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Chapter 1

Introduction

Cette thèse compile quatre travaux d’économétrie sur lesquels j’ai travaillé ces trois dernières

années. De manière informelle l’économétrie peut se définir comme la manière dont des

données empiriques sont utilisées pour dégager certaines connaissances sur des grandeurs

d’intérêt pour l’économiste. En ce sens, on pourrait penser que l’économétrie ne présente

pas de différence fondamentale de nature avec la statistique. Néanmoins, l’économétrie

n’est pas réductible à la statistique dans le sens où les paramètres d’intérêt sont issus

d’une théorie économique ou sociologique (plus ou moins implicite, plus ou moins for-

malisée). Une bonne part du travail en économétrie consiste donc à articuler un modèle

statistique avec un cadre conceptuel issu des sciences sociales. Ce cadre conceptuel peut

être par exemple une certaine forme de rationalité dans les arbitrages opérés par les agents,

ou encore l’existence d’institutions telles que les marchés qui confrontent offre et demande

pour allouer les ressources. En ce sens, l’économétre s’intéresse donc à des modèles statis-

tiques spécifiques.

Au delà de cette définition rapide (et critiquable), le champ des travaux en économétrie est

très varié. D’abord parce que la nature des modèles statistiques mobilisés diffère selon les

problématiques étudiées. Ensuite parce que la nature des travaux peut aller de la statis-
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CHAPTER 1. INTRODUCTION

tique théorique à la mesure empirique de l’effet de certaines politiques publiques en passant

par la méthodologie computationnelle.

Cette thèse regroupe quatres travaux présentés dans un ordre quelque peu arbitraire mais

que l’on pourrait classer comme allant du plus théorique et général au plus empirique et

spécifique à une question donnée. Le but de cette introduction est de vulgariser en français

les quatres chapitres de cette thèse. Dans cette optique les références à la littérature sci-

entifique sont volontairement réduites. Le lecteur profane peut donc se contenter de la

lecture de cette introduction alors que le lecteur averti peut directement se reporter aux

chapitres rédigés en anglais.

1.1 Chapitre 1: Caractérisation des régions d’identification par

les parties extrêmes d’un ensemble de distributions.

Ce chapitre a été écrit dans le cadre d’un travail en collaboration avec Xavier d’Haultfoeuille.

1.1.1 Simple exemple introductif

Ce premier chapitre s’intéresse à la caractérisation des régions d’identification d’un paramètre.

La notion de région d’identification a été promue par Manski dans une série d’articles et

un livre1 au tournant du siècle. Un paramètre théorique est identifié (ponctuellement) si

seulement une valeur de ce paramètre est compatible avec ce qu’observerait un économètre

1Partial Identification of Probability Distributions, Springer Series in Statistics, 2003

2 Laurent Davezies - "Four Essays in Econometrics" - Thèse IEP de Paris - 2013



CHAPTER 1. INTRODUCTION

ayant un échantillon d’observations de très grande taille. Imaginons par exemple, le cas

d’un économiste qui souhaite mesurer le taux de chômage au sein d’une population. Sous

les hypothèses usuelles de l’économétrie, en observant le statut sur le marché du travail

d’un échantillon d’individus, notre économiste pourra estimer le taux de chômage. La loi

des grands nombres implique que si la taille de l’échantillon interrogé devient très grand

l’estimateur sera de plus en plus proche du "vrai" taux de chômage. Avec un échantil-

lon de taille infini le taux de chômage est donc ponctuellement identifié. Cependant, en

pratique la situation peut être moins favorable : imaginons que pour 20% des personnes

notre économiste n’arrive pas à observer le statut sur le marché du travail. Imaginons que

parmi les individus observés le taux de chômage est de 10%, que peut-on en déduire sur la

valeur du taux de chômage dans la population active ? Sans faire d’hypothèses supplémen-

taires, on sait simplement que le taux de chômage se situe entre 8%=10%*80%+0%*20%

(cas où tous les individus non observés travaillent) et 28%=10%*80%+100%*20% (cas où

tous les individus non observés sont chômeurs). Sans faire d’hypothèses supplémentaires,

l’économiste ne peut exclure aucune des valeurs de l’intervalle [8%; 28%]. Le paramètre

n’est donc pas ponctuellement identifié. A l’inverse, l’observation d’un grand échantillon

permet à l’économiste de rejeter les valeurs inférieures à 8% ou supérieures à 28%. Les

données sont donc informatives et on dit que le paramètre est partiellement identifié. On

appelle région d’identification du taux de chômage l’intervalle [8%; 28%]. Des hypothèses

supplémentaires peuvent permettre de réduire cette région d’identification : par exemple

si l’économiste pense que les personnes en emploi sont plus difficiles à contacter que les

personnes au chômage, le taux de chômage parmi les individus non observés doit être

inférieur à celui des individus observés : sous cette hypothèse supplémentaire la région

Laurent Davezies - "Four Essays in Econometrics" - Thèse IEP de Paris - 2013 3



CHAPTER 1. INTRODUCTION

d’identification se réduit à l’intervalle [8%; 10%]. Une telle hypothèse est donc très infor-

mative car elle réduit très significativement la région d’identification. Une autre hypothèse

souvent adoptée dans les travaux empiriques consiste à supposer que la sélection est ignor-

able (c’est à dire que les individus observés et non observés sont "comparables"). Dans ce

cas la région d’identification est réduite à la seule valeur de 8%, et le paramètre redevient

ponctuellement identifié.

L’économiste peut également faire des hypothèses qui conduisent à une région d’identification

vide, cela signifie alors que les hypothèses formulées par l’économiste sont rejetées par

l’observation, car aucune valeur du taux de chômage n’est susceptible d’être compatible

simultanément avec les hypothèses et l’observation.

Au vu des faits stylisés concernant les taux de réponse aux enquêtes, il est plus que prob-

able que les femmes répondent plus facilement aux enquêtes que les hommes toutes choses

égales par ailleurs. C’est donc une hypothèse que peut raisonnablement faire l’économiste.

Imaginons que notre économiste fasse deux enquêtes dans les régions de Syldavie et de

Bordurie. Imaginons que la structure des individus interrogés soit la suivante:

4 Laurent Davezies - "Four Essays in Econometrics" - Thèse IEP de Paris - 2013



CHAPTER 1. INTRODUCTION

Table 1.1: Structure des individus interrogés

(a) Syldavie

Répondants Non répondants Total

Homme Chômeur 5
Homme Salarié 36 9 50

Femme Chômeuse 3
Femme Salariée 36 11 50

Total 80 20 100

(b) Bordurie

Répondants Non répondants Total

Homme Chômeur 4
Homme Salarié 37 9 50

Femme Chômeuse 4
Femme Salariée 35 11 50

Total 80 20 100

A première vue, deux remarques s’imposent. Premièrement, les comportements de réponse

et le statut des hommes et des femmes sur le marché du travail semble proches en Bor-

durie et en Syldavie. Deuxièmement, le taux de réponse des femmes est inférieur à celui

des hommes, or notre économiste pense qu’elles répondent plus toutes choses égales par

ailleurs. Cela signifie que le statut sur le marché du travail joue sur le comportement de

réponse et que les femmes répondent moins du fait de leur situation sur le marché du

travail.

Déterminer la région d’identification du taux de chômage pour ces deux régions sous

l’hypothèse que les femmes répondent plus toutes choses égales par ailleurs n’a rien d’évident.

Un petit calcul montre alors que la région d’identification du taux de chômage de la Syl-

davie est [944/39;28]'[24,21;28] alors que celle de la Bordurie est vide ! L’hypothèse que

Laurent Davezies - "Four Essays in Econometrics" - Thèse IEP de Paris - 2013 5



CHAPTER 1. INTRODUCTION

les femmes répondent plus toute choses égales par ailleurs ne résiste pas à la confrontation

avec les données pour la Bordurie alors qu’elle est soutenable pour la Syldavie.

1.1.2 Formulation générale du problème

Dans l’exemple présenté ci-dessus, la détermination de la région d’identification peut se

faire par des calculs relativement élémentaires2. Plusieurs autres types de problème ont

été résolus par des méthodes d’intuition puis de vérification : l’économiste arrive au vu

du problème à avoir une intuition de la région d’identification, il vérifie ex-post que toutes

les valeurs possibles du paramètre sont bien dans la région considérée et réciproquement

que tout point de la région considérée est compatible simultanément avec les hypothèses et

l’observation. Ce mode de preuve est donc spécifique au problème étudié, pour un nouveau

problème l’économiste ne dispose pas de théorèmes généraux lui permettant de caractériser

simplement la région d’identification. A notre connaissance les seules méthodes générales

concerne la classe des problèmes qui s’expriment sous forme de conditions de moments,

autrement dit par des conditions sur certaines moyenne. Dans ces problèmes, le paramètre

est caractérisé par un nombre fini d’(in)égalités de moyennes calculables sur les données

et les hypothèses retenues par l’économiste sont également caractérisées par un nombre

fini ou infini d’(in)égalités de moyennes. Lorsque toutes les variables ne peuvent prendre

qu’un nombre fini de valeurs et que le problème s’exprime au moyen d’un nombre fini de

conditions de moments, Manski et Horowitz ont mis en avant le fait que la solution du

problème pouvait se calculer numériquement par des algorithmes standards (parmi eux

2Mais suffisamment pénibles pour qu’on ne les détaille ici.
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CHAPTER 1. INTRODUCTION

citons l’algorithme du simplexe). Lorsque le paramètre est un moment de la distribution

jointe de deux variables mais que seules les distributions marginales sont identifiées dans

les données, le problème est alors un "problème de transport optimal". Pour prendre

un exemple simple, imaginons que notre économiste veuille calculer la moyenne des taux

d’effort des ménages français locataires, c’est à dire la moyenne des ratio loyers/revenus. Si

notre économiste ne dispose que de données concernant les loyers d’un côté et de données

concernant les revenus de ménages de l’autre il n’est pas capable de calculer la moyenne

des taux d’effort. Il pourra seulement déduire des bornes des données observées. Lorsque

le problème peut s’exprimer sous la forme d’un problème de transport optimal, les travaux

de Ekeland, Galichon et Henry ont mis en avant la dualité de Monge-Kantorovitch pour

reformuler le problème initial en un problème plus simple. Enfin, Beresteanu, Molchanov

et Molinari ont proposé d’utiliser les outils mathématiques des ensembles aléatoires pour

traiter ce type de problèmes. Au delà de cette classe de problèmes (restrictions exprimables

sous forme de conditions de moments), à notre connaissance, il n’existe pas de résultats

généraux.

Nous considérons la classe des problèmes qui peuvent se formuler de la manière suivante

: le paramètre d’intérêt θ0 est caractérisé par une distribution de probabilité P0 impar-

faitement observée. Cette caractérisation s’écrit sous la forme q(θ0, P0) = 0. Par ailleurs,

l’économiste peut imposer des restrictions supplémentaires sur P0 au moyen d’hypothèses

qu’il juge crédibles. L’observation des données et les restrictions postulées impliquent que

P0 appartient à un ensemble de distributions de probabilité particulier que nous notons

R. La région d’identification de θ0 est donc l’ensemble des valeurs θ telles qu’il existe une

distribution de probabilité compatible avec les données, les hypothèses de l’économiste et

Laurent Davezies - "Four Essays in Econometrics" - Thèse IEP de Paris - 2013 7



CHAPTER 1. INTRODUCTION

la valeur θ, mathématiquement cela signifie qu’il existe P dans R telle que q(θ, P ) = 0.

Pour toute valeur θ du paramètre, nous notons Rθ = {P ∈ R, q(θ, P ) = 0}, l’ensemble des

distributions compatibles avec les données, les restrictions postulées par l’économiste et la

valeur θ du paramètre. La valeur θ est dans la region d’identification du paramètre si et

seulement si Rθ est non vide.

Reprenons le simple exemple introductif, notons Yi la variable qui vaut 1 si l’individu i est

au chômage et 0 s’il est en emploi, notons Di la variable qui vaut 1 si Yi est observée et 0

sinon, et Xi la variable qui vaut 1 quand l’individu i est une femme et 0 sinon. On observe

la distribution de (DY,D,X) mais le taux de chômage est une fonction de la distribution

de Y donc de la distribution (Y,D,X). Dans ce cadre, q(θ, P ) = θ −
∫
ydP (y, d, x). Les

contraintes sur P imposées par les données sont telles que

P((DY, Y,X) ∈ A) =

∫
1{(dy,d,x)∈A}dP (y, d, x) pour tout A ⊂ {0; 1}3, (1.1.1)

où le membre de gauche de l’équation précédente est observé dans les données. Si l’économiste

ne souhaite pas imposer de restrictions supplémentaires, alors R est l’ensemble des distri-

butions qui vérifient l’équation (1.1.1) et Rθ est le sous ensemble des distributions de R

telles que le taux de chômage vaut θ.

Si l’économiste souhaite ajouter l’hypothèse que les personnes en emploi sont plus difficiles

à joindre, il ajoutera la contrainte sur P suivante :

P(D = 1|Y = 1, X = a) ≥ P(D = 1|Y = 0, X = a) pour a ∈ {0; 1},

8 Laurent Davezies - "Four Essays in Econometrics" - Thèse IEP de Paris - 2013



CHAPTER 1. INTRODUCTION

autrement dit

∫
1{d=1,y=1,x=a}dP (y, d, x)∫
1{y=1,x=a}dP (y, d, x)

≥
∫
1{d=0,y=1,x=a}dP (y, d, x)∫
1{y=1,x=a}dP (y, d, x)

.

De la même manière on peut formuler l’hypothèse que les femmes répondent plus que les

hommes à situation comparable sur le marché du travail:

P(D = 1|Y = a,X = 1) ≥ P(D = 1|Y = a,X = 0) pour a ∈ {0; 1}.

Pour toute valeur θ, nous postulons également la convexité de l’ensemble Rθ des distribu-

tions compatibles avec les données, les restrictions postulées par l’économiste et la valeur

θ. Si P1 et P2 sont deux distributions différentes des variables dans la population, toutes

deux compatibles avec les données, les restrictions postulées et la valeur θ, cela signifie que

la population peut être décrite de deux manières différentes sans que l’on puisse distinguer

l’une de l’autre sur la base des données observées, des hypothèses faites et de la valeur du

paramètre d’intérêt. Une autre formulation consiste à penser qu’on a potentiellement deux

populations régies par des comportements différents qui sont indiscernables compte tenu

des hypothèses retenues, des observations faites et de la valeur du paramètre d’intérêt.

La convexité de Rθ signifie simplement que toute population obtenue en mélangeant des

individus des deux populations considérées précédemment sera également compatible avec

les données, les hypothèses retenues par l’économiste et la valeur θ du paramètre consid-

érée. Cette stabilité par mélange est en fait assez naturelle. A notre connaissance, elle est

vérifiée dans tous les problèmes empiriques intéressants pour un économiste.
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1.1.3 Apport du chapitre 1

Au delà de l’exemple simple présenté introduction, le cadre général dans lequel nous nous

plaçons couvre un grand nombre de problèmes déjà traités dans la littérature : modèles de

sélection, problème de transport optimal, inégalités et/ou égalités de moments, variables

instrumentales... De plus ce cadre couvre des cas intéressants qui n’ont pas été traités

dans la littérature à notre connaissance. En ce sens, le cadre que nous développons permet

d’unifier de nombreux problèmes et de généraliser les techniques de résolutions.

Supposons pour simplifier que Rθ soit fermé pour la convergence en distribution (cette

hypothèse est relâchée dans l’article). Nous montrons que dans ce cadre, les distributions

dans Rθ qui ne peuvent pas s’écrire comme un mélange de deux distributions de Rθ jouent

un rôle important. Nous notons ext(Rθ) cet ensemble qui est l’ensemble des parties ex-

trêmes de Rθ. Tout d’abord, nous avons vu que pour déterminer si la valeur θ était ou

non dans la région d’identification, il fallait déterminer si Rθ était vide ou non. Nous

montrons que cela revient au même de vérifier si ext(Rθ) est vide ou non. Ce résultat

est trivial dès lors qu’un convexe fermé non vide admet une partie extreme. Le théorème

de Krein-Milman nous assure que c’est le cas dès que Rθ est compact. Bien que fermé

(pour la convergence en distribution) et borné (pour la norme en variation totale), Rθ n’a

aucune raison d’être compact pour la topologie associée à la convergence en distribution.

Par ailleurs, il existe de nombreux espaces dans lesquels cette hypothèse de compacité ne

peut être relâchée dans le théorème de Krein-Milman. Nous montrons cependant que sur

l’espace des distributions de probabilité, la compacité pour la convergence en distribution

n’est pas nécessaire pour assurer l’existence de parties extremes des convexes fermés non
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vides.

Le deuxième apport concerne l’identification des moments de P0. Ce qui revient à se re-

streindre au cas où q(θ, P ) = θ −
∫
f(u)dP (u). La région d’identification de θ0 est donc

un intervalle d’extrémités infP∈R
∫
fdP ≥ 0 et supP∈R

∫
fdP ≥ 0. Or, calculer de telles

bornes revient à résoudre un programme d’optimisation sur un espace de distributions R.

Nous montrons que l’optimisation sur R peut être remplacée par une optimisation sur un

espace plus petit, à savoir ext(R).

Nous étudions également ce qui se passe lorsque l’ensemble R peut s’écrire comme une

intersection dénombrable d’ensembles ∩n∈NRn. Cela présente un intérêt lorsque le prob-

lème étudié est tel que ext(Rθ) reste difficile à caractériser mais que les parties extrêmes de

Rθ,n = {P ∈ Rn : q(θ, P ) = 0} sont faciles à caractériser pour tout n. Dans ce cas, nous

explicitons des conditions suffisantes (et "presque nécessaires") sous lesquelles la région

d’identification de θ0 se déduit des régions d’identification correspondant aux problèmes

où les restrictions R ont été remplacées par les restrictions Rn. Reprenons notre exemple,

imaginons que notre économiste observe les impôts payés des Syldaves et des Bordures

interrogés (par exemple parce qu’il échantillonne les individus de son enquête dans les

fichiers fiscaux). Imaginons par exemple que notre économiste est persuadé que la prob-

abilité de répondre à l’enquête décroisse avec le revenu conditionnellement à la situation

sur le marché du travail. Dans ce cas, si X représente les impôts payés par l’individu, cela

signifie que P(D = 1|Y = a,X = x) ≥ P(D = 1|Y = a,X = x′) pour a ∈ {0; 1} et x′ ≥ x.

Conformément à ce qui précède, notons R l’ensemble des probabilités qui vérifient une

telle propriété et Rθ l’ensemble des distributions dans R qui sont en plus compatibles avec

un taux de chômage de valeur θ. Une telle restriction conduit à une region d’identification
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particulièrement difficile à caractériser directement (car la caractérisation de ext(Rθ) est

compliquée). Cependant si σ est une bijection strictement croissante de [0; 1] dans [0; +∞],

alors les a priori de notre économiste impliquent que pour n ∈ N :

∀k = 1, ..., n− 1,∀a ∈ {0; 1},

P
(
D = 1|Y = a,X ∈

[
σ
(
k−1
n

)
;σ
(
k
n

)[)
≥ P

(
D = 1|Y = a,X ∈

[
σ
(
k
n

)
;σ
(
k+1
n

)[)
.

Notons Rn l’ensemble des probabilités qui vérifient la restriction précédente, et Rθ,n le

sous ensemble des distributions qui sont en plus compatibles avec un taux de chômage de

valeur θ. On a alors R = ∩n∈NRn et Rθ = ∩n∈NRθ,n. D’autre part nous sommes capables

de caractériser ext(Rn) et ext(Rθ,n) et donc de caractériser les régions d’identification du

paramètre dans le cas où notre économiste postule la restrictionRn au lieu deR. Nous don-

nons des conditions précises sous lesquelles on peut alors retrouver la région d’identification

du paramètre sous R à partir des régions d’identification sous Rn. Nous donnons égale-

ment des contre-exemples dans le cas où les conditions exhibées ne sont pas vérifiées.

Après avoir exprimé la région d’identification de θ0 comme fonctions des parties extrêmes

de Rθ, nous appliquons cette méthodologie pour retrouver de nombreux résultats de la

littérature : identification partielle de l’effet marginal moyen dans un modèle non linéaire

sur données de panel, problème des moments (classique ou ses extensions), identification

partielle d’un paramètre défini par un nombre fini d’égalités ou d’inégalité de moments, du-

alité de Monge-Kantorovitch en transport optimal, identification partielle de paramètres

structurels dans des jeux avec équilibres multiples avec ou sans possibilité de jouer en

stratégies mixtes...

Enfin dans une dernière partie nous utilisons les outils développés pour résoudre un prob-
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lème non traité dans la littérature et qui n’est qu’une généralisation du problème du taux

de chômage en Borduro-Syldavie présenté précédemment au cas où les variables intervenant

dans le problème peuvent prendre des valeurs réelles quelconques.

1.2 Chapitre 2: Méthode pour corriger une certaine forme d’attrition

endogène dans les panels.

Ce chapitre a été écrit dans le cadre d’un travail en collaboration avec Xavier d’Haultfoeuille.

La non réponse dans les enquêtes conduit souvent l’économètre à travailler sur un échan-

tillon sélectionné (i.e. non représentatif dans un langage profane). Or les grandeurs qui

intéressent au final l’économiste, le sociologue, le décideur public sont définies sur la popu-

lation d’intérêt et pas sur la population des répondants aux enquêtes. La non-réponse est

d’autant plus problématique que le comportement de réponse des individus est lié aux vari-

ables d’intérêt. Les données de panel, en suivant les individus dans le temps, permettent

d’identifier des covariations de variables pour un même individu au cours du temps. Pour

de telles données, on n’effectue donc pas des comparaisons entre individus mais des com-

paraisons entre différents moments pour un même individu. Cela présente l’avantage de

contrôler l’effet des variables constantes au cours du temps, qu’elles soient observables ou

inobservables. Cependant sur ces données, il existe presque toujours un phénomène de non

réponse spécifique : l’attrition, c’est à dire le fait que le suivi des individus s’interrompe.

Dans ce cas, quelque chose a donc rendu impossible la collecte d’une information qui

avait pu être collectée à une date précédente. Si une variable d’intérêt n’est observée qu’à
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une date initiale, mais n’a pas pu l’être à une date ultérieure, c’est que des changements

sont survenus, ces changements concernant le comportement de réponse peuvent être (et

sont certainement !) corrélés aux changements concernant les variables d’intérêt. Or avec

des données de panel, on utilise principalement les variations des variables observées aux

cours du temps pour identifier les paramètres d’intérêt, si ces variations sont corrélées avec

l’attrition, cela introduit une sélection de l’échantillon. Le problème de sélection dû à

l’attrition est généralement considéré comme susceptible d’introduire plus de biais que la

non réponse totale (i.e. à toutes les dates) car la non réponse totale peut-être rationalisée

par l’effet de facteurs inobservables constants au cours du temps.

Les méthodes de correction de la sélection due à l’attrition dans les panels s’appuient

généralement sur des hypothèses d’attrition ignorable : en contrôlant des variables ob-

servées à la première interrogation on suppose que l’on contrôle tous les facteurs communs

susceptibles d’expliquer simultanément l’attrition et les variations futures des variables

d’intérêt. Sous cette hypothèse, les variations futures des variables d’intérêt sont donc

décorrelées de l’attrition. Par exemple, dans une enquête en panel pour mesurer le statut

sur le marché du travail, on suppose que la probabilité de sortir du panel entre la date 1

et la date 2 dépend uniquement du statut sur le marché du travail à la date 1 mais pas

du statut sur le marché du travail à la date 2. Dans ce dernier cas, il apparaît clairement

qu’une telle hypothèse est peu crédible, les individus pouvant être plus ou moins enclins à

répondre à l’enquête en fonction de leur situation à la date d’interrogation.

Une approche alternative (et plus originale) mise en oeuvre par Hausman et Wise en 1979

consiste à supposer au contraire que l’attrition dépend seulement des valeurs contempo-

raines des variables d’intérêt mais pas des valeurs passées. Pour reprendre l’exemple précé-
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dent, on suppose donc que le fait de ne pas répondre à l’enquête en deuxième interrogation

dépend de la situation sur le marché du travail de l’individu au moment de la deuxième

interrogation mais pas de son statut au moment de la première. Cependant, il arrive que

dans certains cas, l’attrition dépende simultanément des valeurs de la variable d’intérêt

aux deux dates. C’est de manière assez évidente le cas pour l’enquête emploi française :

la collecte des données a lieu en enquêtant de manière répétée les ménages d’un échan-

tillon de logements. Les ménages qui déménagent ne peuvent donc être enquêtés après

leur déménagement. Or il est raisonnable de penser que les transitions professionnelles

sont partiellement concomitantes avec des déménagements. Dans un tel cas, la probabilité

d’attrition entre deux dates d’enquête dépend mécaniquement du statut sur le marché du

travail aux deux dates.

Pour prendre en compte un phénomène d’attrition aussi complexe, Hirano, Imbens, Ridder

et Rubin (2001) ont généralisé les deux approches précédentes en autorisant la probabilité

d’attrition à dépendre du statut sur le marché du travail aux deux dates. Cependant,

ils imposent des restrictions fonctionnelles sur la manière dont la probabilité d’attrition

dépend des variables d’intérêt. Ces restrictions ne sont pas soutenables dans le cas de

l’enquête emploi française car elles ne sont pas compatibles avec le fait que les déménage-

ments surviennent plus fréquemment lorsque les individus changent de statut sur le marché

du travail. De plus, Hirano, Imbens, Ridder et Rubin (2001) ont besoin d’un échantillon de

rafraîchissement. Dans notre exemple, cela signifie qu’ils identifient au moyen de données

auxiliaires la distribution marginale des statuts sur le marché du travail en deuxième date.

Nous proposons une méthode alternative, qui repose sur d’autres hypothèses. L’avantage

de notre approche est qu’elle ne nécessite pas de disposer d’un échantillon de rafraîchisse-
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ment et qu’elle n’impose aucune restriction fonctionnelle sur la probabilité d’attrition. En

revanche, nous devons disposer d’une variable qui est corrélée au fait de répondre en deux-

ième date conditionnellement au statut sur le marché du travail aux deux dates. Sous cette

hypothèse, nous explicitons les conditions sous lesquelles un moment des variables d’intérêt

peut être identifié. Nous proposons et dérivons le comportement asymptotique d’un esti-

mateur dans le cas où le support des variables d’intérêt est fini, nous dérivons également

des tests. Et nous appliquons notre méthode au calcul d’une matrice de transition entre

emploi, chômage et inactivité à partir des données de l’enquête emploi de l’INSEE. Dans

le cas où la variable d’intérêt a un support infini, nous dérivons la borne d’efficacité semi-

paramétrique du moment considéré et nous exhibons une condition nécessaire pour qu’il

existe un estimateur semi-paramétrique
√
n convergent.

La dérivation d’un estimateur ayant de bonnes propriétés dans le cas d’une variable d’intérêt

dont le support est infini reste à traiter.

1.3 Chapitre 3: Méthode pour estimer simplement les paramètres

d’un modèle logistique avec dépendance d’état sur données de

panels.

Ce chapitre a été écrit dans le cadre d’un travail en collaboration avec Romain Aeberhardt.

L’économétrie des panels s’est fortement développée depuis une vingtaine d’années. Les

données de panels présentent de nombreux avantages mais aussi des difficultés de traitement

économétrique spécifiques, notamment dans le cas de modèles non linéaires. Disposer de
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données de panels permet en effet de contrôler dans les estimations un effet des variables

inobservées constantes au cours du temps. Une telle entreprise peut néanmoins poser des

difficultés : il faut souvent arbitrer entre possibilité d’identification et facilité d’estimation

d’un coté et crédibilité de la modélisation de l’hétérogénéité inobservée de l’autre. Cet

arbitrage est particulièrement crucial dans les modèles non linéaires pour lesquels une

modélisation à "effets aléatoires" (c’est à dire une modélisation qui s’appuie sur de fortes

hypothèses concernant la distribution de l’hétérogénéité inobservée) est assez simple à

implémenter et pour lesquels une modélisation à "effets fixes" (c’est à dire une modélisation

relativement agnostique concernant la distribution de l’hétérogénéité inobservée) pose des

problèmes théoriques et pratiques importants.

Une autre spécificité importante des données de panels est qu’elle invite naturellement

l’économiste à modéliser une dépendance d’état : c’est à dire le fait que les valeurs actuelles

des variables d’intérêt puissent dépendre des valeurs passées de ces mêmes variables. Dans

le cadre d’un modèle non linéaire, il devient alors assez difficile de concilier une approche

agnostique concernant la distribution de l’hétérogénité inobservée constante au cours du

temps et l’estimation d’un modèle avec dépendance d’état. Pour des modèles à variables

qualitatives avec dépendance d’état et effets fixes, Bo Honoré et Ekaterini Kyriazidou ont

proposé un estimateur basé sur des comparaisons de paires de périodes par individu. Dans

le cas où on suppose en plus que l’hétérogénéité inobservée variable au cours du temps

suit une distribution logistique, ils dérivent également les propriétés asymptotiques de leur

estimateur dont la vitesse de convergence n’est pas en
√
n (comme souvent dans le cas

d’estimateurs semi-paramétriques).

L’estimateur proposé par Honoré et Kyriazidou n’est que la solution de la maximisation
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d’une fonction objectif calculée sur les données. En toute généralité, il faut donc pro-

grammer la maximisation d’une telle fonction ce qui peut sembler un peu fastidieux à un

économètre appliqué. D’autre part, il faut également programmer le calcul des écarts-types

associés à l’estimation ce qui rend la méthode peu attractive en pratique par rapport à des

modélisations concurrentes pour lesquelles des routines programmées existent déjà. Dans

ce travail, nous montrons que cet estimateur présente un avantage peu mis en avant par

les auteurs : il est facilement calculable (ainsi que les écart-types estimés) au moyen d’une

simple régression logistique ! Il suffit simplement de réordonner les données selon une

procédure que nous décrivons, de calculer des pondérations ad-hoc et d’estimer un modèle

de régression logistique avec un calcul robuste des écarts-types. L’estimateur ainsi calculé

aussi bien que la p-value associée à la statistique de Student sont asymptotiquement sans

biais. A distance finie, nous montrons également au moyen d’une simulation Monte-Carlo,

que la prise en compte d’une possible dépendance intra-individuelle des observations per-

met d’obtenir des tests ayant de meilleures propriétés à distance finie que ceux proposés

originellement par Honoré et Kyriazidou.

1.4 Chapitre 4: Evaluation de la politique des Réseaux Ambition

Réussite (RAR) par régression par discontinuité.

Ce chapitre a été écrit dans le cadre d’un travail en collaboration avec Magali Beffy.

Ce travail cherche à évaluer la politique des Réseaux Ambition Réussite mis en place à

la rentrée de septembre 2006. Cette politique consiste à sélectionner un petit nombre de
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collèges pour lesquels des moyens spécifiques sont mobilisés. Cette réforme de la politique

d’éducation prioritaire était motivée à l’époque par la volonté de recentrer la politique

sur un petit nombre d’établissements et d’éviter de saupoudrer les moyens mobilisés. Les

politiques publiques lorsqu’elles sont très ciblées sont par nature difficiles à évaluer. Les

établissements sont sélectionnés par la politique parce qu’ils présentent des caractéristiques

particulières, comparer naïvement les établissements sélectionnés et les établissements non

sélectionnés pour évaluer l’effet de la politique semble alors une mauvaise idée.

Une partie de la littérature empirique s’est attaquée à l’évaluation des politiques d’éducation

prioritaire en utilisant la méthode de "différences de différences". C’est en particulier la

stratégie suivie par Benabou, Kramarz et Prost. Dans cette méthode on fait l’hypothèse

que les établissements sélectionnées peuvent avoir des caractéristiques particulières mais

que la différence entre établissements sélectionnés et établissements non sélectionnés serait

restée stable dans le temps si la politique n’avait pas été mise en place. Ainsi, si les dif-

férences entre établissements sélectionnés et non sélectionnés évoluent après la mise en

place de la politique, on peut attribuer ces évolutions à la politique. Dans ces méthodes

d’estimation tout repose sur une hypothèse de différence stable dans le temps. Or il ex-

iste de nombreuses raisons de penser que les différences entre établissements scolaires ne

sont pas stables dans le temps. Par exemple, certains établissements font face à des dif-

ficultés croissantes, parce que certains quartiers s’appauvrissent alors que d’autres voient

leur missions facilitées par un embourgeoisement local. Si la politique sélectionne des étab-

lissements faisant face à des difficultés croissantes, alors la méthode des "différences de

différences" ne fournie qu’une estimation biaisée de l’effet de la politique publique. Un

autre problème avec les "différences de différences" peut survenir si la sélection des étab-
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lissements se fait sur la base des valeurs passées des variables d’intérêt. Imaginons par

exemple que l’on décide de mettre en place une politique visant à réduire les inégalités

de réussite au brevet des collèges entre établissements. Imaginons que les établissements

sélectionnés dans le traitement soient ceux qui aient eu les moins bons résultats au brevet

des collèges. Même si la politique n’a aucun effet, l’année suivante la différence entre étab-

lissements traités et non-traités au brevet des collèges se réduira par un phénomène de

regression vers la moyenne (phénomène qui traduit simplement le fait que les plus mauvais

établissements une année donnée ne seront pas systématiquement aussi mal classés l’année

suivante). Dans ce cas, la méthode de différences de différences conduit à une évaluation

trop optimiste des effets de la politique.

Dans ce travail, nous proposons une évaluation de la politique des RAR qui repose sur une

autre méthode d’estimation et d’identification: la regression par discontinuité. La sélection

des établissements en RAR s’est faite en partie sur la base de la proportion d’enfants issus de

catégories sociales défavorisées et de la proportion d’élèves en retard de deux ans à l’entrée

en 6ème en 2004. Nous mettons en évidence l’existence d’une forte discontinuité dans la

probabilité d’affectation des établissements dans le dispositif (RAR) selon ces deux critères.

La probabilité estimée pour un établissement d’être classé en RAR augmente fortement

au delà du seuil de 10 % d’élèves en retard de deux ans dans l’établissement et au delà

du seuil de 67 % d’élèves issus de CSP défavorisées dans l’établissement. L’exploitation

de ces deux discontinuités peut permettre d’identifier l’effet pour les établissements d’être

classé en RAR. A partir de différentes données administratives de l’Education Nationale,

nous construisons un panel de collèges et nous comparons des collèges proches des seuils de

discontinuité mis en évidence. L’hypothèse identifiante est la suivante : certains collèges
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ne sont pas classés en RAR car ils se situent juste en dessous des seuils mais ils l’auraient

été s’ils s’étaient situés juste au dessus de ces seuils. De même certains collèges sont classés

en RAR car ils se situent juste au dessus des seuils mais ne l’auraient pas été s’ils s’étaient

situés juste en dessous. Intuitivement, les seuils produisent donc une quasi-expérience

aléatoire. Une telle méthode offre donc l’avantage de faire des hypothèses assez faibles

concernant les mécanismes de sélection dans le traitement. L’inconvénient est que les

estimations ne peuvent pas s’extrapoler aux établissements loin des seuils de discontinuité

sans hypothèse forte sur l’homogénéité des effets.

Les résultats de ce travail suggèrent que l’effet de la politique est hétérogène (en général,

les valeurs obtenues diffèrent selon la discontinuité mobilisée). Cependant, certains faits

stylisés se dégagent de l’analyse : tout d’abord, il semble que les annonces ministérielles

n’aient pas été entièrement respectées pour les établissements près des seuils de sélection. Il

nous est difficile de retrouver dans les données les enseignants supplémentaires promis pour

les collèges traités juste aux dessus des seuils par rapport au collèges non traités juste en

dessous. Deuxièmement, la réforme a changé la structure des enseignants affectés dans les

établissements traités : nous observons une augmentation de la proportion de professeurs

âgés et de professeurs n’ayant pas les qualifications habituelles en collège (agrégation, cer-

tification,...). Une explication probable de ce phénomène est que des instituteurs ont été

affectés dans les collèges pour améliorer la transition "école primaire-collège". Troisième-

ment, la réforme a accru les phénomènes de ségrégations scolaires entre établissements

lorsque celle-ci est mesurée par la profession des parents. Quatrièmement nous observons

une augmentation des écarts de résultats au brevet des collèges entre établissements traités

et non traités. Cela peut s’expliquer par une augmentation de la ségrégation scolaire des
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élèves entre établissements ou par des effets contre-productifs de la politique sur les élèves

scolarisés dans les établissements en RAR.

Au final, le bilan de cette politique apparaît assez sombre, même si des études supplémen-

taires sont encore nécessaires pour comprendre pourquoi les résultats des élèves au brevet

des collèges diminuent dans les établissements traités par rapport aux établissements non

traités. Cette dernière question ne peut pas se traiter avec les seuls données mobilisées

dans ce travail.
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Chapter 2

Partial identification with Missing Data

2.1 Introduction

In this chapter, we reinvestigate partial identification with missing data, considered in a
broad sense. This topic has been an active area of research, following the pioneering work
of Manski (1989, 1990, 2003). While Manski initially focused on missing data specifically,
his ideas have been successfully applied to limited dependent variable models (see, e.g.,
Chesher, 2010, Chesher et al., 2011, Bontemps et al., 2012), panel data models (see Honore
& Tamer, 2006, Chernozhukov et al., 2012, Rosen, 2012) and incomplete models (see, e.g.,
Ciliberto & Tamer, 2009, Galichon & Henry, 2011, and Beresteanu et al., 2011), among
others.

An issue that often arises in this literature is that the identification region is defined
by an optimization over an infinite dimensional space, which is typically the space of
a probability distribution that is at least partially unobserved. Such an optimization
is often impossible to solve both in theory and computationally. For some models and
parameters, closed form of the bounds of the identified set have been derived by specific
methods, but general tools are still lacking. Important exceptions are the applications of
random set theory, put forward by Beresteanu et al. (2011), and optimal transportation,
considered by Galichon & Henry (2011) and Ekeland et al. (2010) when the identification
region can be expressed only by moment conditions. Our first contribution is to propose
a framework where the task of computing the identification region is much reduced. This
framework encompasses standard missing data problems such as nonresponse or treatment
effects models, but also models with unobserved heterogeneity, including fixed effects panel
data models and incomplete models. The only substantial assumption that we consider
is a convex restriction. Basically, we impose that if two at least unobserved probability
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distributions are consistent with the data and the model for a given value of the parameter
of interest, then any mixture of these two probability distributions should also be consistent
with the data and the model. We have not been able to find a natural example where this
assumption would not be satisfied.

