N

N

On various graph coloring problems

Dimitri Lajou

» To cite this version:

Dimitri Lajou. On various graph coloring problems. Data Structures and Algorithms [cs.DS]. Univer-
sité de Bordeaux, 2021. English. NNT: 2021BORD0339 . tel-03522406

HAL Id: tel-03522406
https://theses.hal.science/tel-03522406

Submitted on 12 Jan 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-03522406
https://hal.archives-ouvertes.fr

LaBIRI

THESE PRESENTEE
POUR OBTENIR LE GRADE DE

universite
“BORDEAUX

DOCTEUR
DE L'UNIVERSITE DE BORDEAUX

ECOLE DOCTORALE DE MATHEMATIQUES ET

D'INFORMATIQUE
Spécialité : INFORMATIQUE

Par Dimitri LAJOU

Sur divers problemes de coloration de graphes

On various graph coloring problems

Sous la direction de : Hervé HOCQUARD et Eric SOPENA

Membres du jury :

Mme Colette JOHNEN
Mme Aline PARREAU
M. Alexandre PINLOU
M. Sagnik SEN

M. Mariusz WOZNIAK
M. Hervé HOCQUARD
M. Eric SOPENA

Soutenue le 10 décembre 2021

Professeure des universités
Chargée de recherche
Professeur des universités
Assistant professor IIT Dharwad
Professor AGH Krakéw
Maitre de conférences

Professeur des universités

Présidente
Examinatrice
Rapporteur
Examinateur
Rapporteur

Université de Bordeaux
Université Lyon 1
Université de Montpellier

Université de Bordeaux
Université de Bordeaux






Titre : Sur divers problemes de coloration de graphes.
Résumé Dans cette these, nous étudions des problemes de coloration de graphe. Nous
nous intéressons a deux familles de colorations.

La premieére consiste a colorer des graphes, appelés graphes signés, modélisant des
relations sociales. Ceux-ci disposent de deux types d’arétes : les arétes positives pour
représenter 'amitié et les arétes négatives pour 'animosité. Nous pouvons colorer des
graphes signés a travers la notion d’homomorphisme : le nombre chromatique d’un graphe
signé (G, o) est alors le nombre minimum de sommets d'un graphe signé (H, ) tel que
(G, 0) admet un homomorphisme vers (H, 7). Nous étudions la complexité des homomor-
phismes de graphes signés quand la cible est fixée et quand 'entrée peut étre modifiée, et
obtenons des dichotomies P/NP-complet et FPT /W[1]-difficile. Nous obtenons des bornes
supérieures sur le nombre chromatique d’un graphe signé quand le graphe a peu de cy-
cles. Enfin, nous étudions les relations entre les homomorphismes de graphes signés et le
produit Cartésien des graphes signés.

La deuxiéme famille de coloration consiste a colorer les arétes au lieu des sommets
en respectant différents criteres. Nous étudions quatre types de colorations d’arétes : la
coloration d’arétes « packing », la coloration d’arétes injective, la coloration AVD et les
1-2-3-étiquetages. La coloration d’arétes « packing » est une forme de coloration propre
d’arétes ou chaque couleur a ses propres regles de conflits, par exemple, la couleur 1
pourrait obéir aux regles de la coloration propre d’arétes tandis que la couleur 2 obéirait
aux regles de la coloration forte d’arétes. Nous étudions cette forme de coloration sur
les graphes subcubiques en donnant des bornes supérieures sur le nombre de couleurs
nécessaires pour colorer ces graphes. Une coloration d’arétes injective est une coloration
d’arétes telle que pour chaque chemin de longueur 3, les deux arétes aux extrémités du
chemin n’ont pas la méme couleur. Nous déterminons la complexité de la coloration
d’arétes injective sur plusieurs classes de graphes. Pour les colorations AVD, c’est-a-dire
les colorations propres d’arétes ou les sommets adjacents sont incidents a des ensembles
de couleurs différents, nous obtenons des bornes supérieures sur le nombre de couleurs
requises pour colorer le graphe quand le degré maximum du graphe est significativement
plus grand que son degré moyen maximum, ou quand le graphe est planaire et a un
degré maximum supérieur ou égal a 12. Finalement, nous prouvons la 1-2-3 Conjecture
multiplicative : pour tout graphe connexe (non réduit a une aréte), on peut colorer ses
arétes avec les couleurs 1, 2 et 3 de telle maniere que la coloration (de sommets) obtenue
en associant a un sommet le produit des couleurs de ses arétes incidentes est propre.
Mots-clés graphe, coloration, graphe signé, homomorphisme, coloration d’arétes.

Title: On various graph coloring problems.
Abstract In this thesis, we study some graph coloring problems. We are interested in
two families of colorings.

The first one consists in coloring graphs, called signed graphs, modeling social links.
These signed graphs dispose of two types of edges: positive edges to represent friendship
and negative edges for animosity. Coloring signed graphs is done through the notion of
homomorphism: the chromatic number of a signed graph (G, o) is the smallest order of a
signed graph (H, ) to which (G, ¢) admits a homomorphism. We study the complexity
of homomorphisms of signed graphs when the target graph is fixed and when the input
can be modified, giving P/NP-complete dichotomies and FPT /W[1]-hard dichotomies. We
also present bounds on the chromatic number of signed graphs when the input graph has
few cycles. Finally, we study the relationship between homomorphisms of signed graphs
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and the Cartesian product of signed graphs.

The second family of colorings consists in coloring edges, instead of vertices, accord-
ing to some constraints. We study four kinds of edge-colorings notions: packing edge-
colorings, injective edge-colorings, AVD colorings and 1-2-3-labellings. Packing edge-
coloring is a form of proper edge-coloring where each color has its own conflict rule, for
example, color 1 may behave according to the rules of proper edge-colorings while color 2
behave according to the rules of strong edge-colorings. We study packing edge-coloring
on subcubic graphs and provide bounds on the number of colors necessary to color the
graphs. An injective edge-coloring is an edge-coloring where for any path of length 3,
the two non-internal edges of the path receive different colors. We determine the com-
plexity of injective edge-coloring for some classes of graphs. For AVD colorings, i.e. a
proper edge-coloring where adjacent vertices are incident with different sets of colors, we
obtain bounds on the number of colors required to color the graph when the graph has
its maximum degree significantly greater than its maximum average degree and when the
graph is planar and has maximum degree at least 12. Finally, we prove the Multiplica-
tive 1-2-3 Conjecture, i.e. that every connected graph (which is not just an edge) can be
edge-labelled with labels 1, 2 and 3 so that the coloring of GG, obtained by associating
with each vertex the product of the labels on edges incident with u, is proper.
Keywords graph, coloring, signed graph, homomorphism, edge-coloring.
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Introduction (en francais)

Introduction (en frangais)

Le but de cette these est d’étudier certains problemes de coloration de graphe. Un graphe
(fini) est un objet mathématique composé d’un nombre fini de sommets et d'un nombre
fini d’arétes reliant des paires de sommets. Les graphes sont un outil d’abstraction utilisé
dans plusieurs domaines, on pourra par exemple citer : les réseaux routiers, les réseaux
de télécommunications, I'analyse de communautés, les bases de données, I'analyse ADN...

L’une des applications des graphes se trouve en psychologie sociale. Cette derniére
étudie la dynamique des relations entre diverses entités. Par exemple, les graphes peuvent
étre utilisés pour décrire les relations entre les pays au cours de la premiere guerre mondiale
(voir [7]). Pour cela, on peut utiliser un type de graphe avec deux sortes d’arétes, celles-ci
étant soit positives soit négatives, les arétes positives représentant ’amitié et les arétes
négatives représentant ’animosité. On appelle un tel graphe un graphe signé et on le note
généralement sous la forme d’un couple (G, o). Les graphes signés ont été introduits par
Harary en 1953 [92].

Supposons que nous avons trois pays (ou personnes) A, B et C, chacun ayant des
relations avec les deux autres. Certains choix pour les relations forment des situations
stables alors que d’autres sont instables. Cela se généralise bien entendu avec plus de trois
pays (voir [7]). L’étude de ces relations nous permet de déterminer si une configuration est
stable ou instable. Les quatre situations possibles entre ces trois pays sont représentées
sur la Figure 1.

(b) (d)

Figure 1: Les quatre relations possibles entre A, B et C. Les arétes positives sont dessinées
avec des traits pleins bleus et les arétes négatives sont dessinées avec des pointillés rouges.

Analysons cela en détail.

o Dans le premier cas, les trois pays sont alliés (voir Figure 1(a)). Dans ce cas, la
situation est stable. Cela ne signifie pas que les relations entre les pays ne peuvent
pas se détériorer mais qu'une détérioration des relations proviendrait de facteurs
extérieurs et ne saurait étre due a des instabilités du graphe. Il y a beaucoup
d’exemples de telles situations stables. On peut par exemple évoquer 1'Union Eu-
ropéenne ou chaque pays membre est allié aux autres.

o Dans le deuxieéme cas, deux pays, disons A et C', sont alliés contre le troisieme (voir
Figure 1(b)). Cette situation est elle aussi stable. C’est I’exemple classique du bloc
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Introduction (en frangais)

contre bloc en géopolitique. L’alliance entre le Rohan et le Gondor contre les armées
de Sauron dans Le Seigneur des anneaux : Le Retour du roi en est un exemple.

o Le troisieme cas se déroule quand deux pays, disons A et ', sont ennemis alors que
le troisieme, B, est allié avec chacun d’entre eux (voir Figure 1(c)). Nous avons ici
notre premiere situation instable : B est forcé de choisir entre son alliance avec A
et son alliance avec C. Il est aussi possible que A et C se réconcilient grace a leur
ami commun. Dans tous les cas, la situation est condamnée a changer a cause des
relations entre A, B et C'. Par exemple, dans Star Wars, épisode III : La Revanche
des Sith, Anakin a été forcé de choisir entre Palpatine et 'ordre des Jedi.

o Enfin, le quatriéme cas se produit quand les trois pays sont ennemis (voir Fig-
ure 1(d)). Cette situation est elle aussi instable. En effet, comme dit le dicton :
« 'ennemi de mon ennemi est mon ami ». Il est alors tres probable que deux des
trois pays s’allient contre le troisieme. Par exemple, dans Game of Thrones, la
Garde de Nuit, le Peuple libre et les Marcheurs Blancs étaient en guerre les uns
contre les autres jusqu’a ce que les deux premiers s’allient contre le troisieme pour
survivre.

Ces exemples, présentés avec trois pays, peuvent se généraliser a un nombre arbitraire
d’intervenants. On peut aussi vouloir considérer le cas ou deux pays n’ont pas de relations
(bonnes ou mauvaises). Pour représenter ce cas, on préfére n’avoir aucune aréte entre A
et B dans le graphe signé.

La notion de « stabilité », formalisée par Harary [92] sous le nom de « balance »
(équilibre), nous permet d’étudier les graphes signés. Il est intéressant de pouvoir com-
parer les graphes signés, c’est-a-dire vérifier si deux graphes signés présentent les méme
structures stables et instables. De la découle la notion d’homomorphisme de graphes
signés. Informellement, il y a un homomorphisme entre deux graphes signés (G, o) et
(H,m) si on peut envoyer les cycles stables (respectivement instables) de (G, o) vers des
cycles stables (respectivement instables) de (H, ). Appliquer des homomorphismes nous
permet de catégoriser les sommets, c’est-a-dire regrouper les sommets d’un graphe signé
qui se comportent d’'une maniere similaire.

Les homomorphismes de graphes signés (et de certaines notions dérivées) est 1'objet
d’étude de la premiere partie de cette these.

La seconde partie de cette these est dédiée aux colorations d’arétes. L’objectif est de
colorer les arétes d'un graphe de telle maniere que deux arétes adjacentes ne recoivent
pas la méme couleur. Ce type de coloration prend son origine dans des problemes de
télécommunications : les sommets représentent des tours radio, les arétes des canaux de
communication entre les tours et les couleurs représentent les fréquences utilisées pour
communiquer. Dans ce contexte, les contraintes sur les couleurs des arétes adjacentes
peuvent étre interprétées comme une condition nécessaire pour éviter les interférences
entre deux canaux de communication autour d’une tour radio. Le célebre Théoréme de
Vizing [184] nous assure que A(G) + 1 couleurs suffisent pour colorer n’importe quel
graphe G, ou A(G) représente le degré maximum du graphe G (i.e. le maximum, pris sur
tous les sommets v de G, du nombre d’arétes incidentes a u).

Nous sommes intéressé par plusieurs généralisations de ce probleme. Chaque chapitre
de cette seconde partie est consacré a une notion particuliere de coloration d’arétes. Ces
généralisations sont de deux types : soit les conditions interdisant que deux arétes aient
la méme couleur sont modifiées; soit on souhaite que la coloration d’arétes nous apporte
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Introduction (en francais)

des propriétés plus fortes. Le premier type de généralisation est plutot simple a décrire :
on augmente juste le nombre de contraintes entre les couleurs d’arétes. Par exemple, si on
impose que deux arétes a distance au plus 2 aient des couleurs différentes alors on parle
de coloration forte d’arétes. Dans la deuxieme famille de colorations que nous étudions,
chaque sommet du graphe est associé a une couleur calculée a partir des couleurs de ses
arétes incidentes. Le but est de colorer les arétes de telle maniere que la coloration des
sommets soit propre (i.e. les sommets adjacents regoivent des couleurs différentes). Dans
ce cas, on parle de colorations distinguantes.

Organisation du manuscrit

Le chapitre 1 contient des pré-requis. La plupart des concepts introduits dans ce chapitre
sont nécessaires a la compréhension de cette these méme s’ils n’en sont pas les objets
d’étude. En particulier, plusieurs définitions classiques de théorie des graphes et de com-
plexité y sont présentées.

La premiere partie de cette these « Partie I: Graphes signés » compte quatre chapitres.

Le Chapitre 2 présente les graphes signés et formalise plusieurs notions qui leur sont
associées. La plupart des définitions sur les graphes signés sont données dans ce chapitre.

Dans le Chapitre 3, nous étudions la complexité et la complexité paramétrée de cer-
tains problemes concernant les homomorphismes de graphes signés. En particulier, nous
répondons a des questions du type : « Combien de sommets/arétes doit-on enlever a
(G, o) pour qu’il admette un homomorphisme vers (H,7) ». Nous nous intéressons tout
particulierement aux cas ou le graphe signé (H, ) est petit et fixé. Dans ces cas-la,
admettre un homomorphisme vers (H, ) peut souvent étre traduit en une propriété sur
le graphe signé donné en entrée. De plus, nous considérons ces questions pour deux
types d’homomorphismes de graphes signés différents et nous prouvons des dichotomies
de complexité dans chacun des cas.

Le Chapitre 4 est consacré a 1’étude du lien entre le nombre chromatique d’un graphe
signé et son nombre de cycles a travers un parametre appelé le nombre cyclomatique du
graphe. Le nombre cyclomatique d’'un graphe G est égal au nombre d’arétes qu’il faut
retirer a G pour enlever tous les cycles du graphe. Nous donnons des bornes supérieures
sur diverses notions de nombres chromatiques d’un graphe signé (en incluant des versions
liste), qui sont linéaires en le nombre cyclomatique du graphe.

Dans le Chapitre 5, nous étudions I'impact du produit Cartésien sur les graphes signés.
Le produit Cartésien des graphes signés est une opération qui prend en entrée deux (ou
plusieurs) graphes signés et en crée un nouveau qui est le produit de chacun des facteurs
donnés en entrée. Comme n’importe quel produit, nous pouvons nous intéresser a ses
propriétés algébriques, et en particulier nous pouvons nous demander si I'on peut écrire
n’importe quel graphe signé sous la forme d’un unique produit de facteurs premiers (i.e.
des facteurs qui ne sont pas eux-mémes le produit de graphes signés plus petits). Nous
démontrons non seulement un théoreme de factorisation unique en facteurs premiers mais
nous donnons aussi un algorithme permettant de trouver cette factorisation en temps
linéaire. Nous étudions aussi les liens entre le produit Cartésien et le nombre chromatique
des graphes signés. Nous calculons le nombre chromatique de certains produits et nous
en déduisons des bornes supérieures sur le nombre chromatique d’'un produit en fonction
des nombres chromatiques de ses facteurs.
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Introduction (en frangais)

La deuxieme partie de cette these « Partie II: Coloration d’aréte avec contraintes »
compte cing chapitres.

Le premier chapitre, Chapitre 6, contient une breve introduction aux différentes no-
tions de coloration d’arétes qui sont étudiées dans les chapitres suivants.

Dans le Chapitre 7, nous étudions un compromis entre la coloration propre d’arétes
et la coloration forte d’arétes sur les graphes subcubiques. Etant donné un entier ¢,
nous donnons une borne supérieure sur le nombre de couleurs requis pour avoir une
coloration propre d’arétes d’un graphe subcubique telle que deux arétes a distance au
plus 2 ayant la méme couleur soient colorées par 'une des ¢t premieres couleurs. Les ¢
premieres couleurs fonctionnent selon les régles de la coloration propre d’arétes alors que
les autres fonctionnent selon les regles de la coloration forte d’arétes.

Le Chapitre 8 présente notre étude de la complexité de la coloration injective d’arétes
pour diverses classes de graphes. Une coloration injective d’arétes est une coloration
d’arétes ou pour chaque chemin wvwz du graphe, les arétes uv et wx ne regoivent pas la
méme couleur. Nous montrons que calculer le nombre minimum de couleurs nécessaires
pour avoir une coloration injective d’arétes est un probleme NP-complet quand le nombre
de couleurs est petit (3 ou 4) sur des classes de graphes peu denses. Nous montrons aussi

que O(y/A(G)) couleurs suffisent pour que le probleme soit NP-complet. Nous donnons
aussi un algorithme FPT pour tester si ¢ couleurs suffisent ou non pour colorer un graphe,
paramétré par la largeur d’arborescence du graphe.

Dans le Chapitre 9, nous prouvons que A(G) + 1 couleurs suffisent pour avoir une
coloration AVD d’un graphe sous différentes conditions. Une coloration AVD est une
coloration propre d’arétes telle que deux sommets adjacents n’aient pas le méme ensemble
de couleurs sur leurs arétes incidentes. Nous prouvons ce résultat quand le degré maximum
du graphe est significativement plus grand que son degré moyen maximum, ou quand le
graphe est planaire et a un degré maximum supérieur ou égal a 12. Ces deux résultats
reposent sur deux arguments clés : un algorithme de recoloration qui permet d’enlever
des petits sommets voisins et un argument de dénombrement qui permet d’enlever les
sommets avec beaucoup de petits voisins.

Finalement, dans le Chapitre 10, nous prouvons la 1-2-3 Conjecture multiplicative :
pour tout graphe connexe (non réduit & une aréte), on peut colorer ses arétes avec les
couleurs 1, 2 et 3 de telle maniere que la coloration (de sommets) obtenue en associant
a un sommet le produit des couleurs de ses arétes incidentes est propre. Nous proposons
aussi une conjecture plus faible dans le cas ou nous n’avons que deux couleurs pour les
arétes. Enfin, nous étudions la version liste de ce probleme dans le cas général ou pour
certaines classes de graphes particulieres.
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Introduction (in English)

The goal of this thesis is to study some graph coloring problems. A graph is a mathematical
structure composed of a finite number of vertices and a finite number of edges joining pairs
of vertices. Graphs are an abstract representation which can be used in diverse domains,
for example: road networks, communication networks, communities analysis, databases,
DNA analysis, etc.

An interesting use of graphs is in the domain of social psychology which studies the
dynamic of relationships between entities. For example, in [7], they use graphs to describe
the relationships between countries involved in World War 1. For this they use a graph
model where edges can be of two types: positive and negative. Positive edges represent
friendship while negative edges represent enmity. Such a graph is called a signed graph
and is generally noted as an ordered pair (G, o). Signed graphs were introduced by Harary
in [92].

The main ideas behind this concept are as follows. Suppose that you have three
countries (or persons) A, B and C, having relationships with each other. Then some
situations can be characterized as stable while others can be characterized as unstable.
This of course generalizes with more than three countries (see [7]). Figure 2 represents
the four possible situations between our three countries.

(d)

Figure 2: The four possible relationship situations between A, B and C. Positive edges are
drawn with full blue lines while negative edges are drawn with dashed red lines.

Let us go into more details.

» The first possible case is when the three countries are all friends (See Figure 2(a)).
In this case, the situation is stable. This does not imply that it cannot change
but that a change in the relationships does not originate from instabilities in the
graph. Such examples of this stable relationship are numerous, for example, one can
consider the European Union where every member country is allied with the others.

o The second possible case is when the two countries, say A and C| are allied against
the third one (See Figure 2(b)). In this case, the situation is also stable. This is
the classical block versus block situation in geopolitics. For example, consider the
alliance between the Rohan and the Gondor against the armies of Sauron in The
Lord of the Rings: The Return of the King.
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e The third possible case is when two countries, say A and C', are enemies while
the third one, B, is friend with both of them (See Figure 2(c)). This situation is
unstable: B is forced to choose between is friendship with A and his friendship with
C. Note that it is also possible that A and C reconciliate through their common
friend. In all cases, this situation is bound to change because of the relationships
between A, B and C. For example, in Star Wars: Episode III — Revenge of the Sith,
Anakin had to choose between Palpatine and the Jedi Order.

o The fourth possible case is when all three countries are enemies (See Figure 2(d)).
This situation is also unstable, as the saying goes: “the enemy of my enemy is my
friend”. Hence it is likely that two of the three participants will form an alliance
against the third. For example, in Game of Thrones and in A Song of Ice and Fire,
the Night’s Watch, the Free Folk and the White Walkers were in a three way war
until the two former decided to ally themselves against the latter one in order to
survive.

These examples are presented with only three vertices but can be generalized to a
greater number of vertices. More generally, it is also possible to consider that A and B
do not have a relationship of any kind: in this case, no edge is drawn between A and B
on the signed graph.

The notion of “stability” formalized by Harary [92] under the name of balanced allows
us to study signed graphs. It is interesting to be able to compare signed graphs, to see
whether two signed graphs have similar stable and unstable situations. From this follows
the notion of homomorphisms. Informally, there is a homomorphism between two signed
graphs (G,o) and (H, ) if we can transfer stable (resp. unstable) cycles of (G,o) to
stable (resp. unstable) cycles of (H, 7). Applying homomorphisms is also a way to do
some clustering on the vertices of a signed graph, that is to say to find vertices which
behave in a similar fashion.

The study of homomorphisms of signed graphs (and of some derived notions) is the
focus of the first part of this thesis.

The second part of this thesis is devoted to edge-coloring of graphs. The goal here
is quite simple to describe. We want to color each edge of the graph so that no two
adjacent edges receive the same color. This problem takes root in telecommunications:
the vertices are radio towers, edges are communication channels between the towers and
the colors represent the frequencies used to communicate. In this context, the constraint
on the colors can be interpreted as a necessary condition to avoid interference between
two communication channels around a tower. A famous theorem by Vizing [184] shows
that A(G)+ 1 colors are sufficient to properly edge-color any graph G, where A(G) is the
maximum degree of the graph G (i.e. the maximum, taken over every vertex u of G, of
the number of edges incident with w).

We are interested into several generalizations of this problem. Each chapter of the
second part is devoted to a particular notion of edge-coloring. These generalizations are
of two main types: either we change the condition that forbids two edges to be assigned the
same color; or we want to obtain stronger properties on the edge-coloring. The first type
of generalization is quite simple to describe: we just increase the number of constraints on
the edges. For example, if any two edges at distance 2 must receive different colors, then
we say our coloring is a strong edge-coloring of GG. In the second family of generalizations,
each vertex is associated with a color computed from the edge-colors of its incident edges.
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The goal is to make this vertex coloring proper (i.e. no two adjacent vertices receive the
same color). We talk about distinguishing colorings.

Layout of the manuscript

Chapter 1 contains some prerequisite notions. Most concepts introduced in this chapter
are not the focal point of this thesis but are necessary to its understanding. In particular,
many classical graph and complexity definitions are introduced in this chapter.

The first part “Part I: Signed graphs” comprises four chapters.

Chapter 2 presents signed graphs in a more complete and formal setting. Most defi-
nitions on signed graphs are given in this chapter.

Chapter 3 contains our study of the complexity and parameterized complexity of some
problems concerning homomorphisms of signed graphs. In particular we answer questions
such as: “how many vertices/edges do we need to remove from (G, o) so that it admits a
homomorphism to (H,7)”. We mainly focuses on cases where the signed graph (H,) is
fixed and is quite small. In these cases, admitting a homomorphism to (H, 7) can often be
translated to a simple property on the input signed graph. Moreover, we consider these
questions for two types of homomorphisms of signed graphs and prove dichotomies for
the complexity in each considered case.

In Chapter 4, we study the relationship between the chromatic number of a signed
graph and its number of cycles through a parameter called the cyclomatic number of a
graph. The cyclomatic number of a graph G is simply the number of edges that need to
be removed from G so that no cycle remains in G. We give upper bounds on multiple
notions of the chromatic number of a signed graph (including some list versions), which
are linear in the cyclomatic number of the signed graph.

Chapter 5 contains our study of the impact of the Cartesian product on signed graphs.
The Cartesian product of signed graphs is a product operation: it takes two (or more)
signed graphs and produce a new signed graph which is the product of each of the factors.
Like any product, we can question its algebraic behavior, and in particular whether we
can write any signed graph as a product of prime signed graphs (in the sense that these
prime signed graphs cannot be written as the product of smaller signed graphs). We
not only provide a unique prime factorization theorem for signed graphs but also give an
algorithm finding a prime decomposition in linear time. We also study the relationship
between the Cartesian product and the chromatic number of signed graphs. We study the
chromatic number of some products and derive upper bounds on the chromatic number
of a product depending on the chromatic numbers of each of its factors.

The second part “Part II: Edge-coloring with constraints” comprises five chapters.

Chapter 6 gives a brief introduction to the different notions of edge-coloring that are
studied in the following chapters.

In Chapter 7, we study a compromise between two types of edge-coloring on subcubic
graphs. Given a number ¢, we give an upper bound on the number of colors required
to properly edge-color a subcubic graph so that, except for the first ¢ colors, any pair of
edges with the same color are at distance at least 3 in the graph. This coloring notion
is a mixture of proper edge-coloring and strong edge-coloring. Indeed, the first ¢ colors
behave according to the rules of proper edge-coloring while the remaining colors behave
according to the rules of strong edge-coloring.
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Chapter 8 presents our study of the complexity of injective edge-coloring on various
classes of graphs. An injective edge-coloring is an edge-coloring where for any path uvwzx
of the graph, the edges uv and wx do not have the same color. We show NP-completeness
when the number of colors is small (3 or 4) on some sparse classes of graph. We also

show that O(y/A(G)) colors are sufficient for the problem to be NP-complete. We also
provide an FPT algorithm for testing whether ¢ colors are sufficient or not for some graph,
parameterized by the treewidth of the input graph.

In Chapter 9, we prove that A(G) + 1 colors are sufficient in order to have an adja-
cent vertex distinguishing (AVD) coloring a graph under sufficient conditions. An AVD
coloring is a proper edge-coloring for which no two adjacent vertices have the same set of
colors on their incident edges. We prove this result when the maximum degree A(G) of
a graph is significantly greater than its maximum average degree and when the graph is
planar and has maximum degree at least 12. Both results rely on two clever arguments:
a recoloring algorithm which allows us to remove small adjacent vertices and a counting
argument which allows to remove vertices with many small neighbors.

Finally in Chapter 10, we prove the Multiplicative 1-2-3 Conjecture, i.e. that every
connected graph (which is not just an edge) can be edge-colored with colors 1, 2 and 3 so
that the coloring of GG, obtained by associating with each vertex the product of the colors
on edges incident with u, is proper. We also propose a weaker conjecture when only the
labels 1 and 2 are available. Finally, we study the list version of the problem for general
graphs and for particular classes of graphs.
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Chapter 1

Preliminaries

This chapter presents general concepts that are necessary to the understanding of this
thesis.

In Section 1.1, we present the core concept of this thesis: graphs. We introduce
notation and present the basic definitions of Graph Theory. We also present some famous
graph parameters and important graph classes.

In Section 1.2, we present the notion of graph coloring. We first focus on vertex
coloring and its links with the notion of homomorphism. We then present other various
ways of coloring a graph.

In Section 1.3, we introduce the fundamental notions of Complexity Theory required
to understand this thesis. We most notably present the notion of NP-completeness and
the notion of parameterized complexity.

Finally, in Section 1.4, we recall some classical algebra concepts. Among the four, this
section is the least central in this thesis but it might shed some light on some particular
sections of the following chapters.
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1.1 Graphs: definitions, notation

We generally follow terminology and notation of [191].

An undirected graph G is a triplet (V(G), E(G), ) where V(G) and E(G) are two
disjoint sets, the set of vertices and the set of edges respectively. Here ¢ is an incidence
relation which associate to each edge two incident vertices called its endpoints. In this
thesis, the term “graph” refers to an undirected graph.

A loop in a graph G is an edge whose endpoints are equal. We often consider graphs
without loops, called loopless graphs. If there are edges with the same endpoints v and v
in a graph G, we say that uv is a multi-edge or that the edges between v and v are multiple
edges. The multiplicity of a multi-edge uv is the number of edges incident with both
and v. An undirected graph is simple if it does not have loops nor multiple edges. To
avoid confusion, we use the term multi-graph for a graph which can have multiple edges.
Note that most graphs in this thesis are simple.

For simplicity, we often “forget” the incidence relation of a graph when we have no
multiple edges. An edge e incident with u and v is treated as a pair {u, v}, denoted uv
for concision, where u and v are two vertices of G. An undirected graph is then noted
(V(GQ), E(G)) where E(G) C V(G)?. Note that we often abuse the notation (V(G), E(G))
to also refer to multi-graphs, in this case, the incidence relation is implicit.

The order of G is |V (G)| and its size is |[E(G)|. A graph with no edges is an empty
graph. The graph with no vertices nor edges is the null graph G.

Two vertices u and v of a graph G are adjacent when wv is an edge of G. Two
edges e and €’ of a graph G are adjacent when e and e’ have a common endpoint. The
neighborhood Ng(u) of a vertex w in the graph G is the set of vertices adjacent to u in G.
When the graph G is clear from the context, we note N(u) for the neighborhood of u
in GG. A vertex with no neighbors is an isolated vertex.

In a loopless graph, the degree of a vertex u in G, denoted dg(u) or simply d(u), is
the number of edges incident with u. If the graph is simple then the degree of u is also
the number of neighbors of u, [N (u)|. When loops are allowed, the degree of a vertex u is
the number of times u is an endpoint of an edge of G. In other words, a loop count twice
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for the degree of a vertex. A k-vertex (resp. k™ -vertex , resp. kT -vertex) of G is a vertex
of degree k (resp. at most k, resp. at least k). A k-neighbor (resp. k~-neighbor , resp.
kT -neighbor) of a vertex u is a k-vertex (resp. k~-vertex , resp. kT-vertex) belonging

to N(u).

Let us see an example. Let P be the Petersen graph drawn in Figure 1.1. The graph P
has order 10 and size 15. The neighborhood of the vertex ay is the set {bg, as,as}. In this
graph all vertices have degree 3.

Figure 1.1: A simple graph: the Petersen graph.

An isomorphism from G to H is a bijection ¢ from V(G) to V(H) such that for every
vertices z and y of G, zy € E(G) if and only if p(z)p(y) € E(H). In this case, we
note G = H. An automorphism of G is an isomorphism from G to G. In general, a graph
can have multiple automorphisms. In the rest of this thesis, we consider graphs up to
isomorphism (see also Section 1.4.2).

1.1.1 Other types of graphs

There are multiple ways to define a graph. These different varieties of graphs are all
dependant on the definition of E(G).

As mentioned before, depending on our definition of the set of edges, we can allow
loops and/or multiple edges in our graphs. See Figure 1.2(a) for an example of graph
with loops and multiple edges.

(a) A graph with loops and (b) A directed graph. (c) An oriented graph.
multiple edges.

Figure 1.2: Different varieties of graphs.

Another type of graphs is the notion of directed graphs, where E(G) is replaced
by A(G), the set of arcs. The set A(G) is the set of ordered pairs (instead of pairs) (u,v)

On various graph coloring problems page 19



1.1. Graphs: definitions, notation

where u and v are two vertices. An arc (u,v) can also be noted wb. An oriented graph is
a simple directed graph G with the extra condition that if w6 € A(G) then vt ¢ A(G). In
other terms an oriented graph is a directed graph where each pair of vertices can have at
most one arc between them. Oriented graphs can be obtained from a simple undirected
graph by choosing an orientation for each edge. See Figure 1.2(b) and Figure 1.2(c) for
examples of such graphs. Of course it is possible to combine the notion of directed graphs
with the notion of loops and multi-edges. For a directed graph G, the indegree of a ver-
tex u is the number of arcs of the form o7 in A(G), and the outdegree of a vertex u is the
number of arcs of the form 6 in A(G).

A mized graph G is a triplet (V(G), E(G), A(G)) where V(G) is the set of vertices
of G, E(G) is the set of edges of G and A(G) is the set of arcs of G. Informally, a mixed
graph is a graph with edges and arcs. One can consider such graphs to be simple, in which
case they have no loops and for every two vertices u and v of GG, G does not contain both
the edge uv and the arc ud.
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(a) A 3-edge-colored graph. (b) A (2,2)-mixed graph.

Figure 1.3: Graphs with multiple edge/arc types.

A k-edge-colored graph is a graph G where the set of edges is partitioned into k
sets E1(G), ..., Ex(G). We note such a graph (V(G), E1(G), ..., Ex(G)). The set E;(G)
is the set of edges colored i in G. See Figure 1.3(a) for an example of a 3-edge-colored
graph. Note that we will mainly work with 2-edge-colored graphs in this thesis. By
default, the two colors used in a 2-edge-colored graph will be the color blue and the color
red.

A (m,n)-mized graph is a graph G with m arc types and n edge types. We note such
a graph (V(G), A1(G), ..., An(G), E1(G), ..., E,(G)). The set E;(G) is the set of edges
colored ¢ in G and the set A;(G) is the set of arcs colored j in G. See Figure 1.3(b)
for an example of a (2,2)-mixed graph. Note that a (0, 1)-mixed graph is an undirected
graph, a (1,0)-mixed graph is a directed graph, a (1,1)-mixed graph is a mixed graph
and a (0, k)-mixed graph is a k-edge-colored graph.

1.1.2 Subgraphs and some important subgraphs

In this section, we present the notion of subgraph.

Definition 1.1 (Subgraphs). Let H and G be two graphs. We say that H is a subgraph
of G if and only if V(H) C V(G) and E(H) C E(G). Let X be a subset of vertices of G,
the induced subgraph G[X| of G is the subgraph of G on vertex set X and where, for every
two vertices u and v of X, uv € E(G[X]) if and only if wv € E(G). If H is a subgraph
of G and H # G, then H is a proper subgraph of G.
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The notion of subgraph is important in Graph Theory as it formalizes the notion of
“containing a particular motif”. It also allows us to focus on particular parts of a graph.
See Figure 1.4 for some examples of subgraphs.

(a) A graph G. (b) A (non-induced) subgraph  (c¢) An induced subgraph of G.
of G.

Figure 1.4: A graph (a), and one of its non-induced subgraphs (b) and one of its induced
subgraphs (c).

Note that we can create subgraphs by removing edges and vertices from a graph G.

Definition 1.2 (Deleting vertices and edges). Let G be a graph and S, (resp. S.) be a
subset of vertices (resp. edges) of G. The graph G — S, is the subgraph of G obtained
from G by removing the vertices of .S, and the edges incident with any vertex of S,. The
graph G — S, is the subgraph of G obtained from G by removing the edges of S..

Let us see some important subgraphs that a graph GG can contain.

Definition 1.3 (Complete graph, clique, independent set). The complete graph K, is the
graph of order p such that for every pair of distinct vertices u and v of K, uv is an edge
of K,. If H is a subgraph of G isomorphic to K, then we say that H is clique (of order p)
of G. An independent set of order p in a graph G is a set of p vertices which are pairwise
non-adjacent.

