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Abstract

In this work, we explore the usefulness of spaces of unstructured spline functions in the

resolution of hyperbolic problems discretized by explicit-time schemes, and especially the acous-

tic wave propagation problem with absorbing boundary conditions, and its associated inverse

problem known as seismic inversion.

We base our analysis on the known definition of simplex splines through polyhedral pro-

jections and Dirichlet averages, and we focus especially on the construction of polynomial-

reproducing spaces of simplex splines. We introduce a family of spaces associated to fine zono-

topal tilings, which constitute a combinatorial extension of previous results on Delaunay con-

figurations, and which can be constructed on general point configurations including repeated

and affinely dependent points. The resulting reduction in the regularity of the function space

allows to define external boundary conditions, as well as subdivide the space into subdomains.

Furthermore, the combinatorial properties of zonotopal tilings allow us to derive some useful

algorithms for spline space construction in all space dimensions, generalizing previously known

algorithms, as well as the evaluation of all the spline functions supported at a given point.

We employ these spaces to define an unstructured version of known multi-patch Discon-

tinuous Galerkin (DG) – isogeometric analysis (IGA) numerical schemes, showing that we can

recover the usual Bernstein-Bézier DG scheme, as well as a fully unstructured IGA method, as

special cases. We also show that the behavior of these spline spaces near the external and inter-

nal boundaries is very similar to the behavior of the standard DG bases, thus allowing to derive

simple inverse inequalities and reuse the standard results of coercivity and a priori error analysis

originally derived for the interior-penalty discontinuous Galerkin (IPGD) method. We illustrate

the numerical properties of this discretization scheme with some numerical experiments.

Finally, we explore some possible applications of unstructured spline functions to the seismic

inversion problem, in the form of the full waveform inversion (FWI) technique. Specifically, we

use the location of the spline knots as degrees of freedom for the inversion, using some known

facts about the derivatives of these functions to drive the optimization process. Since the cost

function of FWI is not generally differentiable with respect to the geometric degrees of freedom,

we introduce this technique using subdifferentials, and we give a derivation of the adjoint state

method for the computation of the gradient using a known convex duality theorem, valid for

non-differentiable convex functions.
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Résumé

Dans ce travail, on explore l’utilisation des espaces de fonctions splines non-structurées dans

la résolution des problèmes hyperboliques discrétisés par des schémas en temps explicites, et

en particulier le problème de la propagation des ondes acoustiques avec conditions aux limites

absorbantes, et son problème inverse associé, l’inversion sismique.

Notre analyse repose sur la définition, connue, de spline simplexe à travers les projections

de polyèdres et les moyennes de Dirichlet, et on se concentre en particulier sur la construction

d’espaces de splines simplexes capables de reproduire les polynômes. On introduit une famille

d’espaces associées aux pavages fins de zonotopes, qui constituent une extension combinatoire

de certains résultats connus sur les configurations de Delaunay, et qui peuvent être construits

sur configurations générales de points incluant des points répétés et affinement dépendants. La

réduction de la régularité de l’espace de fonctions qui en découle permet de définir des conditions

aux limites, ainsi que de subdiviser l’espace en sous-domaines. De plus, les propriétés combi-

natoires des pavages de zonotopes nous permettent de dériver un certain nombre d’algorithmes

utiles pour la construction de l’espace de splines dans n’importe quel nombre de dimensions,

généralisant un algorithme connu en dimension deux d’espace, ainsi que pour l’évaluation de

toutes les fonctions splines de l’espace en un point donné.

On se sert des espaces précédemment construits afin de définir une version non-structurée

des schémas multi-patch Galerkine discontinu (DG) – analyse isogéométrique (IGA) connus,

puis on montre que le schéma usuel DG Bernstein-Bézier ainsi que la version complètement

non-structurée du schéma IGA sont des cas particuliers de cette méthode. On montre aussi

que le comportement de ces espaces de fonctions splines à proximité des bords externes et in-

ternes est très proche de celui des fonctions standards utilisées dans les schémas DG, ce qui

nous permet de dériver des inégalités inverses simples et de réutiliser certains résultats connus

concernant la coercivité et l’analyse d’erreur a priori qui avait été développés à l’origine pour

la méthode de Galerkine discontinue avec pénalisation symétrique (IPDG). On illustre les pro-

priétés numériques de notre schéma de discrétisation à travers un certain nombre d’expériences

numériques.

Pour terminer, on explore certaines applications possibles des fonctions splines non-

structurées pour le problème d’inversion sismique, en utilisant la technique de l’inversion

des formes d’ondes complètes (FWI). Plus précisément, on interprète la position des nœuds

définissants les fonctions splines comme des degrés de liberté d’inversion, en utilisant certaines

propriétés connues sur les dérivées de ces fonctions afin d’optimiser le processus. Comme la

fonction de coût utilisée en FWI n’est pas en général différentiable par rapport aux degrés de

liberté géométriques, on introduit cette technique en utilisant la notion de sous-différentiel, et

on montre que la technique de l’état adjoint, utilisée pour le calcul du gradient de la fonction

coût, peut être dérivée simplement d’un théorème connu de dualité convexe, qui est aussi valable

pour les fonctions convexes non-différentiables.
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Notation, abbreviations and symbols

aff( · ) Affine span of a set of points.

f( · ) Denotes the function f , without explicitly

naming its argument.

∂Ω Boundary of the open set Ω, i.e., Ω \ Ω.

Ω Closure of the open set Ω, i.e., the smallest

closed set containing Ω.
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:=, =: Symbol on the left (respectively, right) de-
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and 0 otherwise.
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))
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General Introduction

Two little mice fell in a bucket of cream. The first mouse quickly

gave up and drowned. The second mouse wouldn’t quit. He

struggled so hard that eventually he churned that cream into

butter and crawled out.

Frank Abagnale Sr., Catch Me If You Can (2002)

In this short chapter, we introduce the main research challenges that have motivated and

guided our investigation, with an eye towards their real-world implications and their industrial

value.

Motivation

The exploration of the structure of the Earth’s subsoil has long been an important avenue of

scientific research, and seismic waves, be they artificially produced or naturally occurring, are

one of the key tools at our disposal in this endeavour.

Traditionally, one of the main drivers of geophysical exploration has been the oil and gas in-

dustry, where seismic surveying and seismic inversion are used to find and appraise hydrocarbon

resources and monitor their production. Recently, as the dramatic consequences of continued,

unabated CO2 emissions on the Earth’s climate become more and more apparent, seismic explo-

ration is finding a renewed role in the emerging industrial field of Carbon Capture, Utilization

and Storage (CCUS). Here, seismic monitoring is coupled with geomechanical and reservoir flow

simulations in order to understand the potential of CO2 sinks and de-risk CO2 injection oper-

ations, evaluating the mechanical response of the target reservoir and the possible re-activation

of natural faults. New challenges, stemming from the chemical and physical properties of the

injected CO2 gas and the different operating conditions, require new computational tools, ca-

pable of quickly and accurately simulating wave propagation while efficiently representing the

complex geometry of the subsoil.

Similar challenges are posed by geothermal exploration, whose goal is to assess the potential

of a given zone for geothermal energy production. Two aspects are extremely important in this

case. First, a geothermal exploration campaign is expected to determine the presence of sub-

surface heat sources and the associated natural heat flows, and their potential for exploitation.

These sources tend to be located near heterogeneous geological formations, requiring powerful

imaging techniques. Secondly, the presence of risk factors related to high-pressure fluids and

1
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the possible tectonic reactivation of fractures need to be thoroughly taken into account. This

aspect is even more relevant than in the case of hydrocarbon exploration and CO2 storage, since

geothermal production activities tend to be located closer to densely populated areas due to the

thermal losses associated with transporting heat energy over large distances. A precise seismic

imaging technique can be extremely helpful in de-risking geothermal activities, especially when

acquisition campaigns are repeated over time for the early detection of tectonic and fluid shifts

in a production area.

For all these reasons, there is a strong need in the field of energy production for new numerical

schemes dedicated to seismic wave propagation and seismic inversion. This is an area of research

that cannot be neglected in order to successfully meet the industrial challenges ahead.

Introduction

Wave propagation problems in geophysics and in engineering often require different tools. In

geophysics, one has to contend with heterogeneous and often discontinuous physical properties

determined by subsoil structures such as strata and salt domes, often represented via unstruc-

tured meshes. Recent works (see e.g. [1]) highlighted the advantages of Discontinuous Galerkin

(DG) schemes, able to achieve high-order approximations while relying on block-diagonal ma-

trices, well-suited for parallelization, and especially for time-explicit integration.

Engineering simulations, on the other hand, often involve homogeneous materials with

complex, but known, geometries. Isogeometric analysis (IGA) [2], which replaces polynomial

bases by B-spline (or Non-Rational Uniform B-Spline, a.k.a. NURBS) functions coming from

Computer-Aided Design (CAD) models, has been shown to have higher efficiency per degree of

freedom, better convergence in high energy modes and an improved timestep condition for wave

propagation.

Recent works have started to bridge the chasm between these two worlds, by formulating

a DG scheme over disconnected IGA patches, retaining the numerical advantages of the IGA

formulation while allowing for the block-diagonal mass matrix characteristic of DG methods [3].

However, the tensor-product structure of conventional B-spline patches is not well-suited for

applications in the natural sciences, where CAD models are not available, discontinuities are

often localized and can have arbitrary topology, and inverse problems require a highly flexible

geometric description.

Motivated by the need to recover the good numerical properties of the standard multi-patch

DG-IGA scheme, while allowing for a more general problem geometry, we set out in this work

to explore an innovative multi-patch DG-IGA scheme based on unstructured splines.

The starting point of our investigation lies in some relatively recent work on unstructured

spline spaces, i.e., spaces of spline functions that are based on an unstructured set of points.

Works by Neamtu [4] and Liu and Snoeyink [5] have started bringing to light some of the the-

oretical and algorithmic features of these functions. Specifically, Neamtu has given a beautiful

geometric description of polynomial-reproducing spline spaces based on higher-order Delaunay

configurations, while Liu and Snoeyink have given an explicit construction algorithm for these

spaces, although limited to two dimensions and not theoretically well-suited to the most general

point sets, which can potentially contain repetitions and affine dependencies. Completed by
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Schmitt’s proof of the convergence of the two-dimensional construction algorithm at all polyno-

mial degrees [6], this body of work is starting to delineate the contours of a fully-formed scheme

for functional approximation and numerical analysis, and the first works exploring this path are

starting to appear, see e.g. [7].

However, many desirable and even essential features appear to be still lacking. First and

foremost, the construction algorithm itself is only available in two spatial dimensions, and does

not naturally take into account point repetitions and affine dependencies, which are essential

for the proper treatment of boundary conditions in numerical simulations. Moreover, no quick

algorithm for the evaluation of spline functions supported on a given point is available, limiting

the computational feasibility of the approach. Finally, the relationship of these unstructured

spline spaces with standard bases used in numerical analysis (FEM or DG) is not sufficiently

clear. We strive in this work to bring some answers to these needs.

In Chapter 1, we briefly introduce the concept of seismic imaging, the acoustic wave equa-

tion, which will be the main application of our work, and the imaging technique known as full

waveform inversion. We only tackle the most classical approach to these problems, but we follow

a very general and powerful viewpoint, which can be adapted to many different variations and

similar settings.

In Chapter 2, we briefly introduce the Galerkin method, the main polynomial-reproducing

spaces used in its implementation, and the Interior-Penalty Discontinuous Galerkin scheme

whose fluxes and penalty terms are used in our proposed DG-IGA scheme in a later chap-

ter. In the final portion of the section, we give an explicit analytical calculation of the

Courant–Friedrichs–Lewy (CFL) condition for the one-dimensional acoustic wave equation un-

der the IGA scheme, showing the theoretical advantage of this approach in a simplified albeit

representative configuration.

In Chapter 4, we introduce the mathematical foundations of multivariate (unstructured)

spline functions, and derive the relevant properties that make them suitable for our applications.

In Chapter 5, we explore the connections between generalized unstructured spline spaces

and some combinatorial structures known as zonotopal tilings. We show how this connection

can be used to expand Neamtu, Liu and Snoeyink’s work on Delaunay configurations, in order

to extend their construction algorithm to all dimensions and to affinely dependent and repeated

points. Moreover, we show how the combinatorial properties of these objects can be used to

derive an efficient algorithm for the determination of all spline functions supported on a point

and their numerical evaluation.

Chapter 6 exploits the results of the previous chapter in order to introduce a fully unstruc-

tured multi-patch DG-IGA scheme for the simulation of PDEs. We show how to exploit knot

multiplicity to carve out disconnected sub-regions of the simulation domain, that are subse-

quently coupled via DG fluxes. We demonstrate that our approach can reproduce, for extreme

choices of parameters, both a pure DG scheme on unstructured meshes, and a pure IGA scheme,

thus allowing to fine-tune the level of domain decomposition and thus the size of the blocks in

the mass matrix. Results on two- and three-dimensional wave propagation and two-dimensional

elasticity are also presented in Chapter 6, showing that the favorable properties of IGA are

retained, along with the parallelization capabilities of DG-like methods.

Chapter 7 is dedicated to the perspective application of our method to seismic full-waveform
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inversion (FWI) [8], a proven technique capable of estimating the properties of the subsoil, such

as velocity and density, from seismic data. This method has become increasingly attractive in

the last decade, as it is capable of creating accurate, high-resolution models of the subsurface

even in the presence of complex geological structures. However, the cost-function minimization

underlying this technique is inherently non-convex, and can become trapped in local minima

due to an unsuitable initial guess, lack of low-frequency content, or noise. Crucially, the number

of inversion parameters in the velocity model seems to be an important driver of the stability

of the inversion [9]. In this context, an intrinsically mesh-less method such as the one explored

in this work seems to be particularly well-suited for the precise determination of the model

geometry with a limited amount of model parameters, thus increasing the inversion stability

without reducing its precision.

Finally, we draw some conclusions, and discuss some perspectives and avenues of improve-

ment.

Software availability

A piece of software for spline space construction and evaluation, two- and three-dimensional

wave propagation and two-dimensional elasticity was written during the course of this project

and is available upon request on the Inria git repository (https://gitlab.inria.fr/sframbat/

iga-dg).

https://gitlab.inria.fr/sframbat/iga-dg
https://gitlab.inria.fr/sframbat/iga-dg


1 | Waves and inversion

The earth keeps some vibration going

There in your heart, and that is you.

Edgar Lee Masters, Spoon River Anthology, Fiddler Jones (1915)

We introduce in this chapter the main features of seismic surveying, seismic wave propagation

and seismic inversion that underlie and motivate a substantial part of our work.

In the first part, we take a look at seismic surveying, its importance in industrial applications

for energy and oil & gas, and how it is used to gain an understanding of the subsoil and its

structure. We then focus on the acoustic wave equation, with the boundary conditions commonly

used in seismic applications, we introduce its adjoint problem and we use it to show that the wave

simulation problem (i.e., the forward problem) is well-posed. Finally, we introduce the concept

of seismic inversion, the inverse problem associated with wave propagation. We introduce the

associated cost function, and we adopt a slightly less common but more general point of view,

showing how convex duality can be used to introduce the adjoint state method, in a very general

form and even when the cost function is not differentiable. We exemplify these concepts using

a simplified model based on simple linear regression, before moving to the full-fledged seismic

inversion formulation. Lastly, we explicitly work out the simple case of one-dimensional seismic

inversion on a few simple models, illustrating its main features with some concrete examples.

1.1 Seismic imaging principles

Seismic depth imaging is an indirect process that allows to recover the geometric structure and

distribution of the physical parameters of the subsoil (called in geophysics the subsurface) from

measured seismic data. In most practical cases, this goal is achieved through seismic reflection,

a process whereby an oscillation (a shock wave) is imparted to the surface of the earth, and the

reflected waves are detected and measured at a set of locations on the surface [10]. The features

of the subsurface are then deduced from the measured data through various computational

techniques, an example of a (rather complex) inverse problem. The physics underlying this

process is the same as in ultrasound techniques used in the medical field, although the scale,

range of wave frequencies and source and receiver types are all quite different.

The physical measurements take place during seismic acquisition campaigns over a given

area, named seismic surveys. These measurements can be performed either on land or at sea;

in the latter case, the source of oscillations and the receivers are both placed at the surface

5



6 CHAPTER 1. WAVES AND INVERSION

of the water, usually on a boat with trailing cables called streamers. Physically, the source of

oscillations is a boat-mounted air gun for marine campaigns or a vibrator truck for terrestrial

ones. Each source activation (or shot) has a very limited time duration, and a main frequency

in the range of a few Hertz (i.e., oscillations per second) to a few tens of Hertz. Many shots are

performed, and for each shot, many receivers (geophones) are present, usually distributed along

a line. Using this setup, many different locations are probed, usually forming a set of lines in

Figure 1.1: (Left) Seismic reflection in a marine environment. The source (air gun) produces
waves that propagate into the subsoil, get reflected by the main sedimentary interfaces, and
are recorded at a series of trailing receivers. Many shots are performed at different locations.
(Right) Seismic traces dr(t) recorded by the receivers.

land campaigns (2D acquisition), or a regular grid for marine campaigns (3D acquisition).

In a seismic campaign, the oscillations induced in the subsurface by the artificial source

can be subdivided into P- (pressure or primary) waves and S- (shear or secondary) waves,

according to whether the oscillation occurs in a plane parallel or perpendicular to the direction

of propagation of the wave, respectively [11]. Notice that, although a liquid such as water is

not able to carry S-waves, these oscillations are nonetheless generated when a pure pressure

wave reaches the water bottom and interacts with the solid surface. In addition to these waves,

surface waves are also produced, that travel directly from the source to the geophones. All

these waves have different speeds in different materials, and all must be taken into account in

order to correctly explain the measured data. Surface waves can carry information about the

shallow and medium-depth structures of the subsurface, for which they find ample use especially

in geophysics and civil engineering (see, e.g., [12–14]), but do not contain information about the

deepest part of the subsurface, and are often filtered out from seismic data in a pre-processing

step based on time-of-arrival.

The literature on seismic imaging is very large, and even a brief overview of the main tech-

niques would take us out of the scope of this work. Instead, we refer the interested reader to

some of the many very complete texts on the subject, as for example [15, 16], and all the refer-

ences contained there. Here, we will focus mainly on seismic imaging via P-waves, i.e., acoustic

seismic imaging, through a technique known as full waveform inversion (FWI). We introduce

these concepts in the next sections.
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1.2 Seismic modeling

We discuss here the origin of the acoustic wave propagation problem and the mathematical

properties that are important for the development of our work. We introduce the wave equation

based on the theory of linear elasticity. Although nonlinear effects have been proven to be

important for the full description of the physics of seismic waves, we will not explore this aspect

in the present work, and we will only focus on linear waves. For a simple, beautiful and intuitive

introduction to these topics, we refer the reader to Chapters 31, 38 and 39 of the timeless classic

[17].

1.2.1 Acoustic wave equation

When a piece of material is subject to a force (stress), it deforms (strains). If the force is small

enough, the deformation, i.e., the relative displacement of the various positions in the material,

is linearly proportional to the force, an elastic behaviour captured by Hooke’s law. Consider

a piece of material occupying a region Ω ⊂ Rd, and suppose that it is deformed by a (small)

displacement field u : Ω 7→ Rd such that the point at position x ∈ Ω finds itself at position

x+ u(x). Since a constant displacement is simply a translation, the deformation must be given

by the first derivatives of u, i.e.,

εij :=
∂ui
∂xj

. (1.1)

However, the antisymmetric part of ε merely describes rotations, which are also rigid motions.

Therefore, the deformation induced by u is described by the symmetric part of (1.1), i.e., the

strain tensor

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (1.2)

By Hooke’s law, if we consider a test area Aj normal to the direction j and measure the i-th

component of the force σj through it, i.e., (σji ) =: σij , we find a linear relationship with ε,

σij =
d∑

k,l=1

Cijklεkl, (1.3)

The linear map C is called the stiffness or elasticity tensor and is in general a function of x.

Notice that the term σ of (1.3) is a force per unit area. To obtain the total net force per unit

volume on any test volume, one may simply take the (signed) average of the contributions on

opposite areas, i.e., the divergence

fi =

d∑
j=1

∂σij
∂xj

.

By Newton’s law, fi is proportional to the second time derivative of the displacement through

the inertia given by the density ρ. If we also add an external forcing g = g(x, t), we obtain the
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general elastic wave equation

ρ
∂2u

∂t2
=

d∑
j=1

∂

∂xj

 d∑
k,l=1

Cijklεkl

+ g. (1.4)

In the present work, we wish to focus on the foundational aspects of our numerical scheme. To

avoid cluttering our presentation and clouding our results, we simplify the physical systems of

interest by removing all anisotropy and focusing only on pressure waves (equivalently, setting the

Poisson’s ratio of the material to zero). This restriction does not hide the main characteristics

of the wave equation that are important in view of our results, i.e., its hyperbolic character,

the spatial dependence of the physical parameters, and the convergence characteristics of the

associated inverse problem. Henceforth, we will only deal with the acoustic wave equation. For

an isotropic material, (1.3) can be simplified to

σij = λδij

d∑
k=1

εkk + 2µεij ,

where λ and µ are known as Lamé parameters. If the shear modulus µ is equal to zero, then σ

is proportional to the identity. Taking the (over)pressure p := 1
3 trσ as our main variable, we

have from (1.2) and (1.3)

p = λ∇ · u,

and, taking the second time derivative and using (1.4), we arrive to the final form of the acoustic

wave equation,
1

λ

∂2p

∂t2
−∇ ·

(
1

ρ
∇p
)

= s, (1.5)

where s = s(x, t) is the source term. The P-wave velocity can be recovered via c2 = λ/ρ. Notice

that in usual applications, these physical parameters do not depend on time. Their possible time

dependence, due to fluid flow in reservoirs and/or the movement of faults and other tectonic

features, are much too slow to be relevant in a single seismic campaign, and are only picked up

by repeating the acquisition campaign over many periods of time spread over multiple years.

The physical parameters are usually taken from a well-definite space of (positive) functions,

such as continuous, piecewise constant or piecewise polynomial functions, but for some applica-

tions such as scattering from small obstacles or lattices (see, e.g., [18–21] and references therein),

more general choices can be required. Thus, in all generality, the physical parameters ρ and λ

are assumed to be positive measures on Ω.

The source term s(x, t) used in seismic surveys is usually taken to be a point-like Ricker

wavelet [22], whose time dependence is given by the second derivative of a Gaussian, i.e.,

s(x, t) = Aδ(x− xs)2πν2
s

(
1− 2π2ν2

s (t− ts)2
)
e−π

2ν2s (t−ts)2 , (1.6)

where A is an amplitude parameter with units of volume, δ(x) is the Dirac delta distribution,

xs is the spatial location of the source (usually at the surface of the earth or of the water), ts is

the source delay, and νs is the source peak frequency, usually in the range 1÷ 100Hz.
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The usual setup for the solution (1.5) is an initial value problem with a given value of u(x, t)

and its time derivative at t = 0, usually imposing no pressure and no inertia,

p(x, 0) =
∂p

∂t
(x, t)

∣∣∣∣
t=0

= 0. (1.7)

Additionally, a set of boundary conditions on ∂Ω is applied throughout the simulation time. For

seismic surveys, the top surface of the domain ∂ΩF , corresponding to the surface of the water

or the earth, is usually taken to be a free surface, i.e., in the acoustic case, a simple Neumann

condition is imposed,
∂p

∂n

∣∣∣∣
∂ΩF

= 0, (1.8)

where ∂/∂n denotes the normal derivative. The remaining portion of the boundary, ∂ΩA :=

∂Ω \ ∂ΩF , is used to approximate the infiniteness of the domain using various techniques.

Among the most widely used approaches are perfectly matched layers (PMLs, see, e.g., [23])

and absorbing boundary conditions (ABCs, see, e.g., [24]). In the present work, we use the

lowest-order absorbing boundary conditions, which simply reads [25]

∂p

∂t

∣∣∣∣
∂ΩA

+ c
∂p

∂n

∣∣∣∣
∂ΩA

= 0. (1.9)

These conditions are exact for d = 1 and reasonably accurate in d ≥ 2 for incidence angles less

than about π/6.

1.2.2 Well-posedness

We wish to show that the acoustic wave problem determined by (1.5) with initial conditions

(1.7) and boundary conditions (1.8) and (1.9) is well-posed in Hadamard’s sense, i.e., that under

mild technical assumptions on Ω and the regularity of the physical parameters ρ, λ, c, and the

source term s(x, t), this problem has exactly one solution p(x, t) for x ∈ Ω and t ∈ R≥0 and this

solution depends continuously on the problem parameters. This result is proven in [26], but we

give here the main argument as it can be rather instructive, and it will help us introduce the

notion of adjoint operator.

Some elements of Hille-Yosida theory on Hilbert spaces

Consider a first-order time-evolution problem expressed as

∂u

∂t
= Au+ s, (1.10)

where u belongs to a given real Hilbert space H where the domain D(A) of A is dense. The

well-posedness of (1.10) is often tackled by proving that there exists a unique one-parameter

semigroup T of time evolution operators T (t), t ∈ R≥0, with T (0) = I and T (r)T (s) = T (r+ s),

such that the solution at time t can be simply expressed via Duhamel’s formula (see, e.g., [27,



10 CHAPTER 1. WAVES AND INVERSION

28])

u(x, t) = T (t)u(x, 0) +

∫ t

0
T (t− τ)s(x, τ) dτ, (1.11)

and that the map t 7→ T (t)u(x, 0) is strongly continuous (i.e., continuous in the norm of H).

The expression given for u(x, t) by (1.11) then represents the unique solution of (1.10). If H
were finite-dimensional, the solution to (1.10) would be trivially obtained by exponentiating A,

i.e.,

u(t) = etAu(0) +

∫ t

0
e(t−τ)As(τ) dτ.

In the infinite-dimensional case, however, things are not quite that simple, and even for bounded

operators, one must be careful with the definition of the operator domain. There are however a

few theorems, part of the Hille-Yosida theory, that allow the construction of T if A is dissipative,

i.e., if

〈Au, u〉H ≤ 0 for all u ∈ D(A).

Intuitively, A is dissipative if its spectrum is negative, and there is a nonnegative quantity,

encoded by the norm on H, that can be interpreted as the “energy” of the system and is never

increased by the time evolution. The other conditions that are required of A rely on its adjoint

operator.

Recall that the adjoint A? of A in the Hilbert space H, endowed with the scalar product

〈 · , · 〉H, is defined as follows. First the domain D(A?) ⊆ H is defined as the set of all elements

u′ ∈ H such that the linear functional ϕ(u) := 〈Au, u′〉ρ,λ is continuous for all u ∈ D(A). Since

D(A) is dense in H, by the Hahn-Banach theorem, this linear functional can be extended to the

whole H, i.e., to an element of the dual H?. By the Riesz representation theorem, there is a

unique element v ∈ H such that〈
Au, u′

〉
H = 〈u, v〉H for all u ∈ H.

We then simply declare

A?u′ := v.

Then, it is always true that, for u ∈ D(A) and u′ ∈ D(A?),〈
Au, u′

〉
H =

〈
u,A?u′

〉
H , (1.12)

which is the defining property of the Hilbert adjoint.

We are now ready to state two fundamental theorems in (Hilbert space) Hille-Yosida theory.

Let the domain D(A) be dense in H, and let the operator A be closed, i.e., let the graph of A

be a closed set in H×H. Then the two following theorems hold.

Theorem 1.2.1 (Stone’s theorem for Hilbert spaces, [29]). There exists a unique semigroup of

strongly continuous time evolution operators (1.11) that are unitary, i.e., they preserve the norm

on H, if and only if A is skew-symmetric, i.e., A = −A?.

Theorem 1.2.2 (Lumer-Phillips’ theorem for Hilbert spaces, [30]). There exists a semigroup

of strongly continuous time evolution operators (1.11) that are contractions, i.e., they do not
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increase the norm on H, if and only if A is closed and both A and A? are dissipative.

Notice that in the statement of Stone’s theorem, dissipativity is not required, since by (1.12),

a skew-self-adjoint operator satisfies 〈Au, u〉H = 0 and is thus automatically dissipative. In the

following subsections, we show how the Hille-Yosida theory can be applied to the acoustic wave

problem to construct a semigroup of contraction operators and thus prove its well-posedness.

The acoustic wave operator and the simulation domain

Let us now return to the acoustic wave equation (1.5). If we consider a (generic) displacement

field u(x, t) propagating through space according to the wave equation

α
∂2u

∂t2
= ∇ · (β∇u) , (1.13)

it is well-known that the total energy of this system, expressed in terms of the usual sum of a

kinetic term and a potential term,

Eu(t) :=
1

2

∫
Ω
α

(
∂u

∂t

)2

+ β |∇u|2 dΩ,

is conserved. Comparing (1.13) with (1.5), one can see that the quantity

Ep(t) :=
1

2

∫
Ω

1

λ

(
∂p

∂t

)2

+
1

ρ
|∇p|2 dΩ,

even if it does not have the physical unit of an energy, is a good candidate to establish the

dissipativity of the acoustic wave problem.

In this spirit, let us identify (p(x, t), 1/λ ∂tp(x, t)) with a vector P (x, t) = (p1(x, t), p2(x, t))

in the Hilbert space H1
ρ (Ω) ⊕ L2

λ(Ω), analogous to the usual space H1(Ω) ⊕ L2(Ω), but where

the finite positive measures ρ, λ on Ω are used to define the modified scalar product 〈 · , · 〉ρ,λ as

〈(p1, p2), (q1, q2)〉ρ,λ :=

∫
Ω
∇p1 · ∇q1

dΩ

ρ
+

∫
Ω
p2q2λ dΩ. (1.14)

The distributional derivatives are taken in the weak sense using this scalar product. We can

write (1.5) in the form (1.10) using the vector variable P (x, t) as

∂P

∂t
= AP + S, (1.15)

where

A :=

(
0 λ

∇ ·
(

1
ρ∇
)

0

)
and S :=

(
0

s(x, t)

)
. (1.16)

Notice that we can recover the original pressure field by identifying p(x, t) := p1(x, t) and

∂tp(x, t) := λp2(x, t).

We want to solve (1.15) distributionally, i.e., by projecting it on test functions Φ := (ϕ1, ϕ2) ∈
C∞0 (Ω) × C∞0 (Ω). We will assume hereafter that Ω is a bounded open subdomain of Rd, and
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thus we can write ∫
Ω

(AP ) · Φ dΩ :=

∫
Ω
p2ϕ1λ dΩ−

∫
Ω
∇p1 · ∇ϕ2

dΩ

ρ
.

In order to define the domain D(A) ⊂ H1
ρ (Ω)⊕L2

λ(Ω), we need to incorporate the boundary

conditions (1.8) and (1.9), and therefore we need to place some constraints on Ω and define a

suitable trace operator.

Following similar arguments that exist in the literature for comparable differential operators

(see, e.g., [31] for the Schrödinger equation), assume that the boundary ∂Ω is piecewise C1 and

locally Lipschitz, i.e., locally the graph of a Lipschitz function. A boundary that is piecewise

smooth and whose pieces connect through edges and corners forming positive angles is indeed

locally Lipschitz, see, e.g., [32]. This includes all polytopal (e.g., polygonal or polyhedral)

domains, and is clearly more than enough for most numerical simulations. If Ω satisfies this

regularity property, then the normal vector to ∂Ω can be defined almost everywhere, and one

can apply Stein’s extension theorem and Sobolev’s embedding theorem (see, e.g., [32, Chapter 5]

or the Raviart-Thomas’ approach [33]) to show that there is a linear, continuous and surjective

trace operator Tr : H1(Ω) 7→ H1/2(∂Ω), with a linear, continuous right inverse. By using this

classical embedding, one can evaluate the trace of every function in H1(Ω) on ∂Ω, and, if the

function sits in H2(Ω), also its normal derivatives.

However, there is still a small caveat: in our case, the Sobolev space depends on a non-

standard metric induced by ρ and λ. Even so, if a measure µ satisfies the following measure

density condition,

there exists a constant C > 0, s.t. µ(Bx,r ∩ Ω) ≥ Crd (1.17)

for every ball Bx,r centered in x ∈ Ω with radius 0 < r ≤ 1,

then it can be proven that the extension theorem also applies to the modification of the Sobolev

space H1(Ω), where the scalar product is taken with respect to the measure µ (see [34] and

[35, Theorem 5]). Condition (1.17) requires that the region near the boundary is well behaved,

i.e., that (Ω, µ) does not become too thin near the boundary, or more precisely, that it does

not go to zero faster than rd. This implies in particular that µ(Bx,r ∩Ω)/ |Bx,r| goes to a finite

positive constant as r → 0 for all x ∈ ∂Ω, cf. [34, Lemma 2.1] and Figure 1.2, and thus that

the Lebesgue measure of ∂Ω must be zero and µ must be well-behaved near the boundary. The

measure density property is certainly satisfied by every positive, bounded and well behaved set

of physical parameters ρ, λ and regular domains that are interesting for numerical analysis. For

example, it is satisfied by smooth or piecewise smooth functions, and even if a set of discrete

Dirac masses is added to the interior of Ω, as long as the measure stays positive.

As a consequence of this construction, by choosing P in H2
ρ,λ ⊕ H1

ρ,λ, p1, p2 and the first

derivatives of p1 all possess a well-defined trace on ∂Ω. If we furthermore assume that the

measures λ, ρ also possess a well-defined positive trace such that c :=
√
λ/ρ is well-defined a.e.

on ∂Ω, then (1.8) and (1.9) become meaningful linear conditions on Hρ,λ,Ω, the extension of

H2
ρ,λ ⊕H1

ρ,λ through the Sobolev embedding theorem discussed above. We can now define the
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Ω

x

Bpx, rq

Ω

x

Bpx, rq

Figure 1.2: A well-behaved domain (equivalently, measure), satisfying the measure condition
(1.2) (left), and a domain not satisfying the condition (right).

domain of the operator A as

D(A) := {(p1, p2) ∈ Hρ,λ,Ω : A(p1, p2) ∈ Hρ,λ,Ω, (∂np1)|∂ΩF
= 0, (∂np1)|∂ΩA

+ λ p2|∂ΩA
= 0}.

It is easy to see that the domain D(A) is dense in Hρ,λ,Ω, and in fact in L2(Ω)⊕L2(Ω), since it

contains C∞0 (Ω) × C∞0 (Ω). Moreover, A is closed in Hρ,λ,Ω. In fact, its domain is complete as

it is obtained from a complete space via a simple linear condition, and since the image of A is

contained in Hρ,λ,Ω, it follows by standard arguments that A is bounded. Thus, A satisfies the

prerequisites required to apply the machinery of Hille-Yosida theory introduced above.

Before moving to the next subsection, we need to point out that, in order for the absorbing

boundary condition (1.9) (and the adjoint condition (1.21)) to make physical sense, the domain

Ω must also chosen to be convex. In fact, perfectly absorbing boundary conditions (of which

(1.9) are an approximation) rely on the hypothesis that waves that leave Ω do not make a

contribution to the signal at the receivers, and can therefore be ignored. This is usually the case

if the propagation time is small enough (or the domain large enough) so that waves reflected by

heterogeneities outside Ω do not have the time to travel back to the receivers and be measured.

However, if Ω is not convex, some waves could exit Ω only to re-enter after a very short time,

and therefore cannot be safely ignored. Nevertheless, this requirement, however important for

real-world applications, is not necessary for the well-posedness of the acoustic problem with the

lowest-order absorbing boundary conditions (1.9).

Dissipativity and the adjoint operator

Once the base Hilbert space Hρ,λ,Ω has been defined, we wish to show that the operator A is

dissipative. We can easily compute

〈A(p1, p2), (q1, q2)〉ρ,λ=

∫
Ω
∇ (λp2) · ∇q1

dΩ

ρ
+

∫
Ω
q2∇ ·

(
1

ρ
∇p1

)
λ dΩ, (1.18)

=

∫
Ω
∇ (λp2) · ∇q1

dΩ

ρ
−
∫

Ω
∇ (λq2) · ∇p1

dΩ

ρ
+

∫
∂Ω
c2q2

∂p1

∂n
· dS,

=

∫
Ω
∇ (λp2) · ∇q1

dΩ

ρ
−
∫

Ω
∇ (λq2) · ∇p1

dΩ

ρ
−
∫
∂ΩA

λc p2q2 dS.

If there were no absorbing boundary conditions, i.e., if ∂ΩA = ∅, the last term in (1.18) would

vanish and the operator A would in fact be skew-symmetric. Stone’s theorem would then apply,
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and A would generate a unitary time evolution semi-group, i.e., it would conserve the energy

associated to the scalar product 〈 · , · 〉ρ,λ. The absorbing boundary condition is therefore solely

responsible for all the energy change inside Ω, as expected. In any case, A is dissipative, since

〈A(p1, p2), (p1, p2)〉ρ,λ = −
∫
∂ΩA

λc p2
2 dΩ ≤ 0.

One can use (1.18) to compute the Hilbert adjoint A?. In fact, imposing the adjoint condition

(1.12) yields

〈(p1, p2), A?(q1, q2)〉ρ,λ = 〈A(p1, p2), (q1, q2)〉ρ,λ , (1.19)

=

∫
Ω
∇ (λp2) · ∇q1

dΩ

ρ
−
∫

Ω
∇ (λq2) · ∇p1

dΩ

ρ
−
∫
∂ΩA

λc p2q2 dS,

= −
∫

Ω
p2∇ ·

(
1

ρ
∇q1

)
λdΩ +

∫
∂ΩA

c2p2
∂q1

∂n
· dS −

∫
Ω
∇ (λq2) · ∇p1

dΩ

ρ

−
∫
∂ΩA

λc p2q2 dS,

=:
〈
(p1, p2), (q′1, q

′
2)
〉
ρ,λ
,

where the last step gives the definition of (q′1, q
′
2) = A?(q1, q2). Comparing (1.14) and (1.19), by

equating the integrals on Ω and canceling the boundary integrals in (1.19), we deduce that

A? =

(
0 −λ

−∇ ·
(

1
ρ∇
)

0

)
(1.20)

and

D(A?) := {(p1, p2) ∈ Hρ,λ,Ω : A?(p1, p2) ∈ Hρ,λ,Ω, (∂np1)|∂ΩF
= 0, c (∂np1)|∂ΩA

−λ p2|∂ΩA
= 0}.

In other words, the operator A is almost skew-symmetric, in the sense that its adjoint can be

obtained by taking minus the differential operator in (1.5), and replacing the absorbing boundary

conditions (1.9) by the adjoint absorbing conditions

∂p

∂t

∣∣∣∣
∂ΩA

− c ∂p
∂n

∣∣∣∣
∂ΩA

= 0, (1.21)

where the sign of the normal derivative has been changed. It can be then easily verified that A?

is also dissipative, by noticing that, compared to the derivation (1.18), the minus sign in (1.20)

and the opposite sign of the boundary conditions (1.21) conspire to keep the sign of the last

term in (1.18) unchanged. Consequently,

〈A?(p1, p2), (p1, p2)〉ρ,λ = −
∫
∂ΩA

λc p2
2 dΩ ≤ 0



1.3. THE INVERSE PROBLEM AND FULL WAVEFORM INVERSION 15

for all (p1, p2) ∈ D(A?).

We can therefore invoke Lumer-Phillips’ theorem to conclude that the acoustic problem is

well posed. We restate this result through the following theorem, which summarizes all the

major hypotheses made so far on Ω, ρ and λ.

Theorem 1.2.3. Let Ω ⊆ Rd be an open set whose boundary ∂Ω is piecewise C1 and locally

Lipschitz, and let ∂ΩF and ∂ΩA be two disjoint, locally Lipschitz and piecewise C1 subsets of

∂Ω. If ρ and λ are positive finite measures on Ω satisfying (1.17) and c is a well-defined positive

measure on ∂Ω, then the problem described by (1.5) with boundary conditions (1.7), (1.8) and

(1.9) and its adjoint are both well-posed. Moreover, if the source S(x, t) ∈ C0(L2(Ω); [0,+∞)),

then P ∈ C0(Hρ,λ,Ω; [0,+∞)).

Proof. The first part was proven in the text of the last two subsections. The regularity of the

solution is a simple consequence of the strong continuity of the contraction semigroup and the

expression of P via Duhamel’s formula (1.11) with P (x, 0) = 0, see, e.g., [36].

As we will see in the next section, the adjoint operator introduced here will come in handy

when discussing the seismic inverse problem.

1.3 The inverse problem and Full Waveform Inversion

In real applications, one is rarely interested in the solution of (1.5) per se. Rather, one is

given the result of some pressure (or other) measurements Dr(t), r ∈ Ri, i = 1, . . . , ns, where

ns is the number of shots and Ri is the set of receiver indices for the i-th shot, with receiver

positions {xr}r∈R. One is then tasked with finding the physical parameters λ = λ(x), ρ = ρ(x)

of (1.5) that best fit the experimental data. The resulting inverse problem is called seismic

inversion. Notice that, using (1.11), the wave propagation problem can be recast as a convolution

filter, parameterized by the physical properties of the sub-soil, that takes the source data and

transforms it into receiver data. Seismic inversion is then the corresponding deconvolution

operation [15].

Most inversion methods start from a tentative guess of the physical model, and proceed to

iteratively update the model to match the receiver data. For each shot point, we denote by

si(x, t), i = 1, . . . , ns the corresponding source term, and by Pi(x, t) the corresponding solution

to (1.15). The misfit between the current model and the measurements can be quantified by the

cost function, which is to be (locally) minimized through modifications to the model m := (ρ, λ).

The most common form for the cost function is a simple L2 distance, expressed as

J(m) :=

ns∑
i=1

∑
r∈Ri

∫ tf

0
‖Pi(xr, t)−Dr(t)‖2 , (1.22)

where each Pi is a solution of (1.15) with physical model m and source term si, see, e.g., [37].

The time interval [0, tf ] is chosen to include the whole duration of the source and receiver data,

typically a few seconds. In the literature, many other misfit functions have been used instead of

(1.22), mainly with the goal of improving robustness to noise or computational performance, see,

e.g., [38–44] for a non-exhaustive list. For the sake of simplicity, however, we will not explore
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these possibilities here, but we will nonetheless choose an approach general enough to handle

most of the possible variations of the cost function. Thus, our goal is the minimization of (1.22)

over all allowable λ, ρ. This minimization, where the pressure values are computed as solutions

to the wave equation, is called full waveform inversion (FWI).

Computing the cost function for a given choice of physical parameters requires the solution

of a full acoustic wave problem, and its minimization needs many such evaluations, which can

be very computationally expensive. On the other hand, using the full wave equation without

significant approximation allows to extract the maximum amount of information from the mea-

sured data. Consequently, FWI is a very powerful technique, capable of reconstructing very

complex subsurface structures, but which needs a significant amount of computational power in

order to be applied to real-world problems.

The first, very fundamental problem that we face in the minimization of (1.22) is the fact

that the cost function J as defined is generally not convex. In fact, if P and P ′ are two solutions

to the acoustic wave problem with the same source term and different physical parameters,

there does not necessarily exist a set of physical parameters such that the convex combination

γP + (1− γ)P , 0 ≤ γ ≤ 1 is a solution with the same source. The non-convexity of the seismic

inversion problem is a very well known fact, see, e.g., [45, 46], and it means that the best we can

hope for is to obtain a local minimization of J , i.e., to find the local minimum around a given

starting point ρ, λ, the initial guess. Therefore, our search is limited to a subspace of the space

of finite positive measures, the local attraction basin in which the initial model lies.

In the literature, the local minimization of (1.22) is usually performed via a simple gradient

descent, although full Newton-type algorithms involving the computation of the Hessian have

been proposed and their efficacy weighted against their accrued cost, see, e.g., [40, 47, 48]. As we

will see, the cost of computing the Hessian can indeed be prohibitive even in the case of the spline

spaces studied in this work. For this reason, we will mostly limit ourselves to simple gradient

descent or quasi-Newton methods such as BFGS and L-BFGS [49, 50], which are capable of

iteratively constructing an approximate Hessian based only on first-order information, and only

require the computation of the gradient of the cost function.

Finally, it has been shown that the inversion problem is in general very ill-conditioned, even

more so as the number of degrees of freedom increases (see, e.g., [9]). Incorporating a priori

information over the kind of physical model that one seeks can therefore drastically improve

the convergence rate of the inverse problem, and guide it towards an acceptable minimum. For

example, one could promote sparsity in the gradient of m (i.e., promote piecewise-constant

models) by adding to J(m) a regularization term in the form of the total variation norm [51]

‖m‖L1 :=

∫
Ω
|∇m(x)| dx,

see, e.g., [52]. One could also look for solution in the form of sparse (Dirac-delta) scatterers.

For this goal, one might rely on a penalization term based on the measure norm [53]

‖m‖M := sup
ϕ∈C0(Ω)

∫
Ω
ϕdm : |ϕ(x)| < 1 for all x,
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see, e.g., [54] for an application in this sense. In the literature, many different kinds of pe-

nalization and regularization terms have been introduced in order to make the minimization

quicker or more resilient to noise (see, e.g., [55, 56]). All these norms are convex, but often

non-differentiable, and sufficiently different from one another to require dedicated tools for their

theoretical and practical manipulation.

Great variety is also seen in the choice of the degrees of freedom over which the minimization

is performed. In practical applications, one often discretizes the model space in some way,

often by projecting it over some finite space of functions defined over a mesh or a discrete

set of measures (which can include Dirac deltas to simulate pointlike scatterers). The degrees

of freedom allowed during seismic inversion are not always limited to the coefficients of this

expansion, but can include the mesh shape (see, e.g., [57, 58]) and other aspects of the basis

functions. This will also be the case in the approach that we suggest at the end of this manuscript.

The common feature of these choices is that the physical model can be assumed to live in an

appropriate Banach space, as is the case for example of the general measures ρ, λ, that we have

used in the previous section.

For all these reasons, we deem it necessary to employ general tools, that do not require

differentiability and are capable to handle general convex optimization problems, in our approach

to FWI. We therefore introduce in the next section some general tools from convex analysis,

showing how they can be successfully employed in seismic inversion. We also refer the reader

to, e.g., [54, 59] for a few examples of application of this powerful duality outside the context of

seismic inversion.

1.3.1 Fenchel-Rockafellar duality and the adjoint state method

Let us now introduce the powerful Fenchel-Rockafellar duality (see, e.g., [60, Chapter 15]), a

fundamental duality theorem in convex theory. Let X be a Banach space with dual X ?, and let

〈u, x〉 denote the pairing between u ∈ X ? and x ∈ X (i.e., the linear action of u on x). For every

function f : X 7→ R t {+∞}, define its convex dual f∗ : X ? 7→ R t {+∞} (see, e.g., [61]) as

f∗(u) := sup
x∈X

(〈u, x〉 − f(x)) , (1.23)

which is always convex even when f is not. Notice that in general (f + g)∗ 6= f∗ + g∗. By the

definition of convex dual (1.23), for every x ∈ X and u ∈ X ?

f(x) + f∗(u) ≥ 〈u, x〉 , (1.24)

which is known as the Fenchel-Young inequality. Suppose that, for a given x ∈ X , (1.24) holds

with an equality, i.e., that we can find a linear functional u such that

f(x) + f∗(u) = 〈u, x〉 . (1.25)

Then, for all x′ ∈ X , 〈
u, x′

〉
− 〈u, x〉 ≤ f(x′)− f(x), (1.26)
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i.e., the affine functional x′ 7→ (f(x)− 〈u, x〉) + 〈u, x′〉 is always lower than f . The set of such

linear functionals is called the subdifferential of f at x, and it is denoted by ∂f(x),

∂f(x) := {u ∈ X ? :
〈
u, x′ − x

〉
≤ f(x′)− f(x) for all x′ ∈ X}.

For example, if f(x) = 1/2x2 + |x− 1| is a real function of x ∈ R, then ∂f(0) contains only one

element, u(x) = −x, but ∂f(1) contains all the functions u(x) = γx for γ ∈ [0, 2]. We show this

definition in Figure 1.3.

x

y

x

fpxq Bfpxq

x

y

x

fpxq Bfpxq

Figure 1.3: (Left) some linear functionals in the subdifferential ∂f(x) of a non-differentiable
function f . (Right) when the function is differentiable, the subdifferential contains only one
linear functional.

Thus, we can reformulate the Fenchel-Young relation (1.25) equivalently as

u ∈ ∂f(x).

Recall that a convex function f is Fréchet-differentiable at x if and only if u, as defined in (1.26),

is unique. Therefore, in this case, u corresponds to the gradient of f ,

u = ∇f(x). (1.27)

In applications, one often discretizes the space X by introducing a basis, thus reducing it

to a problem on RN for some N . For example, X could be the set of piecewise-constant or

piecewise-linear functions over a mesh, and therefore N is the size of the corresponding basis

of functions. In this case, if f is differentiable, then (1.27) is simply a manifestation of the

usual Lagrange duality. However, the notion of subdifferential is more general and valid for

any Banach space, even large ones such as the space of measures on which we formulate our

seismic inversion problem, and even when f is not differentiable. For this reason, the concept

of subdifferential is very relevant in optimization, and can be used to define a local descent

direction that is guaranteed to reduce f even when f is not smooth. In particular, equation

(1.27) is very useful for two distinct reasons: when read from left to right, it allows to recover

the dual variable from the primal one, and when read from right to left, it allows to compute

the gradient of the primal problem if the dual variable is known.
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We are ready to state the important Fenchel-Rockafellar duality theorem [61, 62]. Let X
and Y be two Banach spaces with respective duals X ? and Y?, and let A : X 7→ Y be a bounded

linear operator with adjoint A? : Y? 7→ X ?. Then, if f and g are two convex functions with

domain X and Y, respectively, and image in Rt {+∞}, the convex duality can be expressed as

follows.

Theorem 1.3.1 (Fenchel-Rockafellar). The following weak duality holds:

inf
x∈X

(f(x) + g(Ax)) ≥ sup
u∈Y?

(−f∗(A?u)− g∗(−u)) . (1.28)

Furthermore, if there are two elements x ∈ X and u ∈ Y? satisfying the optimality conditions

A?u ∈ ∂f(x), (1.29a)

−u ∈ ∂g(Ax), (1.29b)

then (1.28) holds with an equality (strong duality), and x, u are optimal arguments of the primal

and dual problem respectively.

Proof. From the definition of inf, sup, convex dual (1.23) and the Fenchel-Young inequality

(1.24),

inf
x∈X

(f(x) + g(Ax)) ≥ inf
x∈X

(
f(x) + sup

u∈Y?
(〈−u,Ax〉 − g∗(−u))

)
,

≥ sup
u∈Y?

(
−g∗(−u) + inf

x∈X
(f(x)− 〈u,Ax〉)

)
,

= sup
u∈Y?

(
−g∗(−u) + inf

x∈X
(f(x)− 〈A?u, x〉)

)
,

= sup
u∈Y?

(
−g∗(−u)− sup

x∈X
(〈A?u, x〉 − f(x))

)
,

= sup
u∈Y?

(−g∗(−u)− f∗(A?u)) .

Finally, if there exist x ∈ X and u ∈ Y? satisfying (1.29), then by (1.25) we have

f(x) + f∗(A?u) = 〈A?u, x〉 ,
g(Ax) + g∗(−u) = −〈u,Ax〉 ,

and summing these two expressions yields f(x)+g(Ax)+f∗(A?u)+g∗(−u) = 0, as required.

Formulating the dual of an optimization problem has many advantages. First of all, the dual

functions f∗ and g∗ and their respective dual spaces can be easier to describe. For example, the

dual of the Lp norm is the Lq norm with 1
p+ 1

q = 1, with the interesting special case p = 1, q =∞,

and the dual of a measure space is simply a space of continuous functions. Thus, regularization

terms often become simpler to incorporate. Moreover, the dual problem is sometimes better

conditioned, which is an interesting feature in applications, especially since the measured data

is noisy (and thus potentially contradictory) and generally insufficient to recover the physical
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model uniquely. We illustrate this point later in this chapter with a simple problem. Finally,

the Fenchel-Rockafellar duality is relevant to seismic inversion since it allows to naturally derive

the adjoint state method for the calculation of the gradient of a cost function, even when this

function is not differentiable, as we do presently.

Suppose that we are given a Banach space M of physical models, a Banach space X of

solutions, and that we wish to minimize some cost function f(x) over x ∈ X subject to the

constraint A(m)x = s for some bounded linear operator A(m) dependent on m ∈ M. Here,

s ∈ Y, where Y is another Banach space, namely the space of constraints or, in the case of seismic

inversion, the space of sources. Suppose that we want to compute the gradient of the constrained

cost function f(m) := f(x(m)), where x(m) is chosen to be a solution to the constraint. The

adjoint state technique can be employed to compute this gradient efficiently, and it is a very

important tool in practical applications, virtually omnipresent in the seismic inversion literature.

Intuitively, one can express, for some notion of differentiability δ (e.g., Fréchet differentiability),

δf

δm
=

〈
δf

δx
,
δx

δm

〉
,

and after finding a vector u such that A?(m)u = δf/δx, one can use the product rule of

differentiation
δ

δm
A(m)x(m) =

δA(m)

δm
x(m) +A(m)

δx(m)

δm

to transform the gradient into the form

δf

δm
=

〈
−u, δA(m)

δm
x

〉
.

The element u is called the adjoint state. The main computational advantage of this formulation

is that the derivatives δA(m)/δm are much easier to compute than δx/δm, which requires the

knowledge of the whole forward propagation kernel. However, this derivation relies on the

Fréchet differentiablity of f(x(m)) and the other quantities in play, as well as a model space

that is well-behaved enough. We show presently that the adjoint state method is a simple

consequence of the Fenchel-Rockafellar duality, and therefore it has in fact a wider applicability.

Let us express the constraint as a minimization of the form

x ∈ arg min
w∈X

g(A(m)w) (1.30)

where A(m) : X → Y is a bounded linear operator for every m ∈ M ⊂ M and g is the convex

function defined as

g(u) =

{
0 if u = s,

+∞ otherwise.
(1.31)

Then, (1.30) is equivalent to the condition A(m)x = s. One can then formulate a constrained

optimization problem by minimizing the cost function f(x) + g(A(m)x) over both m ∈ M and

x ∈ X . The Fenchel-Rockafellar duality then yields directly the adjoint state method.

First, we will need the following product rule for subdifferentials.
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Lemma 1.3.2. Let X , Y, M be Banach spaces, A(m) be a family of bounded linear operators

from X to Y and x(m) be a family of elements in X , both parameterized by m ∈ M and both

Lipschitz-continuous in their argument at m. Let f : Y 7→ R t {+∞} be a strictly differentiable

function. Then

∂(f(A(m)x(m)))(m) = ∂(f(A(m)x(m)) + f(A(m)x(m)))(m).

Proof. Very similar to Theorem 5.3 in [63]. Specifically, it follows from [63, Theorem 4.2] by

taking X :=M, Y := B(X ,Y)×X , Φ(m) := (A(m), x(m)) and ϕ(A(m), x(m)) := f(A(m)x(m)).

We are now ready to introduce the ajoint state method.

Theorem 1.3.3 (Adjoint state method for subdifferentials). Let f be convex, g be defined by

(1.31), and let A(m) be a family of bounded linear operators from X to Y. Define the cost

function

J(m) := inf
x∈X

(f(x) + g(A(m)x)) ,

and let m ∈ M, x ∈ X and u ∈ Y be optimal values in the sense that the conditions (1.29)

are satisfied for A := A(m). Assume that A(m) is Lipschitz-continuous at m with a Lipschitz-

continuous right inverse. Then, the function

h(m) := 〈−u,A(m)x〉 . (1.32)

satisfies

∂J(m) ⊇ ∂h(m).

Proof. Applying the Fenchel-Rockafellar duality, we have, for all x ∈ X and m ∈M,

f(x) + g(A(m)x) ≥ f(x) + g(A(m)x) by (1.31),

≥ 〈A(m)?u, x〉 − f∗(A(m)?u) + 〈−u,A(m)x〉 − g∗(−u) by (1.29) and (1.25),

= 〈u,A(m)(x− x)〉+ J(m) by (1.28).

Let us take the infimum on x on the left side, yielding J(m). The infimum must be taken over

all x(m) satisfying the condition g(A(m)x(m)) < +∞, i.e., A(m)x(m) = s. This can be done

Lipschitz-continuously in m by hypothesis. We obtain

〈u,A(m)(x(m)− x)〉 ≤ J(m)− J(m). (1.33)

We can now apply Lemma 1.3.2 to transform the left hand side. Specifically,

∂ 〈u,A(m)x(m) +A(m)x〉 = ∂ 〈u,A(m)x(m)〉 = {0},
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since A(m)x(m) is constant. This implies

0 ≤ 〈u,A(m)x(m)〉+ 〈u,A(m)x〉 − 2 〈u,A(m)x〉 . (1.34)

Summing (1.33) and (1.34) finally yields

J(m)− J(m) ≥ 〈u, (A(m)−A(m))x〉 = 〈−u, (A(m)−A(m))x〉 .

Thus, δ ∈ ∂ 〈−u,A(m)x〉 implies δ ∈ ∂J(m), completing the proof.

Theorem 1.3.3 illustrates the computational advantages of the adjoint state method. Specif-

ically, it states that it is possible to find a subgradient of the constrained cost function at m

(and thus a viable descent direction) by computing a subgradient of the much simpler function

h(m) := 〈−u,A(m)x〉, after solving the primal and dual problems,

x ∈ arg min
A(m)x=s

f(x), (1.35a)

A?u ∈ ∂f(x). (1.35b)

These equations correspond to the forward and adjoint problems in the seismic inversion litera-

ture. The function h(m) depends on m only through the operator A(m), and thus its subdiffer-

ential is much easier to compute. Notice that no assumption is made on the differentiability of

the constrained cost function, only that A(m) is Lipschitz-continuous with Lipschitz-continuous

right inverse.

We exemplify this optimization scheme in the next section by reformulating the simple linear

regression problem similarly to the classical adjoint-state approach, before moving to seismic

inversion in the following section.

1.3.2 Simple linear regression via F.-R. duality and the adjoint state

method

In this section, we delve into the details of the Fenchel-Rockafellar duality and the adjoint state

method in a somewhat simplified setting, by tackling a well-known and intuitive problem, the

simple linear regression problem. We will however reshape this problem into a form that is very

similar to seismic inversion, and we will draw the necessary parallels between the two, so that

most of the results can be transported to the seismic context without too much effort.

Suppose that we wish to find the best affine function y(x) = αx + β that fits a set of data

points (xi, di) ∈ R2, i = 1, . . . , n in the least-squares sense, i.e., that minimizes the function

f(y) :=
n∑
i=1

1

2
|y(xi)− di|2 . (1.36)

Let I ⊂ R be a finite interval containing all the coordinates xi. Then this problem is equivalent

to finding a real parameter α and a differentiable function y : I 7→ R minimizing (1.36) and

satisfying the differential equation y′ = α.
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Let us use the adjoint state method, in the form of Theorem 1.3.3, to minimize J by

(sub)gradient descent. Specifically, let us reformulate the constraint on y by defining, for α 6= 0,

A(α) :=
1

α

d

dx
,

and using the convex function

g(w) :=

{
0 if w = 1,

+∞ otherwise.

Suppose now that we are given an initial guess α for the physical parameter α, and that we wish

to find the derivative of the cost function J(α) := infx∈X (f(x) + g(A(α)x)) with respect to α

at the point α = α. The solution to the primal problem (1.35a)

y ∈ arg min
C∈R

f(αx+ C)

is, as can be easily derived,

y(x) = α(x− 〈x〉) + 〈d〉, (1.37)

where we have used the average of a variable 〈z〉 :=
∑n

i=1 zi/n. The source of the adjoint

problem v := A(α)?u (1.35b) can be obtained using Fenchel-Young’s relation (1.25), i.e.,

v ∈ ∂f(y)⇔ f(y) + f∗(v) = 〈v, y〉 , (1.38)

We can compute f∗(v) using (1.23). We have

f∗(v) := sup
y∈C1(I)

(
〈v, y〉 −

n∑
i=1

1

2
|y(xi)− di|2

)
.

This expression is clearly unbounded in y unless v is supported only on the points xi, i.e.,

〈v, y〉 =
∑n

i=1 εiy(xi) for some values εi. One obtains then

f∗(v) =


n∑
i=1

1

2

(
|εi + di|2 − |di|2

)
if 〈v, y〉 =

n∑
i=1

εiy(xi)

+∞ otherwise.

(1.39)

Using now the definitions of f (1.36) and f∗ (1.39), we conclude that the functional v must have

the form

〈v, y〉 =
n∑
i=1

εiy(xi),

with, due to (1.38),

εi = y(xi)− di.

Notice that the source of the adjoint problem v is supported only at the receiver locations xi,

and its amplitude is the difference between the forward solution y(xi) and the measured data
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di. This characterizes also the seismic inversion problem, as we shall see in the next section.

Since J(α) is differentiable, its subdifferential ∂J(α) only contains its gradient ∂J/∂α|α=α,

and it can be computed by finding ∂h(α), where h(α) is given using (1.32) as

h(α) := 〈−u,A(α)y〉 =

〈
−u, α

α
A(α)(αx+ C)

〉
= −α

α
〈v, αx+ C〉 = −α

2

α

n∑
i=1

(y(xi)− di)xi.

Notice that the choice of C ∈ R is irrelevant, since
∑n

i=1(y(xi)− di) = 0. Thus,

∂J

∂α

∣∣∣∣
α=α

=
∂h

∂α

∣∣∣∣
α=α

=
n∑
i=1

(y(xi)− di)xi,

with y(x) given by (1.37). One can easily check that this is indeed the gradient of the cost

function with respect to α by plugging directly the best-fitting line with slope α, namely y =

α(x− 〈x〉) + 〈d〉, into (1.36) and differentiating.

