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Nouveaux filtres particulaires pour la navigation sous-marine par fusion multi-capteurs

Résumé : Les travaux présentés dans ce mémoire de thèse portent sur le développement et l’étude de filtres
particulaires robustes pour la navigation sous-marine par corrélation de terrain. En effet, les filtres développés
permettent de contrôler l’erreur de l’approximation Monte Carlo due aux approximations d’intégrales et à
l’étape de ré-échantillonnage.

Une première stratégie consiste à maintenir la cohérence entre la vraisemblance et la densité prédite
en approchant la vraisemblance par un noyau adaptatif. Ainsi, les poids des particules dégénèrent plus
lentement ce qui permet de réduire les cas de divergence du filtre. Cette méthode est appelé Adaptive
Approximate Bayesian Computation (A2BC) et a été intégrée aux filtres Regularised Particle Filter (RPF) et
Rao-Blackwellised Particle Filter (RBPF).

Une seconde stratégie est fondée sur le choix d’une densité d’importance dont le support recouvre celui de
la densité conditionnelle. Cette stratégie a été intégrée à un filtre particulaire qui se nomme l’Interacting
Weighted Ensemble Kalman Filter (IWEnKF) et qui a pour base le Weighted Ensemble Kalman Filter
(WEnKF). L’IWEnKF calcule analytiquement le support de la densité d’importance afin d’assurer un
recouvrement optimal avec la densité conditionnelle, ce qui permet de réduire les fluctuations Monte Carlo.

Ces nouveaux filtres ont été appliqués au recalage de navigation inertielle d’un véhicule sous-marin par
corrélation de terrain. Le véhicule sous-marin est équipé d’un sondeur multi-faisceaux, d’un gravimètre et
de cartes numériques embarquées associées aux capteurs stockées dans le calculateur de bord. Les résultats
obtenus montrent une nette amélioration en termes de précision et de robustesses pour les filtres A2BC et
l’IWEnKF par rapport aux filtres particulaires classiques (RPF, RBPF et WEnKF).
Mots clés : Navigation sous-marine, Filtres particulaires, Fusion multi-capteur, Corrélation de terrain

New particle filters for underwater terrain-aided navigation using multi-sensor fusion

Abstract: The goal of this thesis is to develop and study robust particle filters for underwater terrain aided
navigation. The studied filters allow the control of the Monte Carlo approximation errors that are due to the
evaluation of the integrals and to the resampling step.

The first strategy consists in maintaining the consistency between the likelihood and the prior density
by adapting the support of the likelihood. In that way, the particles’ weights degeneracy is slowed down,
which reduces the resampling frequency and thus the cases of divergence. This approach is called Adaptive
Approximate Bayesian Computation (A2BC) and is integrated within the Regularised Particle Filter (RPF)
and the Rao-Blackwellised Particle Filter (RBPF).

The second strategy is based on the choice of the importance density whose support overlaps the conditional
density. The proposed filter is called the Interacting Weighted Ensemble Kalman Filter (IWEnKF), and is
based on the Weighted Ensemble Kalman Filter (WEnKF). IWEnKF analytically computes the support of
the importance density to ensure an optimal overlap with the conditional density, therefore reducing Monte
Carlo fluctuations.

The proposed filters (A2BC-Particle Filters and IWEnKF) were applied to an underwater terrain-aided
navigation case. The underwater vehicle was equipped with a multi-beam telemeter, an atomic gravimeter,
and numerical maps associated with the sensors stored in an on-board computing system. The results show
an improvement of the accuracy and of the robustness to non-linearities for the A2BC-Particle Filters and
the IWEnKF compared to conventional particle filters (RPF, RBPF, and WEnKF).
Keywords: Underwater navigation, Particle filters, Multi-sensor fusion, Terrain-aided navigation
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R É S U M É É T E N D U E N F R A N Ç A I S

Le problème d’estimation consiste à restituer l’état courant inconnu d’un système à
partir de mesures bruitées et partielles. Des incertitudes sont introduites dans le processus
d’estimation à cause de la méconnaissance des modèles de dynamique et d’observation. Le
problème d’estimation est résolu par un filtre qui fournit à chaque instant une estimation de
l’état. Dans le cas d’une application embarquée, le temps d’exécution de ce filtre doit être
acceptable. Dans ce contexte, les filtres récursifs sont ainsi privilégiés.

Dans le cas linéaire gaussien, la densité de l’état reste gaussienne et la solution optimale
est donnée par le filtre de Kalman. Ce dernier approche la densité de l’état sachant les
mesures (densité conditionnelle) par une densité gaussienne caractérisée par sa moyenne et
sa matrice de covariance. La non-linéarité du modèle peut entraîner la multi-modalité de la
densité conditionnelle et ainsi mettre en échec le filtre de Kalman. Lorsque le système est
fortement non-linéaire, le filtre de Kalman étendu peut également diverger.

Au début des années 90, des méthodes numériques ont été proposées sous le nom de
filtres particulaires. Le filtrage particulaire permet de traiter avec succès des problèmes
d’estimation non-linéaires dans lesquels l’incertitude des mesures est soumise à des lois
statistiques quelconques. Le filtrage particulaire permet d’approcher la densité conditionnelle
par une somme pondérée de Dirac. Un ensemble de points appelés particules est simulé;
chaque particule représente un état probable du système. Les coefficients de pondération
(poids) associés à chaque particule sont une mesure du degré de confiance que l’on peut
avoir en ces dernières pour représenter l’état réel. A chaque itération, les particules évoluent
suivant l’équation d’état du système (étape de prédiction) et les poids sont mis à jour en
fonction des mesures (étape de correction).

Cependant, la convergence uniforme du filtre particulaire classique n’est malheureusement
pas assurée. En effet, le choix de la densité de transition pour déplacer les particules n’est
pas toujours optimal ce qui a pour conséquence d’éloigner les particules de la zone d’intérêt.
De ce fait, au bout de quelques itérations, les poids des particules dégénèrent. Cela signifie
que les poids décroissent vers 0 pour toutes les trajectoires simulées à l’exception d’une qui
a un poids proche de 1. Afin de remédier à ce problème, une étape de ré-échantillonnage des
particules est effectuée. Cette étape consiste à générer un autre système de particules de
même taille en favorisant les particules ayant un poids important. Les particules ayant un
poids important sont dupliquées et les autres sont éliminées.

Certaines améliorations du filtre particulaire ont été proposées comme le Regularised
Particle Filter (RPF) et le Rao-Blackwellised Particle Filter (RBPF) afin respectivement
d’améliorer la robustesse dans le cas d’un faible bruit de dynamique et de gérer les grandes
dimensions de l’espace d’état.

Malgré ces améliorations, les filtres particulaires peuvent diverger à cause des approxima-
tions de Monte Carlo réalisées successivement lors de l’évaluation des intégrales et lors de
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l’étape de ré-échantillonnage. Le bon fonctionnement du filtre particulaire dépend fortement
du degré de cohérence entre la densité prédite et la vraisemblance d’une part et du choix de
la densité d’importance pour déplacer les particules vers la zone d’intérêt d’autre part. Ainsi
des choix appropriés de vraisemblance et de densité d’importance permettent de concevoir
des filtres plus robustes aux erreurs de capteurs. Afin de réduire l’erreur de Monte Carlo (la
variance des filtres), nous proposons deux approches :

• approcher la vraisemblance par une densité lisse (noyau) à support adaptatif qui permet
d’assurer la cohérence avec le support de la densité prédite. A chaque pas de temps, la
cohérence entre la densité prédite et le noyau est contrôlée par un paramètre qui permet
d’ajuster la fenêtre du noyau. La méthode que nous proposons, nommée Adaptive
Approximate Bayesian Computation (A2BC), utilise l’indicateur de ré-échantillonnage
afin de calculer ce paramètre. Cela permet d’assurer la cohérence entre la densité prédite
et le noyau sans dégrader l’information issue de la mesure. La méthode A2BC permet
de garder les particules dans les différents modes (maxima) de la vraisemblance le plus
longtemps possible en attendant de parcourir un relief plus favorable au recalage afin
d’éviter les cas de divergence. Les poids des particules dégénèrent donc plus lentement.
Le nombre nécessaire de ré-échantillonnages du système de particules est alors réduit.
L’A2BC est fondée sur la méthode Approximate Bayesian Computation (ABC) qui
permet de résoudre le problème d’estimation lorsque la vraisemblance est inconnue ou
qu’elle est trop coûteuse à évaluer. L’A2BC est une méthode qui peut être intégrée
dans n’importe quel filtre particulaire. Dans ces travaux, elle a été intégrée dans le
RPF et le RBPF. Les résultats théoriques montrent que :

– l’erreur locale de Monte Carlo est bornée par le critère de cohérence entre la
densité prédite et le noyau qui est contrôlé par la méthode A2BC;

– la variance des poids non normalisés admet une borne supérieure qui est directe-
ment contrôlée par la méthode A2BC.

• choisir une densité d’importance qui garantisse un meilleur recouvrement avec le
support de la densité conditionnelle. Le choix de la densité d’importance est crucial
pour le bon fonctionnement des filtres particulaires. L’algorithme d’estimation proposé,
nommé Interacting Weighted Ensemble Kalman Filter (IWEnKF), est fondé sur le filtre
de Kalman d’Ensemble pondéré (WEnKF). Le WEnKF peut être considéré comme un
filtre particulaire avec une densité d’importance gaussienne issue d’un filtre de Kalman.
Afin de garantir un recouvrement optimal entre le support de la densité d’importance
et le support de la densité conditionnelle et ainsi de réduire l’erreur de Monte Carlo,
nous proposons une approche analytique utilisant une décomposition polaire pour
calculer le support de la densité d’importance. De cette façon, l’IWEnKF est plus
robuste aux non-linéarités que le WEnKF.
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L’application considérée dans ces travaux de thèse est la navigation sous-marine. La capacité
d’un véhicule sous-marin autonome à accomplir une mission dépend des performances des
algorithmes de navigation embarqués. La navigation de ces véhicules utilise la plupart du
temps des mesures issues d’une centrale inertielle. Bien que la navigation inertielle soit
autonome et fiable, elle produit des mesures imparfaites (par exemple sujettes à des biais et
à des bruits) qui mènent à une dérive croissante avec le temps dans la solution de navigation.
Ainsi, si la navigation inertielle suffit généralement à la réalisation d’une mission de courte
durée, des données exogènes de recalage sont nécessaires pour une mission longue. Les
mesures GPS sont indisponibles à cause de l’environnement sous-marin et refaire surface est
souvent exclu pour des questions de discrétion.

Une méthode de recalage couramment utilisée est la navigation par corrélation de terrain.
Cette méthode permet d’estimer l’état d’un véhicule sous-marin (par exemple sa position, sa
vitesse et son attitude) en corrélant un profil du terrain reconstruit à partir des mesures d’un
capteur avec un profil d’une carte embarquée de la zone d’opérations. Le filtrage particulaire
s’accommode de ce contexte. En effet :

• les équations de mesures qui relient à chaque instant les mesures bathymétrique et
gravimétrique à l’état du système sont fortement non-linéaires;

• plusieurs trajectoires d’un véhicule sous-marin peuvent avoir les mêmes profils de pro-
fondeur ou de gravité pendant un certain nombre de mesures étant donnée l’ambiguïté
des cartes de terrain. Cela se traduit par la multi-modalité de la densité conditionnelle
et est la raison de l’échec du filtre de Kalman étendu;

• la dimension de l’espace d’état à estimer est grande ce qui exclut l’utilisation des
méthodes de maillage classiquement utilisées.

Le capteur utilisé pour la méthode de corrélation de terrain est un sondeur multi-faisceaux
qui produit une série de mesures de profondeur au cours de la trajectoire du véhicule.
Le capteur multi-faisceaux est couplé à une carte de profondeur. Si le terrain contient
suffisamment d’informations, ce type de capteur permet de retrouver la position. L’absence
de mesure directe de la vitesse du véhicule ne permet pas d’en fournir une estimation précise,
car elle est obtenue par intégration des équations du modèle. Pour améliorer l’estimation des
paramètres cinématiques du véhicule, un autre capteur, prometteur pour la navigation sous-
marine, est introduit : un gravimètre à atomes froids. Le gravimètre développé à l’ONERA
permet en particulier d’avoir des mesures de gravité précises. Le gravimètre à atomes froids
est couplé à une carte d’anomalies de gravité. L’ajout du gravimètre permet d’améliorer les
estimations de la position et de la vitesse du véhicule par mesure directe de cette dernière.

La disponibilité des cartes des fonds marins (profondeurs) et des cartes d’anomalies de
gravité ainsi que l’apparition de sonars dédiés et de gravimètres à atomes froids précis rendent
pertinente l’utilisation de la méthode de corrélation de terrain pour le domaine sous-marin.
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Dans le cadre de ces travaux de thèse, les filtres A2BC ont été appliqués au problème de
recalage de navigation inertielle. Les performances des filtres particulaires A2BC-RPF et
A2BC-RBPF ont été étudiées et comparées à celles des filtres particulaires classiques (RPF
et RBPF) pour un nombre de particules identique. La précision et la robustesse des filtres
sont améliorées par la méthode A2BC. En effet, les taux de non-convergence des filtres RPF
et RBPF (8% et 10% respectivement) sont plus élevés que ceux des filtres A2BC-RPF et
A2BC-RBPF (3% et 6% respectivement).

Dans le cas d’un autre scenario avec une fusion centralisée des mesures gravimètrique et
bathymétrique, nous montrons une nette amélioration de la précision et de la robustesse par
rapport à l’utilisation seule de la bathymétrie. En effet, dans le cas de la fusion, les erreurs
d’estimation des positions et des vitesses convergent plus rapidement et vers des valeurs plus
faibles que dans le cas de la bathymétrie seule. Au niveau de la robustesse, le RPF affiche
un taux de non-convergence de 12% dans le cas de la bathymétrie seule et de 7% dans le
cas de la fusion. Le pourcentage de non-convergence est encore réduit dans le cas des filtres
particulaires A2BC. Le A2BC-RPF a un taux de non-convergence de 8% dans le cas de la
bathymétrie seule et de 3% dans le cas de la fusion.

Les perfomances du filtre IWEnKF ont été comparées à celle du WEnKF sur un problème
de recalage de navigation par mesures bathymétriques pour un nombre de particules identique.
Les résultats numériques montrent une meilleure robustesse du filtre IWEnKF par rapport au
WEnKF, le taux de non-convergence du WEnKF étant de 12% contre 6% pour le IWEnKF.

Les algorithmes proposés (A2BC-PF et IWEnKF) peuvent s’adapter à de nombreux
problèmes de filtrage non-linéaire. La simplicité algorithmique de la méthode A2BC lui
permet d’être intégrée dans n’importe quel filtre particulaire.
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1
I N T R O D U C T I O N

State estimation aims to retrieve the current state of an evolving system from available
measurements. Observation and dynamical models are not perfectly known, which introduces
uncertainty in the estimation process. A state estimation algorithm generally outputs a
point-wise estimate of the state, associated with a confidence region that is likely to contain
the actual state.

Stochastic state estimation algorithms rebuild a conditional state density given the past
measurements to determine the most probable current state. In the linear-Gaussian Markovian
case, the state density remains Gaussian, and the optimal estimation solution is provided by
the Kalman Filter (KF) [44]. However, in the case of non-Gaussian uncertainty, non-linear
measurements, and severe ambiguities (i.e., to one measurement occurrence may correspond
several possible states), KF and its derivatives fail to estimate the state. Some non-parametric
estimation approaches have therefore been introduced, such as the Particle Filter (PF) [34]
(a.k.a., sequential Monte Carlo methods), which consists of approximating the state density
by a weighted sum of Dirac functions.

More accurate PF derivations were proposed, for example the Regularised Particle Filter
(RPF) [61] and the Rao-Blackwellised Particle Filter (RBPF) [17]. RPF consists of smoothing
the state density approximation by a mixture of bounded stochastic kernels. RBPF is a
variance reduction method for conditionally linear Gaussian models.

Despite these improvements, filters may diverge due to successive Monte Carlo approxima-
tions that are introduced for the evaluation of the integrals and at the resampling step. To
reduce the variance of the Monte Carlo approximation, two approaches are proposed:

• Guaranteeing the consistency between the likelihood and the prior density (i.e., when
the support of the likelihood contains the support of the prior density) is crucial
to avoid the degeneracy problem. The proposed Adaptive Approximate Bayesian
Computation (A2BC) method ensures the consistency between the likelihood and the
prior density by adapting the support of the likelihood. The likelihood is approximated
by a kernel density function that spreads out to ensure the consistency without
flattening. The information delivered by the measurements is then preserved. The A2BC
method reduces the occurrence of the resampling step as the degeneracy problem is
mitigated. Thus, the proposed method limits filter divergence.
The A2BC method is based on Approximate Bayesian Computation (ABC) [16, 24, 55]
approaches which address cases where the likelihood is unknown. The likelihood may
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2 introduction

be unavailable when the observation model is a rather rough approximation of the true
model, or when the likelihood is too expensive to calculate.
The A2BC method can be integrated in any particle-like filter. In this work, it is
integrated within RPF and RBPF.

• The choice of the proposal density is crucial as it ensures the correct functioning of
particle filter algorithms. Indeed, sequential Monte Carlo methods rely on the generation
of particle samples from the proposal density. The proposal density should minimise
the Monte Carlo variance. Unfortunately, the optimal proposal density depends on the
target density (i.e., the conditional density).
The Weighted Ensemble Kalman Filter (WEnKF) [69] can be seen as a particle filter
with a Gaussian proposal density calculated by a Kalman filter. However, in some
cases, the support of the proposal density of the WEnKF does not overlap with the
support of the conditional density, which causes a deterioration of the Monte Carlo
estimate and may cause the filter to diverge.
The proposed state estimation algorithm, called Interacting Weighted Ensemble Kalman
Filter (IWEnKF), is based on the WEnKF. The IWEnKF introduces a proposal density
for which the support is assured to overlap the support of the conditional density. This
choice of proposal density minimises the Monte Carlo variance and thus provides a
better accuracy and robustness to nonlinearities than the WEnKF does.

The main application is the underwater navigation of an Autonomous Underwater Vehicle
(AUV) which consists of retrieving the vehicle’s state (position, velocity, and attitude). AUV
navigation is often based on Inertial Measurement Unit (IMU) measurements. Although IMU
is autonomous and reliable, the measurements it provides are subject to bias and noises that
result in a drifting error in the navigation solution. To correct the navigation drift, IMU can
be combined with external sensors. In the underwater field, there is a strong demand for
autonomy. For example, Global Positioning System (GPS) measurements are unavailable due
to the underwater environment, and resurfacing is often excluded for discretion purposes.
This has a significant impact on the estimation performance, that must be compensated due
to the lack of information by more complex embedded algorithms.

Terrain Aided Navigation (TAN) provides a drift-free navigation tool for AUV operations.
This method aims to retrieve the vehicle current state by matching a terrain profile obtained
from a sensor with a profile reconstructed from an embedded map of the operation area.
This application involves severe measurements ambiguities resulting in the failure of many
existing estimation methods. The presence of measurement ambiguities (e.g., to one terrain
sensing measurement may correspond several geographical areas of similar terrain profiles)
increases the complexity of state estimation, and may prevent estimation algorithms from
converging to a unique estimated state with a sufficiently narrow confidence region.

The sensor used in the TAN method is usually a multi-beam telemeter which provides a
series of depth measurements along the trajectory [45, 57, 64, 65]. To improve the estimation of
the kinematic parameters of the vehicle, another sensor is introduced: the atomic gravimeter.
The atomic gravimeter is a promising absolute sensor for underwater navigation. In particular,
the quantum gravimetry concept developed by ONERA (cold atom gravimeter [10]) provides
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an absolute and accurate gravity measurement. This means that the sensor does not need
any calibration and provides a gravity evaluation with a very low level noise. The atomic
gravimeter is starting to be used in underwater navigation [62] but has not been combined
with other TAN sensors.

The aim of this work is to develop accurate and stable state estimation algorithms based on
the TAN method for an AUV equipped with a multi-beam telemeter and an atomic gravimeter.

1.1 thesis structure

The rest of the thesis is organised as follows:
Chapter 2 presents a literature review on the bayesian estimation. The probabilistic

framework is introduced for the continuous and discrete schemes. Analytical methods for
the linear Gaussian case are recalled.

Chapter 3 presents a literature review on Monte Carlo methods. This chapter presents
non-linear non-Gaussian filters such as RPF, RBPF, and WEnKF on which the proposed
algorithms are based, and the likelihood-free ABC method. Monte Carlo errors criteria are
also introduced.

Chapter 4 introduces the underwater navigation application. Dynamical and observation
models under consideration are described, with a focus on the TAN application. Finally, some
evaluation criteria are defined.

Chapter 5 introduces a new method called A2BC. Two theoretical results on Monte Carlo
errors are proved. A2BC simulations are presented for the underwater TAN application. A2BC
filters are tested on a simplified navigation model and on an inertial error model that is in
accordance to realistic situations. A2BC filters are compared to their conventional versions
namely RPF and RBPF. Simulation results demonstrate that the proposed filters significantly
improve the robustness to measurement uncertainties and the accuracy of the state estimates.

Chapter 6 presents a new state estimation algorithm called IWEnKF. Theoretical results
leading to an enhanced choice of the proposal density are introduced. IWEnKF simulations
are presented for the underwater TAN application. IWEnKF is compared to the filter on which
it is based: WEnKF. Simulation results demonstrate that the proposed filter brings more
robustness to nonlinearities.

Chapter 7 concludes the thesis and discusses possible directions for future work.
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2
B A Y E S I A N E S T I M A T I O N

Let us consider a system (e.g., an autonomous underwater vehicle) whose evolution is
described by a set of functions explicitly defined or derived from differential equations. These
functions correspond to the evolution model which provides a time description of the system’s
variables of interest (e.g., position, velocity, attitude etc.). The system does not usually have
full knowledge of its state vector. Its decision process is only derived from the information
available on the whole vector or some of its components. Since the dynamical model function
is most often a simplification of reality, the value of the system state vector obtained as
the dynamical model output can rapidly drift far from the actual system state vector. In
order to limit this derivation, we can use some measurements provided by sensors which
are functions of the state vector components. However, these measurements are obtained
via imperfect sensors and thus do not give an exact output. The estimation problem then
consists of retrieving the system’s state vector description, given an approximate dynamical
model and noisy measurements. A specific aspect of the estimation problem addressed here is
the search for recursive state estimation. At each time-step, the state vector value is derived
from the previous state value, through an update performed by both the dynamical and
measurement models.

In this chapter, the estimation problem is first presented in Section 2.1. Then, the
probabilistic framework is introduced in Sections 2.2 and 2.3 in the continuous and discrete
schemes respectively. Under Gaussian and linear assumptions, this framework leads to
Kalman filters and Rauch-Tung-Striebel smoothers (see Section 2.4). Extended observers are
presented in Section 2.5 to address cases where the linearity assumption is relaxed.

2.1 problem statement

In the continuous time, the signal {Xt}t≥0 ∈ Rd contains the variables that define the system
(i.e., position, velocity etc.) at a given time as well as its temporal evolution. The state
evolution can be defined by the following Itô stochastic differential equation:

dXt = bt(Xt) dt+ σt(Xt) dWt (2.1)

where bt : Rd → Rd is the dynamical function and dWt a m-dimensional Brownian motion
for m ≥ 1 finite. The process noise dWt accounts for model uncertainties and unforeseen
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disturbances in the state evolution. Let X0 be an initial random variable with absolute
moments of any order.

The signal Xt (2.1) is unknown and cannot be directly retrieved due to its initial uncertainty
and the signal noise. The state system is partially observed through a series of measurements
provided by sensors. In practice, the measurements equation is always expressed in discrete
time. We consider a sequence of times t0, t1, . . . , tK . Two consecutive times-steps are separated
by a time ∆t = tk+1 − tk > 0. For the sake of simplicity, we set Yk := Ytk and Xk := Xtk

where the subscript k takes values in [0,K]. Measurements {Yk}k≥0 ∈ Rdy are related to the
state by the following observation equation:

Yk = hk(Xk) + Vk (2.2)

where hk : Rd → Rdy is the observation function and Vk the observation noise, and Y0 is by
convention equal to 0. The measurement noise represents the imperfections of the sensors.
The observation function hk may not involve all the state variables. In continuous time, the
stochastic differential equation associated with the observation process Zt is defined by:

dZt = ht(Xt) dt+ dVt (2.3)

where dVt is a n-dimensional Brownian motion for any n ≥ 1. The discrete time model (2.2)
is recovered by taking ∆t ' 0:

Ztk −Ztk−1
'∆t'0 htk−1

(Xtk−1
)∆t+

√
∆tUY

k (2.4)

for any independent and identically distributed (i.i.d.) Gaussian random variables UY
k ∼

N (0, 1).
The functions bt(x), ht(x) and σt(x) are assumed to be sufficiently regular so that the

filtering problem is well defined. To avoid unnecessary technical discussions, we will assume
that the functions bu(x) and hu(x), as well as the diffusion matrix σu(x) are smooth
w.r.t. (u,x) and that they have uniformly bounded derivatives w.r.t. x of all order on
(u,x) ∈ [s, t] × Rd, for any s ≤ t. These conditions ensure that the stochastic differential
equations model (equations (2.1) and (2.3)) has a global solution (Xt,Zt) in the sense of Itô.

The goal of the recursive state estimation is to determine the state Xt at each time-step t
given the observations ZT , (Zs)0≤s≤T . Depending on the value of T , three problems can
be distinguished:

• T < t: the prediction problem consists of computing the conditional distribution of the
random state Xt given the observations ZT .

• T = t: the filtering problem consists of computing the conditional distribution πt := πt|t
of the random signal states Xt given the observations Zt.

• T > t: the smoothing problem computes the conditional distribution πT,t of the random
signal states Xt given ZT .
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Knowledge of the conditional density enables us to compute an optimal point-wise state
estimate with respect to any criterion. For example, the Minimum Mean Squared Error
(MMSE) estimate is the conditional mean of Xt [7]:

X̂MMSE
t|t := Ep(Xt|Zt) =

∫
Xt p(Xt|Zt)dXt (2.5)

Whereas the Maximum A Posteriori (MAP) is the maximum of the conditional density
p(Xt|Zt) [31]:

X̂MAP
t|t := arg max

Xk

p(Xt|Zt) (2.6)

If the conditional density is unimodal, i.e., it has a unique global maximum, the MAP is an
optimal estimator. We could also cite the Least Square (LS) [50] estimator which consists of
maximising a Gaussian likelihood p(Zt|Xt) ∝ exp

(
1
2(Zt − ht(Xt))

>R−1
t (Zt − ht(Xt))

)
:

X̂LS
t|t := arg min

Xt

(
(Zt − ht(Xt))

>R−1
t (Zt − ht(Xt))

)
(2.7)

where Rt is the covariance of the observation noise. A confidence region of the state
estimation (e.g., the variance) can also be obtained. In general, the recursive propagation of
the conditional distribution cannot be determined analytically. The implementation of the
solution requires the storage of the entire density which is, in general, an infinite dimensional
vector. Thus, instead of approaching the optimal filter density at any point in space, only a
few moments (typically the mean and variance) as well as the location of the modes (when
the density is multimodal) are really required.

An iterative estimation algorithm often consists of two steps: the prediction step, which
accounts for the dynamical transition, and the correction step, which accounts for the
measurements if available.

2.2 continuous filtering and smoothing

The probabilistic approach is described, with emphasis on optimality in estimation. The
equations of evolution for the conditional probability density function are developed in both
continuous and discrete times for the filtering and smoothing problems. A detailed derivation
of the probabilistic approach can be found in [25], [78] and [6] and references therein.

2.2.1 Optimal Filter

The probabilistic framework aims to estimate the most probable current state Xt given all
the past measurements Zt by estimating the conditional density πt.

The conditional density can be computed in an iterative way via the Kolmogorov forward
equation (2.8) [53] and Bayes’ rule (2.10). The equations consist of a theoretical filter named
optimal filter. It represents the most accurate way of describing the conditional density
function evolution, given a trajectory of measurements and their associated uncertainties.
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The evolution of the optimal filter is composed of two steps:

• The prediction step determines the evolution of the prior density via the Kolmogorov
forward equation:

πt = Law(Xt) ⇔ dπt(f) = πt(Lt(f)) dt (2.8)

where π(f) :=
∫
π(dx) f(x) and f stands for any twice differentiable test function with

bounded derivatives. The generator Lt of the signal Xt is given by the second order
differential operator:

Lt(f)(x) := ∇f(x)>bt(x) +
1

2
Tr(∇2f(x)αt(x)) (2.9)

where αt(x) = σt(x)σt(x)
>, Tr is the trace operator. ∇f is the column gradient and

∇2f the Hessian matrix of the function f .

• Roughly speaking, when a new measurement dZt is available, it is associated with a
sensor noise distribution conditional to the current state, which is called the likelihood.
The likelihood quantifies the distribution of the measurement according to the actual
state. The correction step determines the conditional density of the state with respect
to the prior density (2.8) and the likelihood p(dZt|Xt). From Bayes’ law, this discrete
time reasoning yields:

p(Xt|Zt, dZt) =
p(dZt|Xt) p(Xt|Zt)

p(dZt|Zt)
(2.10)

The denominator can be evaluated using the Markovian property of the model:

p(dZt|Zt) =

∫
p(dZt|Xt) p(Xt|Zt) dXt (2.11)

The recurrence relations (2.8)-(2.10) form the basis for the optimal Bayesian solution. The
combination of the prediction and correction steps leads to the following generator of the
conditional distribution:

dπt(f) = πt(Lt(f)) dt+ πt(f(ht − πt(ht)))
>R−1

t (dZt − πt(ht)) (2.12)

where Rt dt := E(dVt dV
>
t ) is the covariance of the observation noise. As in equation (2.8),

the function f stands for any twice differentiable function with bounded derivatives. Equa-
tion (2.12) is called the Kushner-Stratonovich equation.

The optimal filter is illustrated in Figure 2.1.
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(a) Prediction step: the previous conditional density is
convoluted with the transition density. This results
in the prior density, for which the support is usually

larger than the previous conditional density.

State space
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en

si
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prior
conditional

(b) Correction step: when the measurement is available,
the prior density and the likelihood lead to the

determination of the conditional density.

Figure 2.1: Probabilistic iterative prediction-correction scheme.

2.2.2 Optimal Smoother

The smoothing aims to compute the conditional distribution πt,s of the random signal states
Xs given Zt with t ≥ s. We assume for any t > 0 that the conditional distribution πt has
a positive density pt := dπt/dλ w.r.t. the Lebesgue measure on Rd. In addition, pu(x) and
its derivative ∇pu(x) are uniformly bounded w.r.t. (u,x) ∈ [s, t]× Rd, for any given s > 0,
almost surely w.r.t. the distribution of the observation process.

From the backward Itô integration formula, we obtain:

Xt,s(x) = x+

∫ t

s

(
pu(Xt,u(x))

−1divαu(pu)(Xt,u(x))− bu(Xt,u(x))
)
du+

∫ t

s
σu(Xt,u(x))dWu

(2.13)

with the terminal condition Xt,t(x) = x, and where Wt ∈ Rm denotes a m-dimensional
Brownian motion independent of the observation. With a sufficiently smooth function
f : Rd → R, we note divαt(f) the αt-divergent d-column vector operator with j-th entry
given by the formula:

divαt(f)(x)
j :=

∑
1≤i≤d

∂xi

(
αi,j
t (x)f(x)

)
(2.14)

Let Xt be a random variable with the distribution πt, for t > 0. The backward process
Xt,s(Xt) is distributed according to the smoothing distribution πt,s for any s ≥ t whenever
the terminal condition Xt,t(Xt) = Xt is distributed according to the filtering distribution πt.