In some sense, a clique is the “opposite” of an independent set, the former is a subgraph
with all possible edges while the later is a subgraph with no edges. This idea can be
formalized with the notion of complement graph.

Definition 1.4 (Complement graph). Let G be a graph. The complement of G is the
graph, denoted G, defined by V(G) = V(G) and for any two distinct vertices u and v
of G, wv € E(G) if and only if uv ¢ E(G). Note that the complement of G is the graph G
itself.

Formally, G has an independent set of order p if and only if G has a clique of order p.
These two notions allow us to define two graph parameters.

Definition 1.5 (clique number, independent number). The cligue number of G, de-
noted w(G), is the order of the largest clique of G. The independence number of G,
denoted «(G), is the order of the largest independent set of G.

Note that a(G) = w(G) for every graph G. See Figure 1.5 for some examples.
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(a) A graph G. (b) Its complementary G. (c) A complete graph of or-
der 4.

Figure 1.5: A graph G with o(G) = 2 and w(G) = 3 (a), its complement G (b) and a complete
graph of order 4 (c).

1.1.3 Walks

Another important substructure in a graph is the notion of walks which allows us to
traverse a graph.

Definition 1.6 (Walk, closed walk). A walk in a graph G is a list s, ..., s, of vertices
of G such that s;s;11 € E(G) for every i in [0,n]. An (s, s,)-walk is a walk whose first
vertex is s and whose last vertex is s,,. More generally, if A and B are two sets of vertices,
then an (A, B)-walk is an (a,b)-walk for some vertices a € A and b € B.

A closed walk is a walk with sg = s,,. An internal vertex of a walk is a vertex of the
walk which is neither the first nor the last vertex of the walk.

The length (number of edges, counted with multiplicity) of a walk W = sq,...,s,
is n, and its order (number of vertices, counted with multiplicity) is n if W is a closed
walk, or n + 1 otherwise. When no confusion is possible, we may write sgs; ... s, for the
sequence Sg, S1, ..., S, of a walk.

Note that a walk in G is not stricto sensu a subgraph, it is a sequence of vertices.
Among walks, paths and cycles play an important role.

Definition 1.7 (Path, cycle). If all vertices of a walk are pairwise distinct, then the walk
is a path. An (sg, s,)-path is a (sg, s, )-walk which is a path. If A and B are two sets of
vertices, then an (A, B)-path is an (a, b)-path for some vertices a € A and b € B. A closed
walk where all vertices are pairwise distinct, except so and s, is a cycle.

We may consider the sequence of vertices s, . . ., s of G which is a path (resp. cycle) as
the subgraph formed by these vertices and the edges of the form s;s,41 for ¢ € [0,k — 1].
The path of order k is noted P;. The cycle of order k is noted Cy. An even cycle (resp.
odd cycle) is a cycle of even length (resp. odd length). A cycle of length 3 is also called a
triangle.

With the notion of cycle, we can define another important graph parameter.

Definition 1.8 (Girth). The girth of a graph G is the length of a smallest induced cycle
of G.

See Figure 1.6 for examples of a walk, a closed walk, a path and a cycle in graphs of
girth 3 and 4.
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(a) A graph G of girth 3 with a path hk¢ (repre-  (b) A graph G of girth 4 with a cycle hjlk (rep-
sented in red dotted edges) and a walk adefgcb  resented in red dotted edges) and a closed walk
(represented in blue dashed edges). edf gede (represented in blue dashed edges).

Figure 1.6: Examples of a walk, a closed walk, a path and a cycle in graphs of girth 3 and 4.

1.1.4 Applications of paths: connectivity and distance in graphs
With the notion of paths (or walks), we can define the notion of connected graphs.

Definition 1.9 (Connected graph, connected component). A graph is connected if there
exists a path between u and v for every pair of vertices v and v of G. A connected
component of G is a maximal connected subgraph of G. A graph is disconnected if it has
at least two connected components. An cut-vertexr is a vertex whose removal from the
graph increases the number of connected components.

A stronger notion is the notion of k-connected graphs.

Definition 1.10 (k-connected graph, connectivity). A graph is k-connected if for every
pair of vertices u and v of GG, there exist k paths, with disjoint internal vertices, between u
and v. The connectivity of a graph G is the largest integer k for which G is k-connected.
A 2-connected graph is also called a biconnected graph. A k-connected component of G is
a maximal k-connected subgraph of G.

See Figure 1.7 for some examples of connectivities.

< 1 X

(a) A disconnected graph with ~ (b) A 1l-connected graph with (c) A 2-connected graph.
two connected components. one cut-vertex and two 2-
connected components.

Figure 1.7: Graphs with different connectivities.

Definition 1.11 (Edge cut). For a graph G and X,Y C V(G), let us note E(X,Y) for
the set of edges with one endpoint in X and the other endpoint in Y. An edge cut is an
edge set of the form F(X,V(G) \ X).

Note that for every graph G, if X is a proper non-empty subset of V(G) (i.e. @ #
X C V(@)) then the graph G — E(X,V(G) \ X) is disconnected.

Another useful application of paths is the notion of distance.
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Definition 1.12 (Distance). Let u and v be two vertices of G. The distance between u
and v, denoted dg(u,v) is the length of a shortest path connecting v and v. If there is no
path between u and v, then dg(u,v) = +00. When the context is clear, we note d(u,v)
instead of dg(u,v).

From this notion, we can define the concept of graph powers.

Definition 1.13 (Graph power). Let G be a graph and k be an integer. The k-th power
of G, denoted G*, is the graph with vertex set V(G) in which two vertices are adjacent if
and only if they are at distance at most k. The graph G2 is also called the square of G.

In particular, G° is an independent set and G! = G. See Figure 1.8 for one example
of distance between vertices and one example of square graph.

(a) A graph G. (b) The graph G2.

alblc|d|e|f
al0|112]3[4]|3
b(1]0]12|3]2
cl|[2/1]0(1]2]1
d|3|2[1/0]1]2
el|413]2]1|0]1
f131211]2[1/0

(c) The distances in the graph G.

Figure 1.8: Example of distances in a graph and its square graph.

1.1.5 Bipartite graphs

The notion of cycle help us characterize one of the most studied class of graph: bipartite
graphs.

Definition 1.14 (Bipartite graph, bipartite complete graph). A graph G is bipartite if
we can partition V(G) into AW B (where W is the disjoint union operation) such that
each edge xy of G has one endpoint in A and one endpoint in B. In particular, bipartite
graphs are exactly graphs without odd cycles.

The complete bipartite graph K, , is the graph composed of two sets of vertices: A of
size p and B of size ¢q. The sets A and B are independent sets and for every u € A and
every v € B, uv € E(K,,).

See Figure 1.9 for two examples of bipartite graphs.

1.1.6 Line graphs

Let us continue with one more type of graph constructed from a graph G, the line graph,
which is the graph of relationship between the edges of G.
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SoANE

(a) A bipartite graph. (b) The bipartite graph K, 3.

Figure 1.9: Examples of bipartite graphs. For both graphs, the set of vertices is partitioned
into the set of white vertices and the set of black vertices.

Definition 1.15 (Line graph). The line graph L(G) of a graph G is the graph whose
vertex set is the set of edges of G' and for which two vertices of L(G) (i.e. two edges of G)
are adjacent in L(G) if and only if they are adjacent as edges in G. The degree of an
edge e of G is the degree of the vertex corresponding to e in L(G). Alternatively, it is the
number of edges adjacent to e in G.

See Figure 1.10 for an example of a line graph.

Figure 1.10: The line graph (represented in red) of the Petersen graph (represented in black).

We can also define a notion of distance between edges of a graph G using L(G).

Definition 1.16 (Distance of edges). Let e and €' be two edges of G. The distance
between e and €', denoted dg(e,€’) is the length of a shortest path connecting e and ¢’
in the line graph L(G). If there is no path between e and €', then dg(e,€’) = +00. The
distance between e and €’ can also be defined as the smallest number of vertices of a path
v1,...,v; of G such that v; € e and vy, € €.

Note that the distance between two edges e and ¢’ of a graph G could also have been
defined as the minimum of dg(a,b) for a € e and b € ¢'.

1.1.7 Graph classes and parameters related to the degrees of
vertices

Let us start by presenting some important graph parameters.
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Definition 1.17 (Minimum degree, maximum degree). Let G be a graph. The minimum
degree of G, denoted 0(G), is the minimum of the degrees d(u) where u is a vertex of G.
The mazimum degree of G, denoted A(G), is the maximum of the degrees d(u) where u
is a vertex of G.

For example, the minimum degree of a path is 1 while the maximum degree of a path
of length at least 2 is 2. The Petersen graph (see Figure 1.1) has minimum degree and
maximum degree 3.

The notion of degree can help us characterize some graph classes.

Definition 1.18 (Regular graphs). A graph is regular if all of its vertices have the same
degree: 0(G) = A(G). A 3-regular graph is a cubic graph. A graph G with A(G) < 3 is

a subcubic graph.
Another important class is the following one.

Definition 1.19 (Degeneracy). A graph G is d-degenerate if all of its subgraphs contain
a vertex of degree at most d.

A particular class of degenerated graphs is the class of forests.

Definition 1.20 (Forests and trees). A forest F' is a 1-degenerate graph. Alternatively,
a forest is an acyclic graph (i.e. a graph with no cycle). A tree is a connected forest. A
leaf of a forest is a vertex of degree 1. A subgraph of a graph G which is isomorphic to a
forest (resp. to a tree) is a subforest of G (resp. a subtree of G).

A important type of subforest is the following one.

Definition 1.21 (Spanning forest, spanning tree). Let G be a graph (resp. a connected
graph). A spanning forest is a subforest of G on vertex set V(G) which has the same
number of connected components as G. A spanning tree is a spanning forest of a connected
graph.

See Figure 1.11 for an example of spanning tree.

Figure 1.11: A graph G and one of its spanning trees represented with red dashed edges.

Another notion related to the degree is the notion of average degree.

Definition 1.22 (Average degree, maximum average degree). The average degree of a
graph G, denoted ad(G), is the average of the degrees of the vertices of G:
2|E(G)]
ad(G) = ——=
V(G
The mazimum average degree of a graph G, denoted mad(G), is the maximum of ad(H)
taken over all subgraphs H of G.
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The notion of average degree allows us to determine whether a graph is dense or not.
If ad(G) = o(|]V(G)|), then the graph G is sparse, otherwise it is dense.

Definition 1.23 (Hereditary property, hereditary class). A graph property is hereditary
if for every G which verifies the property, the property is true for all subgraphs of G. A
graph class is hereditary if for every GG in the class, all subgraphs of G also belong to the
class.

Note that the average degree is not hereditary, for example even if the average degree
of the graph composed of a clique of order p and (p — 1)? isolated vertices has average
degree 1, it contains a subgraph of average degree p — 1. This is why the notion of
maximum average degree is important: an upper bound on mad(G) is also valid for the
maximum average degree of any subgraph of GG. See Figure 1.12 for an example of these
parameters.

Figure 1.12: A graph G of minimum degree 1, maximum degree 5, average degree % and

maximum average degree % The subgraph of G achieving an average degree of % is represented
with red dashed edges.

Note that a d-degenerate graph GG has at most dn edges and thus has average degree
at most 2d. Moreover, the class of d-degenerate graphs is hereditary, hence if G is d-
degenerate, then mad(G) < 2d. Conversely, if mad(G) < k then G is (k — 1)-degenerate.

1.1.8 Planar graphs

One particularly interesting class of graphs is the class of planar graphs. To define them,
we first need the notion of planar embedding.

Definition 1.24 (Drawing of a graph, planar embedding). A drawing M of a graph G
is a function which associate with each vertex v a coordinate M (v) in R? and which
associate with each edge uv an injective continuous function M (uv) : [0,1] — R? such
that {M(0), M (1)} = {M(u), M(v)}.

Moreover, the coordinates of the vertices are distinct, and if uv is an edge and w is
a vertex different from u and v, then M (w) does not belong to the embedding of the
edge uv. Finally, for every two edges e; and ey and every two real numbers ¢; and t,
with 0 <t; <1land 0 <ty <1, if M(ey)(t1) = M(ez)(t2) then this point is a crossing.

A planar embedding is a drawing of a graph without crossings.

Definition 1.25 (Planar graph). A planar graph is a graph G which admits a planar
embedding M. A plane graph is a planar graph G with a particular planar embedding M
of G.
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See Figure 1.13 for an example of a planar graph. From Figure 1.13, one can see that
a planar graph may be drawn on the plane with crossings. Moreover, note that a planar
graph can have multiple non-topologically equivalent planar embeddings. For example,
in Figure 1.13(c), placing the vertex e in between a and b yield another planar embedding
which is not topologically equivalent to the one in the figure.

(a) A planar graph: Ky ... (b) ... and the same graph drawn with a planar
embedding.

(c) Another planar graph.

Figure 1.13: Two planar graphs.

Of course, not all graphs are planar. Two minimal (for the subgraph relation) non-
planar graphs are K5 and K33 (see Figure 1.14).

(a) K5. (b) K373.
Figure 1.14: Two non-planar graphs.
In fact, these two graphs are essential to the study of planar graphs. A subdivision of

a graph G is a graph obtained from G by replacing the edges of G' by arbitrary paths of
length at least 1.

Theorem 1.26 (Kuratowski’s Theorem [135]). A graph is planar if and only if it does
not contain a subgraph which is a subdivision of K5 or Ks3.

Also note that it is possible to determine in time O(|E(G)|) whether G is planar or
not thanks to Kuratowski’s Theorem [194].

page 28 Dimitri Lajou



Chapter 1. Preliminaries

Definition 1.27 (Face). Let G be a planar graph together with a planar embedding M.
A face of G in M is a maximal connected region of the plane which does not contain
points of the embedding (i.e. no image of the vertices nor the curves which represent the
edges). The outer face is the only unbounded face of G in M. Let us note F(G, M) the
set of faces of G in M.

A face f is incident with a vertex v (resp. an edge e) if and only if M (v) (resp. the
image of M (e)) belongs to (resp. is included in) the boundary of F', i.e. M (v) (resp. the
image of M(e)) belongs to (resp. is included in) the closure of F. Two faces are adjacent
if and only if they are incident with a common edge e. The length or degree of a face f,
denoted d(f), is the number of edges incident with f counted with multiplicity (7.e. if an
edge is incident with only one face, we count this edge twice for this face). We often note
a face by the ordered list of its vertices.

The graph in Figure 1.13(c) has eight faces: abced, adl, cdf, cgf, beghbi, abhjl, Ljhk
and the unbounded face ¢khg fded.

A well known property of planar graphs is given by Euler’s formula, which connects
the number of vertices, the number of edges and the number of faces of a graph.

Theorem 1.28 (Euler’s Formula). Let G be a planar graph with a planar embedding M .
We have:
IV(G)| = |E(G)| + |F(G, M)| = 2.

In particular the number of faces of G in M does not depends on the planar embedding M .

This result can easily be shown by induction on the number of vertices. By using the
fact that 3,cy ) d(v) = 2|E(G)| = X serem) d(f), one can note that Euler’s Formula
is equivalent to the following identity:

Y o(dw)—=6)+ > 2(d(f) —3)=—12. (1.1)

vEV(G) fEF(G,M)

A classical way to obtain contradictions on planar graphs is to suppose the existence of
a planar graph verifying some property and then showing that this planar graph does not
follow Euler’s Formula. This implies that no planar graph verifies the supposed property.

Note that Euler’s Formula give a relationship between the girth and the maximum
average degree of a planar graph when observing that 2 |E(G)| > g |F(G, M)|.
Proposition 1.29. If G is a planar graph with girth g then mad(G) < 92792'

Also note that Equation (1.1) implies that a simple planar graph is 5-degenerate.

1.1.9 Treewidth

Another important graph parameter of Graph Theory that we use in the context of
parameterized complexity (see Section 1.3), is the notion of treewidth.

Definition 1.30 (Rooted tree). A rooted tree is a tree T' where we distinguish one vertex
called the root of T'. In a rooted tree, if uv is an edge and d(r,u) < d(r,v), then we say
that u is the parent of v in T, or that v is the child of v in T. A vertex of a rooted tree
is often called a node. The subtree of T' rooted at u is the rooted tree obtained from 7' by
removing the edge between v and its parent and keeping only the vertices which are in
the same connected components as wu.
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The notion of treewidth is defined as follows.

Definition 1.31 (Tree decomposition, treewidth). A tree decomposition of a graph G is a
pair 7 = (7T, (Xu)uev(r)) Where T is a rooted tree and where, for every node u of T', X, is
a subset of V(G) associated with u, called the bag of u, verifying the following properties:

1. for every vertex v of GG, there is a node u of T" such that v € X,

2. for every vertex v of GG, the set of nodes whose bag contains v induces a subtree
of T,

3. for every edge vw of G, there is a node u whose bag contains both v and w.

The width w(T') of the tree decomposition T is the largest size of a bag X, for u € V(T),
minus 1:
w(T) = max |X,|— 1.
ueV(T)

The treewidth tw(G) of a graph G is the smallest width of a tree decomposition of G.

See Figure 1.15 for an example of a tree decomposition.

(a) A graph G. (b) A tree decomposition of G of width 3.

Figure 1.15: A graph and a tree decomposition of this graph.

Let us see some examples: a forest [ has treewidth 1, the complete graph K, has
treewidth p — 1 and a cycle has treewidth 2.

Definition 1.32 (Grid). A grid G, is a graph on nm vertices (v; ;)1<i<n, 1<j<m Where v; ;
and vy are adjacent if and only if i =k and |[j —¢| =1, or j =¢ and |i — k| = 1.

This famous theorem from Robertson and Seymour shows that planar graphs have
unbounded treewidth.

Theorem 1.33 ([167]). For every integer k, there is a grid G with tw(G) > k.

One can add constraints to the tree decomposition to make it easier to work with.
Nice tree decompositions [130] are a well-known tool for designing algorithms on graphs
of bounded treewidth using dynamic programming.

Definition 1.34 (Nice tree decomposition). A nice tree decomposition of a graph G is a
tree decomposition 7', rooted at a node Root. Each node of T' is of one of the following

types.
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e A join node has exactly two children, with the same bags as their parent join node.

e An introduce node has a unique child and contains exactly one more vertex in its
bag than its child’s bag.

o A forget node also has a unique child, but the forget node’s bag has exactly one less
vertex than its child’s bag.

o A leaf node is a leaf of the tree and contains no vertices.

This type of decomposition can be obtained from a tree decomposition in polynomial
time and will be useful in Chapter 8.

1.2 Colorings and Homomorphisms

Each chapter of this thesis will revolve around the idea of coloring graphs. Depending on
the type of graphs, we may define multiple notions of coloring. In this section, we first
present the classical notion of vertex coloring, and then the notion of homomorphism of
graphs, which gives another point of view on vertex coloring. Finally we describe other
classical notions of coloring: oriented coloring, vertex coloring of (n,m)-mixed graphs,
edge-coloring and list coloring.

Note that each part/chapter of this thesis focuses on a particular coloring notion which
will be described in the corresponding section.

1.2.1 Vertex coloring

Our first notion of coloring is the notion of vertex coloring.

Definition 1.35 (Vertex coloring and chromatic number). A vertexr k-coloring of a
graph G is a function from V(G) to the set of colors [k]. A vertex k-coloring of a
graph G is proper if no two adjacent vertices receive the same color.

The chromatic number x(G) of a graph G is the smallest k£ such that G admits a
proper vertex k-coloring.

Note that a proper vertex coloring is ill-defined on graphs with loops as a vertex is
adjacent to itself. Also note that multiple edges do not matter here: if v and v are
adjacent, then it does not matter whether there are 1, 2 or 10 edges between them for
the coloring. This is why we often only consider proper vertex coloring on simple graphs.
Also note that a simple graph G always admits a proper vertex |V (G)|-coloring, hence
the chromatic number of a simple graph is always finite.

Remark. Unless stated otherwise, in this thesis, a k-coloring always refer to a vertex
k-coloring.

Even if formally our colors are elements of [k], when drawing a coloring we associate
with each element of [k] an RGB color. See Figure 1.16 for an example of a proper vertex
3-coloring. The proper vertex 3-coloring in Figure 1.16 implies that the chromatic number
of the Petersen graph is at most 3.

Let us collect some easy facts on the chromatic number.

Proposition 1.36 (Folklore). Let G be a graph. The following statements are true.
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3

Figure 1.16: A proper vertex 3-coloring of the Petersen graph.

The graph G is an empty graph if and only if x(G) = 1,

the graph G is bipartite if and only if x(G) < 2,

if G is a forest or an even cycle, then x(G) = 2,

if G is an odd cycle, then x(G) = 3,

if H is a subgraph of G, then x(H) < x(G),

if G has cliqgue number w(G), then w(G) < x(G),

if G has order p, then G is the complete graph K, if and only if x(G) = p,

Sl N T T I R

if G has connected components Gy, ..., G, then the chromatic number of G 1is
the maximum of the chromatic numbers of its connected components: x(G) =

max(x(G1), ..., x(Gk)).

In particular, the previous theorem implies that the chromatic number of the Petersen
graph is 3 as it contains an odd cycle. Another way to obtain the upper bound for the
Petersen graph is to use Brook’s Theorem.

Theorem 1.37 (Brooks’ Theorem [30]). Let G be a connected graph, we have x(G) <
A(G) + 1. Moreover x(G) = A(G) + 1 if and only if G is a complete graph or G is an
odd cycle.

We often like to find bounds on the chromatic number of a graph which either depend
on other graphs parameters (like Brook’s Theorem) or which are only true for particular
graphs classes. The most famous theorem in this regard is the Four-Color Theorem.

Theorem 1.38 (Four-Color Theorem [8, 9]). If G is a planar graph, then x(G) < 4.

The proof of the Four-Color Theorem is famous as it is the first proof of a major result
to be computer assisted. Indeed it relies on the verification of 1834 configurations (this
number was later reduced) which is something complicated for a human to do. It uses a
process call “discharging” that we will use in Chapter 9. See Figure 1.17 for an example
of a 4-coloring of a planar graph.

Note that it is easy to prove that six colors suffices for planar graphs as they are
5-degenerate. It is also not that hard to show that five colors suffices.

As mentioned there is a link between degeneracy and the chromatic number.

Theorem 1.39 (Folklore). If G is a d-degenerate graph, then x(G) < d+ 1.
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Figure 1.17: A proper vertex 4-coloring of a planar graph.

1.2.2 Homomorphisms
Another point of view on proper vertex coloring is through the concept of homomorphisms.

Definition 1.40 (Homomorphism). A homomorphism from G to H is a function ¢
from V(G) to V(H) such that for every x,y € V(G), vy € E(G) implies p(z)p(y) € E(H).
When there is a homomorphism ¢ from G to H, we note ¢ : G — H or simply G — H.

See Figure 1.18 for an example of homomorphism.

. 9"9 .

O—2

Figure 1.18: Two graphs G and H such that G — H. One such homomorphism ¢ can be
defined as ¢(a) = p(c) = ¢(g) = ¢(i) = 1, ¢(b) = 2, p(e) = 3 and @(d) = ¢(f) = (h) = 4.

Note that one can compose homomorphisms: if G — H and H — J, then G — J.
Also note that a homomorphism from G to H does not need to be surjective, H can have
more vertices and edges than the image of G.

Let v and v be two non-adjacent vertices of a graph G. Identifying u and v consists
in creating the graph H from G, where V(H) = V(G) \ {u,v} U{uv} and E(H) is the set
{wz € E(G): w,ze€ V(G)\ {u,v}}U{(uv,w) : w € (Ng(u) U Ng(v))}. In other words,
H is the graph obtained by replacing v and v by a new vertex uv which is adjacent to
every vertex adjacent to w or v. In particular, if H is the graph obtained from G by
identifying v and v, then G — H and the corresponding homomorphism is surjective.
See Figure 1.19 for an example of identification.

As mentioned before, there is a deep link between the notion of homomorphism and
the notion of proper vertex coloring.

Proposition 1.41. Let G be a graph and k be an integer. The graph G admits a proper
k-coloring if and only if G — K.

The previous proposition implies that one can transform a homomorphism from G
into a coloring of G. One way to transform a coloring into a homomorphism is to succes-
sively identify vertices of the same color. This implies that we can use these two notions
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(a) A graph G. (b) The graph H obtained from G by identifying
g and i.

Figure 1.19: Identification of vertices.

interchangeably. See Figure 1.20 for an example of a homomorphism constructed from a
coloring.

Figure 1.20: The proper vertex 4-coloring of the planar graph in Figure 1.17 transformed into
a homomorphism to Kj.

Definition 1.42 (H-coloring). If ¢ is a homomorphism from G to H, we say that ¢ is
a H-coloring of G. Indeed, one can see the vertices of H as colors in a vertex coloring.
Hence the chromatic number of G can also be defined as the smallest order of a simple
graph H such that G admits a H-coloring. As seen in Proposition 1.41, we can always
suppose that such a graph H is complete.

The core of a graph H is the smallest subgraph C' of H such that H — C. A core
is a graph which is his own core. The core C of a graph H is unique but one might find
multiples copies of C' in H. When trying to construct a homomorphism from G to H, it
is interesting to replace H by the core of H as G admits a homomorphism to H if and
only if it admits a homomorphism to the core of H. For example, the core of a bipartite
graph is K5. See Figure 1.21 for some examples.

1.2.3 Homomorphisms on more complex graphs

The notion of homomorphism does not limit itself to undirected graphs. In each example

below, we present the definition of a homomorphism for different varieties of graphs, in

each case, we can derive the notions of core and H-coloring as in the previous section.
First it is possible to consider homomorphisms of multi-graphs.
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(a) (b)

Figure 1.21: Some graphs and their core represented in bold edges.

Definition 1.43 (Homomorphism of multi-graphs). For two multi-graphs G and H, a
homomorphism from G to H is a function ¢ : V(G) — V(H) such that if e € F(G)
is incident with u and v then there is an edge ¢’ € E(H) incident with ¢(u) and ¢(v).
When we want to distinguish the parallel edges, one might require that ¢ also associate
to an edge of GG, incident with u and v, an edge of H among all edges incident with ¢(u)

and ¢(v).
Note that a graph with parallel edges is not a core, hence when trying to decide
whether a multi-graph G admits a homomorphism to another multi-graph H, it is better

to remove all but one edge of each set of parallel edges in H. Therefore, in this setting,
we do not need to distinguish the parallel edges.

For oriented and directed graphs, there is also a notion of homomorphism.
Definition 1.44 (Homomorphism of directed/oriented graphs). For two directed /oriented

graphs & and ﬁ, a homomorphism from & to H is a function @ : V(a) — V(ﬁ) such
that if @ is an arc of &' then there is an arc @(u)gp(v; in H.

This notion is particularly important for oriented colorings.

Definition 1.45 (Oriented k-coloring). An oriented k-coloring of an oriented graph 8

is function ¢ from V(B) to [k] such that for every arc wd, p(u) # ¢(v) and such that no
two arcs w0 and 7 verify ¢(u) = ¢(y) and ¢©(v) = p(z). In other words, an oriented k-
coloring is a k-coloring in which all arcs between a vertex colored ¢ and a vertex colored j

have the same orientation. The oriented chromatic number of 8, denoted x,(G), is the

smallest k& for which 8 admits an oriented k-coloring.

As hinted before, an oriented graph Zf admits an oriented k-coloring if and only 3
admits a homomorphism to an oriented graph of order at most k.

Finally, we can define the notion of homomorphism for (n,m)-mixed graphs.

Definition 1.46 (Homomorphism of (n,m)-mixed graphs). Let G be a (n,m)-mixed
graph and H be a (p, ¢)-mixed graph. The function ¢ : V(G) — V(H) is a homomophism
from G to H if and only if:

1. for every edge uv € E;(G), i < n, we have p > i and p(u)p(v) € E;(H),
2. for every arc wb € A;(G), j < m, we have ¢ > j and gp(u)cp(v; € A;(H).

In this case, we note G — () H.
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Note that, for this definition, G and H do not have to be the same kind of (n, m)-mixed
graphs, this is an abuse of terminology. This notion homomorphism can be specialized
for k-edge-colored graphs. For simplicity, we note G — H instead of G —,0) H.

1.2.4 Edge-coloring

Our second coloring notion is the notion of edge-coloring.

Definition 1.47 (Edge-coloring and chromatic index). A k-edge-coloring of a graph G is
a function from E(G) to the set of colors [k]. A k-edge-coloring of a graph G is proper if
no two adjacent edges receive the same color.

The chromatic index x'(G) of a graph G is the smallest k such that G admits a proper
k-edge-coloring. By definition, x'(G) = x(L(G)) where L(G) is the line graph of G.

See Figure 1.22 for an example of a proper 4-edge-coloring of the Petersen graph.

VAR

Figure 1.22: A proper 4-edge-coloring of the Petersen graph.

Note that, contrary to vertex coloring, the definition of proper edge-coloring works
perfectly for multi-graphs. Also, it is important not to confound a k-edge-colored graph G
and a k-edge-coloring of a graph G5. In the first case, the edge-coloring is often non-proper
and is part of the structure of the graph. In the second case, the edge-coloring is something
constructed for the graph G, it is an additional object that complements the graph but
is not part of it.

As for the chromatic number, let us see some easy facts about the chromatic index.

Proposition 1.48 (Folklore). Let G be a graph. The following statements are true.
If G has maximum degree A(G), then x'(G) > A(G),

if G is a forest or an even cycle, then X' (G) = A(G),

if G is an odd cycle, then X'(G) = 3,

if H is a subgraph of G, then x'(H) < X'(G),

v o e =~

if G has connected components G, ..., Gy, then the chromatic index of G is the
mazimum of the chromatic indices of its connected components:

X'(G) = max(xX'(Gh), .-, X'(Gr)).
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In particular, the previous proposition implies that the chromatic index of the Petersen
graph is at least 3 as it contains a vertex of degree 3. In fact one can show that three
colors are not sufficient in order to properly edge-color the Petersen graph.

In Section 1.2.1, we presented Brooks” Theorem. Note that there is a similar theorem
for edge-coloring: Vizing’s Theorem.

Theorem 1.49 (Vizing’s Theorem [184)). Let G be a simple connected graph, we have
X'(G) < A(G) + 1.

Note that contrary to Brooks” Theorem, Vizing’s Theorem does not characterize the
graphs for which A(G) colors suffices, called class I graphs, and the graphs which re-
quire A(G) + 1 colors, called class II graphs. Since then, no universal criteria has been
found to determine whether a graph is class I or class II.

Remark. In the context of distinguishing labellings, an edge-coloring is also called a
labelling and an edge-color is called a label.

1.2.5 List coloring

Often we can convert a notion of coloring into its list version. Let us start with vertex
coloring.

Definition 1.50 (List coloring [66]). A k-list assignment L for a graph G is a function
which associates with each vertex of G a (finite) subset of N of size at least k. For a
list assignment L of G, a (vertex) L-coloring is a choice function ¢ which maps every
vertex v € V(G) to an element c¢(u) € L(u). An L-coloring c is proper if and only if ¢ is
a proper vertex coloring of GG. In this case, we say that G is L-choosable.

The choosability of a graph G, denoted ch(G), is the smallest £ € N for which G is
L-choosable for every k-list assignment L of G. A graph of choosability k is called a
k-choosable graph.

Again note that ch(G) < |V(G)| for every graph G. Also note that a proper k-coloring
is a proper L-coloring of G where L(u) = [k] for every u € V(G), hence x(G) < ch(G).
Note however that the gap between x(G) and ch(G) can be arbitrarily large.

Theorem 1.51 ([66]). For every k € N, there exists a bipartite graph G with choosability
at least k.

The notion of edge coloring also has its list version.

Definition 1.52 (List edge-coloring [66]). A k-list edge-assignment L for a graph G is a
function which associates with each edge of G a (finite) subset of N of size at least k. For
a list edge assignment L of G, an L-edge-coloring is a choice function ¢ which maps every
edge e € E(G) to an element c(e) € L(e). An L-edge-coloring c is proper if and only if ¢
is a proper edge-coloring of GG. In this case, we say that G is L-edge-choosable.

The edge-choosability of a graph G, denoted ch’(G), is the smallest & € N for which G
is L-edge-choosable for every k-list edge-assignment L of G.

Note that a proper k-edge-coloring is a proper L-edge-coloring of G where L(e) = [k]
for every e € E(G), hence Y/(G) < ch'(G). Contrary to the vertex coloring case, it is
conjectured that x'(G) = ch’(G) for every graph G.
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Remark. In the context of distinguishing labellings, an L-edge-coloring is also called an
L-labelling.

Let us see why the concept of list coloring is useful. We only consider here the vertex
coloring case but the same arguments apply for edge-coloring. Suppose that we want to
find a proper k-coloring of a graph GG. Let H be a “small” subgraph of G such that there
is a proper vertex k-coloring ¢; of G — V(H) (obtained by induction, for example).

To color G, we want to extend the coloring ¢; of G — V(H) to the vertices of H.
For each vertex u of V(H), we create a list L(u) containing the colors among [k] which
are not already assigned to a neighbor of u in G — V(H) by ¢;. If H admits a proper
L-coloring ¢y, then the coloring ¢ of G, defined by c(u) = ¢;(u) if w € V(G) \ V(H) and
c(u) = co(u) if w € V(H), is a proper vertex k-coloring of G.

Note that this does not hold if we take any arbitrary proper k-coloring of H. Also note
that the difficult parts in this process are finding the subgraph H and the L-coloring cs.
We present in Section 1.4.4 a way to find this L-coloring by using an algebraic method:
the Combinatorial Nullstellensatz.

1.3 NP-completeness and FPT

In this section, we introduce various complexity notions that are used throughout this
thesis. We start with a quick reminder of general complexity notions in section 1.3.1
and a quick overview of different ways to represent graphs in algorithms in Section 1.3.2.
Section 1.3.3 presents the concept of NP-complete problem while Section 1.3.4 focuses on
parameterized complexity. We conclude this section with a list of additional complexity
problems in Section 1.3.5.

Since the theory of calculability and Turing machines are not the focus of this thesis,
we do not get into the rigorous formalism of the field here. Nonetheless, we refer the
reader to [53, 160, 173] for more details on the topics covered in this section.

1.3.1 Basics of Complexity Theory

An algorithm A is a sequence of elementary operations (see RAM model [160, section
2.6]) which can be performed on an input z respecting a given format (e.g. the input is
an integer, a graph ...).

The time ta(z) of an algorithm A on input z is the total number of elementary
operations performed by A on input x before A stops. For every non-negative integer n,
the time complexity t 4(n) of an algorithm A is the maximum of ¢ 4(x) over all inputs «
of size at most n.

The space s(x) of an algorithm A on input z is the maximum number of memory
locations used simultaneously by A on input z before A stops. For every non-negative
integer n, the space complexity s4(n) of an algorithm A is the maximum of s4(x) over all
inputs x of size at most n.

While we mainly focus on time complexity from now on, note that analogous notions
exist for space complexity.

We characterize the complexity of an algorithm A by the growth of the function ¢ 4(n):
an algorithm is linear (resp. polynomial, resp. exponential ...) if t4(n) = O(n) (resp.
ta(n) = O(n®) for some constant c, resp. t4(n) = 20" for some positive constant c ...).
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A problem P consists in solving a given problematic given an input. A problem is
a decision problem if the problematic is a yes/no question. An instance Z of P is a
positive instance of P if and only if the answer to the problematic of P is yes. An algo-
rithm A solves a problem P if for every input z of the problem, A outputs .A(z) such that
A(x) is the answer to the question of the problem on input x. An example of a problem is:

ARRAY SEARCH
Input: An array A, its size n and an element z.
Output: The index of z in A if x is in A and -1 otherwise.

