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Abstract

Due to the massive and increasing amount of documents received each day and the num-
ber of steps to process them, the largest companies have turned to document automation
software for reaching low processing costs. One crucial step of such software is the au-
tomatic extraction of information from the documents, particularly retrieving fields that
repeatedly appear in the incoming documents. To deal with the variability of structure of
the information contained in such documents, the industrial and academic practitioners
have progressively moved from rule-based methods to machine and deep learning mod-
els for performing the extraction task. The goal of this thesis is to provide methods for
learning to extract information from business documents.

In the first part of this manuscript, we embrace the sequence labeling approach by
training deep neural networks to classify the information type carried by each token in
the documents. When provided perfect token labels for learning, we show that these token
classifiers can extract complex tabular information from document issuers and layouts that
were unknown at the model training time. However, when the token level supervision must
be deduced from the high-level ground truth naturally produced by the extraction task,
we demonstrate that the token classifiers extract information from real-world documents
with a significantly lower accuracy due to the noise introduced in the labels.

In the second part of this thesis, we explore methods that learn to extract information
directly from the high-level ground truth at our disposal, thus bypassing the need for
costly token level supervision. We adapt an attention-based sequence-to-sequence model
in order to alternately copy the document tokens carrying relevant information and gen-
erate the XML tags structuring the output extraction schema. Unlike the prior works in
end-to-end information extraction, our approach allows to retrieve any arbitrarily struc-
tured information schemas. By comparing its extraction performance with the previous
token classifiers, we show that end-to-end methods are competitive with sequence labeling
approaches and can greatly outperform them when their token labels are not immediately
accessible.

Finally, in a third part, we confirm that using pre-trained models to extract infor-
mation greatly reduces the needs for annotated documents. We leverage an existing
Transformer based language model which has been pre-trained on a large collection of
business documents. When adapted for an information extraction task through sequence
labeling, the language model requires very few training documents for attaining close to
maximal extraction performance. This underlines that the pre-trained models are sig-
nificantly more data-efficient than models learning the extraction task from scratch. We
also reveal valuable knowledge transfer abilities of this language model since the few-shot
performance is improved when learning beforehand to extract information on another
dataset, even if its targeted fields differ from the initial task.
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Résumé

En raison de la quantité massive et croissante de documents reçus chaque jour et du nom-
bre d’étapes pour les traiter, les plus grandes entreprises se sont tournées vers des logiciels
d’automatisation des processus documentaires afin d’atteindre de faibles coûts de traite-
ment. Une étape cruciale d’un tel logiciel est l’extraction de l’information des documents,
en particulier la récupération des champs qui apparaissent régulièrement dans les docu-
ments entrants. Pour faire face à la variabilité de la structure de l’information contenue
dans ces documents, les systèmes industriels et académiques sont progressivement passés
de méthodes basées sur des règles à des modèles d’apprentissage profond pour effectuer la
tâche d’extraction. L’objectif de cette thèse est d’apporter des méthodes pour apprendre
à extraire l’information des documents commerciaux.

Dans la première partie de ce manuscrit, nous adoptons l’approche d’étiquetage de
séquence en entraînant des réseaux de neurones profonds à classer le type d’information
porté par chaque token des documents. Lorsque les étiquettes des tokens utilisées pour
l’apprentissage sont parfaites, nous montrons que ces classificateurs de tokens peuvent
extraire des champs tabulaires complexes de documents dont l’émetteur et la mise en
page étaient inconnues au moment de l’apprentissage du modèle. Cependant, lorsque la
supervision au niveau du token doit être déduite de la vérité terrain de haut niveau na-
turellement produite par la tâche d’extraction, nous démontrons que les classificateurs de
tokens extraient l’information de documents du monde réel avec une précision nettement
inférieure en raison du bruit introduit dans les étiquettes.

Dans la deuxième partie de cette thèse, nous explorons des méthodes qui apprennent
à extraire de l’information directement à partir de la vérité terrain de haut niveau à notre
disposition, évitant ainsi une supervision au niveau des tokens coûteuse. Nous adaptons un
modèle séquence à séquence basé sur un mécanisme d’attention afin de copier les tokens du
document portant de l’information pertinente et de générer les balises XML structurant
le schéma d’extraction en sortie. Contrairement aux travaux antérieurs en extraction
d’information de bout en bout, notre approche permet de retrouver n’importe quel schéma
d’information, quelle que soit sa structure. En comparant ses performances d’extraction
avec les classificateurs de tokens précédemment étudiés, nous montrons que les méthodes
de bout en bout sont compétitives avec les approches d’étiquetage de séquence et peu-
vent largement les surpasser lorsque les étiquettes des tokens ne sont pas immédiatement
accessibles.

Enfin, dans une troisième partie, nous confirmons qu’utiliser des modèles pré-entraînés
pour extraire de l’information réduit considérablement les besoins en documents annotés.
Nous exploitons un modèle de langage existant basé sur l’architecture Transformer qui a
été pré-entraîné sur une large collection de documents commerciaux. Lorsqu’il est adapté
à une tâche d’extraction d’information via l’approche d’étiquetage de séquence, le modèle
de langage nécessite très peu de documents d’entraînement pour atteindre des perfor-
mances d’extraction proches du maximum. Cela souligne que les modèles pré-entraînés
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sont significativement plus efficients en matière de données que les modèles apprenant
la tâche d’extraction à partir de zéro. Nous révélons également de précieuses capacités
de transfert de connaissances pour ce modèle de langage puisque les performances sont
améliorées en apprenant au préalable à extraire de l’information sur un autre jeu de
données, même si ses champs ciblés diffèrent de la tâche initiale.
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1.1 Context

The companies daily exchange transactional documents in either paper or native digital
formats. These business documents can be purchase receipts, delivery notes, insurance
policy documents, vendors contracts, employment agreements, custom declaration forms
and a wide many more. In those documents, both layout organization and textual content
are critical for the document recognition and understanding. Text is the key information
in such documents but cannot be easily serialized into single sequences without losing
information.

Practically, in those companies, each received document carefully follows a number of
processing steps which depend on its type. As an example, take the case of invoices: this is
a document sent by a supplier to a buyer, listing the products or services bought, the debt
owed, and when and how to pay this debt. The steps required for processing an invoice
are illustrated in the Figure 1.1. When a company receives an invoice, the accountant in
charge of invoices must recognize its key data, verify that it matches a previous purchase
order or contract, detect and correct any potential error, make the document approved
by some superiors and stakeholders before finally paying the supplier.

This sequential process involves multiple employees among the organization, resulting
in a high processing cost per invoice. The companies included in the survey of Cohen and
York (2020) report an average cost of 10 $ and 8 days to process a single invoice. Besides,
the largest companies deal with more than a thousand of invoices per day (iPayables,
2016). This volume and complexity of process impose to use dedicated software systems to

1
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Figure 1.1: Invoice processing steps: from arrival to payment. This figure depicts
how incoming invoices are typically handled in companies. Image reproduced
from Shivalker (2020).

automate the maximum of steps of the cycle and therefore maintain reasonable processing
costs. Such document automation software may be standalone like the solutions provided
by Esker1, the company funding this PhD thesis. As offered by SAP2 for example, a
document processing software may also be directly embedded in wider systems that keep
track of every operation occurring in a company. These systems are commonly referred to
as Enterprise Resource Planning (ERP) systems (Enterprise Ressource Planning) (Chang
et al., 2008).

Using these software products, there has been a huge decline of document processing
costs in the largest corporations. Yet, they still face some serious challenges when aiming
at full automation since only 11 % of the companies reported in Team (2020) process
more than 80 % of their invoices without any human intervention.

One of the major obstacle observed for many business document types including in-
voices is the presence of unstructured document formats, i.e. formats which are meant
only for human readers. When received as a paper per mail or fax, a document is first
scanned to start its processing by the software system. It results in an image representa-
tion of the document, i.e. a raw matrix of pixels, which does not allow for direct access to
the text. An Optical Character Recognition (OCR) engine must be employed to retrieve
the text but this process is not flawless. Otherwise, when the document is transmitted in
a electronic manner, e.g. as an attachment of an email, the text of the document can be
perfectly preserved. This is the case of formats such as Portable Document Format (PDF).
Yet, there is still the need to extract key information of the document from its heap of
words.

There also exist some structured electronic formats which contain a machine-readable
schema of the information from the document. We can mention formats like Electronic
Data Interchange (EDI), EXtensible Markup Language (XML) or formats generated from
web portals. These structured formats allow to automatically extract key information
without any error and effort. However, even if they are progressively adopted, such
formats are still far from being predominantly used in the business document exchanges.

1https://www.esker.com/
2https://www.sap.com/

https://www.esker.com/
https://www.sap.com/
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For invoices, according to a yearly conducted survey (Cohen and York, 2020), structured
electronic formats have been more exchanged than unstructured formats for the first year
only in 2020 and by a short head (50.3 % of documents).

1.2 Problem statement

The business documents contain recurring information types that the recipient may be
interested to extract (Cristani et al., 2018). Such an information type is also called a field.
Some fields are generic and shared by multiple document types, e.g. the document date
and the address of the issuer. Others are specific to a document type, e.g. the tax amount
included in an invoice. For an incoming document flow, the recipient defines a schema

gathering all the fields that are supposed to be retrieved. A schema can be viewed as a
set of case frames holding the information contained in a document. Take the example
of a flow of incoming documents composed of only purchase orders (a purchase order is
a document emitted by a client to its supplier to order some products or services). A
typical schema for this document flow would look like the Python3 dictionary given in
Figure 1.2. We note that the schema has a particular structure:

• Some fields appear only once such as the order number and date.

• Other fields occur an unknown number of times for a single document. Further-
more, each instance may be attached to an instance of another field, thus forming a
structured entity. In this schema, the ID number, description, quantity, unit price
and total price fields are grouped together to describe each ordered product.

Some fields are associated with a well-defined and rigid data type, e.g. a date for the
issuing date field. Others have rather flexible formats, e.g. the document number is often
a sequence of alphanumerical characters but is not constrained to be. Finally, certain
fields may be optional, i.e. not always be filled for a document. For instance, the product
prices do not always appear in the purchase order as they are sometimes unknown to the
sender at issuing time.

Extracting information from a business document comes down to fill the predeter-
mined schema of information. To illustrate the Information Extraction (IE) task, we
show a document sample as well as its expected extraction results in Figure 1.3. The
schema is filled with a string for each identified field instance. Each string is normal-
ized according to the type of the field, if any. Indeed, in order to be valuable, extracted
information must be machine-readable so that it can be used for pursuing automation
of document processing. For example, the ISO 8601 format (YYYY-MM-DD)4 may be
chosen to represent the extracted dates. For this purchase order, the document date field
is represented by the word 9/3/2018. Being emitted by a U.S. company, the U.S. date

3https://www.python.org/
4https://en.wikipedia.org/wiki/ISO_8601

https://www.python.org/
https://en.wikipedia.org/wiki/ISO_8601


4 Chapter 1. Introduction

Figure 1.2: An example of extraction schema for purchase orders. The keys of
this dictionary-style schema correspond to the name of fields to extract while
the values inform about their expected type. The None value is attributed to
the fields that do not have a well-defined type.

notation, i.e. MM/DD/YYYY5, is employed in this document. This piece of information
is therefore normalized to the string 2018-09-03 to fill the schema.

We also note that the ordered products are arranged in a table where each row lists
one product entity and the columns contain its different fields. This display is often
observed for structured entities in business documents since using tables improves the
human readability of structured information. Yet, extracting structured entities goes
beyond detecting the tables containing the entities and recognizing their physical structure
(Schreiber et al., 2017). Indeed, there is not a one-to-one correspondence between the
physical columns and the fields of structured entities in the schema, e.g. in Figure 1.3a
the second leftmost column of the table of products gathers the description as well the
ID number fields.

While some authors perform information extraction before (Loginov et al., 2020) or
at the same time (Zhang et al., 2020a; Wang et al., 2021) as text recognition, the vast
majority of IE works assume that the text of documents has already been transcribed
before starting to extract their information. Hence, we also make this assumption in this

5https://en.wikipedia.org/wiki/Date_format_by_country

https://en.wikipedia.org/wiki/Date_format_by_country
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(a) Document (b) Filled extraction schema

Figure 1.3: Illustration of the Information Extraction (IE) task. The information
is extracted from this purchase order according to the schema given in Fig-
ure 1.2. Each extracted field value is normalized in accordance with the data
type of the field.

PhD thesis.

Of course, even if it is mostly performed in this domain, the extraction of information
based on a predefined schema is not limited to the business documents. For example,
Qian et al. (2019) extract patient attributes and drug names from medical reports record-
ing drug-related side effects while Chen et al. (2016) retrieve personal information and
educational background from resumes.

1.3 Challenges

Information extraction is an arduous task in Document Image Analysis. There exist mul-
tiple challenging points that an IE system would encounter when extracting information
from business documents.
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1.3.1 Beyond the text modality

The business documents are mostly text-intensive documents, thus the text content con-
veys a significant portion of the semantics of these documents. Yet, considering only
this modality is not sufficient to fully understand a business document. Unlike plain text
structured in sentences and paragraphs, the text of business documents is non-uniformly
displayed. Firstly, the words are freely distributed across the two dimensions of the
document pages, making the spacing between two consecutive words non-regular. This
reveals word alignments and blocks of text that give substantial clues for understanding
a document. When extracting information, one would generally look for words that are
aligned or close to some specific keywords. For example, in the Figure 1.3a, the words
SALES ORDER: serve as an anchor to identify on its right side the actual document number
(165813). The alignment and spacing of words play also a significant role in recognizing
the physical and logical structure of tables, and thus in helping to extract their main
information. Secondly, all the words do not have the same size and shape, e.g. the name
of the issuing company and the table headers are generally displayed in a larger font that
the rest of the document text. All these positioning and scaling characteristics of the
document describe what is called the layout or template of the document (Esser et al.,
2012) and must be integrated into the developed IE system for understanding business
documents.

Moreover, the image modality also encodes a non-negligible amount of the semantics
of documents. It can either be visual clues related to the text like font types and colors
or more graphical elements such as logos, table borders, stamps and signatures.

Therefore, besides the text itself, both the layout and image modalities should be
analyzed in order to correctly interpret the business documents. This explains why such
documents are commonly described as Visually Rich Documents (VRD) (Liu et al., 2019a;
Wei et al., 2020).

1.3.2 Class variability

A document class can be defined as a subset of documents which share a similar logical
structure of the contained information. It is thus often related to the document layout
which corresponds to the physical structure (Bartoli et al., 2010).

Intra-class variability A layout may be rigid, i.e. the textual and graphical elements
are located at the same exact position for all documents from this class. The documents
with such layouts are called structured documents. This is the case of forms which contain
pre-printed text and fixed-size frames to fill.

Other documents types may exhibit more flexible layouts with some elements varying
in terms of absolute position across the documents of a defined class. We then speak
of semi-structured documents (Dengel, 2003). For instance, while the header and footer
of invoices and purchase orders are relatively static, their body tends to vary across
documents of the same class. Indeed, the body of such documents often contain tables
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of invoiced or ordered products which are of variable length. This makes the extraction
of fields contained in the body, e.g. the product quantities, more complex than for fields
located in the header or footer, e.g. the document date.

Inter-class variability Except few cases, like the Chinese government which imposes a
nation-wide layout for tax invoices exchanged between its domestic companies (Liu et al.,
2019a), there usually does not exist a unique and widely adopted layout for each type of
business document. Each issuer is free to generate documents with any layout, resulting
in a diversity of positioning of the information. In this case, a document class is generally
equivalent to a specific issuer. However, two issuers may share the same logical structure
of documents and thus be assimilated to the same class. To illustrate the diversity of
layout across the issuers, the Figure 1.4 shows various thumbnails of business documents.

As the number of companies worldwide is large and ever-increasing, an IE system that
is deployed in an industrial context must therefore be class agnostic. In other words, the
system must perform relatively well when facing document layouts that have not been
seen during its design.

1.3.3 Localizing the information in the document

The extraction results, i.e. the filled schemas, only offer what is the textual value of the
information but not where it is located in the document, i.e. which of its words carry the
information (Palm et al., 2019). Despite appearances, the knowledge about the positions
of field instances is not directly retrievable from their textual values. Indeed, two main
factors constitute hurdles to find the matching words.

Normalization of fields Since each extracted field instance has been normalized ac-
cording to the type of the field, its textual value may not appear verbatim in the document.
Some fields might have a large number of formats to represent the same normalized tex-
tual value. This is the case for dates and amounts whose formats heavily depend on the
language and culture of the document. For example, the document date in Figure 1.3a is
extracted from the word 9/3/2018 but it could also have been represented by the words
03 Sept. 18. This diversity of formats imposes significant domain specific knowledge
for retrieving the document words containing the expected information.

Multiple occurrences in the document text Even for the fields that does not require
normalization, a field instance may still be hard to localize within the document. The
value can appear multiple times in the document, thus not knowing which occurrences
are semantically correct. These occurrences may be semantically equivalent in the case of
redundancy of the information, e.g. the ID number of a product is sometimes duplicated
when the vendor and client share the same reference. However, in the general case, the
matching occurrences do not necessarily carry the same information type, e.g. the same
integer value may refer to a street number or a product quantity depending on its position
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within the document. Once again, it requires some domain specific knowledge to make
this disambiguation.

1.4 Outline

The systems introduced in the literature for automatically extracting information from
business documents can be roughly divided into two categories (Chiticariu et al., 2013)
that are discussed in Chapter 2. The first proposed systems were heavily based on rules
which explicit exploit the patterns observed in the documents. Then, machine and deep
learning approaches have emerged for tackling IE and are now massively adopted in both
academic works and industrial applications. They are more easily adaptable to specific
extraction needs and constitute the approaches of choice to deal with the diversity of
layouts across document classes. Therefore, all the extraction methods that we proposed
in this thesis are based on deep learning.

In Chapter 3, we follow the sequence labeling approach which is the historical and still
predominant approach for extracting information from business documents with machine
learning models. We propose deep models that learn to classify the information type
carried by each word in a document. We show that these word classifiers are able to
extract tabular information from document layouts that were unknown at the model
training time. However, by design, these models impose to know where the expected
field instances are located in the document in order to be trained. When such knowledge
is not available, it must be deduced from the filled extraction schemas. For the reasons
detailed in section 1.3.3, this matching process is prone to errors and thus might introduce
noise in the word level supervision. In these conditions, we demonstrate that the word
classifiers extract information with a lower accuracy, notably when processing real-world
documents.

To overcome the limitations of supervision from sequence labeling approaches, we
investigate in Chapter 4 deep models that can learn directly from the results naturally
produced by the IE task, i.e. the extraction schemas. To achieve this, we propose a
sequence-to-sequence model that is able to map the input sequence of the document
words to an output sequence of tokens constituting its filled extraction schema. Unlike
the prior end-to-end IE approaches, our method was designed to process any arbitrarily
structured schema. By comparing the extraction performance of the sequence-to-sequence
model with the previously studied word classifiers, we show that end-to-end methods are
competitive with sequence labeling approaches and can greatly outperform them when
their word level supervision must be deduced from the extraction schemas of the training
documents.

In Chapter 3 and 4, the deep models are trained directly on the information extraction
task without prior knowledge about the language and the structure of business documents.
While successful when provided enough annotated documents for training, we show in
Chapter 5 that the methods, learning from scratch to extract information, are severely
impacted in data-constrained settings. To mitigate the decline of performance when



1.4. Outline 9

learning IE from few data, we leverage an existing language model that has been pre-
trained without any supplementary annotation cost in order to understand the text and
layout of business documents. When later adapted to extract information through the
sequence labeling approach, the language model is proved to dramatically reduce the needs
for annotated documents compared to the methods without pre-training since it requires
very few training documents for achieving close to maximal extraction performance.

In Chapter 6, we recap the work done in this thesis and give some perspectives for
future work.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.4: Layout diversity across the issuers of purchase orders. There exist
many factors of variability such as the aspect ratio and orientation of the
image, the size of the header and footer, table formatting (presence of ruling
lines, number and spacing of columns) and many more.
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In this chapter, we review the literature about schema-based IE from documents,
mainly but not only from business documents. Following Chiticariu et al. (2013), we
divide the prior work in IE into rule and pattern based approaches (section 2.1) and
machine learning based approaches (section 2.3). We also give notions of machine learning
in the section 2.2 in order to better understand the latter IE approaches. We conclude
in the section 2.4 by giving a brief overview of the publicly released datasets that are
currently used to evaluate extraction models.

2.1 Rule-based information extraction

Information extraction refers to the automatic extraction of structured information from
unstructured sources of text (Sarawagi, 2008). While the field now involves more research
communities like the document analysis and databases communities, IE takes its roots
in the Natural Language Processing (NLP) community, back in the mid 1960’s. At that
time, two long-term academic research projects (Sager, 1981; Schank and Colby, 1973)
launched IE as an autonomous area of research. In the 1980’s, commercial IE systems
began to appear, one of the first being ATRANS from Lytinen and Gershman (1986) which
was dedicated to extract financial information from money transfer messages exchanged
between banks. For analyzing the text, the ATRANS system employed a knowledge-based
approach with a hierarchy of "scriptal" lexicons that are activated upon the context to

11
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solve lexical ambiguities, e.g. Credit may be a synonym of Pay or belong to the bank
Credit Lyonnais depending on the nearby words. After human verification, the extracted
information about the actors and the transaction amount serves to initiate automatic
money transfers.

The field grew very rapidly from the late 1980’s when DARPA, the US defence agency,
funded and encouraged research in IE by organizing a series of seven Message Under-
standing Conferences (MUC) from 1987 to 1998 (Grishman and Sundheim, 1996). The
conferences were hosting competitions of information extraction from a wide variety of
sources, from military reports of fleet operations during the first two editions to news
reports of terrorist attacks, corporate management succession events and airplane crashes
in the subsequent editions. The organizers established a quantitative evaluation regime
for IE by adapting the precision, recall and F1 score metrics from the Information Re-
trieval (IR) field (Manning et al., 2008) and by evaluating on data that has not been
seen during the system training. According to Weischedel and Boschee (2018), "[t]his was
no small accomplishment, because most prior work in natural language processing had
not measured progress so rigorously on substantial blind test data." The main task tack-
led during the MUC conferences was template filling, which is roughly equivalent to the
schema-based IE problem that we have defined in Chapter 1. In this context, a template
was defined as a frame of slots to fill when extracting information of the source documents.
Specific rules were associated to the template to detail the instructions for filling the slots.
Year after year, the task was made gradually more complex, either in terms of the text
corpus complexity and dimensions or the template characteristics (Sundheim, 1993). For
the fifth edition (MUC-5), the template had a nested structure and was containing not
only categorical data and raw copies of the original text like the name of a company,
but also text entries normalized into their canonical form and pointers to other slots of
the templates. Facing low performances of proposed systems on the holistic template
filling task (Sundheim, 1991), the NLP community started to redefine IE as the study of
a collection of smaller and more-constrained tasks. From the sixth edition, two new tasks
were introduced, namely Named Entity Recognition (NER) (Nadeau and Sekine, 2007) -
which aims at identifying within the source text all the occurrences of names like people
and location names and numeric expressions such as times and dates - and coreference
resolution (Elango, 2005) - which aims at the identification of noun phrases in the text
that referred to the same entities -. This was completed by the relation and event ex-
traction (Pawar et al., 2017) tasks in the follow-up Automatic Content Extraction (ACE)
program (Doddington et al., 2004) which took place from 1999 to 2008.

Most of the IE systems proposed in the MUC conferences had emerged from research
into rule-based systems in computational linguistics and natural language processing. As
a synthesis of the principal methods used during MUC-4, Hobbs (1993) described a generic
IE system that consists of a sequence of ten modules that at each step add structure by
applying rules. The modules ranged from the detection of text segments to the generation
of the filled templates based on the constructed semantic structures and included filters,
parsers and lexical disambiguation. Originally geared towards MUC-6, the Large Scale
Information Extraction (LaSIE) system from Gaizauskas and Wilks (1998) illustrated in
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Figure 2.1: Extraction of information through matching of regular expressions.

From top to bottom, this table displays fields, instances of these fields and
regular expressions that are likely to extract unknown instances of the same
fields. Image reproduced from Brauer et al. (2011).

more details the stages of lexical pre-processing, parsing plus semantic interpretation and
discourse interpretation In particular, the system gathered hundreds of rules and many
more gazetteer and dictionary entries for performing the Part-Of-Speech (POS) tagging
and NER subtasks.

As pointed out by Sarawagi (2008), the IE task is highly dependent of the types of
unstructured sources that are processed, and so are the approaches developed to tackle
this task. For example, while the sentences and paragraphs in plain text exhibit complex
syntactic structures including nouns, pronouns, adjectives, verbs, adverbs and so on, the
syntax of business documents generally involves fewer element types, i.e. mostly noun
phrases referring to the attributes and values of business entities. However, understanding
the syntax of these documents implies to analyze the spatial distribution of the text in
the document, i.e. its layout. Therefore, in the rest of this chapter, we focus on IE works
in the business domain and domains presenting similarities.

2.1.1 Using only domain knowledge

There are some relatively regular patterns across all business documents and a rule-based
approach may leverage these patterns to extract information. One intuitive approach
would be to search within the source text if some substrings match one or several prede-
fined regular expressions (Thompson, 1968). Typically, for each field, a set of dedicated
regular expressions would be associated. In Figure 2.1, examples of regular expressions are
given for extracting various information types. The stricter the syntactical pattern of the
field to extract is, the more efficient a regular expression based approach is. For instance,
when recognizing the Value Added Tax (VAT) numbers1 in 39 multilingual invoices, Bureš
et al. (2020) achieve perfect extraction with a limited set of regular expressions, presum-
ably one for each country. For example, the Czech VAT identifiers are always composed
of CZ followed by a block of either 8, 9 or 10 digits. This regular pattern is thus easily cap-

1The syntax of European VAT numbers is available at: https://ec.europa.eu/taxation_customs/

business/vat/eu-vat-rules-topic/vat-identification-numbers_en

https://ec.europa.eu/taxation_customs/business/vat/eu-vat-rules-topic/vat-identification-numbers_en
https://ec.europa.eu/taxation_customs/business/vat/eu-vat-rules-topic/vat-identification-numbers_en
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tured by a unique regular expression, namely CZ[0-9]{8,10}. For capturing less regular
fields, there is usually a trade-off between precision and recall metrics. Permissive regular
expressions advantage the recall but at the cost of the precision, e.g. a social security
number may be recognized as a phone number if the matching scope of an expression is
too broad (Li et al., 2008). To improve precision, further domain heuristics can be apply
to the set of strings that match a regular expression. For instance, a regular expression
may recognize a few dates in a purchase order. To extract its due date, i.e. the customer’s
deadline for receiving the ordered products, a heuristic simple as choosing the furthest
date in the future may be sufficient to remove the ambiguity with other dates present in
the document such as the issue date. In some cases, one may leverage the context of the
matched strings by searching within the nearby words for terms that are characteristics
of the information type to extract (Klein et al., 2004). These terms which are often called
keywords, tags, or prefixes are gathered in domain-specific and hand-crafted lexicons. For
example, when looking for the total amount of an invoice, a regular expression is likely to
detect a lot of numerical values, but relatively few candidates would have the word total

or one of its abbreviated or upper cased form in their surrounding words.
The regular expressions are usually manually designed by a domain expert which in-

terpret the specifications of the fields (Bhatt et al., 2019). Some incremental systems like
TEXTMARKER (Atzmueller et al., 2008) additionally allows their users to refine the
set of extraction rules formalized by the expert. However, manually constructing regular
expressions may result in tedious work when extracting an amount of fields, even with
a moderate variability in their syntax. To reduce human efforts, automatic generation
methods can be employed. The regular expressions may be learned from a corpus of docu-
ments that are annotated for IE (see the surveys of Sarawagi (2008); Turmo et al. (2006)).
But they may also be derived from a set of entities examples (Brauer et al., 2011). This is
particularly useful in enterprise settings where generally a lot of structured data is avail-
able in databases. To keep the generation tractable, Ciravegna (2001) makes the choice of
restricting the space of constructed regular expressions. In contrast, Li et al. (2008) accept
initial regular expressions supplied by the experts to naturally provide domain knowledge
about the structure of the entities being extracted. This knowledge meaningfully restricts
the space of output expressions under consideration while still allowing the algorithm to
produce complex regular expressions in a tractable manner.

Rule-based IE is not restricted to regular expressions. Indeed, other methods are em-
ployed in the literature for extracting more complex structures, particularly tabular data.
SmartFix from Deckert et al. (2011) tackles the table content understanding problem in
orders, invoices and medical documents by an expectation-driven approach. To that end,
a global quality measure over the set of possible column configurations that involves local
and global expectations is optimized by exhaustive search after application of heuristics
eliminating a large part of clearly irrelevant configurations. Belaïd and Belaïd (2004)
resort to a bottom up morphological tagging approach for delimiting products in invoice
bodies and extracting their different fields. After a primary tagging of the words using
only their morphology, a secondary contextual tagging is generated by exploiting regular
expressions as well as redundancy and regular factors, e.g. the repetition of numerical
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terms in similar column cells.
As a post-processing step to improve the extraction accuracy, the consistency and va-

lidity of extracted information is often checked with the help of additional input resources.
This may be performed by matching the extraction results with entries of a domain spe-
cific database, e.g. a vendor (Klein et al., 2004; Bureš et al., 2020) or bank (Lytinen and
Gershman, 1986) database. The look up may also be done in pre-built ontologies which
are more powerful and formal representations of the domain knowledge (Raoui-Outach
et al., 2017).

