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Résumé

Cette thèse de doctorat porte sur l’étude de deux objets probabilistes, les mesures de chaos multiplicatif
gaussien (GMC) et la théorie conforme des champs de Liouville (LCFT). Le GMC fut introduit par Kahane
en 1985 et il s’agit aujourd’hui d’un objet extrêmement important en théorie des probabilités et en physique
mathématique. Très récemment le GMC a été utilisé pour définir les fonctions de corrélation de la LCFT, une
théorie qui est apparue pour la première fois en 1981 dans le célèbre article de Polyakov, “Quantum geometry
of bosonic strings”.

Grâce à ce lien établi entre GMC et LCFT, nous pouvons traduire les techniques de la théorie conforme
des champs dans un langage probabiliste pour effectuer des calculs exacts sur les mesures de GMC. Nous
partons des équations de BPZ pour LCFT, introduite par Belavin, Polyakov et Zamolodchikov en 1983. Le
méchanisme de ces équations sera étudié vers la fin de cette thèse et nous prouvrons les équations de BPZ
d’ordre supérieure avec un formalisme général.

En développant les méthodes probabilistes établies par Kupiainen-Rhodes-Vargas pour la résolution des
équations de BPZ et en traitant plusieurs difficultés majeures, nous obtiendront des relations non triviales
sur les objets fondamentaux du LCFT. Plus précisément, nous prouvrons les formules exactes pour toutes les
constantes de structure du LCFT sur le disque avec la constante cosmologique nulle à l’intérieur du disque, dont
une parmi ces quatre a été résolue par Remy en 2017. Comme cas particulier, nous trouverons la distribution de
la masse totale du GMC sur l’intervalle avec des log-singularités placées en deux extrémités, qui a été conjecturé
indépendamment par Ostrovsky et par Fyodorov, Le Doussal, et Rosso en 2009. Une autre conséquence directe
est la loi de la masse totale du GMC sur le cercle avec log-singularité en 1, conjecturé par Ostrovsky en 2016.

Abstract

Throughout this PhD thesis we will study two probabilistic objects, Gaussian multiplicative chaos (GMC)
measures and Liouville conformal field theory (LCFT). The GMC measures were first introduced by Kahane
in 1985 and have grown into an extremely important field of probability theory and mathematical physics.
Very recently GMC has been used to give a probabilistic definition of the correlation functions of LCFT, a
theory that first appeared in Polyakov’s 1981 seminal work, “Quantum geometry of bosonic strings”.

Once the connection between GMC and LCFT is established, one can hope to translate the techniques of
conformal field theory in a probabilistic framework to perform exact computations on the GMC measures. We
start from the BPZ equations for LCFT, introduced by Belavin, Polyakov and Zamolodchikov in 1983. The
mechanism of these equations is studied in the last part of this thesis and we prove the higher order BPZ
equations with a general formalism.

Following the probabilistic methods established by Kupiainen-Rhodes-Vargas for the resolution of the BPZ
equations and after overcoming several major difficulties, we obtain non trivial relations for some fundamental
objects of LCFT. More precisely, we prove the exact formulas for all the four structure constants of LCFT on
the disk with null cosmological constant in the bulk, one of which was solved by Remy in 2017. As a special
case, we find the distribution of the total mass of GMC on the interval with log-singularities put on both ends,
a conjecture that has been independently predicted by Ostrovsky and by Fyodorov, Le Doussal, and Rosso in
2009. Another direct consequence is the law of the total mass of GMC on the unit circle with a log-singularity,
conjectured by Ostrovsky in 2016.
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CHAPTER 1

An overview of Gaussian chaos and Liouville theory

In collaboration with Guillaume Remy. A great thanks to him for sharing with me his texts.

1.1 Introduction
The present chapter is destined to give an overview of the results concerning two probabilistic objects, the
Gaussian multiplicative chaos (GMC) measures and Liouville conformal field theory (LCFT). We will present
the definitions, the most important properties and the required information the reader needs to understand
the following chapters. The theory of Gaussian multiplicative chaos was first introduced heuristically by B.
Mandelbrot in 1972 in [65, 66] and then defined rigorously by J.-P. Kahane in 1985 in [56] and has ever since
been extensively studied in many problems of probability theory and mathematical physics with applications
including random geometry, 2d quantum gravity, statistical physics, 3d turbulence and mathematical finance.
See [92] for a review.

On the other hand Liouville conformal field theory was only very recently understood as a probabilistic
object. It first appeared in the physics literature in the seminal paper “Quantum geometry of bosonic strings”
by A. Polyakov in 1981 [82]. Considerable efforts were then devoted by theoretical physicists to try to solve
Liouville theory - in other words to compute its correlation functions - motivated by its importance in the
study of non-critical string theory and of random geometry in two dimensions. A major step in this direction
was taken by Belavin, Polyakov, and Zamolodchikov (BPZ) in 1984 in the paper [10] which laid down the
foundations of conformal field theory (CFT).1 Liouville field theory is indeed a CFT and using these techniques
the celebrated DOZZ formula was conjectured independently by Dorn and Otto in [25] and Zamolodchikov and
Zamolodchikov in [108]. This formula gives the value of the most fundamental quantity in Liouville theory: the
three-point correlation function of the theory on the Riemann sphere. However, the major problem behind this
study of Liouville theory was that it completely lacked mathematical rigour and the derivation of the DOZZ
formula was seen more as a guess even on a physics level of rigour. The biggest problem came from the fact
that it appeared unclear how to construct a consistent theory based on the so-called path integral formalism in
the case of Liouville theory. Many reviews on LCFT abandon this path integral definition right from the start
and replace it by purely algebraic definitions. This is the famous conformal bootstrap approach to LCFT, see
[91].

1The original motivation of BPZ in [10] was precisely to obtain an exact value for the correlation function of LCFT although
CFT has now grown into a huge field of theoretical physics with countless applications.
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8 CHAPTER 1. AN OVERVIEW OF GAUSSIAN CHAOS AND LIOUVILLE THEORY

A decisive step to solve this problem was made by David-Kupiainen-Rhodes-Vargas in the paper [20] where
a probabilistic definition is given for the Liouville field theory. The authors find a way to interpret the path
integral of LCFT: using a regularization and renormalization procedure they obtain a rigorous probabilistic
definition of the theory. The correlation functions of LCFT are thus expressed in terms of moments of GMC
measures with log-singularities. We emphasize that this establishes a link that was unknown to two major com-
munities of physicists, the statistical physics community working with GMC related models and the theoretical
physics community working on LCFT.

Once a probabilistic content has been given to the correlation functions of LCFT, the next natural step is to
try to prove all the properties one expects for a CFT. The correlation functions of LCFT are shown to behave
as conformal tensors (KPZ formula) and obey the Weyl anomaly (behaviour under a change of background
metric). Next we can introduce the stress-energy tensor of the theory and prove the Ward identities. Lastly
the BPZ equations are established for a correlation function where at least one of the point in the correlation
has a so-called degenerate weight. These differential equations are extremely important as they translate the
constraints imposed by the local conformal invariance (by opposition to the KPZ formula which just takes into
account global conformal invariance).

Using these BPZ equations CFT tells us that it should be possible to perform exact computations of certain
correlation functions with a small number of points. In the case of Liouville theory the precise way to extract
information out of the BPZ equations to obtain non-trivial relations on the correlation functions goes back
to Teschner [101]. On the Riemann sphere the simplest correlation is the three-point function and the BPZ
equations thus lead to relations that completely determine this function, this is the content of the celebrated
DOZZ formula. Implementing all of the above in a probabilistic framework allowed Kupiainen-Rhodes-Vargas
in 2017 to give a proof of the DOZZ formula [60, 61]. Very shortly after, the same procedure was implemented
by Remy to prove the Fyodorov-Bouchaud formula [41] that can also be interpreted as a bulk one point function
of boundary LCFT on the disk with µbulk = 0, see 1.3.2 for the Liouville potential on the disk. The above
mentioned works are both based on BPZ equations with a degenerate insertion in the bulk (in the sphere case
there is no boundary), the general mechanism of this type of BPZ equations will be explained in chapter 4.

This thesis continues to investigate the other three building blocks [37, 52, 84] of boundary LCFT, in
the case where µbulk = 0. The BPZ equations in this case are also discussed in chapter 4. One of the main
reasons for working in this regime is that the BPZ equations for boundary LCFT are not completely under-
stood. Writing BPZ equations with a degenerate insertion on the boundary adds some special constraints on
boundary cosmological constants around the degenerate insertion and it is still a work in progress. However,
when µbulk = 0, the condition simplifies to a phase change and we can obtain a stronger holomorphic version
for the BPZ equations on the boundary. We illustrate in chapter 3 how these differential equations can be
directly obtained without prior knowledge of LCFT. In some special cases of our building blocks, we recover
several results of GMC measures: the distribution of the total mass of GMC on the interval with two insertions,
and the distribution of the total mass of GMC on the circle with one insertion, the latter also known as the
Fyodorov-Bouchaud formula with insertion. Let us take a small detour in the world of statistical physics. In
this world GMC measures were first considered on the interval in the work of Bacry-Muzy [9] followed by
the work of Fyodorov-Bouchaud [41] on a random energy model, which they studied on the circle. Fyodorov
and Bouchaud conjectured the law of the total mass on the circle using a heuristic analytic continuation from
integer to complex moments which we refer to as the Fyodorov-Bouchaud formula. They also conjectured the
distribution of the maximum of underlying gaussian field. The Fyodorov-Bouchaud formula was extended by
Ostrovsky [78] to include a single insertion point, which is the result we obtain from rigorous mathematical
arguments. The case of the distribution of the total mass of the GMC measure on the interval was first con-
sidered by Ostrovsky [74] using his theory of intermittency differentiation resulting in explicit conjectures for
the negative moments [75] and for the fractional moments of the total mass [76]. The problem of the total
mass on the interval with two insertion points was independently considered by Fyodorov et al. [45] using the
technique of analytic continuation from integer to complex moments. Fyodorov et al. conjectured the frac-
tional moments of the total mass as well as the Laplace transform of the distribution of the maximum of the
underlying log-correlated field, see also [44]. The two approaches to the problem with two insertion points were
unified in [77], see also [79] for a detailed review. We will prove these conjectures by using the connection with
LCFT which allows us to introduce the correct auxiliary functions corresponding to holomorphic observables
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of CFT.

We now briefly summarize the main results of this thesis.

3 Main result 1: Content of chapter 2, in collaboration with Guillaume Remy.
Consider the log-correlated field X on [0, 1] with covariance:

E[X(x)X(y)] = 2 ln
1

|x− y|
. (1.1.1)

Then for γ ∈ (0, 2) and for real numbers a, b, p satisfying suitable bounds we will give the exact value of the
following quantity:

M(γ, p, a, b) := E[(
∫ 1

0

xa(1− x)be
γ
2X(x)dx)p]. (1.1.2)

The strategy of proof adapts the proof of the DOZZ formula [61] to dimension 1, but it does not require any
knowledge of CFT. Subsection 1.5.2 summarizes this result.

3 Main result 2: Content of chapter 3, in collaboration with Guillaume Remy.
Consider the log-correlated field XD on the unit circle ∂D with covariance:

E[XD(e
iθ)XD(e

iθ′)] = 2 ln
1

|eiθ − eiθ′ |
. (1.1.3)

For γ ∈ (0, 2) and suitable parameters α, β, we will prove the exact formula for

G(α, β) := E

(∫ 2π

0

1

|1− eiθ| γβ2
e
γ
2XD(e

iθ)dθ

) 2
γ (Q−α− β

2 )
 , (1.1.4)

where Q = γ
2 + 2

γ . This formula generalizes the Fyodorov-Bouchaud formula which corresponds to the special
case where β = 0. The proof consists in finding shift equations on β while keeping α constant. Therefore
the result is constructed on the Fyodorov-Bouchaud formula and there is no overlap between the two results
although the new one is more general.

Additionally, for γ ∈ (0, 2) and suitable βk, µk, 1 ≤ k ≤ 3 we will prove the exact value of

E

(∫ 2π

0

1∏3
k=1 |ei

2kπ
3 − eiθ|

γβk
2

(

3∑
k=1

µk1θ∈[
2(k−1)π

3 , 2kπ3 )
)e

γ
2XD(e

iθ)dθ

) 1
γ (2Q−

∑3
k=1 βk)

 .
The three singularity points ei 2kπ3 , 1 ≤ k ≤ 3, are arbitrary on the circle and can be related by conformal
identities. It also appears that taking µ1 = 1 and µ2 = µ3 = 0 and after a change of metric, the above result
will recover the previous result (1.1.2) on the interval, see subsection ??. However, we emphasis that there is
no overlap and the proof of the results in chapter 3 requires prior knowledge of the formulas for the interval
case. Subsection 1.5.3 summarizes this chapter with more details, where we choose to represent the expressions
on the real axis equipped with an appropriate metric.

3 Main result 3: Content of chapter 4.
In all the results mentioned above, we start by introducing some auxiliary functions and study their second
order differential equations. The general form of this type of differential equations are known as the BPZ
equations. Our third result proves higher order BPZ equations, based on some intrinsic relations between cor-
relation functions in CFT and Coulomb gas integrals. We summarize this result in more details in subsection
1.4.3.



10 CHAPTER 1. AN OVERVIEW OF GAUSSIAN CHAOS AND LIOUVILLE THEORY

The remaining part of this overview is divided as follows. First we will give the definitions and basic
properties of all the objects that we will use, the Gaussian free field, the Gaussian multiplicative chaos measures
and the correlation functions of LCFT. Then we will explain in more details all the properties Liouville field
theory inherits from the framework of CFT. Exploiting the constraints imposed by the BPZ equations leads to
the derivation of exact formulas for GMC measures and Liouville theory. This is what one should understand by
the word “integrability” that we have used in the title, the existence of exact formulas for fractional moments
of certain GMC measures or equivalently for the corresponding correlation functions of LCFT. Applications
to related problems in probability theory are also included. Lastly we will state some open problems for future
directions of research as well as a list of additional exact formulas that we expect to be able to prove using
similar techniques.

1.2 Gaussian free fields and Gaussian multiplicative chaos
1.2.1 Gaussian free fields and log-correlated fields
The fundamental Gaussian processes that we will always work with are log-correlated fields which can be
defined on Rd in any dimension d. However for our purpose we will only need the cases d = 1 or d = 2.
In the case of dimension two the field is then known as the Gaussian free field (GFF). In dimension one a
log-correlated field can be seen as the restriction to a 1d domain of a Gaussian free field in two-dimensions.
For the purpose of this overview and for the coming chapters we will consider many different domains, the
Riemann sphere S2, the unit disk D, the upper-half plane H for the two-dimensional cases and the unit interval
[0, 1], the unit circle ∂D, the real axis R for the one-dimensional case. Although the general idea is always the
same, defining the field on each domain will be slightly different based on the topology of the domain. We will
try to treat all the above cases in the most concise way possible.

Let us start with the case of the full plane GFF X that will be used to define the GFF on the Riemann
phere S2. One should keep in mind that a very natural way to represent the sphere S2 is simply to add a point
at infinity to the complex plane, i.e. C∪{∞}. We start by introducing the space S(C) of smooth test functions
on C with compact support and the subspace S0(C) ⊂ S(C) of test functions that have zero average over C.
We denote by S ′(C) the space of distributions associated to S(C) and by S ′(C)/R the space of distributions
associated to S0(C) which can be seen as a space of distributions modulo constants.

We can now define the full plane GFF X as a Gaussian random variable living in S ′(C)/R with the following
covariance for all f, h ∈ S0(C):

E[(
∫
C
f(x)X(x)d2x)(

∫
C
h(y)X(y)d2y)] =

∫
C2

f(x)h(y) ln
1

|x− y|
d2xd2y.2 (1.2.2)

Note that the above definition can be extended to the case where f, h are generalized functions. Therefore we
can also view the filed X as a centered Gaussian process indexed by a certain signed measure space. With
this full plane GFF we can define a GFF living in S ′(C) by prescribing the value of X against a probability
measure on C. This will fix the undetermined constant and thus X will be defined against any test function
in S ′(C). Anticipating the coming constructions of LCFT it is natural to write g(x)d2x for the measure on C
with which we define:

Xg(x) = X(x)−
∫
C
X(x)g(x)d2x. (1.2.3)

We will say that Xg is the GFF on the Riemann sphere S2 of zero average with respect to the metric g. A
natural choice is to chose,

ĝ(x) :=
4

(1 + |x|2)2
, (1.2.4)

2This is a suitable definition for the covariance of a Gaussian process as one can prove by Fourier analysis the following identity,∫
C2

f(x)h(y) ln
1

|x− y|
d2xd2y = c

∫
C

f̂(ξ)ĥ(ξ)

|ξ|2
d2ξ > 0, (1.2.2)

where c > 0 is a constant.



1.2. GAUSSIAN FREE FIELDS AND GAUSSIAN MULTIPLICATIVE CHAOS 11

as this is the canonical spherical metric on S2. More explicitly with this choice ĝ the field Xĝ then has the
covariance: for x, y ∈ C,

E[Xĝ(x)Xĝ(y)] = ln
1

|x− y|
− 1

4
ln ĝ(x)− 1

4
ln ĝ(y) + ln 2− 1

2
. (1.2.5)

We will see in subsection 1.4.1 that in LCFT it suffices to study one particular metric and all the results under
other conformally equivalent metrics can be obtained by using Weyl anomaly. By conformally equivalent we
mean that g(x) = eφ(x)ĝ(x) with φ ∈ C1(C ∪ {∞}) such that

∫
C |∂φ(x)|2g(x)d2x < ∞. This completes the

description of the different GFF on the plane and on the sphere.
We move on to the boundary case and start by looking at the unit disk D. When one works on a domain

with boundary there is of course a choice to be made of which boundary conditions to work with. The most
natural choice one can think of are the Dirichlet boundary conditions where one imposes the GFF XD to be
equal to 0 on the boundary. It turns out that this is not the right choice to construct LCFT as this boundary
condition is much too strong and many of the expected properties of CFT - see section 1.4 - would fail to hold.
Hence we will rather choose Neumann boundary conditions, also sometimes called free boundary conditions.
The covariance of the Neumann GFF XD is given for x, y ∈ D by:

E[XD(x)XD(y)] = ln
1

|x− y||1− xy|
. (1.2.6)

Of course just like for the case of the full plane GFF, XD lives in the space of distributions so the equation
(1.2.6) is to be understood by,

E[(
∫
D
f(x)XD(x)d

2x)(

∫
D
h(y)XD(y)d

2y)] =

∫
D2

f(x)h(y) ln
1

|x− y||1− xy|
d2xd2y, (1.2.7)

where again f and h are smooth test functions defined on D. We also define for different metric g con-
formally equivalent to the canonical metric on D the field XD,g with vanishing mean on the circle, i.e.∫
∂DXD,g(x)g(x)

1/2dx = 0. The field XD,g can be obtained by

XD,g = XD −
∫
∂D
XD(x)g(x)

1/2dx. (1.2.8)

With the covariance (1.2.6) established one can then give the covariance for the GFF defined on H by using
the conformal mapping z → z−i

z+i linking H and D. This provides the expression:

E[XH(x)XH(y)] = ln
1

|x− y||x− y|
+ ln |x+ i|2 + ln |y + i|2 − 2 ln 2. (1.2.9)

Thed fileds XH,g are then defined as XH −
∫
RXH(x)g(x)

1/2dx. For some technical reasons, when computing
exact formulas in chapter 2 and 3, we will consider another log correlated field X defined on H:

E[X(x)X(y)] = 2 ln
1

|x− y|
+ 2 ln |x|+ + 2 ln |y|+, where |x|+ = max(|x|, 1). (1.2.10)

The field X can be constructed from XH using:

X = XH − 1

π

∫ π

0

XH(e
iθ)dθ. (1.2.11)

We will explain how results calculated using the field X can be related to those using the field XH.
Lastly we conclude this discussion with the one dimensional cases that we need. For the case of the circle

∂D we will simply restrict the Neumann boundary GFF XD defined on the disk D to the circle. The covariance
we thus obtain is given for two points eiθ, eiθ′ by:

E[XD(e
iθ)XD(e

iθ′)] = 2 ln
1

|eiθ − eiθ′ |
. (1.2.12)
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For the case of the real axis, by analogy with (1.2.12) we will simply chose for our field X defined on R the
covariance given for x, y ∈ R:

E[X(x)X(y)] = 2 ln
1

|x− y|
+ 2 ln |x|+ + 2 ln |y|+. (1.2.13)

Particularly, for the interval case where x, y ∈ [0, 1], the covariance equals 2 ln 1
|x−y| .

1.2.2 Gaussian multiplicative chaos measures
We will now introduce the Gaussian multiplicative chaos measures, a fundamental building block of LCFT. Our
goal is to define a random measure with density with respect to the Lebesgue measure given by the exponential
of our log-correlated fields. The major problem that must be overcome comes from the fact that the exponential
of a distribution is ill-defined. Thus this requires to use a regularization and renormalization procedure. The
same method will work to define GMC measures associated to all the different cases of log-correlated field that
we have described above.

The first step is to provide a regularization procedure of X, a log-correlated field defined on C or H. Let η
be a smooth function on R+ supported in [ 12 , 1], such that π

∫
R+
η(t)dt = 1 and define ηδ(x) := 1

δ2 η(|x|
2/δ2).

We will work with the regularization

Xδ(x) :=

∫
C
X(x− y)ηδ(y)d

2y. (1.2.14)

When X is a Gaussian field on H, we should consider an extension of the field X(x) = X(x) for x ∈ H, then
the above definition makes sense. Note that our regularization is indeed a smooth version of the circle average
(it is slightly differnt when x is close to the boundary for the case of H). This choice makes it possible to take
derivatives of the field Xδ. There are also other regularizations as long as certain conditions are satisfied, and
they are all equivalent for defining the GMC measures, see [12] for more details. When X is a log-correlated
field on D, a possible method to do this is to use circle average regularization although many other paths are
possible. For ϵ > 0 we call lδ(x) the length of the arc Aδ(x) = {z ∈ D; |z − x| = δ} and we set:

Xδ(x) =
1

lδ(x)

∫
Aδ(x)

X(x+ s)ds. (1.2.15)

We now state the following proposition-definition of Gaussian multiplicative chaos for dimension 1 and 2:

Proposition 1.2.1. (Definition of GMC) Let γ ∈ (0, 2) and X a log-correlated field on a domain D of
dimension 2. We then define the random measure eγX(x)d2x as the following limit in probability

eγX(x)d2x := lim
δ→0

eγXδ(x)−
γ2

2 E[Xδ(x)2]d2x (1.2.16)

in the sense of weak convergence of measures. More precisely this means that for all continuous compactly
supported test functions f : D → R, the following convergence holds in probability:∫

D

f(x)eγX(x)d2x = lim
δ→0

∫
D

f(x)eγXδ(x)−
γ2

2 E[Xδ(x)2]d2x. (1.2.17)

We also define for the one dimensional case where X is a 1d log-correlated field defined: for γ ∈ (0, 2),

e
γ
2X(x)dx := lim

δ→0
e
γ
2Xδ(x)−

γ2

8 E[Xδ(x)2]dx. (1.2.18)

Remark 1.2.2. The above definition can be extended to d-dimensional case, see [92]. Note that there is
a slight difference when we talk about 1d log-correlated field. Here we are considering 1d fields with kernel
2 ln 1

|x−y| + h(x, y) instead of ln 1
|x−y| + h(x, y), as described in the previous subsection. This difference in

convention changes the domain of existence for γ.
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We always integrate the GMC measure with a background metric g, in which case we can integrate a much
larger family of test functions. Actually in the later LCFT constructions, we will integrate against the following
measures on different geometries:

• On S2: eγXg(x)g(x)d2x.

• On D: eγXD,g(x) g(x)

(1−|x|2)
γ2

2

d2x, and on ∂D: e γ2XD,g(e
iθ)g(eiθ)

1
2 dθ.

• On H: eγXH,g(x) g(x)

|x−x̄|
γ2

2

d2x, and on R: e γ2XH,g(x)g(x)
1
2 dx.

Remark that we can easily relate the GMC on D with GMC on H using conformal invariance of GFF.
For example, starting from XH with covariance given by (1.2.9), we take the conformal map ψ(z) = z−i

z+i and
f : D → R a test function, then∫

D
f(x)eγXD(x)d2x =

∫
H
f(ψ(x))eγXH(x)|ψ′(x)|2d2x. (1.2.19)

Therefore we are free to present the results of GMC on D or on H.
Now we give a list of results on the existence of moments of GMC on S2, D, and ∂D. We also include the

generalization where certain fractional moments are added in the GMC measure. The bounds obtained will be
extremely important for the definitions of the correlations of LCFT. We start with the existence of moments:

Proposition 1.2.3. (Moments of GMC on S2) Let ĝ be the canonical spherical metric on S2 and let γ ∈ (0, 2).
Then we have,

E[(
∫
C
eγXĝ(x)ĝ(x)d2x)p] < +∞, (1.2.20)

if and only if p < 4
γ2 .

We also provide a similar result for D and ∂D:

Proposition 1.2.4. (Moments of GMC on D) Let γ ∈ (0, 2), then we have

E[(
∫
D

eγXD(x)

(1− |x|2) γ
2

2

d2x)p] < +∞ (1.2.21)

if and only if p < 2
γ2 and

E[(
∫ 2π

0

e
γ
2XD(e

iθ)dθ)p] < +∞ (1.2.22)

if and only if p < 4
γ2 .

We have a different result for the moments of the bulk measure because of singularity 1

(1−|x|2)
γ2

2

and

because of the behaviour of the GFF X near the boundary. To study LCFT we also need the same type of
results but with insertion points. The bounds for non-triviality of a GMC moment with insertion have been
obtained in [20, 53], they are:

Proposition 1.2.5. (Moments of GMC with insertions) Let γ ∈ (0, 2), Q = γ
2 + 2

γ , α, β ∈ R, z ∈ C with
|z| < 1, and s ∈ ∂D. Then we have,

0 < E[(
∫
C

1

|z − x|γα
eγXĝ(x)ĝ(x)d2x)p] < +∞, (1.2.23)

if and only if α < Q and p < 4
γ2 ∧ 2

γ (Q− α). Similarly,

0 < E[(
∫
D

1

|z − x|γα
1

|s− x| γβ2
eγXD(x)

(1− |x|2) γ
2

2

d2x)p] < +∞, (1.2.24)



14 CHAPTER 1. AN OVERVIEW OF GAUSSIAN CHAOS AND LIOUVILLE THEORY

if and only if3 α < Q, β < Q, and p < 2
γ2 ∧ 2

γ (Q− α) ∧ 1
γ (Q− β). Lastly,

0 < E[(
∫ 2π

0

1

|s− eiθ| γβ2
e
γ
2XD(e

iθ)dθ)p] < +∞, (1.2.25)

if and only if β < Q and p < 4
γ2 ∧ 2

γ (Q− β).

1.3 Liouville conformal field theory
We now move on to the study of Liouville conformal field theory (LCFT). As we mentioned in introduction this
theory first appeared in Polyakov’s seminal 1981 paper [82] out of the need to understand what is a canonical
random Riemannian metric on a surface of given topology. More precisely Polyakov tells us that for a fixed
reference metric g on a given surface M one should consider the random metric eγϕg where ϕ is the Liouville
field.

This section will provide the construction of LCFT on different surfaces. Based on the topology of the
surface M there will be some differences in the construction. We will start by the simplest case, LCFT on the
Riemann sphere following [20]. Next will come the case of the unit disk D first studied in [53] where one has to
cope with the presence of a boundary. Let us mention that LCFT has also been constructed on other domains,
see [87] for the annulus case, [21] for the torus and [49] for compact surfaces of higher genus.

1.3.1 LCFT on the Riemann sphere
The case of the Riemann sphere S2 studied in detail in [20] is the simplest to define the theory of LCFT as it
is a compact simply connected boundaryless surface. Our choice of coordinates to represent the sphere S2 will
be the complex plane with a point added at infinity C ∪ {∞}.

To define LCFT, physicists use what is referred to as the path integral formalism.4 Informally it tells us
that our Liouville field ϕ will be given in terms of an infinite measure on a suitable functional space. Until the
very recent work [20] giving a rigorous probabilistic content to LCFT had remained an open problem. We now
sketch the physicists’ heuristic definitions before explaining how to make them rigorous. Consider the following
space of maps:

Σ = {X : S2 → R}. (1.3.1)
The Liouville field ϕ is then given by the following formal definition, for any background metric g on S2,

E[F (ϕ)] =
1

Z

∫
Σ

F (X)e−SL(X,g)DX, (1.3.2)

where SL(X, g) is the so-called Liouville action:

SL(X, g) =
1

4π

∫
C
(|∂gX|2 +QRgX + 4πµeγX)g(x)d2x. (1.3.3)

Let us comment on all our notations. The three real parameters γ,Q, µ that appear obey γ ∈ (0, 2), Q = γ
2 +

2
γ ,

and µ > 0. DX is the formal uniform measure on the space Σ and g is the background Riemannian metric
used to define the theory. To avoid going too deep into the framework of Riemannian geometry we restrict

3For γ ∈ (
√
2, 2) it remains to be proved that the bound written above on p is optimal although it is strongly believed to be

the case, see [53] for an explanation of this subtlety.
4It is instructive to note that the path integral formalism we explain can also be used to heuristically define Brownian motion.

Consider the space of path Σ′ = {σ : [0, 1] → R, σ(0) = 0} and the action SBM = 1
2

∫ 1
0 |σ′(t)|2dt. Then for all suitable F ,

E[F ((Bs)0≤s≤1)] =
1

Z

∫
Σ′

F (σ)e−SBM (σ)Dσ,

where Dσ is a formal uniform measure on Σ′.
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ourselves to the case where the background metric g is a diagonal tensor, meaning that g will simply be a
positive function defined on C ∪ {∞}. In this simple case we have ∂gX = g−1∂X and Rg = −g−1∆ln g. As a
matter of fact it turns out that on the Riemman sphere up to a change of coordinates any metric tensor can
be written under this form. Lastly Z is a formal normalization constant.

Let us now explain the three terms appearing in the Liouville action. The gradient term |∂gX|2 of (1.3.3)
is the free field or kinetic energy term. If this was the only term present, up to a global constant, the law of ϕ
would be that of our Gaussian free field Xg on S2. But the action (1.3.3) also contains a non-linear interaction
term, the exponential term eγX . At first glance it may seem unclear why it is interesting to consider this
specific interaction. The first motivation comes from theoretical physics - in particular string theory and 2d
quantum gravity, see [19, 23, 24, 82] - where as we have said earlier eϕg formally defines the correct random
Riemannian metric on S2. The second reason is that, out of all possible interaction terms, the exponential term
is the simplest term that defines a conformal field theory. The implications of this will be explained thoroughly
in sections 1.4 and 1.5. Finally, the term QRgX is the linear coupling of X to the background metric g. It is
required to get a consistent theory but does not pose any mathematical problems as it is a linear term in X.

One may wonder why the Liouville action is the correct action to define canonical random metrics. A first
answer comes from physics, in particular from Polyakov in [82]. An easier answer comes from the study of
classical Liouville theory, meaning that we look for the functions X minimizing the Liouville action. It is a
well known fact of classical geometry that such a minimum Xmin is unique if it exists and the new metric
g′ = eγXming is of constant negative curvature provided that Qc = 2

γ
5. In other words, the minimum of the

Liouville action uniformizes the surface (M, g) and it is therefore natural to look at quantum fluctuations of
the uniformized metric eγXming. This is precisely the meaning of (1.3.2).

As we have written it the path integral (1.3.2) diverges for any surface of genus 0 or 1, including therefore
the case of the sphere. To see this we can write the Gauss-Bonnet formula, given here for a boundaryless
surface M of genus h equipped with a metric g,

∫
M
Rg(x)g(x)d

2x = 8π(1− h). When h = 0 or 1, this implies
that it is impossible to define on the surface a metric of constant negative curvature, meaning that SL(X, g)
will have no minimum and therefore the path integral (1.3.2) diverges. To solve this problem we proceed as in
[20] and add insertion points. We consider the new expression,

E[F (ϕ)] =
1

Z

∫
Σ

F (X)e
∑N
i=1 αiX(zi)e−SL(X,g)DX, (1.3.4)

where we have chosen N insertion points zi ∈ S2 with weights αi ∈ R. By choosing F = 1 in the above
expression we define the N -point correlation function of LCFT, the most fundamental observable of the
theory:

〈
N∏
i=1

Vαi(zi)〉S2,g =
1

Z

∫
Σ

e
∑N
i=1 αiX(zi)e−SL(X,g)DX, (1.3.5)

where Vαi(zi) = eαiϕ(zi) are the so-called vertex operators.
We show that the following conditions known as the Seiberg bounds must be satisfied in order for (1.3.4)

and (1.3.5) to exist:
N∑
i=1

αi > 2Q and ∀i, αi < Q. (1.3.6)

The minimum number of insertion points needed to satisfy these bounds is three. This is precisely the require-
ment to entirely determine a conformal automorphism of the sphere, the so-called Mobius transformations.
From a geometric standpoint, we can also view insertion points as conical singularities of the metric which
allow hyperbolic metrics to be defined on the surface.

We now move on to the probabilistic definition of (1.3.5). This will require to use both the Gaussian free
field and the Gaussian multiplicative chaos measures. The GFF will appear out of the need to make sense

5Here we write Qc = 2
γ

as this is the correct value in the classical theory where the goal is to minimize the Liouville action. In
the quantum theory we will always have Q = 2

γ
+ γ

2
.
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of the formal density e−
1
4π

∫
C |∂gX|2g(x)d2xDX which we will interpret as the density of a Gaussian vector in

infinite dimensions. The key observation is that by performing an integration by parts we have:

1

4π

∫
C
|∂gX|2g(x)d2x =

1

2

∫
C
X

(
−∆g

2π

)
Xg(x)d2x. (1.3.7)

Therefore we are formally constructing a field with covariance given by the inverse of the Laplacian. To give a
more precise mathematical meaning to this observation we will replace the abstract space Σ by the following
L2 space,

L2(S2) := {X : S2 → R,
∫
C
X(x)2g(x)d2x < +∞}, (1.3.8)

on which we can diagonalize the Laplacian. Now let (ej)j≥1 be a basis of eigenvectors for −∆g meaning that,

− g(x)−1∆ej(x) = λjej(x), (1.3.9)

where the ej are normalized to have an L2 norm equal to 1:
∫
C ej(x)

2g(x)d2x = 1. With this basis any function
X ∈ L2(S2) can be written,

X = c+

∞∑
j=1

cjej , (1.3.10)

where the coefficient cj are obtained by cj =
∫
CX(x)ej(x)g(x)d

2x. Such a decomposition tells us that we have,

1

4π

∫
C
|∂gX|2g(x)d2x =

1

4π

∞∑
j=1

c2jλj , (1.3.11)

and so heuristically it is natural to want to write:∫
L2(S2)

F (X)e−
1
4π

∫
C |∂gX|2g(x)d2xDX =

∫
R

∫
RN∗

F (c+

∞∑
j=1

cjej)dc

∞∏
j=1

e−
c2jλj

4π dcj . (1.3.12)

Here dc and each dci are Lebesgue measures on R. The sum
∑
j≥1

√
2π
λj
ϵjej(x) with (ϵj)j≥1 being a sequence

of i.i.d. standard Gaussians converges in the space of distributions towards Xg and thus we can make sense of
the above formal expression by writing that:∫

L2(S2)
F (X)e−

1
4π

∫
C |∂gXg|2g(x)d2xDX :=

∫
R
E[F (Xg + c)]dc. (1.3.13)

In the above expression, the left hand side is a formal expression where X is an integration variable. On the
right hand side Xg is the GFF that we have constructed. By construction of our GFF Xg on S2 we have∫
CXg(x)Rg(x)g(x)d

2x = 0. Therefore:∫
L2(S2)

F (X)e−
1
4π

∫
C |∂gX|2g(x)d2x− 1

4π

∫
CX(x)Rg(x)g(x)d

2xDX :=

∫
R
e−2QcE[F (Xg + c)]dc. (1.3.14)

Thus using the Gaussian free field we have given a probabilistic meaning to (1.3.2) in the very special
case where µ = 0. We now tackle the problem of handling the exponential interaction term, this is where we
will require the theory of Gaussian multiplicative chaos. To define the correlations (1.3.5) we want to pick in
(1.3.14) a functionnal F of the type,

F (X) =

N∏
i=1

eαiX(zi)e−µ
∫
C e
γX(x)g(x)d2x, (1.3.15)

but since Xg is not defined pointwise but lives in the space of distributions this will require a regularization
and renormalization procedure. We now state the theorem that insures that the correlations of LCFT on S2
are well-defined by using the regularization-renormalization procedure.
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Theorem 1.3.1. (Correlation functions of LCFT on S2) Choose N points zi ∈ S2 of weights αi ∈ R such
that the Seiberg bounds (1.3.6) are satisfied. Then the N -point correlation function of LCFT is defined by the
following limit,

〈
N∏
l=1

Vαl(zl)〉S2,ĝ := lim
δ→0

〈
N∏
l=1

Vαl,δ(zl)〉S2,ĝ (1.3.16)

where the expresssion of the regularized correlation is given by:

〈
N∏
i=1

Vαi(zI)〉S2,ĝ,δ :=2e(ln 2− 1
2 )(

1
2

∑N
l=1 α

2
l−

γ
2

∑N
l=1 αl−

4Q
γ )

∫
R
e−2Qc E

[ N∏
l=1

ĝδ(zl)
∆αl eαl(Xĝ,δ(zl)+c)−

α2
l
2 E[Xĝ,δ(zl)2]

× e−µe
γc

∫
C e
γXĝ,δ(x)−

γ2

2
E[Xĝ,δ(x)

2]ĝδ(x)d
2x
]
dc, (1.3.17)

where ∆α := α
2 (Q − α

2 ) is the conformal weight. The limit written above exists and is different from 0 and
+∞. By simple manipulations on the above definition, one obtains the more compact expression,

〈
N∏
i=1

Vαi(zi)〉S2,ĝ = Z(α)
∏

1≤i<j≤N

1

|zi − zj |αiαj
E

(∫
C

eγXĝ(x)ĝ(x)1−
γ
4

∑N
i=1 αid2x∏N

k=1 |x− zk|γαk

)−
∑N
i=1 αi−2Q

γ

 , (1.3.18)

where

Z(α) := 2e−
(ln 2−1/2)

2 (
∑N
i=1 αi−2Q)(

∑N
i=1 αi−

4
γ )γ−1Γ

(∑N
i=1 αi − 2Q

γ
, µ

)
. (1.3.19)

Remark 1.3.2. gδ is defined as gδ := g ∗ ηδ. In the expression (1.3.17), we manually add the multiplier
term

∏N
i=1 gδ(zl)

∆αl to have the conformal invariance consistent with the literature, and we add the constant
prefactor term that is independent of zi to stay in the same convention as the DOZZ formula in the literature.
Both added terms play no important roles and can be easily analyzed. We chose to present in this way as it is
easier for the proof of the BPZ equations. Of course we can define the correlation functions for any metric g
conformally equivalent to ĝ by using Xg in the above definition instead of Xĝ, and we only need to change the
prefactor accordingly. More details can be found in [20].

There are two simple steps to go from (1.3.17) to (1.3.18). The first is to apply the Girsanov theorem (also
called the complete the square trick in physics) to the insertions eαiXĝ,δ(zi)−

α2
i
2 E[Xĝ,δ(zi)2], which produces a

shift on the field Xĝ,δ(x) → Xĝ,δ(x) +
∑
i αiE[Xĝ,δ(x)Xĝ,δ(zi)]. By then using the explicit expression of the

covariance this creates the fractional powers in the GMC measure. The second step is simply to perform a
change of variable on the integral over c by setting u = µeγc

∫
C e

γXĝ,δ(x)− γ2

2 E[Xĝ,δ(x)2]d2x. The integral over
u then gives a Gamma function and we are left with (1.3.18). This last expression we obtain for the value of
the N -point correlation of LCFT on S2 is fundamental. It tells us that we have a definition for the correlation
function in terms of a relatively simple probabilistic object, a moment of a GMC measure with prescribed log-
singularities. With this expression well-established one can now hope to implement rigorously in a probabilistic
framework all the techniques of conformal field theory.

1.3.2 LCFT on a domain with boundary
Following [53] LCFT can of course also be defined on a domain with a boundary. We start by explaining the
construction on the unit disk D and we denote by ∂D its boundary. By conformal mapping this will provide
as well the construction of LCFT on H. The biggest difference with the case of the Riemann sphere S2 is that
we can now have two exponential interaction terms, a bulk interaction µeγXd2x and a boundary interaction
µ∂e

γ
2Xdθ. Therefore the Liouville action will contain in this case boundary terms:

S∂(X, dx
2) =

1

4π

∫
D
(|∂X|2 + 4πµeγX)d2x+

1

2π

∫
∂D

(QX + 2πµ∂e
γ
2X)dθ. (1.3.20)
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In the same way as before we can write a heuristic path integral definition for the correlation functions of
the theory:

〈
N∏
i=1

Vαi(zi)

M∏
j=1

Bβj (sj)〉D =
1

Z

∫
Σ

e
∑
i αiX(zi)+

1
2

∑
j βjX(sj)e−S∂(X,dx

2)DX (1.3.21)

In our presentation we have restricted ourselves to the case of the Euclidean metric dx2 on D but of course
one could also define the theory in any background metric g. We note that there are two types of insertion
points, bulk insertions zi ∈ D with weights αi ∈ R that are inside the disk and boundary insertions sj ∈ ∂D
with weights βj ∈ R that are placed on the unit circle. Similar techniques as the ones explained for the case
of S2 allow one to give a probabilistic meaning to the above path integral. The Seiberg bounds for this case
are given by:

N∑
i=1

αi +

M∑
j=1

βj
2
> Q and ∀i, αi < Q, ∀j, βj < Q. (1.3.22)

Again we notice that these bounds impose a minimum number of points that corresponds exactly to
completely determining a conformal automorphism of the disk D. We can now state:
Theorem 1.3.3. (Correlation functions of LCFT on D) Choose N points zi ∈ D and M points sj ∈ ∂D such
that the bounds (1.3.22) hold. We replace µ∂ by different boundary cosmological constants µj between sj and
sj+1 with sj well ordered on the circle and the corresponding boundary measure is denoted by dµ∂(θ). Then
the correlation function has an expression given by,

〈
N∏
i=1

Vαi(zi)

M∏
j=1

B
µj−1,µj
βj

(sj)〉D

=

N∏
i=1

(1− |zi|2)−
α2
i
2

∏
1≤i<i′≤N

|zi − zi′ |−αiαi′ |1− ziz̄i′ |−αiαi′
∏

1≤i≤N,1≤j≤M

|zi − sj |−αiβj
∏

1≤j<j′≤M

|sj − sj′ |−
βjβj′

2

∫
R
dc e(

∑
i αi+

∑
j

βj
2 −Q)cE

[
exp

(
− µeγc

∫
D

1∏N
i=1 |x− zi|γαi |1− xz̄i|γαi

∏M
j=1 |x− sj |γβj

eγX(x)

(1− |x|2) γ
2

2

d2x

− e
γc
2

∫ 2π

0

1∏N
i=1 |eiθ − zi|γαi

∏M
j=1 |eiθ − sj |

γβj
2

e
γ
2X(eiθ)dµ∂(θ)

)]
.

Remark 1.3.4. The boundary measure dµ∂(θ) is defined as:

dµ∂(θ)/dθ =

M−1∑
j=1

µj1eiθ between sj and sj+1
+ µM1eiθ between sM and s1 . (1.3.23)

The difference with S2 is that if both interaction terms are present, i.e. µ > 0, µj > 0, then we will not
land on an expression as simple as (1.3.18). Indeed, it is not possible to perform the same change of variable
on c and we must stick to the expression of Theorem 1.3.3. On the other hand if one chooses µ = 0 or µ∂ = 0
then the above can be simplified to obtain an expression involving a moment of GMC on the circle ∂D or
respectively on the disk D. For example, in the case µ = 0 we have

〈
N∏
i=1

Vαi(zi)

M∏
j=1

B
µj−1,µj
βj

(sj)〉D,µ=0

=

N∏
i=1

(1− |zi|2)−
α2
i
2

∏
1≤i<i′≤N

|zi − zi′ |−αiαi′ |1− ziz̄i′ |−αiαi′
∏

1≤i≤N,1≤j≤M

|zi − sj |−αiβj
∏

1≤j<j′≤M

|sj − sj′ |−
βjβj′

2

2

γ
Γ(

2
∑
i αi +

∑
j βj − 2Q

γ
)E

[(∫ 2π

0

1∏N
i=1 |eiθ − zi|γαi

∏M
j=1 |eiθ − sj |

γβj
2

e
γ
2X(eiθ)dµ∂(θ)

)−
2
∑
i αi+

∑
j βj−2Q

γ
]
.
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We give the equivalent representation on H equipped with the metric ĝ(x) = 4
|x+i|4 ,

〈
N∏
i=1

Vαi(zi)

M∏
j=1

B
µj−1,µj
βj

(sj)〉H

=

N∏
i=1

|zi − z̄i|−
α2
i
2

∏
1≤i<i′≤N

|zi − zi′ |−αiαi′ |zi − z̄i′ |−αiαi′
∏

1≤i≤N,1≤j≤M

|zi − sj |−αiβj
∏

1≤j<j′≤M

|sj − sj′ |−
βjβj′

2

∫
R
dc e

γp
2 cE

[
exp

(
− µeγc

∫
H

ĝ(x)
γ2

4 (−p−1)/|x− x̄|
γ2

2∏N
i=1 |x− zi|γαi |x− z̄i|γαi

∏M
j=1 |x− sj |γβj

eγX(x)d2x

− e
γc
2

∫
R

ĝ(r)
γ2

8 (−p−1)∏N
i=1 |r − zi|γαi

∏M
j=1 |r − sj |

γβj
2

e
γ
2X(r)dµ∂(r)

)]
.

where

p =
2
∑N
i=1 αi +

∑M
j=1 βj − 2Q

γ
, (1.3.24)

and the boundary measure is defined by

dµ∂(r)/dr =

M−1∑
j=1

µj1sj<r<sj+1 + µM1r/∈(s1,sM ). (1.3.25)

1.4 The techniques of conformal field theory
Now that we have at our disposal a probabilistic construction of LCFT we can verify that it satisfies all the
different properties expected of a conformal field theory. This will provide extremely powerful techniques to
perform exact computations on the Liouville theory. In particular the celebrated equations of Belavin-Polyakov-
Zamolodchikov (BPZ) translate the constraints imposed by the local conformal invariance of CFT. By using
these equations we will be able to obtain exact computations on certain correlation functions of the theory.
We insist on the fact that all the properties we will consider - Weyl anomaly, KPZ formula and BPZ equations
- are theorems that are proved starting from the definition given by Theorem 1.3.1. They are not imposed as
axioms as in other approaches [91]. In the following three subsections there will always be two cases, the case
of the Riemann sphere S2 and the case of a domain with boundary.

1.4.1 Weyl anomaly and KPZ formula
In section 1.3 we gave a definition of LCFT for any background metric g defined on the Riemann sphere S2. It
is thus natural to wonder how the correlation functions of LCFT depend on this choice of background metric.
The answer to this question is given by the Weyl anomaly, a property expected of all CFT’s. Following [20]:

Theorem 1.4.1. (Weyl anomaly on S2) Given a metric g = eφĝ conformally equivalent to the spherical metric
ĝ we have,

〈
N∏
i=1

Vαi(zi)〉S2,g = exp

(
cL
96π

(

∫
C
|∂φ(x)|2d2x+ 4

∫
C
φ(x)ĝ(x)d2x)

)
〈
N∏
i=1

Vαi(zi)〉S2,ĝ, (1.4.1)

where cL = 1 + 6Q2. This constant cL is the so-called central charge of the Liouville conformal field theory.

We can also write down the exact same theorem for a domain with boundary. We write here the result for
the unit disk D although of course a similar formula is true for the upper half plane H or for other geometries
where LCFT has been constructed. Following [53]:



20 CHAPTER 1. AN OVERVIEW OF GAUSSIAN CHAOS AND LIOUVILLE THEORY

Theorem 1.4.2. (Weyl anomaly on D) Given a metric g = eφdx2 conformally equivalent to the Euclidean
metric dx2 on D we have,

〈
N∏
i=1

Vαi(zi)

M∏
j=1

B
µj−1,µj
βj

(sj)〉D,g = exp

(
cL
96π

(

∫
D
|∂φ(x)|2d2x+ 4

∫
∂D
φ(eiθ)dθ)

)
〈
N∏
i=1

Vαi(zi)

M∏
j=1

B
µj−1,µj
βj

(sj)〉D,

(1.4.2)
where again cL = 1 + 6Q2.

We now move on to the KPZ formula which describes the behaviour of the Liouville theory when one
applies a conformal automorphism to the domain. In other words it tells us that the correlations of LCFT
behave as conformal tensors. We start with S2, see [20]:

Theorem 1.4.3. (KPZ formula on S2) For any conformal automorphism ψ of S2, the following holds:

〈
N∏
i=1

eαiϕ(ψ(zi))〉S2,ĝ =
N∏
i=1

|ψ′(zi)|−2∆αi 〈
N∏
i=1

eαiϕ(zi)〉S2,ĝ. (1.4.3)

The ∆αi :=
αi
2 (Q− αi

2 ) in the above theorem are the so-called conformal weights of CFT. Similarly for a
domain with boundary such as the unit disk D, see [53]:

Theorem 1.4.4. (KPZ formula on D) For any conformal automorphism ψ of D, the following holds:

〈
N∏
i=1

Vαi(ψ(zi))

M∏
j=1

B
µj−1,µj
βj

(ψ(sj))〉D =

N∏
i=1

|ψ′(zi)|−2∆αi

M∏
j=1

|ψ′(sj)|−∆βj 〈
N∏
i=1

Vαi(zi)

M∏
j=1

B
µj−1,µj
βj

(sj)〉D.

(1.4.4)

Another very similar result that we have at our disposal is the conformal change of domain formula. This
tells us how the theory behaves when we change domains by a conformal map ψ (for instance we can map the
unit disk D to upper half plane H). The result is again that the theory behaves as a conformal tensor.

Theorem 1.4.5. (Conformal change of domain) Let D be a domain of C with a smooth boundary and
conformally equivalent to the unit disk D. Let ψ : D 7→ D be a conformal map between D and D and let
gψ = |ψ′|2g(ψ) be the pull-back of a metric g on D by ψ. Then we have:

〈
N∏
i=1

Vαi(zi)

M∏
j=1

B
µj−1,µj
βj

(sj)〉D,gψ =

N∏
i=1

|ψ′(zi)|2∆αi
M∏
j=1

|ψ′(sj)|∆βj 〈
N∏
i=1

Vαi(ψ(zi))

M∏
j=1

B
µj−1,µj
βj

(ψ(sj))〉D,g.

1.4.2 Degenerate fields and BPZ equations
In this last subsection we explain the BPZ equations of Belavin-Polyakov-Zamolodchikov that will give us the
constraints we need to compute certain correlation functions of LCFT. We start by explaining the case of the
Riemann sphere S2. Consider the following function,

z → 〈V−χ(z)
N∏
i=1

Vαi(zi)〉S2,ĝ, (1.4.5)

where the points z, zi ∈ S2 have respective weights −χ, αi chosen so that the Seiberg bounds (1.3.6) hold. The
reason why we distinguish the point z of weight −χ is that we will choose this −χ to be equal to a very special
value, either −γ

2 or − 2
γ . V−χ(z) is then called a degenerate field insertion and the value of −χ is the degenerate

weight. More generally, the degenerate weights of order (r, s) ∈ N∗2 are given by −( (r−1)γ
2 + 2(s−1)

γ ). Here we
are considering degenerate insertions with order (2, 1) and (1, 2), which are the most important cases for the
integrability program of LCFT. Under this very specific condition the function of z given by (1.4.5) will be
solution to a second order differential equation. Indeed, it is shown in [60] using probabilistic techniques:
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Theorem 1.4.6. Consider points z, zi ∈ S2 with respective weights −χ, αi ∈ R chosen so that the Seiberg
bounds (1.3.6) hold. Then we have the following PDE,

(
1

χ2
∂zz +

N∑
i=1

∆αi

(z − zi)2
+

N∑
i=1

1

z − zi
∂zi)〈V−χ(z)

N∏
i=1

Vαi(zi)〉S2,ĝ = 0,

under the condition that χ is worth γ
2 or 2

γ .

Again we see the conformal weight ∆αi := αi
2 (Q − αi

2 ) appear. For the purposes of proving the DOZZ
formula the authors of [61] have applied the differential equation more specifically to the case of a four-
point function, see subsection 1.5.1. Naturally a similar story can be told for the case of a domain with
boundary. It will be more convenient to write the differential equation on H although by conformal mapping
we can easily transform it into an equation on D. For this boundary case we consider correlations of the type
〈
∏N
i=1 Vαi(zi)

∏M
j=1Bβj (sj)〉H where we have bulk insertions zi ∈ H with αi ∈ R and boundary insertions

sj ∈ ∂H = R with βj ∈ R and again we choose the weights so that the bounds (1.3.22) hold. Now in the
boundary case there are two possibilities for the position of the degenerate insertion, either in the bulk H or on
the boundary R. Both of these cases will lead to BPZ equations. We start by giving the theorem corresponding
to the case where the degenerate insertion is placed in the bulk:

Theorem 1.4.7. Consider points z, zi ∈ H with respective weights −χ, αi ∈ R and points sj ∈ R with
respective weights βj ∈ R chosen so that the Seiberg bounds (1.3.22) hold. Then we have the following PDE,

(
1

χ2
∂zz +

∆−χ

(z − z)2
+

N∑
i=1

∆αi

(z − zi)2
+

N∑
i=1

∆αi

(z − zi)2
+

M∑
j=1

∆βj

(z − sj)2

+
1

z − z
∂z +

N∑
i=1

1

z − zi
∂zi +

N∑
i=1

1

z − zi
∂zi +

M∑
j=1

1

z − sj
∂sj )〈V−χ(z)

N∏
i=1

Vαi(zi)

M∏
j=1

B
µj−1,µj
βj

(sj)〉H = 0,

where χ needs to be equal to γ
2 or 2

γ .

The proof of this differential equation is very similar to the sphere case and there is no additional major
difficulties. We only need to pay attention to the boundary measure dµ∂ since we put different boundary
cosmological constants µj , and the technical problem is the same as in the subsection 2.3 where we use a ϵ-cut
off around each boundary insertion sj and the ϵ singularities regrouped together can be shown to converge to
0.

Moving on to the second possibility where we place the degenerate insertion on the boundary, we also
expect to have a BPZ equation of order 2 but it turns out that for such an equation to hold we impose a very
special condition on the µ∂ values around the degenerate insertion. More precisely, for each µj we can write

µj =

√
µ

sin(π γ
2

4 )
cos(πγ(σj −

Q

2
)). (1.4.6)

When the degenerate insertion s is added between sj and sj+1 (by convention s0 = −∞ and sM+1 = ∞), the
BPZ equations hold true when the degenrate vertex operator Bµj ,µ

′
j

−χ (s) satisfies µ′
j =

√
µ

sin(π γ
2

4 )
cos(πγ(σj ±

χ
2 − Q

2 )). The statement is as follows:

Conjecture 1. Consider points zi ∈ H with weights αi ∈ R and points s, sj ∈ R with respective weights
−χ, βj ∈ R chosen so that the Seiberg bounds (1.3.22) hold, where χ = γ

2 or 2
γ . We order the boundary
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insertion points accordingly : s1 < · · · < sM . Then we have the following PDE for s > sM :

(
1

χ2
∂ss +

N∑
i=1

∆αi

(s− zi)2
+

N∑
i=1

∆αi

(s− zi)2
+

M∑
j=1

∆βj

(s− sj)2
+

N∑
i=1

1

s− zi
∂zi +

N∑
i=1

1

s− zi
∂zi +

M∑
j=1

1

s− sj
∂sj )

〈BµM ,µ
′
M

−χ (s)

N∏
i=1

Vαi(zi)

M∏
j=1

B
µj−1,µj
βj

(sj)〉H = 0,

under the condition that there exists σM ∈ C such that

µM =

√
µ

sin(π γ
2

4 )
cos(πγ(σM − Q

2
)), µ′

M =

√
µ

sin(π γ
2

4 )
cos(πγ(σM ± χ

2
− Q

2
)).

We also have similar equations when s is inserted elsewhere on R.

This phenomenon is partially understood in the special case where µ = 0, where the condition becomes
simply µ′

j = e±i
γχ
2 µj . This is done in chapter 3 for the four point correlations and discussed in 4 for the higher

order BPZ equations (see also the next subsection). To understand the constraint in the general case where
µ > 0, we need to do some finer analysis of the potential singularities and this would hopefully come out in
an upcoming work. We also expect the some other conditions for the BPZ equations to hold:

Conjecture 2. Consider points zi ∈ H with weights αi ∈ R and points s, sj ∈ R with respective weights
−χ, βj ∈ R chosen so that the Seiberg bounds (1.3.22) hold, where χ = γ

2 or 2
γ . Suppose that µ∂ is a constant

(instead of piecewise constant) and verifies µ = µ2
∂ tan(π

γ2

8 ), then we have the following PDE:

(
1

χ2
∂ss +

N∑
i=1

∆αi

(s− zi)2
+

N∑
i=1

∆αi

(s− zi)2
+

M∑
j=1

∆βj

(s− sj)2
+

N∑
i=1

1

s− zi
∂zi +

N∑
i=1

1

s− zi
∂zi +

M∑
j=1

1

s− sj
∂sj )

〈B−χ(s)

N∏
i=1

Vαi(zi)

M∏
j=1

Bβj (sj)〉H = 0.

1.4.3 Higher order BPZ equations, Summary of chapter 4
In fact, CFT predicts there to be BPZ equations of all orders. To illustrate the idea, let us consider the sphere
case in this subsction. We can index the BPZ equations by two parameters (r, s), with r, s positive integers. This
index corresponds to the parameter −( (r−1)γ

2 + 2(s−1)
γ ) for the degenerate insertion. The equation associated

with the parameter (r, s) is a partial differential equation of order rs in several complex variables. There is no
general combinatorial formula for the BPZ equations of general orders (r, s). Nevertheless, in 1988, Benoît and
Saint-Aubin (BSA, [11]) found an explicit formula for the BPZ equations of order (r, 1) and (1, r). To present
the combinatorial formula, we will need the notations for some differential operators:

Definition 1.4.8. We introduce the differential operators (L−n)n≥1 defined as

L−1 := ∂z, L−n :=

N∑
l=1

(
− 1

(zl − z)n−1
∂zl +

∆αl(n− 1)

(zl − z)n

)
n ≥ 2. (1.4.7)

Now let us state the BSA formulas for the BPZ equations:

Theorem 1.4.9. Let r ≥ 2 an integer and
χ =

γ

2
or 2

γ
. (1.4.8)
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The BPZ equations of order r hold true for γ ∈ (
√

2(r−2)
r−1 , 2) when χ = γ

2 and for γ ∈ (0, 2) when χ = 2
γ :

Dr〈V−(r−1)χ(z)

N∏
l=1

Vαl(zl)〉 = 0, (1.4.9)

where the differential operator Dr is given by the Benoît and Saint-Aubin’s formula:

Dr =
r∑

k=1

∑
(n1, ..., nk)∈(N∗)k

n1+···+nk=r

(χ2)r−k∏k−1
j=1 (

∑j
i=1 ni)(

∑k
i=j+1 ni)

L−n1 . . . L−nk , (1.4.10)

with L−n defined in definition 4.1.8.
Remark 1.4.10. The constraint on γ when χ = γ

2 is a purely technical condition and is only required by
Proposition 4.2.9. In particular, we have BPZ equations of all orders for γ ∈ [

√
2, 2) when χ = γ

2 .
It can be easily checked that when r = 2, the above equations are coherent with the results in Theorem

1.4.6.
In the boundary LCFT case we can have a boundary degenerate insertion or a bulk degenerate insertion.

When it comes to a boundary degenerate insertion B±
−(r−1)χ(s) defined as below, we will work with an extended

definition where s lives in the upper-half plane:
Definition 1.4.11. Let µ1, . . . µM > 0, −∞ < s1 < · · · < sM <∞ and s ∈ H\{zi, 1 ≤ i ≤ N} ∪R. We define
the extended correlation function 〈B+

−(r−1)χ(s)
∏N
i=1 Vαi(zi)

∏M
j=1B

µj−1,µj
βj

(sj)〉H by
N∏
i=1

((zi − s)(zi − s))
(r−1)χαi

2

M∏
j=1

(si − s)
(r−1)χβj

2

∏
1≤i<i′≤N

|zi − zi′ |−αiαi′
∏

1≤i≤i′≤N

|zi − zi′ |−αiαi′
∏

1≤i≤N,1≤j≤M

|zi − sj |−αiβj

∏
1≤j<j′≤M

|sj − sj′ |−βjβj′/2E

(∫
R

(s− u)
(r−1)γχ

2

|u− zi|γαi |u− sj |γβj/2
e
γ
2
XH(u)ĝH(u)

− γ2

8
(p− (r−1)χ

γ
+1)

dµ∂(u)

)−p+
(r−1)χ
γ

 .

(1.4.11)

Similarly, we define 〈B−
−(r−1)χ(s)

∏N
i=1 Vαi(zi)

∏M
j=1B

µj−1,µj
βj

(sj)〉H by replacing the term (s−u)
(r−1)γχ

2 in the
above integral by (u− s)

(r−1)γχ
2 .

Remark 1.4.12. We can take a larger family of values for µj, as long as the moment of GMC in the above
expectation is well defined without ambiguity. See chapter 3 for more details.