A problem P is in P if there exists a polynomial algorithm solving P. Intuitively, P is
the class of problems that can be solved in “reasonable time”. A goal of the Complexity
Theory is to determine which problems belong to P and which problems do not. For
example, the problem ARRAY SEARCH is in P as it suffices to go sequentially through the
array to find the solution.

Another important class of problems is the class NP, for Non-deterministic Polyno-
mial. It can be informally defined as the set of decision problems for which we can verify,
in polynomial time, whether some given candidate solution z is really a solution of the
problem. Intuitively, NP is the class of problems for which we can verify if an input is
a solution in “reasonable time”. In particular, P C NP. For more precise definitions (in
terms of non-deterministic Turing machines), we refer the reader to [160, 173]. For exam-
ple, the following problem is in NP.

3-COLORING
Input: A graph G.
Question: Does the graph G admit a proper 3-coloring?

Indeed, even if it is not simple to construct a proper 3-coloring of a graph G, if we are
given a 3-coloring of G, it is easy to verify that this coloring is proper.

1.3.2 Algorithmic representations of graphs

In this section, we see how to represent graphs in algorithms. Let G be a graph with
V(G) = {v1,...,v,}. We give an example of such a graph in Figure 1.23 and its two
representations in Figure 1.24 and Figure 1.25.

Figure 1.23: A graph G on 6 vertices.

The first method to represent G is by an adjacency matric M € M, ({0,1}), i.e. a
matrix of size n by n such that m,;, the coefficient of line ¢ and column j, is 0 if v,v; ¢ E(G)
and 1 otherwise. For this data structure, it takes constant time to test whether two
vertices are adjacent, however, it takes O(n) time to recover all the neighbors of a given
vertex. This data structure is more adapted for dense graphs where the number of edges
m is ©(n?). Finally, note that the adjacency matrix of an undirected graph is symmetric.
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01 0100
101000
010110
101010
001101
00 0O0T1PQ0

Figure 1.24: The adjacency matrix of the graph G.

The other method to represent G is by an adjacency list, i.e. an array A of n lists
where the cell A[i] contains the list of neighbors of the vertex v;. For this data structure,
it takes O(A(G)) time to test whether two vertices are adjacent, however, it takes O(d(u))
time to recover all the neighbors of a given vertex u. Note that if the lists are implemented
as sorted arrays, then it actually takes log(A(G)) time to find if two vertices are adjacent
using dichotomy. This method is more adapted for sparse graphs where the number of
edges m is O(n), like for planar graphs.

V1 i—) Vg | Ug

(%) i—) V1| U3

Vs i—) V2 | Vg | Us
V4 i—> V1 | V3 | Us
Vs i—) V3 | Vg | Vg
Vg i—) Vs

Figure 1.25: The adjacency list of the graph G.

The choice of the representation depends on which operations on graphs are more
important in the algorithm. If it is more important to test the adjacency, then we prefer
using adjacency matrices. If it is more important to traverse the graph (and thus to get
the list of neighbors of a vertex), then we prefer using adjacency lists.

Note that there exist more data structures which represent graphs. For more complex
problems, it is often efficient to add more information in the data structure, like repre-
senting faces for planar graphs. One might even find useful to have both the adjacency
matrix and the adjacency list of a graph.

1.3.3 NP-completeness

One of the major questions in Complexity Theory is to determine whether P = NP, or
not; the problem might even be undecidable. This problem is one of the Millennium
Prize Problems stated by the Clay Mathematics Institute in 2000 and has gathered a lot
of attention through the years.

One approach used to attack the question is to try to show that the “hardest” problems
in NP can be solved in polynomial time. While this has yet to be achieved, the developed
notions of reductions and NP-completeness are powerful tools to show that it is very
unlikely that some problems admit polynomial time algorithms.
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Definition 1.53 (Polynomial reduction). A decision problem P reduces (in polynomial
time) to a decision problem P’ if and only if there exists a computable polynomial func-
tion f (i.e. an algorithm) such that for every instance Z of P, Z is a positive instance
of P if and only if f(Z) is a positive instance of P’.

Definition 1.54 (NP-hardness, NP-completeness). A problem P is NP-hard if any prob-
lem P’ in NP reduces to P. A problem is NP-complete if it is NP-hard and belongs to the
class NP.

Intuitively, NP-complete problems are the hardest problems in the NP complexity
class. The most known of these is the SAT-CNF problem. In order to present this
problem, we need to talk first about Boolean formulas.

Definition 1.55 (Boolean formulas). The set of Boolean formulas BF is constructed as
follows:

1. BF contains all variables x, xs, ...,

2. if ¢ is a Boolean formula, BF contains —¢, the negation of ¢ which is true if and
only if ¢ is false,

3. if 1 and ¢y are two Boolean formulas, BF contains 1 A s, the conjunction of ¢
and 9 which is true if and only if ¢; and @9 are both true,

4. if ¢y and ¢y are two Boolean formulas, BF contains (1 V @9, the disjunction of ¢,
and 9 which is false if and only if ¢ and ¢, are both false.

To simplify notation, we often note T; for —x; when z; is a variable. A [iteral is either a
variable x; or its negation T;. A clause C' is a disjunction of literals, i.e. C' = ({1 V {3 V
-+ -V {g) where each /¢; is a literal. The size of a clause C' is the number of literals in the
clause. A Boolean formula ¢ is in conjunctive normal form (CNF) if it is a conjunction
of clauses, i.e. p = C; ACy A\ --- A, where each C; is a clause. For concision, we use the
term CNF formula to refer to a Boolean formula in conjunctive normal form. A wariable
assignment is a function from the set of variables to the set of truth values {true, false}. A
variable assignment satisfies a CNF formula if and only if there is at least one true literal
in each clause.

We can now define the SAT-CNF problem.
SAT-CNF

Input: A Boolean formula ¢ in conjunctive normal form with n variables and m
clauses.
Question: Is there a variable assignment satisfying ¢?

This problem was the first to be shown to be NP-complete by Cook [50] and Levin
[139] independently.

Theorem 1.56 (Cook-Levin [50, 139]). The problem SAT-CNF is NP-complete.

We present two other famous problems:

2-SAT

Input: A Boolean formula ¢ in conjunctive normal form with n variables and m
clauses where each clause has size at most 2.

Question: Is there a variable assignment satisfying 7
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3-SAT

Input: A Boolean formula ¢ in conjunctive normal form with n variables and m
clauses where each clause has size at most 3.

Question: Is there a variable assignment satisfying 7

One can easily generalize the previous problems to k-SAT. It is known since 1967,
with the work of Krom, that 2-SAT is in P. The key idea is to rewrite a 2-SAT formula as
a sequence of implications. However no such algorithm has been found for 3-SAT, in fact
3-SAT is one of the 21 NP-complete problems presented by Karp in his 1972 paper [126].

Theorem 1.57 ([126]). The problem 3-SAT is NP-complete.

The proof is done by reduction (see Definition 1.53). We first present the general
methodology of a proof by reduction before using the proof of Theorem 1.57 as an example
of this type of proofs, that we will use in Chapter 3 and Chapter 8.

Proof of NP-completeness by reduction. Let P be our problem. The first step of
such a proof is to show that P is in NP. This is generally quite easy as it suffices to show
that one can verify that a proposed solution is indeed a solution of P. This usually boils
down to verifying all the required constraints on the solution.

The second step is the actual reduction. Let P’ be an NP-hard problem, we want to
show that P’ reduces to P. For this, take an arbitrary instance Z' of P’. We want to
create an instance Z of P which “encodes” the instance Z' of P’. The goal is to show
that 7’ is a solution of P’ if and only if Z is a solution of P.

Let us see an example of this type of proof.

Proof of Theorem 1.57. First, as SAT-CNF is in NP, and since an instance of 3-SAT is
also an instance of SAT-CNF,3-SAT is in NP.

We want to reduce SAT-CNF to 3-SAT. Let ¢ be a CNF Boolean formula instance
of SAT-CNF on n variables z1, ..., x, and m clauses C, ..., Cp,,. Fixi € {1,...,m}
and suppose that C; = (€1 V --- V () where each (! is a literal. The goal is to create a
new set of clauses for 3-SAT that will mimic the clause C;.

Let C* be the following set of clauses:

(69 6,V i) ATV 6 V) A @Y 6V i) A (@, v 6,V G,)

where the :L‘; are new variables. Clearly, C"* is satisfiable if and only if at least one of the
literals ¢} is true. Hence AT, C; is satisfiable if and only if A2, C* is satisfiable. This
concludes the proof. n

From the previous proof, one can see that we used clauses of size 3 in order to represent
a clause of arbitrary size. Sometimes, the reductions are more convoluted but the principle
always stays the same. In Chapter 3 and Chapter 8, we perform such reductions on several
graph problems to show their NP-completeness.

Showing the NP-completeness of a problem indicates that it is unlikely that the prob-
lem can be solved in polynomial time, but, depending on the reduction, the size of the
constructed instance might grow linearly, quadraticly, or even worse, with the size of the
original instance. This fact is unfortunately lost in the statement of the theorem. The
following hypothesis allows us to be more precise.
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Definition 1.58 (Exponential Time Hypothesis (ETH) [145]). The Ezponential Time
Hypothesis (ETH) postulates that 3-SAT cannot be solved in time 2°(™ (n 4 m)¢, where n
and m are the input’s number of variables and clauses, and c is any integer. In particular,
this implies that 3-SAT cannot be solved in time 2°"*™) (see [53]).

Suppose that 3-SAT reduces to a problem P such that for an instance of 3-SAT
with n variables and m clauses, the constructed instance of P has size O((n+m)?). Then,
assuming ETH, we can show that there is no algorithm solving P in time 2°0v®)s¢, for any
constant integer ¢, where s is the size of the instance of P. Indeed, if such an algorithm
existed we could solve 3-SAT in time 2°"*™)(n + m)? = 2°+™) contradicting ETH.
Even if the ETH was to be false, this type of result shows that P seems “easier” to solve
than 3-SAT is.

This highlights how ETH can help us to be more precise than just saying “P is NP-
complete”. Here the function in the o notation indicates how powerful the problem is
compared to 3-SAT.

1.3.4 Parameterized complexity

A way to construct efficient algorithms for NP-complete problems is to lower our time
complexity expectations. Usually, we consider an algorithm efficient if it is polynomial. By
adding an extra parameter k to the problem, we would like to keep the polynomiality in n,
the size of the instance, while “pushing” the hardness of the problem on the parameter k.
For more details on parameterized complexity, we refer the reader to [53].

Definition 1.59 (Parameter). A parameter is a number k£ which is either given by the
problem, e.g. an integer when the problem consists in determining whether there is a
solution smaller than k£ or not, or given as a function of the input, e.g. the treewidth of
the input graph.

For example, VERTEX COVER is one of the 21 NP-complete problems of Karp [126].
Let us consider a version parameterized by the solution size.

VERTEX COVER Parameter: k.
Input: A graph G and an integer k.

Question: Is there a set S of at most k vertices of GG, such that, for each edge uv of
G, at least one of u or v belongs to S7

Definition 1.60 (Fixed Parameter Tractable). A problem P of size n and parameterized
by k is Fized Parameter Tractable (FPT ) if and only if there exists an algorithm solving P
in time f(k) - O(n®) where c is a fixed integer and f is any computable function.

Theorem 1.61 (Folklore). The problem VERTEX COVER is FPT and can be solved in
time 20%)n?2.

The previous theorem does not give a polynomial complexity but the non-polynomial
part of the complexity part does not depend on the size of the problem n. It is of course
possible to improve the previous theorem. The best known bound at the time of writing
this thesis is O(1.2738" + kn) by Chen, Kanj and Xia [44].

When working with the treewidth as a parameter, we can also use Courcelle’s theorem.
This theorem relies on the notion of monadic second-order logic of graphs which we do
not define here (for more details see [51]).
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Theorem 1.62 (Courcelle’s Theorem [51]). Every graph property definable in the monadic
second-order logic of graphs can be decided in linear time on graphs of bounded treewidth,
i.e. for a graph G of order n the problem can be decided in time f(tw(G))n.

Note that Courcelle’s theorem proves that the problem of deciding whether such a
property holds or not for a given graph is FPT but the generality of this theorem imposes
that the function f is far from optimal (it is a tower of exponentials). This is why it is
often better to construct the algorithm directly to obtain a better function of k.

It is not always possible to find an FPT algorithm for a given problem. Let XP be the
class of problems which can be solved in time O(n/*)) where f is a computable function.
Note that FPT is included in XP.

Among the problems in XP, a particular class of problems is the class W[i] where i is
an integer. We do not give the exact definition of these classes here but one can find it
in [53, Chapter 13]. By definition W[0] = FPT and W[i] C W[j] when i < j. By analogy
with NP, we say that a problem P is W[i]-hard if every problem in W[i] reduces to P in
FPT-time.

Definition 1.63 (Parameterized reduction). A parameterized decision problem P reduces
(in FPT time) to a parameterized decision problem P’ if and only if for every instance Z
of P, T is a positive instance of P with parameter k if and only if f(Z, k) is a positive
instance of P’ with parameter g(k) where g is a polynomial computable function and f
is a computable function such that the size of f(Z, k) is of the form O(h(k)|Z|°) where h
is a computable function and c is a fixed integer.

Here we are only interested in the class W[1]. The class W[1] can be seen as the class of
parameterized problems to which the problem INDEPENDENT SET, parameterized by the
solution size, reduces to in FPT-time (see [57]). Showing that a parameterized problem
is W[1]-complete implies that it is unlikely that there exists an FPT algorithm solving it.
Here is an example of such a problem.

MULTICOLORED INDEPENDENT SET Parameter: k.
Input: A graph G, an integer k and a partition of V(G) into k sets V1,...,V;.
Question: Is there a set S of exactly k vertices of GG, such that each V; contains exactly
one element of S, and S an independent set of G7

Theorem 1.64 ([162]). MULTICOLORED INDEPENDENT SET is W[1]-complete.

Hence, the previous theorem implies that it is highly unlikely that MULTICOLORED
INDEPENDENT SET admits an FPT algorithm.

Again using the ETH allows us to be more precise in the statement thanks to this
result.

Theorem 1.65 ([43]). Assuming ETH, MULTICOLORED INDEPENDENT SET cannot be
solved in time f(k) |V (G)|” where f is a computable function, and c is a fized integer.

Theorem 1.66 (Consequence of [126], see [53]). Assuming ETH, VERTEX COVER, pa-
rameterized by the solution size k, cannot be solved in time 2°F) |V (GQ)|® where c is a fived
integer.
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1.3.5 Some problems used in reductions

In this section, we list a number of problems and present their complexity. These problems
are used in Chapter 3 and Chapter 8.

OpDD CYCLE TRANSVERSAL Parameter: k.
Input: A graph G, an integer k.

Question: Is there a set of k vertices of G that can be deleted from G so that the
resulting graph is bipartite?

The NP-completeness of ODD CYCLE TRANSVERSAL follows from a result of Yan-
nakakis [206]. Moreover, ODD CYCLE TRANSVERSAL is FPT (see [166, 127]).

EDGE BIPARTIZATION Parameter: k.
Input: A graph G, an integer k.

Question: Is there a set of k edges of G that can be deleted from G so that the
resulting graph is bipartite?

EDGE BIPARTIZATION is NP-complete (see [83]) and even FPT (see [88, 163]).

VARIABLE DELETION ALMOST 2-SAT Parameter: k.
Input: A 2-CNF Boolean formula F' and an integer k.

Question: Is there a set of k variables that can be deleted from F' (together with the
clauses containing them) so that the resulting formula is satisfiable?

Even if 2-SAT is in P, VARIABLE DELETION ALMOST 2-SAT is NP-complete and
even FPT (see [53, Chapter 3.4]).

Example of proof of NP-completeness. First, note that the problem is in NP. The NP-
hardness follows from a reduction to VERTEX COVER. Let G be a graph and k be a
integer number. Introduce for each vertex v of G the variable x,. For each edge uv
introduce the set of clauses Cy: (2, V ) A (T, VTy) A (Ty V x,) A (T, V Ty). We obtain
a CNF formula F'.

If the graph G has a vertex cover S of size at most k, then we remove the variables
corresponding to the vertices of S. This removes all the clauses of F' and thus we obtain
CNF formula which is satisfiable. Conversely, if there is a set S of at most k variables
whose removal from F' creates a satisfiable formula, then we remove the vertices corre-
sponding to the variables of S in G. After removal, if some edge uv remains in G, then
Cy» remains in F after the removal of S. This is a contradiction as C,,, is a non-satisfiable
set of clauses. m

CLAUSE DELETION ALMOST 2-SAT Parameter: k.
Input: A 2-CNF Boolean formula F' and an integer k.

Question: Is there a set of k£ clauses that can be deleted from F' so that the resulting
formula is satisfiable?

CLAUSE DELETION ALMOST 2-SAT is NP-complete (see [53, Exercice 3.21] and even
FPT [165)].

k-EDGE-COLORING
Input: A graph G with maximum degree k.
Question: Does G admit a proper k-edge-coloring?
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The problem k-EDGE-COLORING was proved to be NP-Complete even for regular
graphs in [106] (for the case k = 3) and [140] (for the general case).

PLANAR VERTEX 3-COLORING
Input: A planar graph G with maximum degree 4.
Question: Does GG admit a proper vertex 3-coloring?

The problem PLANAR VERTEX 3-COLORING was proved to be NP-Complete in [83].

1.4 A little bit of algebra

In this section, we recall some classical algebraic notions. While this section is not es-
sential in order to understand this thesis, it eases the understanding of Chapter 5. We
also introduce here the Combinatorial Nullstellensatz (Theorem 1.77) which is used in
Chapter 7 and Chapter 10. For more details, we refer the reader to [203] (in French) or
any bachelor level textbook on algebra.

1.4.1 Well-founded ordering and two classical proof methods in
Graph Theory

A number of proofs in this thesis are done either by induction or by minimal counter-
example. These two types of proofs are extremely similar and rely on well-founded orders
on graphs. We first recall some definitions.

Definition 1.67 (Order). An order relation R over a set X is a subset of X2, the set of
ordered pairs of elements of X, verifying:

1. R is irreflexive (i.e. Vo € X, (x,z) ¢ R),
2. R is transitive (i.e. Vx,y,z € X, (z,y) € R and (y, 2) € R implies (z, z) € R), and
3. R is antisymmetric (i.e. Yo,y € X, (z,y) € R implies (y,z) ¢ R).

We often note xRy for (z,y) € R. A classical example of this notation is x < y where x
and y are integers and < is the order on the natural numbers.

Definition 1.68 (Well-founded order). A well-founded order R is an order over a set X
for which there is no sequence (u;);en such that (u;y1,u;) € R for all i € N i.e. there is
no infinitely decreasing sequence for R.

For example, the order < is well-founded on the set of natural numbers but is not
well-founded on the set of relative numbers. Let us now present the two proof methods.

Proof by induction. Let P be a predicate on a set X (for us it would be a set of
graphs), and let < be a well-founded order on X. To prove P(x) for every = € X it
suffices to prove that for every z € X, if P(y) holds for every y € X with y < z, then
P(x) holds.

Proof by minimal counter-example. Let P be a predicate on a set X (for us it would
be a set of graphs), and let < be a well-founded order on X. Let A = {x € X,=P(z)}.
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If A is empty, then P(x) holds for every x € X. Otherwise, by contradiction, consider x,,
a minimal element of A. Then by definition, P(y) holds for every y € X, y < x,,. In this
type of proof, we want to find a contradiction with the existence of z,,.

A proof by minimal counter-example can generally be rewritten as a proof by induction
but it is sometimes easier to write it as a minimal counter-example proof. Finally recall
that, when coloring graphs, if each part of a proof by induction is constructive, then we
can derive an algorithm from the proof to construct the coloring. These algorithms are
generally polynomial.

Let us now see how to construct well-founded orders on the set of graphs. One way to
achieve this goal is to consider the proper subgraph relation or, the weaker proper induced
subgraph relation. Even if these relations are natural, they do not offer much freedom on
which “smaller graphs” can be considered.

Another way to construct such orders is to reduce to the order on the natural numbers.
Let f be a function from the set of graphs to the set of natural numbers, and for all
graphs G and H, define G <; H if and only if f(G) < f(H). It is easy to verify
that < is a well-founded order. Some classical examples are when f,(G) = |V(G)| or
1.(G) = |E(G).

Finally we can combine multiple functions from the previous approach with each other.
Let f1, fo, ..., fr be k functions from the set of graphs to the natural numbers. The
lexicographic order < is a well-founded order where < is defined by G < H if and only if
there exists i € {1,...,k} such that f;(G) < f;(H) and for all j <1, f;(G) = f;(H). We
often note the lexicographic order by listing the functions it is composed of, for example
(IV(G)|,|E(G)]) is the lexicographic order created from the functions f, and f. of the
previous paragraph.

More generally, if <y, <o, ..., <; are k well-founded orders on the set of graphs,
then the lexicographic order (<1, <a,...,<g), noted < for short, is a well-founded order.
Here < is defined by G < H if and only if there exists i € {1,...,k} such that G <; H
and for all j < 4, neither G <; H nor H <, G.

1.4.2 Equivalence and quotient

A notion that is underlying in the theory of signed graphs (see Part I) is the notion of
equivalence. We recall some definitions here.

Definition 1.69 (Equivalence relation). An equivalence relation R over a set X is a
subset of X2, the set of ordered pairs of elements of X, verifying:

1. R is reflexive (i.e. Vz € X, (x,x) € R),
2. R is transitive (i.e. Vz,y,2 € X, (z,y) € R and (y, 2) € R implies (z,z2) € R), and
3. R is symmetric (i.e. Va,y € X, (z,y) € R implies (y,z) € R).

We often note xRy for (z,y) € R. An example of this notation is (a,b) =¢ (¢, d) where
a and c are relative integers, b and d are positive integers, and =g is equality over the
a C

rational numbers defined as (a,b) =g (c,d) if and only if ad = bc (i.e. § = § if only
if ad = be).

Definition 1.70 (Equivalence class, quotient set). The equivalence class of an element
x € X for the relation R, denoted T, is the set {y € X : xRy}. The quotient set of X for

the relation R, denoted X/R, is the set {Z: = € X}.
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Note that the T notation is also used in the context of Boolean formulas, the signifi-
cation of the notation should always be clear from the context.

Considering a property “up to equivalence” is the same as considering this property in
the quotient set. Therefore, a graph can be seen as an element of the quotient of the set
of pairs (V(G), E(G)) by the isomorphism equivalence relation. In Chapter 5 Section 5.4,
we use some notion of quotient on graphs which is defined using the notion of quotient
set.

1.4.3 Algebraic structures

Let us start by recalling some algebraic structures.

Definition 1.71 (Monoid). A monoid (G, *) is an ordered pair where GG is a set and
* : G x G — (G is a binary operation, verifying the following:

1. * is associative (i.e. V,y,2 € G, (zxy) x 2 =z *x (y x 2)),

2. (G, %) has a neutral element e (i.e. Vo € Giexx =z xe = ).

A monoid is commutative if and only if for every z,y € G, x xy = y * x. A commutative
monoid is also called an abelian monoid.

Definition 1.72 (Group). A group (G, *) is a monoid where each element has an inverse
(i.e. Vx € G,y € G,oxy = y*x = e). We generally write ! for the inverse of .
When using the + binary operation, we prefer to write —x for the inverse of x.

A group (G, %) is commutative if and only if (G, *) is commutative as a monoid. A
commutative group is also called an abelian group.

To simplify notation, we often note G for the group (G, *). If H is a subgroup of G
(i.e. H C G and (H, %) is a group), then the quotient group G/H is the group (G/N, *)
where x ~ y if and only if z*y~! € H and where the * operation, in the quotient, verifies
T*xY=2T*Y.

Definition 1.73 (Semiring). A semiring (A, 4+, X) is a triplet where A is a set and +
and x are two binary operations, verifying the following:

1. (A, +) is a commutative monoid with neutral element 0,
2. (A, x) is a monoid with neutral element 1,

3. X is distributive over + (i.e. Va,y,z € A,x X (y+2) =xxy+zxzand (y+2)xx =
yXax+zXxXz),

4. 0 is an absorbing element for x (i.e. Ve € A, 0 x z =2z x 0 =0).

A semiring is commutative if and only if (A, X) is a commutative monoid. A semiring has
the cancellation property if and only if Vz,y,z € A, (x X y = x X z implies y = z) and
(y X x = z x x implies y = z). A commutative semiring is also called an abelian semiring.

Definition 1.74 (Ring). A ring (A, +, X) is a semiring where (A, +) is a group. A ring
is commutative if and only if (A, X) is a commutative monoid. A ring has the cancellation
property if and only if it has the cancellation property as a semiring. A commutative ring
is also called an abelian ring.
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Definition 1.75 (Field). A field (F,+, x) is a ring where (F, x) is an abelian group.

In this thesis, we only consider commutative fields. Note that some authors consider
fields to are non-commutative. Note also that a field has the cancellation property.

Recall that a polynomial is a finite sum of monomials and a monomial is the product
of a coefficient and a finite list of indeterminates with possibly some repetitions.

Example 1.76. Some examples in mathematics:
. The structure (N, +), where N is the set of natural numbers, is an abelian monoid.
. The structure (Z,+), where Z is the set of relative numbers, is an abelian group.

1
2
3. The structure (N, +, x) is an abelian semiring.
4

. The structure (N[(X;)ien], +, X), where N[(X;);en] is the set of polynomials with
coefficients in N over the indeterminates (X;);en, is an abelian semiring.

ot

The structure (Z, +, x) is an abelian ring.

6. The structures (Q,+, x) and (R, +, x), where Q is the set of rational numbers, and
R is the set of real numbers, are fields.

7. The structure ({—1,1}, x) is an abelian group.

8. The structure (M, (R), +, x), where M,,(R) is the set of n x n matrices over the
set of reals, is a non-commutative ring.

9. The structure (F[X], +, x), where F[X] is the set of polynomials with coefficients
in the field I, is an abelian ring.

10. The structure F, = (Z/pZ,+, x) is an finite field.
Other examples in graphs:

11. The structure (&,W), where & is the set of graphs and W is the disjoint union
operation (i.e. G & Gy is the graph containing two disjoint copies of G; and Gs),
is an abelian monoid.

12. The structure (&, W, *), where * is either the Cartesian product of graphs [J (see
[169]), the tensor product of graphs x (see [192] volume 2 p.384), the strong product
of graphs X (see [169]) or the lexicographical product of graphs - (see [96]), is a
semiring. You can find more discussion about these products in Chapter 5.

1.4.4 Combinatorial Nullstellensatz

Let us conclude this section by presenting the Combinatorial Nullstellensatz. Take a
graph G, an induced subgraph H of G and a k-vertex coloring ¢ of H. One might want
to extend c to all vertices of G but this might be very complicated to do manually. Let
us see how to use the Combinatorial Nullstellensatz.

Theorem 1.77 (Combinatorial Nullstellensatz [4]). Let F be an arbitrary field, and let
P = P(Xy,...,X,) be a polynomial in F[Xy,...,X,]. Suppose that the coefficient of a
monomial Xt .. .X;fp, where each k; is a non-negative integer, is non-zero in P and the
degree deg(P) of P equals >-F_ k;.

If moreover Sy, ..., S, are any subsets of F with |S;| > k; fori=1,...,p, then there
are s1 € S1,...,8, € S, so that P(sy,...,s,) # 0.
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Let vy, ..., v, be the vertices of V(G) \ V(H) and vp41, ..., v, be the vertices of H.
For each vertex v; € V(G)\ V(H), let S; = {1,...,k} \ {c(u) : we€ N(v;)NV(H)}. By
definition, only the colors of S; can be assigned to v; without creating a conflict with a
neighbor of v; in H. Let P be the following polynomial:

P(X1,...,X,) = ﬁ 1 x.—X).

i=1v; €N (vi)
j<i

Suppose that ¢’ is an extension of ¢ to G such that ¢/(v;) € S;. Note that ¢ is proper if
and only if for every integer ¢ and j such that j < i < p and vv; € E(G), ¢'(i) —'(j) # 0.
In particular ¢ is proper if and only if P(c/(vy),. .., (v,)) # 0.

Let us suppose that we can apply the Combinatorial Nullstellensatz: suppose that P
has a maximal non-zero monomial X" .. .XI’,“P where ¥ | k; = deg(P) and that each k;
verifies k; < |S;|. By the Combinatorial Nullstellensatz, there are s; € Sy,...,s, € S,
such that P(sy,...,s,) # 0.

Now let ¢ be an extension of ¢ to G defined by ¢(v;) = s; for every i < p. Note that
by definition of the s;’s, P(c/(v1),...,¢(v,)) # 0 and thus ¢ is proper. Hence we were
able to extend c to G.

Note that the previous procedure relies on two parts. The first consists in finding the
sets S;’s and the polynomial P. While finding the sets is often easy, it is the set of colors
which do not create a conflict, it might be more difficult to find the polynomial depending
on the problem. In this thesis, all polynomials are fairly simple.

The second step is finding the right monomial in P and showing that it has a non-zero
coefficient. Remark that it is likely that no such monomial exists in P, in this case, one
has to start again by changing the subgraph H. When the polynomial is of constant size
(i.e. when we want to remove a fixed structure like a triangle), we can just exhibit the
monomial and its coefficient. When the polynomial can have an arbitrary size, we must
find manually a monomial and find a formula to show that it is non-zero.

We use the Combinatorial Nullstellensatz in Chapter 7 and Chapter 10.
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Chapter 2

Introduction to signed graphs

The subject of this first part is the study of different problems on signed graphs. The goal
of this chapter is to present what are signed graphs and to provide tools to manipulate
them.

Signed graphs are a type of graph with two types of edges: positive edges and negative
edges. They were introduced by Heider in [97] and latter formalized by Harary in [92]
to model problems in social psychology [40, 178]. In these applications, the vertices are
actors in a social environment (people in a given community, countries...) and the two
types of edges model some notion of friendship (people who like/dislike each over, alliances
and political tension for countries...). For more details about the diverse applications of
signed graphs, we refer the reader to Section 2.1.4.

Contents
2.1 Key definitions . . . . .. ... 00000 oo oo s s 54
2.1.1 Definition of signed graphs . . . . ... ... ... ... .. .. 54
2.1.2 Balance of cycles, equivalence of signed graphs . . . .. .. .. 55
2.1.3 Switching . . . . . ... 55
2.1.4 Applications of signed graphs . . . . . ... ... ... ... .. 58
2.2 Homomorphisms and coloring of signed graphs . .. ... .. 58
2.2.1 Homomorphisms of signed graphs . . . . . .. .. .. ... ... 59
2.2.2 Coloring of signed graphs . . . . . .. .. .. ... ... ... 60
2.2.3 Sign-preserving homomorphisms and sign-preserving colorings . 61
224 Signed cliques . . . . . . ... 62
2.3 Classesofcycles . ... ... ... ... e 63
2.4 Complexity . . . . .. i e e e e 64
2.5 Similar notions and generalizations . . . . . . ... ... .... 65

We mainly follow the terminology of [153]. Most definitions in this chapter come from
[92, 154, 208].
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2.1 Key definitions

2.1.1 Definition of signed graphs
Let us start with the formal definition of a signed graph.

Definition 2.1 (Signed graph). A signed graph (G, o) is a graph G, called the underlying
graph of (G, o), along with a function ¢ : E(G) — {+1, —1} called the signature of (G, o).
For every edge e of G, o(e) is the sign of e. For the sake of simplicity, we sometimes use
+ (resp. —) instead of +1 (resp. —1) for the sign of an edge. The edges in 0~!(+1) are
the positive edges of (G, o) and the edges in o71(—1) are the negative edges of (G, o).

If the underlying graph G of a signed graph (G, o) has some property (e.g. G is planar,
simple, bipartite, complete...) then we say that (G, o) has this property (e.g. (G,0) is
planar, simple, bipartite, complete...). A signed graph (G, o) is all-positive (resp. all-
negative) if it does not have negative edges (resp. positive edges). Unless stated otherwise,
signed graphs are simple. See Figure 2.1 for examples of signed graphs. When drawing
signed graphs, we always represent positive edges with blue edges and negative edges with
discontinuous red edges.

(a) A signed graph having the Petersen graph as underlying graph.
A

R BN

- -

......... e
(b) The complete signed graph K. (c) The complete signed graph K .

Figure 2.1: Examples of signed graphs.

Notation 2.2. We often denote a signed graph (G, o) as (G,X) where ¥ is the set of
negative edges, that is ¥ = o71(—1). This allows us to easily state the signature of the
signed graph. These two ways to represent a signed graph are equivalent and will be used
interchangeably.

We note K\ (resp. K, ) for the complete signed graph (K, @) (resp. (K, E(k}))) of

order p with only positive (resp. negative) edges. See Figure 2.1(b) and Figure 2.1(c) for
examples of complete signed graphs.
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2.1.2 Balance of cycles, equivalence of signed graphs

One key concept of the theory of signed graphs is the notion of balance.

Definition 2.3 (Balance). Let (G, o) be a signed graph and W be a walk s, ..., s, in G.
We say that W is a balanced walk if (W) = o(s9s1)o(s182) ... 0(8iSi11) .. 0(Sp_18,) =1
and an unbalanced walk otherwise. Similarly, this notion can be extended to closed walks,
paths and cycles.

A signed graph where all closed walks are balanced is said to be balanced. A signed
graph (G, o), such that (G, —0) is balanced, is antibalanced (—o is the function which
assign to each edge e of G the sign —o(e)). In general, for the same ordinary graph G,
there are several signatures o for which (G, o) is balanced.

We note an unbalanced path (resp. balanced path) of order k by U Py, (resp. BP;) and
an unbalanced cycle (resp. balanced cycle) of order k by UCj (resp. BCy). Note that
there are multiple signed cycles/paths with the same length and the same balance. These
notations refer to any cycle/path with those characteristics.

These notions of balanced and antibalanced graphs where introduced by Harary in [92].
See Figure 2.2 for an example of a balanced signed Petersen graph with some negative
edges.

Figure 2.2: A balanced signed Petersen graph.

2.1.3 Switching

The following important operation on signed graphs was introduced by Zaslavsky in [208].

Definition 2.4. Let (G,0) be a signed graph and v be a vertex of G. To switch v
is to create the signed graph (G,o¢’) where ¢’(e) = —o(e) when e is incident to v and
o'(e) = o(e) otherwise. To switch a set X of vertices of (G, o) is to create the signed
graph (G, 0’) where ¢’ is obtained by switching every vertex of X, in any order (it is not
difficult to see that the order does not matter).

See Figure 2.3 for some examples.

Lets us state some easy observations. Switching a vertex v of (G, o) twice does nothing.
Switching a set X of vertices of (G, o) creates the signed graph (G, o’) where for every
edge uv of G, o(uv) = —o’(uv) if and only if one of u and v belongs to X and the other
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(a) The signed graph (G, o). (b) The signed graph (G, o). (¢) The signed graph (G, d").

Figure 2.3: Example of switchings. The signed graph (G,¢’) is obtained from (G,o) by
switching d. The signed graph (G,c”) is obtained from (G, o¢’) by switching f. Alternatively,
(G, 0") is obtained from (G, o) by switching { f, d}.

does not belong to X. Switching a set X of vertices of (G, o) creates the same signed
graph as switching the set V(G) \ X. The previous observations imply the following
remark.

Remark. The switching operation on a signed graph (G, o) consists exactly in choosing
an edge cut F(X,V(G)\X) of G and negating the signs of all the edges of E(X, V(G)\ X).

Zaslavsky in [208] defined the notion of equivalent signed graphs.

Definition 2.5 (Equivalence of signed graphs). Two signed graphs (G, o01) and (G, 09)
on the same underlying graph G are equivalent if and only if we can obtain (G, o2) from
(G, 1) by switching a subset of vertices of (G, o1). In this case, we note (G, 1) = (G, 03).
We also say that the two signatures o; and o are equivalent and we note o1 = o5.

One can observe that switching does not change the balance of closed walks. This
follows from the following observation.

Observation 2.6 (Zaslavsky [208]). If C is a cycle of a graph G, then switching any
number of vertices of G does not change the sign of C.