The strengths of rule-based IE systems are their flexibility and ease of understand-
ability and interpretability for both experts and users (Chiticariu et al., 2013). When
an error of extraction occurs, one can trace the specific rules that lead to the error and
correct them. Thus, by evaluating the rules against a set of development documents, such
IE systems can be gradually improved by incorporating new rules or revising existing
rules that are incorrect or suboptimal. Yet, in the process of constantly refining the set
of rules, the risk is that the rules become too brittle and break with minor variations of
the information patterns (Palm, 2019). Primarly, the non-standardized terminology and
layout of business documents makes cumbersome to produce generic rules that accurately
extract information for a wide range of document classes.

2.1.2 Using also class specific knowledge

To design more efficient rule-based IE systems, a number of authors exploit the semi-
structured or structured nature of business documents. They create or learn rules that
are specific to a class of documents by leveraging the similarity of physical and logical
structure between documents of the same class. Naturally, IE methods that rely on class
specific knowledge operate in two steps as illustrated in the Figure 2.2. For an incoming
document to process, its class is firstly detected either directly or by matching with some
of the documents previously processed by the system, dubbed as support or reference
documents. Secondly, if the class is known by the system, the information is extracted
from the document thanks to the fine-grained knowledge emanating from a model of this
class or from the support documents representative of this class. After the extraction is
completed and verified, the processed document helps to refine the model of the class or is
added as a new support document. In the following, we review in detail these two steps.

2.1.2.1 Document classification

If the classes are directly linked to the issuers, one could simply search for information
identifying the issuer within the text of the incoming document. Rather than relying
on a single field read that would trigger false alarms, Rusinol et al. (2013) cross-check
the class prediction by spotting several fields that can be easily detected with domain
knowledge rules, including addresses, emails, phone and tax numbers. The issuing com-
pany could also be identified with its logo (Cesarini et al., 1997; Alaei et al., 2016). This
visual comparison is particularly judicious for scanned documents with a high degree of
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Figure 2.2: Overview of an extraction system using class specific knowledge.

For extracting information like the date and the sender address from the
incoming document (in red), such an IE system first determines to which class
the document belongs among the classes of documents known by the system
(in green). It then uses a model or the previously processed documents (in
blue) corresponding to the identified class in order to provide class specific
knowledge helping the extraction. Image reproduced from Esser et al. (2012).

degradation and noise where a text-based classification is likely to fail due to poor OCR
engine performances.

However, for legal or aesthetic reasons, an issuer could change the template of its docu-
ments over time, sometimes also changing the position of valuable information. Therefore,
it is preferable to directly classify the documents according to their structure. To that
end, a diversity of learning-based approaches have been proposed in the literature. The
first type of methods exploit the visual similarity between documents (Hu et al., 2000).
Appiani et al. (2001) resort to decisions trees over the sets of recursive cuts performed over
white spaces while Bartoli et al. (2010) employ either a Support Vector Machine (SVM)
or a distance-based classifier with the spatial density of black pixels and of image edges
as features. Esser et al. (2012) describe a document in a graphical way by binarizing the
document over a coarse grid and consider that each line of the grid is a binary string. The
visual similarity between two documents is then computed by the Levenshtein distance2

between the two sets of strings.
Esser et al. (2012) also report an alternative method, named wordpos, that leverages

the document text. The authors represent a document as a tf-idf3 weighted bag of fre-
quent and specially formatted (bold, italic, underlined) words with their low resolution
position, typically within a 30 by 40 grid for the A4 format. This document representation
intending to capture the keywords at invariant positions is then injected in a k-nearest

2https://en.wikipedia.org/wiki/Levenshtein_distance
3https://en.wikipedia.org/wiki/Tf%E2%80%93idf

https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
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neighbors (kNN) classifier to obtain the k support documents that have the closest struc-
ture. Among the k matching documents identified by the wordpos method, Schuster et al.
(2013b) further discard the support documents having a normalized similarity score be-
low an empirically determined threshold. Finally, Dhakal et al. (2019) combine visual and
textual similarity measures for a more robust document classification. The visual part
is calculated with the cosine distance between the Singular Value Decomposition (SVD)
(Klema and Laub, 1980) of document images while the textual part is computed with the
edit distance of the top-n and bottom-n text lines between the two compared documents.
The similarity scores of both modalities are then summed and the highest overall score
determines the template of the incoming document.

2.1.2.2 Information extraction

For highly structured documents such as forms, the information is located in the same
position for the documents of a given class (Cesarini et al., 1998). Therefore, to actually
extract the fields of an incoming document, the system just needs to apply a fixed spatial
mask that has been previously constructed from the location of the targeted information
in support documents of the same class (ABBYY, 2004). For instance, the Position-based
Indexer from Schuster et al. (2013b) scores the field candidates by computing their bound-
ing box overlap with the field values of the support documents using the Jaccard index
(Jaccard, 1901). This extraction strategy is greatly effective for structured documents,
providing that the variability in the scanning process of paper-based documents (skewing,
shifting, distortion, orientation, etc.) is correctly handled (Casey et al., 1992).

In the case of semi-structured documents, the field values are likely to change of
absolute positions between the documents of a class while keeping a regularity in their
relative positioning. Such a phenomenon is usually observed for fields that can occur a
variable number of times in a document, like the data gathered in tables. For example,
for the document class illustrated in the Figure 1.4c, the total amount of the purchase
order is located at the bottom of the table of ordered products, making its absolute
position dependent of the table size, i.e the number of products. In order to deal with
these floating fields, less rigid approaches have been developed in the literature. For
extracting information of bank cheques, payment slips and bills, Tang et al. (1995) detect
and rely on the ruling lines of tables that structure the documents. Targeting not only
the table-like documents, Cesarini et al. (1998) propose a more generic approach based
on graphs. Particularly, they model the document’s layout with an attributed relational
graph over the relevant objects pointed by an operator, such as lines, logos, keywords
and fields instances. The edge between two nodes represents the vector between the
barycenters of the nodes within the document. The search for the keywords helping in
the extraction of the field values is performed with algorithms based on morphological
operations and connected components as well as connectionist models. Similarly, for each
document class and each targeted field, Rusinol et al. (2013) define a star graph that
encodes the pairwise spatial relationships between the field instance and the rest of the
words in the support document. For a given word of the incoming document, all the
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nodes of the graph that have the same transcription are retrieved. Each matching node
then supplies an estimation of the position of the field instance. After having processed
all the words, the closest word bounding-box to the maximum peak in the voting space is
selected as the field value to extract. Instead of looking for common words in the whole
documents, Dhakal et al. (2019) propose to restrict the search to an approximate region
of interest that is determined by maximizing the correlation coefficient between image
patches of the incoming and support documents. Medvet et al. (2011) rather represent a
class of documents with a probabilistic model estimating the likelihood that a set of text
blocks contain the expected field. The model is made of a set of univariate distributions
for all spatial and textual attributes in order to keep the maximum likelihood estimation
tractable. Bart and Sarkar (2010) also make use of a probabilistic model based on a wide
variety of perceptual cues to not only extract repeated structures across the documents
sharing the same class but also within a single document. Once a single occurrence of the
structure to be found is annotated, e.g. the fields contained in the first row of a table,
the remaining occurrences of the document are extracted with the probabilistic model.

Such above-mentioned approaches satisfyingly extract information once having pro-
cessed multiple documents of the same class. However, they naturally suffer from poor
performances when dealing with classes that are unknown or have not been extensively
processed. Evaluated on 10 commonly used fields, Esser et al. (2014) show that the av-
erage F1 score of their system drops from 88% to 22 and 78% respectively for zero and
one support document of the same class. To mitigate this cold start performances issue,
these authors propose in a later paper a cooperative approach to information extraction
by sharing the class specific knowledge between the end users of their system (Schuster
et al., 2015). Assessed on a test set with 25% of the document classes that are used by
at least two users, they show that the zero-shot F1 score is improved from 5% to 49%
with their collaborative approach, thus creating a much better user experience. As offered
by the system of Klein et al. (2004), another direction for improving the extraction is to
combine the class specific knowledge with the general domain knowledge shared by all the
document classes. Cesarini et al. (2003) show that resorting to generic rules when the class
is unknown or the class-specific strategies have failed results in greater performances since
it increases the reliability of the keywords localization. d’Andecy et al. (2018) suggest a
generic method to inject a-priory knowledge into the star graph of each class from Rusi-
nol et al. (2013). Assuming that the documents follow a Manhattan organization4, they
enhance the importance of the closest words located in the same line as a field instance.
Such boosting of the horizontal words efficiently prunes the irrelevant nodes in the star
graphs and thus notably improve extraction performances in the one-shot setting, with a
gain from 87% to 94% accuracy on the difficult fields.

Despite these enhancements tackling the cold start performances, the annotation and
correction efforts still scale linearly with the number of document classes processed by the
IE system. For industrial applications, the number of classes are usually very high and
increasing over time (Aslan et al., 2016). Therefore, this still leads to significant manual

4https://en.wikipedia.org/wiki/Taxicab_geometry

https://en.wikipedia.org/wiki/Taxicab_geometry
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work from either the domain experts or the end users while we aim at keeping the human
involvement to a minimum in the extraction process. Besides, the high number of classes
also makes the document classification step more error prone. This further negatively
impacts the success of class-specific strategies for extracting information since the whole
process is greatly dependent of the document class decision (Esser et al., 2014).

Overall, the rule-based approaches have stayed for a long time the approaches of
choice for IE, particularly in the commercial systems due to their ease of explainability
and interpretability (Chiticariu et al., 2013). Humans and machines can contribute to the
same extraction model, making easy to incorporate domain knowledge.

However, the design and maintenance of rules require deep expertise and tedious man-
ual labour. These efforts rapidly become overwhelming as the number of targeted fields
and document classes grow. Besides, most of the IE methods using rules focus on recog-
nizing field values that are characterized by strong syntactical patterns or have particular
keywords in their close vicinity. Very few works tackle the extraction of recurring and more
complex structures of information such as tabular data that impose to understand longer
range dependencies between the document words. Indeed, this would require extensive
human efforts to figure out rules that capture such information types. For all these rea-
sons, Xu et al. (2020c) have declared that "it is inevitable to leverage statistical machine
learning approaches in the Document Analysis and Recognition (DAR) research."

Before delving into its application to IE, we review in the next section the main
principles and techniques of machine learning.

2.2 Background in machine learning

Overview Belonging to the Artificial Intelligence (AI) field, Machine Learning (ML)
is "the study of computer algorithms that improve automatically through experience"
(Mitchell, 1997). More concretely, ML involves building models learning from data pro-
vided so that the computers perform tasks without being explicitly programmed to do so
(Koza et al., 1996). The resulting models may then be used to make predictions of the fu-
ture if we can assume that the future is similar to the past (Alpaydin, 2020). The models
may also be descriptive to gain knowledge from data. Developing a ML model is particu-
larly relevant for advanced tasks where it can be challenging for a human programmer to
specify every step required for solving the problems at hand. For instance, consider the
problem of email filtering, where we need to separate spam emails from legitimate mes-
sages (Friedman et al., 2001). To solve it, one needs to transform the input sequence of
characters representing the email text into a binary output indicating whether the email
is spam or not. However, this transformation is rather complex to manually encode and
what can be considered spam changes in time and from individual to individual. Indeed,
the spammers may observe and analyze the predictions of some spam detection models
and change the content of their emails to better fool the models. Therefore, since data
is generally abundant nowadays, it turns out to be more effective to help the machine
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develop its own algorithm by providing the expected answers — spam or legitimate in
this case — to some available inputs.

Machine learning has been extensively applied in various application domains such as
computer vision, natural language processing, speech processing, bioinformatics, telecom-
munication and banking (Tzanis et al., 2006). Apart from email filtering, ML has thus
been used for a wide variety of tasks like DNA classification, customer market segmenta-
tion, face recognition, document categorization, medical diagnosis, data center optimiza-
tion, movie recommendation and game solving (Das et al., 2015). For building mathe-
matical models, machine learning relies on the theory of statistics with the branches of
probability, decision and information theory (Deisenroth et al., 2020). It also involves
the computer science discipline for designing efficient algorithms for training and making
use of such models as well as storing and processing the data at our disposal (Alpaydin,
2020).

The ML approaches are usually divided into three broad categories, depending on the
nature of the feedback signal available for learning (Bishop, 2006):

• In supervised learning, the computer is presented with examples of inputs and their
outputs, whose correct values are given by a supervisor, and the aim is to learn the
mapping from the input to the output.

• In unsupervised learning, we only have a set of input data without their correspond-
ing target values. The goal is to find the regularities among the input, e.g. retrieving
groups of similar inputs as in the clustering task or determining the distribution of
the input data. It may also deals with projecting the data into lower dimensional
spaces, either for visualization purposes or for constructing meaningful represen-
tations of the input to improve the learning of a subsequent supervised algorithm
(Van Der Maaten et al., 2009).

• In reinforcement learning, the feedback are rewards that a computer program re-
ceives after each of its action when interacting with a dynamic environment. The
program, called an agent, learns a policy of actions maximizing the cumulative re-
wards in order to achieve a high-level goal, e.g. escaping from a maze. In contrast
to supervised learning, here the learning algorithm is not given examples of optimal
outputs but must instead discover them by exploring the environment through a
trial and error process.

In the rest of the thesis, we will exclusively mention and propose information extraction
algorithms that learns in a supervised fashion. Therefore, in what follows, we only describe
in further details supervised learning although unsupervised and reinforcement learning
share some key ideas, tools and techniques with the supervised setting (Bishop, 2006).

Problem formulation We note x ∈ X and y ∈ Y respectively the input and output
of a supervised learning system. X and Y represent the input and output spaces while
Z = X ×Y denotes the example domain. The examples are drawn from a distribution D
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f−→ strawberry

(a) Classification

f−→

(b) Regression

Figure 2.3: Supervised learning: examples of classification and regression tasks.
The goal is to learn a model, represented by f , in order to predict either
categorical (2.3a: detecting the presence or absence of an object within an
image (Deng et al., 2009)) or continuous (2.3b: rating of a wine (Cortez et al.,
2009)) values.

over the domain Z. x can correspond to any type of data, e.g. an image (Figure 2.3a) or
a set of tabular entries (Figure 2.3b). Likewise, y can take multiple forms but is usually
divided in two categories (Alpaydin, 2020). If the output is a discrete value, then we
tackle a classification problem. If y is a continuous value, then we pursue regression. We
give an example for both problem types in Figure 2.3. Even if this figure only illustrates
one-dimensional output values, y may be multi-dimensional. We note do its dimension
and d the dimension of the input x.

The goal of a supervised learning system is thus to learn the mapping f ∈ H that
correctly predicts the value y from the input x, with (x,y) ∈ Z an example from the
distribution D. The prediction produced by the hypothesis function f is denoted ŷ:

ŷ = f(x) (2.1)

The mapping f is determined during the training phase on the basis of some training data
that are drawn from the distribution D of examples. This constitutes the training dataset
S = {(xi,yi)}ni=1 = {zi}ni=1 that contains n examples. f is obtained by minimizing the
mean prediction error on this dataset, also known as the training loss Ln:

Ln(f) =
1

n

n
∑

i=1

ℓ(f, zi) (2.2)

f = argmin
f ′∈H

Ln(f
′) (2.3)

where ℓ is the loss function measuring the prediction error of a hypothesis function for
given examples. There’s no one-size-fits-all loss function in machine learning, with various
factors involved in choosing a loss function. The main factor is the type of learning task
we are dealing with, i.e. regression or classification. For the former, one common choice
is the L2 loss:

∀x ∈ X ⊂ R
d,y ∈ Y ⊂ R

do , ℓ(f, z) = ‖f(x)− y‖22 (2.4)
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For classification problems, one usually chooses the cross-entropy loss:

∀x ∈ X ⊂ R
d,y ∈ Y ⊂ {0, 1}do , ℓ(f, z) = −

do
∑

c=1

yc log(f(x)c) (2.5)

We refer the reader to Janocha and Czarnecki (2017) for a more exhaustive list of usual
loss functions.

In practice, we seek to acquire an hypothesis function f for making predictions on
input values {xi}i for which we do not have their output {yi}i. To generate useful and
accurate predictions, the model must thus have a low prediction error not only on the
training dataset but also for examples from the distribution D that are not part of it.
This generalization ability is crucial since the variability of the input is such in practical
distributions that the training set can comprise only a tiny fraction of all possible input
values (Bishop, 2006). In machine learning, we generally distinguish two extreme cases
based on the performance of the hypothesis function on the training dataset as well as on
the distribution samples outside this subset. They are called overfitting and underfitting

and are explained in Figure 2.4.

Model parametrization When looking for an hypothesis function f that minimizes
the training loss, we generally constrain the size and complexity of the hypothesis space
H in order to make the search process tractable. We seek for a restricted hypothesis
space that is believed to contain a function that is a good approximation of the true
mapping. Therefore, there exists a "trade-off between the expressiveness of a hypothesis
space and the complexity of finding a good hypothesis within that space" (Russell and
Norvig, 2009). In practice, choosing a relevant hypothesis space is very challenging and
it is often more efficient to spot-check a range of different hypothesis spaces. Concretely,
determining a hypothesis space mainly involves choosing the type and configuration of
algorithm that a hypothesis function may represent.

For most machine learning algorithms, the hypothesis function is parametrized by a
set of parameters θ ∈ Θ, where Θ is the parameters space. We thus note the model fθ
and its predictions ŷ = fθ(x|θ). In this case, solving a supervised learning problem boils
down to determine the values θ∗ of model parameters that minimize the training loss
Ln(θ). This changes the equations (2.2) and (2.3) to:

Ln(θ) =
1

n

n
∑

i=1

ℓ(fθ, zi) (2.6)

θ∗ = argmin
θ∈Θ

Ln(θ) (2.7)

One of the simplest and oldest parametrized ML algorithm is the linear regression
which solves regression problems (Yan and Su, 2009). As the name implies, the output
y ∈ R

do is a linear combination of the input x ∈ R
d. For a single output value (i.e.

d0 = 1), a linear regression model produces the following predictions:

ŷ = w⊤x (2.8)
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Figure 2.4: Balance between underfitting and overfitting the training data. In
this example, we aim to learn the quadratic mapping between the output y

and the input x0 given few random samples of the distribution. We present
three different hypothesis functions that have been fitted on these training
samples. All models are polynomial functions of x0. (Left) A trained linear
function would suffer from underfitting since it cannot capture the curvature
that is present in the data, thus underperforming both on the training set
as well as the rest of distribution. (Right) A polynomial of degree 9 fit to
the data suffers from overfitting. The solution passes through all the training
points exactly, resulting in a zero training loss. Yet, due to its inappropriate
complexity, it does not capture the underlying quadratic structure but rather
the small stochastic noise of the distribution. Indeed, it now has a deep valley
between two training points, inducing high prediction errors for new samples
within this portion of the domain. (Center) A trained quadratic function
performs well on the training examples while generalizing to unseen points
over all the distribution domain. Image reproduced from Bengio et al. (2017).
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where w ∈ R
d are the model parameters.

A number of other ML algorithms have been later proposed such as kernel-based
methods (Hofmann et al., 2008), e.g. Support Vector Machines (SVMs), and tree-based
methods (Safavian and Landgrebe, 1991), e.g. decision trees, random forests and gra-
dient boosting trees. However, for much ongoing work in machine learning, including
its application to the Information Extraction field, the neural networks have become the
dominant approach in the last decade (Alpaydin, 2020). Neural networks are composed
of a series of layers, each layer containing neurons that act as a small hypothesis function.
The mapping fθ of a neural network is obtained by repeatedly applying each layer to the
output of the previous layer, the first layer being applied to the input x:

fθ(x) = fθL(fθL−1(...fθl(...fθ1(x)...)...)) (2.9)

hl = fθl(hl−1) with h0 = x (2.10)

where L ∈ N is the number of layers in the neural network. θ = {θ1, ...,θL} ∈ Θ are its
parameters to optimize. fθl represents its l-th layer whose input, output and parameters
are respectively hl−1, hl and θl. Neural layers that are not the final output layer, i.e.
l = 1...L−1, are called hidden layers. This structure for the hypothesis function fθ allows
to learn complicated concepts by building them out of simpler ones as we move from the
lowest to the highest layers (Bengio et al., 2017). Such hierarchies of concepts to learn
may comprise an amount of levels for input types such as images, videos or text. This
implies that the number of layers may be quite important, exceeding one hundred layers
for some models like ResNet (He et al., 2016) used for image recognition. For this reason,
the neural networks are characterized as deep learning methods.

We describe in a later section (2.2.1) the most commonly used neural network layers.

Solving the optimization problem In this paragraph, we detail how to find the values
of model parameters θ ∈ Θ that minimize the training loss given in the equation (2.6).
For some ML algorithm and loss function ℓ choices, one can get a closed form of the
optimal parameter values. This is done by computing the gradient of the training loss
∇θLn(θ) and searching parameter values θ∗ that make it equal to zero. For instance,
for the single output linear regression with the L2 loss (equation (2.4)), the optimal
parameters w∗ ∈ R

d are given by5 w∗ = (X⊤X)−1X⊤y, where X = [x1, ...,xn] ∈ R
n×d

and y = [y1, ..., yn] ∈ R
n are the concatenation of the input and output of the n training

examples.
Yet, in the general case, closed forms of optimal parameters are either unavailable or

too expensive to compute, e.g. computing the term (X⊤X)−1 for the linear regression
is intractable when facing large numbers of examples n and input dimensions d. Rather,
we iteratively update the parameters in the opposite direction of the gradient of the
training loss. This technique, known as gradient descent, is nowadays one of the most
popular algorithms to solve this optimization problem, especially when dealing with neural
networks (Ruder, 2016). The learning rate η determines the size of the steps we take to

5View the subsection 5.1.4 of Bengio et al. (2017) for the derivation proof.
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reach a minimum of the training loss. There exists three variants of gradient descent,
which differ by the amount of training data we use for computing the gradient. The
vanilla version, called batch gradient descent, computes the loss gradient on the entire
training dataset before making an update:

θ = θ − η · ∇θLn(θ) (2.11)

with θ ∈ Θ that is randomly initialized to start the optimization process. Batch gradient
descent is guaranteed to converge to a minimum of the training loss, either to a global
optimum for convex error surfaces or to a local optimum for non-convex surfaces. However,
this convergence usually requires many parameters updates, which makes batch gradient
descent very slow for large training sets. In contrast, Stochastic Gradient Descent (SGD)
performs a parameter update for each training example zi = (xi,yi)i∈{1,..,n}:

θ = θ − η · ∇θℓ(fθ, zi) (2.12)

Benefiting of frequent parameter updates, this second version of gradient descent is gener-
ally much faster. Still, the updates suffer from high variance that makes the loss fluctuate
heavily. This complicates the convergence to the minimum at the end of the optimization
process. Finally, mini-batch gradient descent takes the best of both worlds by performing
an update for every mini-batch of m training examples {zj}j∈{i,..,i+m}:

θ = θ − η · ∇θ

[

1

m

i+m
∑

j=i

ℓ(fθ, zj)

]

(2.13)

It reduces the variance of the parameter updates thus stabilizing convergence while still
performing quite frequent updates. Common mini-batch sizes range between a few units
and a few hundreds. Mini-batch gradient descent is typically the algorithm of choice when
training a neural network (Bottou, 1991). In the literature, we traditionally also employ
the term SGD when mini-batches are used.

We achieve one iteration of the learning process when a parameter update have been
performed. One epoch is realized when we have loop through the entire training set. To
avoid providing a meaningful order of examples that may bias the optimization process,
we commonly shuffle the training dataset at the beginning of each epoch. The number
of iterations or epochs to perform until reaching a minimum of the training loss is highly
dependent of the task, data distribution and the used ML model. One simple method
for deciding when to stop the training is to keep track of the prediction error on data
samples outside the training set, thus constituting a development or validation set. When
this validation error ceases to improve with new parameter updates, the model training
should be stopped. This technique is known as early stopping.

Mini-batch gradient descent still presents some challenges to address for achieving a
good convergence. Indeed, the learning rate η must be carefully chosen to avoid painful
slow convergence (η too low) or fluctuations around the minimum or even divergence
(η too large). Besides, the same learning rate is applied to all parameters which is not



26 Chapter 2. Related works

desirable since parts of the input vectors may have very different frequencies in the training
set. Vanilla gradient descent is also easily trapped in suboptimal local optima (Dauphin
et al., 2014). Therefore, more advanced optimizers have been proposed to improve the
convergence speed and quality of the training process (Qian, 1999; Duchi et al., 2011;
Kingma and Ba, 2015; Dozat, 2016). Overall, these optimizers feature momentum terms
for accelerating the descent of the gradient in the relevant direction and adaptive learning
rates. For rapidly training a neural network, Ruder (2016) recommends an optimizer with
adaptive learning rates and mentions Adam (Kingma and Ba, 2015) as the best overall
choice at his time of writing.

Finally, even if they all affect the value of the training loss, not all the parameters of a
model can or are desired to be learned with gradient based optimization methods. Such
parameters to be ignored from the gradient are called hyperparameters and are mainly
parameters describing the structure and complexity of the model (Bergstra and Bengio,
2012), e.g. the number L of layers in a neural network. Their value must therefore be
set before starting the gradient based optimization. Although a wide variety of methods
have been introduced for finding their optimal values (Claesen and De Moor, 2015), hy-
perparameter search is still often performed by manual trial and error on the development
dataset.

Backpropagation When applying SGD or any other gradient based optimizer to a
neural network, the gradient of the training loss must be computed for the parameters of
each of its layer. To that end, the chain rule is utilized to compute the gradient one layer
at a time, starting with the layer L that produces the final outputs:

∂Ln(θ)

∂θl
=

∂Ln(θ)

∂θL

(

L
∏

k=l+1

∂hk

∂hk−1

)

∂hl

∂θl
(2.14)

This principle is known as backpropagation (Rumelhart et al., 1986), which is a short
name for backward propagation of errors. Indeed, the training error of a neural network
is iteratively propagated from the output layer until the first layer that is connected to
the input. Note that the most popular machine learning frameworks (Abadi et al., 2016;
Paszke et al., 2019) used for building neural networks provide automatic differentiation
that efficiently computes the gradient for all their layers.

We have introduced all the key components for training neural networks in a supervised
setting. We will now detail their most common architectures.

2.2.1 Main neural network architectures

Taking their roots in the 1950’s, Artificial Neural Network (ANN) have a rich history that
alternates between massive enthusiasm and disillusionment (Kurenkov, 2020). Inspired
by their biological counterparts, the psychologist Rosenblatt (1957) was the first to pro-
pose an ANN, called the Perceptron. Bearing some strong resemblance with the linear
regression, the Perceptron is a single-layer network that accepts a set of binary inputs,
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Figure 2.5: Typical architecture of a Convolutional Neural Network (CNN). A
CNN is composed of convolutional, subsampling (also known as pooling) and
fully-connected layers. In this example, the LeNet 5 model was used to decide
which ASCII character among 95 elements is contained in a 32 × 32 image.
Image reproduced from Le Cun et al. (1997).

multiply their values by continuous valued weights and sum all obtained values. Finally, a
threshold is applied for producing a binary output value. This thresholding is one example
of an activation function, usually denoted σ. These functions are major components of
neural networks since it allows to introduce non-linearities in the model, rendering pos-
sible the learning of complex mappings between the input and output. Nevertheless, its
single-layer structure prevents the Perceptron to learn any given function. In particular,
it fails to represent the exclusive disjunction (XOR) operation (Minsky and Papert, 1969).
To remedy this, hierarchical multilayered neural nets were later proposed (Fukushima and
Miyake, 1982; Hornik et al., 1989) but the authors were struggling to learn their optimal
weights until the backpropagation technique was popularized (Rumelhart et al., 1986).
The first notable real-world results appear in the fields of speech recognition (Lang, 1988)
and handwritten image recognition (LeCun et al., 1989). Going beyond mere application
of backpropagation, LeCun et al. (1989) proposed a set of key modifications of the network
architecture to recognize the zip code digits contained in the images. Specifically, they
introduced an architecture that embeds a priori knowledge about the computer vision
task in order to drastically reduce the number of learnable parameters without sacrificing
its computational power. This network design is now widely referred to as Convolutional
Neural Network (CNN) or ConvNet.

