
HAL Id: tel-03521374
https://theses.hal.science/tel-03521374v1

Submitted on 11 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time-independent geometrical deformation for elastic
contacts

Camille Brunel

To cite this version:
Camille Brunel. Time-independent geometrical deformation for elastic contacts. Image Processing
[eess.IV]. Université de Bordeaux, 2021. English. �NNT : 2021BORD0235�. �tel-03521374�

https://theses.hal.science/tel-03521374v1
https://hal.archives-ouvertes.fr

THÈSE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR

DE L'UNIVERSITÉ DE BORDEAUX

ECOLE DOCTORALE MATHÉMATIQUES ET

INFORMATIQUE

SPÉCIALITÉ : INFORMATIQUE

Par Camille BRUNEL

Déformations géométriques indépendantes du temps pour les

contacts élastiques

Sous la direction de : Pascal BARLA
Co-encadrants : Pierre BÉNARD, Gaël GUENNEBAUD

Soutenue le 12 octobre 2021

Membres du jury :

M. Loïc BARTHE Professeur Université de Toulouse Président du jury
Mme. Maud MARCHAL Professeure Université de Rennes Rapporteure
M. Damien ROHMER Professeur Ecole Polytechnique Rapporteur
Mme. Stefanie HAHMANN Professeure Université de Grenoble INP Examinatrice
M. Pascal BARLA Chargé de Recherche Inria Université de Bordeaux Directeur de thèse
M. Pierre BÉNARD Maître de Conférence Université de Bordeaux Co-encadrant de thèse
M. Gaël GUENNEBAUD Chargé de Recherche Inria Université de Bordeaux Co-encadrant de thèse

Thèse réalisée au Centre de Recherche Inria Bordeaux - Sud-Ouest,
au sein de l’équipe projet MANAO.

Thèse réalisée au Laboratoire Bordelais de Recherche en Informatique,
au sein du département Image et Son.

UMR 5800 Université, 33000 Bordeaux, France.

Abstract
As animated films and series become more and more present in the mainstream en-

tertainment, the artists’ needs are growing in term of fast and intuitive animation tools.
Artists not only heavily rely on their imagination and skills to bring digital models to
life; they also take inspiration from the physical world to better immerse viewers in their
virtual environment.

Many objects of our everyday surroundings exhibit elastic deformations when put in
contact with others, e.g., a stress ball crushed by a hand, a pillow smashing a head during
a pillow fight or a soft ball bouncing on a goal post. They most notably tend to squash
inside the contact and to bulge outside of it. Such squashing and bulging effects are
essential to communicate plausible deformation while capturing the physical behavior of
soft materials in a variety of contexts, such as animated films. This type of deformation
is, however, notoriously difficult and tedious to manually reproduce by computer graphics
(CG) artists, and existing tools remain limited for artistic use.

In practice, such deformations are thus generated through physically based simulation
methods. However, due to their time-dependency, physical simulations must be run after
the rigging and animation steps, preventing non-linear editing of the 3D scene. Moreover,
artists also often resort to cartoonish deformation effects to better convey emotions and
thoughts. Such exaggerated effects are difficult to achieve through physical simulations.

The main contribution of this thesis is a novel purely geometric deformation framework
that assists the artist by resolving local contacts between elastic objects and producing
bulge effects in an art-directable way. To achieve a seamless integration within anima-
tion workflows, we designed our deformation tool to provide instant feedback to the artist
while enabling non-linear editing thanks to a fully time-independent strategy. To produce
plausible bulge effects, our method can also preserve the volume exactly, while artistic
controls are also possible to explore more exaggerated behaviors. More specifically, start-
ing from multiple meshes in intersection, our deformer first computes the parts of the
surfaces remaining in contact, and then applies a procedural displacement controlled by
a profile curve. Although our tool processes each frame independently, it achieves tempo-
rally continuous deformations with artistic control of the bulge through a small number
of pseudo-stiffness parameters. The plausibility of the deformation is further enhanced
by anisotropically spreading the volume-preserving bulge. An extension is also proposed
to handle self-collisions between adjacent parts of the same object that often occur in
character skinning animation.

The result of this work is a robust, real-time deformer that can handle complex geo-
metric configurations like a ball squashed by a hand, colliding lips, bending fingers, etc.

Keywords: 3D animation, mesh deformation, collision response, computer graphics, ge-
ometry processing.

i

Résumé
Les films et séries d’animation étant de plus en plus présents dans le divertissement grand

public, les besoins des artistes en terme d’outils d’animation rapides et intuitifs ne cessent de
croître. Les artistes ne font pas seulement appel à leur imagination et à leurs compétences pour
donner vie à aux modèles numériques, ils s’inspirent également du monde physique pour mieux
immerger les spectateurs dans leur environnement virtuel.

De nombreux objets de notre environnement quotidien présentent des déformations élastiques
lorsqu’ils sont mis en contact avec d’autres, par exemple une balle anti-stress écrasée par une
main, un oreiller écrasant une tête lors d’une bataille d’oreillers ou un ballon rebondissant sur
un poteau de but. Ils ont notamment tendance à s’écraser à l’intérieur du contact et à gonfler
à l’extérieur. Ces effets d’écrasement et de gonflement sont essentiels pour communiquer une
déformation plausible tout en capturant le comportement physique des matériaux mous dans
divers contextes, tels que les films d’animation. Ce type de déformation est toutefois connu
pour être difficile et fastidieux à reproduire manuellement par les artistes, et les outils existants
restent limités pour une utilisation artistique.

En pratique, ces déformations sont donc générées par des méthodes de simulation physique.
Cependant, en raison de leur dépendance temporelle, elles doivent être exécutées après les
étapes de rigging et d’animation, ce qui empêche une édition non linéaire de la scène 3D.
De plus, les artistes ont souvent recours à des effets de déformation caricaturaux pour mieux
transmettre les émotions et les idées qui sont difficiles à obtenir par simulation physique.

La principale contribution de cette thèse est un nouvel outil de déformation purement géo-
métrique et indépendant du temps qui assiste l’artiste en résolvant les contacts locaux entre
les objets élastiques, ainsi qu’en produisant des effets de gonflement qui peuvent être contrôlés
par l’artiste. Pour parvenir à une intégration transparente dans le processus de création d’ani-
mation, nous avons conçu notre outil de déformation de manière à fournir un retour instantané
à l’artiste tout en permettant une édition non linéaire grâce à une stratégie entièrement in-
dépendante du temps. Pour produire des effets de gonflement plausibles, notre méthode peut
aussi préserver intégralement le volume, bien que des contrôles artistiques soient également
possibles pour explorer des comportements plus exagérés. Plus précisément, à partir de plu-
sieurs maillages en intersection, notre déformeur calcule d’abord les parties des surfaces restant
en contact, puis applique un déplacement procédural contrôlé par une courbe de profil. Même
si notre outil traite chaque image indépendamment, il réalise des déformations temporellement
continues avec un contrôle artistique du gonflement grâce à un petit nombre de paramètres de
pseudo-rigidité. La plausibilité de la déformation est encore renforcée par la répartition aniso-
trope du gonflement préservant le volume. Une extension est également proposée pour gérer les
auto-collisions entre des parties adjacentes d’un même objet, qui se produisent fréquemment
dans le contexte d’animation de personnages.

Le résultat de ce travail est un déformeur temps réel robuste qui permet de gérer des confi-
gurations géométriques complexes telles qu’une balle écrasée par une main, des lèvres qui se
touchent, des doigts qui se plient, etc.

Mots-clés : Animation 3D, deformation de maillages, resolution de collision, informatique
graphique, traitement de la géométrie.

ii

Remerciements
Comme dans un célèbre long-métrage d’animation de Disney j’ai eu trois bonnes fées

pour m’accompagner dans cette aventure qu’a été ma thèse : Pierre, Gaël et Pascal. Merci
d’avoir cru en moi quand je n’y croyais plus. Merci de m’avoir supportée dans tous les
sens du terme tout au long de ces quatres années, de m’avoir rattrapée plus d’une fois
au bord de l’abandon et d’avoir été là, chacun avec vos spécificités, vos sensibilités, à
chaque instant de mon doctorat.
Je voulais également remercier mon jury : Damien Rohmer et Maud Marchal pour

avoir accepté d’évaluer mon manuscrit, Loïc Barthe pour avoir présidé mon jury et enfin
Stefanie Hahmann pour avoir accepté de faire partie de ce jury et pour m’avoir donné
goût à la géométrie et à la modélisation depuis mes études à l’ENSIMAG. Je retiendrai
votre bienveillance et vos remarques dans vos rapports et durant la soutenance, ainsi que
les discussions intéressantes qui m’ont amenée à réfléchir sur d’éventuelles perspectives
pour mes travaux.
Merci à mon guide de SIGGRAPH et de Los Angeles en général, Valentin, pour ta

gentillesse, ta bienveillance et tes conseils pour arriver au bout de cette thèse. J’espère
pouvoir venir de te revoir une fois que cette pandémie sera derrière nous.
Ces quatre années n’auraient pas été les mêmes sans l’équipe MANAO. Merci à Anne-

Laure de m’avoir rendu la vie plus facile, de m’avoir aidé pour toutes les tâches adminis-
tratives ou pour les missions. On n’oubliera jamais le dossier MITACS ! Merci à Romain
et Patrick d’avoir veillé sur moi pendant le premier confinement. Vos messages du ven-
dredi soir me faisaient chaud au cœur et me faisaient me sentir moins seule pendant
cette période. Romain, je n’oublierai pas les tablettes de chocolat noir à la fleur de sel
et les Dinosaurus non plus.
Cette thèse a également été marquée par de belles rencontres avec les non permanents

de l’équipe avec qui j’ai partagé cette aventure et quelques bières au Stag and Loar :
David, Charlie, Charlotte et Corentin. Je me rappellerai toujours de ces soirées de confi-
nement à jouer à AmongUs. Ne croyez jamais Corentin s’il vous dit qu’il n’était pas
dans la trappe ! Même si nous ne nous sommes pas vu souvent, merci Alban de m’avoir
soutenue tout au long de cette dernière ligne droite, ces derniers mois qui m’ont paru
interminables. Ces longues discussions du soir en jouant à Code Names (ou pas) m’ont
aidé à garder la tête hors de l’eau pour pouvoir atteindre la ligne d’arrivée. Mégane,
comment ne pas te remercier tout particulièrement. Nous avons passé ces quatre années
ensemble, du début à la fin, et tu as toujours été là pour me remonter le moral quand ça
n’allait pas. Je me souviendrai de ces après-midi passées à discuter alors qu’on prévoyait
à chaque fois de courtes pauses. Nous en avions toutes les deux besoin pour évacuer,
reprendre notre souffle et repartir au travail. La seule chose que je regretterai c’est que

iii

nous n’ayions pas pu aller ensemble à SIGGRAPH cette année présenter chacune notre
papier. Si l’on nous avait dit au départ que nous publierions toutes les deux en même
temps à SIGGRAPH nous ne l’aurions jamais cru. Je crois que nous pouvons en être
fières !
Et enfin, last but not least, j’aimerais remercier ma famille et mes proches de m’avoir

soutenue tout au long de cette aventure. Je sais que cela n’a pas été facile pour vous,
mais vous avez toujours répondu présent pour moi. A n’importe quelle heure je savais
que d’un coup de fil je trouverai le soutien dont j’avais besoin pour continuer d’avancer.
Cette victoire et ce titre de docteur c’est à vous tous que je le dois, merci.

iv

Publications
The work presented in this manuscript appeared previously in the following publica-

tions:

[BBG21] Camille Brunel, Pierre Bénard, and Gaël Guennebaud. A time-independent
deformer for elastic contacts. ACM Trans. Graph., 40(4), 2021.

[BBGB20] Camille Brunel, Pierre Bénard, Gaël Guennebaud, and Pascal Barla. A time-
independent deformer for elastic-rigid contacts. Proc. ACM Comput. Graph.
Interact. Tech., 3(1), 2020.

v

Contents
1. Introduction 1
2. Related work 9

1. Collision detection . 9
1.1. Spatial data structure . 10
1.2. Discretization approaches . 13
1.3. Other approaches . 14

2. Deformation of elastic objects . 16
2.1. Physical simulation . 16
2.2. Geometrical deformation . 18
2.3. Articulated characters . 26

3. Our approach 39
1. Contact definition . 42
2. Resulting deformation . 44

4. Contact definition 47
1. Collision detection . 47
2. Mapping . 49

2.1. Shared parametrization . 49
2.2. Unique mapping direction . 52

3. Potential contact surface . 56
4. Contact definition . 58

4.1. Ball testing . 59
4.2. Geometrical method . 61

5. Algorithm . 65

5. Deformation 67
1. Deformable region . 70
2. Direction field . 71

2.1. Direction field diffusion using parallel transport 72
2.2. Blended direction field . 74

3. Amplitude and slope fields . 75
4. Final deformation . 77

4.1. Profile curve definition . 77
4.2. Volume constraint . 79

vii

Contents

5. Bulge repartition . 80
5.1. Painted bulge map . 81
5.2. Anisotropy . 84

6. Algorithm . 85

6. Application to skinning 87
1. Shared region & Partition of unity . 88

1.1. Shared region definition . 88
1.2. Mapping direction . 89
1.3. Crease detection & Partitioning . 89

2. Pipeline adaptations . 91
2.1. Consistent contact zones and scalar fields 91
2.2. Consistent mapping direction . 91

3. Discussion . 92

7. Results 95
1. Qualitative results . 96

1.1. Simple configurations . 96
1.2. Multiple disconnected components 99
1.3. Skinning & Self-intersections. 100
1.4. Surfaces with complex reliefs. 101

2. Comparison . 102
2.1. Physical simulation . 102
2.2. Comparison to Implicit Skinning 104
2.3. Comparison of methods A and B 105

3. Artistic control . 108
3.1. Profile curve editing . 108
3.2. Manual parameter tuning . 109
3.3. Spatially-varying parameters . 111

4. Corner cases & limitations . 113
4.1. Thin structures . 113
4.2. Folds . 113
4.3. Temporal continuity . 115

5. Performance . 116
5.1. Spatial searches . 117
5.2. Matrix factorizations . 117

8. Conclusion 121
Appendix 127
A. Gaussian quadrature for triangular domain 129
B. Laplacian and contraints 131

1. Laplace operator . 131

viii

Contents

2. Boundary conditions and linear constraints 133

C. Volume constraint equation 135
D. Résumé en français 139

1. Introduction . 139
2. Notre méthode . 143

2.1. Définition du contact . 143
2.2. Déformation résultante . 146
2.3. Application au skinning . 150

3. Conclusion et perspectives . 151

Bibliography 155

ix

1
Introduction

Virtual worlds are parallel universes that allow us to escape from our everyday life.
Although imaginary, to be convincing they must refer to the real world that we know
through visual cues. In the context of traditional, hand-drawn animation, the animators
Frank Thomas and Ollie Johnston theorized in their 1981 book “The Illusion of Life:
Disney Animation” [TJ81], twelve basic principles of animation in order to produce
an illusion that cartoon characters adhered to the basic laws of physics. These principles
are still relevant for virtual characters of today’s computer animation [Las87].
Many objects in our everyday surroundings exhibit elastic deformations when put into

contact with another object: a cat walking on a pillow, a hand pressing on a window or
even our cheeks being crushed by our grandmother every time we see her. They most
notably squash inside the contact region and bulge as their volume gets redistributed
outside of it. The representation of this type of material in virtual world must preserve
those desirable properties of the object’s appearance and motion to be convincing. Such
squashing and bulging effects are essential to communicate plausible deformations. They
are particularly important in character animation, for instance when artists set out to
convey actions of a character on the environment or on another character (e.g., grabbing,
pushing, pressing, etc). As an illustration, Figure 1.1 presents various examples of elastic
contacts of character skin in industrial productions.
Over the past thirty five years, digital models and virtual worlds have become an

integral part of everyday entertainment. Driven by the development of animated films
and video games, the need for virtual object modelling, deformation and animation tools
is increasing. More recently, streaming platforms have made animated series and films
even more accessible by bringing them directly into our homes. This encourages the
development and research of new methods and tools to facilitate the creation of more
and more complex virtual characters while stimulating the creativity of artists.
The creation of 3D animations is a complex process requiring different steps and

artistic skills. A solid organization and structure are therefore necessary to achieve such
a project as the production of an animated film. This creation pipeline is summarized in
Figure 1.2. In particular, after all characters and environment assets have been designed
by modelers, it is time to bring them to life following the storyboard given by the director.
The characters must be equipped with different connected system to be able to come to

1

Chapter 1. Introduction

Coco, Pixar© (2017)

Bao, Pixar© (2018)

The Incredibles, Pixar© (2004)

Big Hero 6, Disney© (2014)

Figure 1.1.: Contacts in animated films. Contacts are everywhere in animated films. Different
types of contacts can be observed. On the top left and bottom right collision between a rigid
and an elastic objects are illustrated with the hands of Coco on the window and the belly of
BayMax pressed by the armor. Top Right: Self collisions are also present especially on the skin
of articulated characters, here on the arm articulation. Bottom Left: Collision between elastic
objects in general, for example between the cheeks of Bao and the woman.

life: the motion system, the control system and the deformation system. All three are
usually gathered under one term: the rigging, which often reduces to skeleton animation.
Using these tools, the animator can direct these digital models like a puppeteer animates
his/her puppets.
This research focuses on the deformation system and in particular the deformation of

elastic objects during a collision in computer animation. The particularities of this field
of application impose several requirements on the design of the used tools.

Deformations: artists’ needs
As previously stated, in animated films, the resulting animation should be believable.
However, as a reflection of the director’s and artists’ imagination, it is highly art-directed,
both in terms of poses as well as deformations. It not only communicates events, but also
emotions and thoughts. Unfortunately for the artist, the expected deformations often
deviate from what is physically accurate, and they usually depend on the animation

2

Figure 1.2.: The classical animated film production pipeline is composed by three major
steps. The pre-production is the preparation stage. It is here that the story, the storyboard
and the animatics are designed, but also the aesthetic of the complete universe that the director
wants to create. Then comes the production stage where all the visual elements needed for the
final project are created: 3D models, sets, etc. First the geometry of characters, sets and props
imagined and designed in the pre-production stage are recreated in the modeling environment
along with the definition of their material visual properties and textures. The outer shell of the
virtual models are created but are still lifeless. The rigging stage prepares the characters for
animation, it defines the shape deformations and the controls to be used by the animators, like
the strings attached to puppets to make them come alive. Then the animators bring them to life
like puppeteers following the storyboard conceived in pre-production as reference. Simulation
and special effects are used to animate unscripted animations such as fluids, cloth or smoke.
These elements just react to their environment with a behavior mainly dictated by physics laws.
As in live action films, once all the actors and sets are in place, we can turn on and set up the
lights and the cameras and start filming, in this case through image synthesis renderers. The
final touches are finally added in the post-production stage to make the final production look
polished and professional (compositing, color correction, sound effects, etc.). The final product
is eventually rendered at this stage.

style and the sought-after aesthetic of the production. Furthermore, the animators lead
the viewer to the essence of a situation, for example using exaggeration. For the collision
between elastic objects, the squash conveys information about the physical properties of
objects (mass, stiffness, etc.) but an exaggerated squash can also be used to magnify the
effect of the collision. For all those reasons, we can assume that physical accuracy is not
a requirement in computer animation. Physical simulations can create realistic motion
but they are poor at stylizing movements as they are constrained by the laws of physics.
In this work, we will thus rather aim for plausibility to preserve this artistic freedom
characteristic of cartoon animation. Nevertheless, as previously mentioned, although
not restrained by physics law, to be plausible and believable some visual cues need to be
maintained during the deformations. For example, when a ball hits a hard floor, unless
it has a hole, it should roughly keep its volume and it is the same for the character skin.
Another requirement concerning collision is the production of clean contact. When two
objects collide, they should be clearly in contact at some point. The animators even
prefer a slight intersection than a remaining gap between the two colliding surfaces.

3

Chapter 1. Introduction

Finally, to be able to reproduce the desired animation dictated by the directors’ will,
character rigging and rigging in general attempt to provide animators with as much
flexibility and control as possible. Producing an entire animation film requires a large
amount of work, as they do not lie on live-action plates as visual effects feature film. On
average, an animator can produce from 3 to 8 seconds of animation per day for a film
or serie depending on the expected quality. Artistic control combined with interactivity
to not slow down the artists’ work are therefore essential features to take into account
in the development of a deformation tool in this field.
In the very interesting course proposed by McLaughlin et al. [MCC11], Larry Cut-

ler expose the deformation requirement at DreamWorks Animation that summarize all
our goals in this research: high degree of cartoon squash and stretch, stylized character
designs, exaggerated and non-realistic range of motion, art-directed results, and imme-
diate feedback and control in the animation environment. We refer the interested reader
to this course for an enriching overview of the many challenges related to the task of
designing and animating digital characters in film and game production.

Deformations: technical solutions
Elastic objects are notably hard to animate by a computer graphics (CG) artist, es-
pecially when they collide with each others, because reproducing their squashing and
stretching behavior implies to manually craft plausible deformations in both space and
time (e.g., using lattice deformers [NS13]). The classical approach to address this
problem relies on the physics of elastic objects, either by explicitly simulating their
deformations (e.g., [NMK+06]), or by relying on plausible but faster approximations
(e.g., [MCKM15]). The obvious advantage of these approaches is their physical accu-
racy, provided artists manage to find the physical parameters that yield the sought-for
behavior. In practice, such an approach only provides to the artist an indirect control
of the elastic behavior and requires extensive training and skills, and frequent and time-
consuming trials and errors even for a simulation expert. Moreover, it does not easily
allow the exaggeration of the deformation, which is commonplace in cartoon animation.
Besides, the major limitation of simulations in an animation context is their dependence
on time: the simulation needs to be run from the first frame to the current frame of the
animation every time the artist modifies a parameter or the input animation. Therefore,
due to their time-dependency, physical simulations must be run after the rigging and
animation steps, preventing non-linear editing of the 3D scene.
The alternative solutions, at the opposite end of the methodological spectrum, are

manual, fully artist-controlled approaches such as those based on blend shapes, free-
form [SP86] or pose-space deformers [LCF00]. Their main advantage is their simplicity:
they provide instant feedback to artists, who are then in charge of producing compelling
deformations. In practice, bulging effects remain scarce in production because the task
of sculpting deformations and animating them by hand requires a significant amount of
time, even for accomplished artists. Even worse, each deformation is specific to the shape
of objects and their actual contacts, hence it cannot be reused in different situations (e.g.,
from shot to shot).

4

For character animation, an in-between class of solutions [MZS+11, GMS14] produces
time-independent deformations using quasi-static simulations — even though distant
contact deformations still depend on the path taken to the colliding state. These ap-
proaches can handle more general deformations than purely geometrical deformer, but
they are much more computationally demanding due to their iterative nature. Moreover,
these methods offer few control to the artist and, since they are based on physical laws,
they cannot produce exaggerated deformations typical of cartoon animation. Geometric
modelling approaches handling collisions (e.g., [LB19]) can be applied in this context,
but they require expensive optimization and lack artistic controls of the deformation.
The main objective of this thesis is to develop a deformation tool that assists the

artist by managing contacts and bulging effects in an art-directable way. As previously
mentioned, a seamless integration in animation workflows requires: (1) that the tool
provides instant feedback to the artist; and (2) that deformations are time-independent
to allow non-linear editing. For plausible bulging effects, it is also desirable that the
method preserve volume to some extent; even though artistic controls should also be
possible to explore exaggerated responses.
Only a few deformation techniques provide both interactive and time-independent

solutions. However, they also exhibit important practical limitations. Procedural de-
formers, such as the one proposed by [Wan15] or those integrated in industrial software
like Autodesk Maya© plugin iCollide or the Cinema4D© collision deformer offer instant
deformations with control of the bulge profile but are limited to the asymmetric case
of a collision between a rigid and an elastic object. They focus on interactivity and
artistic control and ignore volume conservation, which often yields to odd deformations.
Finally other methods provide (rather time-consuming) approximations of volume con-
servation and are restricted to specific configurations, such as the neighbor joints of a
rigged character [VBG+13], or the deformation of a cage that approximates the elastic
surface [APHS11].

Our approach
In this thesis we propose a geometric, surface-based and time-independent approach to
resolve local contacts and self contacts between elastic objects, producing plausible and
art-directable bulge deformations. We focus on local deformations as opposed to global
ones that are expected to be managed by the animators through control structures like
the skeleton in the case of articulated characters. For example, in the case of a character
who slaps the face of another one, we will aim at handling the deformation of the cheek
resulting from the collision with the hand but not the displacement of the head if the
slap is too strong.

Our idea is to rely on the computation of two regions on each object involved in a col-
lision: the contact zone which corresponds to the part where the two objects in collision
will stay in contact, and the deformable region that will be smoothly deformed to coun-
terbalance the volume initially enclosed by the surface in intersection. The extent and
shape of the regions are controlled by few, simple parameters, and the resulting deforma-
tion can be computed instantaneously at any frame of an animation. Yet, the produced

5

Chapter 1. Introduction

shape is stable during the animation without introducing any temporal dependencies.
The deformation is continuous in space, time and even when the relative stiffness be-
tween the colliding object changes. Even though plausible deformation are obtained
using the “basic” approach with few parameters, we also explore artistic control to de-
sign the shape of the bulge such as its amplitude, distribution, or the addition of higher
frequency details. This way, the user is free to produce either plausible deformations or
stylized ones to convey exaggeration or other cartoon effects.

Manuscript outline
The structure of this manuscript mainly follows the different steps of our deformation
pipeline.
In a first part, after reviewing the existing work on collision detection, which is the

first essential step in the definition of contact, Chapter 2 will give an overview of related
methods in the domain of elastic deformations, from physical simulations to manual ap-
proaches. An emphasis will be put on the volume preserving and collision-free techniques.
Approaches specifically designed for articulated characters will be finally reviewed.
An overview of our approach in Chapter 3 will then introduce our contributions

through the presentation of the different steps of the general pipeline developed in the
context of this thesis and some of its alternatives. All these steps will be more thoroughly
described in the following chapters.
Our method, working on each frame independently to fulfil the time-independence

requirement, is based on two main steps described in Chapter 4 and Chapter 5. In a
first stage detailed in Chapter 4, we resolve the collision and determine the contact zone,
that is the region of each involved mesh that will remain in contact with the opposite one
at the end of the deformation. The second stage, presented in Chapter 5, corresponds to
the computation of the deformation resulting from the collision around the previously
defined contact zone. The entire deformation, either in the contact zone or in the
surrounding region, should comply with our objectives of plausibility and controllability.
To this end, multiple artistic controls will be introduced throughout these two chapters
and an interactive painting tool offering the possibility to the user to spatially controls
the volume and distribution of the bulge will be detailed at the end of Chapter 5.
An extension of our pipeline for the application to articulated skinned characters

will be presented in Chapter 6. This type of application requires special treatments,
especially around joints when the two considered colliding parts correspond to adjacent
regions on the same initial surface.
Chapter 7 will be dedicated to the presentation of numerous results generated with our

method. Comparisons to existing methods will be proposed to evaluate the plausibility
of the produced deformations, and the extent of the artistic control possibilities offered
by our method will be illustrated. Of course, our method comes with some limitations
presented through corner cases configurations. A performance study and potential op-
timizations will also be discussed at the end of this chapter.

6

The work presented in this thesis deals with only one of the many physical effects found
in computer animation and resolved today using time-dependent simulation techniques
that lacks artistic intuitive control. In Chapter 8, we will conclude this document and
discuss the opening of new perspectives for future research with the same philosophy of
giving to the artist more control to design plausible animations and even exploring more
cartoon effects without being limited by the laws of physics.

7

2
Related work

We will start this chapter by a quick overview of the state-of-the-art collision detection
techniques. In a second section, we will present the full spectrum of methods used to
handle contacts of deformable objects.

1. Collision detection
Collision detection is used in many domains of computer science: robotics (e.g., for path
planning), physical simulations (e.g., surgical simulation) or even character animation.
The goal of this section is not to exhaustively review this field of research which is beyond
the scope of this thesis, but we will still strive to give an overview of the main families
of methods. Moreover, we will focus on the class of methods that are the most related
to our application: i.e., exact collision detection between polygonal meshes. Note that
we are not interested in collision response neither. For more details on this broad topic,
we refer the reader to the following surveys: [TKH+05, YKH+10, Eri04].

Broad vs. Narrow phase. In a generic 3D scene, since any object can potentially collides
with any other, performing an exhaustive pairwise collision test would be a nonstarter
because its quadratic cost would make it too computationally expensive given that it
must be performed at every frame. This observation is even worse when considering
object primitives (e.g., triangles). Therefore, to reduce the computational load, collision
detection methods can be classified in two phases [Mir97]: the broad phase and the
narrow phase.
On the one hand, the broad phase, also called n-body processing, aims at reducing

the number of pair tested by identifying smaller groups of objects that may be colliding
and by quickly excluding those that are definitely not in collision due to their distance.
On the other hand, the narrow phase, also called pair processing, is in charge of de-

termining the exact collisions between pairs of objects or primitives. Sometimes the
detection of collision between primitives is called the exact phase, but it is usually in-
cluded in the narrow phase and will not be discussed here. Collision detection can thus

9

Chapter 2. Related work

be seen as a pipeline of successive filters. These two phases can be performed using
different approaches to optimize the detection process.

Discrete vs. Continuous collision detection. In many applications we only need to
know if a collision occurs between two objects at a given point in time, a frame of an
animation for example. In such a case, discrete collision detection techniques are used.
These techniques have the advantage to be “fast” but they can miss collisions if an object
jumps past another one between two time steps: this is called the tunnelling effect. It can
cause problems for path planning for example if we want a robot to avoid any obstacle,
or in cloth simulation untangled state.
To alleviate this issue, continuous collision detection (CCD) methods have been devel-

oped. For example Bridson et al. [BFA02] proposed a CCD technique for cloth simulation
using linearly interpolated trajectories. These methods identify the first time of contact
and are thus more accurate. However, they require a long computation time and are not
widely used in interactive applications. Many approaches have been proposed to reduce
the cost of CCD methods, for example with feature-based bounding volume [HF07] or
normal cone tests [TCYM09, WLT+17]. In our case, as we want a time-independent
tool, we will focus on discrete collision detection.

Without aiming for comprehensiveness, we will cover in the next three sections some
of the classical optimization techniques proposed in the literature to speed up discrete
collision detection. First, we will describe different spatial data structures and how
they can be used to narrow down the collision tests efficiently. We will then present
another family of methods that uses discretized representations of the input data to
detect collisions. The last section is dedicated to additional optimization techniques,
some of them can be combined with the two previous categories.

1.1. Spatial data structure
Instead of performing expensive primitives intersection tests directly, the idea here is
to group these primitives (or objects) inside simpler geometric shapes to perform early,
cheaper overlap rejection tests. If two bounding shapes do not overlap, their respective
embedded group of primitives do not intersect. Moreover, to avoid the quadratic worst
case scenario mentioned earlier, when a large number of objects are considered for colli-
sion, they should be divided into small disjointed subsets to speed up the tests. We will
present two ways of representing this partition.

Bounding Volume (BV). A bounding volume corresponds to a simple geometry that
encapsulates a more complex object or a set of primitives. They are used to improve
the efficiency of overlap rejection test. Different types of bounding volumes have been
proposed, as illustrated in Figure 2.1. Spheres [Hub95] have been widely used as they
are easy to implement, have simple and relatively fast intersection tests, and are invari-
ant to rotation which is important in animated environments. However, they are not a
good fit for all shapes like, for example, long and flat objects. Axis Aligned Bounding

10

1. Collision detection

Sphere AABB OBB k-DOP
Figure 2.1.: Bounding volumes. Examples of the different types of the most used bound-
ing volumes on a 2D object. They are ordered from left to right, from the coarser but most
computationally efficient to the tightest but most expensive in terms of overlap rejection test.

Boxes (AABB) [Ber97] are even more computationally efficient in terms of overlap test,
and they are a better fit in general than bounding spheres. However they require dy-
namic updates during an animation since they are not rotationally invariant. Oriented
Bounding Boxes (OBB) [GLM96] have a better fit than the ABBB and Spheres, and
they are also invariant to rotations. The counterpart of the quality of the fitting is their
higher complexity making both their intersection tests and construction significantly
more expensive. Last but not least, let us also mention k-sided discrete orientation
polytopes [Zac98, KHM+98], or k-DOP, which are a generalization of AABB in 3D.
Indeed an AABB is a 6-DOP. They require the same update when the included objects
or primitives are rotated. It is worth noting that larger k values improves the fitting
approximation quality but at the cost of more expensive intersection tests. The main
challenge here is to find the best trade-off between the number of tests (one for each
side) and the speed of each test. More complex shapes fit more tightly the underlying
geometry and thus fewer overlap tests are needed but each test is more expensive.

Bounding volume hierarchies (BVH). Bounding volume hierarchies arrange any of the
previous bounding volumes into a tree structure to reduce the number of tests that need
to be performed by efficiently culling blocks of irrelevant object parts. The internal
nodes of the tree contain BV information and its leaves contain object primitives. BVH
can be used to accelerate both the broad and narrow phases processing.
The construction algorithms of these trees can be classified into three primary cate-

gories:

• top-down: This approach starts with the root node containing all the scene prim-
itives. At each step, the primitives are split into two or more disjoint subsets that
correspond to the node’s children, and they are bound in the chosen bounding
volume. Those are further processed recursively. The recursion continues until
a termination criterion (e.g., maximum tree depth, minimum primitive count per
leaf) is met.

• bottom-up: This method starts at the primitives level, with the input set as the

11

Chapter 2. Related work

uniform grid quadtree (octree in 3D) kd-tree BSP
Figure 2.2.: Spatial partitioning. Examples of different spatial partitioning structures in 2D
for the same input scene.

leaves of the tree and then group two or more of them to form a new internal
node, bounding them in the chosen bounding volume. It then proceeds in the
same manner until everything has been grouped under a unique rote node.

• insertion: This approach starts from an empty tree and then all other primitives
and their BVs are added one at a time to this tree minimizing the increase of
volume.

Top-down methods are the most commonly used because they are the easiest to imple-
ment and the fastest [LGS+09].
For animated objects, the BVH needs to be either rebuilt from scratch, updated, or

simply refitted while keeping the tree structure. Deformable objects are very challenging
and the update cost must be considered for choosing a given BVH type. In general, BVH
based on spheres, AABB and k-DOPs are the most well suited for arbitrary deforma-
tions, such as in cloth animation, thanks to the simple constructions of both the BV
themselves and the BVH. Nonetheless, some methods have been proposed to reduce the
update cost of a BVH. For instance, the Bounded Deformation Tree [JP04] is a bound-
ing sphere hierarchy which can perform collision detection of reduced deformable objects
(i.e., represented as a linear combination of displacement fields) at costs comparable to
collision detection with rigid objects. Larsson et al. [LAM03] also proposed a solution
in the special case of objects deformed by morphing or blending, building a BVH over
one target pose and refitting it to the others.

Space partitioning. Spatial partitioning is an approach to accelerate broad-phase pro-
cessing. It consists in recursively partitioning the embedding space into disjoint regions
and associating the objects (or their bounding volume) with all the regions that they
overlap. These methods allow to restrict pairwise object tests to objects that are lo-
cated in the same region of space. Several spatial subdivisions can be used: uniform grid
[Tur90], octree [BT95], k-dimensional tree [Ben75] and binary space-partitioning (BSP)
tree [FKN80]. An illustration of these different structures is given in Figure 2.2.

Sibling regions of spatial partitioning structures never overlap, never extend beyond
the space of their parent, and their union always covers their parent space. These prop-
erties distinguish them from the bounding volume hierarchies. The absence of overlap

12

1. Collision detection

can potentially cause memory issues due to the redundancy: if a primitive belongs to two
adjacent cells, it is usually duplicated in the data structure. We can also notice, when
comparing to BVH, that each node of a spatial partitioning structure can be implicitly
seen as a bounding volume. For grids and k− d trees, it corresponds to AABB, for BSP
tree to a k-DOP.
In addition to the fact that these techniques assumes finitely size scenes, they have

to be rebuilt or updated every time the objects configuration changes, whereas a BVH
can be simply refitted. Moreover, the efficiency of uniform grids is highly dependent
on the chosen cell size, they can thus be computationally expensive or prohibitively
memory intensive. However many methods have been developed to alleviate this issue.
For example, Teschner et al. [THM+03] use a hash function for compressing a potentially
infinite regular spatial grid to reduce computational overhead, and can detect collisions
and self-collisions of deformable tetrahedral meshes in real-time. Computation can also
be sped up using Graphics Processing Units (GPU) as in the k-Det algorithm of Weller
et al. [WDZ17].
With this type of spatial data structure it is important to consider the balance between

overlap rejection cost and memory cost. If the bounding volumes or the leaf nodes (or
cells) contain few primitives, only a few intersection tests between primitives need to be
performed after the narrow and broad phases, but a large amount of memory is required.
Moreover, a tighter tree also implies a more expensive traversal cost to reach the leaves
due to either a deeper tree or a more expensive rejection test per node. Conversely,
if the cells or bounding volumes embed a large number of primitives, the memory and
traversal cost of the structure will be lower, but a large number of expensive intersection
tests will be required.

1.2. Discretization approaches
Instead of working directly on the objects, in this second category of techniques, colli-
sion detection is performed on discretized representations of the objects or of the space
surrounding them.

Image-space techniques. Image-space methods process 2D projections of the 3D ob-
jects. This class of approaches is thus convenient to implement on graphics hardware
(GPU). They have been applied first for convex objects only [SF91] and then extended to
concave objects [MOK95]. They implement intersection tests through the rasterization
of the object primitives. Therefore, such techniques do not require any pre-processing,
and they directly benefit from GPU acceleration, which makes them especially appro-
priate for dynamic environments.
Image-space algorithms have been improved using Layered Depth Images (LDI)

[SGHS98] such as in the work of Heidelberger et al. [HTG03, HTG04]. The approach
of Allard et al. [AFC+10] even uses a layered depth image per dimension to obtain a
collision volume, often called Layered Depth Cube. Such methods are obviously also well
suited for GPU implementations. However, since the test is performed at the resolution

13

Chapter 2. Related work

Figure 2.3.: Distance field. Examples of three color-mapped distance field slices from
[TKH+05]. The distance is mapped on a color scale from blue for close distances, to green
then red when the distance increases.

of the buffers into which the objects are rendered, all image-space collision detection
methods are approximate and therefore not applicable in our case.

Distance Fields. Since collisions occur when the minimum distance between two objects
is strictly negative, signed distance fields can be used in collision detection (Figure 2.3).
They produce robust collision detection, but their bottleneck is the update of the dis-
tance fields for deformable object. It can be alleviated for example using image-based
approaches [VSC01]. Their memory cost is also an issue since the fields must be stored
in a volumetric grid. However this limitation can be improved by only computing fields
near the objects and using hierarchical adaptive grids [BMF03].

1.3. Other approaches
Feature- and simplex-based algorithms. Feature-based approaches directly work on
the primitives of the considered objects. Their objective is to return the closest features
between a pair of objects. This output can be used to determine the closest distance
between them, which serves as a basis for collision detection.
The earliest and most well known collision detection algorithm based on the tracking

of closest features is the Lin–Canny algorithm [LC91], also known as Voronoï Marching.
It consists in partitioning the space around the objects into Voronoï regions that enable
the detection of closest feature pairs between polyhedrons. This algorithm exhibits
severe flaws that have been addressed by the Voronoï-Clip (or V-Clip) algorithm [Mir98].
However, both methods only work for convex, polygonal, and closed objects. Concave
objects must be represented as the union of convex sub-parts.

14

1. Collision detection

In 2D In 3D
Figure 2.4.: AirMesh. This algorithm considers not the objects but the air between them.
Given an input scene with multiple objects, it constructs and maintains a mesh of the empty
space between the initial objects. This method applies to both 2D (left) and 3D (right). (Source:
[MCKM15])

Rather than focusing on primitives, simplex-based algorithms work on the convex
hull of an affinely dependent set of points. The origin of these approaches is the GJK
algorithm [GJK88] that uses Minkowski difference on polyhedrons. Two convex objects
collide if and only if their Minkowski difference contains the origin, and in that case
a measure of their penetration is available. If the origin is not enclosed, the distance
between the two input simplex corresponds to the distance to the origin of the Minkowski
difference polyhedron. Unlike feature-based methods, since the GJK algorithm does not
consider primitives but points sets, it is not limited to polygonal surfaces. For instance
it can process implicit surfaces. However, it only works for convex polytopes.

