and the position of its maximum gives the value of τn that best recovers the undispersed signal.

Dispersion cancelation (DisCan) and sharpness maximisation method (SMM)

The dispersion cancelation [89] and sharpness maximisation [90] methods both make use of
the dispersion of the signal pulse. They use cost functions to measure the sharpness of binned
light curves which is expected to reduce as the pulse is diluted. The main difference between
these two methods lies in the way the sharpness is measured, i.e. which cost function is used.
Shannon, Renyi and Fisher information, but also the variance, total variation or self-entropy
have been tested with the DisCan method [90]. The authors concluded Shannon information
yielded the best results out of all the other cost functions. The SMM method makes use of
another cost function similar to the Shannon information and describes the sharpness S as

S(τn) =
N−ρ∑
i

log
[

ρ

(ti+ρ− ti)

]
, (6.2)

with ρ a parameter used to avoid ti+ρ− ti� 1 for which the function would start to diverge.
The τn that maximises the sharpness function then corresponds to the most probable LIV effect.

PairView (PV)

The PairView method computes the energy-dependent time delay

τn ≡
ti− tj
Eni −Enj

(6.3)

between the arrival times t for each pair of photons (i, j)i>j with energies (Ei,Ej). The distri-
bution of τn is then expected to peak for the most probable value of τn.

6.1.2 Comparison between data subsets

The methods listed here rely on the comparison between two sets of data. Since we look
for delays between arrival times of photons with different energies, the observed data set is
separated in two photon lists, one gathering the low energy photons while the other gathers the
high energy ones. Two distributions are then created from these two subsets. In some cases the
reduced data needs to be compared with the intrinsic (i.e. LIV-free) emission. Although the
source emission mechanisms have been described and modeled with increasing accuracy, there
is no consensus yet and intrinsic emissions cannot be reconstructed or simulated with a high
enough precision as of now. The low energy light curve where LIV effects are supposed to be
small is then used to approach a LIV-free template needed for some methods.

Band comparison (BC)

The band comparison which was introduced by the Whipple collaboration is a fairly simple
approach where the low and high energy lightcurves are subdivided into time bins. A likelihood-
ratio test3 is used to compare the contents of the time bins in the two light curves [91]. This
technique allows to estimate the probability of observing concurrent peaks in the two light curves

3Not to be confused with the maximum likelihood method we introduce later on.
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and the time delay ∆t separating them. The precision of the method largely relies on the choice
of the binning, and loses sensitivity for small ∆t.

Peak Comparison (PC)

The peak comparison method simply consists in comparing the peak position between the
low and high energy light curves and estimating the time delay ∆t separating them [92]. The
main difference with the above method is that PC focuses on peaks while BC compares bins
information regardless of the presence or not of a peak. For such a method to be efficient, an
immense precision on the light curve is required so it is usually applied to millisecond pulsars
data only. Thanks to the stability of their emission, pulsars can be observed over long periods
of time and the data can be cumulated. As a consequence, the data sets have great statistics
and the light curve shapes are especially well-defined. The precision on detected time delays is
then directly dependent on the duration of observation of pulsars.

Modified cross-correlation function (MCCF)

The cross correlation function is widely used in signal processing for the measurement of
similarity and pattern recognition between two time series. The correlation coefficient is com-
puted as a function of the displacement ∆t of one series relative to the other. The two series
best match when this coefficient is maximised, the position of the CCF maximum giving the
delay ∆t separating the two time series. The LIV effect is then estimated by using ∆t=±τnEn.
However this method only works under certain requirements such as uniformly sampled data
(binned with a constant δt) or having the same number of data points. For the method to be
sensitive enough to LIV studies, the light curve resolution (i.e. the bin width δt) needs to be
smaller than the timescale ∆t under study, yet another requirement which is not necessarily
fulfilled. Modified cross-correlation functions (MCCF) have been created to bypass one or more
of these constrains. The MCCF presented in [93] - originally developed for a timescale analysis
of spectral lags - makes possible the search for time delays shorter than the light curve temporal
binning by introducing standard deviation terms in the CCF formula.

Wavelet transform (WT)

The wavelet transform [94] relies on the definition of wavelets which are wave-like oscillation
localised in time and defined by their scale (stretch) and location (position in time). A wavelet
transform is used to decompose a function into a set of wavelets, much like it is done with a
Fourier transform. It gives partial information on both the temporal extent and the frequency
spectrum of the signal based on the uncertainty principle of signal processing

∆t∆ω ≥ 1/2, (6.4)

where t represents the time and ω = 2πν the angular frequency. Wavelet transforms thus allow
to estimate that the initial function includes a signal of an approximate frequency that happened
in a given time window. The higher the resolution on one component, the lower the resolution
on the other component.

A wavelet transform can either be discrete (DWT) or continuous (CWT). While the former is
usually used for noise reduction as it removes fluctuations, the latter is used to localise extrema
in the signal. Wavelets are used to pin point the flare or peaked emission, as opposed to the
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source quiescent state or surrounding emission. A CWT is applied to both low and high energy
light curves which are then identified by a set of extrema. The low energy extrema are coupled
with the high energy ones to form pairs. The separation between the two extrema in each pair
i then provides a set of time delays ∆ti, used to estimate the mean lag ∆t separating the low
and high energy light curves [95]. The LIV study is then performed separately.

Maximum likelihood (ML)

The maximum likelihood method roughly corresponds to an unbinned version of the band
comparison method. For this technique we want to compare the observed data with the un-
altered (LIV-free) emission intrinsic to the source which is approximated with the low energy
light curve [96]. From the fitting of the low energy data set, parameterisations of the temporal
and energy distributions are created leading to a set of parameters θ. A transformation using
the LIV corrective term τn is applied to the approached LIV-free intrinsic emission in order to
recover the high energy data sets. The likelihood is maximised for the τn that best recovers the
low energy distributions.

The ML method makes use of a profile likelihood test Lp(τn) = supτn L(τn,~θ) where τn is the
parameter of interest, and ~θ is a vector of nuisance parameters. Lp is obtained with the values
of θ that maximise the likelihood L for a given τn. L can be built with a probability density
function (PDF) that describes the probability P to detect a gamma-ray i with a given measured
energy Ei at a given time ti such that

L(τn,~θ) =
∏
i

dP

dEidti
. (6.5)

In its simplest form, this probability is a function of time and energy obtained from the nor-
malised convolution between the transformed light curve C(ti− τnEni ) and energy spectrum
Γ(Ei) parameterisations. The need for a fit introduces approximations which constitute the
main drawback of this method and its primary source of uncertainty. A better understanding
and modeling of the source intrinsic emission could however solve this issue.

6.1.3 Strengths and limitations

Although we have distinguished the methods by having to rely on either a unique data set
or compare two subsets, we could have arranged them in other categories: binned and unbinned
methods. While we expect binned methods to be faster and easier to process, there is an un-
avoidable loss of information in the process. Indeed, the precision achievable in these cases is
heavily dependent on the way the observables are binned. A careful optimisation needs to be
performed in order to bring out the most out of these methods. Furthermore, they are not well
adapted to low statistics data sets as it requires a coarser binning and deteriorates the results
precision. As a consequence, unbinned methods tend to be superior to binned ones. They are
however more technical and less straightforward such that only three methods out of all the ones
listed above - namely the ECF, PV and ML methods - work on individual photons.

The methods relying on single set transformation require data sets with a well-defined iso-
lated peaked light curve. They are therefore especially fitting for the study of LIV with pulsars
data. Indeed, even though most of the detected photons are background events, the periodicity
of the signal allows for a compilation of observations resulting in data sets with exceptionnally
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high statistics and clear-cut light curves. Transient objects on the other hand may show very
low statistics but also several overlapping peaks in the light curve which greatly hinders the
performance of such methods.

Meanwhile, the methods comparing two subsets of the data can treat all types of sources and
light curve pattern more equally. Their performance is then highly dependent on the way the
original set is separated. Ideally, the data sets should spread over a wide energy range in order
to have a significantly different impact of LIV effects in the two subsets. This is especially true
for the ML method which requires the low energy subset to approximate a LIV-free template
light curve. The separation in subsets means light curves are built with only a fraction of an
already low number of photons, and thus lose in definition or require a coarser binning than
intended. Although the ML method is unbinned, the problem remains. As the LIV-free template
is a function fitted on the low energy light curve, the low energy subset needs to have sufficient
statistics for the light curve to be well-defined. Still, the ML method was created with the intent
to be performant with low statstic data sets and yield reliable results regardless.

6.2 State of the art

6.2.1 Up-to-date limits

In the past decades, only a handful number of data sets detected by IACTs from GRBs,
AGNs and pulsars alike could be used to test LIV models with time of flight studies. In con-
trast, satellite-embarked instruments could only resolve GRBs’ variability but managed to gather
several dozens of usable data sets. In this section, we briefly review the main milestones for time-
of-flight LIV searches with both types of instruments.

The first test was performed on the AGN Mkn 421 data observed by the Whipple exper-
iment using the BC method. It led to the first upper limit on the QG energy scale at linear
correction EQG,1 > 4×1016 GeV [91]. Soon after, in 1999, the EGRET collaboration suggested
for the first time to extend the study to pulsars. It was applied to the Crab pulsar which led to
EQG,1 > 0.18×1016 GeV [97] which is significantly less constraining than the upper limit set by
Whipple.

Nearly a decade later in 2005, two consecutive flaring episodes of the AGN Mkn 501 were de-
tected by the MAGIC experiment, and analysed with the ECF method leading to upper limits for
both linear and quadratic corrections: EQG,1 > 0.21×1018 GeV and EQG,2 > 2.6×1010 GeV [88].
This analysis uncovered the one and only significant time delay detected up to now with
∆t= 4±1 min which was attributed to intrinsic effects by the authors [79]. Although Mkn 421
and Mkn 501 have a similar redshift (zMkn421 = 0.034 and zMkn501 = 0.031), the MAGIC analysis
led to a limit on linear correction five times stronger than the one set by Whipple. However this
difference could also be explained by the difference in energy range (up to EMkn421 = 2 TeV and
EMkn501 = 10 TeV) or the number of signal events detected (NMkn421 ∼ 170 and NMkn501 ∼ 1800
events) such that comparing the efficiency of the two methods here is irrelevant.

Soon after, in 2006, a flaring episode of the AGN PKS 2155-304 was detected by the
H.E.S.S. experiment and is still today the most variable flare ever detected at gamma-ray
energies [98]. The data was analysed with the MCCF and WT methods which led respec-
tively to EQG,1 > 0.72× 1018 GeV and EQG,1 > 0.52× 1018 GeV for the linear correction, and
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EQG,2 > 0.14× 1010 GeV for the quadratic correction obtained with the MCCF method only.
Here the two methods are compared on the same data sets and provided consistent results such
that they appeared to be equally performant.

The ML method [96] was introduced three years later in 2009 and was used to re-analyse
both Mkn 501 and PKS 2155-304 data sets. This second analysis led to EQG,1 > 0.30×1018 GeV
and EQG,2 > 5.7×1010 GeV for Mkn 501, which are consistent with the limits yielded by the ECF
method. On the other hand, the second analysis for PKS 2155-304 led to EQG,1 > 2.1×1018 GeV
and EQG,2 > 6.4× 1010 GeV [99], which are this time significantly stronger than the ones pro-
vided by the MCCF and WT methods, indicating the effectiveness of the ML method.

A few years later, the VERITAS experiment performed an analysis on the Crab pulsar data
collected between 2007 and 2011. For this analysis, both DisCan and PC methods were used
which led to respectively EQG,1 > 0.30× 1018 GeV and EQG,1 > 0.19× 1018 GeV for the linear
correction, and EQG,2 > 0.70× 1010 GeV and EQG,2 > 0.17× 1010 GeV for the quadratic ones
[92]. For this DisCan method, the cost function was changed to a Fourier series estimator using
the first m harmonics of the pulsar periodic signal. Both methods yielded consistent results with
limits being significantly less constraining than the ones obtained with AGN data, similarly to
the Whipple and EGRET analyses.