2.2.1.1 Convolutional neural networks

A CNN is a neural network that is composed of different types of layers, at least one layer
being convolutional. We depict in Figure 2.5 an example of CNN architecture and give
details about each layer type in the following:

• Convolutional layers are the key components of CNN models. It consists in ap-
plying a convolutional operation with learnable spatial filters. Following the two
dimensional structure of images, neurons of such layers are organized in a set of
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planes, called feature maps. The input hl−1 and output hl of a layer l = 1...L are
3D tensors of respective size wl−1 × hl−1 × kl−1 and wl × hl × kl, where the first
two dimensions refers to the width and height of the feature maps and the third di-
mension to the number feature maps, also called the layer’s depth. A convolutional
layer l has kl filters, each filter producing one of the feature maps. The i-th output
feature map denoted hl

i is given by:

hl
i = Bl

i +
kl−1

∑

j=1

Kl
ij ∗ hl−1

j (2.15)

where ∗ is the convolution operator, Bl
i is a learnable bias matrix and Kl

ij is the
filter connecting the j-th feature map of hl−1 to the i-th feature map of hl. Having
multiple convolutional filters per layer allows to detect different features at the
same image location. Taking into account the fact that pixels of the image, and
thus neurons within a feature map, that are spatially close are more semantically
related than distant elements, each filter has usually a limited size compared to
the image dimensions, i.e. from 1 × 1 up to a few dozens wide and high. In the
Figure 2.5, the first layer applied to the input image is a convolutional layer, having
6 filters of size 5 × 5 that produce feature maps of size 28 × 28. Since we employ
the same filters for each neuron of a feature map, this allows to efficiently detect an
element whatever its location in the image.

• Pooling layers consist in subsampling the feature maps of the previous layer, often
from a convolutional layer. This operation looses some positional information of
features but allows to more efficiently learn higher level features in the next layers
of the network. This is performed by a sliding window of size f l × f l that browses
each feature map of the previous layer with a stride of sl × sl. The reduction of
size is performed with a parameter-free aggregation operator, usually the mean or
maximum of the neuron values contained in the window. Hence, the pooling layer
that takes as input a feature map of size wl−1 × hl−1 × kl−1 produces a feature map
of size wl × hl × kl with:

wl = (wl−1 − f l)/sl + 1 (2.16)

hl = (hl−1 − f l)/sl + 1 (2.17)

kl = kl−1 (2.18)

In practice, there are only two commonly seen configurations of the pooling layer:
(f l = 3, sl = 2) and more frequently, (f l = 2, sl = 2) like for the two pooling layers
in Figure 2.5. Pooling sizes with larger sizes are too destructive.

• Fully-connected or dense layers are extensions of the Perceptron (Rosenblatt, 1957).
Unlike this former neural network, such a layer can accept a set of continuous values
hl−1 ∈ R

ml−1

as input and output multiple values hl ∈ R
ml

. The dense layer applies
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a linear transformation on the input such as:

hl = W lhl−1 + bl (2.19)

where W l ∈ R
ml×ml−1

is a matrix of learnable weights and bl ∈ R
ml

is a vector
of learnable bias. Unlike the pooling and convolutional layers, each neuron of a
fully-connected layer is connected to all the neurons of the previous layer. Stacking
multiple fully-connected layers on top of each other is referred as a Multi-Layer
Perceptron (MLP). In Figure 2.5, a MLP constituted of 3 dense layers of size 120,
336 and 95 is added on top of the convolutional and pooling layers for predicting
the output classes. Note that we first flatten and concatenate the feature maps of
the last locally-connected layer to feed the first fully-connected layer.

• In general, we employ an activation function σ after both convolutional and fully-
connected layers to help the training process. In CNNs, the most commonly func-
tions employed nowadays are the Rectified Linear Unit (ReLU) function (∀x ∈
R, ReLU(x) = max(0, x)) and its derived forms (Clevert et al., 2016). For classifi-
cation tasks like in the Figure 2.5, the last fully-connected layer usually resorts to
the softmax function (∀x ∈ R

do , ∀i = 1...do, softmax(x)i = ezi
∑do

j=1
e
zj

) to obtain the

predicted probabilities of the do target classes, e.g. ASCII characters.

2.2.1.2 Recurrent neural networks

The CNN and MLP models that we have just described are feedforward networks, meaning
that the output of neurons in a given layer acts as input to only neurons in a next layer.
However, the feedforward property makes such networks impractical to process variable-
length inputs such as temporal sequences x = (x1, ...,xt, ...,xT )T∈N. Indeed, information
cannot easily persist in these traditional networks, preventing reasoning about previous
events when making predictions in the present time. This is problematic since sequential
data is ubiquitous in real-world systems, e.g sequences of images, phonemes, words and
so on. To remedy this, Recurrent Neural Network (RNN) models have been proposed
by just connecting the output of a neuron to itself. We illustrate this principle in the
Figure 2.6. The unrolled version of RNNs clearly reveals that they are naturally tailored
for handling discrete streams of information. By having the output looping back into the
network, a RNN is given the possibility to read all the past inputs for the current step,
solving the flaws of the feedforward neural networks. Formally, the layer l of a RNN is
defined as:

∀t ∈ N, hl
t = Cell(hl−1

t ,hl
t−1) (2.20)

where ∀t ∈ N, h0
t = xt, ∀l = 1...L, hl

0 = 0do and Cell is the chosen recurrent cell. The
optimal weights of a RNN are learned by back-propagating the training error not only
from the last layer to the first one but also from the last time step to the first one.
This generalization of the standard backpropagation, known as BackPropagation Through

Time (BPTT), has been independently formalized by several researchers (Mozer, 1989;
Robinson and Fallside, 1987; Werbos, 1988).
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Figure 2.6: Unrolling a Recurrent Neural Network (RNN). (Left) Like any neural
network, a RNN layer accepts some input xt and outputs a value ht. Yet, a
loop re-injecting the output ht as input of the layer for the next time step
t+ 1 allows to store useful information. (Right) This neural architecture can
also be viewed as multiple copies of the same network by unrolling the loop.
Image reproduced from Olah (2015).

In the literature, there are multiple choices for RNN cells. We depict three popular
choices in Figure 2.7. The most basic RNN architecture (Figure 2.7a) uses a single fully-
connected layer taking as input the concatenation of the current input vector xt ∈ R

d and
the previous hidden state ht−1 ∈ R

do . The current hidden ht is obtained after application
of the activation function, historically the hyperbolic tangent:

ht = tanh (W [xt,ht] + b) (2.21)

where W ∈ R
do×(d+do) and b ∈ R

do are respectively the matrix weights and vector bias
of the RNN cell. If we only need to look at recent information to do the present task,
e.g. predicting the last word in the sentence the clouds are in the sky , vanilla RNN
architectures perform pretty well. Yet, when the gap with the relevant information is
large, e.g. considering some context words from another paragraph, such RNNs struggle
to learn to use past information. Bengio et al. (1994) formally proved that vanilla RNN
suffer from vanishing or exploding gradients of the error when dealing with long sequences,
which makes their training difficult. Therefore, improved RNN cells have been introduced
in later works to learn long-term dependencies. The first prominent version was the
Long Short-Term Memory (LSTM) by Hochreiter and Schmidhuber (1997) (Figure 2.7b).
Compared to the vanilla RNN, the LSTM cell also has a cell state ct ∈ R

do that aims
to store longer term information than the hidden state ht ∈ R

do . The LSTM removes or
adds information to the cell state by resorting to some structures called gates which are
critical for improving memorization abilities (Tallec and Ollivier, 2018). There are three
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(a) Vanilla RNN (b) LSTM (c) GRU

Figure 2.7: Examples of cells for Recurrent Neural Networks (RNNs). Vanilla
RNNs have a single block mixing the input xt and the previous hidden state
ht−1 to compute the current hidden state ht. Instead, Long Short-Term Mem-
ory (LSTM) and Gated Recurrent Unit (GRU) cells have a more complex
structure for better capturing long-term dependencies within the input and
output sequences. Image reproduced from Olah (2015).

gates impacting the cell state, namely the input it, the forget ft and the output ot gates:

ft = σg (Wfxt +Ufht−1 + bf ) (2.22)

it = σg (Wixt +Uiht−1 + bi) (2.23)

ot = σg (Woxt +Uoht−1 + bo) (2.24)

c̃t = tanh (Wcxt +Ucht−1 + bc) (2.25)

ct = ft ◦ ct−1 + it ◦ c̃t (2.26)

ht = ot ◦ tanh (ct) (2.27)

Where c0 = 0do , ◦ is the element-wise product, W ∈ R
do×d, U ∈ R

do×do and b ∈ R
do are

weight matrices and bias vectors to learn during model training. The gates takes values
in the [0, 1] segment thanks to the sigmoid function σg(x) =

1
1+e−x . A number of follow-

up works have slightly modified the original LSTM formulation. Some added "peephole"
connections between the cell state and certain gates (Gers and Schmidhuber, 2000). Other
authors simplified the gating mechanism by coupling or combining the forget and input
gates like the Gated Recurrent Unit (GRU) from Cho et al. (2014a) (Figure 2.7c). How-
ever, Chung et al. (2014); Greff et al. (2016) showed that none of the proposed variants
significantly and consistently outperform the standard LSTM architecture.

So far, we only consider browsing the sequence of inputs x = (x1, ...,xt, ...,xT )T∈N

from the past to the future, i.e. from t = 1 to t = T . Yet, if we have access to the
whole sequence at prediction time, we can also leverage the context from future inputs
when learning a RNN. To that end, a Bidirectional RNN (BRNN) layer (Schuster and
Paliwal, 1997) connects two RNN layers of opposite time directions to the same output.
As illustrated in the Figure 2.8, the output thus gets information from the past and
future simultaneously through the forward and backward states. BRNNs are trained
using similar algorithms to RNNs, because the two directional layers do not have any
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Figure 2.8: Bidirectional Recurrent Neural Networks (BRNNs). A BRNN is com-
posed of two independent RNNs that move in opposite directions, one from
the past to the future (forward states) and the other from the future to the
past (backward states). The output of both RNNs are concatenated at each
time step t for getting context information from both sides. Image reproduced
from Schuster and Paliwal (1997).

interaction. Naturally, the bidirectional configuration can be used with any RNN cell
type, e.g. Bidirectional Long Short-Term Memory (BLSTM) (Graves and Schmidhuber,
2005).

2.2.1.3 Transformer based networks

For many years, RNNs had been firmly established as the state-of-the-art approaches for
sequence modeling problems like machine translation or language modeling (Cho et al.,
2014b; Bahdanau et al., 2015). However, such ANNs align the sequence positions to the
steps in computation time since the determination of the hidden state ht at time step t

depends on the previous hidden state ht−1. Their inherent sequential nature thus prevents
parallelization of RNN output computation which becomes critical with long sequence
lengths. Therefore, Vaswani et al. (2017) have recently proposed a neural architecture,
called Transformer, that avoids recurrence and instead relies entirely on an attention
mechanism to extract global dependencies between the sequence elements. Experiments
on multiple NLP tasks show that these new models are superior to RNN in quality while
being more parallelizable and requiring significantly less time to train.

Transformer networks are composed of several identical Transformer layers that are
stacked one on top of the other. We depict a Transformer layer in Figure 2.9, specif-
ically the first layer that is directly applied to the input sequences of examples. Each
Transformer layer has two sub-layers. The first is a multi-head self-attention mechanism
while the second is a two-layer fully-connected network that is applied separately and
identically to each sequence position. Residual connections (He et al., 2016) are added
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Figure 2.9: A Transformer layer applied to some input words. Such a layer suc-
cessively applies self-attention, normalization and feedforward layers to the
word representations of the Thinking Machines example. Image reproduced
from Alammar (2018a).

between the input and output of each of the two sub-layers to help the training pro-
cess. Layer normalization (Ba et al., 2016) is also employed to reduce the training time.
Since both sub-layers do not explicitly consider the order of sequence elements, the ab-
solute position of elements are added to their original representation before being fed to
the Transformer network. The position is encoded through sine and cosine functions of
different frequencies, resulting in a positional encoding vector for each input element.

In Figure 2.10, we illustrate the attention mechanism used in the self-attention layers.
An attention function can be described as mapping a query and a set of key-value pairs
to an output, where the query, keys, values, and output are all vectors. The output is
computed as a weighted sum of the values, where the weight assigned to each value is
computed by a compatibility function of the query with the corresponding key. Vaswani
et al. (2017) compute the output of attention as follows:

Attention(Q,K,V ) = softmax

(

QK⊤

√
dk

)

V (2.28)

where Q, K and V are the queries, keys and values matrices. The query matrix packs
together a set of queries to simultaneously compute the attention output for multiple
elements. In self-attention layers, all the keys, values and queries come from the same
place, i.e. the input sequence representations or the output of the previous layer in
the Transformer network. Instead of performing a single attention function, the queries,
and keys and values are linearly projected h = 8 times with distinct parameters before
independently performing the attention computation. Attention output of the h heads
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Figure 2.10: The attention mechanism used by Transformer self-attention lay-

ers. (Left) The attention module computes the compatibility between the
query Q and key K matrices, that is then used to weight the value V ma-
trix. (Right) Multi-Head Attention consists of h attention modules running
in parallel. Image reproduced from Vaswani et al. (2017).

are then concatenated before a final linear projection. This multi-head attention allows
the Transformer to jointly attend to information from different representation subspaces
at different positions.

Unlike RNNs, self-attention models like Transformers are able to connect all the se-
quence elements in a single pass, making the learning of long-range dependencies easier.
The main drawback of this architecture is that the computation cost is quadratic in terms
of the number of input elements6. This hinders the application of Transformer models to
problems with very long sequences like document-level text analysis.

2.2.2 Focus on natural language processing methods

2.2.2.1 Tokenization

Making textual data assimilable by a machine learning model is not trivial. Indeed, we
need to map raw strings like The quickest brown fox to numerical representations that
are understandable by a trainable model. To that end, the input text traditionally un-
dergoes several pre-processing steps before being fed to a ML model. The most inevitable
step is undoubtedly tokenization. Whatever the NLP model later used, the incoming
string, e.g. a sentence, a paragraph or even a document, needs to be broken down into
meaningful subsequences (Grefenstette, 1999; A. Mullen et al., 2018). Each resulting sub-

6A number of follow-up works have since explored ways to reduce the complexity of self-attention

while maintaining model expressiveness, see the survey from Tay et al. (2020)
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Figure 2.11: Levels of text tokenization. A natural language sentence can be splitted
with different levels of granularity, i.e. into words, characters or subwords.
For subwords, ## characters designate that a subword is the continuation of
a word in the original string.

sequence is called a token and groups some of the characters of the original string. In
most natural languages, one intuitive way to tokenize text is to split the string each time
a space character is encountered, thus forming a list of words. However, as illustrated in
Figure 2.11, the tokenization could also be performed at the character or subword level.

The ultimate goal of tokenization is to attribute a numerical value to each token of the
input string. To that end, we resort to a fixed-size dictionary of unique tokens, where each
token is attributed an integer index. This vocabulary may be constituted by applying the
chosen tokenizer to the input strings of the training dataset and enumerating the unique
tokens that have been created. To maintain a reasonable size, the vocabulary can be
finally restricted to the top K frequently occurring tokens.

So, which tokenization is preferable when tackling an NLP task? Although intuitive
for humans, tokenizing at word level may exhibit drawbacks. First, some words of an
input string may be not present in the vocabulary, e.g. if these words are not part of
the training examples from which we derive the vocabulary. For handling such Out-Of-
Vocabulary (OOV) words, a special token — usually denoted [UNK] — may be added
to the vocabulary. But this means that all the unknown words will be attributed the
same representation which may result in non-negligible loss of information. When facing
huge corpus of text, the vocabulary may also become very large, making impractical the
learning of subsequent ML models. Finally, word tokenization may be too rigid. In case
of a brittle modification of a word due to a user typo or to an OCR engine error, e.g.
Nachine instead of Machine, the vocabulary index attributed to the impacted word would
be completely different.

On the other side, tokenizing at each character overcomes the downsides of word
segmentation. This tokenization preserves the information of the whole input text since
there are not any OOV tokens. Indeed, all the words, even rare words, are decomposed
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in characters that are all known beforehand, e.g. ASCII7 or Unicode8 characters. Using
characters as tokens also significantly reduces the vocabulary size. Yet, the character
tokenization considerably increases the lengths of the produced token sequences and thus
the scale of the inputs that the ML model would have to process. Moreover, unlike words,
characters don’t have any inherent meaning: their semantic need to be derived with the
help of nearby characters.

Finally, subword tokenization brings the best of both worlds by splitting the input
strings into units smaller than words but larger than individual characters. Sennrich
et al. (2016) showed that encoding (rare) words via subword units is more effective than
using large vocabularies of words. Subword tokenization also maintains a reasonable vo-
cabulary size and prevents the number of tokens for processed strings from exploding
compared to the character segmentation. It may be performed by splitting at regular
intervals to obtain fixed-size character n-grams (Cavnar et al., 1994) or to follow a more
complex logic to produce variable-length character subsequences such as Byte Pair Encod-
ing (BPE) (Sennrich et al., 2016), WordPiece (Schuster and Nakajima, 2012), Unigram
(Kudo, 2018) and SentencePiece (Kudo and Richardson, 2018). All these algorithms seg-
ment the input strings using a vocabulary of sub-components that frequently appear in
the training corpus. For example, the BPE method (Sennrich et al., 2016) constructs the
vocabulary by first selecting only the individual characters. It then iteratively merges
the most frequently occurring pairs of characters or character sequences until reaching
the desired vocabulary size. Once the vocabulary obtained, BPE applies the same merge
operations to new input strings for obtaining their subword segmentation. In practice,
with such tokenizing approaches, the most common words like and are tokenized as whole
words while rarer words are broken into smaller grammatically logical chunks. For ex-
ample, with a relatively small vocabulary size, the comparative adjective faster would
be split in two more frequent units that are the base adjective fast and the comparative
suffix er.

Depending on the specific NLP task and chosen model, other pre-processing steps
could be applied to the text before tokenization. It could be stemming or lemmatizing
steps that aim to reduce the words to their roots by removing their attached suffixes
and prefixes (Jivani et al., 2011). One widely performed operation is to lowercase all
the characters to solve the sparsity issue of some word forms (Uysal and Gunal, 2014).
Indeed, without lowercasing, CANADA and Canada would be treated as two distinct tokens
while both case forms convey the same information.

2.2.2.2 Token representations

Once we have performed all our desired pre-processing steps, including tokenization, each
input string s is represented by a sequence of integer values {s1, ..., sk}k∈N that corre-
spond to vocabulary indexes. The text data has thus been transformed into structured
categorical inputs. Since the vocabulary has not any natural ordering, one simple way

7http://www.asciitable.com/
8https://unicode-table.com/

http://www.asciitable.com/
https://unicode-table.com/
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for modeling vocabulary tokens is to employ one-hot encoding. In this schema, a token
i ∈ {1, ..., |V |} is represented by a binary vector xi ∈ {0, 1}|V |, where |V | is the vocabulary
size. The vector xi consists of 0 values in all dimensions with the exception of a single 1 in
the i-th dimension. One-hot encoding is effective when the vocabulary is relatively small,
e.g. a character-only vocabulary (54 tokens in Katti et al. (2018)). Yet, for vocabularies
of words and subwords that are typically made of thousands of tokens (Chen et al., 2019),
it produces very sparse and uninformative representations of text that can further lead
to suboptimal model learning.

Token embeddings methods are an alternative to one-hot encoding by representing
each token with a real-valued vector that actually encodes its meaning. Unlike one-hot
encoding where all token vectors are equidistant, tokens that are close in the embedding
space are expected to be similar in meaning (Teller, 2000), e.g. the embedding vectors
of the tokens cat and dog are expected to be closer than the embedding of computer.
The dimension m of the embedding space is also desired to be much lower than the
vocabulary size |V |, i.e. m ≪ |V |. Token embeddings can be obtained using a wide range
of language modeling and feature learning techniques such as dimensionality reduction on
the token co-occurrence matrix (Lebret and Collobert, 2014) or knowledge based methods
(Qureshi and Greene, 2019). However, since some foundational works from Morin and
Bengio (2005); Mnih and Hinton (2009), most embeddings methods are based on neural
networks.

In neural models, token embeddings are used in the first layer of the network to map all
the vocabulary indexes si of a tokenized string s = {s1, ..., sk}k∈N to real-valued vectors.
This is performed by using a lookup table C ∈ R

|V |×m that gathers the embedding vectors
ci ∈ R

m of all the elements of the vocabulary V (Bengio et al., 2003). As exemplified
in Figure 2.12, embeddings of the string tokens are obtained independently from one
another. For a token si ∈ {1, ..., |V |} of the string s, the output of the embedding layer
EC is:

EC(si) = csi (2.29)

The rest of the neural network utilizes the obtained token representations to perform the
problem at hand, e.g. language modeling in Figure 2.12. In this example, the embeddings
of n consecutive words are concatenated and passed through two fully-connected layers
— with tanh and softmax activation for respectively the hidden and output layers — to
determine which is the next word of the sentence. Note that the embedding matrix C

are learned like the rest of the model parameters, i.e. with the same instance of gradient
descent (Bengio et al., 2003). The embedding matrix can be learned from scratch on the
target task, by randomly initializing its weights at the beginning of the learning process
(Collobert et al., 2011). However, this may be not very ideal for tasks with a small
training dataset since direct training on end tasks can lead to poor representations of
tokens, particularly for rare tokens (Bahdanau et al., 2017). This can be alleviated by
learning on several related tasks and datasets at once, i.e. in a multi-task setting. For
instance, Collobert and Weston (2008) simultaneously learn various classical NLP tasks,
namely Part-Of-Speech (POS) tagging, Named Entity Recognition (NER), Semantic Role
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Figure 2.12: A neural language model using word embeddings. The model
aims to predict the t-th word of a sentence given the n previous words
{wt−n+1, ..., wt−1} as context. In the network input, each context word wi is
represented by C(wi) ∈ R

m, i.e. the wi-th row of the embedding matrix C.
Image reproduced from Bengio et al. (2003)

Labeling (SRL), chunking and detection of semantically related words.

Yet, labeled text data are not mandatory to derive powerful semantic representations
of the tokens. Indeed, distributional semantics — which hypothesizes that a word is
characterized by the company it keeps (Firth, 1957) — can be leveraged to learn directly
from raw text that is widely available on the web "for free" (Chelba et al., 2013; Zhu
et al., 2015). The unlabeled text is used as training data for a self-supervised NLP task by
being automatically attributed labels without any human annotation cost. One example
of such task is statistical language modeling which aims at estimating the probability of
word sequences of arbitrary length. By factorization, the problem is generally reduced to
predicting the next word in a sequence given the previous words as context (Bengio et al.,
2003). Generating training data for this task is thus straightforward: it just demands to
sample some text sequences, keep all the tokens except the last as input and treat the last
token as ground truth for the language modeling task. Mixing unlabeled text data with
traditionally labeled data for learning token embeddings is one instance of semi-supervised
learning (Zhu and Goldberg, 2009). There are two major approaches in semi-supervised
learning:
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Figure 2.13: Word2Vec architectures for learning word embeddings. Two reversed
architectures are proposed: CBOW predicts the current word w(t) based on
its context words while Skip-gram predicts the surrounding words given the
current word w(t). Image reproduced from Mikolov et al. (2013a).

• Learn a single model on both labeled and unlabeled data at the same time (Collobert
and Weston, 2008).

• First learn a model to produce high-quality generic token representations on unla-
beled text (pre-training phase) and then reemploy (parts of) this model for further
training on task-specific labeled data.

One of the first successful technique to learn token embeddings from unlabeled text in
reasonable training times was undoubtedly Word2Vec (Mikolov et al., 2013a,b). They
proposed a two-layer neural network that comes in two flavours depicted in Figure 2.13.
The Continuous Bag-of-Words (CBOW) architecture predicts the current word w(t) given
a fixed-size context, i.e. the words that immediately precede and succeed it. The output
of its hidden layer, also called the projection layer, is the average of embedding vectors of
all the context words, disregarding the word positions. On the contrary, the Skip-gram
architecture predicts which words are in its neighbourhood based on its embedding vector.
Once one of these two models is trained, one can extract the weights of the projection
layer that correspond to the embeddings of all the vocabulary words. The embedding
matrix can then be reused to initialize the embedding layer of an ANN for tackling any
downstream NLP task. Word2Vec work further inspires improved embeddings methods.
Glove (Pennington et al., 2014) incorporates corpus-wide word co-occurrence statistics
for model learning instead of relying only on local contexts. The fastText approach
(Bojanowski et al., 2017) constructs word embeddings by dividing each word in a set
of characters n-grams and summing their vector representations. This extension of the
Skip-gram model thus takes into account the morphology of words which is profitable for
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handling the many rare words in morphologically rich languages, e.g. French or Spanish
verbs have more than forty different inflected forms.

Using language models Nevertheless, all these previous self-supervised methods for
constructing token representations suffer from the same major drawback. They do not
consider the polysemy of words, i.e. the fact that words have different meanings depending
on their linguistic context. To remedy this, Peters et al. (2017, 2018) proposed to learn
contextualized representations of words, i.e. representations that depends on the entire
context in which words appear. The representations are issued from language models
that are pre-trained on large text corpora. Specifically, ELMo (Peters et al., 2018), which
stands for Embeddings from Language Models, computes the word representations by a
linear combination of the hidden states of a two-layer bidirectional LSTM language model.
Like traditional embeddings methods, Peters et al. (2017); McCann et al. (2017) transfer
language knowledge to the target NLP tasks by freezing the contextualized representa-
tions and inserting them at various stages of existing task-specific NLP systems. They
demonstrate that this feature-based approach for transfer learning significantly improves
the state-of-the-art for a wide range of challenging language understanding problems.

On the opposite, Howard and Ruder (2018) claim that treating pre-trained embed-
dings as fixed parameters integrated into task-specific architectures limits the usefulness
of embeddings. Rather, they advocate for directly extending the language model with
a few additional linear layers in order to tackle the end task. In this paradigm, a mini-
mal amount of parameters needs to be trained from scratch on the target task while the
parameters of the underlying language model are only fine-tuned. In their paper, they
propose novel processes and techniques to retain previous knowledge and avoid catas-
trophic forgetting during the fine-tuning stage. They conduct experiments on several text
classification tasks and show that fine-tuning a basic LSTM language model outperforms
the highly engineered state-of-the-art models, particularly with few labeled data. Their
work have pushed the NLP community to follow the fine-tuning approach for achieving
robust transfer learning.

As yet, all language models were based on recurrent networks — often LSTMs — in
order to efficiently model the relationships between tokens. Starting with the Generative
Pre-trained Transformer (GPT ) (Radford et al., 2018), the language models progressively
moved to the freshly introduced Transformer architecture. Radford et al. (2018) indeed
showed that this change of neural architecture allows the language model to capture longer
range linguistic structure, which is particularly helpful for multi-sentence reasoning (Lai
et al., 2017). To do so, they pre-trained GPT on a large-scale dataset (1 billion tokens)
of long stretches of contiguous text (Zhu et al., 2015). Radford et al. (2018) were then
able to tackle a wide range of NLP problems with minimal task-specific customization of
the pre-trained model. They not only dealt with text classification tasks like Howard and
Ruder (2018) but also with question answering or textual entailment tasks that feature
structured inputs and were traditionally solved by introducing a significant amount of
task-specific parameters that do not benefit from pre-training. Instead, as illustrated
in Figure 2.14, they convert structured inputs into an ordered sequence that GPT can
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Figure 2.14: Input transformations for fine-tuning GPT language model on NLP

tasks. For textual entailment (Bowman et al., 2015), sentence similarity
(Dolan and Brockett, 2005) and multiple choice question answering (Lai
et al., 2017), all the structured inputs are converted into token sequences
that the GPT’s pre-trained Transformer layers can directly process. The
only parameters introduced at the fine-tuning stage belong to the final task-
specific linear layer. Image reproduced from Radford et al. (2018).

process without further altering its architecture.

While meaningful for sentence-level tasks, fine-tuning a unidirectional language model
like GPT (Radford et al., 2018) may be harmful for token-level problems, such as ex-
tractive question answering (Rajpurkar et al., 2016), where it is crucial to incorporate
linguistic context from both directions. Devlin et al. (2018) proposed to pre-train deep
bidirectional representations by jointly conditioning on both left and right context in all
Transformer layers. To achieve bidirectional pre-training, they modified the traditional
language modeling objective in order to avoid the tokens to indirectly see themselves in
later network layers. Such shortcuts would likely lead to uninformative token representa-
tions. Instead, they introduced a masked language model (MLM) pre-training objective.
As shown in Figure 2.15, it randomly masks 15 % of the tokens from the input and the
model is tasked to retrieve which were the original words based on the context. Their
model was named Bidirectional Encoder Representations from Transformers (BERT).
This change of pre-training objective, from a generative task to a discriminative task,
explains that the model is called an encoder. As GPT (Radford et al., 2018), Devlin
et al. (2018) resort to special tokens for marking the end of a piece of contiguous text
([SEP ]) and for getting a high-level representation of the whole token sequence ([CLS])
that is used for sentence-level predictions. Segment embeddings are also added to the
input token representations in order to better separate two pieces of text to compare, e.g.
a paragraph with an associated question about it. In addition to BookCorpus (Zhu et al.,
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Figure 2.15: Masked language model objective for pre-training BERT model.