Empty space tracking. Instead of considering the objects themselves, a last family of
approaches focuses on the empty space between the objects. A recent example is the
Air-Mesh method of Müller et al. [MCKM15]. It uses a triangle mesh (resp. tetrahedral
mesh), to model the air between deformable 2D objects (resp. 3D objects), as illustrated
in Figure 2.4. A collision is detected when the area of a triangle (resp. volume of a
tetrahedron) is negative. This method is fast and enables the computation of collision
detection and response at once. However, in 3D, the update of the tetrahedral mesh
is computationally expensive, thus restricting this approach to configurations for which
updates are not required, such as objects moving toward each other like cloth layers.

Culling. Applicable either in the broad or narrow phase, culling approaches eliminate
unnecessary tests between objects or object parts based on some high-level properties
such as, for example, object velocity [VJ94]. For self-collisions, Barbic et al. [BJ10] use
pre-computed certificates which, if satisfied, prove the absence of self-collisions. To be
effective the computational cost of a culling approach must be lower than the cost of the
eliminated tests themselves.

15

Chapter 2. Related work

Self-collisions are a special case for most of the methods presented previously. They
are commonly neglected for rigid bodies, but they often need to be considered for de-
formable objects. Contrary to inter-collisions, which correspond to collisions between
two distinct objects, self-collisions refer to collisions between two regions of the same
deformable object. Their detection requires a significant computation time as many ad-
jacent or nearby primitives of the deformable surface are very close to each other and
can hardly be eliminated by spatial data structures. Bounding volumes can be used to
detect self-collisions but different heuristics have been proposed to avoid large overhead
due to unnecessary self-collision test of neighboring bounding volumes [VT94]. For a
complete review of (self-)collision detection techniques for deformable objects, we refer
the interested reader to the recent survey of Wang and Cao [WC21].

2. Deformation of elastic objects
Starting with Lasseter’s discussion of squash and stretch in 3D animation [Las87], and the
seminal work of Terzopoulos et al. [TPBF87] on elastic models, the quest for physically
plausible deformations of soft bodies led to a large body of techniques. Their spectrum
ranges from accurate physical simulation (Section 2.1) to geometrical approaches (Sec-
tion 2.2), some of which are entirely manual. In Section 2.3, we detail how these families
of approaches have been applied to the specific case of articulated characters.

2.1. Physical simulation
The classical approach to handle soft bodies deformation in computer graphics is to rely
on the physics of elastic objects by explicitly simulating their behavior. Physically-based
simulation produces realistic deformations by discretizing Newton’s laws of motion and
determining the corresponding forces that must be applied to the system. Then the
positions of the deformable model are updated through integration schemes. This type
of methods can generate complex motions such as, for example, the stretching of an
elastic body or the pressure and viscosity of a fluid, but also secondary motions such
as the jiggling of a fat belly. They can even handle collision and self-collision adding
collision response forces to the system for example.
The obvious advantage of these approaches is their physical accuracy, provided artists

manage to find the physical parameters that yield the sought-for behavior. As illus-
trated in Chapter 7, Section 2.1, many parameters must be provided to setup a simple
simulation: the sampling resolution of the input objects, the solver and its time-step,
physical quantities such as the stiffness and damping, etc. The combination of all those
parameters makes the result of the simulation hard to predict, especially for an artist.
Therefore, in practice, setting a physically-based simulation requires extensive training
and skills, and frequent trials and errors even for simulation experts. In addition, physi-
cal simulations can suffer from instabilities depending on the chosen integration method
and time-step. Moreover finite element simulation methods, often used in physical sim-
ulation, is computationally expensive, especially when small details must be captured.

16

2. Deformation of elastic objects

For more details about this family of methods, we refer the reader to existing surveys,
for instance [NMK+06, MSJT08]. However note that, unlike computational physics, for
most applications in computer graphics (special effects, games, interactive systems...)
the speed and controllability of the simulation are as important as its accuracy, and vi-
sual plausibility is often sufficient. We can distinguish two large classes of methods: the
well known ones based on meshes, and meshfree approaches which are usually based on
a moving least squares discretization [AOW+08]. For instance, in this later category of
approaches in computer graphics, Pauly et al. [PPG04] propose a method handling local
deformation of quasi-rigid object resulting from collision. It focuses on local collisions
by explicitly computing the contact surface between objects and distributing the trac-
tion forces that act on their surfaces to drive a rigid body simulation. In the following
paragraphs, we focus on approaches more specifically tailored to real-time applications.

To allow interactive animation of deformable models, Position-Based Dynamics (PBD)
[BMM15] approximate physical simulation by modeling dynamic particles with masses
whose motion is governed by a set of generally non-linear constraints. The system
of constraints is composed of equality (bilateral constraint) or inequality (unilateral
constraint) equations. For example, collisions can be modeled as unilateral constraints.
Solving this system permits to directly update the particle positions, hence avoiding
to model external and internal forces. PBD has the advantage to be unconditionally
stable and fast solver can be used. However, this method comes with some limitation.
First, like all physically-based methods, it is time-dependent. Second, the stiffness of
the object is hard to predict as it not only depends on the user parameters but also on
the chosen time step which is little intuitive.
Projective Dynamics [BML+14] extends PBD to treat constraints in an implicit man-

ner with a local/global optimization. It avoids requiring constraints to be infinitely stiff.
This method results in more accurate deformations than PBD but, despite its perfor-
mance, it is still time dependent.

In summary, physical simulation encompasses many approaches (mass-spring systems,
finite elements methods, position based dynamics, etc.) that make different trade-offs
between speed and accuracy. The recent work of Li et al. [LFS+20] even allows the user
to specify a target accuracy while ensuring intersection- and inversion-free deformation.
Nevertheless, these methods share the two same major limitations: time-dependency and
little intuitive artistic controls. These constraints make simulation techniques difficult
to use by animators while interacting with 3D objects and prevent their use at rigging
and animation stage.

17

Chapter 2. Related work

2.2. Geometrical deformation
On the opposite end of the methodological spectrum, the alternative solutions to physi-
cally-based methods are the geometrical deformation techniques.

2.2.1. Cage-based space deformation
Cage-based deformation techniques, as detailed in the survey of Nieto and Susín [NS13],
fit within the category of purely manual approaches. These space deformation methods
consist in the deformation of the 3D space embedded in a cage of control points. Full,
direct artistic control is offered through the manipulation of these control points. The
space and therefore the enclosed finely detailed mesh located inside the cage are then
deformed according to the new positions of the control points and the chosen cage-to-
model relationship.
In its simplest form, the cage is a regular control lattice, as illustrated in Figure 2.5.

This type of structure is used in the Free-Form Deformation (FFD) technique intro-
duced by Sederberg and Parry [SP86]. To deform the space, thanks to the axis-aligned
structure of the lattice, this method defines the deformation of the embedded object
using trivariate Berstein polynomials, but other interpolation techniques could be used
(e.g., B-Splines). This was the first type of cage that has been used because of their
simplicity while producing smooth global deformations regardless of the complexity of
the object. Hahmann et al. [HBB+12] use this type of approach to develop a vol-
ume preserving FFD algorithm while proposing a GPU implementation. However, these
lattice-based approaches suffer from some drawbacks. Indeed, they never perfectly fit
the embedded object and the design of a targeted deformation could be complex, for
example in the case of articulated character with several limbs.
To better fit the embedded shape, one can define a cage as a low-resolution abstrac-

tion of the object, thus enabling to deform it through a simpler mesh, as illustrated in

input configuration final deformation
Figure 2.5.: Free form deformation. Right: The input mesh is embedded in a uniform 3D
lattice. Left: The manipulation of the vertices of the cage deforms the enclosed space and hence
the mesh. (Result obtained using the lattice modifier of Blender 2.91)

18

2. Deformation of elastic objects

bind pose deformed pose
Figure 2.6.: Cage-based deformation. Contrary to FFD, the embedding structure fits each
limb of the character separately allowing to deform them individually, here using Harmonic
Coordinates to transfer the deformation of the cage to the embedded mesh. (Source: [JMD+07])

the inset figure, from [JMD+07]. Because these spa-
tial structures are potentially irregular and not aligned
with the canonical axises, it is not possible to use
the simple interpolation scheme of FFD to control
the embedded object. As shown in Figure 2.6 sev-
eral coordinates systems have thus been proposed to
satisfy various geometrical constraints during the de-
formation, e.g., Mean Value Coordinates [Flo03], Har-
monics Coordinates [JMD+07], etc. Although auto-
matic methods for generating the embedding cage ex-
ist (e.g., [CB17]), they often need to be hand-tuned
by the artist to perfectly fit the object and its articulations. Expertise is required for the
creation of the embedding control structures but also to manipulate them to achieve the
expected deformation. To create an animation, the artist must keyframe the position of
the control points in time, indirectly giving life to the embedded object.

2.2.2. Data-driven approaches
A second group of approaches in the field of geometrical surface deformation is the one
of data-driven techniques. The concept behind data-driven approaches is to define a set
of sculpted example surfaces, i.e., explicit examples of how the input shape should look
like under some given poses, and then to interpolate between them smoothly to obtain
the desired intermediate deformations.
A well-known method falling in this category is Shape Interpolation, or Blend Shapes.

It is a linear model in which the individual basis vectors are not orthogonal but instead
represent individual sculpted key shapes. There are as many dimensions as example
shapes. Surface vertices, or control vertices, are thus simply a linear combination of the

19

Chapter 2. Related work

Figure 2.7.: Face Blend Shape development modeling for an animated feature realized by David
Rutherford (https://mung.artstation.com/projects/l6r2Y)

corresponding vertices on these key shapes Sk:

S =
m∑
k=0

ωkSk,

where m is the number of example shapes and ωk is the weight, also called slider, as-
sociated to the shape Sk. Blend Shapes is probably the most widely used approach to
skin deformation for facial animation. It allows the artist to deform the face of a char-
acter according to example poses corresponding to emotion for example. Each extreme
expression is sculpted by a modeling artist like the one presented in Figure 2.7, and
the animator just need to linearly interpolate between them to create the final expected
deformation. This method also offer a transition between the different emotions. The
advantage for the animator is that she/he does not need to animate each part of the mesh
precisely and manually. Despite its simplicity and effectiveness, this approach exhibits
some drawbacks. Because of the linear interpolation, example shapes interfere with each
other. Shape Interpolation is more an accumulation than an interpolation. Therefore,
when sculpting the example shapes, the artist needs to be careful in designing poses
which are as independent as possible in there deformations or effects.Moreover linear
interpolation does not always ensure a smooth transition between the poses because a
vertex only moves in a piecewise linear way. Finally, one could thought about using this
approach to animate the body of articulated character. However, by limiting the control
of the shape to the manipulation of weights between the example shapes, the control
would be quite complicated and non intuitive for that type of applications.
To reduce the number of dimension and decouple animation control from sculpting,

Lewis et al. [LCF00] introduced the Pose Space Deformation (PSD) technique. In this
approach, a pose is defined as a sample in a multi-dimensional pose space. These di-
mensions are for example the degrees of freedom of a character model (e.g., the amount

20

https://mung.artstation.com/projects/l6r2Y

2. Deformation of elastic objects

of bending at finger joints). The artist sculpts the target deformation for each example
pose, usually as a correction over geometric skinning. During the animation, the current
pose can be encoded as a feature vector defined in the pose space, and the final shape is
defined as an interpolation of the sculpted deformation associated with the considered
example poses. The interpolation method should define a smooth transition between
the different poses.
Despites the appealing artistic control offered by this type of techniques, a tremendous

amount of work is required to sculpt all the example poses. Moreover, these approaches
are highly dependant of the chosen interpolation method. Indeed, not all the coordinates
of the pose space represent a meaningful shape. In addition, the “reachable” configura-
tions are inside the convex hull of the example poses (no extrapolation). If the desired
deformation is not within the set of example poses, this implies that the artist must
create more example poses to enlarge the space of reachable configurations. Improving
the interpolation method is a way to reduce the number of example poses for the same
range of deformations, hence limiting the memory cost of the method.

2.2.3. Surface-based approaches
Finally, a third type of surface deformation techniques is the surface-based approaches.
Linear variational mesh deformation techniques are detailed and compared in the survey
of Sorkine and Botsch [BS08, SB09]. These methods allow the user to deform an initial
input surface thanks to intuitive manipulation of few handles defined on the mesh.
Different approaches have been proposed, for example the linearization of a physically
accurate deformation model coupled with a multi-resolution hierarchy to better preserve
surface details, or the representation of the surface using differential coordinates. The
methods falling in this last category try to preserve the geometric details of the surface
by maintaining as much as possible local differential properties under deformation, for
example Laplacian coordinates which describe the mean curvature and normal vector of
a vertex. The differential representation is deformed following user constraints, and the
final surface is then reconstructed by optimizing a geometric energy. In the case of linear
methods, this reconstruction boils down to the resolution of a linear system of equations
formulated using a differential operator such as the Laplace-Beltrami operator. These
methods are robust, easy to implement and relatively fast, especially for those involving
sparse linear systems taking advantage of optimized dedicated solvers. However, to
reproduce the physical properties of real-world materials, such methods may require a
large number of user constraints.

2.2.4. Deformation tools with contacts
Most of the methods falling into the three previous categories do not ensure collision-free
and/or volume-preserving deformations by design, only a few specific methods do.
First, we can mention in the category of space deformation methods, the field-based

techniques of Angelidis et al. [ACWK06] and von Funck et al. [vFTS06] that can be seen

21

Chapter 2. Related work

Figure 2.8.: Swirling-sweepers. Example of a mouse model “sculpted” using swirling-sweepers
from the input sphere on the right. The two shapes have the same volume. (Source: [ACWK06])

as volume-preserving sculpting tools. For the former technique, the artist draws a defor-
mation path defining the movement of “swirling-sweepers” that causes the deformation
of the input shape along this path. As illustrated in the inset,
in this approach, a swirl corresponds to a rotational field around
an axis −→v whose angle of rotation θ decreases as a function of
the distance from the centre c of the application of this deforma-
tion. In particular, the authors show that a swirl deformation is
characterized by a deformation whose Jacobian is equal to 1, and
thus prove that the method preserves the volume locally with-
out requiring any volume computation. In simpler terms, a swirl
twists space locally around a rotation axis without compression
or dilation. Moreover, swirls can be combined to create a more
complex deformation, as presented in Figure 2.8. However, the
user has to choose the appropriate number of swirls to approxi-
mate the final deformation and achieving the desired deformation
through swirls is rather unintuitive, making it difficult to use in practice. The swirling-
sweepers inherit the collision-free deformation property from the “sweepers” introduced
in [AWC06]. The motion drags a part of space defined by an influence function, in a
manner that prevents the shape from self-intersecting. However this method does not
support collisions between arbitrary objects. Moreover, the collision-free and volume-
preserving constraints are only ensured for small translation of the tool, otherwise the
movement must be decomposed into smaller steps.
The field-based method proposed by von Funck et al. [vFTS06] is based on a C1

continuous, divergence-free, time-independent 3D vector field. It is used to deform the
initial shape by applying a path line integration. The user can manipulate the shape
using modeling metaphors like implicit tools, as shown in Figure 2.9. An inner region
corresponding to the part that strictly follows the movement of the tool (translation
or rotation) and an outer region not affected by the tool must be defined by the user.
An intermediate region allows to smoothly deform the shape between the two other
constrained regions. The divergence-free vector field ensures volume preservation of

22

2. Deformation of elastic objects

(a) (b) (c)
Figure 2.9.: Field-based deformer of [vFTS06]. (a) The implicit tool is dragged by the user
to deform an input sphere. The part inside the inner region follows the path of the tool, whereas
the part in the intermediate region (in green) partially follows the movement according to the
distance to the inner region. (b) Moving the tool through the sphere shape does not produce
self-intersection as we can confirm with the cut view in (c). (Source: [vFTS06])

the deformation, and self-collisions are avoided thanks to the path line integration. A
specific collision tool is also presented, but this is the only external collision handled
by the method. Moreover this method requires expensive numerical path integration.
Conceptually this tool is similar to the swirling-sweepers but more flexible since more
implicit functions can be used.
In the category of cage-based deformer, Aldrich et al. [APHS11] proposed an iterative

method that automatically updates a cage-based deformer to resolve the collision of a
rigid object with an elastic one, while approximately preserving the volume enclosed
by the embedding cage. Each iteration of the method is decomposed into four steps.
First the collisions are detected. Second the cage is updated to locally satisfy the volume
constraint. Third, given a target user-defined stiffness, the cage is updated again. Finally
the cage deformation is transferred back to the embedded mesh. If collision are still
detected, additional iteration are performed. This method provides some control over
the stiffness of the elastic object and is free of temporal dependencies, but it only achieves
interactive performances with an expensive, iterative GPU algorithm. In addition, since
it requires an intermediate volumetric representation, the method leads to global, coarse
deformations rather than localized surface bulging, as illustrated in Figure 2.10 where
the head is globally deformed by the collision with the rigid plane.
To resolve collisions during shape modeling, Harmon et al. [HPSZ11] proposed a geo-

metric framework based on non-interference constraints on space-time interference vol-
umes. Starting from an initial collision-free configuration, this method determines inter-
ference events, corresponding to the exact time at which the collision between two points
occurs, and piecewise-linear trajectories of the surface leading to these collisions. From
these interference events, a space-time interference volume is computed. The collisions
are eventually resolved by deforming the input surface, iteratively minimizing an energy
with the constraint that this volume should be zero. This approach is closely related
to continuous collision detection methods, and it thus cannot miss any collision, even
in the case of thin features. This method also has the advantage of being independent
of the deformation and modeling model. However it involves computationally expensive
numerical constrained optimization, and does not guarantee volume preservation of the

23

Chapter 2. Related work

Figure 2.10.: Collision free cage-based deformer of [APHS11]. Deformation of a character
elastic head caused by a collision with a rigid plane. Left: original shape. Right: shape after
deformation. (Source: [APHS11])

input object. Moreover, artistic control is very limited: only a few editing modes are
available, and the artist can only specify whether a surface is allowed to be deformed or
not without any stiffness information.
Contrary to the previous method that must be applied as a post-process to a mod-

eling method, Li and Barbič [LB19] proposed a direct collision and self-collision mod-
eling technique. This method is based on the linear subspace deformation technique of
Wang et al. [WJBK15] that unifies linear blend skinning and generalized barycentric
coordinates to speed up volumetric As-Rigid-As-Possible (ARAP) deformations. This
modeling technique produces smooth, geometry-aware shapes from the manipulation of
punctual handles and rigid regions. Li and Barbič extend this approach by proposing
a multi-resolution and collision free modeling approach where the different levels are
activated automatically when collisions or other events require more detailed deforma-
tions in a region, as illustrated in Figure 2.11. This method is however restricted to
the specific case of handle-based As-Rigid-As-Possible (ARAP) deformation [SA07]. It

hand hidden
Figure 2.11.: Multi-resolution and collision free modeling of [LB19]. Multiple levels,
corresponding to the different colored points, are activated around the multiple contact sites
(lips, cheek and ear) on the chimpanzee to detect and resolve the collisions. User handles are
shown in blue. Right: zoom-in on the resolved collision between the mouth and the hand.
(Source: [LB19])

24

2. Deformation of elastic objects

offers a high amount of artistic control for the modeling part, since the user can di-
rectly manipulate the surface handles, but a volumetric tetrahedral mesh is needed for
the multi-resolution deformation and self-collision detection, and external objects must
be provided with signed distance fields for external collisions handling. The collision
response is handled by a constraint-based contact model, but no control is offered to
the user to control the stiffness of the deformable object or the shape of the response.
Finally, as for Harmon et al. [HPSZ11], there is no guarantee of volume preservation.

At last, we explore the work of CG artists who are in the best position to identify
their needs and develop the adequate tools. With the assumption that only one of the
colliding objects is elastic, procedural deformers, such as the Autodesk Maya© plugin
iCollide or the Cinema4D© collision deformer offer instant deformations with control of
the bulge profile. As described by Wang in his Master thesis [Wan15], these deformers
proceed in two main steps. First, they detect the points of the elastic object that are
inside the rigid object, and project them to their closest position on the rigid surface,
hence fully collapsing the intersection region. Second, the elastic surface outside the in-
tersection region is deformed along its normal field proportionally to the interpenetration
depth. Since the volume in intersection is not considered, the tool may yield implausible
results. Moreover, with this approach the whole pair of surfaces in intersection are kept
in contact: as a result, effects as shown in Figure 2.12 cannot be achieved, and insta-
bilities might occur during animations, requiring artists to adjust parameters through
time, which is impractical. Nevertheless, such a method meets many of our goals: it
is time-independent, art-directable, and it handles contacts while perfectly fitting into
the existing rigging and animation pipeline. This is thus an interesting starting point to
develop our approach.

FEM iCollide
(Houdini©SideFX) (Autodesk Maya©)

Figure 2.12.: Artists’ Procedural deformer. Left: Procedural tools developed by artists
themselves, like the one proposed by [Wan15], manage to create plausible deformation, even
with multiple contact sites. Right: However, by fixing the extent of the contact surface to
the intersection region leads to unrealistic result in some configurations like this elastic sphere
colliding with a rigid plane. (Source: [Wan15])

25

Chapter 2. Related work

2.3. Articulated characters
In this section we will focus on articulated characters which are essential in computer
animation. Their behavior and the resulting skin deformations are critical to give an
impression of living beings. The classical approach to animate characters uses a skeleton-
based control structure that drives, more or less directly, the deformation of the character
skin. A skeleton is basically a hierarchy of constrained frames located at joints, corre-
sponding to articulations in the real world, linked by rigid bones (i.e., line segments).
The artist animates a character skeleton by manipulating the degrees of freedom of its
joints (usually rotations angles) using either forward or inverse kinematics.

2.3.1. Geometric skinning
To make the skin (i.e., a 3D surface) follow the skeleton motion, geometric skinning
techniques are the most widely used approaches as their are fast, simple to implement and
artistically controllable. The idea is to define a binding between the skin of the character
and the control structure in order to obtain plausible deformations while animating the
control structure.

Rigid skinning. The simplest way to define skeleton-skin binding is to rigidly attach
each vertex to a single joint of the control structure. This method assumes the following
input data: a rest pose shape, usually a polygonal mesh, representing the external
envelope of the character and a control structure equipped with transformation matrices
Mj , j ∈ [1,m]. For an animation skeleton, Mj is the transformation matrix aligning
the rest pose of bone j with its current animated pose. The final deformed position p′i
of a vertex mesh i is then defined by:

p′i = Mjpi,

where pi is the position of the vertex i in the rest pose. This method is called rigid
skinning. Although simple, this method results in poor quality non-smooth deformations
essentially around articulation. Indeed, as we can observe on our own body, when
bending an articulation the skin located in the middle of a bone strictly follows its
motion, however the deformation is more complex near the joints, leading us to the
intuition that each part of our skin is actually influenced by several bones.

Linear blend skinning. This is the idea behind the most well-known skinning technique
called linear blend skinning (LBS) or skeletal subspace deformation. It was first doc-
umented by Magnenat-Thalmann et al. [MTLT88] to compute the deformation of an
animated hand, although it was never properly introduced in the literature. As a sign
of its popularity, this method is integrated into most computer graphics software with
various names: “smooth skinning” in AutoDesk Maya, “bone skinning” in Autodesk 3D
Studio Max, “linear blend skinning” in Blender.
This method requires an additional input data: skinning weights wi,j describing the

influence of a given bone j on a given vertex i. A common requirement is that the set

26

2. Deformation of elastic objects

Figure 2.13.: Linear Blend skinning(LBS). This skinning method suffers from two artifacts
resulting in a loss of volume: the collapsing elbow resulting in a rubbery appearance of the
articulation (left) and the candy wrapper artifact occurring when a joint is twisted (right).
(Source: [LCF00])

of weights for each vertex i of the input mesh forms a partition of unity, meaning that
wi,j ≥ 0 and ∑j wi,j = 1 . The computation of the deformed position p′i of a vertex i is
straightforward using the following formulation:

p′i =
m−1∑
j=0

wi,jMjpi,

with pi the position of the vertex i in the rest pose and m the number of bones. The
final position of a vertex is thus computed from the rest pose using a linear combination
of the transformation matrices of the joints influencing it.
The skinning weight wi,j are most of the time painted directly on the mesh by the

user but, due to the partition of unity constraint, the manipulation can become little
intuitive for an artist. The manual definition of these weights for all poses of the mesh
requires expertise and trial-and-error that can be tedious. Therefore, some methods
have been proposed to automatically compute a set of skinning weights such as, for
example, the bounded biharmonic weights (BBW) of Jacobson et al. [JBPS11] or the
weights defined by Dionne et al. [DdL13] which are determined using geodesic distances
from the bones. However, to achieve the expected final deformation, manual fine-tuning
is usually necessary.
Despite the production of smooth deformation, this method suffers from two well-

known limitations. As illustrated in Figure 2.13, the volume enclosed by the skin can be
lost at joints when large rotations occur. This artifact, often called the collapsing elbow,
can be explained by the fact that a linear combination of rigid transformation matrices
does not necessary result in another rigid transformation matrix, for example scaling can
be introduced, leading to a volume loss. The second artifact is also related to this linear
interpolation, as a linear interpolation of transformation matrices is not equivalent to
linear interpolation of their rotation. Therefore the so called candy wrapper artifact is
especially noticeable when a joint is twisted.

27

Chapter 2. Related work

LBS DQS

Figure 2.14.: Bulging artifact of dual quaternion skinning (DQS). Contrary to linear
blend skinning which exhibits a strong volume loss (Right), dual quaternions skinning produces
an unnatural bulge around a bent joint (Left).

Dual quaternion skinning. Many methods have been proposed to alleviate the limita-
tions of LBS and among them non-linear approaches are the most popular. The most
well-known method in this category is dual quaternion skinning (DQS) introduced by
Kavan et al. [KCvO08] with the aim for better interpolation of the the rotation. DQS
works similarly to LBS but instead of linearly interpolating the transformation matrices,
they are first represented as unit dual quaternions, which are then blended together lin-
early. Since a linear combination of unit dual quaternions does not, in general, produces
a unit dual quaternion, a normalization is performed. The resulting unit dual quater-
nion can finally be converted to a transformation matrix that can be applied as in the
previous approach.
As expected, with proper interpolation of the rotations, DQS gets rid of the candy

wrapper and collapsing elbow artifacts of LBS. However it comes with its own limitation:
the joint bulging artifact, which is reflected as an unnatural bulge around a bent joint
as illustrated in Figure 2.14. This artifact is due to the unique constrained center
of rotation imposed to vertices moving around a joint. Observing that LBS does not
produce bulging while bending, Autodesk Maya allows artists to blend the resulting
deformations of linear and dual quaternion skinning, using an additional per-vertex
blending weight. The problem with this approach is that even a small amount of LBS
may re-introduce the candy-wrapper artifacts.

Elasticity-inspired deformers. Kavan and Sorkine [KS12] avoids this issue by combining
LBS and DQS in a non-linear fashion, as shown in Figure 2.15. They define a joint-based
swing/twist deformer to better describe the deformation located around the skeleton
joints. Specifically, they decompose the rotation of a joint into a swing, i.e., a rotation
around an axis in the xy-plane, and a twist component, i.e., a rotation around the z-axis,
corresponding to the child bone direction. Then, they apply a 2D spherical interpolation
of the twist followed by a linear interpolation of the swing. Since the deformation induced
by this joint-based deformer is only accurate in the vicinity of the joint, a linear blending
using BBW is then performed between joints to obtain the final result.
This swing/twist deformer requires two sets of skinning weights. The paper describes

28

2. Deformation of elastic objects

LBS DQS [KS12]
Figure 2.15.: Elasticity-inspired deformers. Thanks to better skinning weights defined using
the co-rotated elastic energy and a swing/twist joint based deformer, [KS12] manages to get rid
of the candy wrapper artifacts of LBS (top row) and the bulging effect of DQS (bottom row).
(Source: [KS12])

an automatic method to compute them so that the resulting deformation minimizes the
co-rotated elastic energy over a range of sample poses. It requires a time consuming pre-
processing step involving a voxel grid enclosing the rest-pose mesh and a local/global
solver to solve this non-linear problem.

Center of rotation skinning. To alleviate the limitations of LBS and DQS, Le and Hod-
gins [LH16] proposed a direct skinning approach consisting in a correction of the LBS
technique through the definition of an individual optimal center
of rotation for each vertex of the input mesh, represented with
red points in the inset figure. This method is based on the
following two assumptions. First, the vertices sharing the same
skinning weights should be subject to the same transformation
and thus should have similar centers of rotation. Second, local
transformations should be rigid.
To meet the first requirement, a similarity function based on

the skinning weights is designed. The rigid transformation of
the similar vertices is then defined by a rotation matrix which is
given here by quaternion linear interpolation (QLERP)[KZ05].
This method tries to find the adequate translation to correct
the linear blend skinning error measured using the optimal cen-
ter of rotation. This correction tends to keep constant the
relative distances between similar vertices which limits the col-
lapsing or bulging artifact of LBS, resp. DQS (Figure 2.16).

29

Chapter 2. Related work

LBS DQS COR

Figure 2.16.: Center of rotation skinning. Comparison on the goliath model of Linear Blend
Skinning (LBS), Dual quaternions Skinning (DQS) and Center of Rotation skinning (COR).
While LBS suffers from volume loss at twisted and bent joints and DQS exhibits bulging artifact
(bottom row), the COR approach manages to alleviate both of these artifacts by defining a center
of rotation optimized for each vertex of the input mesh. (Source: [LH16])

The computation of the centers of rotation does not require additional input data
compared to the two previous techniques. They are computed as a rather expensive
pre-process using the rest pose of the mesh and the skinning weights.

Direct delta mush skinning. The most recent techniques which has been proposed to
alleviate the LBS and DQS artifacts while preserving surface details is direct delta mush
(DDM) skinning by Le and Lewis [LL19]. It extends the previous post-processing al-
gorithm of Mancewicz et al. [MDRW14], providing a direct solution with improved ef-
ficiency and control. Conceptually these two approaches apply joint transformations to
mesh vertices that have undergone Laplacian smoothing resulting in a “mush”. The sur-
face details lost through smoothing are then restored by applying the delta between the
smoothed and non-smoothed vertices at rest pose. In addition to limiting the artifacts
of the previous methods, this is the first direct method that can produce skin sliding
effects. However its storage and run-time computation cost are relatively high: a 4× 4
matrix must be stored as skinning weights instead of a simple scalar for other direct
skinning methods, and its computation requires one 3× 3 singular value decomposition
per vertex. Le et al. [LVGO21] recently proposed a compression method to significantly
reduce the storage cost and improve run-time performance.

30

2. Deformation of elastic objects

Volume preservation. While trying to produce plausible deformations of the character
skin, none of the skinning techniques presented so far guarantees volume preservation
after the deformation of the mesh. However, as already mentioned, this is an important
visual cue to achieve plausible deformations. Some corrective post-processing meth-
ods applied on top of classical geometric skinning techniques have been developed to
compensate the loss of volume.

A first method presented by von Funck et al. [vFTS08] consists in the re-injection of
the volume lost by the geometric skinning deformation compared to the rest positions.
At each frame, the volume correction is applied one joint at a time, starting at the
root joint and traversing recursively along the children. For each joint, the geometric
skinning deformation is first computed and the volume re-evaluated. The vertices are
then moved along an automatically defined vector field in order to exactly preserve the
volume enclosed by the character skin.
As noticed by the author, uniform volume preservation is in most cases undesirable.

For example, when the arm of a human character is bent, we usually do not want to
gain volume on the protruding elbow bone but rather in the bicep region mimicking
muscle contraction. A simple heuristic is presented to localize the correction near the
joints. If it is not adequate, the user can directly paint positive and negative volume
redistribution weights on the surface as illustrated in Figure 2.17.
This approach helps reducing the volume lost by the candy wrapper artifact of LBS,

but it does not correct the shape distortions that it produces, and it does not handle
collisions or self-collisions. In addition, when applying the volume correction, novel
collisions can appear.
Rohmer et al. [RHC09] extend the previous approach by ensuring minimal per-vertex

displacement to compensate the volume loss, and by providing more advanced shape
controls of the volume correction. These controls take the form of 1D profile curves that
describe the geometric distribution of correction to apply along each axis of the local
frame of each joint. This approach can thus produce anisotropic deformations, including
complex shapes such as folds, as illustrated in Figure 2.18.

Figure 2.17.: Painted volume distribution of [vFTS08]. Positive (pink) or negative (green)
weights can be painted interactively on the surface by the user to design the volume repartition.
This can allow to create muscle bulge or folds for example. (Source: [vFTS08])

31

Chapter 2. Related work

x, y, z

x, y, z−

z+

x, y, z

x, y, z−

y, z+

Figure 2.18.: Volume preserving and shape control of [RHC09]. A variety of profiles can
be used to preserve volume while offering some local shape control. On bent joints different effects
are thus provided according to the volume correction distribution represented by the red profile
curves. (a) Reference deformation using Linear Blend Skinning without volume correction; (b)
Isotropic volume correction; (c) Biceps-like muscle bulge; (d) Wrinkles effect. (Source: [RHC09])

Although offering more artistic controls, this method comes with some limitations.
The final deformation depends on the order of application of the corrections along the
local axis as well as the traversal order of the skeleton hierarchy. Moreover, as [vFTS08],
this method does not guarantee a collision-free final deformation.

All the approaches presented in this section are purely kinematic and thus lack sec-
ondary motion effects such as passive jiggling motion of fat tissues. Moreover none of
them produce collision-free deformations by design. And yet both characteristics are
known to enhance the believability of an animated living creature. To create more ap-
pealing character animations and to resolve collisions, one could consider using pose
space deformation techniques where the artists sculpt the contact zone for extreme ex-
ample poses. This could also offer the possibility to add more dynamic phenomena like
bulging muscles. However this process is very tedious.

2.3.2. Physically-based skinning
In order to produce plausible and compelling deformations in a most automatic fashion,
many authors have strived to include physically-based models within skinning methods.
However, as previously described for general objects, dynamic simulations are intrinsi-
cally time-dependent and thus note applicable during the rigging and animation phases.

32

2. Deformation of elastic objects

Quasi-static simulations. By ignoring inertia, quasi-static simulations driven by skele-
ton motion do not require temporal integration, but are still history-dependent to handle
collisions. The work of McAdam et al. [MZS+11] is the first approach that robustly sup-
ports large deformations, high-resolution surfaces and accurate collision and self-collision
responses. Starting from the animation skeleton and the skin surface, they construct a
volumetric lattice embedding the mesh on which the quasi-static elastic simulation is
performed. Despite a novel multi-grid solver, it works at best at near-interactive perfor-
mance, requiring several seconds per animation frame. This method can be extended to
support dynamic effects.
Gao et al. [GMS14] introduced an elastic model of the flesh that only includes the

boundary vertices (i.e., the mesh vertices) as independent degrees of freedom for the
simulation. This surface-centric formulation allows the solver to converge faster than its
volumetric counterparts, especially for large meshes, in collision-heavy scenarios. How-
ever, it is better suited for linear materials and is restricted to quasi-static simulations.
Collisions can be missed for poses that are far away from the training pose space.
Smith et al. [SdGK18] proposed a novel formulation of the Neo-Hookean elasticity,

that can be used in the framework of McAdam et al. [MZS+11]. This model main-
tains the fleshy appearance of the Neo-Hookean model, while exhibiting better volume
preservation. It is also more robust to extreme kinematic rotations and inversions. In
addition, it is driven by only two physical parameters to directly control the look of the
simulation.
To significantly accelerate simulations, subspace methods (also known as model reduc-

tion, or reduced-order methods) detect temporal redundancies in the simulation during
a precomputation stage. These redundancies, often called training poses, are used to
construct efficient, low-dimensional subspaces. Novel simulations are then performed
in those subspaces with oder-of-magnitude faster performance. Teng et al. [TOK14]
explored such an approach to quickly resolve self-collisions without checking colliding
primitives. It can achieve real-time performance, but reduces the computational accu-
racy and increases the implementation complexity. Collisions can be missed for poses
that are far away from the training pose space.

PBD-based skinning. To handle higher resolution meshes at interactive rates while still
offering dynamic effects, another solution is to use Position Based Dynamics (PBD)
[BMM15]. For example Ruman et al. [ARF15] proposed a method that uses PBD as a
correction of the classical linear blend skinning. In a first step, LBS is used to deform
the skin mesh and then, using a tetrahedral mesh generated from the skin, they solve a
system of geometric constraints using a PBD solver. The constraints are used to model
in real-time the jiggling of the skin and to preserve the volume compare to the rest shape.
This method manages to overcome the artifacts of LBS but cannot handle collisions or
self-collisions. Pan et al. [PCYQ18] extend this approach to handle local self-collisions.
Deul et al. [DB13] combine shape matching of oriented particles and PBD for the sim-

ulation of a multiple-layered model, each level respectively representing bone, muscle,
fat and skin. To animate the character, the goal position of the vertices of the bone layer

33

Chapter 2. Related work

are computed by LBS and distance constraints are applied at each iteration one the ver-
tices of this inner layer. This approach preserves the volume locally by subdividing the
initial mesh into sub-volumes and applying the volume constraint on them. Additional
position-based constraints are applied to handle collisions detected using discrete colli-
sion detection in combination with a BVH. This method offers some artistic control with
per layer stiffness parameters. However this method is too slow for real-time skinning
and since the definition of the underling tissue depends on skinning weights, so does the
result of the method.

Projective skinning. Finally, Komaritzan and Botsch [KB18] propose a two-layered
method based on Projective Dynamics, called projective skinning. This method takes as
input the animation skeleton that will be represented as a volumetric mesh (spherical and
cylindrical joints) and the skin surface that will be shrunk onto this volumetric skeleton
to define prismatic elements composed by pairs of skin-bone triangles then decomposed
into tetrahedron to define a volumetric mesh. The elastic deformation is computed
through projective dynamics [BML+14] and anchor constraints forcing the bone vertices
to follow the rigid transformation of the animation skeleton. Strain constraints are ap-
plied on tetrahedron of the “flesh” to penalize their deformation. This method is thus
volume-preserving and produces dynamic effects. However, to achieve real-time perfor-
mance, they focus on local collisions, global collisions being neglected. Nevertheless,
a recent extension of this work by the same authors [KB19] alleviates this limitation
thanks to a GPU-implementation of projective skinning that is able to dynamically add
and remove collision constraints on demand.

2.3.3. Geometric skinning with contacts
In summary, on the one hand, we have fast and direct geometric skinning techniques,
that can be coupled with volume preservation correction methods, but lack secondary
motion effects and collision resolution. On the other hand, we have seen physically-based
skinning approaches producing more appealing and believable animations but at the cost
of time-dependency or computationally-demanding schemes.

Kinodynamics skinning. To try to combine the best of both worlds, Angelidis and
Singh [AS07] proposed kinodynamic skinning which is based on the observation of von
Funck et al. [vFTS06] that a divergence-free velocity field is volume preserving. At
each frame, starting from the linear blend skinning formulation, they produce a fold-
over free and volume-preserving vector field in pose-space. The positions of the mesh
vertices are then integrated over the corresponding path lines from the rest pose to the
current pose. Without necessarily being intuitive, manual controls are offered to the
artist to control the volume repartition over two given axes, each of them associated
with a hand-controllable scalar value, as illustrated in Figure 2.19.
This first part is a history-free skinning technique, but it can also incorporate short-

lived dynamic behavior to add secondary effects over a small temporal window. The size

34

2. Deformation of elastic objects

α β

(a) α = β = 0 (b) α = 1
4 , β = 3

4 (d) α = 3
4 , β = 1

4(c) α = β = 1
2

Figure 2.19.: Kinodynamics. While offering volume preservation, various effects can be pro-
duced by tweaking two scalar parameters α and β. (a) Volume is preserved when α+β = 1, while
other configurations control the directional incompressibility as show from (b) to (d). (Source:
[AS07])

of this window determines how far into the recent past a physical simulation will start
(if this size is reduced to zero no secondary effects will be produced). A balance must be
found between a large enough window to ensure temporal coher-
ence of the kinodynamic trajectories and a short enough window
so that the artist keeps the impression of direct manipulation.
Since solving the whole problem requires some numeri-

cal/temporal integrations, it makes the method less efficient on
large meshes, and it does not fit very well into the classical an-
imation pipeline. Finally, we can point out that fold-over free
deformations do not necessarily mean that a clean skin contact
in the folding area of the character limbs will be produced, sometimes gaps may remain,
as depicted in the inset figure.