Now we state the BPZ equations for boundary LCFT, where we can prove the result without constraint
on γ.
Theorem 1.4.13. Let r ≥ 2 an integer and χ = γ

2 or 2
γ . Let µ1, . . . , µM > 0, s1 < · · · < sM and s ∈

H\{zi, 1 ≤ i ≤ N}. The BPZ equations of order r for a boundary degenerate insertion hold true for γ ∈ (0, 2):

DH
r 〈B±

−(r−1)χ(s)

N∏
i=1

Vαi(zi)

M∏
j=1

B
µj−1,µj
βj

(sj)〉H = 0, (1.4.12)

where the expression of the differential operator DH
r is given by (1.4.9), where we replace the operators L−n by

LH
−n defined as LH

−1 := ∂s, and for n ≥ 2:

LH
−n :=

N∑
l=1

(
− 1

(zl − s)n−1
∂zl −

1

(zl − s)n−1
∂zl +

∆αl(n− 1)

(zl − s)n
+

∆αl(n− 1)

(zl − s)n

)

+

M∑
l=1

(
− 1

(sl − s)n−1
∂sl +

∆βl(n− 1)

(sl − s)n

)
. (1.4.13)
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The BPZ equations of order r also hold true when we insert a bulk degenerate insertion: for γ ∈ (0, 2),

DH,z
r 〈V−(r−1)χ(z)

N∏
i=1

Vαi(zi)

M∏
j=1

B
µj−1,µj
βj

(sj)〉H = 0, (1.4.14)

where DH,z
r is defined by the expression (1.4.9) where we replace L−n by LH,z

−n defined as LH,z
−1 := ∂z, and for

n ≥ 2,

LH,z
−n :=

N∑
l=1

(
− 1

(zl − z)n−1
∂zl −

1

(zl − z)n−1
∂zl +

∆αl(n− 1)

(zl − z)n
+

∆αl(n− 1)

(zl − z)n

)

− 1

(z − z)n−1
∂z +

∆−(r−1)χ(n− 1)

(z − z)n
+

M∑
l=1

(
− 1

(sl − z)n−1
∂sl +

∆βl(n− 1)

(sl − z)n

)
. (1.4.15)

1.5 Integrability of GMC and of Liouville theory
1.5.1 The DOZZ formula on the Riemann sphere
In this section we will sketch the proof of the celebrated DOZZ formula which gives the value of the three-point
correlation function of LCFT on S2. We state the main result of [61]:

Theorem 1.5.1. (DOZZ formula) Choose three points z1, z2, z3 ∈ S2 of respective weights α1, α2, α3 ∈ R
such that the bounds (1.3.6) are satisfied. Then we have the following expression for the three-point correlation
function,

〈
3∏
i=1

Vαi(zi)〉S2,ĝ = |z1 − z2|2∆12 |z2 − z3|2∆23 |z1 − z3|2∆13Cγ(α1, α2, α3), (1.5.1)

where we have:

Cγ(α1, α2, α3) = (πµl(
γ2

4
)(
γ

2
)2−

γ2

2 )
2Q−α
γ

Υ′
γ
2
(0)Υ γ

2
(α1)Υ γ

2
(α2)Υ γ

2
(α3)

Υ γ
2
(α2 −Q)Υ γ

2
(α2 − α1)Υ γ

2
(α2 − α2)Υ γ

2
(α2 − α3)

. (1.5.2)

In the above expressions we have l(x) = Γ(x)
Γ(1−x) , α = α1+α2+α3, ∆12 = ∆α3 −∆α2 −∆α1 , ∆αi =

αi
2 (Q− αi

2 ),
Q = γ

2 + 2
γ and Υγ is a special function expressed in terms of the double gamma function Γγ ,

Υγ(x) =
1

Γγ(x)Γγ(Q− x)
, (1.5.3)

where:

ln Γγ(x) =

∫ ∞

0

dt

t

[
e−xt − e−

Qt
2

(1− e−
γt
2 )(1− e−

2t
γ )

−
(Q2 − x)2

2
e−t +

x− Q
2

t

]
. (1.5.4)

We will now briefly mention the main arguments leading to the DOZZ formula. The first part of the theorem
that gives the dependence on the positions z1, z2, z3 is a consequence of the KPZ formula (1.4.3). Indeed one
simply needs to apply (1.4.3) to the Mobius map ψ that satisfies ψ(z1) = 0, ψ(z2) = 1, ψ(z3) = ∞. The
structure constant Cγ(α1, α2, α3) is then recovered by taking the following limit:

Cγ(α1, α2, α3) = lim
z3→∞

|z3|4∆3〈Vα1(0)Vα2(1)Vα3(∞)〉S2,ĝ. (1.5.5)

The difficult part of the theorem is thus to give the exact value for the constant Cγ(α1, α2, α3). This is
where we need to use the two BPZ equations of Theorem 1.4.6 for a four-point function. There are two such
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equations as the degenerate weight can be equal either to −γ
2 or to − 2

γ . One can then deduce two non-trivial
relations on Cγ(α1, α2, α3) which are,

Cγ(α1 +
γ
2 , α2, α3)

Cγ(α1 − γ
2 , α2, α3)

= − 1

πµ

l(−γ2

4 )l(γα1

2 )l(α1γ
2 − γ2

4 )l(γ4 (ᾱ− 2α1 − γ
2 ))

l(γ4 (ᾱ− γ
2 − 2Q))l(γ4 (ᾱ− 2α3 − γ

2 ))l(
γ
4 (ᾱ− 2α2 − γ

2 ))
, (1.5.6)

and
Cγ(α1 +

2
γ , α2, α3)

Cγ(α1 − 2
γ , α2, α3)

= − 1

πµ̃

l(− 4
γ2 )l(

2α1

γ )l( 2α1

γ − 4
γ2 )l(

1
γ (ᾱ− 2α1 − 2

γ ))

l( 1γ (ᾱ− 2
γ − 2Q))l( 1γ (ᾱ− 2α3 − 2

γ ))l(
1
γ (ᾱ− 2α2 − 2

γ ))
, (1.5.7)

with µ̃ =
(µπl( γ

2

2 ))
4
γ2

πl( 4
γ2

)
being the dual cosmological constant. Of course by symmetry similar relations are verified

for a shift on α2 or on α3. It turns out that these two shift equations completely determine the dependence
on the αi if γ2 /∈ Q. Then one can extent the formula to all values of γ by a standard continuity argument.

Let us give more comments on the shift equations. One of the major difficulties in the rigorous mathematical
proof is the second shift equation (1.5.7). In physics this second shift equation is predicted by replacing γ

2 by
2
γ in the first shift equation. However they are very different in nature. While the first equation comes from a
Taylor expansion, the second equation will have a fractional shift on the moment of the GMC, which cannot be
simply obtained by an expansion. This requires a careful study of the local behavior of GFF around singularities
and we will need to compute the value of the so-called reflection coefficient before we can obtain the second
shift equation. For a much more complete summary of the proof of the DOZZ formula one can take a look at
the lecture notes [103]. We will see that in certain cases such as GMC on the interval or the Fyodorov-Bouchaud
formula there will be some simplifications, and in the case of the boundary Liouville structure constants there
will be some complications.

1.5.2 GMC on the unit interval, Summary of chapter 2
We study the GMC measure associated to the log-correlated field XI defined on the unit interval [0, 1]. We
will prove an exact formula for the moments of the total mass of the GMC measure. The log-correlated field
X that we work with has a covariance given by:

E[X(x)X(y)] = 2 ln
1

|x− y|
. (1.5.8)

Note that this is a restriction of the filed X defined on H with covariance given by (1.2.1). For this model of
GMC the most general quantity that we will provide an expression for is defined for γ ∈ (0, 2) and for real p,
a, b obeying the bounds (1.5.10) written below:

M(γ, p, a, b) := E[(
∫ 1

0

xa(1− x)be
γ
2X(x)dx)p]. (1.5.9)

This is the moment p of the total mass of our GMC measure with two “insertion points” in 0 and 1 of weight a
and b. As explained in subsection 1.2.2, the theory of Gaussian multiplicative chaos tells us that these moments
are non-trivial, i.e. different from 0 and +∞, if and only if:

a > −γ
2

4
− 1, b > −γ

2

4
− 1, p <

4

γ2
∧ (1 +

4

γ2
(1 + a)) ∧ (1 +

4

γ2
(1 + b)). (1.5.10)

The techniques of proof of this formula on [0, 1] are similar in spirit to the techniques used to prove the
DOZZ formula. First remark that M(γ, p, a, b) can be related to 〈B0,1

β1
(0)B1,0

β2
(1)B0,0

β3
(∞)〉H,g, where we take

µ∂ = 0 on [0, 1]c and µ∂ = 1 on [0, 1] and the background metric is given by g(x) = 1
|x|4+

. We are free to choose
the metric thanks to Theorem 1.4.2. Now by applying (1.4.12) with r = 2 we have the differential equations for
the four point auxiliary function 〈B±

−χ(s)B
0,1
β1

(0)B1,0
β2

(1)B0,0
β3

(∞)〉H,g. On the other hand, the way we choose
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µ∂ makes the parameter β3 independent of the total mass of GMC, and this parameter gives a degree of
freedom to the moment p. Therefore we can work with fixed p and obtain two shift equations on a and b,
which completely determine the dependence of (1.5.9) on a and b. For the dependence of p we can do as in
the proof of Fyodorov-Bouchaud formula, where the author calculates simply the negative integer moments of
the total mass of GMC and shows that this suffices to characterize the law. However in the interval case, as
can be observed from the final exact formula, it is much less trivial to exploit its distribution. A self-contained
way is to again use the reflection techniques introduced in the proof of DOZZ formula, where this time the
simplification is that we do not need the exact value of the reflection coefficient.

We state here the main result of chapter 2:

Theorem 1.5.2. For γ ∈ (0, 2) and for p, a, b satisfying (1.5.10)6, M(γ, p, a, b) is given by,

(2π)p( 2γ )
p γ

2

4

Γ(1− γ2

4 )p

Γγ(
2
γ (a+ 1)− (p− 1)γ2 )Γγ(

2
γ (b+ 1)− (p− 1)γ2 )Γγ(

2
γ (a+ b+ 2)− (p− 2)γ2 )Γγ(

2
γ − pγ2 )

Γγ(
2
γ )Γγ(

2
γ (a+ 1) + γ

2 )Γγ(
2
γ (b+ 1) + γ

2 )Γγ(
2
γ (a+ b+ 2)− (2p− 2)γ2 )

,

where the function Γγ(x) is defined by equation (1.5.4).

As a corollary by choosing a = b = 0 we obtain the value of the moments of the GMC measure without
insertions:

Corollary 1.5.3. For γ ∈ (0, 2) and p < 4
γ2 :

E[(
∫ 1

0

e
γ
2XI(x)dx)p] =

(2π)p( 2γ )
p γ

2

4

Γ(1− γ2

4 )p

Γγ(
2
γ − (p− 1)γ2 )

2Γγ(
4
γ − (p− 2)γ2 )Γγ(

2
γ − pγ2 )

Γγ(
2
γ )Γγ(

2
γ + γ

2 )
2Γγ(

4
γ − (2p− 2)γ2 )

. (1.5.11)

Finally we state that Theorem 1.5.2 can be used to obtain the following tail expansion for a GMC measure
in dimension one. In the result appears R∂1 (α) , a one-dimensional reflection coefficient that can be calculated
based on the value of M(γ, p, a, b).

Proposition 1.5.4. For γ ∈ (0, 2) and η ∈ (0, 1) define:

I∂1,η(α) :=

∫ η

0

x−
γα
2 e

γ
2XI(x)dx. (1.5.12)

Then for α ∈ (γ2 , Q) we have the following tail expansion for I∂1,η(α) as u→ ∞ and for some ν > 0,

P(I∂1,η(α) > u) =
R
∂

1 (α)

u
2
γ (Q−α)

+O(
1

u
2
γ (Q−α)+ν

), (1.5.13)

where the value of R∂1 (α) is given by:

R
∂

1 (α) =
(2π)

2
γ (Q−α)− 1

2 ( 2γ )
γ
2 (Q−α)− 1

2

(Q− α)Γ(1− γ2

4 )
2
γ (Q−α)

Γγ(α− γ
2 )

Γγ(Q− α)
. (1.5.14)

1.5.3 Integrability of boundary Liouville theory, Summary of chapter 3
In this subsection we work in the probabilistic framework of boundary LCFT with µ = 0. We present exact
formulas for the basic correlation functions of the theory, i.e., the bulk one point function, the bulk-boundary
correlator, the boundary two-point and the boundary three-point functions. These four correlations should be
seen as the fundamental building blocks of boundary Liouville theory, playing the analogue role of the DOZZ
formula in the case of the Riemann sphere.

6Again the result also holds for all complex p such that Re(p) satisfies the bounds (1.5.10).
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We suppose that the following Seiberg bounds hold:

N∑
i=1

αi +

M∑
j=1

βj
2
> Q, ∀j, βj < Q. (1.5.15)

Notice here that we do not have the condition αi < Q as we do not have a bulk potential. Using conformal
invariance one can thus reduce computing the following basic correlation functions to computing a single
constant called the structure constant:

• Bulk one-point function. For z ∈ H, α > Q:

〈Vα(z)〉H =
U(α)

|z − z|2∆α
. (1.5.16)

• Bulk-boundary correlator. For z ∈ H, s ∈ R, β < Q, α+ β
2 > Q:

〈Vα(z)Bβ(s)〉H =
G(α, β)

|z − z|2∆α−∆β |z − s|2∆β
. (1.5.17)

• Boundary two-point function. For s1, s2 ∈ R, β ∈ (γ2 , Q):〈
Bµ1,µ2

β (s1)B
µ2,µ1

β (s2)
〉
H
=
R(β, µ1, µ2)

|s1 − s2|2∆β
. (1.5.18)

• Boundary three-point function. For i ∈ {1, 2, 3}, si, βi ∈ R satisfying βi < Q and
∑
i βi > 2Q:

〈
Bµ3,µ1

β1
(s1)B

µ1,µ2

β2
(s2)B

µ2,µ3

β3
(s3)

〉
H
=

H
(β1,β2,β3)
(µ1,µ2,µ3)

|s1 − s2|∆1+∆2−∆3 |s1 − s3|∆1+∆3−∆2 |s2 − s3|∆2+∆3−∆1
.

(1.5.19)
We have used the notations ∆α = α

2 (Q − α
2 ), ∆β = β

2 (Q − β
2 ), and ∆i =

βi
2 (Q − βi

2 ). Each of the four
structure constants U,G,R,H will have a definition involving Gaussian multiplicative chaos.

With this at hand one can now give a probabilistic definition to the four structure constants U,G,R,H
using moments of GMC on H. We study the log-correlated field X defined on H with covariance given by

E[X(x)X(y)] = 2 ln
1

|x− y|
+ 2 ln |x|+ + 2 ln |y|+, where |x|+ = max(|x|, 1). (1.5.20)

The background metric that we work with is g(x) = 1
|x|4+

. In order to define the boundary two-point and
three-point functions we will consider parameters µ1, µ2, µ3 in C. To be able to choose a suitable branch cut
to define the probabilistic expressions below, we introduce the following conditions we will refer to as the
half-space conditions.

Definition 1.5.5. (Half-space condition for µi) Consider µ1, µ2, µ3 ∈ C. We say that (µi)i=1,2,3 satisfies the
half-space condition if there exists a half-space H of C whose boundary is a line passing through the origin not
equal to the real axis and satisfying the following. The half-space H does not contain the half-line (−∞, 0).
Each µi is contained in H (the half-space with its boundary included) and the sum µ1 + µ2 + µ3 is strictly
contained in H. We will also refer to the half-space condition for a pair µ1, µ2 ∈ C which will be the condition
above with µ3 set to 0.

Definition 1.5.6. (Correlation functions of Liouville theory on H) Fix γ ∈ (0, 2). Consider parameters
α, β, β1, β2, β3 ∈ R, µ∂ ∈ (0,+∞), and µ1, µ2, µ3 ∈ C. The four correlation functions U,G,R,H have the
following probabilistic definitions:
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• U(α) = 2
γΓ(

2(α−Q)
γ )

(
µ

2(Q−α)
γ

∂

)
U(α) where for α > γ

2 :

U(α) = E

(∫
R

g(x)
γ
4 (

2
γ−α)

|x− i|γα
e
γ
2X(x)dx

) 2(Q−α)
γ

 . (1.5.21)

• G(α, β) = 2
γΓ(

2α+β−2Q
γ )

(
µ

2Q−2α−β
γ

∂

)
G(α, β) where for β < Q, γ

2 − α < β
2 < α:

G(α, β) = E

(∫
R

g(x)
γ
4 (

2
γ−α−

β
2 )

|x− i|γα
e
γ
2X(x)dx

) 2
γ (Q−α− β

2 )
 . (1.5.22)

• H
(β1,β2,β3)
(µ1,µ2,µ3)

= 2
γΓ(

β1+β2+β3−2Q
γ )H

(β1,β2,β3)

(µ1,µ2,µ3) where in the following range of parameters,

(µi)i=1,2,3 satisfies Definition 1.5.5, βi < Q,
1

γ
(2Q−

3∑
i=1

βi) <
4

γ2
∧min

i

2

γ
(Q− βi), (1.5.23)

one can define:

H
(β1,β2,β3)

(µ1,µ2,µ3) = E

(∫
R

g(x)
γ
8 (

4
γ−

∑3
i=1 βi)

|x|
γβ1
2 |x− 1|

γβ2
2

e
γ
2X(x)dµ(x)

) 1
γ (2Q−

∑3
i=1 βi)

 . (1.5.24)

The dependence on the parameters µ1, µ2, µ3 appears through the measure:

dµ(x) = µ11(−∞,0)(x)dx+ µ21(0,1)(x)dx+ µ31(1,∞)(x)dx. (1.5.25)

The GMC integral inside the expectation is a complex number avoiding (−∞, 0). To define its fractional
power we choose its argument in (−π, π).

• R(β, µ1, µ2) = −Γ(1 − 2(Q−β)
γ )R(β, µ1, µ2), where R(β, µ1, µ2) is defined for β ∈ (γ2 , Q) and µ1, µ2

obeying the constraint of Definition 1.5.5 by the following limiting procedure. Consider γ
2 < β2 < β < Q

and β − β2 < β3 < Q. Then the following limits exists and we set:

R(β, µ1, µ2) :=
1

2(Q− β)
lim

β3↓β−β2

(β2 + β3 − β1)H
(β,β2,β3)

(µ1,µ2,1). (1.5.26)

In order to state our main results, we introduce the function S γ
2
(x) defined for γ ∈ (0, 2) and Re(x) ∈ (0, Q)

by:

S γ
2
(x) =

Γ γ
2
(x)

Γ γ
2
(Q− x)

, (1.5.27)

and the double functions are defined in (1.5.4). Both functions Γ γ
2
(x) and S γ

2
(x) admit meromorphic extensions

to all x ∈ C with a known pole structure, see subsection 3.5.4 for more details. Using these two functions one
can define the following special function introduced in [84]. For i ∈ {1, 2, 3}, define σi through the relation
µi := eiπγ(σi−

Q
2 ) with the convention that for positive µi one has Re(σi) =

Q
2 . Denote β = β1 + β2 + β3. Then
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define:

IPT

(
β1, β2, β3
σ1, σ2, σ3

)
(1.5.28)

=
(2π)

2Q−β
γ +1( 2γ )

( γ2 −
2
γ )(Q− β

2 )−1

Γ(1− γ2

4 )
2Q−β
γ Γ(β−2Q

γ )

Γ γ
2
(2Q− β

2 )Γ γ
2
(β1+β3−β2

2 )Γ γ
2
(Q− β1+β2−β3

2 )Γ γ
2
(Q− β2+β3−β1

2 )

Γ γ
2
(Q)Γ γ

2
(Q− β1)Γ γ

2
(Q− β2)Γ γ

2
(Q− β3)

× ei
π
2 (−(2Q− β1

2 −σ1−σ2)(Q− β1
2 −σ1−σ2)+(Q+

β2
2 −σ2−σ3)(

β2
2 −σ2−σ3)+(Q+

β3
2 −σ1−σ3)(

β3
2 −σ1−σ3)−2σ3(2σ3−Q))

S γ
2
(β1

2 + σ1 − σ2)S γ
2
(β3

2 + σ3 − σ1)

×
∫ i∞

−i∞

S γ
2
(Q− β2

2 + σ3 − σ2 + r)S γ
2
(β3

2 + σ3 − σ1 + r)S γ
2
(Q− β3

2 + σ3 − σ1 + r)

S γ
2
(Q+ β1

2 − β2

2 + σ3 − σ1 + r)S γ
2
(2Q− β1

2 − β2

2 + σ3 − σ1 + r)S γ
2
(Q+ r)

eiπ(−
β2
2 +σ2−σ3)r

dr

i
.

The contour of the integral is to the right of the poles at r = −(Q− β2

2 +σ3−σ2)−nγ2−m
2
γ , r = −(β3

2 +σ3−σ1)−
nγ2 −m

2
γ , r = −(Q− β3

2 +σ3−σ1)−nγ2 −m
2
γ and to the left of the poles at r = −(β1

2 − β2

2 +σ3−σ1)+nγ2 +m
2
γ ,

r = −(Q− β1

2 − β2

2 + σ3 − σ1) + nγ2 +m 2
γ , r = nγ2 +m 2

γ with m,n ∈ N2. We can now state our main results.
For the sake of completeness we recall:

Theorem 1.5.7. (Bulk one-point function, R. 2017 [88]) For γ ∈ (0, 2), α > γ
2 , one has:

U(α) =

(
2−

γα
2 2π

Γ(1− γ2

4 )

) 2
γ (Q−α)

Γ(
γα

2
− γ2

4
). (1.5.29)

Now the main results of the present work is to provide expressions for the remaining three structure
constants. We will indeed prove the following theorems:

Theorem 1.5.8. (Bulk-boundary correlator) For γ ∈ (0, 2), β < Q, γ
2 − α < β

2 < α, one has:

G(α, β) =

(
2
γ
2 (
β
2 −α)2π

Γ(1− γ2

4 )

) 2
γ (Q−α− β

2 )
Γ(γα2 + γβ

4 − γ2

4 )Γ γ
2
(α− β

2 )Γ γ
2
(α+ β

2 )Γ γ
2
(Q− β

2 )
2

Γ γ
2
(Q− β)Γ γ

2
(α)2Γ γ

2
(Q)

. (1.5.30)

Theorem 1.5.9. (Boundary two-point and three-point functions) Consider γ ∈ (0, 2), β ∈ (γ2 , Q), and µ1, µ2

obeying the condition of Definition 1.5.5. Then one has:

R(β, µ1, µ2) =
(2π)

2
γ (Q−β)− 1

2 ( 2γ )
γ
2 (Q−β)− 1

2

(Q− β)Γ(1− γ2

4 )
2
γ (Q−β)

Γ γ
2
(β − γ

2 )e
iπ(σ1+σ2−Q)(Q−β)

Γ γ
2
(Q− β)S γ

2
(β2 + σ2 − σ1)S γ

2
(β2 + σ1 − σ2)

. (1.5.31)

Similarly, for β1, β2, β3 and µ1, µ2, µ3 satisfying the set of conditions (3.1.18),

H
(β1,β2,β3)

(µ1,µ2,µ3) = IPT

(
β1, β2, β3
σ1, σ2, σ3

)
. (1.5.32)

Let us now state how the value of R(β, µ1, µ2) provides a very general first order tail expansion for the
probability of a one-dimensional GMC measure to be large. For this discussion we choose µ1, µ2 ∈ [0,∞) with
at most one of the two parameters being 0, and we introduce the notation:

Iη1,η2(β) :=

∫ η2

−η1

1

|x| βγ2
e
γ
2X(x)

(
µ11{x<0} + µ21{x>0}

)
dx. (1.5.33)

In the above η1, η2 ∈ (0, 1). Now the tail expansion result is the following:
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Proposition 1.5.10. For β ∈ (γ2 , Q) and any η1, η2 ∈ (0, 1), we have the following tail expansion for Iη1,η2(β)
as u→ ∞ and for some ν > 0:

P(Iη1,η2(β) > u) =
R(β, µ1, µ2)

u
2
γ (Q−β)

+O(
1

u
2
γ (Q−β)+ν

). (1.5.34)

Although the proof strategy of boundary LCFT structure constants follows the same lines as the DOZZ
formula, there are additional technical difficulties that arise because of the presence of complex valued quantities
included with the GMC measures. Performing OPE in this case will require some care and extra estimates.
Furthermore, the computation of the reflection coefficient R(β, µ1, µ2) is not direct and will require the specific
value of R(β, 1, 0) = R

∂

1 (β) calculated in the interval case (1.5.14).

1.6 Applications and perspectives
Finally, this section provides a list of applications of GMC and of Liouville theory to other problems in
probability theory and in mathematical physics. We also provide perspectives on future research.

1.6.1 The maximum of X and random matrix theory
We now turn to the applications of the exact formulas for the GMC measures. It turns out that the Fyodorov-
Bouchaud formula will give us some precise information on the behaviour of the maximum of our field X on
the unit circle. Characterizing the behaviour of the maximum of X requires to compute the law of the total
mass of the derivative martingale,

Y ′ := −1

2

∫ 2π

0

X(eiθ)eX(eiθ)dθ, (1.6.1)

which following [6] can be characterized by the convergence in law:

2Y ′ = lim
γ→2

1

2− γ
Yγ . (1.6.2)

Therefore using Fyodorov-Bouchaud formula we can easily compute the density for 2Y ′:

f2Y ′(y) = y−2e−y
−1

1[0,∞[(y).

We observe that ln 2Y ′ is distributed like a standard Gumbel law. Recall that an impressive series of works
(see [16, 18] for the latest results) have proven that for suitable sequences of cut-off approximations Xϵ the
following convergence in law holds,

max
θ∈[0,2π]

Xϵ(e
iθ)− 2 ln

1

ϵ
+

3

2
ln ln

1

ϵ
→
ϵ→0

G + lnY ′ + C, (1.6.3)

where G is a Gumbel law independent from Y ′ and C is a non universal constant that depends on the cut-off
procedure. From this convergence and previous considerations, one can deduce the following convergence in
law,

max
θ∈[0,2π]

Xϵ(e
iθ)− 2 ln

1

ϵ
+

3

2
ln ln

1

ϵ
→
ϵ→0

G1 + G2 + C, (1.6.4)

where G1 and G2 are two independent Gumbel laws and where we have absorbed the factor ln 2 in the constant
C. This convergence was conjectured in Fyodorov-Bouchaud [41]. As a matter of fact, Fyodorov-Bouchaud
state (1.6.4) as their main result. Mathematically, it is the first occurrence of an explicit formula for the limit
density of the properly recentered maximum of a GFF.

A similar story can be told for unitary random matrices. Let UN denote the N × N random matrices
distributed according to the Haar probability measure on the unitary group U(N). Denoting by (eiθ1 , . . . , eiθn)
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the eigenvalues of UN , we consider its characteristic polynomial pN (θ) evaluated on the unit circle at a point
eiθ:

pN (θ) = det(1− e−iθUN ) =

N∏
k=1

(1− ei(θk−θ)). (1.6.5)

Recently, the following convergence in law has been obtained in [104] for a real α ∈ (− 1
2 ,
√
2):

|pN (θ)|α

E[|pN (θ)|α]
dθ →

N→∞
e

|α|
2 X(eiθ)dθ. (1.6.6)

This convergence seems to indicate that 2 ln |pN (θ)| should be seen as a cut-off of X just like our Xϵ with N
corresponding to 1

ϵ . Based on this analogy, it is reasonable that the properly shifted maximum of 2 ln |pN (θ)|
should converge to the same limit as the (properly shifted) maximum of X on the unit circle. Indeed it has been
recently conjectured by Fyodorov, Hiary and Keating [42] (and further developed in [43]) that the following
convergence in law should hold,

max
θ∈[0,2π]

ln |pN (θ)| − lnN +
3

4
ln lnN →

N→∞
G1 + G2 + C, (1.6.7)

where G1 and G2 are again two independent Gumbel laws and C a real constant. On the mathematical side
the most recent result [17] establishes that

max
θ∈[0,2π]

ln |pN (θ)| − lnN +
3

4
ln lnN (1.6.8)

is tight. Just like for the GFF it is natural to expect that the following convergence is easier to establish
directly

max
θ∈[0,2π]

ln |pN (θ)| − lnN +
3

4
ln lnN →

N→∞
G1 + lnY ′ + C. (1.6.9)

Our result could then prove instrumental in precisely identifying the limit in the conjectured convergence
(1.6.7).

In the case of the unit interval it is also possible with our exact formula to study the behaviour of the
maximum of XI on [0, 1] and to establish a link with random Hermitian matrices. The behaviour of the
maximum is given by the following convergence in law, first conjectured in [78],

max
x∈[0,1]

XI,ϵ(x)− 2 ln
1

ϵ
+

3

2
ln ln

1

ϵ
→
ϵ→0

G1 + G2 +N (0, 4 ln 2) + lnX2 + lnX3 + C, (1.6.10)

with again as before G1, G2 two Gumbel laws and C a non-universal constant that depends on the cut-off
procedure. On the other hand we see there are three additional terms, a Gaussian law and two additional laws
lnX2 and lnX3 (see chapter 2 for a precise definition). Moving on to the link with random matrices, to obtain
as limit a GMC on the interval the correct matrix ensemble is an ensemble of Hermitian matrices HN . Their
eigenvalues are on the real line but with the right rescaling the limit of the characteristic polynomial will be
a GMC on [0, 1]. We can thus conjecture:

max
x∈[0,1]

ln |det(HN − x)| − lnN +
3

4
ln lnN →

N→∞
G1 + G2 +N (0, 4 ln 2) + lnX2 + lnX3 + C. (1.6.11)

1.6.2 Relation with the one-point toric conformal blocks
Very recently in [48], a GMC expression has been proposed for the one-point conformal blocks for LCFT on
the torus. The main result of [48] is that this probabilistic definition matches the known expression in physics
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given by Zamolodchikov’s recursion. More precisely, the expression of [48] for conformal blocks is given by, for
parameters β ∈ (− 4

γ , Q),7 P ∈ R, q ∈ (0, 1),

Gqγ,P (β) :=
1

Z
E

(∫ 1

0

e
γ
2 Yτ (x)Θτ (x)

− βγ
2 eπγPxdx

)− β
γ

 (1.6.12)

where Z is a normalization constant, Θτ is the Jacobi theta function, and Yτ is a log-correlated field which
can be thought of as the restriction of a 2d GFF on the torus to one of the loops of the torus (see [48] for
more details). Both Θτ and Yτ depend on the parameter q related to the moduli τ of the torus by q = eiπτ .
The proof strategy of [48] to show that (1.6.12) matches known definitions still relies on the BPZ equations,
operator product expansions, and this time a whole system of coupled shift equations. Therefore one needs
again to perform the OPE with reflection and in order to obtain an explicit answer use the formula of Theorem
1.5.9 for the boundary two-point function. The precise quantity required in [48] evaluated using Theorem 1.5.9
is

R(β, 1, e−iπ+πγP )

R(β + 2
γ − γ

2 , 1, e
−iπ γ24 +πγP )

=
2(2π)

4
γ2

−1
Γ( 2βγ )Γ(1− 2β

γ )

γ(Q− β)Γ(1− γ2

4 )
4
γ2

−1
Γ(γβ2 − γ2

2 )Γ(1− γβ
2 + γ2

4 )

1− e
4πP
γ − 4iπ

γ2
+iπ 2β

γ

1 + eπγP− iπγ2

2 +iπ γβ2

.

Furthermore, the normalization Z of the conformal block Gqγ,P (β) is explicitly given by

Z = q
1
12 (

βγ
2 + β2

2 −1)η(q)β
2+1− βγ

2 E

(∫ 1

0

e
γ
2XD(e

2πix)[−2 sin(πx)]−
βγ
2 eπγPxdx

)− β
γ

 (1.6.13)

where η(q) is the Dedekind eta function. As an output of the proof of [48], the GMC expectation above is
explicitly evaluated, for β ∈ (− 4

γ , Q), P ∈ R:

E

(∫ 1

0

e
γ
2 Y∞(x)[−2 sin(πx)]−

βγ
2 eπγPxdx

)− β
γ

 (1.6.14)

=
(γ
2

) γβ
4

eiπ
β2

2 −πβP
2 Γ(1− γ2

4
)
β
γ

Γ γ
2
(Q− β

2 )Γ γ
2
( 2γ + β

2 )Γ γ
2
(Q− β

2 − iP )Γ γ
2
(Q− β

2 + iP )

Γ γ
2
( 2γ )Γ γ

2
(Q− iP )Γ γ

2
(Q+ iP )Γ γ

2
(Q− β)

.

The proof of (1.6.14) follows very closely the techniques used to prove Theorem 1.5.8 and relies again of the
exact formula for the boundary two-point function given by Theorem 1.5.9. Lastly an observation is that both
(1.5.30) and (1.6.14) degenerate to the same formula (up to a prefactor due to the mapping of D to H and to
a global phase) if one choose α = Q in (1.5.30) and P = 0 in (1.6.14). Both (1.5.30) and (1.6.14) up to trivial
prefactors are thus a special case of the following GMC moment, written here with the field XD for P ∈ R,
β < Q, γ

2 − α < β
2 < α

E

(∫ 1

0

e
γ
2XD(e

2πix)|e2πix − 1|−
βγ
2 eπγPxdx

) 2
γ (Q−α− β

2 )
 . (1.6.15)

This quantity is also expected to have an explicit evaluation using Γ γ
2

which can be conjectured form Selberg
integrals. We leave repeating our methods to prove a formula for (1.6.15) for a future work.

7In [48] this parameter β is called α, but we use here the notation β in order to keep the convention of this paper for insertions
on the boundary.
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1.6.3 Stochastic variance model
The 1d GMC measures with kernel 2 ln+ T

|x−y| with ln+(x) = max(lnx, 0) provide a model for the stochastic
variance of an financial asset. GMC is a multifractal measure and is used in the modeling of intermittent time
signals characterized by an alternation of small fluctuations and large fluctuations (hence the terminology
“intermittence”). Financial assets (stocks, currencies, indices, etc.) are precisely intermittent signals and in
particular their stochastic variance 8. Numerous empirical studies show that the GMC with kernel 2 ln+ T

|x−y| ,
also called lognormal Multifractal Random measure (MRM), verifies most of the properties and statisties
observed on the variance of the assets: lognormality of the volatility, and long range correlations, we refer to
[7, 8] for a study and a review. Volatility modeling and forecasting is an important field of finance since it is
related to option pricing and risk forecasting. We refer to [32] for the problem of forecasting volatility with
this choice of GMC.

Here we give an application of our results on the unit interval. A call option of the variance starting from
t = 0 (current time) with exercise date t = T offers the buyer the opportunity to buy the variance of a financial
product over the future period [0, T ], with a fixed price K called the strike. If we model the variance with the
total mass of GMC over [0, T ], denoted by Mγ([0, T ]), then the price of the call option at t = 0 is given by

C(K,T ) = e−rTE[(Mγ([0, T ])−K)+|F0], (1.6.16)

where r is the interest rate, (x)+ = max(x, 0) and F0 is the sigma-algebra that contains all the past information.
Take X the log-correlated field defined on [0, 1] with covariance given by 2 ln 1

|x−y| . We observe that

Mγ([0, T ])
(d)
=

∫ T

0

e
γ
2X(x/T )dx = T

∫ 1

0

e
γ
2X(x)dx = TMγ([0, 1]). (1.6.17)

Therefore Theorem 1.5.2 also characterizes the law of Mγ([0, T ]). Thanks to the computations done by Ostro-
vski (see [79] for a review), an explicit formula for the Fourier transform of lnMγ([0, T ]) has been established.
It is also deduced that lnMγ([0, T ]) has a density fT . Let us denote by ϕT its Fourier transform and k = lnK.
Without prior knowledge of the past, i.e. F0 = ∅, the value of the option can be priced as

CT (k) := C(K,T ) = e−rT
∫ ∞

k

(ex − ek)f1(x)dx. (1.6.18)

Here C1 is not a square integrable function since when k → 0, C1(k) → E[Mγ([0, T ])]. Hence we consider the
function

ψT (v) =

∫
R
eivkeαkCT (k)dk (1.6.19)

for a suitable α > 0. The value of α affects the speed of convergence. We can express ψT in function of ϕT
after some computations:

ψT (v) =
e−rTϕT (v − i(α+ 1))

α2 + α− v2 + i(2α+ 1)v
.

The expression of ψT (v) is explicit and we can do a fast Fourier transform to get the approximated value of
CT (k).

Finally as a remark, Theorem 1.5.2 provides the Levy-Kintchine decomposition of the infinite divisible
distribution lnMγ([0, T ]), hence we can use the simulation of a Levy process in order to apply Monte Carlo
methods. This will enable the computation of many other exotic option values.

8The stochastic variance of an asset is the variance of its log-return; this variance is a random measure in the mathematical
sense. Besides, the standard error of its log- Yield is called volatility.
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1.6.4 Additional applications
A major motivation for probabilists to study Liouville theory is that it provides the conjectured scaling limit
of random planar maps potentially weighted by a statistical physics model. To every integrability formula in
Liouville theory there should correspond an observable on random planar maps; see [20] for the conjectures in
the case of the Riemann sphere. Let us mention a slightly different approach to Liouville theory developed in
[33, 71]. The strength of this approach is that it bridges the gap between the discrete world of random planar
maps and the continuum description of Liouville quantum gravity. Major progress has been made in the case
of pure gravity γ =

√
8
3 corresponding to uniform random planar maps. The same framework has also allowed

to derive rigorously the so-called KPZ relation of [58]; see [36]. Establishing links between the approach of
[33] and the path integral construction we propose could prove very useful to obtain a better understanding
of Liouville theory. Finally, we mention the widespread approach to the probabilistic study of CFT using the
celebrated SLE curves. BPZ type equations can be written for these curves [28] and precise links with the
Virasoro algebra of CFT have been uncovered [30]. Coupling between the SLE and Liouville theory has also
been widely developed in [33].

We can briefly mention a few additional problems linked to Liouville theory. First, the integrability formulas
we present in section 1.5 are only a very small part of what can be found in the review [72]. For instance there
is another whole set of formulas for the ZZ-branes of Liouville theory. Also, the problem of random geometry
has been studied with a modified action where an additional Mabuchi term is added to (1.3.2), see [15]. This
new Mabuchi term can be seen as a perturbation of the Liouville CFT. We mention as well the celebrated
AGT conjecture [1] linking the Liouville theory to the Nekrasov partition function of a four-dimensional gauge
theory. This has been recently studied on the mathematical side in the work [68], where the reflection operator
of Liouville theory appears. Finally there is a link between the zeros of the Riemann zeta function and GMC
theory, see for instance [95] and references therein.

1.6.5 Other exact formulas for Liouville theory
In this section we give some perspectives on a series of formulas and results that we expect to obtain with
similar techniques.

Let us start by a generalization of the formula (1.5.30) for the case µ = 0. In fact the Selberg integral on
the circle - the so-called Morris integral - predicts that one can go even furthermore and hope to prove the
following formula.

Conjecture 3. For γ ∈ (0, 2) and suitable a, b, p ∈ R give a meaning to and prove the following formula:

E[(
∫ 2π

0

e
iθγ
4

(b−a)

|eiθ − 1|
γ
2
(a+b)

e
γ
2
X(eiθ)dθ)p] = (2π)p

Γ(1− γ2p
4

)Γγ(Q− a− b− γp
2
)Γγ(Q− a)Γγ(Q− b)Γγ(Q− γp

2
)

Γ(1− γ2

4
)pΓγ(Q− a− γp

2
)Γγ(Q− b− γp

2
)Γγ(Q− a− b)Γγ(Q)

. (1.6.20)

This formula is interesting because it characterizes the Fourier transform of GMC on the unit circle. The
first difficulty is to well define this object to be a single valued function. The second difficulty is that it is no more
covered by correlation functions of LCFT because of the term ei

θγ
4 (b−a), although certain non-hypergeometric

differential equations are expected for the auxiliary functions.
We will now state a list of formulas that generalizes the formulas of subsection 1.5.3. We keep using the

notations U(α), G(α, β), R(β, µ1, µ2) and H
(β1,β2,β3)
(µ1,µ2,µ3)

but we now work with µ > 0.

Conjecture 4. For µ > 0, µ∂ > 0, z ∈ H, and suitable α

U(α) =
4

γ
(πµl(

γ2

4
))
Q−2α
γ Γ(

αγ

2
− γ2

4
)Γ(

2

γ
α− 4

γ2
− 1) cos(2π(α−Q)(σ − Q

2
)) (1.6.21)

with σ defined by the relation cos2(πγ(σ − Q
2 )) =

µ2
∂

µ sin πγ2

4 .
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For suitable β, µ1, µ2,

R(β, µ1, µ2) = −
(2π)

2
γ (Q−β)− 1

2 ( 2γ )
γ
2 (Q−β)− 1

2

(Q− β)Γ(1− γ2

4 )
2
γ (Q−β)

1

S γ
2
(β2 + σ1 + σ2 −Q)S γ

2
(β2 − σ1 − σ2 +Q)

Γ γ
2
(β − γ

2 )Γ(1−
2(Q−β)

γ )

Γ γ
2
(Q− β)S γ

2
(β2 + σ2 − σ1)S γ

2
(β2 + σ1 − σ2)

. (1.6.22)

We can also generalize the three point structure constant:

H
(β1,β2,β3)
(µ1,µ2,µ3)

(1.6.23)

=
2

γ
Γ(
β1 + β2 + β3 − 2Q

γ
)
(2π)

2Q−β
γ +1( 2γ )

( γ2 −
2
γ )(Q− β

2 )−1

Γ(1− γ2

4 )
2Q−β
γ Γ(β−2Q

γ )

×
Γ γ

2
(2Q− β

2 )Γ γ
2
(β1+β3−β2

2 )Γ γ
2
(Q− β1+β2−β3

2 )Γ γ
2
(Q− β2+β3−β1

2 )

Γ γ
2
(Q)Γ γ

2
(Q− β1)Γ γ

2
(Q− β2)Γ γ

2
(Q− β3)

× 1

S γ
2
(β1

2 + σ1 − σ2)S γ
2
(β3

2 + σ3 − σ1)S γ
2
(β1

2 + σ1 + σ2 −Q)S γ
2
(β3

2 − σ1 − σ3 +Q)

×
∫ i∞

−i∞

S γ
2
(−β2

2 + σ2 + σ3 + r)S γ
2
(Q− β2

2 + σ3 − σ2 + r)S γ
2
(β3

2 + σ3 − σ1 + r)S γ
2
(Q− β3

2 + σ3 − σ1 + r)

S γ
2
(Q+ β1

2 − β2

2 + σ3 − σ1 + r)S γ
2
(2Q− β1

2 − β2

2 + σ3 − σ1 + r)S γ
2
(2σ3 + r)S γ

2
(Q+ r)

dr

i
.

For the expression of G(α, β), see the review [72].

The algebra of the proof for R(β, µ1, µ2) and H
(β1,β2,β3)
(µ1,µ2,µ3)

is exactly the same as the µ = 0 case proved
in chapter 3. There are some additional difficulties that we need to understand: the conjecture 1 for BPZ
equations on the boundary, and all the reflection techniques should be reproved in this case where both bulk
and boundary potential are present. We also expect the exact formula of R(β, µ1, µ2) to give the distribution
of the total mass of the quantum disk. The calculus of U(α) seems to have some technical problems as the
domain of definition is not sufficient to write shift equations.

Finally let us note that formulas also exist in the case of other topologies (torus [50] or annulus [67]).
Proving these formulas is a whole new adventure as one needs to perform the so-called “modular bootstrap”.

1.6.6 More on BPZ equations

Higher order BPZ equations can also be used to deduce exact formulas of certain correlation functions of
LFCT, such as the integral forms introduced by Fateev-Litvinov [38, 39]. The idea is to first show that the
solution space of higher order BPZ equations is of dimension 1 using monodromy arguments [26, 27]. It is not
hard to verify that the integral forms of Fateev-Litvinov satisfy higher order BPZ equations using its relation
with Coulomb gas integrals and analycity of its parameters, especially analycity in γ. Therefore we can identify
the LCFT correlation functions to Fateev-Litvinov integrals. See the conjecture below. However this conjecture
only works for the paramters χ = γ

2 and γ < 2√
r−1

, while the proof of higher order BPZ equations works for

γ >
√

2(r−2)
r−1 . As long as r ≥ 4, the intersection is empty.

Conjecture 5. Four point Liouville correlation functions can be expressed as follows (in the domain of
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existence for the integral):

〈V− (r−1)γ
2

(z)Vα1
(0)Vα2

(1)Vα3
(∞)〉S2

=
〈V
α1− (r−1)γ

2
(0)Vα2

(1)Vα3
(∞)〉

Sr−1

(
γ
2 (

(r−1)γ
2 − α1),

γ
2 (Λ− α2),−γ2

2

) |z|
(r−1)γα1

2 |z − 1|
(r−1)γα2

2

∫
Cr−1

r−1∏
s=1

|ws|γ(Λ−α1)|ws − 1|γ(Λ−α2)|ws − z|γ(−Λ+
(r−1)γ

2 )
∏

1≤s<s′≤r−1

|ws − ws′ |−γ
2

d2w, (1.6.24)

where Λ = 1
2 (
∑3
i=1 αi − 2Q+ (r−1)γ

2 ), and Sr−1 is the complex Selberg integral defined by

Sr−1(a, b, g) =

∫
Cr−1

r−1∏
s=1

|ws|2a|ws − 1|2b
∏

1≤s<s′≤r−1

|ws − ws′ |2gd2w. (1.6.25)

The integral is well defined for the following range of parameters:

γ2 <
4

r − 1
, Λ <

γ

2
+

2

γ
, ∀i Λ− αi >

(r − 2)γ

2
− 2

γ
. (1.6.26)

Remark 1.6.1. Note that there is no conjecture for the degenerate insertion with weight − 2(r−1)
γ , in which

case the domain of definition is empty for the integral on the right hand side.

The renormalizing factors in equation (1.6.24) are explicit. The value of the three point correlation function
〈V
α1− (r−1)γ

2
(0)Vα2

(1)Vα3
(∞)〉 is given by the DOZZ formula and the value of complex Selberg integrals can be

written explicitly in terms of Gamma functions.
Another series of higher order differential equations, known as equations of motion, are conjectured in [109]:

Conjecture 6 (higher equations of motion). Define V ′
α = ϕVα,

D̄rDr〈V ′
− (r−1)γ

2

(z)
∏
l

Vαl(zl)〉S2 = Br〈V (r+1)γ
2

(z)
∏
l

Vαl(zl)〉S2 , (1.6.27)

where l(x) = Γ(x)
Γ(1−x) and Br is defined by

Br = (πµ l(
γ2

4
))r

(−1)r−1(γ2 )
4r−3((r − 1)!)2

l( rγ
2

4 )
. (1.6.28)

The operators Dr are the same as in higher order BPZ equations, D̄r are defined by replacing L−n by L̄−n in
the expresion of Dr, with L̄−n given by

L̄−1 = ∂z̄, (1.6.29)

L̄−n =

N∑
l=1

(
− 1

(z̄l − z̄)n−1
∂z̄l +

∆l(n− 1)

(z̄l − z̄)n

)
n ≥ 2. (1.6.30)

Remark 1.6.2. We have an algebraical proof for the r = 2 case using the methods proposed in chapter 4. The
major difficulty is the existence of the certain objects coming from higher order derivatives.



CHAPTER 2

Gaussian multiplicative chaos on the unit interval

In collaboration with Guillaume Remy.

We consider a sub-critical Gaussian multiplicative chaos (GMC) measure defined on the unit interval
[0, 1] and prove an exact formula for the fractional moments of the total mass of this measure. Our formula
includes the case where log-singularities (also called insertion points) are added in 0 and 1, the most general
case predicted by the Selberg integral. The idea to perform this computation is to introduce certain auxiliary
functions resembling holomorphic observables of conformal field theory that will be solutions of hypergeometric
equations. Solving these equations then provides non-trivial relations that completely determine the moments
we wish to compute. We also include a detailed discussion of the so-called reflection coefficients appearing
in tail expansions of GMC measures and in Liouville theory. Our theorem provides an exact value for one of
these coefficients. Lastly we mention some additional applications to small deviations for GMC measures, to
the behavior of the maximum of the log-correlated field on the interval and to random hermitian matrices.

2.1 Introduction and main result
Starting from a log-correlated field X one can define the associated Gaussian multiplicative chaos (GMC)
measure which has a density with respect to the Lebesgue measure formally given by the exponential of X.
This definition is formal as X lives in the space of distributions but since the pioneering work of Kahane [56]
in 1985 it is well understood how to give a rigorous probabilistic definition to these GMC measures by using
a limiting procedure. Ever since GMC has been extensively studied in probability theory and mathematical
physics with applications including 3d turbulence, statistical physics, mathematical finance, random geometry
and 2d quantum gravity. See for instance [92] for a review.

Despite the importance of GMC measures in many active fields of research, rigorous computations have
remained until very recently completely out of reach. A large number of exact formulas have been conjectured
by the physicists’ trick of analytic continuation from positive integers to real numbers (see the explanations
below) but with no indication of how to rigorously prove such formulas. A decisive step was made in [20] where
a connection is uncovered between GMC measures and the correlation functions of Liouville conformal field
theory (LCFT). By implementing the techniques of conformal field theory (CFT) in a probabilistic setting one
can hope to perform rigorous computations on GMC.

Indeed, in 2017 a proof was given by Kupiainen-Rhodes-Vargas of the celebrated DOZZ formula [60, 61]
first conjectured independently by Dorn and Otto in [25] and by Zamolodchikov and Zamolodchikov in [108].
This formula gives the value of the three-point correlation function of LCFT on the Riemann sphere and it can

37
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also be seen as the first rigorous computation of fractional moments of a GMC measure. Very shortly after, the
study of LCFT on the unit disk by the first author led in [88] to the proof of a probability density for the total
mass of the GMC measure on the unit circle. This result proves the conjecture of Fyodorov and Bouchaud
stated in [41] and it is the first explicit probability density for a GMC measure obtained in the mathematical
literature.

The present paper presents a third case where exact computations are tractable using CFT-inspired tech-
niques which is the case of GMC on the unit interval [0, 1] with X of covariance written below (2.1.1). This
model was studied by Bacry-Muzy in [9] where they prove existence of moments and other properties of GMC.
Five years after exact formulas for this model on the interval were conjectured independently by Fyodorov-Le
Doussal-Rosso in [45, 44] and by Ostrovsky in [75, 76]. In [45, 44] the exact formulas are found using an ana-
lytic continuation from integers to real numbers but in his papers Ostrovsky went a step further and showed
that the formulas did correspond to a valid probability distribution. He also performs the computation of the
derivatives of all order in γ of (2.1.4) at γ = 0 which is referred to as the intermittency differentiation. However
a crucial analycity argument is missing for this approach to prove rigorously an exact formula. See [79] for a
beautiful review on all the known results and conjectures for the GMC on the interval (and also for the similar
model on the circle) as well as for many additional references.

The main result of our work is precisely the proof of these conjectures for the GMC measure on [0, 1]. The
major input of our paper is the introduction of two auxiliary functions that will be solutions to hypergeometric
equations, see Proposition 2.1.4. This observation was to the best of our knowledge unknown to the statistical
physics community although an analogous statement was known in the case of the Selberg integral, see [57] and
the explanations of subsection 2.1.1. By studying the solution space of these differential equations we obtain
non-trivial relations on the GMC that allow us to rigorously prove the formulas conjectured by physicists.

Let us now introduce the framework of our paper. We consider the log-correlated field X on the interval
[0, 1] with covariance given for x, y ∈ [0, 1] by:

E[X(x)X(y)] = 2 ln
1

|x− y|
.1 (2.1.1)

Because of the singularity of its covariance X is not defined pointwise and lives in the space of distributions.
We define the associated GMC measure on the interval [0, 1] by the standard regularization procedure for
γ ∈ (0, 2),

e
γ
2X(x)dx := lim

δ→0
e
γ
2Xδ(x)−

γ2

8 E[Xδ(x)2]dx, (2.1.2)

where Xδ stands for any reasonable cut-off of X that converges to X as δ goes to 0. The convergence in (2.1.2)
is in probability with respect to the weak topology of measures, meaning that for all continuous test functions
f : [0, 1] 7→ R the following holds in probability:∫ 1

0

f(x)e
γ
2X(x)dx = lim

δ→0

∫ 1

0

f(x)e
γ
2Xδ(x)−

γ2

8 E[Xδ(x)2]dx. (2.1.3)

For an elementary proof of this convergence see [12]. We now introduce the main quantity of interest of our
paper, for γ ∈ (0, 2) and for real p, a, b:

M(γ, p, a, b) := E[(
∫ 1

0

xa(1− x)be
γ
2X(x)dx)p]. (2.1.4)

This quantity is the moment p of the total mass of our GMC measure with two “insertion points” in 0 and 1
of weight a and b. The theory of Gaussian multiplicative chaos tells us that these moments are non-trivial, i.e.
different from 0 and +∞, if and only if:

a > −γ
2

4
− 1, b > −γ

2

4
− 1, p <

4

γ2
∧ (1 +

4

γ2
(1 + a)) ∧ (1 +

4

γ2
(1 + b)). (2.1.5)

1Our normalization differs from the ln 1
|x−y| usually found in the literature.
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The first two conditions are required for the GMC measure to integrate the fractional powers xa and (1− x)b.
Notice that this condition is weaker than the one we would get with the Lebesgue measure, a > −1 and b > −1.2
We then have a bound on the moment p, the first part p < 4

γ2 is the standard condition for the existence of
a moment of GMC without insertions. The additional condition on p, p < (1 + 4

γ2 (1 + a)) ∧ (1 + 4
γ2 (1 + b)),

comes from the presence of the insertions. A proof of the bounds (2.1.5) can be found in [93, 53].
Now the goal of our paper is simply to prove the following exact formula for M(γ, p, a, b):

Theorem 2.1.1. For γ ∈ (0, 2) and for p, a, b satisfying (2.1.5)3, M(γ, p, a, b) is given by,

(2π)pΓ γ
2
( 2γ (a+ 1)− (p− 1)γ2 )Γ γ

2
( 2γ (b+ 1)− (p− 1)γ2 )Γ γ

2
( 2γ (a+ b+ 2)− (p− 2)γ2 )Γ γ

2
( 2γ − pγ2 )

(γ2 )
p γ

2

4 Γ(1− γ2

4 )pΓ γ
2
( 2γ )Γ γ

2
( 2γ (a+ 1) + γ

2 )Γ γ
2
( 2γ (b+ 1) + γ

2 )Γ γ
2
( 2γ (a+ b+ 2)− (2p− 2)γ2 )

,

where the function Γ γ
2
(x) is defined for x > 0 and Q = γ

2 + 2
γ by:

ln Γ γ
2
(x) =

∫ ∞

0

dt

t

[
e−xt − e−

Qt
2

(1− e−
γt
2 )(1− e−

2t
γ )

−
(Q2 − x)2

2
e−t +

x− Q
2

t

]
. (2.1.6)

As a corollary by choosing a = b = 0 we obtain the value of the moments of the GMC measure without
insertions:

Corollary 2.1.2. For γ ∈ (0, 2) and p < 4
γ2 :

E[(
∫ 1

0

e
γ
2X(x)dx)p] =

(2π)p( 2γ )
p γ

2

4

Γ(1− γ2

4 )p

Γ γ
2
( 2γ − (p− 1)γ2 )

2Γ γ
2
( 4γ − (p− 2)γ2 )Γ γ

2
( 2γ − pγ2 )

Γ γ
2
( 2γ )Γ γ

2
( 2γ + γ

2 )
2Γ γ

2
( 4γ − (2p− 2)γ2 )

.

Thanks to the computations performed by Ostrovsky [77], we can also state our main result in the following
equivalent way:

Corollary 2.1.3. The following equality in law holds,∫ 1

0

xa(1− x)be
γ
2X(x)dx = 2π2−(3(1+ γ2

4 )+2(a+b))LYγX1X2X3, (2.1.7)

where L, Yγ , X1, X2, X3 are five independent random variables in R+ with the following laws:

L = exp(N (0, γ2 ln 2)),

Yγ =
1

Γ(1− γ2

4 )
E(1)−

γ2

4 ,

X1 = β−1
2,2(1,

4

γ2
; 1 +

4

γ2
(1 + a),

2(b− a)

γ2
,
2(b− a)

γ2
),

X2 = β−1
2,2(1,

4

γ2
; 1 +

2

γ2
(2 + a+ b),

1

2
,
2

γ2
),

X3 = β−1
2,2(1,

4

γ2
; 1 +

4

γ2
,
1

2
+

2

γ2
(1 + a+ b),

1

2
+

2

γ2
(1 + a+ b)).

Here E(1) is an exponential law of parameter 1 and β2,2 is a special beta law defined in appendix 2.4.5. It
satisfies β2,2 ∈ [0, 1].

2Proving Theorem 2.1.1 for −1− γ2

4
< a ≤ −1 will require a lot of technical work as precise estimates on GMC measures are

required to show that Proposition 2.1.4 holds in this case.
3The result also holds for all complex p such that Re(p) satisfies the bounds (2.1.5).



40 CHAPTER 2. GAUSSIAN MULTIPLICATIVE CHAOS ON THE UNIT INTERVAL

The advantage of this formulation is that it is more transparent than the large formula of Theorem 2.1.1.
The log-normal law L is a global mode coming from the fact that X is not of zero average on [0, 1], see the
discussion of subsection 2.1.3. The random variable Yγ is actually the law of the total mass of the GMC measure
defined on the unit circle - see [88] - and it will play a crucial role in understanding the small deviations of
GMC, see again subsection 2.1.3. Lastly the generalized beta laws studied in [78] have a complicated definition
but take values in [0, 1] just like the standard beta law.

2.1.1 Strategy of the proof
We start off with the well known observation that a formula can be given for M(γ, p, a, b) in the very special
case where p ∈ N, a > −1, b > −1 and p satisfying (2.1.5). Indeed, in this case the computation reduces to a
real integral - the famous Selberg integral - whose value is known, see for instance [40]. This is because for a
positive integer moment we can write p integrals and exchange them with the expectation E[·]. More precisely
for a, b > −1, p satisfying (2.1.5) and p ∈ N we have, using any suitable regularization procedure:

E[(
∫ 1

0

xa(1− x)be
γ
2X(x)dx)p]

= lim
δ→0

E[(
∫ 1

0

xa(1− x)be
γ
2Xδ(x)−

γ2

8 E[Xδ(x)2]dx)p]

= lim
δ→0

∫
[0,1]p

p∏
i=1

xai (1− xi)
bE[

p∏
i=1

e
γ
2Xδ(xi)−

γ2

8 E[Xδ(xi)2]]dx1 . . . dxp

=

∫
[0,1]p

p∏
i=1

xai (1− xi)
be

γ2

4

∑
i<j E[X(xi)X(xj)]dx1 . . . dxp

=

∫
[0,1]p

p∏
i=1

xai (1− xi)
b
∏
i<j

1

|xi − xj |
γ2

2

dx1 . . . dxp

=

p∏
j=1

Γ(1 + a− (j − 1)γ
2

4 )Γ(1 + b− (j − 1)γ
2

4 )Γ(1− j γ
2

4 )

Γ(2 + a+ b− (p+ j − 2)γ
2

4 )Γ(1− γ2

4 )
. (2.1.8)

The last line is precisely given by the Selberg integral. It is then natural to look for an analytic continuation
of this expression from positive integer p to any real p satisfying (2.1.5). Notice that giving the analytic
continuation of a such a quantity is a highly non-trivial problem as p appears both in the argument of the
Gamma functions as well as in the number of terms in the product. To find the right candidate for the analytic
continuation we start by writing down the following relations that we will refer to as the shift equations. They
are deduced by simple algebra from (2.1.8) again for p ∈ N and under the bounds (2.1.5),

M(γ, p, a+ γ2

4 , b)

M(γ, p, a, b)
=

Γ(1 + a+ γ2

4 )Γ(2 + a+ b− (2p− 2)γ
2

4 )

Γ(1 + a− (p− 1)γ
2

4 )Γ(2 + a+ b− (p− 2)γ
2

4 )
, (2.1.9)

M(γ, p, a+ 1, b)

M(γ, p, a, b)
=

Γ( 4
γ2 (1 + a) + 1)Γ( 4

γ2 (2 + a+ b)− (2p− 2))

Γ( 4
γ2 (1 + a)− (p− 1))Γ( 4

γ2 (2 + a+ b)− (p− 2))
, (2.1.10)

and for p ∈ N∗ under the bounds (2.1.5),

M(γ, p, a, b)

M(γ, p− 1, a, b)
=

Γ(1 + a− (p− 1)γ
2

4 )Γ(1 + b− (p− 1)γ
2

4 )Γ(1− pγ
2

4 )Γ(2 + a+ b− (p− 2)γ
2

4 )

Γ(2 + a+ b− (2p− 3)γ
2

4 )Γ(2 + a+ b− (2p− 2)γ
2

4 )Γ(1− γ2

4 )
. (2.1.11)

Of course similar shift equations hold for b but as there is a symmetry M(γ, p, a, b) =M(γ, p, b, a) we will
write everything only for a. The reason why the function Γ γ

2
(x) introduced in Theorem 2.1.1 appears is that
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it verifies the following two relations, for γ ∈ (0, 2) and x > 0,

Γ γ
2
(x)

Γ γ
2
(x+ γ

2 )
=

1√
2π

Γ(
γx

2
)(
γ

2
)−

γx
2 + 1

2 , (2.1.12)

Γ γ
2
(x)

Γ γ
2
(x+ 2

γ )
=

1√
2π

Γ(
2x

γ
)(
γ

2
)

2x
γ − 1

2 . (2.1.13)

See appendix 2.4.5 for more details on Γ γ
2
(x). Therefore we can use Γ γ

2
(x) to construct a candidate function

that will verify all the shift equations (2.1.9), (2.1.10), (2.1.11) not only for p ∈ N but for any real p satisfying
the bounds (2.1.5). More precisely for any function C(p) of p (and γ) the following quantity,

C(p)
Γ γ

2
( 2γ (a+ 1)− (p− 1)γ2 )Γ γ

2
( 2γ (b+ 1)− (p− 1)γ2 )Γ γ

2
( 2γ (a+ b+ 2)− (p− 2)γ2 )

Γ γ
2
( 2γ (a+ 1) + γ

2 )Γ γ
2
( 2γ (b+ 1) + γ

2 )Γ γ
2
( 2γ (a+ b+ 2)− (2p− 2)γ2 )

, (2.1.14)

is a solution to the shift equations (2.1.9), (2.1.10). Notice that for γ2

4 /∈ Q these two shift equations completely
determine the dependence on a (and on b by symmetry) of M(γ, p, a, b). Then by a standard continuity
argument in γ we will be able to extend the expression (2.1.14) to all γ ∈ (0, 2). Next the equation (2.1.11)
translates into a constraint on the unknown function C(p):

C(p)

C(p− 1)
=

√
2π(

γ

2
)(p−1) γ

2

4 − 1
2
Γ(1− pγ

2

4 )

Γ(1− γ2

4 )
. (2.1.15)

We see that (2.1.15) is not enough to fully determine the function C(p). An additional shift equation that is
a priori not predicted by the Selberg integral (2.1.8) is required. We will indeed prove that we have,

C(p)

C(p− 4
γ2 )

= f(γ)(
γ

2
)−pΓ(

4

γ2
− p), (2.1.16)

where f(γ) is an unknown positive function of γ. Now combining (2.1.15) and (2.1.16) completely determines
the function C(p) again up to an unknown constant cγ of γ:

C(p) = cγ
(2π)p

Γ(1− γ2

4 )p
(
2

γ
)p
γ2

4 Γ γ
2
(
2

γ
− p

γ

2
). (2.1.17)

This last constant cγ is evaluated by choosing p = 0 and thus we arrive at the function of Theorem 2.1.1 giving
the expression of M(γ, p, a, b).

Now the major difficulty that must be overcome is to find a way to prove all the shift equations (2.1.9),
(2.1.10), (2.1.11) as well as the additional equation (2.1.16) for all real values of p, a, b satisfying (2.1.5) and
not just for positive integer p. To achieve this the key ingredient of our proof is to introduce the following two
auxiliary functions for t ≤ 0,

U(t) := E[(
∫ 1

0

(x− t)
γ2

4 xa(1− x)be
γ
2X(x)dx)p], (2.1.18)

and
Ũ(t) := E[(

∫ 1

0

(x− t)xa(1− x)b e
γ
2X(x)dx)p], (2.1.19)

and to show using probabilistic techniques that the following holds:

Proposition 2.1.4. For γ ∈ (0, 2), a, b, p satisfying (2.1.5) and t < 0, U(t) is solution of the hypergeometric
equation:

t(1− t)U ′′(t) + (C − (A+B + 1)t)U ′(t)−ABU(t) = 0. (2.1.20)
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The parameters A,B,C are given by:

A = −pγ
2

4
, B = −(a+ b+ 1)− (2− p)

γ2

4
, C = −a− γ2

4
. (2.1.21)

Similarly Ũ(t) is solution of the hypergeometric equation but with parameters Ã, B̃, C̃ given by:

Ã = −p, B̃ = − 4

γ2
(a+ b+ 2) + p− 1, C̃ = − 4

γ2
(a+ 1). (2.1.22)

Let us make a few comments on the meaning of U(t) and Ũ(t). These auxiliary functions are very similar to
the correlation functions of LCFT with a degenerate field insertion - see [60, 61] for the case of the sphere and
[88] for the unit disk - which also obey differential equations known as the BPZ equations. What is mysterious
in our present case is that it is not clear whether there exists an actual CFT where U(t) and Ũ(t) correspond to
correlations with degenerate insertions which would explain why the differential equations of Proposition 2.1.4
hold. Furthermore if we replace the real t by a complex variable t ∈ C\[0,∞], it is not hard to see that U(t)
is a holomorphic function and Proposition 2.1.4 will hold if we replace the ordinary derivative by a complex
derivative ∂t. In the conformal bootstrap approach of CFT initiated by Belavin-Polyakov-Zamolodchikov in
[10], a correlation function with a degenerate insertion can be decomposed into combinations of the structure
constants and of the conformal blocks. A conformal block is a locally holomorphic function and it is always
accompanied by its complex conjugate in the decomposition. What is mysterious with U(t) and Ũ(t) is that we
only see the holomorphic part. At this stage we have no CFT-based explanation for this observation although
a possible path could be to look at boundary LCFT with multiple boundary cosmological constants, see for
instance [72]. On the other hand let us mention that again in the very special case where p ∈ N, U(t) and Ũ(t)
reduce to Selberg-type integrals and the equations of Proposition 2.1.4 were known in this case, see [57].