Image reproduced from Alammar (2018b).

2015) used for pre-training GPT, BERT also employed larger-scale and open-domain data,
namely 2.5 billion words from English Wikipedia pages. Once BERT is pre-trained, a sin-
gle fully-connected layer is added on its top and is learned on task-specific labeled data
while fine-tuning the encoder weights. Although conceptually simple, BERT significantly
improved the state-of-the-art on eleven diverse NLP tasks, including both token-level and
sentence-level problems.

BERT’s strong empirical results have triggered an amount of works within the NLP
community for improving and better understanding bidirectional Transformer based lan-
guage models. These ongoing works range from mere optimization of its hyper-parameters
(e.g. RoBERTa (Liu et al., 2019b)) to new pre-training objectives, larger unlabeled cor-
pora, smaller models to deliver faster training and inference, studies about their learned
linguistic knowledge and extensions to languages other than English (Xia et al., 2020).

2.3 Machine learning based information extraction

With the development of machine learning techniques described above, statistical ML
approaches have become the mainstream for a wide range of document analysis tasks,
including information extraction (Xu et al., 2020b). Indeed, learning a ML model offers a
greater adaptability and better generalization capabilities than rule and pattern based IE
methods that were detailed in section 2.1. Even if some works use class-specific knowledge
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Figure 2.16: Main labeling schemes used for tackling Information Extraction

tasks. In this example, we are interested in extracting instances of gene
from the tokenized input text given in the first column. The rest of the
columns provide the expected label sequence for each annotation scheme.
Image reproduced from Cho et al. (2013).

to improve the extraction efficiency of known document classes (Cheng et al., 2020), most
machine learning approaches are class agnostic in order to extract information whatever
the document issuer.

Generally, ML methods used for extracting information first decompose a document
into various homogeneous parts and then classify all parts, either jointly or independently,
according to the information type that they carry (Sarawagi, 2008). The most common
decomposition is into a sequence of tokens, by applying a tokenizer to the document text
(cf. section 2.2.2.1). The extraction objective then becomes a sequence labeling problem,
where we need to attribute a label to each token among a set of predefined labels Y . The
possible labels comprise the set of target information types F as well as a special label
(Other or just O) for tokens that do not carry relevant information. For handling multi-
token fields, the ground truth set Y includes subpart field labels to denote the beginning,
continuation and end of a unique field value (Ramshaw and Marcus, 1999). These subparts
are respectively indicated by the prefixes B, I and E in front of each targeted field. There
exists multiple labeling schemes using some or all these subpart labels. The most common
choices are illustrated in Figure 2.16. We note that the IOBES annotation scheme also
introduces a S label for designating single-token fields. As an example, if we expect to
extract two fields F = {gene, protein} from input documents, the IOBES scheme would
induce a label set of size 9:

Y = {B-gene, I-gene,E-gene, S-gene,B-protein, I-protein,E-protein, S-protein,O} (2.30)

Usually, the choice of an annotation scheme in the IE system is arbitrary, without any
proper test. However, Cho et al. (2013) have shown that the different labeling schemes
cause little difference in extraction performance.

Albeit less frequently performed, the document text can also be decomposed into
segments, i.e. groups of consecutive tokens (Sarawagi, 2008). Each segment is expected
to entirely contain a field value, thus allowing to handle multi-token entities without
expanding the set of labels Y . The segmentation can be performed following a manually
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encoded logic, e.g. by grouping close tokens when the text is spatially distributed as in
invoices (Aslan et al., 2016). The decomposition into segments can also be learned while
performing the classification of segments (Sarawagi, 2006).

Once the document text is decomposed into tokens or segments, a ML model is tasked
to tag each document part with one label from Y . To that end, the model exploits sets of
features that capture various properties of each document part and possibly the context
in which it lies, i.e. its nearby tokens or segments. We denote the feature vectors that
represent the document tokens or segments by {xi}i=1...k, where k is the number of parts
in the document. A wide variety of ML models have been proposed in the literature for
classifying information types.

2.3.1 Feature-based approaches

In the early days of ML based information extraction, the prominent methods for clas-
sifying document parts were using models with limited expressiveness. The low model
complexity was mitigated by manually designing highly informative features of each token
or segment (Sarawagi, 2008). While their precise forms depend on the extraction objec-
tives, the feature sets were gathering recurring clue types. For describing a token, its text
value was used to derive categorical or boolean features by checking if the token belongs
to vocabularies of domain-specific keywords and entities like cities or persons (Han et al.,
2003). For less rigid data types likes dates or amounts, matching against a set of regular
expressions may also be performed (Schuster et al., 2013a). Some orthographic properties
were generally included in the token features, such as capitalization patterns, the pres-
ences of special characters like digits or punctuation and the numbers of characters (Peng
and McCallum, 2006). Syntax features may be added, classically with the detection of
part-of-speech tags, i.e. whether a word is a noun, adjective, verb or adverb (Htay and
Lynn, 2013). For Visually Rich Documents (VRDs), layout features such as font types and
text alignments were generally incorporated (Zhu et al., 2007) as well as image features,
e.g. Histograms of Oriented Gradient (HOG) vectors for detecting company logos (Aslan
et al., 2016). Some context knowledge can finally be added to a token’s representation
by inserting the features of its nearest neighbors (Palm et al., 2017b). When describing
a segment, a feature usually captures joint properties of all the tokens belonging to the
segment. For instance, Aslan et al. (2016) represent a segment with tf-idf vectors that
enumerate all the words of the segment.

After having performed feature extraction, a ML model is applied to the feature vec-
tors X = {xi}i=1...k of a document to determine the labels y = {yi}i=1...k of its tokens
or segments. The employed models are seamlessly applicable to both token-level and
segment-level feature vectors. Therefore, for sake of readability, we only mention token
classification in the following but the same applies for segments.

One simple IE approach is to independently predict the label yi ∈ Y of a token
i ∈ {1, ..., k} given its feature vector xi ∈ R

d. The traditionally used classifiers when con-
sidering this approach are logistic regression (Aslan et al., 2016), kernel-based (Han et al.,
2003) and tree-based models (Holt and Chisholm, 2018). However, even if there exists
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interactions between the tokens of a document when inserting context knowledge into fea-
ture vectors, the labels predicted by such models are independent across a document. This
behaviour is prejudicial for typical extraction tasks where the labels of adjacent tokens
are rarely independent, e.g. in the Figure 2.16, the token glutamyl is highly correlated
to the previous token Gamma that marks the beginning of a gene instance.

To remedy the decision independence across tokens, probabilistic graphical models
(Lafferty et al., 2001) were proposed to extract information from a document. We can
cite the applications of Hidden Markov Models (HMMs) (Seymore et al., 1999), Maximum
Entropy Markov Models (MEMMs) (McCallum et al., 2000) and, most notably, Condi-
tional Random Fields (CRFs) (Peng and McCallum, 2006; Zhu et al., 2007; Chen et al.,
2016) that have empirically been found to be superior to the first two methods (Sarawagi,
2008). All these graphical methods jointly model the labels of document tokens given
their feature vectors. They are theoretically able to express label dependencies across the
whole token sequence of a document. However, their training and inference times grow
exponentially with the size of the label set Y and the number of tokens k in the document.
Therefore, in order to assure their tractability for practical IE tasks, their dependency
graph are usually restricted to simple structures like linear chains. This later structure
connects a token only with its immediate neighbors in the document sequence.

Except kernel-based methods which employ max-margin training (Taskar et al., 2004),
all models mentioned in this section are traditionally learned through maximum likelihood
estimation (Sarawagi, 2008). This model parameter search is performed by maximizing the
logarithm of the model’s output probabilities P (y|X) when observed on the training doc-
uments. For models that independently classify the tokens, i.e. P (y|X) =

∏k

i=1 P (yi|X),
maximizing the log likelihood is equivalent to minimizing the sum of the cross-entropy
loss — defined in equation (2.5) — over each document token.

Even if some extraction logic is learned by the ML model compared to rule-based
methods, feature-based approaches still require substantial engineering efforts to design
features that are informative enough to lead to accurate model predictions. This observa-
tion is particularly true for fields that exhibit important content variability across entities
and documents. For instance, in the experiments of Zhu et al. (2007) performed on re-
ceipt documents, the extraction performance reported for the vendor name is significantly
lower than more structured fields like the issuing date, the credit card and phone num-
bers. Finally, the feature sets are generally dependent on the application domain, making
the feature-based approaches not easily transferable between extraction needs without
additional manual costs.

While feature-based approaches are still proposed for tackling IE tasks (Szegedi et al.,
2020), most ML methods have now turned to deep models that learn from restricted sets
of features whose do not imply significant human intervention.

2.3.2 Deep models

Like for many tasks in the AI field (O’Mahony et al., 2019; Shin and Balasingham, 2017),
the IE practitioners have recently transitioned from highly feature-based ML methods
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Figure 2.17: Deep neural model ranking field candidates using local contexts.

The model produces contextualized representations of field candidates (=
Cand.) by first combining embedding (= Embed.) vectors of their N token
neighbors and then comparing the neighborhood encodings with the own
embeddings of candidates. Image reproduced from Majumder et al. (2020).

to deep learning models that drastically reduce the engineering efforts while improving
extraction performance. Such deep models, that are almost exclusively neural networks,
can be viewed as the succession of an encoder and a decoder. The encoder is applied to
the feature vectors of document tokens to produce high-level meaningful representations
of tokens and their context. These computed representations are then processed by the
decoder which is in charge of attributing the information labels to tokens.

One major component of deep neural networks solving IE problems is the embedding
layer that transforms the vocabulary index of a token to a dense continuous vector as
detailed in the section 2.2.2.2. Using a single feature that is obtained without any cost
once the vocabulary has been constructed, we let the model derive linguistic represen-
tations of tokens that are helpful for achieving the IE task. The token embeddings are
then combined in later layers of the encoder to learn contextualized document-level rep-
resentations of tokens. The combination of embeddings can be performed locally using
a fixed-size neighborhood around each document element. As illustrated in Figure 2.17,
Majumder et al. (2020) rank field candidates — generated from high-recall data type
specific detectors — by firstly mixing embeddings of their neighbors, i.e. tokens that
appear to the left or slightly above the candidates on the document page. However,
since Majumder et al. (2020) restrict the candidates neighbourhoods to fixed-size sets of
close tokens, their model cannot capture long-range dependencies between the tokens of
the documents. This may be prejudicial for extracting certain information types such
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Figure 2.18: Deep RNN based token classifier used for extracting information.

In this architecture, each token is first encoded into 500 dimensional textual
embeddings alongside other features. Several neural network layers are then
applied to the token representations, including a bidirectional LSTM layer,
before tagging each token with one or several of the 65 classes correspond-
ing to the targeted information types. Image reproduced from Palm et al.
(2017b).

as tabular fields where some of the table cells can be relatively distant from the headers
explaining the meaning of the rows and columns.

As in other IE tasks such as Named Entity Recognition (NER) (Yadav and Bethard,
2018), the first deep models leveraging document-level representations of tokens were
based on Recurrent Neural Network (RNN) encoders (Palm et al., 2017b; Jiang et al.,
2019). Such models extract information by processing a document as a sequence of to-
kens. By recursively computing the token representations across the sequence, the RNN
layers, particularly when using the powerful LSTM and GRU cells, are able to store in
their hidden states unbounded dependencies between the document tokens. The deep
contextualized tokens representations are obtained by stacking multiple neural networks
layers, not necessarily all of them being recurrent layers. For instance, as depicted in
Figure 2.18, the encoder from Palm et al. (2017b) employs a single central BLSTM layer
that is surrounded by four fully-connected layers using a ReLU activation. The final layer
of the network is a fully-connected layer in charge of performing the token classification.
For Palm et al. (2017b), this decoder layer has an output size of 2 × 65, where 65 is the
number of classes in Y (32 target fields using the IOB2 labeling scheme). The layer is
provided with the sigmoid activation in order to obtain an independently predicted prob-
ability for each class of Y , assuming that the classes are not mutually exclusive. Yet, in
the general case, a token does not belong to multiple fields and, a fortiori, to multiple
output classes. Therefore, a common alternative is to employ a flat output layer of size |Y|
with a softmax activation to produce exclusive class probabilities. In order to guarantee
more structured predictions, the raw values predicted by this last fully-connected layer,
i.e. before applying any activation function, may also serve as high-level feature functions
for a graphical model such as CRFs (Jiang et al., 2019).



48 Chapter 2. Related works

2.3.2.1 Multi-modal encoders for visually rich documents

As outlined in the subsection 1.3.1, a number of business document types are Visually
Rich Documents (VRDs). For solving many document analysis tasks including IE, this
characteristic implies to not only understand the textual values of tokens but also the
layout and image modalities of such documents. To that end, the first IE works employing
deep models were enhancing the token features with positional representations. Palm
et al. (2017b) add the two dimensional coordinates of the token bounding boxes that
are normalized with the page dimensions while Jiang et al. (2019) uses both learned
positional embeddings and Transformer’s sinusoidal positional vectors. Yet, in both works,
the subsequent RNN encoder in charge of constructing the contextual representations of
tokens is operating on an uni-dimensional arrangement of tokens. This model architecture
forces to organize the tokens of a two dimensional document into a spurious 1D order,
when there is none naturally. Traditionally, the tokens are arranged in a top-left to
bottom-right order similarly to the reading order of plain text in most natural languages
(Palm et al., 2017b). However, this choice induces that for text blocks spread on multiple
lines like the issuer address, the tokens are not contiguous in the resulting sequence which
is suboptimal for later detecting fields contained in these blocks (Hong et al., 2021).

To efficiently encode VRDs, the subsequent IE works have proposed document models
and neural architectures that explicitly consider the multi-modality of business docu-
ments. Inspired by related document analysis tasks (Yang et al., 2017), two main ap-
proaches have emerged.

Graph approaches First, various IE practitioners have represented documents with
graphs, where each node corresponds to a token or a group of spatially close tokens (Lo-
hani et al., 2018; Liu et al., 2019a; Holeček et al., 2019; Qian et al., 2019; Krieger et al.,
2021). Different strategies for connecting the nodes in the document graphs were pro-
posed. The naive choice is to construct an edge between each pair of nodes (Liu et al.,
2019a). Yet, the fully-connected graphs prove to be computationally expensive when the
granularity of the graph is fine, e.g. when each token is a node (Lohani et al., 2018).
Therefore, most IE works using graph encoders employ partially connected structures.
Considering that spatially distant nodes are less likely to depend on each other than close
nodes, a node is thus connected to only its closest nodes, usually with at most one edge
in each cardinal connection (Lohani et al., 2018; Gal et al., 2020). The Figure 2.19 illus-
trates the representation of a receipt document with a locally-connected graph. Finally,
Yu et al. (2021) suggest to automatically learn the graph structure while learning to per-
form information extraction. Once the document is modeled as a graph, multiple neural
network layers involving graph convolution, recurrence or self-attention mechanisms are
applied to hierarchically learn 2D contextualized representations of nodes.

Regular grid approaches Secondly, some works have decided to represent a docu-
ment page as a regularly shaped 2D grid on which the tokens are embedded with their
features (Katti et al., 2018; Denk and Reisswig, 2019; Zhao et al., 2019; Dang and Thanh,
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Figure 2.19: Graph representation of a Visually Rich Document (VRD). The
receipt document is represented as an undirected graph where each word
recognized by the OCR engine is a node. Each node is only connected to its
closest words in the top, bottom, left and right directions. Image reproduced
from Gal et al. (2020).

2019). Aiming to preserve the relative spatial relationships between tokens, this repre-
sentation is usually obtained by downscaling the original document image such as each
grid cell contains at most one token. The Figure 2.20 illustrates the grid representation
of business documents. From these image-like models, Convolutional Neural Networks
(CNNs) are then employed to obtain the contextualized token representations. In order
to capture multi-scale patterns in the input documents, these encoders either resort to
dilated convolutions (Zhao et al., 2019) or to a U-shaped architecture that alternates a
contracting path and an expansive path (Katti et al., 2018; Denk and Reisswig, 2019;
Dang and Thanh, 2019).

Since there are no direct comparisons in the literature, it is difficult to conclude which
approach between graph-based and regular grid based approaches is the most efficient
to learn token representations that consider the layout modality. However, as outlined
by their authors, both multi-modal encoders outperform uni-dimensional RNNs for ex-
tracting information from VRDs (Katti et al., 2018; Zhao et al., 2019; Liu et al., 2019a;
Castilho, 2020).
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Figure 2.20: Regular grid representation of a Visually Rich Document (VRD).

The receipt document is transformed into an image-like representation that
embeds its tokens and on which standard convolution layers can be later
applied. Image reproduced from Zhao et al. (2019).

Integrating the image modality In addition to better understanding the document
layout, Katti et al. (2018); Kerroumi et al. (2020) also include the pixel values of the
original pages in the input features. Such integration of the image modality is helpful for
capturing clues that are not conveyed by the text such as figures, table ruling lines, logos
and stamps. Unsurprisingly, Sarkhel and Nandi (2021) show that leveraging the image
modality is beneficial for IE from VRDs such as emails, research papers and news articles.

Similarly to text-only models, a decoder made of one or a few fully-connected layers
is added on top of these multi-modal encoders in order to classify the tokens according
to their carried information. Even if the tokens are not arranged as an unidimensional
sequence in the input of such encoders, the document text still needs to be correctly
serialized for the decoder in order to detect fields that are spread over multiple tokens.
Therefore, the sequence labeling term is still valid for describing this information extrac-
tion paradigm where all the document tokens undergo classification. In the following, we
use interchangeably the terms of sequence labeling and token classification based IE for
referring to such approaches.

2.4 Information extraction datasets

Due to the sensitivity of data contained in business documents, most prior works in in-
formation extraction are carried out on in-house datasets which are not publicly released
(Motahari et al., 2021). Unfortunately, such document corpora scarcity prevents IE re-
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searchers to extensively compare their proposed methods, thus hindering progress in this
field. We below list the most popular public datasets that have been annotated for IE
tasks, focusing on datasets that exhibit a diversity of document layouts and issuers:

• Scanned Receipts OCR and Information Extraction (SROIE) dataset (Huang et al.,
2019)9. This dataset gathers around 1,000 restaurant receipts and its IE task aims
at retrieving the name and address of the company issuing the receipt, the total
amount and date. Further details about the dataset and task alongside document
samples will be given in the next chapters since this resource is massively used for
training and evaluating our extraction models.

• CORD: A Consolidated Receipt Dataset for Post-OCR Parsing (Park et al., 2019)10.
This dataset also puts together 1,000 restaurant receipts. Unlike SROIE which is
annotated for just 4 fields, the target information schema is fine-grained and hi-
erarchical with 4 categories and 30 fields to extract. For example, for each menu
ordered in the restaurant, one must recognize its identification number, price, quan-
tity, unit and total amounts. However, due to privacy reasons, most of the receipt
text is blurred to render it unrecognizable. This limitation makes the IE task less
representative of real-world applications.

• Kleister (Graliński et al., 2020). This benchmark is composed of two corpora of
multi-page and long documents (several thousands of words on average), namely
540 Non-Disclosure Agreements (NDAs)11 and 2,778 reports of charities 12. These
documents are annotated for extracting 4 and 8 flat fields, respectively. Each ground
truth field value is normalized according to its type, e.g. the ISO 8601 format for
the effective date of the NDA.

• Very recently, Chua and Duffy (2021) have mentioned the idea to manually annotate
the invoices of the RVL-CDIP dataset (Harley et al., 2015) in order to perform IE
tasks. The aim would be to extract the invoiced items as well as the date, number
and total amount of the invoice. On their GitHub page13, they have already released
869 annotations up to April 21st, 2021. Yet, there are still no proper resources that
document these annotations and report model results on this dataset.

9https://rrc.cvc.uab.es/?ch=13
10https://github.com/clovaai/cord
11https://github.com/applicaai/kleister-nda
12https://github.com/applicaai/kleister-charity
13https://github.com/deepcpcfg/datasets

https://rrc.cvc.uab.es/?ch=13
https://github.com/clovaai/cord
https://github.com/applicaai/kleister-nda
https://github.com/applicaai/kleister-charity
https://github.com/deepcpcfg/datasets




Chapter 3

Information extraction through deep

token classifiers

Chapter abstract

The first deep learning models proposed to extract information from business

documents were token classifiers which determine the information type carried

by each token of the documents. Prior work had shown that those models

reach remarkable extraction performance even when facing a rich diversity of

incoming documents.

In this chapter, we conduct experiments to assess the behaviour of deep to-

ken classifiers in complementary IE settings. We propose an extraction model

based on a Recurrent Neural Network (RNN) that operates at the word level.

We evaluate our models on two in-house datasets of real-world documents an-

notated to extract structured information as well as on SROIE, a public IE

dataset of receipts. Firstly, we found that the token classifiers are able to ex-

tract tabular information from document issuers and layouts that were not seen

at training time. Moreover, we show that including fine-grained textual and

layout features into the representations of the document words is primordial

for successful extraction. Yet, the token classifiers learn to extract information

from token level labels that are not naturally available and that must be deduced

from the ground truth extraction schemas. In the general case, we have not

access to the position of the information within the documents to automatically

construct the token labels. The labeling process is then likely to introduce noise

in the classifier supervision. We show that such lowering of the label quality

can significantly reduce the extraction performance of an IE system based on

token classifiers.

The work in this chapter has led to the publication of a conference paper:

• Clément Sage, Alexandre Aussem, Haytham Elghazel, Véronique Eglin,
and Jérémy Espinas. Recurrent neural network approach for table field
extraction in business documents. In 2019 International Conference on

Document Analysis and Recognition (ICDAR), pages 1308–1313, Sydney,
September 2019. IEEE.
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3.1 Introduction

As underlined in Chapter 2, deep learning methods have lately became approaches of
choice for extracting information from business documents. Indeed, unlike rule-based
approaches, deep models are able to extract complex information structures even for doc-
ument classes that have not yet been seen. They also require significantly less engineering
efforts than shallow learning models that heavily rely on hand-crafted features.

Following the seminal work of Palm et al. (2017b), most of the deep models used for IE
resort to classifiers that predict the information type of each document token. As detailed
in the section 2.3.2, such classifiers are made of a neural encoder that learns powerful con-
textualized representations of the document tokens. A decoder is then applied to these
representations to obtain the information classes of tokens. In their work, Palm et al.
(2017b) utilize a RNN encoder that operates on sequences of document words while the
decoder is a single fully-connected layer with a sigmoid activation function. Their deep
neural network was empirically shown to outperform a strong logistic regression baseline
where the feature vectors were enhanced with local context knowledge. The difference
of performance was particularly striking when the extraction models were assessed on
invoices whose layouts had not been seen at training time. However, they have only
evaluated their approaches on single-value fields such as the invoice number and the to-
tal amount. Therefore, in our work, we first study whether the deep IE models behave
similarly when dealing with fields that can appear an arbitrary number of times in the
extraction schema, the number of field occurrences being unknown beforehand and de-
pending on the input document. To that end, we evaluate deep classifiers when extracting
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tabular fields from purchase orders that were processed on the Esker infrastructure. We
compare a word level RNN based model with a feedforward neural network baseline where
local context knowledge is introduced in the feature sets. The comparison is performed
according to two splitting methods of the set of collected purchase orders in order to study
the ability of both IE models to generalize to new document layouts (section 3.4.1).

We then conduct in section 3.4.2 ablation experiments on the input representations
of words in order to highlight the essential components of the feature vectors among the
textual and layout modalities.

By design, these deep classifiers learn to extract information from token level super-
vision, i.e. from labels that describe the information types carried by each token of the
document. Such ground truth can be seamlessly obtained when knowing where the field
instances of the extraction schema are located in the document. When experimenting on
documents collected from Esker’s automation platform, we have access to the position
of the extracted field instances since this is a byproduct of another IE system deployed
on this platform (see section 3.3.1 for more details). However, in the general case, the
position of extracted information within the document is missing in the ground truth.
For instance, this is the case for three out of the four public IE datasets mentioned in the
section 2.4, namely Huang et al. (2019); Graliński et al. (2020); Chua and Duffy (2021).
Without knowledge of the field positions, two possibilities remain for training a token
classifier to extract information.

The first option is to manually annotate the position of fields based on their textual
value given in the extraction schemas. Yet, this is time-consuming and requires significant
domain expertise. For example, Katti et al. (2018) have declared that “[c]onsiderable
efforts were spent to ensure that the labels are correct”. Moreover, this choice is not
scalable since human annotation efforts must be repeated each time we desire to process
new fields or document types.

The second idea is to automatically generate the token labels from the filled extraction
schemas. This process allows to annotate a high volume of documents without significantly
involving domain specific experts. By automatically generating training labels, Palm et al.
(2017b) gather 326,471 documents annotated for further token classifier learning whereas
Katti et al. (2018) limit themselves to 12k invoices due to intensive manual labeling.
Yet, deducing the position of field instances in the documents only from their textual
values given in the extraction schemas is, most of the time, not trivial and error-free.
Besides OCR errors which are hard to recover from, there are two main reasons which
make automatic labeling a tricky task. These hurdles were exposed in the section 1.3.3
and are namely the normalization of fields and the fact that a field value may have
multiple occurrences in the document text. With normalization according to their data
types, the field instances may not appear verbatim in the text of the document. The
normalization of information therefore forces to develop domain specific parsers in order
to retrieve the tokens matching a field value. This is particularly challenging for data
types presenting a large diversity of formats across documents, e.g. dates. In turn,
multiple groups of document tokens can share the textual value of an extracted field
while being semantically distinct, e.g. the token 1 may refer to both a street number and
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a product quantity depending on its location on the document. Hence, having multiple
text occurrences impose to resort to additional heuristics to perform disambiguation when
labeling tokens. Even with careful attention, a significant amount of noise is generally
introduced in the training annotations when automatically labeling document tokens from
the extraction schemas (Tata et al., 2021). For example, Palm et al. (2017b) report that
they were able to find only 88 % of the field values in their dataset, with as few as 81 %
of matched values for the invoice dates. These recall figures mean that, for many tokens,
their labels was mistakenly attributed to the Other class rather to an actual field class.
These labeling errors act as an upper limit for the performance of the extraction system,
no matter how effective is the underlying token classifier.

Consequently, the final experiments reported in section 3.4.3 deal with estimating the
impact of token label quality on the extraction performance of an IE system. To that
end, we compare performance when the token classifiers learn from two different sets of
token labels. For the first set of ground truths, we allow to exploit the position of the field
instances in the document, thus achieving near-perfect labeling of the document tokens.
In the second case, we label tokens only from the textual value of information, introducing
significantly more noise in the ground truth used by the token classifiers. We conduct
experiments on both Esker’s private data and the public SROIE dataset (Huang et al.,
2019) and we demonstrate that a token classifier based system could perform significantly
worse when the model is learning from labels which were not derived with the help of the
information position.

Before delving into the experiments and their results (section 3.4), we first detail our
extraction models (section 3.2) as well as the datasets on which they are trained and
evaluated (section 3.3).

3.2 Models

As illustrated in the Figure 3.1 for extracting products from Esker’s purchase orders, our
IE approaches consist of a token classifier followed by a post-processing module. Like
Palm et al. (2017b), we tokenize the document text at the word level.

3.2.1 Token classifiers

Our token classifiers are composed of a feature extractor stage that delivers initial repre-
sentations of the tokens, an encoder and a decoder. Each model part takes as input the
output of the previous part.

3.2.1.1 Token representations

We start by deriving independent representations of the document tokens, i.e. of words in
our case. We denote the representation of a word wi by the vector ri, where i = 1...k and
k is the number of words in the document. As shown in the Figure 3.2, the representations
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Business-specific post-processing heuristics

Extracted ordered products

Figure 3.1: Our extraction method based on a word RNN classifier. The docu-
ment text is tokenized at the word level and passes through a feature extractor
stage to obtain independent representations of the k words. These represen-
tations are then injected into an encoder composed of several BLSTM layers
to provide context knowledge. A decoder equipped with a single softmax
layer is later applied to predict the word probabilities of carrying one of the
target information types. In this example, we aim to extract the products
contained in purchase orders, each product being constituted of a reference
and a quantity (resp. abbreviated ID and QTY, while the OTH class is dedicated
to irrelevant information). Note that each field is duplicated into beginning
(B) and continuation (I) classes in order to handle multi-word field values.
Finally, some post-processing operations refine the token classifier predictions
and pair the reference and quantity instances to form the products.
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Figure 3.2: Delving into our feature extractor stage. The representation of a word is
constructed from both textual and layout features. The textual part includes
a word-level dense embedding, a fine-grained representation generated from a
character-level BLSTM layer as well as case features. The layout part encom-
passes the 2D coordinates of the word bounding box. All these components
are concatenated to form the final word representation.

obtained by the feature extractor stage are constituted of multiple components, from both
text and layout modalities.

