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Monte Carlo Simulations of Detectors Background and Analysis of
Background Characteristics of the SuperNEMO Experiment in the Modane

Underground Laboratory

Abstract

Presented dissertation thesis is focused on Monte Carlo simulations of background induced
by high energy gamma rays in the SuperNEMO experiment.

The discovery of neutrino masses through the observation of neutrino oscillations re-
newed the interest in neutrinoless double beta decay searches. They can probe lepton
number conservation and investigate the nature of the neutrinos - Dirac or Majorana - and
also probe their absolute mass scale. SuperNEMO experiment aims to search for the signal
of neutrinoless double beta decay. It utilizes a tracking approach by separating the source
isotope from the detector, while combining tracker and calorimetry techniques to detect
emitted electrons independently. The first module of the experiment, the Demonstrator, is
located in Modane underground laboratory. Its background suppression technique is based
on rejection method by reconstructing the topology of events and on background suppres-
sion by selecting radiopure materials used in detector construction and passive shielding.

Part of the thesis is dedicated to evaluation of different sources of background, namely
ambient background sources in the Modane underground laboratory that are unavoidable
to all experiments operating here, and radiogenic sources of neutrons produced in fission
processes of uranium and thorium, and in (α,n) reactions. This part represents an im-
portant component of inputs used for Monte Carlo simulation of the background induced
by high energy gamma rays. A problem with simulation of gamma cascades emitted after
thermal neutron capture in the software package along with the solution of this problem
is discussed.

Another part is dedicated to simulations of attenuation of radiation passing through
different shielding configurations and geometries. This study helps to optimize the final
design of passive shielding used for the Demonstrator module.

All these parts are then used as inputs for the final Monte Carlo simulations of external
background in the SuperNEMO experiment. The main goal of this task is to study and to
identify events that mimic the 2 electron topology of neutrinoless double beta decay.

Keywords: Neutrino, SuperNEMO, Neutrinoless double beta decay, Monte Carlo simu-
lations, Background, Underground laboratory



Monte Carlo simulácie pozadia detektorov a analýza pozaďových
charakteristík SuperNEMO experimentu v podzemnom laboratóriu v Modane

Abstrakt

Predložená dizertačná práca je zameraná na Monte Carlo simulácie pozadia vyvolaného
vysokoenergetickým gama žiarením v experimente SuperNEMO.

Objav hmotnosti neutrín pozorovaním neutrínových oscilácií obnovil záujem o hľadanie
existencie bezneutrínovej dvojitej beta premeny. Pomocou tohto procesu je možné skúmať
zachovanie leptónového čísla a povahu neutrín - Diracovská alebo Majoranovská - a tiež
skúmať ich absolútnu hmotnostnú škálu. Cieľom SuperNEMO experimentu je hľadanie
signálu bezneutrínovej dvojitej beta premeny. Experiment využíva trekovací prístup, čím
oddeľuje zdrojový izotop od detektora, pričom ale kombinuje techniku dráhových detek-
torov a kalorimetrie na detekciu emitovaných elektrónov. Prvý modul experimentu, De-
monštrátor, sa nachádza v podzemnom laboratóriu v Modane. Technika potlačenia poza-
dia je založená na metóde odmietnutia eventov, pomocou rekonštrukcie ich topológie, a
na potlačení pozadia, výberom rádioaktívne čistých materiálov použitých pri konštrukcií
detektora, a takisto použitím pasívneho tienenia.

Časť práce je venovaná zhodnoteniu rôznych zdrojov pozadia, konkrétne zdrojov poza-
dia v podzemnom laboratóriu v Modane, ktoré su neodstrániteľné pre všetky experimenty,
ktoré v tomto laboratóriu operujú, a rádiogénnych zdrojov neutrónov produkovaných štiep-
nymi procesmi uránu a tória a (α, n) reakciami. Táto časť predstavuje dôležitú súčasť vs-
tupov pre Monte Carlo simulácie pozadia vyvolaného vysokoenergetickým gama žiarením.
Takisto je v tejto časti diskutovaný problém so simuláciou gama kaskád emitovaných po
záchyte neutrónov v softvérovom balíku spolu s riešením tohto problému.

Ďalšia časť je venovaná simuláciám potlačenia žiarenia prechádzajúceho cez rôzne kon-
figurácie a geometrie tienenia. Táto štúdia pomáha optimalizovať konečný návrh pasívneho
tienenia použitého pre Demonštrátor.

Všetky tieto časti sú potom použité ako vstupy pre simulácie externého pozadia v
SuperNEMO experimente. Hlavným cieľom tejto úlohy je študovať a identifikovať udalosti,
ktoré napodobňujú dvojelektrónovú topológiu dvojitej bezneutrínovej beta premeny.

Kľúčové slová: Neutríno, SuperNEMO, Bezneutrínová dvojitá beta premena, Monte
Carlo simulácie, Pozadie, Podzemné laboratórium



Simulation Monte Carlo du bruit de fond des détecteurs et analyse des
caractéristiques du fond de l’expérience SuperNEMO dans le laboratoire

souterrain de Modane

Résumé

La découverte récente d’une masse non-nulle pour les neutrinos avec l’observation des
oscillations renouvelle l’intérêt de rechercher de la décroissance double bêta sans émission
de neutrino. Il s’agit de la meilleure approche expérimentale pour sonder la nature de
neutrinos - Dirac ou Majorana - et leur échelle de masse. SuperNEMO est une expérience
basée sur l’utilisation d’un trajectographe et d’un calorimètre afin de détecter individuelle-
ment les deux électrons émis lors de la décroissance. Le premier module démonstrateur de
SuperNEMO se trouve au Laboratoire Souterrain de Modane. Sa technique de réjection
du bruit de fond repose sur la reconstruction de la topologie des évènements ainsi qu’un
suppression en amont des bruits de fond par une sélection de composants radiopurs et
l’utilisation d’un blindage passif.

Une partie de cette thèse est dédiée à l’estimation du bruit de fond radioactif environ-
nant au Laboratoire Souterrain de Modane, dont les neutrons radiogéniques produit par
fission des isotopes d’uranium et de thorium, ainsi que par réaction (α,n). Ces derniers
sont un ingrédient important pour les simulations Monte Carlo du bruit de fond induit
par les rayonnements gamma de haute énergie. Un problème de simulation des cascades
gamma par capture radiative de neutron est notamment discuté avec la mise au point d’une
solution.

Une autre partie du travail porte sur des simulations d’atténuation de rayonnements
à travers différente configurations et géométries de blindage passif, afin d’optimiser le
blindage finale du module démonstrateur de SuperNEMO.

Ces travaux permettent une modélisation du bruit de fond dite externe de l’expérience
SuperNEMO, par l’étude et identification des évènements imitant la topologie "deux élec-
trons" de la décroissance double bêta sans émission de neutrinos.

Keywords: Neutrino, SuperNEMO, Décroissance double bêta sans émission de neutrino,
Simulations Monte Carlo, Bruit de fond, Laboratoire souterrain



vi

Acknowledgements

Throughout the writing of this dissertation I have received a great amount of assistance
and support.

Firstly, I would like to express my sincere gratitude to my supervisors, Pavel Povinec
and Fabrice Piquemal, for their continuous support of my PhD study, motivation, and all
of their advice. I would like to express my deepest appreciation to Emmanuel Chauveau,
for his guidance, valuable consultations, and his unparalleled knowledge in the field. They
all continuously provided encouragement and they were always willing to assist in any way
they could throughout this research project.

My appreciation goes to the CENBG team for accepting me into the institute and for
providing me with the opportunity to join their research group. Without their support, it
would not have been possible to conduct this work.

I would also like to thank the following people who have helped me undertake this
research: a collaboration member and a friend, Miroslav Macko from IEAP CTU in Prague,
whose expertise was invaluable and whose insightful suggestions provided me with the
tools that I needed to choose the right direction and successfully complete my dissertation.
Róbert Breier from FMPH CU in Bratislava for his insightful feedback and who was always
willing to offer a helping hand. Cheryl Patrick from UCL for all the thoughtful comments
and recommendations she provided me with during these academic years. Stanislav Valenta
from FMP CUNI in Prague for providing me with important inputs and outputs from the
DICEBOX software and for all his advice on the related research topic. I also have had
the support and encouragement of Christine Marquet from CENBG who always gave me
constructive comments.

I wish to acknowledge the rest of the SuperNEMO collaboration and the staff of LSM
- the meetings and conversations were vital for the completion of this thesis.

To conclude, I cannot forget to thank my family and friends for all the unconditional
support in this time.



vii

Dissertation Goals

This PhD work is carried out within the context of the SuperNEMO experiment, an ultra-
low radioactive background experiment in the Modane underground laboratory, looking
for Majorana nature of neutrino by searching for the neutrinoless double beta decay.

The application of the Monte Carlo simulations in nuclear and particle physics is vast.
Monte Carlo simulations of detector background characteristics have been important pre-
requisites when working in underground laboratories. They help design detectors, under-
stand their behaviour, compare experimental data to theory and investigate and predict
the origin of the background.

The main goals of the PhD thesis are as follows:

• Simulation and analysis of the external background of the SuperNEMO experiment,
specifically:

– to quantify contributions to the background of the SuperNEMO detector operat-
ing in the LSM underground laboratory, which due to residual cosmic radiation
and radioactive contamination of materials produce high energy gamma rays.

– to quantify contributions to the SuperNEMO detector background from sponta-
neous fission neutrons and from (alpha, n) reactions originating in contaminated
construction materials.

• Study of gamma ray and neutron attenuation by different shielding components also
affected by radioactive contamination of construction materials.

• Participation in data collection and data analysis from the Demonstrator module
without external shielding, and comparison of data and simulation. Namely, partici-
pation in data analysis of measurement with neutron source taken during calorimeter
commissioning stage and comparison of experimental data with Monte Carlo simula-
tion to validate the simulation method used to estimate neutron induced background
rate.

• Direct participation in the completion of the Demonstrator module and its commis-
sioning in the LSM.
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Introduction

Since the 1930s many discoveries and theories providing an insight into the structure
of matter have been made. It was found to be, that the observable matter and radiation
in the Universe are made from elementary subatomic particles ad their composite particles
and antiparticles. These fundamental particles are bound together by three fundamental
forces - electromagnetic, weak, and strong. This knowledge and understanding of how
these fundamental particles and three forces relate are contained in the Standard Model of
particle physics. To this day, our understanding of the world of leptons and quarks is quite
vast and remarkable. However, we know it to be incomplete. Although the Standard Model
of particle physics agrees well with experiments, many questions remain unanswered. Why
do neutrinos have small masses? What is the neutrino mass? Are there additional neutrino
types? What is the dark matter made out of? What is the origin of the asymmetry between
matter and antimatter? Answers to these questions and more pose an important factor to
our knowledge of nature. Study and observation of extremely rare processes may lead us
to these answers.

Investigation of neutrino properties is currently one of the most essential interests for
particle physics and for better understanding the evolution of our Universe. Crucial missing
information in this field could be provided by the observation of neutrinoless double beta
decay (0νββ), a rare decay that violates total lepton number by two units which makes it
forbidden in the Standard Model of particle physics. If observed, it would prove neutrinos
are their own antiparticles - Majorana particles - and they could be the key to the matter-
antimatter asymmetry problem.

But the only hope of seeing such rare events is shielding the experiment from any
background radiation that might swamp the signal. Deep underground laboratories provide
the necessary low radiation background to search for very rare nuclear phenomena that
happen at extremely low rates.

In order to understand the origin of induced background, or to evaluate the background
before the construction of a detector, a background spectrum can be obtained with Monte
Carlo simulations. They became a key tool for studying problems intractable by an ex-
perimental approach only. Monte Carlo simulations have been widely applied in studying
physical processes and interactions to explain measured background spectra or to predict
detector background and to evaluate individual background contributions [1]. That makes
them an excellent tool to study detector background before the system is built and to
optimize background characteristics for planned experiments. They are also useful for op-
timizing the shielding design (material, thickness, etc.) necessary to reduce the background
to a desirable level.

This thesis is focused on Monte Carlo simulations of the background characteristics
of the SuperNEMO experiment. SuperNEMO is a one-of-a-kind experiment searching for
neutrinoless double beta decay in the Modane underground laboratory. The thesis consists
of 7 chapters.

Chapter 1 describes the history of neutrino physics, neutrino properties, and its place
within and outside of the Standard Model. It contains insight into the physics of experi-
mentally observed two-neutrino double beta decay and theoretically predicted neutrinoless



double beta decay. It also summarizes the status of experimental search for 0νββ signal
of current experiments and next-generation experiments.

Chapter 2 focuses solely on the SuperNEMO experiment, its design, goals and detection
technique.

Chapter 3 discusses background sources in underground laboratories that are common
to deep underground experiments: cosmic rays and environmental radioactivity and ra-
dioactive contamination of materials. There is also a brief review of background sources in
the Modane underground laboratory from available literature.

In Chapter 4, possible neutron sources are described. It contains a section with a
theoretical overview of processes that lead to neutron production, such as spontaneous
fission and (α,n) reactions, but also results of calculations and simulations of neutron
yields, production rates, and their energy spectra. In the last part of this section, I use these
results to evaluate the contributions from neutron background sources in the SuperNEMO
Demonstrator.

The last part of this chapter is dedicated to neutron capture gamma cascades. It
contains results of gamma cascades from thermal neutron capture on iron and copper
isotopes from a separate simulation that are later used as input for the SuperNEMO
simulation software.

In Chapter 5, the results of Monte Carlo simulation of external background in the
SuperNEMO experiment induced by high energy gamma rays are presented. It is divided
into two main sections. One is dedicated to ambient gamma ray induced background and
the second one is dedicated to neutron induced background. The details of simulation
software and analysis method are described here. Each of these parts also contains a
subsection dedicated to the analysis of attenuation of ambient radiation by shielding.

Chapter 6 is dedicated to comparison of measured experimental data with our Monte
Carlo based model used throughout the analysis of the external background. Part of this
chapter is dedicated to the simulation of Americium-Beryllium (AmBe) neutron source
which is used for comparison of simulation with experimental data taken with weak AmBe
source during commissioning phase with the Demonstrator. And another part is focused
on comparison of measured and simulated high energy spectra above 4 MeV in the LSM
with the Demonstrator.

Conclusions of this work are summarized in the final Chapter 7.
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Chapter 1

Neutrinoless Double Beta Decay

1.1 Neutrino Properties and Reactions
The Standard Model represents the most precise and widely accepted model of fundamental
particles and three of the four known fundamental forces in the Universe up to date. All
particles of the Standard Model, grouped into two categories of matter and force-carrier
particles, are in Figure 1.1. The building blocks of matter come in two basic types called
quarks and leptons. Within the lepton group, there are six particles arranged in three
generations - the electron (e−) and the electron neutrino (νe), the muon (µ−) and the
muon neutrino (νµ), and the tau (τ−) and the tau neutrino (ντ). Similarly, the six quarks
are also paired in three generations - up and down, charm and strange, top and bottom.
Additionally, every particle is associated with its own antiparticle1. The strong, weak
and electromagnetic forces all have its own corresponding force-carrying particles in the
Standard Model, which belong to a broader group called bosons.

Figure 1.1: Elementary particles of the Standard Model - 3 generations of
matter, gauge bosons and Higgs boson [2]

1Some particles, for instance the photon, are their own antiparticle.
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Figure 1.2: Continuous energy spectrum of β-decay

Neutrinos are fundamental particles created in diverse processes in nature, from nuclear
reactions in the stars, particle decays, and star explosions to accelerators and nuclear power
plants. Out of all known massive particles, they are the most abundant particles in the
universe. Neutrinos are often called the most elusive particles of the Standard Model of
nuclear physics as they are difficult, but not impossible, to detect.

1.1.1 Brief History of Neutrinos
The first indirect physical evidence of neutrino existence was provided by the study of
β−-decay at the beginning of the 20th century. Back then, it was believed that in the
process of β−-decay a nucleus undergoes a transition, where one neutron is transformed
into a proton with emission of an electron:

A
ZX →A

Z+1 Y + e− (1.1)

Experiments, performed by Otto Hahn and Lise Meitner in 1911 and by James Chad-
wick in 1914, showed that the kinetic energies of these electrons had a continuous spectrum,
that is - electrons are emitted from a source with a distribution of energies that extends
from zero up to a maximum energy of the reaction (Q value) (Fig. 1.2), which was in con-
tradiction to the law of conservation of energy. By this law, the emitting electron should
have an energy equal to the difference of the parent and daughter nuclear masses, Q. Wolf-
gang Pauli came with a solution, proposing the emission of another particle that escaped
undetected. In this case, the sum of the energy of the electron and the new proposed
particle should be equal to the Q value. Pauli called this particle "neutron" and in 1931
Enrico Fermi renamed Pauli’s "neutron" to neutrino. In 1934, Enrico Fermi had developed
his famous theory of beta decay including neutrino in this process.
Number of constraints were put on the properties of neutrino so the existing conservation
laws were satisfied. The reaction in Equation 1.1 is already balanced with respect to elec-
tric charge, so neutrino must be neutral. The observed energies of electrons were up to the
maximum allowed Q value of the decay, so neutrino mass must be smaller than instrumen-
tal uncertainties. From the lepton number2 conservation in order to compensate for the
creation of a particle, emitted neutrino must be antiparticle and therefore antineutrino.

2Quantum number that is assigned to all leptons and is 1 for electrons and neutrinos and -1 for their
respective antiparticles.
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Figure 1.3: Scheme of the Cowan-Reines neutrino experiment

And final constraint is that neutrino/antineutrino must have a half-integer spin and be a
fermion in order to couple the total angular momentum to the initial spin of ½ ~. The
Equation 1.1 can be then rewritten accordingly:

A
ZX →A

Z+1 Y + e− + ν̄ (1.2)

Direct Detection of Neutrinos

Due to its elusiveness, it took more than 20 years to directly detect neutrino. The first
experiment that lead to the detection and confirmation of neutrino’s existence was the
Cowan-Reines neutrino experiment in 1956 [3]. The potential of this experiment comes
from the nuclear reaction known as inverse beta decay, in which a proton captures an
antineutrino, resulting in neutron and positron production:

ν̄e + p+ → n0 + e+ (1.3)

A nuclear reactor was used as a source of antineutrinos and the detector consisted of
2 water tanks (a huge number of potential proton targets of the water) with dissolved
cadmium chloride, CdCl2 (detection of the neutron from the neutrino interaction due to
large cross-section of neutron capture by Cd), sandwiched between 3 tanks filled with a
liquid scintillator (Fig. 1.3). Chain of events after antineutrino interaction is then two 0.511
MeV gamma rays from the positron annihilation, followed by the gamma rays from the
disintegration of the nucleus after the neutron absorption by cadmium several microseconds
later. The signatures of the interaction are thus unique making this rare process detectable.
Their result was rewarded with the Nobel Prize in 1995.

The antineutrino discovered by Cowan and Reines in 1956 is the antiparticle of the elec-
tron neutrino. In 1962, the first detection of the muon neutrino interactions was performed
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by Leon M. Lederman et al. [4] and the first detection of tau neutrino interactions was
announced in 2000 by DONUT3 collaboration [5]. Up to now, we recognize three neutrino
flavours- νe, νµ, ντ named after their partner leptons in the Standard Model.

1.1.2 Neutrinos in the Standard Model and Beyond
Neutrinos had to undergo a revision in the formulation of the Standard Model. Originally,
neutrinos were believed to be massless, came in three flavours, and were clearly distinct
from their antiparticles - all neutrinos are left-handed, helicity = -1, all antineutrinos are
right-handed, helicity = 1, and the lepton number is strictly conserved. However, in recent
years neutrino experiments have shown convincing evidence of the existence of neutrino
oscillations, which is a consequence of neutrino masses and flavour mixing.

Neutrino Flavour Mixing and Oscillations

We know now, that there are three neutrinos4 that participate in weak interactions and
couple to W and Z bosons: νe, νµ, ντ 5, and the electroweak eigenstates of these neutrinos
are linear combinations of their mass eigenstates: ν1, ν2, ν3 [6]:

|νf〉 =
∑
i

Ufi |νi〉 (1.4)

where f denotes the flavour state, i denotes the mass state and Ufi is the unitary neutrino
mixing matrix or Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. Equation 1.4 can
be rewritten in matrix form: |νe〉|νµ〉

|ντ 〉

 = UPMNS
fi

|ν1〉
|ν2〉
|ν3〉

 (1.5)

Such mixing between mass and flavour states is leading to the oscillation phenomenon,
a periodical variation of the flavour in the function of time during the propagation of
neutrinos.

Let’s consider the simpler case of the mixing of only two neutrino flavors, νe and νµ.
The relation between flavour and mass eigenstates is as follows [7]:(

|νe〉
|νµ〉

)
=
(
cosθ sinθ
−sinθ cosθ

)(
|ν1〉
|ν2〉

)
(1.6)

where θ is the mixing angle. The two mass components of the neutrino have energies E1
and E2 given by:

Ei =
√
p2 −m2

i ' E + m2
i

2E (1.7)

3Direct Observation of NU Tau
4Number of light particles that have the standard properties of neutrinos with respect to the weak

interactions, and does not apply to sterile neutrinos.
5These neutrinos are often called “active flavour neutrinos”.
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Initial state of neutrino νe at t = 0 is:

|νe〉 = cosθ |ν1〉+ sinθ |ν2〉 (1.8)

After a period of time t, the state can be described by:

|νe(t)〉 = e−iE1tcosθ |ν1〉+ e−iE2tsinθ |ν2〉 (1.9)

The phase difference between the two components results in flavour evolution of the neu-
trino, because the amplitudes of different mass components evolve differently with space
and time, acquiring different quantum mechanical phases. The probability of finding the
neutrino with the muon flavour is [7]:

P (νe → νµ, t) = |〈νµ|νe(t)〉|2 = sin2(2θ)sin2
(

∆m2

4E t

)
(1.10)

and ∆m2 = m2
2−m2

1. For relativistic neutrinos, when approximating L ' t, the transition
probability in Equation 1.10 can be written in the form:

P (νe → νµ, t) = sin2(2θ)sin2
(

1.27∆m2

E
L

)
(1.11)

where L is the flight path in km and E is the energy in GeV. Thus neutrinos oscillate
between different flavours along their path of flight. From Equations 1.10 and 1.11 it is
seen that if neutrinos have equal (zero) masses then there are no oscillations, and that
the neutrino oscillations are only possible if at least one of the mass eigenstates would be
non-zero.

The idea of neutrino oscillations was predicted by Bruno Pontecorvo in paper [8] in
1967 where he discussed the possibilities of neutrino oscillations in the case of two flavour
neutrinos and neutrino oscillations were later discovered in 1998 with neutrinos produced
in the atmosphere in Super-Kamiokande experiment [9], and later also in solar SNO [10]
experiment and with neutrinos from nuclear reactor in KamLAND [11] experiment.

Helicity, Chirality and Antineutrino

The discovery of neutrino oscillations implies that neutrinos are not massless particles, and
hence, it also has implications on two particle properties - helicity and chirality.

The helicity of a particle represents the projection of the particle’s spin along its di-
rection of motion. The helicity operator is given by projecting the spin operator onto the
unit momentum vector:

ĥ =
~̂S~p

|~p|
(1.12)

We can measure the eigenvalue of this operator as helicity. When the spin and momentum
of a particle are parallel, meaning the helicity eigenvalue is positive, we call the particle
right-handed. If the helicity eigenvalue is negative, we say the particle is left-handed. If a
particle is massless, then its helicity has a fixed value in all reference frames, on the other
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hand for a massive particle, the sign of its helicity depends on the frame of reference6 and
thus helicity is no longer an intrinsic property.

Another particle property is chirality. It is Lorentz invariant and is defined through the
operator γ5 (Dirac matrix, product of the four gamma matrices). The left-handed chiral
state is projected by projection operator PL and the right-handed chiral state by PR:

PL = 1
2(1− γ5), PR = 1

2(1 + γ5) (1.13)

Any particle can be written in terms of left-handed and right-handed components. For
massless particles, the chirality and helicity are the same. A massless left-chiral particle
also has left-handed helicity. However, in the case of massive particles chirality and helicity
don’t coincide and a massive particle has a specific chirality. For relativistic particles
chirality almost coincides with helicity, meaning that the left- and right-handed chirality
fields approximately coincide with those of negative and positive helicity, respectively.

The corresponding antiparticle to neutrino (ν) is antineutrino (ν̄) which also carries no
electric charge and has half-integer spin, but has opposite chirality. It has been observed
that all neutrinos in nature are left-handed, while the antineutrinos are right-handed, mean-
ing we only see interactions of left-handed neutrinos νL and right-handed antineutrinos ν̄R.

Neutrino Mass and Mass Hierarchy

While within the Standard Model neutrinos are precisely massless, consequently we say,
that one must go beyond the Standard Model to generate neutrino’s mass. The underlying
physics that lies behind neutrino masses and their mixing may contain neutrino mass terms
of two different kinds: Dirac and Majorana [12].

Particles like quarks and charged leptons derive their masses from an interaction with
the Standard Model Higgs field and are called Dirac particles. Conceivably, the neutrinos
could derive their masses in the same way but with a certain extension of Lagrangian by
including left-handed and right-handed neutrino fields to generate neutrino masses.

For simplicity, let’s neglect flavour mixing. A non-zero Dirac mass requires a particle
to have both a left- and right-handed chiral state and once the right-handed neutrino field
has been introduced, the Dirac mass term has the form:

LD = −mDν̄RνL + h.c7 (1.14)

where mD is the Dirac neutrino mass.
Since the neutrino and antineutrino are both neutrally charged particles, the origin

of their masses could involve a Majorana mass. This would mean neutrinos are Majo-
rana fermions, which can only occur when both the particle and antiparticle are identical,
meaning the antineutrino and neutrino are simply right-handed and left-handed versions
of the same particle. Since the mass term in the Lagrangian couples left- and right-handed
neutrino chiral states, in a Majorana mass term, one of the two coupled neutrino fields
is simply the charge conjugate of the other, such that the right-handed component is
νCL = Cν̄L

T . A Majorana mass term may be constructed out of νL alone, in which case we
have the left-handed Majorana mass (Eq. 1.15), or out of νR alone, in which case we have

6An observer moving faster than the particle will see its helicity in the opposite direction.
7h.c means the Hermitian conjugate
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Figure 1.4: The effects of Dirac and Majorana mass terms in the La-
grangian [6]

the right-handed Majorana mass (Eq. 1.16) [12]:

LML
= −1

2mL(νL)CνL + h.c (1.15)

LMR
= −1

2mR(νR)CνR + h.c (1.16)

and mL, mR are positive, real constant mass parameters.
The different effects of Dirac and Majorana mass terms in the Lagrangian are depicted

in a simplified scheme in Figure 1.4. In constrast to Dirac mass, Majorana mass term does
not conserve the lepton number and when it acts on a ν, it turns it into a ν̄, and vice versa.

There’s also a possibility of mechanism that combines both Dirac and Majorana terms
(e.g. See-Saw mechanism) and any model that includes Majorana masses predicts that the
neutrino mass eigenstates will be Majorana particles [6].

So far, the mechanism by which neutrinos acquire mass and the mass of neutrino itself
are unknown. Experiments observing the oscillations of neutrinos, that measure sin2(2Θ)
(Eq. 1.10), are sensitive only to the difference in the squares of the masses m1, m2 and
m3. While the differences are well determined, the absolute values of these masses are less
certain. Results also show that the mixing matrix contains two large mixing angles and
a third angle that is not exceedingly small, therefore we cannot associate any particular
state |vi〉 with any particular lepton flavour [13].

In general, there are two mass ordering hierarchies:

• The normal hierarchy: m1 <m2 <m3

• The inverted hierarchy: m3 <m1 <m2

The way these masses are ordered is shown in Figure 1.5. The difference in the squares of
the neutrino masses ∆m2

21 = 7.39+0.21
−0.20 × 10−5eV 2 comes from solar neutrino observations

and |∆m2
31| ∼ |∆m2

32| ∼ 2.45+0.032
−0.030×10−3eV 2 comes from atmospheric neutrino observations

[13].
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Direct Neutrino Mass Measurements and Cosmological Constraints on Neu-
trino Masses

Additional constraints can be obtained from the kinematics of weak decays. From energy-
momentum conservation relation in reactions in which a neutrino or an antineutrino is
involved, we can measure the limits on the mass of the flavour neutrino states, which we
label as meff

νe , meff
νµ , meff

ντ .
For example, it is possible to measure the neutrino masses using beta decays of nuclei

with small Q value and short decay life-time by measuring the end part of the beta spectra
[6]. Such conditions are satisfied in the tritium nucleus, with Q = 18.6 keV and T1/2=12.3
y, which decays via beta decay to 3He:

3H →3 He+ e− + ν̄e (1.17)

If E0 is the mass difference between the initial and final nucleus, then the maximum kinetic
energy of the electron is:

Tmax = Q = E0 −me (1.18)

However, in reality, due to a non-vanishing neutrino mass, Q value will be reduced by the
neutrino mass [13]:

Tmax = Q−meff
νe (1.19)

This then provokes a distortion at the end point of the beta spectrum which can be probed
by experiments. The most recent result on the kinematic search for neutrino mass in 3H
decay is from KATRIN experiment which sets an upper limit of meff

νe < 1.1 eV [14].

Due to the unique role of relic neutrinos in the evolution of the Universe and in the
formation of large scale structures, observations of matter clustering allow us to probe the
neutrino mass sum Σmi [14]. But these model dependent methods are heavily influenced
by the selection of data, and the choice of how the neutrino is modelled for cosmological
purposes significantly affects current upper bounds for the sum of the neutrino masses
[15]. The most important probes for neutrino mass in cosmology are anisotropies in the
cosmic microwave background (CBM) and large scale structure (LSS) formation. The
bounds can be tightened by adding information within the framework of a cosmological
model ΛCDM8, such as BAO9 or supernovae data, etc [13]. Recent constraints on Σmi

from Planck measurements of the cosmic microwave background anisotropies, combining
information from the temperature and polarization maps and the lensing reconstruction,
range from < 0.54 eV to < 0.11 eV [16].

Summary of general neutrino properties and current limits are presented in Table 1.1.

Mentioned experiments, however, do not distinguish between Dirac or Majorana neu-
trinos, as the ultra-relativistic neutrino behaviour is almost completely insensitive, under
almost all circumstances, to whether it is a Dirac particle or a Majorana one [6]. The most
sensitive experimental probe of whether the neutrino is Majorana fermion is the rate of
neutrinoless double beta decay.

8Cosmological-constant (Lambda - Λ) Cold Dark Matter (CDM) model
9Baryon Acoustic Oscillation
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Figure 1.5: Ordering of neutrino mass states for the normal and inverted
hierarchies

Table 1.1: Neutrino properties and limits obtained from global analysis of
neutrino data [13, 17]

Property Comment

Charge 0 e neutral

Spin 1
2 fermion

Light neutrino flavours νe, νµ, ντ in association with charged lepton

Interactions weak and gravitation gravitational interaction is extremely weak

If ν mass = 0 neutrinos in one helicity state: left-handed, νL antineutrinos in one helicity state: right-handed, ν̄R
If
ν
mass
>0

dirac fermion particles: νL, νR, antiparticles: ν̄L, ν̄R,

majorana fermion two neutrino states: νL, νR
Mass limits Oscillations

∆m2
21 7.39+0.21

−0.20 × 10−5eV 2 solar neutrino observations

|∆m2
31| ∼ |∆m2

32| ∼ 2.45+0.032
−0.030 × 10−3eV 2 atmospheric neutrino observations

Kinematics of weak decays

meff
νe <1.1 eV (90% CL) 3H→3He +e−+ ν̄e

meff
νµ <190 keV (90% CL) π− → µ+ ν̄µ

meff
ντ <18.2 MeV (95% CL) τ− → nπ + ντ

Cosmology: CMB alone

Σmi < 0.54 eV (95% CL) Planck 2018 data

Cosmology: CMB + background evolution + LSS

Σmi < 0.12 eV (95% CL) Planck 2018 data + BAO

Σmi < 0.11 eV (95% CL) Planck 2018 data + BAO + supernovae data
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1.2 Double Beta Decay and Neutrinoless Double Beta
Decay

Figure 1.6: Simplified schemes of double beta decay (left) and neutrinoless
double beta decay (right)

After the development of Enrico Fermi’s theory of beta decay, the idea of double beta
decay (2νββ) was first proposed by Maria Goeppert-Mayer in 1935 [18]. 2νββ is a nuclear
transition in which two neutrons are simultaneously transformed into two protons inside
an atomic nucleus and two electrons and two electron antineutrinos are emitted from the
decaying nucleus:

A
ZX →A

Z+2 Y + 2e− + 2ν̄ (1.20)

A necessary requirement for double beta decay to occur is that the mass of (Z,A) is
greater than the mass of (Z + 2,A) [19]. The possibility of such transformation is due
to the presence of a pairing interaction between nucleons in the nucleus. This causes an
even-even nucleus with an even number of protons and neutrons to be more stable than the
neighbouring odd-odd nucleus. In this case, the ordinary beta conversion of the even-even
nucleus (A,Z) into the odd-odd nucleus (A,Z+1) is energetically forbidden and the only
possible disintegration channel is the double beta decay. Just like in the standard beta
decay, the energy spectrum of the emitted electrons is continuous. This process, however,
is very rare. Calculations predict the half-life by the following equation:

(T 2ν
1/2)−1 = G2ν |M2ν |2, (1.21)

where G2ν is phase-space factor, and |M2ν | is the nuclear matrix element of the transition.
Half-life periods of ∼ 1018 - 1021 years have been observed [20]. Double beta decays have
been experimentally observed for several isotopes, including 48Ca, 76Ge, 82Se, 96Zr, 100Mo,
116Cd, 150Nd and others. Table 1.2 shows the transitions of these isotopes along with
half-lives of this process, Q values and their natural abundances.

In 1937, Italian physicist Ettore Majorana demonstrated that results of beta decay the-
ory remain the same if neutrino was its own antiparticle - a Majorana particle. In 1939,
Wolfgang Furry then proposed that a double beta decay without emission of antineutri-
nos (0νββ) could occur in ββ emitting nuclei, if neutrinos are Majorana particles in the
following form:

A
ZX →A

Z+2 Y + 2e− (1.22)
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Table 1.2: Examples of ββ emitters [19]

Transition Q value [keV] Half-life∗ [y] Natural abundance [%]
48
20Ca→48

22 Ti 4271 4.4×1019 0.187
76
32Ge→76

34 Se 2039 1.5×1021 7.8
82
34Se→82

36 Kr 2995 0.9×1020 9.2
96
40Zr →96

42 Mo 3350 2.3×1019 2.8
100
42 Mo→100

44 Ru 3034 7.1×1018 9.6
116
48 Cd→116

50 Sn 2802 2.8×1019 7.5
150
60 Nd→150

62 Sm 3367 8.2×1018 5.6
∗ From [20]

The process can be mediated by an exchange of a light Majorana neutrino, or by an
exchange of other particles. In the first case, it can be seen as two subsequent steps: first,
a neutron decays under the emission of a right-handed neutrino which is absorbed in the
second vertex as a left-handed neutrino [19]. Other models which can provide alternative
mechanisms to trigger this decay include, for example, Majoron emission or right-handed
(RH) weak current, or even more exotic models, such as R-parity violating Supersymme-
try (SUSY), or an extra dimensions model. The light neutrino exchange mechanism is,
however, the most commonly postulated decay mode, since it involves the least deviation
from the SM. In this work, the following summary of sensitivities and limits are given for
this mechanism.

Formula for the inverted half-life is given by:

(T 0ν
1/2)−1 = G0ν |M0ν |2|〈mββ〉|2, (1.23)

where mββ is the effective Majorana mass of the electron neutrino. Under the hypothesis
that only the known three light neutrinos participate in the process, the effective mass
equals to:

mββ =
3∑
i=1

miU
2
ei, (1.24)

Uei are the elements of mixing matrix.
This process has not yet been experimentally observed. The decay violates total lepton

number by two units and its observation would imply neutrinos are Majorana fermions no
matter what the underlying mechanism is.

In 0νββ decay, the two electrons carry away all of the decay energy. This would lead to
a summation peak at the end of the combined electron energy spectrum (Fig. 1.7). Thus,
the signal for neutrinoless double beta decay is a peak in the spectrum of the sum of the
emitted electrons at the Q-value of the transition.
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Figure 1.7: Plot of the sum energy spectrum of the emitted electrons for
0νββ decay

1.2.1 Experimental Investigations of Neutrinoless Double Beta
Decay

In the following section, a brief review of some ongoing and next generation experiments
is given, with the description of relevant parameters contributing to the experimental
sensitivity.

Experimental Sensitivity

Experiments searching for the 0νββ signal are sensitive to the half-life of the process. From
the law of radioactive decay, the 0νββ half-life can be evaluated as [21]:

T 0ν
1/2 = ln2 · t · ε Nββ

Npeak

, (1.25)

where t is the measuring time, ε is the detection efficiency, Nββ is the number of decaying
nuclei, and Npeak is the number of observed decays in the region of interest10. This formula
is valid for the case of a positive signal where the peak shows up in the spectrum.

If there is no signal (no peak) detected, the sensitivity of an experiment11 is estimated
as a half-life corresponding to the maximum signal that could be hidden in the background
nb, for which the expression can be written as [21]:

S0ν = ln2 · t · εNββ

nb
(1.26)

Considering real experimental conditions, an estimation for S0ν as a function of the exper-
imental parameters can be written as:

S0ν = ln(2)εNA

W

√
Mt

b∆E , (1.27)

10A particular relevant range in the measurement.
11Often called also "factor of merit".
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where M is the mass of the ββ-emitting isotope, W is its molar mass, NA is the Avogadro
constant, ∆E is the energy resolution and b is the background rate per unit mass, time, and
energy. This is valid under assumption of Poisson statistics, when nb =

√
b ·∆E · t ·M . If

the background level is so low that the expected number of background events in the ROI
is of order of unity (or close to zero), nb is a constant, Equation 1.27 is no longer valid and
the sensitivity is given by [21]:

S0ν = ln(2)εNA

W

Mt

Ns

, (1.28)

where Ns is the number of observed events in the region of interest.
Equations 1.27 and 1.28 emphasize the role of the experimental parameters that con-

strain the experimental sensitivity. Neutrinoless double beta decay is an extremely rare pro-
cess and therefore, its experimental research requires features such as large source masses,
long measurements, good energy resolution and low radioactive background. Of particular
interest is the case when Equation 1.28 is valid, when the background rate is very low and
sensitivity scales linearly with the sensitive mass M and the measurement time t, and not
with the square root of M and t.

The experimental search for 0νββ is extremely challenging, experimental difficulties are
matched by the theoretical ones and all previous searches failed to find a positive signal
setting only the best current half-life limits of >1026 years (Table 1.3) [22].

Source Isotope Selection

Because of the uncertainties related to the theoretical considerations (nuclear matrix ele-
ments, mechanism behind the 0νββ) and experimental techniques, it is important to pursue
the searches with various isotopes. Not all ββ isotopes are suitable as candidate isotopes
as the source isotope selection must be based on maximizing the 0νββ signal over the back-
ground events. Therefore isotope candidates must have a long 2νββ half-life, high Q value
and a large phase space factor (because (T 0ν

1/2) ∼ (G0ν)−1) [23]. The isotopic abundance
also plays a key role as the source mass influences the sensitivity of an experiment.

A Brief Review of Experiments

There are two main types of neutrinoless double beta decay detectors. The majority
of the experiments searching for neutrinoless double beta decay exploits a homogeneous
approach, which means that the detector coincides with the source. They often measure
only the sum energy of the two electrons, but the electrons themselves are never observed
directly. A different approach consists of separating the source from the detector, where
the two electrons are detected independently using tracking and calorimeter techniques.
The energy of electrons is measured with ionization, scintillation or phonon detectors, or
a combination of two techniques.

Semiconductor experiments
In this type of experiment, the source material is some form of a semiconductor and

the isotope under investigation is part of the source. Signal that can be measured comes
from a cascade of electron-hole pairs that originate from ionization of the semiconductor
by emitted electrons from a double beta decay event. The advantage of such detectors
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Table 1.3: T0ν
1/2 and 〈mββ〉 limits (90% CL) determined for various isotopes

Isotope Experiment T0ν
1/2 limit [y] 〈mββ〉 limit [eV]

48Ca ELEGANT VI [24] >5.8 ×1022 <3.5 - 22
76Ge Majorana [25] >1.9 ×1025 <0.24 - 0.52

GERDA [26] >1.4 ×1026 <0.079 - 0.18
82Se NEMO-3 [27] >2.5 ×1023 <1.2 - 3.0

CUPID-0 [28] >2.4 ×1024 <0.376 - 0.77
100Mo NEMO-3 [29] >1.1 ×1024 <0.3 - 0.9
116Cd Aurora [30] >2.2 ×1023 <1.0 - 1.7
130Te CUORE [31] >3.2 ×1025 <0.075 - 0.35

136Xe PandaX-II [32] >2.4 ×1023 <1.3 - 3.5
EXO-200 [33] >1.8 ×1025 <0.15 - 0.40

KamLAND-Zen [34] >1.07 ×1026 <0.061 - 0.165
150Nd NEMO-3 [35] >2.0 ×1022 <1.6 - 5.3

is that the energy resolution is usually extremely good since the number of electron-hole
pairs is proportional to the energy of the emitted electrons.

Among the different semiconductor detector technologies, 76Ge-enriched high-purity
germanium (HPGe) detectors provide the best sensitivity and are the most promising
for scaling to a tonne-scale experiment [22]. HPGe detectors are intrinsically clean, as
impurities are removed in the detector crystal-growing process [22], however, the Qββ value
of germanium is only 2039 keV, and so it lies in a region where contamination from many
external background sources is still possible.

HPGe detectors are used by collaborations such as GERDA12 and Majorana. Recently,
LEGEND13 experiment was formed to pursue a tonne-scale 76Ge-based experiment and
aims to increase the sensitivities for 76Ge in the first phase to 1027 years and in the second
phase up to 1028 years [36]. The phase of the experiment called LEGEND-1000 plans the
exposure of 10 t.y by operating 1000 kg of detectors for 10 years. So far, an initial baseline
design has been established with bare germanium detectors operating in liquid argon. The
active liquid argon (LAr) veto tags external backgrounds depositing energy in the LAr that
subsequently scintillates.

Besides germanium detectors, other semiconductor technologies exist which can poten-
tially provide competitive results, such effort being made by COBRA14 experiment using
a large array of CdZnTe semiconductors.

Bolometer experiments
Bolometers are calorimeters operating at milli-kelvin temperatures that can measure

the energy released in the crystal by interacting particles through their temperature rise.
Bolometer absorbers can be grown from a variety of materials, those including ββ emitters

12The Germanium Detector Array
13Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay
14Cadmium Zinc Telluride 0-Neutrino Double-Beta
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are, for example, nat/130TeO2, 116CdWO4, Zn82Se or 40Ca100MoO4. Excellent counting
statistics in the phonon channel make bolometers energy resolution comparable to that of
semiconductor detectors but working at extremely low temperatures increases the technical
difficulty of building large detectors [22]. Experiments exploiting these techniques are
CUORE15, CUPID16 and AMoRE17.

Scintillator experiments
Scintillator experiments place the ββ emitting candidate isotope inside a scintillating

medium where the emitted particles excite the scintillator atoms and the light is usually
detected by an array of photomultiplier tubes.

Typical isotope candidates for these experiments are 136Xe, which can be dissolved in
liquid scintillators or used as gas, or 48Ca build in crystal scintillators.

Two large experiments have searched for 0νββ in Xe: EXO-20018, which has used Xe
in a time projection chamber, thus combining the ionization and scintillation light for
signal detection, and KamLAND-Zen19, where it has been dissolved as a passive ββ source
in a liquid scintillator detector. Detectors for 48Ca double beta decay measurements are
the ELEGANT VI system and its scale-up detector CANDLES20 using inorganic CaF2
scintillators. Another example of these experiments is the SNO+ experiment [37] that
selected 130Te as its ββ emitting isotope by using tellurium loaded liquid scintillator.

Tracking experiments
The approach of tracking experiments consists of separating the source from the detector

but combining tracker and calorimetry techniques. They usually sacrifice the source mass
for extremely good background rejection which is based on reconstructing the topology of
measured events. The separation between source and detector also implies that any isotope
candidate can be studied. It is currently the only detector technology capable of measuring
full ββ kinematics (individual electron energy, opening angle between the two electrons)
which can lead to distinguishing certain underlying mechanisms for 0νββ decay [22]. The
most noteworthy tracker-calorimeter experiments are the NEMO-321 experiment and its
successor SuperNEMO. NEMO-3 detector had been operating in the Modane Underground
Laboratory from 2003 to 2011. It installed foils of the source isotope between tracking
detectors and plastic scintillator calorimeters (Figure 1.8). This technique can detect each
electron as it is emitted from the source foil, measure its energy and angular distribution
and, thanks to a magnetic field, its charge. The two isotopes with the largest masses were
100Mo (6.914 kg) and 82Se (0.932 kg) with smaller amounts of 48Ca, 96Zr, 116Cd, 130Te
and 150Nd. Another experiment with the capabilities for calorimetry and tracking is the
NEXT22 [38] experiment using high-pressure xenon gas time projection chambers.

15Cryogenic Underground Observatory for Rare Events
16CUORE Upgrade with Particle Identification
17Advanced Molybdenum Based Rare Process Experiment
18Enriched Xenon Observatory
19Based on KamLAND experiment in the Kamioka underground neutrino observatory in Japan
20Calcium fluoride for the study of Neutrinos and Dark matters by Low Energy Spectrometer
21Neutrino Ettore Majorana Observatory
22Neutrino Experiment with a Xenon TPC
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Figure 1.8: Left: Design of the NEMO-3 experiment. Middle: Source
distribution. Right: NEMO-3 2e− event reconstruction.

Future Experimental Prospects

Many criteria need to be considered when optimizing the design of future experiments.
The desirable features are a well performing detector, with good energy resolution, giving
the maximum information on decay kinematics, large isotopically enriched source mass and
very low background. Unfortunately, it is impossible to optimize these features simultane-
ously in a single detector and one has to find the best compromise between incompatible
requests. As of today, there is no clear experiment that satisfies all criteria.

Currently, there is R&D towards improved detectors in all detection techniques aiming
for better sensitivity for the 0νββ decay. Many of these next generation experiments will
be sensitive to 〈mββ〉 ∼ 75 meV, or even ∼ 10 meV for tonne scaled experiments, and
they will offer the potential of a discovery at T 0ν

1/2 exceeding 1028 years [22]. Thus, from
the predictions on effective Majorana mass mββ as a function of the lightest neutrino mass
shown in Figure 1.9, they will be able to explore the Majorana neutrino mass if neutrinos
have the inverted mass hierarchy [39]. Probing the Majorana neutrino mass through 0νββ
decay assuming normal mass hierarchy would require multi-tonne-scale detectors and very
high background suppression.

Figure 1.9: The dependence of mββ on the absolute mass of the lightest
neutrino
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Chapter 2

SuperNEMO Experiment

The SuperNEMO experiment is a next generation neutrinoless double beta decay ex-
periment building on the successes of its predecessor NEMO-3, using the same tracker-
calorimeter technology. The first module of the detector, the Demonstrator, is located at
the Laboratoire Souterrain de Modane (LSM), in the middle of Fréjus road tunnel in the
French Alps near Modane. The baseline design of the detector consists of 20 such mod-
ules each containing approximately 5-7 kg of enriched and purified ββ emitting isotope
deposited on a thin supporting foil, which, unlike NEMO-3, are planar in geometry. It
aims for half-life sensitivity of 1026 years, corresponding to an effective neutrino mass of
50-100 meV. The baseline isotope currently used in the Demonstrator is enriched 82Se. The
source isotope is placed in between trackers that are surrounded by calorimeter walls on
both sides, which makes this unique tracking and calorimetry technique, along with an ex-
tremely radio-pure detector and surrounding materials, sufficiently eliminating background
events by full reconstruction of event topology. Each module is completed with a magnetic
field followed by the installation of passive shielding against gamma rays and neutrons (Fig.
2.1). The ultimate goal is to observe the experimental signature of 0νββ, which are two
electrons originating in the same location on the source foil, with the energy sum equaling
the Q value of the decay. The full three-dimensional reconstruction of charged particle
tracks, as well as energy measurements also makes it possible to analyze both the angular
and electron energy distributions, which are two quantities that may provide a method to
distinguish between different mechanisms of 0νββ.

2.1 SuperNEMO Design
The design of the experiment is not solely a scaled-up version of NEMO-3, but to meet
required ultralow levels of background, a considerable amount of R&D was dedicated to
source foil production and to tracker and calorimeter development.

2.1.1 Source Foils
The 82Se source isotope selection was based on maximizing the 0νββ signal over the 2νββ
background events as they are indistinguishable from those in the 0νββ mode in the energy
region of interest (ROI). Isotope candidate must therefore have a long 2νββ half-life. 82Se
also has a high Qββ value, equal to 2.995 MeV, to avoid common backgrounds that can
deposit energy extraneously within the ROI. Another important factor for selection is
the natural abundance of the isotope and a possible (and relatively easy) enrichment and
purification process.
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Figure 2.1: Design of the Demonstrator module and proposed shielding

In essence, the foils are composed of enriched 82Se isotope with 10% PVA glue (polyvinyl
alcohol as a binder) of an average thickness of 286 µm (∼ 40mg/cm2), in a thin Mylar
plastic envelope (12 µm thick) for mechanical strength. The foils are 2.7 m long and 13.5
cm wide. Keeping the foils thin increases the chance that emitted electrons will escape
the foil into the tracker. In total, the Demonstrator has 34 selenium foils installed side by
side in a frame with total 82Se mass of ∼7 kg. As it is important to have a very clean
and radiopure detector, the selenium source was purified by teams at Tomsk and Dubna
in Russia, to remove contamination from naturally-occurring beta decaying elements. The
required radiopurity is 208Tl < 2 µBq/kg and 214Bi < 10 µBq/kg to achieve the sensitivity
T1/2(ββ0ν) > 1026 years.

2.1.2 Tracker
The tracker used in SuperNEMO is a wire-chamber tracker with octagonal drift cells op-
erating in Geiger mode (operating voltage of around 1800 V). Cells are formed of a 2.7 m
long, 40 µm diameter, stainless steel anode wire, surrounded by 8 grounded cathode wires
(50 µm in diameter). The gas mixture used as the drift gas is He with addition of 1% of
Ar and 4% of ethanol used as a quencher. Each cell consists of a central anode wire that is
surrounded by field shaping wires, and a cathode at each end to pick up the signal (Figure
2.2).

When a charged particle passes through the cell the ionized gas mixture yields approx-
imately 6 electrons per 1cm. These electrons then drift toward the anode with different
drift time depending on whether they were produced close or far away from the anode wire
because the layout of the field and ground wires establishes a varying electric field within
each cell. In the high field region close to the wire, further ionisation produces UV light
which induces new ionisation further out. This sets up a chain reaction, and gas of ionised
plasma spreads out from the initial track point, parallel to the wire [40].

The time difference between the Geiger discharge arriving at each end of the cell pro-
vides the longitudinal location of the track and the time for the resulting electron shower
to drift to the anode tells us the particle’s distance from the center of the cell [41]. This
way, the full three-dimensional track reconstruction of charged particles is possible.

There are 2034 such cells assembled into cassettes and a total of 113 cassettes are built
on both sides of the source foils.
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Figure 2.2: SuperNEMO tracker cell scheme

To reach the target sensitivity the radon concentration inside the tracking volume must
be < 0.15 mBq/m3.

2.1.3 Calorimeter
The SuperNEMO calorimeter is a scintillator based detector divided into two main walls
on the outside of the detector to measure the energy of particles that reach the edge.
Each calorimeter wall consists of 260 optical modules - each module is a large volume
plastic scintillator block (256 mm x 256 mm with a minimum thickness of 141 mm and a
hemispherical cutout) coupled to an 8-inch photomultiplier tube (PMT) (Fig. 2.3). Each
module is covered by individual iron shielding.

Figure 2.3: Individual optical module and its iron shield

The calorimeter is segmented into walls to measure the individual energy of each particle
and each scintillator block is thick enough to fully absorb the electrons that are produced
in 0νββ-decay and to efficiently identify gamma rays. In the final stage, optical modules
are also positioned above, below and to the sides of the tracker, giving a total of 720 such
modules fully enclosing the geometry.

The main requirement of the calorimeter is to provide good time-of-flight measurements
and energy resolution for low-energy electron detection and to detect incoming electrons
simultaneously originating from the same vertex in the source foil [42]. The calorimeter
requires a scintillator that has a high light yield, low electron backscattering, which is pro-
portional to Z2, high radiopurity, good timing and a relatively low cost. An R&D program
was undertaken with Czech manufacturer NUVIA CZ to improve the performance of the
plastic scintillator. This improved scintillator, known as enhanced PS, has a composition of
1.5% p-Terphenyl (p-TP) and 0.05% POPOP [42]. Energy resolution better than 8%/

√
E

(FWHM) has been reached and in order to increase the light collection, the blocks are
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Table 2.1: SuperNEMO calorimeter parameters [42]

Geometry and dimensions

256 × 256 ×194 mm

Composition of plastic blocks 1.5% p-Terphenyl (p-TP) + 0.05% POPOP
(1.4-bis(5-phenyloxazol-2-yl) benzene)

PMT reference Hamamatsu R5912MOD

Energy resolution 8% (FWHM) at 1 MeV

Time resolution < 400 ps at 1 MeV

PMT radiopurity
A40K= 150 mBq/kg
A214Bi= 65 mBq/kg
A208T l= 4 mBq/kg

Scintillator radiopurity
A40K=2.2 mBq/kg
A214Bi < 0.3 mBq/kg
A208T l < 0.1 mBq/kg

wrapped in 600 µm Teflon on the sides followed by 12 µm aluminised Mylar on all the
faces [43].