The ML technique quickly became the standard analysis method thanks to its precision and
sensitivity. Although the ECF shows a similar performance, it requires to identify well-isolated
flares. The DisCan method which should compare to the ECF is set aside for the same rea-
sons. In contrast the ML is an unbinned method which can be applied to low statistic data
sets and complex lightcurves harboring several overlapping flares. Later on, all the data sets
coming from new detections were analysed with the ML method. This includes two flaring
AGNs (PG 1553+113 in 2012 [100] and Mkn 501 in 2014 [101]) and a compilation of the Vela
pulsar data from 2013 to 2014 [102] recorded by H.E.S.S. It also includes a compilation of the
Crab pulsar data collected over several years by MAGIC [103], and the data from the first GRB
ever to be detected with an IACT - GRB 190114C observed by MAGIC in 2019 [104]. The lim-
its obtained from these analyses are reported in Table 6.1 together with the ones discussed above.

Regarding satellite-embarked instruments, LIV searches were exclusively performed with
GRB data. A notable analysis using WT was performed in 2006 on a combination of 35 GRB
data sets observed by BATSE, HETE-2 and Swift. This led to a linear correction EQG,1 >
1.4×1016 GeV [105]. This multi-source treatment which accounted for intrinsic effects led to a
comparatively weaker limit due to this additional constraint. A similar analysis was performed
in 2019 on a sample of 8 GRB data sets detected by Fermi and yielded EQG,1 > 2.1×1017 GeV
[22], consistent with the other combined analysis. For this analysis, a DisCan method was used
where the cost function was taken as the irregularity, kurtosis and skewness estimation of the
pulse. Another analysis on Fermi data, this time focusing on the specific burst GRB 090510 in
2013, yielded EQG,1 > 9.3×1019 GeV and EQG,2 > 4.0×1010 GeV with the PV, SMM and ML
methods [90]. As of today, this is the strongest limit on linear correction ever obtained which
largely surpasses the Planck scale EP = 1.22×1019 GeV and which is now used as a benchmark
result. The results listed in this paragraph are also reported in Table 6.1.
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Source Type Method EQG,1[GeV] EQG,2[GeV] Instrument Year† Ref.
Mkn 421 AGN BC 0.4×1017 - Whipple 1998 [91]
Mkn 501 AGN ECF 2.1×1017 2.6×1010 MAGIC 2008 [88]
Mkn 501 AGN ML 3.0×1017 5.7×1010 MAGIC 2009 [96]
Mkn 501 AGN ML 3.6×1017 8.5×1010 H.E.S.S. 2019 [101]
PKS 2155-304 AGN MCCF 7.2×1017 1.4×1010 H.E.S.S. 2008 [98]

WT 5.2×1017 -
PKS 2155-304 AGN ML 2.1×1018 6.4×1010 H.E.S.S. 2011 [99]
PG 1553+113 AGN ML 4.1×1017 2.1×1010 H.E.S.S. 2015 [100]
Crab PSR BC 1.8×1015 - EGRET 1999 [97]
Crab PSR PC 3.0×1017 0.7×1010 VERITAS 2011 [92]

DisCan 1.9×1017 -
Crab PSR PC 1.1×1017 1.4×1010 MAGIC 2017 [103]

ML 5.5×1017 5.9×1010

Crab PSR ML 4.0×1015 - H.E.S.S. 2015 [102]
35 GRB GRB WT 0.14×1017 - BATSE,HETE-2,Swift 2006 [105]
8 GRB GRB DisCan 0.21×1017 - Fermi LAT 2019 [22]
GRB 090510 GRB PV,SMM,ML 2.2×1019 4.0×1010 Fermi LAT 2013 [90]
GRB 190114C GRB ML 0.58×1019 6.3×1010 MAGIC 2020 [104]
† Year of publication.

Table 6.1: Summary on up-to-date limits on EQG,n with additional information. Only sublumi-
nal limits are reported here.

6.2.2 Future prospects

In addition to provide strong constraints on the QG energy scale, the studies we reported
here also discuss their limitations and propose solutions for improvement. We present here some
of the suggested ideas.

Fiducial cuts

The current approach of IACTs to discriminate signal from background events relies on the
measurement of ON and OFF regions in the sky (see Section 3.2.4.2). The OFF region is a
calibration measurement used to define a fiducial cut that will then be applied to the ON set of
events in order to remove background events. Although the cut is defined to discard a maximum
of background events while minimising the loss of signal events, a fraction of signal events is
necessarily lost with this technique. It then reduces the sensitivity for LIV studies, especially
when it comes to pulsar data sets where the background photons coming from the surrounding
nebula usually make up for more than 90% of the ON region events. Another approach to the
background rejection was suggested in [106] where only ON region events are considered without
applying any cut. This technique relies on the bayesian approach to attribute a weight to events
based on the likelihood of being signal or background. This would avoid the loss of signal events
and should increase the sensitivity to LIV studies.
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Combine LIV effects

Although we focus solely on time-of-flight studies in this chapter, LIV can manifest under
other deterministic forms such as a modified EBL absorption (see Section 1.3.2), but also a
foamy nature of vacuum. Such aspects have been tested separately so far, but it is reasonable
to expect more than one manifestation to affect gamma-rays propagation. A study combining
simultaneous effects of LIV could shed new light on LIV searches and lead to more accurate
limits on the energy scale. This combination of effects may also blur intrinsic effects arising
from sources emission mechanisms as they are generated from independent processes.

Population study and inter-experiment collaboration

As discussed in Part II, the source intrinsic energy-dependent photon emission is far from
negligible and can be misleading when interpreting observed time delays. Since intrinsic effects
are not directly affected by the source distance - contrary to LIV ones which are propagation
effects - a combination of sources at different redshifts would blur intrinsic effects. Additionally,
by combining sources of different types - and thus having different emission processes - intrinsic
effects would manifest under different forms while the LIV effect would be a common factor
modulo the source distance. Lastly, combining sources necessarily implies a larger pool of data
and would thus increase the analysis sensitivity and lead to improved limits on the energy scale.

Considering the small number of usable data sets available for each experiment (see e.g. Table
6.1), an inter-experiment collaboration would provide a larger pool of data sets diversifying the
source types, distance scales and energy ranges. A consortium between H.E.S.S., MAGIC and
VERITAS has been formed to explore this opportunity (more in Chapter 7) and could ideally
be extended to other experiments. In particular, having a Fermi group join the effort would
provide GRB data at lower energy and higher redshift.

The main difficulty for such a project resides in the technical aspect of the analysis, especially
when it comes to combination strategies or instrument response treatment for harmonised data
sets as we will discuss in the next chapter.
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Method development and validation for future population studies

This chapter presents the method developed in preparation of future population studies. As
mentionned in the previous chapter, LIV studies benefit from large samples for a diversifica-
tion of source types and distance scales. While population studies have been carried out with
samples of GRBs detected by space observatories, they have never been performed with IACT
data. It is therefore important to remedy this shortcoming, especially with the upcoming CTA
operations. For this purpose, an open-source software called LIVelihood has been developed to
provide a standardised analysis method for LIV time-of-flight studies. The maximum likelihood
method was chosen for its superior performances. Moreover, this method provides a simple
and straightforward way to combine data sets. In addition, two lag-distance models have been
implemented allowing, for the first time, to perform a direct comparison of their influence on
the results, but also to check their consistency. Note that intrinsic effects are excluded from this
analysis as they are not sufficiently well-known.

The goal is to use this software on existing data sets from as many sources as possible.
To this end, an inter-experiment working group has been formed between the three major
IACT experiments: H.E.S.S., MAGIC and VERITAS. The work presented in this chapter is
therefore a collaborative one in which I had a significant contribution. More specifically, I
managed the instrument response and background treatment, as well as tests and calibration
of the method. I was also in charge to produce all the results and actively contributed to
their interpretation. The source simulations and uncertainty treatment that are presented in
this chapter were managed by Sami Caroff with whom I closely collaborated. The method and
results obtained with this software were presented at the TeV Particle Astrophysics conference
(TeVPA, 2019) and International Cosmic Ray Conference (ICRC, 2021). They are also reported
in a paper that will soon be published.

7.1 The maximum likelihood method

7.1.1 Building a probability density function

Let us go back to the likelihood L(τn,~θ) given in Equation 6.5, with τn∝ κn(z) the parameter
of interest. In its current form, τn quantifies LIV effects for a source sitting at a specific distance
κn(z). In order to perform combinations between multiple sources, the parameter of interest
should be applicable to any source, whatever their redshift are. We thus introduce a new
parameter noted λn defining a "distance-independent" equivalent of the τn parameter:

λn = τn
κn(z) = ∆t

∆Enκn(z) =± n+ 1
2H0EnQG

, (7.1)

with ∆En ≡ |Eni −Enj |, and λn being expressed in the same unit as τn (s/TeVn). The profile
likelihood then reads:

L(λn) = sup
~θ

L(λn,~θ) =
∏
i

dP (Ei,m, ti;λn)
dEi,mdti

, (7.2)

with P the probability to detect a gamma-ray i with a given measured energy Ei,m at a given
time ti. In its simplest form with only signal events and instruments taken as perfect - i.e.
the measured energy is taken as the true photon energy Ei,m ≡ Ei,t - the PDF Ps describing
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gamma-rays after their propagation is given by:

Ps(Ei,m, ti;λn) =
Γs(Ei,m)Cs(ti−λnκn(z)Eni,m)

Ns
, (7.3)

with Cs(ti− λnκn(z)Eni,m) the LIV-transformed light curve for signal events defined between
tmin and tmax, ΓS(Ei,m) =E−αi,m the energy spectrum of index α for signal events defined between
Emin and Emax, and Ns the normalisation term given by

Ns =
∫ tmax

tmin

∫ Emax

Emin
Γs(Em)Cs (t−λnκn(z)Enm)dEmdt. (7.4)

7.1.2 The special case of pulsars

Contrary to AGNs and GRBs, PSRs are pulsating sources with light curves repeating pe-
riodically. Rather than a light curve, we consider a subset of the phasogram defined between
φmin ≥ 0 and φmax < 1 so that it is centered on the main peak of the repeating temporal pattern.
In the PDF, the time t is then changed for a phase φ such that

t−→ φ= t

rp
, (7.5)

with rp the source rotation period. Similarly, the LIV parameter λn given in Equation 7.1 is
modified as follows:

λn −→ ηn = λn
rp
. (7.6)

The light curve functions adapt accordingly as follows:

Cs(ti−λnκn(z)Ent )−→ Cs(φi−ηnκn(z)Enφ). (7.7)

This new expression now requires φ ∈ [0,1[. However, there may exist a ηn for which
φi− ηnκn(z)Enφ leaks out of the period interval [0,1[. This issue is either solved by keeping

ηn within the interval
[
φ−1
κnEnφ

, φ
κnEnφ

]
, or by taking the decimal part of φi−ηnκn(z)Enφ .

Considering the EQG,n limits are computed with ηn = 0 (resp. λn = 0 for other source types),
this leakage does not affect LIV results and we therefore opted for the reduced interval. The
solutions used for cases with an injecting lag ηn 6= 0 are discussed in Section 7.4.2.

For simplicity and unless specified otherwise, we will keep the conventional notation with
time t and parameter λn with an implicit transformation to phase when considering pulsars.

7.1.3 Background treatment

A more realistic PDF should contain a term describing the detection probability of back-
ground events, however small that probability is. When it comes to IACTs, the background
events are associated to either hadrons mis-reconstructed as gamma-ray events, or baseline
events.
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Hadron events

Hadron events are usually cosmic rays which generate an EAS similar to that of the gamma-
rays and which are mis-reconstructed as signal events. As their flux is relatively constant over
time, their temporal distribution can be modelled with a uniform law. The energy distribution
on the other hand follows a power law with spectral index αCR '−2.7 up to E = 3×103 TeV.