This implies that every signed graph obtained from (G, o) by switching a subset of
vertices has the same set of balanced (resp. unbalanced) closed walks. In fact, the set of
signed graphs on the underlying graph G with the same set of balanced (resp. unbalanced)
closed walks as (G, o) is exactly the equivalence class of (G, o).

Theorem 2.7 (Zaslavsky [208]). Two signed graphs on the same underlying graph G are
equivalent if and only if they have the same set of balanced cycles.

The previous theorem implies that we can work with the balance of closed walks or
with switchings depending on which notion is the easiest to use when treating equivalence
of signed graphs.

As mentioned before, two signed graphs (G, 1) and (G, 02) can both be balanced even
if 01 # 09. Nonetheless, as highlighted by their equivalence, these two signed graphs have
similar properties.

Let us see some examples. The signed Petersen graph in Figure 2.2 is equivalent to the
signed Petersen graph with only positive edges. Two signed cycles of the same length are
equivalent if they have the same parity of positive (resp. negative) edges. In particular all
paths (resp. cycles) with the same length (resp. the same length and the same balance)
are equivalent. Two signed forests with the same underlying graph are equivalent. See
Figure 2.4 for one more example.

The following theorem follows from the proof of Theorem 2.7.
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Figure 2.4: Three equivalent signed graphs.

Theorem 2.8 (Zaslavsky [208]). For any two signed graphs (G,o1) and (G,09) on the
same underlying graph G, we can test in O(|E(G)|) time whether they are equivalent or
not.

Independently, Harary and Kabell proposed an algorithm to determine if a graph is
balanced using similar techniques [94].

In order to understand how Zaslavsky’s algorithm works, we need to understand how
to switch a signed tree so that the resulting signed tree is all-positive. Let (T, 7) be
our signed tree. Suppose that uv is a negative edge of (T, 7). Let V, be the set of
vertices connected to the vertex u in T'— uv. Switching V,, modifies the sign of the edge
cut E(V,,V(T)\V,). As T is a tree, only uv changes sign and becomes positive. Hence we
were able to reduce the number of negative edges in our tree. By repeating this process,
we can create the all-positive signed tree (T, &).

Now consider that we are given two signed graphs (G,o01) and (G, 03) on the same
underlying graph G. W.l.o.g. we assume that G is connected, otherwise we could perform
the same procedure on each connected component. Choose a spanning tree 7" in G' and
perform switchings on both graphs in such a way that 7" becomes all-positive. We obtain
(G,07) and (G, d}) after the last step. If of = o} then (G, 0}) and (G, o}) are equivalent,
otherwise they are not. Indeed, if an edge uv verifies o (uv) # o (uv) then wv ¢ E(T).
Consider the unique positive path in 7" joining u and v, the cycle composed of this path
and the edge uv is balanced in one signed graph and unbalanced in the other, hence the
two graphs are not equivalent.

Using a spanning tree is a powerful technique when studying signed graphs. We use
this technique explicitly and implicitly in Chapter 4 and Chapter 5.

2.1.4 Applications of signed graphs

As mentioned in the introduction, signed graphs were designed to model social relation-
ships. The sign of the edge between two vertices models the relationship between the
vertices. A classical example of this is the study of the relationships between countries
involved in both World wars [7].

A central notion of the theory of signed graphs, the balance of cycles, takes a partic-
ular meaning in social studies: this notion characterizes stable situations from unstable
situations. An example, in the context of countries, can be described as follows: consider
three countries A, B and C, B is allied with A and C' while A and C' are about to declare
war. In this example, the country B will side with one of A or C, thus changing the
nature of their relationship. The same situation but where A and B are already at war, is
stable since the war declaration between A and C' will not change the relation between A
and B nor between B and C. Stable situations are represented by balanced cycles while
unbalanced cycles represent unbalanced situations.
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Another notion, called the frustration index of a signed graph, is the minimum number
of edges to remove from a signed graph (G, o) in order to obtain a balanced signed graph.
This notion was introduced by Harary [93] under the name of line index of a signed graph.
This notion has been extensively studied (e.g. see [67, 94, 111, 149]) and has applications
in particular in physics. One such application is for ferromagnetic materials under the
Ising model [182, 193]: each vertex has spin up or down, these vertices can switch spin
(i.e. exchange up with down) which also changes the interaction between the vertices. As
the state with the least negative edges, which can be obtained by switching, corresponds
to a minimisation of the energy of the system, these materials tend to converge to this
state. Unfortunately, computing the frustration index is NP-hard [111].

2.2 Homomorphisms and coloring of signed graphs

As we will see, there are multiple definitions of coloring for signed graphs. One of those
colorings was introduced by Zaslavsky in [208]. In this thesis, we will not consider this
coloring.

The one we are the most interested in is the notion of coloring presented by Naserasr,
Rollova and Sopena in [154]. This notion relies on the generalization of the concept of
homomorphism in the context of signed graphs.

2.2.1 Homomorphisms of signed graphs

Let us see how the concept of homomorphism is defined on signed graphs.

Definition 2.9 (Homomorphism of signed graphs). A homomorphism from a signed graph
(G, 0) to a signed graph (H, ) is a homomorphism ¢ from G to H which maps balanced
(resp. unbalanced) closed walks of (G, o) to balanced (resp. unbalanced) closed walks
of (H,).

Alternatively, a homomorphism ¢ from (G, o) to (H,7) is a homomorphism from G
to H such that there exists a signature ¢’ of G with ¢’ = o, such that if uv is an edge of
G, then 7(p(u)p(v)) = o' (uv).

When there is a homomorphism from (G, o) to (H, ), we note (G,0) — (H,7) and
say that (G, o) maps to (H,m). Here (H, ) is the target graph of the homomorphism.

See Figure 2.5 for an example of homomorphism of signed graphs.

(a) The signed graph (G, o). (b) The signed graph (G, o). (c) The signed graph (H, ).

Figure 2.5: An example of a homomorphism ¢ from a signed graph (G, o) to a signed graph
(H,m) where p(a) = ¢(d) = 1, ¢(b) = 2, ¢(f) = ¢(c) = 3 and p(e) = 4. The signed graph
(G,0') is a signed graph equivalent to (G, o) such that the edges of (G,¢’) and their images
through ¢ have the same sign.
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Proposition 2.10 (Naserasr, Rollovd and Sopena [154]). The following statements hold.

1. If (G,0) —s (H,7), (G,0) = (G,0') and (H,n) = (H,n') then (G,0') — (H,7'),
2. Zf (A7 UA) —s (B7UB) and (Bva—B) —s (Cv O_C) then <A70A) —s (07 UC')'

Note that the previous proposition implies that, when trying to construct a homomor-
phism from (G, o) to (H, ), we can always switch the signed graph (H, ) in order to fix
a simpler target graph.

Definition 2.11 (Chromatic number of signed graphs). Let (G, o) be a signed graph.
The chromatic number of (G, o), denoted x(G, o), is the order of the smallest simple
signed graph (H,m) for which (G,0) — (H, 7).

Note that by definition, xs(G,0) > x(G) for every signed graph (G, o).

Recall that we can construct homomorphisms of graphs through a sequence of identi-
fications. In the rest of this thesis, a digon will be a UCj, i.e. two vertices linked by two
edges, one positive and one negative. As we require the target graph in a homomorphism
of signed graphs to be simple, we must be sure to never create digons nor loops when
identifying vertices. A digon is created when we identify two vertices u and v which are
endpoints of a U P3 path.

Hence, before identifying two non-adjacent vertices u and v, we need to switch the
signed graph in order to remove every U P; containing u and v. Note that this is not
always possible. For example, in the unbalanced cycle UCY, we cannot identify any pair
of vertices.

We say that two vertices u and v of a signed graph (G, o) are identifiable if and only
if there exist o’ equivalent to o such that, in (G,0’), u and v can be identified without
creating a loop nor a digon. The following theorem gives a characterization of identifiable
vertices.

Theorem 2.12 (Naserasr, Rollova and Sopena [154]). Two vertices of a signed graph are
identifiable if and only if they are not adjacent and do not belong to the same UCy.

In Figure 2.5, we identified the two pairs of vertices {a,d} and {c, f} in (G,0’) to
create (H,m). Note that (H,7) does not contain any pair of identifiable vertices by
Theorem 2.12.

2.2.2 Coloring of signed graphs

As for undirected graphs, we can define a notion of k-coloring for signed graphs. This
leads to an alternative definition of the chromatic number of signed graphs.

Definition 2.13 (k-coloring of signed graphs). A signed graph (G, ) admits a k-coloring
if there exists ¢’ = o such that (G, o’) admits a proper vertex coloring ¢ : V(G) — [k]
verifying that for every i,j € [k], all edges wv with ¢(u) = ¢ and ¢(v) = j have the same
sign in (G, 0’).

The chromatic number xs(G, o) of (G, o) is the smallest k such that (G, o) admits a
k-coloring.
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As for ordinary graphs, one can create a homomorphism from a coloring: the colors
are the vertices of the target graph. To construct a coloring of a signed graph (G, o)
from a homomorphism ¢ from (G, o) to a signed graph (H, ), it suffices to color the
vertices of G with their image through ¢ and switch (G, o) in such a way that each edge
has the same sign as its image through the homomorphism (see Figure 2.6). In order to
find which vertices to switch to achieve this signature, one can satisfy a particular 2-SAT
formula with variables (2,)uev(c) and switch the vertices assigned to true. Such a formula
can be constructed as follows: for each edge wv € E(G), if uv has the same sign as its
image through ¢ then add the two clauses (z, V 7y)(Zy V @), i.e. v and v must both be
switched or both not be switched. If uv does not have the same sign as its image then
add to the 2-SAT formula the two following clauses: (7, V Ty)(x, V 2,), i.e. exactly one
of v and v must be switched. Note that such a formula is always satisfiable by definition
of a homomorphism.

Figure 2.6: A coloring of a signed graph. This coloring is a coloring of the graph (G, ') of
Figure 2.5 obtained from the homomorphism presented in the figure.

Note that, if (G, o) is a balanced (resp. antibalanced) signed graph then x,(G, o) =
X(G). Indeed if G — H, then (G,0) —, (H,2) (recall that (H, @) is the all-positive
signed graph with underlying graph H) as every closed walk of (H, &) is balanced.

Note that a k-coloring of (G, o) is also a k-coloring of (G, —c). We can state a more
precise statement with the following observation.

Observation 2.14. Let (G,0) and (H,m) be two signed graphs.We have (G,0) —
(H, ) if and only if (G, —0) —s (H,—m). In particular, xs(G,0) = xs(G, —0).

This observation is useful when trying to simplify the case analysis. In particular in
Chapter 3, we reduce some complexity problems to others using this observation.

2.2.3 Sign-preserving homomorphisms and sign-preserving col-
orings
Let us see another important type of homomorphism and coloring of signed graphs.

Definition 2.15 (Sign-preserving homomorphism of signed graphs). A sign-preserving
homomorphism from a signed graph (G, o) to a signed graph (H, ) is a homomorphism
¢ from G to H such that for every edge e € E(G), m(¢(e)) = o(e). When there is a
sign-preserving homomorphism from (G, o) to (H, ), we note (G,0) —?® (H, ).

A signed graph (G, o) admits a sign-preserving k-coloring if (G, o) admits a proper
vertex coloring ¢ : V(G) — [k] verifying that for every i,j7 € [k], all edges uv with
c(u) =i and ¢(v) = j have the same sign.

The sign-preserving chromatic number of a signed graph (G, o), denoted x2(G,0), is
the smallest order of a simple signed graph (H,7) such that (G,o) —?® (H, ). Alterna-
tively, it is the smallest &k for which (G, o) admits a sign-preserving k-coloring.

page 60 Dimitri Lajou



Chapter 2. Introduction to signed graphs

Note that a signed graph can be interpreted as a 2-edge-colored graph where the two
colors are +1 and —1. With this interpretation, a sign-preserving homomorphism is the
same object as a homomorphism of 2-edge-colored graphs. This is why, in the literature,
we often find the term 2-edge-colored graph to designate a signed graph for which we do
not allow switchings. Note however that by specifying that the two colors are +1 and —1
in signed graphs, we obtain an object with more structure than just the two colors as we
can reason on signs.

For example, with the notation of Figure 2.5, ¢ is a sign-preserving homomorphism
from (G,0’) to (H, ). Note that there is no sign-preserving homomorphism from (G, o)
to (H, ).

The notion of sign-preserving homomorphism is related to homomorphisms of signed
graphs through the following construction.

Definition 2.16 (Double switching graph). The double switching graph of (G, o), denoted
DSG(G, o), is the signed graph constructed as follows.

1. The vertex set of DSG(G, o) is V(G) x {0,1},

2. for every edge uv of G, we create the following four edges (u,0)(v,0), (u,1)(v, 1),
(u,0)(v,1) and (u, 1)(v,0), the first two edges having sign o(uv) and the latter two
edges having sign —o(uv).

See Figure 2.7 for an example of a double switching graph.

(a) A signed graph (G, o). (b) The double switching graph
DSG(G, o).

Figure 2.7: An example of a double switching graph. For simplicity, a vertex (z,e) of

DSG(G, o) with x € {a,b,c,d} and € € {0, 1} is noted ze.

The following theorem justifies such a construction.

Theorem 2.17 (Brewster, Foucaud, Hell and Naserasr [28]). Let (G,0) and (H,n) be
two signed graphs. The following are equivalent.

1. (G,0) — (H,7),

2. (G,0) —? DSG(H, ) and,

3. DSG(G,0) —* DSG(H, ).

We can also construct sign-preserving homomorphism by a sequence of identifications.
Here two vertices u and v can be identified if and only if they are not adjacent and if
there is no vertex w in (G, o) such that o(uw) # o(wv). The path u, w, v is an alternating

path. In general, a walk (resp closed walk) so,sq,dots, s, is alternating if and only if
0(8i8i41) # 0(Siy18i42), for every i € [0,n — 2] (resp. i € [0,n — 1]).
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2.2.4 Signed cliques

The notion of homomorphism allows us to generalize the notion of cliques.

Definition 2.18 (Signed clique). A signed graph (G, o) is a signed clique if x5(G,0) =
|V (G)|. The absolute signed clique number of a signed graph (G, o), denoted w,s(G, o) is
the order of the largest subgraph of (G, o) which is a signed clique. The relative signed
clique number of a signed graph (G, o), denoted w,s(G, o) is the greatest number of vertices
which are pairwise non-identifiable in (G, o).

Note that xs(G,0) > ws(G,0) > wes(G,0). Signed cliques are interesting as it is
easy to verify whether a given signed graph is a signed clique or not (see Theorem 2.12)
and their chromatic number is very easy to compute. Because of this, they make useful
examples for bounds on the chromatic number. See Figure 2.8(a) and Figure 2.8(b) for
some examples.

(a) A signed clique. (b) Another signed clique. (¢) An sp-clique which is not a
signed clique.

Figure 2.8: Two examples of a signed cliques (a) and (b) and an example of an sp-clique (c).

Other interesting cliques in signed graphs are sp-cliques.
Definition 2.19 (sp-clique). A signed graph (G, o) is an sp-clique if x2(G,0) = |V (G)|.

An sp-clique is the same concept as a 2-edge-colored clique. See Figure 2.8(c) for an
example.

One can easily transform an sp-clique into a signed clique by creating a new vertex
adjacent to all the other vertices of the sp-clique with positive edges.

2.3 Classes of cycles

One important part of the study of signed graphs is to study the signed cycles. As we
saw, a signed cycle can be balanced or unbalanced. Another, more usual, way to divide
cycles is through the parity of their lengths. Indeed even cycles behave differently than
odd cycles.

This implies that we can separate the set of all signed cycles into four families BC¢,ep,
BC\aa, UCeyen, and UC,44, depending on the parity of the number of negative edges (even
for BCepen, and BCyyq and odd for UC,,e, and UC,qq) and the parity of the length of the
cycle (even for BCeyen, and UCeye, and odd for BC,qq and UC,44). See Figure 2.9(a) for

some examples.

Note that every graph has balanced even closed walks as long as it is non-empty.
Indeed, if uv is an edge of a signed graph (G, o), the closed walk uvu is balanced even.
The class of graphs with only signed cycles in BC,,., is the class of bipartite balanced
signed graphs, i.e. signed graphs which are bipartite (they do not have odd cycles) and
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even length odd length
Boeven BCodd
balanced <> /\ O D' O N
‘Y. I{.
balanced <>UCA" UCoua
unbalance S < ‘) Q I:" :.:" I~/‘

(a) The usual division between balanced/unbalanced and even/odd for signed
cycles with some examples.

number of edges
even number of negative
odd number of negative

even number of positive | odd number of positive

BClyen BClaa
U Codd UCeven

(b) The same classes divided according to the parity of the number of edges of each sign.

Figure 2.9: Classes of signed cycles.

balanced (all of their cycles are balanced). Note that a bipartite balanced signed graph
(G, o) verifies x5(G, o) = x(G) = 2 since every such graph is balanced, and thus equivalent
to (G, @) which verifies xs(G, @) = x(G).

The most difficult class to manipulate is the class UC.,.,. Indeed this class contains
the signed graph UC, which forbids identifications of some non-adjacent vertices (see
Theorem 2.12).

This intuition is confirmed when looking at the chromatic number of signed cycles.

Theorem 2.20. Let (C,0) be a signed cycle. We then have:
1. x5(C,0) =2 if (C,0) € BCeyen,
2. xs(C,0) =3 if (C,0) € BCohyq U UCloya,
3. xs(Cyo) =4 1if (C,0) € UCepen-

Proof. By [60], we already have the upper bounds. A homomorphism of signed graphs
is also a homomorphism of graphs thus x(C) < x(C, o). This proves the lowers bounds
for the first two cases. Let (C,0) = UCy, and suppose xs(C,0) < 3. Then (C,0) —
(K3, m). In each case, (K3, ) can be switched either to be all-positive or to be all-negative.
This means that (C, o) can be switched either to be all-positive or to be all-negative, which
is not the case as UCy, has an odd number of negative edges and an odd number of positive
edges, a contradiction. We get the desired lower bounds in each case. O

The table in Figure 2.9(b) gives a more accurate representation of the division between
these classes. The “more complicated” class UCl,., is the furthest away from the simplest,
BCpen, and we can see the symmetry between BC\,qq and UC,4q. This representation is
important to keep in mind, as at first glance, UC,4; seems to be the more complex class
while in reality, UCeyep, is.

We can define the equivalent of a subgraph for signed graphs.

Definition 2.21 (Signed subgraph). A signed subgraph (H, oc[H]) of a signed graph (G, o)
is a signed graph such that H is a subgraph of G and for every edge e of H, o[H|(e) = o(e).
For a subset X of vertices of G, the induced signed subgraph (G,0)[X] of (G, o) (or signed
subgraph of (G, o) induced by X), is the signed subgraph (G[X],o[X]) of (G,0) for
which o[ X]| = o[G[X]].
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2.4 Complexity

Let us define two decision problems. Let (H, ) be a fixed signed graph.

SIGNED-(H, )-COLORING
Input: A signed graph (G, o).
Question: Do we have (G,0) —, (H,7)?

(H,7)-COLORING
Input: A signed graph (G, o).
Question: Do we have (G,0) —? (H,m)?

The switching core (s-core for short) of a signed graph (G, o) is the smallest subgraph
(H,m) of (G, o) for which (G,0) —, (H, 7). A signed graph (G, o) is a switching core if
(G, 0) is its own switching core. The switch-preserving core (sp-core for short) of a signed
graph (G, o) is the smallest subgraph (H,x) of (G, o) for which (G,0) —? (H, 7). A
signed graph (G, o) is an switch-preserving core if (G, o) is its own sp-core.

We have the following characterization for the complexity of SIGNED-(H, 7)-COLORING.

Theorem 2.22 (Brewster, Foucaud, Hell and Naserasr [28] and Brewster and Siggers [29]).
Let (H,m) be a signed graph. SIGNED-(H,7)-COLORING is in P if the s-core of (H,m)
has at most two edges, and is NP-complete otherwise.

To this date, there is no similar characterization for (H, 7)-COLORING.

2.5 Similar notions and generalizations

There are many parallels between the study of signed graphs and the study of oriented
graphs. In both cases, we have two types of edges: positive and negative for signed graphs
and two orientations for oriented graphs. The notion of homomorphism of oriented graphs
has many parallels with the notion of sign-preserving homomorphisms.

Oriented graphs also have their own switching operation.

Definition 2.23 (Pushable oriented graphs). Let 8 be an oriented graph. Pushing a
vertex v of 8 consists in inverting the orientation of all the edges incident with v. Two
oriented graphs are equivalent if one can transform one into the other by a sequence of
pushings. A pushable oriented graph 8 is an equivalence class of this equivalence relation.

From these notions, we can derive the corresponding homomorphism and coloring
notions. It is often interesting to look at oriented graphs when dealing with signed graphs
as they have similar behaviors. See [175] for more details on oriented coloring.

A way to generalize signed graphs is to allow the signs to belong to any group.
Definition 2.24 (Gain graph). A gain graph is a graph where the edges are given an

orientation and labelled by elements of a group G. If the edge wv is labelled by ¢ then vu
is labelled by ¢!, the inverse of g.

We could define a notion of switching on gain graphs, this would correspond to mul-
tiplying all the edges incident with a vertex v by some element of G (by taking the
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orientation into account). Note that a signed graph is a gain graph where the group is
({=1,1}, x). Note that for gain graphs most of the useful properties of signed graphs
are not guaranteed. For example, with such a definition of switching, if GG is not abelian
then the switching operation is not commutative. Moreover, some cycles with different
products may be equivalent, for example it is the case for every triangle labelled with the
group ({0,1,2},+).

One particular case which preserves many properties of signed graphs is the case of
gain graphs with groups of the form ({0, 1}", @) where p is a positive integer and @ is the
bit-wise addition. They correspond to graphs where each edge is assigned multiple signs.

Another generalization, called biased graphs, has properties similar to signed graphs
(for more details see [209, 210]).
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Chapter 3

Complexity of edge-colored and
signed graphs modification problems

Graph coloring problems such as k-COLORING are among the most fundamental prob-
lems in algorithmic graph theory. The problem H-COLORING is a homomorphism-based
generalization of k-COLORING that is extensively studied [35, 71, 98, 150].

In this chapter, we consider parameterized variants of H-COLORING (resp. SIGNED-
(H,7)-COLORING) where H is an edge-colored graph (resp. (H,m) is a signed graph).
We allow loops and multiple edges, but multiple edges of the same color are irrelevant in
H (resp. (H,m)).

For edge-colored graphs H, the H-COLORING problems are well-studied, see for ex-
ample [16, 26, 25, 27, 28]. They are special cases of Constraint Satisfaction Problems
(CSPs). A large set of CSPs can be modeled by homomorphisms from general relational
structures to a fixed relational structure H [71]. The corresponding decision problem is
noted as H-CSP. When H has only binary relations, H can be seen as an edge-colored
graph (a relation corresponds to the set of edges of a given color) and H-CSP is exactly
H-COLORING. The complexity of H-CSP has been the subject of intensive research in
the last decades, since Feder and Vardi conjectured in [71] that H-CSP is either in P or is
NP-complete — a statement that became known as the Dichotomy Conjecture. The latter
conjecture was recently solved in [33, 214] independently; the criterion for H-CSP to be
in P is based on certain algebraic properties of H. Nevertheless, determining whether
a structure H satisfies this criterion is not an easy task (even for targets as simple as
oriented trees [35]). Thus, the study of more simple and elegant complexity classifications
for relevant special cases is of high importance.

The complexity of H-COLORING when H is uncolored is well-understood: it is in P
if H contains a loop or is bipartite; otherwise it is NP-complete [98]. This was one of
the early dichotomy results in the area. On the other hand, when H is a 2-edge-colored
graph, it was proved that the class of H-COLORING problems captures the difficulty of
the whole class of H-CSP problems [28], and thus the dichotomy classification for this
class of problems is expected to be much more intricate.

Our goal is to study generalizations of H-COLORING problems for edge-colored graphs
by enhancing them as modification problems. In this setting, given a graph property P
and a graph operation m, the graph modification problem for P and m asks whether an
input graph G can be made to satisfy property P after applying operation 7 a given
number k of times. This is a classic setting studied extensively both in the realms of
classical and parameterized complexity, see for example [37, 52, 129, 141, 205]. In this
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context, the most studied graph operations are vertex-deletion and edge-deletion, see the
seminal papers [141, 205].

For a fixed graph H, let P(H ) denote the property of admitting a homomorphism to H.
Certain standard computational problems can be stated as graph modification problems
for P(H). For example, VERTEX COVER is the graph modification problem for property
P(K1) and operation vertex-deletion. Similarly, ODD CYCLE TRANSVERSAL and EDGE
BIPARTIZATION are the graph modification problems for P(K3) and vertex-deletion, and
P(Ks,) and edge-deletion, respectively.

When considering signed graphs (which can be viewed as edge-colored graphs with
only two edge-colors), another operation of interest is switching. Switching a vertex of a
signed graph transforms a signed graph into another, therefore we can view switching as
a modification operation on signed graphs for the (H, 7)-COLORING problem.

Signed graph can be manipulated with two types of homomorphisms: sign-preserving
homomorphisms, in which case they behave like 2-edge-colored graphs, or homomor-
phisms of signed graphs, for which switching is unlimited. This lead us to also consider
modification problems (vertex deletion and edge deletion) for SIGNED-(H, 7)-COLORING.

Let us now formally define the problems we will consider (the parameter is always k).

VERTEX DELETION H-COLORING Parameter: £.
Input: An edge-colored graph GG, an integer k.
Question: Is there a set S of at most k vertices of G such that (G — S) — H?

EDGE DELETION H-COLORING Parameter: k.
Input: An edge-colored graph G, an integer k.
Question: Is there a set S of at most k edges of G such that (G —S) — H?

LIMITED SWITCHINGS (H, 7)-COLORING Parameter: k.
Input: A signed graph (G, o), an integer k.

Question: Is there a set S of at most k vertices of G such that the signed graph (G, o)
obtained from (G, o) by switching every vertex of S satisfies (G,o") —*? (H,m)?

VERTEX DELETION SIGNED-(H, 7)-COLORING Parameter: k.
Input: A signed graph (G, o), an integer k.
Question: Is there a set .S of at most k vertices of G such that (G,0)—S — (H,m)?

EDGE DELETION SIGNED-(H, 7)-COLORING Parameter: k.
Input: A signed graph (G, o), an integer k.
Question: Is there a set S of at most k edges of G such that (G,0) — S — (H,m)?

In the study of the five above problems, one may assume that H (resp. (H, 7)) is some
kind of core (edge-colored core, resp. sp-core or s-core) depending on the nature of the
base problem. Indeed, our target graph H (resp. (H, 7)) being a constant of the problem,
we can transform it into its core in constant time. Note that if the target was part of
the input then computing its core (for whatever notion of core that we chose) would be
NP-complete [99].

Of course, if one of the five problems is NP-complete even for k£ = 0, then the problem
for general k is NP-complete and not in XP (unless P = NP). This is for example the
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case when H is an edge-colored graph containing only a monochromatic triangle: then
we have 3-COLORING for £ = 0 in the first three problems. Thus, from the point of
view of parameterized complexity, it is of primary interest to consider these problems for
edge-colored graphs H (resp. signed graphs (H, 7)) such that the problem for £ = 0 is
in P. In that case a simple brute-force algorithm iterating over all k-subsets of vertices of
G implies that the five problems are in XP and hence the interesting question is whether
these problems are FPT or not. For undirected graphs, the only cores H for which H-
COLORING is in P are the three connected graphs with at most one edge [98] (a single
vertex with no edge, a single vertex with a loop, two vertices joined by an edge), so in
that case the interest of these problems is limited. However, for many interesting families
of edge-colored graphs H, the problem H-COLORING is in P, and the class of such graphs
H is not very well understood, see [26, 25, 27]. Even when H is a 2-edge-colored cycle, a
2-edge-colored tree or a 2-edge-colored complete graph, there are infinitely many H’s for
which H-COLORING is NP-complete and infinitely many H for which H-COLORING is
in P [26]. For signed graphs, the complexity of SIGNED-(H, 7)-COLORING is completely
characterized (see Theorem 2.22).

Related work. Several works address the parameterized complexity of graph coloring
problems. Graph coloring problems parameterized by structural parameters are consid-
ered in [118]. In [48], the vertex-deletion variant of H-LI1ST-COLORING is studied. Graph
modification problems for COLORING in specific graph classes and for operations vertex-
deletion and edge-deletion are considered, for example in [38] (bipartite graphs, split
graphs) and [180] (comparability graphs).

Every problem VERTEX DELETION H-COLORING can be encoded as a special weighted
homomorphism problem H'-WEIGHTED-COLORING, as considered in [158]. In that set-
ting, the target H' is a graph with integer weights, and the goal is to find a homomor-
phism from some input graph G whose weight (i.e. the sum of weights of the images of
the vertices of (G) is at most some given integer k’. In our setting, we could generalize
this problem to edge-colored graphs and build H’ from H by setting all weights to 0
and adding a new vertex x adjacent to all vertices of H with weight 1. Now, finding a
weighted homomorphism from G to H with weight as most k is the same as having a
positive solution to VERTEX DELETION H-COLORING (vertices mapped to x represent
the deleted vertices in S). A similar notion was studied for general CSPs in [34]. In that
setting, only one “free” target vertex has weight 0 and all the others, weight 1, and the
goal is to find a homomorphism of weight at most a given integer k. The Boolean CSP
version where there are only two target values, 0 and 1, and we wish to minimize the
number of variables set to 1, is called the MIN ONES problem [128].

Algorithmic problems relative to the operation of Seidel switching, similar to our
switching, have been considered. Given an undirected graph G, the Seidel switching
operation performed at a vertex exchanges all adjacencies and non-adjacencies of v. This
can be seen as performing a switching operation in a 2-edge-colored complete graph, where
blue edges are the actual edges of GG, and red edges are its non-edges. In [63, 119], the
complexity of graph modification problems with respect to the Seidel switching operation
and the property of being a member of certain graph classes has been studied. Our work
on LIMITED SWITCHINGS H-COLORING problems can be seen as a variation of these
problems, generalized to arbitrary 2-edge-colored graphs.
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Our results. We study the classical and parameterized complexities of the five problems
VERTEX DELETION H-COLORING, EDGE DELETION H-COLORING, LIMITED SWITCH-
INGS (H, 7)-COLORING, VERTEX DELETION SIGNED-(H, 7)-COLORING and EDGE DELE-
TION SIGNED-(H,7)-COLORING. For the first three problems, our focus is on t-edge-
colored graphs H of order at most 2 where ¢ is an integer (t = 2 and we see H as a signed
graph for LIMITED SWITCHINGS (H,7)-COLORING). Despite having only two vertices,
H-COLORING for such an H is interesting and non-trivial; it is proved to be in P by two
different non-trivial methods, see [16, 27]. Thus, the three considered problems are in XP
for such an H. (Note that for suitable 1-edge-colored graphs H of order 1 or 2, VERTEX
DELETION H-COLORING and EDGE DELETION H-COLORING include VERTEX COVER
and ODD CYCLE TRANSVERSAL.)

We completely classify the classical complexity of VERTEX DELETION H-COLORING
when H is a t-edge-colored graph of arbitrary order: it is either trivially in P or NP-
complete. It turns out that all VERTEX DELETION H-COLORING problems are FPT
when H has order at most 2. To prove this, we extend a method from [27] and reduce
the problem to an FPT variant of 2-SAT.

For EDGE DELETION H-COLORING, a classical complexity dichotomy seems more
difficult to obtain, as there are non-trivial polynomial cases. We perform such a clas-
sification when H is a t-edge-colored graph of order at most 2. Similar 2-SAT-based
arguments as for VERTEX DELETION H-COLORING give a FPT algorithm for EDGE
DELETION H-COLORING when H has order at most 2.

For LIMITED SWITCHINGS (H, 7)-COLORING when (H,7) is a signed graph, the clas-
sical dichotomy is again more difficult to obtain. We perform such a classification by using
some characteristics of the switch operation and by giving some reductions to well-known
NP-complete problems. In contrast to the two previous cases for the parameterized com-
plexity, we show that for three signed graphs (H,m) of order 2, LIMITED SWITCHINGS
(H,7)-COLORING is already W[1]-hard (and cannot be solved in time f(k)|V (G)[°® for
any computable function f, assuming the ETH). For all other signed graphs of order 2,
we prove that LIMITED SWITCHINGS H-COLORING is FPT.

For VERTEX DELETION SIGNED-(H,7)-COLORING and EDGE DELETION SIGNED-
(H,m)-COLORING, we completely classify the classical complexity of these problems,; in-
deed the number of open cases is more limited than in the previous problems. Similar
arguments as for VERTEX DELETION H-COLORING can be used for VERTEX DELETION
SIGNED-(H, )-COLORING while we treat the problem case by case for EDGE DELE-
TION SIGNED-(H, w)-COLORING. For the parameterized complexity of these problems,
we prove that for all signed graphs whose s-core contains at most two edges (i.e. signed
graphs for which the problem with & = 0 is in P), the problems VERTEX DELETION
SIGNED-(H, 7)-COLORING and EDGE DELETION SIGNED-(H, 7)-COLORING are FPT.

Table 3.1 presents a brief overview of our results, and Table 3.2 lists the classical and
parameterized complexities of the five considered problems for all 2-edge-colored graphs
(resp. signed graphs) of order at most 2.

Sections 3.1 through 3.3 are joint work with Florent Foucaud, Hervé Hocquard, Valia
Mitsou and Théo Pierron. An extended abstract of Sections 3.1 to 3.3 was published [76]
in the proceedings of the international conference IPEC 2019. A full version of the corre-
sponding paper can be found on arXiv [77].

This work is partially supported by the ANR project HOSIGRA (ANR-17-CE40-0022)
and the IFCAM project “Applications of graph homomorphisms” (MA/IFCAM/18/39).
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Problem

P vs NP-hard

FPT vs. W[1]-hard
when |V(H)| <2

Dichotomy for

VERTEX DELETION H-COLORING all graphs ALLFPT
Dichotomy when

EDGE DELETION H-COLORING V(H)| <2 All FPT
(Thm. 3.13) (Thm. 3.20)
Dichotomy when Dichotom

LIMITED SWITCHINGS (H, 7)-COLORING [V(H)| <2 (Thums 3Y23 3.24)
(Thm. 3.22) n e O
Dichotomy for .

VERTEX DELETION SIGNED-(H,7)-COLORING | all graphs (F;)}—lr Hif ;n;g;a
(Thm. 3.26) e
Dichotomy for .

EDGE DELETION SIGNED-(H, 7)-COLORING | all graphs (Fggnif 13n3>é)P
(Thm. 3.38) C

Table 3.1: Overview of our main results, sorted by problem and by type of classification.

H/ (H ) VERTEX DELETION | EDGE DELETION | LIMITED SWITCHINGS | VERTEX DELETION EDGE DELETION
7) | H-CoLoriNG H-COLORING (H,m)-COLORING SIGNED-(H, 7)-COLORING | SIGNED-(H, m)-COLORING
& P P P P P
H},
Q NP-h but FPT P P NP-h but FPT NP-h but FPT
1,
° NP-h but FPT P P NP-h but FPT P
H!
PR NP-L but FPT P P NP-h but FPT NP-L but FPT
Hy
—o NP-h but FPT NP-h but FPT P NP-h but FPT NP-h but FPT
H?_
'i‘—Q NP-h but FPT NP-h but FPT NP-h but FPT NP-h even for k =0 NP-h even for k =0
Hy
'6‘—0 NP-h but FPT NP-h but FPT NP-h but FPT Not an s-core Not an s-core
H?
Q—Q NP-h but FPT NP-h but FPT P Not an s-core Not an s-core
H?
LS ) NP-h but FPT NP-h but FPT P NP-h but FPT NP-h but FPT
H*®
4 NP-h but FPT NP-h but FPT NP-h and W[1]-h NP-h even for k =0 NP-h even for k =0
HEY
e NP-h but FPT NP-h but FPT NP-h and W[1]-h NP-h even for k =0 NP-h even for k =0
Hrt
<= NP-h but FPT NP-h but FPT NP-h and W[1]-h NP-h even for k=0 NP-h even for k = 0
!