The generator Ls,πs of the signal Xt,s(Xt) is given by the second order differential operator:

Ls,πs(f) =
∑

1≤j≤d

(
−bjs +

1

ps
divαs(ps)

j

)
∂xjf +

1

2

∑
1≤i,j≤d

αi,j
s ∂xixjf (2.15)
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The smoothing generator (2.15) is similar to the filtering generator (2.9) except for the sign
of the drift bt and the presence of the forward conditional density ps.

The backward evolution equation is given by:

πt,s = Law(Xt,s) ⇔ ∂sπt,s(f) = −πt,s(Ls,πs(f)) (2.16)

with the terminal condition πt,t = πt.

2.3 discrete filtering and smoothing

Similarly, the optimal filter and smoother equations can be written in discrete time. We
consider the state system Xt at a discrete sequence of times t0, t1, . . . , tK . We set Xk := Xtk

where the subscript k takes its values in [0,K]. Two consecutive time-steps are separated by
a time ∆t = tk+1 − tk > 0. The state evolution can be defined by the following equation:

Xk = bk(Xk−1) +Wk (2.17)

where Wk is the signal noise. The discrete time model (2.17) comes from the continuous
model (2.1) by taking ∆t ' 0:

Xtk −Xtk−1
'∆t'0 btk−1

(Xtk−1
)∆t+

√
∆t σtk−1

(Xtk−1
)UX

k (2.18)

for any i.i.d. Gaussian random variables UX
k ∼ N (0, 1).

The discrete measurement equation is given by (2.2) and is repeated here:

Yk = hk(Xk) + Vk (2.19)

The initial state X0 of known density p(X0) is independent of the two noises Wk and Vk.
The noise sequences Wk and Vk are both assumed white and mutually independent.

2.3.1 Optimal filter

The optimal filter aims to estimate the conditional density p(Xk|Yk) of the random signal
states Xk given the sigma-field Yk = σ(Ys, s ≤ t) generated by the observations. The
evolution of the optimal filter is composed of two steps:

• The prediction step determines the prior density p(Xk|Yk−1) with respect to the
transition density p(Xk|Xk−1) and the previous conditional density p(Xk−1|Yk−1) via
the Chapman-Kolmogorov equation:

p(Xk|Yk−1) =

∫
p(Xk|Xk−1) p(Xk−1|Yk−1) dXk−1 (2.20)

This equation is based on the assumptions on the noise sequences and on Bayes’ rule,
which allows us to prove that all measurements are independent given the states and
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that the state evolution process is Markovian, i.e., the state Xk depends only on the
previous state Xk−1. By denoting Xk = {X1, . . . ,Xk} the stacked vector of all the
states up to time t, Xk is a Markov process of order one if:

p(Xk) =

k∏
t=0

p(Xt|Xt−1) (2.21)

where p(X0|X−1) = p(X0). The conditional density of the measurements given the
states is independent if:

p(Yk|Xk) =

k∏
t=0

p(Yt|Xt) (2.22)

• When a new measurement Yk is available, it is associated with a sensor noise density
p(Yk|Xk) conditionally to the current state. Using the assumptions (2.21)-(2.22) we
derive the correction step. From Bayes’ law, we obtain:

p(Xk|Yk) =
p(Yk|Xk) p(Xk|Yk−1)∫

p(Yk|Xk) p(Xk|Yk−1) dXk
(2.23)

2.3.2 Optimal Smoother

The smoothing problem consists in estimating the conditional density p(Xk|YK) where
k ∈ [0,K]. The backward recursive equations are given by:

p(Xk+1|Yk) =

∫
p(Xk+1|Xk) p(Xk|Yk) dXk (2.24)

p(Xk|YK) = p(Xk|Yk)

∫
p(Xk+1|Xk) p(Xk+1|YK)

p(Xk+1|Yk)
dXk+1 (2.25)

where p(Xk|Yk) is the filtering density. The recursion is started from the final step, when
the filtering and smoothing densities are the same: p(Xk|YK).

The next section discusses the linear Gaussian case leading to the Kalman Filter (KF)
and Rauch-Tung-Striebel smoother. The linear assumption is then relaxed to introduce
the Extended Kalman Filter (EKF) in Section 2.5.

2.4 the linear and gaussian case

In the linear Gaussian case, the conditional distribution can be exactly and completely
characterised by its mean and covariance. This section restates the KF and the Gaussian
smoother equations [44].
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2.4.1 Continuous Kalman-Bucy Filter and Rauch-Tung-Striebel Smoother

The state evolution and measurements equation are assumed to be linear Gaussian models
defined by:{

dXt = BtXt dt+Σt dWt

dZt = HtXt dt+ dVt

(2.26)

where Bt ∈ Rd×d and Ht ∈ Rdy×d are known matrices. Wt and Vt are Brownian motions of
covariances E(dWt dW

>
t ) = Qt dt > 0 and E(dVt dV

>
t ) = Rt dt > 0 respectively. The initial

random variable X0 is assumed to be Gaussian of mean X̂0 and covariance matrix P0.

2.4.1.1 Continuous Kalman-Bucy Filter

The conditional density πt is Gaussian and can be fully described by its expectancy X̂t =
E[Xt|Zt] and its covariance Pt = E[(Xt − X̂t)(Xt − X̂t)

>]. The expectancy X̂t is equal to
the theoretical MAP estimator (2.6). The Kalman estimator is optimal in the sense that X̂t

and Pt are equal to the conditional mean and the covariance of the optimal filter Gaussian
conditional density.

The optimal filter πt is a Gaussian distribution with mean and covariance satisfying the
Kalman-Bucy and the Ricatti equations:{

dX̂t = Bt X̂t dt+ PtH
>
t R−1

t

(
dZt −HtX̂t dt

)
∂tPt = BtPt + PtB

>
t +ΣtQtΣt

> − PtH
>
t R−1

t HtPt

(2.27)

where ∂t denotes d
dt .

The matrix PtH
>
t R−1

t is called the Kalman gain. The Kalman gain is multiplied by the
innovation

(
dZt −HtX̂t dt

)
(i.e., the difference between the observed measurements and

the predicted measurements). The correction step can be interpreted as follows: a high
confidence in the previous estimates (‖Pt‖ “small”) and a doubt in the measurements (‖Rt‖
“large”) imply a small Kalman gain and a weakly corrected estimate. Alternatively, a doubt
in the previous estimates and a high confidence in the measurements lead to a large Kalman
gain and a strongly corrected estimate. The measurements thus have an important role in
the final value of the estimate.

2.4.1.2 Continuous Rauch-Tung-Striebel Smoother

For any t ≥ s, πt,s is the distribution of Xt,s(Xt). Since the process is linear, the distribution
πt,s is Gaussian of mean X̂t,s and covariance Pt,s.
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We deduce the Rauch-Tung-Striebel smoothing equations [75]. For any t ≥ s, the parame-
ters (X̂t,s,Pt,s) satisfy the backward evolution equations:{

∂sX̂t,s = BsX̂t,s +ΣsQsΣs
>P−1

s

(
X̂t,s − X̂s

)
∂sPt,s =

(
Bs +ΣsQsΣs

>P−1
s

)
Pt,s + Pt,s

(
Bs +ΣsQsΣs

>P−1
s

)> −ΣsQsΣs
>

(2.28)

where X̂s and Ps are given by the Kalman-Bucy filter and with the terminal condition
(X̂t,t,Pt,t) = (X̂t,Pt).

A novel interpretation of the smoothing solution in terms of a nonlinear diffusion stochastic
flow (in the spirit of McKean-Vlasov-type processes) is proposed in Anderson et al. [2]. This
approach combines forward and backward Itô formulas for stochastic transport semigroups
with a recent backward version of the Itô-Ventzell formula. The article is provided in
Appendix a.

2.4.2 Discrete Kalman Filter and Rauch-Tung-Striebel Smoother

The state evolution and measurements equation are assumed to be linear Gaussian models
defined by:{

Xk = Bk−1 Xk−1 +ΣkWk

Yk = Hk Xk + Vk

(2.29)

where Bk−1 ∈ Rd×d and Hk ∈ Rdy×d are known matrices. The process and observation noises
are assumed to be mutually independent zero-mean white Gaussian noises of covariances
Qk ∈ Rd×d and Rk ∈ Rdy×dy respectively. The initial law of the state is Gaussian:

p(X0) ∼ N (X0; X̂0,P0) (2.30)

where the mean X̂0 ∈ Rd is the initial guess for the state value, and P0 ∈ Rd×d the initial
state covariance. The notation N (X;M ,P ) represents a Gaussian density with argument
X, mean M , and covariance P ; such that:

N (X;M ,P ) ,
1

|2πP |1/2
exp

{
−1

2
(X −M)>P−1(X −M)

}
(2.31)

where P> refers to the transpose of a matrix P.

2.4.2.1 Discrete Kalman Filter

It is well known [40] that the conditional density is Gaussian p(Xk|Yk) ∼ N (Xk; X̂k,Pk)
and can be fully described by its expectancy X̂k and its covariance Pk.

KF’s equations are presented in Algorithm 2.1.
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Algorithm 2.1 Kalman Filter

1: Initialisation: The initial estimate is X̂0 and the initial covariance is P0.
2: for each time-step k do
3: Prediction:
4: X̂k|k−1 = Bk−1 X̂k−1

5: Pk|k−1 = BkPk−1B
>
k +ΣkQkΣ

>
k

6: Correction:
7: X̂k = X̂k|k−1 +Kk(Yk −Hk X̂k|k−1)

8: Pk = (Id −KkHk)Pk|k−1

9: where Kk is the Kalman gain:
10: Kk = Pk|k−1H

>
k

(
HkPk|k−1H

>
k +Rk

)−1

11: end for
12: Return X̂k and Pk, ∀k.

2.4.2.2 Discrete Rauch-Tung-Striebel Smoother

Similarly, under the linear Gaussian assumptions, the conditional density p(Xk|YK) is a
Gaussian of mean X̂k|K and covariance Pk|K given by the following equations:

X̂k|K = X̂k + Sk

(
X̂k+1|K −Bk+1X̂k

)
(2.32)

Sk = PkB
>
k+1

(
Bk+1PkB

>
k+1 +Σk+1Qk+1Σ

>
k+1

)−1
= PkB

>
k+1Pk+1|k

−1 (2.33)

Pk|K = Pk + Sk

(
Pk+1|K − Pk+1|k

)
S>
k (2.34)

where X̂k, Pk and Pk+1|k are given by the Kalman filter and with the terminal condition
(X̂K|K ,PK|K) = (X̂K ,PK|K).

2.5 extended observer algorithms

EKF [1] is an extension of KF to non-linear Gaussian dynamical models. The conditional
density is approximated by a Gaussian whose moments are obtained via linearisation.

In continuous time, the equations of the model are (2.1) and (2.3). Equations (2.17)
and (2.2) described the model for the discrete time case.

EKF locally linearises the non-linear functions bk : Rd → Rd and hk : Rdy → Rd at each
time-step. The functions are approximated by the first term in their Taylor series expansion.
The Jacobians ∇bk and ∇hk have to be worked out analytically. Thus, EKF cannot be applied
if the non-linear functions bk and hk are discontinuous.

The equations of the continuous time EKF are: dX̂t = bt(X̂t)dt+ Pt∇ht(X̂t)
>
R−1

t

(
dZt − ht(X̂t)dt

)
∂tPt = ∇bt(X̂t)Pt + Pt∇bt(X̂t)

>
+ΣtQtΣt

> − Pt∇ht(X̂t)
>
R−1

t ∇ht(X̂t)Pt

(2.35)
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In the discrete time case, the system is linearised:{
Xk = bk(X̂k−1) +∇bk(Xk−1 − X̂k−1) +Wk

Yk = hk(X̂k|k−1) +∇hk(Xk−1 − X̂k|k−1) + Vk

(2.36)

The use of KF for this system provides the equations of EKF at first order.
Similar linearisations are performed to extend the Rauch-Tung-Striebel smoother.
EKF assumes that local linearisation of the equations is a sufficient description of non-

linearity. However, if the non-linearity is severe, the non-Gaussianity of the true conditional
density will be pronounced as it can be multimodal. In such cases, the performance of EKF
will be degraded significantly. Equivalent filters can be deduced from linearisation at higher
orders, but they are not used in practice.

The Unscented Kalman Filter (UKF) [87] has been proposed to make EKF more robust. UKF
consists of describing the Gaussian state density approximation by a set of deterministically
chosen sigma-points in the state space. Each sigma-points is independently propagated
through the non-linear state dynamic, and corrected through the non-linear observation
equation. The sigma-points are chosen such that their mean, covariance and possibly also
higher order moments match the Gaussian state density. The Gaussian state density is
computed by a weighted sum of the sigma-points. It results in an algorithm more robust to
non-linearity.

2.6 summary

Estimation schemes were presented in the above sections, leading to a selection of several
emblematic approaches. To summarise, probabilistic estimation (Sections 2.2 and 2.3) makes
it possible to iteratively estimate a conditional state density knowing a trajectory of mea-
surements. The Kalman filter (Section 2.4) is optimal for the Gaussian linear case and has
minimum variance for non-Gaussian linear cases. It was extended to non-linear cases (EKF,
UKF in Section 2.5) but these approaches are sub-optimal and suffer from their lack of
guarantees. To cope with non-linear cases, Monte Carlo approaches were introduced which
empirically describe the non-linear propagation and update of the conditional density. A
literature review on Monte Carlo methods is provided in Chapter 3.





3
M O N T E C A R L O M E T H O D S

Although efficient under specific assumptions, the Kalman Filter (KF) and its extension
(e.g., Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF)) suffer from important
disadvantages. These methods are based on strong assumptions about the densities involved
which are rarely encountered in practice. To tackle a larger class of problems, sequential Monte
Carlo methods (a.k.a., Particle Filters (PFs)) were proposed. PF consists of stochastically
approximating the state density with a representative sample of possible states. It is able to
tackle model non-linearities and is not limited to Gaussian densities.

After a reminder on Monte Carlo estimation (see Section 3.1), this chapter presents a
way of deriving the optimal filter in non-linear and non-Gaussian cases. A filter based on
Monte Carlo sampling is described in Section 3.2: the Ensemble Kalman Filter (EnKF) [28].
PF scheme [34] is first introduced in Section 3.3.1. PF approximates the state density with a
mixture of weighted Dirac deltas. Regularised Particle Filter (RPF) [61], Rao-Blackwellised
Particle Filter (RBPF) [17], and Weighted Ensemble Kalman Filter (WEnKF) [69] are then
introduced. RPF is based on kernel estimation approaches [81] which brings more accuracy
by considering mixtures of weighted bounded kernels. RBPF is a variance reduction method
for conditionally linear Gaussian models. WEnKF is based on EnKF and consists in obtaining
an exact formulation of the conditional density by adding a weighting step based on the
importance sampling PF principle. The uncertainties involve in the probabilistic measure-
ments density function may be unknown. This hypothesis yields the approximate Bayesian
computation framework (Section 3.4). Section 3.5 quantifies the Monte Carlo errors. Finally,
Section 3.6 gives an overview on Monte Carlo methods.

3.1 monte carlo estimation

Let X be a random variable on Rd distributed according to some probability measure
p(X) dX and (Xi)i=1,...,N a set of independent random variables on Rd with the same
distribution as X. For any bounded function µ : Rd → R, the mean of µ(X) is given by:

Ep (µ(X)) =

∫
µ(X) p(X)dX (3.1)

17
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Monte Carlo methods approximate the expectancy with a set of independent and identically
distributed (i.i.d.) random variables (Xi)i=1,...,N . The Monte Carlo estimator is defined by:

µ̄(X) :=
1

N

N∑
i=1

µ(Xi), Xi ∼ p (3.2)

The law of large numbers ensures that the empirical mean converges almost surely to the
expected value:

µ̄(X) =
1

N

N∑
i=1

µ(Xi) −−−−−→
N→+∞

Ep (µ(X)) (3.3)

The variance of the Monte Carlo estimator µ̄(X) is equal to:

Varp(µ̄(X)) =
σ2

N
(3.4)

where

σ2 =

∫
(µ(X)− Ep(µ(X)))2 p(X) dX (3.5)

The law of the error µ(X)− Ep(µ(X)), when the number of samples N tends to infinity, is
given by the central limit theorem:

√
N

σ
(µ(X)− Ep(µ(X))) −−−−−→

N→+∞
N (0, 1) (3.6)

The average error is of the order of σ√
N

. The dimension of the state is not important in
the Monte Carlo approximation error. Monte Carlo methods are based on the simulation of
random variables to compute approximately high dimensional integrals. They draw their
justification from the law of large numbers which allows to approximate a probability measure
by the empirical measure computed from a samples set.

3.1.1 Generation of Random Variables using the Acceptance-Rejection Method

The Monte Carlo estimator draws a set of samples using directly the target density p(X)
that is unknown in practice. In order to obtain N i.i.d. samples using the target density
p, the rejection (or acceptance-rejection) method [26] is often employed. Assume that p is
known up to a constant multiplier and that we have a proposal law q according to which it is
possible to obtain samples directly, and a constant l such that for all X, p(X) ≤ l q(X). The
rejection method consist to sample X̄ ∼ q and u ∼ U([0, 1]) then to consider u ≤ p(X̄)

l q(X̄)
: if

this inequality is verified, the sample X̄ is accepted and X = X̄, else the sample is rejected.
The resulting random variable admits for law p. The rejection method requires the knowledge
of the proposal density q and a constant l, and its computational cost can become significant
when the probability of acceptance 1

l is small.
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3.1.2 Importance Sampling

Alternatively, the samples Xi can be drawn from a proposal density q. A weight wi is
associated at each sample Xi such that w̃i = p(Xi)

q(Xi)
is the unnormalised weight and wi =

w̃i∑N
j=1 w̃

j
the normalised one. The resulting approximation is called the importance sampling

estimator and is defined by:

µ̃(X) :=
N∑
i=1

wiµ(Xi), Xi ∼ q (3.7)

In general, the importance sampling estimator is less efficient than the Monte Carlo
estimator since the samples are not distributed according to the target density p. The
effective sample size criterion [49] measures the loss of efficiency using µ̃ instead of µ̄ (see
Appendix b for more details).

The sequential importance sampling approximations are called PFs.

3.2 ensemble kalman filter

In 1994, a method based on Monte Carlo sampling was proposed: the EnKF [28]. In this
Monte Carlo method, the empirical state density is approximated by a set of possible state
samples. The main difference with the UKF (see Section 2.5) is that the conditional density
is approximated by samples chosen in a stochastic way. EnKF was first applied to linear
Gaussian systems [28] and then extended to non-linear Gaussian models [29]. For nonlinear
cases, the Gaussian density is generally an approximation of the theoretical state density,
since non-linear models lead to non-Gaussian densities.

The state evolution is assumed to be a non-linear Gaussian model and the observation
model is assumed to be linear and Gaussian. The state-space model is defined by:{

Xk = bk(Xk−1) +Wk

Yk = Hk Xk + Vk

(3.8)

The process and observation noises are assumed to be mutually independent zero-mean white
Gaussian noises, with covariances Qk ∈ Rd×d and Rk ∈ Rdy×dy respectively. The initial
law of the state p(X0) is not necessarily Gaussian but is usually a centered Gaussian of
covariance P0. The state density is estimated by a N-set of state samples X1

k , . . . ,X
N
k .

The EnKF’s equations are presented in Algorithm 3.1. The notation 0d denotes the zero
value vector in Rd.

In the correction step, the measurement is perturbed with N samples drawn from the
law of the observation noise. This is necessary to keep the covariance consistent with the
classic Gaussian KF [15]. A set of perturbations {V i

k }i∈[1,N ] is obtained and each state sample
Xi

k|k−1 is associated with the perturbed measurements Yk + V i
k .
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Algorithm 3.1 Ensemble Kalman Filter
1: Initialisation: The initial N-set is drawn as {Xi

0}i∈[1,N ] using the initial density
p(X0) = N (X0;0d,P0).

2: for each time-step k do
3: Prediction: Propagate the state samples using the dynamical model

Xi
k|k−1 = bk(X

i
k−1) +W i

k where W i
k ∼ N (W i

k; 0,Qk).
4: Compute the sample mean mN

k|k−1 =
1
N

∑N
i=1X

i
k|k−1 and the sample covariance

PN
k|k−1 =

1

N − 1

N∑
i=1

(
Xi

k|k−1 −mN
k|k−1

)(
Xi

k|k−1 −mN
k|k−1

)>
5: Correction:
6: Xi

k = Xi
k|k−1 +Kk(Yk −Hk Xi

k|k−1 + V i
k ) where V i

k ∼ N (V i
k , 0,Rk).

7: Kk is the Kalman gain: Kk = PN
k|k−1H

>
k

(
HkP

N
k|k−1H

>
k +Rk

)−1

8: end for
9: Return the sample mean mN

k and covariance PN
k calculated from the corrected state

samples Xi
k, ∀k.

EnKF was also derived for nonlinear observation model [41]. When the observation equation
is nonlinear, i.e.,Yk = hk(Xk) + Vk, the correction step is summarised by the following
equations:

Xi
k = Xi

k|k−1 +Kk(Yk − Y i
k + V i

k ) (3.9a)

Y i
k = hk(X

i
k|k−1), Ŷk =

1

N

N∑
i=1

Y i
k (3.9b)

Kk = PXY
k

(
P Y
k

)−1 (3.9c)

PXY
k =

1

N − 1

N∑
i=1

(
Xi

k|k−1 −mN
k|k−1

)(
Y i
k − Ŷk

)>
(3.9d)

P Y
k =

1

N − 1

N∑
i=1

(
Y i
k − Ŷk

)(
Y i
k − Ŷk

)>
+Rk (3.9e)

The prediction step remains unchanged.
In the EnKF presented in Algorithm 3.1, the perturbation of the measurements introduces an

additional sampling noise that can lower the filter performance. Furthermore, the Kalman gain
formulation leads to the computationally expensive inversion of the matrix HkP

N
k|k−1H

>
k +Rk.

These two drawbacks have motivated the development of deterministic approaches called
ensemble square-root filters (see e.g., [3, 11, 85]). These methods avoid sampling issues by
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generating an ensemble with the desired sample mean and covariance. The correction step
in Algorithm 3.1 is replaced by the following equation:

Xi
k =

N∑
j=1

(
Xj

k|k−1 −mN
k|k−1

)
W j,i +mN

k|k−1 (3.10)

The matrix W j,i is symmetric and depends on the ensemble covariance, the difference
between the predicted ensembles and the measurements, and the observation covariance.
These methods often require inflation and localisation techniques as sampling errors can lead
to instability. Covariance inflation [4, 5] consists in artificially increasing the variance of each
state vectors components to correct systematic underestimation of the ensemble covariance.
Such a deficiency yields an over confidence on the model dynamics and hence reduces the
impact of the measurements.

The main difference between EnKF and PFs lies in the correction phase. In the EnKF, the
samples are redirected, while in the PF they are weighted. As a result, each methods has a
specific advantage towards the other:

• EnKF samples are redistributed in significant areas of the density during the correction
step, which reduces the number of required particles.

• PF is based on an exact probabilistic formulation of the conditional density even in
the case of non-linear dynamics.

3.3 particle filters

Consider the state-space model given in Chapter 2 by equations (2.17) and (2.2):{
Xk = bk(Xk−1) +Wk

Yk = hk(Xk) + Vk

(3.11)

where bk : Rd → Rd and hk : Rd → Rdy are respectively the dynamical and observation
functions, Wk and Vk are the process and observation white noises, and with the convention
Y0 = 0. The initial state X0 of known density p(X0) is independent from both noises. The
initial state density p(X0) quantifies the initial state uncertainty. The observations {Yk}k≥0

are mutually independent conditionally to the state {Xk}k≥0. The noises Wk and Vk are
assumed mutually independent. When the dynamical and observation functions are not
linear and the noises are not Gaussian, more general estimation methods were proposed as
particle filters.

3.3.1 Sequential Importance Resampling Particle Filter

The Sequential Importance Resampling Particle Filter (SIR-PF) approach [34, 47, 48] was
introduced as an heuristic genetic type algorithm to tackle non-linear non-Gaussian dynamics
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and/or severely non-linear measurements. See Del Moral [20] for the first rigorous and well
founded article on particle filters. PF consists of empirically estimating the conditional density
by a set of weighted points

{
Xi

k ∈ Rd, wi
k ∈ R+

}
called particles. The particles are a set

of i.i.d. samples. They are associated with positive weights wi
k whose sum is equal to 1.

The estimated conditional density is thus defined by a mixture of weighted Dirac deltas, as
illustrated in Figure 3.1.

State space

D
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ty

True conditional density

Particles

Figure 3.1: Particle filter scheme: the true conditional density is approximated with a mixture of
Dirac deltas. Each particle is represented by a point.

The estimated conditional density is defined by:

p̂(Xk|Yk) =

N∑
i=1

wi
kδ(Xk −Xi

k) (3.12)

where δ is the Dirac delta function on Rd equal to 0 on Rd\{0d} and to infinity on 0d. The
predicted particles X i

k are drawn from a suitable proposal density q(Xk|Yk). The proposal
density is chosen to factorize such that:

q(Xk|Yk) := q(Xk|Xk−1,Yk) q(Xk−1|Yk−1) (3.13)

Furthermore, we consider that the proposal density depends only on the previous state vector
and the current measurement, such that:

q(Xk|Xk−1,Yk) = q(Xk|Xk−1,Yk) (3.14)

The choice of the proposal density will be discussed afterwards.
The weights are updated according to the likelihood p(Yk|Xk), the transition density

p(Xk|Xk−1), and the proposal density q(Xk|Xk−1,Yk):

wi
k ∝ wi

k−1

p(Yk|Xi
k) p(X

i
k|Xi

k−1)

q(Xi
k|Xi

k−1,Yk)
(3.15)

A detailed derivation of the weights update equation (3.15) can be find in Ristic, Arulampalam,
and Gordon [76].
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When the number of particles N tends toward infinity, the approximation of the conditional
density (3.12) approaches the true conditional density p(Xk|Yk). Formulation (3.12) provides
an estimation of the conditional density. For practical use, one can derive a point-wise state
estimate. The Maximum A Posteriori (MAP) (2.6) can be numerically computed but MAP
computation often yields a high computational load [74]. In practice, the estimate is often
computed via a Least Square (LS) approximation (2.7), which corresponds to the barycentre
of the weighted particle cloud, under the assumption that the actual state density tends to a
Gaussian density. The state estimate is then computed by:

X̂k =
N∑
i=1

wi
k Xi

k (3.16)

and its covariance by:

Pk =

N∑
i=1

wi
k (Xi

k − X̂k)(X
i
k − X̂k)

> (3.17)

Degeneracy Problem

For proposal densities of the form (3.14), it was shown that the variance of the weights can
only increase over time [27]. The increasing variance has a harmful effect on the accuracy
of the estimate and leads to a common problem: the degeneracy problem. After a certain
number of recursive steps, all but one particle will have negligible weights. Since the weights
are normalised, one weight will tend to one while all the other weights tend to zero. When
the proposal density differs from the conditional density, degeneracy phenomenon raises. A
large computational effort is devoted to updating particles for which the contribution to the
approximation of the conditional density is almost zero.

In order to keep a representative set of particles, two methods (that can be combined) were
proposed. A first solution is to add a resampling step [34] which duplicates the high-weighted
particles to replace low-weighted particles while keeping the total number of particles constant.
A second solution consists in choosing an appropriate proposal density which minimises the
variance of the weights.

Resampling

The resampling step consists of replacing the current set of particles with a new one which
described the state density in a more accurate way. The particles with high normalised
weights are selected and low-weighted particles are discarded. The selected particles are
duplicated in order to keep a constant total number of particles N .

A large variety of sampling and resampling algorithms can be used in the context of PF
(see [23] and [54] for a review on resampling methods). A resampling algorithm provides an
integer value indicating how many duplications of each particle will occur in the new sample:
0 if the particle is discarded, 1 if it is kept, and n if it is duplicated into n instances.
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The multinomial resampling is commonly used and a brief description of this method
is provided here. This algorithm defines the number of duplications of each particle with
regard to the value of the weights. It is achieved by drawing N independent values {ui}i∈[1,N ]

following a uniform law on [0, 1] and comparing them to the cumulative sum of the weights.
A duplication number ni can be computed for each particle, corresponding to the number of
uniform values lying into their cumulative interval. The multinomial resampling is summarised
in Algorithm 3.2. After the resampling step, weights are reset to 1

N .

Algorithm 3.2 Multinomial Resampling
1: Initialisation: Set the duplication counters ni = 0, ∀i ∈ [1, N ].
2: for each i ∈ [1, N ] do
3: Draw ui ∼ U[0,1]

4: Find j ∈ [1, N ] such that ui ∈
]∑j−1

l=1 w
l,
∑j

l=1w
l
[

where {wi}i∈[1,N ] are the particle
weights.

5: Count nj = nj + 1
6: end for
7: Return {ni}i∈[1,N ].

The resampling step reduces the effects of degeneracy, but it introduces practical and
theoretical issues. From an implementation point of view, the possibility of parallelizing
the multinomial resampling is reduced since all the particles must be combined. On the
theoretical level, the resampling introduces a dependency between the particles, making the
convergence results difficult to establish.

The particles that have high weights are statistically selected many times. This leads to
a loss of diversity among the particles. This problem is known as sample impoverishment.
Because of these drawbacks, the resampling step is performed only when necessary. Several
triggering criteria have been proposed to detect degeneracy. The most commonly used is the
effective sample size [49] defined by:

ESS =
N

1 + Varq(w̃k)
(3.18)

where {w̃k} are the unnormalised weights. The effective sample size ESS cannot be evaluated
exactly. An estimate is given by (see Appendix b for details):

ÊSS =
1∑N

i=1

(
wi
k

)2 (3.19)

where 1 ≤ ÊSS ≤ N . The approximate effective sample size ÊSS is equal to the number
of samples N , when all the weights are set to 1

N . When this criterion is small, it indicates
severe degeneracy. The resampling is triggered whenever ÊSS < Nth. The threshold Nth is
usually equal to θthN where θth ∈ [0, 1] is a tuning parameter. Other degeneracy criteria
exist such as the entropy [71] which measures the dispersion of the particle weights.
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Choice of the Importance Density

The choice of the proposal density is one of the most critical issues in the design of a PF. Ideally,
the proposal density function should be the unknown conditional density p(Xk|Yk). The
so-called optimal proposal density function that minimises the variance of the local weights,
conditioned upon Xi

k−1 and Yk, was shown to be qopt(Xk|Xi
k−1,Yk) = p(Xk|Xk−1,Yk) [21,

27]. We emphasize that this proposal density is not globally optimal. The analytic evaluation
of this density is difficult for most cases. The optimal proposal density can be used in two
specific situations: when Xk is a member of a finite set or when the density p(Xk|Xk−1,Yk)
is Gaussian (see [27] or example 3 in Del Moral [21]).

It is possible to construct suboptimal approximations to the optimal proposal density by
using, e.g., local linearisation techniques [27] or Monte Carlo approximations (see Section
4.2.2 in Del Moral [21]). Local linearisation techniques use a proposal density that is a
Gaussian approximation of p(Xk|Xk−1,Yk) and are based on EKF or UKF [27, 86].

To facilitate the implementation of the filter, the proposal density is often taken equal to
the transition density q(Xk|Xk−1,Yk) = p(Xk|Xk−1). Filters using this choice of proposal
density are called bootstrap filters [34]. The weights update (3.15) is therefore simplified by:

wi
k ∝ wi

k−1 p(Yk|Xi
k) (3.20)

When the transition density is used as the proposal density, the particle weights can
degenerate rapidly if either of the following situations occur:

• When the prior density is not very informative and the likelihood has very pronounced
modes, the correction is ineffective as many particles have weights close to zero and
thus do not participate in the approximation of the conditional density. This situation
arises when the observation noise is low. This case is illustrated in Figure 3.2a.

• The Figure 3.2b illustrates the case of inconsistency between the likelihood and the
prior density (i.e., the support of the prior density does not contain the support of
the likelihood density). This situation arises when the process noise is too low. It is
possible that few particles are placed in high likelihood regions as the propagation of
the particles do not consider the current measurement.