Baseline events

Contrary to hadron events, baseline events are photons from the continuous emission of the
source under study or from its close surroundings. For AGNs, the baseline emission corresponds
to the source quiescent state - as opposed to the flaring state - such that the stronger the flare,
the more negligible the baseline emission becomes. For pulsars, the baseline corresponds to
the surrounding nebula emission which usually almost completely overshadows the pulsar itself.
Lastly, GRBs are extremely powerful explosion events which naturally overshadow the surround-
ing continuous emission such that the baseline emission is usually negligible.

Treatment

In any of these cases, the continuous emission can be modeled with a uniform temporal
distribution insensitive to the LIV transformation D(Ei,m,z,λn) = λnκn(z)Eni,m, and an energy
distribution following a power law with a given spectral index αb. The PDF Pb describing
background events can then be written as

Pb(Ei,m, ti;λn) =
∑
k

Pb,k(Ei,m, ti;λn) = Γb,k(Ei,m)Cb,k(ti)
Nb,k

, (7.8)

with k = {had,base} the background types and

Nb,k =
∫ tmax

tmin

∫ Emax

Emin
Γb,k(Em)Cb,k(t)dEmdt. (7.9)

7.1.4 IRF treatment

To further improve the realisticness of the detection probability, the instrument responses
should be taken into account. While the temporal response of IACTs allows for a very accurate
estimation of arrival times, the energy component is usually biased by the instrument perfor-
mances. This error can be corrected with instrument response functions (IRF) leading to an
estimation of the instrument’s acceptance and energy resolution.

7.1.4.1 Acceptance

The acceptance is the probability for an event of a given type and energy to trigger the
instrument detection system and pass the event selection cuts. In addition to the reconstruction
method, the acceptance largely depends on the observation conditions such as the atmospheric
transparency, the source zenith angle, the position of the shower image in the camera or the
instrument status. As a consequence, the acceptance is unique to each observation. The prob-
ability distribution is estimated via Monte-Carlo simulations of atmospheric showers and their
measurement by the detector. This gives access to the ratio between the known total number of
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events simulated and the number of reconstructed events in each energy and zenith angle bins.
Such distributions are generated for signal gamma-ray photons and both types of background
events, for the atmospheric and instrument conditions specific to each observation run, as well
as for various zenith angles.

For simplicity, the acceptance is usually accounted for with the effective area Aeff(Et,~ε)
of the telescope - i.e. the area that is sensitive to showers. It is given as a function of the
incident simulated photons true energy Et and a set of vectors ~ε encoding the various observation
conditions. It is given by

Aeff(Et,~ε) = πR2ΩNselec(Et)
NMC(Et)

(7.10)

with NMC the number of simulated events, Nselec the number of detected and selected events,
R and Ω the radius and the solid angle surrounding the telescopes over which the showers
were simulated. This alternative representation is particularly useful when considering data sets
detected by an array of at least two telescopes as it allows to treat them as a single entity. An
example of such a distribution can be found in Figure 7.1a, showing the effective area Aeff of
H.E.S.S. for PKS 2155-304 simulation given in m2 as a function of the simulated true energy Et.

7.1.4.2 Energy resolution

The energy resolution quantifies the ability of the detector to accurately determine the energy
of the incoming photons. It can be estimated with the probability of reconstructing an event with
energy Em given its one true incident energy Et. The corresponding probability distribution
follows a Gaussian law in natural logarithm of Em. Its standard deviation corresponds to
the energy resolution while its mean provides an estimation of a general energy bias. The
migration matrix M(Et,Em) is the two-dimensional version of this distribution which provides
the probability to reconstruct an energy Em for any incident true energy Et and reads

M(Et,Em) = exp
(

[Et−Em− b(Em)]2
2r(Em)2

)
, (7.11)

with b(Em)≡∆Et/Et the energy bias (mean) and r(Em) the energy resolution (standard devia-
tion). An example of such a distribution can be seen in Figure 7.1b. The bias is usually negligible
especially at high energy, and the energy resolution is usually of the order ∆Et/Et ∼ 10%.

7.1.4.3 Multi-era treatment

Observation campaigns are usually separated in observation runs of several minutes (typi-
cally ∼ 30 min), and each observation run is characterised by a given set of IRFs. In the case
where a source flare is detected over several observation runs, the overall data set is then asso-
ciated to multiple IRF files.

For AGNs and GRBs, each file characterises the data over a given time window which is
defined such that there is no gap nor overlap with another time window. Therefore, there is
necessarily an IRF file, and only one, that can be associated with an event i happening at a
given time ti. Since the profile likelihood function is computed for each and every event in the
Monte-Carlo simulation, the PDF P (Ei,m, ti;λn) is computed with the specific IRF file associ-
ated to the time ti.
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Figure 7.1: Instrument response functions (IRF) of the source PKS 2155-304 for the big flare
observed by H.E.S.S. in 2006.

For pulsars, the separation between era needs to be approached differently due to the peri-
odicity of the signal. As the data sets are a compilation of observation runs - usually tens or
hundreds of them taken over several years - they are associated to a similar amount of IRF files
which is not manageable for this analysis. Instead of considering the exact IRF file correspond-
ing to each and every event, a small number of mean IRF files are used to characterise a given
percentage of the total number of events, regardless of their phase φi or other properties.

7.1.4.4 Optimising the computational time

In order to account for IRFs, the PDF functions for signal given in Equation 7.3 need to be
modified as follows:

Ps(Ei,m, ti;λn) =
∫∞

0 Γs(Et)Cs(ti−λnκn(z)Ent )×Aeff(Et,~ε)M(Et,Em)dEt
Ns

, (7.12)

with

Ns =
∫ tmax

tmin

∫ Emax

Emin

∫ ∞
0

Γs(Et)Cs (t−λnκn(z)Ent )×Aeff(Et,~ε)M(Et,Em)dEtdEmdt. (7.13)

Similarly, Equation 7.8 describing background events now becomes:

Pb(Ei,m, ti;λn) =
∑
k

Pb,k(Ei,m, ti;λn) = Γb,k(Ei,m)Cb,k(ti)×Aeff(Et,~ε)M(Et,Em)dEt
Nb,k

, (7.14)

where

Nb,k =
∫ tmax

tmin

∫ Emax

Emin

∫ ∞
0

Γb,k(Et)Cb,k(t)×Aeff(Et,~ε)M(Et,Em)dEtdEmdt, (7.15)

with Et the photons true energy and Em the photons measured energy.

The PDF functions given in Equations 7.12 and 7.14 provide a more realistic description
of actual observations. However, given the IRFs are distributions (and not functions), it is not
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possible to numerically differentiate the PDF to find its maximum. The only viable option is to
perform a scan over the PDF for all values of λn. In other words, the profile likelihood given in
Equations 7.2 will be computed for all the events in each Monte-Carlo simulation, and this will
be done multiple times until its maximum is found.

For the analysis to be viable, one set of data should usually amount to at least several hun-
dreds of events. Additionally, the calibration of this method will require to work with several
hundreds of Monte-Carlo simulations. However, the normalisation terms are complex functions
which require triple integrations. A single of these computations can be easily done with an
appropriate software within approximately 1 second. However, in our case several thousands of
such computations are needed which now add up to several weeks of computational run time,
which is exceedingly unreasonable.

To avoid such preposterous run times, we instead use a strategy relying on tabulation.
The PDF numerator and denominator are computed separately for each type of event (signal
gamma-ray, hadron and baseline photon) and all IRF files, for given sampled values of the rel-
evant variables (time t, measured energy Em and LIV parameter λn). The PDF values are
stored in 3-dimensional histograms as a function of the sampled variables noted t∗, E∗m and
λ∗n. The value of the PDF for given non-sampled values t, Em and λn is then retrieved with a
3D-interpolation on the corresponding histogram, and is used to compute the profile likelihood
L(λn). This strategy allows to reduce the computational time down to minutes or hours, and
this calculation now needs to be performed only once for each source. This results in the pro-
duction of tables specific to each data set which can then be re-used as many times as necessary.

The variables are sampled between characteristic values on which the observables are de-
fined: tmin ≤ t∗ ≤ tmax, Emin ≤E∗m ≤Emax and λn,min ≤ λ∗n ≤ λn,max. The true energy Et is also
sampled but it is not possible to do so on its defining interval [0,∞[. Instead, new boundaries
are defined and taken as large as possible while maintaining a reasonable energy step between
each sampled value E∗t : after several tests, Et,min = 0.5 and Et,max = 2Emax were chosen. As
the number of values used for each variable and the λn interval boundaries directly impact the
efficiency of the method and precision on the results, they take part in the optimisation of the
method which we discuss in Section 7.4.

As a final point, when IRF files are not accounted for, the PDF function falls back to a simple
expression where Em ≡ Et, removing the integration on true energy from the equation. With
only double integrations, the computational time is drastically reduced. It is then equivalent
to launch the analysis with or without using the tables. This situation allows us to check
the consistency of the reconstructed lag distributions between the two methods (i.e. with and
without tables).

7.1.5 Combination

As we mentionned earlier, combining the profile likelihood functions is easy and straightfor-
ward. It is simply done by taking the product of all the profile likelihood functions. For an
even simpler expression, one can use the profile log-likelihood functions which helps get rid of
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unnecessary prefactors. From Equation 7.2 we get the profile log-likelihood for source S:

LS(λn)≡
∑
i

2logLS(λn) =
∑
i

2log
(
dPS(Ei,m, ti;λn)

dEi,mdti

)
, (7.16)

and
Lcomb(λn) =

∑
all sources

LS(λn). (7.17)

7.1.6 Confidence intervals

In order for the analysis to provide reliable outputs, we need to make sure the correction
term λn is correctly reconstructed by the method. To do so, we perform controled tests by
generating 1000 randomised simulated data sets for each source where a fixed and known value
of λn is injected, noted λinj

n in the following. This allows us to perfectly control the input and
check the method depending on the output i.e. the distribution of 1000 reconstructed λn, noted
λrec
n . This distribution usually follows a Gaussian law. A Gaussian function is thus fitted on

the distribution of λrec
n and provides an estimation of the most likely λn value and statistical

uncertainty on the reconstruction from its mean µ and standard deviation σ respectively. In
the case of asymmetric light curves, the distribution of reconstructed λn is also asymmetric.
Such a distribution is therefore fitted with an asymmetric Gaussian function with different left
and right-hand side standard deviations, noted respectively σl and σr. To have a consistent ap-
proach for all sources and data sets, we will systematically use the asymmetric gaussian function
regardless of the light curve and λrec

n distribution shapes.

Rather than the standard deviations, an equivalent way of estimating the statistical upper
and lower limits at 1σ confidence level relies on finding the values λn,LL and λn,UL for which the
likelihood function from Equation 7.16 yields −L(λn) = 1. An example of a likelihood function
computed for one realisation (i.e. one Monte-Carlo out of the 1000) and its corresponding λrec

n ,
λn,LL and λn,UL can be found in Figure 7.2. As we will see later on, the systematic uncertainties
are propagated to the likelihood. This second method therefore allows to take both statistical
and systematic uncertainties at once and is thus the preferred estimation method. Just like it
is done for λrec

n , we build the distribution of λn,LL (resp. λn,UL), to which we fit an asymmetric
Gaussian function and associate the mean µ to the most likely λn,LL (resp. λn,UL) value. An
example of the three distributions can be seen in Figure 7.3, with λn,LL, λrec

n and λn,UL in the
left, central and right panels respectively. They were obtained for GRB 190114C at linear order
and for the J&P approach with λinj

n = 0. In this case, systematics are taken into account such
that σl 6= λn,LL and σr 6= λn,UL.