Proposition 2.1.4 will be established in section 2.3 by performing direct computations on U(t) and Ũ(t).
We then write the solutions of the hypergeometric equations in two different bases. One solution corresponds
to a power series expansion in |t| and the other to an expansion in |t|−1. The change of basis formula (2.4.56)
written in appendix 2.4.5 given by the theory of hypergeometric equations then provides non-trivial relations
which are precisely the shift equations that we wish to prove. This is performed in detail in section 2.2 where
Proposition 2.2.1 completely determines the dependence in a and b of M(γ, p, a, b) and Proposition 2.2.2
establishes (2.1.17). Thus we have proved Theorem 2.1.1.

2.1.2 Tail expansion for GMC and the reflection coefficients
Before moving into the proof of our main result, we provide in this subsection and in the following some
applications of Theorem 2.1.1. The first application we will consider deals with tail expansions for GMC
measures, in other words the probability for a GMC measure to be large. We choose to include here a very
general discussion about these tail expansions of GMC with an arbitrary insertion both in one and in two
dimensions. For each tail expansion result there will appear a universal coefficient known as the reflection
coefficient.

The first case that was studied is the tail expansion of a GMC in dimension two and a precise asymptotic
was given in [61] in terms of the reflection coefficient R2(α),4 see Proposition 2.1.6 below.5 Let us mention
that it was recently discovered in [103] that R2(α) corresponds to the partition function of the α-quantum
sphere introduced by Duplantier-Miller-Sheffield in [33]. Now our exact formula on the unit interval will allow
us to write a similar tail expansion for GMC in dimension one. Following [33] we use the standard radial
decomposition of the covariance (2.1.1) of X around the point 0, i.e. we write for s ≥ 0,

X(e−s/2) = Bs + Y (e−s/2), (2.1.23)
4In [61] or [103] this coefficient is actually called R(α) but for the needs of our discussion we introduce the 2 to indicate the

dimension. Furthermore the bar stands for the fact that it is the unit volume coefficient.
5R2(α) is the bulk reflection coefficient in dimension two, a boundary reflection coefficient R

∂
2 (α) also exists but its value

remains unknown, see the figure below.
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where Bs is a standard Brownian motion and Y is an independent Gaussian process that can be defined on
the whole plane with covariance given for x, y ∈ C by:

E[Y (x)Y (y)] = 2 ln
|x| ∨ |y|
|x− y|

. (2.1.24)

Motivated by the Williams decomposition of Theorem 2.4.3, we introduce for λ > 0 the process that will
be used in the definitions below,

Bλs :=

{
B̂s − λs s ≥ 0

B̄−s + λs s < 0,
(2.1.25)

where (B̂s−λs)s≥0 and (B̄s−λs)s≥0 are two independent Brownian motions with negative drift conditioned to
stay negative. We can now give the definitions of the two coefficients in dimension one R∂1 (α) and R1(α) along
with the associated GMC measures with insertion I∂1,η(α) and I1,η(α) whose tail behavior will be governed by
the corresponding coefficient:

R
∂

1 (α) := E[(
1

2

∫ ∞

−∞
e
γ
2 B

Q−α
2

s e
γ
2 Y (e−s/2)ds)

2
γ (Q−α)],

R1(α) := E[(
1

2

∫ ∞

−∞
e
γ
2 B

Q−α
2

s (e
γ
2 Y (e−s/2) + e

γ
2 Y (−e−s/2))ds)

2
γ (Q−α)],

I∂1,η(α) :=

∫ η

0

x−
γα
2 e

γ
2X(x)dx,

I1,η(α) :=

∫ v+η

v−η
|x− v|−

γα
2 e

γ
2X(x)dx.

Let us make some comments on these definitions. Here α ∈ (γ2 , Q), Q = γ
2+

2
γ , and η is an arbitrary positive real

number chosen small enough. To match the conventions of the study of LCFT we have written the fractional
power x− γα

2 , so in these notations we have a = −γα
2 . Notice that the difference between I∂1,η(α) and I1,η(α) lies

in the position of the insertion. For I∂1,η(α) the insertion is placed in 0 (by symmetry we could have placed it in
1). Our Theorem 2.1.1 will give us the value of the associated coefficient R∂1 (α). The other case corresponds to
placing the insertion at a point v inside the interval, v ∈ (0, 1), and gives the quantity I1,η(α). The computation
of the associated R1(α) will be done in a future work. We now claim:

Proposition 2.1.5. For α ∈ (γ2 , Q) we have the following tail expansion for I∂1,η(α) as u→ ∞ and for some
ν > 0,

P(I∂1,η(α) > u) =
R
∂

1 (α)

u
2
γ (Q−α)

+O(
1

u
2
γ (Q−α)+ν

), (2.1.26)

where the value of R∂1 (α) is given by:

R
∂

1 (α) =
(2π)

2
γ (Q−α)− 1

2 ( 2γ )
γ
2 (Q−α)− 1

2

(Q− α)Γ(1− γ2

4 )
2
γ (Q−α)

Γ γ
2
(α− γ

2 )

Γ γ
2
(Q− α)

. (2.1.27)

The proof of this proposition is done in appendix 2.4.4. Notice that we impose the condition α ∈ (γ2 , Q).
This is crucial for the tail behavior of I∂1,η(α) (or similarly for I1,η(α)) to be dominated by the insertion and
this is precisely why the asymptotic expansion is independent of the choice of η. It also explains why the radial
decomposition (2.1.23) is natural as it is well suited to study X around a particular point. If one is interested
in the case where α < γ

2 (or simply α = 0), a different argument known as the localization trick is required to
obtain the tail expansion, see [94] for more details. For the sake of completeness of our discussion we also recall
the tail expansion in dimension two that was obtained in [61]. The normalizations in this case are slightly
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different as we do not include a factor 2 in the covariance. We work with a Gaussian process X̃ defined on the
unit disk D with covariance ln 1

|x−y| . Instead of Y we use Ỹ with covariance:

E[Ỹ (x)Ỹ (y)] = ln
|x| ∨ |y|
|x− y|

. (2.1.28)

For an insertion placed in z, |z| < 1 we now define,

R2(α) := E[(
∫ ∞

−∞
eγB

Q−α
s

∫ 2π

0

eγỸ (e−seiθ)ds)
2
γ (Q−α)],

I2,η(α) :=

∫
B(z,η)

|x− z|−γαeγX̃(x)d2x,

and we state the result obtained in [61]:

Proposition 2.1.6. (Kupiainen-Rhodes-Vargas [61]) For α ∈ (γ2 , Q) we have the following tail expansion for
I2,η(α) as u→ ∞ and for some ν > 0,

P(I2,η(α) > u) =
R2(α)

u
2
γ (Q−α)

+O(
1

u
2
γ (Q−α)+ν

), (2.1.29)

where the value of R2(α) is given by:

R2(α) = − γ

2(Q− α)

(πΓ(γ
2

4 ))
2
γ (Q−α)

Γ(1− γ2

4 )
2
γ (Q−α)

Γ(−γ
2 (Q− α))

Γ(γ2 (Q− α))Γ( 2γ (Q− α))
. (2.1.30)

A similar proposition is also expected for R∂2 (α), the boundary reflection coefficient in dimension two,
whose expression and computation are left for a future paper. One notices that R∂1 (α) has a more convoluted
expression than R2(α) as the special function Γ γ

2
appears in its expression. Such expressions have already

appeared in the study of Liouville theory for instance in [85] where a general formula for the reflection amplitude
is given. We now summarize the four different cases that we have discussed in the following figure. For each
coefficient the number 1 or 2 stands for the dimension and the partial ∂ symbol stands for the boundary cases,
no ∂ corresponds to the bulk cases.

2.1.3 Small deviations for GMC
We now turn to the problem of determining the universal behavior of the probability for a GMC to be small.
Both the exact formulas of Theorem 2.1.1 and the one proven on the unit circle in [88] will provide crucial
insight. For this subsection only we will use the following shorthand notation:

Iγ,a,b :=

∫ 1

0

xa(1− x)be
γ
2X(x)dx. (2.1.31)

In the following we will rely extensively on the decomposition

Iγ,a,b = c̃LYγX1X2X3

coming from Corollary 2.1.3 with c̃ being a positive constant. First L is a log-normal law, so one has P(L ≤
ϵ) ≤ c1 exp(−c2(ln ϵ)2) for some c1, c2 > 0. On the other hand the probability for Yγ to be small is much smaller
since P(Yγ ≤ ϵ) ≤ exp(−cϵ−

4
γ2 ) for some c > 0. From the above and since X1, X2, X3 ≥ 1 the probability to

be small for Iγ,a,b will be of log-normal type. By comparison in the case of the total mass of the GMC on the
unit circle it was shown in [88] that it is distributed according to Yγ and so its probability to be small is of
order exp(−cϵ−

4
γ2 ).
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1d

2d

Boundary Bulk

Figure 2.1: Four types of reflection coefficients

Thus it appears that GMC on the unit interval and the unit circle have completely different small deviations.
However this difference comes from the fact that the log-correlated field on the circle is of average zero while in
the case of the interval there is a non-zero global mode producing the log-normal variable L. Therefore on the
interval if one subtracts the average of X with respect to the correct measure (see below) one can remove the
log-normal law L appearing in the decomposition of Corollary 2.1.3. The probability for the resulting GMC
to be small will then be bounded by exp(−cϵ−

4
γ2 ) for some c > 0 just like for the case of the circle. We expect

this to be the correct universal behavior.
Let us make the above more precise. We start by writing down the decomposition of the covariance of our

field in terms of the Chebyshev polynomials. For all x, y ∈ [0, 1] with x 6= y we have:

− 2 ln |x− y| = 4 ln 2 +

+∞∑
n=1

4

n
Tn(2x− 1)Tn(2y − 1). (2.1.32)

We recall that the Chebyshev polynomial of order n is the unique polynomial verifying Tn(cos θ) = cos(nθ).
This basis of polynomials is also orthogonal with respect to dot product given by the integration against

1√
1−x2

dx, i.e. ∫ 1

−1

Tn(x)Tm(x)
1√

1− x2
dx =

 0 for n 6= m
π for n = m = 0
π
2 for n = m 6= 0

(2.1.33)

From the above our field X(x) can be constructed by the series:

X(x) = 2
√
ln 2α0 +

+∞∑
n=1

2αn√
n
Tn(2x− 1). (2.1.34)

Here (αn)n∈N is a sequence of i.i.d. standard Gaussians. This of course only makes sense if one integrates both
sides against a test function. We now introduce:

X :=
2

π

∫ 1

0

1√
1− (2x− 1)2

X(x)dx = 2
√
ln 2α0 and X⊥(x) := X(x)−X.
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We easily check that e γ2X law
= exp(N (γ2 ln 2)). The probability to be small for the GMC associated to X⊥(x)

is now given by,

P(
∫ 1

0

e
γ
2X⊥(x)dx ≤ ϵ) ≤ exp(−cϵ−

4
γ2 ). (2.1.35)

This result can be easily obtained from Corollary 2.1.3 by noticing that since we removed L = exp(N (γ2 ln 2))
the probability to be small is now governed by Yγ which gives the bound written above. The argument we
have just described is expected to work for any GMC in any dimension, a result of this nature can be found
in [63].

There is also a direct application of these observations to determining the law of the random variable
Iγ,a,b. This is linked to how the strategy of the proof of the present paper differs from the one used in [88]
to prove the Fyodorov-Bouchaud formula. In subsection 2.2.2 we first use the differential equation (2.1.20) on
U(t) to obtain a relation between M(γ, p, a, b) and M(γ, p− 1, a, b). Thus from this relation and knowing that
M(γ, 0, a, b) = 1 one can compute recursively all the negative moments of the random variable Iγ,a,b. As it was
emphasized in many papers (see the review [79] by Ostrovsky and references therein), the negative moments of
Iγ,a,b do not determine its law as the growth of the negative moments is too fast. This is why we must derive
a second relation between M(γ, p, a, b) and M(γ, p− 4

γ2 , a, b) which gives enough information to complete the
proof. By contrast in the case of the total mass of the GMC on the unit circle the negative moments do capture
uniquely the probability distribution and so the proof of the Fyodorov-Bouchaud formula given in [88] only
requires one shift equation (in a similar fashion one obtains a relation between the moment p and the moment
p− 1 of the total mass of the GMC).

But the negative moments of Iγ,a,b do not determine its law only because of the log-normal law L in the
decomposition of Corollary 2.1.3. By using Corollary 2.1.3 and by independence of X⊥(x) and X one can
factor out e γ2X law

= L and the computation of the negative moments is now sufficient to uniquely determine
the distribution. Thus the negative moments of a GMC measure always determine its law if one removes
the global Gaussian coming from the average of the field with respect to an appropriate measure. From this
observation the relation between M(γ, p, a, b) and M(γ, p− 4

γ2 , a, b) could be omitted in the proof of Theorem
2.1.1. Nonetheless if one only computes the negative moments it is not clear that the analytic continuation
given by the Γγ functions does correspond to the fractional moments of a random variable, this fact has been
checked by Ostrovsky in [76]. Thus in order to keep the proof of our theorem self-contained we choose to keep
both shift equations.

2.1.4 Other applications
Similarly as in [88] we will write the applications of our Theorem 2.1.1 to the behavior of the maximum of X
and to random matrix theory. We refer to [88] for more detailed explanations and for additional references on
these problems.

Characterizing the behavior of the maximum of X requires to compute the law of the total mass of the
derivative martingale,

M ′ = −1

2

∫ 1

0

X(x)eX(x)dx := −1

2
lim
δ→0

∫ 1

0

(Xδ(x)− E[Xδ(x)
2])eXδ(x)−

1
2E[Xδ(x)

2]dx,

which following [6] can be characterized by the convergence in law:

2M ′ = lim
γ→2

1

2− γ

∫ 1

0

e
γ
2X(x)dx. (2.1.36)

Therefore from our Theorem 2.1.1 we can easily compute the moments of this quantity,

E[(2M ′)p] = (2π)p
Γ1(1− p)Γ1(2− p)2Γ1(4− p)

Γ1(2)2Γ1(4− 2p)

=
G(4− 2p)

G(1− p)G(2− p)2G(4− p)
,
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where G(x) is the so-called Barnes G function, see appendix 2.4.5 for more details. Just like in Corollary 2.1.3
an explicit description of the resulting law has been found in [78],

2M ′ law=
π

32
L̃X̃1X̃2X̃3, (2.1.37)

where L̃, X̃1, X̃2, X̃3 are four independent random variables on R+ with the following laws:

L̃ = exp(N (0, 4 ln 2)),

X̃1 =
1

y2
e−1/y, y > 0

X̃2 = β−1
2,2(1, 1; 2,

1

2
,
1

2
),

X̃3 =
2

y3
dy, y > 1.

Then for a suitable regularization Xδ of X the following convergence holds in law:

max
x∈[0,1]

Xδ(x)− 2 ln
1

δ
+

3

2
ln ln

1

δ
→
δ→0

G1 + lnM ′ + c

= G1 + G2 +N (0, 4 ln 2) + ln X̃2 + ln X̃3 + c.

All the random variables appearing above are independent, G1 and G2 are two independent Gumbel laws, and
c is a non-universal real constant that depends on the regularization procedure. We have also used the fact
that ln X̃1

law
= G2.

Lastly we briefly mention that in the case of the interval it is also possible to see the GMC measure as the
limit of the characteristic polynomial of random Hermitian matrices, the connection in this case was established
in [13]. The main result of [13] is that for suitable random Hermitian matrices HN , the quantity

|det(HN − x)|γ

E|det(HN − x)|γ
dx

converges in law to the GMC measure on the unit interval [0, 1].6 Therefore the same applications as the ones
given in [88] hold and in particular one can conjecture that the following convergence in law holds:

max
x∈[0,1]

ln |det(HN − x)| − lnN +
3

4
ln lnN →

N→∞
G1 + G2 +N (0, 4 ln 2) + ln X̃2 + ln X̃3 + c.

This conjecture first appeared in [46] although it was written on [−1, 1] instead of [0, 1].

2.2 The shift equations on a and p

To prove Theorem 2.1.1 we proceed in two steps. We first completely determine the dependence of M(γ, p, a, b)
on the parameters a and b, see the result of Proposition 2.2.1 just below. We are then left with an unknown
function C(p) of p (and γ) and give its value in Proposition 2.2.2. Throughout this section we extensively
use the fact that U(t) and Ũ(t) are solutions of the hypergeometric equations of Proposition 2.1.4 proven in
section 2.3.

6Actually in [13] the limiting GMC measure is defined on [−1, 1] but of course by a change of variable we can write everything
on [0, 1].
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2.2.1 The shifts in a

The goal of this subsection is to prove the shift equations (2.1.9), (2.1.10) on a and b to completely determine
the dependence of M(γ, p, a, b) on these two parameters. By symmetry we will write everything only for a. We
will thus prove that:

Proposition 2.2.1. For γ ∈ (0, 2) and a, b, p satisfying the bounds (2.1.5), M(γ, p, a, b) is given by the
expression,

C(p)
Γ γ

2
( 2γ (a+ 1)− (p− 1)γ2 )Γ γ

2
( 2γ (b+ 1)− (p− 1)γ2 )Γ γ

2
( 2γ (a+ b+ 2)− (p− 2)γ2 )

Γ γ
2
( 2γ (a+ 1) + γ

2 )Γ γ
2
( 2γ (b+ 1) + γ

2 )Γ γ
2
( 2γ (a+ b+ 2)− (2p− 2)γ2 )

, (2.2.1)

where C(p) is the function that contains the remaining dependence on p (and γ). It will be computed in
subsection 2.2.2.

� The +γ2

4 shift equation
Here we start with the first auxiliary function, for γ ∈ (0, 2) and a, b, p satisfying (2.1.5):

U(t) = E[(
∫ 1

0

(x− t)
γ2

4 xa(1− x)be
γ
2X(x)dx)p]. (2.2.2)

From the result of Proposition 2.1.4, U(t) is solution to a hypergeometric equation. As explained in appendix
2.4.5 we can write the solutions of this hypergeometric equation for t ∈ (−∞, 0) in two different bases, one
corresponding to an expansion in powers of |t| and one to an expansion in power of |t|−1. Since the solution
space is a two-dimensional real vector space, each basis will be parametrized by two real constants. Let C1, C2

and D1, D2 stand for these constants. The theory of hypergeometric equations then gives an explicit change
of basis formula (2.4.56) linking C1, C2 and D1, D2. Thus we can write, when A−B and C are not integers,

U(t) = C1F (A,B,C, t) + C2|t|1−CF (1 +A− C, 1 +B − C, 2− C, t) (2.2.3)
= D1|t|−AF (A, 1 +A− C, 1 +A−B, t−1) +D2|t|−BF (B, 1 +B − C, 1 +B −A, t−1), (2.2.4)

where F is the hypergeometric function. We recall that the parameters A,B,C are given by:

A = −pγ
2

4
, B = −(a+ b+ 1)− (2− p)

γ2

4
, C = −a− γ2

4
. (2.2.5)

The values of A,B,C left out corresponding to A−B or C being integers will be recovered at the level of the
shift equation (2.2.11) by continuity. The idea is now to identify the constants C1, C2, D1, D2 by performing
asymptotic expansions on U(t). Two of the above constants are easily obtained by evaluating U(t) in t = 0
and by taking the limit t→ −∞:

C1 =M(γ, p, a+
γ2

4
, b), (2.2.6)

D1 =M(γ, p, a, b). (2.2.7)

By performing a more detailed asymptotic expansion in t→ −∞ we claim that:

D2 = 0. (2.2.8)

We sketch a short proof. For t < −2 (arbitrary) and x ∈ [0, 1],

(x− t)
γ2

4 − |t|
γ2

4 ≤ c|t|
γ2

4 −1,
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for some constant c > 0. By interpolating, for t < −2,

|U(t)−D1|t|
pγ2

4 | =
∣∣∣E[(∫ 1

0

(
u(x− t)

γ2

4 + (1− u)|t|
γ2

4

)
xa(1− x)be

γ
2X(x)dx)p] |u=1

− E[(
∫ 1

0

(
u(x− t)

γ2

4 + (1− u)|t|
γ2

4

)
xa(1− x)be

γ
2X(x)dx)p] |u=0

∣∣∣
≤ |p|

∫ 1

0

dx1
(
(x1 − t)

γ2

4 − |t|
γ2

4

)
xa1(1− x1)

b
(
E[(
∫ 1

0

(x− t)
γ2

4 xa(1− x)b

|x1 − x| γ
2

2

e
γ
2X(x)dx)p−1]

+ E[(
∫ 1

0

|t|
γ2

4 xa(1− x)b

|x1 − x| γ
2

2

e
γ
2X(x)dx)p−1]

)
≤ c′|t|

pγ2

4 −1M(γ, p, a, b) =
t→−∞

O(|t|
pγ2

4 −1),

where in both steps we have used the Girsanov theorem (see appendix 2.4.1) and c′ > 0 is some constant.
However, by using the bound (2.1.5) over p:

(−A)− (−B) = −(a+ b+ 1 + (2− 2p)
γ2

4
) < 1. (2.2.9)

This implies that D2 = 0. We then use the following identity coming from the theory of hypergeometric
functions (2.4.56):

C1 =
Γ(1− C)Γ(A−B + 1)

Γ(A− C + 1)Γ(1−B)
D1. (2.2.10)

This leads to the first shift equation (2.1.9):

M(γ, p, a+ γ2

4 , b)

M(γ, p, a, b)
=

Γ(1 + a+ γ2

4 )Γ(2 + a+ b− (2p− 2)γ
2

4 )

Γ(1 + a− (p− 1)γ
2

4 )Γ(2 + a+ b− (p− 2)γ
2

4 )
. (2.2.11)

� The +1 shift equation
We now write everything with the second auxiliary function, for γ ∈ (0, 2) and a, b, p satisfying (2.1.5):

Ũ(t) = E[(
∫ 1

0

(x− t)xa(1− x)be
γ
2X(x)dx)p]. (2.2.12)

Again we write the solutions of the hypergeometric equation around t = 0− and t = −∞, when C̃ and Ã− B̃
are not integers,

Ũ(t) = C̃1F (Ã, B̃, C̃, t) + C̃2|t|1−C̃F (1 + Ã− C̃, 1 + B̃ − C̃, 2− C̃, t) (2.2.13)

= D̃1|t|−ÃF (Ã, 1 + Ã− C̃, 1 + Ã− B̃, t−1) + D̃2|t|−B̃F (B̃, 1 + B̃ − C̃, 1 + B̃ − Ã, t−1). (2.2.14)

As before we have introduced four real constants C̃1, C̃2, D̃1, D̃2 and Ã, B̃, C̃ are given by:

Ã = −p, B̃ = − 4

γ2
(a+ b+ 2) + p− 1, C̃ = − 4

γ2
(a+ 1). (2.2.15)

Two of our constants are again easily obtained,

C̃1 =M(γ, p, a+ 1, b), (2.2.16)
D̃1 =M(γ, p, a, b), (2.2.17)

and we can proceed as previously to obtain:
D̃2 = 0. (2.2.18)
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The relation between C̃1 and D̃1 (2.4.56) then leads to the shift equation (2.1.10):

M(γ, p, a+ 1, b)

M(γ, p, a, b)
=

Γ( 4
γ2 (1 + a) + 1)Γ( 4

γ2 (2 + a+ b)− (2p− 2))

Γ( 4
γ2 (1 + a)− (p− 1))Γ( 4

γ2 (2 + a+ b)− (p− 2))
. (2.2.19)

Therefore for γ2

4 /∈ Q, (2.2.11) and (2.2.19) prove the formula of Proposition 2.2.1. The result for the other
values of γ follows from the well known fact that γ 7→M(γ, p, a, b) is a continuous function.

2.2.2 The shifts in p

We now tackle the problem of determining two shift equations on p, (2.1.15) and (2.1.16), to completely
determine the function C(p) of Proposition 2.2.1. We will work only with U(t). The idea is to perform a
computation at the next order in the expressions of the previous subsection. This will give the desired result:

Proposition 2.2.2. For γ ∈ (0, 2) and p < 4
γ2 :

C(p) =
(2π)p

Γ(1− γ2

4 )p
(
2

γ
)p
γ2

4

Γ γ
2
( 2γ − pγ2 )

Γ γ
2
( 2γ )

. (2.2.20)

� The +1 shift equation
Since we have completely determined the dependence of M on a, b by equation (2.2.1) we are free to choose a
and b as we wish. To find the next order in t→ 0−, the most natural idea is to take a such that 0 < 1− C =

1+ a+ γ2

4 < 1, and then it suffices to study the equivalent of U(t)−U(0) when t→ 0−. For technical reasons
this only gives the expression of C2 when γ <

√
2. To obtain C2 for all γ ∈ (0, 2), we will need to go one order

further in the asymptotic expansion and we make the choice 0 < a < 1− γ2

4 and b = 0. In this case, we have
p < 4

γ2 , 1 < 1− C < 2. We perform a Taylor expansion around t = 0−,

U(t) = U(0) + tU ′(0) + t2
∫ 1

0

U ′′(tu)(1− u)du,

with

U ′′(tu)
(⋆)
= −pγ

2

4

∫ 1

0

dx1(x1 − tu)
γ2

4 −1xa1
a

x1
E[(
∫ 1

0

(x− tu)
γ2

4 xa

|x− x1|
γ2

2

e
γ
2X(x)dx)p−1]

= −pγ
2a

4
|tu|−1+a+ γ2

4

∫ − 1
tu

0

dy(y + 1)
γ2

4 −1ya−1E[(
∫ 1

0

(x− tu)
γ2

4 xa

|x+ tuy| γ
2

2

e
γ
2X(x)dx)p−1].

(⋆) comes from multiple applications of the Girsanov theorem (see appendix 2.4.1) and symmetrization tricks.
One may refer to (2.3.5) where we calculate rigorously the derivatives of U(t). Next we have the following
bound for y ∈ [0,− 1

tu ], u ∈ [0, 1], and t ∈ [−1, 0]:

E[(
∫ 1

0

(x− tu)
γ2

4 xa

|x+ tuy| γ
2

2

e
γ
2X(x)dx)p−1]

≤ sup
x1∈[0,1]

{
E[(
∫ 1

0

xa+
γ2

4

|x− x1|
γ2

2

e
γ
2X(x)dx)p−1] + E[(

∫ 1

0

(x+ 1)
γ2

4 xa

|x− x1|
γ2

2

e
γ
2X(x)dx)p−1]

}
<∞.

Then we get by dominant convergence that,

U ′′(tu)
t→0−∼ −pγ

2a

4
|tu|−1+a+ γ2

4

∫ ∞

0

dy(y + 1)
γ2

4 −1ya−1M(γ, p− 1, a− γ2

4
, 0),
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and again by dominant convergence:

U(t)−U(0)−tU ′(0) = −pγ
2a

4

Γ(a+ γ2

4 )

Γ(2 + a+ γ2

4 )
|t|1+a+

γ2

4

∫ ∞

0

dy(y+1)
γ2

4 −1ya−1M(γ, p−1, a−γ
2

4
, 0)+o(|t|1+a+

γ2

4 ).

The value of the integral above is given by (2.4.64). We arrive at the expression for C2:

C2 = p
Γ(a+ 1)Γ(−a− γ2

4 − 1)

Γ(−γ2

4 )
M(γ, p− 1, a− γ2

4
, 0). (2.2.21)

The theory of hypergeometric equations (2.4.56) gives this time the relation:

C2 =
Γ(C − 1)Γ(A−B + 1)

Γ(A)Γ(C −B)
D1. (2.2.22)

By identifying the above two expressions of C2, we get

M(γ, p− 1, a− γ2

4
, 0) =

Γ(1 + a− (p− 1)γ
2

4 )Γ(2 + a− (p− 2)γ
2

4 )

Γ(1 + a)Γ(2 + a− (2p− 3)γ
2

4 )
M(γ, p, a, 0).

By using the shift equation (2.2.11) on a, we can drop the −γ2

4 after a in the expression M(γ, p− 1, a− γ2

4 , 0)

and we obtain for 0 < a < 1− γ2

4 and b = 0,

M(γ, p, a, 0)

M(γ, p− 1, a, 0)
=

Γ(1− pγ2

4 )

Γ(1− γ2

4 )

Γ(1 + a− (p− 1)γ
2

4 )Γ(1− (p− 1)γ
2

4 )Γ(2 + a− (p− 2)γ
2

4 )

Γ(2 + a− (2p− 3)γ
2

4 )Γ(2 + a− (2p− 2)γ
2

4 )
.

Combined with (2.2.1), this leads to a first relation on our constant C(p), for p < 4
γ2 ,

C(p)

C(p− 1)
=

√
2π(

γ

2
)(p−1) γ

2

4 − 1
2
Γ(1− pγ

2

4 )

Γ(1− γ2

4 )
. (2.2.23)

Reversely, (2.2.23) and (2.2.1) show that for all a, b, p satisfying the bounds (2.1.5):

M(γ, p, a, b)

M(γ, p− 1, a, b)
=

Γ(1− pγ2

4 )

Γ(1− γ2

4 )

Γ(1 + a− (p− 1)γ
2

4 )Γ(1 + b− (p− 1)γ
2

4 )Γ(2 + a+ b− (p− 2)γ
2

4 )

Γ(2 + a+ b− (2p− 3)γ
2

4 )Γ(2 + a+ b− (2p− 2)γ
2

4 )
. (2.2.24)

� The + 4
γ2 shift equation

Since the relation (2.2.23) is not enough to completely determine the function C(p), we seek another relation on
C(p) that is not predicted by the Selberg integral. The techniques of this subsection are a little more involved,
they lead to a relation between C(p) and C(p− 4

γ2 ). Again we can pick a and b as we wish so we choose b = 0

and −1− γ2

4 < a < −1− γ2

4 + a0 where a0 > 0 is a constant introduced in lemma 2.4.9 of appendix 2.4.3. The
asymptotic in t→ 0− of the following quantity is then given by the lemma 2.4.9,

E[(
∫ 1

0

(x− t)
γ2

4 xa e
γ
2X(x)dx)p]− E[(

∫ 1

0

xa+
γ2

4 e
γ
2X(x)dx)p]

= g(γ, a)
Γ(−p+ 1 + 4

γ2 (a+ 1))

Γ(−p)
|t|1+a+

γ2

4 M(γ, p− 1− 4

γ2
(a+ 1),−2− a− γ2

4
, 0) + o(|t|1+a+

γ2

4 ),

where g(γ, a) is a real function that only depends on γ and a. Comparing with the expansion (2.2.3), we have:

C2 = g(γ, a)
Γ(−p+ 1 + 4

γ2 (a+ 1))

Γ(−p)
M(γ, p− 1− 4

γ2
(a+ 1),−2− a− γ2

4
, 0). (2.2.25)
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With the identity (2.4.56) coming from hypergeometric equations:

C2 =
Γ(C − 1)Γ(A−B + 1)

Γ(A)Γ(C −B)
D1

=
Γ(−1− a− γ2

4 )Γ(2 + a− (2p− 2)γ
2

4 )

Γ(−pγ2

4 )Γ(1− (p− 1)γ
2

4 )
M(γ, p, a, 0).

Comparing the above two expressions of C2 yields:

g(γ, a) =
M(γ, p, a, 0)

M(γ, p− 1− 4
γ2 (a+ 1),−2− a− γ2

4 , 0)

Γ(−p)Γ(−1− a− γ2

4 )Γ(2 + a− (2p− 2)γ
2

4 )

Γ(−p+ 1 + 4
γ2 (a+ 1))Γ(−pγ2

4 )Γ(1− (p− 1)γ
2

4 )
. (2.2.26)

A crucial remark is that from (2.2.1) and analycity of the function Γγ , M(γ, p, a, b) is analytic in a, b. Thus
the right hand side of (2.2.26) is analytic in a. We can then do analytic continuation simultaneously for both
sides in the above equation. This shows that the expression of the right hand side does not depend on p not
only for −1 − γ2

4 < a < −1 − γ2

4 + a0 but for all appropriate a where the expression is well-defined, i.e.
−1− γ2

4 < a < −1.
In the following computations f(γ) stands for a real function depending only on γ and we will use the

abuse of notation that it could be a different function of γ every time it appears. Consider the case where
4
k+1 < γ2 < 4

k for a k ∈ N∗. For this range of γ we make the special choice a = − (k+1)γ2

4 and thus the bounds
−1− γ2

4 < a < −1 on a are satisfied. In the previous paragraph we have shown that for a = − (k+1)γ2

4 :

M(γ, p,− (k+1)γ2

4 , 0)

M(γ, p− 4
γ2 + k, kγ

2

4 − 2, 0)
= f(γ)

Γ( 4
γ2 − k − p)Γ(−pγ

2

4 )Γ(1− (p− 1)γ
2

4 )

Γ(−p)Γ(kγ2

4 − 1)Γ(2− (2p+ k − 1)γ
2

4 )
. (2.2.27)

By the shift equations (2.2.11) and (2.2.19):

M(γ, p− 4
γ2 + k, kγ

2

4 − 2, 0)

M(γ, p− 4
γ2 + k,− (k+1)γ2

4 , 0)
= f(γ)

1∏
j=0

Γ(j 4
γ2 + 1− p)Γ((1 + j) 4

γ2 + 2− p)

Γ((2 + j) 4
γ2 − k + 2− 2p)

×
2k∏
i=0

Γ(4− (2p+ 3k − i− 1)γ
2

4 )

Γ(2− (p+ 2k − i)γ
2

4 )Γ(3− (p+ 2k − i− 1)γ
2

4 )
.

Then by (2.2.24),

M(γ, p− 4
γ2 + k,− (k+1)γ2

4 , 0)

M(γ, p− 4
γ2 ,− (k+1)γ2

4 , 0)

= f(γ)

k−1∏
i=0

Γ(2− (p+ k + i+ 1)γ
2

4 )Γ(2− (p+ i)γ
2

4 )Γ(2− (p+ 1 + i)γ
2

4 )Γ(3− (p+ k + i)γ
2

4 )

Γ(4− (2p+ k + 2i)γ
2

4 )Γ(4− (2p+ k + 2i+ 1)γ
2

4 )
,

and the product of the above two equations gives:

M(γ, p− 4
γ2 + k, kγ

2

4 − 2, 0)

M(γ, p− 4
γ2 ,− (k+1)γ2

4 , 0)
= f(γ)

Γ(4− (2p+ k − 1)γ
2

4 )

Γ(3− (p− 1)γ
2

4 )Γ(3− pγ
2

4 )
∏k−2
i=0 (2− (p+ 1 + i)γ

2

4 )

×
1∏
j=0

Γ(j 4
γ2 + 1− p)Γ((1 + j) 4

γ2 + 2− p)

Γ((2 + j) 4
γ2 − k + 2− 2p)

.
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Combining this relation with the previous shift equations (2.2.27):

M(γ, p,− (k+1)γ2

4 , 0)

M(γ, p− 4
γ2 ,− (k+1)γ2

4 , 0)

= f(γ)
Γ( 4

γ2 − k − p)Γ(−pγ
2

4 )Γ(1− (p− 1)γ
2

4 )Γ(4− (2p+ k − 1)γ
2

4 )

Γ(−p)Γ(kγ2

4 − 1)Γ(2− (2p+ k − 1)γ
2

4 )Γ(3− (p− 1)γ
2

4 )

×
Γ(1− p)Γ( 4

γ2 + 1− p)Γ( 4
γ2 + 2− p)Γ( 8

γ2 + 2− p)

Γ(3− pγ
2

4 )
∏k−2
i=0 (2− (p+ 1 + i)γ

2

4 )Γ( 8
γ2 − k + 2− 2p)Γ( 12γ2 − k + 2− 2p)

= f(γ)
Γ(−pγ

2

4 )Γ(1− (p− 1)γ
2

4 )Γ(4− (2p+ k − 1)γ
2

4 )Γ(1− p)

Γ(3− pγ
2

4 )Γ(3− (p− 1)γ
2

4 )Γ(2− (2p+ k − 1)γ
2

4 )Γ(−p)

×
Γ( 8

γ2 + 2− p)Γ( 4
γ2 + 2− p)Γ( 4

γ2 − k − p)Γ( 4
γ2 + 1− p)∏k−2

i=0 (
8
γ2 − (p+ 1 + i))Γ( 12γ2 − k + 2− 2p)Γ( 8

γ2 − k + 2− 2p)

= f(γ)Γ(
4

γ2
− p)

Γ( 4
γ2 − k − p)Γ( 4

γ2 + 1− p)Γ( 8
γ2 − k + 1− p)

Γ( 12γ2 − k + 1− 2p)Γ( 8
γ2 − k + 1− 2p)

.

By (2.2.1), the same ratio of M can also be written as,

M(γ, p,− (k+1)γ2

4 , 0)

M(γ, p− 4
γ2 ,− (k+1)γ2

4 , 0)
=

C(p)

C(p− 4
γ2 )

f(γ)(
γ

2
)p
Γ( 4

γ2 − k − p)Γ( 4
γ2 + 1− p)Γ( 8

γ2 − k + 1− p)

Γ( 12γ2 − k + 1− 2p)Γ( 8
γ2 − k + 1− 2p)

,

thus we obtain for 4
k+1 < γ2 < 4

k :

C(p)

C(p− 4
γ2 )

= f(γ)(
γ

2
)−pΓ(

4

γ2
− p). (2.2.28)

This proves the second shift equation (2.1.16) on C(p). Then for every fixed γ such that 4
γ2 /∈ Q both shift

equations (2.2.23) and (2.2.28) completely determine the value C(p) up to a constant cγ of γ. To see this,
take another continuous function C(p) that satisfies both shift equations (2.2.23) and (2.2.28). Then the ratio
R(p) := C(p)

C(p) is a 1-periodic and 4
γ2 -periodic continuous function. Combining this with the fact that 4

γ2 /∈ Q
implies that the ratio R(p) is constant and C(p) is determined up to a constant cγ of γ by the two shift
equations on p.

The constant cγ is then evaluated by choosing p = 0 and by using the known value M(γ, 0, a, b) = 1. Thus
we arrive at the formula of Proposition 2.2.2. Finally by the continuity of γ →M(γ, p, a, b), we can extend the
formula to the values of γ that were left out. This completes the proof of Proposition 2.2.2.

2.3 Proof of the differential equations
We now move to the proof of Proposition 2.1.4. In order to show that U(t) and Ũ(t) satisfy these differential
equations we will need to introduce a regularization procedure. We will work with two small parameters δ > 0
and ϵ > 0 which will be sent to 0 at the appropriate places in the proof. The first parameter δ controls the
cut-off procedure used to smooth X. A convenient smoothing procedure can be written by seeing X as the
restriction of the centered Gaussian field defined on the disk D+ ( 12 , 0), i.e. the unit disk centered in ( 12 , 0). X
still has a covariance given by:

E[X(x)X(y)] = 2 ln
1

|x− y|
. (2.3.1)
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Then for any smooth function θ ∈ C∞([0,∞),R+) with support in [0, 1] and satisfying
∫∞
0
θ = 1

π , we write
θδ :=

1
δ2 θ(

|·|2
δ2 ) and define the regularized field Xδ := X ∗ θδ. Similarly we introduce:

1

(x)δ
:=

∫
C

∫
C

1

x+ y1 + y2
θδ(y1)θδ(y2)d

2y1d
2y2. (2.3.2)

This quantity will appear when we take the derivative of E[Xδ(x)Xδ(y)]. Now since we have the singularities
xa and (1 − x)b that appear in U(t) and Ũ(t), we will also need to restrict the integration from [0, 1] to the
smaller interval [ϵ, 1 − ϵ] for some small ϵ that will be sent to 0. Finally we introduce some more compact
notations for various expressions that depend on both δ and ϵ:

Gδ(x, y) := E[Xδ(x)Xδ(y)]

D(x; t) := (x− t)
γ2

4 xa(1− x)b

Uϵ,δ(t) := E[(
∫ 1−ϵ

ϵ

D(x; t)e
γ
2Xδ(x)dx)p]

V
(1)
ϵ,δ (x1; t) := E[(

∫ 1−ϵ

ϵ

D(x; t)e
γ
2Xδ(x)+

γ2

4 Gδ(x,x1)dx)p−1]

V
(2)
ϵ,δ (x1, x2; t) := E[(

∫ 1−ϵ

ϵ

D(x; t)e
γ
2Xδ(x)+

γ2

4 (Gδ(x,x1)+Gδ(x,x2))dx)p−2]

E0,ϵ,δ(t) := D(ϵ; t)V
(1)
ϵ,δ (ϵ; t)

E1,ϵ,δ(t) := D(1− ϵ; t)V
(1)
ϵ,δ (1− ϵ; t).

The terms V (1)
ϵ,δ and V

(2)
ϵ,δ will appear when we compute respectively the first and second order derivatives of

Uϵ,δ. The terms E0,ϵ,δ and E1,ϵ,δ are the boundary terms of the integration by parts performed below. We will
also use Uϵ(t), V (1)

ϵ (x1; t), V (2)
ϵ (x1, x2; t), E0,ϵ(t), E1,ϵ(t) for the limit of the above quantities as δ goes to 0.

Proof. First we prove the equation for U(t). We recall the definition,

U(t) = E[(
∫ 1

0

(x− t)
γ2

4 xa(1− x)be
γ
2X(x)dx)p], (2.3.3)

and we calculate the derivatives with the help of the Girsanov theorem of appendix 2.4.1:

U ′
ϵ,δ(t) =p

∫ 1−ϵ

ϵ

dx1 ∂tD(x1; t)V
(1)
ϵ,δ (x1; t)

=− p

∫ 1−ϵ

ϵ

dx1∂x1
((x1 − t)

γ2

4 )xa1(1− x1)
bV

(1)
ϵ,δ (x1; t)

=− p
(
E1,ϵ,δ(t)− E0,ϵ,δ(t)−

∫ 1−ϵ

ϵ

dx1D(x1; t)V
(1)
ϵ,δ (x1; t)(

a

x1
− b

1− x1
)

−
∫ 1−ϵ

ϵ

dx1D(x1; t) ∂x1
V

(1)
ϵ,δ (x1; t)

)
.

We claim that the last term in the sum equals zero. Indeed,∫ 1−ϵ

ϵ

dx1D(x1; t) ∂x1
V

(1)
ϵ,δ (x1; t) =(p− 1)

γ2

2

∫ 1−ϵ

ϵ

∫ 1−ϵ

ϵ

dx1dx2
D(x1; t)D(x2; t)

(x2 − x1)δ
e
γ2

4 Gδ(x2,x1)V
(2)
ϵ,δ (x1, x2; t)

=0 by symmetry.

Thus, by sending δ to 0,

U ′
ϵ(t) = −p

(
E1,ϵ(t)− E0,ϵ(t)−

∫ 1−ϵ

ϵ

dx1D(x1; t)V
(1)
ϵ (x1; t)(

a

x1
− b

1− x1
)
)
. (2.3.4)
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In the same spirit, we calculate:

U ′′
ϵ,δ(t) =

pγ2

4

[
−
∫ 1−ϵ

ϵ

dx1∂t
(D(x1; t)

(x1 − t)

)
V

(1)
ϵ,δ (x1; t)

+
(p− 1)γ2

4

∫ 1−ϵ

ϵ

dx1

∫ 1−ϵ

ϵ

dx2
D(x1; t)D(x2; t)

(x1 − t)(x2 − t)
e
γ2

4 Gδ(x2,x1)V
(2)
ϵ,δ (x1, x2; t)

]
.

An integration by parts gives:

−
∫ 1−ϵ

ϵ

dx1∂t
(D(x1; t)

(x1 − t)

)
V

(1)
ϵ,δ (x1; t)

=

∫ 1−ϵ

ϵ

dx1∂x1
(
(x1 − t)

γ2

4

x1 − t
)xa1(1− x1)

bV
(1)
ϵ,δ (x1; t)

=
1

1− t− ϵ
E1,ϵ,δ(t) +

1

t− ϵ
E0,ϵ,δ(t)−

∫ 1−ϵ

ϵ

dx1D(x1; t)V
(1)
ϵ,δ (x1; t)

1

x1 − t
(
a

x1
− b

1− x1
)

− (p− 1)γ2

2

∫ 1−ϵ

ϵ

dx1

∫ 1−ϵ

ϵ

dx2
D(x1; t)D(x2; t)

(x1 − t)(x2 − x1)δ
e
γ2

4 Gδ(x2,x1)V
(2)
ϵ,δ (x1, x2; t).

By symmetry of the expression under the exchange of x1 and x2,

(p− 1)γ2

2

∫ 1−ϵ

ϵ

dx1

∫ 1−ϵ

ϵ

dx2
D(x1; t)D(x2; t)

(x1 − t)(x2 − x1)δ
e
γ2

4 Gδ(x2,x1)V
(2)
ϵ,δ (x1, x2; t)

=
(p− 1)γ2

4

∫ 1−ϵ

ϵ

dx1

∫ 1−ϵ

ϵ

dx2D(x1; t)D(x2; t)e
γ2

4 Gδ(x2,x1)

× (
1

(x1 − t)(x2 − x1)δ
+

1

(x2 − t)(x1 − x2)δ
)V

(2)
ϵ,δ (x1, x2; t)

=
(p− 1)γ2

4

∫ 1−ϵ

ϵ

dx1

∫ 1−ϵ

ϵ

dx2
D(x1; t)D(x2; t)

(x1 − t)(x2 − t)

x2 − x1
(x2 − x1)δ

e
γ2

4 Gδ(x2,x1)V
(2)
ϵ,δ (x1, x2; t).

Since x2−x1

(x2−x1)δ
≤ c for some constant c > 0 independent of δ, by sending δ to 0,

U ′′
ϵ (t) =

pγ2

4

( 1

1− t− ϵ
E1,ϵ(t) +

1

t− ϵ
E0,ϵ(t)−

∫ 1−ϵ

ϵ

dx1D(x1; t)V
(1)
ϵ (x1; t)

1

x1 − t
(
a

x1
− b

1− x1
)
)
. (2.3.5)

A further calculation shows that,∫ 1−ϵ

ϵ

dx1D(x1; t)V
(1)
ϵ (x1; t)

1

x1 − t
(
a

x1
− b

1− x1
)

=

∫ 1−ϵ

ϵ

dx1D(x1; t)V
(1)
ϵ (x1; t)

(a
t
(

1

x1 − t
− 1

x1
)− b

1− t
(

1

x1 − t
+

1

1− x1
)
)

= −
∫ 1−ϵ

ϵ

dx1D(x1; t)V
(1)
ϵ (x1; t)(

a

tx1
+

b

(1− t)(1− x1)
)− 4

pγ2
(
a

t
− b

1− t
)U ′

ϵ(t),

and as a consequence,

U ′′
ϵ (t) =

pγ2

4

( 1

1− t− ϵ
E1,ϵ(t− ϵ) +

1

t
E0,ϵ(t) +

∫ 1−ϵ

ϵ

dx1D(x1; t)V
(1)
ϵ (x1; t)(

a

tx1
+

b

(1− t)(1− x1)
)
)

+ (
a

t
− b

1− t
)U ′

ϵ(t).

(2.3.6)
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We can also write Uϵ,δ(t) in a similar form, by doing an integration by parts:

(1− t− ϵ)E1,ϵ,δ(t) + (t− ϵ)E0,ϵ,δ(t)−
∫ 1−ϵ

ϵ

dx1D(x1; t)V
(1)
ϵ,δ (x1; t)(x1 − t)(

a

x1
− b

1− x1
)

=(1 +
γ2

4
)

∫ 1−ϵ

ϵ

dx1D(x1; t)V
(1)
ϵ,δ (x1; t)

+ (p− 1)
γ2

2

∫ 1−ϵ

ϵ

∫ 1−ϵ

ϵ

dx1dx2D(x1; t)D(x2; t)e
γ2

4 Gδ(x2,x1)
x1 − t

(x2 − x1)δ
V

(2)
ϵ,δ (x1, x2; t)

=(1 +
γ2

4
)

∫ 1−ϵ

ϵ

dx1D(x1; t)V
(1)
ϵ,δ (x1; t)

− (p− 1)
γ2

4

∫ 1−ϵ

ϵ

dx1

∫ 1−ϵ

ϵ

dx2D(x1; t)D(x2; t)e
γ2

4 Gδ(x2,x1)
x2 − x1

(x2 − x1)δ
V

(2)
ϵ,δ (x1, x2; t).

By sending δ to 0 and by applying the Girsanov theorem of appendix 2.4.1, we obtain,

−(B + a+ b)Uϵ(t) =(1− t− ϵ)E1,ϵ(t) + (t− ϵ)E0,ϵ(t)

−
∫ 1−ϵ

ϵ

dx1D(x1; t)V
(1)
ϵ (x1; t)(x1 − t)(

a

x1
− b

1− x1
),

where we recall that B = −(a+ b+ 1)− (2− p)γ
2

4 . We also note that,∫ 1−ϵ

ϵ

dx1D(x1; t)V
(1)
ϵ (x1; t)(x1 − t)(

a

x1
− b

1− x1
)

=(a+ b)Uϵ,δ(t)−
∫ 1−ϵ

ϵ

dx1D(x1; t)V
(1)
ϵ (x1; t)(

at

x1
+
b(1− t)

1− x1
),

and hence,

−BUϵ(t) = (1− t− ϵ)E1,ϵ(t) + (t− ϵ)E0,ϵ(t) +

∫ 1−ϵ

ϵ

dx1D(x1; t)V
(1)
ϵ (x1; t)(

at

x1
+
b(1− t)

1− x1
). (2.3.7)

Combining this with the expressions for U ′
ϵ and U ′′

ϵ , equations (2.3.4) and (2.3.6),

U ′
ϵ(t) =− p

(
E1,ϵ(t)− E0,ϵ(t)−

∫ 1−ϵ

ϵ

dx1D(x1; t)V
(1)
ϵ (x1; t)(

a

x1
− b

1− x1
)
)
,

U ′′
ϵ (t) =

pγ2

4

( 1

1− t− ϵ
E1,ϵ(t) +

1

t− ϵ
E0,ϵ(t) +

∫ 1−ϵ

ϵ

dx1D(x1; t)V
(1)
ϵ (x1; t)(

a

tx1
+

b

(1− t)(1− x1)
)
)

+ (
a

t
− b

1− t
)U ′

ϵ(t),

we finally arrive at:

t(1− t)U ′′
ϵ (t) + (C − (A+B + 1)t)U ′

ϵ(t)−ABUϵ(t) (2.3.8)

= ϵ(1− ϵ)
pγ2

4
(

1

1− t− ϵ
E1,ϵ(t) +

1

t− ϵ
E0,ϵ(t)).

From this expression we see that the last thing we need to check is that as ϵ goes to zero the right hand side
of the above expression converges to 0 in a suitable sense. Indeed we will prove that, for t in a fixed compact
set K ⊆ (−∞, 0), ϵE1,ϵ(t) and ϵE0,ϵ(t) converge uniformly to 0 for a well chosen sequence of ϵ. Let us consider
ϵE0,ϵ(t) as ϵE1,ϵ(t) can be treated in a similar fashion:

ϵE0,ϵ(t) = (ϵ− t)
γ2

4 ϵa+1(1− ϵ)bE[(
∫ 1−ϵ

ϵ

(x− t)
γ2

4 xa(1− x)b

|x− ϵ| γ
2

2

e
γ
2X(x)dx)p−1].
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In the following we will discuss three disjoint cases based on the value of a. They are a > −1 + γ2

4 , −1 < a ≤
−1 + γ2

4 , and −1− γ2

4 < a ≤ −1.
i) a > −1 + γ2

4
This is the simplest case as we have for ϵ sufficiently small and for some c0 > 0,

ϵE0,ϵ(t) ≤ c0ϵ
a+1(1− ϵ)bE[(

∫ 1

0

xa(1− x)b

|x− ϵ| γ
2

2

e
γ
2X(x)dx)p−1]

ϵ→0∼ c0ϵ
a+1M(γ, p, a− γ2

2
, b),

which converges to 0 as ϵ→ 0 uniformly over t ∈ K.
ii) −1 < a ≤ −1 + γ2

4 .
In this case we have p− 1 < 1 and ϵa+1 −→

ϵ→0
0. If p− 1 ≤ 0,

E[(
∫ 1−ϵ

ϵ

(x− t)
γ2

4 xa(1− x)b

|x− ϵ| γ
2

2

e
γ
2X(x)dx)p−1]

is uniformly bounded thus it is immediate to obtain the convergence to 0. Hence it suffices to consider the
case 0 < p− 1 < 1. We choose ϵN = 1

2N
. Using the sub-additivity of the function x 7→ xp−1, we have for some

c0, c
′ > 0 independent of K:

ϵNE0,ϵN (t) ≤c0ϵa+1
N E[(

∫ 1
2

ϵN

xa

|x− ϵN | γ
2

2

e
γ
2X(x)dx)p−1] + c′ϵa+1

N

≤c0ϵa+1
N

N−1∑
n=1

E[(
∫ ϵn

ϵn+1

xa

|x− ϵn+1|
γ2

2

e
γ
2X(x)dx)p−1] + c′ϵa+1

N .

Then by the scaling property of GMC,

E[(
∫ ϵn

ϵn+1

xa

|x− ϵn+1|
γ2

2

e
γ
2X(x)dx)p−1]

=2
γ2

4 (p−1)(p−2)−(a− γ2

2 +1)(p−1)E[(
∫ ϵn−1

ϵn

ua

|u− ϵn|
γ2

2

e
γ
2X(u)du)p−1]

=2
γ2

4 p
2−( γ

2

4 +a+1)p+a+1E[(
∫ ϵn−1

ϵn

ua

|u− ϵn|
γ2

2

e
γ
2X(u)du)p−1].

We can deduce that,

ϵNE0,ϵN (t) ≤ c12
−N(a+1)2(N−1)( γ

2

4 p
2−( γ

2

4 +a+1)p+a+1)E[(
∫ 1

2

1
4

xa

|x− 1
4 |
γ2

2

e
γ
2X(x)dx)p−1] + c′ϵa+1

N

≤ c2N( γ
2

4 p−
γ2

4 −a−1)p + c′ϵa+1
N

N→∞−→ 0,

for some constants c1, c, c′ > 0. The convergence holds since p > 0 and γ2

4 p −
γ2

4 − a − 1 < 0 (this inequality
comes from (2.1.5)), and it holds uniformly over t in K.
iii) −1− γ2

4 < a ≤ −1
In this case p − 1 < 0 so we are always dealing with negative moments. This implies that for t in K, we can
bound ϵE0,ϵ(t) by,

ϵE0,ϵ(t) ≤ c0ϵ
a+1E[(

∫ 1
2

ϵ

xa−
γ2

2 e
γ
2X(x)dx)p−1],
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simply by restricting the integral over [ϵ, 1−ϵ] to [ϵ, 1/2]. An estimation of the resulting GMC moment is given
by lemma 2.4.4 in appendix 2.4.2. For ϵ sufficiently small, there exists a constant c > 0 such that,

E[(
∫ 1

2

ϵ

xa−
γ2

2 e
γ
2X(x)dx)p−1] ≤

{
c ϵ(

γ
4 −

1
γ (a+1))2 , 1 + a+ γ2

4 − pγ2

2 > 0

c ϵ(p−1)(1+a− γ2

4 )− (p−1)2γ2

4 , 1 + a+ γ2

4 − pγ2

2 ≤ 0

This suffices to show the convergence to 0 of ϵE0,ϵ(t).
Indeed, in the first case, a basic inequality shows that (γ4 − 1

γ (a + 1))2 ≥ −(a + 1) with equality when
−(a+1) = γ2

4 . Since the condition cannot be satisfied, we have the strict inequality. In the second case where
1 + a + γ2

4 − pγ2

2 ≤ 0, we can easily show that under this condition together with the bound (2.1.5) for p,
(p− 1)(1 + a− γ2

4 )− (p−1)2γ2

4 > −(a+ 1). Hence in both cases, ϵE0,ϵ(t)−→0, where the convergence is again
uniform over t in K.

Combining the cases (i), (ii) and (iii), we have proven the differential equation 2.1.20 in the weak sense
(in the sense of distributions). Since it is a hypoelliptic equation (the dominant operator is a Laplacian) with
analytic coefficients, U(t) is analytic and the equation holds in the strong sense.
Let us now briefly mention the case of Ũ(t). In a similar manner, we calculate,

−B̃Ũ(t) =
4

γ2

(
(1− t− ϵ)Ẽ1,ϵ(t) + (t− ϵ)Ẽ0,ϵ(t) +

∫ 1−ϵ

ϵ

dx1D̃(x1; t)Ṽ
(1)
ϵ (x1; t)(

at

x1
+
b(1− t)

1− x1
)
)
,

Ũ ′
ϵ(t) =− p

(
Ẽ1,ϵ(t)− Ẽ0,ϵ(t)−

∫ 1−ϵ

ϵ

dx1D̃(x1; t)Ṽ
(1)
ϵ (x1; t)(

a

x1
− b

1− x1
)
)
,

Ũ ′′
ϵ (t) =

4p

γ2

( 1

1− t− ϵ
Ẽ1,ϵ(t) +

1

t− ϵ
Ẽ0,ϵ(t) +

∫ 1−ϵ

ϵ

dx1D̃(x1; t)Ṽ
(1)
ϵ (x1; t)(

a

tx1
+

b

(1− t)(1− x1)
)
)

+
4

γ2
(
a

t
− b

1− t
)Ũ ′

ϵ(t),

where D̃(x; t) := (x − t)xa(1 − x)b and where Ṽ (1)
ϵ (x1; t), Ẽ0,ϵ(t), Ẽ1,ϵ(t) are defined as functions of D̃(x; t),

the same as their definitions without the tilde. We verify easily that,

t(1− t)Ũ ′′
ϵ (t)+(C̃ − (Ã+ B̃ + 1)t)Ũ ′

ϵ(t)− ÃB̃Ũϵ(t) (2.3.9)

= ϵ(1− ϵ)
pγ2

4
(

1

1− t− ϵ
Ẽ1,ϵ(t) +

1

t− ϵ
Ẽ0,ϵ(t)),

and the right hand side of the above expression converges again to zero uniformly for t in any compact set of
(−∞, 0), which finishes the proof of the Proposition 2.1.4.

One may wonder if other differential equations can be obtained for similar observables. If instead of U(t)
and Ũ(t) one introduces the more general function

t→ E[(
∫ 1

0

(x− t)χxa(1− x)be
γ
2X(x)dx)p] (2.3.10)

for some arbitrary real number χ, then this function will be solution to a second order differential equation if
and only if χ = γ2

4 or χ = 1 (except for some special cases where “non-trivial” relations hold for instance for
p = 0). This fact can be obtained by similar computations as the ones performed above. On the other hand
conformal field theory predicts that differential equations of any order are expected to be verified by suitable
observables although it is not clear to us at this stage what information can be extracted from these higher
order differential equations.
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2.4 Appendix
2.4.1 Reminder on some useful theorems
We recall some theorems in probability that we will use without further justification. In the following, D is a
compact subset of Rd.

Theorem 2.4.1 (Girsanov theorem). Let (Z(x))x∈D be a continuous centered Gaussian process and Z a
Gaussian variable which belongs to the L2 closure of the vector space spanned by (Z(x))x∈D. Let F be a real
continuous bounded function from C(D,R) to R. Then we have the following identity:

E[eZ− E[Z2]
2 F ((Z(x))x∈D)] = E[F ((Z(x) + E[Z(x)Z])x∈D)]. (2.4.1)

When applied to our case, although the log-correlated field X is not a continuous Gaussian process, we can
still make the arguments rigorous by using a regularization procedure. Let us illustrate the idea by a simple
example that is used in section 2.3. We introduce three cut-off parameters, δ to smooth the log-correlated field
X, ϵ to avoid the singularities in 0 and 1, and A > 0 to apply (2.4.1) to a bounded functional F . Hence the
following computation:

E[(
∫ 1

0

xa(1− x)be
γ
2X(x)dx)p] = lim

ϵ→0
lim
δ→0

lim
A→+∞

∫ 1−ϵ

ϵ

dx1 x
a
1(1− x1)

bE

[
1‖Xδ‖∞≤Ae

γ
2Xδ(x1)− γ2

8 E[Xδ(x1)
2]

(

∫ 1−ϵ

ϵ

xa(1− x)be
γ
2Xδ(x)−

γ2

8 E[Xδ(x)2]dx)p−1

]
(2.4.1)
= lim

ϵ→0
lim
δ→0

lim
A→+∞

∫ 1−ϵ

ϵ

dx1 x
a
1(1− x1)

bE

[
1‖Xδ‖∞≤A

(

∫ 1−ϵ

ϵ

xa(1− x)be
γ
2Xδ(x)+

γ2

4 E[Xδ(x)Xδ(x1)]− γ2

8 E[Xδ(x)2]dx)p−1

]

=

∫ 1

0

dx1 x
a
1(1− x1)

bE[(
∫ 1

0

xa(1− x)b

|x1 − x| γ
2

2

e
γ
2X(x)dx)p−1].

The next theorem is a comparison result due to Kahane [56]:

Theorem 2.4.2 (Convexity inequality). Let (Z1(x))x∈D, (Z2(x))x∈D be two continuous centered Gaussian
processes such that for all x, y ∈ D:

E[Z1(x)Z1(y)] ≤ E[Z2(x)Z2(y)].

Then for all convex function (resp. concave) F with at most polynomial growth at infinity, and σ a positive
finite measure over D,

E[F (
∫
D

eZ1(x)− 1
2E[Z1(x)

2]σ(dx))] ≤ ( resp. ≥ )E[F (
∫
D

eZ2(x)− 1
2E[Z2(x)

2]σ(dx))]. (2.4.2)

To apply this theorem to log-correlated fields, one needs again to use a regularization procedure. Finally,
we provide the Williams decomposition theorem, see for instance [106]:

Theorem 2.4.3. Let (Bs − vs)s≥0 be a Brownian motion with negative drift, i.e. v > 0 and let M =
sups≥0(Bs − vs). Then conditionally on M the law of the path (Bs − vs)s≥0 is given by the joining of two
independent paths:
1) A Brownian motion (B1

s + vs)0≤s≤τM with positive drift v run until its hitting time τM of M .
2) (M +B2

t − vt)t≥0 where (B2
t − vt)t≥0 is a Brownian motion with negative drift conditioned to stay negative.
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Moreover, one has the following time reversal property for all C > 0 (where τC denotes the hitting time of
C),

(B1
τC−s + v(τC − s)− C)0≤s≤τC

law
= (B̃s − vs)0≤s≤L−C , (2.4.3)

where (B̃s − vs)s≥0 is a Brownian motion with drift −v conditioned to stay negative and L−C is the last time
(B̃s − vs)s≥0 hits −C.

2.4.2 An estimate on GMC
We now move on to the proof of some technical lemmas required in the previous sections. Lemma 2.4.4 written
below will be used in section 2.3 to show that the boundary terms obtained in the derivation of the differential
equations converge to 0. Just like in section 2.1.2 for s ≥ 0 we write X(e−s/2) = Bs + Y (e−s/2) where Bs is a
standard Brownian motion and Y is an independent centered Gaussian field on C with covariance:

E[Y (x)Y (y)] = 2 ln
|x| ∨ |y|
|x− y|

. (2.4.4)

Denote the GMC measure associated to Y (e−s/2) by µY (ds) := e
γ
2 Y (e−s/2)ds. The goal of this subsection is to

prove the following lemma:

Lemma 2.4.4. For q > 0, a < −1 − γ2

4 , and a fixed constant A > 0, there exists ϵ1 < A sufficiently small
such that for all ϵ ≤ ϵ1,

E[(
∫ A

ϵ

xae
γ
2X(x)dx)−q] ≤

{
c ϵ(

γ
4 +

1
γ (a+1))2 , 1 + a+ γ2

4 + qγ2

2 > 0,

c ϵ−q(1+a+
γ2

4 )− q2γ2

4 , 1 + a+ γ2

4 + qγ2

2 ≤ 0
(2.4.5)

where c > 0 is a constant that depends on A, γ, a and q.

By using the decomposition described above, we can transform this lemma into another equivalent form,

E[(
∫ A

ϵ

xae
γ
2X(x)dx)−q] =2qE[(

∫ −2 ln ϵ

−2 lnA

e
γ
2 (Bs−s(

γ
4 +

1
γ (a+1)))µY (ds))

−q]

=2qE[(
∫ −2 ln ϵ

−2 lnA

e
γ
2 (Bs+αs)µY (ds))

−q],

where again (Bs)s≥0 is a standard Brownian motion independent from Y , and α = −γ
4 − 1

γ (a+ 1). Therefore
lemma 2.4.4 is equivalent to the following lemma:

Lemma 2.4.5. For q > 0, α > 0, a fixed constant r0, there exists r1 > r0 sufficiently large such that for all
r ≥ r1,

E[(
∫ r

r0

e
γ
2 (Bs+αs)µY (ds))

−q] ≤

{
c e−

α2

2 r, α− qγ
2 < 0

c e(
q2γ2

8 − qγα
2 )r, α− qγ

2 ≥ 0
(2.4.6)

where c > 0 is a constant that depends on r0, γ, α and q.