Implicit skinning. Vaillant et al. [VBG+13, VGB+14] address this issue proposing a
corrective skinning method. As a pre-process, a volumetric implicit representation of
the skin is defined from the character mesh in its rest pose. The mesh is partitioned
according to the skeleton bones, and each part is represented by its own scalar field
reconstructed using Hermite Radial Basis Functions, as shown in Figure 2.20. To perform
the segmentation, each vertex of the mesh is associated to the bone which has the most
influence on it, using the skinning weights if available. The parts are then combined
together with gradient-based composition operators. The result of this process is an
implicit surface which closely matches the initial character mesh, apart from the fine
details. To preserve them, each vertex of this mesh is eventually assigned a field value.
During the animation, the field functions are transformed rigidly with the skeleton to

35

Chapter 2. Related work

(a) (b) (c) (d)
Figure 2.20.: Implicit surface. (a) Initial mesh with its animation skeleton ; (b) This mesh is
segmented according to skinning weights. (c) Each partition is aproximated by computing an im-
plicit surface as 0.5-isosurfaces of HRBFs. (d) The resulting shape is determined by composition
of these implicit surfaces with an union operator. (Source: [VBG+13])

the current pose, and the implicit surface is obtained by composition of these primitives.
The vertices of the skin are independently transformed using DQS. From this initial
guess, the vertices are projected on their target iso-surface by marching along the field
gradient, and displaced tangentially to minimize a local distortion energy.
Thanks to the implicit volumetric representation of the character, this approach auto-

matically captures contact surfaces between skin parts and handles local collisions of the
skin between neighboring articulations without resorting to simulation or requiring any
collision detection step as illustrated in Figure 2.21. However distant contacts are too
expensive to be handled at interactive rates. Artistic control is offer through the design
of the compositing operators, yet gradient-based operators are difficult to art-direct,
even though the recent sketch-based modeling tool of Angles et al. [ATW+17] simplifies
that process.
This original formulation of implicit skinning is sensitive to the quality of the initial

skinning solution, which may lead to artifacts especially when the skeleton shows large
rotations with respect to the rest pose. This limitation was addressed in a second version
of the algorithm [VGB+14] by transforming the mesh vertices from the previous anima-
tion step rather than from the bind pose and by improving the iso-surface tracking with
a novel tangential relaxation scheme derived for the as-rigid-as-possible energy [SA07].
These modifications lead to more natural elastic deformations of the skin, but introduce a
temporal dependence between frames that makes this method more difficult to integrate
into the classical rigging and animation pipeline. Moreover, contrary to Kinodynamics,
this method does not guarantee volume preservation. A more recent extension of Rous-
selet et al. [RARC+18] enriches this model with the addition of muscle dynamics which
brings even more realism to the final deformations.

36

2. Deformation of elastic objects

(d) Real finger(c) Implicit skinningwith bulge(b) Implicit skinningwith contact(a) Linear blendskinning
Figure 2.21.: Implicit skinning. Comparison on a bent finger between (a) Linear Blend Skin-
ning with no contact handling, (b) implicit skinning with the contact operator and (c) the
extra volume gained with the bulge operator, and (d) a picture of a real deformation. (Source:
[VBG+13])

37

3
Our approach

As announced in the introduction chapter, our goal is to create a tool to assist artists
in the design of deformations resulting from the collision of elastic objects. This tool
should be able to run at interactive rates to enable the edition of the deformation at the
rigging stage of the animation pipeline. We do not aim for real-time performance, such
as in the context of video games with only a few milliseconds available, but rather for a
maximum time budget of one second.
Besides interactivity, another desired property is instantaneity. Our method must

process each frame of an animation from scratch without any temporal information, but
rising to the challenge of preserving the coherence and fluidity of the animation. On the
one hand, each frame processed independently should result in a plausible deformation
and, on the other hand, the sequence of these frames must remain smooth and jerk-free,
without any temporal discontinuities or oscillating motion for example.
In the real physical world, the collision between two elastic objects produces a de-

formation mostly located around the impact region and whose shape depends on the
objects physical properties. As seen in the previous chapter, realism can be achieved
using dynamic or quasi-static simulations, but they are not suitable in our context of ap-
plication as we want instant feedback without any time dependencies. For performance
reasons, we restrict our work to local surface deformations: we will not capture global
volumetric effects that should be handled by other techniques (e.g., lattice-, cage- or
skeleton-based deformations). Moreover, the time-independence objective implies that
we must ignore dynamics and secondary motions, such as friction or jiggling for example
when the stomach of a character is hit by a ball. Instead, we will focus on the direct,
most perceivable effects of the impact between the considered objects: the resolution of
their intersection and the redistribution of the volume lost in the collision around the
impact zone according to some physical properties of the objects, like their stiffness. In
addition, in animation, the quest for physical realism is not mandatory, and sometimes
even undesirable, as it may limit the creativity and imagination of the artist.
For all those reasons, we are not aiming for realism but rather for plausibility of the

resulting deformation. It allows us to keep the essence of an artistic tool: manual control
and a certain amount of artistic freedom. Therefore, our work proposes a automatic so-
lution with volume preservation and a minimal set of control parameters reflecting some

39

Chapter 3. Our approach

Cd̂ n′

Onl
yrig

id/e
last

ic

C

rigid
elastic

S

M2

M1

d̂

S

M2

M1

I2

I1

W2

W1

d̂di

di

-d̂

D2

D1di

D2

(a) Input
configuration

(b) Collision
detection

(c) Mapping

(d) Contact
definition

(e) Displacement
directions

Profile Curve

(f) Final
displacement

Ball testing Symmetric
local heuristic

Parallel-transport
diffusion Simple blending

Shared
parametrization

Unique
direction

Figure 3.1.: Overview of our approach. The developed pipeline, applied at each frame on
each pair of elastic objects, could be divided in six steps described from top (i.e., (a) selection
of the working regions) to bottom (i.e., (f) final deformation of the surfaces) here. Our method
proposes different alternatives but the preferred pipeline is emphasize in bold.

40

physical properties of the involved objects, such as their stiffness. To offer even more
possibilities to the artists during the creation process, we give them additional controls
like volume cancellation or even exaggeration used, for example, to create cartoon effects.
In summary, we want to meet the following four objectives:

• interactivity,

• instantaneity,

• plausibility of the deformation through volume preservation,

• artistic control.

To achieve these goals, we developed a method that processes, at each frame inde-
pendently, the collision of elastic objects represented as triangular meshes. Our method
is based on the observation that a collision between two objects is characterized by an
intersection-free deformation that can be decomposed into two parts: a contact zone,
where the two surfaces will remain in contact, and a bulge, in the neighborhood of this
contact zone, resulting from the volume displaced when resolving the intersection be-
tween the colliding objects. This decomposition allows us to simplify the problem and
separate our method into two main stages.
In a first stage (Section 1), we determine the contact surface between the two objects

to resolve the collision. We need to determine this region for every mesh that will lie
on the final contact surface at the end of the deformation. To be plausible, the shape
and position of this intermediate surface must be defined according to the stiffness of
the input objects.
In a second stage (Section 2), we compute a bulging deformation around this contact

region to give the impression of volume displacement due to the impact. For plausibility,
the extent of the deformation around the previously defined contact zone is parametrized
again by the physical properties of the objects: the stiffer an object is, the wider this
region will be. Contrary to the contact surface which is hidden most of the time (except
in the case of transparent surfaces), the final deformation is visible and should thus
respect geometrical properties to achieve the goal of plausibility. The deformation should
produce a smooth surface with, by default, full compensation of the volume lost by the
resolution of the intersection through a bulge designed around the contact region.
For performance reasons, these two stages must use explicit and direct methods, and

avoid iterative approaches such as the quasic-static simulation techniques presented in
the previous chapter.
Our pipeline is fully illustrated from top to bottom in Figure 3.1. The first main stage

dealing with the contact definition is described by the steps (b) through (d) and the last
two steps (e) and (f), are part of the final deformation stage. For some steps, we propose
different alternatives, but the preferred pipeline is emphasize in bold in the figure. Our
method can handle multiple elastic objects, or object parts in intersection, but for the
sake of simplicity, we will describe it for a pair of distinct objects, e.g., the blue slightly
curved surface and the green sphere in Figure 3.1.

41

Chapter 3. Our approach

Please finally note that our pipeline can be applied with some additional steps to the
case of skinned 3D models. The two considered object parts can then be adjacent on the
same surface, for example in the configuration of a bended arm with a collision located
in the crook of the elbow. This modified version will be detailed in Chapter 6.

1. Contact definition
As illustrated in Figure 3.1(a), our pipeline takes as input a set of working regions Wl,
each Wl enclosing the expected deformable regions.

Collision detection. At each frame, the first step for handling contact is to robustly
detect the intersection between the two considered surfaces. To do so, we perform an
edge/face collision detection algorithm over both working regions. This results in a set
of regions in intersection Il as well as the exact intersection points between the two
colliding objects depicted with red crosses in Figure 3.1(b).

Matching. The contact surface corresponds to one or several regions on each colliding
object that will remain in contact at the end of the deformation. This observation implies
a mapping between the two object surfaces, although only a subset of these mapped
surfaces will actually belong to the final contact zone. In theory the mapping and contact
definitions are entangled, but to simplify the problem, we first define a conservative
mapping between the elastic input surfaces, and then we compute the restricted contact
zones. To ensure that the collision is fully resolved, this conservative mapping must
include the regions in intersection Il. The associated projection of those regions onto
the opposite mesh is not necessarily inside these regions in intersection and the mapping
may thus extend beyond the intersection. The subset of each mesh l finding a match
on the opposite surface is part of the so-called mapping regionsMl depicted in lighter
colors in Figure 3.1(c).
We developed two different strategies to compute this conservative mapping. The first

one, illustrated on the left in Figure 3.1(c), consists in matching together the intersection
regions of the two meshes in parametric space. The resulting mapping directions may
consequently potential vary for each vertex of the considered regions. In this version, the
mapping regions Ml are limited by construction to Il. This method thus suffers from
some limitations, such as strong distortions and stretching, discussed in more details in
Chapter 4.
To overcome these limitations, we developed a second strategy that matches the two

surfaces beyond the intersection regions. We compute such correspondences by finding
for each vertex of each mesh within the intersection regions the most distant point
on the opposite surface along a unique direction d̂. To avoid considering the entire
meshes, we developed an efficient algorithm based on the surface silhouette seen from d̂
to conservatively restrict the computation of the mapping.
Both methods produce a direction field allowing us to project each surface onto the

opposite one to resolve the collision.

42

1. Contact definition

Potential contact surface. From this mapping, we then determine the potential contact
surface S, depicted in grey in Figure 3.1(c). It is located by definition between the two
mapped surfaces and its shape and position depend on the ratio of pseudo-stiffness pa-
rameters controlled by the user for each object . In the case of the collision between a
rigid and an elastic object, S corresponds to the rigid surface as illustrated on the left
of Figure 3.1(c).

As suggested by its name, S is not the final contact surface but a superset correspond-
ing to the maximal contact surface if both objects were sufficiently elastic to entirely hug
the shape of the opposite object. In the next step, we will define the subpart of S, and
the corresponding subset of each mapping region, that will effectively remain in contact
at the end of the deformation.

Contact zone definition. After projecting the mapped vertices of both meshes onto S,
we identify the contact zone C, in red on Figure 3.1(d). Our general approach is mo-
tivated by the empirical observation that the stiffer the objects are, the smaller the
contact zones should be. Note that, to guarantee the coherency of the animation de-
spite the time-independence requirement, C must be defined as a region that smoothly
evolves on each mesh during the animation. In particular, to avoid jerky movements
and oscillations in the animation, we cannot define them on discrete elements such as
mesh vertices. Since the contact zone is shared by the two colliding surfaces on S, the
projection of the delimited zones on each mesh should result in the same contact zone C
on S. We will define them later as symmetric.
Once again, we have developed two different methods for this step. We first propose

an algorithm, illustrated in the purple box of Figure 3.1(d), that implicitly takes into
account the geometry of S, the depth of penetration and a user-controllable pseudo-
stiffness parameter. Inspired by α-shapes [EM94], we translate the stiffness of an elas-
tic object into the radius of a ball rolling on the interior of the surface. The region
considered in contact is the one accessible by the ball, in red in Figure 3.1(d). We can
observe that the bigger the ball is, the smaller the final region will be, and conversely,
the smaller the ball is, the larger the final contact region will be. The radius of the
ball thus reflects the stiffness of the objects. The limitation of this first method is its
asymmetrical definition, making it only relevant for the case of the collision between a
rigid and an elastic object.
Therefore, we developed a second method based on the unique mapping direction d̂.

It uses a new symmetric criterion meeting our observations and expectations regarding
the contact zone definition. This criterion directly takes into account the geometry of
S through its normal field n′, the depth of penetration and a parameter controlling the
extend of the contact zone. This method is illustrated in the right box of Figure 3.1(d).

At the end of this step, we have determined continuous and symmetric regions on each
mesh. Once projected on S, they define the interface between the two objects at the end
of the deformation.

43

Chapter 3. Our approach

2. Resulting deformation
After defining the contact surface, in the second stage of our work, we aim at deforming
the neighborhood Dl (in lighter color in Figure 3.1(e)) of the contact zone in a plausible
way, independently for each object l. In our work, plausibility will be achieved by
satisfying the three following constraints:

• Smoothness of the deformed surface: the deformation of the surface should preserve
the smoothness property of the initial mesh.

• Continuity during the animation: the final animation should be smooth, without
jerky or oscillation motions to give the illusion of fluidity and temporal continuity
even though each frame is processed independently.

• Volume preservation: the deformation should compensate the volume lost by a
closed surface in the collision to give the illusion of physical realism.

We consider by default local deformations of closed surfaces requiring volume preserva-
tion, but if the object is an open mesh, the user should have the opportunity to partially
or entirely overlook this constraint and still obtain plausible deformations. In addition
to all these requirements, we recall one of our main objectives, that is, artistic control.

Several approaches could be conceived to compute the final deformation. Inspired by
the survey of Botsch and Sorkine [BS08], we could simply define the final surface displace-
ment as a 3D deformation field over the deformable region D using linear, surface-based
algorithms. However, to comply with our geometrical smoothness requirement (tangent
constraint at the boundaries) costly biharmonic operators should be used. As-rigid-as-
possible (ARAP) surface deformation techniques (e.g., [SA07]) could also be considered,
but their non-linear definition is not well-suited in our context, and incorporating vol-
ume preservation into their formulation proves difficult. In addition, both approaches
lack artistic control over the finale deformation, which is an essential goal in our work.
To simplify the problem and get more controllability over the deformation, our key

idea is to separate the definition of the final displacement into two parts: its direction
and its magnitude. We define the displacement of the initial surface over the deformable
region D along a smooth unit direction field d. Its amplitude is controlled by a 1D profile
curveH instantiated at every vertex pi of D and evaluated using a one-dimensional radial
parametrization u yielding to its final position:

p′i = pi +Hai,si(ui) di. (3.1)

The shape of the profile curve H is parametrized by the amplitude ai and slope si at
u = 0. Additional degrees of freedom enable extended artistic control of this curve.

Deformable region. The deformable region D is defined as the subset of the working
region that will be deformed to preserve the volume of the initial object. As previously
stated, the extent of this region depends on the stiffness of this object. Moreover, we
can observe that it should evolve with the variation of the contact region boundary ∂C.

44

2. Resulting deformation

To both delineate and parameterize this region, we compute a radial parametrization
u from ∂C over the whole working region, and then determine D following the gradient of
this scalar field starting from ∂C. Intuitively, u locates any point of the surface along a
smoothed geodesic going from ∂C to the external boundary of the deformable region D.
The extent of D is determined by a user controlled pseudo-geodesic distance.

It is worth noting that, as C is changing at each frame, the parametrization u and,
by construction, D must be recomputed dynamically at each frame. Also note that,
since their definition is based on ∂C which is temporally continuous, they also evolve
continuously during the animation.

Direction field. The unit direction field d along which the surface will be displaced is
subject to two constraints: (1) it must match the fixed displacements of the contact
zone on the potential contact surface S and, (2) for a smooth shape, it should be mostly
aligned with the surface initial normals. We made the observation that, during a collision,
an elastic object is deformed outside the impact zone along its normal field, forming a
bulge. Therefore the idea is to make the directions converge quickly to the initial normals
as we move away from ∂C.
The most natural, but costly, approach to address this problem consists in diffusing

with parallel-transport the deviation of the constrained mapping directions from the
initial surface normals along ∂C with the constraint to vanish at the exterior boundary
of the deformable region. The resulting unit direction field is illustrated on the left in
Figure 3.1(e) by the arrows.
An easier way to resolve the same problem is to diffuse the constrained mapping

direction over the whole deformable region D and to blend them with the normals of
the initial surface using a non-linear remapping of the scalar field u. This method is
illustrated in the right box of Figure 3.1(e).

Profile curve definition. Concerning the magnitude of the displacement, we define a
family of functions, referred to as profile curves, instantiated on each vertex of the de-
formable region. The degrees of freedom corresponding to the amplitude ai and slope
si at ∂C (i.e., u = 0) are required to respectively ensure C0 and C1 continuity with the
contact zone. To be able to evaluate H everywhere, a and s are diffused over the whole
deformable region D. Three other degrees of freedom are needed to guarantee C2 conti-
nuity with the undeformed part of the initial mesh and to ensure that the deformation
smoothly vanishes at the exterior boundary of the deformable region. Finally the profile
curve should exhibit one last degree of freedom to linearly control the bulge and ensure
exact volume preservation.
The main advantage of this definition is that it opens the doors for a wide range of artis-

tic control of the collision response. The bulge can be artistically controlled to exaggerate
or cancel the volume compensation. It can even be translated over the parametrization
u or spread out to modify the volume repartition. It can also be anisotropically spread
over D to produce more plausible deformation response. We can even imagine producing
wrinkles by adding high frequency details to the profile curve.

45

4
Contact definition

We present in this chapter the first steps of our pipeline that aim to define the re-
gions where two colliding objects will stay in contact after deformation. For the sake
of simplicity, as in Chapter 3, we will describe each step for a pair of distinct objects.
At each frame, we start from two manifold triangle meshes already in intersection. For
performance reasons, we work on a set of open subsets denoted Wl, with l ∈ {1, 2}.
Those working regions are selected by the user according to the expected spread of the
deformation, but it could also be automatically determined as a distance to the inter-
section region. After detecting the collision between the two involved working regions
(Section 1), we compute a mapping between them to define a potential contact surface
corresponding to a superset of the final contact surface (Sections 2 and 3). We finally de-
limit the contat regions on both objects and project them on the shared contact surface
(Section 4).

1. Collision detection
The first thing to know when handling contact is whether or not there is a collision
between the two considered objects.

n

q

n1

n2

n1
n2

At each frame, we test if such a collision exists between the two
selected surfaces W1 and W2. We also need to robustly detect
the regions in intersection, as the definition of the contact sur-
face will rely on them. For each mesh, we perform an edge/face
collision detection, illustrated in the inset figure for some typical
configurations. We determine the set of edges of the first mesh
that are intersected by faces of the other mesh, recording the
corresponding intersection points qk,l in the parametric space of
each working region Wl (i.e., their barycentric coordinates on
the intersected edge and face). Note that we neither need to
insert these points into the mesh tessellation, nor to chain them
together to determine which vertices are inside the collision; we
only need to know their positions on both meshes.

47

Chapter 4. Contact definition

Starting from these intersection points, we must now determine which vertices of the
initial meshes are inside the region in intersection. For every edge in intersection with
one or multiple faces, we consider each of its extremities independently and tag it as
either interior (green points in the inset figure) or exterior (red points) based on the
normal n of its closest intersected face. Considering the closest intersection point is
sufficient because it is the only one affecting the tag of the considered edge extremity.
Therefore, we search for all the faces intersecting an edge, but we only keep the closest
face of each extremity to determine if it is exterior or interior regarding the opposite
surface. These two faces, at most, are sufficient to define the tags of the vertices of the
current edge as illustrated in the inset figure. In addition, on the implementation side,
it has the advantage that we only need to store at most two faces for each intersected
edge.
We eventually propagate the interior tags on the vertices of both W1 and W2 with

a flood fill algorithm to delimit the two regions in intersection I1 and I2 (depicted
with dotted lines in Figure 3.1 (b)). Since the intersection points are defined by their
barycentric coordinates on edges and faces of both surfaces, the intersection regions Il
evolve continuously over the course of the animation. A discrete definition on mesh
vertices would lead to temporal discontinuities as soon as a vertex would enter or leave
the regions.
At the end of this step we obtain a continuous definition of the intersection regions
Il on each object delimited by exact intersection points located on edges and faces of
both meshes. These points are stored as pairs of barycentric coordinates corresponding
to their location on both surfaces.

Implementation details. We use Embree [WWB+14] in robust mode to compute seg-
ment-triangle intersections. The computation is accelerated by a 3D Axis-Aligned Bound-
ing Box (AABB) tree built once for each mesh at the selection of the working regions
and then updated at each frame if the surface is animated non-rigidly. This update
consists in the refitting of the existing boxes without changing the tree structure. If the
object is animated rigidly, the corresponding global affine transformation is applied to
the structure prior to the search at the new frame.
We did not push our research further in this direction since this step was not the

main limiting factor of our approach, but it would be interesting to experiment with
more efficient methods, such as those presented in Chapter 2. For instance, instead of
computing edge-face intersection from mesh 1 to mesh 2, and then from mesh 2 to mesh
1, one could perform a synchronized traversal of both AABB tree as proposed by the
rtcCollide routine of Embree.

Discussion. If both working regions are manifolds with boundaries without self-inter-
sections, and if the collision does not overlap these boundaries, then the intersection
corresponds to a closed volume and our algorithm produces correct intersection regions.
When one of those conditions is violated, the algorithm may fail. For instance, in such
configurations, two faces intersecting two different outgoing edges of the same vertex

48

https://www.embree.org/api.html#rtccollide

2. Mapping

may give to this vertex an inconsistent tag. In our implementation, the tag given by the
last edge considered has the final say, which may lead to a global inconsistent state.

2. Mapping
Once the intersection regions have been determined, we need to define a mapping be-
tween the two surfaces. It will then allow us to project each mesh onto an intermediate
shared potential contact surface S and to resolve the collision. We developed two meth-
ods to reach this goal. In the first attempt (Section 2.1), we aim at finding a bijective
mapping between the intersection regions of the two meshes by matching their inter-
section points in parametric space. This simplifies the problem, since we can rely on
existing correspondances and we can fully work in the 2D texture-space, but it may lead
to objectionable artifacts and unnatural mappings. The second method (Section 2.2) ad-
dresses these limitations by relaxing the bijectivity constraints between the intersection
regions, which allows us to enlarge the mapping regions beyond the intersection regions.
Yet, to make the problem more tractable, we must consider that, at a given frame, the
relative motion between the two objects is a pure translation along a unique mapping
direction.
For both methods, we recall that the mapping region Ml on each mesh l must be

defined as a continuous zone evolving on mesh edges to ensure a smooth definition of
the potential contact surface.

2.1. Shared parametrization
Intuitively, to resolve the intersection of the two colliding objects, it seems sufficient
to find a mapping restricted to the intersection regions. With such a method, the
mapping regions Ml correspond to the intersection regions Il and the boundaries of
these regions are by definition the boundaries of Il, which are evolving continuously
during the animation, as described in Section 1.
The key idea behind this method is that we can construct the mapping in parametric

space leveraging the constraints provided by the intersection points defined on the edges
of the initial surfaces. Here, we assume that both surfaces are equipped with a continuous
2D parametrization. We then proceed in two steps illustrated in Figure 4.1.
First, to minimize the distortion of the final mapping, we compute the global affine

transformation, represented by the 3× 4 matrix A, that minimizes, in the least-squares
sense, the distance between every pair of intersection points (qk,1,qk,2) expressed in the
two parametrizations, i.e., minimizing:∑

k

‖ek‖2 , with ek = qk,1 −A qk,2 .

Through this step, we compute a first coarse approximation of the matching of each
pair.
Second, we refine locally this global transformation to enforce the intersection points

to match more accurately, i.e., ‖ek‖ = 0, ∀k. To do so, we compute a smooth 2D

49

Chapter 4. Contact definition

Input configuration

A

qk,1

A qk,2
ek

g

qk,2

qk,1

3D View 2D Parametric View

Figure 4.1.: Matching of the shared parametrizations. The mapping between the two
surfaces in collision, here a plane and a finger, is performed in 2D parametric space. The regions
in intersection Il along with the corresponding set of exact intersection points qk,l are represented
in this reduced space. In a first step, we determine the affine transformation A that best aligns
the pairs of intersection points. In a second step, we refine the matching by computing a 2D
deformation field g through the harmonic diffusion of the error vectors ek between two points of
the same pair of intersection points.

deformation field g by harmonic diffusion of the error vectors ek over the interior ver-
tices [BK04]. As the error vectors ek are defined along edges we cannot use standard
Dirichlet conditions. Instead, we include the one ring of exterior vertices adjacent to
the interior region and introduce the ek targets as linear least-squares constraints as
detailed in Appendix B.
At this stage, each interior vertex i of one object knows its parametric location in

the opposite object parametrization: qi,1 = A qi,2 + gi. To find its 3D position p′′i and
normal n′′i on the initial opposite surface, we search the face and barycentric coordinates
associated to the final parametric location of this vertex. We perform this association
step on both objects. To speedup searches, we use a 2D AABB-tree built in parametric
space over the opposite mesh.

Discussion. A first limitation of this method is its asymmetrical definition. Indeed,
only one of the two meshes is transformed in parametric space to make the pairs of
intersection points match. Swapping one mesh with the other would not impact the affine
transformation, but it would change the diffusion which depends on the configuration
of the mesh. The resulting mapping will thus not be the same. A solution could be
to distribute the error vectors ek between the two objects to guarantee a symmetric
mapping. It nay also reduce the effect of the distortion on the final mapping described
below. The main drawback of this solution is its cost as an additional diffusion would
be required.

50

2. Mapping

Figure 4.2.: Discretization issue. Left (clipped view): when the rigid sphere in dark grey
plunges too deeply into the elastic one in purple, the mapping between the two surfaces inevitably
exhibits strong stretching (the undeformed sphere is visualized in light grey). Right (side view):
the amount of stretching is better seen after hiding the rigid small sphere.

The second limitation of this approach comes from the bijection between the two
regions in intersection. For deep collisions, such a mapping will exhibit strong distortions
and stretching, which implies that the potential contact surface becomes under-sampled,
which in turn leads to objectionable discretization artifacts, as illustrated in Figure 4.2.
This issue is emphasized by the relative stiffness between the two objects. In this figure,
the distortion is extreme because the small sphere is rigid and the other elastic. If
the relative stiffness between the two meshes were more balanced, the effect would be
lessened. A practical solution to this problem would be to refine the meshes in the
intersection regions to limit sampling artifacts. Ultimately, it could be interesting to
devise an algorithm computing the mapped contact zones without a pre-established
parametrization, such that the respective areas of these zones on both involved surfaces
are the same. A perhaps less challenging research direction would be to investigate
on-demand local parametrizations [HA19] that could be computed in a such way as to
minimize stretching around the foreseen contact regions.

Regardless of the distortion, restricting the mapping to the intersection regions is
problematic for many geometrical configurations. This issue is directly related to our
time-independency goal, as illustrated in Figure 4.3. To reach such a configuration, we
know that the foot must have crossed the plane in the previous frames but, since we are
processing the animation one frame at a time, we do not have access to this information.
Yet, if we think of the potential trajectory of the foot leading to this configuration, we
can guess that the desirable mapping region of the plane should extend far beyond the
intersection region. Conversely, in Figure 4.2, the mapping region on the small sphere
should probably be smaller than the intersection region. We can conclude that the idea
of bijection between intersection regions is not suitable for our objective.

51

Chapter 4. Contact definition

p′′

d̂

p′′

Input configuration

FrontView

SideView

Shared parametrization(Section 2.1) Unique direction(Section 2.2)

Figure 4.3.: Mapping beyond the intersection regions. Left: A rigid foot going down col-
lides with an elastic plane. The bottom row corresponds to the front view of the configuration cut
along the dashed line illustrated on the side view (top row). Middle: The shared parametrization
approach produces a poor quality mapping exhibiting large distortions. The side view even gives
the impression that the mapping is incomplete, as if p′′ was not projected on the foot. Right:
Using an unique mapping direction d̂ results in a mapping between the two surfaces that better
reflects the apparent motion of the two objects.

2.2. Unique mapping direction
To alleviate the limitations of the previous approach and keeping in mind that the
expected contact zones may extend beyond the intersection regions, we developed a
second method to compute a partial mapping between the two surfaces. To make this
problem tractable in an interactive system, we make the key assumption that, at a given
frame, the relative motion between the two objects is a pure translation. It implies
that all the points within the contact zones share the same mapping direction d̂, which
allows us to efficiently compute mapping regions Ml tightly enclosing the points that
can belong to the contact zones.
However, this assumption has two consequences. First, we ignore sliding effects within

the contact region. Second, since the entire working regions have the same direction, we
will not be able to handle the case of multiple connected parts that move along different
directions of translation. For example, consider a hand grasping a ball: each finger
tip touches the ball with a different directions. This limitation can be circumvented
by considering each component (e.g., each finger tip) as an independent working region
and handling the contact with the ball independently for each of them.Nevertheless,
this workaround is only possible if each finger produces a distinct contact, without any
interaction with the other ones.
Finally, it is important to note that this mapping direction is defined at each frame

and thus can potentially vary over the course of the animation.

52

2. Mapping

Direction definition. To determine the direction d̂ at each frame of an animation, we
propose an automatic method based on the geometry of the two meshes in collision.
For each mesh l ∈ {1, 2}, we compute the mean normal n̄l over its intersection region
Il. The idea is then to define the direction d̂ as a weighted combination of these two mean
normals, giving a higher weight to the object having the smallest variation of normals
within the intersection region. Using 1/Var(nl), the inverse of the total variation (i.e., the
trace of the covariance matrix), as weights yields:

d̂ = −n̄1Var(n2) + n̄2Var(n1)
‖ − n̄1Var(n2) + n̄2Var(n1)‖ (4.1)

Note that, since the normal fields of the two meshes are in opposite directions, a minus
sign is required here. We arbitrarily chose to orient d̂ in the direction of the normal field
of the second mesh.

To maintain a flowing animation, this direction d̂ must smoothly vary in time.

Il

Let us observe that the intersection region is continuous in time as it
is delimited by the exact points of intersection between the two ob-
jects (see inset). The temporal continuity of d̂ can thus be obtained
by computing the mean and total variation through continuous in-
tegrals of a continuous normal field. For the sake of simplicity, we
consider the unnormalized vector field obtained through piecewise
linear interpolation, allowing for simple Gauss quadrature integra-
tion (see Appendix A for details). For instance, the mean n̄l is given
by:

n̄l = ml

‖ml‖
, with ml =

∑
f∈I

Afnf ,

where Af is the area of the triangle face f , and nf denotes its average vertex normals.
The considered faces are either faces of the initial mesh (dark grey triangles in the
inset), or result from the cut of an initial face crossed by the continuous boundary of the
intersection region (grey polyline). In the latter case, the points considered as vertices of
the triangle are the vertices of the initial mesh if they are inside the intersection region
(black dots) and the exact intersection points otherwise (light grey dots). These cut
faces can either be triangles or quads. We split the quads into two triangles (dashed
lines) in order to use the same numerical integration technique for the entire region.
Using a degree two Gaussian quadrature rule leads to the following approximation of
the face normal:

nf =
∫
f

n = 1
6

2∑
k=0

nk + n(k+1) mod 2
2 ,

with nk the normal on the kth vertex of the triangle face f . The normal of the exact
intersection points is obtained by linear interpolation of the normals at the extremities
of their supporting edge. The same method is applied to compute the total variation.

53

Chapter 4. Contact definition

If the user is not satisfied with this automatically computed direction, she or he can
specify it manually and even key-frame it during the animation. For example, this can
be used to fake the influence of tangential motion and friction forces. This manual
approach is detailed and illustrated in Section 3 of Chapter 7.

Mapping definition. We define the mapping regionsMl as the set of points (not only
vertices) on each mesh that can be mapped to each other. To this end, each object is

d̂

p q
projected onto the other by matching every vertex with the most
distant point on the opposite mesh, when it exists, along the associ-
ated mapping direction (inset figure). Note that these points (e.g., p
in the inset) do not necessarily belong to an intersection region Il,
but they are projected onto the intersection region of the opposite
mesh. The resulting mapping regionsMl can thus be larger than Il.
The simplest approach to compute this matching consists in casting
a ray along d̂ (resp. −d̂) for each vertex in the working region Wl

of each object and to find its furthest intersection with the opposite mesh. Such an
approach would not only be inefficient, since most rays will not find any intersection,
but more importantly, it will prevent us to tightly define the mapping regions. If these
regions are not conservative, then temporal instabilities will occur when the contact zone
reaches the boundary of the mapping region. In contrast, conservatively defining Ml

as the set of faces containing at least one matched point (e.g., the segment pq in the
inset figure) would make further processing (i.e., the construction of the contact surface
and contact zones) impossible due to unmatched points (namely, q which is beyond the
projection of the green mesh silhouette onto the blue surface). To solve both problems,
we need an efficient algorithm to compute mapping regions which tightly enclose all the
points that can be projected onto the opposite surface, and which smoothly evolve over
mesh edges to guarantee the consistency of the deformation during the animation. This
algorithm proceeds in two steps.
First, we find the smallest region Bl that needs to be projected onto the opposite mesh

to resolve the collision. Based on the observation that the parts of two colliding objects
that remain in contact must face each other, Bl corresponds to the front-facing parts
of the surfaces in intersection Il when seen from their associated mapping direction, as
illustrated in yellow and green in Figure 4.4(a). More precisely, defining the orientation
function g = n>d̂, a point on the surface is front-facing if g ≤ 0. These regions are,
by definition, delimited by the occluding contours of the surface. To ensure temporal
continuity on polygonal meshes, we extract “interpolated” contours for all faces within Il
using the method of Hertzmann and Zorin [HZ00]. By definition, an edge for which the
orientation function has opposite signs at its two vertices i and j is crossed by a contour.
The barycentric position t of the contour point along this edge is obtained by linear
interpolation of g, i.e., g(t) = (1− t)gi + tgj ; solving for g(t) = 0 yields t = gi/(gi − gj).
If the resulting set of contour segments is not empty and forms a closed loop, the

region that must be projected on the other surface is simply Bl. If the boundary of Bl
does not form a closed loop (i.e., the front-facing region is not entirely contained in Il),

54

2. Mapping

M2

B1

B2

(b)

M2

P2(B1)

B1(c)

I2

I1

(a)

d̂

Figure 4.4.: Mapping region definition. (a) The front-facing regions Bl are computed in the
part of the objects in intersection Il (in green for Mesh 1, yellow for Mesh 2). (b) The intersection
between B1 and I1 (blue) is projected on W2 following d̂. The union of this projected region
and B2 definesM2 (purple) (c) 3D View of (b). The chained contour of Bl (blue) is projected on
Mesh 2. The intersection between the projected chaining (cyan) and the edges of Mesh 2 defines
the exact-boundary point ofM2 (purple points).

we close it by chaining the contour curves with the boundary of Il when they intersect.
Finally, if the set of contours is empty, it implies that the full intersection region is front-
facing and Bl can be reduced to Il, whose boundary is already continuously defined by
the exact intersection points (Section 1).
In a second step, we need to find for each region Bl the corresponding region on the

opposite mesh. In the following we describe our method for the first object; it works simi-
larly for the second one. To obtain continuous regions defined on mesh edges, we extrude
the chained boundary segments of B1 (dark blue ticks and curve in Figure 4.4(b), resp.
(c)) along d̂, and consider its intersection with the front-facing part of the other object
W2 (light blue curve). Each intersection between an extruded quad and a front-facing
edge ofW2 (purple dots), i.e., such that g(t) ≤ 0 with t the intersection parameter along
the edge, delineates the boundary of the projected region P2(B1). The set containing
all the extruded contour quads is denoted Q. In practice, we work in 2D by projecting
all edges and contour segments on a plane orthogonal to d̂. We then perform in this
reduced space simple edge-edge intersection tests accelerated by a 2D AABB-tree.
We tag the extremities of each intersected edge as either inside or outside P2(B1)

according to their relative positions with respect to the quad. The closed region P2(B1)
is then obtained by propagating the inside tags using, once again, a flood fill algorithm.
Eventually, the final mapping regionM2 is obtained as the union of B2 and P2(B1); this
is required in more complex configurations than the one depicted in Figure 4.4 for which
B2 is already included in P2(B1).
Once the mapping regions have been determined for both meshes, we project all the

vertices inside them by casting rays along d̂ (resp. −d̂) and finding the most distant
point on the opposite mesh, which is now guaranteed to exist.
We can classify the exact boundary points of the mapping regions into three categories:

(1) the intersection points resulting from the collision detection described in Section 1;
(2) the intersection points of the projected contours with the opposite mesh, and (3)

55

Chapter 4. Contact definition

k̄ = 1 k̄ = 0.5k̄ = 0.75input configuration
Figure 4.5.: Variations of the relative stiffness parameter k̄ between two capsules. Here k̄
is the relative stiffness of the lower capsule.

the contour points. For the first two categories, their mapping on the opposite mesh
is already known by definition. For the third type of boundary points, we perform the
same ray casting procedure as the one used for the vertices inside the mapping regions
to find their associated point on the opposite mesh.

Discussion. Apart from the chaining with the boundary of Il when necessary, the first
step of this method is simply following [HZ00]. The challenging part is computing the
intersection of the projected contours with the opposite mesh, especially when several
contour segments intersect the same mesh edge. As in Section 1, we only keep track of
the intersection points closest to each extremity of the current edge. Those are sufficient
to determine the inside and outside tag of the edge vertices.
Note that, contrary to the previous approach (Section 2.1), the resulting mapping

is not a bijection between two subsets of the initial surfaces. Indeed, for non-convex
objects, rays along d̂ might intersect the opposite surface multiple times. However, we
still obtain an injective map by retaining the furthest intersection as unique match. We
will see in the following sections the other consequences of this lack of bijection.

3. Potential contact surface
Once the mapping regions have been defined for each object, we need to determine the
shape of the shared contact surface S resulting from the collision. As its name suggests,
the potential contact surface corresponds to a virtual surface located between each pairs
of mapping regions. It describes the shape of the final interface between the two colliding
objects as if they were in contact over their whole mapping regions.
In the limit asymmetric case involving a rigid object, the contact surface is the rigid

mesh. For two elastic objects, this is not as straightforward; the intermediate surface is
located between the two initial meshes and depends on their relative stiffness, defined

56

3. Potential contact surface

M1

S

M2p′′i
d̂

p′i

δi

pi

Figure 4.6.: Potential contact sur-
face definition.

for mesh l as:

k̄l = kl
k1 + k2

, l ∈ {1, 2},

where kl∈{1,2} are user-controlled pseudo-stiffness
parameters. The effect of k̄ is depicted in Fig-
ure 4.5. The full projection of one mapping region
onto the other, as defined in the previous section,
corresponds to the displacement of a fully elastic
surface onto a rigid object, i.e., a zero relative stiff-
ness. Conversely, if the mapping region is not mod-
ified, it corresponds to a relative stiffness of 1. For

intermediate values, we use a fraction of this displacement proportional to the relative
stiffness of the considered mesh. For example, if a point pi ofM1 is mapped to p′′i on
M2 by a displacement vector δi = p′′i −pi, its position on S will be p′i = pi + (1− k̄1)δi
To determine the extent of the contact zone and ensure C1 continuity at its boundary

(as detailed in Section 4), we need the normal at each of these projected points. In-
dependently projecting the polygonal surface of M1 and M2 onto S and recomputing
vertex normals would require to explicitly cut each mesh along their mapping regions
boundary, and more importantly, it would lead to discretization errors that would break
the symmetry of the contact zone extraction as it is based on the normal field of the
contact surface (see next section). Instead, for every vertex i of M1, we compute its
normal on the shared potential surface S directly from its initial normal ni and the
interpolated normal n′′i of its corresponding point on M2, when S is defined using the
above linear interpolation (see Figure 4.7).

M1

S

M2

ni

n′′i

P1(x)

P2(x)

n′i

d̂

x

Figure 4.7.: Normals
on S.