Both situations can occur in sensors-based navigation applications. The use of very precise
sensors may lead to a very sharp likelihood, which favors the appearance of the first situation.
The inconsistency situation can occur when the system has a high confidence in an imprecise
dynamic model (i.e., when the process noise is too low).
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Figure 3.2: Sharp likelihood and inconsistency schemes.

Several methods were introduced to replace the particles in high likelihood regions, e.g., the
auxiliary particle filter [72] that incorporates the current measurement in the prior density,
or the progressive correction [68] that introduces intermediate distributions between the
prior and the likelihood densities.

In the three filters presented hereafter (namely the SIR-PF, RPF, and RBPF), the proposal
density is equal to the transition density.

Sequential Importance Resampling Particle Filter Algorithm

Particle filters using a resampling step belong to the SIR-PF category. The SIR-PF equations
are summarised in Algorithm 3.3.

Algorithm 3.3 Sequential Importance Resampling Particle Filter
1: Initialisation: The initial particle set is drawn as {Xi

0}i∈[1,N ] using the initial density
p(X0) and the initial weights set {wi

0}i∈[1,N ] is taken equal to 1
N .

2: for each time-step k do
3: Prediction: Draw the particles from the transition density Xi

k ∼ p(Xk|Xi
k−1).

4: Correction: Update the weights wi
k ∝ wi

k−1 p(Yk|Xi
k).

5: Compute the state estimate X̂k (3.16) and its covariance Pk (3.17).
6: if a resampling criterion is satisfied, e.g., ÊSS < Nth, see (3.19) then
7: Draw a new set of particles {Xi

k}i∈[1,N ] using a resampling method, e.g., the
multinomial resampling (Algorithm 3.2).

8: Reset the weights to 1
N .

9: end if
10: end for
11: Return the state estimate X̂k and its covariance Pk, ∀k.

SIR-PF is able to tackle a larger variety of problems than parametric filters. The resampling
was introduced in order to tackle the degeneracy problem. However, as discussed in the
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previous paragraphs, sample impoverishment may occur especially when the proposal density
is taken equal to the transition density. When the observation noise is too low (see Figure 3.2a),
the actual conditional density may concentrate in an area lacking of particles, which leads to
ill estimated weights. When the process noise is too low (see Figure 3.2b), the resampling
tends to select only a few particles and will asymptotically lead to N copies of a single one.
The estimate is thus not guaranteed to remain close to the actual state. Some derivations
of SIR-PF were introduced to make it more stable to low noise systems. RPF [61] proposed
an additional step of particle perturbations during the resampling step. The purpose of the
regularisation is to ensure that the assumption of samples independence is respected by
injecting a small noise in the signal. RPF is based on the kernel estimation theory [81], and
replaces the discrete approximation of the conditional density by a continuous approximation.

3.3.2 Regularised Particle Filter

RPF [60, 61, 67] replaces the conditional density approximation given by the mixture of
weighted Dirac deltas (3.12), by a mixture of weighted kernels centered on each particle Xi

k:

p̂(Xk|Yk) =

N∑
i=1

wi
k Kh(Xk −Xi

k) (3.21)

where the kernel Kh is defined by:

Kh(X) :=
1

hd
K
(
1

h
X

)
(3.22)

with K a reference kernel from Rd to R which integrates to unity on Rd and h the associated
bandwidth. The kernel is assumed to be symmetric such that Kh(−X) = Kh(X). The
approximation of the conditional density is illustrated in Figure 3.3.
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Figure 3.3: Kernel estimator used to estimate the conditional density from a set samples {Xi}i∈[1,N ].

The kernel and the bandwidth are chosen to minimise the Mean Integrated Square
Error (MISE) between the true conditional density p(Xk|Yk) and the corresponding regularised
empirical density p̂(Xk|Yk) (3.21), which is defined as:

MISE(p̂, p) = E
[∫

Rd

(p̂(Xk|Yk)− p(Xk|Yk))
2 dXk

]
(3.23)
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When all the particles have the same weight, which is the case immediately after the
resampling step, the optimal kernel, which minimises the MISE, is the Epanechnikov kernel:

Kopt(X) =

{
d+2
2 cd

(
1− ‖X‖2

)
if ‖X‖ < 1

0 otherwise
(3.24)

where cd is the volume of the unit hypersphere in Rd. The associated optimal bandwidth is:

hopt = µA(K)N− 1
d+4 (3.25)

where

A(K) =
[
8 c−1

d (d+ 4)(2
√
π)d
] 1

d+4 (3.26)

0 < µ < 1 is a tuning parameter introduced to limit the impact of the regularisation on
each individual mode, when the assumption of unimodality of the conditional density is not
satisfied.

Algorithm 3.4 Regularised Resampling Procedure

1: if a resampling criterion is satisfied, e.g., ÊSS < Nth, see (3.19) then
2: Draw a new set of particles {Xi

k}i∈[1,N ] using a resampling method, e.g., the multino-
mial resampling (Algorithm 3.2).

3: [Regularisation:] Compute the Cholesky decomposition of the empirical covariance of
the resampled set of particles Ak such that:

Pk = Ak A
>
k =

N∑
i=1

wi
k

(
Xi

k − X̂k

)(
Xi

k − X̂k

)>
(3.27)

4: Draw {κik}i∈[1,N ] samples from the regularisation kernel Kopt (3.24).
5: The regularised particles are obtained by adding a noise to each particle:

Xi
k = Xi

k + hopt Ak κ
i
k (3.28)

where hopt is the optimal bandwidth (3.25).
6: Reset the weights to 1

N .
7: end if
8: Return the new set of particles {Xi

k}i∈[1,N ] and the weights wi
k = 1

N , ∀i.

The optimal bandwidth (3.25) is expressed for a normalised density whose covariance
is a d dimensional identity matrix. In practice, the kernel bandwidth must be adapted to
the density’s covariance. This can be done by computing the Cholesky decomposition of
the empirical covariance of the resampled set of particles. RPF algorithm differs from the
generic SIR-PF (see Algorithm 3.3) only in its resampling step. The regularised resampling
procedure is summarised in Algorithm 3.4.
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The regularisation step improves the sample diversity by adjusting the empirical density.
In practical scenarios, RPF performs better than SIR-PF in cases of sample impoverishment
(e.g., when the process noise is low) [61].

The kernel estimation leads a variety of kernel-based particle filters, e.g., the Kalman-
particle kernel filter (KPKF [19, 70]), or the box regularised particle filter (BRPF, [59]).

3.3.3 Rao-Blackwellised Particle Filter

Although Monte Carlo methods are in principle applicable in any dimension, the number of
required particles N needs to be high for higher-dimensional systems [37]. For some classes
of state-space models the number of particles in the particle filter can be reduced using a
variance reduction method known as Rao-Blackwellisation [17, 64, 80]. The RBPF (also called
Marginalised Particle Filter) results in a higher robustness, since particle Dirac deltas are
maginalised on the non-linear dimensions only, which limits the curse of dimensionality [32].

The RBPF is an efficient implementation for conditionally linear Gaussian models. Assuming
that the state vector Xk can be partitioned into two sub-vectors Xk =

[
Xn

k ,X
l
k

]>, where
Xn

k ∈ Rn denotes the nonlinear state variable and X l
k ∈ Rl denotes the state variable with

conditionally linear dynamics (such that d = n+ l), the state-space model takes the following
form:

Xn
k+1 = bnk(X

n
k ) +Bn

k (X
n
k )X

l
k +W n

k

X l
k+1 = blk(X

n
k ) +Bl

k(X
n
k )X

l
k +W l

k

Yk = hk(X
n
k ) +Hk(X

n
k )X

l
k + Vk

(3.29)

where the measurement noise Vk is assumed to be a centered Gaussian white noise with
covariance Rk. The process noise is also assumed white and Gaussian:

Wk =

[
W n

k

W l
k

]
∼ N (0d,Qk) (3.30)

with covariance Qk ∈ Rd×d such that:

Qk =

(
Qn

k Qln
k(

Qln
k

)>
Ql

k

)
(3.31)

The known initial laws are p(Xn
0 ) for the nonlinear part and N (X l

k; X̂
l
0,P

l
0) for the linear

part.
The aim is to estimate the conditional density p(Xk|Yk) = p(Xn

k ,X
l
k|Yk). Using the Bayes’

rule, the density p(X n
k ,X

l
k|Yk) can be factorised into two parts:

p(X n
k ,X

l
k|Yk) = p(X l

k|X n
k ,Yk) p(X n

k |Yk) (3.32)
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The density p(X l
k|X n

k ,Yk) is analytically tractable, as p(X l
k|X n

k ,Yk) = N (X l
k; X̂

l
k|k,P

l
k|k),

where the equations for the mean X̂ l
k|k and covariance P l

k|k are given by the KF (see
Section 2.4). The density p(X n

k |Yk) can be estimated by a PF:

p(X n
k |Yk) '

N∑
i=1

wi
kδ(X n

k −X n,i
k ) (3.33)

The marginal density p(X l
k|Yk) can be approximated by:

p(X l
k|Yk) =

∫
p(X l

k|X n
k ,Yk) p(X n

k |Yk) dX n
k (3.34a)

'
∫
p(X l

k|X n
k ,Yk)

N∑
i=1

wi
kδ(X n

k −X n,i
k )dX n

k (3.34b)

'
N∑
i=1

wi
k p(X l

k|X
n,i
k ,Yk) (3.34c)

Similary,

p(X l
k|Yk) '

N∑
i=1

wi
k p(X

l
k|X

n,i
k ,Yk) (3.35)

For the sake of brevity, the dependence of Xn
k in Bn

k , Bl
k, and Hk are suppressed below.

The linear state variables are estimated by the following equations:

p(X l
k|X n

k ,Yk) = N
(
X l

k; X̂
l
k|k,P

l
k|k

)
(3.36a)

p(X l
k+1|X n

k+1,Yk) = N
(
X l

k+1; X̂
l
k+1|k,P

l
k+1|k

)
(3.36b)

where

X̂ l
k|k = X̂ l

k|k−1 +Kk

(
Yk − hk(X

n
k )−Hk X̂ l

k|k−1

)
(3.37a)

P l
k|k = P l

k|k−1 −KkMkK
>
k (3.37b)

Kk = P l
k|k−1H

>
k M−1

k (3.37c)

Mk = Rk +HkP
l
k|k−1H

>
k (3.37d)

and

X̂ l
k+1|k = B̄l

k X̂
l
k|k +

(
Qln

k

)>
(Qn

k)
−1 Zk + blk(X

n
k ) +Lk

(
Zk −Bn

k X̂ l
k|k

)
(3.38a)

P l
k+1|k = B̄l

kP
l
k|k

(
B̄l

k

)>
+ Q̄l

k −LkNkL
>
k (3.38b)

Nk = Bn
kP

l
k|k (B

n
k )

> +Qn
k (3.38c)

Lk = B̄l
kP

l
k|k (B

n
k )

>N−1
k (3.38d)
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where Zk = Xn
k+1 − bnk(X

n
k ).

Covariances B̄l
k and Q̄l

k in (3.38) are defined by:

B̄l
k = Bl

k −
(
Qln

k

)>
(Qn

k)
−1Bn

k (3.39a)

Q̄l
k = Ql

k −
(
Qln

k

)>
(Qn

k)
−1Qln

k (3.39b)

The density p(X n
k |Yk) (3.32) will be approximated using the standard PF equations. From

the Bayes’ theorem and the Markov property, this density can be write as:

p(X n
k |Yk) =

p(Yk|X n
k ,Yk−1) p(X

n
k |X n

k−1,Yk−1)

p(Yk|Yk−1)
p(X n

k−1|Yk−1) (3.40)

where an approximation of p(X n
k−1|Yk−1) is given by the previous iteration of the PF. The

analytic expressions for p(Yk|X n
k ,Yk−1) and p(Xn

k |X n
k−1,Yk−1) are given by:

p(Yk|X n
k ,Yk−1) = N (Yk; hk(X

n
k ) +Hk X̂

l
k|k−1, HkP

l
k|k−1H

>
k +Rk) (3.41a)

p(Xn
k+1|X n

k ,Yk) = N (Xn
k+1; b

n
k(X

n
k ) +Bn

k X̂ l
k|k, B

n
kP

l
k|k (B

n
k )

> +Qn
k) (3.41b)

The details of the derivation of the RBPF equations can be found in Schön [79]. The principle
of RBPF is to apply a Kalman filter at each particles of the nonlinear state variables Xn,i

k+1.
RBPF is summarised in Algorithm 3.5.

Similarly to SIR-PF, the state estimate (3.16) and its covariance (3.17) can be computed for
the nonlinear part of the state Xn

k , using the weights wi
k and the particles Xn,i

k . Equivalent
formulas for the linear part of the state X l

k based on the mean and covariance samples were
derived [64]:

X̂ l
k =

N∑
i=1

wi
k X l,i

k (3.42a)

P l
k =

N∑
i=1

wi
k

(
P l,i
k|k + (X l,i

k − X̂ l
k)(X̂

l,i
k −X l

k)
>
)

(3.42b)

In Algorithm 3.5, the particle filter used in the RBPF is the SIR-PF. However, the RBPF
can be performed with any particle filter, e.g., the auxiliary particle filter or the RPF.

If the same number of particles are used in the SIR-PF and the RBPF, the later will provide
better estimates for two reasons:

• The dimension of p(Xn
k |Yk) is smaller than the dimension of p(Xn

k ,X
l
k|Yk), implying

that the particles occupy a lower dimensional space.

• Optimal algorithm (i.e., KF) is used in order to estimate the linear state variables.
Although RBPF needs less particles, it is computationally as demanding as standard particle
filters as N covariances P l,i

k|k are computed at each time-step. When the matrices Bn
k , Bl

k,
and Hk are independent of the nonlinear state variables Xn

k in the state-space model (3.29),
the covariance is only update once for each time-step: P l,i

k|k = P l
k|k, ∀i. In this case, the gain

with respect to the computational load can truly be substantial.
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Algorithm 3.5 Rao-Backwellised Particle Filter

1: Initialisation: The initial particles set is drawn as {Xn,i
0 }i∈[1,N ] using the initial density

p(Xn
0 ) and the initial weights set {wi

0}i∈[1,N ] is taken equal to 1
N . The initial mean and

covariance of the linear state variables set is
{
X l,i

0|0,P
l,i
0|0

}
= {X̂ l

0, P
l
0}, ∀i ∈ [1, N ].

2: for k = 0, 1, . . . do
3: Particle prediction: Draw the particles Xn,i

k+1 ∼ p(Xn
k+1|X

n,i
k ,Yk) (3.41b).

4: Kalman prediction: For each particles Xn,i
k+1, sample the mean X l,i

k+1|k and covari-
ance P l,i

k+1|k (3.38a)-(3.39b) of the density p(X l
k+1|X n

k+1,Yk) (3.36b).
5: Particle correction: Update the weights wi

k+1 ∝ wi
k p(Yk+1|X n,i

k+1,Yk) (3.41a).
6: if a resampling criterion is satisfied, e.g., ÊSS < Nth, see (3.19) then
7: Draw a new set of particles {Xi

k+1 = [Xn,i
k+1,X

l,i
k+1|k]

>}i∈[1,N ] using a resampling
method, e.g., the multinomial resampling (Algorithm 3.2).

8: Reset the weights to 1
N .

9: end if
10: Kalman correction: Update the mean X l,i

k+1|k+1 and covariance
P l,i
k+1|k+1 (3.37a)-(3.37d) of the density p(X l

k+1|X n
k+1,Yk+1) (3.36a).

11: Compute the nonlinear state estimate X̂n
k+1 (3.16) and its covariance P n

k+1 (3.17).
12: Compute the linear state estimate X̂ l

k+1 (3.42a) and its covariance P l
k+1 (3.42b).

13: end for
14: Return the state estimate X̂k+1 = [X̂n

k+1, X̂
l
k+1]

> and its covariance

Pk+1 =

(
P n
k+1 0n×l

0l×n P l
k+1

)
, ∀k.
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3.3.4 Weighted Ensemble Kalman Filter

WEnKF [69] consists in using the particle propagation of the EnKF together with a weighting
based on the principle of importance sampling presents in particle filters. By doing so,
WEnKF combines the main advantages of both filters: the number of particles is reduced due
to the efficient EnKF correction and the conditional density is approximated by an exact
probabilistic formulation. Indeed, it has been shown in geophysical sciences that for the same
performance, WEnKF needs fewer samples than bootstrap particle filters [51, 71]. WEnKF
was derived for the two EnKFs variants identified in Section 3.2. Only WEnKF based on EnKF
with observation perturbations is presented here and is summarised in Algorithm 3.6.

Algorithm 3.6 Weighted Ensemble Kalman Filter
1: Initialisation: The initial particles set is drawn as {Xi

0}i∈[1,N ] using the initial density
p(X0) ∼ N (X0; 0d,P0) and the initial weights set {wi

0}i∈[1,N ] is taken equal to 1
N .

2: for each time-step k do
3: Particle prediction: Draw the particles from the proposal density

Xi
k ∼ N (Xk; µ̂

i
k,Σk) (3.47).

4: Particle correction: Update the weights

wi
k ∝ wi

k−1

p(Yk|Xi
k) p(X

i
k|Xi

k−1)

N (Xi
k; µ̂

i
k,Σk)

5: if a resampling criterion is satisfied, e.g., ÊSS < Nth, see (3.19) then
6: Draw a new set of particles {Xi

k}i∈[1,N ] using a resampling method, e.g., the
multinomial resampling (Algorithm 3.2).

7: Reset the weights to 1
N .

8: end if
9: Compute the linear state estimate X̂k (3.16) and its covariance Pk (3.17).

10: end for
11: Return the state estimate X̂k and its covariance Pk, ∀k.

The proposal density of the WEnKF comes from EnKF equations. For a better readability,
the EnKF correction equation is given back:

Xi
k = Xi

k|k−1 +Kk(Yk −Hk Xi
k|k−1 + V i

k ) (3.43)

By replacing the predicted samples Xi
k|k−1 by its expression bk(Xi

k−1)+W i
k in the correction

equation (3.43), we have:

Xi
k = (Id −KkHk) bk(X

i
k−1) +Kk Yk +Kk V

i
k + (Id −KkHk)W

i
k (3.44a)

:= µ̂i
k + γi

k (3.44b)
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where µ̂i
k = (Id − KkHk) bk(X

i
k−1) + Kk Yk is deterministic and γi

k = Kk V
i
k + (Id −

KkHk)W
i
k regroups the stochastic terms. As the process noise Wk and the perturbation

Vk are two centered Gaussian, the random variable γi
k follows a Gaussian:

γi
k ∼ N (γk; 0,Σk) (3.45)

where the covariance Σk has the following form:

Σk = (Id −KkHk)Qk (Id −KkHk)
> +KkRkKk (3.46)

The proposal density of the WEnKF is given by:

q(Xk|Xi
k−1,Yk) = N (Xk; µ̂

i
k,Σk) (3.47)

The rewriting of the EnKF correction equation (3.44b) allows us to include the WEnKF within
the scope of PFs.

3.4 likelihood-free methods: approximate bayesian computation

Approximate Bayesian Computation (ABC) method is an approach to address inference
problems where the likelihood function is unknown, or expensive to calculate. The likelihood
may be unavailable for mathematical reasons, e.g., it is not available in an explicit form that
would link the state to the observations, or when the observation model is a rather rough
approximation of the true model. There are also computational reasons, e.g., the likelihood
can be too expensive to calculate. Moreover, ABC methods are used when the normalising
constant of the likelihood is unknown or when the likelihood function is partially known [55].
Unfortunately, if the likelihood is unknown, it is difficult to use standard computational
tools to sample the conditional density as the optimal filter Bayes equation (2.10) cannot be
performed.

ABC method bypasses the computation of the likelihood via the sampling of pseudo-
measurements [35, 55]. Assume that there exists a form of measurement model that allows
to simulate pseudo-measurements Uk by plugging the state Xk into it. This model may be a
probability density, a differential equation, a stochastic process or a noise term-free equation.

The conditional density is approximated by:

p(Xk|Yk) ≈ pε(Xk|Yk) =

∫
pε(Xk,Uk|Yk) dUk (3.48)

In its most common form, ABC draws inference from the following modified conditional
density:

pε(Xk,Uk|Yk) =
p(Xk|Yk−1) p(Uk|Xk) 1Aε,Yk

(Uk)∫
Aε,Yk

×d p(Xk|Yk−1) p(Uk|Xk) dUkdXk
(3.49)
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where 1B(.) is the indicator function of a given set B, ε the tolerance level and Uk ∈ Rdy

the pseudo-observations. The set Aε,Yk
corresponds to the set of pseudo-observations which

are close in some sense to the true observations Yk. It is formally defined as:

Aε,Yk
=
{
U ∈ RdY | ρ (s(Uk), s(Yk)) < ε

}
(3.50)

where s : Rdy → S represents some summary statistics and ρ : S × S → R+ a distance
function. The idea behind ABC methods is to produce a good approximation of the conditional
density by using a representation summary statistic coupled with a small tolerance [55]. The
distance function ρ is usually the Euclidean norm ‖.‖2 or the Manhattan norm ‖.‖1. In the
following, the summary statistic s is the identity function. As, in the context of filtering, the
observations is only a Rdy -valued data point at each time-step, it is not crucial to summarise
the data with a low dimensional summary statistic. If the Euclidean distance is selected, the
pseudo-observations set (3.50) is thus simplified as:

Aε,Yk
=
{
U ∈ Rdy | ‖Uk − Yk‖2 < ε

}
(3.51)

The tolerance parameter ε must be sequentially adapted, otherwise the filter may abruptly
fail if the true observation is an outlier, making the pseudo-observations set Aε,Yk

empty.
The indicator function 1Aε,Yk

(Uk) in the approximate conditional density equation (3.49)
can be substitute by a smooth kernel function [16]:

Kε (Uk − Yk) (3.52)

where K is a positive and symmetric kernel (3.22). The indicator function is in fact a uniform
kernel. The conditional density p(Xk|Yk) can thus be approximated by:

p(Xk|Yk) = p(X0)

∫
p(Xk,Uk|Yk)dUk (3.53)

≈ p(X0)
∏
k≥1

[∫
Kε(Yk,Uk)p(Uk|Xk)dUk

]
p(Xk|Xk−1) (3.54)

In practice, heavy-tailed kernels are used as e.g., the Gaussian and Cauchy kernels [16].
ABC method was first introduced as a rejection technique [73, 82]. The resulting ABC

rejection sampler is summarised in Algorithm 3.7. A Markov chain Monte Carlo (MCMC)-ABC
algorithm was also introduced [56]. Later, an ABC scheme for filtering was proposed [43].
The ABC filter in its bootstrap form is summarised in Algorithm 3.8.

The tolerance parameter ε plays a significant role in the convergence of ABC method [43].
The choice of this parameter depends on the considered ABC algorithm. Several choices for
the tolerance parameter were proposed [16, 22, 43]. For example to avoid degeneracy, the
parameter can be adaptively selected according to a criterion based on the approximate
effective sample size (3.19) (e.g., see [22, 43]) or according to the MISE [16].
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Algorithm 3.7 ABC rejection sampler
1: Given the state Xk−1,
2: for each i ∈ [1, N ] do
3: Repeat
4: Generate the state X ′

k from the prior density p(Xk|Xk−1)
5: Generate the pseudo-measurement Uk from the density p(Uk|Xk).
6: until ρ (s(Uk), s(Yk)) ≤ ε
7: Set Xi

k = X ′
k

8: end for
9: Return the state samples Xi

k, ∀i.

Algorithm 3.8 ABC filter
1: Initialisation: The initial particle set is drawn as {Xi

0}i∈[1,N ] using the initial density
p(X0) and the initial weights set {wi

0}i∈[1,N ] is taken equal to 1
N .

2: for each time-step k do
3: Prediction: Draw the particles from the transition density Xi

k ∼ p(Xk|Xi
k−1).

4: For each particle Xi
k, simulate a pseudo-measurement U i

k using the density p(Uk|Xk).
5: Correction: Update the weights wi

k ∝ wi
k−1 Kε

(
Yk −U i

k

)
.

6: Compute the state estimate X̂k (3.16) and its covariance Pk (3.17).
7: if a resampling criterion is satisfied, e.g., ÊSS < Nth, see (3.19) then
8: Draw a new set of particles {Xi

k}i∈[1,N ] using a resampling method, e.g., the
multinomial resampling (Algorithm 3.2).

9: Reset the weights to 1
N .

10: end if
11: end for
12: Return the state estimate X̂k and its covariance Pk, ∀k.
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3.5 monte carlo error

In Section 3.3.1, several sources of Monte Carlo errors were introduced. As discussed in the
paragraph on the degeneracy problem, the variance of the weights increases over time. To
address the degeneracy problem, two solutions were proposed: the resampling and/or the
choice of the proposal density. However, resampling introduces dependency between particles
and causes sampling impoverishment phenomenon, and the choice of the proposal density is
not straightforward. Thus, the resampling is performed only when the approximate effective
sample size ÊSS is under a given threshold Nth, and the proposal density is often taken
equal to the prior density (bootstrap filter). For bootstrap filters, Monte Carlo errors arise
when the support of the proposal density does not contain the support of the prior density,
as shown in Figure 3.2b. Thus, the performance of Monte Carlo approaches depends on the
choice of the proposal density and on the consistency between the likelihood and the prior
density.

The consistency is formally defined by the following integral:∫
p(Yk|Xk) p(Xk|Yk−1) dXk (3.55)

Two criteria are derived from the study of the consistency: the asymptotic variance of the
unnormalised weights and the discrepancy of estimation.

3.5.1 Asymptotic Variance of the Unnormalised Weights

Proposition 1. The asymptotic variance of the unnormalised weights is given by:

V =

∫
w̃2 q(Xk|Xk−1,Yk) dXk(∫
w̃ q(Xk|Xk−1,Yk) dXk

)2 − 1 (3.56)

where w̃ =
p(Yk|Xk) p(Xk|Yk−1)

q(Xk|Xk−1,Yk)
are the unnormalised weights.

Proof. The variance of the unnormalised weights is:

Varq(w̃) =
∫
w̃2 q(Xk|Xk−1,Yk) dXk −

(∫
w̃ q(Xk|Xk−1,Yk) dXk

)2

(3.57a)

=

(∫
w̃ q(Xk|Xk−1,Yk) dXk

)2

( ∫
w̃2 q(Xk|Xk−1,Yk) dXk(∫
w̃ q(Xk|Xk−1,Yk) dXk

)2 − 1

)
(3.57b)
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where w̃ =
p(Yk|Xk) p(Xk|Yk−1)

q(Xk|Xk−1,Yk)
are the unnormalised weights. Then,

Varq(w̃)(∫
w̃ q(Xk|Xk−1,Yk) dXk

)2 =

( ∫
w̃2 q(Xk|Xk−1,Yk) dXk(∫
w̃ q(Xk|Xk−1,Yk) dXk

)2 − 1

)
(3.58)

By taking,

Eq(w̃) =

∫
w̃ q(Xk|Xk−1,Yk) dXk (3.59)

the asymptotic variance of the unnormalised weights V comes:

V =
Varq(w̃)
(Eq(w̃))2

(3.60)

This variance is a squared coefficient of variance (or a normalised variance).

By replacing the unnormalised weights by their expression in the asymptotic variance, it
comes:

V =

∫ p(Yk|Xk)
2 p(Xk|Yk−1)

2

q(Xk|Xk−1,Yk)
dXk(∫

p(Yk|Xk) p(Xk|Yk−1) dXk

)2 − 1 (3.61)

The asymptotic variance V is equal to zero if the support of the proposal density recovers the
one of the conditional density, i.e., q(Xk|Xk−1,Yk) ∝ p(Yk|Xk) p(Xk|Yk−1). As discussed
previously, the choice of the proposal density is crucial to design robust particle filters.

When the proposal density is taken equal to the prior density, the asymptotic variance
becomes:

V =

∫
w̃2p(Xk|Yk−1) dXk(∫
w̃p(Xk|Yk−1) dXk

)2 − 1 (3.62)

where the unnormalised weights are equal to w̃ = p(Yk|Xk).



3.5 monte carlo error 39

The asymptotic variance of the unnormalised weights is small when:

• the support of the prior density p(Xk|Yk−1) includes the support of the likelihood
p(Yk|Xk)

• the support of the proposal density recovers the support of the conditional density,
i.e., q(Xk|Xk−1,Yk) ∝ p(Yk|Xk) p(Xk|Yk−1)

Guaranteeing a finite and small asymptotic variance of the unnormalised weights ensures
that the Monte Carlo estimate is accurate, which reduces the degeneracy problem.

3.5.2 Discrepancy

The inconsistency between two densities can be quantified by the discrepancy criterion γk ≥ 1.
The discrepancy characterizes the consistency between the current measurements and the
predicted measurements. The discrepancy is large when the variance of the observation
noise is low, and when the likelihood is inconsistent with the prior density. The criterion is
inversely proportional to the consistency between the likelihood and the prior density. It is
formally defined as:

γk ,

sup
Xk∈Rd

w̃∫
w̃q(Xk|Xk−1,Yk) dXk

(3.63)

By replacing the unnormalised weights in the discrepancy (3.63), it comes:

γk =

sup
Xk∈Rd

(
p(Yk|Xk) p(Xk|Yk−1)

q(Xk|Xk−1,Yk)

)
∫ p(Yk|Xk) p(Xk|Yk−1)

q(Xk|Xk−1,Yk)
q(Xk|Xk−1,Yk) dXk

(3.64a)

=

sup
Xk∈Rd

(
p(Yk|Xk)

p(Xk|Yk−1)
q(Xk|Xk−1,Yk)

)
∫
p(Yk|Xk) p(Xk|Yk−1) dXk

(3.64b)

When the proposal density q(Xk|Xk−1,Yk) is equal to the prior density p(Xk|Yk−1), the
discrepancy criterion can be simplified by:

γk =

sup
Xk∈Rd

p(Yk|Xk)∫
p(Yk|Xk) p(Xk|Yk−1) dXk

(3.65)

In this case, the discrepancy corresponds to the inverse of the probability of acceptance in
acceptance-rejection sampling algorithms [26]:

γk =
1

PA
(3.66)
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where

PA =

∫
p(Yk|Xk) p(Xk|Yk−1) dXk

sup
Xk∈Rd

p(Yk|Xk)
(3.67)

If the probability of acceptance is close to 1, the discrepancy is small, and therefore a lot
of particles have a non-zero weight. On the contrary, if the probability PA is small, the
discrepancy is large, which indicates that the support of the likelihood does not recover the
support of the prior density.

3.6 summary

To cope with non-Gaussian and non-linear cases, Monte Carlo approaches were introduced
in Section 3.3.1. These methods empirically describe the non-linear propagation and update
of the conditional density. More advanced and robust particle filters were introduced based
on kernel regularisation (Section 3.3.2), on conditionally linear models (Section 3.3.3), or
on EnKF equations (Section 3.3.4). A likelihood-free method called ABC was introduced in
Section 3.4. Although it is robust to non-linearities and ambiguities, these filters may diverge
either because of a suboptimal choice of proposal density, or because of the inconsistency
between the likelihood and the prior density.



4
U N D E R W A T E R N A V I G A T I O N

This chapter provides elements on the work’s methodology, in particular concerning the
simulations and their interpretations. Simulations are presented in order to illustrate the
theoretical results and to evaluate the practical impact of the work.

Section 4.1 introduces the inertial navigation equations used to evaluate the state estimation
algorithms (Chapters 5 and 6). The inertial navigation equation described the kinematic
parameters of a vehicle over time. Time-varying linear models associated with negligible
process noise were chosen in order to focus on the impact of measurements ambiguities and
non-linearities. The considered models are the inertial measurement unit error drift and the
double integrator.