7.2 Lag distance models

We still need to specify the lag-distance function κn(z) which has been left undefined so far.
It is important to recall the modified dispersion relation that is being tested does not arise from
a specific quantum gravity model or fully formulated universal theory. Therefore, there is no
exact prediction on the lag-distance model, but rather simplified speculative approaches. Two
of these approaches - the J&P and DSR models - have been presented in Section 1.3.1. We now
use this study as an opportunity to confront them for the first time.
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Figure 7.2: Example of a likelihood function and the corresponding λrec
n , λn,LL and λn,UL. This

distribution is one realisation obtained for the GRB 190114C at linear order (n = 1) and J&P
approach with λinj
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Figure 7.3: Distributions of the reconstructed λn (central panel), the 1σ CL lower limits λn,LL
(left panel) and upper limits λn,UL (right panel), all fitted with asymmetric Gaussian functions
(blue solid line). The fit results including the mean µ, left standard deviation σl and right
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Systematics are taken into account such that σl 6= λn,LL and σr 6= λn,UL.

109



Method development and validation for future population studies

Figure 7.4 shows the two distributions κJ&P
n and κDSRn as a function of the redshift z for

the linear n= 1 and quadratic n= 2 correction orders. The difference between the two models
gets more and more prominent as z increases. From this plot, we can already forecast large
redshift sources to provide more constraining limits under the J&P model than the DSR one.
Furthermore, as mentionned in Section 1.3.1, LIV scenarii lead to a more sensible modification
of the dispersion relation than DSR ones, leading to phenomenological effects expected to be
larger in LIV than DSR. This is indeed what is observed in Figure 7.4 with κJ&P

n reaching larger
values than κDSRn for a given redshift z. It is also interesting to notice a given limit on the
quantum gravity energy scale could be lower than the Planck energy when computed with the
DSR model, but surpass it with the J&P model. The choice of the model is therefore of great
importance when it comes to the interpretation of the results.

For small z, the two models appear to be consistent, the ratio κJ&P
n /κDSRn approaching

unity as z tends towards 0. Furthermore, both functions are consistent with the euclidian
approximation at low redshift κn(z) = dH0/c, where d is the euclidian distance to the source.
As a consequence, nearby sources such as pulsars yield the same results and constraints on EQG,n
regardless of the used lag-distance model, therefore becoming references for comparison. Since
both models yield the same results for pulsars, they will only be treated for the J&P case in the
rest of this chapter.

7.3 Selected sources and simulation parameters
Let us now discuss the choice of the data sets that will be used to test and calibrate the

analysis tool. To expect a thorough and panoramic testing, the data sample should be a repre-
sentative one where all types of sources and all distances are present. Furthermore, the sources
should harbour different characteristics that would either increase or hinder the sensitivity of
the method. We choose to use previously analysed data sets as reference for our test sample. On
the one hand, such a sample resembles a realistic one, with realistic sources characteristics. On
the other hand, since these data sets have already been analysed, we know the results we should
be obtaining for individual sources at least, which provides a reference benchmark to compare
the results obtained with this software and will help spot issues faster and more efficiently.

The sources used for the calibration of the method gather three flaring AGNs, two pulsars
and one GRB. We briefly summarise the sources characteristics in Table 7.1.

GRB 190114C [104], sitting at redshift z = 0.4245, was observed by MAGIC in 2019 over a
time window of 19 minutes only covering the afterglow emission. The detection sums up to 726
events detected between 300 GeV and 2 TeV with 0.055% of hadronic background events. The
light curve is fitted with a curved power of index β = 1.51±0.04 (with EBL absorption). This
parameterisation is a peaked function, the peak being outside of the temporal interval on which
the GRB has been detected, and can be reintroduced with the help of a positive lag. The energy
spectrum follows a power law of index α= 5.43±0.22.

Mrk 501 [96] is a BL Lac object sitting at redshift z = 0.03364. The flare of 2005 was
detected by MAGIC for a total of ∼ 1800 recorded events with energy ranging from 0.15 to 10
TeV and amongst which 39% are hadronic and baseline background events. The light curve is
described by a Gaussian function and the energy spectrum has an index α= 2.2 for both signal
and background.

PKS 2155-304 [99] is another BL Lac object at higher redshift z = 0.116. The flare of 2006
detected by H.E.S.S. is one of the brightest recorded so far with a signal to noise ratio exceeding
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Figure 7.4: Comparison between the two lag-distance models J&P (solid line) and DSR (dashed
line) through the κn function for both linear n= 1 (black) and quadratic n= 2 (gray) correction
orders.

300. The lightcurve that spans over 4000 seconds is parameterised by the sum of five asymmetric
Gaussian functions for 3526 events including 2% of background. The energy distribution that
ranges between 0.25 and 4 TeV is described by a power law of index α= 3.46, while the quiescent
state (baseline events) are parameterised by αb ∼ 3.32.

PG 1553+113 [100], yet another BL Lac object, is the furthest source of this sample with
redshift z = 0.49. The flare of 2012 was detected by H.E.S.S. with 154 recorded events including
44% of background events. The light curve was parameterised with two Gaussian functions over
8000 seconds. The energy distribution spreads between 0.3 and 0.8 TeV and follows a power law
of index α= αb = 4.8 for signal and baseline events.

The Vela Pulsar (PSR B0833-45) [102], sitting at 0.294 kpc, rotates with a periodicity of
89 ms. The data is gathered as a compilation of observations made by H.E.S.S. between 2013
and 20141 for a total of 330 820 pulsed events, amongst which 98.8% are baseline background
events emitted by the surrounding nebula. The phasogram defined between φ = 0.4 and 0.7 is
described with an asymmetric Lorentzian, while the energy distributions are parameterised by
power law indices of α= 3.9 for signal events and αb = 1.75 for background events.

The Crab Pulsar (PSR B0531+21) [103] has a 33.7 ms period and sits at 2.0±0.5 kpc. One
of the data sets used, referred as "Crab M" hereafter, is a compilation of observations made
by MAGIC from 2005 to 2017. 14 896 events from the P2 region of the phase were recorded,
resulting in a phase distribution described with a Gaussian function spreading between φ= 0.36
and 0.45. Background generated by the surrounding nebula (baseline) make up for 96% of the

1We limit this data set to 2013-2014 to reproduce the one that was used for a previous LIV analysis.
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events. The energy spectra are parameterised by power law indices α = 2.81 for signal and
αb = 2.21 for baseline events.

The other data set noted "Crab V" [92], is a compilation of high quality data recorded by
VERITAS between 2007 and 2011, summing up 22 764 pulsed events from the P2 region. The
background accounts for 96.4% of the events with again only baseline photons. The phase dis-
tribution was also described with a Gaussian spreading between φ = 0.37 and 0.43, while the
energy spectra are parameterised with α= 3.25 for signal and αb = 2.467 for baseline events.

We motivate here the choice for these sources:

• Time scale: while the AGN and GRB light curves spread over a time window of the order
of an hour, the pulsar main pulses are not lasting longer than a few milliseconds. While
the former are short transients and unique occurrences, the latter are periodic phenomena
such that the data is a compilation of observations taken over several years.

• Light curve: most of the sources harbour different light curve shapes going from a
very simple Gaussian distribution (Crab pulsar) to five overlapping asymmetric gaussian
distributions (PKS 2155-304), or even a power law with no defined peak (GRB 190114C
afterglow).

• Energy: each data set is defined over a specific energy range that goes up to different
maximum energies. The GRB and two AGNs (PKS 2155-304 and Mkn 501) go up to a few
TeV while the third AGN (PG 1553+113) stays within the hundred GeV range. Pulsars
on the other hand reach up to higher energies closing in to ten TeV.

• Signal to noise ratio: all scenarii are represented, going from an almost pure signal with
PKS 2155-304 and its 2% background, to pulsars which are completely dominated by the
surrounding nebula leading to a background reaching up to 99.8% for Vela. PG 1553+113
on the other hand shows an approximately fifty-fifty ratio.

• Distances: here again, all scenarii are represented going from pulsars which are lo-
cal sources sitting within the Galaxy, to very distant cosmological sources such as PG
1553+113 sitting at redshift z = 0.49. Since pulsars are so close, it is more suitable to refer
to their euclidian distance given in kpc rather than their redshift, which is exceedingly
small compared to AGNs and GRBs.

• Instruments: all sources have been detected with three different experiments and under
different conditions such that all data sets are unique. In particular, the Crab pulsar is
represented twice from the detections made by MAGIC and VERITAS. Although its char-
acteristics do not change, the conditions under which it has been observed are drastically
different such that the two data sets could very well represent two different sources. Fur-
thermore, the multiplicity of instruments reproduces a set-up similar to that of the future
CTA observatory.
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Source Energy Time/Phase Spectral index Lightcurve shape Events Background prop. Distance Ref.
[TeV] α αb had. base.

GRB 190114C 0.3 - 2 60 - 1200 s 5.43 - Curved power law 726 0.055 0. z = 0.4245 [104]
PG 1553+113 0.4 - 0.8 0. - 8000 s 4.8 4.8 Double Gauss 72 0.29 0.15 z = 0.49 [100]
Mkn 501 0.25 - 11 0. - 1531 s 2.2 2.2 Single Gauss 1800 0.39 0. z = 0.03364 [96]
PKS 2155-304 0.28 - 4 0. - 4000 s 3.46 3.32 5 Asymmetric Gauss 2965 0. 0.02 z = 0.116 [99]
Crab pulsar (M) 0.4 - 7 0.36 - 0.45 2.8 2.47 Single Gauss + Baseline 14869 0. 0.961 2 kpc [103]
Crab pulsar (V) 0.2 - 10 0.37 - 0.43 3.25 2.47 Single Gauss + Baseline 22764 0. 0.964 2 kpc [92]
Vela pulsar 0.06 - 0.15 0.40 - 0.70 3.9 1.75 Asymetric Lorentzian 3956 0. 0.998 0.294 kpc [102]

Table 7.1: Simulated sources. For pulsars, the time range is given in phase. Abreviations used: had - hadrons; base - baseline.
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7.4 Tests and calibration

A number of factors can induce a difference between the injected and reconstructed λn. In
this section we will review some of the main sources of such discrepancies as well as the tests
used to bring them to a minimum. We will make the distinction between two types of errors
found in the reconstructed λn that is parameterised by λrec

n = aλinj
n + b. Considering a perfect

reconstruction would yield a= 1 and b= 0, we define the following errors:

• The offset (on b) which is a fixed error that will shift the reconstructed value regardless
of the injected one. This error appears most clearly with an injected lag λinj

n = 0.

• The bias (on a) which is a relative error that will shift the reconstructed value depending
on the injected one, usually getting bigger as the injected λinj

n gets large.

7.4.1 At λn = 0: tabulation settings

The tabulation strategy introduced in Section 7.1.4.4 is used to drastically reduce the com-
putational time and ressources. It however requires a careful optimisation since the values of
the PDF and its normalisation are binned. The precision on the said values therefore depends
on the binning applied to the variables (time, measured energy and lag) as well as the range on
which they are defined.

The range on parameter λn

Since each data set of a given source has its own characteristics - number of events, light
curve shape, spectral index, signal to background ratio, source distance, instrument response,
etc. - the λrec

n distribution is expected to be unique, and in particular the statistical uncertainty
should vary from one set to another. This uncertainty on λrec

n can be as small as a few s/TeVn for
GRBs, or as large as millions of s/TeVn for pulsars. Although all characteristics listed above take
a part in this discrepancy, it is generally dominated by the source distance. This discrepancy
could be avoided by using the scaled LIV parameter τn, but the combination of sources requires
the use of the distance-independent parameter λn. This implies each source to have different
sensitivity to the λn parameter. Generally speaking, we have that:

• GRBs scale between λn ∼ 100−102 s/TeVn;

• AGNs scale between λn ∼ 101−104 s/TeVn;

• PSRs scale between λn ∼ 103−106 s/TeVn.