A similar result for 2d GMC has been proved in [60] (proposition 5.1). A slight difference is that in [60]
the power q depends on a.

We start by proving three intermediate results. We denote ys = Bs + αs, and we introduce for β ≥ 1 the
stopping time Tβ = inf{s ≥ 0, ys = β − 1}. Recall the density of Tβ for β > 1, u > 0:

P(Tβ ∈ (u, u+ du)) =
β − 1√
2πu3/2

e−
(β−1−αu)2

2u du. (2.4.7)
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Lemma 2.4.6. For α,A > 0, we have:

P(sup
s≤t

ys ≤ A) ≤ eαA−α2t
2 . (2.4.8)

Proof. We know the density of sups≤t ys:

P(sup
s≤t

ys ≤ A) = P(TA+1 ≥ t) =
A√
2π

∫ ∞

t

e−
(A−αs)2

2s

s3/2
ds ≤ AeαA−α2t

2

√
2π

∫ ∞

0

e−
A2

2s

s3/2
ds = eαA−α2t

2 .

Lemma 2.4.7. We set for t > 0:

I(t) =

∫ t+1

t

e
γ
2 (ys−yt)µY (ds). (2.4.9)

For q > 0, we have the following inequality,

E[I(t)−q|yt+1 − yt] ≤ c1(e
− γ

2 q(yt+1−yt) + 1) a.s., (2.4.10)

where c1 depends on γ, q.

Proof. Conditioning on yt+1−yt = y, (Bs−Bt)t≤s≤t+1 has the law of a Brownian bridge between 0 and y−α.
Hence it has the law of (B′

s − sB′
1 + s(y − α))0≤s≤1, where B′ is an independent Brownian motion. We have:

E[I(t)−q|yt+1 − yt = y] = E[(
∫ 1

0

e
γ
2 (B

′
s−sB

′
1+sy)µY (ds))

−q].

Notice that e γ2 sy ≥ e
γ
2 y ∧ 1, and a classic result on the moments of Gaussian multiplicative chaos shows that,

E[(µY ([0, 1]))−q] <∞,

thus:

E[(
∫ 1

0

e
γ
2 (B

′
s−sB

′
1)µY (ds))

−q] ≤ E[e−
qγ
2 inf0≤s≤1(B

′
s−sB

′
1)]E[(µY ([0, 1]))−q]

=: c1 <∞.

We can now derive that:

E[I(t)−q|yt+1 − yt = y] ≤ c1(e
− γ

2 qy ∨ 1) ≤ c1(e
− γ

2 qy + 1) a.s.

Lemma 2.4.8. Define for β > 1, α > 0, q > 0 and r ≥ 2:

Jr,β := E[
1{sups∈[0,r] ys∈[β−1,β]}

(
∫ r
0
e
γ
2 ysµY (ds))q

]. (2.4.11)

Then there exists c2 > 0 depending on γ, α, q such that:

Jr,β ≤ c2e
−α2

2 re(α−
qγ
2 )β . (2.4.12)
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Proof.

Jr,β ≤ e−
qγ(β−1)

2 E[1{Tβ≤r−1}
1{sups∈[0,r] ys∈[β−1,β]}

I(Tβ)q
] + E[1{Tβ>r−1}

1{sups∈[0,r] ys∈[β−1,β]}

e
qγyr−1

2 I(r − 1)q
] =: A+B.

We first bound A. By using the strong Markov property of (ys)s≥0 with respect to FTβ+1:

A ≤e−
qγ(β−1)

2 E[1{Tβ+1≤r}I(Tβ)
−q1{sups∈[Tβ+1,r] ys−yTβ+1≤β−yTβ+1}]

=e−
qγ(β−1)

2 E[1{Tβ+1≤r}I(Tβ)
−qE[1{sups∈[0,r−Tβ−1] y

′
s≤β−yTβ+1}|FTβ+1]]

=e−
qγ(β−1)

2 E
[
1{Tβ+1≤r}E[I(Tβ)−q|FTβ , β − yTβ+1]E[1{sups∈[0,r−Tβ−1] y

′
s≤β−yTβ+1}|FTβ , β − yTβ+1]

]
.

By lemma 2.4.7,
E[I(Tβ)−q|FTβ , β − yTβ+1] ≤ c1(e

− γ
2 q(yTβ+1−β) + 1) a.s.

By lemma 2.4.6,

E[1{sups∈[0,r−Tβ−1] y
′
s≤β−yTβ+1}|FTβ , β − yTβ+1] ≤ eα(β−yTβ+1)−

α2(r−Tβ−1)

2 a.s.

Therefore:
A ≤ c1e

− qγ(β−1)
2 E

[
1{Tβ+1≤r}(e

− γ
2 q(yTβ+1−β) + 1)eα(β−yTβ+1)−

α2(r−Tβ−1)

2

]
.

Conditioning on FTβ , yTβ+1 − β has the law of N + α where N ∼ N (0, 1). Hence,

A ≤c1e−
qγ(β−1)

2 E[(e−
γ
2 q(N+α) + 1)e−α(N+α)]E[1{Tβ+1≤r}e

−
α2(r−Tβ−1)

2 ]

=c1e
− qγ(β−1)

2 (e−
α2

2 + γ2q2

8 + e−
α2

2 )E[1{Tβ+1≤r}e
−
α2(r−Tβ−1)

2 ]

≤c1e−
qγ(β−1)

2 (e
γ2q2

8 + 1)e−
α2r
2 E[1{Tβ≤r−1}e

α2Tβ
2 ].

We calculate with the density of Tβ :

E[1{Tβ≤r−1}e
α2Tβ

2 ] =

∫ r−1

0

β − 1√
2πu3/2

e−
(β−1−αu)2

2u e
α2u
2 du

= eα(β−1)

√
2

π

∫ ∞

β−1√
r−1

e−
x2

2 dx

≤ eα(β−1).

Combining the elements above we get,
A ≤ c′1e

−α2r
2 e(α−

qγ
2 )β , (2.4.13)

for some constant c′1 > 0 of γ, α and q. We proceed similarly for B, using again the Markov property:

B =E
[
1{Tβ>r−1}

1{sups∈[r−1,r](ys−yr−1)∈[β−1−yr−1,β−yr−1]}

e
qγyr−1

2 I(r − 1)q

]
≤E
[
1{Tβ>r−1}

1

e
qγ
2 (β−1−sups∈[r−1,r](ys−yr−1))I(r − 1)q

]
=e−

qγ
2 (β−1)P(Tβ > r − 1)E

[
e
qγ
2 sups∈[r−1,r](ys−yr−1)I(r − 1)−q

]
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We show that the expectation term can be easily bounded: let us denote (y′s)s an independent process which
has the same law as (ys)s,

E
[
e
qγ
2 sups∈[r−1,r](ys−yr−1)I(r − 1)−q

]
≤E
[
eqγ sups∈[0,1] y

′
s

] 1
2E
[
I(r − 1)−2q

] 1
2

≤c
1
2
1 E
[
eqγ sups∈[0,1] y

′
s

] 1
2 · E[e−γqy

′
1 + 1]

1
2 ,

where in the last inequality we have used lemma 2.4.7. We see that this whole expression is a constant that
depends on γ, α and q.

Now it suffices to compute:

P(Tβ > r − 1) =

∫ ∞

r−1

β − 1√
2πu3/2

e−
(β−1−αu)2

2u du

≤ β − 1√
2π

eα(β−1)−α2(r−1)
2

∫ ∞

r−1

u−3/2e−
(β−1)2

2u du

≤ eα(β−1)−α2(r−1)
2 .

Hence
B ≤ c′′1e

−α2r
2 e(α−

qγ
2 )β . (2.4.14)

Equations (2.4.13) and (2.4.14) together finish the proof of the lemma.

Now we can prove the main lemma:

Proof of lemma 2.4.5. Define for n ≥ 1:

Mn = { sup
s∈[r0,r]

(ys − yr0) ∈ [n− 1, n]}. (2.4.15)

We can write,

E[(
∫ r

r0

e
γ
2 ysµY (ds))

−q] =e(
q2γ2

8 − qγα
2 )r0

∑
n≥1

E[1Mn
(

∫ r

r0

e
γ
2 (ys−yr0 )µY (ds))

−q]

=e(
q2γ2

8 − qγα
2 )r0

∑
n≥1

Jr−r0,n,

and by lemma 2.4.8 when r − r0 ≥ 2:

Jr−r0,n ≤ c2e
−α2r

2 e(α−
qγ
2 )n.

In the case where α− qγ
2 < 0, it is then straightforward that there exists c depending on r0, γ, α, q such that:

E[(
∫ r

r0

e
γ
2 ysµY (ds))

−q] ≤ c e−
α2r
2 .

The other case where α− qγ
2 ≥ 0 is actually very direct to prove, since we then have:

E[(
∫ r

r0

e
γ
2 ysµY (ds))

−q] ≤ E[e−
qγ
2 yr−1 ]E[I(r − 1)−q] ≤ c e(

q2γ2

8 − qγα
2 )r.

In the last inequality we have used the fact that yr−1 = Br−1 + α(r − 1) and that E[I(r − 1)−q] is a constant
independent of r that we can absorb in c. Notice this argument actually works whenever α > 0. This finishes
the proof of lemma 2.4.4.
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2.4.3 Fusion estimation and the reflection coefficient
In this subsection we will prove the asymptotic expansion result that is used in subsection 2.2.2 to obtain the
shift equation (2.1.16) on p with a shift 4

γ2 . In this expansion will appear the reflection coefficient introduced
in section 2.1.2 which will also be discussed in the next subsection. Here we will thus show:

Lemma 2.4.9. For −1− γ2

4 < a < −1− γ2

4 +a0 with a0 > 0 a constant chosen small enough, p < 1+ 4
γ2 (a+1),

as t→ 0−,

U(t) =M(γ, p, a+
γ2

4
, 0) + g(γ, a)

Γ(−p+ 1 + 4
γ2 (a+ 1))

Γ(−p)
|t|1+a+

γ2

4 M(γ, p− 1− 4

γ2
(a+ 1),−2− a− γ2

4
, 0)

+ o(|t|1+a+
γ2

4 ), (2.4.16)

where g(γ, a) is defined as:

g(γ, a) = −Γ(− 4

γ2
(a+ 1))E[(

1

2

∫ ∞

−∞
e
γ
2 B

γ
4
+ 1
γ

(a+1)

s µY (ds))
1+ 4

γ2
(a+1)

]. (2.4.17)

The process B
γ
4 +

1
γ (a+1) is defined by (2.1.25) and µY (ds) = e

γ
2 Y (e−s/2)ds is the notation introduced in section

2.4.2.

Notice that in the expression of g(γ, a) we recognize the reflection coefficient R∂1 (− 2a
γ ) of section 2.1.2. We

emphasize that we only need the result for a in a small open set, it is not necessary to obtain an explicit value
for a0.

Remark 2.4.10. From the conditions on a and p in the lemma, we have −2 − a − γ2

4 > −1 − γ2

4 and
p− 1− 4

γ2 (a+ 1) < 0, thus the bounds (2.1.5) are satisfied and M(γ, p− 1− 4
γ2 (a+ 1),−2− a− γ2

4 , 0) is well
defined. We also want to mention that a similar result holds for Ũ(t) and the proof is almost the same.

Proof. We adapt the arguments in [61] for the proof of this lemma. We introduce the notation

KI(t) :=

∫
I

(x− t)
γ2

4 xae
γ
2X(x)dx (2.4.18)

for a borel set I ⊆ [0, 1]. Recall that we work with −1 − γ2

4 < a < −1 − γ2

4 + a0 with a0 small, hence
p < 1 + 4

γ2 (a+ 1) < 1. We want to study the asymptotic of

E[K[0,1](t)
p]− E[K[0,1](0)

p] =: T1 + T2, (2.4.19)

where we defined:

T1 := E[K[|t|,1](t)
p]− E[K[0,1](0)

p], T2 := E[K[0,1](t)
p]− E[K[|t|,1](t)

p]. (2.4.20)

3 First we consider T1. The goal is to show that T1 = o(|t|1+a+
γ2

4 ). By interpolation,

|T1| ≤|p|
∫ 1

0

duE[|K[|t|,1](t)−K[0,1](0)|(uK[|t|,1](t) + (1− u)K[0,1](0))
p−1]

≤|p|E[|K[|t|,1](t)−K[0,1](0)|K[|t|,1](0)
p−1] ≤ |p|(A1 +A2), (2.4.21)

where
A1 = E[|K[|t|,1](t)−K[|t|,1](0)|K[|t|,1](0)

p−1]

and
A2 = E[|K[|t|,1](0)−K[0,1](0)|K[|t|,1](0)

p−1].
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We start by estimating A1. Using the sub-additivity of the function x 7→ x
γ2

4 ,

A1 =E[|K[|t|,1](t)−K[|t|,1](0)|K[|t|,1](0)
p−1]

≤|t|
γ2

4

∫ 1

|t|
dx1 x

a
1E[(

∫ 1

|t|

xa+
γ2

4

|x− x1|
γ2

2

e
γ
2X(x)dx)p−1]

≤|t|
γ2

4

∫ t0

|t|
dx1 x

a
1E[(

∫ 1

x1

xa−
γ2

4 e
γ
2X(x)dx)p−1] + c|t|

γ2

4 ,

where t0 is a constant in (0, 1) to be fixed. Note that in this subsection we will use c > 0 to denote a positive
constant with the abuse of notation that it can be a different constant every time it appears. Here we now need
to apply lemma 2.4.4. We check that the bounds of (2.1.5) on p imply that 1 + a + (1 − p)γ

2

2 > 0. Therefore
we are in the first case of lemma 2.4.4 which implies there exists ϵ1 > 0 such that for all x1 < ϵ1:

E[(
∫ 1

x1

xa−
γ2

4 e
γ
2X(x)dx)p−1] ≤ c x

1
γ2

(a+1)2

1 . (2.4.22)

Taking t0 = ϵ1 we obtain:

A1 ≤c|t|
γ2

4

∫ ϵ1

|t|
dx1 x

a+ 1
γ2

(a+1)2

1 + c|t|
γ2

4

≤c |t|1+
γ2

4 +a+ 1
γ2

(a+1)2
+ c|t|

γ2

4 = o
(
|t|1+a+

γ2

4

)
. (2.4.23)

On the other hand:

A2 = E[K[0,|t|](0)K[|t|,1](0)
p−1] (2.4.24)

=

∫ |t|

0

dx1 x
a+ γ2

4
1 E[(

∫ 1

|t|

xa+
γ2

4

|x− x1|
γ2

2

e
γ
2X(x)dx)p−1]

≤
∫ |t|

0

dx1 x
a+ γ2

4
1 E[(

∫ 1

|t|
xa−

γ2

4 e
γ
2X(x)dx)p−1]

(2.4.22)

≤ c|t|1+a+
γ2

4 + 1
γ2

(a+1)2
= o(|t|1+a+

γ2

4 ). (2.4.25)

Hence we have shown that T1 = o(|t|1+a+
γ2

4 ).

3 Now we focus on T2. The goal is to restrict K to the complementary of [|t|1+h, |t|], with h > 0 a con-
stant to be fixed, and then on the two parts the GMC’s are weakly correlated. The same computation as
(2.4.21) together with the technique we used for T1 show that for |t| sufficiently small:

E[K[0,1](t)
p]− E[K[|t|1+h,|t|]c(t)

p] ≤ |p|E[K[|t|1+h,|t|](t)K[|t|,1](0)
p−1]

≤ c|t|
γ2

4

∫ |t|

|t|1+h
dx1 x

a+ 1
γ2

(a+1)2

1

≤ c|t|
γ2

4 +(1+h)
(
1+a+ 1

γ2
(a+1)2

)

By taking h < − 1+a
1+a+γ2 , we have

γ2

4
+ (1 + h)(1 + a+

1

γ2
(a+ 1)2) > 1 + a+

γ2

4
, (2.4.26)

hence
E[K[0,1](t)

p]− E[K[|t|1+h,|t|]c(t)
p] = o(|t|1+a+

γ2

4 ). (2.4.27)
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This means that it suffices to evaluate E[K[|t|1+h,|t|]c(t)
p]−E[K[|t|,1](t)

p]. We will use the radial decomposition
of X with the notations introduced in the first paragraph of section 2.4.2,

K1(t) := K[|t|,1](t) =
1

2

∫ 2 ln 1
|t|

0

(e−s/2 − t)
γ2

4 e
γ
2 (Bs−s(

γ
4 +

1
γ (a+1)))µY (ds), (2.4.28)

K2(t) := K[0,|t|1+h](t) =
1

2

∫ ∞

2(1+h) ln 1
|t|

(e−s/2 − t)
γ2

4 e
γ
2 (Bs−s(

γ
4 +

1
γ (a+1)))µY (ds). (2.4.29)

From (2.4.4), we deduce that for s ≤ 2 ln 1
|t| and s′ ≥ 2(1 + h) ln 1

|t| ,

0 ≤ E[Y (e−s/2)Y (e−s
′/2)] = ln

1

|1− e−(s′−s)/2|
≤ 2|t|h, (2.4.30)

where we used the inequality ln 1
1−x ≤ 2x for x ∈ [0, 12 ]. Define the processes,

P (e−s/2) := Y (e−s/2)1{s≤2 ln 1
|t|}

+ Y (e−s/2)1{s≥2(1+h) ln 1
|t|}

,

P̃ (e−s/2) := Y (e−s/2)1{s≤2 ln 1
|t|}

+ Ỹ (e−s/2)1{s≥2(1+h) ln 1
|t|}

,

where Ỹ is a gaussian field independent from everything and has the same law as Y . Then we have the
inequality over the covariance:

E[P̃ (e−s/2)P̃ (e−s
′/2)] ≤ E[P (e−s/2)P (e−s

′/2)] ≤ E[P̃ (e−s/2)P̃ (e−s
′/2)] + 2|t|h. (2.4.31)

The function x 7→ xp is convex when p ≤ 0 and concave when 0 < p < 1. We will only work with the case
p ≤ 0 since the case 0 < p < 1 can be treated in the same way. By applying Kahane’s inequality of Theorem
2.4.2,

E[(K1(t) + K̃2(t))
p] ≤ E[(K1(t) +K2(t))

p] ≤ e
γ2

4 (p2−p)|t|hE[(K1(t) + K̃2(t))
p], (2.4.32)

where K̃2(t) := 1
2

∫∞
2(1+h) ln 1

|t|
(e−s/2 − t)

γ2

4 e
γ
2 (Bs−s(

γ
4 +

1
γ (a+1)))µỸ (ds). By the Markov property of Brownian

motion and stationarity of µỸ , we have

K̃2(t) :=
1

2
|t|(1+h)(1+a+

γ2

4 )+ γ2

4 e
γ
2B2(1+h) ln(1/|t|)

∫ ∞

0

(|t|he−s/2 + 1)
γ2

4 e
γ
2 (B̃s−s(

γ
4 +

1
γ (a+1)))µỸ (ds), (2.4.33)

with B̃ an independent Brownian motion. We denote

σt := |t|(1+h)(1+a+
γ2

4 )+ γ2

4 e
γ
2B2(1+h) ln(1/|t|) , V :=

1

2

∫ ∞

0

e
γ
2 (B̃s−s(

γ
4 +

1
γ (a+1)))µỸ (ds), (2.4.34)

then:

E[(K1(t) + (1 + |t|h)
γ2

4 σtV )p] ≤ E[(K1(t) +K2(t))
p] (2.4.35)

≤ e
γ2

4 (p2−p)|t|hE[(K1(t) + σtV )p].

By the Williams path decomposition of Theorem 2.4.3 we can write,

V = e
γ
2M

1

2

∫ ∞

−LM
e
γ
2 B

λ
s µỸ (ds), (2.4.36)

where λ = γ
4 + 1

γ (a + 1), M = sups>0(B̃s − λs) and LM is the last time
(
Bλ−s

)
s≥0

hits −M . Recall that the
law of M is known, for v ≥ 1,

P(e
γ
2M > v) =

1

v
4λ
γ

. (2.4.37)
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For simplicity, we introduce the notations:

ρA(λ) :=
1

2

∫ ∞

−LA
e
γ
2 B

λ
s µỸ (ds), ρ(λ) :=

1

2

∫ ∞

−∞
e
γ
2 B

λ
s µỸ (ds). (2.4.38)

Now we discuss the lower and upper bound separately.

3 Lower bound: Since we work with p ≤ 0,
E[(K1(t) +K2(t))

p]− E[K1(t)
p]

≥ E[(K1(t) + (1 + |t|h)
γ2

4 σte
γ
2Mρ(λ))p]− E[K1(t)

p]

=
4λ

γ
E
[ ∫ ∞

1

dv

v
4λ
γ +1

(
(K1(t) + (1 + |t|h)

γ2

4 σtρ(λ)v)
p −K1(t)

p
)]

=
4λ

γ
E
[ ∫ ∞

(1+|t|h)
γ2

4 σtρ(λ)
K1(t)

du

u
4λ
γ +1

((u+ 1)p − 1)((1 + |t|h)
γ2

4 σtρ(λ))
4λ
γ K1(t)

p− 4λ
γ

]
(2.4.63)

≥ 4λ

γ

Γ(−p+ 4λ
γ )Γ(− 4λ

γ )

Γ(−p)
E[((1 + |t|h)

γ2

4 σtρ(λ))
4λ
γ K1(t)

p− 4λ
γ ].

By the Girsanov theorem,

E[((1 + |t|h)
γ2

4 σtρ(λ))
4λ
γ K1(t)

p− 4λ
γ ]

=
(
|t|(1 + |t|h)

)1+a+ γ2

4 E[ρ(λ)
4λ
γ ]E

[(1
2

∫ 2 ln 1
|t|

0

(e−s/2 − t)
γ2

4 e
γ
2 (Bs+s(

γ
4 +

1
γ (a+1)))µY (ds)

)p− 4λ
γ
]

∼
t→0−

|t|1+a+
γ2

4 E[ρ(λ)
4λ
γ ]M(γ, p− 1− 4

γ2
(a+ 1),−2− a− γ2

4
, 0). (2.4.39)

This completes the proof for lower bound.

3 Upper bound: we start with an inequality:
E[
(
(K1(t) +K2(t))

p]− E[K1(t)
p]

≤E[(K1(t) + σtV )p]− E[K1(t)
p] + (e

γ2

4 (p2−p)|t|h − 1)E[K1(0)
p] (2.4.40)

=E[(K1(t) + σtV )p]− E[K1(t)
p] +O(|t|h). (2.4.41)

To get rid of the big O term, we will need an h such that

h > 1 + a+
γ2

4
. (2.4.42)

Together with the condition 2.4.26, we have

1 + a+
γ2

4
< h < − 1 + a

1 + a+ γ2
. (2.4.43)

There exists such an h when a is sufficiently close to −1− γ2

4 .
For A > 0 fixed, since p ≤ 0 we have,

E[(K1(t) + σtV )p −K1(t)
p] ≤ E[

(
(K1(t) + σtV )p −K1(t)

p
)
1{M>A}]

≤ E[
(
(K1(t) + σt e

γ
2MρA(λ))

p −K1(t)
p
)
1{M>A}]

(2.4.37)
=

4λ

γ
E
[ ∫ ∞

eγA/2σtρA(λ)

K1(t)

du

u
4λ
γ +1

((u+ 1)p − 1)(σtρA(λ))
4λ
γ K1(t)

p− 4λ
γ

]
Girsanov

=
4λ

γ
|t|1+a+

γ2

4 E
[ ∫ ∞

eγA/2σ̂tρA(λ)

K̂1(t)

du

u
4λ
γ +1

((u+ 1)p − 1)ρA(λ)
4λ
γ K̂1(t)

p− 4λ
γ

]
,
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where

K̂1(t) = E
[(1
2

∫ 2 ln 1
|t|

0

(e−s/2 − t)
γ2

4 e
γ
2 (Bs+s(

γ
4 +

1
γ (a+1)))µY (ds)

)p− 4λ
γ
]

t→0−∼ M(γ, p− 1− 4

γ2
(a+ 1),−2− a− γ2

4
, 0),

and for a < −1− hγ2

4(1+h) ,

σ̂t = |t|−(1+h)(1+a+ γ2

4 )+ γ2

4 e
γ
2B2(1+h) ln(1/|t|)

t→0−−→ 0 a.s.

Hence E[(K1(t) + σtV )p −K1(t)
p] is smaller than a term equivalent to:

4λ

γ

Γ(−p+ 4λ
γ )Γ(− 4λ

γ )

Γ(−p)
|t|1+a+

γ2

4 E[ρA(λ)
4λ
γ ]M(γ, p− 1− 4

γ2
(a+ 1),−2− a− γ2

4
, 0).

We can conclude by sending A to ∞.

2.4.4 Computation of the reflection coefficient
The goal of this subsection is to prove the tail expansion result for GMC given by Proposition 2.1.5. In the
first step we give a proof of the tail expansion (2.1.26) where the coefficient R∂1 is expressed in terms of the
processes Y and Bαs as defined in the section 2.1.2. The proof is almost the same as in [61]. In the second step
we provide the exact value (2.1.27) for R∂1 by using Theorem 2.1.1. Before proving the proposition, we provide
a useful lemma. The proof can be found in [61] (see lemma 2.8).

Lemma 2.4.11. Let α ∈ (γ2 , Q) with Q = γ
2 + 2

γ , then for p < 4
γ2 and all non trivial interval I ⊆ R:

E[(
1

2

∫
I

e
γ
2 B

Q−α
2

s e
γ
2 Y (e−s/2)ds)p] <∞. (2.4.44)

This lemma tells us that the additional term e
γ
2 B

Q−α
2

s behaves nicely and the bound on p is the same as in
the case of GMC moments.

Proof of Proposition 2.1.5. Using the decomposition X(e−s/2) = Bs + Y (e−s/2) we have,

I∂1,η(α) =

∫ η

0

x−
γα
2 e

γ
2X(x)dx =

1

2

∫ ∞

−2 ln η

e
γ
2 (Bs−s(

γ
4 +

1
γ−

α
2 ))e

γ
2 Y (e−s/2)ds

Theorem 2.4.3
= e

γ
2M

1

2

∫ ∞

−2 ln η−LM
e
γ
2 B

Q−α
2

s e
γ
2 Y (e−s/2)ds,

where M = sups>0(Bs −
Q−α
2 s) and LM is the last time

(
B
Q−α

2
−s

)
s≥0

hits −M . The law of M is given by:

P(e
γ
2M > v) =

1

v
2(Q−α)

γ

(v ≥ 1). (2.4.45)

We denote

ρA(
Q− α

2
) =

1

2

∫ ∞

−LA
e
γ
2 B

Q−α
2

s e
γ
2 Y (e−s/2)ds,

ρ(
Q− α

2
) =

1

2

∫ ∞

−∞
e
γ
2 B

Q−α
2

s e
γ
2 Y (e−s/2)ds,



2.4. APPENDIX 69

and study the upper and lower bounds for P(I∂1,η(α) > u).
3 Upper bound:

P(I∂1,η(α) > u) ≤ P(e
γ
2Mρ(

Q− α

2
) > u) ≤

E[ρ(Q−α
2 )

2(Q−α)
γ ]

u
2(Q−α)

γ

=
R
∂

1 (α)

u
2
γ (Q−α)

.

3 Lower bound: we first show that the tail behavior is concentrated at x = 0 and that the value of η does not
matter. Consider h, ϵ > 0 sufficiently small,

P(I∂1,1(α) > u+ u1−h)− P(I∂1,η(α) > u) ≤ P(
∫ 1

η

x−
γα
2 e

γ
2X(x)dx > u1−h)

≤
E[(
∫ 1

η
x−

γα
2 e

γ
2X(x)dx)

4
γ2

−ϵ
]

u
(1−h)( 4

γ2
−ϵ)

= Ou→∞(
1

u
2(Q−α)

γ +ν
), (2.4.46)

where ν > 0 can be any constant that satisfies ν ≤ (1− h)( 4
γ2 − ϵ)− 2(Q−α)

γ2 . Thus it suffices to study the tail
behavior of I∂1,1(α). Take A = 2ν

γ lnu,

P(I∂1,1(α) > u) ≥ P(e
γ
2MρA(

Q− α

2
) > u,M > A)

= P

(
e
γ
2M > max

{
u

ρA(
Q−α
2 )

, e
γ
2A

})

= E

min

{
ρA(

Q−α
2 )

u
,
1

uν

} 2(Q−α)
γ


≥ u−

2(Q−α)
γ

(
E[ρA(

Q− α

2
)

2(Q−α)
γ ]− E[ρA(

Q− α

2
)

2(Q−α)
γ 1ρA(Q−α

2 )>u1−ν ]

)
Take h′ > 1 a constant such that h′ 2(Q−α)

γ < 4
γ2 , by Hölder’s inequality and Markov inequality:

E[ρA(
Q− α

2
)

2(Q−α)
γ 1ρA(Q−α

2 )>u1−ν ]

≤E[ρA(
Q− α

2
)h

′ 2(Q−α)
γ ]

1
h′ P(ρA(

Q− α

2
)

2(Q−α)
γ > u1−ν)

h′−1
h′

≤E[ρA(
Q− α

2
)h

′ 2(Q−α)
γ ]u−(1−ν)(h′−1) = O(u−(1−ν)(h′−1)).

We impose additionally that ν satisfies ν < (1− ν)(h′ − 1), then

P(I∂1,1(α) > u) ≥ u−
2(Q−α)

γ E[ρA(
Q− α

2
)

2(Q−α)
γ ] +O(u−

2(Q−α)
γ −ν). (2.4.47)

We claim that for u > 1 and for some c > 0,

E[ρ(
Q− α

2
)

2(Q−α)
γ ]− E[ρA(

Q− α

2
)

2(Q−α)
γ ] ≤ cu−ν . (2.4.48)

This shows that:

P(I∂1,1(α) > u) =
R
∂

1 (α)

u
2(Q−α)

γ

+O(
1

u
2(Q−α)

γ +ν
). (2.4.49)

By applying the tail result to (2.4.46) we deduce,

P(I∂1,η(α) > u) =
R
∂

1 (α)

u
2(Q−α)

γ

+O(
1

u
2(Q−α)

γ +min(ν,h)
), (2.4.50)
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which finishes the proof for the first part. For the second part let ϵ > 0, the value of R∂1 (α) is then determined
by the following limit, with p = 2(Q−α)

γ ,

lim
ϵ→0

ϵE[I∂1,1(α)p−ϵ] = pR
∂

1 (α). (2.4.51)

With our Theorem 2.1.1 we can compute this limit and get:

pR
∂

1 (α) =
(2π)p( 2γ )

p γ
2

4 Γ γ
2
( 2γ − pγ2 )Γ γ

2
( 2γ − (p− 1)γ2 )Γ γ

2
( 4γ − α− (p− 2)γ2 )

Γ(1− γ2

4 )pΓ γ
2
( 2γ )Γ γ

2
( 2γ − α+ γ

2 )Γ γ
2
( 2γ + γ

2 )Γ γ
2
( 4γ − α− (2p− 2)γ2 )

lim
ϵ→0

ϵΓ γ
2
(
γϵ

2
)

=
(2π)p( 2γ )

p γ
2

4 Γ γ
2
(α− γ

2 )

Γ(1− γ2

4 )pΓ γ
2
( 2γ )Γ γ

2
(Q− α)

1√
2π

(
γ

2
)−

1
2Γ γ

2
(
2

γ
)

=
1

√
γπ

(2π)
2
γ (Q−α)( 2γ )

γ
2 (Q−α)

Γ(1− γ2

4 )
2
γ (Q−α)

Γ γ
2
(α− γ

2 )

Γ γ
2
(Q− α)

.

It remains to show (2.4.48). By (2.4.3) of the Williams decomposition theorem of appendix 2.4.1, the process
B̂
Q−α

2
s defined for s ≤ 0 by

B̂
Q−α

2
s = B

Q−α
2

s−L 2ν
γ

lnu
+

2ν

γ
lnu

is independent from everything and has the same law as (B
Q−α

2
s )s≤0. We can then write,

ρ(
Q− α

2
) = A1 + u−νA2, (2.4.52)

where:

A1 =
1

2

∫ ∞

−L 2ν
γ

lnu

e
γ
2 B

Q−α
2

s e
γ
2 Y (e−s/2)ds, (2.4.53)

A2 =
1

2

∫ 0

−∞
e
γ
2 B̂

Q−α
2

s e
γ
2 Y (e−s/2)ds.

By interpolation (see (2.4.21) for example),

E[(A1 + u−νA2)
2(Q−α)

γ −A
2(Q−α)

γ

1 ]

≤ 2(Q− α)

γ
u−νE[A2 max{ρ(Q− α

2
)

2(Q−α)
γ −1, A

2(Q−α)
γ −1

1 }].

If 2(Q−α)
γ ≤ 1,

E[(A1 + u−νA2)
2(Q−α)

γ −A
2(Q−α)

γ

1 ] ≤ u−νE[A2A
2(Q−α)

γ −1

1 ]

Hölder
≤ u−νE[Ap2]

1/pE[A
p
p−1 (

2(Q−α)
γ −1)

1 ](p−1)/p < cu−ν ,

where 1 < p < 4
γ2 to ensure that E[Ap2] is finite, and we know that

A1 ≥ 1

2

∫ ∞

0

e
γ
2 B

Q−α
2

s e
γ
2 Y (e−s/2)ds

has negative moments. On the other hand, if 2(Q−α)
γ > 1, then:

E[(A1 + u−νA2)
2(Q−α)

γ −A
2(Q−α)

γ

1 ] ≤2(Q− α)

γ
u−νE[ρ(

Q− α

2
)

2(Q−α)
γ ] < cu−ν .

This last upper bound comes from the fact that the moment of ρ(Q−α
2 ) is finite thanks to Lemma 2.4.11 and

since 2(Q−α)
γ < 4

γ2 .
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2.4.5 Special functions
Lastly we include here a detailed discussion on hypergeometric functions and on the special functions Γ γ

2
and

G that we have used in our paper. First, let us discuss the theory of hypergeometric equations and the so-
called connection formulas between the different bases of their solutions. For A > 0 let Γ(A) =

∫∞
0
tA−1e−tdt

denote the standard Gamma function and let (A)n := Γ(A+n)
Γ(A) . For A,B,C, and x real numbers we define the

hypergeometric function F by:

F (A,B,C, x) :=

∞∑
n=0

(A)n(B)n
n!(C)n

xn. (2.4.54)

This function can be used to solve the following hypergeometric equation:

(t(1− t)
d2

dt2
+ (C − (A+B + 1)t)

d

dt
−AB)U(t) = 0. (2.4.55)

For our purposes we will always work with the parameter t ∈ (−∞, 0) and we can give the following two bases
of solutions, under the assumption that C and A−B are not integers,

U(t) = C1F (A,B,C, t)

+ C2|t|1−CF (1 +A− C, 1 +B − C, 2− C, t)

= D1|t|−AF (A, 1 +A− C, 1 +A−B, t−1)

+D2|t|−BF (B, 1 +B − C, 1 +B −A, t−1),

where the first expression is an expansion in power of |t| and the second is an expansion in powers of |t|−1. For
each basis we have two real constants that parametrize the solution space, C1, C2 and D1, D2. We thus expect
to have an explicit change of basis formula that will give a link between C1, C2 and D1, D2. This is precisely
what give the so-called connection formulas:(

C1

C2

)
=

(
Γ(1−C)Γ(A−B+1)
Γ(A−C+1)Γ(1−B)

Γ(1−C)Γ(B−A+1)
Γ(B−C+1)Γ(1−A)

Γ(C−1)Γ(A−B+1)
Γ(A)Γ(C−B)

Γ(C−1)Γ(B−A+1)
Γ(B)Γ(C−A)

)(
D1

D2

)
. (2.4.56)

This relation comes from the theory of hypergeometric equations and we will extensively use it to deduce our
shift equations. We will apply it for both hypergeometric equations of Proposition 2.1.4.

We will now provide some explanations on the function Γ γ
2
(x) that we have introduced as well as its

connection with the so-called G Barnes’ function. Our function Γ γ
2
(x) is equal to the function Γb(x) defined

in the appendix of [72] with b = γ
2 . 7 For all γ ∈ (0, 2) and for x > 0, Γ γ

2
(x) is defined by the integral formula

written in Theorem 2.1.1,

ln Γ γ
2
(x) =

∫ ∞

0

dt

t

[
e−xt − e−

Qt
2

(1− e−
γt
2 )(1− e−

2t
γ )

−
(Q2 − x)2

2
e−t +

x− Q
2

t

]
, (2.4.57)

where we have Q = γ
2 +

2
γ . Since the function Γ γ

2
(x) is continuous it is completely determined by the following

two shift equations,

Γ γ
2
(x)

Γ γ
2
(x+ γ

2 )
=

1√
2π

Γ(
γx

2
)(
γ

2
)−

γx
2 + 1

2 , (2.4.58)

Γ γ
2
(x)

Γ γ
2
(x+ 2

γ )
=

1√
2π

Γ(
2x

γ
)(
γ

2
)

2x
γ − 1

2 , (2.4.59)

7In [79] Ostrovsky uses a slightly different special function Γ2(x|τ), the relation with our Γ γ
2
(x) is:

Γ γ
2
(x) = (

2

γ
)
1
2
(x−Q

2
)2

Γ2(
2x
γ
|τ)

Γ2(
Q
γ
|τ)

.
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and by its value in Q
2 , Γ γ

2
(Q2 ) = 1. We mention that Γ γ

2
(x) is an analytic function of x. In the case where

γ = 2 the function Γ γ
2
(x) reduces to,

Γ1(x) = (2π)
x
2−

1
2G(x)−1, (2.4.60)

where G(x) is the so-called Barnes G function. This function is useful when we study the limit γ → 2 in section
2.1.4. Finally in our Corollary 2.1.3 we have used a special β2,2 distribution defined in [79]. Here we recall the
definition:

Definition 2.4.12 (Existence theorem). The distribution − lnβ2,2(a1, a2; b0, b1, b2) is infinitely divisible on
[0,∞) and has the Lévy-Khintchine decomposition for Re(p) > −b0:

E[exp(p lnβ2,2(a1, a2; b0, b1, b2))] = exp
(∫ ∞

0

(e−pt − 1)e−b0t
(1− e−b1t)(1− e−b2t)

(1− e−a1t)(1− e−a2t)

dt

t

)
. (2.4.61)

Furthermore, the distribution lnβ2,2(a1, a2; b0, b1, b2) is absolutely continuous with respect to the Lebesgue
measure.

We only work with the case (a1, a2) = (1, 4
γ2 ). Then β2,2(1, 4

γ2 ; b0, b1, b2) depends on 4 parameters γ, b0, b1, b2
and its real moments p > −b0 are given by the formula:

E[β2,2(1,
4

γ2
; b0, b1, b2)

p] =
Γ γ

2
(γ2 (p+ b0))Γ γ

2
(γ2 (b0 + b1))Γ γ

2
(γ2 (b0 + b2))Γ γ

2
(γ2 (p+ b0 + b1 + b2))

Γ γ
2
(γ2 b0)Γ γ

2
(γ2 (p+ b0 + b1))Γ γ

2
(γ2 (p+ b0 + b2))Γ γ

2
(γ2 (b0 + b1 + b2))

. (2.4.62)

Of course we have γ ∈ (0, 2) and the real numbers p, b0, b1, b2 must be chosen so that the arguments of all the Γ γ
2

are positive. We conclude this section with a few computations that we need that also involve hypergeometric
functions.

Lemma 2.4.13. For p < 0 and −1 < a < 0 or for 0 < p < 1 and −1 < a < −p we have the identity:∫ ∞

0

((u+ 1)p − 1)ua−1du =
Γ(a)Γ(−a− p)

Γ(−p)
. (2.4.63)

Proof. Denote by (x)n := x(x+ 1) . . . (x+ n− 1).∫ ∞

0

((u+ 1)p − 1)ua−1du =

∞∑
n=0

(−1)n

n!
(−p)n

1

n+ a
−

∞∑
n=0

(−1)n

n!
(−p)n

1

a+ p− n

=
1

a

∞∑
n=0

(−1)n

n!

(−p)n(a)n
(a+ 1)n

− 1

a+ p

∞∑
n=0

(−1)n

n!

(−p)n(−a− p)n
(−a− p+ 1)n

=
1

a
F (−p, a, a+ 1,−1)− 1

a+ p
F (−p,−a− p,−a− p+ 1,−1)

=
Γ(a)Γ(−a− p)

Γ(−p)
,

where in the last line we used the formula, for suitable a, b ∈ R,

b̄F (ā+ b̄, ā, ā+ 1,−1) + āF (ā+ b̄, b̄, b̄+ 1,−1) =
Γ(ā+ 1)Γ(b̄+ 1)

Γ(ā+ b̄)
.

Lemma 2.4.14. For 0 < a < 1− γ2

4 we have:

γ2

4

∫ ∞

0

(y + 1)
γ2

4 −1ya−1dy = (a+
γ2

4
)
Γ(a)Γ(−a− γ2

4 )

Γ(−γ2

4 )
. (2.4.64)
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Proof. By the previous lemma,∫ ∞

0

((y + z)
γ2

4 − 1)ya−1dy = za+
γ2

4
Γ(a)Γ(−a− γ2

4 )

Γ(−γ2

4 )
.

We take the derivative in z in the above equation and evaluate it at z = 1 to get:

γ2

4

∫ ∞

0

(y + 1)
γ2

4 −1ya−1dy = (a+
γ2

4
)
Γ(a)Γ(−a− γ2

4 )

Γ(−γ2

4 )
.
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CHAPTER 3

Integrability of boundary Liouville theory

In collaboration with Guillaume Remy.

Liouville conformal field theory (LCFT) is considered on a simply connected domain with boundary, spe-
cializing to the case where the Liouville potential is integrated only over the boundary of the domain. We
work in the probabilistic framework of boundary LCFT introduced by Huang-Rhodes-Vargas (2015). Building
upon the known proof of the bulk one-point function by the first author, exact formulas are rigorously derived
for the remaining basic correlation functions of the theory, i.e., the bulk-boundary correlator, the boundary
two-point and the boundary three-point functions. These four correlations should be seen as the fundamental
building blocks of boundary Liouville theory, playing the analogue role of the DOZZ formula in the case of
the Riemann sphere. Our study of boundary LCFT also provides the general framework to understand the
integrability of one-dimensional Gaussian multiplicative chaos measures as well as their tail expansions. Finally
this work sets the stage for studying the more general case of boundary LCFT with both bulk and boundary
Liouville potentials.

3.1 Introduction and main results
Liouville conformal field theory - LCFT henceforth - first appeared in Polyakov’s seminal 1981 paper [82]
where he introduces a theory of summation over the space of Riemannian metrics on a given two-dimensional
surface. As a fundamental building block of non-critical string theory, the necessity to solve Liouville theory
lead Belavin, Polyakov, and Zamolodchikov (BPZ) to introduce in [10] conformal field theory (CFT), a powerful
framework to study quantum field theories possessing conformal symmetry. On the Riemann sphere, solving
Liouville theory amounts to computing the three-point function - which is given by the DOZZ formula proposed
in [25, 108] - and arguing that higher order correlation functions can be obtained from it using the conformal
bootstrap method of [10]. A similar program can be pursued for surfaces with boundary, where the basic
correlations have been derived in the physics literature in [37, 52, 84] and the conformal bootstrap is also
applicable.

We work here in the probabilistic framework of LCFT first introduced by David-Kupiainen-Rhodes-Vargas
on the Riemann sphere in [20], and later followed by companion works for the boundary case [53] and in higher
genus [21, 49, 87]. The strength of this framework is it allows to put Liouville theory on solid mathematical
grounds and to rigorously carry out the program of solving the theory as described above. Indeed, in the
case of the Riemann sphere, the BPZ differential equations expressing the constraints of the local conformal
invariance of CFT were shown to hold in [60]. Building on this work a proof of the DOZZ formula was then
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given in [61]. Very shortly after, the same procedure was implemented by the first author [88] in the case of
boundary LCFT to prove the Fyodorov-Bouchaud formula proposed in [41] that can also be interpreted as a
bulk one-point function of boundary LCFT.

The purpose of the present work is to pursue solving Liouville theory on a domain with boundary, in the
special case where the Liouville potential is only present on the boundary, see the Liouville action (3.1.2) below.
In the study of boundary LCFT there are four basic correlation functions that must be computed: the bulk
one-point function, the bulk-boundary correlator, and the boundary two-point and three-point functions. For
the last two correlations we allow the freedom to choose different cosmological constants for each connected
component of the boundary, see again (3.1.2). Taking as an input our previous works [88, 89], we will thus
compute all the basic correlations of boundary LCFT. In a future work we plan to address the same problem
in the more general setting where there is also a bulk Liouville potential in the action. Lastly for finding higher
order correlations one needs in principle to apply the conformal bootstrap method, although at the level of
probability this remains a challenge even in the case of the Riemann sphere.

The key probabilistic object required to define LCFT is the Gaussian multiplicative chaos (GMC) measure,
which formally corresponds to exponentiating a log-correlated Gaussian field. Since the pioneering work of
Kahane [56], it is well understood how to define this object using a suitable regularization procedure [12, 92].
GMC measures are now an extremely well studied object in probability theory and appear in many apparently
unrelated problems such as 3d turbulence, mathematical finance, statistical physics, two-dimensional random
geometry and probabilistic LCFT. One illustration is the Fyodorov-Bouchaud formula giving the law of the
total mass of the GMC measure on the unit circle that was first proposed in statistical physics [41] in the
context of random energy models. It was proved in [88] by viewing it as the bulk one-point function of boundary
LCFT derived in [37] and by using the BPZ equations. This connection between [41] and [37] was unknown
to physicists. Furthermore, our previous work [89] studies GMC on the unit interval making again rigorous
predictions of statistical physicists [45] (see also the related set of works [76, 78, 79]) using once more the BPZ
equations coming from CFT.

In the present paper we further uncover these connections between the theory of GMC measures and
Liouville CFT. We show how the law of the total mass of GMC on the unit interval studied in [89] can be
derived from a special case of the boundary three-point function of boundary LCFT. Lastly we explain how
the boundary two-point function gives a very general result on the tail expansion of one-dimensional GMC
measures. The study of boundary LCFT with boundary Liouville potential is thus the most general framework
to understand the integrability of one-dimensional GMC measures.

Let us now introduce the framework of our paper. By conformal invariance we can work equivalently on
the upper half plane H = {z ∈ C | Im(z) > 0} or on the unit disk D = {z ∈ C | |z| < 1} but for almost all of
this paper we will work on H. We use notations H = H ∪ R, ∂D for the unit circle and similarly D = D ∪ ∂D.
In theoretical physics Liouville theory is defined using the path integral formalism. Let us fix N bulk insertion
points zi ∈ H of associated weights αi ∈ R and M boundary insertions points sj ∈ R with weight βj ∈ R.
In physics the correlation function of LCFT at these points is defined using the following infinite dimensional
integral on the space of maps X : H 7→ R,〈

N∏
i=1

eαiϕ(zi)
M∏
j=1

e
βj
2 ϕ(sj)

〉
=

∫
X:H7→R

DX

N∏
i=1

eαiX(zi)
M∏
j=1

e
βj
2 X(sj)e−SL(X), (3.1.1)

where DX is a formal uniform measure on the maps X and SL(X) is the Liouville action given by:

SL(X) =
1

4π

∫
H

(
|∂gX|2 +QRgX

)
dλg +

1

2π

∫
R

(
QKgX + 2πµ∂e

γ
2X
)
dλ∂g. (3.1.2)

Here γ ∈ (0, 2), and one has Q = γ
2 + 2

γ .1 For a choice g of background metric on H, ∂g, Rg, Kg, dλg,
dλ∂g respectively stand for the gradient, Ricci curvature, geodesic curvature of the boundary, volume form
and line element in the metric g. The precise choice of g is irrelevant thanks to the Weyl anomaly proven
in [53], see also Lemma 3.5.7 in appendix. µ∂ is the cosmological constant tuning the interaction strength of

1The central of the theory is then given by c = 1 + 6Q2.
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the Liouville potential. It will be chosen either to be a fixed positive number or more generally a function
µ∂ : R 7→ C constraint to be constant in between two consecutive insertion points sj on R. Of course since
the path integral (3.1.1) does not make rigorous sense we will rely on the construction of [53] to obtain a valid
probabilistic definition for these correlation functions. A requirement for a correlation to be well-defined is
that the following Seiberg bounds must hold:

N∑
i=1

αi +

M∑
j=1

βj
2
> Q, ∀j, βj < Q. (3.1.3)

Notice here that we do not have the condition αi < Q as we do not have a bulk potential. One of the key
properties of a CFT is that its correlations behave as conformal tensors under conformal automorphism. This
has indeed been checked for the probabilistic definitions in [20, 53]. Using conformal invariance one can thus
reduce computing the following basic correlation functions to computing a single constant called the structure
constant. We perform this reduction for the four basic correlations that will be at the heart of our work:

• Bulk one-point function. For z ∈ H, α > Q:〈
eαϕ(z)

〉
=

U(α)

|z − z|2∆α
. (3.1.4)

• Bulk-boundary correlator. For z ∈ H, s ∈ R, β < Q, α+ β
2 > Q:

〈
eαϕ(z)e

β
2 ϕ(s)

〉
=

G(α, β)

|z − z|2∆α−∆β |z − s|2∆β
. (3.1.5)

• Boundary two-point function. For s1, s2 ∈ R, β ∈ (γ2 , Q):

〈
e
β
2 ϕ(s1)e

β
2 ϕ(s2)

〉
=
R(β, µ1, µ2)

|s1 − s2|2∆β
. (3.1.6)

• Boundary three-point function. For i ∈ {1, 2, 3}, si, βi ∈ R satisfying βi < Q and
∑
i βi > 2Q:

〈
e
β1
2 ϕ(s1)e

β2
2 ϕ(s2)e

β3
2 ϕ(s3)

〉
=

H
(β1,β2,β3)
(µ1,µ2,µ3)

|s1 − s2|∆1+∆2−∆3 |s1 − s3|∆1+∆3−∆2 |s2 − s3|∆2+∆3−∆1
. (3.1.7)

We have used the notations ∆α = α
2 (Q − α

2 ), ∆β = β
2 (Q − β

2 ), and ∆i =
βi
2 (Q − βi

2 ). Each of the four
structure constants U,G,R,H will have a definition involving Gaussian multiplicative chaos.

3.1.1 Probabilistic definitions
In this section we will introduce the probabilistic objects with which we can rigorously define the four correla-
tions (3.1.4) through (3.1.7). We will define all of the probabilistic objects on H. We view H as being equipped
with the following background metric g, written here in diagonal form g = g(x)dx2,

g(x) =
1

|x|4+
, where |x|+ := max(|x|, 1). (3.1.8)

This choice is convenient to work with because it will make some computations work in the same way as in
[61] and [89]. We now need to define the Gaussian free field (GFF) we will be working with.
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Figure 3.1: Structure constants for boundary Liouville theory

Definition 3.1.1. (Gaussian free field on H) The Gaussian free field X is the centered Gaussian process on
H with covariance given by:

E[X(x)X(y)] = ln
1

|x− y||x− ȳ|
− 1

2
ln g(x)− 1

2
ln g(y). (3.1.9)

Since the variance at each point is infinite, X is not defined pointwise and exists as a random distribution. It
also satisfies: ∫ π

0

X(eiθ)dθ = 0. (3.1.10)

To construct the above GFF X one can perform the following. Consider XD the Neumann boundary (also
called free boundary) GFF on D. This field has a covariance given by, for x, y ∈ D,

E[XD(x)XD(y)] = ln
1

|x− y||1− xȳ|
. (3.1.11)

The field XD has zero average on the unit circle. One can then conformally map the disk D equipped with the
Euclidean metric to the upper-half plane H equipped with the metric ĝ(x) = 4

|x+i|4 . By this map from the
field XD we obtain the field Xĝ defined on H which has covariance,

E[Xĝ(x)Xĝ(y)] = ln
1

|x− y||x− ȳ|
− 1

2
ln ĝ(x)− 1

2
ln ĝ(y), (3.1.12)

and zero average on R in the metric ĝ. Finally the above field X can be obtained from the field Xĝ by simply
setting:

X(x) = Xĝ(x)−
1

π

∫ π

0

Xĝ(e
iθ)dθ. (3.1.13)

We now define the Gaussian multiplicative chaos measure on R.

Definition 3.1.2. (Gaussian multiplicative chaos) Fix a γ ∈ (0, 2). The GMC measure associated to the field
X is defined by the following limit,

e
γ
2X(x)dx = lim

ϵ→0
e
γ
2Xϵ(x)−

γ2

8 E[Xϵ(x)2]dx, (3.1.14)
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where the convergence is in probability and in the sense of weak convergence of measures on R. Here Xϵ is a
suitable regularization of the field. More precisely, for a continuous compactly supported function f on R, the
following convergence holds in probability:∫

R
f(x)e

γ
2X(x)dx = lim

ϵ→0

∫
R
f(x)e

γ
2Xϵ(x)−

γ2

8 E[Xϵ(x)2]dx. (3.1.15)

For an elementary proof of this convergence and examples of smoothing of the field Xϵ, see for instance
[12]. With this at hand one can now give a probabilistic definition to the four structure constants U,G,R,H
using moments of GMC on H. The reason why the following definitions are the correct interpretation of (3.1.1)
has been performed in [53]. We will also work with the four quantities U,G,R,H which will be purely defined
as moment of GMC on H and be each related to the corresponding U,G,R,H by an explicit prefactor.

In order to define the boundary two-point and three-point functions we will consider parameters µ1, µ2, µ3

in C corresponding to the values taken by µ∂ in the Liouville action (3.1.2). To be able to choose a suitable
branch cut to define the probabilistic expressions below, we introduce the following conditions we will refer to
as the half-space conditions.

Definition 3.1.3. (Half-space condition for µi) Consider µ1, µ2, µ3 ∈ C. We say that (µi)i=1,2,3 satisfies the
half-space condition if there exists a half-space H of C whose boundary is a line passing through the origin not
equal to the real axis and satisfying the following. The half-space H does not contained the half-line (−∞, 0).
Each µi is contained in H (the half-space with its boundary included) and the sum µ1 + µ2 + µ3 is strictly
contained in H. We will also refer to the half-space condition for a pair µ1, µ2 ∈ C which will be the condition
above with µ3 set to 0.

Definition 3.1.4. (Correlation functions of Liouville theory on H) Fix γ ∈ (0, 2). Consider parameters
α, β, β1, β2, β3 ∈ R, µ∂ ∈ (0,+∞), and µ1, µ2, µ3 ∈ C. The four correlation functions U,G,R,H have the
following probabilistic definitions:

• U(α) = 2
γΓ(

2(α−Q)
γ )

(
µ

2(Q−α)
γ

∂

)
U(α) where for α > γ

2 :

U(α) = E

(∫
R

g(x)
γ
4 (

2
γ−α)

|x− i|γα
e
γ
2X(x)dx

) 2(Q−α)
γ

 . (3.1.16)

• G(α, β) = 2
γΓ(

2α+β−2Q
γ )

(
µ

2Q−2α−β
γ

∂

)
G(α, β) where for β < Q, γ

2 − α < β
2 < α:

G(α, β) = E

(∫
R

g(x)
γ
4 (

2
γ−α−

β
2 )

|x− i|γα
e
γ
2X(x)dx

) 2
γ (Q−α− β

2 )
 . (3.1.17)

• H
(β1,β2,β3)
(µ1,µ2,µ3)

= 2
γΓ(

β1+β2+β3−2Q
γ )H

(β1,β2,β3)

(µ1,µ2,µ3) where in the following range of parameters,

(µi)i=1,2,3 satisfies Definition 3.1.3, βi < Q,
1

γ
(2Q−

3∑
i=1

βi) <
4

γ2
∧min

i

2

γ
(Q− βi), (3.1.18)

one can define:

H
(β1,β2,β3)

(µ1,µ2,µ3) = E

(∫
R

g(x)
γ
8 (

4
γ−

∑3
i=1 βi)

|x|
γβ1
2 |x− 1|

γβ2
2

e
γ
2X(x)dµ(x)

) 1
γ (2Q−

∑3
i=1 βi)

 . (3.1.19)
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The dependence on the parameters µ1, µ2, µ3 appears through the measure:

dµ(x) = µ11(−∞,0)(x)dx+ µ21(0,1)(x)dx+ µ31(1,∞)(x)dx. (3.1.20)

The GMC integral inside the expectation is a complex number avoiding (−∞, 0). To define its fractional
power we choose its argument in (−π, π).

• R(β, µ1, µ2) = −Γ(1 − 2(Q−β)
γ )R(β, µ1, µ2), where R(β, µ1, µ2) is defined for β ∈ (γ2 , Q) and µ1, µ2

obeying the constraint of Definition 3.1.3 by the following limiting procedure. Consider γ
2 < β2 < β < Q

and β − β2 < β3 < Q. Then the following limits exists and we set:

R(β, µ1, µ2) :=
1

2(Q− β)
lim

β3↓β−β2

(β2 + β3 − β)H
(β,β2,β3)

(µ1,µ2,1). (3.1.21)

The proof of why the above moments of GMC are well-defined under the written parameter ranges has
been performed in [53].

3.1.2 Main theorems
In order to state our main results, we need to introduce the following special functions. For all γ ∈ (0, 2) and
for Re(x) > 0, Γ γ

2
(x) is defined by the following integral formula:

ln Γ γ
2
(x) =

∫ ∞

0

dt

t

[
e−xt − e−

Qt
2

(1− e−
γt
2 )(1− e−

2t
γ )

−
(Q2 − x)2

2
e−t +

x− Q
2

t

]
. (3.1.22)

Furthermore consider the function S γ
2
(x) defined for γ ∈ (0, 2) and Re(x) ∈ (0, Q) by:

S γ
2
(x) =

Γ γ
2
(x)

Γ γ
2
(Q− x)

. (3.1.23)

Both functions Γ γ
2
(x) and S γ

2
(x) admit meromorphic extensions to all x ∈ C with a known pole structure,

see Section 3.5.4 for more details. Using these two functions one can define the following special function
introduced in [84]. For i ∈ {1, 2, 3}, define σi through the relation µi := eiπγ(σi−

Q
2 ) with the convention that

for positive µi one has Re(σi) =
Q
2 . Denote β = β1 + β2 + β3. Then define:

IPT

(
β1, β2, β3
σ1, σ2, σ3

)
(3.1.24)

=
(2π)

2Q−β
γ +1( 2γ )

( γ2 −
2
γ )(Q− β

2 )−1

Γ(1− γ2

4 )
2Q−β
γ Γ(β−2Q

γ )

Γ γ
2
(2Q− β

2 )Γ γ
2
(β1+β3−β2

2 )Γ γ
2
(Q− β1+β2−β3

2 )Γ γ
2
(Q− β2+β3−β1

2 )

Γ γ
2
(Q)Γ γ

2
(Q− β1)Γ γ

2
(Q− β2)Γ γ

2
(Q− β3)

× ei
π
2 (−(2Q− β1

2 −σ1−σ2)(Q− β1
2 −σ1−σ2)+(Q+

β2
2 −σ2−σ3)(

β2
2 −σ2−σ3)+(Q+

β3
2 −σ1−σ3)(

β3
2 −σ1−σ3)−2σ3(2σ3−Q))

S γ
2
(β1

2 + σ1 − σ2)S γ
2
(β3

2 + σ3 − σ1)

×
∫ i∞

−i∞

S γ
2
(Q− β2

2 + σ3 − σ2 + r)S γ
2
(β3

2 + σ3 − σ1 + r)S γ
2
(Q− β3

2 + σ3 − σ1 + r)

S γ
2
(Q+ β1

2 − β2

2 + σ3 − σ1 + r)S γ
2
(2Q− β1

2 − β2

2 + σ3 − σ1 + r)S γ
2
(Q+ r)

eiπ(−
β2
2 +σ2−σ3)r

dr

i
.

The contour of the integral is to the right of the poles at r = −(Q− β2

2 +σ3−σ2)−nγ2−m
2
γ , r = −(β3

2 +σ3−σ1)−
nγ2 −m

2
γ , r = −(Q− β3

2 +σ3−σ1)−nγ2 −m
2
γ and to the left of the poles at r = −(β1

2 − β2

2 +σ3−σ1)+nγ2 +m
2
γ ,

r = −(Q− β1

2 − β2

2 + σ3 − σ1) + nγ2 +m 2
γ , r = nγ2 +m 2

γ with m,n ∈ N2. We can now state our main results.
For the sake of completeness we recall:
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Theorem 3.1.5. (Bulk one-point function, R. 2017 [88]) For γ ∈ (0, 2), α > γ
2 , one has:

U(α) =

(
2−

γα
2 2π

Γ(1− γ2

4 )

) 2
γ (Q−α)

Γ(
γα

2
− γ2

4
). (3.1.25)

Now the main results of the present work is to provide expressions for the remaining three structure
constants. We will indeed prove the following theorems:
Theorem 3.1.6. (Bulk-boundary correlator) For γ ∈ (0, 2), β < Q, γ

2 − α < β
2 < α, one has:

G(α, β) =

(
2
γ
2 (
β
2 −α)2π

Γ(1− γ2

4 )

) 2
γ (Q−α− β

2 )
Γ(γα2 + γβ

4 − γ2

4 )Γ γ
2
(α− β

2 )Γ γ
2
(α+ β

2 )Γ γ
2
(Q− β

2 )
2

Γ γ
2
(Q− β)Γ γ

2
(α)2Γ γ

2
(Q)

. (3.1.26)

Theorem 3.1.7. (Boundary two-point and three-point functions) Consider γ ∈ (0, 2), β ∈ (γ2 , Q), and µ1, µ2

obeying the condition of Definition 3.1.3. Then one has:

R(β, µ1, µ2) =
(2π)

2
γ (Q−β)− 1

2 ( 2γ )
γ
2 (Q−β)− 1

2

(Q− β)Γ(1− γ2

4 )
2
γ (Q−β)

Γ γ
2
(β − γ

2 )e
iπ(σ1+σ2−Q)(Q−β)

Γ γ
2
(Q− β)S γ

2
(β2 + σ2 − σ1)S γ

2
(β2 + σ1 − σ2)

. (3.1.27)

Similarly, for β1, β2, β3 and µ1, µ2, µ3 satisfying the set of conditions (3.1.18),

H
(β1,β2,β3)

(µ1,µ2,µ3) = IPT

(
β1, β2, β3
σ1, σ2, σ3

)
. (3.1.28)

Before moving on to the proof of these results we will first explain how the boundary two-point function
can be viewed as a reflection coefficient and also present an outline of our proof strategy.