In this contexte, we prove that the identification region is characterized by its extreme
points only. This is convenient, because in many cases the set of extreme points is small.
This result may be seen as a kind of generalization, in an infinite setting, of the well known
result that to optimize linear functionals on a convex, compact, finite dimensional set, one
has to consider extreme points of this set only.1 The infinite dimensional generalization is
involved however, because the set we consider is not compact under the standard topology,
and linear functionals need not be continuous. The proof of our result relies extensively on
two powerful results in functional analysis: the Banach-Alaoglu theorem, which ensures,
basically, that the set we consider is compact under a convenient topology, and the Cho-
quet theorem, which gives an integral representation to every point of a given compact
metrizable convex set.

In some problems, optimizing over extreme points may still be impossible. When the
space is defined by an infinity number of constraints, for instance, the set of extreme
points is typically infinite dimensional. Our second contribution is to give conditions under
which the identification region can be well approximated by the sequence of identification
regions corresponding to approximate models, that converge to the true one. In the case
of a countable infinite number of constraints, such as sequence may correspond to models
satisfying the first n constraints only, for instance. We also show that when the restrictions
on the approximating sequence are not satisfied, convergence may not occur.

We then apply our main result to moment equality problems. The difference with standard
GMM is that here moment equalities involve probability distributions of at least partially
unobserved variables. Using a result of Douglas (1964), we characterize the set of extreme
points in this context. We also show that it is finite dimensional when the number of
equalities is finite. We obtain as corollaries recent results by Chernozhukov et al. (2012)
and D’Haultfoeuille & Rathelot (2011) on the computation of bounds for average marginal
effects in nonlinear panel data models and for segregation indices with small units, respec-
tively. Using this result, we also provide another proof of Monge-Kantorovitch duality,
thus making the link between our approach and optimal transportation theory.

Finally, we apply our framework to the sample selection model under monotonicity re-
1Interestingly, the finite dimensional result has already been used to derive bounds in partial identifi-

cation problems, see Balke & Pearl (1997) and Freyberger & Horowitz (2012).
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strictions. More precisely, we suppose that the outcome, or a discrete covariate, or both,
affects monotonically the probability of selection. These conditions are rather weak and
likely to be plausible in many setting. Interestingly, the monotonicity on the outcome is
very similar, but stronger, than the stochastic dominance condition considered for instance
by Blundell et al. (2007). Our method proves very useful for deriving bounds on parameters
of interest. While the bounds do not take any closed form, the bounds can be obtained by
computation as the set of extreme points is finite dimensional.

The paper is organized as follows. The second section develops the general framework and
presents the main results. The third section applies this result to several moment equalities
problems. The fourth section applies it to the sample selection model under monotonicity
restrictions. All proofs are deferred to appendix.

2.2 Problem and general results

2.2.1 Anatomy of the problem

We are interested in a parameter θ0 ∈ Θ related to a probability measure P0 ∈ P of a
random vector U ∈ S, with S a closed subset of Rk. More precisely, we suppose that there
exists a known function q from Q ⊂ Θ×P to Rl such that q(θ0, P0) = 0. As we are mainly
concerned with missing data, U is not fully observed in general, so that P0, and hence θ0,
is not point identified in general. On the other hand, P0 satisfies some restrictions, as it
should be compatible both with the data and possible additional restrictions. We let R
denote all these restrictions. Note that the difference between the restrictions q(θ0, P0) = 0

and P0 ∈ R is that the latter is independent of θ0. We summarize our framework in the
following assumption.

Assumption 1 (Framework) The true parameter θ0 and distribution P0 satisfy q(θ0, P0) =

0, where q is known, and P0 ∈ R. These restrictions exhaust the information on (θ0, P0).

This assumption implies in particular that the identification region of θ0, Θ0, is defined
by2

Θ0 = cl ({θ ∈ Θ : ∃P ∈ R : q(θ, P ) = 0}) , (2.2.1)

2Each time we write q(θ, P ), we implicitly assume that (θ, P ) belongs to Q. Hence, (2.2.1) should be
understood as Θ0 = cl ({θ ∈ Θ : ∃P ∈ R : (θ, P ) ∈ Q and q(θ, P ) = 0}). (θ, P ) ∈ Q simply means that θ
is well defined for P0 = P . For instance if q(θ, P ) =

∫
m(u, θ)dP (u) for a known function m on S ×Θ, Q

is the set of (θ, P ) such that
∫
|m(u, θ)|dP (u) <∞.
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where cl (.) denotes the closure. The problem with this formulation is that it is intractable
in general. Because R is often infinite dimensional, checking the existence of a P ∈ R
satisfying q(θ, P ) = 0 is likely to be a very difficult task. We now impose additional
restrictions in order to obtain a much more tractable form for the identification region.
Namely, we assume that if two unknown distributions distributions P1 and P2 in R satisfy
q(θ, P1) = q(θ, P2) = 0 for some θ, then every mixture P of P1 and P2 will also belong to
R and satisfy q(θ, P ) = 0.

Assumption 2 (Convex restriction)

Rθ = {P ∈ R : q(θ, P ) = 0} is convex for every θ ∈ Θ.

This restriction actually holds in many missing data problems, as shown in the examples
below. In the following we will give some results under Assumption 1 and 2. We also
provide more precise results when Assumption 2 is replaced by the following condition.

Assumption 3 (Convex restriction and linear parameter)

R is convex and closed for the weak convergence. Moreover, q(θ, P ) = θ −
∫
f(u)dP (u)

with f a known (or identifiable) real function satisfying
∫
|f(u)|dP0(u) <∞.

The function q is defined on R × I(f) with I(f) = {P ∈ P :
∫
|f |dP < ∞}. The

restriction
∫
|f(u)|dP0(u) <∞ thus ensures that the true parameter is well-defined. Under

Assumption 3, R is convex. Because P 7→
∫
fdP is linear, Θ0 is then an interval of R,

Θ0 = [θ, θ]. We are thus reduced to compute

θ = inf
P∈R∩I(f)

h (P ) and θ = sup
P∈R∩I(f)

h (P ) . (2.2.2)

However, even in this simpler case, the computation of the bounds requires an infinite
dimensional optimization, which is not tractable in practice. We show in the following
subsection how to reduce this computational task.

For the sake of simplicity, we consider in Assumption 3 that f is a real function, but the
generalization to vector-valued functions can be handled by using support functions of
convex sets. Θ0 is indeed convex whether f is real or not. It is therefore characterized by
its support function (see, e.g., Hiriart-Urruty & Lemaréchal, 2001, p. 134) defined by

S(λ) = sup
P∈R∩I(f)

λ′
∫
fdP,

for all λ belonging to the unit sphere of Rp with p = dim(Im(f)). In other words, instead
of focusing on θ and θ, we should focus on θλ = supP∈R∩I(f)

∫
[λ′f ]dP , for all λ in the unit
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sphere of Rp. Another generalization concernes the case where q(θ, P ) =
∫
m(u, θ)dP (u)

with range of m in Rp. For instance, θ can be the coefficient of a linear regression, and m
represent the moment derived from orthogonality conditions between residuals and instru-
ments. In this case, θ ∈ Θ0 if and only if supP∈R∩I(f)

∫
λ′mdP and infP∈R∩I(f)

∫
λ′mdP

have not the same sign for every λ in the unit sphere of Rp.

2.2.2 Examples

Missing data with a known link.

In this example, observed data O are related with partially unobserved variable U through
a known link: O = s(U) where s is a known function. s is non-injective in general, so that
we cannot recover U given O. The parameter of interest θ0 depends on the probability
distribution of U , so here P0 = PU . A first example of this framework is unit nonresponse,
where O = (D,DY,DX) and U = (D, Y,X), D being the dummy of response, Y the
outcome and X are covariates. A second is the sample selection model (see, e.g., Heckman,
1974), where O = (D,DY,X) and U = (D, Y,X). A third is nonresponse on covariates,
with O = (D, Y,DX) and U = (D, Y,X). Finally, this model also encompasses treatment
effects, where O = (T, YT , X) and U = (T, (Yt)t∈T , X). Here T ∈ T denotes the treatment
and Yt denotes the potential outcome corresponding to a treatment equal to t.

In this general missing data framework, Assumption 2 is satisfied if θ0 is defined by moment
equalities, so that q(θ, P ) =

∫
m(θ, u)dP (u), and under many different sets of additional

restrictions. The first case is when there is actually no additional restriction. Then R =

g−1({P0}), where g is a linear mapping from P to P defined by

g(P )(A) =

∫
1{s(u) ∈ A}dP (u).

R = g−1({P0}) simply means that P0 = PU should be compatible with the data and the link
function s. Then Assumption 2 is satisfied because Rθ = R ∩ {P :

∫
m(u, θ)dP (u) = 0},

and both sets are convex.

Assumption 2 also holds in the sample selection model if one of the covariates, say X1,
satisfies the exclusion restriction Y ⊥⊥ X1|X2, with X = (X1, X2). Here, X1 is a variable
affecting D but not Y directly. These restrictions have been studied , either together with
functional form restrictions (Heckman, 1974, Gronau, 1974), or alone (see Manski, 2003,
chapter 2). In this last case,R is the set of all probability distributions in g−1({P0}) = {P ∈
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P : ∀A,
∫
1{(d,dy,x)∈A}dP (d, y, x) =

∫
1{(d,dy,x)∈A}dP0(d, y, x)} satisfying this conditional

independence restriction. This example is less trivial because the conditional independence
restriction alone is not preserved by convex combinations. However, R, and thus also Rθ,
is still convex for all θ ∈ Θ.3 The same result applies to the treatment effect example, with
(Yt) ⊥⊥ X1|X2.

In the sample selection literature, we often focus on coefficients of regression. In this case
q(θ, P ) =

∫
(y − x2θ)x

′
2dP (y, d, x1, x2). Such parameter is not point-identified in general:

we often use the restriction Y ⊥⊥ X1 with shape restriction on E(Y |X1, X2, D = 1) to
ensure point-identification (Heckman (1974)). Manski (2003) and Kitagawa (2010) relaxe
such assumptions to characterize Θ0. D’Haultfœuille (2010) also discuss identification of θ
under restrictions thatD ⊥⊥ X1|Y (see also Ramalho & Smith (2011a)). More generally we
can focus on the identification of the full jointe distribution of (Y,X) and consequently on
every parameter that depends on this distribution (moment, inequality index, quantile,...).
In the last Section of this paper, we apply our result to characterize Θ0 when the selection
is monotonous in X and/or in Y .

In treatment effect literature, we often focus on average treatment effect, i.e.

q(θ, P ) = θ −
∫
f(y, t)dP (y, t),

with f the identifiable function: f(y, t) = y
(

1{t=1}∫
1{t=1}dP

T
0 (t)
− 1{t=0}∫

1{t=0}dP
T
0 (t)

)
and R is the

set of distributions of (Y0, Y1, T ) such that P Y0(1−T )+Y1T,T = P
Y0(1−T )+Y1T,T
0 . Apart in case

of randomized experiment with perfect compliance, this parameter is generally not identi-
fied. Huge literature about this type of model focus on various parameters: local average
treatment effects (Imbens & Angrist, 1994, Angrist et al., 1996), quantile treatment effects
(Doksum, 1974, Chernozhukov & Hansen, 2005, Abadie et al., 2002, Firpo, 2007), values
of counterfactual distributions (Abadie, 2002) etc... All these examples are embedded in
our framework.

3To see this, take (PD,Y,X1,X2

1 , PD,Y,X1,X2

2 ) ∈ g−1({P0})2 and satisfying the conditional independence
restriction. Let PD,Y,X1,X2 = λPD,Y,X1,X2

1 + (1 − λ)PD,Y,X1,X2

2 , with λ ∈ [0, 1], then PY,X1,X2 =

λPY,X1,X2

1 + (1 − λ)PY,X1,X2

2 . The data restrictions impose PD,X1,X2

1 = PD,X1,X2

2 = PD,X1,X2 . Thus,
PY |X1,X2 satisfy PY |X1,X2 = λP

Y |X1,X2

1 + (1 − λ)P
Y |X1,X2

2 = λP
Y |X2

1 + (1 − λ)P
Y |X2

2 = PY |X2

(PX1,X2

1 = PX1,X2

2 = PX1,X2 and PX2
1 = PX2

2 = PX2 imply the first and third equalities, the second
equality is implied by the conditional independence restriction of P1 and P2). And so, PD,Y,X1,X2 satisfies
the conditional independence restriction.
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Unobserved heterogeneity

In this example, we suppose that the probability distribution of an observed variable O
conditional on an (at least partially) unobserved heterogeneity U is a known function of θ0.
θ0 may also satisfy moment restrictions

∫
g(u, θ0)dPU(u) = 0. In this example, P0 = PU ,

R = P and

q(θ, P ) = max

(
sup

A measurable set

∣∣∣∣∫ PO|U(A|u, θ)dP (u)− PO(A)

∣∣∣∣ , ∥∥∫ g(u, θ)dP (u)
∥∥) .

Note that q is known since PO|U(A|u, θ) is known. For each θ, Rθ is convex since P is
convex and the maps P 7→

∫
PO|U(A|u, θ)dP (u) and P 7→

∫
g(u, θ)dP (u) are linear.

This framework includes the example of panel data model, with O = ((Yt)t=1...T , (Xt)t=1...T )

and U = ((Xt)t=1...T , α), Yt denoting the outcome at date t, Xt covariates at t and α an
unobserved fixed effect. If we consider a parametric panel data model, distribution of
Y = (Yt)t=1...T conditional on X = (Xt)t=1...T , α and θ0 is known. This is the case if
Yt = g(Xt, α, εt, β0) where the (εt)t=1...T are i.i.d., independent of (X,α) and with a known
distribution and β0 is a subvector of θ0. Dynamic Markov models are also allowed for, by
simply adding the first period outcomes to U . In this example, if we are interested in β0,
θ0 = β0 and g(u, θ) = 0, namely, there is no additional restriction on θ0. But we may also
be interested in the average effect ∆0 of a binary covariate X1t, defined by

∆0 =

∫
[E (Yt|X1t = 1, X2t = x2, α = a, β0)− E (Yt|X1t = 0, X2t = x2, α = a, β0)] dPX2t,α(x2, a),

where Xt = (X1t, X2t). In this case, θ0 = (β0,∆0), and

g(x1, x2, a, β,∆) = E (Yt|X1t = 1, X2t = x2, α = a, β)−E (Yt|X1t = 0, X2t = x2, α = a, β)−∆.

Models with multiple equilibria

In this example, we consider a simple entry game with two players originally studied in
Tamer (2003) and after that in Ciliberto & Tamer (2009), Ekeland et al. (2010), Galichon
& Henry (2011), Beresteanu et al. (2011). The payoffs of the two players are given by the
following matrix:
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2 enters 2 does not enter
1 enters (θ1 + ε1, θ2 + ε2) (ε1, 0)

1 does not enter (0, ε2) (0, 0)

Figure 2.1: Payoffs of entry game

The payoffs shifters ε1 and ε2 are observed by players but not by econometrician. θ1 and
θ2 are unknown non positive parameters. When ε1 (respectively ε2) is greater than −θ1

(respectively −θ2), the player 1 (respectively the player 2) always enters. On the other
side, when ε1 (respectively ε2) is lower than 0, the player 1 (respectively the player 2)
never enters. When (ε1, ε2) ∈ [0;−θ1]× [0;−θ2], the game has two Nash equilibria in pure
strategy (1 enters, 2 does not or 2 enters, 1 does not) and one in mixed strategy (1 enters
with probability −ε2/θ2 and 2 enters with probability −ε1/θ1). Let Y1 (respectively Y2)
the dummy variable coding the entry of player 1 (respectively of player 2). Econometrician
observes a large number of independent realizations of (Y1, Y2) ∈ {0; 1}2, and then knows
the quantity P((Y1, Y2) = (y1, y2)) for (y1, y2) ∈ {0; 1}2. She/he also knows the functional
form of the payoffs but does not know the realization of (ε1, ε2) nor the value of θ1 and θ2.
Econometrician assumes that the distribution of (ε1, ε2) belongs to a set of probability E ,
for instance the normale bivariate distribution with E(ε1, ε2) = (α1, α2), Cov(ε1, ε2) = ρ

and V(ε1) = V(ε2) = 1. In this example P0 is the set of distribution of (Y1, Y2, ε1, ε2),
θ0 = (α1, α2, ρ, θ1, θ2).
For given shifters (ε1, ε2) ∈ [0;−θ1]× [0;−θ2], let w10(ε1, ε2) the probability that a couple
of players chooses the pure strategy such that 1 enters and 2 does not. Similarly, let
w01(ε1, ε2) the probability that a couple of players chooses the pure strategy such that 2

enters and 1 does not, and wm(ε1, ε2) the probability that a couple of players chooses the
mixed strategy. Let

S00 =]−∞; 0]×]−∞; 0],

S11 = [−θ1; +∞[×[−θ2; +∞[,

S01 =]−∞; 0[×[0; +∞[∪]−∞;−θ1]× [−θ2; +∞[,

S10 = [0; +∞[×]−∞; 0[∪[−θ1; +∞[×]−∞;−θ2]

and S.. = [0,−θ1]× [0,−θ2].
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Figure 2.2: Partition of Type Spaces of Entry Game

There is not only one way to define R and q for a such example, we only give here one
possibility. For instance, we can define q(θ, P ) = 1{C is false} where C is equivalent to the
following condition:

∃w01, w10, wm measurable functions from [0,−θ1]× [0,−θ2] into [0, 1] such that:

w01 + w10 + wm = 1, w01 ≥ 0, w10 ≥ 0 and wm ≥ 0∫ (
1{(ε1,ε2)∈S11} +

ε1ε2

θ1θ2
wm(ε1, ε2)1{(ε1,ε2)∈S..} − 1{(y1,y2)=(1,1)}

)
dP (y1, y2, ε1, ε2) = 0∫ (

1{(ε1,ε2)∈S00} +
(θ1 + ε1)(θ2 + ε2)

θ1θ2
wm(ε1, ε2)1{(ε1,ε2)∈S..} − 1{(y1,y2)=(0,0)}

)
dP (y1, y2, ε1, ε2) = 0∫ (

1{(ε1,ε2)∈S10} +

[
w10(ε1, ε2)− ε1(θ2 + ε2)

θ1θ2
wm(ε1, ε2)

]
1{(ε1,ε2)∈S..} − 1{(y1,y2)=(1,0)}

)
dP (y1, y2, ε1, ε2) = 0∫ (

1{(ε1,ε2)∈S01} +

[
w01(ε1, ε2)− (θ1 + ε1)ε2

θ1θ2
wm(ε1, ε2)

]
1{(ε1,ε2)∈S..} − 1{(y1,y2)=(0,1)}

)
dP (y1, y2, ε1, ε2) = 0

∀(u1, u2) ∈ R2,

∫
1{ε1 ≤ u1; ε2 ≤ u2}dP (y1, y2, ε1, ε2) = Φ2(u1 − α1, u2 − α2, ρ)

And with this definition of q, R corresponds to the set of probability distribution concen-
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trated on {0; 1}2 × R2 such that:

∀(y1, y2) ∈ {0; 1}2,

∫
1{(Y1,Y2)=(y1,y2)}dP (y1, y2, ε1, ε2) = P((Y1, Y2) = (y1, y2)).

Remember that the right hand side of the previous equation is identified by the data.

2.2.3 Main theoretical results

Our main result, Theorem 2.2.1 below, is that Θ0 can be characterized by extreme points of
Rθ. In the separable and linear case, the bounds of Θ0 can be obtained by an optimization
on a smaller set than R∩I(f). Let ext(Rθ) denote the set of extreme points of the closure
for weak convergence of Rθ, and ext(R) denote the set of extreme points of R.

Theorem 2.2.1 (Main result)

1. Under Assumptions 1 and 2,

Θ0 = {θ ∈ Θ : ext(Rθ) 6= ∅}.

2. Moreover if Assumption 3 also holds, then:

θ = infP∈ext(R)∩I(f)

∫
f(u)dP (u)

θ = supP∈ext(R)∩I(f)

∫
f(u)dP (u).

This theorem shows existence of extreme points of Rθ (when Rθ is not empty) and that
identification region is completely characterized by ext(Rθ). For a linear parameter, the un-
observed distribution that achieved the bounds of the identification region can be obtained
by considering only extreme distributions of R. Our main result is particularly helpful
if ext(Rθ) (respectively ext(R)) is easily characterizable and finite-dimensional, because
optimization on ext(Rθ) is then doable in practice. We provide an important class of such
examples in Subsection 2.3 below. Theorem 2.2.1 is also useful if ext(Rθ) is complicated
but there exists a simpler set A such that ext(Rθ) ⊂ A ⊂ Rθ.

Theorem 2.2.1.2 is well-known when R is finite-dimensional. This can occurs in parametric
models or when R = P , with S finite4. Let us recall the usual argument in this case. First,

4Remember that P is the set of probability distribution on S with S that does not depend on θ.
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we can assume without loss of generality, that the support of distributions is included in
{1, ..., I}. In this case any P ∈ R is characterized by P ({i}) for i = 1, ..., I. We can
therefore assimilate Rθ with the compact subset of [0, 1]I of all λ = (P ({1}), ..., P ({I}))′

corresponding to a measure such that q(P, θ) = 0. When, as here,Rθ is a finite-dimensional,
compact and convex set, ext(Rθ) is nonempty (see, e.g., Proposition 2.3.3 in Hiriart-Urruty
& Lemaréchal, 2001) as soon as Rθ is nonempty.

In the linear case, similar results holds for R which is also a compact set. Let a =

(f(1), ..., f(I))′, we then get
∫
f(u)dP (u) = a′λ. Hence,

θ = max
λ∈R

a′λ,

and similarly for the lower bound. Moreover, by Minkowski Theorem (see, e.g., Hiriart-
Urruty & Lemaréchal, 2001, Theorems 2.3.4),

R = co(ext(R)),

where co(A) denotes the convex hull of a set A. As a result, any λ ∈ R can be written
as λ =

∑K
k=1 αkλk, with λk ∈ ext(R), αk ≥ 0 and

∑K
i=k αk = 1. This implies that

a′λ ≤ maxk=1...K a
′λk, and therefore

max
λ∈R

a′λ = max
λ∈ext(R)

a′λ. (2.2.3)

Figures 2.3a and 2.3b display two examples of extremal sets of a compact convex set,
illustrate Minkowski Theorem and Equality (2.2.3). We are looking for the vector λ ∈ R
that maximizes the (oriented) norm of its projection on the line generated by a. In both
cases the maximum is reached on an extremal element ofR. In the first example, ext(R) has
an infinite number of points but is a one-dimensional manifold, whereas ext(R) consists
of only three points in the second example. This case corresponds to a standard linear
programming problem, where optimization is conducted on a polyhedron. In such a case,
a possibility is simply to compare a′λ on each of these values.5

5This solution is inefficient, though, as the number of vertices can be very large. Simplex or interior
point algorithms are much more efficient.
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Figure 2.3: Linear optimization on compact convex sets of R2

(a) ext(K) is a one-dimensional manifold

*
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)(KextK

(b) ext(K) is a finite set

K )Kext(

*
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λ∗ = arg maxλ∈R a
′λ = arg maxλ∈ext(R) a

′λ

Extending the results to the case where R is infinite dimensional space, on the other hand,
is far from straightforward. The Krein-Milman Theorem, which is the usual generalization
of the Minkowski Theorem in infinite dimension, states that any compact convex set is the
closure of the convex hull of its extreme points. However, Rθ is only bounded here, and
so Rθ is not necessarily compact. Indeed, closed and bounded sets need not be compact
in infinite dimension. In general, the lack of compactness of R and Rθ can have severe
consequences as the following counterexamples show. The first shows that a closed and
convex subset of a Banach space needs not have extreme points. The second proves that
even if a closed and bounded convex has extreme points, such convex is not equal to the
closure of the convex hull of his extreme points.

Counterexample 1: Existence of extreme points.

LetK denote the set of real valued continuous functions f from [0; 1] such that supx∈[0;1] |f(x)| ≤
1 and f(0) = 0. K is a bounded, closed and convex set for the supremum norm in the
Banach space of continuous functions from [0; 1] to R. However ext(K) is empty �

Counterexample 2: Convex hull of extreme points.

LetK be the set of real valued continuous functions f from [−1; 1] such that supx∈[−1;1] |f(x)| ≤
1. K is a bounded, closed and convex set of a Banach space, and

ext(K) = {f : f(x) = 1 for x ∈ [−1; 1] or f(x) = −1 for x ∈ [−1; 1]}.
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Thus, cl (co(ext(K))) is the set of constant functions from [−1; 1] to itself, and cl (co(ext(K))) 6=
K. It follows that optimization of linear forms on K does not reduce to the optimization
on ext(K). Consider for instance h the linear form defined by h(f) =

∫
xf(x)dx. In this

case,
sup

f∈ext(K)

h(f) = 0 < 1 = sup
f∈K

h(f) �

In the linear case, to ensure compactness of R and thus use the Krein-Milman Theorem,
a possibility would be to choose a convenient topology, the weak-∗ topology for instance.
This ensures that

sup
P∈R∩I(f)

∫
fdP = sup

P∈cl(co(ext(R)))∩I(f)

∫
fdP.

Moreover, we can easily prove, as we did before, that

sup
P∈co(ext(R))∩I(f)

∫
fdP = sup

P∈ext(R)∩I(f)

∫
fdP.

An issue arises, however, at this stage. It is not straightforward that

sup
P∈cl(co(ext(R)))∩I(f)

∫
fdP = sup

P∈co(ext(R))∩I(f)

∫
fdP. (2.2.4)

This holds if P 7→
∫
fdP is continuous, but in our infinite-dimensional setting this is a

restrictive condition. Also, the choice of the topology matters there. Under the weak-∗

topology, continuity of such map holds only if f is continuous and vanishes at infinity.
These restrictions do not hold for standard choices of f such as f(u) = u (if support of
U is unbounded) or f(u) = 1{u ≤ t} . To be able to drop these restrictions, we rely on
an extension of the Krein-Milman Theorem, namely the Choquet Theorem. Basically, this
result provides a representation of any element of a compact, convex set A by an integral
over ext(A). Using this integral representation, we are able to show directly Theorem 2.2.1,
without having to prove (2.2.4).

2.2.4 Converging outer bounds

It may happen that the set ext (R) is difficult to characterize or is too large to yield a
tractable optimization algorithm. In such circumstances, we may still be able to compute
outer bounds arbitrarily close to the true ones, if R can be written as the intersection of
a decreasing sequence (Rn)n∈N.
In this case, Rθ = ∩n∈NRθ,n with Rθ,n = {P ∈ Rn : q(θ, P ) = 0}. We discuss the
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characterization of Θ0 by ext(Rθ,n) in such case. We state the following Assumption which
mimics Assumptions 2 and 3.

Assumption 4 (Intersection of decreasing convex sets)

1. Rθ,n = {P ∈ Rn : q(θ, P ) = 0} is a decreasing sequence of closed and convex subsets
of P such that Rθ = ∩n∈NRθ,n;

2. Rn is a decreasing sequence of closed and convex subsets of P such that R = ∩n∈NRn

and q(θ, P ) = θ −
∫
fdP .

When θ 7→ ext(Rθ) is difficult to characterize then Θ0 remains difficult to characterize.
On the other hand, under the previous assumption, if we are able to compute Θ0n = {θ :

Rθ,n 6= ∅} for every n, this will give us a sequence of decreasing outer regions because
Θ0 ⊂ Θ0n. Such a sequence Θ0n will converge to the identification region only if Θ0 =

limn→+∞ ↓ Θ0n = ∩n∈NΘ0n. The following theorem gives technical conditions under which
such convergence holds.

Theorem 2.2.2 (Converging outer regions)

Under Assumptions 1 and 4.1, if for every θ it exists ε > 0 and n0 ∈ N such that:

sup
P∈ext(Rn0,θ

)

∫
||u||εdP (u) <∞

Then Θ0 = ∩n∈NΘ0n with Θ0n = {θ : ext(Rθ,n) 6= ∅}.

The previous Theorem may be adapted to the special case where the parameter is a
moment of P . Under Assumption 4.2, let θn = infP∈ext(Rn)∩I(f)

∫
f(u)dP (u) and θn =

supP∈ext(Rn)∩I(f)

∫
f(u)dP (u).

Corollary 2.2.3 (Converging outer bounds for linear parameter)

Under Assumptions 1 and 4.2, if
(i) f is continuous and
(ii) there exists ε > 0 and n0 such that:

sup
P∈ext(Rn)

∫
|f(u)|1+ε ∨ |u|εdP < +∞,

then θn → θ and θn → θ.
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If we are interested only by the result on the upper bounds of θ, only the lower semi-
continuity of f is needed. And for the lower bound of θ, we only need the upper semi-
continuity.

We now show that Conditions (i) and (ii) in the previous corollary cannot be weakened
easily. First, the result does not hold in general if f is not continuous, as the following
counterexample shows.

Counterexample 3: continuity.

Let S = [−1; 1], and f(x) = 1{x>0}. Suppose that R is defined by the following moments
conditions:

R =

{
P :

∫ 1

−1

xkdP (x) = 0 if k is odd and
∫ 1

−1

xkdP (x) = 1/(2(k + 1)) if k is even
}
.

Let Rn be the set of distributions corresponding to the n first moments conditions in R.

We show in the appendix that Assumption 4 and condition (ii) of Corollary 2.2.3 hold. We
also establish that R is reduced to the singleton 1/2U[−1;1] +1/2δ0, so that supP∈R

∫
fdP =

1/4. On the other hand, supP∈Rn
∫
fdP ≥ 3/4.

We also prove with the following counterexample that the result does not hold in general
if Condition (ii) of Corollary 2.2.3 is not satisfied.

Counterexample 4: restriction on Rn.

Let S = R , f(x) = x and consider the functions

g(x) = q max
j=1...k

(1− pj|x− sj|)+ ,

where k ∈ N, (q, s1, ..., sk) ∈ Qk+1, (p1, ..., pk) ∈ Qk
+, |q| ≤ 1 and qmaxi=1...k pi ≤ 1. Because

the class G of such functions is countable, we can write G = {(gi)i∈N}. Let Z ∼ N(0, 1)

and let

R =

{
P ∈ P :

∫
gi(x)dP (x) = E(gi(Z)), ∀ i ∈ N

}
,

Rn =

{
P ∈ P :

∫
gi(x)dP (x) = E(gi(Z)), i ∈ {1, ..., n}

}
.

We show in the appendix that Assumptions 4.1 and Condition (i) of Corollary 2.2.3 hold
but not Condition (ii). Finally, θn = +∞ > θ = 0.
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2.3 Application to problems with moment equalities

Extremal points are the keystone of our strategy to characterize Θ0. So an important
point is to have some useful results to characterize the extreme parts. A huge literature
have focus on the extreme parts of distributions in various contexts. In many of cases, Rθ

can be expressed as a set of probability distributions that verify a set of moments as in a
GMM estimation or in optimal transportation problem (Ekeland et al. (2010), Galichon &
Henry (2011), Chiappori et al. (2010)). For optimal transportation problem a significant
literature has focus on this problem (see for instance Ahmad et al. (2011) for a recent work
on this topics). We will give a useful result to characterize the extreme part of Rθ in such
a case.
An important result have been given by Douglas (1964) in case of equality of moments.
We extend his result to the inequalities of moments and when we consider closure for the
weak convergence of distributions.

Theorem 2.3.1 (Extension of Douglas (1964))

Let G a family of real valued functions and let

K =

{
P ∈ P, s.t. ∀g ∈ G

∫
|g|dP < +∞ and

∫
gdP = 0

}
,

L =

{
P ∈ P, s.t. ∀g ∈ G

∫
|g|dP < +∞ and

∫
gdP ≥ 0

}
,

If K is not empty, P ∈ ext(K) if only if span(G, 1) is dense in L1(P ) and P ∈ ext(K) only
if span(G, 1) is dense in L1(P ).
If L is not empty, P ∈ ext(L) (respectively P ∈ ext(L)) only if span(G, 1) is dense in
L1(P ).

2.3.1 Finite number of moments equalities and/or inequalities

We derive from the result of Douglas an interesting result when the parameter θ and the
restrictions are defined by a finit number of (in)equalities of moments. In this case, opti-
mization on the possibly infinite dimensional set Rθ can be reduced to a finite dimensional
problem. In fact optimization can be done only on distributions that have a limited num-
ber of points in their support. Let Pj the subset of P consisting of distributions that have
at most j support points.

Theorem 2.3.2 If q(P, θ) =
∫
m(U, θ)dP with m = (m1, ...ml) and mi(., θ) continuous
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and bounded real valued functions on S. If g1, ..., gk are continuous and bounded functions
on S such that

R =

{
P ∈ P, s.t. ∀j = 1, ..., k,

∫
gjdP = 0

}
,

then

Θ0 =
{
θ : minP∈Pk+l+1

(∑l
i=1

∣∣∣∣∫ mi(u, θ)dP (u)
∣∣∣∣+

∑k
j=1

∣∣∣∣∫ gj(u)dP (u)
∣∣∣∣) = 0

}
.

The previous theorem shows that infinite dimensional optimization can be replaced by
an optimization on a finite dimensional space. Moreover, the previous theorem is stated
with moment equalities, but can also be easily adapted when for some gi, we only have
the inequality condition

∫
gidP ≥ 0. In this case one need to replace

∣∣∣∣∫ gj(u)dP (u)
∣∣∣∣ by(∫

gj(u)dP (u)
)− in the characterization of Θ0 for the corresponding gi (where (a)− = −a

if a < 0 and 0 otherwise).
When conditions of moments are given by a countable linearly independent family of
continuous and bounded functions G = {g1, g2, ...}, we can use the results of previous
Section with the sequence Rn = {P ∈ P :

∫
|gk| <∞ and

∫
gkdP = 0 for k ≤ n}.

Example 1: Average effects in nonlinear panel data models.

Chernozhukov et al. (2012) derive bounds of average and quantile effect in nonseparable
panel models. To simplify consider the average treatment effects on a simple non parametric
binary panel model with a binary regressor. Let Yit ∈ {0; 1}, Xit ∈ {0; 1} and Yi =

(Yi1, ..., YiT ), Xi = (Xi1, ..., XiT ). Chernozhukov et al. (2012) assume that it exists αi ∈ Rk

and εi = (εi1, ..., εiT ) ∈ RT such that Yit = g0(Xit, αi, εit). The Average Treatment Effect
is given by:

ATE =
∫

[g0(1, a, e)− g0(0, a, e)] dFαi,εi1(a, e)

=
∫

[g0(1, a, e)− g0(0, a, e)] dFXi,αi,εi1(x, a, e)

For every (y, x) ∈ {0; 1}2T , identification based on the data of P(Y = y,X = x) gives a
constraint of moment on FXi,αi,εi :∫

1{g0(u, a, e) = y, u = x}dFXi,αi,εi(u, a, e) = E (1{Yi = y,Xi = x}) .

Without supplementary assumptions, Theorem 2.3.2 ensures that extremal points of set of
distributions (Xi, α, εi) compatible with the data are mixture of Dirac distribution with at
most 22T support points in {0; 1}T × Rk × R. Bounds on ATE are given by optimization
on 22T values of (αi, εi) such that both individuals having same trajectory (Yi, Xi) share
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the same value of (αi, εi).

Example 2: measuring segregation in small units.

Cortese et al. (1978), Winship (1977), Carrington & Troske (1997), Allen et al. (2009),
Rathelot (2011), D’Haultfoeuille & Rathelot (2011) consider the issue of measuring segre-
gation on small units of size K, such as small firms or classrooms.
For each unit i (i = 1, ..., N), there exists a theoretical probability pi that an individual
belongs to the minority. If all the pi are the same between firms or classrooms there is
no segregation. So segregation is measured by an inequality index, such as the Duncan or
Theil indices, on the distribution of p. However, because firms or classrooms are small one
only observes a proportion p̂i that is measured with error on pi. The distribution of p̂ is
over-dispersed compared to the one of p. In such a model, only the K first moments of p
are identifiable (see D’Haultfoeuille & Rathelot, 2011). Theorem 2.3.2 shows that sharp
bounds forD(Fp) and T (Fp) can be computed by maximization (respectively minimization)
on distributions that have K + 1 support points.

Example 3: models with multiple equilibria.
Following Tamer (2003), consider the model presented in section 2.2.2. First, note that Rθ

is closed6. θ ∈ Θ0 if and only if for the corresponding (α1, α2, ρ) it exists w01, w10 and wm
with values in [0, 1] such that following moments conditions holds:∫ (

1{(ε1,ε2)∈S00} +
(θ1 + ε1)(θ2 + ε2)

θ1θ2
wm(ε1, ε2)1{(ε1,ε2)∈S..}

)
dF (ε1, ε2) = P((Y1, Y2) = (0, 0))∫ (

1{(ε1,ε2)∈S01} +

[
w01(ε1, ε2)− (θ1 + ε1)ε2

θ1θ2
wm(ε1, ε2)

]
1{(ε1,ε2)∈S..}

)
dF (ε1, ε2) = P((Y1, Y2) = (0, 1))∫ (

1{(ε1,ε2)∈S10} +

[
w10(ε1, ε2)− ε1(θ2 + ε2)

θ1θ2
wm(ε1, ε2)

]
1{(ε1,ε2)∈S..}

)
dF (ε1, ε2) = P((Y1, Y2) = (1, 0))∫ (

1{(ε1,ε2)∈S11} +
ε1ε2

θ1θ2
wm(ε1, ε2)1{(ε1,ε2)∈S..}

)
dF (ε1, ε2) = P((Y1, Y2) = (1, 1))

With F the cumulative function of a bivariate normale with expectation (α1, α2) and
correlation ρ and where the left hand side of the previous equations are identified in the
data. The extreme parts of Rθ correspond to the case where7 w01, w10 and wm takes their
values in {0; 1}. Let u = (u00, u01, u10, u11) in the unit sphere S4 of R4, let π the vector of
R4 obtained by concatenation of the right hand side of previous equations and let m(., .)