Table 2.1 summarizes selected SuperNEMO calorimeter parameters. The activity levels
of radioisotopes of the plastic scintillators selected for SuperNEMO are negligible compared
to the PMTs, and in particular, the PMT glass, which are the main source of contamination.

To ensure radiopurity, all components of the optical module, particularly the PMT
components and glass, were analysed using high purity Germanium (HPGe) detectors.

The core assembly of source foils, tracker and main calorimeter walls of the SuperNEMO
module is shown in Figure 2.4.

2.1.4 Magnetic Field and Shielding
To aid in particle identification inside the tracker, a solenoid coil will be placed around
the detector producing a magnetic field of ∼ 25 Gauss with direction orientation along z
axis, +z, parallel to the tracker drift cells. This way it is possible to distinguish between
electrons and positrons based on their track curvature in the tracker chamber.

The successful completion of the Demonstrator module will be followed by the instal-
lation of passive shielding. Since external radioactivity has a big impact on the detector
background, which might influence the experiment, the task to define and optimize the
shielding materials and thickness becomes important. The collaboration carried out R&D
regarding the choice of materials and thickness in order to suppress significantly intrinsic
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Figure 2.4: The core assembly of SuperNEMO module



Chapter 2. SuperNEMO Experiment 22

background including ambient external gamma rays and neutrons.
The best shielding against gamma rays is achieved with a substance that has a high density
of electrons (which correlates with a high mass density) and also a high atomic number Z.
For shielding against gamma rays radiopure iron is considered.
Neutron shielding materials are typically constructed from low atomic number elements
(hydrogen, carbon, and oxygen) with high scattering cross sections that can effectively mod-
erate or thermalize incident neutrons. In SuperNEMO experiment water and polyethylene
(also with the possible addition of boron) are considered.

2.1.5 Event Reconstruction and Selection
As it was mentioned before, one of the strengths and advantages of combining the calorime-
try and tracking techniques is that we are able to obtain charged particle trajectories in
the tracker, and energy and time-of-flight (TOF) information from the calorimeter.

Alpha particles can be identified as short and straight tracks. Electrons can be identified
via track with negative curvature due to the magnetic field associated with calorimeter
hit. Positrons can be identified via tracks with opposite curvature to that of an electron.
Gamma particles are identified as calorimeter hits that are not associated with tracks. The
conceptual scheme of this approach is shown in Figure 2.5.

Tracks can be extrapolated into the foil to determine appropriate event vertex. This
allows us to identify particles and to isolate true 0νββ events. Given these conditions, a
strict set of selection rules can be applied for double beta decay events - two electrons with
a common vertex in the foil:

• Events must include only two negatively charged particles each associated with one
calorimeter hit - in a magnetic field pointing upwards when the initial velocity of the
electron is forwards, then the electron acceleration will point to the left, corresponding
to a negative track curvature

• Event vertices must be traced to originate within the source foil and the tracks must
have a common vertex - the vertex separation precision the detector will have in
operation is ∼3.2 cm

• The TOF of the electrons in the detector must be consistent with the hypothesis of
the electrons originating in the source foil

• Maximum of two calorimeter hits with energy deposited in individual calorimeter
blocks above 50 keV are allowed, with at least one of the hits being above 150 keV -
to avoid flooding the event trigger with noise

• The number of delayed Geiger drift cell hits due to α particles must be zero

• There are no hits in the γ-veto detectors with energy > 50 keV and zero calorimeter
hits not associated with a track

• For 0νββ the total energy of the event is between 2.8 and 3.2 MeV - this energy
interval is the region of interest (ROI) for 82Se, the optimal window for the best
0νββ sensitivity
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Figure 2.5: Reconstruction of the event topology and particle identification

Internal and External Probabilities

In order to establish the origin of the event, whether the event is internal or external (from
an external source), the time-of-flight information plays a key role. For example, an event
that has one electron crossing the foil can mimic an event that has two electrons coming
from the foil. To discriminate those events, internal and external TOF probabilities are
calculated.

The calculations go as follows: We assume that two particles are emitted from a common
origin inside the foil and at least one particle leaves a track and we have two different
calorimeter hits with associated times tmeasi (i=1,2). TOF of a particle to travel the distance
li is:

ttofi = li
βi
. (2.1)

Where βi for electrons is:

βi =
√
Ei(Ei + 2me)
Ei +me

, (2.2)

and Ei is calibrated energy deposited in the calorimeter and me is electron rest mass.
The time of emission of each particle tinti is:

tinti = tmeasi − ttofi = tmeasi − li
βi
. (2.3)

The time distributions are approximately Gaussian and so a χ2 test may be used with an
appropriate χ2 variable:

χ2 =
[(tmeas1 − l1

β1
)− (tmeas2 − l2

β2
)]2

σ2
tint1

+ σ2
tint2

. (2.4)

σ2
tinti

is the variance of the emission timing measurement which is dominated by contribu-
tions from uncertainties on the measurement time σtmeasi

, σβi and σli .
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Figure 2.6: Internal probability distribution for an internal 2e event and
for an external event [44]

If we assume that an incident photon interacts in the first PMT and causes either a
crossing electron or an external 1e1γ event, TOF of the particles is then given1:

ttof = l1
β1

+ l2
β2
. (2.5)

In this case, the χ2 variable is constructed as:

χ2 =
[(tmeas2 − tmeas1 )− ( l1

β1
+ l2

β2
)]2

σ2
tint1

+ σ2
tint2

. (2.6)

To convert the χ2 values into a probability, following equation can be used:

P (χ2) = 1− 1√
2π

∫ χ2

0
x−1/2e−x/2dx. (2.7)

For an internal event the internal probability distribution is expected to be equally dis-
tributed from 0 to 1, while it is expected to be peaked for an external event (Fig. 2.6).
The standard SuperNEMO cuts that maximize signal over background are: Pinternal > 4%
and Pexternal < 1%.

2.2 Timescale and Sensitivity
The goal of the Demonstrator module is to demonstrate that the background target level
can be reached and to explore the prospects of the combination of calorimetry and tracking
techniques. The Demonstrator contains up to 7 kg of target isotope reaching half-life
sensitivity 6.5×1024 years with 2.5 years of data (17.5 kg·y exposure), which is close to
the limit already set by this generation 0νββ experiments. However, if the signal were
discovered by one of these experiments in the near future, the Demonstrator could prove
useful in confirming the result.

1For a photon accompanied with the emission of an electron, β = 1



Chapter 2. SuperNEMO Experiment 25

Table 2.2: Summary of detector properties and target levels
of SuperNEMO experiment

Detector property Demonstrator Full scale

Isotope 82Se 82Se / 150Nd / 48Ca.

Source mass 7 kg 100 kg

Tββ0ν
1/2 sensitivity ∼ 1024 years > 1026 years

〈mββ〉 sensitivity 0.2 - 0.4 eV 0.05 - 0.1 eV

Energy resolution 8% (FWHM) @ 1 MeV, 4% @ 3 MeV

Time resolution < 400 ps at 1 MeV

Foil radiopurity 208Tl < 2 µBq/kg , 214Bi < 10 µBq/kg

Tracker radon concentration < 0.15 mBq/m3

PMT radiopurity 40K= 150 mBq/kg, 214Bi= 65 mBq/kg, 208Tl= 4 mBq/kg

Scintillator radiopurity 40K= 2.2 mBq/kg, 214Bi< 0.3 mBq/kg, 208Tl< 0.1 mBq/kg

The modular design of the experiment allows it to be scaled up to reach higher sensi-
tivities, as the mass can be increased in a straightforward manner. Full-scale SuperNEMO
of 20 modules could contain 100 kg of source isotope.

It also provides the means to discriminate different underlying mechanisms for the
neutrinoless double beta decay by measuring the decay half-life and the electron angular
and energy distributions. Using the experimental selection criteria summarized in the
previous section the signal efficiency was found to be 28.2% for the light neutrino exchange
mechanism and 17.0% for the right-handed current mechanism in 82Se [45]. 0νββ half-lives
that SuperNEMO is expected to exclude are up to 1026 years assuming the light neutrino
exchange mechanism and 1025 years assuming the right-handed current mechanism for 82Se
[45]. SuperNEMO detector properties and target levels are summarized in Table 2.2.

2.3 Background of the Experiment
A serious concern of all neutrinoless double beta decay experiments is the background.
Experiments detect the electrons of 0νββ signal in the final state - the sum of the electron
energies will be a peak at the Qββ value. The decay rate is extremely low and the peak is
expected to be very small.

Background events to the SuperNEMO experiment is reduced to all events in topologies
that could mimic the topology of the two electrons emitted from a common vertex in the
source foil in the energy region of interest. The energy region of interest is around the
Qββ value of 82Se (2.995 MeV). This energy region is shared by the natural radioactivity
contamination present in the detector materials and environment surrounding the detector.
Only two natural radio-isotopes have Qβ value greater than 3 MeV - 214Bi from 238U decay
chain, and 208Tl from 232Th decay chain, see Table 2.3. Their simplified decay schemes
showing the strongest transitions are in Figures 2.7 and 2.8. In both decays, the beta
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Figure 2.7: Decay scheme for the beta decay of 214Bi showing the strongest
gamma transitions (energies are in keV)

decay can proceed via an excited state which is accompanied by the emission of photons.
Both beta decay and beta + gamma decay can mimic two electron events via mechanisms
described in the next section.

Table 2.3: Isotopes with Qβ value greater than 3 MeV

Isotope Decay chain Half-life [min] Qβ [MeV]
214Bi 238U 19.7 3.272
208Tl 232Th 3.05 5.001

Thanks to the unique tracking-calorimeter technique, SuperNEMO is able to identify
and reconstruct different particles and obtain topological information. We distinguish
background according to their origin, either internal or external to the source foil.

2.3.1 Internal Background
Internal background originates from radioactive contaminants inside the source foil. Insep-
arable background from the 0νββ signal is the tail of 2νββ decay distribution. Attenuation
of the 2νββ background depends on the energy resolution of a calorimeter. A relatively
slow 2νββ rate also helps to control this background.
Internal background events also come from beta decays of 214Bi and 208Tl, which are present
in the source foil at some level. Mechanisms by which they can mimic the 0νββ signal are:

• Beta decay accompanied by an electron conversion

• Beta decay followed by Møller scattering of beta particles in the source foil
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Figure 2.8: Decay scheme for the beta decay of 208Tl showing the strongest
gamma transitions (energies are in keV)

• Beta decay to an excited state, deexcitation by emitting a gamma ray followed by
Compton scattering

2.3.2 External Background
External background originates from radioactive contaminants outside of the source foil,
which interact with the detector. These events can be produced by crossing electrons or
by gamma ray interactions (if an external γ ray is not detected by a scintillator) by:

• e−e+ pair creation - if the two photons from a subsequent positron annihilation remain
undetected or the sign of the positron track curvature is incorrectly reconstructed

• Double Compton scattering

• Compton scattering followed by Møller scattering

Figure 2.9 depicts the scheme of these different mechanisms.
There is also a possibility of an external crossing electron background event when

γ hits the first scintillator block from outside and then creates an electron by Compton
scattering within the last few millimetres of the scintillator closest to the tracking detector.
This Compton electron crosses the detector through the foil before hitting the second
scintillator, depositing its entire energy (Fig. 2.10).

Another background contribution comes from the radon (222Rn) contamination in the
tracking chamber, namely from β-decay of 214Bi in the immediate vicinity of the source
foil (Fig. 2.11). Although the origin of these backgrounds is external, radon progenies
can be deposited on the source foil surfaces, thus providing a continuous input of 214Bi
contamination.

Potential sources of these background contributions in underground laboratories will
be discussed in detail in the following chapter.
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Figure 2.9: Mechanisms of internal (bottom) and external (top) back-
ground events production

Figure 2.10: Crossing electron event

Figure 2.11: Radon background event from the radon contamination inside
the tracking detector
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2.3.3 Assessment of Background Sources of the SuperNEMO
Demonstrator

The number of expected events for backgrounds after baseline cuts for 2.5 year exposure
time of the Demonstrator was analysed by the collaboration from several sources. Domi-
nant sources include the tail of the 2νββ signal, internal background from 208Tl and 214Bi
contamination of source foil bulk, radon contamination of source foil surface and tracker
wire bulk and surface, and external background from PMT contamination. The number
of expected events in the 82Se ROI, for all internal and external backgrounds currently
investigated2, are summarized in Table 2.4.

Table 2.4: Number of expected events after 2.5 years of exposure

Background
source

Number of expected
background events

2νββ 0.03 ± 0.02 (stat)
208Tl internal 0.82 ± 0.02 (stat) ± 0.16 (syst)
214Bi internal 1.41 ± 0.07 (stat) ± 0.01 (syst)
208Tl external 0.60 ± 0.42 (stat) ± 0.06 (syst)
214Bi external 0.10 ± 0.01 (stat) ± 0.01 (syst)

The background rate from 2νββ signal is reduced mainly due to its relatively long
half-life.

214Bi is a progeny of 222Rn that can deposit on the source foils or on tracker cells close
to the foil, where it decays to 214Po via β-decay. To identify and reject events from 214Bi,
it is possible to use the short half-life of 214Po, which decays via α-decay (T1/2 = 164.3
µs), to identify this type of bismuth-polonium (BiPo) event by searching for a prompt
electron track from 214Bi β-decay followed by a delayed alpha track originating from the
same location from 214Po α-decay (Fig. 2.11). And thus, in a 0νββ search, events, where
there are any number of delayed Geiger hits close to the electron vertex, are removed.

Similarly, events where an electron is accompanied by gamma candidates, out of which
at least one is of high energy, are rejected to remove 208Tl background events (according
to its decay scheme in Figure 2.8 there is almost always a 2.61 MeV gamma).

Time of flight (TOF) information plays an important role in establishing the origin
of an event, as it is possible to tell whether an electron crosses the foil or whether there
are two electrons that both originated within the foil. Crossing electron events from β-
decays outside of the source foil (Fig. 2.10) or events where an external photon interacts
in the calorimeter and the source foil (Fig. 2.9 (top)) are suppressed by TOF cuts. In
the case of photon interaction via pair production in the foil, the outgoing positron and
electron have different track curvatures in the magnetic field. However, at higher energies
of β particles, the tracks are less curved and thus the curvature of positron might still be
miss-reconstructed.

2Preliminary internal analysis of the collaboration
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There are currently additional analysis techniques under investigation to further remove
external and internal background events without a significant reduction in sensitivity to
0νββ, such as BDT3 or other machine learning techniques.

Other sources of external background are predominantly due to radioactive decays
within the rock surrounding the laboratory, and neutron captures. Contributions of flux
from the surrounding rock and from neutron captures are expected to be small compared
to the radioactivity of components of the detector. If the gamma incident on the detector
is ambient, in order for it to produce a background event, it must not be detected by
a scintillator and furthermore, it must have high enough energy to produce background
event in the energy ROI4. Then, if its interaction in the foil happens through e−e+ pair
production, the sign of the positron track curvature must be incorrectly reconstructed.
The estimation of this external background for the Demonstrator was missing for the latest
design of the module and is investigated in this work, with a beforehand complete review
of environmental background sources, fluxes and energy spectra in the LSM. Thus, these
contributions are further investigated in this work to complete the external background
model to include the flux incident on the detector.

3Boosted Decision Trees
4High energy gammas interact mainly via pair production and excess energy of the pair-producing

gamma ray is given to the electron-positron pair as kinetic energy, therefore its energy should be at least
1.02 MeV + Qββ (2.99 MeV).
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Chapter 3

Background Sources in Underground
Experiments

The very first underground experiments date back to the 1960s when they were performed
in deep mines. Scientists have come a long way since then building underground labo-
ratories of different depths and sizes all across the world. Important characteristics of
underground laboratories are: the laboratory depth, as the cosmic ray flux decreases with
increasing depth; surface and heights of laboratory halls with thick enough layers of over-
burden rock; horizontal access to the laboratory is preferred over vertical access; geology of
the site must be suitable for excavation of stable cavities; and funding and capital invest-
ment are another important factors, etc. The depth of underground laboratories is usually
expressed in meter water equivalent (m w.e. or mwe). It is a standard measure of cosmic
ray attenuation in underground laboratories making them easier to compare to each other
in terms of how shielded they are from cosmic rays.

Deep underground laboratories shield sensitive detectors from cosmic radiation and this
allows us to search for and to study the rarest phenomena and processes in nuclear and
particle physics. The challenge towards greater sensitivities in underground experiments
turns into a fight against background induced by radioactive contamination of surround-
ings. In order to design and build a system with the lowest possible background, there
is a need for understanding individual sources of background and the estimation of each
component.

Although each deep underground experiment has different physics goal, sensitivity and
detection techniques, there are several common background components coming from the
underground environment. In general, three main components are contributing to the
detectors background:

• Cosmic rays

• Environmental radioactivity and radioactive contamination of materials

• Electric noise and disturbances

3.1 Cosmic Rays
There are primary and secondary cosmic rays. Primary cosmic rays originate somewhere in
the universe (from supernovae or active galactic nuclei) and enter the Earth’s atmosphere.
More than 90% of them are individual protons, the rest are alpha particles, heavier nuclei
of other elements and high energetic electrons. Secondary cosmic rays are produced in
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Figure 3.1: Cosmic ray shower in the atmosphere

interactions of primary cosmic rays with the atmosphere. The cascade of particles that
this collision produces via electromagnetic and hadronic cascades is known as an air shower.
Particles produced in such showers are protons, alpha particles, electrons and positrons,
neutrons, muons, pions, photons and neutrinos. We can divide secondary cosmic ray
particles into three categories:

• Soft component (electrons, positrons, γ-rays)

• Hard component (muons)

• Nucleonic component (hadrons)

The soft component originates from electromagnetic showers and consists of electrons,
positrons and photons, and the hard component originates from hadronic showers and
consists of muons. The penetration ability of the muon component is higher. At sea level,
both components are observable, but only a small fraction of these particles can penetrate
the rock overburden. Figure 3.1 shows a simple scheme of a cosmic ray shower in the
atmosphere and its penetration underground.

In fact, by going underground, it is possible to shield most of the cosmic radiation, thus
if detectors operate in deep underground laboratories, the cosmic ray component should
be negligible [1, 46], as all components of cosmic ray induced background are substantially
decreased by surrounding rock and only muons and neutrinos reach the underground lab-
oratories. Once the majority of cosmic ray component has been reduced, these remaining
cosmic background sources become dominant:
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• Residual high energy muons produced in the decay of pions and kaons induced by
interactions of high energy cosmic rays in the upper atmosphere

• Cosmogenic neutrons produced in cosmic ray muon reactions with rock nuclei and
experimental setup components

Cosmic Ray Muons

High energy cosmic muons are able to penetrate deeply and can reach any underground
location. Muons energy loss, as they travel through overburden rock and material, happens
through ionization, pair production, bremsstrahlung, and photoproduction [46]. Through
these interactions, muons can produce electromagnetic and hadronic showers accompanied
by the production of high energy gammas and neutrons which can contribute to the overall
background. Consequently, the residual muon intensity and angular distribution of high
energy cosmic muons are key parameters in site selection and in evaluation of the sensitivity
of underground experiments. Accurate measurements of muon energy spectra underground
are very difficult to obtain and one has to often rely on simulations taking as an input the
muon energy spectrum at surface [47].

Gaisser’s parametrization of the muon flux at sea level can be used reliably for repre-
senting and describing the muon flux for ground experiments [48]:

dIµ
dEµ

= 0.14E−γµ ( 1
1 + 1.1EµcosΘ

επ

+ 0.054
1 + 1.1EµcosΘ

εK

), (3.1)

where the differential flux is in units of cm−2s−1sr−1GeV −1, Eµ is the muon energy in GeV,
γ is the spectral index, Θ is the zenith angle and εK=850 GeV, επ=115 GeV. Equation
3.1 is valid for flat Earth approximation - the curvature of Earth is neglected (Θ < 70◦).
This parametrization is often coupled to a software package for transporting the surface
muons through the rock overburden profile of the site to obtain muon flux or muon energy
and angular spectra underground. Similarly, several models exist that fit the experimental
data to a Depth-Intensity-Relation to obtain muon intensity and energy and angular dis-
tributions corresponding to the slant-depth of the laboratory. For example, prediction of
muon flux from [49] has a form:

Iµ(h0) = 67.97× 10−6e
−h0
0.285 + 2.071× 10−6e

−h0
0.698 , (3.2)

where h0 is the vertical depth in km.w.e. and Iµ(h0) is in units of cm−2s−1.
The muon energy spectrum discussed in [48] and [49] in a form of:

dN

dEµ
= Ae−0.4h0(γ−1)(Eµ + 693(1− e−0.4h0))−γ, (3.3)

where A is a normalization constant, can be used to approximate local muon energy spec-
tra at different slant-depths. Figure 3.2 shows the total muon flux measured at various
underground laboratories as a function of the equivalent vertical depth1 with a fit to Eq.
3.2, and Figure 3.3 shows calculated local muon energy spectrum for various underground

1Data collected from available literature
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Figure 3.2: Total muon flux as a function of the equivalent vertical depth
for different underground sites [50]

laboratories. In Figure 3.2, a typical decrease of muon intensity with the depth of the un-
derground laboratory can be seen. Although several other parametrizations exist, to have
more detailed descriptions of the muon fluxes and their spectra, Monte Carlo simulations
are often needed.

Incident muons by themselves, when interacting directly with a detector, do not con-
tribute by a significant amount to the background of underground experiments. They
are either vetoed or easily identified and distinguished. However, there are muon-induced
background events, caused by spallation products created by high energy muons, danger-
ous to the background of low-energy experiments. Especially dangerous can be secondary
neutrons produced in the detector itself or construction and surrounding materials, such
as overburden rock, shielding, etc.

Cosmogenic Neutrons

Cosmogenic neutrons are produced by hadronic and electromagnetic interactions in matter,
especially in high Z materials, by incident cosmic ray muons. Cosmogenic neutrons can be
characterized by [51]:

• the neutron yield Yn(A,Eµ) [nµ−1(g/cm2)−1] that presents the ability of matter to
produce neutrons under the effect of muons

• the production rate Rn(h) = Iµ(h)Y (Eavg,µ) [ng−1s−1]

• the neutron flux Φn = Rn(h)lnρ [ncm−2s−1],

where Eavg,µ is the average muon energy at depth h, Iµ(h) is the itensity of muons , lnρ is
an attenuation length for neutron flux.

In deep underground laboratories, the yield Yn is mainly the sum of these processes that
contribute to the overall production: neutron yield from neutron production in hadronic
showers, yield of photoneutrons from photo-nuclear reactions associated with electromag-
netic showers, and muon interactions via virtual photon (muon spallation). Additionally,
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Figure 3.3: Local muon energy spectrum at various underground sites
normalized to the vertical muon intensity [49]

secondary neutron production may arise from neutrons produced in mentioned processes.
The energy spectrum of these neutrons can extend up to several hundred MeVs or even
GeVs.

Establishing the shape of the spectrum and the overall yield is, however, difficult. The
calculations performed in recent years for various materials using software packages are
often in disagreement and there is only a limited number of measurements with significant
errors, which are not always consistent between each other or with calculations. The reason
for this inconsistency lies in the difficulty of experimental measurements due to the low
muon flux underground and the complexity of measuring neutron energies over a wide
range.

Similarly to the situation of cosmic ray muons in underground laboratories, various
parametrizations or Monte Carlo simulation tools are established and widely used for cos-
mogenic neutron yields calculations. For example, empirical universal formula obtained by
fitting to experimental and calculated data but derived from the phenomenology of muon
energy loss has a form of [51]:

Y UF
n = 4.4× 10−7E0.78

µ A0.98, (3.4)

where it can be seen that the neutron production rate increases with the average atomic
weight A of the material and muon energy Eµ. This dependence can roughly be seen in
Figure 3.4, where neutron yields from available data in literature in different targets (Al,
Cd, Fe and Pb) at different averaged muon energies are plotted.

Often, only a scaling law for neutron yield versus the atomic mass A, Yn ∝ A0.8 or
Yn ∝ (Z2

A
)0.92, is used [47, 49].

Following convenient parameterizations of the neutron energy spectra based on fitting
functions of simulated data are often used- the parameterization from Wang et al. [56]:

dN

dEn
= A(e

−7En

En
+B(Eµ)e−2En), (3.5)
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Figure 3.4: Dependence of cosmogenic neutron yield on the muon energy
in target materials (data from [52, 53, 54, 55])

where A is a normalization factor and B(Eµ) = 0.52 − 0.58e−0.0099Eµ , or the Mei-Hime
parameterization [49]:

dN

dEn
= A(e

−a0En

En
+B(Eµ)e−a1En) + a2E

−a3
n , (3.6)

where ai are fit parameters and B(Eµ) = 0.324− 0.641e−0.014Eµ .
Simulated differential energy spectra for muon-induced neutrons at various underground

sites coming from the rock overburden with fitting functions from Equation 3.6 are shown
in Figure 3.5.

Since high-A targets, such as lead or iron that are used for passive γ-ray shielding, have
higher cosmogenic neutron yields, they behave like a neutron source under muon irradiation
[47]. This means that a passive shield made of high Z material designed to suppress gamma
radiation of environmental radionuclides turns itself into a source of background, especially
for experiments observing recoiling nuclei since muon-induced neutrons have a very hard
energy spectrum and can interact via elastic scattering.

Neutrinos

Neutrino interactions are an irreducible source of background since no detector can be
shielded from the ambient flux of incident neutrinos. These include neutrinos produced in
fusion reactions in the Sun, anti-neutrinos produced in radioactive decays in the earth’s
mantle and core, neutrinos and antineutrinos from general atmospheric phenomena, and
neutrinos produced during the births, collisions, and deaths of stars, particularly the ex-
plosions of supernovas. Neutrinos interact only by the weak force and gravity, hence the
reaction cross sections are much smaller than those of other particles. However, it has been
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Figure 3.5: Muon-induced neutrons at the various underground sites [49]

pointed out that neutrino-nucleus coherent elastic scattering is a background to direct dark
matter detection. Direct detection dark matter experiments search for χN → χN ′ scat-
tering, a very rare signal process which is identified by observing recoiling nuclei N ′. The
νN → νN ′ cross section can be as large as 10−39 cm2, producing nuclear recoils with kinetic
energies up to tens of keV [57].

3.2 Environmental Radioactivity
Major contributions to the background come from primordial, cosmogenic and anthro-
pogenic radionuclides present in the environment. Dominant sources are:

• Contributions from radioactive contamination and radioactive impurities of the de-
tector and its surroundings (laboratory walls concrete, shielding, electronics, etc.)

• Radon contamination of the laboratory air

• Neutrons produced in fission processes of uranium and thorium, and in (α,n) reactions

The next section focuses on radionuclides and their decay products present in the
underground environment. Radiogenic neutron background sources are discussed in detail
in Chapter 4.

Primordial Radionuclides

Radioactivity is a natural and common process occurring everywhere in nature. Primordial
radionuclides are those persisting in the Earth since the Earth was formed and which have
not completely decayed due to their long decay half-lives (∼ 109 years or more). These
nuclides occur in construction materials for a variety of reasons: the material itself may be
made out of an element that has one of the very long-lived isotopes, materials could have
been contaminated while in the ground or during the manufacturing or transport process.
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Radioactive contamination of construction materials and surroundings is mostly rep-
resented by decay products in the 238U, 235U and 232Th decay chains, and by primordial
40K [1, 46]. Figure 3.6 shows decay series of 238U, 235U and 232Th. Beta and alpha decays
and de-excitations of these radionuclides and their daughter products produce high energy
photons, electrons or alpha particles that constitute serious backgrounds for almost all
experiments.

Figure 3.6: Decay chains of 238U, 235U and 232Th

A naturally occurring radioactive isotope 40K is another major source of the background
gamma radiation. 40K has a very long half-life of 1.3×109 years comparable to that of
uranium and thorium. The decay scheme of this isotope is, however, far less complex,
approximately 89% of the time it undergoes beta decay to stable 40Ca, but about 10.7%
of the time it decays to 40Ar* by electron capture, with the subsequent emission of a 1.46
MeV gamma ray. A simple decay scheme of 40K is shown in Figure 3.7.

Anthropogenic Radionuclides

Significant quantities of several radionuclides have been added to natural reservoirs due to
human activities. Major anthropogenic sources that have contributed to the radionuclide
contamination are: nuclear weapon testing (mainly in 1950s and 1960s), operation of
nuclear power plants, mining of uranium, fuel reprocessing, nuclear waste repositories
and nuclear accidents. 14C and 3H are two important radionuclides produced by both
nuclear explosions and cosmic radiations. For their abundance, toxicity and mobility,
3H, 14C, 85Kr, 90Sr 137Cs, 99Tc, 129I, 241Am, as well as several uranium and plutonium



Chapter 3. Background Sources in Underground Experiments 39

Figure 3.7: Decay scheme of 40K

isotopes are of particular importance and interest. After the Chernobyl accident, almost all
exposed surfaces became contaminated. It is therefore essential to screen all materials from
regions where they could have been contaminated before using them in low-background
experiments.

Cosmogenic Radionuclides

Cosmic ray particles contribute to the background also indirectly through the production of
cosmogenic radionuclides. As primary and secondary particles of cosmic rays pass through
the atmosphere and Earth’s crust, they initiate nuclear reactions with various atoms of the
atmosphere and surface rocks. The production rate of cosmogenic radionuclides strongly
depends on energy-dependent cross sections and on the intensity of cosmic ray flux. For
atmospheric production, the spallation reactions caused by high energy particles on O, Ar
or N nuclei are one of the most significant processes. The main cosmogenic nuclides that
are produced by cosmic rays in the atmosphere along with their half-lives and production
reactions are listed in Table 3.1. Since protons are absorbed by the atmosphere, mainly
neutrons and muons induce production in the lithosphere. Cosmic rays can also activate
materials later used in detector construction. During transport in air, storage or manufac-
ture, the activation by the hadronic component can reach higher radioactivity levels than
the residual contamination from primordial nuclides [58].

In addition to purification techniques, activation can be avoided or kept under control
by minimizing exposure and storing materials underground, avoiding flight transport of
materials, and using shielding against cosmic rays during surface detector building and even
during operation [58]. In low background experiments, even the short-living radionuclides
are contributing to the background. A lot of studies have been dedicated to studying the
production rates of cosmogenic nuclides in experiments, such as 49V, 54Mn, 55Fe, 57Co, 58Co,
60Co, 65Zn, 68Ge in germanium detectors; 32Si in silicon medium in cryogenic detectors;
several iodine, tellurium and sodium isotopes induced in NaI(Tl) crystals; xenon isotopes
in xenon-based detectors; argon isotopes in liquid argon; cobalt isotopes in copper and
stainless steel; lighter radionuclides (He, Li, B, Be, N, C) in organic scintillators and more
[46, 58]. Table 3.2 summarizes some of these cosmogenic radionuclides commonly produced



Chapter 3. Background Sources in Underground Experiments 40

Table 3.1: Cosmogenic radionuclides, their production rates in the atmo-
sphere [59], and their decay modes of highest branching ratios [60]

Nuclide Target Reaction Half-life
Production rate

[atoms cm−2s−1]
Decay mode Released energy [keV]

3H O,N Spallation 12.34 y 0.28 β− Eβ = 18.59 (endpoint)
14C N 14N(n, p)14C 5730 y 2.02 β− Eβ = 156.48 (endpoint)
7Be O,N Spallation 53.4 d 0.035 EC Eγ = 477.60
10Be O,N Spallation 1.5×106 y 0.018 β− Eβ = 555.80 (endpoint)

26Al Ar Spallation 7.17×105 y 1.4×104 EC+,β+
Eβ = 1173.42 (endpoint),

Eγ = 1808.65
36Cl Ar Spallation 301 000 y 0.0019 β− Eβ = 708.60 (endpoint)
32Si Ar Spallation 150 y 1.6×104 β− Eβ = 224.50 (endpoint)

22Na Ar Spallation 2.6 y 5.4×105 EC+,β+ Eγ = 1274.53

in an experimental setup of detectors, and their decay modes and released energies of the
highest branching ratios.

Radon Contamination

Radon and its radioactive decay products form by far the strongest source of airborne ra-
dioactivity in many low-background experiments, as all radon isotopes are, under standard
conditions, gaseous. Three naturally occurring isotopes of radon are created by the decay
of radium isotopes that are a part of primordial decay chains (235U, 238U and 232Th, see
Figure 3.6). They are 219Rn, 220Rn and 222Rn with half-lives of 3.96 s, 55.6 s and 3.82 d
respectively. All of these isotopes emanate naturally from the ground and building mate-
rials wherever traces of uranium and thorium can be found. 219Rn with its short half-life
and low abundance of 235U is negligible in most low-background experiments. Usually, the
beta decaying isotopes within the decay chains of radon isotopes are crucial contributors
to the background.

3.3 Background Sources in the Modane Underground
Laboratory (LSM)

The next section describes and summarizes ambient background sources in the Modane
underground laboratory that are present in underground environment and are common
and unavoidable to all experiments operating here.

It is important to note and to remember, that following summarized fluxes, rates and
yields of ambient radiation from available measurements are highly dependent on the ma-
terials placed near the detectors that measure them and contamination of the detectors
themselves. Therefore, they do not represent ideal unaffected ambient fluxes. Such a bias
is unfortunately unavoidable and should be considered when using these values for further
studies of backgrounds of experiments.
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Table 3.2: Cosmogenic radionuclides produced in experimental setup and
their decay modes of highest branching ratios [60]

Nuclide Half-life Decay mode Released energy [keV]
6He 806.7 ms β− Eβ = 3507.80 (endpoint)

8He 119.0 ms β− Eβ = 9671.2 (endpoint),
Eγ = 980.70

8Li 838 ms β−, β−2α Eβ = 12 964.50 (endpoint)
9Li 178.3 ms β− Eβ = 13 606.30 (endpoint)
8B 770 ms EC+,β+ Eβ = 17 979.30 (endpoint)

12B 20.20 ms β− Eβ = 13 368.90 (endpoint)
11Be 13.81 s β− Eβ = 11 506.00 (endpoint)

9C 126.5 ms EC+,β+ Eβ = 16 497.90 (endpoint)

10C 19.255 s EC+,β+ Eβ = 2929.46 (endpoint),
Eγ = 718.30

11C 20.39 m EC+,β+ Eβ = 1982.50 (endpoint)
12N 11.0 ms EC+,β+ Eβ = 17 338.10 (endpoint)
32Si 150 y β− Eβ = 224.50 (endpoint)

54Mn 312.3 d EC+,β+ Eβ = 542.24 (endpoint),
Eγ = 834.85

57Co 271.79 d EC
Eγ = 122.06,
Eγ = 136.47

60Co 5.27 y β− Eβ = 318.13 (endpoint),
Eγ = 1173.24, Eγ = 1332.50

65Zn 244.26 d EC+,β+ Eβ = 1351.90 (endpoint),
Eγ = 1115.55

68Ge + 68Ga 270.8 d + 67.63 m EC + EC+,β+ Eγ = 1077.35
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3.3.1 LSM

Figure 3.8: Location of the Modane underground laboratory

The Modane underground laboratory (Laboratoire Souterrain de Modane, LSM) is located
in the middle of the 13 km long Fréjus road tunnel, under the Savoie Alps in France. The
tunnel is connecting Modane in France to Bardonecchia in Italy. It sits below the Fréjus
Peak with a rock overburden of approximately 1700 m, which corresponds to 4800 m w.e.,
and is currently the deepest underground laboratory in Europe. It has been in operation
since 1982 and it serves as an interdisciplinary platform for several experiments in nuclear
and particle physics, astrophysics and environmental physics.

The geological composition of rock surrounding the LSM is generally considered to
be homogenous and uniform. The rock is constituted of metamorphic rocks called glossy
schists [61, 62], which are characterized by having plenty of mineral constituents. In the
past, LSM rock and concrete samples have been collected and analyzed by spectrometry
methods to determine the chemical composition and the content of major compounds in
% by weight is summarized in Table 3.3.

Table 3.3: Major compound composition of LSM rock and concrete (in %)
[61]

Compound LSM rock LSM concrete
SiO2 14.9 5.8
Al2O3 5.0 1.1
FeO3 2.8 0.74
MnO 0.038 0.008
MgO 1.4 1.3
CaO 42.8 51.5
TiO2 0.12 0.17
K2O 0.25 0.02
Na2O 0.6 0.02
P2O5 0.15 0.15

The uranium and thorium content of rocks and walls, that contribute to overall low-
radioactivity of laboratory environment, has also been measured in [61] and [62] and the
results are summarized in Table 3.4.
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Table 3.4: LSM rock and concrete activity

238U 232Th 40K
from [61] from [62] from [61] from [62] from [61] from [62]

[ppm] [Bq/kg] [ppm] [Bq/kg] [ppm] [Bq/kg] [ppm] [Bq/kg] [Bq/kg] [Bq/kg]
Rock 0.84 10.4∗ 0.95 11.8 2.45 9.9∗ 2.48 10.2 213 182

Concrete 1.9 23.5∗ 1.83 22.8 1.4 5.7∗ 1.63 6.7 77 91
∗calculated using conversion factors

3.3.2 Muon Flux in LSM
The local muon flux at LSM is related to the muon flux at sea level and muon energy
before and after it transverses the LSM rock overburden. LSM muon flux measured by the
Fréjus collaboration [63] was:

ΦLSM = (5.47± 0.10)× 10−5m−2s−1 (3.7)

meaning that the LSM overburden attenuates the muon flux down to approximately 5 µ
m−2 d−1, and the mean energy of LSM muons was determined as [64]:

〈Eµ,LSM〉 = (255.0± 4.5)GeV (3.8)

3.3.3 Gamma Background in LSM
To overall gamma background contributes mainly radioactive contamination of laboratory
environment and detector surroundings, that is mostly represented by decay products in
the 238U, 235U and 232Th decay series, and by primordial 40K. Other sources of high energy
gamma rays include gammas from neutron captures in materials surrounding the detectors
(e.g. 2.223 MeV γ from neutron capture on H and higher energies from neutron captures
on metals) or even muon bremsstrahlung from weak residual muon flux in the laboratory.

Ambient gamma ray fluxes in the LSM have been studied and measured in work [62] at
two locations by a coaxial HPGe detector and in [65] using a large volume sodium iodide
(NaI) scintillator. Results of both investigations of gamma fluxes from peaks of several
radionuclides and ambient high energy fluxes in 5 energy intervals from 4 - 10 MeV are
presented in Table 3.5.

3.3.4 Radon Background in LSM
The measured values of radon (222Rn) activity in LSM air are between 5-20 Bq/m3 [66] and
the mean value of thoron (220Rn) activity measured in the LSM cavity is 10 Bq/m3 [67].
This radon level is kept thanks to a ventilation system that is renewing the entire laboratory
air. Experiments often require advanced systems that can reduce radon concentration at
least by a factor of 1000 due to short-lived radon decay products and their deposition on
surfaces and subsequent irradiation of sensitive volumes by alpha particles [68]. Moreover,
radon is a noble gas with high penetrating power and can diffuse into materials. Therefore,
further reduction of the radon level to just a few mBq/m3 in experiments is often achieved
by a radon trapping facility.
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Table 3.5: Gamma ray fluxes measured in LSM

γ energy [MeV] γ-ray flux [γcm−2s−1]

0.352 (214Pb) 6.04 ×10−3 ∗

2.10 ×10−3 ∗

0.609 (214Bi) 5.26 ×10−3 ∗

1.78 ×10−3 ∗

0.911 (228Ac) 1.31 ×10−3 ∗

6.10 ×10−4 ∗

1.46 (40K) 1.00 ×10−1 #

3.55 ×10−3 ∗

2.40 ×10−3 ∗

2.204 (214Bi) 4.53 ×10−4 ∗

2.02 ×10−4 ∗

2.61 (208Tl) 4.00×10−2 #

1.00 ×10−3 ∗

4.78 ×10−4 ∗

4-6 3.8 ×10−6 #

6-7 1.5 ×10−6 #

7-8 1.6 ×10−6 #

8-9 0.07 ×10−6 #

9-10 0.05 ×10−6 #

∗ from [62] - fluxes at 2 different locations
# from [65]- given measurement errors ∼30%

3.3.5 Neutron Background in LSM
In general, we can divide the ambient neutron flux into thermal and fast neutron fluxes.
The fast ambient neutron flux in the LSM originates mainly from the radioactivity of the
rock and walls - from spontaneous fission and neutrons induced by (α,n) reactions, or from
muon induced reactions. Subsequently, these neutrons transverse the rock overburden and
materials present in the laboratory where they get moderated and they thermalize. In
the past, many studies have been dedicated to estimating the LSM neutron flux and the
next section summarizes the results of two publications ([61, 69]), where calculations and
measurements of neutron fluxes and neutron energy spectra were provided.

In [69], to monitor the ambient thermal neutron flux at different locations at LSM,
a setup of proportional counters filled with 3He gas was installed. The thermal neutron
flux at LSM may vary by up to a factor three from one location to another and near
the experimental setup of NEMO-3 experiment (predecessor of SuperNEMO in the same
location), the flux was measured to be:

Φn,thermal = (2.9± 0.4)× 10−6neutrons s−1cm−2, (3.9)

under the assumption that the neutron spectrum below 0.3 eV is Maxwell-Boltzmann
distribution:

fMB = En
(kT )2 e

−En
kT , (3.10)
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Figure 3.9: Thermal neutron spectrum in the LSM

where k is the Boltzmann constant and T = 293K, and that thermal neutron flux is fully
isotropic (4π). Thermal neutron energy spectrum plotted according to this spectrum and
normalized to flux in Equation 3.9 is shown in Figure 3.9.

Similarly, thermal neutron flux was measured in [61] where they obtained flux of
(1.6±0.1)×10−6 n s−1cm−2.

In [61], results of measurement of fast LSM neutron flux using 6Li loaded scintillator
are reported as:

Φn,fast = (4.0± 1.0)× 10−6neutrons s−1cm−2, (3.11)

with energies between 2-6 MeV. A Monte Carlo simulation was also performed and com-
pared to experimental result. The simulation was performed by propagating estimated
neutron spectrum from spontaneous fission and (α,n) reactions from LSM rock’s U and
Th activity (Table 3.3) through rock. This way neutron spectrum with 1 MeV threshold
corresponding to flux 1.0×10−6 n s−1cm−2 was obtained which was in reasonable agree-
ment with the experimental result. This spectrum is shown in Figure 3.10. It can be easily
normalized to flux in Equation 3.11. This way a somewhat realistic fast neutron energy
spectrum can be assessed.

Summary of neutron fluxes given in available literature is given in Table 3.6.
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Figure 3.10: Fast neutron spectrum in the LSM above 1 MeV threshold
[61]

Table 3.6: Summary of LSM neutron fluxes

Neutron flux
[×10−6 n s−1cm−2]

Neutron energy∗ Technique Reference

4.0 ± 1.0 fast, 2-6 MeV
Slowing down neutrons +

nth +6 Li→ α+3 H reaction
[61]

1.0 >1 MeV MC simulation [61]

1.6 ± 0.1 Thermal
3He detectors,

n+3 He→ T + p reaction
[61]

(2.0 ± 0.2)-(6.2 ± 0.6) Thermal 3He proportional counters [69]
∗ as given in reference
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Chapter 4

Neutron Background Sources

Neutrons from local radioactivity dominate the overall neutron production in underground
laboratories. These neutrons are called radiogenic neutrons as they are produced in a
process of radioactive decay. Dominant mechanisms are direct fission of uranium and
thorium, and (α,n) reactions. The neutron energy spectrum and production rate from
natural radioactivity depend on the specific concentrations of uranium and thorium present
in the surrounding materials, and in the case of the (α,n) reactions also on the exact
composition of the materials [70]. These neutrons dominate neutron scattering events in
underground experiments, and the capture of thermal neutrons also leads to secondary
radioactivity [70].

This chapter is dedicated to the calculation and simulations of radiogenic neutron pro-
duction rates and their energy spectra, and to secondary radioactivity of neutron capture
reactions.

4.1 Spontaneous Fission Neutrons

Figure 4.1: Liquid Drop Model of fission [71]

The process of fission was first interpreted by Meitner and Frisch in 1939 (the same year
that it was discovered by Hahn and Strassmann), when they proposed that the uranium
nuclei following neutron capture are highly unstable and they fission or split nearly in
half [72]. In fact, the two fragments produced by a nucleus are governed by a statistical
distribution and typically, both fragments will end up with different but relatively similar
masses. When nuclear fission occurs without the nuclei having been previously hit by
a neutron or other particle the process is called spontaneous fission. Fission fragments
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Figure 4.2: Half-lives for spontaneous fission [72]

are usually left with high excitation energy and they will frequently emit neutrons via
evaporation processes to cool down.

The fission rate is a very sensitive function of atomic number Z and atomic mass A
[73]. Mathematically, a parameter that serves as an indicator, whether a nucleus can fission
spontaneously is [72]:

Z2

A
> 47 (4.1)

This criterion is derived from the liquid drop model, but does not account for quantum
mechanical barrier penetration and furthermore, the model is not very accurate for the
heaviest nuclei. Nevertheless, the larger the value of Z2/A, the shorter is the half-life for
spontaneous fission (Fig. 4.2) [72].

In underground laboratories, the fission neutron flux is the result of spontaneous fission
of naturally occurring primordial radionuclides 232Th, 235U and 238U. The fission rate for
thorium and uranium is, however, low compared to the rate of their decay by alpha particle
emission, which dominates the total half-life (Table 4.1).

Table 4.1: Spontaneous fission (SF) parameters for 232Th, 235U and 238U

232Th 235U 238U
T1/2 [y]a 1.40×1010 7.04×108 4.47×109

T1/2 (SF) [y]a 1.20×1021 9.80×1018 8.20×1015

Average multiplicity νk(SF )b 2.14 1.86 2.01
Branching ratio BRk(SF ) 1.17×10−11 7.18×10−11 5.45×10−7

Neutron yield Rk(SF ) [n/decay] 2.50×10−11 1.34×10−10 1.09×10−6

Watt parameter a [MeV]c 0.796 0.7747 0.827
Watt parameter b [MeV−1]c 4.755 4.852 4.445

a from [74], b from [75], c from [76] and [77]
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4.1.1 Calculations of Neutron Yields and Energy Spectra from
Spontaneous Fission

Let’s assume that spontaneous fission of nuclide k is accompanied by the emission of a
number of neutrons equal to the average neutron multiplicity νk(SF). Given the sponta-
neous fission decay constant of nuclide k, λk(SF ), the fraction of nuclide k decays that are
spontaneous fission events is given by the spontaneous fission branching ratio:

BRk(SF ) = λk(SF )
λk

= T1/2

T1/2(SF ) (4.2)

and λk is the total decay constant of nuclide k and T1/2, T1/2(SF ) are corresponding half-
lives. The neutron rate Rk(SF) or the average number of spontaneous fission neutrons
emitted per decay of nuclide k is [78]:

Rk(SF ) = BRk(SF )νk(SF ) = νk(SF ) T1/2

T1/2(SF ) [ n

decay
] (4.3)

This yield for individual isotopes is the same for all materials and depends only on the
concentration of the fissioning isotope [79].
Many Monte Carlo neutron transport codes1 randomly sample fission neutron energies, E,
according to a Watt spectrum [76, 78, 82, 83], which is one of two (along with Maxwellian)
most frequently used forms given in the literature to describe the experimental fission
neutron energy distributions [84]. The Watt spectrum has a following form [85]:

NW (E) = 1√
TπEf

e−
Ef
T e−

E
T sinh( 1

T

√
EEf ), (4.4)

where E is the neutron energy, T is the thermodynamic temperature of the residual nucleus
and Ef is the kinetic energy of the fission fragment.

The Watt spectrum used for calculation of the neutron spectra is, however, often defined
using the given simplified analytical function [82]:

fWatt(E) = Ce−E/asinh(
√
bE), (4.5)

where E is the neutron exit energy [MeV], a, b are nuclide dependant Watt spectrum
parameters2, and normalization constant C is:

C = 2e−ab4
√
bπa3

(4.6)

The parameters a and b are usually determined by fitting the Watt formula to the experi-
mentally measured fission spectrum data and are available in literature for many radionu-
clides undergoing nuclear fission [83].

1Such as SOURCES-4A [78], MCNP [80] and NEDIS [76]. Additionally, fission spectra in the Evaluated
Nuclear Data Library (ENDL) [81] are defined by Watt spectrum [75].

2In the case of induced fission, these parameters also depend on the energy of an incident neutron.
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Table 4.2: Properties of gamma rays from spontaneous fission of 238U [86]

Isotope Total energy [MeV] Average number of γs Average γ energy [MeV]
238U 6.06 ± 0.03 6.36 ± 0.47 0.95 ± 0.07

Thus, spontaneous fission neutron spectrum for nuclide k has the form of [78]:

χk,SF (E) = Rk(SF )fWatt(E) = Rk(SF ) 2e−ab4
√
bπa3

e−E/asinh(
√
bE) (4.7)

Figure 4.3 shows calculated spontaneous fission neutron energy spectra for 232Th, 235U
and 238U according to Equation 4.7. The spontaneous fission rates and neutron yields of
these isotopes are very low (Table 4.1), the highest contribution is mostly due to sponta-
neous fission of 238U. Therefore, these processes contribute to neutron background only in
materials with high contamination levels.

Spontaneous fission is also a source of γ-rays emitted by the excited fragments after
the end of neutron evaporation [73]. When a nucleus undergoes fission and the excitation
energy falls behind the neutron binding energy, prompt γ-rays take over and carry away the
remaining energy and in principle, spontaneous fission events can thus be tagged in some
detectors due to the simultaneous emission of several neutrons and γ-rays [73, 79]. There
is a positive correlation between the number of neutrons produced in a spontaneous fission
event and the total amount of energy carried away by γ-rays [86]. The P(n) distribution
for fission neutron multiplicity can be well fitted by a Gaussian distribution [87, 88]. In
[87], the P(n) distribution of neutron multiplicity of 238U spontaneous fission was measured
by using a large liquid scintillation neutron detector, the data are presented in Figure 4.4
(left) along with Gaussian fit with the mean value matching the average multiplicity for
238U presented in Table 4.1.

An empirical formula relating the total prompt gamma ray energy to the mass (A) of
fissioning isotope and the number of neutrons from fission ν is given in the form of [86]:

Eγ,total(ν, Z,A) = (2.51− 1.13× 10−5Z2
√
A)ν + 4, (4.8)

where the constant terms were obtained from experimental data.
Similarly, the average prompt gamma ray energy was found to obey [86]:

Eγ,avg = −1.08 + 106.9 3
√
Z/A, (4.9)

where the constants were obtained from a fit to data. Then the average number of gamma
rays produced in fission is approximated as Eγ,total/Eγ,avg. The total and average energy of
gamma rays from the spontaneous fission of 238U and the average number of γs produced
are shown in Table 4.8. Figure 4.4 (right) shows the mean number of γ-rays produced in
spontaneous fission of 238U as a function of the neutron multiplicity.
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Figure 4.3: SF neutron energy spectra of 232Th, 235U and 238U

Figure 4.4: Left: Distribution of neutron multiplicity of spontaneous fis-
sion of 238U (data points from [87]) with Gaussian fit with mean of 2.01
± 0.06 and standard deviation of 0.99 ± 0.05. Right: The mean number
of γ-rays produced in the spontaneous fission of 238U as a function of the

neutron multiplicity
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4.2 Neutrons from (α,n) Reactions

Figure 4.5: (α,n) reaction scheme

Many heavy nuclei, naturally occurring in the radioactive decay chains, decay through
a nuclear disintegration process that emits alpha particles, called alpha decay. The α
particle is a very stable and tightly bound structure of two protons and two neutrons
(helium nucleus 4

2He), emission of which brings energetically unstable nuclei against α
decay to a more stable configuration [72]. Alpha decay, like spontaneous fission, is a
quantum tunnelling process that occurs despite the presence of the Coulomb potential
repulsion barrier. However, the Coulomb barrier is often high enough to make alpha decay
unlikely for all but the heaviest nuclei [72, 73]. These nuclei, if present in a material, can
produce α particles with energies in order of MeVs that further interact with the nuclei
in a thick target of light elements and yield neutrons through the (α,n) reactions. For
heavier elements, the cross-section of (α,n) reaction is suppressed by the Coulomb barrier
(thus, unlike the spontaneous fission, the neutron yield from (α,n) reaction is material
dependant). In lower α particle energy ranges (< 10 MeV) the mechanism of the reaction
can be described by the compound nucleus model when an intermediate state of a particle-
target system is formed. The compound nucleus is excited by the kinetic energy of the α
particle and is usually left in an unstable state and further decays to a daughter nucleus.
This process is governed by the nuclear state of the compound nucleus (energy levels, spin,
and parity of given excited state) and the structure of the daughter nucleus, and one of
the possibilities of this decay is neutron emission. Higher energy α particle will excite
the compound nucleus to a higher energy part of the nucleus’s energy level and it may
also undergo decay to the first excited state accompanied by the emission of γ-rays as
well. At higher energies of α particles, it is possible for the compound nucleus to emit
multiple neutrons. In underground environments and experiments, the 235U, 238U, 232Th
radioactive decay chains are responsible for neutron production, tough the contribution
of 235U is relatively small due to a small abundance [79]. α particle energies in these
decay chains are low (< 9 MeV) making (α,Xn) reactions with emission of several neutrons
processes very rare.