Indeed, for the sake of symmetry, to compute the normal of
each vertex projected on S, we use an implicit surface represen-
tation of S, and derive its normals by calculating the gradient
of the associated scalar field at this position. Let us consider a
point x. P1(x) and P2(x) are its associated projection points
along d̂ onM1 andM2, respectively. We want to find the gra-
dient on S at x. By definition, this point is at the intersection
of S and the segment joining P1(x) and P2(x). We thus define
the following scalar field:

F (x) = ((k̄2 P1(x) + (1− k̄2) P2(x))− x)> · d̂
The zero iso-surface F = 0 defines the implicit surface cor-
responding to S. To obtain the normal at each point of this
implicit surface, we now need to compute the gradient of this
function:

∇F = k̄2 ∇(P1(x)> · d̂) + (1− k̄2) ∇(P2(x)> · d̂)− d̂.
Taking the linear approximation of P1 and P2, we finally get:

∇F = (I − d̂>d̂)
(

k̄2

n>1 d̂
n1 + (1− k̄2)

n>2 d̂
n2

)
− d̂,

57

Chapter 4. Contact definition

with n1 the normal on M1 at this point, and n2 the interpolated normal on M2 at
P2(x). To avoid numerical instabilities when normalizing the vector, we eliminate the
denominators in the previous equation to obtain the final direction associated toM1:

ζi1 = (I − d̂>d̂)
(
k̄2 |n>i2d̂|
sign(n>i1d̂)

ni1 +
(1− k̄2) |n>i1d̂|
sign(n>i2d̂)

ni2

)
− |n>i1d̂| |n

>
i2d̂| d̂,

The final normal of vertex i ofM1 on S is then:

n′i1 = ζi1
‖ζi1‖

.

To obtain the final normal of a vertex j of M2 on S, we replace d̂ by −d̂ in previous
equations.

Discussion The potential contact surface S is obtained by linear interpolation for sim-
plicity and performance reasons. As a downside, due to the non-bijective definition of the
mapping regions, S can exhibit C0 discontinuities. One approach to this issue would be
to extend the linear interpolation with continuity constraints over whole potential con-
tact surface. Another solution could be to anticipate this problem earlier in the pipeline
by directly modifying the definition of the mapping regions, as discussed in more details
at the end of this chapter.

4. Contact definition
Eventually, we want to identify which part of each object will remain in contact with
the opposite one after the deformation, that is which subset of the potential contact
surface S will be considered inside the contact zone C. We observed empirically that
the extent of the contact zone between two objects in collision varies according to their
respective geometry, stiffness and the depth of interpenetration. For example, the deeper
the collision is, the wider the contact zone should be. Conversely, the stiffer the object
is, the smaller this region will be. We will now present two methods to determine these
contact zones considering these observations. The first one, detailed in Section 4.1, is
limited to rigid-elastic contacts. It uses a volumetric criterion reflecting the pseudo-
stiffness of the elastic object and taking into account the local geometry of S and the
initial surface. The second approach, described in Section 4.2, is based on a surfacic
geometrical symmetric criterion which allows to handle elastic-elastic collisions.
To comply with one of our main requirements, the criterion used by both approaches

can be controlled by the user to tweak the apparent stiffness of the elastic objects in-
volved in the collision. Moreover, as mentioned in Chapter 3, the deformable region
extends from the contact zones boundary. Since we need a continuous definition of the
deformation, the boundary of the contact region must evolve smoothly over the course
of the animation.

58

4. Contact definition

4.1. Ball testing
Our first method only applies to the asymmetric case of a collision between a rigid and
an elastic object. In such a case, S corresponds to the surface of the rigid object.

Inspired by α-shapes [EM94], our idea is to translate the stiffness of the elastic object
into the radius rs of a virtual ball that would roll on the interior of the elastic mesh
after being projected on the rigid mesh (Figure 4.8 (a)). The contact zone corresponds
to the sub-region of the surface accessible by this ball. The larger the ball, the least it
can access concavities of the elastic surface, the smaller the contact zone will be. The
contact zone will naturally expand as the depth of the intersection grows.
We developed a fast approximation of this test called ball testing. For each vertex with

index i of the deformable region in intersection, we check whether any other deformable
vertex is inside the ball of radius rs and center ci = p′i + rsn′i. If so, this vertex is not
part of the contact zone (Figure 4.8 (b)). This test is accelerated using a 3D AABB-tree,
built here over all the projected vertex positions.
However, defining the contact zone at vertices will not allow a smooth temporal evolu-

tion of its boundary. To refine it further, we compute the exact contact-boundary points
on the outgoing edges of the contact zone by “sliding” the same virtual ball along them
until it touches the elastic surface (Figure 4.9). More precisely, for each edge ij connect-
ing a vertex with index i inside the contact zone to a vertex with index j outside this
zone, the ball is defined by the constant radius rs and the linearly interpolated center:
c(α) = (1−α) ci+α cj , with α ∈ [0, 1] the parametric location along the edge. The exact
contact-boundary point corresponds to the smallest α at which the ball is tangent to
another vertex p′ of the elastic mesh. This boils down to solving the quadratic equation:∥∥p′ − c(α)

∥∥2 − r2
s = 0.

In practice, we perform this test on every vertex contained in the axis-aligned bounding
box of the two spheres associated to the extremities of the edge (i.e., with center c(0)
and c(1)), leveraging the same 3D AABB-tree. If the edge contains intersection points
(Section 1), then we clamp α as required to ensure that the contact-zone stays within

2rs

rs

(a)
rs

p′i

ci

p′

n′i

(b)

li

Figure 4.8.: Ball testing in 2D. (a) Contact zones (red and yellow solid lines) are identified on
the projected elastic surface (dark gray solid line) by testing whether it can fit a ball of a given
radius (rs for the region in yellow, 2rs for the one in red). (b) For a vertex at position p′i with
normal n′i, we test whether any other vertex p′ of the elastic mesh is inside the ball with center
ci and radius rs, excluding all vertices behind the hyperplane with normal n′i passing through
the point li.

59

Chapter 4. Contact definition

p′i

n′j

c(1)

α 1− α

n′i

c(0)
c(α)

p′

p′j

Figure 4.9.: Ball sliding in 2D. The contact zones extend across edges: for a vertex at position
p′i with normal n′i inside the contact zone (in red) connected to a vertex with position p′j with
normal n′j outside this zone (in blue), we search for the smallest parametric location α along
this edge such that the associated ball (in purple) with center c(α) and radius rs is tangent to
another vertex p′ of the elastic mesh (the ball radius is usually much larger than the edge in
practical situations).

the intersection. The overall smallest α is stored on the ij edge and denoted later as
αij .

As we linearly interpolate the ball centers, the ball can slightly penetrate the deformed
surface along the edge as seen in Figure 4.9, thus leading to false detection. Enforcing
the ball to remain tangent to the edge would make the problem of finding the optimal
α intractable. Moreover, since the points p′ come from the projection onto a discrete
surface, and not a continuous one, the above tests are sensitive to slight variations of
the projection. We address both problems by excluding from ball testing all vertices
lying behind an hyperplane of normal n′i and passing through the point li = p′i + λi n′i
(Figure 4.8 (b)). Here, λi is chosen as the smallest positive scalar such that the one-ring
neighborhood of the current vertex lies in the rejection side of the hyperplane. This
effectively excludes the topological one-ring-neighborhood while being compatible with
the continuous ball-sliding test: the interpolated hyperplanes are obtained by linear
interpolation of their respective normals n′i, n′j and reference points li, lj .
At the end of this step, the contact zone can be composed of multiple non-connected

regions that can smoothly split and merge during the animation. Note that we never need
to insert the contact points into the meshes, nor do we have to chain them together, which
significantly simplifies computation. Figure 4.10 illustrates the effect of the variation of
the pseudo-stiffness parameter rs on the final deformation.

input configuration rs = 50 rs = 100

Figure 4.10.: Variations of the pseudo-stiffness parameter rs of an elastic plane colliding
with a rigid sphere. This parameter controls the extent of the contact zone. To produce plausible
results, the extent of the deformation area has been increased accordingly.

60

4. Contact definition

Discussion. This approach has undeniable advantages: it is continuous and produces
coherent contact regions that evolve in a plausible fashion. However, it is inherently
limited to rigid-elastic collisions due to its asymmetric definition. Indeed, for elastic-
elastic contacts, the contact zones Cl of each mesh l should result in the same projected
regions on S since the contact is shared by the two objects. The issue does not come
from S, as its geometry is the same for both meshes, but from the ball testing procedure
itself. By construction, it computes the final contact zones taking into account parts
of the mesh geometry that can be outside the collision, i.e., outside S. Therefore, it
is highly unlikely to find adequate testing spheres for both meshes to obtain consistent
contact zones.
In addition, we observed that the stiffer an object is, the less its initial curvature can

change. Consider for instance a bar with zero curvature, such as a ruler: if it is very
rigid, a high force must be applied to bend it; the more elastic the ruler becomes, the
weaker the force required to bend it is. At equal force magnitude, the bar can reach a
higher curvature. The same idea applies to a ball. Consider a very rigid bowling ball,
it is very unlikely that we can change its curvature by pressing on it. Conversely, if the
ball is a stress ball, we can squeeze it more easily and thus increase its curvature around
the contact. Using our method and changing user parameters to achieve the desired
deformation on different objects allow to reproduce these observations. It also leads us
to the idea that the radius of the testing sphere should not be the same over the whole
mesh, but should rather depend on the initial local curvature of the considered object.
We did not pursue this idea further, but it would be interesting, in future work, to study
the effect of this spatially-varying radius.
Moreover, we made the observation that the thickness of the object should be taken

into account. Indeed, the thickness of an object has an impact on its stiffness. In
addition, with our volumetric criterion, we assume that, before collision, the testing ball
is able to roll over the inside of the initial surface without any collision with the rest
of the surface. For objects with varying thicknesses, our intuition is that the maximum
radius of the ball should change depending on the local feature size, that is, the distance
to the medial axis. Such a radius could be precomputed as a preprocess and acts as
a upper bound for the radius set by the user. We did not put efforts in this direction
yet as this question is also connected to the application domain of our method. Indeed,
scenarii for which adapting the ball radius would make sense would very likely also
require a global deformation response (e.g., through skinning), that our local deformer
cannot achieve anyway.

4.2. Geometrical method
To generalize the definition of the contact zone to the case of two elastic objects, an
additional constraint is required: symmetry. As the contact is defined on the potential
contact surface S, the contact zones on both meshes should correspond to the same
regions on this common intermediate surface (i.e., result in the same projected zones
along d̂ (resp. −d̂) on S).

We thus developed a second method based on a criterion for belonging to a contact

61

Chapter 4. Contact definition

input configuration τ = −1 τ = 0 τ = 1

Figure 4.11.: Variations of the apparent stiffness parameter τ between two capsules. This
parameter controls the extent of the contact zone. To produce plausible results, the extent of
the deformation area has been increased accordingly.

zone that captures all variations of geometry, stiffness and depth while satisfying our
application requirements, i.e., temporal continuity, artistic controllability, and symmetry
with respect to the two objects.
To obtain a symmetric behavior, this criterion is based on the geometry of the common

surface S, and motivated by two empirical observations. On the one hand, the more
distant the normal of this surface is from the direction of collision, the less the two
objects should remain in contact. On the other hand, the deeper the collision is, the
larger the contact zone should be. Therefore, we define our criterion as follows. On each
mapping region Ml, a vertex remains on the contact surface S, that is, in the contact
zone Cl, if it fulfills the condition:

δ>i n′i ≥ εc, (4.2)
where, as before, n′i is the normal of vertex i on S, and δi is the displacement between
the vertex position and its projection on the other mesh. Since the average magnitude
of those scalar products largely varies over the animation, the threshold εc needs to be
continuously recomputed. To ensure a stable control during the animation, our idea is
to start from the mean mS of δ>i n′i over S, and then deviate from this reference by a
user-controlled amount τ of the standard deviation σS of δ>i n′i over S:

εc = mS + τσS . (4.3)

To ensure temporal continuity, mS and σS are computed by integrating δ>n′ overM1
and M2 using Appendix A; The integration is limited by the exact boundary points
of the mapping region defined on mesh edges, similarly to n̄l and Var(nl) on Wl in
Section 2.2. As depicted in Figure 4.11, the scale-independent parameter τ allows the
user to adjust the apparent stiffness of the most elastic object by controlling the extent
of the contact zone, while its shape is determined by the relative stiffness k̄l defining S.
Moreover, to avoid too high tangential displacements in the final deformation, we add

to Equation 4.2 the following safeguard symmetric condition on the angle between the
initial surface normals and the mapping direction:

min(−d̂>ni, d̂>n′′i) ≥ cos(80◦),

where n′′i denotes as before the normal of the point corresponding to the vertex i on the
opposite object (see Figure 4.6).

62

4. Contact definition

With such a definition, the contact zone is discretized at the vertices of both meshes.
Once more, we need a smooth temporal evolution of its boundary to guarantee a con-
tinuous deformation during animation, and we thus compute the exact-boundary points
of the contact zone on mesh edges. For each outgoing edge ij joining a vertex i inside
the contact zone and a vertex j outside of it, we find the smallest barycentric coordinate
αij at which the following conditions are met:

n′(α)>δ(α) ≥ εc
min(−n(α)>1 d̂,n(α)>2 d̂) ≥ cos(80◦)

}
(4.4)

where n′(α) is the normal of that point on S, δ(α) is its displacement, and n(α)l∈{1,2}
are its initial normals on each mesh; all those quantities are independently obtained by
linear interpolation of their respective values at the edge extremities. Once the minimum
α value has be obtained by the resolution of a second degree equation, we project the
corresponding interpolated point onto S following d̂ (or −d̂) and recompute its exact
final position and normal that will be used in the subsequent steps of the pipeline.
These exact-boundary points are stored using their barycentric coordinates, denoted
later as αij , on their associated edge ij along with their corresponding projected point
and normal on S.

Discussion. Although this method has the major advantage of handling elastic-elastic
contacts, some of the strengths of the ball testing approach are lost. In this second
method, εc is computed and used for the whole mesh, hence this criterion cannot adapt
to local variations of the shapes. By comparison, even with a constant sphere radius, the
first method solely takes into account the local geometry of the mesh to assess whether
each tested vertex belongs to the contact zone; the ball-testing criterion is thus much
more local. This can have a significant impact on certain configurations. Consider for
instance a slightly elastic palm pressing onto a soft cushion, we expect the collision of
each finger to be treated independently, or at most by considering the directly adjacent
fingers. The collision depth of the forefinger should have little, if any, influence on the
contact of the little finger. This will not be the case with our global surfacic criterion
εc, which can lead to missed contact zones giving the impression of missed collisions. As
future work, it would be interesting to find a method combining the locality of the ball
testing approach and symmetric definition of our second criterion.

d̂ S

n′1

n′2

In this second approach, we also made some ap-
proximations leading to potential issues with high
curvature objects. To determine exact boundary
contact points, we use a degree two equation lin-
earizing n′, the normal on S, and δ, the displace-
ment between the vertex position and its projec-
tion on the other mesh. We thus make the as-
sumption that the distance to the opposite mesh varies linearly along the considered
edge. For meshes with low curvature this approximation is acceptable, but as the curva-
ture increases, as shown in the inset figure, this can lead to an imprecise definition of the

63

Chapter 4. Contact definition

d̂

Silhouette

ρ1

ρ2

Figure 4.12.: Issue with concavities. A plane (in blue), coming from the top, collides with a
surface with a fold (in green). Right: due to the fold, the blue point of the plane can be mapped
to two green points of the mapping region of the green surface: our mapping is thus not bijective.
Left: the solution would be to remove the parts of the mapping region (here at the bottom) that
can be projected on the same object following d̂. The top contour point ρ1 will be projected on
ρ2. From the blue surface perspective, the corresponding point should be split into two to get
the displacement magnitude and normal on S from both points on the green surface.

boundary of the contact zone. In red we see the point determined by our method and
in green the real boundary point. A solution could be, once a first approximation of the
exact contact point barycentric coordinate α is found by the method described above,
to verify the normal n′(α) and displacement δ(α) with its projection on the opposite
mesh. If the dot product between those two quantities are too far from the computed
criterion εc, we could refine the position of the boundary point along the current edge
by dichotomy, assuming that the dot product is monotonic, which should be the case for
low frequency surfaces.
Another welcome property of the ball testing method that we have lost

d̂
S

with this second approach is illustrated in the inset figure. In
the special case of the collision between a concave surface and a
convex surface with opposite curvature, such as a saddle on the
back of a horse, we expect the contact region to extend over the
whole intersection region. However, if both objects are quite
rigid, due to our choice of a unique mapping direction, we will
not get the expected result. The contact will be mostly located
on the top of the green ellipsoid shape due to the alignment of
the normal on S with d̂. The ball testing approach would produce a much better result:
the entire intersection region would be part of the contact zone.
Finally, the last topic that we want to discuss is the case of concavities as illustrated

in Figure 4.12. Here we consider the blue plane as elastic and the green surface with
the concavity as rigid. As already mentioned, the mapping presented in Section 2.2 is
only injective in such configurations. It can thus exhibit discontinuities that can lead to
some issues. First, in Figure 4.12, we can see that a subset of the green mapping region
(solid line in the left sub-figure) is not reachable by the blue one (dashed blue line in the
right sub-figure). Yet, this portion of the surface is part of S in our definition and thus
contributes to the computation of εc, which is then biased. This subset should thus be
removed from the mapping region of the green surface, because it corresponds to only

64

5. Algorithm

one of the two objects.
The question is now how to obtain a plausible contact region with such a discontinuity.

To avoid transferring the discontinuity of S to C, the contact boundary should move away
from ρ2 to its left. With the same idea of curvature variation mentioned previously, the
blue surface cannot closely fit this discontinuity to create a sharp angle unless this
object is very elastic. Our surfacic criterion does not seem suitable in such configuration
because, if one vertex of the blue mesh projected on the lower part of the green surface is
detected as part of the contact zone, there is no reason for this region to extend up to ρ2,
and the discontinuity of S will be propagated to C. Again, our volumetric ball-testing
method will seamlessly handle such a configuration provided a large enough ball radius.
One possibility to address all the aforementioned curvature-related issues would be

to take inspiration from the surfacic opening method recently proposed by Sellán et
al. [SKSJ20]. Contrary to the ball testing, this is a surfacic method, but it is based on
the local curvature of the surface. The part of mesh that stays put on S at the end of
the process can be considered in the contact region. The drawbacks of this method are
the required remeshing and the iterative process to define the output shape. Similarly
to the ball testing, we also need to choose an appropriate size of the structuring element.
However this idea is a promising research direction to find a good compromise between
our volumetric and surfacic methods.

5. Algorithm
In this section, we summarize with an algorithm the different steps described in this
chapter with all the possible alternatives.
Our method can take as input more than two objects. When using the mapping version

described in Section 2.1, each object can represent a working region. But, as mentioned
earlier, when using a unique mapping direction for the matching step (Section 2.2), the
direction d̂ is related to the instantaneous movement of the considered objects. According
to its movement each object can be processed as either a unique working region if its
displacement is global (i.e., the same for each part of the input object), or multiple
disconnected components if they follow different directions. In that case, they must be
considered as several independent working regions that will be processed separately.
In general, we consider a set of working regions {Wl}, represented by triangle meshes,

that may belong to a single or multiple objects. The first steps of our pipeline to extract
the contact zones are performed on each pair of working regions (Wa, Wb) in collision.
At the end of these steps, after the extraction of the contact zone on each surface, we
store for each working region l the sets Jl of working regions with which they are in

The following algorithm corresponds, on the left, to the pipeline described in [BBG21],
illustrated on the right part of Figure 3.1 (steps (a) to (d)), and the blocks on the right
are the alternatives used in [BBGB20], corresponding to the left part of the same figure.

65

Chapter 4. Contact definition

1

2.2

3

4.2
4.3

4.2

4.4

Ja Ja Jb Jb

2

2.1

4.1

66

5
Deformation

In this chapter we present the second steps of our method corresponding to the last
row of Figure 3.1. After the definition of the region where the colliding objects will stay
in contact, we must determine the resulting deformation surrounding it. The objective
is to compute the final position of the involved surfaces around their contact regions. In
the previous chapter, we processed each pair of colliding working regions individually. In
this chapter, however, the deformation of each working region is computed independently
of the others. This means that we will focus on computing the deformation of a single
working region at once, considering the single or multiple contact zones coming from
the collision of this working region with one or multiple other working regions. In the
later case, the working region includes multiple contact regions with potentially different
mapping directions.
As mentioned in Chapter 3, several approaches could be conceived to compute the

final deformation, and we made the key decision to separate the computation of the final
displacement into two parts: its direction and its magnitude. Although this decision
already narrows the range of possibilities, multiple approaches are still conceivable and
we explored some of them. In the following, we describe those to explain the progression
towards the final solution.

Motivation. First, a smooth direction field can be obtained by harmonic diffusion, in-
terpolating, on the one hand, the mapping directions at the boundary of the contact
zone and, on the other hand, the normals of the initial surface at the exterior boundary
of the deformable region. This idea, that seems the most intuitive at first, does not

d̂

n1 n2

d

C

D

produce the expected result on many cases.
For instance, let us consider the direction field on a bean-

shaped elastic surface, as illustrated in the inset figure with
a sectional drawing of the initial mesh. The contact region
and the associated constrained mapping directions are col-
ored in red and the deformable region D in light blue. n1
and n2 are the normals of the initial surface at the bound-
ary of D. In this configuration, the vector field d resulting

67

Chapter 5. Deformation

for harmonic diffusion of those 3D vectors does not point in the correct, or at least ex-
pected, direction. To avoid this unwanted behavior, we thus need to take into account
the change of orientation over the surface, as described in Section 2.
Concerning the magnitude of the displacement, assuming we have a smooth direction

field, we can obtain a smooth scalar field using poly-harmonic interpolation between ∂D
and ∂C. The volume preservation constraint can be applied as a soft constraint, and the
resolution of our problem then boils down to an energy minimization. Using a simple
Laplacian interpolation operator has the advantage of the performance but is not an
option due to the tangential discontinuity at the boundaries of the considered region.
To improve the surface continuity on ∂D and ∂C, the Laplacian operator can be

replaced by a bi-Laplacian, at the cost of a biharmonic diffusion. Using a weighted
bi-Laplacian instead of a uniform formulation, we can even reinforce the influence of
the operator at the boundary of D over the volume preservation constraint. Yet, these
improvements are still insufficient to robustly avoid discontinuities of the final deformed
surface mainly due to the volume constraint. Moreover, it could be difficult to compute
and tweak the weights to obtain the desired plausible deformation for each mesh and
each collision configuration.
Finally, we can consider an ARAP energy formulation [SA07]. For performance rea-

sons, it can be linearized [VGB+14] by fixing a priori the rotations to align the normals
of the surface interpolated between the ones at boundary of C on S and the ones of the
initial surface at the external boundary of D. With this scheme, we get rid of disconti-
nuities, but the bulge which is expected by the volume redistribution is flattened due to
the nature of this energy. Indeed, the fixed rotations converge quickly to the normals of
the initial surfaces, which makes the deformation closely follow the initial shape of the
object, and therefore does not permit to produce a natural and plausible bulge. More-
over, to prevent the surface from stretching too much, the ARAP energy distributes the
bulge more than expected, giving the impression of flatness. In extreme cases, coupled
with the volume preservation constraint, it can even produce more discontinuities at the
boundary of the deformable region.
In fact, we already know the kind of profile wanted for the deformation to reproduce

the bulge. An idea would thus be to constrain the ARAP energy over this profile.
According to our observation, an inflexion in the normal field of the final deformed
surface is needed to obtain a plausible deformation. It cannot be obtained using a
simple interpolation of the normals at the boundaries of D with the linearized ARAP
formulation. It would be possible to design a target deformation using a profile curve
and compute the corresponding rotation (needed by the chosen energy) to induce the
inflexion on the surface.
However, in addition to the complexity of the process, this method suffers from the

same issues as the previous ones: the indirection created by this profile curve controlling
the rotation of the ARAP energy is difficult to adjust to obtain a plausible deformation.
If we use a profile curve, we might as well control the displacement amplitude directly
to remove this indirection.
Last but not least, all of these methods share a critical limitation: the lack of artistic

control.

68

Our solution. To circumvent this limitations while complying with our initial require-
ments, we decided to compute the final position of the considered surfaces around their
contact regions using a pure geometric displacement along a smooth direction field d.
As a reminder, the final position p′i of every vertex pi of D is obtained by the following
equation:

p′i = pi +Hai,si(ui) di. (5.1)

The displacement magnitude is controlled by a 1D profile function H defined over a 1D
radial parametrization u ∈ [0, 1] of the deformable region. To ensure a smooth transition
with the contact region, an adjusted profile Hai,si is instantiated at each vertex pi of
the deformable region D by fixing its amplitude ai and slope si at u = 0. Since this
information is only known at the contact-zone boundary, we have to diffuse it to the rest
of the deformable region yielding the two corresponding smooth scalar fields a and s.
Note that si reflects the slope of the displacement in the direction orthogonal to the

boundary of the contact region, which is thus unrelated to the gradient of ai. To illustrate
that point let us consider a simple symmetric configuration like a rigid sphere colliding
an elastic plane. In this case, the amplitude ai along the boundary of the contact zone
is expected to be constant, and thus the field a will also be constant over D. Its gradient
will be a null vector field, whereas the scalar field s will also be constant over D, because
its value will reflect the slope of the sphere on the direction orthogonal to the boundary
of the contact region.
To summarize, once the contact zones have been established for all pairs of colliding

working regions, each of them is processed independently by computing the different
ingredients of Equation 5.1:

1. the extent of the deformation together with a 1D parametrization of the corre-
sponding deformable region (Section 1),

2. a directional field d supporting the vertex displacement (Section 2),

3. the guiding amplitude a and slope s fields (Section 3),

4. the final deformation of the surface along d (Section 4).

These four steps are described in the next sections.

69

Chapter 5. Deformation

1. Deformable region
The 1D parametrization of the deformable region, denoted u, must range from 0 at the
contact region boundary ∂C to 1 at the exterior boundary of the deformable region. We
define it as u = φ/φmax, where φ is a scalar field measuring a smoothed geodesic distance
to the contact boundary ∂C, and φmax is a user-specified maximum geodesic distance
controlling the extent of the deformation (Figure 5.1). Formally, the exterior boundary
of the deformable region is defined as the iso-contour φ = φmax.
Our computation of φ is inspired by the state-of-the-art heat-method [CWW13], which

is a three-steps procedure:

1. Compute a scalar field v through heat diffusion.

2. Compute the normalized gradient field X = −∇v/‖∇v‖.

3. Solve the Poisson equation ∆φ = ∇ ·X.

Our approach mostly departs from the original method in the first step. Let us recall
that at this stage we work on an open subset W of the initial surface. In such a case,
Crane et al. recommend to compute v as the average of the two heat-diffusion solutions
obtained with vanishing Neumann and Dirichlet conditions respectively, which we found
too expensive for us. From our experience, Dirichlet conditions alone yield significantly
better and stable solutions than natural Neumann conditions, especially if Wl is large
enough. In practice, we use a time step equals to 10h2, with h the average edge length
in the current working region.
Since we are seeking for a smooth distance field (implying a very large time-step in

the heat-diffusion), we could consider simplifying the computation by using the solution
of the steady state problem:

∆v = 0 with v = 1 on ∂C and v = 0 on ∂W

q
C

input configuration
u

∂D

Figure 5.1.: Visualization of the parametrization on an elastic balloon pressed by a rigid
finger. Center & right: Top view of the elastic surface, showing the boundary of the intersection
region q (in white), the contact region C, and the deformable region boundary ∂D. The radial
parametrization u (colored periodic iso-values) is 0 (red) on the contact boundary ∂C and 1
(blue) on ∂D.

70

2. Direction field

heat-diffusionsteady-state solution

input configuration

Figure 5.2.: 1D parametrization comparison. A more geodesic-like parametrization (right)
avoids unpleasant distortions when multiple contact zones are involved in the collisions.

where ∂W denotes the exterior boundary of W. However, even though the distance
field produced by the steady-state solution is smoother, in practice it results in odd
deformations as its isolines depart too much from the ones of the true geodesic distance
field, as illustrated in Figure 5.2.
Since the contact boundary ∂C is not defined on existing vertices of the mesh but as

an arbitrary polyline along its edges, we implement the Dirichlet boundary condition
along ∂C as a set of least-square linear constraints (1− αij) vi + αij vj = 1 for all edges
ij crossed by the contact boundary. To avoid temporal discontinuities when the contact
boundary ∂C crosses a vertex, we also use adequately weighted cotangent coefficients
(see Appendix B).
When solving the Poisson equation in step 3, we reuse the same adjusted cotangent

weights to compute the integrated divergences, and the same least-square constraints to
ensure that φ = 0 on ∂C.
The result of this process is depicted in Figure 5.1. The parametrization respects the

boundary constraints, is smooth, almost linear, and radially symmetric when expected.

2. Direction field
As a reminder, the direction field required by our method is subject to two constraints:
it must match the fixed displacements of the contact zone at u = 0 and, for a smooth
shape, it should be mostly aligned with the surface normals and eventually reached these
normals at u = 1. The natural idea to compute such a direction field would be to use
harmonic diffusion with Dirichlet constraints on ∂C and ∂D. However, as presented in the
introduction of this chapter, this method does not work as expected. We thus developed a
method presented in Section 2.1 that alleviates this issue by coupling harmonic diffusion
with parallel transport. However this process is costly due to the diffusion of complex
values. Therefore, focusing on the speed of the transition towards the surface normals,
we developed a much simpler method, described in Section 2.2.

71

Chapter 5. Deformation

2.1. Direction field diffusion using parallel transport
As introduced above, using a simple harmonic diffusion is not suitable for our goals.
Indeed, even though boundary constraints are respected, the geometry of the initial
surface between those boundaries is not considered. We thus developed a method that
takes the variations of orientation of the undeformed surface into account.
For each vertex pi of the exterior boundary of the deformable region, we impose

d(pi) = di = ni. Likewise, for each edge ij crossed by the contact boundary ∂C, we
should have:

d(pij) = dij , with dij =
pij − p′ij
‖pij − p′ij‖

,

where pij = (1−αij)pi+αijpj is the exact boundary point along the edge, and p′ij is its
projection onto the opposite surface as obtained from the mapping defined in Chapter 4.

ni

pi

bi

ti

di

d̄i
nj

Ri(j

bj

tj

pj

d̄j

dj

R̄i(j

To take into account the change of orientation over the
surface, we encode each displacement direction di as its
2D projection onto its local tangent plane:

d̄i = B>i di ,

where the precomputed 3× 2 matrix Bi = [ti bi] holds a
pair of unit and orthogonal tangent vectors (inset figure).
Intuitively, d̄i represents how much the direction deviates from its normal in tangent
space. This also has the advantage of relaxing the non-linear unit vector constraint
during the diffusion. However, we notice that, due to this projection, the diffused value
would correspond to the sine of the angle between the initial normal ni and the diffused
unit direction di, whose speed of variation is thus slower than the one of the final diffused
angles, especially for large angles. For deep collisions, when the constraints at the two
boundaries of the deformable region are significantly different, this method produces
swiftly varying directions, resulting in unnatural deformations, and even folds, especially
when the distance between the two boundaries is short. In such a configuration, the
diffused direction varies actually too quickly to the surface normals. To counterbalance
this effect, we apply the arcsin function to the constraints at the boundary of the contact
zone before the diffusion:

d̄i(angle) = arcsin(d̄i)
d̄i
‖d̄i‖

.

A direction di is then recovered as:

di = Bi d̄i +
√

1− ‖d̄i‖2 ni , (5.2)

with d̄i = sin(‖d̄i(angle)‖)
d̄i(angle)

‖d̄i(angle)‖
(5.3)

This reduction of dimensionality is possible because we assume that the fixed directions
at the contact boundary are directed towards the exterior of the deformable surface,
which is a reasonable assumption for smooth surfaces.

72

2. Direction field

d̄k

d̄ij

input configuration
Figure 5.3.: Visualization of the direc-
tion field. The 2D projection of the di-
rection field onto the surface tangent plane
d̄ (in blue) is diffused from the value con-
straints d̄ij (in red). Here the constrained
directions on ∂C are obtained using the map-
ping method presented in Section 2.1 of
Chapter 4.

We interpolate these tangent vectors between the two boundaries using harmonic
diffusion and parallel transport. Since two adjacent vectors d̄i and d̄j are encoded
within different tangent frames, the later needs to be parallel-transported before being
compared using d̄i− R̄i(j d̄j , where R̄i(j is a 2D rotation encoding the in-plane rotation
from j to i.
We pre-compute it as R̄i(j = B>i Ri(j Bj where Ri(j is the 3D rotation aligning the

normal nj with ni. For efficiency we encode both the tangent vectors and rotations as
complex numbers. In practice, the parallel-transport rotations are thus incorporated
within the weighted Laplacian matrix by multiplying each off-diagonal element Lij by
the unit complex version of R̄i(j . We refer to [KCPS13] (their Section 2) for more details
on parallel transport and an alternative computation of the transport rotations.
Finally, the linear value constraints d̄(pij) = d̄ij on the contact-boundary ∂C are

introduced in a least-squares sense, as described in Appendix B. A notable difference is
that parallel-transport rotations from the edge extremities i and j to the point pij also
need to be included in the constraint matrix. The result of this process is depicted in
Figure 5.3.
Despite the application of the sine function before the diffusion, in some cases of

deep collisions, the diffused directions still align themselves too quickly with the surface
normals. Unlike our 1D parametrization, the harmonic diffusion of the directions does
not produce an uniform variation of the resulting direction field: it causes fast variations
of the directions close to the contact region. To obtain more uniform variations over the
deformable region, we use the previously computed normalized pseudo-geodesic distance
u and an additional scalar diffusion to correct the result of the direction diffusion. This
additional diffusion is performed with the same type of constraints as the directions
with 0 at the exact-boundary of the contact zone and 1 at the external boundary of
the deformable region. We then remap the diffused projected direction according to the
uniform parametrization before recovering the 3D direction. The final diffused projection
for a vertex i is thus:

d̄i = ui
u′i

d̄′i,

where ui is the uniform parametrization of this vertex, u′i is the parametrization ob-
tained by harmonic diffusion over the deformable region, and d̄′i is the diffused projected

73

Chapter 5. Deformation

direction as computed in Equation 5.3. At the end of this process, we obtain a uniformly
varying direction field from the mapping direction on ∂C to the undeformed mesh normal
on ∂D.

Discussion. The central question is at what speed this direction field should align
itself with the normal field? According to our observations, the direction field should
vary quickly toward the normals of the initial surface but not too quickly. In practice, an
uniform variation of the direction field is not always desirable; this depends on several
factors such as the shape and size of the deformable region D. In some cases it would be
preferable to increase the speed of convergence towards the normal field, while in other
cases, it should be decreased compared to the uniform variation. We can use such a
transfer function to control the speed of convergence and offer to the user some control
over this parameter. However, adding another user parameter would complicate the
artist’s work, we thus propose a second simpler and faster method, which, in practice,
does not seem to suffer from this problem.

2.2. Blended direction field
Two key ingredients emerged from the method described in the previous section: the
need for considering the orientation of the input surface and the notion of variation
speed towards the surface normals. Taking into account these two elements, we devised
a simpler and computationally efficient two step process that explicitly controls the
blending with the normal field.
We first compute a mapping vector field d̄ over the working region through a standard

harmonic diffusion of the mapping directions d̂l defined for each contact zone Cl resulting
from the collision of the current working region with the other working regions Wl

(Section 2.2). More precisely, we set linear constraints of the form d̄ = d̂l along each
contact zone boundary ∂Cl, and natural Neumann conditions over the remaining exterior
boundary. In practice, this problem can be solved reusing the matrix factorized for
solving the second Poisson problem of the previous modified heat-method, which makes
this diffusion inexpensive. In our current implementation, used for generating all the
results in this manuscript, this intermediate vector field d̄ is normalized. Note that this
step can be by-passed in the usual case of a single object colliding with the current
working region, since the result is a constant field d̄ = d̂.

In a second step, this vector field is blended with the surface normal field using the
1D parametrization u as weights to accomplish the desired transition:

di = normalize
(
w(ui) d̄i + (1− w(ui)) ni

)
, (5.4)

with w(u) = (1− u2)6. This weighting function enables an asymmetric and rapid tran-
sition toward the normal field.

Discussion. With the first method presented in Section 2.1, di is only C0 continuous
at the boundaries of D due to the harmonic diffusion. In this second method, it only

74

3. Amplitude and slope fields

happens when multiple contact zones are involved, since d̄ is also obtained by harmonic
diffusion. In practice, this did not lead to noticeable artifacts in our experiments, but a
more expensive higher-order interpolation scheme could be used if needed.
Compared to the first method, this second approach is both simpler and faster. In-

deed, the first method requires the factorization of a complex matrix, four times more
expensive than the factorization of a real matrix. In the second approach, we can reuse
the factorization of the Laplacian matrix needed for the amplitude and slope diffusion,
which makes it almost “free”. When a single contact zone is detected, no diffusion and
thus factorization is even necessary.
In the case of surfaces with high-frequency details, it might be worthwhile to consider

a smoothed normal field to guide the displacement directions. We could for example
apply Laplacian smoothing to the input surface normals to obtain a set of normals ñi
that would be used as a replacement for ni in Equation 5.4. However, this solution would
not be perfect as only a linear deformation would be applied to the details, whereas we
expect that they would be rotated to follow the deformation of the surface, resulting in
an even more plausible deformation. To alleviate this issue, the approach described in
[BS08] could be used as inspiration. It consists in using a multi-resolution decomposition
of the input surface. First the smoothed surface would be deformed using our approach
and then the details would be reintroduced. However, applying this idea to our context
is rather challenging because we would still have to consider the full detailed surface for
handling the collision.
Finally, as previously mentioned, the intermediate vector field d̄ is normalized in our

current implementation. It would be interesting to experiment with an unnormalized
field as it would have the benefit of naturally degenerating into the normal field when
the initial mapping directions are very far apart, or when the direction field turns in the
“wrong” direction as illustrated at the beginning of this chapter.

3. Amplitude and slope fields
As defined in Equation 5.1, the profile curve H is parametrized by its amplitude a, and
slope s at u = 0 such that Hai,si(0) = ai and H′ai,si

(0) = si. Yet, we must know these
two ingredients at every vertex of D to be able to instantiate the adequate adjusted
profile curve.
At a first glance, this problem seems equivalent to the previous diffusions. There is,

however, a fundamental difference that prevents the use of the same numerical scheme.
In Section 1 and 2 of this chapter, the constraints on ∂C for the 1D parametrization u
and d are either constant (using the second version in Section 2.2) or varying extremely
smoothly, with maximal variations of the resulting fields in the direction orthogonal to
∂C. In contrast, the value of a and s may vary greatly along ∂C and the resulting field is
expected to be nearly constant in the direction orthogonal to ∂C. In this context, with the
use of least-squares linear constraints the maximum principle of harmonic interpolation
cannot be guaranteed. Therefore, it tends to yield spurious values around vertices linked
to multiple constrained edges with very different target values. We alleviate this difficulty

75

Chapter 5. Deformation

by explicitly computing the expected amplitude and slope of each vertex pj adjacent
to a contact-boundary edge ij. Those values are then interpolated over the rest of
the deformable region by harmonic diffusion using natural Neumann conditions at the
exterior boundary of D. These conditions allow a good preservation of the boundary
values along the gradient of u.
In the following, we detail how to compute the expected amplitude and slope along

∂C.

Amplitude. For each contact boundary edge ij, the expected amplitude is given as
aij = ‖pij − p′ij‖, i.e., the magnitude of displacement necessary to be projected on S.
The amplitude of the vertex pj can then be computed as the weighted average of the
displacement magnitude established in parametric space:

aj =
∑
i∈Nj

αij aij∑
i∈Nj

αij
,

where Nj denotes the set of adjacent vertices of pj within the contact-zone. The weights
αij ensure temporal continuity over the course of the animation.

Slope. It is worth recalling that s is the slope of the magnitude of the displacement
related to H and not the slope of the deformed surface at the boundary of the contact
zone. Therefore, s and a are linked together and cannot be computed independently.
The slope field s is computed using the same weighted average for the vertices adja-
cent to the contact boundary. We thus need to estimate the expected slope sij at each
contact-boundary edge, taking into account the values of the parametrization u, di-
rection field d, and amplitudes a that have been actually computed. For a small u,
the profile curve H can be approximated as a linear function depending only on the
previously computed amplitude, and the yet unknown slope. Along the edge ij, the
displaced position of pj can thus be approximated as a function of its slope value sij :

pi
pjpij

dij

dj

n′ij

p̃ij p̃j(sij)

p̃j(sij) = pj + (−aj + uj sij) dj .
As illustrated in the inset figure, we estimate sij such that
p̃j lies on the tangent plane of the rigid surface:

(p̃j(sij)− p̃ij)>n′ij = 0 ,

where p̃ij = pij+ajdij , and n′ij is the normal of the rigid surface at p′ij obtained through
barycentric interpolation.

pi pj

pij

dij dj

n′ij
p′ij

ajaij

Notice that the target plane is not positioned exactly on the rigid
surface. This approximation actually improves stability in cases where
uj is extremely small (say < 10-4) and the actual value of aj is
slightly different than aij . Such a case would lead to arbitrar-
ily large slope estimates to cope for the tiny gap between aij and
aj .