Table 3.2: Our results for target 2-edge-colored graphs H (resp. signed graphs (H, 7)) of order
at most 2 (up to inversion of edge-colors (resp. signs), there are twelve such 2-edge-colored
graphs (resp. signed graphs) to consider).
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This chapter is structured as follows. In Section 3.1, we state some definitions and
make some preliminary observations in relation with the literature. We also reformulate
some particular instances of our problems to highlight well known complexity problems.
Section 3.2 presents our study of VERTEX DELETION H-COLORING and EDGE DELE-
TION H-COLORING. The problem LIMITED SWITCHINGS (H,7)-COLORING is treated
in Section 3.3. In Section 3.4, we analyse the problem VERTEX DELETION SIGNED-
(H,7)-COLORING while Section 3.5 is for the problem EDGE DELETION SIGNED-(H, 7)-
COLORING. Finally, we conclude in Section 3.6.
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3.1 Preliminaries

3.1.1 Some known complexity dichotomies

For a t-edge-colored graph H, recall that whenever H-COLORING is NP-complete, VER-
TEX DELETION H-COLORING and EDGE DELETION H-COLORING are NP-complete
even for k£ = 0, and thus are not in XP, unless P = NP. For example, this is the case when
H is a monochromatic triangle.

On the other hand, when H-COLORING is in P, both problems are in XP for parameter
k by a brute-force algorithm iterating over all k-subsets of vertices (resp. edges) of G, per-
forming the operation on these k vertices (resp. edges), and then solving H-COLORING.

Similarly, for a signed graph (H, ), LIMITED SWITCHINGS (H, 7)-COLORING is NP-
complete even for k = 0, if (H,7)-COLORING is NP-complete. If (H,n)-COLORING is
in P, then LIMITED SWITCHINGS (H,7)-COLORING is in XP, by the same brute-force
argument.

When SIGNED-(H, 7)-COLORING is NP-complete, then LIMITED SWITCHINGS (H, 7)-
COLORING is NP-complete (but could still be in XP or FPT), and VERTEX DELE-
TION SIGNED-(H, 7)-COLORING and EDGE DELETION SIGNED-(H,7)-COLORING are
NP-complete, even for k& = 0. Moreover if SIGNED-(H,7)-COLORING is in P, then
VERTEX DELETION SIGNED-(H,7)-COLORING and EDGE DELETION SIGNED-(H,)-
COLORING are in XP.

The previous arguments highlight that to determine the complexity of our five prob-
lems, we must first know the complexity of H-COLORING for any edge-colored graphs H,
and the complexity of (H,n)-COLORING and SIGNED-(H, 7)-COLORING for any signed
graph (H, ).

When k = 0 and H is 1-edge-colored (i.e. H is an undirected graph), we have the
following classic theorem.

Theorem 3.1 (Hell and Nesettil [98]). Let H be a 1-edge-colored graph. The problem
H-COLORING is in P if the core of H has at most one edge (H is bipartite or has a loop),
and NP-complete otherwise.

There is no analogue of Theorem 3.1 for edge-colored graphs. In fact, it is proved
in [28] that a dichotomy classification for H-COLORING restricted to 2-edge-colored H
would imply a dichotomy for all fixed-target CSP problems. Thus, no simple combinatorial
classification is expected to exist. In fact, even for trees, cycles or complete graphs, such
classifications are far from trivial, see the PhD thesis [26] for an overview of some partial
results highlighting the difficulty of the problem. Some classifications exist for certain
classes of graphs H, such as those of order at most 2 (see [16] and [27]) or paths [25].
By isomorphism between signed graphs and 2-edge-colored graphs, the problem (H,7)-
COLORING is also unlikely to have such a dichotomy.

Hence for the three problems VERTEX DELETION H-COLORING, EDGE DELETION
H-COLORING and LIMITED SWITCHINGS (H,7)-COLORING we focus most of our at-
tention on targets of order at most 2 since H-COLORING and (H,7)-COLORING are
polynomial for them (see [16, 27] or Theorem 3.18).
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% Y . .

1 1 1 2—

Hrb Hb H— Hr,b
—o Q ¢ ® [

2b 2b 2b 2b

H—,— H’r’,b Hr,— HT,’V’

2rb 2rb 2rb 2rb

H 2, H2® H2

Figure 3.1: The twelve 2-edge-colored cores of order at most 2 considered in this chapter.

The twelve 2-edge-colored graphs of order at most 2 that are cores (up to symmetries of
the colors) are depicted in Figure 3.1. The two depicted colors are red (dashed edges) and
blue (solid edges). We use the terminology of [16]: for a € {—,r,b,rb}, the 2-edge-colored
graph H! is the graph of order 1 with no loop, a red loop, a blue loop, and both kinds
of loops, respectively. Similarly, for « € {—,r,b,7b} and 8,y € {—,r, b}, the graph Hg‘fy
denotes the graph of order 2 with vertex set {0,1}. The string « indicates the presence
of an edge between 0 and 1: no edge, a red edge, a blue edge and both edges for —, r, b
and rb, respectively. Similarly, 5 and v denote the presence of a loop at vertices 0 and 1,
respectively (— for no loop, r for a red loop, b for a blue loop).

When working on the context of signed graphs (i.e. for LIMITED SWITCHINGS (H, )-
COLORING, VERTEX DELETION SIGNED-(H, 7)-COLORING and EDGE DELETION SIGNED-
(H,7)-COLORING), we use the notation Hj 2“ to refer to the signed graph obtained from
the 2-edge-colored graph H >, by making the red edges negative and the blue edges posi-
tive.

For SIGNED-(H, 7)-COLORING, we recall Theorem 2.22.

Theorem 2.22 (Brewster, Foucaud, Hell and Naserasr [28] and Brewster and Siggers [29]).
Let (H, ) be a signed graph. The problem SIGNED-(H,w)-COLORING is in P if the s-core
of (H,7) has at most two edges, and is NP-complete otherwise.

Note that signed graphs where the s-core has at most two edges either have one vertex
(with zero loop, one loop or two loops of different signs), or two vertices (with either one
edge or two parallel edges of different signs joining them) [28]. If there are two vertices
joined by one edge and a loop at one of the vertices, we can switch at the non-loop vertex
if necessary to obtain a signed graph with only positive or only negative edges, and then
retract the whole graph to the loop-vertex, so this is not an s-core.

By Theorem 2.22, the Signed graphs (H,m) for which SIGNED-(H, 7)-COLORING is

polynomial are 1 (o), H}, (), HE (Ce). 1Y (8), H2 (e—e). " (a""8)
and H?, (6D ‘e).

3.1.2 Homomorphism dualities and FPT time

For a t-edge-colored graph H, we say that H has the duality property if there is a set
F(H) of t-edge-colored graphs such that, for any t-edge-colored graph G, G — H if
and only if no graph F' of F(H) satisfies ' — G. If F(H) is finite, we say that H has
the finite duality property. If checking whether any graph F' in F(H) satisfies FF — G
(for an input edge-colored graph G) is in P, we say that H has the polynomial duality

page 74 Dimitri Lajou



Chapter 3. Complexity of edge-colored and signed graphs modification problems

property. This is in particular the case when F(H) is finite. For such H, H-COLORING is
in P. This topic is explored in detail for edge-colored graphs in [16]. By a simple bounded
search tree argument, we get the following:

Proposition 3.2. Let H be a t-edge-colored graph with the finite duality property. Let
c=max{|V(F)|,F € F(H)}.

The problem VERTEX DELETION H-COLORING can be solved in time O(f(F(H))n®)
for some computable function f.

The problem EDGE DELETION H-COLORING can be solved in time O(f(F(H))n®)
for some computable function f.

Ift =2 and (H, ) is the signed graph isomorphic to H, then LIMITED SWITCHINGS
(H,m)-COLORING can be solved in time O(f(F(H))n®) for some computable function f.

Proof. First, we search for all occurrences of homomorphic images of graphs in F(H)
(there are at most f(F(H)) such images for some exponential function f), which we
call obstructions. This takes time at most O(f(F(H))n¢), where ¢ = max{|V(F)|, F €
F(H)}. Then, we need to get rid of each obstruction. For VERTEX DELETION H-
COLORING (resp. EDGE DELETION H-COLORING), we need to delete at least one vertex
(resp. edge) in each obstruction, thus we can branch on all ¢ (resp. ¢?) possibilities. For
LIMITED SWITCHINGS (H, 7)-COLORING, we need to switch at least one of the vertices
of the obstruction (but then update the list of obstructions, as we may have created a new
one). In all cases, this gives a search tree of height k& and degree bounded by a function
of F(H), which is FPT. O

Some dualities have been obtained for small edge-colored graphs. The following theo-
rem from [16] is crucial for our techniques.

Theorem 3.3 (Bawar, Brewster and Marcotte [16]). Let H be an edge-colored graph of
order at most 2. Then, H has the polynomial duality property. If H has order 1, then H
has the finite duality property.

We next describe the duality sets for some special cases that will be used in our proofs.

Lemma 3.4 (Bawar, Brewster and Marcotte [16]). A 2-edge-colored graph has a homo-
morphism to Hfl;, (- @—e.; ) if and only if it contains no homomorphic image of cycles
with an odd number of blue edges.

We present a brief proof of their result. Note that homomorphic images of paths are
walks and that homomorphic images of cycles are closed walks.

Proof. Let G be a 2-edge-colored graph which admits a homomorphism ¢ to H2%. Suppose
that G contains a homomorphic image of some cycle with an odd number of blue edges,
that is to say GG contains a closed walk W with an odd number of blue edges. Note that
if uv is a blue edge, then ¢(u) # ¢(v) and if uv is a red edge, then ¢(u) = ¢(v). By going
around the closed walk, we obtain ¢(u) # ¢(u) for any vertex u of W, a contradiction.
Let GG be a 2-edge-colored graph which contains no homomorphic image of cycles with
an odd number of blue edges. We identify every connected red components of G. The
graph that we obtain has red loops but no other red edges, moreover the graph induced by
the blue components is bipartite (otherwise there would be a cycle with an odd number
of blue edges in (). Hence by identifying the vertices of each bipartition, we obtain Hf’,{
Hence G — H?2. O
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Lemma 3.5 (Bawar, Brewster and Marcotte [16]). A 2-edge-colored graph has a homo-
morphism to HE% (- o——&D ) if and only if it contains no homomorphic image of a
red-blue-red 4-vertex path.

Proof. Let u be the vertex of HE% with a red loop, and v the vertex with a blue loop.
Given a 2-edge-colored graph G, map all the vertices incident with a red edge to u, and
map all others to v. This is a homomorphism unless two vertices mapped to u are joined
by a blue edge. But in this case, we can find a homomorphic image of a red-blue-red walk
in GG. Conversely, note that a red-blue-red path has no homomorphism to Hf% O

Lemma 3.6 (Bawar, Brewster and Marcotte [16]). A 2-edge-colored graph has a homo-
morphism to Hff’_ (- @——e@) if and only if it contains no homomorphic image of a path
of the form RB*'R (where R is a red edge, B a blue edge and p > 1 is an integer) or
of cycles with an odd number of blue edges.

Proof (sketch). First note that none of the two obstructions admit a homomorphism to
Hfb_ If a 2-edge-colored graph GG has none of these homomorphic images then by identi-
fying every vertex incident with a red edge of G, we obtain a bipartite graph on the blue
edges for which one of the two partitions contains every vertex incident with a red loop.
By mapping this partition to the vertex of Hffl with the red loop and the other partition
to the other vertex, we obtain our homomorphism. O

Lemma 3.7 (Bawar, Brewster and Marcotte [16]). A 2-edge-colored graph has a homo-

morphism to Hf”;b <o &7 ) if and only if it contains no homomorphic image of an
all blue odd cycle.

Proof (sketch). The idea is to note that the graph induced by the blue edges is bipartite
and that the red edges does not create any constraints. O

The proof of the following results are more complicated, hence we refer the reader
to [16] for the details. In a 2-edge-colored graph, a closed walk vgvy ... v; is alternating
if for every i < t, v;v;11 and v;11v;12 do not have the same color (where the indices are
taken modulo t). An alternating closed walk in a 2-edge-colored graph correspond exactly
to the notion of alternating closed walk in the isomorphic signed graph. An odd figure
eight is a closed walk of the form vy, vi, ..., v9j, Vo, Vajt2, ..., Vop_1, Vo, t.€. two odd
cycles which share a vertex vy.

Lemma 3.8 (Bawar, Brewster and Marcotte [16]). A 2-edge-colored graph has a homo-
morphism to Hff'_b (e ") if and only if it contains no homomorphic image of an odd
figure eight vo, v1, ..., Vaj, Vo, V2j+2, -- ., Vap—1, Vo for which all edges vo;vai41 are blue.

Lemma 3.9 (Bawar, Brewster and Marcotte [16]). A 2-edge-colored graph has a ho-
momorphism to H%b (e @8O ) if and only if it contains no homomorphic image of
alternating odd figure eight, that is, an alternating closed walk vy, v1, ..., vaj, Vo, Vajt2,
ce., U2p—1, Vp-

3.1.3 Reformulating some modification problems

As mentioned in the introduction, behind the generality of our modification problems lies
some interesting particular cases. This section is dedicated to highlighting well known
problems which are captured by our five general problems.
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The first problem is VERTEX COVER which consists in finding the smallest set S of ver-
tices so that every edge of the input graph is incident with a vertex of S. This problem is
equivalent to the two problems VERTEX DELETION H!-COLORING and VERTEX DELE-
TION SIGNED-H!-COLORING. In a similar fashion, VERTEX DELETION H}-COLORING
is equivalent to solving VERTEX COVER on the input graph where the blue edges are
removed.

An undirected graph G admits a homomorphism to K if and only if it is bipartite.
Consequently, the problem ODD CYCLE TRANSVERSAL (resp. EDGE BIPARTIZATION)
which consists in finding the minimum number of vertices (resp. edges) to remove to
make the graph bipartite, is equivalent to VERTEX DELETION K5-COLORING (resp.
EDGE DELETION K5-COLORING). Note that this problem is also equivalent to VER-
TEX DELETION H-COLORING (resp. EDGE DELETION H-COLORING) where H is the
t-edge-colored graph on two vertices u and v such that for every edge-color i, there is an
edge uv colored ¢. It is also equivalent to VERTEX DELETION SIGNED-H%’:IL-COLORING
(resp. EDGE DELETION SIGNED-HEfE-COLORING) for signed graphs.

It is also possible to encompass a combination of problems. Solving VERTEX DELE-
TION H?’_-COLORING is equivalent to solving ODD CYCLE TRANSVERSAL and VERTEX
COVER on the input graph where the blue edges are removed at the same time.

Our problems can also easily encode stronger versions of well known problems. For
example consider the following problem.

ANNOTATED ODD CYCLE TRANSVERSAL Parameter: k
Input: A graph G, two sets Ag and By of vertices of G and an integer k.

Question: Is there a subset S of vertices of G such that G — S is bipartite with
bipartition (A, B) such that Ay C A and By C B?

This problem can be seen as a subproblem of VERTEX DELETION H-COLORING where
H is the 3-edge-colored graph ‘:@——e > . Indeed, one can “mark” the two bipartitions

with pendant red or green edges (depending on which set among Ay or By the vertex
belongs to) and perform ODD CYCLE TRANSVERSAL on the blue graph. This problem
is not the only one, for example we can perform the same operation for the edge deletion
version. In general, we can even encode list coloring with homomorphisms of edge-colored
graphs: each subset of colors is associated with its own edge-color. The target graph is
a blue K, (for some integer p) where each vertex is incident to loops of every edge-color
associated with a list containing this vertex. It suffices to add a loop for each vertex u of
the input graph with edge-color corresponding with the list of u.

For signed graphs, many interesting problems can be formulated as homomorphism
problems. For example SIGNED-H}-COLORING is equivalent to determining if the in-
put signed graph is balanced or not. Equivalently SIGNED-H!-COLORING tests whether
the input signed graph is antibalanced or not. Hence the problem VERTEX DELETION
SIGNED-H}}-COLORING consists in finding the minimum number of vertices to remove
to make the graph balanced. The problem EDGE DELETION SIGNED-H}-COLORING is
equivalent to computing the frustration index of the input signed graph, a problem which
has been extensively studied (see Section 2.1.4). The problem LIMITED SWITCHINGS H}-
COLORING consists in not only determining whether the input signed graph is balanced
but also the number of switchings necessary to make the input all-positive.

The problems VERTEX/EDGE DELETION SIGNED-H?_-COLORING consist in remov-
ing vertices/edges in order for the input signed graph to be both balanced and bipartite,
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that is, we want to have chromatic number at most 2. This can be reformulated as wanting
to remove both odd cycles and unbalanced cycles.

Unfortunately, in general, determining the chromatic number of a signed graph cannot
be expressed as some SIGNED-(H, 7)-COLORING problem due to the fact that there exist
multiple targets of the same order which are not equivalent.

3.2 Edge-colored modification problems

In this section, we focus on the complexity of the two problems: VERTEX DELETION
H-COLORING and EDGE DELETION H-COLORING.

We first adapt a general method from [141] to show that VERTEX DELETION H-
COLORING is either trivial, or NP-complete in Section 3.2.1.

For EDGE DELETION H-COLORING, we cannot use this technique (in fact there exist
non-trivial polynomial cases). Thus, we turn our attention to edge-colored graphs of
order 2 (note that for every edge-colored graph H of order at most 2, H-COLORING is in
P [16, 27]). In Section 3.2.2, we prove a dichotomy result for graphs of order at most 2
for the EDGE DELETION H-COLORING problem.

Finally, in Section 3.2.3, we provide FPT algorithms from VERTEX DELETION H-
COLORING and EDGE DELETION H-COLORING when H has order 2.

3.2.1 Vertex Deletion H-Coloring: P/NP-complete dichotomy

Graph modification problems for operations vertex-deletion and edge-deletion have been
studied extensively. For a graph property P, we denote by VERTEX DELETION-P the
graph modification problem for property P and operation vertex-deletion. A property
is hereditary if P(G) implies P(H) for all induced subgraphs H of G. Lewis and Yan-
nakakis [141] defined a non-trivial property P on graphs as a property true for infinitely
many graphs and false for infinitely many graphs. These definitions can be extended
to (m,n)-mixed multi-graphs (which contains edge-colored graphs). They showed the
following general result.

Theorem 3.10 (Lewis and Yannakakis [141]). The VERTEX DELETION-P problem for
non-trivial graph-properties P that are hereditary is NP-hard.

By modifying the proof of Theorem 3.10, we can prove the two following results.

Theorem 3.11. Let P be a non-trivial property of (m,n)-mized multi-graphs that is
hereditary and true for all empty graphs. For such a property, the problem VERTEX
DELETION-P is NP-hard.

The proof of this theorem follows the proof of Theorem 3.10 from [141]. The only
difference is that we work with (m,n)-mixed multi-graphs instead of undirected graphs.

Proof. Let G be an (m, n)-mixed multi-graph. We denote by CC(G) the set of connected
components of G. These components are also (m,n)-mixed multi-graphs. For x and v
two vertices of G, let R,(x) be the set of vertices connected to  in G —v. For any vertex
v € V(GQ), let CC,(G) be the set of connected subgraphs of G induced by the sets of
vertices of the form R,(z) U {z} for x € V(G — v). In other words, CC,(G) is the set of
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(a) An (m,n)-mixed multi- (b) The (m,n)-mixed multi- (¢) The (m,n)-mixed multi-
graph J. graph J7T. graph J'.

Figure 3.2: An example of a (2,2)-mixed multi-graph J and its induced subgraphs Jy, Jo, J 7,
Ji and J'.

connected components of G — v where we added the vertex v. In particular, if v is not a
cut-vertex, then CC,(G) = {G}.

For a connected (m,n)-mixed multi-graph G and v € G, let a,(G) = (n1,na, ... 1)
such that ny > ny > - -+ > ny, and the multi-sets {n,...,n;} and {|V(C)|: C € CC,(G)}
are equal. In other words, a,(G) is the ordered sequence of the orders of the (m,n)-mixed
multi-graphs in CC,(G). Let a(G) be the smallest sequence (for the lexicographic order)
a, (@) over all possible vertices v € V(G).

For an (m,n)-mixed multi-graph G, let 5(G) = (a(G1),a(G1),...a(G;)) such that
a(Gy) > a(Gy) >p -+ > a(Gy) (where >, is the lexicographical order) and CC(G) =
{G1,...,G;}. In other words, (@) is the ordered sequence of a-sequences of the con-
nected components of G.

Recall that P is non-trivial. In particular, P has counter-examples. For an integer
p and an (m,n)-mixed multi-graph G, we denote by pG, the (m,n)-mixed multi-graph
composed of p disjoint copies of G. Let J be an (m, n)-mixed multi-graph such there exists
some k > 1 for which P(kJ) is false, and which has the minimum S-sequence among the
(m, n)-mixed multi-graphs verifying this property. Let & > 1 such that P(k.J) is false and
P((k—1)J) is true. Suppose that f(J) = (a(J1),...,a(J;)) where CC(J) = {Jy,..., Ji}.
Let  be a vertex of J; for which a(J;) = a,(J1) and let J* be the connected (m, n)-mixed
multi-graph of C'C,(J;) with the greatest number of vertices. Since all empty graphs verify
P, J contains at least one edge. This implies that J; and J* contain at least one edge.
In particular, J* contains at least two vertices. Let y be a vertex of J* which is different
from z. Let Jj (resp. J') be the (m,n)-mixed multi-graph obtained from J; (resp. J) by
removing the vertices of V(JT) \ {z,y}. See Figure 3.2 for an example.

Each induced subgraph of J that we defined will be useful to show that VERTEX
DELETION-P is NP-hard. We reduce VERTEX COVER to VERTEX DELETION-P. Note
that it may be complicated to find the (m, n)-mixed multi-graph J. If we cannot find J in
polynomial time then it makes the reduction non-constructive. Let (G, ) be an instance
of VERTEX COVER where G is an undirected graph of order p and ¢ is an integer.

We construct the (m,n)-mixed multi-graph H from G as follows. For each vertex
v € V(G), we add a copy J! of J' to H. For each edge uwv € E(G), we add a copy J;,
of J* to H. We identify the copy z, (resp. z,) of = in J] (resp. J/) with the copy x.,
(resp. Yup) of x (resp. y) in J . This ends the construction of H. See Figure 3.3 for an
example. We construct the (m,n)-mixed multi-graph H' by taking pk disjoint copies of
H.

We claim that (G, ¢) is a positive instance of VERTEX COVER if and only if (H', pk()
is a positive instance of VERTEX DELETION-P.

Suppose that there is a subset S of vertices of G of size at most ¢ that is a vertex
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7 ng J{) I )J{ [J2 y

Ly Ty

Figure 3.3: An example of the graph H when J is the (2,2)-mixed multi-graph of Figure 3.2
and G is just an edge uv. Here, we chose to identify x, with z,, and x, with 3,,. Note that if
no vertex is removed from H, then H contains J as an induced subgraph.

cover of G. We construct S” C V(H') as follows. For every copy of H in H' and every
vertex u € S, we add the copy of the vertex z, of J, to S’. Note that |S"| < pkl. We
claim that H' — S’ verifies P. Let J be the set of (m,n)-mixed multi-graphs that can
be constructed as follows. Take a copy of J; and at most A(G) copies of J*. For each
copy of J*, delete one of z or y and identify the other vertex with the copy 2’ of x in the
copy of JI. The set J contains at most 32(%) (m,n)-mixed multi-graphs, J contains all
possible maximal connected induced subgraph of H connected to a vertex x, when every
x, for v € N(u) has been removed in H.
A connected component C' of H' — S’ can be one of the following four types:

1. The connected component C' belongs to {Ja, ..., J; }.
2. The connected component C' belongs to J.

3. The connected component C' is isomorphic to a connected induced subgraph of Jj
where the vertex x has been removed.

4. The connected component C' is isomorphic to a connected induced subgraph of J*
where the vertices x and y have been removed.

Let J* be the (m,n)-mixed multi-graph composed of disjoint copies of the vertices of
J and disjoint copies of J,, ..., J;_1; and J;. Note that every connected component of
H' — 5" is an induced subgraph of J*. Let C' € J, note that o(C) < a,/(C) where 2’ is
the copy of x in J|. Note that CC,/(C) = CC,(J) U X where X is the set corresponding
to the copies of J* in C' with one of x or y removed. The connected multi-graphs of X
have order |V (J*)| — 1, hence s (C) < a,(J1) = a(Jy). Note that 5(J*) < 5(J) since
for every C' € J, a(C) <1, a(Jy).

By minimality of J, any number of disjoint copies of J* must verify P, hence H' — 5’
verifies P and (H’, pk{) is a positive instance of VERTEX DELETION-P.

Suppose that there is a subset S’ of vertices of H’ of size at most pkf such that
P(H'—S5’) holds. Note that H' —S” can contain at most k — 1 copies of the (m, n)-mixed
multi-graph J by definition of J. In particular H' has at least pk — (k — 1) copies of H for
which after removing the vertices of S’ the (m, n)-mixed multi-graph does not contain a
copy of J.

Suppose that for one of the copies Hy of H, |V (Hp) N.S’| < £. In this case, we construct
S CV(G) as follows. If SNV (J)) # @, then add u to S. It "N (V(J})\{z,y}) # &,
then add arbitrarily one of u or v to S. Note that |S| < ¢. Suppose that there is an edge
uwv € E(G), such that u,v ¢ S. Our copy of H contains J/, J, and J, and these (m,n)-
mixed multi-graphs do not contain vertices from S. The vertex z,, has been identified
with one of z, or z,, say x,. The (m,n)-mixed multi-graph composed of J/, and J with
x, and z,, identified is exactly the (m,n)-mixed multi-graph J. Hence if H —.S” does not
contain J, then the set S is a vertex cover of G of size at most /.
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Suppose, by contradiction, that for every copy of H either H — S’ contains J or verifies
|V(Ho) N S’| > £+ 1. In this case, S” has at least (pk — (k—1))(¢+ 1) vertices. Moreover,
as { < p (otherwise the instance of VERTEX COVER is trivial), (pk — (k —1))({ + 1) >
pkl+ 0+ 1+ k(p— (£ —1)) > pkl, a contradiction.

Hence G has a vertex cover of size at most ¢. m

For a t-edge-colored graph, the only case where the property of mapping to H is trivial
(in this case, always true) is when H has a vertex with a loop of each edge-color (in which
case the core of H is this vertex). Thus we obtain the following dichotomy.

Corollary 3.12. Let H be a t-edge-colored graph. VERTEX DELETION H-COLORING is
in P if H contains a vertex having a loop of each edge-color, and NP-complete otherwise.

Proof. For every t-edge-colored graph H, VERTEX DELETION H-COLORING is in NP.
For a t-edge-colored graph G, the property P(G) : “G — H” is an hereditary property
and is verified by all independent sets, thus if it has infinitely many negative instances
(on loopless t-edge-colored graphs), then it is non-trivial, and thus NP-hard. Let us see
when this is the case.

We can observe that the problem is actually trivial if H contains a vertex with all
t-colored loops, indeed every t-edge-colored graph can be mapped to this vertex (in this
case, we accept). Moreover, if not, then the complete graph K|y ()41 with all ¢-colored
edges between each pair of vertices does not map to H. Indeed by the pigeonhole principle,
two vertices u and v of our input ¢-edge-colored graph must have the same image vertex
w in H. As there is an edge colored ¢ between u and v, there must be a loop colored i
on w. Thus w should have all ¢ kinds of loops, a contradiction. Thus, in all such cases,
the property is non-trivial on loopless t-edge-colored graphs and hence the problem is
NP-complete. O

3.2.2 Edge Deletion H-Coloring: P/NP-complete dichotomy when
H has order 2

No analogue of Theorem 3.10 for the operation edge-deletion exists nor is expected to
exist [205]. We thus restrict our attention to the case of edge-colored graphs H of order
at most 2. For this case we classify the complexity of EDGE DELETION H-COLORING.
Since multiple edges of the same color are irrelevant, if H has order 2, for each edge-color
there are three possible edges.

Theorem 3.13. Let H be an edge-colored core of order at most 2. If each color class of
the edges of H contains either only loops or all three possible edges, then EDGE DELETION
H-COLORING s in P; otherwise it is NP-complete.

We separate the proof of this theorem into several lemmas.

Lemma 3.14. Let H be an edge-colored core of order at most 2. If each color class of the
edges of H contains either only loops or all three possible edges, then EDGE DELETION
H-COLORING s in P.

Proof. First note that if color ¢ has all three possible edges in H, we can simply ignore
this color by removing it from H and G without decreasing the parameter, as it does not
provide any constraint on the homomorphism.
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We can therefore suppose that H contains only loops. If two colors induce the same
subgraph of H, then we can identify these two colors in both G and H as they give the
same constraints.

If G has colors that H does not have, then remove each edge with this color and
decrease the parameter for each removed edge. If it goes below zero then we reject.

We can now assume that H has only loops and G has the same colors as H. We are
left with only three cases, as H is a core (there is no vertex whose set of loops is included
in the set of loops of the other).

1. H has a single loop. Then, G — H as G has the same colors as H.

2. H has one loop colored a and one loop colored ¢ on the first vertex and has one loop
colored b and one loop colored ¢ on the second vertex. Up to symmetry, suppose
that H has one blue loop and one green loop on the first vertex and has one red
loop and one green loop on the second vertex. We will reduce to the problem where
we have removed the green loops. Let p be the number of green edges of G. We
construct G’ from G by replacing each green edge by a blue edge and a red edge
(we can end up with multiple blue or red edges that way). We claim that EDGE
DELETION H-COLORING with parameter k and input G is true if and only if EDGE
DELETION Hf’g—COLORING with parameter k + p on input G’ is true.

If the first problem has a solution S, then remove the corresponding edges from G’
(if the original edge of G is green remove the two new edges in G’). Each vertex of
G — S is set to one component, in particular each green edge is set to a vertex with
a blue edge or a red edge. If a green edge uv of G is sent to the first vertex (resp.
second vertex), we remove the edge of G’ corresponding to uv which is red (resp.
blue). We can check that after removing those edges, G’ admits a homomorphism
to Hf;. We removed at most k£ edges in the first step plus the number of green
edges in S and removed one edge for each green edge left in the second step. Thus,
we removed at most k + p edges in G'.

If the second problem has a solution S, then remove from G all blue and red edges
of S. Remove the green edges of G only if both were removed in G’. Note that
S contains at least one edge in G’ for each green edge of G. Thus we removed at
most k edges in G. Moreover, G — H by taking the same homomorphism as in
G'. Indeed, the blue and red edges are sent to one of the two loops while each green
connected component is sent to one vertex.

Using this method we can reduce the problem to EDGE DELETION Hig—COLORING,
which is our last case.

3. H contains two non-incident loops with different colors. In this case, H = Hﬁg
(@D @). Indeed if there were any other kind of loop, then we would be in the
previous case or we could identify two colors. Note that a 2-edge-colored graph
maps to Hﬁg if and only if it has no red edge incident to a blue edge. Thus, solving
EDGE DELETION HZ;—COLORING amounts to disconnecting red and blue connected
components. This can be done by constructing the following bipartite graph: put
a vertex for each edge of GG; two vertices are adjacent if the corresponding edges in
G are adjacent and of different colors. Solving EDGE DELETION H?,-COLORING
is the same as solving VERTEX COVER on this bipartite graph, which is in P.
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Figure 3.4: Reduction from VERTEX COVER to EDGE DELETION Hfl;)-COLORING.

There is no other case as otherwise the set of loops at one vertex would be included in
the set of loops at the other. O

The NP-completeness proofs are by reductions from VERTEX COVER, based on vertex-
and edge-gadgets constructed using obstructions to the corresponding homomorphisms
from [16].

We start with proving the NP-hardness of two special cases, and then we will show
that we can always reduce the problem from these two cases.

Lemma 3.15. The problem EDGE DELETION ny%—COLORING (i.e. - o—aD )is NP-
hard.

Proof. We reduce from VERTEX COVER. Given an input graph G of VERTEX COVER,
we construct a 2-edge-colored graph G’ from G as follows. Take GG and color all edges blue,
then add a pending red edge vv’ to each vertex v of G (see Figure 3.4). By Lemma 3.5, a
2-edge-colored graph maps to Hfl,’) if and only if it does not contain a homomorphic image
of a red-blue-red path [16] i.e. a path vovivevs where vyvy and vevg are red and vyvy is
blue.

Assume that G has a vertex cover C' of size at most k. When removing the edges of
the form vv’ for v € C' in G, the resulting graph does not contain red-blue-red paths and
thus maps to H2.

Conversely, assume that we have a set S of k edges of G’ such that (G' —S) — H2}.
In particular, for every blue edge uv of G, we must have one of uu/, uv or vv’ in S. Thus
we can obtain a vertex cover of G of size k from S: for a vertex v, if vov’ belongs to S, we
add v to that vertex cover. If uv € S, we add either u or v to the vertex cover.

We thus have a polynomial-time reduction from VERTEX COVER to EDGE DELETION
H?2%-COLORING. Therefore this problem is NP-hard. [

Lemma 3.16. The problem EDGE DELETION H?}’-COLORING (i.c. e @O ) is NP-
hard.

Proof. We again reduce from VERTEX COVER. For an input graph G of VERTEX COVER,
we construct a 2-edge-colored graph G’ from G as follows. We start with a red copy
of G, then we add a pending blue edge vv’ for each v € G. Finally, for each edge
uv € GG, we create three new vertices ., Yuw, Zup sSuch that 'z, V' Tw, Yuwzus are red and
T Yuvs TuvZuy are blue (see Figure 3.5).

We then recall Lemma 3.9 proved in [16], stating that a 2-edge-colored graph maps to
Hfzb if and only if it does not contain an alternating odd figure eight, that is, an alternating
closed walk vg, vi, ..., V9, Vo, V2jt2, --., V2p—1, Uo. Note that our construction creates
such a pattern for each edge of G.

Assume that GG has a vertex cover C' of size at most k. Then for each v € C', we delete
vv’ from G’. We prove that the resulting graph G” contains no alternating odd figure
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Figure 3.5: Reduction from VERTEX COVER to EDGE DELETION Hfgb-COLORING

eight. First observe that in the graph obtained from G’ by removing all edges from G, all
the alternating walks have length at most 7, hence it contains no alternating odd figure
eight. Thus, if G” contains an alternating odd figure eight, then it uses an edge uv from
G. Since C'is a vertex cover, either uu’ or vv’ is not present in G”. Then, either u or v
has no incident blue edge. This implies that G” has no alternating odd figure eight, and
hence maps to HZp.

Conversely, assume that we can remove a set S of k edges from G’ so that G’ \ § —
HZP. We construct a set ¢ C V(G) as follows: if v’ € S, then we add v € C. If
UV, U Ty, V' Ty T Yuws Luw Zuw OF YuwZuw lie in S, then we add either u or v to C. Note
that, in each case, |C| < k. Moreover, we claim that C' is a vertex cover of G. Assume
not, and consider an edge uv in G such that u,v ¢ C. By construction, this means that
none of the edges uv, ut/, vv', u'xyy, VT w0, TuowYuvs TuvZuw, YuvZue lies in S. These vertices

form an alternating odd figure eight, contradicting that G' \ S — Hff,b.

Therefore, EDGE DELETION H?}’-COLORING is NP-hard. O

Lemma 3.17. For H an edge-colored core of order at most 2, if there exists a color of H
which contains an edge which is not a loop and does not contain all three possible edges,
then EDGE DELETION H-COLORING is NP-complete.

Proof. Take such a graph H. If one color, say blue, contains only one edge from the first
vertex to the second, then for graphs GG which are all blue, the problem is equivalent to
EDGE BIPARTIZATION, which is NP-complete.