6Indeed, Rθ is characterized by moment (in)equalities of continuous and bounded functions on {0; 1}2×
R2:

∫
f(ε1, ε2)dP (y1, y2, ε1, ε2) =

∫
f(ε1, ε2)dF (ε1, ε2) for all f continuous and bounded,∫ (

1{{(0,1);(1,0)}∩A 6=∅}1{(ε1,ε2)∈S..} +
∑

(d1,d2)∈A 1{(ε1,ε2)∈Sd1d2
}

)
dF (ε1, ε2)

≥
∫
1{(y1,y2)∈A}dP (y1, y2, ε1, ε2) ≥

∫ ∑
(d1,d2)∈A 1{(ε1,ε2)∈Sd1d2

}dF (ε1, ε2)

and
∫
1{(y1,y2)∈A}dP (y1, y2, ε1, ε2) = P((Y1, Y2) ∈ A) for every A ⊂ {(0, 0); (0, 1); (1, 0); (1, 1)}.

7If not, it exists a measurable set A ∈ R2 such that P((ε1, ε2) ∈ A) > 0 and it exists (i, j) ∈ {01; 10;m}
such that (wi, wj) ∈]0, 1[2, considers w1

i = wi + δ, w1
j = wj − δ, w2

i = wi− δ, w2
j = wj + δ with δ a positive

function on A bounded by min(wi, wj , 1 − wi, 1 − wj). Because (wi, wj) = 1/2[(w1
i , w

1
j ) + (w2

i , w
2
j )], the

corresponding distribution can not be an extreme point of Rθ.
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the function from R2 to R4 obtained by concatenation of the integrands of the left hand
side of the previous equations. So θ ∈ Θ0, if and only if:

∀u ∈ S4 : sup
P∈Rθ

u′
∫
m(ε1, ε2)dP (y1, y2, ε1, ε2) ≥ u′π

or equivalently, using the fact that Rθ is closed and Theorem 2.2.1.2:

∀u ∈ S4 : sup
(w01,w10,wm)∈{(0;0;1),(0;1;0),(1;0;0)}R2

∫
u′m(ε1, ε2)dF (ε1, ε2) ≥ u′π.

The maximization can be done pointwise inside the integral and then:

sup(w01,w10,wm)∈{(0;0;1),(0;1;0),(1;0;0)}R2 u′m(ε1, ε2) =
∑

i,j∈{0;1} uij1{(ε1,ε2)∈Sij}

+ max
(
u00

(θ1+ε1)(θ2+ε2)
θ1θ2

− u01
(θ1+ε1)ε2
θ1θ2

− u10
ε1(θ2+ε2)
θ1θ2

+ u11
ε1ε2
θ1θ2

, u01, u10

)
1{(ε1,ε2)∈S..}.

This reasoning applies to every games with unobserved heterogeneity belonging to a para-
metric family and with a finite number of strategies. This is precisely the result obtained
by Beresteanu et al. (2011) using results of random sets theory.

2.3.2 Optimal transportation problem

Theorem 2.3.1 associated with our main result allows to recover the Monge-Kantorovitch
duality used in optimal transportation with other technics of proofs than these used in
Villani (2003) or in Villani (2009).

The Monge-Kantorovitch duality is used to maximize
∫
f(u1, u2)dP (u1, u2), a moment that

depends on two sets of variables U1 and U2, when we only known the marginal distributions
P1 and P2 of U1 and U2 (but not the joint distribution of (U1, U2)). In this case, moments
that depend only from marginal distributions are known. So the programm can be written
as supP∈R

∫
f(u, v)dP (u, v), with

R =

{
P : ∀(g, h) ∈ L1(P1)× L1(P2),

∫
g(u1)dP (u1, u2) =

∫
g(u1)dP1(u1)

and
∫
h(u2)dP (u1, u2) =

∫
h(u2)dP2(u2)

}
.

Theorem 2.2.1 ensures that maximization can be done only on ext(R) instead of R and
Theorem 2.3.1 ensures that for every P ∈ ext(R), f(u1, u2) can be written as g(u1)+h(u2)

with (g, h) ∈ L1(P1) × L1(P2). So we recover a deep result simply using our main result
and some classical characterization of extreme parts. Moreover one can easily give a more
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general result when we have more than two marginal distributions.
Let U = (U1, U2, ..., Un) a random vector in Rd1 × ... × Rdn . The random sub-vectors
Ui (i = 1, ..., n) are distinct but can overlap, i.e. Ui = (Ui1, ..., Uidi) can have common
component with Ui′ = (Ui′1, ..., Ui′di′ ). Let Pi (i = 1...n) the probability distributions of Ui
supported by Si ⊂ Rdi . We assume that each Pi is identified (by the data or by additional
restrictions) but not the full distribution of U . The parameter of interest is a moment of U ,
θ0 =

∫
f(u)dP (u). So the set of restrictions compatible with the data and the restrictions

can be expressed as an infinite number of moments

R = {P ∈ P ,∀g ∈ L1(Pi),

∫
g(ui)dP (u1, ..., un) =

∫
g(ui)dPi(ui)}.

Theorem 2.3.3 (Monge-Kantorovitch duality)

Let f a function, we have:

supP∈R∩I(f)

∫
fdP = infgi∈L1(Pi)

∑
gi≥f

∑n
i=1

∫
gi(ui)dPi(ui),

and

infP∈R∩I(f)

∫
fdP = supgi∈L1(Pi)

∑
gi≤f

∑n
i=1

∫
gi(ui)dPi(ui),

where
R = {P ∈ P ,∀g ∈ L1(Pi),

∫
g(ui)dP (u1, ..., un) =

∫
g(ui)dPi(ui)}.

For n = 2, this results have been used by Ekeland et al. (2010) and Galichon & Henry
(2011) to identify identification regions in various models.

2.4 Application to the sample selection model

The sample selection model is an important particular case of our general framework with
U = (D, Y,X) and O = (DY,D,X) and Supp(D) = {0; 1}. It has been widely used in
parametric framework and under the usual restriction Y ⊥⊥ X since Heckman (1974).
More recently, Manski (2003) and Kitagawa (2010) have discuss issue of identification
in a nonparametric framework. However, existence of X such that X ⊥⊥ Y is often
questionable. However, one can work under alternative restrictions.

Assumption 5 (Sample Selection)

We observe an iid sample of (D,DY,X) with Supp(D) = {0; 1}.
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In line with the previous sections, PD,DY,X
0 , P Y |D=1,X=x

0 and P
Y |D=1
0 denote respectively

the identified distributions of (D,DY,X), Y |D = 1, X = x and Y |D = 1.

In this section, we derive the extreme points of joint distribution (D, Y,X) under mono-
tonicity conditions on the selection. This ensures identification of Θ0 when θ is defined
by moments conditions E(m(D, Y,X, θ)) = 0. We consider hereafter the two following
conditions.

Assumption 6 (Monotonicity in X)

x 7→ E(D|Y,X = x) is increasing almost surely.

Assumption 7 (Monotonicity in Y )

y 7→ E(D|Y = y,X) is increasing almost surely.

Note that the two previous assumptions can not be expressed as moment inequalities. So
we are not in the framework detailed in the previous section. This shows that our result
also apply to setup not treated in the literature.

The two previous assumptions are credible in some situations. Consider for instance the
female labour supply model of Gronau (1974). In this model, individuals self-select into
the labour market if their potential wage Y is larger than their reservation wage W ∗:
D = 1{Y ≥ W ∗}. Suppose also that W ∗ = g(X) + ξ, where ξ ⊥⊥ (X, Y ) (cf. Equation 15
of Gronau (1974)). In this case,

P(D = 1|X, Y ) = Fξ(Y − g(X)),

where Fξ denotes the cdf of ξ. In this framework, the missing at random assumption is
never satisfied. On the other hand, in this framework8 P(D = 1|X, Y = y) is an increasing
function of y. Similarly, in some cases, it might be reasonable to impose monotonicity
conditions on g and in this case P(D = 1|X = x, Y ) is a monotone function of x. For
instance, it seems reasonable to assume that x 7→ g(x) is increasing when considering X
as the number of children.

Moreover, to ensure a sufficient regularity to the model we assume supplementary technical
conditions.

Assumption 8 (Support Condition)

8The model of Gronau is restrictive because ξ ⊥⊥ (X,Y ) contrary to the most popular assumptions
(Heckman (1974)). We can also consider more general frameworks for instance, W ∗ = g(X,Y ) + ξ, with
Fξ|Y,X(Y − g(Y,X)) monotone in Y . Such assumption is made for instance by Blundell et al. (2007).
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1. P (D = 1|X) > 0.

2. The support of Y |X,D = 0 is included in the support of Y |X,D = 1, X almost-surely.

3. Y = Supp(Y |X,D = 1), X almost-surely.

4. X = Supp(X) = {x1, x2, ..., xJ} with x1 < ... < xJ .

Under Assumption 8.1 and 8.2, the support of (Y,X) is equal to the support of (DY,X).
If relaxed, auxiliary information would be needed to identify this support of (Y,X), a nec-
essary step for obtaining informative bounds on many parameters of interest. Assumption
8.3 is essentially made for sake of simplicity, and the following reasoning can be easily
adapted when the support of Y |D = 1, X = x depends on x.

Note also that under Assumption 8, the inverse of probability of selection ρ(y, x) =

1/P(D = 1|Y = y,X = x) is defined almost surely. In the following, p(x) denotes
P(D = 1|X = x).

Under Assumption 8, P Y |D=1
0 is a dominant measure of P Y |D=1,X=x

0 , so we can define
fY |D=1,X=x as the density of P Y |D=1,X=x

0 with respect to the distribution of P Y |D=1
0 for

every x ∈ X .

Assumption 9 (Continuity of density ratio)

fY |D=1,X=xj/fY |D=1,X=xi is continuous for every (xi, xj) ∈ X 2.

If K denotes the set of distributions of (D, Y,X) compatible with the data and assumptions
made by econometrician and C denotes the set of distributions of
(Y |D = 0, X = x1, Y |D = 0, X = x2, ..., Y |D = 0, X = xJ), Assumption 9 is a simple
sufficient condition to ensure that K and C are closed for the weak convergence.

Note that distributions of (D, Y,X) is in one to one affine mapping with distributions of
(Y |D = 0, X = x1, Y |D = 0, X = x2, ..., Y |D = 0, X = xJ) :

∀P ∈ K,∃(P1, ..., PJ) ∈ C,∫
f(d, y, x)dP (d, y, x) = P(D = 1)

∫
f(1, y, x)dP0(1, y, x)

+
∑

j(1− p(xj))P(X = xj)
∫
f(0, y, xj)dPj(y)

So, to characterize K and ext(K) we can characterize C and ext(C).
We first characterize ext(C) under Assumption 6 and/or Assumption 7. For (xi, xj) ∈ X 2,
let rxi,xj = p(xj)(1− p(xi))fY |D=1,X=xj/(p(xi)(1− p(xj))fY |D=1,X=xi).
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Proposition 2.4.1 (Monotone Selection in X with discrete X)

Suppose that Assumptions 5, 6, 8 and 9 hold.

ext(C) =

My1,...,yJ


δy1

...
δyJ

 (y1, ..., yJ) ∈ YJ : diag(My1,...,yJ ) ≥ 0

 ,

where My1,...,yJ is the upper triangular matrix of size J with (i, j) component
1{i≤j}rxi,xj(yj)

(
1 +

∑J−j+1
p=2

∑
j=l1<...<lp≤J(−1)p−1

∏p−1
k=1 rxlk ,xlk+1

(ylk+1
)
)
, and where

diag(My1,...,yJ ) ≥ 0 should be understood as positivity of diagonal component of My1,...,yJ .
Assumption 6 of monotonicity is rejected if and only if there exists no (y1, ..., yJ) ∈ YJ

such that diag(My1,...,yJ ) ≥ 0.

The previous result can be used to derive bounds with multiple discret variable X and
when we assume that E(D|Y,X1 = x1, X2 = x2, ..., Xk = xk) is increasing in xi for every
i. In this case C is a vector of J1 × ...× Jk probabilities corresponding to the distributions
of Y |D = 0, X1 = x1, ..., Xk = xk where xi vary among Ji values. For each i and each
value of (xj)j 6=i the vector of distribution Pi,(xj)i 6=j corresponds to the distribution vector of
distributions of (Y |D = 0, (Xj)j 6=i = (xj)j 6=i, Xi = xil) when xil vary from xi1 to xiJi and
belongs to a set of distributions described in the previous Proposition (replacing J by Ji).
Combination of such Assumptions of componentwise monotonicity concerning variables X
may decrease drastically the set of identification of the joint distribution (Y,D,X1, ..., Xk),
and in some case the set of identification is empty.
We can also derive bounds under monotonicity Assumption in Y . And in this case, set of
extreme parts of C takes a particularly simple expression.

Proposition 2.4.2 (Monotone Selection in Y with discrete X)

Suppose that Assumptions 5, 7, 8 and 9 hold.

ext(C) =
{

(P1, ..., PJ) : ∀j ∈ J,∃yj ∈ Y s.t. Pj = P
Y |D=1,X=xj ,Y≤yj
0

}
.

Assumption 7 of monotonicity can not be rejected.

A natural extension consists to combine both assumptions of monotonicity in X and in Y .
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Proposition 2.4.3 (Monotone Selection in Y and X with discrete X)

Suppose that Assumptions 5, 6, 7, 8 and 9 hold.

ext(C) ⊂


(P1, ..., PJ) : ∃(α1, ..., αJ) ∈ R+J , ∃(y11, ..., yJJ) ∈ YJ2

∀j ∈ J, Pj =
∑J

i=1 αi
p(xj)

1−p(xj)P
Y |D=1,Y≤yij
0∑J

i=1 αi1{y≤yi,j+1} ≤
∑J

i=1 αi1{y≤yi,j}

 .

Assumptions 6 and 7 of monotonicity are jointly rejected if and only if the set in the right
hand side is empty.

This result can be used to derive sharp bounds with several discrete X and when as-
sumption of monotonicity of selection is made for each variable. In this case ext(C) is
a set of J1 × ... × Jk distributions. The distributions corresponding to Y |D = 0, X1 =

x1, ..., Xl = xj, ..., Xk = xk when xl varies from xl1 to xlJl , depends on at most J2
l values

of Y (yij(x1, ..., xl−1, xl+1, ..., xJ))and on Jl positives values α(x1, ..., xl−1, xl+1, ..., xk) that
verify the relations in the right hand side equation in the previous Proposition.

When the support of Y is bounded, the previous result can be used to construct converging
outer bounds when X is a continuous variable. Indeed, the range of X can be partitioned
in a n subintervals. Note that if Assumptions of monotonicity holds for the continuous X,
they hold also for discretized variables. So using the previous result, we get outer bounds.
When the length of subintervals tends to zero (and then n tends to infinity) we can apply
Theorem 2.2.2, with q(θ, P ) = θ−P and with Rn derived by Assumption of monotonicity
for discretized variables.

2.5 Proofs

2.5.1 Proof of Theorem 2.2.1

Before to detail the proofs, we will fix some notations.

We consider the setM of signed measures concentrated on S equipped with the norm of
total variation |.|TV . Let B the unit ball of (M, |.|TV ). Remember that P is a subset of
probability measures in B.
Because we du not assume that the unknown probability distribution P0 is supported by a
compact of Rk, some sequences of probability measure in K can send some mass to infinity
(think to the sequence of Dirac δn for n ∈ N). To control some disagreements of this
property, a weakest topology than the topology of the weak convergence is used in some
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steps of the proof. For E ⊂ Rk, let C(E,R) the set of continuous function from E to R and
Cc(E,R) the set of continuous function from E to R with a compact support (the topology
on E is the usual subspace topology). This functional spaces can be equipped with the
supremum norm ||.||∞.
Let τ denotes the weak topology, i.e. the topology associated to the weak convergence of
measures, i.e. the weakest topology such that for every f ∈ C(S,R):

P 7→
∫
S
fdP is continuous

Let τ ? denotes the weak-? topology, i.e. the weakest topology such that for every f ∈
Cc(S,R):

P 7→
∫
S
fdP is continuous

Some authors define the weak-? topology with the class of function that vanish to infinity
(as Rudin (1987), in Theorem 6.19). In our context the two definitions are equivalent (see
for instance Rudin (1987), Paragraph 6.18). Other authors defined such topology as the
vague topology (see for instance Tao (2010), page 166).
τ ? is weakest than τ in the sens that τ ? ⊂ τ (a τ ?-open set is a τ -open set and then a
τ -compact set is a τ ?-compact set).
Let R (respectively R̃) the τ -closure (respectively the τ ?-closure) of R:

R̃ =

{
µ ∈M s.t. ∃Pn ∈ R s.t. ∀f ∈ Cc(S,R)

∫
S
fdPn →

∫
S
fdµ

}

R =

{
µ ∈M s.t. ∃Pn ∈ R s.t. ∀f ∈ C(S,R)

∫
S
fdPn →

∫
S
fdµ

}
Similarly, let Rθ (respectively R̃θ) the τ -closure (respectively the τ ?-closure) of Rθ.
The different sets of measures are included as follow (for every measurable function f):

Rθ ⊂ Rθ ⊂ R̃θ

∩ ∩ ∩
R ⊂ R ⊂ R̃

∩ ∩
I(f) ⊂ P ⊂ B ⊂ M.

The proof is divided in 8 steps. Steps 1 to 5 concern the first part of the Theorem,
and steps 6 to 8 concern the specific case where θ is a moment of U . Steps 1, 2 and 3
rely on deep but usual Theorems of functional analysis and are compactly exposed. The
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step 4 and 6 need more extended developments and rely on usual tools of integration
theory (monotone convergence theorem, dominated convergence theorem, completion of
the measure space...).The Steps 5, 7 and 8 do not present conceptual difficulties and are
quite short.

1. Riesz theorem for bounded linear form (for instance Rudin (1987), Theorem 6.19)
implies that the space (M, |.|TV ) is the dual of (Cc(S,R), ||.||∞).

2. By Banach-Alaoglu Theorem, B is τ ?-compact. For every K compact of Rk,
(Cc(K,R), ||.||∞) is a separable normed vector space as subspace of (C(K,R), ||.||∞)

separable normed vector space. Let Kn a sequence of compact such that ∪n∈NKn =

Rk. Because S is closed thenKn∩S is compact and S = ∪n∈N(Kn∩S). It follows that
(Cc(S,R), ||.||∞) is a separable normed vector space as countable union of separable
space. It follows that every τ ?-closed ball is metrizable (see for instance Theorems
A.48 in Leoni (2009)). Then R̃θ is τ ?-compact and metrizable.

3. The Choquet theorem (Phelps (2001), Chapter 3) ensures that for every P in Rθ, it
exists a Radon9 probability measure µP on R̃θ supported by ext(R̃θ) such that

P =

∫
ext(R̃θ)

RdµP (R)

which means that: for all f ∈ Cc(S,R), we have:∫
S
fdP =

∫
ext(R̃θ)

(∫
S
fdR

)
dµP (R). (2.5.1)

4. To prove the first part of the Theorem, we need to extend the Equality 2.5.1 to
the set of functions f that are continuous and bounded by 1. So we have to prove
two results. The first one is that the right hand sign of Equation 2.5.1 is defined
when f is continuous and bounded, this is equivalent to show that R 7→

∫
fdR is

Lebesgue measurable with respect to µP . The second one is that the both sides of
Equation 2.5.1 are equal when f is bounded and continuous. To prove this two results
we use standard technics of integration on topological spaces. Let ψn a continuous
function with values between 0 and 1 and such that ψn = 1 on [−n;n]k ∩ S with
support equal to [−n − 1;n + 1]k ∩ S. ψnf is continuous with compact support
and converges pointwise to f and is dominated by 1, so the dominated convergence

9For the definition of Radon measure, see for instance Tao (2010), Definition 1.10.2.. A Radon proba-
bility measure is a positive Radon measure with total mass 1.
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applied to measures P and R (for R in Supp(µP )) and to measure µP implies that
R 7→

∫
fdR is Borel-measurable with respect to µP and Equality 2.5.1 holds for every

continuous and bounded f . By dominated convergence theorem, Borel-measurability
of R 7→

∫
fdR and Equality 2.5.1 can be proved for the Baire class 1 functions, i.e.

the bounded functions that are pointwise limit of continuous functions. By induction,
the result also hold for every class of the Baire functions. Because the Baire functions
are the Borel measurable functions (see Lebesgue (1905)), Equality holds for bounded
and Borel measurable functions. Next, for C a set such that C ⊂ B with B a P -
negligible Borel set, hB : R 7→ R(B) is a positive and Borel measurable function and
by the previous reasoning we have

∫
hB(R)dµP (R) =

∫
R(B)dµP (R) = P (B) = 0.

Let hC : R 7→ R(C), we have 0 ≤ hC(R) ≤ hB(R) for every R ∈ R̃θ. It follows that
hC is Lebesgue measurable and such that

∫
hC(R)dµP (R) =

∫
R(C)dµP (R) = 0.

Then Lebesgue measurability for R 7→
∫
fdR with respect to µP and Equality 2.5.1

holds for every f indicatrice of null-set C and then for every indicatrice of B ∪ C,
with B Borel set and C null-set. It follows that R 7→

∫
fdR is Lebesgue measurable

with respect to µP as soon as f is Lebesgue measurable with respect to P . It follows
that if f is continuous and bounded R 7→

∫
fdR is Lebesgue measurable with respect

to µP and Equation 2.5.1 holds.

Note that for f = 1, we have
∫
R(S)dµP (R) = 1, so µP (P) = 1. And then we can

replace ext(R̃θ) by ext(R̃θ) ∩ P in Equation 2.5.1.

5. To achieved the proof for the first part of the Theorem, we have to show that
Rθ 6= ∅ ⇒ ext(Rθ) 6= ∅.
We have already proved that Rθ 6= ∅ ⇒ ext(R̃θ) ∩ P 6= ∅.
Because Rθ = R̃θ∩P (see for instance, Billingsley (1995) on the vague convergence),
we have ext(R̃θ) ∩ P ⊂ ext(Rθ).

6. We have to prove the second part of the Theorem, so hereafter we assume that
Assumption 3 holds. If f is a bounded function, by a reasoning similar to the previous
step, we have:

∀P ∈ R, θ =

∫
ext(R̃)∩P

(∫
S
fdR

)
dµP (R). (2.5.2)

If f is Lebesgue measurable but unbounded and P ∈ I(f), consider gn = |f | ∧ n.
For every n, R ∈ P 7→

∫
gndR is Lebesgue measurable and integrable with respect to

µP . Because gn ↑ |f |, the monotone convergence theorem (with respect to R) implies
that

∫
S gndR ↑

∫
S |f |dR. The monotone convergence theorem (with respect to the

measure µP ) implies that R 7→
∫
S |f |dR is Lebesgue-measurable and integrable with
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respect to µP and then:∫
ext(R̃)∩P

(∫
S
|f |dR

)
dµP (R) =

∫
S
|f |dP.

The previous Equality ensures that µP (I(f)) = 1, so we can replace ext(R̃) ∩ P by
ext(R̃) ∩ P ∩ I(f) in Equation 2.5.2.

Now let en = (f ∧ n) ∨ (−n), for every R ∈ P ∩ I(f), the dominated convergence
theorem (with respect to R) implies that

∫
endR→

∫
fdR. Because R 7→

∫
S |f | dR is

integrable (with respect to the measure µP ) and
∣∣∫
S endR

∣∣ ≤ ∫S |en| dR ≤ ∫S |f | dR,
the dominated convergence theorem (with respect to µP ) implies that Equation 2.5.1
holds for every f Lebesgue-measurable and P ∈ I(f):

∫
S
fdP =

∫
ext(R̃)∩P∩I(f)

(∫
S
fdR

)
dµP (R). (2.5.3)

7. Because R = R̃∩P and because µ(S) ≤ 1 for µ ∈ R̃, we have ext(R) = ext(R̃)∩P .

8. Because µP is a probability measure, we have for every f Lebesgue-measurable and
P ∈ R ∩ I(f):

infR∈ext(R)∩I(f)

∫
S fdR =

∫
ext(R)∩I(f)

(
infR∈ext(R)∩I(f)

∫
S fdR

)
dµP (S)

≤
∫

ext(R)∩I(f)

(∫
S fdR

)
dµP (R)

=
∫
S fdP

And then infR∈ext(R)∩I(f)

∫
S fdR ≤ infR∈R∩I(f)

∫
S fdR = θ.

Because ext(R) ⊂ R, we have the reverse inequality.
Similar reasoning holds for the upper bound.

2.5.2 Proof of Theorem 2.2.2

We have: Θ0 = {θ : Rθ 6= ∅} = {θ : ∩n∈NRn,θ 6= ∅} ⊂ ∩n∈NΘ0,n.
To prove the reverse inclusion, consider θ ∈ ∩n∈NΘ0,n. Because supP∈ext(Rn0,θ

)

∫
||u||εdP (u)

is finite, Theorem 2.2.1.1 ensures that this is also the case when the sup is taken over Rn0,θ.
Markov’s inequality ensures that Rn0,θ is uniformly tight (cf. Van Der Vaart (1998) for a
definition of uniform tightness). Consider a sequence Pn ∈ Rn,θ, for n ≥ n0, Pn ∈ Rn0,θ,
the Prohorov’s Theorem (cf. Van Der Vaart (1998)) ensures that it exist a subsequence
Pσ(n) and a distribution P ? such that Pσ(n) converges weakly to P ?. Because the (Rn,θ)n∈N
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is a decreasing sequence of closed sets, P ? ∈ ∩n∈NRσ(n),θ ⊂ ∩n∈NRn,θ, and so ∩n∈NRn,θ 6= ∅.

To achieved the proof, note that Theorem 2.2.1.1 ensures that Θ0,n = {θ : ext (Rn,θ) 6= ∅}.

2.5.3 Proof of Theorem 2.2.3

We make the proof for the upper bound only, the reasoning being similar for the lower
bound.

By a similar reasoning to the previous Proof we know that if Pn is a sequence of distribution
in Rn, we have a subsequence Pσ(n) that converge weakly to P ? ∈ ∩n∈NRn = R.

Now, ∫
|f(u)|1{|f(u)| ≥ x}dPσ(n)(u) ≤ 1

xε

∫
|f(u)|1+εdPn(u) ≤ M

xε
.

Thus,
lim
x→∞

lim sup
n∈N

∫
|f(u)|1{|f(u)| ≥ x}dPσ(n)(u) = 0.

This, combined with the weak convergence of (Pσ(n))n∈N and the continuity of f , implies
(see, e.g., Van Der Vaart, 1998, Theorem 2.20)∫

fdPσ(n) →
∫
fdP ≤ θ.

Now, by definition of Pn, limn θn = limn θσ(n) = limn

∫
fdPσ(n). Therefore,

lim
n
θn ≤ θ.

This implies the result because θn ≥ θ.

2.5.4 Proof of Counterexample 3

Because x 7→ xk is continuous and bounded on S for every k ∈ N, R and Rn are closed for
the weak convergence.

A simple calculation shows that P ? = 1
2
U[−1;1]+

1
2
δ0 belongs toR. Because S is bounded, P ?

is defined by its moments (see, e.g. Gut, 2005, Theorems 8.1 and 8.3) and then R = {P ?}.
Now for n ∈ N?, ε > 0 consider distribution P ε

n such that P ε
n = 1

4
U[−1;0] + 1

2
δε + 1

4
Qε
n, with

Qε
n a probability distribution.
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P ε
n ∈ Rn if and only if

Qε
n ∈ Pεn = {Q ∈ P : Q([0; 1]) = 1 and

∫
xkdQ(x) = mk(ε) = 1/(k+1)−2εk for k = 1, ..., n}.

Let m0(ε) = 1 and M1,n(ε) and M2,n(ε) the Hankel matrices defined by:

M1,n(ε) =


m0(ε) m1(ε) ... mn/2(ε)

m1(ε) m2(ε) ... mn/2+1(ε)
...

... ...
...

mn/2(ε) . . . . . . mn(ε)

 if n is even


m1(ε) m2(ε) ... m(n+1)/2(ε)

m2(ε) m3(ε) ... m(n+1)/2+1(ε)
...

... ...
...

m(n+1)/2(ε) . . . . . . mn(ε)

 if n is odd

M2,n(ε) =


m1(ε)−m2(ε) ... mn/2(ε)−mn/2+1(ε)

...
...

mn/2(ε)−mn/2+1(ε) . . . mn−1(ε)−mn(ε)

 if n is even


m0(ε)−m1(ε) ... m(n−1)/2(ε)−m(n−1)/2+1(ε)

...
...

m(n−1)/2(ε)−m(n−1)/2+1(ε) . . . mn−1(ε)−mn(ε)

 if n is odd

Pεn contains a continuous probability measure if and only if det(M1,n(ε)) ≥ 0 and det(M2,n(ε)) ≥
0 (Frontini & Tagliani (2011)). For n even, M1,n(0) is the Hilbert matrix of size n/2 + 1,
and then det(M1,n(0)) > 0. For n odd, M1,n(0) is a principal submatrix of the Hilbert
matrix M1,n+1(0) and we also have det(M1,n(0)) > 0.

Now considerM2,n(0). For n odd, M2,n(0) = M1,n−1(0)◦M1,n(0), where ◦ is the Hadamard
product. The Oppenheim’s inequality then implies that det(M2,n(0)) > 0. For n even,
M2,n(0) = A ◦ B, with A and B principal submatrix of the Hilbert matrix M1,n and then
by similar argument det(M2,n(0)) > 0.

Because ε 7→ (det(M1,n(ε)), det(M2,n(ε))) is continuous, det(M1,n(ε)) and det(M2,n(ε))

are positive for sufficiently small ε. Then for sufficiently small ε, Pεn contains a probability
distribution Qε

n dominated by the Lebesgue measure on [0; 1]. For P ε
n = 1

4
U[−1;0]+

1
2
δε+

1
4
Qε
n,

we have
∫
f(x)dP ε

n(x) = 3/4 with P ε
n ∈ Rn.
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2.5.5 Proof of Counterexample 4

By construction, Rn is a decreasing sequence of convex sets. It is also closed for the weak
convergence because the functions (gk)k∈N are continuous and bounded and R = ∩n∈NRn.
Thus Assumption 4.1 holds. Condition (i) of Corollary 2.2.3 trivially holds. By Theorem
1.12.2 of van der Vaart & Wellner (1996), the class G is convergence-determining. As a
consequence, the moments (E(gk(X)))k∈N determine the distribution of X, implying that
R = {N(0, 1)}. Hence, supP∈R

∫
fdP = 0.

We now prove that for all n, θn = +∞. Remark that the functions (gk)k∈N are compactly
supported. Let xn = inf{x ≥ 2 : gk(x) = 0 ∀ k ∈ {1, ..., n}}. Let Φ denote the cdf of Z
and for any y ≥ 1, let

Fy(x) = Φ(x)1{x≤xn} + Φ(xn)1{xn≤x< y
1−Φ(xn)} + 1{ y

1−Φ(xn)
≤x}.

Remark that this definition is valid since x < y/(1 − Φ(x)) for all x ≥ 2 and y ≥ 1.
By construction, Fy is a cdf such that the corresponding probability measure Py satisfies
Py ∈ Rn. Moreover,∫

|x|dPy(x) =

∫ xn

−∞
|x|dΦ(x) + (1− Φ(xn))× y

1− Φ(xn)
< +∞,

so that Py ∈ I(f). Finally, ∫
xdPy(x) = E (Z1{Z ≤ xn}) + y.

Because y was arbitrary, we obtain θn = +∞.

2.5.6 Proof of Theorems 2.3.1, 2.3.2 and 2.3.3

Theorem 2.3.1

Let J = K (or respectively L). Let Q ∈ ext(J ) and assume that span(G, 1) is not dense
in L1(Q). Then it follows by the Hahn-Banach Theorem that it exists a non null and
continuous linear form on L1(Q) that vanishes on span(G, 1). The identification L?1(Q) =

L∞(Q) ensures that it exists non null h ∈ L∞(Q) such that
∫
ghdQ = 0 for every g ∈

span(G, 1). For any measurable set A, let Q1(A) = Q(A) + 1
||h||∞

∫
A
hdQ and Q2(A) =

Q(A) − 1
||h||∞

∫
A
hdQ, Q1 and Q2 are positive measures. Then Q1 and Q2 are in J and
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(Q1 +Q2)/2 = Q. This is absurde.

Let Q ∈ ext(J ), and assume that span(G, 1) is not dense in L1(Q). It exists non null
h ∈ L∞(Q) such that

∫
ghdQ = 0 for every g ∈ span(G, 1). It exists Qn ∈ J such

that Qn converges weakly to Q. Let Q1 = Q + 1
||h||∞

∫
hdQ, Q2 = Q − 1

||h||∞

∫
hdQ,

Q1n = Qn + 1
||h||∞

∫
hdQ and Q2n = Qn − 1

||h||∞

∫
hdQ. Qin is a sequence in J weakly

converging to Qi. So Q1 and Q2 are in J and Q = (Q1 +Q2)/2. This is absurde.

We have proved the "only if" parts of Theorem. We now turn to the "if" part of the
Theorem.

Let Q ∈ K\ ext(K), it exists Q1 and Q2 in K such that Q = (Q1 +Q2)/2 with Q1 6= Q2. It
follows that 2Q(A) ≥ Q1(A) ≥ 0 for every measurable set A ∈ S. It follows by the Radon-
Nikodym Theorem that it exists h ∈ L∞(Q) such that dQ1 = hdQ. Because Q1 6= Q2, it
exists a measurable set A such that Q(A) 6= Q1(A). Then for every g ∈ span(G, 1):

|Q(A)−Q1(A)| =
∣∣∣∣∫ 1A(1− h)dQ

∣∣∣∣ =

∣∣∣∣∫ (1A − g)(1− h)dQ

∣∣∣∣ ≤ ||1− h||∞ ∫ |1A − g|dQ,
and thus span(G, 1) is not dense in L1(Q).

Theorem 2.3.2

To prove Theorem 2.3.2, note that Rθ = Rθ and apply Theorem 2.3.1.
We have dim (span(g1, ...gk,m1, ...,ml, 1)) = r ≤ l + k + 1. Let P ∈ Rθ such that it exists
A1, ..., Ar+1 disjoint subsets of S such that P (Ai) > 0 then
F = {f : S 7→ R : ∃(α1, α2, ..., αr+1) ∈ Rr+1, f(y) =

∑r+1
i=1 αi1{y∈Ai}}.

F ⊂ L1(P ) and dim(F) = r + 1 > dim (span(g1, ..., gk,m1, ...,ml, 1)), then
span(g1, ..., gk,m1, ...,ml, 1) is not dense in L1(P ). It follows from previous Lemma, that
P is not an extreme point of Rθ. We deduce that extreme point of Rθ are supported by
at most r points in S. This achieves the proof of Theorem 2.3.2.

Theorem 2.3.3

Note that R is closed for the weak convergence because:

{P ∈ P ,∀g ∈ Cb(Supp(Pi)),
∫
g(ui)dP (u1, ..., un) =

∫
g(ui)dPi(ui)}

=

{P ∈ P ,∀g ∈ L1(Pi),
∫
g(ui)dP (u1, ..., un) =

∫
g(ui)dPi(ui)}.
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Let Ak a countable basis of open sets of Rd1× ...×Rdn and let P ∈ ext(R)∩I(f). Theorem
2.3.1 implies that every function u = (u1, ..., un) 7→ 1{u∈Ak} is such that:

1{u∈Ak} = lim
l

n∑
i=1

gi,l(ui) − P a.s.

It follows (see Klopotowski et al. (2003), Theorem 3.1) that P has a support S ⊂
∏

i Supp(Pi)

such that for every function f ∈ L1(P ) it exists n functions gi (i = 1, ..., n) such that:

∀u = (u1, ..., un) ∈ S, f(u) =
∑
i

gi(ui)

Let π−jS = {(u1, ..., uj−1, uj+1, ..., un) ∈
∏

i 6=j Supp(Pi) s.t. ∃uj s.t. (u1, ...un) ∈ S}.
Now, for every u1 ∈ Supp(P1) let g̃1(u1) = sup(u2,u3,...,un)∈π−1S f(u1, ..., un) −

∑n
i=2 gi(ui)

and for j ≥ 2, g̃j(uj) = sup(u1,...,uj−1,uj+1,...,un)∈π−jS f(u1, ..., un)−
∑j

i=1 g̃i(ui)−
∑n

i=j+1 gi(ui).

We have f(u1, ..., un) ≤
∑

i g̃i(ui) on
∏

i=1,...,n Supp(Pi) and the equality holds on S. Note
that

∫
g̃i(ui)dPi(ui) =

∫
g̃i(ui)dP (u1, ..., un) =

∫
gi(ui)dP (u1, ..., un) =

∫
gi(ui)dP1(u1),

then g̃i ∈ L1(Pi). It follows that
∫
fdP =

∑
i

∫
g̃idPi and our main result ensures:

sup
P∈R∩I(f)

∫
fdP = sup

P∈ext(R)∩I(f)

∫
fdP ≥ inf

gi∈L1(Pi)
∑
gi≥f

n∑
i=1

∫
gi(ui)dPi(ui).

The reverse inequality is obvious. Changing f by −f gives the result on the lower bound.