Each data set should then be given a specific range [λn,min,λn,max] on which λn should be
tabulated. We define it with respect to the standard deviations (statistical uncertainty only)
found at λinj

n = 0 when all IRFs are accounted for such that λn,min = −10×max(σl,σr) and
λn,max = +10×max(σl,σr). Note that both boundaries are given the same value for simplicity
and retaining a symmetry around zero. This range is built for each individual source at each
correction order n and each lag-distance model. Table 7.2 summarises all the intervals defined
for this work. For practical reasons, the algorithm maximising the likelihood is set to search
and test values of λn on the same intervals.
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Source n= 1 n= 2
J&P DSR J&P DSR

[s/TeV] [s/TeV] [s/TeV2] [s/TeV2]
GRB 190114C 300 460 430 630
Mkn 501 2300 2500 400 430
PKS 2155-304 910 1000 620 740
PG 1553+113 13×103 20×103 20×103 43×103

Crab (M) 4500 - 4600 -
Crab (V) 7×103 - 25×103 -
Vela 3×105 - 40×105 -

Table 7.2: Boundaries defining the λn intervals for each source at each correction order n and
each lag-distance model.

Tables binning and convergence plots

The sampling required by the tabulation method introduces a source of inaccuracy on the
PDF function. The level of precision achieved with this method then greatly depends on the
sampling of each variable and the interpolation method that is used to retrieve intermediate
values of the PDF. It has been decided to work with a linear interpolation algorithm2 for sim-
plicity. Therefore, the variable sampling is the only leverage left to twick the precision reachable
with this method.

The simplest way to increase this precision is to tightly sample the variables, i.e. get as
many bins as possible. However, since the computation is performed for each binned value of
the variables, having too many bins would yield exceedingly long computational times and de-
feat the purpose of the tabulation method. On the contrary, having too small a number of bins
can lead to errors on λrec

n and the introduction of unwanted offsets. We thus want to find a
compromise between precision and computational time with the minimum number of bins that
ensures an unbiased reconstruction. An advanced sampling method would require to check all
inter-dependencies of the three variables (time, measured energy and lag) to find the optimal
bin number for each of them, given the data set under study. A simpler and more cost-effective
method we decided to use consists in systematically assigning the same number of bins to the
three variables.

We perform a scan on tables generated with various number of bins and check the recon-
structed λrec

n . We can then build so-called "convergence plots" showing the difference λrec
n −λinj

n

between reconstructed and injected λn as a function of the number of bins. An example of
such plot can be found in Figure 7.5, obtained for GRB 190114C at linear order (n = 1) for
the J&P case. The convergences obtained for all other sources at each order and for each lag-
distance model can be found in Annex B (c.f. Figure B.1). The grey envelope corresponds to
the quadratic sum between the 1σ statistical uncertainty on the reconstruction (standard de-
viation), and the difference between the mean value of the reconstructed λn obtained from the
fit and the distribution itself noted δλn = |λhiston −λfitn |. Although it is treated a bit differently,
this difference will be accounted for as a systematic uncertainty in the following. Note that
these plots were produced without accounting for IRFs as they do not modify the convergence

2The ROOT framework https://root.cern.ch provides predefined functions including a 3-dimensional linear
interpolation algorithm.
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trend. Furthermore, IRFs tend to increase the error on the reconstruction - i.e. thicken the grey
envelope - the convergence point becoming more difficult to spot.

The binning should be chosen as the minimum number of bins required to yield a value of
λrec
n −λinj

n compatible with zero within 1σ error. We however adopted a conservative approach
and actually chose a larger number of bins than the strictly optimal one when the plot fully
converges. It appears there is no generic rule on when such plots should start to converge as it
greatly depends on the range of λn, complexity of the light curve and its definition (linked to
statistics), and many other parameters. The chosen bin numbers are listed in Table 7.3 for all
sources at each correction order and for both lag-distance models.
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Figure 7.5: Example of a convergence plot obtained for GRB 190114C at linear order (n = 1)
for the J&P case.

Source n= 1 n= 2
J&P DSR J&P DSR

[s/TeV] [s/TeV] [s/TeV2] [s/TeV2]
GRB 190114C 200 200 150 150
Mkn 501 50 50 50 50
PKS 2155-304 130 130 130 130
PG 1553+113 50 50 50 50
Crab (M) 200 - 200 -
Crab (V) 70 - 70 -
Vela 150 - 150 -

Table 7.3: Choice of the bin numbers to be used in tables for each source, at each correction
order n and for each lag-distance model.
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7.4.2 For λn 6= 0: calibration
Range for the injected lags

We have optimised our method such that zero lag is yielded when none has been injected.
We now move on to cases with non-zero injected lag with λinj

n 6= 0 and check for biases. To do
so, we perform yet another scan but this time on λinj

n values. Since the tables are defined on the
intervals listed in Table 7.2 and the minimiser is set to test values within the same intervals, we
chose to set a boundary on the injected lag such that

λinj
n,bound|= 5×max(σl,σr), (7.18)

i.e. no more than half of the interval on which λn is defined. The only exception to this rule
of thumb concerns the pulsars. Indeed, as we have mentionned in Section 7.1.2, the solution to
prevent event leakage consists in only considering ηn that ensure φi−ηnκn(z)Ent ∈ [0,1[ which
may be in contradiction with the previous condition. From Equations 7.1 and 7.6, we get that
in order for all events to stay within the period interval, we need:

ηinj
n,bound <

( ∆φmax rp
κn(z)Enmax

∣∣∣
∆φmax=1

= rp
κn(z)Enmax

)
. (7.19)

If ηinj
n,bound≥λ

inj
n,bound/rp, then the same boundary condition as other sources is used and |ηinj

n,bound|=
5×max(σl,σr).

The only cases for which the condition in Equation 7.19 is not met is for the data sets of
the Crab pulsar at quadratic correction order. The modified ηinj

n,bound obtained in these cases
were still big enough for most events to leak from the period interval on which the phasogram
is defined (see Table 7.1). However it was not viable to further reduce ηinj

n,bound as the interval
would become too small, and the reconstruction would be completely dominated by the par-
ticularly large reconstruction uncertainty. As a selection based on the time, measured energy
and ηn ranges is applied to the shifted events, any event leaking out of these ranges are not
taken into account in the analysis and thus simply lost. We thus decided to apply a cut on
the maximum energy of the range and lose very high energy photons (which would have been
lost either way). The energies are then reduced to Emax = 3.6 TeV and Emax = 3 TeV for the
MAGIC and VERITAS data sets respectively.

Calibration plots and the method performance

Calibration plots show the reconstructed lag λrec
n as a function of the injected one λinj

n .
Examples for one individual source (GRB 190114C) and all the sources combined at linear order
for the J&P case can be found in Figure 7.6. The calibrations for all individual sources and
combinations for all orders and lag-distance models can be found in Annex B (c.f. Figures B.2
and B.3). The combinations tested here are:

• Crab M + V combines the two Crab pulsar data sets from MAGIC (M) and VERITAS
(V);

• PSR combines the three pulsars (Crab MAGIC, Crab VERITAS and Vela);

• AGN combines the three AGNs (PKS 2155-304, PG 1553+113 and Mkn 501);
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(b) All sources, n= 1, J&P.

Figure 7.6: Example of calibration plots for an individual source (a) and a combination (b).

• AGN+PSR combines six data sets with all the pulsars and all the AGNs;

• GRB+PSR combines four data sets with all the pulsars and the GRB;

• GRB+AGN combines four data sets with all the AGNs and the GRB;

• All combines all the seven data sets with (three pulsars, three AGNs and the GRB).

For this work, we produced calibration plots with five points sitted at λinj
n = {−5,−2.5,0,2.5,5}×

max(σl,σr), with the exception of Crab data sets for n = 2 for the reasons discussed in the
above paragraph. The grey envelope corresponds to the 1σ error accounting for statistical un-
certainties only, as systematics need to be estimated separately. A linear function defined by
λrec
n = a×λinj

n + b is then fitted to the plot, with expected values a = 1 and b = 0 for a perfect
reconstruction. Having b 6= 0 indicates the presence of an offset while a 6= 1 indicates the method
is biased. This sanity check allowed us to spot and fix many issues within the code.

These plots ultimately provide an estimation on the performance of the method on various
scenarii. Several observations can be made here:

• All the calibration plots have a symmetric envelope except for the ones featuring the GRB
190114C. This is most likely due to the highly asymmetric shape of this source light curve
(afterglow defined by a curved power law). When applying λinj

n ≤ 0, the light curve is
monotonous and no peak can be used as reference points. Instead, the index of the power
law is used to estimate the lag λn. On the other hand, for λinj

n � 0 the peak starts to
move into the time window on which the light curve is defined and drastically improves
the performance of the lag estimation, thus yielding a lesser statistical uncertainty and
thinner uncertainty envelope.

• The n = 2 plots appear more unstable and further from the ideal linear function λrec
n =

λinj
n . This is explained by the leakage of events (i.e. λnEnκn(z) < tmin or λnEnκn(z) >

118



7.5 Statistical and systematic uncertainties

tmax) which is emphasised for the quadratic correction order. The bigger the maximum
energy Emax, the more events are susceptible to leak and provoke a bias. Although in
most cases this leakage is negligible or even nonexistent, it is accentuated by the energy
migration induced by IRFs. For data sets with migration matrices particularly unprecise,
the leakage can start to become sensible. This was actually the biggest issue faced for
GRB 190114C and PG 1553+113 analysis. From the combination of their especially steep
energy spectral indices (resp. α= 5.43 and α= 4.8) with their unprecise migration matrices
and acceptance, a large fraction of events was lost after the transformation. To solve this
problem, some migration matrices have been re-simulated and fitted with a higher precision
which helped reduce the overall bias.

• The calibration plots for pulsars are especially coarse as compared to other sources. This
is again due to the leakage of events and the small injected lags. Indeed, as the injected lag
is small, the uncertainty starts to become comparatively large. It is equivalent to zooming
on a portion of the plot. As a consequence, the variations will become more prominent
and give a feeling of coarseness to the plots.

• The combination plots appear to be smoother than the individual ones. This can be
explained by the increased statistics which tends to smooth out or blur the irregularities
brought by each source.

• The combination plots also appear to be dominated by the most stringent source (i.e.
the one with the smallest uncertainty envelope), which in turn explains why combinations
featuring the GRB retain the specific asymmetry of that source. Generally speaking, we
have that GRBs are more constraining than AGNs, themselves more constraining than
PSRs.

Except for the Crab and Vela pulsar in the quadratic cases which revealed to be especially
challenging cases, all the calibration plots show a reconstruction with a maximum error of 10%,
i.e. the bias parameter is such that 0.9 < a < 1.1. The offset parameter b is on the other hand
usually compatible with zero within its uncertainty. In most cases, the bias is reduced to less
than 5%. It is then safe to assume the method shows first-rate performance and should provide
reliable results when applied to actual data.

7.5 Statistical and systematic uncertainties

One of the sources of systematic uncertainties is the template model that is built to approx-
imate a LIV-free emission (light curve shape and spectral index). Some of the other sources of
uncertainties arise from the detection itself with instrument performances, event reconstruction
and selection cuts. In particular, we need to account for the energy scale of the instrument and
the ratio between signal and background events. The combination of various instruments and
a proper treatment of IRF is however expected to decrease such uncertainties. A last source of
error can be found in the fit applied to the λrec

n distribution introduced in the previous section
as δλn.

Except for δλn, the uncertainties listed above are propagated as nuisance parameters with
profile likelihoods. As this operation tends to make the likelihood computation much heavier,
the systematic uncertainties are studied without accounting for IRFs. The log-likelihoods are
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thus written as:
L(λn,~θ) = LS(λn,~θ) +

∑
~θx

L~θx
(~θx). (7.20)

~θx is a sub-vector of ~θ which includes:

• ~θT the light curve template parameters;

• θα the spectral index for the signal energy distribution;

• θSBR the signal to background ratio;

• θES the energy scale;

• θz the source distance or redshift.