Now, if H contains no such edge, then by assumption it must contain a color, say
blue, with a loop and an edge from the first vertex to the second (and no other edge
of this color). Let u be the vertex with the loop and v be the other vertex. Since H
is a core, H does not map to its subgraph induced by wu. If for every edge-color of H
there was a loop of this color on u, then H would not be a core. Hence there exists a
color, say red, such that there is a red edge in H and u has no loop colored red. Hence,
the graph obtained by removing all edges which are neither blue nor red, is either Hfﬁ’)

(< o—eD ) or Hff{)b (e @O ) up to symmetry. Thus, by the previous two lemmas,
Lemma 3.15 and Lemma 3.16, the problem is NP-complete using the same reductions on
input edge-colored graphs which only have blue and red edges (the edges of H that are
neither blue nor red can be ignored). O

page 84 Dimitri Lajou



Chapter 3. Complexity of edge-colored and signed graphs modification problems

E;(H) Clause E,(H) Clause

%) () (T0) {00,01} (Ty + 7o)

{00} (7) (70) {01,11} (@ + x0)

{o1} (2 +2,)(Tu +T) | {00,11} (o + ) (T + 20)
( (2

{11}

Table 3.3: Clauses appearing in the 2-SAT formula F(G) of Theorem 3.18 proved in [27], for
each edge uv of G colored i. The clauses depend on the edge set of H in color 4, described in

the rows (where V(H) = {0,1}).

z,)(xy) {00,01, 11} + 7))

3.2.3 Vertex/Edge Deletion H-Coloring: FPT algorithms when
H has order 2

For many edge-colored graphs H of order at most 2, we can show that VERTEX DELETION
H-CoOLORING and EDGE DELETION H-COLORING are FPT by giving ad-hoc reductions
to VERTEX COVER, ODD CYCLE TRANSVERSAL or a combination of both. However,
a more powerful method is to generalize a technique from [27] used to prove that H-
COLORING is in P by reduction to 2-SAT (see also [26]):

Theorem 3.18 (Brewster, Dedi¢, Huard and Queen [27]). Let H be an edge-colored
graph of order at most 2. Then, for each instance G' of H-COLORING, there ezists a
polynomially computable 2-SAT formula F(G) that is satisfiable if and only if G — H.
Thus, H-COLORING is in P.

Proof (sketch). The formula F(G) from Theorem 3.18 contains a variable z, for each
vertex v of GG, and for each edge uv, a set of clauses that depends on H, as described
in Table 3.3 (reproduced from [27]). The idea is to see the two vertices of H as “true”
(1) and “false” (0), and for each edge uv of a certain color, to express the possible valid
assignments of z, and x, based on the edges of that color that are present in H. For
example, if H has, for color i, a loop at vertex 0 and an edge 01, but no other edge of
color i, for each edge uv of G of color i, we add the clause (T, + T,) to F(G), indeed the
constraint for edge uv is satisfied if at least one of u, v is mapped to 0. n

We will show how to generalize this idea to VERTEX DELETION H-COLORING and
EDGE DELETION H-COLORING. We will need the following parameterized variant of
2-SAT:

VARIABLE DELETION ALMOST 2-SAT Parameter: k.
Input: A 2-CNF Boolean formula F', an integer k.

Question: Is there a set of k variables that can be deleted from F' (together with the
clauses containing them) so that the resulting formula is satisfiable?

VARIABLE DELETION ALMOST 2-SAT and another similar variant, CLAUSE DELE-
TION ALMOST 2-SAT (where instead of k variables, k clauses may be deleted), are known
to be FPT: a solution can be found in O(2°%) (n + m)°M) time (see [53, Chapter 3.4]
and [165]) where n is the number of variables and m is the number of clauses of the
formula. We need to introduce a more general variant, that we call GROUP DELETION
ALMOST 2-SAT, defined as follows.
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GROUP DELETION ALMOST 2-SAT Parameter: k.
Input: A 2-CNF Boolean formula F', an integer k, and a partition of the clauses of F'
into groups such that each group has a variable which is present in all of its clauses.
Question: Is there a set of k groups of clauses that can be deleted from F' so that the
resulting formula is satisfiable?

By a generalization of [53, Exercise 3.21] for CLAUSE DELETION ALMOST 2-SAT, we
obtain the following complexity result for GROUP DELETION ALMOST 2-SAT.

Proposition 3.19. GRoOUP DELETION ALMOST 2-SAT is FPT and can be solved in
O2°® (n + m)°W) time where n is the number of variable and m is the number of
clauses of the formula.

Proof. We will reduce the problem GROUP DELETION ALMOST 2-SAT to the problem
VARIABLE DELETION ALMOST 2-SAT.

Take an instance G of GROUP DELETION ALMOST 2-SAT with groups g1, ..., g,. We
construct an instance V of VARIABLE DELETION ALMOST 2-SAT as follows. Fori € [1, p],
we replace each occurrence of variable x in the clauses of group g; with a new variable x;.
Moreover, for each variable x and for each i, j, such that 1 <i < j < p, we add the two
clauses (7; + z;) and (z; + ;) to V (i.e. x; = z;). The parameter for V remains k.

Suppose that V is a positive instance, i7.e. that after removing up to k variables, the
resulting set of clauses V' is satisfied by a truth assignment v. For each removed variable
x;, we remove the group of clauses g; in G. Note that at most k£ groups are removed since
we removed at most k variables in V. We have to show that the new set of clauses G’ is
satisfiable.

Note that if z; and x; are not removed, then v satisfies (z; + z;) and (z; + 7;), which
ensures that v(x;) = v(z;). Thus, defining the truth value of x by the value of v(z;) (for
some non-removed z;) is well-defined. Take a clause (z + y) of G', then (z; + y;) is a
satisfied clause of V' for some i € [1, p|]. By definition of our truth assignment, (z + y) is
satisfied, so G’ is satisfiable. Therefore, G is a positive instance.

Conversely, suppose that we can remove k groups from G such that the resulting set
of clauses G’ is satisfied by v. If we removed the group g; in the solution, then we remove
x; in V where z; is a variable of g; that appears in each of its clauses. Such a variable
exists by definition of G. This removes all the clauses corresponding to the clauses of the
group g; in V. Thus, taking the truth assignment that assigns to each x; the value v(x)
satisfies the instance V. O

We are now able to prove the following theorem.

Theorem 3.20. For every edge-colored graph H of order at most 2, VERTEX DELE-
TION H-COLORING and EDGE DELETION H-COLORING are FPT and can be solved in
O(2°0nOW)Y where n is the order of the input edge-colored graph.

Proof. For an instance G,k of VERTEX DELETION H-COLORING or EDGE DELETION
H-COLORING, we consider the formula F(G) from Theorem 3.18 (see Table 3.3). In F/(G),
to each vertex of GG corresponds a variable x,. Deleting v from G when mapping G to H
has the same effect as deleting x, when satisfying F'(G). Thus, this is an FPT reduction
from VERTEX DELETION H-COLORING to VARIABLE DELETION ALMOST 2-SAT.
Moreover, each edge uv of G corresponds to one or two clauses of F/(G). This natu-
rally defines the groups of GROUP DELETION ALMOST 2-SAT by grouping the clauses
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A(H) Clause A;(H) Clause

@ () (Tw) {01,10} (Tu + 20) (T + To)
{00} (T + )(Ty +¢)(©) | {01, 11} (20)

{01} (Tu + ¢)(xy +¢)(e) | {10,11} (zu)

{10} (Ty + ¢)(zy + ¢)(€) | {00,01,10} (To + Ty)

{11} (x4 + ¢)(xy + ¢)(2) | {00,01,11} (Ty + )

{00,01} (Tw) {00,10,11} (T4 +T)

{00, 10} (7)) {01,10,11} (4 + Ty)

{00, 11} (xy + T0)(Ty + x,) | {00,01,10,11} (2, + Ty)

Table 3.4: Clauses appearing in the 2-SAT formula F'(G) of Theorem 3.21, for each arc uv of
the (n, m)-mixed graph G colored i. The clauses depend on the arc set of H in color 4, described
in the rows (where V(H) = {0,1}). The variable ¢ present in this table is unique to each edge
uv, i.e. we create a new variable for each edge.

corresponding to the same edge. Removing an edge is equivalent to removing its corre-
sponding group. To finish, we have to make sure that we can have one variable common
to all the clauses of each group. This is the case in the reduction in [27] for every case
except when E;(H) (the set of edges of color ¢ in H) is just a loop. Assume without loss
of generality that the loop is on vertex 1 (the other loop can be treated the same way).
Suppose uv has color ¢ in G; then wv must be mapped to the loop on vertex 1. The
original reduction added the clauses (x,)(x,); we modify this part and add instead the
clauses (¢ + z,)(c + z,)(¢) where ¢ is a new variable. This is now a valid and equivalent
instance of GROUP DELETION ALMOST 2-SAT, which is FPT by Proposition 3.19. O]

It is also possible to generalize our two problems to (m,n)-mixed graphs. Note that
the same kind of argument can be generalized to mixed graphs to obtain the following
result.

Theorem 3.21. For every (n,m)-mized graph H of order 2, VERTEX DELETION H-
COLORING and EDGE DELETION H-COLORING are FPT.

Proof. The proof is sensibly the same as for the previous theorem. Let H be the target
(n, m)-mixed graph and G be the input (n, m)-mixed graph. Each edge of G is associated
with a group of clauses as in Theorem 3.20. The group of clauses for the arcs of G are
described in Table 3.4. This creates a 2-SAT formula F(G).

If we want to solve VERTEX DELETION H-COLORING, then we solve VARIABLE
DELETION ALMOST 2-SAT on F(G) and k. If we want to solve EDGE DELETION H-
COLORING, then we solve GROUP DELETION ALMOST 2-SAT on F'(G) and k. Note that
in the last case, each group of clauses has a common variable. O
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3.3 Limited Switchings (H,n)-Coloring when H has
order 2

In this section, we study the complexity of the problem LIMITED SWITCHINGS (H,7)-
COLORING for signed graphs (H, ) of order at most 2.

3.3.1 Limited Switchings (H, 7)-Coloring: P/NP-complete dichotomy

We start by presenting a P/NP-complete dichotomy theorem for each of the sp-cores of
order 2. Recall that there is an isomorphism between the set of 2-edge-colored graphs
and the set of signed graphs. We use the notations for 2-edge-colored cores when talking
about sp-cores (see Figure 3.1).

Theorem 3.22. Let (H,7) be an sp-core of order at most 2 (i.e. one of the signed
graphs in Figure 3.1). If (H,m) is one of HY (. e—eO ), H? (e—e) HZ}

(e 80 ), H (e "®), or H" (& & ), then LIMITED SWITCHINGS (H,T)-
COLORING is NP-complete. Otherwise, it is in P.

Proof. We begin with the polynomial cases.

« Every signed graph maps to H}, ( Ce:%; ), thus LIMITED SWITCHINGS H,-COLORING
is trivially in P.

« No graph with an edge can be mapped to H' (@) (regardless of switchings).

o For H} ( Ce), we need to test whether the signed graph can be switched to an all-
positive graph in less than k switchings or not. There are only two sets of switched
vertices that achieve this signature (one is the complement of the other). It is in P
to test if the graph can be switched to an all-positive signed graph by Theorem 2.8.
Doing that also gives us one of the two sets of switched vertices. We then need to
check if its size is at most k or at least |V (G)| — k. Hence, LIMITED SWITCHINGS
H}-COLORING is in P.

« For H?, (eD ), we just apply the algorithm for H; ( Ce) and H} (::®) to each
connected component, one of the two must accept for each of them.

o For HE“’_ (o<~ @), a signed graph (G, o) is a positive instance if and only if G
(without considering edge-colors) is bipartite, which can be tested in polynomial
time.

« For H_ (e——e) a signed graph (G,0) is a positive instance if and only if it is
bipartite and maps to H} ( Ce®). We just need to check the two properties, which
are both polynomially testable.

o For Hfl; (- e——e.; ), a signed graph (G, o) maps to Hfl; if and only if it has no
cycle with an odd number of positive edges (see Lemma 3.4, proved in [16]). This
property is preserved under the switching operation. Thus, switching the graph
does not impact the nature of the instance. It is thus in P (we can test with k& = 0)
since H22-COLORING is in P [16, 27].
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Figure 3.6: Reduction from VERTEX COVER to LIMITED SWITCHINGS Hff’_ -COLORING.

We now consider the NP-complete cases. For every signed graph (H,7), LIMITED
SWITCHINGS (H,7)-COLORING clearly lies in NP. The NP-hardness follows from The-
orem 2.22 in all but one case: indeed, HY (- e—e0 ), HYY (e 0 ), H

(e @), and Hz’;b (e e ) are their own switching cores and have at least three

edges, and thus when (H,7) is one of these, LIMITED SWITCHINGS (H, 7)-COLORING is
NP-complete, even with k£ = [V (G)].

The last case is for Hff’_ (- e—e@). We give a reduction from VERTEX COVER to

LIMITED SWITCHINGS H?* -COLORING. Given an instance G, k of VERTEX COVER, we
construct the signed graph (G’,¢’) from an all-negative copy (G, E(G)) of G where we
attach to each vertex v of G a positive edge vv’, with a negative loop on the new vertex
v’ (see Figure 3.6).

Denote by = the vertex of Hffl with a loop, and by y the other one. Assume that G
has a vertex cover C' of size at most k. Let (G’,0”) be the signed graph obtained from
(G',0’) by switching the vertices of C. We map every vertex of the form v' to z, every
vertex of C' to x and the remaining ones to y. Since C' is a vertex cover, every negative
edge of (G',0") is either a loop on some vertex v'; an edge vv’ with v € C or an edge
uv with u,v € C. In each case, both endpoints are mapped to x. The positive edges of
(G',0") are then of the form vv’ with v ¢ C or uwv with u € C' and v ¢ C. In both cases,
the two endpoints are mapped to different vertices of H2” . Hence, (G',¢0”) —% H?* and
G — HY.

Conversely, assume that we can switch the vertices of a set S in (G’, ¢’) such that the
resulting signed graph (G’, 0”) verifies (G’, 0"") —% H?" . Let C be the set of vertices v of
G such that the vertices v or v' of G’ lies in S. Note that C' has size at most |S|. We claim
that C' is a vertex cover of G. Assume that there is an edge wv in G with u,v ¢ C. By
construction, u, v, v,v" € S, so uw’,vv" are positive in (G’,0”), and uv is negative. Thus,
u and v have to be mapped to z, and ¢’ and v’ have to be mapped to y, a contradiction
since ' has an incident negative loop in (G’,0”). Therefore C' is a vertex cover of G. [

3.3.2 Limited Switchings (H,7)-Coloring: FPT cases

We now consider the parameterized complexity of LIMITED SWITCHINGS (H, 7)-COLORING.
By Theorem 3.22; there are five signed graphs (H, m) of order at most 2 for which Lim-
ITED SWITCHINGS (H,7)-COLORING is NP-complete. We first show that two of them
are FPT:

Theorem 3.23. The problem LIMITED SWITCHINGS (H,7)-COLORING is FPT when
(H,m) is one of HY} (1@—eD ) or HY (::e—e@).

Proof. The signed graph HZ} (::@——eO ) has the finite duality property by [16], see

Lemma 3.5: G —* HZ} if and only if G does not contain a walk abed where ab and cd are
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negative edges and bc is a positive edge. This implies FPT time for LIMITED SWITCHINGS
Hf,’,’]—COLORING by a simple bounded search tree algorithm (Proposition 3.2).

For the graph H?* (::@——e), as mentioned in Lemma 3.6, the duality set F(H?" )

discovered in [16] is composed of walks of the form RB?’~!R (where R denotes a negative
edge, B denotes a positive edge and p > 1 is an integer) and of closed walks with an odd
number of positive edges (i.e. cycles in BCyyq 0r UCeyen). As seen before, if the graph G
has such a closed walk then switching will not remove it, thus we can reject.

If the graph has a RB?~'R walk and is a positive instance, then we claim that we
need to switch one of the four vertices incident with the negative edges. Indeed, if we
switch only at the vertices inside the positive walk (i.e. the vertices not incident with one
of the negative edges) then the parity of the number of positive edges will not change
and we will still have some maximal odd positive sub-walk, the two edges next to the
extremities being negative. Thus we would still have a RB?~! R walk for some ¢ > 1.

Hence, since we need to switch at one of these four vertices, we branch on this config-
uration using the classic bounded search tree technique. This is an FPT algorithm. [

3.3.3 Limited Switchings (H, r)-Coloring: W[1]-hard cases

The remaining cases, H2}' (e 00 ), H™ (e "®), and H" (e e ), yield
WI[1]-hard LIMITED SWITCHINGS (H,7)-COLORING problems, even for input graphs of
large girth.

LiMITED SWITCHINGS (H,w)-COLORING is W[1]-hard, even for signed graphs (G',c")
with girth at least g and which verify (G',0") —s (H, ). Under the same conditions,
LIMITED SWITCHINGS (H,7)-COLORING cannot be solved in time f(k)|G|°®) for any
computable function f, assuming the ETH.

Theorem 3.24. Let (H,w) € {H%@b,HQ”’ Hf;,b}. For any integer g > 3, the problem

We will prove Theorem 3.24 by three reductions from MULTICOLORED INDEPENDENT
SET, which is W[1]-complete [162]:

MULTICOLORED INDEPENDENT SET Parameter: k.
Input: A graph G, an integer k and a partition of V(G) into k sets V1,...,V;.
Question: Is there a set S of exactly k vertices of G, such that each V; contains exactly
one element of S, that forms an independent set of G7

Our three reductions (one for each possible choice of x) follow the same pattern. In
Section 3.3.3.1, we describe this idea, together with the required properties of the gadgets.
In Sections 3.3.3.2, 3.3.3.3 and 3.3.3.4, we show how to construct the gadgets. Since the
reduction preserves the parameter and is actually polynomial, the ETH-based lower bound
follows from [43].

3.3.3.1 Generic reduction

Let (G, k) be an instance of MULTICOLORED INDEPENDENT SET, and denote by Vi, ..., Vi
the partition of GG. Let us construct a signed graph (G’, o). We begin by creating for each
Vi a partition gadget (G;,0;) in (G',0). This gadget has |V;| special vertices, denoted z;
for z; € V;, in order to associate a vertex of G; with each vertex of V;. Moreover, (G;, ;)
must satisfy the following.
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(P1) We do not have (G;,0;) —® (H, ).

(P2) If we switch exactly one vertex v of (G, 0;), then the obtained signed graph admits
a sign-preserving homomorphism (H, 7) if and only if v is one of the special vertices
of Gl

(P3) G; has girth at least g.

(P4) G; has two reset vertices x and y that are different from the x;’s and such that
the signed graph (G;, o)) obtained from (G;,0;) by switching  and y admits a
sign-preserving homomorphism to (H, 7).

Let uv be an edge of G. Recall that v and v can be seen as vertices of the signed graph
(G',0). We add an edge gadget (Gyp, 0uy) (containing two vertices u and v) in (G', o) by
identifying the vertex u (resp. v) of (G', o) with the vertex u (resp. v) of (Gyy, 0uy). This
gadget must satisfy the following.

(E1) Let (Gyw,0,,) be the graph obtained from (Gyy,0u) by switching a subset S
of {u,v}. If S # {u,v}, then (Gyy,0.,) —* (H, ).

(£2) Assume that u € V; and v € V; and let (P, p) be the signed graph obtained from
(Guw, Ouw)U(Gi, 0,)U(G;, 0;) by switching u and v. Then, we do not have (P, p) —?
(H,m).

(E3) Gy has girth at least g.
(E4) In Gy, u and v are at distance at least g.

This ends the construction of (G’,0). Note in particular that every vertex of G is
present in G'.

We say that a set S of vertices of G is walid if, when seen as a subset of V(G'), it
contains at most one special vertex in each edge gadget. We need one last condition about

(G 0).

(SP) If, after switching a valid set in (G’, o), the obtained graph does not map to (H, ),
then this is because a partition gadget or an edge gadget does not map to (H, )
(that is, each minimal obstruction is entirely contained in an edge gadget or a
partition gadget).

We can now prove that our reduction is valid.

Proposition 3.25. ((G',0),k) is a positive instance of LIMITED SWITCHINGS (H,)-
COLORING if and only if (G, k) is a positive instance of MULTICOLORED INDEPENDENT
SET.

Proof. Assume we can switch at most k vertices of (G', o) such that the obtained signed
graph admits a sign-preserving homomorphism to (H, 7). Let S be the set of those
vertices. We claim that S is a valid set of (G’, o). First note that, due to (P1), S must
contain at least one vertex in each V;. This enforces |S| = k, thus S contains exactly one
vertex v; in each V;. By (P2), each of these v;’s has to be one of the special vertices of
G;. This means that S contains only vertices that are present in G.

We claim that S induces an independent set in G. Assume by contradiction that there
is an edge wv in G with u,v € S. Then, by construction, there is an edge gadget whose
special vertices are u and v, such that the edge gadget and the two partition gadgets
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(a) Partition gadget for V; = {xg, z1, 22,3} (b) Edge gadget for uv.

with the two reset vertices r1, 72.

Figure 3.7: Partition and edge gadgets in the Hf}%-reduetion when g = 3.

associated with v and v map to (H,7) when we switch only w and v, contradicting (F2).
(Note that S does not contain any other vertex of the edge gadget nor any other vertex of
the partition gadgets.) Therefore, G has an independent set of size k containing exactly
one vertex in each set V.

Conversely, assume that G' has an independent set S intersecting each V; at one vertex.
Then, we denote by (G’, ") the signed graph obtained by switching every vertex of S in
(G',0). By construction, this is a valid set, hence by (SP) every obstruction for mapping
to (H,7) in (G’, ¢’) is actually contained in some gadget. However, it cannot be contained
in a partition gadget due to (P2), nor in an edge gadget due to (E1). Therefore, we have
(G' o) —P (H, ). O

Observe moreover that, due to (P3), (£3) and (F4), G’ has girth at least g. Moreover,
let S be the set containing all reset vertices of (G', o). Let (G',0’) be the signed graph
obtained by switching every vertex of S. By (P4), no partition gadget in H contains an
obstruction. Furthermore, no edge gadget contains an obstruction by (E1). Therefore,
using (SP), we obtain that H does not contain any obstruction, hence (G', 0’') —2 (H, ).
Thus to prove Theorem 3.24 it suffices to construct the gadgets.

3.3.3.2 Gadgets for 42"

We now describe the gadgets for LIMITED SWITCHINGS H?’-COLORING (6”& ).
As mentioned in Lemma 3.7, for every signed graph (G,0), we have (G,0) —% HZ? if
and only if (G, o) does not contain an all-positive odd cycle.

The partition gadget (G;,0;) is an all-positive cycle of length 2¢g if g and |V;| have
the same parity (resp. 2g + 2 is they do not have the same parity) with a positive chord
of order |V;| between two antipodal vertices. The special vertices are those on the chord
(see Figure 3.7(a)). The reset vertices are defined as any two vertices on the initial cycle
(excluding the two vertices connected to the chord), one on each side of the chord.

Property (P3) directly follows from the construction. Moreover, since GG; contains an
all-positive odd cycle, we have (P1). If we switch exactly one vertex in G, then either
this vertex is a special vertex and the obtained graph does not have any all-positive odd
cycle (and thus maps to Hf;b), or it is not a special vertex and there is still an all-positive
odd cycle. Therefore, property (P2) also holds.

Finally, if we switch the two reset vertices, then there is no longer any all-positive odd
cycle, thus (P4) also holds.

We now consider the edge gadget. It is formed by an all-positive odd cycle of length
29+ 1 where two vertices u, v at distance g have been switched (see Figure 3.7(b)). These
vertices are the special vertices of the gadget. By construction, properties (E3) and (E4)
hold. Moreover, consider a set S C {u,v}. The only way to create a graph containing
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Figure 3.8: The edge gadget for uv in the Hf’[b—reduction when g = 6.

an all-positive odd cycle by switching the vertices of S is to switch both u and v. This
proves (E1). If we switch both special vertices then we do not have (Guy, 0uw) —% HZP,
which implies (E£2).

It remains to prove Property (SP). Let S be a valid set, and let (P, p) be the graph
obtained from (G’, o) when switching all vertices of S. Assume that (P, p) contains an
all-positive odd cycle. Since S is valid set, at most one vertex has been switched in each
edge gadget. Therefore, no all-positive odd cycle of (P, p) can contain an edge from an
edge gadget. It is thus contained in some partition gadget, ensuring that (SP) holds.

3.3.3.3 Gadgets for Hﬁ’f’

We now describe the gadgets for LIMITED SWITCHINGS H"’-COLORING ( 2 "®). As
mentioned in Lemma 3.8, for every signed graph (G, o), we have (G,0) —% H?"" if and
only if (G, o) does not contain a bad walk, i.e. an odd figure eight vy, vy, ..., vy, Vo,
Vgjt2, - -, Vap_1, Vo such that all edges vy;v9;11 are positive [16].

The partition gadget (G, 0;) is the same as in the previous case (see Figure 3.7(a)).

The edge gadget is an odd path of length at least g, whose edges are all-positive except
for the first two and last two ones (see Figure 3.8).

Since the partition gadget (G, 0;) is the same as for Hff_b, Property (P3) still holds.
Moreover, since all-positive odd cycles still are obstructions, we have (P1).

Observe that if a signed graph (P, p) contains an obstruction, then so does its subgraph
obtained by removing recursively its leaves. Note that switching exactly one vertex v in
(G, 0;) makes its incident edges all-negative. Therefore, v cannot be contained in a bad
walk anymore. In this case, the obstruction is contained in a possibly empty signed cycle
(Cy,my) (obtained by removing from (G, 0;) the vertex v and the leaves of G; recursively).

If we switch exactly one vertex in (G, 0;), then either this vertex is a special vertex
and (C,, m,) is empty or an all-positive even cycle (and thus maps to HZ”_I’), or it is not a
special vertex and (C,, m,) is still an all-positive odd cycle. Therefore, property (P2) also
holds.

Finally, if we switch the two reset vertices u and v, then G; \ {u, v} is a tree, thus G;
does not contain any obstruction, hence (P4) also holds.

By construction, properties (E3) and (£4) hold. Moreover, observe that the edge
gadget does not contain a bad walk since it is a path. Thus (F1) holds. If (P, p) is the
graph defined in property (E£2) then there is a bad walk starting from u, then turning
around one odd cycle in the partition gadget containing u, crossing the edge gadget to v,
taking a similar turn around an odd cycle of the partition gadget containing v and then
going back to u by the edge gadget. So (E£2) holds.

It remains to prove (SP). Let S be a valid set, and (G’, ¢”) be the graph obtained from
(G', 0’) by switching S. Observe that no bad walk contains two consecutive negative edges.
Moreover, in (G’,0’), every edge gadget contains two such edges (since its two endpoints
cannot be both in ). Therefore, no bad walk crosses an edge gadget (G, 0yp), Which
implies that no bad walk contains edges in (G, 0u). Hence, every bad walk is contained
in some partition gadget, thus ensuring that (SP) holds.
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(a) Partition gadget for V; = {xg, x1, x2, x3}, (b) Edge gadget for uv. The vertex x is
with the two reset vertices r1, 7s. where the two alternating cycles were identi-
fied.

Figure 3.9: Partition and edge gadgets in the Hfzb—reduction when g = 3.

3.3.3.4 Gadgets for A}’

We now describe the gadgets for LIMITED SWITCHINGS H%b—COLORING (e " e0D).
As mentioned in Lemma 3.9, for every signed graph (G, o), we have (G,0) —% HZ} if
and only if (G, o) does not contain an alternating odd figure eight, that is, an alternating
closed walk vp, vq, ..., Vaj, Vo, Vajt2, - - ., Vap_1, Vo for some integers j and p [16].

The partition gadget (G;,o0;) is defined by gluing two obstructions with large girth
along a path of length |V;| (see Figure 3.9(a)). More precisely, consider an alternating
odd cycle (C,7¢) of size |V;| + g (or |V;] + g + 1). Note that (C,7¢) contains a vertex
u adjacent to two negative edges. We attach an alternating odd cycle (C’, 1) of length
g (or g + 1) to u, such that the edges of (C', 7)) adjacent to u are positive. To obtain
(G;,0;), we take two copies of this obstruction, and glue their respective largest cycle
along a path of length |V;|. The vertices of this path are the special vertices of (G}, o),
and the two copies of u are the reset vertices of (G;, 0;).

The edge gadget is formed by identifying the vertices having their two incident edges
of the same sign in two alternating odd cycles of length 2¢g 4+ 1, in such a way that the
common vertex has two positive edges in one cycle and two negative edges in the other
one. To obtain the edge gadget, we switch two vertices u and v, at distance g from each
other, in the same cycle of this signed graph (see Figure 3.9(b)).

Observe that (G;,0;) has girth at least g, hence Property (P3) holds. Moreover, by
construction, (G;,0;) contains an obstruction, hence (P1) holds. Note that there are
exactly two (minimal) obstructions in (G, 0;), the ones used to construct it. Therefore, if
we switch a non-special vertex in (G;, 0;), one of the these obstructions is unchanged, and
the obtained graph does not map to Hfjf’. Conversely, assume that we switch a special
vertex u of (G;,0;) and there remains an obstruction. Note that all the paths of length
two starting from u are now all-positive or all-negative, hence no alternating odd figure
eight can go through w. This implies that every alternating odd figure eight in this graph
does not use the internal vertices of the glued path. When removing these vertices from
(G, 0;), the former endpoints of the glued path have their incident edges of the same sign,
hence they cannot be contained in an alternating odd figure eight. Removing the whole
glued path and (recursively) the leaves of G; gives two disjoint alternating odd cycles,
which do not contain any alternating odd figure eight. Thus we have (P2).

Finally, if we switch the two reset vertices of (G;, 0;), all the paths of length 2 starting
at these vertices are all-positive or all-negative, hence no alternating odd figure eight goes
through them. Removing the reset vertices, and recursively the obtained leaves gives
the empty graph. Therefore, there is no alternating odd figure eight in the signed graph
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obtained from (G, 0;) by removing the reset vertices, it thus maps to HZ’, and (P4)
holds.

The construction of the edge gadget ensures that (£3) and (F4) are satisfied. More-
over, if we switch v and v, we obtain an obstruction, ensuring that (£2) holds. Finally,
let (Gyv,01,) be the graph obtained from (G,,, 04,) by possibly switching v. Then every
path of length two starting at u is all-positive or all-negative, hence no alternating odd
figure eight in H contains u. Removing u and leaves of (G, 0.,) yields an alternating
odd cycle, which does not contain any alternating odd figure eight. Therefore, (G, 0.,)
maps to H2?, and by exchanging v with v, we obtain (E1).

It remains to prove (SP). Let S be a valid set and (G',¢”) be the graph obtained
from (G’,0’) by switching every vertex of S. Consider an alternating odd figure eight
containing an edge from an edge gadget and an edge from a partition gadget. This walk
goes through a vertex u € V; such that the edge before u in the walk lies in (G, 0;) and
the other one lies in some (G, 0u). If u € S, the paths of length 2 starting from u in
(G, 0;) are all-positive or all-negative. Conversely, if u ¢ S, the paths of length 2 starting
at u in (G, 0u) are all-positive or all-negative. In both cases we reach a contradiction
with the existence of a bad walk going through u. Therefore, every alternating odd figure

eight of (G',0”) is contained either in an edge gadget or in a partition gadget.

3.4 Vertex Deletion Signed-(H, 7)-Coloring

In the previous section, we considered “switching” as the modification operation on signed
graphs. As seen in Chapter 2, we can color signed graphs using sign-preserving homomor-
phisms or using homomorphisms of signed graphs. Hence for a given signed graph (H, ),
we have two coloring problems: (H,7)-COLORING and SIGNED-(H, 7)-COLORING.

Until now, we applied modifications operations to sign-preserving homomorphisms (or
homomorphisms of 2-edge-colored graphs) as the homomorphism type on signed graphs
(or equivalently, 2-edge-colored graphs). From now on, we will use homomorphisms of
signed graphs (7.e. homomorphisms with an unlimited number of switchings) and consider
modification problems of SIGNED-(H, 7)-COLORING.

Of the three previous modification types, vertex deletion, edge deletion and switching,
only the first two are interesting in this setting since homomorphisms of signed graphs
are built in with an unlimited number of switchings. In this section, we focus on vertex
deletion for the problem SIGNED-(H, 7)-COLORING.

VERTEX DELETION SIGNED-(H, 7)-COLORING Parameter: k
Input: A signed graph (G, o) and an integer k.
Question: Is there a set S of at most k vertices of G such that (G,0)—S5 — (H,m)?

As always, if (H, ) is not some type of core then the problem reduces to another
problem with a smaller target graph. Here the relevant notion of core is the notion of
s-core. By Theorem 2.22, if (H,7) is an s-core with at least three edges, then VERTEX
DELETION SIGNED-(H, 7)-COLORING is NP-complete even for k = 0.

Up to equivalence, there are seven s-cores which have at most two edges: H! (@), H}

(ce), Hy (Ce), H} (e), H®_ (e——e), H*" (e "®) and H?, (eD:®). Note
that HE’?? (e——e) and HE”:? (o-----@) are equivalent: switching one of the two vertices
transform one signed graph into the other.
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The following theorem completely characterizes the complexity of VERTEX DELETION
SIGNED-(H, 7)-COLORING both in terms of P/NP-complete dichotomy and in terms of
parameterlzed complexity.

Theorem 3.26. Let (H, ) be an s-core. The following statements hold.

1.
2.

The problem VERTEX DELETION SIGNED-H},-COLORING is in P.

The problem VERTEX DELETION SIGNED-(H,)-COLORING is NP-complete when
(H,m) is one of H, H}, H}, H®_, H*"® or H}, .

The problem VERTEX DELETION SIGNED-(H,m)-COLORING is NP-complete even
for k =0 when (H,x) ¢ {H', H}, H}, H!, H®_ H*® 'H '},

The problem VERTEX DELETION SIGNED-(H,7)-COLORING is FPT and can be
solved in 2°0) |V(G)|°Y time when (H, ) is one of H, H}, H! or HP

The problem VERTEX DELETION SIGNED—HE?_—COLORING is FPT and can be
solved in 20 |V (G)|°Y) time.

The problem VERTEX DELETION SIGNED—HZ;—COLORING is FPT and can be solved
in 2006 [V(@) ") time.

Proof.

1.

As always, every signed graph admits a homomorphism to the signed graph H},
(e ). Hence we can accept any instance of VERTEX DELETION SIGNED-H),-
COLORING for which k£ > 0.

. By Theorem 2.17, for every signed graph (H,), the problem VERTEX DELE-

TION SIGNED-(H, 7)-COLORING is equivalent to the problem VERTEX DELETION
DSG(H, w)-COLORING where DSG(H, ) is the double switching graph of (H, )
seen as a 2-edge-colored graph (see Theorem 2.17).

Hence, by Theorem 3.12, if (H,7) € {Hl H), H! H*_ HE’:b_,Hf;} then VERTEX
DELETION SIGNED-(H, 7)-COLORING is NP- complete

. This follows directly from Theorem 2.22.

The problem VERTEX DELETION SIGNED-H!-COLORING is equivalent to VERTEX
COVER, and is thus FPT.

For the signed graph H} ( Ce), note that DSG(H}) is a signed graph isomor-

phic to the 2-edge-colored graph Hﬁ’; (Ce---€0). By Theorem 2.17 and The-
orem 3.20, VERTEX DELETION SIGNED-H}-COLORING is FPT and can be solved
in 20 |V(G)|°Y time.

The problem VERTEX DELETION SIGNED-H!-COLORING is also FPT as it is equiv-
alent to VERTEX DELETION SIGNED-H}-COLORING on input (G,—o) and k by
Observation 2.14.