2.5.7 Proof of Propositions 2.4.1, 2.4.2 and 2.4.3

Bounds under Assumption 6

Under Assumption 8, the support of (Y,X) is included in the support of DY,X|D = 1

which is identified in the data. Let S (respectively S1, Y and X = {x1, ..., xJ}) the supports
of (D,DY,X) (respectively (Y,X), Y and X). For every distribution Q concentrated on
{0; 1}×S1, QY |D=d,X=x, QY |D=d, QD,X , QY , QD,DY,X denote the conditional, the marginal or
the joint distributions derived fromQ and EQ denotes the expectation operator with respect
to the measure Q. Let K the set of distributions of (D, Y,X) compatible with the data and
the Assumption 6. For every P ∈ K, PD,X = PD,X

0 and P Y |D=1,X=x = P
Y |D=1,X=x
0 then P

is characterized by
(
P Y |D=0,X=xj

)
j=1,...,J

. Let C the set of vector of distribution10 such that

10We assume for sake of simplicity that EP0(D|X = xj) < 1 for every j. If this is not the case the
present demonstration can be easily adapted after exclusion of the corresponding component in the vector
C.
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(
P Y |D=0,X=xj

)
j=1,...,J

∈ C if and only if P =
∑

x P
Y |D=1,X=x
0 PD,X

0 δD1 +P Y |D=0,X=xPD,X
0 δD0 is

in K. Extreme points of K are one-to-one with extreme points of C, so we will characterize
C and his extreme points.

We will proceed in five steps: first we characterize C, then we show that C is closed for
the weak convergence, third we show that the component j of an element of ext(C) has at
most J − j + 1 point of support, forth we fully characterize ext(C) and lastly we give a
necessary and sufficient condition under which ext(C) is empty.

Step 1: Characterization of C
P
Y |D=1
0 (A) = 0 implies that P Y |D=1,X=xj

0 (A) = 0 for every j = 1, ..., J , so we can define
fY |D=1,X=xj as the density of P Y |D=1,X=xj

0 with respect to the distribution of P Y |D=1
0 .

For any (xi, xj) ∈ X × X , let νxi,xj the endomorphism on the space of positive measure
concentrated on Y defined by:

νxi,xj(Q)(B) =

∫
B

rxi,xj(y)dQ(y)

with rxi,xj = p(xj)(1− p(xi))fY |D=1,X=xj/(p(xi)(1− p(xj))fY |D=1,X=xi).

Note that νxi,xi = Id, νxi,xj(δy) = rxi,xj(y)δy and νxi,xj ◦ νxj ,xk = νxi,xk .

Let
(
P Y |X=xj ,D=0

)
j=1,...,J

∈ C.

For (y, xi, xj) ∈ Y × X × X such that
(EP0(D|Y = y,X = xi), EP0(D|Y = y,X = xj)) /∈ {(0, 0); (1, 1)},
let s(y, xi, xj) =

(
1

EP0
(D|Y=y,X=xj)

− 1
)
/
(

1
EP0

(D|Y=y,X=xi)
− 1
)
.

Under Assumption 6, s(y, xi, xj) is greater than one if and only if xj < xi. Note that
1 > EP0(D|Y,X = xi), P

Y |D=0,X=xi
0 -almost-surely and that Assumption 8 ensures also

that EP0(D|Y,X = xi) > 0, P Y |D=0,X=xi
0 -almost-surely. So, y 7→ s(y, xi, xj) is positive and

mesurable function with respect to the Lebesgue σ-algebra on Supp(P
Y |D=0,X=xi
0 ).

The Bayes formula implies that:

dP
Y |D=0,X=x
0 =

(
1

EP0
(D=1|Y=y,X=x)

− 1
)

p(x)
1−p(x)

dQ
Y |D=1,X=x
0

=
(

1
EP0

(D=1|Y=y,X=x)
− 1
)

p(x)
1−p(x)

fY |D=1,X=xdP
Y |D=1
0

Then for all xj ≤ xi, P
Y |D=0,X=xj
0 (B) =

∫
B
s(y, xi, xj)dνxi,xj(P

Y |D=0,X=xi
0 )(y).

Under Assumption 6, for every i = 1, ..., J − 1 we have
P
Y |D=0,X=xi
0 (B) ≥ νxi+1,xi(P

Y |D=0,X=xi+1

0 )(B) then if it exists a positive measure Ri domi-
nated by the distribution of Y |X = xi, D = 0 such that P Y |X=xi,D=0

0 = νxi+1,xi(P
Y |X=xi+1,D=0
0 )+

Ri.
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Reciprocally, if
(
P Y |X=xj ,D=0

)
j=1,...,J

is a vector of distribution such that for every i =

1, ..., J−1 it exists Ri a positive measure dominated by the distribution of Y |X = xi, D = 0

such that P Y |X=xi,D=0 = νxi+1,xi(P
Y |X=xi+1,D=0)+Ri, then the selection mechanism defined

by
EP (D = 1|Y ∈ B,X = x) =

p(x1)P
Y |D=1,X=x
0 (B)

p(x)P
Y |D=1,X=x
0 (B)+(1−p(x))PY |D=0,X=x(B)

rationalizes the data, and the positivity of Ri for i = 1, ..., J − 1 ensures that Assumption
6 holds.

We deduce that:

C =

{
(Pj)j=1,...,J : Supp(Pj) ⊂ Supp(Y |D = 1, X = xj),

∃(Rj)j=1,...,J−1 positive measures s.t. Pj = νxj+1,xj(Pj+1) +Rj

}

Step 2: C is closed and convex
The linearity of νxj+1,xj implies that C is convex (and so is K). To prove that C is closed
remark that:

C =


(Pj)j=1,...,J : Supp(Pj) ⊂ Supp(Y |D = 1, X = xj),

∀g positive, bounded and continuous,∫
g(y)dPj(y) ≥

∫
g(y)rxj+1,xj(y)dPj+1(y)

 .

Let (P1,n, P2,n, ..., PJ,n) a sequence in C such that Pj,n weakly converges to Pj for all j. Let
g a continuous and bounded function from Y to R+ and gk =

(
k
f
∧ 1
)
g. Assumption 9

implies that gk and gkf are continuous and bounded, moreover gkf ↑ gf and gk ↑ g when
k → +∞. It follows that j = 2, ..., J :

∫
gfdPj = limk

∫
gkfdPj

= limk limn

∫
gkfdPj,n

≤ limk limn

∫
gkdPj−1,n

= limk

∫
gkdPj−1

=
∫
gdPj−1

Then (P1, P2, ..., PJ) ∈ C, so C and K are closed for the weak convergence.

Step 3: Elements of ext(C) have finite support
Let (Pi)i=1,...,J an extreme point of C and let Ri = Pi−ν(Pi+1)xi+1,xi . Assume that PJ is not
an extreme point in the space of probability distributions, then it exists λ ∈]0; 1[, P 1

J and
P 2
J two probability distributions such that PJ = λP 1

J + (1− λ)P 2
J . For k = 1, 2, let P k

i and
Rk
i defined recursively by Rk

i = (1 − νxi+1,xi(P
k
i+1)(Y)) Ri

Ri(Y)
and P k

i = νxi+1,xi(P
k
i+1) + Rk

i .
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Because νxJ ,xJ−1
(PJ) = λνxJ ,xJ−1

(P 1
J ) + (1 − λ)νxJ ,xJ−1

(P 2
J ), a decreasing recurrence on i

shows that Pi = λP 1
i + (1 − λ)P 2

i for every i = 1, ..., J . It follows that PJ is a Dirac
distribution. Now assume that RJ−1 = PJ−1 − νxJ ,xJ−1

(PJ) is not an extreme point in the
space of positive measure of mass 1 − νxJ ,xJ−1

(PJ)(Y). Then it exists λ,R1
J−1, R

2
J−1 such

that RJ−1 = λR1
J−1 + (1− λ)R2

J−1. For k = 1, 2, let P k
J = PJ and P k

i = νxi+1,xi(P
k
i+1) +Rk

i

and Rk
i = (1− νxi+1,xi(P

k
i+1)(Y)) Ri

Ri(Y)
. We have Pi = λP 1

i + (1−λ)P 2
i for every i = 1, ..., J .

And then the support of RJ−1 is a point of Y . Similar reasoning shows that every for every
i, Supp(Ri) is reduced to a point of Y .

It follows that it exists (y1, y2, ..., yJ) ∈ Supp(Y |X = x1, D = 1) × ... × Supp(Y |X =

xk, D = 1) and (w1, w2, ..., wJ−1) ∈ [0; 1]J−1 such that
w1δy1

...
wJ−1δyJ−1

δyJ

 =


R1

...
RJ−1

PJ

 .

Step 4: Characterization of ext(C)
Because (Pi)i=1,...,J is a linear transformation of (Ri)i=1,...,J , it exists a square matrix
My1,y2,...yJ such that:

My1,...,yJ


δy1

...
δyJ

 =


P1

...
PJ

 .

Let mi,j the component of My1,...,yJ on the row i and column j.

We have mJ,j = 1{j=J}, note that
rxi,xj(yj)

(
1 +

∑J−j+1
p=2

∑
j=l1<...<lp≤J(−1)p−1

∏p−1
k=1 rxlk ,xlk+1

(ylk+1
)
)

= 1 for i = j = J (with
the usual convention

∑1
p=2 ap = 0).

Now for i = 2, ..., J assume that mi,j are such that:

mi,j = 1{i≤j}rxi,xj(yj)

1 +

J−j+1∑
p=2

∑
j=l1<...<lp≤J

(−1)p−1

p−1∏
k=1

rxlk ,xlk+1
(ylk+1

)

 ,

this means that:

Pi =
J∑
j=i

rxi,xj(yj)

1 +

J−j+1∑
p=2

∑
j=l1<...<lp≤J

(−1)p−1

p−1∏
k=1

rxlk ,xlk+1
(ylk+1

)

 δyj .
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Because Pi−1 = νxi−1,xi(Pi) +
(
1− νxi−1,xi(Pi)(Y)

)
δyi−1

, we have:

Pi−1 =
∑J

j=i rxi−1,xi(yj)
[
rxi,xj (yj)

(
1 +

∑J−j+1
p=2

∑
j=l1<...<lp≤J(−1)p−1

∏p−1
k=1 rxlk ,xlk+1

(ylk+1
)
)]
δyj

+
(

1−
∑J

j=i rxi−1,xi(yj)
[
rxi,xj (yj)

(
1 +

∑J−j+1
p=2

∑
j=l1<...<lp≤J(−1)p−1

∏p−1
k=1 rxlk ,xlk+1

(ylk+1
)
)])

δyi−1 .

Because rxi−1,xi(yj)rxi,xj(yj) = rxi−1,xj(yj), we have:

Pi−1 =
∑J

j=i

[
rxi−1,xj (yj)

(
1 +

∑J−j+1
p=2

∑
j=l1<...<lp≤J(−1)p−1

∏p−1
k=1 rxlk ,xlk+1

(ylk+1
)
)]
δyj

+
(

1−
∑J

j=i rxi−1,xj (yj) +
∑J

j=i

∑J−j+1
p=2

∑
j=l1<...<lp≤J(−1)prxi−1,xj (yj)

∏p−1
k=1 rxlk ,xlk+1

(ylk+1
)
)
δyi−1 .

We can rewrite the factor of δyi−1
:

Pi−1 =
∑J

j=i

[
rxi−1,xj(yj)

(
1 +

∑J−j+1
p=2

∑
j=l1<...<lp≤J(−1)p−1

∏p−1
k=1 rxlk ,xlk+1

(ylk+1
)
)]
δyj(

1 +
∑J−j+1

p=2

∑
i−1=l1<...<lp≤J(−1)p−1

∏p−1
k=1 rxlk ,xlk+1

(ylk+1
)
)
δyi−1

.

Lastly, because rxi−1,xj(yj) = 1 for j = i− 1, we have:

Pi−1 =
∑J

j=i−1

[
rxi−1,xj(yj)

(
1 +

∑J−j+1
p=2

∑
j=l1<...<lp≤J(−1)p−1

∏p−1
k=1 rxlk ,xlk+1

(ylk+1
)
)]
δyj .

By decreasing recurrence, it follows that for every (i, j):

mi,j = 1{i≤j}rxi,xj(yj)

1 +

J−j+1∑
p=2

∑
j=l1<...<lp≤J

(−1)p−1

p−1∏
k=1

rxlk ,xlk+1
(ylk+1

)

 .

Note that
∑

jmi,j = 1 and that mi,j = rxi,xi+1
(yj)mi+1,j for every j > 1. It follows that

(P1, ...PJ) is a vector of probability if and only if mi,i ≥ 0 for every i.

Bounds under Assumption 7

Note that the distribution of X is free in this case, so C =
∏J

j=1 Cj, with Cj the set of
distributions of Y |D = 0, X = xj for j = 1, ..., J compatible with the data and assumptions.
C is closed for the weak convergence if and only if Cj is closed for the weak convergence for
every j = 1, ..., J , and in this case we have ext(C) =

∏J
j=1 ext(Cj). And then to characterize

K we only have to prove that Cj is closed and to characterize ext(Cj) for every j = 1, ..., J .

Step 1: Cj is closed.
Let F0 and G0 the cumulative distribution functions of P Y |D=0,X=xj

0 and P
Y |D=1
0 . Let

S0 = 1− F0 and Ỹ = {y ∈ R : G0(y) > G0(inf(Y))}. We can exclude the case where Ỹ is
empty11.

11In such case, the distribution of Y is a Dirac and the conclusion holds.
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For every y ∈ Ỹ ∩ Y , EP0(D|Y = y,X = xj) > 0 and the Bayes formula implies that:

dF0 = (1/EP0(D|Y = y,X = xj)− 1)
p(xj)

1− p(xj)
dG0.

And then S0(y) =
∫

]y;+∞]
fdG0, with f a non increasing function from Ỹ to R+.

It follows that for all (y0, y) ∈ Ỹ2 such that G0(y) 6= G0(y0),

F0(y)− F0(y0)

G0(y)−G0(y0)
= E (f(Y )|Y ∈]y0; y]∪]y; y0], D = 1) ,

with f a non increasing function from Ỹ to R+.

It follows that the function
y 7→ F0(y)− F0(y0)

G0(y)−G0(y0)

is non increasing on Ỹ\G−1
0 ({G0(y0)}) for every y0 ∈ Ỹ .

Reciprocally, let F a cumulative distribution function concentrated on Y such that

y 7→ F (y)− F (y0)

G0(y)−G0(y0)

is non increasing on Ỹ\G−1
0 ({G0(y0)}) for every y0 ∈ Ỹ .

We can define the left limit on y0 of such function:

gl(y0) = lim
y→y−0

F (y)− F (y0)

G0(y)−G0(y0)
.

gl is a non increasing and left continuous function from Ỹ to R+.

Because gl is non increasing, gl is Riemann-Stieltjes integrable, and then for y ∈] inf Y ; y0]:

∑N−1
n=0 gl(y + y0−y

N
(n+ 1))

[
G0(y + y0−y

N
(n+ 1))−G0(y + y0−y

N
n)
]

≤
∑N−1

n=0 F (y + y0−y
N

(n+ 1))− F (y + y0−y
N
n) = F (y0)− F (y) ≤∑N−1

n=0 gl(y + y0−y
N
n)
(
G0(y + y0−y

N
(n+ 1))−G0(y + y0−y

N
n)
)

When N tends to infinity, we have:

F (y0)− F (y) =

∫
]y;y0]

gl(y)dG0(y)
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For y0 → +∞, we deduce that:

1− F (y) =

∫
]y;+∞[

gl(y)dG0(y).

For every y ∈ Ỹ , let E(D|Y = y,X = xj) =
1−p(xj)

(1−p(xj))gl(y)+p(xj)
. This is a increasing function

in y. When inf Y > −∞, such function could be extended at inf Y by E(D|Y = inf Y , X =

xj) = infy∈Y
1−p(xj)

(1−p(xj))gl(y)+p(xj)
. Such mechanism of selection rationalize the data and the

Assumption 7.

So we have proved that Cj, is the set of probability distributions concentrated on Y with
associated cdf F such that :

y 7→ F (y)− F (y0)

G0(y)−G0(y0)

is non increasing on Ỹ\G−1
0 ({G0(y0)}) for every y0 > Ỹ .

For every F cdf supported on Y , let c(F ) = {y ∈ Ỹ : F (y−) = F (y)} and
d(F ) = {y ∈ Ỹ : F (y−) < F (y)}.
Let Fn a sequence of cdf of distribution in Cj, such that Fn converge to F at every point
of continuity of a cdf F . For every y0 ∈ c(F ) and for every y ∈ c(F )\G−1

0 ({G0(y0)}),
Fn(y)−Fn(y0)
G0(y)−G0(y0)

converges to F (y)−F (y0)
G0(y)−G0(y0)

.

For every y0 ∈ c(F ) and for every (y1, y2) ∈
(
Ỹ\G−1

0 (G0(y0))
)2

such that y1 < y2, it
exists sequences y1n and y2n in c(F ) such that y1n → y+

1 , y2n → y+
2 , G0(y1n) 6= G0(y0) and

G0(y2n) 6= G0(y0). Then we deduce that we have:

F (y1)− F (y0)

G0(y1)−G0(y0)
≥ F (y2)− F (y0)

G0(y2)−G0(y0)
.

Similarly, for every (y1, y2) ∈ Ỹ2 such that y1 < y2, if y0 ∈ d(F ) such that
G0(y0) /∈ {G0(y1);G0(y2)} it exists y0n ∈ c(F ) decreasing sequence converging to y0 such
that G0(y0n) /∈ {G0(y1);G0(y2)}. Because G0 is right continuous, we have :

F (y1)− F (y0)

G0(y1)−G0(y0)
≥ F (y2)− F (y0)

G0(y2)−G0(y0)
.

It follows that Cj is closed.

Step 2: Characterization of ext(Cj).
Let F a cdf of an element of Cj. If 1 > F (inf Y) > 0 then
F (y) = F (inf Y)1y≥inf Y + (1− F (inf Y)) (F (y)−F (inf Y) sup)+

(1−F (inf Y))
,

and (F (y)−F (inf Y) sup)+

(1−F (inf Y))
is a cdf of an element of C. So if F is the cdf of an element of ext(Cj)
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then F (inf Y) ∈ {0; 1}.
Now assume that F (inf Y) = 0, then F (y) =

∫
]−∞;y]∩Y g(u)dG0(u) with g decreasing

function from Y to R+.
Let a < b two values in Y . Assume that

∫
]a;b]∩Y(g(a) − g(u))(g(u) − g(b))dG0(u) > 0,

in this case let P (u) = (g(a) − u)(u − g(b))(u − µg(a) − (1 − µ)g(b)) with µ such that
µ =

∫
]a;b]∩Y (g(a)−g(u))(g(u)−g(b))2dG0(u)

(g(a)−g(b))
∫
]a;b]∩Y (g(a)−g(u))(g(u)−g(b))dG0(u)

. Because the derivatives of P (u) are bounded
on [g(b); g(a)], it exists λ 6= 0 such that g(u)−λP (g(u)) and g(u)+λP (g(u)) are decreasing
on ]a; b].
Moreover we have

∫
]a;b]∩Y P (g(u))dG0(u) = 0. So F is the cdf of an element of ext(Cj) only

if P (g(u)) = 0 P
Y |D=1,X=xj ,Y ∈]a;b]
0 -almost-surely. This means that g(u) takes at most three

values on ]a; b]: g(a), µg(a)+(1−µ)g(b) and g(b). Because such result hods for every a and
b, g takes at most three values on Y , P Y |D=1,X=xj

0 -almost-surely. If there is two values v1 and
v2 such that v1 > v2 > 0, we can easily find ε and ε′ positive numbers sufficiently small such
that v1− ε = v2 + ε′, v2− ε′ > 0 and εQY |D=1,X=xj

0 (g−1(v1))− ε′QY |D=1,X=xj
0 (g−1(v2)) = 0.

So g takes at most one non null value, P Y |D=1,X=xj
0 -almost-surely.

Bounds under Assumptions 6 and 7

C is the intersection of distributions compatible with the data and assumptions 6 and 7.
Because the sets of distribution that verify Assumption 6 or Assumption 7 are close for
the weak convergence (cf. the two previous demonstration). C is closed as the intersection
of closed sets.

We denotes by G0 the cumulative distribution function of P Y |D=1
0 and we first assume that

G0(inf Y) = 0. Let fj a Radon Nikodym derivative of P Y |D=1,X=xj
0 with respect to P Y |D=1

0

(such derivative exists by Assumption 8). In this case if F = (F1, ..., FJ) is the cumulative
distributions of P = (P1, ..., PJ) in C, then using some results of the two previous proofs,
it exists (g1, ..., gJ) in decreasing functions such that:

gj+1 ≤ gj, P
Y |D=1
0 − a.s.

Fj(y) =
∫

]−∞;y]
gj(z)fj(z)

p(xj)

1−p(xj)dG0(z)

Let a and b two elements of Y such that a < b.

LetR(x) =
∏J

j=1(gj(a)−x)(x−gj(b)) and S a polynôme such that S(x) = R(x)
(∑J

k=0 αkx
k
)
.

It exists (α0, ..., αJ) not identically equal to 0 such that

∫
]a;b]

S(gj(y))fj(y)
p(xj)

1− p(xj)
dG0(y) =

J∑
k=0

αk

∫
]a;b]

gj(y)kfj(y)
p(xj)

1− p(xj)
dG0(y) = 0,

for every j = 1, ..., J . Such S has bounded derivatives on [minj=1,...,J gj(b); maxj=1,...,J gj(a)].
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So it exists λ > 0 and sufficiently small such that x+λS(x) and x−λS(x) are non decreasing
on [minj=1,...,J gj(b); maxj=1,...,J gj(a)].
Let uj(y) = gj(y) + 1{y∈[a;b]}λS(gj(y)) and vj(y) = gj(y)− 1{y∈[a;b]}λS(gj(y)).
We can define the cdf Uj(y) =

∫
]−∞;y]

uj(z)fj(z)
p(xj)

1−p(xj)dG0(z) and
Vj(y) =

∫
]−∞;y]

vj(z)fj(z)
p(xj)

1−p(xj)dG0(z). U = (U1, ..., UJ) and V = (V1, ..., VJ) are in C and
F = (U + V )/2. It follows that P ∈ ext(C) if and only if U = V = F , and so if and only
if S ◦ gj = 0 P

Y |D=1,Y ∈]a;b]
0 -a.s. Because S has at most 3J roots, ∪j=1,...,Jgj(Y) has at most

3J elements.
Now remark that it exists (β1, ..., βJ+1) 6= (0, ..., 0) such that

∑J+1
k=1 βk

∫
gj(z)kfj(z)dG0(z) =

0. Because the gj have a finite number of values, minx:gj(x)>0 gj(x) and maxx:gj(x)>0 gj(x)

are well defined and non negative. Let H(x) =
∑J+1

k=1 βkx
k, H has bounded derivatives on

the compact I = [1/2 × minx:gj(x)>0 gj(x); 2 × maxx:gj(x)>0 gj(x)]. So it exists λ > 0 and
sufficiently small such that x+λH(x) and x−λH(x) are non decreasing and non negative
on I. Considering tj(x) = gj(y) + λH(gj(y)) and wj(x) = gj(y)− λH(gj(y)) the fact that
gj(y) ∈ I ∪ 0, we deduce that P ∈ ext(C), H ◦ gj = 0 P

Y |D=1
0 -a.s. Because H has at most

J non null roots, it follows that # ∪j=1,...,J {gj(y) : y ∈ Y , gj(y) > 0} ≤ J .
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Chapter 3

Endogeneous Attrition in Panels

3.1 Introduction

Panel data are very useful to distinguish between state dependence and unobserved het-
erogeneity (see, e.g., Heckman, 2001), to analyze the dynamics of variables such as income
(see, e.g., Hall & Mishkin, 1982) or spells in duration analysis (see, e.g., Lancaster, 1990).
However, these advantages may be counterbalanced by attrition, which can be especially
severe when units are observed over a long period of time. Besides, attrition is often con-
sidered more problematic than standard nonresponse, because the reasons of attrition are
often related to the outcomes of interest, or variations in these outcomes. Several solutions
have been considered in the literature to handle this issue. A first is to suppose that attri-
tion is exogenous, i.e. depends on lagged values that are observed by the econometrician
(see, e.g., Little & Rubin, 1987). This, however, rules out a dependence between attrition
and current outcomes, and is thus likely to fail in many cases. A second model takes the
opposite point of view by assuming attrition to depend on contemporaneous values only
(see Hausman & Wise, 1979). To handle more complex attrition patterns, Hirano et al.
(2001) generalize the two previous models by allowing attrition to depend both on con-
temporaneous and lagged values. This generalization is made possible when a refreshment
sample, i.e. a sample of new units surveyed at each period, is available. Hirano et al.
(2001) also impose that the probability of attrition depends on past and current outcomes
through a binary model excluding any interaction between these two variables.

In this paper, we consider still another approach, based on instruments. Contrary to
Hirano et al. (2001), we do not impose any functional restrictions on the probability of
attrition conditional on lagged and contemporaneous values. Refreshment sample are not
needed either. On the other hand, an instrument independent of attrition conditional
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on past and contemporaneous outcomes is supposed to be available. A rank condition
between the instrument and the contemporaneous outcome, which can be stated in terms
of completeness, is also needed. Hence, the instrument is typically a lagged variable that
affects the contemporaneous outcome but not directly attrition. We can use for instance
past outcomes obtained from a retrospective questionnaire. We show that under a nonlinear
fixed effect model, such a variable is likely to meet the nonparametric rank condition, and
satisfies also the conditional independence condition if attrition only depends on transitions
on the outcome.

An advantage of our method is that even if no more instruments than outcomes are avail-
able, we can test for implications of the conditional independence assumption. Another
way of testing this assumption is to use refreshment samples, even though they are unneces-
sary in our setting. With such samples, the marginal distribution of the contemporaneous
outcome is directly identified. We can then compare this distribution with the one obtained
under our identifying restriction.

We also conduct inference under such an attrition process. In the case of discrete out-
comes and instruments, the model is parametric and a straightforward constrained max-
imum likelihood estimation procedure is proposed. In the continuous case, the model is
semiparametric and estimation is more involved. We show that our setting is closely re-
lated to the one of additive, nonparametric, instrumental variable models. Similarly to
Severini & Tripathi (2011), we provide a necessary and sufficient condition for the semi-
parametric efficiency bound to be finite, and derive the bound in this case. We also adapt,
under this condition, an estimator recently proposed by Santos (2011) for nonparametric,
instrumental variable models.

Finally, we apply our results to study transitions on the French labor market, using the la-
bor force survey of the French national institute of statistics (INSEE). This survey, which
interviews people in the same housings during eighteen months, is one of the most im-
portant one of INSEE. An important issue however is that the survey does not follow
individuals but housings. Thus, attrition is closely related to moving of individuals. We
provide evidence that these movings are themselves related to transitions on the labor mar-
ket in a way that violates the additive restriction considered by Hirano et al. (2001). With
either the test described above or the refreshment sample, we do not reject the conditional
independence assumption with past employment status used as an instrument. Our esti-
mates confirm that attrition is highly related to transitions in the labor market. We show
that this has important implications for the estimation of the probabilities of transition on
the labor market.
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The paper is organized as follows. In the second section, we study identification and
testability under endogenous attrition, and compare our model with the existing literature.
In the third section, we develop inference for both discrete or continuous outcomes. The
fourth section is devoted to our application. Finally, the fifth section concludes. All proofs
are gathered in the appendix.

3.2 Identification

3.2.1 The setting and main result

For simplicity, we consider a panel dataset with two dates t = 1, 2, and also suppose that
there is no or ignorable nonresponse at date 1. We let D = 1 if the unit is observed
at date 2, D = 0 otherwise. We let Yt denote the outcome at t and Y = (Y1, Y2). We
also consider an instrument Z1 whose role will be explained below, and let Z = (Y1, Z1).
For the sake of simplicity, we do not introduce covariates here, though the extension with
covariates would be straightforward. We focus hereafter on the identification of either the
joint distribution of (D, Y, Z) or on a parameter β0 = E(g(Y, Z)). Our first assumption
states the observational problem.

Assumption 10 The distribution of (D,DY2, Z) is identified.

To satisfy this requirement, Z1 can be observed at the first period, or at the second period
if some information on nonrespondents is available at the second period. It also holds if Z1

(together with Y ) is observed only when D = 1, provided that the distribution of (Z1, Y1)

is identified for instance through another dataset. Of course, to achieve full identification
of the distribution of (D, Y, Z), restrictions are needed. If attrition directly depends on the
outcome Y , the usual assumption of exogenous selection fails, and it may be difficult to
find an instrument that affects the selection variable but not the outcome. On the other
hand, a variable Z1 related to Y but not directly to D may be available in this case. We
thus assume the following:

Assumption 11 D ⊥⊥ Z1|Y .

This assumption is identical to the one considered by D’Haultfœuille (2010) in the case
of endogenous selection. It was also considered by Chen (2001), Tang et al. (2003) and
Ramalho & Smith (2011b) in a nonresponse framework. Intuitively, it states that the
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attrition equation depends on Y1 and Y2 but not on Z1. If Y2 was endogenous (but always
observed) in this equation, we could instrument it by Z1 to identify the causal effect of Y2

on D. Here the problem is actually slightly different: Y2 is observed only when D = 1.
The identification strategy is similar, however, as we use the instrument to recover the
conditional distribution of attrition.

Let P (Y ) = Pr(D = 1|Y ). Because identification is based on inverse probability weighted
moment conditions, we assume the following:

Assumption 12 P (Y ) > 0 almost surely.

This assumption is similar to the common support condition in the treatment effects lit-
erature. It does not hold if D is a deterministic function of Y , as in simple truncation
models where D = 1{g(Y ) ≥ y0}, y0 denoting a fixed threshold.

Before stating our main result, let us introduce some notations. For any random variable U
and p > 0, let Lp(U) (respectively Lp(U |D = 1)) denote the space of functions q satisfying
E(|q(U)|p) < +∞ (respectively E(|q(U)|p|D = 1) < +∞). Note that 1/P ∈ L1(Y |D = 1)

because E(1/P (Y )|D = 1) = 1/E(D). For any set A ⊂ L1(U |D = 1), let also

A⊥ = {q ∈ L1(U |D = 1) : ∀a ∈ A,E(|q(U)a(U)||D = 1) <∞, E(q(U)a(U)|D = 1) = 0}.

The following operator will be important for identification issues:

T : L1(Y |D = 1) → L1(Z|D = 1)

q 7→ (z 7→ E(q(Y )|D = 1, Z = z)) .
(3.2.1)

Because Y is observed when D = 1, T is identified. Besides, and as indicated previously,
identification hinges upon dependence conditions between Y2 and Z, which are actually re-
lated to the null space Ker (T ) of T . Let F = {q ∈ L1(Y |D = 1) : q(Y ) ≥ 1− 1/P (Y ) a.s.}
and for f ∈ L1(Y, Z),

Ff =
{
q ∈ L1(Y |D = 1) : q(Y ) ≥ 1− 1/P (Y ) a.s. and E(|q(Y )f(Y, Z)||D = 1) <∞

}
.

Finally, in the case where g ∈ L1(Y, Z) we denote β(Y ) = E[g(Y, Z)|Y ]. Our main result
is the following.

Theorem 3.2.1 If assumptions 10-12 hold, then:

1. The distribution of (D, Y, Z) is identified if and only if Ker (T ) ∩ F = {0}.
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Moreover, if g ∈ L1(Y, Z),

2. The set of identification of β0 is {β0 + E(D)E [β(Y )h(Y )|D = 1] : h ∈ Ker (T ) ∩ Fg}.

3. β0 is identified if and only if β(.) ∈ (Ker (T ) ∩ Fg)⊥.

Let us provide the intuition for the easiest result, i.e. the “if” part of the first statement.
We rely on the fact that under Assumptions 11 and 12, it is sufficient to identify P (Y ) to
recover the whole distribution of (D, Y, Z). Besides, we show that this function satisfies

T

(
1

P

)
= w, (3.2.2)

where w(Z) = 1/Pr(D = 1|Z). Because T and w are identified, P is identified if there is
a unique solution in (0, 1] of this equation. This uniqueness can be established if
Ker (T ) ∩ F = {0}.

The identifying condition Ker (T ) ∩ F = {0} is related to various completeness condi-
tions considered in the literature (see, e.g., Newey & Powell, 2003, Severini & Tripathi,
2006, Blundell et al., 2007, D’Haultfœuille, 2011, Andrews, 2011 and Hu & Shiu, 2013).
Our condition is intermediate between the stronger “standard” completeness condition
Ker (T ) = {0} and the bounded completeness condition Ker (T )∩B = {0}, where B is the
set of bounded functions. When Y and Z have a finite support (respectively by (1, ..., I)

and (1, ..., J)), this assumption is satisfied if rank(M) = I, where M is the matrix of typ-
ical element Pr(Y = i|D = 1, Z = j) (see Newey & Powell (2003)).1 Hence, the support
of Z must be at least as rich as the one of Y (J ≥ I) and the dependence between the
two variables must be strong enough for I linearly independent conditional distributions
to exist. Because the matrix M is identified, it is straightforward to test for this condition,
using for instance the determinant of MM ′ (see Subsection 3.1 below). When Y and Z

are continuous, it is far more difficult to characterize them. Conditions have been provided
by Newey & Powell (2003), D’Haultfœuille (2011), Andrews (2011) and Hu & Shiu (2013).
We consider below another example, related to our panel framework, where the restriction
Ker (T ) ∩ F = {0} is satisfied.

The third statement of Theorem 3.2.1 shows that when we consider only one parameter
rather than on the full distribution of (D, Y, Z), identification is achieved under weaker
restrictions. To see this, note that Fg ⊂ F and then (Ker (T ) ∩ F)⊥ ⊂ (Ker (T ) ∩ Fg)⊥.

1It is not equivalent to this full rank conditions because of the inequality constraints induced by F .
One can show however that both are equivalent when P (Y ) < 1.
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Thus, Ker (T )∩F = {0} implies that β(.) ∈ (Ker (T )∩Fg)⊥. On the other hand, we may
have β(.) ∈ (Ker (T )∩Fg)⊥ and Ker (T )∩F 6= {0}. This result is closely related to Lemma
2.1 of Severini & Tripathi (2011), who consider identification of linear functionals related
to a nonparametric instrumental regression. Finally, the second statement of Theorem
3.2.1 describes the identification set of β0 in general.

As an illustration of Theorem 3.2.1 with continuous outcomes, suppose that we observe at
the first date a past outcome Y0, thanks to a retrospective questionnaire. This will be the
case in the application considered in Section 4. Suppose also that the outcomes satisfy the
following nonlinear fixed effect model:

Λ(Yt) = U + εt, (3.2.3)

where Λ(.) is a strictly increasing real function and (U, ε0, ε1, ε2) are independent. Such a
model generalizes standard linear fixed effect model Yt = U + εt and is close to the accel-
erated failure time model in duration analysis. Note that we do not introduce covariates
here for simplicity, but our result can be extended to the more realistic model considered
by Evdokimov (2011), namely Λ(Yt, Xt) = ψ(U,Xt) + εt with Λ strictly increasing in Yt,
provided that the covariates Xt are always observed at each period. We also suppose that
attrition only depends on current outcomes and transitions:

D = g(Y1, Y2, η), η ⊥⊥ (Y0, Y1, Y2). (3.2.4)

Finally, we impose the following technical restriction on U, ε0 and ε2. For any random
variable V , we let ΨV denote its characteristic function.

Assumption 13 U admits a density with respect to the Lebesgue measure, whose support
is the real line. Ψε0 vanishes only on isolated points. The distribution of ε2 admits a
continuous density fε2 with respect to the Lebesgue measure. Moreover, fε2(0) > 0 and
there exists α > 2 such that t 7→ tαfε2(t) is bounded. Lastly, Ψε2 does not vanish and is
infinitely often differentiable in R\A for some finite set A.

The assumption imposed on the characteristic function of ε0 is very mild and satisfied by
all standard distributions. The conditions on ε2 are more restrictive but hold for many
distributions such as the normal, the Student with degrees of freedom greater than one2

and the stable distributions with characteristic exponent greater than one. The following
2See e.g. Mattner (1992) for a proof that the conditions on the characteristic function of Student

distributions are indeed satisfied.
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proposition shows that under these conditions, the model is fully identified using Y0 as the
instrument.

Proposition 3.2.2 Let Z = (Y0, Y1), and suppose that Assumptions 12, 13, Equations
(3.2.3) and (3.2.4) hold. Then Assumption 11 holds and Ker (T ) ∩ F = {0}. Thus, the
distribution of (D, Y, Z) is identified.

3.2.2 Partial identification and testability

Apart from point identification under various completeness conditions, our attrition model
displays two interesting features. First, Assumption 11 is refutable, contrary to the ignor-
able attrition assumption D ⊥⊥ Y2|Y1 discussed below. Second, we can obtain bounds on
parameters of interest when the model is underidentified, i.e. when the above complete-
ness condition fails to hold. Both are due to the fact that solutions to Equation (3.2.2)
must lie in [0, 1]. These inequality constraints can be used both for testing and bounding
parameters of interest.

To see this, consider the case where (Y, Z) has a finite support. If Y and Z take respectively
I and J distinct values, then (3.2.2) can be written as a linear system of J equations with
I unknown parameters and the inequality constraints:

Pr(D = 0, Z = j) =
I∑
i=1

bi Pr(D = 1, Y = i, Z = j), bi ≥ 0.

Of course, the model is overidentified and thus testable when I > J , but we can also
test for the inequality constraints when I ≤ J . We derive a formal statistical test of this
condition in Subsection 3.1 below. We can also partially identify parameters of interest in
the underidentified case I < J , still using the fact that the (bi)i=1...I are positive.

Finally, a stronger test of the conditional independence assumption can be derived if a
refreshment sample is available, as in Hirano et al. (2001). In this case, the marginal
distribution of Y2 is identified. Then we can reject the conditional independence assumption
if for all Q satisfying T (1/Q) = w, there exists t such that

E

[
D1{Y2 ≤ t}

Q(Y )

]
6= Pr(Y2 ≤ t).
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3.2.3 Comparison with the literature

We compare our approach with the most usual models of attrition.

Missing at random attrition

This model, which has been considered by, e.g., Rubin (1976) and Abowd et al. (1999),
posits that D only depends on Y1:

D ⊥⊥ Y2|Y1. (3.2.5)

Identification of the joint distribution of (Y1, Y2) follows directly from the fact that, letting
fD,Y1,Y2 denote the density of (D, Y1, Y2) with respect to an appropriate measure,

fY1,Y2(y1, y2) =
fD,Y1,Y2(1, y1, y2)

Pr(D = 1|Y1 = y1)
.