Word-level text embedding Each word wi is first represented by a dense continuous
embedding denoted by qwi ∈ R

m, where m is the embedding dimension (Bengio et al.,
2003). This vector is associated to the vocabulary index of the word. Since the appearing
words are highly specific to the type of business documents that are processed, we con-
struct our own vocabularies rather than relying on generic web-based vocabularies such
as Pennington et al. (2014)1.

The conventional approach for building a word vocabulary is to directly enumerate
the words that occur within the training set. Yet, in the business field, a large number
of words are rare and specific to an issuer or even to a single document, e.g. occurrences
of product references, dates and amounts, while we expect that some of them contain
relevant information to extract. Hence, if the vocabulary was constituted from the raw
training text, a significant portion of words from documents outside the training set would
not belong to the vocabulary — we then speak of OOV words —. Such words would all
be attributed the same vocabulary index which is dedicated to unknown words. Their
textual content would thus not be properly represented in the extraction model.

1https://github.com/stanfordnlp/GloVe

https://github.com/stanfordnlp/GloVe


3.2. Models 59

To remedy the OOV issue, we normalize the text before attributing the vocabulary
indexes to the document words. Firstly, we design a small set of broad text categories
which are built for business documents. If a word matches the regular expression cor-
responding to a category, the vocabulary index of this category is assigned to the word.
As it may match multiple categories, we keep only the index of the first matched cat-
egory. The ordered list of the categories is the following: DigitSequence, ContainsDig-

itAndAlpha, ContainsDigitAndDash, ContainsDigitAndSlash, ContainsDigitCommaAnd-

Period, ContainsDigitAndComma, ContainsDigitAndPeriod, PunctuationSequence, URL,
EmailAddress. The categories involving digits are rather generic, letting the later neural
layers the task to distinguish what these categories may refer to, e.g. integers, floats,
dates, phone numbers. Besides, these categories have also the advantage of making the
model more robust to OCR failures, as recognition errors on some characters of a word
are likely to have little impact on the category matching.

Secondly, the words that haven’t matched any of the previous categories are stan-
dardized as follows. They are converted to lower case. The punctuation and whitespace
characters are removed at the beginning and end of the word. The word vocabulary
is finally determined by enumerating the standardized forms of words from the training
documents.

Character-level textual representation While being a first step towards efficient
representation of the text content, the business categories designed for words are likely
to be too broad or incomplete. Also, even after standardization, there still remains a
non-negligible amount of rare or OOV words. Therefore, besides word level embeddings,
we enrich the representations with finer-grained textual features to cope with the open
vocabulary observed within corpora of business documents. Specifically, we follow the
C2W model of Ling et al. (2015) to form a textual representation qci ∈ R

m at the character
level. To that end, we apply a BLSTM layer over the sequence of characters composing
the word wi, each character being modeled with a dense embedding vector. We then
concatenate the final hidden states of the forward and backward directions to derive the
character-level representation qci of the word wi.

Additional textual features We also add the number ni of characters in the word
and two case features, i.e. the percentage αi of its characters in upper case and a binary
factor βi indicating if it has a title form (Chiu and Nichols, 2016). We concatenate all
these features to form the textual component rti ∈ R

2m+3 of the word representation ri:

rti = [qwi , q
c
i , ni, αi, βi] (3.1)

Layout features To take into account the document layout, we also compute four
spatial features rsi for each word wi. These encompass the 2D coordinates of the top-left
and bottom-right edges of the word bounding box, normalized by the height and width
of the page. Unlike Palm et al. (2017b), we do not create more complex layout features
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like measures of alignment and spacing with neighbouring words. Rather, we rely on the
abilities of the subsequent encoder to infer them from the absolute positions.

Finally, we concatenate the spatial component rsi with the textual part rti to build the
word representation ri ∈ R

2m+7.

3.2.1.2 Encoders

Next, the words of the document are organized as a unidimensional sequence of length k

by reading them in a top-left to bottom-right order. In case of a multi-page document, the
sequences of each page are concatenated based on the order of appearance of the pages.
The word representations {ri}i=1...k are then fed to one of the two following encoders in
order to obtain contextualized representations of the words.

Recurrent encoder We first employ a two-layer BLSTM network over the sequence
of word representations. The output of this encoder is thus the hidden states {hi}i=1...k

of the final layer, where hi ∈ R
e and e is the number of BLSTM units in each layer. Its

recurrent mechanism is theoretically able to capture unbounded dependencies between
document words which will be helpful for later extracting information.

Feedforward encoder As a baseline, we also propose a two-layer MLP network, i.e.
which is only composed of fully-connected layers. The network is independently applied
to each word of the document. For a fair comparison with the recurrent encoder, we
provide local context in the word representations {ri}i=1...k. Specifically, we concatenate
the feature vectors of the closest words in the left, right, top and bottom directions with
the original representations. This results in 5 times bigger feature vectors. We also set
the number of neurons in each of the two layers such as the total number of trainable
parameters is equivalent to the recurrent encoder.

3.2.1.3 Decoder

On top of the encoder outputs, we add a final fully-connected layer with a softmax activa-
tion to predict the probabilities {pi}i=1...k of each word to belong to one of the information
class, where pi ∈ [0, 1]C and C is the number of classes. We follow the IOB2 annotation
scheme for the classification (cf. Figure 2.16). The decoder layer has thus C = 2 |F| + 1

sotfmax units, where F is the set of targeted fields. For each field f ∈ F , an output class
is dedicated to the words that begin (B) a new instance of this field while the I class is
used for words that are the second and further words of a field instance. The remaining
class (Other or just O) is employed for tagging words that carry irrelevant information.

The word classifiers are trained by minimizing the cross-entropy loss (cf. equation 2.5)
which is averaged over all the words of the documents within the batch.
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3.2.2 Post-processing module

In practice, the predictions of the token classifier, i.e. the class probabilities {pi}i=1...k,
are not considered as the final results that will populate the extraction schema. Indeed,
the class predictions undergo post-processing steps which take into account the structure
of the extraction schema and some business logic. For instance, one can check that the
due date of an invoice is chronologically after the date of its emission (Majumder et al.,
2020). Palm et al. (2017b) filter out candidates that do not fit the syntax of the field and
employ cost functions to evaluate the conformity of predictions with business constraints,
e.g. Line Total + Tax Amount = Total Amount.

In our work, we keep the post-processing simple. For each document word, we first
look for its highest probability across all the classes in order to predict its class:

ŷi = argmax
c∈{1,...,C}

pci (3.2)

We then merge the predicted beginning and continuation classes of the same field to
construct multi-word field values.

For the fields that are assumed to appear only once in the extraction schema, e.g. the
document number or date, we choose as final prediction the candidate for which the word
classifier confidence is the highest. This post-processing is used for the SROIE dataset
that we describe in the next section.

For the Esker’s datasets, we also design specific post-processing steps for gathering
the instances of fields that appear in tables within the documents, thus aiming to extract
the corresponding structured entities. We assume that each structured entity is located
within one or several consecutive table rows while its constituting fields are spread over the
columns of the table. Based on this hypothesis, we first consider one of the targeted fields
as an anchor field. We preferably choose the field which is the most reliably extracted by
the token classifier since the performance on the selected field will act as an upper limit of
the global extraction performance measured over the entities. Then, for each remaining
field of the table, we pair its predicted instances with the instances of the anchor field. This
pairing is performed by minimizing the vertical distances on the document between the
field instances of the constituted pairs. We formalize this optimisation problem as a linear
sum assignment problem with the vertical distances as the matching costs. We show an
example of such an assignment problem in Figure 3.3. As traditionally performed, we solve
it with the Hungarian algorithm (Kuhn, 1955). While simple, this field pairing strategy
is flawless if the field instances are perfectly extracted by the token classifier. Moreover,
unlike vanilla heuristics that would pair a field instance with the closest instance of another
type, solving it as an assignment problem is robust to missing or wrong predictions of the
classifier.
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Figure 3.3: A linear sum assignment problem. This problem is also known as min-
imum weight matching in bipartite graphs. A problem instance is described
by a matrix C, where each element Ci,j is the cost of matching the vertex
i of the first partite set (here companies) and the vertex j of the second set
(here services). The goal is to find a complete assignment of companies to
services at a minimal global cost under the constraints that a company can
be attributed to at most one service, and vice versa. Here, the companies A,
B, C would be respectively attributed to the services Clean, Chef and Music.

3.3 Datasets

We now review the datasets on which we train and evaluate our extraction models based
on deep token classifiers. There are three different IE datasets that we name Esker-28k,
Esker-47k and SROIE. As their name imply, the first two datasets are constituted of pri-
vate real-world documents issued from the document automation solutions commercialized
by Esker2. On the contrary, the SROIE dataset has been publicly released (Huang et al.,
2019). For each dataset, we provide some statistics about their documents and targeted
extraction schema as well as — real or fictive — samples with their expected extraction
results. We also describe the protocol for evaluating the predictions of our IE models.

3.3.1 Esker-28k

We first consider Esker-28k, a dataset of 28,570 purchase orders coming from the Esker’s
infrastructure. The purchase orders are business documents that contain products or
services that the issuers desire to buy from the recipients. The collected purchase orders
are originating from 2,818 issuers. Each issuer has a minimum of 3 and a maximum of
31 documents. As we assume that most suppliers have their own layout, controlling their
number of documents ensure a high diversity of layouts within the corpus. Although

2Unfortunately, we are not allowed to release our in-house datasets.
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English is the language of all documents, the dataset is multi-cultural with European and
American orders.

From these documents, we are interested in extracting two fields related to the ordered
products, namely their reference or ID number and their quantity. These fields appear
a variable number of times across the extraction schemas since a purchase order is free
to contain any number of ordered products. In this dataset, there are on average 3.7 ID
number and 3.5 quantity values per document. The ID number and quantity fields are
almost always displayed in a table within such documents, where each (group of) row
corresponds to a different product. We show in Figure 3.4 an example of purchase order
on which we highlight the two targeted fields.

The dataset gathers both born-digital and scanned purchase orders. For the former,
the text is immediately accessible without any error while for the latter, the text is
retrieved thanks to an external commercial OCR engine3. We take the OCR results as they
come without attempting to correct them. The extraction schemas of those documents
have been directly filled and validated by the end users of Esker’s solutions, assuring
a high quality of the ground truth. On these automation solutions, an IE system using
class specific knowledge (cf. section 2.1.2) was already in place to help the users to extract
information from known document classes. This IE system relies on the position of the
extracted information in order to properly function. We therefore reuse this knowledge
to derive accurate word labels for training our classifiers. We have discarded from the
dataset the documents for which we have not retrieved a ground truth field value among
the document words. Finally, as a first step toward automated IE, we have restrained
to documents that contain ID number and quantity values that are all made of a unique
word.

On this dataset, we will conduct experiments to assess the ability of extraction mod-
els to generalize to document layouts that were not seen during training. To this end,
similarly to Palm et al. (2017b), we split the dataset according to two ways that we name
DocumentLevelSplitting and IssuerLevelSplitting. In the first case, we simply randomly
separate the documents in the dataset to constitute the training, validation and test sets.
In the second case, the data splitting is performed at the issuer level: all the documents
from the issuers in a set of the IssuerLevelSplitting experiment then constitute the doc-
uments of that set. In order to accurately estimate performance, for each data splitting
way, we randomly partition the dataset into five folds and evaluate the models on each
fold while using the four remaining folds for its training. Each ensemble of four folds
is further independently divided in training and validation sets so that they respectively
represent 70 % and 10 % of the whole dataset.

Here, we only evaluate the performance of the word classifiers, i.e. without employing
the post-processing steps for predicting extraction schemas. Hence, we employ the stan-
dard metrics for sequence labeling approaches which are the precision P , recall R and
F1 score F . For each of the two fields and each of the five test folds, we compute these

3To be specific, we resort to Nuance OmniPage 19.
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 Purchase Order  

 

Reynolm Industries  

1918 Airport Road  

Midland, MI 48642  

Reynolm Industries 

P.O. Number: PX45683 

P.O. Date: 9/3/2018 

    P.O. Due Date: 10/3/2018 

Bill To: 

Reynolm Industries 
1918 Airport Road 

Midland, MI 48642 
 

Ship To:  

Reynolm Industries 
26467 Middlebelt Road 
Farmington Hills, MI 48334 

984-754-3010 

Req By  Ship When  Ship Via  FOB  Buyer  Terms  

 Partial OK    Jim B  COD  

       Unit 
Price  

Total  

QTY: 50.00 

Vendor Item Number: DPC1011 

Our Item Number: MY1432 

Due Date: 10/3/2018 

Description: Keyboard 

QTY: 5.00 

Vendor Item Number: M-13 

Our Item Number: M-13Y 

Due Date: 10/3/2018 

Description: MAG 17F 

QTY: 15.00 

Vendor Item Number: HT-1021 

Our Item Number: 376690 

Due Date: 10/3/2018 

Description: Easy Hand 

65.00  

223.30  

149.00  

3250.00  

1116.50  

2235.00  

 
Subtotal 6601.50 

 
Tax 0.00 

 
Total 6601.50 

Figure 3.4: A fictive sample representing the Esker-28k task. The aim of this
dataset is to extract the ID numbers (red) and quantities (blue) of the products
contained in purchase orders.

metrics from the word level predictions of the classifiers as follows:

P =
tp

tp+ fp
(3.3)

R =
tp

tp+ fn
(3.4)

F =
2PR

P +R
(3.5)

where tp, fp, fn are respectively the counts of true positives, false positives and false
negatives (Lipton et al., 2014). The precision is the fraction of all positive predictions
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that are actual positives, while the recall is the fraction of all actual positives that are
predicted to be positive. Finally, the F1 score is the harmonic mean of the precision and
the recall and is the metric of choice for comparing two classifiers. For obtaining global
metrics, we perform micro averaging: the true positives, false positives and false negatives
counters are first summed across the ID number and quantity classes and then, the micro
recall and precision are computed from these total counters as in the equations 3.3 and
3.4. The micro F1 score is computed with the micro recall and precision as in equation 3.5.
Finally, we report the average over the five test folds for both the field and micro metrics.

3.3.2 Esker-47k

We then constitute Esker-47k, an IE dataset that is significantly more demanding that
Esker-28k for various factors. The documents are still purchase orders from Esker’s so-
lutions but they are now multi-lingual with not only English but also other European
languages such as French, Italian and Spanish. Secondly, there are substantially more
document issuers, i.e. 15,905 against 2,818 issuers before. All the issuers have 3 docu-
ments in this dataset, resulting in a dataset of 47,715 purchase orders. Concerning the
information to extract, the ID number and quantity may now be spread over multiple
words of the documents and must be paired together to predict the ordered products.
Finally, we now judge the performance of an IE model by comparing the predictions not
to the ground truth word labels but directly to the expected extraction schemas. To
do so, we adapt the evaluation methodology proposed by Katti et al. (2018) to measure
the performance when extracting structured entities like the ordered products. For this
purpose, we first assign the predicted products of a document to the ground truth enti-
ties, then we count the number of deletions, insertions and modifications to match the
ground truth field instances from the predicted instances that have been assigned. The
modification counter is incremented by one when a predicted field value and its target do
not exactly match. For a given field, we determine the manual post-processing gain with
the following edit distance:

1− # deletions + # insertions + # modifications
N

(3.6)

where N is the number of ground truth instances in the document for this field. The micro
averaged gain is calculated by summing the error counters of ID number and quantity
fields and applying equation 3.6. We select the assignment between predicted and target
entities that maximizes the micro gain of the document. To assess the post-processing
gains across a set of documents, we sum the counters of each document before using
equation 3.6. The post-processing gain can be interpreted as a measure of how much
work is saved by using an IE model rather than manually doing the extraction. The
higher the metric value is, the better is the extraction — 1 being the upper limit— . The
value can be negative, meaning that it demands more efforts to correct the errors of the
evaluated model than to perform the extraction manually.

Since we have already assessed the layout generalization abilities on Esker-28k, we
only split the Esker-47k dataset at the issuer level for creating the training, validation
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and test sets. These sets are respectively constituted of 70 %, 10% and 20% of all the
issuers.

As mentioned in the chapter’s introduction, we derive two different sets of word labels
in order to study to what extent the label quality impacts the post-processing gains of
IE models. In the first case, like for Esker-28k, we allow to leverage the position of the
fields to establish the labels of all the words from the training documents. This ensures
that the word labels are perfect and are thus not a limiting factor for the extraction
performance. In the second case, we only resort to the textual value of the field instances
in order to simulate the general case where their position is not provided in the ground
truth extraction schemas. The ID Number and quantity are fields whose instances rarely
require normalization while being extracted since they almost always appear verbatim in
the document. Nevertheless, for those two fields, multiple N-grams of document words
may share the textual value of a field instance and thus be candidates for being labeled as a
product ID number or quantity. We show this issue of field ambiguity on a sample purchase
order in Figure 3.5. We remark that for a single quantity instance, there may be N-gram
candidates in the document that are indeed quantities but also that can carry completely
different information types such as a page or street number. These later candidates may
appear easy to discard from the word labeling process using some business heuristics since
they are outside the table of the ordered products. Yet, in real samples of Esker-47k, we
observe that there are a great number of quantity candidates that are spatially close to
the ground truth occurrences, e.g. ambiguity with description elements and line numbers.
For the ID number, there are typically less N-gram candidates for a given field instance
since their textual value is highly specific to this field. The most notable situation where
there are multiple ID number candidates is when both the vendor and client references
are present and are equal. On the whole dataset, there are on average 1.16 and 1.55
N-gram candidates for each ID number and quantity instance, with 23 % and 46 % of
the documents having at least one labeling ambiguity for these respective fields. Since
we do not know which N-gram candidate semantically corresponds to a field instance,
we randomly label one of the occurrence in the document for the second label set. We
hypothesize that labeling the documents without the position of the information would
introduce a non negligible amount of noise in the word labels that would significantly
affects the final extraction performance (Frénay and Verleysen, 2013). We verify this
assumption in the section 3.4.3.

3.3.3 SROIE

We finally perform experiments on the public SROIE dataset, which stands for Scanned
Receipts OCR and Information Extraction (Huang et al., 2019). Released during a
competition of the ICDAR 2019 conference4, this dataset encompasses 3 different tasks,
namely text localization, text recognition and information extraction. Since the text
transcription is out of scope of the PhD thesis, we only tackle the last task that aims to

4https://icdar2019.org/competitions-2/

https://icdar2019.org/competitions-2/
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Figure 3.5: Which words from the document correspond to a given field in-

stance ? In this example, we aim to retrieve the words of the document that
correspond to the product’s quantity 1 in order to derive the training labels of
a word classifier based IE model. Without the position of this field instance,
there is ambiguity since there are multiple candidates: not only words that
are semantically correct (highlighted with green boxes) but also words that
carry other information types (in red).

retrieve the name and address of the company issuing the receipt, the total amount and
date. We illustrate the task in the Figure 3.6 by showing a sample of the training set
and its expected field instances. The dataset gathers 626 receipts for training and 347
receipts for test. We further randomly split the training set to constitute a validation set
of 26 receipts. While not stated in Huang et al. (2019), the document issuers are shared
between the training and test sets. Nevertheless, the dataset is quite diverse, with 234
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Figure 3.6: A receipt sample illustrating the SROIE task. In this dataset, we aim
to extract the name and address of the company that emits the receipt as well
as its date and total amount (Huang et al., 2019).

distinct issuers in the training set according to Majumder et al. (2020).

As ground truth, each training receipt is only given the expected values of the four
targeted fields, i.e. neither token level supervision nor the position of fields are provided.
Therefore, we derive the IOB2 labels by looking for the receipt words which match the field
values. Like the Esker-47k dataset, the fields are not normalized while being extracted.
However, as illustrated in the Figure 3.6, the total amount value can appear multiple
times within a receipt. Some of its occurrences then refer to other information types, e.g.
the amounts without taxes or after rounding. For 72.7% of the receipts from the training
and validation sets, there is ambiguity for labeling the total amount, with on average 2.56
N-gram candidates for each total amount instance. To assess the impact of word label
quality, we also establish two sets of labels for training our classifiers to extract total
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amounts:

• Even if we do not have the actual position of the total amount instances, we rely
on strong a priori knowledge of this field to reach the best quality possible for the
token labels. Among all the field candidates within the training receipt, we select
the bottom most occurrence having the keyword total in its text line.

• To construct the second label set, we do not exploit any business specific heuristic
and we randomly choose one occurrence of the total amount value within the receipt.

There is no ambiguity for the three remaining fields since the company name and address
appear only once in the training documents while the date instance appears at least twice
in 19 % of the receipts but all occurrences are valid duplicates of the date. Thus, the
labels of these three fields are common to the two label sets constructed for the total
amount.

We evaluate our models by submitting their predictions over the test set on the web
platform of the competition5. As Esker-47k, the comparison with the ground truth is
made in terms of exact matching of strings. The platform returns the precision, recall
and F1 score metrics averaged over the four fields.

To fuel our extraction models, we use the provided OCR results that contain a list of
the text segments and their bounding boxes. As noticed by many public submissions in
the leaderboard, they contain a number of brittle text recognition errors, e.g. a comma
interpreted as a dot. This highly impacts the evaluation results based on exact matching.
However, unlike all the current top-scoring submissions, we have not corrected the OCR
text of the test receipts for fair comparison between models. Still, we perform fuzzy
matching when labeling the training receipts in order to avoid missing some of the field
instances. Their order being sometimes faulty, we also re-arrange the text segments from
top-to-bottom before tokenizing them at the word level.

3.4 Experiments

For each dataset presented above, we choose the values of model hyper-parameters based
on the micro averaged performance on the validation set. We give their specific values in
the following sections before exposing the results of the experiments. In all experiments,
we stop the training of the word classifiers when their micro performance on the validation
set have not improved in the last three epochs. To deal with exploding gradients, we
apply gradient norm clipping (Pascanu et al., 2013) with a clipping threshold of 5. All
extraction models are implemented using the TensorFlow library (Abadi et al., 2016). The
training and evaluation are performed on a single 12Go TITAN X Graphics Processing
Unit (GPU). This explains that, for computational reasons, we do not train the models
on documents with more than 1,800 words, which amounts to less than 5 % of the training
set being put aside for the Esker-28k and Esker-47k datasets. However, we evaluate the

5https://rrc.cvc.uab.es/?ch=13&com=evaluation&task=3

https://rrc.cvc.uab.es/?ch=13&com=evaluation&task=3
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models on all documents in the validation and test sets. For the SROIE dataset, we do
not discard any training documents since they all contain less than 1,800 words.

3.4.1 Generalization to unknown layouts

We first perform experiments on Esker-28k in order to assess the ability of token classifiers
to generalize to unknown documents layouts, i.e. layouts that have not been seen at
training time.

Experiment settings For all runs in this section, we use word level text embeddings
of size 64 and do not resort to the character-level representations. The word vocabulary
is restricted by removing its entries that rarely appear in the training set since they are
not helpful for later processing unknown layouts or documents and make the extraction
models more likely to overfit. To this end, we list the vocabulary entries by decreasing
frequency of occurrence in the training set and we retain only the most frequent entries
that, put together, match a minimum percentage of the total number of occurrences. In
order to choose the threshold value, we plot the degree of coverage of the training words
against the size of the vocabulary. For the DocumentLevelSplitting configuration, this
leads to the Figure 3.7. We note that the plot has an exponential curvature, with a

Figure 3.7: Proportion of the training words that are covered by the vocabulary

as a function of its size. This plot, realized for one of the training set of
the DocumentLevelSplitting configuration, shows an exponential form with a
large number of words that rarely appear in the training documents and can
thus be discarded from the word vocabulary.

relatively small fraction of the vocabularies entries that repeatedly appear in the training
documents. By selecting the top-K entries that together account for 95 % of the training
words, we still cover a large portion of the document text while drastically reducing the
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vocabulary size. Indeed, such a thresholding results in a vocabulary of only 6,010 entries
while there were originally more than 75k entries. We observe a similar behavior for the
IssuerLevelSplitting configuration and thus also retain the threshold value of 95 %.

The RNN encoder is composed of two bidirectional LSTM layers of 1,300 cells each
with outputs of each direction being concatenated while the baseline feedforward network
has two fully-connected layers with 6,947 and 1,300 ReLU units.

All the network weights are randomly initialized following a uniform distribution of
amplitude 0.05. The cross-entropy loss is minimized by the Adam optimizer (Kingma and
Ba, 2015) with default recommended settings except for the learning rate which we set
to 0.001 during the first 5 epochs and then exponentially decrease with a rate of 1/1.15.
We use mini-batches of 32 documents. The early stopping conducts to about 18 and 12
training epochs for the DocumentLevelSplitting and IssuerLevelSplitting configurations,
respectively.

Results We reveal the extraction performance of the RNN and feedforward classifiers
on the Esker-28k dataset in Table 3.1 and Table 3.2. As detailed in the section 3.3, we
report the precisions, recalls and F1 scores averaged over all the test folds for both targeted
fields as well as their micro averaged metrics. In Table 3.1, we show the performance for
the DocumentLevelSplitting configuration, i.e. when the classifiers face document layouts
that have been seen at training time. On the contrary, in Table 3.2, the classifiers are
tasked to extract information from unknown layouts (IssuerLevelSplitting configuration).
In both tables, the bold font highlights the best performing model between the RNN and
the feedforward baseline.

F1 score Precision Recall

Field Baseline RNN Baseline RNN Baseline RNN

ID number 0.853 0.906 0.863 0.907 0.844 0.905

Quantity 0.926 0.964 0.902 0.955 0.952 0.974

Micro avg. 0.889 0.934 0.882 0.930 0.896 0.938

Table 3.1: Performance of word classifiers when facing known document lay-

outs. On the test folds of the Esker-28k dataset, we compare the predictions
of a RNN classifier with a feedforward network baseline for the DocumentLevel-

Splitting setting.

For both dataset splitting ways and both fields, the RNN classifier substantially sur-
passes the baseline feedforward network in terms of precision, recall and thus F1 score.
The gap between methods is even greater when facing unknown document layouts (+7.5%

of micro F1 score in favor of the RNN compared to +5.1% for known layouts). Given
the differences between the two classifiers, the increased performance of the RNN proves
that the context knowledge modeled in its hidden states is more effective than the local
context knowledge introduced in the feature vectors of the baseline.
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F1 score Precision Recall

Field Baseline RNN Baseline RNN Baseline RNN

ID number 0.685 0.752 0.689 0.769 0.687 0.738

Quantity 0.848 0.894 0.842 0.902 0.859 0.888

Micro avg. 0.764 0.821 0.763 0.834 0.769 0.810

Table 3.2: Performance of word classifiers when facing unknown document lay-

outs. On the test folds of the Esker-28k dataset, we compare the predictions
of a RNN classifier with a feedforward network baseline for the IssuerLevel-

Splitting setting.

Unsurprisingly, the extraction performance is lower for the IssuerLevelSplitting con-
figuration (Table 3.2) than for DocumentLevelSplitting (Table 3.1) with respective micro
F1 scores of 0.821 and 0.934 for the RNN model. However, the difference of scores be-
tween known and unknown layouts is small compared to the performances gaps seen for
methods relying on class-specific knowledge. For example, Esser et al. (2014) notice a
drop of 0.66 of F1 score when switching from known to unknown layouts in its test set.
Our gap is similar to the 0.051 difference of micro F1 score from the recurrent network of
Palm et al. (2017b) when extracting non-recurring fields. These combined results show
that, whatever be the targeted fields, the deep token classifiers are able to learn extraction
logic that is not specific to the document layouts seen at training time but that generalizes
reasonably well to new layouts.

Finally, we notice that there is a significant difference of performance between the two
fields, especially for unknown layouts: the RNN model has its ID number F1 score which
is 0.142 lower than for the quantity. One reasonable explanation is the higher level of noise
in the word labels for the ID number, even if we have access to the position of the field
instances. Indeed, on the purchase orders, there are commonly two product references
for a single item, one from the issuing company and one from the recipient side. The
labels being generated by Esker’s solution users from many distinct companies, one ID
number instance or another or both may be marked as ground truth by a particular user.
This choice depends on the further integration of the extracted data in their Enterprise
Resource Planning (ERP) system. Moreover, as illustrated in Figure 1.3a, the ID number
might not have a dedicated physical column, thus often appearing within the description
column without clear delimitation of its instances. This behaviour makes the correct ex-
traction of ID Number challenging without additional business context such as databases
of product references.

3.4.2 Ablation studies on the token representations

On the Esker-28k dataset, we also conduct experiments to assess the importance of the
main components of the word representations. In Table 3.3, we first gauge to what extent
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both the textual and layout modalities are useful for extracting information from Visually
Rich Documents (VRDs) like purchase orders. In Table 3.4, we more specifically study the
textual modality by comparing the impact on performance of the word embeddings, the
character-level representations and a combination of both. In all these experiments, we
only evaluate the word RNN classifier for the IssuerLevelSplitting configuration, i.e. the
most challenging setting. For the sake of readability, we only report the micro averaged
metrics and omit the individual ID Number and quantity results.