Section 4.2 introduces the multi-beam telemeter and atomic gravimeter, and the associated
observation models are described. The work focuses on Terrain Aided Navigation (TAN)
application. TAN constitutes a severely ambiguous problem and allows estimation algorithms
to be compared in a significant context. Furthermore, it belongs to a larger class of prob-
lems that consist of state estimation from vector field measurements. In the context of
underwater TAN, two sensors provided the measurements: the multi-beam telemeter (see
Section 4.2.1) and the atomic gravimeter (see Section 4.2.2). The sensor fusion strategy is
explained in Section 4.2.3.

Section 4.3 presents TAN scenarios. The bathymetric and gravimetric maps are introduced.
Section 4.4 defines numerical criteria used to interpret the simulations: the Root Mean

Square Error (RMSE), the Posterior Cramér-Rao Bound (PCRB) and the non-convergence
rate.

4.1 dynamical models for state estimation

Consider a vehicle whose state vector consists of its geographical position, velocity, and
attitude in the Earth frame:

X =
[
p>,V >,Ψ>

]>
∈ R9 (4.1)

where p = [pλ, pφ, ph]
> is the geographical position (respectively latitude (rad), longitude

(rad), altitude (m)), V = [VN , VE , VD]
> ∈ R3 is the velocity vector (m s−1), and Ψ =

[ψ, θ, ϕ]> is the attitude (euler angles in rad, respectively heading, pitch, roll). These values

41
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are unknown and are usually estimated by an Inertial Measurement Unit (IMU). The
conventional reference system is summarised in Figure 4.1. The inertial frame is fixed and
Earth-centered. The Earth frame is deduced from the inertial frame through the rotation of
the Earth. The navigation frame moves across the Earth’s surface at the same time as the
vehicle.

Earth frame

Body frame

X

Y

ZN

S

N

D

E
Navigation
frame

Figure 4.1: Main Earth reference frames.

4.1.1 Inertial Navigation Equations in the Navigation Frame

The IMU measures the vehicle’s proper acceleration Y a and angular rate Y ω in the inertial
frame, via respectively three accelerometers and three gyrometers (directed according to the
directions of the navigation frame, see Figure 4.1). These measurements are integrated to
compute the accelerations V̇ and angular rates

[
Ṙn2b

]
. The position is then obtained from

the double integration of the acceleration.
The acceleration in the Earth frame is given by the combination of the vehicle’s proper

acceleration Y a and a gravity model. The following simplified gravity model in the World
Geodetic System 1984 (WGS 84) is used:

g = 9.7803 + 0.0519 sin2(pλ)− 3.08× 10−6 ph (4.2)

where g is expressed in m s−2. The acceleration is modelled by the following equation:

V̇ = [Rn2b] Y
a + g − (2ωie + ρ) ∧ V (4.3)

where
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• [Rn2b] is the attitude matrix. The matrix allows switching from the navigation frame
to the body frame and is equal to:

[Rn2b] =

 cos θ cosψ cos θ sinψ − sin θ
− cosϕ sinψ + sinϕ sin θ cosψ cosϕ cosψ + sinϕ sin θ sinψ sinϕ cos θ
sinϕ sinψ + cosϕ sin θ cosψ − sinϕ cosψ + cosϕ sin θ sinψ cosϕ cos θ


(4.4)

The attitude matrix verifies the following property: [Rn2b] = [Rb2n]
>.

• ωie + ρ is the Earth rotation rate. ρ is the angular velocity of the navigation frame
with respect to the Earth frame and ωie is the velocity of the Earth rotation on itself.
These terms are defined in the navigation frame by:

ρ =

ṗφ cos pλ
−ṗλ

ṗφ sin pλ

 (4.5)

ωie =

 ω0 cos pλ
0

−ω0 sin pλ

 (4.6)

where ω0 = 7.29× 10−5 rad s−1.

• The notation ∧ denotes the cross product.

The angular rate Y ω is compensated by the Earth rotation rate, which leads to the angular
rate

[
Ṙn2b

]
modelled by:[

Ṙn2b

]
= −[Y ω×] [Rn2b] + [Rn2b] [(ωie + ρ)×] (4.7)

where [Y ω×] =

 0 −r q

r 0 −p
−q p 0

 is the anti-symmetric matrix of the vector Y ω = [p, q, r]>.

The IMU is coupled with a double integrator which integrates the accelerations (4.3) and
angular rates (4.7) to provide an estimate of the vehicle’s state, denoted X̃IMU.

IMU accelerometers and gyrometers measurements are uncertain and can be modelled by
the following equations:

Y a = ba + (1 +Ka)a+ va (4.8a)
Y ω = bω + (1 +Kω)ω + vω (4.8b)
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where a ∈ R3 and ω ∈ R3 are the actual vehicle proper acceleration and angular rate in the
inertial frame. Ka ∈ R3 and Kω ∈ R3 are scale factors. Noises va ∈ R3 and vω ∈ R3 are
Wiener processes. Vectors ba and bω are respectively the accelerometers and gyrometers bias.
They are modelled with a first order Markov chain:

ḃa = − 1

τa
ba + νa (4.9)

ḃω = − 1

τω
bω + νω (4.10)

where τa and τω are the correlation period of ba and bω respectively, and νa and νω are
Wiener processes. Refined models include sensors misalignments, or scale factors in the IMU
measurements equations (4.8). By iterative integration of IMU measurements, the IMU state
drifts from the actual state and may rapidly provide poor navigation information.

4.1.2 Inertial Errors Model

The IMU errors are the difference between the actual state and the IMU state. They can
be modelled as a state vector δX which includes an estimation of the accelerometers and
gyrometers bias:

δX =
[
δx>, δV >, δΨ>, (ba)>, (bω)>

]>
∈ R15 (4.11)

where δx is the metric position error, δV the velocity error, δΨ the attitude angles errors.
The scale factors Kω and Ka are not estimated.

The relations between the metric position error and the position error are given by:
δxN = (Rλ + ph) δpλ

δxE = (Rφ + ph) cos(pλ) δpφ

δxD = −δph

(4.12)

where Rλ is the radius of curvature of the Earth in the meridian plane and Rφ is the large
normal of the ellipsoid.

Inertial errors equations are obtained by first-order differentiation of the inertial model
(equations (4.3) and (4.7)) with respect to the coordinates of the problem. The inertial errors
model can be written as follows:

δΨ̇ = −(ρ+ ωie) ∧ δΨ− [Rb2n] (b
ω + vω)

δV̇ = −δΨ ∧ f + [Rb2n] (b
a + va) + δg − (ρ+ 2ωie) ∧ δV

δẋ = δV − ρ ∧ δx
(4.13)

where

• δΨ = [δψ, δθ, δϕ]> is the vector of the attitude angles errors
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• ρ = [ρN , ρE , ρD]
> is the angular velocity of the Earth rotation expressed in the

navigation frame.

• f = [fN , fE , fD]
> is the vector of proper accelerations projected in the navigation

frame.

The inertial errors dynamics can be described by a linearised model:

δXk = Ak δXk−1 +Bk Wk (4.14)

where matrices Ak ∈ R15×15 and Bk ∈ R15×12 depend on the state, the gravity model, the
measured proper acceleration Y a

k , and the IMU characteristics. These matrices are given by:

Ak =



13 + FXX∆t 13∆t 0 0 0

FV X∆t 13 + FV V ∆t FVΨ∆t [Rb2n]∆t 0

0 0 13 + FΨΨ∆t 0 − [Rb2n]∆t

0 0 0 13

(
1− 1

τa
∆t
)

0

0 0 0 0 13

(
1− 1

τω
∆t
)


(4.15a)

Bk =


0 0 0 0

[Rb2n]
√
∆t 0 0 0

0 − [Rb2n]
√
∆t 0 0

0 0 13
√
∆t 0

0 0 0 13
√
∆t

 (4.15b)

where ∆t is the time-step, and FXX , FV X , FV V , FVΨ and FΨΨ are defined by:

FXX =

 0 ρD −ρE
−ρD 0 ρN

ρE −ρN 0

 (4.16)

FV X =

−
(
ωN
s

)2
0 0

0 −
(
ωE
s

)2
0

0 0 2
(
ωD
s

)2
 (4.17)

FV V =

 0
(
ρD + 2ωD

ie

)
−ρE

−
(
ρD + 2ωD

ie

)
0

(
ρN + 2ωN

ie

)
ρE −

(
ρN + 2ωN

ie

)
0

 (4.18)
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FVΨ =

 0 −fD fE

fD 0 −fN
−fE fN 0

 (4.19)

FΨΨ =

 0
(
ρD + ωD

ie

)
−ρE

−
(
ρD + ωD

ie

)
0

(
ρN + ωN

ie

)
ρE −

(
ρN + ωN

ie

)
0

 (4.20)

where
[
ωN
S , ω

E
S , ω

D
S

]
=

[√
g
Rλ
,
√

g
Rφ
,
√

g√
RφRλ

]
is the vector of the Schuler frequency on

each axis. Rλ is the radius of curvature and Rφ is the semi-major axis of the ellipsoid in
the WGS 84 model.

The process noise Wk ∈ R12 is a vector composed of Gaussian white noises associated
with va and vω (see equation (4.8)), and νa and νω (see equations (4.9) and (4.10)).

Note that the model (4.14) is independent from the vehicle dynamical model, since
the dynamics are directly measured and integrated by the IMU and integrator system. A
complete derivation of inertial equations and inertial errors model can be found in Britting [14]
and Dahia [19].

4.1.3 Inertial Measurement Unit Hybridisation Scheme

The inertial state has to be corrected using additional measurements (e.g., provided by GNSS,
radio navigation, or optical sensors). Knowledge of the IMU state drift allows the problem
to be formalised as a state estimation scheme. The use of an estimator makes it possible
to estimate the IMU errors and to retrieve the actual state as a corrected IMU state. This
estimation process is called IMU hybridisation. The estimator is referred to as hybridisation
filter and to the additional sensors as hybridisation sensors. Figure 4.2 illustrates the IMU
hybridisation scheme.
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Inertial sensors
accelerometers
gyrometers Gravity model

Initial conditions

IMU data integration

IMU

Hybridisation sensors
e.g., multi-beam telemeter,
gravimeter

Hybridisation filter
estimate of the IMU drift δX̂k

Y a
k Y ω

k
g

X̃IMU
k

inertial state

Yk

X̂k

corrected inertial state

X̃0

Figure 4.2: IMU hybridisation scheme: the IMU measures the vehicle accelerations and angular rates
that are integrated to produce an IMU state estimate. Since this estimate drifts, an
hybridisation of the IMU with additional measurements is needed, which provides a
corrected state estimate.
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4.1.4 Double Integrator

The double integrator dynamical model is defined by:

Ẋ =

[
03 13

03 03

]
X +W (4.21)

where the state X =
[
p>,V >]> is comprised of three Cartesian positions p = [px, py, pz]

and three velocities V = [Vx, Vy, Vz], and W ∈ R6 is the process noise. In practice, it can be
approximated by the Euler method, for a time-step ∆t ∈ R+:

Xk =

[
13 ∆t13

03 13

]
Xk−1 +Wk (4.22)

Equation (4.22) models in a simplified way the position drift of an Autonomous Underwater
Vehicle (AUV) IMU that would start with a position and velocity error and a negligible velocity
drift. This approximation is meaningful when the IMU gyrometers are sufficiently accurate
for short duration scenarios.

4.2 terrain aided navigation

To correct the navigation drift, IMU can be combined with other external sensors. A common
aiding source is the Global Positioning System (GPS) but resurfacing for GPS is often excluded
for discretion requirements and also because it can be easily jammed. This is especially true
for military-grade AUVs. Terrain Aided Navigation (TAN) provides a drift-free navigation
tool for underwater operations. This method aims to retrieve the vehicle current state by
matching a terrain profile obtained from a sensor with a profile reconstructed from an
embedded map of the operation area. The availability of underwater maps as well as the
appearance of precise gravimeters make the method opportune for underwater operations.

Usually, the multi-beam telemeter is used for underwater navigation applications [58, 83].
This sensor provides a series of depth measurements along the AUV trajectory. If the terrain
contains sufficient information, this sensor can be used to retrieve the state of the AUV using
an embedded numerical seabed map. Although multi-beam telemeter aided navigation is able
to accurately retrieve the vehicle position, the velocity is often challenging to be precisely
estimated. In order to enhance the accuracy of the velocity estimation, we propose to fuse
the multi-beam telemeter with an atomic gravimeter. The atomic gravimeter is a promising
absolute sensor for underwater navigation. It provides an absolute and accurate gravity
measurement. The gravimeter is associated with a gravity anomalies map.

Multi-beam telemeter and gravimeter sensors, as well as the resulting measurements
equations, are described in Section 4.2.1 and Section 4.2.2 respectively.
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4.2.1 Multi-beam Telemeter

The multi-beam telemeter provides a series of depth measurements along the AUV position
as shown in Figure 4.3.

Underwater vehicle 

Seabed 

𝑟𝑖 

Figure 4.3: Multi-beam telemeter scheme.

At each time-step, the telemeter measurements are comprised of m distances between
the AUV and the seabed, which correspond to the number of beams. The measurements
vector is given by:

Y b = [r1, . . . , rm]> (4.23)

where ri records the distance between the AUV and the seabed for the i-th beam.
The observation equation depends of the dynamical model considered.

Multi-beam Telemeter Observation Equation for the Inertial Errors Model

The measurement equation is constructed via a projection in the Cartesian coordinate
system (see Meduna [57] for details). For each i ∈ J1,mK,

ri =

√(
pλ − piλ

)2
+
(
pφ − piφ

)2
+
(
ph − mapmb(p

i
λ, p

i
φ))
)2

+ νib (4.24)

where the vector [pλ, pφ, ph] is the true geographical position of the AUV. The true position
is given by the following relations:

pλ = p̃λ + δpλ

pφ = p̃φ + δpφ

ph = p̃h + δph

(4.25)

where [p̃λ, p̃φ, p̃h] is the position given by the IMU and [δpλ, δpφ, δph] is the vector of position
errors that will be estimated by the filter. Equation (4.24) can be rewritten as follows:

ri =

√(
p̃λ + δpλ − piλ

)2
+
(
p̃φ + δpφ − piφ

)2
+
(
p̃h + δph − mapmb(p

i
λ, p

i
φ))
)2

+νib (4.26)
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where mapmb is the numerical map of the operation area and νib is a white noise of co-
variance Rb. The range ri is computed by determining the intersection point of the ith
beam direction vector with the terrain pi = [piλ, p

i
φ, p

i
h]

> where pih = mapmb(p
i
λ, p

i
φ) (see

Figure 3.4 in [57]). The intersection point is unknown in practice and is analytically linked
to the beam ri through trigonometric relations. In the 2D case, denoting Θ the known
angle between the beam and the vertical axis, the coordinates can be written as follows:
[piλ, p

i
φ]

> = [p̃λ + sinΘ ri , p̃φ + cosΘ ri]
>. Using these relations in the observation equation

(4.26) results in an implicit equation where ri is on both sides of the equal sign.

Multi-beam Telemeter Observation Equation for the Double Integrator Model

Similarly, for each i ∈ J1,mK, the beam equation is defined by:

ri =
√
(px − pix)

2 + (py − piy)
2 + (pz − mapmb(p

i
x, p

i
y))

2 + νib (4.27)

where mapmb is the bathymetric map of the operation area (see Figure 4.7) and νib is a
white noise of covariance Rb. The position vector [px, py, pz] will be estimated by the filter.
The bathymetric map is a nonlinear function of R2 in R, taking as input the position along
axis x and y and giving as output the elevation of the terrain. The range ri is computed
by determining the intersection point of the ith beam direction vector with the terrain
pi = [pix, p

i
y, p

i
z]
> where piz = mapmb(p

i
x, p

i
y).

As the intersection point is unknown in practice, the multi-beam telemeter observation
equation (4.27) is computed through numerical approximations (e.g., via grid search methods
or ray tracing code functions). The measurements noise accounts for these approximations
in addition to sensor and map errors. However, as the numerical approximations introduce
some unknown sampling noise that are difficult to control, the law of the observation noise
is complex to infer.

4.2.2 Gravimeter

The atomic gravimeter measures the absolute value of the gravity by monitoring the free-fall
acceleration of ultra-cold atoms thanks to atom interferometry [13, 18] (see Figure 4.4). The
measurements are absolute and accurate, which means that the sensors does not need any
calibration and provides a gravity evaluation with a very low level noise (on the order of
10−2 mGal, where 1 mGal is equal to 10−5 m s−2).
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Figure 4.4: Cold atom gravimeter GIRAFE 2 and its gyrostabilizing platform.

Gravimeter Observation Equation for the Inertial Errors Model

The gravimeter observation equation is derived from the following physical equation
written in the WGS 84 model:

Y g = gnom(pλ, ph) + mapga(pφ, pλ) + p̈h + Eötvös(VE , pλ) + ν (4.28)

where p = [pφ, pλ, ph]
> are the geographical coordinates (pφ and pλ are expressed in radian

and ph in meter), and ν is a white noise. The gravimeter observation equation (4.28) is
expressed in mGal. The deterministic terms are:

• the nominal gravitational acceleration gnom(pλ, ph) calculated at the surface of the
theoretical ellipsoid at latitude 45°. The following formula is used to calculate an
approximate value of the acceleration of gravity at altitude ph and at latitude pλ.

gnom(pλ, ph) ' 978031.846
(
1 + 0.005278895 sin2(pλ)

)
+ 0.3086 ph (4.29)

• the gravity anomalies mapmapga(pφ, pλ) that depends on the latitude and the longitude,
is expressed in mGal.

• the vertical acceleration of the vehicle p̈h is derived from kinematic effects. Thereafter
this term will be neglected as the AUV follows a uniform rectilinear trajectory.

• the Eötvös effect Eötvös(VE , pλ) (also known as Coriolis force). It is an inertial force
that acts on a moving vehicle within a reference frame that rotates (the Earth) with
respect to an inertial frame. The centripetal acceleration that depends on the latitude
is a part of the Eötvös effect but is ignored as it is negligible in comparison with the
other terms of the observation equation (in particular with the gravity anomalies map
output). The simplified Eötvös effect equation is given by:

Eötvös(VE , pλ) ' 3.7515 VE cos(pλ) (4.30)

where VE is the velocity on the East axis expressed in meter per second.
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Using the relations between the true position, the position given by the IMU, and the
position errors (4.25), it comes:

Y g = gnom(p̃λ+δpλ, p̃h+δph)+mapga(p̃φ+δpφ, p̃λ+δpλ)+ ¨̃ph+Eötvös(ṼE+δVE , p̃λ+δpλ)+ ν

(4.31)

where the East velocity ṼE is given by the IMU and the error δVE is estimated by the filter.
As for the position (4.25), the relations between the true velocity, the velocity given the IMU,
and the position errors is: V = Ṽ + δV .

Gravimeter Observation Equation for the Double Integrator Model

The observation equation for the double integrator model is:

Y g = 7.66× 10−4 py − 0.3086 pz + 3.0542 Vx +mapga(px, py) + ν (4.32)

where mapga(px, py) is the simplified notation for mapga
(

px
R cos(pλ0)

+ pφ0,
py
R + pλ0

)
, and

ν is the measurements white noise of covariance Rg. The measurement equation Y g is
expressed in mGal. The measurement equation (4.32) is derived from linearisations described
in Appendix d.

The gravimeter-based navigation does not allow an accurate estimation of the position of
the AUV because of the poor resolution of the gravity anomalies maps. However, it allows a
better estimation of the velocity than the telemeter-based navigation as the velocity in the
x-axis is directly observable in the observation equation (4.32).

4.2.3 Sensor Fusion Architecture

Bathymetric and gravimetric sensor fusion can be formulated in a centralised architecture,
as illustrated in Figure 4.5. Centralized data fusion consists of designing an estimation filter
able to gather information provided by the sensors and prior knowledge obtained from the
dynamical and measurements models, and the IMU.

Performing data fusion from bathymetry and gravimetry yields several relevant advantages.
Bathymetry observation equation depends on the vehicle position and on the seabed elevation
profile. The multi-beam telemeter can thus provide information explicitly depending on
position. However, velocity, which is not explicitly involved in the measurement model, can
only be retrieved by the filter in an indirect way. The gravity observation equation depends
on the geographical position and the x-axis velocity. The geographical position dependency
brings additional information to bathymetric data. In addition, the explicit dependency of
gravity observation equation on the x-axis velocity combined with the high accuracy of the
atomic sensor brings a significant observability gain.
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Figure 4.5: IMU hybridisation with a multi-beam telemeter and an atomic gravimeter in a centralised
data fusion architecture.

Observability level can be quantified by the Fisher information matrix [52], which is the
inverse of the Posterior Cramér-Rao Bound (PCRB) (see Appendix c). The deterministic
recursive Tichavsky formulation of the Fisher information matrix, when the state model is
linear and the measurement model is nonlinear, is:

I(Xk+1) = E
[
∇h>k+1(Xk+1)R

−1
k+1∇h

>
k+1(Xk+1)

>]
+
(
Qk +Bk I(Xk)

−1B>
k

)−1
(4.33)

where I(Xk) is the prior Fisher information matrix and I(Xk+1) the posterior Fisher
information matrix. See Appendix c for more details on the Fisher information matrix
and the PCRB. The linear dynamical model is denoted Bk and Qk is the process noise
covariance. The two additive terms of the above equation (4.33) respectively quantify the
measurement and the dynamics contributions to the Fisher information matrix. For both
sensor configurations (bathymetry only, or gravimetry and bathymetry fusion) the dynamics
contribution is the same and allows non explicitly observed variables (e.g. velocity) to be
indirectly observed by integration correlation. Let us focus on the measurement contribution
to the Fisher information matrix:

Im = E
[
∇h>k+1(Xk+1)R

−1
k+1∇h

>
k+1(Xk+1)

>] (4.34)

For the sake of simplicity, the computation of Im is restricted to the double integrator
formulations of the measurements equations. Also for simplicity, the bathymetry equation is
approached as a single-beam telemeter pointing towards the local vertical direction:

Y b = pz − mapmb(px, py) + ν (4.35)
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By applying (4.34), the bathymetry contribution to information can then be expressed as:

Ib
m =



(
∇x

mb

)2
σ2
mb

∇x
mb∇

y
mb

σ2
mb

−∇x
mb

σ2
mb

0 0 0

∇x
mb∇

y
mb

σ2
mb

(
∇y

mb

)2
σ2
mb

−∇y
mb

σ2
mb

0 0 0

−∇x
mb

σ2
mb

−∇y
mb

σ2
mb

1
σ2
mb

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(4.36)

where ∇x
mb =

∂mapmb(px,py)
∂px

and ∇y
mb =

∂mapmb(px,py)
∂py

are respectively the East and North
gradients of the seabed elevation map, and σmb is the standard deviation of the telemeter
measurement error.

By adding the gravity field measurement, the measurements equation becomes:

Y f = [Y b, Y g]> (4.37)

The contribution of both sensors to information can be expressed as:

If
m =
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mb
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(4.38)

where ∇x
ga =

∂mapga(px,py)

∂px
and ∇y

ga =
∂mapga(px,py)

∂py
are respectively the East and North

gradients of the local gravimetry anomalies map, the constants a, b, and c are respectively
equal to 7.66× 10−4, −0.3086, and 3.0542, and σga is the standard deviation of the atomic
gravimeter measurement error.

The matrix of the contribution of both sensors (4.38) shows, compared to equation (4.36),
that gravimetry contributes to the observability of the following states:

• Position information is enhanced by complementary positive terms depending on the
local gravity field gradient (∇x

ga,∇
y
ga)

T ;

• x-axis velocity information becomes explicitly observable;

• Non diagonal terms bring cross information that will benefit to the whole state
estimation.
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All non-zero diagonal terms of the bathymetric Fisher information matrix are enhanced with
positive (square) terms. These terms represent the theoretical impact of sensor fusion on
expected estimation accuracy.

y-axis and z-axis velocities information remains the same, i.e., only depending on indirect
estimation via information brought by the dynamics. A significant improvement is then
expected on position estimation and x-axis velocity estimation. The estimation error reduction
of these variable may also benefit to the others velocities estimation accuracy. Furthermore,
atomic gravimeter offers a very low level noise σga [10], which increases the impact of the
gravimeter’s contribution to information (proportional to 1/σ2ga).

The complete Fisher information matrices for the multi-beam telemeter and both sen-
sors are provided in Appendix e. To prove the contribution of the atomic gravimeter, the
determinants of the complete Fisher information matrices are derived by taking the assump-
tions described in Appendix e. The determinant of the Fisher information matrix in the
bathymetric setting (e.4) can be expressed as:

det(Ib) =
αmb∆t

2 + βmb

qmb
(4.39)

where the constants αmb, βmb, and qmb are given in Appendix e. The determinant of the
Fisher information matrix when both sensors are activated (e.5) is:

det(If ) =
αga∆t

2 + βga∆t+ γga + o(∆2
t ,∇x

mb
2,∇x

ga
2)

qga
(4.40)

where the constants αga, βga, γga and qga are given in Appendix e. Any quadratic product of
the gradient of the maps of order greater than or equal to 3 were removed of the determinant
in equation (4.40). For several numerical values taken from our simulations settings (see
Tables 5.4 or 6.1), we have:

det(If )

det(Ib)
> 1 (4.41)

As the determinant of the information matrix when the gravimeter is activated is greater
than the determinant of the information matrix with only the multi-beam telemeter, the
additional sensor brings more informations and thus leads to more accurate estimates.

4.3 terrain aided navigation scenario

Estimation algorithms are tested in a terrain scenario. The chosen area is the Californian
coast (35°51′ N, 121°27′ W) shown in Figure 4.6.

The bathymetric and gravity anomalies maps are respectively plotted in Figures 4.7
and 4.8. The bathymetric map is available on the Naval Postgraduate School website [63].
The resolution is 200 m. The maximum depth is 4 km.

The gravity anomalies map is available on the International Gravimetric Bureau web-
site [42]. The resolution is 2 km.
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Figure 4.6: Californian coast (35°51′ N, 121°27′ W).
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Figure 4.7: Bathymetric map of the Californian coast (35°51′ N, 121°27′ W) converted in Cartesian
coordinates. The colorbar represents the depth levels (m).

The selected trajectory is shown in Figure 4.9. It is a rectilinear uniform trajectory of
10 minutes. The initial position of the trajectory is [111000, 140000,−100]> m. The initial
velocity of the AUV is [5, 5, 0.05]> m s−1.

The terrain profiles covered by the AUV in Figure 4.7 are shown in Figure 4.10. In the
Figure 4.10a, the profile for the bathymetric map is created for a single-beam telemeter
pointing towards the local vertical direction.
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Figure 4.8: Gravimetric map of the Californian coast (35°51′ N, 121°27′ W) converted in Cartesian
coordinates. The colorbar represents the gravity anomalies in (mGal).
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Figure 4.9: Bathymetric map of the area covered by the AUV trajectory.
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Figure 4.10: Terrain profiles covered by the AUV.
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4.4 evaluation criteria for state estimation

In the following chapters, algorithms will be evaluated with several criteria defined in this
section. Estimation algorithms outputs are a state estimate and a state confidence. In
this manuscript, the state estimate is the sample mean X̂k and the state confidence is
the covariance Pk of the approximate conditional density. Estimators are evaluated for
NMC ∈ N∗ Monte Carlo simulations.

4.4.1 Root Mean Square Error

The accuracy of an algorithm is evaluated by the Root Mean Square Error (RMSE) defined
by:

RMSEκκκ
k =

√√√√ 1

NMC

NMC∑
i=1

∥∥∥κ̂κκi
k − κκκi

k

∥∥∥2 (4.42)

where κκκi
k and κ̂κκi

k are respectively the actual state and the estimate for simulation i at
time-step k. The state κκκi

k can be the whole state Xk or only a sub-vector, e.g., the position
or the velocity. From this criterion is often derived the horizontal RMSE for the position or
the velocity, which is defined by:

RMSEκκκh
k =

√(
RMSEκκκx

k

)2
+
(
RMSEκκκy

k

)2 (4.43)

4.4.2 Computation of the Posterior Cramér-Rao Bound for the Terrain Aided Navigation
Application in the Double Integrator Model

The recursive equation of the PCRB is given in the Appendix c:

PCRBk+1 = (I(xk+1))
−1 (4.44)

where the Fisher information matrix I(xk+1) is given by:

I(xk+1) = E
[
∇h>k+1(Xk+1)R

−1
k+1∇h

>
k+1(Xk+1)

>]
+
(
Qk +Bk I(xk)

−1B>
k

)−1
(4.45)

In the double integrator model, the gradients matrices of the observation equation
∇hk+1(Xk+1) for the multi-beam telemeter, and for the sensor fusion scenario are pro-
vided in this section. Unlike the developments on the Fisher information matrix performed
in Section 4.2.3, the bathymetric sensor considered here can have multiple beams.

The multi-beam telemeter observation equation can be redefined using the plane-line
intersection formula:

ri =
−n>p+ n>pi

n>u
(4.46)
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where p is the vehicle position, pi the beam intersection point, n the terrain normal at the
intersection point, and u the unit direction vector of the beam in the inertial frame (see
Meduna [57]). The terrain normal is given by the following vector:

n =
[
∇x

mb,∇
y
mb,−1

]> (4.47)

where ∇x
mb and ∇y

mb are respectively the East and North gradients of the seabed elevation
map. The gradient of the multi-beam telemeter observation equation (4.46) is:

∇hbk(Xk) =

[
−n>

n>u
,03

]
(4.48)

The gravimeter observation equation for the double integrator model (4.32) is given by:

Y g = 7.66× 10−4 py − 0.3086 pz + 3.0542 Vx +mapga(px, py) + ν (4.49)

The gradient of the gravimeter observation equation (4.32) is:

∇hgk(Xk) =
[
∇x

ga, a+∇y
ga,−b, c,02

]
(4.50)

where the constants a, b, and c are respectively equal to 7.66× 10−4, −0.3086, and 3.0542.
The gradient of the observation equation ∇hk(Xk) is equal to ∇hbk(Xk) in the bathymetric

scenario. When the multi-beam telemeter and the gravimeter are activated, the gradient of
the observation equation becomes:

∇hk(Xk) =
[
∇hbk(Xk),∇hgk(Xk)

]>
(4.51)

The covariance of the observation process Rk ∈ R(m+1)×(m+1) where m is the num-
ber of beams. All terms of Rk outside the diagonal are zero. The diagonal is equal to
[σ2mb,1, . . . , σ

2
mb,m, σ

2
ga] where σmb,i is the uncertainties associated with the i-th beam of the

telemeter.

4.4.3 Non-Convergence Rate

The filter is qualified as non-convergent if its estimate X̂k leaves the confidence ellipsoid
Γk, during the last five consecutive time-steps. In other terms, the filter is said to be
non-convergent if:

K∑
k=K−4

1Γk
(X̂k) = 0 (4.52)

where K is the last time-step, and the ellipsoid Γk, given by the state confidence matrix Pk,
is defined by:

Γk(Pk) =
{
Xk ∈ Rd|(Xk − X̂k)

>Pk
−1(Xk − X̂k) ≤ α2

}
(4.53)
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The threshold α is given by P(χ2(d) ≤ α2) = 0.99 where d is the state dimension and χ2 the
Chi-squared distribution. In practice, the state confidence is either the covariance Pk given
by the filter or the PCRB.

The non-convergence rate is the number of non-convergent Monte Carlo simulations out
of the total number of simulation:

100

NMC

NMC∑
i=1

1{∑K
k=K−4 1Γk

(X̂i
k)=0

} (4.54)





5
A D A P T I V E A P P R O X I M A T E B A Y E S I A N C O M P U T A T I O N
F I L T E R S

The consistency between the likelihood and the prior density is crucial to avoid degeneracy
problem and filter divergence. Particle filters presented in Chapter 3 (e.g., the Regularised
Particle Filter (RPF) and the Rao-Blackwellised Particle Filter (RBPF)) solve the filtering
problem in the non-linear non-Gaussian case. However, standard Bayesian filtering algorithms
do not guarantee the consistency between the likelihood and the prior density and assume an
a priori knowledge on the measurement noise law. The Approximate Bayesian Computation
(ABC) method was introduced (see Section 3.4) to cope with unknown likelihood. ABC consists
in approximating the likelihood by a parametric kernel density function. The bandwidth
parameter of this kernel is difficult to tune, which may yield filter instability.