Condition (3.2.5) is the equivalent, in a panel setting, of the so-called missing at random
assumption (see, e.g., Little & Rubin, 1987) or the unconfoundedness assumption in the
treatment effect literature (see for instance Imbens, 2004). Because it rules out any de-
pendence between attrition and current outcomes, it is likely to fail in many cases. In a
labor force survey, for instance, house moving is a common source of attrition, and is itself
related to changes in employment and/or earnings.

Dependence on current values

Compared to the first, the logic of this model is the opposite, as attrition is related to
current values only:

D ⊥⊥ Y1|Y2. (3.2.6)

This assumption has been considered by Hausman & Wise (1979) in a parametric model.
This assumption takes into account nonignorable attrition, but in a special way. It rules
out in particular the possibility that transitions (namely, functions of Y1 and Y2) explain
attrition. Abstracting from the parametric restrictions of Hausman & Wise (1979), iden-
tification can be proved along the same lines as previously. It suffices to solve in g the
functional equation

E [g(Y2)|D = 1, Y1] = 1/Pr(D = 1|Y1).

Under completeness conditions similar to the one above, this equation admits a unique
solution in g, namely 1/Pr(D = 1|Y2 = .).
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Standard instrumental strategy

Attrition can be considered a particular selection problem, and thus be treated using the
same tools. A classical solution (see, e.g., Heckman, 1974, Angrist et al., 1996, or Heckman
& Vytlacil, 2005) is to use an instrument Z that affects attrition but not directly the current
outcome:

Y2 ⊥⊥ Z|Y1.

Such an exclusion restriction may be credible if for some exogenous reasons, some indi-
viduals were less likely to be interviewed at the second period. However, as pointed out
by Manski (2003), an important drawback of this assumption is that it is not sufficient in
general to point identify the distribution of Y2. Basically, this can be achieved only if there
exists some z such that the probability of attrition Pr(D = 1|Z = z, Y1 = y1) is equal to
zero, or is arbitrarily close to zero under continuity conditions. With limited variations in
this probability, the distribution of Y2 can only be set identified.

Additive restriction on the probability of attrition

Hirano et al. (2001) propose a two-period framework that generalize both previous examples
in the sense that D may depend on both Y1 and Y2. This generalization is possible when a
refreshment sample, which allows one to identify directly the distribution of Y2, is available.
Note that because, the distribution of Y1 is also identified from the panel at date 1, the
problem reduces to recover the copula of (Y1, Y2). For that purpose, Hirano et al. (2001)
also suppose that

1/Pr(D = 1|Y1, Y2) = g(k1(Y1) + k2(Y2)), (3.2.7)

where g is a known function while k1(.) and k2(.) are unknown. They show that k1(.) and
k2(.) are identified by the knowledge of the marginal distributions of Y1 and Y2. This allows
them to recover the joint distribution of (Y1, Y2), since, by Bayes’ rule,

fY1,Y2(y1, y2) = fY1,Y2|D=1(y1, y2) Pr(D = 1)g(k1(y1) + k2(y2)).

Compared to our approach, Hirano et al. (2001) do not rely on any exclusion restriction.
This comes at the cost of imposing the additive restriction on Pr(D = 1|Y1, Y2), which may
be restrictive (see below), and having a refreshment sample, which is not needed in our
case.

Though the identification proof of Hirano et al. (2001) is much different from ours, the two
frameworks are actually related. As shown by Bhattacharya (2008), identification in this
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additive model can be directly obtained from the functional equations

E [g(k1(Y1) + k2(Y2))|D = 1, Yi] = 1/Pr(D = 1|Yi).

Thus, identification is actually achieved along similar lines as in our case, the instrument
Z being equal to (Y1, Y2). The difference here is that only the marginal distributions of
the instrument is identified. This is the reason why they have to impose Model (3.2.7)
to the attrition process. Such a restriction is not innocuous. If attrition depends on
transitions, then their restriction is likely fails to hold. If, as in our application, attrition
occurs for individuals who move, and that moving itself occurs with a large probability
when employment status changes, then Pr(D = 1|Y1, Y2) depends on 1{Y1 = Y2}. Model
(3.2.7) cannot handle such attrition processes.

Attrition with unobserved heterogeneity

Finally, Sasaki (2012) proposes a very different approach where attrition at time t depends
on Yt and a constant unobserved heterogeneity term U that also affects the dynamics of
Yt. Such a model is attractive if individual fixed effects affect both the dynamics of Yt
and the decision to respond to the panel. He shows that the dynamics of Yt, the attrition
rule and the initial conditions (the joint distribution of Y1 and U) are identified under,
basically, four restrictions. First, Yt should follow a Markov model of order 1, conditional
on U . Second, attrition at date t should be independent of past outcomes, conditional on
(U, Yt). Third, both the law of dynamics and the attrition rule should be time invariant.
Fourth, the number of periods of observations should be at least three, and a proxy of U ,
independent of other variables conditional on U , should be available. If such a proxy does
not exist, the length of the panel should be at least six.

Even if attractive, his approach is more demanding than ours in terms of data, since it
requires at least three periods. Besides, he also relies on exclusion restrictions, and contrary
to our approach, it is not clear whether these restrictions are testable or not.

3.3 Estimation

We now turn to inference within our framework of endogenous attrition. As previously,
we focus on the estimation of the distribution of (D, Y, Z), but also on the parameter
β0 = E(g(Y, Z)), which can be estimated under restrictions detailed before. We first posit
an i.i.d. sample of n observations.
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Assumption 14 We observe an iid sample of size n of (D,DY2, Z).

We consider two cases subsequently. The first one, in line with our application, assume that
the support of (Y, Z) is finite. In this setting, we derive a simple and efficient estimator and
a test of the rank condition and exclusion restriction. We then turn to the continuous case,
where we investigate conditions for root-n estimability of β0, derive the semiparametric
efficiency bound when it exists and propose an estimator under this condition.

3.3.1 The discrete case

We denote the support of Yt and Z1 by respectively {1, ..., I} and {1, ..., J}, with I ≤ J .
In this case, the data (D,DY2, Z) are distributed according to a multinomial distribution.
To obtain asymptotically efficient estimators, we consider constrained maximum likelihood
estimation hereafter.

For a fixed y, let p1ij = Pr(D = 1, Y2 = i, Z1 = j|Y1 = y) and p0.j = Pr(D = 0, Z1 =

j|Y1 = y) denote the probabilities corresponding to the observations, and define p1 =

(p111, ..., p1IJ), p0. = (p0.1, ..., p0.J) and p = (p1, p0.). Note that we let the dependence
in y implicit hereafter. p is the natural parameter of the statistical model here, as it
fully describes the distribution of (D,DY2, Z1) conditional on Y1. However, it does not
directly allow us to recover the whole distribution of (D, Y2, Z1). This is why we also
introduce p0ij = Pr(D = 0, Y2 = i, Z1 = j|Y1 = y), and p0 = (p011, ..., p0IJ) as p1. Then
any parameter θ0 of the distribution of (D, Y2, Z1) is a function of (p0, p1), and we write
θ0 = g(p0, p1). We thus consider here implicitly parameters that depend on the distribution
of (D, Y2, Z1) conditional on Y1. Unconditional parameters depend on all the different
(p0, p1) corresponding to different values of Y1, and on the marginal distribution of Y1. We
can estimate them similarly, using the empirical distribution of Y1. Because Assumption
11 does not impose any restriction on the distribution of Y1, such estimators are also
asymptotically efficient.

Finally, we adopt the same notations for the constrained maximum likelihood estimator p̂ as
for p. We let n1ij =

∑
k:Y1k=yDk1{Y2k = i}1{Z1k = j} and n0.j =

∑
k:Y1k=y(1−Dk)1{Z1k =

j}. The following proposition shows how to compute p̂ and an efficient estimator of θ0 in
our attrition model.

Proposition 3.3.1 Suppose that Assumptions 10-12 hold. Then the maximum likelihood
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estimator p̂ satisfies

(p̂, b̂) = arg max
(q,b)∈[0,1](I+1)J×RI

J∑
j=1

[
n0.j ln q0.j +

I∑
i=1

n1ij ln q1ij

]

s.t.

∣∣∣∣∣∣∣∣∣
∑J

j=1

[
q0.j +

∑I
i=1 q1ij

]
= 1,

bi ≥ 0 i = 1, ..., I,∑I
i=1 q1ijbi = q0.j j = 1, ..., J.

(C)

Suppose moreover that the matrix P1 of typical element p1ij has rank I, (P1P
′
1)−1P1p0 > 0

(where the inequality should be understood componentwise) and g is differentiable. Then
θ0 is identifiable and θ̂ = g(p̂0, p̂1), with p̂0 = (p̂011, ..., p̂0IJ) and for all (i, j), p̂0ij = b̂ip̂1ij,
is asymptotically normal and efficient.

Proposition 3.3.1 establishes that the maximum likelihood of p can be obtained by a con-
strained maximization with quite simple (although nonlinear) constraints. It also shows
how to compute an asymptotically efficient estimator of θ0. The idea behind the introduc-
tion of the (bi)1≤i≤I is that, by Bayes’ rule and Assumption 11,

p0ij =
Pr(D = 0|Y1 = y, Y2 = i)

Pr(D = 1|Y1 = y, Y2 = i)
p1ij,

and bi represents the odds Pr(D = 0|Y1 = y, Y2 = i)/Pr(D = 1|Y1 = y, Y2 = i). The
inequality constraints bi ≥ 0 then ensure that Pr(D = 1|Y1 = y, Y2 = i) is indeed a
probability, while the equality constraints are a rewriting of Equation (3.2.2) in this discrete
context (see the proof of Proposition 3.3.1 in the appendix).

The condition rank(P1) = I implies Ker (T ) ∩ F = {0}, and is thus sufficient for the
identification of θ0 by Theorem 3.2.1. It can be easily tested in the data because under
the null hypothesis that rank(P1) < I, we have µ0 ≡ det(P1P

′
1) = 0. Then, letting

µ̂ = det(P̂1P̂
′
1),
√
nµ̂ tends to a zero mean normal variable under the null by the delta

method. We use this result to test for the rank condition in our application (see Section 4
below).

θ̂ is asymptotically normal and efficient when (P1P
′
1)−1P1p0 > 0 . When (P1P

′
1)−1P1p0 =

0, the true parameters lie at the boundary of the parameter space. θ̂ is still a root-n
consistent estimator in this case. However, it is not asymptotically normal anymore (see,
e.g., Andrews, 1999, for a thorough study of such cases). Moreover, the standard bootstrap
typically fails to be valid (see Andrews, 2000, for an illustration). Subsampling remains

76 Laurent Davezies - "Four Essays in Econometrics" - Thèse IEP de Paris - 2013



CHAPTER 3. ENDOGENEOUS ATTRITION

valid, on the other hand. We use it in the application when the estimator is at the boundary
or close to it.

Finally, as noted before, we can test Assumption 11 by two ways. The first and standard
one is that the equality constraints in (C) may not hold when J > I, because there is no
(bi)1≤i≤I such that

∑I
i=1 bip1ij = p0.j. Basically, this arises when the different values of Z

are not “compatible”, as with the Sargan test in linear IV models. The second is that the
(bi)1≤i≤I satisfying these equality constraints must be nonnegative. This may not hold in
general, even when I = J . To test for both conditions simultaneously, we use the same
Wald statistic as the one considered by Kodde & Palm (1986). In our framework, the
unconstrained model where Assumption 11 does not necessarily hold is simply the multi-
nomial model on (D,DY2, Z) parameterized by p, and the maximum likelihood estimator
p̂U simply corresponds to the sample proportions. The constraints (C) corresponding to
Assumption 11 hold if and only if there exists b ≥ 0 (understood componentwise) such
that P ′1b = p0.. If P1 is full rank, the latter equation has a unique solution, the least square
solution (P1P

′
1)−1P1p0.. Therefore, if rank(P1) = I, Assumption 11 is equivalent to

[
P ′1(P1P

′
1)−1P1 − Id

]
p0. = 0, (P1P

′
1)−1P1p0. ≥ 0, (3.3.1)

where Id is the identity matrix. The idea, therefore, is to see whether
[
P ′1(P̂U

1 P
′
1)−1P̂U

1 − Id
]
p̂U0.

is close to zero and (P̂U
1 P

′
1)−1P̂U

1 p̂
U
0. is positive componentwise, where P̂U

1 and p̂U0. are the
estimators of P1 and p0. obtained from p̂U .

Let us rewrite the two constraints of (3.3.1) as h1(p) = 0 and h2(p) ≥ 0, and let h(p) =

(h1(p), h2(p)). Let also H0 = {0}J × R+I denote the set of h = (h1, h2) satisfying these
constraints. Denote by Σii (resp. Σ12) the asymptotic variance of ĥi ≡ hi(p̂

U) (resp.
covariance of h1(p̂U) and h2(p̂U)), and by Σ the asymptotic variance of ĥ ≡ h(p̂U). Finally,
let Σ̂ denote a consistent estimator of Σ. The test statistic Wn is then defined as

Wn = n min
h∈H0

(
h− ĥ

)′
Σ̂−
(
h− ĥ

)
, (3.3.2)

where Σ̂− denotes the Moore-Penrose inverse of Σ̂. Σ̂ is not full rank because the rank of
Σ11 is J − I, while h1(p) ∈ RJ . This is logical, since we only have J − I overidentifying
equality constraints here. ComputingWn is straightforward as it corresponds to a quadratic
programming problem.

We now indicate how to compute critical values that are asymptotically valid under the
null. We do not rely on the asymptotic result of Kodde & Palm (1986) here as they only
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compute the critical value corresponding to the least favorable case of the null hypothesis.
Namely, they compute c such that suph∈H0

limn→∞ Prh(Wn ≥ c) = α. This leads to a
conservative test, and therefore to low power if the null hypothesis is violated. By contrast,
we compute here a critical value corresponding to the most plausible DGP satisfying the
null hypothesis, given the data. Therefore, our test is not conservative for a whole range
of DGP satisfying the null hypothesis (see Proposition 3.3.2 below).

Let (h10, h20) = h0 = h(p1, p0.) denote the true parameter. The asymptotic distribution of
Wn depends on whether the components (h20i)1≤i≤I are equal to zero or not. Let Rj be
equal to R+ if h20j = 0, and to R otherwise. Then let

H(h0) = {0}J ×R1 × ...×RI .

We show in the proof of Proposition 3.3.2 below that

lim
n→∞

Pr(Wn > w) = Pr

(
min

h∈H(h0)
(h− U)′Σ− (h− U) > w

)
(3.3.3)

where U ∼ N (0,Σ). To compute the level of the test based on this asymptotic distribution,
we need to estimate H(h0). Following, e.g., Rosen (2008) or Andrews & Soares (2010), we
consider a sequence (cn)n∈N such that cn →∞ and cn/

√
n→ 0. We let R̂j be equal to R+

if ĥ2j ≤ cn/
√
n, and to R otherwise, and

Ĥ(h0) = {0}J × R̂1 × ...× R̂I .

Finally, let ĉα satisfy

ĉα = inf

{
c > 0 : Pr

(
min

h∈Ĥ(h0)

(
h− Û

)′
Σ̂−
(
h− Û

)
> c

)
≤ α

}
, (3.3.4)

where Û ∼ N (0, Σ̂). ĉα or, similarly, the p-value of the test, can be obtained easily by
simulations.

Proposition 3.3.2 For any α ≤ 1/2, the test defined by the critical region {Wn > ĉα} is
consistent. Its asymptotic level is α if J > I or Ri = R+ for some i ∈ {1, ..., I}, and 0
otherwise.

Note that the asymptotic distribution of Wn is degenerated when I = J and Ri = R for all
i, which is logical since there is no overidentifying equality constraints and the inequality
constraints are not binding. In this case, the asymptotic level of the test will be 0 rather
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than α, as could be expected. In all other cases, the test has a non-degenerated distribution
and its asymptotic level is exactly α. Following the analysis of Kodde & Palm (1986), it
is also possible to express this asymptotic distribution as a mixture of chi-square. The
corresponding weights, however, do not have a closed form in general, so that it is actually
easier to approximate the asymptotic distribution using (3.3.3). We use such simulations
to compute our p-values in the application below.

3.3.2 The continuous case

The situation is more involved when (Y, Z) is continuous, because the distribution of (Y, Z)

depends on the nonparametric function P (.) that is identified through an integral equation.
We mostly focus on the estimation of β0 = E[g(Y, Z)] here. The key insight is that this
problem is closely related to the estimation of linear functionals in additive, nonparametric
instrumental variables (IV) models. Recall that such models satisfy

Y = m(X) + ε, E(ε|Z) = 0.

These models have been investigated by, among others, Newey & Powell (2003), Hall &
Horowitz (2005), Santos (2011) and Severini & Tripathi (2011). m is identified through
the integral equation E(Y − m(Z)|X) = 0. This identifying equation is similar to ours,
namely E(1 − D/P (Y )|Z) = 0. Rather than m itself, one may be interested in linear
functionals of m, θ0 = E[φ(X)m(X)], where φ is known. In our context, we also have to
estimate a linear functional of 1/P , since β0 = E[Dβ(Y )/P (Y )]. Given these analogies, it
is not surprising that a similar methodology can be applied to our setting. An overview of
the relationship between the two problems is given by Table 3.1.
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Table 3.1: Analogy with additive nonparametric IV problems

Endogeneous Attrition Additive nonparametric IV
Observed variables (D,DY,Z) (Y,X,Z)
Unknown function 1/P (.) m(.)

Exclusion restriction E
(

1− D
P (Y )
|Z
)

= 0 E(Y −m(X)|Z) = 0

Operator T T (f) = E(f(Y )|D = 1, Z = .) T (f) = E(f(X)|Z = .)
Operator T ? T ?(f) = E(f(Z)|D = 1, Y = .) T ?(f) = E(f(Z)|X = .)

Parameter of interest β0 = E
(
Dg(Y )
P (Y )

)
θ0 = E (φ(X)m(X))

Root-n estimability
condition: ∃q ∈ L2(Z) s.t. T ?(q) = β(.) T ?(q) = φ(.)
Estimating equation β0 = E(q(Z)) θ0 = E(Y q(Z))

Estimator β̂ = Ê (q̂(Z)) θ̂ = Ê(Y q̂(Z))

The first issue we investigate is the root-n estimability of β0, that is to say, the existence
of regular estimators converging at the root-n rate to β0 (see, e.g., van der Vaart, 2000,
Chapter 25). Our results are closely related to those of Severini & Tripathi (2011) in the
classical IV framework. Let T ∗ be the adjoint operator of T , defined in (3.2.1):3

T ∗ : L2(Z|D = 1) → L2(Y |D = 1)

q 7→ (y 7→ E(q(Z)|D = 1, Y = y)) .

Actually, we only need considering the restriction T ∗Y0
(q) of T ∗(q) on Y0 = Supp(Y |D = 0),

which is included in Supp(Y |D = 1) under Assumption 12. By Assumptions 11 and
12, E(q(Z)|D = 1, Y ) = E(q(Z)|D = 0, Y ) P Y |D=0- almost surely. This allows us to
extend T ∗Y0

(q) on L2(Z|D = 0). By a slight abuse of notation, this extension, as well as
the restriction of β(.) on Y0, are also denoted by T ∗ and β(.). The condition for root-n
estimability is the following.

Assumption 15 g ∈ L2(Y, Z) and there exists q ∈ L2(Z|D = 0) such that T ∗(q) = β(.)

and
E

[
1− P (Y )

P (Y )
(q(Z)− g(Y, Z)) (q(Z)− g(Y, Z))′

]
<∞.

The condition g ∈ L2(Y, Z) is standard to derive the asymptotic distribution of 1
n

∑n
i=1 g(Yi, Zi),

even when Y is always observed. The second condition is similar to the one consid-
ered by Severini & Tripathi (2011), namely the existence of q satisfying T ?(q) = φ in

3We define here our operators on L2 rather than on L1, as in Section 2. This is not really a restriction
since square integrability is required for root-n consistency in the first place.
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their context. If the standard completeness condition holds, then Ker (T ) = {0} and
R (T ∗) = L2(Y |D = 1), where R (T ∗) denotes the range of T ∗ and A denotes the closure
of A. As a consequence if g ∈ L2(Y, Z), then β(.) lies in R (T ∗). However, when Y is con-
tinuous, R (T ∗) is not closed in general, so that even if the standard completeness holds,
it may happen that β(.) 6∈ R (T ∗). In such a case, the following theorem states that β0

can not be consistently estimated at the root-n rate, as in the additive nonparametric IV
problem. We also provide the semiparametric efficiency bound under Assumption 15.

Theorem 3.3.3 Suppose that Assumptions 10-12 hold, and β(.) ∈ (Ker (T ) ∩ Fg)⊥. Then
a regular root-n estimator of β0 exists only if Assumption 15 holds and in this case the
semi-parametric efficiency bound of θ0 is:

V ∗ = V (g(Y, Z)) + min
q(.)∈T ∗−1({β(.)})

E

[
1− P (Y )

P (Y )
(q(Z)− g(Y, Z)) (q(Z)− g(Y, Z))′

]
.

(3.3.5)

The second part of the theorem shows that the asymptotic efficiency bound comprises two
terms. The first corresponds to the standard estimation of β0 without any attrition, i.e.
when D = 1. The second accounts for attrition, and is indeed, loosely speaking, increasing
with P (Y ). It is also related to the quality of the approximation of g(Y, Z) by functions
of Z. If g only depends on Z, this term disappears, which makes sense because we can
estimate directly β0 by the sample average of g(Z). On the other hand, if g(Y, Z) only
depends on Y , the expectation on the right-hand side of (3.3.5) can be rewritten as

E

[
1− P (Y )

P (Y )
V (q(Z)|Y )

]
.

Hence, if there is a strong dependence between Y and Z, we may expect this second term
to be small.

Turning to inference, a key observation for estimating β0 under Assumption 15 is that

β0 = E [β(Y )] = E [E[q(Z)|D = 1, Y ]] = E [E[q(Z)|Y ]] = E[q(Z)],

where the third equality follows by conditional independence. Once more, a similar esti-
mating equation arises in nonparametric IV models, since we have θ0 = E[Y q(Z)]. In a
similar way as Santos (2011), the idea is to estimate q first, and then estimate β0 by taking
the sample average of the (q̂(Zi))i=1...n. A difficulty is that the q satisfying Equation 15
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may not be unique. Santos (2011) proposes to choose the one with the smallest norm.
Adapting his idea to our context, we consider

q̂ = arg min
q∈Θn

n∑
i=1

q(Zi)
2 s.t.

an
n

n∑
i=1

Ê
(

[β(Y )− q(Z)]f̂Y |D=1(Y )|Y = yi, D = 1
)2

≤ bn.

Θn denotes a sieve space, i.e. a subset of L2(Z) such that Θn ⊂ Θn+1 and q ∈ ∪Θn. f̂X
is a kernel estimator of fX and Ê[U |V = v] is a linear sieve estimator of E[U |V = v], for
any random variables (U, V ).4 The constraint of the program defines the set of functions
q ∈ Θn that approximately satisfy E(q(Z)|Y ) = β(Y ). Among those functions, q̂ is the
one with the smallest norm. Santos (2011) shows that under technical conditions and with
appropriate smoothing parameters, the corresponding estimator of θ0 is root-n consistent
and asymptotically normal. It is unclear, on the other hand, whether this estimator reaches
the semiparametric efficiency bound.

3.4 Application

3.4.1 Introduction

In this section, we apply the previous results to estimate transitions on employment status
in the French labor market. Beyond the unemployment rate, measuring such transitions is
important to assess, for instance, the importance of short and long-term unemployment.
We use for that purpose the Labor Force Survey (LFS) conducted by the French national
institute of statistics (INSEE). This survey is probably the best tool to measure such
transitions in France. Compared to administrative data or other surveys, it properly
measures unemployment with respect to the standard ILO definition, has a comprehensive
coverage of the population and has a large sample size. Since 2003, the French LFS is
a rotating panel with approximately 5,900 new households each quarter. Each household
is interviewed during six waves. On the first and sixth wave, interviews are face to face,
while on the others they are conducted by telephone. It has been argued that the use of
phone may introduce specific measurement errors (see, e.g., Biemer, 2001), so we focus on
the first and last interrogations hereafter. We also restrict ourselves to people between 15
and 65 and pool together all labor force surveys on the period 2003-2005.

4Here, we have supposed that β(Y ) is known, which is the case in the common situation where g(Y,Z)
does not depend on Z. Otherwise, β(Y ) should also be estimated with a nonparametric estimator of
E(g(Y, Z)|D = 1, Y ).
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Table 3.2: Summary statistics on the French LFS.

Statistics All Men Women
Main sample:
Number of individuals 107,031 52,245 54,786
Attrition rate on last waves 21.78% 22.26% 21.31%
Participation rate on first waves 68.17% 73.91% 62.69%
(Uncorrected) participation rate on last waves 67.38% 72.75% 62.32%
Unemployment rate on first waves 9.68% 9.05% 10.39%
(Uncorrected) unemployment rate on last waves 8.02% 7.22% 8.90%
Refreshment sample for last waves:
Number of observations 109,404 53,337 56,067
Participation rate on the refreshment sample 67.92% 73.31% 62.78%
Unemployment rate on the refreshment sample 9.97% 9.43% 10.57%
Sources: French LFS, first waves between 2003 and 2005, individuals between 15 and 65 year
old.

Table 3.2 provides some summary statistics on our dataset, which emphasize that attrition
may be problematic in the LFS survey. This is especially striking when we compare the
(uncorrected) participation and unemployment rate on last waves and the one on the
refreshment sample, which corresponds to entrants interviewed at the same time. We
observe differences around 1.5 percent points on participation rates, and around 2 percent
points on unemployment rates. To understand these differences, recall that in the French
LFS, moving households are not followed by interviewers, who stick instead on housings
which were selected in the first waves. This is likely to affect activity rates and transition
estimates on the labor market, because transitions are very different for moving and non-
moving households.

This latter fact can be illustrated using the French sample of the European Survey on
Income Living Conditions (SILC). Contrary to the LFS, this panel follows individuals even
if they move. It is therefore possible to estimate the difference in the transition matrix
for those who have moved and the others. Note, on the other hand, that it is difficult
to use its results as a benchmark, for several reasons. First, and most importantly, the
status on the labor market is not obtained with the same questions as in the LFS, and it is
well-known that this matters much for defining in particular unemployment (for evidence
on this issue in France, see, e.g., Guillemot, 1996, and Gonzalez-Demichel & Nauze-Fichet,
2003). Second, still around 40% of the individuals in the French sample of SILC that move
from one year to another are lost, so the bias stemming from such nonrespondents may
still be substantial. That said, Table 3.3 shows that the difference in the transitions on
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the labor market between individuals who have moved and the others are substantial. In
particular, the diagonal of the transition matrix is much smaller for individuals who move.
The difference reaches around 30 percentage points for inactive people. This suggests that
the MAR and HIRR methods may overestimate the diagonal of the transition matrix.

Table 3.3: Comparison moving and non moving people in SILC

Non moving Moving
Y2 = Empl. Y2 = Unempl. Y2 = Out L.F. Y2 = Empl. Y2 = Unempl. Y2 = Out L.F.

IV-MAR
Y1 = Empl. 92.86

(0.34)
3.50
(0.27)

3.64
(0.23)

90.53
(1.34)

3.99
(0.95)

5.48
(0.99)

Y1 = Unempl. 30.48
(1.84)

51.31
(2.05)

18.21
(1.60)

38.32
(6.33)

41.55
(6.60)

20.13
(0.52)

Y1 = Out L.F. 7.40
(0.48)

5.83
(0.45)

86.77
(0.64)

34.64
(3.67)

8.05
(2.13)

57.30
(3.77)

Sources: French sample of SILC 2004/2005, individuals between 15 and 65.
Notes: standard error in parentheses.

As suggested in Section 2, we propose to correct for potentially endogenous attrition by
using past employment status, measured by a retrospective question asked on the first
waves. The underlying assumption is that attrition depends on the current transition
on this outcome, but not on previous ones. This assumption is plausible if most of the
endogeneity in attrition stems from the moving of households. The instrument Z we use
is employment status six months before the first wave. We choose to divide this variable
in three categories (unemployed, employed, and out of labour force), in the same way as
our outcome, which is contemporary employment status.

3.4.2 The results

We first check the rank condition between Z1 and Y2 conditional on gender and Y1, relying
on the determinant test proposed in Subsection 3.1. Results are displayed in Table 3.4.
The p-value of the rank test associated to any state Y1 are always smaller than 10% for both
men and women. We also implement the test developed in the Proposition 3.3.2, using
cn = ln(n). Though some inequality constraints are binding with Y1 = Unempl., we do not
reject the independence assumption Z ⊥⊥ D|Y1, Y2 here, the p-value being close to 0.50.
The p-values equal to one that we obtain correspond to situations where the inequality
constraints are not binding. In such a case, Wn = 0 and we accept the null hypothesis at
any level.
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Table 3.4: Rank test between Z and Y2 conditional on gender and Y1.

P-value P-value
(Men) (Women)

Y1 = Empl. 0.004 0.001
Y1 = Unempl. 0.077 0.057
Y1 = Out L.F. 0.059 0.091
Sources: French LFS (2003-2005).
Notes: the p-values are obtained by bootstrap
with 1,000 bootstrap samples.

Table 3.5: Test of Z ⊥⊥ D|Y1, Y2 by gender.

P-value P-value
(Men) (Women)

Y1 = Empl. 1 1
Y1 = Unempl. 0.491 0.488
Y1 = Out L.F. 1 1

Sources: French LFS (2003-2005).
Notes: we use the test based on Wn and ĉα defined
in (3.3.2) and (3.3.4).

Second, we estimate the probabilities of attrition (or non-attrition) conditional on (Y1, Y2).
Our results, displayed in Table 3.6, confirm that attrition is related to transitions on
employment status. People who remain stable on the labor market have always a significant
larger probability to respond in the second wave than people who change. In particular,
we observe a large attrition for those who move from employment to unemployment or
inactivity whereas attrition seems negligible for those who remain unemployed at both
periods. As suggested above, such transitions are likely to be related to house movings. For
instance, transitions from inactivity to employment or unemployment mostly correspond to
students who enter the labor market and move at the same time. Such features cannot be
captured under the missing at random (MAR) scheme D ⊥⊥ Y2|Y1, or the additive model of
Hirano et al. (2001). In particular, they tend to underestimate the probability of attrition
for people whose status change on the labor market, and to overestimate them for stable
trajectories (see Table 3.7 for the tests on the difference between our IV models and the two
others). Note also that we estimate the probability of attrition to be zero for people who
remain unemployed. This indicates that for those people, the inequality constraint bi ≥ 0

is binding. This could suggest that the exclusion restriction is violated. However, the test
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conducted previously shows that the unconstrained estimator, if negative, is actually close
to zero, and we cannot reject at standard levels that the true value is actually positive.
That b̂i = 0 for individuals initially unemployed also indicates that the true value of bi may
be equal to zero, in which case the estimator is not asymptotically normal. We therefore
use subsampling rather than the bootstrap or the normal approximation for inference on
this subpopulation.

Table 3.6: Estimation of P (D = 1|Y1, Y2) by gender under various as-
sumptions.

Men Women
Y2 = Empl. Y2 = Unempl. Y2 = Out L.F. Y2 = Empl. Y2 = Unempl. Y2 = Out L.F.

IV
Y1 = Empl. 84.33

(0.83)
34.33
(3.93)

46.31
(7.11)

85.72
(0.92)

46.45
(6.17)

44.57
(4.42)

Y1 = Unempl. 55.56
(4.73)

100
(4.6)

51.01
(7.13)

52.46
(4.88)

100
(4.45)

76.38
(6.15)

Y1 = Out L.F. 54.83
(10.91)

55.85
(11.15)

85.72
(2.01)

56.43
(11.88)

67.1
(17.22)

84.34
(1.11)

MAR
Y1 = Empl. 78.22

(0.22)
78.22
(0.22)

78.22
(0.22)

79.00
(0.22)

79.00
(0.22)

79.00
(0.22)

Y1 = Empl. 65.9
(0.81)

65.9
(0.81)

65.9
(0.81)

69.77
(0.78)

69.77
(0.78)

69.77
(0.78)

Y1 = Empl. 79.52
(0.35)

79.52
(0.35)

79.52
(0.35)

79.77
(0.28)

79.77
(0.28)

79.77
(0.28)

HIRR
Y1 = Empl. 79.01

(0.29)
59.98
(2.13)

76.44
(2.17)

79.57
(0.3)

66.59
(2.18)

77.57
(2.01)

Y1 = Empl. 75.84
(1.4)

55.55
(1.25)

73.01
(2.06)

76.04
(1.45)

61.89
(1.37)

73.81
(1.75)

Y1 = Empl. 82.41
(1.68)

65.09
(2.33)

80.15
(0.45)

82.01
(1.68)

69.99
(2.01)

80.18
(0.37)

Sources: French LFS (2003-2005).
Notes: the standard errors, in parentheses, are computed with the bootstrap except for Y1 =

Unempl. in the IV case, where we use subsampling.
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Table 3.7: Comparison between our method and other ones on P̂ (D =
1|Y1, Y2)

Men Women
Y2 = Empl. Y2 = Unempl. Y2 = Out L.F. Y2 = Empl. Y2 = Unempl. Y2 = Out L.F.

IV-MAR
Y1 = Empl. 6.11

(<0.001)
−43.89
(<0.001)

−31.91
(<0.001)

6.72
(<0.001)

−32.55
(<0.001)

−34.43
(<0.001)

Y1 = Unempl. −10.34
(0.018)

34.1
(<0.001)

−14.9
(0.009)

−17.31
(<0.001)

30.23
(<0.001)

6.61
(0.322)

Y1 = Out L.F. −24.69
(0.024)

−23.67
(0.034)

6.2
(0.002)

−23.33
(0.049)

−12.66
(0.462)

4.58
(<0.001)

IV-HIRR
Y1 = Empl. 5.32

(<0.001)
−25.64
(<0.001)

−30.13
(<0.001)

6.15
(<0.001)

−20.14
(0.002)

−33
(<0.001)

Y1 = Unempl. −20.28
(<0.001)

44.45
(<0.001)

−22.01
(<0.001)

−23.58
(<0.001)

38.11
(<0.001)

2.57
(0.862)

Y1 = Out L.F. −27.58
(0.012)

−9.24
(0.415)

5.57
(0.005)

−25.57
(0.033)

−2.89
(0.867)

4.16
(<0.001)

Sources: French LFS (2003-2005).
Notes: the p-values, in parentheses, are computed with the bootstrap (Y1 = Empl. and Out L.F.)
and subsampling (Y1 = Unempl.).

Before presenting our results on transitions, we estimate the distribution of Y2 with our
IV method and compare it with the one of the refreshment sample. We also estimate this
distribution supposing that data are missing at random (MAR), i.e. D ⊥⊥ Y2|Y1. Table
3.8 shows that on the five statistics related to the distribution of Y2, our estimator is close,
and not statistically significant at usual levels, to the one based on the refreshment sample.
Those based on the MAR assumptions, on the other hand, do differ significantly for several
features of Y2. In other words, we can reject, using the refreshment sample, the hypothesis
that attrition only depends on past outcomes, while our independence condition is not
rejected in the data. Note that we cannot use the refreshment sample to properly compare
our method with the one of Hirano et al. (2001) because by construction, their estimator
exactly matches the distribution of Y2 on the refreshment sample.
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Table 3.8: Comparison of the methods with the refreshment sample

Men Women
REF. MAR IV REF. MAR IV

P (Y2 = Empl.) 66.4 67.47
(<0.0001)

64.59
(0.055)

56.15 56.81
(0.0054)

55.07
(0.159)

P (Y2 = Unempl.) 6.92 5.62
(<0.0001)

7.53
(0.235)

6.63 5.78
(<0.0001)

6.51
(0.801)

P (Y2 = Out L.F.) 26.69 26.92
(0.2641)

27.88
(0.159)

37.22 37.4
(0.4243)

38.42
(0.127)

Participation rate 73.31 73.08
(0.2641)

72.12
(0.159)

62.78 62.6
(0.4243)

61.58
(0.127)

Unemployment rate 9.43 7.68
(<0.0001)

10.44
(0.146)

10.57 9.24
(<0.0001)

10.58
(0.982)

Sources: French LFS (2003-2005).
Notes: the p-values of the difference with the refreshment sample, in parentheses,
are obtained using the bootstrap (MAR) and subsampling (IV).

Finally, we compute transitions on the labor market using our IV method, the MAR as-
sumption and the additive method of Hirano et al. (2001) (see Table 3.9). Not surprisingly
given the discrepancies on the probabilities of attrition, our results differ significantly from
those obtained by the other methods. Other methods lead in particular to a higher sta-
bility on the labor market. This is not surprising, given the assumptions underlying these
methods. Table 3.3 suggests that there is a specific effect of being in the diagonal on the
transition matrix on attrition, but neither the MAR assumption nor the additivity condi-
tion of Hirano et al. (2001) can incorporate such effects. The final results suggest that this
could lead to important biases on the estimation of transitions.
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Table 3.9: Estimated probability of transitions by gender under various
assumptions

Men Women
Y2 = Empl. Y2 = Unempl. Y2 = Out L.F. Y2 = Empl. Y2 = Unempl. Y2 = Out L.F.