For the signed graph HE”’_ (<" @), the sign of the edges do not matter in the
homomorphism: (G,0) —, H>? if and only if G is bipartite. Hence VERTEX
DELETION SIGNED-H?"® -COLORING is equivalent to ODD CYCLE TRANSVERSAL
which is FPT and can be solved in 2°® [V (@)™ time (see [166, 127]).
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5. The remaining problems are more complicated. The problem VERTEX DELETION
SIGNED—HEIL—COLORING, on an input composed of a signed graph (G, o) and an
integer k, consists in finding a set S of at most k vertices of G such that x((G,0) —
S) < 2, or equivalently such that (G,0) — S is a bipartite balanced signed graph.
In some sense, this problem consists in solving VERTEX DELETION SIGNED-H-
COLORING and VERTEX DELETION SIGNED-HEfi -COLORING at the same time.
Unfortunately, DSG(HE’L) has four vertices and we cannot apply the techniques
of Theorem 3.20 to solve the problem. Indeed each vertex of H?*_ would need
to be represented by two variables and we cannot ensure that a solution of the
corresponding VARIABLE DELETION ALMOST 2-SAT instance deletes variables in
pairs.

Nonetheless, this problem is very similar to ODD CYCLE TRANSVERSAL except that
we need to delete not only odd cycles but also unbalanced cycles. Our algorithm
uses the “iterative compression” technique (see [53, Chapter 4]) which was created
to solve ODD CYCLE TRANSVERSAL (see [166]). We present this algorithm in
Section 3.4.1.

6. The problem VERTEX DELETION SIGNED-H, -COLORING (€O ), on input signed
graph (G, o) and integer k, consists in finding a set S of at most k vertices of G such
that each connected components of (G,o0) — S is either balanced or antibalanced.
In Section 3.4.2, we use iterative compression to construct our FPT algorithm.

Note that, we completely characterize the complexity of all s-cores. O

3.4.1 Vertex Deletion Signed—Hzlf_—Coloring: an FPT algorithm
using iterative compression

We want to prove that VERTEX DELETION SIGNED-HE’j_-COLORING is FPT.

First note that, other than the empty graph of order 2, H 3b_ is the only simple signed
graph of order 2 (up to equivalence). Hence x4(G,0) < 2 if and only if (G,0) —>; Hzlj_.
Since x(G) < xs(G,0), (G,0) = H?_ implies that G is bipartite. Moreover since H?’_
has no unbalanced closed walks, (G, o) — H?_ implies that (G, 0) is balanced. Finally, if
(G, o) is bipartite balanced, then (G, o) is equivalent to (G, &) and since x,(G, &) = x(G),
xs(G,0) < 2. Hence x4(G,0) < 2 if and only if (G,0) —, H*_ if and only if (G,0) is
bipartite balanced. This leads us to reformulate the problem as follows.

VERTEX DELETION SIGNED-H?’_-COLORING Parameter: k
Input: A signed graph (G, o) and an integer k.

Question: Is there a set S of at most k vertices of G such that (G, o) — S is a bipartite
balanced signed graph?

To this end, we define the following two problems.

DisjoINT VERTEX DELETION SIGNED—HEIZ;COLORING Parameter: k
Input: A signed graph (G, o), an integer k and a set S’ of at most k + 1 vertices of G
such that (G, o) — S’ is a bipartite balanced signed graph.

Question: Is there a set S of at most k vertices of G such that S NS = @ and
(G,0) — S is a bipartite balanced signed graph?
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ANNOTATED BIPARTITE BALANCED COLORING Parameter: k
Input: A bipartite balanced signed graph (G, o), an integer k and four sets of vertices
Bi, By, B, B_.

Question: Is there a set S of at most k vertices of G such that (G,0) — S admits
a sign-preserving homomorphism ¢ to Hy; ( Ce-----@0O ) (where the two vertices of
Hpy are named @ and ©) and a proper 2-coloring ¢ : V(G) \ S — {1,2} verifying the
following properties:

L o(By\S) ={a}, ¢(B-\S) ={c},
2. ¢(By\ S) = {1} and ¢(B, \ S) = {2}7

Note that (G,0) —® Hpj if and only if (G,0) is balanced as Hpj is the double
switching graph of H} ( Ce), thus justifying the name of the problem.

Our goal is to use DISJOINT VERTEX DELETION SIGNED-HE%_-COLORING in order
to solve VERTEX DELETION SIGNED—H%??—COLORING and to use ANNOTATED BIPAR-
TITE BALANCED COLORING in order to solve DISJOINT VERTEX DELETION SIGNED-
H%lj_-COLORING. In order to construct an FPT algorithm for ANNOTATED BIPARTITE
BALANCED COLORING, we consider the following problem.

VERTEX MULTICUT Parameter: £
Input: A graph G, ¢ ordered pairs (s1,t1), ...and (sg,t,) of vertices of G and an
integer k.

Question: Is there a set S of at most k vertices of G such that, for every i € [1,/], if
si,t; ¢ S, then the graph G — S does not contain a path from s; to t;7

As £ = O(|V(G)[?), the following result follows from [151].

Theorem 3.27 ([151]). The problem VERTEX MULTICUT can be solved in 2°**) |V (G)|°™)
time.

Our first goal is to prove the following lemma.
Lemma 3.28. The following statements hold.

1. The problem ANNOTATED BIPARTITE BALANCED COLORING can be solved in
200 [V (@) |°Y time.

2. The problem DISJOINT VERTEX DELETION SIGNED-H Elj_-COLORING can be solved
in 2006 [V(@) 1Y) time.

Proof of Lemma 3.28.1. Consider an instance of ANNOTATED BIPARTITE BALANCED
COLORING composed of a bipartite balanced signed graph (G, o), an integer k£ and four
subsets of V(G): By, By, B and B_.

Since G is bipartite, G admits a 2-coloring ¢ : V(G) — {1,2}. We want to construct
a 2-coloring ¢’ for which non-deleted vertices of B; have color 1 and non-deleted vertices
of By have color 2. Suppose that there exists a solution S of at most k vertices of G,
and let v € V(G — S). If v € By and ¢(v) = 1 then we need to change the color of
v from ¢ to ¢. If we change the color of v, we also need to change the color of its
neighbors in G — S to keep the property of the coloring. In particular, the vertices of
Changey,;, = (BN ({2}))U(B:Ne ' ({1})) must be removed or must have distinct colors
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by ¢ and ¢. To the contrary, the vertices of Stay,;, = (B1 N ¢~ ' ({1})) U (B2 N ¢ ' ({2}))
must be removed or have the same color in ¢ and ¢. Hence if S is a solution, then for
every two vertices u € Change,,, \ S and v € Stay,,, \ S, there must be no path between
wand vin G — 9.

Moreover, if S is a set of at most k vertices of G such that for any two vertices
u € Changey,, \ S and v € Stay,,, \ S, there is no path between u and v in G — S, then
there exists a 2-coloring ¢ of G — S for which ¢(B; \ S) = {1} and ¢(B; \ 5) = {2}.
To construct ¢, it suffices to change the color (with respect to the 2-coloring ¢) of every
vertex of a connected component of G — S containing a vertex of Change,,,.

As (G,o0) is balanced, there exists a sign-preserving homomorphism ¢ from (G, o)
to H, 52 (Ceo---90 ). We want to find another sign-preserving homomorphism ¢’ from

(G,0) — S to Hy}, (Ce-----€0 ) where S is the desired solution. As for the bipartite

case, some vertices of G must change to have distinct images by ¢ and ¢’ (or must
be deleted) and other must have the same image by ¢ and ¢’ (or must be deleted).
Suppose that p(v) # ¢'(v), for some vertex v, then each non-deleted neighbor u of v
must also verify p(u) # ¢'(u) so that the edge uv maps to an edge of Hy} ( Ce-----€0 )

with sign o(uv). Hence we can apply the same arguments as for the bipartite condition.
We can define two sets Change,,, = (By N '({8})) U (B- Ny '({®})) and Stay,,, =
(BN ' ({@}))U(B_Ny~*({&})). A solution S must disconnects vertices of Change,,, \ S
from vertices of Stay,,, \ S. Moreover, any set .S of at most k vertices of G which disconnect
vertices of Change,,, \ S from vertices of Stay,, \ S implies the existence of ¢’ as described
in the problem definition. To construct ¢’ it suffices to change the image (with respect to
the ) of every vertex of a connected component of G— S containing a vertex of Change,,, .

To conclude, in order to solve ANNOTATED BIPARTITE BALANCED COLORING, it
suffices to find a set S which disconnects vertices of Change,,;,\ S from vertices of Stayy;,\ .S
and disconnects vertices of Change,, \ S from vertices of Stay,, \ S.

We construct the set T' of ordered pairs of vertices of G as follows, T is composed
of all pairs (s,t) where s € Change,, and ¢ € Stay,,, and all pairs (s,t) where s €
Change,,, and t € Stay,,,. The graph G along with the set of ordered pairs of 7" and the
integer k£ forms an instance of VERTEX MuLTICUT. A subset S of V(G) is a solution
of this instance of VERTEX MULTICUT if and only if it is a solution of our instance
of ANNOTATED BIPARTITE BALANCED COLORING. Hence, we can solve ANNOTATED
BIPARTITE BALANCED COLORING in 20*") |V(@)|°") time by Theorem 3.27. O

Proof of Lemma 3.28.2. Consider an instance of DISJOINT VERTEX DELETION SIGNED-
HE%_—COLORING composed of a signed graph (G, o), an integer k and a set S” of at most
k + 1 vertices of G such that (G,0) — S’ is a bipartite balanced signed graph. Let
(G[S"],0[S"]) be the signed subgraph of (G,o) induced by S’. If (G[S'],0[S’]) is not
bipartite balanced then the problem does not have a solution and we can reject this
instance.

Suppose that S is a solution for our instance. The signed graph (G, o) — S is balanced
bipartite. Hence, (G,0) — S has a 2-coloring (resp. a sign-preserving homomorphism to
H;4). This coloring (resp. sign-preserving homomorphism) has a restriction ¢* (resp. ¢*)
to (G[S'], o[S"]).

Given a 2-coloring ¢ of (G[Y],0[S’]) and a sign-preserving homomorphism ¢ from
(G[9],0]8"]) to Hg}, we want to be able to test whether we can remove some set of
vertices S C V(G)\ S’ in such a way that ¢ and ¢ extend to the vertices of V(G)\ (SUS").
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Let (G',0’) be the signed subgraph of (G, o) induced by V(G) \ S’. We define the
following sets:

Bi(c) ={ueV(G): Fve S NN(u)clv) =2},
By(e) ={u e V(G): Jve S NN(u),clv) =1},
B.(p)={ueV(G): FJve S NN(u)

(

u), p(v) = o(uv)}
o (v) = —o(uv)}.

Note that in order to extend ¢ to the rest of G, a vertex in Bj(c) must be removed or
must be assigned color 1. The same remarks holds for the other sets. Hence a set S
is a solution of our instance of DISJOINT VERTEX DELETION SIGNED-H%{’_-COLORING
if and only if it is a solution of the instance of ANNOTATED BIPARTITE BALANCED
COLORING composed of (G, 0”), the integer k and the four sets By(c), By(c), B4 (y) and
B_(p) for some choice of ¢ and ¢. In particular ¢ = ¢* and ¢ = ¢* (if they exist) is a
good choice for these two functions. Note that the choices of ¢* and ¢* were arbitrary
and it may be possible that other choices might correspond to a solution of ANNOTATED
BIPARTITE BALANCED COLORING.

Therefore, it suffices to test for every pair {c, ¢}, where c is a 2-coloring of (G[S], o[S"])
and ¢ is a sign-preserving homomorphism from (G[S'],0[S"]) to Hy;, whether there is a
solution to the corresponding instance of ANNOTATED BIPARTITE BALANCED COLOR-
ING. If there is no solution then we can reject as this contradicts the existence of ¢*
and ¢*. If there is a solution S then we can accept and return this solution.

Note that the number of choices for the pair {c,} is upper bounded by (2¢1)2.
Hence we can solve DISJOINT VERTEX DELETION SIGNED-H?_-COLORING in (2"1)? x

200 |v(@)|°M) = 20 |v(@)|°Y) time. 0

B_(¢)={ueV(G): Jve S NN(u),

We can now prove Theorem 3.26.5 using the lemma.

Proof of Theorem 3.26.5. Consider an instance Z of VERTEX DELETION SIGNED—H%?_—
COLORING composed of a signed graph (G, o) and an integer k. We solve the problem
by induction on the number of vertices. If G has at most k vertices than we can accept
and return V' (G). This is our base case.

Let = be a vertex of G. By induction, we can test whether there is a solution of
VERTEX DELETION SIGNED-H%?_-COLORING on the instance Z' composed of the signed
graph (G,0) — x and the integer k. If there is no solution for Z’ then Z does not have
a solution and we can reject. Hence we can suppose that there is a solution S” for the
instance Z'. Note that, by definition, (G,0) — (S” U {x}) is a bipartite balanced signed
graph but S’ = S” U {z} might contain k + 1 vertices. In this case, we need to find a
smaller solution. If Z has a solution S* then we try to determine the (possibly empty) set
S*NS’. For every possible subset X of S, we test whether this set can correspond to the
intersection of S* and S’.

To do that it suffices to test whether there is a solution to the problem DISJOINT
VERTEX DELETION SIGNED—H% -COLORING on the instance composed of the signed
graph (G, o) — X, the integer k — |X| and the set S\ X. Note that (G,0) — X — (5"\ X)
is a bipartite balanced signed graph. If such a solution S exists then S U X is a solution
of Z and we can accept. Otherwise, the set X does not correspond to the intersection of
S* and S’

If none of the 2¥+! possible intersections yields a solution then we can reject. Hence we
can solve Z with a solution to Z’ in (2¥71) x 204" |V(@)|°™") time. As we need to perform
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O(|V(G)]) recursive calls which correspond to the removal of x, we need to multiply
the complexity by O(|V(G)|). In the end, it takes a 20" V()| time to solve our
problem. O

3.4.2 Vertex Deletion Signed-Hﬁ;-Coloring: an FPT algorithm
using iterative compression

The problem VERTEX DELETION SIGNED-HE,E—COLORING can be reformulated in the
following way: how many vertices do we need to remove from the input signed graph
(G, 0) so that we obtain a signed graph with no unbalanced even closed walk? Note that
we cannot replace “closed walk” by “cycle” in the previous characterization. Due to this,
we cannot apply the same arguments as in Lemma 3.28.1. Fortunately, we can still use
iterative compression in order to reduce our problem.

The algorithm for this section starts in a similar fashion to the algorithm of the
previous section. Consider from now on that H7, (e @) has for vertex set {&, &} where
@ is the vertex with the positive loop and & is the vertex with the negative loop. Remark
that we can solve VERTEX DELETION SIGNED-H,-COLORING with O(2* [V (G)|) calls
to DISJOINT VERTEX DELETION SIGNED-H,?;-COLORING as in the previous section.

Di1SJOINT VERTEX DELETION SIGNED-H%-COLORING Parameter: k
Input: A signed graph (G, o), an integer k£ and a set S’ of at most k + 1 vertices of G
such that (G,0) — 8" —, H}; .

Question: Is there a set S of at most k vertices of G such that SN S = @ and
(G,0) = 8§ —, HZ,?

Let D(n,k) be the maximal time taken by our algorithm to solve an instance of
DISJOINT VERTEX DELETION SIGNED-H?,-COLORING with parameter at most k and
where the input signed graph has order at most n.

To solve the disjoint version of our problem let us introduce new problems. The first
of these intermediate problems is ANNOTATED SIGNED-H,?;—COLORING.

ANNOTATED SIGNED—Hf’g—COLORING Parameter: k
Input: A signed graph (G, o), an integer k and two disjoint sets of vertices By, B_
such that (G, o) — (By UB_) —, H.

Question: Is there a subset S of V(@) of size at most k such that (G,o) — S admits
a homomorphism ¢ to H?, (D), verifying SN (B, UB_) = @, ¢(B;) = ® and
p(B-) =7

This problem can have two types of instances: instances which behave well (called nice
instances) and the others. Let Z be an instance of ANNOTATED SIGNED—HE’E—COLORING
composed of a signed graph (G, o), an integer k and two disjoint sets B, and B_. The
instance Z is nice if and only if, for every v € V(G) \ (B4 U B_), either u is disconnected
from the vertices of B, U B_ or, there exist a (u, By)-path and a (u, B_)-path whose
internal vertices belong to V(G) \ (B U B_). Unfortunately, in general, we cannot
suppose that our instances are nice. Nice instances will appear as a byproduct of some
recursive calls of the algorithm. This notion of nice instance is important as not making
the distinction gives a non-FPT run-time for our algorithm.
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Let A(n, k) be the maximal time taken by our algorithm to solve an instance of AN-
NOTATED SIGNED-H, 2b COLORING with parameter at most & and where the input signed
graph has order at most n. Let A,;..(n, k) be the maximal time taken by our algorithm
to solve a nice instance of ANNOTATED SIGNED—HEE-COLORING with parameter at most
k and where the input signed graph has order at most n.

We define two other problems.

CONNECTED ANNOTATED SIGNED- HQb COLORING Parameter: k
Input: A signed graph (G, o), an integer k£ and two non-empty disjoint sets of vertices
By, B_ such that G — (B, U B_) is connected and (G, 0) — (By UB_) —, HZ,
Question: Is there a set S of at most k vertices of G such that (G,0) — S admits
a homomorphism ¢ to H, (D), verifying SN (B, UB_) = @, p(B;) = ® and
p(B-) = o7

CONNECTED HALF ANNOTATED SIGNED-H 2b COLORING Parameter: k
Input: A signed graph (G, o), an integer k and a non-empty set of vertices B, such
that (G, o) — By is connected and (G,0) — By — HY, .

Question: Is there a set S of at most k vertices of G such that (G,0) — S admits a
homomorphism ¢ to H?, (6D e), verifying SN B, = @ and ¢(B;) = &7

There are a few things to note. The connectivity requirement for these two problems
is not on the input signed graph (G, o) but on the graph G — (B, U B_). Intuitively, the
vertices of B, U B_ can be interpreted as “hints” for the homomorphism which cannot be
interacted with: we cannot remove them and they do not intervene in the connectivity.
Of the two, the problem CONNECTED ANNOTATED SIGNED-HEJ-COLORING behaves the
nicest. In particular, nice instances of ANNOTATED SIGNED—HE;—COLORING will be re-
duced to a number of instances of CONNECTED ANNOTATED SIGNED- HQ_ COLORING.
Unfortunately, the usual instance of ANNOTATED SIGNED-H. 2b COLORING will also re-
duce to some instances CONNECTED HALF ANNOTATED SIGNED-H?, -COLORING. This
problem has less constraints than CONNECTED ANNOTATED SIGNED-H?; -COLORING
which makes its resolution more complicated. In particular, it is possible that our algo-
rithm for CONNECTED HALF ANNOTATED SIGNED-H, Qb COLORING reduces to ANNO-
TATED SIGNED-H '} >_COLORING with an instance of roughly the same size. Fortunately,
in this case, the 1nstance of ANNOTATED SIGNED-H 2b COLORING is nice, which avoids
infinite loops and ensure our FPT complexity.

Finally, even though CONNECTED HALF ANNOTATED SIGNED-HZ,-COLORING is
defined for B_ = @ and B, # @, we could define the following symmetrical problem.

CONNECTED HALF ANNOTATED SIGNED-H, -COLORING (V2) Parameter: k
Input: A signed graph (G, o), an integer k& and a non-empty set of vertices B_ such
that (G, o) — B_ is connected and (G,0) — B. —, H};

Question: Is there a set S of at most k vertices of G such that (G,0) — S admits a
homomorphism ¢ to H?, (e :e), verifying SN B_ = @ and p(B_) = &7

In practice, we consider that the problem CONNECTED HALF ANNOTATED SIGNED-
H?,-COLORING (V2) is the same as CONNECTED HALF ANNOTATED SIGNED-H?, -
COLORING. This means that we do not make the distinction between the two in the rest
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of this section.

Let CA(n, k) be the maximal time taken by our algorithm to solve an instance of
CONNECTED ANNOTATED SIGNED—Hi;—COLORING with parameter at most k and where
the input signed graph has order at most n. Let CHA(n, k) be the maximal time taken
by our algorithm to solve an instance of CONNECTED HALF ANNOTATED SIGNED—HE;—
COLORING with parameter at most k£ and where the input signed graph has order at
most n.

The rest of this section is structured as follows. We present our algorithm for D1SJOINT
VERTEX DELETION SIGNED—H,%E—COLORING and ANNOTATED SIGNED—Hf’g—COLORING
in Section 3.4.3 and Section 3.4.4 respectively. Section 3.4.5 contains a number of def-
initions used for solving the last two problems. Section 3.4.6 presents how we handle
the problem CONNECTED HALF ANNOTATED SIGNED-HE;-COLORING. Finally, Sec-
tion 3.4.7 contains the algorithm for CONNECTED ANNOTATED SIGNED—H%E—COLORING,
this section is where most of the work of the algorithm is done. In Section 3.4.8, we com-
pute the complexity of our algorithm.

Finally, note that when computing the complexity, we use the following abuse of
notation f(n,k) < O(g(n,k)) + h(n,k) to signify that there exists a function e(n,k) =
O(g(n,k)) + h(n, k) such that f(n,k) < e(n,k) for all n € N and k € N.

3.4.3 Solving Disjoint Vertex Deletion Signed-Hig-Coloring

Let Z be an instance of DISJOINT VERTEX DELETION SIGNED-Hig-COLORING com-
posed of a signed graph (G, o), an integer k and a set S’ of at most k + 1 vertices such
that (G,0) — 8" —, HZ,.

For every homomorphism ¢ : (G, 0)[S"] —, H7;,, we create the instance Z'(p) of
ANNOTATED SIGNED-H;,-COLORING composed of (G,0), k and the two disjoint sets
B, = ¢ H(®) and By = ¢~ '(©).

Suppose that S is a solution to Z and let g : (G,0) — S —>, Hf;. In particular,
©s has a restriction ¢ to S’. Note that S is a solution to Z'(¢Y) by definition of ¢.
Moreover, if S” is a solution to Z'(¢) then S” is also a solution of Z.

For every homomorphism ¢ : (G, 0)[S"] —, H},, our algorithm test whether Z'(¢)
is a positive instance or not. If there is a positive instance then our algorithm accepts,
otherwise it rejects. There are at most 2! homomorphisms ¢ from (G, 0)[S] to H?;,
and we can test in O(k?) time, for cach function from S’ to V(H72,), whether it is a
homomorphism or not.

Lemma 3.29. We have

D(n, k) < 2"™(O(k?) + A(n, k)).

3.4.4 Solving Annotated Signed-Hf’g-Coloring

Let Z be an instance of ANNOTATED SIGNED—Hfg—COLORING composed of a signed graph
(G, 0), an integer k and two disjoint sets B, and B_ such that (G,0) — (By U B_) —;
H?,. See Figure 3.10 for a schematic view of some instance of ANNOTATED SIGNED-
Hf’g—COLORING. The instance presented in Figure 3.10 is not nice due to the presence of
(G4, 04) which is not connected to B_.
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(G4, 04) <G37 0-3)
(G1,01)
B, B.
(G, 02)

Figure 3.10: A possible instance of ANNOTATED SIGNED- H2 -COLORING. FEach rectangle
(with a label inside) represents a connected signed graph. Two rectangles sharing a border are
connected. There are no edges between signed graphs whose rectangles do not intersect.

If £ < 0, then we can reject. If £ = 0, then we can solve our problem in polynomial
time, it suffices to check whether each connected component maps to ¢ or ©. Our

algorithm separates our problem into a number of sub-problems where G — (B U B_) is
connected.

Let CC be the set of connected components of G— (ByUB_). For C € CC, and k' < k,
we construct the instance Z'(C, k') of ANNOTATED SIGNED-H?,-COLORING composed
of the signed graph (G, 0)[V(C) U Ng(V(C))] (i.e. the signed subgraph of (G, o) induced
by the vertices of C' and their neighbors which belong to By U B_), the integer k" and the
two sets By N Ng(V(C)) and B_ N Ng(V(C)).

Let CCypoa be the subset of CC for which Z'(C,0) is a positive instance. We can
determine CCo0q in O(n?) time as it suffices to check if (G, o)[V(C) U Ng(V(C))] —
H* - The set CChpad = CC\ CCypoq is the set of instances for which at least one vertex must
belong to a solution to Z. If |CCpuq| > k, then we can reject as we cannot remove a vertex
in each connected component of CCp.q. We can safely ignore the connected components
in CCyp0q as they are already solved.

Note that Z'(C, k') is an instance of CONNECTED ANNOTATED SIGNED-H; -COLORING
if both By N Ng(V(C)) and B_ N Ng(V(C)) are non-empty, and an instance CON-
NECTED HALF ANNOTATED SIGNED-H, -COLORING if exactly one of By N Ng(V(C))
and B_ N Ng(V(C)) is empty. If both By N Ng(V(C)) and B_ N Ng(V(C')) are empty,
then C' € CCypoq since (G,0) — (By U B_) —, Hf;

For C' € CCpuq, let A(C) be the smallest integer k' for which Z'(C, k') has a solution.

Note that > A(C) < k if and only if our problem has a solution. Hence to solve our
CeCCpad

problem, it suffices, for every C' € CCpuq, to compute A(C') which can be done in O(log(k))
calls to a solver of CONNECTED ANNOTATED SIGNED-H >, -COLORING or CONNECTED
HALF ANNOTATED SIGNED-H_,-COLORING by dlchotomy Hence in O(klog(k)) calls
to these algorithms, we can determine whether there is a solution to Z or not.

Moreover, we can avoid solving two instances of the form Z'(C, k) and Z'(C’, k). In-
deed, if we need to solve both, then this implies that Z'(C,k — 1) and Z'(C", k — 1) are
negative instances. In particular, both problems need at least k vertices to be removed in
their input signed graph and since k£ > 1, this means that we cannot solve both instances
at the same time and we can reject. Therefore, at most one instance of the form Z'(C, k)
has to be solved by our algorithm.
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Finally, remark that if Z is a nice instance then, for every C' € CCpuq, both B, N
Ne(V(C)) and B_ N Ng(V(C)) are non-empty. This implies that for every k' < k,
Z'(C,K') is an instance of CONNECTED ANNOTATED SIGNED-H?,-COLORING. In Fig-
ure 3.10, the connected components (G, 01) and (Gs, 05) induce instances of CONNECTED
ANNOTATED SIGNED-HZ;-COLORING while (G4, 04) induces an instance of CONNECTED
HALF ANNOTATED SIGNED—HZ;—COLORING.

Lemma 3.30. We have

A(n, k) < O(n?) + klog(k) max (CA(n,k — 1), CHA(n, k — 1))
+ max (CA(n, k), CHA(n, k)),

and
Apice(n, k) < O(n?) + klog(k)CA(n, k — 1) + CA(n, k).

3.4.5 Separators: definitions and notation

In this section, we introduce the main concept that we use to find the solution.

Definition 3.31 (Separator). For every graph G and every two disjoint subsets of vertices
A and B, an (A, B)-separator X is a set of vertices, disjoint from A and B, whose removal
disconnects vertices of A from vertices of B. Let X, A and B be three sets of vertices of a
graph G such that A and B are disjoint. The set R(A, X) is the set of vertices of G — X
which are connected to any vertex of A. If X is an (A, B)-separator then let R™*'(X) be
the set of vertices of G — X which are connected to none of the vertices of A U B. Note
that if X is an (A, B)-separator, then R(A, X) and R(B, X) are disjoint.

Our goal is to find some separator of size O(k) which intersects the solution to our
problem. This way we can test, for every vertex of our separator, whether it belongs to
the solution or not.

Definition 3.32 (Important (A, B)-separator). Let G be a graph, and let A and B
be two disjoint sets of vertices. An important (A, B)-separator is an (A, B)-separator,
minimal for inclusion, such that there is no (A, B)-separator S’ verifying |S'| < S and

R(A,S) C R(A, 8.

Theorem 3.33 ([45]). The set Sp(A, B) of all important (A, B)-separators of size at most
k, has size at most 4% and can be constructed in O(4*k*n?) time.

In particular, the previous theorem implies that we can find an (A, B)-separator in
O(4Fk2n?) time, if there is one. For more details, see [53].

3.4.6 Solving Connected Half Annotated Signed—Hfg—Coloring

Let Z be an instance of CONNECTED HALF ANNOTATED SIGNED-HZ;-COLORING com-
posed of a signed graph (G, o), an integer k and a set of vertices By such that G — By is
connected and (G,0) — By —, HYy.

If k < 0 then we can reject Z. If k = 0, then it suffices to check whether (G, o) —, H},
which can be done in O(n?) time (see Theorem 2.8). Hence we can suppose k > 0.
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- R(B,,Y)\ B,

B,

\/

/ AY

4 I Y o % Rrest

Figure 3.11: The structure of the input signed graph (G,o) once an important (y, B4 )-
separator Y has been found. Each polygon represent a subgraph of (G, o). The set R(B+,Y)\ B4+
is the set of vertices of G which are not in B4 and which are connected to a vertex of By in
G —Y. The set R is the set of vertices which are disconnected from B, in G —Y. The signed
subgraph of (G, o) induced by R™! contains an unbalanced cycle C whose vertex set contains y.

If there is a solution S; to VERTEX DELETION H}-COLORING on input (G, o) and
integer k, then return S;. Suppose that there is no solution to VERTEX DELETION H-
COLORING on input (G, ) and integer k, i.e. we cannot map (G, o) to the positive loop by
removing k vertices. Because of the previous assumption, it holds that (G, o) — By —
H}! (as (G,0) — By is connected and (G,0) — By —, Hgg). Moreover if a solution S
to Z exists, at least one connected component of (G,0) — S cannot be mapped to @,
otherwise VERTEX DELETION H}-COLORING would have a solution. This implies that
S is a separator which separates the vertices of B, from the vertices of some unbalanced
cycle C. In particular, there exists © € V(C), such that S is an ({z}, B, )-separator.

If the set S exists, then there is an important ({z}, By)-separator X of size at most k,
possibly equal to S, for which R({z},S) C R({z},X). In particular, the signed subgraph
of (G, o) induced by R({z},X) contains the unbalanced cycle C.

For every vertex y € V(G) \ By, we construct the set Sp({y},B,). This way, we
construct at most 4¥n important separators in O(4*k*n3) time. Recall that a signed
graph (A, ) contains an unbalanced cycle if and only if it is not balanced, that is (A, )
is not equivalent to (A, @), hence we can test the existence of an unbalanced cycle in a
signed graph in O(n?) time by Theorem 2.8. If one important ({y}, B, )-separator Y,
for some vertex y € V(G) \ By, verifies that the signed subgraph of (G, o) induced by
R({y},Y) contains an unbalanced cycle, then we keep this separator and discard the
others. If no such separator exists, then X does not exist and we can reject.

Let Y be an important ({y}, By )-separator, for a vertex y € V(G)\ B, which verifies
that the signed subgraph of (G, o) induced by R({y},Y) contains an unbalanced cycle
(see Figure 3.11). If Y is a solution to Z, we can return Y. Otherwise, suppose that Y is
not a solution.

Fix a solution S of Z and a homomorphism ¢g : (G,0) — S —, H}, such that
©(By) = @. The vertices of Y can belong to S, have image & through ¢ or have image
© through . This separates Y into three sets. Set Y7 =Y NS, Y =Y Ny ({®}) and
Y5 =Y Ny t({6}). For their part, the vertices of the solution S can belong to Y (and
thus to Yp), they can be connected to By in G — Y, or they can be disconnected from B
in G—Y. Let k¥ = |[SN R(B,Y)| be the number of vertices of S connected to B, in
G-Y, let R =V (G)\ (YUR(B,4,Y)) be the vertices of G—Y which are not connected
to By and k2, = |S N R,est| be the number of vertices of S which belong to G — Y and
are not connected to B;. Our goal is to find the tuple s = (Y2, Y5, Y5 kY k2,).

Let © be the set of all tuples of the form (Yn,Y,,Y_ ki, k.es) where Y, Y, and

Y_ form a partition of Y and k, and k,.y are two non-negative integers such that k& =
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\Ya| + ki + kpest. For 0 = (Yo, Y, Y_ ki, kest) € ©, we define the instance Z,(6) of
ANNOTATED SIGNED-H?, -COLORING composed of the signed subgraph G, (0) of (G, o)
induced by R(B;,Y)U (Y \ Yn), the integer k; and the sets By UY, and Y_. Similarly,
we define the instance Z,.s(6) of ANNOTATED SIGNED-HTZE-COLORING composed of the
signed subgraph G,..(6) of (G, o) induced by R™* U (Y \ Y), the integer k,s; and the
sets Y, and Y_.

Note that SN R(B4,Y) is a solution to the instance Z, (fs) of ANNOTATED SIGNED-
Hf’;—COLORING and that SN R,.s is a solution to the instance Z,.s(0s) of ANNOTATED
SIGNED-H;, -COLORING.

Moreover suppose that for some 6 = (Y, Yy, Y_ ky, k.est) € O, there exists a solution
Sy to Z,(0) and a solution Syes t0 Zest(0). Let @y (resp. ¢rest) be a homomorphism
from G+(6) - SJr (resp- Grest(e) - Srest) to Hv?,g such that ()0+<B+ U Y+) =@ (resp.
Orest(Y4) = @) and ¢ (Y_) = & (resp. @rest(Y_) = ©). The homomorphism ¢ defined
by p(z) = ei(x) if x € V(GL(0)) and ¢(z) = @rest(x) otherwise, verifies that ¢ :
(G,0) = (S4+UYAUS,eq) — H2y and o(By) = @. Indeed, if not, then there exist u and
vin V(G)\ (S UYAUS,cs) which are adjacent and such that ¢(u) = @ and p(v) = &. By
definition of ¢, one of u or v, say u, belongs to V(G (0)) and the other belongs to R,.cs.
Since no vertex of R(By,Y) and R,.y are adjacent (recall that Y is a separator), u € Y
and thus u € V(G,est). This contradicts the fact that S,.s is a solution of Z,.4 (). Hence
Sy UYR U S,est is a solution to Z of size at most ky + |Yr| + krest = k.

Hence to solve our problem, it suffices to find some 6 € © for which the two instances
Z.(0) and Z,.5(f) of ANNOTATED SIGNED-Hﬁ;-COLORING have a solution. If no such
0 exists then g does not exist and we can reject.

In order to find this §, we will try every possibility. There are at most 3* ways to
partition Y into three sets, there are at most k + 1 choices for k, and once k, and Y are
chosen, we only have one choice for k,.s;. Hence we will make at most 2 - 3%(k + 1) calls
to a solver of ANNOTATED SIGNED—HE;—COLORING.

In most calls to a solver of ANNOTATED SIGNED—H%—COLORING, the instance of
ANNOTATED SIGNED—HZ;—COLORING has a parameter (ki or k..s) smaller than k. In
some cases, the parameter does not decrease.

The first of those cases is when k,.sy = k. Since (G,0) — By —> Hfg, any set is
a solution to Z,..(0) for any 6 of the form (&,Y,,Y_,0,k). AsY is not a solution, the
empty set is not a solution of Z, (6) for any 6 of the form (@,Y,,Y_,0,k), i.e. a solution
S must intersect the signed subgraph of (G, o) induced by R(B.,Y). Hence any 6 € ©
with k,.ss = k does not yield a solution, hence we can ignore these 6’s when trying all
possibilities.

The other case is when k, = k. We claim that the only interesting § € © to test with
ky = kis (9,9,Y,k,0). Indeed, recall that the signed subgraph G’ of (G, o) induced
by Y U R,.s contains an unbalanced cycle. Moreover G’ is connected as G is connected
and Y is an important separator, hence every vertex of G’ must be mapped to &. In
particular this is the case for the vertices of Y. This implies Y, = @ and Y_ =Y.