4.2.1 Example Case of 13C(α,n)16O
An example of common (α,n) reaction is a well known and studied 13C(α,n)16O reaction:

13C + α→17 O∗ →16 O(∗) + n (4.10)

where 17O∗ is the compound nucleus and 16O is the residual nucleus. This reaction is of
high importance for several reasons. Although the abundance of 13C in natural carbon is
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Figure 4.6: Left: cross-sections for 13C(α,Xn)16O reactions [92] (z - in-
cident particle (α), (z,n) - production of one neutron in the exit channel,
(z,2n) - production of two neutrons, (z,n0-4) - production of a neutron, leav-
ing the residual nucleus in the ground state, 1st, 2nd, 3rd and 4th excited
state). Right: Energy level diagram showing the states in 17O and excited

states of 16O observed in 13C(α,n)16O [93]

relatively low (1.07 %), it has a significant (α,n) yield, and tends to produce a prominent
peak in the neutron energy spectrum whenever carbon is present, thus contributing to
the background of experiments. From the point of view of astronomy, it is also the most
important neutron source for the main component of the s-process (slow neutron capture
process), responsible for the production of most of the nuclei in the mass range 90<A<208
inside the helium-burning shell of asymptotic giant branch stars [89, 90]. Moreover, it has
been used as a source of 6.1 MeV gamma-rays from the de-excitation of the second excited
state of 16O [91]. α energies needed for the production of one or two neutrons in the exit
channel and for leaving the residual nucleus in the excited state can be seen from the
reaction cross-sections in Figure 4.6 along with excited states of 16O. This shows that only
some neutrons are accompanied by a γ-ray, and most of these neutrons have a multiplicity
of 1, making these neutrons harder to veto.

4.2.2 Calculations of Neutron Yields and Energy Spectra from
(α,n) Reactions

Overall, the neutron yield of (α,n) reaction depends on the alpha activity of the alpha-
emitting isotopes present in a given material, the cross-section of the reaction, the alpha
energy loss in a given material (the stopping power of alpha particles), the alpha particle’s
energy (alpha decay energy spectra), the reaction Q values, and also on the degree of
mixing (due to the short range of the alpha particle) [73, 78, 79, 94, 95].

(α,n) reaction neutrons are not monoenergetic due to many discrete α groups of decay,
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the slowing down of α particles in any material3 and the probability that residual nucleus
is left in an excited state after the reaction [72].

Over a number of years, a lot of studies have been dedicated to modelling and cal-
culation of the neutron emission processes, neutron yields from (α,n) reactions and their
energy spectra and this topic has been discussed by many authors [76, 79, 94, 95, 96, 97,
98, 99] (and see also references therein). As a result, there are presently various codes ded-
icated and specifically developed for neutron yield and energy spectra calculations, such as
SOURCES-4A (and updated version SOURCES-4C) [78], NeuCBOT (Neutron Calculator
Based On TALYS) [100], the USD code (developed by the University of South Dakota in
the USA) [95], NEDIS [76] or SaG4n (Geant4 [101] code with modifications included in the
Geant4.10.6 version) [99]. Development of all above-mentioned codes has required accumu-
lation and evaluation of not only measured experimental data, but also the calculation of
reaction cross-sections, stopping powers of α particles, decay constants, energy spectra of
the initial α particles, angular neutron distributions for the individual levels of the residual
nucleus, etc [76, 102].

This shows that nuclear data work on (α,n) reactions constitutes a specific field of study
but basic nuclear data and information on the source spectrum for sensitivity studies are
sparse and highly discrepant [98, 102], which means that further improvements are desirable
in all cases4.

In general, a theoretical approximation of the neutron yield adopted by several authors
and used in above-mentioned codes (except for the SaG4n code [99]) gives the following
expression for the thick-target neutron production function [78, 95, 96, 98, 99]:

pi = Ni

N

∫ Eα

0

σi(E)
ε(E) dE, (4.11)

where pi is probability that the α particle with initial energy Eα will undergo an (α,n)
reaction with element i in which it has the atomic stopping cross-section ε(E). Ni is atom
number density of target nuclide i, N is total atom number density and σi(E) is the neutron
production cross-section at an α particle energy E.

A decay chain consists of several α decays and we have to consider that a fraction of
the decays of a radionuclide within the material is due to α emission. The neutron yields
in the 232Th and 238U decay chains can be determined by the sum of the yields induced by
each α particle in given decay chain [95], weighted by the intensity Fi′ which is a fraction of
the decays of a radionuclide i′ within the material due to α emission [78, 98]. This fraction
can occur with the emission of one of N’ possible discrete α-energies of intensity fi′(Eα,j)
(j = 1, ..., N ′) [98], and thus, the fraction of decays resulting in (α,n) neutron yield in a
thick target material containing k target elemental constituents is [78, 98]:

Ri′(α, n) = Fi′
k∑
i=1

pi =
N ′∑
j=1

fi′(Eα,j)
k∑
i=1

pi (4.12)

3The energy of emitted neutron depends on the energy that the α particle has at the moment of
collision and the Q value of the reaction [73].

4Such as independent comparisons, data validation, measurements and benchmarks, proper modelling
of resonance behaviour which has been experimentally observed, etc.
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Figure 4.7: Center of mass system for (α,n) reaction [78]

In the theory of the neutron energy spectra the assumption of an isotropic neutron
angular distribution in the center-of-mass system (CMS) (see Fig.4.7) is often made [98,
99, 103]. The neutron energy distribution for the target nuclide i is then given as [98]:

dQi

dEn
=
∫ Y En

XEn

σmi (E)
ε(E)(Em

n+ − Em
n−)dE, (4.13)

wherem marks discrete number of excited state of the residual nucleus, Em
n+/− are the max-

imum and minimum permissible neutron energies5 and integration limits are determined
by the kinematics of the reaction [76].

Isotope-dependent cross-sections of (α,n) reactions can be calculated, for example, by
the TALYS [104] or some versions of EMPIRE [105], or can be taken from experimental
measurements, for example, the JENDL/AN-2005 (JENDL6 (alpha,n) Reaction Data File
2005) [106] in ENDF format. Additionally, the TENDL7 library [107] can also be used
in ENDF8 format that contains cross-sections calculated through the determination of
nuclear models implemented in TALYS. For the stopping powers of α particles in materials,
codes like ASTAR [108] or SRIM9 [109] are often used. The knowledge of all elemental
constituents is needed (often user-defined) and a homogeneous mixture is often considered.

Unlike the other codes, which utilize some form of evaluation of aforementioned equa-
tions, Geant4 performs an explicit transport of the incident α particles through the ma-
terial and resulting neutrons are generated consequently as the (α,n) reaction takes place
[99]. The Geant 4.10.6 based code SaG4n takes advantage of the ParticleHP module in-
corporated in Geant4, which allows using data libraries written in ENDF-6 format (such
as JENDL/AN-2005 or TENDL), that contain information on reaction cross-sections and
production of secondary particles. Electromagnetic, elastic and non-elastic nuclear inter-
actions are modelled using the G4EmStandardPhysics option4, G4HadronElasticPhysics

5Emn− for θ = π and Emn+ for θ = 0, θ is the neutron emission angle in the CMS. Energy of neutron
in laboratory system and cosθ are coupled by the expression that depends on the reaction Qm value, the
incident α particle energy, and masses of the nuclides involved in the kinematics of reaction [98, 103].

6Japanese Evaluated Nuclear Data Library
7TALYS-based evaluated nuclear data library.
8Evaluated Nuclear Data File
9Stopping and Range of Ions in Matter
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and the G4ParticleHP packages, respectively [99]. There are several advantages of using
Geant4 based code compared to others, as it allows [99, 110]:

• users to build complicated geometries of studied systems

• to bias a particular process and ultimately reduce the computing time

• for the production of γ decays in the same nuclear process (in the (α,γn) reactions),
provided that the used data libraries contain that information

• to store position and momentum of the generated α particles and of the produced
neutrons (and γ rays) and their weight.

In this case, given that Nn is the number of neutrons produced in the simulation, ωi
is the weight of each of them, and Nα is the number of simulated alphas, the resulting
neutron yield per α can be calculated as [110]:

Yn = 1
Nα

Nn∑
i=1

ωi [n/decay] (4.14)

Recommended data library is the JENDL/AN-2005, that contains neutron production
cross-sections for alpha-particle induced reactions of 17 nuclides (6,7Li, 9Be, 10,11B, 12,13C,
14,15N, 17,18O, 19F, 23Na, 27Al, 28,29,30Si) [106], combined with TENDL-2017 elsewhere, where
information is not available [110]. The evaluation of neutron emission data of (α,xn) reac-
tions in JENDL/AN-2005 was performed on the basis of available experimental data and
nuclear model calculations [106]. TENDL-2017 is the 9th version of TENDL library which
provides the output of nuclear models implemented in TALYS [107, 111]. Comparison of
cross-sections and differences between the two libraries for some selected isotopes can be
seen in Figure 4.8. In most cases, the cross-sections in TENDL are higher than in JENDL
and TENDL does not reproduce the resonance behaviour. The difference is most likely due
to the calculation of cross-sections with the TALYS nuclear code which uses a statistical
model or model parameters that are not accurate for light elements10. This shows that
theoretical models could be quite far from reality and it highlights the importance of ex-
perimental data. The neutron yields could be, in most cases, overestimated when using the
cross-sections from TALYS. This trend is seen in works that compare results of different
calculation codes between each other and with experimental data, for example in [99] or
[94].

10This is suggested, for example, in [112]. In [113], some parameters in the TALYS were adjusted to
obtain good agreement between calculated total and partial cross sections and experimental data for the
mass range of 19<A<210. And in [114], some discrepancies of the neutron yield induced by proton and
deuteron bombardment are also attributed to the inaccurate cross sections calculated with the TALYS for
light elements.
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Figure 4.8: Comparison of cross-sections for (α,n) reactions of selected
isotopes [92]
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4.2.3 Estimation of (α,n) Reactions for SuperNEMO
(α,n) reaction energy spectra and neutron yields were studied in materials with the high-
est 238U and 232Th contamination and in materials with a large mass that can contribute
significantly to overall neutron yield. In the SuperNEMO detector, it is mainly the shield-
ing (considered materials are water, pure polyethylene, 5% borated polyethylene against
neutrons and iron against gammas), borosilicate glass which is the most commonly used
window material in photomultiplier tubes and pins on feedthrough connectors that are
made out of copper-beryllium alloy (containing 3% of Be, Fig. 4.9). Due to the purifica-
tion and demineralization process, there is no expected contamination of water shielding
and no alpha particles are able to travel through the iron shield to water to initiate (α,n)
reaction. Thus, the neutron yield from water is neglected.

Figure 4.9: Feedthrough with copper-beryllium alloy pins used in the
Demonstrator

Simulations were performed using Geant 4.10.6. with suited recommended combined
data library, JENDL/AN-2005 + TENDL-2017. Energies of α particles along with their
intensities in 238U and 232Th decay chains used in simulation are listed in Appendix A
in Tables A.2 and A.3, respectively. The α energies range from 3.72 to 8.78 MeV. The
chemical composition of shielding materials, Cu-Be alloy and borosilicate glass used in
calculations is defined in Table 4.3 with the isotopic abundances of each element defined
in Table A.1 (Appendix A). Secular equilibrium was assumed in both decay chains. The
geometry of shielding in Geant4 was defined according to Figure 4.10.

Neutron Yields and Energy Spectra Results

In general, the magnitude of the total cross-section of (α,n) reaction determines the total
neutron yield in a material. All cross-sections from corresponding data libraries for the
most common isotopes defined in the composition of selected materials are plotted in
Appendix A in Figure A.1.

Results for neutron and gamma energy spectra in individual materials are shown in
Figures 4.13 - 4.16 and yields given in Table 4.4 were calculated by integrating over the
spectra. The highest yield is obtained from Cu-Be alloy pins that contain beryllium, which
has a very high neutron yield. Relatively higher neutron rates are also in materials con-
taining boron, PMT glass and borated polyethylene, due to a large cross-section for (α,n)
reactions in 11B (Fig.4.8) and its large abundance in natB (Table A.1). The results of neu-
tron yields also show that the largest contribution to neutron yield comes from 232Th decay
chain. It can be explained by the fact that 232Th decay chain has more α particles above
the threshold energy for the (α,n) reactions to occur. Statistical uncertainties are ∼1% for
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Table 4.3: Composition of materials used in simulations

Material Density [g/cm3] Element Mass Fraction [%] Abundance [%]

Polyethylene, (CH2)n 0.93 H 14.3 66.54
C 85.7 33.46

Borated PE (5% PE(B)) 0.96 H 61.2 27.61
C 11.6 62.36
O 22.2 7.52
B 5.0 2.51

Iron 7.87 Fe 100 100
Cu-Be alloy 8.36 Be 0.44 3.0

Cu 99.56 97.0
Borosilicate glass (PMT) 2.23 Si 39.13 27.26

O 55.98 68.46
B 0.41 0.75
Na 2.93 2.49
K 0.34 0.17
Al 1.2 0.87

Figure 4.10: Simplified geometry of SuperNEMO shielding used in (α,n)
simulation. Iron (red) enclosing the whole detector, PE and PE(B) (green)
on top and bottom, water (blue frame, transparent fill) on front, back, left
and right sides. Yellow dots - example of α source positions in top PE.
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Table 4.4: Calculated neutron and gamma yields from (α,n) and (α,γn)
reactions in shielding and PMT materials

Material + decay chain n/decay γ/decay
Fe 232Th 3.06 ×10−7 9.34 ×10−8

Fe 238U 6.06 ×10−8 7.15 ×10−9

PE 232Th 1.37 ×10−7 8.42 ×10−8

PE 238U 7.49 ×10−8 3.60 ×10−8

PE(B) 232Th 1.09 ×10−6 2.79 ×10−7

PE(B) 238U 8.04 ×10−7 1.48 ×10−7

Cu-Be alloy 238U 4.15 ×10−6 2.96 ×10−6

Borosilicate glass 232Th 6.06×10−7 1.43 ×10−7

Borosilicate glass 238U 3.42×10−7 8.02×10−8

neutron yields and ∼5% for gamma yields. The biggest source of systematic uncertainty is
assumed due to the uncertainty in the radioisotope contamination and component masses,
which will be discussed later in the chapter.

Generally, the contribution of the excited states of residual nuclei, that are energetically
accessible, determines the shape of the neutron energy spectrum. Smaller values of neutron
energies correspond to higher excited states of residual nuclei. For gamma spectra, only
gammas from 232Th decay chain are plotted, as from 238U decay chain the spectra are the
same but with different γ yields. Gamma spectra for lighter elements have characteristic
gamma lines from excited states of residual nuclei where the states are well separated, and
γ spectra for heavier elements, like Ni (from iron) and Ga (from copper), form more of a
continuum. Energy level diagrams showing the excited states observed in (α,n) reactions
of some light compound nuclei are plotted in Figure A.2 (Appendix A). Plotted γ spectra
also give an insight to how many energy levels are populated in the (α,γn) reactions.

Iron

The composition of the iron shield is straightforward and contains only one element -
Fe. The reactions that take place are: 54Fe(α,n)57Ni, 56Fe(α,n)59Ni, 57Fe(α,n)60Ni and
58Fe(α,n)61Ni. The biggest difference in the contribution to the neutron yield between the
two decay chains is seen in this case of iron (Fig. 4.11 (left)). Figure 4.12 shows the cross-
sections for Fe isotopes for (α,n) reaction. For the two most abundant Fe isotopes, 56Fe
and 54Fe, the α energy thresholds are above 5.8 and 7 MeV, and there are five prominent
αs of significant intensities with energy larger than these thresholds in 232Th decay chain
(from 220Rn, 216Po, 212Bi and 212Po) compared to only two such αs in 238U decay chain
(from 218Po and 214Po) (see Tables A.2 and A.3).

The total γ-ray yield to the total neutron yield ratios from the 232Th and 238U decay
chains are 0.3 and 0.1 respectively.

The cross-section of these reactions was taken from the TENDL library, where we have
seen from the discussion in the previous section, that they tend to be overestimated. The
obtained values of neutron yields for iron can be considered conservative, however, from
the point of view of experiment’s sensitivity, it could be considered better to overestimate
the background model rather than underestimate it.
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Figure 4.11: Left: Neutron energy spectra from (α,n) reactions in iron
from 238U and 232Th decay chains. Right: Gamma energy spectrum from

(α,γn) reactions in iron from 232Th decay chain.

Figure 4.12: cross-sections for (α,n) reactions in Fe isotopes [92].

PE and PE(B)

In polyethylene (Fig. 4.13 (left)), the neutron energy spectrum has two prominent broad
peaks. These neutrons come only from reaction on 13C, 13C(α,n)16O, since the α energies in
238U and 232Th decay chains are not high enough to evoke (α,n) reaction in 12C. However,
the energies are sufficient for leaving the residual 16O nucleus in an excited state, as it was
shown in the previous section (Fig. 4.6). From Figure 4.6 (right) it can be seen that there
is a big dip between the excited states in the residual 16O nucleus, and also between its
ground state and the excited states. Therefore, there must also be a big dip in the neutron
energy spectrum. Observed gamma rays in Figure 4.13 (right) come from the excited states
of 16O: 6.1, 6.14, 6.92 and 7.12 MeV.

There is a noticeable difference in spectra and yields between PE and PE(B) (Fig. 4.14
(left)) which have similar composition and densities, but the yield for PE(B) is almost nine
times higher. This can be explained by the contributions of boron and oxygen to the total
neutron yield in PE(B) and a large cross-section for (α,n) reactions in 11B. The additional
reactions that take place in PE(B) are 10,11B(α,n)13,14N and 17,18O(α,n)20,21Ne. There is
no contribution from 16O(α,n)19Ne as the threshold alpha energy for this reaction is > 10
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MeV. In PE(B) gamma spectrum (Fig. 4.14 (right)), we can observe, for example, 3.95 and
2.31 MeV gammas from 14N∗, or lower energy gammas of 0.35 and 1.12 MeV from 21Ne∗,
and more.

The total γ yield from PE(B) is approximately 3.5 times higher compared to the pure
PE. However, overall fewer neutrons from (α,γn) reactions in PE(B) are accompanied by
γ-rays, with the γ to neutron yield ratios of 0.26 and 0.18 from the 232Th and 238U decay
chains respectively, compared to the ratios of 0.61 and 0.48 in PE. This means that (α,n)
reactions on additional elements, present in the PE(B), feed mostly the ground states of
the final compound nuclei.

Figure 4.13: Left: Neutron energy spectra from (α,n) reactions in
polyethylene from 238U and 232Th decay chains. Right: Gamma energy
spectrum from (α,γn) reactions in polyethylene from 232Th decay chain.

Figure 4.14: Left: Neutron energy spectra from (α,n) reactions in borated
polyethylene from 238U and 232Th decay chains. Right: Gamma energy
spectrum from (α,γn) reactions in borated polyethylene from 232Th decay

chain.
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Figure 4.15: Left: Neutron energy spectra from (α,n) reactions in PMT
glass from 238U and 232Th decay chains. Right: Gamma energy spectrum

from (α,γn) reactions in PMT glass from 232Th decay chain.

Borosilicate Glass

The composition of this type of glass usually consists of several oxides, out of which the
SiO2 is the most dominant with smaller contributions of Al2O3 and B2O3. The neutron
energy spectrum of the borosilicate glass (Fig. 4.15) consists of contributions from several
reactions according to its composition defined in the simulation: 28,29,30Si(α,n)31,32,33S,
10,11B(α,n)13,14N, 17,18O(α,n)20,21Ne, 23Na(α,n)26Al, 27Al(α,n)30P, and 39,41K(α,n)42,44Sc.
Based on the magnitude of the cross-sections and abundance of elements defined in the
material composition, the biggest contribution to the total yield comes from boron, oxy-
gen, sodium and silicon. The least contributing element is potassium. In comparison with
PE(B), the boron content of borosilicate glass is significantly lower, therefore, the broad
peak with a maximum around 3 MeV, coming from the B(α,n)N reaction, is suppressed.
Due to the influence of other elements present in this material, the overall shape of the
spectrum is smoother.

Because the cross-sections of (α,n) reactions leaving the residual nucleus in the excited
state on oxygen and boron isotopes start already at relatively low α energies (< 3 MeV),
gammas from the de-excitations of Ne and N isotopes dominate in the γ spectrum (Fig. 4.15
(right)). The most prominent gammas are 0.35, 1.12, 1.39 and 2.5 MeV gammas from the
18O(α,n)21Ne reaction. The alpha energies in both 232Th and 238U decay chains are high
enough for these reactions to occur and the total gamma to neutron yield ratios are similar,
0.24 and 0.23 respectively.

Cu-Be Alloy

For the Cu-Be alloy, only the yield from the 238U decay chain has been investigated11.
The main contributor to the copper-beryllium alloy neutron yield is from the beryllium:
9Be(α,n)12C. Not only it has a high cross-section for this reaction to occur, but its isotopic
abundance in the material is also 100%. The final nucleus 12C can be in the ground
state or the 4.44, 7.65 or 9.64 MeV excited energy levels and the total neutron spectrum

11The contamination of 232Th of these pins has not been estimated.
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results from combining spectra corresponding to these different populated levels. Therefore,
several peak-like features and dips can be observed in the neutron spectrum in Figure 4.16
(left). The less common reactions are 63,65Cu(α,n)66,68Ga which also contribute to the total
yield and influence the spectrum shape.

This material has the highest neutron yield out of all materials and additionally, it also
yields the highest number of γ-rays, with the γ-ray to total neutron yield ratio of 0.71.
The majority of these γs (almost 87%) have energy of 4.44 MeV, and they come from the
de-excitations of both the first and second excited states of 12C (Fig. A.2 (Appendix A)).

Figure 4.16: Left: Neutron energy spectra from (α,n) reactions in Cu-Be
alloy from 238U decay chain. Right: Gamma energy spectrum from (α,γn)

reactions in Cu-Be alloy from 238U decay chain.

It is clear, that the total yield in all materials depends on the material’s total activity
of 232Th and 238U. In some cases (Cu-Be pins, PMT glass) the activities were measured,
otherwise activity limits were put on materials yet to be purchased by the collaboration.
Section 4.3 is dedicated to the overall estimation of neutron contributions of the Demon-
strator.

4.3 Neutron Contributions to the Background of the
SuperNEMO Demonstrator

Based on the summary of the neutron sources in previous sections, we can now estimate
the total neutron contribution for the Demonstrator from the ambient neutron fluxes, and
radiogenic and cosmogenic neutrons.
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4.3.1 Radiogenic Neutrons
To calculate overall neutron production rates from spontaneous fission and from (α,n)
reactions in the Demonstrator, one needs to know the activity of 232Th and 238U of con-
taminated components and their mass. Measured activities of PMT glass, CuBe pins and
polyethylene bricks, and iron activity limits are summarized in Table 4.5 along with their
masses.

Table 4.5: Measured activities and activity limits of contaminated Demon-
strator components

Component Mass
[kg]

232Th activity
[Bq/kg]

238U activity
[Bq/kg]

PMT glass bulb∗ 0.65 0.390±0.098 0.86±0.22
Iron shield 230 000 <0.0005 ∗∗ <0.001 ∗∗

Feedthroughs CuBe pins 1.36 - 13.5±0.8
PE brick 1.33 <0.00151 <0.00226

PE(B) brick 1.33 0.012± 0.002 0.207± 0.005
∗Number of 8” PMTs=440, ∗∗target limit

These values can be used in a straightforward manner to normalize neutron yields
obtained from calculations from Table 4.1 (SF) and MC simulations from Table 4.4 ((α,n)
reactions) to obtain contributions from individual neutron sources.

Several assumptions were taken into account while calculating neutron production from
contaminated materials: the mass, volume and surface of PE and PE(B) bricks is assumed
to be the same and thickness of 1 brick is 8 cm12. Currently13, the design of SuperNEMO
shielding considers 18 cm of iron against gammas on each side of the detector with the addi-
tion of water on all lateral sides and polyethylene bricks on top and bottom or polyethylene
bricks on the back side of the detector instead of water. This way, we can estimate that
approximately 1539 bricks and 992 bricks of polyethylene are needed to cover the top and
back sides respectively. The surface of the top and bottom shielding is also assumed to be
the same.

Calculations of total radiogenic neutron production from contaminated materials are
summarized in Table 4.6. For the CuBe alloy pins, it also shows γ production from excited
states of 12C∗ after (α, n) reactions out of which the majority, ∼1536 γs/year, are above
4 MeV (see γ spectrum from Fig. 4.16). Other γ contributions from (α, nγ) reactions can
be neglected, as they either do not reach high yields for relevant energies (e.g. PMT glass,
iron) or they are expected to get shielded by their subsequent attenuation by the iron shield
(the case of PE and PE(B)).

In all cases, spontaneous fission dominates the neutron production, except for the CuBe
alloy feedthrough pins where the cross-section for (α, n) on beryllium is high enough to
take over.

Uncertainties in the (α,n) calculations can come from several sources and are still widely
discussed and investigated within the scientific community as they are not well understood.
They can come from the definition of material composition where the exact composition
is often vaguely provided by the supplier and whether or not an element (or isotope)

12These are the dimensions of bricks currently under consideration.
13In the time of writing this thesis.
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Table 4.6: Contributions to neutron production from contaminated mate-
rials under investigations

Material Total mass/Surface Process n/year, γ/year#

PMT glass 286 kg (α, n) Th 2133.0
(α, n) U 2654.9
SF U 8460.3

CuBe pins 1.36 kg (α, n) U 2406.8
SF U 631.1

(α, n) γs from 12C∗ 1714.0#

Iron shield 230 000 kg (α, n) Th 1110.5
(α, n) U 439.8
SF U 7911.3

PE bricks Top side (α, n) Th 13.4
∼31m2 (α, n) U 10.9

SF U 159.1
Back side (α, n) Th 8.6
∼20m2 (α, n) U 7.0

SF U 102.5
PE(B) bricks Top side (α, n) Th 844.8

∼31m2 (α, n) U 10749.7
SF U 14573.6

Back side (α, n) Th 544.4
∼20m2 (α, n) U 6926.5

SF U 9390.4

appears in the material at all can make a big difference. There is also some variance in
reported natural abundances of elements used in calculations. Another uncertainty can
come from stopping power calculations of α particles in matter and reaction cross-sections,
where theoretical predictions disagree significantly with measurements, and uncertainties
on measurements are typically large (often 10-20%). Moreover, some measurements of
cross-sections of the same isotopes are in disagreement. This should all be taken into
account when predicting radiogenic neutron production, however, as there are a lot of
complex systematics in these measurements and calculations it is not easily predicted.
Therefore, the biggest contribution to overall uncertainty is assumed to come from the
uncertainty of material activity and often only this is considered.

It is important to note again that understanding the radiogenic neutron production is
essential in rare event searches and that it is very much an evolving research field with many
future plans to reduce the uncertainty in the sensitivity of next generation experiments.
Such plans include a thorough review of the existing tools for (α,n) yield calculations and
the available cross-section databases, plans to improve the accuracy of the estimates and
novel ideas for (α,n) cross-sections measurements. This is outside of the scope of this
work, but it represents a new potential approach in future, where this work may serve as
a reference point. In summary, evaluating the systematics associated with backgrounds in
underground laboratories by analytical or Monte Carlo methods is currently at an early
stage.
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Table 4.7: Muon induced neutron yields and production rates in Fe for
different mean muon energies

Fe density [g cm−3] Fe thickness [cm] Interaction length [g cm−2] µ flux [µm−2d−1]
7.87 18 141.66 ∼5

Average µ energy
[GeV]

µ induced n yield in Fe∗

[n µ−1(g cm−2)−1]
Production

[n µ−1]
Muon induced n flux

[n cm−2s−1]
10 9.10×10−5 0.013 7.46×10−11

11 1.32×10−4 0.019 1.08×10−10

12 5.40×10−5 0.008 4.43×10−11

17.8 1.69×10−4 0.024 1.39×10−10

20 9.80×10−5 0.014 8.03×10−11

40 1.30×10−4 0.018 1.07×10−10

40 3.31×10−4 0.047 2.71×10−10

80 1.70×10−4 0.024 1.39×10−10

150 3.30×10−4 0.047 2.71×10−10

280∗∗ 1.64×10−3 0.232 1.34×10−9

385 2.03×10−3 0.288 1.66×10−9

∗Dependance of neutron yield in Fe (data from [51, 52])
∗∗Closest measured mean energy to Eµ,LSM= 255.0(45) GeV

4.3.2 Cosmogenic Neutrons in Iron
In general, the flux of cosmogenic neutrons is considered to be negligible [61]. Very little
data is available from measurements and simulations of muon induced neutron yields in
LSM. It is generally accepted that the neutron production at a certain depth can be
approximated by assuming that neutrons are produced by muons, all having mean energy
corresponding to this depth. As it was described in Section 3.1, they are predominantly
created in high Z materials such as lead or iron used for gamma shields. In SuperNEMO,
iron shielding is considered. We can estimate the neutron yield in iron using available
measurements for different muon energies in underground environments or by using the
universal formula from Equation 3.4. Muon induced neutron yields and production rates
in Fe from available literature for different mean muon energies are summarized in Table 4.7
and plotted in Figure 4.17.

Using the universal formula for iron and average muon energy from Equation 3.8 we
get:

Fe(A = 56) : Y UF
n = 1.71× 10−3nµ−1(gcm−2)−1 (4.15)

For 18 cm thick iron shield we can estimate the interaction length ∼ 141 cm, and use muon
flux from Equation 3.7, which yields approximately 1.4 ×10−9 n cm−2s−1. This flux is by
3 orders of magnitude lower than fast and thermal ambient neutron fluxes and moreover,
energies of these neutrons extend to high values, therefore we conclude that these neutrons
do not contribute significantly to the background of the SuperNEMO experiment.
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Figure 4.17: Dependance of muon induced neutron yield on the average
muon energy in Fe (data from [51, 52])

By far the biggest contributions constitute the ambient neutron fluxes. We can esti-
mate their contribution in n/year by taking into account the measured fluxes from Sec-
tion 3.3.5 and calculating the number of neutrons entering the surface of the detector which
is known. Figure 4.18 summarises the rate of different neutrons sources estimated in this
work, wherein radiogenic neutrons only neutrons from iron, PMTs, CuBe pins and pure
polyethylene bricks are accounted for14. Thus, the task to optimize the neutron shielding
in terms of its thickness becomes important.

Figure 4.18: Contribution of neutrons from different neutron sources

14PE(B) bricks are excluded to see how low the neutron production can be achieved
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4.4 Neutron Capture Gamma Cascades
Neutron induced background in the SuperNEMO experiment is expected to arise primarily
from the (n,γ) reactions. However, SuperNEMO simulation software is based on Geant4
which has a known issue of not being able to reproduce (n,γ) reactions properly because
correlations between gammas in individual gamma cascades in de-excitations are not taken
into account correctly [115, 116, 117]. This prevents energy conservation in neutron capture
events, which is crucial in many applications [115] and it can lead to rather unreliable results
and difficulties when simulating electromagnetic calorimeters or overall detector response
to neutron interactions.

This problem can be solved by separate simulation of gamma de-excitations using dedi-
cated gamma decay software DICEBOX [118] to make sure cascades are generated accord-
ing to the available data and that the correlations between γ-rays are correctly taken into
account. Section 4.4 describes the basic theory and assumptions of neutron capture gamma
cascades and the results of DICEBOX thermal neutron captures simulations on iron and
copper (abundant metals used in SuperNEMO Demonstrator constructions materials) are
discussed later in Section 4.4.3.

The work discussed in this section was done with collaboration with the DICEBOX
software developers from Charles University in Prague.

4.4.1 Neutron Radiative Capture

Figure 4.19: Scheme of (n,γ) reaction [119]

Neutron radiative capture, (n, γ) reaction, is the process when a target nucleus absorbs
a neutron to form a heavier nucleus, which then de-excites by means of electromagnetic
transitions, including emission of prompt γ-rays, internal conversion or internal pair pro-
duction. The excited nucleus loses energy in a transition to a state lower in energy in the
same nucleus. The de-excitations from the state with higher excitation energy to the state
with lower excitation energy can generally proceed via a cascade of transitions with many
intermediate levels [120]. Typical quantities that characterize the cascade γ emission are
the energy of emitted γ-rays, γ-ray multiplicity and populations of individual levels [120].

The probability of a particular transition depends upon the quantum numbers of the
state and the transition energy. In thermal neutron capture, the compound nucleus A+1X
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Figure 4.20: Simplified scheme of γ-ray transitions after neutron capture

is formed with excitation energy slightly above the neutron separation energy Sn threshold
[121]. The excitation energy of the compound nucleus is equal to the sum of Sn and the
neutron kinetic energy En. At the lowest excitation energy region, the individual levels
in the nucleus are well separated, their energies, spins, parities and γ-ray de-excitations
are known and can be predicted by nuclear models, but with increasing excitation energy,
nuclear levels become more difficult to resolve and above some critical energy, Ecrit, these
levels form a continuum (simple scheme of nuclear level distribution is shown in Figure 4.20,
with blue lines showing an example of possibilities of realization of γ-ray transitions) [120,
121]. With increasing excitation energy, the nature of these levels becomes complicated
and the only way to describe the level density seems to be the use of a statistical model.
During the de-excitation of a medium-heavy or heavy nucleus, a large number of levels in
the energy range from zero to the Sn is populated and the spectrum of emitted γ-rays is
thus very complex.

The two entities responsible for the emission of γ cascades in the neutron capture
reactions are the level density (LD) and the photon strength function (PSF) [120]. The
mean value of a partial radiative width, ΓXLif , of corresponding transition of γ-ray decay
with an energy Eγ= Ei - Ef is [121, 122]:

< ΓXLif >=
fXL(Eγ)E2L+1

γ

ρ(Ei, Ji, πi)
(4.16)

where XL15 denotes the multipolarity of the transition, Ei, Ef are energies of initial and
final states, fXL is the photon strength function and ρ(Ei, Ji, πi) is the level density model
depending on energy E, spin J and parity π of the initial state. Thus, Equation 4.16 can
be rewritten for the PSF of type and multipolarity XL:

fXL(Eγ) =
< ΓXLif > ρ(Ei, Ji, πi)

E2L+1
γ

(4.17)

15X stands for type of transition, L stands for associated multipole moment (X = E is electric and
X = M is magnetic multipole operator of given multipolarity L)
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Figure 4.21: Representation of the Brink-Axel hypothesis for photoexci-
tation (photo-absorption) and neutron capture [123]

From Equation 4.17, it is seen that the PSF represents the distribution of average,
reduced partial γ-transition widths, and so it describes the average probability to emit γ
radiation with a given γ-ray energy.

While the strength function from Equation 4.17 is related to γ decay16, a photo-
absorption strength function17 is determined by the average photo-absorption cross-section
< σXL(Eγ) > summed over all possible spins of final states [123]:

fXL(Eγ, Ef , Jf , πf ) = < σXL(Ef , Jf , πf , Eγ) >
(2L+ 1)(π~c)2E2L+1

γ

(4.18)

The basis of the treatment of γ-ray transition probabilities in the concept of PSF is
the so-called Brink-Axel (BA) hypothesis [124, 125] that assumes that the total absorption
cross-section depends only on transition energy Eγ and does not depend on other char-
acteristics of the initial and/or final states [126]. In other words, the photo-absorption
cross-section on an excited state will have the same shape as the photo-absorption on the
ground state (Fig. 4.21), and so the strength function from Equation 4.18 can be used as
a substitute for the strength function in Equation 4.17 [123].

Hence, PSFs can be evaluated from measurements of total photo-absorption cross-
sections as well as from neutron radiative capture measurements, if data are available.
Where the data are not available and the PSFs are not well known, theoretical models are
usually proposed.

16Often reffered to as “downward” strength function (see Fig.4.21)
17Often reffered to as “upward” strength function (see Fig.4.21)
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4.4.2 Internal Conversion (IC) and Internal Pair Production
(IPP)

Internal conversion and internal pair production (conversion) are decay modes that compete
with γ emission as a de-excitation process of excited nuclei.

IC results in the emission of an orbital electron of the same atom after absorbing the
excitation energy of the nucleus. The kinetic energy of IC electron is equal to the energy of
the transition between excited and lower energy states of nucleus minus the binding energy
of the electron, Ee = Ei − Ef − Ebinding.

An excited nucleus can also decay electromagnetically by emission of an electron-
positron pair provided that the nuclear transition energy exceeds 2mec

2 (1.022 MeV). The
particles emitted in the IPP process share the available kinetic energy, Etransition − 2mec

2.
The conversion coefficients are defined as the ratio of the electron/electron-positron pair

emission rate to the gamma emission rate. Knowledge of accurate IC and IPP coefficients
is needed in the determination of total transition rates.

4.4.3 Gamma Cascades from Thermal Neutron Capture on Fe
and Cu Isotopes

Results presented in this section were obtained by the DICEBOX γ-decay simulation code.
Input data for selected studied isotopes (Table 4.8) include the knowledge of transitions,
PSF and LD models, and IC and IPP conversion coefficients. DICEBOX generates the
full level scheme of each isotope according to available data and any missing information
is provided with the use of statistical model.

Table 4.8: Abundance of studied Fe and Cu isotopes and neutron separa-
tion energies for compound nuclei

Isotope Abundance [%] Reaction Sn of CN [MeV]
54Fe 5.85 54Fe(n,γ)55Fe 9.298
56Fe 91.75 56Fe(n,γ)57Fe 7.646
63Cu 69.17 63Cu(n,γ)64Cu 7.916
65Cu 30.83 65Cu(n,γ)66Cu 7.066

The knowledge of transitions for all isotopes was adopted from corresponding ENSDF18

files from the electronic database of evaluated experimental nuclear structure data [127,
128], and from reference [129] for Fe and reference [130] for Cu. IC and IPP coefficients
were taken from the internal conversion coefficient database, BrIcc [131]. For Fe isotopes
QRPA calculations were used for E1 a M1 transitions, single particle approximation for E2
transition and Constant Temperature Formula (CTF) for LD [132], this combination being
relatively well tested for iron [129]. For Cu isotopes traditionally used models are standard
Lorentzian for E1, M1 and E2 transitions and Back Shifted Fermi Gas model (BSFG)
for level density [132]. PSF models for Fe and Cu are shown in Figures 4.22 and 4.23
respectively (E2 PSF is multiplied by the square of Eγ to ensure units comparable to M1
and E1 PSF. It is summed to M1 PSF, because M1 and E2 transitions have similar selection

18Evaluated Nuclear Structure Data File
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rules - they do not change parity and can therefore occur between the same two levels, and
mixed M1 + E2 transitions can be observed).

Figure 4.22: PSF models used in DICEBOX simulation for Fe isotopes:
QRPA calculations for E1 and M1 transitions, single particle approximation

for E2 transition and Constant Temperature Formula for level density.

Figure 4.23: PSF models used in DICEBOX simulation for Cu isotopes:
standard Lorentzian for E1, M1 and E2 transitions and Back Shifted Fermi

Gas model for level density.

In DICEBOX, 100 000 thermal neutron captures were simulated. Obtained results
for each isotope include γ spectra following thermal neutron capture, individual γs in
cascades, lengths of individual cascades and contributions from de-excitation from IC and
IPP. Results of 105 cascades in a nuclear realization simulated in DICEBOX are presented
in Figures 4.24 - 4.26.
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Figure 4.24 shows plots of sums of gammas in generated cascades. It can be seen that
in all cases, the majority of events have energy equal to the neutron separation energy
Sn of compound nucleus, the mean value is ≈ Sn (Sn values are in Table 4.8). Therefore,
γ emission dominates all de-excitation modes. In other cases, the de-excitation process
proceeds via γ emission in combination with IC and/or IPP, and so the electrons or e−−e+

pairs carry away the remaining energy.

Figure 4.24: Sums of gammas in 100 000 generated neutron captures on
Fe and Cu isotopes

Figure 4.25 shows the energy distribution of individual gammas in cascades, therefore
the number of entries is always larger than 100 000. It can be seen that the de-excitations
proceed via different transitions with many intermediate levels and the gammas cover a
wide range of energies. Only for 55Fe and 64Cu, the de-excitation happens through the
emission of gamma with energy equal to the Sn in most cases. This can also be seen from
the length of gamma cascades in Figure 4.26, where the mean number of gammas in 55Fe
cascades is 1.6, and 2.2 in 64Cu cascades. The biggest number of gammas is emitted in
cascades of 66Cu. In comparison to iron isotopes, in copper, there is a larger number of
transitions proceeding to the low-lying excited states of the product nuclei. Namely γ-rays
of 159.3 and 278.3 keV in 64Cu, and γ-rays of 185.9 and 465.2 keV in 66Cu have high
intensities. For 66Cu, the Eγ=185.9 keV is also the strongest transition. The strongest
high energy transitions are: Eγ=9.23 and 8.88 MeV for 55Fe, Eγ=7.64, 7.27, 6.02 and 5.92
MeV for 57Fe, Eγ=7.91, 7.64, 7.31 MeV for 64Cu, and Eγ=6.60, 6.68, 5.32 and 5.25 MeV
for 66Cu.
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Figure 4.25: Individual gammas in 100 000 generated neutron captures on
Fe and Cu isotopes

Figure 4.26: Lengths of cascades for Fe and Cu isotopes
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Plots for IC (Fig. 4.27) show γ energies contributing to IC (energy absorbed by orbital
electron19), the kinetic energy of the electron is then smaller by its binding energy. In
all cases, IC is important for low energy nuclear transitions with the mean energies being
lower than 1 MeV. This agrees well with the theory that internal conversion is favoured for
low energy transitions [133]. The biggest IC contribution can be seen in 57Fe for the lowest
energies, which is most likely due to high IC coefficients for these transitions, for example,
ICC=8.54 for Eγ=14.4 keV transition [129].

Figure 4.27: Results of IC

Plots for IPP (Fig. 4.28) show total energies of e− − e+ pairs, the kinetic energy of
the pair is then smaller by 2mec2. A substantial amount of energy can be carried away
by e− − e+ pairs with mean energies close to the value of Sn in most cases. However, the
contribution of the IPP process is overall very small with the number of entries ranging
only between 218 - 238.

19The exact quantum of energy lost by a nucleus.



Chapter 4. Neutron Background Sources 77

Figure 4.28: Results of IPP

4.5 Summary
The main objective of this chapter was to evaluate neutron production rates and their
energy spectra from sources that could potentially contribute to the background of the Su-
perNEMO experiment. These sources include spontaneous fission of uranium and thorium
isotopes, (α,n) reactions and muon induced neutrons.

Each radiogenic source has its dedicated section in the chapter which includes a short
theoretical overview of the process and a summary of approaches and simulation tools
to calculate the total neutron yields and their energy distributions. Based on extensive
research in the available literature, I used the best performing tools, formulas and data
libraries to calculate and evaluate these neutron contributions.

From spontaneous fission, only 238U is of concern, due to its higher branching ratio
for this process20. The number of spontaneous fission neutrons emitted per decay of 238U
is approximately 1.1 × 10−6. In comparison, neutron yields from (α,n) reactions were
found to be lower in most cases, except for a material containing 9Be. For this reason,
spontaneous fission dominates the neutron production for construction materials used in
the Demonstrator.

The energy spectra of these neutrons are soft, extending to ∼12 MeV, with mean
energies centered around 1-2 MeV for SF and 1-5 MeV for (α,n) reactions in studied
materials.

20Compared to 235U and 232Th.
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For each process, also the average number of produced γ-rays was determined, as γ-
rays and their interactions in the source foil may lead to the background event production.
The average energy of these γ-rays is ∼1 MeV in the case of spontaneous fission. These
energies are not of concern for the energy region of interest of the SuperNEMO experiment.
The γ-ray energies can extend up to ∼10 MeV in the case of (α,n) reactions in studied
materials, however, the gamma yields are relatively low in most cases.

Higher gamma yields may, however, arise from secondary radioactivity of neutron cap-
ture reactions. Therefore, gamma cascades from (n,γ) reactions in metals of high mass
in the Demonstrator were studied in the last section of this chapter. Energies of γ-rays
of the highest intensities from neutron captures on copper and iron isotopes, which are of
concern for the energy ROI of the SuperNEMO experiment, extend from 4 to 9.3 MeV.
Electrons and electron-positron pairs, associated with internal conversion and internal pair
production21, have negligible rates or energies compared to the γ-ray cascades.

We can conclude, that from the point of view of the high energy γ-ray induced back-
ground, the dominant sources, that should be investigated, are γ-rays from captures of
radiogenic neutrons on Fe and Cu isotopes, and γ-rays from (α,nγ) reactions in CuBe alloy
pins that reach higher yields for energies above 4 MeV. The study of these γ-rays in the
geometry of the Demonstrator is the objective of the next chapter.

21De-excitation modes competing with γ-ray emission.
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Chapter 5

Monte Carlo Simulation of External
Background in the SuperNEMO
Experiment Induced by High Energy
Gamma Rays

Simulation of high energy γ induced background in the SuperNEMO Demonstrator consists
of two parts:

1. Simulation of ambient high energy γ induced background

2. Simulation of neutron induced background

Each simulation has its own dedicated section in this chapter. Firstly, the SuperNEMO
simulation software is described in Section 5.2. The method and results of external am-
bient γ-ray induced background simulation are presented in Section 5.3, and Section 5.4
is dedicated to the complex analysis of neutron induced background. Each of these parts
also contains a subsection dedicated to the analysis of attenuation of ambient radiation by
shielding.

5.1 High Energy External Background Sources of the
SuperNEMO Experiment

As it was described in Section 2.3, the external background of the SuperNEMO detector
originates from radioactive contaminants outside the source foil, and which interact with
the detector. An important component of this background are high energy γ-rays (>
4 MeV) coming from the LSM laboratory environment that can lead to 2 electron events
(mainly through pair production when the sign of the positron track curvature is incorrectly
reconstructed).

Another important source of high energy γ-rays are neutron capture reactions on metals
in construction materials - primarily iron and copper due to their large mass present in
the detector. Elastic scattering of fast neutrons doesn’t contribute to 2 electron events and
therefore mainly thermal neutron captures are of big concern, because they lead to gamma
emission from excited nucleus which can then interact with the source foil:

n→A
Z X →A+1

Z X∗ →A+1
Z X + γ... γ → interaction in foil → 2e− (5.1)
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These neutrons can be ambient - coming from the laboratory - or internal to the detector -
originating from nuclear interactions in construction and shielding materials of the detector.

The aim of this work is to simulate and estimate the background contributions from
high energy gamma rays coming from the underground environment and (n,γ) reactions
that constitute a major source of background to almost all underground experiments.

The analysis method is based on simulating gamma and neutron fluxes from their
source positions according to their energy spectra and analyzing the detector’s response.
Calculations or measurements of gamma and neutron yields and their energy spectra are
important for establishing their contribution to the background of the experiment, as the
total yield indicates the number of particles that enter the sensitive volume or that are
produced in the target material, and their energy spectrum determines the total number
of expected background events in the region of interest.

Where measurements are available these data on fluxes and energy spectra are used
(summarized in Sections 3.3.3 and 3.3.5), otherwise, we rely on theoretical calculations and
simulations exploiting various software and approaches described in Chapter 4.

5.2 SuperNEMO Simulation Software - Falaise
All Monte Carlo simulations of external background were performed using the Falaise soft-
ware [134] and analyzed using ROOT [135] and Sensitivity Module [136] (Falaise pipeline
module to process selected data) developed by a member of SuperNEMO collaboration.

Falaise is the software system developed for the SuperNEMO experiment based on
Geant4. It provides the main computational environment for the simulation, processing and
analysis of data. It includes the full geometry of the detector. The three main components
of the software are:

• core library: libFalaise

• main detector simulation application: FLSimulate

• main reconstruction application: FLReconstruct
FLSimulate’s task is to simulate the generation and passage of particles through the

SuperNEMO detector, recording the detector response and writing this to an output file.
FLReconstruct’s task is to read data from an output file generated by the SuperNEMO
simulation, perform reconstruction on each event in the data, and write the reconstructed
data to an output file. Falaise also provides FLVisualize, which is the main detector/event
viewer GUI used to display simulated and reconstructed events. Figure 5.1 displays the
visualization of the main parts of the SuperNEMO demonstrator in the Falaise software
from the top, side and front view.

The visualization of a simulated 0νββ event in Falaise with a common vertex in the
source foil and two calorimeter hits each associated with a track with negative curvature
is in Figure 5.2. The ultimate goal of simulation of the γ-ray induced external background
is to study and to identify events that mimic the 2 electron topology of 0νββ.

5.3 Ambient Gamma Ray Induced Background
The first important step in simulation is to have input data, which in this case means to
have ambient LSM γ-ray fluxes.
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Figure 5.1: Visualization of the main parts of the SuperNEMO demon-
strator in the Falaise software

Figure 5.2: Visualization of a reconstructed 0νββ event simulated in the
Falaise software

The extracted γ-ray fluxes measured in the LSM for each energy interval above 4
MeV summarized in Table 3.5 of Section 3.3.3 can be used for further investigations of
the background of detectors operating in the LSM. A spectrum of these fluxes can be
approximated by a flat spectrum in each interval, normalized to a measured value of flux,
according to Figure 5.3.
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Figure 5.3: Generated flat primary LSM γ energy spectrum

The second step is to estimate the flux entering the detector after the installation of
passive shielding.

5.3.1 Simulation of γ-ray Attenuation by Shielding
The main objective of this task has been to evaluate LSM γ-ray attenuation and investigate
different shielding configurations for the SuperNEMO experiment. For this purpose, a
simple Geant4 simulation has been used. Shielding of basic rectangular parallelepiped
shape of given material was built around the detector and fluxes passing through the
shield and reaching the detector were simulated. To stop the particles from backscattering
and counting them more than once, each particle was killed after it reached the detector.
LSM γ fluxes were shot towards the detector and attenuated fluxes for energy ranges 0-2,
2-4, 4-6, 6-7, 7-8, 8-9 and 9-10 MeV were extracted.
Following shielding materials and thicknesses were studied: 3, 6, 9, 12, 15 and 18 cm of
iron, plus either 0, 1 or 2 cm of copper placed between the detector and the iron shield.
These high Z materials are the main shielding materials against γ radiation.

Figure 5.4 shows the results of this simulation. The total γ-ray flux in LSM decreases
with the thickness of the shielding material as expected. At 18 cm of iron, the influence
of copper seems to be negligible as all fluxes have been asymptotically decreasing to the
same value. This suggests that from the point of view of external γ-ray flux suppression,
18 cm of iron with no addition of copper is sufficient.

Table 5.1: Densities of studied materials

Material Density [g/cm3]
Iron 7.87

Copper 8.96
Polyethylene 0.941

Water 0.997
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Table 5.2: Attenuated γ fluxes for different shielding configuration in each
energy interval

Flux in energy interval [γ cm−2s−1]
0-2 MeV 2-4 MeV 4-6 MeV 6-7 MeV 7-8 MeV 8-9 MeV 9-10 MeV Total flux∗

18 cm Fe 7.55×10−8 2.00×10−8 1.82×10−8 6.02×10−9 5.47×10−9 2.57×10−10 1.63×10−10 1.26×10−7

18 cm Fe + 50 cm H2O 9.43×10−9 3.05×10−9 1.99×10−9 5.60×10−10 5.78×10−10 3.38×10−11 1.92×10−11 1.57×10−8

18 cm Fe + 20 cm PE 5.82×10−8 1.99×10−8 1.66×10−8 5.62×10−9 4.92×10−9 2.66×10−10 1.54×10−10 1.06×10−7

∗LSM flux > 4 MeV:

Φγ = (7.02± 2.10)× 10−6γcm−2s−1

Figure 5.4: Simulation of attenuation of γ-ray fluxes in the LSM after
passing iron and copper wall shielding

Additional attenuation is achieved with neutron shielding materials, although their
attenuation power is lower due to lower density (Tab. 5.1):

• Combination of iron and water

• Combination of iron shield and polyethylene

Because the size of shielding is constraint due to limited space in the LSM laboratory,
and price and installation are also key factors, maximal suggested thicknesses of water and
polyethylene are 50 and 20 cm respectively. Each side of the detector may be covered by
a wall of different shielding. Table 5.2 shows attenuated γ fluxes for different material
configuration in each energy interval, which can be used to further investigate optimal
detector shielding.

Shielding properties against neutrons will be discussed in Section 5.4 regarding neutron
simulations.

5.3.2 Simulation of Ambient γ-rays in Falaise
Once all the input data for the Falaise software are available, the response of the Demonstra-
tor detector can be investigated through Monte Carlo simulations. As a vertex generator
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Figure 5.5: Example of Falaise visualization of vertices of generated γ
particles from separate sides of the detector

(starting position of primary particles) so called "box model vertex generator" was used,
since the external LSM γ flux comes from the surrounding environment of the detector.
This generator fully encloses the detector from each side. Primary particle (γ) energies
were generated from "flat energy generator" in each energy interval up to 10 MeV (0-2, 2-4,
4-6, 6-7, 7-8, 8-9 and 9-10 MeV). This generator randomly chooses the particle energy from
the flat spectrum in a given energy range from Emin to Emax.