Although very convoluted, this formulation of the optimal solution of the simple linear

regression problem has the advantage of being very similar to the seismic inversion problem,

sharing most of its major features, while being set in a simpler and much more intuitive context.

After going through all the details in its derivation, we are ready to transfer these results to full

waveform inversion.

1.3.3 Full waveform inversion

We consider first, for simplicity, the case of full waveform inversion with a single shot and a

single receiver. In this problem, we are given a source term s(x, t), for example a point-like

Ricker wavelet as in (1.6), and a receiver position xr with measured data Dr(t), either only

pressure data, i.e., Dr(t) = (dr(t), 0), or pressure and speed data. We will focus here on pressure

data only, for the sake of simplicity. In order to avoid confusion, we will make the dependence

of the acoustic wave operator (1.16) on the physical parameters explicit, by writing Aρ,λ instead

of A.

The FWI problem is formally very similar to the simple linear regression problem seen in

the previous section, since the solution can be expressed as the minimization of the function

f(P ) :=
1

2

∫ tf

0
|p(xr, t)− dr(t)|2 dt, (1.40)

where p := P1, under the constraint that P (x, t) := (P1, P2) is a solution to the acoustic problem

(1.15), with its associated initial and boundary conditions, for some physical parameters ρ,

λ > 0.

Suppose that we seek to minimize (1.40) using the adjoint state method, starting from an

initial guess for the physical model ρ, λ. This problem can be recast as the minimization of

J(ρ, λ) := inf
P∈X

(f(P ) + g((∂t −Aρλ)P )) ,

where g(W ) = 0 if W = S and +∞ otherwise.
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According to (1.35), we need to compute the subdifferential of f and the adjoint operator to

∂/∂t−Aρ,λ.

Let us first compute f∗(V ) for a linear operator U ∈ X ? from its definition (1.23), as done

in the previous section. We have

f∗(V ) := sup
P∈X

(
〈V, P 〉 − 1

2

∫ tf

0
|p(xr, t)− dr(t)|2 dt

)
.

Once again, f∗ is infinite unless V satisfies V2 = 0 and V1 is supported only at xr. Thus,

f∗(V ) =


1

2

∫ tf

0
|ε(t) + dr(t)|2 − |dr(t)|2 dt if V2 = 0 and 〈V1, p〉 =

∫ tf
0 ε(t)p(xr, t) dt

for some function ε(t),

+∞ otherwise.

(1.41)

By the Fenchel-Young relation (1.25), the dual source U is in the subdifferential of f if and only

if f(P ) + f∗(V ) = 〈V, P 〉. Using (1.40) and (1.41), one sees right away that V must satisfy

V2 = 0 and

v := V1 = δ(x− xr)(p(xr, t)− dr(t)).

Moving to the adjoint operator, let σ :=

(
0 1

1 0

)
, and let U(x, t) be a solution to the adjoint

problem (1.20) with source −σV , i.e., since σ = σ−1,

−σ
(
∂

∂t
−A?ρ,λ

)
U = V,

with the initial conditions replaced by the final conditions

U(x, tf ) = 0, that is, uf (x, tf ) = ∂tu(x, tf ) = 0. (1.42)

Notice that, as a differential operator, A?ρ,λ = −Aρ,λ, and therefore U represents a wavefield

that propagates backwards in time from tf to 0. Notice also that (1.42) implies

0 =

∫ tf

0

∂

∂t
(UiPj) dt =

∫ tf

0

∂Pi
∂t

Uj dt+

∫ tf

0
Pi
∂Uj
∂t

dt (1.43)

for i, j = 1, 2. Therefore,

〈
−σA?ρ,λU,P

〉
=

∫ tf

0

∫
Ω
λU2P2 dΩ dt+

∫ tf

0

∫
Ω
∇ ·
(

1

ρ
∇U1

)
P1 dΩ dt,

=

∫ tf

0

∫
Ω
λU2P2 dΩ dt−

∫ tf

0

∫
Ω

1

ρ
∇U1 · ∇P1 dΩ dt+

∫ tf

0

∫
ΩA

1

ρ
P1
∂U1

∂n
dS dt,

=

∫ tf

0

∫
Ω
λU2P2 dΩ dt−

∫ tf

0

∫
Ω

1

ρ
∇U1 · ∇P1 dΩ dt+

∫ tf

0

∫
ΩA

cP1U2 dS dt,

=

∫ tf

0

∫
Ω
λU2P2 dΩ dt−

∫ tf

0

∫
Ω

1

ρ
∇U1 · ∇P1 dΩ dt−

∫ tf

0

∫
ΩA

cP2U1 dS dt,
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=

∫ tf

0

∫
Ω
λU2P2 dΩ dt−

∫ tf

0

∫
Ω

1

ρ
∇U1 · ∇P1 dΩ dt+

∫ tf

0

∫
ΩA

1

ρ

∂P1

∂n
U2 dS dt,

=

∫ tf

0

∫
Ω
λU2P2 dΩ dt+

∫ tf

0

∫
Ω
U1∇ ·

(
1

ρ
∇P1

)
dΩ dt,

= 〈U, σAρ,λP 〉 ,

where we have used the adjoint absorbing boundary conditions (1.21) on U and the absorbing

boundary conditions (1.9) on P in the second and fourth step, respectively, and (1.43) in the

third step. Similarly, 〈
σ
∂

∂t
U, P

〉
=

〈
U,−σ ∂

∂t
P

〉
,

thanks to (1.43). Thus, [
σ

(
∂

∂t
−Aρ,λ

)]?
= −σ

(
∂

∂t
−A?ρ,λ

)
.

We now have all the ingredients that go into the implementation of the adjoint state via Theorem

1.3.3, and therefore we only have to explicitly state here the algorithm that needs to be followed:

(i) Compute P solution to the forward problem(
∂

∂t
−Aρ,λ

)
P = S,

from t = 0 to t = tf , with initial conditions P (x, 0) = 0;

(ii) Compute the source term for the dual problem, namely

V = (p(xr, t)− dr(t)) δ(x− xr); (1.44)

(iii) Solve the adjoint problem

−σ
(
∂

∂t
−A?ρ,λ

)
U = V ,

propagating backwards from t = tf to t = 0, starting with the final conditions V (x, tf ) = 0;

(iv) Compute the function

h(ρ, λ) :=
〈
−U,−σAρ,λP

〉
. (1.45)

Any element of the subdifferential ∂h
(
ρ, λ
)

is in ∂J
(
ρ, λ
)
.

If J is differentiable, this corresponds exactly to the usual adjoint state method as encoun-

tered in standard seismic imaging, see, e.g., [45, 64, 65]. For example, if ρ and λ are piecewise-

constant functions, it is straightforward to compute directly the derivatives of (1.45) and obtain,

after a few simple manipulations, the following well-known expressions:

∂J

∂λ−1
=

∫ tf

0

∫
Ω
u
∂2p

∂t2
dΩ dt, (1.46)

∂J

∂ρ−1
=

∫ tf

0

∫
Ω
u∆p dΩ dt.
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Notice that the primal and adjoint wavefields propagate in opposite time directions, and thus in

order to compute their superposition integral, one would need in principle to store in memory

the whole time-dependent wavefields P (x, t) and U(x, t). In practice, some trade-off between

memory use and computational time is usually done, for example subsampling or storing only

boundary data, see, e.g., [66–69].

Finally, we return to the full-scale seismic inversion problem with ns > 1 shots and multiple

receiver positions per shot. In this case, by looking at the similarities with the linear regression

problem of the last section, it should come as no surprise that the adjoint state method for the

computation of the subdifferential of J(m) takes a very similar form, except that there have to

be ns forward and ns adjoint solutions, with source si for the i-th forward problem, and adjoint

source vi given by

vi(x, t) :=
∑
r∈Ri

εr(t)δ(x− xr)

for the i-th adjoint problem, leading to ns scalar products which define the ns functions

hi(ρ, λ) :=
〈
−σU i, Aρ,λP i

〉
. The function h is then simply given by the sum

h(ρ, λ) :=

ns∑
i=1

hi(ρ, λ),

and everything else proceeds as discussed above.

1.3.4 Some worked-out examples

We end this chapter by illustrating some of the features of the seismic inversion problem

(namely, the computation of the gradient via the adjoint method, non-convexity, the lack of

well-posedness, and the lack of differentiablity) with a few simple examples. The setup for these

examples is shown in Figure 1.4.

x

ρ, c

xs xr
x

ρL, cL

ρR, cR

xs xr xd
x

ρa, ca

ρb, cb

ρa, ca

xs xr x1 x2

Figure 1.4: Position of the receiver, source and discontinuities for the one-dimensional homoge-
neous (left), step (middle) and barrier (right) examples.

One-dimensional infinite homogeneous medium

Let us consider first a one-dimensional homogeneous domain, represented by an interval Ω ⊂ R,

on which we place a source and a receiver at xs, xr ∈ Ω respectively, with a pressure measurement

dr(t) at xr. In this case, one can rely on the well known Green’s function

G(x, t) =
cρ

2
θ(ct− |x|),
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where as usual c :=
√
λ/ρ, and θ represents the Heaviside theta function θ(t) := 1 if t ≥ 0, and

zero otherwise. This expression directly leads to an explicit solution when s(x, t) := s0δ(x −
xs)s(t) is a point-like source with amplitude s0 and s(t ≤ 0) = 0, namely

p(x, t) =
s0ρc

2

∫ t

0
θ (c(t− τ)− |x− xs|) s(τ) dτ.

One can verify this statement by explicitly computing

1

λ

∂2p

∂t2
(x, t) =

s0

2c
s′
(
t− |xr − xs|

c

)
and

1

ρ

∂2p

∂x2
(x, t) =

s0

2c
s′
(
t− |xr − xs|

c

)
+ s0δ(x− xr)s(t).

The forward solution p(x, t), evaluated at x = xr, is given simply by

p(xr, t) =
s0cρ

2
S

(
t− |xr − xs|

c

)
, (1.47)

where S(t) is a primitive of s(t) with S(t ≤ 0) = 0. This is the expected result for a non-

dispersive medium. Our problem is therefore analogous to finding a shift and a multiplicative

coefficient such that the correlation with dr(t) is maximized.

Let us use the adjoint state method to perform this optimization. As per (1.44), the adjoint

problem must be solved with the adjoint source

v(x, t) = δ(x− xr)
(
s0cρ

2
S

(
t− |xr − xs|

c

)
− dr(t)

)
.

Recall that the solution must be found using the adjoint operator, and starting from the final

conditions u(x, tf ) = ∂tu(x, tf ) = 0 and propagating backwards. Thus,

u(x, t) =
s0ρc

2

(
s0ρc

2
S2

(
t− |xr − xs|

c
+
|x− xr|

c

)
−Dr

(
t+
|x− xr|

c

))
,

where Dr(t) is the primitive
∫ t
tf

(dr(τ)) dτ and S2 is a primitive of S. Using (1.46), integrating

by parts to transfer the derivatives from a function to another, and remembering that s, d and

all their derivatives and primitives are zero outside [0, tf ],

∂J

∂λ−1
=
s2

0ρλ

4

(
−s0ρc

2

∫ tf

0

∫ xr

xs

S

(
t− |xr − xs|

c
+
|x− xr|

c

)
s

(
t− |x− xs|

c

)
dt

+

∫ tf

0

∫ xr

xs

s

(
t− |x− xs|

c
)dr(t+

|x− xr|
c

)
dt

)
.

Let us choose, without loss of generality, xr > xs. Then − |xr − xs| + |x− xr| = −(x − xs)
and |x− xr| = xr − x = −(x − xs) + (xr − xs). Making these substitutions and shifting the
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integration variable t→ t− (xr − xs)/c in the second integral, we find

∂J

∂λ−1
=
s2

0ρλ

4

(
−s0ρc

2

∫ tf

0

∫ xr

xs

S

(
t− x− xs

c

)
s

(
t− x− xs

c

)
dt

+

∫ tf

0

∫ xr

xs

s

(
t− x− xs

c
− xr − xs

c

)
dr

(
t− x− xs

c

)
dt

)
,

and, after realizing that the variable x is irrelevant and can be integrated away to obtain a

simple factor (xr − xs), substituting c =
√
λ/c, we obtain the final result

∂J

∂λ−1
=
s2

0ρλ

4
(xr − xs)

(
−s0
√
ρλ

2

∫ tf

0
S(t)s(t) dt+

∫ tf

0
s

(
t− xr − xs

c

)
dr(t) dt

)
. (1.48)

One can check that (1.48) is the correct form by plugging (1.47) directly into J and differenti-

ating. A similar calculation, that we omit, can be performed for ∂J/∂ρ−1.

Even in this elementary case, the seismic inversion problem is nonconvex. For example, if the

functions appearing in (1.48) are peaked around a given frequency ω0, like the Ricker wavelet

(1.6), and the receiver datum is perfect, i.e. dr(t) = S(t− (xr − xs)/c0) for some given velocity

c0, then∫
R
s

(
t− xr − xs

c

)
dr

(
t− xr − xs

c0

)
dt =

∫
R
s̃(ω)d̃r(ω)eiω(α−α0) dω ≈ s̃(ω0)d̃r(ω0)eiω0(α−α0),

with α = (xr −xs)/c, α0 = (xr −xs)/c0 ad ·̃ denotes the Fourier transform. Thus, the gradient

vanishes for velocities c such that ω0(α − α0) ∈ 2πZ, which represent local minima in the cost

function. The local minimization will then possibly mismatch the cycles of the wave compared

with the real underlying model, a phenomenon known as cycle skipping.

This issue is much more evident in real-world seismic problems, where wave packets reflected

by nearby layers can have similar shapes, and thus lead in ambiguities in their attribution. For

example in Figure 1.1, one might be tempted to assign the first pulse of the receiver R5 to the

wave reflected by the second layer instead of the first. The local minima that appear in this

case are much harder to treat, and are at the core of the problems arising in seismic imaging,

and inverse problems more generally.

One-dimensional single step

Suppose now that that the physical model is instead an infinite bi-layered medium, identified

with R, with the discontinuity placed at xd, ρ = ρL + θ(x − xd) (ρR − ρL), and similarly for λ,

with θ being the Heaviside step function. The source point and the receiver are both located on

the left half of the model at xs and xr respectively, with xs < xr < xd, and we want to recover

all the physical parameters of both media using full waveform inversion.

In this case, the right-moving part of the wave propagates by translation from xs to xd and

splits into two waves, a reflected wave (with a possibly inverted phase) that travels back to xr,

and a transmitted wave that reaches +∞. The ratio between the reflected and transmitted waves
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and the incoming wave is given, respectively, by the reflection and transmission coefficients

R :=
ZR − ZL
ZL + ZR

, T :=
2ZR

ZL + ZR
, (1.49)

where the impedances are given by Zi =
√
ρiλi. Only two independent quantities can be

measured by the receiver: the time delay between shot and detection, and the ratio between the

amplitude of the reflected wave and that of the source. Since there are four physical parameters

to be recovered, with no a priori relation between them, the problem is under-determined.

For our simple bi-layered model, the pressure field at the receiver is then given by

p(xr, t) = S

(
t− xr − xs

cL

)
+RS

(
t− 2xd − xs − xr

cL

)
(1.50)

with c2
L = λL/ρL.

If we are given a measurement dr(t) at xr, and we try to minimize the cost function, we

see right away that the problem is ill-posed. Let us concentrate on the reflected wave, arriving

between t1 and t2, which is the only (interesting) wave that can be measured at xr. Using the

explicit solution (1.50),

J(c, ρ) =
1

2

∫ t2

t1

|p(xr, t)− dr(t)|2 =
1

2

∫ t2

t1

∣∣∣∣Rs0cLρL
2

S

(
t− 2xd − xs − xr

cL

)
− dr(t)

∣∣∣∣2
where again S′ = s. There are therefore only two adjustable parameters, the amplitude

Rs0cLρL/2, and the delay (2xd−xr−xs)/cL. Thus, cL =
√
λL/ρL can be determined uniquely,

but only R, and not the individual parameters ρL, ρR and cR, can be recovered. Measuring

also the time derivative of the pressure would yield no new information, but the spatial deriva-

tive ∂xp at xr would allow to determine ρL and thus R. Nevertheless, this dataset would still

be insufficient to recover λR and cR individually. This problem is greatly magnified when the

number of degrees of freedom to be reconstructed is very large, as is the case, e.g., when the

modeling takes place over a mesh with hundreds of thousands of elements, and at least a couple

of values per mesh element need to be determined. Thus, multiple different seismic models are

compatible with the minimization of the cost function. This illustrates another aspect under

which the seismic problem is ill-posed: there are many, potentially very different models that

achieve comparable minima, and the seismic data are not able to discriminate them even in the

best conditions. We also refer the reader to [70] for important considerations about the stability

of the seismic inverse problem.

One-dimensional barrier

Finally, consider the case of a barrier, i.e., a finite homogeneous layer starting at x1 and ending

at x2, with physical parameters ρb, cb, surrounded by an infinite homogeneous medium with

parameters ρa, ca. Suppose that all the physical and geometrical values are fixed except for x2,

and let us perform an inversion over this parameter. This extremely simple problem mimics the

inversion methods that contain geometric degrees of freedom (such as the position of the mesh

vertices) as inversion parameters. We allow x2 to take values less than x1, which corresponds
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to an inversion of the barrier.

For our one-dimensional problem, suppose that the source and receiver are placed at xs and

xr respectively, with xs < xr < x1. Multiple waves reach the receiver in this case. The first

three waves to reach xr correspond to the direct wave from the source, the wave reflected at

min(x1, x2), and a wave that is transmitted at min(x1, x2), reflected back at max(x1, x2), and

transmitted again at min(x1, x2). Another (in principle infinite) series of waves with decreas-

ing amplitudes, known as multiples, reaches xr after the first three, corresponding to multiple

reflections inside the barrier. Let us ignore the direct wave from the source, which only carries

redundant information (and would be discarded anyway in real seismic data). The solution at

xr can therefore be written as

p(xr, t) =RabS
(
t− 2 min(x1, x2)− xr − xs

ca

)
+

∞∑
r=0

TabRba (Rba)2r TbaS
(
t− 2 min(x1, x2)− xr − xs

ca
− (2r + 1)

|x2 − x1|
cb

)
where Rij and Tij indicate respectively the reflection and transmission coefficients (1.49) from

the infinite medium to the barrier (if ij = ab) or vice-versa (if ij = ba). One can check that the

solution is continuous as expected in the variable x2, even when x2 = x1, since

Rab + TabTbaRba
∞∑
r=0

(Rab)2r = Rab + TabTbaRba
(Za + Zb)

2

4ZaZb
= 0,

i.e., no reflection, which is the expected result when the barrier becomes infinitely thin. However,

if one computes the derivatives of p(xr, t) with respect to x2, taken from the left and right sides

(recall that
∑∞

r=0(2r + 1)x2r = (x2 + 1)/(x2 − 1)2 for |x| < 1), one obtains

∂p(xr, t)

∂x2

∣∣∣∣
x2=x+1

= − 1

cb

(Za − Zb)(Z2
b + Z2

a)

2ZaZb(Za + Zb)
s

(
t− 2x1 − xr − xs

ca

)
,

∂p(xr, t)

∂x2

∣∣∣∣
x2=x−1

=
1

cb

(Za − Zb)(Z2
b + Z2

a)

2ZaZb(Za + Zb)
s

(
t− 2x1 − xr − xs

ca

)
.

Therefore, the cost function is continuous, but not differentiable, at x2 = x1.

When x2 crosses x1, the barrier (seen as a geometrical object) undergoes an inversion. In

more than one-dimension, this kind of inversion can happen even without the need for points

to superpose. For example, a triangular obstacle can become degenerate and perform a similar

inversion when one vertex is displaced, without the need for the vertex to cross the opposite

segment (see Figure 1.5). In general, degenerate configurations can happen much more easily in

d > 1.

Notice that, in addition to degenerate elements, the non-differentiability of the cost function

can also be due to a change in shape of a mesh element causing the source location or one of the

receiver locations to change the element in which it lies. More generally, if the geometry of the

problem discretization is included as an explicit degree of freedom of the inversion, one might

be forced to work with nonsmooth cost functions, justifying the need for subdifferentials (and
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Figure 1.5: Example of how a mesh element in two dimensions can be reversed without any
vertex superposing an edge. The cost function is generally not differentiable at the inversion
location.

subgradient descent) in the minimization.

1.4 Discussion and further reading

We have presented in this chapter the main motivations of this work, namely the forward

and inverse problems related to seismic surveying and subsurface exploration. Although other

applications can be targeted by our method, this subject remains the main recipient of the

techniques that we have developed.

For the sake of simplicity, and not to overcrowd this section with non-essential information,

we have limited our account to the basic introduction of acoustic wave propagation in its second-

order formulation, and to the classic inverse problem formulated through FWI via steepest

descent and the adjoint-state method, using the classic least-squares cost function.

Many generalizations are possible. For the forward problem, the full elastic problem and its

elasto-acoustic special case, with both isotropic and non-isotropic materials, are often studied [10,

71, 72]. Among non-isotropic materials, particular attention is given to TTI (Tilted Transverse

Isotropic) media [73–75], which are general enough to matter in real-world applications, but

symmetric enough to benefit from specific optimizations. However, the nature of the wave

propagation problem as it pertains to our work is not fundamentally different in these cases:

they are all time evolution problems guided by hyperbolic partial differential equations, with

null initial conditions and (usually) absorbing boundary conditions, which are well-posed and

depend on non-homogeneous physical parameters. As we shall see in the remainder, these are

the core features of the kind of problems that we target in the present work.

Regarding the inverse problem, different imaging techniques are sometimes used, both pre-

stack and post-stack, including Kirchhoff migration [16, 76] and RTM (Reverse-Time Migration)

[77–79]. However, FWI seems to be today the most powerful inversion technique, whose appli-

cation to real-world phenomena has only been delayed by its relatively sizeable computational

requirements. Full-waveform inversion can be formulated both in a time-explicit fashion, as we

have done here, or in the frequency domain, in which case the corresponding forward problem

is the Helmholtz equation. Although different in many respects, both cases share the same

basic optimization technology, and both are usually approached using steepest descent with the

gradient computed via the adjoint state method. Thus, our presentation only requires some

minor changes in order to be applied to the frequency domain. For a more complete overview

of frequency-domain seismic inversion, see, e.g., [40, 47, 80] and the references therein, as well

as, e.g., [81, 82] for some hybrid approaches.
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As discussed in the main text, many different cost functions and regularization terms have

been introduced to increase the robustness, accuracy and computational performance of FWI,

see, e.g., [55, 56]. Once again, by adopting a very general point of view rooted in the some basic

convex dualities, our presentation can accommodate most of these variations, although we do

not discuss this here explicitly as it is not the main focus of this work.

All in all, we believe that our way of introducing these subjects is somewhat original and

interesting, compared to the standard approach, for two reasons.

First, in the case of the forward problem, we have swapped the classic Hille-Yosida conditions

on the range of the operator A with Lumer-Phillips’ theorem, which relies on a condition on

its adjoint A?. Aside from not requiring the introduction of more sophisticated concepts such

as the resolvent set of a linear operator, this approach provides an excuse to bring the adjoint

acoustic operator into the game early on, thus anticipating its importance in the formulation of

the inverse problem.

Second, formulating the optimization problem underlying FWI through the powerful Fenchel-

Rockafellar duality allows to derive the usual adjoint state method in a more abstract setting,

as a direct consequence of a fundamental convex duality on Banach spaces. This illustrates that

the adjoint state method is not a unique approach to a specific class of problems, but a more

broadly applicable technique. As an instance of this, we have applied it, somewhat clumsily, to

the simple linear regression problem. Finally, another reason why convex duality is relevant for

seismic applications is that dual problems are often better conditioned and more well-posed that

their primal counterparts. Thus, convex duality might perhaps be useful in shedding some light

on the controllability of the seismic inversion problem, whose well-posedness has long remained

an elusive goal.
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2 | Discretization, the Galerkin and

IPDG methods

[. . .] Non domandarci la formula che mondi possa aprirti,

s̀ı qualche storta sillaba e secca come un ramo.

Codesto solo oggi possiamo dirti,

ciò che non siamo, ciò che non vogliamo.

Eugenio Montale, Non chiederci la parola che squadri da ogni lato,

Ossi di seppia (1925)

We have explored in the previous chapter the acoustic wave problem and its inverse. We

have kept a physically-grounded, theoretical approach. However, the computational require-

ments necessary for the solution of the forward and especially inverse problem for real-world

applications can only be met via computer simulations. Especially in the case of FWI, dedi-

cated HPC platforms are often needed, see, e.g., [83, 84]. This is mainly due to the fact that, as

we saw in Chapter 1, the evaluation of a viable direction for minimization entails the solution of

two acoustic problems, a forward one and a backward one, and must be repeated for each shot,

and for each iteration in the minimization process. Consequently, the computational demands

of FWI are indeed extremely taxing. Thus, it is no surprise that the introduction of highly

efficient computational models for wave propagation are at the forefront of FWI technology.

We present very briefly in this section the main state-of-the-art strategies for the simulation

of PDEs, with special focus on hyperbolic problems of the second order. We introduce the main

time discretization techniques used in these problems, before moving to the Galerkin method

for space discretization, the main theorems on which it relies, and the main variants used in

applications. We also introduce discontinuous Galerkin methods, and in particular an interior

penalty version, which has interesting performance characteristics and has been used as a basis

for a part for our work. From there, we briefly discuss the main issues in the discretization of the

physical parameters, and the importance that they have in the inversion problem. Finally, we

present a few aspects of the iterative methods employed in the minimization of the cost function.

2.1 Time integration

We begin this chapter by discussing the main strategies employed in the discretization of the

time variable of the acoustic equation (1.5). Notice that space and time play a symmetric

35
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role in the wave equation, and there exist some simulation techniques that put them on the

same footing, discretizing the whole (d + 1)-dimensional space, using causality to define the

shape of the space-time domains. The reader may refer to, e.g., [85, 86] for a recent approach

in this direction. However, adding one dimension often increases significantly the complexity

of the discretization. Therefore, most simulation methods for time-dependent PDEs today

discretize the time coordinate separately from the spatial coordinates, exploiting the fact that

hyperbolic equations are formulated as Cauchy initial-value problems, and therefore can be

computed iteratively starting from an initial known configuration.

In most cases, the time variable is simply treated by selecting a sequence of equispaced

discrete times t1, . . . , tn, starting with t1 = 0, at which the solution p(x, ti) is computed from

the knowledge of p(x, tj), j < i.

One of the simplest techniques, which is also used in the present work, consists in exchanging

the continuous differential operator ∂2
t of (1.5) for a discretized version that converges to it in

the limit ∆t := ti+1 − ti → 0. The simplest choice is perhaps the second-order approximation

obtained via the three-point stencil of finite differences, i.e.,

∂2p

∂t2
(x, ti) =

p(x, ti+1)− 2p(x, ti) + p(x, ti−1)

∆t2
+O(∆t2). (2.1)

This scheme is also known as the second order leapfrog scheme, since it can be obtained by refor-

mulating the wave equation as a couple of first order equations, whose variables are then evalu-

ated at staggered intervals, i.e., pi, pi+1, . . . and vi+ 1
2
, vi+ 3

2
, . . .. Thus, the two variables “leapfrog”

over one another as the simulation progresses. The expression (2.1) computes ∂2
t p(x, ti) from

the knowledge of p at times ti+1, ti and ti−1. For example, if the differential equation reads

∂2p

∂t2
(x, t) = F (p(x, t)), (2.2)

one may substitute pi := p(x, ti) for p(x, t) inside F on the right hand side of the equation, using

(2.1) to obtain

pi+1(x) = 2pi(x)− pt−1(x) + ∆t2F (pi(x)),

which yields directly, if p(x, ti−1) and p(x, ti) have been already computed, the pressure at the

next step, pi+1(x). This value approximates p(x, ti+1) within an error of order O(∆t2), and

is used in place of pi+1(x) for the successive steps. This integration scheme is called explicit,

as it does not involve the solution to a linear system. In contrast, one could evaluate F on a

combination of the values of p at different times. For example, if F is linear in p and is evaluated

at a combination of pi+1(x), pi(x) and pi−1(x), one can rewrite (2.2) in the form

pi+1(x)−∆t2F1(t, pi+1(x)) = 2pi(x)− pi−1(x) + ∆t2F2(t, pi(x), pi+1(x)),

which can be solved to obtain pi+1(x). This scheme is called implicit, and involves a solution to

a (usually linear) system at every timestep.

One of the main differences between implicit and explicit time integration schemes lies in

their numerical stability. Specifically, implicit schemes are more computationally intensive but

are often more stable or even unconditionally stable, i.e., the solution error does not grow without
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bounds whatever the choice of timestep ∆t. Notice that this does not mean that the solution

is always accurate, only that the integration scheme yields some solution. In contrast, explicit

schemes impose limits on the maximum allowable timestep that can be chosen in order to

avoid numerical instability. These limits are usually obtained through von Neumann stability

analysis [87]. In the case of hyperbolic PDEs, the condition on the timestep takes the name

of Courant–Friedrichs–Lewy (CFL) condition [88]. For the second-order leapfrog (LF2) scheme

(2.1), if the operator F appearing on the right hand side of (2.2) is a source term plus a bounded

linear operator A, the condition reads (see, e.g., [89])

∆tCFL ≤
2√

λmax(A)
, (2.3)

where λmax(A) is the spectral radius of A, e.g., the norm of the largest eigenvector of the system

matrix in a discretized problem. Intuitively, one must avoid timesteps ∆t large enough that

the wave could travel more than the space between two adjacent degrees of freedom during ∆t,

as this would lead to an exponential amplification of numerical errors (as well as an incorrect

depiction of the underlying physics). Notice that this is merely a necessary condition, and not a

sufficient one, for numerical stability. We will see that this constraint poses some requirements

on the discretization of the operator F , as one must seek to maximize ∆tCFL in order to minimize

the number of iterations and thus the computational cost of a simulation. Specifically, it will

be interesting to study its behaviour as the space discretization becomes finer, and the order of

spatial approximation k increases.

Notice that (2.3) is not the only condition on the timestep. We will see in a later section that

the size of the spatial discretization also imposes a limit on the maximum allowable timestep,

above which we may incur aliasing effects at the frequency(ies) of the source. In any case, one

is free to choose a timestep below the limit (2.3), and the numerical result will generally have

an order of convergence of O(∆t2) as ∆t becomes smaller and smaller.

Higher-order variations of (2.1) exist, based on wider stencils. For example, the second

derivative based on the five-point stencil reads

∂2p(x, ti)

∂t2
:=
−p(x, ti−2) + 16p(x, ti−1)− 30p(x, ti) + 16p(x, ti+1)− p(x, ti+2)

12∆t2
+O(∆t4),

and is exact at order ∆t4. In fact, the (2k + 1)-point stencil can be found by interpolating

p(x, t) on the points pi+j , j = −k, . . . , k with a Lagrange polynomial `(t) (see Chapter 3), and

computing the corresponding derivatives of `. The corresponding CFL conditions are also less

stringent as the size of the stencil increases, by a factor
√

3 in the example of the five-point stencil

[90]. Notice that larger stencils require more memory space, as they require to store solutions for

more timesteps. Non-central approximations, that use indices i+j not distributed symmetrically

around i, are also available. As a final consideration on leapfrog schemes, we mention that some

authors have found ways to achieve a higher convergence rate without requiring larger stencils,

simply by virtue of adding more terms to the Taylor expansion (2.1), and replacing the higher

time derivatives of p with time derivatives of F (p(x, t)), using the wave equation [91]. This

shows that higher orders of convergence are achievable even with very (time-)local information

on p, for the price of a few additional matrix multiplications.
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Finally, another widely-used category of time integration schemes is the family of Runge-

Kutta methods [92]. These schemes use intermediate points between ti and ti+1 to improve the

accuracy of the integration, by iteratively correcting the slope based on the “peeked values”.

Runge-Kutta methods are available at any order, but by far the most used is the fourth-order one

(RK4). These methods are usually applied to first-order equations, so one needs to transform

(1.5) into a set of coupled first-order equations of the form

∂p

∂t
= G(t, p(x, t)).

One then proceeds via Algorithm 1. The last step in this scheme contains a weighted average of

Algorithm 1 Time integration via the RK4 scheme.

1: (t1, p1)← (ti, pi(x)) . starting values
2: k1 ← G(t1, p1) . slope at starting values
3: (t2, p2)← (ti + ∆t

2 , pi(x) + k1
∆t
2 ) . midpoint, according to slope k1

4: k2 ← G(t2, p2) . slope at (t2, p2)
5: (t3, p3)← (ti + ∆t

2 , pi(x) + k2
∆t
2 ) . midpoint, according to slope k2

6: k3 ← G(t3, p3) . slope at (t3, p3)
7: (t4, p4)← (ti + ∆t, pi(x) + k3∆t) . endpoint, according to slope k3

8: k4 ← G(t4, p4) . slope at (t4, p4)
9: pi+1(x)← pi(x) + k1+2k2+2k3+k4

6 ∆

the slopes at the four computed positions, whose weights have been computed beforehand with

the goal of cancelling lower order terms, leaving a final convergence rate of O(∆t4). Other time

discretization schemes, such as the Adams-Bashforth and Adams-Moulton methods, are based

on the same principle, but use the information gathered at previous steps to compute the next

one (they are known as multi-step methods).

This family of methods is generally very accurate and thus widely used. However, they are

not symplectic, i.e., they do not preserve the total energy of the system, which can lead to

some instability for longer simulation times. This is usually not an insurmountable problem

for seismic wave propagation, since energy conservation is not a pressing issue, and energy

dissipation occurs anyway due to the boundary conditions or to penalization terms (see for

example the section on the discontinuous Galerkin method). However, since we are solving the

second-order wave equation and our timestep is often limited by other considerations, we will

not use these techniques in our work.

To summarize, the most important features of these integration schemes are

• The order of approximation, i.e., the exponent k of the error e = O(∆tk);

• The numerical stability, i.e., the maximum allowable timestep.

We will discus in the next section how the second criterion enters the choice of spatial discretiza-

tion for the problem.
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2.2 Spatial discretization

The choice of how to discretize the solution is of paramount importance for the efficacy and

efficiency of a numerical scheme.

First of all, the discretization must be able to correctly reproduce all the possible solutions

in all the scenarios of interest. For instance, in the case of the acoustic wave equation, if

the frequency of the source is peaked around ω0, then the (local) spatial distance between

neighboring degrees of freedom must not be larger than about c/ω0, where c is the local value

of the velocity. In reality, the size must be much smaller to avoid numerical noise.

Moreover, all the differential operators of a PDE need to be translated to the space of discrete

degrees of freedom with which the solution is described. The result of this translation, and the

numerical and stability properties of the PDE, are therefore crucially dependent on this choice.

One of the first space discretization methods to be adopted in the solution of hyperbolic PDEs

was the finite difference (FD) method ([93], see, e.g., [94, 95] for some seismic applications).

With this choice, degrees of freedom correspond to the values of the solution p(xi, t), xi ∈ L on

a lattice of points L ⊂ Rd. Differential operators D are then replaced by discrete ones, based

on stencils relating points close to each other. The stencil is applied to compute the values

(Dp)(xi, tj), which are used to compute p(xi, tj+1) through one of the time integration schemes

seen above. Advantages of this method include its simplicity, both in implementation and in

error analysis, and the possibility to employ powerful and very efficient computational techniques

such as the Fast Fourier Transform (FFT) for its solution. However, the regular structure of the

points requires a very fine mesh for the description of complex geometries, partially negating

the advantages of the method in these cases. Nevertheless, finite difference methods remain very

popular in industrial applications due to their simplicity.

Another very popular discretization technique is based on the finite volume (FV) method

[96]. In this paradigm, after recasting the problem as a first-order equation both in time and

space,
1

λ

∂p

∂t
+∇ · v = s(x, t),

∂v

∂t
+

1

ρ
∇p = 0, (2.4)

the variables are discretized via their integrated (or average) values,

〈p〉i :=

∫
Ci

p(x, t) dx, 〈v〉i :=

∫
Ci

v(x, t) dx,

over a set of discrete cells Ci, i = 1, . . . , n. Using the divergence theorem, one is able to relate

the values in neighboring cells through surface integrals on the shared interface. This results in

an algebraic linear system, where integrated values 〈∂tp〉 in neighboring cells i, j are related by

fluxes that are computed on the surfaces. We will discuss the form of the fluxes later when we

introduce the discontinuous Galerkin method. Finite volume methods are usually based on an

adaptable unstructured mesh, and are thus very well suited for describing complex geometries.

However, these methods have a slow order of convergence, and can achieve higher precision only

by significantly decreasing the mesh size.

Finally, some techniques use degrees of freedom that are not based on an underlying mesh

(meshless techniques), but on an unstructured set of points. For example, smoothed particle
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hydrodynamics (SPH) describes the solution by introducing a point cloud of points (ai)i=1,...,n

in Rd and using radial basis functions ϕi(x) := ϕ(x− ai) centered on the points, where ϕ is the

general form of a kernel, usually a Gaussian or a harmonic function (thin plate splines). The

solution p is then expressed as a sum over these functions,

p(x, t) :=

n∑
i=1

γi(t)ϕi(x).

The problem is then reformulated in the weak sense, similarly to the Galerkin method that we

discuss in the rest of this section. We will not present these methods here. We will however note

that, aside from the great advantage of avoiding the need for a geometric mesh altogether, these

methods suffer from a few drawbacks, notably the difficulty in imposing boundary conditions,

as the boundary position is not easily described.

A visual representation of the three methods is given in Figure 2.1.

fpxi,jq
fpxi`1,jq

fpxi,j`1q

fpxi´1,jq

fpxi,j´1q

J1,2

f1

f2

f1
f2

f3

ϕ1pxq ϕ2pxq

ϕ3pxq

Figure 2.1: (Left) typical 5-point stencil used for the computation of the Laplacian in two-
dimensional finite differences. (Middle) typical setup for finite volumes on a triangulation. The
flux J1,2 between two cells is computed as a function of the values of f on the neighboring cells.
(Right) three points and their associated radial basis function in SPH.

2.2.1 The Galerkin method

Many modern schemes for the solution of PDEs, like the finite element (FE) method [97, 98] and

isogeometric analysis (IGA) [2], are based on a weak formulation that is formalized by Galerkin

theory. This is a very general approach that has the advantage of retaining the generic geomet-

rical description of FV methods, while allowing for a sub-geometric degree of precision thanks

to the introduction of appropriately shaped basis functions. Moreover, the weak formulation on

which the Galerkin method relies is also used for many error estimates in PDE theory, and these

tools are therefore available for the characterization of numerical Galerkin schemes. Galerkin

methods have been very successful in treating elliptic and parabolic equations, especially for

self-adjoint operators. After the introduction of discontinuous Galerkin methods, this approach

has been successfully applied to hyperbolic equations [99–101], as we shall see in the next section.
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Weak form of the equation

For this subsection and the next one, we refer the reader to a more complete treatment found

in the literature, and only give a very partial account. For second-order hyperbolic problems,

one can refer to [102, 103] for estimates of errors in Galerkin methods. A good introduction to

the subject is given in [104]. For discontinuous Galerkin methods, we refer to, e.g., [105–107]

for a more general introduction and to [108, 109] for error analysis in second-order hyperbolic

problems.

The starting point for the Galerkin method implementation is reformulating (1.5) in its weak

form, or variational form. Instead of requiring that (1.5) holds exactly, one chooses a finite (but

representative) set of test functions ϕ ∈ T , and requires that the projection of the differential

equation over each of these functions is satisfied, i.e.,∫
Ω

1

λ
ϕ
∂2p

∂t2
dΩ−

∫
Ω
ϕ∇ ·

(
1

ρ
∇p
)

dΩ =

∫
Ω
ϕsdΩ,

and after integrating by parts and applying the absorbing boundary conditions (1.9) on p, one

obtains ∫
Ω

1

λ
ϕ
∂2p

∂t2
dΩ +

∫
∂ΩA

1

ρc
ϕ
∂p

∂t
dS +

∫
Ω

1

ρ
∇ϕ · ∇pdΩ =

∫
Ω
ϕsdΩ. (2.5)

This is the weak form of (1.5), which we can rewrite as〈
ϕ,
∂2p

∂t2

〉
λ

+

〈
ϕ,
∂p

∂t

〉
ρc,A

+ aρ(ϕ, p) = 〈ϕ, s〉 , (2.6)

where the subscripts λ, ρc indicate that the integration is done with respect to these measures,

and the subscript A indicates that the integration is performed only on the absorbing boundary

of Ω. The last term on the left hand side of (2.5) is the only one containing the spatial derivatives.

It corresponds to the bilinear form in ϕ, p

aρ(ϕ, p) :=

∫
Ω

1

ρ
∇ϕ · ∇p dΩ.

Let us make the hypothesis that the physical parameters λ and ρ can be described via

positive bounded functions. Then, since aρ(p, p) = ‖∇p‖2L2(Ω,ρ),

aρ(p, p) ≥ C1,ρ ‖∇p‖L2(Ω) for all p ∈ H1
0 (Ω), (2.7)

with the nonnegative constant C1,ρ independent of p. Since ρ is positive, Cauchy-Schwartz’s

inequality also implies

aρ(ϕ, p)
2 ≤ C2,ρ aρ(ϕ,ϕ)aρ(p, p) for all p ∈ H1(Ω),

again with the nonnegative constant C2,ρ independent of p. Similar inequalities are also valid

if λ and ρ are chosen from some more general measure spaces, see, e.g., [110], although this
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generality is not required in the rest of this work. Notice that, after choosing

ϕ :=
∂p

∂t
,

one can rewrite the left hand side of (2.6) as

d

dt
Eρ,λ(p) +

∫
∂ΩA

1

ρc

∣∣∣∣∂p∂t
∣∣∣∣2 dS

where the energy Eρ,λ(p) is defined as

Eρ,λ(p) :=
1

2

∫
Ω

1

λ

∣∣∣∣∂p∂t
∣∣∣∣2 dΩ +

1

2
aρ(p, p) =: e2

ρλ(p), (2.8)

and the integral on the boundary is always positive and represents therefore an absorption (i.e.,

damping) term.

We now wish to discretize (2.5) by choosing a finite-dimensional subspace Φh ⊂ T for the

test functions, and another finite-dimensional subspace Qh ⊂ H2(Ω) =: Q for the solution. The

subscript h refers to the fact that these spaces usually depend on some geometric construction

(e.g., a grid or a mesh) with a typical size h.

In this work, we make the choice Φh = Qh, which is called the Bubnov-Galerkin approach.

Choosing a different discretized space for the space of test functions and the space of solutions

would result in a Petrov-Galerkin scheme. Such schemes have many advantages, including the

potential to make some matrices very simple or even diagonal, but for splines, the construction

of dual spaces with good numerical properties is an active research topic (see, e.g., [111]), and

not mature enough to be used in this work.

A crucial criterion in the choice of the subspace Qh is whether the discretized solution ph
approaches p as the discretization becomes finer and finer, i.e., as h→ 0, and how quickly. The

study of this behavior takes the name of a priori error analysis, meaning that these estimates

cannot be used to compute actual numerical bounds on the error, since they depend on the

knowledge of the non-discretized weak solution p. However, these estimates are fundamental

in establishing the correctness (and degree of convergence) of the discretization scheme. The

goal of the next few subsections is to illustrate the crucial role played by polynomials, and

polynomial-reproducing discretization spaces, in the determination of such estimates. We show

in Figure 2.2 the typical shape of a solution to the (continuous) Gaerkin problem.

A priori error analysis

Suppose that p is a solution of the weak problem (2.5) over all ϕ ∈ T , and suppose that we

find a discretized solution ph ∈ Qh to the semi-discrete (i.e., discretized only in space) problem

(2.5) formulated over the subset of test functions ϕh ∈ Qh ⊂ T . The question that we wish to

answer in this section is the following: can we place some bounds on the asymptotic behavior

of the difference between the semi-discretized solution and weak the solution of (2.5) as the

discretization becomes finer, i.e., as h→ 0?

A first, unavoidable requirement on the discretized space Qh is that it must be capable of
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Figure 2.2: (Left) a typical piecewise-polynomial basis of degree 2 on three elements used for
the Galerkin method in one-dimension and (right) the L2 projection of a function on this basis.
Note that the projection is only continuous.

representing the weak solutions to (2.5) as the discretization becomes finer, i.e.,

lim
h→0

inf
ϕh∈Qh

‖p− ph‖L∞([0,Tf ];L2(Ω)) = 0.

Once this requirement is met, we wish to estimate the error of the Galerkin solution, i.e.,

‖p− ph‖2L∞([0,tf ];L2(Ω)) := sup
0≤t≤tf

∫
Ω
|p(x, t)− ph(x, t)|2 dΩ, (2.9)

as a function of the discretization size h. Notice that such estimates are necessary to ensure the

numerical stability of the discretization scheme, but need to be supplemented with conditions

on the integration scheme in time. This kind of analysis is better suited to a full a posteriori

error analysis, which we do not perform here as it is not in the scope of the present work.

Let us split the goal of estimating (2.9) in two steps: first, we show that the Galerkin

solution is optimal, in the sense that it achieves the same degree of convergence as the best

approximating function in the space Qh. The estimate is then reduced to a pure functional

approximation problem. Once this is done, we can derive bounds on the error that depend

explicitly on h (and thus determine the order of convergence) after assuming that Qh contains

all the polynomials up to a given degree in its linear span.

Optimality of the Galerkin solution

A good introduction to the optimality estimates for the Galerkin method in second-order hyper-

bolic equations can be found in [104]. We also refer the reader to [103], which obtains slightly

tighter estimates, to [112] for a different treatment of the absorbing boundary term in the case

of mixed finite elements, and to [108] for a similar estimate in the case of discontinuous Galerkin

methods.

Here, we apply the results of the classic approach [102], which proves the convergence rate of

the Galerkin approximation to the acoustic wave equation with absorbing boundary conditions.

The goal of this subsection is to show the philosophy underlying such a priori error estimates,

and to illustrate the role played by polynomials and polynomial-reproducing discretizations.

Following [102] and many other classical approaches, we use the bilinear form aρ to define

the elliptic projection Πhp ∈ Qh of the solution p onto Qh. The bilinear form aρ is not coercive,
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and therefore, it cannot be used alone to define the elliptic projection as it would not yield a

unique solution. We can however make the definition unique by requiring that Πhp satisfies

aρ(p−Πhp, ϕh) + 〈p−Πhp, ϕh〉λ = 0, (2.10)

at all times t and for every ϕh ∈ Qh. The condition (2.10) uniquely defines Πhp, since the second

term acts as a regularization.

Notice that the projection defined by (2.10) is possible because Qh ⊂ Q, i.e., because the

discretized space is conforming, which implies the fact that Πhp has a well-defined trace on ∂Ω.

Inevitably, some modifications are required in the case of the discontinuous Galerkin methods,

whose discretization space is non-conforming, as shown later in this chapter.

Let us use the shorthand wh := Πhp for the elliptic projection, and let us derive an estimate

for ‖p− ph‖L∞([0,tf ];L2(Ω)). Since both p and ph satisfy (2.6) for test functions ϕh ∈ Qh, by

plugging ϕh as into (2.6), one obtains〈
∂2
t (p− ph), ϕh

〉
λ

+ 〈∂t(p− ph), ϕh〉ρc,A + aρ(p− ph, ϕh) = 0, (2.11)

and, separating p− ph = (p− wh)− (ph − wh) and using (2.10),〈
∂2
t (p− wh), ϕh

〉
λ
− 〈p− wh, ϕh〉λ + 〈∂t(p− wh), ϕh〉ρc,A

=
〈
∂2
t (ph − wh), ϕh

〉
λ

+ aρ(ph − wh, ϕh) + 〈∂t(ph − wh), ϕh〉ρc,A .

From this expression, [102, 104] derive a suitable error estimate for (ph − wh) and its time

derivatives. We can directly apply these estimates to our case. In particular, our approach

corresponds to the choice α1 = 0, α2 = 1, g = 0 and a = c in [102]. Furthermore, since

we are assuming that ρ, λ and c are piecewise smooth positive functions, the norms ‖p‖2λ,

aρ(p, p) + ‖p‖2L2(Ω) and ‖p‖2ρc,A are equivalent to the norms ‖p‖2L2(Ω), ‖p‖
2
H1(Ω) and ‖p‖2L2(∂ΩA),

respectively. Finally, thanks to the initial conditions (1.7), p(0) = ∂tp(0) = 0, we can exactly

represent both p and ∂tp at time zero in the discretized space Qh by simply choosing the zero

vector. Overall, we recover the following lemma.

Lemma 2.2.1 ([102, Lemma 3]). There exists a constant C such that

‖∂t(ph − wh)‖2L∞([0,tf ];L2(Ω)) + ‖∂t(ph − wh)‖2L∞([0,tf ];H1(Ω)) + ‖∂t(ph − wh)‖2L∞([0,tf ];L2(∂Ω))

≤ C
( ∥∥∂2

t (p− wh)
∥∥2

L2([0,tf ];L2(Ω))
+ ‖p− wh‖2L2([0,tf ];L2(Ω))

+ ‖p− wh‖2L∞([0,tf ];H−1/2(∂ΩA)) + ‖∂t(p− wh)‖2L∞([0,tf ];H−1/2(∂ΩA))

+
∥∥∂2

t (p− wh)
∥∥2

L2([0,tf ];H−1/2(∂ΩA))

)
,

(2.12)

where ‖ · ‖H−1/2(∂ΩA) is the norm on H−1/2(∂ΩA), the dual of H1/2(∂ΩA).

This result is important because it bounds the difference between the Galerkin solution ph
and the elliptic projection wh in a fine norm, thus showing that the Galerkin solution is optimal.

Furthermore, (2.12) allows to derive directly an estimate for the Galerkin error via the triangular
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inequality, i.e.,

‖p− ph‖L∞([0,tf ];L2(Ω)) ≤ ‖p− wh‖L∞([0,tf ];L2(Ω)) + ‖ph − wh‖L∞([0,tf ];L2(Ω)) ,

where the last term can be bounded by (2.12). Thus, the problem of estimating the accuracy of

the Galerkin solution has been transformed into a pure functional approximation problem.

Error estimate in the case of polynomial-reproducing spaces

Suppose now that Qh contains the space of all the polynomials up to a degree k, Qk, in its linear

span. We say in this case that Qh is polynomial-reproducing. We can then apply to (2.12) a

number of estimates that rely on the central role that polynomials play in approximation theory.

More specifically, the Stone-Weierstrass theorem [113] states that polynomials are dense in the

space of continuous functions, and thus every continuous function can be uniformly approximated

by polynomials. Furthermore, after denoting with h the (maximum) size of a mesh element in

the discretization, polynomial approximation can be used to determine the order of convergence

in terms of h via Jackson-type inequalities [114] such as the Bramble-Hilbert Lemma [97, 115],

which states

inf
ϕh∈Qh

‖p− ϕh‖Hr(Ω) ≤ C
′hmin(k+1−r,m) ‖p‖Hm(Ω) ,

and thus in particular

inf
ϕh∈Qh

‖p− ϕh‖L2(Ω) ≤ Ch
min(k+1,m) ‖p‖Hm(Ω) ,

where the constants C and C ′ do not depend on h, but can depend on the polynomial order k.

This establishes the degree of approximation of polynomial spaces.

Using this kind of inequalities, and with some regularity assumptions on p and its time

derivatives, one can determine the order of convergence of the norms of p − wh appearing in

(2.12), see, e.g., [116]. One then obtains the result

Lemma 2.2.2 ([102, Lemma 5]). Suppose that p, ∂tp are in L∞([0, tf ];L2(Ω)), and that ∂2
t p is

in L2([0, tf ];L2(Ω)). Then the inequality

‖∂rt (p− wh)‖Ls([0,tf ];L2(Ω)) + ‖∂rt (p− wh)‖Ls([0,tf ];H−1/2(∂ΩA)) ≤ Ch
k, (2.13)

where C is a constant independent of h, holds for (r, s) = (0,∞), (1,∞) and (2, 2).

Together with (2.12), (2.13) yields the following final estimate.

Theorem 2.2.3 ([102, Theorem 2]). Let p be a solution of (1.5) with boundary conditions (1.8)

and (1.9), and with initial conditions (1.7), and let ph be its Galerkin approximation. Suppose

that p, ∂tp are in L∞([0, tf ];L2(Ω)), and that ∂2
t p is in L2([0, tf ];L2(Ω)). Then there is a

constant C independent of h such that

‖∂t(p− ph)‖L∞([0,Tf ];L2(Ω)) + ‖p− ph‖L∞([0,Tf ];L2(Ω)) ≤ Ch
k.
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This result shows the order of convergence of the semi-discrete Galerkin solution with respect

to the solution of the (non discretized) weak problem, finalizing the a priori error estimate.

A final consideration. The estimates provided in this section are only a priori error estimates,

since evaluating the magnitude of the error would require the knowledge of the exact solution

p. In particular, since no discretization in time was done in this section, the solution ph is not

the discrete solution that one finds in practice, but the solution of a semi-discrete scheme. The

choice of an appropriate discretization in time is crucial in order to preserve the maximal order

of approximation.

One can also produce some a posteriori error estimates, based on the fully discretized scheme.

Computing such estimates involves the knowledge of details about the type of spatial discretiza-

tion (grid, mesh, etc.) and also the choice of time integration scheme. For the second order

wave equation with explicit timestepping, one might find some estimates, e.g., in [117] for the

Runge-Kutta integration scheme and in [118] for the leapfrog scheme.

Discrete form for explicit timestepping

We give now the full form of the discretized acoustic wave equation in the weak form (2.6),

using the second-order leapfrog time integration scheme. The space of discretized functions Qh
is finite-dimensional, and thus admits a basis. Let (ϕi)

n
i=1 be such a basis. By far the most

common basis choice is that of piecewise polynomials, for examples defined on a set of volumes

that constitute a subdivision (a mesh) of Ω. Notice that some form of regularity must be imposed

across the whole domain for the error estimates of the previous subsection to be valid. Different

bases for polynomials can be chosen, as we will discuss in a later chapter.

Once the choice of basis is made, one can expand the solution on this basis at all times,

p(x, t) =
n∑
i=1

γi(t)ϕi(x),

and use any of the basis functions ϕj as a test function. One can then incorporate the time

integration scheme on the coefficient vector γ(t), which is replaced with a vector of real numbers

γ(t), where the integer t now simply signifies the iteration number. Using the formula (2.1) for

∂2γ/∂t2, and using a central approximation for the first derivative in time ∂γ/∂t, i.e.,

∂γ

∂t
(ti) =

p(x, ti+1)− p(x, ti−1)

2∆t
+O(∆t2),

one then obtains the linear system

M
γ(t+1) − 2γ(t) + γ(t−1)

∆t2
= −Kγ(t) −Bγ

(t+1) − γ(t−1)

2∆t
+ S(t), (2.14)

where

Mij :=

∫
Ω

1

λ
ϕiϕj dΩ (2.15)

is the mass matrix,

Kij :=

∫
Ω

1

ρ
∇ϕi · ∇ϕj dΩ (2.16)
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is the stiffness matrix,

Bij :=

∫
∂ΩA

1

ρc
ϕiϕj dS (2.17)

is the boundary condition matrix or damping matrix, and

Si(t) :=

∫
Ω
ϕi(x)s(x, t) dΩ

is the source vector. The explicit timestepping scheme can then be obtained by making γ(t+1)

explicit in (2.14),

γ(t+1) =

(
M +

∆t

2
B

)−1(
2Mγ(t) −Mγ(t−1) −∆t2Kγ(t) +

∆t

2
Bγ(t−1)

)
+ ∆t2S(t). (2.18)

The mass matrix (2.15) is diagonal if and only if the basis functions ϕi are orthogonal with

respect to the scalar product induced by ρ. In fact, M corresponds exactly to the Gramian matrix

of these functions, cf. [119, Chapter 7]. Numerical methods that make this matrix diagonal or

otherwise easy to invert have therefore a tremendous numerical advantage in computing the

time evolution of acoustic waves via (2.18). Notice that, even if only the inverse of the sum

(M + ∆t/2B) appears in (2.18), the term ∆t/2B can be regarded as a perturbation of the

matrix M , and the inverse of the sum can be computed knowing the inverse of M , for example

through the Sherman-Morrison formula [120].

Since the contribution of the matrix B is only important near the boundaries, the numerical

stability of the wave propagation algorithm is dominated by the spectral properties of M−1K,

and the CFL timestep can be tied to the maximum eigenvalue of this matrix (cf. (2.3)). Thus, the

behavior of the spectrum of this matrix as the size of the space discretization decreases and the

degree of polynomial approximation increases is of paramount importance for the performance

results of a discretization scheme.

2.2.2 The interior penalty discontinuous Galerkin method

In real-world applications of seismic wave propagation and inversion, one often does not have

the luxury of working in a smooth setting. First, the physical subsurface itself is often full of

discontinuities in velocity, density, or both. These zones of high gradient of impedance cannot

be simply disregarded or smoothed out without nefarious consequences on the convergence of

the inverse problem, since the reflectors are responsible for some substantial features of the

recorded data. Second, even if the pressure stays continuous, it will generally no longer be in

H1(Ω). Moreover, the first-order formulation (2.4) makes use of the wave velocity variable v,

whose tangential component is discontinuous across a reflector. For this reason, the choice of

discontinuous discretization functions that underlies the discontinuous Galerkin (DG) method

has found a fertile ground in seismic wave simulation, see, e.g., [1, 89, 108, 121–123], as well as

in many other hyperbolic problems.

In this work, we will make use of the standard DG approach. Compared to the continuous

Galerkin approach presented in the previous section, the DG method allows to perform com-

putations in a local fashion, leading to the aforementioned advantages in the modelization of



48 CHAPTER 2. DISCRETIZATION

complex geometries, as well as to efficient parallelization schemes. Even though we do not use

the standard DG geometric discretization and associated bases, we make use of many high-level

characteristics of the DG approach, which allow us to construct a multi-domain, hybrid DG-

IGA scheme that we will detail in Chapter 6. Consequently, we keep this introduction abstract

enough to be applicable to our work. For a general and complete introduction to discontinuous

Galerkin methods see, e.g., [107] or [105].

In a discontinuous Galerkin scheme, one subdivides the domain Ω into a finite set of disjoint

subdomains Ωi, i = 1, . . . , nd, satisfying

Ωi ∩ Ωj = ∅ for i 6= j,

nd⋃
i=1

Ωi = Ω,

and introduces a set of discretized function spaces Sh,i independently for each Ωi. Each Sh,i
satisfies Sh,i ⊂ H1(Ωi), but generally

Sh :=

nd⊕
i=1

Sh,i 6⊆ H1(Ω),

and the violation is large, since a general function obtained by picking a different function

ϕh,i ∈ Sh,i per domain is not continuous, let alone smooth, at the interfaces between domains. We

however assume that Sh ⊂ L2(Ω), which means that the discretization space is non-conforming,

and thus (2.10) cannot be derived directly as we did in the previous subsection. An alternative

strategy has to be devised.

Let us introduce the usual setup for discontinuous Galerkin methods. Let FI be the set of

internal facets of the domain decomposition of Ω, i.e., the set of all intersections Fi,j := Ωi ∩Ωj

between any two neighboring cells Ωi and Ωj . Suppose that we have chosen a normal direction

NF for every face Fi,j . Given a scalar function p and a vector-valued function v on Ω, we can

then define their jump at the interface F as

[[p]]F := (p+ − p−)NF , [[v]]F := (v+ − v−) ·NF , (2.19)

where p+, v+ (respectively p−, v−) are the traces of p and v taken in the domain which sees

NF as an outward normal (resp., inward normal). Notice that the jump of a scalar function is

vector-valued, while the jump of a vector-valued function is a scalar. Similarly, we define their

average

{{p}}F :=
1

2
(p+ + p−), {{v}}F :=

1

2
(v+ + v−). (2.20)

We can extend this definition to the whole set F of facets of the decomposition, also known as

its skeleton, by defining these expressions on the set of boundary facets FB of Ω. For a boundary

facet B ∈ FB, we define

[[p]]B := pNB, [[v]]B := v ·NB, {{p}}B := p, {{v}}B := v, (2.21)

with the normal NB always chosen in the inward direction with respect to Ω. We denote by

[[p]], [[v]], {{p}} and {{v}} the functions defined on the whole skeleton via (2.19), (2.20) and (2.21).
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Notice that

[[p]]F · {{v}}F + [[v]]F {{u}}F =
1

2
(p+v+ +�

��p+v− −�
��p−v+ − p−v− (2.22)

+ p+v+ +���p−v+ −���p+v− − p−v−) ·NF ,

= [[pv]]F ,

which is sometimes called the jump identity or trace identity.

Let us now return to the acoustic wave equation (1.5), and repeat the derivation of the weak

form of the equation (2.5), but with the test function ϕ selected in the discontinuous space Sh.