76

4. Final deformation

pi

pj

pij

dij
dj

n′ij
p̃ij

p̃j(sij)

bad guess

However, as depicted in the inset figure, this prob-
lem becomes hill posed when the direction dj is
aligned with the edge ij, eij . We mitigate this short-
coming by constraining p̃j to lie on the plane which is
the most orthogonal to the edge and passing through
pj and dij (purple line). In summary, we solve these
two distance-to-plane equations in a least-square sense
(blue point):{

(pj − p̃j)>n̄ij = 0
(p̃j(sij)− p̃ij)>n′ij = 0

with n̄ij = dij × (eij × dij)
‖dij × (eij × dij)‖

.

4. Final deformation
At this point, almost all the ingredients required to evaluate Equation 5.1 have been
computed for every vertex of the deformable region D. In this last step, we need to
combine them to instantiate the profile curve H, defined in Section 4.1, and to compute
the final positions of the vertices of D. The volume preservation constraint presented in
Section 4.2 allows us to achieve plausible deformations with artistic control.

4.1. Profile curve definition
To instantiate the deformation profiles, we use parametric open uniform cubic 2D B-
splines f : t ∈ [0, 1] → (f1(t), f2(t)) for their smoothness, local control, high flexibility,
ease of editing, and ability to generate profiles with a vertical slope at u = 0. The
downside of using a parametric curve is that the evaluation of the profile H(u) at a
given u involves the inversion of f1:

H(u) = f2(f -1
1 (u)) .

In practice, the secant method turned out to be effective enough to make the cost of
these inversions negligible compared to the rest of the pipeline. Alternatively we could
also have used a 1D B-spline curve, which can also achieve extremely steep slopes by
adjusting the knot vector, but we would have lost the local control and ease of editing
properties.
As illustrated in Figure 5.4, the shape of the B-spline f is defined by six control points

vk, k ∈ {0 . . . 5}, that are automatically adjusted for each vertex i of the deformed
surfaces to match the given amplitude ai, slope si, as well as the volume preservation
and user-controlled bulging parameters hv and γ. The definition of f can thus be written
as:

f(t) =
(
f1(t)
f2(t)

)
=

5∑
k=0

vkN3
k (t) with t = f -1

1 (u).

The following table summarizes the default values for the control points:

77

Chapter 5. Deformation

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2
v2, γ = 1

v 1

v 1

v1

v0

v3 v4

v5

1
3

5
6

11
12

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2
v2, γ = 0.4

v2, γ = 1

v2, γ = 0

v 1

v0

v3 v4

v5

Figure 5.4.: Profile curves. The control points v0 and v5 are fixed to ensure surface continuity.
The position of v1 is constrained to the ellipsoid arc with center (0,−1), semimajor axis 0.4,
semiminor axis 0.2 and fully determined by the slope si at the evaluation vertex i (left). The
ordinate of v2 is optimized according to the user-defined bulging parameter γ (right). The
abscissas of v2, v3 and v4 can be edited for additional artistic control of the bulge position and
shape.

v0 v1 v2 v3 v4 v5

abscissa (x) 0 0.2√
1 + si2/4

1
3

5
6

11
12 1

ordinate (y) −ai ai(si xv1 − 1) γ · hv 0 0 0

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2
v2

v1ellipse

v1circle

v0

v3 v4

v5

The rationale behind the formulas controlling v1 is
depicted in Figure 5.4 (left). Recall that v1 must
be positioned to satisfy the given slope si, and since
it can be arbitrarily large, we need to adjust both
its abscissa and ordinate. To do so, we consider a
canonical configuration with unit amplitude (divid-
ing the ordinates by ai) and we constrain v1 on an
arc centered in (0,−1). The simplest solution would
have been to consider a tangent with constant magni-
tude, i.e., to constraint v1 on a circular arc. However,
we found that, when the slope is expected to be very
steep (nearly vertical), the difference between this lin-
ear approximation and the actual displacement mag-

78

4. Final deformation

nitude can be very large even if uj is very small. We alleviate this issue by increasing the
length of the tangent vector of the B-spline parametric curve according to the magnitude
of the slope by adjusting the position of the second control point along an ellipse instead
of a simple circle (see inset figure). This way, the profile curve better respects the linear
approximation made to estimate the slopes.
The last three control points are aligned with the horizontal axis to ensure C2 conti-

nuity at u = 1. To design the desired shape of the bulge, the absissa of the control points
v2 to v4 can be adjusted by the user either globally or locally using brush tools. More
details and examples are presented in Section 5 of this chapter and also in Chapter 7.

Discussion. To define the cubic B-spline f , we use knots with multiplicity 4 at the
boundaries of the interval [0, 1] to make sure that the curve passes through v0 and v5.
We thus use the following knot vector:

t̃ = (0, 0, 0, 0, 1
3 ,

2
3 , 1, 1, 1, 1)>

By definition of a cubic B-spline, the interval of influence of a control point vj is [t̃j , t̃j+4[.
Taking this information into account, we could optimize the diffusion of the amplitude
and slope corresponding to the v0 and v1, respectively. Indeed, the impact of those two
control points are limited to the region where t < t̃5, i.e., t < 2

3 . However, because the
boundary conditions would be put on a different boundary, we have to be aware that
the results of the diffusion obtained using this optimization would be slightly different
than the current results.

4.2. Volume constraint
As illustrated in Figure 5.4 (right), the ordinate of v2 controls the amount of bulging
of the deformation. It is determined as the product of a user-controlled parameter
γ allowing to either suppress or exaggerate the bulge, and a scalar value hv which is
automatically recomputed at each frame to approximately preserve the volume of the
elastic object when γ = 1.

Our implementation considers an exact definition of the volume preservation constraint
using the B-spline equation. We first define the displacement of each vertex as:

p′i − pi = di

hvN3
2 (ti) +

5∑
k=0
k 6=2

ykN
3
k (ti)

 , (5.5)

where ti = f -1
1 (ui), yk is the ordinate of vk and N3

k corresponds to the kth cubic B-spline
basis function. Here we suppose that y2 = hvγ, with γ = 1 since we want full volume
preservation.
Then, we use this equation to express the contribution of each face of the deformed

regions of the surface in the evolution of the total displaced volume. It corresponds to
the signed volume of the polygon composed by the initial face and the displaced one.

79

Chapter 5. Deformation

input configuration

γ = 0 γ = 1 γ = 4

Figure 5.5.: Variations of the pseudo-volume conservation parameter γ of an elastic
plane colliding with a rigid sphere. From left to right : This parameter allows the user to either
cancel (γ = 0), approximately compensate (γ = 1) or exaggerate the reinjection of volume lost
in the collision. [k̄ = 1, τ = 0, φ̄ = 150]

By summing over all the faces, this yields a cubic equation, whose smallest positive root
is the expected solution, hv. All the details are available in Appendix C.

So far, to compute the value of hv ensuring full volume preservation, we made the
assumption that γ = 1. When applying the final displacement to each vertex of the
deformed surface using Equation 5.5, by varying the value of γ, the user can preserve,
reduce or even exaggerate the amount of bulging as illustrated in Figure 5.5.

5. Bulge repartition
So far, the bulge is isotropically spread around the contact zone, which might not always
be desirable. To spatially control the amount of bulge, a simple approach consists in
letting the user paint a so called bulge map η introduced in the profile curve H as a
multiplicative factor of the ordinate hv. By taking into account this new factor during
the optimization of hv (previous section), the volume can still be globally preserved.
Indeed if we take Equation 5.5 and insert the bulge map influence ηi, the displacement
of each vertex i is defined by:

p′i − pi = di

(ηihv)N3
2 (ti) +

5∑
k=0
k 6=2

ykN
3
k (ti)

 ,
The final system still boils down to a cubic equation to compute hv. Since we are still
using here γ = 1 to find hv satisfying the volume preservation constraint, the local factor
ηi is a relative quantity to allocate a portion of the volume that needs to be redistributed.
In other words, multiplying all ηi by the same factor does not change the final result.
Once again here, the user can still control the volume preservation when applying the
final displacement by varying the value of γ.
We describe in Section 5.1 the tools that we developed to ease the edition of the bulge

map. In Section 5.2, we then present an automatic method to procedurally generate
such a map so that plausible anisotropic deformations are produced.

80

5. Bulge repartition

5.1. Painted bulge map
Far from being homogeneous in the real world, a bulge resulting from a collision can
sometimes reveal surface details that are not visible at rest or even create wrinkles from
the contact following the gradient of our 1D radial parametrization u. To grant the
user with as much control as possible over the final deformation, we have added to our
method the possibility to distribute spatially the bulge by directly painting η on the
surface. Painting tools are commonplace many 3D modelling software, where the user
uses a circular brush to assign various values to vertices, faces or edges. We offer to the
artist two types of brushes with art-controllable radius, a classical one and a second one
that takes into account the specific radial parameterization of our deformation. These
brushes support different operations applicable to η: set, add, subtract or smooth. For
each of these operations, the magnitude of the effect smoothly vanishes at the brush
boundary to avoid any unwanted discontinuity.

Local brush. The first type of brush is a simple circular brush with which the artist
can set a value of η to the vertices located inside its radius. To avoid discontinuities
at the brush boundary, a fall-off can be used. It sets the maximum value at the center
of the brush and its contribution smoothly decreases to 0 for the vertices located at its
boundary. This brush can be used to reveal details as illustrated in Figure 5.6 as if the
material of the object was more elastic at some particular locations on the surface. With
this kind of tool, the user is completely free to design the details as she or he wants, which
will be revealed smoothly as the volume gets distributed over the deformed surface.
We can use this type of brush to edit other parameters of the profile curve to control

the position of the bulge, for example the absissa of its control points v2 and v3. However
the nature of this profile and its definition around the contact zone make it difficult to
produce a coherent profile. This is what motivated the development of our radial brush.

input configuration

(a) (b) (c)
Figure 5.6.: Local Painting of an elastic sphere colliding with a rigid plane. (a) Our standard
pipeline produces a uniform distribution of the bulge. (b) The bulge distribution can be guided by
the bulge map η painted in levels of blue directly on the sphere, (c) resulting in a final deformation
that reflects this new distribution while still preserving the overall volume.[k̄sphere = 1, τ = 0,
φ̄sphere = 60]

81

Chapter 5. Deformation

Radial brush. The second type of brush that we developed is based on the radial defi-
nition of the deformation profile. Instead of locally modifying η at an arbitrary surface
position, we set the same value to all the vertices sharing the same profile radially
around the contact zone, i.e., following the gradient of u. Using the same circular brush
metaphor, this modifier is applied as a two-step process. First, we search all the ver-
tices affected by the brush, that we call the selected region Z. Second, we compute the
spatially-varying magnitude of the brush effect that must be assigned to each vertex of
this selection.
The definition of the selected region is done in two main steps as illustrated in Fig-

ure 5.7 for the case of a rigid sphere colliding with an elastic plane. Starting from the
position of the center of the brush projected on the surface, we follow on mesh edges the
corresponding isovalue of u until we reach, in both directions, the distance equivalent
to the user-specified brush radius. Doing so, we obtain a point on each boundary of the
selected region Z. From these points, we are now able to find the two lateral bound-
aries ∂Z1 and ∂Z2 that delimit the selection. Using the same tracing process, we follow
the gradient of u until we reach the inner and outer boundary of D, namely ∂C and
∂D.During this second tracing phase, we store the position of all the boundary points on
the encountered edges forming two polylines that corresponds to the lateral boundaries
of the selection. The boundaries ∂C and ∂D close this region.

We could have assigned the same brush magnitude to the vertices located inside the
selected region. However, to obtain a smooth deformation, we apply a fall-off to this
magnitude centered between the two lateral boundaries ∂Z1 and ∂Z2 . To do so, we
need a 1D parametrization ν ∈ [0, 1] of the selected region which is orthogonal to the

Brush

∂D

∂Z1

∂Z2

C
Z

u = 1
u = 0

∂C

∇u

iso-u

∂Z1

∂Z2

Figure 5.7.: Radial Painting of an elastic plane colliding with a rigid sphere (not shown). Left:
The aim of this tool is to apply the same change on all the vertices sharing the same geodesic
(dotted line for example) from the boundary of the contact zone ∂C to the exterior boundary of
the deformable region ∂D. The two lateral boundaries of the selected region Z depend on the
brush center and radius set by the user. Right: To define the lateral boundary of Z, we trace a
two-sided path from the brush center following the corresponding isovalue of u and stop when
reaching the radius of the brush. ∂Z1 and ∂Z2 are then defined as the polylines along ∇u until
∂C and ∂D are reached.

82

5. Bulge repartition

ν = 0 ν = 1

Figure 5.8.: Selected region parametrization of an elastic plane colliding with a rigid sphere.
Left: the selected region Z is equipped with a 1D parametrization ν with Dirichlet constraint
on ∂Z1 and ∂Z2 and Neumann conditions on ∂C and ∂D. Left: This parametrization allows us
to define a fall-off on the user-controlled brush magnitude to produce smooth deformations.

gradient of u. Using the exact boundary points defined in the first step, we compute this
parametrization by harmonic diffusion with Dirichlet conditions along the boundary ∂Z1
and ∂Z2 and Neumann conditions on ∂C and ∂D. As in Section 1, ∂Z1 and ∂Z2 are not
defined on existing vertices of the mesh but as arbitrary polylines along its edges, we thus
implement the Dirichlet boundary condition along them as a set of least-square linear
constraints equal to 0 on one boundary and 1 on the other, as illustrated in Figure 5.8.
The isovalues of the resulting parametrization ν are mostly aligned with ∇u and ν = 0.5
roughly corresponds to the position of the center of the brush. Once the selected region
is equipped with this 1D parameterization, we can modulate the user-controlled brush
magnitude by the following C1 fall-off function:

w(ν) = (1− (2ν − 1)2)2.

In Figure 5.9 we compare the resulting deformation of the radial painting illustrated
in Figure 5.8 with the standard isotropic bulge. As previously mentioned, this type
of brush can also be used to edit the abscissa of v2 or v3 and still produce plausible
deformations along the profile, as illustrated in Section 3 of Chapter 7.

Discussion. However, this method is limited to configu-
rations producing a single contact zone or several ones but
resulting in disconnected deformed regions. Indeed, if we
take the case of multiple contact zones, the gradient of u
does not always produce the expected tracing, as illustrated
in the inset figure. More generally, in such a configuration
it is not even clear what the selected region should look
like. In general, this method is strongly related to our 1D
parametrization. If the user wants more artistic freedom to
edit the repartition of the bulge, the local brush is better
suited.

83

Chapter 5. Deformation

input configuration

Figure 5.9.: Radial painting result on an elastic plane colliding with a rigid sphere presented
in Figures 5.7 and 5.8. The corresponding bulge maps are presented on the bottom left of each
result. Left: uniform distribution of the bulge. Right: the plane is deformed according to the
new distribution of the bulge defined with our radial painting tools. A closer view of the bulge
map is presented in Figure 5.8. Here the tool was used to reduce the bulge of the selected region,
the fall-off function ensuring a smooth deformation.

5.2. Anisotropy
In addition to manual edition, the bulge map can be procedurally generated to auto-
matically produce plausible effects. In particular, as illustrated in Figure 5.10, it is often
desirable to locate the bulge in front of the collision (green arrow) rather than on its
sides (red arrows). As depicted in Figure 5.10 (top-middle), we mimic this intuitive
behavior by attaching to every vertex pj of the contact zone a volumetric scalar field:

Ppj (x) = 1
‖x− pj‖

max
(

0, d̂ · (x− pj)
‖x− pj‖

+ ψ

)ω

aligned with the mapping direction d̂ and decreasing according to both its distance to
pj and the cosine of the angle made between x − pj and d̂. This field vanishes for the
points x lying on the plane with normal d̂ passing through pj . The exponent ω allows
the user to balance the influence of the positional and directional terms (ω = 2 in all our
tests, unless specified otherwise). The parameters ψ (set to zero by default) enables the
user to further reinforce the influence of the positional term: when positive, it permits
to bulge even when the dot product between d̂ and x− pj is negative.

The bulge weight ηi of a point pi of the deformation area is then obtained by summing
up the contribution of each vertex in the contact zone C weighted by its penetration depth
and associated area Aj :

ηi =
∑

pj∈C
Aj‖p′j − pj‖Ppj (pi) , (5.6)

with Aj one third of the sum of the triangle areas adjacent to pj . When the collision pro-
duces multiple contact zones, this sum is computed over all of them, using the associated
mapping direction to evaluate Ppj .

84

6. Algorithm

isotropic bulge anisotropic bulge

input configuration integrated bulge map η

d̂
C pj

pi

Ppj

side side

front
punctual bulge field

Figure 5.10.: Anisotropic bulge. Each vertex pj of the contact zone C emits a punctual volu-
metric bulge field Ppj

which is integrated for every point pi of the deformable region to produce
the bulge map η. This map is then used to anisotropically redistribute the volume of the defor-
mation. [k̄ = 1, τ = 0]

6. Algorithm
In this section, we summarize this chapter with an algorithm presenting the different
alternatives of our pipeline. As previously mentioned, each working region Wl is pro-
cessed independently from the others, but it can be in collision with one or multiple
meshes, whose indices are stored in the set Jl. Similarly to the previous chapter, the
main algorithm on the left corresponds to the last steps of our pipeline described in
[BBG21], illustrated on the right side of Figure 3.1 (steps (e) and (f)), and the blocks on
the right are the alternative methods used in [BBGB20], corresponding to the left side
of the same figure.

85

Chapter 5. Deformation

1

2.2

Jl

Jl

5.4

3

4

5.6

2.1

B

86

6
Application to skinning

The pipeline described so far assumes that the working regions involved in the collision
are clearly separated, with no overlap, and that there are zero deformations at their
external boundaries. Such assumptions, however, do not always hold. This is typically
the case of a skinned articulation for which two adjacent parts are colliding with each
other (e.g., elbow, knee, etc.). In such cases, the deformation response should not vanish
between them and, as such, it is not even possible to define a clear frontier separating
these two parts. Another example of such a configuration are the lips of a closed mouth.
In this chapter, we address this limitation by allowing adjacent working regions to

overlap each other, while ensuring spatial continuity through a partition of unity blending
of their respective deformation responses over the so called shared region R (depicted in
purple in Figure 6.1(a)). Let β be the weights forming such a partition of unity, then
the final position p′i of each point in R is obtained as:

p′i = βi p′i,1 + (1− βi) p′i,2 ,

where p′i,l denotes the displaced position obtained by applying our pipeline to the working
region Wl.
This approach is very simple but requires additional special treatments. Most impor-

tantly, we must automatically compute a strict partitioning of the working regions so
that the computation of the contact surfaces (Chapter 4) can be carried out. The par-
tition cut should follow the temporally-varying crease of the articulation. For example,
during the course of an animation, the crease of an elbow does not always correspond
to the same triangle strip and slightly moves on the input surface. Therefore, we cannot
ask an artist to set the location of this cut on the model as a pre-process while expecting
that it would be relevant for any movement of the articulation. We thus developed an
automatic method based on contour detection and the scalar field β to compute this
cut on the fly at each frame of the animation. Those novel ingredients are described in
Section 1.
In addition, we need to introduce some synchronization points during the computation

of the deformation parameters of each working region such that the intermediate posi-
tions p′i,l are already as close as possible to each other prior to averaging them. Those
changes are detailed in Section 2 of this chapter.

87

Chapter 6. Application to skinning

W2

W1

R d̂
β = 1
β = 0

(a) Rest pose (b) Input configuration

C2

I2
I1C1

W̄2

W̄1

(W1)

u on W2

(c) Contact zones (d) Parameter diffusion (e) Result
Figure 6.1.: Adjacent region overview. (a) Two overlapping regions entails a shared region R
onto which partition of unity weights β are computed in a preprocess. (b) Input frame clipped
to reveal the self-intersection. (c) The shared region is partitioned through an automatically
computed cut (black dotted line), yielding to the non overlapping working regions W̄l∈{1,2}
within which the contact zones are identified. (d) A deformation is then computed indepen-
dently for each whole working region Wl, starting with the diffusion of its parameters; the 1D
parametrization u is shown here. (e) The final result is obtained by blending the two interme-
diate deformations over the shared region R; a clipped view is used again to reveal the resolved
contact and volume preserving bulge.

1. Shared region & Partition of unity
1.1. Shared region definition
The shared region R is defined as the set of vertices that belong to the two user-defined
working regions W1 and W2. It must be large enough to always include the crease ap-
pearing when the articulation bends during the animation, and designed in a symmetric
fashion such that the expected crease occurs roughly at the middle of R.
The partition of unity weights β are precomputed on the rest pose of the skeleton by

harmonic diffusion with Dirichlet boundary conditions such that β = 1 at the boundary
vertices of R belonging only to the boundary of W2, and β = 0 for those belonging only
to the boundary of W1 (Figure 6.1(a)). If R presents other boundaries, i.e.,vertices be-
longing to both working region boundaries, we use natural Neumann boundary condition
for them.

88

1. Shared region & Partition of unity

1.2. Mapping direction
The heuristic described in Section 2.2 of Chapter 4 to compute the mapping direction
does not apply in the current setting, because it requires strictly separated intersection
regions. In addition, as detailed in the next paragraph, this mapping direction d̂ must

d̂

qj

qj+1

qj+2
partition the common intersection region. To work around this chicken-
and-egg problem, it is usually possible to estimate d̂ from the relative
motion between the two parts of the considered articulation and, in some
cases, it is even possible to instantaneously estimate it from the skeleton.
For instance, in the common case of two bones connected at a joint (see
inset), we compute d̂ as the vector orthogonal to the bisector of the bones
lying within their supporting plane, which seems the natural direction to
resolve the intersection within the fold.

More precisely, we use the transformation of the joints involved in the considered
articulation. In the example illustrated by the inset figure, three joints are connected
by two bones. The mapping direction is simply computed from the positions qj of the
three consecutive joints as:

d̂ = (qj+1 − qj) + (qj+2 − qj+1)
‖(qj+1 − qj) + (qj+2 − qj+1)‖

d̂

Certain configurations of the skeleton do not allow to determine d̂ using
this approach, see for instance the rig of a mouth in the inset figure.
In that case, the two involved bones are not adjacent in the skeleton
tree structure and share the exact same transformation. The previously
described heuristic would thus produce an horizontal direction whereas

a vertical direction is expected here. To address this limitation, we could have used
the influence of the instant velocity of the respective bones. Although this idea sounds
promising, we did not pursue it further, as a manual or keyframed direction was sufficient
for the time being, similarly to the general pipeline.

1.3. Crease detection & Partitioning
In the typical scenario considered in this section, the intersection region of each working
region is expected to be open with a common portion lying in the shared region (Fig-
ure 6.1(b-c)). To be compatible with the rest of our pipeline, this shared intersection
region needs to be explicitly partitioned. This partition is crucial for the mapping step
of our pipeline (Chapter 4, Section 2). Indeed, we can easily imagine that the vertices
of an arm have a mapping direction opposite to those of the forearm. We thus need to
know which direction corresponds to which vertex to be able to perform the mapping of
the surfaces. Moreover, such an explicit partionning in two distinct meshes allows us to
directly reuse our simple collision detection mecanism of Chapter 4, Section 1 without
having to deal with self-intersections.
More formaly, our objective is then to define a partition of W1 ∪ W2 resulting in
W̄1 ∪ W̄2, where W̄1 ∩ W̄2 = ∅. W̄l thus corresponds to a truncated set of Wl. In

89

Chapter 6. Application to skinning

other words, we want to compute a cut through R producing two sets of vertices labeled
respectively as W̄1 and W̄2. For instance, on the elbow example, one can intuitively
imagine that the vertices of the arm should have an opposite mapping direction to those
of the forearm. The partition determines where the switch between those two directions
should happen to define a correct mapping.
Intuitively, the partition cut should follow the crease produced by the input deforma-

tion (e.g., the skinning). This cut is expected to slightly vary throughout the animation,
and must thus be computed at runtime.

W̄1

W̄2

cut

We identify this cutting crease using a graph-
cut optimization [BK01] over the shared region.
More precisely, we use a minimum cut/maximum
flow algorithm that consists in an energy mini-
mization to label the nodes of a graph data struc-
ture (e.g., to segment the pixels of an image). In
our case, we construct this graph over the shared
region R: the nodes of the graph corresponds to
the vertices of R and the edges of the graph to
the mesh edges. For the purposes of the algo-
rithm, we add two terminal nodes (usually called
“source” and “sink”) corresponding to the set of
labels that can be assigned to the vertices, i.e., W̄1

and W̄2.The associated graph is illustrated in the inset.
The energy minimized by this graph-based method is:

ER(w) =
∑
i∈V

Di(wi) +
∑

(i,j)∈N
Ki,j δwi 6=wj

,

with δwi 6=wj
=
{

1 , if wi 6= wj

0 , if wi = wj
,

(6.1)

where V corresponds to the vertices and N to the edges of R, w = {wi| i ∈ V } is the
labeling vector of the vertices of R, Di is a penalty function and Ki,j is the interaction
potential. Typically, the regional term Di indicates individual label-preferences of a
vertex. The interaction potential Ki,j , also called boundary term, encourages spatial
coherence by penalizing discontinuities between neighboring vertices. Generally Ki,j is
large when vertices i and j are similar, and Ki,j is close to zero when they are very
different. We design these two functions to obtain the desired cut of the shared region
as follows.
First, since the two intersection regions should face each other along the mapping

direction d̂, the cut is expected to lie along the silhouette of R as seen from d̂. In
practice, for all vertices i and j of R sharing an edge eij , the boundary term is computed
as:

Ki,j = 0.1 + min
x∈eij

|n(x) · d̂| ,

where n(x) denotes the surface normal at the point x within the edge eij . Since n is ob-
tained by linear interpolation along an edge, computing this minimum is straightforward:

90

2. Pipeline adaptations

it is either 0 if a silhouette crosses the edge, or it is reached at one edge extremity.
Second, to regularize the previous criterion, we assume that the cut should most likely

pass nearby the iso-contour β = 0.5 of the shared region. Within a graph-cut framework,
this is easily implemented by using β as regional term. For every vertex i, the regional
term is computed as: {

Di(W̄1) = βi

Di(W̄2) = 1− βi
As depicted in Figure 6.1(c), the minimization of Equation 6.1 results in the segmen-

tation of the shared region vertices into two parts, each of them forming a new truncated
working region W̄l.

2. Pipeline adaptations
Once the working regions have been partitioned for the current frame, we still need to
slightly modify the pipeline described in the previous chapters to handle articulations.
First, we need to compute consistent contact zones over the two working regions, as a
subset of their vertices is shared. Second, to avoid discontinuity between the previously
defined partitions, we must define a smooth transition of the mapping direction that are
opposite on each side of the cut

2.1. Consistent contact zones and scalar fields
The computation of the contact surfaces (Chapter 4) is carried out on the truncated
working regions W̄l without any modification. As explained earlier, the deformation
should not stop at the previously defined cut, especially around the bending area of the
arm for example. Since the vertices are shared in this part of the input mesh, they must
also be subject to the same constraints, typically the fixed displacement and normal
imposed by the contact zone.
Therefore, after their detection, we need to ensure that the identified contact zones are

properly reported on the parts of the opposite working region that have been temporarily
cut out. For instance, in Figure 6.1(c-d) the region C1 identified on W̄1 is reported to
W2. Once the contact zones have been determined, we no longer need to consider the
truncated working regions, we use the initial ones W1 and W2, each of them including
the shared vertices of R.
All the scalar diffusions are then performed independently on each working region even

on the shared vertices of R, which explains the need for the partition of unity blending
of the final displacements. Indeed, there is no guarantee to have exact correspondences
between the two working regions considered in this shared subset of the initial surface.

2.2. Consistent mapping direction
Finally, we need to update the intermediate mapping direction field d̄ such that it
smoothly transitions from d̄ to the opposite direction −d̄ over the shared region. This

91

Chapter 6. Application to skinning

is accomplished using a linear interpolation parametrized by β:

d̄← (2β − 1) d̄ .

Note that the unnormalized vector field d̄ then vanishes at β = 0.5, and the final displace-
ment direction d will thus gently fallback to the normal field according to Equation 5.4,
recalled here for a vertex i:

di = normalize
(
w(ui) d̄i + (1− w(ui)) ni

)
,

d̂

ni

pi

cut

with w(u) = (1− u2)6.
If we would have normalized d̄ after the linear interpolation, it would

have superseded the normal for small values of u according to the above
equation. In addition to not having the expected direction of displace-
ment, this could introduce an unwanted tangential component that may
result in visual artifacts. For instance, let us consider an elbow artic-
ulation, as illustrated in the inset figure. Intuitively, on this example
the displacement of all the vertices located along the silhouette zone

as seen from d̂ should be defined along an horizontal direction that corresponds to the
normal at this location. In particular, the exit of the fold represents a critical region for
the quality of the deformation. Inside the intersection, the point pi is the extreme case
as it is close to the contact zones and thus corresponds to a small parameter value ui.
According to Section 2.2 with a normalized d̄i, the final direction would not have fallen
back to the normal field.

The result of this extension of our pipeline to handle skinning configurations is illus-
trated in Figure 6.2. We can notice the clean contact and the subtle bulge producing a
final smooth deformation.

3. Discussion
Partitioning. The main limitation of the approach described in this chapter is the need
for a 1D parameterization β. As it is used by the MinCut/MaxFlow algorithm, the
middle of the shared region, corresponding to β = 0.5, must be roughly aligned with
the expected cut. This is important not only for the definition of the cut, but also for
all the blending operations applied to the vertices of the shared region. We are thus
facing a chicken and egg problem when computing the cut: on the one hand the cut is
defined using β and on the other hand β = 0.5 should be aligned on the cut. To avoid
using this scalar field to compute the cut, one could alternatively use a random walker
algorithm [Gra06] solely based on the silhouette criterion. This approach shares some
similarities with the MinCut/MaxFlow algorithm. This is a graph-based segmentation
method with pre-labelled nodes considered as seeds. In our case, the seeds would be the
vertices that unambiguously belong to W̄l. In practice, it boils down to an anisotropic
diffusion problem, with Dirichlet conditions located on the seeds and soft diffusion barri-
ers along the expected cut, that is, along the silhouette. If we take the same formalism as

92

3. Discussion

input configuration
Figure 6.2.: Result of the deformation of a bending capsule with adjacent working
regions corresponding to the model of Figure 6.1.

in Section 1, here we want to determine for each vertex of the input mesh the probability
to belong to one or the other truncated working region W̄l. The final segmentation is
obtain by binarization with respect to 0.5 of the vector w containing those probabilities.
More formally, if we consider Equation 6.1, the energy minimized by this random walker
algorithm would become:

ER(w) =
∑

(i,j)∈N
Ki,j (wi − wj)2 ,

where wi corresponds to the probability to belong to one type of seeds. With such a
formulation β would be no longer necessary for the cut, but we still want the iso-contour
β = 0.5 roughly aligned with the cut for the two partition of unity blends of the directions
and final displacements, which is not guaranteed by neither the MinCut/MaxFlow nor
the random walker algorithm.
For the sake of simplicity, when we begun to work on skinned articulations, we strived

to minimize the changes and adaptations of our existing pipeline. It motivated our choice
to work with two distinct working regions overlapping each other. This approach forces
us to blend the displacements using β because the fields diffused on each working region
are not fully consistent with each other. But what if we see those two working regions
as a unique mesh instead? In this case, assuming that self-intersections are handled by
the intersection detection procedure, we would still have to compute the runtime cut
with the random walker algorithm to properly assign a mapping direction to each side
and to extract the contact regions. Then, the idea would be to perform all the diffusions
(i.e., heat-method, direction, amplitude, and slope) only once over the unique mesh
instead of performing them separately on each of the two working regions. To ensure
that the direction field properly fallbacks to the normal field near the silhouette seen
from d̂ without using a blend factor, we would have to use an unnormalized intermediate
vector field d̄ as discussed in Section 2.2 of Chapter 5. This unified mesh approach would

93

Chapter 6. Application to skinning

not only avoid the blending of displacements at the end of the process, but it would also
guarantee the consistency of the resulting fields in the shared region without using β.

Input skinning deformation. Finally, although this extension of our pipeline is, in the-
ory, agnostic to the geometric skinning method used as a preprocess, it is based on
the assumption that the input mesh resulting from the skinning deformation presents a
clean intersection. This goes against the objective of today’s geometric skinning methods
which seek a compromise between the size of the intersection and the visible deformation
quality. In practice our method is thus sensitive to the quality of the input deformation.

94

7
Results

In this chapter we will present the results generated by our method. We will first show
some comparisons with a finite element simulation, but also comparisons between the
different versions of the method presented in the previous chapters. Throughout this
manuscript, one of the main guidelines was artistic control. In Section 3, we will list and
illustrate the various user controllable aspects of our method. Inevitably, our method
comes with limitations. We will discuss in Section 4 some corner cases that illustrate
those. Finally, in Section 5, we will report the computation time achieved by our method
and future directions to improve them even further.
We also invite the reader to watch the videos accompanying our two publications

[BBGB20, BBG21] to see these results in motion. To make the description clearer, we will
call “method A” the approach associated with the left side of Figure 3.1 (i.e., [BBGB20]),
which is limited, due to the ball testing algorithm, to the asymmetric case of the contacts
between a rigid and an elastic object. “Method B” will correspond to the right side of
the same figure (i.e., [BBG21]), which handles the more generic case of elastic-elastic
contacts.

Development framework
The code developed during this thesis consists in a plugin for Radium, a research 3D
engine for rendering, animation and geometry processing developed by the STORM
research group of the IRIT laboratory in Toulouse, France. This plugin is implemented
in C++ using various libraries for the different blocks of our pipeline. First, we used
the OpenMesh half-edge data structure to store and manipulate triangle meshes. As
previously mentioned, we use Embree in robust mode to compute segment-triangle
intersections. The implementation of the Max-Flow algorithm of [BK01] used for the
segmentation of the shared region in skinning configurations(Chapter 6) is available on
Vladimir Kolmogorov’s website. Finally, for the resolution of the numerous diffusions
throughout our pipeline, we used the simplicial Cholesky solver of the Eigen library.

95

https://github.com/STORM-IRIT/Radium-Engine
https://www.graphics.rwth-aachen.de/software/openmesh/
https://www.embree.org/index.html
http://pub.ist.ac.at/~vnk/software.html
https://eigen.tuxfamily.org/index.php?title=Main_Page

Chapter 7. Results

1. Qualitative results
1.1. Simple configurations
To begin with, we evaluate method A on a few test-cases made of various combinations
of sphere and capsule objects. Figure 7.2 shows five basic, yet challenging, configurations
with each time a pair of rigid and elastic objects in intersection followed by the result
of applying our deformer. We use γ = 1 throughout. In the last two columns, we have
inverted the roles of the objects, which has a notable effect on the size of the contact
zone: it is small in the first instance, and large in the second instance, which illustrates
its dependency on the geometric configuration. The accompanying video of [BBGB20]
shows animated versions for all five configurations.

We then demonstrate the deformer of method A applied to a skinned character (Fig-
ure 7.1) in a few animation sequences of the same video. What is noteworthy here is the
temporal continuity of the deformation while the character is animated. This video also
shows an interactive session where the character pose is modified while the deformer is
applied live, which is only made possible by the time-independency of our approach.

A last example in Figure 7.3 illustrates the deformation of an elastic arm by the rigid
handle of a heavy bucket. Please note the subtle bulge of the arm around the clean
contact produced by method A.

Finally, in Figure 7.4 we present some results obtained with method B on simple
elastic-elastic configurations. Once again, we use γ = 1 in all these examples; the other
parameters are specified directly in the figure. For the case of the cube colliding with the
bumpy surface, we edited the abscissa of the control points v2 and v3 to move the bulge
closer to the contact zone. This later includes the entire base of the cube. In the third
example with the two aligned capsules, we can observe the symmetry of the deformation
when the considered object have the same geometry and physical properties.

Figure 7.1.: Animated in-
put. Even though the torso
of the character is animated
using linear blend skinning,
our method still manages to
compute a clean contact with
the rigid sphere since it is ap-
plied as a post-process to ge-
ometric skinning. [Method A
: rs = 140, φ̄ = 300, γ = 0.5]

96

1. Qualitative results

rs = 25, φ̄ = 75 rs = 20, φ̄ = 75 rs = 20, φ̄ = 100

rs = 38, φ̄ = 150 rs = 20, φ̄ = 50 rs = 20, φ̄ = 100

Figure 7.2.: Test examples using method A. First and third rows: objects in intersection.
Second and fourth rows: result of our deformer with default settings. From left to right: A rigid
sphere (diameter=50) on an elastic one (diameter=100); two horizontal capsules (diameter=100)
colliding perpendicularly and parallelly; an elastic sphere (diameter=100) on a rigid plane, two
capsules with different orientations, each taking the role of the elastic object in turn.

97

Chapter 7. Results

Figure 7.3.: Collision between a rigid bucket handle pressing on a chubby elastic arm.
[Method A : rs = 30, φ̄ = 50].

εc = 0, φ̄plane = 150,
φ̄sphere = 60, k̄sphere = 0.6

εc = −0.6, φ̄ = 100,
k̄cube = 0.6

εc = 0, φ̄ = 200,
k̄ = 0.5

Figure 7.4.: Test examples using method B. First row: objects in intersection. Second row:
result of our deformer with default settings. From left to right: A sphere colliding with a plane;
a deformable cube pressing on a bumpy plane; two horizontal capsules colliding parallelly.

98

1. Qualitative results

1.2. Multiple disconnected components
In this section, we will focus on method B when dealing with multiple soft components
which requires some specific treatments presented in Section 2.2 of Chapter 5. We recall
that these treatments are required to allow the definition of an independent mapping
direction for each disconnected component of the contact zone.
Figures 7.5 and 7.6 show two examples of this kind of configuration: finger tips squash-

ing an elastic ball and pressing onto the palm of its own hand. In these examples, the
whole ball and the palm form a single working region. Yet the contact zones are deter-
mined independently for each finger tips, thus allowing each contact to be established
with its own mapping direction and extent threshold εc, both being automatically com-
puted.

Figure 7.5.: Multiple disconnected components. Left : input configuration, each finger
produces an independent working region. Right: resulting deformation. Notice the subtle bulge
of the finger tips and palm (e.g., around the little finger and between the index and middle
fingers). [Method B : τpalm = 0, φ̄palm = φ̄fingers = 1, ω = 0, k̄fingers = 0.8]

Figure 7.6.: Multiple disconnected components. Left column: input configuration, each
finger produces an independent working region. Right: resulting deformation. Notice the subtle
bulge of the finger tips (e.g., the thumb on the ball). [Method B : τball = 0.6, φ̄fingers = 1,
φ̄ball = 3, γball = 3, k̄fingers = 0.8, ω = 0]

99

Chapter 7. Results

1.3. Skinning & Self-intersections.
Figure 7.8 illustrates the effects of our extended pipeline (Chapter 6) in the case of
self-intersections occurring at the joint of an articulation with linear blend skinning. In
the accompanying video of [BBG21], we present an extended animation showing the
contact handled at the two consecutive articulations of the same finger. In this case,
each phalanx corresponds to a different working region and shared regions are defined
around each joint.
A slightly more complex example is shown in Figure 7.7 with self-intersections oc-

curring between the two lips of a closed mouth animated using linear blend skinning.
Whereas our automatic mapping direction heuristic works perfectly well for the finger,
it does not apply to the mouth which is not an articulation. We thus manually set the
mapping direction to a constant vertical vector. In this particular example, the challenge
is the ceaseless variation of the position of the cut detected by our method. It is located
at the corner of the mouth and not directly related to animation of the bones. This issue
is exacerbated by the low sampling of the surface.

Figure 7.7.: Skeletal skinning. Our
method handles elastic-elastic contacts such
as in this example of a skinned mouth; the
self-intersecting input configuration is shown
in the background.[Method B : τ = −1,
φ̄ = 60, k̄ = 0.5, d̂ = (0.1,−0.9, 0)]

input regions

Figure 7.8.: Skeletal skinning. Left: input configuration and corresponding working regions.
The shared regions (in purple) are between the three phalanxes. Each phalanx represents a
different working region. Right: resulting deformation. [Method B : τ = −1, k̄ = 0.5]

100

1. Qualitative results

1.4. Surfaces with complex reliefs.
In Figures 7.9 and 7.10, we stress the robustness of our algorithms to the case of surfaces
exhibiting relief details. First, in Figure 7.9, we present a configuration handled by
method A of a rigid three-teeth comb sliding on an elastic Stanford Bunny. Here, we
have three different intersection zones, each of them contributing to the same deformable
region. The result illustrated in Figure 7.10 has been obtained as is by method B, with
an automatically computed mapping direction (Chapter 4, Section 2.2). As the motion
of the jelly is rather tangential to the surface of the Bunny, the contact response could be
improved by exploiting the relative motion of the two objects or keyframing the mapping
direction. Besides, for surfaces exhibiting even more intricate details, it may be wise
to precompute and use a smoothed normal field to drive the displacement directions
in Equation 5.4, as discussed in Chapter 5, Section 2.2.