Since the attenuation of the fluxes depends on shielding configuration (material and
its thickness) and each side of the detector will likely use a different configuration, the
simulation in Falaise is divided accordingly: events were generated separately for each
side of the detector in each individual energy interval. Figure 5.5 shows an example of
simulated event vertices from the top, left and front sides of the detector. The total
number of simulated events in each such category "side+energy interval" was 500 million
making it 7 × 500 million, events = 3.5 billion events for each side.

All simulated data were then reconstructed using FLReconstruct. After simulation and
reconstruction were complete, I looped through all events in ROOT to apply selection cuts
to extract events in the desired topology.

Selection Cuts

For background events in 2 electron topology (2e−), only electrons are allowed. Selection
criteria used to extract background events mimicking the signal follow the reconstruction
described in Section 2.1.5 in more detail. To briefly summarize the main criteria, they go
as follows: event needs to have exactly 2 reconstructed calorimeter hits over 50 keV, of
which 1 is over 150 keV. Electron is selected as a track with associated calorimeter hit with
a negative curvature of the track1. Both electrons need to have a vertex on the source foil.

One of the main requirements for the signal is, that it must originate from inside the foils
placed in the center of the detector, meaning the event must be internal. In establishing
the origin of the event, whether the event is internal or external (from an external source),
internal and external TOF probabilities are calculated.

1The tracks of charged particles are bent in the magnetic field.
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5.3.3 External High Energy γ Induced Background Events -
Results

Results of the Falaise simulations were then normalized to time of one year, the corre-
sponding surface of a side of the vertex generator and corresponding flux in each energy
interval. The effect of flux attenuation by passive shielding can be seen in a comparison
between deposited energy in calorimeter of all events without any selection cuts applied in
Figure 5.6. In this case, the iron shield has a thickness of 18 cm, and the geometry of the
neutron shield is 50 cm of water on lateral sides of the detector and 20 cm of polyethylene
on top and bottom (Table 5.2). The drop in the spectrum without shielding in the energy
range below 4 MeV is due to the fact that measured LSM γ fluxes were given from 4 MeV
higher and only these fluxes were simulated. The LSM fluxes above 8 MeV are two orders
of magnitude lower compared to fluxes from 4-8 MeV, therefore there is a drop in this
region in the spectrum.

Figure 5.6: Comparison of deposited energy in calorimeter with and with-
out passive shielding

Following histograms show the distributions of summed electron energies of events that
passed the selection criteria of background topology. The region of interest (ROI) in the
SuperNEMO experiment is the energy interval around the Qββ value of 82Se, and that is the
interval (2.8,3.2) MeV. The simulation was performed for each energy interval separately
and it is, therefore, possible to see individual contributions to background events from these
fluxes. This is plotted in Figure 5.7. The smallest contribution comes from fluxes above
8 MeV because the LSM fluxes in this energy region are two orders of magnitude lower
compared to fluxes from 4-8 MeV (see Table 3.5). Moreover, the maximum of summed
electron energies is shifted towards higher energies with a lower rate in the ROI around
the Qββ value of 82Se.

Similarly, we can also see contributions from individual sides, especially before and after
shielding in Figure 5.8. The geometry of the Demonstrator is symmetrical and the results
remain the same (within small statistical fluctuations) for opposite sides, and therefore
the results are plotted for Top/Bottom, Left/Right and Front/Back sides. The biggest
contribution after iron and neutron shield comes from the top and bottom sides, where the
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Figure 5.7: Background rate in the 2e− channel coming from individual
fluxes of each energy interval (simulation without shielding)

Figure 5.8: Background rate in the 2e− channel coming from individual
sides without any shielding (left) and with iron and neutron shield (right)

γ-flux is shielded the least due to the lower thickness of polyethylene used on these sides
compared to water on other sides (Table 5.2).

Figure 5.9 shows the total external gamma induced background in the 2e− channel.
Total background rate in the 2e− channel can be obtained by integrating the histograms
and these results are given in Table 5.3.

The expected number of external gamma induced background events without the use of
passive shielding is 3.01 ± 0.41 (stat) ± 0.91 (syst). This number is reduced down to 0.016
± 0.002 (stat) ± 0.005 (syst) by using iron shield against γ-rays and even lower to 0.008
± 0.001 (stat) ± 0.002 (syst) by a combination of iron and neutron shield. These results
show, that with the use of the proposed shielding, no external gamma induced background
event is expected in ROI after a year of running the experiment.

We can compare it with the expected number of background events from other external
sources, described in Subsection 2.3.2, coming from 208Tl and 214Bi contamination of PMTs
and radon contamination of source foil surface, tracker wire surface and field wire bulk.
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Figure 5.9: Background rate in the 2e− channel - total external gamma
induced background

Table 5.3: Number of expected background events in ROI

Number of events in ROI /year
No shield Iron shield Iron and neutron shield
3.01 ± 0.91 0.016 ± 0.005 0.008 ± 0.002

And from internal background sources - 208Tl and 214Bi contamination of source foil bulk.
The number of expected events after 2.5 years of exposure planned for the Demonstrator
from these sources is currently 2.93± 0.42 (stat)± 0.17 (syst)2. Compared to these internal
and external sources, the ambient gamma rays coming from the laboratory environment
become negligible after the use of passive shielding.

2Preliminary internal analysis of collaboration
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5.4 Neutron Induced Background
To analyze the background induced by high energy gammas from neutron capture reactions,
and to avoid the unreliable and undesirable cascade production in Geant4, the simulation
was split into several steps:

1. Obtain input neutron energy spectra and neutron fluxes or neutron yields from avail-
able measurements or simulations

2. Generate input spectra in the Falaise software from their source positions

3. Extract neutron capture positions and fractions of captured neutrons on iron and
copper isotopes in the detector from the Falaise simulation

4. Generate neutron capture gamma cascades from obtained capture positions

5. Analyze detector’s response and obtain the expected number of background events
in the 2 electron channel

Input energy spectra and neutron production rates, yields and fluxes from step 1 are divided
into two categories: ambient neutrons and neutrons internal to the detector from material
contamination. The ambient neutrons were discussed in Section 3.3.5 and contributions
of internal neutrons were summarized in Section 4.3 (their energy spectra are discussed in
detail in Chapter 4). Simulations in step 2 were then performed separately for thermal
ambient neutrons, fast ambient neutrons and individually for radiogenic neutrons from
each decay chain (238U and 232Th) - spontaneous fission neutrons and (α,n) reactions - for
PMT glass bulbs, iron shield and CuBe alloy feedthrough pins. Only spontaneous fission
of 238U was considered as the contribution from other radionuclides is negligible in this
decay mode. Vertices of source position of shielding materials were generated similarly to
external γs - from box model generator enclosing the detector (Fig. 5.5) and for PMT
glass and CuBe alloy pins from the bulk of the material according to Figure 5.10.

Figure 5.10: Example of Falaise visualization of vertices of generated neu-
trons from bulk of CuBe pins and PMT glass

In step 3, for each simulation of step 2, the capture positions were extracted for each of
these isotopes: 54Fe, 56Fe, 63Cu and 65Cu. The fraction of neutron captures represents the
number of captured neutrons on individual isotopes out of all generated neutrons. Physical
processes are well implemented, tested and optimized in Geant4 for such task. This step
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is described again in Subsection 5.4.2 in more detail. The problem arises with subsequent
(n,γ) reactions. The extracted positions were then used as vertex generators for gamma
cascades obtained from the DICEBOX simulation in Section 4.4.3 in the 4th step. In step 5,
the background rate in the 2 electron channel was analyzed following the reconstruction
and selection criteria described in Section 5.3.2.

5.4.1 Simulation of Neutron Attenuation by Shielding
Similarly to the external γ flux analysis, attenuated neutron flux and spectrum have to
be obtained. The study of shielding performance of different materials and thicknesses
for ambient neutron attenuation was previously conducted and discussed by a member of
SuperNEMO collaboration in work [116]. In this work, only fast LSM neutron flux was
considered. For purposes of my work, the code and approach of work [116] was utilized,
but the simulation was split for thermal and fast neutrons separately. The approach of
the simulation consists of propagating neutrons from LSM spectrum through a simple
wall of polyethylene (PE), borated polyethylene (PEB), water, borated water (waterB),
and through a combination of these materials with 18 cm of iron. The incoming neutron
spectrum was normalized to 10−6 n s−1cm−2 so that the resulting spectrum could be easily
normalized to any measured value of LSM flux. Results of this simulation are plotted in
Figure 5.11. For the thermal neutron attenuation, only some thicknesses were simulated
as for the maximum plotted thickness for a given material, overall good suppression of
thermal neutrons has already been achieved. For example, behind the wall of 16 cm of
polyethylene, the ratio of outcoming and incoming neutron flux is only 0.5 %, and this
ratio is only 0.004 % for 40 cm of water.

From the point of view of background simulations, the fluxes that enter the iron shield
are more important than the fluxes that reach the detector behind the iron shield, because
the neutrons can capture here and subsequently produce gammas that can lead to back-
ground event production. These fluxes are given in Table 5.4. As it is also important to
determine the energy spectrum of outcoming neutrons, not only fluxes but also energies of
neutrons were stored. These results are plotted in Figure 5.12 for relevant thicknesses of
materials considered now3 for the shielding configuration used for the Demonstrator. Since
the composition of PE and PE(B) is the same, except for the addition of boron, the atten-
uated spectrum of neutrons looks the same, but the same thickness of PE(B) performed
better in terms of outcoming flux. The main difference can be seen in the thermal part
of the spectrum, where the addition of boron plays important role in neutron absorption.
Comparison of outcoming spectra of neutrons that were thermalized in these shielding
materials is shown in Figure 5.13.

It is clear that borated polyethylene is the best performing shielding material. It has
the ability to suppress incoming neutron flux and absorb thermalized neutrons. In sup-
pression abilities, this material is followed by pure polyethylene. Water, however, is also
performing well if sufficient thickness is used. However, one has to also consider the radio-
genic neutron contributions of these materials. Table 4.5 showed measured activities and
activity limits of contaminated Demonstrator components. Among these available materi-
als, PE(B) bricks are the most contaminated. Since SuperNEMO places importance on the
selection of radiopure materials this has to be taken into account. Especially, since pure

3In the time of writing this thesis. Borated water is no longer considered due to laboratory safety
rules. Thicknesses of materials are based on laboratory size and material cost restrictions.
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(a)

(b)

Figure 5.11: Attenuation of fast and thermal LSM neutron fluxes by dif-
ferent shielding
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Figure 5.12: Spectrum of outcoming neutrons for 50 cm of water and 20
cm of polyethylene and borated polyethylene

Table 5.4: Total outcoming neutron fluxes after attenuation of environ-
mental fast LSM neutron spectrum

Total outcoming flux [s−1cm−2]
Thickness [cm] PE PE(B) Water

0 1.00×10−6 1.00×10−6 1.00×10−6

8 5.28×10−7 3.64×10−7 6.21×10−7

10 4.13×10−7 2.50×10−7 5.20×10−7

20 8.94×10−8 3.54×10−8 1.66×10−7

30 1.69×10−8 5.72×10−9 4.35×10−8

40 - - 1.12×10−8

50 - - 3.01×10−9

Figure 5.13: Spectra of outcoming thermalized neutrons for 50 cm of water
and 20 cm of polyethylene and borated polyethylene
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polyethylene also shows good suppression abilities. The use of pure polyethylene could
be justified by Monte Carlo simulations of neutron induced background considering this
shielding configuration, provided that the results would show negligible contributions to
the expected background. Radiogenic neutron production in pure polyethylene is also the
lowest out of all sources.

5.4.2 Neutron Capture Positions and Fractions
The high energy γs of interest that can lead to external background event production
arise from thermal neutron captures on iron and copper. Iron is used as a frame of the
Demonstrator4 and some copper parts of the detector are, for example, calibration source
carrier frame, copper-beryllium feedthrough pins and vertical beam rods of the source foil
frame. Neutrons can capture, of course, on other material present in the detector as well
(e.g. H, Ni, Si, Co, Ca etc.), but their abundance and mass in the detector is overall
small or γs from the de-excitations of these nuclei don’t reach very high energies. The
capture process of neutron depends on its primary position where it originates and on
its energy. Fast neutrons first scatter in the detector and subsequently thermalize until
they get captured. A large amount of neutrons scatters in the detector and leaves the
detector volume altogether without eventually capturing. That is why it is also important
to estimate the fraction of captured neutrons from each source on each isotope.

Each neutron in the simulated event was tracked until its track ended with a thermal
nCapture process which lead to either 55Fe, 57Fe, 64Cu or 66Cu creation and the x, y and
z position of this end of the track was stored. Figure 5.14 shows an example of thermal
neutron capture positions on iron and copper isotopes in the Demonstrator from two dif-
ferent perspectives. The positions are the results of captures of ambient neutrons coming
from the laboratory environment (the box model generator in case of this simulation).

If the primary neutrons are generated from PMTs or CuBe pins within the detector, the
capture positions remain almost the same, as the Demonstrator geometry and materials
are unchanged, however, they tend to be concentrated on a specific side of the detector.
For example, since the CuBe alloy pins are positioned on top and bottom of the detector
(see. Fig. 5.10), the capture positions are also denser on these sides, as can be seen in
Figure 5.15 (A).

These capture positions (examples shown in Fig. 5.15 and 5.14) will then be used as
event vertex generators of gamma cascades5.

There is another important fact to take into account already mentioned in Section 5.4.1.
The baseline design for shielding the detector against γs consists of 18 cm thick iron. This
introduces a large amount of iron for the neutrons to capture on and thus, a passive shield
designed to suppress radiation can turn itself into a source of background. Additionally,
neutrons that would otherwise scatter in the detector and leave, can now scatter in the iron
shield, return back to the detector and capture on copper and iron in the detector volume.
This ultimately increases the number of captures on all isotopes. For this reason, the
simulation to obtain capture positions and capture fractions was performed for geometry
without the iron shield - to see background contribution of the unshielded detector, and for
geometry with the iron shield included - to investigate and estimate the background for the

4Some iron is also present in the concrete floor of the LSM.
5In these example figures, only a small sample of vertices is shown. In actual simulation larger statistics

of positions is used.
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(a) Iron

(b) Copper

Figure 5.14: Thermal neutron capture positions on iron and copper iso-
topes

(a) No shield (b) Iron shield

Figure 5.15: Thermal neutron capture positions on iron from spontaneous
fission of 238U from CuBe pins for geometry with and without iron shield
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final design of the Demonstrator and to investigate the contributions to the background by
introducing new materials 6. Figure 5.15 (B) shows capture positions in iron for geometry
with included iron shield.

Fractions of neutron captures, fi, were similarly obtained for each isotope i in all
simulations for each neutron source by counting the number of neutron captures out of all
simulated neutrons. This way the abundance of each isotope is also taken into account.
Stored fractions from simulations with and without the iron shield are summarized in Tables
5.5 and 5.6 respectively. The aforementioned point about the increase of the number of
captures by introducing the iron shield is clear when comparing these tables. The difference
in the number of captures between iron and copper can be explained by higher iron mass
and abundance in the detector. And the difference in the number of captures between
individual iron isotopes and individual copper isotopes can be explained by their natural
abundances. This is more prominent in the case of 55Fe and 57Fe, where the difference
between 54Fe and 56Fe abundances in natFe is more distinct.

Table 5.5: Fractions of neutron captures without iron shield

Fractions of neutron captures fi [%]
Neutron source 55Fe 57Fe 64Cu 66Cu

Ambient neutrons Thermal 0.61 10.94 0.16 0.034
Fast 0.20 3.56 0.51 0.11

PMT glass (α,n) 232Th 0.63 11.05 0.90 0.19
(α,n) 238U 0.62 11.06 0.89 0.19
SF 238U 0.63 11.05 0.90 0.19

CuBe pins (α,n) 238U 0.32 5.59 1.98 0.43
SF 238U 0.33 5.94 2.18 0.48

Table 5.6: Fractions of neutron captures with iron shield included in the
geometry

Fractions of neutron capture fi [%]
Neutron source 55Fe 57Fe 64Cu 66Cu

PMT (α,n) 232Th 1.674 28.57 1.15 0.27
(α,n) 238U 1.70 28.80 1.15 0.25
SF 238U 1.70 28.77 1.11 0.24

CuBe (α,n) 238U 1.36 22.17 2.42 0.53
SF 238U 1.48 23.43 2.57 0.57

Iron shield - radiogenic (α,n) 232Th 0.97 14.12 0.34 0.07
(α,n) 238U 0.97 14.16 0.34 0.08
SF 238U 0.93 13.68 0.35 0.08

6For the purpose of this study, 18 cm thick iron shield was incorporated in the Demonstrator geometry
in the Falaise software.
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Now we have to consider the shielded neutron flux. Particle energies were sampled
according to attenuated neutron spectra for water and polyethylene shielding from Fig-
ure 5.12 and simulation was split separately for each side. Again, since the geometry of
the Demonstrator is symmetrical the results remain the same (within statistical fluctua-
tions) for opposite sides, and therefore the results are given in Table 5.7 for Top/Bottom,
Left/Right and Front/Back sides.

Table 5.7: Fractions of neutron captures from shielded neutron flux with
iron shield included in the geometry

Fractions of neutron captures fi [%]

Side Isotope
Shielded flux
by water

Shielded flux
by PE

Top / Bottom 55Fe 1.10 1.13
57Fe 16.65 17.06
64Cu 1.04 1.03
66Cu 0.23 0.23

Left / Right 55Fe 1.22 1.24
57Fe 18.31 18.82
64Cu 0.83 0.82
66Cu 0.19 0.18

Front / Back 55Fe 1.46 1.49
57Fe 23.13 23.65
64Cu 0.85 0.80
66Cu 0.17 0.17

One can see, by comparing the neutron fractions in the presented tables, that fractions
from individual radiogenic processes (SF, (α,n)) within neutron sources (PMT, iron, CuBe)
are similar and they differ mostly in between the sources. This suggests that the position
from which the neutrons are emitted, and the material in which these neutrons subsequently
propagate, are more important. The fact that the radiogenic processes yield within each
neutron source similar neutron capture fractions could be attributed to the fact, that the
energy spectra of all processes are soft, with mean energies often centered around 2-3
MeV, and so the energy spectra from which the neutron energies were sampled do not
differ significantly. This may justify and explain approaches used in some works, where
the radiogenic neutrons are often generated uniformly in energy range of 0-10 MeV, for
example, in [137].

The main advantage of this approach is that it uses cascades generated in a correlated
way and it avoids the unreliable cascade production in the Geant4 package, where the
results showed a violation of energy conservation in neutron capture events. This is very
important for the task of estimation of neutron induced background. Splitting the simula-
tion into several steps also allows to study the detector response to gammas from individual
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isotopes and to better understand contributions from individual background sources. It is
important to mention that this approach doesn’t take into considerations other modes of
de-excitations after neutron capture, namely internal conversion and internal pair produc-
tion. But as it was discussed in Section 4.4.3, γ emission dominates all de-excitation modes
in all cases and contributions from IC and IPP can be considered negligible. Therefore,
only gammas were generated. However, the branching ratios of γ emission were taken
into account. Additionally, DICEBOX simulation doesn’t treat consecutive decays of com-
pound nuclei, such as beta decay of 66Cu in this case. However, the Qβ value of 66Cu is
only 2642 keV [60] and so it doesn’t reach the region of Qββ value of 82Se. Moreover, given
the lower abundance of 65Cu isotope in natCu, it can be seen from the number of neutron
capture fractions that the production of 66Cu is the least dominant.

5.4.3 Neutron Capture γ-ray Induced Background Events -
Results

In the 4th step of this analysis, neutron capture gamma cascades were generated from ob-
tained capture positions in Falaise. Again, simulation was performed for each isotope and
each neutron source separately twice - with and without iron shield included in the geom-
etry. All simulated data were then reconstructed using FLReconstruct. After simulation
and reconstruction were complete, I looped through all events in ROOT to apply selection
cuts to extract events in the desired topology.

To take into account the branching ratios of de-excitations of iron and copper nuclei
via γ cascades and the fractions of captures, two normalization factors (NF) are used for
the histograms based on whether neutron fluxes or yields were used:

NF for flux = Φn S t

N
fi, (5.2)

where Φn is the neutron flux, S is the surface of neutron generator, t is time (=1 year), fi
is the fraction of neutron captures on isotope i (i=54Fe, 56Fe, 63Cu or 65Cu) and N is the
number of simulated neutron capture reactions; or:

NF for yield = Yn Aj t

N
fi, (5.3)

where Yn is the neutron yield and Aj is the activity of radioisotope j (j=238U or 232Th).
Neutron fluxes were taken from experimental data, from Equations 3.11 and 3.9, for

fast and thermal neutron fluxes in LSM respectively. Neutron yields were taken from the
results of simulations a calculations in Chapter 4, from Tables 4.1 and 4.4 for spontaneous
fission and (α,n) reactions respectively. Activities of 238U and 232Th were taken from
measurements of material activities summarized in Table 4.5. The fractions of neutron
captures corresponding to each process were taken from Tables 5.5, 5.6 and 5.7.

Firstly, we can investigate which element, copper or iron, contributes the most to the
background rate in the 2e− channel. We can do this by not considering the capture fractions
of generated neutrons. Figure 5.16 (left) shows contributions to background events from
neutron captures on copper and iron isotopes normalized to counts per neutron capture
obtained from Falaise simulation of gamma cascades.
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Figure 5.16: Left: Contributions to background events from neutron cap-
tures on copper and iron isotopes. Right: Background rate in the 2e−

channel from ambient neutron fluxes.

This plot doesn’t take into account the abundance of isotopes in natFe and natCu, but
the dominant contribution from copper isotopes is visible. This can be attributed to the
fact, that copper materials are closer to the source foil where they can interact without
being flagged by the calorimeter first. Additionally, in comparison with iron, the thermal
neutron capture cross-sections on copper isotopes are higher [138]. However, due to lower
mass and abundance of copper in the detector, the capture fractions on copper isotopes
are low enough to reduce the overall contribution below iron as can be seen in Figure 5.16
(right). This figure shows the background analysis of thermal and fast ambient neutron
fluxes, separately for captures on copper and iron. The bump at the end of the iron
spectrum comes from gamma cascades from 55Fe, where the gammas extend up to ∼ 9.3
MeV.

Besides unshielded flux, the background from contamination of several materials was
analysed. The background contributions without shielding are as follows: ambient neutron
flux, radiogenic neutrons from CuBe alloy pins, gammas from (α,nγ) reactions from CuBe
alloy pins7 and radiogenic neutrons from PMT glass. Their individual contributions can
be seen in Figure 5.17 (left).

By far the most dominant source of background, in this case, is the ambient flux. It
is followed by the γ production from the excited state of 12C∗ from CuBe pins. It has a
distinct feature with rapid drop above 4 MeV. This is due to the drop of yield for 9.6 MeV
gamma from the 3rd excited state of 12C by 2 orders of magnitude compared to the 4.4
MeV gamma yield (see Fig. 4.16).

The background contributions with passive shielding include: shielded ambient neutron
flux, radiogenic neutrons from CuBe alloy pins, gammas from (α,nγ) reactions from CuBe
alloy pins, radiogenic neutrons from PMT glass, and also radiogenic neutrons from the
iron shield. Their individual contributions in this case can be seen in Figure 5.17 (right).
The shielding geometry, in this case, is 50 cm of water on the lateral sides and 20 cm
of polyethylene on the top and bottom. The iron shielding is creating a confinement
effect on neutrons produced by sources which are internal to the detector (CuBe pins and
PMT) and therefore leading to an increase of the number of background events for these

7γ production from excited state of 12C∗ after (α, n) on 9Be.
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Figure 5.17: Background rate in the 2e− channel - neutron induced back-
ground from neutron captures on Fe and Cu without (left) and with (right)

shield and γs from excited states of 12C∗

components. However, gammas from neutron captures in the iron shield do not contribute
to the background rate significantly as they were simultaneously attenuated in the shield.
The expected number of background events in ROI from individual sources are summarized
in Table 5.8.

Overall, the contribution from radiogenic neutrons is negligible, compared to the ambi-
ent neutron flux, thanks to the selection of radioactively pure materials and strict activity
limits. Figure 5.18 shows the total contribution to the background from all sources.

Figure 5.18: Background rate in the 2e− channel - total neutron induced
background from neutron captures on Fe and Cu

The total background rate without the shield of 0.2 ± 0.03 (syst) ± 0.02 (stat) per
year was reduced down to 0.0034 ± 0.0007 (syst) ± 0.0006 (stat) per year with the use of
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Table 5.8: Number of expected background events in ROI

Background events /year
Source Without shield With shield
Ambient 0.2 0.003

CuBe pins - radiogenic 0.00002 0.00004
CuBe pins - γs from 12C∗ 0.00026 0.00026

PMT - radiogenic 0.00004 0.00005
Iron shield - radiogenic - 0.00001

Total 0.2 ± 0.03 0.003 ± 0.001

passive shielding. Most of the incident fast neutrons were moderated to lower energies by
the water or polyethylene and then captured in the iron shield. Gammas emitted in the
neutron capture reactions were subsequently shielded from the detector by the iron shield.

Different Shielding Geometries

Due to possible laboratory constraints, there are several possibilities for the final design of
the shielding. For simplicity, the naming convention of individual sides corresponds to the
positioning of the detector inside the laboratory according to Figure 5.19.

Figure 5.19: Position of the Demonstrator in LSM

Possible constraints due to lack of space concern the mountain side, where the elec-
tronics of the data acquisition system are placed, and the main wall on the French side of
the laboratory, where the staircase leads to the main hall. The geometry discussed thus
far corresponds to Geometry 1 in Table 5.9. The considered changes in the geometry are
highlighted in bold font in the table.
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Table 5.9: Different neutron shielding geometries considered for the
Demonstrator

Geometry 1 Geometry 2 Geometry 3 Geometry 4

Top: PE 20 cm Top: PE 20 cm Top: PE 20 cm Top: PE 20 cm

Bottom: PE 20 cm Bottom: PE 20 cm Bottom: PE 20 cm Bottom: PE 20 cm

Tunnel side: Water 50 cm Tunnel side: Water 50 cm Tunnel side: Water 50 cm Tunnel side: Water 50 cm

Mountain side: Water 50 cm Mountain side: Water 50 cm Mountain side: PE 20 cm Mountain side: PE 20 cm

IT main wall: Water 50 cm IT main wall: Water 50 cm IT main wall: Water 50 cm IT main wall: Water 50 cm

FR main wall: Water 50 cm FR main wall: Water 40 cm FR main wall: Water 50 cm FR main wall: Water 40 cm

The attenuated fluxes were already discussed in Section 5.4.1 and they were used for
this analysis. The analysis method remains the same as in the previous section. Table 5.10
shows the number of expected background events from attenuated ambient neutron flux
for different shielding configurations. The most affected side could be the mountain side
where the water shielding would be replaced by 20 cm of PE, which attenuates the ambient
flux less than 40 cm or 50 cm of water would. However, this side also has the smallest
surface and therefore the number of neutrons that enter the detector from this side is also
the smallest. While the background rate is increasing with smaller shielding thickness, all
geometries are reaching the target of a negligible level of background.

Table 5.10: Background rate in the 2e− channel from attenuated ambient
neutron flux for different shielding configurations

Shielding configuration Background events /year∗

Geometry 1 0.0030
Geometry 2 0.0032
Geometry 3 0.0042
Geometry 4 0.0044

∗ ∼ ± 20%(stat)

The study included in this section and in Sections 5.4.1 and 5.3.1 was presented to the
technical board of SuperNEMO, and was an important input to finalise the design of the
shielding, with geometry option 4 being the most probable.

5.5 Summary of the High Energy γ-Ray Induced Ex-
ternal Background

In this chapter, the external background in the SuperNEMO experiment induced by high
energy gamma rays was studied. The two main sources of these γ-rays under considera-
tion were high energy gamma rays coming from the underground environment, and (n,γ)
reactions from ambient neutrons and radiogenic neutrons produced in materials with the
highest uranium and thorium contamination. Ambient radiation can be significantly sup-
pressed by passive shielding. The best results are achieved for the shielding Geometry 1
(Table 5.10) - the iron shield of thickness of 18 cm, and 50 cm of water on lateral sides of
the detector and 20 cm of polyethylene on top and bottom.
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The number of expected external background events after 2.5 years of exposure planned
for the Demonstrator, from external and internal sources described in Subsection 2.3.2 and
external sources investigated in this work, are summarized in Table 5.11. Background
rates for the sources investigated in this work are from results of simulations with the use
of shielding Geometry 1.

Table 5.11: Number of expected external background events in the energy
ROI after 2.5 years of exposure

Source Background rate

2νββa 0.03 ± 0.02 (stat)
208Tl externala 0.60 ± 0.42 (stat) ± 0.06 (syst)
214Bi externala 0.10 ± 0.01 (stat) ± 0.01 (syst)
Ambient γ-rays 0.02 ± 0.003 (stat) ± 0.005 (syst)

CuBe pins - γs from 12C∗ 0.00065 ± 0.00013 (stat) ± 0.0001 (syst)
Ambient neutrons 0.0075 ± 0.0015 (stat) ± 0.0018 (syst)

Radiogenic neutrons 0.00025 ± 0.00005 (stat) ± 0.00003 (syst)
208Tl internala 0.82 ± 0.02 (stat) ± 0.16 (syst)
214Bi internala 1.41 ± 0.07 (stat) ± 0.01 (syst)

ainternal analysis of collaboration

We conclude, that background induced by high energy gamma rays is negligible com-
pared to the background from 208Tl and 214Bi contamination of the source foils. The
background events arising from ambient radiation are the dominant source investigated in
this work. However, they were suppressed by passive shielding, which proved to be effective
by reducing the number of expected background events by several orders of magnitude.
The least contributing source of background are radiogenic neutrons. However, background
rate at this level may become a problem for next generation experiments aiming for better
sensitivity. It should be evaluated and possibly improved by continuing efforts on ultra-low
background requirements needed in rare event searches.



102

Chapter 6

Comparison of Monte Carlo
Simulations with Experimental Data

Measured experimental data can be used to validate the Monte Carlo based method used
throughout Chapter 5 to estimate the external background in the SuperNEMO experiment
induced by ambient gamma rays and neutrons. The complete design, construction and
installation of the calorimeter was finished during the duration of this thesis project with
an extensive commissioning campaign underway. Without an operating tracker yet, and
therefore without any track reconstruction and particle identification, the commissioning
data collected in calorimeter-only configuration could be used to probe MC vs DATA
agreement.

Two measurements have been preformed in order to compare results of suggested
Monte Carlo model with experimental data. Firstly, a measurement with a weak neu-
tron (americium-beryllium) source was performed in order to study detector’s response to
radiative neutron capture and to investigate the validity of model proposed in Section 5.4
to evaluate neutron induced background.

Second measurement aimed to obtain data with sufficient statistics in the high energy
region to compare input ambient gamma and neutron fluxes measured in the LSM from
Tables 3.5 and 3.6 which were used in Sections 5.3 and 5.4 for further investigations of the
background.

6.1 Americium-Beryllium (AmBe) Neutron Source
A measurement with a weak neutron AmBe source was performed during a data tak-
ing stage with the SuperNEMO calorimeter. Unfortunately, only the source strength was
known and no information about its energy spectrum, composition or density was provided.
To study and validate the model of radiative neutron capture in the detector (see Section
6.1.2), we use the method described previously in Section 4.2 to first determine the spec-
trum and rate of neutrons of such AmBe source, as well as the gamma component. This
can later be used for validation between Monte Carlo simulation and real experimental
data.



Chapter 6. Comparison of Monte Carlo Simulations with Experimental Data 103

6.1.1 Simulation of Neutron and Gamma Energy Spectra of
AmBe Source

AmBe Source

A representative alpha-beryllium neutron source, that combines an α emitter with a stable
low-Z isotope 9Be, is 241Am9Be source. AmBe is a source of fast neutrons widely employed
as a calibration source for a variety of instrumentation [139] and it is also one of the ISO1

recommended calibration standards for neutron radiation [140]. Currently available com-
mercial neutron sources are usually prepared by blending the powders of the two materials
in form of pure 9Be metal mixed with 241AmO2. An efficient AmBe neutron source can
be fabricated as a monolith of small crystals of AmBe13 dispersed in excess Be metal with
a byproduct of BeO according to reaction 6.1 with larger excess of Be required to obtain
overall physical properties similar to bulk Be metal, with Be/Am atomic ratios typically
varying between 15 and 21 [141] or 80% Be and 20% AmO2 by weight [142]. The mixture
is then often compressed into a cylindrical capsule with a density of about 1.3 g cm−3 [143].

AmO2 + nBe→ AmBe13 + 2BeO + Excess Be (n− 15) (6.1)

In many cases, the exact composition of neutron source and its mixing, assembly and
fabrication is not provided by source manufacturers and only activity or neutron rate are
given, which poses a difficulty for simulations.

241Am has a half-life of 432.2 years and decays via α decay mode to 237Np, with the
most prominent different α energies averaging ∼ 5.4 MeV. The dominant energy of the
resulting gamma-rays from the decay of the intermediate excited states of decay product
237Np is 59.5 keV [144].

Table 6.1: 241
95 Am nuclear data [60]

Half-life 432.2 y
Most prominent alphas Eα [keV] Intensity [%]

α1 5485.56 84.5
α2 5442.8 13
α3 5388.23 1.6
α4 5544.5 0.34
α5 5511.47 0.22

Most prominent gammas Eγ [keV] Intensity [%]
γ1 59.54 35.9
γ2 26.34 2.40
γ3 33.20 0.126
γ4 43.42 0.073
γ5 98.97 0.0203

The 9Be(α,n)12C and 17,18O(α,n)20,21Ne reactions

The most important reactions in the AmBe neutron source are:

241
95 Am→237

93 Np+ α (6.2)

1International Organization for Standardization
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9Be+ α→12 C(∗) + n (6.3)

where the α particle is captured by 9Be which then becomes 12C in either its ground
or excited state. The kinematics and the reaction cross-section determine the state of the
residual 12C nucleus produced in the reaction [144]. The de-excitation of the 1st excited
state of 12C produces characteristic γ-rays of 4.438 MeV with the 4.438 MeV γ-ray to total
neutron ratio Sγ/Sn = 0.575 according to measurement in [139] and ∼ 0.15 for the second
excited state of energy 7.65 MeV [144]. This means that ∼ 60 % of the neutrons emitted
by an AmBe source are accompanied by prompt γ rays.

Since the mixture of materials in AmBe source contains some form of oxide of Am and
Be, the second reaction that takes place is (α,n) reaction on oxygen isotopes:

17O + α→20 Ne(∗) + n (6.4)

18O + α→21 Ne(∗) + n (6.5)

Given the elemental abundance of 17O and 18O in Onat (0.038 and 0.205 % respectively),
these reactions are not very common, but they still have an influence on AmBe neutron
and prompt gamma energy spectra.

The cross-sections for (α,n) reactions for leaving the residual nucleus (12C, 20/21Ne) in
excited state can be seen in Figure 6.1 and corresponding excited states of 12C and 21Ne
are shown in Figure 6.2.

AmBe (α,n) Neutron and Gamma Energy Spectra and Rates

The strength of any AmBe source depends on the activity of 241Am. In general, a conversion
factor between neutron rate and alpha activity of AmBe adapted from literature is [142]:

Yn,AmBe = 2.2× 106 ns−1Ci−1 2 (6.6)

which corresponds to ∼ 59.5×10−6 n/α. True yield always depends, however, on geometry
and preparation of the source, measured values in available references are found to be up
to 80 neutrons per 106 alphas [142, 145].

To obtain the neutron and gamma energy spectrum simulation using Geant4 (and
SOURCES-4C for cross-checking) has been performed. Defined composition of AmBe
source in Geant4 simulation is given in Table 6.2, homogeneous mixture is assumed. Alpha
particles are generated according to Table 6.1 (Fig. 6.3). JENDL/AN-2005 (α,n) data
library was used, where the different reaction channels for 9Be are given explicitly and so
it is possible to obtain events with neutrons and gammas in coincidence.

Table 6.2: Composition of AmBe source used in simulation

Material Density [g cm−3] Element wt % wt % in AmBe source
AmO2 11.68 Am 88.28 20

O 11.72
pure Be 1.85 Be 100 80

21Ci = 3.7× 1010Bq
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Figure 6.1: cross-sections for (α,n) reactions for oxygen isotopes and 9Be,
(z/y,n0-4) - production of a neutron, leaving the residual nucleus in the

ground state, 1st, 2nd, 3rd and 4th excited state [92]
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Figure 6.2: Excited states of residual nuclei 12C and 21Ne from AmBe
source

Figure 6.3: Energies of generated alpha particles from 241Am decay in
Geant4 simulation

Simulated neutron and gamma energy spectra are in Figure 6.4. The lowest part in
the neutron energy spectrum (< 2 MeV) corresponds to reaction leaving 12C in 2nd (7.65
MeV) excited state, following prominent peak from reaction leaving 12C in 1st excited state
and the highest energy part corresponds to the ground state of 12C. In gamma spectrum,
characteristic gamma transitions shown in Figure 6.2 can be observed. The resulting
yields obtained from simulation are 72 n

106α
, corresponding well to values obtained from

measurements and calculations given in aforementioned references, and 58 γ
106α

. The 4.4
MeV γ-ray to total neutron yield ratio is Sγ/Sn= 0.73, which is slightly overestimated
compared to the measurements. Overall good agreement for neutron energy spectra has
been also found with SOURCES-4C simulation (Fig. 6.5). This simulation was performed
with the same source composition as defined in Table 6.2. In comparison with the Geant4
simulation, the SOURCES-4C spectrum predicts higher contribution to the highest neutron
energy part, corresponding to the ground state of 12C, and lower contributions to the 1st
and 2nd excited states. This would also lead to lower gamma yield prediction3.

Secondary processes that can change the shape of spectra are multibody break-up
reaction 9Be(α,αn)8Be, elastic scattering of neutrons on 9Be, oxygen, 241Am, fission of

3The current state of the SOURCES-4C code does not calculate gamma production from (α,nγ) reac-
tions.
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Figure 6.4: Left: Neutron energy spectrum of AmBe source from Geant4
simulation. Right: Gamma energy spectrum of AmBe source from Geant4

simulation.

Figure 6.5: Comparison of neutron energy spectra simulated in
SOURCES-4C and Geant4.
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Figure 6.6: Energy spectrum of AmBe neutron source measured by the
main walls of SuperNEMO calorimeter

241Am, and (n,2n) events in 9Be [146], which become prominent with large source strengths
and were neglected in this work.

6.1.2 Comparison of AmBe Neutron Source Data and Simulation
During the time of writing this thesis, only the Demonstrator calorimeter without tracker
was commissioned. It was therefore impossible to obtain information from data analysis
about different event topologies. Nevertheless, the total deposited energy could be mea-
sured and this proved to be useful for calibration purposes and for some validation between
Monte Carlo simulations and real data.

During calorimeter commissioning runs, a measurement with a weak AmBe neutron
source was performed. The source strength was given as approximately 20 n s−1 and its
position was ∼75 cm away from the main calorimeter wall, centered in the middle of the
wall. The total time of this measurement was ∼ 3.3 h. Analyzed and calibrated energy
spectrum of this source measured by the main walls of SuperNEMO calorimeter is shown
in Figure 6.6 (with a threshold at 1.5 MeV). Several features of the spectrum can be seen
and analysed. Bellow 4 MeV the signal is flooded by the environmental 208Tl gamma peak
at 2.6 MeV and its Compton edge, and other sources of natural radioactivity. Just above
4 MeV there is a visible bump in the spectrum corresponding to 4.4 MeV gamma from
the excited state of 12C∗ after 9Be(α,n)12C reaction (see subsection 6.1.1). Above this
energy is the region where gammas from (n, γ) reactions on metals are expected. And
the highest energy region may also correspond to some muon interactions or gammas from
bremsstrahlung of residual muon flux.

There is overall energy spectrum distortion which is expected due to the non-linearity
of the scintillator light yield for electrons caused by effects like scintillation light quenching
according to Birks’ attenuation law4 and additional light from Cherenkov radiation and the

4Because of quenching, the visible energy is smaller than the true electron energy.
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Figure 6.7: Visualization of the source position in Falaise

non-uniformity of energy response of the scintillator5. This has been taken into account
for the reconstruction of simulated data.

The simulation in Falaise was done following the same method as in the previous section
- according to the first 4 steps described in Section 5.4. The input spectrum for Falaise
simulation from step 1 was generated according to Figure 6.4 (left) (simulation performed
in Section 6.1). To get to get a more realistic representation of the real AmBe spectrum
neutrons were generated in coincidence with gammas from the source as well (Fig. 6.4
right). In Falaise, for the vertex generator, a point-like source position was added, at the
same location as in the data set (see Fig. 6.7). From now on this simulation will be referred
to as AmBe-source simulation6.

From the AmBe-source simulation output, capture positions and capture fractions were
extracted the same way as in Section 5.4.2 and these values are given in Table 6.3. Capture
positions were used as vertex generators of gamma cascades from Fe and Cu isotopes
obtained from the DICEBOX simulation. These gammas extend up to ∼ 9.3 MeV with
prominent gamma energies in the region from 6 to 8 MeV, but also in the lower part of
the energy spectrum (Fig. 4.25). Capture fractions (along with the run time and source
strength) were used for normalizing the histograms. Let’s name this simulation AmBe-
cascades simulation7. When calibrating the simulation according to calibration of real
data from measurements and after application of energy corrections mentioned before,
these gammas spread over a wide range of energies as it can be seen in the results of the
AmBe-cascades simulation in Figure 6.8.

5A same energy deposit in the scintillator will give a different signal strength depending if it happens
far or close to the PMT photocathode (see [147])

6AmBe spectrum due to neutrons and gammas from the source
7AmBe spectrum only due to neutron captures on Fe and Cu when using DICEBOX cascades as input

events
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Table 6.3: Fractions of neutron captures

Fractions of neutron capture fi [%]
Neutron source 55Fe 57Fe 64Cu 66Cu

AmBe 1.6 24.9 0.94 0.2

Figure 6.8: AmBe spectrum due to neutron captures on Fe and Cu from
AmBe-cascades simulation

In general, the signal from the AmBe source can be prompt or delayed. The prompt
signal comes from proton recoils in the detector from fast neutron interactions and from
gammas emitted from the source. The delayed signal is registered after a few µs and
comes from gammas from (n,γ) reaction after fast neutrons are thermalized and captured.
The delayed capture signal is expected to be similar to what we expect from background
neutrons and is of bigger importance for the purposes of this work. This timing difference
can be used in simulated data to remove unwanted events from neutron captures in AmBe-
source simulation and replace them with results of simulation of gamma cascades from
DICEBOX from the AmBe-cascades simulation. Such time distribution of calorimeter hits
of one of the simulated files can be seen in Figure 6.9. As expected, there is a distinct peak
of delayed hits after several µs. The timing of the prompt hits has 2 peak-like features -
early and late. The earliest prompt hits come from the prompt gamma rays of the AmBe
source (with various delay due to time of flight between the source and the optical module
of the calorimeter), and the late prompt hits correspond to neutron scattering events.
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Figure 6.9: Prompt and delayed hit time distribution of AmBe-source
simulation

By removing all delayed hits and replacing them with cascade events of Fe and Cu
isotopes, we lose information about other capture events, for example, the 2.2 MeV gamma
from capture on hydrogen. But in the relevant high energy part of the spectra (4 - 10
MeV, dominated by the AmBe source) the simulation and data can be compared. This
comparison is plotted in Figure 6.108.

Figure 6.10: Comparison of experimental data and simulation of the AmBe
source

8MC spectrum has also been combined with a background run without AmBe source to take into
account natural radioactivity tail, especially 208Tl edge that may extend up to 4 MeV



Chapter 6. Comparison of Monte Carlo Simulations with Experimental Data 112

Overall, a good agreement between data and simulation has been achieved with a good
match of the shape of both spectra. In terms of the number of counts, there are certain
regions where the signal is overestimated or underestimated. There are several sources of
ambiguities that may lead to these effects. Firstly, the source strength of 20 neutrons per
second was given only approximately, without providing any measurement uncertainty.
The neutron energy spectrum of the source was not provided, and so a simulation has
been performed. The composition and density of the AmBe source used in the simulation
were only roughly estimated and defined according to commercial neutron sources found
in the available literature. It is clear that the overall physical and chemical properties of
the source influence the resulting neutron yield and neutron energies. Additionally, the
geometry of the source and how these neutrons propagate through the material have a big
influence on the neutron energies. This was neglected in the final simulation as the source
spectrum was generated from a point-like vertex generator. These small inaccuracies in
the simulation may also influence number of detected neutrons and gammas. The overall
γ-ray to neutron yield ratio was also found to be slightly overestimated, compared to ratios
found in available references, in the performed Geant4 simulation. This is also found in this
comparison, where the number of counts in the MC spectrum is in a slight disagreement
with the data in the prompt signal region from the 4.4 MeV gammas from excited states
of 12C∗ after 9Be(α,n)12C reaction.

Considering these conditions and assumptions, we find both spectra in good agreement
within the relative error. The fact that the measured spectrum compares well with the MC
spectrum due to neutron captures on Fe and Cu in the energy region of 6 - 8 MeV supports
the assumption that it is primarily iron and copper contributing to the (n,γ) reactions in
the Demonstrator. It also demonstrates the possibility of using the proposed method of
neutron capture cascades simulation to obtain a reasonable match with the data. Thus, we
conclude that this approach can be used for an accurate prediction of the neutron induced
background in the SuperNEMO experiment.

6.2 High Energy Spectrum Measured in the LSM
with the SuperNEMO Demonstrator

Fluxes of ambient radiation in the LSM from available measurements were summarized
in Section 3.3. As it was previously discussed, measured values of these fluxes do not
represent ideal unaffected ambient fluxes, as they are highly dependant on the location of
the detector in the laboratory, radioactive contamination of the detectors themselves and
materials nearby. Therefore, several background runs of data taking with an accumulated
live time of about 6.5 days was dedicated to obtain energy spectrum with sufficient statistics
in the energy region > 4 MeV in order to compare simulated deposited energy from ambient
neutron and gamma sources with measurement.

First, a brief summary of the measured LSM fluxes should be given with a more detailed
discussion of fluxes in given energy regions. In the simulation, measured gamma fluxes
from [65]9 were used. These fluxes were extracted from the energy spectrum measured by
NaI scintillator shown in Figure 6.11. There were altogether three measurements with no
shielding, with 3.5 % borated polyethylene shielding, and with 5 cm copper and 10 cm lead
shielding.

9Measured by the NEMO-3 collaboration in 2001.
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Figure 6.11: NaI energy spectra measured in LSM [65]

The ambient γ fluxes in individual energy intervals correspond to values presented in
Table 6.4.

Table 6.4: The ambient γ fluxes measured in LSM [65]

Energy interval Flux [cm−2s−1]
(4 - 6) MeV 3.8 × 10−6

(6 - 7) MeV 1.5 × 10−6

(7 - 8) MeV 1.6 × 10−6

(8 - 9) MeV 0.07 × 10−6

(9 - 10) MeV 0.05 × 10−6

Measurement error is given as approximately 30 %. In the simulation, γ-ray energies
were sampled from a flat distribution in each energy interval. The shape and counting
rates of the measured spectra in [65] are explained for energy intervals bellow 10 MeV as
follows:

• Below 4 MeV with γ-rays due to natural radioactivity of surrounding materials - this
was neglected in this study.

• Between 4 and 6 MeV due to internal U and Th contamination of the NaI crystal,
with pile-up events of summed energies between β and α decays of 212Bi and 212Po.

• From 6 to 10 MeV due to neutron induced γ-rays from neutron captures in the
surrounding materials and in the iodine of the NaI crystal.

Neutron fluxes were taken from [61], which represents a quite old measurement of fast
neutron flux, and [69], in which the ambient thermal neutron flux at different locations at
LSM was monitored. The fast neutron flux was taken as Φn,fast = (4.0± 1.0)× 10−6 neu-
trons s−1cm−2 corresponding to energies between 2 - 6 MeV. This value was found to be
4 times higher than simulated neutron flux above 1 MeV in the same study. Simulated
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spectrum of these neutrons were used in our Monte Carlo model. Thermal neutron flux
used in this study is Φn,thermal = (2.9± 0.4)×10−6 neutrons s−1cm−2, which was measured
in the main experimental hall of LSM, however, the value of measured fluxes varied by up
to a factor of three from one location to another. In our Monte Carlo model, the energies
of thermal neutrons were sampled from Maxwell-Boltzmann distribution.

6.2.1 Comparison of Measured High Energy Spectrum and Sim-
ulation

Measured energy spectrum above 4 MeV in the LSM with the unshielded calorimeter of the
SuperNEMO Demonstrator is shown in Figure 6.12 (left). We can also divide the measured
spectrum into several energy regions. Just above 4 MeV, there is still a contribution from
the natural radioactivity, especially Compton edge events of 2.6 MeV γs from decays of
208Tl. Above this tail and up to 10 MeV, we expect mainly ambient γ-rays and neutron
induced events. The neutron effect, predominantly in the energy region between 6 and
10 MeV, can be confirmed by the similarity of the shapes of measured background spec-
trum and spectrum measured with a weak AmBe source from Figure 6.6. This is plotted in
Figure 6.12 (right). Note that the spectra are not normalized in time and the scales have
been adjusted for better comparison. The most energetic events above 10 MeV should cor-
respond to residual weak muon flux and γ-rays induced by muon bremsstrahlung. Without
passive shielding, it is, however, impossible to distinguish between events due to ambient
fluxes and internal events. For example, γ-ray emissions from neutron captures come both
from neutron captures on Cu and Fe in the detector and from neutron captures on nuclei in
the surrounding materials (neutron binding energies of several metals used in construction
materials, such as Pb, Cu or Fe, extend up to 10 MeV). Such effort will be made with
future measurements after successful completion and installation of passive shielding.

Figure 6.12: Left: Energy spectrum measured in the LSM with the Su-
perNEMO calorimeter. Right: Comparison of the high energy spectrum

and AmBe source run with adjusted scales.

Figure 6.13 (left) shows a comparison of each simulated component of ambient radiation
with measured deposited energy. In Figure 6.13 (right), all ambient gamma components
are combined into single spectrum. Monte Carlo of neutron simulation includes the con-
tributions from both thermal and fast neutron fluxes and was simulated using the same
method described in Section 5.4. It is clear, that the total MC overestimates the expected
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Figure 6.13: Comparison of experimental data and simulation of deposited
energy from ambient gamma and neutron sources

number of counts. Table 6.5 gives the counting rates extracted from the total MC and
measured data for each energy interval along with statistical uncertainties. The systematic
uncertainty of the total counting rate in MC is estimated from errors of measured neutron
and gamma fluxes. The counting rate in each interval is overestimated by the factor of 2.3
on average.

Table 6.5: Counting rates obtained from data and simulation in individual
energy regions and ratios of MC

Data . Quoted errors are statistical only, unless
stated otherwise.

Counting rates [counts/hour]
Energy interval MC Data MC/Data ratio

Total 4-10 MeV 790.89 ± 0.77 (stat) ± 199.35 (syst) 321.69 ± 1.44 2.46
(4 - 6) MeV 517.55 ± 0.67 215.44 ± 1.18 2.40
(6 - 7) MeV 159.87 ± 0.29 58.53 ± 0.61 2.73
(7 - 8) MeV 90.89 ± 0.22 36.96 ± 0.49 2.46
(8 - 9) MeV 18.78 ± 0.09 8.58 ± 0.23 2.19
(9 - 10) MeV 3.80 ± 0.03 2.18 ± 0.12 1.75

Let’s first discuss possible sources of this overestimation. The biggest contribution to
the overestimation is expected to come from the intrinsic radioactivity of components of
detectors measuring these fluxes which cannot be fully accounted for even when using dif-
ferent shields. Especially, when also the activities of shielding materials are not known or
not taken into account, and no comprehensive Monte Carlo model was performed. More-
over, as it can be seen from summarized measurements of LSM fluxes in Section 3.3, the
fluxes vary between different locations in the laboratory. See, for example, Table 3.5, where
measured gamma fluxes from natural radionuclides vary by factors of 1.5 - 3.0 at two differ-
ent locations. Moreover, [69] reports that thermal neutron flux varies by a factor of three
from measurements at eight different locations. Ambient fluxes therefore always depend on
other materials present in the laboratory, their U and Th content, and in the case of neu-
tron fluxes, also on their water and hydrogen content as well. In the case of the NaI crystal,
possible bias in the >4 MeV flux measurement could come from alpha contamination and
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pile-up events with summed energies between β and α decays10. Additionally, in [65], only
the γ-ray fluxes between 6 and 10 MeV were assumed to be due to neutron effect and were
extracted from the measurement with the detector inside the borated polyethylene shield.
A large contribution to these fluxes may come from the capture reactions on 127I whose
neutron separation energy Sn equals to 9.14 MeV [60]. However, the γ transitions with
the highest intensities during the de-excitation process extend from 4.5 - 6.7 MeV, with
the strongest transition being Eγ = 5.6 MeV [148]. If this was neglected in their analysis
it could lead to some overestimation of extracted ambient γ fluxes. Another potential
source of disagreement comes from approximations made in the MC simulations described
previously.