IV
Y1 = Empl. 85.86

(0.83)
6.12
(0.69)

8.02
(1.11)

83.46
(0.9)

4.73
(0.62)

11.81
(1.15)

Y1 = Unempl. 49
(2.97)

25.85
(2.33)

25.15
(2.86)

52.61
(2.9)

25.3
(2.25)

22.08
(2.6)

Y1 = Out L.F. 13.81
(2.59)

6.48
(1.15)

79.72
(1.81)

12.74
(2.24)

5.92
(1.49)

81.34
(1.07)

MAR
Y1 = Empl. 92.56

(0.16)
2.69
(0.1)

4.75
(0.13)

90.56
(0.18)

2.78
(0.1)

6.66
(0.16)

Y1 = Empl. 41.31
(1.03)

39.23
(0.97)

19.46
(0.82)

39.56
(0.99)

36.27
(0.94)

24.18
(0.86)

Y1 = Empl. 9.52
(0.28)

4.55
(0.21)

85.93
(0.34)

9.02
(0.22)

4.98
(0.17)

86
(0.27)

HIRR
Y1 = Empl. 91.64

(0.2)
3.5

(0.12)
4.86
(0.14)

89.92
(0.22)

3.3
(0.12)

6.79
(0.18)

Y1 = Empl. 35.9
(0.93)

46.54
(0.92)

17.57
(0.79)

36.29
(0.94)

40.87
(0.88)

22.85
(0.84)

Y1 = Empl. 9.19
(0.28)

5.56
(0.23)

85.26
(0.36)

8.77
(0.22)

5.68
(0.17)

85.55
(0.29)

Sources: French LFS (2003-2005).
Notes: the standard errors, in parentheses, are computed with the bootstrap except for Y1 =

Unempl. in the IV case, where we use subsampling.

3.5 Conclusion

In this paper, we develop an alternative method to correct for endogenous attrition in
panel. We allow for both dependence on current and past outcomes and, thanks to the
availability of an instrument, do not need to impose functional restrictions on the probabil-
ity of attrition. The application suggests that our method may do a good job for handling
attrition processes which mostly depend on transitions.

The paper raises challenging issues, related to our main conditional independence assump-
tion. The first is whether the refreshment sample could be used to weaken this assumption,
rather than to test for it. This may be useful in settings where this condition is considered
too stringent. The second is whether one can build bounds on parameters of interest if the
conditional independence assumption is replaced by weaker conditions such as monotonic-
ity ones. Finally, an issue that also arises for nonparametric additive IV models would be

Laurent Davezies - "Four Essays in Econometrics" - Thèse IEP de Paris - 2013 89



CHAPTER 3. ENDOGENEOUS ATTRITION

to obtain efficient estimators for linear functionals under Assumption 15, and consistent
estimators without such an assumption.
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3.6 Appendix: proofs

Theorem 3.2.1

The distribution of (Y, Z,D) is identified if and only if the distribution of Y |Z,D = 0 is
identified. We have:

fY |Z=z,D=0(y) =
fD,Y,Z(0, y, z)

fD,Z(0, z)

=
1

fD,Z(0, z)
P (D = 0|Y = y, Z = z)fY,Z(y, z)

=
1

fD,Z(0, z)

P (D = 0|Y = y, Z = z)

P (D = 1|Y = y, Z = z)
fY,Z|D=1(y, z)

=
1

fD,Z(0, z)

1− P (y)

P (y)
fY,Z|D=1(y, z).

Then we deduce that Y |Z,D = 0 is identified if and only if P is identified. Under assump-
tions 11 and 12 (i), the function P is such that T (1/P ) = w and 1/P ≥ 1. Reciprocally, let
Q a function such that 1/Q ∈ L1(Y |D = 1), T (1/Q) = w and 1/Q ≥ 1. If the unobserved
distribution of Y |Z,D = 0 is such that

fY |Z=z,D=0(y) =
1

fD,Z(0, z)

1−Q(y)

Q(y)
fY,Z|D=1(y, z),

we have P (D = 1|Y ) = Q(Y ) and D ⊥⊥ Z|Y . So the set of identification of P is

{Q : 1/Q ∈ L1(Y |D = 1), T (1/Q) = w, 1/Q ≥ 1} ,

which is reduced to a point if and only if Ker (T )∩F = {0}. This proves the first point of
Theorem 3.2.1.

For the second and the third points, let Q be such that T (1/Q) = w, 1/Q ≥ 1 and
E(|g(Y, Z)|/Q(Y ) |D = 1) < ∞. Choosing fY |Z,D=0 as above, we can rationalize that
P (D = 1|Y ) = Q(Y ), D ⊥⊥ Z|Y and g ∈ L1(Y, Z). So the set of identification of 1/P is

{
1/Q : 1/Q ∈ L1(Y |D = 1), T (1/Q) = w, 1/Q ≥ 1, E(|g(Y, Z)|/Q(Y )|D = 1) <∞

}
or, equivalently,

{1/P + h : h ∈ Ker (T ) ∩ F , E(|gh||D = 1) <∞} = 1/P + Ker (T ) ∩ Fg.
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For all h ∈ Fg the quantities E(|g(Y, Z)h(Y )||D = 1), E(g(Y, Z)h(Y )|D = 1), E(|β(Y )h(Y )||D =

1), E(β(Y )h(Y )|D = 1) are well defined and finite. Then the set identification of β0 is

{β0 + E(β(Y )h(Y )|D = 1)E(D) : h ∈ Ker (T ) ∩ Fg} ,

which reduces to a point if and only if E(β(Y )h(Y )|D = 1) = 0 for every h ∈ Ker (T )∩Fg.
Hence, β0 is identified if and only if β(.) ∈ (Ker (T ) ∩ Fg)⊥ �

Proposition 3.2.2

First, remark that if η ⊥⊥ (Y0, Y1, Y2), then η ⊥⊥ Y0|Y1, Y2. As a result, D ⊥⊥ Y0|Y and
Assumption 11 holds with Z1 = Y0. Now, suppose that T (h) = 0 for h ∈ F , and let us
prove that h = 0. First, T (h) = 0 rewrites as

0 = E(Dh(Y1, Y2)|Y0, Y1) = E(h̃(Y1, Ỹ2)|Y0, Y1),

with Ỹt = Λ(Yt) and h̃(y1, y2) = h(y1,Λ(y2))× P (y1, y2). As a result, for all t ∈ R,

E(h̃(Y1, Ỹ2)eitỸ0|Y1) = 0

Because ε0 ⊥⊥ (U, Y1, Y2),
E(h̃(Y1, Ỹ2)eitU |Y1)Ψε0(t) = 0.

Thus, by assumption, t 7→ E(h̃(Y1, Ỹ2)eitU |Y1) is equal to zero except perhaps on a set
of isolated points. Because this function is continuous by dominated convergence, it is
actually equal to zero on the whole line. This implies (see e. g. Bierens, 1982, Theorem 1)

E(h̃(Y1, Ỹ2)|Y1, U) = 0.

Now, ε2 is independent of (Y1, U) and U admits a density with respect to the Lebesgue
measure. Thus, for almost all y1 and almost every u,∫

h̃(y1, u− v)f−ε2(v)dv = 0. (3.6.1)

Fix y1 so that Equation (3.6.1) holds for almost every u. Because h ≥ 1− 1/P by assump-
tion, h̃ is bounded below by -1. Letting g = h̃(y1, .) and ? denote the convolution product,
we have (g + 1) ? f−ε2 = 1 almost everywhere. Besides, by the first step of the proof of
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Proposition 2.2 of D’Haultfœuille (2010), there exist positive c1, c2 and 0 < α′ < α − 2

such that
c1 ≤ (fε2 ? fα′)(x)× (1 + |x|)α

′+1 ≤ c2, (3.6.2)

where fα′ denotes the density of an α′-stable distribution of characteristic function exp(−|t|α′).
Moreover, because g + 1, f−ε2 and fα′ are nonnegative, we can apply Fubini’s theorem, so
that

(g + 1) ? (f−ε2 ? fα′) = ((g + 1) ? f−ε2) ? fα′ = 1 ? fα′ = 1.

Thus, g ? φ = 0, with φ = f−ε2 ? fα′ . In other words, we have a similar result as (A.5) in
the proof of D’Haultfœuille (2010). Applying the third step of this proof shows that the
location family generated by φ is complete. Thus g = 0 almost everywhere. Because this
reasoning holds for almost all y1, h(Y1, Y2) = 0 almost surely. Hence, Ker (T ) ∩ F = {0},
and the result follows by Theorem 3.2.1 �

Proposition 3.3.1

For simplicity, we keep hereafter the conditioning on Y1 = y implicit. We first prove that
D ⊥⊥ Z1|Y2 is equivalent to the existence of bi ≥ 0, for i = 1, ..., I such that ∀(i, j), p0ij =

bip1ij. For i ∈ {1, ...I}, let A(i) the set of j such that Pr(Y2 = i, Z1 = j) > 0. Suppose first
that Z1 ⊥⊥ D|Y2. Then for all i and all j ∈ A(i),

[1− Pr (D = 1|Y2 = i, Z1 = j)] /Pr (D = 1|Y2 = i, Z1 = j)

does not depend on j. Thus, there exists bi ≥ 0 such that for all j ∈ A(i),

Pr (D = 0|Y2 = i, Z1 = j) = bi Pr (D = 1|Y2 = i, Z1 = j) .

Multiplying both sides by Pr(Y2 = i, Z1 = j) and remarking that both sides are equal to 0
when j 6∈ A(i), we get, for all j, p0ij = bip1ij. This proves the “only if” part.

Conversely, suppose that there exists bi ≥ 0 such that p0ij = bip1ij. Because
∑

j p1ij =

P (D = 1, Y2 = i) > 0 by Assumption 12, p0ij = bip1ij implies that

p0ij =

∑
j p0ij∑
j p1ij

p1ij =
Pr(D = 0, Y2 = i)

Pr(D = 1, Y2 = i)
p1ij.

In other words, P (Z1 = j|D = 0, Y2 = i) = P (Z1 = j|D = 1, Y2 = i) for all j, implying
that Z1 ⊥⊥ D|Y2 = i.
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We deduce that the distribution of (D,DY2, Z1) is compatible with D ⊥⊥ Z1|Y2 if and only
if

∀(i, j),∃p0ij ≥ 0,∃bi ≥ 0 :
∑
i

p0ij = p0.j and p0ij = bip1ij.

This condition is also equivalent to the existence, for all i, of bi ≥ 0 satisfying p0.j =∑
i bip1ij for all j. If such (bi)i=1,...,I exist, indeed, p0ij can always be defined by p0ij = bip1ij.

As a result, the maximum likelihood estimator p̂ of p under Assumptions 11, 12 and 14 is
defined by:

(p̂, b̂) = arg max
(q,b)∈[0,1](I+1)J×R+I

J∑
j=1

[
n0.j ln q0.j +

I∑
i=1

n1ij ln q1ij

]

s.t.

∣∣∣∣∣∣
∑J

j=1

[
q0.j +

∑I
i=1 q1ij

]
= 1,∑I

i=1 q1ijbi = q0.j j = 1, ..., J.

To complete the proposition, remark that p̂ is an asymptotically efficient estimator of p.
The Fisher information matrix of p is singular because

∑
j,i p1ij +

∑
j p0.j = 1. However

the parameter u defined by the IJ + J − 1 first components of p has a nonsingular Fisher
information matrix. If matrix P1 has rank I then p0 = P ′1(P1P

′
1)−1P1p0., and then p0 = l(u)

and θ = g(p0, p1) = k(u) with l and k being differentiable at u. Because P̂1 has rank i with
probability tending to one, b̂ is equal to (P̂1P̂

′
1)−1P̂1p̂0. with probability tending to one and

then b̂ = m(û) with m differentiable with probability tending to one. It follows that b̂, p̂0

and θ̂ are efficient estimators of (P1P
′
1)−1P1p0., p0 and θ (see for instance van der Vaart,

2000, Section 8.9) �

Proposition 3.3.2

The proof proceeds in three steps. We first establish that the set Ĥ(h0) approximates
well the set H(h0). Then we establish the asymptotic distribution of Wn under the null.
Thirdly, we compute the asymptotic level of the test, and show that it is consistent.

Step 1. Pr
(
Ĥ(h0) = H(h0)

)
→ 1.

It suffices to show that

Pr
(
ĥ2j ≤ cn/

√
n
)
→ 1 when h20j = 0 (3.6.3)

Pr
(
ĥ2j > cn/

√
n
)
→ 1 when h20j > 0 (3.6.4)
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We have
√
n
(
ĥ2j − h20j

)
→ Uj ∼ N (0, σ2

j ).

Fix ε > 0, and let cj be such that Pr(Uj ≤ cj) = Pr(Uj > −cj) > 1− ε. Because cn →∞,
we have cn ≥ cj for n large enough. Thus, when h20j = 0,

Pr(ĥ2j ≤ cn/
√
n) ≥ Pr(

√
nĥ2j ≤ cj)→ Pr(Uj ≤ cj) > 1− ε.

This establishes (3.6.3). When h20j > 0, we have cn −
√
nh20j ≤ −cj for n large enough

because cn/
√
n→ 0. Thus,

Pr
(
ĥ2j > cn/

√
n
)

= Pr
(√

n(ĥ2j − h20j) > cn −
√
nh20j

)
≥ Pr

(√
n(ĥ2j − h20j) > −cj

)
→ Pr (Uj > −cj) > 1− ε.

Hence, (3.6.4) also holds, ending the first step.

Step 2. Asymptotic distribution of Wn under the null.

By Step 1, we can suppose without loss of generality that Ĥ(h0) = H(h0). We show here
that (3.3.3) holds under the null hypothesis. Let h̃ = ĥ2 − Σ̂′12Σ̂−11ĥ1, U2n =

√
n(h̃ − h20),

V = Σ22−Σ′12Σ−11Σ12 and V̂ = Σ̂22− Σ̂′12Σ̂−11Σ̂12. Straightforward computations show that
U2n → U2 ∼ N (0, V ). Besides, we have, following Kodde & Palm (1986),

Wn = nĥ′1Σ̂−11ĥ1 + nmin
x≥0

(
x− h̃

)′
V̂ −1

(
x− h̃

)
= nĥ′1Σ̂−11ĥ1 + min

x≥0

(√
n(x− h20)−

√
n(h̃− h20)

)′
V̂ −1

(√
n(x− h20)−

√
n(h̃− h20)

)
= nĥ′1Σ̂−11ĥ1 + min

t≥−
√
nh20

(t− U2n)′ V̂ −1 (t− U2n) .

Let H2(h0) = R1 × ...×RI and define

W̃n = nĥ′1Σ̂−11ĥ1 + min
t∈H2(h0)

(t− U2n)′ V̂ −1 (t− U2n) .

For a given ε, there exists a compact set K such that Pr((U2n, V̂ ) ∈ K) ≥ 1 − ε for all n
large enough. Let π(u, V ) = arg mint∈H2(h0) (t− u)′ V −1 (t− u). Because H2(h0) is convex,
π is a function rather than simply a correspondence. Moreover, it is continuous by Berge
maximum theorem (see, e.g., Carter, 2001, Theorem 2.3). Thus π(K) is compact. As a
result, for n large enough, π(K) is included in [−

√
nh201,+∞[×... × [−

√
nh201,+∞[. In

Laurent Davezies - "Four Essays in Econometrics" - Thèse IEP de Paris - 2013 95



CHAPTER 3. ENDOGENEOUS ATTRITION

other words, for n large enough,

Pr(Wn = W̃n) ≥ Pr((U2n, V̂ ) ∈ K) ≥ 1− ε. (3.6.5)

Besides, the application Ξ 7→ Ξ− is continuous once restricted to matrices or rank J (see,
e.g., Stewart, 1969). By continuity of π and the continuous mapping theorem, we have,
under the null hypothesis,

W̃n
L−→ U1Σ−11U1 + min

t∈H2(h0)
(t− U2)′ V −1 (t− U2) = min

t∈H(h0)
(t− U)′Σ− (t− U) , (3.6.6)

where U1 ∼ N (0,Σ11) and U = (U1, U2 − Σ′12Σ−11U1). Note that U ∼ N (0,Σ). Besides,
(3.6.5) implies that Wn converges to the same distribution as W̃n. Hence, (3.6.6) implies
that (3.3.3) holds.

Step 3. Consistency and asymptotic level of the test.

Let us define, for any positive matrix Ξ of rank J

g(u,Ξ) = min
t∈H(h0)

(t− u)′ Ξ− (t− u) .

Let Û be a random normal variable satisfying Û |Σ̂ ∼ N (0, Σ̂). Because Σ̂
P−→ Σ, we have

(Û , Σ̂)
L−→ (U,Σ). Thus, by Berge maximum theorem once more, g is continuous. As a

result, by the continuous mapping theorem, g(Û , Σ̂)
L−→ g(U,Σ).

Now, suppose first that J > I or Ri = R+ for some i ∈ {1, ..., I}. Then g(U,Σ) is a
mixture of chi-square distributions, and the weight of the chi-square of degree 0 is smaller
than 1/2 (see, e.g., Kodde & Palm, 1986). Therefore, its quantile function is continuous
on the interval (1/2, 1). Combined with the convergence in distribution of g(Û , Σ̂), this
implies (see, e.g., van der Vaart, 2000, Theorem 21.2) that for any α ≤ 1/2, ĉα → cα,
the quantile of order 1 − α of g(U,Σ). Because the convergence of Fn, the cdf of Wn,
towards F , the cdf of g(U,Σ), is uniform (van der Vaart, 2000, Lemma 2.11), we have
Fn(ĉα)→ F (cα) = 1− α. Thus, the test has the asymptotic level α.

Now, if J = I and Ri = R for all i, g(U,Σ) = 0 and the previous reasoning does not apply.
On the other hand, remarking that Wn = 0 when Ĥ(h0) = H(h0), we have

Pr(Wn > ĉα) ≤ Pr(Wn > 0) ≤ Pr
(
Ĥ(h0) 6= H(h0)

)
→ 0.

Thus, the test has asymptotic level 0 in this case.
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Finally, under the alternative, h(p) 6∈ H0. Then, by the continuous mapping theorem,

min
h∈H(h0)

(
h− ĥ

)′
Σ̂−
(
h− ĥ

)
P−→ min

h∈H(h0)
(h− h(p))′Σ− (h− h(p)) > 0.

This implies that Wn
P−→ +∞, proving that the test is consistent �

Proof of Theorem 3.3.3

The proof proceeds in two steps. In the first step we follow the approach of van der Vaart
(2000, Chapter 25), who derive a necessary condition for the existence of a regular root-n
estimator in semiparametric models. Intuitively, we exploit the fact that any score for
the distribution of (D,DY,Z) is a projection of a score for the distribution of (D, Y, Z).
This allows us to obtain a necessary condition for the existence of an influence function.
In the second step, we characterize the set of such influence functions and derive the
semiparametric efficiency bound of β0.

Let us first introduce some notations. For the random variables U and V , we define L20(U)

and L20(U |V ) as the following sets of functions:

L20(U) = L2(U) ∩ {f |E(f(U)) = 0} ,

L20(U |V ) = L2(U, V ) ∩
{
f |E(f(U, V )2|V ) <∞, E(f(U, V )|V ) = 0 V -almost surely

}
.

For any closed linear space E ⊂ L2(U), we also let PE denote the orthogonal projection on
E .

Step 1. Assumption 15 is a necessary condition for existence of a regular root-n

estimator.

Let T (respectively S) denote the set of score function, for any subparametric model
of the distribution of (D, Y, Z) (respectively of (D,DY,Z)). By Assumption 11, T =

L20(Y ) + L20(Z|Y ) + L20(D|Y ) ⊂ L20(D, Y, Z). Besides, because (D,DY,Z) is a function
of (D, Y, Z), it follows from van der Vaart (2000, Section 25.5) that S = {E(t|D,DY,Z) :

t ∈ T }. Hence, T and S are linear and closed here.

We define the score operator A by

A : T → L20(D,DY,Z)

h 7→ [(d, u, z) 7→ E(h(D, Y, Z)|D = d,DY = u, Z = z)] .
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Note that by definition, R(A) = S. The usual adjoint of A is the identity here. But,
following van der Vaart (2000), we define the adjoint score operator A∗ as the adjoint of
A followed by the orthogonal projection onto T :

A∗ : L20(D,DY,Z) → T
ψ 7→ PT ψ.

Because L20(Y ), L20(Z|Y ) and L20(D|Y ) are orthogonal for the usual inner product of
L2(D, Y, Z), PT ψ = PL20(Y )ψ + PL20(Z|Y )ψ + PL20(D|Y )ψ.

Now let us consider a regular parametric submodel indexed by θ whose density with respect
to an appropriate mesure is

fY (y, θ)fZ|Y (z|y, θ)(P (y, θ)d+ (1− P (y, θ)(1− d)).

Let also θ0 denote the parameter corresponding to the true model. Defining µ(θ) =

E(g(Y, Z)|θ), we have

µ(θ) =

∫
g(y, z)fY (y, θ)fZ|Y (z|y, θ)dydz.

The score of the submodel in θ0 is, with obvious notations, sY (y)+sZ|Y (z|y)+ P ′(y)(d−P (y))
P (y)(1−P (y))

.
Then

∂µ

∂θ
(θ0) = E

(
g(Y, Z)(sY (Y ) + sZ|Y (Z|Y ))

)
.

It follows that the set of influence function is {g(Y, Z)} + L20(Y, Z)⊥. We can check that
the second term is actually the set of constants. Thus, the efficient influence function
corresponding to the complete model where (D, Y, Z) is observed, defined as the unique
influence function that belongs to T , is g(Y, Z)− β0.

Theorem 25.32 of van der Vaart (2000) shows that if a regular root-n estimator exists, then
g(Y, Z) − β0 ∈ R(A∗). Let us now prove that this condition is equivalent to Assumption
15.

Let ψ ∈ L20(D,DY,Z) be such that A∗(ψ) = g(Y, Z)− β0. Because A∗ is a projector and
satisfies A∗ = PL20(Y ) + PL20(Z|Y ) + PL20(D|Y ), we have

(a) PL20(Y )(ψ) = PL20(Y )(g − β0) or equivalently E (ψ|Y ) = β(Y )− β0,

(b) PL20(D|Y )(ψ) = PL20(D|Y )(g − β0) or equivalently E (ψ|D, Y )− E (ψ|Y ) = 0
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Let m(Y, Z) = ψ(1, Y, Z) and l(Z) = ψ(0, 0, Z), we have :

E(ψ|D, Y ) = β(Y )−β0 ⇒ DE [m(Y, Z)|Y,D]+(1−D)E [l(Z)|Y,D] = β(Y )−β0 (3.6.7)

Hence, if g(Y, Z)−β0 ∈ R(A∗), there exists l ∈ L2(Z|D = 0) such that E [l(Z)|Y,D = 0] =

β(Y ) − β0 P
Y |D=0− almost surely and m = 1/P (g − β0 − (1− P )l) ∈ L2(Y, Z|D = 1).

Equivalently, because Pm2 + (1 − P )l2 = (g − β0)2 + 1−P
P

(g − β0 − l)2, there exists
l ∈ L2(Z|D = 0) such that E [l(Z)|Y,D = 1] = β(Y ) − β0 P Y |D=0− almost surely
and E

(
1−P
P

(g − β0 − l)(g − β0 − l)′
)
< ∞ and g ∈ L2(Y, Z). Therefore, there exists

q ∈ L2(Z|D = 0) such that

T ∗(q) = β(.) and E
(

1− P
P

(g − q)(g − q)′
)
<∞.

Step 2. Characterization of the semiparametric efficiency bound.

First, recall that the semiparametric efficiency bound V ∗ satisfies

V ∗ = min
ψ∈I

E [ψψ′] , (3.6.8)

where the minimum is understood in the partial order of symmetric nonnegative matrices
and I is the set of influence functions, that is to say, the set of ψ satisfying, for all s = A(τ)

(τ ∈ T ), E[ψs] = E[(β(.)− θ0)τ ]. Let us first show that

I = ψ0 + S⊥, (3.6.9)

where ψ0 ∈ A∗−1 ({g(., .)− β0}). Such an element exists under Assumption 15. First, for
any u ∈ S⊥,

E[(ψ0 + u)s] = E[ψ0s] = E[ψ0A(τ)] = E[A∗(ψ0)τ ] = E[(β(.)− θ0)τ ].

As a result, ψ0 + S⊥ ⊂ I. Now, let ψ ∈ I. By definition, E[(ψ − ψ0)s] = 0. Thus,
ψ ∈ ψ0 +S⊥ and (3.6.9) holds. Note that we can also write any ψ ∈ I as PS(ψ0) +u, with
u ∈ S⊥. By orthogonality,

E[ψψ′]− E[PS(ψ0)PS(ψ0)′]

is nonnegative. Thus,
V ∗ = E[PS(ψ0)PS(ψ0)′]. (3.6.10)
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Now, remark that PS⊥(ψ0) ∈ R(A)⊥ = Ker (A∗). Hence, because ψ0 = PS(ψ0) + PS⊥(ψ0),
we have PS(ψ0) ∈ A∗−1 ({g(., .)− β0}). Combined with (3.6.10), this implies that

V ∗ ≥ min
ψ∈A∗−1({g(.,.)−β0})

E [ψψ′] ≥ V ∗,

where the inequalities correspond to the partial order of symmetric matrices and the second
inequality follows by (3.6.8) and the fact that A∗−1 ({g(., .)− β0}) ⊂ I.

Finally, note that ψ was associated to l(Z), so that taking the minimum in ψ is equivalent
to taking the minimum in l(.) ∈ T ∗−1 ({g(., .)− β0}), or in q(.) ∈ T ∗−1 ({g(., .)}) (where
q = l + β0). Hence, because V ∗ = E

(
ψ∗ψ∗

′), we have

V ∗ = V (g(Y, Z)) + min
q∈T ∗−1({β(.)})

E

(
1− P (Y )

P (Y )
(q(Z)− g(Y, Z))(q(Z)− g(Y, Z))′

)
�
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Chapter 4

On Pairwise Estimator of Honoré and

Kyriazidou

4.1 Introduction

Disentangling state dependence and unobserved heterogeneity is an important problem
in econometrics. The problem is particulary tedious when the model is not linear due
to the endogeneity of the initial conditions and the problem of incidental parameters.
In the case of a discrete variable, Honoré and Kyriazidou Honoré & Kyriazidou, 2000
(HK hereafter) have proposed an estimator that is consistent whatever the distribution of
the individual fixed effects. Despite this attractive property and even if this paper is an
important reference in the literature, this estimator is rarely used. Applied econometricians
often prefer to use the estimator proposed by Wooldridge Wooldridge, 2007, although it is
more restrictive, probably because this estimator is easily implementable with the standard
procedures of econometric softwares. Indeed, the estimator of HK seems to require a specific
programmation, in particular for inference since it is non root-N consistent. The aim of this
note is to show that estimation and inference can actually be done with a simple weighted
logit regression. For that, we only use an easy reshaping of the data. We also show that in
the case of more than four periods, there exists two natural estimators of the asymptotic
variance. Monte Carlo simulations on finite sample provide evidence that one of the two
estimators of variance clearly outperforms the other, even with substantial sample sizes.
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4.2 Theoretical results

Following HK, let us consider the fixed effect multinomial model with M ≥ 2 alternatives
depending of one lag of state dependence and k exogeneous regressors. We assume that
variables are observed for a sample of individuals during T + 1 periods (t = 0..T ):

P (yit = m|xi, αi, yit−1 = j) =
exp(xmitβm + αmi + γjm)∑M
h=1 exp(xhitβh + αhi + γjh)

. (4.2.1)

HK suggest the estimator (
β̂n, γ̂n

)
= θ̂n =

arg max
θ

∑
i=1...n

1≤t<s≤T−1
m 6=l

1 {{yit, yis} = {m, l}}K
(
xit+1 − xis+1

σn

)
ln

(
exp(1 {yit = m}Zitsmlθ)

1 + exp(Zitsmlθ)

)

(4.2.2)

with θ = (b′, g′)′ a vector of size1 kM + (M − 1)2 and Zitsml is the vector of covariates such
that:

Zitsmlθ = (xmit − xmis)bm + (xlis − xlit)bl + gyit−1,m + gl,yis+1
− gyit−1,l − gm,yis+1

+1 {s− t = 1} (gm,l − gl,m) + 1 {s− t > 1}
(
gm,yit+1

+ gyis−1,l − gl,yit+1
− gyis−1,m

)
(4.2.3)

HK show the asymptotic normality and compute the asymptotic variance of
(
β̂, γ̂

)
when

M = 2 and T = 3. We generalize their results to any M and T here. To simplify the
forthcoming formulas, let ∆t,sxi = xit+1 − xis+1 and ft,s the density of ∆t,sxi.

Theorem 4.2.1 (Asymptotics of the multinomial logit case) Under the assumption
that xit−xit′ has a positive density ft,t′ in a neighborhood of 0 for all t 6= t′, σn is a positive
sequence such that

√
nσ

2+k/2
n → σ and K(.) is a smooth symmetric kernel, and assumptions

(A1)-(A11) detailed in appendix:

√
nσk/2n

(
θ̂n − θ0

)
→ N

(
B, J−1V J−1

)
With

hitsml (θ) = 1{{yit, yis} = {m, l}} ln
(

exp(1{yit=m}Zi,t,s,m,lθ)
1+exp(Zi,t,s,m,lθ)

)
,

h
(1)
itsml (θ) = ∂1hitsml(θ)

(∂θ)
,

1Without normalisation on the distribution of (αm)1≤m≤M , only (M−1)2 component of γ are identified.
Without loss of generality, one can assume that γ1m = γm1 = 0 for 1 ≤ m ≤M .
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h
(2)
itsml (θ) = ∂2hitsml(θ)

(∂θ∂θ′)

and
B = O

(√
nσ

2+k/2
n

)
,

J = −
∑

1≤t<s≤T−1
m6=l

ft,s(0)E
(
h

(2)
itsml|xit+1 = xis+1

)
,

V =
∑

1≤t<s≤T−1
m6=l

ft,s(0)E
(
h

(1)
itsmlh

(1)′

itsml|xit+1 = xis+1

)∫
K2(u)du.

J can be consistently estimated by

Ĵn = − 1

nσkn

n∑
i=1

∑
1≤t<s≤T−1

m 6=l

K

(
∆t,sxi
σn

)
h

(2)
tsmli(θ̂n).

V can be consistently estimated by

V̂n =
1

nσkn

n∑
i=1

 ∑
1≤t<s≤T−1

m6=l

K

(
∆t,sxi
σn

)
h

(1)
itsml(θ̂n)


 ∑

1≤t<s≤T−1
m 6=l

K

(
∆t,sxi
σn

)
h

(1)
itsml(θ̂n)′


or by

Ṽn =
1

nσkn

n∑
i=1

∑
1≤t<s≤T−1

m6=l

K

(
∆t,sxi
σn

)2

h
(1)
itsml(θ̂n)h

(1)
itsml(θ̂n)′.

This theorem calls four remarks, which are at the basis of our simple estimation procedure.
First, following HK, by considering pairwise estimation, we are led back to maximize the
weighted likelihood of a binary logit, the weights being K

(
∆t,sxi
σn

)
.

Second, the “sandwich” structure of asymptotic covariance matrix looks like the structure
of a robust covariance matrix.
Third, V̂n seems to be the “natural” candidate to estimate V , since V̂n appears in the Taylor
expansion of the first order condition. V̂n depends on some intra-individual correlations of
∆t,sxi and h

(1)
itsml, when s and t vary. However, after expansion of the products appearing in

V̂n, the terms depending of two distincts pairs ((s, t) 6= (s′, t′)) vanish when σn → 0. So, Ṽn
is an alternative estimate of V , which does not depend on the intra-individual correlation
of ∆t,sxi and h

(1)
itsml. In Section 4.4, the accuracy of V̂n and Ṽn will be compared using

Monte Carlo simulations.
Fourth, even though the optimal rate of consistence is n2/(4+k) < n1/2 (for σn ∼ n−1/(4+k)),
V̂
(
θ̂n − θ0

)
∼ 1

nσkn
Ĵ−1
n V̂nĴ

−1
n = 1

n

(
σknĴn

)−1 (
σknV̂n

)(
σknĴ

−1
n

)
only depends on k and σn

through K
(

∆t,sxi
σn

)
. So the estimated standard deviations, t-statistics, confidence intervals

and p-values also depend on k and σn only through K
(

∆t,sxi
σn

)
. Making inference using the

wrong consistence rate
√
n and the wrong estimators σknĴn and σknV̂n (respectively σknṼn),

will give correct results.
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4.3 Simple computation and inference

To understand our implementation strategy, let us consider a weighted binary logit in the
presence of clustering. Let i = 1..n denote the clusters, j a unit within the cluster, wj a
weight, yj the outcome and Xj a set of exogeneous regressors. The weighted logit estimator
is given by:

θ̂n = arg max
θ

n∑
i=1

∑
j∈i

wj ln

(
exp (yjXjθ)

1 + exp (Xjθ)

)
(4.3.1)

θ̂n is a consistent estimator of θ0 = arg maxθ E
[
w ln

(
exp(yXθ)

1+exp(Xθ)

)]
, and following Binder

(1983) :
√
n
(
θ̂n − θ

)
→ N

(
0, Q−1GQ−1

)
With hj(θ) = ln

(
exp(yXθ)

1+exp(Xθ)

)
, h(1)

j (θ) =
∂hj(θ)

∂θ
, h(2)

j (θ) =
∂2hj(θ)

∂θ∂θ′
,

G = E
(∑

j∈iwjh
(1)
j (θ)

∑
j′∈iwj′h

(1)
j′ (θ)′

)
and Q = E

(∑
j∈iwjh

(2)
j (θ)

)
, that can be con-

sistently estimated by their empirical counterpart Ĝn = 1
n

∑n
i=1

[∑
j∈iwjh

(1)
j (θ)

∑
j′∈iwj′h

′(1)
j (θ)′

]′
and Q̂n =

∑n
i=1wjh

(2)
j .

Such a “sandwich” formula of variance is frequent in econometrics, and is often referred to
as the robust estimation of standard deviation. Most of current statistical or econometrics
softwares offer procedures that quickly compute such estimators and provide t-statistics,
confidence intervals and p-value.

A remarkable analogy exists between Programs 4.2.2 and 4.3.1. The programs will be
the same if units j in Program 4.3.1 correspond to the 5-uplets (i, s, t,m, l) such that
1 ≤ t < s ≤ T − 1 and m 6= l and 1 {yit = m}1 {yis = l} + 1 {yit = l}1 {yis = m} = 1 in
the initial Program 4.2.2.

As mentioned above, V can be estimated by two asymptotically equivalent estimators V̂n
or Ṽn. Following the analogy, the asymptotic variance of the weighted logit estimate can
be estimated under the assumption of clustering (identified by i) or not.

The forms of the asymptotic covariance matrix are the same except for the presence of
a 1

σkn
factor in the three terms of the “sandwich” formula. But as mentioned previously,

this factor is compensated by the slower rate of consistence of the HK estimator. And so,
estimation of the variance of the HK estimator can be correctly performed using the naive
root-N rate of consistence and the naive estimators Q̂n and Ĝn for J and V .

As a result, we propose the following simple procedure for the estimation and inference of
the model:

104 Laurent Davezies - "Four Essays in Econometrics" - Thèse IEP de Paris - 2013



CHAPTER 4. ON H AND K’S ESTIMATOR

1. Create a new data set, where each line corresponds to a 5-uplet (i, t, s,m, l) such that
1 ≤ t < s ≤ T −1 and2 m < l and 1 {yit = m}1 {yis = l}+1 {yit = l}1 {yis = m} =

1 in the original data set. Each line contains the binary variable Y = 1{yit=m} and
the variables Zitsml define as in Equation 4.2.3 (see also Table 4.1).

2. Choose a kernel K and a bandwidth σn and compute the weights3 W = K
(

∆t,sxi
σn

)
.

Example of original and new dataset is presented in Table 4.2, for the case where
M = 3, T = 5 and a gaussian kernel.

3. Use a weighted binary logit procedure (the procedure must use a robust estimator of
the covariance matrix) to regress Y on Z using weights W . The absence of intercept
in the regressors can be specified.

- Specify a clustering (identified by i), to estimate V by V̂n.

- Do not specify a clustering, to estimate V by Ṽn.

4. Then the estimators of the parameters, and of standard deviations, as well as t-
statistics and p-values are asymptotically valid.

4.4 Monte Carlo simulations

In this section, we use the previous method to estimate a logit model with state dependence
on several data generating processes.
We draw the data according to (4.2.1), with M = 3, one exogeneous regressor (k = 1),
T = 4 or T = 8 and n = 250, 1000 or 4000. We let xit ∼ N (0, 1), αi1 = 0, αi2 = 1

T

∑T
t=1 xit

and αi3 = −sgn(
∑T

t=1 x
3
it)
(

1
T

∑T
t=1 x

3
it

)1/3

. State 1 is chosen as the reference, so that
β1 = γ1m = γm1 = 0. We set: β2 = 0.7, β3 = 0.7, γ22 = 0.6, γ23 = 0.3, γ32 = 0.2,
γ33 = 0.2. The initial conditions are drawn following the multinomial logit model (without
state dependence).

P (yi0 = m|xi, αi) =
exp(xmi0βm + αmi)∑3
h=1 exp(xhi0βh + αhi)

2If pairs such that m > l are also included, some observations in the new dataset are redondant and
the variance of estimators is underestimate. In the definition of the HK estimator, the index m 6= l of the
sum describes the non ordered pairs (cf. the binary case).