This chapter introduces several contributions to likelihood-free particle filters:

• Section 5.1 introduces a new adaptive metric for choosing the bandwidth parameter of
the kernel density function, which is based on the effective sample size criterion and is
called the Adaptive Approximate Bayesian Computation (A2BC) method.

• Section 5.2 studies the impact of the A2BC on two error quantifiers: the asymptotic
variance of the unnormalised weights and the local Monte Carlo error.

A computational load study is provided in Section 5.2.3, in terms of theoretical floating-
point operations per time-step (see Appendix f). Section 5.3 compares the performances
in terms of RMSE of the A2BC-RPF and the A2BC-RBPF with their conventional versions
(i.e., RPF and RBPF) on a TAN example.

5.1 principle

Consider the state-space model given in Chapter 2 by equations (2.17) and (2.2):{
Xk = bk(Xk−1) +Wk

Yk = hk(Xk) + Vk

(5.1)

where bk : Rd → Rd and hk : Rd → Rdy are respectively the dynamical and observation
functions, Wk and Vk are the process and observation white noises. The initial state X0 of

63
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known density p(X0) is independent of both noises. The observations {Yk}k≥0 are mutually
independent conditionally to the state {Xk}k≥0. The noises Wk and Vk are assumed mutually
independent.

The law of the observation noise Vk is assumed to be unknown. This is often the case
in TAN applications (see Section 4.2) that use embedded numerical terrain maps, which can
lead to uncontrolled observation errors. Maps are not exempt from uncertainty, they may
not be fully representative of the field that a local sensor would measure. Furthermore, the
multi-beam telemeter observation model cannot be put into an explicit form that would
link the state to the observations. This is true for both the inertial errors model (4.26) and
the double integrator model (4.27). The multi-beam telemeter observation model is then
numerically approximated which can lead to uncontrolled errors. In this context, neither
the observation noise (involving both the sensor noise and the map modeling error), nor
its probabilistic law (the likelihood p(Yk|Xk)) can be analytically determined. Only the
accuracy of involved sensors are known in the form of a covariance Rk ∈ Rdy×dy .

In order to tackle the issue of unknown likelihood, we propose to replace it by a proba-
bility density kernel with an adaptive bandwidth parameter. Similarly to ABC method (see
Section 3.4), the approximate likelihood p(Yk|Xk) is given by:

pεk(Yk|Xk) = Kεk(Yk −Uk) (5.2)

where the kernel density Kεk : Rdy → R is set by its bandwidth parameter εk ≥ 1. The
pseudo-observations Uk are derived from the noise-free observation model:

Uk = hk(Xk) (5.3)

The kernel density Kεk takes into account the known measurement noise covariance Rk.
For example, the likelihood can be approximated by a Gaussian kernel:

Kεk (Yk −Uk) ∝ exp
(
−1

2
(Yk −Uk)

>(ε2k Rk)
−1(Yk −Uk)

)
(5.4)

or by a Cauchy kernel:

Kεk (Yk −Uk) ∝
(
1 + (Yk −Uk)

>(ε2k Rk)
−1(Yk −Uk)

)− 1+dy
2 (5.5)

Using the kernel density as likelihood, the optimal filter (see Section 2.3) becomes:

• The prediction step determines the prior density p(Xk|Yk) via the Chapman-Kolmogorov
equation (2.20):

p(Xk|Yk−1) =

∫
p(Xk|Xk−1) p(Xk−1|Yk−1) dXk−1 (5.6)

• From the Bayes’ law, the correction step is derived:

p(Xk|Yk) =
Kεk(Yk −Uk) p(Xk|Yk−1)∫

Kεk(Yk −Uk) p(Xk|Yk−1) dXk
(5.7)
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5.1.1 Choice of the Bandwidth Parameter

The bandwidth parameter εk controls the support of the likelihood and has thus a strong
impact on the correction step of particle filters (see Section 3.3.1). The performance of Monte
Carlo methods depends on the consistency between the likelihood and the prior density (see
Section 3.5). An unsuitable choice of likelihood can lead to an inefficient correction step (see
Section 3.3.1, Figure 3.2).

The choice of the bandwidth parameter has a strong impact on the asymptotic variance
of the unnormalised weights (3.56) as the likelihood is replaced by the kernel density Kεk .
When the proposal density is equal to the prior density, the approximate asymptotic variance
of the unnormalised weights is given by:

Vεk =

∫
Kεk(Yk − hk(Xk))

2 p(Xk|Yk−1) dXk(∫
Kεk(Yk − hk(Xk)) p(Xk|Yk−1) dXk

)2 − 1 (5.8)

To illustrate the influence of the bandwidth parameter on the approximate asymptotic
variance of the unnormalised weights, only in this paragraph, the following assumptions are
taken:

• The dimensions of the state and observations are equal to d = dy = 1;

• The prior density is a Gaussian:

p(Xk|Yk−1) =
1√

2π σP
exp

(
−(Xk − X̃k)

2

2σ2P

)
(5.9)

where X̃k and σP are respectively the predicted state and standard deviation;

• The kernel density is Gaussian:

Kεk(Yk − hk(Xk)) =
1√

2π εk σR
exp

(
−(Yk − hk(Xk))

2

2(εk σR)2

)
(5.10)

where σR is the standard deviation of the measurement noise;

• The pseudo-measurements are linearised around the estimate X̃k: hk(Xk) ≈ hk(X̃k) +
(Xk − X̃k)∇hk(X̃k).

The following developments are similar in the multidimensional case. Using the Gaussian
assumptions (5.9)-(5.10), it comes:∫

Kεk(Yk − hk(Xk))
2 p(Xk|Yk−1) dXk =

1

2πεk((εk σR)2 + 2∇hk(X̃k)2σ
2
P )

1
2

exp

(
− (Yk − hk(X̃k))

2

(εk σR)2 + 2∇hk(X̃k)2σ
2
P

)
(5.11)
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∫
Kεk(Yk − hk(Xk)) p(Xk|Yk−1) dXk =

1
√
2π((εk σR)2 +∇hk(X̃k)2σ

2
P )

1
2

exp

(
− (Yk − hk(X̃k))

2

2((εk σR)2 +∇hk(X̃k)2σ
2
P )

)
(5.12)

Using equations (5.11) and (5.12), the approximate asymptotic variance of the unnormalised
weights is:

Vεk =
(εk σR)2 +∇hk(X̃k)

2σ2P

εk((εk σR)2 + 2∇hk(X̃k)2σ
2
P )

1
2

exp
(
C(Yk − hk(X̃k))

2
)
− 1 (5.13)

where

C =
∇hk(X̃k)

2σ2P
((εk σR)2 + 2∇hk(X̃k)2σ

2
P )((εk σR)2 +∇hk(X̃k)2σ

2
P )

(5.14)

From equation (5.13), the following points are concluded:

• The approximate asymptotic variance tends toward infinity when the bandwidth
parameter εk tends to 0.

• When the parameter εk tends towards infinity, the approximate asymptotic variance
tends towards 0.

These results illustrate the importance of the bandwidth parameter on the approximate
asymptotic variance of the unnormalised weights.

As demonstrate in Appendix b, the effective sample size criterion (3.18) can be approxi-
mated by an expression that depends on the asymptotic variance of the unnormalised weights:

ESS =
N

1 + Varq(w̃)
≈ N

1 + V
(5.15)

As a result, when the asymptotic variance decreases, the effective sample size criterion
increases. Thus, the consistency between the likelihood and the prior density, and the
effective sample size increase simultaneously.

The effective sample size represents the number of effective particles, i.e., particles which
have a significant weight and contribute to the estimation of the conditional density. The
idea behind the proposed method is to choose εk such that the number of effective particles
is greater than a given resampling threshold Nth = θthN where θth ∈ [0, 1] and N is the
total number of particles. From the previous paragraph, we know that finding εk such that
the effective sample size increases is equivalent to increasing the consistency between the
likelihood and the prior density.
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Figure 5.1: Consistency between the prior density and a flattened non-informative likelihood (εk → ∞)
resulting in inefficient correction of the particles.

This choice of bandwidth parameter avoids the resampling. However, choosing εk such
that the number of effective particles is greater than Nth can lead to an inefficient correction
of the particles, as illustrated in Figure 5.1. When the particles are significantly misplaced
in the state space, the support of the prior density does not overlap with the support of the
likelihood. This is the case in Figure 5.1 between the prior density and the sharp likelihood,
which corresponds to the case where εk = 1. In this situation, the support of the likelihood
is increased (i.e., 1 < εk → ∞) until the consistency between the likelihood and the prior
density guarantees Nth effective particles. By increasing the support of the likelihood, the
information brought by observations is lost. Indeed, the observations no longer discriminate
the particles significantly misplaced by attributing to them a weight close to zero, and a
majority of particles is blindly considered effective. The correction step is thus ineffective
and the filter may diverge. In oder to access the resampling when necessary, the bandwidth
parameter εk is restricted to a domain.

The objective of the proposed method, called A2BC, is then to optimally increase the
support of the likelihood to reach Nth effective particles without losing the information
brought by sensor observations. Formally, we resolve:

ε?k = argmin
εk∈D

(ESS(εk)−Nth)
2 (5.16)

where D ⊂ R+ is a given domain. The notation are slightly modified to reflect the dependency
with the bandwidth parameter εk:

ESS(εk) =
N

1 + Varq(w̃εk)
(5.17a)

w̃εk =
Kεk(Yk − hk(Xk)) p(Xk|Yk−1)

q(Xk|Xk−1,Yk)
(5.17b)

The optimisation problem (5.16) is restricted to the domain D to access the resampling
step whenever the particles are significantly misplaced. As the occurrence of the resampling
step is reduced, the A2BC method avoids the errors associated to it. Indeed, resampling can
cause the premature loss of one or more modes of the conditional density. When the lost
mode corresponds to the true position, the filter automatically diverges. By delaying the
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resampling, the convergence to a single mode of the likelihood is delayed, which makes the
filter more robust to measurements ambiguities.

The bandwidth parameter εk belongs to the domain D = [ε−k , ε
+
k ]. The coefficient must be

at least equal to unity (i.e.,D = [1, ε+k ]) as the observation errors are at least equal to the
sensor errors. The upper bound of the bandwidth ε+k is chosen according to the application
and must not allow the likelihood to be flattened.

The choice of the parameter εk (5.16) is summarised by the three following situations:

• ESS(1) > Nth: If the number of effective particles is greater than the resampling
threshold by taking εk = 1, then the chosen bandwidth parameter will be ε?k = 1.
In this situation, increasing the support of the likelihood is not necessary and the
information provided by observations is preserved.

• ESS(1) < Nth < ESS(εk): In this case, the bandwidth ε∗k is chosen such that ESS(ε?k)−
Nth = 0.

• ESS(ε+k ) < Nth: If the number of effective particles calculated with εk = ε+k is below the
threshold Nth, then the chosen bandwidth parameter (that satisfies the optimisation
problem (5.16)) is ε?k = ε+k and the resampling step is triggered.

The proposed choice of bandwidth parameter (5.16) has not a direct impact on the first
and third cases. It is particularly suitable when the number of effective particles is close to the
threshold Nth chosen by the user. In these critical moments, resampling may cause the filter to
diverge by not selecting the correct mode of the conditional density. Limiting the resampling
makes it possible to wait for the measurements to remove the ambiguities. The proposed
bandwidth parameter improves the filter’s robustness to measurements uncertainties. This is
crucial for underwater navigation as, in the TAN method, the underwater maps are ambiguous
(flat areas or areas with similar characteristics). The objective of the proposed method is to
prevent the filter from diverging by optimising the impact of the weights correction.

As the effective sample size cannot be evaluated exactly, it is replace in practice by its
estimation (see Section 3.3.1 equation (3.19)):

ÊSS(εk) =
1∑N

i=1

(
wi
εk

)2 (5.18)

The optimisation problem becomes:

ε?k = argmin
εk∈D

(
ÊSS(εk)−Nth

)2
(5.19)

5.1.2 Adaptive Approximate Bayesian Computation method within Particle Filters

The A2BC method described in Section 5.1 can be integrated within any particle filter. Only
the correction step is modified. A2BC particle filters also stem from the Sequential Importance
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Algorithm 5.1 A2BC-SIR-PF
1: Initialisation: The initial particle set is drawn as {Xi

0}i∈[1,N ] using the initial density
p(X0) and the initial weights set {wi

0}i∈[1,N ] is taken equal to 1
N .

2: for each time-step k do
3: Prediction: Draw the particles from a suitable proposal density Xi

k ∼
q(Xk|Xi

k−1,Yk).
4: Simulate the pseudo-measurements U i

k by plugging the particles Xi
k in the observation

model hk: U i
k = hk(X

i
k).

5: Correction: Resolve the optimisation problem (5.16) to determine the bandwidth
parameter ε?k:

ε?k = argmin
εk∈D

(
ÊSS(εk)−Nth

)2
(5.20)

6: Update the weights using the A2BC likelihood:

wi
k ∝ wi

k−1

Kε?k
(Yk − hk(X

i
k)) p(X

i
k|Xi

k−1)

q(Xi
k|Xi

k−1,Yk)
(5.21)

7: Compute the state estimate X̂k (3.16) and its covariance Pk (3.17).
8: if ÊSS < Nth then
9: Draw a new set of particles {Xi

k}i∈[1,N ] using a resampling method, e.g., the
multinomial resampling (Algorithm 3.2).

10: Reset the weights to 1
N .

11: end if
12: end for
13: Return the state estimate X̂k and its covariance Pk, ∀k.
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Resampling Particle Filter (SIR-PF) algorithm presented in Section 3.3. The A2BC-SIR-PF is
summarised in Algorithm 5.1.

Two A2BC filters are derived from the conventional RPF and RBPF (see Section 3.3):
the A2BC-RPF and the A2BC-RBPF respectively. Both filters are summarised in Appendix g.
The particle filter used in the RBPF is the RPF.

5.2 theoretical results

The Monte Carlo filters performance criteria presented in Section 3.5 are driven by the
consistency between the likelihood and the prior density. The consistency is ensured by
the A2BC method, which therefore has a direct impact on the performance of the Monte
Carlo filters.

Section 5.2.1 studies the impact of the A2BC method on the approximate asymptotic
variance of the unnormalised weights. Section 5.2.2 presents its impact on the local Monte
Carlo error. The algorithmic complexity of the A2BC method is discussed in Section 5.2.3 to
evaluate the computation cost of such an approach in an industrial embedded context.

5.2.1 Upper Bound of the Variance of the Unnormalized Weights

Proposition 2 states that the approximate asymptotic variance of the unnormalised weights
is bounded if the discrepancy remains below a given threshold. The discrepancy (3.63) γεk
is computed using the weights w̃εk (5.17b). A small variance of the unnormalised weights
guarantees an accurate Monte Carlo estimate (see Section 3.1).

Proposition 2. By choosing εk such that γεk ≤ γth, where γth is a threshold, it is
guaranteed that the asymptotic variance of the unnormalised weights Vεk is bounded:

Vεk < +∞ (5.22)

Proof. By taking the supremum, it comes:∫
Kεk(Yk − hk(Xk))

2 p(Xk|Yk−1)
2

q(Xk|Xk−1,Yk)
dXk ≤ sup

Xk∈Rd

(
Kεk(Yk − hk(Xk)) p(Xk|Yk−1)

q(Xk|Xk−1,Yk)

)
∫

Kεk(Yk − hk(Xk)) p(Xk|Yk−1) dXk (5.23)

It follows that:

Vεk =

∫ Kεk
(Yk−hk(Xk))

2 p(Xk|Yk−1)
2

q(Xk|Xk−1,Yk)
dXk(∫

Kεk(Yk − hk(Xk)) p(Xk|Yk−1) dXk

)2 − 1 (5.24a)

≤
sup
X∈Rd

(
Kεk

(Yk−hk(Xk)) p(Xk|Yk−1)

q(Xk|Xk−1,Yk)

)
∫
Kεk(Yk − hk(Xk)) p(Xk|Yk−1) dXk

− 1 = γεk − 1 (5.24b)



5.2 theoretical results 71

By choosing εk such that γεk ≤ γth, where γth is a threshold, it comes:

0 ≤ Vεk ≤ γεk − 1 < +∞ (5.25)

The variance admits an upper bound that depends on the discrepancy. The variance is small
when the discrepancy γεk tends towards 1.

From (3.18) and (5.25), and as 1 ≤ ESS(εk) ≤ N , it comes:

N

γεk
≤ ESS(εk) ≤ N (5.26)

When γεk tends towards 1, from the squeeze theorem, ESS(εk) tends towards N . Therefore,
when the discrepancy is small, a significant number of particles is efficient.

By taking Nth equal to N
γth

, it follows:

Nth =
N

γth
≤ N

γεk
≤ ESS(εk) (5.27)

5.2.2 Monte Carlo Local Error Analysis

Proposition 3 shows that the control of the discrepancy γεk not only bounds the asymptotic
variance of the unnormalised weights, but also reduces the local Monte Carlo error. The
local Monte Carlo error quantifies the matching between the filter’s density and the actual
state density. It is defined by:

Ek := E[||π̂k − πk||1 | Sk−1] (5.28)

where πk is the conditional distribution, π̂k its approximation, ||.||1 the total variation norm,
and Sk−1 the σ-field generated by the measurements and the random variables simulated in
the transition from π̂0 to π̂k.

Thereafter, πk|k−1 denotes the predictive distribution and π̂k|k−1 its approximation.

Proposition 3. If πk|k−1 is absolutely continuous with respect to the Lebesgue measure
and if the density dπk|k−1

dx ∈W 2,1, then the local Monte Carlo error verifies:

Ek ≤ α̃

N
2

d+4

+ γεk

[
β̃

N
2

d+4

+ ||π̂k|k−1 − πk|k−1||1

]
(5.29)

The two constants α̃ = α(Kh,Kεk .πk|k−1) and β̃ = β(Kh, π̂k|k−1) depend on the parame-
ters of the regularisation kernel Kh, the A2BC kernel Kεk(Yk − hk(Xk)), the predictive
distribution πk|k−1, and it approximation π̂k|k−1.
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The following notations are used in the proof of Proposition 3:

• W 2,1 is the Sobolev space of measurable functions defined on Rd for which the derivatives
up to order 2 (in the sense of the distributions) are in L1 ∈ R,

• |.|2,1 is the usual norm on W2,1,

• Let ν be a signed measure on E of density f with respect to Lebesgue’s measurement,
we define:

– a2(ν) = a2(f) = 2! max|α|=2

∫
E |Xα||f(x)|dx,

– A′
d = 2

d
2

(
(2π)

d+1
2

Γ
(

d+1
2

)
) 1

2

– I(ν) = I(f) =
∫
E |X|d+1|f(X)|dX

Proof. The problem is stated with the following assumptions:

• The regularisation kernel Kh is radially symmetric and order 2 positive, which is the
case for the Epanechnikov kernel;

• The likelihood is positive and bounded on Rd such that
∫
πk(dXk) p(Yk|Xk) > 0;

Under these assumptions, from the work of Oudjane [68] (Prop. 5.19 p.168) in the context
of progressive correction, the local Monte Carlo error is bounded by:

Ek ≤ α̂h2 + γ̂k

[
β̂√
Nhd

+ ||π̂k|k−1 − πk|k−1||1

]
(5.30)

where α̂ = a2(Kh) |p(Yk|Xk).πk|k−1|2,1 and β̂ = 2 A′
d

[
1 + I(π̂k|k−1)

]
||Kh||2 are two

constants.
In the context of A2BC, the likelihood p(Yk|Xk) is replaced by Kεk(Yk − hk(Xk)), which

depends on its bandwidth parameter εk. Let Kεk be positive and bounded on Rd; assuming
that εk <∞, it follows:

Ek ≤ α̂h2 + γεk

[
β̂√
Nhd

+ ||π̂k|k−1 − πk|k−1||1

]
(5.31)

where α̂ = a2(Kh)|Kεk .πk|k−1|2,1 and β̂ = 2A′
d

[
1 + I(π̂k|k−1)

]
||Kh||2 are two constants.

As the regularisation kernel is the Epanechnikov kernel, it bandwidth parameter is given by
equation (3.25): h = µ A(Kh) N

− 1
d+4 . By replacing the regularisation bandwidth parameter

by its expression, it comes:

Ek ≤ α̃

N
2

d+4

+ γεk

(
β̃

N
2

d+4

+ ||π̂k|k−1 − πk|k−1||1

)
(5.32)
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where α̃ = µ2A(Kh)
2α̂ = µ2A(Kh)

2a2(Kh)|Kεk .πk|k−1|2,1
β̃ = β̂

µd/2A(Kh)d/2
=

2A′
d

[
1+I(π̂k|k−1)

]
||Kh||2

µd/2A(Kh)d/2

(5.33)

The local Monte Carlo error Ek is the error after the correction step. Ek depends on the
number of particles N , the prediction error ||π̂k|k−1 − πk|k−1||1, the discrepancy γεk , and
the regularisation bandwidth parameter h. If the number of particles N is large, the two
constant terms α̃ and β̃ have little influence on the local Monte Carlo error as both terms

α̃

N
2

d+4
and β̃

N
2

d+4
tend towards zero. In this case, the local Monte Carlo error Ek depends

on the coefficient γεk in front of the prediction error. The discrepancy γεk increases when
the consistency between the prior density and the likelihood decreases. The A2BC method
adjusts the likelihood by increasing slightly its support to ensure a better consistency with
the prior density. As a result, the supremum of the likelihood decreases and the consistency
with the prior density increases which guarantees that γεk ≤ γ̂k.

To summarise, in Proposition 3, we proved that the local Monte Carlo error Ek admits
an upper bound that depends on the discrepancy γεk . The use of the A2BC method in
the correction step aims to limit the discrepancy by optimising the scale parameter of the
likelihood. Therefore, an appropriate choice of the bandwidth parameter of the A2BC kernel
εk makes it possible to optimise the upper bound of the local Monte Carlo error Ek.

5.2.3 Complexity Analysis of the Choice of the Bandwidth Parameter

Theoretical computational loads are given in terms of total number of floating-point operations
(flops, see Appendix f). In what follows, the computation for the A2BC method consists of
the choice of the bandwidth parameter of the A2BC kernel. The total load of the prediction,
correction, resampling and regularisation steps are provided in Appendix f for the RPF and
the RBPF filters and remain unchanged in the context of A2BC.

The computational load of the bandwidth parameter εk (5.16), for a fix k, is:

cε = cD (N(cK + cp + cq + 9)− 1) (5.34)

where cK is the cost of the A2BC likelihood pεk(Yk|Xk) = Kεk(Yk − hk(Xk)), cp the cost of
the prior density p(Xk|Yk−1) and cq the cost of the proposal density q(Xk|Xk−1,Yk). The
load of the determination of the bandwidth cε depends on the choice of the domain D and
therefore on the number of calls of the objective function denoted cD.

To explain the computational load of the bandwidth parameter (5.34) and for readability
issues, the optimisation problem (5.18) is recalled here:

ε?k = argmin
εk∈D

(
ÊSS(εk)−Nth

)2
(5.35)
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For an iteration of the optimisation (i.e., for εk fixed), the computation load is described in
Table 5.1.

Table 5.1: The flops complexity associated with the A2BC bandwidth parameter.

Instruction Computation load

w̃εk (5.17b) N(cK + cp + cq + 3)

Normalisation 2N − 1

ÊSS(εk) 2N(
ÊSS(εk)−Nth

)2
2N

The load of the approximate effective sample size ÊSS(εk) includes the computation of the
unnormalised weights w̃ (5.17b) and their normalisation.

When the proposal density is equal to the prior density, the computational load of the
unnormalised weights becomes cK + 1. Thus, for bootstrap filters, the load of the bandwidth
selection is:

cε = cD (N(cK + 7)− 1) (5.36)

The number of calls of the objective function cD, and the number of particles N in the
computational load of the bandwidth parameter ε, are the terms of greatest concern when
looking at the load of the bandwidth parameter. However, since the cost is polynomial, the
computation can be performed in real time on Graphics Processing Unit [12]. Moreover,
the parallel processing of the bandwidth parameter optimisation (5.18) allows a significant
decrease in computation time. The load of the bandwidth parameter can also be significantly
reduced by verifying two values of the efficient sample size criterion. As discussed in Sec-
tion 5.1.1, when ESS(ε+k ) < Nth and ESS(1) > Nth, the chosen bandwidth parameter ε?k is
ε+k and 1 respectively. The computational load is added to the total load of the algorithm
only when ESS(1) < Nth < ESS(ε+k ).

5.3 numerical study: application to terrain aided navigation

This section makes a comparison between classical Particle Filters (PFs) and their A2BC
versions. In Section 5.3.1, the chosen dynamical model is the double integrator model (4.22),
and the observation model is the Cartesian measurements for the multi-beam telemeter (4.27)
and gravimeter (4.32).

The following points are to be checked:

1. The impact of the A2BC method on the accuracy (i.e., on the RMSE, see Section 4.4.1);

2. The impact of the A2BC method on the non-convergence rate (see Section 4.4.3).
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It can be expected that A2BC filters would yield lower RMSE and non-convergence rate.
The contribution of the gravimeter to the accuracy of the estimation and the robustness
to uncertainties (measured by the non-convergence rate) is highlighted. The impact of
the A2BC method is also studied in Section 5.3.2 for the inertial errors model. The chosen
observation model is the geographical measurements for the multi-beam telemeter (4.26)
and gravimeter (4.31).

To compare the conventional filters with their A2BC version, a Cauchy kernel with constant
bandwidth parameter is chosen for RPF and RBPF likelihoods. The constant bandwidth is
equal to the sensor error standard deviation. A2BC-RPF and A2BC-RBPF likelihoods are also
Cauchy kernels but the bandwidth is adaptively determined according to the A2BC method
previously described (see Section 5.1.1). The linear part of RBPF and A2BC-RBPF is the
velocity on the three axis and the nonlinear part is the position on the three axis.

5.3.1 Double Integrator Model

The impact of the A2BC method is shown on a first dataset for an AUV equipped only with
a multi-beam telemeter and an embedded map of the seabed. The joint contribution of
the A2BC method and gravimetric sensor is shown for a second dataset.

The Contribution of the A2BC Method

The reference trajectory is simulated using the parameters presented in Table 5.2 and is
shown in Figure 5.2. Figure 5.2 illustrates estimated trajectories given by a single Monte
Carlo run of the two proposed algorithms (i.e., A2BC-RPF and A2BC-RBPF) for the same
initial errors and measurements realisations. The estimated trajectories converge quickly
towards the trajectory of reference. The simulation parameters are summarised in Table 5.2.
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Figure 5.2: Comparison between the true trajectory and the trajectories estimated by a single Monte
Carlo run of A2BC-RPF and A2BC-RBPF.
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Table 5.2: Simulation settings.

State-space model parameters Value

Number of Monte Carlo runs 100
Sampling period ∆t = 10 s
Number of bathymetric measurements 200
Trajectory duration 33 min
Number of beams m = 3

Number of particles N = 5000

Resampling threshold Nth = 0.75 N

Regularisation bandwidth parameter µ = 0.3

Initial position [120000, 180000,−100]> m
Initial velocity [5, 5, 0.05]> m s−1

Initial uncertainty in position (st.d.) [1000, 1000, 100] m
Initial uncertainty in velocity (st.d.) [0.5, 0.5, 0.5] m s−1

Process noise in position (st.d.) [3, 3, 0.3] m
Process noise in velocity (st.d.) [0.015, 0.015, 0.0015] m s−1

Measurements

Error of each beam range (st.d.) σmb = 10 m

A2BC parameter

Domain of the bandwidth parameter D = [1; 3]

Figures 5.3 and 5.4 show RMSEs obtained with the two A2BC filters (A2BC-RPF and
A2BC-RBPF) and the two conventional filters (RPF and RBPF). Only convergent simulations
are used to plot RMSEs on Figures 5.3 and 5.4. The non-convergence rates of the filters
are provided in Table 5.3. The PCRB is displayed in Figures 5.3 and 5.4. The PCRB is
approximated over 100 state samples at each time-step. For this reason, RMSEs can be lower
than the PCRB at some point.
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In Figure 5.3, RMSEs convergence occurs around 20 min for the horizontal position and
around 15 min for the vertical position. RMSEs follow the tendency of the approximated PCRB.
In Figure 5.3, the jumps in the horizontal position RMSE of A2BC-RPF between 10 min and
17 min are due to map ambiguities. The A2BC method leads the filter to wait for the ambiguity
to be resolved before converging. The RMSE of A2BC-RPF still converges at the same time
and with the same accuracy as the other filters.
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Figure 5.3: Plot of the RMSEs of the horizontal (upper plot) and vertical (lower plot) position in the
bathymetric case for the double integrator model.

In Figure 5.4, RMSEs convergence occurs around 20 min for the horizontal velocity and
around 15 min for the vertical velocity. RMSEs also follow the tendency of the approxi-
mated PCRB.

RMSEs at the end of the trajectory and non-convergence rates are provided in Table 5.3.
RMSEs at the end of the trajectory are lower for the A2BC filters than for the conventional filters.
This demonstrates that the boundedness of the asymptotic variance of the unnormalised
weights (see Proposition 2) and of the local Monte Carlo error (see Proposition 3) has an
impact on the estimation error in practice.
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Figure 5.4: Plot of the RMSEs of the horizontal (upper plot) and vertical (lower plot) velocity in the
bathymetric case for the double integrator model.

For 100 Monte Carlo simulations, the non-convergence rate decreases from 8 to 3 by adding
the A2BC method in the RPF and from 10 for the RBPF to 6 for the A2BC-RBPF. This tends
to show that A2BC filters are more robust to measurement ambiguities than their classic
counterparts.

Table 5.3: Table of RMSEs at the end of the trajectory (in meters for the position and in meters per
second for the velocity), and of the non-convergence rate.

RPF A2BC-RPF RBPF A2BC-RBPF

Last RMSE
ph 106.53 104.67 105.23 99.90

pz 1.47 0.83 1.46 0.78

vh 0.795 0.188 0.197 0.177

Non-convergence rate (%) 8 3 10 6
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The following section illustrates the joint contributions of the A2BC method and of the
additional sensor: the atomic gravimeter.

The Gravimeter contribution

The reference trajectory is simulated using the parameters presented in Table 5.4 and is
shown in Figure 4.9. The simulation parameters are summarised in Table 5.4.

Table 5.4: Simulation settings.

State-space model parameters Value

Number of Monte Carlo runs 100
Sampling period ∆t = 1 s
Number of bathymetric measurements 600
Number of gravimetric measurements 40
Trajectory duration 10 min
Number of beams m = 5

Number of particles N = 1000

Resampling threshold Nth = 0.75 N

Regularisation bandwidth parameter µ = 0.3

Initial position [110000, 140000,−100]> m
Initial velocity [5, 5, 0.05]> m s−1

Initial uncertainty in position (st.d.) [2000, 2000, 200] m
Initial uncertainty in velocity (st.d.) [0.5, 0.5, 0.05] m s−1

Process noise in position (st.d.) [3, 3, 0.3] m
Process noise in velocity (st.d.) [0.015, 0.015, 0.0015] m s−1

Measurements

Error of each beam range (st.d.) σmb = 10 m
Gravimeter error (st.d.) σga = 0.3 mGal

A2BC parameter

Domain of the bandwidth parameter D = [1; 2]

Figures 5.5 and 5.6 show RMSEs obtained with the RPF and its A2BC version (A2BC-RPF).
When the AUV is equipped with only the multi-beam telemeter, the term “Bathymetry” is
added before the name of the filters. When the term “Fusion” is added before the name of
the filters, the AUV is equipped with the multi-beam telemeter and the atomic gravimeter.
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Only convergent Monte Carlo simulations are used to plot RMSEs on Figures 5.5 and 5.6.
The non-convergence rates of the filters are provided in Table 5.8. The PCRB is displayed in
Figure 5.5 and is approximated over 100 state samples at each time-step.