To further test the validity of the model, we can have a look if the overall shape of the
spectrum can be explained by our model. Although the shape of the MC neutron spectrum
matches the measured spectrum, where neutron effect is expected, the predicted counting
rate is higher when combined with the ambient gamma component. It is, however, difficult
to say, whether the values of neutron fluxes or the ambient gamma component in this
energy region or both, were too high. The best match is obtained in the energy region of
9 - 10 MeV. In fact, the wrong counting rates, affected by high values of fluxes, disrupts
the overall comparison of the spectral shapes. The worst fit can be observed in the lower
energy region, where the measured spectrum starts to rise below 4.5 MeV. This effect is
due to natural radioactivity which has not been included in the MC model. Above 10 MeV,
muons and their interaction in the laboratory and materials can affect the spectrum, which
has not been taken into account in the simulation as well. It is, therefore, better to compare
the shapes in the energy region of 4.5 - 10 MeV.

It is clear, that the counting rate of the MC spectrum depends on the values of the
ambient neutron and gamma fluxes used to normalize the model. For a better comparison,
and to see if considered capture reactions and gamma fluxes in the model can explain
observed data, we can try to match the counting rates. The total Monte Carlo model is
composed of six histograms all together - neutron induced background11 and five ambient
gamma components in individual energy intervals. Each component can explain the shape
of a different region of the energy spectrum, but the total counting rate is given by the sum
of all components in this region. For example, as it was mentioned above, the MC neutron
spectrum matches the measured spectrum, where neutron effect is expected, especially
the dip in the spectrum around 8 MeV, and together with 7-8, 8-9 and 9-10 MeV gamma
components, it can explain the slope and tail of the spectrum. The combined counting
rate is, however, too high. Each of these MC components can be re-scaled individually
to obtain identical counting rates in a given energy interval which gives a rise to a lot of
degrees of freedom. The individual MC components were re-scaled until the condition

NTotalMC (Emin, Emax) = NData (Emin, Emax) (6.7)

was fulfilled, whereNTotalMC
12 andNData are the counting rates and (Emin, Emax) is the cor-

responding energy interval region (4.5, 6), (6, 7), (7, 8), (8, 9) or (9, 10) MeV. In the gamma
component of 4 - 6 MeV, the counting rate of 4.5 - 6 MeV region was considered instead.

10Which is possible due to the slow scintillation time constants of NaI crystal.
11Which itself is composed of thermal and fast neutron components that are combined into one.
12NTotalMC(Emin,Emax)=NMC,neutrons(Emin,Emax)+NMC, γ: 4−6(Emin,Emax)+NMC, γ: 6−7(Emin,Emax)

+NMC, γ: 7−8(Emin,Emax)+NMC, γ: 8−9(Emin,Emax)+NMC, γ: 9−10(Emin,Emax)
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Table 6.6: Re-scaling factors of simulation components with corresponding
fluxes obtained from MC where the counting rate matches the experimental

data

MC component Scaling factor Corresponding flux [cm−2s−1]

γ: (4 - 6) MeV 0.21 Φγ,4−6 = 7.95 × 10−7

γ: (6 - 7) MeV 0.27 Φγ,6−7 = 4.12 × 10−7

γ: (7 - 8) MeV 0.34 Φγ,7−8 = 5.40 × 10−7

γ: (8 - 9) MeV 0.40 Φγ,8−9 = 2.82 × 10−8

γ: (9 - 10) MeV 0.73 Φγ,9−10 = 3.66 × 10−8

Fe, Cu - nCaptures 0.61 Φn,th + Φn,fast = 4.21 × 10−6

The result of this re-scaling is shown in Figure 6.14. It can be seen, that our model ex-
plains well the experimental spectrum in the 4.5 -10 MeV energy region, and therefore we
can conclude that it is mostly the original counting rates, affected by input gamma and
neutron fluxes, that do not correspond to observed data.

The constants by which each MC component has been re-scaled are presented in Ta-
ble 6.6. We can use these constants to extract the expected fluxes corresponding to the
MC spectrum in Figure 6.14. It is, however, difficult to determine with confidence the true
values of these fluxes, as the overall spectrum in each energy region is given by a sum of
gamma and neutron components, and the overall counting rate can be kept the same with
decreasing one component while increasing the other. It is also impossible to differentiate
between contributions from thermal and fast neutrons. Nevertheless, the fluxes given in
Table 6.6 keep each MC component balanced enough to explain the slight dips around 6 and
8 MeV, and the slope and tail above 7 MeV observed in the measured spectrum. Therefore,
they may represent indicative estimates of γ-ray fluxes incident on the Demonstrator.

Figure 6.14: Comparison of measured data and MC simulation with
matching counting rates

With this single measurement, it is difficult to estimate the actual flux in the laboratory
and to properly separate the neutron and gamma fluxes incident on the detector. With
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more measurements including both neutron or/and gamma shielding, it will be easier to
separate ambient fluxes and internal contamination. With higher statistics, it will also be
possible to study the muon induced part of the spectrum and estimate a muon flux in the
laboratory.

Nevertheless, from this comparison of MC simulation and experimental data, the to-
tal incident flux was found to be lower than the flux used in the analysis of external
background in Chapter 5. This has implications on the estimated number of expected
background events from ambient neutron and gamma radiation. The values of the back-
ground rate from ambient γ-rays and ambient neutrons given in Table 5.11 in the summary
of the last chapter, therefore, represent the upper bound on the background rate. We can
conclude, that we are on the side of overestimating the background in the model rather
than underestimating it, which, as discussed previously, is often more prudent from the
point of view of the experiment’s sensitivity.

6.3 Summary
In this Chapter, two data set of the SuperNEMO demonstrator calorimeter have been used
in order to compare the results of proposed Monte Carlo models with experimental data.

With the first measurement using a weak neutron AmBe source, the validity of the
model of radiative neutron capture in the detector, to evaluate neutron induced back-
ground, was studied. Firstly, neutron and gamma energy spectra of the AmBe source were
simulated using the Geant4 toolkit. This provided input data for the Falaise software to
study the Demonstrator’s response. This simulation was performed following the same
method as used in the analysis of neutron capture γ-ray induced background.

The neutron AmBe source had a strength of 20 neutrons per second and the total
measurement time was 3.3 hours. The total deposited energy in the calorimeter was found
to be in good agreement with the MC model.

In the next Section 6.2, a background energy spectrum of the Demonstrator in the
high energy region was compared with the Monte Carlo model of deposited energy from
ambient LSM gamma and neutron fluxes. The measured spectrum corresponded to 6.5 days
of measurement time with sufficient statistics in the energy region above 4 MeV. Monte
Carlo model consisted of five ambient gamma components with energies ranging from 4 to
10 MeV, and of gammas from neutron captures on iron and copper in the detector. From
the comparison of counting rates between MC and data in individual energy intervals, the
counting rate in each interval was overestimated by the factor of 2.3 on average. Given the
point-to-point variance of measured fluxes from available literature and other ambiguities
discussed in this section, such overestimation is not unexpected.

To see if considered capture reactions and gamma fluxes can explain observed data,
the MC counting rates were matched to the experimental data by re-scaling each MC
component. The MC model explained well the shape of the experimental spectrum in the
energy region of 4.5 - 10 MeV, which demonstrates that the proposed approach can be used
to study the Demonstrator’s response to ambient LSM radiation after adjusting the values
of input ambient fluxes. The final background rate will depend on the values of incident
ambient gamma and neutron fluxes in the time of operation of the finalized detector. New
extracted values of these fluxes from Table 6.6 represent a preliminary analysis, which is
yet to be confirmed by more measurements including also both neutron and gamma shields.
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Chapter 7

Conclusions

Neutrinoless double beta decay is a hypothesized, but as of yet unobserved, process. It
violates lepton number conservation and is forbidden in the Standard Model of particle
physics. It represents a possible experimental tool capable of providing relevant information
on the nature of neutrino - Majorana or Dirac - and it might be a key to answering
the neutrino mass hierarchy problem, and the matter-antimatter asymmetry problem as
well. One of the experiments searching for this rare process, of which I am a member,
is the SuperNEMO experiment. SuperNEMO builds on the success of its predecessor -
the NEMO-3 experiment - using the same tracker-calorimeter technology. Currently, the
first module of the experiment, called the Demonstrator, aims to take the first data in the
Modane underground laboratory.

It is a goal of every 0νββ experiment to reach the lowest possible background and to
have a comprehensive Monte Carlo model for expected background rate estimation and
for sensitivity studies. Presented dissertation thesis contributed to such efforts by various
results.

The aim of this work was to estimate the background contributions from high energy
gamma rays originating from de-excitations of radionuclides in natural decay chains of ura-
nium and thorium present in the underground environment, residual cosmic ray cascades,
and from neutron capture reactions. For this purpose, there is a need for understanding in-
dividual background sources and evaluation of each component. Where measurements are
available these data on fluxes and energy spectra were used, otherwise, evaluation of differ-
ent sources of the background was performed by exploiting various software. Throughout
this research I became acquainted with many software packages, such as Geant4, Geant
based SaG4n and Falaise, NeuCBOT, SOURCES-4C, and DICEBOX, which represent
state-of-art of simulation packages for the interaction and transport of particles and nuclei
in matter used in a variety of applications in nuclear physics.

In Chapter 4, I presented obtained results from such simulations and calculations of
neutron yields from spontaneous fission and from (α,n) reactions in materials, used for
construction of the Demonstrator, that are contaminated with radionuclides from 238U and
232Th decay chains. They represent an important input used for Monte Carlo simulation
of the background induced by high energy gamma rays in the SuperNEMO software.

A problem with simulation of gamma cascades emitted after thermal neutron capture in
this software had to be addressed and it was solved by a separate simulation of gamma de-
excitations using a dedicated gamma decay software. These results represent an important
input for accurate simulation of the detector response to (n,γ) reactions.

External background events induced by high energy γ-rays were studied in detail in
Chapter 5. Here, I have estimated the expected background rate through a Monte Carlo
simulation. The background reduction technique that is based on the rejection method
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by reconstructing the topology of events, and on background suppression by selecting
radiopure materials used in detector construction and passive shielding, was demonstrated.
It proved to be effective by reducing the number of expected background events from these
sources by several orders of magnitude.

Dedicated simulations of attenuation of radiation passing through different shielding
configurations and geometries were also performed. This ultimately helps to optimize the
final design of passive shielding used for the Demonstrator module.

Lastly, the method of the simulation of radiative neutron capture in the detector, for
evaluation of neutron induced background, was validated by simulation of neutron and
gamma energy spectra of AmBe source and their comparison with experimental data.
Data and Monte Carlo simulation were found to be in good agreement. The Monte Carlo
model of deposited energy from ambient LSM gamma and neutron fluxes was validated by
the high energy spectrum measured in the LSM with the SuperNEMO Demonstrator.

I also contributed to the assembly and construction process of the Demonstrator during
the calorimeter commissioning phase.

Many fundamental questions remain to be answered in future neutrino experiments, and
these can have very important implications for our understanding of the Standard Model
and our Universe. With a rich experimental program in future neutrino experiments lying
ahead, where fundamental physics discoveries are very likely, SuperNEMO could bring
more insight into some processes.
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Appendix A

(α,n) Reactions

Isotopic abundances of elements used in elemental definition of materials, along with the
α particle energies of 238U and 232Th decay chains, and reaction cross-sections used in the
Geant4 simulation are found in this appendix.

Table A.1: Isotope abundances used in simulation

Element Isotope Abundance [%]

H
1H 99.989
2H 0.011

C
12C 98.93
13C 1.07

O
16O 99.757
17O 0.038
18O 0.205

B
10B 19.9
11B 80.1

Fe

54Fe 5.845
56Fe 91.754
57Fe 2.119
58Fe 0.282

Si
28Si 92.93
29Si 4.683
30Si 3.087

Na 23Na 100

K
39K 93.258
40K 0.012
41K 6.73

Al 27Al 100
Be 9Be 100

Cu
63Cu 69.17
65Cu 30.83
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Table A.2: 238U decay chain α particle energies used in SaG4n simulation

Nuclide α energy [MeV] Intensity
238
92 U 4.198 79

4.151 20.9
4.038 0.078

234
92 U 4.7746 71.38

4.7224 28.42
4.6035 0.2
4.2773 4.00 × 10−5

4.1506 2.60 × 10−5

4.1086 7.00 × 10−6

230
90 Th 4.687 76.3

4.6205 23.4
4.4798 0.12
4.4384 0.03
4.3718 0.00097
4.2783 8.00 × 10−6

4.2485 1.03 × 10−5

3.8778 3.40 × 10−6

3.8294 1.40 × 10−6

226
88 Ra 4.78434 93.84

4.601 6.16
4.34 0.0065
4.191 0.001
4.16 0.00027

222
86 Rn 5.48948 99.92

4.986 0.078
4.826 0.0005

218
84 Po 6.00235 99.9789002

5.181 0.00109978
6.756 0.00071928
6.693 0.017982

218
85 At 6.653 0.00127872
218
86 Rn 7.1292 2.00 × 10−5

6.5311 2.54 × 10−8

214
83 Bi 5.516 0.009408

5.452 0.012936
5.273 0.001392
5.184 0.0001464
5.023 5.04 × 10−5

4.941 6.00 × 10−5

214
84 Po 7.68682 99.9655025

6.9022 0.0103975
6.6098 6.00 × 10−5

210
82 Pb 3.72 1.90 × 10−6

210
83 Bi 4.694 5.20 × 10−5

4.656 7.80 × 10−5

210
84 Po 5.30433 99.99987

4.51658 0.00104
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Table A.3: 232Th decay chain α particle energies used in SaG4n simulation

Nuclide α energy [MeV] Intensity
232
90 Th 4.0123 78.2

3.9472 21.7
3.8111 0.069
5.42315 73.4

228
90 Th 5.34036 26

5.211 0.408
5.173 0.218
5.138 0.036

224
88 Ra 5.68537 94.92

5.4486 5.06
5.161 0.0071
5.051 0.0076
5.034 0.003

220
86 Rn 6.28808 99.886

5.747 0.114
216
84 Po 6.7783 99.9981

5.985 0.0019
212
83 Bi 6.08988 9.746928

6.05078 25.125654
5.768 0.61098
5.626 0.0564258
5.607 0.406122
5.481 0.0046722
5.345 0.0003594
5.302 3.95× 10−5

212
84 Po 8.78486 64.06

Figure A.1: Cross-sections for (α,Xn) reactions [92] (z - incident particle
(α), (z,n) - production of neutron in the exit channel)
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Figure A.2: Energy level diagrams showing the excited states observed in
(α,n) reactions of some light compound nuclei
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Appendix B

Conference Contributions and
Publications

List of publications:
• V. Palušová on behalf of the SuperNEMO collaboration. “Monte Carlo simulation

of external background in the SuperNEMO experiment“. Abstract Contribution in
Poster Session in: The 28th International Workshop on Weak Interactions and Neu-
trinos (2021)

• V. Palušová et al. “Natural radionuclides as background sources in the Modane
underground laboratory”. In: Journal of Environmental Radioactivity 216 (2020),p.
106185. issn: 0265-931X. DOI:https://doi.org/10.1016/j.jenvrad.2020.106185.

• V. Palušová, R. Breier, and P. P. Povinec. “Monte Carlo simulatio nof environmen-
tal background sources of a HPGe detector operating in underground laboratory”.
In: Journal of Radioanalytical and Nuclear Chemistry 318.3 (2018), pp. 2329–2334.
DOI:10.1007/s10967-018-6235-0

• V. Palušová et al. "Monte Carlo simulations of detectors background and development
of AMS methods for radiopurity measurements". Proceedings of the VII International
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• R. Arnold et al. “Measurement of the distribution of 207Bi depositions on calibration
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82Se sources for the SuperNEMO neutrinoless double-beta decay experiment”. In:
Radiochimica Acta 108.2 (2020), pp. 87–97. DOI:doi:10.1515/ract-2019-3129.
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underground experiments.
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A B S T R A C T   

The Modane underground laboratory (LSM) is the deepest operating underground laboratory in Europe. It is 
located under the Fr�ejus peak in Savoie Alps in France, with average overburden of 4800 m w. e. (water 
equivalent), providing low-background environment for experiments in nuclear and particle physics, astro-
physics and environmental physics. It is crucial to understand individual sources of background such as residual 
cosmic-ray flux of high-energy muons, muon-induced neutrons and contributions from radionuclides present in 
the environment. The identified dominant sources of background are radioactive contamination of construction 
materials of detectors and laboratory walls, radon contamination of the laboratory air, and neutrons produced in 
the laboratory. The largest neutron contribution has been identified from (α, n) reactions in low Z materials 
(10� 7-10� 4 n s� 1 Bq� 1) and from spontaneous fission of 238U (1:1� 10� 6 n s� 1 Bq� 1).   

1. Introduction 

Deep underground laboratories are presently the main framework 
for sensitive experiments as they provide the crucial ultra-low radiation 
background to search for very rare nuclear processes and decays that 
happen at extremely low rates. They also represent a significant break- 
through for radiometric and mass spectrometry technologies, mostly 
based on low-level gamma-spectrometry, Inductively Coupled Plasma 
Mass Spectrometry (ICPMS) and Accelerator Mass Spectrometry (AMS) 
(Povinec et al., 2008; Povinec, 2018, 2019). The overburden rock 
coverage in underground laboratories considerably reduces the 
cosmic-ray flux and cosmic-ray induced spallation products to a point, 
that it becomes almost negligible (Heusser, 1995; Povinec et al., 2008; 
Breier et al., 2017). The main attempt to advance in underground 
physics is the reduction and control of the background sources that may 
produce events mimicking searched signals. Despite the fact that un-
derground experiments have different physics objectives and detection 
methods, there are several common background components present in 
the underground environment, mainly radioactive contamination and 
residual cosmic-ray background. 

As cosmic-ray protons have low intensity compared to neutrons, and 
further they are converted to neutrons in nuclear reactions, mainly 
muons and neutrons play important part in detector’s background in 

shallow as well as in deep underground laboratories (Ludwig et al., 
2019; Povinec et al., 2008). Residual high-energy muon flux comes from 
interactions of high-energy cosmic rays in the upper atmosphere, while 
cosmogenic neutrons are produced in muon reactions with rock nuclei 
and experimental setup components. 

Contributions of radioactive contamination to the background come 
from primordial, cosmogenic and anthropogenic radionuclides present 
in detectors and surrounding materials. The dominant sources are: 

� Contributions from radioactive contamination of construction ma-
terials of detectors and the surrounding environment (concrete, 
shielding, electronics, etc.).  
� Radon contamination of the laboratory air.  
� In the absence of muons, neutrons produced in spontaneous fission 

processes and in (α, n) reactions of uranium and thorium and their 
decay products.  
� Cosmogenic radionuclides produced by interactions of cosmic-ray 

particles in construction materials exposed on the earth surface (e. 
g., 26Al).  
� Anthropogenic radionuclides present in construction materials (e. g., 

60Co, 137Cs). 

Recently frequently studied problem is the production of cosmogenic 
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radionuclides in construction materials during their transportation in 
air, storage or manufacture, by the hadronic component of cosmic rays. 
The resulting contamination can reach even higher radionuclide levels 
than the residual contamination from primordial radionuclides 
(Cebri�an, 2017). Cosmic-ray activation can be minimized by storing 
materials underground and avoiding their flight transport. In many 
low-background experiments even short-living radionuclides are 
important for the detector’s background. A lot of research has been 
dedicated for studying the production of 22Na, 26Al, 49V, 54Mn, 55Fe, 
57Co, 58Co, 60Co, 65Zn, 68Ge in construction materials of germanium 
detectors, 32Si in silicon medium in cryogenic detectors, iodine and 
tellurium radionuclides in NaI(Tl) crystals, xenon radionuclides in 
xenon-based detectors, argon radionuclides in liquid argon, cobalt ra-
dionuclides in copper and stainless steel, etc. (Heusser, 1995; Zhang 
et al., 2016; Cebri�an, 2017). 

The aim of the present work has been to review, analyze and discuss 
background contributions in the LSM coming mainly from radioactive 
contamination of construction materials and the laboratory walls, radon 
contamination of the laboratory air, and neutrons produced in sponta-
neous fission and in (α, n) reactions of uranium and thorium and their 
decay products in rocks and construction materials. The radiogenic 
contributions to the LSM background will be compared with cosmogenic 
ones induced by interactions of cosmic-ray muons with construction 
materials and surrounding rocks. 

2. Modane underground laboratory 

The Modane underground laboratory (Laboratoire Souterrain de 
Modane, LSM) is located in the middle of the Fr�ejus road tunnel under 
Savoie Alps that is connecting Modane in France to Bardonecchia in Italy 
(Fig.1). It sits below the Fr�ejus Peak with rock overburden of approxi-
mately 1700 m, which corresponds to 4800 m w.e. (water equivalent). It 
has been in operation since 1982 and is currently the deepest under-
ground laboratory in Europe. The LSM serves as an interdisciplinary 
platform providing low-background environment for several experi-
ments in nuclear and particle physics, astrophysics and environmental 

physics. Presently the laboratory houses, e. g., the SuperNEMO experi-
ment searching for neutrinoless double beta-decay, the EDELWEISS dark 
matter search experiment, germanium hall for low background gamma- 
spectrometry, radon trapping facility, etc. 

The geological composition of rock surrounding the LSM is generally 
considered to be homogenous. Geologically the site is constituted of 
metamorphic rocks, called schists, that are characterized by several 
mineral constituents (Chazal et al., 1998; Malczewski et al., 2012). In 
the past, LSM rock and concrete samples from the main experimental 
hall were collected and analyzed by spectrometry methods to determine 
the chemical composition. Table 1 summarizes the elemental composi-
tion of the Fr�ejus rock and LSM concrete. The uranium and thorium 
content of the rock and concrete samples is given in Table 2. 

3. Background radiation in LSM 

3.1. Gamma-ray background 

Background from environmental radioactivity sources present in the 
LSM laboratory imposes severe constraints on the sensitivity of the 
installed detectors. To overall gamma-ray background contribute 
mainly radionuclides present in construction and surrounding materials, 
that are mostly represented by decay products of the 238U, 235U and 
232 Th day series, and by primordial 40K. Decays and de-excitations of 
these radionuclides produce both low-energy (<1 MeV) and high-energy 
(>1 MeV) photons, but also electrons or alpha particles, that constitute 
serious background problems for all low-level counting experiments 
(Formaggio and Martoff, 2004). Of particular interest and concern are 
these radionuclides: 214Pb, 214Bi, 212Pb and 208Tl. The 214Pb emits low 
energy gamma-rays, the most abundant are with energy of 0.352 MeV 
(37.6%). The 214Bi gamma-line of highest yield is at 0.609 MeV (46.1%), 
then at 1.12 MeV (15.1%) and at 1.765 MeV (15.4%). The others have 
individual yields lower than 5%, for example, 214Bi emits gamma-rays of 
2.204 MeV and 2.447 MeV with emission probability of 4.99% and of 
1.55%, respectively. 208Tl is a product of alpha-decay of 212Bi in 232Th 
series and decays by β� -emission to 208Pb with main gamma lines of 
0.583 MeV and 2.614 MeV with emission probability of 84.5% and 99%, 
respectively. 212Pb is also important radionuclide from the 232 Th decay 
chain with gamma-ray energy of 0.238 MeV. 40K is a main source of the 
background gamma-radiation, as 10.7% of the time the isotope un-
dergoes electron capture to form 40Ar and emits 1.46 MeV gamma-rays. 
Other sources of high-energy gamma rays include gammas from neutron 
captures in materials surrounding the detectors or even muon brems-
strahlung from weak residual muon flux in the laboratory. For example, 
in water and polyethylene (often used for neutron shields), the slow 
neutron capture by H is responsible for production of gamma-rays with 
energy of 2.223 MeV. Higher gamma-ray energies may come from 
neutron capture in iron (e.g. 7.6 MeV from neutron capture in 56Fe), 
titanium, nickel, zinc, etc. Other mechanisms of background induction 
by neutrons are nuclear excitations by inelastic neutron scattering on the 
detector and shielding materials that lead to saw-tooth shaped peaks 
with sharp edges (for example Pb (n, n’γ) and Cu (n, n’γ) reactions). 

Malczewski et al. (2012) measured the gamma-radiation background 
in the LSM at two locations by using a coaxial HPGe detector. Ohsumi 
et al. (2002) studied gamma-ray fluxes using a NaI detector. Results of 

Table 1 
Concentrations of elements in rock and concrete samples collected in LSM.  

Compound Rocka Concretea Element Rockb Concreteb 

(%)  (%) 

SiO2 14.9 5.8 O 49.4 49.7 
Al2O3 5.0 1.1 Ca 30.6 36.8 
FeO3 2.8 0.74 C 5.94 7.78 
MnO 0.038 0.008 Si 6.93 2.69 
MgO 1.4 1.3 H 1.00 1.09 
CaO 42.8 51.5 Mg 0.84 0.78 
TiO2 0.12 0.17 Fe 1.90 0.52 
K2O 0.25 0.02 Al 2.58 0.48 
Na2O 0.6 0.02 Ti 0.07 0.09 
P2O5 0.15 0.15 P 0.06 0.07  

K 0.21 0.02 
Na 0.44 0.01 
Mn 0.03 0.01  

a Chazal et al.(1998). 
b Kluck, (2015). 

Table 2 
Activity of primordial radionuclides in rock and concrete samples collected in LSM.  

Samples 238U 232Th 40K 

(Chazal et al., 1998) (Malczewski et al., 2012) (Chazal et al., 1998) (Malczewski et al., 2012) (Chazal et al., 1998) Malczewski (2012) 

[ppm] [Bq kg� 1] [ppm] [Bq kg� 1] [ppm] [Bq kg� 1] [ppm] [Bq kg� 1] [Bq kg� 1] [Bq kg� 1] 

Rock 0.84 10.4a 0.95 11.8 2.45 9.9a 2.48 10.2 213 182 
Concrete 1.9 23.5a 1.83 22.8 1.4 5.7a 1.63 6.7 77 91  

a Calculated using conversion factors. 
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both investigations are presented in Table 3. It is important to note, that 
these fluxes are highly dependent on the materials placed near the de-
tectors, and on the contamination of the detectors themselves. There-
fore, they do not represent an unaffected ambient gamma-ray flux. Such 
a bias is unavoidable and should be considered when using these values 
for further studies of background of experiments. 

3.2. Radon 

Radon and its decay products form by far the strongest source of 
airborne radioactivity in many low-background experiments. All of 
radon isotopes emanate naturally from the rocks, soil and building 
materials wherever traces of uranium and thorium can be found. Usually 
the beta-decaying radioisotopes within the uranium and thorium decay 
chains are the crucial contributors to the background. As the alpha- 
decaying radioisotopes emit mono-energetic alpha-rays with energies 
of a few MeV, they can be easily identified in analysis (Rupp, 2017). The 
measured 222Rn activity in the LSM main hall is 5–20 Bq  m� 3 

(Armengaud et al., 2013; Loaiza, 2005) with the mean value of 10 
Bq  m� 3 (Fiorucci et al., 2007). Such a low radon level is kept thanks to a 
ventilation system that is renewing the entire laboratory air. Further 
reductions in the radon concentration down to a fewmBq  m� 3 has been 
achieved using a radon trapping facility (Loaiza, 2005). From the 
standpoint of gamma-background, radon (222Rn) and its progenies 
(214Pb and 214Bi) are more important than thoron (220Rn) and its 
progenies (212Pb and 208Tl) because of thoron’s short half-life (55.6 s) 
(Povinec et al., 2008). 

3.3. Cosmic-ray muon flux 

As mentioned before, in deep underground laboratories, the cosmic- 
ray background component should be negligible and only residual high- 
energy muon flux remains. Muons originate in the upper layers of 

atmosphere and subsequently travel and propagate through the air and 
rocks. The LSM overburden attenuates the muon flux, Φμ ~5 μ m� 2d� 1 

(Kluck, 2015; Loaiza, 2005; Fiorucci et al., 2007). More precise values of 
the LSM muon flux were measured by Berger et al. (1989) (Φμ ¼ 4.73 
μ  m� 2d� 1), and by the EDELWEISS dark matter collaboration (Φμ ¼

5.4 � 0.2 μ m� 2d� 1; Schmidt et al., 2013). For comparison, the total 
flux of the muon component of cosmic rays at sea level is ~190 μm� 2 s� 1 

(Povinec et al., 2008). 
In addition to the total muon flux at a given site, the energy spectrum 

of muons is important information in order to evaluate muon-induced 
reactions and to optimize the suppression and rejection tools, in order 
to improve the experimental sensitivity. Unfortunately, there is only 
limited information on muon energy spectra in LSM from measure-
ments, and one has to rely, therefore, on Monte Carlo simulations, taking 
as an input the muon energy spectrum observed at surface. The average 
muon energy increases with the site depth, for the LSM the average 
muon energy was estimated as Eμ;  LSM ¼ 255:0ð45Þ  GeV (Kluck, 2015; 
Berger et al., 1989). 

Muons by themselves, when interacting directly with detectors, do 
not contribute significantly to the background of underground experi-
ments. They are either vetoed or easily identified. However, there is a 
muon-induced background, caused by spallation products created by 
high-energy muons. Especially dangerous are secondary neutrons pro-
duced either in the detector itself or in construction and surrounding 
materials, such as overburden rock, shielding, etc. 

3.4. Neutron flux 

The total flux of the nucleonic component of cosmic rays at sea level 
is around 60 particles m� 2 s� 1 (Povinec et al., 2008). Structures absorb 
secondary neutrons far better than muons, thus the relative composition 
of nucleonic component is dramatically changing with the depth (Hensel 
et al., 2019). 

The ambient neutron flux in the LSM originates mainly from 
radionuclides present in rock and construction materials. Neutrons in 
the rock are produced by cosmic muons, plus neutrons induced by 
spontaneous fission and (α, n) reactions due to U and Th present in the 
rock. Several neutron flux measurements were carried out in the past in 
the LSM (Table 4). Chazal et al. (1998) estimated the flux of neutrons in 
the energy range of 2–6 MeV and of thermal neutrons to be 
Φn ¼ ð4:0�1:0Þ � 10� 6 n cm� 2s� 1 and Φn; thermal ¼ ð1:6�0:1Þ�
10� 6 n cm� 2s� 1; respectively. More recent neutron measurements in 
various places in the LSM were carried out by Rozov et al. (2010) and 
Eitel (2012) using proportional counters filled with 3He. The total 
ambient flux of neutrons, Φn; ambient ¼ 9:6� 10� 6 n cm� 2s� 1 was mostly 
due to thermal neutrons. As can be seen from Table 4, the thermal 
neutron flux at LSM may vary by up to a factor of three from one location 
to another. Near the experimental set-up of EDELWEISS and NEMO3 

Table 3 
The main gamma-ray fluxes measured in LSM.  

Energy [MeV] Gamma ray flux [cm� 2s� 1]  

0.352 (214Pb) 6.04 � 10� 3 a  

2.10 � 10� 3 a  

0.609 (214Bi) 5.26 � 10� 3 a  

1.78 � 10� 3 a  

0.911 (228Ac) 1.31 � 10� 3 a  

6.10 � 10� 4 a  

1.46 (40K) 0.1a 

3.55 � 10� 3 a  

2.40 � 10� 3 a  

2.204 (214Bi) 4.53 � 10� 4 a  

2.02 � 10� 4 a  

2.614 (208Tl) 4.0 � 10� 2 a  

1.0 � 10� 3 a  

4.78 � 10� 4 a  

4–6 3.8 � 10� 6 b  

6–7 1.5 � 10� 6 b  

7–8 1.6 � 10� 6 b  

8–9 7.0 � 10� 8 b  

9–10 5.0 � 10� 8 b  

>10 1.0 � 10� 8 b   

a Malczewski et al. (2012). 
b Ohsumi et al. (2002). 

Table 4 
Summary of measured and simulated neutron fluxes in LSM.  

Neutron flux 
[10� 6 n cm� 2s� 1]  

Neutron 
energy 

Technique Reference 

4.0 � 1.0 fast, 
2–6 MeV 

Slowing down neutrons 
and nthþ

6Li→αþ3H 
reaction  

Chazal et al. 
(1998) 

1.6 � 0.1 thermal 3He detectors, nþ3He→ 
T þ p reaction  

Chazal et al. 
(1998) 

(2.0 � 0.2)- 
(6.2 � 0.6) 

thermal 3He proportional counter 
nþ3He→Tþ p reaction  

Rozov et al. 
(2010) 

9.6 total 
ambient 
flux 

3He proportional counter 
nþ3He→Tþ p reaction  

Eitel (2012) 

1.06 >1 MeV Simulation (SOURCES, 
MCNPX) 

Fiorucci 
et al. (2007)  
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(a predecessor of the SuperNEMO) experiments in the main hall, the 
fluxes were similar, Φn; thermal ¼ ð3:52�0:06Þ� 10� 6 n cm� 2s� 1and 
Φn; thermal ¼ ð2:9�0:4Þ� 10� 6 n cm� 2s� 1, respectively. These experi-
mental results may be compared with simulations carried out by Fior-
ucci et al. (2007) using SOURCES package for simulations of neutron 
production rates from 238U and 232Th traces in the rock, and using 
MCNPX software for neutron propagation. The obtained neutron flux for 
energies above 1 MeV, Φn; >1MeV ¼ 1.06 � 0.10 (stat.) �0.59 (syst.) �
10� 6  n  cm� 2s� 1, is smaller than the experimental result of Chazal et al. 
(1998) (Table 4). 

4. Radiogenic neutron production 

4.1. Production of neutrons in (α, n) reactions 

We have seen that radiogenic neutrons (together with high-energy 
gamma-rays) play dominant role in background of detectors operating 
deep underground. Radiogenic neutrons result from nuclear interactions 
with nuclei present in construction and shielding materials of detectors. 
They are predominantly produced by (α, n) reactions of alpha-particles 
from alpha-decaying radionuclides in 235U, 238U and 232 Th day chains 
with light (low to mid Z) nuclei. The neutron yield is thus mainly 
affected by alpha-decay energy spectra, the Coulomb barrier (which 
describes the energy of alpha-particles needed to overcome repulsion 
between alpha-particles and nuclei), stopping power of alpha-particles 
in particular materials and reaction cross sections. Calculations of 
radiogenic neutron production and their energy spectra are important 
for simulation of neutron background to many underground experi-
ments, as the total neutron yield indicates the number of neutrons that 
enter or are produced in the target, and the neutron energy spectrum 
determines the total background events in the region of interest (Mei 
et al., 2009). They constitute a problematic background as they are often 

produced alone in the reaction with no accompanying signal that could 
help to tag them in analysis (Westerdale and Meyers, 2017). 

The detector shielding in deep underground laboratories is usually 
optimized against gamma-rays as they are the main background con-
tributors. This is achieved with a substance that has a high density of 
electrons (which correlates with a high mass density) and also a high Z. 
Radiopure iron and steel are usually considered as the best choice. 
Another widely used shielding material is lead, however, it should be 
usually accompanied with an iron construction, and its radiopurity is 
worse. On the other hand, there is no neutron yield from (α, n) reactions 
in lead due to its high Coulomb barrier. 

Neutron shielding materials are typically constructed from low 
atomic number elements (hydrogen, carbon, and oxygen) with high 
scattering cross sections that can effectively moderate or thermalize 
incident neutrons. Water, pure polyethylene, 3–5% borated poly-
ethylene and 7.5% lithium polyethylene have been widely used. 
Whereas borated polyethylene effectively attenuates the neutron flux, 
neutron capture reactions on boron result in 0.42 MeV gamma-rays, 
which may contribute to the gamma-background, while lithium poly-
ethylene produces no gamma-rays from neutron capture reactions. 
However, lithium has a lower cross section for capturing thermal neu-
trons in comparison with boron. 

Borosilicate glass is the most commonly used window material in 
photomultiplier (PMT) tubes. Another PMT window material is sap-
phire, made of Al2O3 crystal. Xenon and argon are commonly used in 
underground experiments as scintillators due to their high scintillation 
light yields and possibility to achieve large detector masses. Another 
considered materials include PTFE (Teflon), copper, titanium, silicon, 
carbon and aluminum (having usually the lowest radiopurity) that often 
compose internal detector components. Chemical composition of these 
materials is defined in Table 5. 

There are several toolkits for calculation of (α, n) induced neutrons, 
including SOURCES-4A and the USD webtool, or recently even GEANT4, 
each package being suited for this type of simulation, although further 
improvements are desirable in all cases. We have used the NeuCBOT 
(Neutron Calculator Based on TALYS) software (available for general use 
at https://github.com/shawest/neucbot). The advantage of using Neu-
CBOT is in its availability and validation (Westerdale and Meyers, 
2017). NeuCBOT uses the ENSDF database for decay-data of 
alpha-emitters, SRIM-generated stopping power database and nuclear 
reaction database generated by TALYS (Westerdale, 2019). Secular 
equilibrium in 232Th and 238U decay chains was considered. 

Table 6 shows results of neutron yields in given target elements and 
materials (assuming a homogeneous composition) that are contami-
nated with alpha-emitting radionuclides from 232Th and 238U decay 
series. Table 7 shows contributions to total neutron yield from each 

Table 5 
Chemical composition of materials used in neutron yield calculation.  

Material Composition % mass 

Polyethylene (CH2)n C 85.7 
H 14.3 

Borated polyethylene (5%) C 61.2 
H 11.6 
O 22.2 
B 5 

Lithium-Polyethylene C 57.9 
O 26.4 
Li 7.5 
H 7.8 

Steel Fe 94 
Mn 1.6 
Co 1 
Cr 1 
Ni 1 
Cu 0.6 
Si 0.6 
C 0.2 

Aluminium oxide Al2O3 Al 52.9 
O 47.1 

PTFE C2F4 F 76 
C 24 

Water H 11.1 
O 88.9 

Borosilicate glass O 53.9 
Si 37.7 
Na 2.82 
Al 1.16 
B 0.40 
K 0.33  

Table 6 
Neutron yields from (α, n) reactions in given materials.  

Material 232Th [n s� 1 Bq� 1] 238U [n s� 1 Bq� 1] 
Polyethylene (CH2)n 1.49 � 10� 06 1.34 � 10� 06 

Borated polyethylene (5%) 1.22 � 10� 05 1.17 � 10� 05 

Lithium-Polyethylene 1.46 � 10� 05 1.02 � 10� 05 

Steel 1.65 � 10� 06 4.19 � 10� 07 

Aluminum oxide Al2O3 2.20 � 10� 05 1.43 � 10� 05 

PTFE C2F4 1.27 � 10� 04 1.00 � 10� 04 

Water 4.42 � 10� 07 3.74 � 10� 07 

Borosilicate glass 5.60 � 10� 06 4.17 � 10� 06 

B 2.73 � 10� 04 2.64 � 10� 04 

C 2.18 � 10� 06 1.97 � 10� 06 

O 6.09 � 10� 07 5.16 � 10� 07 

Al 4.53 � 10� 05 2.93 � 10� 05 

Si 3.45 � 10� 06 2.19 � 10� 06 

Ar 2.64 � 10� 05 1.41 � 10� 05 

Ti 7.34 � 10� 06 2.82 � 10� 06 

Fe 1.62 � 10� 06 3.93 � 10� 07 

Cu 3.86 � 10� 07 3.17 � 10� 08 

Xe 6.15 � 10� 12 1.25 � 10� 13  
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isotope in target elements. Uncertainties of these calculations are usu-
ally below 10% (depending on the precision of input data). Neutron 
energy spectra from 238U and 232Th induced (α, n) reactions in target 
elements of Ar, Al, Xe, Ti, C, O, Cu, Si, Fe, and B are shown in Fig. 2. They 
represent unmoderated spectra which can be used for propagation of 
neutrons through materials of interest where they further thermalize 
and interact with target nuclei. 

4.2. Neutrons from spontaneous fission of 238U and 232Th 

There are over 100 radionuclides known to decay by spontaneous 
fission with the emission of neutrons. The probability of spontaneous 
fission strongly depends on the atomic number of the heavy element. 
The underground fission neutron flux is mostly due to spontaneous 
fission of 238U that is present in the environment. The fission rate for 
thorium and uranium is low compared to the rate of decay by alpha- 
particle emission, which dominates the total half-life. This process is 
also a source of high energy gamma-rays. When a nucleus undergoes 
fission and the excitation energy falls behind the neutron binding en-
ergy, prompt gamma-rays take over and carry away the remaining en-
ergy. If we assume the neutron yields per fission given by Ensslin (1991) 
for 238U and 232Th (1.36 � 10� 2 n s� 1 g� 1 and about 6 � 10� 8 n s� 1 g� 1, 
respectively), we can obtain neutron yields in n s� 1 Bq� 1 for the total 
activity of 238U and 232Th, and for radionuclides undergoing 

spontaneous fission in the 238U chain with decay products in secular 
equilibrium (Table 8). The average energy of emitted neutrons is 
approximately 2 MeV (Westerdale and Meyers, 2017). These values are 
in good agreement with values of Westerdale and Meyers (2017) 
calculated using SOURCES-4C software (1.1 � 10� 6 n s� 1 Bq� 1 for 238U 
and 3.85 � 10� 11 n s� 1 Bq� 1 for 232Th. 

As the natural abundance of 235U is relatively low, the neutron yield 
from spontaneous fission of 235U is only about 5% of the total neutron 
yields from uranium and thorium decays (Mei et al., 2009). The spon-
taneous fission rates and neutron yields of these isotopes are very low 
(Table 8), therefore, these processes contribute to neutron background 
only in materials with high contamination levels. 

5. Muon-induced neutrons 

Cosmogenic neutrons are mainly produced in hadronic and electro-
magnetic showers in the matter by incident cosmic-ray muons. These 
neutrons can be identified via associated muons or electromagnetic 
cascades, however, as they spread away from the incident muon track, 
large detectors are needed to study them with necessary accuracy 
(Araújo et al., 2005). Although most of the neutrons in deep under-
ground laboratories come from spontaneous fission and (α, n) reactions, 
and muon induced neutrons contribute less than 1% to the neutron flux, 
they are still of interest as a potential source of background in under-
ground low-background experiments (Kluck, 2015; Malgin, 2017; 
Araújo et al., 2005; Eitel, 2010). Moreover, an increased gamma-ray flux 
is also expected from neutron activation of materials (Araújo et al., 
2005). 

The main characteristics associated with muon induced neutrons are 
the muon energy, the reaction cross section, the target material and the 
neutron yield, Yn, given in number of neutrons produced by a muon per 
unit path length [n μ� 1 (g cm� 2)� 1]. Generally, the neutron production 
rate increases with the average atomic weight of the material. The 
FLUKA (B€ohlen et al., 2014; Ferrari et al., 2005) and GEANT4 simulation 
tools are well established and widely used for neutron yields 
calculations. 

Very little data is available from measurements and simulations on 
muon induced neutron yields in LSM. We already mentioned that the 
measured muon flux in the LSM was about 5 μ  m� 2d� 1 (Berger et al., 
1989), and the neutron flux at the EDELWEISS detector was about 0.5 n 
m� 2  d� 1 in Gd-loaded scintillator (Eitel, 2010). Results of measure-
ments from different underground laboratories and experiments were 
discussed by Kluck (2015) and Malgin (2017). The dependence of the 
averaged muon-induced neutron yields in different targets and at 
different averaged muon energies presented in Fig. 3 was discussed by 
several authors (Kluck, 2015; Gorshkov et al., 1968, 1971, 1974; Annis 
et al., 1954; Agafonova and Malgin, 2013; Bergamasco et al., 1973; 
Reichhart et al., 2013). Reichhart et al. (2013) estimated the muon 
induced neutron yield in pure lead for a mean muon energy of 260 GeV 
(which approximately corresponds to the mean muon energy in LSM) to 
be ð5:78þ0:21

� 0:28�10� 3Þ n μ� 1 (g cm� 2)� 1. For example, in 30 cm lead 

Table 7 
Neutron yields from each isotope in target elements.  

Isotope Abundance % 232Th [n s� 1Bq� 1] 238U [n s� 1Bq� 1] 
10B 19.9 4.96 � 10� 05 4.47 � 10� 05 

11B 80.1 2.24 � 10� 04 2.19 � 10� 04 

13C 1.1 2.18 � 10� 06 1.97 � 10� 06 

17O 0.038 6.53 � 10� 08 5.52 � 10� 08 

18O 0.2 5.43 � 10� 07 4.61 � 10� 07 

27Al 100 4.53 � 10� 05 2.93 � 10� 05 

29Si 4.67 2.04 � 10� 06 1.32 � 10� 06 

30Si 3.1 1.41 � 10� 06 8.70 � 10� 07 

38Ar 0.063 7.34 � 10� 09 3.12 � 10� 09 

40Ar 99.6 2.64 � 10� 05 1.41 � 10� 05 

46Ti 8 5.05 � 10� 07 1.81 � 10� 07 

47Ti 7.3 5.44 � 10� 07 2.09 � 10� 07 

48Ti 73.8 5.40 � 10� 06 2.08 � 10� 06 

49Ti 5.5 4.41 � 10� 07 1.73 � 10� 07 

50Ti 5.4 4.44 � 10� 07 1.76 � 10� 07 

54Fe 5.8 7.25 � 10� 08 1.60 � 10� 08 

56Fe 91.72 1.50 � 10� 06 3.65 � 10� 07 

57Fe 2.2 4.12 � 10� 08 1.03 � 10� 08 

58Fe 0.28 5.45 � 10� 09 1.37 � 10� 09 

63Cu 69.17 2.06 � 10� 07 0 
65Cu 30.83 1.80 � 10� 07 3.17 � 10� 08 

129Xe 26.4 1.6 � 10� 12 5.6 � 10� 14 

130Xe 4.1 1.7 � 10� 13 0 
131Xe 21.2 1.3 � 10� 12 1.6 � 10� 14 

132Xe 26.9 1.7 � 10� 12 3.8 � 10� 14 

134Xe 10.4 7.1 � 10� 13 8.2 � 10� 15 

136Xe 8.9 6.3 � 10� 13 7.5 � 10� 15  

Fig. 1. Location of the LSM.  
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shielding, which corresponds to 340.2 g cm� 2 of interaction length 
(assuming the lead density of 11.34 g cm� 3), a muon of energy 260 GeV 
produces 1.97 neutrons per muon. This assumption corresponds well 
with result obtained by Araújo et al. (2005), i.e., 2 neutrons per muon 

for 30 cm lead shielding for the mean muon energy of 280 GeV (Table 9). 
With the given LSM muon flux, these values can be scaled to number of 
events per unit area and time. However, to get accurate results on the 
neutron yields and the energy distribution of neutrons, more 

Fig. 2. Neutron energy spectra from 238U and 232Th induced (α, n) reactions in selected target elements.  
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measurements and simulations are needed. 

6. Summary on neutron fluxes 

Experiments searching for rare events in underground laboratories 
need to reach as low background as possible. Natural radioactive 
contamination in the detector construction and laboratory environment, 
that is mostly represented by decay products in the 238U, 235U and 
232 Th day series, and by primordial 40K, leads to alpha, beta and 
gamma-background, as well as production of neutrons in (α, n) reactions 
and in spontaneous fission. The selection of very radiopure materials 
therefore plays a key role in background reduction. Radiogenic neutron 

sources summarized in Table 10 indicate that the dominant contribu-
tions are from (α, n) reactions in low Z materials and from spontaneous 
fission of 238U. 

Assuming production rates of muon-induced neutrons in the LSM 
(for the mean muon energy of 260 GeV and the Fe and Pb targets) of 2�
10� 3n μ� 1 (g cm� 2)� 1 and 5:78� 10� 3 n μ� 1 (g cm� 2)� 1, respectively, 
the muon-induced neutron fluxes of 1:8 � 10� 9 n cm� 2 s� 1 and 1:2 �
10� 8 n cm� 2 s� 1 were calculated. 

7. Conclusions 

The main background sources in the LSM Modane underground 
laboratory were discussed. Results of several measurements of envi-
ronmental radioactivity in LSM were summarized, including measure-
ments of ambient muon (Φμ ~5 μ  m� 2d� 1) and neutron fluxes 
(Φn; ambient ¼ 9:6� 10� 6 ncm� 2s� 1). Neutrons coming from the (α, n) 
reactions and spontaneous fission have been identified as the dominant 
neutron background sources. The neutron yields and neutron energy 
spectra from (α, n) reactions in several elements and materials used in 
detector components or in shielding were calculated using the NeuCBOT 
software. The neutron production rates were determined for radionu-
clides naturally present in the underground environment which undergo 
spontaneous fission. The largest neutron contribution to underground 
experiments carried out in the LSM laboratory has been identified from 
(α, n) reactions in low Z materials (10� 7-10� 4 n s� 1 Bq� 1) and from 
spontaneous fission of 238U (1:1� 10� 6 n s� 1 Bq� 1). 

Assuming production rates of muon induced neutrons in the LSM (for 
the mean muon energy of 260 GeV and the Fe and Pb targets) of 2�
10� 3n μ� 1 (g cm� 2)� 1 and 5:78� 10� 3 n μ� 1 (g cm� 2)� 1, respectively, 
the muon-induced neutron fluxes of 1:8 � 10� 9 n cm� 2 s� 1 in Fe and 
1:2 � 10� 8 n cm� 2 s� 1 in Pb were calculated. 

The obtained results can be further used for Monte Carlo simulations 
and prediction of background events in underground experiments. 
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Abstract
The overlying rock of underground laboratories provides excellent radiation shielding necessary for many experiments

searching for extremely rare nuclear and astroparticle events. Monte Carlo simulations of HPGe detector background and

attenuation of gamma-ray fluxes with different shielding configurations were carried out for an underground laboratory. It

has been found that even a small radioactive contamination of the shielding material may increase gamma-ray fluxes in

underground laboratory by several orders of magnitude.
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Introduction

Deep underground laboratories provide the necessary low

radiation background to search for very rare nuclear phe-

nomena that happen at extremely low rates, such as neu-

trinoless double beta-decay or detection of dark matter

candidates [1]. While in surface laboratories the cosmic ray

component plays an important part of the background, the

overburden rock coverage in underground laboratories

reduces considerably the cosmic-ray flux and cosmic-ray

induced spallation products, therefore investigations of rare

nuclear processes can be carried out [2]. The main chal-

lenge towards higher sensitivities and the main struggle to

advance in underground physics is the reduction and con-

trol of the background. Once the cosmic-ray component

has been reduced, other background sources become

dominant [2]:

(a) High-energy muon flux induced by interactions of

high energy cosmic rays in the upper atmosphere

(b) Neutrons produced in cosmic-ray muon spallation

reactions with rock nuclei, in fission processes of

uranium and thorium in the rocks, and in (a,
n) reactions

(c) Contributions from radioactive contamination of the

detector and its surroundings (concrete, shielding,

electronics, etc.)

(d) Radon contamination of the laboratory air.

Therefore, detectors and supporting instruments must be

made out of radio-pure materials, and all components must

be thoroughly screened before construction and their

installation underground [3, 4].

Large volume high-purity germanium (HPGe) detectors

because of their high detection efficiency and good energy

resolution have been extensively used in radio-purity

measurements of construction materials [5]. Additionally,

the ultra-sensitive HPGe c-ray spectrometers operating

underground have been used in wide range of other sci-

entific applications, such as environmental radionuclide

monitoring or development of new detector technologies

[3].

The dominant part of background comes from radioac-

tive contamination of construction materials of HPGe

detectors (cryostat, detector holder, electronics, etc.), as

well as their shielding (lead, iron, copper). Radioactive

contamination of construction materials is mostly repre-

sented by decay products in the 238U and 232Th decay

series, and by primordial 40K [6, 7].

In order to understand origin of induced radioactive

background, or to evaluate the background before the
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detector construction, a simulated background spectrum

can be obtained with Monte Carlo simulation. Decay

events can be simulated for different parts of the detector

separately, following various radionuclide contaminants.

Under investigation are c-rays from different sources, e.g.

from 208Tl (mainly of 583 and 2615 keV) in 232Th decay

chain, from 214Bi (mainly 609, 1120 and 1764 keV) in 238U

decay chain, from 40K, and from neutron capture and muon

bremsstrahlung in rocks.

The main motivation for this work has been to study

effects of external shielding on the background of the

SuperNEMO detector which represents a new generation of

ultra-low background physics experiment searching for

neutrinoless double beta-decay in the Modane underground

laboratory (LSM – Laboratoire Souterrain de Modane) [8].

This process, if observed, would indicate that neutrinos are

Majorana (not Dirac) particles, meaning that neutrino and

antineutrino are the same. It is expected, that background

c-rays could produce events in different topologies that

could mimic the event topology of the searched neutrino-

less double beta decay.

To reduce the background and to reach sensitivities

capable of detecting this process, strict radiopurity

requirements are imposed on the detector construction

materials [9–11]. The detector must be surrounded by

shielding to provide additional background reduction from

external sources [12]. Since external gamma-rays have big

impact on the detector background (that might influence

the experiment), the task to define and investigate different

shielding configurations (iron, copper, water) and their

thickness becomes important.