Integration by parts cannot be performed on the whole domain Ω this time, but we must split

the integrals over all subdomains. We obtain this time

nd∑
i=1

∫
Ωi

1

λ
ϕ
∂2p

∂t2
dΩ +

nd∑
i=1

∫
Ωi

1

ρ
∇ϕ · ∇p dΩ−

nd∑
i=1

∫
∂Ωi

1

ρ
ϕ∇p · dS =

nd∑
i=1

∫
Ωi

ϕsdΩ. (2.23)

In the third sum (2.23), each internal interface F appears twice, once with the normal NF , and

once with the normal −NF . After applying the usual boundary conditions (1.8) and (1.9) to p,

the third term can thus be rewritten as

−
∑
F∈FI

∫
F

[[
1

ρ
ϕ∇p]] dF +

∫
∂ΩA

1

ρc
ϕ
∂p

∂t
dS,

and using (2.22), one can write∑
F∈FI

∫
F

[[
1

ρ
ϕ∇p]] dF =

∑
F∈FI

∫
F

[[ϕ]] · {{1

ρ
∇p}}dF +

∑
F∈FI

∫
F
{{ϕ}}[[ 1

ρ
∇p]] dF. (2.24)

Assuming that ρ can be represented by piecewise smooth functions, it can be shown (see, e.g.,

[124, Theorems 8.1 and 8.2]) that ∇ · (1/ρ∇p) must belong to L2(Ω), and therefore 1/ρ∇p ∈
H(div), implying that 1/ρ∇p ·NF is continuous across the interface F . Consequently, the last

term in (2.24) is zero. Putting it all together, we obtain the following tentative weak form:

nd∑
i=1

∫
Ωi

1

λ
ϕ
∂2p

∂t2
dΩ +

nd∑
i=1

∫
Ωi

1

ρ
∇ϕ · ∇p dΩ−

∑
F∈FI

∫
F

[[ϕ]] · {{1

ρ
∇p}}dF

+

∫
∂ΩA

1

ρc
ϕ
∂p

∂t
dS =

nd∑
i=1

∫
Ωi

ϕsdΩ.

(2.25)

The term containing the jump of ϕ is known as a flux term.

First and foremost, the bilinear form associated to (2.25) is not symmetric. Numerically, sym-

metric operators are often easier to treat. For example, when solving a linear system governed

by a symmetric matrix, one can apply the Cholesky decomposition (or the LDL decomposition

if the matrix is not positive definite) instead of the full LU decomposition, which is much less

memory intensive. If instead one opts for an iterative solution via a Krylov subspace method,
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then one can apply in the symmetric case the very efficient conjugate gradient algorithm, in-

stead of less efficient and less stable methods such as the biconjugate gradient algorithm or the

generalized minimal residual (GMRES) method. Preconditioning also usually becomes more

complicated for nonsymmetric operators.

For all these reasons, we wish to restore the symmetry of (2.25). We can do so by adding an

additional term, namely the symmetric of the flux term,

−
∑
F∈FI

∫
F
{{1

ρ
∇ϕ}} · [[p]] dF.

Notice that this term is zero on the non-discretized solution, so that the numerical scheme

remains coherent.

Another fundamental issue of the bilinear form associated to (2.25) is that it does not satisfy

the positivity condition (2.7). The culprits are the terms containing the jumps [[ϕ]] and [[p]],

which invariably introduce a negative summand in the bilinear form, and thus prevent any form

of positive (semi-)definiteness. This issue is resolved by adding a penalty term

α
∑
F∈FI

∫
F

[[ϕ]] · [[p]] dF

for some penalty coefficient α > 0. For the non-discretized solution, this term is always zero

due to the cited continuity property of p. However, in the discrete problem, this addition bears

many consequences. First of all, it is positive semi-definite, so for a high enough choice of the

coefficient α, the nonnegativity of the form is restored. Second, note that α is a dimensionful

quantity: it has the dimension of 1/ρ ·1/`, where ` is the unit of length. Therefore, some scaling

with respect to the local parameters is required. Usually, the most penalizing choice is used (cf.

[108]):

α = α0

max( 1
ρ+
, 1
ρ− )

min(h+, h−)
,

where h is a typical size of the degrees of freedom across the interface. Which typical size must

be taken is not an obvious choice, and has been the object of some research. For example, for

Lagrange bases on simplicial meshes in two and three dimensions, [125, 126] have proposed lower

bounds that depend on the polynomial degree and on the geometrical properties (the inradius

or the angles) of the two neighboring cells. In Chapter 6, we show how the choice of [125] can

also be applied to our unstructured spline spaces.

Finally, when the error norm associated to the bilinear form is computed, the presence of a

term proportional to the square of the jump of the solution acts like a stabilizer for the method.

A drawback is that, when some energy is stored in the corresponding term of the energy norm,

the (physical) energy of the system is not exactly conserved, and the penalty term acts as a

damping term. This effect can potentially introduce some inaccuracies. Thus, the coefficient α

of the penalty term is the object of a trade-off between stability and accuracy.

We can now write the full weak interior-penalty discontinuous Galerkin (IPDG) formulation
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for the acoustic wave equation,

nd∑
i=1

∫
Ωi

1

λ
ϕ
∂2p

∂t2
dΩ +

nd∑
i=1

∫
Ωi

1

ρ
∇ϕ · ∇p dΩ−

∑
F∈FI

∫
F

[[ϕ]] · {{1

ρ
∇p}}dF

−
∑
F∈FI

∫
F
{{1

ρ
∇ϕ}} · [[p]] dF + α

∑
F∈FI

∫
F

[[ϕ]] · [[p]] dF +

∫
∂ΩA

1

ρc
ϕ
∂p

∂t
dS =

nd∑
i=1

∫
Ωi

ϕsdΩ.

(2.26)

The bilinear form aρ of the continuous Galerkin approach thus gets replaced by

aDG(ϕ, p) :=

nd∑
i=1

∫
Ωi

1

ρ
∇ϕ · ∇p dΩ−

∑
F∈FI

∫
F

[[ϕ]] · {{1

ρ
∇p}}dF

−
∑
F∈FI

∫
F
{{1

ρ
∇ϕ}} · [[p]] dF + α

∑
F∈FI

∫
F

[[ϕ]] · [[p]] dF.

(2.27)

This version of the interior penalty DG method is called symmetric, since the flux terms have

the same coefficient. Non-symmetric versions are possible (see, e.g., [127]), and they sometimes

offer the added benefit of making the bilinear form aDG nonnegative for all choices of the penalty

parameter. However, error analysis in this case is much harder, and remains an open problem in

many cases. We show in Figure 2.3 the typical shape of a solution to the discontinuous Galerkin

problem.

x

y

x1 x2

ϕ1 ϕ2

ϕ3

ϕ4 ϕ5

ϕ6

ϕ7 ϕ8 ϕ9

x

y

x1 x2

fpxq
fhpxq

rrf sspx1q

rrf sspx2q

Figure 2.3: (Left) a typical piecewise-polynomial basis of degree 2 on three elements used for the
discontinuous Galerkin method in one-dimension and (right) the L2 projection of a function on
this basis. Note that the projection is not continuous. The jump of the function is highlighted
in the picture.

A priori error analysis of the IPDG method

After comparing (2.26) with (2.5), one can immediately see that the equivalent of the energy

norm (2.8) in the case of the IPDG method is given by

|||p|||2 :=

nd∑
i=1

∫
Ωi

1

λ

∣∣∣∣∂p∂t
∣∣∣∣2 dΩ +

nd∑
i=1

∫
Ωi

1

ρ
|∇p|2 dΩ + α

∑
F∈FDG

∫
F

[[p]]2 dF. (2.28)

The term involving the spatial derivatives is naturally formulated on the space of continuously

differentiable functions on Ω, H1(Ω), over which the last term is zero. Since the space is non-
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conforming, in order to capture both the discretized and continuous (smooth) spaces, the error

estimate must take place over the space

V := H1(Ω) + Sh.

We run immediately into a problem: the trace of ∇p is not guaranteed to exist for a general

p ∈ H1(Ω) (and thus in V ), since the Sobolev embedding theorem would require a regularity of

degree at least 2 to produce such a trace (see, e.g., [32, Chapter 5]). Consequently, the terms

{{1
ρ∇p}} and {{1

ρ∇ϕ}} appearing in (2.26) are not generally well defined. The classical solution

to this problem takes the form of a projection operator (see, e.g., [108])

ΠDG : L2(Ω)→ Sh,

where Sh denotes as before the non-conforming discretized space, and ΠDG projects orthogonally

with respect to the usual L2 norm. Notice that this has nothing to do with the trivial projection

from V = H1(Ω) + Sh onto its second component, but it is a non-trivial projection consisting

of finding, for a given function g ∈ L2(Ω), the best-approximating function ΠDGg in Sh in the

L2 sense. This nontrivial projection operator then allows to lift the notion of average from Sh
(where the traces are well-defined) to L2(Ω), by defining, for f ∈ H1(Ω),

{{1

ρ
∇f}} := {{ΠDG

1

ρ
∇f}}.

With this lift, the energy norm ||| · ||| (2.28) and the lifted bilinear form âDG, obtained from

(2.27) by replacing {{1
ρ∇f}} with {{ΠDG

1
ρ∇f}}, become compatible. One can then prove the

nonnegativity and continuity of âDG in this norm (see, e.g., [108, 128]), provided that α > αmin,

with the lower bound depending on the details of the domain and its subdivision. We do not

repeat the proofs here, as they are discussed in more detail in Chapter 6 for the DG-IGA

multipatch scheme. However, we notice that the classical proofs of this fact are not immediately

applicable in our slightly more general setting, since they are formulated on simplicial meshes,

i.e., on subdivisions where each subdomain Ωi =: σi is a simplex. With that assumption, one

can rely on the inverse inequality

‖v‖2L2(∂σi)
≤ C vold−1(∂σi)

vold(σi)
‖v‖2L2(σi)

(2.29)

valid whenever v is a polynomial of degree k inside σi for some constant C depending only on

the degree k and the dimension d. This inequality allows to transfer the integrals over internal

facets in (2.26) to volume integrals, thus removing the issue of trace definition, and allowing to

remove the projection ΠDG from the estimate. Even if in our work the shape of the subdomains

Ωi is not restricted to simplices, and in fact the subdomains are not even assumed to be convex,

it is still possible to recover an inverse inequality for the multi-patch spline spaces on which

we build our numerical scheme in Chapter 6. The inequality is indeed very similar to the case

of simplicial subdomains. Consequently, we make here the assumption that this inequality is

available even in our more general setting.
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Once the nonnegativity and continuity of the bilinear form aDG (2.26) have been established,

one is immediately faced with another problem, as the lifted form âDG is no longer compatible

with the non-discretized weak problem (2.26), since the discretization space is non-conforming.

Specifically, suppose that p is a solution of the non-discretized weak problem (2.26), and suppose

furthermore that p ∈ H2(Ω), so that the trace ∇p|F is well-defined on every facet F . Let ϕh ∈ Sh
be a test function. Then the lifted form âDG(ϕh, p) contains the term

−
∑
F∈FI

∫
F

[[ϕh]] · {{ΠDG
1

ρ
∇p}}dF,

while aDG(ϕh, p) contains

−
∑
F∈FI

∫
F

[[ϕh]] · {{1

ρ
∇p}}dF,

Notice that these two terms are indeed different, since ∇p ∈ H1(Ω), and its best-fitting function

in Sh is not even continuous in general (cf. Figure 2.3). In order to apply the same error

estimates as in the case of the continuous Galerkin method, one needs to define the elliptic

projection using the lifted form âDG. However, due to this incompatibility, when computing

(2.11), one obtains an extra term in the form of the residual

r(p, ϕh) := âDG(ϕh, p)− aDG(ϕh, p) = −
∑
F∈FI

∫
F

[[ϕh]] · {{ΠDG
1

ρ
∇p− 1

ρ
∇p}}dF.

The error estimate can then proceed exactly as in the previous section. When deriving the

final estimate for ‖p− ph‖L∞([0,tf ],L2(Ω)), the additional term r(p, ϕh) appearing in (2.9) gets

divided by ‖ph − wh‖L2(Ω). One can bound this additional term via

|r(p, ph − wh)|
‖ph − wh‖L2(Ω)

≤ sup
ηh∈Sh

|r(p, ηh)|
‖ηh‖L2(Ω)

.

Fortunately, this does not hinder the order of convergence of the method, since it turns out

to be of the same order of approximation as the error. To see this, notice that

|r(p, ηh)|2 ≤

∑
F∈FI

∫
F
α[[ηh]]2 dF

∑
F∈FI

∫
F
α−1

∣∣∣∣{{ΠDG
1

ρ
∇p− 1

ρ
∇p}}

∣∣∣∣2 dF

 .

Using the inverse inequalities seen above, both integrals can be bounded by the L2 norm of

their arguments on L2(Ω), and after noticing that the projection ΠDG is stable in the L2 norm,

the projection ΠDG can be removed from the integral (see e.g. [108, Lemma 4.6] and [108,

Lemma 4.7] or also [109, Lemma 1.3.9]).

We do not repeat here the details of this derivation, which is quite standard. We do however

remark that two crucial assumptions rely on the fact that the domains Ωi are simplices: the

determination of the minimum penalization coefficient α that restores positivity, and the inverse

inequality (2.29). These two properties need to be recovered in the case of our multi-patch

DG-IGA scheme, as we do in Chapter 6.



54 CHAPTER 2. DISCRETIZATION

Finally, we do not present here the a posteriori error analysis of the IPDG method, and we

instead refer the reader to, e.g., [108]. However, we wish to emphasize that the IPDG method,

as presented here, retains the same order of approximation of the FE method of the same degree,

even with a non-conforming discretization space. We also point out once again the fundamental

role that the polynomial reproduction property plays in the computation of error estimates of

virtually all Galerkin methods, and therefore in proving their accuracy.

Discrete form for explicit timestepping via the IPDG method

We derive now the explicit form of (2.26) after selecting, as before, a basis (ϕi)
n
i=1 of Sh, and

after having chosen a second-order leapfrog timestepping scheme. Comparing (2.26) with (2.6),

it is clear that the form of the algebraic equation that one obtains after discretization is very

similar. In fact, one obtains

γ(t+1) =

(
M +

∆t

2
B

)−1(
2Mγ(t) −Mγ(t−1) −∆t2K ′γ(t) +

∆t

2
Bγ(t−1)

)
+ ∆t2S(t),

where the modified stiffness matrix

K ′ := K + F + P

now incorporates the flux and penalty terms of (2.26). The corresponding matrices are given by

Fi,j := −
∑
F∈FI

∫
F

(
[[ϕi]] · {{

1

ρ
∇ϕj}}+ {{1

ρ
∇ϕj}} · [[ϕj ]]

)
dF (2.30)

and

Pi,j := αi,j
∑
F∈FI

∫
F

[[ϕi]] · [[ϕj ]] dF. (2.31)

For piecewise constant values of ρ, the penalty parameter is often chosen to be

αi,j := α0

max( 1
ρi
, 1
ρj

)

min(hi, hj)
,

where 1/ρi, 1/ρj are the physical parameters in domains Ωi and Ωj respectively, and hi, hj are

two typical dimensions of the two neighboring functions ϕi, ϕj . As discussed above, in the case

of simplicial meshes, hi and hj are tied to the geometrical properties of the two neighboring

simplices supporting the two basis functions, usually their inradius or some other quantity

involving their the angles, see, e.g., [125, 126]. We derive an equivalent quantity for unstructured

splines in Chapter 6. As for α0, a commonly chosen value is [89]

α0 =

(
k + d

d

)
,

where k is the polynomial order of the (polynomial-reproducing) basis, and d is the number of

space dimensions. Of course, the goal of the coefficient α0 is to make the bilinear form (2.26)
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nonnegative, and the simulation stable. Therefore, more penalizing values are acceptable, even

though they risk making the simulation less accurate due to their damping effect.

Notice that the matrices F and P only involve functions that are supported on the inter-

face between two domains. In the classic mesh-based DG method, this is the case for all basis

functions ϕi. However, in view of the DG-IGA scheme that we wish to formulate, the domains

Ωi are usually larger, and they include many functions that are not supported on the internal

interfaces, and for which the matrix elements (2.30) and (2.31) are zero. Thus, from a compu-

tational standpoint, these matrices are better computed through a loop over the facets FI . One

can also perform a loop on all the internal and external boundary facets of the domains, and

compute the damping matrix (2.17) at the same time.

Finally, but far more importantly, we need to emphasize an extremely interesting feature

that has made DG methods very successful for transport problems with explicit timestepping.

In fact, only functions supported on the same domain Ωi give a nonzero contribution to the

computation of the mass matrix (2.15) (as well as the unmodified stiffness matrix (2.16) and

the damping matrix (2.17)). Consequently, these matrices are block-diagonal, with one block

per subdomain. The computation of the inverse M−1 (and (M + ∆t/2B)−1) is thus made sig-

nificantly less expensive. This represents a tremendous numerical advantage, both for iterative

and factorization (direct) approaches to matrix inversion. Moreover, the matrix K ′ only relates

functions belonging to different domains by the flux and penalty terms. This has a big relevance

in code parallelization, since different tasks dispatched to different nodes only need to commu-

nicate a very limited amount of information during a time iteration. Moreover, in usual DG

formulations on simplicial meshes, every domain Ωi has the same shape, and all elements are

related by an affinity transformation. Consequently, all the diagonal blocks of these matrices

are related by a simple Jacobian, and do not need to be computed independently. We will see

that all these advantages, excluding the last one, are retained in our DG-IGA formulation.

2.3 Discretization for the inverse problem

We spend here a few words about two topics that are relevant when performing seismic inversion,

namely the choice of discretization for the physical parameters ρ and λ, and the choice of

algorithm for the minimization of the cost function.

2.3.1 Discretization of the space of physical parameters

In the previous section, we have seen that the convex dual of a constrained optimization problem

can be formulated in terms of the residuals. In the case of full waveform inversion, for a given

detector datum dr(t), the residual of a given solution p(x, t) reads

ε(t) := p(xr, t)− dr(t).

It is a well-known property of L2 minimization that the residuals must be orthogonal to the

image of the time-evolution operator (1.11), i.e., they must be orthogonal to all the solutions to

the acoustic wave problem for all possible choices of physical parameters. Working in Fourier

space, with a pointlike source and after evaluating the solution at x = xr, the time-evolution
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convolution (1.11) becomes a multiplication, and the orthogonality condition 〈ε, p〉 = 0 then

becomes ∫ +∞

−∞
ε̃(ω)s̃(ω)Gρ,λ(ω) dω = 0 for all Green’s functions Gρ,λ(ω), (2.32)

where ε̃(ω), s̃(ω) are the Fourier transforms of ε(t) and the source s(t), respectively, and Gρ,λ
is the Green’s function taking source data to receiver data. Thus, the product (2.32) can only

be zero if ε̃(ω) and s̃(ω)Gρ,λ(ω) have disjoint supports for all allowable ρ, λ.

We can restate this conclusion by saying that the residual can be zero (and thus the inversion

can be “perfect”) only if two conditions are met: the spectrum of the source term contains all

the frequencies present in the measurements dr(t), and these frequencies are not suppressed by

the choice of allowable physical parameters. Notice that, if s is a compactly-supported wavelet,

its Fourier transform is an entire function, and therefore it only vanishes over a measure-zero set.

Therefore, the choice of discretization of physical parameters plays a large role in the successful

minimization of the residuals in the inverse problem, since the residual is allowed to contain all

the frequencies that are suppressed by Gρ,λ(ω). For example, the choice of piecewise-constant

values on a very coarse mesh suppresses the higher frequencies by aliasing, which can therefore

be found in the residual.

The inverse problem therefore poses some constraints on the coarseness of the spatial (and

temporal) discretization that go beyond the pure numerical stability criteria discussed earlier.

These considerations, and many related ones, have been studied in more detail by many authors.

We refer the reader to [40], and references therein, for further reading.

Concretely, the most common choice for the space of physical parameters, used in the major-

ity of FWI instances, is a set of piecewise-smooth (and most often piecewise-constant) functions

defined over the same mesh as the solution. While this is undoubtedly a convenient solution,

there are some cases where this choice might be sub-optimal. In fact, there is no a priori reason

why the typical variations in size of the physical model, which are tied to the typical size of

sedimentary layers, should be correlated with the typical scale of variation of the source, which

is tied to the source frequency. Since the number of degrees of freedom on which the inversion

is performed is very adversely correlated with the convergence of the inversion process itself [9],

one should try to avoid introducing too many unnecessary degrees of freedom.

However, it is impossible to know beforehand which degrees of freedom are useful for de-

scribing the shape of the model, and which are instead redundant. For this reason, some authors

(see, e.g., [57, 58]) rely on adaptive meshing to adjust the shape and size of the mesh during the

inversion process. This is a very promising technique, which presents however some difficulties

as it is nontrivial to generate a model evolution that retains an acceptable shape of the mesh

elements. As we have seen before, the geometric properties of mesh cells (such as their inradius)

enter many error estimates, and thus the introduction of degenerated elements may adversely

impact the numerical properties of the method.

An approach based on unstructured splines might help circumvent some of these difficulties.

These functions are in fact formulated naturally on (unstructured) point clouds, and thus are

inherently robust to shape modification. Furthermore, degenerate configurations of the points

(e.g., collinear or coplanar) induce a loss of continuity of the basis, which may be a desirable

feature when reconstructing the position of sharp reflectors in the subsurface. We shall briefly
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discuss these topics in Chapter 7.

2.3.2 Minimization of the cost function

We have shown in Chapter 1 how the adjoint state method can be used to compute a subgradient

of the cost function with respect to the model parameters. This is the first step in many local

optimization algorithms, since a subgradient gives a direction along which the function is (at

least locally) nonincreasing.

Suppose that we wish to minimize a cost function f : Rd 7→ R, locally, around a point x.

One might use the Newton method, which is among the most widely used techniques for local

minimization. Suppose that f is twice differentiable at x. Then the Taylor expansion of f gives,

at order 2,

f(x) = f(x) +∇f(x) · (x− x) + (x− x)THf (x)(x− x) +O(|x− x|3),

where Hf (x) is the Hessian matrix

(Hf )ij (x) :=
∂2f

∂xi∂xj
(x).

If f were a quadratic function, the minimum could be found with a single Newton iteration

xk+1 = xk −Hf (xk)
−1∇f(xk). (2.33)

An algorithm that follows Newton iterations converges quadratically for a strongly convex func-

tion f with Lipschitz-continuous Hessian [50]. However, one might risk overstepping the local

minimum with a single iteration. For this reason, a step size γ ≤ 1 is chosen for (2.33), i.e.,

xk+1 = xk + γδk,

where δk = −Hf (xk)
−1∇f(xk) is the descent direction. The step γ must be chosen to satisfy

the Armijo-Wolfe conditions, [129, 130]

f(xk + γδk) ≤ C1γδk · ∇f(xk), (2.34a)

−δk · ∇f(xk + γδk) ≤ −C2δk · ∇f(xk), (2.34b)

for some constants 0 < C1 < C2 < 1, which ensure that f and ∇f are both sufficiently decreased

by the iteration.

The full Hessian matrix, let alone its inverse, is too computationally expensive to be com-

puted in most practical cases. Thus, one usually relies on algorithms that reconstruct the

second-order information from the available history of first-order information, i.e., the gradi-

ents at previous iterations. The most common of these quasi-Newton algorithms is the BFGS

method, from the name of its inventors, and its limited-memory incarnation L-BFGS (see, e.g.,

[131]). Using this method, the conjugate direction δk = −Hf (xk)
−1∇f(xk) is approximated

iteratively as δ1 = −∇f(x1), δi = −∇f(xi) + βi∇f(xi−1) for i > 1. Many choices for βi are
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possible, see, e.g., [49, 50].

In the case of full waveform inversion, the space of physical parameters is so large that in

most cases even these optimized algorithms can become computationally very expensive. The

scientific debate on whether the inclusion of second-order information makes up for the increase

in the computational cost by sufficiently improving the result or the convergence rate of the

reconstruction seems to be far from settled [40, 47, 48]. We will show that in the case of

unstructured spline functions, all the second-order derivatives needed for the computation of

the Hessian are available. Nevertheless, we will only use first-order information, i.e., the pure

gradient direction δk = −∇f(xk), in most of our simulations.

Finally, notice that for a general non-differentiable function f , the gradient δk = −∇f(xk)

can be replaced by any subgradient δk ∈ ∂f(xk). Second-order information, for example in the

form of sub-hessians, can be included in a somewhat more subtle way, see, e.g., [132] for the

formulation of quasi-Newton optimization over nonsmooth functions.

Once a descent direction δk has been selected, one simply has to select a step γ along δk
such that the Armijo-Wolfe conditions (2.34) are satisfied. Notice that (2.34b) requires the

computation of ∇f(xk + γδk), which is highly impractical for FWI since it would require a very

large number of direct and backward propagations per iteration. Fortunately, the Armijo-Wolfe

conditions (2.34) can be replaced by the equivalent conditions (see, e.g., [45])

f(xk) + (1− C)γδk · ∇f(xk) ≤ f(xk + γδk) ≤ f(xk) + Cγδk · ∇f(xk) (2.35)

for some constant 0 < C < 1, which are known as the Armijo-Goldstein conditions. The issue

with (2.35) is that they are satisfied by any sufficiently small step γ. In order to avoid this

pitfall, the selection of an appropriate step is usually done by backtracking, i.e., by starting with

a large step γ0 and decreasing it until the conditions (2.35) are met.

2.4 Discussion and further reading

We have presented in this section some of the most common discretization techniques for hy-

perbolic equations, both in time and space. For the time discretization, only the basic explicit

timestepping techniques that are followed in this work have been presented in any detail. No

detail of implicit or even hybrid implicit-explicit methods has been given. This is due to the fact

that time discretization is not one of the main focal points of this work. The literature on time

integration is of course very large, as this is a topic of real importance in all time-dependent

PDEs and also for statistical ensembles (for example, the leapfrog scheme is known as the Verlet

integrator in molecular dynamics). Nevertheless, the reader is referred to the classic texts of

numerical analysis and ODE integration such as [133, 134] for a more general overview.

One aspect that we have not covered here is local timestepping. In fact, thanks to the

freedom offered by the non-conforming bases of discontinuous Galerkin methods, one can avoid

a global bottleneck on the timestep by using a different timestep for every subdomain. Choosing

timesteps that are multiples of a common smallest value helps with synchronization. This

technique can be applied both with an explicit timestepping scheme [83, 135–137] and with an

implicit one [138, 139].
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Concerning finite volumes and finite differences, since these schemes are not the focus of our

work, we will only include here the reference [96], which is a standard text for the finite volumes

method applied to hyperbolic problems, and the relatively recent text [93] which presents a

modern and hands-on approach to finite difference methods.

Regarding the Galerkin method, we have presented here only the basic formulation and a

priori error analysis. Our objective is simply to pave the way for the formulation of the IPDG

method, that shares of course many traits with the standard Galerkin approach, and emphasize

the important role played by polynomials and polynomial-reproducing bases in the asymptotic

behavior of these methods via the classic estimates. The Galerkin approach underpins much of

modern numerical analysis, and for this reason we refer the reader to one of the many compre-

hensive books on the subject, such as, e.g., [140], for a more detailed treatment of the subject.

Furthermore, isogeometric analysis (IGA) is a relatively recent incarnation of FE methods based

on B-spline function bases, that we will treat in more detail in Chapter 3. For this technique,

we refer to the classic text [2].

Not many resources on the direct application of FE methods to hyperbolic equations can

be found, since these methods are usually better suited for self-adjoint operators; we cite here

[141]. A posteriori error analysis for FE methods, which we have skipped here, can be found in

many texts, including, e.g., the detailed and well-known monograph [142].

For the discontinuous Galerkin method, aside from the classical texts [105, 107, 143], we

can cite here the seminal papers [99, 100] that introduced the use of DG methods for neutron

transport problems, and [101], [144–147] that helped establish it as a prominent technique for

hyperbolic problems more in general. We would also like to refer the novice reader to [106], which

provides a very accessible introduction to DG methods for elliptic and hyperbolic problems.

Moving closer to the focus of this work, [108] contains the formulation of the symmetric interior

penalty Galerkin method (including a priori and some a posteriori error bounds) for the second

order wave equation on a mesh, which is very close to the formulation that we adopt here, the

only difference being the absorbing boundary conditions, the choice of more general domains

and the adoption of splines instead of Lagrange or other standard polynomial bases.

As mentioned in the text, adding a second flux term in (2.26), with the same sign as the first

one, leads to the Symmetric Interior Penalty (SIPG, or here simply IPDG) method. However,

one can also add a flux term with the opposite sign, obtaining a Nonsymmetric Interior Penalty

(NIPG) method [127, 148], or not add any new flux term at all, yielding the Incomplete Interior

Penalty (IIPG) method [149, 150]. These two variants have different flavors than the symmetric

version, and borrow the concept of upwind fluxes from classic finite volume schemes.

The wave equation can equivalently be formulated in the frequency domain, leading to the

standard Helmholtz equation. Even though the numerical advantage tied to the inversion of the

mass matrix is less important in this case, discontinuous Galerkin approaches can nonetheless

be exploited very efficiently in the frequency domain, for example through the Hybridizable

Discontinuous Galerkin framework. We refer the reader to [84, 151] for the forward problem

and to [40] for the inversion problem.

Concerning the inverse problem, some relevant references for the adaptive remeshing tech-

nique and the various Newton, quasi-Newton and line search methods have been given in the

main text of the last two subsections.
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3 | Piecewise polynomial

approximation and splines

[. . .] erano notizie discontinue, disarmoniche, inessenziali, dalle quali

non risultava il nesso tra le mie azioni, e una nuova azione non rius-

civa a spiegare o a correggere l’altra, cosicché esse restavano ad-

dizionate l’una all’altra, con segno positivo o negativo, come in un

lunghissimo polinomio che non è possibile ridurre a un’espressione

più semplice.

Italo Calvino, Le Cosmicomiche, Gli anni-luce (1965)

As we have explored in the previous chapter, error estimates for weak formulations based

on the (continuous or discontinuous) Galerkin method rely crucially on inequalities, such as

Jackson’s inequality, involving polynomials. Specifically, polynomial-reproducing bases are often

the starting point for the refinement of general a priori estimates, as shown in the previous

chapter, and are even more important in a posteriori estimates, where the choice of degrees

of freedom, and in particular the shape of the underlying discretization geometry, plays an

important role. In many regards, the very notion of order of approximation, expressed through

Jackson-type inequalities, relies on polynomial approximation.

Aside from the order of convergence, another important notion is that of uniform conver-

gence. In this regard, polynomials are universal, i.e., they are dense in the space of continuous

functions by the Stone-Weierstrass theorem [113]. Thus, polynomial functions of increasing de-

gree provide uniform convergence (i.e., convergence in the L∞ norm) for continuous solutions,

such as the pressure in the acoustic wave equation with piecewise-smooth coefficients. However,

if the choice is restricted to a subset of polynomials (e.g., the subset of interpolating polyno-

mials at a given, fixed set of points), the rate of uniform convergence, and even whether this

convergence is achieved at all, is all but guaranteed: successive approximations of a function,

even regular, may exhibit oscillations that increase with the order of the polynomial. This is

the well known Runge’s phenomenon [152] (see Figure 3.1).

Lastly, but not less importantly, polynomials are computationally efficient to evaluate numer-

ically, as they involve only a limited number of basic algebraic operations, and can be evaluated

to machine precision if required. Many specific bases of polynomials (such as Bernstein-Bézier

polynomials discussed below) possess efficient evaluation schemes capable of evaluating all the

polynomials in a basis while reusing many intermediate results. Another numerical advantage

61
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appears when computing superposition matrices such as the mass matrix (2.15) or the stiffness

matrix (2.16) of the previous section, for which there exist efficient quadrature rules that allow

the computation of these integrals via a weighted sum of the values of the polynomial at some

specific points.

For these reasons, the theory of discretized weak forms of PDEs, as formulated through

the Galerkin method, inevitably intersects with the theory of polynomial approximation. This

chapter is dedicated to a brief introduction to the main piecewise-polynomial bases used in

numerical analysis, with the goal of providing a quick overview of the subject, and also help

place into context the spaces of smooth piecewise polynomial functions, a.k.a. B-splines, which

are the main actors in isogeometric analysis [2] and in the remainder of this work. In the last

part of the chapter, we use the properties of B-spline bases to compute analytically the CFL

timestep condition for a one-dimensional infinite and homogeneous medium over cardinal B-

splines, showing analytically in this simplified setting a well-known advantage of these functions

for explicit timestepping.

3.1 Piecewise-polynomial approximations

The presentation of this chapter somehow follows the logic of the very complete text [153],

to which we refer for a very complete analysis of polynomial and spline interpolation, spline

properties and spline approximation theory. We strive to present the subject in a self-contained

manner, and we will detach ourselves from the reference text wherever needed to emphasize the

properties and present some additional considerations that are important in finite element and

isogeometric analysis, especially for the wave equation.

3.1.1 Nodal polynomials

One of the basic challenges that a Galerkin basis must overcome is the ability to interpolate

the values of the solution in the integration domain. Consider two points p1 and p2 in a vector

space V . The values of p ∈ V might be points in Euclidean space, representing the positions of

some locations of our simulation domain, or they can be values of variables such as pressure or

density. A simple linear interpolation of the two points can be obtained as

p(λ) := λp1 + (1− λ)p2 with 0 ≤ λ ≤ 1. (3.1)

As λ goes from 0 to 1, the point p(λ) traces out a segment between p1 and p2. Notice that, since

the two coefficients λ and 1 − λ are nonnegative and sum to one, the combination is convex.

Convexity of the interpolation is a very important property since it implies that the value of

the interpolant never surpasses the minimum or maximum value of the interpolated variables,

which generally leads to more stable numerical schemes, preventing the aforementioned Runge’s

phenomenon. The most general convex combination of n points pi can be defined as:

p(λ1, . . . , λn) :=

n∑
i=1

λipi with 0 ≤ λi ≤ 1 and

n∑
i=1

λi = 1,
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in which case the interpolating variable is confined inside the convex hull of the interpolated

variables.

We can generalize the linear interpolation (3.1) by changing the parameterization of the

interpolating segment. Let x ∈ [a1, a2] be the parametric space in R that we wish to map onto

the segment. The corresponding parametric segment is:

γ(x) =
a2 − x
a2 − a1

p1 +
x− a1

a2 − a1
p2. (3.2)

We can interpret this segment as a simple immersion of a 1-dimensional simplex (a segment)

γ : [a1, a2]→ V, with a constant Jacobian given by:

|dγ| =
∣∣∣∣ dγ

dx

∣∣∣∣ =
|p2 − p1|
a2 − a1

.

This point of view will become more useful in the next chapter. Suppose now that we wish to

interpolate three points p1, p2 and p3 ∈ V with a curve. Perhaps the simplest way to achieve

this is to take two linear interpolations γ1(x), γ2(x) between successive couples of points p1, p2

and p2, p3 (3.2), with corresponding parameters a1, a2 and a2, a3, and then perform another

linear interpolation between the two segments. The resulting curve reads:

γ(x) =
a3 − x
a3 − a1

γ1(x) +
x− a1

a3 − a1
γ2(x). (3.3)

It is easy to check that γ(a1) = γ1(a1) = p1 and γ(a3) = γ2(a3) = p3. Moreover:

γ(a2) =
a3 − a2

a3 − a1
γ1(a2) +

a2 − a1

a3 − a1
γ2(a2) =

a3 − a2 + a2 − a1

a3 − a1
p2 = p2.

Therefore, the curve that we have obtained is interpolating, i.e., it passes through the three given

points. It is instructive to compute explicitly the form of the three interpolation coefficients:

γ(x) =
(x− a2)(x− a3)

(a1 − a2)(a1 − a3)
p1 +

(x− a1)(x− a3)

(a2 − a1)(a2 − a3)
p2 +

(x− a1)(x− a2)

(a3 − a1)(a3 − a2)
p3. (3.4)

From this expression, it is easy to check that the curve is now a quadratic curve, whose

shape depends on the choice of the three parameters a1, a2 and a3. Notice however that the

interpolation is not convex, since for example the coefficient of p1 is negative for x ∈ [a2, a3].

This is the cause of Runge’s phenomenon when higher order interpolations are computed (see

Figure 3.1, right).

We can generalize the previous interpolation to k+1 points p1, . . . , pk+1 ∈ V , given the k+1

real parameters a1 < . . . < ak+1. The interpolation we obtain is of the form

γ(x) =

k+1∑
i=1

`i,k(x)pi,



64 CHAPTER 3. POLYNOMIAL APPROXIMATION

with the k + 1 functions (`i,k(x))k+1
i=1 given by the Lagrange polynomials,

`i,k(x) =
k+1∏
j=1
j 6=i

x− aj
ai − aj

.

It can be easily checked that the resulting polynomial interpolation γ(x) has degree k and it is in

fact the unique polynomial of degree k such that, given a set of distinct values (a1, . . . , ak+1) =: A,

i.e., a grid, satisfies γ(ai) = pi for k = 1, . . . , k + 1. Notice also that the logarithmic derivative

of `i,k(x) can be easily expressed,

`′i,k(x)

`i,k(x)
=

k+1∑
j=1
j 6=i

1

x− aj
.

One of the most important properties of Lagrange polynomials is that they are interpolating,

i.e., `i,k(aj) = δij . This means that, if we are given a function f(x) to interpolate over the grid

A, it is very easy to determine the coefficients of the Lagrange interpolation for any degree k,

f(x) =
k+1∑
i=1

f(ai)`i,k(x) +R(x), (3.5)

where the remainder can be bounded uniformly by

|R(x)| ≤ (ak+1 − a1)(k+1)

(k + 1)!
max

a1≤x≤ak+1

∣∣∣f (k+1)(x)
∣∣∣ . (3.6)

Plugging the constant function f(x) := 1 into (3.5), for which the remainder (3.6) is zero, shows

that
k+1∑
i=1

`i,k(x) = 1

for all x, i.e., the sum of the Lagrange polynomials is the constant polynomial equal to one.

Some low-degree Lagrange polynomials forming the Lagrange basis, as well as an example of

interpolation of a Ricker wavelet (1.6) by Lagrange polynomials, are shown in Figure 3.1.

We have seen that, for any given choice of function f and grid A, the Lagrange polynomial is

the unique degree-k polynomial interpolating f on a given set of points, q(ai) = f(pi). However,

the choice of the grid A is not determined a priori, and any other choice of distinct grid A′ with

a′1 < . . . < a′k+1 determines an interpolating polynomial. It is therefore legitimate to ask which

grid provides the best interpolation for the function f over the whole interval.

For simplicity, let the interpolation interval be Ω := [−1, 1], and let A ⊂ Ω be a grid contained

in the interval. Let f̂Ak be the Lagrange polynomial of degree k that interpolates f on A. It can

be proven that, if f ∈ C0(Ω),∥∥∥f − f̂Ak ∥∥∥∞ ≤ (1 + Λk(A))
∥∥f − f∥∥∞ ,
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Figure 3.1: (Left) Cubic Lagrange basis functions on [0, 1]. (Right) Interpolation of a Ricker
wavelet with Lagrange polynomials of order k = 4 (blue), 10 (green), 14 (red) over a uniform
grid. The Runge phenomenon is well visible near the endpoints of the interval.

where f is the best interpolating polynomial in Qk in the sense of the maximum norm ‖ · ‖∞ on

Ω, and the Lebesgue constant

Λk(A) = max
x∈Ω

k+1∑
i=1

∣∣`Ai,k(x)
∣∣

depends on the choice of the grid A. Intuitively, the more the polynomials `i,k oscillate, the less

uniform the approximation is. For a uniformly spaced grid, it can be proven that

Λunif
k = O

(
2k

k log k

)
for k →∞,

see, e.g., [154] and also [155] for an improved asymptotic expansion. Therefore, there are some

functions that cannot be interpolated uniformly with an equally spaced grid of parameters, since

the interpolation becomes exponentially worse as the interpolation degree increases.

In general, better Lebesgue constants can be achieved by choosing appropriate grids. One

common choice that gives generally good results is to place the nodes ai in correspondence with

the zeros of some family of orthogonal polynomials on Ω. Choosing the zeros of the Legendre

polynomial Lk+1(x) on the interpolation interval yields the so-called Gauss-Legendre nodes, for

which the Lebesgue constant only grows asymptotically as

ΛGL
k = O

(√
k
)

for k →∞,

see, e.g., [156], whereas choosing the zeros of the Chebyshev polynomials Tk+1(x) leads to

the Chebyshev-Gauss nodes, which achieve the best possible asymptotic uniform interpolation,

namely

ΛCG
k = O (log(k)) for k →∞,

see, e.g., [157].

There is however an important drawback with using unequally spaced grids A, which becomes
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relevant when solving the time-dependent wave equation. As we have seen in Chapter 2, given

the causality of the wave equation, when one computes the value of the solution for a given node

ai at time t+∆t, starting from the knowledge of the solution at a previous time t, one must take

into account the previous values at all the nodes that are able to influence the value of ai during

the timestep ∆t, namely, those at a distance of c∆t or less from ai. If this condition is not

satisfied, the construction of the new state at time t+∆t is missing some important information

and it is most likely not accurate. After selecting a time integration scheme, this leads directly

to a condition on the largest allowable time step ∆t. For a uniform grid, as the degree k of

the polynomial increases, the spacing between nodes in a given interval of length h scales like

h/k, and therefore the maximum allowable time step scales like ∆tmin ∼ h/k. However, zeros of

orthogonal polynomials, such as Legendre and Chebyshev polynomials tend to cluster together

close to the endpoints of the interval. In fact, if one defines ai = cos θi, then it can be proven that

for any weight function on the interval [−1, 1] bounded from zero, the spacing between nearby

zeros of the corresponding orthogonal polynomial of degree k satisfies [158, Theorem 6.11.1]

θi+1 − θi < C
log k

k

for some constant C. If the weight function is bounded on the closed interval, the finer result

[158, Equation 6.11.15]
C1

k
< θi+1 − θi ≤

C2

k

holds for some constants C1, C2. In other words, the zeros tend to cluster together near the ends

of the endpoints of the interval with a spacing that scales like h/k2. Consequently, the much

more stringent condition ∆tmin ∼ h/k2 must be imposed on the simulation time step, as dictated

by the CFL stability condition, see, e.g., [159]. This is a well-known scaling property of FE

simulations for hyperbolic systems, that is inherited also by discontinuous Galerkin simulations.

The zeros of the uniform, Gauss-Legendre and Chebyshev-Gauss grids are shown in Figure 3.2.

All these considerations can be transferred easily to the d-variate setting, d > 1. In fact,

Lagrange interpolation over a set of points (ai)
n
i=1 ⊂ Rd, n =

(
k+d
d

)
, can simply be obtained by

building the n× n Vandermonde matrix

V :=

1 (a1)I1 . . . (a1)Ik

...
...

. . .
...

1 (an)I1 . . . (an)Ik

 ,

where (x)Ir is a vector containing the
(
r+d
d

)
d-variate monomials of degree r, xi11 . . . x

id
d with

i1 + . . . + id = r. The coefficients C := (c1, . . . , cn) of the Lagrange polynomials are then

obtained simply by solving

V C = P,

where P = (p1, . . . , pn) are the n =
(
k+d
d

)
points to be interpolated.

Interpolation nodes for multivariate Lagrange polynomials can sometimes be obtained from

their one-dimensional counterparts. For example, Lagrange polynomials for parallelotopal cells

(e.g., rectangular or hexahedral) and their deformations can be obtained by simple tensor prod-
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uct of one-dimensional polynomials. For simplicial cells (e.g., triangles and tetrahedra), one can

obtain an interpolation grid by using a uniform subdivision for each of the d + 1 barycentric

coordinates λi, which parameterize the simplex and satisfy 0 ≤ λi ≤ 1 and
∑d+1

i=1 λi = 1. Al-

ternative interpolation points with better Lebesgue constants can be found, although this is far

from a trivial task, see, e.g., [160–164] and Figure 3.2. Mixed strategies can be employed for

intermediate elements such as rectangular pyramids or triangular prisms (also known as wedges).

In any case, the same trade-off between uniformity of the approximation (expressed by the

Lebesgue constant) and clustering of the nodes (which impacts the k-dependence of the timestep)

is present in all dimensions, see, e.g., [143, 165].

Figure 3.2: (Left) from top to bottom, uniform, Gauss-Legendre, Chebyshev-Gauss and Gauss-
Lobatto nodes on the interval for k = 4. Notice that nodes with better uniform approximation
properties tend to cluster together near the ends of the interval. (Right) Gauss nodes on a
triangle for k = 4 from [160] (left) and a set of Fekete points for k = 6 from [162] (right).

3.1.2 Gauss and Gauss-Lobatto quadratures, spectral elements

The quality and uniformity of the approximation is not the only consideration to be taken into

account when choosing the interpolation grid points. As seen in the previous section, discretiza-

tion schemes based on the Galerkin method lead to the computation of many superposition

integrals such as (2.15) and (2.16). The choice of basis has an impact on the cost of the compu-

tation of these matrices (i.e., the matrix assembly cost), and even more importantly on the form

of the resulting matrix. The shape of the Gramian matrix of the basis, i.e., the mass matrix

(2.15), is of particular relevance for explicit timestepping, since this matrix needs to be inverted

(or a pre-computed factorization reused) at each timestep.

Integrating polynomials over intervals in R can be achieved through the use of a very efficient

computational technique that goes under the name of Gauss quadrature. In fact, pick an open

finite interval Ω ⊂ R, and a measure µ on Ω. Let qk+1(x) be a polynomial of degree k + 1 (i.e.,

with nonzero coefficient of xk+1) that is orthogonal to Qr, r = 0, . . . , k, i.e.,∫
Ω
qk+1(x)g(x) dµ = 0

for all polynomials g(x) of degree strictly less than k + 1. Let AG := (ai)
k+1
i=1 be the roots of

qk+1, which must be all real, simple and lie inside Ω [158, Theorem 3.3.1]. One can divide any
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polynomial h(x) of degree s ≤ 2k+1 by qk+1(x), obtaining a quotient t(x) of degree s−k−1 ≤ k
and a remainder r(x) of degree less than k + 1. Thus, qk+1(x) is orthogonal to both t(x) and

r(x), and ∫
Ω
h(x) dµ =

∫
Ω
qk+1(x)t(x) + r(x) dµ =

∫
Ω
r(x) dµ.

Since r(x) has degree less than k + 1, there exists a set of real weights (wG
i )k+1

i=1 such that

∫
Ω
r(x) dµ =

k+1∑
i=1

wG
i r(ai),

with ai being the i-th root of qk+1(x). Since qk+1(ai) = 0,

r(ai) = r(ai) + qk+1(ai)t(ai) = h(ai).

We conclude finally that there exists a set of weights (wG
i )k+1

i=1 such that, for all polynomials

h(x) of degree at most 2k + 1,

∫
Ω
h(x) dµ =

k+1∑
i=1

wG
i h(ai),

which is known as the Gauss quadrature rule for intervals. The computation of the Gaussian

weights wG
i is straightforward once one selects a measure µ and determines a set of orthogonal

polynomials on (Ω, µ). For example, if Ω = [−1, 1] and µ = 1, the weights are given by [166]

wG
i =

2

(1− a2
i )q
′
k+1(ai)2

.

The orthonormal polynomials for the uniform measure µ = 1 are the well-known Legendre

polynomials Lk, and for a more general measure µ(x) = (1 − x)α(1 + x)β one obtains various

kinds of Jacobi polynomials, such as Chebyshev polynomials for α = β = 1/2.

If one chooses the Lagrange polynomials of degree k with the nodes placed at the zeros of

qk+1(x) as a discretization basis, then one immediately finds using the Gaussian quadrature rule

that the mass matrix, if the bulk modulus λ is constant over the interval, reduces to

Bij =
1

λ

∫
Ω
`Gi,k(x)`Gaj ,k(x) dµ =

1

λ

k∑
l=1

wl`
G
ai,k

(al)`
G
j,k(al) =

1

λ
wG
i δij , (3.7)

where `Gi,k is the Lagrange interpolant for the i-th node ai of AG. Since the calculation of the

superposition integral via quadratures is exact in this case, this means that the mass matrix is

diagonal. Notice that the quadrature rule can be applied since `Gai,k(x)`Gaj ,k(x) has degree 2k.

This fact is an immense computational advantage in view of the previous discussion. However,

one cannot realistically use the zeros of such orthogonal polynomials to formulate a proper

Galerkin scheme, since all the nodes are located inside Ω, and there is no node placed at the

boundaries of the simulation domain to use for the imposition of boundary conditions. The

problem is much more prominent for discontinuous Galerkin applications, where one needs nodes
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at the boundary of each element in order to compute fluxes and penalty terms.

A solution to this problem consists in modifying the set of quadrature points to explicitly

include the endpoints of the interval. Let us denote by a2, . . . , ak the k−1 roots of the polynomial

q′k(x), where qk(x) is orthogonal to all polynomials of degree k − 1 or less on (Ω, µ), and let a1

and ak+1 be the endpoints of Ω. The union of these nodes, AGL := (ai)
k+1
i=1 , is known as the set

of Gauss-Lobatto quadrature points (see Figure 3.2). Notice that, given a polynomial g(x),∫
Ω
g(x)q′k(x) dµ = g(x)qk(x)|x=1

x=−1 −
∫

Ω
g′(x)qk(x) dµ,

and the second integral is zero whenever g(x) has degree k or less. The same argument as in the

case of the Gaussian quadrature rules can then be applied to conclude that the Gauss-Lobatto

quadrature is exact if the integrand has a degree of 2k − 1 or less, instead of 2k + 1 as in the

case of pure Gaussian quadrature rules. The weights can be determined as before once Ω and µ

are specified. Again in the case Ω = [−1, 1] and µ = 1, one finds [166]

wGL
1 = wGL

k+1 =
2

k(k + 1)
, wGL

i =
2

k(k + 1)qk(ai)2
.

Notice that the Lagrange polynomials (`i,k)
k+1
i=1 of degree k over these points are all zero

on the boundary, except for the first and last, which are nonzero only on the initial and final

endpoints of the interval, respectively. This is the ideal configuration for the computation of

fluxes, penalty terms and boundary conditions. However, since only the integral of polynomials

up to degree 2k − 1 is exact on the grid AGL, the integration of `GL
i,k (x)`GL

j,k (x) via (3.7) is not

exact in general, as the product has degree 2k. Nonetheless, one can easily evaluate the error in

this approximation. We follow here the arguments of [167].

First, notice that the polynomials (qj(x))kj=0 forming the orthonormal basis (Ω, µ) are still

orthogonal if the integrals are replaced by Gauss-Lobatto quadratures, the only difference being

that qk(x) is no longer normalized to 1. In fact, in the integrals∫
Ω
qi(x)qj(x) dµ,

the integrands are all polynomials of degree strictly less than 2k, unless i = j = k, and therefore

they can be computed exactly using the quadrature rule. Let us measure the lack of normaliza-

tion of qk(x) using

1

β
:=

k+1∑
i=1

wGL
i qk(ai)

2, (3.8)

which is always well defined since qk cannot be zero at any of the locations ai. One can express

`GL
i,k (x) as

`GL
i,k (x) =

k∑
j=0

αijqj(x)
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with the coefficients

αij =
k+1∑
r=1

wGL
r `GL

i,k (ar)qj(ar) = wGL
i qj(ai) for j < k,

αik = βwGL
i qk(ai).

Using this expression, one can rewrite (3.7) as

λMij =

∫
Ω
`GL
i,k (x)`GL

j,k (x) dµ =
k∑
r=0

k∑
s=0

αirαjs

∫
Ω
qr(x)qs(x) dµ =

k∑
r=0

k∑
s=0

αirαjsδrs,

=

k∑
r=0

αirαjr =

k∑
r=0

αirw
GL
j qr(aj) + (β − 1)αikw

GL
j qk(aj),

= wGL
j `GL

i,k (aj) + β(β − 1)wGL
i wGL

j qk(ai)qk(aj),

= wGL
i δij + β(β − 1)wGL

i wGL
j qk(ai)qk(aj),

=: λMGL
ij + λRij ,

where

MGL
ij :=

1

λ
wGL
i δij

is the (diagonal) Gauss-Lobatto approximation for the mass matrix and

Rij :=
1

λ
β(β − 1)wGL

i wGL
j qk(ai)qk(aj)

is the difference between the mass matrix and its approximation. Notice that Rij is a dyadic

matrix, since it can be expressed as the external product uvT , using the vectors ui := β(β −
1)/λwGL

i qk(ai) and vi := wGL
i qk(ai). Thus, the mass matrix and its Gauss-Lobatto approxi-

mation are related by a simple rank-one update [167]. For a finite-element method based on a

mesh with N intervals, the preceding argument is still valid inside each mesh element, and the

two matrices differ by N rank-one updates, one for every element of the mesh.

One can also evaluate the error in approximating the inverse of the mass matrix M−1 by(
MGL

)−1
, using the Sherman-Morrison formula [120], as

M−1 =
(
MGL

)−1 −
(
MGL

)−1
uvT

(
MGL

)−1

1 + vT (MGL)−1 u
.

One has ((
MGL

)−1
uvT

(
MGL

)−1
)
ij

= λβ(β − 1)qk(ai)qk(aj)

and

vT
(
MGL

)−1
u = β(β − 1)

k+1∑
i=1

wGL
i qk(ai)

2 = β − 1,
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cf. (3.8). Thus, (
M−1

)
ij

=
λ

wGL
i

δij − λ(β − 1)qk(ai)qk(aj).

Notice that the correction term −λ(β − 1)qk(ai)qk(aj) is also a dyadic matrix, which can be

expressed as wzT with wi := −λ(β − 1)qk(ai) and zi := qk(ai). The fact that the polynomial qk
is orthogonal to all the polynomials of degree strictly less than k is an extremely important fact

for the numerical properties of the approximation. In fact, suppose that h(x) is a polynomial

of degree less than k. Computing the weak form of h(x) by projecting on the i-th test function

yields a vector H with components

(H)i :=

∫
Ω
h(x)`GL

i,k (x) dµ =

k+1∑
j=1

wGL
j h(aj)`

GL
i,k (aj) = wGL

i h(ai).

But then, when M−1 is applied to this vector,

(M−1H)i = ((MGL)−1H)i − λ(β − 1)

k+1∑
j=1

qk(ai)qk(aj)w
GL
j h(aj) = ((MGL)−1H)i,

due to the above-mentioned orthogonality property of qk. Therefore, the correction term to the

inverse mass matrix is orthogonal to the subspace generated by the weak form of all polynomials

of degree k or less. In other words, the degree of error introduced by this approximation is of

the same order as the overall degree of approximation of the discrete problem. Thus, the order

of convergence of the method is not affected.

The resulting numerical scheme is known as the spectral element method (SEM), and has

been employed for the seismic wave propagation problem since the seminal paper [168].

In dimension d > 1, a suitable basis that makes the mass matrix diagonal is obtained by

simple tensor product of d copies of one-dimensional SEM basis functions. A consequence of this

choice is that only tensor-product cells (i.e., parallelotopes such as rectangles or hexahedra) are

allowed in a SEM mesh, which can be a severe limitation when dealing with complex geometries.

For this reason, some recent approaches such as [169] have tried to couple the SEM method with a

method based on an unstructured mesh, such as the DG method. The resulting scheme achieves

a good performance in subregions of simple geometry, which are meshed via hexahedra and

where SEM is applied, while retaining the geometric flexibility of an unstructured mesh in zones

of complex geometry.

3.1.3 Bernstein polynomials

Let us return for a moment to the three-point interpolation scheme (3.3). The logic behind

this approximation scheme consisted in an iterated linear interpolation, first between couples

of adjacent points, then between couples of adjacent interpolating curves, and so on until a

single interpolating curve is obtained. This scheme is always interpolating, and therefore bound

to produce the Lagrange polynomials, due to their uniqueness. As pointed out, however, the

interpolation is not convex, leading to a lack of uniformity in the approximation, quantified by

the Lebesgue constant.
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The question then naturally arises: would it be possible to obtain an approximation of the

k+1 points p1, . . . , pk+1 that is always convex? Notice that this approximation must necessarily

be non-interpolating, and we are merely requesting that the curve passes close to the input

points, exchanging nodal interpolation for uniform and convex approximation.

Looking at equation (3.3), the reason why the resulting interpolating polynomial is not

convex appears rather clearly. In fact, the global interpolation between the two segments γ1(x)

and γ2(x) is convex for all parameters x ∈ [a1, a3], but γ1(x) itself is only convex for x ∈ [a1, a2],

and γ2(x) is only convex for x ∈ [a2, a3]. Thus, there is no value x at which all three interpolations

are convex. Armed with this observation, and following the logic of [153], we can obtain a convex

combination over the whole interval [a1, a3] by first re-parameterizing the two segments γ1(x)

and γ2(x) over the same interval [a1, a3], and only then taking the linear combination. The

resulting quadratic interpolation is

γB(x) =
(x− a3)2

(a3 − a1)2
p1 + 2

(a3 − x)(x− a1)

(a3 − a1)2
p2 +

(x− a1)2

(a3 − a1)2
p3, (3.9)

which is the (quadratic) Bézier curve between the three points p1, p2 and p3. Comparing

(3.9) with (3.4), it is clear that, in the case of the Bézier curve, the three coefficients are

positive for every x ∈ [a1, a3], and they sum to one (i.e., they form a partition of unity).

Thus, the approximation is convex, and the curve is completely contained in the convex hull

conv
(
(ai, pi)

3
i=1

)
of the three original points. It is easy to check that γB(a1) = p1 and γB(a3) =

p2, so that the curve interpolates the endpoints. However, in general γB(a2) 6= p2, so the

intermediate point is not interpolated. For this reason, the points p1, p2 and p3 are not called

interpolation points but control variables, and the corresponding parameter space points are not

called nodes but knots.

It is easy to extend the rule used in (3.9) to higher order. We obtain a polynomial construc-

tion, the Bézier curve

γB(x) =
k+1∑
i=1

bi,k(x)pi,

where the Bézier coefficients (bi,k)
k+1
i=1 are given by

bi,k(x) =
1

(ak+1 − a1)k

(
k

i− 1

)
(x− a1)i−1(ak+1 − x)k+1−i. (3.10)

These coefficients, when reparameterized over the interval [0, 1] are also known as Bernstein

polynomials,

bi,k(t) =

(
k

i− 1

)
ti−1(1− t)k+1−i. (3.11)

Bernstein polynomials are another popular choice for basis polynomials in Galerkin finite

element analysis. Notice that, since both Bernstein polynomials and Lagrange polynomials

span the same space at every degree k, the set of solutions that can be approximated by any of

the two polynomial bases at a given degree is exactly the same. For this reason, there exists a

simple invertible linear operator that allows to convert between the expansion coefficients in one

basis and the other. However, in the case of Lagrange polynomials, the expansion coefficients of
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a function also represent the interpolated values of the function at the given parameter values

(nodal approximation), while the coefficients of Bernstein polynomials do not have such a simple

meaning (modal approximation).

Bernstein polynomial bases possess many nice computational properties, including some

forms of optimal stability, that we will not discuss here. We refer instead the reader to one

of the specialized texts (see for example [170]). One thing worth mentioning here, however, is

that Bernstein polynomials can be computed at any degree efficiently and robustly using De

Casteljau’s algorithm ([171]),

γ
(i,0)
B (x) := pi,

γ
(i,j)
B (x) :=

ak+1 − x
ak+1 − a1

γ
(i,j−1)
B (x) +

x− a1

ak+1 − a1
γ

(i+1,j−1)
B (x), (3.12)

for i = 1, . . . , k + 1, with γB(x) := γ
(1,k)
B (x).

One of the most interesting aspects of Bernstein polynomials is that the interpolation is easy

to do as long as we have a parameter t ∈ [0, 1] that describes our position in the interpolation

interval. It is then very easy to write bivariate, or generally multivariate, Bernstein polynomials.

To see how this is possible, consider again the Bernstein coefficients given in (3.11). We can create

some barycentric coordinates λ1, λ2 in the interval [0, 1] by simply defining λ1 := t, λ2 := 1 − t.
The coefficients of (3.11) are then simply the binomial coefficients of

(λ1 + λ2)k.

By exploiting this construction, we can create multivariate Bernstein polynomials defined on any

shape on which barycentric coordinates are available. This is especially useful for triangles and

tetrahedra, but can be done in more general settings such as general polygons (see for example

[172]). If we have a set of barycentric coordinates (λi)
n
i=1 satisfying 0 ≤ λi ≤ 1 and

∑n
i=1 λi = 1,

the corresponding Bernstein polynomials are simply given by the multinomial expansion of(
n∑
i=1

λi

)k
. (3.13)

For this reason, Bernstein polynomials are natural candidates for polynomial basis functions

defined on unstructured meshes.

Another important property of Bernstein polynomials can be easily derived from (3.10),

namely

b′i,k(x) = k (bi−1,k−1(x)− bi,k−1(x)) ,

with the understanding that b−1,k(x) = 0. This formula, which allows to write the derivative

of a Bernstein polynomial of order k as a sum of two Bernstein polynomials of order k − 1, is

particularly useful to compute the stiffness matrix (2.16) and other matrices arising in Galerkin

methods efficiently. We will see that this important feature is shared by B-spline functions, as

well as unstructured splines. We will also see that Bernstein-Bézier polynomials over simplices

(and more generally the corresponding DG and FEM spaces on a mesh) can be obtained as
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special cases of unstructured spline functions and their spaces.

Finally, notice that although Bernstein-Bézier polynomials and Lagrange polynomials span

the same polynomial space, the numerical stability of the resulting superposition matrices (e.g.,

the mass matrix (2.15) and stiffness matrix (2.16)) can be very different.

We show in Figure 3.3 an example of Bernstein basis on the interval and on a triangle.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

b1,3
b2,3 b3,3

b4,3

Figure 3.3: Bernstein polynomials of degree k = 3 over the segment [0, 1] (left) and for k = 2
over the standard unit triangle (right).