Figure 7.9.: Surfaces with complex
reliefs and disconnected contacts.
Left: input configuration of a comb
sliding on the back of a bunny. Right:
Despite the complex relief, the final
deformation is clean even between the
teeth of the comb. [Method A : rs =
32, φ̄ = 110]

Figure 7.10.: Surfaces with complex reliefs. Left: input configuration. Right: resulting
deformation. The jelly is clipped to show the resolved collision. [Method B : τ = −1, φ̄bunny =
300, φ̄jelly = 560, k̄jelly = 0.6]

101

Chapter 7. Results

2. Comparison
2.1. Physical simulation
In order to evaluate the plausibility of our results, we tried here to reproduce the defor-
mation obtained by a physically realistic simulation based on the finite elements method.
In Figure 7.11, we compare method A to a FEM simulation in Houdini©SideFX. As

a baseline, we also show the deformation produced by the iCollide procedural deformer
provided as a plugin for Autodesk Maya©. In the case of the simulation, we have made
an elastic sphere fall on a rigid plane until it bounces off it. We have then matched
by hand the translation motion of the sphere so that its highest point is matched with
the highest point in the simulation. The parameters of both iCollide and our deformer
(constant throughout the animation) have finally been adjusted manually to visually
match the result of the simulation.
The parameters used for the different techniques in Figure 7.11 are summarized below:

Houdini FEM solver on a sphere of radius 1
Tet embedding Physics
max tet scale: 0.06 stiffness multiplier : 1000
min triangle scale: 0.03125 damping ratio: 0.8
discretization max resolution: 1024 mass density: 1000

shape/volume stiffness: 100/642
friction: 0.1

iCollide deformer
Global parameters Bulge shape
bulge: 10 max range: 10
radius: 50 intersection range: 5
offset: 0 bulge parametric position: (0.197, 1)

Method-A
Global parameters Profile shape
pseudo-stiffness rs: 25 v2.x: 0.2
deformation extent φ̄: 60 v3.x: 0.77
bulge γ = 0.5

FEM our methodiCollide
Figure 7.11.: Comparison of method A with a simulation and a procedural deformer.
Center: FEM simulation in Houdini©SideFX. Left: iCollide procedural deformer in Autodesk
Maya©. Right: Method A.

102

2. Comparison

As seen in the video accompanying [BBGB20] where the comparison is shown in
motion, our deformer is able to faithfully match the deformations and bulging effects
observed in the simulation. iCollide produces obviously different results, since the con-
tact zone corresponds exactly to the intersection region: its extent is fixed and cannot
be user-controlled.
In Figure 7.12, we compare method B to the same FEM simulation method of Houdini©

SideFX applied on two colliding elastic balls. In the case of the simulation in this
example, we have imposed opposite forces to each elastic sphere and disabled gravity in
order to provoke their collision. We proceed as described in the previous comparison to
generate a matching result with our method B. The parameters used for the two different
techniques in Figure 7.12 are summarized below:

Houdini FEM solver on a small and a big sphere of radius 1, resp. 2
Tet embedding Physics
max tet scale: 0.06 stiffness multiplier : 1000
min triangle scale: 0.03 damping ratio: 0.5
enlarge offset: 0.35 / 0.699 mass density: 1000
discretization max resolution: 1024 shape/volume stiffness: 2/20

friction: 0.01
impulse force: (0, 0,−4) / (0, 0, 40)

Method-B
Global parameters Profile shape
pseudo-stiffness τ : 0.2 v2.x: 0.0 / 0.10
deformation extent φ̄: 250 / 150 v3.x: 0.76 / 0.54
Relative stiffness k̄big = 0.6
bulge γ = 0.9

We indicate in blue the parameters for the big sphere and in red those of the smaller one.
When they are the same for both objects, parameters are printed in black. Although
our approach is designed to resolve local contacts, it manages to produce a very similar
deformation. As can be seen in the video accompanying [BBG21], however, compared
to the time-dependent simulation, our result lacks dynamic inertia effects.

Figure 7.12.: Comparison of method B with a simulation. Left: FEM simulation in
Houdini©SideFX. Right: method B.

103

Chapter 7. Results

2.2. Comparison to Implicit Skinning
In Figure 7.13 we compare our extended pipeline to a skinning technique handling con-
tacts, the time-dependent Implicit Skinning technique of Vaillant et al. [VGB+14]. Both
techniques properly resolve the contact and produces plausible bulges.
As already introduced in Chapter 2, this technique is based on the representation of

the initial object by a set of implicit surfaces. It thus uses a volumetric representation
of the mesh, each limb of a character being represented by a 3D scalar field stored as
discrete grids. Compared to our surfacic representation of the input mesh, this has a
much higher memory cost. Another advantage of our method is its time-independency.
Indeed, whereas the 2013 version of Implicit Skinning was also fully time independent,
to properly handle extreme character movements, the 2014 version of Implicit Skinning
requires a dependency over the history of the animation.
The amount of work required to prepare the input object is also different. Our method

requires only the identification of the different working and shared region (as illustrated
in the inset of Figure 7.8). Those can be directly painted, or inferred from the skinning
weights as a first guess. For the Implicit Skinning method, manual work is often required
to adjust the location of the joints as well as the implicit surfaces of all limbs. Blending
controllers also needs to be adjusted for each kind of articulation.
However, the Implicit Skinning method almost fully replaces the underlying geometric

skinning, which is only used to guide the tracking of the resulting implicit surface. In
contrast, our method is applied as a post-process of geometric skinning and therefore
inherits all its limitations (including volume variations due to collapsing or bulging ar-
tifacts) but the self-intersections. In addition, our approach is sensitive to the quality
of the deformation produced by the skinning. Nevertheless, it can handle contacts be-
tween any parts of the input mesh (or meshes), whereas Implicit Skinning is only able
to response, with a reasonable cost, to collisions around rigid articulations of adjacent
bones.

LBS CoRS

Implicit Skinning CoRS+OursLBS+Ours

input configurations

Figure 7.13.: Comparison of method B to Implicit Skinning [VGB+14] on the bending of a
skinned capsule user either Liner Blend Skinning (LBS) or Center of Rotation Skinning (CoRS) as
input to our deformer. Notice the volume preserving bulge produced by our deformer. [τ = −1,
k̄ = 0.5]

104

2. Comparison

2.3. Comparison of methods A and B
Our two methods mostly differ from each other at two steps of the pipeline. First,
the mapping between the two surfaces is computed differently. Method A uses a shared
parametrization, which leads to distortion artifacts. In contrast, method B uses a unique
mapping direction. Second, the methods for extracting the contact zone are also funda-
mentally different. In method A, the ball-testing approach uses a volumetric criterion
that allows to take into account the local geometry of the input surfaces but is limited
to the asymmetric configurations of a collision between an elastic and a rigid object.
Method B alleviates this limitation using a surfacic geometrical symmetric criterion to
handle elastic-elastic collisions. Contrary to the ball-testing method, this approach relies
on a global threshold that does not allow to adapt to the local variations of the spatial
relationships.
Figures 7.14 and Figure 7.15 compare our approaches in two cases for which both

methods are applicable: a rigid finger pressing on the head of an octopus and rigid feet
walking on an elastic plane. In simple configurations, such as the one illustrated in
Figure 7.14, our two methods produce very similar results.

Mapping computation. As already noted in Section 2.1 of Chapter 4, method A strug-
gles and eventually breaks when there is a too large distortion between the two inter-
sected surfaces, such as when the whole foot goes below the ground. In contrast, the
techniques to match the surfaces and extract the contact zone of method B are both
agnostic to the actual intersection regions, which allows us to properly match the sole
of the foot with its complete footprint on the ground.

input configuration

Figure 7.14.: Comparison of methods A and B. A rigid finger pressing on the skin of an
octopus head using the approach of method A (Left) compared to method B (Right).[rs = 90,
τ = 0, φ̄ = 300, γfinger = 0]

105

Chapter 7. Results

(a) (b) (c)

Figure 7.15.: Comparison of methods A and B. (a) A rigid foot colliding with an elastic
plane using (b) the approach of method A compared to (c) method B.[rs = 5, τ = 0, φ̄ = 150,
γplane = 0]

Nevertheless, to ensure time-independence, both methods share the same limitation:
they require a surface-to-surface intersection between the objects to produce a response.
For instance, if a tiny rigid object (in purple, with position at a
previous frame in light-purple) entirely crosses the elastic surface
(in grey), then we could not generate any deformation response.
For such extreme penetrations, even a volumetric collision detec-
tion would not be sufficient to figure out in which direction the
elastic object should be squashed. A practical workaround to this
problem would be to let the artist design a proxy shape bound-
ing the rigid surface (dashed lines), hence creating an intersection
with the elastic surface at the desired location.

Ball-testing strength. The ball testing approach of method A described in Section 4.1
of Chapter 4 allows us to handle challenging cases such as those presented in Figures 7.16
and 7.17: a rigid hand plunging in a soft cushion and a fully elastic hand pressed against
a window. In those configurations, the hand corresponds to a unique working region
producing a single contact region. As already mentioned in the discussion at the end of
Chapter 4, the approach used by method B to determine the contact zone is not suitable
here due to the global definition of the criterion εc. In these two examples, there is
only one intersection zone, but multiple disconnected contact regions are merging and
splitting during the animation. In the accompanying video of [BBGB20], it can be noted
that this does not affect the temporal continuity of the deformation.

106

2. Comparison

Figure 7.16.: Ball-testing
strength.Two hands press-
ing on a pillow. The left
hand is in simple intersection
(the fingers are inside the
pillow, while the palm has
traversed it). The right
hand has been deformed
with method A to convey
plausible contact and bulging
effects.[Method A : rs = 140,
φ̄ = 300, γpillow = 0.8]

Figure 7.17.: Ball-testing
strength.Two hands press-
ing against a window. The
right hand is in simple
intersection (the fingers are
inside the window, while
the palm has traversed it).
The left hand has been
deformed with method A to
convey plausible contact and
bulging effects.[Method A :
rs = 3, φ̄ = 40, γfingers = 0.1]

107

Chapter 7. Results

3. Artistic control
Artistic control is one of the main goals of our work. As already presented in the Chap-
ter 4 and 5, multiple parameters are provided to the user to design the final deformation
of the colliding surfaces and convey the desired physical characteristics of these objects:

• relative and apparent stiffness values (Chapter 4),

• extend of the deformation (Chapter 5, Section 1),

• volume repartition (Chapter 5, Section 4.2).

The effects of varying those user-controlled parameters have been demonstrated in the
associated sections of the previous chapters. In practice, we noticed that the stiffness
and the extend of the deformation should be generally correlated, but we preferred to
leave them independent for full artistic freedom. Throughout this section we will present
more advanced controls offered by our method.

3.1. Profile curve editing
First, additional controls are granted through the modification of the profile function H
globally over the entire surface. In Figure 7.18, using method A, we consider a rigid plane
and an elastic sphere of diameter 100. As shown in the middle in this figure, adjusting
the abscissa of v2 and v3 permits to move the bulge radially. The profile function may
also be modulated by an auxiliary procedural function, as demonstrated in Figure 7.18
(right) where a sinusoidal modulation is employed. Similar editing capabilities are offered
by the method B, i.e., profile-curve tweaking, as illustrated in Figure 7.19 where wrinkles
have been easily generated by adding a sinusoid function to the profile-curve.

v2.x = 1/5 , v3.x = 1/2default wrinkles

Figure 7.18.: Artistic profile curve variations. We visualize the effect of adjusting the ab-
scissa of v2 and v3 (middle), or adding a sinusoidal function to mimic wrinkles (right). The
respective profile curves for an average slope are shown in the insets. [Method A : rs = 25,
φmax = 60 and γ = 1]

108

3. Artistic control

Figure 7.19.: Artistic profile
curve variation. Wrinkles gen-
erated by adding a sinusoid to
the profile curve of the vertical
capsule. The horizontal capsule
is deformed with an anisotropic
bulge. [Method B : τ = 0, φ̄ = 200,
k̄ = 0.5]

3.2. Manual parameter tuning
Most parameters used by our method can be defined automatically. Yet, for artistic
purposes, we also give the possibility to the user to define them manually, and even
potentially to keyframe them in time.
This approach is particularly relevant in the case of the mapping direction d̂ to com-

pensate the lack of friction effects due to the time-independency. Indeed, to induce
friction forces, we would need to know the movement of the objects prior to the current
frame. To workaround this limitation, we can manually specify the mapping direction
to give the impression of friction as illustrated in Figures 7.20 and 7.21. On the left
of the first figure, the vertical mapping direction gives the impression that the finger is
pressing vertically on the purple surface. In the middle one, resp. the right one, it looks
like the finger is sliding on the deformable surface from left to right, resp. right to left.
Similar observations can be made on Figure 7.21. In the left figure, the vertical

mapping direction gives the impression that the finger comes from the top of the octopus
head and goes downward. In the right figure, given a horizontal mapping direction, we
observe an asymetric bulge mimicing a frictional sliding effect. As expected, with the
automatic mapping direction, shown in the middle figure, the finger just seems to press
the skin at one particular point without any sliding.
Figure 7.22 illustrates the tricky example of a slightly soft hat pressing onto a softer

egg-like head. This time it is the relative stiffness value that is manually animated to
give the impression that a force is applied to put the hat on the egg-shaped surface until
it reaches the point where the applied force becomes sufficient for the hat to fit the shape
of the egg. To give this impression, the hat is initially almost fully rigid and the egg
surface elastic, and the relative stiffness is progressively “transferred” from one object to
the other during the animation. The cartoon effect is reinforced by slightly increasing the
volume compensation factor (γ = 1.2) of the egg-shaped object to exaggerate the bulge
effect. To better appreciate the effect, please watch the animated sequence corresponding
to this scenario in the video associated to [BBG21].

109

Chapter 7. Results

input configuration
d̂ d̂ d̂

Figure 7.20.: Control over the mapping direction d̂. Left: using the automatic direction.
Middle and Right: modifying the mapping direction permits to mimic friction effects. [Method B
: τ = 0, φ̄ground = 50, φ̄finger = 20, k̄finger = 0.9]

input configuration
d̂ d̂ d̂

Figure 7.21.: Control over the mapping direction d̂. Middle: using the automatic direction.
Left and Right: modifying the mapping direction permits to mimic friction effects. [Method B :
τ = −0.3, φ̄octopus = 30, φ̄finger = 24, k̄finger = 0.9]

k̄egg = 1 k̄egg = 0.75 k̄egg = 0.25

input configuration

Figure 7.22.: Stiffness transition. From left to right, the relative stiffness is transferred from
the hat to the egg. We see the backface of the hat surface. [Method B : τ = 0.2, γhat = 0.3,
γegg = 1.2]

110

3. Artistic control

3.3. Spatially-varying parameters
Instead of defining a constant parameter over the whole working region, we additionally
offer the possibility to define some parameters locally using a painting tool.
We could imagine to paint any parameter used in our pipeline (e.g., the local stiffness

of an object). Our current implementation is restricted to the parameters defined on
the deformable region D: the abscissa of v2 and/or v3 and the bulge repartition via the
bulge map η.

In Section 5.2 of Chapter 5, we presented an automatic method to define this bulge
map. However, we also provide the option for the user to paint this map directly on the
initial mesh or interactively during the design session. To illustrate this functionality,
in Figure 7.23, we consider a rigid sphere colliding with an elastic plane. This figure
shows anisotropic star-shaped bulges obtained through a painted bulge map, giving the
impression that the plane is in fact a peace of fabric. This is another way to produce
wrinkles with our method in addition to the modification of the profile curve. Currently,
the map is attached to the surface setting a constant value to each vertex for the duration
of the whole animation. We could imagine attaching this map to the contact zone instead.
For example in Figure 7.23 it could follow the sphere as it slides on the plane to retain
this fabric feeling. Another possibility would be to animate the bulge map in time
independently from the objects movement to create dynamic variations.
Finally, Figure 7.24 shows an example where we modify spatially the abscissa x2 of

the control point v2 = (x2, y2) to vary the distance of the bulge to the contact zone. Let
us denote by x1,i, x2,i the actual abscissa of the control points v1, v2 for the vertex i.
Here, the painted map encodes the relative position of the abscissa of the control point
inside the interval [0.2, x3], with 0.2 corresponding to the maximum possible value of x1,j
when the tangent vanishes at ∂C. Slightly negative values of this painted map (depicted
in blue in the bottom left figure) are tolerated since x1,i is rarely equals to its maximum
possible value 0.2 in that configuration. However we must be careful with this inverted
position of x1 and x2 if we want to produce plausible bulge, and more importantly to
ensure that the profile curve remains a function of u (or x as both are equivalent here).

111

Chapter 7. Results

η

input configuration

Figure 7.23.: Painted bulge map. A rigid sphere is pushing below a plane and a fabric-like
effect is achieved through a painted bulge map η with values ranging from one (the default in
red), to slightly negative values (in blue). Here we see the backface of the planar grid. [Method B
: τ = 0, φ̄ = 150, γplane = 0.4, k̄sphere = 1]

input configuration

Figure 7.24.: Painted abscissa of v2. A sphere falling on a plane. Here the artistic bulge
is obtained by varying the abscissa of v2 from its original automatic value. The painted map
(bottom left) encodes the relative position of v2 in the interval between 0.2 (maximum abscissa
of v1) and v3. This value can be inside the interval (red paint) or slightly below (blue paint).
[Method B : τ = 0, φ̄sphere = 60, φ̄plane = 150, γsphere = 1, γplane = 2, k̄sphere = 0.8]

112

4. Corner cases & limitations

4. Corner cases & limitations
In this section we present two corner cases that push our method to its limits (Section 4.1
and Section 4.2) as well as a study on the temporal continuity of our approach in the
particular case of multiple disconnected components (Section 4.3).

4.1. Thin structures
Figure 7.25 shows a stress test for our method on a sphere-like shape made of thin
tubular structures colliding with an equally stiff plane. As can be seen on the left, our
method produces a convincing deformation even for the tubes that are deeply immersed
in the plane. However, since our method does not use any volumetric structure, such
as a tetrahedral mesh, the tubes gets significantly distorted when the collision goes
deeper (as seen on the right) until they eventually collapse. For this specific example, a
workaround would be to embed the tubular-sphere within a smooth genus-0 bounding
triangular mesh (with bounded minimal curvature) onto which our algorithm would be
applied, prior to transferring the deformation of this proxy to the detailed tubular mesh.

Figure 7.25.: Thin structures. An elastic tubular sphere collides with an elastic plane for
two penetration depths (left and right columns). In both cases, our method produces plausible
deformations of the overall shapes (first row), but for the deepest collision the tubes start to
collapse (bottom right). [Method B : τ = 0, φ̄plane = 20, φ̄sphere = 10, γplane = 0, γsphere = 1,
k̄sphere = 0.56].

4.2. Folds
Figure 7.26 shows another stress test consisting in a sphere colliding with many bended
thorns lying on a plane. This example is particularly challenging for the mapping al-
gorithm of method B (Chapter 4, Section 2.2) as it creates many complex back/front

113

Chapter 7. Results

facing configurations along the mapping direction. Nevertheless, for most parts, the
produced deformation remains plausible with some thorns being completely flattened,
hence producing expected folds. This example reveals some limitations though.
First, since the spikes which are away from the contact zone are deformed along the

surface normal, they will unnaturally inflate or shrink when the volume gets redistributed
(top right inset in Figure 7.26). A simple workaround would be to guide the displacement
direction along a smoothed normal field.
Second, we can see that some collisions between the spheres and the thorns are missed

due to the global threshold used by the purely surfacic contact criterion of method B
(Chapter 4, Section 4.2). This contrasts with method A which identifies the contact
zone through a volumetric ball-testing procedure that better accounts for the spatial
relationships and local variations (Chapter 4, Section 4.1). Designing a new heuristic
combining the best of both approaches makes an interesting future work.
Third, this example recalls that both methods can miss or anticipate local collision

events when a new collision occurs nearby a bulge or a depression produced by a previous
collision. The many colliding thin thorns exacerbate this issue to the point of producing
some flickering during the animation, as shown in the accompanying video of [BBG21].
For less challenging configurations, such as the examples of Figure 7.5 and 7.6, those

theoretical discontinuities are not noticeable. This is thanks to both the locality of our
fields and the localization term of the anisotropic bulging weights. For the simpler case
of two successive collision events, the second one occurring on a previous prominent
bulge or depression, a practical workaround would be to apply sequentially our deformer
twice, starting with the deepest collision, instead of processing all the components at
once. Designing a more general solution to this problem is left for future work.

input configuration

Figure 7.26.: Folds. An elastic sphere collides with many bended elastic thorns. Top-right:
close-ups of the thorn highlighted by the green arrow before and after deformation. Bottom-
right: same as bottom left but with the sphere hidden to reveal the expected folds. The red-
arrow highlights a missed collision. [Method B : τ = −0.8, φ̄sphere = 20, φ̄plane = 4, γsphere = 1,
γplane = 0, k̄sphere = 0.8]

114

4. Corner cases & limitations

4.3. Temporal continuity
Even though we designed our pipeline to ensure temporal continuity throughout the
animation, we strived to assess more precisely to which extent method B respects this
constraint in the case of multiple disconnected components.
Figure 7.27 shows a “unit” test to objectively and quantitatively evaluate the sensi-

tivity of our pipeline to sudden changes of the deformation region. It consists of a plane
and two spheres, one of which is already in collision with the plane. In this experiment,
we vary the vertical position of the second colliding sphere, and we measure the displace-
ment speed of the plane vertices. More precisely, we tracked the elevation of all vertices,
and reported in Figure 7.27 its temporal variation for the vertex p exhibiting the largest
“jump”. It is located in the deformation area of both spheres. Since the initial surface is
a plane and the mapping direction is vertical, this quantity is proportional to the signed
amplitude of the displacement of p.

As a reference, we consider the same configuration without the static sphere. In this
case, the variation of the amplitude is continuous over the whole animation (blue curve in
Figure 7.27). However, once we add back the static sphere, a leap is noticeable when the
contact of the moving sphere is first detected (green and red curves). This discontinuity
is due to two factors.
The first one is the time independence of our method: as discuss earlier, since we do

not take into account the previous frame and thus previous deformations, our pipeline
is applied on the initial surfaces at each frame. If an object collides with an already
deformed surface in a bulged region, it will not be detected. If we look at the graph of
Figure 7.27, the displacement of the point p before the contact is positive, which means
that it is located on the bulge produced by the collision of the static sphere.
The second factor is related to our definition of the deformed regions. They are

defined around the contact zones until a user-controlled distance is reached. As a con-
sequence, these regions just appear when a contact is detected with their associated 1D
parametrization. When a first contact is detected, the displacement amplitude diffused
over the region is null, which guarantees the temporal continuity observed on the ref-
erence configuration. But when a second contact occurs, the amplitudes resulting from
the two contacts are blended together over the deformed region by the diffusion process.
The resulting amplitude field is thus greater than zero, which accentuates the magni-
tude of the discontinuity. This issue is emphasized when the amplitude and slope at
the boundary of the contact zones greatly vary. To alleviate this problem we need to
reinforce the locality of these two scalar fields to reduce the influence on the deformation
of a contact as we move away from it.

115

Chapter 7. Results

(a)

(c)

(b)

time

dep
th

-0,2

-0,15

-0,1

-0,05

0

0,05

(a)(b)(c)

p p

p

p

p

p

contact

Figure 7.27.: Temporal continuity of method B. We study the elevation of the point p on an
elastic plane in collision with a rigid sphere. The three studied configurations are presented on
the left. The position of the white sphere is fixed whereas the red one has a vertical movement
from top to bottom and back to top, as shown in the side views of the second column. On
the right, the elevation of the point p is plot for the three configurations over the course of the
animation.

5. Performance
In this section we will present the performance of our implementation of both methods A
and B. We measured the performance of our prototypes on a single core of an Intel
i7-4790K CPU. Table 7.1 reports breakdown timings for method A, whereas average
breakdown timings for method B are reported for several examples in Table 7.2.
On average the processing timing of method A ranges from 6ms to 730ms depending on

the working region complexity (Table 7.3). It ranges from 6ms to 175ms for method B,
with a maximum mesh size slightly smaller for this test set. To evaluate the scaling of
our method with respect to the size of the input meshes, we deliberately included over-
tessellated meshes such as the jelly of Figure 7.10, the planar ground of Figure 7.15, or
the simple shapes of Figure 7.22. Overall, our implementation of method A achieves
interactive performance for an elastic working region whose complexity ranges from 2k
and up to 4k vertices, which is very promising as significantly better timings could be
obtained through basic code refactoring. The new algorithms proposed in method B are
less computationally demanding than those of method A, and we put some more effort
in their optimization. As a result, our implementation achieves interactive rates when
the working regions of both objects count from 10k and up to 20k vertices. Here the two
involved meshes are deformed and considered all along our pipeline. It is worth noting
that these computation time are highly dependent from the portion of the working
regions Wl contained in the deformable ones Dl. When comparing the performance
of method A and B, please keep in mind that method A only handles rigid/elastic
configurations. The deformation is therefore calculated only on the elastic object and
most of the timings only concerns the corresponding mesh. On the contrary, the timing
of method B has been measured on elastic/elastic configurations except for the walk

116

5. Performance

cycle (Figure 7.15) and the egg-shape surface with the hat (Figure 7.22) configuration.
The deformation of the two involved meshes are thus included in the resulting measures.
For both methods, the extent of the working region provides a tradeoff between quality

of the deformation and performance. On the one hand, the larger this user-defined region
is, the closer to a pseudo-geodesic distance the parametrization will be. On the other
hand, the cost of the computations performed over this whole region (i.e., intersection
and parametrization steps) will increase. For instance, for method A on the comb-bunny
test case, those two steps represent more than 75% of the computation time, since the
deformable region only account for 12% of the working region vertices.
Putting low-level implementation details aside, the major bottlenecks are expected

to be the spatial searches of Chapter 4 (intersection, mapping) and the multiple sparse
matrix factorizations. We discuss those two aspects in the two following sections.

5.1. Spatial searches
The formers are embarrassingly parallel and could thus greatly benefit from a multi-
threaded or even a GPU implementation. Also note that intersection computations
could be sped up using state-of-the-art techniques such as joint BVH traversal and
batch intersection tests instead of testing each segment at a time in random order as
currently done in our prototype. This step could also benefit from the collision detection
literature (e.g., [Eri04, TKH+05]).

Regarding spatial searches, the ball-testing/sliding step (Chapter 4, Section 4.1) is
by far the most time consuming part of method A, even though it is only carried out
on a small subset of edges. It represents an important bottlenecks of this approach, in
addition to its limitation to the asymmetric configurations. We envision great optimiza-
tion opportunities of the ball-sliding step by devising a dedicated AABB-tree traversal,
exploiting the fact that one of the ball extremities is empty since it was already accepted
at the ball testing stage. In comparison, the contact zone extraction of method B is one
of the cheapest step of the entire pipeline thanks to its simplicity.

5.2. Matrix factorizations
If we now take a look at the multiple sparse matrix factorizations needed by our two
methods, we can notice that they represent the majority of the timing in both cases.
Method A involves 6 sparse linear solves at every frame, which currently requires 5
matrix factorizations,because the different Poisson problems are carried out on slightly
different domains while involving different least-squares linear constraints. Only the
diffusion of the amplitude and slope fields shares the exact same matrix.
Unsurprisingly, the computation time of method B is dominated by the ray-triangle

intersections but also the three matrix factorizations, two for the heat-method and one
for the diffusion of the slope and tangent parameters. As previously mentioned in Chap-
ter 5 and contrary to method A, if the treated configuration presents only one mapping
direction, no diffusion is needed for the direction field definition. In the case of mul-
tiple mapping directions, instead of a complex matrix factorization, only a real matrix

117

Chapter 7. Results

factorization is required and we even can use the same one as the amplitude and slope
diffusion.
Moreover in method B, to optimize the 1D-parametrization step (Section 1 of Chap-

ter 5) we sped up the two matrix factorizations needed for the heat-method by unifying
them through SIMD vectorizaton. This is possible because the two matrices have the
exact same structure. Implementation-wise, we took advantage of Eigen’s template
genericity to feed it with a custom scalar type holding a pair of scalars within SSE
single precision floating point registers. In practice this allows us to perform the two
factorization at the cost of about 1.3× the cost of a single one.
Overall, in this second approach, the factorizations themselves represent about 25%

to 60% of the overall computation time depending on the ratio between the working
and deformable regions. We believe that their cost could be significantly cut down by
adapting prefactorization techniques [HDA17, HA18]. This would mean pre-factorizing
the standard Laplacian matrix over the whole region of interest on the elastic objects
only once, and then localize and adjust the problems through fast, structure-preserving,
rank updates. Herholz et al. reported up to 10× speedups with such a technique.

Table 7.1.: Runtime statistics of method A for a pair of rigid and elastic meshes with a
number of vertices (# vert) inside the deformable region D; average computation time over
an animation broken down in terms of detecting the regions in intersection (i.), building the
mapping between them (m.), extracting the contact zone (c.), computing the deformation region
parametrization (p.), diffusing the directions of deformation (di.) and the guiding fields (g.),
and deforming the surface according to the profile with γ = 1 (de.), in percentage of the average
total computation time (total).

scenes D relative time (%) total
(# vert) i. m. c. p. di. g. de. time (ms)

caps - caps 2608 19.3 4.4 15.4 22.0 19.0 7.8 12.1 50.8
caps - v. caps 1120 20.8 2.7 14.4 23.4 14.8 9.0 14.9 18.9
caps - caps 1913 16.7 1.3 9.4 32.4 14.3 9.0 16.8 29.7

v. caps - caps 875 18.4 1.9 12.4 39.5 7.4 5.0 15.5 23.4
plane - sphere 568 17.9 3.4 17.5 20.3 16.8 9.4 14.8 9.93
sphere - plane 1456 12.5 2.2 15.6 21.6 17.7 11.6 18.7 16.9

s. sphere - b. sphere 9995 4.1 0.6 21.0 26.5 25.4 13.7 8.7 233.1
ball - torso 407 22.1 4.5 12.1 19.9 13.0 10.5 17.9 6.2

comb - bunny 4413 10.1 0.6 8.5 65.2 4.1 1.9 9.7 378.4
finger - squid 13144 4.6 0.5 10.2 53.5 19.2 5.7 6.4 646.8
hand - pillow 18612 5.2 0.8 32.0 31.2 19.4 5.0 6.3 728.5
window - hand 1064 48.2 6.7 7.1 18.8 12.7 1.8 4.8 69.1

118

5. Performance

Table 7.2.: Runtime statistics of method B for pairs of working regions with various number
of vertices; average computation time over an animation broken down in terms of detecting the
regions in intersection (i.), building the mapping between them (m.), extracting the contact
zone (c.), computing the deformation region parametrization (p.), computing the directions of
deformation (di.), diffusing the guiding fields (g.), and deforming the surface according to the
profile (de.), in percentage of the per frame average total computation time (average). The
column (s.) reports the percentage of time spent in matrix factorizations.

scenes D1 + D2 relative time (%) average
(# vert) i. m. c. p. di. g. de. s. time (ms)

fingers - ball 194 + 1479 11 9 1 26 4 30 18 33 5.6
fingers - palm 616 + 1202 23 9 1 23 3 21 20 26 9
skinned finger 1163 + 981 28 9 1 26 2 20 14 27 13.6
mouth, fig. 7.7 1320 + 1050 25 13 3 24 1 18 15 26 9.8
bunny - jelly 4182 + 4259 12 9 2 43 1 18 16 41 101.8
walk, fig. 7.15 0 + 11682 5 4 0 30 1 49 11 61 76.8

hat - egg 10137 + 0 41 12 2 30 1 10 5 33 173.4

Table 7.3.: Number of vertices (# vert) inside the working region W of the meshes used in
the test cases.

mesh caps vert. caps plane sphere small sphere big sphere torso ball
vert 3028 1465 1521 639 635 10183 529 521

mesh bunny comb squid finger hand pillow window hand
vert 35542 1831 29871 1209 2285 26234 22862 2314

mesh fingers ball fingers palm phalanx 1 phalanx 2 up. lip low. lip
vert 1064 1561 2664 2184 1967 2951 1825 1500

mesh bunny jelly feet plane hat egg
vert 14408 5002 740 11717 12092 10242

119

8
Conclusion

Throughout this thesis, we strived to develop a deformation technique for elastic
objects in collision that provides interactive feedbacks to the user with parameters that
can be intuitively controlled. We were not seeking for physical realism, but rather for
plausible results that are produced quickly, intuitively and with real-time feedbacks for
the computer animation domain.
In this manuscript, we have presented a new deformation technique for the resolution

of local elastic-elastic contacts while producing plausible bulge effects and providing
extended artistic control. It does not aim at generating large, global deformations that
should already be handled by skinning, blend shapes, or cage-based deformers. For
example, it should not be used to resolve the collision of the whole, two-sided ear of
the Stanford Bunny with its back. By relying entirely on geometric operations, we
successfully managed to achieve instant feedback with no time dependency for a seamless
integration in the animation pipeline. Thanks to a careful design of each steps to work
on continuous boundary curves, temporal continuity over the course of an animation is
ensured without introducing any temporal dependencies. Finally, by using a combination
of an automatic 1D parametrization and a 2D profile curve, we manage to produce
volume preserving plausible bulges. This association also allows artistic bulge control,
from no to full volume preservation and even exaggeration, as well as a wide range of
deformation details introduced using art-directed tools.
We also proposed an extension of our pipeline to handle local self-intersections, hence

enabling geometric skinning with contact handling, bulge control, and other artistically
driven effects.
Even though we did not rely on physics laws as the classical physical simulation

methods, the plausibility of our final deformations is strengthened by an anisotropic
spreading of the volume-preserving bulge. Moreover, in addition to be able to convey
information about the physical properties of objects using few parameters, our approach
allows the artist to design cartoony effects using volume exaggeration, but also volume
repartition using one of the numerous artistic controls that we proposed: global or local
profile curve manipulation, manual or spatially-varying parameters, etc.
This type of approach opens new avenues for the deformation of elastic objects in

contact in the context of computer animation: editing may be performed non linearly,

121

Chapter 8. Conclusion

similar deformations can be replicated in different contexts without requiring tedious
manual adjustments, and many artistically driven effects can be easily accomplished by
tweaking the profile curve.

Perspectives
Throughout this manuscript we have already presented and discussed many technical
opportunities for improving some parts of our pipeline. In this section, we will discuss
more general open questions and perspectives.

User study. First, as we developed a tool for artists, it would have been nice to have
their feedback on the usability and usefulness of this work through a user study. This
implies, however, that one should have access to both amateur and professional users
of such tools. In the same vein, it would be interesting to test our method on real
production rigs. Almost all the results of this thesis have been rigged and animated by
non professional artists. Moreover, comparisons with more complex and professionally
designed simulations or captured deformations could also be helpful to validate the
plausibility of the deformations produced by our method.

Link contact and diffusion criterions. One observation that we did not take into account
in this approach is the correlation between the stiffness of a material and the extent of
the deformable region. In our current implementation, this size is set arbitrarily by the
user. Nevertheless, we have the intuition that the stiffer the material is, the less it can be
deformed locally and therefore the deformation needs to extend further from the contact
to fully compensate the volume lost in the collision region. As the threshold used in the
definition of the contact zones is also related to the stiffness of the material as discussed
in Section 4 of Chapter 4, we believe that the two quantities determining the regions of
interest of our method should be correlated. Linking them together automatically would
ease the work of the artist.

Fromour 1D to a 2D parametrization. Moreover, apart from the anisotropic bulge repar-
tition introduced in Section 5.2 of Chapter 5, the bulge deformation defined by our
method is roughly the same all around the contact regions resulting in deformations
that do not always look very natural.
In the photo on the right, we can see wrinkles starting from the

contact zones. These details are due to structures located under-
neath the skin (bones, muscles, ligaments, etc.). To give another
example, if you press your thumb on the inside of your wrist, a
bulge will only appear in the direction transversal to your forearm.
This bulging is, in part, the result of the lateral displacement of
tendons. To offer a large range of plausible deformations to the
user, we cannot ignore such configurations and restrict ourselves to

122

(a) (b)

CC

Figure 8.1.: 2D parametrization of the deformable region. (a) In the current method, the
region around the contact zone is equipped with a 1D parametrization to instantiate the profile
curve. (b) A 2D parametrization of this zone would allow the user to modulate this profile
around the contact.

ideal ones assuming a homogeneous inner body structure. There-
fore, it would be interesting to extend our approach to produce an artistically-controllable
anisotropic deformation around the contact region to be able to reproduce such defor-
mations. With our painting tool, we can already produce such deformation effects but
at the cost of a manual painting of the vertices for every collision. Moreover, what if
one of the colliding objects slides over the other? In order to design a more automated
solution, one possibility would be to dynamically define a 2D parameterization of the
deformed region instead of a simple radial 1D parametrization as in our current pipeline.
This 1D parametrization corresponds to the approximate geodesic distance of any point
on the deformed mesh to the contact region (Figure 8.1 (a)). We can thus only know
on which iso-value curve of the distance to the contact area is located a vertex of the
mesh. With a 2D parameterization (Figure 8.1 (b)), we would also know precisely to
which geodesic any vertex belongs.

?
CC

This 2D parametrization would thus allow us to pro-
pose a second profile curve to control the shape of the
bulge anisotropically around the contact region. We
have already considered this problem during this the-
sis and the challenging part is to define a coherent 2D
parametrization when there are more than one con-
tact region as illustrated in the inset figure. What are
the values in the 2D parametrization expected in the green region?
Previous work already explored this type of parametrization on meshes, for example

using local exponential maps [HA19]. However such parametrizations are defined around
a single point of interest. In our case, it needs to be defined around one or even multiple
closed regions. One possible research direction could be to adapt and extend those
methods to our problem. Interactivity is a mandatory condition in our application
domain and it seems rather difficult to reach real-time performances with this kind of
techniques. Therefore, it would be worthwhile to explore faster approximations that
should still produce a local 2D parameterization which is as smooth as possible. If we
manage to compute such a map efficiently, it will also permit to replace some of the
costly diffusions in our original method and thus to improve its computation time.

123

Chapter 8. Conclusion

In the same vein, in our approach, we assume that the stiffness is constant over a whole
working region, which is quite limiting regarding the same idea of non-homogeneous inner
body structures. Indeed, pressing on a bone or a relaxed muscle should not produce the
same deformation. What would happen if we press the same muscle near a rigid bone?
What would the resulting bulge of the skin over a bone look like in comparison with an
adjacent region without any rigid inner structure? It would be interesting to investigate
the possibility to handle the deformation of a region with a spatially varying stiffness,
potentially painted as a pre-process by the user.

Skin elasticity. To improve the plausibility of our deformations, even in extreme car-
toony configurations, we could also take into account more physical properties of the
skin, such as its elasticity in addition to its stiffness already considered. Indeed, our
displacements are performed for each vertex along a direction field without taking into
account the stretching that may be undergone by the skin with the application of the
deformation. This stretching can be further worsened by the artistic exaggeration of the
volume preservation. This would imply allowing tangential movements of the vertices to
limit these stretches and to find a direct way to integrate them in our method.

Procedural details. Moreover, when the skin is deformed, the dilatation or contraction
of the meso-geometry of the surface and the micro-structure of the material might signifi-
cantly change the reflectance properties of the surface once integrated within illumination
models. For instance, skin folds, including wrinkles, might appear or disappear during
the deformation. Some parts may also change from red to white and vice-versa due
to variations of blood concentration. A low scale deformation issued from the skinning
could thus be complemented with such high-frequency details and effects. A combina-
tion of procedural approaches with a multi-resolution appearance model may be worth
investigating. Another simpler solution to add details with our current implementation
could be to paint directly on the surface underlying hidden details that would be re-
vealed during the collision process, for example wrinkles in front of a sliding finger on
the forearm or at the beginning of a skin pinch.

Self-intersecting skinning method. Since it is applied as a post-process, the output
of our pipeline highly depends on the smooth skinning method used and their resulting
mesh deformations. Current skinning techniques and their associated rigging parameters
are designed to prevent self-intersection by making the deformations unrealistically soft.
To exploit our deformer at its full potential, it would be relevant to investigate novel
skinning and rigging techniques focusing on the generation of nice deformations on the
exterior visible part of the joint, while deliberately producing self intersections on the
interior. Moreover our volume-preserving deformation does not correct the initial volume
lost by the skinning method and, even though we are able to compute this loss, our
deformer is not tailored to correct it. In order to have a full preservation of the volume
from the rest pose of an articulated model, the solution would be to either design a
volume preserving skinning method, or before the application of our deformer, to apply

124

a volume correction using a method like the ones of [vFTS08] or [RHC09].