The aim of the paper has been to develop a Monte Carlo

model designed for background studies of simple HPGe

spectrometers operating in underground laboratories (Mo-

dane and Gran Sasso) [5, 13–15]. A combination of iron

and copper shielding (proposed for the SuperNEMO

detector on the basis of cost efficiency and its availability)

has also been studied for attenuation of the environmental

gamma-ray in the Modane underground laboratory. The

obtained results will later help to investigate suitability of

the Monte Carlo simulation model for the assessment of the

background of the large-scale SuperNEMO experiment [8].

The presented Monte Carlo model is based on the

GEANT4 package developed at CERN [16].

The c-ray fluxes in the Modane underground
laboratory

The LSM is the deepest operating underground laboratory

in Europe. It is located under the Fréjus mountain in

France, with average overburden of 4800 m w.e, (water

equivalent), providing low-background environment for

several experiments in nuclear and particle physics, astro-

physics and environmental physics. The measured muon

((6.25 ± 0.01) 10-5 m-2 s-1 [17]), the fast neutron

((1.1 ± 0.1) 10-2 m-2 s-1 [18]) and the thermal neutron

fluxes (1.9 10-2 m-2 s-1 [19]) are very low and thus

suitable for investigation of rare nuclear processes. The c-
ray spectrum in the LSM underground laboratory measured

using NaI(Tl) detector was divided into four energy inter-

vals [20]:

(i) Bellow 4 MeV with c-rays mainly produced by

natural radionuclides in materials surrounding the

detector

(ii) 4–6 MeV with c-rays due to a and b-decays of

uranium and thorium decay series present in

construction parts of the detector

(iii) 6–10 MeV with c-rays due to neutron capture

reactions

(iv) Above 10 MeV with c-rays produced by interac-

tions of cosmic-ray muons with rocks.

The extracted environmental c-ray fluxes measured in

the LSM for each energy interval are shown in Table 1.

The obtained values have been used for further background

investigations of detectors operating in LSM.

Methods

HPGe detector ‘‘Obelix’’

An ultra-low background large volume HPGe detector

Obelix installed in LSM is a coaxial detector with diameter

of 93.5 mm and height of 89.6 mm, which corresponds to

useful volume of 600 cm3. Its shielding is composed of an

inner layer (12 cm) made out of low-activity Roman lead,

and an external layer (20 cm) is made of low-activity lead.

The experimental setup with construction materials used in

Monte Carlo simulations is shown in Fig. 1. To eliminate

background contribution from radon and its decay prod-

ucts, the air is pushed out from the sample chamber with

Table 1 The c-ray fluxes in the LSM [16]

Energy interval (MeV) c-ray flux (10-6 cm-2 s-1)

4.0–6.0 3.8

6.0–7.0 1.5

7.0–8.0 1.6

8.0–9.0 0.07

9.0–10.0 0.05

[ 10.0 0.01
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radon-depleted air from radon trapping facility, which is

able to produce radon-free air (about 15 mBq/m3) [21].

Monte-Carlo simulations

Monte-Carlo simulations have been widely applied in

studying physical processes and interactions to explain

measured background spectra or to predict detector back-

ground and to evaluate individual background contribu-

tions [5, 6, 15, 22, 23]. That makes them an excellent tool

to optimize background characteristics for planned exper-

iments and to study detector background before the system

is built. They are also useful for prediction of shielding

thickness necessary to reduce the background to desirable

level.

GEANT4 has been used for the Monte-Carlo simulation

of environmental background sources of the investigated

HPGe detector operating in underground laboratories.

GEANT4 is a simulation tool-kit developed at CERN for

particle physics simulations, but it has also been used in

low energy physics applications [5, 8, 15, 16]. The

shielding physics list used in Monte Carlo simulations

presented in this paper included except of muon ionization,

muon bremsstrahlung, production of electron–positron

pairs, and muon photonuclear reactions also fluorescence,

Auger electron emission and Auger cascades, and particle

induced X-ray emission. The c-ray fluxes measured in

LSM in each energy range were used to simulate the

background response of the investigated Obelix detector,

and to study flux attenuation by different shielding

configurations.

An attenuation of the environmental gamma-ray flux in

the LSM laboratory was also studied using Monte Carlo

simulations. A shielding consisting of iron (3, 6, 9, 12, 15

and 18 cm) plus copper (0, 1 and 2 cm) was considered in

this case. A scheme of shielding configurations is shown in

Fig. 2. Environmental c-rays measured in the LSM labo-

ratory [20] bombarded the shield of the SuperNEMO

detector, and the resulting attenuated c-ray fluxes inside the
detector were simulated by GEANT4.

An influence of radionuclide contamination of the iron

shield of the SuperNEMO detector background was studied

by artificially contaminating the iron with 1 Bq/kg of 208Tl.

The 208Tl has been chosen as it is expected to be the main

contributor to the SuperNEMO detector background during

investigation of the neutrinoless double beta-decay of 82Se

(Q value of 2.99 MeV) because of its high Q value

(5.1 MeV) and high energy of its c-rays (2.615 MeV). A

commercial iron, similarly as lead, has been found to be

contaminated with 232Th and 238U decay products, namely

by 208Tl and 214Bi, respectively. Even old iron is not

entirely radio-pure as 232Th activities of 8 mBq/kg were

found [24]. 232Th levels in modern stainless steel may be

even higher, 1–20 Bq/kg [6].

Fig. 1 Visualization of the

experimental setup of the

investigated HPGe detector

Obelix operating in the Modane

underground laboratory

Fig. 2 GEANT4 geometry of iron and copper shielding of the

SuperNEMO detector
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Results and discussion

Simulation of the Obelix HPGe detector
background in LSM

Monte Carlo simulated background c-ray spectrum of the

Obelix HPGe detector operating in the LSM laboratory in

32 cm thick lead shield shown in Fig. 3 is in reasonable

agreement with the experimental spectrum. Both spectra

have been strongly influenced by radioactive contamina-

tion of the lead shield, mainly by 214Bi, 208Tl and 40K [22].

Simulated integrated background counts in the energy

interval 40–3000 keV (144,370 counts/year) compare well

with experimental counts (126,660 counts/year).

Figure 4 shows a predicted Monte Carlo background

c-ray spectrum in the energy interval 3–10 MeV calculated

using the environmental c-ray flux measured in the LSM

laboratory. The drop in counting rates at 8 MeV has been

caused by about two orders of magnitude lower environ-

mental c-ray flux measured in the LSM laboratory

(Table 1).

Simulation of attenuation of c-ray fluxes
with shielding of the SuperNEMO detector
in LSM

Monte Carlo simulations of the attenuation of environ-

mental c-ray flux observed in the underground hall hosting

the SuperNEMO detector by iron and copper walls have

been carried out with the aim to estimate an impact of

radioactive contamination of iron (supposed to be used for

shielding of the SuperNEMO detector, Fig. 2) on the c-ray
flux behind the shielding wall. Copper has been used as an

additional shielding to partially suppress 208Tl contamina-

tion as copper has been found to have a better radiopurity

than iron [9, 10]. Figure 5 shows that c-ray flux in LSM

decreases with thickness of the shielding material as

expected. At 18 cm of iron, the influence of copper seems

to be negligible as all fluxes have been asymptotically

decreasing to the same value.

After introducing a 208Tl contamination of the iron

shield by 1 Bq/kg, the c-ray flux has increased by about 4

orders of magnitude (Fig. 6). All fluxes seem to saturate at

the iron thickness above 12 cm, which could be explained

by self-shielding effects. Placing 2 cm of copper after the

contaminated iron, the c-ray flux has been reduced by

about a factor of 3. Further work is in progress to estimate

the impact of the 208Tl contamination on the background of

the SuperNEMO detector by simulating electron trajecto-

ries in the sensitive volume of the detector.

Conclusions

Monte-Carlo simulations were carried out with the aim to

investigate background c-ray sources in the Modane

underground laboratory. First, the background c-ray spec-

trum of the ultra-low level HPGe detector (Obelix) placed

in the lead shield was simulated using c-ray fluxes mea-

sured in the Modane underground laboratory. The

Fig. 3 Comparison of simulated and experimental background c-ray
spectra of the Obelix HPGe detector in the Modane underground

laboratory

Fig. 4 Monte Carlo simulated background c-ray spectrum of the

Obelix HPGe detector in the LSM Modane underground laboratory
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experimental background c-ray spectrum of the Obelix

detector measured in the energy interval 0–3 MeV was in

reasonable agreement with the simulated spectrum. The

experimental spectrum was strongly influenced by

radioactive contamination of the lead shield, mainly by
214Bi, 208Tl and 40K.

The second Monte Carlo simulation focused on the

study of attenuation of c-ray fluxes in the LSM laboratory

by iron and copper shields, and on the estimation of the

impact of artificially introduced radio-contamination of the

iron shield. The c-ray flux increased by about 4 orders of

magnitude after placing 1 Bq/kg of 208Tl in the iron shield.

Further work is in progress to estimate an impact of 208Tl

contamination on the background of the SuperNEMO

detector.

The developed Monte Carlo model could also be useful

for studying and predicting background of a future large-

volume HPGe c-ray spectrometer, which is under con-

struction in the Modane underground laboratory. Presented

Monte Carlo simulations have confirmed that radiopurity

of construction materials and methods of radionuclide

analysis are of great importance for future nuclear and

astroparticle physics underground experiments [11, 25].
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Abstract. Natural radioactivity of construction materials of high-purity germanium detectors has
been identified as the main component of detector background. A Monte-Carlo code was developed
to evaluate the background of HPGe detector operating in the Modane underground laboratory (Lab-
oratoire Souterrain de Modane, 4800 m w.e.). The measured background was by about 3 orders of
magnitude higher than the simulated one when accounting only for its cosmic-ray components. Very
low-radioactivity methods using AMS are under development at the CENTA facility in Bratislava.
Prelimianary studies of uranium analysis in electrolytic copper are presented.

Keywords: Monte Carlo simulation, HPGe detectors, background, radiopurity, AMS
PACS: 29.20.-c,29.40.Wk

1. INTRODUCTION

Low-radioactivity measurement techniques have been widely applied in nuclear physics
experiments searching for rare nuclear events. The detectors used in these experiments
should operate in deep underground laboratories where very low background is impor-
tant pre-requisite. While long-lived radionuclides have been mostly analyzed by ac-
celerator mass spectrometry (AMS) or inductively coupled plasma mass spectrometry
(ICPMS) [1], analyses of short-lived radionuclides have been mainly carried out by
gamma-ray spectrometry [2]. Large volume high-purity germanium (HPGe) detectors
have been widely used in such measurements because of their high efficiency and good
energy resolution. A background of these detectors is due to a radioactive contamination
of its construction parts and of cosmic-ray component. At sea level three components
of secondary cosmic-rays are observable: a hard component consisting of muons, a soft
component consisting of electrons, positrons and photons, and a nucleonic component.
The flux of hard component muons can be partially eliminated by using an anticosmic
shield [3]. If detectors operate in deep underground laboratories, the cosmic-ray com-
ponent should be negligible [4, 5, 6, 7, 8, 9], as all components of cosmic-ray induced
background are substantially decreased by surrounding rock. The dominant part of the
background is therefore a radioactive contamination of construction materials which is
mostly represented by decay products in the 238U and 232Th decay series, and by 40K
[1, 5]. Radiopurity measurements of construction materials of underground detectors
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have mostly been carried out by non-destructive gamma-ray spectrometry. Before con-
struction of the Ge gamma-spectrometers, Monte Carlo simulations of their background
should be carried out. A new generation of underground experiments (e.g. SuperNEMO
experiment that searches for neutrinoless double beta-decay) require substantial im-
provements of their detection limits, therefore radiopurity of construction materials is
a limiting factor.

2. MATERIALS AND METHODS

2.1 HPGe detectors and Monte Carlo simulations

The Ge detector under investigation was the Obelix (volume of 600 cm3), which is
operating in LSM. The passive shielding of the Obelix has an inner layer made of Roman
lead of 12 cm thickness and an outer layer made of low-activity lead of 20 cm thickness
[10]. The Ge crystal was placed in an aluminum cryostat.

GEANT4 and MuonSImulationCode (MUSIC) were used in Monte Carlo (MC) sim-
ulations [11]. GEANT4 was developed at CERN and is widely used for interaction sim-
ulations in nuclear physics [12]. MUSIC is a Fortran subroutine that simulates 3D trans-
port of muons through a standard rock. The MC code for simulation of cosmic-rays
has three parts: a muon generator, part describing transport of muons in surrounding
rock, and simulation of the interaction of muons with the detector. Interaction model de-
scribed in GEANT4 includes four mechanisms: muon ionization, muon bremsstrahlung,
production of electron-positron pairs and muon photonuclear reactions. In investigation
of different radionuclide contaminants, decay events should be simulated for different
parts of the detector separately. Several million events per each radionuclide from the U
and Th decay series and from 40K were simulated. As a result we were able to compute
background gamma-ray spectra.

2.2 SuperNEMO experiment

Similiar MC simulations can be performed for the SuperNEMO experiment search-
ing for neutrinoless double beta decay in LSM using 82Se as source. The basic detection
strategy of the detector remains the same as it was for its predecessor, the NEMO-3 de-
tector, but several improvements for detection components were accomplished [13, 14].
The detector technology offers a powerful tool for background rejection and combines
tracking and calorimetry techniques. Background of the SuperNEMO detector consists
of external (including cosmic-rays, contamination of the laboratory air and of construc-
tion materials) and internal (contamination of the internal construction parts and radon
inside the tracker) sources. The most important are events that may imitate neutrinoless
double beta decay [14].

Currently under investigation are gamma-rays from different origins: radioactivity
of laboratory and surrounding rocks, and neutron capture and muon bremsstrahlung
in rocks. It is expected, that these gamma rays have wide spectrum and will produce
events in different topologies (2e−, 1e−1e+, crossing e−, 1e− 1gamma external) that
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FIGURE 1. Sources of background in the NEMO-3 experiment (Arnold, 2015) and the block design of
the SuperNEMO experiment

could imitate double beta-decay and neutrinoless double beta-decay. MC simulations of
this external background will be done using the Falaise software (based on GEANT4),
developed by the SuperNEMO collaboration.

2.3 Accelerator Mass Spectrometry (AMS)

Radiopurity of construction materials is important for reduction of background of de-
tectors, therefore measurements of concentrations of radionuclides are of great impor-
tance for experiments that require very low background. Problem with gamma spectrom-
etry is that analyzed radionuclides are also found in the background of the spectrometer.
Alternative methods for these analyses have been under development, one of which is
AMS. AMS is a technique for measuring long-lived natural and anthropogenic radionu-
clides that occur in the environment. It represents a change in the philosophy of counting
- a direct atom counting is applied instead of waiting for decay products. A Centre for
Nuclear and Accelerator Technologies (CENTA) has recently been established at the
Comenius University in Bratislava. One of the goals of the CENTA laboratory is the de-
velopment of the AMS technique for radiopurity measurements at levels below 1 nBq/g
[15].

Very low-radioactivity measurements can be carried out mainly by AMS (Table 1),
preferably without any chemical treatment of samples, as this process could add ra-
dioactive contamination from chemicals used during sample processing [16]. Tests were
carried out in the CENTA laboratory using various uranium targets in the MC-SNICS
ion source (multi cathode source of negative ions by caesium sputtering) and a double
focusing injection magnet. Tests with analysis of uranium in wire targets made of elec-
trolytic copper were carried out as well. The 238U concentration in the wire was 10nBq/g
[17].
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TABLE 1. Comparison of detection limits (µBq)

Nuclide
Alpha-

spec.
Gamma-

spec. BiPo-3 ICPMS AMS NAA
232Th 100 2400 1.4 0.003 0.0002 0.08
238U 100 2000 1.6 0.01 0.0001 0.2

FIGURE 2. Monte Carlo simulations of background and contamination gamma-ray spectra for a HPGe
detector operating in the Modane underground laboratory (4800 m w.e.)

3. RESULTS AND DISCUSSION

3.1 Gamma-ray spectra

The MC simulated background gamma-ray spectrum for the Obelix detector operating
in LSM (4800 m w.e.) shows that the experimental spectrum is up to 3-orders of
magnitude higher than the simulated cosmic-ray background. The difference is due to
natural radioactivity in the construction parts surrounding the Ge crystal. Contributions
to the Obelix detector background from environmental radionuclides (238U and 232Th
decay products in respective chains and 40K) found in various construction parts of
the spectrometer were investigated. Background contributions from 40K and from the
232Th chain were lower than from the 238U chain background continuum, except for the
energies above 2000 keV, where 208Tl from the 232Th chain is dominant.

4



3.2 MC simulation of the external background of the SuperNEMO
detector without shielding

Background contributions from gamma-rays of 214Bi, 208Tl and 40K were simulated
inside all internal surfaces of the experimental hall of the SuperNEMO experiment. Fig.
3 presents preliminary simulated energy deposition in the calorimeter of the Demon-
strator module (the first SuperNEMO module presented in Fig. 1) of the SuperNEMO
detector.

FIGURE 3. Deposited energy in the calorimeter of the SuperNEMO detector

Spectrum does not yet include neutron capture and muon bremsstrahlung in rocks,
which will be covered later.

3.3 Investigations of uranium targets for AMS measurements

We did preliminary investigations with analysis of uranium in copper wire targets
made of OFHC. Uranium and thorium ions extracted from the copper produce in the
ion source negative ions either as uranium/thorium oxides, or as uranium/thorium com-
pounds with copper. The ion clusters of 63Cu and 65Cu (63Cu65

3 Cu, etc.) with masses of
254 (256), 319 (325) and 374 (388) were observed after the injection magnet, however,
the UO and ThO2 ions with masses of 254 and 264, respectively, should be expected
in the first mass peak as well. This has been expected as U and Th oxides are the most
frequently observed compounds of these two elements in the environment, and therefore
they will make the most influential background contributions during AMS measure-
ments. A more favourable case should be therefore a formation of negative molecules of
UCu− or ThCu− which would fall into the mass windows of 301 and 295, respectively,
where they would be free of copper cluster interferences (Fig. 4). Further investigations
are going on with optimization of ion production/acceleration and post-acceleration ion
analyses. A work is in progress as well to separate radiochemically 238U and 232Th from
the enriched 82Se source which will be used in the SuperNEMO experiment for investi-
gation of its neutrinoless double beta-decay.
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FIGURE 4. Uranium ions extracted from the copper were either as uranium oxides, or as uranium
compounds with copper

4. CONCLUSIONS

MC simulation of background of the Obelix HPGe detector operating in LSM (4800
m w.e.) was carried out. When accounting only for cosmic-ray induced background the
measured experimental spectrum was by about 3 orders of magnitude higher than the
simulated one. The difference is due to radioactive contamination of the construction and
surrounding materials placed around the Ge detector. This underlines the importance of
using radiopure materials for construction of detectors used in experiments that require
ultra low background. Briefly mentioned was the development of AMS technique for
radiopurity measurements at CENTA in Bratislava.
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Abstract: The SuperNEMO experiment will search for neutrinoless double-beta decay (0a𝛽𝛽),
and study the Standard-Model double-beta decay process (2a𝛽𝛽). The SuperNEMO technology
can measure the energy of each of the electrons produced in a double-beta (𝛽𝛽) decay, and can
reconstruct the topology of their individual tracks. The study of the double-beta decay spectrum
requires very accurate energy calibration to be carried out periodically. The SuperNEMO Demon-
strator Module will be calibrated using 42 calibration sources, each consisting of a droplet of 207Bi
within a frame assembly.

The quality of these sources, which depends upon the entire 207Bi droplet being contained
within the frame, is key for correctly calibrating SuperNEMO’s energy response. In this paper,
we present a novel method for precisely measuring the exact geometry of the deposition of 207Bi
droplets within the frames, using Timepix pixel detectors. We studied 49 different sources and
selected 42 high-quality sources with the most central source positioning.

Keywords: Detector alignment and calibration methods (lasers, sources, particle-beams); Double-
beta decay detectors
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1 Introduction

1.1 The SuperNEMO experiment

SuperNEMO [1, 2] is a double-beta (𝛽𝛽) decay experiment, designed to look for the hypothesized
lepton-number-violating process of neutrinoless double-beta decay (0a𝛽𝛽). SuperNEMO’s tracker-
calorimeter design, based on the NEMO-3 technology, is also well suited for precision studies
of the Standard Model double-beta decay process (2a𝛽𝛽) which is present in all 0a𝛽𝛽 candidate
isotopes. Both types of 𝛽𝛽 decay produce two electrons around the MeV energy scale, which
SuperNEMO can individually track; the processes can be distinguished by studying the energies of
these electrons.

The majority of 0a𝛽𝛽 detectors are homogeneous, meaning that the 𝛽𝛽 source also serves as
the detection material (for example 76Ge semiconductor detectors, or bolometers of 𝛽𝛽 isotope-
enriched crystals). In SuperNEMO, however, the source is independent of the detector. The basic
unit of a SuperNEMO-style detector is a module, as shown in figure 1. The modular design
allows the detector size to be increased by adding identical modules to the detector. After the
construction of each module, it is possible to verify whether the expected specifications (e.g. energy
resolution, background level, etc.) have been met. An initial module, known as the SuperNEMO
Demonstrator, is currently undergoing the final stages of installation and commissioning at LSM
(the Modane Underground Laboratory, France).

A SuperNEMO module consists of a 𝛽𝛽-decay source in the form of thin, solid foils enriched
in a 𝛽𝛽-decaying isotope, sandwiched between two identical detector halves. This opens up the

– 1 –
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Figure 1. Overview of the SuperNEMO Demonstrator Module. Figure by C. Bourgeois [3].

possibility of studying any 𝛽𝛽-decaying candidate isotope that can be produced in the form of thin
foils. The SuperNEMO Demonstrator Module has 34 source foils amounting to a total of 6.25 kg
of selenium, of which 6.11 kg is the 𝛽𝛽 isotope 82Se, with an average thickness of 0.286 mm and an
average surface density of 50 mg of selenium per cm2 [4, 5]. The feasibility of using other isotopes
(such as 150Nd) is also under investigation.

The two electrons emitted in 𝛽𝛽 decays are detected in the SuperNEMO Demonstrator Module
by its particle tracker and calorimeter. The source foils are sandwiched between two tracking
detectors, which together consist of 2034 drift cells operating in Geiger mode, in a vertical magnetic
field [6]. The tracker reconstructs charged-particle trajectories, allowing significant background
suppression, as well as extracting the angular distribution of the 𝛽𝛽 electrons. The energy of the
individual decay electrons is measured by a segmented calorimeter, consisting of plastic scintillator
blocks coupled to photomultiplier tubes surrounding the detector on all six sides. Calorimeter
modules in the main walls of the detector have an average energy resolution of 7.5% FWHM at
1 MeV. The ability of the calorimeter to distinguish a 0a𝛽𝛽 signal from 2a𝛽𝛽, and to study
2a𝛽𝛽 decay mechanisms that affect the energy spectrum, depends on the correct calibration of its
energy response [3].

1.2 SuperNEMO calibration system

In order to perform energy calibrations of the SuperNEMO Demonstrator Module, 207Bi sources are
used. K-shell electrons from internal-conversion decays of 207Bi provide three relevant calibration
lines at 482 keV, 976 keV and 1682 keV; lower-intensity lines from L- and M-shell conversions are
also included to achieve a good fit of the 207Bi spectrum. The sources, which were previously
used in the NEMO-3 detector [7], were produced at IPHC Strasbourg. For each source, a very thin
droplet of 207Bi solution was deposited on a Mylar foil (12 μm thick) and then covered with another
identical foil. Over time, the solvent has dried out, but the droplets of 207Bi remain stable. Both
Mylar foils were sealed by a rectangular frame made of radiopure copper, with internal dimensions
8 mm × 13 mm (figures 2a and 2b). The dimensions of the sources were chosen for compatibility
with NEMO-3’s calibration tubes, and have been incorporated into the SuperNEMO design.

– 2 –
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(a) (b) (c)

Figure 2. a) Photograph of 207Bi source number 139. b) Diagram of the envelope which fixes the source within
the deployment system. c) Simplified diagram of the 207Bi deployment system. Orange rectangles represent
source envelopes (not to scale). Six columns, each comprising seven 207Bi sources, are vertically deployed
into gaps between the 82Se 𝛽𝛽 source foils by an automatic system above the SuperNEMO Demonstrator
Module.

The 42 calibration sources used in the SuperNEMO Demonstrator Module are inserted and
guided into gaps between the 82Se 𝛽𝛽 source foils, using six identical mechanisms (figure 2c). The
insertion and removal of the sources will be controlled by an automatic source deployment system
developed by the University of Texas at Austin [8]. The calibration procedure will be performed
at regular intervals during the data taking; the necessary calibration frequency will be determined
experimentally, and is expected to be on the order of one run every few days or weeks. Information
about the position of the sources relative to the rest of the detector is used when reconstructing the
emitted electron trajectories and the associated energy losses. The deployment system lowers the
source envelopes to their predefined locations as shown in figure 2c, with a precision of 60 μm.
However, the deposition distribution of the 207Bi droplet within the copper frame is unknown
(figure 2a). Most importantly, one needs to verify that the 207Bi droplet did not spill in between the
copper frame parts during the sealing process. This could cause emitted electrons to lose additional
energy, which would result in a distortion of the reconstructed energy lines, and spoil the energy
calibration of the SuperNEMO Demonstrator Module.

The goal of this work was to establish an experimental method to describe the deposition
distribution of 207Bi droplets within the calibration sources for the SuperNEMO Demonstrator
Module. 207Bi is a complex emitter; along with electrons, it emits both X-rays and gammas. For
this analysis, instead of observing the electrons used to calibrate the SuperNEMO Demonstrator
Module, the 207Bi deposition within each source was studied by detecting low-energy X-rays from the
207Bi source, which produce single-pixel depositions in a silicon pixel detector, allowing us to take
advantage of the detector’s peak sensitivity, and providing better localization of signals. As a result,
we established a ranking of the measured SuperNEMO calibration sources based on how closely
the 207Bi droplet had been deposited relative to the center of the copper frame. The best 42 sources
were chosen to be installed in the calibration setup for the SuperNEMO Demonstrator Module.

– 3 –
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2 Measurement and data analysis

2.1 Timepix detectors and calibrations
The droplet positioning measurements were performed using three Timepix silicon pixel detectors
provided by IEAP, CTU in Prague (figure 3). Two of the detectors (H04-W0163 and H11-W0163)
are 0.3 mm thick, while the third (L05-W0163) is 1 mm thick. Timepix detectors have the ability to
measure the energy deposited by an incident particle, and its time of arrival. They were developed
by the Medipix collaboration [9]. The sensitive chip is a square with sides 14.08 mm long, divided
into 256 × 256 pixels (size of each pixel: 0.055 mm × 0.055 mm).

For the Timepix detectors to be used to measure the distribution of the 207Bi source droplets,
the detectors required a precise spatial calibration, and an approximate energy calibration. Both
were carried out at IEAP, CTU in Prague. The energy response of each of the 65536 pixels in each
detector was calibrated individually. This calibration consisted of relatively long measurements
(several hours) in order to collect enough statistics in each pixel. The calibration was performed
using fluorescent foils exposed to X-rays. Three fluorescent foils — Fe (6.398 keV), Cu (8.04 keV)
and Cd (23.106 keV) — each provided one energy calibration point. The calibration function has
four parameters; the fourth parameter is the result of threshold equalization of the detector. [10]. This
energy calibration allowed the energy-weighted distribution of spatial data from the 207Bi sources
to be generated, and enabled a basic energy cut to select the particles of interest for our 207Bi
measurement. By using low-energy X-rays, we were able to select single-pixel depositions, which
give us the best position localization. Higher-energy depositions, like those from 𝛽-decay electrons,
activate several pixels, which reduces the ability to identify the spatial coordinates of the decay.

When a Timepix detector is used to monitor the 207Bi source, the 207Bi droplet position is only
represented in the detector chip coordinates. However, the purpose of the measurement is to repre-
sent the position of the 207Bi droplet with respect to its copper frame. In order to make such spatial
calibration possible, we defined a Reference Alignment Point (RAP, figure 3b) for all measurements.

An additional measurement was taken in which a thin metallic square, perforated by holes
distributed equidistantly in a grid (figure 4a) laser-cut to few-μm precision, was placed on top of
the detector, so that the yellow dot in figure 4a matched the RAP. The distance between the centers
of adjacent holes, in both the vertical and horizontal directions, was equal to 1 mm. We irradiated
this setup with X-rays. The result of this measurement can be seen in figure 4b. Thanks to this
measurement, we were able to extract the position of each pixel in the sensitive area of the detector
relative to the RAP. The position of the RAP and the 1-mm spacing of the metal grid were used to
convert from the coordinate system of the detector (in pixels) to that of the source frame (in mm).

2.2 Measurement protocol
The duration of a measurement sufficient to collect enough data for an individual 207Bi source was
typically around 2–3 hours, due to the relatively low source activity (120-145 Bq) and selection
efficiency (approximately 6% for the thinner detectors, and 9% for the thicker, for the data of interest
to this study: while the detector’s efficiency is close to 100% for X-rays produced by 207Bi, these
values refer to the efficiency of the single-pixel and energy-range cuts imposed to ensure that the
position of the droplet corresponds to the activated pixel). This led to an event rate in our region
of interest (ROI), as explained in section 2.4, of around 8–10 events per second. To accumulate

– 4 –
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(a) (b)

Figure 3. a) Photograph of one of the Timepix pixel detectors used in this work, H04-W0163, which has a
0.3 mm-thick silicon sensor. b) Photograph of the source position during each measurement. The two yellow
arrows point to the Reference Alignment Point (RAP).

(a) (b)

Figure 4. a) Photograph of the calibration grid. The yellow circle denotes the corner corresponding to the
RAP during the spatial calibration measurements. b) The grid as seen in the detector after the exposure to
X-rays. Neither the first two rows nor the first column are visible in the dataset; nor is the yellow reference
point shown in the left-hand figure, as these lie outside the sensitive area of the detector. In order to identify
individual holes in the dataset, we covered one of the holes with a piece of metal.
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Figure 5. Visualization of the data collected from a sample 207Bi source in a one-second time slice. A
typical photon and electron candidate are marked.

sufficient statistics to precisely measure the droplet position, we aimed for around 50000 events
in the ROI for each source. Due to scheduling constraints, less data was collected for sources
93, 94, and 95; nevertheless, it was sufficient to evaluate these sources. Repeated and extended
measurements were taken for a subset of sources, taking advantage of the laboratory schedule to
collect larger samples with millions of events and confirm consistency with the lower-statistics
measurements. All three pixel detectors were used in parallel, and were connected to one computer.
Measurements for the 49 available 207Bi sources were taken over a period of almost 12 full days,
which included short interruptions to exchange the samples.

2.3 Structure of measured data

As mentioned above, each of the Timepix pixel detectors used in the study has a square chip
with a size of 14.08 mm × 14.08 mm divided into 256 × 256 pixels. Raw data obtained from a
detector has a simple format of three columns, storing the 𝑥 and 𝑦 coordinates of each pixel and the
energy deposited in the pixel, respectively. Each file contains information about the total energy
per individual pixel over a specified time period known as a “time slice”. The dead time between
two time slices is typically around 200 ms, regardless of the length of the time slice. A time slice
of 1 second was chosen, as this allowed individual particles to be isolated, while minimizing the
relative fraction of dead time. In figure 5, data recorded in a single 1-second time slice is visualized
as an example.

– 6 –
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The software used, Pixelman [11] (developed at IEAP, CTU in Prague), provides a user interface
for the Timepix detectors. While the software can be used to extract the previously-described raw
data, Pixelman also provides a pre-analyzed ‘clustered output’ [12] format, which enables the identi-
fication and energy measurement of individual particles. The algorithm that transforms the raw data
into clustered output first groups the triggered pixels from one time slice into clusters, based on their
spatial adjacency. It then extracts the energy of each cluster (representing one particle, which might
have triggered several pixels) and its position. The sum of the energy deposited in all the individual
pixels of a cluster represents the energy deposited by the particle in the detector. The cluster position
is defined as the average position of the individual pixels in the cluster, weighted by the energy de-
posited in each pixel. The clustered output also reports a ‘cluster size’, corresponding to the number
of pixels in each cluster, which is related to the particle type: single-pixel isolated energy deposits are
typically produced by photons and Auger electrons, while high-energy electrons generate multi-pixel
clusters. The analysis described in the following sections was performed on this clustered output.

2.4 Data analysis method

The main goal of this study was to develop an experimental method that could evaluate the quality of
a source based on the position of 207Bi within its source frame assembly. In practice, this can prevent
the use of any sources with unwanted contamination caused by 207Bi droplet leakage into the region
of the copper source frame. The study also has the potential to reduce systematic uncertainties
related to the calibration source positions within the SuperNEMO Demonstrator Module. Precise
knowledge of source positions can enable us to evaluate our tracker’s vertex resolution capabilities,
and to ensure that electron track lengths are correctly reconstructed.

The positions of the clusters measured for a single source (integrated over all the time slices)
can be represented by a two-dimensional histogram. Each cluster is weighted by its energy in order
to obtain an energy distribution. This histogram shows a wide peak corresponding to the region of
the source frame where the 207Bi has been deposited (figure 6). The 𝑥 and 𝑦 directions are aligned
with the 8-mm and 13-mm axes of the source frame, respectively.

High-energy electrons activate several pixels; the location of the earliest hit, likely to correspond
to the electron’s source position in the 207Bi droplet, is unknown. The best source localization of
the 207Bi droplet was therefore achieved by selecting only the clusters corresponding to a single
pixel, and with a reconstructed energy between 3 keV and 30 keV, reducing the uncertainty on the
measurement of the cluster position (figure 6b). This energy region consists of X-rays and Auger
electrons from electron capture on 207Bi, and contains the majority of these single-pixel events
(figure 7). This selection made a negligible difference to the best-fitted position coordinates of the
droplets’ centers, with an average difference between the pre-cut and post-cut position of 0.054 mm,
comparable to the size of a single detector pixel. This energy range and single-pixel cut will
henceforth define our region of interest (ROI). It should be noted that, during measurement, there
is a small gap (1.5–3 mm, depending on the individual source) between the 207Bi source and the
Timepix detector. As particles are emitted from the source at varying angles, even when a single pixel
is triggered, the corresponding particle may not have been emitted immediately above that pixel.

The comparison of energy distributions with and without these cuts is shown in figure 6. After
applying the cuts (figure 6b), the radius of the half-width-at-half-maximum (HWHM) contour is
reduced by approximately 20% with respect to the full sample (figure 6a). A plot similar to figure 6b
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(a) (b)

Figure 6. Energy distributions measured for source number 133, with different selections applied. The
black points represent the position of the calculated weighted center (𝑥0, 𝑦0). The blue circles represent the
contour lines where the fitting function reaches half of the maximal value (thus, the radius of the circle is
the half width at half maximum, HWHM). a) Energy distribution for all clusters with an energy in the range
3–1300 keV (no cluster size cut). The distribution includes all types of particle produced in 207Bi decays
(X-rays, gammas and electrons). b) Energy distribution for single-pixel clusters with an energy in the range
3–30 keV, corresponding to Auger electrons and X-rays. Note differing scale on color axis.

(a) (b)

Figure 7. Measured energy spectrum for source number 126, including a) all clusters in the energy range
3–1300 keV (no cluster size cut) and b) single-pixel clusters in the range 3–30 keV.

was obtained for each measured source and fitted with a two-dimensional function.

𝑓 (𝑥, 𝑦) = 𝐴

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + 𝛾
. (2.1)

Here, the 𝑥0 and 𝑦0 coordinates represent the measured center of the source (in pixels), 𝛾 is
proportional to the square of the width of the peak, and 𝐴 is a scale factor. A visual representation
of the quantities extracted from the fit can be found in figure 8. The blue circles in figures 6 and 8
represent the border where the fitting function drops to half of its peak value (i.e. 𝐴/2𝛾). The

– 8 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
T
0
7
0
1
2

radius of the blue circle represents a two-dimensional equivalent of the HWHM of the distribution.
For the purpose of this study, we considered this contour as a measured effective size of the 207Bi
droplet. The fitting function was chosen for its simple form that contains all necessary degrees of
freedom. All of the droplets were confirmed visually to be circular in shape, apart from two; both
sources with non-circular drops also failed subsequent selection criteria, and were not installed in
the SuperNEMO Demonstrator Module.

Figure 8. Graphical representation of quantities extracted from the fit to equation (2.1): the blue circle
represents the HWHM contour; the black dot denotes the center of the 207Bi deposition (𝑥0, 𝑦0); the red dot,
the center of the frame (𝐶𝑥 , 𝐶𝑦); and the green arrow, the vector ®𝑟 of the droplet’s position with respect to
the frame’s center.

The position of the source extracted from the fit is given relative to the sensitive detector chip.
Since the aim of the study was to extract the relative position of the source droplet with respect to
the source frame, a spatial calibration, described in section 2.1, was used to provide the relative
position of the center of the source frame (𝐶𝑥 , 𝐶𝑦) with respect to the chip. Information about the
center of the frame allows us to define the position, ®𝑟, of the 207Bi droplet relative to the center of
the source frame. It can be calculated as follows:

®𝑟 = (𝑟𝑥 , 𝑟𝑦) = (𝑥0 − 𝐶𝑥 , 𝑦0 − 𝐶𝑦). (2.2)

The vector ®𝑟 can be seen in figure 8.

3 Results

3.1 Categorization of sources based on droplet position

For this study, we collected data from 49 different source samples in 52 measurements. As explained
previously, the standard acquisition time to collect sufficient statistics was 2–3 hours. Supplementary
high-statistics measurements on sources 126, 132 and 139, for periods of up to a few days, aimed to
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improve precision and better estimate systematic uncertainties, as explained in section 3.2. A sample
of some of these measurements is shown in table 1; a complete list is in tables A1 and A2 of [13].

Table 1. Statistics of a sample set of measurements, including standard measurements of 2–3 hours and
extended measurements of 2 days or more. The first column shows the ID number of the measured source,
with an asterisk (*) denoting measurements repeated under the same experimental conditions. The second
and third columns indicate the Timepix detector and its thickness (𝑑DET). The table also contains the active
exposure time (not including dead time) (𝑡live), total statistics collected (𝑁TOT), number (𝑁ROI) and fraction
of events in the ROI, and detection rate. The ROI included all single-pixel clusters in the energy range
3–30 keV. The full data set (TOT) contains all 3–1300 keV clusters of 1 to 100 pixels. Note the improved
detection rate and fraction in the ROI for the thicker (1 mm) detector.

Source Detector 𝑑DET 𝑡live 𝑁TOT 𝑁ROI
𝑁ROI
𝑁TOT

𝑁ROI
𝑡live

ID [mm] [h] [cnts] [cnts] [%] [𝑠−1]
73 H04-W0163 0.3 1.7 1.1 × 105 5.0 × 104 43.3 8.3
74 H11-W0163 0.3 1.8 1.2 × 105 5.4 × 104 43.4 8.4
111 H11-W0163 0.3 3.8 2.9 × 105 1.3 × 105 43.3 9.1
120 L05-W0163 1.0 12.7 1.1 × 106 5.5 × 105 50.4 12.1
126 H04-W0163 0.3 55.5 3.4 × 106 1.5 × 106 43.0 7.4
126* H04-W0163 0.3 46.2 3.0 × 106 1.3 × 106 42.5 7.8
132 H11-W0163 0.3 54.8 4.0 × 106 1.7 × 106 43.5 8.7
132* H11-W0163 0.3 46.0 3.3 × 106 1.4 × 106 43.3 8.7
139 L05-W0163 1.0 54.8 4.7 × 106 2.3 × 106 49.6 11.9
139* L05-W0163 1.0 46.0 4.0 × 106 2.0 × 106 49.5 11.9

As previously discussed, the aim of this study was to estimate the position of the 207Bi droplet
in each source relative to the center of its frame of (inner) dimensions 8 mm × 13 mm, where the
𝑥 direction corresponds to the shorter axis of the frame. This droplet position is described by the
length of the vector 𝑟 = |®𝑟 | defined in subsection 2.4. According to the magnitude of 𝑟 we defined
three source categories:

• very good sources (𝑟 < 0.5 mm), represented by green triangles;

• good sources (0.5 mm ≤ 𝑟 < 1.0 mm), represented by yellow circles;

• unacceptable sources (𝑟 ≥ 1.0 mm), represented by red squares.

The computed values of ®𝑟 , colored according to their category, are shown in table 2 for a subset of
measurements, and in figure 9 for all measurements (the full list is also included in tables A3 and
A4 of [13]). The positions of the 49 source droplets, and their radii, are summarized in figure 10.

We identified 5 sources where the center of the droplet had been deposited more than 1 mm away
from the center of the source frame center (red squares), which were rejected. The centers of the re-
maining 44 droplets were within 1 mm of the centers of the frames (green triangles or yellow circles).

3.2 Estimation of the uncertainty on the droplet position
Before each of the measurements, the measured source was aligned to the RAP manually. In
figure 3b one can notice that in the shorter, horizontal direction (𝑥) the source touched the black
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Figure 9. Position of the center of the 207Bi droplet for each of the measured sources, relative to the
center of the source frame. Source quality rankings of very good (green triangle), good (yellow circle) and
unacceptable (red square), are explained in section 3.1. Uncertainties are not shown, for the purpose of
clarity. Note that the position of one source fell outside the range of this plot.

(a) (b)

(c) (d)

Figure 10. Summary histograms showing the positions of the droplets’ centers, relative to the center of
the source frame, for very good (green), good (yellow) and unacceptable (red) sources. Histograms a) and
b) summarize the displacements along the short (𝑥) and long (𝑦) axes of the source frame respectively;
c) shows the magnitudes of source droplet displacements; and d) shows the radii of the droplets. For sources
where multiple measurements were taken, average values are plotted.
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plastic chip holder; however, in the longer, vertical direction (𝑦), the source could move freely and
the human factor could introduce an extra source of uncertainty in this direction. An indication of
this comes from the distribution of the measured droplet centers in 9, where it can be clearly seen
that the measured 𝑦 positions of the centers tend to be higher than the centers of their respected
source frames, as calculated from the RAP of the calibration grid (as in 4). As there is no asymmetry
to the frames, and because the foils were produced with the intention of placing droplets in the
center of the frames, it is reasonable to assume that the mean position of the full set of droplets
should be central with respect to the frame. The offset of this mean position from our measured
central point should therefore provide an estimation of the uncertainty on the measured values of
the droplet position ®𝑟 . This mean position, indicated by the black cross in figure 11 has an offset
of magnitude 0.02 mm in the 𝑥 direction, and 0.39 mm in the 𝑦 direction. It can be noted that,
were this position to be taken as our central point, only two of our sources would be categorized
as ‘unacceptable’, with a droplet position more than 1 mm from this new center (outside the yellow
circle in figure 11). Both of these sources are already rejected by the original methodology.

Figure 11. Position of the center of the 207Bi droplet for each of the measured sources, relative to the center
of the source frame, as in figure 9. Markers denote quality rankings as in the original figure. The black cross
denotes the mean position of the droplet centers at (−0.02 mm, 0.39 mm). Green and yellow rings denote a
0.5 mm and 1.0 mm offset respectively from this mean position.

As an additional check of this method of estimating the uncertainty on the droplet position,
we considered the higher-statistics repeated measurements of droplet position and radius for three
sources (126, 132 and 139), as shown in table 2. Only clusters from the ROI (energy range 3–30 keV
and cluster size of one pixel) were taken into account. By comparing the droplet position vector
components, 𝑟𝑥 and 𝑟𝑦 , between two repeated measurements, we can (very roughly) estimate their
uncertainty. The relative difference on the 𝑟𝑥 component for two different measurements of source
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Table 2. Summary of the quantities defined in figure 8, for repeated measurements on an unacceptable (red),
good (yellow), and very good (green) source (see section 3.1). Asterisks denote a second measurement on a
source, taken under the same conditions as the first.

Source Droplet radius Droplet displacement
ID HWHM 𝑟𝑥 𝑟𝑦 𝑟

[mm] [mm] [mm] [mm]
126 2.44 −1.22 0.11 1.23
126* 2.14 −1.24 0.33 1.28
132 1.96 −0.25 0.57 0.62
132* 1.95 −0.29 0.74 0.79
139 1.61 −0.02 -0.07 0.07
139* 1.62 −0.05 0.08 0.10

132 is 0.04 mm. Since this value is smaller for sources 126 and 132, we considered 0.04 mm as the
uncertainty in the 𝑟𝑥 component, i.e. Δ𝑥 = 0.04 mm. By applying the same logic for 𝑟𝑦 , we obtain
a value of Δ𝑦 = 0.22 mm from the comparison of the two measurements for source 126.

In the 𝑥 direction, where source positioning was constrained by the plastic holder, the repeated-
measurement method yielded a larger variation in values than was indicated by the mean position
offset (0.04 mm vs. 0.02 mm). Conversely, in the 𝑦 direction, where manual alignment was required,
the consideration of mean droplet position yielded a larger offset than the repeated measurements
would indicate (0.39 mm vs. 0.22 mm). In order to be conservative, we consider that a source
should be deemed unacceptable if the radius of the droplet comes within a distanceΔ𝑥 = 0.04 mm or
Δ𝑦 = 0.39 mm of the source frame. It should be noted that, in both cases, these uncertainty estimates
are small relative to the typical effective radius of the 207Bi droplet which, at around 2 mm (see sec-
tion 3.1), can be understood as a very conservative estimate of the uncertainty on the source position.

3.3 Droplet containment within the source frames

As explained in section 2.4, one goal of this study was to ensure that sources selected for the
SuperNEMO Demonstrator Module did not suffer leakage of the 207Bi droplet into the region of
the copper frame. To confirm this was the case for our selected sources, the profiles of each droplet
in the 𝑥 and 𝑦 directions were plotted relative to the source frame (figure 12).

To produce the projected profiles in figure 12, each droplet is assumed to be circular, centered
at its measured best-fit point, with a radius corresponding to the fitted HWHM. The projection of
each droplet is shown relative to the position of the copper frame, at ±4 mm in the 𝑥 direction,
and ±6.5 mm in the 𝑦 direction (the frame extends beyond the plot, but only its inner dimension is
relevant). Gray bars inside the source frame represent the uncertainty on position measurements in
each dimension (Δ𝑥 = 0.04 mm and Δ𝑦 = 0.39 mm) as estimated in section 3.2. Sources colored
green were categorized as very good, yellow as good, and red as unacceptable, based on the positions
of the droplets’ centers, as explained in section 3.1. The mean HWHM value for all measurements,
including the rejected sources and repeated measurements on individual sources, is 2.03±0.21 mm.
It can be seen that none of the selected (green and yellow) sources show any overlap between the
droplet and the source frame, and furthermore, that the distance between the droplet and frame is
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Figure 12. Projections of the 𝑥 (top) and 𝑦 (bottom) positions of the droplet in each source. The center of
each bar indicates the fitted position of the droplet 𝑟𝑥 or 𝑟𝑦; the bar height is twice the HWHM; and the label
indicates source ID number. Colors indicate quality categories (see section 3.1). The brown horizontal bars
indicate the position of the copper frame position; the adjoining gray bars show the uncertainty on position
measurements.

greater than the uncertainty on the droplet’s position. We therefore conclude that there is no danger
of leakage under the copper frame from our selected sources. The selected sources have a mean
HWHM of 2.01 ± 0.19 mm.