It is possible to make a simple and viable assumption where L~θx
(~θx) = exp

[
L~θx

(~θx)
]
follows a

normal distribution, leading to the log-likelihood following a χ2 distribution:

L~θx
(~θx) =

[
θx,i− θ̄x,i

]2
2σθx,i

. (7.21)

This assumption is made for all nuisance parameters except for the template parameters ~θT which
requires a different treatment. One can either account for uncertainties on each parameter in ~θT
as nuisance parameters in the LS(λn,~θ) log-likelihood leading to L ~θT

( ~θT ) = 0. Alternatively, one
can evaluate errors directly from the template function. Using the template light curve function
for signal Cs(ti,~θT )≡Cs(ti−λnκn(z)Ent )

∣∣∣
λn=0

, and considering the template temporal function

Cs(ti,~θT ) at ti can be assimilated to a one-event likelihood function, we have:

L ~θT
(~θT ) =

NT∑
i=0

log
[
Cs(ti,~θT )
NCs

]
(7.22)

with NT the number of events in the template light curve and NCs the normalisation function
of Cs. The second option was preferred for this work.

In order to study the impact of each nuisance parameter, Equation 7.21 is computed for a sin-
gle parameter such that L~θx

(~θx) = 0 except for the one nuisance parameter that is tested. Finding
the λn for which we have L(λn,~θ) = 1 provides the statistical and systematic uncertainties on the
reconstruction for a given nuisance parameter. The total uncertainty is then computed as the
quadratic sum of each individual systematic and statistical uncertainty. They are presented in
Table 7.4 for the J&P case and Table 7.5 for the DSR case, for each source and each combination.

It appears that the main uncertainty at linear correction order for individual sources is the
statistical uncertainty on the light curve template. This confirms the lack of knowledge and
precision on the source itself and its primary emission to be the main drawback of the maximum
likelihood method. For the quadratic correction order, the inaccuracy on the energy distributions
prevails in some cases with the energy scale or error on the power law index now dominating the
systematic uncertainties. This is again reasonnable as the LIV effect is coupled with the square
of the energy E2 and could overshadow the light curve template uncertainty. The dominant
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systematic uncertainty for combinations of sources is then given by the most stringent source in
the sample.

7.6 Results and discussion on the QG energy scale
From Equation 7.1, the quantum gravity energy scale writes:

EQG,n =
[ 2
n+ 1

(
λn+

√
δ2
stat+σ2δ2

syst

)
H0

] 1
n

. (7.23)

δstat is the statistical error taken as the standard deviation (σr for subluminal and σl for su-
perluminal cases) of the asymmetric Gaussian fitted on the λrec

n distribution. δsyst is the total
systematic error (see Tables 7.4 and 7.5) computed for a confidence level of 68%. Lastly, σ is
a real number allowing to set the confidence level3. This expression becomes an upper limit
when no energy-dependent time delay can be found. All the results reported below are taken as
upper limits. As limits obtained for pulsars are the same with the J&P and DSR models, only
J&P limits are reported. Tables 7.6 and 7.7 summarise all the upper limits obtained for the
subluminal and superluminal cases respectively, both with and without systematic uncertainties
accounted for. The results are commented in the following sections.

7.6.1 Individual sources and combinations

In accordance with previously published results (c.f. Table 6.1), GRB 190114C yields the
most constraining limits on EQG,n thanks to its high redshift, large statistics, and wide energy
range, even though only the afterglow has been detected. Similarly to what has been observed in
calibration plots, the combinations are dominated by the most constraining source in the sample.
Therefore, GRB 190114C dominates and sets the trend to any combination it is included in.
Although only one GRB was tested in this work, we expect any other GRB would yield similar
results and dominate combinations. Note that the detection of a GRB prompt emission should
yield even much stronger constraints.

When the GRB is not included in combination samples, AGNs start to dominate. In particu-
lar, a competition between PKS 2155-304 and Mrk 501 appears. The former tends to dominate
at the linear order thanks to its high redshift (zPKS ∼ 5zMkn) and event statistics, while the
latter tends to dominate at the quadratic order thanks to its energy range reaching higher ener-
gies than PKS 2155-304 with EMkn

max ∼ 2EPKS
max . Even though its redshift is the highest of all the

sources included in this work, PG 1553+113 is left out of this competition due to its smaller
number of events, lower signal to background ratio and limited energy range.

When only PSRs are included in a sample, the combination appears to be dominated by the
Crab pulsar since its signal to background ratio, energy range and distance are outclassing the
Vela pulsar ones. Still, pulsars appear to have a marginal impact on the overall combination due
to their closeness. Although a very large redshift does not ensure the dominance of a source,
a very low distance tends to become a great handicap and yield marginal impact to the limits.
However, as the limits provided by pulsars are independent of any lag-distance approach, they
provide model free constraints and set a reference for comparison with other sources.

3Setting σ = 1 leaves the CL at 68%, σ = 2 brings the CL up to 95%, σ = 3 brings it up to 99.7%, etc.
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Source Correction Template Energy Background Uncertainty on Distance/redshift Reconstruction All syst.
order statistics scale normalization power law index uncertainty uncertainty combined

[s/TeVn] [s/TeVn] [s/TeVn] [s/TeVn] [s/TeVn] [s/TeVn] [s/TeVn]

GRB 190114C n= 1 17.8 6.9 8.0 9.4 < 7.7 3.0 25.6
n= 2 9.4 12.4 1.7 15.4 < 9 4.2 24.1

PKS 2155-304 n= 1 101 11.7 < 20 < 22 17.8 < 3.3 107
n= 2 21.8 19.3 0.7 8.1 12.0 < 2.2 37.4

Mrk 501 n= 1 155 56 < 51 49 1. < 8.5 197
n= 2 11.2 18.3 < 10.3 9.3 0.19 < 1.6 28.8

PG1553+113 n= 1 631 150 324 < 361 112 < 64 727
n= 2 916 638 537 < 552 338 < 112 1282

Crab V n= 1 897 137 < 73 142 145 < 25 1135
n= 2 1141 410 < 264 694 265 < 174 1820

Crab M n= 1 371 66 7 23 74 < 11 416
n= 2 167 64.5 61 24 48 < 72 190

Vela n= 1 1.36 × 104 1.03×104 0.46×104 < 1.3×104 1.30×103 < 5.87×103 2.28×104

n= 2 1.0×105 2.05 × 105 0.48×105 < 1.5×105 1.57×105 < 0.95×105 3.05×105

Crab (M+V) n= 1 357 49 < 56 32 61 < 32 398
n= 2 161 59 45 59 38 < 83 197

PSR n= 1 355 52 < 58 38 58 < 11 394
n= 2 90 71 49 24 62 < 55 138

AGN n= 1 89.5 12 < 15 3.7 15.8 < 2.9 94.9
n= 2 10.1 11.1 < 6 6.2 3.4 < 1.3 19.7

AGN+PSR n= 1 85 11 < 18 5 15 < 2.9 91
n= 2 9.6 10.9 < 8 5.9 4.5 < 1.1 17.8

GRB+AGN n= 1 17.8 5.8 6.8 8.3 1.4 3.3 24.5
n= 2 6.8 7.8 < 6.6 9.0 1.7 1.4 16.2

GRB+PSR n= 1 17.5 6.7 7.9 9.1 1.0 3.2 24.9
n= 2 8.1 11.3 1.6 12.7 2.8 < 1.1 19.4

All n= 1 18.0 5.8 6.7 8.2 1.5 4.1 24.8
n= 2 7.5 7.7 < 6.2 8.2 2.4 4.8 16.4

Table 7.4: Summary of systematic uncertainties given for all sources and combinations simulated
for the J&P case. The dominating uncertainties are shown in orange.

Source Correction Template Energy Background Uncertainty on Distance/redshift Reconstruction All syst.
order statistics scale normalization power law index uncertainty uncertainty combined

[s/TeVn] [s/TeVn] [s/TeVn] [s/TeVn] [s/TeVn] [s/TeVn] [s/TeVn]

GRB 190114C n= 1 26.2 10.2 11.9 13.9 < 11.2 5.5 38.0
n= 2 18.0 25.5 3.8 30.0 6.2 10.6 47.8

PKS 2155-304 n= 1 113 12.7 < 22.5 < 24.2 17.3 < 3.6 119
n= 2 25.8 23.7 3.4 7.0 14.8 < 2.9 45.6

Mrk 501 n= 1 160 58 < 53 51 1. < 8.0 204
n= 2 12.0 19.6 < 11 10.0 0.2 < 1.8 30.9

PG1553+113 n= 1 968 311 545 < 555 < 522 < 104 1131
n= 2 2200 1545 1259 < 1377 295 < 250 2965

AGN n= 1 98.4 12.9 < 17 4.2 14.8 < 3.2 103
n= 2 11.1 13.0 < 6.6 7.3 2.1 < 1.5 22.5

AGN+PSR n= 1 94 12 < 19 4.3 15 < 3.0 99
n= 2 9.1 11.9 < 8.2 6.1 3.9 < 1.2 19.1

GRB+AGN n= 1 26.2 7.7 9.1 11.2 2.4 1.7 34.7
n= 2 10.1 11.2 < 8.5 9.8 1.7 4.3 21.7

GRB+PSR n= 1 26.0 9.7 11.3 13.3 1.8 3.9 37.4
n= 2 8.0 18.0 < 15.4 18.5 6.5 < 2.5 28.7

All n= 1 27.0 7.7 8.7 10.9 2.8 < 4.5 35.6
n= 2 10.1 11.0 < 0.96 8.3 3.2 < 4.2 19.8

Table 7.5: Summary of systematic uncertainties for all sources and combinations simulated for
the DSR case. The dominating uncertainties are shown in orange.
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Source
EQG,1 EQG,2

J&P DSR J&P DSR
(1018 GeV) (1018 GeV) (1010 GeV) (1010 GeV)

w/o syst. w/ syst. w/o syst. w/ syst. w/o syst. w/ syst. w/o syst. w/ syst.
GRB 190114C 9.2 4.0 6.5 2.7 14.2 8.3 9.5 5.8
PKS 2155-304 2.8 1.0 2.6 0.9 8.2 6.2 7.2 5.5
Mrk 501 1.1 0.5 1.1 0.5 9.6 7.1 9.3 6.9
PG 1553+113 0.17 0.11 0.10 0.07 1.3 1.0 0.87 0.68
Crab (M) 0.80 0.65 - - 3.0 2.5 - -
Crab (V) 0.48 0.10 - - 1.5 0.94 - -
Vela 5.1×10−3 3.5×10−3 - - 5.6×10−2 5.5×10−2 - -
Crab (M+V) 1.0 0.28 - - 3.3 2.6 - -
PSR 1.0 0.28 - - 3.3 2.8 - -
AGN 3.0 1.1 2.8 1.0 10.8 8.3 10.5 7.9
AGN+PSR 3.3 1.2 3.0 1.1 10.6 8.5 10.1 8.3
GRB+PSR 9.2 4.1 6.6 2.8 14.3 9.2 9.1 7.0
GRB+AGN 9.5 4.1 6.9 3.0 14.5 9.7 11.4 8.2
All combined 9.5 4.1 7.0 2.9 14.4 9.7 11.1 8.4

Table 7.6: 95% CL limits obtained for individual objects and combinations for the subluminal
case.