First, we estimate the importance of the textual and layout modalities for IE tasks by
successively discarding each modality from the word representations and comparing the
resulting performance to the full model (Table 3.3). Specifically, we alternate between
dropping the 64 dimensional word level embeddings and the spatial coordinates of their
bounding boxes. In both situations, the case features as well as the length of the words
are conserved in the feature vectors in order to provide basic information about the words.

Word features Precision Recall F1 score

Word Embedding + Layout 0.834 0.810 0.821

Word Embedding only 0.826 0.780 0.802

Layout only 0.833 0.740 0.784

Table 3.3: Ablation of the textual and layout modalities from the word rep-

resentations. We report the micro averaged metrics obtained by the word
RNN classifier on the test folds of the Esker-28k dataset (IssuerLevelSplitting

configuration).

In line with the works proposing multi-modal models (detailed in the section 2.3.2.1),
we note that both the textual and layout modalities are crucial for efficiently extracting
information from real-world purchases orders. The biggest drop of performance is reached
when we remove the text embeddings, with a loss of 0.037 of micro F1 score compared to
a loss of 0.019 when discarding the word coordinates.

During the inspection of the RNN predictions for a representative portion of the test
documents, we noticed that information types whose textual content were similar to our
targeted fields were regularly confused with them. For example, the product due dates
were sometimes predicted as ID numbers since they often share the same word categories
(e.g. ContainsDigitAndDash or ContainsDigitAndSlash) and thus the same word embed-
dings. The word categories appearing to be too broad, we hypothesised that finer-grained
and learned representations of the text content would be beneficial. As detailed in the sec-
tion 3.2.1.1, we chose to construct such representations by resorting to a BLSTM network
iterating over the sequences of characters. In Table 3.4, we judge the benefit of character-
level text representations of words – that were so far not included in the evaluated models
—. To that end, we compare the IE performance of the RNN classifier using either only
64 dimensional word embeddings, only 64 dimensional character-level representations or a
concatenation of both levels, each of size 32. In all cases, we compute the character-level
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representations with a single BLSTM layer that relies on randomly initialized character
embeddings of size 16. We consider all the characters that are observed on the training
set for constituting the vocabulary.

Textual representation of words Precision Recall F1 score

Word level only 0.834 0.810 0.821

Character level only 0.860 0.835 0.847

Word + Character level 0.859 0.842 0.850

Table 3.4: Comparison of word and character level representations of the words.

We report the micro averaged metrics obtained by the word RNN classifier on
the test folds of the Esker-28k dataset (IssuerLevelSplitting configuration).

We remark that the character-level representations significantly improve the extraction
performance of the RNN with a micro F1 score boost of 0.026 compared to the word
embedding baseline. When combining the word and character levels, we reach a F1
score of 0.850 which constitutes the best result among the three settings. Based on these
findings, alongside the word embeddings, we include character-level representations in the
feature vectors for the rest of the models of this chapter.

3.4.3 Deriving the token labels without the position of fields

In these experiments, we are interested in assessing the evolution of the extraction per-
formance when the position of the field instances is missing and thus cannot be leveraged
to create high-quality token level annotations for the classifiers. To that end, we compare
the results of the word RNN based model when its training labels are derived with and
without the position of the information within the documents. We conduct experiments
on both the private Esker-47k and public SROIE datasets.

Experiment settings We first review the setting values adopted for the Esker-47k
dataset. To derive the word and character level textual representations of words, we
follow the hyper-parameters retained for the Esker-28k dataset (cf. sections 3.4.1 and
3.4.2). On this dataset, this results in character and word vocabularies of respectively
5,592 and 25,677 elements. We fix the number of BLSTM cells in each encoder layer
to 256. For all BLSTM layers, each direction has n/2 LSTM cells and their output
are concatenated to form n-dimensional vectors. With this parametrization, the whole
classifier contains 1,515,733 trainable parameters. The loss is minimized with the Adam
optimizer. The learning rate is fixed to 0.001 the first 2 epochs and then exponentially
decreases by a factor of 0.8. The batch size is equal to 8.

Unlike the Esker-28k dataset on which the extraction models are evaluated at the
document word level, the evaluation of Esker-47k is performed at an higher-level, i.e.
by comparing the predicted and ground truth extraction schemas. Therefore, we apply
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post-processing to the word RNN classifier to formulate the predictions at the extraction
schema level. We follow the business heuristics evoked in the section 3.2.2. For pairing the
ID number and quantity instances to form the ordered products, we choose the quantity as
the anchor field since this is the field that had the highest word classifier performance in the
previous experiments (Table 3.1 and 3.2). Since the metric used to evaluate the IE system
is not computed at the document word level, predicting the class of a word by directly
choosing the highest classifier confidence (equation 3.2) may be suboptimal. Rather, we
apply a threshold strategy for predicting the word classes. For a given document word, if
the predicted probability for a class is over its threshold, we attribute the corresponding
class. If none of the class confidence is higher that its threshold, we return the Other

class. The class specific thresholds are determined based on the final performance on the
validation set. For Esker-47k, all the classes have been attributed 0.5 threshold values for
the two differently annotated versions of the dataset.

Due to the limited size of the validation set (only 26 receipts), we reuse the hyperpa-
rameter values of Esker-47k for the experiments on the SROIE dataset. The exceptions
are the word vocabulary which is not restricted in size since it contains only 1,160 entries
as well as the decision thresholds for the total amount field — for both its B and I classes
— which are fixed to 0.05 when the training instances have been randomly matched to
the document candidates.

Results We first show in Table 3.5 the results of the RNN based model on the Esker-47k
test set for both annotated versions of the training dataset. We report the post-processing
gains as defined in the equation 3.6 for both the ID number and quantity fields and their
micro average. We also provide the proportion of the test documents that were perfectly
processed by the IE system.

Method for deriving
the word training labels

ID number Quantity Micro avg.
% Docs
Perfect

Using the position of fields 0.689 0.805 0.747 59.1

Without the position of fields 0.612 0.708 0.660 44.4

Table 3.5: Impact of the knowledge of information position on the Esker-47k

performance. For both training label sets, we report the post-processing
gains of the RNN based model when extracting the ordered products from
the test documents. % Perfect column indicates the percentage of documents
perfectly processed by the IE model.

We note that for both labeling methods the post-processing gains are positive, mean-
ing that it is more efficient to correct the errors of models than manually perform the
extraction from scratch. When using the position of the fields to label the training set,
the RNN based system reaches a micro average gain of 0.747 on the test set. This cor-
responds to a reduction of 75 % of the number of human actions to correctly extract the
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information from a Esker-47k document. Moreover, for roughly 6 out of 10 documents,
the users do not have any correction to do since the IE system perfectly extracts their
ordered products. Such automation rates are really appreciable, especially when knowing
how tedious the IE task is if manually performed.

By comparing the two rows of the Table 3.5, we remark that there is a significant
decline of extraction performance when the token labels are derived without knowing the
position of the fields within the training documents. The difference is more noticeable
for the quantity than for the ID number, with a drop of the post-processing gain of
respectively 9.7 % and 7.7 %. This divergence is not surprising: as discussed in the
section 3.3.2, the two targeted fields are not equally affected by the issue of multiple
document occurrences of the field instances. Globally, labeling the training documents
without the position of the information leads to a reduction of 15% of documents that
are perfectly processed.

Secondly, we report in Table 3.6 the results of the RNN based model on the SROIE
test set for both annotated versions of the training dataset. We report the F1 scores for
the micro average over the 4 targeted fields as well as for the total amount which is the
only field whose the training labels differ between the two labeling methods.

Method for deriving
the word training labels

Total
amount

All 4 fields
(Micro avg.)

Using the position of fields 0.903 0.852

Without the position of fields 0.886 0.837

Table 3.6: Impact of the knowledge of information position on the SROIE per-

formance. For both training label sets, we report the F1 scores of the RNN
based model when extracting the total amount and all the targeted fields from
the test receipts.

We first note that we reach a micro average F1 score of 0.852 with the best quality of
labels. Our extraction method was proposed around the same time as the ICDAR 2019
competition introducing the SROIE dataset took place. If we had participated in this
competition, we would have been ranked 5th out of the 18 received submissions (Huang
et al., 2019). The first submission achieved a F1 score of 0.905 while the 10th submission
obtained a F1 score of 0.756. A fine comparison between the proposed methods is still
delicate since some of the submissions have corrected the ground truth OCR results of
the test set which contain a non negligible amount of errors (see section 3.3.3). However,
these results on a public IE dataset validate that our deep token classifier based approach
is relevant for extracting information from business documents.

Unlike for Esker-47k, we then remark that the difference of performance between the
two labeling methods is not significant on the SROIE dataset. Indeed, the F1 score of the
total amount is reduced by 1.7 points when not resorting to the position of field instances
to derive token labels while the variation for all four fields is of minus 1.5 points. We
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see two main reasons for not observing a larger gap of extraction performance for the
total amount between the two ways to construct its token labels. First, as detailed in
the section 3.3.3, we in fact do not have the position of the total amount instances in the
ground truth but rather estimate their position using strong a priori knowledge about the
position of this field, i.e. we look for the bottom-most document candidate that is aligned
with a keyphrase which contains the total word. While simple and powerful, this labeling
heuristic is nevertheless not perfect based on our observations of some training receipts
with their constructed labels. For example, the total instances are sometimes aligned with
other keyphrases such as Net Amount or Due. These labeling inconsistencies may impact
the final extraction performance in an unknown extent. To remedy this, although time
consuming, we could manually label the training set for the total amount. The second
reason is the structure of the extraction schema, which is simple for the SROIE dataset
compared to Esker-47k. Indeed, for all targeted fields of SROIE, we know how many
values are expected to be present in the filled schemas — only one instance —. This
hypothesis seriously helps to post process the token classifier predictions even in the case
of a classifier which is less reliable since it has learned from noisier labels. On the contrary,
the extraction schema of Esker-47k contains two fields whose the number of values for
a specific document is not known a priori. In this case, the fragmentation of the token
classifier confidences when exposed to noisy labels is therefore harder to recover from in
the post-processing stage.

In the Figure 3.8, we visualize a sample from the SROIE test set where the predictions
of the IE system differ between the two labeling methods. Unsurprisingly, we note that the
predictions are identical for the company name, address and the date, i.e. the three fields
whose the training labels do not vary across the two configurations. On the contrary,
there is a discrepancy for the total amount. Its expected value (7.20) was correctly
retrieved when the training labels were derived with the help of the position of total
amounts (Figure 3.8a) — the correct occurrence within the receipt is aligned with the Due
keyword —. However, the IE system learning from labels that were produced without the
help of information position predicts the value 2.40 which corresponds to a product unit
price. This confusion can be explained by the fact that for receipts with a single invoiced
product, their unit price may share the value of the total amount. Therefore, during the
learning phase, some product unit prices have been labeled as carrying the total amount
information. Since the deep neural networks tend to capture the noise in the training data
(Arpit et al., 2017), this also affects the inference phase as illustrated in this example.

3.5 Conclusion

In this chapter, we adopted the conventional approach for extracting information from
business documents which is based on deep token classifiers (Palm et al., 2017b; Katti
et al., 2018; Lohani et al., 2018). Compared to these related works, we performed addi-
tional experiments with such models to better understand their behaviour in complemen-
tary IE settings. To that end, we created two in-house datasets of real-world documents by
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(a) Labeled with the position (b) Labeled without the position

Figure 3.8: Predictions of the word RNN classifier based model for a SROIE

receipt. We compare the predictions of the IE system when the training
labels for the total amount have been derived with and without the position
of its field instances.

collecting and filtering purchase orders from the Esker’s commercial document automa-
tion solutions. On these two datasets, we studied the performance of token classifiers
when extracting complex structures of information, namely tabular entities. Corroborat-
ing the results for single-value fields (Palm et al., 2017b), these models were able to extract
structured information from document layouts that were not seen at training time. On
the most challenging dataset, by resorting to the predictions of a RNN based model, we
observed a reduction of 75% of the human effort needed to correctly extract information
from unknown document issuers. We showed that both the textual — especially the fine-
grained character-level representations of words — and layout modalities were primordial
for achieving such results. We finally validated the efficiency of the RNN token classifier
based approach by evaluating its performance on a publicly available IE dataset (Huang
et al., 2019).
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Considering that we reached a satisfying performance level, the RNN based model
has been deployed on the Esker infrastructure to allow its customers to reap the benefits
of automated information extraction. Originally proposed for extracting products from
purchase orders, the approach was rapidly extended to process more fields and other
document types like invoices. Currently, this approach is used to extract information
from millions of documents per year for the worldwide Esker’s customers.

Nevertheless, the token classifiers cannot learn to extract information directly from
the ground truth provided by an IE task. Indeed, we have at our disposal filled extraction
schemas while such IE models expect supervision at the document token level. The token
labels can still be derived from the extraction schemas. But, in the general case — notably
when the position of the field instances within the training documents is missing —, the
labeling process is not trivial and prone to errors. In the last experiments of this chapter,
we demonstrated that such noise introduced in the token labels can lower the extraction
performance, especially when processing real-world documents. Therefore, in the next
chapter, we plan to explore deep learning methods that bypass token level supervision
and are able to learn directly from the filled extraction schemas, i.e. in an end-to-end
manner.
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Chapter abstract

The predominant approaches for extracting information from business docu-

ments resort to classifiers predicting the information type of each token of the

documents. However, the token labels used at training time are not naturally

produced by the extraction task and thus may be expensive to obtain or likely to

contain errors that degrade the extraction performance.

In this chapter, we aim at learning to extract information directly from the

raw extraction schemas rather than from a token level supervision. We intro-

duce a new end-to-end method that, unlike prior IE work, is able to retrieve

any arbitrarily structured information such as tabular entities. To achieve

this, we adapt an attention-based sequence-to-sequence model called the Pointer-

Generator Network (PGN) in order to alternately copy the document words

carrying relevant information and generate the XML tags structuring the out-

put. Experiments on both the public SROIE and real-world Esker-47k datasets

show that the PGN can outperform a token classifier based system whose train-

ing labels are derived only from the extraction schemas and is rivaling with the

same system when provided with perfect yet potentially costly labels. Hence, our

works confirm that the end-to-end methods are an effective alternative to the

traditional IE approaches learning from token labels.

The work in this chapter has led to the publication of a workshop paper:

• Clément Sage, Alex Aussem, Véronique Eglin, Haytham Elghazel, and
Jérémy Espinas. End-to-end extraction of structured information from
business documents with pointer-generator networks. In Proceedings of the

Fourth Workshop on Structured Prediction for NLP, pages 43–52, Online,
November 2020. Association for Computational Linguistics.
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4.1 Introduction

In the general case, a supervision at the document token level is not provided for a given
IE task, thus preventing from directly training a token classifier to extract information.
For sure, the token labels can be automatically guessed from the available ground truth,
i.e. the filled extraction schemas. But, as shown by the experiments of the last chapter,
this process produces lower quality labels that may significantly reduce the extraction
performance.

In this chapter, we investigate models that are able to directly learning IE from the
naturally-produced extraction ground truth. By comparison with the token classifier
based approaches, such models perform end-to-end information extraction (Palm et al.,
2019). Besides their potential to avoid decline of performance, end-to-end methods also
have two more advantages over the token classifiers. First, they eliminate the need to
implement post-processing operations to predict the extraction schemas (Chua and Duffy,
2021). Secondly, end-to-end methods do not rely on a text serializer for making predictions
whereas aggregating the IOB2 tags generated by a token classifier imposes to correctly
organize the tokens of the document into a unidimensional sequence (Hwang et al., 2020;
Hong et al., 2021). Yet, the serialization of business documents is notoriously known to
be difficult and even ambiguous since such documents often exhibit a multi-column layout
and image distortions due to the scanning process.

To the best of our knowledge, Palm et al. (2017a, 2019) were the firsts to propose
deep end-to-end methods for extracting information from documents. They followed the
sequence-to-sequence (seq2seq) paradigm (Sutskever et al., 2014) which is now ubiquitous
within the NLP community. Specifically, they leveraged encoder-decoder architectures to
map the input sequence of the document tokens which is fed to the encoder to the output
sequence of extracted information generated by the decoder. However, they introduced
methods that were only able to extract independent fields, which is severely restricting for
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(a) Document (b) Extracted information

Figure 4.1: End-to-end IE task using the XML format for the output. Illustrat-
ing the Esker-47k task, we aim to retrieve the ordered products which are
contained in the main table of the purchase order. Two fields are recognized
for each product: their ID number and their quantity.

industrial applications. In our work, we investigate end-to-end approaches that can also
process arbitrarily structured information, including but not limited to tabular entities.

For convenience reasons, we do not train our end-to-end IE methods to generate the
extraction schemas in the JSON format as in the Figure 1.3b. Indeed, this format would
impose to produce many syntactic tokens such as {, : or } (Hwang et al., 2021). Rather,
we choose the XML syntax for structuring the output extraction schemas, each XML tag
corresponding to a target information type. In Figure 4.1, we illustrate such an end-to-end
IE task on a fictive purchase order from the Esker-47k dataset.

To efficiently output such XML representations of the extracted information, we adapt
the Pointer-Generator Network (PGN) from See et al. (2017) which is a sequence-to-
sequence model originally proposed for text summarization (section 4.3). In the sec-
tion 4.4, we compare the extraction performance of the PGN to the word classifier ap-
proaches studied in the last chapter. On both the SROIE and Esker-47k datasets, we show
that the PGN outperforms the word classifier when its training labels were not derived
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Figure 4.2: A vanilla sequence-to-sequence model. This neural architecture allows
to transform a source sequence A B C D into a target sequence X Y Z. Here,
unidirectional recurrent connections are utilized for both the encoder and
decoder, respectively in blue and brown. <eos> denotes the end of both the
source and target sequences. Image reproduced from Luong et al. (2015).

with the help of the field position. Moreover, the end-to-end method is demonstrated to
perform competitively when high-quality word level supervision is available. We start the
chapter by reviewing in the next section the prior work in sequence-to-sequence models.

4.2 Related works

We first discuss the seq2seq framework from a broad perspective and then consider its
application to information extraction tasks.

4.2.1 Background in sequence-to-sequence models

4.2.1.1 Vanilla models

Neural sequence-to-sequence models were first introduced to tackle machine translation
tasks, e.g. translating an English sentence to its French counterpart (Kalchbrenner and
Blunsom, 2013; Cho et al., 2014b; Sutskever et al., 2014). These works proposed neural
architectures that map an input sequence of words in the source language to an output
sequence in the target language without knowing beforehand its length and its alignment
with the input sequence. Such model property is particularly appreciable for performing
translation since there are often no one-to-one and monotonic correspondences between
the words of the source and target sequences. For example, the English phrase The

quickest brown fox is likely to be translated in French as Le renard brun le plus

rapide, a phrase which contains two more words with a different ordering of the adjectives.
Sutskever et al. (2014) described an end-to-end model constituted of an encoder which
reads the input sequence to produce a fixed-length vector — large enough to encode the
whole sequence — and then a decoder to extract the output sequence from that vector,
one timestep at a time. We illustrate this neural architecture in Figure 4.2.
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Formally, the goal of a sequence-to-sequence model is to estimate the conditional
probability p (y1, ...,yT ′ | x1, ...,xT ) where x = {x1, ...,xT}T∈N is the input sequence of
length T and y = {y1, ...,yT ′}T ′∈N is its corresponding output sequence of length T ′

which may differ from T . The encoder-decoder computes this conditional probability by
first producing the fixed-size representation v ∈ R

dm of the input sequence x and then
calculating the probability of y with a language model which is initialized by the vector
v:

p (y1, ...,yT ′ | x1, ...,xT ) =
T ′

∏

t=1

p(yt | v,y1, ...,yt−1) (4.1)

In this equation, each p(yt | v,y1, ...,yt−1) distribution is represented with a softmax over
all the words in the vocabulary of the target language. The vocabulary includes a special
end-of-sequence token — usually denoted <EOS> — which enables the model to define a
distribution over sequences of all possible lengths. The decoder is autoregressive in the
sense that it emits one token at a time conditioned on all the source sentence and the
previously generated tokens. On each step t, the decoder input xd

t is the word embedding
of the previous word. While training, this is the previous ground truth word whereas at
inference time, it is the previous word emitted by the decoder.

Both the encoder and decoder networks are simultaneously trained by minimizing the
cross-entropy loss of the correct translations {y} given the source sentences {x} averaged
over all the time steps:

− 1

|S|
∑

(x,y)∈S

1

T ′

T ′

∑

t=1

log p(yt | v,y1, ...,yt−1) (4.2)

where S is a training set of parallel sentences. Once the training is complete, the model
produces a translation ŷ for a new source sentence x by finding the most likely translation:

ŷ = argmax
y

p(y | x) (4.3)

Searching for the optimal translation over the full output space is often intractable since
its complexity is exponential with the output sequence length (Vijayakumar et al., 2016).
Approximate search algorithms are thus commonly employed to speed up the decoding
process while still reaching a high conditional probability solution. Beam search is one of
the most prominent inference algorithms to decode output sequences from sequence-to-
sequence models. It explores the search space in a greedy left-to-right fashion retaining, at
each time step, only the top-B candidates according to the conditional probability. The
hyper-parameter B, called the beam width, bounds the memory required to perform the
search. With an infinite beam width, we perform exact search of the optimal translation.

A natural parametrization of the encoder and decoder is using Recurrent Neural Net-
works (RNNs), especially its LSTM or GRU variants. Although the encoder of Figure 4.2
is browsing the input sequence only from left-to-right, the encoder may also resort to bidi-
rectional recurrent connections. We denote by {h1, . . . ,hT} the hidden states produced
by the (bidirectional) RNN encoder for the input sequence x. With such parametrization,
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the vector representing the input sequence is generally the last hidden state of the RNN
encoder, i.e. v = hT , and is used to initialize the hidden state of the RNN decoder.
However, the encoder-decoder approach is in no way limited to recurrent architectures
and can also successfully leverage the convolution (Gehring et al., 2017) and self-attention
(Vaswani et al., 2017) mechanisms which we extensively covered in the section 2.2.

While globally more powerful than traditional statistical translation models, basic
sequence-to-sequence systems were still showing troubles when dealing with long sentences
to translate (Cho et al., 2014a). To remedy this, Sutskever et al. (2014) suggested to
reverse the order of the words in all the source sentences before encoding them with
a LSTM network. For most language pairs, this simple trick makes the first words of
the output sequence closer than their counterpart in the input sequence. Easing the
optimization problem, the reversing indeed improved the encoder-decoder’s performance
markedly.

4.2.1.2 Enhanced with attention mechanisms

Bahdanau et al. (2015) argued that compressing all the necessary information of a source
sentence into a single fixed-length vector v is the main reason explaining that the sequence-
to-sequence models had issues when translating long sentences. In turn, they proposed to
perform, at each decoder time step, a soft-search for positions in the source sentence where
the most relevant information is concentrated. The model then predicts a target word
based on the context vector h∗

t associated with these source positions and all the previously
generated target words {y1, . . . ,yt−1}. Such an extension of the vanilla encoder-decoder
model is referred to as an attention mechanism. An overview of the mechanism is given
in Figure 4.3a when using RNN layers for both the encoder and decoder. Formally,
Bahdanau et al. (2015) defined the conditional probability of equation 4.1 by:

p (yt | x,y1, . . . ,yt−1) = g (yt−1, st,h
∗
t ) (4.4)

where g is a non-linear, potentially multi-layered, function that outputs the probability
of yt and st is the RNN hidden state for time step t, computed by:

st = f (st−1,yt−1,h
∗
t ) (4.5)

where f is the GRU cell function from Cho et al. (2014b) extended for including h∗
t . The

context vector h∗
t is computed as a weighted sum of the encoder outputs {h1, . . . ,hT}:

h∗
t =

T
∑

j=1

αtjhj (4.6)

For each step t = 1, . . . , T ′, the weight αtj of each encoder output hj into h∗
t is calculated

with a softmax function:

αtj =
exp (etj)

∑T

k=1 exp (etk)
(4.7)
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(a) Bahdanau’s attention (b) Luong’s attention

Figure 4.3: Two flavours of attention mechanisms. Both mechanisms allow the RNN
decoder to adaptively focus on different parts of the encoded input sequence at
each step t. Besides the calculation of the alignment scores between the source
and target elements, the main difference is when the attention is computed:
before (4.3a) or after (4.3b) updating the hidden state of the decoder. Image
reproduced from Bahdanau et al. (2015); Luong et al. (2015)

where etj is the alignment score between the input sequence at position j and the output
sequence at position t. In their work, they implemented the scoring function with:

etj = va
⊤ tanh (Wa [st−1, hj] + ba) (4.8)

where va, ba ∈ R
da and Wa ∈ R

da×2dm are trainable vector and matrix weights related
to the attention mechanism — da is the attention size and dm the dimension of both
the encoder and decoder —. The alignment model directly computes a soft differentiable
alignment between the source and target sentences. This permits the gradient of the cost
function to be backpropagated through, thus allowing the attention module to be learned
with the rest of the model.

Bahdanau et al. (2015) showed that enhancing a encoder-decoder with such an atten-
tion mechanism conducts to significantly better translation performances when dealing
with long sentences, typically for sentences with several dozens of words.

A few later, Luong et al. (2015) simplified and generalized the attention mechanism
while still maintaining its efficiency. As shown in Figure 4.3b, they introduced a simpler
computation path which now involves the attention mechanism on top of the decoder
(st → αt → h∗

t → s̃t) and not within the decoder anymore (st−1 → αt → h∗
t → st),
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where s̃t is the attention state used to predict the target word yt and αt = [αt1, . . . ,αtT ]

is the attention distribution at the decoder step t. They also proposed another alignment
function which performs slightly better than the score function of Bahdanau et al. (2015),
replacing the equation 4.8 by:

etj = st
⊤Wahj (4.9)

where Wa ∈ R
dm×dm is a matrix of weights.

Due to its effectiveness for machine translation, the encoder-decoder models, partic-
ularly when enhanced with an attention mechanism, have then been employed for many
other NLP generative tasks such as text summarization, conditional text generation and
information extraction (Otter et al., 2020).

4.2.1.3 Copying via attention

For generating output sequences whose elements may correspond to elements of the input
sequence, Vinyals et al. (2015) proposed Pointer Networks which use attention as a pointer
selecting input elements as the output. These encoder-decoder networks were successfully
employed for solving various combinatorial optimization problems such as the Travelling
Salesman Problem. A number of follow-up works in text summarization have then mixed
these copying abilities with the natural generation mode of the decoder (Gu et al., 2016;
Miao and Blunsom, 2016; Nallapati et al., 2016; See et al., 2017). The pointing part was
leveraged to help the neural network to accurately reproduce the prominent information
of the text to summarize by efficiently copying the rare or out-of-vocabulary words of
the input sequence, e.g. proper nouns. In the following, we describe in more detail the
approach of See et al. (2017) which is currently one of the most optimized sequence-to-
sequence model combining attention-based copying and classical generation (Xu et al.,
2020a).

The end-to-end model proposed by See et al. (2017) is the Pointer-Generator Net-
work, which we abbreviate PGN for readability. As many other sequence-to-sequence
models mentioned earlier, the PGN is made of a bidirectional LSTM encoder and a uni-
directional LSTM decoder on top of which is placed an attention mechanism using the
Bahdanau’s alignment function. At each time step t = 1 . . . T ′, the generator part of the
PGN computes the distribution P vocab

t over the fixed-size output vocabulary Vfixed from
the concatenation of the decoder hidden state st and the context vector h∗

t :

P vocab
t = softmax (V ′ (V [st,h

∗
t ] + b) + b′) (4.10)

where V , V ′ matrices and b, b′ vectors are learnable parameters of two fully-connected
layers. The probability pgen

t of sampling from the generator distribution P vocab
t is com-

puted from the context vector h∗
t , the decoder state st and the decoder input xd

t :

pgen
t = σ

(

wh∗

⊤h∗
t +ws

⊤st +wx
⊤xd

t + bptr

)

(4.11)

where the vectors wh∗ , ws, wx and the scalar bptr are learnable parameters and σ is the
sigmoid function ensuring that pgen

t ∈ [0, 1]. Next, the copying part of the PGN computes
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the probability P copy
t (w) of copying a unique word w ∈ Ux from the input sequence

x = {x1, ...,xT}T∈N by summing all its activation weights at the current step t:

P copy
t (w) =

T
∑

j=1
xj=w

αtj (4.12)

For each input sequence x, the final output distribution p(w | x,y1, . . . ,yt−1) of the PGN
is defined over the extended vocabulary Vx which is the union of the fixed-size vocabulary
Vfixed and the unique words Ux of x. The distribution is obtained by mixing the generator
and pointing distributions through the generation probability pgen

t that operates as a soft
switch between the two modes:

p(w | x,y1, . . . ,yt−1) = pgen
t P vocab

t (w) + (1− pgen
t )P copy

t (w) (4.13)

where P vocab
t (w) = 0 for the source words w ∈ Ux which are out-of-vocabulary and

P copy
t (w) = 0 for the vocabulary words w ∈ Vfixed which do not appear in the input

sequence x.