4 Conclusions

In this paper, we describe a method for measuring the position of 207Bi droplets in the SuperNEMO
calibration sources within their frames, using Timepix detectors. We successfully applied this
method to 49 207Bi calibration sources developed for the SuperNEMO experiment, and evaluated
their quality. All 49 sources of 207Bi were proven to be eligible for calibration of the SuperNEMO
Demonstrator Module, as none of them presented leaks towards the copper frame. The 42 sources
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whose 207Bi droplets were closest to the center of the copper source frames (out of 44 that passed our
stricter quality criteria) were chosen and installed in the SuperNEMO Demonstrator Module. These
measurements also allow better characterization of the source deposition distributions, ensuring that
knowledge of the 207Bi source positions does not limit the energy and vertex reconstruction of the
SuperNEMO Demonstrator Module.
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A B S T R A C T
Monte Carlo models based on GEANT4, CONUS and ACTIVIA software packages were used for simulationof production rates of cosmogenic radionuclides in the Obelix HPGe detector operating in the Modaneunderground laboratory. Interactions of secondary cosmic-ray nucleons with Ge-crystal (production of 3H,54Mn, 57CO, 65Zn and 68Ge), with copper in the cold finger (production of 46Sc, 54Mn, 56Co, 57Co, 58Co, 60Coand 59Fe), with Al in bauxite ore (production of 26Al) and with Al-4%Si alloy in the cryostat (production of22Na) were included in the calculations. The contribution of cosmogenic radionuclides to the total detectorbackground of the Obelix detector decreased from 39% (after 10 months of cooling down) to 14% (after threeyears of cooling down). The calculated production rates of cosmogenic radionuclides and simulated gamma-rayspectra were in reasonable agreement with experimental results.
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1. Introduction
Low-level radioactivity measuring techniques have been frequentlyapplied in underground nuclear physics experiments searching for rarenuclear events such as neutrinoless double beta-decay [1,2], and in
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searchers for dark matter (DM) candidate particles [3,4]. In both casesa radioactive contamination of underground detectors by primordial [5,6] and cosmogenic [7–9] radionuclides produced during construc-tion of detectors at the surface were important background sourcesinfluencing detection limits.
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The neutrinoless double beta-decay energy scale is given by energyof beta-particles (<3 MeV), with expected half-life of this process over1025 yr [2]. On the other hand, the search for DM has been focusedon elastic scattering (nuclear recoil) of DM particles with nuclei in adetector. The energy scale of interest in this case is much lower (<100keV), and less than 1 event per day is expected [4]. Therefore, toreach the proclaimed detection limits, contributions of all constructionmaterials to the detector background should be minimized. Radiopurityof materials should be regularly checked, usually at levels down to1 μBq kg−1 [10–12]. Such analyses could be carried out by HPGedetectors with large effective volumes and high detection efficiency,good resolution and low background.The gamma-ray background of HPGe detectors operating in surfacelaboratories is induced by cosmic rays, by contamination of construc-tion materials (detectors, shields, laboratory walls) with primordial(40K, 232Th, 238U) and anthropogenic (60Co, 137Cs) radionuclides, andby radon in the air and its decay products [12]. Cosmic rays at sealevel consist of a soft component (photons, electrons and positrons),a nucleonic component (neutrons and protons) and a hard compo-nent (muons). The elimination of the background induced by soft andnucleonic components is done by shields made from high Z material(lead, steel, copper). Low Z materials (polyethylene, paraffin) withaddition of boron or lithium are used for slowing down and absorp-tion of neutrons. A partial reduction of muon-induced backgroundis possible by applying muon-veto detectors [12–14], however, thelowest background can be reached by placing HPGe detectors deepunderground [10,12,15–19].In the deep underground laboratory of Modane (Laboratoire Souter-rain de Modane, LSM), which is the deepest underground laboratory inEurope (4800 m w. e., water equivalent), the muon flux is about six or-ders of magnitude lower than at sea level (𝛷𝜇= 6.25 ×10−9 muons cm−2s−1) [20]. The total ambient flux of neutrons measured in the LSM, 𝛷n =9.6×10−6 neutrons cm−2s−1, is mostly due to thermal neutrons [21]. Atsuch low muon and neutron fluxes, the background contributions fromradionuclide contamination of detectors construction materials and thelaboratory environment was about three orders of magnitude higherthan the background induced by cosmic rays [18].Although the main contribution to the background of HPGe de-tectors operating deep underground is expected from radioactive con-tamination of construction parts, it would be useful to quantify acontribution from cosmogenic radionuclides as well. The constructioncomponents of HPGe detectors are irradiated by cosmic rays duringproduction and storage of materials, during the detector fabrication andits transport to an underground laboratory. The main contributors tothe production of cosmogenic radionuclides at sea level are secondarycosmic-ray particles, mainly nucleons. As protons form <10% of thenucleonic component at sea level and taking into account their interac-tion with nuclei and absorption in shielding constructions (e.g. roofs),the neutrons are the dominant particles responsible for production ofcosmogenic radionuclides at sea level [12].An exception is 26Al because of its very long half-life (T1∕2 =0.717 Myr), its production in construction materials during storage,fabrication of required parts and even airplane transport would not becomparable with in situ production of 26Al in bauxite, a sedimentaryrock formed from several to tens of million years ago [22,23]).The production of cosmogenic radionuclides is decreasing to neg-ligible levels once the detector is installed in a deep undergroundlaboratory where only cosmic-ray muons can penetrate. However, theircontribution to production of cosmogenic radionuclides is negligiblewhen compared to sea-level activation [12].Most of cosmogenic radionuclides found in background gamma-spectra of HPGe detectors operating deep underground are short lived(46Sc, 54Mn, 59Fe, 56Co, 57Co, 58Co, 65Zn), and we may assume thatthey reached a saturation activity during their production in con-struction materials at sea level. They contribute to the HPGe detec-tor background mainly during the first year of its operation in an

underground laboratory. However, the medium-lived 22Na and 60Cocould be observed in background spectra after several years, and es-pecially the long-lived 26Al will be present for the entire lifetime of theexperiment [24,25].Monte-Carlo simulations of HPGe detectors background were car-ried out in the past with the aim to determine the background com-ponents and to find ways how to decrease contributions from cosmicrays and radio-contamination of materials [16,18,26,27]. The devel-oped Monte Carlo models usually did not include contributions tothe detectors background from cosmogenic radionuclides produced byinteractions of cosmic-ray particles with HPGe detector componentsand its shield during their exposure at the earth surface. As Monte Carlosimulations have shown that cosmic-ray induced background gamma-spectra of HPGe detectors operating in deep underground laboratoriesare by two-three orders of magnitude lower than the experimentalgamma-spectra [16,18], the principal suspect is the production whilehandling and storage on surface, which requires a full investigation.The aim of this work has been to quantify production rates ofcosmogenic radionuclides in construction materials of HPGe detectorsusing Monte Carlo simulation toolkits, and calculate their contributionsto the Obelix HPGe detector background operating in the Modaneunderground laboratory.
2. Monte-Carlo Models applied for simulation of production ofcosmogenic radionuclides

Monte Carlo software packages were used in the present workto simulate the HPGe detector background. The GEANT4 (Geometryand Tracking) toolkit [28,29] was used to calculate the HPGe de-tector response to radiation, and the CONUS (COsmogenic NUclidesSimulations) [30–32] toolkit was used to calculate production ratesof cosmogenic radionuclides in the detector construction materials.The ACTIVIA C++ computer package [33] was used as an alternativemethod to compare production rates of cosmogenic radionuclides withthe CONUS results.
2.1. HPGE detector geometry

The Monte Carlo simulations were carried out for the Obelix HPGedetector which is operating in the LSM underground laboratory inModane at the depth of 4800 m w.e. [18,24,25]. It is p-type coaxialdetector with diameter of 93.5 mm and length of 89.6 mm. Thesensitive volume is 600 cm3, the germanium mass is 3.19 kg, and therelative detector efficiency is 162%. The resolution of the detector is1.12 keV at 122 keV, and 1.98 keV at 1332 keV. The HPGe crystal ismounted in a low background U-type cryostat of 115 mm in diameterand 196 mm long; the thickness of the entrance window is 1.6 mm.The cryostat and the detector holder are made from Al-4%Si alloy. Theoxygen free high conductivity copper was used for production of thecold finger. The FET of the preamplifier is placed inside the cryostatand it is shielded by a ring (thickness of 10 mm) made of Roman leadwith 210Pb activity < 60 mBq/kg. The inner shield (thickness of 12 cm)of the HPGe detector was made from Roman lead as well. The outershield (thickness of 20 cm) was made from low activity lead [17,24,25].The model of the HPGe detector used in Monte Carlo simulations ispresented in Fig. 1.
2.2. GEANT4 simulations

The GEANT4 toolkit has been frequently used for simulation ofparticle transport in the matter [28,29], and for the simulation of theresponse of HPGe detectors to external radiation [12,16,18]. The LBE(Low Background Experiments) modular physics list, which is used forlow background physics was applied in the model, and the Radioac-tive Decay Module (G4RadioactiveDecay) was used for description ofradioactive decays of nuclei with emission of 𝛼, 𝛽− or 𝛽+ particles. The
2
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Fig. 1. Model of the Obelix HPGe detector used in GEANT4 simulations.
nuclear de-excitation of the excited daughter product was simulatedusing G4PhotoEvaporation class. The module is the empirical one usingdata from the Evaluated Nuclear Structure Data File (ENSDF) [34].Radioactive decays were simulated in various components: The Gedetector itself, the aluminum cryostat, the detector holder, and the coldfinger. More information on the GEANT4 simulations of HPGe detectorsbackground can be found in our previous papers [16,18].
2.3. CONUS calculations

The CONUS toolkit was used to calculate production rates of cos-mogenic radionuclides in detector materials. The code is based on theMCNPX (Monte Carlo N Particle eXtended) code combined with theLAHET code (high-energy particle transport of nucleons, pions, muonsand light nuclei), and with the MCNP (Monte Carlo N-Particle) codefor transport of neutrons, protons and electrons in matter. The CONUScode was developed by Masarik et al. [30–32] and used to calculateproduction rates of cosmogenic radionuclides in extra-terrestrial andterrestrial objects.The production rate of the cosmogenic nuclide j at the Earth surfaceD is given as
𝑃𝑗(𝐷,𝑀,𝛷) =
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where 𝑁𝑖 is the number of atoms in the target element i per kg ofmaterial, 𝜎ijk(𝐸𝑘) is the cross section for the production of the nuclidej from the target element i by particles of type k with energy 𝐸𝑘, and
𝐽𝑘(E𝑘,D,M,𝛷) is the total flux of particles of type k with energy 𝐸𝑘 atlocation D inside the atmosphere for the geomagnetic field M and thesolar modulation function 𝛷. The incident particle fluxes 𝐽𝑘(E𝑘,D,M,𝛷)were calculated using the GEANT4 [28,29] and MCNP [35] codes. Adescription of the interface between these two codes is given in [32].The used cross sections 𝜎ijk(𝐸k) were experimentally measured crosssections for involved nuclear reactions, which were taken from the Eu-ropean JEFF-3.1.1 [36] and the ENDF/B-VII.0 libraries [37]. As ex-perimental data for nuclides studied in this paper are very sparse,some of the cross sections were calculated using the TALYS code [38],with input parameters based on the work [39]. The cross sectionswere tested on calculations of production rates of cosmogenic nu-clides in extraterrestrial and terrestrial objects, as well as in irradiationexperiments when available [30–32].As the differences in the production of neutrons and protons inreactions of primary galactic cosmic-ray (GCR) protons and alpha-particles are small, an isotropic irradiation with primary GCR protonswas used in calculations. The production rates were calculated for

the normalized omnidirectional flux of 1 proton cm−2 s−1 (used inour previous calculations for an easy comparison), which was thenmodified for the present case of 4.56 nucleons cm−2 s−1 (see below).To get good statistics in the Monte Carlo calculations, the number ofevents for each radionuclide calculation was 3 ⋅ 106 incident protons.The solid Earth was considered as a sphere with a radius of 6378km with a surface density of 2 g cm−2, and an average chemical compo-sition. The Earth’s atmosphere was modeled as a spherical shell with athickness of 100 km. The atmospheric density and temperature wereapproximated by the U.S. Standard Atmosphere (1976) model [40].The primary cosmic-ray flux at the Earth’s orbit has two components:GCR and solar cosmic rays (SCR). However, because of relativelylow energies of SCR, their contribution to the production was notconsidered in the present simulations. The GCR particles are a mixtureof ∼87% of protons, ∼12% of alpha-particles and ∼1% of heaviernuclei with atomic numbers from 3 to ∼90 [41]. The approximationfor the primary GCR spectra introduced by Castagnoli and Lal [42]was used in the calculations. In the simulations within the Earth’smagnetic field, alpha-particles have to be treated separately. This isdue to the different geomagnetic effects on primary protons and alpha-particles. The effective flux of protons, including the contribution ofalpha-particles with energies above 10 MeV at 1 AU, was determined(by fitting lunar experimental data [43]) to be 4.56 nucleons cm−2 s−1.The energy range of input particles in the CONUS model was from0.001 eV to 20 GeV. Calculations were done for sea level and highlatitudes, and both neutron and proton induced reactions were in-cluded in the model. Technical details on the codes, used cross sectionsand their applications to the cosmogenic radionuclide production ratecalculations are given in [30–32], where uncertainties of these calcula-tions are also discussed. Statistical uncertainties of the simulations wereabout 5%, while the systematic ones were of the order of 10%.
2.4. ACTIVIA Calculations

The ACTIVIA C++ computer package [33] was used as an alternativemethod to compare production rates of cosmogenic radionuclides inthe HPGe detector materials with the CONUS results. ACTIVIA usesa combination of semi-empirical formulas and data-tables based onexperimental results to calculate the cross-sections, production ratesand yields of radionuclides during irradiation with cosmic-ray neutrons.The production rate is calculated as [33]
𝑃𝑗 = C

∑
𝑖

𝑓𝑖
𝐴𝑡𝑖 ∫

𝑑𝜑
𝑑𝐸

𝜎𝑖𝑗 (𝐸) 𝑑𝐸

where C is a normalization factor, 𝑓𝑖 is the relative abundance fractionof the i-target, 𝐴𝑡𝑖 is the target mass number, d𝜑/dE is the energy
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spectrum of cosmic-ray neutrons, and 𝜎𝑖𝑗(E) is the cross section for theproduction of the nuclide j from the target element i.The program inputs are specified by ActAbsInput (abstract inter-face), which contains input-beams, products, targets, and decay-times.The default input-beam, defined in the ACTIVIA (version 1.3.0) pack-age, based on the parametrized cosmic-ray spectrum (the same forneutrons and protons) was used in the calculations (also called the AC-TIVIA1 approach). The beam was defined in the range of 10–104 MeV,which is much narrower than that used in the CONUS code (0.001 eV–20 GeV). The Experimental Nuclear Reaction Data (EXFOR) database(http://www-nds.iaea.org/exfor/), together with semi-empirical for-mulas were used for calculation of cross-sections of investigated nuclearreactions.Calculations using the ACTIVIA package found in the literature werecarried out for two different energy spectra of cosmic-ray neutrons andprotons. While the ACTIVIA1 results ([9,33] and the present work)were obtained with the default input neutron spectrum, the ACTIVIA2results were obtained with the GEANT4 input spectrum [9].As discussed later, differences (generally within a factor of two)between the CONUS and ACTIVIA calculations of production rateswere observed for some radionuclides. The ACTIVIA1 underproductioncould be explained by different input cosmic-ray spectra used in thecalculations, as well as by the fact that it does not simulate individualparticles and their interactions with matter as it is done in Monte Carlocodes. As the energy threshold used in the CONUS code is lower thanin ACTIVIA1, this can be also a reason for an underproduction due tothe omission of neutrons with lower energies in the activation process.A much better agreement was obtained, however, between the CONUSand ACTIVIA2 results as the input cosmic-ray spectra were similar.
3. Results and discussion
3.1. Measured and simulated background gamma-spectra of the ObelixHPGe detector in the LSM laboratory

Background gamma-spectrum of the Obelix HPGe detector mea-sured in the LSM laboratory ten months after its installation [17,24]is presented in Fig. 2. It can be seen that contributions of primordial(40K) and radiogenic radionuclides (212Pb, 208Tl and 228Ac from the232Th chain, and 214Pb and 214Bi from the 238U chain) from the radio-contamination of construction parts of the HPGe detector and the shieldto the total detector background are dominant.Seven cosmogenic radionuclides (57Co, 54Mn, 68Ge, 65Zn, 22Na,60Co and 26Al) were identified in the experimental gamma-spectrum(Fig. 2, Table 1). The 60Co peak can be seen only at 1332.5 keV, as thepeak at 1173.2 keV is masked by the 65Zn peak.The Monte Carlo GEANT4 simulation of the radiogenic backgroundgamma-spectrum of the Obelix detector has already been described inour previous work [18], therefore, it will not be discussed in detailin the present paper. A comparison of the measured and GEANT4simulated gamma-spectra shows that there is a reasonable agreementin the low energy region of the spectra, except for the energies below200 keV. This discrepancy has been observed in previous simulationsas well [16,18], and it may be associated with underestimation of theCompton continuum, and production of Pb X-rays. The simulated high-energy part of the gamma-spectrum (1200–3000 keV), also shown inFig. 2, follows the experimental spectrum very well.A comparison of measured and calculated counting rates underthe gamma-peaks of identified cosmogenic radionuclides shows that areasonable agreement (within statistical uncertainties) has been found(Table 1). After about three years of cooling down of the Obelixdetector underground, only 22Na, 60Co and 26Al could be measuredin the background gamma-spectrum [24]. In the long-term perspectiveonly 26Al will be identified in the Obelix background.However, the contributions of cosmogenic radionuclides to the to-tal background of HPGe detectors are smaller than from radiogenic

Table 1Measured and Monte Carlo simulated counting rates under the gamma-peaks in theObelix HPGe detector background gamma-ray spectra.Radionuclide Half-life Gamma-rayenergy [keV] Countsa
Experiment [17,24] GEANT4(this paper)

57Co 271.80 d 136.47 110 ± 12 145 ± 1254Mn 312.13 d 834.84 41 ± 9 45 ± 868Ge+68Ga 270.93 d 1077.40 8 ± 3 7 ± 365Zn 243.93 d 1124.5 133 ± 13 168 ± 1322Na 2.60 yr 1274.5 34 ± 9 27 ± 560Co 5.27 yr 1332.5 6 ± 3 4 ± 226Al 0.717 Myr 1808.6 20 ± 8 12 ± 4
aCounting rates under the corresponding peaks 10 months after installation of thedetector in the LSM Modane (counting time was 34 days) [17,24].

radionuclides (Fig. 2). When comparing the total background in theenergy range of 40–3000 keV measured 10 months after the Obelixinstallation in LSM, we get for the experimental spectrum 109 ± 3count per kg of Ge per day, and 111 ± 11 count kg−1 d−1 for thesimulated spectrum. The simulated radiogenic contribution is 68 ± 7count kg−1 d−1, and 43 ± 4 count kg−1 d−1 we get for the simulated cos-mogenic spectrum. Two years later, the simulated cosmogenic spectrumdecreased to 11 ± 1 count kg−1 d−1, and the total simulated spectrumto 79 ± 8 count kg−1 d−1. The contribution of cosmogenic radionuclidesto the total detector background of the Obelix detector decreased from39% (after 10 months of cooling down) to 14% (after three yearsof cooling down). The estimated total background fits well with thegeneral trend of total backgrounds of HPGe detectors operating in deepunderground laboratories [12].Further, in Section 3.2 we will calculate production rates of theidentified cosmogenic radionuclides in various construction materials:germanium (HPGe detector), aluminum and silicon (Al-4%Si alloy,used in the cryostat and detector holder) and copper (used in the coldfinger). Afterwards, we will compare the calculated production rateswith experimental results, as well as with literature data.
3.2. Calculations of production rates of cosmogenic radionuclides in con-struction parts of the HPGe detector

The main target construction materials for production of cosmo-genic radionuclides which are well visible in the experimental gamma-spectrum (Fig. 2) are Ge crystal (for production of 54Mn, 57Co, 65Zn and68Ge), Al and Si in the cryostat and the detector holder (for productionof 22Na and 26Al), and Cu in the cold finger (for production of 54Mn,57Co and 60Co).
3.2.1. Germanium crystalMany experiments searching for rare nuclear events have usedgermanium crystals as the detectors, therefore the activation of naturaland enriched germanium has been object of many studies [e.g., [44–49]. Calculated production rates of cosmogenic radionuclides (3H,54Mn, 57Co, 65Zn, 68Ge) after the germanium exposure to cosmic rays(Table 2) show a reasonable agreement with other published data[8,9,33,47], specifically for the CONUS model.Large differences between the ACTIVIA1 and CONUS results wereobserved for 3H, 65Zn and 68Ge, while better agreement was foundbetween the ACTIVIA2 and CONUS results as they used similar cosmic-ray spectra. For other three radionuclides (54Mn, 57Co and 60Co) theagreement between all results was very good. A reasonable agreementwas also obtained between the ACTIVIA1 results in the present workwhen compared with ACTIVIA1 calculations in [33,47] (except for 68Gein [33].As already pointed out, there could be several reasons for ob-served disagreement, probably the most important are differences incosmic-ray spectra used in the calculations.
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Fig. 2. Comparison of Monte Carlo measured and simulated background gamma-spectra ten months after installation of the Obelix HPGe detector in the Modane undergroundlaboratory (counting time was 34 days).
Table 2Production rates of cosmogenic radionuclides in germanium.Radionuclide Half-life Gamma-ray energy CONUS ACTIVIA1a Other calculationsb[keV] [atom kg−1 day−1]

3H 12.3 yr 18.6c 50 30 48.3 [9]; 34.1/52.4 [47]54Mn 312.3 d 834.84 5 3 5.2 [8]; 2.7 [33]; 2.5/2.8 [47]65Zn 244.3 d 1124.5 60 20 63 [8]; 29 [33]; 19.5/44.2 [47]57Co 271.8 d 136.47 7 6 7.6 [8]; 6.7 [33]; 6.4/8.9 [47]60Co 5.27 yr 1332.5 4 3 3.9 [8]; 2.8 [33]; 2.6/4.1 [47]68Ge 270.93 d 1077.40 66 10 60 [8]; 45.8 [33]; 10.2/24.6 [47]
aACTIVIA1 results obtained in the present work with the default input neutron spectrum.b[8] MENDL+YIELDX package with neutrons only; [9] GEANT4; [33] ACTIVIA1; [47] ACTIVIA1/ACTIVIA2 (ACTIVIA2 resultswith GEANT4 input spectrum).cPure 𝛽−- emitter with maximum energy of 𝛽-particles of 18.6 keV.

3.2.2. Al and Si in the cryostat and detector holder
Aluminum is frequently used for cryostats of HPGe detectors. Al-though its purity is usually very high (99.999% or better), its radiop-urity sometimes is problematic because of presence of uranium andthorium decay products [12]. The production rates were calculated fortwo radionuclides of highest interest, 26Al and 22Na.

The main target material for the in situ production of 26Al is alu-minum present in raw bauxite (reaction 27Al(n, 2n)26Al). Bauxite min-ing is usually carried out in surface mines with negligible soil overbur-den, where bauxite layers are only a few meters thick [23]. Followingdetail discussions in [50], the average depth of bauxite where 26Al wasproduced was taken as 2 m. As the bauxite deposits are at least severalmillion years old, there was enough time for saturated production of26Al by cosmic rays. Aluminum is refined from bauxite, and after its
5
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additional cleaning there are only tracers of other elements present inhigh-purity aluminum used in construction of HPGe detectors.Although 22Na was also produced in the bauxite, it is expected thatduring the refining process (and further aluminum cleaning) it wasremoved from aluminum. The main target material for 22Na productionis, therefore, the Al-4%Si alloy used in the cryostat and the detectorholder. The total 22Na production in the Al-4%Si alloy at sea level isthen given as
22Na = 62.4[Al] + 41.7[Si] = 169 atom/kg/day,
where the target-element concentrations are given in weight fractions.A comparison of calculated production rates for 22Na and 26Al(Table 3) shows that a reasonable agreement with Majorovits et al. [50]GEANT4 calculations was obtained. Although the ACTIVIA1 predicts22Na and 26Al production rates by about a factor of 3 smaller com-pared to CONUS and GEANT4 [50], it is closer to experimental data(unfortunately the uncertainties of measurements are too large).As 22Na and 26Al activities of the Al+4%Si alloy used in the ObelixHPGe detector were measured [51], we may compare these results withcalculations. The radionuclide activity in the material after its exposureto cosmic rays can be calculated as
A = P(1 − 𝑒−𝜆𝑡),

where P is the production rate, 𝜆 is the decay constant, and t is theactivation time. Equilibrium between the production rate and decayof a radionuclide will be reached after several half-lives. This is a fewmillion years in the case of 26Al, and about ten years in the case of22Na. As the exposure time of bauxite to cosmic rays was at least forseveral million years, we can expect a saturated 26Al activity in theAl+4%Si alloy. For the 22Na activity because of lack of informationabout the history of the sample (e.g. production, air transport) it mayhappen that the activation time would be shorter than ten years.The calculated 26Al activity in aluminum (activation at the averagedepth of 2 m during several million years) and the measured one in theAl+4%Si alloy is in agreement within uncertainties (Table 3). In thecase of the 22Na production in the Al+4%Si alloy, and its comparisonwith the experiment, we see that the activation time was probablyshorter than one half-life (2.6 yr).
3.2.3. Cu in cold fingerCopper is very often used for production of cold fingers of HPGedetectors, as well as an internal detector shielding. Several papershave already been dealing with calculation of production rates ofcosmogenic radionuclides in copper [8,9,33,46,47,52]. Table 4 liststhe most relevant cosmogenic radionuclides, 46Sc, 54Mn, 59Fe, 56Co,57Co, 58Co and 60Co, produced in copper. A reasonable agreementbetween the CONUS and ACTIVIA1 results was obtained, except for60Co, where the CONUS value is by about a factor of 3 higher, evenby 30% higher than the ACTIVIA2 value. The saturation activities ofinvestigated radionuclides calculated using the CONUS and ACTIVIA1agree well with experimental values [53], except for the CONUS 60Covalue, which is again by about a factor of 3 higher.
3.2.4. Other target materialsExcept twelve cosmogenic radionuclides produced in four target ma-terials (Ge, Al, Si and Cu) discussed so far, several other radionuclidesproduced in detector construction and shielding materials could be ofinterest [52]. For HPGe spectrometers they are mostly found in theirshields, such as iron (stainless steel), where dominant contributions areexpected from 7Be (a spallation product decaying by electron capture(EC) with half-life of 53.22 days and emission of gamma-rays withenergy of 477.6 keV) with saturation activity of 4.6 mBq/kg), and from54Mn with saturation activity of 2.7 mBq/kg [54]. Production rates ofcobalt radioisotopes were comparable with those calculated for copper.In the case of lead shielding, two long-lived cosmogenic radionu-clides were identified [55]:

– 202Pb (EC-decay with T1∕2 = 52.5 kyr to short-lived 202Tl, whichemits gamma-rays of 439.5 keV) with production rate of about100 atom kg−1 day−1, and– 194Hg (EC-decay with T1∕2 = 444 yr to short-lived 194Au, whichemits gamma-rays of 328.5 keV) with production rate of about 10atom kg−1 day−1.
The expected saturation activities would be from 0.1 mBq/kg (for194Hg) to 1 mBq/kg (for 202Pb), i.e. much lower than contributionsfrom radio-contamination of lead by radiogenic radionuclides [18].Even higher cosmogenic activities could be expected, e.g. about 3mBq/kg of 125I in NaI(Tl) used for dark matter searchers [56], or of127Xe in xenon detectors [9].
3.3. Monte Carlo simulation of the cosmogenic background gamma-spectrum

Production rates of cosmogenic radionuclides, calculated using theCONUS code (Tables 2–4), were used as inputs for the GEANT4 sim-ulation of the cosmogenic background gamma-spectrum (Fig. 3). Themain cosmogenic products from the germanium target (Table 2) are68Ge+68Ga, 65Zn and 3H. Although the production rate of the 68Ge+68Ga pair is the highest, and the half-life is suitable (270.93 d), its decaycontribution is mainly in the annihilation peak and the continuum(Fig. 3), as the intensity of the characteristic peak at 1077.40 keV isvery low (3.3%). However, it can be identified in the experimentalas well as in simulated gamma-spectra (Fig. 2). The 65Zn is the maincontributor to the background from the germanium target, comparablewith the annihilation peak and the 57Co peak (its main source is,however, copper). Although the tritium production is relatively high, itsimportance as a pure beta-ray emitter in gamma-spectrometry is low,except in Ge detectors looking for DM particles. Production of 54Mn ingermanium is low, its main target is copper.There are only two important cosmogenic products from the Al+4%Si target, 26Al and 22Na (Table 3), with good visibility in the gamma-spectra (Figs. 2 and 3). The experimental and CONUS simulated 22Nacounting rates are in a reasonable agreement for the activation time ofabout two years. The 26Al because of its long half-life (0.717 Myr) isthe dominant long-term contributor to the detector background.The calculated production rates of cosmogenic radionuclides inthe copper target (46Sc, 54Mn, 59Fe, 56Co, 57Co, 58Co and 60Co) arewithin experimental uncertainties with the measured ones (Table 3).Although the 58Co production is high, its half-life (70.85 d) is tooshort to be visible in the simulated gamma-spectra. Similarly, 46Sc,59Fe and 56Co have too low production rates and short half-lives to bevisible in the gamma-spectra (Fig. 2, 3). The 54Mn peak is well visibledue to its production both in copper and germanium. Therefore, themain contributor to the cosmogenic background from copper are cobaltradionuclides.The obtained results have some implications on a choice of con-struction materials for deep underground experiments [57]. Generally,for all materials the cosmic-ray activation times should be minimizedand the air transport should be avoided. For long-lived radionuclides,such as 26Al, only aluminum refined from deep bauxite mining shouldbe used in order to avoid in situ production by cosmic rays.
4. Conclusions

Production of cosmogenic radionuclides in construction parts ofthe Obelix HPGe detector was studied using Monte Carlo simulationpackages GEANT4, CONUS and ACTIVIA. The simulation results werecompared with experimental background measurements carried out inthe LSM Modane underground laboratory. Production rates of severalcosmogenic radionuclides induced by interactions of nucleons withgermanium (3H, 54Mn, 57Co, 65Zn, 68Ge, 60Co), copper (46Sc, 54Mn,59Fe, 56Co, 57Co, 58Co, 60Co) and with aluminum and the Al+Si alloy
6



R. Breier, J. Masarik, V. Palušová et al. Nuclear Inst. and Methods in Physics Research, A 978 (2020) 164355
Table 3Production rates of 22Na (in Al+4%Si alloy) and 26Al (in aluminum).Radionuclide Half-life Gamma-ray energy CONUS ACTIVIA1 GEANT4 [50] Calculatedactivity Measuredactivity [51](yr) [keV] [atom kg−1 day−1] [μBq kg−1]

22Na 2.60 1274.5 170a 40a 150a 460a230b(175c)1970a980b (750c)1770a [50]870b[50]

400 ± 200d

26Al 7.17 ⋅ 105 1808.6 530a (80e) 160a 390a (63e) 300e930e730e [50]
380+190−140

aSaturation activity at sea level.bAt sea level, activation time 1 T1∕2 (2.6 yr).cAfter 1 yr of cooling down.dEstimated from the spectrum in Fig. 2.eSaturation activity at an average bauxite depth of 2 m.
Table 4Production of cosmogenic radionuclides in copper (ACTIVIA1 — present results; ACTIVIA1/ACTIVIA2 — results from [9]).Radionuclide Half-life CONUS ACTIVIA1;ACTIVIA1/ACTIVIA2 [9]

Saturation activity(CONUS/ACTIVIA1/ACTIVIA2)
Measuredactivity [53]

[atom kg−1 day−1] [μBq kg−1]
46Sc 83.787 d 3 3; 3.1/4.1 35/36.2/47.4 27+11−954Mn 312.19 d 14 16; 14.3/30.0 160/166/347 154+35−3459Fe 44.494 d 5 2; 4.2/10.5 58/49.1/121 47+16−1456Co 77.236 d 10 9; 8.7/20.1 116/101/233 108+14−1657Co 271.82 d 50 34; 32.4/77.5 580/375/896 519+100−9558Co 70.85 d 76 60; 56.6/138.1 880/655/1598 798+62−5860Co 5.27 yr 92 29; 26.3/66.1 1060/296/744 340+82−68

Fig. 3. GEANT4 simulation of background gamma-spectrum with cosmogenic radionuclide contributions.
(22Na, 26Al) were calculated. A reasonable agreement (within statisti-cal uncertainties) was obtained between the calculated and measuredresults. The contribution of cosmogenic radionuclides to the total de-tector background of the Obelix detector decreased from 39% (after 10months of cooling down) to 14% (after three years of cooling down).While the short-lived cosmogenic radionuclides contributed to thedetector background mainly during the first year of its operation inthe underground laboratory, the long-lived 26Al will be present inthe detector background forever. Therefore, to minimize the detectorbackground, cosmic-ray activation times of all construction materialsshould be minimized, and the air transport should be avoided. For long-lived 26Al, only aluminum refined from deep bauxite mining should

be used for construction of ultra-low background detectors in order toavoid its production by cosmic rays.
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lLPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, F-14050 Caen, France
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Abstract

The double-beta decay of 82Se to the 0+1 excited state of 82Kr has been studied with
the NEMO-3 detector using 0.93 kg of enriched 82Se measured for 4.75 y, corresponding
to an exposure of 4.42 kg.y. A dedicated analysis to reconstruct the γ-rays has been
performed to search for events in the 2e2γ channel. No evidence of a 2νββ decay to the
0+1 state has been observed and a limit of T 2ν

1/2(82Se, 0+gs → 0+1 ) > 1.3× 1021 y at 90% CL

has been set. Concerning the 0νββ decay to the 0+1 state, a limit for this decay has
been obtained with T 0ν

1/2(82Se, 0+gs → 0+1 ) > 2.3× 1022 y at 90% CL, independently from
the 2νββ decay process. These results are obtained for the first time with a tracko-calo
detector, reconstructing every particle in the final state.

Keywords: Double beta decay; Neutrino; 82Se; Excited State

1. Introduction

The search for the neutrinoless double-beta decay (0νββ) is of major importance
in neutrino and particle physics. Its observation would prove the Majorana nature of
the neutrino and would be the first evidence for lepton number violation. Up to now,
no evidence of such a process has been found and the best half-life limits are in the
1024-1026 y range [1–4]. 82Se is one of the best isotopes to investigate 0νββ decay. In
particular, its high Qββ-value of 2997.9±0.3 keV [5] lies above the main backgrounds
coming from natural radioactivity. There exist also well-known methods of Se isotopic
enrichment through centrifugal separation. This is why 82Se is the baseline isotope for
past, current or future experiments such as LUCIFER [6], CUPID-0 [7] and SuperNEMO
[8]. Several studies have been performed in the past to search for 0νββ decay of 82Se to
the ground state of 82Kr and recently new limits on the half-life have been obtained with
the NEMO-3 (2.5×1023 y [9]) and CUPID-0 experiments (3.5×1024 y [10]).

The double-beta decay with emission of two neutrinos (2νββ) is a second order elec-
troweak process in the Standard Model. It allows the experimental determination of
the Nuclear Matrix Elements (NME) for such processes and provides a robust test for
the different nuclear models. It could constrain the quenching factor of the axial-vector
coupling constant gA and give the possibility to improve the quality of NME calculations
for 0νββ decay [11–14]. This process has been observed for 11 double-beta isotopes with
a range of measured half-lives between 1018-1024 y [15, 16]. For 82Se, several experiments
have measured the 2νββ decay to the ground state with the most precise half-life value to
date of 9.39± 0.17(stat)± 0.58(syst)× 1019 y measured with the NEMO-3 experiment
[9].

The search for ββ decay to excited states is also an interesting way to study such
processes. Indeed, these decays have a very clear-cut signature using the 2e1γ channel (to
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the 2+1 state) or the 2e2γ channel (to the 0+1 or 2+2 state) which can dramatically reduce
the number of background events. The disadvantages are a lower Qββ available energy for
electrons which suppresses the probability of the decay and a lower detection efficiency
for electrons and γ-rays. Nevertheless, the decay to excited states is of importance to test
the nuclear matrix elements. A detailed analysis for 2νββ decay of 100Mo and 150Nd to
the excited 0+1 state of 100Ru and 150Sm, respectively, showed that corresponding NME
are only suppressed by ∼ 30% when compared with the NME to ground state transition
[17–23].

Up to now, the 2νββ decay to excited states has only been observed for two isotopes:
100Mo and 150Nd with typical half-lives of 1020-1021 y [24]. It is important to note
that this decay has been observed only to the 0+1 excited state (with the emission of
two γ-rays) which is favoured compared to the decay to the 2+1 or 2+2 excited states.
These measurements have been performed using both High Purity Germanium (HPGe)
detectors by measuring only the γ-rays in the cascade [18, 21, 22, 25–29] and “tracker-
calorimeter” detectors such as NEMO-3 able to measure the energies of both electrons
and γ-rays [19, 30]. For 82Se, there is up to now no evidence for such a decay. Stringent
limits have been obtained by the LUCIFER collaboration for the (2ν+0ν)ββ decay to
various excited states of 82Kr using a HPGe detector [31]. Nevertheless, this technique
using only γ-rays does not allow to distinguish between 2νββ and 0νββ. More recently,
more stringent limits have been set by the CUPID-0 collaboration for the 0νββ decay to
various excited states of 82Kr using ZnSe scintillating bolometers [32].

In this work, we will present a detailed study of the 82Se 2νββ and 0νββ decays to
the 0+1 excited state of 82Kr, expected to be the most favoured [33, 34], with the full
exposure of the NEMO-3 experiment. In this analysis, we have access to the full topology
of the decay. It consists of the emission of two electrons sharing 1510.2 keV of energy
and accompanied by two γ-rays with energies of 711.2 keV and 776.5 keV respectively, as
illustrated in Figure 1. After a presentation of the NEMO-3 detector, the 82Se source foils
and the associated backgrounds, we will present a dedicated analysis tool called gamma
tracking (GT) developed to reconstruct efficiently the γ-rays in such a decay. Finally, we
will present the results of the 2νββ and 0νββ decays of 82Se to the 0+1 excited state of
82Kr with the full NEMO-3 exposure of 4.42 kg·y.

2. NEMO-3 detector, 82Se source foils and associated backgrounds

2.1. NEMO-3 detector

NEMO-3 was a detector installed in the Modane Underground Laboratory (LSM)
under 4800 m water-equivalent in order to be protected against cosmic muons. It took
data from February 2003 to January 2011. It consisted of a hollow cylinder divided
into 20 sectors hosting thin source foils from 7 different enriched isotopes with a typical
thickness of approximately 50 mg/cm2 (as shown in Figure 2). The main isotope to
search for 0νββ decay was 100Mo with a total mass of 6.914 kg. The second isotope of
interest was 82Se with a mass of 0.932 kg shared in 3 sectors. The five other isotopes
studied were by decreasing order of mass: 130Te (0.454 kg),116Cd (0.405 kg), 150Nd (36.55
g), 96Zr (9.43 g), and 48Ca (6.99 g) (see [1, 35] for more details).

The source foils were hung at the center of a wire chamber composed of 6180 cells
operating in Geiger mode. The gas was a mixture composed of 94.85% helium, 4%
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Figure 1: Decay scheme of the 82Se ββ decay to the 0+1 excited state with the emission of two electrons
sharing 1510.2 keV and two prompt γ-rays with energies of 711.2 and 776.5 keV [36].

ethanol, 1% argon and 0.15% of water vapour. These cells were placed inside a 25
G magnetic field produced by a solenoid surrounding the detector. Charged particles
thus had a curved trajectory when crossing the tracking chamber, which allowed the
identification of a negative curvature for 95% of electrons at 1 MeV. The minimal distance
traveled by a particle crossing the tracker is ∼1.1 m, which corresponds to a typical
minimal time of flight of 3 ns. The resolution of the tracker was 0.5 mm transverse to
the wires and 8 mm in the vertical direction for 1 MeV electrons.

A calorimeter enclosed the wire chamber. It was made from 1940 plastic scintillator
blocks, each one with a typical size of 20 x 20 x 10 cm3 and coupled to a low background
photomultiplier (PMT) through a light guide. The calorimeter measured the kinetic
energy of the particles and the time difference between two distant hits could be recorded.
The blocks had an energy resolution of 6 − 7%/

√
E(MeV) and a time resolution of 250

ps (σ at 1 MeV).
NEMO-3 was a unique detector as it combined tracking and calorimetry techniques.

A charged particle (e−, e+...) was identified when going across and ionizing the wire
chamber gas. Its track was associated to an energy deposit in a calorimeter block neigh-
bouring the last fired Geiger cell. γ-rays were identified when energy was deposited in a
calorimeter block but no track was associated. Alpha particles were identified as straight,
short tracks as they could not travel more than ∼ 40 cm in the tracker due to their high
ionisation energy loss.

In order to run in low background conditions, the NEMO-3 detector had to be pro-
tected from natural radioactivity. To do so, a passive shielding of 19 cm iron was sur-
rounding the detector in order to stop external γ-rays. In addition, borated water,
paraffin and wood were also used to moderate and absorb the environmental neutrons.
For a more detailed description of the NEMO-3 detector, see [35].
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Figure 2: Cross-sectional view of the NEMO-3 detector. The detector consists of source foils (1),
scintillators (2), photomultipliers (3) and a wire chamber (4).

2.2. 82Se source

Two different batches of 82Se source were used (referred to as 82Se(I) and 82Se(II)).
Those batches had an enrichment factor of 97.02±0.05% and 96.82±0.05% respectively.
To produce source foils, the enriched 82Se powder was mixed with polyvinyl alcohol
(PVA) glue and deposited between ∼23 µm thick Mylar foils, producing composite source
foils. The total mass of the 82Se isotope in NEMO-3 was 932.4 ± 5.0 g. An analysis of
these 82Se foils was conducted in order to search for 2νββ and 0νββ decays to ground
state and is detailed in [9].

2.3. Backgrounds

With its powerful topology reconstruction ability, the NEMO-3 detector was able to
identify 2e2γ events that were selected for ββ decay to excited states. However, some
background isotopes could also produce this type of event. Among them, 214Bi and 208Tl
decays were the main sources of background as the produced particles could carry similar
energies as the β and γ particles from double beta decays to excited states. These two
isotopes are β− emitters from the 238U and 232Th radioactive decay chains, respectively,
with Q-values of 3.27 and 4.99 MeV.

The main background contribution came from contamination in the source foils in-
troduced during isotope production and residual contamination after isotope purification
or during the foil production. This is described as internal contamination. In this case,
those β emitting isotopes could produce two electrons coming from the same vertex via
β-decay with internal conversion, β-decay followed by Møller scattering or β-decay to an
excited state with a Compton scattering of the emitted photon. From these mechanisms,
additional γ-rays could be produced by bremsstrahlung or from a decay to an excited
state as presented in Figure 3. Prior to their installation, the activity of 82Se foils in
214Bi and 208Tl had been measured by low background gamma spectrometry using HPGe
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detectors. These small contaminations had been also measured and cross-checked by the
NEMO-3 detector itself thanks to its capability to measure own background. In NEMO-
3, the 214Bi contamination of the foils could be studied by looking for the so called BiPo
effect using 214Bi and 214Po sequential decay events. The β-decay of 214Bi is followed by
the α-decay of 214Po with a half-life of 164.3 µs. The analysis channel used to study such
events was the 1e1α(n)γ channel. 208Tl decays exclusively to excited states and emits
mostly 2 or 3 γ-rays (99.9%). Its contamination was thus measured through the 1e2γ
channel with a high γ-rays efficiency (about 50% at 1 MeV). Results and comparison of
the 214Bi and 208Tl activities for 82Se source foils using HPGe and NEMO-3 data are
presented in Table 1 (including some other minor background isotopes [9]).

Finally, 2νββ decay to the ground state was also considered as a background source
for 2νββ decay to excited states. When two electrons were produced, two extra γ-rays
could be emitted via bremsstrahlung. A 2e2γ event was thus detected while excited
states were not involved.

(a) Møller scattering (b) Internal conversion (c) Compton scattering

Figure 3: Mechanisms producing 2e2γ events from internal contamination of β emitters inside the source
foils. β-decay to excited state followed by Møller scattering and bremsstrahlung (3(a)), β-decay to excited
state with internal conversion and double bremsstrahlung (3(b)), β-decay to excited state followed by
Compton scattering and bremsstrahlung (3(c)).

Isotope NEMO-3 (mBq/kg) HPGe (mBq/kg)
214Bi 1.62± 0.05 1.2± 0.5
208Tl 0.39± 0.01 0.40± 0.13

234mPa 16.7± 0.1 < 18
40K 58.9± 0.2 55± 5

Table 1: Results of the contamination measured in the 82Se source foils by using independently NEMO-3
and HPGe data. All uncertainties are of statistical origin only, given at the 1σ level. The limit shown
is at the 2σ level. The activities of 214Bi and 208Tl are derived from this independent analysis and are
consistent with the ones already published in [9].

In addition to the internal contamination of the source foils, radioactivity from other
components of the detector can produce background events, leading to γ-rays. These
γ-rays then interact with the source foil and two electrons coming from the same vertex

6



can then be reconstructed if there is either pair production with misreconstruction of
the positron track, double Compton scattering or simple Compton scattering followed
by Møller scattering of the produced electron. In the case of pair production, there can
be annihilation of the positron which produces two photons. Considering that γ-ray
interactions are involved in all those mechanisms, they have to be taken into account in
the search of the 2νββ and 0νββ decay to the 0+1 excited state, with 2 γ-rays emitted
in cascade. The different processes responsible for background production are described
in Figure 4. The radioactivity of these external elements was first screened by low
background γ-spectrometry. Also, when background isotopes produce a γ-ray, it can
interact close to the surface of a calorimeter block and produce an electron. The latter
crosses the whole wire chamber including the source foil. The initial γ-ray can also
deposit energy in the calorimeter before interacting with the source and producing an
electron. The contamination of external elements can thus be measured through two
channels : crossing electron or (γ, e) external, i.e. Compton scattering in a scintillator
block, producing a γ-ray energy deposit, followed by a Compton scattering in the source
foil, emitting an electron detected in another scintillator block. An external background
model was produced and can be found in [38].

(a) Double Compton scattering (b) Pair production (c) Møller diffusion

Figure 4: Mechanisms producing 2e2γ events from external contamination of the NEMO-3 detector
emitting a γ-ray interacting inside the source foil. Double Compton scattering of the external γ-ray
with bremsstrahlung in 4(a), pair production from the external γ-ray with double bremsstrahlung effects
and poor reconstruction of the positron in 4(b), Compton scattering of the external γ-ray followed by a
Møller scattering of the electron and a bremsstrahlung in 4(c).

A specific external background is the radon background. It comes from 222Rn, a
gaseous isotope in the 238U chain. 222Rn can be introduced via several mechanisms
including emanation from detector materials, diffusion from laboratory air through de-
tector seals or contamination of the wire chamber gas. This is only possible because of
its long half-life of 3.82 days. Once inside the detector, mainly positive ions are produced
from the radon decays. Because of their charge, they can drift and be deposited on the
source foils or tracker wires. There, they decay into 214Bi near the source material. This
contamination can then be observed through the 1e1α(n)γ channel.

For the first 18 months of data-taking, there was a relatively high level of 222Rn inside
the detector. To reduce it, an anti-radon tent was built around the detector reducing
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the radon level inside the wire chamber volume by a factor ∼ 6 [1]. The higher radon
activity data-taking period is referred to as Phase 1 and the lower activity period that
came after as Phase 2.

Both data and Monte Carlo simulations (MC) of signal and background are processed
by the same reconstruction algorithm. The DECAY0 event generator [39] is used for
generation of initial kinematics and particles are tracked through a detailed GEANT3
based detector simulation [40].

3. Gamma tracking technique

In most double-beta-decay experiments, a crucial aspect is to precisely measure the
energy of the particles. Using the unique combination of tracking and calorimetry,
NEMO-3 extracts other observables (angle between two electrons, track curvature, vertex
position...) allowing a good discrimination of background and signal events. In addition,
one of the most important features is the measurement of the time of flight of the particles
inside the detector.

When looking for double-beta decays, selecting events with two electrons from the
same vertex is not a strong enough criterion as seen in section 2.3. The time of flight
measurement thus allows to reject external events by testing two hypothesis : the event
has an internal or an external origin. This test is made possible in NEMO-3 by the
knowledge of the particle track length, energy, time of flight and the energy and time
resolution (σt) of the calorimeter. It can be conducted for charged particles for which
tracks are reconstructed but also for γ-rays coming from the same vertex.

Time of flight for electrons is thus an essential parameter when looking for double-
beta decay. The next section will describe its measurement in NEMO-3 before a new
method for measuring γ-ray time of flight is presented. The latter is crucial since a more
accurate description of events containing γ-rays and a higher sensitivity to these events
will improve the efficiency and precision in the search for decays to excited states.

3.1. Time of flight calculation

In order to construct an hypothesis on the time ordering of an event, some energy
must be deposited in at least two calorimeter blocks and one particle track or more
must be reconstructed inside the wire chamber. This track also has to be associated
to one of the calorimeter hits. The other calorimeter hit with no associated track is
identified as a γ-ray. Figure 5 illustrates an event sketch in NEMO-3 with an electron
(one reconstructed track with one calorimeter hit) and a γ-ray (only a calorimeter hit)
coming from the same vertex.

Before making any time of flight calculation for an event, two hypotheses must be
considered : internal or external origin. Theoretical times of flight between the vertex
and the calorimeter hit (tth) that should be measured by the calorimeter (for each block
hit) are then calculated for both hypotheses. The sum (external origin) or difference
(internal origin) of these theoretical times is compared to the difference between times
actually measured by the calorimeter (texp). If the given hypothesis is favoured, then the
difference noted 4thyp must be close to zero, taking into account the time resolution of
NEMO-3.
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(a) (b)

Figure 5: Event sketch with track reconstruction (5(a)) and scintillator association (5(b)). The recon-
struction defines a γ-ray as energy deposit in a scintillator without any associated track. It can link it
to the vertex in Figure 5(b).

Considering the example presented in Figure 5(b), these differences for both hypothe-
ses are expressed by the following equations :

4tint = (tthe − tthγ )− (texpe − texpγ ) (1)

4text = (tthe + tthγ )− (texpe − texpγ ) (2)

Nevertheless, the calculation of4thyp is only a preliminary analysis. A more advanced
study is based on the probability of time of flight and needs to take into account the
uncertainties on theoretical and measured times. Thus the χ2 method is used as described
by :

χ2
hyp =

42thyp
σ2
tot

, (3)

where σ2
tot is the quadratic sum of all uncertainties affecting time measurements or calcu-

lations. These are the uncertainties on track lengths (for charged particles), path lenghts
(for γ-ray), measured energies (due to calorimeter energy resolution) and times (due to
calorimeter time resolution).

When considering external or internal events, as in section 4, the selections will be
based on the chi-squared probabilities for the respective hypotheses.

3.2. Gamma tracking

Another type of time of flight calculation is possible considering only the trajectory of
photons. Because of the thickness of NEMO-3 scintillators, γ-rays do not always deposit

9



all their energy inside a single block. One photon can deposit part of its energy in a
calorimeter block after Compton scattering, then hit another one and potentially more.
Gamma tracking is an original and powerful analysis tool developed recently [41] in order
to take this effect into account and reconstruct the complete trajectory of γ-rays inside
the detector, with each step from one scintillator to the next.

When a single γ-ray is produced inside a source foil with one or more charged particles
and hits several scintillators, a few PMTs measure energies without associating them
to reconstructed tracks. Figure 6(a) describes the approach presented in the previous
section, where every unassociated hit is considered as having a different origin. Here,
the second unassociated block is neither internal nor external and the event is excluded
when selecting events for the 2e1γ channel. Using gamma tracking, the same event can
be properly reconstructed as shown in Figure 6(b) : the second unassociated hit is paired
with the first one under the assumption of Compton scattering and the event satisfies
the 2e1γ channel conditions.

(a) (b)

Figure 6: Example of an event reconstruction without using gamma tracking (6(a)). Only one of
the two scintillators not associated to a track is consistent with the internal hypothesis, the other is
neither internal nor external. The same event is reconstructed with gamma tracking (6(b)), the second
scintillator can be associated to the first one under the assumption of Compton scattering.

In this example, the complete reconstruction of the photon can be done with only
one time of flight probability calculation : between the two scintillators not associated to
any track. However, when events include several unassociated calorimeter blocks, every
combination has to be taken into account and evaluated. In that case, before making
a complete calculation, the probability of time of flight is determined for each pair of
blocks in the event, with once again the χ2 method. All the pairs are then combined to
extract all possible topologies, each associated to a combined time of flight probability,
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using the equation :

χ2
GTtot

=
n=m∑

n=1

χ2
GT (Blockn−1Blockn), (4)

with m the total number of blocks involved in the chain of hit scintillator by a single
γ-ray, Blockn−1Blockn a pair of calorimeter blocks and χ2

GT (Blockn−1Blockn) the χ2

value calculated for each pair. The main drawback of this method is the computation
time. To limit this effect, two additional conditions are applied : requiring an energy
threshold of 150 keV for the energy deposit in each calorimeter block and only taking
into account the probabilities greater than 0.1% for any combination.

Once all calculations have been performed, the topology with the highest probability
is considered the most likely. This combination defines the number of photons in the
event and their trajectories. The gamma tracking technique is thus key to the study of
double-beta decays to excited states.

3.3. Validation of gamma tracking using calibration sources

During the data taking phase of NEMO-3, several calibration runs using three point-
like 232U radioactive sources, labelled 1, 2 and 3, were conducted. Their activities were
measured through γ-spectrometry (HPGe detectors) and are given in Table 2, column 2.
These sources are especially well suited for gamma tracking studies since they decay to
the 228Th nucleus which belongs to the natural 232Th radioactive decay chain. At the
end of the chain, it produces a 208Tl nucleus which is a β− emitter producing at least
two γ-rays : e.g. 2.615 and 0.583 MeV.

We measured the activities of the 232U sources using NEMO-3 analysis with and
without gamma tracking. We can then compare the results with the activities measured
by HPGe detectors. The main objectives are to confirm that the use of the gamma
tracking method improves the signal efficiency and reduces the systematics. Several
criteria are defined to only select events involving one electron and two γ-rays (1e2γ) since
99.8% of 208Tl decays produce these three particles. Using Monte-Carlo simulations, the
efficiency with gamma tracking is determined to be 1.16% for this topology (compared to
0.92% without gamma tracking) while 53082 data events are selected for source 3 with an
acquisition time of 107.6 hours. The same analysis without gamma tracking, conducted
on the same data sample, selected only 38956 events. About 27% more events were
thus selected using gamma tracking, proving that part of the events involving Compton
scattering are recovered, thus improving the efficiency. Figure 7 illustrates the number
of scintillator blocks hit by a single γ-ray according to the path reconstruction calculated
with the gamma tracking method. A reasonable agreement is obtained between data
from the 232U radioactive sources and Monte-Carlo simulations.

Futhermore, the 232U sources activities obtained with gamma tracking are presented
in Table 2 where they are compared to activities obtained without the use of gamma
tracking and to the γ-spectrometry measurements. The interaction of γ-rays may induce
low energy deposits in the bulk of the scintillator block. The energy response of the
calorimeter does not take into account the interaction point in the scintillator block
so the effect of the energy threshold may be difficult to simulate. However, the main
observation is that activities measured using gamma tracking are more consistent with
the γ-spectrometry results.
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Figure 7: Number of scintillator blocks hit by a single γ-ray according to the path reconstruction
calculated with the gamma tracking method, logarithmic scale. Data were acquired using γ-rays from
the 232U radioactive sources and are compared to Monte-Carlo simulations.

232U HPGe (Bq) No GT act. (Bq) ∆noGT (%) GT act. (Bq) ∆GT (%)

1 7.79± 0.04± 0.21 6.56± 0.08 15.8 6.98± 0.07 10.4
2 15.91± 0.09± 0.43 13.92± 0.13 12.5 14.88± 0.11 6.5
3 32.76± 0.17± 0.89 30.00± 0.17 8.4 32.11± 0.14 2.0

Table 2: Comparison of the 232U sources activities measured by respectively γ-spectrometry (HPGe
detector) and NEMO-3 analysis without and with the gamma tracking technique using the 1e2γ topology.
Uncertainties in column 2 are respectively statistics and systematics. Columns 4 and 6 present the
relative differences between HPGe and analysis activities (without and with gamma tracking).
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However, activities measured through the analysis with gamma tracking are consis-
tently lower than γ-spectrometry values. This difference is used as a way to estimate
the systematic uncertainty induced by the use of the gamma tracking technique. The
difference for sources 1, 2 and 3 are respectively 10.4%, 6.5% and 2.0% as reported in
Table 2. As a conservative approach, the systematic uncertainty is considered to be 10%.

4. Double beta decay to the excited states

4.1. Two neutrino double-beta decay to 0+1 excited state

As mentioned in Section 1, ββ decays to the 0+1 excited state consist in the simulta-
neous emission (compared to the NEMO-3 time resolution) of two β and two γ particles.
In order to select 2e2γ events, several criteria are applied to distinguish them from back-
ground events. The candidate events must contain two electron tracks, originating from
the 82Se source foil, each with an energy deposit greater than 150 keV. The distance
between the tracks’ intersections with the foil should fulfill ∆XY less than 4 cm (per-
pendicular to the wires) and ∆Z less than 8 cm (parallel to the wires) so they can
be considered to have a common vertex. Two γ-rays must be reconstructed using the
gamma tracking technique, each with a total energy greater than 150 keV. The timing
of the calorimeter hits for electrons and γ-rays must be consistent with an internal event
defined as those particles simultaneously emitted from their common vertex in the 82Se
foil. There should be no α-particle tracks and no extra reconstructed γ-rays in the event.
77 data events were selected from a total of 897,409,450 in the selenium sectors for the
selected runs. Figure 8 shows that this number is compatible with the number of back-
ground events expected when using these criteria, as well as the energy distribution of
both electrons for data events and background. Using these criteria, the efficiency for
the expected signal is 0.078%.

(a) Phase 1 (b) Phase 2

Figure 8: Sum of the electron energies distributions in the 2e2γ channel after the preselection criteria
described in the text are applied, for Phase 1 in Figure 8(a) and Phase 2 in Figure 8(b). Data are
compared to the MC prediction for the different backgrounds. The background coming from the 2νββ
82Se decay to g.s. is completely negligible and thus not visible in the two plots.

These preselection criteria can be applied when looking for events including two in-
ternal electrons and γ-rays. In order to be more specific to the 2νββ(0+gs → 0+1 ) decay,
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an optimisation is made considering the energies of the four particles for this decay. The
first energies to be optimized are the individual energies of both electrons labelled Ee min

and Ee max. Both energies for each event are displayed using two-dimensional histograms
for signal and total background, obtained from MC simulations as shown in Figures 9(a)
and 9(b). For each bin of this two-dimensional histogram, the local statistical signifi-
cance (noted N l

σ ) is calculated and displayed in Figure 9(c). This value is defined by
the following equation :

N l
σ =

Sl√
Sl +Bl

, (5)

where Sl is the signal and Bl the background in each bin. The signal is given by the
2νββ to 0+1 state simulation with a half-life of 3× 1020 years which is three times higher
than the 2νββ decay to the ground state half-life.