3.1.3 The reflection coefficient
In this section we explain how the boundary two-point function R(β, µ1, µ2) can also be seen as a reflection
coefficient providing a tail expansion for one-dimensional Gaussian multiplicative chaos measures on the real
line R. A more detailed discussion of this phenomenon is provided in [89]. We start by explaining how we can
give a direct probabilistic definition to R(β, µ1, µ2) without using the limit of (3.1.21). Following [33] we use
the standard radial decomposition of the covariance (3.1.9) of X around the point 0, i.e. we write for s ≥ 0,

X(e−s/2) = Bs + Y (e−s/2), X(−e−s/2) = Bs + Y (−e−s/2), (3.1.29)

where Bs is a standard Brownian motion and Y is an independent Gaussian process that can be defined on
the whole plane with covariance given for x, y ∈ C by:

E[Y (x)Y (y)] = 2 ln
|x| ∨ |y|
|x− y|

. (3.1.30)

We introduce for λ > 0 the process that will be used in the definition below,

Bλs :=

{
B̂s − λs s ≥ 0

B̄−s + λs s < 0,
(3.1.31)

where (B̂s − λs)s≥0 and (B̄s − λs)s≥0 are two independent Brownian motions with negative drift conditioned
to stay negative. Now for β ∈ (γ2 , Q) and µ1, µ2 satisfying the constraint of Definition 3.1.3 we can give an
alternative definition of R(β, µ1, µ2):

R(β, µ1, µ2) = E

[(
1

2

∫ ∞

−∞
e
γ
2 B

Q−β
2

s

(
µ2e

γ
2 Y (e−s/2) + µ1e

γ
2 Y (−e−s/2)

)) 2
γ (Q−β)]

. (3.1.32)

We now provide a lemma proven in Section 3.5.2.3 that shows that both definitions (3.1.21) and (3.1.32)
of R(β, µ1, µ2) are equivalent.
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Lemma 3.1.8. Assume that µ1, µ2, µ3 ∈ C obey the constraint of Definition 3.1.3. Consider γ
2 ∨ β2 < β1 < Q

and β1 − β2 < β3 < Q. Taking (3.1.32) as the definition of R(β, µ1, µ2) the following limit holds:

lim
β3↓β1−β2

(β2 + β3 − β1)H
(β1,β2,β3)

(µ1,µ2,µ3) = 2(Q− β1)R(β1, µ1, µ2). (3.1.33)

A similar result holds when β1 = β2 and 0 < β3 < Q:

lim
β3↓0

β3H
(β1,β2,β3)

(µ1,µ2,µ3) = 2(Q− β1)
(
R(β1, µ1, µ2) +R(β1, µ2, µ3)

)
. (3.1.34)

Let us now state how the value of R(β, µ1, µ2) provides a very general first order tail expansion for the
probability of a one-dimensional GMC measure to be large. For this discussion we choose µ1, µ2 ∈ [0,∞) with
at most one of the two parameters being 0, and we introduce the notation:

Iη1,η2(β) :=

∫ η2

−η1

1

|x| βγ2
e
γ
2X(x)

(
µ11{x<0} + µ21{x>0}

)
dx. (3.1.35)

In the above η1, η2 ∈ (0, 1). Now the tail expansion result is the following:

Proposition 3.1.9. For β ∈ (γ2 , Q) and any η1, η2 ∈ (0, 1), we have the following tail expansion for Iη1,η2(β)
as u→ ∞ and for some ν > 0:

P(Iη1,η2(β) > u) =
R(β, µ1, µ2)

u
2
γ (Q−β)

+O(
1

u
2
γ (Q−β)+ν

). (3.1.36)

The proof of this proposition follows exactly the same steps as for the case of µ1 = 0, µ2 > 0 considered
in [89]. Notice that we impose the condition β ∈ (γ2 , Q). This is crucial for the tail behavior of Iη1,η2(β) to be
dominated by the insertion and this is precisely why the asymptotic expansion is independent of the choice
of η1 and η2. It also explains why the radial decomposition (3.1.29) is natural as it is well suited to study X
around a particular point. If one is interested in the case where β < γ

2 (or simply β = 0), a different argument
known as the localization trick is required to obtain the tail expansion, see [94] for more details.

Figure 3.2: R(β, µ1, µ2)

The above picture summarizes what the reflection coefficient computes. In the range β ∈ (γ2 , Q), the tail
expansion of the GMC is dominated by the insertion. The parameters µ1, µ2 tune the weights of both sides as
we approach the insertion. For more details and results on tail expansions of GMC measures with the reflection
coefficients see the works [63, 94, 107].

3.1.4 Outline of the proof
We summarize here the main steps of the proof and the intermediate results that will lead us to Theorems
3.1.6 and 3.1.7. Our proof strategy follows closely the one of the previous works [60, 88, 89] but there are
many novel difficulties that must be resolved due to the fact that we are forced to work with complex valued
quantities (instead of positive as in the cited works).

• BPZ differential equations. Since LCFT is a conformal field theory, correlation functions containing a
field with a degenerate insertion are predicted to obey a differential equation known as the BPZ equation.
Therefore if one considers a correlation function where one of the boundary insertion points has a weight



3.1. INTRODUCTION AND MAIN RESULTS 83

β = −γ
2 or − 2

γ , then the whole correlation will obey the BPZ equation.2 More precisely, for χ = γ
2 or 2

γ
and t ∈ H, we will consider the following observables,

Gχ(t) = E

[(∫
R

(t− x)
γχ
2

|x− i|γα
g(x)

γ
8 (p−1)e

γ
2X(x)dx

)p]
where p =

2

γ
(Q− α− β

2
+
χ

2
),

Hχ(t) = E

[(∫
R

(t− x)
γχ
2

|x|
γβ1
2 |x− 1|

γβ2
2

g(x)
γ2

8 (q−1)e
γ
2X(x)dµχ(x)

)q]
where q =

1

γ
(2Q− β1 − β2 − β3 + χ).

The functions Gχ(t) and Hχ(t) will be used respectively to prove Theorem 3.1.6 and Theorem 3.1.7.
In Section 3.4 we show that Hχ(t) obeys a hypergeometric equation and similarly for Gχ(t) after an
extra change of variable. It is then possible to write down explicitly a solution space, writing it here to
illustrate the discussion for Hχ(t),

Hχ(t) = C1F (A,B,C, t) + C2t
1−CF (1 +A− C, 1 +B − C, 2− C, t)

= B1F (A,B, 1 +A+B − C, 1− t) +B2(1− t)C−A−BF (C −A,C −B, 1 + C −A−B, 1− t),

where A,B,C are known parameters depending on γ, β1, β2, β3 and the C1, C2, B1, B2 are parameters
that parametrize the solution space of the hypergeometric equation. These last four parameters are
unknown at this stage of the proof.

• Operator product expansion (OPE). The next step is to perform an asymptotic analysis directly on
the probabilistic definition of Hχ(t) (and similarly for Gχ(t)) to identify the constants C1, C2, B1, B2 in
terms H, the quantity we are interested in computing. For instance by sending t to 0, one immediately
obtains the result,

C1 = H
(β1− γ

2 ,β2,β3)

(µ1,e
iπγ2

4 µ2,e
iπγ2

4 µ3)
. (3.1.37)

In the case where χ = γ
2 and for a suitable range of βi in which β1 ∈ (γ2 ,

2
γ ), one can obtain by a

straightforward analysis of a real integral on R that:

C2 = q
Γ(−1 + γβ1

2 − γ2

4 )Γ(1− γβ1

2 )

Γ(−γ2

4 )

(
µ1 − µ2e

iπ
γβ1
2

)
H

(β1+
γ
2 ,β2,β3)

(µ1,e
iπγ2

4 µ2,e
iπγ2

4 µ3)
. (3.1.38)

• OPE with reflection. The method described above only works for the first degenerate weight χ = γ
2 ,

and only in a very specific domain of parameters. In the case of χ = 2
γ , or for χ = γ

2 but with β1 chosen
close to Q, the asymptotic analysis required to identified C2 will be much more involved. It is called
the OPE with reflection as the boundary two-point function - also called the reflection coefficient - will
always appear in the answer. Carrying this out one finds the answer:

C2 =
2(Q− β1)

γ

Γ( 2γ (β1 −Q))Γ( 2γ (Q− β1)− q)

Γ(−q)
R(β1, µ1, µ2)H

(2Q−β1− γ
2 ,β2,β3)

(µ1,e
iπ
γ2

4 µ2,e
iπγ2

4 µ3)
. (3.1.39)

This phenomenon was known to physicists and its probabilistic description is one of the major achieve-
ments of [61].

• Shift equations and analytic continuation. Once we have derived expressions for the coefficients
C1, C2, B1, B2, the theory of hypergeometric equation will imply a non trivial relation on our quantity of
interest. For instance one has the following relation between C1, C2, B1 in the case of the hypergeometric
equation satisfied by the function Hχ(t):

B1 =
Γ(χ(β1 − χ))Γ(1− χβ2 + χ2)

Γ(χ(β1 − χ+ q γ2 )Γ(1− χβ2 + χ2 − q γχ2 )
C1 +

Γ(2− χβ1 + χ2)Γ(1− χβ2 + χ2)

Γ(1 + qγχ
2 )Γ(2− χ(β1 + β2 − 2χ+ q γ2 ))

C2.

(3.1.40)
2It is also possible to consider degenerate insertions in the bulk but they will not be used in the present paper.
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These equations will then translate to functional equations on G and H that we will refer to as shift
equations because they will involve our functions of interest at shifted values of the insertion weight, the
shift being ±χ for χ = γ

2 or 2
γ . A key observation is that the shift equation obtained for χ = γ

2 allows
to analytically continue our probabilistic definitions of H and G to meromorphic functions defined in
a complex neighborhood of the real line. The procedure is analogue to the well-known example of the
Gamma function where the functional equation Γ(x + 1) = xΓ(x) can be used to extend the gamma
function to a meromorphic function of C with prescribed poles. In our case the poles will also be prescribed
by the shift equations. Once established analytic continuation will then be used to derive a second shift
equation corresponding to χ = 2

γ .

• Shift equations imply the result. The final step is simply to check that the two shift equations
obtained for a specific correlation function completely specify its value. Let us explain this for G(α, β).
Assume γ2 /∈ Q. The shift equations imply a relation between the correlation at β and β+γ and between
the correlation at β and β+ 4

γ . Since the ratio of the two periods is not in Q, the shift equations uniquely
specify the function up to the knowledge of one value which can be taken to be when β = 0. One then
has G(α, 0) = U(α) which is known from the previous work [88]. By using the special functions Γ γ

2
, S γ

2

introduced in appendix, it is also possible to explicitly construct an analytic function satisfying the same
shift equations. Therefore the correlation function must be equal to this analytic function, and we can
extend the result to the case where γ2 ∈ Q by continuity in γ.

Although the above proof strategy follows the same lines as the previous works [60, 88, 89], there are
additional technical difficulties that arise because of the presence of complex valued quantities included with
the GMC measures. Performing OPE in this case will require some care and extra estimates and is the purpose
of Lemmas 3.5.4 and 3.5.5.

Acknowledgements. The authors would like to thank Rémi Rhodes and Vincent Vargas for making us
discover Liouville conformal field theory. G.R. was supported by an NSF Mathematical Sciences Postdoctoral
Research Fellowship.

3.2 The bulk-boundary correlator
In this section we will prove Theorem 3.1.6. To compute our quantity of interest G(α, β) we will show it obeys
two functional equations that will completely specify its value. We thus need to show:

Proposition 3.2.1. (Shift equations for G(α, β)) For every fixed α > Q, the function β → G(α, β) originally
defined for β ∈ (γ − 2α,Q) admits a meromorphic extension in a complex neighborhood of the real line and
this extension satisfies the following two equations,

G(α, β + γ) =
Γ(1− γ2

4 )

2
γβ
2 π

Γ(γα2 − γβ
4 − γ2

4 )Γ(1− γβ
4 )2

Γ(γα2 + γβ
4 − γ2

4 )Γ(1− γβ
2 )Γ(1− γβ

2 − γ2

4 )
G(α, β), (3.2.1)

G(α, β +
4

γ
) =

γ2Γ(1− γ2

4 )
4
γ2

2
2β
γ +1(2π)

4
γ2

Γ( 2αγ − β
γ − 4

γ2 )Γ(1− β
γ )

2

Γ(−1 + 2α
γ + β

γ )Γ(1−
2β
γ )Γ(1− 2β

γ − 4
γ2 )

G(α, β), (3.2.2)

viewed as equalities of meromorphic functions.

Using Proposition 3.2.1 and the fact that U(α) is known from the previous work [88], it is easy to prove
the value of G(α, β).

Proof of Theorem 3.1.6. The two shift equations of Proposition 3.2.1 completely specify the dependence in β
of G(α, β) up to a real constant depending only on α. Since the value G(α, 0) is given by U(α), we can write:

G(α, β) =

(
2
γ
2 (−α+

β
2 )2π

Γ(1− γ2

4 )

) 2
γ (Q−α− β

2 )
Γ(γα2 + γβ

4 − γ2

4 )Γ γ
2
(α− β

2 )Γ γ
2
(α+ β

2 )Γ γ
2
(Q− β

2 )
2

Γ γ
2
(Q− β)Γ γ

2
(α)2Γ γ

2
(Q)

. (3.2.3)
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To show Proposition 3.2.1, we will use the solvability coming from the BPZ equations of Liouville theory.
For χ = γ

2 or 2
γ , we denote:

p =
2

γ
(Q− α− β

2
+
χ

2
). (3.2.4)

We now introduce two auxiliary functions corresponding to the two values of χ = γ
2 or 2

γ and for t ∈ H:

Gχ(t) = E

[(∫
R

(t− x)
γχ
2

|x− i|γα
g(x)

γ
8 (p−1)e

γ
2X(x)dx

)p]
. (3.2.5)

The parameter range where Gχ(t) is well-defined is:

β < Q, and p <
4

γ2
∧ 2

γ
(Q− β). (3.2.6)

Let us justify why Gχ(t) is well-defined under these conditions. First for χ = γ
2 since (t−x) is always contained

in the upper half plane we can define (t− x)
γ2

4 by choosing the argument to be in [0, π]. This means for t ∈ H
and for either value of χ, the GMC integral∫

R

(t− x)
γχ
2

|x− i|γα
g(x)

γ
8 (p−1)e

γ
2X(x)dx (3.2.7)

is a random complex number almost surely contained in H. We can thus define its p power again by choosing
an argument in [0, π]. Finally we must argue why the moment itself is finite. Since (t−x)

γχ
2 is strictly contained

in H, there can be no cancellation of the imaginary part and thus the condition of existence of the moment of
this GMC is equivalent to the positive case which gives the condition we have written on p.

Assume t ∈ {reiθ | r > 0, θ ∈ (0, π2 )} and perform the change of variable s = 1
1+t2 . The variable s then

belongs to the set s ∈ −H. We choose the argument of s to be in (−π, 0) and define
√
1− s = t

√
s. Now set:

G̃χ(s) = sp
γχ
4 Gχ(t). (3.2.8)

Then one has,

G̃χ(s) = E

[(∫
R

(
√
1− s−

√
sx)

γχ
2

|x− i|γα
e
γ
2X(x)g(x)

γ2

8 (p−1)dx

)p]
, (3.2.9)

where the argument of the GMC integral can be chosen in (−π, π). We will introduce a dual set of auxiliary
functions corresponding to, for t ∈ {reiθ | r > 0, θ ∈ (−π

2 , 0)}, s = 1
1+t2 with argument this time in (0, π),√

1− s = t
√
s, and:

Ĝχ(s) = sp
γχ
4 Gχ(−t). (3.2.10)

One lands on the expression,

Ĝχ(s) = E

[(∫
R

(−
√
1− s−

√
sx)

γχ
2

|x− i|γα
e
γ
2X(x)g(x)

γ2

8 (p−1)dx

)p]
. (3.2.11)

The above GMC integral in the expectation avoids the cut (0,∞) and its argument is chosen to be in (0, 2π).
We prove in Section 3.4.1 that G̃χ(s) obeys the following hypergeometric equation,

s(1− s)∂2s G̃χ(s) + (C − (A+B + 1)s)∂sG̃χ(s)−ABG̃χ(s) = 0, (3.2.12)

with parameters given by:

A = −pγχ
4
, B = 1 + χ(χ− α− p

γ

4
), C =

3

2
+ χ(χ− α− p

γ

2
). (3.2.13)
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The exact same equation also holds for Ĝχ(s). As detailed in Section 3.5.4, one can explicitly write the solution
space of the equation around s = 0 and s = 1, under the assumption that C and C −A−B are not integers:3

G̃χ(s) = C̃1F (A,B,C, s) + C̃2s
1−CF (1 +A− C, 1 +B − C, 2− C, s) (3.2.14)

= B̃1F (A,B, 1 +A+B − C, 1− s) + B̃2(1− s)C−A−BF (C −A,C −B, 1 + C −A−B, 1− s),

Ĝχ(s) = Ĉ1F (A,B,C, s) + Ĉ2s
1−CF (1 +A− C, 1 +B − C, 2− C, s) (3.2.15)

= B̂1F (A,B, 1 +A+B − C, 1− s) + B̂2(1− s)C−A−BF (C −A,C −B, 1 + C −A−B, 1− s).

Here C̃1, C̃2, B̃1, B̃2, Ĉ1, Ĉ2, B̂1, B̂2 are all real constants that parametrize the different basis of solutions. Since
the solution space is two-dimensional, there is a change of basis formula (3.5.105) that relates C̃1, C̃2 with
B̃1, B̃2 and similarly for Ĉ1, Ĉ2, B̂1, B̂2. In the following we will relate several of these coefficients to G and it
is precisely the change of basis that will lead us to the shift equations of Proposition 3.2.1.

3.2.1 First shift equation

In this section we prove the first shift equation (3.2.1) in a restricted range of parameters where G(α, β) is
well-defined probabilistically without analytic continuation.

Lemma 3.2.2. For α, β satisfying β < 2
γ − γ

2 and γ
2 − α < β

2 < α− γ
2 , the following equation holds:

G(α, β + γ) =
1

2
γβ
2 π

Γ(1− γ2

4 )Γ(γα2 − γβ
4 − γ2

4 )Γ(1− γβ
4 )2

Γ(γα2 + γβ
4 − γ2

4 )Γ(1− γβ
2 )Γ(1− γβ

2 − γ2

4 )
G(α, β). (3.2.16)

Proof. We start off with the following parameter choices:

χ =
γ

2
, α > Q,

γ

2
− 2

γ
< β <

2

γ
. (3.2.17)

In the case of χ = γ
2 we can actually assume t ∈ (0,+∞) which means that s ∈ (0, 1). By sending s to 0 one

automatically gets that:

C̃1 = G(α, β − γ

2
), Ĉ1 = eiπp

γ2

4 G(α, β − γ

2
). (3.2.18)

Although we cannot express B̃1 and B̂1 in terms of the bulk-boundary correlator G, by setting s = 1 one
obtains the equality:

B̃1 = B̂1. (3.2.19)

In order to derive an expression for C̃2, we have to expand G̃ γ
2
(s) up to the order s1−C . In this case C =

1
2 − γ2

8 + γβ
4 . The parameter choice (3.2.17) implies that 0 < 1 − C < 1. Thus we have to get the leading

asymptotic of the difference G̃ γ
2
(s) − G̃ γ

2
(0) as s → 0. Following the analysis of [89] and applying Theorem

3The values excluded here are recovered by an easy continuity argument.
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3.5.1 we obtain:
G̃ γ

2
(s)− G̃ γ

2
(0) (3.2.20)

= p

∫
R
dx1

(
√
1− s−

√
sx1)

γ2

4 − 1

|x1 − i|γα
E

e γ2X(x1)

(∫
R

g(x)
γ2

8 (p−2)

|x− i|γα
e
γ
2X(x)dx

)p−1
+ o(s1−C)

= p

∫
R
dx1

(
√
1− s−

√
sx1)

γ2

4 − 1

|x1 − i|γα
E

(∫
R

g(x)
γ2

8 (p−2)

|x− i|γα|x− x1|
γ2

2

e
γ
2X(x)dx

)p−1
+ o(s1−C)

x1=
u√
s

= p

∫
R
dx1

(
√
1− s− u)

γ2

4 − 1

| u√
s
− i|γα

E


∫

R

g(x)
γ2

8 (p−2)

|x− i|γα|x− u√
s
| γ

2

2

e
γ
2X(x)dx

p−1
+ o(s1−C)

= s1−Cp

(∫
R
du

(1− u)
γ2

4 − 1

|u|γα+(p−1) γ
2

2

)
G(α, β +

γ

2
) + o(s1−C).

The way to obtain the bound in o(s1−C) on the error terms is the same as [89]. The correct way to interpret
the above integral over R is by writing,∫

R
du

(1− u)
γ2

4 − 1

|u|γα+(p−1) γ
2

2

=

∫
R+

du
(1 + u)

γ2

4 − 1

uγα+(p−1) γ
2

2

− eiπ(γα+(p−1) γ
2

2 )

∫
R+eiπ

du
(1 + u)

γ2

4 − 1

uγα+(p−1) γ
2

2

, (3.2.21)

where here R+e
iπ means that the integral should be understood as a contour integral on (−∞, 0) passing just

above the point u = −1. Notice also this integral converges because of the condition β < 2
γ . In Section 3.5.4.3

we give the exact value of this integral in terms of the gamma function (3.5.112). Putting everything together
we have shown,

G̃ γ
2
(s)− G̃ γ

2
(0) = s1−Cp

Γ(2C − 2)Γ(2− 2C − γ2

4 )

Γ(−γ2

4 )
(1− eiπ(3−2C))G(α, β +

γ

2
) + o(s1−C)

⇒ C̃2 = p
Γ(2C − 2)Γ(2− 2C − γ2

4 )

Γ(−γ2

4 )
(1− eiπ(3−2C))G(α, β +

γ

2
). (3.2.22)

Ĉ2 can be calculated in a similar manner, using this time:∫
R
du

(−1− u)
γ2

4 − (−1)
γ2

4

|u|γα+(p−1) γ
2

2

= eiπ
γ2

4

(∫
R+

du
(1 + u)

γ2

4 − 1

uγα+(p−1) γ
2

2

− e−iπ(γα+(p−1) γ
2

2 )

∫
R+e−iπ

du
(1 + u)

γ2

4 − 1

uγα+(p−1) γ
2

2

)

= p
Γ(2C − 2)Γ(2− 2C − γ2

4 )

Γ(−γ2

4 )
eiπp

γ2

4 (1− e−iπ(3−2C)).

Hence:

Ĉ2 = p
Γ(2C − 2)Γ(2− 2C − γ2

4 )

Γ(−γ2

4 )
eiπp

γ2

4 (1− e−iπ(3−2C))G(α, β +
γ

2
). (3.2.23)

Now we have the connection formula (3.5.105) expressing B̃1 in terms of C̃1, C̃2 and similarly for B̂1, Ĉ1, Ĉ2.
Using the fact that B̃1 = B̂1 and our expressions for C̃1, C̃2, Ĉ1, Ĉ2 in terms of G we deduce:
Γ(C)Γ(C −A−B)

Γ(C −A)Γ(C −B)
G(α, β − γ

2
)(1− e−i2πA)

+ p
Γ(2− C)Γ(C −A−B)

Γ(1−A)Γ(1−B)

Γ(2C − 2)Γ(2− 2C − γ2

4 )

Γ(−γ2

4 )
(1− eiπ(3−2C))(1 + eiπ(2B−2))G(α, β +

γ

2
) = 0.
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We thus land on the following shift equation, which is simplified using (3.5.98):

G(α, β + γ
2 )

G(α, β − γ
2 )

=
Γ(C)Γ(1−A)Γ(1−B)

pΓ(2− C)Γ(C −A)Γ(C −B)

Γ(−γ2

4 )

Γ(2C − 2)Γ(2− 2C − γ2

4 )

sin(πA)

2 cos(πC) cos(πB)

=
Γ(C)Γ(1−A)Γ(1−B)

pΓ(2− C)Γ( 12 +A)Γ( 12 +B)

Γ(−γ2

4 )

Γ(2C − 2)Γ(2− 2C − γ2

4 )

sin(πC) sin(πA)

sin(2πC) sin(π( 12 +B))

=
Γ( 12 −B)Γ(1−B)

pΓ(1− C)Γ(2− C)Γ(A)Γ( 12 +A)

Γ(3− 2C)Γ(−γ2

4 )

Γ(2− 2C − γ2

4 )

=
Γ(1− γ2

4 )Γ(1− 2B)Γ( 32 − C)2

Γ(1 + 2A)Γ(2− 2C)Γ(2− 2C − γ2

4 )

1

22C−1π

=
Γ(1− γ2

4 )Γ(γα2 − γβ
4 − γ2

8 )Γ(1− γβ
4 + γ2

8 )2

Γ(γα2 + γβ
4 − 3γ2

8 )Γ(1− γβ
2 + γ2

4 )Γ(1− γβ
2 )

1

2
γβ
2 − γ2

4 π
.

Then by replacing β by β + γ
2 one lands on the equation of Lemma 3.2.2. To extend it to the wider range of

validity in α and β one uses the analycity of G with respect to these parameters shown in Lemma 3.5.6.

One consequence of Lemma 3.2.2 is that it allows to analytically continue G as a meromorphic function
defined in a complex neighborhood of the real line.
Lemma 3.2.3. Fix α > Q. The function β 7→ G(α, β) originally defined for β < Q, γ

2 − α < β
2 < α admits a

meromorphic extension in a complex neighborhood of the real line.
Proof. Lemma 3.5.6 shows that G(α, β) is complex analytic in a complex neighborhood of the real line where it
is defined probabilistically. The shift equation of Lemma 3.2.2 then shows β 7→ G(α, β) can be meromorphically
continued to a complex neighborhood of the whole real line, the pole structure being prescribed by the Gamma
functions in the shift equation.

3.2.2 Second shift equation
We will now derive an expression of C̃2 in a different manner corresponding to the so-called operator product
expansion (OPE) with reflection. This computation will be valid for 2

γ < β < Q. For χ = γ
2 this will give us

the reflection principle and for χ = 2
γ it will allow us to obtain the second shift equation on β. A complete

proof of the following steps can be found in [61]. We first perform a change of variable x→ 1
x on the expression

of G̃χ(s):

G̃χ(s) = E

(∫
R

(√
1− s x−

√
s
) γχ

2

|x− i|γα|x| γβ2
e
γ
2X(x)g(x)

γ2

8 (p−1)dx

)p . (3.2.24)

Note that C = 1
2 − χ2

2 + χβ
2 . For all β ∈ (Q − β0, Q) where β0 is a small positive number, the following

asymptotic is then shown in Lemma 3.5.4 for the case χ = 2
γ and in Lemma 3.5.5 for the case of χ = γ

2 :

G̃χ(s)− G̃χ(0) = −s1−C
Γ(1− 2(Q−β)

γ )Γ(−p+ 2
γ (Q− β))

Γ(−p)
R(β, 1, eiπ

γχ
2 )G(α, 2Q− β − χ) + o(s1−C).

(3.2.25)

In the above s is chosen in (0, 1) for χ = γ
2 and in (−1, 0) for χ = 2

γ . From this we can deduce the expression
of C̃2, still for β ∈ (Q− β0, Q),

C̃2 = −
Γ(1− 2(Q−β)

γ )Γ(−p+ 2
γ (Q− β))

Γ(−p)
R(β, 1, eiπ

γχ
2 )G(α, 2Q− β − χ). (3.2.26)
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The range of validity of the above expression can be extended from β ∈ (Q−β0, Q) to the range β ∈ ( 2γ , Q) by
using analycity in the parameter β. Indeed, Lemma 3.5.6 implies the analycity in β in a complex neighborhood
of ( 2γ , Q) of both G̃χ(s) and G(α, 2Q − β − χ). The analycity of G̃χ(s) then implies the analycity of C̃2 and
the analycity of R(β, 1, eiπ γχ2 ) is known from the exact formula for R proved in Section 3.3. Thus we extend
the equality to β ∈ ( 2γ , Q). From this we can deduce:

Lemma 3.2.4 (Reflection principle for G(α, β)). We can analytically continue the definition of G(α, β) in β
beyond the point β = Q by the following formula, valid for α, β satisfying β ∈ (γ2 , Q) and γ

2 − α < β
2 < α:

G(α, β) = −
Γ( 2βγ − 4

γ2 )Γ(
2α
γ − β

γ )

Γ(−1 + 2α
γ + β

γ − 4
γ2 )

R(β, 1, 1)G(α, 2Q− β). (3.2.27)

Proof. We work with χ = γ
2 . We have seen two ways of calculating C̃2 based on the value of β:

C̃2 =


p
Γ(2C−2)Γ(2−2C− γ2

4 )

Γ(− γ2

4 )
(1− eiπ(3−2C))G(α, β + γ

2 ), β < 2
γ ,

−Γ(1− 2(Q−β)
γ )Γ(−p+ 2

γ (Q−β))
Γ(−p) R(β, 1, eiπ

γ2

4 )G(α, 2Q− β − γ
2 ),

2
γ < β < Q.

(3.2.28)

Since G̃χ(s) is complex analytic in β in a complex neighborhood of 2
γ , this implies the analyticity of C̃2 around

β = 2
γ . This implies that there is an equality between the two expressions for C̃2 viewed as meromorphic

functions of β in a neighborhood of 2
γ . Lastly from equation (3.3.22) of Section 3.3 we have a shift equation

that relates R(β+ γ
2 , 1, 1) and R(β, 1, eiπ γ

2

4 ). Therefore we can rewrite the relation in the desired way claimed
in the lemma.

With both Lemma 3.2.3 and Lemma 3.2.4 we can now finish the proof of Proposition 3.2.1.

Proof of Proposition 3.2.1. We switch to χ = 2
γ to deduce the second shift equation. Using again the known

shift equations for R we first write:

R(β, 1, eiπ)

R(β + 2
γ , 1, 1)

= − 2

γ(Q− β)
(2π)

4
γ2

−1Γ(
2β
γ )Γ(1− 2β

γ )

Γ(1− γ2

4 )
4
γ2

(1− e
−iπ( 2β

γ − 4
γ2

)
). (3.2.29)

By applying Lemma 3.2.4 with β + 2
γ , we obtain:

C̃2 =

4
γ2 (2π)

4
γ2

−1

Γ(1− γ2

4 )
4
γ2

Γ(−1 + 2β
γ − 4

γ2 )Γ(1− 2β
γ )Γ(−1 + 2α

γ + β
γ − 2

γ2 )

Γ(−1 + 2α
γ + β

γ − 6
γ2 )

(1− e
−iπ( 2β

γ − 4
γ2

)
)G(α, β +

2

γ
),

=

4
γ2 (2π)

4
γ2

−1

Γ(1− γ2

4 )
4
γ2

Γ(2C − 2)Γ(1− 2β
γ )Γ(−1 + 2α

γ + β
γ − 2

γ2 )

Γ(2A)
(1 + eiπ

2
γ (Q−β))G(α, β +

2

γ
).

We can find easily the other coefficients:

C̃1 = G(α, β − 2

γ
), Ĉ1 = eiπpG(α, β − 2

γ
), Ĉ2 = eiπ(p−

2
γ (Q−β))C̃2, B̃1 = B̂1.

As in the previous subsection we can thus write:

Γ(C)Γ(C −A−B)

Γ(C −A)Γ(C −B)
C̃1(1− eiπp) +

Γ(2− C)Γ(C −A−B)

Γ(1−A)Γ(1−B)
C̃2(1− eiπ(p−

2
γ (Q−β))) = 0.



90 CHAPTER 3. INTEGRABILITY OF BOUNDARY LIOUVILLE THEORY

Then we can deduce the shift equation,

G(α, β + 2
γ )

G(α, β − 2
γ )

=
γ2

4 (2π)
1− 4

γ2 Γ(1− γ2

4 )
4
γ2

Γ(2C − 2)Γ(1− 2β
γ )Γ(−1 + 2α

γ + β
γ − 2

γ2 )

Γ(2A)Γ(C)Γ(1−A)Γ(1−B)

Γ(2− C)Γ(A+ 1
2 )Γ(B + 1

2 )

× sin(πA)

2 sin(π(B + 1
2 )) sin(π(C − 1

2 ))

=
γ2

4 Γ(1− γ2

4 )
4
γ2

(2π)
4
γ2

−1
22C−1π

Γ(1− 2B)Γ( 32 − C)2

Γ(2− 2C)Γ(1− 2β
γ )Γ(−1 + 2α

γ + β
γ − 2

γ2 )

=
γ2

4 Γ(1− γ2

4 )
4
γ2

(2π)
4
γ2 2

−1+ 2β
γ − 4

γ2

Γ( 2αγ − β
γ − 2

γ2 )Γ(1− β
γ + 2

γ2 )
2

Γ(1− 2β
γ + 4

γ2 )Γ(1− 2β
γ )Γ(−1 + 2α

γ + β
γ − 2

γ2 )
,

and finally:
G(α, β + 4

γ )

G(α, β)
=

γ2

4 Γ(1− γ2

4 )
4
γ2

(2π)
4
γ2 2−1+ 2β

γ

Γ( 2αγ − β
γ − 4

γ2 )Γ(1− β
γ )

2

Γ(1− 2β
γ )Γ(1− 2β

γ − 4
γ2 )Γ(−1 + 2α

γ + β
γ )
. (3.2.30)

Hence we have proven Proposition 3.2.1.

3.3 The boundary two-point and three-point functions
The goal of this section is to prove Theorem 3.1.7. We follow roughly the same steps as in the previous section,
except we will derive explicitly the expression for the boundary two-point function used in the proof of Theorem
3.1.6. Again we will rely on the hypergeometric equations shown in Section 3.4 to obtain shift equations on
H

(β1,β2,β3)

(µ1,µ2,µ3). The difference here is that the functional equation obtained will contain 3 terms instead of 2, see
for instance equation (3.3.10) below. Throughout this section we will use:

q =
1

γ
(2Q− β1 − β2 − β3 + χ). (3.3.1)

We introduce the auxiliary function for χ = γ
2 or 2

γ and t ∈ H,

Hχ(t) = E

[(∫
R

(t− x)
γχ
2

|x|
γβ1
2 |x− 1|

γβ2
2

g(x)
γ2

8 (q−1)e
γ
2X(x)dµ(x)

)q]
, (3.3.2)

where:
dµ(x) = µ11(−∞,0)(x)dx+ µ21(0,1)(x)dx+ µ31(1,∞)(x)dx. (3.3.3)

To start the range of parameters we want to work with is:

βi < Q, µ1 ∈ (0,∞), µ2, µ3 ∈ −H and q <
4

γ2
∧min

i

2

γ
(Q− βi). (3.3.4)

By µ2, µ3 ∈ −H we mean that their argument is chosen in [−π, 0]. With this choice the GMC integral,∫
R

(t− x)
γχ
2

|x|
γβ1
2 |x− 1|

γβ2
2

g(x)
γ2

8 (q−1)e
γ
2X(x)dµ(x), (3.3.5)

never hits the line (−∞, 0) and so its argument can be chosen to be in (−π, π) and its q power is thus
well-defined. Now t 7→ Hχ(t) is holomorphic in H and it is shown in Section 3.4 that Hχ(t) satisfies the
hypergeometric equation,

t(1− t)∂2tHχ(t) + (C − (A+B + 1)t)∂tHχ(t)−ABHχ(t) = 0, (3.3.6)
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with parameters:
A = −q γχ

2
, B = −1 + χ(β1 + β2 − 2χ+ q

γ

2
), C = χ(β1 − χ). (3.3.7)

We will also use the auxiliary function H̃χ(t),

H̃χ(t) = E

[(∫
R

(x− t)
γχ
2

|x|
γβ1
2 |x− 1|

γβ2
2

g(x)
γ2

8 (q−1)e
γ
2X(x)dµ(x)

)q]
, (3.3.8)

which is defined with the following parameter choices:

t ∈ −H, βi < Q, µ1, µ2 ∈ −H, µ3 ∈ (0,∞), and q <
4

γ2
∧min

i

2

γ
(Q− βi). (3.3.9)

With these choices of parameters the GMC integral is again a complex number which is avoiding the half-line
(−∞, 0) and whose argument can be chosen again in (−π, π). H̃χ(t) obeys the exact same hypergeometric
equation as Hχ(t). As in the previous section the key idea will be that we can explicitly write the solution of
the hypergeometric equation.

3.3.1 First shift equation for the three-point function
We start again by proving the first shift equation on H by setting χ = γ

2 and working with the functions
H γ

2
(t) and H̃ γ

2
(t). For this first lemma the parameter range on the βi and µi is such that each H appearing

is defined probabilistically (without analytic continuation) meaning the bounds (3.1.18) are satisified.

Lemma 3.3.1. (γ2 -shift equations for probabilistic H) The following two shift equations for H hold,

H
(β1,β2− γ

2 ,β3)

(µ1,µ2,µ3)
=

Γ(γβ1

2 − γ2

4 )Γ(1− γβ2

2 + γ2

4 )

Γ(γβ1

2 + (q − 1)γ
2

4 )Γ(1− γ
2β2 − (q − 1)γ

2

4 ))
H

(β1− γ
2 ,β2,β3)

(µ1,e
iπγ2

4 µ2,µ3)
(3.3.10)

+
qΓ(2 + γ2

4 − γβ1

2 )Γ(1− γβ2

2 + γ2

4 )Γ(−1 + γβ1

2 − γ2

4 )Γ(1− γβ1

2 )

Γ(1 + qγ2

4 )Γ(2− γ
2 (β1 + β2)− (q − 2)γ

2

4 ))Γ(−γ2

4 )

(
µ1 − µ2e

iπ
γβ1
2

)
H

(β1+
γ
2 ,β2,β3)

(µ1,e
iπγ2

4 µ2,µ3)
,

and,

Γ(1− γβ2
2

)(µ3 − µ2e
iπγβ2

2 )H
(β1,β2+

γ
2 ,β3)

(µ1,e
iπ
γ2

4 µ2,µ3)
= − 4

qγ2
Γ(1− γ2

4 )Γ(γβ1

2 − γ2

4 )

Γ(− qγ2

4 )Γ(−1 + γβ1

2 + γβ2

2 − γ2

2 + q γ
2

4 )
H

(β1− γ
2 ,β2,β3)

(µ1,µ2,µ3)

+
Γ(2− γβ1

2 + γ2

4 )Γ(1− γβ1

2 )Γ(γβ1

2 − γ2

4 − 1)

Γ(1− γβ1

2 + γ2

4 − q γ
2

4 )Γ(γβ2

2 − γ2

4 + q γ
2

4 )
(µ1 − µ2e

iπ( γ
2

4 − γβ1
2 ))H

(β1+
γ
2 ,β2,β3)

(µ1,µ2,µ3)
, (3.3.11)

provided that for every function H appearing, its parameters obey the constraint (3.1.18) required for H to be
defined probabilistically. Furthermore, for both shift equations, given a fixed β1 ∈ (γ2 ,

2
γ ), there exists an open

set U ⊂ R2 such that for (β2, β3) ∈ U , the parameters of each H of the equation obeys (3.1.18).

Proof. We first choose the parameters β1, β2, β3 and µ1, µ2, µ3 so that they obey the constraint (3.3.4) plus
the following extra constraint on β1:

γ

2
< β1 <

2

γ
. (3.3.12)

The function t 7→ H γ
2
(t) is holomorphic on H and extends continuously on H. Using the basis of solutions of

the hypergeometric equation recalled in Section 3.5.4.1, we can write the following solutions around t = 0,
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t = 1 and t = ∞, under the assumption that neither C, C −A−B, or A−B are integers:4

H γ
2
(t) = C1F (A,B,C, t) + C2t

1−CF (1 +A− C, 1 +B − C, 2− C, t) (3.3.13)
= B1F (A,B, 1 +A+B − C, 1− t) +B2(1− t)C−A−BF (C −A,C −B, 1 + C −A−B, 1− t)

= D1e
iπAt−AF (A, 1 +A− C, 1 +A−B, t−1) +D2e

iπBt−BF (B, 1 +B − C, 1 +B −A, t−1).

The constants C1, C2, B1, B2, D1, D2 are again the real constants that parametrize the solution space around
the different points. As was performed in Section 3.2 we will identify them by Taylor expansion. First we note
that by setting t = 0:

C1 = H γ
2
(0) = H

(β1− γ
2 ,β2,β3)

(µ1,e
iπγ2

4 µ2,e
iπγ2

4 µ3)
. (3.3.14)

Next to find C2 we go at higher order in the t → 0 limit. We then expand the increment H γ
2
(t) −H γ

2
(0) at

first order following the same step as for (3.2.20):

H γ
2
(t)−H γ

2
(0) (3.3.15)

= q

∫
R
dµ(x1)

(t− x1)
γ2

4 − (−x1)
γ2

4

|x1|
γβ1
2 |x1 − 1|

γβ2
2

E

(∫
R

(t− x)
γ2

4 g(x)
γ2

8 (q−1)

|x|
γβ1
2 |x− 1|

γβ2
2 |x− x1|

γ2

2

e
γ
2X(x)dµ(x)

)q−1
+ o(t1−C)

= qt1−C

(∫
R
dµ(x1)

(t− x1)
γ2

4 − (−x1)
γ2

4

|x1|
γβ1
2 |x1 − 1|

γβ2
2

)
H

(β1+
γ
2 ,β2,β3)

(µ1,e
iπγ2

4 µ2,e
iπγ2

4 µ3)
+ o(t1−C).

The integral in front of H converges thanks to the condition (3.3.12). Also notice with our conventions the
argument of (−x1) is either 0 or π. Hence one obtains:

C2 = q
Γ(−1 + γβ1

2 − γ2

4 )Γ(1− γβ1

2 )

Γ(−γ2

4 )

(
µ1 − µ2e

iπ
γβ1
2

)
H

(β1+
γ
2 ,β2,β3)

(µ1,e
iπγ2

4 µ2,e
iπγ2

4 µ3)
. (3.3.16)

Similarly by setting t = 1 we get:

B1 = H
(β1,β2− γ

2 ,β3)

(µ1,µ2,e
iπγ2

4 µ3)
. (3.3.17)

The connection formula (3.5.105) between C1, C2, and B1 then implies the shift equation (3.3.10) in the range
of parameters constraint by (3.3.4) and (3.3.12), after performing furthermore the replacement µ3 → e−

iπγ2

4 µ3

(which also rotates the domain where µ3 belongs). To lift these constraint we then invoque the analycity of
H as a function of its parameters given by Lemma 3.5.6. We have thus shown that (3.3.10) holds whenever
all three H appearing are well-defined. The claim on the existence of the interval U for every fixed β1 can be
easily checked. Now we repeat these steps with H̃ γ

2
to obtain the shift equation with the opposite phase. We

expand H̃ γ
2
(t),

H̃ γ
2
(t) = C̃1F (A,B,C, t) + C̃2t

1−CF (1 +A− C, 1 +B − C, 2− C, t) (3.3.18)
= B̃1F (A,B, 1 +A+B − C, 1− t) + B̃2(1− t)C−A−BF (C −A,C −B, 1 + C −A−B, 1− t)

= D̃1e
iπAt−AF (A, 1 +A− C, 1 +A−B, t−1) + D̃2e

iπBt−BF (B, 1 +B − C, 1 +B −A, t−1),

and compute in the same way the values of C̃1, C̃2, B̃1:

C̃1 = H
(β1− γ

2 ,β2,β3)

(e
iπγ2

4 µ1,µ2,µ3)
, B̃1 = H

(β1,β2− γ
2 ,β3)

(e
iπγ2

4 µ1,e
iπ
γ2

4 µ2,µ3)
, (3.3.19)

C̃2 = q
Γ(−1 + γβ1

2 − γ2

4 )Γ(1− γβ1

2 )

Γ(−γ2

4 )

(
µ1 − µ2e

iπ( γ
2

4 − γβ1
2 )

)
H

(β1+
γ
2 ,β2,β3)

(e
iπγ2

4 µ1,µ2,µ3)
. (3.3.20)

Then the connection formula (3.5.105) implies the shift equation (3.3.11).
4Again the values excluded here are recovered by a continuity argument.



3.3. THE BOUNDARY TWO-POINT AND THREE-POINT FUNCTIONS 93

3.3.2 Solving the two-point function
At this point we will postpone computing the boundary three-point function H and focus on determining shift
equations that will completely specify R. Once we have proved the exact formula for R, it will be then be
possible to finish computing H. In a similar way the value of R is also required in the proof of the value of G
in Section 3.2.

3.3.2.1 First shift equation on the reflection coefficient

We start again by proving a first shift equation for R(β1, µ1, µ2) restricted to the case where R is defined
probabilistically.

Lemma 3.3.2. Consider γ ∈ (0, 2), β1 ∈ (γ2 ,
2
γ ), µ1, µ2 ∈ C such that both pairs (µ1, µ2) and (µ1, e

iπγ2

4 µ2)

both obey the condition of Definition 3.1.3. Then R(β, µ1, µ2) obeys,

R(β1, µ1, µ2) = −
Γ(−1 + γβ1

2 − γ2

4 )Γ(2− γβ1

2 )

Γ(1− γ2

4 )

(
µ1 − µ2e

iπ
γβ1
2

)
R(β1 +

γ

2
, µ1, e

iπγ2

4 µ2). (3.3.21)

Similarly for β1 ∈ (0, 2γ − γ
2 ) and the same constraint on µ1, µ2 as before,

R(β1 +
γ

2
, µ1, e

iπγ2

4 µ2) = −
Γ(−1 + γβ1

2 )Γ(2− γβ1

2 − γ2

4 )

Γ(1− γ2

4 )

(
µ1 − µ2e

−iπ γβ12

)
R(β1 + γ, µ1, µ2). (3.3.22)

Proof. The key idea to derive the shift equations for R is to take suitable limits of the shift equations of Lemma
3.3.1 to make R appear from H. We will use extensively the Lemma 3.1.8 of Section 3.1.3 which provides this
limit. Fix a β1 ∈ (γ2 ,

2
γ ). Consider two parameters ϵ, η > 0 and set β2 = β1−ϵ, β3 = β1−β2+ γ

2 +η = γ
2 +ϵ+η.

Notice that for this parameter choice the three H functions appearing in the shift equation (3.3.10) are well-
defined. The idea now is to match the poles of (3.3.10) as η goes to 0 or in other words as β3 goes to β1−β2+ γ

2 .
By applying Lemma 3.1.8 we get:

lim
β3↓β1−β2+

γ
2

(β2 + β3 − β1 −
γ

2
)H

(β1,β2− γ
2 ,β3)

(µ1,µ2,µ3)
= 2(Q− β1)R(β1, µ1, µ2)

lim
β3↓β1−β2+

γ
2

(β2 + β3 − β1 −
γ

2
)

Γ(γβ1

2 − γ2

4 )Γ(1− γβ2

2 + γ2

4 )

Γ(γβ1

2 + (q − 1)γ
2

4 )Γ(1− γ
2β2 − (q − 1)γ

2

4 ))
H

(β1− γ
2 ,β2,β3)

(µ1,e
iπγ2

4 µ2,µ3)
= 0

lim
β3↓β1−β2+

γ
2

(β2 + β3 − β1 −
γ

2
)

[
qΓ(2 + γ2

4 − γβ1

2 )Γ(1− γβ2

2 + γ2

4 )Γ(−1 + γβ1

2 − γ2

4 )Γ(1− γβ1

2 )

Γ(1 + qγ2

4 )Γ(2− γ
2 (β1 + β2)− (q − 2)γ

2

4 ))Γ(−γ2

4 )

×
(
µ1 − µ2e

iπ
γβ1
2

)
H

(β1+
γ
2 ,β2,β3)

(µ1,e
iπγ2

4 µ2,µ3)

]

=

2
γ (Q− β1)Γ(−1 + γβ1

2 − γ2

4 )Γ(1− γβ1

2 )

Γ(−γ2

4 )

(
µ1 − µ2e

iπ
γβ1
2

)
2(

2

γ
− β1)R(β1 +

γ

2
, µ1, e

iπγ2

4 µ2).

This leads to a relation on the reflection coefficient:

R(β1, µ1, µ2) = −
Γ(−1 + γβ1

2 − γ2

4 )Γ(2− γβ1

2 )

Γ(1− γ2

4 )

(
µ1 − µ2e

iπ
γβ1
2

)
R(β1 +

γ

2
, µ1, e

iπγ2

4 µ2). (3.3.23)
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By using the alternative auxiliary function H̃ γ
2
(t) along the same lines we obtain a relation between R(β1 +

γ
2 , µ1, e

iπγ2

4 µ2) and R(β1 + γ, µ1, µ2):

R(β1 +
γ

2
, µ1, e

iπγ2

4 µ2) = −
Γ(−1 + γβ1

2 )Γ(2− γβ1

2 − γ2

4 )

Γ(1− γ2

4 )

(
µ1 − µ2e

−iπ γβ12

)
R(β1 + γ, µ1, µ2). (3.3.24)

Hence this implies the claim of the lemma.

At this point in the proof we need to show R(β1, µ1, µ2) is analytic in β1 in the interval (γ2 , Q). For this we
will again take a limit from the first shift equation.

Lemma 3.3.3. (Analycity of R(β1, µ1, µ2) in β1 and µ1, µ2) For all µ1, µ2 obeying Definition 3.1.3, the
function β1 7→ R(β1, µ1, µ2) is complex analytic on a complex neighborhood of any compact set K ⊂ (γ2 , Q).
For all β1 ∈ (γ2 , Q), the function (µ1, µ2) 7→ R(β1, µ1, µ2) is complex analytic on any compact set K̃ contained
in the open set of pairs (µ1, µ2) obeying Definition 3.1.3.

Proof. In the shift equation (3.3.10), set β1 = γ
2 +η, γ2 < β2 = β3 < Q. We multiply the shift equation (3.3.10)

by η, exchange µ2 and µ3, and let η → 0+, this yields:

2(Q− β2)R(β2, µ1, µ2) = (Q− β2)

(
R(β2, µ1, µ2) +R(β2, µ1, e

iπγ2

4 µ3)

)
+

2

γ

(
µ1 − µ3e

iπ γ
2

4

)
H

(γ,β2,β2)

(µ1,e
iπγ2

4 µ3,µ2)

⇒ R(β2, µ1, µ2) = R(β2,µ1, e
iπγ2

4 µ3) +
2

γ(Q− β2)

(
µ1 − µ3e

iπ γ
2

4

)
H

(γ,β2,β2)

(µ1,e
iπγ2

4 µ3,µ2)
. (3.3.25)

Take µ3 = 0 in the previous equation and fix a compact K ⊂ (γ2 , Q). In our previous work [89] we have
calculated the expression of R(β2, µ1, 0) and it is complex analytic in β2 in a complex neighborhood ofK. By the
result of Lemma 3.5.6 we know the function H(γ,β2,β2)

(µ1,0,µ2) is also complex analytic in β2 in a complex neighborhood
of K. Therefore the above equation with µ3 = 0 implies the claim of analycity for β2 7→ R(β2, µ1, µ2). The
exact same reasoning implies the analycity of (µ1, µ2) 7→ R(β2, µ1, µ2).

3.3.2.2 OPE with reflection and the reflection principle

We now move to performing the OPE with reflection. We rely extensively on Lemma 3.5.4 and Lemma 3.5.5
giving the Taylor expansion using the reflection coefficient. As in Section 3.2.2 we first use OPE with reflection
for χ = γ

2 to obtain the reflection principle.

Lemma 3.3.4 (Reflection principle for H(β1,β2,β3)

(µ1,µ2,µ3)). Consider parameters µ1, µ2, µ3, β1, β2, β3 such that β1 ∈
(γ2 , Q) and satisfying the parameter range (3.1.18) for H(β1,β2,β3)

(µ1,µ2,µ3) and R(β1, µ1, µ2) to be well-defined. Then
one can meromorphically extend β1 7→ H

(β1,β2,β3)

(µ1,µ2,µ3) beyond the point β1 = Q by the following relation:

H
(β1,β2,β3)

(µ1,µ2,µ3) = −
Γ( 2β1

γ − 4
γ2 )Γ(

β2+β3−β1

γ )

Γ(β1+β2+β3−2Q
γ )

R(β1, µ1, µ2)H
(2Q−β1,β2,β3)

(µ1,µ2,µ3) . (3.3.26)

The quantity H
(2Q−β1,β2,β3)

(µ1,µ2,µ3) is thus well-defined as long as H
(β1,β2,β3)

(µ1,µ2,µ3) and R(β1, µ1, µ2) are well-defined.
Similarly, for (µ1, µ2) satisfying the constraint of Definition 3.1.3, we can analytically extend β1 7→ R(β1, µ1, µ2)
to the range (γ2 , Q+ 2

γ ) thanks to the relation:

R(β1, µ1, µ2)R(2Q− β1, µ1, µ2) =
1

Γ(1− 2(Q−β1)
γ )Γ(1 + 2(Q−β1)

γ )
. (3.3.27)
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Proof. Throughout the proof we keep the same notations as used in the proof of Lemma 3.3.1 for the solution
space of the hypergeometric equation satisfied by H γ

2
(t). The first step is to assume β1 ∈ (Q− β0, Q) so that

we can apply the result of Lemma 3.5.5 and identify the value of C2 to be:

C2 =
2(Q− β1)

γ

Γ( 2γ (β1 −Q))Γ( 2γ (Q− β1)− q)

Γ(−q)
R(β1, µ1, µ2)H

(2Q−β1− γ
2 ,β2,β3)

(µ1,e
iπ
γ2

4 µ2,e
iπγ2

4 µ3)
. (3.3.28)

The key argument is to observe that since by Lemma 3.5.6 β1 7→ H γ
2
(t) is complex analytic so is the coefficient

C2. By using this combined with the analycity of R and H, we can extend the range of validity of equation
(3.3.28) from β1 ∈ (Q− β0, Q) to β1 ∈ ( 2γ , Q). Now equation (3.3.16) derived in the the proof of Lemma 3.3.1
gives us an alternative expression for C2, which is valid for β1 ∈ (γ2 ,

2
γ ). The analycity of β1 7→ C2 in a complex

neighborhood of 2
γ then implies that one can “glue” together the two expressions for C2. More precisely the

equality,

2(Q− β1)

γ

Γ( 2γ (β1 −Q))Γ( 2γ (Q− β1)− q)

Γ(−q)
R(β1, µ1, µ2)H

(2Q−β1− γ
2 ,β2,β3)

(µ1,e
iπ
γ2

4 µ2,e
iπγ2

4 µ3)
(3.3.29)

= q
Γ(−1 + γβ1

2 − γ2

4 )Γ(1− γβ1

2 )

Γ(−γ2

4 )

(
µ1 − µ2e

iπ
γβ1
2

)
H

(β1+
γ
2 ,β2,β3)

(µ1,e
iπγ2

4 µ2,e
iπγ2

4 µ3)
,

provides the desired analytic continuation of H. To land on the form of the reflection equation given in the
lemma one needs to replace β1 by β1 − γ

2 . This transforms R(β1, µ1, µ2) into R(β1 − γ
2 , µ1, µ2) which we can

shift back to R(β1, µ1, e
iπγ2

4 µ2) using the shift equation (3.3.21). Lastly we perform the parameter replacement
e
iπγ2

4 µ2 to µ2 and e
iπγ2

4 µ3 to µ3. Therefore this implies the claim of the reflection principle for H. The claim
for R is then an immediate consequence.

3.3.2.3 Analytic continuation of H and R

At this stage we will use the shift equations we have derived to analytically continue H and R both in the
parameters βi and µi. The analytic continuations will be defined in a larger range of parameters than the one
required for the GMC expression to be well-defined.

Lemma 3.3.5. (Analytic continuation of H(β1,β2,β3)

(µ1,µ2,µ3)) Fix µ1, µ2, µ3 obeying the condition of Definition 3.1.3.
Then the function (β1, β2, β3) 7→ H

(β1,β2,β3)

(µ1,µ2,µ3) originally defined in the parameter range given by (3.1.18) extends
to a meromorphic function of the three variables in a small complex neighborhood of R3. Now fix β1, β2, β3 in
this complex neighborhood of R3 and write µi := eiπγ(σi−

Q
2 ) with the convention that Re(σi) = Q

2 when µi > 0.
The function

(σ1, σ2, σ3) 7→ H
(β1,β2,β3)

(eiπγ(σ1−Q
2

),eiπγ(σ2−Q
2

),eiπγ(σ3−Q
2

))
(3.3.30)

then extends to a meromorphic function of C3.

Proof. We first work at fixed µ1, µ2, µ3 obeying the constraint of Definition 3.1.3 and perform the analytic con-
tinuation in the parameters β1, β2, β3. First notice that for any triple (µ1, µ2, µ3) obeying Definition 3.1.3, then
either (µ1, e

iπγ2

4 µ2, µ3) or (µ1, e
− iπγ2

4 µ2, µ3) can be obtained by turning µ2 without crossing the branch (−∞, 0)

and is such that it obeys Definition 3.1.3. Let us assume that the triplet satisfying this is (µ1, e
− iπγ2

4 µ2, µ3).
Then in the shift equation (3.3.10) one can choose the parameters β1, β2, β3 such that H(β1,β2− γ

2 ,β3)

(µ1,e
− iπγ2

4 µ2,µ3)
is

defined probabilistically and that out of the two remaining terms,

H
(β1+

γ
2 ,β2,β3)

(µ1,µ2,µ3)
and H

(β1− γ
2 ,β2,β3)

(µ1,µ2,µ3)
,
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one of them is defined probabilistically and the other has parameters β1, β2, β3 that do not obey (3.1.18). The
shift equation thus provides the definition of the third term. By using Lemma 3.5.6 giving the analycity of H in
a complex neighborhood of the domain where it is defined probabilistically combined with the iteration of the
above procedure provides a meromorphic extension of (β1, β2, β3) 7→ H

(β1,β2,β3)

(µ1,µ2,µ3) in a complex neighborhood of
R3. The locations of the poles of the meromorphic extension are prescribed by the shift equation.

Now we move to the analytic continuation in the µi. We rewrite these parameters as µi := eiπγ(σi−
Q
2 ) with

the convention that Re(σi) =
Q
2 when µi > 0. Then one can analytic continue H in the parameters σi to a

meromorphic function of C3 by using again the shift equations of Lemma 3.3.1. As a concrete example, for
µ1, µ2, µ3 ∈ (0,∞), in order to define H(β1,β2− 2

γ ,β3)

(µ1,e−iπµ2,µ3)
, one can express it using the first shift equation of Lemma

3.3.1 in terms of:
H

(β1− γ
2 ,β2+

γ
2 −

2
γ ,β3)

(µ1,e
iπ(

γ2

4
−1)µ2,µ3)

, and H
(β1+

γ
2 ,β2+

γ
2 −

2
γ ,β3)

(µ1,e
iπ(

γ2

4
−1)µ2,µ3)

.

The µi appearing above are now obeying the constraint of Definition 3.1.3, and therefore the H functions are
well-defined. The poles of H as a function of the σi are again prescribed by the shift equations.

Lemma 3.3.6. (Analytic continuation of R(β1, µ1, µ2)) For all µ1, µ2 obeying the constraint of Definition
3.1.3, the function β1 7→ R(β1, µ1, µ2) originally defined on the interval (γ2 , Q) extends to a meromorphic
function defined in a complex neighborhood of R and satisfying the shift equation:

R(β1, µ1, µ2) = −
Γ(−1 + γβ1

2 − γ2

4 )Γ(2− γβ1

2 − γ2

4 )

Γ(1− γ2

4 )2
π

sin(π γβ1

2 )

∣∣∣µ1 − µ2e
iπ
γβ1
2

∣∣∣2R(β1 + γ, µ1, µ2). (3.3.31)

Furthermore, for a fixed β1 in the above complex neighborhood of R, the function R(β1, eiπγ(σ1−Q
2 ), eiπγ(σ2−Q

2 ))
extends to a meromorphic function of (σ1, σ2) on C2.

Proof. β1 7→ R(β1, µ1, µ2) is originally defined on an interval of size 2
γ , but using (3.3.27) we can analytically

extend its definition to an interval of size 4
γ , i.e. the interval β1 ∈ (γ2 , Q+ 2

γ ). This gives us a large enough interval
to successively apply both shift equations of Lemma 3.3.2 to extend β1 7→ R(β1, µ1, µ2) to a meromorphic
function defined in a complex neighborhood of the real line and to get the shift equation stated above. The
analytic continuation in (σ1, σ2) follows the exact same steps as for H.

3.3.2.4 Second shift equation on the reflection coefficient

Finally we will derive the second shift on R(β1, µ1, µ2) that will completely specify its value.

Lemma 3.3.7. (Second shift equation for R(β1, µ1, µ2)). For all µ1, µ2 obeying the constraint of Definition
3.1.3, the meromorphic function β1 7→ R(β1, µ1, µ2) defined in a complex neighborhood of R satisfies the
following shift equation:

R(β, µ1, µ2) =
(2π)

8
γ2

γ2(Q− β)(γ2 − β)

1

Γ(1− γ2

4 )
8
γ2 sin(π 2β

γ ) sin(π( 2βγ + 4
γ2 ))

∣∣∣∣µ 4
γ2

1 − µ
4
γ2

2 eiπ
2β
γ

∣∣∣∣2R(β +
4

γ
, µ1, µ2).

(3.3.32)

Proof. We are now working exclusively with the choice χ = 2
γ . There will be several steps that will successively

require to choose different ranges of parameters. We first place ourselves in the following range of parameters:

t ∈ H, ϵ ∈ (0, β0), β1 = β2 = Q− ϵ, β3 =
2

γ
+ ϵ µ1 ∈ (0,+∞), µ2, µ3 ∈ (−∞, 0). (3.3.33)

In the above ϵ is chosen small enough, smaller than the constant β0 required to apply Lemma 3.5.4. Notice
also that in this range q < 4

γ2 ∧mini
2
γ (Q− βi). Furthermore in the above the choice of µi is such that we can
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apply Proposition 3.4.3 giving that H 2
γ
(t) obeys the hypergeometric equation. We can thus expand H 2

γ
(t) on

the basis,

H γ
2
(t) = C1F (A,B,C, t) + C2t

1−CF (1 +A− C, 1 +B − C, 2− C, t) (3.3.34)
= B1F (A,B, 1 +A+B − C, 1− t) +B2(1− t)C−A−BF (C −A,C −B, 1 + C −A−B, 1− t)

= D1e
iπAt−AF (A, 1 +A− C, 1 +A−B, t−1) +D2e

iπBt−BF (B, 1 +B − C, 1 +B −A, t−1),

where again C1, C2, B1, B2, D1, D2 are parametrizing the solution space around the points 0, 1, and ∞. As
before by sending t to 0 and to 1 one obtains:

C1 = H 2
γ
(0) = H

(β1− 2
γ ,β2,β3)

(µ1,eiπµ2,eiπµ3)
, B1 = H 2

γ
(1) = H

(β1,β2− 2
γ ,β3)

(µ1,µ2,eiπµ3)
. (3.3.35)

Let us make some comments on the values of the µi appearing in C1 and B1. For C1 since µ2, µ3 are negative,
µ1, eiπµ2, eiπµ3 are all positive numbers and the function H appearing is thus well-defined as a GMC quantity.
For B1 now µ1 and eiπµ3 are positive while µ2 is negative, so we are no longer under the constraint of Definition
3.1.3, but rather in a limiting case. Since the moment of the GMC of the H appearing in B1 is positive, i.e.
the moment is equal to ϵ

γ , we can still make sense of this GMC by a simple continuity argument. Since the
condition required for Lemma 3.5.4, β1 ∈ (Q− β0, Q), is satisfied one then derives:

C2 =
2(Q− β1)

γ

Γ( 2γ (β1 −Q))Γ( 2γ (Q− β1)− q)

Γ(−q)
R(β1, µ1, µ2)H

(2Q−β1− 2
γ ,β2,β3)

(µ1,eiπµ2,eiπµ3)
. (3.3.36)

Now we write the connection formula (3.5.105) linking C1, B1, C2, setting χ = 2
γ in the equation below:

B1 =
Γ(χ(β1 − χ))Γ(1− χβ2 + χ2)

Γ(χ(β1 − χ+ q γ2 )Γ(1− χβ2 + χ2 − q γχ2 )
C1 +

Γ(2− χβ1 + χ2)Γ(1− χβ2 + χ2)

Γ(1 + qγχ
2 )Γ(2− χ(β1 + β2 − 2χ+ q γ2 ))

C2. (3.3.37)

In the range of parameters we have been working with, all three constants C1, B1, C2 are well-defined proba-
bilistic quantities through a function H. But now by analytic continuation of Lemma 3.3.5 we can view the
above identity as an identity of the analytic function H. By repeating the above strategy in the range of
parameters,

t ∈ H, ϵ ∈ (0, β0), β1 = β2 = Q− ϵ, β3 =
2

γ
+ ϵ µ1, µ2 ∈ (0,+∞), µ3 ∈ (−∞, 0), (3.3.38)

one can identify B1, B2, C1. Then again we can write the connection formula (3.5.105) linking B1, B2, C1 and
extend the identity to an identity of analytic functions. We can proceed similarly for all the triples (B1, B2, D1),
(B1, D1, D2), (C1, C2, D1), and (C1, D1, D2). At the level of analytic functions, the values of these remaining
constants are as follows:

D1 = H
(β1,β2,β3− 2

γ )

(eiπµ1,eiπµ2,eiπµ3)
, (3.3.39)

B2 =
2(Q− β2)

γ

Γ( 2γ (β2 −Q))Γ( 2γ (Q− β2)− q)

Γ(−q)
R(β2, e

iπµ2, e
iπµ3)H

(β1,2Q−β2− 2
γ ,β3)

(µ1,µ2,eiπµ3)
, (3.3.40)

D2 =
2(Q− β3)

γ

Γ( 2γ (β3 −Q))Γ( 2γ (Q− β3)− q)

Γ(−q)
R(β3, µ1, e

iπµ3)H
(β1,β2,2Q−β3− 2

γ )

(eiπµ1,eiπµ2,eiπµ3)
. (3.3.41)

We now know that the analytic function H appears in all the constants C1, C2, B1, B2, D1, D2 and is
related to the probabilistic definition of H in the appropriate range of parameters. With this at hand we apply
the connection formulas coming from the hypergeometric equation in the following way. We use the relation
(3.5.105) expressing B2 in terms of C1 and C2, as well as

D2 =
Γ(C)Γ(A−B)

Γ(A)Γ(C −B)
C1 + eiπ(1−C) Γ(2− C)Γ(A−B)

Γ(1−B)Γ(A− C + 1)
C2 (3.3.42)
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coming from (3.5.104) to eliminate C1 and obtain the following relation:

Γ(B)

Γ(A+B − C)
B2 −

Γ(C −B)

Γ(A−B)
D2 =

Γ(2− C)

Γ(A− C + 1)

(
Γ(B)

Γ(B − C + 1)
− eiπ(1−C)Γ(C −B)

Γ(1−B)

)
C2. (3.3.43)

Let us now take β1 = β ∈ (γ2 ,
2
γ ), β2 = γ

2 + η, β3 = Q− β, µ3 = 0 and study the asymptotic as η → 0. In this
case,

q =
4

γ2
− η

γ
, A = − 4

γ2
+
η

γ
, B =

2β

γ
− 4

γ2
+
η

γ
, C =

2β

γ
− 4

γ2
, (3.3.44)

and

lim
η→0

ηD2 = −2(
2

γ
− β)

Γ( 2βγ − 4
γ2 )Γ(1− 2β

γ )

Γ(− 4
γ2 )

R(Q− β, µ1, 0)R(β +
γ

2
, eiπµ1, 0), (3.3.45)

lim
η→0

ηC2 = −2(β − γ

2
)
Γ( 2βγ − 4

γ2 )Γ(1− 2β
γ )

Γ(− 4
γ2 )

R(β, µ1, µ2)R(2Q− β − 2

γ
, µ1, e

iπµ2), (3.3.46)

lim
η→0

η2B2 = − 8

γ
lim
η→0

ηR(
γ

2
+ η, eiπµ2, 0). (3.3.47)

To obtain the above limits one simply needs to apply Lemma 3.1.8, but there is again a subtlety coming from
the fact that the µi appearing above does not strictly obey the condition of Definition 3.1.3 and our proof of
Lemma 3.1.8 does not cover this case. But to remedy this, one can simply apply again the shift equations of
Lemma 3.3.1 to rotate the µi that is on the line (−∞, 0). Then it is possible to obtain R from H using Lemma
3.1.8 and finally one can rotate back the µi to its original value by using Lemma 3.3.2. In the limit of B2 we
also use a limit calculated in [61]:

lim
η→0

H
(β,Q−η,Q−β)
(µ1,µ2,0) = 2. (3.3.48)

The moment of the GMC defining H in this limit is η
γ and tends to 0, this gives a contribution 1 to the limit.