In Figure 5.5, RMSEs convergence occurs around 4 min for all filters. RMSEs follow the
tendency of the approximated PCRB. At the beginning of the trajectory, RMSEs of the RPF
and A2BC-RPF in the “Fusion” case are lower than the RMSEs of the same filters in the
“Bathymetry” case which demonstrates the interest of fusing gravimetry based measurement
to bathymetric information.
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Figure 5.5: Plot of RMSEs of the horizontal (upper plot) and the vertical position (lower plot) for the
double integrator model. “Bathymetric” corresponds to the bathymetric aided navigation
and “Fusion” to the bathymetry and gravimetry fusion scenario.

In Figure 5.6, for both cases, RMSEs for the horizontal velocity converge slowly towards the
value 0.015 m s−1. RMSEs for the vertical velocity converge at the end of the trajectory. The
use of the atomic gravimeter, in addition to the multi-beam telemeter, allows a significant
improvement of RMSEs for both filters. The gap is particularly large when considering the hor-
izontal velocity. This significant difference between RMSEs is due to the explicit contribution
of the x-axis velocity in the measurement equation of the atomic gravimeter (4.32).
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Figure 5.6: Plot of RMSEs of the horizontal (upper plot) and the vertical velocity (lower plot) for the
double integrator model. “Bathymetric” corresponds to the bathymetric aided navigation
and “Fusion” to the bathymetry and gravimetry fusion scenario.

RMSEs for the x-axis velocity are shown in Figure 5.7. The accurate estimation of the
x-axis velocity leads to an overall improvement of the accuracy of the other state parameters
estimates. Thus, the fusion strategy presented in Section 4.2.3 improves the quality of filter
estimates.
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Figure 5.7: Plot of RPF RMSEs of the velocity on the x-axis. “Bathymetric” corresponds to the
bathymetric aided navigation and “Fusion” to the bathymetry and gravimetry fusion
scenario.

For 100 Monte Carlo simulations, the non-convergence rates of RPF and RBPF-RPF in the
“Bathymetry” and “Fusion” cases are shown in Figure 5.8. Overall, the non-convergence
rates are lower for the filters in the “Fusion” case. For the RPF, the non-convergence rate
decreases from 12 in the “Bathymetry” case to 7 in the “Fusion” case. The fusion with the
atomic gravimeter effectively reduces the non-convergence rate. The contribution of the A2BC
method is also illustrated as smaller non-convergence rates are observed for the A2BC filters.
In the “Bathymetry” case, the non-convergence rate decreases from 12 to 8 with the A2BC
method. In the “Fusion” case, the non-convergence rate decreases from 7 for the RPF to 3
for the A2BC-RPF. This significant decrease in the non-convergence rates was expected as
the A2BC method optimises the impact of the weights correction.
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Figure 5.8: Non-convergence rates of the RPF and its A2BC version for 100 Monte Carlo simulations.
“Bathymetry scenario” corresponds to the bathymetric aided navigation and “Fusion
scenario” to sensor fusion case.

The multi-beam telemeter and atomic gravimeter fusion provides better estimates through
the direct observation of the x-axis velocity in the gravimeter measurement equation.
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The A2BC method brings more robustness to non-linearities and measurement ambigui-
ties than classical filters as the non-convergence rates are significantly reduced. In the next
section, A2BC filters are tested on a more realistic navigation model.

5.3.2 IMU Error Drift Model

The IMU error drift model is described in Chapter 4. The inertial errors dynamics are given
by a linear model (see equation (4.14)). The impact of the A2BC method is shown for an AUV
equipped with an IMU, a multi-beam telemeter and an embedded map of the seabed. The IMU
measures the vehicle’s acceleration and angular rate in the inertial frame, via respectively
three accelerometers and three gyrometers. These measurements are integrated to retrieve
the vehicle state. The accelerometers and gyrometers parameters of the IMU are summarised
in Table 5.5, where bias, scale factors, and standard variations are the same for the three
axis.

Table 5.5: IMU settings.

Gyrometers parameters Value

Bias bω = 0.005 ° h−1

Correlation period τa = 3000 s
Scale factor Kω = 10−6

Random walk (st.d.) 2.10−5 °/
√

h

Accelerometers parameters Value

Bias ba = 1.10−5 g
Correlation period τω = 3000 s
Scale factor Ka = 10−6

Random walk (st.d.) 3.10−4 °/s/
√

h

A high quality IMU is described in Table 5.5 as the bias of the gyrometers is small. An
example of the IMU drift is shown in Figure 5.9. The drift is due to the sensors errors and
the integration of the initial error.
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Figure 5.9: An example of IMU drift.
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The reference trajectory is simulated using the parameters presented in Table 5.4 and is
shown in Figure 4.9. The parameters of the filters are also given by Table 5.4. The state
vector is composed of the position and the velocity.

Figures 5.10 and 5.11 shows RMSEs obtained with the RPF and the A2BC-RPF. Only
convergent simulations are used to plot RMSEs on Figures 5.10 and 5.11. RMSEs decrease with
time for both the horizontal and the vertical position and velocity. After 3 min of trajectory,
RMSEs of the horizontal position converge around 100 m. RMSEs of the vertical position
converge around 5 m before 3 min of trajectory. For the horizontal and the vertical position,
the RPF RMSE converges faster than the A2BC-RPF RMSE.
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Figure 5.10: Plot of RMSEs for the horizontal (upper plot) and the vertical position (lower plot) for
the IMU error drift model.

For the horizontal velocity, the convergence occurs at the end of the trajectory. RMSEs of
the horizontal velocity reach 0.4 m s−1. RMSEs of the vertical velocity converge after 2 min
of trajectory around the value 0.03 m s−1. The gaps between RMSEs of the RPF and RMSEs
of the A2BC-RPF are small.

For 100 Monte Carlo simulations, the non-convergence rates are 16 for the RPF and 5 for
the A2BC-RPF. We retrieve the same conclusions as in the previous simulations. The A2BC
filter is more robust to non-linearities and measurement ambiguities as the non-convergence
rate is significantly reduced.
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Figure 5.11: Plot of RMSEs for the horizontal (upper plot) and the vertical velocity (lower plot) for
the IMU error drift model.

5.4 summary

This chapter introduced a method based on the ABC, called A2BC. The method A2BC, by
adapting the support of the likelihood, ensures the consistency between the likelihood and
the prior density. A2BC prevent the filter from diverging by optimising the weight correction
impact. This theoretically allows the filter to tackle severe multi-modalities. The proposed
method was applied in two conventional filters: RPF and RBPF.

A2BC filters were evaluated on the double integrator model and the inertial errors model. In
practice, a significant decrease was shown in terms of non-convergence rate for both models.
Simulation results demonstrate that the A2BC method significantly increases the robustness
to non-linearities and measurement ambiguities, and the accuracy of the estimations, while
remaining computationally efficient.

The contribution of the multi-beam telemeter and atomic gravimeter fusion was also
demonstrated. The sensors fusion provides better estimates through the direct observation
of the x-axis velocity in the gravimeter measurement equation and limits the position drift
of the IMU.
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The choice of the proposal density is crucial as it ensures the correct functioning of particle
algorithms. The proposal density should minimise the Monte Carlo variance. Unfortunately,
the optimal proposal density depends on the target density (i.e., the conditional density).
The advantage of the Weighted Ensemble Kalman Filter (WEnKF) [69] lies in the choice
of the proposal density (see Section 3.3.4). WEnKF can be seen as a particle filter with a
Gaussian proposal density calculated by a Kalman filter. However, in some cases, the support
of the proposal density of the WEnKF does not overlap with the support of the conditional
density, which causes a deterioration of the Monte Carlo estimate and may lead the filter to
diverge.
To tackle this issue, it is possible to empirically enlarge the support of the proposal density
so that it contains the support of the conditional density.

This chapter introduces several contributions to the WEnKF field:

• Section 6.2.1 determines a condition on the covariance of the proposal density so that
it guarantees a finite asymptotic variance of the unnormalized weights.

• Section 6.2.2 derives an analytic formulation that satisfies this condition.

The resulting algorithm is called the Interacting Weighted Ensemble Kalman Filter (IWEnKF).
Section 6.3 concludes this chapter by comparing the performances in terms of RMSE and

non-convergence rate of the IWEnKF with the conventional WEnKF on a TAN example.

6.1 principle

The rewriting of the Ensemble Kalman Filter (EnKF) correction equation allows us to include
the WEnKF within the scope of PFs (see Section 3.3.4). Unlike bootstrap PFs, the WEnKF
leads to a Gaussian proposal density (3.47), recalled here:

q(Xk|Xi
k−1,Yk) = N (Xk; µ̂

i
k, P̂k) (6.1)

where

µ̂i
k = (Id −KkHk) bk(X

i
k−1) +Kk Yk (6.2a)

P̂k = (Id −KkHk)Qk (Id −KkHk)
> +KkRkKk (6.2b)

87



88 interacting weighted ensemble kalman filter

The WEnKF proposal density is suboptimal as it does not minimises the variance of the
weights (see Section 3.3.1). In some cases, the obtained proposal density is not close enough
to the conditional density and thus the filter may diverge. To tackle this issue, it is possible
to empirically enlarge the support of the proposal density so that it contains the support of
the conditional density. As the proposal density is Gaussian, enlarging the support of the
density is equivalent to enlarge its covariance. The idea behind the proposed algorithm is
to replace the covariance P̂k to ensure that the asymptotic variance of the unnormalised
weights remains bounded.

Thereafter, the prior density p(Xk|Yk−1) is considered Gaussian:

p(Xk|Yk−1) ∝ exp
(
−1

2
(Xk − X̃k)

>
P̃−1
k (Xk − X̃k)

)
(6.3)

where the mean and covariance of the prior density are respectively X̃k and P̃k.

6.2 theoretical description

In this section, we first determine a condition on the covariance of the proposal density
so that it guarantees that the asymptotic variance of the unnormalized weights is finite
(Section 6.2.1). A small asymptotic variance of the unnormalized weights guarantees a more
accurate Monte Carlo estimate. We then derive an analytic formulation of the IWEnKF that
satisfies this condition (Section 6.2.2).

6.2.1 Upper Bound of the Asymptotic Variance of the Unnormalized Weights

Under Gaussian assumptions, Proposition 4 states that the asymptotic variance of the
unnormalised weights admits a finite upper bound under a condition on the covariance P̂k

of the proposal density.

Proposition 4. The prior density p(Xk|Yk−1) and the proposal density q(Xk|Xk−1,Yk)
are assumed to be Gaussian with means X̃k and X̂k, and covariances P̃k and P̂k

respectively. The likelihood is assumed to be bounded and the product between the
likelihood and prior density is assumed to be integrable. If P̂k − P̃k is positive definite
then the asymptotic variance of the unnormalized weights is finite:

P̂k − P̃k > 0 ⇔ V < +∞ (6.4)

Proof. The asymptotic variance of the unnormalized weights (3.56) is given by:

V =

∫ p(Yk|Xk)
2 p(Xk|Yk−1)

2

q(Xk|Xk−1,Yk)
dXk(∫

p(Yk|Xk) p(Xk|Yk−1) dXk

)2 − 1 (6.5)
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We assume that the likelihood p(Yk|Xk) is bounded, and the product between the likelihood
and prior density is integrable. The asymptotic variance V is bounded if the numerator is
bounded:∫

p(Yk|Xk)
2p(Xk|Yk−1)

2

q(Xk|Xk−1,Yk)
dXk < +∞ (6.6)

By taking the supremum, it comes:∫
p(Yk|Xk)

2p(Xk|Yk−1)
2

q(Xk|Xk−1,Yk)
dXk ≤ sup

Xk∈Rd

p(Yk|Xk) sup
Xk∈Rd

(
p(Xk|Yk−1)

q(Xk|Xk−1,Yk)

)
∫
p(Yk|Xk)p(Xk|Yk−1) dXk (6.7)

Then, a sufficient condition for the asymptotic variance of the unnormalized weights to be
bounded is:

sup
Xk∈Rd

(
p(Xk|Yk−1)

q(Xk|Xk−1,Yk)

)
< +∞ (6.8)

The ratio between the proposal and prior densities is bounded if and only if the logarithm of
the ratio is bounded:

log
(

p(Xk|Yk−1)

q(Xk|Xk−1,Yk)

)
< +∞ (6.9)

By replacing the densities p(Xk|Yk−1) and q(Xk|Xk−1,Yk) by their expressions (see equa-
tions (6.3) and (6.1)), it follows:

log
(

p(Xk|Yk−1)

q(Xk|Xk−1,Yk)

)
∝ 1

2
(Xk − X̂k)

>
P̂−1
k (Xk − X̂k)

− 1

2
(Xk − X̃k)

>
P̃−1
k (Xk − X̃k) (6.10)

By simultaneously adding and subtracting X̃k and pooling the terms, the logarithm (6.10)
can be written as follows:

log
(

p(Xk|Yk−1)

q(Xk|Xk−1,Yk)

)
∝ 1

2
(Xk − X̃k + X̃k − X̂k)

>
P̂−1
k (Xk − X̃k + X̃k − X̂k)

− 1

2
(Xk − X̃k)

>
P̃−1
k (Xk − X̃k) (6.11)

∝ 1

2
(Xk − X̃k)

>P̂−1
k (Xk − X̃k) +

1

2
(Xk − X̃k)

>P̂−1
k (X̃k − X̂k)

+
1

2
(X̃k − X̂k)

>P̂−1
k (Xk − X̃k)−

1

2
(Xk − X̃k)

>
P̃−1
k (Xk − X̃k)

(6.12)

∝ −1

2
(Xk − X̃k)

>
(
P̃−1
k − P̂−1

k

)
(Xk − X̃k) + V >

k (Xk − X̃k)

(6.13)
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where Vk = P̂−1
k (X̃k − X̂k).

By taking ||Xk|| → +∞, it comes:

lim
||Xk||→+∞

log
(

p(Xk|Yk−1)

q(Xk|Xk−1,Yk)

)
= −∞ if P̃−1

k − P̂−1
k > 0 (6.14)

As the logarithm of the ratio between the proposal and prior densities tends towards −∞
when ||Xk|| tends to +∞, the ratio tends towards 0 and is thus bounded.

If the condition P̂k − P̃k > 0 is satisfied, the supremum is bounded:

sup
Xk∈Rd

(
p(Xk|Yk−1)

q(Xk|Xk−1,Yk)

)
< +∞ (6.15)

Therefore, the asymptotic variance of the unnormalised weight is bounded.

In order to satisfy condition (6.4) in the Proposition 4, the covariance of the proposal
density P̂k must be appropriately chosen. In the following section, we introduce a method to
determine the covariance of the proposal density in the WEnKF framework which leads to
the IWEnKF formulation.

6.2.2 Interacting Weighted Ensemble Kalman Filter

In practice, the proposal density given by the WEnKF is the Gaussian given by the equa-
tion (6.1). The covariance P̂k of the proposal density is not guaranteed to satisfy the
conditions of Proposition 4: (P̂k − P̃k > 0). The initial covariance P̂k can be replaced with a
new covariance P̂ ?

k so that P̂ ?
k − P̃k > 0. There is an infinite number of matrices P̂ ?

k such
that the condition P̂ ?

k − P̃k > 0 is respected. The idea behind the IWEnKF is to take the
one that is as close as possible (in terms of the Frobenius norm) to the initial covariance
P̂k given by the WEnKF. This approach allows a greater overlap between the proposal and
conditional densities, as illustrated in Figure 6.1, without loosing the information contained
in the initial covariance.

0

0.2

0.4

0.6

conditional density
proposal density

Figure 6.1: Support recovery between the conditional density and two proposal densities: the origi-
nal WEnKF proposal density (dashed black line), and the IWEnKF proposal density (thin
red line).
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Proposition 5. A covariance P̂ ?
k of the proposal density that satisfies the condition of

Proposition 4, i.e., P̂ ?
k − P̃k > 0, is:

P̂ ?
k =

1

2
(P̂k + P̃k +Hk) (6.16)

where:

• P̃k (6.3) and P̂k (6.2b) are the covariance of respectively the prior and the WEnKF
proposal densities.

• Hk is obtained from the polar decomposition of P̂k − P̃k, i.e., P̂k − P̃k = UkHk

with U>
k Uk = Id.

Proof. Finding a covariance Pk such that the condition Pk − P̃k > 0 is satisfied and Pk

close to the initial covariance P̂k given by the WEnKF is equivalent to finding a symmetrical
matrix Pk solution of the following constrained optimisation problem:

min
Pk−P̃k>0

||Pk − P̂k||2F (6.17)

where ||.||F is the Frobenius norm. In order to keep the information contained in the
covariance of the proposal density fo the WEnKF (6.1), we want to find Pk close to P̂k.

By simultaneously adding and subtracting P̃k in the previous minimisation problem (6.17),
it comes:

min
Pk−P̃k>0

||Pk − P̃k − (P̂k − P̃k)||2F (6.18)

By taking Vk = Pk − P̃k and Ak = P̂k − P̃k, the optimisation problem (6.18) becomes:

min
Vk>0

||Vk −Ak||2F (6.19)

It can be approximated by the nearest symmetric positive definite matrix, in terms of the
Frobenius norm, by using Higham’s theorem [39]:

V F
k =

1

2
(Ak +Hk) (6.20)

where Hk is obtained from the polar decomposition of P̂k − P̃k, i.e. P̂k − P̃k = UkHk with
U>

k Uk = Id.
Thus, the solution of the optimisation problem (6.17) is:

P̂ ?
k = V F

k + P̃k =
1

2
(P̂k + P̃k +Hk) (6.21)
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Proposition 5 introduces a new choice of covariance for the proposal density that satisfies
the conditions of Proposition 4. The IWEnKF uses this new covariance to compute the
proposal density:

q(Xk|Xi
k−1,Yk) = N (Xk; µ̂

i
k, P̂

?
k ) (6.22)

where µ̂i
k is given by equation (6.2a) and P̂ ?

k by (6.16). The IWEnKF guarantees a finite
asymptotic variance of the unnormalized weights. The new covariance of the proposal density
is obtained via a polar decomposition which can be polynomially computed [38]. In practice,
this is likely to bring more robustness to nonlinearities and multi-modality. The algorithm of
IWEnKF is described in Algorithm 6.1.

Algorithm 6.1 Interacting Weighted Ensemble Kalman Filter
1: Initialisation: The initial particles set is drawn as {Xi

0}i∈[1,N ] using the initial density
p(X0) ∼ N (X0; 0d,P0) and the initial weights set {wi

0}i∈[1,N ] is taken equal to 1
N .

2: for each time-step k do
3: Particle prediction: Compute the mean µ̂i

k (6.2a) and covariance
P̂ ∗
k (6.16) of the proposal density. Draw the particles from the proposal density

Xi
k ∼ N (Xk; µ̂

i
k, P̂

?
k ) (6.22).

4: Particle correction: Update the weights

wi
k ∝ wi

k−1

p(Yk|Xi
k) p(X

i
k|Xi

k−1)

N (Xi
k; µ̂

i
k, P̂

?
k )

5: if a resampling criterion is satisfied, e.g., ÊSS < Nth, see (3.19) then
6: Draw a new set of particles {Xi

k}i∈[1,N ] using a resampling method, e.g., the
multinomial resampling (Algorithm 3.2).

7: Reset the weights to 1
N .

8: end if
9: Compute the linear state estimate X̂k (3.16) and its covariance Pk (3.17).

10: end for
11: Return the state estimate X̂k and its covariance Pk, ∀k.
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6.3 numerical results

To illustrate the behavior of the IWEnKF, it will be compared with the standard WEnKF
on an underwater TAN example. The chosen dynamical model is the double integrator
model 4.22 and the observation model is the Cartesian measurements equation of the multi-
beam telemeter (4.27). Comparisons are done with the metrics described in Section 4.4. The
simulation parameters are summarised in Table 6.1.

Table 6.1: Simulation settings.

State-space model parameters Value

Number of Monte Carlo runs 50
Sampling period ∆t = 5 s
Number of bathymetric measurements 420
Trajectory duration 35 min
Number of beams m = 5

Number of particles N = 3000

Resampling threshold Nth = 0.75 N

Initial position [110000, 140000,−100]> m
Initial velocity [5, 5, 0.05]> m s−1

Initial uncertainty in position (st.d.) [1000, 1000, 100]> m
Initial uncertainty in velocity (st.d.) [0.5, 0.5, 0.5]> m s−1

Process noise in position (st.d.) [3, 3, 0.3] m
Process noise in velocity (st.d.) [0.02, 0.02, 0.002] m s−1

Error of each beam range (st.d.) σmb = 10 m

The PCRB is approximated over 300 state samples at each time-step. For this reason,
RMSEs can be lower than the PCRB at some point. For one Monte Carlo simulation, Figure 6.2
illustrates the rapid convergence of a IWEnKF trajectory towards the true trajectory.
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Figure 6.2: Bathymetric map of the Californian coast with the true trajectory (straight black line)
and the trajectory estimated by a single Monte Carlo run of IWEnKF (red line).

Only convergent Monte Carlo simulations are used to plot RMSEs on Figure 6.3. The
non-convergence rates of the algorithms are provided in Figure 6.4.

In Figure 6.3, the curves follow the tendency of the PCRB. Position and velocity RMSEs
decrease with time and converge to a value close to the PCRB approximation. Although the
accuracy of the filter estimates is similar after 20 min of trajectory, the IWEnKF converges
faster than the WEnKF. Before the convergence of the filters (from 90 s, when the IWEnKF
curve falls below the WEnKF curve, until 15 min), the average distance between the two curves
is about 50 m for the horizontal position. For 50 Monte Carlo simulations, the non-convergence
rates of both algorithms is shown in Figure 6.4. The non-convergence rate of the IWEnKF is
twice as small as the non-convergence rate of the WEnKF. This significant decrease in the
number of non-convergences was expected as the IWEnKF method guarantees a bounded
asymptotic variance of the unnormalised weights and thus prevents weight degeneracy.
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Figure 6.3: Plot of the PCRB and RMSEs for the horizontal position (upper plot) and the horizontal
velocity (lower plot).
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Figure 6.4: Histogram of the non-convergence rates of WEnKF and IWEnKF for 50 Monte Carlo
simulations.
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6.4 summary

This chapter introduced a weighted ensemble Kalman filter called IWEnKF. The proposed
approach guarantees that the asymptotic variance of the unnormalised weights remains
bounded which brings more robustness to nonlinearities in practice. IWEnKF is able to
tackle non-linear dynamical models, as in the TAN problem. The guarantee of convergence
of the IWEnKF is of strong interest for embedded applications on autonomous systems
such as AUVs. Finally, the IWEnKF appears to be a good trade-off between robustness
to measurements uncertainties and computational load as the polar decomposition can
be polynomially computed. The IWEnKF was evaluated for the double integrator model
and appears suitable for future integration in the inertial errors model with a multi-beam
telemeter and a gravimeter. The study of the convergence of the IWEnKF in such a scheme
will be tackled in future works.



7
C O N C L U S I O N

In the case of non-linear measurements with severe ambiguities, the Kalman Filter (KF)
and its derivatives fail to resolve the estimation problem. In many applications with strong
nonlinearities, as the TAN scheme, the state estimation is resolved by PFs. The PFs successive
Monte Carlo approximations may lead to the filter divergence.

To reduce the variance of the Monte Carlo approximation, two approaches were proposed.

• The first approach guaranteed the consistency between the likelihood and the prior
density. We proposed a new family of filters, called A2BC filters. The A2BC method
adapts the support of the likelihood in order to ensure a consistency between the
likelihood and the prior density. The likelihood is approximated by a kernel density
function that spreads out to ensure the consistency without flattening. The information
delivered by the measurements is then preserved. The A2BC method reduces the
occurrence of the resampling step and thus limits filter divergence.

• The second approach introduced a proposal density for which the support is assured
to overlap the support of the conditional density. We introduced a state estimation
algorithm, called IWEnKF. The IWEnKF proposed a proposal density for which the
support overlap the support of the conditional density. This choice of proposal density
minimises the Monte Carlo variance and thus provides better accuracy and robustness
to nonlinearities.

The application investigated in this thesis was the underwater navigation of an AUV.
AUV inertial navigation provides a solution of navigation that drifts with time due to
imperfect sensors measurements. To correct the navigation drift, the IMU can be combined
with external sensors. TAN provides a drift-free navigation tool. This application involves
severe measurements ambiguities leading to the failure of many existing estimation methods.
The presence of measurement ambiguities (e.g., to one terrain sensing measurement may
correspond to several geographical areas of similar terrain profiles) increases the complexity
of the state estimation.

The complexity of the state estimation was also increased by the introduction of an
additional sensor: the atomic gravimeter. The addition of the atomic gravimeter has improved
the estimates of the AUV state (especially for the velocity) and increased the robustness to
nonlinearities and measurement ambiguities (the non-convergence rate decrease from 12% to
7% for the RPF).
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The performance of A2BC filters (A2BC-RPF and A2BC-RBPF) was studied and compared
to other PFs (RPF and RBPF) on an underwater TAN problem. The A2BC filters were tested
on a realistic inertial model. The A2BC method has provided an increased accuracy of the
estimation and more robustness to nonlinearities as the non-convergence rate is significantly
reduces (the non-convergence rate decrease from 8% for the RPF to 3% for the A2BC-RPF).

The performance of the IWEnKF was studied and compared to the WEnKF on an underwa-
ter TAN problem. The IWEnKF has provided an increased accuracy of the estimation and
more robustness to nonlinearities as the non-convergence rate is significantly reduces (the
non-convergence rate decrease from 12% for the WEnKF to 6% for the IWEnKF).

Several future research directions can be drawn from this work.

• Compare the A2BC filters and IWEnKF with sensors measurement from test campaigns.

• It would be interesting to integrate the A2BC approach to the box particle filter [33,
59]. The result will allow a significant reduction of the computational cost compared
to previous approaches.

• It would be interesting to use other Ensemble Kalman filters, e.g., the filter proposed
by Sakov and Oke [77], in the IWEnKF to improve estimation accuracy.
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Backward Nonlinear Smoothing Diffusions
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Abstract

We present a backward diffusion flow (i.e. a backward-in-time stochastic differential equa-
tion) whose marginal distribution at any (earlier) time is equal to the smoothing distribution
when the terminal state (at a latter time) is distributed according to the filtering distribution.
This is a novel interpretation of the smoothing solution in terms of a nonlinear diffusion (stochas-
tic) flow. This solution contrasts with, and complements, the (backward) deterministic flow of
probability distributions (viz. a type of Kushner smoothing equation) studied in a number of
prior works. A number of corollaries of our main result are given including a derivation of the
time-reversal of a stochastic differential equation, and an immediate derivation of the classical
Rauch-Tung-Striebel smoothing equations in the linear setting.

Keywords: Nonlinear filtering and smoothing; Kalman-Bucy filter; Rauch-Tung-Striebel smoother; particle
filtering and smoothing; diffusion equations; stochastic semigroups; backward stochastic integration; back-
ward Itô-Ventzell formula; time-reversed stochastic differential equations; Zakai and Kushner-Stratonovich
equations.

Mathematics Subject Classification: 60G35; 62M20; 93E11; 93E14; 60J60.

1 Introduction

Let (Wt, Vt) ∈ (Rp × Rq) be a (p + q)-dimensional Brownian motion for finite p, q ≥ 1. Consider a
signal-observation model (Xt, Yt) ∈ (Rm × Rn) given by the Itô stochastic differential equation:

{
dXt = at(Xt) dt+ σt(Xt) dWt

dYt = bt(Xt) dt+ ςt dVt
(1.1)

for some measurable functions ςt, at(x), σt(x), bt(x) with appropriate dimensions. We set Y0 = 0 and
let X0 be an initial random variable with absolute moments of any order. We let αt(x) := σt(x)σ

′
t(x),

and βt := ςtς
′
t, where A′ denotes the transpose of some matrix A.

∗B.D.O. Anderson was supported by the Australian Research Council (ARC) via grant DP160104500 and grant
DP190100887; and by Data61-CSIRO.

†P. Del Moral was supported in part by the Chair Stress Test, RISK Management and Financial Steering, led by
the French Ecole Polytechnique and its Foundation and sponsored by BNP Paribas.
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To avoid unnecessary technical details, we assume βt ≥ ǫ I, for some ǫ > 0, where I denotes
the identity matrix. We also assume the drift and sensor functions (au(x), bu(x)), as well as the
diffusion matrix σu(x), are smooth w.r.t. (u, x) and they have uniformly bounded derivatives w.r.t
x of all order on (u, x) ∈ [s, t]× Rm, for any s ≤ t.

These technical conditions ensure that the above stochastic differential equation (1.1) has a
global solution (Xt, Yt) in the sense of Itô. In addition, (Xt, Yt) as well as the sensor function bt(Xt)
have absolute moments of any order. The stochastic flow associated with the signal is also smooth
w.r.t. its initial condition, and its derivatives have absolute moments of any order.

The filtering problem then consists of computing the conditional distribution πt of the random
signal states Xt of the signal given the sigma-field Yt = σ(Ys, s ≤ t) generated by the observations.
The smoothing problem is to compute the conditional distribution πt,s of the random signal states
Xs given Yt, with t ≥ s. With this notation, we have πt,t = πt.

The filtering and smoothing problems have been studied extensively, and the literature on this
topic is too broad to survey in detail here; and a review of this type is beyond the rather narrow
scope of our contribution. We may point to the general texts [28, 5] for broad coverage of these
problems.

We do note some rather seminal early literature in the linear setting [6, 37, 16, 39] and the
nonlinear setting [6, 27, 1, 3]. The first work on the smoothing topic is the maximum likelihood
solution in [6] in both the linear and nonlinear setting. The study of [37] more formally confirms
the linear result in [6] and also provides a simpler formulation for the mean and covariance of the
smoothing distribution. In the nonlinear setting, the work of [1, 27] introduces an analogue of a
type of Kushner-Stratonovich equation (see [5] for this equation in the filtering context) for the
smoothing problem. More specifically, [1, 27] propose a deterministic partial differential equation
that describes the flow of the smoothing distribution in terms of a backward flow and the standard
filtering distribution which acts as the boundary condition (the latter follows from the classical
Kushner-Stratonovich equation).

In Section 2 we state the main contribution of this work. Our main result asserts a backward
diffusion flow (i.e. a backward stochastic differential equation) whose marginal distribution at any
time 0 ≤ s ≤ t is equal to the smoothing distribution πt,s when the terminal state is distributed
according to the filtering distribution πt.

This is a novel interpretation of the smoothing solution in terms of a nonlinear diffusion (stochas-
tic) flow (in the spirit of McKean-Vlasov-type processes). This solution contrasts with, and comple-
ments, say, the (backward) deterministic flow of probability distributions (viz. a type of Kushner
smoothing equation) in [1, 27]. We also provide a number of corollaries of our main result in Section
2.1 including an immediate derivation of the Rauch-Tung-Striebel smoothing equations [37] in the
linear setting.

A number of auxiliary contributions are set forth in order to prove our main contribution to the
smoothing problem. As is typical, (e.g. see [6, 37, 16, 39, 27, 1, 3, 34]), our smoothing solution
requires the formulation of a related filtering problem. In Section 3 we present a brief review of the
Kallianpur-Striebel formula. We then provide a novel and more direct approach to deriving weak-
versions of the Zakai and the Kushner-Stratonovich equations in Sections 3.1 and 3.2 respectively.
We also consider the backward versions of these equations in Section 3.3.

Our approach to the filtering equations in this article combines forward and backward Itô formu-
las for stochastic transport semigroups with a recent backward version of the Itô-Ventzell formula
presented in [13]. This semigroup methodology can be seen as an extension, to the Zakai and
Kushner-Stratonovich equations, of the forward-backward stochastic analysis of diffusion flows de-
veloped in [10, 11, 13, 23, 24].