The result of the optimization procedure was tested for several Monte Carlo samples,
including 2νββ to the 0+1 state with various half-lives. If the half-life in the sample is
different from 3× 1020 y, the selection would not be optimal, thus the sensitivity to the
2νββ to the 0+1 excited state would be decreased. For samples with half-lives larger than
3× 1020 y, the optimization procedure gives a too loose selection w.r.t optimum, increas-
ing the background contribution. For samples with half-lives smaller than 3× 1020 y,
the optimization procedure results in a too strict selection, reducing the signal efficiency.
Even if not optimal, the selection would not bias the half-life of the sample.

A selection criterion is defined on N l
σ for the maximised total statistical significance

Nσ as presented in Figure 9(d). Nσ is calculated over the total number of simulated
signal events and expected background.

In Figure 9(a), simulations show that the signal is stronger when the energies of
the two electrons Ee max and Ee min are in the range of [300-400] and [200-300] keV,
respectively. This is due to their primary kinetic energies (with a total energy shared
equal or lower than 1510.2 keV) slightly affected by the loss of energy in the source foil
and in the tracking chamber. Concerning the background, the simulations in Figure 9(b)
show that the energies of the two detected electrons can be much higher, up to 2.7 MeV,
than those for the signal. This is due to the presence of 208Tl isotope (Q-value of 4.99
MeV) which is one of the main backgrounds. Nevertheless, the optimization is able to
remove all the events with high energy electrons, typically greater than 1.1-1.2 MeV as
illustrated in Figure 9(c).

Other selections are then made on the total electron energy and total γ-rays energy
and finally on the two γ-rays’ individual energies as seen respectively in Figures 10 and
11. Figure 10 shows some of the features of Figure 9, whereby the total energy of γ-
rays for background can be greater than 1500 keV due to higher energy γ-rays emitted in
208Tl decays (usually 2.61 and 0.58 MeV). The signal simulation fits the 2νββ(0+gs → 0+1 )
transition with the two electrons sharing 1512.2 keV and two γ-rays with a total energy
of 1487.7 keV. The optimisation process then only selects events with γ-rays sharing
less than 1600 keV, taking into account the energy resolution of the detector. Figure 11
represents the third step of optimization and concerns individual γ-rays energies. By this
stage, most of the 208Tl induced events have been removed. Simulations indicate that
most of the remaining background events contain two γ-rays of [300-400] and [200-300]
keV. These can be related to 214Bi, since its decay can produce a 609.3 keV γ-ray and
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(a) Signal (b) Background

(c) Local statistical significance (d) Total statistical significance

Figure 9: The distributions of signal 2νββ(0+gs → 0+1 ) and background events from MC simulation are
represented in Figures 9(a) and 9(b) respectively, as a function of both electrons’ individual energy. The
local statistical significance N l

σ distribution for the 2νββ(0+gs → 0+1 ) transition as a function of both
electrons’ individual energy is calculated for each bin of the 2-D histogram and represented in Figure
9(c). The total statistical significance Nσ as a function of a cut on the local significance in Figure 9(d)
allows the optimization of this cut (dotted red line). Selected bins with high local statistical significance
in Figure 9(c) are separated from the removed ones by the dotted red line.
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a lower energy one through bremsstrahlung, shown in Figure 3(a). Finally, most signal
events are expected to have two γ-rays of [400-500] and [500-600] keV, corresponding to
the 2νββ(0+gs → 0+1 ) γ-rays of 711.2 and 776.5 keV.

After the complete optimization process described here, the selection efficiency for
the 2νββ(0+gs → 0+1 ) signal calculated from MC is 0.069% with a total of 19 selected
data events.

(a) Signal (b) Background

(c) Local statistical significance (d) Total statistical significance

Figure 10: Total electron energy vs total γ-rays energy distributions for 2νββ(0+gs → 0+1 ) signal sim-
ulation (10(a)) and background (10(b)). Local statistical significance distributions for each bin of this
histogram (10(c)) with optimisation cut (dotted red line) on total statistical significance Nσ presented
in Figure 10(d).

The total electron energy distributions for Phase 1 and Phase 2 can be seen in Figure
12 while the total γ-rays energy distributions are shown in Figure 13. These figures also
show the different background contributions that are detailed in Table 3. The largest
contribution (52% in Phase 2) comes from internal contamination of the source foils and
especially from 214Bi. Radon is also responsible for 68% of background events during
Phase 1 and was reduced to 28% in Phase 2. The external backgrounds account for 21%
of the total expected background despite the strong criteria used to ensure that only
internal events are selected.

It is also shown that there is a good compatibility with background and data events.
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(a) Signal (b) Background

(c) Local statistical significance (d) Total statistical significance

Figure 11: γ-ray 1 energy vs γ-ray 2 energy distributions for 2νββ (0+gs → 0+1 ) signal simulation (11(a))
and background (11(b)). Local statistical significance distributions for each bin of this histogram (11(c))
with optimisation cut (dotted red line) on total statistical significance Nσ presented in Figure 11(d).
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(a) Phase 1 (b) Phase 2

Figure 12: Total electron energy distributions after selection for the 2νββ(0+gs → 0+1 ) transition, for
Phase 1 in Figure 12(a) and Phase 2 in Figure 12(b). Experimental data events are compared to the
MC simulation for the different backgrounds. The dotted red line represents the simulated signal for a
half-life of 3× 1020 years.

(a) Phase 1 (b) Phase 2

Figure 13: Total γ-rays energy distributions after selection for the 2νββ(0+gs → 0+1 ) transition, for Phase
1 in Figure 13(a) and Phase 2 in Figure 13(b). Experimental data events are compared to the MC
simulation for the different backgrounds. The dotted red line represents the simulated signal with a
half-life of 3× 1020 years.
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Expected Contribution to
events total background (%)

Phase 1 Phase 2 Phase 1 Phase 2

Internal

214Bi 1.14± 0.05± 0.12 4.28± 0.09± 0.43 12.1 36.1
208Tl 0.43± 0.02± 0.07 1.58± 0.04± 0.23 4.6 13.3

Others 0.06± 0.03± 0.01 0.29± 0.14± 0.02 0.6 2.4
Total 1.64± 0.07± 0.20 6.15± 0.49± 0.68 17.3 51.8

Radon 6.44± 0.63± 0.65 3.26± 0.31± 0.33 68.0 27.5

External

214Bi 0.38± 0.19± 0.04 1.49± 0.75± 0.15 4.0 12.5
208Tl 0.29± 0.10± 0.03 0.18± 0.06± 0.02 2.9 1.6

Others 0.74± 0.37± 0.08 0.78± 0.39± 0.08 7.8 6.6
Total 1.39± 0.43± 0.15 2.46± 0.05± 0.85 14.7 20.7

Total background 9.47± 0.77± 1.00 11.87± 1.17± 1.26 100.0 100.0
Data events 7 12 − −

Table 3: Numbers of expected background events from the main background sources in both Phases
and their contribution to the total number of expected background events for the 2e2γ channel after
optimisation for the study of 2νββ(0+gs → 0+1 ) decay. 0.93 year of data taking are considered for
Phase 1 and 3.82 years for Phase 2. The quoted uncertainties represent the statistical and systematic
uncertainties, respectively. The number of selected data events for each phase is also presented.

In the absence of a significant excess of data versus background, a limit has been set.
This can be performed using the following equation :

T1/2 > ε×Nnuc × ln(2)× (tacq − td)×
1

Nex
, (6)

where ε is the detection efficiency, Nnuc the number of 82Se nuclei, tacq and td the
acquisition and dead time respectively and Nex the number of signal events that can
be excluded. The method used here to obtain this last number is the CLs method [42],
that takes into account the shape of the expected signal and backgrounds as well as
the number of data events and several statistical and systematical uncertainties. The
systematics are detailed in Table 4. Considering then the 4.42 kg.y exposure, the 0.069%
efficiency, the 21.4 expected background events and 19 data events, the limit on the 2νββ
(0+gs → 0+1 ) decay half-life for 82Se is, at 90% CL :

T 2ν
1/2(82Se, 0+gs → 0+1 ) > 1.3× 1021 y. (7)

This result is compatible with limit of 3 × 1021 y from Ref. [37] and lower than the
value published by the LUCIFER collaboration, who determined a limit of 3.4 × 1022 y
[31] for the (2ν+0ν)ββ processes. However, the NEMO-3 technique precisely identifies
the event topology and could thus independently study 2νββ and 0νββ processes.

4.2. Neutrinoless double beta decay to 0+1 excited state

The search for 0νββ events is carried out similarly to what has been done for the
2νββ decay. The preselection criteria are the same as what is described in the first part
of Section 4.1. However, in the 0νββ process through the 0+gs → 0+1 transition, the two
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Systematic
Estimated uncertainty

Method of estimate
(%)

Gamma tracking 10.4 232U vs HPGe
Energy calibration 1 Neutron sources
2νββ efficiency 5 207Bi vs HPGe
82Se mass 0.5 Uncertainty on mass and enrichment
Energy loss in foil 1 Neutron sources
bremsstrahlung 1 90Y source analysis
Ext. BG activities 10 Variation from background model
Radon BG activities 10 1e1α vs 1e1γ
Int. BG activities

4
207Bi 1eNγ vs 2e

(excl. 208Tl & 214Bi) (40K & 234mPa meas. in 1e)
Int. 214Bi activity 10 1e1α vs. 1e1γ
Int. 208Tl activity 15 NEMO-3 vs HPGe
2νββ activity 1 Statistical uncertainty

Table 4: Values of the 1σ systematic uncertainties included in the calculation of the limits on 2νββ decay
to excited states and their methods of estimate. The estimated uncertainties come from the comparison
of the activity measurements of calibration sources between NEMO-3 and HPGe (232U, 207Bi, 90Y), the
uncertainties on background measurements and uncertainties specific to the detector or 82Se sources.

electrons do not share energy with neutrinos contrary to the 2νββ decay. The signal
efficiency using these criteria increases by a factor 10 compared to the 2νββ process.
It reaches 0.71%, as higher energy electrons are expected. The selection has then been
optimized with these energies, taking into account a simulated signal with a half-life of
3× 1021 years and using the same method as the one described in Section 4.1. Applying
those criteria, the final selection efficiency for this signal is 0.69% and 14 data events are
selected.

The total electron energy distributions for Phase 1 and Phase 2 are shown in Figure
14. The background composition is similar to what was presented in Table 3 with a
high radon contribution. The details are presented in Table 5. The total γ-rays energy
distributions are shown in Figure 15.

As for the 2νββ(0+gs → 0+1 ) transition, data is consistent with background-only pre-

dictions so a limit has to be set on the half-life of the 0νββ(0+gs → 0+1 ) process. The
method used to calculate such a limit remains the CLs method. With the 20.1 back-
ground events and the statistical and systematic uncertainties, the limit on the 0νββ
(0+gs → 0+1 ) decay half-life for 82Se (at 90% CL) is :

T 0ν
1/2(82Se, 0+gs → 0+1 ) > 2.3× 1022 y. (8)

This result is given for the 0νββ(0+gs → 0+1 ) transition for 82Se, separately from

2νββ(0+gs → 0+1 ). It is compatible with limit of 3.4×1022 y and 8.1×1022 y obtained in the
LUCIFER experiment [31] for the (2ν+0ν)ββ processes and CUPID-0 [32] experiment.
According to the mass mechanism, a Majorana neutrino is exchanged during such a
process and therefore a limit can also be set on the effective mass of the neutrino using
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(a) Phase 1 (b) Phase 2

Figure 14: Total electron energy distributions after selection for the 0νββ (0+gs → 0+1 ) transition, for
Phase 1 in Figure 14(a) and Phase 2 in Figure 14(b). Experimental data events are compared to the
MC simulation for the different backgrounds. The dotted red line represents the simulated signal with
a half-life of 3× 1021 years.

(a) Phase 1 (b) Phase 2

Figure 15: Total γ-rays energy distributions after selection for the 0νββ (0+gs → 0+1 ) transition, for
Phase 1 in Figure 15(a) and Phase 2 in Figure 15(b). Experimental data events are compared to the
MC simulation for the different backgrounds. The dotted red line represents the simulated signal with
a half-life of 3× 1021 years.
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Expected Contribution to
events total background (%)

Phase 1 Phase 2 Phase 1 Phase 2

82Se foils

214Bi 1.25± 0.05± 0.13 4.57± 0.10± 0.46 13.5 41.9
208Tl 0.24± 0.01± 0.03 0.82± 0.02± 0.12 2.6 7.6

Others 0.02± 0.01± 0.01 0.07± 0.03± 0.01 0.2 0.6
Total 1.50± 0.06± 0.17 5.46± 0.11± 0.59 16.3 50.1

Radon 6.50± 0.64± 0.65 2.97± 0.27± 0.30 70.4 27.3

Detector

214Bi 0.45± 0.22± 0.05 1.33± 0.62± 0.14 4.9 12.3
208Tl 0.79± 0.09± 0.08 1.13± 0.14± 0.12 8.5 10.3

Others 0 0 0 0
Total 1.24± 0.24± 0.13 2.46± 0.62± 0.26 13.4 22.6

Total background 9.24± 0.69± 0.95 10.89± 0.69± 1.15 100.0 100.0
Data events 6 9 − −

Table 5: Numbers of expected background events from the main background sources in both Phases
and their contribution to the total number of expected background events for the 2e2γ channel after
optimisation for the study of 0νββ(0+1 → 0+2 ) decay. 0.93 years of data taking are considered for
Phase 1 and 3.82 years for Phase 2. The quoted uncertainties represent the statistical and systematic
uncertainties, respectively. The number of selected data events for each phase is also presented.

the following equation :

1(
T 0ν
1/2

)
MM

= G0ν(Qββ , Z)g4A
∣∣M0ν

∣∣2
∣∣∣∣
mββ

me

∣∣∣∣
2

, (9)

where G0ν(Qββ , Z) is the phase space factor given in [43] for the transition, gA = 1.27
and M0ν the nuclear matrix element [12, 13, 44, 45]. The limit that can be set on the
effective neutrino mass is mββ < [42− 239] eV.

5. Summary and Conclusions

4 Using an innovative gamma tracking technique, the NEMO-3 data set was analysed
to search for ββ decays of 82Se to the excited states of 82Kr with a 4.42 kg.y exposure. No
evidence for the 2νββ process was found and thus an upper limit on the decay half-life
was set at 90% CL : T 2ν

1/2(82Se, 0+gs → 0+1 ) > 1.3 × 1021 y. This result can nevertheless

help to constrain theoretical QRPA models presented in [33, 34, 46].
The analysis of the 0νββ decay to excited states was conducted in a similar fashion

and, as once again no extra events were observed over the expected background, an upper
limit was set at 90% CL : T 0ν

1/2(82Se, 0+gs → 0+1 ) > 2.3×1022 y. These results are obtained
for the first time with a detector which reconstructs each particle individually in the final
state.

This analysis performed with 82Se in NEMO-3 will also provide useful information
for the next-generation SuperNEMO experiment which will host 100 kg of 82Se, such as
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optimisation of the selected events and identification of the main background contribu-
tions.

In parallel with its search for 0νββ decay to the ground state, SuperNEMO will also
look for the 2νββ and 0νββ decays to excited states with major improvements. Using
thicker scintillators, the sensitivity to γ-rays and efficiency to 2νββ and 0νββ(0+gs → 0+1 )
transitions will be enhanced. Backgrounds will also be reduced : more than a factor 30 for
radon and a factor 100 for 214Bi and 208Tl. The expected sensitivities for SuperNEMO
are respectively ∼ 1023 y and ∼ 1024 y for the 2νββ and 0νββ(0+gs → 0+1 ) half-lives.
A first module, called Demonstrator, with 7 kg of 82Se is undergoing commissioning
and will start taking data in 2019. Its goal is to reach a sensitivity on the 0νββ half-
life of 5 × 1024 y in 17.5 kg.y exposure with the demonstration of a “zero”-background
experiment [47].
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Abstract: A radiochemical method for producing 82Se 
sources with an ultra-low level of contamination of natural 

radionuclides (40K, decay products of 232Th and 238U) has 
been developed based on cation-exchange chromato-
graphic purification with reverse removal of impurities. 
It includes chromatographic separation (purification), 
reduction, conditioning (which includes decantation, 

*Corresponding author: Alimardon V. Rakhimov, Joint Institute for 
Nuclear Research (JINR), Dubna, 141980, Russian Federation; and 
Institute of Nuclear Physics of Uzbekistan Academy of Sciences, 
Tashkent, 100214, Uzbekistan, E-mail: alimardon@jinr.ru 
A. S. Barabash, S. I. Konovalov and V. I. Umatov: NRC “Kurchatov 
Institute”, ITEP, 117218 Moscow, Russia
A. Basharina-Freshville, M. Cascella, A. Chopra, R. Flack, M. Kauer,  
X. R. Liu, J. Mott, B. Richards, R. Saakyan, J. Thomas, S. Torre,  
C. Vilela and D. Waters: University College London, London 
WC1E 6BT, UK
S. Blot, E. Birdsall, S. De Capua, J. J. Evans, P. Guzowski, J. R. Pater 
and S. Söldner-Rembold: University of Manchester, Manchester 
M13 9PL, UK
M. Bongrand, Ch. Bourgeois, D. Breton, S. Calvez, X. Garrido, 
H. Gomez, S. Jullian, P. Loaiza, J. Maalmi and X. Sarazin: LAL, 
Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, F-91405 
Orsay, France
R. Breier, K. Holý, V. Palušová, P. Povinec, E. Rukhadze and 
F. Šimkovic: Faculty of Mathematics, Physics and Informatics, 
Comenius University, SK-842 48 Bratislava, Slovakia
V. B. Brudanin: Joint Institute for Nuclear Research (JINR), Dubna, 
141980, Russian Federation; and National Research Nuclear 
University MEPhI, 115409 Moscow, Russia

H. Burešova: Nuvia a.s., Třebĭč, Czech Republic
J. Busto: CPPM, Universite d’Aix Marseille, CNRS/IN2P3, F-13288 
Marseille, France
C. Cerna, E. Chauveau, G. Claverie, F. Delalee, A. Huber, C. Hugon,  
G. Lutter, C. Marquet, I. Moreau, F. Perrot, F. Piquemal, A. Rebii,  
J. S. Ricol and B. Soulé: CENBG, Université de Bordeaux, CNRS/
IN2P3, F-33175 Gradignan, France
J. P. Cesar, K. Lang, Z. Liptak, F. Nova, R. B. Pahlka and R. Salazar: 
University of Texas at Austin, Austin, TX 78712, USA
D. Duchesneau, A. Jeremie, T. Le Noblet, A. Minotti and A. Remoto: 
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS/IN2P3, LAPP, 
74000 Annecy, France
V. G. Egorov, D. V. Filosofov, A. A. Klimenko, O. I. Kochetov,  
V. Kovalenko, I. B. Nemchenok, N. I. Rukhadze, Yu. A. Shitov,  
A. A. Smolnikov, V. Timkin and V. I. Tretyak: Joint Institute for  
Nuclear Research (JINR), Dubna, 141980, Russian Federation
G. Eurin: University College London, London WC1E 6BT, UK; and LAL, 
Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, F-91405 
Orsay, France
L. Fajt, R. Hodák, F. Mamedov, P. Pridal, A. Smetana, K. Smolek, 
M. Špavorova and I. Štekl: Institute of Experimental and Applied 
Physics, Czech Technical University in Prague, CZ-12800 Prague, 
Czech Republic

Brought to you by | UCL - University College London
Authenticated

Download Date | 7/8/19 3:06 PM



2      A. V. Rakhimov et al., Development of methods for the preparation of radiopure

centrifugation, washing, grinding, and drying), and 82Se 
foil production. The conditioning stage, during which 
highly dispersed elemental selenium is obtained by the 
reduction of purified selenious acid (H2SeO3) with sulfur 
dioxide (SO2) represents the crucial step in the preparation 
of radiopure 82Se samples. The natural selenium (600 g) 
was first produced in this procedure in order to refine 
the method. The technique developed was then used to 
produce 2.5 kg of radiopure enriched selenium (82Se). The 
produced 82Se samples were wrapped in polyethylene 
(12  μm thick) and radionuclides present in the sample 
were analyzed with the BiPo-3 detector. The radiopurity of 
the plastic materials (chromatographic column material 
and polypropylene chemical vessels), which were used 
at all stages, was determined by instrumental neutron 
activation analysis. The radiopurity of the 82Se foils was 
checked by measurements with the BiPo-3 spectrometer, 
which confirmed the high purity of the final product. The 
measured contamination level for 208Tl was 8–54 μBq/kg, 
and for 214Bi the detection limit of 600 μBq/kg has been 
reached.

Keywords: Selenium-82, ion exchange chromatography, 
purification, mass spectrometry, neutron activation anal-
ysis, SuperNEMO, LSM Modane.

1   Introduction
Selenium-82 is one of the most suitable isotopes for study-
ing double-beta decay (ββ decay) and searching for its 
neutrinoless mode (0νββ). Interest in studies of 0νββ 
decay has increased significantly in recent years since the 
discovery of neutrino oscillations. NEMO-3 was one of the 
leading underground experiments for ββ decay studies 

in different isotopes (48Ca, 82Se, 96Zr, 100Mo, 116Cd, 130Te, 
150Nd) with a total mass of about 10 kg. The experiment 
used a unique tracking-calorimetric technique to measure 
the full topology of ββ decay and obtained a number of 
important ββ decay results [1–3]. The SuperNEMO project 
extrapolates the successful NEMO-3 technique to a next-
generation of 0νββ-experiments, planning to reach a sen-
sitivity t1/2

0νββ ~ 1026 years with ~100 kg of enriched isotope 
(82Se, 150Nd) [4].

Use of ultrapure materials with respect to impuri-
ties of 40K, 232Th, 238U is a key factor in the success of 
 low-background underground experiments. Therefore, 
all materials used (e. g. construction materials,  detector 
shielding, photomultipliers, cables, etc.) are carefully 
selected after screening for radioactive impurities. Induc-
tively coupled plasma mass spectrometry (ICP-MS) [5], 
instrumental neutron activation analysis (INAA) [6, 7], 
and ultra-low background HPGe and BiPo-3 detectors 
have frequently been used [7–10] for the determination of 
the radiopurity of materials.

The most critical factor is the ultra-high radiopurity 
of the ββ source foils. The SuperNEMO spectrometer is 
designed in such a way that all radio-decays in source foils 
are registered with maximal efficiency. Unfortunately, this 
equally applies to the useful ββ signal and the background 
from radioactive impurities in foils. This background in 
the ROI can degrade critically the sensitivity of the experi-
ment. In the SuperNEMO detector the ββ-sources, i. e. the 
enriched selenium (82Se), are wrapped in 12 μm-thick poly-
ethylene. The radiopurity of the NEMO-3 experiment’s 82Se 
foils was measured precisely: 208Tl – 0.39 ± 0.01 mBq/kg, 
214Bi – 1.5 ± 0.04  mBq/kg (1σ statistical errors are given) 
[11]. A significant reduction (down to ~ μBq/kg level) in 
the radioactive contamination of the 82Se was one of the 
main tasks of the SuperNEMO R&D.

B. Guillon, Y. Lemière, F. Mauger and G. Oliviero: LPC Caen, 
ENSICAEN, Université de Caen, CNRS/IN2P3, F-14050 Caen, France
D. V. Karaivanov: Joint Institute for Nuclear Research (JINR), Dubna, 
141980, Russian Federation; and Institute for Nuclear Research and 
Nuclear Energy (INRNE), 72 Tzarigradsko chaussee, Blvd., BG-1784 
Sofia, Bulgaria
M. Macko: Faculty of Mathematics, Physics and Informatics, 
Comenius University, SK-842 48 Bratislava, Slovakia; CENBG, 
Université de Bordeaux, CNRS/IN2P3, F-33175 Gradignan, France; 
and Institute of Experimental and Applied Physics, Czech Technical 
University in Prague, CZ-12800 Prague, Czech Republic
A. A. Mirsagatova, I. I. Sadikov and F. A. Tashimova: Institute of 
Nuclear Physics of Uzbekistan Academy of Sciences, Tashkent, 
100214, Uzbekistan
N. A. Mirzayev: Joint Institute for Nuclear Research (JINR), Dubna, 
141980, Russian Federation; and Institute of Radiation Problems of 

Azerbaijan National Academy of Sciences, AZ1143 B. Vahabzade 9, 
Baku, Azerbaijan
B. Morgan, Y. A. Ramachers and S. Snow: University of Warwick, 
Coventry CV4 7AL, UK
M. Nomachi: Osaka University, 1-1 Machikaney arna Toyonaka, 
Osaka 560-0043, Japan
H. Ohsumi: Saga University, Saga 840-8502, Japan
J. Sedgbeer: Imperial College London, London SW7 2AZ, UK
L. Simard: LAL, Université Paris-Sud, CNRS/IN2P3, Université Paris-
Saclay, F-91405 Orsay, France; and Institut Universitaire de France, 
F-75005 Paris, France
Vl. I. Tretyak: Institute for Nuclear Research, 03028 Kyiv, Ukraine
V. Vorobel and A. Žukauskas: Charles University, Prague, Faculty  
of Mathematics and Physics, CZ-12116 Prague, Czech Republic
G. Warot and M. Zampaolo: Univ. Grenoble Alpes, CNRS, Grenoble 
INP, LPSC-IN2P3, 38000 Grenoble, France

Brought to you by | UCL - University College London
Authenticated

Download Date | 7/8/19 3:06 PM



A. V. Rakhimov et al., Development of methods for the preparation of radiopure      3

The work presented here concentrates on the develop-
ment of the radiochemical purification and conditioning) 
of enriched selenium (82Se) samples produced in a “stand-
ard” state, and also on radioanalytical studies of radio-
pure (conditioned) 82Se produced for the preparation of 
new 82Se foils. For the “standard” state we mean samples 
with certain characteristics: isotopically enriched, chemi-
cally pure, radiochemically pure, in a physico-chemical 
state of elemental selenium, and with characteristic par-
ticle size of the powder of up to 5 μm.

This paper is a continuation of our previous work 
[12] concerning chromatographic separation of a small 
quantity (100 g) of selenium and preparation of sele-
nium oxide (SeO2) as the final product. In this paper we 
present the developed method for production of radio-
pure 82Se in large quantities (1.5 kg and 1 kg batches from 
JINR Dubna and France, respectively) in the appropri-
ate form (elemental selenium powder) required for the 
production of thin 82Se foils. Therefore, special atten-
tion has been paid to a number of new aspects of the 
technology:

 – Creation of a new chromatographic system with a new 
larger ion-exchange column optimized for obtaining 
kilogram quantities of highly radiopure selenium;

 – Development of a technique and construction of a 
facility (system, equipment) for reduction of purified 
selenious acid to an elemental state;

 – Preparation of the final product by decantation, cen-
trifugation, washing, grinding and drying.

Particular attention has been paid to materials from which 
chemical vessels and instruments are made. These materi-
als should be as pure as possible with respect to radioac-
tive impurities (40K, decay products of 232Th and 238U) and 
sufficiently resistant to chemical reagents. It should be 
noted that it is extremely difficult to find chemical vessels 
from materials which meet the requirements of modern 
low-background experiments.

The radiopurity of plastic materials of the chromato-
graphic column (PEEK – chromatographic column mate-
rial, Teflon – column filter) and polypropylene chemical 
vessels (glasses, bottles, centrifuge tubes) was determined 
by instrumental neutron activation analysis (INAA). The 
radiopurity of the final 82Se wrapped in the foils was meas-
ured by the BiPo-3  spectrometer [10] (operating in the 
 Canfranc underground laboratory in Spain).

The distribution coefficients of a series of lantha-
nides (88Y, 139Ce, 143Pm, 167Tm, 169Yb, 173Lu), 60Co and 137Cs 
(a potassium analog) on the DOWEX 50W × 8 resin, used 
to produce the high radiopurity selenium, were also 
determined.

2   Experiment

2.1   Chemical reagents, materials 
and equipment

The following reagents, materials and equipment were 
used: bidistilled water; nitric acid (qualification “osch 
18-4”, GOST 11125-84); sulfur dioxide – SO2 (GOST 2918-
79, purity – 99.9 %); isopropyl alcohol (qualification 
“osch”, STP TU COMR 2-018-06); natural technical sele-
nium (natSe) CT-1 (GOST 10298-79); initial enriched sele-
nium (82SeO2) was obtained in two batches. first part of 
82SeO2 (isotope composition: 82Se-99.88 %, 74Se-0.01 %, 
 76Se-0.01 %, 77Se-0.01 %, 78Se-0.04 %, 80Se-0.05 %) pur-
chased in JSC “PA Electrochemical Plant” (Russia) and 
labeled as “Dubna”; second part of 82SeO2 (isotope compo-
sition: 82Se-96.1 %, 80Se-3.9 %) purchased in “CHEMGAS” 
(France) and labeled as “France”; cation-exchange resin 
DOWEX 50W × 8 (200–400  mesh, catalog No.217514, 
Fluka/Sigma-Aldrich, Germany); chemical vessels made 
of polypropylene (glasses, bottles, centrifuge tube); chro-
matographic column material: PEEK – polyether ether 
ketone (Elmica, Russia) – material of the chromatographic 
column (internal diameter of 28  mm and an operating 
length of 500  mm); three-way valves (stopcock 3-way 
PFA 6 mm OD, catalog No. 30503-10, Cole-Parmer, USA); 
peristaltic pumps (Masterflex L/S  Computer-Compatible 
Digital Drive; 600 rpm, catalog No.07551-00, Cole-Parmer, 
USA); pump tubes (catalog No.77390-60, 4/6  mm Teflon 
(PFTE) tubing, Cole-Parmer, USA); magnetic stirrer with 
heating (MSH-30D, Daihan Scientific, Korea); Centrifuge 
(CL-40, Thermo scientific, USA); centrifuge tube with a 
volume of 750  mL (catalog No.75003699, Thermo scien-
tific, USA); Homogenizer (HG-15D-Set-B, Daihan Scien-
tific, Korea); vacuum drying cabinet (VDL 23, Binder, 
Germany); ICP mass spectrometer (x-7, Thermo elemen-
tal, USA); ICP atomic emission spectrometer (ICAP-6500, 
Thermo scientific, USA); AEROTRAK Handheld Particle 
Counter TSI 9303-01.

2.2   Production of radiopure selenium 
(purification of selenium)

The complete purification procedure consists of four main 
stages:

 – Preparation of the initial solution of selenious acid 
(H2SeO3);

 – Cation-exchange chromatographic separation (purifi-
cation);
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 – Reduction of purified selenious acid to an elemental 
state (Se);

 – Conditioning (decantation, centrifugation, washing, 
grinding and drying) of the final product.

All processes were conducted in a specially prepared clean 
room equipped with air supply, exhaust and recirculation 
ventilation systems, air intake devices, air distributors 
with final filters, air regulating devices, sensor equipment 
and automation elements, etc. The level of dust particles 
in the room was measured to be ~100 000 (≥0.5 μm) per m3 
and zero in the laminar box (measurement by the AERO-
TRAK Handheld Particle Counter TSI 9303-01) where the 
chromatography stage was carried out.

2.2.1   Preparation of initial solution of H2SeO3

The selenium was divided into portions for purification. 
The volume of one portion of initial selenious acid solution 
was 5 L, with selenium concentration of 0.5 mol/L. In the 
case of natural selenium (natSe), the solution was prepared 
by dissolving 200 g of selenium in concentrated nitric acid, 
evaporating to SeO2, followed by dissolution in water. In 
the case of enriched selenium (99.88 % of 82Se), 285 g of 
selenium oxide (82SeO2) was dissolved in water (equivalent 
to 200 g of selenium, taking into account mass fraction cor-
rections). The obtained solutions were then filtered.

2.2.2   Purification of selenium

The basic aspects of chromatographic purification of sele-
nium for low-background measurements are described in 

our previous article [12]. Figure 1 shows the purification 
system with a reverse flow used in this work. The main 
changes from the previously used system relate to the 
components and the overall organization of the system. 
The unit is specially adapted for multiple repetitions of 
purification cycles for separate small portions in order to 
purify, in total, kilogram quantities of selenium.

A chromatographic column (item 10, Figure 1) is 
filled with cation exchange resin DOWEX 50W × 8 (200–
400 mesh). The purification system uses PTFE pumping 
tubes and connection hoses, and the flow of liquid is 
ensured by a peristaltic pump. Particular attention is paid 
to the selection of three-way valves, which must be suf-
ficiently resistant to increased pressure (~5 atm) and to 
HNO3 (5 mol/L). Before starting the work, the resin loaded 
in the column was thoroughly washed (reverse direction) 
with HNO3 (2 L, 5 mol/L) and water (0.5 L).

Each purification cycle of a single portion of selenium 
(200 g) lasted about 3 h and included the following opera-
tions, presented in Figure 1:
1. Passing of unpurified selenious acid (5 L, 0.5 mol/L) 

solution through the column at a rate 40 mL/min in 
the forward direction (vessel 1→column→vessel 4).

2. Washing the column with HNO3 (1 L, 0.1 mol/L) in the 
forward direction (vessel 2→column→vessel 4).
The solutions from vessels 1 and 2 were eluted from 
the column and collected in a plastic vessel 4 for the 
purified H2SeO3 (6 L).

3. Elution of impurities adsorbed on the resin in the 
reverse direction (vessel 6→column→vessel 3) with 
HNO3 (6 L, 5 mol/L).

4. Rinsing the resin from the HNO3 (5  mol/L) residuals 
in the reverse direction (vessel 5→column→vessel 3) 
with HNO3 (1 L, 0.1 mol/L).

Waste
solution

Purified
H2SeO3

Ion-exchange column

Forward direction

Reverse direction

1000 mL 
5000 mL 
40 mL/min 6000 mL

9
10 8 12 

13 7 11

1000 mL

   HNO3 HNO3 HNO3

H2SeO3

1 2 3 4 5 6

Unpurified 5 m
ol/L 

0.1 m
ol/L 

0.5 m
ol/L 

0.1 m
ol/L 

Figure 1: Chromatographic separation (purification) scheme of selenium by the reverse method.  
1–6 – polypropylene vessels with the solutions; 7, 9, 11, 13 – triple valves; 8, 12 – peristaltic pumps; 10 – ion exchange column.
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These solutions from vessels 6 and 5 were eluted through 
the column and collected in a separate vessel 3 (7 L waste 
(impurities) solution).

After the last operation, the purification system is 
ready to process the next portion of selenium.

2.2.3   Reduction of selenious acid to the elemental state

In order to obtain elemental selenium the purified sele-
nious acid (vessel 4, Figure 1) was reduced with sulfur 
dioxide (SO2) according to the reaction

 2 3 2 2 2 4H SeO 2 SO H O Se 2 H SO .+ + → +  (1)

Figure 2 shows the scheme of the reduction system 
used. A purified solution of H2SeO3 (vessel 4, Figure 1) 
was placed in vessel 6 (6 L; 5 L of original + 1 L of washing 
solution) and saturated through the surface with sulfur 
dioxide.

To increase the absorption of SO2, the solution was 
agitated with a magnetic stirrer. The flow of SO2 was regu-
lated (valve 2 and rotameter 3, Figure 2) to provide almost 
complete absorption of SO2 with a small excess of gas 
released by bubbles in vessel 8. The average flow of SO2 
was ≈10 L/h. The reduction of one portion took 6–7 h. The 
saturation of the solution through the surface is more con-
venient than bubbling due to the good solubility of SO2, 
otherwise the tube is quickly clogged with reduced sele-
nium. The use of gas (SO2) in the recovery process is pref-
erable for our purposes to using other reagents (liquid, 
solid) since it minimizes radioactive contamination of the 
final product.

2.2.4   Conditioning

The reduced elemental selenium was separated from the 
residual solution (Figure 2, vessel 6) by decanting and 
centrifugation, and then was collected in 750 mL centri-
fuge tubes. About 200 g of selenium (a single processed 
portion) was stored in each tube (~300  mL of the wet 
material). Even small residues of sulfuric acid formed in 
the process of selenium reduction create serious difficul-
ties in the process of making the selenium source. There-
fore, the selenium was further washed, first 10 times with 
distilled water, and then 5 times with isopropyl alcohol. 
For this purpose, water (or isopropyl alcohol) was added 
to the centrifuge tube with a single selenium portion until 
the tube was completely filled (750 mL mark), then gently 
blended with a Teflon stick, decanted and centrifuged.

During the reduction, elemental selenium was recov-
ered in the form of tiny particles (<10  nm) which, over 
time, especially during centrifugation, coalesce into large 
crumbs and flakes of millimeter portions. They are not 
suitable for the production of thin 82Se foils. Therefore, 
a final milling of the selenium was carried out with a 
homogenizer in isopropyl alcohol until a homogeneous 
suspension was obtained (~5 min, ~500 rpm). After grind-
ing, the characteristic size of selenium particles was of the 
order of μm, which is suitable for the production of thin 
foils (average thickness of 300 μm). The use of surfactant 
isopropyl alcohol in the final stages of washing and grind-
ing also reduces the adhesion of selenium. In addition, 
because of its good volatility, isopropyl alcohol facilitates 
the drying process.

Selenium drying was carried out for a day in a vacuum 
cabinet, without heating, at an average vacuum of ~5 mbar. 

Magnetic stirrer 

Buffer
SO2

SO2

Solution
H2SeO3

Buffer
SO2

H2O 

S
O

2 
– 

99
.9

 %
 1

3 

4

≈10 L/h 87

2 

9

65

Figure 2: The Scheme for the reduction system of selenious acid (H2SeO3) to an elemental state (Se). 1 – a cylinder with SO2,  
2 – a reducer, 3 – a control valve, 4 – a rotameter, 5–8 – polypropylene vessels (10 L), 9 – a magnetic stirrer.
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For each selenium portion (200 g), all washing, grinding 
and drying processes were carried out in the same centri-
fuge tube.

During conditioning, we tried to reduce the speed 
and time of centrifugation (typical value ~1300  rpm for 
2  min), and, if possible, to replace this procedure with 
settling the solution; this reduces the formation of coarse-
grained selenium and reduces the grinding time. The 
grinding process can lead to contamination of selenium 
by the attrition products of the homogenizer nozzles made 
of stainless steel (Fe, Cr, Ni), which in turn can contain 
radioactive impurities.

It should be emphasized that reduction and washing 
leads to the removal of thorium, uranium, radium, actin-
ium and potassium as they remain in solution.

A total of 600 g of natural selenium was purified and 
conditioned in order to test and refine the method. The 
resin in the column was then renewed and used to purify 
2.5 kg of enriched selenium (82Se).

2.3   Measurement of the distribution 
coefficients of radionuclides

The following radionuclides were used as indicators: 60Co 
(t1/2 = 5.27 years), 88Y (t1/2 = 106.63 days), 137Cs (t1/2 = 30.08 years), 
139Ce (t1/2 = 137.64  days), 143Pm (t1/2 = 265  days), 167Tm 
(t1/2 = 9.25 days), 169Yb (t1/2 = 32.02 days), 173Lu (t1/2 = 1.37 years) 
[13]. Radionuclides 88Y, 139Ce, 143Pm, 167Tm, 169Yb, and 173Lu 
were obtained by irradiating a tantalum target with 660 
MeV protons [14]. The 60Co and 137Cs radionuclides were of 
commercial origin.

To determine the distribution coefficients (KD), the 
static adsorption method was used. Certain volumes of 
selenium acid solution, H2O, and 10 μL of the prepared 
radionuclide cocktail were added to a sample of 50  mg 
resin (DOWEX 50W × 8) and placed in a 1.5 mL centrifuga-
tion tube (“Eppendorf”, Germany) so that the volume of 
each sample was 1 mL. The samples were then thoroughly 
mixed and left to stand for 24  h to achieve equilibrium. 
Then, centrifugation was carried out and the radioactivity 
of the solution was measured with a HPGe γ-spectrometer. 
The distribution coefficients were calculated using the 
equation:

 

1 g 50 mg
D

1 mL 50 L

(resin) (resin)
K ,

(solution) (solution)
A A

A A µ

= =  (2)

where A50  mg (resin) is the radioactivity (Bq) of 50  mg of 
resin, and A50 μL (solution) is the radioactivity (Bq) of 
50 μL of the solution. To reduce uncertainties in the 

determination of these values, samples were weighed 
immediately after preparation and after fluid extraction.

2.4   Instrumental neutron activation analysis 
of plastic materials

Determination of thorium and uranium contamination in 
plastic materials of the chromatographic column (PEEK 
– column material, 2 Teflon samples – construction mate-
rial and filter for the column) and polypropylene chemi-
cal vessels (glasses, bottles, centrifuge tubes) was carried 
out by INAA. Prepared samples of the plastic materials 
together with standard reference samples were irradiated 
at the IBR-2 reactor (JINR, Dubna) in a flux of epither-
mal neutrons of 2.2 × 1011 cm−2 s−1. The standard materials 
IAEA 433 (marine sediment) and BCR 667 (estuarine sedi-
ment) were used as reference samples. The radioactivity 
of the samples and standards was measured with a HPGe 
detector GC5519 (Canberra, USA) with relative registra-
tion efficiency of 55 %. The collection and processing of 
gamma-spectra were carried out using Genie-2000  soft-
ware [15].

2.5   Measurements with a BiPo-3 
spectrometer

The BiPo-3 detector is a low radioactivity detector dedi-
cated to the measurement of 208Tl and 214Bi in thin materi-
als. The detector, running in the Canfranc Underground 
Laboratory since 2013, was initially developed to measure 
the radiopurity of the ββ-source foils for the SuperNEMO 
experiment. A comprehensive description of the design 
and performance of the detector, as well as the results of 
the radioactivity measurements of the first 82Se foils pre-
pared for the SuperNEMO experiment, can be found in [9]. 
The BiPo-3 detector represents at present the most sensi-
tive radiometrics detector for radiopurity measurements 
of samples wrapped in foils. The obtained detection limits 
were 2 μBq/kg (90 % CL) for 208Tl and 140 μBq/kg (90 % 
CL) for 214Bi after 6 months of measurement.

2.6   Source foil production

The prepared source foils from the radiopure (conditioned) 
natural selenium (600 g) and enriched 82Se (2.5 kg) were 
made in LAPP (Annecy, France); details of the foil produc-
tion can be found in [16]. The surface density of the foil is 
~55 mg/cm2. The foils were carefully packed, transported 
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by car from Annecy to the Canfranc underground labo-
ratory, unpacked and installed in the BiPo-3 detector. It 
is necessary to emphasize once again that all materials, 
substances, and tools used in the foil preparation proce-
dures have been carefully screened using low-background 
HPGe spectrometers and the BiPo-3 (foil) detector in order 
to select samples with the best radiopurity. All the details 
of the foil production protocol will be presented in a dedi-
cated publication.

3   Results and discussion
The radiopurity of the final product (at a given radiopurity 
of the initial selenium) depends on the following factors:

 – The characteristics of the chromatographic process 
(distribution coefficients, parameters of the column, 
the flow of solutions, etc.). In such chromatographic 
separation systems, it is usually possible to achieve 
very high purification coefficients. Our experience 
shows that the obtained purification coefficients on 
thorium and uranium in the chromatographic system 
exceed 105.

 – Radiopurity of the liquid chemical reagents 
( bi-distilled water, nitric acid and isopropyl alcohol).

 – Radiopurity of plastic materials of the chromato-
graphic column and polypropylene chemical vessels.

 – General organization of the procedure; for example, 
one needs to minimize the number of operations with 
higher risk of contamination of the final product.

3.1   Chemical yield of selenium

The chemical yield of the selenium recovery in the chro-
matographic purification procedure is more than 99 %. 
The main losses occur during conditioning. The residue 
is collected for subsequent extraction of 82Se. The losses 
during chromatography are negligible – less than 0.1 %, 
according to the ICP-AES/MS analysis of the (waste (impu-
rities) solution (vessel 3 in Figure 1).

3.2   Distribution coefficients of radionuclides

The distribution coefficients (KD) of lanthanides (88Y, 139Ce, 
143Pm, 167Tm, 169Yb, 173Lu) and technogenic  radionuclides 
– 60Co and 137Cs (a potassium analog) in the DOWEX 
50W × 8 – H2SeO3 system were determined experimentally 
(Table  1). It can be seen that the KD values of rare-earth 

elements with decreasing concentration of H2SeO3 (from 
4 to 0.5 mol/L) exceed 104.

The KD values of cobalt and caesium are lower, but 
with a decrease in the concentration of selenious acid 
to a working concentration of 0.5 mol/L, the coefficients 
increase significantly, exceeding the critical values with 
respect to U. Thus, when the solution passes in the forward 
direction in a volume exceeding 100 times the volume of 
the column, the radionuclides and their analogs do not 
enter the purified solution.

3.3   Radiopurity of plastic materials

INAA was used to determine the radiopurity of the plastic 
materials used: the chromatographic column and polypro-
pylene chemical vessels, as explained in the Section  2.4. 
Table 2 presents the INAA results for the plastic materials 
that are in direct contact with solutions: PEEK (chromato-
graphic column material), Teflon (filter for the column and 
construction material), polypropylene vessels (glasses, 
bottles, centrifuge tubes) and polyethylene terephthalate 
(often used for making chemical vessels). The last two 
materials were not used in the setup but were measured for 
completeness and comparison.

The most radiopure plastic materials are usually 
Teflon and high-pressure polyethylene, although it 
should be noted that there can be exceptions to this rule. 
Typically, low-density polyethylene and polypropylene 
have approximately the same level of contamination 
in thorium and uranium. Polypropylene is still more 
mechanically resistant than polyethylene, and therefore 
in many cases its use is preferable. The obtained results 
show that the materials used are reliable for the whole 

Table 1: Distribution coefficients (KD) of lanthanides, as well as 
cobalt and cesium on the cation – exchange resin DOWEX 50W × 8 at 
various concentrations (C) of selenious acid in solutions.

C(H2SeO3), mol/L 
 

Distribution coefficients (KD) of radionuclides

60Co   88Y   137Cs   139Ce

4   400   >104   55   >104

3   1350   >104   160   >104

1   6700   >104   970   >104

0.5   ~104   >104   1400   >104

  143Pm  167Tm   169Yb   173Lu

4   >104   >104   ~104   ~104

3   >104   >104   >104   >104

1   >104   >104   >104   >104

0.5   >104   >104   >104   >104
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of our purification procedure. Of course, it is better to 
use the purest material (if available), however, the con-
tamination levels in the selected plastic materials do not 
exceed ~10−8 g/g for uranium. From our point of view, 
such levels are not critical for vessels and materials that 
are used repeatedly, especially for a chromatographic 
column. The surface of such materials will be cleaned 
during multiple cycles and will be in balance with the 
solutions used in the purification process. The radio-
purity of the materials will be reduced to the radiopu-
rity of the water and chemicals used in the purification 
process. As a result, we used chemical vessels made of 
polypropylene (with the exception of pump hoses from 
teflon). According to Table 2, these were the purest prod-
ucts available to us from the relevant materials, and their 
use should not substantially affect the radiopurity of 
the resulting selenium samples. It should be noted that 
INAA is, because of good sensitivity and the ability to 
obtain results relatively quickly, one of the most success-
ful methods for analysis of thorium, uranium and potas-
sium in plastic materials.

3.4   Purity of liquid chemical reagents

Data on the purity of bi-distilled water and nitric acid can 
be found in our previous work [12]. The bi-distilled water 
does not contain thorium and uranium (detection limits 
were <4.6 × 10−13 g/g and <1.7 × 10−13 g/g, respectively). 
ICP-AES/MS analysis of isopropyl alcohol (1 L of isopropyl 
alcohol was evaporated in a Teflon vessel at a temperature 
of 50 °C; the residue remaining in the pot was analyzed 
with ICP-AES/MS) showed that the content of thorium and 
uranium was 6.7 × 10−14 g/g and 1.4 × 10−13 g/g, respectively. 
As can be seen, the content of Th and U is very low, there-
fore it should not affect the purity of the selenium samples 
produced.

3.5   Measurement of selenium foils with the 
BiPo-3 spectrometer

Unfortunately, the ICP-AES/MS analyses were not sensi-
tive enough to determine K, Th and U levels in the initial 
and final (purified) selenium samples (both the natural 
and the enriched). Only detection limits for the K, Th 
and U were obtained. For thorium and uranium detec-
tion limits obtained by ICP-MS were 8 × 10−9 g/g and 
3 × 10−10 g/g for the natural Se and for the enriched sele-
nium (82Se) samples, respectively. Further work is in pro-
gress to analyze these samples by ICP-MS and accelerator 
mass spectrometry. The obtained detection limit for K by 
ICP-AES was 10−7 g/g.

The source foils containing ~150 g of natural selenium 
(natSe) and 2.5 kg of purified (conditioned) 82Se were meas-
ured, however, with the BiPo-3 spectrometer (Table 3).

Measurements (with interruptions) took place 
between December 2016 and August 2017, with a total 
exposure of ~130 days. The results obtained (Table 3) show 
lower 208Tl (232Th) and 214Bi (238U) levels for enriched sele-
nium (82Se) than for the natural (natSe) sample which was 
the first sample used for optimization of the method. This 

Table 2: Radiopurity of various plastic samples measured by INAA.

Samples   Mass, g   Irradiation/measurement 
time, h

  Th content, g/g   U content, g/g

PEEK   0.49   93/0.5–1.5   (3.8 ± 0.7) × 10−8   (4.3 ± 0.2) × 10−8

Teflon (filter for column)   0.69   93/0.5–1.5   (4.9 ± 0.8) × 10−8   (4.8 ± 0.2) × 10−8

Teflon – material for construction  1.10   71/0.5–7   <3 × 10−10   <9 × 10−11

Glass, PP   0.37   93/0.5–1.5   (5.5 ± 1.0) × 10−8   (1.3 ± 0.1) × 10−7

Bottle 5 L, PP   0.17   71/0.5–10   <2.9 × 10−9   <1.4 × 10−9

Bottle 10 L, PP   0.19   71/0.5–10   <2.6 × 10−9   <1.1 × 10−9

Centrifuge tube, PP   2.76   71/0.5–10   (6.9 ± 0.4) × 10−9   (2.7 ± 0.2) × 10−9

Polyethylene terephthalate   0.18   71/0.5–10   <2.4 × 10−8   <2.6 × 10−8

PEEK, Polyether ether ketone; PP, polypropylene.

Table 3: Results of 208Tl and 214Bi in the purified 82Se samples 
wrapped in polyethylene foils measured by the BiPo-3 detector 
(90 % CL).

Origin of selenium foils  
 

The specific activity, μBq/kg

228Th (232Th)/208Tl  226Ra/214Bi

High radiopurity  
(conditioned) natSe

  19-336/7-121  <870/<870

High radiopurity  
(conditioned) 82Se “Dubna”

  22-150/8-54  <600/<600

High radiopurity  
(conditioned) 82Se “France”

  <294/<106  <1370/<1370
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shows the suitability of the technique. The radionuclide 
levels in 82Se (purified and conditioned in JINR Dubna) 
foils which will be used in the SuperNEMO experiment, 
are lower by factors of about 10 (208Tl) and 3 (214Bi) than in 
the 82Se foil used in the NEMO-3 experiment [11].

4   Conclusions
The methods for the preparation of radiopure 82Se sources 
for the SuperNEMO neutrinoless double-beta decay 
experiment have been developed. The chromatographic 
separation, reduction and conditioning have been used 
consistently to produce 2.5 kg (from total 6.23 kg) of highly 
dispersed, high radiopurity (conditioned) 82Se. Grinding 
and washing were used additionally to obtain the highly 
dispersed powder (particle size ~1 μm) of elemental sele-
nium as the final product, required for the production of 
thin source foils.

Key features of the proposed technology should be 
noted:

 – use of ion-exchange chromatography for elution of 
impurities with reverse method;

 – minimum number of chemical reagents (bidistilled 
water, nitric acid and isopropyl alcohol) used;

 – use of sulfur dioxide (SO2) as a reducing agent for 
obtaining of elemental selenium;

 – high chemical yield (>99 %), unique radionuclide 
purity and high dispersion of final product.

The productivity of technology proposed is 300 g of 82Se 
per day, which makes it possible to obtain tens and hun-
dreds of kilograms of purified (conditioned) selenium.

Particular attention was paid to the selection of pure 
materials, liquid chemical reagents (water, nitric acid and 
isopropyl alcohol) and plastic vessels which were used at 
all stages. One needs also to highlight the methodological 
studies of the various plastic materials radiopurity (ultra-
low contaminations of thorium and uranium) performed 
by INAA method, which is found to be the best for these 
purposes. It has been shown, it is preferable to use prod-
ucts from Teflon and, if necessary, polypropylene.

The radiopurity of the final 82Se foils has been meas-
ured by BiPo-3 spectrometer. The levels of impurities were 
found to be 8–54 μBq/kg level for 208Tl (the 232Th chain), 
and ≤600 μBq/kg for 214Bi (the 238U chain). This corre-
sponds to an improvement in the radiopurity of the sele-
nium foils by about a factor of 10 for 208Tl and at least by 
about a factor of 3 for 214Bi in comparison with the NEMO-3 
experiment.

The 82Se source foils produced by described tech-
niques were approved for using in SuperNEMO, an experi-
ment aimed to search for neutrinoless double-beta decay 
of 82Se. The foils have been installed in the Demonstrator 
(the first module of the experiment) and data-taking will 
start at the end of 2019.
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