But in this case there is also a concentration behavior at the insertion with parameter Q − η, this adds 1 to
the final limit.

We will need the result from the interval case [89] where we have found the reflection coefficient R∂1 (α)
with one of the µi set to 0:

R(α, 1, 0) = R
∂

1 (α) =
(2π)

2
γ (Q−α)− 1

2 ( 2γ )
γ
2 (Q−α)− 1

2

(Q− α)Γ(1− γ2

4 )
2
γ (Q−α)

Γ γ
2
(α− γ

2 )

Γ γ
2
(Q− α)

. (3.3.49)

The rest of the proof is now direct algebraic computations. Together with (3.3.27) we have:

lim
η→0

ηD2 = −2(
2

γ
− β)µ

4
γ2

1

Γ( 2βγ − 4
γ2 )Γ(1− 2β

γ )

Γ(− 4
γ2 )

e
iπ( 4

γ2
− 2β
γ )

Γ(1− 2β
γ )Γ(1 + 2β

γ )

R(β + γ
2 , 1, 0)

R(β +Q, 1, 0)
,

=
4

γ
(2π)

4
γ2

−1
µ

4
γ2

1 e
iπ( 4

γ2
− 2β
γ ) Γ(

2β
γ − 4

γ2 )Γ(− 2β
γ )

Γ(− 4
γ2 )Γ(1− γ2

4 )
4
γ2

, (3.3.50)

lim
η→0

ηC2 = γ
Γ( 2βγ − 4

γ2 )

Γ(− 4
γ2 )Γ(

2β
γ )

R(β, µ1, µ2)

R(β + 2
γ , µ1, eiπµ2)

, (3.3.51)

lim
η→0

η2B2 = −4(2π)
4
γ2

−1
µ

4
γ2

2 e
iπ 4
γ2

1

Γ(1− γ2

4 )
4
γ2

. (3.3.52)
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Putting all these into (3.3.43), we get:

4(2π)
4
γ2

−1
e
iπ 4
γ2

Γ( 2βγ − 4
γ2 )

Γ(− 4
γ2 )Γ(1− γ2

4 )
4
γ2

(µ
4
γ2

1 e−iπ
2β
γ − µ

4
γ2

2 ) (3.3.53)

= −2γ(Q− β)e
iπ(− 2β

γ + 4
γ2

) Γ( 2βγ − 4
γ2 )

Γ(− 4
γ2 )Γ(

2β
γ )Γ(1− 2β

γ )

R(β, µ1, µ2)

R(β + 2
γ , µ1, eiπµ2)

.

After simplification:

R(β, µ1, µ2)

R(β + 2
γ , µ1, eiπµ2)

= − 2

γ(Q− β)
(2π)

4
γ2

−1Γ(
2β
γ )Γ(1− 2β

γ )

Γ(1− γ2

4 )
4
γ2

(µ
4
γ2

1 − µ
4
γ2

2 eiπ
2β
γ ). (3.3.54)

Similarly by working with auxiliary function H̃χ(t) yields the shift equation:

R(β + 2
γ , µ1, e

iπµ2)

R(β + 4
γ , µ1, µ2)

= − 2

γ(γ2 − β)
(2π)

4
γ2

−1Γ(
2β
γ + 4

γ2 )Γ(1− 2β
γ − 4

γ2 )

Γ(1− γ2

4 )
4
γ2

(µ
4
γ2

1 − µ
4
γ2

2 e−iπ
2β
γ ). (3.3.55)

Hence we arrive at (3.3.31).

3.3.2.5 Solution of the shift equation on R

Proof of Theorem 3.1.7, equation (3.1.27). We introduce σ1, σ2 defined through the relation µi := eiπγ(σi−
Q
2 )

with the convention that for positive µi one has Re(σi) =
Q
2 . We can thus write for χ = γ

2 or 2
γ that:∣∣∣∣µ 2χ

γ

1 − µ
2χ
γ

2 eiπχβ
∣∣∣∣2 = 4e2iπχ(σ1+σ2−Q) sin

(πχ
2
(β + 2(σ1 − σ2))

)
sin
(πχ

2
(β + 2(σ2 − σ1))

)
. (3.3.56)

One can then rewrite the two shift equations under the following form,

R(β, µ1, µ2)

R(β + γ, µ1, µ2)
=−

Γ(−1 + γβ
2 − γ2

4 )Γ(2− γβ
2 − γ2

4 )

Γ(1− γ2

4 )2
π

sin(π γβ2 )
(3.3.57)

× 4eiπγ(σ1+σ2−Q) sin
(πγ

4
(β + 2(σ1 − σ2))

)
sin
(πγ

4
(β + 2(σ2 − σ1))

)
,

R(β, µ1, µ2)

R(β + 4
γ , µ1, µ2)

=
(2π)

8
γ2

γ2(Q− β)(γ2 − β)

1

Γ(1− γ2

4 )
8
γ2 sin(π 2β

γ ) sin(π( 2βγ + 4
γ2 ))

(3.3.58)

× 4e
4iπ
γ (σ1+σ2−Q) sin

(
π

γ
(β + 2(σ1 − σ2))

)
sin

(
π

γ
(β + 2(σ2 − σ1))

)
.

These two shift equation completely specify the function R(β, µ1, µ2) as a function of the parameter β up to
one value. Since we know that R(Q,µ1, µ2) = 1, the function R is thus uniquely specified and can be identified
to be the function written in equation (3.1.27) since it obeys the same shift equations and has the same value
at β = Q.

3.3.3 Solving the three-point function
With the value of R completely specified, we complete the proof of the expression for H. The first step is to
derive the additional shift equation in 2

γ .
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3.3.3.1 The shift equations for H

Proposition 3.3.8 (Shift equations for H(β1,β2,β3)

(µ1,µ2,µ3)). Let χ = γ
2 or 2

γ . We have the following functional
equations for H(β1,β2,β3)

(µ1,µ2,µ3), viewed as a meromorphic function of all of its parameters,

H
(β1,β2−χ,β3)

(µ1,µ2,µ3) =
Γ(χ(β1 − χ))Γ(1− χβ2 + χ2)

Γ(χ(β1 − χ+ q γ2 ))Γ(1− χβ2 + χ2 − q γχ2 )
H

(β1−χ,β2,β3)

(µ1,e
iπγχ

2 µ2,µ3)
(3.3.59)

− χ2(2π)
2χ
γ −1

Γ(1− γ2

4 )
2χ
γ

πΓ(−q + 2χ
γ )Γ(1− χβ1)Γ(1− χβ2 + χ2)(µ

2χ
γ

1 − µ
2χ
γ

2 e2iπχβ1)

sin(πχ(β1 − χ))Γ(−q)Γ(1 + qγχ
2 )Γ(2− χ(β1 + β2 − 2χ+ q γ2 ))

H
(β1+χ,β2,β3)

(µ1,e
iπγχ

2 µ2,µ3)
,

and:

χ2(2π)
2χ
γ −1

Γ(1− γ2

4 )
2χ
γ

Γ(−q + 2χ
γ )Γ(1− χβ2)

Γ(−q)
(µ

2χ
γ

3 − µ
2χ
γ

2 eiπχβ2)H
(β1,β2+χ,β3)

(µ1,e
iπ
γχ
2 µ2,µ3)

(3.3.60)

=
Γ(χ(β1 − χ))

Γ(−q γχ2 )Γ(−1 + χ(β1 + β2 − 2χ+ q γ2 ))
H

(β1−χ,β2,β3)

(µ1,µ2,µ3)

+
χ2(2π)

2χ
γ −1

Γ(1− γ2

4 )
2χ
γ

Γ(2− χβ1 + χ2)Γ(−q + 2χ
γ )Γ(1− χβ1)Γ(χ(β1 −Q))

Γ(−q)Γ(1− χ(β1 − χ+ q γ2 )Γ(χβ2 − χ2 + q γχ2 )
(µ

2χ
γ

1 − µ
2χ
γ

2 eiπχ(χ−β1))H
(β1+χ,β2,β3)

(µ1,µ2,µ3) .

Proof. These shift equations all come from applying (3.5.105). The first comes from the relation,

B1 =
Γ(χ(β1 − χ))Γ(1− χβ2 + χ2)

Γ(χ(β1 − χ+ q γ2 )Γ(1− χβ2 + χ2 − q γχ2 )
C1 +

Γ(2− χβ1 + χ2)Γ(1− χβ2 + χ2)

Γ(1 + qγχ
2 )Γ(2− χ(β1 + β2 − 2χ+ q γ2 ))

C2, (3.3.61)

and the second can be deduced by replacing β1 by β1 + γ
2 in the following relation:

B̃2 =
Γ(χ(β1 − χ))Γ(−1 + χβ2 − χ2)

Γ(−q γχ2 )Γ(−1 + χ(β1 + β2 − 2χ+ q γ2 ))
C̃1 +

Γ(2− χβ1 + χ2)Γ(−1 + χβ2 − χ2)

Γ(1− χ(β1 − χ+ q γ2 )Γ(χβ2 − χ2 + q γχ2 )
C̃2. (3.3.62)

The case of interest χ = 2
γ requires a little bit more effort than for deriving the χ = γ

2 shift equations. For in-

stance the expression of C2 is expressed as R(β1, µ1, µ2)H
(2Q−β1− 2

γ ,β2,β3)

(µ1,eiπµ2,eiπµ3)
. To transform it into H(β1+

2
γ ,β2,β3)

(µ1,eiπµ2,eiπµ3)

we will need to apply the shift equation of R(β1,µ1,µ2)

R(β1+
2
γ ,µ1,eiπµ2)

and then the reflection principle of Lemma 3.3.4.

The same strategy has to be applied to C̃2 and B̃2. This allows us to write:

C2 =
χ2(2π)

2χ
γ −1

Γ(1− γ2

4 )
2χ
γ

Γ(−q + 2χ
γ )Γ(1− χβ1)Γ(χ(β1 −Q))

Γ(−q)
(µ

2χ
γ

1 − µ
2χ
γ

2 eiπχβ1)H
(β1+χ,β2,β3)

(µ1,e
iπ
γχ
2 µ2,e

iπ
γχ
2 µ3)

, (3.3.63)

C̃2 =
χ2(2π)

2χ
γ −1

Γ(1− γ2

4 )
2χ
γ

Γ(−q + 2χ
γ )Γ(1− χβ1)Γ(χ(β1 −Q))

Γ(−q)
(µ

2χ
γ

1 − µ
2χ
γ

2 eiπχ(χ−β1))H
(β1+χ,β2,β3)

(eiπ
γχ
2 µ1,µ2,µ3)

, (3.3.64)

B̃2 =
χ2(2π)

2χ
γ −1

Γ(1− γ2

4 )
2χ
γ

Γ(−q + 2χ
γ )Γ(1− χβ2)Γ(χ(β2 −Q))

Γ(−q)
(µ

2χ
γ

3 − µ
2χ
γ

2 eiπχβ2)H
(β1,β2+χ,β3)

(eiπ
γχ
2 µ1,e

iπ
γχ
2 µ2,µ3)

. (3.3.65)

Putting all these into the crossing relation proves the shift equations stated in the proposition.

3.3.3.2 The exact formula IPT satisfies the shift equations and the reflection principle

Take again µi := eiπγ(σi−
Q
2 ) with the convention that Re(σi) = Q

2 when µi > 0. Recall also that β = β1+β2+β3.
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To show that H is equal to the exact formula IPT given by (3.1.24), there are three steps that remain to be
shown. 1) The function IPT satisfies the shift equations of Lemma 3.3.8. 2) A solution of the shift equations of
Lemma 3.3.8 is completely specified up to one global constant. 3) IPT and H are equal at one particular value
of parameters. In the following we successively show these three claims. We introduce the following notation:

IPT

(
β1, β2, β3
σ1, σ2, σ3

)
:=

∫ i∞

−i∞
φ
(β1,β2,β3)
(σ1,σ2,σ3)

(r)dr. (3.3.66)

Lets start by showing the lemma:

Lemma 3.3.9. The function IPT

(
β1, β2, β3
σ1, σ2, σ3

)
satisfies the shift equations satisfied by H.

Proof. Checking that IPT satisfies the shift equations of Lemma 3.3.8 is equivalent to checking the following
shift equations,

H
(β1,β2,β3)

(µ1,µ2,µ3) =
Γ(χ(β1 − χ))Γ(1− χβ2)

Γ(1− χ(β2 + β3 − β1))Γ(
χ
2 (β1 + β3 − β2 − 2χ))

H
(β1−χ,β2+χ,β3)

(µ1,e
iπ
γχ
2 µ2,µ3)

(3.3.67)

− χ2(2π)
2χ
γ −1

Γ(1− γ2

4 )
2χ
γ

πΓ( 1γ (β − 2
χ ))Γ(1− χβ1)Γ(1− χβ2)2ie

iπχ(
β1
2 −χ+σ1+σ2) sin(πχ(β1

2 − σ1 + σ2))

sin(πχ(β1 − χ))Γ( 1γ (β − 2Q))Γ(1 + χ(Q− β
2 ))Γ(1−

χ
2 (β1 + β2 − β3))

H
(β1+χ,β2+χ,β3)

(µ1,e
iπ
γχ
2 µ2,µ3)

,

and:

χ2(2π)
2χ
γ −1

Γ(1− γ2

4 )
2χ
γ

Γ( 1γ (β − 2
χ ))Γ(1− χβ2)

Γ( 1γ (β − 2Q))
2iei

πγ
2 (

β2
2 −χ+σ2+σ3) sin(πχ(

β2
2

+ σ2 − σ3))H
(β1+χ,β2+χ,β3)

(µ1,e
iπ
γχ
2 µ2,µ3)

(3.3.68)

=
Γ(χβ1)

Γ(χ2 (β − 2Q))Γ(χ2 (β1 + β2 − β3))
H

(β1,β2,β3)

(µ1,µ2,µ3) −
χ2(2π)

2χ
γ −1

Γ(1− γ2

4 )
2χ
γ

πΓ( 1γ (β − 2
χ ))Γ(1− χβ1 − χ2))

sin(πχβ1)Γ(
1
γ (β − 2Q))

×
2ieiπχ(−

β1
2 −χ+σ1+σ2) sin(πχ(−β1

2 − σ1 + σ2))

Γ(χ2 (β2 + β3 − β1 − 2χ))Γ(1− χ
2 (β1 + β3 − β2))

H
(β1+2χ,β2,β3)

(µ1,µ2,µ3) .

We calculate the ratios of the integrands,

φ
(β1−χ,β2+χ,β3)
(σ1,σ2+

χ
2 ,σ3)

(s)

φ
(β1,β2,β3)
(σ1,σ2,σ3)

(s)
=
Γ(χ2 (β1 + β3 − β2 − 2χ))Γ(1− χ

2 (β2 + β3 − β1))Γ(1− χβ1 + χ2)

πΓ(1− χβ2)
(3.3.69)

× sin(πχ(
β1
2

− χ+ σ1 − σ2))
sin(πχ(−β1

2 + β2

2 + σ1 − σ3 − s))

sin(πχ(β2

2 + σ2 − σ3 − s))
,

φ
(β1+χ,β2+χ,β3)
(σ1,σ2+

χ
2 ,σ3)

(s)

φ
(β1,β2,β3)
(σ1,σ2,σ3)

(s)
=−

Γ(1− γ2

4 )
2χ
γ Γ( 1γ (β − 2Q))Γ(1 + χ(Q− β

2 ))Γ(1−
χ
2 (β1 + β2 − β3))ie

iπχ(Q− β1
2 −σ1−σ2)

χ2(2π)
2χ
γ Γ( 1γ (β − 2

χ ))Γ(1− χβ1)Γ(1− χβ2)

×
sin(πχ(β1

2 + β2

2 − χ+ σ1 − σ3 − s))

sin(πχ(β2

2 + σ2 − σ3 − s))
. (3.3.70)

If we plug IPT into equation (3.3.67) and regroup terms on one side, we will get:∫ i∞

−i∞
dr φ

(β1,β2,β3)
(σ1,σ2,σ3)

(r)

[
sin(πχ(β1

2 − χ+ σ1 − σ2)) sin(πχ(−β1

2 + β2

2 + σ1 − σ3 − r))

sin(πχ(β1 − χ)) sin(πχ(β2

2 + σ2 − σ3 − r))
− 1 (3.3.71)

+
sin(πχ(β1

2 − σ1 + σ2)) sin(πχ(
β1

2 + β2

2 − χ+ σ1 − σ3 − r))

sin(πχ(β1 − χ)) sin(πχ(β2

2 + σ2 − σ3 − r))

]
.
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We can verify with some algebra that the integrand of the above integral equals 0, hence IPT satisfies (3.3.67).
To check the second shift equation, we will need additionally the ratio:

φ
(β1+2χ,β2,β3)
(σ1,σ2,σ3)

(r)

φ
(β1,β2,β3)
(σ1,σ2,σ3)

(r)
=−

πΓ(1− γ2

4 )
2χ
γ Γ( 1γ (β − 2Q))Γ(1 + χ(Q− β

2 ))Γ(1−
χ
2 (β1 + β2 − β3))

χ2(2π)
2χ
γ Γ( 1γ (β − 2

χ ))Γ(
χ
2 (β1 + β3 − β2))Γ(1− χ

2 (β2 + β3 − β1 − 2χ))
(3.3.72)

ieiπχ(Q− β1
2 −σ1−σ2) sin(πχ(β1

2 + β2

2 − χ+ σ1 − σ3 − r))

Γ(1− χβ1 − χ2)Γ(1− χβ1) sin(πχ(
β1

2 + σ1 − σ2)) sin(πχ(
β1

2 − β2

2 + χ+ σ3 − σ1 + r))
.

If we plug IPT into equation (3.3.68) and regroup things on one side, we will get:

Γ(χβ1)

Γ(χ2 (β − 2Q))Γ(χ2 (β1 + β2 − β3))

∫ i∞

−i∞
dr φ

(β1,β2,β3)
(σ1,σ2,σ3)

(r)[
sin(πχβ1) sin(πχ(

β2

2 + σ2 − σ3))e
iπχ(− β1

2 +
β2
2 −σ1+σ3)

sin(πχ(β2 − χ)) sin(πχ2 (β1 + β2 − β3))

sin(πχ(β1

2 + β2

2 − χ+ σ1 − σ3 − r))

sin(πχ(β2

2 + σ2 − σ3 − r))

−1 +
sin(πχ2 (β1 + β3 − β2)) sin(

πχ
2 (β2 + β3 − β1 − 2χ))e−iπχβ1

sin(πχ(β2 − χ)) sin(πχ2 (β1 + β2 − β3))

sin(πχ(β1

2 + β2

2 − χ+ σ1 − σ3 − r))

sin(πχ(β1

2 − β2

2 + χ+ σ3 − σ1 + r))

]
.

After some algebra we will be able to write it in the form,

Γ(χβ1)

Γ(χ2 (β − 2Q))Γ(χ2 (β1 + β2 − β3))

sin(πχβ1)e
iπχ(− β1

2 − β2
2 +χ−σ1+σ3)

sin(πχ(β2 − χ)) sin(πχ2 (β1 + β2 − β3))

∫ i∞

−i∞
dr φ

(β1,β2,β3)
(σ1,σ2,σ3)

(r)eiπχr[
sin(πχ(β1

2 + β2

2 − χ+ σ1 − σ3 − r)) sin(πχr)

sin(πχ(β2

2 + σ2 − σ3 − r))
eiπχ(

β2
2 −χ−σ2+σ3)

+
sin(πχ(β3

2 − σ1 + σ3 + r)) sin(πχ(β3

2 − χ+ σ1 − σ3 − r))

sin(πχ(β1

2 − β2

2 + χ+ σ3 − σ1 + r))

]

=
Γ(χβ1)

Γ(χ2 (β − 2Q))Γ(χ2 (β1 + β2 − β3))

sin(πχβ1)e
iπχ(− β1

2 − β2
2 +χ−σ1+σ3)

sin(πχ(β2 − χ)) sin(πχ2 (β1 + β2 − β3))

× 1

2

∫ i∞

−i∞
ds (T−χ − 1)φ

(β1,β2,β3)
(σ1,σ2+χ,σ3+χ)

(s)eiπχr,

where T−χf(r) = f(r − χ) for any function f . The integral term should be understood as a contour integral
and it equals 0 thanks to Cauchy’s theorem.

Next we move on to showing:

Lemma 3.3.10. The function IPT satisfies the following two properties,

IPT

(
2Q− β2 − β3, β2, β3

σ1, σ2, σ3

)
= 1, (3.3.73)

and the reflection principle of Lemma 3.3.4.

Proof. It is rather direct to observe that it satisfies the reflection principle, since the integrand of the Barnes
type integral is not changed when applying the transform β1 → 2Q − β1. The rest is an easy algebra using
the shift equations of Γ γ

2
and S γ

2
. To see the special value at β1 = 2Q − β2 − β3 equals 1, we will need to

apply the residue theorem. When β1 approaches 2Q− β2 − β3 from the right hand side, we have a preceding
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term 1

Γ( β−2Q
γ )

that goes to 0. Additionally in the Barnes type integral, the two poles at r = −(β3

2 + σ3 − σ1)

and r = −(Q − β1

2 − β2

2 + σ3 − σ1) will collapse. To extract the divergent term that can be compensated
with the preceding term, we can slightly modify the contour to let it go from the right hand side of r =
−(Q− β1

2 − β2

2 + σ3 − σ1), this allows us to pick up the divergent term by residue theorem:∫ i∞

−i∞

S γ
2
(Q− β2

2 + σ3 − σ2 + r)S γ
2
(β3

2 + σ3 − σ1 + r)S γ
2
(Q− β3

2 + σ3 − σ1 + r)

S γ
2
(Q+ β1

2 − β2

2 + σ3 − σ1 + r)S γ
2
(2Q− β1

2 − β2

2 + σ3 − σ1 + r)S γ
2
(Q+ r)

eiπ(−
β2
2 +σ2−σ3)r

dr

i

β1→2Q−β2−β3∼ 1

2π(β2 −Q)

S γ
2
(β1

2 + σ1 − σ2)S γ
2
(Q− β3)

S γ
2
(β1)S γ

2
(Q− β3

2 + σ1 − σ3)
eiπ(

β2
2 −σ2+σ3)(

β3
2 +σ3−σ1)

We can check that when β1 → 2Q− β2 − β3, the preceding term is equivalent to

2π(
β

2
−Q)S γ

2
(β1)S γ

2
(β3)

e−iπ(
β2
2 −σ2+σ3)(

β3
2 +σ3−σ1)

S γ
2
(β1

2 + σ1 − σ2)S γ
2
(β3

2 + σ3 − σ1)
(3.3.74)

This proves that IPT
(
2Q− β2 − β3, β2, β3

σ1, σ2, σ3

)
= 1.

3.3.3.3 Uniqueness of the shift equations on H

We will now finish the proof of Theorem 3.1.7.

Proof of Theorem 3.1.7, equation (3.1.28). The information to extract from (3.3.59) and (3.3.60) is that we
have a three term shift equation on β1. If we fix the parameters β2, β3, µ1, µ2, µ3, then we know that β1 7→
H

(β1,β2,β3)
(µ1,µ2,µ3)

is a solution to the following shift equations (here we denote χ = γ
2 or 2

γ ):

(A2χ(x)T2χ +B2χ(x) + C2χ(x)T−2χ)g(x) = 0, (3.3.75)

with Tag(x) = g(x+ a). Note that we have analytically extended the domain of definition for H(β1,β2,β3)
(µ1,µ2,µ3)

to all
values of β1 ∈ R. If we further impose that g satisfies the reflection principle, i.e.

g(x) = −
Γ(1− 2(Q−x)

γ )Γ(β2+β3−x
γ )R(x, µ1, µ2)

Γ(x+β2+β3−2Q
γ )

g(2Q− x) =: S(x)g(2Q− x), (3.3.76)

it can be shown that the dimension of the solution space is at most 1.
In fact suppose that g is a solution to the system of equations (3.3.75) and (3.3.76). The equation (3.3.75)

with χ = γ
2 tells that g is characterized by its values in [Q − γ,Q + γ]. Together with (3.3.76), g can be

characterized by its values in [Q− γ,Q). Since we already know a solution IPT to this system, we can define
c1 a γ-periodic function by

c1(x) =
g(x)

IPT (x)
, x ∈ [Q− γ,Q). (3.3.77)

Then it is easy to see that c1(x)IPT (x) is still a solution to

(Aγ(x)Tγ +Bγ(x) + Cγ(x)T−γ)g(x) = 0, (3.3.78)

and it has the same value as g(x) on the interval [Q−γ,Q), hence we should have g(x) = c1(x)IPT (x) for x ∈ R.
In the same manner we can show that there exists a 4

γ -periodic function c2(x) such that g(x) = c2(x)IPT (x)

for x ∈ R. Indeed we should have c1(x) = c2(x) which is γ-periodic and 4
γ -periodic. This implies that g(x) =

cIPT (x) with c a constant and that the solution space is of dimension 1. We can fix the constant c to be 1
with the special value g(2Q− β2 − β3) = 1. This proves uniqueness of the solution. We prove in the following

that IPT indeed satisfies the reflection principle and IPT

(
2Q− β2 − β3, β2, β3

σ1, σ2, σ3

)
= 1.
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3.3.3.4 Consistency with the interval GMC

Finally we include here the consistency check that our formula matches the one of [89]. To check that the result
is coherent with the interval case, we look at the limit when Im(σ1), Im(σ3) → +∞ and σ2 = Q

2 and use the
asymptotic of S γ

2
function provided in the appendix. First let us do a change of variable r → r− β3

2 +σ1 −σ3,
the Barnes type integral will become

∫ i∞

−i∞

S γ
2
(Q− β2

2 − β3

2 + σ1 − σ2 + r)S γ
2
(r)S γ

2
(Q− β3 + r)eiπ(−

β2
2 +σ2−σ3)(− β3

2 +σ1−σ3)

S γ
2
(Q+ β1

2 − β2

2 − β3

2 + r)S γ
2
(2Q− β

2 + r)S γ
2
(Q− β3

2 + σ1 − σ3 + s)
eiπ(−

β2
2 +σ2−σ3)r

dr

i
.

(3.3.79)

We send Im(σ1) → +∞ and do the change r → −r:

eiπ(−
β2
2 +σ2−σ3)(− β3

2 +σ1−σ3)ei
π
2 (−(Q− β2

2 − β3
2 +σ1−σ2)(− β2

2 − β3
2 +σ1−σ2)+(Q− β3

2 +σ1−σ3)(− β3
2 +σ1−σ3))

×
∫ i∞

−i∞

S γ
2
(β2

2 + β3

2 − β1

2 + s)S γ
2
(β2 −Q+ s)

S γ
2
(Q+ s)S γ

2
(β3 + s)

e−i2π(σ2−σ3)s
ds

i
. (3.3.80)

From the result in [83] on the b-hypergeometric functions, when Im(σ3) → +∞, the above integral (excluding
the preceding term) converges to:

S γ
2
(β2

2 + β3

2 − β1

2 )S γ
2
(β2 −Q)

S γ
2
(β3)

. (3.3.81)

The rest of the terms in IPT are much easier to analyse. Putting everything together and taking Im(σ1), Im(σ3) →
+∞, σ2 = Q

2 will yield after simplification:

H
(β1,β2,β3)
(0,1,0) =

(2π)
2Q−β
γ +1( 2γ )

( γ2 −
2
γ )(Q− β

2 )−1

Γ(1− γ2

4 )
2Q−β
γ Γ(β−2Q

γ )

Γ γ
2
(β2 −Q)Γ γ

2
(β1+β3−β2

2 )Γ γ
2
(β2+β3−β1

2 )Γ γ
2
(Q− β1+β2−β3

2 )

Γ γ
2
(Q)Γ γ

2
(Q− β1)Γ γ

2
(Q− β2)Γ γ

2
(β3)

.

(3.3.82)

It can be easily checked that this formula is exactly the same as what the authors have found in [89].

3.4 Proof of the BPZ differential equations
The goal of this section is to check the BPZ differential equations - reducing in our case to the standard
hypergeometric equations - that have been used extensively in the previous two sections.

3.4.1 Bulk-boundary case
We prove here the differential equation used in Section 3.2.

Proposition 3.4.1. Let χ = γ
2 or 2

γ , p = 2
γ (Q− α− β

2 + χ
2 ). Consider in the following parameter range,

β < Q, p <
4

γ2
∧ 2

γ
(Q− β), t ∈ H, (3.4.1)

the auxiliary function,

Gχ(t) = E

[(∫
R

(t− x)
γχ
2

|x− i|γα
g(x)

γ2

8 (p−1)e
γ
2X(x)dx

)p]
. (3.4.2)
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Consider furthermore for t ∈ {reiθ | r > 0, θ ∈ (0, π2 )} the change of variable s = 1
1+t2 and G̃χ(s) = sp

γχ
4 Gχ(t).

Then the function G̃χ(s) obeys the hypergeometric equation,

s(1− s)∂2s G̃χ(s) + (C − (A+B + 1)s)∂sG̃χ(s)−ABG̃χ(s) = 0, (3.4.3)

with the parameters defined by:

A = −pγχ
4
, B = 1 + χ(χ− α− p

γ

4
), C =

3

2
+ χ(χ− α− p

γ

2
). (3.4.4)

Remark 3.4.2. As explained in Section 3.2, in the change of variable from t to s the argument of s is in
(−π, 0) and one has

√
1− s = t

√
s. Furthermore, the exact same hypergeometric equation holds for the dual

function Ĝχ(s) introduced in Section 3.2.

Proof. For simplicity, we introduce the notations,

V1(x1; t) = E

(∫
R

(t− x)
γχ
2

|x− i|γα|x− x1|
γ2

2

e
γ
2X(x)g(x)

γ2

8 (p−2)dx

)p−1
 , (3.4.5)

V2(x1, x2; t) = E

(∫
R

(t− x)
γχ
2

|x− i|γα|x− x1|
γ2

2 |x− x2|
γ2

2

e
γ
2X(x)g(x)

γ2

8 (p−3)dx

)p−2
 . (3.4.6)

We will not be bothered here with the regularization procedure of the log-correlated field X that must in
principle be used to perform the computations. A fully rigorous proof implementing the regularization method
can be found in [89]. Let us compute the derivatives of the function Gχ(t) with the help of the Girsanov
theorem 3.5.1:

∂tGχ =p

∫
R
dx1

∂t(t− x1)
γχ
2

|x1 − i|γα
V1(x1; t) = −p

∫
R
dx1

∂x1
(t− x1)

γχ
2

|x1 − i|γα
V1(x1; t) (3.4.7)

=− p
γ

2

∫
R
dx1

(
α

x1 − i
+

α

x1 + i

)
(t− x1)

γχ
2

|x1 − i|γα
V1(x1; t) + p

∫
R
dx1

(t− x1)
γχ
2

|x1 − i|γα
∂x1V1(x1; t).

We compute the last term:∫
R
dx1

(t− x1)
γχ
2

|x1 − i|γα
∂x1V1(x1; t) (3.4.8)

= −(p− 1)
γ2

2

∫
R

∫
R
dx1dx2

1

x1 − x2

(t− x1)
γχ
2 (t− x2)

γχ
2

|x1 − i|γα|x2 − i|γα|x1 − x2|
γ2

2

V2(x1, x2; t)

= 0 by the symmetry x1 ↔ x2.

Note that integrability problem of 1
x1−x2

can be handled by taking the regularized version of X, see [89] for
more details. We can also compute the first order derivative directly without doing integration by parts:

∂tGχ = p
γχ

2

∫
R
dx1

(t− x1)
γχ
2 −1

|x1 − i|γα
V1(x1; t). (3.4.9)

Then we have,

∂2tGχ =− p
γχ

2

∫
R
dx1

∂x1
(t− x1)

γχ
2 −1

|x1 − i|γα
V1(x1; t) + p

γχ

2

∫
R
dx1

(t− x1)
γχ
2 −1

|x1 − i|γα
∂tV1(x1; t) (3.4.10)

=− p
γ2χ

4

∫
R
dx1

(
α

x1 − i
+

α

x1 + i

)
(t− x1)

γχ
2 −1

|x1 − i|γα
V1(x1; t)

+ p
γχ

2

∫
R
dx1

(t− x1)
γχ
2 −1

|x1 − i|γα
(∂x1

+ ∂t)V1(x1; t).
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We can compute the last term by using the symmetry between x1 and x2:∫
R
dx1

(t− x1)
γχ
2 −1

|x1 − i|γα
(∂x1 + ∂t)V1(x1; t) (3.4.11)

= (p− 1)
γ

2

∫
R

∫
R
dx1dx2

(
− γ

x1 − x2
+

χ

t− x2

)
(t− x1)

γχ
2 −1(t− x2)

γχ
2

|x1 − i|γα|x2 − i|γα|x1 − x2|
γ2

2

V2(x1, x2; t)

= (p− 1)
γ

2

(
−γ
2
+ χ

)∫
R

∫
R
dx1dx2

(t− x1)
γχ
2 −1(t− x2)

γχ
2 −1

|x1 − i|γα|x2 − i|γα|x1 − x2|
γ2

2

V2(x1, x2; t).

Then we have when χ = γ
2 ,

∂2tGχ = −pγ
2χ

4

∫
R
dx1

(
1

t− x1

(
α

t− i
+

α

t+ i

)
+

α

(t− i)(x1 − i)
+

α

(t+ i)(x1 + i)

)
(t− x1)

γχ
2

|x1 − i|γα
V1(x1; t)

= −γ
2

(
α

t− i
+

α

t+ i

)
∂tG− p

γ3

8

∫
R
dx1

(
α

(t− i)(x1 − i)
+

α

(t+ i)(x1 + i)

)
(t− x1)

γχ
2

|x1 − i|γα
V1(x1; t).

(3.4.12)

The expression of ∂2tGχ in the case where χ = 2
γ uses the fact that ∂x1

(t− x1)
γχ
2 −1 = 0 = 4

γ2 ∂x1
(t− x1)

γχ
2 −1.

We repeat the previous computation and obtain when χ = 2
γ ,

∂2tGχ = − 2

γ

(
α

t− i
+

α

t+ i

)
∂tGχ − p

2

γ

∫
R
dx1

(
α

(t− i)(x1 − i)
+

α

(t+ i)(x1 + i)

)
(t− x1)

γχ
2

|x1 − i|γα
V1(x1; t).

(3.4.13)

We can also write Gχ in a similar form. An integration by parts together with the symmetry shows that:

(
γχ

2
+ 1)Gχ =−

∫
R
dx1

∂x1
(t− x1)

γχ
2 +1

|x1 − i|γα
V1(x1; t) (3.4.14)

=− γ

2

∫
R
dx1

(
α

x1 − i
+

α

x1 + i

)
(t− x1)

γχ
2 +1

|x1 − i|γα
V1(x1; t) + (p− 1)

γ2

4
Gχ

=− γ

2

∫
R
dx1

(
α(t− i)

x1 − i
+
α(t+ i)

x1 + i

)
(t− x1)

γχ
2

|x1 − i|γα
V1(x1; t) + ((p− 1)

γ2

4
+ γα)Gχ.

Now we summarize the expressions of the derivatives,

(2χ+
1

χ
− p

γ

2
− 2α)Gχ =−

∫
R
dx1

(
α(t− i)

x1 − i
+
α(t+ i)

x1 + i

)
(t− x1)

γχ
2

|x1 − i|γα
V1(x1; t), (3.4.15)

∂tGχ =− p
γ

2

∫
R
dx1

(
α

x1 − i
+

α

x1 + i

)
(t− x1)

γχ
2

|x1 − i|γα
V1(x1; t), (3.4.16)

and when χ = γ
2 or 2

γ ,

∂2
tGχ = −χ

(
α

t− i
+

α

t+ i

)
∂tGχ − p

γχ2

2

∫
R
dx1

(
α

(t− i)(x1 − i)
+

α

(t+ i)(x1 + i)

)
(t− x1)

γχ
2

|x1 − i|γα V1(x1; t). (3.4.17)

Combining everything implies that Gχ satisfies a differential equation:

(t2 + 1)∂2tGχ + 2χ(α− χ)t∂tGχ + pχ2(γχ+
γ

2χ
− p

γ2

4
− γα)Gχ = 0. (3.4.18)
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Now consider s = 1
1+t2 and take the function,

G̃χ(s) = sp
γχ
4 Gχ(t). (3.4.19)

One then has:

∂sG̃χ(s) =− 1

2
s−

3
2 (1− s)−

1
2 sp

γχ
4 ∂tGχ(t) + p

γχ

4
s−1G̃χ(s), (3.4.20)

∂2s G̃χ(s) =
1

4

(
(3− p

γχ

2
)s−1 − (1− s)−1

)
s−

3
2 (1− s)−

1
2 sp

γχ
4 ∂tGχ(t) (3.4.21)

+
1

4
s−3(1− s)−1sp

γχ
4 ∂2tGχ(t) + p

γχ

4
s−1∂sG̃χ(s)− p

γχ

4
s−2G̃χ(s).

Then,

t∂tGχ =− 2s(1− s)∂sG̃χ + p
γχ

2
(1− s)G̃χ, (3.4.22)

(t2 + 1)∂2tGχ =4s2(1− s)∂2s G̃χ − pγχs(1− s)∂sG̃χ + pγχ(1− s)G̃χ (3.4.23)

+ 2s
(
(p
γχ

2
− 4)s+ 3− p

γχ

2

)
∂sG̃χ − p

γχ

2

(
(p
γχ

2
− 4)s+ 3− p

γχ

2

)
G̃χ

=4s2(1− s)∂2s G̃χ + 2s((pγχ− 4)s+ 3− pγχ)∂sG̃χ + p
γχ

2

(
(2− p

γχ

2
)s+ p

γχ

2
− 1
)
G̃χ.

This allows to transform the equation of Gχ into a hypergeometric equation of G̃χ,

s(1− s)∂2s G̃χ + (C − (A+B + 1)s)∂sG̃χ −ABG̃χ = 0, (3.4.24)

with the parameters defined by

A = −pγχ
4
, B = 1 + χ(χ− α− p

γ

4
), C =

3

2
+ χ(χ− α− p

γ

2
). (3.4.25)

3.4.2 Boundary three-point case
Moving on to the equation used in Section 3.3.

Proposition 3.4.3. Let χ = γ
2 or 2

γ and q = 1
γ (2Q− β1 − β2 − β3 + χ). In the parameter range,

βi < Q, µ1 ∈ (0,∞), µ2, µ3 ∈ −H, q <
4

γ2
∧min

i

2

γ
(Q− βi), t ∈ H, (3.4.26)

we define the function,

Hχ(t) = E

[(∫
R

(t− x)
γχ
2

|x|
γβ1
2 |x− 1|

γβ2
2

g(x)
γ2

8 (q−1)e
γ
2X(x)dµ(x)

)q]
. (3.4.27)

Then Hχ(t) obeys the hypergeometric equation,

t(1− t)∂2tH + (C − (A+B + 1)t)∂tH −ABH = 0, (3.4.28)

with parameters:
A = −q γχ

2
, B = −1 + χ(β1 + β2 − 2χ+ q

γ

2
), C = χ(β1 − χ). (3.4.29)

Furthermore the exact same hypergeometric equation holds for the dual function,

H̃χ(t) = E

[(∫
R

(x− t)
γχ
2

|x|
γβ1
2 |x− 1|

γβ2
2

g(x)
γ2

8 (q−1)e
γ
2X(x)dµ(x)

)q]
, (3.4.30)
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this time in the range of parameters:

t ∈ −H, βi < Q, µ1, µ2 ∈ −H, µ3 ∈ (0,∞), and q <
4

γ2
∧min

i

2

γ
(Q− βi). (3.4.31)

Proof. We denote for a small ϵ > 0,

Rϵ = R\{(−ϵ, ϵ) ∪ (1− ϵ, 1 + ϵ)}. (3.4.32)

Consider

Hχ,ϵ(t) = E

[(∫
Rϵ

(t− x)
γχ
2

|x|
γβ1
2 |x− 1|

γβ2
2

g(x)
γ2

8 (q−1)e
γ
2X(x)dµ(x)

)q]
. (3.4.33)

For simplicity, we introduce the notations,

Vϵ(x1; t) = E

(∫
Rϵ

(t− x)
γχ
2

|x|
γβ1
2 |x− 1|

γβ2
2 |x− x1|

γ2

2

g(x)
γ2

8 (q−2)e
γ
2X(x)dµ(x)

)q−1
 , (3.4.34)

E−
0,ϵ(t) = µ1

(t+ ϵ)
γχ
2

ϵ
γβ1
2 (1 + ϵ)

γβ2
2

Vϵ(−ϵ; t), E+
0,ϵ(t) = µ2

(t− ϵ)
γχ
2

ϵ
γβ1
2 (1− ϵ)

γβ2
2

Vϵ(ϵ; t), (3.4.35)

E−
1,ϵ(t) = µ2

(t− 1 + ϵ)
γχ
2

(1− ϵ)
γβ1
2 ϵ

γβ2
2

Vϵ(1− ϵ; t), E+
1,ϵ(t) = µ3

(t− 1− ϵ)
γχ
2

(1 + ϵ)
γβ1
2 ϵ

γβ2
2

Vϵ(1 + ϵ; t). (3.4.36)

The proof follows the same step as the previous case, the only difference is that here we have additional
boundary terms when performing integration by parts due to the presence of the insertions in 0 and 1. Similarly
we compute,

(2χ+
1

χ
− q

γ

2
− β1 − β2)Hχ,ϵ = −

∫
Rϵ

dµ(x1)

(
β1t

x1
+
β2(t− 1)

x1 − 1

)
(t− x1)

γχ
2

|x1|
γβ1
2 |x1 − 1|

γβ2
2

Vϵ(x1; t)

+
2

γ

(
−(t+ ϵ)E−

0,ϵ(t) + (t− ϵ)E+
0,ϵ(t)− (t− 1 + ϵ)E−

1,ϵ(t) + (t− 1− ϵ)E+
1,ϵ(t)

)
, (3.4.37)

∂tHχ,ϵ = −q γ
2

∫
Rϵ

dµ(x1)

(
β1
x1

+
β2

x1 − 1

)
(t− x1)

γχ
2

|x1|
γβ1
2 |x1 − 1|

γβ2
2

Vϵ(x1; t)

+q
(
−E−

0,ϵ(t) + E+
0,ϵ(t)− E−

1,ϵ(t) + E+
1,ϵ(t)

)
, (3.4.38)

∂2tHχ,ϵ = −χ
(
β1
t

+
β2
t− 1

)
∂tHχ,ϵ − q

γχ2

2

∫
Rϵ

dµ(x1)

(
β1
tx1

+
β2

(t− 1)(x1 − 1)

)
(t− x1)

γχ
2

|x1|
γβ1
2 |x1 − 1|

γβ2
2

Vϵ(x1; t)

+qχ2

(
− 1

t+ ϵ
E−

0,ϵ(t) +
1

t− ϵ
E+

0,ϵ(t)−
1

t− 1 + ϵ
E−

1,ϵ(t) +
1

t− 1− ϵ
E+

1,ϵ(t)

)
.

(3.4.39)

Then we have

t(1− t)∂2tHχ,ϵ + (C − (A+B + 1)t)∂tHχ,ϵ −ABHχ,ϵ

= qχ2

(
ϵ(1 + ϵ)

t+ ϵ
E−

0,ϵ(t) +
ϵ(1− ϵ)

t− ϵ
E+

0,ϵ(t)−
ϵ(1− ϵ)

t− 1 + ϵ
E−

1,ϵ(t)−
ϵ(1 + ϵ)

t− 1− ϵ
E+

1,ϵ(t)

)
, (3.4.40)
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with the parameters given by:

A = −q γχ
2
, B = −1 + χ(β1 + β2 − 2χ+ q

γ

2
), C = χ(β1 − χ). (3.4.41)

To complete the proof the only thing left is to argue that the boundary terms ϵE±
·,ϵ(t) converge to 0 as ϵ goes

to 0 locally uniformly in t. This has been done in [89]. Thus we have proved the differential equation for Hχ

in a weak sense, which is equivalent to its strong sense in this case. Finally the exact same argument works
for H̃χ(t).

3.5 Appendix
3.5.1 Some useful theorems
We recall some theorems in probability that we will use without further justification. In the following D is a
compact subset of Rd.
Theorem 3.5.1 (Girsanov theorem). Let (Z(x))x∈D be a continuous centered Gaussian process and Z a
Gaussian variable which belongs to the L2 closure of the vector space spanned by (Z(x))x∈D. Let F be a real
continuous bounded function from C(D,R) to R. Then we have the following identity:

E
[
eZ− E[Z2]

2 F ((Z(x))x∈D)

]
= E[F ((Z(x) + E[Z(x)Z])x∈D)]. (3.5.1)

When applied to our case, although the log-correlated field X is not a continuous Gaussian process, we can
still make the arguments rigorous by using a regularization procedure (see [89] for a more detailed explanation).
Next we recall Kahane’s inequality:
Theorem 3.5.2 (Kahane’s inequality). Let (Z0(x))x∈D, (Z1(x))x∈D be two continuous centered Gaussian
processes such that for all x, y ∈ D:

|E[Z0(x)Z0(y)]− E[Z1(x)Z1(y)]| ≤ C. (3.5.2)

Define for u ∈ [0, 1]:

Zu =
√
1− uZ0 +

√
uZ1, Wu =

∫
D

eZu(x)−
1
2E[Zu(x)

2]σ(dx). (3.5.3)

Then for all smooth function F with at most polynomial growth at infinity, and σ a complex Radon measure
over D,∣∣∣∣E [F (∫

D

eZ0(x)− 1
2E[Z0(x)

2]σ(dx)

)]
− E

[
F

(∫
D

eZ1(x)− 1
2E[Z1(x)

2]σ(dx)

)]∣∣∣∣ ≤ sup
u∈[0,1]

C

2
E[|Wu|2|F ′′(Wu)|].

(3.5.4)
The same remark as for Theorem 3.5.1 is valid to justify one can use this inequality in the case where Z0

and Z1 are log-correlated fields. Finally we provide the Williams decomposition theorem, see for instance [106]
for a reference:
Theorem 3.5.3. Let (Bs − vs)s≥0 be a Brownian motion with negative drift, i.e. v > 0 and let M =
sups≥0(Bs − vs). Then conditionally on M the law of the path (Bs − vs)s≥0 is given by the joining of two
independent paths:
1) A Brownian motion (B1

s + vs)0≤s≤τM with positive drift v run until its hitting time τM of M .
2) (M +B2

t − vt)t≥0 where (B2
t − vt)t≥0 is a Brownian motion with negative drift conditioned to stay negative.

Moreover, one has the following time reversal property for all C > 0 (where τC denotes the hitting time of
C),

(B1
τC−s + v(τC − s)− C)0≤s≤τC

law
= (B̃s − vs)0≤s≤L−C , (3.5.5)

where (B̃s − vs)s≥0 is a Brownian motion with drift −v conditioned to stay negative and L−C is the last time
(B̃s − vs)s≥0 hits −C.
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3.5.2 Technical estimates on GMC
We repeat here several proofs found in [61, 89] that must be adapted because our objects are complex valued.

3.5.2.1 OPE with reflection

We want to compute the asymptotic expansion of the functions G̃χ and Hχ in the case where there will
be reflection. This has been performed in the previous works [61, 89] but it is not straightforward to adapt
the proofs as we are working with complex valued quantities so there are many inequalities that need to be
adapted. We will treat separately the cases where χ = γ

2 and χ = 2
γ . Starting with the case where χ = 2

γ :

Lemma 3.5.4. (OPE with reflection for χ = 2
γ ) Recall p = 2

γ (Q−α− β
2 + 1

γ ) and consider s ∈ (−1, 0). There
exits a small parameter β0 > 0 such that for β ∈ (Q−β0, Q) and α such that p < 4

γ2 ∧ 2
γ (Q−β), the following

asymptotic expansion holds:

G̃ 2
γ
(s)− G̃ 2

γ
(0) = −s

1
2+

2
γ2

− β
γ
Γ(1− 2

γ (Q− β))Γ( 2γ (Q− β)− p)

Γ(−p)
R(β, 1,−1)G(α, 2Q− β − 2

γ
) + o(|s|

1
2+

2
γ2

− β
γ ).

(3.5.6)

Similarly, recall q = 1
γ (2Q− β1 − β2 − β3 +

2
γ ) and consider t ∈ (0, 1). Then in the following parameter range,

β1 ∈ (Q− β0, Q), q <
4

γ2
∧min

i

2

γ
(Q− βi), µ1 ∈ (0,+∞), µ2, µ3 ∈ (−∞, 0), (3.5.7)

the following asymptotic also holds:

H 2
γ
(it)−H 2

γ
(0) = −(it)

1− 2β1
γ + 4

γ2
Γ(1− 2

γ (Q− β1))Γ(
2
γ (Q− β1)− q)

Γ(−q)
R(β1, µ1, µ2)H

(2Q−β1− 2
γ ,β2,β3)

(µ1,−µ2,−µ3)
(3.5.8)

+ o(|t|1−
2β1
γ + 4

γ2 ).

Proof. We will prove only the case of H 2
γ

, the case of G̃ 2
γ

can be treated in a similar fashion. For a Borel set
I ⊆ R, we introduce the notation,

KI(it) :=

∫
I

it− x

|x|
γβ1
2 |x− 1|

γβ2
2

g(x)
γ2

8 (q−1)e
γ
2X(x)dµ(x), (3.5.9)

where as always dµ(x) = µ11(−∞,0)(x)dx+ µ21(0,1)(x)dx+ µ31(1,∞)(x)dx. In the following it is convenient to
use d|µ|(x) to denote the measure µ11(−∞,0)(x)dx−µ21(0,1)(x)dx−µ31(1,∞)(x)dx which is a positive measure
thanks to our choice µ1 ∈ (0,+∞), µ2, µ3 ∈ (−∞, 0). The signs of the parameters µi allows to separate KI(it)
into a positive real part KI(0) and an imaginary part. This remark is used to bound |KI(it)|q−1 by |KI(0)|q−1

and in several other similar cases (remark that necessarily q − 1 < 0). Now we want to study the asymptotic
of,

E[KR(it)
q]− E[KR(0)

q] =: T1 + T2, (3.5.10)
where we defined:

T1 := E[K(−t,t)c(it)
q]− E[KR(0)

q], T2 := E[KR(it)
q]− E[K(−t,t)c(it)

q]. (3.5.11)

3 First we consider T1. The goal is to show that T1 = o(|t|1−
2β1
γ + 4

γ2 ) = o(|t|
2
γ (Q−β1)). By interpolation,

|T1| ≤|q|
∫ 1

0

duE
[
|K(−t,t)c(it)−KR(0)||uK(−t,t)c(it) + (1− u)KR(0)|q−1

]
(3.5.12)

≤|q|E
[(
|K(−t,t)c(it)−K(−t,t)c(0)|+ |K(−t,t)c(0)−KR(0)|

)
|K(−t,t)c(0)|q−1

]
=|q|(A1 +A2),
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with:

A1 := E
[
|K(−t,t)c(it)−K(−t,t)c(0)||K(−t,t)c(0)|q−1

]
, A2 := E

[
|K(−t,t)c(0)−KR(0)||K(−t,t)c(0)|q−1

]
.

(3.5.13)
We have

A1 ≤ t

∫
(−t,t)c

d|µ|(x1)
1

|x1|
γβ1
2 |x1 − 1|

γβ2
2

E

(∫
(−t,t)c

g(x)
γ2

8 (q−2)e
γ
2X(x)d|µ|(x)

|x|
γβ1
2 −1|x− 1|

γβ2
2 |x− x1|

γ2

2

)q−1
 (3.5.14)

≤ t

∫
R
d|µ|(x1)

2|x1|1(− 1
2 ,

1
2 )
c + 1(− 1

2 ,−t)∪(t, 12 )

|x1|
γβ1
2 |x1 − 1|

γβ2
2

E

(∫
(−t,t)c

g(x)
γ2

8 (q−2)e
γ
2X(x)d|µ|(x)

|x|
γβ1
2 −1|x− 1|

γβ2
2 |x− x1|

γ2

2

)q−1


≤ 2tE

(∫
(−t,t)c

g(x)
γ2

8 (q−1)e
γ
2X(x)d|µ|(x)

|x|
γβ1
2 −1|x− 1|

γβ2
2

)q+O(t2−
γβ1
2 ) = O(t2−

γβ1
2 ).

In the last equality we have ignored the first term since it is a O(t) and we will take β1 > 2
γ . On the other

hand,

A2 ≤ c1

∫
(−t,t)

d|µ|(x1)
1

|x1|
γβ1
2 −1|x1 − 1|

γβ2
2

= O(t2−
γβ1
2 ), (3.5.15)

for some constant c1 > 0. When β1 >
4
γ2

−1
γ
2 −

2
γ

is satisfied, i.e., β0 < 1− γ2

4
γ
2 −

2
γ

, we have O(t2−
γβ1
2 ) = o(t

2
γ (Q−β1)).

This proves that
T1 = o(t

2
γ (Q−β1)). (3.5.16)

3 Now we focus on T2. The goal is to restrict K to (−∞,−t) ∪ (−t1+h, t1+h) ∪ (t,∞), with h > 0 a small
positive constant to be fixed, and then the GMC on the three disjoint parts will be weakly correlated. We have
by interpolation and by dropping the imaginary part,∣∣E[KR(it)

q]− E[K(−∞,−t)∪(−t1+h,t1+h)∪(t,∞)(it)
q]
∣∣ (3.5.17)

≤ |q|
∫ 1

0

duE
[
|K(−t,−t1+h)∪(t1+h,t)(it)||uKR(0) + (1− u)K(−∞,−t)∪(−t1+h,t1+h)∪(t,∞)(0)|q−1

]
≤ c2|q|

∫
(−t,−t1+h)∪(t1+h,t)

d|µ|(x1)
t+ |x1|

|x1|
γβ1
2 |x1 − 1|

γβ2
2

= O(t1+(1+h)(1− γβ1
2 )),

for some constant c2 > 0. By taking h satisfying the condition,

h <
1 + ( 2γ − γ

2 )β1 −
4
γ2

γβ1

2 − 1
, (3.5.18)

we have:
E[KR(it)

q]− E[K(−∞,−t)∪(−t1+h,t1+h)∪(t,∞)(it)
q] = o(t

2
γ (Q−β1)). (3.5.19)

It remains to evaluate E[K(−∞,−t)∪(−t1+h,t1+h)∪(t,∞)(it)
q] − E[K(−t,t)c(it)

q]. We now introduce the radial de-
composition of the field X,

X(x) = B−2 ln |x| + Y (x), (3.5.20)
where B, Y are independent Gaussian processes with (Bs)s∈R a Brownian motion starting from 0 for s ≥ 0,
Bs = 0 when s < 0, and Y is a centered Gaussian process with covariance,

E[Y (x)Y (y)] =

{
2 ln |x|∨|y|

|x−y| , |x|, |y| ≤ 1,

2 ln 1
|x−y| −

1
2 ln g(x)−

1
2 ln g(y), else.

(3.5.21)
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One can wonder why the process Y with the above covariance is well-defined. To construct Y , starting from
X set:

Y (x) =

{
X(x)− 1

π

∫ π
0
X(|x|eiθ)dθ, |x| ≤ 1,

X(x), |x| ≥ 1.
(3.5.22)

Now with this decomposition one can write:

KI(it) =

∫
I

it− x

|x|
γβ1
2 − γ2

4 |x− 1|
γβ2
2

g(x)
γ2

8 (q−1)e
γ
2B−2 ln |x|e

γ
2 Y (x)dµ(x). (3.5.23)

From (3.5.21), we deduce that for |x′| ≤ t1+h and |x| ≥ t,

|E[Y (x)Y (x′)]| =
∣∣∣∣2 ln ∣∣∣∣1− x′

x

∣∣∣∣∣∣∣∣ ≤ 4th, (3.5.24)

where we used the inequality | ln |1− x|| ≤ 2|x| for x ∈ [− 1
2 ,

1
2 ]. Define the processes,

P (x) := Y (x)1|x|≤t1+h + Y (x)1|x|≥t, (3.5.25)
P̃ (x) := Ỹ (x)1|x|≤t1+h + Y (x)1|x|≥t, (3.5.26)

where Ỹ is an independent copy of Y . Then we have the inequality over the covariance:∣∣∣E[P (x)P (y)]− E[P̃ (x)P̃ (y)]
∣∣∣ ≤ 4th. (3.5.27)

Consider now for u ∈ [0, 1]:

Pu(x) =
√
1− uP (x) +

√
uP̃ (x), (3.5.28)

KI(it, u) =

∫
I

it− x

|x|
γβ1
2 − γ2

4 |x− 1|
γβ2
2

g(x)
γ2

8 (q−1)e
γ
2B−2 ln |x|e

γ
2 Pu(x)dµ(x). (3.5.29)

By applying Kahane’s inequality of Theorem 3.5.2,∣∣∣E [K(−∞,−t)∪(−t1+h,t1+h)∪(t,∞)(it)
q
]
− E

[(
K(−∞,−t)∪(t,∞)(it) + K̃(−t1+h,t1+h)(it)

)q]∣∣∣ (3.5.30)

≤ 2|q(q − 1)|th sup
u∈[0,1]

E [|KI(it, u)|q]

≤ c3 t
h,

for some constant c3 > 0, and where in K̃(−t1+h,t1+h)(it) we simply use the field Ỹ instead of Y . When
h > 2

γ (Q− β1), we can bound the previous term by o(t
2
γ (Q−β1)).

Consider now the change of variable x = t1+he−s/2 for the field K̃(−t1+h,t1+h)(it). By the Markov property
of the Brownian motion and stationarity of

dµỸ (s) := µ1Ỹ (−e−s/2)ds+ µ2Ỹ (e−s/2)ds, (3.5.31)

we have

K̃(−t1+h,t1+h)(it) =
1

2
it1+(1+h)(1− γβ1

2 + γ2

4 )e
γ
2B2(1+h) ln(1/t)

∫ ∞

0

(1 + ithe−s/2)

|t1+he−s/2 − 1|
γβ2
2

e
γ
2 (B̃s−

s
2 (Q−β1))dµỸ (s),

(3.5.32)
with B̃ an independent Brownian motion. We denote

σt := t1+(1+h)(1− γβ1
2 + γ2

4 )e
γ
2B2(1+h) ln(1/t) , V :=

1

2

∫ ∞

0

e
γ
2 (B̃s−

s
2 (Q−β1))dµỸ (s). (3.5.33)
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By interpolation, we can prove that for some constant c4 > 0:∣∣∣E[(K(−t,t)c(it) + K̃(−t1+h,t1+h)(it))
q]− E

[(
K(−t,t)c(it) + iσtV

)q]∣∣∣ (3.5.34)

≤ c4|q|t1+h+(1+h)(1− γβ1
2 + γ2

4 )E
[
e
γ
2B2(1+h) ln(1/t)

∫ ∞

0

e
γ
2 (B̃s−

s
2 (Q−β1))dµỸ (s)|K(1,2)(0)|q−1

]
.

Since B2(1+h) ln(1/t), (B̃s)s≥0, (Ỹ (x))|x|≤1, and K(1,2)(0) are independent, we can easily bound the last term
by, for some c5 > 0,

c5 t
(1+h)(2− γβ1

2 ) = o(t
2
γ (Q−β1)). (3.5.35)

By the Williams path decomposition of Theorem 3.5.3 we can write,

V = e
γ
2M

1

2

∫ ∞

−LM
e
γ
2 B

Q−β1
2

s µỸ (ds), (3.5.36)

where M = sups>0(B̃s −
Q−β1

2 s) and LM is the last time
(
B
Q−β1

2
−s

)
s≥0

hits −M . Recall that the law of M is

known, for v ≥ 1,
P(e

γ
2M > v) =

1

v
2
γ (Q−β1)

. (3.5.37)

For simplicity, we introduce the notation:

ρ(β1) :=
1

2

∫ ∞

−∞
e
γ
2 B

Q−β1
2

s µỸ (ds). (3.5.38)

Again by interpolation and then independence we can show that∣∣∣E [(K(−t,t)c(it) + iσtV
)q]− E

[(
K(−t,t)c(it) + iσte

γ
2Mρ(β1)

)q]∣∣∣ (3.5.39)

≤ 1

2
|q|t1+(1+h)(1− γβ1

2 + γ2

4 )E
[
e
γ
2B2(1+h) ln(1/t)

∫ 0

−∞
e
γ
2 B

Q−β1
2

s µỸ (ds)
∣∣K(1,2)(0)

∣∣q−1
]

= O(t1+(1+h)(1− γβ1
2 )) = o(t

2
γ (Q−β1)).

In summary,
T2 = E[(K(−t,t)c(it) + iσte

γ
2Mρ(β1))

q]− E[K(−t,t)c(it)
q] + o(t

2
γ (Q−β1)). (3.5.40)

Finally, we evaluate the above difference at first order explicitly using the fact that density of e γ2M is known:

E[(K(−t,t)c(it) + iσte
γ
2Mρ(β1))

q]− E[K(−t,t)c(it)
q] (3.5.41)

=
2

γ
(Q− β1)E

[∫ ∞

1

dv

v
2
γ (Q−β1)+1

((
K(−t,t)c(it) + iσtρ(β1)v

)q −K(−t,t)c(it)
q
)]

= t
2
γ (Q−β1) 2

γ
(Q− β1)E

∫ ∞

σ̂tρ(β1)

K̂(−t,t)c (it)

du

u
2
γ (Q−β1)+1

((iu+ 1)q − 1)ρ(β1)
2
γ (Q−β1)K̂(−t,t)c(it)

q− 2
γ (Q−β1)

 .
In the last equality we have applied Theorem 3.5.1. Next,

K̂(−t,t)c(it) =

∫
(−t,t)c

it− x

|x|
γ
2 (2Q−β1− 2

γ )|x− 1|
γβ2
2

g(x)
γ2

8 (q−1)e
γ
2X(x)dµ(x)

t→0+−→
a.s.