3.1.4 B-splines

So far, we have assumed that the domain Ω is subdivided into a series of cells (intervals for d = 1),

each endowed with an independent polynomials space, built with Lagrange or Bernstein-Bézier

polynomials. The resulting space is generally non-conforming across the cell boundaries, as no

smoothness is imposed there. FEM spaces generally restore C0 regularity by performing suitable

linear combinations of basis functions. However, low-regularity spaces might be non-conforming

for many physical problems involving higher space derivatives. Furthermore, the shape of basis

functions is in this case very heterogeneous, including completely smooth functions (with zero

trace on the boundary of elements) and non-smooth functions peaked on the boundaries. This

can lead to an increase in numerical noise and generally worse numerical properties of the system

matrices [2].

Obtaining smooth approximations over n+1 of points using the previous techniques requires

the construction of a polynomial of degree n, clearly infeasible for real applications. This can

be avoided by slightly modifying our interpolation rules in order to glue together smoothly

multiple Bézier curves, obtaining a Bézier spline. This can be achieved by slightly modifying

De Casteljau’s recursive construction rule (3.12) as follows. Let us start with a grid of n+ k+ 1

points A = (a1, . . . , an+k+1), a1 ≤ . . . ≤ an+k+1. This vector is known as the knot vector of the

spline. As in the case of Bézier curves, we start with n+ k piecewise constant functions:

Ni,0(x) =

{
1 if ai ≤ x < ai+1,

0 otherwise.
(3.14)

This defines the degree-0 basis functions. Note that the interval ai ≤ x < ai+1 is open on the

right. Starting from (3.14), the higher order basis functions can be obtained by the recursion

formula

Ni,k(x) =
x− ai
ai+k − ai

Ni,k−1(x) +
ai+k+1 − x
ai+k+1 − ai+1

Ni+1,k−1(x). (3.15)
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The resulting basis functions are called B-splines, and the recursion formula is known as

the Cox-De Boor algorithm (see [173, 174]). Comparing (3.15) to (3.12), the most important

difference is that the interpolation at order k is performed only on k + 1 consecutive knots.

Consequently, a basis function Ni,k(x) of order k is nonzero only on k+1 consecutive knot spans

(locality). Since the next basis function Ni+1,k(x) is shifted to the right by one knot span, this

means that, if we want to have n basis functions (corresponding to n control points), we need a

knot vector of size n+ k + 1. In this case, we can form our B-spline curve simply by combining

the basis functions with the control points,

γN (x) =
n∑
i=1

Ni,k(x)pi.

The locality property of the basis ensures that the modification of a single control point has only

a local effect on the curve, changing its value in only k + 1 knot spans. Finite element analysis

based on B-spline functions is called isogeometric analysis (IGA) [2].

Another property worth noting is that the recursion formula (3.15) can be evaluated even

when a series of m consecutive knots are coincident, i.e., ai = ai+1 = . . . = ai+m−1, provided

that the corresponding indeterminate fractions (x − ai)/(ai+k − ai) are taken to be identically

zero when the denominator is zero. As we will see, this is an important feature that allows the

modification of the local regularity of the basis functions.

The recurrence relation (3.15) also allows us to compute the derivatives of any B-spline

function in terms of lower-order B-splines. We have:

N ′i,k(x) =
k

ai+k − ai
Ni,k−1(x)− k

ai+k+1 − ai+1
Ni+1,k−1(x). (3.16)

Repeating the derivation, we obtain a formula for the higher derivatives in terms of lower

degree functions:

N
(r)
i,k (x) =

k!

(k − r)!

r∑
j=0

αr,jNi+j,k−r(x),

with the coefficients given by:

α0,0 = 1,

αr,0 =
αr−1,0

ai+k−r+1 − ai
,

αr,j =
αr−1,j − αr−1,j−1

ai+k+j−r+1 − ai+j
for j = 1, . . . , r − 1,

αr,r =
−αr−1,r−1

ai+k+1 − ai+r
.

The proofs of these statements are by induction on k using (3.15), and can be found in many

specialized texts such as [175].

We will now prove a series of properties of B-splines that are important for finite element

and isogeometric analysis. The proofs can be found in many texts (see, e.g., [153, 175], but are

given here since they are a good introduction to the recursive properties of B-spline functions
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that will be useful in Chapter 4.

Theorem 3.1.1. Let Ni,k(x), i = 1, . . . , n be a set of basis functions defined by the recursion

formulas (3.14) and (3.15) starting from a knot vector x = (a1, . . . , an+k+1), a1 ≤ . . . ≤ ai+k+1.

The functions Ni,k(x) have the following properties:

1. Local support: the basis function Ni,k(x) is only nonzero for x ∈ [ai, ai+k+1), that is, only

in k+1 consecutive knot spans. This also means that, for each x ∈ [a1, an+k+1), only k+1

basis functions are supported at x;

2. Bandwidth: the support of a basis function Ni,k(x) superposes with that of at most 2k + 1

other basis functions;

3. Positivity: all basis functions are nonnegative, Ni,k(x) ≥ 0 for all x;

4. Partition of unity: for every degree k,
∑n

i=1Ni,k(x) = 1 for all x ∈ [ak, an+1). Thus, if

the first and last knot values are repeated k times, the partition of unit is true everywhere;

5. Regularity: every basis function Ni,k(x) has regularity C∞ between any two knots, and

regularity Ck−r across every knot which is repeated r times;

6. Interpolation: if a knot aj is repeated k times, i.e., aj = . . . = aj+k−1, then the basis

functions satisfy Ni,k(aj) = δi,j, and the corresponding control point is exactly interpolated.

Proof. Property 1 follows immediately from the recursion relation (3.15), since supp(Ni,0) =

[ai, ai+1) and at each degree k, the support grows on the right by 1 knot, i.e., (supp(Ni,k) =

supp(Ni,k−1) ∪ supp(Ni+1,k−1)).

Property 2 follows from property 1 and the fact that supp(Ni+m,k) is shifted by m knot

spans to the right with respect to supp(Ni,k). Thus, the support of Ni,k superposes at most

with that of itself, k functions to the left and k functions to the right.

Property 3 follows from (3.15) and the fact that the two factors (x− ai)/(ai+k − ai), (resp.

(ai+k+1−x)/(ai+k+1−ai+1)) are only negative for x 6∈ [ai, ai+k) (resp. x 6∈ [ai+1, ai+k+1)) where

the corresponding basis functions Ni,k−1 (resp. Ni+1,k−1) are zero (property 1).

Partition of unity (property 4) is clearly true for degree 0 basis functions, which are just

the characteristic functions of their respective (disjoint) supports. Assume now that it is true

for all degrees r ≤ k − 1. Consider a non-zero knot span [aj , aj+1) that has at least k knot

spans to the right and to the left. According to property 1, only the basis functions Ni,k(x) with

i = j − k, . . . , j are nonzero on this span. We have:

j∑
i=j−k

Ni,k(x) =

j∑
i=j−k

(
x− ai
ai+k − ai

Ni,k−1(x) +
ai+k+1 − x
ai+k+1 − ai+1

Ni+1,k−1(x)

)
,

=
x− aj−k
aj − aj−k

Nj−k,k−1(x)

+

j∑
i=j−k+1

x− ai + ai+k − x
ai+k − ai

Ni,k−1(x) +
aj+k+1 − x

aj+k+1 − aj+1
Nj+1,k−1(x).
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Now, the functions Nj−k,k−1(x) and Nj+1,k−1(x) are both zero on the knot span [aj , aj+1), and

by the induction hypothesis,
∑j

i=j−k+1Ni,k−1(x) = 1, proving the property.

Let us prove now the interpolation property 6. For k = 0, the property is clearly true,

since Ni,0(aj) = δij by (3.14). Note the importance of the open interval in the definition.

Assume now that the property is true for all r ≤ k − 1. Consider k consecutive repeated knots

aj = . . . = aj+k−1. The value aj = aj+k−1 belongs to the knot span [aj+k−1, aj+k), which

means that the only functions that can be nonzero at aj , according to property 1, are the k+ 1

functions Ni,k with i = j − 1, . . . , j + k − 1. The function Ni,k(aj) is given by a sum of Ni,k−1

and Ni+1,k−1 by (3.15). Now, by induction hypothesis, we have that Ni,k−1(aj) = δi,j , since the

node aj is repeated k > k − 1 times. Consequently, the only nonzero order k function is

Nj,k(aj) =
aj − aj−1

aj−1+k − aj−1
= 1,

proving the property.

Finally, we prove property 5. In the proof of property 6, we saw that, if a knot is repeated k

times, then the only function that is nonzero at the knot is Nj−1,k(aj). If the knot is repeated

once more, the support of this function reduces to zero, and the basis functions are no longer

continuous at the knot. Imagine now that a knot is repeated only r times. By using (3.1.4), we

see that the m-th derivative of Ni,k(aj) involves the basis functions Nj,k−m, which are continuous

for m = r but discontinuous for m = r + 1 by the previous argument.

We will see in Chapter 4 that Properties 1, 3, 4, 6 are valid also for unstructured splines,

with minor modifications, while Property 2 is not valid (although the bandwidth is still limited),

and 5 is valid in a more general sense, i.e., when points become affinely dependent.

When the first and last points are repeated k + 1 times each, the knot vector is called open

or clamped. For example, for a cubic spline (k = 3), the following is an open knot vector:

{0, 0, 0, 0, 1/3, 2/3, 1, 1, 1, 1}.

By Properties 5 and 6, the functions then interpolate the boundary points, analogously to the

Gauss-Lobatto nodes seen above, allowing the imposition of boundary conditions. Working

with open knots also means that the partition of unit property (Property 4) is valid everywhere.

Thus, applications of B-splines in numerical analysis use almost exclusively open knot vectors.

An example of a B-spline basis over an open knot vector is shown in Figure 3.4.

An interesting special case is that of a knot vector containing only the values 0 and 1,

repeated k + 1 times each. By plugging this special knot vector into the recursion rule (3.15),

it is easy to see that this basis is nothing else than the Bernstein polynomial basis that we saw

in the last section. Consequently, the Bernstein polynomials can be obtained as a special case

from B-spline bases, proving that the latter are indeed more general.

Some other properties of B-splines become particularly relevant for their use in numerical

analysis. For example, the pointwise positivity of these functions means that the mass matrix

(2.15) has all positive entries, making mass lumping and preconditioning strategies easier. On

the other hand, positivity also means that the mass matrix cannot be made diagonal by a

suitable choice of knots, since the superposition integral between any two non-disjoint functions
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a1
. . .
a4

a5 a6
a7

a8 a9 a10
a11
a12

a13 a14 a15
. . .
a18

N1,3

N2,3 N3,3

N4,3 N5,3
N6,3 N7,3 N8,3

N9,3

N10,3 N11,3 N12,3 N13,3

N14,3

Figure 3.4: Example of a B-spline basis (k = 3) over a clamped knot vector with some repetitions.

is necessarily positive and thus nonzero. A linear combination of more than one B-spline function

is able to to produce both signs, but usually has a larger support than any of its summands.

Consequently, the generalization of the spectral element method to B-spline functions is not

straightforward. It is however possible to recover a diagonal mass matrix by introducing a dual

basis different to the primal one, see, e.g., [111, 176], a direction that we will not explore in this

work.

Spline functions are convex combinations of the control points. This means that the spline

curve is less oscillating than the polygonal line connecting the points (also known as the control

net). B-splines are thus variation diminishing, and do not exhibit the overshoots and oscillations

typical of Runge’s phenomenon that are encountered with interpolating polynomials. These

properties conspire to make B-splines a well-conditioned basis, less prone to numerical noise [2].

We refer the reader in particular to an illustrative example contained in [2, Chapter 5], where

the high energy vibration modes of a one-dimensional rod are studied, showing that the splitting

between acoustic-branch and optical-branch vibration modes is an artifact induced by the choice

of basis functions with heterogeneous shape. This artifact disappears when B-spline functions

are used.

The possibility to locally change the regularity of the basis by repeating some knot vectors

is also particularly interesting for many applications, including seismic wave propagation, as it

allows to capture the reduced regularity of the solution in correspondence with sharp reflectors.

Moreover, this opens the possibility of recovering discontinuities in the model starting from

smooth physical parameters if the knot positions are allowed to evolve during the inversion

process (see Chapter 7).

Finally, B-splines possess some efficient computational properties. First of all, the partition of

unity property (Property 4) can be extended to a more general polynomial-reproducing property,

since the monomial xk can be expressed as

xk =

n+k+1∑
i=1

σ(ai+1, . . . , ai+k)Ni,k(x), (3.17)

where σ(x1, . . . , xk) is the totally symmetric polynomial in k variables, normalized such that

σ(x, . . . , x) = xk. Notice that only the internal knots (ai+1, . . . , ai+k) of the spline function Ni,k
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k = 0 Ni,0

k = 1 Ni−1,1 Ni,1

k = 2 Ni−2,2 Ni−1,2 Ni,2

... . . . . . . . . . . . .

k Ni−k,k . . . . . . . . . Ni,k

Figure 3.5: Recurrence algorithm used to evaluate all the B-spline functions in a basis supported
at a given point x [178, Chapter X, Algorithm 8]. The algorithm starts from the only spline
function Ni,0 of degree 0 supported at x, and computes the value of all the splines supported at
x up to a given degree k. Each arrow corresponds to an application of (3.15).

appear as arguments of σ. The expression (3.17) is also known as Marsden’s identity [177].

Suppose now that we want to compute the system matrices such as (2.15) or (2.16) in prac-

tice. Integration can be performed either by numerical quadratures, or as a linear combination

of (known) integrals of monomials. However, constructing these matrices element by element

has O(N2) complexity, where N is the number of basis functions. Consequently, some algo-

rithms that allow to evaluate all the B-spline functions supported on a given point x have been

developed, most notably [178, Chapter X, Algorithm 8], which underpins virtually all practical

applications of B-splines. The scheme is based on the recursion formula (3.15), and is pre-

sented in Figure 3.5. Using these algorithms, one only needs to loop over all knot spans once,

significantly reducing the matrix assembly complexity.

Extending these properties and algorithms to multivariate unstructured splines is a crucial

prerequisite for their use in numerical analysis. We give a contribution towards this goal in

Chapter 5.

3.2 CFL condition with cardinal B-splines

In this section, we introduce a very important machinery that will allow us to compute various

properties of B-spline functions, such as their Fourier transforms and superposition integrals,

that are essential in their use as basis functions for analysis. These formulas will also help us to

extend the definition of B-splines to unstructured domains in higher dimensions.

We will often specialize our equations to the case of cardinal B-splines. A cardinal B-spline

basis is defined on R using a knot vector without repetition (and thus maximal regularity), with

uniformly spaced knots:

A = hZ,

where h is the (constant) knot span, equivalent to the element size in standard finite element

analysis. Cardinal B-spline functions of order k are denoted with Bi,k, i ∈ Z. From the symmetry

of the knot vector, it is clear that all cardinal B-splines of a given order are just shifted copies

of each other, i.e., Bi+j,k(x) = Bi,k(x − jh). This property makes a lot of expressions simpler
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and opens up the possibility of using discrete Fourier transforms to explicitly compute many of

the properties of this basis. The cardinal B-spline basis is shown in Figure 3.6.

Figure 3.6: The cardinal B-spline basis, i.e., equally spaced and infinite, for k = 3.

3.2.1 B-splines and divided differences

We wish to introduce in this section two very important concepts that are extremely useful in

a deeper understanding of univariate B-splines. The first is the truncated power function xk+,

defined as

xk+ =

{
xk if x > 0,

0 if x ≤ 0,

and the second is the divided difference of a real function f : R 7→ R over a set of increasing real

knots (ai, . . . , ai+k), defined recursively as follows:

Definition 3.2.1. Let f : R 7→ R be a real function, and let {ai, . . . , ai+k} be a sequence of

increasing real numbers. The divided difference operator [ai, . . . , ai+p]f is defined recursively as

follows:

[ai]f := f(ai), (3.18)

[ai, . . . , ai+k]f :=
[ai+1, . . . , ai+k]f − [ai, . . . , ai+k−1]f

ai+k − ai
.

The number of intervals k in the sequence of points is called the order of the divided difference.

It is clear from the definition that the divided difference operator is a linear functional. For

example:

[a1]f = f(a1),

[a1, a2]f =
f(a2)− f(a1)

a2 − a1
,

[a1, a2, a3]f =
f(a1)

(a1 − a2)(a1 − a3)
+

f(a2)

(a2 − a1)(a2 − a3)
+

f(a3)

(a3 − a1)(a3 − a2)
.

Divided differences appear, among other things, in the calculation of the Newton polynomial

interpolation method and in the calculation of finite difference stencils. In fact, the divided

difference of order k of a function f represent an estimate of the k-th derivative of f , as it will

be made precise in Theorem 3.2.4.
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We try to give here a self-contained presentation of divided differences, and we do not venture

into a more general theory, for which the interested reader can find many sources, starting from

the more classical articles from De Boor [179] and Whittaker and Robinson [180] to modern

texts in numerical analysis such as [181].

We can get an explicit, expanded form for divided differences as follows:

Lemma 3.2.2. Let [ai, . . . ai+k]f be the divided difference of f over a set of values. Then:

[ai, . . . ai+k]f =

k∑
j=0

f(ai+j)∏k
r=0
r 6=j

(ai+j − ai+r)
. (3.19)

Proof. By induction over k. The formula is trivially true for k = 0, since the divided difference

is simply [ai]f = f(ai), and in (3.19), only the term j = 0 appears in the sum, and no term

appears in the product in the denominator. Assume now that (3.19) is true for k − 1. We have

from the definition (3.18):

[ai, . . . , ai+k]f =
[ai+1, . . . , ai+k]f − [ai, . . . , ai+k−1]f

ai+k − ai
,

=
1

ai+k − ai

 k∑
j=1

f(ai+j)∏k
r=1
r 6=j

(ai+j − ai+r)
−
k−1∑
j=0

f(ai+j)∏k−1
r=0
r 6=j

(ai+j − ai+r)

 ,

=
1

ai+k − ai

k−1∑
j=1

f(ai+j)(ai+k − ai)∏k
r=0
r 6=j

(ai+j − ai+r)


+

1

ai+k − ai

(
f(ai+k)∏k−1

r=1(ai+k − ai+r)
− f(ai)∏k−1

r=1(ai − ai+r)

)
,

=

k∑
j=0

f(ai+j)∏k
r=0
r 6=j

(ai+j − ai+r)
,

where in the last equation we have combined the three terms into a single sum for j between 0

and k. Since we obtain (3.19) at order k, we have proven the Lemma.

This formula takes a particularly simple form if the points on which the divided difference

is computed are equally spaced.

Corollary 3.2.3. Let (ai, . . . , ai+k) be equally spaced points, i.e., an − am = (n−m)h. Then:

[ih, . . . , (i+ k)h]f =
(−1)k

k!hk

k∑
j=0

(−1)j
(
k

j

)
f(ai+j). (3.20)

Proof. The denominator in (3.19) contains a product on all differences (ai+j − ai+r) = (j − r)h
for r = 0, . . . , k, r 6= j. The differences j−r thus take the values j, j−1, . . . , 1 for r = 0, . . . , j−1

and −1, . . . , j − k for r = j + 1, . . . , k, where the last k − j terms have a negative sign. Thus,



82 CHAPTER 3. POLYNOMIAL APPROXIMATION

the denominator in (3.19) reduces to

hk(−1)k−jj!(k − j)! = hk(−1)k−jk!/

(
k

j

)
,

proving the formula.

We can now prove the following theorem, which characterizes divided differences as estima-

tors of the derivatives of a function.

Theorem 3.2.4 (Mean value). Let A := {ai, . . . , ai+k} be (k + 1) be distinct real numbers, let

I be the open interval I := (min (A),max (A)) and let f be a function of class Ck in I. Then

there exists a point x∗ ∈ I such that

[ai, . . . , ai+k]f =
f (k)(x∗)

k!
. (3.21)

Proof. Let `(x) be the interpolating Lagrange polynomial of f(x) computed on the interpolation

points x,

`(x) =

k∑
j=0

 k∏
r=0
r 6=j

x− ai+r
ai+j − ai+r

 f(ai+j).

The (constant) k-th derivative of `(x) reads:

`(k) = k!
k∑
j=0

f(ai+j)∏k
r=0
r 6=j

(ai+j − ai+r)
, (3.22)

= k![ai, . . . , ai+k]f.

We have used the explicit form given by (3.19). On the other hand, if we consider the remainder

of the interpolation R(x) := f(x)− `(x), we notice that R(ai+j) = 0 for every one of the k + 1

interpolation points ai+j , j = 0, . . . , k. By Rolle’s theorem, then, R′(x) has a zero in between

any two consecutive interpolation points, i.e., it has k zeros. Iterating this reasoning, we realize

that R(k)(x) must have (at least) one zero x∗ ∈ I, for which f (k)(x∗) = `(k). Plugging this value

in (3.22) yields the claim.

The definition of divided difference (3.18) bears a striking resemblance to the Cox-De Boor

recursion formula (3.15) that defines the B-spline basis. It is thus not surprising that B-splines

can be defined easily in terms of divided differences, see for example [174]. In fact, De Boor

used this definition to compute many important properties of B-splines, including the integrals

of products of B-spline basis functions in which we are interested (see [182]). We will specialize

here those results to the case of cardinal (i.e., equally spaced knots) basis functions.

The B-spline basis functions of degree zero defined in (3.14) are just the characteristic func-

tions of the knot spans [ai, ai+1). Consequently, they can be rewritten as the difference of two
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truncated power functions of degree 0, which are just Heaviside functions, as follows:

Ni,0(x) = (ai+1 − x)0
+ − (ai − x)0

+ = [ai+1 : y](y − x)0
+ − [ai : y](y − x)0

+,

= (ai+1 − ai)[ai, ai+1 : y](y − x)0
+,

where the notation [ai, . . . , ai+k : y] means that the divided difference must be applied to the

variable y in the following expression. This pattern extends to higher orders.

Theorem 3.2.5. The B-splines basis functions can be expressed as divided differences of the

truncated power function as follows:

Ni,k(x) = (ai+k+1 − ai)[ai, . . . , ai+k+1 : y](y − x)k+. (3.23)

Proof. We have already proven the theorem for k = 0. We proceed by induction on k. From

(3.15), we obtain

Ni,k(x) =
x− ai
ai+k − ai

Ni,k−1(x) +
ai+k+1 − x
ai+k+1 − ai+1

Ni+1,k−1(x),

=
(ai+k+1 − x)(ai+k − ai)Ni+1,k−1(x)− (ai − x)(ai+k+1 − ai+1)Ni,k−1(x)

(ai+k − ai)(ai+k+1 − ai+1)
,

=
[
(ai+k+1 − x)[ai+1, . . . , ai+k+1 : y](y − x)k−1

+ − (ai − x)[ai, . . . , ai+k : y](y − x)k−1
+

]
,

= (ai+k+1 − ai)[ai, . . . , ai+k+1 : y](y − x)k+.

We have used the recursive definition of (3.18) on the function (y − x)k+, the Leibniz rule and

the simple property (y − x)(y − x)k−1
+ = (y − x)k+

We can use this expression to derive an explicit formula for the integral of the product

of two B-spline basis functions, as done in [182]. This formula is used in [183] to provide an

efficient numerical scheme for the calculation of such integrals. However, our goal is be instead

to explicitly compute the integral for cardinal basis functions. But first, we have to prove the

following Lemma.

Lemma 3.2.6. We can compute the divided differences of a Ck+1 function f as

[ai, . . . , ai+k+1]f =
1

(ai+k+1 − ai)k!

∫ ∞
−∞

Ni,k(y)f (k+1)(y) dy. (3.24)

Proof. The Taylor expansion of f in the interval [ai, ai+k+1) reads:

f(x) =

k∑
j=0

f (j)(ai)

j!
(x− ai)j +

∫ x

ai

f (k+1)(y)

k!
(x− y)k dy, (3.25)

where the second term in (3.25) is the integral remainder R(x) of the Taylor expansion. We can
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replace the power in the remainder by a truncated power and extend the domain of integration,

R(x) =

∫ ai+k+1

ai

f (k+1)(y)

k!
(x− y)p+ dy.

If we apply the divided difference operator [ai, . . . , ai+k+1 : x] to this expression, the first term

in (3.25) vanishes since the divided difference operator of degree k + 1 annihilates polynomials

of order j ≤ k by the mean value theorem (3.21). The remainder reads

[ai, . . . , ai+k+1]f =

∫ ai+k+1

ai

[ai, . . . , ai+k+1 : x](x− y)k+
f (k+1)(y)

k!
dy,

=
1

(ai+k+1 − ai)k!

∫ ai+k+1

ai

Ni,k(y)f (k+1)(y) dy.

Finally, we can extend the integration limits to (−∞,∞) because the function Ni,k(y) is zero

for y 6∈ [ai, ai+k+1].

This is known as the Peano form of the divided difference (see, e.g., [179, 184, 185]). Inci-

dentally, by comparing (3.24) and (3.21), we see that this Lemma gives us a way to compute

the value of the internal point x∗ of Theorem 3.2.4: it is just the weighted average of f (k+1)(x),

with a weight proportional to Ni,k(x). This Lemma also allows us to compute various superpo-

sition integrals of B-spline basis functions, including their Fourier transform. We have the two

following important corollaries:

Corollary 3.2.7. Let NA
i,k(x), NB

j,r(x) be two B-spline basis functions defined over the knot

vectors A = (ai, . . . , ai+k+1) and B = (bj , . . . , bj+r+1) respectively. The superposition integral

T k,ri,j (A,B) :=

∫ ∞
−∞

NA
i,k(x)NB

j,r(x) dx

is given by

T k,ri,j (A,B) = Ck,ri,j (A,B)[ai, . . . , ai+k+1 : x][bj , . . . , bj+r+1 : y](y − x)k+r+1
+ , (3.26)

with the factor Ck,ri,j (A,B) defined as

Ck,ri,j (A,B) := (−1)k+1 (ai+k+1 − ai)(bj+r+1 − bj)k!r!

(k + r + 1)!
.

Proof. We take f(x) = (bj+r+1 − bj)[bj , . . . , bj+r+1 : y](y − x)k+r+1
+ , which is a function of class

C∞ in the variable x if x 6= bi for all i, and class Ck+r+1 otherwise. The (k+ 1)-th derivative of

f is:

f (k+1)(x) = (−1)k+1 (k + r + 1)!

r!
(bj+r+1 − bj)[bj , . . . , bj+r+1 : y](y − x)r+,

= (−1)k+1 (k + r + 1)!

r!
Nj,r(x).
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Plugging the above defined f into (3.24) proves the corollary.

Corollary 3.2.8. Let Ni,k(x) be a B-spline basis function. Then, its Fourier transform reads:

Ñi,k(ν) =
(ai+k+1 − ai)k!

(2πiν)k+1

k+1∑
j=0

e2πiνai+j∏k+1
r=0
r 6=j

(ai+j − ai+r)
.

Proof. We have

Ñi,k(ν) =

∫ ∞
−∞

Ni,k(x)e2πiνx dx.

We can use (3.24) by setting f(x) = e2πiνx, obtaining:

Ñi,k(ν) = (ai+k+1 − ai)k![ai, . . . , ai+k+1 : x]
e2πiνx

(2πiν)k+1
.

Finally, by using the expanded form (3.19) for the divided difference, we obtain the claim.

This result was already obtained in [186]. For a cardinal B-spline basis function, we can use

(3.19) for the knot vector hZ, obtaining:

B̃i,k(ν) =
1

(2πiνh)k+1
e2πiν(ih)

k+1∑
j=0

(
k + 1

j

)
e2πiν(jh)(−1)k+1−j , (3.27)

= e2πiν(ih)

(
e2πiνh − 1

2πiνh

)k+1

,

= eπiν(2i+k+1)h

(
sinπνh

πνh

)k+1

.

Corollary 3.26 gives us a very useful explicit form for the superposition integral of two B-splines

basis functions, and can already be found for example in [183]. The formula for the Fourier

transform (3.27) can be already be found in [186, 187]. It is not surprising that the Fourier

transform of a cardinal B-spline basis function is a power of the function sinc(x) := sin(x)/x. In

fact, this result could have been obtained by noting that the cardinal B-spline functions can be

expressed as repeated convolutions of the characteristic function, Bi,k = χ([ih, (i + 1)h])∗(n+1).

Note that the Fourier transform is of course real if i = −(k + 1)/2, i.e., if the basis function

is centred around the origin and thus even. Since the Fourier transform is a unitary operator,

we can compute the scalar product of two B-spline basis functions in Fourier space (Parseval’s

identity), ∫ ∞
−∞

Bi,k(x)Bj,r(x) dx =

∫ ∞
−∞

eπiν(2(i−j)+k−r)h
(

sinπνh

πνh

)k+r+2

dν,

= hBi,k+r+1((j + r + 1)h) = hBj,k+r+1((i+ k + 1)h).

From the definition, it is clear that the superposition integral is zero if i > j + r + 1, or if

j > i+ k+ 1, which is obvious since Bi,k is supported on [i, i+ k+ 1]h and Bj,r is supported on
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[j, j + r + 1]h. We will be interested in the special case k = r,∫ ∞
−∞

Bi,k(x)Bj,k(x) dx = hBi,2k+1((j + k + 1)h) = hBj,2k+1((i+ k + 1)h). (3.28)

Finally, in order to derive the stiffness matrix, we can use (3.16) to express the derivative of

a B-spline basis function as a combination of B-spline basis functions of a lower order. For the

cardinal basis,

B′i,k(x) =
1

h
(Bi,k−1(x)−Bi+1,k−1(x)) . (3.29)

Consequently, we also have:∫ ∞
−∞

B′i,k(x)B′j,k(x) dx =
1

h2

∫ ∞
−∞

(Bi,k−1(x)−Bi+1,k−1) (Bj,k−1(x)−Bj+1,k−1) dx, (3.30)

=
1

h
(2Bi,2k−1((j + k)h)−Bi+1,2k−1((j + k)h)

−Bi−1,2k−1((j + k + 1)h)) ,

=
(
B′i,2k((j + k)h)−B′i−1,2k((j + k)h)

)
= hB′′i,2k+1((j + k + 1)h).

3.2.2 Spectral properties of the mass and stiffness matrices

Let us now consider a one-dimensional homogeneous domain, and let us compute the stability

conditions

λmin(M−1K) > 0,

∆t2 <
4

λmax(M−1K)
, (3.31)

for the LF2 (i.e., order-2 leapfrog) time integration of the acoustic wave equation over the basis

of cardinal B-splines. Note that all eigenvalues of M−1K must be real since both matrices are

symmetric.

The superposition integrals entering the definition of M (2.15) and K (2.16) have been

obtained in the previous section, namely,

Mij = hBi,2k+1((j + k + 1)h) = Mji,

Kij = −hB′′i,2k+1((j + k + 1)h) = Kji.

Notice that we can compute explicitly the matrix entries of M and K. For M , one can combine

(3.28) with (3.23) and (3.20), obtaining

Mij =
h

(2k + 1)!

k−|i−j|∑
r=0

(
2k + 2

r

)
(−1)r(k + 1− |i− j| − r)2k+1,

= h
A(2k + 1, k − |i− j|)

(2k + 1)!
,
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where A(n,m) is the (n,m)-th Eulerian number, which corresponds to the number of permuta-

tions of n elements wherem couples of elements exchange their relative order. In this formula and

the next, the Eulerian numbers must be set to zero when m is out of bounds, i.e., A(n,m) := 0

for m < 0 and m ≥ n. This relationship between B-splines and Eulerian numbers has been

noticed before, see for example [188].

The entries of the stiffness matrix K can similarly be computed explicitly, either applying

(3.29) twice to the previous result, or by combining (3.30) with the second derivative with respect

to x of (3.23), and again using (3.20). One finds

Kij =
1

h(2k − 1)!

k−|i−j|∑
r=0

(
2k + 2

r

)
(−1)r(k + 1− |i− j| − r)2k−1,

=
A(2k − 1, k − |i− j|)− 2A(2k − 1, k − 1− |i− j|) +A(2k − 1, k − 2− |i− j|)

h(2k − 1)!
.

Let us now consider a simple uniform, periodic domain of length L, discretized using a knot

vector that decomposes the domain into N elements of size h := L/N . All the B-spline basis

functions of a given order are symmetric about their midpoint and are shifted copies of each

other. Consequently, the matrix entries i, j only depend on the difference |i− j|, which means

that both the mass matrix and the stiffness matrix are symmetric circulant matrices, with 2k+1

non-zero terms in every row and column. A circulant matrix is a matrix where the row j + 1

is a shifted copy of the first row by j positions to the right. If we denote the first row by

(c0, c1, . . . , cN−1), the eigenvalues of such a matrix are expressed as

λj =
N−1∑
r=0

cre
2πijr/N ,

with corresponding eigenvectors

ej =
1√
N

(1, e2πij/N , . . . , e2πij(N−1)/N ).

For symmetric circulant matrices, one has additionally cN−i = ci.

We can thus compute all the eigenvalues and eigenvectors of the mass and stiffness matrices

by using the Poisson summation formula,

∞∑
r=−∞

f(rh)e2πirt =

∞∑
r=−∞

f̃((t+ r)/h).

After defining αj := j/N , we can compute:

λMj = h
k∑

r=−k
B−k,2k+1(rh)e2πirαj ,

= h
∞∑

r=−∞
B−k,2k+1(rh)e2πirαj ,
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= h

∞∑
r=−∞

B̃−k,2k+1((αj + r)/h).

Using the expression (3.27) for the Fourier transform of Bi,k, we obtain

λMj = h

∞∑
r=−∞

(
sinπ(αj + r)

π(αj + r)

)2k+2

,

= h

(
sinπαj
π

)2k+2 ∞∑
r=−∞

(
1

(αj + r)

)2k+2

,

= h

(
sinπαj
π

)2k+2
(

1

(αj)2k+2
+

∞∑
r=1

1

(αj + r)2k+2
+

∞∑
r=1

1

(−αj + r)2k+2

)
,

= h

(
sinπαj
π

)2k+2
[ ∞∑
r=0

(
1

(αj + r)2k+2
+

1

(1− αj + r)2k+2

)]
,

= h

(
sinπαj
π

)2k+2

(ζH(αj , 2k + 2) + ζH(1− αj , 2k + 2)) ,

= h

(
sinπαj
π

)2k+2( 1

(αj)2k+2
+

1

(1− αj)2k+2
+ ζH(1 + αj , 2k + 2) + ζH(2− αj , 2k + 2)

)
,

where ζH(z, s) :=
∑∞

r=0 1/(r+ z)s denotes the Hurwitz zeta function. The symmetry of λj with

respect to the exchange αj ↔ (1− αj) is evident. In the last expression, we have made explicit

the finite limits of the expression for αj → 0 and αj → 1 by extracting the respective poles from

the zeta functions.

The above expression is clearly decreasing for 0 ≤ αj ≤ 1/2, since the zeta functions de-

crease more quickly than the two inverse powers. Consequently, the minimum and maximum

eigenvalues are attained, respectively, for j = N/2, i.e., αj = 1/2 and j = 0, i.e., αj = 0:

λMmin =
2h

π2k+2
ζH(

1

2
, 2k + 2),

=
2h

π2k+2
(22k+2 − 1)ζ(2k + 2),

λMmax = h.

We have used here the shift property ζH(a+1, s)+1/as = ζH(a, s) and the identity ζH(1/2, s) =

(2s−1)ζ(s), where ζ(s) is the Riemann zeta function. By using the bounds 1 < ζ(2k+2) ≤ π2/6

and 22k+1 < 22k+2 − 1 < 22k+2, valid for all integers k ≥ 0, we can constrain

C1h

(
4

π2

)k
≤ λMmin ≤ C2h

(
4

π2

)k
,

with the constants C1 = 4/π2 and C2 = 4/3. Note that, for the mass matrix, this implies that
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the condition number κ(M) := λMmax/λ
M
min is bounded by

C−1
2

(
π2

4

)k
≤ κ(M) ≤ C−1

1

(
π2

4

)k
.

This is a tighter constraint than the one given for more general B-splines in [189], which in one

dimension would correspond to κ(M) ∼ 4k. This is undoubtedly due to the particularly simple

and well-conditioned form of the cardinal B-splines.

A similar calculation can be performed for the stiffness matrix,

λKj = −1

h

k∑
r=−k

B′′−k,2k+1(kh)e2πirαj ,

=
1

h

∞∑
r=−∞

(2π)2(αj + r)2B̃−k,2k+1((αj + r)/h),

=
4

h

(sinπαj)
2k+2

(π)2k
(ζH(αj , 2k) + ζH(1− αj , 2k)) ,

=
4

h

(sinπαj)
2k+2

(π)2k

(
1

(αj)2k
+

1

(1− αj)2k
+ ζH(1 + αj , 2k) + ζH(2− αj , 2k)

)
.

The minimum eigenvalue is obtained for αj = 0, with λKmin = 0. This is not surprising, since the

periodic boundary conditions that we have chosen allow non-zero constant functions, which are

annihilated by derivatives. The maximum eigenvalue can be located by setting the derivative of

the above expression to zero. This gives two locations α±j , whose value can be found numerically

by solving the equation:

tanπα−j = π
(k + 1)

k

ζH(α−j , 2k) + ζH(1− α−j , 2k)

ζH(α−j , 2k + 1)− ζH(1− α−j , 2k + 1)
,

with other value given by α+
j := 1− α−j . In the special case k = 0, only one maximum is found

for α+
j = α−j = 1/2. In all cases, we can bound the eigenvalues of K from above by noticing that

λKj = 4/h2(sinπαj)
2λMj (k − 1), and remembering that λMmax = h is independent of k. Thus:

λKmin = 0,

λKmax ≤
4

h
.

Finally, the matrices M and K are diagonalized by the same discrete Fourier transform

defined above. Consequently, the eigenvalues of M−1K := T can be obtained simply as the

pointwise ratio of the eigenvalues of K and M . We have

λTj =
(2π)2

h2

ζH(αj , 2k) + ζH(1− αj , 2k)

ζH(αj , 2k + 2) + ζH(1− αj , 2k + 2)
.

Again, the minimum eigenvalue is obtained for αj = 0, with λTmin = 0. The numerator grows

more rapidly than the denominator for 0 ≤ αj ≤ 1/2, so that the maximum is again located at
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αj = 1/2. We obtain finally

λTmin = 0,

λTmax =
(2π)2

h2

22k − 1

22k+2 − 1

ζ(2k)

ζ(2k + 2)
,

from which one can easily extract the following bounds and asymptotic behavior,

π2

h2
≤ λTmax ≤

12

h2
for k ≥ 1,

lim
k→∞

λTmax =
π2

h2
.

This means that the CFL condition can be bounded by a constant, dependent only on h and

not on k. For the leapfrog timestepping scheme, (3.31) becomes

∆t <
h√
3
. (3.32)

It should be strongly emphasized that, when increasing the polynomial order of a Lagrange

basis, new nodes (degrees of freedom) are added to the interior of the elements. Consequently,

the minimum wavelength that a Lagrange basis of order k is capable of resolving scales like

ĥ ∼ h/k, with the equality if we choose equally spaced nodes. This is in contrast with B-spline

basis functions, that can only resolve a minimum wavelength h at all orders k, since no new

knots are added to the knot vector. Consequently, it is misguided to compare the CFL condition

(3.32) directly to the CFL condition of a FEM scheme of the same order, since the meaning

of the spacing h is not the same. In fact, the spatial resolution of the B-spline functions for a

fixed knot vector does not change with the degree k, whereas the spatial resolution of a FEM

basis scales like 1/k. Therefore, the correct way to compare the two values is to decrease, in the

case of B-splines, the size of the knot vector by a factor k as the order k increases. With this

modification, the CFL condition (3.32) becomes

∆t <
h√
3k
.

This still represents a gain of a factor k in the denominator with respect to FEM schemes,

making B-splines advantageous for their use in an explicit time integration scheme. In Figure 3.7

we show the computed CFL timestep stability limit as a function of k for the periodic 1D domain

with c = 1, h = 1 and a second-order central difference leapfrog scheme. We compare it with

the maximum timestep over the same configuration for the SEM, FEM (Lagrange or Bernstein-

Bézier basis) methods and the Bernstein-Bézier DG method with three different penalty terms,

α, 2α and 4α, where α is the minimum value that ensures coercivity (see [89]). Notice the 1/k

behavior of B-spline bases, contrasted with the 1/k2 trend of other methods. In the same figure,

we also show a plot of the relative error of the solution to the acoustic wave equation with a

sinusoidal source in the same infinite homogeneous model. The solutions are compared at a

fixed distance from the source, for multiple mesh sizes h and multiple numbers of degrees of
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freedom, i.e., size of the mass and stiffness matrices. The convergence rate 1/hk is evident. At

the bottom of the figure, we show the same comparison, but between the IGA (B-spline basis)

and DG methods. For the DG method, we have chosen a penalization 2α. Notice that, despite

a generally higher error for the IGA method, the order of convergence is the same. Moreover,

B-spline functions have a higher efficiency per degree of freedom, achieving the same precision

as the DG method with many less degrees of freedom per unit length.

Overall, the cardinal B-spline bases provide an advantage especially for higher orders over

practically all other methods except finite differences. The similarity of the B-spline CFL con-

dition with that of finite differences is not completely surprising, since the large stencil, implicit

in the divided difference formula (3.26), bears some similarities with the stencils used in finite

difference methods.

3.3 Discussion and further reading

The trade-off between the uniformity of the approximation and the spacing of the grid points

(and thus conditioning of the problem matrices) constituted the leitmotif of the previous section.

We refer the reader to [159] for some interesting discussions on this topic.

Concerning the spectral element method, the direct application of the SEM scheme to sim-

plicial cells requires finding the simplicial equivalent of the Gauss-Lobatto quadrature points.

This problem can be equivalently formulated as the problem of finding a distribution of point

charges that minimizes a certain electrostatic potential, see, e.g., [190]. Generally, such problems

are called Fekete problems, from the name of the mathematician who first proposed one of them

[191]. Unfortunately, these are considered as intrinsically hard problems, as evidenced by the

fact that Smale decided to include one of them, namely the Fekete problem on the sphere, as the

7th item of his list of challenging mathematical problems for the 21st century [192]. Thus, as of

today, the spectral element approach is generally limited to tensor-product bases. Nonetheless,

efficient quadrature rules for simplices have been proposed, see, e.g., [160, 162–164] and Figure

3.2.

The work [169] is dedicated to the coupling of SEM with a method based on an unstructured

mesh, such as the DG method. The resulting scheme achieves a good performance in subregions

of simple geometry, which are meshed using hexahedra and where SEM is applied, while retain-

ing the geometric flexibility of an unstructured mesh in zones of complex geometry. Spectral

elements are not the only approximation method used to simplify the inversion of the mass

matrix. We cite here the mass lumping technique, see, e.g., [161], and the use of weight-adjusted

mass matrices, see, e.g., [193].

The use of B-splines as basis functions for the Galerkin method has spawned the field of

isogeometric analysis, for which we refer to [2]. Due to the discussed smoothness properties

of B-splines, this method is particularly well-suited for physical systems including higher space

derivatives, such as for example the Cahn-Hillard equation [194] in multiphase materials, the

polyharmonic behavior of thin plates found in Reissner-Mindling plate theory [195, 196], or the

Willmore flow of differential geometry [197]. Some of these applications are discussed in [2] and

the many references therein.

Dedicated quadratures for B-spline functions and NURBS (Non-Uniform Rational B-Splines)
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Figure 3.7: (Top) the timestep ∆tCFL as a function of polynomial degree k for an infinite 1D
medium with ρ = c = 1 and h = 1, for SEM, FEM, IGA, and the DG method with penalty
terms, α (min), 2α (mid) and 4α (max), where α is the minimum value ensuring coercivity.
(Middle) relative error of the solution of the acoustic wave equation with a sinusoidal source, as
a function of the mesh size h and the number of degrees of freedom per unit length. (Bottom)
same comparison, but between IGA and DG. For the DG method, the penalization is 2α.
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have also been explored, based on special collocation points and the theory of orthogonal poly-

nomials, see, e.g., [198–201].

Finally, for the CFL condition in DG and FEM method, one can refer for example to [3,

159]. We also wish to point out an interesting comparison between the spectral properties of

the SEM and IGA (B-spline) methods, contained in [202].
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4 | Simplex spline functions

Such is our way of thinking–we find beauty not in the thing itself

but in the patterns of shadows, the light and the darkness, that one

thing against another creates. [. . .] Were it not for shadows, there

would be no beauty.

Jun’ichirō Tanizaki, In Praise of Shadows (1933)

Bernstein polynomials and B-splines have originally been developed as versatile tools for

modelling and design, capable of reproducing many of the most common shapes, both natural

and artificial, within a unified, natural and advantageous framework. When introducing these

objects in Chapter 3, we have chosen to follow this historical point of view, which usually begins

by assuming some recursive definition, often more or less justified by empirical interpolation

mechanisms, from which one then proceeds to derive all the relevant properties of these bases.

This is also the approach followed by most introductory texts, both modern and classical (see,

e.g., [2, 175]). However, this style of presentation tends to hide some important structure

that underlies the complex and beautiful mathematics of B-splines, and makes some of their

most important properties, such as regularity and polynomial reproduction, appear somewhat

mysteriously from an apparently ad-hoc, unrelated definition. Moreover, the axiomatic form

of the fundamental recursion relation appears quite rigid and it is unclear how it could be

modified while preserving some of the properties of B-spines, discouraging the development of

generalizations.

In this chapter, we give a more natural-looking definition of B-splines (and, as a consequence,

also Bernstein polynomials) that lays bare some of the simplicity and naturalness of these objects,

and helps shed some light on their connections to other fields of mathematics. We discuss some

of these connections in the last section. This presentation style allows us to unify some results

and points of view that can be found in the literature, but whose connection to one another

and to B-splines is sometimes a little weak and indirect. Crucially, this approach allows us

to construct a framework for unstructured multivariate B-splines and their use as a geometric

tool for numerical analysis. We derive some more or less known numerical properties of a

family of unstructured splines called simplex splines, which will be pivotal in the construction

of unstructured spline spaces in Chapter 5. Furthermore, some important equations relating

B-splines that arise naturally in this formulation can be used to formulate a satisfactory set of

degrees of freedom for seismic inversion. Some generalizations, which become natural in this

language, are also be briefly discussed. Finally, in the last section, we give some useful references

95
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which can be used as a starting point to explore the tantalizing connections of unstructured

splines with other branches of mathematics and physics.

4.1 B-splines as shadows of simplices

Soon after the introduction of B-spline functions via the Cox-De Boor recurrence relations

(3.14) and (3.15), a curious connection with high-dimensional simplices was found by Curry and

Schoenberg [185].

Theorem 4.1.1 (Curry and Schoenberg). Let Σk+1 be a (k + 1)-dimensional simplex, i.e., the

convex hull of k+ 2 affinely independent points (p1, . . . , pk+2) in Rk+1, and let µ : Rk+1 → R be

the projection on the first coordinate. For a given x ∈ R, define the shadow of Σk+1 at x as the

intersection of the fiber of the projection at x and the simplex, i.e., σx := µ−1(x) ∩ Σk+1. Let

M(x | p1, . . . , pk+2) := vol(σx)/ vol(Σk+1) (4.1)

be the function that associates to every point x ∈ R the normalized shadow of the simplex at

x. Then, M is proportional to a B-spline basis function of degree k with knots ai = µ(pi),

i = 1, . . . , k + 2, and satisfies the normalization condition:∫
R
M(x | p1, . . . , pk+2) dx = 1. (4.2)

Proof. The result is well-known, and proofs can be found in the cited papers and in [203, Chap-

ter 18], to which we refer for a more in-depth reading. However, we provide here a constructive

proof, as it is instructive to see this geometric connection directly.

For k = 0, the simplex Σ1 reduces to a segment and µ is the identity. The shadow of the

simplex is simply the characteristic function of the segment, which corresponds to the B-spline

basis function of degree zero defined by (3.14). Normalization is obtained by dividing by the

segment length vol(Σ1).

Consider now a simplex Σk+1 embedded in Rk+1, and order its vertices so that the corre-

sponding projections ai := µ(pi) are ordered. The edge p1pk+2 connecting the two vertices with

the smallest and largest projections must belong to the simplex since every couple of vertices

in a simplex is connected. Consider a real value x ∈ R. If x 6∈ [a1, ak+2], then σx is empty

and M(x | p1, . . . , pk+2) = 0, which is in accordance with the recursion formula (3.15) evalu-

ated outside the convex hull of the spline knots. If x ∈ [a1, ak+2], then σx contains at least a

point on the edge p1pk+2, which we will denote by x̂. We can split the simplex Σk+1 into two

disjoint simplices Σk+1
1 and Σk+1

2 defined respectively as the convex hulls of the sets of points

(x̂, p2, . . . , pk+2) and (p1, . . . , pk+1, x̂). To see why this is true, notice that we can take any point

ŷ in the interior of Σk+1 and connect it to every vertex, thus obtaining a triangulation of the

original simplex into k + 2 disjoint sub-simplices. In the limit where ŷ lies on the edge p1pp+2,

the volumes of the k simplices containing all three points ŷ, p1 and pk+1 degenerate to zero. If

we now denote by σ1
x and σ2

x the intersections µ−1(x) ∩ Σk+1
1 and µ−1(x) ∩ Σk+1

2 respectively,
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the following relations hold,

vol(Σk+1) = vol(Σk+1
1 ) + vol(Σk+1

2 ), vol(σx) = vol(σ1
x) + vol(σ2

x),

from which we obtain

vol(σx)

vol(Σk+1)
=

vol(σ1
x)

vol(Σk+1
1 )

vol(Σk+1
1 )

vol(Σk+1)
+

vol(σ2
x)

vol(Σk+1
2 )

vol(Σk+1
2 )

vol(Σk+1)
. (4.3)

The ratio vol(Σk+1
1 )/ vol(Σk+1) must depend linearly on x, since the volume of Σk+1

1 can be

written as a product vol(Bk
1 )hx/(k + 1) of the volume of the base simplex Bk

1 , defined as the

convex hull of (p2, . . . , pk+2), times the height hx of the simplex, which is just the difference

x̂−pk+2 projected onto the normal to Bk
1 . Since this ratio is 0 for x = ak+2 and 1 for x = a1, we

simply have vol(Σk+1
1 )/ vol(Σk+1) = (ak+2 − x)/(ak+2 − a1). Similarly, vol(Σk+1

2 )/ vol(Σk+1) =

(x− a1)/(ak+2 − a1).

Let us now consider the ratio vol(σ1
x)/ vol(Σk+1

1 ). Notice that σ1
x is itself a k-dimensional

simplex, since it is obtained by slicing a (k+1)-dimensional simplex with a plane passing through

one of its vertices, namely x̂. Its volume can therefore be expressed as

vol(σ1
x) =

1

k
vol(β1

x)h̃x, (4.4)

where β1
x = µ−1(x) ∩ Bk

1 is the base of σ1
x and the height h̃x is the distance between x̂ and

the (k− 1)-dimensional hyperplane containing β1
x. Let ρ be the affine shear transformation that

preserves the fibers of µ, leaves σ1
x unchanged and transforms the base Bk

1 into ρ(Bk
1 ), orthogonal

to the height h̃x. We have that ρ(β1
x) = β1

x, ρ(x̂) = x̂ and

vol(ρ(Σk+1
1 )) =

1

k + 1
h̃x vol(ρ(Bk

1 )) = vol(Σk+1
1 ), (4.5)

since shear transformations are volume-preserving. Dividing (4.4) by (4.5) we finally obtain

vol(σ1
x)

vol(Σk+1
1 )

=
k + 1

k

vol(β1
x)

vol(ρ(Bk
1 ))

.

Since µ−1(x) ∩ Bk
1 ⊂ σ1

x, then µ−1(x) ∩ ρ(Bk
1 ) = µ−1(x) ∩ Bk

1 = β1
x, and the second member of

4.1 is proportional to a lower-dimensional M function:

vol(σ1
x)

vol(Σk+1
1 )

=
k + 1

k
M(x | p̃2, . . . , p̃k+2), (4.6)

where p̃i is just ρ(pi), seen as a k-dimensional point after identifying the hyperplane containing

Bk
1 with Rk. Notice that µ(p̃i) = µ(pi) = ai, so the knot values are preserved.

The same process can be repeated for the other ratio vol(σ2
x)/ vol(Σk+1

2 ). Substituting into

(4.6), one obtains

k

k + 1
M(x | p1, . . . , pk+2) =

x− a1

ak+2 − a1
M(x | p̃1, . . . , p̃k+1) +

ak+2 − x
ak+2 − a1

M(x | p̃2, . . . , p̃k+2).
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We can recognize the Cox-De Boor recursion formula (3.15) after relating the unnormalized and

normalized B-spline basis functions as follows:

N(x | a1, . . . , an) =
an − a1

n− 1
M(x | p1, . . . , pn),

thus proving that the M functions are proportional to B-spline basis functions.

Finally, the normalization condition (4.2) is a simple consequence of the definition given in

(4.1) and Fubini’s theorem, since the integrand is always nonnegative.

In other words, a B-spline basis function of degree k can be naturally seen as the one-

dimensional shadow of a (k + 1)-dimensional simplex. We show in Figure 4.1 the geometric

intuition behind Theorem 4.1.1.

x

p1

p2

p3

p4

a1 a2 a3 a4x

σx
Σ3

x

p1

p2

p3

p4

a1 a2 a3 a4x

x̂

Σ3
1

Σ3
2

Figure 4.1: (Left) interpretation of a B-spline function of degree k as projection of a (k + 1)-
dimensional simplex. (Right) the geometric splitting process at the origin of the recurrence
formula. The two plotted functions correspond to the two summands on the right hand side of
(4.3).

For obvious reasons, splines obtained under this definition have been called simplex splines

(see, e.g., [203–207]). Theorem 4.1.1 indirectly implies that, even though the definition (4.1)

depends on the choice of k + 2 points pi ∈ Rk+1, the resulting spline only depends on the

knots, i.e., the projections ai = µ(pi). This can also be directly seen by noticing that any affine

transformation that leaves the projections µ(pi) unaffected will produce the same simplex spline,

since the ratios of volumes are preserved. Consequently, we will denote the simplex splines by

only giving the positions A := (ai)
k+2
i=1 ⊂ R of the projections of the simplex vertices,

M(x | A) := M(x | a1, . . . , ak+2).

As a consequence of 4.1.1, given any continuous function f : R→ R, its superposition integral

with a simplex spline can be computed as follows,∫
R
f(x)M(x | A) dx =

∫
Σ
f ◦ µA dΣ,
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with µA : Σ→ R, also called the moment map, denoting the affine map

µA(λ1, . . . , λk+2) :=
k+2∑
i=1

λiai =: Λ ·A,

where λ1, . . . , λk+2 are real-valued barycentric coordinates, Σ is the standard simplex defined by

imposing the constraints λi ≥ 0 for all i and
∑k+2

i=1 λi = 1 on the barycentric coordinates, and

dΣ = dλ1 · · · dλk+2/ vol(Σ) is the standard Lebesgue uniform measure on the simplex divided

by the simplex volume. In other words, the measure induced by a B-spline function can be

interpreted as the regular flat Euclidean measure on a unit simplex after composition with an

affine projection mapping the k+2 simplex vertices to the knots defining the spline. It should be

noted that this construction is valid, without modification, even with repeated knot values: in

this case, more than one simplex vertex will be mapped to the same knot. In fact, (4.7) can be

taken as a functional definition of normalized B-splines, skipping entirely the recursive definition

presented in Chapter 3. This approach is very fruitful in view of the application of splines in

Galerkin methods, which simplifies the derivation of many properties and lends itself to many

generalizations, and it is also the approach taken for example by Micchelli in his seminal paper

[205]. For this reason, this is the point of view that we will adopt from this point onward: we

elevate (4.7) to a definition of a normalized (simplex) spline as a linear functional on L2(R),

that associates to f its integral over a simplex under the moment map defined by its knots. We

therefore let

〈f,M(A)〉 :=

∫
R
f(x)M(x | A) dx =

∫
Σ
f ◦ µA dΣ (4.7)

be the functional definition of the function M(A) := M( · | A).

4.2 Generalization via Dirichlet measures

We have seen in the previous section a very natural geometric interpretation of B-splines as

shadows of higher-dimensional simplices. However, the derivation of the recurrence formula

for B-splines from this purely geometrical formulation has proven to be quite awkward and

convoluted. One of the main reasons is that, when B-splines of lower order are introduced, they

no longer correspond to simplices of the same dimension, but to facets or other lower-dimensional

objects. One can avoid such problems by incorporating the idea of multiplicity or repetitions

of a knot, which is a natural number and can become zero if the knot is removed. In order to

achieve this, the standard Lebesgue measure dΣ must be replaced by a Dirichlet measure, a

generalization borrowed from statistics.

4.2.1 Dirichlet measures and Dirichlet averages

Let A := (ai)
n
i=1 ⊂ R be a vector of non necessarily distinct knots, and let Σ := Σn−1 represent,

as in (4.7), the standard simplex in Rn−1 defined by the barycentric coordinates λ1, . . . , λn
satisfying 0 ≤ λi ≤ 1 for each i and

∑n
i=1 λi = 1. Define a vector of multiplicities R = (r1, . . . , rn)

of length n, such that ri ∈ C+, where C+ represents the set of complex numbers with positive



100 CHAPTER 4. UNSTRUCTURED SPLINES

real part. The Dirichlet measure on Σ is then defined as

dΣR :=
1

B(R)
λr1−1

1 · · ·λrn−1
n dλ1 · · · dλn, (4.8)

where B(R) is the multivariate Beta function defined by

B(R) :=
Γ(r1) · · ·Γ(rn)

Γ(r1 + · · ·+ rn)
, (4.9)

and Γ is the Euler Gamma function. Note that the conditions Re(ri) > 0 are required to avoid

the appearance of poles in the Gamma functions, although they will later need to be relaxed.

We show a few examples of Dirichlet measures in Figure 4.2.

Figure 4.2: Three examples of Dirichlet distributions on a two-dimensional simplex Σ2, corre-
sponding to different choices of repetitions r1, r2 and r3 in (4.8). (Left) the case r1 = r2 = r3 = 1
(i.e., no repetitions). (Middle) The case r1 = r2 = 1, r3 = 2. (Right) the case r1 = 1, r2 = 3
and r3 = 2.

Given the vector R of multiplicities and the Dirichlet measure defined by (4.8), one can

generalize the functional definition (4.7) as

〈f,M(A,R)〉 :=

∫
Σ
f ◦ µA dΣR =

1

B(R)

∫
Σ
f(Λ ·A)λr1−1

1 · · ·λrn−1
n dλ1 · · · dλn. (4.10)

Notice that if R = (1, . . . , 1), then B(R) = 1/(n − 1)! = 1/ vol(Σ), and the measure reduces to

the standard normalized Lebesgue measure dΣ on the (n − 1)-dimensional simplex. One then

recovers (4.7), which indeed corresponds to the spline M(x | A) with all knot multiplicities equal

to one. Notice also that the Dirichlet measure (4.8) is normalized to one for all valid choices of

multiplicities, i.e.,
∫

Σ dΣR = 1. For general parameters ri ∈ C+, the term on the right hand

side of (4.10) is called the Dirichlet average of f [208].

Using this expression, one can change the number of repetitions of any knot in A by changing

the corresponding multiplicity in R. When applying (4.10), the corresponding integral is still

formulated over the same (n−1)-dimensional simplex Σ, even if the degree of the corresponding

spline function is different. This feature of the Dirichlet average formulation allows to derive

much more easily many of the properties of unstructured (simplex) splines.
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4.2.2 Integer parameters and knot multiplicities

Let us now state a few more properties of Dirichlet averages that cement the interpretation of

R as a vector of knot multiplicities. Many of these properties can be recovered from equivalent

statements on Dirichlet averages found in [208], but since the connection between Dirichlet

averages and spline functions was only recognized many years after the publication of this book

[209, 210], these statements were never directly translated to the language of spline functions.

Therefore, we give here a self-contained presentation.

First, notice that the simplex spline definition (4.10) does not depend on the order of the

knots.

Theorem 4.2.1 (Carlson). Let σ ∈ Sn be a permutation of the knot vector A. Then

〈f,M(σ(A), σ(R))〉 = 〈f,M(A,R)〉.

Remark 4.2.2. This theorem corresponds to [208, Theorem 5.2-3].

Proof. It is clear from the definition(4.10). In fact, since Λ · A = σ(Λ) · σ(A), then permuting

the knots in the scalar product can be undone by permuting the corresponding barycentric

coordinates. If we also apply the same permutation to the multiplicity vector R, then both the

Dirichlet measure (4.8) and the simplex Σ are left unchanged.

Second, notice that nothing prevents us from increasing the multiplicity of a knot ai ∈ A by

inserting ai (anywhere) as a new component of A, obtaining a new vector of length n+ 1, which

we denote by A t {ai}. The same effect can be achieved by instead increasing the multiplicity

of ai in R.

Theorem 4.2.3 (Carlson). Suppose that the function f is continuous, and that the two nodes

ai and aj in A are equal. Let Ri
+←−j be equal to R with the value ri replaced by ri + rj and the

value rj omitted. Then

〈f,M(A,R)〉 =
〈
f,M(A \ {aj}, Ri +←−j)

〉
.

Remark 4.2.4. This theorem corresponds to [208, Theorem 5.2-4].

Proof. Because of Theorem 4.2.1, we can without loss of generality assume i = n− 1 and j = n.

We have

〈f,M(A,R)〉 =
1

B(R)

∫
Σ
f(Λ ·A)λr1−1

1 · · ·λrn−1
n dλ1 · · · dλn.