Other animation principles. Finally, in this research, we only considered (half of) one
of the twelve animation principles presented by Disney: the squash (from “Squash and
stretch”). It would be challenging but exciting to investigate others of these principles
with the same philosophy of providing the artist with intuitive automatic but artistically-
driven tools to produce the associated effects. Recently, Zang et al. [ZBLJ20] and
Rohmer et al. [RTK+21] proposed two methods to add secondary motion effects over an
animated skinned character. The former used simulations producing motions orthogonal
to the skinning deformation, while the latter proposed a geometric solution relying on
the skeleton movement. Both approaches produce less robotic, more lively animations
without requiring a heavy and hardly art-directable full-simulation applied after the an-
imation and rigging stage.

All these approaches pave the road to new ways of creating tomorrow’s animations.

125

Appendix

127

A
Gaussian quadrature for triangulardomain

In practice, most integrals either cannot be evaluated analytically, or their evaluation
is very lengthy and tedious. Consequently, for simplicity, numerical integration methods
are often preferred to get approximate computation of an integral using numerical tech-
niques. A wide range of methods exist for numerical integration, also called quadrature,
and can be expressed as: “Given a sampling of m points of some function f over a
domain Ω, find an approximation of

∫
Ω f .” A quadrature form is :∫

Ω
f(x)dx ≈

∑
i

ωif(xi) ,

where Ω is the designated integration region, and f is an integrand defined on Ω. The
points xi are called quadrature nodes, and ωi are the quadrature weights.
The Gaussian quadrature technique is an optimal method as its goal is to obtain

the best numerical estimate of an integral by picking optimal abscissas xi at which to
evaluate the function f(x). It produces the most accurate approximation possible. If we
considered m quadrature nodes, Gaussian quadrature fits all polynomials up to degree
2m − 1 exactly. In that case, the optimal abscissas correspond to the roots of the mth

Legendre polynomial. In our method, we deal with gaussian quadrature on triangular
η

ξ

1

1
1
2

1
2

faces (i.e., Ω is a 2D domain). As the formulas are independent of
the triangle shape, the idea is to transform the triangular element
to the standard triangle T illustrated in the inset figure and then
apply the quadrature:∫∫

T
f(ξ, η)dξdη ≈ 1

2

m∑
i

ωif(ξi, ηi) , (A.1)

where m is the number of quadrature points, (ξi, ηi) are quadrature nodes located inside
the standard triangle and ωi are weights (normalized with respect to the triangle area).
We want to choose nodes (ξi, ηi) and weights ωi in Equation A.1 so that the quadrature
is as accurate as possible in some sense.

129

Appendix A. Gaussian quadrature for triangular domain

For our application we use a quadrature of degree 2 with three quadrature nodes that
are the mid-points of the sides of the triangle as illustrated in the inset figure. Other
possibilities may be used ; for example, the trisection points of the medians that are not
the centroid could be used as the points of evaluation. By definition, the quadrature
should be accurate for f(ξ, η) = 1, ξ, η, ξ2, ξη, and η2, leading to the following nodes
and weights:

(ξ1, η1) =
(

0, 1
2

)
, (ξ2, η2) =

(1
2 , 0

)
, (ξ3, η3) =

(1
2 ,

1
2

)
, ω1 = ω2 = ω3 = 1

3

The Gaussian quadrature of degree 2 for the standard triangle T with three nodes can
be expressed as :∫∫

T
f(ξ, η) dξdη ≈ 1

6

[
f

(
0, 1

2

)
+ f

(1
2 , 0

)
+ f

(1
2 ,

1
2

)]

130

B
Laplacian and contraints

With all the diffusions necessary throughout our method, the Laplace operator ∆ is
a core element of our pipeline. In this appendix we will make a quick overview of this
operator definition and characteristics. Then, in a second section, we will discuss the
boundary conditions and the linear constraints required for our application.

1. Laplace operator
The Laplace operator, or Laplacian, is a well known second order differential operator
which plays a central role in many domains of physics (elasticity, quantum mechanics,
. . .) and computer science (smoothing, geometric deformations, . . .). Indeed, many
physical models and signal processing tasks reduce to Laplacian-based differential equa-
tions. The Laplace-Beltrami operator generalizes the definition of the ordinary Laplacian
from Euclidean space to functions defined in curved domains Ω, and is usually denoted
as ∆Ω. As we work on surfaces, we will use this version of the operator but, for simplic-
ity, we will keep using the Laplacian for the Laplace-Beltrami operator and refer to it
with the same notation ∆. In general, this operator is define as the divergence or the
gradient of a function u, i.e., ∆u = ∇ · u.
The intuition behind the Laplacian of a signal is that it gives the deviation of a value

at a point xi from a local average defined by a small sphere around xi. In physics, for
example, the heat equation d

dtu = ∆u describes how the temperature u is diffused in an
environment over time. If we seek the equilibrium of this quantity in an environment
Ω with fixed values at its boundaries, we then consider the steady-state heat equation
which boils down to the Laplace equation:

∆u|Ω = 0, with u|∂Ω = u0

The Laplacian comes with some interesting properties. A first basic property is that
constant functions are in the kernel of the Laplace equation. A second property is
that the Laplacian of a function is invariant to rigid motion and isometry. This second
property is very useful for us for performance reasons: we can compute this operator on
our input mesh once and there is no need to compute it at each frame if the considered

131

Appendix B. Laplacian and contraints

object is transformed by a rigid motion. Finally, the Laplacian is an elliptic differential
operator. Therefore, if we define an energy and minimize it in term of the Laplacian, we
get a convex energy.
The solutions of the Laplace equation are called harmonic functions. They are also

minimizers of the Dirichlet energy which measures the smoothness of a function over a
domain:

ED(u) = 1
2

∫
Ω
‖∇u(x)‖2dx, with u|∂Ω = u0,

where u0 is a given function defined on ∂Ω.
This is not the only interesting property of harmonic functions. Indeed, in addition,

they meet the following principles:

• the mean value property: the value of a harmonic function at a point is equal to
its average value over any spheres or balls centered at that point.

• the maximum principal : maximum and minimum values of a harmonic function
are located on the boundaries of the domain of definition. No extrema can be
found on interior points.

Discretization The discrete Laplacian is commonplace in many algorithms, for instance
in physical simulation, machine learning and geometry processing. For such applications,
when working on polygonal meshes, the discrete version of the previously defined oper-
ator is used. It is based on the assumption that meshes can be interpreted as piecewise
linear approximation of smooth surfaces. Different approaches have been proposed to
compute the approximation of the differential properties of the underlying surface di-
rectly from the mesh data. Therefore, many definitions exist to express the discrete
Laplacian. Yet all of them lead to the following matrix formulation of the Laplace
equation as a linear system:

Lu = 0,

where the matrix L is called the Laplacian matrix or also the stiffness matrix.
For example, this discretization can be derived using a finite element method. Without

going into too much details, the idea is to find a linear combination of basis functions
ϕ to approximate our function u with ũ = ∑

i viϕi, where vi ∈ R are the nodal values.
Projecting the residual onto each basis functions and reducing it to its weak form yields:
Lij =< ∇ϕi,∇ϕj >. For further details, the reader is invited to take a look at one of the
numerous resources on this subject, such as, for instance, the Discrete Differential
Geometry course of Keenan Crane [KCS13].
In computer graphics, the most widely used discretization are piecewise linear func-

tions, with nodal values vi attached at the mesh vertices. In this case, we obtain the well

132

https://www.cs.cmu.edu/~kmcrane/Projects/DDG/
https://www.cs.cmu.edu/~kmcrane/Projects/DDG/

2. Boundary conditions and linear constraints

xi

α̂ij

β̂ij

xj

known cotangent formula:

Lij = cot α̂ij + cot β̂ij
2 , if j ∈ Ni,

Lii = −
∑
j∈Ni

Lij

Lij = 0 , otherwise,

where Ni corresponds to the set of neighbors of xi, α̂ij and β̂ij
are the angles opposite to the edge between the vertices i and
j, as illustrated in the inset.
Note that when triangles have obtuse angles, the cotangent coefficients may become

negative, which can lead to flipped triangles in some applications. A simple workaround
consists in subdividing the input mesh [Riv84], but other discretizations alleviate this
limitation [Flo03, BS07].

Translating this definition in the matrix form Lu = 0 with L the Laplacian matrix,
we get:

Lij = cot α̂ij + cot β̂ij
2 , if i 6= j,

Lii = −
∑

xj∈Ni

Lij

One major advantage of the discrete Laplacian operator matrix is that it is very sparse.
Its memory cost can thus be highly reduced using sparse data structure and the system
of equations can be efficiently solved with sparse solvers.

2. Boundary conditions and linear constraints
The boundary conditions and constraints play a crucial role in determining the final
solution. Many kinds of boundary conditions exist, but here we will just mentioned the
two main ones: Dirichlet and Neumann conditions.

Boundary conditions Up to now, we only describe the Laplace equation with Dirichlet
boundary conditions. Basically it consists in fixing the value of the function u at the
boundary of the domain Ω.

Alternatively Neumann conditions allow to fix the derivatives of that function at the
boundary of Ω. The Laplace equation then becomes:

∆u|Ω = 0, with ∂u

∂n

∣∣∣∣
∂Ω

= g ,

where n is the outward pointing normal vector along the boundary and g a given function
defined on ∂Ω. We must be careful when choosing the boundary conditions: a partial
derivative equation may not have solution for a given boundary condition.

133

Appendix B. Laplacian and contraints

Linear constraints In several steps of our pipeline, the boundary conditions of the
Laplace equation are not located on vertices of the mesh but on a set of points lying on
its edges. One possibility would have been to cut the considered triangles dynamically
at each frame and use classical Dirichlet boundary conditions. However it would have
raised several issues. First, the topology of the mesh changing during the animation may
expose us to temporal continuity issues. Second, there is also the high risk of producing
degenerate triangles that would lead to poorly conditioned cotangent Laplacian matrices.

Instead, our solution is to define the boundary conditions as linear constraints of the
form (1 − αij)ui + αij uj = bij , with αij ∈ [0, 1] for all edges i − j crossed by the
boundary of the considered domain Ω. Since we discretize the Laplace equation on a
triangular mesh equipped with linear elements, we cannot guarantee in general that both
the linear constraints and Laplace equation can be satisfied exactly. In practice, we thus
turn them into soft constraints by solving them in the least-squares sense. In matrix
form, this yields:

(L + β C>C) v = β C> · b ,

where L is the cotangent Laplacian matrix, C is the matrix holding the left-hand-side of
the linear constraints, and β is a weight balancing the diffusion with boundary terms.
Observing that the norm of the rows of L are expected to be roughly 10 times larger
than the ones of C>C, and that L is negative semi-definite, we set β = −102 to give
slightly more weights to the linear constraints.
Moreover, to avoid temporal discontinuities when the boundary of the domain crosses

a vertex, we are especially careful when assembling the Laplacian matrix. The integrals
Lij =< ∇ϕi,∇ϕj > of the gradients of the linear basis-function ϕi must be computed
over the true working region Ω. This is typically the case of the heat-diffusion and
Poisson problem when computing our 1D parametrization where the boundary of Ω
corresponds to ∂C.

xi

xj

αij

∂Ω

In practice, this means that the three cotangent terms
associated with a triangle face overlapping the boundary
of our domain need to be weighted by the ratio between
its area after being cut by ∂Ω (inset figure, grey region)
and its full area. Specifically we set:

Lij = wij cot α̂ij + wji cot β̂ij
2 , i 6= j

where wij , resp. wji, is the area ratio associated to the triangle corresponding to the
angle α̂ij ,resp. β̂ij .

These adjustments prove to be crucial to ensure the temporal coherence of the diffused
fields, and thus of the final deformation, despite the time-independence constraint of our
method.

134

C
Volume constraint equation

In this appendix we detail the equation used to ensure the volume preservation con-
straint at the end of our pipeline, as described in Section 4.2 of Chapter 5.
Let us recall Equation 5.5 that computes the displacement vector between a point pi

of the input mesh and its final position p′i on the deformed surface:

p′i − pi = di

hvN3
2 (ti) +

5∑
k=0
k 6=2

ykN
3
k (ti)

 ,
where ti = f -1

1 (ui), yk is the ordinate of the control point vk and N3
k corresponds to the

kth cubic B-spline basis function. We must determine hv such that the original volume
is preserved at the end of the deformation.
Reorganizing the terms and isolating the unknown, we express p′i as:

p′i = hv li + ci,+pi with

li = diN3

2 (ti)
ci = di

∑
k 6=2

ykN
3
k (ti)

p2

p′
2

p′
1

p′
0

p1

p0

To measure the contribution of one face to the
volume displacement, we must consider the volume
of the triangular prism whose bases are the initial
face and its corresponding one at the end of the
deformation. We can compute the volume of this
prism as the sum of the volume of three tetrahedra
as illustrated in the inset.
As a reminder, the volume of a tetrahedron

ABCD can be expressed as :

VABCD = 1
6 (−−→AB ×−→AC) · −−→AD = det(−−→AB−→AC −−→AD)

135

Appendix C. Volume constraint equation

Therefore, the contribution to the volume displacement of the face f is:

Vf = V(p0,p1,p2,p′
0) + V(p1,p2,p′

0,p′
1) + V(p2,p′

0,p′
1,p′

2)

= 1
6 (det(p1 − p0,p2 − p0,p′0 − p0)

+ det(p2 − p1,p′0 − p1,p′1 − p1)
+ det(p′0 − p2,p′1 − p2,p′2 − p2))

= 1
6 (det(p1 − p0,p2 − p0, hv l0 + c0)

+ det(p2 − p1, hv l0 + c0 + p0 − p1, hv l1 + c1)
+ det(hv l0 + c0 + p0 − p2, hv l1 + c1 + p1 − p2, hv l2 + c2))

= 1
6 (det(p1 − p0,p2 − p0, c0)

+ hv det(p1 − p0,p2 − p0, l0)
+ det(p2 − p1,p0 − p1 + c0, c1)
+ hv (det(p2 − p1, l0, c1) + det(p2 − p1,p0 − p1 + c0, l1))
+ h2

v det(p2 − p1, l0, l1)
+ det(p0 − p2 + c0,p1 − p2 + c1, c2)
+ hv (det(l0,p1 − p2 + c1, c2) + det(p0 − p2 + c0, l1, c2)

+ det(p0 − p2 + c0,p1 − p2 + c1, l2))
+ h2

v (det(l0, l1, c2) + det(l0,p1 − p2 + c1, l2) + det(p0 − p2 + c0, l1, l2))
+ h3

v det(l0, l1, l2)

It can be factorized as a degree three polynomial in hv:

Vf = 1
6 (h3

v af + h2
v bf + hv cf + df) ,

with :

af = det(l0, l1, l2) ,
bf = det(p2 − p1, l0, l1) + det(l0, l1, c2) + det(l0,p1 − p2 + c1, l2)

+ det(p0 − p2 + c0, l1, l2) ,
cf = det(p1 − p0,p2 − p0, l0) + det(p2 − p1, l0, c1) + det(p2 − p1,p0 − p1 + c0, l1)

+ det(l0,p1 − p2 + c1, c2) + det(p0 − p2 + c0, l1, c2)
+ det(p0 − p2 + c0,p1 − p2 + c1, l2) ,

df = det(p1 − p0,p2 − p0, c0) + det(p2 − p1,p0 − p1 + c0, c1)
+ det(p0 − p2 + c0,p1 − p2 + c1, c2) .

136

Summing up the contribution of all the faces of the input mesh, we eventually obtain
the following cubic equation in hv:

h3
v a+ h2

v b+ hv c+ d = 0 ,

with :
a =

∑
f∈F

af , b =
∑
f∈F

bf , c =
∑
f∈F

cf , d =
∑
f∈F

df ,

where F corresponds to the set of faces of the input mesh.
We solve this equation finding the three roots corresponding to the eigenvalues of the

3×3 companion matrix associated to this equation and define hv as the smallest positive
one.

137

D
Résumé en français

1. Introduction
Les mondes virtuels sont des univers parallèles qui nous permettent de nous échapper
de notre vie quotidienne. Bien qu’imaginaires, ils doivent, pour être convaincants, se
référer au monde réel que nous connaissons par le biais d’indices visuels. Dans le con-
texte de l’animation traditionnelle dessinée à la main, les animateurs Frank Thomas et
Ollie Johnston ont théorisé dans leur livre de 1981 “The Illusion of Life : Disney An-
imation” [TJ81], douze principes de base de l’animation afin de produire l’illusion que
les personnages de dessins animés sont conformes aux lois fondamentales de la physique.
Ces principes sont toujours pertinents aujourd’hui pour les personnages virtuels animés
par ordinateur [Las87].
De nombreux objets de notre environnement quotidien présentent des déformations

élastiques lorsqu’ils entrent en contact avec un autre objet : un chat marchant sur un
oreiller, une main appuyant sur une fenêtre, ou même nos joues écrasées par notre grand-
mère chaque fois que nous la voyons. Ces objets ont tendance à s’écraser à l’intérieur
de la zone de contact et à se gonfler lorsque leur volume est redistribué à l’extérieur de
celle-ci. La représentation de ce type de matériau dans un monde virtuel doit préserver
au mieux ces propriétés de l’apparence et du mouvement de l’objet pour être conva-
incante. Ces effets d’écrasement et de gonflement sont essentiels pour communiquer
des déformations plausibles. Ils sont particulièrement importants dans l’animation de
personnages, par exemple lorsque les artistes cherchent à traduire les actions d’un per-
sonnage sur l’environnement ou sur un autre personnage (saisir, pousser, presser, etc.).
À titre d’illustration, la Figure D.1 présente divers exemples de contacts élastiques de la
peau des personnages dans des productions industrielles.
La création d’animations 3D est un processus complexe qui nécessite différentes étapes

et compétences artistiques. Une organisation et une structure solides sont donc néces-
saires pour mener à bien un projet tel que la production d’un film d’animation. En
particulier, une fois tous les personnages et les éléments de décors conçus par les mod-
eleurs, il est temps de leur donner vie en suivant le storyboard donné par le réalisateur.
Pour pouvoir être animés, ils doivent être équipés de différents systèmes connectés entre

139

Appendix D. Résumé en français

Coco, Pixar© (2017)

Bao, Pixar© (2018)

The Incredibles, Pixar© (2004)

Big Hero 6, Disney© (2014)

Figure D.1.: Différents types de contacts observés dans les films d’animation. En haut à
gauche et en bas à droite : la collision entre un objet rigide et un objet élastique est illustrée par
les mains de Coco sur la fenêtre et le ventre de BayMax écrasé par l’armure. En haut à droite :
les auto-collisions sont également présentes notamment sur la peau des personnages articulés, ici
sur l’articulation du bras. En bas à gauche : la collision entre objets élastiques en général est
illustrée par les joues de Bao et de la femme.

eux : le système de mouvement, le système de contrôle et le système de déformation. Ces
trois éléments sont généralement regroupés sous un seul terme : le rigging, qui se réduit
souvent à l’animation des squelettes. Grâce à ces outils, l’animateur peut contrôler les
modèles numériques comme un marionnettiste anime ses marionnettes.
Cette thèse se concentre sur le système de déformation et en particulier sur la défor-

mation d’objets élastiques lors d’une collision en animation 3D. Les particularités de ce
domaine d’application imposent plusieurs exigences dans la conception des outils utilisés.

Déformations : les besoins des artistes
Comme évoqué précédemment, l’animation produite dans les films d’animation doit être
crédible. Cependant, en tant que reflet de l’imagination du réalisateur et des artistes, elle
est très imagée, tant au niveau des poses que des déformations. Elle retranscrit non seule-
ment des événements, mais également des émotions. Malheureusement pour l’artiste, les
déformations attendues s’écartent souvent de notre monde réel et dépendent en général

140

1. Introduction

du style d’animation et de l’esthétique recherchée. De plus, les animateurs conduisent
le spectateur à l’essence d’une situation, par exemple en utilisant l’exagération. Pour
la collision entre des objets élastiques, l’écrasement traduit les propriétés physiques des
objets (masse, rigidité, etc.), mais un écrasement exagéré peut également être utilisé
pour amplifier l’effet de la collision. Pour toutes ces raisons, nous pouvons supposer
que la précision physique n’est pas une exigence dans l’animation 3D. Les simulations
physiques peuvent créer des mouvements réalistes mais elles ne sont pas adaptées à la
stylisation des mouvements car contraintes par les lois de la physique. Dans ce travail,
nous viserons donc plutôt la plausibilité pour préserver cette liberté artistique caractéris-
tique de l’animation cartoons. Néanmoins, comme mentionné précédemment, certains
indices visuels doivent être conservés pendant les déformations pour que celles-ci restent
plausibles et crédibles. Par exemple, lorsqu’une balle frappe un sol dur, à moins qu’elle
ne soit trouée, elle doit conserver à peu près son volume et il en va de même pour la
peau du personnage. Une autre exigence concernant la collision est la production d’un
contact propre. Lorsque deux objets entrent en collision, ils doivent être clairement en
contact à un moment donné.
Enfin, afin de pouvoir reproduire l’animation souhaitée par les réalisateurs, le rigging

des personnages et le rigging en général tentent de fournir aux animateurs le plus de
flexibilité et de contrôle possible. La production d’un film d’animation entier exige une
grande quantité de travail, car ils ne reposent pas sur des plans filmés comme les longs
métrages à effets spéciaux. Le contrôle artistique combiné à l’interactivité pour ne pas
ralentir le travail des artistes sont donc des caractéristiques essentielles à prendre en
compte dans le développement d’un outil de déformation dans ce domaine.

Déformations : les solutions techniques existantes
Les objets élastiques sont particulièrement difficiles à animer par un artiste, surtout
lorsqu’ils entrent en collision les uns avec les autres, car reproduire leur comportement
d’écrasement et d’étirement implique de créer manuellement des déformations plausibles
à la fois dans l’espace et dans le temps (par exemple en utilisant des déformeurs de type
cage [NS13]). L’approche classique pour résoudre ce problème repose sur la physique
des objets élastiques, soit en simulant explicitement leurs déformations (e.g., [NMK+06]),
soit en s’appuyant sur des approximations plausibles mais plus rapides (e.g., [MCKM15]).
L’avantage évident de ces approches est leur réalisme, à condition que les artistes parvi-
ennent à trouver les paramètres physiques qui produisent le comportement recherché. En
pratique, une telle approche ne fournit à l’artiste qu’un contrôle indirect du comporte-
ment élastique et nécessite une expertise, ainsi que de nombreux essais-erreurs fastidieux,
même pour un expert en simulation. De plus, elle ne permet pas de produire facilement
l’exagération caractéristiques des animations cartoons. En outre, la principale limite des
simulations dans un contexte d’animation est leur dépendance au temps : la simulation
doit être exécutée depuis la première image jusqu’à l’image courante à chaque fois que
l’artiste modifie un paramètre ou l’animation d’entrée. Par conséquent, en raison de
cette dépendance temporelle, les simulations physiques doivent être exécutées après les
étapes de rigging et d’animation, ce qui empêche l’édition non-linéaire de la scène 3D.

141

Appendix D. Résumé en français

À l’autre extrémité du spectre méthodologique, les solutions alternatives sont les ap-
proches manuelles, entièrement contrôlées par l’artiste, comme celles basées sur les Blend
Shapes, les déformations free-form [SP86] ou en espace des poses [LCF00]. Leur prin-
cipal avantage est leur simplicité : elles fournissent un retour instantané aux artistes,
qui sont ensuite chargés de produire des déformations convaincantes. En pratique, les
effets de gonflement restent rares en production car la tâche de sculpter les déforma-
tions et de les animer à la main demande un temps considérable, même pour les artistes
accomplis. Pire encore, chaque déformation est spécifique à la forme des objets et à
leurs configuration de collision, et ne peut donc pas être réutilisée dans des situations
différentes.

Pour l’animation de personnages, une classe intermédiaire de solutions [MZS+11,
GMS14] produit des déformations indépendantes du temps à l’aide de simulations quasi-
statiques — même si les déformations dues à des contacts distants dépendent toujours
du chemin parcouru jusqu’à l’état de collision. Ces approches peuvent générer des dé-
formations plus générales que les déformeurs purement géométriques, mais elles sont
beaucoup plus exigeantes en termes de calcul en raison de leur nature itérative. De plus,
ces méthodes offrent peu de contrôle à l’artiste et ne peuvent pas produire les déforma-
tions exagérées typiques des cartoons car elles sont basées sur les lois de la physiques.
Les approches de modélisation géométrique traitant les collisions (e.g., [LB19]) peuvent
être appliquées dans ce contexte, mais elles nécessitent une optimisation coûteuse et
manquent de contrôles artistiques de la déformation.

L’objectif principal de cette thèse est de développer un outil de déformation qui assiste
l’artiste en gérant les contacts et les effets de gonflement de manière contrôlable. Comme
mentionné précédemment, une intégration transparente dans les pipeline d’animation
nécessite : (1) que l’outil fournisse un retour instantané à l’artiste ; et (2) que les
déformations soient indépendantes du temps pour permettre une édition non-linéaire de
l’animation. Pour des effets de gonflement plausibles, il est également souhaitable que la
méthode préserve le volume dans une certaine mesure, même si des contrôles artistiques
doivent également être possibles pour explorer des réponses exagérées.

Seules quelques techniques de déformation fournissent des solutions à la fois interac-
tives et indépendantes du temps. Cependant, elles présentent également d’importantes
limitations pratiques. Les déformeurs procéduraux, tels que celui proposé par [Wan15]
ou ceux intégrés dans les logiciels industriels comme le plugin iCollide d’Autodesk Maya©

ou le déformeurs de collision de Cinema4D© offrent des déformations instantanées avec
contrôle du profil de la déformation mais sont limitées au cas asymétrique d’une colli-
sion entre un objet rigide et un objet élastique. Ils se concentrent sur l’interactivité et
le contrôle artistique et ignorent la préservation du volume, ce qui donne souvent lieu à
des déformations peu naturelles. Enfin, d’autres méthodes fournissent des approxima-
tions (assez coûteuses) de la préservation du volume et sont limitées à des configurations
spécifiques, telles que les articulations voisines d’un personnage articulé [VBG+13], ou
la déformation d’une cage qui approxime la surface élastique [APHS11].

142

2. Notre méthode

2. Notre méthode
Dans cette thèse nous avons voulu proposer une méthode automatique de déformation lo-
cale des surfaces élastiques suite à une collision. Nous n’avons pas traités les déformations
globales des objets qui peuvent affecter les structures de contrôle comme les cages ou les
squelettes par exemple et donc impacter le travail des animateurs. Notre objectif général
est de proposer un outil indépendant du temps permettant une édition non-linéaire de
l’animation, chaque image devant être traitée instantanément, indépendamment de la
précédente ou de la suivante pour s’intégrer au mieux à l’étape d’animation du pipeline.
Nous n’avons pas pour objectif de proposer une méthode de déformation physiquement
réaliste qui n’offre qu’une très faible liberté artistique. Néanmoins, nous voulons pro-
duire des déformations plausibles en garantissant une préservation du volume pouvant
être exagérée ou au contraire atténuée selon la volonté de l’artiste. Dans la même op-
tique, nous voulons offrir un contrôle artistique suffisant pour permettre à l’utilisateur
de réaliser les déformations qu’il a imaginées en amont ou souhaitées par le réalisateur.
Pour atteindre ces objectifs, nous avons développé une méthode qui traite, à chaque

image indépendamment, la collision d’objets élastiques représentés par des maillages
triangulaires. Notre méthode est basée sur l’observation qu’une collision entre deux
objets est caractérisée par une déformation sans intersection qui peut être décomposée
en deux parties : une zone de contact, où les deux surfaces resteront en contact, et un
gonflement, au voisinage de cette zone de contact, résultant du volume déplacé lors de
la résolution de l’intersection entre les objets en collision. Cette décomposition nous
permet de simplifier le problème et de séparer notre méthode en deux grandes étapes.
Dans un premier temps, nous déterminons la surface de contact entre les deux objets
pour résoudre la collision. Dans un second temps, nous calculons une déformation autour
de cette région de contact pour donner l’impression du déplacement du volume dû à
l’impact. Notre pipeline est illustré dans son intégralité par la Figure D.2 et détaillé
dans les sections suivantes.
Il peut être appliqué avec quelques étapes supplémentaires au cas des personnages

articulés. Les deux parties de l’objet considéré peuvent alors être adjacentes sur une
même surface, par exemple dans la configuration d’un bras plié avec une collision située
dans le creux du coude comme dans la Figure D.1.

2.1. Définition du contact
Comme illustré en Figure D.2(a), notre pipeline prend en entrée un ensemble de régions
de travail Wl, chaque Wl englobant les régions déformables attendues.

Détection de collision. À chaque image, la première étape pour la gestion de contact
consiste à détecter de manière robuste l’intersection entre les deux surfaces considérées.
Pour ce faire, nous exécutons un algorithme de détection de collision arête/face entre
les deux régions de travail. Il en résulte un ensemble de régions d’intersection Il ainsi
que les points d’intersection exacts entre les deux objets en collision représentés par des
croix rouges dans la Figure D.2(b).

143

Appendix D. Résumé en français

Cd̂ n′

Uni
que

me
nt r

igid
e/é

last
ique

C

rigide
élastique

S

M2

M1

d̂

S

M2

M1

I2

I1

W2

W1

d̂di

di

-d̂

D2

D1di

D2

(a) Configuration
d’entrée

(b) Détection de
collision

(c) Appariement

(d) Définition
du contact

(e) Directions de
déplacement

Courbe de profil

(f) Déplacement
final

Ball testing Heuristique
locale symétrique

Diffusion via
Transport parallèle Simple mélange

Paramétrisation
commune

Direction
unique

Figure D.2.: Aperçu de notre approche. Le pipeline développé, appliqué à chaque image
sur chaque paire d’objets élastiques, peut être divisé en six étapes décrites ici de haut en bas.
Différentes alternatives sont proposées pour certaines étapes mais le pipeline privilégié est mis
en évidence en gras.

144

2. Notre méthode

Appariement. Une sous-partie de ces zones d’intersection vont rester en contact entre
elles à la fin de la déformation, il faut donc ensuite définir un appariement de ces zones
pour définir la forme et l’étendue du contact pour chaque objet. En théorie, les définitions
de l’appariement et du contact sont entremêlées, mais pour simplifier le problème, nous
définissons d’abord un appariement conservatif entre les surfaces élastiques d’entrée, puis
nous calculons les zones de contact restreintes.
La projection de ces régions sur le maillage opposé ne se trouve pas nécessairement

à l’intérieur des régions en intersection et l’appariement peut donc s’étendre au-delà
de l’intersection. Le sous-ensemble de chaque maillage l trouvant une correspondance
sur la surface opposée fait partie des régions dites d’appariement Ml représentées en
couleurs plus claires dans la Figure D.2(c). Nous avons développé deux stratégies dif-
férentes pour calculer cet appariement conservatif. La première, illustrée à gauche dans
la Figure D.2(c), consiste à faire correspondre les régions d’intersection des deux mail-
lages en espace paramétrique. Les directions d’appariement résultantes peuvent donc
potentiellement varier pour chaque sommet des régions considérées. Dans cette version,
les régions d’appariementMl sont limitées par construction à Il. Cette méthode souffre
donc de certaines limitations, telles que de fortes distorsions et étirements qui rendent
difficile la définition du contact.
Pour pallier ces limitations, nous avons développé une seconde stratégie qui fait cor-

respondre les deux surfaces au-delà des régions d’intersection. Nous calculons ces cor-
respondances en trouvant pour chaque sommet de chaque maillage dans les régions
d’intersection le point le plus éloigné sur la surface opposée le long d’une direction unique
d̂. Pour éviter de considérer les maillages entiers, nous avons développé un algorithme
efficace basé sur la silhouette de la surface vue depuis d̂ afin de restreindre de manière
conservatrice le calcul de la correspondance.
Les deux méthodes produisent un champ de direction qui nous permet de projeter

chaque surface sur la surface opposée pour résoudre la collision.

Surface potentielle de contact. À partir de cet appariement, nous déterminons ensuite
la surface de contact potentielle S, représentée en gris dans la Figure D.2(c). Elle
est située par définition entre les deux surfaces appariées et sa forme et sa position
dépendent du rapport des paramètres de pseudo-rigidité contrôlés par l’utilisateur pour
chaque objet.
Comme le suggère son nom, S n’est pas la surface de contact finale mais correspond

à la zone de contact maximale si les deux objets étaient suffisamment élastiques pour
épouser entièrement la forme de l’objet opposé. Dans l’étape suivante, nous définirons
la sous-partie de S qui restera effectivement en contact à la fin de la déformation.

Délimitation du contact. Après avoir projeté les sommets appariés des deux maillages
sur S, nous identifions la zone de contact C, en rouge sur la Figure D.2(d). Notre
approche générale est motivée par l’observation empirique que plus les objets sont rigides,
plus les zones de contact devraient être petites.
Pour garantir la cohérence de l’animation malgré la contrainte d’indépendance tem-

145

Appendix D. Résumé en français

porelle, C doit être définie de telle sorte à évoluer de manière continue sur chaque maillage
pendant l’animation. En particulier, pour éviter les mouvements saccadés et les oscilla-
tions, nous ne pouvons pas les définir sur des éléments discrets tels que les sommets du
maillage. Puisque la zone de contact est partagée par les deux surfaces en collision sur
S, la projection des zones délimitées sur chaque surface doit aboutir à la même zone de
contact C sur S.
Une fois encore, nous avons développé deux méthodes différentes pour cette étape.

Nous proposons d’abord un algorithme, illustré dans la boîte violette de la Figure D.2(d),
qui prend implicitement en compte la géométrie de S, la profondeur de collision et un
paramètre de pseudo-rigidité contrôlable par l’utilisateur.
Inspiré par les α-shapes [EM94], nous traduisons la rigidité d’un objet élastique par le

rayon d’une balle roulant à l’intérieur de la surface projetée sur S. La région considérée
en contact est celle accessible par la balle, en rouge dans la Figure D.2(d). On observe
que plus la balle est grosse, plus la région finale sera petite, et inversement, plus la balle
est petite, plus la région finale de contact sera grande. Le rayon de la balle reflète donc
la rigidité des objets. La limite de cette première méthode est sa définition asymétrique,
ce qui la rend seulement pertinente pour le cas de la collision entre un objet rigide et un
objet élastique.
Par conséquent, nous avons développé une seconde méthode basée sur la direction

unique d’appariement d̂. Elle utilise un nouveau critère symétrique correspondant à nos
observations et attentes concernant la définition de la zone de contact. Ce critère prend
directement en compte la géométrie de S à travers son champ normal n′, la profondeur
de collision et un paramètre contrôlant l’étendue de la zone de contact. Cette méthode
est illustrée dans la case de droite de la Figure D.2(d).
À la fin de cette étape, nous avons déterminé des régions continues et symétriques

sur chaque maillage. Une fois projetées sur S, elles définissent l’interface entre les deux
objets à la fin de la déformation.

2.2. Déformation résultante
Après avoir défini la surface de contact, dans la deuxième étape de notre travail, nous
avons pour objectif de déformer le voisinage Dl (en couleurs plus claires dans la Fig-
ure D.2(e)) de la zone de contact d’une manière plausible, indépendamment pour chaque
objet l. Dans notre travail, la plausibilité sera obtenue en satisfaisant les trois contraintes
suivantes :

• Continuité de la surface déformée : la déformation de la surface doit préserver la
propriété de continuité du maillage initial.

• Continuité pendant l’animation: l’animation finale doit être fluide, sans mouve-
ments saccadés ni oscillations pour donner l’illusion de fluidité et de continuité
temporelle même si chaque image est traitée indépendamment.

• Préservation du volume : la déformation doit compenser le volume perdu par une
surface fermée lors de la collision pour donner l’illusion de réalisme physique.

146

2. Notre méthode

Nous considérons par défaut les déformations locales de surfaces fermées nécessitant une
préservation du volume, mais si l’objet est un maillage ouvert, l’utilisateur doit avoir
la possibilité d’ignorer partiellement ou entièrement cette contrainte afin d’obtenir des
déformations plausibles. En plus de toutes ces exigences, nous pouvons rappeler l’un de
nos principaux objectifs, à savoir le contrôle artistique.
Afin de simplifier le problème et d’obtenir un meilleur contrôle de la déformation, notre

idée clé est de séparer la définition du déplacement final en deux parties : sa direction
et sa magnitude. Nous définissons le déplacement de la surface initiale sur la région
déformable D le long d’un champ de direction unitaire continu d. Son amplitude est
contrôlée par une courbe de profil 1D H instanciée à chaque sommet pi de D et évaluée à
l’aide d’une paramétrisation radiale unidimensionnelle u conduisant à sa position finale
:

p′i = pi +Hai,si(ui) di.
La forme de la courbe de profil H est paramétrée par l’amplitude ai et la pente si à
u = 0. Des degrés de liberté supplémentaires permettent un contrôle artistique étendu
de cette courbe.

Région déformable. La région déformable D est définie comme le sous-ensemble de la
région de travail qui sera déformé pour préserver le volume de l’objet initial. Comme
indiqué précédemment, l’étendue de cette région dépend de la rigidité de cet objet. De
plus, nous pouvons observer qu’elle doit évoluer avec la variation de la bordure de la
région de contact ∂C.
Pour à la fois délimiter et paramétrer cette région, nous calculons une paramétrisation

radiale u à partir de ∂C sur l’ensemble de la région de travail, puis nous déterminons D
en suivant le gradient de ce champ scalaire à partir de ∂C. Intuitivement, u localise tout
point de la surface le long d’une géodésique continue allant de ∂C à la limite externe
de la région déformable D. L’étendue de la région déformable est déterminée par une
distance pseudo-géodésique contrôlée par l’utilisateur.

Il est intéressant de noter que, comme C change à chaque image, la paramétrisation u
et, par construction, la région D doivent être recalculées dynamiquement à chaque image.
Notons également que, puisque leur définition est basée sur ∂C qui est temporellement
continue, elles évoluent aussi de manière continue au cours de l’animation.

Champ de direction. Le champ de direction unitaire d le long duquel la surface sera
déplacée est soumis à deux contraintes : (1) il doit correspondre aux déplacements
fixes de la zone de contact sur la surface de contact potentielle S et, (2) pour garantir la
contrainte de continuité géométrique, il doit être principalement aligné avec les normales
initiales de la surface. Nous avons fait l’observation que, lors d’une collision, un objet
élastique est déformé en dehors de la zone d’impact le long de son champ de normales,
formant un gonflement. Par conséquent, l’idée est de faire converger rapidement les
directions vers les normales initiales à mesure que l’on s’éloigne de ∂C.

L’approche la plus naturelle, mais coûteuse, pour résoudre ce problème consiste à
diffuser par transport parallèle la déviation des directions d’appariement contraintes par
rapport aux normales de la surface initiale le long de ∂C avec la contrainte de s’annuler

147

Appendix D. Résumé en français

à la limite extérieure de la région déformable. Le champ de direction unitaire résultant
est illustré par les flèches à gauche de la Figure D.2(e).
Une façon plus simple de résoudre le même problème est de diffuser la direction

d’appariement contrainte sur toute la région déformable D et de la mélanger avec les nor-
males de la surface initiale en utilisant une fonction de transfert non linéaire se basant sur
champ scalaire u. Cette méthode est illustrée dans la case de droite de la Figure D.2(e).