3In theory, estimates are invariant to a multiplicative change of the weights. However, in practice large
weights can cause computational problems. For this reason we recommend to use K

(
∆t,sxi

σn

)
as weight

instead of 1
σk
n
K
(

∆t,sxi

σn

)
.
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Table 4.1: Construction of regressor in the new dataset used to estimate.
State 1 choose as reference, 2 ≤ m < l ≤M , k, k′ /∈ {1,m, l}

Zitsml(βm) = ximt − xims
Zitsml(βl) = xils − xilt
Zitsml(βk) = 0

Zitsml(γmm) = 1{yit−1=m} − 1{yis+1=m} + 1{s−t>1}
(
1{yit+1=m} − 1{yis−1=m}

)
Zitsml(γll) = 1{yis+1=l} − 1{yit−1=l} + 1{s−t>1}

(
1{yis−1=l} − 1{yit+1=l}

)
Zitsml(γlm) = 1{yit−1=l} + 1{yis+1=m} − 1{s−t=1} − 1{s−t>1}

(
1{yit+1=m} − 1{yis−1=l}

)
Zitsml(γml) = −1{yit−1=m} − 1{yis+1=l} + 1{s−t=1} + 1{s−t>1}

(
1{yit+1=l} − 1{yis−1=m}

)
Zitsml(γkm) = 1{yit−1=k} − 1{s−t=1}1{yis−1=k}
Zitsml(γmk) = −1{yis+1=k} + 1{s−t=1}1{yit+1=k}
Zitsml(γkl) = −1{yit−1=k} + 1{s−t=1}1{yis−1=k}
Zitsml(γlk) = 1{yis+1=k} − 1{s−t=1}1{yit+1=k}
Zitsml(γkk′) = 0

We use the optimal rate σn = cn−1/(k+4) = cn−1/5, a gaussian kernel, and choose three
values (0.1, 1 and 10) for the parameter c. For T = 3 there is at most one pair of periods
for each individual that is used in the estimation, so V̂n = Ṽn. For T = 7, even if V̂n and
Ṽn are asymptotically equivalent, they are different in small samples.
We reshape the data as explained above and use the SURVEYLOGISTIC procedure in
SAS4, which gives an estimation of the parameters as well as the associated inference. The
number of individuals that are used in the estimation is close to 54% of n. With our
method the results are obtained almost instantaneous.
The main results of the simulation are the following (see Table 4.3). First, the bias on
small sample depends only weakly on the constant c (except for small c and sample size
n = 250) and is negligible compared to the standard deviation.
Second, the level of the tests on small samples are close to the asymptotic level for the
estimation using clustering. However, when we use the estimate of Ṽn, the actual level of
tests are widely above their nominal level. Additional simulations (not reproduced here)
show that the disturbance increases with T , or, equivalently, with ratio of the number of
pairs of periods used to the number of individual observations used.
Third, the actual level of the tests using Ṽn decreases slightly with c and dramatically
slowly as n increases. In Table 4.3, when c is divided by 100, the actual level only slowly
decreases to the nominal level. To obtain a similar reduction with an increase of n while
keeping c constant, the sample size must be multiplied by 1005 = 1010. This explains the
poor behavior of confidence interval using Ṽn even on samples of substantial size. So, for

4Same results can be obtained using instruction LOGIT with options PWEIGHTS and CLUSTER in
Stata or using functions SVYDESIGN and SVYGLM of package SURVEY in R.
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Table 4.2: Rearrangements with 6 time periods (T = 5), M = 3 states,
k = 1 regressor

(a) Original Dataset

i T y x
Bo 0 1 0.21
Bo 1 2 1.44
Bo 2 2 0.94
Bo 3 1 −1.25
Bo 4 3 0.13
Bo 5 2 −0.15

Ekaterini 0 2 −0.83
Ekaterini 1 1 0.10
Ekaterini 2 2 0.25
Ekaterini 3 1 0.69
Ekaterini 4 1 0.71
Ekaterini 5 3 0.21

(b) Dataset used to estimate

i t s m l Z(β2) Z(β3) Z(γ22) Z(γ23) Z(γ32) Z(γ33) y W
Bo 1 3 1 2 −2.69 0.00 0 1 0 0 0 0.44628
Bo 1 4 2 3 1.31 −1.31 0 0 0 0 1 0.3691
Bo 2 3 1 2 −2.20 0.00 −1 1 0 0 0 0.2827
Bo 2 4 2 3 0.81 −0.81 0 −1 1 0 1 0.36301
Bo 3 4 1 3 0.00 1.39 0 −1 1 0 1 0.54863

Ekaterini 1 2 1 2 0.15 0.00 −1 0 0 0 1 0.5268
Ekaterini 2 3 1 2 0.44 0.00 0 0 0 0 0 0.5641
Ekaterini 2 4 1 2 0.46 0.00 0 1 0 0 0 0.52065

W = 1√
2π
e
− (xt+1−xs+1)2

2σ2
n with σn = 1000−

1
k+4 ' 0.25
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T > 3 using clustering for inference clearly outperforms the inference without clustering.

4.5 Proof

Theorem 4.5.1 (detailed assumptions and extended proof)

(A1) {(yit)t=1..T , (xmit)m=1..M,t=1..T}ni=1 is a random sample of n observations from a distri-
bution satisfying Equation (1) in our main paper

(A2) θ0 ∈ int(Θ), with Θ a compact subset of R(k+1)(M−1)

(A3) ∀2 ≤ t < s ≤ T − 1, ∆t,sxi is absolutely continuously distributed with a density
ft,s, bounded above on its support, and strictly positive at zero, twice differentiable on its
support, with bounded derivatives. ∀2 ≤ t < s ≤ T − 1, ∀2 ≤ t′ < s′ ≤ T − 1 such
that (t, s) 6= (t′, s′), (∆t,sxi,∆

t′,s′xi) is absolutely continuously distributed with a density
ft,s,t′,s′, bounded above on its support, and strictly positive at zero, twice differentiable on
its support, with bounded derivatives.

(A4) ∀2 ≤ t < s ≤ T − 1, E [||xit − xis||6|∆t,sxi] is bounded on its support.

(A5) Let hitsml(θ) = 1{{yit, yis} = {m, l}} ln
(

exp(1{yit=m}Zi,t,s,m,lθ)
1+exp(Zi,t,s,m,lθ)

)
. ∀2 ≤ t < s ≤ T − 1,

∀m, l ∈ [1..M ], E [hitsml(θ)|∆t,sxi] is continuous in a neighborhood of zero for all θ ∈ Θ.

(A6) ∀2 ≤ t < s ≤ T − 1, ∀m, l ∈ [1..M ], E [(xit − xis)′(xit − xis)|∆t,sxi] has full rank k
in a neighborhood of zero.

(A7) K : Rk → R is a bounded and symmetric kernel such that
∫
K(u)du = 1.

(A8)
√
nσ

2+k/2
n → σ ∈ R+.

(A9) Let h(1)
itsml (θ) = ∂hitsml(θ)

(∂θ)
. ∀2 ≤ t < s ≤ T − 1, ∀m, l ∈ [1..M ], E

[
h

(1)
itsml(θ)|∆t,sxi

]
is

continuous in a neighborhood of zero for all θ ∈ Θ.

(A10) Let h(2)
itsml (θ) = ∂2hitsml(θ)

(∂θ∂θ′)
. ∀2 ≤ t < s ≤ T − 1, ∀m, l ∈ [1..M ], E

[
h

(2)
itsml(θ)|∆t,sxi

]
is continuous in a neighborhood of zero for all θ ∈ Θ.

(A11) E
(
h(1)(θ0)h(1)(θ0)′|∆t,sxi

)
is continuous in a neighborhood of zero.

If (A1)-(A11) hold, then

√
nσk/2n

(
θ̂n − θ0

)
→ N

(
B, J−1V J−1

)
With B = O

(√
nσ

2+k/2
n

)
, J and V being consistently estimated by

Ĵn = − 1

nσkn

n∑
i=1

∑
2≤t<s≤T−1

m 6=l

K

(
∆t,sxi
σn

)
h

(2)
itsml(θ̂n) and
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Table 4.3: Estimation and inference on finite sample

4 Periods (T = 3) 8 Periods (T = 7)
level of test level of test

Parameter c n Bias Std.Dev. level of test Bias Std.Dev. using V̂n using Ṽn
0.1 250 0.0987 0.5377 0.077 0.0065 0.1170 0.064 0.137
0.1 1000 0.0170 0.2106 0.074 0.0042 0.0570 0.062 0.134
0.1 4000 0.0048 0.0948 0.045 0.0005 0.0273 0.056 0.119

1 250 0.0437 0.2733 0.061 0.0066 0.0907 0.049 0.216
β1 = 0, 7 1 1000 0.0175 0.1261 0.052 0.0053 0.0443 0.051 0.212

1 4000 0.0107 0.0572 0.040 0.0025 0.0215 0.048 0.205
10 250 0.0407 0.2283 0.056 0.0079 0.0843 0.049 0.242
10 1000 0.0213 0.1082 0.056 0.0069 0.0416 0.046 0.256
10 4000 0.0169 0.0499 0.057 0.0046 0.0205 0.053 0.247

0.1 250 0.1958 0.5868 0.085 0.0104 0.1214 0.056 0.124
0.1 1000 0.0349 0.2110 0.072 0.0037 0.0614 0.058 0.143
0.1 4000 0.0097 0.0996 0.051 0.0018 0.0286 0.045 0.116

1 250 0.0790 0.2851 0.075 0.0067 0.0945 0.054 0.203
β2 = 0, 7 1 1000 0.0200 0.1240 0.053 0.0037 0.0482 0.067 0.224

1 4000 0.0092 0.0619 0.057 0.0028 0.0224 0.045 0.186
10 250 0.0666 0.2399 0.065 0.0073 0.0883 0.056 0.226
10 1000 0.0225 0.1083 0.057 0.0050 0.0448 0.055 0.259
10 4000 0.0143 0.0541 0.077 0.0044 0.0210 0.051 0.222

0.1 250 0.1621 1.1644 0.100 -0.0098 0.2554 0.059 0.190
0.1 1000 0.0048 0.4208 0.059 -0.0044 0.1257 0.062 0.192
0.1 4000 -0.0066 0.1951 0.051 -0.0004 0.0604 0.047 0.189

1 250 0.0246 0.5956 0.068 -0.0144 0.2090 0.048 0.290
γ11 = 0, 6 1 1000 -0.0132 0.2602 0.046 -0.0065 0.1042 0.051 0.297

1 4000 -0.0073 0.1282 0.043 -0.0029 0.0502 0.046 0.285
10 250 0.0020 0.5121 0.055 -0.0165 0.1991 0.051 0.325
10 1000 -0.0182 0.2383 0.050 -0.0089 0.0989 0.053 0.318
10 4000 -0.0098 0.1163 0.042 -0.0058 0.0487 0.043 0.350

0.1 250 0.0983 1.0842 0.078 -0.0040 0.2577 0.044 0.186
0.1 1000 -0.0078 0.3991 0.055 -0.0041 0.1254 0.044 0.185
0.1 4000 -0.0035 0.1866 0.051 -0.0011 0.0650 0.048 0.208

1 250 0.0099 0.5719 0.054 -0.0118 0.2192 0.049 0.299
γ12 = 0, 3 1 1000 -0.0241 0.2626 0.058 -0.0085 0.1072 0.041 0.296

1 4000 -0.0089 0.1263 0.054 -0.0047 0.0550 0.051 0.315
10 250 0.0002 0.4969 0.055 -0.0183 0.2094 0.050 0.335
10 1000 -0.0257 0.2405 0.071 -0.0137 0.1032 0.047 0.346
10 4000 -0.0122 0.1146 0.044 -0.0095 0.0523 0.047 0.352

0.1 250 0.0418 1.0408 0.096 -0.0065 0.2516 0.043 0.181
0.1 1000 -0.0020 0.4054 0.069 -0.0052 0.1235 0.039 0.190
0.1 4000 -0.0041 0.1795 0.048 -0.0020 0.0625 0.055 0.196

1 250 0.0144 0.5582 0.048 -0.0104 0.2051 0.036 0.299
γ21 = 0, 2 1 1000 -0.0074 0.2610 0.054 -0.0056 0.1048 0.039 0.312

1 4000 -0.0062 0.1201 0.045 -0.0027 0.0528 0.049 0.298
10 250 0.0000 0.4893 0.045 -0.0135 0.1964 0.037 0.335
10 1000 -0.0117 0.2352 0.054 -0.0068 0.1007 0.042 0.342
10 4000 -0.0082 0.1103 0.049 -0.0041 0.0509 0.050 0.328

0.1 250 0.1081 1.1154 0.085 0.0085 0.2642 0.048 0.191
0.1 1000 0.0373 0.4117 0.051 0.0003 0.1274 0.039 0.184
0.1 4000 0.0324 0.1879 0.051 0.0032 0.0628 0.050 0.170

1 250 0.0486 0.5757 0.055 0.0031 0.2216 0.050 0.311
γ22 = 0, 2 1 1000 0.0230 0.2679 0.061 -0.0007 0.1066 0.045 0.304

1 4000 0.0194 0.1255 0.063 0.0008 0.0520 0.038 0.298
10 250 0.0377 0.5022 0.048 -0.0039 0.2119 0.053 0.337
10 1000 0.0159 0.2429 0.049 -0.0048 0.1019 0.049 0.331
10 4000 0.0140 0.1145 0.049 -0.0026 0.0498 0.043 0.311

Note : Computation obtained with 1000 simulations.
The level of test reported are the estimation of the actual tests for a nominal level of 5%.
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V̂n =
1

nσkn

n∑
i=1

 ∑
2≤t<s≤T−1

m6=l

K

(
∆t,sxi
σn

)
h

(1)
itsml(θ̂n)


 ∑

2≤t<s≤T−1
m6=l

K

(
∆t,sxi
σn

)
h

(1)
itsml(θ̂n)′


or

Ṽn =
1

nσkn

n∑
i=1

 ∑
2≤t<s≤T−1

m6=l

K

(
∆t,sxi
σn

)2

h
(1)
itsml(θ̂n)h

(1)
itsml(θ̂n)′


The proof is very close to the proofs of theorems 1 to 3, of Honoré and Kyriazidou Honoré
& Kyriazidou, 2000 :

We will use two useful results :

- (Kernel estimators) If Z is a random variable iid across individuals such that
E (Z|∆t,sxi = x) exists and is twice differentiable in a neighborhood of x = 0, and
such that E

(
Z|∆t,sxi = x; ∆t′,s′xi = x′

)
exists and is twice differentiable in a neigh-

borhood of (x, x′) = (0, 0) for (t, s) 6= (t′, s′). Then

∀ν ≥ 0, E

(
1

σkn
K

(
∆t,sxi
σn

)ν
Zi

)
=

ft,s(0)E (Z|xit+1 = xis+1)

∫
K(u)νdu+O

(
σ2
n

)
E

(
1

σ2k
n

K

(
∆t,sxi
σn

)
K

(
∆t′,s′xi
σn

)
Zi

)
=

ft+1,s+1,t′+1,s′+1(0, 0)E (Zi|xit+1 = xis+1;xit′+1 = xis′+1) +O
(
σ2
n

)
- (Corollary 2.2, Newey (1991)) If µn(θ) is a sequence of random differentiable function
such that for all θ ∈ Θ, µn (θ) −→

P
µ (θ), and if the derivative of µn(θ) are dominated

by a random variable Un such that Un = Op(1) and E (Un) < ∞, the convergence
in probability is uniform on the compact Θ. For j = 0, 1, 2, note that the sequence
of random function 1

nσkn

∑n
i=1

∑
2≤t<s≤T−1

m 6=l
K
(

∆t,sxi
σn

)
h

(j)
itsml(θ) verify the condition of

domination.

Let mi(σn, θ) =
∑

2≤t<s≤T−1,m 6=lK
(

∆t,sxi
σn

)
hitsml(θ) and Mn (θ) = 1

nσkn

∑n
i=1 mi(σn, θ).

We have : E [Mn(θ)]→
∑

2≤t<s≤T−1,m 6=l ft,s(0)E [hitsml(θ)|xi,t+1 = xi,s+1] = M (θ)

To prove consistency we use Theorem 5.7 of Van Der Vaart (1998), the first assumption
we need to verify is a stochastic uniform convergence supθ∈Θ |Mn (θ)−M (θ) | P−→ 0.

Because
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V (Mn (θ)) = 1
nσ2k

n
V (mi(σn, θ))

≤ 1
n

∑
2≤s<t≤T−1

2≤s′<t′≤T−1
(s,t) 6=(s′,t′)

∑
m 6=l
m′ 6=l′

1
σ2k
n
E
(
K
(

∆t,sxi
σn

)
K
(

∆t′,s′xi
σn

)
hitsml(θ)hit′s′m′l′(θ)

)
≤ 1

n

(
O( 1

σkn
) +O(1)

)
= O

(
1
nσkn

)
= o(1)

Mn (θ)
L2−→ M (θ) for all θ ∈ Θ, so Mn (θ)

P−→ M (θ) for all θ ∈ Θ. Uniformity of the
convergence on Θ is ensured by domination.

The second assumption of Theorem 5.7 of Van Der Vaart (1998) is that θ0 is a well-separated
point of maximum of M : supθ:d(θ,θ0)≥εM (θ) < M (θ0)

M (θ) =
∑

2≤t<s≤T−1,m 6=l

ft,s(0)P ({yit, yis} = {l,m} |xt+1 = xs+1) gtsml (θ)

with gtsml (θ) = E
(
ln
(

exp(ymitZθ)
1+exp(Zθ)

)
|xt+1 = xs+1; {yit, yis} = {l,m}

)
.

If s = t + 1, θ 7→ E
(
ln
(

exp(ymitZθ)
1+exp(Zθ)

)
|xt+1 = xs+1; {yit, yis} = {l,m} ; (yiτ )τ 6=t,s

)
is well-

separated for the component βm, βl, γyi,t−1m, γyi,t−1l, γmyi,s+1
, γlyi,s+1

, γlm, γml and does not
depend on other component of θ. It is well-separated for the component βm, βl, γyi,t−1m,
γyi,t−1l, γmyi,s+1

, γlyi,s+1
, γmyi,t−1

, γlyi,t−1
, γyi,s+1m, γyi,s+1l and does not depend on other

component of θ if s > t + 1. Then, gtsml(θ) is well-separated for the component βm, βl
and (γqm, γql, γmq, γlq)q∈[1,M ] and does not depend on the other components. Because
ft,s(0)P ({yit, yis} = {l,m} |xt+1 = xs+1) are positive quantities for every 4-uplet s, t, l,m,
M (θ) is well-separated for θ.

Theorem 5.7 of Van Der Vaart (1998) implies the consistency of the estimate.

Now let’s focus on the asymptotic normality. For that, we use Taylor expansion of the first
order condition :

0 = 1√
nσkn

∑n
i=1

{
∂mi(σn,θ0)

∂θ
− E

(
∂mi(σn,θ0)

∂θ

)}
+ 1√

nσkn

∑n
i=1 E

(
∂mi(σn,θ0)

∂θ

)
+ 1√

nσkn

∑n
i=1

∂2mi(σn,θ
?
n)

∂θ∂θ′
(θ̂n − θ0)

Let ξin = 1√
nσkn

∂mi(σn,θ0)
∂θ

. We use the Lindeberg-Feller central limit theorem (see Van

Der Vaart (1998), proposition 2.27), to show that
∑n

i=1 (ξin − E (ξin)) converge in distri-
bution to N (0, V ).
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∑n
i=1Cov(ξin) = 1

σkn
E
(
∂mi(σn,θ0)

∂θ

∂m′i(σn,θ0)

∂θ′

)
− 1

σkn
E
(
∂mi(σn,θ0)

∂θ

)
E
(
∂mi(σn,θ0)

∂θ

)′
=

∑
2≤t<s≤T−1

m 6=l

ft,s(0)E
(
h

(1)
itsmlh

(1)′

itsml|xit+1 = xis+1

)∫
K2(u)du

+σkn
∑

2≤s<t≤T−1
2≤s′<t′≤T−1

(s,t)6=(s′,t′)

∑
m 6=l
m′ 6=l′

ft,s,t′,s′(0, 0)E
(
h

(1)
itsmlh

(1)′

it′s′m′l′ |∆
t,sxi = ∆t′,s′xi = 0

)

+O(σ2
n) +O(σk+2

n ) +O(σk+4
n )

=
∑

2≤t<s≤T−1
m6=l

ft,s(0)E
(
h

(1)
itsmlh

(1)′

itsml|xit+1 = xis+1

)∫
K2(u)du+O(σmin(2,k)

n )

∑n
i=1E(||ξin||21{||ξin||>ε}) ≤ nε−δE

[
||ξin||2+δ

]
(Markov)

≤ n−δ/2ε−δ

(σkn)(2+δ)/2

(
(T−2)(T−3)

2

)1+δ

E

 ∑
2≤t<s≤T−1

m6=l

K

(
∆t,sxi
σn

)2+δ

||h(1)
itsml(θ)||

2+δ

 (Hölder)

≤ O

(
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δ

)
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It follows from the Lindeberg-Feller theorem (see, for instance Van Der Vaart (1998),
chapter 2), that

∑n
i=1 ξin − E (ξin)→ N (0, V ) with

V =
∑

2≤t<s≤T−1
m6=l

ft,s(0)E
(
h

(1)
itsmlh

(1)′

itsml|xit = xis

)∫
K2(u)du.

Let bn = 1
nσkn

∑n
i=1 E

(
∂mi(σn,θ0)

∂θ

)
, we have : bn = O (σ2

n)

And then
√
nσknbn = op(1).

Let Jn (θ) = 1
nσkn

∑n
i=1

∂2mi(σn,θ)
∂θ∂θ′

. For all θ ∈ Θ, we have :

E (Jn (θ)) =
1

σkn
E

 ∑
2≤t<s≤T−1

m6=l

K

(
∆t,sxi
σn

)
h

(2)
itsml (θ)


=

∑
2≤t<s≤T−1

m 6=l

ft,s(0)E
[
h

(2)
itsml(θ)|xit+1 = xis+1

]
+ op(1)

= J(θ) + op(1)

The variance of the jj′’th component of Jn (θ) decrease to 0.
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V ar
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So for all θ ∈ Θ Jn (θ) = J (θ)+op(1). Using the second part of the preliminary remark, the
convergence is uniform for θ ∈ Θ. We deduce that Ĵn = Jn

(
θ̂n

)
= J(θ0)+op(1) = J+op(1)

Similarly, if we note
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Then Vn (θ) converges uniformly on Θ to

V (θ) =
∑

2≤t<s≤T−1
m 6=l
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(
h

(1)
itsml(θ)h
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And we conclude that Vn
(
θ̂n

)
= V (θ0) + op(1) = V + op(1).
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Chapter 5

Evaluation of the "Ambition Success

Network" (Réseaux Ambitions Réussite)

Education pursues two goals: offering equal opportunities to all, and promoting success for
each student. In France, however, as in other countries, large achievement inequality has
persisted since the 60’s, mainly due to heterogenous parental backgrounds.(see for instance
Coleman et al. (1966) for the USA and Plowden & the Central Advisory Council for
Education (1967) for the UK). As a result many countries have set up compensatory
education programs to foster equality between pupils (van der Klaauw (2008), Heckman &
al. (2010)).

In France the main compensatory policy - the Politique d’Education Prioritaire, or Prefer-
ential Educational Policy - has targeted schools rather than students since its introduction
in 1982.1 This school-based program, Educational Priority Zones (ZEP), was overhauled
twice and eventually replaced in 2006 by the Réseaux Ambition Réussite (RAR) policy, or
Ambition Success Network program, the focus of this paper.

The ZEP policy came under criticism for spreading itself too thinly: too many schools were
given too few funds. As a result, many evaluations of the ZEP policy conclude that this
costly program had no positive effect on student achievement (see Benabou et al. (2009),
and Meuret (1994)) but a negative signaling effect instead. Hence the RAR program was
intended to concentrate its funds on fewer schools: 249 junior high schools in 2006-2007

1Though pupil- or class-oriented policies are more widespread in developed countries, a few noticeable
educational policies target schools. In the United States, Title I of the Elementary and Secondary Edu-
cation Act funded schools and school districts with a high percentage of disadvantaged students in 1965.
In the United Kingdom the Education Priority Areas (EPA) were launched in 1967, disappeared at the
end of the 70’s but following the victory of New Labour in the 90’s were reborn in two new programs:
Education Action Zones and Excellence in the Cities. They both targeted schools (see Machin & Vignoles
(2005)).
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against 900 for the ZEP policy.2

In this paper we provide a first evaluation of the recently implemented RAR program.

Any evaluation of school-targeting policies must deal with several methodological issues.
First, treated schools are not randomly selected: they differ greatly from non-selected
schools. We overcome this issue by using a regression discontinuity design that allows us
to find valid counterfactual schools for both groups of treated schools. Second, it is not
without interest to describe some aspects of the actual policy. Each school was supposed
to get supplementary teachers. However, the real and announced policies may differ: we
therefore need to study the number of teachers in treated and untreated schools. Third,
the RAR program may have had negative signaling effects on both teachers and students.
Labeling a junior high school as a RAR school may induce poor-quality teacher assignment
and the departure of the best students. Therefore we study the program effect on both
pupil-school and teacher-school matchings. Finally, we also compare final exam results
between treated and non-treated schools. This mixes two effects: the change in teaching
team efficiency, and the change in sorting on unobserved characteristics of pupils across
schools.

We find negligible or adverse effects of the policy on the two groups of treated schools for
which we are able to find credible counterfactuals: the first is centered on the disadvantaged
student proportion threshold, the second on the repeating student rate threshold. For
the first group of treated schools, the policy has had no effect on the teacher per pupil
ratio, nor on teacher and pupil characteristics, but it has had a negative effect on pupil
achievement. For the second group, we find an increased number of teachers in 6th and
7th grades (but not for other grades). This effect comes from an increase in the proportion
of older teachers, and teachers with an unusual degree. Pupil structure has also been
modified in these schools: we find an increase in the proportion of children from blue-collar
backgrounds, counteracted by a decrease in the proportion of children with self-employed
parents. Finally, for both groups of treated schools, final junior high-school scores have
worsened in RAR assigned schools.

The rest of this paper is organized as follows. Section 2 describes the RAR program.
Section 3 develops the identification and estimation strategies. Section 4 presents the
results and Section 5 concludes.

2A network was made up of a junior high-school (from 6th to 9th grade) and a few primary and/or
nursery schools (from 1st to 5th grade, or before 1st grade).
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5.1 RAR program: design and background

5.1.1 A brief history

In 1982 a new program - Educational Priority Zones (ZEP) - was conducted in France. This
policy’s main objective was to increase efforts in unsuccessful zones to reduce inequalities.

These new education priority zones aimed to set up an educational project that would
provide support to underachieving students. In 1985, its main focus was redirected to
address deficiencies in ’core learning’ such as reading and French. Afterwards successive
reforms were introduced, each one expanding the number of schools concerned, but without
increasing further inputs in already treated schools.

Benabou et al. (2004) draw three main conclusions concerning these Education Priority
Zones. First they argue that the subsidies were divided between too many schools and
mainly given to teachers via supplementary wages without any overtime teaching. Hence
the actual per capital allocation of funds to pupils was scarce. Secondly, the authors
find that the treated junior high schools experienced a decrease in their total number of
students and an increase in the proportion of socially disadvantaged pupils. Teachers also
migrated from these schools. Their turnover increased after the assignment of these schools
to priority zones. Finally, Benabou et al. (2004) found no significant effect on different
measures of student achievement, or on high-school graduation. These disappointing results
suggest a restructuring of the ZEP program that better targets efforts and funds.

5.1.2 The Ambition Success Network policy

As a consequence, the reform introduced in 2006 pursued the goal of better targeting funds
and efforts. The education priority map was reshaped, and the resources were given to a
smaller number of schools (249 junior high schools in 2006-2007 against around 900 with
the previous policy). New zones were defined and named "Réseaux Ambition Réussite"
(Ambition Success Networks). These networks are made up of one junior high-school
(6th to 9th grade) and some primary and/or nursery schools (1st to 5th grade, or before
1st grade). These entities share a common project under the guidance of a committee
composed of the heads of the junior high-schools and some representatives of the primary
or nursery schools. At the beginning of the 2006-2007 school year, 249 networks were
created, consisting of 249 junior high-schools and 1,715 elementary schools. It represented
126,000 pupils in junior high schools: one junior high school student in twenty was enrolled
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in a RAR targeted school.

The Ministry of Education recommended to its regional heads ("recteurs") that each net-
work get three to four supplementary teachers, some teaching assistants and at least one
full-time nurse. On a national level, this amounted to 1,000 supplementary teachers, and
3,000 teaching assistants. However considerable discretion was left to regional heads. Al-
though the list of "RAR" junior high-schools was decided in a concerted way, the list of
primary and nursery schools, and the resources devoted to each network were chosen by the
regional heads. Moreover the type of educational services provided was left to the discretion
of the junior high schools and regional heads, with no requirement for accountability.

The number of RAR networks has evolved since their introduction. From 249 in 2006-
2007, there were 254 public junior high-schools at the beginning of the 2008-2009 school
year and 118,000 junior students. There are large regional discrepancies: the proportion of
"RAR" junior high-schools ranges from 0.4% for the regional area of Grenoble to 13% for
the regional area of Aix-Marseille. There are also a few private "RAR" junior high schools
(11 in 2008-2009). Networks or zones that were not targeted by the new policy in 2006
constitute a different category of networks called "networks of school success" ("Réseaux
de Réussite Scolaire", RRS). In 2007-2008, of the 253 RAR junior high schools, 238 had
previously been "ZEP". The previous denomination "ZEP" (theoretically) disappeared in
September 2008.

5.1.3 How were the RAR schools selected?

Internal notes of the Statistical Service of the Education Ministry provide information
about the selection process of secondary schools. RAR networks were chosen on the basis
of three main criteria evaluated for the 2004-2005 school year. First, the proportion of
socially disadvantaged3 students in 6th grade had to be equal to or above 67%. Second,
either of the two following criteria had to be met: the proportion of students who have
repeated two grades or more when they entered 6th grade had to be at or above 10%; or
the school average score at the entrance evaluation of 6th grade had to be at or below 47%.

Additional criteria that were used to define the final list of RAR junior high schools in-
cluded the local unemployment rate and the proportion of people benefiting from social
assistance. Instead of the 164 initially chosen with the three criteria previously mentioned,
249 were finally selected after an agreement between the French Ministry of Education and

3A child was classified as ’disadvantaged’ when their referring parent was either a blue collar worker,
or retired from a blue collar or white collar occupation, or out of work. This criterion was calculated from
the occupation covariate coded on two digits in the data files.
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its regional heads.

5.1.4 Expected results

If we assume that 1,000 supplementary teachers were uniformly assigned across new RAR
junior high schools, then we would expect an 8% increase in the total number of teachers
in RAR schools versus non-RAR schools. As mentioned before however, regional head
masters have considerable discretion. For instance, even if the Ministry of Education
gives them additional teachers that must be specifically assigned within the RAR junior-
high-schools, the regional head officials can assign them as they see fit. In particular,
teachers already working in a RAR school may be transferred to a non-RAR school to
ensure the stability of the total number of teachers both in RAR and non-RAR schools.
This eviction phenomenon is credible if regional head officials are reluctant to treat similar
schools differently: e.g. two schools just below and above the selection thresholds were
alike before program assignment.

Some parents may have interpreted the RAR assignment as a negative signal, as a conse-
quence the number of pupils in treated schools may have decreased. Benabou et al. (2004)
and Benabou et al. (2009) have discussed such a decrease for ZEP-schools during the 90’s.
In that case, the teacher-pupil ratio may increase more than expected.

If the teacher-pupil ratio increases enough, the average class size may decrease. The effect
of class-size on pupil achievement, using the seminal method of Angrist & Lavy (1999), is
often reported as negative (see Angrist & Lavy (1999), Leuwen et al. (2008), and for the
French case, Gary-Bobo & Mahjoub (2006) and Piketty & Valdenaire (2006)). Another
group of estimates comes from the Tennesse STAR class size experiment. Word et al.,
(1990), Finn & Achilles (1990), Krueger (1999), and Krueger & Whitmore (2001) all found
that smaller class sizes have a significant and lasting impact on academic achievement and
educational attainment.

Another issue relates to the teacher quality in RAR schools. First, supplementary teachers
can have some specific characteristics. Previous studies on ZEP policies show that the
new teachers in treated schools are often younger and have less experience. It can be
argued that the assignment of schools to the RAR-program acts as a negative signal for
the teachers as well, who would then prefer to be migrate to non-treated schools. However,
teacher mobility and tenure are closely related: the less experience they have, the lower
their bargaining power to move. Moreover in the previous ZEP program, teachers willing
to work within ZEP schools were promoted quicker to encourage them to teach in such
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schools. However bigger promotions ease the transfer to another school if requested. And
it was noticed indeed that the turnover of the teaching teams was higher in ZEP schools,
which can be harmful to school management. Ly (2010) observed that in 1999, the ZEP
assignment change induced the mobility of oldest teachers from ZEP to non-ZEP schools.
Finally the policy can modify the sorting of pupils across schools. Benabou et al. (2004)
and Benabou et al. (2009) found that school discrepancy between treated and untreated
schools increases after assignment: they measure school discrepancy through the proportion
of pupils not enrolled in the school cafeteria. Other studies show that parents take into
account school choice in their decision to move or relocate (Fack & Grenet (2010) for
the case of Paris). More generally, sociologists have reported the existence of parental
strategies concerning the schooling of their children (François & Poupeau (2004)) and
economists have tried to quantify the valuation of schools (Black (1999), Fack & Grenet
(2010), Gibbons & Machin (2003)). All these parental strategies are based on available
information about schools and assignment to the RAR program can affect parental choice.
Even if one can not a priori exclude the possibility that parents give a higher valuation to
RAR-schools because such schools get higher resources, empirical results in the literature
suggest that school-based discrimination increases segregation. Should there be such an
increase in segregation the effect on average test scores in the final exam is muddled: the
policy may increase the efficiency of treated schools, but such an increase in efficiency may
be compensated for by a sorting effect. Our data only allow us to compare average results
across schools. This is a clear limit of this paper and the reader must bear in mind that
the estimates on the final score exam mix the two effects.

5.2 Data and some descriptive statistics

To analyze the effectiveness of the RAR program, we use school-level data collated from
various administrative sources of the Ministry of Education:

- The first dataset is an exhaustive pupil-level cross-sectional dataset (Scolarité) for
every student in junior or secondary high school. This data provides cross-sectional
information about age, nationality, residence location, main parent’s occupation,
class, languages and other options, school lunch status, and the same variables for
the previous year.

- The second dataset is an exhaustive teacher-level panel dataset (Relais) for every
teacher in junior or secondary high school. This provides information on the total
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number of hours taught by each teacher, for each subject they teach, in each school,
along with their age and degree.

- We supplement the pupil-level data with a third, exhaustive, pupil-level dataset that
contains their national exam scores, (Brevet des Colleges), taken at the end of the 9th
grade. We are unable to fully merge the two pupil-level datasets due to the absence
of a unique student identification number that could combine them both. We are
however able to provide a distribution of test scores for every school and for every
year by combining these two datasets.

- The fourth dataset is an exhaustive panel dataset of French junior and secondary
high schools that includes information on their Educational Priority policy status
and their RAR eligibility criteria.

We construct a school-level dataset for school years 2003/2004 up to 2008/2009. We
restrict our attention to public junior high schools in mainland France. This is because
private schools are almost never assigned to treatment, and because in French overseas
departments and territories, junior-high schools are almost always assigned to treatment.
Moreover private schools, which represent around 20% of pupils, differ substantially from
public schools on various dimensions. This is also true for overseas schools. We thus
obtained an exhaustive panel of around 5000 public junior high schools in metropolitan
France. Among these schools, 206 were affected to the RAR program.

We exclude educationally disadvantaged students who have severe and long-running prob-
lems with core learning as they belong to special classes called "Segpa" (section d’enseignement
général et professionnel adapté). Special funds are dedicated to them, but they do not in-
terfere with the resources allocated to the educational priority programs. Similarly, when
we evaluate the average number of pupils per class, or the social structure of pupils moving
up into 6th grade, we exclude these students.4

Finally, for final exam test scores, we focus our attention on formal written literacy and
maths tests. Every year from 2003 to 2009, final exams took place in June for pupils in 9th
grade. For each school, we calculate average and quantiles of test score distribution. For
these computations, we exclude disabled pupils5 and pupils following vocational curricula.

4Schools have indeed specific resources for SEGPA classes and we’re interested in the extra resources
allocated to schools by the RAR program that are not allocated to SEGPA students. SEGPA pupils are
within junior high schools but in different teaching structures, in separate classes, with different teachers.
Moreover the proportion of SEGPA pupils has the same distribution below and above both considered
thresholds. Hence excluding SEGPA students from teaching, score, and resource indicators does not lead
to biased estimates.

5The way they take the national exam is different from the non-disabled.
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Table 5.1 presents pre-treatment descriptive statistics for the whole sample of public junior
high schools in mainland France. RAR public junior high schools have a higher proportion
of pupils entering 6th grade after repeating a grade. A junior entering 6th grade is usually
11 years old. Four pupils out of 10 in RAR schools had repeated at least one grade when
entering their 6th grade in September 2005, only two out of 10 were in this case in non-RAR
schools. This discrepancy is roughly the same after 2006, even though the proportion of
students having repeated a grade has fallen since 2003 due to a no repeating grade policy
in the French educational system. In the 6th and 9th grades, socially disadvantaged pupils
are overrepresented in RAR schools. Only 2.1% of juniors entering the 6th grade in RAR
schools belong to a family whose head6 is an executive. This proportion is to 15.9% for non-
RAR schools. Unlike ’executive-children’, ’unemployed-children’ and ’blue-collar-children’
are over-represented in RAR schools. In grade 6 in 2006/2007, over 27% of children in
RAR schools have an unemployed parent compared to non-RAR schools where this figure
is approximatively 9%.

Table 5.1 also presents proxies of average expenditure per pupil, namely average class size
and average weekly hours of teaching per pupil. One year before treatment, average class
size was around 21 in RAR schools and 24 in non-RAR schools. Similarly, average per-pupil
weekly teaching hours was about 12% higher in RAR schools (1.41 versus 1.24 in non-RAR
schools). In non reported results we find that this figure holds for all grades: many RAR
schools previously benefited from the ZEP program, hence from a higher teacher-pupil
ratio.

Teachers are less qualified and are younger in RAR junior high schools. The proportion of
physical education teachers was larger in RAR schools.

Table 5.1 provides a comparison between RAR and non-RAR schools in maths and literacy
scores as obtained in the final national exam. Each student at the end of his/her 9th grade
takes written tests in maths and French. Scores range between 0 and 40. For each junior
high school, we computed average test scores in maths and French. The comparison of the
average scores highlights the huge discrepancy between RAR and non-RAR schools prior
to treatment. For the exam taken in 2006, the average test score in French for RAR schools
was 14.32 against 19.01 for non-RAR schools. The same holds in maths. Comparison of
the quantiles (not reported here) shows that this result holds for the entire distribution of
test scores.