Let us introduce the change of variables νi := λi for i = 1, . . . , n − 2 and w1νn−1 := λn−1,

w2νn−1 := λn, where νn−1 = 1− ν1− · · ·− νn−2, and the variables are subject to the constraints

0 ≤ νi ≤ 1 for i = 1, . . . , n − 1, w1, w2 ≥ 0 and w1 + w2 = 1. The Jacobian associated to this

change of variables can be easily computed to be J = νn−1, and the variables w1, w2 simply
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span the interval [0, 1]. We have

〈f,M(A,R)〉 =

=
1

B(R)

∫
Σn−1

f(Λ ·A)λr1−1
1 · · ·λrn−1

n dλ1 · · · dλn,

=
1

B(R)

∫
Σn−2×Σ1

f(

n−1∑
i=1

νiai)ν
r1−1
1 · · · νrn−1+rn−2+1

n−1 w
rn−1−1
1 wrn−1

2 dν1 · · · dνn dw1 dw2.

The integration domain is factorized into a (n − 2)-dimensional simplex Σn−2 times the one-

dimensional simplex (interval) Σ1 spanned by the auxiliary variables w1 and w2, subject to

w1 + w2 = 1. Since the integrand is separable, the real parts of the ri are positive, and f is

continuous, we can apply Fubini’s theorem to integrate out the two auxiliary variables,∫
Σ1

w
rn−1−1
1 w

rn−1−1
2 dw1 dw2 =

Γ(rn−1 + rn)

Γ(rn−1)Γ(rn)
.

When this factor is multiplied by 1/B(R), the terms Γ(rn−1)Γ(rn) at the numerator get replaced

by Γ(rn−1 + rn) (see (4.9)). Since the sum of all the elements of R is equal to the sum of all the

elements of R(n−1)
+←−(n), the resulting factor is simply 1/B(R(n−1)

+←−(n)). Thus,

〈f,M(A,R)〉 =
1

B(Rij)

∫
Σk

f(ν1a1 + · · ·+ νn−1an−1)νr1−1
1 · · · νrn−1+rn−1

n−1 dν1 · · · dνn,

=
〈
f,M(A \ {an}, R(n−1)

+←−(n))
〉
,

proving the theorem.

Notice that this property is valid also for noninteger multiplicities, and in fact it is valid

for general vectors R with components in C+, therefore representing a genuine generalization of

usual knot repetitions.

Finally, we have not yet discussed how a knot can be removed from A using the multiplicity

vector R. In fact, the condition Re(ri) > 0, due to the pole of the function Γ(ri) in B(R), seems

to preclude such a possibility. In general, it should not be possible to completely eliminate a

knot in (4.10) in every case. For example, assume that there are exactly two knots a1 and a2

in A, with respective multiplicities R = (1, r), and consider f(x) = 1 if a1 < x < a2 and zero

otherwise. Then,

〈f,M(A,R)〉 =
Γ(1 + r)

Γ(r)

∫ 1

0
f(a1 + λ(a2 − a1))λr−1 dλ = r

∫ 1

0
λr−1 dλ = 1,

for all positive values of r, in accordance with the normalization of the Dirichlet measure. Thus,

the limit of this expression as r → 0 is 1. In contrast, removing a2 from A altogether yields

〈f,M(A,R)〉 = f(a1) = 0. The reason for this discrepancy is clearly the discontinuity of f .

We now prove that, for continuous functions f , whenever ri → 0 the corresponding knot can

be removed in A. In order to do this, we need two lemmas that will be very useful in the rest

of the chapter. These two lemmas can also be derived from some of the statements in Chapters
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4, 5 and 6 of [208]. The first lemma is a simple property of the multivariate Beta distribution.

Lemma 4.2.5. Let R be a vector with ri ∈ C+, and let

c := r1 + · · ·+ rn,

wi :=
ri
c
.

We denote by Ei the unit vector of size n with components (Ei)j = δij, so that R + Ei can be

seen as the result of increasing the multiplicity of knot i by 1. We have

B(R+ Ei) = wiB(R). (4.11)

Proof. From the definition (4.9),

B(R+ Ei) =
Γ(r1) · · ·Γ(ri + 1) · · ·Γ(rn)

Γ(r1 + · · ·+ rn + 1)
=

ri
r1 + · · ·+ rn

Γ(r1) · · ·Γ(ri) · · ·Γ(rn)

Γ(r1 + · · ·+ rn)
= wiB(R).

The second lemma expresses the integral of the product of a function with a spline in terms

of splines of higher degree.

Lemma 4.2.6. The following identities hold:

〈f,M(A,R)〉 =
n∑
i=1

wi〈f,M(A,R+ Ei)〉, (4.12)

〈xf,M(A,R)〉 =
n∑
i=1

wiai〈f,M(A,R+ Ei)〉, (4.13)

〈(x− aj)f,M(A,R)〉 =
n∑
i=1

wi(ai − aj)〈f,M(A,R+ Ei)〉. (4.14)

Proof. We have

〈f,M(A,R)〉 =
1

B(R)

∫
Σ

(
n∑
i=1

λi

)
f(Λ ·A)λr1−1

1 · · ·λrn−1
n dλ1 · · · dλn,

=
n∑
i=1

wi〈f,M(A,R+ Ei)〉,

and

〈xf,M(A,R)〉 =

∫
Σ

(
n∑
i=1

λiai

)
f(Λ ·A)λr1−1

1 · · ·λrn−1
n dλ1 · · · dλn,

=

n∑
i=1

wiai〈f,M(A,R+ Ei)〉,
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where we have used (4.11). Combining these two equations yields the third one. Notice that,

over finite domains, if f(x) is integrable, then xf(x) is integrable as well.

We can now prove a variation of one of Carlson’s theorems about analytic continuation of

Dirichlet averages.

Theorem 4.2.7 (Carlson). Let f be a continuous function inside the convex hull of the spline

knots. Then,

lim
ri→0
〈f,M(A,R)〉 = 〈f,M(A \ {ai}, R \ {ri})〉.

Remark 4.2.8. This theorem is proven for polynomials in [208, Theorem 6.2-4] and for holo-

morphic functions in [208, Theorem 6.3-3] , although it is never explicitly stated in the book that

it also applies to all continuous functions.

Proof. From (4.13), we know that, for k > 0,

〈
xk,M(A,R)

〉
=

n∑
i=1

wiai

〈
xk−1,M(A,R+ Ei)

〉
.

We can apply (4.13) k times, after which we obtain only terms of the form
〈

1,M(A, R̂)
〉

= 1,

for some multiplicity vector R̂. At this point the recurrence stops, since
〈

1,M(A, R̂)
〉

= 1 for

all R̂. If ri → 0, but c = r1 + · · ·+ rn 6→ 0, then all the terms containing the variable wi vanish.

Since only these terms contain higher multiplicities of the knot ai, the chain of recursions can

therefore be read backwards discarding the knot ai at every step, thus proving the theorem for

monomials and hence for polynomials.

The proof for a general continuous f then follows from the Stone-Weierstrass theorem, which

states that polynomials are uniformly dense in the set of continuous functions.

Theorems 4.2.1, 4.2.3 and 4.2.7 prove that, for continuous test functions f , there is no

distinction between repeating multiple (or zero) times a knot value in A or setting a higher

(respectively, zero) multiplicity in R. Thus, we will not make such a distinction, and denote

instead by

M(x | A) := M(x | A,R)

any such choice, in order to avoid redundant and cumbersome notation. We will similarly

indicate by

M(x | A t {ai}) := M(x | A,R+ Ei)

an increase in the multiplicity of the knot ai by one, and by

M(x | A \ {ai}) := M(x | A,R− Ei)

a decrease in multiplicity by one, including complete removal, of the knot ai. Finally, for ease

of reading, we will write pointwise equalities between spline functions, which should instead be

interpreted weakly, i.e.,

M1(x) +M2(x) = M3(x) should be interpreted as 〈f,M1 +M2〉 = 〈f,M3〉.
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This notation is somewhat justified, since all spline functions of degree k > 0 are continuous (as

proven by the recurrence formulas that we will derive later), and thus the equality is not valid

in the strong sense only for zero-degree splines, which are discontinuous.

After these simplifications, we are ready to present a number of important properties of

univariate and (later) multivariate simplex splines.

4.3 Univariate simplex splines and B-splines

In this section, we prove that simplex splines reproduce the usual (normalized) B-splines when-

ever the multiplicities are all positive integers, and we recover a few important properties of

univariate B-spline functions in this new context. Aside from providing a deeper, geometric

understanding of some familiar properties, this section and the next one pave the way for the

derivation of the corresponding properties of multivariate simplex splines, which are the topic

of the next section. Multivariate simplex splines built on knot clouds are the main actors of the

formulation of our numerical scheme.

4.3.1 Recurrence formulas

We start by proving a recurrence relation which can be used to compute simplex splines, and

reduces to the usual Cox-De Boor rule (3.15) in the case of positive integer multiplicities. We

use the following lemma.

Lemma 4.3.1. The Dirichlet measure defined in (4.8) satisfies the following identity for every

1 ≤ i, j ≤ n: (
∂

∂λi
− ∂

∂λj

)
( dΣR) = (c− 1)

(
dΣR−Ei − dΣR−Ej

)
. (4.15)

Proof. From definition (4.8), we can see that

∂

∂λi
( dΣR+Ei+En) =

1

B(R+ Ei + En)

∂

∂λi

(
λr1−1

1 · · ·λrii · · ·λ
rn
n

)
dλ1 · · · dλn−1,

= ri
B(R+ En)

B(R+ Ei + En)
dΣR+En − rn

B(R+ Ei)

B(R+ Ei + En)
dΣR+Ei ,

= (c+ 1) ( dΣR+En − dΣR+Ei) ,

since λi appears in dΣR+Ei+En in the term λrii , but also in the term λrnn through the relation

λn = 1 − λ1 − · · · − λn−1. In the last step, we have made use of (4.11). Substituting the

multiplicity vector R in place of R + Ei + En, which implies substituting c − 2 in place of c,

yields
∂

∂λi
( dΣR) = (c− 1) ( dΣR−Ei − dΣR−En) . (4.16)

By computing expression (4.16) with free indices i and j and taking the difference we obtain

(4.15).

Armed with this result, we derive the simplex spline generalization of Cox-De Boor’s formula.

This relation is equivalent to the expression [208, Relation 5.6-3], using the insight from [209].
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Lemma 4.3.2 (Carlson). The identity

(ai − aj)M(x | A \ {ak}) + (aj − ak)M(x | A \ {ai}) + (ak − ai)M(x | A \ {aj}) = 0 (4.17)

holds for all i, j, k = 1, . . . , n.

Proof. Consider the following family of one-parameter transformations Rεijk of the λ variables,

λ′i = λi + (aj − ak)ε,
λ′j = λj + (ak − ai)ε,
λ′k = λk + (ai − aj)ε,
λ′l = λl, l 6= i, j, k,

generated by the differential operator

∇ijk := (ai − aj)
∂

∂λk
+ (aj − ak)

∂

∂λi
+ (ak − ai)

∂

∂λj
,

= ai

(
∂

∂λk
− ∂

∂λj

)
+ aj

(
∂

∂λi
− ∂

∂λk

)
+ ak

(
∂

∂λj
− ∂

∂λi

)
.

Notice that these transformations are affinely well defined, i.e.,

n∑
m=0

λ′m = 1 + ε [(aj − ak) + (ak − ai) + (ai − aj)] = 1,

and they preserve the moment map,

Λ′ ·A = Λ ·A+ [(aj − ak)ai + (ak − ai)aj + (ai − aj)ak] ε = Λ ·A.

Therefore, even if f is not itself differentiable, we can compute the derivative ∇ijkf(Λ · A) in

the direction of Rεijk as

∇ijkf(Λ ·A) := lim
ε→0

f(Rεijk(Λ) ·A)− f(Λ ·A)

ε
= 0.

We can therefore compute the integral∫
Σ
f(Λ ·A)∇ijk ( dΣR)

using integration by parts on λi, λj and λk. The limits of integration for the variable λi are

λi = 0 and λn = 0. Since Re(ri) and Re(rn) are positive, the boundary term vanishes when

integrating by parts. The same argument applies to λj and λk, leading to∫
Σ
f(Λ ·A)∇ijk ( dΣR) = −

∫
Σ
∇ijk (f(Λ ·A)) dΣR = 0. (4.18)
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Expanding the first term of (4.18) and inserting (4.15) yields∫
Σ
f(Λ ·A)

(
(ai − aj) dΣR−Ek

+ (aj − ak) dΣR−Ei + (ak − ai) dΣR−Ej

)
= 0,

proving the lemma.

From this symmetric relation, one can obtain the following expression, more similar to the

standard recursion formulas used for B-splines.

Theorem 4.3.3 (Carlson). Let c := r1 + · · · + rn, and let Ei again denote the unit vector of

size n with components (Ei)j = δij. Then the following recursion relation holds:

(c− 2)(an − a1)M(x | A) = (c− 1) ((x− a1)M(x | (A) \ {an}) + (an − x)M(x | A \ {a1})) .
(4.19)

Remark 4.3.4. This identity can also be derived from the second equation in [208, Exercise 5.9-

6], which ultimately traces back to [211], using the correspondence to B-splines made in [209].

Proof. We compute the quantity

(〈f, (x− a1)M(A \ {an}〉+ 〈f, (an − x)M(A \ {a1})〉) (4.20)

by substituting (4.14) in (4.20), obtaining

〈f,M1 +M2 +M3〉

with

〈f,M1〉 =
n∑
i=1

ri
c− 1

(ai − a1)〈f,M(A \ {an} t {ai})〉,

〈f,M2〉 =
n∑
i=1

ri
c− 1

(an − ai)〈f,M(A \ {a1} t {ai})〉,

〈f,M3〉 = − 2

c− 1
(an − a1)〈f,M(A)〉.

Thanks to (4.2.1), we can rewrite

(ai − a1)〈f,M(A \ {an} t {ai})〉 = (an − a1)〈f,M(A)〉+ (ai − an)〈f,M(A \ {a1} t {ai})〉.

Therefore,

〈f,M1 +M2〉 = (an − a1)
n∑
i=1

ri
c− 1

〈f,M(A)〉 = (an − a1)
c

c− 1
〈f,M(A)〉,

and, finally,

(c− 2)(an − a1)〈f,M(A)〉 = (c− 1) (〈f, (x− a1)M(A \ {an})〉+ 〈f, (an − x)M(A \ {a1})〉) ,



108 CHAPTER 4. UNSTRUCTURED SPLINES

proving the claim.

Corollary 4.3.5. In the same conditions as in Theorem 4.3.3, the following more general iden-

tity holds for i, j = 1, . . . , n:

(c− 2)(aj − ai)M(x | A) = (c− 1) [(x− ai)M(x | A \ {aj}) + (aj − x)M(x | A \ {ai})] ,

Proof. Simply note that, thanks to the permutation invariance of simplex splines with respect

to their knots (Theorem 4.2.1), there is nothing special about the subscripts 1 and n in (4.19),

which can be replaced by arbitrary subscripts i 6= j. The case i = j is trivial.

Equation (4.19) directly translates into the Cox-De Boor recursion formula (3.15) when the

multiplicities ri are integers. In fact, after ordering the knots in ascending order, the functions

M(x | A \ {a1}) and M(x | A \ {an}) can be interpreted as B-spline functions of degree k where

the first and last knot have been removed, respectively, using the correspondences

N(x | A)← an − a1

c− 1
M(x | A), (4.21)

k ← c− 2 = |A| − 2.

Notice that, thanks to (4.19), the result obtained via simplex splines is actually more general

than the Cox-De Boor recursion formula, as it allows to remove any two (distinct) knots in

order to compute a spline of order k from two splines of order k − 1, and not just the first

and last knots. This is because simplex splines are by definition independent of the ordering of

the knots (as proven in Theorem 4.2.1). This feature is important when generalising splines to

unstructured point clouds in higher dimension, where no natural ordering of the knot locations

is possible. However, ordering of one-dimensional knots also accomplishes the task of providing

suitable grouping of k + 2 consecutive knots, which is essential for the definition of a complete

spline basis. Thus, a new geometric structure will have to assume this role in higher dimensions,

as will be discussed in Chapter 5.

Notice that repeated application of (4.19) and Theorem 4.2.7 allows to completely eliminate

the knots in A one by one. Once we have eliminated all the knots except two, we can compute

the remaining integral directly via

〈f,M(a1, a2)〉 :=

∫
Σ
f(λ1a1 + λ2a2) dλ1 =

∫
[a1,a2]

f(x) dx.

The recursion relation (4.19) can therefore be used as a practical means to compute simplex

splines, just as (3.15) can be used for the usual B-splines.

4.3.2 Knot insertion formulas

We derive now two important relations that will generalize easily to the multivariate case, and

will be very important in the generalization of simplex splines to higher dimensions. First, we

derive a knot insertion formula, that allows us to insert a new knot into a simplex spline and
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express it as a linear combination of other simplex splines in which one knot has been replaced

by the new knot.

Corollary 4.3.6 (Carlson, Micchelli). Let A have at least 2 distinct knots, and let f be con-

tinuous. Let βi, i = 1, . . . , n be the barycentric coordinates of a point a ∈ R, i.e., real numbers

such that
n∑
i=1

βiai = a,
n∑
i=1

βi = 1.

Then, the following identity holds:

M(x | A) =
n∑
i=1

βiM(x | A t {a} \ {ai}). (4.22)

Remark 4.3.7. This formula corresponds to Micchelli’s knot insertion formula, see [205]. A

simple geometric interpretation can be found in Chapter 18 of [203].

Proof. Write (4.17) with knot vector A := At{a}, and setting k = n+ 1. Notice that an+1 = a.

Then, multiplying by βi, and summing on i from 1 to n yields directly

(a− aj)M(x | A) + (aj − a)

n∑
i=1

βiM(x | A t {a} \ {ai}) = 0.

We can remove the factor (a − aj) directly if a 6= aj , and lift this restriction by rewriting the

relation with another free index different from j.

Notice that if βi > 0 for all i, the combination is convex. In a very similar way, we can obtain

another recursion formula for simplex splines, more computationally complex than the formula

in Theorem 4.3.3, but with the advantage of being easier to extend to higher dimensions.

Corollary 4.3.8 (Carlson, Micchelli). Let βi, i = 1, . . . , n, be the barycentric coordinates for x,

i.e., real numbers such that
n∑
i=1

βiai = x,
n∑
i=1

αi = 1.

Then, the following identity holds:

(c− 2)M(x | A) = (c− 1)

n∑
i=1

βiM(x | A \ {ai}). (4.23)

Remark 4.3.9. This formula corresponds to the univariate version of Corollary 3 in [209], and

can also be found in [205].

Proof. Starting from the result of Corollary 4.3.5, simply multiply each side by βi and sum.

After noticing that
n∑
i=1

βi(x− ai) = 0,
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we obtain

(c− 2)(aj − x)M(x | A) = (c− 1)(aj − x)

n∑
i=1

βiM(x | A \ {ai}).

This proves the identity for x 6= aj . If A contains only one knot x, then the identity is not valid

for x = x (indeed, as we show in the last section of this chapter, the spline has a pole there).

Else, we can repeat the derivation switching i ↔ j, and since ai 6= aj , this proves the identity

for x = aj as well.

4.3.3 Spatial derivatives

Finally, we can easily prove two useful formulas for the derivative of a univariate simplex spline,

which easily generalizes to higher dimensions as shown in the next section, allowing us to compute

general directional derivatives of multivariate simplex splines. The first relation expresses the

(weak) derivative of a simplex spline of degree k as a sum of two splines of degree k − 1.

Corollary 4.3.10. The following identity holds weakly over functions in C1(conv(A)):

(ai − aj)M ′(x | A) = (c− 1) (M(x | A \ {ai})−M(x | A \ {aj})) .

Remark 4.3.11. This is a more general statement of the corresponding derivative formula for

the usual B-splines. If i = 1 and j = k + 2, we recover (3.16).

Proof. Starting from (4.18), multiply by f(Λ ·A) and integrate. Under the hypothesis that f is

continuously differentiable, we can integrate by parts on the variables λi and λj . The boundary

term vanishes since Re(ri) and Re(rj) are positive. We can thus evaluate

〈f,M(A \ {ai})〉 − 〈f,M(A \ {aj})〉

as ∫
Σ
f(Λ ·A)

(
∂

∂λi
− ∂

∂λj

)
( dΣR) = −

∫
Σ

(
∂

∂λi
− ∂

∂λj

)
(f(Λ ·A)) dΣR,

= −(ai − aj)
∫

Σ
f ′(Λ ·A) dΣR,

= (ai − aj)
〈
f,M ′(A)

〉
,

where we have applied the usual definition of the distributional derivative, whereby M ′ is im-

plicitly defined by 〈
f,M ′(A)

〉
:= −

〈
f ′,M(A)

〉
.

The second relation that we derive can be used to compute the directional derivative of a

spline function. First, we need the following property of the Dirichlet measure.
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Corollary 4.3.12 (Carlson, Micchelli). Let νi, i = 1, . . . , n be real numbers such that

n∑
i=1

νi = 0.

Then, the following identity holds:

n∑
i=1

νi
∂

∂λi
dΣR = (c− 1)

n∑
i=1

νi dΣR−Ei . (4.24)

Proof. According to (4.15), the term

∂

∂λi
dΣR − (c− 1) dΣR−Ei

is actually independent of i. Therefore, multiplying this expression by νi and summing yields

n∑
i=1

νi
∂

∂λi
dΣR − (c− 1)

n∑
i=1

νi dΣR−Ei =

(
n∑
i=1

νi

)(
∂

∂λj
dΣR − (c− 1) dΣR−Ej

)
= 0,

which proves the claim.

The directional derivative of a simplex spline can then be evaluated as follows.

Corollary 4.3.13. Let νi be defined as in Corollary 4.3.12, and let

v =
n∑
i=1

νiai,

Then, the following identity holds weakly over functions in C1(conv(A)):

vM ′(x | A) = (c− 1)

n∑
i=1

νiM(x | A \ {ai}). (4.25)

Proof. Starting from (4.24), we multiply by f(x) and integrate. We can then apply the functional

definition of a simplex spline (4.10):∫
Σ
f(Λ ·A)

∂

∂λi
( dΣR) = −

∫
Σ

∂

∂λi
(f(Λ ·A)) dΣR,

= −
∫

Σ
(ai − an)f ′(Λ ·A) dΣR,

= (ai − an)
〈
f,M ′(A)

〉
.

Multiplying by νi and summing over i, the left hand side becomes:∫
Σ
f(Λ ·A)

n∑
i=1

νi
∂

∂λi
( dΣR) = (c− 1)

n∑
i=1

νi

∫
Σ
f(Λ ·A) dΣR−Ei ,
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thanks to (4.24). Applying the same operation to the right hand side yields:

n∑
i=1

νi(ai − an)
〈
f,M ′(A)

〉
= v
〈
f,M ′(A)

〉
.

Equating the last two expressions yields the desired result.

As we discuss below, in higher dimension, the variable v =
∑n

i=1 νiai becomes a vector, so

that the left hand side of (4.24) and (4.25) can be interpreted as a directional derivative. This

formula then becomes the multivariate analog of the B-spline derivative formula (3.16).

4.3.4 Knot dependence of simplex splines

In virtually all shape optimization applications, the modification of the geometry of a spline (or

NURBS) model is performed over the control points, with the knot positions remaining fixed.

A one-dimensional B-spline curve, for example, can be represented over a B-spline basis as:

γ(t) =

n∑
i=1

γiNi,k(t).

Classical shape optimization would keep the basis (and thus the knots) fixed, and focus on

determining the optimal control variables γi minimizing a given cost function. These problems

are often focused on the determination of a complex shape, on which the relevant physical

parameters are relatively homogeneous, and the only adjustment parameter is the shape itself.

In contrast, in the context of full waveform inversion, the geometric shape of the simulation

domain is usually very simple, often just a parallelepiped, while the distribution of physical

properties inside it can be very complex, and with varying degrees of continuity. In many

approaches to waveform inversion, the domain is first meshed, and some (constant or variable)

values of physical parameters assigned to each cell. During inversion, the values in each cell

are adjusted to match the measured data, and optionally the shape of the cells themselves is

modified.

A similar configuration can be obtained with a spline-based model. For example, consider a

simple one-dimensional velocity model on a segment, with a variable density represented on a

B-spline basis over a given knot vector A with n knots,

ρ(x) =

n∑
i=1

ρiNi,k(x | A).

During the inversion step, the equivalent separation into physical and geometrical degrees of

freedom can be obtained by letting the control variables ρi govern the values of the relevant

physical quantities (velocity, etc...), and devolve the description of the shape to the positions of

the spline knots (ai)
n
i=1. In the one-dimensional example, moving the knots would change the

shape of the zone of influence of each physical value ρi, just like the classical approach. However,

many advantages arise from this perspective, including a larger freedom in the localization

and shape of the reconstructed irregularities, without requiring an explicit mesh. While these
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advantages will be better discussed in Chapter 7, these considerations nonetheless stimulate

a proper analysis of the dependence of B-splines on the position of their knots, which is the

purpose of this section.

As seen above, the Dirichlet average of a function can be defined once a vector of knots A,

possibly with repetitions, is given. The Dirichlet average can thus be viewed as a map from real

functions to functions of the n real parameters a1, . . . , an. Using a notation similar to Carlson’s

[208], we can write

f(x) 7→ F (A),

with the Dirichlet average of f being denoted as F . Once the real variable x has been integrated

out, Dirichlet averages can be seen as pure multivariate functions of their knots positions, and

the question of the precise relation of this dependence naturally arises.

The most important tool that will be used repeatedly in this section is the recognition that

the knots A only appear in the definition of a simplex spline (4.10) through the moment map

µA, and more specifically as an argument of the function f . Therefore, if f(x) has a degree of

differentiability Ck with respect to x, we expect the whole expression (4.10) to have the same

degree of differentiability with respect to any of the knots ai, which can then be transferred to

the spline function M . Notice that

∂

∂ai
f(Λ ·A) = λif

′(Λ ·A) (4.26)

and, more generally,

∂m

∂am1
i1
· · · ∂amk

ik

f(Λ ·A) = λm1
i1
· · ·λmk

ik
f (m)(Λ ·A), with

k∑
j=1

mj = m.

Derivatives with respect to single vs. repeated knots

In the rest of this section, we use the definition of a spline function via Dirichlet measures to

compute the derivatives of a spline function with respect to the position of its knots. Recall

that knots can be repeated in A, and that this is equivalent to modifying the corresponding

multiplicities in the multiplicity vector R. Any combination is possible, and thus one can in

principle compute the derivative with respect to a single copy of a repeated knot ai, leaving its

other copies untouched,
∂

∂ai
M(x | A),

or one can compute the derivative with respect to multiple (or all) copies of ai. Due to the per-

mutation symmetry of simplex splines expressed via Theorem (4.2.1), the result of this operation

is simply ∑
j∈I

∂

∂aj
M(x | A) = ri

∂

∂ai
M(x | A),

where I is the set containing all the indices of the collocated points that are considered in

the derivative, and ri := |I| is the corresponding multiplicity. Given the extreme simplicity in

switching from one point of view to the other, we opt here for allowing freedom of choice with
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regard to how many copies of a knot are included in the computation of the derivative. This

can be conveniently expressed by including in A only knots that are considered as distinct, and

adjusting their corresponding multiplicities in R accordingly.

After this necessary (but perhaps slightly too scrupulous) explanation, we are ready to

proceed.

Knot dependence and the Euler-Darboux equations

If the function f is at least of class Cm, it can be proven that the derivatives can indeed be

taken inside the integral (4.10) defining the Dirichlet average, which we express as follows.

Theorem 4.3.14 (Carlson [208, Theorem 5.3-2]). Let f ∈ Cm(conv(A)), and let the Dirichlet

average of a function be defined by (4.10). Then,

∂m

∂am1
i1
· · · ∂amk

ik

∫
Σ
f(Λ ·A) dΣR =

∫
Σ
f (m)(Λ ·A)λm1

i1
· · ·λmk

ik
dΣR, (4.27)

where m :=
∑k

j=1mj.

The proof can be found in the cited reference. This result directly gives a simple formula for

the derivative of a simplex spline with respect to a knot.

Corollary 4.3.15. The following identities hold weakly over functions in C1(conv(A)):

∂

∂ai
M(x | A) = −wiM ′(x | A t {ai}), (4.28)

n∑
i=1

∂

∂ai
M(x | A) = −M ′(x | A). (4.29)

Remark 4.3.16. These identities correspond to equations 5.6-5 and 5.3-3 (with n = 1) of [208],

respectively.

Proof. Using (4.27) with k = 1 and m1 = 1, we can take the derivative inside the integral. Thus:

∂

∂ai
〈f,M(A)〉 =

∫
Σ

∂

∂ai
f(Λ ·A) dΣR,

=

∫
Σ
f ′(Λ ·A)λi dΣR,

= wi

∫
Σ
f ′(Λ ·A) dΣR+Ei ,

= wi
〈
f ′,M(x | A t {ai})

〉
,

= −wi
〈
f,M ′A t {ai}

〉
,

where in the third step we have applied the identity

λi dΣR = wi dΣR+Ei ,
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a simple consequence of (4.8) and (4.11), and in the last step we have used the definition of

distributional derivative. The second identity can be obtained from the first one by summing

over i and then applying (4.12).

Notice that the derivative with respect to ai has been essentially transformed into a deriva-

tive with respect to x. By repeated application of (4.28) and (4.29), we easily obtain similar

expressions for higher order derivatives:

Corollary 4.3.17. The following identities hold weakly over functions in Cm(conv(A)),

∂m

∂am1
i1
· · · ∂amk

ik

M(x | A) = (−1)m
(r1)m1 · · · (rk)mk

(c)m
M (m)(x | A t {ai1}m1 t · · · t {aik}

mk),(
n∑
i=1

∂

∂ai

)m
M(x | A) = (−1)mM (m)(x | A),

where m := m1 + · · ·+mk and

(a)b := a · (a+ 1) · · · (a+ b− 1) =
Γ(a+ b)

Γ(a)

denotes the Pochhammer symbol.

Remark 4.3.18. These identities correspond to Eqs. 5.6-6 and 5.3-3 (with general n) of [208],

respectively.

One of the most interesting aspects of interpreting simplex splines as multivariate functions

of the knot locations is the existence of a hidden symmetry, which can be expressed via a set of

Euler-Darboux equations1, as proven by Carlson in his work [209]. We can reformulate this fact

using our notation as follows.

Theorem 4.3.19 (Carlson). The following relation holds weakly over functions in C2(conv(A)),

for all 1 ≤ i, j ≤ n: [
(ai − aj)

∂2

∂ai∂aj
+ ri

∂

∂aj
− rj

∂

∂ai

]
M(x | A) = 0. (4.30)

Proof. Recalling that Λ ·A = λ1a1 + · · ·+ λnan and that λn = 1− λ1 − · · · − λn−1, we find

λi
∂

∂λi
f(Λ ·A) = (ai − an)

∂

∂ai
f(Λ ·A). (4.31)

Then, differentiating (4.31) with respect to an and using (4.26) yields

(ai − an)
∂2

∂ai∂an
f(Λ ·A) =

∂

∂ai
f(Λ ·A) + λi

∂

∂λi
(λnf

′(Λ ·A))

= λiλn
∂

∂λi
f ′(Λ ·A).

1Carlson calls these Euler-Poisson equations. However, over time, the name for the most general form of this
equation seems to have settled on Euler-Darboux, with the name Euler-Poisson-Darboux reserved for the special
case ri = rj .
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We integrate over Σ with respect to the measure dΣR. On the left hand side, we can take the

derivatives with respect to the knots outside the integral, thanks to (4.27). On the right hand

side, we integrate by parts over λi, and the boundary term disappears since Re(ri),Re(rn) > 0

and therefore λiλn dΣR is zero at the endpoints λi = 0, λn = 0. Consequently,

(ai − an)
∂2

∂ai∂an

∫
Σ
f(Λ ·A) dΣR = −

∫
Σ
f ′(Λ ·A)

∂

∂λi
(λiλn dΣR) ,

= −
∫

Σ
f ′(Λ ·A)(riλn − rnλi) dΣR,

= −
∫

Σ

(
ri

∂

∂an
− rn

∂

∂ai

)
f(Λ ·A) dΣR,

where in the last step we have again used (4.26). Using the permutation symmetry proven in

Theorem 4.2.1, we can replace the index n with an arbitrary index j. Plugging this result into

the definition (4.10) proves the theorem.

We show in Chapter 7 how this property can be used to speedup the computation of the

Hessian matrix, with potential applications in optimization and seismic inversion.

Knot derivatives of the usual B-spline functions

The expressions for first and second derivatives of simplex splines can be directly translated

into equivalent expressions valid for the usual Cox-De Boor B-splines, with some tedious but

straightforward calculations. The formula for the first derivative was already derived by direct

computation in [212], although in a slightly less general form.

Theorem 4.3.20. Let Nk(x | A) be a B-spline function of order k defined over the knot vector

A = (a1, . . . , an) with respective multiplicities R = (r1, . . . , rn),
∑n

i=1 ri = k + 2. Then, the first

and second derivatives of the spline function with respect to the knot positions can be expressed

as follows:

∂

∂ai
Nk(x | A) =

δin − δi1
an − a1

Nk(x | A)− ri
k + 1

N ′k+1(x | A t {ai}),

∂2

∂a2
i

Nk(x | A) =
ri

k + 1

(
ri + 1

k + 2
N ′′k+2(x | A t {ai}2)− 2

δin − δi1
an − a1

N ′k+1(x | A t {ai})
)
,

∂2

∂ai∂aj
Nk(x | A) =− ri

k + 1
N ′k+1(x | A t {ai})

(
rj

ai − aj
+
δjn − δj1
an − a1

)
− rj
k + 1

N ′k+1(x | A t {aj})
(

ri
aj − ai

+
δin − δi1
an − a1

)
. (4.32)

Proof. Recall that, according to (4.21), the usual B-spline basis functions can be obtained from

simplex splines with positive integer multiplicities simply by changing the normalization. If the

knots are in increasing order,

Nk(x | A) =
an − a1

k + 1
M(x | A), c = k + 2.
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We can thus directly apply (4.28) and (4.30), taking (4.21) into account. We begin by computing

the first derivative,

∂

∂ai
Nk(x | A) =

∂

∂ai

(
an − a1

k + 1

)
M(x | A),

=
δin − δi1
k + 1

M(x | A)− ri
k + 2

an − a1

k + 1
M ′(x | A t {ai}),

=
δin − δi1
an − a1

Nk(x)− ri
k + 1

N ′k+1(x | A t {ai}).

In the last step, we have made use of the following relation:

M ′(x | A t {ai}) =
∂

∂x

(
k + 2

an − a1
Nk+1(x | A t {ai})

)
,

=
k + 2

an − a1
N ′k+1(x | A t {ai}).

Differentiating again with respect to ai yields

∂2

∂a2
i

Nk(x | A) =
∂2

∂a2
i

(
an − a1

k + 1
M(x | A)

)
,

= 2

(
∂

∂ai

an − a1

k + 1

)(
∂

∂ai
M(x | A)

)
+
an − a1

k + 1

∂2

∂a2
i

M(x | A),

= −2
δin − δi1
k + 1

ri
k + 2

M ′(x | t{ai}) +
an − a1

k + 1

ri(ri + 1)

(k + 2)(k + 3)
M ′′(x | A t {ai}2),

=
ri

k + 1

(
ri + 1

k + 2
N ′′k+2(x | A t {ai}2)− 2

δin − δi1
an − a1

N ′k+1(x | A t {ai})
)
,

whereas differentiating with respect to aj yields the mixed second derivative

∂2

∂ai∂aj
Nk(x | A) =

∂2

∂ai∂aj

(
an − a1

k + 1
M(x | A)

)
,

= Pij + Pji +Qij ,

with Pij given by

Pij =
∂

∂ai

(
an − a1

k + 1

)
∂

∂aj
(M(x | A)) ,

= −δin − δi1
k + 1

rj
k + 2

M ′(x | A t {aj}),

= −δin − δi1
an − a1

rj
k + 1

N ′k+1(x | A t {aj}),

and where Qij can be computed using (4.30),

Qij =
an − a1

k + 1

∂2

∂ai∂aj
M(x | A),
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=
an − a1

(k + 1)(ai − aj)

(
rj

∂

∂ai
M(x | A)− ri

∂

∂aj
M(x | A)

)
,

=
an − a1

(k + 1)(ai − aj)
rirj
k + 2

(
M ′(x | A t {aj})−M ′(x | A t {ai})

)
,

=
rirj

(k + 1)(ai − aj)
(
N ′k+1(x | A t {aj})−N ′k+1(x | A t {ai})

)
.

Adding together the terms Pij , Pji and Qij yields the second member of (4.32).

Note that, according to (4.32), if i and j correspond to the first and last knots and both

have multiplicity 1, then the mixed derivative with respect to ai and aj is identically zero. This

is due to the fact that according to De Boor’s recursion formula, the value of the spline can be

expressed as a sum of two pieces, one dependent on the first knot but independent of the last one,

and one dependent on the last knot but not on the first one. Notice also that the computational

advantage in the calculation of the Hessian matrix mentioned above, which we detail in Chapter

7, also applies to the usual B-spline basis functions, since once one can compute the full Hessian

(i.e., all the mixed derivatives ∂2Nk(x | A)/∂ai∂aj) only by knowing the values of Nk(x | A),

N ′k+1(x | A t {ai}) and N ′′k+2(x | A t {ai}2) for each knot ai.

4.4 Multivariate simplex splines

The previous section has been devoted to exploring some of the most basic properties of uni-

variate simplex splines. However, the conclusion of Theorem 4.3.3 is that, for (positive) integer

values of the multiplicity vector R, simplex splines merely reproduce the usual B-spline ba-

sis, albeit with a different normalization. There is, however, a very important reason why the

Dirichlet-measure approach to splines is very interesting for the present work, and it has to do

with the simplicity of obtaining a multivariate, unstructured generalization of B-splines.

It is very easy in fact to generalize the definition (4.10) of a simplex spline to dimension

d: simply modify the moment map µA so that it maps Rn into Rd. We continue to denote by

Λ = (λ1, . . . , λn) the vector containing the barycentric coordinates for the standard simplex Σ :=

Σn−1 in Rn−1, but we replace the n× 1 knot vector A by a n× d knot matrix A := (a1, . . . , an),

where now each knot ai lies in Rd. We thus refer to the j-th component of the i-th knot as ai,j .

Then, the moment map can still be expressed as

µA(Λ) := Λ ·A = λ1a1 + · · ·+ λnan

and, given a function f : Rd → R, integrable over conv(A), the corresponding multivariate

simplex spline is defined by∫
Rd

f(x)M(x | A) dx = 〈f,M(A)〉 :=

∫
Σ
f(Λ ·A) dΣR, (4.33)

with no modification required on the Dirichlet measure (4.8). We show a few multivariate

simplex splines in Figure 4.3.
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Figure 4.3: Three examples of bi-variate simplex splines of degree k = 2, built on d+ k + 1 = 5
points. As the points become collinear, the regularity of the spline function decreases.

4.4.1 Recurrence and knot insertion formulas

As we will see shortly, a very large portion of theorems and identities can be seamlessly trans-

ported to multivariate splines. In fact, Theorem 4.2.1, Theorem 4.2.3, Lemma 4.2.6, Theorem

4.2.7 and their respective proofs carry over to multivariate simplex splines without any modifi-

cation, and there is no need to restate them here. However, Lemma 4.3.2 and its proof require

some modification. Since the change is very instructive for what is to follow, we do it here

explicitly.

Lemma 4.4.1. Let M(x | A) be a multivariate simplex spline defined weakly on functions over

Rd, as in (4.33), with at least d + 2 distinct knots in A. Then, for any choice of d + 2 indices

1 ≤ i1, . . . , id+2 ≤ n = |A|, the following identity holds:∣∣∣∣∣∣∣
ai1,1 · · · ai1,d 1 M(x | A \ {ai1})

...
. . .

...
...

...

aid+2,1 · · · aid+2,d 1 M(x | A \ {aid+2
})

∣∣∣∣∣∣∣ = 0. (4.34)

Proof. If two indices are repeated, then the identity is trivial. We will therefore consider distinct

indices. Moreover, to simplify the notation, we will recur to Theorem 4.2.1 and consider, without

loss of generality, the sequence of indices 1, . . . , d+ 2.

Recall that the proof of Lemma 4.3.2 was based on the introduction of the differential

operator ∇ijk := (ai−aj)∂/∂λk + (aj −ak)∂/∂λi + (ak−ai)∂/∂λj , which can be also written as

∇ijk =

∣∣∣∣∣∣∣
ai 1 ∂

∂λi

aj 1 ∂
∂λj

ak 1 ∂
∂λk

∣∣∣∣∣∣∣ .
We extend this definition to the multivariate case by introducing the operator

∇1,··· ,d+2 :=

∣∣∣∣∣∣∣∣
a1,1 · · · a1,d 1 ∂

∂λ1
...

. . .
...

...
...

ad+2,1 · · · ad+2,d 1 ∂
∂λd+2

∣∣∣∣∣∣∣∣ =: det(D), (4.35)

where D is the matrix defined implicitly in (4.35). Each derivative ∂/∂λi in (4.35) is the

generator of translations in the corresponding variable λi. Therefore, the operator ∇1,...,d+2
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generates the transformation

λ′i = λi + (−1)i+dεDi,d+2, i = 1, . . . , d+ 2,

λ′j = λj , j = d+ 2, . . . , n,

where Di,j is the minor of the matrix D formed by removing the i-th row and j-th column. This

transformation, just like the transformation Rεijk used in the proof of Lemma 4.3.2, is affinely

well-defined, i.e.,
n∑
i=1

λ′i =

n∑
i=1

λi + ε

d+2∑
j=1

(−1)j+dDi,d+2 = 1.

In fact, the second term is simply the determinant of a matrix obtained from D by replacing all

the values in the last column by ε, and it is zero since the last two columns are multiples of one

another. Furthermore, this transformation leaves the moment map unchanged, since

(Λ′ ·A)k =

n∑
i=1

λ′iai,k =

n∑
i=1

λiai,k + ε

d+2∑
j=1

(−1)j+dDj,d+2aj,k = (Λ ·A)k,

after recognizing in the second sum the determinant of a matrix obtained from D by replacing

its last column with its k-th column, which is again zero. Consequently, by the same arguments

of Lemma 4.3.2,∫
Σ
f(Λ ·A)∇1,...,d+2 ( dΣR) = −

∫
Σ
∇1,...,d+2 (f(Λ ·A)) dΣR = 0.

The operator ∇1,...,d+2 is a linear function of the partial derivatives ∂/∂λi, which can be easily

seen by expanding (4.35) with respect to its last column. Moreover, if we substitute every

differential operator ∂/∂λi with a constant, the whole determinant becomes zero. A linear map

L that contains the constant vector in its kernel can be written as a linear map on pairwise

differences, i.e.,

n∑
j=1

Lijvj =
n∑
j=1

Lij(vj − v1) +

 n∑
j=1

Lij

 v1 =
n∑
j=1

Lij(vj − v1).

Consequently, only the differences of derivatives ∂/∂λi − ∂/∂λj appear in the determinant of

D. We can thus use (4.18) to replace each differential operator ∂/∂λi in the determinant with

(c− 1)M(x | A \ {ai}), proving the lemma.

Lemma 4.4.1 allows us to compute a generalization of the Cox-De Boor recursion formula for

multivariate simplex splines. Furthermore, the determinant (4.34) is equal to the determinant

that can be used to check if the point ad+2 lies on the circumsphere determined by the point

a1, . . . , ad+1, after replacing the spline function M(x | A \ {ai}) by |ai|2, cf. [213, Lemma 8.1].

This form is often used for the computation of Voronoi diagrams and Delaunay triangulations.

This is a foreshadowing of the important role that these structures will play in Chapter 5.

From Lemma 4.4.1, we can readily obtain a generalization of Corollary 4.3.5, and thus of the
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Cox-De Boor recursion formula (3.15), to multivariate simplex splines:

Theorem 4.4.2. Suppose that there are at least d+ 2 distinct knots in A. Then, the following

identity holds weakly for any choice of d+ 1 indices 1 ≤ i1, . . . , id+1 ≤ n:∣∣∣∣∣∣∣∣∣∣
xi · · · xd 1 (c− d− 1)M(x | A)

ai1,1 · · · ai1,d 1 (c− 1)M(x | A \ {ai1})
...

. . .
...

...
...

aid+1,1 · · · aid+1,d 1 (c− 1)M(x | A \ {aid+1
})

∣∣∣∣∣∣∣∣∣∣
= 0. (4.36)

Remark 4.4.3. This theorem provides a generalization of [4, Proposition 3.1] for knots with

arbitrary multiplicity.

Proof. If any of the d + 1 indices i1, . . . , id+1 are repeated, the equation is trivially satisfied.

Thanks to Theorem 4.2.1, we can without loss of generality choose the indices to be equal to

1, . . . , d+ 1.

In order to simplify the notation, we introduce, for every knot ai, an extra coordinate

ai,d+1 = 1. Notice that in this case the multivariate versions of (4.12) and (4.13) yield

n∑
k=1

rk − δkj
c− 1

ak,i〈f,M(x | A t {ak} \ {aj})〉 = 〈f,M(x | A \ {aj})〉

for i = 1, . . . , d+ 1. We can rewrite this expression as

n∑
k=1

rk
c− 1

ak,i〈f,M(x | A t {ak} \ {aj})〉 = 〈f,M(x | A \ {aj})〉 (4.37)

+
aj,i
c− 1

〈f,M(x | A)〉,

again for i = 1, . . . , d+ 1.

Let us rewrite (4.34) with variable x, indices k, 1, . . . , d+ 1 and knot vector A t {ak},∣∣∣∣∣∣∣∣∣∣
ak,1 · · · ak,d+1 M(x | A)

a1,1 · · · a1,d+1 M(x | A t {ak} \ {a1})
...

. . .
...

...

ad+1,1 · · · ad+1,d+1 M(x | A t {ak} \ {ad+1})

∣∣∣∣∣∣∣∣∣∣
=: det(P ) = 0,

and expand the determinant with respect to the first row,

d+1∑
i=1

(−1)i+1ak,iP1,i + (−1)d+1M(x | A)P1,d+2 = 0, (4.38)
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where Pi,j is the (i, j) minor of the above-defined matrix P . We introduce the matrix

Q =

 a1,1 · · · a1,d+1
...

. . .
...

ad+1,1 · · · ad+1,d+1

 ,

so that the determinant of the minor P1,d+2 is equal to det(Q). Let us now consider in detail

one of the terms in the sum (4.38),

(−1)i+1ak,iA1,i = (4.39)

= (−1)i+1ak,i

∣∣∣∣∣∣∣
a1,1 · · · â1,i · · · a1,d+1 M(x | A t {ak} \ {a2})

...
. . .

...
. . .

...
...

ad+1,1 · · · âd+1,i · · · ad+1,d+1 M(x | A t {ak} \ {ad+1})

∣∣∣∣∣∣∣ ,
= (−1)i+1ak,i

d+2∑
j=2

(−1)j+1M(x | A t {ak} \ {aj})Qj,i,

where the hat denotes that a particular term is omitted, and Qj,i is the (j, i) minor of the matrix

Q.

If we now multiply (4.39) by rk/(c− 1)f(x), sum over k, and integrate over x, we can apply

(4.37) and replace each spline function M(x | A t {ak} \ {aj}) with xiM(x | A \ {aj})+aj,i/(c−
1)M(x | A). After summing over j, the first term produces the following determinant:

(−1)i+1xi

∣∣∣∣∣∣∣
a1,1 · · · â1,i · · · a1,d+1 M(x | A \ {a2})

...
. . .

...
. . .

...
...

ad+1,1 · · · âd+1,i · · · ad+2,d+1 M(x | A \ {ad+1})

∣∣∣∣∣∣∣ =: (−1)i+1xiB1,i,

where the matrix B is derived from P by replacing each spline function M(x | A t {ak} \ {ai})
with M(x | A \ {ai}). The second term produces the determinant:

(−1)i+1 aj,i
c− 1

M(x | A)

∣∣∣∣∣∣∣
a1,1 · · · â2,i · · · a1,d+1 a1,i

...
. . .

...
. . .

...
...

ad+1,1 · · · âd+1,i · · · ad+1,d+1 ad+1,i

∣∣∣∣∣∣∣ =

= (−1)d
aj,i
c− 1

det(Q)M(x | A),

= (−1)d
aj,i
c− 1

Bi,d+2M(x | A).

Plugging these two terms back into (4.38), after summing over k and integrating, we obtain〈
f,

[
d+1∑
i=1

(−1)i+1xiB1,i + (−1)d
d+ 1

c− 1
B1,d+2M(x | A) +

+(−1)d+1 c

c− 1
B1,d+2M(x | A)

]〉
= 0,
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or, after rearranging,〈
f,

[
d+1∑
i=1

(−1)i+1(c− 1)xiB1,i + (−1)d+1(c− d− 1)B1,d+2M(x | A)

]〉
= 0,

which is just the expansion of the weak form of (4.36) with respect to the first row.

Notice that, if we expand (4.36) with respect to the last column, the coefficient of M(x | A)

corresponds to the volume of the d dimensional simplex defined by the d + 1 chosen knots,

whereas the coefficient of M(x | A \ {ai}) is equal (up to sign) to the volume of the simplex

obtained by replacing the i-th knot with x.

Equation (4.36) can be used to recursively compute the value of a simplex spline, and is the

direct analog of the Cox-De Boor recurrence formula (4.19). We will see in Chapter 5 that, in

the spline spaces that we consider, every defining spline function possesses a natural subset of

d + 1 affinely independent knots. Choosing this subset in (4.36) allows to compute M(x | A)

recursively, making it a multivariate generalization of (4.19), and a slight generalization of known

equivalent formulas such as [4, Proposition 3.1] in the case of higher knot multiplicities.

Moving on to the other identities that have already been proven for univariate simplex splines,

the knot insertion formula proven in Corollary 4.3.6 can be proven also for the multivariate

simplex splines by a very similar proof, by multiplying the last column of the determinant in

(4.34) by βi1 and summing over i1. We refer to [209] for a complete proof of this fact. The

statement of the corollary is unchanged in the multivariate case. The same argument applies

to Corollary 4.3.8, whose proof for multivariate simplex splines can also be found in [209]. The

multivariate analog of (4.23) reads

(c− d− 1)M(x | A) = (c− 1)
n∑
i=1

βiM(x | A \ {ai}), (4.40)

whenever
n∑
i=1

βiai = x,
n∑
i=1

βi = 1.

4.4.2 Spatial derivatives

The derivative formulas in Corollary 4.3.12 and Corollary 4.3.13 can be proven analogously to

the univariate version, after noticing that in the multivariate case(
∂

∂λi
− ∂

∂λj

)
f(Λ ·A) = (ai − aj) · ∇xf(Λ ·A),

where ∇x denotes the derivative with respect to the spatial coordinate x, from which we can

derive the multivariate version of (4.24),

(ai − aj) · ∇xM(x | A) = (c− 1) (M(x | A \ {ai})−M(x | A \ {aj})) , (4.41)
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as well as that of (4.25),

v · ∇xM(x | A) = (c− 1)
n∑
i=1

νiM(x | A \ {ai}), (4.42)

whenever
n∑
i=1

νiai = v,
n∑
i=1

νi = 0.

Notice that (4.41) and (4.42) are just scalar equations, and not vectorial ones. Equations (4.40),

(4.41) and (4.42) can all be derived from [209, Theorem 7], and two of them are explicitly

obtained in the cited work.

4.4.3 Knot dependence

Just like the functional relations of the previous section, the differential relations relating uni-

variate simplex splines to their knots that were presented in Section 4.3.4 can be generalized to

the multivariate case. The starting point for this derivation is, as in Section 4.3.4,

∂

∂ai,j
f(Λ ·A) = λi

∂

∂xj
f(Λ ·A), (4.43)

and therefore

∇aif(Λ ·A) = λi∇xf(Λ ·A),

which is valid for all functions f ∈ C1(conv(A)). Once again, the derivative can be taken inside

integrals of the form (4.27), as proven in [208, Theorem 5.3-2]. The same arguments as in

Corollary 4.3.12 and Corollary 4.3.13 then allow us to prove the following theorem.

Theorem 4.4.4. Let m1, . . . ,mk be positive integers, and let m :=
∑k

k=1mk. Then the fol-

lowing identities hold weakly over functions in C1(conv(A)) (for the first two identities) or in

Cm(conv(A)) (for the last one):

∂

∂ai,j
M(x | A) = −wi

∂

∂xj
M(x | A t {ai}), (4.44)

n∑
i=1

∂

∂ai,j
M(x | A) = − ∂

∂xj
M(x | A),

∂m

∂am1
i1,j1
· · · ∂amk

ik,jk

M(x | A) =

= (−1)m
(r1)m1 · · · (rk)mk

(c)m

∂m

∂xm1
j1
· · · ∂xmk

jk

M(x | A t {ai1}m1 t · · · t {aik}
mk).

Remark 4.4.5. The first identity corresponds to (6.6) in [209], and the others are simple

consequences of the first one.

From the theorem above, we can easily derive the following identities, which express various

derivatives of a spline function with respect to its knots in terms of its spatial derivatives,

∇aiM(x | A) = −wi∇xM(x | A t {ai}),
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n∑
i=1

∇aiM(x | A) = −∇xM(x | A),

∆aiM(x | 1) =
ri(ri + 1)

c(c+ 1)
∆xM(x | A t {ai}2),

d∑
k=1

(
n∑
i=1

∂

∂ai,k

)2

M(x | A) =

d∑
k=1

n∑
i=1

n∑
j=1

∂2

∂ai,k∂aj,k
M(x | A),

= ∆xM(x | A).

Finally, it is also possible to derive a multivariate version of (4.30), first proposed in [209,

Theorem 5].

Theorem 4.4.6 (Carlson). The following relation holds weakly over functions in C2(conv(A))

for all 1 ≤ i, j ≤ n and 1 ≤ k ≤ d:[
d∑

m=1

(ai,m − aj,m)
∂2

∂ai,m∂aj,k
+ ri

∂

∂aj,k
− rj

∂

∂ai,k

]
M(x | A) = 0. (4.45)

Proof. Very similar to the proof of Theorem 4.3.19. The multivariate equivalent of (4.31) reads

λi
∂

∂λi
f(Λ ·A) = (ai − an) · ∇aif(Λ ·A). (4.46)

Differentiating (4.46) with respect to an,k and using (4.43) yields

(ai − an) · ∇ai
∂

∂an,k
f(Λ ·A) =

∂

∂ai,k
f(Λ ·A) + λi

∂

∂λi

(
λn

∂

∂xk
f(Λ ·A)

)
,

= λiλn
∂

∂λi

∂

∂xk
f(Λ ·A).

If we integrate using the measure dΣR, taking the knot derivatives outside the integral, we find

(ai − an) · ∇ai
∂

∂an,k

∫
Σ
f(Λ ·A) dΣR = −

∫
Σ

∂

∂xk
f(Λ ·A)

∂

λi
(λiλn dΣR) ,

= −
∫

Σ

∂

∂xk
f(Λ ·A)(riλn − rnλi) dΣR,

= −
∫

Σ

(
ri

∂

∂an,k
− rn

∂

∂ai,k

)
f(Λ ·A) dΣR,

after integrating by parts in the first term, with the boundary term being zero for the same

reasons as in Theorem 4.3.19, and applying (4.43) again in the last step. We can now invoke

Theorem 4.2.1 to exchange the index n with an arbitrary index j, completing the proof, since

(ai − aj) · ∇ai
∂

∂aj,k
=

d∑
m=1

(ai,m − aj,m)
∂2

∂ai,m∂aj,k
.
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Notice that, by exchanging i with j in (4.45), we can obtain the following alternative form,[
d∑

m=1

(ai,m − aj,m)
∂2

∂ai,k∂aj,m
+ ri

∂

∂aj,k
− rj

∂

∂ai,k

]
M(x | A) = 0, (4.47)

which differs from (4.45) because the sum in the first term is over the partial derivative with

respect to aj,m instead of ai,m.

Again, we will explore some possible implications of (4.47) for seismic inversion and opti-

mization in Chapter 7.

4.5 Discussion and further reading

Historically, the opportunity of using (4.7) as a functional definition of multivariate splines was

already recognized by De Boor [204], and some later works by Dahmen and Micchelli [205,

214, 215] showed how to derive many of the useful relations presented in this chapter. A quick

introduction can be found in [203, Chapter 18]. This definition did not change significantly

in the following works, with the notable exception of the extension through Dirichlet measures

[209, 210] used in this chapter. The attention later turned to the construction of polynomial-

reproducing spline spaces, which is the subject of Chapter 5.

The definition of multivariate splines as shadows of simplices can be generalized to more gen-

eral polyhedra. Most of the familiar properties of B-splines, such as their piecewise-polynomial

character, regularity and partition of unity are also satisfied by these more general projections,

see, e.g., [216–222].

We give hereafter a few results and references related to the theory of generalized simplex

spline functions. The goal of this section is simply to give a few pointers in the relevant literature

to the interested reader on a few topics that pique our interest, but the content of this section

has no bearing at all on the rest of this work, and can thus be entirely skipped without prejudice.

Simplex splines in other areas of mathematics and physics

Simplex splines are defined using shadows (i.e., fibers of projections) of higher dimensional sim-

plices. Other than their immediate geometric interpretation, the concept of polyhedral shadow

employed in Theorem 4.1.1 is analogous to the integration process that underlies the Radon

transform, see, e.g., [223]. This connection is exploited in some algorithms that use B-spline

convolution kernels for the computation of the Radon transform and its inverse (see, e.g., [205,

224]).

Dirichlet measures, also called Dirichlet distributions, appear in many areas of statistics, and

are related to the Gamma and Beta distributions. Their most typical use is when the barycentric

coordinates, which are nonnegative and sum to one, are regarded as probabilities assigned to a

given set of events. The Dirichlet distribution is then a distribution over all possible ways to

assign probabilities to these events, i.e., a distribution over different (probabilistic) models. For

this reason, the Dirichlet distribution (and therefore spline functions) often appear in Bayesian

statistics to infer probability models from data (see, e.g., [225]), as is the case for example of

the well-known Pólya’s urn model [226].
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Dirichlet averages were introduced by Carlson in his comprehensive book [208] in order to

tie together many special functions used in applied mathematics, including hypergeometric and

confluent hypergeometric functions, Bessel functions and Jacobi polynomials. Even though the

term “spline” does not appear at all in the book, the very strong ties between Dirichlet averages

and B-splines were later recognized [209, 210], and this connection has since been used to derive

some very important properties of univariate and multivariate B-splines, an approach that we

have used extensively in this chapter.

Simplex splines and their generalizations make their appearance in many areas of mathemat-

ics and physics, often in surprising ways, and sometimes without being recognized as such. For

example, the term moment map employed in this text originates from the use of analogous maps

in Hamiltonian actions, and especially their use in localization formulas of equivariant cohomol-

ogy [227, 228], where they appear as the pushforward measure defined through the Duistermaat-

Heckman formula [229]. Analogously to Dirichlet measures, which pushes forward a measure

from a polytope (specifically, a simplex) to euclidean space, this formula is used to push forward

measures defined on symplectic manifolds. The gap between these two formulations can be closed

using Delzant’s theorem [230], which directly relates toric actions on symplectic manifolds with

polytopes. For example, if one takes the complex projective space CPn−1 and the toric action

parameterized by the real parameter t ∈ R and defined by (z1, . . . , zn) → (eita1z1, . . . , e
itanzn),

the corresponding Delzant polytope (i.e., the image of the moment map) is a (n−1)-dimensional

simplex, and the Duistermaat-Heckman measure on R is exactly a simplex spline. In this con-

text, splines are used for example to efficiently compute the number of integer points in rational

polytopes, see, e.g., [219, 231].

Splines also make their (sometimes unexpected) appearance in quantum physics. In [232], a

connection between Bézier curves (and thus Bernstein polynomials) and expectation values of

spin systems is derived. A similar connection exists more largely for B-splines. Suppose that

we are given a self-adjoint operator H (an observable) with real eigenvalues (a1, . . . , an), and

suppose that we randomly select a pure state |ψ〉 from an n-level quantum system and compute

the expectation value Eψ := 〈ψ|H|ψ〉. What is the probability distribution of the expectation

values Eψ as ψ is selected uniformly with respect to the unitarily invariant Fubini-Study metric?

It turns out that this is none other than the normalized simplex spline with knots (a1, . . . , an),

see, e.g., [233–237]. Since a general finite-dimensional quantum system of dimension n can be

represented by the complex projective space CPn−1, and the action of H can be given in a

suitable eigenbasis as the toric action described above, this result is not completely unexpected.

Splines have also made their appearance in high-energy physics, as (Laplace transforms of)

integrands of one-loop calculations in anti-de Sitter (AdS) space, see, e.g., [238]. Some higher-

loop calculations provided in this paper also uncover some new, previously unknown covolution

formulas for splines, which we do not restate here as they are out of scope for our work.

All these fascinating connections seem to gravitate around the natural link between spline

functions and polytopes, to which we give a small contribution in Chapter 5. Nevertheless, if one

considers that splines were originally introduced for modeling shapes in engineering applications,

their appearance in so many different physical and mathematical subfields is undoubtedly very

surprising.
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Knot dependence of spline functions in statistics

The derivation of formulas for the derivatives of spline functions with respect to knot positions

was done following the thorough analysis of [208], and especially its sections 5.3–5.6, where a

handful of extremely useful identities and differential equations are derived for Dirichlet averages.

These relations were later explicitly extended to splines (both univariate and multivariate) in

[209].

The derivation of these formulas requires switching the point of view from splines with given

knots evaluated at a variable location, to splines with variable knots evaluated at a fixed location.