K̂R(0), (3.5.42)
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and for h < 2
γ(Q−β1)

− 1,

σ̂t = t1−(1+h)(1− γβ1
2 + γ2

4 )e
γ
2B2(1+h) ln(1/t)

t→0+−→
a.s.

0. (3.5.43)

With some simple arguments of uniform integrability, we conclude that:

E
[(
K(−t,t)c(it) + iσte

γ
2Mρ(β1)

)q]
− E[K(−t,t)c(it)

q] (3.5.44)

t→0+∼ t
2
γ (Q−β1) 2

γ
(Q− β1)

(∫ ∞

0

du

u
2
γ (Q−β1)+1

((iu+ 1)q − 1)

)
E
[
ρ(β1)

2
γ (Q−β1)

]
E
[
K̂R(0)

q− 2
γ (Q−β1)

]
= (it)

2
γ (Q−β1) 2

γ
(Q− β1)

Γ( 2γ (β1 −Q))Γ( 2γ (Q− β1)− q)

Γ(−q)
R(β1, µ1, µ2)H

(2Q−β1− 2
γ ,β2,β3)

(µ1,−µ2,−µ3)
.

The power of i comes from the evaluation of the integral. Inspecting the proof we see that the conditions on
β0 and h indeed allow us to find small values of these parameters that make the arguments work. Therefore
we have proved the claim.

Now the analogue result for χ = γ
2 :

Lemma 3.5.5. (OPE with reflection for χ = γ
2 ) Recall p = 2

γ (Q− α− β
2 + γ

4 ) and consider s ∈ (0, 1). There
exists a small parameter β0 > 0 such that for β ∈ (Q−β0, Q) and α such that p < 4

γ2 ∧ 2
γ (Q−β), the following

asymptotic expansion holds:

G̃ γ
2
(s)− G̃ γ

2
(0) = −s 1

2+
γ2

8 − γβ
4

Γ(1− 2(Q−β)
γ )Γ(−p+ 2

γ (Q− β))

Γ(−p)
R(β, 1, eiπ

γ2

4 )G(α, 2Q− β − γ

2
)

+ o(|s| 12+
γ2

8 − γβ
4 ). (3.5.45)

Similarly, recall q = 1
γ (2Q − β1 − β2 − β3 + γ

2 ) and consider t ∈ (0, 1). Then for µ1, µ2, µ3 ∈ (0,+∞),
β1 ∈ (Q− β0, Q) and β2, β3 chosen so that q < 4

γ2 ∧mini
2
γ (Q− βi), the following asymptotic also holds:

H γ
2
(t)−H γ

2
(0) = t1−

γβ1
2 + γ2

4
2(Q− β1)

γ

Γ( 2γ (β1 −Q))Γ( 2γ (Q− β1)− q)

Γ(−q)
R(β1, µ1, µ2)H

(2Q−β1− γ
2 ,β2,β3)

(µ1,e
iπ
γ2

4 µ2,e
iπ
γ2

4 µ3)

+ o(|t|1−
γβ1
2 + γ2

4 ). (3.5.46)

Proof. We will keep the notations in the proof of Lemma 3.5.4 although there are some slight differences. This
time K is defined with the χ = γ

2 insertion:

KI(t) :=

∫
I

(t− x)
γ2

4

|x|
γβ1
2 |x− 1|

γβ2
2

g(x)
γ2

8 (q−1)e
γ
2X(x)dµ(x). (3.5.47)

To deal with the complex phase we will simply use the following inequality. For a fixed p < 1 and φ ∈ [0, π),
there exists a constant c > 0 such that for all x1, x2, y1, y2 ∈ (0,+∞):

|(x1 + eiφy1)
p − (x2 + eiφy2)

p| ≤ c(|xp1 − xp2|+ |yp1 − yp2 |). (3.5.48)

This inequality can be proved by studying the derivative of the function (x, y) 7→ (x1/p + eiφy1/p)p. With
the help of this inequality we will be able to perform the same proof as in the case of the previous lemma.
Following the same steps as in [89], we have:

E[|K(−∞,−t)(t)
q −K(−∞,0)(0)

q|] = o(t
γ
2 (Q−β1)), (3.5.49)

E[||K(t,∞)(t)|q − |K(0,∞)(0)|q|] = o(t
γ
2 (Q−β1)). (3.5.50)
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Applying (3.5.48) implies that:

E[|K(−t,t)c(t)
q −KR(0)

q|] = E[|(K(−∞,−t)(t) + eiπ
γ2

4 |K(t,∞)(t)|)q − (K(−∞,0)(0) + eiπ
γ2

4 |K(0,∞)(0)|)q|]
≤ cE[|K(−∞,−t)(t)

q −K(−∞,0)(0)
q|] + cE[||K(t,∞)(t)|q − |K(t,∞)(0)|q|]

≤ o(t
γ
2 (Q−β1)). (3.5.51)

Next we repeat the step where we introduce a small h > 0 and want to compareKR(t) andK(−∞,−t)∪(−t1+h,t1+h)∪(t,∞)(t).
Following again the steps of [89], under the constraint on h,

h <
γβ1

2 − 1

1− γβ1

2 + γ2
, (3.5.52)

one can show that:

E[|K(−∞,t)(t)
q −K(−∞,−t)∪(−t1+h,t1+h)(t)

q|] = o(t
γ
2 (Q−β1)). (3.5.53)

By applying again (3.5.48) one obtains,

E[|KR(t)
q −K(−∞,−t)∪(−t1+h,t1+h)∪(t,∞)(t)

q|] ≤ cE[|K(−∞,t)(t)
q −K(−∞,−t)∪(−t1+h,t1+h)(t)

q|] = o(t
γ
2 (Q−β1)).

(3.5.54)

Therefore as in the previous lemma we have now reduced the problem to studying the difference:

E[K(−∞,−t)∪(−t1+h,t1+h)∪(t,∞)(t)
q]− E[K(−t,t)c(t)

q]. (3.5.55)

We proceed exactly in the same way as the case χ = 2
γ , using Kahane’s inequality of Theorem 3.5.2 to

obtain:

E[K(−∞,−t)∪(−t1+h,t1+h)∪(t,∞)(t)
q]− E[(K(−t,t)c(t) + σtV )q] = O(th) +O(t(1+h)(1−

γβ1
2 + γ2

4 )). (3.5.56)

When h > γ
2 (Q− β1) this term is also a o(t γ2 (Q−β1)). Here the expression of σt is slightly different:

σt = t
γ2

4 +(1+h)(1− γβ1
2 + γ2

4 )e
γ
2B2(1+h) ln(1/t) . (3.5.57)

As in our previous work [89], we can show that

E[(K(−∞,−t)(t) + σtV )q]− E[K(−∞,−t)(t)
q] (3.5.58)

= E[(K(−∞,−t)(t) + σte
γ
2Mρ(β1))

q]− E[K(−∞,−t)(t)
q] + o(t

γ
2 (Q−β1))

This result is proved using inequalities, the lower bound and upper bound are equivalent to a term with order
t
γ
2 (Q−β1). As a consequence,

E[(K(−∞,−t)(t) + σtV )q]− E[(K(−∞,−t)(t) + σte
γ
2Mρ(β1))

q] = o(t
γ
2 (Q−β1)). (3.5.59)

However, we can write V as

σtV = σte
γ
2M

1

2

∫ ∞

−LM
e
γ
2 B

Q−β1
2

s µỸ (ds) ≤ σte
γ
2Mρ(β1). (3.5.60)

This allows us to put an absolute value in expectation:

E[|(K(−∞,−t)(t) + σtV )q − (K(−∞,−t)(t) + σte
γ
2Mρ(β1))

q|] = o(t
γ
2 (Q−β1)) (3.5.61)
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We can conclude by using (3.5.48) that:

E[(K(−t,t)c(t) + σtV )q]− E[(K(−t,t)c(t) + σte
γ
2Mρ(β1))

q] = o(t
γ
2 (Q−β1)) (3.5.62)

We estimate as in the case χ = 2
γ :

E[(K(−t,t)c(t) + σte
γ
2Mρ(β1))

q]− E[K(−t,t)c(t)
q] (3.5.63)

= t
γ
2 (Q−β1)

2(Q− β1)

γ

Γ( 2γ (β1 −Q))Γ( 2γ (Q− β1)− q)

Γ(−q)
R(β1, µ1, µ2)H

(2Q−β1− γ
2 ,β2,β3)

(µ1,µ2e
iπ
γ2

4 ,µ3e
iπ
γ2

4 )
+ o(t

γ
2 (Q−β1)).

Finally it is again possible to choose suitable small h > 0 and β0 > 0. This concludes the proof of the
lemma.

3.5.2.2 Analytic continuation

In this section we prove the lemma of analyticity of the moments of GMC that we have used repetitively
throughout the paper. This fact has been first shown in [61] in the case of the correlation functions on the
sphere. The main idea is that starting from the range of real parameters of βi or α where a given GMC
expression is defined, one can find a small neighborhood in C of the parameter range where the quantity will
still be well-defined and is complex analytic in this parameter range. We also use in Section 3.3 the fact that
the three-point function is complex analytic in the µi. This fact is obtain directly just be differentiating with
respect to µi.

Lemma 3.5.6. (Analycity in insertions weights and in µi of moments of GMC) Consider the following
functions defined in the given parameter range:

• (α, β) 7→ G(α, β) for β < Q, γ
2 − α < β

2 < α.

• (α, β) 7→ Gχ(t) for t ∈ H, β < Q, 2
γ

(
Q− α− β

2 + χ
2

)
< 4

γ2 ∧ 2
γ (Q− β).

• (β1, β2, β3) 7→ H
(β1,β2,β3)

(µ1,µ2,µ3) for:

(µi)i=1,2,3 satisfies Definition 3.1.3, βi < Q,
1

γ
(2Q−

3∑
i=1

βi) <
4

γ2
∧min

i

2

γ
(Q− βi).

• (β1, β2, β3) 7→ Hχ(t) for:

βi < Q, µ1 ∈ (0,∞), µ2, µ3 ∈ −H, q <
4

γ2
∧min

i

2

γ
(Q− βi), t ∈ H.

Then for each function above, and for each of the function’s variables, it is complex analytic in a small complex
neighborhood of any compact set K contained in the domain of definition of the function for real parameters.
Furthermore the function H now viewed as a function of µ1, µ2, µ3 is complex analytic in any compact K̃
contained in the range of parameters written above.

Proof. We briefly adapt the proof of [61] for the function H
(β1,β2,β3)
(µ1,µ2,µ3)

as the other cases can be treated in a
similar manner. The first step performed in [61] is to apply the Girsanov theorem to pull out the insertions
outside of the GMC expectation. It will be convenient to assume the three insertions are not located at 0, 1
and ∞ but rather at three points s1, s2, s3 all in R and obeying the extra constraints |si| > 2 and |si−si′ | > 2
respectively for all i ∈ {1, 2, 3} and for all i 6= i′. The reason it is possible to assume this is that the Liouville
correlations are conformally invariant in the sense of the KPZ formula of [53]. It will be convenient to use the
notations β = (β1, β2, β3) and s = (s1, s2, s3). Our starting point is thus that it is possible to write,

H
(β1,β2,β3)

(µ1,µ2,µ3) = PH(β1,β2,β3)

(µ1,µ2,µ3)(s), (3.5.64)
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for P ∈ R an explicit prefactor that is analytic in the βi and hence can be ignored and where we have
introduced:

H
(β1,β2,β3)

(µ1,µ2,µ3)(s) = E

(∫
R

g(x)
γ
8 (

4
γ−

∑3
i=1 βi)∏3

i=1 |x− si|
γβi
2

e
γ
2X(x)dµ(x)

) 1
γ (2Q−

∑3
i=1 βi)

 . (3.5.65)

Now by applying Theorem 3.5.1 we can obtain H
(β1,β2,β3)

(µ1,µ2,µ3)(s) from the following limit,

H
(β1,β2,β3)
(µ1,µ2,µ3)

(s) = lim
r→∞

Fr(β), (3.5.66)

where we have introduced,

Fr(β) = E

[
3∏
i=1

eβiXr(si)−
β2i
2 E[Xr(si)2]

(∫
Rr
g(x)

1
2 e

γ
2X(x)dµ(x)

)p0]
, (3.5.67)

p0 = 1
γ (2Q−

∑3
i=1 βi) and:

Rr := R\ ∪3
i=1 (si − e−r/2, si + e−r/2). (3.5.68)

The fields Xr(si) are radial parts of X(si) obtained by taking the mean of X(si) over the upper-half circles of
radius e−r/2, ∂B(si, e

−r/2)+.
Now when βi are complex numbers, we write βi = ai + ibi. We want to prove there exists a complex

neighborhood V in C3 containing the domain of definition for real βi such that for all compact sets contained
in V , Fr(β) converges uniformly as r → +∞ over the compact set. It is known that Xr+t(si) − Xr(si) are
independent Brownian motions for different si. Hence,

|Fr+1(β)−Fr(β)| (3.5.69)

=

∣∣∣∣∣E
[

3∏
i=1

eibiXr+1(si)+
b2i
2 E[Xr+1(si)

2]

((∫
Rr+1

e
γ
2X(x)f(x)dµ(x)

)p0
−
(∫

Rr
e
γ
2X(x)f(x)dµ(x)

)p0)]∣∣∣∣∣
≤ c e

r+1
2

∑3
i=1 b

2
iE

[∣∣∣∣∣
(∫

Rr+1

e
γ
2X(x)f(x)dµ(x)

)p0
−
(∫

Rr
e
γ
2X(x)f(x)dµ(x)

)p0∣∣∣∣∣
]
,

where we denote f(x) = g(x)
γ2

8
(p0−1)∏3

i=1 |x−si|
γai
2

. Set Zr :=
∫
Rr e

γ
2X(x)f(x)dµ(x) and Yr := Zr+1 − Zr. We want to

estimate

E[|(Zr + Yr)
p0 − Zp0r |] ≤ E[1|Yr|<ϵ|(Zr + Yr)

p0 − Zp0r |] + E[1|Yr|≥ϵ|(Zr + Yr)
p0 − Zp0r |], (3.5.70)

where ϵ > 0 will be fixed later. By interpolation,

E[1|Yr|<ϵ|(Zr + Yr)
p0 − Zp0r |] ≤ |p0|ϵ sup

u∈[0,1]

E[|(1− u)Zr + uYr|Re(p0)−1] ≤ c ϵ. (3.5.71)

For the other term, we use the Hölder inequality with λ > 1 such that λ
λ−1Re(p0) < min3i=1

2
γ (Q − ai) ∧ 4

γ2 ,
and 0 < m < 4

γ2 ,

E[1|Yr|≥ϵ|(Zr + Yr)
p0 − Zp0r |] ≤ cP(|Yr| ≥ ϵ)

1
λ ≤ cϵ−

m
λ E[|Yr|m]

1
λ (3.5.72)

≤ cϵ−
m
λ E

[∣∣∣∣∣
3∑
i=1

∫
(si−e−r/2,si+er/2)

e
γ
2X(x)f(x)dµ(x)

∣∣∣∣∣
m] 1

λ

≤ c′ϵ−
m
λ

(
max
i
e−

r
2 ((1+

γ2

2 − γai
2 )m− γ2m2

2 )

) 1
λ

=: c′ϵ−
m
λ e−

θ
λ r,
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where in the last step θ ∈ R is defined by the last equality and we have used the multifractional scaling
property of the GMC. We can choose a suitable m such that θ > 0. Now take ϵ = e−ηr with η = θ

λ+m , then:

E[|(Zr + Yr)
p0 − Zp0r |] ≤ c e

r+1
2

∑3
i=1 b

2
i (ϵ+ ϵ−

m
λ e−

θ
λ r) ≤ c′ e−(η− 1

2

∑3
i=1 b

2
i )r. (3.5.73)

Hence if one choose the open set V in such a way that 1
2

∑3
i=1 b

2
i < η always holds, all the inequalities we

have done before hold true and hence we have shown that Fr(β) converges locally uniformly. This proves the
analycity result.

Lastly we very briefly justify all the other cases. The analycity of G(α, β) can be proved in the exact same
way as done above for H(β1,β2,β3)

(µ1,µ2,µ3). Furthermore adding the dependence t to get the functions Gχ(t) and Hχ(t)
also changes nothing to the above argument and so the same claim also holds in this case. Lastly for the
analycity in µi of H(β1,β2,β3)

(µ1,µ2,µ3), one simply needs to notice the complex derivatives are well-defined. For instance
for µ1 one can write,

∂µ1
H

(β1,β2,β3)

(µ1,µ2,µ3) = ∂µ1
E

(∫
R

g(x)
γ
8 (

4
γ−

∑3
i=1 βi)

|x|
γβ1
2 |x− 1|

γβ2
2

e
γ
2X(x)dµ(x)

) 1
γ (2Q−

∑3
i=1 βi)

 (3.5.74)

=

∫ 0

−∞
dx1

g(x1)
γ
8 (

4
γ−

∑3
i=1 βi)

|x|
γβ1
2 |x− 1|

γβ2
2

E

e γ2X(x1)

(∫
R

g(x)
γ
8 (

4
γ−

∑3
i=1 βi)

|x|
γβ1
2 |x− 1|

γβ2
2

e
γ
2X(x)dµ(x)

) 1
γ (2Q−

∑3
i=1 βi)−1

 ,
where the last expression is clearly well-defined. Furthermore one can check that ∂µ1

H
(β1,β2,β3)

(µ1,µ2,µ3) = 0. Therefore
µ1 7→ H

(β1,β2,β3)

(µ1,µ2,µ3) is complex analytic in the claimed domain.

3.5.2.3 The limit of H recovers R

Here we will prove Lemma 3.1.8. With our choice of µi satisfying Definition 3.1.3 this is an easy adaptation of
the positive case.

Proof. We prove the lemma in the first case where β2 < β1. Let us denote ϵ = β3−(β1−β2)
γ , p1 = 2

γ (Q − β1).
For I ⊆ R a Borel set, we introduce the notation:

KI =

∫
I

1

|x|
γβ1
2 |x− 1|

γβ2
2

g(x)
γ2

8 (p−1−ϵ)e
γ
2X(x)dx. (3.5.75)

In our previous paper [89] it is proved that:

ϵE[Kp1−ϵ
[0,1] ]

ϵ→0−→ p1R(β1, 0, 1). (3.5.76)

Using the density of e γ2M , we have by definition of the reflection coefficient,

ϵE
[(
e
γ
2Mρ+(β1)

)p1−ϵ] ϵ→0−→ p1R(β1, 0, 1), (3.5.77)

where:

ρ±(β1) :=
1

2

∫ ∞

−∞
e
γ
2 B

Q−β1
2

s e
γ
2 Y (±e−s/2)ds. (3.5.78)

On the other hand, by the William’s path decomposition of Theorem 3.5.3 we can write:

K[0,1] = e
γ
2M

1

2

∫ ∞

−LM
e
γ
2 B

Q−β1
2

s e
γ
2 Y (e−s/2)ds ≤ e

γ
2Mρ+(β1). (3.5.79)



3.5. APPENDIX 119

Therefore, the result from [89] implies that:

E
[∣∣∣Kp1−ϵ

[0,1] − (e
γ
2Mρ+(β1))

p1−ϵ
∣∣∣] = o(ϵ−1). (3.5.80)

Similarly we also have

E
[∣∣∣∣Kp1−ϵ

[−1,0) −
(
e
γ
2Mρ−(β1)

)p1−ϵ∣∣∣∣] = o(ϵ−1). (3.5.81)

We will use these results to prove the complex µi case. Consider first the case p1 > 1. Using interpolation and
Hölder’s inequality, for λ > 1,

E
[∣∣(µ1K(−∞,0) + µ2K[0,1] + µ3K(1,∞))

p1−ϵ − (µ1K[−1,0) + µ2K[0,1])
p1−ϵ

∣∣] (3.5.82)

≤ E
[
|µ1K(−∞,−1) + µ3K(1,∞)|λ

] 1
λ

× sup
u∈[0,1]

E
[∣∣(1− u)(µ1K(−∞,0) + µ2K[0,1] + µ3K(1,∞)) + u(µ1K[−1,0) + µ2K[0,1])

∣∣(p1−1−ϵ) λ
λ−1

]λ−1
λ

.

Take p1 < λ < min{ 4
γ2 ,

2
γ (Q − β2 ∨ β3)}, then both expectations can be bounded by O(1). By the same

techniques with λ = p− ϵ we prove:

E
[∣∣∣∣(µ1K[−1,0) + µ2K[0,1]

)p1−ϵ − (µ1e
γ
2Mρ−(β1) + µ2e

γ
2Mρ+(β1)

)p1−ϵ∣∣∣∣] (3.5.83)

≤ E

(e γ2M 1

2

∫ −LM

−∞
e
γ
2 B

Q−β1
2

s

(
|µ1|e

γ
2 Y (−e−s/2) + |µ2|e

γ
2 Y (e−s/2)

)
ds

)p1−ϵ 1
p1−ϵ

× E
[(

|µ1|e
γ
2Mρ−(β1) + |µ2|e

γ
2Mρ+(β1)

)p1−ϵ] p1−1−ϵ
p1−ϵ

.

The second expectation is a O(ϵ−1). For the first expectation, we use the inequality that for x, y > 0 one has
xp1−ϵ + yp1−ϵ < (x+ y)p1−ϵ. This shows that:

E

(e γ2M 1

2

∫ −LM

−∞
e
γ
2 B

Q−β1
2

s

(
|µ1|e

γ
2 Y (−e−s/2) + |µ2|e

γ
2 Y (e−s/2)

)
ds

)p1−ϵ (3.5.84)

≤ E
[(

|µ1|e
γ
2Mρ−(β1) + |µ2|e

γ
2Mρ+(β1)

)p−ϵ]
− E

[(
|µ1|K[−1,0) + |µ2|K[0,1]

)p1−ϵ]
= o(ϵ−1).

The last inequality comes from the fact that the two expectations are equivalent when ϵ→ 0 to a term O(ϵ−1).
Therefore:

E
[∣∣∣∣(µ1K[−1,0) + µ2K[0,1]

)p1−ϵ − (µ1e
γ
2Mρ−(β1) + µ2e

γ
2Mρ+(β1)

)p1−ϵ∣∣∣∣] = o(ϵ−1). (3.5.85)

Now consider the case p1 ≤ 1. Since p1 = 2
γ (Q− β1) > 0, we are in the case 0 < p1 ≤ 1. By studying the first

order derivatives of the function,

(R∗
+)

3 3 (x1, x2, x3) 7→
(
µ1x

1
p1
1 + µ2x

1
p1
2 + µ3x

1
p1
3

)p1
, (3.5.86)

we can prove the following inequality with a constant c > 0 depending only on the µi. For xi, x′i > 0,∣∣∣∣∣(
3∑
i=1

µixi)
p1 − (

3∑
i=1

µix
′
i)
p1

∣∣∣∣∣ ≤ c

3∑
i=1

|xp1i − x′p1i |. (3.5.87)
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Applying the inequality,

E
[∣∣∣∣(µ1K[−∞,0) + µ2K[0,1] + µ3K(1,∞)

)p1−ϵ − (µ1e
γ
2Mρ−(β1) + µ2e

γ
2Mρ+(β1)

)p1−ϵ∣∣∣∣] (3.5.88)

≤ cE
[∣∣∣Kp1−ϵ

(−∞,0) − (e
γ
2Mρ−(β1))

p1−ϵ
∣∣∣]+ cE

[∣∣∣Kp1−ϵ
[0,1] − (e

γ
2Mρ+(β1))

p1−ϵ
∣∣∣]+O(1)

≤ cE
[∣∣∣Kp1−ϵ

(−∞,0) − (e
γ
2Mρ−(β1))

p1−ϵ
∣∣∣]+ o(ϵ−1).

Moreover, by sub-additivity,
E[|Kp1−ϵ

(−∞,0) −Kp1−ϵ
(−1,0)|] = E[Kp1−ϵ

(−∞,0) −Kp1−ϵ
(−1,0)] ≤ E[Kp1−ϵ

(−∞,−1)] = O(1). (3.5.89)

Therefore we can bound
E
[∣∣∣Kp1−ϵ

(−∞,0) − (e
γ
2Mρ−(β1))

p1−ϵ
∣∣∣] ≤ E

[∣∣∣Kp1−ϵ
(−1,0) − (e

γ
2Mρ−(β1))

p1−ϵ
∣∣∣]+ o(ϵ−1) = o(ϵ−1). (3.5.90)

In conclusion,

lim
ϵ→0

ϵE
[(
µ1K(−∞,0) + µ2K[0,1] + µ3K(1,∞)

)p1−ϵ]
= lim
ϵ→0

ϵE
[(
µ1e

γ
2Mρ−(β1) + µ2e

γ
2Mρ+(β1)

)p1−ϵ]
(3.5.91)

= p1R(β1, µ1, µ2).

This finishes the proof of the lemma.

3.5.3 Mapping GMC moments from D to H
We prove here a lemma providing a very concrete computation linking the moment of GMC on D to the
moment on H. This will be used to relate the moment formula for GMC on the circle of [88] to the U(α)
defined in our paper.
Lemma 3.5.7. Consider α > γ

2 and let X and XD be the GFF respectively on H and D with covariance given
by equations (3.1.9) and (3.1.11). Then the following equality holds,

E

(∫ 2π

0

e
γ
2XD(e

iθ)dθ

) 2Q−2α
γ

 = 2α(Q−α)E

(∫
R

e
γ
2X(x)

|x− i|γα
g(x)

1
2−

αγ
4 dx

) 2Q−2α
γ

 , (3.5.92)

where both GMC measures are defined by a renormalization according to variable as performed in Definition
3.1.2.
Proof. Take ψ : z 7→ i 1+z1−z the conformal map that maps the unit disk D equipped with the Euclidean metric
to the upper-half plane H equipped with the metric ĝ(x) = 4

|x+i|4 . This also maps the field XD to the field Xĝ

with covariance given by (3.1.12). This coordinate change applied to the GMC implies the following relation:

E

(∫ 2π

0

e
γ
2XD(e

iθ)− γ2

8 E[XD(e
iθ)2]dθ

) 2Q−2α
γ

 = 2α(Q−α)E

(∫
R

e
γ
2Xĝ(x)−

γ2

8 E[Xĝ(eiθ)2]

|x− i|γα
ĝ(x)

γ
4 (

2
γ−α)dx

) 2Q−2α
γ

 .
(3.5.93)

Notice in the above expression we explicitly wrote the renormalization of the GMC to emphasize the formula
holds when the GMC is renormalized by variance. Now lets momentarily assume α > Q and write the integral
over c:

E

(∫
R

e
γ
2Xĝ(x)

|x− i|γα
ĝ(x)

γ
4 (

2
γ−α)dx

) 2Q−2α
γ

 (3.5.94)

=
γ

2

1

Γ( 2γ (α−Q))
e
α
2 (Q−α) ln ĝ(i)

∫
R
dce(α−Q)cE

[
eαXĝ(i)−

α2

2 E[Xĝ(i)2]e−e
γc
2

∫
R e

γ
2
Xĝ(x)−

γ2

8
E[Xĝ(x)

2]ĝ(x)
1
2 dx

]
.
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To go from the field Xĝ to the field X we must perform the change of variable X = Xĝ − Y with Y =
1
π

∫ π
0
Xĝ(e

iθ)dθ. We perform this replacement and at the same time shift the integration over c by −Y to
obtain:∫

R
dce(α−Q)cE

[
eQY eαX(i)−α2

2 E[Xĝ(i)2]e−e
γc
2

∫
R e

γ
2
X(x)− γ2

8
E[Xĝ(x)

2]ĝ(x)
1
2 dx

]
(3.5.95)

=

∫
R
dce(α−Q)cE

[
e
Q2

2 E[Y 2]eαX(i)+αQE[X(i)Y ]−α2

2 E[Xĝ(i)2]e−e
γc
2

∫
R e

γ
2
X(x)+

γQ
2

E[X(x)Y ]− γ2

8
E[Xĝ(x)

2]ĝ(x)
1
2 dx

]
.

In the last line we have applied the Girsanov Theorem 3.5.1 to eQY . Record the following easy computations:

E[Y 2] = − 1

π

∫ π

0

ln ĝ(eiθ)dθ, E[Y Xĝ(x)] =
1

2
ln
g(x)

ĝ(x)
+

1

2
E[Y 2],

E[Y X(x)] =
1

2
ln
g(x)

ĝ(x)
− 1

2
E[Y 2], E[Xĝ(x)

2] = E[X(x)2] + ln
g(x)

ĝ(x)
.

Then:∫
R
dce(α−Q)cE

[
e
Q2

2 E[Y 2]eαX(i)+αQE[X(i)Y ]−α2

2 E[Xĝ(i)2]e−e
γc
2

∫
R e

γ
2
X(x)+

γQ
2

E[X(x)Y ]− γ2

8
E[Xĝ(x)

2]ĝ(x)
1
2 dx

]
(3.5.96)

=

∫
R
dce(α−Q)cE

[
e
Q(Q−α)

2 E[Y 2]e
α
2 (Q−α) ln g(i)

ĝ(i) eαX(i)−α2

2 E[X(i)2]e−e
γc
2

− γQ
4

E[Y 2] ∫
R e

γ
2
X(x)− γ2

8
E[X(x)2]g(x)

1
2 dx

]
= e

α
2 (Q−α) ln g(i)

ĝ(i)

∫
R
dce(α−Q)cE

[
eαX(i)−α2

2 E[X(i)2]e−e
γc
2

∫
R e

γ
2
X(x)− γ2

8
E[X(x)2]g(x)

1
2 dx

]

=
2

γ
Γ

(
2

γ
(α−Q)

)
e
α
2 (α−Q) ln ĝ(i)E

(∫
R

e
γ
2X(x)− γ2

8 E[X(x)2]

|x− i|γα
g(x)

1
2−

αγ
4 dx

) 2Q−2α
γ

 .
To obtain the third line we have shifted the integral over c by Q

2 E[Y
2] and to obtain the last one we have

computed the integral over c. The conclusion of the above is thus that:

E

(∫
R

e
γ
2Xĝ(x)

|x− i|γα
ĝ(x)

γ
4 (

2
γ−α)dx

) 2Q−2α
γ

 = E

(∫
R

e
γ
2X(x)− γ2

8 E[X(x)2]

|x− i|γα
g(x)

1
2−

αγ
4 dx

) 2Q−2α
γ

 . (3.5.97)

To lift the constraint α > Q we have introduced to write the c integrals we can simply use analycity in α of both
sides of the above equation. Then combining this equation with (3.5.93) implies the claim of the lemma.

3.5.4 Special functions
3.5.4.1 Hypergeometric equations

Here we recall some facts we have used on the hypergeometric equation and its solution space. For A > 0
let Γ(A) =

∫∞
0
tA−1e−tdt denote the standard Gamma function which can then be analytically extended to

C \ {−N}. We recall the following useful properties:

Γ(A)Γ(1−A) =
π

sin(πA)
, Γ(A)Γ(A+

1

2
) =

√
π21−2AΓ(2A). (3.5.98)

Let (A)n := Γ(A+n)
Γ(A) . For A,B,C, and x real numbers we define the hypergeometric function F by:

F (A,B,C, t) :=

∞∑
n=0

(A)n(B)n
n!(C)n

tn. (3.5.99)
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This function can be used to solve the following hypergeometric equation:(
t(1− t)

d2

dt2
+ (C − (A+B + 1)t)

d

dt
−AB

)
f(t) = 0. (3.5.100)

We can give the following three bases of solutions corresponding respectively to a power series expansion
around t = 0, t = 1, and t = ∞. Under the assumption that C is not an integer:

f(t) = C1F (A,B,C, t) + C2t
1−CF (1 +A− C, 1 +B − C, 2− C, t). (3.5.101)

Under the assumption that C −A−B is not an integer:

f(t) = B1F (A,B, 1 +A+B − C, 1− t) (3.5.102)
+B2(1− t)C−A−BF (C −A,C −B, 1 + C −A−B, 1− t).

Under the assumption that A−B is not an integer:

f(t) = D1t
−AF (A, 1 +A− C, 1 +A−B, t−1) (3.5.103)

+D2t
−BF (B, 1 +B − C, 1 +B −A, t−1).

For each basis we have two real constants that parametrize the solution space, C1, C2, B1, B2, and D1, D2.
We thus expect to have an explicit change of basis formula that will give a link between C1, C2, B1, B2, and
D1, D2. This is precisely what gives the so-called connection formulas,(

C1

C2

)
=

(
Γ(1−C)Γ(A−B+1)
Γ(A−C+1)Γ(1−B)

Γ(1−C)Γ(B−A+1)
Γ(B−C+1)Γ(1−A)

Γ(C−1)Γ(A−B+1)
Γ(A)Γ(C−B)

Γ(C−1)Γ(B−A+1)
Γ(B)Γ(C−A)

)(
D1

D2

)
, (3.5.104)

(
B1

B2

)
=

(
Γ(C)Γ(C−A−B)
Γ(C−A)Γ(C−B)

Γ(2−C)Γ(C−A−B)
Γ(1−A)Γ(1−B)

Γ(C)Γ(A+B−C)
Γ(A)Γ(B)

Γ(2−C)Γ(A+B−C)
Γ(A−C+1)Γ(B−C+1)

)(
C1

C2

)
. (3.5.105)

These relations come from the theory of hypergeometric equations and we will extensively use them in
Section 3.2 and Section 3.3 to deduce our shift equations.

3.5.4.2 The double gamma function

We will now provide some explanations on the function Γ γ
2
(x) and S γ

2
(x) that we have introduced. For all

γ ∈ (0, 2) and for Re(x) > 0, Γ γ
2
(x) is defined by the integral formula,

ln Γ γ
2
(x) =

∫ ∞

0

dt

t

[
e−xt − e−

Qt
2

(1− e−
γt
2 )(1− e−

2t
γ )

−
(Q2 − x)2

2
e−t +

x− Q
2

t

]
, (3.5.106)

where we have Q = γ
2 +

2
γ . Since the function Γ γ

2
(x) is continuous it is completely determined by the following

two shift equations,

Γ γ
2
(x)

Γ γ
2
(x+ γ

2 )
=

1√
2π

Γ(
γx

2
)(
γ

2
)−

γx
2 + 1

2 , (3.5.107)

Γ γ
2
(x)

Γ γ
2
(x+ 2

γ )
=

1√
2π

Γ(
2x

γ
)(
γ

2
)

2x
γ − 1

2 , (3.5.108)

and by its value in Q
2 , Γ γ

2
(Q2 ) = 1. Furthermore x 7→ Γ γ

2
(x) admits a meromorphic extension to all of C with

single poles at x = −nγ2 −m 2
γ for any n,m ∈ N and Γ γ

2
(x) is never equal to 0. We have also used the double

sine function defined by:

S γ
2
(x) =

Γ γ
2
(x)

Γ γ
2
(Q− x)

. (3.5.109)
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It obeys the following two shift equations:

S γ
2
(x+ γ

2 )

S γ
2
(x)

= 2 sin(
γπ

2
x),

S γ
2
(x+ 2

γ )

S γ
2
(x)

= 2 sin(
2π

γ
x). (3.5.110)

The double sine function admits a meromorphic extension to C with poles at x = −nγ2 −m 2
γ and with zeros

at x = Q+ nγ2 +m 2
γ for any n,m ∈ N. Lastly we will need the following asymptotic for S γ

2
(x):

S γ
2
(x) ∼

{
e−i

π
2 x(x−Q) as Im(x) → ∞,

ei
π
2 x(x−Q) as Im(x) → −∞.

(3.5.111)

3.5.4.3 Some useful integrals

Lemma 3.5.8. For θ0 ∈ [−π, π], −1 < g < 1 and 1 ∨ (1 + g) < b < 2 we have the identity:∫
R+eiθ0

(1 + u)g − 1

ub
du =

Γ(1− b)Γ(−1 + b− g)

Γ(−g)
. (3.5.112)

By R+e
iθ0 we mean a complex contour that is obtained by rotating the half-line (0,+∞) by an angle eiθ0 . In

particular for θ0 = π it is passing above −1 and for θ0 = −π it is passing below.

Proof. Denote by (x)n := x(x+ 1) . . . (x+ n− 1). We start by the case θ0 = 0:∫ ∞

0

(1 + u)g − 1

ub
du =

∞∑
n=0

(−1)n

n!
(−g)n

1

n+ 1− b
−

∞∑
n=0

(−1)n

n!
(−g)n

1

1− b+ g − n
(3.5.113)

=
1

1− b

∞∑
n=0

(−1)n

n!

(−g)n(1− b)n
(2− b)n

− 1

1− b+ g

∞∑
n=0

(−1)n

n!

(−g)n(−1 + b− g)n
(b− g)n

=
1

1− b
2F1(−g, 1− b, 2− b,−1)− 1

1− b+ g
2F1(−g,−1 + b− g, b− g,−1)

=
Γ(1− b)Γ(−1 + b− g)

Γ(−g)
,

where in the last line we used the formula, for suitable a, b ∈ R,

b̄ 2F1(ā+ b̄, ā, ā+ 1,−1) + ā 2F1(ā+ b̄, b̄, b̄+ 1,−1) =
Γ(ā+ 1)Γ(b̄+ 1)

Γ(ā+ b̄)
. (3.5.114)

Then by rotating the contour, it is easy to observe that the value of the integral is the same for all θ0 ∈ [−π, π],
which finishes the proof.

A direct consequence by a change of variable is the following identity:

Lemma 3.5.9. For θ0 ∈ [−π, π], −1 < g < 1 and g < b < 1 ∧ (1 + g) we have the identity:∫
R+eiθ0

(1 + u)g − ug

ub
du =

Γ(1− b)Γ(−1 + b− g)

Γ(−g)
. (3.5.115)
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CHAPTER 4

Higher order BPZ equations

Inspired by some intrinsic relations between Coulomb gas integrals and Gaussian multiplicative chaos, this
article introduces a general mechanism to prove BPZ equations of order (r, 1) and (1, r) in the setting of
probabilistic Liouville conformal field theory, a family of conformal field theory which depends on a parameter
γ ∈ (0, 2). The method consists in regrouping singularities on the degenerate insertion, and transforming the
proof into an algebraic problem. With this method we show that BPZ equations hold on the sphere for the
parameter γ ∈ [

√
2, 2) in the case (r, 1) and for γ ∈ (0, 2) in the case (1, r). The same technique applies to the

boundary Liouville field theory when the bulk cosmological constant µbulk = 0, where we prove BPZ equations
of order (r, 1) and (1, r) for γ ∈ (0, 2).

4.1 Introduction
Liouville conformal field theory (LCFT) falls within the general framework of conformal field theory (CFT).
One of the main goals of the theory is to characterize the correlation functions, which can be considered as
probability amplitudes for some interacting particle system. A direct relevance with probability theory is their
conjectured relation to the scaling limit of large planar maps via the so-called KPZ relation [58].

The purpose of this paper is to show that certain correlation functions of LCFT satisfy the Belavin-
Polyakov-Zamolodchikov (BPZ) equations, which were first proposed in 1984 [10] in the general context of
CFT. The BPZ equations are indexed by two parameters (r, s), with r, s positive integers. The equation
associated with the parameter (r, s) is a partial differential equation of order rs in several complex variables.
There is no general combinatorial formula for the BPZ equations of all orders (r, s). Nevertheless, in 1988,
Benoît and Saint-Aubin (BSA, [11]) found an explicit formula for the BPZ equations of order (r, 1) and (1, r).
The approach that the authors employed is based on the theory of representations. Despite the simplicity, this
approach lacks rigorous definitions of the objects involved.

Recently, in a rigorous mathematical framework, a probabilistic approach to LCFT has been proposed in
David-Kupiainen-Rhodes-Vargas [20]: the authors construct the correlation functions of LCFT on the sphere
using Gaussian multiplicative chaos (GMC). The challenge is to show that the probabilistic setting allows to
prove the conjectures made in the physics literature. In this direction, the BPZ equations of order (2, 1) and
(1, 2) have been proved in [60], which constitutes an important step in proving the remarkable DOZZ formula
[61], first proposed by Dorn-Otto-Zamolodchikov-Zamolodchikov [25, 108].

Other results on GMC are also proved in different geometries based on the BPZ equations, such as the
Fyodorov Bouchaud’s formula [88], the probabilistic distribution of GMC on the unit interval [89] and exact
formulas for the boundary Liouville structure constants [37, 84] in an upcoming work. All these series of
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projects prove the BPZ equations of order (2, 1) and (1, 2) in a different setting and use this to deduce non
trivial shift equations of the object in question, which corresponds to the conformal bootstrap method in
physics.

As a matter of fact, higher order BPZ equations can also be used to deduce exact formulas of certain
correlation functions of LFCT, such as the integral forms introduced by Fateev-Litvinov [38, 39]. The idea
is to first show that the solution space of higher order BPZ equations is of dimension 1 using monodromy
arguments [26, 27]. It is not hard to verify that the integral forms of Fateev-Litvinov satisfy higher order BPZ
equations using its relation with Coulomb gas integrals and analycity of its parameters, especially analycity in
γ. The hard part is to show higher order BPZ equations for Liouville correlation functions where the analycity
in γ is an open problem.

In this article, we investigate the intrinsic problem lying in the BPZ equations for LCFT on the sphere and
on the unit disk, and we prove that the BSA formula for BPZ equations of order (r, 1) and (1, r) holds true
for these two cases under some constraints.

4.1.1 Basic notions
The Gaussian free field with vanishing mean on the Riemannian sphere (C, ĝ), with ĝ(x) := 4

(|x|2+1)2 , has
covariance given by [20]:

E[X(x)X(y)] = ln
1

|x− y|
− 1

4
(ln ĝ(x) + ln ĝ(y)) + ln 2− 1

2
. (4.1.1)

Because of the singularity of its covariance, X is not defined pointwise and lives in the space of distributions. We
use a regularization for the Gaussian free field Xϵ = X ∗ ηϵ, where the function ηϵ is defined by ηϵ = 1

ϵ2 η(
|x|2
ϵ2 ),

and η ∈ C∞ is a non-negative smooth function defined on R+ with compact support in [ 12 , 1] that satisfies
π
∫∞
0
η(t)dt = 1. The variance of the regularized field Xϵ is given by:

E[Xϵ(x)
2] = −1

2
ln ĝϵ(x) + ln 2− 1

2
, (4.1.2)

where ĝϵ = ĝ ∗ ηϵ.
We define the associated GMC measure [56] by a standard regularization procedure: for γ ∈ (0, 2),

eγX(x)ĝ(x)d2x := lim
ϵ→0

eγXϵ(x)−
γ2

2 E[Xϵ(x)2]ĝϵ(x)d
2x. (4.1.3)

The above convergence is in probability in the weak topology of measures, i.e. for any continuous test function
f : C ∪ {∞} → R, the following limit holds in probability:∫

C
f(x)eγX(x)ĝ(x)d2x := lim

ϵ→0

∫
C
f(x)eγXϵ(x)−

γ2

2 E[Xϵ(x)2]ĝϵ(x)d
2x. (4.1.4)

For an elementary proof of this, see [12].
Denote z = (z1, . . . , zN ), and

UN := {(z′1, . . . , z′N ) ∈ CN : ∀i 6= j, z′i 6= z′j}. (4.1.5)

We define
Q =

γ

2
+

2

γ
, (4.1.6)

which is related to the central charge of the LCFT by the formula c = 1+6Q2. Let us introduce the probabilistic
Liouville correlation functions first defined in [20]. The definition we give here is coherent with the physics
literature and is different from the definition in [20] by a multiplicative factor that is of no importance in the
setting of this paper.
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Definition 4.1.1 (Liouville correlations). For N ∈ N∗, α ∈ RN and z ∈ UN , the correlation functions are
defined as follows:

〈
N∏
l=1

Vαl(zl)〉 := lim
ϵ→0

〈
N∏
l=1

Vαl,ϵ(zl)〉

= lim
ϵ→0

2e(ln 2− 1
2 )(

1
2

∑N
l=1 α

2
l−

γ
2

∑N
l=1 αl−

4Q
γ )

∫
R
e−2Qc E

[ N∏
l=1

gϵ(zl)
∆αl eαl(Xϵ(zl)+c)−

α2
l
2 E[Xϵ(zl)2]

× e−µe
γc

∫
C e
γXϵ(x)−

γ2

2
E[Xϵ(x)2]ĝϵ(x)d

2x
]
dc,

(4.1.7)

where ∆α := α
2 (Q− α

2 ) is the conformal weight, and µ > 0 is the cosmological constant.
When the Seiberg bounds

∑N
i=1 αi > 2Q and ∀i, αi < Q are satisfied, the limit above exists and converges

to the following expression:

Z(α)
∏

1≤i<j≤N

1

|zi − zj |αiαj
E

(∫
C

eγX(x)ĝ(x)1−
γ
4

∑N
i=1 αid2x∏N

k=1 |x− zk|γαk

)−
∑N
i=1 αi−2Q

γ

 , (4.1.8)

where

Z(α) := 2e−
(ln 2−1/2)

2 (
∑N
i=1 αi−2Q)(

∑N
i=1 αi−

4
γ )γ−1Γ

(∑N
i=1 αi − 2Q

γ
, µ

)
. (4.1.9)

Note that with different conventions, the constant term Z(α) can differ, but this will not have any impact
on the differential equations. In the notation of Z(α) we ignore the dependence on γ because the parameter
γ should be fixed at first to define the background geometry of Liouville fields. The constraint

∑N
i=1 αi > 2Q

is actually subject to the pole at 0 of the Gamma function. If we remove the gamma function, the domain of
existence can be extended [20]:

Lemma 4.1.2 (Existence). 〈
∏N
l=1 Vαl(zl)〉/Z(α) is non trivial if and only if

(∀i, αi < Q) ∧

(
−
∑N
i=1 αi − 2Q

γ
<

4

γ2
∧min

i

{
2

γ
(Q− αi)

})
. (4.1.10)

This bound is actually the constraint on the moment of total mass of GMC with log singularities. It allows
to have positive moments in the expectation.

Now let us discuss briefly about the regularity of each parameter. It is not hard to show that 〈
∏N
l=1 Vαl(zl)〉

is continuous in γ, α and z respectively, but we can go further. Correlation functions are actually analytic in
α, proved in [61] for αi with small imaginary part (the domain of analyticity was then extended in [54]). The
correlation functions are also smooth in z, as proved in a recent work by Oikarinen [73]:

Lemma 4.1.3 (Smoothness). UN 3 z 7→ 〈
∏N
l=1 Vαl(zl)〉 is C∞.

Let us give the definition for boundary Liouville correlations on the unit disk represented by (H, ĝH), where
ĝH(x) =

4
|x+i|4 is the background metric. It was studied in [53] and here we give a version that adds different

boundary cosmological constants µi

Definition 4.1.4 (Boundary Liouville correlations). Define the Gaussian free field with Newmann boundary
conditions and vanishing mean on the boundary:

E[XH(x)XH(y)] = ln
1

|x− y||x− ȳ|
− 1

2
ln ĝH(x)−

1

2
ln ĝH(y). (4.1.11)
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Let z1, . . . , zN ∈ H pairwise distinct, −∞ < t1 < · · · < tM < ∞ and µ1, . . . , µM > 0 with µ0 = µM by
convention, then the boundary Liouville correlations with µbulk = 0 are defined as

〈
N∏
i=1

Vαi(zi)

M∏
j=1

B
µj−1,µj
βj

(tj)〉H

:=Z(α;β)
∏

1≤i<i′≤N

(|zi − zi′ ||zi − zi′ |)−αiαi′
∏

1≤i≤N,1≤j≤M

|zi − tj |−αiβj
∏

1≤j<j′≤M

|tj − tj′ |−βjβj′/2

× E

(∫
R

1∏N
i=1 |u− zi|γαi

∏M
j=1 |u− tj |γβj/2

e
γ
2XH(u)ĝH(u)

γ2

8 (p+1)dµ∂(u)

)−p
 , (4.1.12)

where p = 2(
∑N
i=1 αi+

1
2

∑M
j=1 βj−Q)

γ and

dµ∂(u)

du
=

M−1∑
j=1

µj1tj<u<tj+1
+ µM1u/∈(t1,tM ). (4.1.13)

Remark 4.1.5. 〈
∏N
i=1 Vαi(zi)

∏M
j=1B

µj−1,µj
βj

(tj)〉H/Z(α;β) is well defined if and only if

(∀i, αi < Q) ∧ (∀j, βj < Q) ∧
(
−p < 4

γ2
∧min

j

{
2

γ
(Q− βj)

})
. (4.1.14)

The different values of µj represent boundary cosmological constants on each piece of the boundary. We
can send some of the µj to 0 as long as dµ∂ is non trivial. The expression of normalization factor Z(α;β) is
of no importance since we are only interested in differential equations in z.

Let us also introduce Coulomb gas integrals that will be useful for proving the BPZ equations. We will
explain later in section 4.1.3 how these integrals are related to Liouville correlation functions.

Definition 4.1.6 (Coulomb gas integrals). Let z ∈ UN , l ∈ N∗. Define the complex Coulomb gas integrals

C(l)
α (z) :=

∏
1≤i<j≤N

|zi − zj |−αiαj
∫
Cl

∏
1≤i≤N,1≤s≤l

|ys − zi|−γαi
∏

1≤s<s′≤l

|ys − ys′ |−γ
2

d2y. (4.1.15)

The integral converges when γ2 < 4
l , ∀i αi <

2
γ − (l−1)γ

2 and
∑N
i=1 αi >

2
γ − (l−1)γ

2 . In the proof of the BPZ
equations, we will need real Coulomb gas integrals: for t0 < t1 < · · · < tN (N ≥ 2),

C(l)
α0,α(t0, t) :=

∏
0≤i<j≤N

(tj − ti)
−
αiαj

2

∫
tN−1<x1<···<xl<tN

∏
0≤i≤N,1≤s≤l

(xs − ti)
− γαi

2

∏
1≤s′<s≤l

(xs − xs′)
− γ2

2 dx,

(4.1.16)
where (−1)α depends on the choice of contour and is set to be eiαπ. Especially, when (γ, αN−1, αN ) ∈ (iR+)

3,
C

(l)
α0,α(t0, t) is always well defined.

Remark 4.1.7. In section 4.2.5, we will consider C(l)
−(r−1)χ,α(t, t) for χ = γ

2 or 2
γ , and we will work with

αN−1, αN ∈ iR+ sufficiently large in absolute value to have enough differentiability.

4.1.2 Main results
Definition 4.1.8. Denote L−(z; z) the algebra generated by the differential operators (L−n)n≥1 and the identity
operator id, where

L−1 := ∂z, L−n :=

N∑
l=1

(
− 1

(zl − z)n−1
∂zl +

∆αl(n− 1)

(zl − z)n

)
n ≥ 2. (4.1.17)
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In the literature, Vα are called local fields, we also call it an insertion. A field Vα is degenerate if α =

− (r−1)γ
2 − 2(s−1)

γ for r, s ∈ N∗, in this case we call it a (r, s)−degenerate insertion. When there is a degenerate
field, physicists have predicted that correlation functions of CFT satisfy certain partial differential equations
with highest order ∂rsz known as the BPZ equations. Although it is theoretically possible to construct this
differential equation from operators of L−(z; z), there is no general formula to achieve this. Only in the case
when r = 1 or s = 1, Benoît and Saint-Aubin [11] found an explicit and compact formula:

Theorem 4.1.9. Let r ≥ 2 an integer and
χ =

γ

2
or 2

γ
. (4.1.18)

The BPZ equations of order r hold true for γ ∈ (
√

2(r−2)
r−1 , 2) when χ = γ

2 and for γ ∈ (0, 2) when χ = 2
γ :

Dr〈V−(r−1)χ(z)

N∏
l=1

Vαl(zl)〉 = 0, (4.1.19)

where the differential operator Dr is given by the Benoît and Saint-Aubin’s formula:

Dr =
r∑

k=1

∑
(n1, ..., nk)∈(N∗)k

n1+···+nk=r

(χ2)r−k∏k−1
j=1 (

∑j
i=1 ni)(

∑k
i=j+1 ni)

L−n1
. . . L−nk , (4.1.20)

with L−n defined in definition 4.1.8.

Remark 4.1.10. In this article we use BPZ of order r to represent the two cases of order (r, 1) and (1, r).
We remark that BPZ equations of order 2 has been well investigated by Kupiainen-Rhodes-Vargas in [60]. The
theorem above generalizes their result to all r ≥ 2, with a constraint on γ when χ = γ

2 . With some slight efforts,
the order 3 BPZ equations can be proved for all γ ∈ (0, 2). This will be shown in section 4.2.4.

Remark 4.1.11. The constraint on γ when χ = γ
2 is a purely technical condition and is only required by

Proposition 4.2.9. In particular, we have BPZ equations of all orders for γ ∈ [
√
2, 2) when χ = γ

2 .

In the boundary LCFT case we can have a boundary degenerate insertion or a bulk degenerate insertion.
When it comes to a boundary degenerate insertion B±

−(r−1)χ(t) defined as below, we will work with an extended
definition where t lives in the upper-half plane:
Definition 4.1.12. Let µ1, . . . µM > 0, −∞ < t1 < · · · < tM <∞ and t ∈ H\{zi, 1 ≤ i ≤ N} ∪ R. We define
the extended correlation function 〈B+

−(r−1)χ(t)
∏N
i=1 Vαi(zi)

∏M
j=1B

µj−1,µj
βj

(tj)〉H by

N∏
i=1

((zi − t)(zi − t))
(r−1)χαi

2

M∏
j=1

(ti − t)
(r−1)χβj

2

∏
1≤i<i′≤N

(|zi − zi′ ||zi − zi′ |)−αiαi′
∏

1≤i≤N,1≤j≤M

|zi − tj |−αiβj

∏
1≤j<j′≤M

|tj − tj′ |−βjβj′/2E

(∫
R

(t− u)
(r−1)γχ

2

|u− zi|γαi |u− tj |γβj/2
e
γ
2
XH(u)ĝH(u)

γ2

8
(p− (r−1)χ

γ
+1)

dµ∂(u)

)−p+
(r−1)χ
γ

 . (4.1.21)

Similarly, we define 〈B−
−(r−1)χ(t)

∏N
i=1 Vαi(zi)

∏M
j=1B

µj−1,µj
βj

(tj)〉H by replacing the term (t− u)
(r−1)γχ

2 in the
above integral by (u− t)

(r−1)γχ
2 .

Remark 4.1.13. When t ∈ R satisfies ti0 < t < ti0+1 for certain 1 ≤ i0 ≤M − 1, we have

〈B±
−(r−1)χ(t)

N∏
i=1

Vαi(zi)

M∏
j=1

B
µj−1,µj
βj

(tj)〉H = 〈Bµi0 ,µi0e
±iπ γχ

2

−(r−1)χ (t)

N∏
i=1

Vαi(zi)

M∏
j=1

B
µj−1,µj
βj

(tj)〉H.

We also have similar results when t < t1 and t > tM . This explains the reason that we call it an extended
correlation function.
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Now we state the BPZ equations for boundary LCFT, where we can prove the result without constraint
on γ.

Theorem 4.1.14. Let r ≥ 2 an integer and χ = γ
2 or 2

γ . Let µ1, . . . , µM > 0, t1 < · · · < tM and t ∈ H\{zi, 1 ≤
i ≤ N}. The BPZ equations of order r for a boundary degenerate insertion hold true for γ ∈ (0, 2):

DH
r 〈B±

−(r−1)χ(t)

N∏
i=1

Vαi(zi)

M∏
j=1

B
µj−1,µj
βj

(tj)〉H = 0, (4.1.22)

where the expression of the differential operator DH
r is given by (4.1.20), where we replace the operators L−n

by LH
−n defined as LH

−1 := ∂t, and for n ≥ 2:

LH
−n :=

N∑
l=1

(
− 1

(zl − t)n−1
∂zl −

1

(zl − t)n−1
∂zl +

∆αl(n− 1)

(zl − t)n
+

∆αl(n− 1)

(zl − t)n

)

+

M∑
l=1

(
− 1

(tl − t)n−1
∂tl +

∆βl(n− 1)

(tl − t)n

)
. (4.1.23)

The BPZ equations of order r also hold true when we insert a bulk degenerate insertion: for γ ∈ (0, 2),

DH,z
r 〈V−(r−1)χ(z)

N∏
i=1

Vαi(zi)

M∏
j=1

B
µj−1,µj
βj

(tj)〉H = 0, (4.1.24)

where DH,z
r is defined by the expression (4.1.20) where we replace L−n by LH,z

−n defined as LH,z
−1 := ∂z, and for

n ≥ 2,

LH,z
−n :=

N∑
l=1

(
− 1

(zl − z)n−1
∂zl −

1

(zl − z)n−1
∂zl +

∆αl(n− 1)

(zl − z)n
+

∆αl(n− 1)

(zl − z)n

)

− 1

(z − z)n−1
∂z +

∆−(r−1)χ(n− 1)

(z − z)n
+

M∑
l=1

(
− 1

(tl − z)n−1
∂tl +

∆βl(n− 1)

(tl − z)n

)
. (4.1.25)

In the boundary LCFT case, the proof of BPZ equations is very similar to the sphere case but there is no
more technical difficulties, see section 4.2.6.

4.1.3 Strategy of the proof
Let us start by explaining the motivation of introducing Coulomb gas integrals and how it relates to Liouville
correlations in a natural way. We consider −

∑N
i=1 αi−2Q

γ = n ∈ N∗. Under this condition, the moment of
Liouville correlations can be expanded by Fubini (the rigorous way is to take a regularization for X):

E

[(∫
C

eγX(x)ĝ(x)1−
γ
4

∑N
i=1 αid2x∏N

k=1 |x− zk|γαk

)n]
=

∫
Cn

n∏
j=1

ĝ(xj)
1− γ

4

∑N
i=1 αi∏N

k=1 |xj − zk|γαk
∏
i<j

eγ
2E[X(xi)X(xj)]d2x

= e
n(n−1)γ2

2 (ln 2− 1
2 )

∫
Cn

n∏
j=1

ĝ(xj)
1− γ

4

∑N
i=1 αi−

(n−1)γ2

4∏N
k=1 |xj − zk|γαk

∏
i<j

1

|xi − xj |γ2 d
2x

= e
n(n−1)γ2

2 (ln 2− 1
2 )

∫
Cn

n∏
j=1

1∏N
k=1 |xj − zk|γαk

∏
i<j

1

|xi − xj |γ2 d
2x.
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Together with the expression of Z(α) (4.1.9), we deduce that when −
∑N
i=1 αi−2Q

γ = n,

〈
N∏
l=1

Vαl(zl)〉 = 2C(n)
α (z). (4.1.26)

It is explained in [103] how physicists use this relation to predict exact formulas on correlation functions of
LCFT.

Now we explain the strategy. Consider the Liouville correlation function on the sphere with a degenerate
insertion: 〈V−(r−1)χ(z)

∏N
l=1 Vαl(zl)〉. By taking successive derivatives following the operators L−n (see section

4.2.1), we will have integrals that have singularities at z and zl. Using integration by parts and some identities
we can regroup all the singularities on z. By doing so we observe some repeating terms PnQq (Definition
4.2.6). This allows us to transform the proof of the BPZ equation into an algebraic problem where we search
to cancel the coefficients before each PnQq.

On the other hand, we can prove directly that real Coulomb gas integrals satisfy BPZ equations. This
is based on the fact that the integrand satisfies BPZ equations (see section 4.3). Furthermore, real Coulomb
gas integrals have the same algebraic development into PnQq as Liouville correlations, but with a different
definition for the quantities Pn and Qq. This is not a surprising fact from the previous explanation of their
relations. A study of linear independence of this family allows to show that all the coefficients are actually
zero, which means that Liouville correlations satisfy BPZ equations. Remark that we use real Coulomb gas
integrals instead of complex ones in order to avoid the problem of integrating against the singularities.

For the organization of this paper, we will present a detailed proof for Theorem 4.1.9 in section 4.2, and
in 4.2.6 we give the proof of Theorem 4.1.14. Section 4.3 provides an original and elementary proof showing
that the integrand of Coulomb gas integrals satisfy BPZ equations, which implies as a consequence that real
Coulomb gas integrals also satisfy the BPZ equations.

Acknolwedgements: I would first like to thank Rémy Rhodes and Vincent Vargas for making me discover
LCFT. I also very warmly thank Yichao Huang, Joona Oikarinen, Eveliina Peltola, and Guillaume Remy for
many fruitful discussions.

4.2 Proof of the BPZ equations
The subsections 4.2.1 to 4.2.5 are devoted to the proof of the BPZ equations on the sphere. In section 4.2.6 we
will see that the BPZ equations for boundary LCFT can be proved in exactly the same manner as the sphere
case, but without constraint on γ since the technical problem is avoided by taking µbulk = 0.

4.2.1 Derivatives of correlation functions
We shall first understand how to derive the correlation functions. A proof for the derivative rule is recalled in
the appendix 4.4.

In this subsection, we will consider the correlation functions 〈
∏N
l=0 Vαl,ϵ(zl)〉 with z0 = z, α0 = −(r− 1)χ.

This is to stay consistent in notations with the later proof of the BPZ equations, but all the results in this
subsection hold true for general values of α0 and z0. Let θ : R+ → [0, 1] be a smooth function that equals 0 in
[0, 12 ] and 1 in [1,∞) and define θδ = θ( |·|δ ) a regularization function. We introduce the notations:
Definition 4.2.1. Define for δ > 0, and (z, z) ∈ UN+1:

⟨
N∏
l=0

Vαl,ϵ(zl)⟩δ =2e
(ln 2− 1

2
)( 1

2

∑N
l=0 α2

l−
γ
2

∑N
l=0 αl−

4Q
γ

)

∫
R
e−2Qc E

[ N∏
l=0

gϵ(zl)
∆αl eαl(Xϵ(zl)+c)−

α2
l
2

E[Xϵ(zl)2]

× e−µeγc
∫
C θ(x−z0)e

γXϵ(x)−
γ2

2
E[Xϵ(x)2]

ĝϵ(x)d
2x
]
dc, (4.2.1)

where we add a regularization around z0 while integrating the GMC measure compared to the expression of
〈
∏N
l=0 Vαl,ϵ(zl)〉 defined in (4.1.7).
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We denote 〈
∏N
l=0 Vαl(zl)〉δ the limit of 〈

∏N
l=0 Vαl,ϵ(zl)〉δ when ϵ goes to 0, which equals

Z(α0,α)
∏

0≤i<j≤N

|zi − zj |−αiαjE[(
∫
C

θδ(x− z0)e
γX(x)ĝ(x)1−

γ
4

∑N
i=0 αid2x∏N

k=0 |x− zk|γαk
)−

∑N
i=0 αi−2Q

γ ]. (4.2.2)

The notation α still stands for (α1, . . . , αN ). Note that 〈
∏N
l=0 Vαl(zl)〉δ converges in the weak topology to

〈
∏N
l=0 Vαl(zl)〉.

Lemma 4.2.2 (Derivative rule). For (z0, z) ∈ UN+1 and 0 ≤ i ≤ N ,

∂zi〈
N∏
l=0

Vαl,ϵ(zl)〉δ =
N∑
j=0
j 6=i

αiαj
2(zj − zi)ϵ

〈
N∏
l=1

Vαl,ϵ(zl)〉δ −
µγαi
2

∫
C

θδ(y − z0)

(y − zi)ϵ
〈Vγ,ϵ(y)

N∏
l=0

Vαl,ϵ(zl)〉δd2y

+ 1{i=0}µ

∫
C
∂zθδ(y − z0)〈Vγ,ϵ(y)

N∏
l=0

Vαl,ϵ(zl)〉δd2y, (4.2.3)

where
1

(z)ϵ
:=

∫
C

∫
C

1

z − x1 + x2
ηϵ(x1)ηϵ(x2)d

2x1d
2x2. (4.2.4)

Remark 4.2.3. The functions 1
(z)ϵ

and 〈
∏N
l=0 Vαl,ϵ(zl)〉δ are smooth. The only difference in this derivative

rule with [60] is that we take the regularization θδ.