2



Our direct semigroup approach to the forward/backward filtering equations in this work con-
trasts with classical stochastic partial differential methods and functional analysis in Sobolev spaces;
see e.g. the seminal works by Pardoux [31, 32, 34], as well as Krylov and Rozovskii [19, 20]. Related
reverse time diffusions and filtered and smoothed densities are also developed in [2, 3] using discrete
time approximation techniques, without a detailed discussion on the existence of these densities.
We present a number of auxiliary results in this direction throughout Section 3 which are utilised
in the proof of our main smoothing result in Section 4.

1.1 Some preliminary notation

This subsection presents some notation needed from the onset.
The signal and the observation defined in (1.1) are column vectors. Unless otherwise stated,

we use the letters f and g to denote bounded scalar measurable test functions on some measurable
space.

We denote by ∇f the column gradient whenever f is a differentiable function on some Euclidian
space, and by ∇2f the Hessian matrix whenever it is twice differentiable.

With f : Rm → R, we let divαt(f) be the αt-divergence m-column vector operator with j-th
entry given by the formula

divαt(f)(x)
j :=

∑

1≤i≤m

∂xi

(
αi,j
t (x) f(x)

)

The generator Lt of the signal Xt is also given by the second order differential operator

Lt(f)(x) := ∇f(x)′bt(x) +
1

2
Tr

(
∇2f(x)αt(x)

)
with the trace operator Tr(·).

Here and throughout, and without further mention, we assume that functions f acted on by a
second-order differential generator are in addition twice differentiable with bounded derivatives.

For a measure µ and test function f of compatible dimension we write,

µ(f) :=

∫
µ(dx) f(x)

An integral operator Q(x, dz) acts on the right on scalar test functions f ; and on the left on measures
µ according to the formulae,

Q(f)(x) :=

∫
Q(x, dz) f(z) and (µQ)(dz) :=

∫
µ(dx) Q(x, dz)

We extend this operator to an integral operator on matrix functions h(x) = (hi,j(x))i,j by setting,

Q(h)(x)i,j = Q(hi,j)(x)

2 Main Result

In further development of this article we assume for any t > 0 the conditional distribution πt has
a positive density pt := dπt/dλ w.r.t. the Lebesgue measure λ on Rm. In addition, pu(x) and its
derivative ∇pu(x) are uniformly bounded w.r.t. (u, x) ∈ [s, t] × Rm, for any given s > 0, almost
surely w.r.t. the distribution of the observation process. A more detailed discussion on these
regularity conditions is provided in Section 2.2.

The main result of the article takes the following form:
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Theorem 2.1. For any t ≥ u ≥ s we have the transport equation

πt,s(dx) = (πt,uKu,s)(dx) :=

∫
πt,u(dz) Ku,s(z, dx) (2.1)

where Ku,s denotes the Markov semigroup of the backward diffusion flow,

dXu,s(x) = −
((
ps(Xu,s(x))

−1divαs(ps)(Xu,s(x))− as(Xu,s(x))
)
ds + σs(Xu,s(x)) dWs

)
(2.2)

with the boundary condition Xu,u(x) = x, and where Wt ∈ Rp denotes a p-dimensional Brownian
motion independent of the observations.

The proof of the above theorem is provided in Section 4.1. The backward stochastic differential
equation (2.2) should be read as shorthand for the backward Itô integration formula,

Xt,s(x) = x+

∫ t

s

(
pu(Xt,u(x))

−1divαu(pu)(Xt,u(x))− au(Xt,u(x))
)
du+

∫ t

s

σu(Xt,u(x)) dWu (2.3)

with terminal condition Xt,t(x) = x. The right-most term in the above formula is an Itô backward
stochastic integral such that for any terminal time t this process is a square integrable backward
martingale w.r.t. the variable s ∈ [0, t].

Formally, we may slice the time interval [s, t]h := {u0, . . . , un−1} via some time mesh ui+1 =
ui+h from u0 = s to un = t and with time step h > 0. In this notation, according to the backward
equation (2.2), or (2.3), we compute Xt,u−h(x) from Xt,u(x) using the formula

Xt,u−h − Xt,u ≃
(
pu(Xt,u)

−1divαu(pu)(Xt,u)− au(Xt,u)
)
h+ σu(Xt,u)(Wu −Wu−h) (2.4)

We may provide some comments on the above theorem. By construction, given the observations
and for any given x ∈ Rm and t ≥ s, the probability Kt,s(x, dz) introduced in (2.1) coincides with
the distribution of the random state Xt,s(x). In addition, for any t ≥ u ≥ s we have the integral
and stochastic semigroup properties,

Kt,s(x2, dx0) :=

∫
Kt,u(x2, dx1) Ku,s(x1, dx0) (2.5)

and
Xt,s = Xu,s ◦ Xt,u (2.6)

where Xu,s ◦ Xt,u denotes the composition of the mappings Xu,s and Xt,u.
If we let Xt be a random variable with distribution πt, for some t ≥ 0. According to (2.1)

the random state Xt,s(Xt) of the process (2.2) at any given s ∈ [0, t], is distributed according to
πt,s = πtKt,s. In words, the backward process Xt,s(Xt) is distributed according to the smoothing
distribution πt,s for any s ≤ t whenever the terminal condition Xt,t(Xt) = Xt is distributed according
to the filtering distribution πt. In this sense, (2.2) constitutes a backward nonlinear smoothing
diffusion. A forward diffusion flow that has a marginal distribution at any time equal to the
filtering distribution is considered in [42, 43].

More generally, we have the backward Itô formula

df(Xt,s(x)) = −Ls,πs(f)(Xt,s(x)) ds−∇f(Xt,s(x))
′ σs(Xt,s(x)) dWs (2.7)

with the second order differential operator

Ls,πs(f) =
∑

1≤j≤m

(
− ajs +

1

ps
divαs(ps)

j

)
∂xj

f +
1

2

∑

1≤i,j≤m

αi,j
s ∂xixj

f (2.8)
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Equivalently, we have the backward martingale decomposition

f(Xt,s(x))− f(x)−

∫ t

s

Lu,πu(f)(Xt,u(x)) du =

∫ t

s

∇f(Xt,u(x))
′ σu(Xt,u(x)) dWu (2.9)

This yields the backward evolution equations,

∂sKt,s(f)(x) = −Kt,s(Ls,πs(f))(x) (2.10)

and
∂sπt,s(f) = −πt,s(Ls,πs(f)) (2.11)

with terminal conditions Kt,t(f) = f and πt,t = πt. The formula (2.11) coincides with the conditional
Fokker-Planck equation in [27], and further developed in [1].

For further discussion on general backward integration of stochastic flows see [10]; see also the
appendix of [4] in the context of nonlinear diffusions, and [34] in the context of nonlinear filtering,
and [13] on forward-backward perturbation analysis of stochastic flows. Note there is no issue with
adaption of the backward process in the sense studied in [35] since we rely only on the independent
backward Brownian motion in (2.2). The “backward diffusion” in (2.2) is backward in the sense of
a time reversed stochastic differential equation as in [2, 14, 30].

2.1 Some corollaries

We end this introduction with some direct consequences of the above theorem.
Note when bt = 0 the measure πt coincides with the distribution of the random state Xt of the

signal. In this context, Xt,s(Xt) reduces to the time reversal of the signal starting at Xt,t(Xt) = Xt

at the terminal time t. Using Theorem 2.1 we recover the fact that the time reversal process of the
signal is itself a Markov diffusion [2, 14, 30]. More precisely, we have the corollary:

Corollary 2.2 (Anderson [2]). Assume that bt = 0. For any time horizon t ≥ 0, the process
X
t
s := Xt−s with s ∈ [0, t] is a Markov process with generator

L
t
s(f) =

∑

1≤j≤m

(
1

pt−s

divαt−s
(pt−s)

j − ajt−s

)
∂xj

f +
1

2

∑

1≤i,j≤m

αi,j
t−s ∂xixj

f (2.12)

We consider now linear-Gaussian filtering/smoothing models with,

at(x) = At x, bt(x) = Bt x and homogeneous diffusion matrix σt(x) = Σt (2.13)

for some matrices (At, Bt,Σt) with appropriate dimensions. Whenever X0 is a Gaussian random
variable with mean X̂0 and covariance matrix R0, the optimal filter πt is a Gaussian distribution
with mean X̂t and covariance matrix Rt satisfying the Kalman-Bucy and the Riccati equations

{
dX̂t = AtX̂t dt+RtB

′
tβ

−1
t

(
dYt −BtX̂t dt

)

∂tRt = AtRt +RtA
′
t + αt −RtB

′
tβ

−1
t BtRt

(2.14)

In this context, we also have that

− ps(x)
−1divαs(ps)(x) = αsR

−1
s (x− X̂s) (2.15)

This yields the following corollary:
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Corollary 2.3. For linear Gaussian filtering models (2.13), the diffusion flow Xt,s(x) satisfies the
backward evolution equation

dXt,s(x) = −
((

−As Xt,s(x)− αsR
−1
s (Xt,s(x)− X̂s)

)
ds+Σs dWs

)
(2.16)

with the boundary condition Xt,t(x) = x.

Replacing x in (2.16) by a random variable Xt with distribution πt for any t ≥ s we have that
Xt,s(Xt) has distribution πt,s. In addition, since the process is linear the distribution πt,s is Gaussian
with mean X̂t,s and covariance matrix Rt,s. The discrete time version of (2.16) can be found in
Section 9.9.6 in [12].

Now taking expectations we readily deduce the rather well-known Rauch-Tung-Striebel smooth-
ing equations [37], simplifying the innovation techniques and the sophisticated approximation theory
developed in [16, 27, 39], or the formal variational approaches and maximum likelihood techniques
presented in the pioneering articles [6, 37].

Corollary 2.4 (Rauch-Tung-Striebel [37]). For any t ≥ s, the parameters (X̂t,s, Rt,s) satisfy the
backward evolution equations

{
∂sX̂t,s = AsX̂t,s + αsP

−1
s (X̂t,s − X̂s)

∂sRt,s = (As + αsR
−1
s )Rt,s +Rt,s(As + αsR

−1
s )′ − αs

(2.17)

with terminal conditions (X̂t,t, Rt,t) = (X̂t, Rt).

2.2 Comments on our regularity conditions

We end this section with some comments on the regularity conditions discussed at the beginning
of Section 2. These conditions are clearly met for linear Gaussian filtering models (see e.g. (2.14)
and (2.15)). They are also met for nonlinear models as soon as the signal satisfies a classical
controllability-type condition.

Note firstly, whenever the signal is uniformly elliptic, in the sense that αt(x) = σt(x)σ
′
t(x) ≥ δ I

for some δ > 0, then it is well known that Xt has a smooth positive density w.r.t. the Lebesgue
measure on Rm. Nevertheless in many important applications this ellipticity condition is not satis-
fied. The parabolic Hörmander condition for time varying models [7, 15] is a weaker condition. For
linear-Gaussian filtering problems, this condition reduces to the usual controllability condition. In-
deed, if we replace the Brownian motions Wt by some arbitrary smooth control functions, all states
are accessible from one to another, as soon as the Lie algebra generated by the controlled vector
fields is of full rank. This result is also called the Chow-Rashevskii theorem [8, 38]. Under this
Hörmander condition, the Hörmander theorem [15] ensures that the signal states have a smooth
density w.r.t. the Lebesgue measure on Rm. In addition, for any s < t the Markov transition
semigroup Ps,t of the signal has a smooth positive density (x, z) 7→ ps,t(x, z) w.r.t. the Lebesgue
measure λ on Rm. In addition, the integral operator Ps,t with s < t maps test functions f into
bounded smooth functions Ps,t(f) given by

Ps,t(f)(x) =

∫
Ps,t(x, dz) f(z) =

∫
f(z) ps,t(x, z) dz

A natural way to transfer the smoothing properties of Ps,t to the optimal filter is to use the
following equation

πt(f) = π0(P0,t(f)) +

∫ t

0
πs(Ps,t(f) (bs − πs(bs)))

′ β−1
s (dYs − πs(bs) ds) (2.18)
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given in Theorem 1.1 in [22]. Using this formula we readily check that for any t > 0 the conditional
distribution πt has a positive density pt on Rm. Whenever σt(x) and bt(x) are also bounded,
Theorem 3.6 in [29] (see also Theorem 6.3 in [23]) also ensures that pu is smooth, and for any k ≥ 1,
any parameters h > 0 and any time horizon t > 0 we have

sup
h≤s≤t

sup
x∈Rm

(
|ps(x)|+ ‖∇kps(x)‖

)
< ∞ (2.19)

where ‖ · ‖ stands for any (equivalent) norm on Rm.
The above estimates are met for linear Gaussian filtering models. Nevertheless, some caution

must be used when considering estimates of the form (2.19). Indeed, most of the literature on
stochastic partial differential equations arising in nonlinear filtering, such as the strong formulation
of the Zakai and Kushner-Stratonovich equations, assume that the sensor function is uniformly
bounded, see e.g. [23, 29, 34] and [41, 44]. To the best of our knowledge the extension of the
estimate (2.19) to more general unbounded sensor functions is still an open important question.

We also note here that the Kallianpur-Striebel formula [17, 18] is valid as soon as βu ≥ ǫ I, for
some ǫ > 0 and the functions (au(x), bu(x), σu(x)) are smooth with uniformly bounded derivatives
w.r.t x of all order on (u, x) ∈ [s, t] × Rm, for any s ≤ t. Weaker conditions can also be found in
the book [5] and the recent article [9].

Since Xt has continuous paths, for any continuous function f and any s ≤ t the random mapping
u ∈ [s, t] 7→ f(Xu) is almost surely a uniformly bounded function. In addition, f(Xt) is integrable
as soon as f has polynomial growth. Up to some classical localization procedure (see e.g. Chapter
7 in [40]), these rather weak regularity properties also ensure that the integral semigroups that
transport (in time) the filtering measures discussed in Section 3, as well as their stochastic partial
differential evolution equations, are well defined on any test function with polynomial growth.

3 Nonlinear filtering equations

As is well known (e.g. see [6, 37, 16, 39, 27, 1, 3, 34]), a solution to the smoothing problem will
typically make use of the solution of a related filtering in some way. Consequently, we need to
present and develop some related filtering results for proving our main result, Theorem 2.1. This
section is largely self-contained but it is vital in the proof, in Section 4, of our main result.

The first part of this section presents the classical Kallianpur-Striebel formula which acts as a
continuous-time version of Bayes law. In Sections 3.1 and 3.2 respectively we present the Zakai,
and Kushner-Stratonovich equations for the flow of the conditional filtering distributions (both
unnormalised and normalised). These results are rather well known. For further background on
these classical ideas, we refer to the pioneering articles by Kallianpur and Striebel [17, 18], and
by Kushner [26] and Zakai [44]. For more recent discussion on these probabilistic models, we refer
to [9], and [5, 12], and the references therein. In this article, we present a novel and self contained
derivation based on stochastic transport semigroups and their forward evolution equations.

The solution of the Zakai equation is sometimes termed the unnormalized filter. The semigroup
that transports these filtering measures (in time) is discussed in Section 3.1; and its normalized
version in Section 3.2. Section 3.3 presents a novel direct approach for deriving the backward
evolution of these transport semigroups. Our approach in Section 3.3 combines the backward Itô
formula for stochastic flows with the backward Itô-Ventzell formula presented in [13].

Now, we introduce some notation/terminology and briefly present the Kallianpur-Striebel for-
mula and the linear semigroup property of unnormalized measures. Let Xs,t(x) be the stochastic
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flow of the signal on the time interval [s, t] and starting at x at time s. Let Zs,t(x) be the multi-
plicative functional

logZs,t(x) :=

∫ t

s

bu(Xs,u(x))
′β−1

u dYu −
1

2

∫ t

s

bu(Xs,u(x))
′β−1

u bu(Xs,u(x)) du (3.1)

When x is replaced by Xs we may write Zs,t instead of Zs,t(Xs), and when s = 0, we may also write
Zt instead of Z0,t. With this notation, we have the classical Kallianpur-Striebel formula,

πt(f) = γt(f)/γt(1) with γt(f) := E0 (f(Xt) Zt)

Here, E0(·) denotes the expectation operator w.r.t. the signal with a fixed observation process.
The transport semigroup of the unnormalized measures γt is given for any s ≤ t by the formula

γt = γsQs,t with Qs,t(f)(x) := E0 (f(Xs,t(x)) Zs,t(x)) (3.2)

To check this claim observe that,

Zt = Zs Zs,t =⇒ E0 (f(Xt) Zt) = E0 (Zs E0(f(Xt) Zs,t | Xs)) = E0 (Zs Qs,t(f)(Xs))

Now for any s ≤ u ≤ t we have

Qs,t(f)(Xs) = E0(f(Xt) Zs,t | Xs) = E0(Zs,u E (f(Xt) Zu,t | Xu) | Xs)

= E0(Zs,u Qu,t(f)(Xu) | Xs) = Qs,u(Qu,t(f))(Xu)

This yields the integral semigroup formula

Qs,t(x0, dx2) = (Qs,uQu,t)(x0, dx2) :=

∫
Qs,u(x0, dx1) Qs,u(x1, dx2)

In a more compact form, the semigroup property takes the form

Qs,t = Qs,uQu,t with Qt,t = I where I denotes the identity operator.

3.1 Unnormalized stochastic semigroups

Consider the stochastic transport semigroups Ps,t and Qs,t defined by the composition of functions

Ps,t(f)(x) := (f ◦Xs,t)(x) and Qs,t(f)(x) := Ps,t(f)(x) Zs,t(x)

Using the semigroup properties of the stochastic flow Xs,t(x) for any s ≤ u ≤ t we check that

Ps,t(f)(x) = (f ◦Xs,t)(x) = (f ◦Xu,t)(Xs,u(x)) = Ps,u(Pu,t(f))(x)

Similarly, we have

Qs,t(f)(x) = Zs,u(x) (Zu,t(Xs,u(x)) (f ◦Xs,t)(Xs,u(x))) = Qs,u(Qu,t(f))(x)

In a more compact form we have the semigroup properties

Ps,t = Ps,u ◦ Pu,t and Qs,t = Qs,u ◦Qu,t with Pt,t = I = Qt,t

Also observe that

Ps,t(f)(x) := E0 (Ps,t(f)(x)) and Qs,t(f)(x) := E0 (Qs,t(f)(x))

The forward evolution equations of the above semigroups are described in the next proposition.
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Proposition 3.1. For any t ≥ s we have the forward stochastic evolution equation

dQs,t(f) = Qs,t(Lt(f)) dt+Qs,t(f b′t) β
−1
t dYt +Qs,t((∇f)′ σt) dWt (3.3)

with initial condition Qs,s(f) = f , when t = s. In particular, we have the forward equation

dQs,t(f) = Qs,t(Lt(f)) dt+Qs,t(f b′t) β
−1
t dYt (3.4)

with the initial condition Qs,s(f) = f , when t = s.

Proof. Assume that the sensor function bu(x) is uniformly bounded on [s, t]×Rm, for any s ≤ t. In
this situation, the random process (Xs,u(x), Zs,u(x)) also has uniformly bounded absolute moments
of any order on any compact interval [s, t], for any time parameters s ≤ t. In this context, we use
Itô formula to check that

dZs,t(x) = Zs,t(x) bt(Xs,t(x))
′β−1

t dYt

as well as
dPs,t(f)(x) = Ps,t(Lt(f))(x) dt+ Ps,t

(
∇f ′ σt

)
(x) dWt

An integration by parts yields

dQs,t(f)(x) = Zs,t(x) dPs,t(f)(x) + Ps,t(f)(x) dZs,t(x)

=
(
Lt(f)(Xs,t(x)) Zs,t(x) dt+ Zs,t(x) f(Xs,t(x)) bt(Xs,t(x))

′β−1
t dYt

)

+Zs,t(x) ∇f(Xs,t(x))
′ σt(Xs,t(x)) dWt

By classical localization principles of Itô integrals (see for instance Chapter 7 in [40]), the above
result is also true for unbounded sensor functions. This ends the proof of (3.3). Taking the expec-
tations, we conclude that

dE0(Qs,t(f)(x)) = E0 (Qs,t(Lt(f))(x)) dt+ E0

(
Qs,t(f b′t)(x)

)
β−1
t dYt

This ends the proof of (3.4). The proof of the proposition is completed.
Combining (3.2) with Fubini’s theorem, we readily check the weak form of Zakai equation given

by the formula
dγt(f) = γt(Lt(f)) dt+ γt(f b′t) β

−1
t dYt (3.5)

Arguing as in (2.18), we transfer the smoothing properties of Ps,t to Qs,t using the perturbation
formulae given for any s < t by

Qs,t(f) = Ps,t(f) +

∫ t

s

Qs,u

(
Pu,t(f) b

′
u

)
β−1
u dYu

Arguing as in [44], the above formula shows that for any s < t the integral operator Qs,t(x0, dx1)
has a density x1 7→ qs,t(x0, x1) w.r.t. the Lebesgue measure on Rm given by the integral equation

qs,t(x0, x1) = ps,t(x0, x1) +

∫ t

s

[∫
qs,u(x0, z) pu,t(z, x1) b

′
u(z) dz

]
β−1
u dYu (3.6)
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3.2 Normalized stochastic semigroups

Let Zs,t(x) be the multiplicative functional defined as Zs,t(x) by replacing in (3.1) the function bu
and the observation increment dYu by the centered function bu and the innovation increment dY u

defined by the formulae

bu := bu − πu(bu) and dY u := dYu − πu(bu) du

Under our assumptions, the random process πt(bt) is almost surely square integrable on any compact
time interval so that the innovation process is well defined. Choosing f = 1 in (3.5) we check that

log γt(1) =

∫ t

0
πu(bu)

′β−1
u dYu −

1

2

∫ t

0
πu(bu)

′β−1
u πu(bu) du

Observe that

πsQs,t(1) = γt(1)/γs(1) = exp

(∫ t

s

πu(bu)
′β−1

u dYu −
1

2

∫ t

s

πu(bu)
′β−1

u πu(bu) du

)

We also consider the normalized stochastic semigroup

Qs,t(f)(x) := (f ◦Xs,t)(x) Zs,t(x) = Ps,t(f)(x) Zs,t(x)

Arguing as above, for any s ≤ u ≤ t we check that

Qs,t = Qs,u ◦Qu,t and Zs,t(x) = Zs,t(x)/πsQs,t(1)

Consider the semigroup

Qs,t(f)(x) := E0

(
Qs,t(f)(x)

)
= E0

(
f(Xs,t(x)) Zs,t(x)

)
= Qs,t(f)(x)/πsQs,t(1)

In this notation, using the same arguments as in the proof of Proposition 3.1 we have the
following forward evolution equations.

Proposition 3.2. For any given time horizon s and for any t ≥ s we have the forward stochastic
evolution equation

dQs,t(f) = Qs,t(Lt(f)) dt+Qs,t(f b
′
t) β

−1
t dY t +Qs,t((∇f)′ σt) dWt

with initial condition Qs,s(f) = f , when t = s. In particular, we have the forward equation

dQs,t(f) = Qs,t(Lt(f)) dt+Qs,t(f b
′
t) β

−1
t dY t

with the initial condition Qs,s(f) = f , when t = s.

The above proposition yields the weak form of the Kushner-Stratonovich equation defined by

dπt(f) = πt(Lt(f)) dt+ πt(f bt)
′ β−1

t dY t (3.7)

Formally, using the same notation as in (3.11) we have the forward approximation equation

πu+h(f) ≃ πu(f) + πu(Lu(f))h+ πu(f bu)
′ β−1

u

(
Y u+h − Y u

)
(3.8)

10



3.3 Backward evolution equations

This section is concerned with the backward evolution equation associated with the unnormalized
semigroup Qs,t and its normalized version. The main result of this section is the following theorem:

Theorem 3.3. For any twice differentiable function f with bounded derivatives and for any s ≤ t
we have the backward evolution equation

dQs,t(f)(x) = −

(
∇Qs,t(f)(x)

′ as(x) +
1

2
Tr

(
∇2Qs,t(f)(x) αs(x)

))
ds

−Qs,t(f)(x) bs(x)
′β−1

s dYs −∇Qs,t(f)(x)
′ σs(x) dWs (3.9)

with terminal condition Qt,t(f) = f , when s = t. In particular, we have the backward equation

dQs,t(f) = −
(
Ls(Qs,t(f)) ds+Qs,t(f) b

′
s β−1

s dYs

)
(3.10)

with terminal condition Qt,t(f) = f , when s = t.

Proof. We use a direct approach combining the backward filtering calculus developed in [23, 41]
based on the backward Itô calculus developed in [10, 11, 21, 25], see also the more recent article [13]
and references therein.

Consider the stochastic flow χs,t (x) starting at

χs,s (x) = x :=

(
x
z

)
∈ (Rm ×R)

on the time interval [s,∞[ and given for any t ≥ s by

χs,t (x) :=

(
Xs,t(x)
Zs,t(x) z

)
∈ (Rm × R)

We set

Bt (x) :=

(
at(x)
0

)
Ut :=

(
Wt

Yt

)

Λt (x) :=

(
σt(x) 0

0 z bt(x)
′β−1

t

)
and At (x) := Λt (x) Λt (x)

′

Assume that the sensor function bu(x) is uniformly bounded on [s, t] × Rm, for any s ≤ t. Then,
the process (Zs,u(x), χs,u (x)) has continuous partial derivatives and also has uniformly bounded
absolute moments of any order on ([s, t]× Rm), for any s ≤ t. In this situation, we have the
forward stochastic evolution equation

dχs,t (x) = Bt (χs,t (x)) dt+ Λt (χs,t (x)) dUt

For any twice differentiable function F on (Rm × R) with bounded derivatives we also have the
backward equation

d(F ◦ χs,t) (x)

= −

(
∇(F ◦ χs,t) (x)

′ Bs (x) +
1

2
Tr

(
∇2(F ◦ χs,t) (x) As (x)

))
ds −∇(F ◦ χs,t) (x)

′ Λs (x) dUs

11



A proof of the above formula can be found in the articles [10, 11], see also [13]. Choosing the
function F (x) = f(x) z, for some twice differentiable function f on Rm with bounded derivatives
and letting z = 1 we check that

d(f(Xs,t(x))Zs,t(x))

= −

(
∇(f(Xs,t(x))Zs,t(x))

′ as(x) +
1

2
Tr

(
∇2(f(Xs,t(x))Zs,t(x)) αs(x)

))
ds

− (f(Xs,t(x))Zs,t(x)) bs(x)
′β−1

s dYs −∇(f(Xs,t(x))Zs,t(x))
′ σs(x) dWs

This ends the proof of (3.9). By localization arguments, the above result is also true for unbounded
sensor functions. Integrating the flow of the signal we obtain (3.10). This ends the proof of the
theorem.

We can also check (3.10) considering a discrete time interval [s, t]h := {t0, . . . , tn−1} associated
with some refining time mesh ti+1 = ti + h from t0 = s to tn = t, for some time step h > 0. By
(3.4), for any u ∈ [s, t]h we compute Qu,t(f) from Qu+h,t(f) using the backward equation

Qu,t(f) = Qu+h,t(f) + (Qu,u+h − I) (Qu+h,t(f))

≃ Qu+h,t(f) + Lu(Qu+h,t(f))h+Qu+h,t(f) b
′
u β−1

u (Yu+h − Yu) (3.11)

For null sensor functions the evolution equation (3.9) coincides with the backward Itô formula
discussed in [10, 11, 13, 23, 24].

Choosing f = 1 in (3.10) we recover the backward evolution of the likelihood function presented
in [3, 33] (see formula (5.9) in [3] and equation (3.15) in [33]). Arguing as in (3.6), using (3.10) we
check the perturbation formulae given for any s < t by,

Qs,t(f) = Ps,t(f) +

∫ t

s

Ps,u

(
Qu,t(f) b

′
u

)
β−1
u dYu

Thus, for any s < t the integral operator Qs,t(x0, dx1) has a density (x0, x1) 7→ qs,t(x0, x1) given by
(3.6) and the integral formula,

qs,t(x0, x1) = ps,t(x0, x1) +

∫ t

s

[∫
ps,u(x0, z) qu,t(z, x1) b

′
u(z) dz

]
β−1
u dYu (3.12)

Using the same arguments as in the proof of Theorem 3.3 we also have the following backward
evolution equation.

Proposition 3.4. For any twice differentiable function f with bounded derivatives and for any s ≤ t
we also have the backward equation

dQs,t(f)(x) = −

(
∇Qs,t(f)(x)

′ as(x) +
1

2
Tr

(
∇2Qs,t(f)(x) αs(x)

))
ds

−Qs,t(f)(x) bs(x)
′β−1

s dY s −∇Qs,t(f)(x)
′ σs(x) dWs

with terminal condition Qt,t(f) = f . In particular, we have the backward equation,

dQs,t(f) = −
(
Ls(Qs,t(f)) ds +Qs,t(f) b

′
s β−1

s dY s

)
(3.13)

with terminal condition Qt,t(f) = f .

Using the same notation as in (3.11), we also have the approximating backward equation

Qu,t(f) ≃ Qu+h,t(f) + Lu(Qu+h,t(f))h +Qu+h,t(f) b
′
u β−1

u

(
Y u+h − Y u

)
(3.14)
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4 Smoothing semigroups and proof of the main result

This section is concerned with forward-backward evolution equations for the conditional smoothing
distribution and the proof of our main result.

Let Kt,s be the backward integral operator defined by,

Kt,s(f)(x) :=

∫
πs(dz)

dQs,t(z, ·)

dπt
(x) f(z) (4.1)

For any s ≤ u ≤ t we have the backward semigroup property,

Kt,s = Kt,uKu,s (4.2)

which follows via,

(Kt,u Ku,s)(f)(x) =

∫
πs(dx0) Qs,u(x0, dx1)

dQu,t(x1, ·)

dπt
(x) f(x0)

=

∫
πs(dx0)

dQs,t(x0, ·)

dπt
(x) f(x0) = Kt,s(f)(x)

and where we exploit the semigroup properties of the operators Qs,t.
Also observe that for any t > s > 0 the integral operator Kt,s(x1, dx0) has a density (x1, x0) 7→

ks,t(x1, x0) w.r.t. the Lebesgue measure on Rm given by,

kt,s(x1, x0) := ps(x0) qs,t(x0, x1)/pt(x1) with qs,t(x0, x1) = qs,t(x0, x1)/πs(Qs,t(1))

The function qs,t denotes the density of the integral operator Qs,t discussed in (3.6) and (3.12).
Now, for any pair of functions (f, g) we readily check the duality formula,

πs
(
f Qs,t(g)

)
= πt (Kt,s(f) g) (4.3)

The following technical result is key in the proof of Theorem 2.1.

Lemma 4.1. For any time parameter s ≤ t we have the forward-backward differential equation

∂s
(
πs

(
f Qs,t(g)

))
= −πs

(
Qs,t(g) Ls,πs(f)

)
(4.4)

with the second order differential operator

Ls,πs(f) := −Ls(f) +
1

ps

∑

1≤i,j≤m

∂xi

(
ps αi,j

s ∂xj
f
)

Proof. Observe that (4.4) does not involve the derivatives of the function g. Thus, up to a smooth
mollifier’s type approximation of the function g, it suffices to check (4.4) for any pair of bounded
and twice differentiable functions f, g with bounded differentials. Arguing as in the proof of Propo-
sition 3.1 and Theorem 3.3, it suffices to prove the result for uniformly bounded sensor functions
bu(x) on [s, t]× Rm, for any s ≤ t.

In this situation, for any time horizon t, combining the Kushner-Stratonovich equation (3.7)
with the backward equation (3.13) for any s ≤ t, we check the forward-backward evolution equation

∂s
(
πs

(
f Qs,t(g)

))
= πs

(
Ls(f Qs,t(g)) − f Ls(Qs,t(g))

)
(4.5)
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The above equation can be proved using the backward Itô-Ventzell formula in [13]. We use the
same notation as in the proof of Theorem 3.3. Let Zs,t(x) be the multiplicative functional defined
as Zs,t(x) by replacing the function bu and the observation Itô-increment dYu by the centered
function bu and the innovation increment dY u.