This approach is most often encountered in statistical applications, where splines often appear

as multivariate probability distributions (see for example [239, 240]). In this context, the roles

of variable and parameter are exchanged, and x is seen merely as a real parameter distinguishing

between various multivariate distributions on the knots ai. For example, in [210], this point of

view is exploited to obtain general simplex splines as fractional integrals of B-splines, defined

using Fourier analysis. Additionally, B-splines and simplex splines seen as functions of their

knots have proven invaluable in the study of functions which are radial in the `1 norm, see, e.g.,

[241, 242], and especially [243], where this connection is used to compute the Fourier transform

of spline functions with respect to their knots.

Analytical continuation and negative multiplicities

Usually, knot multiplicity values for a spline are taken to be positive integers. However, most of

the formulas presented in this chapter are valid for complex values of multiplicities with positive

real part. Additionally, Carlson [208] proved that an analytical continuation can be performed

to relax this positivity condition. The logic underlying this extension is as follows:

1. Find the broadest possible analytical extension for the Dirichlet average (4.10) when f is

a polynomial;

2. Whenever f is an analytical function, use its Taylor series representation to prove that the

analytical extension is valid if the radius of convergence contains the convex hull of the

knots;

3. By the principle of permanence of functional equations, all the functional relations valid

in the halfplane C+ are automatically valid in the extended zone of the complex plane for

all multiplicities.

This extension can be used to derive some interesting results on spline functions, that we give

here in an informal and very incomplete fashion. We refer the reader to Chapter 6 of [208] for

a more complete and detailed analysis.

Consider the Dirichlet average∫
R
xkM(x | A,R) dx =

∫
Σ

(Λ ·A)k dΣR =:
〈
xk
〉
A,R

, (4.48)

which represents the k-th moment of the simplex spline M(x | A,R) seen as a distribution. We

have made explicit the dependency on the knot multiplicities as we will perform an analytic
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extension on them. The integral in (4.48) can be computed explicitly, thus giving a closed-form

expression for the moments of simplex splines [208, Representation 6.2-1],〈
xk
〉
A,R

=
k!

(c)k

∑
m

(r1)m1 · · · (rn)mn

m1! · · ·mn!
am1

1 · · · a
mn
n , (4.49)

where the sum is extended to all size-n vectors m of nonnegative integers such that
∑n

i=1mi = k.

This form can be easily obtained by plugging the multinomial expansion of f = (Λ · A)k =

(
∑n

i=1 λiai)
k into the definition (4.10) and then applying (4.11) mi times for every knot ai. An

equivalent recurrence relation is given in [244],

〈
xk
〉
A,R

=
(k − 1)!

(c)k

k∑
i=1

 n∑
j=1

rja
i
j

 (c)k−i
c+ k − i

〈
xk−i

〉
A,R

, (4.50)

with 〈1〉A,R = 1 due to the normalization condition of simplex splines. Notice that, by using

the relation (4.21), we can also compute the moments of the usual B-spline functions, simply by

multiplying (4.49) and (4.50) by (an − a1)/(c− 1).

According to (4.49), the k-th moment of a simplex spline is simply given by a homogeneous

polynomial of degree k in the knots a1, . . . , an. Crucially, it is also a rational function of the

multiplicities ri, with the denominator given by (c)k. Therefore, an analytical extension is

possible to all values of multiplicities except if c =
∑n

i=1 ri ∈ Z≤0, in which case the denominator

is zero for all k > −c and (4.48) develops a pole. This represents the maximum possible extended

analytical domain in terms of multiplicities2.

If f is analytical in a disk D ⊂ C with center x that contains all the knots in its interior,

then for x ∈ D its Taylor series converges and we can thus write

〈f,M(A,R)〉 =
∞∑
i=0

f (n)(x)

n!

∫
R

(x− x)iM(x | A,R) dx,

=
∞∑
i=0

f (n)(x)

n!

〈
(x− x)i

〉
A,R

.

The series is analytical term by term in the multiplicities r1, . . . , rn and in the knot vector A.

As proven in [208, Section 6.3], the convergence of this series is uniform, implying that the series

itself is analytical. Therefore, if we restrict the set of test functions f to analytic functions, all

the functional equations derived so far (including all the relations from Section 4.2 onward) can

be extended to all sets of multiplicities r1, . . . , rn satisfying

n∑
i=1

ri =: c 6∈ Z≤0.

We focus now on the analytical extension of the simplex splines to complex values of its

knots. As noticed in [209], we can recover (and generalize) the simplex splines and their action

2Unless regularization is achieved by pre-multiplying each side of the equation by Γ(c), thus avoiding the poles.
We will not consider this technique here.
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as distributions via the Dirichlet average of x−1. We start by applying Cauchy’s integral formula

to the action of a simplex spline (4.10) on an analytical function f :

〈f,M(A,R)〉 =
1

2πi

∫
R

∮
γ

f(z)

z − x
M(x | A,R) dz dx,

=
1

2πi

∮
γ
f(z)

〈
(z − x)−1

〉
A,R

dz,

=
1

2πi

∮
γ
f(z)

〈
x−1

〉
z−A,R dz, (4.51)

where (z − A)i = z − ai and the contour γ lies inside D and contains all the knots of A in

its interior. Since the knots all lie on the real axis, we can deform γ into two parallel lines,

one running from min(A) to max(A) below the real line, and the other running in the opposite

direction above it, plus two small half circles. It can be proven [208, 209] that the integral along

the two infinitesimally small circles vanishes. Thus, the shape of the spline at each point x is

determined by the behavior of the average
〈
x−1

〉
z−A,R, seen as a function of z, on the real line,

and specifically in the interval (min(A),max(A)). In particular:

• A branch cut over an interval (x1, x2) ⊂ (min(A),max(A)), with the jump at x being equal

to J(x), gives a contribution to the integral (4.51):∫ x2

x1

f(x)J(x) dx,

and hence the spline at x is equal to the jump across the branch cut at x;

• A pole of the form r/(z − x0) gives, by Cauchy’s integral formula, a contribution:

rf(x0) =

∫
R
f(x) · rδ(x− x0) dx,

and thus the spline function at x0 behaves as rδ(x − x0). Similarly, a pole of the form

r/(z − x0)k+1 contributes a term rk!δ(k)(x− x0) to the shape of the spline function;

• Finally, the sub-intervals without branch cuts or poles do not contribute to the integral,

since the contour γ can be shrunk to a point. Hence, they do not contribute to the shape

of the spline function.

Summing the contributions of all branch cut jumps and poles, we obtain the final shape of the

spline.

A lot of functional relations involving the Dirichlet average
〈
x−1

〉
z−A,R are known, and plenty

can be found in Chapters 5, 6 and 8 of [208]. These formulas give rise to recurrence relations

that can be used to reduce the Dirichlet average to a set of simple averages, whose branch cuts

and poles are known. For example, Section 8.5 of [208] contains a recurrence relation capable of

simplifying any Dirichlet average with integer (positive or negative) multiplicities. By using the

above-defined dictionary to convert branch cut jumps and poles into distributions, we obtain

corresponding recurrence relations that enable the calculation of simplex splines with generalized
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(negative or even fractional) multiplicities. As an example, we present in Algorithm 2 a recursive

procedure, unpublished as far as we know, that can be deduced to compute simplex splines

with both positive and negative integer multiplicities R = (r1, . . . , ri) satisfying the constraint

c =
∑n

i=1 ri > 0. The algorithm is based on a series of identities that can be found in [208],

together with the necessary proofs.

Algorithm 2 Evaluation of a simplex spline M(x | A,R) with integer (but possibly negative)
multiplicities, with c :=

∑n
i=1 ri > 0. The references in the comments to the right refer to the

equations in [208] used to derive the relation.

Require: R = (r1, . . . , rn) is a vector of integer multiplicities, not necessarily positive, with∑n
i=1 ri = c > 0; A is the knot vector

1: return DSpline(x, 1, A,R), defined below.

2: function DSpline(x, u,A,R)
3: if u = 1 and all multiplicities are 0 except for two that are 1 then
4: i← index of first knot with multiplicity 1
5: j ← index of second knot with multiplicity 1
6: return χ[ai,aj ](x) . Eq. 8.5-2

7: else if all multiplicities are 0 except for one that is positive then
8: i← index of only knot with nonzero multiplicity
9: return (u− 1)!δ(u−1)(x− ai) . Eq. 5.9-22 with β′ = 0

10: else if there are negative multiplicities then
11: i← index of first knot with negative multiplicity
12: return c−u

c DSpline(x, u,A,R+ Ei)+
u
c aiDSpline(x, u+ 1, A,R+ Ei) . Eq. 5.9-7

13: else if u > 1 and there are at least two knots with positive multiplicity then
14: i← index of first knot with positive multiplicity
15: j ← index of first knot with positive multiplicity
16: return c−1

u−1
1

ai−aj (DSpline(x, u− 1, A,R− Ei)
−DSpline(x, u− 1, A,R− Ej)) . Eq. 8.5-1

17: else at least two multiplicities are positive and c > u+ 1
18: i← index of first knot with positive multiplicity
19: j ← index of last knot with positive multiplicity
20: return c−1

c−u−1
1

ai−aj (aiDSpline(x, u,A,R− Ej)
−ajDSpline(x, u,A,R− Ei)) . exercise 5.9-6

The unifying perspective of allowing negative multiplicities may be able to bring a useful

point of view to many different topics. One such example is the theory of quasi interpolants,

which are used in signal processing to iteratively compute the best-fitting spline to a set of data

points that are slowly evolving, because they are being acquired and/or they are being deleted

from a limited-space buffer. A best fit based on the minimisation of the `2 norm would require

an inversion of a global matrix each time a data point is modified. In contrast, quasi-interpolants

are used to compute the best fitting spline Qf to a given function f ,

(Qf)(x) =

n∑
i=1

qi(f)Ni,k(x),



132 CHAPTER 4. UNSTRUCTURED SPLINES

where every coefficient qi(f) is obtained thorough the application of a linear operator qi depend-

ing only on the behavior of the function f in or around the support of the basis function Ni,k.

Typically, the linear operators qi are chosen to be either integral, i.e., based on the superposition

integral of f with a given function, discrete, i.e., based on punctual values of f , or differential,

that is, based on the values of the derivatives of f at a few points. Simplex splines with both

positive and negative multiplicities are able to resume naturally all three types of linear func-

tionals in a single linear operator, belonging to a wide family of functions interconnected by

many recurrence relations. This approach might therefore make it easier to develop new quasi-

interpolants satisfying the all-important properties of projection, polynomial reproduction and

locality. For an introduction to quasi-interpolants, see [245] and references therein.

Furthermore, splines with negative multiplicities might be useful for the derivation of dual

bases to B-splines, i.e., polynomial-reproducing bases of functions orthogonal to the usual B-

splines, with potential applications in Petrov-Galerkin approaches to isogeometric analysis.

Finally, notice that the extension of B-splines to complex order has already been pursued

by other authors, both using simplex splines (see [246, 247]) and independently of it (see, e.g.,

[248]).

Simplex splines as Green’s functions of a hyperbolic operator

Let us go back to the Euler-Darboux equation (4.30) satisfied by simplex splines. After the

change of variables

ρ = ai − aj ,
τ = ai + aj ,

the differential equation can be rewritten as[
∂2

∂τ2
+
ri − rj
ρ

∂

∂τ
− ∂2

∂ρ2
− ri + rj

ρ

∂

∂ρ

]
M(x | A) = 0. (4.52)

Consider now a function g : Rn → R that depends only on the radial coordinate ρ. Then, the

Laplacian operator of Rn acting on g only contains the radial part,

∆g =
∂2

∂ρ2
g +

n− 1

ρ

∂

∂ρ
g.

We can therefore rewrite (4.52) in Rn as:[
∂2

∂τ2
+
ri − rj
ρ

∂

∂τ
−∆

]
M(x | A) = 0. (4.53)

This shows that a simplex spline can be interpreted as the Green’s function of a hyperbolic

operator. If we restrict ourselves to the case ri = rj = r ∈ N, (4.53) reduces to the wave

equation in dimension 2r + 1. A general form of the solution of (4.30) can be found in [249].

Other connections with differential equations of mathematical physics can be found in [208,

Section 5.4].
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Projective extension of simplex spline functions

Consider once more the Euler-Darboux equation (4.30) obeyed by simplex splines with respect

to any couple of knots,[
(ai − aj)

∂2

∂ai∂aj
+ ri

∂

∂aj
− rj

∂

∂ai

]
M(x | A) =: PM(x | A) = 0. (4.54)

The symmetries of this equation have been thoroughly studied in [250], where it is shown that

the space of solutions of (4.54) is invariant with respect to the action of a Lie group, whose Lie

algebra is generated by the following operators:

X = a2
i

∂

∂ai
+ a2

j

∂

∂aj
+ riai + rjaj ,

H = 2ai
∂

∂ai
+ 2aj

∂

∂aj
+ ri + rj ,

Y = − ∂

∂ai
− ∂

∂aj
.

It is easy to check that these linear first-order differential operators satisfy

[X,P ] = −(ai + aj)P,

[H,P ] = −2P,

[Y, P ] = 0,

and thus [X,P ]M(x | A) = [H,P ]M(x | A) = [Y, P ]M(x | A) = 0. This means that, whenever

M(x | A) is a solution of PM(x | A) = 0, then PXM(x | A) = (X + ai + aj)PM(x | A) = 0,

implying that XM(x | A) is also a solution. The same argument works for H and Y , and in

fact, since the equation is homogeneous, for the whole Lie algebra generated by these operators,

as argued in [250]. The Lie group obtained from this algebra is therefore a symmetry of the

differential equation (4.54), at least in a neighbourhood of the identity. In order to understand

the shape of this symmetry, we can compute the mutual commutators of the operators {X,H, Y }.
A simple calculation shows that the commutators are as follows:

[X,Y ] = H, [H,Y ] = −2Y, [H,X] = 2X.

We recognize here the generators of the Lie algebra sl(2,R). Together with the identity, which

is trivially a symmetry of (4.54), the Lie algebra extends to the full gl(2,R), implying that

symmetry group of (4.30) is none other than GL(2,R). Straightforward calculations lead to

an explicit form of the representation of GL(2,R) in the space of solutions of (4.54). Let

f(ai, aj) be a solution of (4.54), and consider as an ansatz the following projective linear (Möbius)

transformation on the argument of a function f , expanded for a small value of its parameter:

f

(
(1 + at)x+ ct

btx+ (1 + dt)

)
= f(x) + f ′(x)

(
c+ (a− d)x− bx2

)
t+O(t2).
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Comparing this with the definition of the operators X, H and Y above, we see that we can

obtain a generator for this transformation on both knots by combining the differential operators

of the generators in the following Lie algebra element:

L =
a− d

2
H − bX + cY.

Applying the transformation exp(tL) to the function f , solution to (4.54), we obtain

exp(tL)f(ai, aj) = Ri(t)Rj(t)f(ai(t), aj(t)),

with

ak(t) :=
(1 + at)ak + ct

btak + (1 + dt)
.

The normalization factor Rk(x), k = 1, 2 is produced by the terms in L lacking a derivative

operator. The term (ri + rj)(a− d)/2 does not contribute, since it represents a constant factor

that can be discarded since (4.54) is homogeneous. From the term −b(riai + rjaj) we obtain

that Rk(x) must obey
dRk(t)

dt
= −rkRk(t)b

1

btak + (1 + dt)
,

which together with the condition Rk(0) = 1 has the solution Rk(t) = (btak + (1 + dt))−rk . A

more detailed and general derivation of these transformations can be found in [250] and in [251,

Chapter 1].

Let us now rewrite the Möbius transformation by introducing a 2× 2 matrix g ∈ GL(2,C),

g =

(
g11 g12

g21 g22

)
, g11g22 − g21g12 6= 0,

and making the correspondence g11 = 1+a, g12 = b, g21 = c and g22 = 1+d. We can summarize

what we have obtained so far as follows.

Theorem 4.5.1 (Miller). Let f(ai, aj) be a solution of the Euler-Darboux equation (4.54), and

let g ∈ GL(2,R) be an invertible 2× 2 matrix. Then the function

(g12ai + g22)−ri(g12aj + g22)−rjf(ρ(g)ai, ρ(g)aj),

where

ρ(g)x =
g11x+ g21

g12x+ g22
,

is also a solution.

A simplex spline M(x | A) satisfies the Euler-Darboux equation (4.30) for every couple of

knots. Therefore, if we denote by SR the space of simultaneous solutions to all equations (4.54)

for all 1 ≤ i, j ≤ n, we can obtain a representation ρ : GL(2,R) → Aut(SR) by letting an

element g act on all knot variables simultaneously. We obtain thus the following

Corollary 4.5.2. Let M(x | A) be a simplex spline, and let g ∈ GL(2,R) be an invertible 2× 2
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matrix. Then the function
n∏
k=1

(g12ak + g22)−rkM(x | ρ(g)A), (4.55)

where

ρ(g)ak =
g11ak + g21

g12ak + g22
,

is a solution to the Euler-Darboux equations (4.54) for all 1 ≤ i, j ≤ n.

Up to a rescaling of the spline function, ρ acts projectively on the knot variables. Therefore,

it is more natural to rewrite its action in projective coordinates, where ρ(g) acts simply a matrix

multiplication by g on the right, ρ(g)(x) = xg,

(
ak, 1

)(g11 g12

g21 g22

)
'
(
ρ(g)ak, 1

)
.

If we take g, h ∈ GL(2,R), the projective action of gh according to (4.55) reads:

ρ(gh)M(x | A) =
n∏
k=1

((g11h12 + g12h22)ak + (g21h12 + g22h22))−rk M(x | ρ(gh)A)),

which has a different multiplying coefficient than the action of ρ(g)ρ(h). Therefore, the repre-

sentation cannot be lifted to a linear representation, and it is truly projective in character.

We now investigate the symmetries of multivariate splines in the case d = 2. From the

Euler-Darboux equation (4.45), we can build the two differential operators

Pk = (ai,1 − aj,1)
∂2

∂ai,1∂aj,k
+ (ai,2 − aj,2)

∂2

∂ai,2∂aj,k
+ ri

∂

∂aj,k
− rj

∂

∂ai,k
, k = 1, 2,

for k = 1, 2. The two following equations are obeyed simultaneously by M :

P1M(x | A) = P2M(x | A) = 0. (4.56)

Consider now the following collection of eight operators,

X3 = ai,1
∂

∂ai,2
+ aj,1

∂

∂aj,2
, Y3 = ai,2

∂

∂ai,1
+ aj,2

∂

∂aj,1
,

H1 = 2ai,1
∂

∂ai,1
+ 2aj,1

∂

∂aj,1
+ ai,2

∂

∂ai,2
+ aj,2

∂

∂aj,2
+ ri + rj ,

H2 = 2ai,2
∂

∂ai,2
+ 2aj,2

∂

∂aj,2
+ ai,1

∂

∂ai,1
+ aj,1

∂

∂aj,1
+ ri + rj ,

Y1 = − ∂

∂ai,1
− ∂

∂aj,1
, Y2 = − ∂

∂ai,2
− ∂

∂aj,2
,

X1 = a2
i,1

∂

∂ai,1
+ a2

j,1

∂

∂aj,1
+ ai,1ai,2

∂

∂ai,2
+ aj,1aj,2

∂

∂aj,2
+ riai,1 + rjaj,1,

X2 = a2
i,2

∂

∂ai,2
+ a2

j,2

∂

∂aj,2
+ ai,1ai,2

∂

∂ai,1
+ aj,1aj,2

∂

∂aj,1
+ riai,2 + rjaj,2.
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It can be easily checked that

[X1, P1] = −(ai,1 + aj,1)P1 − aj,2P2, [X1, P2] = −ai,1P2,

[X2, P1] = −ai,2P1, [X2, P2] = −(ai,2 + aj,2)P2 − aj,1P1,

[H1, P1] = [H2, P1] = −P1, [H1, P2] = [H2, P2] = −P2,

[Y1 , P1] = [Y2, P1] = [Y1, P2] = [Y2, P2] = 0,

[X3, P1] = −P2, [X3, P2] = 0, [Y3, P2] = −P1, [Y3, P1] = 0.

Once again, these operators preserve the space of functions which are a solution to both equations

(4.56), and so does the Lie algebra spanned by them. The commutation relations in Table 4.1

are also straightforward (albeit tedious) to check.

[ · , · ] X1 Y1 H1 X2 Y2 H2 X3 Y3

X1 0 H1 −2X1 0 X3 −X1 0 −X2

Y1 −H1 0 2Y1 −Y3 0 Y1 Y2 0
H1 2X1 −2Y1 0 X2 −Y2 0 X3 −Y3

X2 0 Y3 −X2 0 H2 −2X2 −X1 0
Y2 −X3 0 Y2 −H2 0 2Y2 0 Y1

H2 X1 −Y1 0 2X2 −2Y2 0 −X3 Y3

X3 0 −Y2 −X3 X1 0 X3 0 H1 −H2

Y3 X2 0 Y3 0 −Y1 −Y3 H2 −H1 0

Table 4.1: Commutation relations of the symmetry operators for 2-dimensional simplex splines.
They are equivalent to the commutation relations of sl(3,R).

Once again, after adding the identity, this algebra is isomorphic to the algebra of gl(3,R),

suggesting a hidden projective structure for the nodes in two dimensions, just like in one di-

mension. The action of the projective representation of GL(3,R) on a spline function can be

computed as suggested in [250]. This construction might be generalizable to all dimensions,

allowing to define general multivariate splines on projective spaces. We are not aware of any

current research in this direction.
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numerical analysis

No hay en la vasta Biblioteca, dos libros idénticos. De esas premisas

incontrovertibles dedujo que la Biblioteca es total y que sus anaque-

les registran todas las posibles combinaciones de los veintitantos

śımbolos ortográficos (número, aunque vast́ısimo, no infinito) o sea

todo lo que es dable expresar: en todos los idiomas.

Jorge Luis Borges, El Jard́ın de senderos que se bifurcan,

La Biblioteca de Babel (1941)

As discussed in Chapter 3, spline functions have recently entered the realm of partial differ-

ential equations via the new field of isogeometric analysis [2, 252]. Under this new analytical

paradigm, B-spline (and NURBS) basis functions replace the more traditional polynomial bases

used in finite element (FE) simulations.

We have seen in Chapter 2 that, when evaluating the order of spatial approximation of a

function space via Jackson-type inequalities, one usually requires the space to be polynomial-

reproducing, i.e., containing in its linear span all the polynomials up to degree k. This property

is certainly satisfied by univariate B-splines (see (3.17)), and maximally so, since degree-k uni-

variate B-spline spaces reproduce degree-k polynomials.

Another property of B-spline functions, crucial for their application to real-world problems,

is the availability of robust and efficient algorithms to construct the polynomial-reproducing

function spaces, as well as efficiently determine and evaluate all the functions supported at a

given point. In fact, the classic Cox-De Boor recurrence formula (3.15) immediately leads to an

efficient evaluation algorithm capable of reusing intermediate results, such as the classic pyra-

midal evaluation scheme presented in [178, Chapter X, Algorithm 8], which underpins virtually

all practical implementations of B-splines (see Figure 3.5).

In more than one dimension, one needs multivariate equivalents of all these characteristics.

Perhaps the simplest solution, used in almost all CAD (Computer Aided Design) software and

models, is through the use of tensor products. This corresponds to defining, starting from a

collection of d univariate B-spline bases indexed by i1, . . . , id and with orders k1, . . . , kd, the

multivariate B-spline basis functions

Ni1,...,id,k1,...,kd(x1, . . . , xd) := Nk1,i1(x1) · · ·Nid,kd(xd). (5.1)

137
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The d-dimensional knots defining these splines can be thought of as forming a rectilinear d-

dimensional grid. This definition guarantees that the one-dimensional properties discussed above

directly and trivially extend to any number of dimensions, and also simplifies many calculations

due to the separability of superposition integrals.

Even with all its advantages, the tensor product structure of standard multivariate B-spline

basis functions can be too rigid for some specific applications, as for example the simulation

of PDEs in the natural sciences, where the physical parameters of a domain can have complex

geometrical interfaces of reduced regularity or discontinuity, with arbitrary topology, and no

CAD model is available.

Consider for example the seismic waveform inversion problem, in which an unknown model,

containing discontinuities, needs to be reconstructed starting from a smooth initial guess. Ge-

ological features such as salt domes, diapirs, hiatuses and faults can greatly contribute to the

complex shape and topology of these discontinuities. At some point, the inversion process would

require a localized reduction in the regularity of the model, in order to reproduce the reflectors

seen in the measured data. The only way to obtain this with the multivariate splines defined

as in (5.1) would be to duplicate some of the knots in one or more dimensions, according to

property 5 of Theorem 3.1.1. However, due to the rigid structure of the tensor product, it would

then be impossible to localize the discontinuity in a small subregion of the domain. One might

try to avoid this issue by using a curved geometry, and rely on control points to reproduce the

shape of the irregularity. Even then, it would still be impossible to change the simple topology

of a B-spline patch, and some geometries are too complex to be easily defined with only a few

isogeometric patches.

This issue is greatly amplified when dealing with inverse problems such as seismic inversion,

since the location, number and topology of the discontinuities is a priori unknown. Thus, one

would need a mechanism to dynamically insert and remove many isogeometric patches during the

inversion process, with arbitrary topology, and with a sufficiently good geometrical fit between

them. For this reason, we believe that the use of unstructured splines such as the simplex splines

introduced in Chapter 4 might simplify some of these issues, and therefore be a good choice for

the description of the heterogeneous, non-smooth and complex structure of the subsurface.

Many relevant properties for the construction and evaluation of a single simplex spline func-

tion have been given in the previous chapter. The issue that we tackle in this chapter is precisely

the construction of polynomial-reproducing spline spaces based on simplex splines in more than

one dimension.

5.1 State of the art

After the introduction of simplex splines, it was immediately apparent that their definition led

quite naturally to the construction of an unstructured spline space on d-dimensional simplicial

complexes [253]. Starting from the triangulation of a (d+k)-dimensional polytope, often simply

the cartesian product between a d-dimensional domain Ω with a k-dimensional slab, one can

employ the usual definition of a simplex spline (4.1), but with a projection π : Rd+k → Rd on the

first d coordinates instead of just the first one. This produces a set of spline functions of degree

k, one for every (d + k)-dimensional simplex of the triangulation of the polytope, with each
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spline supported over a number of adjacent d-dimensional simplices. The fact that this basis

constitutes a partition of unity is clear from the definition, but, perhaps more surprisingly, the

basis can be proven to reproduce all polynomials of degree k [254]. However, this construction

was immediately seen to be highly impractical, requiring the triangulation of high-dimensional

polytopes of arbitrary shape. An alternative formulation based on the triangulation of simploids,

i.e., cartesian products of simplices, was later proposed [255], only requiring the triangulation of

the d-dimensional domain of interest instead of a (d+ k)-dimensional polytope. However, even

this formulation, aside from being dependent on the chosen triangulation and other algorithmic

details, does not satisfy all the important properties required of a spline basis, and does not

naturally reduce to the usual univariate B-spline basis for d = 1. A good review of these and

other attempts can be found in [256].

A more recent approach to the problem of unstructured multivariate spline bases focuses

not on the definition of a spline basis on a a given triangulation, but simply on the selection

of an appropriate family of ns subsets (Si)
ns
i=1, Si ⊂ A, i = 1, . . . , ns, of the knot vector A,

such that the set of splines {M(x | Si)}ns
i=1 is polynomial-reproducing. A first attempt [257],

still originating from an underlying triangulation but requiring the selection of a special class

of auxiliary knots, was put forward by Dahmen and Micchelli. A more symmetrical result was

obtained by Neamtu [4, 256, 258], who proved that, if all the Delaunay configurations of order k

are chosen as subsets of knots, the resulting spline basis has order k and indeed reproduces all the

polynomials up to degree k. Delaunay configurations are a generalization of the usual (order-0)

Delaunay triangulations, and correspond to all the sets of indices (B, I), with |B| = d + 1 and

|I| = k, such that the circumsphere of the points (ai)i∈B contains exactly the points (ai)i∈I
in its interior, and no other point of A. The corresponding spline is then based on the union

(ai)i∈ItB of the d+ 1 boundary knots (ai)i∈B with the k internal knots (ai)i∈I .

More recently, in the case of bivariate splines (i.e., d = 2), Liu and Snoeyink [5, 259] have

provided a constructive algorithm that allows to build order-k Delaunay configurations itera-

tively, starting from k = 0. Their algorithm is derived as the dual of an algorithm by Lee [260]

that allows the construction of k-th order Voronoi subdivisions, and involves so-called centroid

triangulations. We will discuss Liu’s algorithm in the next section. In their work, Liu and

Snoeyink do not use directly the above definition, but instead propose an algorithm capable of

computing regular configurations of order k starting from those of order k − 1. They are able

to prove that their algorithm produces a compatible family of (generalized) Delaunay configu-

rations of order k for k ≤ 3. More recently, Schmitt [6] introduced another generalization of

Delaunay configurations by replacing circles with families of convex Jordan curves that inter-

sect pairwise at most twice. He proved that the regular convex Delaunay configurations defined

in this way correspond exactly to those produced by the algorithm of Liu and Snoeyink, and

that they satisfy the properties used by Neamtu in his proof of polynomial reproduction, thus

establishing the validity of the algorithm for all degrees k in dimension 2. Since then, many

interesting spline spaces, although not as general as Neamtu’s approach, have been built on

suitable triangulations and subdivisions (see, e.g., [261, 262]).

Overall, we find that the current state-of-the-art algorithms and approaches for simplex

splines are still lacking some important features compared with their tensor-product counter-

parts, especially since the usual geometrical approaches seem to complicate significantly in d > 2.
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Moreover, the current formulations fall short of treating the case of repeated knots, which is

required in order to impose boundary conditions and to locally control the regularity of the so-

lution. Finally, no simple and general evaluation scheme is known for simplex spline spaces, and

the structure of these spaces has not been investigated in sufficient detail to formulate efficient

numerical quadratures.

The rest of the chapter is devoted to providing a few contributions to these issues.

5.2 Background

This chapter uses notions coming from combinatorial geometry, for which we adopt some stan-

dard concepts and notation. We give here a summary of this notation, a brief introduction of

the combinatorial objects used in this chapter, as well as a quick reminder of the properties of

simplex splines that are relevant here.

5.2.1 Notation

Given n ∈ Z+, we define the range [n] := {1, . . . , n}. The union between two disjoint sets R

and S is denoted by R t S, and its complement [n] \ (R t S) is denoted by R t S. Note that

|R t S| = |R|+ |S|, where | · | denotes the cardinality of a set. We also borrow some convenient

notation from [4]. In particular, given a configuration of n ≥ d+1 points A := (a1, . . . , an) in Rd

and a set of indices I ⊆ [n] such that the points (ai)i∈I are affinely independent, we denote by

det(I) the (d+1)× (d+1) determinant det((ai, 1)i∈I), with the rows ordered so that det(I) > 0.

Similarly, we denote by det( Ikj ) the result of replacing the row corresponding to (aj , 1) in det(I)

with (ak, 1) in the same position. Notice that det( Ikj ) is not necessarily positive. Similarly, for

x ∈ Rd, det( Ixj ) is obtained by replacing the row (aj , 1) in det(I) with (x, 1).

Let now R(A) ⊂ Rd be any compact polytopal region with vertices in A. A subdivision T
of R(A) is a collection of d-dimensional polytopes ∆ with vertices in A such that

⋃
∆∈T ∆ =

R(A) and any two distinct polytopes in T have disjoint interiors and share a common face,

possibly empty. If all the polytopes are simplices, then T is a triangulation of R(A). Notice

that only points in A are allowed to be vertices of a subdivision. Consequently, for d ≥ 3,

there exist polytopal regions that cannot be triangulated in our sense, such as for example

Schönhardt’s polyhedron [263], see Figure 5.1 and also [264, 265] for some generalizations and

further combinatorial aspects of triangulations of polyhedra.

5.2.2 Simplex splines

We have introduced multivariate simplex spline functions in Chapter 4, along with some of their

properties. In this chapter, we rely mainly on the recurrence formula (4.36), which we express

as follows. Let A = (a1, . . . , an) be a vector of points in Rd and let X ⊆ [n] be a subset of size

|X| = k + d + 1. Then the normalized multivariate spline function M(x | (ai)i∈X) of degree k
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Figure 5.1: (Right) Schönhardt’s non-triangulable polyhedron, obtained by twisting one of the
faces of a triangular prism (left).

can be evaluated for all x ∈ Rd as

M(x | (ai)i∈X) :=


d!

det(X)
1X(x) if k = 0,

k + d

k

∑
b∈B

det( Bxb )

det(B)
M(x | (ai)i∈B\{b}) otherwise,

(5.2a)

(5.2b)

where 1X(x) := 1conv({ai}i∈X)(x) is the indicator function of the convex hull of the points indexed

by X, the determinants det(·) are defined in Section 5.2.1 above, and B is any subset B ⊆ X

with |B| = d+ 1 such that the points (ab)b∈B are affinely independent. If no such B exists, then

the affine rank of the points indexed by X is less than d+ 1 and the spline, supported on a zero-

measure set, is considered to be zero everywhere by continuity. It is a remarkable consequence of

(5.2) that the result is independent of the choice of B at each step (see, e.g., [205]). Also notice

that, as discussed in Chapter 4, simplex splines integrate to one, i.e.,
∫
Rd M(x | (ai)i∈X)dx = 1.

Recall that the functions M(x | · ) are multivariate piecewise-polynomial functions of x ∈ Rd

of maximum degree k, with regularity Ck−1 if all the points are affinely independent, and with

reduced regularity otherwise.

Another expression we rely on is the multivariate version of the knot insertion formula (4.22).

Specifically, if |X| ≥ d+ 2 (i.e., if k ≥ 1), we can select another index c ∈ X \B. We then have

det(B)M(x | (ai)i∈X\{c}) =
∑
b∈B

det( Bcb )M(x | (ai)i∈X\{b}). (5.3)

Just like (5.2b) relates splines of order k and k − 1, allowing for a recurrent evaluation scheme,

(5.3) relates splines with the same order k − 1.

5.2.3 Vector configurations and zonotopal tilings

We give here a very quick introduction to zonotopal tilings, and we refer the reader to [266] or

[267, Chapter 6] for a thorough introduction to these combinatorial objects.

Let A = (a1, . . . , an) be a configuration of points ai ∈ Rd, not necessarily affinely independent
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or even distinct, but which affinely span Rd. For each point ai, define its projective lift as

vi := (ai, 1) ∈ Rd+1, and let V := (v1, . . . , vn) be the associated vector configuration.

Given two subsets P , Q ⊂ Rd, their Minkowski sum is defined as the set P +Q := {x+ y ∈
Rd : x ∈ P, y ∈ Q}. The Minkowski sum of a set of segments is a special convex polytope known

as a zonotope. There is a natural zonotope Z(V ) ⊂ Rd+1 associated to each point configuration

V , defined as follows. For every index i ∈ [n], define the segment [0, vi] := {αivi ∈ Rd+1 : 0 ≤
αi ≤ 1}. Then, Z(V ) is given by the Minkowski sum

Z(V ) :=
n∑
i=1

[0, vi]. (5.4)

Given two subsets of indices I, B ⊆ [n] with I ∩ B = ∅, |B| = d + 1 and det(B) > 0, the

parallelepiped ΠI,B ⊂ Rd+1 is defined as

ΠI,B :=
∑
i∈I

vi +
∑
b∈B

[0, vb]. (5.5)

A collection P of parallelepipeds ΠI,B forming a polyhedral subdivision of Z(V ) is known as a

fine zonotopal tiling of Z(V ) (see [268] or [267, Chapter 7]). Notice that the (d+ 1)-dimensional

volume of the tile vold+1(ΠI,B) is equal to det(B), and that only B determines the shape of

ΠI,B, while I simply shifts its position. An example is shown in Figure 5.2. Notice that the set

I of each tile ΠI,B of P can be read off as the set of vectors in any shortest path connecting the

origin to the base of the tile. In the present work, we call |I| the order of the tile ΠI,B, and we

denote by P(k) for any integer k ≥ 0 the subset {ΠI,B ∈ P : |I| = k}.
The faces of a tile ΠI,B are themselves parallelepipeds that are obtained by setting αi equal

to 0 or 1 in some of the segments [0, vb] of (5.5). Clearly, if ΠJ,C is a face of ΠI,B then C ⊆ B

and I ⊆ J ⊆ I t B. If |C| = d then ΠJ,C is called a facet of ΠI,B. Since P is a subdivision,

a facet is either shared between exactly two tiles of P, or it is an external facet of Z(V ). It is

easily checked that two tiles ΠI,B and ΠI′,B′ share a facet if and only if there are two indices

b ∈ B, b′ ∈ B′ such that B \{b} = B′ \{b′} = B∩B′ and either I = I ′, I = I ′t{b′}, I ′ = I t{b}
or I t {b} = I ′ t {b′}. The shared facet ΠJ,C then satisfies C = B ∩B′ and J = I ∪ I ′.

Fine zonotopal tilings possess a number of remarkable properties. First, all such tilings of

Z(V ) are simply different arrangements of the same set of tile shapes.

Theorem 5.2.1 (Shephard [269, Theorem 56]). Every zonotope Z(V ) admits a fine zonotopal

tiling, and all fine zonotopal tilings of Z(V ) have the same number of tiles, namely one full-

dimensional tile for each maximal linearly independent subset of V .

Moreover, one can remove a point ai corresponding to an index i ∈ [n] from A and consider

the corresponding zonotope Z(V \ {vi}). Then, any tiling P of Z(V ) induces a tiling P[n]\{i} on

Z(V \ {vi}), as well as on any zonotope built on a subset of V , as follows.

Lemma 5.2.2. Let P be a fine zonotopal tiling of Z(V ). Then,

P[n]\{i} := {ΠI,B ∈ P : i 6∈ I tB} t
{

ΠI\{i},B : ΠI,B ∈ P, i ∈ I
}

(5.6)
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is a fine zonotopal tiling of Z(V \ {vi}). Similarly, for any Q ⊆ [n],

P[n]\Q :=
{

ΠI\Q,B : ΠI,B ∈ P, B ∩Q = ∅
}

(5.7)

is a fine zonotopal tiling of Z(V \ {vq}q∈Q).

Proof. The induced tiling (5.6), also found in [270, Proposition 4.3], can be recovered from the

first half of [266, Lemma 4.2] after noticing that Z(V ) and the centrally-symmetric zonotope Z
of [266] are related by the linear equation 2 · Z(V ) = Z +

∑n
i=1 vi. Applying (5.6) repeatedly

then yields (5.7).

Since the tiles in P form a polyhedral subdivision of Z(V ), we can form its dual graph G by

associating to each tile ΠI,B a vertex in G and by connecting two tiles ΠI,B and ΠI′,B′ with an

edge if and only if the tiles share a facet.

ZpV q

0

a1 a2, a3 a4 a5 a6

v1

v2 v3
v4

v5
v6

v2

v3

v4

v5

v6

R

∅, t1, 2u

∅, t2, 6u

t2u, t1, 4u t2u, t4, 6u t6u, t2, 5u
t1, 2u, t3, 4u

t2, 4u, t1, 3u

t2, 4u, t3, 6u

t2, 6u, t4, 5u

t5, 6u, t2, 4u

t2, 3, 4u, t1, 6u t2, 4, 6u, t3, 5u

t1, 2, 3, 4u, t5, 6u
t2, 3, 4, 6u, t1, 5u

Figure 5.2: (Left) a point configuration a1, . . . , a6 in R, with a2 = a3, their projective lifts
v1, . . . , v6 and the zonotope Z(V ). (Right) a fine zonotopal tiling of Z(V ), the subsets I,B
associated to each tile ΠI,B, and the dual graph G.

5.3 Polynomial-reproducing spline spaces

As briefly discussed in Section 5.1, Neamtu showed [4] that Delaunay configurations of order k

can be used to construct a space of simplex splines which is indeed polynomial-reproducing up

to degree k. We introduce here briefly his results, before proposing a generalization. First, let

us recall the definition of the polar form of a polynomial (see, e.g., [271]):

Definition 5.3.1. Let k ≥ 0 and let q(x), x ∈ Rd, be a d-variate polynomial of degree at most

k. Then there exists a unique function Q(x1, . . . , xk) of the d-dimensional variables (x1, . . . , xk)

that is symmetric under permutation of its arguments, affine in each of them, and that agrees

with q on the diagonal, i.e., Q(x, . . . , x) = q(x). The function Q is called the polar form of q.

Let A = {ai}i∈N be a countably infinite set of points in Rd in general position, i.e., where

no subset of d + 1 points is affinely dependent and no subset of d + 2 points is co-spherical,
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and with no accumulation point. A Delaunay configuration XI,B of order k ≥ 0 is any disjoint

couple of sets B, I ⊂ N with |B| = d + 1, |I| = k such that the sphere circumscribed to the

simplex ∆B := conv({ab}b∈B) contains in its interior the points {ai}i∈I and no other point of

A. Notice that this definition depends crucially on the points being in general position. To each

such configuration, we can associate through (5.2) the d-variate spline function of order k

M(x | XI,B) := M(x | {ai}i∈ItB).

Neamtu’s result can be stated as follows:

Theorem 5.3.2 (Neamtu [4]). Let q(x) be a polynomial of degree at most k. Then, for all

x ∈ Rd,

q(x) =

(
k + d

d

)−1 ∑
XI,B∈Dk

Q((ai)i∈I) vold(∆B)M(x | XI,B), (5.8)

where Q is the polar form associated to q and the sum is extended to the set Dk of Delaunay

configurations of A of order k.

Neamtu’s result is based upon some strong assumptions on A, notably the infiniteness and

the general position of points in A, which we are able to relax by using the combinatorial nature

of zonotopal tilings to our advantage.

Let now A = (a1, . . . , an) be any finite point configuration in Rd. Assume that the affine

span of the points in A is the whole Rd. Let V be the associated vector configuration and Z(V )

its associated zonotope, as in Section 5.2.3. Then the following, more general, statement holds:

Theorem 5.3.3. Let P be a fine zonotopal tiling of Z(V ), let 0 ≤ k ≤ n − d − 1 and let

P(k) := {ΠI,B ∈ P : |I| = k}. Each tile ΠI,B ∈ P(k) can be associated via (5.2) to the d-variate

spline of degree k = |I|
M( · | ΠI,B) := M( · | (ai)i∈ItB). (5.9)

Then, for any polynomial q(x) of degree at most k,

q(x) =
k!

(k + d)!

∑
ΠI,B∈P(k)

Q((ai)i∈I) vold+1(ΠI,B)M(x | ΠI,B) for x ∈ convk(A), (5.10)

where Q is the polar form of q(x) and

convk(A) =
⋂
S⊆[n]
|S|=n−k

conv({ai}i∈S)

is the intersection of the convex hulls of all subsets of A of size n− k.

The generalization with respect to Neamtu’s result is twofold. First, for a given point

configuration A, many different fine zonotopal tilings of Z(V ) can be constructed. Each tiling

then yields a family of polynomial-reproducing spline spaces for all degrees up to n− d− 1. In

fact, Delaunay configurations can be seen as a special case of this construction, as discussed in

the next section.
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A second generalization is that the point configuration A is allowed to contain affinely

dependent subsets and repeated points. In this case, some of the spline functions have re-

duced regularity [205], and thus the spline spaces that can be constructed in this way are more

generic. Observe that, if all the vertices of conv(A) are repeated at least k + 1 times in A,

then convk(A) = conv(A). We obtain therefore a multivariate generalization of the behavior of

clamped (also called open) knot vectors in one dimension.

Corollary 5.3.4. Assume that each vertex of conv(A) is repeated at least k+1 times in A. Then,

in the same conditions as Theorem 5.3.3, the splines M( · | ΠI,B) for ΠI,B ∈ P(k) reproduce

polynomials up to order k on the whole conv(A).

The resulting spline space contains functions that are non-vanishing on the boundary of conv(A).

This is a highly desirable property in view of practical applications, especially in numerical

analysis, where it can be used to impose non-homogeneous Dirichlet boundary conditions (see,

e.g., [2, Section 3.4]).

Finally, notice the similarity between (5.8), (5.10) and the univariate Marsden’s identity

(3.17). In particular, notice that only the internal knots of the spline (where the notion of

internal knot is specific to each of the three cases) appear in the polar form of the polynomial.

This aspect will become relevant in Chapter 6.

5.3.1 Proof of Theorem 5.3.3

Neamtu’s original proof of the fact that splines associated to Delaunay configurations are

polynomial-reproducing (Theorem 4.1 of [4]) rests on a crucial structural property regarding

neighbouring pairs of configurations, namely the edge matching property proven in [4, Proposi-

tion 2.1]. This property underpins also other formulations such as the algorithmic generalization

proposed by Liu and and Snoeyink [5, 259] and the geometric description of Schmitt in terms of

families of convex Jordan curves [6]. We prove hereafter that a similar property also holds for

zonotopal tilings.

Proposition 5.3.5. Let ΠJ,C be a facet of a tile ΠI,B ∈ P, with |J | = k. Then |I| = k or

|I| = k − 1, and exactly one of the following is true:

(i) ΠJ,C is shared between ΠI,B and exactly one other tile ΠI′,B′ ∈ P, with either |I ′| = k or

|I ′| = k − 1. Moreover, if {b} = B \ B′ and {b′} = B′ \ B, the two points ab and ab′ are

separated by the hyperplane H := aff({ac}c∈C) if and only if |I| = |I ′|;

(ii) there exists an index b ∈ B such that, for a suitable orientation of the hyperplane

H := aff({ac}c∈C), the points {ai}i∈I are in the positive closed halfspace of H, the points

{ai}i∈ItB are in the negative closed halfspace of H, and ab is in the positive open halfspace

of H if b ∈ J and in the negative open halfspace of H if b 6∈ J .

Proof. A facet ΠJ,C of a tile ΠI,B is obtained by choosing an index b ∈ B and setting the

corresponding coefficient αb of segment [0, vb] in (5.5) to either 0, in which case J = I, or 1, in

which case J = I t {b}. Thus, k := |J | = |I| or k := |J | = |I| + 1. Since the tiles in P form

a subdivision of Z(V ), ΠJ,C is either a shared facet between ΠI,B and exactly one other tile

ΠI′,B′ , or it is a boundary facet of Z(V ).
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In the first case, C = B ∩ B′, and the previous argument also implies that either J = I ′ or

J = I ′ t {b′}, with {b′} = B′ \B and {b} = B \B′, and thus |I ′| = k or |I ′| = k− 1. Since both

parallelepipeds are convex polytopes, their interiors are separated by the hyperplane spanned

by their common facet, and we can choose a nonzero vector N ∈ Rd+1, normal to the facet,

satisfying 〈vc, N〉 = 0 for all c ∈ C = B ∩B′, and〈
z − z′, N

〉
≥ 0 (5.11)

for all z ∈ ΠI,B and z′ ∈ ΠI′,B′ . Notice that necessarily 〈vb, N〉 6= 0 and 〈vb′ , N〉 6= 0, since the

vectors in B and B′ must be linearly independent. The case |I| = |I ′| corresponds to either

I = I ′ or I t {b} = I ′ t {b′}. If I = I ′, then setting (z, z′) = (vb +
∑

i∈I vi,
∑

i∈I′ vi) in (5.11)

yields 〈vb, N〉 > 0, while choosing (z, z′) = (
∑

i∈I vi, vb′ +
∑

i∈I′ vi) yields 〈vb′ , N〉 < 0. Thus,

sign(〈vb, N〉) = − sign(〈vb′ , N〉).

If I t {b} = I ′ t {b′}, the same choices of (z, z′) lead to the same conclusion. The case |I| 6= |I ′|
is very similar, since it implies either I = I ′ t {b′} or I t {b} = I ′. In both cases, plugging the

couples (z, z′) = (
∑

i∈I vi,
∑

i∈I′ vi) and (z, z′) = (vb +
∑

i∈I vi, vb′ +
∑

i∈I′ vi) in (5.11) leads to

sign(〈vb, N〉) = sign(〈vb′ , N〉).

Thus, the hyperplane H = {x ∈ Rd : 〈N, (x, 1)〉 = 0} satisfies the first part of the proposition.

Suppose now that ΠJ,C is a boundary facet of Z(V ), with {b} = B \ C. Since Z(V ) is a

convex polytope, all points z ∈ Z(V ) lie in the same closed halfspace of ΠJ,C , and we can choose

a nonzero vector N ∈ Rd+1, normal to ΠJ,C , so that 〈vc, N〉 = 0 for all c ∈ C and

〈z −
∑
j∈J

vj , N〉 ≤ 0 (5.12)

for all z ∈ Z(V ). Plugging into (5.12), respectively, z = ve +
∑

j∈J vj with e 6∈ J and z =∑
j∈J,j 6=f vj with f ∈ J shows that

〈vc, N〉 = 0, 〈ve, N〉 ≤ 0, 〈vf , N〉 ≥ 0

for all c ∈ C, e 6∈ J and f ∈ J . Moreover, as before, 〈vb, N〉 6= 0 otherwise the vectors indexed

by B would be linearly dependent. Therefore, 〈vb, N〉 > 0 if b ∈ J , and 〈vb, N〉 < 0 if b 6∈ J .

Since I ⊆ J ⊆ I tB, the hyperplane H = {x ∈ Rd : 〈N, (x, 1)〉 = 0} satisfies the second part of

the proposition.

Alternative (i) of Proposition 5.3.5 corresponds exactly to (a generalization of) essential and

non-essential faces between Delaunay configurations that are described in [4, Proposition 2.1].

However, in Proposition 5.3.5 above, the underlying point set A is finite, leading to the additional

case (ii). Notice that the points are not required to be in general position, and can even be

repeated multiple times in A.

Armed with this result, we are ready to establish the polynomial reproduction property for

spline functions associated to P. The proof is similar to that of [4, Theorem 4.1]; nonetheless,
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we give here the full derivation in order to point out the contribution of boundary facets. We

start by proving the case k = 0.

Proposition 5.3.6. Let P(0) := {Π∅,B ∈ P}. Then the set of simplices T (0) = {∆B :=

conv({ab}b∈B) : Π∅,B ∈ P(0)} triangulates conv(A).

Proof. Define the hyperplane H1 := {x ∈ Rd+1 : xd+1 = 1} and let π be its canonical identifica-

tion with Rd using the first d coordinates. It follows from (5.4) that π(Z(V ) ∩H1) = conv(A),

since this set corresponds exactly to all the convex combinations of points in A. Similarly, for

any tile ΠI,B ∈ P, (5.5) implies that π(ΠI,B ∩H1) is empty if |I| > 1, equal to the single point

ai if I = {i}, or equal to the simplex conv({ab}b∈B) if I = ∅. The proposition then follows from

the fact that the tiles ΠI,B of P form a subdivision of Z(V ).

The indicator functions of simplices in T (0) correspond exactly to degree-zero splines via

(5.2a). Proposition 5.3.6 then provides the root of the recurrence in the following proof.

Proof of Theorem 5.3.3. Similarly to the proof of [4, Theorem 4.1], we simply have to prove

that, for x ∈ convk(A), the expression∑
ΠI,B∈P(k)

Q((ai)i∈I) vold+1(ΠI,B)M(x | ΠI,B) (5.13)

can be rewritten in terms of the tiles in P(k−1) as

k + d

k

∑
ΠI′,B′∈P(k−1)

Q((ai)i∈I′ , x) vold+1(ΠI′,B′)M(x | ΠI′,B′). (5.14)

In fact, iterating until k = 0 directly leads to the expression(
k + d

k

) ∑
Π∅,B∈P(0)

Q(x, . . . , x) vold+1(Π∅,B′)M(x | Π∅,B′),

which is simply equal to (k+d)!/k! q(x) thanks to (5.2a), the definition of polar form (Definition

5.3.1), and the fact that the simplices defined by splines in P(0) triangulate conv(A) (Proposition

5.3.6).

In order to prove that (5.13) is equal to (5.14), similarly to [4], we first apply the spline

recurrence formula (5.2b) to (5.13), obtaining

k + d

k

∑
ΠI,B∈P(k)

Q((ai)i∈I)
∑
b∈B

det( Bxb )M(x | ΠI,B\{b}), (5.15)

since vold+1(ΠI,B) = det(B). We can associate every term in (5.15) with a facet ΠI,B\{b} of P.

Following Proposition 5.3.5, there are three possibilities:

(i) The facet is shared with exactly one other tile ΠI′,B′ ∈ P(k), with I ′ = I, B′ \ {b′} =

B \ {b} = B ∩ B′ for some b′ ∈ B′, and with ab and ab′ lying on opposite sides of
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H := aff({vi}i∈B∩B′). Therefore det( Bxb ) = −det( B′x
b′ ), and the two corresponding terms

in the sum cancel each other;

(ii) The facet is shared with exactly one other tile ΠI′,B′ ∈ P(k−1), with I ′t{b′} = I, B′\{b′} =

B \ {b} = B ∩ B′ for some b′ ∈ B′, and with ab and ab′ lying on the same side of

H := aff({ai}i∈B∩B′). After noticing that I tB \ {b} = I ′ tB′, the corresponding term in

(5.15) can be rewritten as

k + d

k
Q((ai)i∈I′t{b′}) det( B′

x
b′ )M(x | (ai)i∈I′tB′). (5.16)

(iii) The facet lies on the boundary of Z(V ). In this case the hyperplane H := aff({ai}i∈B\{b})
contains all the points {ai}i∈ItB\{b} in its positive closed halfspace, out of which at most

|I| = k points are in its positive open halfspace. All other points of A lie in its negative

closed halfspace. Consequently, if x is in the interior of convk(A), then necessarily x 6∈
conv({ai}i∈ItB\{b}) and therefore

M(x | ΠI,B\{b}) = M(x | (ai)i∈ItB\{b}) = 0.

Focusing now on (5.14), and again similarly to [4], we rewrite x in barycentric coordinates

with respect to the simplex conv({ab′}b′∈B′) as

x =
∑
b′∈B′

det( B′x
b′ )

det(B′)
ab′ , (5.17)

and since Q is multiaffine and vold+1(ΠI′,B′) = det(B′), using (5.17), we can rewrite (5.14) as

k + d

k

∑
ΠI′,B′∈P(k−1)

M(x | ΠI′,B′)
∑
b′∈B′

Q((ai)i∈I′t{b′}) det( B′
x
b′ ). (5.18)

Similarly as before, by Proposition 5.3.5, we can associate each term in (5.18) with a facet

ΠI′t{b′},B′\{b′} of P. If such a facet is shared with exactly one other tile ΠI,B ∈ P(k−1), then it

appears twice in the sum, and the two contributions cancel each other since I ′ t {b′} = I t {b},
I t B = I ′ t B′ and ab, ab′ are separated by H := aff({ai}i∈B∩B′). Terms corresponding to

facets on the boundary of Z(V ) again do not contribute to the sum, since the corresponding

hyperplane H := aff({ai}i∈B′\{b′}) separates at most the k points in I ′ t {b′} from the other

n− k points of A, and since b′ 6∈ I ′, the points {ai}i∈I′tB′ either lie on H or on the positive side

of H. Thus, if x ∈ convk(A), we have once more

M(x | ΠI′,B′) = M(x | (ai)i∈I′tB′) = 0.

The remaining terms correspond to facets shared with exactly one other tile ΠI,B ∈ P(k), and

they are equal to the terms (5.16), completing the proof.

Two examples of families of spline spaces associated to fine zonotopal tilings are shown in

Figure 5.3.
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Figure 5.3: Two possible fine zonotopal tilings of Z(V ) for the point configuration of Figure
5.2 and their associated spline spaces of degrees k = 0, . . . , 4 for the standard one-dimensional
B-spline basis (top) and an alternative tiling (bottom).
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5.3.2 Spline space construction

As discussed in Section 5.1, Liu and Snoeyink’s algorithm [5, 259] for the iterative construction

of generalized Delaunay configurations of A is based on the concept of the order-k centroid

triangulation [259, 272–274], which is a triangulation of the point set A(k) whose elements are the

averages of k-element subsets of A. The order-1 centroid triangulation is simply an (arbitrary)

triangulation of A, and an order-k centroid triangulation is obtained from an order-(k − 1)

centroid triangulation by a subdivision of the polygonal neighborhood of every vertex (its link

region), with complete freedom in the choice of triangulation for each polygon. Every triangle

obtained in this way is then associated to a spline function of degree k.

One major hurdle for the extension of this algorithm to dimensions d > 2 lies in the existence

of non-convex regions that do not admit any triangulation without introducing new vertices. If

such a region is encountered, the algorithm cannot continue, and there is no known condition

under which the link regions are all guaranteed to be triangulable. Moreover, the case of affinely

dependent and/or repeated points is excluded from the proofs and treated with symbolic pertur-

bation, which creates ambiguous cases and does not allow to extend the proofs of convergence

easily. This problem becomes even harder to address as the number of space dimensions grows.

Given a fine zonotopal tiling P of Z(V ), we prove in this section that there exists a con-

struction algorithm similar to Liu and Snoeyink’s, with a suitable choice of triangulations, that

is able to iteratively construct P. This result rests on a natural definition of the link region

R(I) associated to each subset I ⊂ [n] (Definition 5.3.7), which generalizes naturally Liu and

Snoeyink’s notion of vertex link.

5.3.3 Relationship with centroid triangulations

Letting r be a natural number and denoting by Hr the hyperplane Hr := {x ∈ Rd+1 : xd+1 = r},
the intersection

Q(r) := Z(V ) ∩Hr

corresponds to the set Q(r) := {
∑n

i=1 αivi : 0 ≤ αi ≤ 1,
∑n

i=1 αi = r}, which is just the convex

hull of the points V (r) := {
∑

b∈B(ab, 1), B ⊆ [n], |B| = r}. The region Q(r) is also known as (a

multiple of) the r-set polytope of A [275, 276]. Just as vectors in V are in bijection with points

of A, the set of vectors V (r) can be recast as the set A(r) of all possible averages of r points in

A. The intersection P ∩Hr of a zonotopal tiling of Z(V ) with Hr then produces a subdivision

of V (r) [270, 277] and therefore of A(r), which corresponds to a centroid subdivision in the sense

of [259, 272–274].

Recall that the standard hypersimplex ∆m,n is defined as the convex hull of the points

(x1, . . . , xm) ∈ Rm such that 0 ≤ xi ≤ 1 and x1 + . . . + xm = n. Then, according to (5.5), the

intersection of a tile ΠI,B, |I| = k with the hyperplane Hr is an affine transformation of the

hypersimplex ∆d+1,r−k, which has a positive dimension if and only if k < r < k+d+1. Translated

in the language of spline spaces, this means that the cells in the r-th centroid subdivision induced

by P are slices of tiles associated via (5.9) to the basis splines

SP(r) := {M( · | ΠI,B), r − d− 1 < k := |I| < r}.
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For d = 2, only two types of cells appear in each r-th centroid triangulation for r > 1, cor-

responding to splines of degree k = r − 1 and k = r − 2. The corresponding hypersimplices

∆3,1 and ∆3,2 are just triangles, and therefore the subdivision is a so-called bi-colored triangu-

lation. This fact is widely known in the context of centroid triangulations [259, 260, 272–274],

where the corresponding triangles are called type-I and type-II triangles, respectively. In dimen-

sion d > 2, the induced subdivision is no longer a triangulation, and the splines of all orders

r − d+ 1 ≤ k ≤ r − 2 appear in the r-th centroid subdivision as hypersimplices, e.g., octahedra

for d = 3, k = r − 2.

5.3.4 Link regions

We define the link region of a subset Q ⊆ [n] as follows:

Definition 5.3.7. Given a fine zonotopal tiling P of Z(V ) and a subset Q ⊆ [n], |Q| = k, the

regions E(r)(Q), r ≥ 0, are defined as the union of simplices

E(r)(Q) :=
⋃

ΠI,B∈E(r)(Q)

conv({ab}b∈B), (5.19)

with

E(r)(Q) :=
{

ΠI,B ∈ P(r) : B ∩Q = ∅, I ⊆ Q
}
. (5.20)

The link region R(Q) of Q is defined as R(Q) := E(k)(Q).

An example of link region, and its relation to the regions (5.19), is shown in Figure 5.4.

Notice that E(k)(Q) = {ΠI,B ∈ P : I = Q} and that E(r)(Q) = ∅ for r > k. It can be easily

checked, though we will not do it explicitly here, that in two dimensions the above defined link

region coincides with the interior of a vertex link as used in [5, 6, 259]. However, Definition

5.3.7 is more straightforward, more general, and can be applied to all point configurations in

any dimension, allowing to easily prove some important properties, as we do presently.

Proposition 5.3.8. For any subset Q ⊆ [n], |Q| = k, define

convQ(A) := conv({ai}i 6∈Q)

and let r ≥ 0. Then, the following holds:

(i) The set of simplices T (r)(Q) := {conv({ab}b∈B) : ΠI,B ∈ E(r)(Q)} forms a triangulation of

E(r)(Q);

(ii) The regions E(r)(Q) form a subdivision of convQ(A);

(iii) The union of all simplices
⋃
r≥0 T (r)(Q) triangulates convQ(A);

(iv) The simplices T (k)(Q) triangulate the link region R(Q).

Proof. Obviously, (i) implies (iv) via Definition 5.3.7. Notice also that (iii) implies both (ii) and

(i), since it is clear from (5.20) that E(r)(Q)∩E(s)(Q) = ∅ if r 6= s. Therefore, the triangulation

of convQ(A) decomposes into disjoint triangulations of the subregions E(r)(Q), r = 1, . . . , k.
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Let now P(Q) be the induced tiling of Z(V \{vq}q∈Q) via (5.7). Comparing (5.20) with (5.7)

shows that the tiles {ΠI,B ∈
⊔
r≥0 E(r)(Q)} are in bijection with the tiles {Π∅,B ∈ P(Q)} =:

P(0)(Q). Therefore, by Proposition 5.3.6, the simplices {conv({ab}b∈B) : Π∅,B ∈ P(0)(Q)} form

a triangulation of convQ(A), proving (iii).