4.2.1.4 Coverage mechanism

Repetition is a common problem observed for sequence-to-sequence models, especially
when dealing with long output sequences. See et al. (2017) also included a coverage mech-
anism to mitigate this issue. In this mechanism, a coverage vector ct ∈ R

T is maintained
to keep track of the source tokens that have already received attention in the previous
time steps. This vector is computed by simply summing the attention distributions up to
time step t:

ct =
t−1
∑

t′=1

αt′ (4.14)

with c1 being a zero vector of length T . To ensure that the attention mechanism’s current
decision is informed by its previous decisions, the coverage vector is used as an extra input
to the Bahdanau’s attention, changing equation 4.8 to:

etj = va
⊤ tanh (Wa [st−1,hj] +wccti + ba) (4.15)

where wc ∈ R
da is a learnable vector of the same length as va. In order to be effective, See

et al. (2017) found necessary to define a coverage loss that explicitly penalizes the model
for repeatedly paying attention to the same source tokens, thus preventing repetitions of
the copying mechanism. For the time step t, the coverage loss is equal to:

T
∑

j=1

min (αtj, ctj) (4.16)

Finally, the coverage loss is reweighted by the hyperparameter λ ∈ R and added to the
primary loss function defined in equation 4.2:

− 1

|S|
∑

(x,y)∈S

1

T ′

T ′

∑

t=1

[

log p(yt | x,y1, ...,yt−1) + λ
T
∑

j=1

min (αtj, ctj)

]

(4.17)
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4.2.1.5 Structured generation

A number of works have proved that attention-based encoder-decoders can produce well-
formed and well-typed sequences in a structured language without supplying an explicit
grammar of the language.

Some authors transformed images of tables (Zhong et al., 2019; Deng et al., 2019) and
mathematical formulas (Deng et al., 2017; Wu et al., 2018) into their LaTeX or HTML
representations. After applying a convolutional encoder to the input image, they used a
forward RNN decoder to generate tokens in the target language. The decoder is enhanced
with an attention mechanism over the final feature maps to help focusing on the image
part that is recognized at the current time step.

Neural encoder-decoder architectures have also been used for semantic parsing which
aims at converting natural language utterances to their formal SQL or Prolog represen-
tations (Dong and Lapata, 2016; Rabinovich et al., 2017). Since for this task the text
is the modality of both the input and output, Jia and Liang (2016); Zhong et al. (2017)
included attention-based copying abilities in their seq2seq model to efficiently generate
the rare or out-of-vocabulary words.

4.2.2 Sequence-to-sequence models applied to information extrac-

tion

The sequence-to-sequence models were utilized for extracting information from documents
in the objective of performing the task in an end-to-end manner. As far as we are aware,
Palm et al. (2017a) is the first work which have leveraged such approaches to extract in-
formation. They utilized the Pointer Networks (Vinyals et al., 2015) which were presented
in the last section in order to retrieve specific fields from short natural language requests
in the airline booking, restaurant and movie domains. Their approach is illustrated in the
Figure 4.4. They employed a single BLSTM network to encode the sequences of words
constituting the requests and as many LSTM decoders as there are target fields. Each
decoder is equipped with its own attention mechanism which is tasked to point to the
input words to extract the field values. On three public IE datasets, their end-to-end
method showed competitive extraction results with strong baselines learning from token-
level supervision. Yet, each field specific decoder is independently trained, preventing
to learn joint extraction logic and potentially leading to conflicts between the extracted
field values at inference time. More importantly, their approach is not able to extract
structured information such as entities grouping multiple fields.

In a later work (Palm et al., 2019), the same authors proposed a new sequence-to-
sequence approach dubbed Attend, Copy, Parse in order to extract main information from
invoices. They mostly focused on designing a multi-modal architecture that efficiently
encode such visually rich documents and on providing parsing abilities to the model to
not only copy the words of the invoice but also transform them to output normalized
field values, e.g. for date and amount fields. However, as in Palm et al. (2017a), their
approach is only able to process unstructured information and thus omit the extraction
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Figure 4.4: End-to-end extraction through Pointer Networks. This IE model pro-
posed by Palm et al. (2017a) encodes an input sequence with a BLSTM layer
and then uses attention mechanisms on top of its LSTM decoders to copy the
input words containing the expected information. The solid red lines denote
the strongest attention weights for each decoder step. In this example, the
seq2seq model is tasked to retrieve the starting and ending locations from an
airline booking request. Image reproduced from Palm et al. (2017a).

of the invoiced products for example.

Since the publication of our work (Sage et al., 2020), two more IE works have been
tackling end-to-end extraction of structured information. Like our approach, Hwang et al.
(2021) employ an encoder-decoder equipped with an attention-based copying mechanism
for extracting information from their in-house name cards and receipts. However, they do
not rely on RNN models but rather on the Transformer architecture. They have also cho-
sen another language than XML for structuring the extracted information: their seq2seq
model learns to produce sequences that mix the extracted field values and Abstract Syntax
Trees (AST) actions. The actions are later interpreted to convert the predictions under
the JSON format. As Palm et al. (2017a), their end-to-end model achieves comparable
performance with document word classifiers when using the same volume of annotated
documents. Moreover, when pre-trained on abundant weakly labeled data that the word
classifiers cannot leverage, their sequence-to-sequence model reaches a higher extraction
performance than the baseline.

On its side, Chua and Duffy (2021) use a structured prediction approach by resorting
to a Context Free Grammar (CFG) which models the structure of information to be
extracted. They leverage deep neural encoders to provide the conditional probabilities for
each production rule of the CFG, resulting in a tractable end-to-end system for extracting
the products from their private invoices.
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4.3 Models

In our work, we leverage the sequence-to-sequence framework for directly producing the
extraction schemas of the incoming documents following the XML syntax (Figure 4.1). To
that end, we serialize both the set of document words and the XML output. For the input
sequence, we organize the words from the top-left element to the bottom-right element as
for the word classifiers while for the output sequence, we perform a depth-first search of the
XML. In the vocabulary of the decoder, we include all the XML tag pairs corresponding
to the target fields, i.e. <Product>, </Product>, <IDNumber>, </IDNumber>, <Quantity>
and </Quantity> for the Esker-47k task. We also add the token </Extraction> into the
vocabulary for marking the end of the produced sequences. At each time step, the decoder
emits either one of the XML tag or a piece of a field value.

Since the field values contained in the business documents are often specific to a doc-
ument or a issuer, the extracted information cannot be generated by the decoder from a
fixed-size vocabulary of words. At best, the field values would be hard to generate for
the rare words. In the worst case where the words are OOV, the extraction would not
be possible. Our initial idea was then to use an encoder-decoder which would generate
the field values at the character level since the character vocabulary is a finite set. Yet,
even when enhanced with the attention mechanism from Luong et al. (2015), our pre-
liminary experiments on the Esker-47k dataset showed that the character-level decoder
was struggling to extract the actual field values of the documents. This finding was con-
firmed both by the negative values of the post-processing gain metrics — meaning that
it involves more human effort to correct the predictions than manually doing the IE task
from scratch — and by the inspection of the attention mechanism which was not able to
focus on the document words carrying the expected information. Another drawback of
the generation at the character level is the length of the output sequence which reached
a maximum of 2,907 characters on the validation set. With auto-regressive decoders, this
translates into slow model training and inference (Sun et al., 2019). On the bright side,
the seq2seq model was able to produce a well-formed and non empty XML for more than
97 % of the test documents, often predicting a correct number of products and respecting
the data type of the fields, i.e. integers for the quantity and alphanumeric sequences for
the ID number.

Based on these preliminary results, this is inevitable to resort to the copying abilities of
the encoder-decoders in order to efficiently extract information from business documents.

4.3.1 Pointer-generator network

For copying the words of the document carrying relevant information, we adapt the
Pointer-Generator Network (PGN) from See et al. (2017) to our extraction needs. In
this section, we highlight the keys differences with the original model that we described in
details in the section 4.2.1.3. An overview of our approach is given in the Figure 4.5. The
responsibilities are split between the generator and the pointer components: the former
is only tasked to produce the XML tags structuring the output while the latter is fully in
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Figure 4.5: Our Pointer-Generator Network for extracting structured informa-

tion. For each decoder step t, a generation probability pgen
t ∈ [0, 1] is cal-

culated, which weights the probability of generating XML tags from the
vocabulary versus copying words from the document carrying information.
The vocabulary distribution and the attention distribution are weighted and
summed to obtain the final distribution. For the illustrated step, the model
mainly points to the word R-1141, i.e. the ID number of the first product
from the document in Figure 4.1.

charge of extracting the information from the documents.

4.3.1.1 Word representations

See et al. (2017) only use word level embeddings for describing the elements of the input
sequence. In our case, we reemploy the method used in our word classifiers for construct-
ing the representations of the k words of the document (see section 3.2.1.1) since they
were shown to be effective in the past experiments. To recap, the word representations
{r1, . . . , rk}k∈N are mainly constituted of learned character and word level descriptions
of their text content as well as their spatial 2D coordinates for embedding the document
layout.
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4.3.1.2 Encoder

Like See et al. (2017), the word representations {rj}j=1...k are then fed to a BLSTM
encoder to obtain their contextualized representations {hj}j=1...k. We use a two-layer
network instead of a single layer in the original PGN.

4.3.1.3 Decoder

In accordance with the encoder choices, the decoder is a two-layer forward LSTM, pro-
ducing a hidden state st at each step t. An attention mechanism is added on top of
the decoder to compute the attention distribution αt over the document words and the
context vector h∗

t =
∑k

j=1 αtjhj. While See et al. (2017) use the alignment function of
Bahdanau et al. (2015), we choose the form of Luong et al. (2015) since this is computa-
tionally less expensive while showing similar performances. As we resort to the coverage
mechanism from See et al. (2017) to reduce the repetitions in the output sequences (sec-
tion 4.2.1.4), we adapt the Luong’s alignment function to involve the coverage vector ct.
This changes the equation 4.9 to:

etj = st
⊤(Wahj +wcctj) (4.18)

where wc is a vector of trainable parameters like in the original coverage mechanism
(equation 4.15).

To further help the model keeping track of words already copied, we also apply the
input-feeding approach from Luong et al. (2015) by concatenating the previous context
vector h∗

t−1 with the decoder input representation xd
t before applying the first decoder

LSTM layer at step t. During training, the decoder input is the previous token of the
ground truth sequence, while in inference mode, the previous token emitted by the PGN
is used. Its representation xd

t is either a dense embedding learned from scratch if the
token is a XML tag or the textual feature set rt

j of the corresponding words {wj} if the
token is copied from the document.

We also simplify the computation of the distribution P vocab
t since the generator is only

in charge of producing the XML tags and thus has a vocabulary of limited size in our
setting. We apply a single fully-connected layer instead of two and do not involve the
context vector h∗

t in the expression of P vocab
t , changing equation 4.10 to:

P vocab
t = softmax(V st + b) (4.19)

where V and b are learnable parameters.
The rest of the PGN is unchanged: we compute the generation probability pgen

t as
in equation 4.11 for switching between the generating and pointing modes; the pointing
distribution P copy

t is estimated with the equation 4.12 and mixed with the generator’s
distribution as in equation 4.13 to form the final distribution to sample from. Lastly,
the whole model is learned by minimizing the training loss from the equation 4.17 that
combines the primary cross entropy loss over the final distribution and the coverage loss.
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4.4 Comparison with token classifier approaches

We compare the end-to-end extraction performance of our Pointer-Generator Network
(PGN) with the RNN word classifier based method evaluated in the last chapter. We
conduct the comparison on both the public SROIE and private Esker-47k datasets which
were respectively introduced in the sections 3.3.3 and 3.3.2. In Table 4.1 and 4.2, we
recap their main characteristics and give additional statistics related to end-to-end IE.

# documents

Training 600

Validation 26

Test 347

Words per document 124 ± 34

Pages per document 1.00 ± 0.00

Tokens in output sequence 27.70 ± 3.22

Words per company name instance 4.35 ± 1.26

Words per address instance 11.18 ± 2.86

Words per date instance 1.17 ± 0.56

Words per total instance 1.03 ± 0.17

Table 4.1: Main statistics of the SROIE dataset (Huang et al., 2019).

# documents # issuers

Training 33,153 11,051

Validation 4,716 1,572

Test 9,846 3,282

Words per document 398 ± 856

Pages per document 1.59 ± 8.69

Products per document 3.81 ± 9.36

Tokens in output sequence 34.35 ± 84.03

Words per ID number instance 1.28 ± 1.13

Words per quantity instance 1.00 ± 0.00

Table 4.2: Main statistics of the Esker-47k dataset.

4.4.1 Experiment settings

For the word classifier based approaches, we reuse the parametrization given in the sec-
tion 3.4.3 for the Esker-47k dataset. For the PGN, we derive the document word repre-
sentations as the word classifiers. For a fair comparison, we ensure similar numbers of
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trainable parameters between models by lowering the size of each BLSTM encoder layer
of the PGN to 128 instead of 256. Its two LSTM decoder layers also have a size of 128 and
are initialized by the last states of the encoding BLSTM layers. This results in 1,400,908
and 1,515,733 trainable parameters for the PGN and the word classifiers.

Following the recommendations of See et al. (2017), the coverage loss is added to
the minimized loss only at the end of training, for one additional epoch. We weight its
contribution by setting λ = 0.1 as the original value of 1 makes the cross-entropy loss
increase. The batch size is 8 if the model fits on the GPU memory, 4 otherwise.

At inference time, we decode with a beam search of width 3. We set the maximum
length of the output sequence to the maximum length observed on the validation set for
Esker-47k and on both the training and validation sets for SROIE since the latter set only
encompasses 26 receipts. A 10 % upper tolerance is also applied. This corresponds to
output sequences of at most 49 and 1,885 tokens for respectively the SROIE and Esker-47k
datasets.

The experiments are still carried out on a single TITAN X GPU. We keep not training
the models on documents with more than 1,800 words, which amounts to 2.8 % of the
Esker-47k training set being put aside. Yet, we evaluate the models on all documents
of the validation and test sets. The implementation of the PGN is based on the seq2seq
subpackage of TensorFlow Addons (Luong et al., 2017).

4.4.2 SROIE results

First, we report in Table 4.3 the results of the PGN and the word classifier based models
on the SROIE test set (Huang et al., 2019). As in the last chapter, we include the
two versions for deriving the training word labels, the version using the position of field
instances and the version only using their textual values (Table 3.6). For SROIE, we
remember that these labeling differences only impact the total amount field. We report
the F1 scores for this field as well as the micro average over the four targeted fields.

Total
amount

All 4 fields
(Micro avg.)

Word classifier
w/ position of fields 0.903 0.852

wo/ position of fields 0.886 0.837

Pointer-Generator Network 0.908 0.839

Table 4.3: Comparison of the PGN with word classifiers for SROIE receipts.

For all models, we report the F1 scores when extracting the total amount and
all the targeted fields from the test receipts.

We note that the PGN reaches similar extraction performance compared to the two
word classifiers based approaches, with a micro F1 score of 0.839 against 0.852 and 0.837
for the baselines. Although not significant, the PGN even slightly outperforms the best
performing word classifier for the total amount field.



4.4. Comparison with token classifier approaches 97

We also have manually inspected the prediction errors and have not noticed any im-
portant difference of behaviour between the two families of models. Besides the brittle
OCR errors in the provided test set which inevitably disturb the evaluation of the IE
task, both the PGN and word classifier approaches tend to miss or wrongly add a word in
their predictions for the long field values. This is especially pronounced for the company
name and address which are fields containing on average 4.65 and 11.18 words (Table 4.1).
Since the evaluation methodology is exact string matching with the ground truth, these
slight prediction errors highly affect the F1 score values. Both methods are also inclined
to confusions with candidates of the same type, e.g. the paid amount, the total before
tax, discount or rounding, the unit and total prices of products are sometimes mistakenly
interpreted as the total amount since they are all floats.

Overall, these results validate that end-to-end extraction is a viable alternative to the
approaches using costly and error prone word-level supervision for training the extraction
models.

4.4.3 Esker-47k results

We then conduct experiments on the Esker-47k task which aims to extract structured
tabular information from incoming documents instead of independent fields for the SROIE
receipts.

4.4.3.1 Main results

We start the analysis of the Esker-47k results by giving in Table 4.4 the post-processing
gains of the PGN and the two word classifiers methods when extracting the products from
the purchase orders of the whole test set. The gains of both constituting fields as well
as their micro average are displayed alongside the percentage of the test documents for
which no insertions, modifications or deletions of predicted field instances are required for
achieving perfect extraction.

ID
number

Quantity
Micro
avg.

% Docs
Perfect

Word classifier
w/ position of fields 0.689 0.805 0.747 59.1

wo/ position of fields 0.612 0.708 0.660 44.4

Pointer-Generator Network 0.643 0.777 0.710 62.2

Table 4.4: Comparison of the PGN with word classifiers for Esker-47k docu-

ments. For all models, we report the post-processing gains when extracting
the ordered products from the test documents. % Perfect column indicates
the percentage of documents perfectly processed by the IE model.

We first remark that, like the word classifier based approaches, the PGN have positive
post-processing gain values for both the ID number and quantity fields, meaning that
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the end-to-end model actually reduces the human efforts for extracting structured infor-
mation. When compared to the word classifier which learns IE from the same training
ground truth, i.e. only from the raw extraction schemas, the PGN greatly outperforms
the baseline for all evaluation criteria. The PGN achieves a 7.6 % higher micro average
gain (0.710 against 0.660) while it perfectly extracts information from a document 40 %
more often than the word classifier using the same level of supervision (62.2 % against
44.4%).

When compared to the word classifier trained with the help of the position of the
field instances, all the field level metrics are a little behind for the PGN, its micro post-
processing gain being 0.037 lower than the baseline. Yet, the PGN process a whole
document without any error slightly more often than the best performing word classifier.
These later results shows that end-to-end models are competitive with the traditional IE
approaches for extracting structured information at the benefit of demanding fewer efforts
for supervising the models.

4.4.3.2 Visual inspection of the pointing mechanism

The quantitative comparison with the word classifiers have shown that the PGN has suc-
cessfully learned to extract information through its attention-based pointing mechanism.
In this section, we aim to get insights into how this pointing module actually proceeds to
copy the document words carrying useful information. We particularly investigate the case
where there are multiple occurrences of a field value within the document. In Figure 4.6,
we visualize the attention distribution αt while the PGN is extracting the products from
a sample purchase order. At the decoder step t = 6 that we have chosen, the end-to-end
model is recognizing the first product contained in the table of products: it has already
retrieved its ID number, i.e. THX-63972D, and is about to extract its quantity since the
previously emitted token was <Quantity>.

We observe that the PGN correctly localizes the expected quantity within the docu-
ment. Indeed, the PGN massively focuses its attention on the word 1 in the table row of
the first product in order to include this word in the output sequence. On the contrary,
the model ignores the occurrences of 1 which correspond to street and page numbers as
well as other product quantities. This behaviour is noteworthy since the PGN has not
been taught to copy the field occurrences which are semantically correct while learning
to extract information. Indeed, the PGN does not leverage information position knowl-
edge at training time. Rather, the neural network is left in charge of performing the
disambiguation between all the occurrences of the training field values. This task is not
trivial since the attention weights of all occurrences are summed to form the pointing
distribution (equation 4.12), the irrelevant occurrences thus bringing noise in the learning
process.

This example thus provides a visual confirmation that the PGN has learned to properly
focus its attention in order to copy the relevant document words.
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Figure 4.6: Visualization of the attention-based copying mechanism on a sample

purchase order. We show the top-15 attention weights for the 6th time step
of the Pointer-Generator Network (PGN), after having outputted the tokens
<Product>, <IDNumber>, THX-63972D, </IDNumber> and <Quantity>. The
model rightly points to the word 1 to extract the quantity of the first product.

4.4.3.3 Troubles for outputting long extraction schemas

Besides the difficulties already encountered by the word classifier based approaches (see
section 3.4.1), the PGN also faces a specific issue: it tends to repeat itself by duplicating
some field instances and skipping others in its generated sequences. This is especially ob-
served for documents with a large number of products, therefore a large output sequence.
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This behaviour is not surprising since prior works using sequence-to-sequence models have
already noticed phenomena of repetitions for machine translation and text summarization
(Tu et al., 2016; See et al., 2017).

To measure the impact of these repetitions for the information extraction task, we split
the Esker-47k test set into three subsets according to the number of products contained in
the document: no more than 3, between 4 and 14 and at least 15 products. We recompute
the metrics for each test subset and report in Table 4.5 the micro average gains from both
the word classifiers and the PGN. For the latter model, we also perform an ablation of
the coverage mechanism proposed by See et al. (2017) for mitigating the repetition issue.

N ≤ 3 3 < N < 15 N ≥ 15

Documents 7,439 1,977 430

Products 10,404 13,695 13,258

Word classifier
w/ position of fields 0.711 0.768 0.753

wo/ position of fields 0.545 0.685 0.724

Pointer-Generator Network
w/ coverage 0.734 0.794 0.605

wo/ coverage 0.802 0.754 0.438

Table 4.5: Model performance according to the volume of information to ex-

tract. For both the PGN and the word classifiers, we report the micro average
gains over three subsets of the Esker-47k test set. Each subset gathers the doc-
uments containing a similar number N of products to retrieve.

We note that the performance is rather stable for the word classifiers whatever the
number of products within the document — surprisingly, the micro post-processing gain
is even improving when facing a lot of information to extract for the classifier whose
training labels were obtained without the help of the information position. On the op-
posite, the micro average gain of the PGN is higher than both word classifier versions
for documents with a reasonable amount of information to recognize (N < 15) but its
extraction performance greatly declines when facing larger numbers of products. These
comparative results indicate that the PGN is more affected by the repetitions than the
word level baselines. They also explain the paradoxical fact observed in the global results
(Table 4.4) that the PGN perfectly extracts information from documents more often than
the word classifiers even if its field level metrics may be lower. Indeed, the purchase orders
containing few products constitute the vast majority of the Esker-47k test set and the
PGN is better than the word classifiers at extracting information from those documents.

We also remark that the coverage mechanism of the PGN alleviates the repetitions in
the output sequences since its removal from the model makes the micro post-processing
gain decrease from 0.605 to 0.438 for the longest extraction schemas. Yet, the mechanism
still does not permit to reach the levels of performance observed for smaller output se-
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quences. The coverage mechanism may be not as effective as in See et al. (2017) since it
was originally assessed on expected output sequences of at most 120 tokens while the 430
documents from our third test subset contain on average 31 products, which correspond
on average to more than 250 output tokens. Instead of the coverage mechanism from See
et al. (2017), we tried to use the temporal attention from Paulus et al. (2018) in order to
avoid copying the same words multiple times and thus further improve the performance
on long extraction schemas but this was not more successful.

Finally, we verified that the poor test performance of the PGN for the long extraction
schemas was not due to the under-representation of such documents in the training set
after the discarding, for GPU memory reasons, of the 942 training documents containing
more than 1,800 words. Indeed, only 64 out of the 942 removed training documents (6.8
%) were containing more than 15 products while this proportion is only slightly lower in
the whole test set (4.4 %).

4.5 Conclusion

In this chapter, we proposed a novel end-to-end method for extracting information from
business documents, i.e. that learns directly from the extraction schemas instead of from
document token level supervision. Unlike the prior end-to-end approaches which were only
able to extract unstructured information (Palm et al., 2017a, 2019), our method can pro-
cess any arbitrarily structured information since it learns to output the whole extraction
schema in a single pass. To achieve this, we adapted the attention-based sequence-to-
sequence model developed by See et al. (2017), called the Pointer-Generator Network
(PGN), in order to alternately copy the document words carrying relevant information
and generate the XML tags structuring the output. We first showed that our PGN is
competitive with the word classifiers introduced in the previous chapter for extracting
independent fields from receipts of the public SROIE dataset. When tasked to retrieve
tabular information from the real-world Esker-47k documents, our PGN greatly outper-
forms the word classifier using the same level of knowledge for the training ground truth
while it rivals with the word classifier resorting to the supplementary knowledge of infor-
mation position for deriving its training labels. We found that the PGN is lagging behind
the best performing word classifier only when there is a lot of information to retrieve
due to repetitions in its copying mechanism. Overall, these experiment results confirmed
that the end-to-end methods are an effective alternative to the traditional word classifier
based approaches, particularly when having only the extraction schemas at our disposal
for learning the IE task.

Nevertheless, our end-to-end method is only able to extract fields whose values appear
verbatim in the document, either because the fields do not actually require normalization
like the ID numbers and quantities in the Esker-47k dataset or their values are deliberately
not normalized in the extraction schemas like in the SROIE dataset (Huang et al., 2019).
Similarly to Palm et al. (2019), it would be interesting to add parsing abilities into our
sequence-to-sequence model in order to simultaneously learn to normalize the extracted
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information. Handling normalization would allow to directly learn the IE task from any
ground truth extraction schema, e.g. for the Kleister dataset (Graliński et al., 2020), and
thus constitutes the last step to fully achieve extraction of structured information in an
end-to-end manner.



Chapter 5

Data-efficient extraction with

pre-trained language models

Chapter abstract

Like for many text understanding and generation tasks, pre-trained languages

models have emerged as a powerful approach for extracting information from

business documents. However, their performance has not been properly studied in

data-constrained settings which are often encountered in industrial applications.

In this chapter, we show that LayoutLM, a pre-trained model recently proposed

for encoding 2D documents, reveals a high sample-efficiency when fine-tuned on

public and real-world Information Extraction (IE) datasets. Indeed, LayoutLM

reaches more than 80% of its full performance with as few as 32 documents for

fine-tuning. When compared with a strong baseline learning IE from scratch, the

pre-trained model needs between 4 to 30 times fewer annotated documents in the

toughest data conditions. Finally, LayoutLM performs better on the real-world

dataset when having been beforehand fine-tuned on the full public dataset, thus

indicating valuable knowledge transfer abilities. When tackling practical extrac-

tion problems, we therefore advocate the use of pre-trained language models for

decreasing the annotation efforts.
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tional Publishing.
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5.1 Introduction

In the previous chapter, we investigated sequence-to-sequence models for extracting infor-
mation from business documents in an end-to-end manner. By learning directly from the
extraction schemas and not from document token labels as in Chapter 3, these approaches
can effectively reduce the amount of supervision efforts dedicated to a training document
and, thus, the human efforts for training an extraction model.

A complementary option to decrease the global supervision efforts would be to min-
imize the volume of training documents required for reaching the desired performance.
One promising way would be to not learn the IE task from scratch as done in our pre-
vious approaches and the IE works we have mentioned so far. Indeed, all the trainable
parameters of the extraction model, except perhaps the token embeddings (Lohani et al.,
2018; Denk and Reisswig, 2019), were learned in a fully supervised task-specific way. The
parameters were attributed attributed random values at the beginning of the training
stage and their values were then updated by directly minimizing the loss on the target IE
dataset. While being successful for most IE tasks, this results in a costly process since a
massive amount of weights need to be learned without prior knowledge. On the opposite,
starting from weights that have been purposefully pre-trained could allow to learn the IE
task from fewer training documents without sacrificing the extraction performance.

For a few years now, a pre-training strategy has gained much traction within the NLP
community. The pre-training is performed with language modeling objectives that allow
to learn deep representations of tokens from unlabeled text, e.g. BERT (Devlin et al.,
2018) or GPT models (Brown et al., 2020). As the language models are self-supervised,
one can easily leverage an unbounded amount of text in order to learn powerful and
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generic representations of the language. These token representations can then be fine-

tuned to tackle a wide range of text understanding and generation tasks. Initially geared
towards plain text, the language models have then been extended to process the text of
visually rich documents (Xu et al., 2020c; Pramanik et al., 2020; Xu et al., 2020b; Hong
et al., 2021). These later works have pre-trained language models on large collections of
unlabeled documents to be able to understand and reason about the content and structure
of business documents. The learned representations have then been adapted for solving
several document analysis tasks such as information extraction but also document-level
classification and visual question answering. Their evaluation have shown that the pre-
trained models considerably outperform the previous state-of-the art models that were
trained from scratch, whether they are evaluated on benchmarks with large-scale (Harley
et al., 2015) or relatively restrained (Guillaume Jaume, 2019; Huang et al., 2019; Park
et al., 2019) annotated sets for training.

However, the study of pre-trained models performance and their comparison to fully
supervised models have not been conducted in even more data-constrained settings that
are often encountered in practical document analysis applications. In this chapter, we thus
aim to quantify to what extent the pre-trained models are sample-efficient when extracting
information from documents. Specifically, we compare LayoutLM, a pre-trained language
model recently introduced by Xu et al. (2020c) for encoding two-dimensional documents,
with two deep models not benefiting from any pre-training.