Source
EQG,1 EQG,2

J&P DSR J&P DSR
(1018 GeV) (1018 GeV) (1010 GeV) (1010 GeV)

w/o syst. w/ syst. w/o syst. w/ syst. w/o syst. w/ syst. w/o syst. w/ syst.
GRB 190114C 8.4 3.9 5.0 2.6 10.0 7.7 6.7 5.3
PKS 2155-304 2.8 1.0 2.5 0.9 7.8 6.0 7.1 5.5
Mrk 501 1.1 0.5 1.1 0.5 9.5 7.1 9.2 6.8
PG 1553+113 0.16 0.11 0.10 0.07 1.2 1.0 0.80 0.66
Crab (M) 0.77 0.65 - - 3.0 2.5 - -
Crab (V) 0.43 0.10 - - 1.4 0.94 - -
Vela 5.1×10−3 3.5×10−3 - - 10.0×10−2 5.7×10−2 - -
Crab (M+V) 0.9 0.28 - - 3.3 2.6 - -
PSR 0.9 0.28 - - 3.2 2.8 - -
AGN 3.0 1.1 2.7 1.0 10.6 8.3 10.1 7.8
AGN+PSR 3.1 1.2 2.8 1.1 10.4 8.5 9.9 8.1
GRB+PSR 8.3 4.0 5.0 2.6 9.6 8.1 6.4 5.8
GRB+AGN 8.7 4.1 5.6 2.8 12.2 9.3 10.7 8.0
All combined 8.7 4.0 5.7 2.8 12.0 9.2 10.3 8.2

Table 7.7: 95% CL limits obtained for individual objects and combinations for the superluminal
case.
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7.6.2 Subluminal vs. superluminal

A notable difference between the subluminal and superluminal limits is expected when the
λrec
n distribution is highly asymmetric, which is in turn provoked by a highly asymmetric light

curve. For most sources, the light curve distribution is not asymmetric enough for the two limits
to be sensibly different. Figure 7.7 gives a representation of the ratio between the two limits
Esub
QG,n/E

super
QG,n for all possible cases. The difference between the limits tends to be much higher

when systematic uncertainties are not accounted for. Therefore, propagating them to the pro-
file log-likelihood tends to symmetrise the reconstructed λn distribution and blur the difference
between the two cases.

Looking at results without systematic uncertainties (blue data), it appears GRB 190114C is
the source that yields the most noteworthy difference in the results for both cases. While other
sources may show a difference of usually less than 10% and should fall within the uncertainty on
the limit, a 10 to 50% decrease is necessary to go from the subluminal to the superluminal limits
yielded by GRB 190114C or combinations including this source. Even though this difference
is suppressed by the introduction of systematic uncertainties, the ratio Esub

QG,n/E
super
QG,n stays the

largest when the GRB is part of the studied sample.

A recent publication from the large high altitude air shower observatory4 (LHAASO) col-
laboration [107] has possibly excluded the possibility of superluminal effects. Indeed they were
able to estimate the quantum gravity energy scale at linear order (n = 1) for the superluminal
effect to be larger than EQG,1 = 1.42× 1024 GeV, that is to say 5 orders of magnitude larger
than the Planck energy. We however thought it to be interesting to point out the differences
between the two effects.
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Figure 7.7: Limits on EQG,n: comparison between subluminal and superluminal cases with and
without systematics.

4Observatory based in China and in operation since 2019. The detection relies on water pools rather than
telescopes.
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7.6 Results and discussion on the QG energy scale

7.6.3 Systematic uncertainties

Continuing with systematics, Figure 7.8 shows a representation of the subluminal limits
obtained with and without systematic uncertainties for all the different cases. In most cases,
accounting for systematic uncertainties brings down the upper limit such that ESyst

QG,n/E
NoSyst
QG,n ∼

2. The same behaviour is observed in the superluminal case. Furthermore, much like it was
discussed for lag-distance models, we sometimes do observe ESyst

QG,n < EP while ENoSyst
QG,n > EP .

It is therefore of great importance to perform a thorough treatment of systematics in order to
provide a correct interpretation of the results.
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Figure 7.8: Limits on EQG,n: comparison with and without systematic uncertainties for the two
lag-distance formalisms (subluminal only).

7.6.4 Lag-distance models

Regarding the lag-distance formalisms, yet another representation of the limits presenting
them as function of the redshift is given in Figure 7.9 at linear and quadratic orders for the
two models. In accordance with what can be observed in Figure 7.4, differences in the limits
get larger as the redshift of test sources increases. Since κJ&P

n (z) grows faster than κDSRn (z),
the J&P model tends to emphasise the impact of large redshift sources. Combinations therefore
yield similar limits to individual sources analyses as can be verified in Tables 7.6 and 7.7.
Conversely, the DSR model tends to balance all sources contribution such that combinations
yield significantly higher limits on EQG,n.

7.6.5 Comparison with older published limits (subluminal)

The limits obtained in this work together with the ones found in older publications are shown
in Figure 7.10. Overall, there appears to be a good agreement between the results found with our
simulations and the ones obtained in previous analyses with actual data. We can therefore safely
assume the simulated data sets are consistent with the actual data and correctly reproduce them.
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Figure 7.9: Limits on EQG,n: comparison between the J&P and DSR formalisms for the two
correction orders (subluminal only).

The observed differences can then be explained by various factors. Amongst them, we have that
the reconstructed λrec

n is built as the mean of a distribution containing a thousand points (from
the thousand Monte-Carlo simulations) while previous studies had only one measured light curve
and one reconstructed λrec

n . The difference can also be explained by the evaluation methods of
systematic uncertainties which vary from one analysis to the other, but also of the IRFs which
are fully taken into account in this work while they were often approximated as a constant of
energy in previous analyses for a simpler treatment5.

7.7 Summary and perspective
We have presented a newly developed standard method aimed at paving the way for future

multi-instrument population studies for LIV time-of-flight searches. We have introduced the
underlying technique, the maximum likelihood method, and how it was adapted to a multi-source
analysis with the combination strategy. A particular care has been given to the background,
instrument response and uncertainty treatment. Moreover, two distinct lag-distance approaches,
J&P and DSR, have been tested and confronted for the first time in this work. The method
has been tested and calibrated with a representative selection of seven sources - one GRB, three
AGNs and three pulsars - that were previously analysed. Upper limits on the quantum gravity
energy scale EQG have been derived for all individual sources and a relevant set of combinations.
Several aspects have been tested:

• The limits obtained for individual sources are comparable to the ones obtained in previous
publications suggesting a correct calibration of the method.

5This approximation was justified by the fact the effective area was mostly constant on the considered energy
range.
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Figure 7.10: Limits on EQG,n: comparison with limits yielded in previous analyses for the two
correction orders. No limits at the quadratic order were provided in the Crab (VERITAS) and
Vela pulsars publications, hence the missing data points in plot (b).

• Combinations appear to be dominated by the most stringent individual source in the tested
sample, but still improve the limit obtained on EQG.

• The lag-distance models impose different "power relationships" between sources, either
emphasising or balancing sources contributions. The former leads to combinations that
yield similar limits than individual sources, while the latter leads combinations to yield
limits significantly improved as compared to individual sources.

• Systematic uncertainties bring down the limits by a factor two and tend to harmonise the
limits between the superluminal and subluminal scenarii, hence the importance of accu-
rately treating them for a proper interpretation of the results.

The next step will be to adapt the software to the actual data format used by experiments.
This will allow to apply this method on all usable data (previously analysed or not) from
H.E.S.S., MAGIC, VERITAS, and possibly Fermi to yield much stronger upper limits on the
quantum gravity energy scale EQG. The software could also be easily adapted to test other
lag-distance models provided by different theoretical approaches. Similarly to what has been
attempted in Chapter 5, the software could be extended to test the modifications of the EBL
absorption of gamma-rays induced by LIV effects. Finally, although it was not performed in this
study, it would be very interesting to test models of intrinsic delays and estimate their impact
on limits obtained from combinations.
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Conclusion

The work presented in this manuscript is centered on energy-dependent time delays, arising
as one of the most explored signatures of Lorentz invariance violation (LIV). Intrinsic time de-
lays generated by sources radiative processes interfere with these studies and need to be properly
disentangled. It is indeed necessary to accurately discriminate and gauge each contribution to
the detected time delays to provide a legitimate constraint on the energy scale EQG, and thus a
proper interpretation on the tested quantum gravity models. We have discussed two generic and
complementary approaches for discrimination purposes: source modeling and population study.

The first approach is adressed with a time dependent modeling of blazars relying on a
standard scenario involving one zone of leptonic plasma governed by synchrotron-self-Compton
processes. Energy-dependent time delays appear to be easily generated from such a model. A
study on individual model parameters revealed that distributions of time delays as function of
energy follow three specific regimes related to the high energy leptonic population evolution.
These regimes are associated to trends - increasing, decreasing, flat - that can be explained from
the competition between acceleration and radiative processes. The scenario was then extended
to adiabatic and external processes. The associated time delay distributions followed the same
three regimes and could still be fully explained by the competition between processes. The
detectability of non-zero intrinsic delays with IACTs, tested for an archetypal source, seem to
require flaring episodes with a variation of physical quantities that are substantial but still re-
alistic. The lack of detectable time delays in actual observations could be explained by the fact
that multiple physical quantities vary simultaneously and could cancel their respective influence.
A more realistic explanation is that standard flare models need to be reconsidered. A natural
extent of this study would then focus on the effect brought on intrinsic delays by a simultaneous
variation of several parameters. The model could also be improved by extending it to hadronic
processes or transition to a two-zone model.

We also performed a multi-frequency study which highlighted a strong correlation and sym-
metry between time delays in the X-ray (unaffected by LIV) and gamma-ray (where LIV effects
could arise) energy domains. The measurement of the euclidian distance between the low and
high energy time delay distributions helps quantify this correlation. Furthermore, it may hold
a predicting power: deduce intrinsic delays in the gamma-ray energies from the detection and
study of delays in the X-ray domain. The introduction of LIV effects in the simulations leads to
a significant break of the symmetry between the X-ray and gamma-ray domains, thus leading
to higher values of the euclidian distance. We have identified for the first time a threshold on
the euclidian distance above which time delays can no longer be explained by intrinsic effects in
a pure SSC scenario, and strongly suggests the presence of externally-induced time delays. The
next step would be to perform this study with an improved version of the euclidian distance
method, namely the dynamic time warping (usually referred as DTW). A complementary study
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is also performed with hardness-intensity diagrams built from spectral energy distributions which
show hysteresis patterns. Similarly to the euclidian distance, hysteresis loop orientation can help
identify the presence of non-intrinsic time delays. Finally, another phenomenology effect, namely
the modification of kinematic interactions and in particular between gamma-rays and the EBL,
was qualitatively and simultaneously tested through extreme models of EBL absorption. It ap-
peared intrinsic time delays behaviour would not be significantly affected by the LIV-modified
EBL absorption. As the Klein-Nishina effect and the modification of EBL absorption do not
break the delays symmetry, we should be able to quantify the discrepancies and discriminate
between intrinsic and LIV contributions to the observed time delays with this method.

Regarding the second approach, namely the population study, this work aims at preparing
LIV time-of-flight searches that are to be performed with instruments from current generation
(H.E.S.S., MAGIC, VERITAS, Fermi, etc.) or future generations like CTA. An analysis soft-
ware (LIVelihood) based on a maximum likelihood estimation has been developed to provide
a standardised combination method. The method was carefully tested and calibrated using
simulated datasets based on several representative sources observed at TeV energies that had
been analysed in previous LIV studies. A consortium between H.E.S.S., MAGIC and VERITAS
experiments has been created to enlarge the catalog of usable datasets that are to be combined
in this multi-source analysis. For this work, a total of seven sources are used: one gamma-ray
burst, three blazars and three pulsars. The multi-instrument and multi-source strategy - antic-
ipating CTA operations - required a careful treatment of the background, instrument responses
and systematics. Moreover, two lag-distance models are used and compared for the first time.