Based on these facts, we can replace Definition 5.3.7 of the link region of Q, |Q| = k, with

R(Q) := convQ(A) \

(
k−1⋃
r=0

E(r)(Q)

)
, (5.21)

which is preferred from an algorithmic standpoint because it expresses R(Q) only in terms of

the tiles ΠI,B ∈ Pr with r < k. Given that the simplex conv({ab}b∈B) is non-degenerate for

any tile ΠI,B, Proposition 5.3.8 implies that the region R(Q) := E(k)(Q) is empty if and only

if its triangulation does not contain any simplex, i.e., if and only if E(k)(Q) is empty. We have

therefore the following corollary.

Corollary 5.3.9. R(Q) is nonempty if and only if there is a tile ΠI,B ∈ P with I = Q.

Proposition 5.3.8 and Corollary 5.3.9 together imply that any fine zonotopal tiling P of Z(V ),

and therefore the associated family of spline spaces, can be obtained iteratively by triangulating

the link region associated to each set I for every tile ΠI,B through some choice of triangulation,

similarly to Liu and Snoeyink’s algorithm in two dimensions. This statement is made precise

in the following theorem. In its proof, we make use of Stiemke’s Theorem [278], a variation of

Farkas’ Lemma stating that, given any set {x1, . . . , xm} of m vectors in Rn, exactly one of the

following alternatives is true: either there exist α1, . . . , αm > 0 such that
∑m

i=1 αixi = 0, or

there exists y ∈ Rn such that 〈y, xi〉 ≤ 0, for i = 1, . . . ,m, and 〈y, xi〉 6= 0 for at least one index.

Theorem 5.3.10. There exists a choice of triangulations TI such that any zonotopal tiling P
of Z(V ) (and its associated spline spaces at all orders 0 ≤ k ≤ n − d − 1) can be iteratively

constructed using the following procedure:

(i) Let I(0) = {∅};

(ii) For every 0 ≤ k ≤ n− d− 1 and for every I ∈ I(k), let R(I) be the link region computed

via (5.21), and let TI be its triangulation. Denoting the simplex ∆B := conv({ab}b∈B), the

subset of tiles P(k) := {ΠI,B ∈ P : |I| = k} is given by

P(k) = {ΠI,B : I ∈ I(k), ∆B ∈ TI};

(iii) Let

I(k+1) = {I t {b} : ΠI,B ∈ P(k), b ∈ B, R(I t {b}) 6= ∅}; (5.22)

(iv) Repeat (ii) and (iii) until k = n− d− 1, I(k+1) = ∅. Then P =
⊔n−d−1
k=0 P(k).
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Proof. Let P be a fine zonotopal tiling of Z(V ). Item (iv) of Proposition 5.3.8 directly states that

the tiles ΠI,B ∈ P(k) (i.e., splines of degree k) are in bijection with the simplices conv({ab}b∈B)

of a triangulation of the link region R(I). Furthermore, due to Corollary 5.3.9, all the tiles

ΠI,B ∈ P(k) are associated with a nonempty link region, which is always triangulable since

Proposition 5.3.8 exhibits one such triangulation. The only thing left to determine is the set

{I : ΠI,B ∈ P}.
Notice that I ∈ I(0) implies I = ∅, and by (5.21), R(∅) = conv(A). Therefore, the tiles

Π∅,B (i.e., splines of degree 0) are in bijection with the simplices of a triangulation of conv(A),

in accordance with Proposition 5.3.6.

Assume now that we have obtained all the tiles ΠI,B ∈ P(r) for r = 0, . . . , k, and we want to

determine the set I(k+1) := {I : ΠI,B ∈ P(k+1)}.
Let Q ⊂ [n], |Q| = k + 1, be a set of indices such that R(Q) 6= ∅, let {∆f , f = 1, . . . , F}

be the F boundary facets of R(Q), and for every f = 1, . . . , F , let ΠQ,Bf
and bf ∈ Bf be a

tile in P(k+1) such that ∆f = conv({ai}i∈Bf\{bf}). By Proposition 5.3.6, this tile is unique.

Suppose that all the facets {ΠQ,Bf\{bf}, f = 1, . . . , F} lie on the boundary of Z(V ), let |∆f | be

the volume of ∆f and let Nf ∈ Rd be its normalized normal vector. Without loss of generality,

we can choose either all inward or all outward normal vectors so that
∑F

f=1 |∆f |
〈
Nf , abf

〉
≤ 0.

Since R(Q) is a nonempty, bounded polytopal region, we know that
∑F

f=1 |∆f |Nf = 0, and we

can therefore write the following linear dependency with positive coefficients,

F∑
f=1

|∆f |
(
Nf ,−

〈
Nf , abf

〉)
+ (0,

F∑
f=1

|∆f |
〈
Nf , abf

〉
) = 0. (5.23)

Fix a point aq with q ∈ Q. If, for all f = 1, . . . , F , aq were separated from abf by the hyperplane

conv({ai}i∈Bf\{bf}), then we would have

(aq, 1) ·
(
Nf ,−

〈
Nf , abf

〉)
=
〈
Nf , aq − abf

〉
< 0,

(aq, 1) · (0,
F∑
f=1

|∆f |
〈
Nf , abf

〉
) =

F∑
f=1

|∆f |
〈
Nf , abf

〉
≤ 0.

(5.24)

By Stiemke’s Lemma, (5.23) and (5.24) cannot both be true. Therefore, there must be an index

f such that the facet ΠQ,Bf\{bf} does not lie on the boundary of Z(V ). Observe also that

ΠQ,Bf\{bf} cannot be shared with another tile ΠI′,B′ ∈ P(k+1), since otherwise I ′ = Q and ∆f

would not be a boundary facet of R(Q). Therefore, by Proposition 5.3.5, there must be a tile

ΠI,B ∈ P(k) with Bf \ {bf} = B \ {b} = Bf ∩B and Q = I t {b} for some b ∈ B. We conclude

that

I(k+1) ⊆ {I t {b} : ΠI,B ∈ P(k), b ∈ B}.

After filtering out the sets {I t {b} : R(I t {b}) = ∅}, we are left exactly with (5.22).

Finally, when |Q| = n − d, the set convQ(A) only contains d points, and therefore the link

region R(Q) has an empty interior. Therefore, I(n−d) = ∅, and the process stops.

This theorem states essentially that any fine zonotopal tiling of Z(V ) can be built using a

version of Liu and Snoeyink’s algorithm, provided that we know in advance which triangulation
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needs to be applied to each subset {I : ΠI,B ∈ P}. In other words, it proves that their algorithm

is a universal way of constructing fine zonotopal tilings of Z(V ) and their associated spline

spaces. However, this result stops short of providing a fully-formed construction algorithm, as

it does not guarantee that any given choice of triangulations leads to a valid construction, only

that such a choice exists. In the next section, we show that regular fine zonotopal tilings can

be obtained by choosing a weighted Delaunay triangulation at each step, providing a sufficient

condition on the triangulations that guarantees the convergence of the construction process.

Finally, we give a couple of interesting results regarding the combinatorial structure of spline

spaces built by Theorem 5.3.10. First, as a direct consequence of Theorem 5.2.1, we obtain the

following simple characterization of the total number of spline functions:

Corollary 5.3.11. The total number of spline functions built by the process described in Theorem

5.3.10 on a point set A with |A| = n, summed over all orders k = 0, . . . , n − d − 1, is always

equal to the number of maximal affinely independent subsets of A.

Next, we provide a characterization of the set of simplices

T (k) := {conv({ab}b∈B) : ΠI,B ∈ P(k)}.

The intersection of these simplices defines the zones where all the spline functions are pure

polynomials, and their boundaries define the zones of reduced regularity of spline functions, i.e.,

knots in d = 1, knot lines in d = 2 and more generally knot hypersurfaces in d > 2.

Proposition 5.3.12. For all 0 ≤ k ≤ n− d− 1, the simplices in T (k) cover
(
k+d
d

)
times the set

convk(A).

Proof. By induction over k. The simplices in T (0) form a triangulation of conv(A) by Proposition

5.3.6, and therefore cover it exactly once. Assume now that the proposition is true for every

r < k. By Property (iii) of Proposition 5.3.8, for any subset Q ⊂ [n] with |Q| = k, the simplices

{conv({ab}b∈B) : ΠI,B ∈ E(r)(Q), r ≤ k} triangulate convQ(A), i.e.,

k∑
r=0

∑
ΠI,B∈E(r)(Q)

1B = 1convQ(A),

where 1convQ(A) : Rd 7→ R is the indicator function of the set convQ(A) ⊂ Rd and 1B is the

indicator function of conv({ab}b∈B). We sum this expression over all subsets Q ⊂ [n], |Q| = k.

Each tile ΠI,B ∈ P(r) appears in the sum whenever ItJ = Q for some subset J ⊂ [n], |J | = k−r
with J∩B = ∅. Therefore, the occurrences of a tile of P(r) in the sum correspond to the possible

choices of |Q \ I| = k − r indices among the
∣∣I tB∣∣ = n − r − d − 1 which are available. We

obtain ∑
ΠI,B∈P(k)

1B +

k−1∑
r=0

(
n− r − d− 1

k − r

) ∑
ΠI,B∈P(r)

1B =
∑

Q⊂[n],|Q|=k

1convQ(A). (5.25)

By induction, the simplices derived from the tiles in P(r) cover the region convr(A) ⊇ convk(A)

exactly
(
r+d
d

)
times, and the sum on the right covers convk(A) exactly

(
n
k

)
times. Using multiset
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notation and the Vandermonde identity, we can derive

k∑
r=0

(
n− r − d− 1

k − r

)(
r + d

r

)
=

k∑
r=0

((
n− k − d
k − r

)) ((
d+ 1

r

))
, (5.26)

=

((
n− k + 1

k

))
=

(
n

k

)
.

Separating the term with r = k in the first sum in (5.26), we conclude that the first term

in (5.25), i.e., the set of all simplices in T (k), must cover the region convk(A) exactly
(
k+d
d

)
times.

Notice that in general it is not possible to extract a collection of
(
k+d
d

)
independent trian-

gulations from the set T (k), as these simplices form in general a branched cover of conv(A).

In practice, T (k) forms a complex web of overlapping simplices that contains many complex

intersections, see, e.g., Figure 5.4.

Ep0q

Ep1q

Ep2q

Ep3q
a1

a2

a3

Ep0q

a1

a2

a3

Ep1q

Ep3q
Ep2q “ ∅

Figure 5.4: For a point configuration A ⊂ R2 with collinear points, the sets T (k) for k = 0 (left) and
k = 2 (center left), with the shading indicating the number of simplices covering each point, and the
regions E(r)(Q) of (5.19) for two possible choices of Q := (a1, a2, a3) (right, center right).

5.4 Spline spaces from regular fine zonotopal tilings

We specialize the results of the previous section to spline spaces derived from regular fine zono-

topal tilings. Given a polytope P ⊂ Rd+2, we define its upper convex hull as the set of faces of

P whose outward normal vector has a positive (d+ 1)-th component.

Definition 5.4.1. A zonotopal tiling P of Z(V ) ⊂ Rd+1 is regular if its tiles are precisely

the projections along the (d + 1)-th coordinate of the faces in the upper convex hull of another

zonotope Ẑ ⊂ Rd+2.

We show that this special case corresponds exactly to simplex splines associated to weighted

Delaunay configurations. The special properties of these tilings then allow us to derive a set

of practical algorithms for the construction of the spline spaces and the determination and

evaluation of all spline functions that are supported at a given point x ∈ Rd.
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5.4.1 Delaunay triangulations and regular zonotopal tilings

Let h : A 7→ R be a height function over A. Let T be a set of simplices that triangulate

conv(A) with vertices in A. For every subset B ⊆ [n], |B| = d+ 1 such that there is a simplex

∆ := conv({ab}b∈B) ∈ T , let us order B such that det((ab, 1)b∈B) > 0. If, for every i ∈ A \B,

det((ab, h(ab), 1)b∈B, (ai, h(ai), 1)) < 0, (5.27)

then the triangulation T is called a weighted Delaunay triangulation with height function h. If

the points of A are in general position, plugging h(a) = |a|2 in (5.27) yields the usual Delaunay

triangulation, see, e.g., [213].

In order for the Delaunay triangulation to exist and to be unique, a bit of care is required

when choosing the height function h.

Definition 5.4.2. A height function h is generic if, given the lifted point cloud

Â := {(a, h(a)), a ∈ A} ⊂ Rd+1,

the only affinely dependent subsets of d+2 points in Â lie on a vertical plane, i.e., a plane whose

normal N ∈ Rd+1 satisfies Nd+1 = 0.

Notice that affinely dependent subsets are indeed allowed on vertical planes, and thus the

points in A can be repeated or affinely dependent. If h is generic, then the determinant in

(5.27) is always nonzero, and the weighted Delaunay triangulation is unique. Hereafter, we will

only consider generic height functions. We can now use (5.27) to specialize Theorem 5.3.10 to

weighted Delaunay triangulations.

Theorem 5.4.3. Let h be a generic height function on A, and, for every set Q ⊆ [n], let TQ(h)

be the weighted Delaunay triangulation of R(Q) with height function h. Then the procedure

outlined in Theorem 5.3.10 with the choice TI = TI(h) always produces a regular fine zonotopal

tiling P(h).

Proof. It is easy to prove this theorem using the lifting property (5.27). See also [279, 280] and

especially [281] for similar constructions and an interesting generalization.

Let Â = {âi := (ai, h(ai)), i = 1, . . . , n} ⊂ Rd+1 be the point cloud lifted by h, V̂ :=

{(ai, h(ai), 1) : i = 1, . . . , n} be the associated vector configuration, and Z(V̂ ) be the zonotope

built on V̂ . Denoting by π : Rd+2 7→ Rd+1 the projection that removes the (d+1)-th coordinate,

it is easy to check that π(Z(V̂ )) = Z(V ). We define P(h) as the regular zonotopal tiling

P(h) := {π(Π̂I,B) : Π̂I,B is in the upper convex hull of Z(V̂ )}. (5.28)

The fact that (5.28) is indeed a regular zonotopal tiling of Z(V ) was proven, e.g., in [282,

Lemma 2.2]. Since Π̂I,B is a boundary facet of Z(V̂ ), we can follow the same reasoning as

in the proof of item (ii) of Proposition 5.3.5. After selecting the face normal NB of Π̂I,B

with (NB)d+1 > 0, given that h is generic and the face is not vertical, we conclude that the

determinant

det((ab, h(ab), 1)b∈B, (ai, h(ai), 1)) (5.29)
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is positive for all i ∈ I and negative for all i ∈ I tB, while the condition (NB)d+1 > 0 translates

to det((ab, 1)b∈B) > 0. Since only the points {ai}i∈ItB appear in the link region R(I), the

weighted Delaunay condition (5.27) is satisfied for all the points in R(I).

Theorems 5.3.10 and 5.4.3 together give a practical construction algorithm for all regular

fine zonotopal tilings of Z(V ), and therefore for their associated spline spaces. Restricting the

construction to the special case d = 2 and to points in generic position, this process reduces to

a version of Liu and Snoeyink’s construction algorithm [5, 6, 259].

5.4.2 Splines supported at a point

In this subsection we show that, in the case of spline spaces associated to regular fine zonotopal

tilings, there exists an efficient process to determine all the spline functions up to a given degree

k ≥ 0 that are supported at a given point x ∈ Rd. This is equivalent, by (5.9), to finding all the

tiles ΠI,B ∈ P(h) such that x ∈ conv({ai}i∈ItB). In this case, by extension, we say that the tile

ΠI,B is supported at x.

For spline functions of degree 0, the task is particularly simple. In fact, since the simplices

T (0) triangulate conv(A) (Proposition 5.3.6), whenever x ∈ conv(A) there is one and only one

tile Π∅,Z supported at x. Computationally, Π∅,Z can be found efficiently via a point location

query on a triangulation, for which many efficient algorithms exist, see, e.g., [283, 284]. We

prove in the remainder of this section that all the other tiles ΠI,B (and hence spline functions)

supported at x can be found from Π∅,Z using a suitable orientation, induced by x, of the dual

graph G of P(h), i.e., the simple, connected graph having the tiles of P(h) as vertices and their

connecting internal facets as edges.

We assume hereafter that the test point x ∈ Rd is generic, i.e., it satisfies the following

condition:

x 6∈ aff({ac}c∈C) for all internal facets ΠJ,C of P.

This excludes from the possible values of x a zero-measure subset of Rd, and as a consequence,

all the following results must be understood to hold almost everywhere. This restriction can be

easily lifted using some well-known techniques such as symbolic perturbation. We can define an

orientation ox, depending on x, on the dual graph G of P as follows. Let ΠJ,C be a facet shared

by two tiles ΠI,B and ΠI′,B′ , with normal vector NC ∈ Rd+1. Then we define the orientation of

the corresponding edge in G as ΠI,B → ΠI′,B′ if and only if

sign (〈NC , (x, 1)〉) = sign
(〈
NC , z

′ − z
〉)

(5.30)

for any z′ ∈ ΠI′,B′ , z ∈ ΠI,B. In other words, we pick the direction of NC that leads to a positive

scalar product with (x, 1), and we use it to orient the corresponding edge.

The orientation ox defined by (5.30) yields a directed graph (G, ox). In the case of regular

tilings, this graph is acyclic.

Lemma 5.4.4. Let P(h) be a regular fine zonotopal tiling of Z(V ) with generic height function

h. Then the directed graph (G, ox) is acyclic for every generic x ∈ Rd. The same is true for any

fine zonotopal tiling P of Z(V ), regular or not, when d = 1.
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Proof. Let Πi := ΠIi,Bi , i = 1, . . . , r be a family of r tiles of P(h) and let Fi := ΠJi,Ci , i = 1, . . . , r

be a family of facets such that Fi is shared between the tiles Πi and Πi+1. Let us assume that

the tiles form a cycle in G, i.e., Πr+1 = Π1. For each 1 ≤ i ≤ r, let Ni := NCi be a vector normal

to the i-th facet and pointing from the tile Πi to the tile Πi+1.

Since P(h) is regular, by Theorem 5.4.3, for each tile Πi there is a vector yi ∈ Rd+2 with

(yi)d+1 > 0 such that 〈yi, (as, h(as), 1)〉 is positive if s ∈ Ii, zero if s ∈ Bi, and negative if

s ∈ Ii tBi . Define the point gi ∈ Rd+1 component-wise as

(gi)j :=
(yi)j

(yi)d+1
, j = 1, . . . , d, (gi)d+1 :=

(yi)d+2

(yi)d+1
, (5.31)

which is possible since (yi)d+1 > 0. For all b ∈ Bi, 〈yi, (ab, h(ab), 1)〉 = 0 implies

〈gi, vb〉 = −h(ab), (5.32)

and as a consequence, for all c ∈ Bi ∩Bi+1 = Ci,

〈gi+1 − gi, vc〉 = 0, (5.33)

i.e., the vector (gi+1 − gi) is parallel to Ni. Let now zi ∈ Πi be the point

zi :=
∑
j∈Ii

vj +
1

2

∑
b∈Bi

vb, (5.34)

and let b ∈ Bi, b
′ ∈ Bi+1 be the two indices such that Bi \ {b} = Bi+1 \ {b′}. Let σ1 = +1

or −1 if b ∈ I ′ or b 6∈ I ′, respectively, and similarly σ2 = +1 or −1 if b′ ∈ I or b′ 6∈ I

respectively. Using (5.29), (5.31) and (5.34), it is easy to check that sign(〈gi, vb′〉+h(ab′)) = σ2,

sign(〈gi+1, vb〉 + h(ab)) = σ1 and zi+1 − zi = σ1vb − σ2vb′ . Therefore, according to (5.32) and

(5.33),

sign(〈gi+1−gi, zi+1−zi〉)= sign(〈gi+1−gi, σ1vb−σ2vb′〉),
= sign(σ1〈gi+1, vb〉+σ2h(ab′)+σ1h(ab)+σ2〈gi, vb′〉),
= σ2

1 + σ2
2 > 0.

In other words, (gi+1 − gi) always points in the same direction as Ni, and thus gi+1 − gi = µiNi

for some µi > 0. We can therefore write:

0 =
r∑
i=1

(gi+1 − gi) =
r∑
i=1

µiNi with µ1, . . . , µr > 0. (5.35)

Taking the scalar product of (5.35) with (x, 1), x ∈ Rd shows that, for at least one facet Fi, we

must have 〈Ni, (x, 1)〉 < 0 and therefore

sign (〈Ni, (x, 1)〉) 6= sign (〈Ni, zi+1 − zi〉) ,

i.e., (5.30) fails. In other words, this orientation cannot be induced by any generic point x ∈ Rd.
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All orientations (G, ox) are therefore acyclic.

In the one-dimensional case, we can obtain the positive linear combination of normals (5.35)

without assuming the existence of the vectors yi. We only give a sketch of the proof. First,

there is at least one tile Πi such that Fi 6= Fi+1, else the tiles cannot form a loop. Furthermore,

since each tile is convex, each angle Ni∠Ni+1 can only be strictly less than π, but the total angle

along the cycle must be equal to 2kπ, k ∈ Z \ {0}. These conditions imply that there is a closed

path in R2 whose j-th displacement vector is directed along Nj . Defining gi as the i-th vertex

of the path then yields (5.35).

Remark 5.4.5. The construction used in the proof of Lemma 5.4.4 is similar to the affinization

of central hyperplane arrangements, see, e.g., [285, Chapter 7].

As a directed acyclic graph, (G, ox) can be topologically sorted, and the (only) tile Π∅,Z
supported at x can be used as the root of an oriented path that follows the topological sorting.

We prove now that the other tiles ΠI′,B′ supported at x are all reachable from Π∅,Z using such

a path. First, we need a lemma in convex theory, very similar (although not equivalent) to

Carathéodory’s theorem.

Lemma 5.4.6. Let A = (a1, . . . , an) be a configuration of n > d + 1 points in Rd, and let

B ⊂ [n] be a set of |B| = d + 1 indices such that the points (ai)i∈B are affinely independent.

Then, for every x ∈ conv(A) there exists an index b ∈ B such that ab and x are on the same

closed halfspace of aff({ai}i∈B\{b}) and x ∈ conv({ai}i∈[n]\{b}).

Proof. First, assume that x ∈ conv({ai}i∈B). In this case, for all b ∈ B, x is on the same closed

halfspace of aff({ai}i∈B\{b}) as ab. We can then pick any index c ∈ [n] \ B, and the (possibly

degenerate) simplices conv({ai}i∈B\{b}t{c}) for all b ∈ B cover the set conv({ai}i∈B). Thus, for

at least one index b ∈ B, x ∈ conv({ai}i∈B\{b}t{c}), and the lemma is satisfied.

Assume now that x 6∈ conv({ai}i∈B). Then, x ∈ conv(A) if and only if

x =
n∑
i=1

µiai

for some real numbers µi satisfying µi ≥ 0 and
∑n

i=1 µi = 1. Since the points indexed by B are

affinely independent, we can also express x =
∑

b∈B λbab, with
∑

b∈B λb = 1. We extend this to

a linear combination x =
∑n

i=1 λiai by defining λi := 0 for i 6∈ B. We have

n∑
i=1

µi = 1 =

n∑
i=1

λi,

and therefore
∑n

i=1(µi−λi) = 0. The expression µi−λi cannot be identically zero for all i ∈ [n],

since otherwise x ∈ conv({aj}j∈B), which has been excluded. Thus, there must be at least one

b ∈ B with λb > µb ≥ 0. If we pick an index c ∈ B such that

c ∈ arg min
b∈B

{
αb :=

µb
λb − µb

: λb > µb

}
,
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we can write the nonnegative linear combination

n∑
i=1

[µi − (λi − µi)αc] ai = x, (5.36)

where clearly µi−(λi−µi)αc ≥ 0 and µc−(λc−µc)αc = 0. Thus, the point ac satisfies the lemma,

since λc > µc ≥ 0 implies that ac and x are on the same open halfspace of aff({ai}i∈B\{c}), and x

can be expressed as the convex combination (5.36) with the point ac having a zero coefficient.

We can now prove that there is always a directed path in (G, ox) from Π∅,Z to any tile ΠI′,B′

supported at x.

Proposition 5.4.7. Let P(h) be a regular fine zonotopal tiling of Z(V ) with generic height

function h, let x ∈ conv(A) be a generic point, and let Π∅,Z be the only tile in P(0)(h) supported

at x. Then for every tile ΠI′,B′ ∈ P(h) supported at x, there is a directed path in (G, ox) from

Π∅,Z to ΠI′,B′ with every tile ΠI,B in the path satisfying |I| ≤ |I ′|.

Proof. If I ′ = ∅, then necessarily ΠI′,B′ = Π∅,Z , and we are done. Else, we complete the

proof by finding another tile ΠI,B and an oriented edge ΠI,B → ΠI′,B′ in (G, ox) such that ΠI,B

is supported at x and I ⊆ I ′. The same reasoning can then be applied to ΠI,B and again

repeatedly, yielding an oriented path of tiles supported at x and with non-increasing |I|. Since

the graph is acyclic (Lemma 5.4.4) and the number of tiles is finite, the process must eventually

end with ΠI,B = Π∅,Z as the root of the path.

According to Lemma 5.4.6, and since x is generic, there exists an index b′ ∈ B′ such that

x ∈ conv({ai}i∈I′tB′\{b′}) and ab′ , x are on the same side of Hb′ , (5.37)

where Hb′ := aff({ai}i∈B′\{b′}). Necessarily, this means that there is an index j ∈ I ′ such

that aj is on the same side of Hb′ as ab′ , otherwise Hb′ would separate x from the convex hull

conv({ai}i∈I′tB′\{b′}) and (5.37) would be false. Proposition 5.3.5 then guarantees that there is

a tile ΠI,B, connected to ΠI′,B′ with an edge in G, such that B \ {b} = B′ \ {b′} for some b ∈ B
and either I ′ = I or I ′ = I t {b}. The point ab is on the opposite side of Hb′ as ab′ and x in

the first case, and on the same side in the second case. It is easy to check, using (5.30) and

taking the representative points z ∈ ΠI,B and z′ ∈ ΠI′,B′ defined as in (5.34), that in both cases

the edge associated to the tile ΠJ,C with J = I ′, C = B ∩ B′ is oriented from ΠI,B to ΠI′,B′ .

Furthermore, in both cases, B t I ⊇ I ′ t B′ \ {b′}, implying that ΠI,B is supported at x, and

I ⊆ I ′. This completes the proof.

Proposition 5.4.7 is important because it shows that every tile ΠI,B of order k can be con-

nected to Π∅,Z in (G, ox) using only tiles of order k or less (see, e.g., Figure 5.5). In practical

applications, this implies that all the spline functions of degree k supported at any given point

can be found efficiently using only the knowledge of spline functions of degree r ≤ k. Therefore,

when constructing a spline space using the process delineated in Theorems 5.3.10 and 5.4.3,

the iterations can be safely stopped at the desired degree, without requiring any higher-degree

functions.
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Furthermore, Theorem 5.4.7 suggests a simple and efficient algorithm to find all the spline

functions supported at a point x. The first step, which requires finding the spline of degree

k = 0 having x in its support, can be efficiently implemented via any search tree constructed on

the simplices in T (0) [283, 284]. Such trees typically have a O (n log(n)) construction complexity

and a O (log(n)) query complexity, n being the number of degree-zero splines. After this first

step, the complexity is simply linear in the number of spline functions (of all degrees r ≤ k)

which are nonzero on x, and does not depend on the total number of functions in the spline

space.

Notice however that there is still a need to check explicitly if every visited spline function is

actually supported at x, albeit only for a limited number of functions.

We show an example of the directed graph (G, ox) in Figure 5.5.
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Figure 5.5: (Left) oriented dual graph (G, ox) for the tilings of Figure 5.3, with the orientation
induced by a point x ∈ (a4, a5). The subgraph determined by the tiles supported at x is drawn
with solid lines, and the tiles are numbered according to their position in a topological sorting
of (G, ox), starting with 0 for the tile Π∅,Z . (Right) corresponding spline functions supported at
x.
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5.4.3 Spline evaluation

Once all the spline functions supported at a given point x have been determined, one might be

tempted to use the oriented graph (G, ox) and its topological sorting to compute the value of all

the spline functions on x.

Imagine that we want to compute, for some tile ΠI,B supported at x, the value of M b :=

M(x | (ai)i∈ItB\{b}) for all b ∈ B, which can in turn be used to compute the value of the

spline itself M := M(x | ΠI,B) using (5.2b). For every b ∈ B and every point x ∈ Rd, if

M b(x) 6= 0, there is exactly one edge ΠI′,B′ → ΠI,B with B \ {b} = B′ \ {b′} and either I = I ′,

I = I ′ t {b′}, I ′ = I t {b} or I t {b} = I ′ t {b′}. Suppose that the values of M(x | (ai)i∈I′tB′)
and M(x | (ai)i∈I′tB′\{b′}) for all b′ ∈ B′ are known. Are we able to compute the value of M b?

The answer depends on which case is realized. In particular:

(i) If I = I ′, then M b = M(x | (ai)i∈I′tB′\{b′}), which is known;

(ii) if I = I ′ t {b′}, then M b = M(x | ΠI′,B′), which is also known;

(iii) if I t {b} = I ′ t {b′}, then M b can be computed from the set of known values M(x |
(ai)i∈I′tB′\{b′}), b

′ ∈ B′ via a single application of (5.3).

However, in the case I ′ = I t {b}, there does not seem to be any obvious way to directly obtain

M b. If this case happens only for a single b ∈ B, then it is still possible to obtain M b via (5.2b),

after noticing that M = M(x | (ai)i∈I′tB′\{b′}). In general, however, this case may happen more

than once for a given point x and a given spline M(x | ΠI,B) when d ≥ 3. Thus, it is essentially

impossible to build an efficient recurrent evaluation scheme without the use of some auxiliary

functions.

We propose here a slightly different construction, based on the following observation. First,

notice that the problematic case I ′ = I t {b} cannot arise if M(x | ΠI,B) is a spline of maximal

degree for P (see Figure 5.3). However, if we consider a zonotopal tiling PI,B of the zonotope

Z(VI,B) built on the reduced point configuration AI,B := (ai)i∈ItB, then M(x | ΠI,B) can

indeed be obtained from any maximal-degree tile of PI,B. Thus, if in the evaluation of each

spline M(x | ΠI,B) we use the reduced tiling PI,B, the problematic case I ′ = I t {b} cannot

occur, and neither can the case I ′ = I. Notice that an induced tiling PI,B of Z(VI,B) can simply

be obtained from P via Lemma 5.2.2.

The reasoning of the previous paragraph suggests a simple procedure to build a set of aux-

iliary spline functions that are sufficient to compute, via recurrence, the value of any function

M(x | ΠI,B):

(i) Build the tiling PI,B induced by P on the reduced point configuration AI,B := (ai)i∈ItB
via Lemma 5.2.2;

(ii) For each b ∈ B, find the unique tile ΠI′,B′ ∈ PI,B, if any, such that B ∩ B′ = B \ {b}.
If the tile exists, the value of M(x | (ai)i∈ItB\{b}) can then be computed from the values

of M(x | ΠI′,B′) and M(x | (ai)i∈I′tB′\{b′}), b
′ ∈ B′, either directly or through (5.3),

otherwise the value is zero;
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(iii) Store the subsets (I ′, B′) found in step (ii), and repeat the same process from step (i)

starting from each corresponding tile ΠI′,B′ .

The set of stored subsets (I ′, B′) obtained during this process corresponds to a set of auxiliary

spline functions that are sufficient to compute the value of the spline M(x | ΠI,B) for all x.

Applying this process to all tiles ΠI,B ∈ P(k) then yields a complete set of auxiliary functions

sufficient for the evaluation of all the basis functions of order k via (5.2b) and (5.3). Notice that

the same couple (I ′, B′) can be obtained starting from multiple basis functions, in which case,

it should obviously be stored only once.

So far, we have not detailed how the subsets corresponding to the tiles connected to ΠI,B

in the induced tiling PI,B can be found efficiently in step (ii). Naively, one can start from the

knowledge of the whole tiling P and apply Lemma 5.2.2, but this is obviously computationally

infeasible in most applications. Thankfully, in the case of regular tilings, there is a more efficient

way to compute them.

Lemma 5.4.8. Let P(h) be a regular fine zonotopal tiling of Z(V ) with height function h, and

let ΠI,B and ΠI′,B′ be two of its tiles, sharing a facet ΠJ,C with normal vector NC . Define, for

convenience,

σij := sign (det((ac, h(ac), 1)c∈C , (ai, h(ai), 1), (aj , h(aj), 1))) ,

σi := sign (det((ac, 1)c∈C , (ai, 1))) .
(5.38)

Then b′ ∈ I if and only if σbb′ · σb > 0, b ∈ I ′ if and only if σbb′ · σb′ < 0, and, choosing the

orientation of NC such that 〈NC , (x, 1)〉 = det((ac, 1)c∈C , (x, 1)), sign(〈NC , z − z′〉) = σbb′ ·σb ·σb′
for all z ∈ ΠI,B, z′ ∈ ΠI′,B′.

Proof. The first two facts follow immediately from the Delaunay property (5.27), since, if σb > 0,

then b′ ∈ I if and only if σbb′ > 0, and the same is true if both signs are reversed. The same

reasoning applies to the condition b ∈ I ′ using σb′b = −σbb′ and σb′ . If we now consider the

representative points z ∈ ΠI,B and z′ ∈ ΠI′,B′ defined as in (5.34), we can express their difference

as

z − z′ = 1

2
(σbb′σb′vb + σbb′σbvb′) ,

and therefore

sign(
〈
NC , z − z′

〉
) =

1

2
sign (σbb′σb′〈NC , (ab, 1)〉+ σbb′σb〈NC , (ab′ , 1)〉) , (5.39)

but since b and b′ are on the same side of aff({ac}c∈C) if and only if 0 < σb·σb′ = (σbb′σb)·(σbb′σb′),
the two terms in the sum on the right hand side of (5.39) always have the same sign, and we

can thus rewrite (5.39) as

1

2
(σbb′σb′ sign(〈NC , (ab, 1)〉) + σbb′σb sign(〈NC , (ab′ , 1)〉)) = σbb′ · σb · σb′ ,

since sign(〈NC , (ab, 1)〉) = σb, and similarly for b′. This completes the proof.

In the case of regular tilings, Lemma 5.4.8 can be used to build any induced tiling PI,B, its

dual graph and the induced orientations simply by taking the collection B := {B′ ⊆ I t B :
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|B′| = d+ 1,det(B′) 6= 0} of all affinely independent subsets of size d+ 1 of (ai)i∈ItB, and using

for each subset B′ the signs σbb′ , σb and σb′ , b
′ ∈ B′ to construct the associated subset I ′ and

form the tile ΠI′,B′ ∈ PI,B. The evaluation graph for ΠI,B will then contain all the tiles directly

adjacent to ΠI,B in PI,B. Notice that, when all auxiliary functions are taken into account, the

splines of degree zero do not constitute in general a triangulation of conv(A). However, it is still

possible to build search trees capable of efficiently finding all the (possibly overlapping) simplices

that contain a given point x, for example using structures such as bounding volumes hierarchies

(BVH), of which the R-tree and R?-tree [283, 284] are prominent examples. We illustrate the

construction of auxiliary functions and the corresponding evaluation obtained via the process

outlined above in Figures 5.6 and 5.7 respectively.

1 2 3 4

a1 a2 “ a3 a4 a5 a6

11 12 16 17

13 15

6
7 8 9 14 10

1 5
2 3

4

1 5

6

2 3

7 8 9

4

9 10

6

11 12

7 8

13

14 9

15

10

16 17

Figure 5.6: (Top left) a regular fine zonotopal tiling and the associated spline space over the
point configuration of Figure 5.3, with the tiles corresponding to the splines of degree k = 2
(i.e., P(2)) highlighted and numbered from 1 to 4. (Top right) corresponding spline functions
and auxiliary functions, numbered 5 through 17, computed by the process of Section 5.4.3.
(Bottom) the induced zonotopal tilings PI,B encountered during the construction of auxiliary
spline functions. Highlighted tiles correspond to stored functions.

We end this section with a couple of final considerations. First, notice that it is not necessary

to explicitly prove that the evaluation graph is acyclic, as this is evident from its construction.

In particular, the evaluation graph for splines of order k clearly generates a k-partite oriented
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Figure 5.7: (Top) the complete graph containing all the auxiliary functions obtained via the
construction presented in Section 5.4.3 in the case of the example of Figure 5.6. (Bottom) the
actual evaluation graph obtained when computing the value of the spline functions at different
locations x.
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graph, to which some connections between splines of the same order are added (Figure 5.7).

Since the connections between tiles of the same order are always a subset of those in the full

dual graph G of P, no cycle can be created by the orientation ox induced by any point x.

Second, notice that in the special case where every point in A is repeated at least k + 1

times, the construction process of Theorems 5.3.10 and 5.4.3 yields the usual Bernstein-Bézier

functions [286] over a triangulation of conv(A), and the evaluation graph reduces to the usual

de Casteljau algorithm [287] over each simplex.

Finally, notice that, as can be gleaned from Figure 5.6, the procedure outlined here does not

lead in general to a minimal amount of auxiliary spline functions. In particular, each tile ΠI,B

for which there is an index i ∈ I such that ai 6∈ conv({ab}b∈B) can lead to an increased number

of auxiliary functions. How often this happens is determined by the chosen height function h,

either globally or locally in each induced tiling PI,B, and is related to the presence of slivers,

i.e., simplices with skewed aspect ratios, in the associated weighted Delaunay triangulations.

Some techniques exist to optimize the Delaunay height function in order to reduce the number

of these elements, see, e.g., [288, 289]. We defer to a future work the investigation of how these

techniques can help optimize the number of auxiliary functions required in the evaluation of

simplex splines.

5.5 Discussion and further reading

The contents of this chapter were published in [290]. We wish to express our gratitude to the

anonymous reviewers of the article for providing valuable feedback, and in particular for their

proposal of an alternative, much simpler proof of Proposition 5.3.6, that we have integrated in

our presentation here.

In this chapter, we have uncovered an interesting combinatorial structure capable of pro-

ducing spaces of polynomial-reproducing multivariate (simplex) splines built atop any point

configuration A, which ties them to the well studied fine zonotopal tilings of the associated

zonotope Z(V ). This correspondence allows to generalize the set of known multivariate spline

spaces and to adapt a known construction algorithm to a more general setting. When the tiling is

regular, its dual graph provides a way to efficiently determine all the spline functions supported

at any given point x, and to devise a recurrent evaluation scheme that reuses some intermediate

results, thus providing a useful first step in the practical application of simplex spline bases in

approximation and analysis.

Only fine zonotopal tilings have been explored in the present work. Possible connections

between more general zonotopal tilings and other kinds of multivariate splines, such as box

splines or more general polyhedral splines [216, 220] might be possible by relaxing this restriction.

From a computational standpoint, it is possible that the correspondence uncovered in the

present work can be used to obtain further optimized algorithms for multivariate splines. Two

aspects in particular deserve a particular attention in our opinion.

First, the evaluation scheme proposed in this work does not guarantee a minimal number of

auxiliary functions. This aspect can perhaps be improved by using optimized weighted Delaunay

triangulations coming from computer graphics applications (see, e.g., [288, 289]). In fact, some

of the improved height functions used in these applications are able to create well-centered
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simplices, which in our applications would lead to a significant improvement in the efficiency of

the evaluation algorithm.

Second, the freedom given by the possibility of constructing spline spaces over point sets with

repeated knots can be exploited to spaces with variable regularity and localized or arbitrarily-

shaped discontinuities, with interesting applications in function approximation and numerical

analysis. We use some of these features in Chapter 6.

We conclude with a few interesting references. First, notice that some connections between

zonotopal tilings and box splines have been drawn in the past, see, e.g., [221, 222, 291, 292].

These connections are, as far as we know, unrelated to those presented here, as they pertain

mainly to the shape of a single box spline, and not to spline spaces. Some deeper connections

might however hide beneath the surface.

Second, zonotopal tilings are intimately related with another combinatorial structure, ori-

ented matroids. Specifically, the Bohne-Dress theorem [266, 293, 294] states that zonotopal

tilings are in bijection with single-element liftings of oriented matroids. Thus, spline spaces

obtained in this chapter can be equivalently reformulated in terms of the oriented matroid built

atop the vector configuration V . Other connections with many other combinatorial objects are

known, although it is not immediately clear if any of them can be used to derive some other

efficient algorithm for simplex spline computation.
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6 | Fully unstructured multi-patch

DG-IGA scheme

[. . .] prenez un petit bout de sens

puis un grand morceau d’innocence

faites chauffer à petit feu

au petit feu de la technique

versez la sauce énigmatique

saupoudrez de quelques étoiles

poivrez et mettez les voiles [. . .]

Raymond Queneau, Le Chien à la Mandoline,

Pour un art poétique (1958)

As we have discussed in Chapter 2 and detailed in Chapter 3, one of the most successful

techniques for the numerical solution of PDEs is the standard finite element (FE) analysis. This

technique relies on piecewise-polynomial functions defined over an underling mesh which have

global C0 regularity over the simulation domain Ω. Starting from this technique, two seemingly

opposing tendencies have arisen over the years.

In discontinuous Galerkin (DG) schemes, the basis functions are replaced by independent

polynomial bases over each mesh element, making the functions discontinuous on mesh faces.

Continuity is then restored via the imposition of suitable numerical fluxes and penalty terms

between elements. This fully unstructured approach offers a great deal of flexibility and combines

a good modelization of complex geometries with local h (mesh size), k (polynomial degree) and

even t (timestep)-adaptivity, which is especially appreciated in the physical sciences (see e.g.

[1] for a recent application). In the case of time-domain wave propagation, the block-diagonal

nature of the mass matrix also allows to use efficient explicit time discretization schemes. As the

degree k of the basis increases, the CFL restriction on the timestep scales like O(h/k2), where

h is the spatial discretization step.

Going in a seemingly opposite direction, isogeometric analysis (IGA) [2, 252] replaces the

standard FE basis by B-splines, i.e., piecewise-polynomial functions of degree k with increased

regularity, up to order Ck−1. Since these functions (and their rational counterparts, NURBS

functions) are routinely used in engineering to represent the (exact) geometry of mechanical

pieces, IGA obviates the need to mesh the simulation domain before performing analysis, elim-

inating the associated potential discrepancy as a source of error. Moreover, IGA has been

169
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proven to possess superior numerical properties, including a CFL condition timestep for wave

propagation that scales like O(h/k) (cf. the last section of Chapter 3).

Aiming at bridging the chasm between these two worlds, some recent approaches have focused

on formulating independent IGA schemes over different B-spline patches, which are then coupled

through the introduction of DG-like fluxes and penalties. These attempts, which are often named

multi-patch DG-IGA schemes, have proven fruitful, with a recent work [3] highlighting how its

application to time-domain wave propagation allows to retain the parallelization potential of

DG (and its associated block-diagonal mass matrix) with the improved CFL condition typical

of IGA.

However, the parameterization of IGA patches suitable for numerical analysis is far from

a trivial task, and even ensuring its injectivity requires a careful placement of control points

(see, e.g., [295, 296]). This problem is even more relevant in many applications to the natural

sciences, where the geometry of discontinuities can be complex and of arbitrary topology and

pre-existing CAD models are lacking or nonexistent. The problem is compounded when dealing

with the seismic inverse problem, which requires a highly flexible geometric description whose

features and discontinuities are unknown at the beginning of the inversion, making it extremely

hard to devise a suitable CAD patch structure. This is unfortunate, as problems like seismic

full-waveform inversion simultaneously demand a high efficiency per degree of freedom in the

solution of the PDEs, and the accurate reproduction of the geometry of sharp contrasts and

boundaries, two tasks at which IGA excels.

In this chapter, we present a simple but highly flexible numerical scheme that reproduces the

features of multi-patch DG-IGA approaches but relies on unstructured multivariate splines. The

corresponding IGA patches can have arbitrary topology, and are built starting from a simple

set of points, without further structure, simplifying considerably their use in inverse problems.

Moreover, our basis functions reproduce the usual FE and DG bases as special cases, making it

very easy to seamlessly couple all three numerical schemes in a single simulation.

In Section 6.1, we introduce our numerical scheme, based on the symmetric interior penalty

DG scheme (IPDG), and we point out its main differences with the usual IPDG and IGA

approaches. In Section 6.2, we show how to complete the results of Chapter 5 to create separate

spline spaces over each subdomain. We also discuss an insightful limiting case of our scheme,

showing that it can reproduce the usual FE and DG bases as special cases. In Section 6.3 we

show that, near the domain boundaries, unstructured spline spaces behave very similarly to the

usual DG bases, and thus the same well-known inverse inequalities can be used to guarantee the

positivity of the bilinear form associated to the weak formulation, and the applicability of the

usual a priori error analysis estimates. A few two- and three-dimensional numerical experiments

that prove the efficacy and flexibility of our method are presented in Section 6.4, and some of

the advantages and drawbacks of the method are discussed in Section 6.5.
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6.1 Overview of the numerical scheme

The starting point for our fully unstructured multi-patch DG-IGA scheme for wave propagation

is similar to the usual IPDG scheme presented in Chapter 2, i.e., the weak problem

nd∑
i=1

∫
Ωi

1

λ
ϕ
∂2p

∂t2
dΩ +

nd∑
i=1

∫
Ωi

1

ρ
∇ϕ · ∇p dΩ−

∑
F∈FDG

∫
F

[[ϕ]] · {{1

ρ
∇p}}dF (6.1)

−
∑

F∈FDG

∫
F
{{1

ρ
∇ϕ}} · [[p]] dF + α

∑
F∈FDG

∫
F

[[ϕ]] · [[p]] dF +
∑
F∈FA

∫
F

1

ρc
ϕ
∂p

∂t
dS =

nd∑
i=1

∫
Ωi

ϕsdΩ,

where the domain of interest Ω follows the hypotheses of Theorem 1.2.3 and s is the source term.

Compared to the usual IPDG approach, there are a few differences. First of all, the sub-

domains Ωi ⊆ Ω appearing in the sums of (6.1) are in general neither simplices, nor even neces-

sarily convex. In fact, we wish to build complex domains whose shape follows the irregularities

of the propagation media. We do not even assume that the domains are simply connected, and

we allow the presence of internal boundaries. However, we still assume that the domains are

polyhedral (or polygonal in two dimensions), and that they form a subdivision of Ω, i.e.,

Ωi ∩ Ωj = ∅ for i 6= j,

nd⋃
i=1

Ωi = Ω.

As in many classic implementations of the IPDG method, we assume that the physical param-

eters λ, ρ and c are positive and constant over each domain, with c =
√
λ/ρ. Notice that in

our case the subdomains can be large. In order to account for variable physical parameters

in a domain, one might either subdivide the domain into suitable subdomains, or introduce

space-dependent physical parameters, possibly by expressing them using the same basis spline

functions as the solution, or, more likely, spline functions of a lower degree. We do not fol-

low this approach here, for simplicity, even tough our presentation could easily be modified to

accommodate it.

Similarly to the usual IPDG approach, and in contrast with methods such as continuous finite

elements, we can be quite liberal with the imposition of boundary conditions. For example, one

can introduce internal boundaries into any domain, and treat them either as physical barriers

by imposing suitable (internal) boundary conditions (e.g., absorbing, reflecting, or any other),

or as numerical barriers, where the physical propagation of the wave is unimpeded, but where

continuity is only imposed weakly via the usual DG fluxes and penalty terms.

More precisely, we denote by F the set of all internal and external boundary facets of the

compatible domains Ωi, i.e.,

F :=

nd⋃
i=1

{F : F ∈ ∂Ωi},

and we select four disjoint subsets FDG, FA, FN, and FD of F , on which we impose, respectively,

a DG flux (DG), a lowest-order absorbing boundary condition (A) (1.9), a free-surface Neumann

condition (N) (1.8), or the Dirichlet condition p|F = 0 (D), see Figure 6.7 for an example. Notice

that free-surface and Dirichlet conditions do not appear directly in (6.1). In fact, the contribution
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of free-surface facets simply vanishes in (6.1), while the Dirichlet condition is imposed implicitly

by selecting a suitable discrete spline space that satisfies them.

We impose a few constraints on the allowed internal and external boundary conditions.

Clearly, we require that

Fa ∩ Fb = ∅ for a, b ∈ {DG,A,N,D}, a 6= b and
⊔

a∈{DG,A,N,D}

Fa = F ,

i.e., that there are no holes in the boundary conditions. Furthermore, we require that

FDG ∩ ∂Ω = ∅,

i.e., that DG fluxes are never imposed on the external boundaries of the simulation domain Ω.

These fluxes can however be imposed on boundaries between domains or on internal boundaries

of a given domain, in which case we denote them as transparent boundaries. Notice that there is

no restriction on the use of absorbing, free-surface or Dirichlet boundary conditions on internal

boundaries within a subdomain, or on partial boundaries between subdomains. This allows the

creation of non-simply-connected subdomains. We illustrate this point with some numerical

examples in Section 6.4.

Notwithstanding the great variety of allowed combinations of boundary conditions, most

applications will be restricted to absorbing or free-surface boundary conditions on external or

internal boundaries (i.e., holes) of Ω, and DG conditions between neighboring subdomains.

Notice also that it would be possible to impose uni-directional constraints, as for example a

surface that is absorbing as seen from one side, but reflecting or transparent as seen from the

other. This would simply require associating boundary conditions to half-facets instead of facets,

see e.g. [297, 298]. However, we are not aware of any physical application of these possibilities,

and thus we do not explore them here, for ease of presentation.

After the subdomains and boundary conditions have been selected and the weak form (6.1)

has been written, a suitable spline space Si is introduced in each subdomain Ωi. We describe

how this spline space is obtained in the next section.

6.2 Multi-patch spline space construction

In the previous chapter, polynomial-reproducing spline spaces have been tied to some combina-

torial geometry objects known as zonotopal tilings. Specifically, the structure of these objects

has been exploited to build a set of simplex splines containing all the polynomials over suitable

subsets of conv(A) in their linear span. This combinatorial approach works in any space dimen-

sion, and can be used even when points in A are affinely dependent or repeated more than once.

In particular, if the points lying directly on the convex hull of A are repeated k + 1 times, then

the spline space of degree k reproduces all the polynomials up to degree k over conv(A), and

thus allows the imposition of boundary conditions.

However, this scheme is not directly applicable to our case, since we are not assuming that

the domains Ωi are convex, and therefore we cannot simply introduce a point cloud in each

domain and build a spline space on its convex hull. We therefore introduce in this section the
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assumptions on the domain boundaries and on the height function that are required in order to

produce a suitable space of multi-patch splines.

6.2.1 Gabriel property

One potential roadblock lies with the fact that the construction algorithm is based on successive

weighted Delaunay triangulation steps. The issue of building a Delaunay triangulation that

respects a given set of constraints (constrained Delaunay triangulation, or CDT) is notoriously

hard [299], and even determining whether a domain is triangulable or not is in general NP-hard

(non polynomial hardness, cf. [300]). For this reason, we shift this burden to a suitable pre-

processing step, and we require that a suitable point configuration and a suitable height function

are selected.

The first step in this construction consists in ensuring that all the boundary facets used

for the definition of the domains and the boundary conditions are represented in triangulations

of the point configuration A. Let h be a generic height function in the sense of Definition

5.4.2, and TA(h) be the associated weighted Delaunay triangulation of conv(A), as defined in

the second half of Chapter 5. We introduce the following weighted version of the well-known

Gabriel property [301] of Delaunay facets, see also [302].

Definition 6.2.1 (Gabriel property). Let C ⊂ [n] be a subset of indices such that |C| = d.

Suppose that there exists a point γ ∈ Rd such that det((ac, 1)c∈C , (γ, 1)) = 0 and

γ · (ai − ac)−
h(ai)− h(ac)

2
≤ 0, (6.2)

for all i ∈ [n], with equality if and only if i ∈ C. Then the facet aff((ac)c∈C) is said to have the

Gabriel property.

Gabriel facets are interesting because they are automatically included in the weighted Delau-

nay triangulation. To see this, notice that (6.2) is affine in (ai, h(ai)), and describes a hyperplane

H ⊂ Rd+1 that passes through the points (ac, h(ac))c∈C and has all the points (ai, h(ai))i∈[n]\C
on its negative side. By rotating this plane around aff((ac, h(ac))c∈C until it touches another

point (ab, h(ab)) for some b 6∈ C, one finds that the points C t{b} satisfy the weighted Delaunay

condition (5.27), and therefore the corresponding simplex conv((ai)i,∈Ct{b}) (and thus the facet

conv((ai)i,∈C)) appears in the corresponding weighted Delaunay triangulation.

Moreover, given a Gabriel facet, one can find the corresponding point γ by choosing an index

c ∈ C and finding a solution to the d equations det((ac, 1)c∈C , (γ, 1)) = 0 and γ · (ai − ac) =

(h(ai) − h(ac))/2 for i ∈ C, i 6= c. The point γ represents the weighted version of the center

of the diametrical sphere circumscribed to conv((ac)c∈C). Therefore, if (6.2) is not satisfied,

then one may proceed to subdivide the facet by introducing a new point e =
∑

c∈C λcac, with

barycentric coordinates λc satisfying 0 ≤ λc ≤ 1 and
∑

c∈C λc = 1 and an associated weight

h(e) ≤
∑

c∈C λch(ac). The sublinearity of the weight then makes it more likely that the Gabriel

condition (6.2) is satisfied. If not, one may proceed to further subdivide the facets. For classical

Delaunay triangulations, this process is known as making the triangulation conforming Gabriel,

see, e.g., [303, 304] and Figure 6.1. We will not enter here the details of how one can most
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efficiently refine the constraint facets so that they are conforming Gabriel and instead assume

that this pre-processing step has already been performed.

a2

a1

a3

a2

a1

a3

a2

a1

a3

a1 a2

a1

a3

a1

Figure 6.1: Example of Gabriel facets in two dimensions for the standard Delaunay weights.
(Left) the facet a2a3 is Gabriel, since its diametral sphere is empty, but the facet a1a2 is not,
and in fact it is not part of the Delaunay triangulation (center left). (Center right) The Gabriel
property can however be restored by refining the facet a1a2, introducing the additional point
a′. The facet a1a2 is then guaranteed to be represented in the modified Delaunay triangulation
(right).

6.2.2 Fine-grained height function

After making sure that all the constraint facets F ∈ F are Gabriel, one still has to make sure

that they are included not only in the order-zero Delaunay triangulation of A, but also in all the

triangulations at orders r ≤ k that are required for the construction process of Theorem 5.4.3.

We show that repeating all the points belonging to constraint facets k+1 times in A is sufficient,

after an appropriate height function h has been chosen.

Let us define an independent set of indices B as a subset B ⊆ [n], |B| = d + 1 such that

the points (ai)i∈B are all affinely independent. These subsets are in bijection with the tiles of

any fine zonotopal tiling of Z(V ). To any independent set of indices B, we can associate the

(non-vertical) hyperplane HB ⊂ Rd+1 passing through all the points (ai, h(ai))i∈B. We can now

define a fine-grained height function as follows.

Definition 6.2.2 (Fine-grained height function). A height function h is said to be fine-grained

if, for every independent set B and for every set of indices I ⊆ [n] such that the points (ai)i∈I
are all coincident, either I ∩B 6= ∅, or all the points indexed by I are on the same side of HB.

In other words, with a fine-grained height function, the different copies of a point in A

have very close heights, so that the corresponding lifted points in Â can only be separated by

a hyperplane defined using one of the points themselves. In practice, this property is easy to

achieve using symbolic perturbation, by defining a custom comparison function that considers

the height of coincident points in A as equal when comparing against another distinct point of

A. One can then simply order consistently the heights of these points when they are compared

against each other. Notice that the notion of a fine-grained height function is compatible with

the Gabriel property. In fact, when defining a Gabriel facet using points in A that are repeated

more than once, one can use in the definition the copy of the point with the lowest value of the

height function, which satisfies (6.2) automatically. The following property immediately follows

from Definition 6.2.2.
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Lemma 6.2.3. Suppose that the height function h is fine-grained, and let (I,B), |I| = k, be a

couple of knot indices defining a tile ΠI,B ∈ P(h). Suppose that a point ai associated to an index

i ∈ I is repeated at least k + 1 times in A. Then, there exists exactly one index b ∈ B such that

ab = ai.

Proof. Suppose that the points (ab)b∈B are all distinct from ai. Then, since h is fine-grained,

the hyperplane HB := aff((ab, h(ab))b∈B) contains all the (lifted) copies of ai on the same side.

Due to (5.27) and Theorem 5.4.3, this implies that either none of the k + 1 copies of ai are

in I, which contradicts the hypothesis, or that they all are, which is impossible since |I| = k.

Therefore, there must be at least an index b ∈ B such that ab = ai, and there cannot be more

than one since the points indexed by B define a tile and thus det(B) > 0.

The previous Lemma states that, if a point is given a multiplicity of at least k + 1 in A,

then it can be an internal knot of a spline of degree k only if one of its copies is also one of the

boundary knots of the spline. This suggests that repeating points in A is an effective way of

carving out sub-domains in A, as proven in the following subsection.

6.2.3 Multi-patch spline space

We prove now that, if the properties discussed in the preceding sections are satisfied, the spline

space built via the process detailed in Chapter 5 indeed yields a spline space for each subdomain.

We first prove the following proposition, that characterizes the behavior of these spline spaces

near the constraint facets F ∈ F , and therefore near the boundary of Ω and the interfaces

between subdomains. By pointing out the similarity with the usual IPDG bases, we pave the

way for a simple adaptation of many proofs of the numerical properties of this method to our

approach.

Proposition 6.2.4. Let h be a generic, fine-grained height function, and let F be a Gabriel

facet, arbitrarily oriented, whose vertices are repeated at least k + 1 times in A. If there are at

least k + 1 points in A on the positive side of F , then there are exactly
(
k+d
k

)
spline functions

M(x | I tB) of degree k such that conv((ab)b∈B) lies on the positive side of F and contains F

as a facet.

Proof. Let (ac)c∈C be a set of |C| = d points such that F = conv((ac)c∈C). By hypothesis, each

point ac is repeated k+ 1 times in A, and any of these copies can be used to define the facet F .

Suppose that we have made a choice, and for each point ac, define the subset of indices Rc as

Rc := {i ∈ [n] : ai = ac, h(ai) > h(ac)}.

Let us then choose the indices c ∈ C such that
∑

c∈C |Rc| = k′ ≤ k. Notice that since |Rc| ≤ k

and |C| = d, there are exactly
(
k+d
k

)
distinct ways to perform such a choice.

Since F is Gabriel, there exists a hyperplane HC ⊂ Rd+1 passing through (ac, h(ac))c∈C and

containing all the other distinct points of A on its negative side. Let x be a point on the positive

side of F , and let us rotate HC around aff((ac, h(ac))c∈C) so that the quantity (Nd+1x̂d+1)

decreases, where N is the oriented normal of HC , x̂ is the projection of x onto HC , and the

subscript d+ 1 denotes the (d+ 1)-th coordinate. Denote by HC(θ) the hyperplane HC rotated
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by an angle θ, such that HC(0) = HC and HC(θ) is a vertical hyperplane for some 0 < θ ≤ π/2.

Since there are at least k + 1 points of A on the positive side of F , and h is generic (Definition

5.4.2), the rotating plane HC(θ) must encounter at least k+1 points (ai, h(ai)) before becoming

vertical. Let us denote by

S := {(θ, i) : (ai, h(ai)) ∈ HC(θ) for some 0 < θ < θ}

the set of encountered points, ordered by increasing angle θ. Notice that the corresponding

points in A must be distinct from the points in (ac)c∈C , otherwise the associated hyperplane

would be vertical. Let S≤k−k′ denote the set of the first k− k′ entries of S, and let (θb, b) be the

following (i.e., the (k − k′ + 1)-th) entry. Then, the hyperplane HC(θb) passes through all the

points (aj , h(aj))j∈B, where B := C t{b}, and it contains on its positive side exactly the points

indexed by

I :=

(⊔
c∈C

Rc

)
t {i : (θ, i) ∈ S≤k−k′},

i.e., the disjoint union of the k′ points in the sets Rc, c ∈ C, with the indices in the first k − k′

entries of S. Thus, by (5.27) the simplex spline M(x | I tB) has degree |I| = k and satisfies the

property of this proposition. We can build in this way exactly
(
k+d
k

)
distinct simplex splines,

completing the proof.

Notice that the definition of positive side of F is arbitrary. Thus, if the facet F has at least

k + 1 points of A on each side, then Proposition 6.2.4 can be applied to both sides of F . An

example of the simplices of Proposition 6.2.4 is shown in Figure 6.3, top right.

Proposition 6.2.4 is a generalization of a property of the usual mesh-based discontinuous

Galerkin methods, where for every facet F in the mesh having a simplicial mesh element on its

positive side, there are exactly
(
k+d
k

)
polynomials supported on the mesh element adjacent to

F . We show in the next subsection that this is not an accident.

Proposition 6.2.4 immediately allows to subdivide the spline functions in the spline space

according to the subdomains (Ωi)
nd
i=1. In fact,

Corollary 6.2.5. Let h satisfy the hypotheses of Proposition 6.2.4, and suppose that each facet

F ∈ F is Gabriel and its vertices are repeated at least k + 1 times in A. Then, for every spline

M(x | I tB) of degree k, the interior of the simplex conv((ab)b∈B) cannot intersect the boundary

of any subdomain.