The descriptive statistics show that a naive comparison between the treated and non-
treated schools is unsatisfactory to test efficiency of the RAR program. Conditioning

6In the data, only the occupation of one of the two parents is available. This parent, who is usually the
father, is called the family head.
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on some important observable covariates may mitigate bias but even in this case, the
interpretation is likely to be misleading: assignment to treatment may have been driven
by some unobserved variables. To overcome this issue, one difference-in-difference strategy
may be adopted using the panel dimension, but this would be valid only if temporal trends
are the same between treated and non-treated schools. Simple panel-data regressions
reported in Table 5.2 show that temporal trends between 2003 and 2005 differ significantly
(at the 5% level) for many variables.7 At baseline, we find that the gap in the proportion
of 13-year-olds enrolling into grade 6 falls. This however is not true for children whose
parents are executives or blue-collar workers. The gap in average class size between RAR
and non-RAR schools also increases, and structures of teacher qualifications and age also
evolve differently in the treated and non-treated schools before the beginning of the policy.
These different evolutions rule out the use of a difference-in-difference estimation strategy.

5.3 Identification and estimation strategy

5.3.1 A fuzzy regression discontinuity design

As explained in the previous section, the assignment to RAR treatment is based on thresh-
olds of some predetermined variables. These key features of the RAR-policy allow us to use
a fuzzy regression discontinuity design to estimate the causal effects of the RAR program
on different outcomes such as means, but also signaling and sorting. Such a discontinuity
is clearly supported by Figure 5.1.

This discontinuity in the probability of being treated implies that local average treatment
effects (LATE ) are nonparametrically identified (Hahn et al. (2001)). The basic idea is
to compare the outcomes of junior high schools just above and just below the thresholds
used to assign treatment. Multiple assignment criteria allow us to identify several param-
eters. We can identify and estimate nonparametrically the LATE for junior high schools
having around 67% of socially disadvantaged pupils and having more than 10% of pupils
having repeated a grade twice before Grade 6. We can also identify the LATE for junior
high schools having around 10% of repeating pupils and with more than 67% of socially
disadvantaged pupils.

To describe the identification approach used in this paper, let Ti be an indicator equal

7To be more precise, trends of treated and untreated schools differ significantly for at least one modality
of every categorical variable considered: parental profession, teacher characteristics and age of pupils at
beginning of 6th grade.
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Table 5.1: School Characteristics in September 2005, for treated and
non-treated schools

School Characteristics non-RAR RAR t-stat
ZEP before 2006 0.13 0.99 36.36
Number of pupils 461.46 428.07 -2.63
Pupils entering sixth grade
% of male 50.73 50.87 0.35
% 10 years old or younger 2.95 1.48 -9.53
% 11 years old 76.85 58.30 -30.62
% 12 years old 19.15 36.72 29.71
% 13 years old or older 1.05 3.50 19.93
Farmer 2.95 0.17 -7.62
Self-employed 8.66 3.78 -13.57
Executive 15.88 2.08 -15.46
Intermediate 14.68 5.44 -20.49
Employee 15.77 11.21 -9.01
Blue collar 29.57 41.26 12.05
Retired 1.22 3.63 19.68
Unemployed 8.60 27.31 36.89
Pupil supervision
Hours of teaching per pupil 1.24 1.41 17.75
Class size 24.00 20.96 -20.16
Teaching Staff (% of hours dispensed by)
Highest teaching degree 0.04 0.04 -2.74
Qualified teacher 0.72 0.72 -0.56
PE teacher 0.10 0.11 2.21
Other teacher 0.13 0.14 1.17
Teacher under age 30 0.15 0.27 14.73
Teacher between 30 and 40 0.31 0.37 7.27
Teacher between 40 and 55 0.35 0.25 -11.87
Teacher over 55 0.44 0.27 -16.59
Average results at the Brevet exam (Grade 9, June 2006)
French Score 19.01 14.32 -24.47
Maths Score 18.32 11.85 -18.93
Number of schools 4,795 205
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Table 5.2: Temporal trend of school characteristics before September
2005, for treated and non-treated schools

School Characteristics non-RAR RAR t-stat
Number of pupils -10.00 -11.80 -1.56
Pupils entering sixth grade
% of male -0.06 0.16 0.80
% 10 years old or younger 0.16 0.08 -0.84
% 11 years old 0.41 0.74 1.42
% 12 years old -0.48 -0.39 0.45
% 13 years old or older -0.09 -0.44 -5.33
Farmer -0.07 -0.04 0.30
Self-employed 0.24 0.15 -0.55
Executive 0.31 -0.17 -2.55
Intermediate -0.14 -0.06 0.42
Employee -0.02 0.33 1.59
Blue collar -0.39 -1.00 -2.16
Retired 0.04 0.00 -0.59
Unemployed 0.06 0.91 4.71
Pupil supervision
Hours of teaching per pupil 0.00 0.00 0.10
Class size 0.02 -0.09 -2.30
Teaching Staff (% of hours dispensed by)
Highest teaching degree 0.00 0.00 -2.23
Qualified teacher 0.01 0.02 2.78
PE teacher 0.00 0.00 -0.08
Other teacher -0.01 -0.02 -1.78
Teacher under age 30 -0.01 -0.01 -0.60
Teacher between 30 and 40 0.01 0.01 2.31
Teacher between 40 and 55 -0.02 -0.01 2.26
Teacher over 55 0.00 0.00 -1.17
Average results at the Brevet exam (Grade 9, before June 2005)
French Score -0.45 -0.59 -1.85
Maths Score -0.46 -0.64 -1.53
Number of schools 4,795 205
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Figure 5.1: RAR recipiency rate in 2006-2007
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to 1 if school i is treated. Yi(0) denotes the potential outcome if the junior high school
i was non-treated (Ti = 0), and Yi(1) if it was treated (Ti = 1). Then the actual and
observed outcome is Yi = Yi(0) + Ti(Yi(1) − Yi(0)). Let ZF

i be the percentage of pupils
coming from a disadvantaged family and ZL

i be the percentage of pupils in 6th grade having
repeated a grade at least twice. Discontinuities of the conditional regression function of
the treatment Ti on the running variables (ZF

i , Z
L
i ) imply the existence of some complying

schools for each running variable. This means that some schools are not treated when the
values of the running variables are under thresholds, but are treated otherwise. For these
complying schools, if ZF

i and ZL
i cannot be manipulated, the rules of assignation to the

treatment generate an "as-good-as random assignment". We denote by the dummy CL

(respectively CF ) the dummies of being a complying school for the threshold ZL = 10%

(respectively for the threshold ZF = 67%). Assuming continuity of conditional regression
functions of potential outcomes on running variables, and monotonicity of treatment in
a neighborhood of discontinuities (see Imbens & Lemieux (2008)), we can identify the
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following local average treatment effects:

LATEF67 = E
(
Y (1)− Y (0)|ZF = 67%, ZL ≥ 10%, CF = 1

)
LATEL10 = E

(
Y (1)− Y (0)|ZL = 10%, 80% ≥ ZF ≥ 67%, CL = 1

)
We impose the restriction 80% ≥ ZF on the second parameter because discontinuity van-
ishes when ZL = 10% and ZF close to 100% (see Figure 5.1).

5.3.2 Can the threshold be manipulated?

To get consistent estimates, the conditional regression functions of potential outcomes
on the running variable (see Imbens & Lemieux (2008)) have to be continuous. This
assumption may be violated if some agents, for instance headmasters or regional heads,
are able to manipulate the running variables ZL or ZF . This is highly unlikely for the
following reasons.

First, the statistical service of the Education Ministry collects family information about
each pupil in junior high schools. The running variables ZL and ZF are calculated by
aggregating this information at the school level and are not available within junior high
schools.

Second, the statistical service has had considerable autonomy in choosing the eligibility
criteria and the threshold values. It is unlikely that headmasters had access to or were
aware of the various selection criteria chosen by the ministry. Moreover, the Education
Ministry had ordered the release of the RAR list in 2006 based on information collected
in September 2004. Therefore, in 2004, headmasters, collecting individual information
about pupils, could not have anticipated the introduction of a policy two years beforehand,
especially as the RAR program was the first one to be threshold-based. If by any chance
they had heard of a future policy, the eligibility thresholds were not known in September
2004. As a consequence, we can be confident that manipulating parents’ occupation, or
entrance results to be assigned to RAR treatment was not feasible.

Finally, following the approaches of Saez (2010) and McCrary (2008), we studied the
densities of ZL and ZF near the thresholds. Indeed, a monotonic manipulation of the
running variable density-for instance if some schools just under the threshold manipulate
the data and report being just over the threshold- must display a local minimum and a local
maximum on either side of the threshold. Without any manipulation, there is no reason to
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see any local extremum around the threshold.8 Figures 5.2 and 5.3 provide strong evidence
that potential manipulations of running variables are not troublesome in our case.
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Figure 5.2: Density of the running variable ZF around the threshold
(67%)
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Figure 5.3: Density of the running variable ZL around the threshold
(10%)

8The absence of local extremum can also occur if upward manipulations compensate for downward
manipulations. However in our case, such a coincidence seems very unlikely.
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5.3.3 Advantages and drawbacks of the identification strategy

Some former evaluations of the ZEP program relied on the assumption that the treat-
ment was exogenously assigned given a set of observable covariates. Some articles, such
as Benabou et al. (2009), stand out because the authors use a difference-in-difference ap-
proach. Unless the treated and non-treated schools’s different outcomes share common
trends, this strategy is not valid. This assumption is indeed questionable: treated schools
can be located within deprived areas. In France, the increasing geographical segregation
during last the two decades has been demonstrated by many researchers (see, for instance,
Maurin (2004)). We test the assumption of common trends before the RAR policy and,
as mentioned in the previous section, Table 5.2 clearly rejects the assumption of common
trends between treated and non-treated schools. Hence, as noticed by Gurgand in Benabou
et al. (2004), though the difference-in-difference estimation may reduce bias, it cannot be
measured.

Unlike the difference-in-difference approach, the regression-discontinuity method does not
rely on such an assumption of common trend. Nonetheless the regression discontinuity
estimates cannot be extrapolated to the whole population of treated schools, and they
may be not precise enough. This is a concern when the effects we want to measure have a
low magnitude, or when few observations are located near the threshold. To compensate
for the lack of precision, we can use observations further away from the threshold, but
at the cost of an increased bias.9 Our strength is the panel data at hand. We thus add
school fixed effects and time dummies, and they turn out to explain more than 75% of
the variance of the outcomes we studied. As a result, we are able to statistically measure
small effects. However, we need to check whether complying schools around the thresholds
display common trends in the absence of treatment to ensure our approach is valid. We
tested this assumption using observations before the RAR program was set up, from 2004
to 2006: no trend difference protrudes around both thresholds before September 2006.10

We estimate the LATE by a two stage panel least squares (TSLS) regression after selecting
our data around both thresholds. This is equivalent to using a uniform kernel for the
local linear regression, as suggested by Hahn et al. (2001). For observations such that
ZL ∈ [10− h, 10 + h] and 80% ≥ ZF ≥ 67% and with c = 10%, and for observations such
that ZF ∈ [67 − h, 67 + h] and ZL ≥ 10% and with c = 67%, we compute the following

9Adding covariates in the regressions decreases the variance of the estimates by the proportion of the
explained variance of the outcomes by covariates.

10Common trend tests around both thresholds are available upon request.

Laurent Davezies - "Four Essays in Econometrics" - Thèse IEP de Paris - 2013 129



CHAPTER 5. EVALUATION OF RAR

TSLS estimates:

Yit = αi + βt + γTit1{t ≥ 2006}+ δ
′
Vit + εit (5.3.1)

where Ti.1{t ≥ 2006} is the endogeneous covariate, Vit =

(
1{Zi < c}1{t ≥ 2006}(Zi − c)
1{Zi ≥ c}1{t ≥ 2006}(Zi − c)

)
are the exogenous covariates and 1{Zi ≥ c}1{t ≥ 2006} is the instrument.

The regressors Vit are introduced to avoid asymptotic bias in the estimates (Hahn et al.
(2001), Imbens & Lemieux (2008)). Standard tests remain asymptotically valid when the
regressors Vit are added to regressions.

It is important to notice that we have not induced any estimation bias by selecting our
sub samples having checked that the repeating rate distribution was continuous around
67% disadvantaged threshold, (resp. the disadvantaged student proportion around 10%

repeating threshold). The estimates we obtained are only local average treatment effects
and we cannot answer for the efficiency of the global policy since we would have to impose
unrealistic parametric assumption to identify the ATE on the whole public school set.

5.3.4 The outcomes

We provide an assessment of RAR treatment along different dimensions:

1. First, we consider outcomes that proxy for expenditures, to estimate the intensity
of positive discrimination: average class size and weekly per-pupil teaching hours at
the school level and for different grades (from Grade 6 to Grade 9).

2. A second set of outcomes considered are observable characteristics of pupils at the
beginning of Grade 6. Hence, we examine pupil sorting across treated and non-
treated schools. These are: family head occupation11, dummy for attending cafeteria
at lunch and the total number of pupils.

3. A third set of outcomes examines changes to the teaching structure. We focus on
teacher-related outcomes such as the percentage of teaching hours per qualification,
and the teacher age structure. We distinguish between four types of qualification:

11We distinguish 9 main occupations: farmers, self-employed occupations (artisans, shopkeepers, com-
pany managers), executives, intermediate occupations, administrative, sales or service occupation, blue
collar, retired parents, out of the labor force
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physical education (PE) teachers, post-graduate teachers ("agrégation", the top com-
petitive examination), junior high school teachers ("certified" teachers recruited by
a more open competitive examination) and finally, other teachers that have not been
recruited by the usual competitive examinations (a priori less qualified). We also
distinguish teachers by age, as it proxies tenure: less than 30, between 30 and 39,
between 40 and 54, 55 and over.

4. The last set of outcomes is related to the academic achievement of pupils: we study
the means and quantiles (Q10-Q25-Q50-Q75-Q90) of French and maths score distri-
butions, at the final exam in Grade 9.

Studying these outcomes will provide us with an answer about any potential negative
signaling effects of RAR treatment.

For all these outcomes, we test sensitivity to bandwidth choice h. We select the observations
around both thresholds. For the percentage of disadvantaged pupils entering 6th grade,
results are reported for h = 4, 6 and 8. For percentage of grade repeaters, the results
are reported for h = 2, 3 and 4. Our results are robust to the choice of some alternative
bandwidth values.

5.4 Results

5.4.1 Per pupil expenditure

We begin by reporting per pupil expenditure across RAR and non-RAR schools. If 1,000
supplementary teachers had been uniformly assigned across new RAR junior high schools,
we would expect an 8% increase in the total number of teachers in RAR schools versus
non-RAR schools. Tables 5.3a and 5.3b test this claim and present two types of indicators
for different grades: the number of pupils per class and the number of teaching hours per
week divided by the number of pupils (denoted resp. P/C and H/P , where P stands for
pupil, H for teaching hour, and C for class).

We actually see that the 1,000 supplementary teachers had not been uniformly distributed
across RAR junior high schools: the recommendation that each RAR junior high school
receive 4 supplementary teachers was not strictly followed by each regional head. It can
be inferred that teacher assignment was conducted on an ad-hoc basis, driven partly by
regional heads and teachers’ preferences. Furthermore regional heads and headmasters
of junior high schools have discretion on how to allocate additional teachers to different
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grades, which is why it is important to study the effect of RAR assignment on school
resources, since we do not clearly know whether the policy has been followed by regional
heads and school headmasters.

Average class size and per-pupil teaching hour estimations do not match political commit-
ments. Specifically, results differ only very slightly across the two discontinuities, implying
that treatment has only a weak effect on resources if any. For schools where ZF = 67%

and ZL ≥ 10% in 2004, we notice a small effect of the policy on class size reduction but the
magnitude of this effect drastically decreases when estimation is made using a larger band-
width (see Table 5.3a). The robustness of this measured effect is therefore questionable.
A more robust and significant result concerns per-pupil teaching hours for Grades 6 and
7. The magnitude of this effect is more stable across bandwidth changes (see Table 5.3a).
For schools with ZL = 10% and 67% ≤ ZF ≤ 80% in 2004, we find no significant effect
on per-pupil teaching hours or on class size (see Table 5.3b). Per-pupil teaching hours
decrease less than expected for all grades.12 This may be explained by the preference of
headmasters for concentrating compensatory policy on the most disadvantaged schools,
that are schools far from both thresholds.

To sum up, we can conclude that the treatment has only a weak effect on per-pupil teaching
hours and class size in borderline schools.

What therefore has happened for schools away from the thresholds? Though we do not
have a reliable identification strategy to evaluate the RAR effects on these schools, we
can nonetheless provide some descriptive statistics. Graphs 5.4 and 5.5 support that extra
resources may have been allocated to severely disadvantaged schools. Per-pupil teaching
hours increased after RAR assignment in September 2006. The average class size was
also affected though moderately. However, the literature suggests that such a decrease in
class size would have only small effects on achievement : for junior high schools Piketty &
Valdenaire (2006) found that dividing the class size by 2 increases the scores of pupils in
the National Exam in Grade 9 by only 10% of a standard deviation (see also Gary-Bobo
& Mahjoub (2006)).

Though the program may have had no effect on the resources of borderline schools, it may
anyway have induced some teachers to relocate, or some parents to withdraw their children
from the treated schools, and this would impact on school achievement.

12For the number of hours per pupil, one can expected an increase of 1.4*8%=0.11. The corresponding
estimates only range between -0.09 and 0.09 (with strong variations depending on the grade). For the
number of pupils per class, estimates range between -1.38 and 1.09 for an expected value close to -20*8%=-
1.6.
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Table 5.3: RAR effect on pupils per class (P/C) and per-pupil teaching
hours (H/P) indicators

(a) Disadvantaged discontinuity: ZF = 67% and 10% ≤ ZL

h= 4 h= 6 h= 8
P/C (all grades) -1.38 ∗ [ 1.02 ] -0.03 [ 0.85 ] 1.09 [ 0.83 ]

P/C (9th grade) -2.81 ∗ [ 1.95 ] -0.60 [ 1.70 ] -0.89 [ 1.59 ]

P/C (8th grade) 0.09 [ 2.00 ] 0.96 [ 1.75 ] 3.95 [ 1.72 ]

P/C (7th grade) -0.43 [ 1.89 ] 0.60 [ 1.59 ] 1.60 [ 1.56 ]

P/C (6th grade) -0.82 [ 1.87 ] 0.11 [ 1.60 ] 0.60 [ 1.55 ]

H/P (all grades) 0.07 [ 0.07 ] 0.07 [ 0.06 ] -0.02 [ 0.06 ]

H/P (9th grade) -0.10 [ 0.13 ] -0.11 [ 0.13 ] -0.04 [ 0.12 ]

H/P (8th grade) 0.03 [ 0.12 ] 0.01 [ 0.11 ] -0.16 [ 0.10 ]

H/P (7th grade) 0.13 [ 0.13 ] 0.14 ∗ [ 0.10 ] 0.06 [ 0.10 ]

H/P (6th grade) 0.16 [ 0.14 ] 0.21 ∗∗ [ 0.12 ] 0.05 [ 0.14 ]

N◦ Schools 29 52 76
N◦ Obs. 174 312 456

(b) Repeating discontinuity: ZL = 10% and 67% ≤ ZF ≤ 80%

h= 2 h= 3 h= 4
P/C (all grades) -0.68 [ 2.19 ] -0.45 [ 3.98 ] 0.10 [ 1.06 ]

P/C (9th grade) -1.55 [ 4.62 ] -1.85 [ 8.15 ] 0.71 [ 2.25 ]

P/C (8th grade) 0.04 [ 4.82 ] 1.83 [ 8.27 ] 1.26 [ 2.10 ]

P/C (7th grade) -0.44 [ 4.96 ] 5.15 [ 9.50 ] 1.06 [ 2.12 ]

P/C (6th grade) -3.21 [ 4.39 ] -5.81 [ 8.98 ] -1.96 [ 2.00 ]

H/P (all grades) 0.01 [ 0.15 ] 0.09 [ 0.27 ] -0.09 [ 0.09 ]

H/P (9th grade) 0.08 [ 0.34 ] -0.14 [ 0.61 ] -0.22 [ 0.17 ]

H/P (8th grade) -0.07 [ 0.31 ] -0.16 [ 0.54 ] -0.17 [ 0.14 ]

H/P (7th grade) -0.10 [ 0.31 ] -0.33 [ 0.64 ] -0.11 [ 0.15 ]

H/P (6th grade) 0.33 [ 0.39 ] 1.15 [ 1.12 ] 0.14 [ 0.18 ]

N◦ Schools 33 50 77
N◦ Obs. 198 300 460
Estimated treatment effect, standard error in bracket, unilateral test of equality
between treated and non-treated schools. Level: ∗ 10%, ∗∗ 5%, ∗ ∗ ∗ 1%
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Figure 5.4: Pupils per Class (All Grades)
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5.4.2 Pupils entering Grade 6

We now present results on student enrollment. Before September 2007, pupils were assigned
to junior high schools on the basis of their residence. Parents could avoid this assignment
by either choosing a private junior high school, or a specific language or option not available
in the assigned school when their child entered Grade 6.13 Previous studies suggest that
parents are sensitive to junior high school districts when choosing their residence (Fack &
Grenet (2010), Black (1999), Gibbons & Machin (2003), Maurin (2004)). Since September
2007, in the aftermath of the Presidential election, the number of exemptions to assignment
has increased and it has been easier for parents to choose their children’s junior high school.
In this context, that of parental junior high school choice, the "RAR" label could have had

13In France, in Grade 6, pupils have to choose options that they did not follow before, usually a language.
If a pupil wants to avoid his or her assigned junior high school, he or she can ask for learning Russian or
Chinese.
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Figure 5.5: Per-pupil Teaching Hours (All Grades)
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mixed consequences. On the one hand, it could act as a positive signal for parents -
additional school inputs or resources per child- or as a negative signal - indicating severe
difficulties at the treated school. For instance, Benabou et al. (2004, 2009) found that the
proportion of students who have lunch at school decreases when junior high schools receive
the "ZEP" label (Education Priority Zones). This evolution may indicate an increase in
segregation of ZEP and non-ZEP junior high schools: poorer kids do not go to the cafeteria
for school lunch. The authors also found mixed effects on the total number of pupils in
ZEP junior high schools: for junior high schools treated in 1989, the total number of junior
pupils decreased relative to non-ZEP schools. However for those treated in 1990, they did
not find any effect. For our part, we did not find any significant difference between RAR
and non-RAR schools near the second discontinuity concerning the total number of pupils
entering Grade 6 (see Table 5.4b), while for the first discontinuity, we found an increase
in pupils entering Grade 6 (see Table 5.4a). Furthermore, we found no significant effect
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of treatment on the proportion of pupils entering Grade 6 who have lunch at school (see
Tables 5.4a and 5.4b).

We also use parental occupations at the beginning of Grade 6 to test whether social segre-
gation increases in "RAR" junior high schools. Results differ along both discontinuities.

For schools around the ’disadvantaged’ discontinuity, we found a small negative effect in the
enrollment of children whose parents are self-employed, and to some extent, on enrollment
of children whose parents are involved in intermediate occupations. This reduction goes
along with an increase in the proportion of blue collar parents (see Table 5.4a). For schools
near the ’repeating’ discontinuity, we do not observe such an effect (see Table 5.4b).

We therefore conclude that treatment effects are heterogeneous, since we get different
results on both discontinuities. For the first one, RAR policy has had an adverse effect,
while for the second no significant effect is detected.

5.4.3 Teaching structure

In this subsection, we report results on another set of outcomes related to teaching struc-
ture. The outcomes we consider are teacher mobility, their seniority and their qualifica-
tions. For instance, some incentives, such as faster access to promotion, were implemented
to encourage teachers to teach longer within RAR schools.

For the ZEP program, these issues were studied by Benabou et al. (2004, 2009) with a
different identification strategy. The authors found that the incentives were insufficient
to cap the high turnover of teachers in treated schools. Ly (2010) found that the reform
of the ZEP program in 1999 had had an adverse effect on the age and the experience
of teachers in treated schools. To study this issue, we compare the structure of age and
qualifications of teachers in schools close to the discontinuities. Tables 5.5a and 5.5b report
regression discontinuity estimates. These results are novel with respect to the Preferential
Educational Policy litterature and differ from the results obtained by Benabou et al. (2004,
2009) and Ly (2010).

For schools where ZF = 67%, the proportion of teachers over 55 has increased significantly
with the introduction of the RAR program. For these schools, the proportion of highly
qualified teachers ("agrégation") has decreased while the proportion of teachers having
a non-standard qualification in junior high schools has increased. This may be due to
the fact that RAR policy has encouraged primary school teachers to work in junior high
schools. The new teachers assigned to treated junior high schools may more often have
been primary school teachers, and often the oldest, being the most experienced, are more
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Table 5.4: RAR effect on Pupils entering Grade 6

(a) Disadvantaged discontinuity: ZF = 67% and 10% ≤ ZL

h= 4 h= 6 h= 8
Parents’ occupation (%):
Farmer 1.47 [ 1.27 ] 1.43 [ 1.34 ] 0.31 [ 1.14 ]

Executive -9.62 ∗∗∗ [ 3.26 ] -8.41 ∗∗∗ [ 2.76 ] -8.42 ∗∗∗ [ 2.52 ]

Manager 0.62 [ 2.42 ] 0.03 [ 2.14 ] -1.09 [ 1.91 ]

Intermediate -6.78 ∗ [ 3.50 ] -6.26 ∗∗ [ 3.09 ] -3.52 [ 3.04 ]

Employee 3.60 [ 4.68 ] 4.24 [ 4.28 ] 2.69 [ 3.99 ]

Worker 11.96 ∗∗ [ 5.89 ] 10.67 ∗ [ 6.14 ] 12.16 ∗∗ [ 6.16 ]

Retired 1.23 [ 1.50 ] 0.61 [ 1.36 ] 0.87 [ 1.33 ]

Unemployed 0.30 [ 5.31 ] -2.89 [ 4.58 ] -5.95 [ 4.59 ]

Not known -2.78 [ 4.93 ] 0.58 [ 4.23 ] 2.94 [ 4.03 ]

Lunch at school 1.17 [ 6.61 ] 2.45 [ 5.86 ] -1.79 [ 5.73 ]

Tot. Entering 6.94 [ 12.51 ] 20.14 ∗ [ 11.92 ] 34.80 ∗∗∗ [ 12.80 ]

N◦ Schools 29 52 76
N◦ Obs. 174 312 456

(b) Repeating discontinuity: ZL = 10% and 67% ≤ ZF ≤ 80%

h= 2 h= 3 h= 4
Parents’ occupation (%):
Farmer 0.38 [ 4.22 ] -2.90 [ 6.42 ] -0.90 [ 1.56 ]

Executive -6.72 [ 6.70 ] -9.99 [ 13.48 ] -4.31 [ 2.91 ]

Manager 5.41 [ 5.49 ] 3.39 [ 8.82 ] 3.64 [ 2.61 ]

Intermediate 2.33 [ 7.90 ] -3.08 [ 14.40 ] 0.29 [ 3.77 ]

Employee 7.34 [ 11.13 ] -23.10 [ 25.60 ] -4.21 [ 4.86 ]

Worker -3.40 [ 17.39 ] 68.61 [ 67.20 ] 10.32 [ 8.26 ]

Retired -1.70 [ 3.98 ] -2.00 [ 6.91 ] 0.77 [ 1.78 ]

Unemployed 2.53 [ 14.10 ] 8.21 [ 24.59 ] 3.76 [ 6.23 ]

Not known -6.17 [ 10.78 ] -39.14 [ 39.45 ] -9.36 ∗ [ 4.86 ]

Lunch at school -0.56 [ 10.80 ] 6.23 [ 16.71 ] -2.35 [ 7.08 ]

Tot. Entering -6.26 [ 25.59 ] -27.84 [ 58.00 ] 13.11 [ 15.59 ]

N◦ Schools 33 50 77
N◦ Obs. 198 300 460
Estimated treatment effect, standard error in bracket, bilateral test of equality
between treated and non-treated schools. Level: ∗ 10%, ∗∗ 5%, ∗ ∗ ∗ 1%
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likely to have been selected. It could also be explained by lower mobility among older
teachers who would like to leave their newly assigned RAR school, but cannot for family
reasons. For schools where ZL = 10%, not a single treatment effect can be displayed on the
teaching structure. Once again, such a difference between the two discontinuities highlights
the heterogeneity of treatment effects.

5.4.4 Maths and Literacy scores

Finally, we present results on student achievement. Table 5.6 reports estimates of treatment
effects on junior high school score distributions. We find that treatment has a negative effect
on scores, when significant. This result is more pronounced for schools where ZF ≈ 67%

and ZL > 10%. For these schools, the treatment effect differs for maths and French (Tables
5.6a). The negative effect of treatment on scores is mainly concentrated at the bottom of
the French distribution, whereas, for maths, it is at the top of the distribution. For schools
where ZL ≈ 10% and 80% ≥ ZF ≥ 67%, estimates are often insignificant (especially in
French) but other than that, these effects are quite large and negative. For these schools,
treatment effects are mainly visible in the middle of the Math score distribution.

How can we interpret these results on the change in pupil achievement as a result of
treatment? The results may be due to a combination of two distinct effects: a potential
increase in the sorting of pupils across schools based on ability and/or parental schooling
choice, and the potential inefficiency of the educational policy within treated schools. Our
results imply the existence of at least one of these two effects. It cannot be excluded that
the policy has had a positive effect on pupil achievement for those that remain in treated
schools, but this effect might be compensated for by an increase in a pupil selection effect
across schools. Moreover, we note that we can only observe the results of pupils up until
2009. Therefore observed final scores are relevant to pupils who began junior high schools
before the beginning of the RAR program. As a consequence this result can differ from
the effect of policy on pupils having a full scholarship into treated schools.

A referee suggested that the test results should not be pooled to assess the program impact
on score results. We have thus estimated the effect of RAR treatment with an unequal
length of treatment:

Yit = αi + βt + γ2007Tit1{t=2007} + γ2008Tit1{t=2008} + γ2009Tit1{t=2009}
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Table 5.5: RAR effect on teachers’ characteristics

(a) Disadvantaged discontinuity: ZF = 67% and 10% ≤ ZL

h= 4 h= 6 h= 8
Tot. of hours dispensed 68.45 [ 56.68 ] 135.08 ∗∗∗ [ 49.33 ] 167.77 ∗∗∗ [ 53.47 ]

% of hours dispensed by :
Highest teaching degree -0.03 [ 0.02 ] -0.03 ∗ [ 0.02 ] -0.03 ∗ [ 0.02 ]

Qualified teacher -0.02 [ 0.05 ] -0.04 [ 0.04 ] -0.04 [ 0.04 ]

PE teacher 0.01 [ 0.01 ] 0.00 [ 0.01 ] 0.00 [ 0.01 ]

Other teacher 0.04 [ 0.05 ] 0.07 ∗ [ 0.04 ] 0.07 ∗ [ 0.04 ]

Teachers under age 30 -0.07 [ 0.05 ] 0.01 [ 0.05 ] 0.01 [ 0.05 ]

Teachers between 30 and 39 -0.01 [ 0.05 ] -0.03 [ 0.05 ] -0.07 [ 0.05 ]

Teachers between 40 and 55 0.02 [ 0.05 ] -0.02 [ 0.05 ] 0.04 [ 0.04 ]

Teachers over 55 0.12 ∗∗ [ 0.05 ] 0.09 ∗∗ [ 0.04 ] 0.11 ∗∗ [ 0.04 ]

N◦ Schools 29 52 76
N◦ Obs. 174 312 456

(b) Repeating discontinuity: ZL = 10% and 67% ≤ ZF ≤ 80%

h= 2 h= 3 h= 4
Tot. of hours dispensed -35.91 [ 106.86 ] 154.44 [ 283.97 ] 62.58 [ 63.67 ]

% of hours dispensed by :
Highest teaching degree 0.01 [ 0.05 ] 0.01 [ 0.09 ] -0.01 [ 0.02 ]

Qualified teacher -0.09 [ 0.11 ] -0.24 [ 0.25 ] 0.00 [ 0.05 ]

PE teacher 0.04 [ 0.03 ] -0.03 [ 0.05 ] 0.00 [ 0.01 ]

Other teacher 0.04 [ 0.10 ] 0.26 [ 0.25 ] 0.02 [ 0.05 ]

Teachers under age 30 -0.04 [ 0.13 ] -0.08 [ 0.23 ] 0.01 [ 0.06 ]

Teachers between 30 and 39 0.02 [ 0.14 ] 0.36 [ 0.40 ] 0.04 [ 0.06 ]

Teachers between 40 and 55 0.04 [ 0.13 ] -0.26 [ 0.33 ] -0.07 [ 0.06 ]

Teachers over 55 -0.12 [ 0.13 ] -0.01 [ 0.19 ] 0.06 [ 0.05 ]

N◦ Schools 33 50 77
N◦ Obs. 198 300 460
Estimated treatment effect, standard error in bracket, bilateral test of equality
between treated and non-treated schools. Level: ∗ 10%, ∗∗ 5%, ∗ ∗ ∗ 1%
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where Tit equals 1 if the junior high school i enters the RAR program at date t. These
variables Tit1{t=j} are instrumented by 1{Zi≥c}1{t=j}. We obtain similar results which are
robust to a differentiating length treatment effect.

5.5 Conclusion

In this paper, we have evaluated the effect of the RAR educational policy, introduced in
French public junior high schools in September 2006. To do so, we used two strong dis-
continuities in assignment to the treatment. For schools close to these two discontinuities,
no substantial desired treatment effects stand out. Precisely, resources allocated to schools
were disappointing around the thresholds. Second, we found that the policy worsens social
segregation across schools when measured by parental occupation. This may induce the
reduced achievement we observed in treated schools. The RAR assignment would therefore
appear to have had a strong negative signaling effect, encouraging better students to move
from their junior high school. An alternative, but discouraging, explanation would be that
the policy has had a negative effect on achievement in treated schools. Our results on
teachers indicate an increase in the proportion of older and less qualified teachers. This
could be explained by a reassignment of older primary teachers to RAR schools, in order
for them to obtain promotion more easily.

140 Laurent Davezies - "Four Essays in Econometrics" - Thèse IEP de Paris - 2013



CHAPTER 5. EVALUATION OF RAR

Table 5.6: RAR effect on school level distribution of scores at the Na-
tional Exam in Grade 9

(a) Disadvantaged discontinuity: ZF = 67% and 10% ≤ ZL

h= 4 h= 6 h= 8
French - Mean 0.74 [ 1.29 ] -1.79 [ 1.25 ] -2.03 [ 1.18 ]

French - Q10 -0.14 [ 1.55 ] -1.75 [ 1.46 ] -2.18 ∗∗∗ [ 1.41 ]

French - Q25 0.14 [ 1.41 ] -2.01 [ 1.34 ] -2.48 ∗∗∗ [ 1.28 ]

French - Median -0.05 [ 1.47 ] -2.32 [ 1.47 ] -2.71 ∗ [ 1.39 ]

French - Q75 1.90 [ 1.66 ] -1.11 [ 1.51 ] -1.13 [ 1.42 ]

French - Q90 3.23 ∗ [ 1.86 ] -0.66 [ 1.70 ] -0.62 ∗ [ 1.58 ]

Maths - Mean -1.13 [ 2.23 ] -2.60 [ 1.94 ] -4.75 ∗ [ 1.92 ]

Maths - Q10 1.20 [ 2.19 ] -0.17 [ 1.88 ] -1.02 [ 1.68 ]

Maths - Q25 0.70 [ 2.56 ] -1.86 [ 2.20 ] -4.49 [ 2.11 ]

Maths - Median -1.69 [ 2.64 ] -2.88 [ 2.27 ] -5.40 ∗∗ [ 2.29 ]

Maths - Q75 -3.59 [ 2.70 ] -4.68 ∗ [ 2.41 ] -6.95 [ 2.46 ]

Maths - Q90 -3.09 [ 2.82 ] -3.93 [ 2.52 ] -6.47 ∗∗ [ 2.54 ]

N◦ Schools 29 52 76
N◦ Obs. 174 312 456

(b) Repeating discontinuity: ZL = 10% and 67% ≤ ZF ≤ 80%

h= 2 h= 3 h= 4
French - Mean -6.77 [ 4.80 ] -0.37 [ 5.63 ] -0.49 [ 1.52 ]

French - Q10 -0.97 [ 3.72 ] 4.67 [ 7.50 ] 0.06 [ 1.76 ]

French - Q25 -2.43 [ 3.95 ] 1.56 [ 6.54 ] 0.02 [ 1.71 ]

French - Median -7.24 [ 5.38 ] 0.02 [ 6.38 ] -0.84 [ 1.73 ]

French - Q75 -13.23 ∗ [ 7.75 ] -4.72 [ 7.78 ] -1.02 [ 1.84 ]

French - Q90 -11.01 [ 7.01 ] 0.18 [ 7.94 ] 1.13 [ 2.13 ]

Maths - Mean -7.74 [ 6.23 ] -5.59 [ 9.52 ] -3.61 [ 2.42 ]

Maths - Q10 -5.76 [ 5.23 ] -5.29 [ 8.81 ] -1.91 [ 2.10 ]

Maths - Q25 -4.13 [ 5.43 ] -8.99 [ 11.77 ] -5.32 ∗ [ 2.81 ]

Maths - Median -8.14 [ 6.92 ] -13.21 [ 15.00 ] -6.27 ∗∗ [ 3.13 ]

Maths - Q75 -11.59 [ 8.69 ] -3.24 [ 11.20 ] -2.63 [ 2.99 ]

Maths - Q90 -7.65 [ 8.09 ] 9.70 [ 14.51 ] -0.04 [ 3.10 ]

N◦ Schools 33 50 77
N◦ Obs. 198 300 460
Estimated treatment effect, standard error in bracket, bilateral test of equality
between treated and non-treated schools. Level: ∗ 10%, ∗∗ 5%, ∗ ∗ ∗ 1%
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