Définition de la courbe de profil. Concernant la magnitude du déplacement, nous définis-
sons une famille de fonctions, appelées courbes de profil, instanciées en chaque sommet
de la région déformable. Les degrés de liberté correspondant à l’amplitude ai et à la
pente si à ∂C (i.e., u = 0) sont nécessaires pour assurer respectivement la continuité
C0 et C1 avec la zone de contact. Pour pouvoir évaluer H partout, a et s sont dif-
fusées sur toute la région déformable D. Trois autres degrés de liberté sont nécessaires
pour garantir la continuité C2 avec la partie non déformée du maillage initial et pour
s’assurer que la déformation diminue de manière continue à la limite extérieure de la
région déformable. Enfin, la courbe de profil doit posséder un dernier degré de liberté
pour contrôler linéairement le gonflement et assurer la préservation exacte du volume.
Le principal avantage de cette définition est qu’elle ouvre la porte à un large éventail

de contrôles artistiques sur la réponse à la collision. Le gonflement peut être contrôlé
artistiquement pour exagérer ou annuler la préservation de volume. Il peut même être
déplacé le long de la paramétrisation u ou étalé pour modifier la répartition du volume.
Il peut également être réparti de manière anisotrope sur D pour produire une réponse
de déformation plus plausible. On peut même imaginer produire des rides en ajoutant
à la courbe de profil des détails à haute fréquence, comme le montre la Figure D.3.
Les figures D.4 à D.6 présentent des résultats obtenus avec notre méthode. Notre

pipeline peut être appliqué sur des objets constitués de plusieurs composantes connexes
distinctes (Figure D.4) ou même des configurations avec des surfaces bosselées (Fig-
ure D.5). En Figure D.6, nous comparons notre méthode à une simulation par éléments
finis (FEM) réalisée avec Houdini© SideFX et appliquée à deux balles élastiques en colli-
sion. Notre déformeur est capable de reproduire fidèlement les déformations et les effets
de gonflement observés dans la simulation.

v2.x = 1/5 , v3.x = 1/2default wrinkles
Figure D.3.: Variations artistique du profil. Nous visualisons ici l’effet de la modification des
abscisses de v2 et v3 (au milieu), ou de l’ajout d’une fonction sinusoïdale pour imiter les rides (à
droite). Les courbes de profil respectives pour une pente moyenne sont indiquées dans les coins.

148

2. Notre méthode

Figure D.4.: Composantes multiples. À gauche : configuration initiale, chaque doigt cor-
respond à une région de travail indépendante. À droite: deformation finale. Nous pouvons
remarquer le gonflement subtil du bout des doigts, par exemple du pouce sur la balle.

Figure D.5.: Surfaces bosselées. À gauche : configuration initiale. À droite : deformation
finale. L’objet gélifié est coupé pour montrer la surface de contact.

Figure D.6.: Comparaison avec une simulation. À gauche: simulation FEM dans
Houdini©SideFX. À droite: notre méthode.

149

Appendix D. Résumé en français

2.3. Application au skinning
Le pipeline décrit jusqu’ici suppose que les régions de travail impliquées dans la collision
sont distinctes, sans chevauchement, et que les déformations sont nulles à leurs bordures
externes. Cependant, de telles hypothèses ne sont pas toujours valides. C’est typique-
ment le cas d’une articulation pour laquelle la peau associée aux deux parties adjacentes
entre en collision (par exemple, le coude, le genou, etc.). Dans de telles configurations,
la déformation ne devrait pas être nulle entre les deux zones considérées et il est même
impossible de définir une frontière claire séparant ces deux parties.
Nous adressons cette limitation en permettant aux régions de travail adjacentes de se

chevaucher, tout en assurant la continuité spatiale par un mélange de leur déformation
respective sur ce qu’on appelle la région partagée R. Soit β les poids de mélange formant
une partition de l’unité, alors la position finale p′i de chaque point dans R est obtenue
par:

p′i = βi p′i,1 + (1− βi) p′i,2 ,
où p′i,l correspond à la position après déplacement obtenue en appliquant notre pipeline
à la région de travail Wl.
Cette approche est très simple mais nécessite quelques traitements particuliers sup-

plémentaires. Nous devons notamment calculer automatiquement un partitionnement
strict des régions de travail afin que le calcul des surfaces de contact (Section 2.1) puisse
être effectué. Le découpage virtuel doit suivre le pli de l’articulation qui varie dans le
temps. Par exemple, au cours d’une animation, le pli d’un coude ne correspond pas
toujours à la même bande de triangles et se déplace légèrement sur la surface initiale. Il
est donc impossible pour un artiste de fixer en pré-traitement un emplacement pour ce
pli qui soit valable pour tout mouvement de l’articulation. Nous avons donc développé
une méthode automatique, basée sur la détection de contours et le champ scalaire β,
pour calculer le partitionnement des régions de travail à la volée à chaque image.
De plus, nous avons introduit des points de synchronisation pendant le calcul des

paramètres de déformation de chaque région de travail afin que les positions intermédi-
aires p′i,l soient déjà aussi proches que possible les unes des autres avant d’en faire la
moyenne.
La Figure D.7 montre un résultat obtenu avec cette extension de notre pipeline.

régionssélectionnées

Figure D.7.: Application au skinning. À gauche: configuration initiale et zones de travail
correspondantes. Les régions partagées (en violet) se trouvent entre les phalanges. Chaque
phalanges correspond à une zone de tavail différentes. À droite: déformation finale.

150

3. Conclusion et perspectives

3. Conclusion et perspectives
Tout au long de cette thèse, nous avons cherché à développer une technique de déforma-
tion pour les objets élastiques en collision qui fournit des retours interactifs à l’utilisateur
avec des paramètres qui peuvent être contrôlés intuitivement. Nous ne recherchions pas
le réalisme physique, mais plutôt des résultats plausibles, produits rapidement, intuitive-
ment et avec des retours en temps réel pour le domaine de l’animation par ordinateur.
Dans ce manuscrit, nous avons présenté une nouvelle technique de déformation pour

la résolution des contacts élastiques-élastiques locaux tout en produisant des effets de
gonflement plausibles et en offrant un contrôle artistique étendu. Cette technique ne
vise pas à générer de grandes déformations globales qui devraient déjà être traitées par
le skinning, les Blend Shapes ou les déformeurs basées sur les cages. En nous appuyant
entièrement sur des opérations géométriques, nous avons réussi à obtenir un retour in-
stantané, sans dépendance temporelle, pour une intégration transparente dans le pipeline
d’animation. La continuité temporelle au cours d’une animation est assurée sans intro-
duire de dépendances temporelles, grâce à la définition de zones continues à chaque
étapes. Enfin, en combinant une paramétrisation 1D et une courbe de profil 2D, nous
sommes parvenus à produire des gonflements plausibles préservant le volume initial des
objets considérés. Cette association permet également un contrôle artistique du gonfle-
ment, allant de la préservation totale du volume à son exagération, ainsi qu’une large
gamme de détails qui peuvent être introduits à l’aide d’outils artistiques.
Nous avons également proposé une extension de notre pipeline pour gérer les auto-

intersections locales, ce qui permet d’offrir la gestion des contacts aux méthodes de
skinning classiques avec un contrôle du gonflement et autres effets artistiques.
Même si nous ne nous sommes pas appuyés sur les lois de la physique comme les méth-

odes classiques de simulation physique, la plausibilité de nos déformations finales est ren-
forcée par une répartition anisotrope du volume réinjecté. Par ailleurs, en plus de pouvoir
transmettre des informations sur les propriétés physiques des objets en utilisant peu de
paramètres, notre approche permet à l’artiste de concevoir des effets cartoonesques en
utilisant l’exagération de la compensation de volume, mais également en jouant sur sa
répartition en utilisant l’un des nombreux contrôles artistiques que nous avons proposés :
manipulation globale ou locale de la courbe de profil, paramètres manuels constant ou
variant dans l’espace, etc.
Ce type d’approche ouvre de nouvelles perspectives pour la déformation d’objets élas-

tiques en contact dans le contexte de l’animation par ordinateur : l’édition peut être
effectuée de manière non-linéaire, des déformations similaires peuvent être reproduites
dans différents contextes sans nécessiter de fastidieux ajustements manuels, et de nom-
breux effets artistiques peuvent être facilement réalisés en manipulant la courbe du profil.
Au delà des améliorations propres à notre méthode, nous avons imaginés plusieurs

perspectives plus générales.

Étude utilisateur. Tout d’abord, comme nous avons développé un outil pour les artistes,
il serait intéressant d’avoir leur avis sur l’utilisation et l’utilité de ce travail par le biais
d’une étude utilisateur. Cela implique toutefois que l’on ait accès à des utilisateurs

151

Appendix D. Résumé en français

amateurs et professionnels de tels outils. Dans le même ordre d’idée, il serait intéressant
de tester notre méthode sur de véritables rigs de production. Presque tous les résultats
de cette thèse ont été riggés et animés par des artistes non-professionnels. De plus,
des comparaisons avec des simulations ou des déformations capturées, plus complexes et
conçues par des professionnels pourraient également être utiles pour valider la plausibilité
des déformations produites par notre méthode.

Élasticité de la peau. Pour améliorer la plausibilité de nos déformations, même dans
des configurations cartoonesques extrêmes, nous pourrions également prendre en compte
davantage de propriétés physiques de la peau, telle que son élasticité en plus de sa rigidité
déjà considérée. En effet, les déplacements sont actuellement effectués pour chaque
sommet le long d’un champ de direction sans tenir compte de l’étirement que peut subir
la peau lors de l’application de la déformation. Cet étirement peut être encore aggravé
par l’exagération artistique de la préservation du volume. Il faudrait donc permettre des
mouvements tangentiels des sommets pour limiter ces étirements et trouver un moyen
direct de les intégrer dans notre méthode.

Détails procéduraux. Lorsque la peau est déformée, la dilatation ou la contraction de
la méso-géométrie de la surface et de la microstructure du matériau peut modifier de
manière significative les propriétés de réflexion de la surface une fois intégrées dans les
modèles d’éclairage. Par exemple, les plis de la peau, y compris les rides, peuvent ap-
paraître ou disparaître pendant la déformation. Certaines parties peuvent également
passer du rouge au blanc et vice-versa en raison des variations de la concentration de
sang dans les tissus. Une déformation à faible échelle issue du skinning pourrait donc
être complétée par de tels détails et effets haute-fréquence. Une combinaison d’approches
procédurales avec un modèle d’apparence multi-résolution pourrait être intéressante à
étudier. Une autre solution plus simple pour ajouter des détails avec notre implémen-
tation actuelle pourrait être de peindre directement sur la surface des détails cachés qui
seraient révélés lors du processus de collision, par exemple des rides devant un doigt
glissant sur un avant-bras ou au début d’un pincement de la peau.

Nouvelle méthode de skinning. Comme il est appliqué en tant que post-traitement, le
résultat de notre pipeline dépend fortement de la méthode de skinning géométrique util-
isée et des déformations de maillage qui en résultent. Les techniques actuelles de skinning
et les paramètres de rigging qui leur sont associés sont conçus pour empêcher les auto-
intersections en rendant les déformations anormalement souples et donc peu réalistes.
Pour exploiter pleinement le potentiel de notre déformeur, il serait pertinent d’étudier
de nouvelles techniques de skinning et de rigging axées sur la génération de belles défor-
mations sur la partie extérieure visible de l’articulation, tout en produisant délibérément
des auto-intersections à l’intérieur de l’articulation que pourra résoudre notre déformeur.
De plus, notre déformation préservant le volume ne corrige pas le volume initial perdu
par la méthode de skinning et, même si nous sommes capables de calculer cette perte,
notre déformeur n’est pas conçu pour la corriger. Afin d’avoir une préservation complète

152

3. Conclusion et perspectives

du volume à partir de la pose de repos d’un modèle articulé, la solution serait soit de
concevoir une méthode de skinning préservant automatiquement le volume, soit avant
l’application de notre déformeur, d’appliquer une correction de volume en utilisant une
méthode comme celles de von Funck et al. [vFTS08] ou Rohmer et al. [RHC09].

Autres principes d’animation. Enfin, durant cette thèse, nous n’avons considéré que
(la moitié de) l’un des douze principes d’animation présentés par Disney : le squash
(de “Squash and stretch”). Un défi passionnant serait d’étudier d’autres principes en
appliquant la même philosophie qui consiste à fournir à l’artiste des outils automa-
tiques intuitifs mais à vocation artistique pour produire les effets associés. Récemment,
Zang et al. [ZBLJ20] et Rohmer et al. [RTK+21] ont proposé deux méthodes pour ajouter
des effets de mouvements secondaires sur un personnage animé. La première méthode
utilise des simulations produisant des mouvements orthogonaux à la déformation issue
du skinning, tandis que la seconde propose une solution géométrique s’appuyant sur le
mouvement du squelette. Les deux approches produisent des animations moins robo-
tiques et plus vivantes sans nécessiter une simulation complète lourde et difficilement
dirigeable par l’artiste, appliquée après l’étape d’animation et de rigging.

Toutes ces approches ouvrent la voie à de nouvelles façons de créer les animations de
demain.

153

Bibliography
[ACWK06] Alexis Angelidis, Marie-Paule Cani, Geoff Wyvill, and Scott King. Swirling-

sweepers: Constant-volume modeling. Graph. Models, 68(4):324–332, 2006.

[AFC+10] Jérémie Allard, François Faure, Hadrien Courtecuisse, Florent Falipou,
Christian Duriez, and Paul G. Kry. Volume contact constraints at arbi-
trary resolution. ACM Trans. Graph., 29(4), July 2010.

[AOW+08] Bart Adams, Maks Ovsjanikov, Michael Wand, Hans-Peter Seidel, and
Leonidas J. Guibas. Meshless Modeling of Deformable Shapes and their Mo-
tion. In Markus Gross and Doug James, editors, Eurographics/SIGGRAPH
Symposium on Computer Animation. The Eurographics Association, 2008.

[APHS11] Garrett Aldrich, Dmitriy V Pinskiy, Bernd Hamann, and Walt Disney An-
imation Studios. Collision-driven volumetric deformation on the gpu. In
Eurographics (Short Papers), pages 9–12, 2011.

[ARF15] Nadine Abu Rumman and Marco Fratarcangeli. Position-based skinning
for soft articulated characters. Computer Graphics Forum, 34(6):240–250,
2015.

[AS07] Alexis Angelidis and Karan Singh. Kinodynamic skinning using
volume-preserving deformations. In Proc. of the 2007 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 129–
140. Eurographics Association, 2007.

[ATW+17] Baptiste Angles, Marco Tarini, Brian Wyvill, Loïc Barthe, and Andrea
Tagliasacchi. Sketch-based implicit blending. ACM Trans. Graph., 36(6),
2017.

[AWC06] Alexis Angelidis, Geoff Wyvill, and Marie-Paule Cani. Sweepers: Swept
deformation defined by gesture. Graph. Models, 68(1):2–14, January 2006.

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, September 1975.

[Ber97] Gino van den Bergen. Efficient collision detection of complex deformable
models using aabb trees. Journal of graphics tools, 2(4):1–13, 1997.

[BFA02] Robert Bridson, Ronald Fedkiw, and John Anderson. Robust treatment of
collisions, contact and friction for cloth animation. ACM Trans. Graph.,
21(3):594–603, July 2002.

155

Bibliography

[BJ10] Jernej Barbič and Doug L. James. Subspace self-collision culling. ACM
Trans. on Graphics (SIGGRAPH 2010), 29(4):81:1–81:9, 2010.

[BK01] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of
min-cut/max-flow algorithms for energy minimization in vision. In Proceed-
ings of the Third International Workshop on Energy Minimization Meth-
ods in Computer Vision and Pattern Recognition, pages 359–374. Springer-
Verlag, 2001.

[BK04] Mario Botsch and Leif Kobbelt. An intuitive framework for real-time
freeform modeling. ACM Trans. Graph., 23(3):630–634, 2004.

[BMF03] R. Bridson, S. Marino, and R. Fedkiw. Simulation of clothing with folds
and wrinkles. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, SCA ’03, page 28–36, Goslar, DEU,
2003. Eurographics Association.

[BML+14] Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark
Pauly. Projective dynamics: Fusing constraint projections for fast simula-
tion. ACM Trans. Graph., 33(4):154:1–154:11, 2014.

[BMM15] Jan Bender, Matthias Müller, and Miles Macklin. Position-based simulation
methods in computer graphics. In EG 2015 - Tutorials. The Eurographics
Association, 2015.

[BS07] Alexander I. Bobenko and Boris A. Springborn. A discrete laplace–beltrami
operator for simplicial surfaces. Discrete Comput. Geom., 38(4):740–756,
December 2007.

[BS08] Mario Botsch and Olga Sorkine. On linear variational surface deformation
methods. IEEE Transactions on Visualization and Computer Graphics,
14(1):213–230, January 2008.

[BT95] Srikanth Bandi and Daniel Thalmann. An Adaptive Spatial Subdivision of
the Object Space for Fast Collision Detection of Animated Rigid Bodies.
Computer Graphics Forum, 1995.

[CB17] Stéphane Calderon and Tamy Boubekeur. Bounding proxies for shape ap-
proximation. ACM Trans. Graph., 36(4), 2017.

[CWW13] Keenan Crane, Clarisse Weischedel, and MaxWardetzky. Geodesics in heat:
A new approach to computing distance based on heat flow. ACM Trans.
Graph., 32(5):152:1–152:11, 2013.

[DB13] Crispin Deul and Jan Bender. Physically-based character skinning. In Vir-
tual Reality Interactions and Physical Simulations (VRIPhys). Eurograph-
ics Association, 2013.

156

Bibliography

[DdL13] Olivier Dionne and Martin de Lasa. Geodesic voxel binding for pro-
duction character meshes. In Proceedings of the 12th ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA ’13, page
173–180, New York, NY, USA, 2013. Association for Computing Machinery.

[EM94] Herbert Edelsbrunner and Ernst P. Mücke. Three-dimensional alpha
shapes. ACM Trans. Graph., 13(1):43–72, 1994.

[Eri04] Christer Ericson. Real-Time Collision Detection. CRC Press, Inc., 2004.

[FKN80] Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. On visible surface gen-
eration by a priori tree structures. In Proceedings of the 7th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH ’80,
page 124–133, New York, NY, USA, July 1980. Association for Computing
Machinery.

[Flo03] Michael S. Floater. Mean value coordinates. Computer Aided Geometric
Design, 20(1):19–27, 2003.

[GJK88] E.G. Gilbert, D.W. Johnson, and S.S. Keerthi. A fast procedure for com-
puting the distance between complex objects in three-dimensional space.
IEEE Journal on Robotics and Automation, 4(2):193–203, 1988.

[GLM96] Stefan Gottschalk, Ming C Lin, and Dinesh Manocha. Obbtree: A hierar-
chical structure for rapid interference detection. In Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques, pages
171–180, 1996.

[GMS14] Ming Gao, Nathan Mitchell, and Eftychios Sifakis. Steklov-poincaré skin-
ning. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 139–148. Eurographics Association, 2014.

[Gra06] L. Grady. Random walks for image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 28(11):1768–1783, 2006.

[HA18] Philipp Herholz and Marc Alexa. Factor once: Reusing cholesky factoriza-
tions on sub-meshes. ACM Transaction on Graphics, 37(6), 2018.

[HA19] Philipp Herholz and Marc Alexa. Efficient computation of smoothed expo-
nential maps. Computer Graphics Forum, 38:79–90, 2019.

[HBB+12] Stefanie Hahmann, Georges-Pierre Bonneau, Sébastien Barbier, Gershon
Elber, and Hans Hagen. Volume Preserving FFD for Programmable Graph-
ics Hardware. Visual Computer, 28(3):231–245, February 2012.

[HDA17] Philipp Herholz, Timothy A. Davis, and Marc Alexa. Localized solutions
of sparse linear systems for geometry processing. ACM Transactions on
Graphics, 36(6), 2017.

157

Bibliography

[HF07] Marco Hutter and Arnulph Fuhrmann. Optimized continuous collision de-
tection for deformable triangle meshes. J. WSCG, 15:25–32, July 2007.

[HPSZ11] David Harmon, Daniele Panozzo, Olga Sorkine, and Denis Zorin.
Interference-aware geometric modeling. ACM Trans. Graph., 30(6):137:1–
137:10, 2011.

[HTG03] Bruno Heidelberger, Matthias Teschner, and Markus Gross. Real-time vol-
umetric intersections of deforming objects. In VMV, volume 2003, pages
461–468, 01 2003.

[HTG04] Bruno Heidelberger, Matthias Teschner, and Markus Gross. Detection
of collisions and self-collisions using image-space techniques. Journal of
WSCG, 12(3):145–152, 01 2004.

[Hub95] Philip Martyn Hubbard. Collision detection for interactive graphics ap-
plications. IEEE Transactions on Visualization and Computer Graphics,
1(3):218–230, 1995.

[HZ00] Aaron Hertzmann and Denis Zorin. Illustrating smooth surfaces. In Proc.
of the 27th Annual Conference on Computer Graphics and Interactive Tech-
niques, page 517–526, 2000.

[JBPS11] Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. Bounded
biharmonic weights for real-time deformation. ACM Trans. Graph., 30(4),
July 2011.

[JMD+07] Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki.
Harmonic coordinates for character articulation. ACM Trans. Graph.,
26(3):71–es, 2007.

[JP04] Doug L. James and Dinesh K. Pai. Bd-tree: Output-sensitive collision de-
tection for reduced deformable models. ACM Trans. Graph., 23(3):393–398,
August 2004.

[KB18] Martin Komaritzan and Mario Botsch. Projective skinning. Proc. ACM
Comput. Graph. Interact. Tech., 1(1):12:1–12:19, 2018.

[KB19] Martin Komaritzan and Mario Botsch. Fast projective skinning. In Motion,
Interaction and Games, MIG ’19. ACM, 2019.

[KCPS13] Felix Knöppel, Keenan Crane, Ulrich Pinkall, and Peter Schröder. Globally
optimal direction fields. ACM Trans. Graph., 32(4):59:1–59:10, 2013.

[KCS13] Mathieu Desbrun Keenan Crane, Fernando de Goes and Peter Schröder.
Digital geometry processing with discrete exterior calculus. In ACM SIG-
GRAPH 2013 courses, SIGGRAPH ’13, New York, NY, USA, 2013. ACM.

158

Bibliography

[KCvO08] Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O’Sullivan. Geometric
skinning with approximate dual quaternion blending. ACM Trans. Graph.,
27(4):105:1–105:23, 2008.

[KHM+98] James T. Klosowski, Martin Held, Joseph S. B. Mitchell, Henry Sowizral,
and Karel Zikan. Efficient collision detection using bounding volume hi-
erarchies of k-dops. IEEE Transactions on Visualization and Computer
Graphics, 4(1):21–36, January 1998.

[KS12] Ladislav Kavan and Olga Sorkine. Elasticity-inspired deformers for charac-
ter articulation. ACM Trans. Graph., 31(6):196:1–196:8, 2012.

[KZ05] Ladislav Kavan and Jiri Zara. Spherical blend skinning: A real-time defor-
mation of articulated models. In 2005 ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, pages 9–16. ACM Press, April 2005.

[LAM03] Thomas Larsson and Tomas Akenine-Möller. Efficient collision detection
for models deformed by morphing. The Visual Computer, 19:164–174, 05
2003.

[Las87] John Lasseter. Principles of traditional animation applied to 3d computer
animation. SIGGRAPH Comput. Graph., 21(4):35–44, 1987.

[LB19] Yijing Li and Jernej Barbič. Multi-resolution modeling of shapes in contact.
Proc. ACM Comput. Graph. and Interact. Tech., 2(2), 2019.

[LC91] Ming C Lin and John F Canny. A fast algorithm for incremental distance
calculation. In ICRA, volume 91, pages 9–12. Citeseer, 1991.

[LCF00] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose space deformation: A
unified approach to shape interpolation and skeleton-driven deformation. In
Proc. of the 27th Annual Conference on Computer Graphics and Interactive
Techniques, pages 165–172. ACM, 2000.

[LFS+20] Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis
Zorin, Daniele Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. Incre-
mental potential contact: Intersection- and inversion-free large deformation
dynamics. ACM Transactions on Graphics, 39(4), 2020.

[LGS+09] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha. Fast
bvh construction on gpus. Computer Graphics Forum, 2009.

[LH16] Binh Huy Le and Jessica K. Hodgins. Real-time skeletal skinning with
optimized centers of rotation. ACM Trans. Graph., 35(4):37:1–37:10, 2016.

[LL19] Binh Huy Le and J P Lewis. Direct delta mush skinning and variants. ACM
Trans. Graph., 38(4):113:1–113:13, 2019.

159

Bibliography

[LVGO21] Binh Huy Le, Keven Villeneuve, and Carlos Gonzalez-Ochoa. Direct delta
mush skinning compression with continuous examples. ACM Trans. Graph.,
40(4), 2021.

[MCC11] Tim McLaughlin, Larry Cutler, and David Coleman. Character rigging,
deformations, and simulations in film and game production. In ACM SIG-
GRAPH 2011 Courses, SIGGRAPH ’11, New York, NY, USA, 2011. Asso-
ciation for Computing Machinery.

[MCKM15] Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin.
Air meshes for robust collision handling. ACM Trans. Graph., 34(4), July
2015.

[MDRW14] Joe Mancewicz, Matt L. Derksen, Hans Rijpkema, and Cyrus A. Wilson.
Delta mush: Smoothing deformations while preserving detail. In Proceed-
ings of the Fourth Symposium on Digital Production, DigiPro ’14, page
7–11, New York, NY, USA, 2014. Association for Computing Machinery.

[Mir97] Brian Mirtich. Efficient algorithms for two-phase collision detection. Tech-
nical Report TR-97-23, Mitsubishi Electric Research Laboratory, 1997.

[Mir98] Brian Mirtich. V-clip: Fast and robust polyhedral collision detection. ACM
Transactions On Graphics (TOG), 17(3):177–208, 1998.

[MOK95] Karol Myszkowski, Oleg G Okunev, and Tosiyasu L Kunii. Fast collision
detection between complex solids using rasterizing graphics hardware. The
Visual Computer, 11(9):497–511, 1995.

[MSJT08] Matthias Müller, Jos Stam, Doug James, and Nils Thürey. Real time
physics: Class notes. In ACM SIGGRAPH 2008 Classes. ACM, 2008.

[MTLT88] N. Magnenat-Thalmann, R. Laperrière, and D. Thalmann. Joint-dependent
local deformations for hand animation and object grasping. In Proceedings
on Graphics Interface ’88, pages 26–33. Canadian Information Processing
Society, 1988.

[MZS+11] Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tam-
storf, Joseph Teran, and Eftychios Sifakis. Efficient elasticity for character
skinning with contact and collisions. ACM Trans. Graph., 30(4):37:1–37:12,
2011.

[NMK+06] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, and
Mark Carlson. Physically based deformable models in computer graphics.
Computer Graphics Forum, 25(4):809–836, 2006.

[NS13] Jesús R. Nieto and Antonio Susín. Cage Based Deformations: A Survey,
pages 75–99. Springer, 2013.

160

Bibliography

[PCYQ18] Junjun Pan, Lijuan Chen, Yuhan Yang, and Hong Qin. Automatic skinning
and weight retargeting of articulated characters using extended position-
based dynamics. Vis. Comput., 34(10):1285–1297, October 2018.

[PPG04] Mark Pauly, Dinesh K. Pai, and Leonidas J. Guibas. Quasi-rigid objects in
contact. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation, pages 109–119. Eurographics Association,
2004.

[RARC+18] Valentin Roussellet, Nadine Abu Rumman, Florian Canezin, Nicolas Mel-
lado, Ladislav Kavan, and Loic Barthe. Dynamic implicit muscles for char-
acter skinning. Computers and Graphics, 77:227–239, 2018.

[RHC09] Damien Rohmer, Stefanie Hahmann, and Marie-Paule Cani. Exact volume
preserving skinning with shape control. In Proc. of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 83–92.
ACM, 2009.

[Riv84] Maria-Cecilia Rivara. Mesh Refinement Processes Based on the Generalized
Bisection of Simplices. SIAM Journal on Numerical Analysis, 21(3):604–
613, jun 1984.

[RTK+21] Damien Rohmer, Marco Tarini, Niranjan Kalyanasundaram, Faezeh Mosh-
feghifar, Marie-Paule Cani, and Victor Zordan. Velocity Skinning for Real-
time Stylized Skeletal Animation. Computer Graphics Forum, 2021.

[SA07] Olga Sorkine and Marc Alexa. As-rigid-as-possible surface modeling. In
Proceedings of the Fifth Eurographics Symposium on Geometry Processing,
SGP ’07, page 109–116, Goslar, DEU, 2007. Eurographics Association.

[SB09] Olga Sorkine and Mario Botsch. Interactive Shape Modeling and Deforma-
tion. In K. Museth and D. Weiskopf, editors, Eurographics 2009 - Tutorials.
The Eurographics Association, 2009.

[SdGK18] Breannan Smith, Fernando de Goes, and Theodore Kim. Stable neo-
hookean flesh simulation. ACM Trans. Graph., 37(2):12:1–12:15, 2018.

[SF91] Mikio Shinya and Marie-Claire Forgue. Interference detection through
rasterization. The Journal of Visualization and Computer Animation,
2(4):132–134, 1991.

[SGHS98] Jonathan Shade, Steven Gortler, Li-wei He, and Richard Szeliski. Layered
depth images. In Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pages 231–242, 1998.

[SKSJ20] Silvia Sellán, Jacob Kesten, Ang Yan Sheng, and Alec Jacobson. Opening
and closing surfaces. ACM Transactions on Graphics, 2020.

161

Bibliography

[SP86] Thomas W. Sederberg and Scott R. Parry. Free-form deformation of solid
geometric models. SIGGRAPH Comput. Graph., 20(4):151–160, 1986.

[TCYM09] Min Tang, Sean Curtis, Sung-Eui Yoon, and Dinesh Manocha. Iccd: In-
teractive continuous collision detection between deformable models using
connectivity-based culling. IEEE Transactions on Visualization and Com-
puter Graphics, 15(4):544–557, 2009.

[THM+03] Matthias Teschner, Bruno Heidelberger, Matthias Mueller, Danat Pomer-
anets, and Markus Gross. Optimized spatial hashing for collision detection
of deformable objects. In VMV, pages 47–54, 2003.

[TJ81] F. Thomas and Ollie Johnston. The illusion of life : Disney animation.
1981.

[TKH+05] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi,
A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann, W. Strasser,
and P. Volino. Collision detection for deformable objects. Computer Graph-
ics Forum, 24(1):61–81, 2005.

[TOK14] Yun Teng, Miguel A. Otaduy, and Theodore Kim. Simulating articulated
subspace self-contact. ACM Trans. Graph., 33(4):106:1–106:9, 2014.

[TPBF87] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically
deformable models. SIGGRAPH Comput. Graph., 21(4):205–214, 1987.

[Tur90] Greg Turk. Interactive collision detection for molecular graphics. Technical
Report TR90-014, University of North Carolina at Chapel Hill, USA, 1990.

[VBG+13] Rodolphe Vaillant, Loïc Barthe, Gaël Guennebaud, Marie-Paule Cani,
Damien Rohmer, Brian Wyvill, Olivier Gourmel, and Mathias Paulin. Im-
plicit skinning: Real-time skin deformation with contact modeling. ACM
Trans. Graph., 32(4):125:1–125:12, 2013.

[vFTS06] Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel. Vector field
based shape deformations. ACM Trans. Graph., 25(3):1118–1125, 2006.

[vFTS08] Wolfram von Funck, Holger Theisel, and Helmut Seidel. Volume-preserving
mesh skinning. In Proc. of the Vision, Modeling, and Visualization Confer-
ence, 2008.

[VGB+14] Rodolphe Vaillant, Gäel Guennebaud, Loïc Barthe, Brian Wyvill, and
Marie-Paule Cani. Robust iso-surface tracking for interactive character
skinning. ACM Trans. Graph., 33(6):189:1–189:11, 2014.

[VJ94] George Vaněkčkek Jr. Back-face culling applied to collision detection of
polyhedra. The Journal of Visualization and Computer Animation, 5(1):55–
63, 1994.

162

Bibliography

[VSC01] T. Vassilev, B. Spanlang, and Y. Chrysanthou. Fast cloth animation on
walking avatars. Computer Graphics Forum, 20(3):260–267, 2001.

[VT94] Pascal VOLINO and Nadia Magnenat THALMANN. Efficient self-collision
detection on smoothly discretized surface animations using geometrical
shape regularity. Computer Graphics Forum, 13(3):155–166, 1994.

[Wan15] Wei Wang. A collision deformer for autodesk maya. Master’s thesis, Texas
A & M University, 2015.

[WC21] Monan Wang and Jiaqi Cao. A review of collision detection for deformable
objects. Computer Animation and Virtual Worlds, page e1987, 2021.

[WDZ17] Rene Weller, Nicole Debowski, and Gabriel Zachmann. kdet: Parallel con-
stant time collision detection for polygonal objects. Computer Graphics
Forum, 36:131–141, 05 2017.

[WJBK15] Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. Linear sub-
space design for real-time shape deformation. ACM Trans. Graph., 34(4),
July 2015.

[WLT+17] Tongtong Wang, Zhihua Liu, Min Tang, Ruofeng Tong, and D. Manocha.
Efficient and reliable self-collision culling using unprojected normal cones.
Computer Graphics Forum, 36, 2017.

[WWB+14] Ingo Wald, Sven Woop, Carsten Benthin, Gregory S. Johnson, and Manfred
Ernst. Embree: A kernel framework for efficient cpu ray tracing. ACM
Trans. Graph., 33(4), July 2014.

[YKH+10] Sung-eui Yoon, Young J. Kim, Takahiro Harada, Young J. Kim, and Sung-
eui Yoon. Recent advances in real-time collision and proximity computa-
tions for games and simulations. In ACM SIGGRAPH ASIA 2010 Courses,
SA ’10, New York, NY, USA, 2010. Association for Computing Machinery.

[Zac98] Gabriel Zachmann. Rapid collision detection by dynamically aligned dop-
trees. In Proceedings. IEEE 1998 Virtual Reality Annual International Sym-
posium (Cat. No. 98CB36180), pages 90–97. IEEE, 1998.

[ZBLJ20] Jiayi Eris Zhang, Seungbae Bang, David I. W. Levin, and Alec Jacobson.
Complementary dynamics. ACM Trans. Graph., 39(6), 2020.

163

Déformations géométriques indépendantes du temps pour les contacts élastiques
Résumé : Les films et séries d’animation étant de plus en plus présents dans le divertissement grand public, les besoins des
artistes en terme d’outils d’animation rapides et intuitifs ne cessent de croître. Les artistes ne font pas seulement appel à leur
imagination et à leurs compétences pour donner vie à aux modèles numériques, ils s’inspirent également du monde physique
pour mieux immerger les spectateurs dans leur environnement virtuel.

De nombreux objets de notre environnement quotidien présentent des déformations élastiques lorsqu’ils sont mis en contact
avec d’autres, par exemple une balle anti-stress écrasée par une main, un oreiller écrasant une tête lors d’une bataille d’oreillers
ou un ballon rebondissant sur un poteau de but. Ils ont notamment tendance à s’écraser à l’intérieur du contact et à gonfler
à l’extérieur. Ces effets d’écrasement et de gonflement sont essentiels pour communiquer une déformation plausible tout en
capturant le comportement physique des matériaux mous dans divers contextes, tels que les films d’animation. Ce type de
déformation est toutefois connu pour être difficile et fastidieux à reproduire manuellement par les artistes, et les outils existants
restent limités pour une utilisation artistique.

En pratique, ces déformations sont donc générées par des méthodes de simulation physique. Cependant, en raison de leur
dépendance temporelle, elles doivent être exécutées après les étapes de rigging et d’animation, ce qui empêche une édition non
linéaire de la scène 3D. De plus, les artistes ont souvent recours à des effets de déformation caricaturaux pour mieux transmettre
les émotions et les idées qui sont difficiles à obtenir par simulation physique.

La principale contribution de cette thèse est un nouvel outil de déformation purement géométrique et indépendant du temps
qui assiste l’artiste en résolvant les contacts locaux entre les objets élastiques, ainsi qu’en produisant des effets de gonflement
qui peuvent être contrôlés par l’artiste. Pour parvenir à une intégration transparente dans le processus de création d’animation,
nous avons conçu notre outil de déformation de manière à fournir un retour instantané à l’artiste tout en permettant une
édition non linéaire grâce à une stratégie entièrement indépendante du temps. Pour produire des effets de gonflement plausibles,
notre méthode peut aussi préserver intégralement le volume, bien que des contrôles artistiques soient également possibles pour
explorer des comportements plus exagérés. Plus précisément, à partir de plusieurs maillages en intersection, notre déformeur
calcule d’abord les parties des surfaces restant en contact, puis applique un déplacement procédural contrôlé par une courbe de
profil. Même si notre outil traite chaque image indépendamment, il réalise des déformations temporellement continues avec un
contrôle artistique du gonflement grâce à un petit nombre de paramètres de pseudo-rigidité. La plausibilité de la déformation
est encore renforcée par la répartition anisotrope du gonflement préservant le volume. Une extension est également proposée
pour gérer les auto-collisions entre des parties adjacentes d’un même objet, qui se produisent fréquemment dans le contexte
d’animation de personnages.

Le résultat de ce travail est un déformeur temps réel robuste qui permet de gérer des configurations géométriques complexes
telles qu’une balle écrasée par une main, des lèvres qui se touchent, des doigts qui se plient, etc.

Mots-clés : Animation 3D, deformation de maillages, resolution de collision, informatique graphique, traitement de la
géométrie.

Time-independent geometrical deformation for elastic contacts
Abstract: As animated films and series become more and more present in the mainstream entertainment, the artists’ needs
are growing in term of fast and intuitive animation tools. Artists not only heavily rely on their imagination and skills to bring
digital models to life; they also take inspiration from the physical world to better immerse viewers in their virtual environment.

Many objects of our everyday surroundings exhibit elastic deformations when put in contact with others, e.g., a stress ball
crushed by a hand, a pillow smashing a head during a pillow fight or a soft ball bouncing on a goal post. They most notably
tend to squash inside the contact and to bulge outside of it. Such squashing and bulging effects are essential to communicate
plausible deformation while capturing the physical behavior of soft materials in a variety of contexts, such as animated films.
This type of deformation is, however, notoriously difficult and tedious to manually reproduce by computer graphics (CG) artists,
and existing tools remain limited for artistic use.

In practice, such deformations are thus generated through physically based simulation methods. However, due to their
time-dependency, physical simulations must be run after the rigging and animation steps, preventing non-linear editing of the
3D scene. Moreover, artists also often resort to cartoonish deformation effects to better convey emotions and thoughts. Such
exaggerated effects are difficult to achieve through physical simulations.

The main contribution of this thesis is a novel purely geometric deformation framework that assists the artist by resolving
local contacts between elastic objects and producing bulge effects in an art-directable way. To achieve a seamless integration
within animation workflows, we designed our deformation tool to provide instant feedback to the artist while enabling non-
linear editing thanks to a fully time-independent strategy. To produce plausible bulge effects, our method can also preserve the
volume exactly, while artistic controls are also possible to explore more exaggerated behaviors. More specifically, starting from
multiple meshes in intersection, our deformer first computes the parts of the surfaces remaining in contact, and then applies
a procedural displacement controlled by a profile curve. Although our tool processes each frame independently, it achieves
temporally continuous deformations with artistic control of the bulge through a small number of pseudo-stiffness parameters.
The plausibility of the deformation is further enhanced by anisotropically spreading the volume-preserving bulge. An extension
is also proposed to handle self-collisions between adjacent parts of the same object that often occur in character skinning
animation.

The result of this work is a robust, real-time deformer that can handle complex geometric configurations like a ball squashed
by a hand, colliding lips, bending fingers, etc.

Keywords: 3D animation, mesh deformation, collision response, computer graphics, geometry processing.

Unités de recherche
Inria Bordeaux - Sud-Ouest et UMR 5800 Université, 33000 Bordeaux, France.

	Introduction
	Related work
	Collision detection
	Spatial data structure
	Discretization approaches
	Other approaches

	Deformation of elastic objects
	Physical simulation
	Geometrical deformation
	Articulated characters

	Our approach
	Contact definition
	Resulting deformation

	Contact definition
	Collision detection
	Mapping
	Shared parametrization
	Unique mapping direction

	Potential contact surface
	Contact definition
	Ball testing
	Geometrical method

	Algorithm

	Deformation
	Deformable region
	Direction field
	Direction field diffusion using parallel transport
	Blended direction field

	Amplitude and slope fields
	Final deformation
	Profile curve definition
	Volume constraint

	Bulge repartition
	Painted bulge map
	Anisotropy

	Algorithm

	Application to skinning
	Shared region & Partition of unity
	Shared region definition
	Mapping direction
	Crease detection & Partitioning

	Pipeline adaptations
	Consistent contact zones and scalar fields
	Consistent mapping direction

	Discussion

	Results
	Qualitative results
	Simple configurations
	Multiple disconnected components
	Skinning & Self-intersections.
	Surfaces with complex reliefs.

	Comparison
	Physical simulation
	Comparison to Implicit Skinning
	Comparison of methods A and B

	Artistic control
	Profile curve editing
	Manual parameter tuning
	Spatially-varying parameters

	Corner cases & limitations
	Thin structures
	Folds
	Temporal continuity

	Performance
	Spatial searches
	Matrix factorizations

	Conclusion
	Appendix
	Gaussian quadrature for triangular domain
	Laplacian and contraints
	Laplace operator
	Boundary conditions and linear constraints

	Volume constraint equation
	Résumé en français
	Introduction
	Notre méthode
	Définition du contact
	Déformation résultante
	Application au skinning

	Conclusion et perspectives

	Bibliography