Consider the backward random field Fs,t with terminal condition Ft,t (x) = f(x)g(x)z defined
by the formula

Fs,t (x) := f(x) Qs,t(g)(x) z and we set χs :=

(
Xs

Zs

)
∈ (Rm × R) .

In this notation, we have

E0 (Fs,t(χs)) = E0

(
f(Xs) Zs E0

(
Qs,t(g)(Xs)| (Xs, Zs)

))
= πs(f Qs,t(g))

Observe that
Fs,t (x) = f(x) (F ◦ χs,t) (x)

with the function

F (x) := g(x) z and the stochastic flow χs,t(x, z) :=

(
Xs,t(x)

Zs,t(x) z

)

Following the proof of Theorem 3.3, we check that

dFs,t (x) = f(x) d(F ◦ χs,t) (x) = − (Gs,t (x) ds+Hs,t (x) dUs)

with the drift function

Gs,t (x) := f(x) z

(
∇Qs,t(g)(x)

′ as(x) +
1

2
Tr

(
∇2Qs,t(g)(x)

′ αs(x)
))

and the diffusion term

Hs,t (x) dUs := f(x) z
(
∇Qs,t(g)(x)

′ σs(x) dWs +Qs,t(g)(x) bs(x)
′β−1

s dYs

)

Applying the backward Itô-Ventzell formula [13] we check that

dFs,t(χs) = (dFs,t)(χs) +∇Fs,t(χs)
′ dχs +

1

2
Tr

(
∇2Fs,t(χs)

′ At (χs)
)
ds

from which we conclude that

dFs,t(χs) = Zs

(
∇ (Qs,t(g)(x) f(x))

′
|x=Xs

− f(Xs) Zs ∇Qs,t(g)(Xs)
′
)
σs(Xs) dWs

− f(Xs)Zs

(
∇Qs,t(g)(Xs)

′ as(Xs) ds+
1

2
Tr

(
∇2Qs,t(g)(Xs) αs(Xs)

))
ds

+ Zs

(
∇ (Qs,t(g)(x) f(x))

′
|x=Xs

as(Xs) ds+
1

2
Tr

(
∇2 (Qs,t(g)(x) f(x))

′
|x=Xs

αs(Xs)
))

ds

We end the proof of (4.5) by simple integration.
To take the final step, we recall the integration by parts formula

Lt(fg) = f Lt(g) + g Lt(f) + ΓLt(f, g)
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with the carré-du-champ (a.k.a. square field) operator ΓLt associated with the generator Lt defined
by

ΓLt(f, g) := (∇f)′αt∇g

Combining (4.5) with the above formula we check that

∂s
(
πs

(
f Qs,t(g)

))
= πs

(
Ls(f) Qs,t(g)

)
+ πs

(
ΓLs

(
Qs,t(g), f

))

On the other hand, by an integration by parts we have

πs
(
ΓLs

(
Qs,t(g), f

))
= −

∑

i,j

∫
ps(x) Qs,t(g)(x)

1

ps(x)
∂xi

(
ps(x) α

i,j
t ∂xj

f(x)
)
dx

This ends the proof of the lemma.
Another approach for finding (4.5) is to use for any u ∈ [s, t]h the decomposition

πu+h

(
f Qu+h,t(g)

)
− πu

(
f Qu,t(g)

)

= πu
(
f
(
Qu+h,t −Qu,t

)
(g)

)
+ (πu+h − πu)

(
f Qu+h,t(g)

) (4.6)

Note that πu depends on the observations (Ys − Y0) from s = 0 up to time s = u, while the
increment Qu,t is computed backward in time and only depends on the observations (Ys−Yu) from
s > u up to s = t. Conversely, πu+h depends on the observations (Ys − Y0) from s = 0 up to
time s = u+ h, while Qu+h,t is computed backward in time and only depends on the observations
(Ys − Yu+h) from s > u+ h, up to time s = t.

Following the two-sided stochastic integration calculus developped by Pardoux and Protter
in [36] (see also [13] for extended versions to interpolating stochastic flows), combining the forward
(3.8) with the backward equation (3.14), when h ≃ 0 we can check the approximation,

∑

u∈[s,t]h

{
πu+h

(
f Qu+h,t(g)

)
− πu

(
f Qu,t(g)

)
− πu

(
Lu(f Qu+h,t(g)) − f Lu(Qu+h,t(g))

)
h
}
≃ 0

4.1 Proof of Theorem 2.1

With the definition in (4.1) we have,

πt,s(dx) = (πtKt,s)(dx) = πs(dx)Qs,t(1)(x) (4.7)

The formulation of the conditional distribution πt,s of Xs given Yt in (4.7) is rather well known,
see e.g. Theorem 3.7 and Corollary 3.8 in [34], as well as equation (3.9) in [3]. The proof of this
formula is a direct consequence of (4.1). With (4.2) we have,

πtKt,s = πt,uKu,s = πt,s

Thus with Kt,s as defined in (4.1) we immediately have the transport equation in (2.1).
It remains to show that this integral operator (as defined in (4.1)) is also the Markov transition

kernel of the backward diffusion flow in (2.2). The rest of the proof of Theorem 2.1 is a consequence
of the duality formula (4.3) and Lemma 4.1.

Rewritten in a slightly different form, the duality formula (4.3) reads as follows,

E (f(Xs) g(Xt) | Yt) = E (Kt,s(f)(Xt) g(Xt) | Yt)
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This implies that
Kt,s(f)(Xt) = E (f(Xs) | Xt, Yt)

Finally, combining (4.4) with the duality formula (4.3) we have

πt (g ∂sKt,s(f)) = −πt (g Kt,s(Ls,πs(f)))

Since the above formula is valid for any test function g and πt has a bounded positive density, we
check the backward Kolmogorov equation

∂sKt,s(f)(x) = −Kt,s(Ls,πs(f))(x) (4.8)

with terminal condition Kt,t(f) = f , when s = t, for almost every x ∈ Rm (and almost surely w.r.t.
the law of the observation process from the origin up to the time t). Since both terms in (4.8) are
continuous, the above equality holds for any x ∈ Rm, almost surely.

We now complete the proof by showing that the integral operator Kt,s(x, dz) (defined in (4.1))
does indeed coincide with the transition kernel associated with the flow Xt,s(x) in (2.2). Firstly,
observe that (4.8) coincides with the backward Kolmogorov equation (2.11) associated with the
transition semigroup of the stochastic flow Xt,s(x). Denote this transition semigroup by Kt,s(x, dz)
temporarily.

By the semigroup properties of Kt,s, for any s ≤ u ≤ t and any smooth function f we have

∂uKt,s(f) = 0 = ∂u(Kt,u(Ku,s(f))) = −Kt,u(Lu,πu(Ku,sf)) +Kt,u(∂uKu,s(f))

Choosing u = t we obtain the forward equation

∂tKt,s(f) = Lt,πt(Kt,s(f))

Arguing as above, this implies that

∂u(Kt,u(Ku,s(f))) = −Kt,u(Lu,πu(Ku,sf)) +Kt,u(Lu,πu(Ku,s(f))) = 0

Integrating over the interval [s, t] we check that Kt,s = Kt,s. This ends the proof of Theorem 2.1.
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b
T H E E F F E C T I V E S A M P L E S I Z E C R I T E R I O N

The effective sample size criterion [49] measures the loss of efficiency using the importance
sampling estimator µ̃(X) (3.7) instead of the Monte Carlo estimator µ̄(X) (3.2) defined in
Section 3.1:

µ̄(X) =
1

N

N∑
i=1

µ(Xi), Xi ∼ p (b.1)

µ̃(X) =

N∑
i=1

wi µ(Xi), Xi ∼ q (b.2)

where (Xi)i=1,...,N is a set of independent random variables on Rd with the same distribution
as X, q is the proposal density, w̃i = p(Xi)

q(Xi)
are the unnormalised weight and wi = w̃i∑N

j=1 w̃
j

the normalised one, and µ : Rd → R is a bounded function.
The effective sample size is defined by:

ESS = N
Varp(µ̄(X))

Varq(µ̃(X))
(b.3)

However, in the literature, the following expression is more commonly found:

ESS =
N

1 + Varq(w̃)
(b.4)

and the approximation of the criterion is often given by:

ÊSS =
1∑N

i=1(w
i)2

(b.5)

Section b.1 provides the elements to pass from equation (b.3) to (b.4). The passage from
the effective sample size criterion equation (b.4) to the approximate criterion (b.5) is provided
in Section b.2.
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120 the effective sample size criterion

b.1 expressions of the effective sample size criterion

We start by approximating the variance of the importance sampling estimator Varq(µ̃(X)).
Using the definition of the normalised weights, it comes:

Varq(µ̃(X)) = Varq

(∑N
i=1 w̃

iµ(Xi)∑N
i=1 w̃

i

)
(b.6)

The variance of the importance sampling estimator can be approximated using the delta-
method [8, 66] (a.k.a., Taylor expansions for the moments of functions of random variables):

Varq

(∑N
i=1 w̃

iµ(Xi)∑N
i=1 w̃

i

)
≈ 1

N (Eq(w̃))2

(
Varq(w̃ µ(X))

−2
Eq(w̃ µ(X))

Eq(w̃)
COVq(w̃, w̃ µ(X)) +

(
Eq(w̃ µ(X))

Eq(w̃)

)2

Varq(w̃)

)
(b.7)

We pose Eq(w̃) = 1. By taking I , Ep(µ(X)) and noticing that

Eq(w̃ µ(X)) =

∫
w̃ µ(X) q(X) dX (b.8)

=

∫
p(X)

q(X)
µ(X) q(X) dX (b.9)

= Ep(µ(X)) = I (b.10)

the variance becomes:

Varq

(∑N
i=1 w̃

i µ(Xi)∑N
i=1 w̃

i

)
≈ 1

N
(Varq(w̃ µ(X))

−2 I COVq(w̃, w̃ µ(X)) + I2Varq(w̃)
)

(b.11)

Studying the terms separately, it comes:

COVq(w̃, w̃ µ(X)) = Eq(w̃
2 µ(X))− I (b.12)

= Ep(w̃ µ(X))− I (b.13)
= Ep(w̃ µ(X))− Ep(w̃)Ep(µ(X)) (b.14)
+ Ep(w̃)Ep(µ(X))− I

= COVp(w̃, µ(X)) + I Ep(w̃)− I (b.15)

Equation (b.13) comes from:

Eq(w̃
2 µ(X)) =

∫
w̃2 µ(X)q(X) dX (b.16)

=

∫
w̃ µ(X)p(X) dX (b.17)

= Ep(w̃ µ(X)) (b.18)
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Another term of the variance (b.11) is Varq(w̃ µ(X)) that can be rewitten as:

Varq(w̃ µ(X)) = Eq((w̃ µ(X))2)− I2 (b.19)
= Ep(w̃ µ(X)2)− I2 (b.20)

Indeed, we have:

Eq((w̃ µ(X))2) =

∫
µ(X)2 w̃2 q(X) dX (b.21)

=

∫
µ(X)2 w̃

p(X)

q(X)
q(X) dX (b.22)

= Ep(w̃ µ(X)2) (b.23)

The term Ep(w̃ µ(X)2) can be approximating using again the delta-method:

Ep(w̃ µ(X)2) ≈ Ep(w̃) I
2 + Ep(w̃)Varp(µ(X)) + 2 I COVp(w̃), µ(X)) (b.24)

Therefore, by plugging equations (b.15), (b.20) and (b.24) in the expression of the vari-
ance (b.11), it comes:

Varq

(∑N
i=1 w̃

iµ(Xi)∑N
i=1 w̃

i

)
≈ 1

N

(
Varp(µ(X))Ep(w̃) + I2 (1 + Varq(w̃)− Ep(w̃))

)
(b.25)

We have:

Varq(w̃) = Eq(w̃
2)− 1 (b.26)

and

Eq(w̃
2) =

∫
w̃2q(X) dX =

∫
w̃p(X) dX = Ep(w̃) (b.27)

Hence, the approximation of the variance of the importance sampling estimator:

Varq(µ̃(X)) ≈ 1

N
Varp(µ(X)) (1 + Varq(w̃)) (b.28)

By taking this approximation (b.28), the effective sample size criterion is approximated
by:

ESS = N
Varp(µ̄(X))

Varq(µ̃(X))
(b.29)

= N
1
NVarp(µ(X))

1
NVarp(µ(X)) (1 + Varq(w̃))

(b.30)

=
N

1 + Varq(w̃)
(b.31)
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b.2 approximation of the effective sample size criterion

The effective sample size (b.4) cannot be evaluated exactly. The variance of the unnormalised
weights is first replaced by the coefficient of variance:

ESS ≈ N

1 +
Varq(w̃)
Eq(w̃)2

(b.32)

By definition of the variance:

1 +
Varq(w̃)
Eq(w̃)2

= 1 +
Eq(w̃

2)− Eq(w̃)
2

Eq(w̃)2
=

Eq(w̃
2)

Eq(w̃)2
(b.33)

Approximating expectations by sums, it follows:

ESS =
N

Eq(w̃2)
Eq(w̃)2

' N
1
N

∑N
i=1(w̃

i)2(
1
N

∑N
i=1 w̃

i
)2

(b.34)

The estimate of the effective sample size [49] is thus given by:

ÊSS =
1∑N

i=1(w
i)2

(b.35)

where wi = w̃i∑N
i=1 w̃

i
are the normalised weights.



c
I N T R O D U C T I O N T O I N F O R M A T I O N T H E O R Y

The Fisher information matrix aims to mathematically quantify the informativeness carried
by a random vector (e.g., a measurement or an estimate). Information is usually derived
from the associated probability density function ant quantifies its compactness [36].

c.1 definition of the fisher information matrix

Let p(y|θ) be the conditional density for a random vector y taking values in Rdy conditioned
on the value of θ. We assume that the two derivatives of the conditional density p(y|θ) exist,
and that the support of the density is independent from θ. Under this regularity conditions,
the Fisher information matrix is defined by the variance of the score function [52]:

I(θ) = −Ey|θ

[
∂2

∂θ2
log (p(y|θ))

]
(c.1)

where Ey|θ[f(y,θ)] =
∫
Rdy f(y,θ) p(y|θ) dy is the mathematical expectation. The Fisher

information matrix can be interpreted as the expectation of the likelihood curvature with
respect to θ.

The Fisher information matrix is used to quantify the information brought by the mea-
surements to the state in the context of state estimation. In this case, the conditional density
is the likelihood p(y|x), where y ∈ Rdy is the measurement, and x ∈ Rd is the state. The
inverse of the Fisher information matrix is usually referred to as the PCRB and quantifies
the lowest covariance reachable by any unbiased estimator for a given estimation problem.

c.2 posterior cramér-rao bound

The PCRB vectorial form in the discrete-case has been introduced by Galdos [30]. In order
to reduce the computational cost, an iterative formulation for recursive estimation has been
derived by Tichavsky, Muravchik, and Nehorai [84]. Let the state-space model be defined by:

{
xk+1 = fk(xk) + ηk

yk = hk(xk) + νk
(c.2)

where the noises ηk and νk are noises with covariance Qk and Rk respectively.

123



124 introduction to information theory

At each time-step, the PCRB is given by the following Ricatti-like recursion:

PCRBk+1 = (I(xk+1))
−1 (c.3a)

I(xk+1) = D22
k −D12

k
>(I(xk) +D11

k

)−1
D12

k (c.3b)

where the matrices D11
k , D12

k , and D22
k are defined by:

D11
k = E

[
− ∂2

∂x2
k

log p(xk+1|xk)

]
(c.4a)

D12
k = E

[
− ∂2

∂xkxk+1
p(xk+1|xk)

]
(c.4b)

D22
k = E

[
− ∂2

∂x2
k+1

p(xk+1|xk)

]
+ E

[
− ∂2

∂x2
k+1

p(yk+1|xk+1)

]
(c.4c)

When the state model is linear, i.e.,xk+1 = Fk xk +ηk and the noises Gaussian, the PCRB
formulation (c.3b) is simplified by [9]:

I(xk+1) = E

[∂h>k+1(xk+1)

∂xk+1

]
R−1

k+1

[
∂h>k+1(xk+1)

∂xk+1

]>
+
(
Qk + Fk I(xk)

−1F>
k

)−1
(c.5)

The initial Fisher information matrix I(x0) is equal to the covariance P0 of the initial state
density.

As the measurements do not appear in the computation of the PCRB, the bound can be
calculated offline. In practice, as the true state xk is unknown, the PCRB is approximated.
The expectation terms are computed through Monte Carlo simulations of the state.



d
G R A V I M E T E R O B S E R V A T I O N E Q U A T I O N F O R T H E D O U B L E
I N T E G R A T O R M O D E L

The observation equation for the double integrator model is derived from the equation (4.31):

Y g′ = gnom(pλ, ph) + mapga(pφ, pλ) + p̈h + Eötvös(VE , pλ) + ν (d.1)

In order to transposed the observation equation (d.1) in the double integrator model settings,
the nominal gravity and Eötvös effect equations (4.29) and (4.30) are linearised by using the
first order Taylor’s theorem:

gnom(pλ, ph) = gnom(pλ0, ph0) + 1.0326× 104 sin(pλ0) cos(pλ0)(pλ − pλ0)

+ 0.3086 (ph − ph0) + O(||(pλ − pλ0, ph − ph0)||2) (d.2a)

Eötvös(VE , pλ) = Eötvös(VE0 , λ0) + 3.7515 cos(λ0)(VE − VE0)

− 3.7515 VE0 sin(λ0)(λ− λ0) + O(||(VE − VE0 , λ− λ0)||2) (d.2b)

The latitude pλ0 = 0.6196 rad (pλ0 = 35.5° N) and the longitude pφ0 = −2.1642 rad
(pφ0 = 124° W) correspond to the reference point of the maps of the Californian coasts (see
Figure 4.7). To facilitate the calculations, the velocity VE0 and the altitude ph0 are taken
equal to 0. By simplifying,

gnom(pλ, ph) = gnom(pλ0, ph0) + 4.8816× 103(pλ − pλ0) + 0.3086 (ph − ph0)

+ O(||(pλ − pλ0, ph − ph0)||2) (d.3a)

Eötvös(VE , pλ) = Eötvös(VE0 , pλ0) + 3.0542 (VE − VE0)

+ O(||(VE − VE0 , pλ − pλ0)||2) (d.3b)

The equations are expressed with coordinates on Flat Earth using the following relations:
(px − px0) = (Rφ + ph0) cos(pλ0) (pφ − pφ0)

(py − py0) = (Rλ + ph0) (pλ − pλ0)

(pz − pz0) = −(ph − ph0)

(d.4)

125



126 gravimeter observation equation for the double integrator model

where Rλ is the radius of curvature of the Earth in the meridian plane and Rφ is the large
normal of the ellipsoid. In the following Rλ and Rφ are approximated by R = 6371× 103 m
which is the radius of the Earth. The chosen reference point [px0, py0, pz0]

> is [0, 0, 0]>. The
east velocity VE corresponds to the velocity in the x-axis Vx. Using these relations (d.4),
equations (d.3a) and (d.3a) become:

gnom(pλ, ph) = gnom(pλ0, ph0) +
4.8816× 103

R
py − 0.3086 pz +O(||(py, pz)||2)

(d.5a)
Eötvös(VE , pλ) = Eötvös(VE0 , pλ0) + 3.0542 Vx +O(||(Vx, py)||2) (d.5b)

Let Y g be a new observation equation such that:

Y g = Y g′ − gnom(pλ0, ph0)− Eötvös(VE0 , pλ0) (d.6)

The gravimeter observation equation for the double integrator model (4.32) comes from
taking into account the simplifications of the mathematical models of the nominal gravity
and Eötvös effect.



e
F I S H E R I N F O R M A T I O N M A T R I X A P P L I E D T O
U N D E R W A T E R N A V I G A T I O N

In Chapter 4, the observability level of the underwater navigation system is quantified by the
Fisher information matrix (see Section 4.2.3, equation (4.33)). The measurement contribution
to the Fisher information matrix is provided for the multi-beam telemeter (4.36), and the
multi-beam telemeter and gravimeter (4.38).

In this appendix, the full Fisher information matrix are given under the following assump-
tions:

• The bathymetry equation is also approaches as a single-beam telemeter pointing
towards the local vertical direction (4.35):

Y b = pz − mapmb(px, py) + ν (e.1)

• The process noise covariance Qk is assumed to be equal to 06.

• The inverse of the Fisher information matrix at time k, I(Xk)
−1 is equal to the inverse

of the initial uncertainty matrix P−1
0 :

P−1
0 =



σ2p 0 0 0 0 0

0 σ2p 0 0 0 0

0 0 σ2p 0 0 0

0 0 0 σ2V 0 0

0 0 0 0 σ2V 0

0 0 0 0 0 σ2V


(e.2)

To simplify, the standard derivation of the position and velocity is the same for all axis
(x, y and z).

The Fisher information matrices are calculated in order to compare their determinant. If
the determinant of the information matrix when the gravimeter is activated is greater than
the determinant of the information matrix with only the multi-beam telemeter, then the
additional sensor brings more information and thus leads to more accurate estimates.
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Under the above assumptions, the dynamic contribution to information is given by:

(
BkP

−1
0 B>

k

)−1
=



σ2p + σ2vdt
2 0 0 σ2vdt 0 0

0 σ2p + σ2vdt
2 0 0 σ2vdt 0

0 0 σ2p + σ2vdt
2 0 0 σ2vdt

σ2vdt 0 0 σ2v 0 0

0 σ2vdt 0 0 σ2v 0

0 0 σ2vdt 0 0 σ2v


(e.3)

Let the constant d be equal to −σ4vdt2 + σ2v
(
σ2p + σ2vdt

2
)
. The Fisher information matrix

for the bathymetric model, is:

Jbathy =



(
∇x

b

)2
σ2
b

+ σ2
v
d

∇x
b∇

y
b

σ2
b

−∇x
b

σ2
b

−σ2
v dt
d 0 0

∇x
b∇

y
b

σ2
b

(
∇y

b

)2
σ2
b

+ σ2
v
d −∇y

b

σ2
b

0 −σ2
v dt
d 0

−∇x
b

σ2
b

−∇y
b

σ2
b

1
σ2
b
+ σ2

v
d 0 0 −σ2

v dt
d

−σ2
v dt
d 0 0

σ2
p+σ2

vdt
2

d 0 0

0 −σ2
vdt
d 0 0

σ2
p+σ2

vdt
2

d 0

0 0 −σ2
vdt
d 0 0

σ2
p+σ2

vdt
2

d


(e.4)

where ∇x
mb and ∇y

mb are the East and North gradients of the seabed elevation map, and σmb

is the standard deviation of the telemeter measurement error.
The Fisher information matrix when the gravity field measurement is added, is given by:

Jfusion =



(
∇x

b

)2
σ2
b

+
(
∇x

g

)2
σ2
g

+ σ2
v
d

∇x
b∇

y
b

σ2
b

+
∇x

g

(
∇y

g+a
)

σ2
g

−∇x
b

σ2
b
+

∇x
gb

σ2
g

∇x
b∇

y
b

σ2
b

+
∇x

g

(
∇y

g+a
)

σ2
g

(
∇y

b

)2
σ2
b

+ σ2
v
d +

(
∇y

g+a
)2

σ2
g

−∇y
b

σ2
b
+

b
(
∇y

g+a
)

σ2
g

−∇x
b

σ2
b
+

∇x
gb

σ2
g

−∇y
b

σ2
b
+

b
(
∇y

g+a
)

σ2
g

σ2
v
d + b2

σ2
g
+ 1

σ2
b

∇x
gc

σ2
g

− σ2
vdt
d

c
(
∇y

g+a
)

σ2
g

bc
σ2
g

0 −σ2
vdt
d 0

0 0 −σ2
vdt
d

∇x
gc

σ2
g

− σ2
vdt
d 0 0

c
(
∇y

g+a
)

σ2
g

−σ2
vdt
d 0

bc
σ2
g

0 −σ2
vdt
d

σ2
p+σ2

vdt
2

d + c2

σ2
g

0 0

0
σ2
p+σ2

vdt
2

d 0

0 0
σ2
p+σ2

vdt
2

d


(e.5)
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where ∇x
ga and ∇y

ga are the East and North gradients of the local gravimetry anomalies map,
and σga is the standard deviation of the atomic gravimeter measurement error.

Determinants of both matrices are given in Equations (4.39) and (4.40), and are recalled
here:

det(Ib) =
αmb∆t

2 + βmb

qmb
(e.6)

det(If ) =
αga∆t

2 + βga∆t+ γga + o(∆2
t ,∇x

mb
2,∇x

ga
2)

qga
(e.7)

where the constants are:

αmb = ∇x
mb

2σV +∇y
mb

2
σV + σV (e.8)

βmb = ∇x
mb

2σp +∇y
mb

2
σp + σ2mb + σp (e.9)

qmb = σ2mb σ
3
p σ

3
V (e.10)

αg = 2σ2pσ
2
V

(
∇x

mb
2a2 +∇x

mb
2b2 + 2∇x

mb∇x
gab+∇y

mb
2
b2 + 2∇y

mb∇
y
gab+ 2∇y

mbab

+∇x
ga

2 +∇y
ga

2 + 2∇y
gaa+ a2

)
+ σ2gaσ

2
V

(
∇x

mb
2 +∇y

mb
2
+ 1
)

+ σ4V c
2
(
∇y

mb
2
+ 1
)
+ σ2mbσ

2
V

(
∇x

ga
2 +∇y

ga
2 + 2∇y

gaa+ a2 + b2
)

(e.11)

βg = σ2pσ
2
V c
(
−2∇x

mb∇
y
mba+ 2∇x

mbb+ 2∇x
ga

)
+ 2∇x

gaσ
2
mbσ

2
V c (e.12)

γg = σ2gaσ
2
p

(
∇x

mb
2 +∇y

mb
2
+ 1
)
+ σ4p

(
∇x

mb
2a2 +∇x

mb
2b2 + 2∇x

mb∇x
gab+∇y

mb
2
b2

+2∇y
mb∇

y
gab+ 2∇y

mbab+∇x
ga

2 +∇y
ga

2 + 2∇y
gaa+ a2

)
+ σ2pσ

2
V

(
∇x

mb
2c2 +∇y

mb
2
c2 + c2

)
+ σ2mbσ

2
p

(
∇x

ga
2 +∇y

ga
2 + 2∇y

gaa

+a2 + b2
)
+ σ2mbσ

2
ga + σ2mbσ

2
V c

2 (e.13)

qg = σ2mbσ
2
gaσ

6
pσ

6
V (e.14)

Any quadratic product of the gradient of the maps of order greater than or equal to 3
were removed of the determinant in equation (4.40).
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C O M P L E X I T Y A N A L Y S I S

The complexity of algorithms can be evaluated in terms of their computational load for a
given set of numerical operations. In this work, the computational load is defined as the
total number of floating point operations (or flops, namely additions and multiplications)
required to perform them during one time-step (i.e., prediction, correction and resampling).
The computational cost of the initialization can be neglected since this step is done only
once. We consider the most expensive time-step in term of flops as the cost of the regularised
resampling is included although it is not triggered at each time-step. This complexity criterion
is often used in the state estimation area [46]. Table f.1 presents the flops number for the
elementary operations used in this paper.

Table f.1: The flops complexity associated with elementary operations.

Instruction Size Multiplications Additions

A+B A,B ∈ Rn×m nm

AB A ∈ Rn×m, B ∈ Rm×l nml (m− 1)nl

A−1 A ∈ Rn×n n3

chol(A) A ∈ Rn×n n3/3 + 2n2

Some operations cannot be quantified in terms of flops. Thus, the computational load
of nonlinear measurements model is noted cg, the complexity of the resampling and the
regularisation creg-res and the theoretical cost of one random sample is denoted crandom
without distinction of distributions. The determination of the A2BC bandwidth parameter ε
is denoted cε. The computational load of the proposal density is denoted cq and the one of
the prior density is cp.

The computation for the RBPF yields the following number of flops per time-step, assuming
a linear dynamics [46]:

cRBPF = N
(
6nl + 4n2 + 2l2 + n− l + n crandom + creg-res + cg + 4nl2

+8ln2 + 4/3n3 + 5l3 − 5nl + 2n2 + l3
)

(f.1)
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where n and l are the dimension of respectively the nonlinear and the linear parts of the
state vector. The computational load of the RPF can easily be derived from the RBPF under
the same assumptions [46]:

cRPF = N
(
6d2 − d+ dcrandom + creg-res + cg + 3

)
+
d3

3
+ 2d2 − 1 (f.2)

The number of particles is the most important factor in terms of computational load.
The RBPF needs less particles than the RPF as the dimension of the nonlinear state vector is
small, implying that the particles occupy a lower dimensional space. Given a computational
complexity, the number of particles needed by a standard particle filter depending on the
number of particles of the RBPF (without the regularisation step) is given in [46].



g
A D A P T I V E A P P R O X I M A T E B A Y E S I A N C O M P U T A T I O N
P A R T I C L E F I L T E R S

Algorithm g.1 A2BC-RPF
1: Initialisation: The initial particle set is drawn as {Xi

0}i∈[1,N ] using the initial density
p(X0) and the initial weights set {wi

0}i∈[1,N ] is taken equal to 1
N .

2: for each time-step k do
3: Prediction: Draw the particles from the transition density Xi

k ∼ p(Xk|Xi
k−1).

4: A2BC correction: Determine εk. Update the weights wi
k ∝ wi

k−1 Kεk(Yk −
hk(X

i
k)).

5: Compute the state estimate X̂k (3.16) and its covariance Pk (3.17).
6: if a resampling criterion is satisfied, e.g., ÊSS < Nth, see (3.19) then
7: Draw a new set of particles {Xi

k}i∈[1,N ] using a resampling method, e.g., the
multinomial resampling (Algorithm 3.2).

8: Reset the weights to 1
N .

9: end if
10: end for
11: Return the state estimate X̂k and its covariance Pk, ∀k.
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Algorithm g.2 A2BC-RBPF

1: Initialisation: The initial particles set is drawn as {Xn,i
0 }i∈[1,N ] using the initial density

p(Xn
0 ) and the initial weights set {wi

0}i∈[1,N ] is taken equal to 1
N . The initial mean and

covariance of the linear state variables set is
{
X l,i

0|0,P
l,i
0|0

}
= {X̂ l

0, P
l
0}, ∀i ∈ [1, N ].

2: for k = 0, 1, . . . do
3: Particle prediction: Draw the particles Xn,i

k+1 ∼ p(Xn
k+1|X

n,i
k ,Yk) (3.41b).

4: Kalman prediction: For each particles Xn,i
k+1, sample the mean X l,i

k+1|k and covari-
ance P l,i

k+1|k (3.38a)-(3.39b) of the density p(X l
k+1|X n

k+1,Yk) (3.36b).
5: Particle A2BC correction: Determine εk. Update the weights
wi
k+1 ∝ wi

k Kεk

(
Yk+1 − hk+1

(
[Xn,i

k+1,X
l,i
k+1|k]

>
))

(3.41a).
6: if a resampling criterion is satisfied, e.g., ÊSS < Nth, see (3.19) then
7: Draw a new set of particles {Xi

k+1 = [Xn,i
k+1,X

l,i
k+1|k]

>}i∈[1,N ] using a resampling
method, e.g., the multinomial resampling (Algorithm 3.2).

8: Reset the weights to 1
N .

9: end if
10: Kalman correction: Update the mean X l,i

k+1|k+1 and covariance
P l,i
k+1|k+1 (3.37a)-(3.37d) of the density p(X l

k+1|X n
k+1,Yk+1) (3.36a).

11: Compute the nonlinear state estimate X̂n
k+1 (3.16) and its covariance P̂ n

k+1 (3.17).
12: Compute the linear state estimate X̂ l

k+1 (3.42a) and its covariance P̂ l
k+1 (3.42b).

13: end for
14: Return the state estimate X̂k+1 = [X̂n

k+1, X̂
l
k+1]

> and its covariance

P̂k+1 =

(
P̂ n
k+1 0n×l

0l×n P̂ l
k+1

)
, ∀k.
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