Let us explain briefly how to understand this derivative rule from the expression (4.2.2). There are three
terms. The first comes from the preceding term

∏
i<j |zi − zj |−αiαj with regularization. The other two terms

appear whenever we take derivatives on moment of Gaussian multiplicative chaos. We can consider them as
a simple derivative under expectation and then an application of the Girsanov’s theorem. Finally we state an
identity that will be useful:

Lemma 4.2.4 (KPZ Identity). For δ, ϵ ≥ 0, the integral
∫
C θδ(y−z)〈Vγ,ϵ(y)

∏N
l=0 Vαl,ϵ(zl)〉δd2y is well defined

and

µγ

∫
C
θδ(y − z)〈Vγ,ϵ(y)

N∏
l=0

Vαl,ϵ(zl)〉δd2y = (

N∑
l=0

αl − 2Q)〈
N∏
l=0

Vαl,ϵ(zl)〉δ. (4.2.5)

Remark 4.2.5. When δ or ϵ equal 0, it simply means that there is no regularization. By applying the lemma
multiple times, we obtain in particular that for p ≥ 1, the integral∫

Cp

p∏
j=1

θδ(yj − z)〈
p∏
j=1

Vγ,ϵ(yj)

N∏
l=0

Vαl,ϵ(zl)〉δd2y

is well defined. An important information to extract from this is the integrability at infinity of the above integral.

Proof. For ϵ > 0 and δ ≥ 0, by a change of variable c′ = lnµ
γ + c, we have

〈
∏
l

Vαl,ϵ(zl)〉δ =µ
−

∑
l αl−2Q

γ 2e(ln 2− 1
2 )(

1
2

∑N
l=1 α

2
l−

γ
2

∑N
l=1 αl−

4Q
γ )

∫
R
e−2Qc′E

[ N∏
l=1

gϵ(zl)
∆αl eαl(Xϵ(zl)+c

′)−α2
l
2 E[Xϵ(zl)2]e−e

γc′ ∫
C e
γXϵ(x)−

γ2

2
E[Xϵ(x)2]ĝϵ(x)d

2x
]
dc′.

We obtain the lemma by taking the derivative with respect to µ on both sides. The case ϵ = 0 can be obtained
by sending ϵ→ 0.
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In [60], the authors proved that the functions

y → sup
ϵ
〈Vγ,ϵ(y)

N∏
l=1

Vαl,ϵ(zl)〉 and (x, y) → sup
ϵ
〈Vγ,ϵ(x)Vγ,ϵ(y)

N∏
l=1

Vαl,ϵ(zl)〉

are integrable. The results generalize easily to the case with θδ. This fact will be useful later to justify the
convergences.

4.2.2 Repeating patterns
Let us introduce some notations for the terms that will play a central role in the proof of BPZ equations.

Definition 4.2.6. For n ∈ N∗, we define

Pn(z, z) :=

N∑
l=1

αl
2(zl − z)n

(4.2.6)

with z = (z1, . . . , zN ). For n = (n1, . . . , nm), note Pn =
∏m
i=1 Pni .

Let p ∈ N, and q = (q1, . . . , qp) ∈ (N∗)p, we define

Qq(z, z) := (
µγ

2
)p
∫
Cp

p∏
j=1

θδ(yj − z)

(yj − z)qj
〈V−(r−1)χ(z)

p∏
i=1

Vγ(yi)

N∏
l=1

Vαl(zl)〉δ d2y (4.2.7)

We also provide an operator Tk on Qq, with k ∈ N∗:

TkQq = Qq1,...,qk+1,...,qp (4.2.8)

Later we will show that proving the BPZ equations is equivalent to a combinatorial problem in the algebra
generated by Pn and Qq.

Definition 4.2.7. Denote Rδ for an arbitrary term in the functional vectorial space:

Vect
(
(z, z) 7→ D

[
Pn

∫
Cp

∂zθδ(y1 − z)

(y1 − z)q1

p∏
i=2

θδ(yi − z)

(yi − z)qi
〈V−(r−1)χ(z)

p∏
i=1

Vγ(yi)

N∏
l=1

Vαl(zl)〉δ d2y

]
,

D ∈ L−(z;y),n ∈ Nm∗ (m ≥ 0),q ∈ Np∗(p ≥ 1),

p∑
j=1

qj ≤ r − 1

)
. (4.2.9)

Remark 4.2.8. DRδ = Rδ for all D ∈ L−(z;y).

The reason of introducing Rδ(z, z) is that they appear in the calculus of derivatives as perturbation terms
and we want to control these terms. We show that they do not have contribution:

Proposition 4.2.9. When χ = γ
2 and γ ∈ (

√
2(r−2)
r−1 , 2) or when χ = 2

γ and γ ∈ (0, 2), Rδ(z, z) converges
weakly to 0 in the sense of distributions as δ → 0.

Proof. We can set D to identity since if we have weak convergence to 0 when D = id, then applying differential
operators from L−(z; z) will not affect its weak convergence to 0. Without loss of generality, we take Pn = 1.
It is easy to see that ∂zθδ is supported in B(0, δ)\B(0, δ2 ), and ‖∂zθδ‖∞ ≤ c

δ for a constant c > 0. Then it
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suffices to control∣∣∣∣∣
∫
Cp

∂zθδ(y1 − z)

(y1 − z)q1

p∏
i=2

θδ(yi − z)

(yi − z)qi
〈V−(r−1)χ(z)

p∏
i=1

Vγ(yi)

N∏
l=1

Vαl(zl)〉δ d2y

∣∣∣∣∣
≤ c′δ−1−

∑p
i=1 qi

∫
B(z,δ)\B(z, δ2 )

∫
Cp−1

p∏
i=2

θδ(yi − z)〈V−(r−1)χ(z)

p∏
i=1

Vγ(yi)

N∏
l=1

Vαl(zl)〉δ d2y

(4.2.5)
≤ c(α, γ, µ)δ−r

∫
B(z,δ)\B(z, δ2 )

〈V−(r−1)χ(z)Vγ(y1)

N∏
l=1

Vαl(zl)〉δd2y1.

Consider (z, z) in a compact of UN+1. We take δ0 < 1 ∧mini 6=j |zi − zj | ∧mini |zi − z|, then

〈V−(r−1)χ(z)Vγ(y1)

N∏
l=1

Vαl(zl)〉δ ≤ |y1 − z|(r−1)γχZ(−(r − 1)χ, γ,α)

N∏
i=1

|zi − z|(r−1)χαi
∏
i<j

1

|zi − zj |αiαj

sup
y′∈B(z,δ0)

E[(
∫
B(0,1)c

|x− z|(r−1)χeγX(x)ĝ(x)1−
γ
4

∑N
i=1 αid2x

|x− y′|γ2
∏N
k=1 |x− zk|γαk

)−
∑N
i=1 αi−2Q

γ ]

≤ c(α, γ, µ)|y1 − z|(r−1)γχ.

Then we can bound the whole term by c(α, γ, µ)δ(r−1)γχ+2−r, which converges to 0 when the condition on γ
is satisfied.

4.2.3 Recursive formulas
This subsection is devoted to proving a recursive formula that allows to transform the higher BPZ equations
into a combinatorial form. The main result is the following proposition.
Proposition 4.2.10. The following relation holds when n+ |n|+ |q| ≤ r:

L−nPnQq =

[∑
i

ni
Pni+n

Pni

−
n−1∑
i=1

PiPn−i + ((n− 1)Q− (r − 1)χ)Pn + 2

n−1∑
i=1

PiT
n−i
p+1 + ((r − 1)χ− 2(n− 1)

γ
)Tn

p+1

−
n−1∑
i=1

Tn−i
p+2 T

i
p+1 +

p∑
j=1

(
− γ

n−1∑
i=1

PiT
n−i
j + (

(n− 1)γQ

2
− (r − 1)γχ

2
+ qj)T

n
j

+ γ

n−1∑
i=1

Tn−i
p+1 T

i
j − γ2

4

p∑
j′=1

n−1∑
i=1

Tn−i
j′ T i

j

)]
PnQq +Rδ (4.2.10)

The recursive relation seems complicated but we will not use directly this expression, what we need is only
the homogeneity of PnQq. The proposition shows that DrQ0 can be expressed as

DrQ0 =
∑

n,q:|n|+|q|=r

λn,q(γ)PnQq +Rδ, (4.2.11)

where λn,q(γ) are rational fractions in γ and are independent of other parameters (the expression of λn,q(γ)
is different when χ takes the value γ

2 or 2
γ ). To avoid ambiguity of the definition, we proceed as if the family

(PnQq)n,q is linearly independent and regroup the coefficients to obtain the above equation. In section 4.2.5, we
will prove that: every coefficient λn,q(γ) equals 0. Then by sending δ to 0, we have Dr〈V− (r−1)γ

2
(z)
∏
l Vαl(zl)〉 =

0 in the weak sense. The smoothness of correlation functions allows to conclude the proof for Theorem 4.1.9.
Now we discuss the first step of proving Proposition 4.2.10. It is easy to see that

L−nPnQq = (
∑
i

ni
Pni+n
Pni

)PnQq + PnL−nQq. (4.2.12)
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Without loss of generality, we can consider Pn = 1. Let us first prove an intermediate lemma, which is the
special case where q = 0:

Lemma 4.2.11. The following relation holds when n ≤ r:

L−nQ0 =
(
−
n−1∑
i=1

PiPn−i + ((n− 1)Q− (r − 1)χ)Pn

)
Q0 + 2

n−1∑
i=1

PiQn−i + ((r − 1)χ− 2(n− 1)

γ
)Qn

−
n−1∑
i=1

Qi,n−i + µ

∫
C

∂zθδ(y − z)

(y − z)n−1
〈z, z; y〉δ d2y. (4.2.13)

Remark 4.2.12. For ϵ ≥ 0, the notation 〈z, z;y〉δ,ϵ stands for 〈V−(r−1)χ,ϵ(z)
∏p
i=1 Vγ,ϵ(yi)

∏N
l=1 Vαl,ϵ(zl)〉δ.

Proof. We will need to use Lemma 4.2.2 for taking derivatives of 〈V−(r−1)χ,ϵ(z)
∏N
l=1 Vαl,ϵ(zl)〉δ, and then

tend ϵ to 0 to get the desired relation. Remark that all the convergences in this proof are locally uniform
convergences for (z, z) when ϵ→ 0, and it will not be specified.

Let us work with the case n ≥ 2,

L−n⟨z, z⟩δ,ϵ =

−
∑
j

∑
l ̸=j

αjαl

2(zj − z)n−1(zl − zj)ϵ
−
∑
j

(r − 1)χαj

2(zj − z)n−1(zj − z)ϵ
+
∑
j

(n− 1)∆αj

(zj − z)n

 ⟨z, z⟩δ,ϵ

+
∑
j

µγαj

2(zj − z)n−1

∫
C

θδ(y − z)

(y − zj)ϵ
⟨z, z; y⟩δ,ϵ d2y

= : Aϵ⟨z, z⟩δ,ϵ +Bϵ. (4.2.14)

We use a simple identity to calculate limϵ→0Aϵ and limϵ→0Bϵ:

1

(x1 − x2)(x2 − z)n−1
− 1

(x1 − x2)(x1 − z)n−1
=

n−1∑
i=1

1

(x1 − z)i
1

(x2 − z)n−i
. (4.2.15)

By symmetry and the above identity,∑
j

∑
l 6=j

αjαl
2(zl − zj)(zj − z)n−1

=
1

2

∑
j

∑
l 6=j

αjαl
2(zl − zj)(zj − z)n−1

− αjαl
2(zl − zj)(zl − z)n−1

=

n−1∑
i=1

PiPn−i −
∑
j

(n− 1)α2
j

4(zj − z)n
.

Therefore taking the limit for Aϵ yields

lim
ϵ→0

Aϵ = −
n−1∑
i=1

PiPn−i + ((n− 1)Q− (r − 1)χ)Pn.

For Bϵ, note that

Bϵ −
∫
C

∑
j

µγαjθδ(y − z)

2(y − zj)ϵ(y − z)n−1
〈z, z; y〉δ,ϵ d2y

=

n−1∑
i=1

∑
j

µγαj
2(zj − z)i

∫
C

y − zj
(y − zj)ϵ

θδ(y − z)

(y − z)n−i
〈z, z; y〉δ,ϵ d2y

ϵ→0−→ 2

n−1∑
i=1

PiQn−i.

Here we have used dominant convergence, where we can bound x
(x)ϵ

< c with c a constant independent of ϵ,
and the function y 7→ supϵ〈z, z; y〉δ,ϵ is integrable.
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An integration by parts formula (or Stokes formula) gives the following identity:∫
C

∑
j

αj
µγθδ(y − z)

2(y − zj)ϵ(y − z)n−1
〈z, z; y〉δ,ϵ d2y

=− 2(n− 1)

γ

∫
C

µγθδ(y − z)

2(y − z)n
〈z, z; y〉δ,ϵ d2y + (r − 1)χ

∫
C

µγθδ(y − z)

2(y − z)n−1(y − z)ϵ
〈z, z; y〉δ,ϵ d2y

+ µ

∫
C

∂zθδ(y − z)

(y − z)n−1
〈z, z; y〉δ,ϵ d2y − 2

∫
C2

(µγ)2θδ(x− z)θδ(y − z)

4(x− y)ϵ(y − z)n−1
〈z, z;x, y〉δ,ϵ d2xd2y.

The first two terms in the sum converge to ((r− 1)χ− 2(n−1)
γ )Qn. For the last term, using the integrability of

(x, y) 7→ supϵ〈z, z;x, y〉δ,ϵ and by symmetry,

2

∫
C2

(µγ)2θδ(x− z)θδ(y − z)

4(x− y)ϵ(y − z)n−1
〈z, z;x, y〉δ,ϵ d2xd2y

=

n−1∑
i=1

∫
C2

(µγ)2

4

x− y

(x− y)ϵ

θδ(x− z)θδ(y − z)

(y − z)i(x− z)n−i
〈z, z;x, y〉δ,ϵd2xd2y

ϵ→0−→
n−1∑
i=1

Qi,n−i.

From the above calculus, we deduce that

lim
ϵ→0

Bϵ =2

n−1∑
i=1

PiQn−i + ((r − 1)χ− 2(n− 1)

γ
)Qn −

n−1∑
i=1

Qi,n−i + µ

∫
C

∂zθδ(y − z)

(y − z)n−1
〈z, z; y〉δ d2y.

Sending ϵ to 0 in L−n〈z, z〉δ,ϵ = Aϵ〈z, z〉δ,ϵ + Bϵ proves the lemma for n ≥ 2 in the weak derivative sense.
Then it suffices to conclude with the smoothness of correlations. It is not hard to verify the validity for the
case n = 1, which concludes the proof.

We have shown Proposition 4.2.10 in the special case q = 0 in the previous lemma. The proof for the
general case can then be deduced from this result.

Proof of Proposition 4.2.10. Consider the case n ≥ 2. Let y = (y1, . . . , yp) and R > 0. Note that the operator
L−n commutes with the integral sign in the following expression:

L−n(
µγ

2
)p
∫
B(0,R)p

p∏
j=1

θδ(yj − z)

(yj − z)qj
〈z, z;y〉δ,ϵ d2y = (

µγ

2
)p
∫
B(0,R)p

p∏
j=1

θδ(yj − z)

(yj − z)qj
L−n〈z, z;y〉δ,ϵ d2y.

We introduce the notation

L
〈p〉
−n =

N∑
l=1

(
− ∂zl
(zl − z)n−1

+
(n− 1)∆αl

(zl − z)n

)
+

p∑
i=1

(
− ∂yi
(yi − z)n−1

+
(n− 1)∆γ

(yi − z)n

)
.

This newly defined operator considers y as insertions and applies the corresponding differential operators.
Remark that the value of ∆γ is 1 and we can write

(
µγ

2
)p
∫
B(0,R)p

p∏
j=1

θδ(yj − z)

(yj − z)qj
L−n⟨z, z;y⟩δ,ϵ d2y

=(
µγ

2
)p
∫
B(0,R)p

p∏
j=1

θδ(yj − z)

(yj − z)qj
L

⟨p⟩
−n⟨z, z;y⟩δ,ϵ d

2y

+ (
µγ

2
)p
∫
B(0,R)p

p∏
j=1

θδ(yj − z)

(yj − z)qj

p∑
i=1

( ∂yi

(yi − z)n−1
− n− 1

(yi − z)n
)
⟨z, z;y⟩δ,ϵ d2y

=:ÃR,ϵ + B̃R,ϵ. (4.2.16)
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By the previous lemma, when ϵ→ 0, ÃR,ϵ converges to

z 7→ (
µγ

2
)p
∫
B(0,R)p

p∏
j=1

θδ(yj − z)

(yj − z)qj
L
〈p〉
−n〈z, z;y〉δ d2y

in the sense of distributions. This is because the integral can be regarded as integrating L〈p〉
−n〈z, z;y〉δ,ϵ against

a test function of y. From the expression of L〈p〉
−n〈z, z;y〉δ (see Lemma 4.2.11) we can see that it does not

introduce any singularity for the integral. Consider for example the integral below:

(
µγ

2
)p

∣∣∣∣∣∣
∫
B(0,R)c

∫
B(0,R)p−1

p∏
j=1

θδ(yj − z)

(yj − z)qj
L
〈p〉
−n〈z, z;y〉δ d2y

∣∣∣∣∣∣ .
We can bound it simply by

1

Rq1
(
µγ

2
)p
∫
Cp
θδ(y1 − z)

p∏
j=2

θδ(yj − z)

|yj − z|qj
∣∣∣L〈p〉

−n〈z, z;y〉δ
∣∣∣ d2y.

The above term is well defined and by sending R→ ∞ it converges to 0 for fixed δ. Therefore we can write in
the weak sense:

Ã := lim
R→∞

ÃR,0 = (
µγ

2
)p
∫
Cp

p∏
j=1

θδ(yj − z)

(yj − z)qj
L
〈p〉
−n〈z, z;y〉δ d2y. (4.2.17)

On the other hand, an integration by parts shows that

B̃R,ϵ =

p∑
i=1

(
µγ

2
)p
∫
B(0,R)p

∏
j:j 6=i

θδ(yj − z)

(yj − z)qj

(
qiθδ(yi − z)

(yi − z)qi+n
− ∂zθδ(yi − z)

(yi − z)qi+n−1

)
〈z, z;y〉δ,ϵ d2y +OR→∞(R−1),

where the OR→∞(R−1) comes from the boundary term and can be bounded independently of ϵ. Therefore by
first sending ϵ to 0 and then R→ ∞, we obtain the limit which equals:

B̃ :=

p∑
i=1

qiT
n
i Qq +Rδ. (4.2.18)

The above arguments show that

L−n(
µγ

2
)p
∫
Cp

p∏
j=1

θδ(yj − z)

(yj − z)qj
〈z, z;y〉δ d2y = Ã+ B̃.

In the rest of this proof we do not need to take regularizations with ηϵ. With Lemma 4.2.11, we calculate
Ã:

L
⟨p⟩
−n⟨z, z;y⟩δ =

(
−

n−1∑
i=1

P
⟨p⟩
i P

⟨p⟩
n−i + ((n− 1)Q− (r − 1)χ)P ⟨p⟩

n

)
Q

⟨p⟩
0 + 2

n−1∑
i=1

P
⟨p⟩
i Q

⟨p⟩
n−i

+ ((r − 1)χ− 2(n− 1)

γ
)Q⟨p⟩

n −
n−1∑
i=1

Q
⟨p⟩
i,n−i + µ

∫
C

∂zθδ(yp+1 − z)

(yp+1 − z)n−1
⟨z, z;y, yp+1⟩δ d2yp+1,

where

P
〈p〉
k (z, z,y) =

N∑
l=1

αl
2(zl − z)k

+

p∑
j=1

γ

2(yj − z)k
= Pk +

p∑
j=1

γ

2(yj − z)k
,
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Q
〈p〉
0 (z, z,y) = 〈V−(r−1)χ(z)

p∏
i=1

Vγ(yi)

N∏
l=1

Vαl(zl)〉δ.

Hence

Ã =

[
((r − 1)Q− (r − 1)χ)Pn + 2

n−1∑
i=1

PiT
n−i
p+1 + ((r − 1)χ− 2(n− 1)

γ
)Tn

p+1 −
n−1∑
i=1

Tn−i
p+2 T

i
p+1

+

p∑
j=1

(
− γ

n−1∑
i=1

PiT
n−i
j + (

(n− 1)γQ

2
− (r − 1)γχ

2
)Tn

j + γ

n−1∑
i=1

Tn−i
p+1 T

i
j − γ2

4

p∑
j′=1

n−1∑
i=1

Tn−i
j′ T i

j

)]
PnQq +Rδ.

This allows to prove the statement when Pn = 1. And as remarked previously, this suffices to prove the
statement for any Pn.

Otherwise, one can verify the validity of the formula for the case n = 1. This finishes the proof.

4.2.4 Illustration with order 2 and 3
We give the commutation relation for L−n (n ≥ 1), which can be easily verified with Definition 4.1.8:

Lemma 4.2.13. For n,m ≥ 1
[L−n, L−m] = (m− n)L−(n+m) (4.2.19)

Now we check BPZ equations of order r = 2 and r = 3 with γ ∈ (0, 2). We will see that the proof of the
BPZ equations becomes rather simple and involves only algebraic simplifications.

3 r = 2: By definition,
D2 = χ2L−2 + L2

−1. (4.2.20)
With the help of Proposition 4.2.10, we calculate:

L−1Q0 = −χP1Q0 + χQ1 +Rδ.

By applying the operator L−1 to the above equation, we obtain

L2
−1Q0 = (−χP2 + χ2P 2

1 )Q0 − 2χ2P1Q1 + χ2Q1,1 + χ(−γχ
2

+ 1)Q2 +Rδ.

Again by Proposition 4.2.10, we calculate:

L−2Q0 = (−P 2
1 +

1

χ
P2)Q0 + 2P1Q1 + (χ− 2

γ
)Q2 −Q1,1 +Rδ.

We can verify easily that in D2Q0 = χ2L−2Q0 + L2
−1Q0, all the coefficients before PnQq cancel and therefore

D2Q0 = Rδ. This allows to show BPZ equations in the weak sense, we can then conclude with the smoothness
of correlation functions that the equation holds in the strong sense.

3 r = 3: By definition,

D3 = χ4L−3 +
χ2

2
L−1L−2 +

χ2

2
L−2L−1 +

1

4
L3
−1. (4.2.21)

We have by lemma 4.2.19:
L−2L−1 = L−1L−2 − L−3.

Then we can write
D3 = (χ4 − χ2

2
)L−3 + L−1(χ

2L−2 +
1

4
L2
−1). (4.2.22)

Using Proposition 4.2.10:

L2
−1Q0 = (−2χP2 + 4χ2P 2

1 )Q0 − 8χ2P1Q1 + 4χ2Q1,1 + 2χ(−γχ+ 1)Q2 +Rδ,
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L−2Q0 = (−P 2
1 + (

1

χ
− χ)P2)Q0 + 2P1Q1 + (2χ− 2

γ
)Q2 −Q1,1 +Rδ.

Hence
(χ2L−2 +

1

4
L2
−1)Q0 = (

χ

2
− χ3)P2Q0 + (χ3 − χ

2
)Q2 +Rδ.

We can then write

D3Q0 = (χ4 − χ2

2
)L−3Q0 + (

χ

2
− χ3)L−1P2Q0 + (χ3 − χ

2
)L−1Q2 +Rδ.

We mention that when χ = γ
2 and γ ∈ (0, 1], there is a type of Rδ that does not vanish when δ → 0:

∫
C

∂zθδ(y − z)

(y − z)2
〈V−(r−1)χ(z)Vγ(y)

N∏
l=1

Vαl(zl)〉δ d2y. (4.2.23)

For this kind of non-vanishing perturbation term, we will write it directly with its expression instead of writing
Rδ. In general, there is another type

∫
C2

∂zθδ(y1 − z)

y1 − z

θδ(y2 − z)

y2 − z
〈V−(r−1)χ(z)Vγ(y1)Vγ(y2)

N∏
l=1

Vαl(zl)〉δ d2y1d2y2

that does not vanish. But thanks to the specific replication we use for D3 (4.2.22), this term will not appear
in the final expression, .

For the other types of perturbation terms, they still converge to 0, and we will keep the notation Rδ. With
our calculus, in the expression of D3Q0 the term (4.2.23) appears only in (χ3− χ

2 )L−1Q2 and in (χ4− χ2

2 )L−3Q0.
We can find the exact form of the perturbation term in the proof of Proposition 4.2.10. More precisely, we
have

(
χ

2
− χ3)L−1P2Q0 + (χ3 − χ

2
)L−1Q2

=− (χ4 − χ2

2
)
(
(
2

χ
P3 − 2P1P2)Q0 + 2P2Q1 + 2P1Q2 − 2Q2,1 + (γ − 2

χ
)Q3

)
− µ

γ

2
(χ3 − χ

2
)

∫
C

∂zθδ(y − z)

(y1 − z)2
〈V−(r−1)χ(z)Vγ(y)

N∏
l=1

Vαl(zl)〉δ d2y +Rδ,

and

L−3Q0 =(
2

χ
P3 − 2P1P2)Q0 + 2P2Q1 + 2P1Q2 − 2Q2,1 + (2χ− 2

γ
)Q3

+ µ

∫
C

∂zθδ(y − z)

(y1 − z)2
〈V−(r−1)χ(z)Vγ(y)

N∏
l=1

Vαl(zl)〉δ d2y +Rδ.

When χ = γ
2 , we can verify that all the terms cancel and D3Q0 = Rδ. Especially, the perturbations that we

cannot control cancel among them. When χ = 2
γ , the term

∫
C

∂zθδ(y − z)

(y1 − z)2
〈V−(r−1)χ(z)Vγ(y)

N∏
l=1

Vαl(zl)〉δ d2y

converges to 0 by Proposition 4.2.9 and we can keep using the notation Rδ for it. Hence we also have D3Q0 =
Rδ. This finishes the proof for BPZ equations of order 3.
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4.2.5 Proof of the BPZ equations of order r with real Coulomb gas
According to the previous discussions, the proof of the BPZ equations of order r has been reduced to an alge-
braic problem. Interestingly, real coulomb gas integrals with a degenerate insertion satisfy the same recursive
relations, but without perturbation terms.

Definition 4.2.14. For x1 < · · · < xl (l ≥ 1) and t < t1 < · · · < tN (N ≥ 2), we denote the integrand of real
Coulomb gas integrals with degenerate insertions as

f
(l)
−(r−1)χ,α(t, t;x) :=

∏
0≤i<j≤N

(tj − ti)
−
αiαj

2

∏
0≤i≤N,1≤s≤l

(xs − ti)
− γαi

2

∏
1≤s′<s≤l

(xs − xs′)
− γ2

2 , (4.2.24)

where we denote α0 = −(r − 1)χ, t0 = t and by convention (−1)α = eiπα.

For real Coulomb gas integrals, we will always work with the condition

(γ, αN−1, αN ) ∈ (iR+)
3,min{−γαN−1

2
,−γαN

2
} ≥ r. (4.2.25)

It is easy to see that under this condition,

C
(l)
−(r−1)χ,α(t, t) =

∫
tN−1<x1<···<xl<tN

f
(l)
−(r−1)χ,α(t, t;x)dx

is well defined and at least Cr.
Next we define the equivalent of Qq for Coulomb gas integrals.

Definition 4.2.15. Let p ∈ N, and q = (q1, . . . , qp) ∈ (N∗)p, we define

Q(l)
q (t, t) :=

∫
tN−1<x1<···<xl<tN

R(l)
q (t;x)f

(l)
−(r−1)χ,α(t, t;x)d

2x. (4.2.26)

where

R(l)
q (t;x) := (−γ

2
)p

∑
1≤s1<···<sp≤l

p∏
j=1

1

(xsj − t)qj
. (4.2.27)

The operator Tk on Q
(l)
q with k ∈ N∗ is defined as:

TkQ
(l)
q = Q

(l)
q1,...,qk+1,...,qp

. (4.2.28)

Remark 4.2.16. By convention Q
(l)
q = 0 if p > l. Note that in the expression of Q(l)

q there is no need for
regularization θδ around xi = t, since we are considering xi > tN−1 > t so that t is not a singularity.

By abuse of notation, when dealing with real variables, L−n is defined as a real differential operator:

L−1 = ∂t, L−n =

N∑
l=1

(
− 1

(tl − t)n−1
∂tl +

∆αl(n− 1)

(tl − t)n

)
n ≥ 2. (4.2.29)

Then the same recursive relation holds for real Coulomb gas integrals:

Proposition 4.2.17. (Pn(t, t)Q
(l)
q (t, t))n,q satisfies Proposition 4.2.10 with no perturbation terms Rδ.

Remark 4.2.18. There is no Rδ since there is no regularization θδ. The proof follows exactly the same steps
as the proof of Proposition 4.2.10 and there is no need for the regularization ηϵ to help calculate the derivatives.
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The proposition tells in particular that

DrQ(l)
0 =

∑
n,q:|n|+|q|=r

λn,q(γ)PnQ
(l)
q , (4.2.30)

with the same coefficients λn,q(γ) as introduced in (4.2.11).
To prove BPZ equations, we only need to show that all the λn,q(γ) are equal to 0. We know that they

are rational fractions of γ, so it suffices to prove it for an infinity number of values for γ ∈ iR+. We show
in the following that real Coulomb gas integrals actually satisfy BPZ equations, which allows to solve the
combinatorial problem, see Proposition 4.2.22.

Lemma 4.2.19. For r ∈ N∗, the following differential equation holds:

Drf (0)−(r−1)χ,α(t, t) = 0. (4.2.31)

Remark 4.2.20. Here Dr is composed of real differential operators L−n, see (4.2.29). The proof of this lemma
can be found in section 4.3. Note that this result has been proved by Kytola-Peltola [62] with a fusion technique
in [31]. The fusion technique requires some non trivial manipulations of the Virasoro algebra. We would like
to mention that our proof is purely combinatorial and elementary.

Proposition 4.2.21. Take (γ,α) such that (4.2.25) is satisfied. Then the real Coulomb gas integrals verify
BPZ equations of order r. More precisely,

DrC(l)
−(r−1)χ,α(t, t) = 0. (4.2.32)

Proof. By applying derivation under the integral sign and Stokes Theorem,

DrC(l)
−(r−1)χ,α(t, t) =

∫
tN−1<x1<···<xl<tN

Drf (l)−(r−1)χ,α(t, t;x)dx

=

∫
tN−1<x1<···<xl<tN

D〈l〉
r f

(l)
−(r−1)χ,α(t, t;x)dx,

with D〈l〉
r the operator Dr where we replace in its expression the operators L−n by

L
〈l〉
−n := L−n +

l∑
s=1

(
− ∂xs
(xs − t)n

+
n− 1

(xs − t)n

)
n ≥ 2.

By Lemma 4.2.19, D〈l〉
r f

(l)
−(r−1)χ,α(t, t;x) = 0, this shows that DrC(l)

−(r−1)χ,α(t, t) = 0.

Proposition 4.2.22. For n,q such that |n|+ |q| = r, the rational function λn,q(γ) equals 0.

Proof. We will work under the condition (4.2.25) with N sufficiently large. From the above proposition together
with the discussion from the previous subsection, we deduce that∑

n,q:|n|+|q|=r

λn,q(γ)PnQ
(r)
q = DrC(r)

−(r−1)χ,α(t, t) = 0.

For simplicity, let us denote t0 = t and α0 = −(r − 1)χ. We can divide the left hand side of the equation
by the common term

∏
0≤i<j≤N (tj − ti)

−
αiαj

2 , then we have

∑
n:|n|≤r

Pn

∑
q:|q|=r−|n|

λn,q(γ)

∫
tN−1<x1<···<xr<tN

R(r)
q (t;x)

∏
0≤i≤N,1≤s≤r

(xs − ti)
− γαi

2

∏
1≤s<s′≤r

(xs − xs′)
− γ2

2 dx = 0.
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Denote the left hand side by (⋆). We claim that the function gn((ti)r+1≤i≤N ) defined by

gn((ti)r+1≤i≤N ) :=
∑

q:|q|=r−|n|

λn,q(γ)

∫
tN−1<x1<···<xr<tN

R(r)
q (t,x)

∏
r+1≤i≤N,1≤s≤r

(xs − ti)
− γαi

2

∏
1≤s≤r

(xs − t)−
γ

∑r
i=0 αi
2

∏
1≤s<s′≤r

(xs − xs′)
− γ2

2 dx (4.2.33)

equals 0 for all |n| ≤ r. To see this, suppose that for all 1 ≤ l ≤ r, αl 6= 0. We study the asymptotic when
t1, t2, . . . , tr tend to t simultaneously:

(⋆) =

 ∑
n:|n|≤r

m∏
j=1

(
r∑
l=1

αl
2(tl − t)nj

)
gn((ti)r+1≤i≤N )

 (1 + o(1))

=

 ∑
n:|n|≤r

 ∑
n′:n⊆n′

cn′((αl)1≤l≤r)gn′((ti)r+1≤i≤N )

 ∑
1≤i1<···<im≤r

m!∏m
j=1(tij − t)nj

 (1 + o(1)),

where n ⊆ n′ means that n is a sub-tuple of n′ and in particular, when n′ = n,

cn′((αl)1≤l≤r) =

∏r
l=1 αl
2r

.

Since (⋆) also equals 0, it is not hard to show (it should be done in a certain order) that

∀|n| ≤ r,
∑

n′:n⊆n′

cn′((αl)1≤l≤r)gn′((ti)r+1≤i≤N ) = 0.

The equations above form a linear system with a triangular coefficient matrix with non null values on the
diagonal, hence we will be able to conclude that gn((ti)r+1≤i≤N ) = 0 for all |n| ≤ r.

Now we have∑
q:|q|=r−|n|

λn,q(γ)

∫
tN−1<x1<···<xr<tN

R(r)
q (t,x)

∏
r+1≤i≤N,1≤s≤r

(xs − ti)
− γαi

2

∏
1≤s≤r

(xs − t)−
γ

∑r
i=0 αi
2

∏
1≤s<s′≤r

(xs − xs′)
− γ2

2 dx = 0. (4.2.34)

Let us take αr+1 = · · · = αN−2 = − 2
γ , note that we can sum over a finite set En of values of ti for each

r + 1 ≤ i ≤ N − 2 to obtain∑
ti∈En

∏
1≤s≤r

(xs − ti) =
∑

1≤i1<···<in≤r

xi1 . . . xin = en(x1, . . . , xr). (4.2.35)

Hence with a sum over (tr+1, . . . , tN−2) ∈ Enr+1
× · · · ×EnN−2

, we can obtain a product of fundamental sym-
metric polynomials:

∏N−2
j=r+1 enj (x1, . . . , xr). Since

∑
q:|q|=r−|n| λn,q(γ)R

(r)
q (t,x)

∏r
s=1(xs − t)r is a symmetric

polynomial in (xs)1≤s≤r, by the fundamental theorem of symmetric polynomials, when N is sufficiently large
we can sum up different values of ti (r + 1 ≤ i ≤ N − 2) to get

∫
tN−1<x1<···<xr<tN

∣∣∣∣∣∣
∑

q:|q|=r−|n|

λn,q(γ)R
(r)
q (t,x)

∣∣∣∣∣∣
2

r∏
s=1

(xs − t)r−
γ

∑r
i=0 αi
2

∏
N−1≤i≤N,1≤s≤r

(xs − ti)
− γαi

2

∏
1≤s<s′≤r

(xs − xs′)
− γ2

2 dx = 0. (4.2.36)
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This implies that for all |n| ≤ r, ∑
q:|q|=r−|n|

λn,q(γ)R
(r)
q (t,x) = 0. (4.2.37)

We can easily extend the above equations to all xs different from t. Then by a study of asymptotic when xs
tend simultaneously to t, we conclude that λn,q(γ) = 0.

This finishes the proof of Theorem 4.1.9.

4.2.6 BPZ equations for boundary Liouville theory

Let us illustrate the idea with the degenerate insertion B+
−(r−1)χ(t). The correlation function (4.1.21) is holo-

morphic in t in the upper half plane except the points zi. The smoothness in (t, z) in this case has not been
proved, but the method in [73] applies to this case and we will assume this property. Note that the derivative
in LH

−1 should be understood as a complex derivative with respect to t.
If we think heuristically Vαi(zi) = Bαi(zi)Bαi(zi), we can observe that the things behave very similar to

the sphere case: firstly the form of LH
−n is nothing but L−n written for the points zi, zi, tj , secondly we can

observe the same form of derivative rule that we illustrate below. We use the regularization ηϵ for the Gaussian
free field X: for x ∈ R

Xϵ(x) = 2

∫
y∈H

X(y)ηϵ(x− y)d2y,

and for zi, 1 ≤ i ≤ N , we define for ϵ sufficiently small

Xϵ(zi) = X ∗ ηϵ.

By abuse of notation, for 1 ≤ i 6= j ≤ N and x, x′ ∈ R, we denote

1

(zi − zj)ϵ
=

∫
C

∫
C

1

zi − zj − x1 + x2
ηϵ(x1)ηϵ(x2)d

2x1d
2x2,

1

(x− x′)ϵ
= 4

∫
H

∫
H

1

x− x′ − x1 + x2
ηϵ(x1)ηϵ(x2)d

2x1d
2x2,

1

(x− zi)ϵ
= 2

∫
H

∫
C

1

x− zi − x1 + x2
ηϵ(x1)ηϵ(x2)d

2x1d
2x2.

For the derivative rules, we have

∂zk〈
N∏
i=1

Vαi,ϵ(zi)

M∏
j=1

B
µj−1,µj
βj ,ϵ

(tj)〉H

=

∑
i:i 6=k

αiαk
2(zi − zk)ϵ

+
∑
i

αiαk
2(zi − zk)ϵ

+
∑
j

βjαk
2(tj − zk)ϵ

 〈
N∏
i=1

Vαi,ϵ(zi)

M∏
j=1

B
µj−1,µj
βj ,ϵ

(tj)〉H

− µ

∫
R

γαk
2(y − zk)ϵ

〈Bγ,ϵ(y)
N∏
i=1

Vαi,ϵ(zi)

M∏
j=1

B
µj−1,µj
βj ,ϵ

(tj)〉Hdy,
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and

∂zk〈
N∏
i=1

Vαi,ϵ(zi)

M∏
j=1

B
µj−1,µj
βj ,ϵ

(tj)〉H

=

∑
i

αiαk
2(zi − zk)ϵ

+
∑
i:i 6=k

αiαk
2(zi − zk)ϵ

+
∑
j

βjαk
2(tj − zk)ϵ

 〈
N∏
i=1

Vαi,ϵ(zi)

M∏
j=1

B
µj−1,µj
βj ,ϵ

(tj)〉H

− µ

∫
R

γαk
2(y − zk)ϵ

〈Bγ,ϵ(y)
N∏
i=1

Vαi,ϵ(zi)

M∏
j=1

B
µj−1,µj
βj ,ϵ

(tj)〉Hdy.

Here the notation Bγ(y) simply means that inserting y between any tj and tj+1 will keep the same boundary
constant sj on both sides of y.

Similarly, when deriving with respect to tj :

∂tk〈
N∏
i=1

Vαi,ϵ(zi)

M∏
j=1

B
µj−1,µj
βj ,ϵ

(tj)〉H =
∑
i

αiβk
2(zi − tk)ϵ

+
∑
i

αiβk
2(zi − tk)ϵ

+
∑
j:j 6=k

βjβk
2(tj − tk)ϵ

−µ
∫
R

γβk
2(y − tk)ϵ

〈Bγ,ϵ(y)
N∏
i=1

Vαi,ϵ(zi)

M∏
j=1

B
µj−1,µj
βj ,ϵ

(tj)〉Hdy.

We observe that the derivative rules behave exactly as if we have insertions zi, zi, tj on the sphere.
Now we present the analogies of PnQq:

Definition 4.2.23. For n ∈ N∗, we define

Pn(t, t; z) :=
N∑
i=1

(
αi

2(zi − t)n
+

αi
2(zi − t)n

)
+

M∑
j=1

βj
2(tj − t)n

. (4.2.38)

Let p ∈ N, and q = (q1, . . . , qp) ∈ (N∗)p, we define

Qq(z, z) := (
µγ

2
)p
∫
Rp

p∏
l=1

1

(yl − t)ql
〈B+

−(r−1)χ(t)

p∏
l=1

Bγ(yl)

N∏
i=1

Vαi(zi)

M∏
j=1

B
µj−1,µj
βj

(tj)〉H dy (4.2.39)

We keep using the notation Tk for TkQq = Qq1,...,qk+1,...,qp .

Remark 4.2.24. There is no need for the regularization θδ around t because yl = t is not a singularity when
t is in the upper half plane. Therefore Qq are well defined objects.

From the observations above, one can easily notice the following result:

Proposition 4.2.25. LH
−n with PnQq satisfy Proposition 4.2.10 without perturbation terms Rδ.

As a consequence, we can write

DH
r 〈B+

−(r−1)χ(t)

N∏
i=1

Vαi(zi)

M∏
j=1

B
µj−1,µj
βj

(tj)〉H =
∑

|n|+|q|=r

λn,q(γ)PnQq = 0.

Since there is no perturbation term, there is no constraint on γ. This finishes the proof of Theorem 4.1.14
with the degenerate insertion B+

−(r−1)χ(t). The case with B−
−(r−1)χ(t) is exactly the same, and the case of BPZ

equation with the degenerate insertion V−(r−1)χ(z) can also be proved in the same manner. This allows to
conclude the proof for Theorem 4.1.14.
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4.3 BPZ equations for the integrand
Here we provide an elementary proof to show that the integrand of real Coulomb gas integrals satisfy BPZ
equations. This result is the key element to show that real Coulomb gas integrals satisfy BPZ equations.

Proposition 4.3.1. For r ∈ N∗, the following differential equation holds:

Drf(t, t) = 0, (4.3.1)

where

f(t, t) := f
(0)
−(r−1)χ,α(t, t) =

∏
1≤i<j≤N

(tj − ti)
−
αiαj

2

N∏
i=1

(ti − t)
(r−1)χαi

2

and recall that L−n for real variables are defined by

L−1 = ∂t, L−n =

N∑
l=1

(
− ∂tl
(tl − t)n−1

+
∆l(n− 1)

(tl − t)n

)
n ≥ 2. (4.3.2)

∆l :=
αl
2 (Q− αl

2 ) is the conformal weight.

Proof. First let us transform it into a combinatorial problem as what we have done in section 4.2.3. Let
Pn(t, t) =

∑N
l=1

αl
2(tl−t)n , we can show easily

L−nPnf =

(∑
i

ni
Pni+n
Pni

−
n−1∑
i=1

PiPn−i + ((n− 1)Q− (r − 1)χ)Pn

)
Pnf (4.3.3)

As a consequence, Drf =
(∑

|n|=r λn(γ)Pn

)
f , where λn(γ) corresponds to λn,q(γ) with q = 0 (see (4.2.11)).

Thus we will need to show that all the coefficients λn(γ) are zero.
Without loss of generality, we can restrict ourselves to the case N ≥ r. Interestingly, we can largely simplify

the problem if we take another point of view by treating Pn(t, t) as a polynomial of (t, t) with values in the
algebra C[α]. If we quotient by the relation

∀1 ≤ i ≤ N, α2
i = 0, (4.3.4)

then we can write

Pn =

m∏
i=1

Pni =
∑

1≤i1<...im≤N

N !

2m(N −m)!

αi1 . . . αim
(ti1 − t)ni1 . . . (tim − t)nim

,

and

Drf =

 r∑
m=1

∑
(n1, ..., nk)∈N∗k

n1+···+nk=r

λn(γ)
∑

1≤i1<...im≤N

N !

2m(N −m)!

αi1 . . . αim
(ti1 − t)ni1 . . . (tim − t)nim

 f.

Thus if we can show Drf = 0 under the quotient relation (4.3.4), then by linear independence of functions

(α, t, t) 7→ αi1 . . . αim
(ti1 − t)ni1 . . . (tim − t)nim

,

we have that λn(γ) = 0 for all |n| = r.
Now we prove Drf = 0 under the condition (4.3.4). In this setting, the operators L−n can be rewritten as

L−n :=

N∑
l=1

(
− ∂tl
(tl − t)n−1

+
Q(n− 1)αl
2(tl − t)n

)
. (4.3.5)
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By first developing L−n1
f with the formula (4.3.3), we have

Drf =

N∑
l1=1

r∑
k=1

∑
n1+···+nk=r

(χ2)r−k∏k−1
j=1 (

∑j
i=1 ni)(r −

∑j
i=1 ni)

L−nk . . . L−n2[(
− (r − n1)χ

2
+

(n1 − 1)

2χ

)
αl1

(tl1 − t)n1
−

∑
l2:l2 6=l1

n1−1∑
i=1

αl1αl2
4

1

(tl1 − t)i(tl2 − t)n1−i

]
f. (4.3.6)

Certain terms with order k and k + 1 (here the order means the number of ni) cancel among themselves,
for example, for fixed (n1, . . . , nk) and l1, we consider the following term with order k + 1:

∑
n′
1+n

′′
1 =n1

(χ2)r−k∏k−1
j=1 (

∑j
i=1 ni)(r −

∑j
i=1 ni)

1

χ2n′1(r − n′1)
L−nk . . . L−n2L−n′′

1
(− (r − n′1)χ

2
)

αl1
(tl1 − t)n

′
1

f. (4.3.7)

If we extract the term that depends on tl1 in the operator L−n′′
1
, we have(

− 1

(tl1 − t)n
′′
1 −1

∂tl1 +
Q(n′′1 − 1)αl1
2(tl1 − t)n

′′
1

)
(− (r − n′1)χ

2
)

αl1
(tl1 − t)n

′
1

f = −n
′
1(r − n′1)χ

2

αl1
(tl1 − t)n1

f,

In this equation we have eliminated all the terms that contain α2
l1

. For example, it is not hard to see that
αl1

(tl1−t)
n′
1+n′′

1 −1
∂tl1 f = 0. The previous calculus shows that if we extract the term − 1

(tl1−t)
n′′
1 −1

∂tl1 +
Q(n′′

1 −1)αl1

2(tl1−t)
n′′
1

from L−n′′
1

in (4.3.7), we can simplify as follows to obtain a term of order k:

−
∑

n′
1+n

′′
1 =n1

(χ2)r−k∏k−1
j=1 (

∑j
i=1 ni)(r −

∑j
i=1 ni)

L−nk . . . L−n2L−n′′
1

1

2χ

αl1
(tl1 − t)n

′
1

f

=− (χ2)r−k∏k−1
j=1 (

∑j
i=1 ni)(r −

∑j
i=1 ni)

L−nk . . . L−n2

(n1 − 1)

2χ

αl1
(tl1 − t)n1

f.

The last line that we extract from (4.3.7) cancels a term of order k in (4.3.6). Thus, after such cancellations,

Drf =

N∑
l1=1

r∑
k=1

∑
n1+···+nk=r

(χ2)r−k∏k−1
j=1 (

∑j
i=1 ni)(r −

∑j
i=1 ni)

[
(− (r − n1)χ

2
)L−nk . . . L

〈�l1 〉
−n2

αl1
(tl1 − t)n1

− L−nk . . . L−n2

∑
l2:l2 6=l1

n1−1∑
i=1

αl1αl2
4

1

(tl1 − t)i(tl2 − t)n1−i

]
f (4.3.8)

where L〈�l〉
−n =

∑
l′ 6=l

(
− ∂t

l′
(tl′−t)n−1 + Q(n−1)αl′

2(tl′−t)n

)
.

Again by fixing (n1, . . . , nk), we consider the following term of order k + 1:

∑
n′
1+n′′

1 =n1

(χ2)r−k∏k−1
j=1 (

∑j
i=1 ni)(r −

∑j
i=1 ni)

1

χ2n′
1(r − n′

1)
(− (r − n′

1)χ

2
)L−nk . . . L−n2L

⟨�l1 ⟩
−n′′

1

αl1

(tl1 − t)n
′
1
f

=−
∑

l2:l2 ̸=l1

∑
n′
1+n′′

1 =n1

(χ2)r−k∏k−1
j=1 (

∑j
i=1 ni)(r −

∑j
i=1 ni)

1

2χn′
1

L−nk . . . L−n2

[
(− (r − n′′

1 )χ

2
+

(n′′
1 − 1)

2χ
)

αl1αl2

(tl1 − t)n
′
1(tl2 − t)n

′′
1
−

∑
l3:l3 /∈{l1,l2}

n′′
1 −1∑
i=1

αl1αl2αl3

4

1

(tl1 − t)n
′
1(tl2 − t)i(tl3 − t)n

′′
1 −i

]
f,
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where in the equality we interchange L〈�l1 〉
−n′′

1
and αl1

(tl1−t)
n′
1

and then apply (4.3.3) to calculate L〈�l1 〉
−n′′

1
f . The

terms with α2
l1

or α2
l2

were eliminated. Then we get

Drf =
∑
l1 6=l2

r∑
k=2

∑
n1+···+nk=r

(χ2)r−k∏k−1
j=1 (

∑j
i=1 ni)(r −

∑j
i=1 ni)

(− (r − n1)χ

2
)L−nk . . . L−n3[

(− (r − n1 − n2)χ

2
+

(n2 − 1)

2χ
)

αl1αl2
(tl1 − t)n1(tl2 − t)n2

−
∑

l3:l3 /∈{l1,l2}

n2−1∑
i=1

αl1αl2αl3
4

1

(tl1 − t)n1(tl2 − t)i(tl3 − t)n2−i

]
f (4.3.9)

Comparing the expression above to the expression (4.3.6), we can proceed with a recurrence. Suppose that we
arrive at the following expression, with 1 ≤ K ≤ r − 1:

Drf =
∑

l1,...,lK :
∀i6=j,li 6=lj

r∑
k=K

∑
n1+···+nk=r

(χ2)r−k∏k−1
j=1 (

∑j
i=1 ni)(r −

∑j
i=1 ni)

K−1∏
j=1

(−
(r −

∑j
i=1 ni)χ

2
)L−nk . . . L−nK+1

[
(−

(r −
∑K
i=1 ni)χ

2
+

(nK − 1)

2χ
)

K∏
j=1

αlj
(tlj − t)nj

−
∑

lK+1:lK+1 /∈{l1,...,lK}

nK−1∑
i=1

K−1∏
j=1

αlj
(tlj − t)nj

 αlKαlK+1

4(tlK − t)i(tlK+1
− t)nK−i

]
f. (4.3.10)

We will repeat what we have done from (4.3.6) to (4.3.9) in this general setting. For fixed tuple of
(n1, . . . , nk, l1, . . . , lK), consider the following configurations with 1 ≤ L ≤ K

(n1, . . . , nL−1, n
′
K , nL, . . . , nK−1, n

′′
K , nK+1, . . . , nk)

Remark that if L = K, the decomposition is simply (n1, . . . , nK−1, n
′
K , n

′′
K , nK+1, . . . , nk). The new configu-

ration has k + 1 terms and we can find some similar cancellations as previously by investigating the following
term of order k + 1:

K∑
L=1

∑
n′
K

+n′′
K

=nK

(χ2)r−k∏k−1
j=1 (

∑j
i=1 ni)(r −

∑j
i=1 ni)

1

χ2

∏K−1
j=L (

∑j
i=1 ni)(r −

∑j
i=1 ni)∏K−1

j=L−1(
∑j

i=1 ni + n′
K)(r −

∑j
i=1 ni − n′

K)

L−1∏
j=1

(−
(r −

∑j
i=1 ni)χ

2
)

K−2∏
j=L−1

(−
(r −

∑j
i=1 ni − n′

K)χ

2
)L−nk . . . L−nK+1

(−
(r −

∑K−1
i=1 ni − n′

K)χ

2
)

(
−

∂tlL

(tlL − t)n
′′
K

−1
+

αlL

(tlL − t)n
′′
K

) ∑
l1,...,lK :

∀i ̸=j,li ̸=lj

K−1∏
j=1
j ̸=L

αlj

(tlj − t)nj

 αlL

(tlL − t)n
′
K

f

Remark that this corresponds to the term extracted from (4.3.7). After some simplifications, this equals

−
∑

n′
K+n′′

K=nK

(χ2)r−k∏k−1
j=1 (

∑j
i=1 ni)

∏k−1
j=K(r −

∑j
i=1 ni)

1

2χ
(−χ

2
)K−1

(
K∑
L=1

n′K
∏K−1
j=L (

∑j
i=1 ni)∏K−1

j=L−1(
∑j
i=1 ni + n′K)

)

L−nk . . . L−nK+1

∑
l1,...,lK :

∀i 6=j,li 6=lj

 K∏
j=1

αlj
(tlj − t)nj

 f.
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We claim that
K∑
L=1

n′K
∏K−1
j=L (

∑j
i=1 ni)∏K−1

j=L−1(
∑j
i=1 ni + n′K)

= 1, (4.3.11)

which is not difficult to prove by induction on K: the case K = 1 is trivial. Suppose that the identity holds
for K = K0, by induction we consider K = K0 + 1:

K∑
L=1

n′K
∏K−1
j=L (

∑j
i=1 ni)∏K−1

j=L−1(
∑j
i=1 ni + n′K)

=

∑K0

i=1 ni∑K0

i=1 ni + n′K0+1

+
n′K0+1∑K0

i=1 ni + n′K0+1

= 1, (4.3.12)

where we separate the sum in to
∑K0

L=1 +
∑
L=K0+1. Therefore we can further simplify the expression above

for the term of order k + 1, which equals now

−
∑

l1,...,lK :
∀i ̸=j,li ̸=lj

(χ2)r−k∏k−1
j=1 (

∑j
i=1 ni)(r −

∑j
i=1 ni)

K−1∏
j=1

(−
(r −

∑j
i=1 ni)χ

2
)L−nk . . . L−nK+1

(nK − 1)

2χ

(
K∏

j=1

αlj

(tlj − t)nj

)
f.

The last line cancels a term of order k in (4.3.10). Therefore, after canceling the terms, we arrive at an
expression which is the analogue of (4.3.8)

Drf =
∑

l1,...,lK :
∀i 6=j,li 6=lj

r∑
k=K

∑
n1+···+nk=r

(χ2)r−k∏k−1
j=1 (

∑j
i=1 ni)(r −

∑j
i=1 ni)

K−1∏
j=1

(−
(r −

∑j
i=1 ni)χ

2
)

[
L−nk . . . L

〈�l1 ,...,��lK 〉
−nK+1

(−
(r −

∑K
i=1 ni)χ

2
)

 K∏
j=1

αlj
(tlj − t)nj

− L−nk . . . L−nK+1

∑
lK+1:lK+1 /∈{l1,...,lK}

nK−1∑
i=1

K−1∏
j=1

αlj
(tlj − t)nj

 αlKαlK+1

4(tlK − t)i(tlK+1
− t)nK−i

]
f (4.3.13)

The last step is to develop the operator L〈�l1 ,...,��lK 〉
−nK+1

exactly as what we did to (4.3.8) and we will obtain

Drf =
∑

l1,...,lK+1:
∀i 6=j,li 6=lj

r∑
k=K+1

∑
n1+···+nk=r

(χ2)r−k∏k−1
j=1 (

∑j
i=1 ni)(r −

∑j
i=1 ni)

K∏
j=1

(−
(r −

∑j
i=1 ni)χ

2
)

L−nk . . . L−nK+2

[
(−

(r −
∑K+1
i=1 ni)χ

2
+

(nK+1 − 1)

2χ
)

 K∏
j=1

αlj
(tlj − t)nj


−

∑
lK+2:lK+2 /∈{l1,...,lK+1}

nK+1−1∑
i=1

 K∏
j=1

αlj
(tlj − t)nj

 αlK+1
αlK+2

4(tlK+1
− t)i(tlK+2

− t)nK+1−i

]
f (4.3.14)

This allows us to go from K to K+1 in the statement (4.3.10). When K grows to r, as ni = 1 for all 1 ≤ i ≤ r
and

∑r
i=1 ni = r, we obtain

Drf = 0 (4.3.15)

under the condition (4.3.4). By discussions at the beginning of the proof, this allows to conclude that λn(γ) = 0
for all |n| = r, hence Drf = 0 in the general setting.
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4.4 Appendix: Proof of the derivative rule
Let us first recall the Gaussian integration by parts formula:
Lemma 4.4.1 (Gaussian integration by parts). Let (Y1, Y2) ∈ R×Rd, d ≥ 1 a centered Gaussian vector, and
ϕ ∈ C∞(Rd) a function that decays faster than any polynomials at infinity. Then,

E[Y1ϕ(Y2)] = E[Y1Y2]E[∇ϕ(Y2)] (4.4.1)

Proof. Let (λ, µ) ∈ R× Rd, we calculate

E[eλY1+µ·Y2 ] = e
λ2

2 E[Y 2
1 ]+λµ·E[Y1Y2]+

1
2
tµVar(Y2)µ

Taking the derivative with respect to λ and evaluate at λ = 0, we obtain:

E[Y1eµ·Y2 ] = µ · E[Y1Y2]e
1
2
tµVar(Y2)µ

This proves the forumla for the function ϕ(y) = eµ·y. We then conclude with an argument of density.

To calculate derivatives of the correlation functions, we will need a ”continuous” version of Gaussian
integration by parts, where Y2 is now of infinite dimension:
Lemma 4.4.2. Let ϵ > 0 and f a smooth test function with compact support. Denote X(f) = (X, f), we have

〈X(f)

N∏
l=0

Vαl,ϵ(zl)〉δ =
N∑
l=0

αlE[X(f)Xϵ(zl)]〈
N∏
l=0

Vαl,ϵ(zl)〉δ

− µγ

∫
C
θδ(y − z0)E[X(f)Xϵ(y)]〈Vγ,ϵ(y)

N∏
l=0

Vαl,ϵ(zl)〉δd2y

(4.4.2)

This result can be obtained from the previous Gaussian integration by parts formula by discretizing the
Gaussian multiplicative chaos measure. Consider a function f such that

∫
C f = 0. By definition, we have for

ϵ > 0 and x ∈ C,
E[X(f)Xϵ(x)] = f ∗ Cϵ(x)−

1

4

∫
C
ln ĝ(y)f(y)d2y

where Cϵ = ln 1
|z| ∗ ηϵ. Recall that ηϵ = 1

ϵ2 η(
|x|2
ϵ2 ) with η supported in [ 12 , 1]. Then by the Gaussian integration

by parts formula,

〈(X +
Q

2
ln ĝ)(f)

N∏
l=0

Vαl,ϵ(zl)〉δ

=

N∑
l=0

αl f ∗ Cϵ(zl)〈
N∏
l=0

Vαl,ϵ(zl)〉δ − µγ

∫
C
θδ(y − z0)f ∗ Cϵ(y)〈Vγ,ϵ(y)

N∏
l=0

Vαl,ϵ(zl)〉δd2y

+
1

4

∫
C
ln ĝ(y)f(y)d2y

(
(2Q−

N∑
l=0

αl)〈
N∏
l=0

Vαl,ϵ(zl)〉δ + µγ

∫
C
θδ(y

′ − z0)〈Vγ,ϵ(y′)
N∏
l=0

Vαl,ϵ(zl)〉δd2y′
)

=

N∑
l=0

αl f ∗ Cϵ(zl)〈
N∏
l=0

Vαl,ϵ(zl)〉δ − µγ

∫
C
θδ(y − z0)f ∗ Cϵ(y)〈Vγ,ϵ(y)

N∏
l=0

Vαl,ϵ(zl)〉δd2y,

where in the last equality we used the KPZ identity (4.2.5) to help the cancellation. Now we take f = ∂zηϵ(zi−·).
Note that for 1 ≤ i ≤ N ,

∂zi

(
gϵ(zi)

∆αi eαiXϵ(zi)−
α2
i
2 E[Xϵ(zi)2]

)
= αi∂zi(Xϵ(zi) +

Q

2
ln ĝϵ(zi)) gϵ(zi)

∆αi eαiXϵ(zi)−
α2
i
2 E[Xϵ(zi)2]

= αi(X +
Q

2
ln ĝ)(f) gϵ(zi)

∆αi eαiXϵ(zi)−
α2
i
2 E[Xϵ(zi)2].
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Hence for 1 ≤ i ≤ N ,

∂zi〈
N∏
l=0

Vαl,ϵ(zl)〉δ =
N∑
j=0
j 6=i

αiαj
2(zj − zi)ϵ

〈
N∏
l=1

Vαl,ϵ(zl)〉δ −
µγαi
2

∫
C

θδ(y − z0)

(y − zi)ϵ
〈Vγ,ϵ(y)

N∏
l=0

Vαl,ϵ(zl)〉δd2y.

When i = 0, there is an additional term coming from the derivative of the regularization θδ(y − z0), which
gives

µ

∫
C
∂zθδ(y − z0)〈Vγ,ϵ(y)

N∏
l=0

Vαl,ϵ(zl)〉δd2y,

this concludes the proof for the derivative rule 4.2.2.
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ABSTRACT 

 

Throughout this PhD thesis we will study two probabilistic objects, Gaussian multiplicative chaos (GMC) measures 

and Liouville conformal field theory (LCFT). The GMC measures were first introduced by Kahane in 1985 and 

have grown into an extremely important field of probability theory and mathematical physics. Very recently GMC 

has been used to give a probabilistic definition of the correlation functions of LCFT, a theory that first appeared in 

Polyakov's 1981 seminal work, "Quantum geometry of bosonic strings". 

 

Once the connection between GMC and LCFT is established, one can hope to translate the techniques of 

conformal field theory in a probabilistic framework to perform exact computations on the GMC measures. We start 

from the BPZ equations for LCFT, introduced by Belavin, Polyakov and Zamolodchikov in 1983. The mechanism 

of these equations is studied in the last part of this thesis and we prove the higher order BPZ equations with a 

general formalism. 

 

Following the probabilistic methods established by Kupiainen-Rhodes-Vargas for the resolution of the BPZ 

equations and after overcoming several major difficulties, we obtain non trivial relations for some fundamental 

objects of LCFT. More precisely, we prove the exact formulas for all the four structure constants of LCFT on the 

disk with null cosmological constant in the bulk, one of which was solved by Remy in 2017. As a special case, we 

find the distribution of the total mass of GMC on the interval with log-singularities put on both ends, a conjecture 

that has been independently predicted by Ostrovsky and by Fyodorov, Le Doussal, and Rosso in 2009. Another 

direct consequence is the law of the total mass of GMC on the unit circle with a log-singularity, conjectured by 

Ostrovsky in 2016. 

 

KEYWORDS : Gaussian multiplicative chaos, Liouville field theory, Conformal field theory, BPZ equations 

 

 

RÉSUMÉ 

 

Cette thèse de doctorat porte sur l'étude de deux objets probabilistes, les mesures de chaos multiplicatif 

gaussien (GMC) et la théorie conforme des champs de Liouville (LCFT). Le GMC fut introduit par Kahane en 

1985 et il s'agit aujourd'hui d'un objet extrêmement important en théorie des probabilités et en physique 

mathématique. Très récemment le GMC a été utilisé pour définir les fonctions de corrélation de la LCFT, une 

théorie qui est apparue pour la première fois en 1981 dans le célèbre article de Polyakov, "Quantum geometry of 

bosonic strings". 

 

Grâce à ce lien établi entre GMC et LCFT, nous pouvons traduire les techniques de la théorie conforme des 

champs dans un langage probabiliste pour effectuer des calculs exacts sur les mesures de GMC. Nous partons 

des équations de BPZ pour LCFT, introduite par Belavin, Polyakov et Zamolodchikov en 1983. Le méchanisme 

de ces équations sera étudié vers la fin de cette thèse et nous prouvrons les équations de BPZ d'ordre 

supérieure avec un formalisme général.  

 

En développant les méthodes probabilistes établies par Kupiainen-Rhodes-Vargas pour la résolution des 

équations de BPZ et en traitant plusieurs difficultés majeures, nous obtiendront  des relations non triviales sur les 

objets fondamentaux du LCFT. Plus précisément, nous prouvrons les formules exactes pour toutes les 

constantes de structure du LCFT sur le disque avec la constante cosmologique nulle à l'intérieur du disque, dont 

une parmi ces quatre a été résolue par Remy en 2017. Comme cas particulier, nous trouverons la distribution de 

la masse totale du GMC sur l'intervalle avec des log-singularités placées en deux extrémités, qui a été 

conjecturé indépendamment par Ostrovsky et par Fyodorov, Le Doussal, et Rosso en 2009. Une autre 

conséquence directe est la loi de la masse totale du GMC sur le cercle avec log-singularité en 1, conjecturé par 

Ostrovsky en 2016. 

 

MOTS CLÉS : Chaos multiplicatif gaussien, Théorie de Liouville, Théorie conforme des champs, Equations de 

BPZ 
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