We here present three main findings that we experimentally validated using the public
SROIE benchmark (Huang et al., 2019) as well as a new in-house dataset of purchase
orders dubbed PO-51k:

• The pre-trained LayoutLM exhibits remarkable few-shot learning capabilities for IE,
reaching more than 80% of its full performance with as few as 32 documents for
fine-tuning.

• This model is significantly more data-efficient than a strong non-pretrained baseline
in the lowest data regimes, hitting the same levels of extraction performance with
around 30 times fewer samples for the real-world dataset.

• Finally, the pre-trained model displays helpful knowledge transfer between IE tasks
since learning beforehand to extract information on the full SROIE dataset improves
the performance of up to 10 % when fine-tuning the model on the PO-51k dataset.

Our results corroborate the data efficiency of pre-trained language models already
observed for classical NLP tasks (Howard and Ruder, 2018; Chen et al., 2020; Brown
et al., 2020) and show that using such models dramatically reduces the supervision efforts
required for achieving a satisfying IE performance.
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5.2 Related works

1D language models As discussed in the section 2.2.2.2, language modeling techniques
have lately been massively employed to learn powerful representations of tokens from
large corpora of unlabeled text. Originally, the pre-trained tokens representations such
as Word2Vec (Mikolov et al., 2013a) or Glove (Pennington et al., 2014) embeddings were
then inserted into task-specific architectures for tackling the problems at hand. Nowadays,
the language models producing the token representations are directly fine-tuned with
minimal alterations to their architecture in order to solve the downstream tasks. Since
the introduction of this neural network in Vaswani et al. (2017), the language models are
de facto based on the Transformer architecture, taking the form of encoder (e.g. BERT
(Devlin et al., 2018)), decoder (e.g. the GPT family (Radford et al., 2018; Brown et al.,
2020)) or encoder-decoder (e.g. T5 (Raffel et al., 2020)) models.

Naturally, as they were reaching compelling performance for a wide range of classical
NLP tasks, the Transformer-based language models have then been leveraged for extract-
ing information from business documents. Following the traditional sequence labeling
approach for solving IE, the first works were adding a final fully-connected classification
layer on top of a pre-trained encoder and then fine-tuned the parameters of the whole
model on the target IE dataset. Nguyen et al. (2019); Zhang et al. (2020b) both showed
that the general-purpose language knowledge encoded in BERT transfers well to the highly
specialized domains of their business documents for extracting information. To unlock
the true potential of language models, Denk and Reisswig (2019) further specified BERT
to the target domain by pursuing its pre-training on a large corpus of unlabeled invoices
before using its specialized token representations on a much smaller IE dataset.

2D language models Although improving the extraction performance, the traditional
language models such as BERT operate on serialized text inputs and thus cannot properly
encode the layout and image modalities of business documents. Starting with LayoutLM
(Xu et al., 2020c), the language models have been extended to process spatially distributed
text from visually rich documents (VRDs), e.g. text blocks and tables.

As illustrated in Figure 5.1, LayoutLM builds upon the BERT or RoBERTa (Liu et al.,
2019b) models. Besides the original 1D positional encodings and textual embeddings, the
input token representations are enhanced with two-dimensional positional encodings to
include the document layout during the pre-training stage. These supplementary posi-
tional encodings relate to the absolute 2D coordinates of the token bounding boxes within
the page. To take into account the variability of page dimensions, each XY coordinate is
normalized to an integer value from 0 to 1,000 to which is associated an embedding vec-
tor learned from scratch. Image embeddings are then added to the pre-trained language
representations by applying the Faster R-CNN model (Ren et al., 2015) whose Regions
of Interest (ROI) correspond to the token bounding boxes.

LayoutLM has been pre-trained over millions of document pages from the IIT-CDIP
Test Collection (Lewis et al., 2006) which gathers a wide range of business document
types. The pre-training is mainly performed with the Masked Visual Language Modeling
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Figure 5.1: LayoutLM encoding the text of a visually rich document. Learned
two-dimensional positional encodings and image embeddings from Faster R-
CNN are integrated into the original BERT architecture to consider the layout
and visual modalities of documents. The image and pre-trained LayoutLM
embeddings work together for solving downstream document analysis tasks.
Image reproduced from Xu et al. (2020c).

(MVLM) loss which naturally expands the MLM objective of BERT that we illustrated
in Figure 2.15. This self-supervised task randomly masks the textual embeddings of 15 %
the document tokens keeping their 1D and 2D positional encodings and asks LayoutLM
to predict what are the masked tokens based on their context.

Once pre-trained, LayoutLM has been fine-tuned on three document understanding
tasks by passing the final representations to a fully-connected layer equipped with a
softmax activation. For document-level classification such as prediction of the document
type in the RVL-CDIP dataset (Harley et al., 2015), the representation of the global
[CLS] token is employed. On the SROIE and FUNSD benchmarks (Huang et al., 2019;
Guillaume Jaume, 2019), the classification is performed at the token level to predict the
information type carried by each token of the document. Xu et al. (2020c) have showed
that LayoutLM outperforms the BERT and RoBERTA baselines on these downstream
tasks, thus demonstrating the need of combining the text, layout and image modalities
for accurately understanding business documents.

The release of LayoutLM has inspired follow-up works aiming to further improve lan-
guage models dedicated to visually rich documents. While the image modality was intro-
duced only at the fine-tuning stage in LayoutLM, later models include visual descriptors
from convolutional layers directly into the token representations used for pre-training
(Pramanik et al., 2020; Hong et al., 2021; Xu et al., 2020b). These recent works also focus
on adding new pre-training objectives complementing the MVLM loss to more effectively
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mix the text, layout and image modalities when learning the document representations. In
a second version of LayoutLM, Xu et al. (2020b) introduce the text-image alignment and
matching tasks. Topic-modeling and document shuffling tasks (Pramanik et al., 2020), a
Sequence Positional Relationship Classification (SPRC) objective (Wei et al., 2020) and
a 2D area-masking strategy (Hong et al., 2021) have also been proposed for pre-training
language models that process VRDs. Yet, there is lacking a proper comparison in or-
der to conclude which of these self-supervised tasks leads to the best pre-trained token
representations and therefore to the highest performance across downstream tasks.

Instead of only relying on the absolute positions supplied in the Transformer input, Xu
et al. (2020b); Powalski et al. (2021) both modify the computation of the self-attention
scores in order to better model local invariance in the document layout. To that end, they
explicitly provide the relative positions of tokens as bias terms added in the self-attention
operations.

In the first Transformer-based language models such as BERT, the self-attention is
computed as described in the original paper from Vaswani et al. (2017), see equation 2.28.
It implies that, in all the self-attention layers, each token attends to all the tokens of the
sequence, resulting in a quadratic complexity over the sequence length. With commonly
available current hardware and model sizes, this formulation typically limits the input
sequence to roughly 512 tokens. It thus prevents Transformers from extracting information
without splitting a long document into multiple independently processed sub-sequences.
To remedy this, Pramanik et al. (2020) resort to the efficient Longformer’s self-attention
(Beltagy et al., 2020) that scales linearly with the sequence length in order to process
long business documents. They also include page index embeddings into the initial token
representations in order to handle multi-page documents.

All the language models dedicated to VRDs that we mentioned so far have been pre-
trained and evaluated on English only documents. This is severely restricting since nearly
40% of the digital documents

All these pre-trained language models have largely surpassed fully supervised models
that do not benefit from pre-training. They have established state-of-the-art performance
on multiple document understanding benchmarks, including common information extrac-
tion datasets (Guillaume Jaume, 2019; Huang et al., 2019; Park et al., 2019). Yet, all the
experiments have been performed with the full training set of the downstream tasks for
fine-tuning, thus not studying the potential of pre-trained models to learn IE from few
annotated documents compared to models without such pre-training. Our contribution
consists here in showing to what extent the usage of pre-trained language models leads
to performance gains on low-resource IE tasks.

5.3 Models

Like most of the works introducing languages models tailored for VRDs, we follow the
sequence labeling approach for extracting information from documents. As detailed in
Chapter 3, the IE models are thus composed of an encoder delivering contextualized
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Figure 5.2: The different architectures used for encoding our documents. From
left to right: Transformer-based LayoutLM (Xu et al., 2020c) with pre-trained
weights, LayoutLM with random initialization and a 2-layer bidirectional
LSTM also randomly initialized.

representations of the tokens and a linear classifier that decodes this sequence of repre-
sentations to extract information. We experiment with three models that only differ by
the choice of their encoder.

5.3.1 Encoders

As shown in Figure 5.2, we use three different networks for encoding the business docu-
ments. We compare a pre-trained encoder with two fully supervised encoders.

5.3.1.1 Pre-trained model

As a pre-trained model, we use LayoutLM (Xu et al., 2020c) because, at the time of our
experiments, this was the only 2D language model whose pre-trained parameters have
been publicly released1. We use its smallest version (LayoutLMBASE) which is built upon
the BERT base-uncased model. It consists of a 12-layer Transformer with a hidden size of
768 and 12 attention heads per layer, resulting in 113 millions weights. Although proposed
in their paper for the fine-tuning stage, we do not leverage the image modality since it
brings marginal improvements for IE. We thus solely rely on the text and its layout for
constructing the final token representations.

1https://github.com/microsoft/unilm/tree/master/layoutlm. Since then, the pre-trained

weights of LayoutLMv2 (Xu et al., 2020b) have also been published in the same GitHub repository.

https://github.com/microsoft/unilm/tree/master/layoutlm
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5.3.1.2 Fully supervised models

For the fully supervised models, we use 2 encoders that are trained from scratch on the
IE tasks. First, we reuse the LayoutLM model but we discard pre-training and randomly
initialize all its parameters. However, as confirmed by our early experiments, this encoder
version performs poorly in low-resource settings due to its massive amount of parameters
to learn from scratch. Secondly, we propose a smaller fully supervised baseline that has
shown success in the past chapters. This is a 2-layer bidirectional LSTM network with a
128 hidden size. We reuse the same sub-word tokenizer as LayoutLM and employ only
textual embeddings for the tokens. The resulting model contains 8.5 millions parameters,
i.e. an order of magnitude fewer parameters than LayoutLM. This makes the BLSTM
more suitable to directly learn the IE task in data-constrained regimes.

Following standard practises, the Transformer and embedding layers are respectively
initialized with a truncated normal and Gaussian distributions. The BLSTM layers resort
to Glorot initialization (Glorot and Bengio, 2010).

5.3.2 Decoder

On top of each of these 3 encoders, we add a dense softmax layer to predict the information
type carried by each document token. Since the fields to extract can be spread over
multiple tokens, the IOBES labeling scheme (Ramshaw and Marcus, 1999) is utilized to
denote the beginning (B), continuation (I) and end (E) of a field value while S classes
stand for single token values (see Figure 2.16). This results in 4 output classes per field,
with the additional class O for tokens not conveying any relevant information. At inference
time, we determine the class of a token by getting its highest probability and reduce the
resulting list of IOBES classes to obtain the field level predictions. If a document has more
than 512 tokens, its text is split in multiple sequences that are independently processed
by the extraction model.

5.4 Experiments

We train and evaluate the IE models on two datasets: the public Scanned Receipts OCR
and Information Extraction (SROIE) benchmark (Huang et al., 2019) and an in-house
dataset of real-world purchase orders dubbed PO-51k.

SROIE The SROIE dataset was covered extensively in the sections 3.3.3 and 4.4 — a
sample is given in Figure 3.6 —. In this chapter, as Xu et al. (2020c), we manually fix
most of the OCR errors appearing in the official test set2. Apart from that, we employ
all the pre and post processing operations described in the previous chapters, including
the business specific heuristic to derive better token labels for the total amount field.

2We provide the corrected dataset at: https://drive.google.com/drive/folders/

1T4E7HLOGhLZmEq2cTzXoYRR365qLfANw

https://drive.google.com/drive/folders/1T4E7HLOGhLZmEq2cTzXoYRR365qLfANw
https://drive.google.com/drive/folders/1T4E7HLOGhLZmEq2cTzXoYRR365qLfANw
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Figure 5.3: A fictive purchase order illustrating the PO-51k task. The goal is
to retrieve the document number, the date and the total amount of each
incoming purchase order.

PO-51k To prove the efficiency of IE models, we also conduct experiments on documents
originating from the Esker’s document automation solution. For convenience reasons,
the dataset is slightly different than the Esker-28k and Esker-47k datasets that were
respectively introduced in the sections 3.3.1 and 3.3.2. Since LayoutLM has been pre-
trained on English only documents, we also restrict to English purchase orders. The
dataset is composed of 51, 000 samples that we split in 40k, 1k and 10k documents for
training, validation and test sets. Unlike SROIE, these three subsets contain different
document issuers, respectively 6200, 870 and 1700 issuers. This induces that for a large
portion of the test set, the layout and content organization of documents have not been
seen at training time.

As illustrated in Figure 5.3, we aim to extract 3 different fields among the PO-51k
purchase orders: the document number, the date and the total amount. The ground truth
for these fields is provided at the word level by the end users of the Esker’s automation
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software, ensuring high-quality annotations. We employ the same methodology as in
SROIE for evaluating the models. This leads to precisions, recalls and F1 scores averaged
over the three targeted fields.

Since LayoutLM is not designed for handling multi-page documents, we only consider
the first page of documents. Because of this limitation, there may be no value to predict
for a target field. In practice, roughly 25% of the documents miss a total amount on the
first page while only 10% of the documents are affected for the two other fields.

5.4.1 Experiment settings

We use the following settings in all our experiments. To evaluate data efficiency, we
restrict the training set to 8, 16, 32, 64, 128, 256 and 600 randomly selected documents
for both datasets. For PO-51k, we additionally study the extraction performance when
training with 2k, 8k and 40k samples. We repeat each experiment 5 times, each time
with different random seeds and thus different selected training documents. We plot the
average µ of the 5 F1 scores as well as the shaded region [µ − σ, µ + σ] for representing
the standard deviation σ. We use a log scale over the number of training documents to
better visualize the lowest-resource regimes.

As Xu et al. (2020c), we use the Adam optimizer with an initial learning rate of 5e-5,
linearly decreasing it to 0 as we reach the maximum number of training steps. For the
BLSTM model, we employ a higher initial learning rate of 5e-3 since the former value was
not giving a good convergence. For each run, we set the maximum number of training
steps to 1k for the pre-trained LayoutLM and 2k for models without pre-training. We
proceed to early stopping on the validation set to choose the model checkpoint to evaluate
or use for a further training run. We employ a batch size of 8 for all runs in SROIE. For
PO-51k, we set the batch size to 16 for all runs, except for 8 and 40k training docs where
we fix it to respectively 8 and 32 in order to see at least once each training document.
Following the results of language models fine-tuning in low-resource settings (Howard and
Ruder, 2018), we update the entire model in all runs.

All training runs are performed on a single 12 Go TITAN XP GPU. We have released
the code for reproducing the experiments on the SROIE dataset3.

5.4.2 Few-shot learning

For both datasets, we first study the performance when the models independently learn
the IE task from few annotated samples. After initializing them from scratch or from
pre-trained weights, we fine-tune the models for variable numbers of training documents.
We report below their results on the whole test set.

5.4.2.1 SROIE

We show F1 scores for the SROIE dataset in the Figure 5.4. We first notice that we get

3https://github.com/clemsage/unilm

https://github.com/clemsage/unilm
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Figure 5.4: Few-shot extraction performance on the SROIE dataset. We report
the test F1 scores as a function of the number of receipts available for training.
We compare the pre-trained LayoutLM (Xu et al., 2020c) against two non pre-
trained models: its randomly initialized version and a BLSTM network.

to an average F1 score of 0.9417 when the pre-trained LayoutLM is fine-tuned on 600
receipts. This is in accordance with the 0.9438 F1 score reported in Xu et al. (2020c)
when considering the 626 documents of the original training set. The model convergence
is really fast, hitting 90% of its full performance with only 32 documents, i.e. a 18 times
smaller training set.

Unsurprisingly, we observe that the pre-trained LayoutLM achieves significantly better
performance than fully supervised models whatever the number of training documents.
Yet, the fewer training documents we make use of, the larger is the difference of F1 score
between these two classes of models. For instance, even if the BLSTM network reaches a
near similar level of performance with 600 documents (0.8874 against 0.9417), it performs
significantly worse than LayoutLM in more data-constrained regimes: the gap of F1 score
attains 0.2612 for 8 training receipts. This is even more noticeable for the randomly
initialized LayoutLM which completely fails to extract the fields when trained with 8
documents. When offered the full training set, the model does not even outperform its
pre-trained counterpart that makes use of only 8 documents.

As expected (Zhang et al., 2021), the performance variance is greater in the lowest
data regimes. Yet, the pre-training effectively reduces the variance, making pre-trained
models less dependent on the choice of fine-tuning documents.
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Figure 5.5: Few-shot extraction performance on the PO-51k dataset. We report
the test F1 scores as a function of the number of documents available for
training. We compare the pre-trained LayoutLM (Xu et al., 2020c) against
two non pre-trained models: its randomly initialized version and a BLSTM
network.

5.4.2.2 PO-51k

We show F1 scores for the PO-51k dataset in the Figure 5.5. We observe similar learning
curves for all models, including the pre-trained model that hits 92% of its maximal per-
formance with only 128 samples, i.e. 312 times fewer training documents. In the lowest
data regimes, the gap between LayoutLM and the fully supervised baselines is even wider
than for SROIE. Indeed, the difference with the BLSTM model is on average of 0.37 F1
score until 32 documents while it was on average of 0.23 points for SROIE. LayoutLM
fine-tuned on only 32 documents performs on par with the BLSTM trained with 600 doc-
uments, i.e. a order of magnitude more annotations. We also note that this real-world
dataset is notoriously more complex than SROIE since a few hundreds documents are
not enough to achieve full convergence of the F1 scores. We finally underline the sample
inefficiency of LayoutLM trained from scratch with a F1 score at 40k training documents
that still lags behind both its pre-trained counterpart and the BLSTM.

On both datasets, we have confirmed that the pre-training stage extensively reduces
the amount of annotations needed to reach specific performance for downstream IE tasks.
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Figure 5.6: Knowledge transfer between IE tasks with a pre-trained model. We
report the F1 scores of the pre-trained LayoutLM on the PO-51k test set. We
either directly fine-tune LayoutLM on the PO-51k documents at our disposal
or fine-tune beforehand on the full SROIE training set.

5.4.3 Intermediate learning

In these experiments, we analyze to what extent learning to extract information from given
documents decreases the annotation efforts for later performing IE on another document
distribution. Specifically, we first fine-tune the pre-trained LayoutLM on the SROIE task
using its full training set and then transfer the resulting model on the PO-51k dataset
and study its few-shot performance. This simulates an actual use case where a practi-
tioner leverages publicly available data to later tackle IE in more challenging industrial
environments.

Since the fields to extract are not identical between the SROIE and PO-51k tasks,
we remove the final classifier layer on top of LayoutLM after the fine-tuning on SROIE.
We replace it with a randomly initialized layer that matches the number of fields in PO-
51k. Even if this imposes to learn again the decoder parameters from scratch between
the two IE tasks, there are only a few thousands compared to the million weights of
the encoder. We therefore hope that LayoutLM can still transfer some knowledge from
SROIE to PO-51k tasks.

5.4.3.1 SROIE to PO-51k

We compare the few-shot performance on PO-51k when having firstly fine-tuned on SROIE
with the results obtained when directly employing the pre-trained LayoutLM weights. We
show the results of these intermediate learning experiences in Figure 5.6.
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We note that the fine-tuning on SROIE considerably improves the extraction for few
PO-51k examples with a boost of 0.065 (+10%) F1 score for 8 documents. For 600
examples or more, the effect of intermediate learning disappears with a performance
indistinguishable from directly fine-tuning on PO-51k. Fine-tuning beforehand on the
SROIE dataset also helps to reduce the variance when it is significant: between 8 to 32
PO-51k documents, the mean standard deviation decreases from 0.031 to 0.017 (-45%)
when resorting to intermediate learning.

Therefore, if the amount of annotated documents at their disposal is limited, we
encourage IE practitioners not to directly fine-tune the pre-trained models on their task
but first use publicly available IE datasets to enhance performance.

5.5 Conclusion

In this chapter, we confirmed that the pre-trained language models are highly beneficial
for extracting information from few annotated documents. On a public dataset as well
as on a more demanding industrial application, such a pre-trained approach consistently
outperformed two fully supervised models that learn from scratch the IE task. We finally
demonstrated that the pre-training brings additional improvements when transferring
knowledge from an IE task to another.

In the future, it would be pertinent to further investigate the potential of language
models for transferring the knowledge learned during its self-supervised and supervised
pre-training stages. Indeed, under the current sequence labeling paradigm, the decoder
still needs to be learned from scratch for each IE task since the fields to extract are usually
specific to a task. This presumably hinders the transferability of extraction knowledge
between the downstream tasks. We hypothesize that resorting to decoders with reusable
weights may help to better leverage the knowledge learned from the pre-training and inter-
mediate IE tasks. We have particularly in mind the question answering format (Gardner
et al., 2019) which has already shown success for zero-shot relation extraction (Levy et al.,
2017), i.e. extraction of relations that were unknown at training time.
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6.1 Summary of contributions

In this manuscript, we covered multiple aspects related to the learning of models extracting
information from business documents.

Learning from document token labels In Chapter 3, we embraced the sequence
labeling approach which is the historical and still predominant approach for training
models to extract information from documents. On both a public dataset and in-house
collections of real-world documents, we taught deep models to classify each token of
the incoming documents according to the information type it carries. We confirmed
that capturing long-range dependencies between the tokens through recurrent connections
is helpful for extracting recurring tabular fields. We also verified that the deep token
classifiers were able to retrieve such complex information structures from document issuers
that were unknown at training time. Third, we demonstrated that combining the textual
and layout modalities in the token features is primordial to extract information from
visually rich documents such as purchase orders and receipts. Particularly, the word level
embeddings were proved to be not powerful enough for representing the textual modality
of business documents and should be completed with finer-grained representations.

Although reaching high automation rates, the token classifiers cannot directly learn
from the filled extraction schemas which are naturally produced by the IE task. In the
general case, where the token level supervision used for learning is not available, it can
be derived from these extraction schemas. Yet, we showed that this labeling process is
prone to errors and that the noise introduced in the token labels may drastically reduce
the extraction performance of sequence labeling approaches.

End-to-end learning To get rid of the dependence on document token level supervi-
sion, we proposed in Chapter 4 a novel IE method that learns directly from the extraction
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schemas. Unlike the prior end-to-end approaches which were only able to extract unstruc-
tured information, our method was designed to process any arbitrarily structured infor-
mation since it learns to output the whole extraction schema in a single pass. To achieve
this, we adapted an attention-based sequence-to-sequence model dubbed Pointer Gener-
ator Network (PGN) in order to alternately copy the document tokens carrying relevant
information and generate the XML tags structuring the output schema. By comparing
the extraction performance of the PGN with the token classifiers studied in Chapter 3, we
showed that end-to-end methods are competitive with sequence labeling approaches and
can greatly outperform them when their token labels must be deduced from the extraction
schemas of the training documents. Yet, we highlighted that end-to-end extraction comes
with his own challenges: besides being slower than token classifiers, such methods have
troubles when there is a lot of information to retrieve within the incoming document.

Learning from fewer samples In Chapter 5, we studied to what extent learning the
extraction task with a pre-trained model reduces the needs for annotated documents.
We leveraged an existing language model whose parameter values had been pre-trained
in an self-supervised manner on a large collection of business documents. When fine-
tuned on an IE task through sequence labeling, the language model was proved to require
very few training documents for attaining close to maximal extraction performance. We
also confirmed that the pre-trained model is significantly more data-efficient than token
classifiers that learn the extraction task from scratch. Finally, we demonstrated that
the few-shot performance for a given IE task can be further improved by fine-tuning
beforehand the language model on another task even if its types of documents and targeted
information differ from the initial task.

6.2 Perspectives for future work

In the following, we highlight some possible future research directions related to the work
performed during this thesis.

Normalization of extracted information In this manuscript, we only introduced
models able to extract information as it appear in the source documents and thus we set
aside the normalization of field values. It would be interesting to adjust our models in
order to handle normalization of extracted information and evaluate them on standardized
IE benchmarks such as the Kleister datasets (Graliński et al., 2020).

For sequence labeling based IE, the normalization should be introduced in the post-
processing stage by adapting the text of field values predicted by the token classifier. It
could be manually performed by explicitly exploiting business specific knowledge. Yet,
some data types like the amounts and dates exhibit a huge variability of formats within
the incoming documents that makes the development of parsing heuristics a tedious task.
In such cases, the normalization could also be learned by training sequence-to-sequence
models operating at the character level to transform each group of labeled document
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tokens to its standardized field value. A Seq2Seq model could be employed for processing
all the targeted fields or only a certain data type as in Palm et al. (2019).

For end-to-end extraction, the sequence-to-sequence models could be applied to the
whole document text as input in order to simultaneously localize the information in the
document and normalize the extracted values. As underlined by Townsend et al. (2021),
a particular attention must be paid to the tokenization of the document text. Naturally,
we could not tokenize the input sequence at the word level like in the Chapter 4 since the
document words could not be directly copied into the extraction schemas. On the other
hand, tokenizing the document at each character would result in significantly longer input
sequences, and thus prohibitive training and inference times and GPU memory usages
for long documents. A sensible solution would be to tokenize the input sequence at an
intermediate level, i.e. into subwords. Yet, Townsend et al. (2021) have recently showed
that the tokenizer inherited from the T5 model (Raffel et al., 2020) produces a sequence
of document subwords that may not align with the the tokenization of the extraction
schema. Such token misalignment makes the normalization task challenging to be learned
in the same time as the extraction and highlights that future work on tokenization is
required beyond directly employing the tokenizers from generic language models. Finally,
we would like to improve the attention-based pointing mechanism in order to copy a whole
span of tokens from the document at a single timestep (Zhou et al., 2018) instead of letting
the decoder successively copy each token like for Hwang et al. (2021) and our PGN. We
assume that it would make the learning signal thicker for the pointing mechanism and thus
would boost the extraction performance of end-to-end models learning from normalized
entries.

Further reduction of supervision efforts In Chapter 5, we investigated pre-trained
language models for learning to extract information from fewer annotated documents.
We have explored a pre-trained encoder — LayoutLM (Xu et al., 2020c) — that we later
fine-tuned for IE tasks following the sequence labeling paradigm. However, if token labels
are unavailable, one could also initialize a sequence-to-sequence model with pre-trained
parameter values in order to more efficiently pursue end-to-end extraction of information.
Encoder-decoder language models specialized for business documents do exist but their
pre-trained weights have not been publicly released yet (Powalski et al., 2021; Hwang et al.,
2021; Townsend et al., 2021). To remedy this, one solution would be to pre-train its own
encoder-decoder, by starting from a language model operating on serialized text, e.g. T5
(Raffel et al., 2020) or BART (Lewis et al., 2020), then inserting 2D positional encodings
into the encoder input to process spatially distributed text and finally continuing the
pre-training on business document collections with one or several of the self-supervised
objectives described in section 5.2 for binding the text and layout modalities.

To further reduce the volume of documents annotated for an IE task, it would also
be interesting to develop more advanced strategies for leveraging the knowledge learned
by the language models during the pre-training stage and through some intermediate
supervised tasks. As evoked in section 5.5, we would particularly like to explore the
question answering format (Gardner et al., 2019). This format would allow a language
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model to learn to learn to extract information before being finally fine-tuned according to
our precise extraction objectives. To that end, extraction instructions such as Extract

the document date from: could be concatenated to the document tokens and act as
questions. The method to answer them would depend to the ground truth at our disposal.
If token level supervision is available, we could use a pre-trained encoder like LayoutLM
and follow the method for adapting BERT to the SQuAD datasets (Devlin et al., 2018).
To achieve this, a generic classifier layer would be added on top of the encoder in order to
predict the probability of each document token to be the start and the end of the answer
spans. If only end-to-end ground truth is available, a text-generation approach involving
a pre-trained encoder-decoder could be employed to answer the questions (Raffel et al.,
2020). As intermediate tasks, we could resort to schema-based extraction tasks, e.g. not
only the SROIE dataset used in section 5.4.3 but also the CORD (Park et al., 2019)
and Kleister (Graliński et al., 2020) benchmarks. We could also leverage open-ended
extraction tasks such as Visual Question Answering on document images (Mathew et al.,
2021) and question-to-answer linking within forms (Guillaume Jaume, 2019).

Extraction from document images In this thesis, we assumed that the text of the
documents is immediately accessible, either because the documents are born-digital or
we had already applied an OCR engine for the scanned documents. For the latter, the
errors introduced by the OCR step might become the dominant source of extraction er-
rors when facing noisy document images. In this case, it might be relevant to discard the
pipeline approach where the text recognition and information extraction steps are decou-
pled. Instead, as shown by recent works (Zhang et al., 2020a; Wang et al., 2021; Klaiman
and Lehne, 2021), the information could be extracted directly from the document images
with fully learnable encoder-decoder architectures. To further improve the end-to-end
extraction, we could also denoise the document images beforehand through unsupervised
methods (Gangeh et al., 2021).
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