The attention to details and the will to avoid any approximations in the computation brought
a complex model that required optimisation. A tabulation strategy was implemented in order to
reduce the computational load and bring down the numerical analysis duration to a few hours.
Furthermore, a careful calibration was performed to assess the method performances and correct
eventual issues leading to erroneous results. The upper limits on the energy scale EQG obtained
for individual sources are comparable to the ones obtained in previous publications suggesting a
correct calibration of the method. Results show that combinations are dominated by the most
stringent individual source in the tested sample, but still improve the limit obtained on EQG.
The lag-distance models impose different "power relationships" between sources. One model
tends to emphasise the most stringent source contribution such that combinations yield similar
limits than individual sources analyses. The second model on the other hand tends to balance
all sources contribution such that combinations yield significantly higher limits on EQG. The
systematics appear to bring down the limits by a factor two, pointing out the importance of
an accurate treatment of the uncertainties for a proper interpretation of the results. Moreover,
systematic uncertainties tend to harmonise the limits obtained between the superluminal and
subluminal scenarii. The next step will be to use this method on all usable data (previously
analysed or not) from H.E.S.S., MAGIC, VERITAS, and possibly Fermi to yield much stronger
upper limits on the quantum gravity energy scale. The software could also be easily adapted to
test other lag-distance models, to perform a combined search for time delay and LIV-induced
modifications of high energy spectra, or to test models of intrinsic delays.

The advent of the Cherenkov telescope array (CTA) will certainly help improve the current
state of this study. The announced improvement on the source monitoring, attainable energies,
and data quality should help both approaches on the question of discriminating intrinsic energy-
dependent time delays from LIV-induced ones. Indeed, it should provide a larger number of
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usable data sets for LIV searches, detected at higher fluxes, with higher energies and allow to
detect sources at larger redshift. It will also provide more precise emission spectra which will
help constraining source models that are currently in use.
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Appendix A

Solution of the time dependent SSC
differential equation

The general solution of Equation 4.21 was derived by Katarzynski et al. [71, 76]. For leptons
of energy γ distributed along a broken power law, the solution takes the following form:

N∗(γ,t) =
[
N0S1(γ,t)−n− N0γ

n−2
cut

S1(γ,t)2

]
S2(γ,t). (A.1)

N0 is the initial lepton density, n and γcut are the index and break value of the broken power
law. S1 and S2 are defined as follows:

S1(γ,t) = [I1(t)−γI2(t)]γ; (A.2)

S2(γ,t) = exp
[∫ t

t0
dt′

γCaa(t′)I2(t′)−γCaa(t′)I2(t) +Caa(t′)I1(t)−2I1(t′)Ccool(t′)
γI2(t′)−γI2(t) + I1(t)

]
. (A.3)

For simplicity, the processes coefficients C(x) are parametrised as follows:

Caa(x) = Cacc(x)−Cadia(x) = A

xma
−mr

x
; (A.4)

Ccool(x) = Cssc(x) +Ceic = B

xmb
+E (A.5)

with A,B,C,E constant scalars associated to acceleration, SSC cooling and EIC cooling pro-
cesses respectively. ma, mb and mr are the acceleration, SSC cooling and adiabatic evolution
rates. Finally, the integrals I1 and I2 are defined as follows:

I1(t) = exp
[∫ t

t0
Caa(x)dx

]
; (A.6)

I2(t) =
∫ t

t0
Ccool(x)I1(x)dx. (A.7)
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Let us now derive the analytical expressions of these two integrals which will define the validity
domain for model parameters. Depending on the value of ma (either ma = 1 or ma 6= 1) the
solution will take a different form.

Derivation for the ma = 1 case

In the case where ma = 1, Equation A.6 and A.7 derivation is straightforward. The most
generic expressions (including adiabatic and EIC processes) read:

I1(y) = exp
[∫ y

t0
dt

(
A

t
−mr

t

)]
= exp[A(logy− log t0)−mr(logy− log t0)]
= yA−mr − tmr−A0 ;

(A.8)

I2(x) =
∫ x

t0
dy
(
E+Cy−mb

)(
yA−mr − tA−mr0

)
= tmr−A0

[∫ x

t0
dy EyA−mr +

∫ x

t0
dy CyA−mr−mb

]
= tmr−A0

[
E

1 +A−mr

(
x1+A−mr − t1+A−mr

0

)
+ C

1 +A−mr−mb

(
x1+A−mr−mb− t1+A−mr−mb

0

)]
.

(A.9)

The pure SSC model with no adiabatic effect is recovered by setting mr = 0 and E = 0.

Derivation for the ma 6= 1 case

In the case where ma 6= 1, the derivation of Equation A.6 and A.7 is more complex and
requires to use tricks. Let’s start again with the base expressions:

I1(y) = exp
[∫ y

t0
dt

(
A

tma
−mr

t

)]
= exp

[
A

1−ma

(
y1−ma− t1−ma0

)
−mr (logy− log t0)

]
= tmr0 y−mr exp

[
At1−ma0
ma−1

]
exp

[
Ay1−ma

1−ma

]
;

(A.10)

I2(x) =
∫ x

t0
dy
(
E+Cy−mb

)
tmr0 y−mr exp

[
At1−ma0
ma−1

]
exp

[
Ay1−ma

1−ma

]

= tmr0 exp
[
At1−ma0
ma−1

]
E

∫ x

t0
dy y−mr exp

[
Ay1−ma

1−ma

]
(1)

+ tmr0 exp
[
At1−ma0
ma−1

]
C

∫ x

t0
dy y−mr−mb exp

[
Ay1−ma

1−ma

]
, (2)

(A.11)

with (1) and (2) the parts of the solution associated to EIC and SSC processes respectively.
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We will now focus on part (2) of Equation A.11. We perform a change of variable:

X = Ay1−ma

ma−1 ⇐⇒ y =
[
X(ma−1)

A

] 1
1−ma

, (A.12)

with
dy

dX
=
[
ma−1
A

] 1
1−ma 1

1−ma
X

1
1−ma

−1 (A.13)

and 
t0 −→ t′0 = At1−ma0

ma−1

x−→ x′ = Ax1−ma
ma−1 .

(A.14)

We therefore have:

(2) = tmr0
1−ma

exp
[
At1−ma0
ma−1

]
C

∫ x′

t′0

dX exp−X
[
X(ma−1)

A

]−mr−mb
1−ma

[
ma−1
A

] 1
1−ma

X
1

1−ma
−1

= Ctmr0
1−ma

exp
[
At1−ma0
ma−1

][
ma−1
A

] 1−mr−mb
1−ma ×

∫ x′

t′0

dX exp−XX
1−mr−mb

1−ma
−1.

(A.15)
That last integral is an incomplete gamma function denoted Iγ,i which generic expression reads

Iγ,i(a,x) =
∫ ∞
x

dt exp−t ta−1 = Γ(a)−
∫ x

0
dt exp−t ta−1, (A.16)

with Γ(a) the standard gamma function. This integral is defined only for the following conditions:{
x > 0
a > 0.

(A.17)

This means we have∫ x′

t′0

dX exp−XX
1−mr−mb

1−ma
−1 = Iγ,i

(1−mr−mb

1−ma
,X

)

= Iγ,i

(
1−mr−mb

1−ma
,
Ay1−ma

ma−1

) (A.18)

with the following necessary conditions:
1−mr−mb

1−ma > 0

Ay1−ma

ma−1 > 0.
(A.19)

Similarly, we can show that

(1) = Etmr0
1−ma

exp
[
At1−ma0
ma−1

][
ma−1
A

] 1−mr
1−ma × Iγ,i

(
1−mr

1−ma
,
Ay1−ma

ma−1

)
. (A.20)
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with the following necessary conditions:
1−mr
1−ma > 0

Ay1−ma

ma−1 > 0.
(A.21)

Finally, we have
I2(x) = (2) (A.22)

when only SSC processes are accounted for, or

I2(x) = (1) + (2) (A.23)

when both SSC and EIC processes are accounted for. On the other hand, adiabatic effects can
be neglected by simply setting mr = 0.

Along with the necessary conditions for the incomplete gamma functions to be well defined,
other conditions arise for the denominators to be non-zero. Either way, these conditions are
changed by adiabatic and EIC processes. More precisely, the conditions are more constraining
when these processes are introduced. A summary of these conditions is given in Section 4.1.1.3.
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Convergence and calibration plots
produced with the LIVelihood
software
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Convergence and calibration plots produced with the LIVelihood software
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Figure B.1: Convergence plots for all individual sources. Note the y axis boundaries are different
in each case. The small offsets present after convergence in some cases are absorbed in the
uncertainty enveloppe (gray) when accounting for IRFs.
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Convergence and calibration plots produced with the LIVelihood software
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Figure B.2: Calibration plots for all individual sources. Note the y axis boundaries are different
in each case.
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Convergence and calibration plots produced with the LIVelihood software
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Figure B.3: Calibration plots for various combinations. Note the y axis boundaries are different
in each case.
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Résumé:
Certains modèles de gravitation quantique, développés en vue d’une unification de la rela-

tivité générale et de la mécanique quantique, prédisent une violation de l’invariance de Lorentz
(VIL) à l’énergie de Planck, induisant une vitesse des photons dans le vide dépendante de leur
énergie. La VIL peut être sondée grâce à la recherche de délais temporels dépendant de l’énergie
dans les émissions aux TeV de sources gamma distantes et variables telles que les noyaux actifs
de galaxies, sursauts gamma et pulsars. Toutefois, des délais temporels peuvent également être
générés par les processus radiatifs de ces sources qui nécessitent donc d’être étudiés, en partic-
ulier grâce à la modélisation des mécanismes d’émission. Ce manuscrit présente un modèle de
blazar dépendant du temps basé sur un scénario leptonique, et l’étude des délais intrinsèques
obtenus ainsi que leurs propriétés. De fortes corrélations et symétries entre les délais temporels
dans les domaines des rayons X et gamma sont mises en évidence, qui peuvent être utilisées
pour différencier les effets intrinsèques des effets de propagation. Contrairement au VIL, les
délais intrinsèques ne dépendent pas directement de la distance de la source. Ces deux effets
pourraient donc également être séparés grâce à une analyse multi-sources. Un consortium a été
formé entre H.E.S.S., MAGIC et VERITAS afin d’élargir le catalogue de données exploitables.
Un logiciel d’analyse poussée a été développé dans le but de tester et calibrer une nouvelle méth-
ode standardisée de combinaison de données, menant à des contraintes sur l’échelle en énergie
de gravitation quantique à la fois fortes et robustes.

Mots-clés: Astrophysique des hautes énergies; Blazars; Délais temporels; Modèle leptonique
d’émission; Violation d’invariance de Lorentz;

Abstract:
Some models of quantum gravity, aiming at unifying general relativity and quantum me-

chanics, predict a Lorentz invariance violation (LIV) at Planck energy, expected to induce an
energy-dependent velocity of photons in vacuum. One way to probe LIV is to look for energy-
dependent time delays in the TeV gamma-ray signal coming from remote and variable cosmic
sources such as active galactic nuclei, gamma-ray bursts and pulsars. However, time delays can
also be generated from sources’ radiative processes which are yet to be discriminated from LIV
propagation effects. This distinction should be possible through the modelisation of sources
emission mechanisms. This manuscript presents a time dependent leptonic model of blazar
flares, and reviews the study of intrinsic time delays and their properties. Strong correlation
and symmetry between time delays in the X-ray and gamma-ray domains are highlighted, which
can be used to discriminate intrinsic from propagation effects. Contrary to LIV effects, intrinsic
delays should not directly depend on the source distance. It should also be possible to separate
both effects through population studies. A consortium between H.E.S.S., MAGIC and VERI-
TAS experiments has been created to enlarge the catalog of usable datasets and combine them in
a multi-source analysis. An advanced analysis software has been developed to test and calibrate
a new standardised combination method, which is found to yield strong and robust constraints
on the quantum gravity energy scale.

Key words: Very high energy astronomy; Blazars; Time delays; Leptonic emission model;
Lorentz invariance violation;
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