Proof. For every facet F ∈ F on the boundary of a subdomain Ωi, define the positive side

as the side on which Ωi lies. Then, there are at least k + 1 points on the positive side of F ,

and Proposition 6.2.4 ensures that there are
(
k+d
k

)
spline functions M(x | I tB) whose simplex

conv((ab)b∈B) is adjacent to F on its positive side. Notice that these simplices do not cross F .

Let C be the intersection of their interiors. Let M(x | J tB′) be a distinct simplex spline whose

associated simplex conv((ab)b∈B′) intersects F . Then, the interior of the associated simplex must

also intersect C, in contradiction with Proposition 5.3.12. The same reasoning can be repeated

for all the facets on the boundary of Ωi, since they are all Gabriel by hypothesis, proving the

corollary.
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If one chooses a set of domain boundaries and a height function that satisfy the hypotheses

of Corollary 6.2.5, then one can use the process detailed in the previous section to build a spline

space over the whole Ω, and assign each spline function to a subdomain. This yields one spline

space per subdomain, according to the criterion

M(x | I tB) ∈ Si if and only if conv((ab)b∈B) ⊆ Ωi.

This is the criterion that we choose to construct our discontinuous spline space. Notice that

the internal points of the splines in Si are also contained in Ωi. This is trivially true for splines

of degree 0, and since step (iii) in Theorem 5.3.10 states that the set of internal points of splines

of degree k is a subset of the set of points I tB of splines of order k− 1, it is true by induction

at all degrees k. Notice also that the spline spaces produced under the assumptions of Corollary

6.2.5 are indeed discontinuous. In fact, they include splines of degree k with k + d points (out

of the total k + d + 1) lying on the same facet F on the boundary of the domain. Using the

recurrence relation (5.2), it is easy to show that these functions have a non-zero trace on F , i.e.,

on the boundary of the subdomain. This allows to evaluate boundary conditions, inter-domain

fluxes and penalty terms. In all cases, the splines in Si are taken to be zero outside Ωi.

Finally, notice that Corollary 6.2.5 has an interesting special case.

Corollary 6.2.6. Let the height function h and the subdomains (Ωi)
nd
i=1 satisfy the hypotheses

of Corollary 6.2.5, and suppose furthermore that each subdomain Ωi is a simplex, such that

(Ωi)
nd
i=1 forms a triangulation of Ω. Then, the spline space built by Corollary 6.2.5 produces the

Bernstein-Bézier discontinuous Galerkin basis over each simplex Ωi.

Proof. One can simply follow the proof of Proposition 6.2.4, but notice that, within the assump-

tions of this corollary, the k′ − k points first encountered by the rotating plane HC(θ), i.e., the

points in in S≤k−k′ , must be all liftings of coincident points in A, i.e., points (ai, h(ai)) with

the same first d coordinates. Thus, the knot vector of the resulting spline consists of d + 1

distinct points Â := (ai)
d+1
i=1 ⊂ Rd , each repeated a number of times 1 ≤ ri ≤ k + 1, with∑d+1

i=1 ri = d+ k + 1. Definition (4.10) then shows that these splines act on a function f as

〈
f,M(Â)

〉
=

1

B(r1, . . . , rd+1)

∫
Σd

f

(
d+1∑
i=1

λiai

)
λr1−1

1 · · ·λrd+1−1
d+1 dΣ,

where the integration is over the d-dimensional simplex Σd described by the barycentric co-

ordinates λ1, . . . , λd+1 with 0 ≤ λi ≤ 1 and
∑d+1

i=1 λi = 1. The product λr1−1
1 · · ·λrd+1−1

d+1

can be recognized as the barycentric representation of a Bernstein-Bézeir polynomial of degree∑d+1
i=1 (ri−1) = k, cf. (3.13). Moreover, all these splines are supported on the same simplex, and

all the
(
k+d
k

)
combinations of multiplicities that sum to k + d+ 1 are obtained, as shown in the

proof of Proposition 6.2.4. Thus, the whole Bernstein-Bézier basis over the simplex is obtained.

Finally, the same simplex is obtained for the splines at any degree r ≤ k, and in particular for

r = 0, in which case one obtains the weighted Delaunay triangulation of conv(A) with height

function h (see Proposition 5.3.6). By the Gabriel property, the triangulation created by the

simplices Ωi must be a subset of the weighted Delaunay triangulation of A, completing the

proof.
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This result proves that one can obtain the usual interior-penalty discontinuous Galerkin

scheme, on a Bernstein-Bézier basis, as a special case of our method. Thus, one expects these

two numerical schemes to be naturally compatible, and easy to mix in a single simulation. We

show that this is indeed the case with some numerical experiments in Section 6.4.

6.2.4 Some algorithmic aspects

We discuss here a few implementation details of our method.

From simplex splines to multivariate B-splines

We do not use directly the simplex splines described in the previous section as functions for

our discretized scheme. In fact, the polynomial-reproduction equation (5.10) of Theorem 5.3.3

shows that the coefficient of a simplex spline in the development of a given polynomial only

depends on the internal knots of the spline function. But in our spaces, many different splines

can share the same internal knot indices I, namely all those obtained from the triangulation of

the link region R(I) of Definition (5.3.7). Consequently, the decomposition is not unique, since

any linear combination of these splines can be used.

We remove this unwanted freedom by fixing a given linear combination of splines sharing

the same internal indices. Specifically, as done, e.g., in [259, Chapter 8], we define for every set

of internal indices I the multivariate B-spline function of degree k

N(x | I) :=
k!

(k + d)!

∑
{B:ΠI,B∈P(k)}

det(B)M(x | I tB). (6.3)

It is important to remark that, in order to preserve the multi-patch property of the spline space,

the sum (6.3) is done independently for every subdomain Ωi, and it only includes spline functions

in Si. Simplex splines with the same internal knots but belonging to different patches Si are not

summed, to preserve the domain decomposition. We illustrate this sum in Figure 6.2.

a1

a2
a3

a1

a2
a3

a1

a2
a3

a1

a2
a3

Figure 6.2: (Top) multivariate B-spline function of degree k = 3 (last picture), obtained as
the linear combination of the three simplex splines on its left. The splines share the same set
of internal knot indices I = {1, 2, 3}. (Bottom) the corresponding link region R(I) and its
triangulation, yielding the three simplex splines in the sum.
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Finally, multivariate B-splines can also be used to recover, as a special case, another well-

known basis.

Corollary 6.2.7. Suppose that the height function h satisfies the hypotheses of Corollary 6.2.6,

and there is only one subdomain Ω1 = Ω. Suppose that all the points have multiplicity k + 1

in A, and define the multivariate B-spline functions via (6.3). Then the multivariate B-spline

functions defined via (6.3) correspond to the usual C0 Bernstein-Bézier finite element basis on

the weighted Delaunay triangulation T (h) of Ω with height function h.

Proof. Since all the points in A are repeated k + 1 times, the same reasoning as in the proof of

Corollary 6.2.6 can be applied to each facet of T (h) to show that the simplex splines correspond

to a complete basis of Bernstein-Bézier polynomials of degree k on T (h). Two such splines M(x |
I tB1) and M(x | I tB2) can share the same set of internal knot indices I 6= ∅ if and only if the

knots (ai)i∈I are vertices of the simplex σI := σB1 ∩ σB2 obtained as the intersection of the two

(closed) supporting simplices σB1
:= conv((ab)b∈B1) and σB2

:= conv((ab)b∈B2). Furthermore,

these knots must have the same multiplicity in both splines. Let d′ < d be the dimension of σI ,

and consider the spline M(x | I tB1), ordering its knots such that the vertices of σI appear first.

Then, since all the other knots must have multiplicity 1 in I tB1, the corresponding exponents

in (4.10) are zero, and thus the trace of the simplex spline function M(x | I tB1) on σI can be

simply be obtained from (4.10) after setting the barycentric coordinates λd′+2 = . . . ,= λd+1 = 0,

and multiplying by the Jacobian vold
′
(σI)/ vold(σB1),

〈f,M(I tB1)〉σI =
vold

′
(σI)

vold(σB1)

1

B(r1, . . . , rd′+1, 1, . . . , 1)

∫
σI

f

(
d′+1∑
i=1

λiai

)
λr1−1

1 · · ·λrd′+1−1

d′+1 dσI ,

(6.4)

and similarly for M(x | I tB2). Here, (ai)
d′+1
i=1 is the set of distinct vertices of σI and the

integers (ri)
d′
i=1 represent their multiplicity in both I t B1 and I t B2, while B( · ) stands for

the multivariate beta function (4.9). Examining (6.4), one can conclude that multiplying each

spline by det(B1) = d! vold(σB1) makes the trace dependent only on the shared face σI and not

on the originating simplex. Thus, the multivariate B-spline functions obtained through the sum

(6.3) are continuous across the interfaces between supporting simplices.

This corollary shows that the function basis of the finite element method, using Bernstein-

Bézier polynomials, can also be found as a special case of our simplex spline space.

Basis construction, evaluation and quadratures

After ensuring that all the constraint facets are Gabriel, we can build the spline space Sh using

the algorithm presented in Theorem 5.4.3, where every Delaunay triangulation is realized with

the height function h. The fine-grained property of h is quite simple to achieve in practice. One

can in fact simply assign the same height value to all coincident points, and then re-insert, in

the triangulation of a link region R(Q), all the knots ai, i ∈ Q, such that the multiplicity of the

knot in Q is less than the corresponding multiplicity in A. This guarantees that the Delaunay

triangulation of R(Q) includes these knots as vertices, which are then included in the subsets B

of the resulting splines M(x | Q tB), satisfying Lemma 6.2.3. This is equivalent to computing
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the comparisons of height functions of coincident points according to the symbolic perturbation

rule

h(ai) > h(aj)⇔ i > j whenever ai = aj . (6.5)

For spline evaluation, we rely on the auxiliary functions constructed as explained in Section

5.4.3. Specifically, we start from the tiles ΠI,B associated to spline functions of degree k, as

constructed by the previous process, and we build the auxiliary functions and evaluation graph

described in that section. We then construct an R?-tree [284] using all the degree-zero splines

produced by this process. This search tree is then used to find all the degree-zero splines

supported at a point, from which the evaluation graph can be followed up to degree k. Notice

that these splines can overlap, and therefore the choice of a bounding volume hierarchy method

like the R?-tree is appropriate.

When building a set of auxiliary functions for spline evaluation, the construction of the

evaluation graphis done as suggested by Lemma 5.4.8, and the direction of the graph between

two splines M(x | I tB) and M(x | I ′ tB′) is determined using the signs of the determinants

σbb′ , σb and σb′ defined there, with C := B ∩ B′. Once again, one can easily include the fine-

grained property of h in these evaluations. In fact, determining the signs of the determinant σij
appearing in (5.38) is equivalent to determining the position of the point (aj , h(aj)) ∈ Rd+1 with

respect to the plane H := aff((ac, h(ac))c∈C , (ai, h(aj))) ⊂ Rd+1. One can then simply apply the

perturbation rule (6.5) to assign a consistent sign to σij whenever aj coincides with some other

point in (ar)r∈Ct{i}.

Finally, we need to spend a few words on the assembly of the mass matrix (2.15), stiffness

matrix (2.16) and damping matrix (2.17). The integral∫
Ω
M(x | I tB)M(x | I ′ tB′) dΩ

is done by splitting the integration domain over a set of cells on which both spline functions are

pure polynomials. Thus, the assembly of any matrix element can be split as follows,∫
Ω
M(x | I tB)M(x | I ′ tB′) dΩ =

nc∑
i=1

∫
Ci

M(x | I tB)M(x | I ′ tB′) dΩ,

where (Ci)
nc
i=1 is a family of nc cells that form a subdivision of Ω and such that any spline of the

space is a pure polynomial on Ci. We call this subdivision the quadrature subdivision. Using

the recurrence formula (5.2b) and the validity of the evaluation scheme of Section 5.4.3, it is

clear that these cells can be obtained as intersections of simplices conv((ab)b∈B) associated to

splines M(x | I tB) (i.e., tiles ΠI,B ∈ P(h)) of degree k or less. This can be constructed via

Algorithm 3. Once the cells are computed, the integration of the product of two splines becomes

simply the integral of a polynomial over each cell, which can be computed using standard

algorithms.

One major drawback of this approach is that, since there are exactly
∑k

r=0

(
r+d
d

)
=
(
k+d+1
d

)
simplices supported over any point x, the number of cells in the quadrature subdivision can be

very large. This issue is discussed in the last section of this chapter.
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Algorithm 3 Construction of the quadrature cells for the assembly of system matrices.

1: T ← R?-tree constructed on the simplices {conv((ab)b∈C) : ΠI,B ∈ P, |I| ≤ k}
2: x← a point in the interior of Ω
3: Q = ∅ queue of seed points
4: C = ∅ set of cells
5: Push(Q, x) insert x into Q
6: while Q is not empty do
7: x←Pop(Q)
8: {Σ1, . . . ,Σm} ←Query(T , x) simplices supported at x
9: C ←

⋂m
i=1 Σm

10: if C not empty and C does not contain C then
11: insert C into C
12: for facet F of C do
13: f ← centroid of F
14: NF ← outward normal of F , |NF | = 1
15: xf ← f + εNF for a small ε
16: Push(Q, xf )

17: return C

6.3 Some numerical properties

We discuss in this section some numerical properties of the proposed multi-patch DG-IGA

scheme that are useful for understanding the numerical behavior of the approach, especially in

comparison to the closely related IPDG method.

6.3.1 Splines having a nonzero trace on constraint facets

Proposition 6.2.4 allows to characterize the spline functions having a nonzero trace on a facet,

as follows.

Proposition 6.3.1. In the hypotheses of Proposition 6.2.4, the splines on the positive side of

F having a nonzero trace on F are exactly the Bernstein-Bézier polynomials having a nonzero

trace on F and supported on a simplex adjacent to F .

Proof. Due to the regularity of splines, in order for a spline function M(x | I tB) of degree k to

have a nonzero trace on F , it must have exactly k + d knots on F . The knots (ab)b∈B describe

a non-degenerate simplex, and therefore they cannot all be on F . Thus, there is exactly one

b ∈ B such that ab 6∈ F , and F is thus a facet of conv((ab)b∈B). All the knots (ai)i∈I are on F .

Let us now prove that they are actually vertices of F .

Suppose that a knot ai ∈ F for some i ∈ I. Then, there exist d coefficients λ1, . . . , λd
satisfying 0 ≤ λc ≤ 1,

∑
c∈C λc = 1 and

∑
c∈C λcac = ai. If ai is not a vertex of F , then one can

multiply (6.2) by λc and sum over c, yielding h(ai) ≥
∑

c∈C λch(ac). This contradicts the fact

that i ∈ I. In fact, if one takes any point aj affinely independent of (ac)c∈C , and orders the set
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B := C t {j} so that det(B) > 0, the Delaunay condition (5.27) is satisfied, since

det((aj , h(aj), 1)j∈B, (ai, h(ai), 1)) =
∑
c∈C

λc det((aj , h(aj), 1)j∈B, (ac, h(ac), 1))

+ det((aj , h(aj), 1)j∈B, (0, h(ai)−
∑
c∈C

λch(ac), 0)),

= −

(
h(ai)−

∑
c∈C

λch(ac)

)
det(B) < 0,

which implies that i 6∈ I t B. We conclude the proof by noticing that the point ab (i.e. the

only point with index b ∈ B that does not lie on F ) must be the same for all these splines,

as it corresponds to the first knot encountered by the rotating plane used in the proofs of

Proposition 6.2.4 and Corollary 6.2.6. Thus, all these splines are supported on the same simplex

conv((ab)b∈B). This completes the proof.

Proposition 6.3.1 is very important, since it shows that the spline functions obtained when

building the space Sh :=
⊕nd

i=1 Si have exactly the same trace on the constraint facets F ∈ F as

the usual discontinuous Galerkin Bernstein-Bézier basis functions. Indeed, splines satisfying the

proposition are simply Bernstein-Bézier polynomials over the same simplex conv((ab)b∈B). The

corresponding simplices are shown in Figure 6.3, bottom left. This property also implies that

the sets of splines having a nonzero trace on any constraint facet are the same as in the case

of the Bernstein-Bézier discontinuous Galerkin. Therefore, the usual inverse inequalities from

[305], i.e., ∫
F
f2 dF ≤ (k + 1)(k + d)

d

vold−1(F )

vold(Σ)

∫
Σ
f2 dΣ, (6.6)

which are valid for any polynomial function f of degree k over the simplex Σ having F as one

of its facets, can be directly used for any constraint facet. This allows to apply in an extremely

straightforward way many of the proofs of the numerical properties of the IPDG method. We

show two such instances in the next section.

6.3.2 Positivity of the bilinear form

As discussed in Chapter 2, the IPDG method relies on a penalty term that makes its bilinear

form positive. This is necessary to ensure the stability of the method. However, a large penalty

term can adversely impact the performance of the numerical scheme. More specifically, the

condition number of the bilinear form scales linearly in the penalty constant (see, e.g., [306]),

which affects the maximum allowed timestep as well as the precision and numerical stability

of the method as the timestepping iterations increase. Thus, the determination of a general

criterion for choosing a reasonably small but effective penalty coefficient is crucial.

In most applications, a different penalty term is associated with each facet of the mesh.

Some early works tie the value of the penalization coefficient to the size of the facet [307] or the

size of the adjacent elements [308]. A sufficient value for the penalty term, which uses the ratio

between these two quantities and does not contain undetermined constant factors, was given

in [125]. For simplicial cells, the resulting value can be equivalently described in terms of the
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Figure 6.3: (Top left) a point configuration A ⊂ R2, with two domains. We use A to build
a spline space of degree k = 2. The Gabriel facets are shown in the picture. Points on these
facets are repeated 2+1 times. (Top right) the simplices associated to the splines of Proposition
6.2.4, that protect the boundaries and allow the decomposition of the spline space. (Bottom
left) the simplices associated to the splines of Proposition 6.3.1, corresponding to splines that
have a nonzero trace on constraint facets. (Bottom right) the simplices associated to all splines
of degree ≤ 2. Their intersection determines the quadrature decomposition.
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radius of the inscribed sphere, see, e.g., [89]. In [126], lower bounds on the penalty term are

related to the shape of the neighboring cells.

The weak form of the problem (6.1) is expressed using the bilinear form

a(ϕ, p) :=

nd∑
i=1

∫
Ωi

1

ρ
∇ϕ · ∇p dΩ−

∑
F∈FDG

∫
F

(
[[ϕ]] · {{1

ρ
∇p}}+ [[p]] · {{1

ρ
∇ϕ}}

)
dF

+
∑

F∈FDG

α(F )

∫
F

[[ϕ]] · [[p]] dF,

(6.7)

and we need to determine a sufficiently large, but reasonably small, value for α that makes the

form (6.7) positive. In other words, after defining

‖p‖2h :=

nd∑
i=1

∫
Ωi

1

ρ
|∇p|2 dΩ +

∑
F∈FDG

∫
F

[[p]]2 dF,

one requires

a(p, p) =

nd∑
i=1

∫
Ωi

1

ρ
|∇p|2 dΩ− 2

∑
F∈FDG

∫
F

[[p]] · {{1

ρ
∇p}}dF + α(F )

∑
F∈FDG

∫
F

[[p]]2 dF ≥ C ‖p‖h

for all p in our multi-patch spline space Sh :=
⊕nd

i=1 Si, where the constant C does not depend

on p.

Thanks to Proposition 6.3.1, the results of [125] can be directly applied to our method.

Specifically, in the cited paper, the authors introduce a penalty term α(F ) on each facet F of

the mesh, and use the inverse inequality (6.6) on the simplices adjacent to F to determine a

value of α(F ) that guarantees the positivity of a. We can apply exactly their reasoning to our

case, the only exception being that for our method, the penalty term α(F ) is only computed

on the facets F ∈ FDG, and that we have to take into account the density values. Since we use

a piecewise-constant density value over each domain, we can easily adapt the expression (7) of

[125] and choose, for F ∈ FDG,

α(F ) =
(k + 1)(k + d)

2

max( 1
ρ+
, 1
ρ− )

min(r(ΣB+), r(ΣB−))
, (6.8)

where the subscripts + and − identify the two sides of F , M(x | I± tB±) are two splines with

a nonzero trace on F , one on each side of F , ΣB± := conv((ab)b∈B±) and r(ΣB±) is the inradius

(i.e., the radius of the inscribed sphere) of ΣB± . In practical cases, one often chooses a larger

penalty term to ensure the good numerical conditioning of the system matrices.

6.3.3 A priori error analysis

The applicability of the inverse inequality (6.6), guaranteed by Proposition 6.3.1, also allows to

directly apply the a priori error estimates of the IPDG method, presented in Chapter 2, with

very minimal modifications.
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As we have seen in Chapter 2, the proof that the a priori error of the IPDG method is the

same as the usual continuous Galerkin approach relies on an estimate of the residual

r(p, ηh) := â(ηh, p)− a(ηh, p) = −
∑

F∈FDG

∫
F

[[ηh]] · {{ΠDG
1

ρ
∇p− 1

ρ
∇p}}dF.

We bound this residual in the energy semi-norm

|||p|||2 := a(p, p) =

∫
Ω
|∇p|2 dΩ +

∑
F∈FDG

∫
F
α[[p]]2 dF.

We compute

sup
ηh∈Sh

|r(p, ηh)|
|||ηh|||

for p ∈ H1(Ω) + Sh.

Using the inverse inequality (6.6) and the Cauchy-Schwartz inequality,

|r(p, ηh)|2 ≤ C1

∑
F∈FI

∫
F
α[[ηh]]2 dF


 ∑
F∈FDG,
Σ:∂Σ⊃F

vold−1(F )

vold(Σ)

∫
Σ
α−1

∣∣∣∣{{ΠDG
1

ρ
∇p− 1

ρ
∇p}}

∣∣∣∣2 dF

 ,

≤ C2|||ηh|||2h−1

∫
Ω

(
α−1

∣∣∣∣ΠDG
1

ρ
∇p
∣∣∣∣2 +

∣∣∣∣1ρ∇p
∣∣∣∣2
)

dΩ,

≤ C2|||ηh|||2|||p|||2.

We have used here the following facts: the geometric term vold−1(F )/ vold(Σ) scales like h−1,

the penalization coefficient α(F ) (6.8) is proportional to the radius of the inscribed sphere of

the simplices incident to F and thus also scales like h−1, and the projection ΠDG is done in the

L2(Ω) norm and is thus stable in this norm. Thus,

sup
ηh∈Sh

|r(p, ηh)|
|||ηh|||

≤ C|||p|||,

which is the same a priori estimate as the IPDG method [108].

6.4 Some numerical results

We present in this section a few results showcasing the capabilities of this approach.

6.4.1 Block-diagonal mass matrix

In Figure 6.4 we show three different choices for the constrained facets (and thus the repeated

knots) on the same point configuration A. We compare a meshed point configuration where each

mesh element is a subdomain and all points are repeated k + 1 times, a multi-patch DG-IGA
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approach with 6 subdomains, and a pure IGA approach, i.e., a single subdomain. Notice that

the pure DG case is obtained as in Corollary 6.2.6, and the pure IGA case is obtained by only

constraining the facets on ∂Ω. Consequently, all three numerical schemes are obtained through

our construction, with pure DG and pure IGA obtained as the limiting cases. This is reflected

in the sparsity pattern of the mass matrix (Figure 6.4, right), which is always block-diagonal,

but where one can arbitrarily vary the size and number of diagonal blocks from one per mesh

element to a single block for the whole domain. Notice also that the blocks are sparse (except

near the DG limit) and have a limited bandwidth, comparable with the usual DG case (cf.

Proposition (5.3.12)). The pure IGA ad DG-IGA cases have a very similar number of nonzero

entries, ∼ 3.5 · 105, despite their rather different appearance.

From an implementation point of view, this flexibility can allow a suitable distribution of

computational tasks (load balancing). Ideally, the blocks can be made small enough so that a

single computational node is capable of storing the factorization of the mass matrix correspond-

ing to a single subdomain.

6.4.2 Validation

We have first validated the method on a simple two-dimensional homogeneous model Ω of size

9.2km × 3.0km with ρ = 1000kg m−3, c = 1500m s−1, absorbing boundary conditions on all

sides, a single source point and an array of receivers. We have used for the source, as in all

other results of this section, a Ricker wavelet (1.6) in time. We have compared the values at

the receivers with the analytical result, which we have computed using the Gar6more software

[309]. We have computed the L2 error of the simulation at the position xr ∈ Rd, d = 2, 3 of a

receiver r as

e2
r :=

∫ tf
0 (p(xr, t)− pA(xr, t))

2 dt∫ tf
0 p2

A(xr,t)
dt

, (6.9)

where pA is the analytical solution computed with Gar6more. The point configuration A includes

around 3.4 ·104 points. We have performed an IGA simulation, defining a single subdomain and

increasing the multiplicity of points on ∂Ω, a finite element method (FEM) simulation obtained

by repeating k+1 times all the points in A (Corollary 6.2.7), and a DG simulation obtained from

this by additionally defining a subdomain for each simplex in a triangulation of Ω (Corollary

6.2.6). The simulation was repeated with k ranging from 1 to 4. In Figure 6.5, we show a

snapshot from the simulation, and we compare the CFL timestep for the LF2 time integration

scheme (2.3), the number of degrees of freedom (i.e., the number of multivariate B-splines in

the basis), the relative error (6.9) and the error times the number of degrees of freedom, which

represents the inverse of the precision per degree of freedom.

As can be seen, multivariate spline spaces share many properties with their more usual tensor-

product counterparts. Specifically, the number of degrees of freedom increases only linearly with

the order k (due to the fact that no new nodes are inserted, cf. discussion at the end of Chapter

3), and the CFL condition only decreases as h/k instead of h/k2 as in the case of FEM and DG

methods. The precision per number of degrees of freedom is comparable for FEM and IGA, and

has the same behavior as a function of k in all three methods.

Notice that, for k = 1, FEM and IGA coincide, and that at all orders the DG simulation
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Figure 6.4: Three choices of constraints for a point configuration A (left), and the resulting
sparsity pattern of the mass matrix (right). (Top) DG approach, with n = 27954 simplices.
(Middle) multi-patch DG-IGA with 6 subdomains. (Bottom) pure IGA with a single subdomain.
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is penalized by the excessive number of degrees of freedom with respect to both FEM and

IGA, which is a well-known drawback of the method. Also notice that the penalization term α

used in Figure 6.5 for the DG calculation is twice the minimum necessary for positivity, which

further penalizes the maximum allowable timestep of the DG calculation (although it makes the

simulation very stable).

In order to investigate whether the introduction of subdomain boundaries impacts the behav-

ior of the CFL condition, we have performed a similar calculation on a simple two-dimensional

bi-layered model, with the same dimensions as the two-dimensional homogeneous model above,

but split horizontally into halves. The finit element simulation in this case is to be interpreted

as a multi-patch FEM calculation, where one FEM basis is introduced in each subdomain, and

DG fluxes are used to couple subdomains.

The two media have the same density ρ = 1000kg m−3, but the medium containing the source

has a velocity of c = 1500m s−1, while the second medium has a velocity of c = 2500m s−1. The

point configuration contains about 2.3 · 104 points, of which about 1.7 · 104 are in the region

of lower velocity, since the point density was adapted to the local seismic wavelength. In this

simulation, we have computed the same quantities as in the homogeneous case. As one can see,

the presence of an interface does in fact penalize the CFL maximum timestep of all the methods.

The multi-patch DG-IGA simulation still achieves, however, the best timestep.

In general, as noticed in [3], the superior CFL condition timestep seen in multi-patch methods

is due to the increased support of the basis functions. The same behavior is experienced when

the usual C0 finite element bases are modified to have a larger support [310]. In particular, we

expect this behavior to be present as long as the number of functions in each patch of degree k

is much larger than
(
k+d
k

)
.

6.4.3 Multi-patch simulation and blending with DG

We have tested the multi-patch DG-IGA approach on a simple two-dimensional 3km × 3km

synthetic seismic model, the same used in [169]. This model, shown in Figure 6.7, is composed

of 6 layers, including water on the top and a salt body in the interior.

We have performed three simulations. The first two simulations correspond to a multi-patch

DG-IGA model with 6 domains, shown in Figure 6.7, and a hybrid simulation whereby four

domains are treated via the IGA approach, and two domains are meshed and simulated using

the DG basis obtained via Corollary 6.2.6. The third simulation is also performed in this hybrid

configuration, but with the same physical medium in all the subdomains, in order to show

that no numerical artifacts appear at the boundaries between two different numerical schemes.

Results are shown in Figure 6.10.

6.4.4 Non-simply-connected domains

The usual tensor-product spline spaces used to define multivariate spline functions are limited

to a simple topology, namely, that of a topological sphere. Obtaining a non-simply-connected

domain then requires gluing together multiple patches. This is a tedious and sometimes very

difficult step that often results in reduced regularity along seam lines. Instead, the approach

proposed in this chapter allows to perform full IGA simulations on a non-simply connected
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Figure 6.5: A two-dimensional homogeneous simulation (top) comparing, for IGA, FEM and
DG simulations and for k = 1, . . . , 4, the CFL timestep condition (middle left), the number of
degrees of freedom (middle right), the relative error (bottom left) and the relative error times
the number of degrees of freedom (bottom right).
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multi-patch FEM and DG simulations and for k = 1, . . . , 4, the same quantities as Figure 6.5.
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ρ = 1000kg m−3, c = 2000m s−1

ρ = 2030kg m−3, c = 1500m s−1

ρ = 2710kg m−3

c = 5334m s−1

ρ = 2710kg m−3

c = 4633m s−1
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c = 2609m s−1

ρ = 2810kg m−3

c = 4359m s−1

FA

FN

FDG

Figure 6.7: The synthetic model used for testing our multi-patch DG-IGA approach, with its
associated physical parameters (left) and the point configuration used to construct our splines
and DG basis (right). We also show the location of the absorbing (FA), free-surface (FN) and
DG (FDG) boundaries.

domain, simply by placing absorbing (or other) boundary conditions on the internal boundaries,

and excluding the subdomains representing holes from the simulation.

We show here three examples, all in two dimensions, of this feature. In Figure 6.11, we show

a simple model inspired by helioseismology applications, with three domains, one with genus

zero and two with genus one. The model was adapted from [311], and the spline space was built

on a point configuration containing around 6400 points. Notice that the density of points has

been adapted to the local wavelength. The simulation has degree k = 3.

In Figure 6.12 we present a simulation of a very simplified acoustic instrument, consisting

of a single domain of genus three. We impose free-surface boundary conditions on the sides of

the instrument, absorbing boundary conditions at the beginning of the embuch, and transparent

(i.e., DG flux) boundary conditions at the exit of the bell. The whole model has approximately

4200 points. The simulation has degree k = 4.

In Figure 6.13 we show a simple application to the propagation of acoustic waves in closed

spaces, by simulating a two-dimensional model of the interior of a church, namely, the Santa

Croce basilica in Florence, Italy. The large amount of columns and other obstacles increase the

genus of the simulation domain to 99, which would be extremely difficult to obtain by gluing

together tensor-product spline patches. Using unstructured spline spaces, the regularity of the

space is kept maximal (i.e., k − 1 at degree k) inside the domain. The model comprises around

1.1 · 104 distinct points. The simulation has degree k = 2.

Finally, in Figure 6.14 we show how different kinds of boundary conditions can be imposed

on a constraint internal to a domain. We have simulated a simple homogeneous domain with a

single fault inside, on which we have imposed absorbing, Dirichlet, Neumann and transparent

(e.g, DG flux) conditions. The latter simulation illustrates the lack of numerical noise due to
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Figure 6.8: Simulation of the model of Figure 6.7 using a multi-patch IGA approach based on
6 domains. The spline space used has degree k = 3.
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Figure 6.9: Simulation of the model of Figure 6.7 using a hybrid multi-patch DG-IGA approach
based on 2 meshed (DG) domains and 4 meshless (IGA) domains. The spline space used has
degree k = 3.
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Figure 6.10: Simulation of the model of Figure 6.7 using a hybrid multi-patch DG-IGA approach
based on 2 meshed (DG) domains and 4 meshless (IGA) domains. The physical parameters have
been set to the same values in all domains, in order to detect numerical artifacts. The spline
space used has degree k = 3.
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the coupling of DG fluxes with the underlying IGA simulation scheme. This simple model is

made of around 5000 points. In all cases, the simulation has degree k = 2.

We have performed a few numerical simulations using some simple three-dimensional models,

with the goal of testing the capabilities of the method in three-dimensions and proving the

feasibility of the quadrature algorithm 3. In practical cases, the algorithm is capable of correctly

computing the quadrature cells, which has been determined by inspection of the wave equation

solution. However, for k > 3, in three dimensions it seems that the computational cost of

determining the quadrature cells and subsequent matrix assembly tends to become the dominant

cost of the whole simulation. For this reason, we believe that a different approach for the

computation of quadratures is required. We defer this investigation to a future work, and

discuss briefly some possible solutions in the concluding section.

We show in Figure 6.15 the results of the simulation of a simple three-dimensional 1km ×
1km × 1km bi-layered domain with density ρ = 1000kg m−3 everywhere and velocities c1 =

2000m s−1 in the upper half and c2 = 3000m s−1 in the lower half of the model. The simulation

was performed at k = 2 on the point configuration shown in the picture. The model comprises

around 2.6 · 104 points. No significant numerical noise was detected.

6.4.5 A simple application to hyperelasticity

We have also briefly explored the applicability of our approach to hyperelasticity. In particu-

lar, we have simulated the linear elastic deformation of a simple two-dimensional gasket that

undergoes a large deformation induced by the surrounding constraints. For each position of the

constraints, we have computed the displacement field associated to the new equilibrium configu-

ration, and we have applied the corresponding displacement to the original point locations. Our

simulation can therefore be considered as quasi-static. No dynamic or other time-dependent

quantity was computed, and no friction was added to the simulation, which makes it somewhat

unrealistic. We have used a value of 0.3 for the Poisson’s ratio of the material. Results are

shown in Figure 6.16.

In order to perform hyperelasticity calculations via meshed methods, one usually needs to

design a special mesh capable of accommodating the large deformation throughout the simulation

without undergoing excessive mesh element degeneration. This is a costly pre-processing step

that requires many exploratory simulations and can lead to an over-refined mesh. Thus, for

these applications, meshless methods (or almost meshless methods such as the one proposed in

this work) might be helpful.

6.5 Discussion and further reading

One of the most interesting features of the proposed method, in our view, is that it provides a

natural bridge between DG and IGA methods, which can both be recovered as special cases of

our construction. Numerically, this translates into the possibility of retaining the block-diagonal

structure of the DG approach (cf. Figure 6.4) while improving the CFL condition thanks to the

well-behaved shape of spline functions (cf. Figure 6.5). Furthermore, the choice can be made

locally at the level of a sub-domain, providing a natural way to couple the DG and (unstructured)
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Figure 6.11: Simulation of a helioseismology-inspired model comprising three domains, two of
which are not simply-connected.
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Figure 6.12: Simulation of a simple music instrument (a trumpet), comprising a single domain
with genus three.
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Figure 6.13: Simulation of wave propagation in the 2D model of a church. The simulation
comprises a single domain, with a high genus (99) due to the large number of columns and other
obstacles. The regularity of the spline space is maximal inside the simulation domain, and only
reduced next to the domain boundaries.
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Figure 6.14: Simulation of a simple homogeneous model with a single fault on which we impose a
set of different boundary conditions. Top row: model and incident wave. Middle row: absorbing
(left) and transparent (right) boundary conditions. Bottom row: Dirichlet (left) and Neumann
(right) boundaries.
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Figure 6.15: Wave propagation in a simple three-dimensional bi-layered model, composed of two
IGA domains. We show the point configuration (interface points are thicker in the image), and
five simulation snapshots. The interface between the layers is shown in blue.



6.5. DISCUSSION AND FURTHER READING 201

Figure 6.16: Six successive time steps of the simulation of the deformation of a simple two-
dimensional gasket undergoing linear elasticity. The gasket’s boundary and the point configu-
ration are shown in black, and the constraints are shown in red.
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IGA approaches, without any additional numerical noise (cf. Figure 6.10).

Since the spline functions have reduced regularity on the interfaces between subdomains, one

can define the shape of the subdomains according to the physics of the problem, by aligning the

zones of reduced regularity with the discontinuities of the physical parameters. In addition, one

can introduce more subdomains than necessary, in order to reduce the size of the diagonal blocks

of the system matrices, if required. One can also imagine fine-tuning the size of the subdomains

to facilitate load balancing in parallel machines for HPC applications.

One of the major drawbacks of this method is the cost of computing the quadrature cells and

assembling the system matrices themselves. In Algorithm 3, the intersection of simplices can be

easily computed via convex hull algorithms, [312, 313]. Many efficient implementations exist,

see, e.g., [314]. However, the number of cells in the quadrature decomposition can be very high,

and can increase combinatorially with the degree k. One small improvement can be achieved

using multivariate B-splines instead of simplex splines, as the linear combination (6.3) recovers

continuity, and thus quadrature cells can be computed using Algorithm 3 with degree k − 1.

Furthermore, the computation of quadrature cells, and subsequent matrix assembly, are very

easy to parallelize, and can therefore make full use of high-performance computational resources,

when available. However, we consider this problem to be a major drawback of the proposed

method. Compared to the usual IPDG method, the mass matrix associated to each domain is

also in general larger, and thus its inversion represents another additional cost, albeit one that

can be mitigated by choosing a finer subdomain decomposition.

One might be able to avoid a sizable amount of computation by using techniques such as

that proposed in [315, 316]. In this work, the inversion of the mass matrix is avoided, while

retaining a favorable timestep CFL condition, by using a modified timestepping scheme based

on defect correction (DeC) techniques (see, e.g., [317]). Within this paradigm, one recovers

the accurate solution of the problem by performing a small and convergent set of iterations

over approximate, cheaper problems with appropriate residuals on the right hand side. It is

conceivable that one might define a similar approximate solution for unstructured splines, one

that not only avoids the inversion of the mass matrix but possibly much of the computational

complexity of the definition of exact quadrature cells. The approximate problem would be

similar to that obtained through mass lumping techniques, but the method accuracy would be

recovered by the deferred correction method. We plan on investigating this possibility in a future

work.

An improvement in the computational cost associated to matrix assembly might also come

from the use of alternative integration techniques based on some cone spline decomposition which

have been developed over the years (see e.g. [318–321]). Since cone splines can be naturally

associated to some features of zonotopes, it is possible that these classic approaches can be

made more efficient by exploiting this connection. Other approaches, based on triangulations of

simploids [322], may also be successful in improving our method. We defer the exploration of

these possibilities to some future work.
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Wovon man nicht sprechen kann, darüber muß man schweigen.

Ludwig Wittgenstein, Tractatus Logico-Philosophicus (1921)

So far, we have explored the possible use of unstructured spline spaces for the discretization of

partial differential equations. We wish to discuss, in this short chapter, the possible consequences

of choosing an unstructured spline space to describe the space of physical parameters instead,

in view of possible applications to the seismic inversion problem. This section is intended to

be only exploratory, and only gives a possible roadmap for future development, even though

we have indeed performed some very preliminary numerical experiments to test the practical

applicability of the proposed method.

In the first section, we discuss the implications of associating the position of the spline knots

to degrees of freedom for inversion. We discuss in particular how the gradient can be computed

in this case, and how the reduction in regularity of the basis functions can be used to reconstruct

discontinuities in the physical model from a smooth initial guess.

In the following section, we discuss how the Euler-Darboux equations (4.30) and (4.45) can

be used to simplify the calculation of the Hessian matrix and reduce the complexity of the

Newton method.

Knot locations as degrees of freedom

In Chapter 1, we have briefly presented the seismic inversion process, and the associated op-

timization problem of the cost function with respect to the change in the physical model. We

have discussed the fact that one can associate some inversion degrees of freedom to the prob-

lem geometry, for example to the vertices of a mesh (see, e.g., [57, 58]), in which case the cost

function is not necessarily differentiable with respect to the model parameters when degenerate

configurations are reached.

Using the results of Chapter 4, one can similarly construct a spline space over a point

configuration A (see Chapters 5 and 6) and then compute the subgradient of the cost function

with respect to the position of the knots in A. One can still expect the cost function to be

non-differentiable with respect to these variables, since the spline functions themselves become

less regular and even discontinuous as the points become affinely dependent (cf. Figure 3.4).

However, since one does not have to guarantee the existence of a valid mesh at all times, one

203
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can possibly avoid the somewhat costly remeshing process that is sometimes necessary in mesh-

adaptive approaches (see [57, 58]).

The reduction in regularity, experienced by the spline functions on A as the points become

affinely dependent (see Figure 3.4), can also be an advantage if the underlying model is ex-

pected to have discontinuities, as is the case in seismic imaging applications. In this case, one

might start from a smooth physical model, with points of A in general position (except at the

boundaries), and then let the minimization of the cost function (1.22) displace the points until

the resulting model is discontinuous. We show below an example of this approach for a one-

dimensional seismic inversion process as well as a simple two-dimensional model, and we defer

more sophisticated two- and three-dimensional numerical experiments to a future work.

Gradient computation

The adjoint state method, through Theorem 1.3.3, gives a subgradient of the cost function J(m)

at a given point m with respect to the model m as a simple scalar product involving the solution

to the forward problem p(x, t) and the solution to the adjoint problem u(x, t), namely,

∂J(m) ⊆ ∂ 〈−u, L(m)p〉 (m), (7.1)

where m := (λ, ρ) is the physical model, and L is the acoustic wave operator

L(λ, ρ) :=
1

λ

∂2

∂t2
−∇ ·

(
1

ρ
∇
)
. (7.2)

The right hand side of (7.1) involves the derivatives of the linear operator L with respect to

the model. Suppose that we discretize (7.2) over a set of functions ϕh ∈ Qh, and suppose that

we use an unstructured spline space to discretize the physical parameters appearing in L and its

associated boundary conditions, over a finite set of spline functions over A. We can then write

1

λ
=

ns∑
i=1

γiM(x | (as)s∈Si), (7.3)

and similarly for ρ and c, where A := (ai)
n
i=1 is a point configuration and (Si)

ns
i=1 ⊂ [n] are

appropriate subsets of indices defining the spline functions in the space. Using an explicit

timestepping scheme, we can express (7.2) via a set of matrices, including the mass (2.15) and

stiffness (2.16) matrices. In order to compute the right hand side of (7.1), one has to compute

the derivatives of these matrices with respect to the inversion parameters. All these matrices

can be expressed as integrals of the form

O =

ns∑
i=1

γi

∫
Ω
M(x | (as)s∈Si)ψ(x) dΩ, (7.4)

where ψ is the product of functions ϕh ∈ Qh or their derivatives. Boundary matrices such as

the damping (2.17) matrices, as well as the flux and penalty matrices (2.30), (2.31) in the case

of DG or multi-patch schemes, can be expressed as similar integrals over the boundary, and can
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be treated in a very similar way.

Computing the derivative of (7.4) with respect to the coefficients γi of (7.3) is straightforward,

∂O
∂γi

=

∫
Ω
M(x | (as)s∈Si)ψ(x) dΩ.

Let us now compute the derivative of O with respect to the position of a knot in aj ∈ A. Suppose

that aj has multiplicity rj,i in Si, and let wj,i := rj,i/ |Si|. Then, one can use (4.44) to transfer

the derivative of each spline with respect to aj to a derivative with respect to x,

∇ajO = −
ns∑
i=1

γiwj,i

∫
Ω

(∇xM(x | (as)s∈Si t {aj})ψ(x) dΩ, (7.5)

where the disjoint union t expresses the fact that the multiplicity of aj is increased by one in

(as)s∈Si . Using (4.42), one can then compute the directional derivative of M with respect to

any direction v ∈ Rd, after expressing v in terms of the knots of each spline function appearing

in (7.5). For example, in the case of splines constructed as in Chapter 5, one can express

Si := Ii tBi, and use the subset Bi to write the direction v, using |Bi| = d+ 1 terms, as

v =
∑
b∈Bi

νb,iab, with νb,i :=
det((ac, 1)c∈Bi \ {(ab, 1)} t {(v, 0)})

det((ac, 1)c∈Bi)
,

where the row vector (v, 0) replaces the row vector (ab, 1) in the determinant, similarly to the

case of det(Bi) introduced in Chapter 5. One then obtains the simple expression

v · ∇ajO = −
ns∑
i=1

γirj,i

∫
Ω

∑
b∈Bi

νb,iM(x | Ii tBi t {aj} \ {ab})ψ(x) dΩ, (7.6)

and, using d orthogonal vectors v1, . . . , vd in (7.6), one can compute the derivative of O with

respect to each of the components of the knot vector aj . This gradient, although computationally

expensive, can be used to minimize the cost function with respect to the knot positions.

In Figure 7.1, we consider the minimization of the simple cost function

J :=

∫ 1

0
|f(x)− µ(x)|2 dx, (7.7)

where µ(x) = 1 + θ(x− 1/2) is a step function, A = {0, 0, 0, a1, . . . , an, 1, 1, 1} is a clamped knot

vector, and

f(x) =
n+3∑
i=1

γiNi,2,

where Ni,2 represents the usual one-dimensional B-spline basis of degree 2 over the clamped knot

vector A. We show the result of the minimization of the cost function over both the position of

the internal knots (ai)
n
i=1 and the spline coefficients (γi)

n+3
i=1 , in the case of n = 9 internal knots.
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We also show the plot of the cost function J , in the special case n = 3 and

A = {0, 0, 0, 1

2
, y, z, 1, 1, 1}, (7.8)

with respect to the knot locations y and z. Notice that in this case the cost function attains its

minimum, equal to zero, when y = z = 1/2, in which case the spline basis becomes discontinuous

and thus capable of reproducing the step function. However, as shown in Figure 7.1, the cost

function is not differentiable there, as anticipated in Chapter 1. For this reason, near the

minimum, the usage of Newton methods incorporating second-order information can become

counterproductive.

In Figure 7.2, we show the result of performing a simple one-dimensional full waveform

inversion to recover a piecewise constant velocity model starting from a simple gradient. The

model is expressed over the usual B-spline basis over the segment, starting with a clamped knot

vector with equally spaced knots. The position of the knots, as well as the expansion coefficients,

are recovered through inversion. Notice that, even though the number of degrees of freedom

(i.e., the number of knots) is very limited, one is able to recover precisely the discontinuities

without any a priori knowledge about their location.

In Figure 7.3, we show the result of a simple L2 minimization of a bivariate spline function,

expressed as over the unstructured simplex spline space over a very simple domain. The min-

imization is performed over both the coefficients of the 186 spline functions in the space, and

over the two-dimensional locations of the 17 non-boundary knots in the point set. The target

model is a simple step function. As can be seen, the discontinuity tends to be better and better

resolved by the optimized function, although the convergence rate seems to slow significantly as

the basis becomes more and more degenerate.

Further analysis and numerical tests are needed to assess whether this capability of recovering

the location of discontinuities with a low number of inversion degrees of freedom carries over to

more complex two- and three-dimensional problems.

Hessian matrix computation

The one-dimensional Euler-Darboux equations presented in Theorem 4.3.19 were first derived

by Carlson for Dirichlet averages [208, Theorem 5.4-1] and later reinterpreted in the context

of splines [209]. We have detailed some of the theoretical aspects of these relations in Chap-

ter 4. These equations however also have some practical implications, as they directly relate

the (mixed) second-order derivatives of simplex splines (and thus B-splines) to a simple linear

combination of their first derivatives. In fact, combining (4.30) with (4.28) we can obtain the

explicit expression

∂2

∂au∂av
M(x | A) =

rurv
c

M ′(x | A t {au})−M ′(x | A t {av})
au − av

,

which can be used in the minimization above to reduce the computational complexity of the

calculation of the Hessian matrix of the cost function from O(n2
s) to O(ns).
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Figure 7.1: One-dimensional minimization of (7.7) with respect to the coefficients and knot
positions of the basis. We show the target velocity model in yellow and the evolving model in
blue. We also show, under these curves, the knot locations in black. (Bottom right) plot of (7.7)
over the knot vector (7.8) with respect to the position of two knots y and z. Notice that the
cost function is not differentiable at the minimum.
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Figure 7.2: One-dimensional FWI with degrees of freedom on the spline coefficients and knot
locations. The knots on the boundary are fixed, whereas the 9 internal knots are left free to
move. We show the target velocity model in yellow and the evolving model in blue. We also
show, under these curves, the knot locations in black, the receiver locations in blue, and the
source location in red.
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Figure 7.3: Two-dimensional optimization with degrees of freedom on the spline coefficients and
knot locations. The knots on the boundary are fixed, whereas the 17 internal knots are left free
to move. We show the target velocity model in yellow and the evolving model in blue. We also
show, under the function graphs, the knot locations in black.
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Let us start with the one-dimensional case. Starting from (7.5),

∂O
∂aj

= −
ns∑
i=1

γiwj,i

∫
Ω
M ′(x | (as)s∈Si t {aj})ψ(x) dΩ,

one more iteration of (4.28) yields the diagonal part of the Hessian:

Hjj :=
∂2

∂a2
j

O =

ns∑
i=1

γi
rj,i(rj,i + 1)

|Si| (|Si|+ 1)

∫
Ω
M ′′(x | (as)s∈Si t {ai}2) dΩ.

Thanks to (4.30), the off-diagonal part of the Hessian matrix can be evaluated without computing

any second-order derivatives:

Huv :=
∂2O

∂au∂av
,

=

ns∑
i=1

γi
ru,irv,i
|Si|

∫
Ω

1

au − av
(
M ′(x | (as)s∈Si t {au})−M ′(x | (as)s∈Si t {av})

)
ψ(x) dΩ.

Essentially, the computation of both the gradient and the Hessian matrix only requires

computing, for each spline function of degree k defined by the indices Si, the 2 |Si| = 2(k + 2)

spline functions M ′(x | (as)s∈Si t {au}) for all u ∈ Si, and M ′′(x | (as)s∈Si t {au}2), again for

all u ∈ Si. In contrast, a naive computation would require the evaluation of (k + 2)(k + 3)

different spline functions. This reduction in complexity might represent a speedup for certain

applications, including full waveform inversion, where the computation of the full Hessian matrix

is often too costly to be performed in practice.

Contrary to the univariate case (4.30), (4.45) cannot be directly used to compute all the

off-diagonal terms of the Hessian matrix. For instance, the equation is trivial whenever i = j,

so the mixed derivatives with respect to two different components of the same knot cannot be

computed from (4.45). In fact, in dimension d, the Euler-Darboux equations (4.45) and (4.47),(
d∑

m=1

(au,m − av,m)
∂2

∂au,m∂av,k
+ ru,i

∂

∂av,k
− rv,i

∂

∂au,k

)
M(x | (as)s∈Si) = 0,(

d∑
m=1

(au,m − av,m)
∂2

∂au,k∂av,m
+ ru,i

∂

∂av,k
− rv,i

∂

∂au,k

)
M(x | (as)s∈Si) = 0,

(7.9)

only yield 2d linear equations relating the d2 variables au,m, av,k for m, k = 1 . . . , d. If d = 2,

these equations can be solved and the mixed terms of the Hessian involving two different knots

can be computed from the terms involving a single knot. Unfortunately, we do not know yet of

a way of applying this simplification to the case d ≥ 3. Even so, (7.9) can be used to reduce the

computational cost of the Hessian matrix in all dimensions.

In real-world applications, the use of these techniques always needs to be carefully considered,

since, as shown in Figure 7.1, the cost function is not generally differentiable when the knots

become affinely dependent. Consequently, the application of the Hessian matrix via Newton’s

method is more likely to be useful at the beginning of the minimization, before the knots align
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to form discontinuities, and can be expected to be less useful and even problematic as the

discontinuity interfaces start to form.

All the arguments presented in this section are still partial and under development, and are

to be interpreted as hints to a certain usefulness of the Euler-Darboux equations (4.30) and

(4.45) for optimization problems, rather than a full-formed numerical approach.



212 CHAPTER 7. TOWARDS FULL WAVEFORM INVERSION



Conclusions

A viagem não acaba nunca. Só os viajantes acabam.

José Saramago, Viagem a Portugal (1983)

We have explored in this work the applicability of simplex spline spaces to the time-explicit

numerical analysis of hyperbolic problems, and more specifically, to the simulation of acoustic

wave propagation with absorbing boundary conditions and the related inverse problem known

as seismic imaging via Full Waveform Inversion (FWI).

The main contributions of this work are as follows. First, we provided a generalization

to some already proven results on the construction of polynomial-reproducing simplex spline

spaces, based on combinatorial objects known as zonotopal tilings. Using the properties of

these objects, we were able to generalize a known result on Delaunay configurations [4], and to

extend a formerly established two-dimensional spline space construction algorithm [5, 259] to an

arbitrary number of dimensions, as well as to the case of repeated and affinely dependent points.

This generalization is needed for applications in numerical analysis, since spline functions cannot

interpolate the problem boundary unless their regularity is reduced there. Furthermore, these

combinatorial structures possess a natural graph, whose properties can be exploited to devise

algorithms for efficient spline evaluation.

Armed with these tools, we used knot multiplicities to subdivide the problem domain into

subdomains, each associated to a spline space, and we used standard techniques coming from

DG methods to connect the domains with fluxes and symmetric interior penalty terms. We

showed that, near subdomain boundaries, our spline spaces reproduce the usual Bernstein-Bézier

discontinuous Galerkin (DG) basis over simplices adjacent to the interfaces. Thus, we were able

to apply the same inverse inequalities of [305], which are the basis for the derivation of the known

positivity constraints and a priori error estimates for the usual symmetric interior-penalty DG

method (IPDG). Furthermore, if each subdomain is a simplex, we proved that we recover the

usual Bernstein-Bézier IPDG scheme, while on the other hand of the spectrum, when a single

domain is defined, we derived an unstructured version of the usual B-spline isogeometric analysis

(IGA) framework. Thus, numerically, our proposed method can interpolate between these two

approaches and their relative advantages, recovering the improved maximum timestep condition

of IGA methods, while retaining the block-diagonal structure of the mass matrix typical of DG.

Overall, our method resembles a fully unstructured version of the multi-patch DG-IGA approach

of [3], with the possibility of simulating domains of complex topology, and to naturally couple

DG and (unstructured) IGA schemes in the same simulation. We illustrated these points with
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a few numerical experiments.

Finally, we turned our attention to possible applications of unstructured spline functions to

FWI. In particular, we explored some of the consequences of minimizing the usual FWI cost

function with respect to the position of the knots defining the spline functions. We showed

that the gradient of the cost function can be computed using some known formulas derived

originally in [208] for Dirichlet averages, and later applied to simplex splines [209]. We noticed

that the FWI cost function is not generally differentiable in this case, which is a common

feature of optimization processes with geometrical degrees of freedom. For this reason, we

introduced a slight generalization of the adjoint state method of FWI using subdifferentials and

a known convex duality. We also briefly discussed the possibility of using the Euler-Darboux

equations, relating second and first derivatives of spline functions with respect to their knots, to

the computation of the Hessian, in one and two dimensions. Some early one- and two-dimensional

numerical experiments give hints on the feasibility of this approach, although more experiments

in two and three dimensions are needed to further explore the interest of this method for shape

optimization problems.

The work presented here can be further extended and improved in many possible directions.

First, for the construction of spline spaces, only fine zonotopal tilings have been explored. It

is possible that similar connections could be found between more general zonotopal tilings and

other kinds of multivariate splines, such as box splines or more general polyhedral splines [216,

220]. Furthermore, the spline evaluation scheme proposed in this work does not optimize the

number of auxiliary functions needed. Optimized weighted Delaunay triangulations coming from

computer graphics applications could potentially provide some improvements in this regard.

Second, and more importantly, the assembly of system matrices in our approach is much more

computationally expensive compared to other numerical schemes. In fact, if these matrices are

assembled using the maximal cells over which all the spline functions in the space are pure

polynomials, then one has to deal with a large number of integration cells. Thus, the total

number of elementary integrals that need to be evaluated is much larger than in the usual

IPDG or FE methods. Even though, computationally, this task can be easily parallelized, we

believe that other integration schemes are worth exploring, and notably those connected with

combinatorial structures such as cone splines [319] or simploids [322]. Hopefully, the connections

with zonotopal tilings and triangulations uncovered in this work might be extended and further

exploited to this end. Another possibility is to employ a method similar to that presented in [315,

316]. With this approach, one might be able to avoid a potentially large amount of computation

by only evaluating an approximation of the system matrices. One then would recover the full

convergence rate by using an appropriate defect-correcting timestepping scheme.

Finally, we have only provided a very early draft for the use of unstructured spline functions

for full waveform inversion. Much more work is needed to bring this approach to fruition, notably

in two and three dimensions. As for the forward problem, the scalability of the time integration

scheme needs to be verified in an actual large-scale HPC setting, and some real-world tests are

needed to assess the impact of the inter-node communication associated with the degrees of

freedom on the boundaries between the sub-domains. We plan on performing these extensions

and analyses in future works.
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PhD thesis. Université Nice Sophia Antipolis, 2014.

[57] S. Thrastarson, M. van Driel, L. Krischer, C. Boehm, M. Afanasiev, D.-P. Van Herwaar-

den, and A. Fichtner. “Accelerating numerical wave propagation by wavefield adapted

meshes. Part II: full-waveform inversion”. In: Geophysical Journal International 221.3

(2020), pp. 1591–1604.

[58] P. Jacquet. “Time-Domain Full Waveform Inversion using advanced Discontinuous

Galerkin method.” PhD thesis. Université de Pau et des Pays de l’Adour, 2021.
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port equation”. In: Publications mathématiques et informatique de Rennes S4 (1974),

pp. 1–40.
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tionale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung.

Dieterich’schen Universität–Buchdruckerei, 1911.

[115] J. H. Bramble and S. Hilbert. “Estimation of linear functionals on Sobolev spaces with

application to Fourier transforms and spline interpolation”. In: SIAM Journal on Nu-

merical Analysis 7.1 (1970), pp. 112–124.

[116] J. Nitsche. “Verfahren von Ritz und Spline Interpolation bei Sturm-Liouville Randwert-

problemen”. In: Numerische Mathematik 13.3 (1969), pp. 260–265.

[117] C. Makridakis and R. H. Nochetto. “A posteriori error analysis for higher order dissipative

methods for evolution problems”. In: Numerische Mathematik 104.4 (2006), pp. 489–514.

[118] E. H. Georgoulis, O. Lakkis, C. G. Makridakis, and J. M. Virtanen. “A posteriori error

estimates for leap-frog and cosine methods for second order evolution problems”. In:

SIAM Journal on Numerical Analysis 54.1 (2016), pp. 120–136.

[119] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, 2012.

[120] J. Sherman. “Adjustment of an inverse matrix corresponding to changes in the elements

of a given column or a given row of the original matrix”. In: Annals of mathematical

statistics 20.4 (1949), p. 621.

[121] J. Diaz and M. J. Grote. “Energy conserving explicit local time stepping for second-order

wave equations”. In: SIAM Journal on Scientific Computing 31.3 (2009), pp. 1985–2014.

[122] H. Barucq, J. Diaz, and V. Duprat. “Stability analysis of the interior penalty discontin-

uous Galerkin method for solving the wave equation coupled with high-order absorbing

boundary conditions”. In: Monograf́ıas del Seminario Matemático Garćıa de Galdeano
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[158] G. Szegő. Orthogonal polynomials. Vol. 23. American Mathematical Soc., 1939.



BIBLIOGRAPHY 225

[159] T. Warburton and T. Hagstrom. “Taming the CFL number for discontinuous Galerkin

methods on structured meshes”. In: SIAM Journal on Numerical Analysis 46.6 (2008),

pp. 3151–3180.

[160] D. Dunavant. “High degree efficient symmetrical Gaussian quadrature rules for the tri-

angle”. In: International Journal for Numerical Methods in Engineering 21.6 (1985),

pp. 1129–1148.

[161] G. Cohen, P. Joly, J. E. Roberts, and N. Tordjman. “Higher order triangular finite

elements with mass lumping for the wave equation”. In: SIAM Journal on Numerical

Analysis 38.6 (2001), pp. 2047–2078.

[162] M. Blyth and C. Pozrikidis. “A Lobatto interpolation grid over the triangle”. In: IMA

Journal of Applied Mathematics 71.1 (2006), pp. 153–169.

[163] Y. Liu, J. Teng, T. Xu, and J. Badal. “Higher-order triangular spectral element method

with optimized cubature points for seismic wavefield modeling”. In: Journal of Compu-

tational Physics 336 (2017), pp. 458–480.

[164] R. Pasquetti and F. Rapetti. “Cubature versus Fekete-Gauss nodes for spectral element

methods on simplicial meshes”. In: Journal of Computational Physics (2017).

[165] P. J. Davis. Interpolation and approximation. Courier Corporation, 1975.

[166] M. Abramowitz, I. A. Stegun, and R. H. Romer. Handbook of mathematical functions

with formulas, graphs, and mathematical tables. 1988.

[167] S. A. Teukolsky. “Short note on the mass matrix for Gauss–Lobatto grid points”. In:

Journal of Computational Physics 283 (2015), pp. 408–413.

[168] D. Komatitsch and J.-P. Vilotte. “The spectral element method: an efficient tool to

simulate the seismic response of 2D and 3D geological structures”. In: Bulletin of the

seismological society of America 88.2 (1998), pp. 368–392.

[169] A. Citrain. “Hybrid finite element methods for seismic wave simulation: coupling of dis-

continuous Galerkin and spectral element discretizations”. PhD thesis. Normandie Uni-

versité, 2019.
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