Moreover, for § = (&,2,Y,k,0), the instance Z,(f) is actually a nice instance of
ANNOTATED SIGNED-Hig-COLORING. Indeed let u be a vertex of V(G4.(0))\ (YUB,) =
R(B.,Y) \ By, u is connected to a vertex of By by a path with internal vertices in
R(B.,Y) by definition of R(B,,Y). Since G — By is connected, there is a shortest path
between u and a vertex of Y in G — By, this path has internal vertices in R(By,Y’) by
definition of Y, hence it is also a path in G.(0).
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Let us summarize. We make at most 2 - 3*(k + 1) calls to a solver of ANNOTATED
SIGNED—H?E—COLORING on a instance with a smaller parameter. Hence it takes a
O(3*(k + 1)A(n,k — 1)) time to perform these calls. On top of these, we perform at
most one call to the solver of ANNOTATED SIGNED—HT%;-COLORING on a nice instance

with parameter k. Hence it takes a time A,;.(n, k) to perform this call.
Lemma 3.34. We have:

CHA(n, k) < 290000 1 2. 38k + DA(n, k — 1) + Apnice(n, k).

3.4.7 Solving Connected Annotated Signed-HZ;-Coloring

Let Z be an instance of CONNECTED ANNOTATED SIGNED-H, -COLORING composed of
a signed graph (G, o) of order n, an integer k and two disjoint non-empty sets of vertices
B, and B_ such that G — (B4 U B_) is connected and (G,0) — (B; U B_) —, Hf;. In
order to solve CONNECTED ANNOTATED SIGNED—HE;—COLORING, we need to introduce
some notation.

A subset of vertices A of V(G) is big if |A| > 5n. A subset of vertices A of V(G) is
small if |A] < {5n. Note that in a partition of V(G), there is at most one big part and if
there is a big part, then all the other parts are small.

The main idea of the resolution of CONNECTED ANNOTATED SIGNED-HE;-COLORING
is to find some “good” (B, B_)-separator in G. The following lemma realizes just that.

Lemma 3.35. Let G be a graph of order n, k be an integer and A and B be two disjoint
sets of vertices such that G — (AU B) is connected. We can find in f(k)n? time one of
the following:

1. an (A, B)-separator X of size at most k such that R(A, X) and R(B,X) are not
big, or

2. two (A, B)-separators X andY of size at most k such that R(B, X) is big, R(A,Y)
is big and the graph GIR™"(X UY)U X UY] contains at least k + 1 paths Py, ...,
Piy1, with disjoint internal vertices, such that each P; is a (u;,v;)-path for u; € X
and v; €Y, or

3. an (A, B)-separator X (resp. Y ) of size at most k such that R(B, X) (resp. R(A,Y))
is big, and the graph G|R(B, X)UX] (resp. GIR(A,Y)UY]) contains at least k+ 1
paths Py, ..., Pyy1, with disjoint internal vertices, such that each P; is a (u;, v;)-path
foru; € X and v; € B (resp. u; € A andv; €Y), or

4. two (A, B)-separators X and Y of size at most k such that R(A, X) and R(B,Y)
are small and there is a (u,v)-path, uw € A and v € B, which contains only vertices

in RLA, X)UXUY UR(B,Y), or

5. an (A, B)-separator X (resp. Y ) of size at most k such that R(B, X) (resp. R(A,Y))
is big and there exists a (u,v)-path for two vertices u € A and v € B whose internal
vertices are contained in R(A, X)UX (resp. R(B,Y)UY ), or

6. we can determine that there ezists no (A, B)-separator X of size at most k.

See Figure 3.12 for a schematic view of the first five cases.
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R’r‘est(X)
L BAXONA | RBONB |
not big not big
(a) Case 1.
ANNNNNNNNN~ P
R(AX)\ A X | ReH(XUY) Y R(B,Y)\ B
A B
small ANNNNNNNN~ small
ANNNNNNNN~
ANNNNNNNN~ P
(b) Case 2.
Rrest(X)
ANNNNNNNN~ Py
A | RAX)\A | X | RBX)\B | B
small ANNNNNNNNN-~
NNN\N\N\N\N\NN~
ANNNNNNNNN Py
(c) Case 3.
rest
4| RAXONA | | RE(XUY) || R(BY)\B
small small
ANNNNNNNNNNNNNNA—— ANNNNNNANNNNNNN
(d) Case 4.
R’r‘est(X)
R(A, X))\ A R(B,X)\ B
A small X big B
ANNNNNNNNNNNNNN ——

(e) Case 5.

Figure 3.12: The first five cases of Lemma 3.35. Each polygon represent a subgraph of G.
Wavy lines between two vertices represent arbitrary long paths between these two vertices.
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Note that every solution S to Z must disconnect the vertices of B, from the vertices
of B_ as they are mapped to disconnected vertices of Hf’g. If n < 100k, then we can solve
the problem by a brute force approach. Assume that n > 100k. We start by applying
Lemma 3.35 for A = B, and B = B_. If we are in case 6, then .S does not exist and we
can reject.

Let X be an (B,, B_)-separator. Up to modifying X, we can suppose that X is mini-
mal for inclusion. Let ©(X) be the set of all tuples of the form (X, X1, X_ ki, bk, krest)
where X, X, and X_ are a partition of X and k,, k_ and k.5 are three non-negative
integers such that | Xn|+ky +k_ + kpest = k. If | X| < k then we remove every 6 for which
krest = k from ©(X).

For 0 € ©(X), let Zt(0) (resp. Z~ (), resp. Z"**(f)) be the instance of ANNOTATED
SIGNED-H; -COLORING composed of the signed graph (G, 0)[R(By, X)U(X\ Xn)] (resp.
(G,0)[R(B_, X)U (X \ Xn)], resp. (G,0)[R™"(X)U (X \ Xn)]), the integer k; (resp. k_,
resp. kpest) and the two sets By U X, (resp. X, resp. Xy) and X_ (resp. B_ U X_,
resp. X_).

Let S be a solution to Z and ¢g : (G,0) — S —, H7, for which ¢g(B;) = {®}
and pg(B_) = {6}. Let X = p5'({&}) N X, X% = pg'({6}) N X and 65 = (X N
S, X2 X5 1SN R(By, X)|,1SNR(B_, X)|,]|S N R(X)]).

Let us highlight a few facts. First if |S N R™(X)| = k and | X| < k, then S C R"™(X)
and X is a solution since (G,0) — (By U B_) —; Hf;. Hence, if X is not a solution
and has size at most &k, then we do not need to test the cases for which k. = k.
Moreover, SN R(By, X) (resp. SNR(B,,X), resp. SN R™*(X)) is a solution to Z*(fs)
(resp. Z~(fs), resp. Z"*'(fs)). Hence, if S exists, then X is a solution or there exists
0 € O(X) for which Z(6), Z~(f) and Z"**(6) are positive instances of ANNOTATED
SIGNED-H_, -COLORING. Finally, if S* is a solution to Z*(0), S~ is a solution to Z~(0)
and S™' is a solution to Z"*(6) for some 0 = (X, Xy, X_, ki, k_, kest) € O(X), then
XAUSTUS™ US™ ig a solution to Z since the three problems intersect only on X and
we fixed the homomorphism on X with the choice of X, and X_.

Hence to solve our problem, it suffices to find some 6 € ©(X) for which Z(0), Z~(6)
and Z"¢**(0) are positive instances of ANNOTATED SIGNED-HEE-COLORING. Finally, note
that if | X| < 2k, then |©(X)| < 3%%(k + 1)%. Let us note g(k) = 3%*(k + 1)°.

We can now treat the other cases of Lemma 3.35.

1. Suppose that we have found a minimal (B, B_)-separator X of size at most k such
that R(By,X) and R(B_, X) are not big. If X is a solution, then return X. For
each § € ©(X), we solve the instances Z*(0), Z~(f) and Z"**(f) of ANNOTATED
SIGNED—HT%;-COLORING. If the three instances are positive instances, then we
accept. If no 6 yields to our algorithm accepting, then we reject. In most cases, the
parameters (k;, k_ and k,.s) are all smaller than k, hence the three sub-problems
are solved in time at most 3A(n,k — 1). The case k.ss = k does not occur, by
construction of ©(X) as X is not a solution.

The case where ky = k, implies 0§ = (@,9,X,k,0,0) as every vertex of X is
connected to B_ (and we cannot disconnect them since k- = 0). Moreover, in
this case, Z(0) and Z"**'(#) can be solved in polynomial time as k_ and k,., are
equal to 0. We can start by solving these two instances, and if one of the two
instances is not a positive instance, then we do not have to solve Z*(6) to rule out
this 6.
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Similarly, the case k_ = k, implies § = (&, X, 2,0, k,0). Note that it is not possible
to solve both Z% (&, @, X, k,0,0) and Z~ (&, X, &, 0, k, 0) as this would imply that X
is a solution. Indeed if we call both instances then this means that (G, o)[R(By, X)U
X] —, Hy, (G,0)[R(B-,X)U X] —, H}, and (G,0)[R""(X) U X] —, HZ,
and thus (G,0) — X —, Hfg.

Hence at most one resolved sub-problem has its parameter equal to k. Recall that
by the choice of X, |R(B;,X)| < sn and |R(B_, X)| < $n. This implies that
the instance with parameter equal to k can be solved in A(-5-n, k) time (recall that

n 100
k< 165)

2. Suppose that we have found two (B, , B_)-separators X and Y of size at most k
such that R(B_, X) is big, R(B,,Y) is big and the graph G[R™(X UY)U X UY]
contains at least k 4+ 1 paths Py, ..., Py.1, with disjoint internal vertices, such that
each P; is a (u;, v;)-path for u; € X and v; € Y. If one of X or Y is a solution then
we return it. We consider the (B, B_)-separator X UY. Since [ X UY| >k, XUY
is not a solution thus it is possible to have to test some 6 with k,.; = k. Since
G[R™'(X UY)U X UY] contains k + 1 paths (with disjoint internal vertices) from
By to B_, a solution S cannot be contained in R™*(X UY)U X UY, as it would
not be a (B, B_)-separator. Hence, we do not have to test any § € ©(X UY') with
krest = k. As in the previous case, most sub-problems have a parameter smaller

than k.
The case where k. = k, implies § = (@, 0, X UY, k,0,0) as every vertex of X UY
is connected to B_ (and we cannot disconnect them since k- = 0 and k,.s; = 0).

Moreover, in this case, Z~(#) and Z"**(f) can be solve in polynomial time as k_
and k,.s; are equal to 0. We can start by solving these two instances, and if one of
the two instances is not a positive instance, then we do not have to solve Z () to
rule out this 6.

Similarly, the case k- = k, implies § = (&, X UY,2,0,k,0). We can apply the
same argument as before: if we call both ZT (2,2, X UY,k,0,0) and Z~ (&, X U
Y, ,0,k,0) then this means that both X and Y are solutions to our problem.

Hence we need to resolve at most one sub-problem having its parameter equal to k.
Recall that by the choice of X and Y, |R(By, X)| < stn and |[R(B_,Y)| < {on (as
R(B_,X) and R(B4,Y) are big). This implies that the instance with parameter

equal to k can be solved in A(555n, k) time (recall that k < {%).

3. Suppose that we have found an (B, B_)-separator X of size at most k such that
R(B_, X) is big, and the graph G[R(B_,X) U X| contains at least k + 1 paths
Py, ..., Piyq, with disjoint internal vertices, such that each P; is a (u;, v;)-path for
u; € X and v; € B_. This case is very similar to the previous case. The subgraph
G[R(B-,X) U X] of G cannot entirely contain a solution S due to the existence of
the k£ + 1 paths Py, ..., Py.1. Hence, we do not have to test any # € ©(X) with
k_ = k. Since R(B_,X) is big, R(B4,X) and R™*(X) are small. The only 6 for
which k, = k is (9,9, X,k,0,0) and if k.. = k, then X is a solution. Hence
we only have one sub-problem with parameter equal to k, and it can be solved in

A({g5n. k) time.

4. Suppose that we have found two (By, B_)-separators X and Y of size at most k
such that R(B;,X) and R(B_,Y) are small and there is a (u,v)-path P, u € By
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and v € B_, which contains only vertices in R(B1,X)UX UY UR(B_,Y). This
case is very similar to the second case. If one of X or Y is a solution, then return it.
We will test every § € ©(X UY') to find our solution. Note that a solution S cannot
be included in R™*(X UY") as it would not intersect P, hence we can suppose that
krest # k. The rest of the analysis is the same as for the second sub-case.

5. Suppose that we have found a (B,, B_)-separator X of size at most k£ such that
R(B_, X) is big and there exists a (u, v)-path P for two vertices u € By and v € B_
whose internal vertices are contained in R(By, X)UX. As before, since | X| < k, we
do not have to test any 6 with k,.,; = k. Due to the existence of P, any solution S
must intersect R(B;, X)UX and cannot be entirely contained in R(B_, X'). Hence,

we do not have to test any 6 with k_ = k. The only case where the parameter is k,
is when k, =k and 0 = (&, 9, X, k,0,0) which we can solve in A(%n, k) time.

To conclude in every case, after applying Lemma 3.35, we can solve our problem in at
most 3g(k) calls to a solver of ANNOTATED SIGNED- H?; -COLORING on an instance where
k decreases and at most one call to a solver of ANNOTATED SIGNED-H?; -COLORING on

an instance where the order of the input graph is at most %n.

Lemma 3.36. We have:

CA(n, k) < f(k)n? + 3g(k)A(n, k — 1) + A (1%1071 k:) |

3.4.7.1 Proof of Lemma 3.35

This section is dedicated to the proof of Lemma 3.35. In this proof, we always suppose that
our separators are minimal since we can transform a separator into a minimal separator
in polynomial time.

Let G be a graph of order n, k be an integer and A and B be two disjoint sets of
vertices such that G — (AU B) is connected. If no (A, B)-separator of size at most k exists
then we are in case 6. Suppose otherwise and let Gy = G, Xo = A and Yy = B. Let us
find a minimal (X, Yy)-separator Sy of size at most k in Go. If Sy verifies 1, i.e. none
of R(Xo, Sy) or R(Yy, Sp) is big, then we can conclude. W.l.o.g assume that R(Xj, Sy) is
big. Let G be the graph Go[R(Xy, Sp) U Sp| and set X; = X, and Y; = Sp.

Suppose that we have constructed GG; and two disjoint sets of vertices X; and Y; of
G;. Since we work with several graphs, we note R;(S,T) for the set R(S,T) taken in the
graph G;. The notation R(S,T) always refer to Ry(S,T). If no (X;, Y;)-separator of size
at most k exists, then we stop. Find a minimal (X;,Y;)-separator S; of size at most k
in G;. If none of R(A,S;) or R(B,S;) is big, then we also stop. If R(A,S;) is big, then
set Gi+1 = GZ[RZ(XZ,SJ U 51]7 Xi—i—l = )(Z and Y;‘_H = Sz If RZ(B,SZ) is blg, then set
Git1 = Gi[R;(Y;,S;) US;], Xit1 = S; and Y1 = Y;. As G;1; has less vertices than G,
this process stops in at most n steps. See Figure 3.13 for an example of construction of
Gy from G;.

Suppose that the process stops for G, and the two sets X, and Y, where p > 1 (see
Figure 3.14). Let us see one important property of our construction.

Claim 3.37. For every i < p—1, the minimal (X; 11, Y;y1)-separator S; 1 in Giyq is also
a minimal (X;,Y;)-separator in G;.
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R (S;)

Figure 3.13: Some graph G; constructed in the algorithm for Lemma 3.35. In this case, we
suppose that R(A,S;) is big. The bold rectangle highlights the graph G;.

A B
Xo Xa (X3 Yi |Yh Yo
Y,
X4 Xy Ko P Y,
Ys

Figure 3.14: An example of execution of the algorithm yielding to Lemma 3.35. In this
execution, we chose Y] = Sy, Xo = 51, X3 = 52 and Yy = S3.

Proof. By symmetry, suppose that R(A,S;) is big and thus X;,; = X; and Y;;; = S;.

Let u € X; and v € Y] be two vertices of G; and let P be a (u, v)-path P. By definition
of S;, P intersect S;. Therefore P is the concatenation of two paths P! and P? such that
Pl is a (u,w)-path contained in Gy, where w € S;. By definition of S;,;, P! intersects
S;+1 which implies that P intersects S;;. Hence S;;; is an (X;, Y;)-separator.

Suppose, by contradiction that S;;; is not a minimal (X, Y;)-separator. This implies
that there exists s € S;;1 such that S \ {s} is also an (X;, Y;)-separator. Note that
since S;y1 is a minimal (X;, S;)-separator, there is a path P, from s to a vertex z of
X; whose internal vertices are in R;1(X;,S;11) € R;(X;,Siv1). If there is an (s,y)-
path P, for some y € Y; whose internal vertices are in R;(Y;, S;y1), then the path P
obtained by concatenating P; and P, is a path from X; to Y; not intersecting S;y1 \ {s},
a contradiction. By minimality of S;;1, there is an (s, w)-path P; whose internal vertices
belong to R;11(S;,S;+1) and for which w € S;. By minimality of S;, there is a (w,y)-
path P, whose internal vertices belong to R;(Y;,S;) and for which y € Y;. Note that
R;(Y;, S;))NV(Gi11) = &, hence S;;1 does not intersect P; nor P;. Hence the concatenation
of Py and Py is a path from s to some vertex y of Y, whose internal vertices do not intersect
Sit+1, they thus belong to R;(Y;, S;11), a contradiction. O

In particular, Claim 3.37 proves that every S; is an (A, B)-separator.

There are multiple cases which can make us stop. Recall that, by our assumption
on Sy, we have Y, # B. We first distinguish between the case where X, = A and the case
where X, # A. When treating a case, we suppose that all previous cases do not occur.

Suppose that X,, = A. Since X, = A, for every i < p—1, R(A,S;) is big and Y;; = 5.
Recall that Y, is a minimal (A, B)-separator by Claim 3.37.

» Suppose that there is no (A, Y),)-separator of any size in G,. This implies that there
is an edge zy between a vertex x of A and a vertex y of Y,. Since Y), is a minimal
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(A, B)-separator, there is a path from y to a vertex b of B whose internal vertices
belong to R(B,Y,). By concatenating this path with the edge zy, we obtain an
(x, b)-path whose internal vertices belong to R(B,Y,) UY,. Hence Y, verifies 5.

» Suppose that there is no (A,Y,)-separator of size at most k in G,. We want to
show that Y, verifies 3. Note that by construction R(A,Y,) is big. Note that,
G, = GIR(A,Y,) UY,]. As there is no (A,Y,)-separator of size at most k in G,
there exist at least & + 1 paths P, ..., Py41 in G, with disjoint internal vertices,
such that each P, is a (u;, v;)-path for some u; € A and v; € Y),. Hence Y, verifies 3.

o Suppose that S, exists and none of R(A,S,) or R(B,S,) is big. By Claim 3.37, S,
is an (A, B)-separator, hence 1 holds.

Suppose that X, # A. Recall that both X, and Y, are minimal (A, B)-separators
by Claim 3.37. Note also that by construction, one of X, or Y, is the minimal (A, B)-
separator S,_;. In particular one of R(A,S, 1) or R(B,S,—1) is big. By symmetry,
suppose w.l.o.g. that R(A, S,_1) is big and S,_; =Y. In particular, R(B,Y,) is small.

» Suppose that there is no (X,,Y,)-separator of any size in G,. This implies that
there is an edge xy between a vertex x of X, and a vertex y of Y,,. By construction
of the algorithm, X, is some S; , i, < p—1, for which R(B, S;,) is big. As R(B, X,)
is big, R(A, X,) is small. As X, and Y}, are minimal (A, B)-separators, there exists
a (u,x)-path for some u € A which contains only vertices in R(A4, X,) U X, and
a (y,v)-path for some v € B which contains only vertices in R(B,Y,)UY,. By
concatenating these two paths, we obtain a (u,v)-path containing only vertices in
R(A, X,)UX,UR(B,Y,)UY,. AsY,NR(A, X,) =@ and X, NR(B,Y,) = &, this
concatenated path contains only vertices in R(A4, X,UY,)UX,UY,UR(B, X,UY,),
which implies 4.

« Suppose that there is no (X,, Y,)-separator of size at most k in G,,. We want to show
that X, and Y, verify 2. Note that by construction R(A,Y,) is big. By construction,
X, is some S;,, i, < p—1, for which R(B, S;,) is big. Note that, V(G,) C R(B, X,)
and V(G,) C R(A,Y,). This implies that in G — X, — Y}, u is not connected to A
nor to B, hence V(G,) C R™*(X,UY,)UX,UY,. As there is no (X,,Y,)-separator
of size at most k in G,, there exist at least k + 1 paths Py, ..., Pyy1, with disjoint
internal vertices, such that each P, is a (u;, v;)-path for u; € X, and v; € Y,,. Hence
X, and Y, verify 2.

« Suppose that S, exists and none of R(A,S,) or R(B,S,) is big. By Claim 3.37, S,
is an (A, B)-separator, hence 1 holds.

Complexity. Let us conclude with some complexity analysis. It takes an FPT time to
find a separator of size at most k. We repeat this step at most n times. Moreover, each
stop conditions can be checked in polynomial time. Hence, we find our separator in a
f(k)n? time for some computable function f and some fixed integer d.

3.4.8 Complexity analysis

We recall that we have obtained the following bounds:
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D(n, k) < 2"(O(k?) + A(n, k)),
A(n, k) < O(n?) + klog(k) max (CA(n,k — 1), CHA(n, k — 1))
+ max (CA(n, k), CHA(n, k)),
Apice(n, k) < O(n?) + klog(k)CA(n, k — 1) + CA(n, k),
CA(n, k) < f(k)n® + 3g(k)A(n, k — 1) + A (1900n k) nd

CHA(n, k) < 290000 £ 2. 38k + 1)A(n, k — 1) + Apice(n, k).

First note that CA(n,k) < CHA(n,k) < A(n, k), hence, we can express A(n, k) as
follows.

A(n, k) < O(n?) + klog(k)CHA(n, k — 1) + CHA(n, k),
< O(n?) + klog(k) (2°®nOM 4+ 2°WA(n, k — 2) + Apiee(n, k — 1))
+ (290nOM 2. 35k + D)A(n, k — 1) + Apice(n, k),

)
< 2000n0W) 4 20MA(n k — 1) + Apiee(n, k),
< 90(k),0(1) 4 ZO(k)A(m k—1)+O0(n 2) + klog(k)CA(n,k — 1) + CA(n, k),
< 2000,00) 4 90WA (| — 1) + CA(n, k).

With the upper bound on CA(n, k) and since f(k) = 2°® and g(k) = 2°®) we can
simplify the previous identity as follows.

A(n, k) < 200p0W L 20 A (n | — 1)

+ )t + 3g(k)A(n, k — 1) + A (folon k) ,

91
500,00 50 n k1) 4 (D)
< + (n,k—1)+ won,k‘

Hence for some integers A\, ;1 and ¢, we have:

1
A(n, k) < 2%0° 4 27 A(n k — 1) + A (1900n k)

Let £ > 0 be a real number such that (%);p =n. We have z = %. Note that

xr < 25log(n). Let us expand the last term of the sum.
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25 log(n) " 91 ic 3 91 i
A(n, k) < M (20 ) pe g omk A <> g—1)),
(k)< 2 ( (100) mr (” 100) " ))

< 25log(n) (2%n° + 2% A(n, k — 1)),

< 25-2%nflog(n) + 25log(n)2"*A(n, k — 1),
k .
<25-2"n‘log(n) x > (2510g(n)2“k) :
i=0

k
< 25-2"nclog(n) x k (2510g(n)2“k) ,

< 20000 Jog(n)*.

As log(n)* = O(n), we obtain:

A(n, k) < 200000,

This implies D(n, k) < 20 )00 and proves Theorem 3.26.6 since we can solve our
problem in O(2%n)D(n, k) time.

3.5 Edge Deletion Signed-(H, 7)-Coloring

As for the vertex deletion case, this problem is only interesting when (H,7) is an s-core.

Among these problems, the problem EDGE DELETION SIGNED-H}-COLORING cor-
responds to computing the minimum number of edges which need to be removed from
the input in order to make the input signed graph balanced. This problem is exactly
the problem of determining the frustration index of the input. Since being introduced by
Harary [93] in 1959, this notion has been extensively studied (e.g. see [67, 94, 111, 149]).
Computing the frustration index of a signed graph is NP-hard [111]. We complete the
result by showing that this problem is FPT.

The following theorem solves EDGE DELETION SIGNED-(H,7)-COLORING for all
cases.

Theorem 3.38. Let (H, ) be an s-core. The following statements hold.

1. The problem EDGE DELETION SIGNED-HY-COLORING and the problem EDGE
DELETION SIGNED-H'! -COLORING are in P.

2. The problem EDGE DELETION SIGNED-(H, 7)-COLORING is NP-complete even for
k =0 when (H,m) has at least three edges (see Theorem 2.22).

3. The problem EDGE DELETION SIGNED-(H,m)-COLORING is NP-complete when
(H,m) is one of H (Ce), H”_ (—e), H”_ (e---e), H*" (& "®) or H}}
(€D ®).

4. The problem EDGE DELETION SIGNED-(H,7)-COLORING is FPT when (H, ) is
one of Hy (Ce), H} (), H®_ (e—e), H*" (& @) or H, (@D :®).
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Proof. The problem EDGE DELETION SIGNED-H,-COLORING is in P as every signed
graph admits a homomorphism to H), ( Ce:; ). The problem EDGE DELETION SIGNED-

H'-COLORING is equivalent to counting the number of edges of the input graph, hence it is
in P. By Theorem 2.22, if (H, 7) has at least three edges then EDGE DELETION SIGNED-
(H,7)-COLORING is NP-complete even for k& = 0. Note that for every (H,7), EDGE
DELETION SIGNED-(H, 7)-COLORING is in NP. By Observation 2.14, the complexity for
H! (e) is the same as for H} ( Ce). The problem EDGE DELETION SIGNED-H?" -
COLORING is exactly the problem EDGE BIPARTIZATION, hence it is NP-complete and
FPT. The problem EDGE DELETION SIGNED-H}-COLORING is equivalent to computing
the frustration index of the input graph which is NP-hard [111]. It is also equivalent to
EDGE DELETION H-COLORING where H is the 2-edge-colored graph isomorphic to the
signed graph DSG(H}), hence the problem is FPT by Theorem 3.20. The problem EDGE
DELETION SIGNED—H%IL—COLORING is equivalent to the problem EDGE BIPARTIZATION
on input signed graphs which are all-positive, and is hence NP-complete.

We reduce EDGE DELETION SIGNED-H}-COLORING to EDGE DELETION SIGNED-
H?,-COLORING in order to show that EDGE DELETION SIGNED-H?, -COLORING is NP-
hard. Let ((G,0),k) be an instance of EDGE DELETION SIGNED-H}-COLORING. We
denote by x1, ..., z, the vertices of G. We add n(k+1) vertices yi, ..., yp 1, Yi ., Yrs; tO
G. For every i € [n], we add positive edges such that the vertices z;, yi, ..., yi 41 induce
a positive clique. Let (G’,0’) be this new signed graph. We claim that ((G,0),k) is a
positive instance of EDGE DELETION SIGNED-H,}-COLORING if and only if ((G',¢"), k)
is a positive instance of EDGE DELETION SIGNED-H%-COLORING.

If there exists some S C E(G) of size at most k such that (G, o) — S is balanced, then
(G',0") — S is also balanced. Indeed every cycle of (G',¢’) — S is either a cycle of (G, o),
in which case it is balanced by definition of .S, or a positive triangle of an added clique,
which is also balanced.

If there exists some S C E(G) of size at most k such that (G',0') — S —, H2, then
(G',0") — S — H}. Indeed every vertex of (G’,¢’) belongs to a positive clique of order
k + 2. This clique is connected in (G’,0’) — S and contains at least one balanced cycle,
hence every vertex of (G',¢’) — S maps to the positive loop of Hf,g. Hence ((G,0),k) is
a positive instance of EDGE DELETION SIGNED-H,-COLORING.

This proves that EDGE DELETION SIGNED—H%—COLORING is NP-complete.

For the parameterized complexity of the two problems EDGE DELETION SIGNED-
H E’j_-COLORING and EDGE DELETION SIGNED-H,?;-COLORING, we can mimic the proof
of the vertex deletion versions to obtain FPT algorithms. We do not describe in length
these algorithms as the ideas are exactly the same as in Section 3.4. Nonetheless let us
describe some changes.

In order to reduce to the disjoint version, we need to add the edges one by one (instead
of vertices) and guess (i.e. try all possibilities) for the intersection. As the homomorphism
is a function of the vertices and not the edges, we guess the homomorphism on the vertices
incident with the removed edges in the solution of size k + 1. There are at most 2(k + 1)
of them, hence it is still possible to do this in FPT time. After that, it suffices to find
cuts instead of separators using the same techniques as for the vertex version. For EDGE
DELETION SIGNED-H?; -COLORING, we can use an analogue of Theorem 3.33 (see [53])
for cuts instead of separators to have similar reductions. O
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3.6 Conclusion and perspectives

We have introduced VERTEX DELETION H-COLORING, EDGE DELETION H-COLORING
and LIMITED SWITCHINGS (H, )-COLORING and characterized their complexity for some
small H (resp. (H,m)). The full complexity landscape still needs to be determined. We
have fully classified the classic complexity of VERTEX DELETION H-COLORING problems.
It remains to do the same for EDGE DELETION H-COLORING and LIMITED SWITCHINGS
(H,7)-COLORING.

We proved that both VERTEX DELETION H-COLORING and EDGE DELETION H-
COLORING are FPT when H has order at most 2. However, if H has order 3, for example
if H is a monochromatic triangle, we obtain 3-COLORING, which is not in XP. Lim-
ITED SWITCHINGS (H, 7)-COLORING seems particularly interesting, since we obtained an
FPT/W(1]-hard dichotomy when (H, ) has order at most 2 (in which case the problem is
always in XP). But again for some H of order 3, LIMITED SWITCHINGS (H, 7)-COLORING
is not in XP. It would be very interesting to obtain FPT/W[1]/XP trichotomies for VERTEX
DELETION H-COLORING, EDGE DELETION H-COLORING and LIMITED SWITCHINGS
(H,m)-COLORING, at least for some interesting classes of targets H (resp. (H,)).

We also introduced VERTEX DELETION SIGNED-(H, )-COLORING and EDGE DELE-
TION SIGNED-(H, 7)-COLORING and completely characterized their classic complexity
and their parameterized complexity.

One may also study restricted classes of inputs for each of the five problems, such as
planar graphs (studied in the context of homomorphisms of signed graphs in [59, 124]).
For example, do the W[1]-hard cases of LIMITED SWITCHINGS (H, 7)-COLORING become
FPT (or even polynomial) when the input is planar?

Another possibility is to allow the removal of vertices and edges in the same problem.
A way to define this is to have a bound on the total number of vertices and edges allowed
to be removed. One could also decide to have a bound for the vertices and one for the
edges. It is very likely that this kind of problem would behave similarly as when only
vertices or edges are allowed to be removed.

page 118 Dimitri Lajou



Chapter 4. Coloring signed graphs with small cyclomatic number

Chapter 4

Coloring signed graphs with small
cyclomatic number

In this chapter, we study the behavior of the chromatic number (and other coloring
parameters) of signed graphs on some “simple” classes of graphs.

Up to now, we only considered two types of colorings for signed graphs, coloring
of signed graphs and sign-preserving colorings of signed graphs, by studying the two
corresponding types of homomorphisms. These two types of colorings are characterized
by the two corresponding chromatic numbers x, and x?. Let us introduce two other
colorings of signed graphs.

For undirected graphs, a simple way to generalize coloring is to add lists of available
colors on each vertex. It is possible to define a similar generalization for signed graphs.

Definition 4.1 (L-coloring). A k-list-assignment of a signed graph (G, o) is a function L
which assigns to each vertex of GG a set of k colors. Recall that when dealing with homo-
morphisms, we view the vertices of a target graph as colors. Given a k-list-assignment
L of (G,0), an L-coloring of (G, o) is a coloring ¢ of (G, o) such that for every vertex
v € V(G), we have c¢(u) € L(u).

If ¢ is an L-coloring of (G, o), then we can view ¢ as a homomorphism from (G, o) to
some signed graph (H,.,m.) such that V(H.) = U L(v) and for each vertex v € V(G),

veV(Q)
c(v) € L(v) holds.
The notion of sign-preserving L-coloring is defined similarly, requiring that the color-
ing c is a sign-preserving coloring.

From the notion of list coloring, we can define the choice number.

Definition 4.2 (Choice number). The choice number of a signed graph (G, o), de-
noted chy(G, o), is the smallest & for which (G, o) admits an L-coloring for any k-list-
assignment L. Similarly, the sign-preserving choice number of a signed graph (G, o),
denoted ch?(G, o), is the smallest k for which (G, o) admits a sign-preserving L-coloring
for any k-list-assignment L.

It is well known that the chromatic number of an undirected graph equals the maxi-
mum chromatic number of its connected components. That is why the chromatic number
of undirected graphs is generally studied on connected graphs.

This is not true for signed graphs. For example the chromatic number of the signed
graph composed of a positive triangle and a negative triangle is 4 (and not 3). This also

On various graph coloring problems page 119



holds for the three other parameters: sign-preserving chromatic number, choice number
and sign-preserving choice number. This is due to the fact that coloring signed graphs
cannot be done locally without considering the rest of the signed graph. For example,
when computing the sign-preserving chromatic number of a signed graph, if one edge e
has endpoints colored 7 and j somewhere in the signed graph, then every edge of the
signed graph with endpoints colored ¢ and j, no matter how far they are from e, has to
have the same sign as e.

For undirected graphs, we usually try to bound the chromatic number by some other
parameters. This is for example the case for Brooks” Theorem (see Theorem 1.37) which
bounds the chromatic number with the maximum degree of the graph. This is also possible
for signed graphs, Das, Nandi, Paul, Sen [54] showed that any signed graph (G, o) with
A(G) > 3 verifies x,(G,0) < (A(G) — 1)? - 281 4 2 Unfortunately, their bound is
exponential in A(G), in particular for subcubic graphs, this bound on y, is already 18.
We are looking for other paramaters which can bound the chromatic number of signed
graphs.

First, let us see whether there are signed graphs where each connected component is
“simple” (i.e. trees, cycles, ...) for which one of our coloring parameters is unbounded.
The easiest class to consider is the class of signed graphs where each connected component
contains a single edge. On this class, the sign-preserving choice number is unbounded.

Theorem 4.3. For every integer k > 0, there exists a signed graph (G, o) such that each
connected component of G is an isolated edge and ch?(G, o) > k.

Proof. By a result of Erdés and Rado [65], for every integer k, there exists an integer £y
such that for every ¢ > £y and every function f : {1,...,0}> — {—, 0,4}, there exists a
subset X of {1,...,¢} of cardinality at least k for which f(X?) is a singleton.

Let k and ¢ be two integers such that ¢ is sufficiently large to apply the aforementioned
result. Set n = (ﬁ) and let (G, \) be the signed graph composed of 2n isolated edges, n of
which are positive while the others are negative. The set of positive (resp. negative) edges
of (G, ) is in one-to-one correspondence with the set Pr({1,...,¢}), the set of subsets
of size k of {1,...,¢}. For each such subset X, we denote by e} (resp. ey) the positive
(resp. negative) edge associated with X. We construct the list assignment L by assigning
to the two endpoints of the edge e¥ (resp. ey) the list X.

Suppose now that (G, o) admits an L-coloring ¢. For each pair of colors (a, b), either
all edges with an endpoint colored a and one endpoint colored b are positive, or they are
all-negative, or there is no such edge. Construct the mapping f, : {1,... LY = {—,0,+}
as follows: if there is a positive (resp. negative) edge whose endpoints are colored a and
b, then f,(a,b) =+ (resp. f,(a,b) = —); if no such edge exists, then f,(a,b) = 0.

By [65], there exists a set X of size k such that f,(X?) is a singleton. Surely, f,(X?) #
{0} since the endpoints of the edge e¥ are colored. The previous remark even implies
fo(X?) = {+} since e¥ is positive. By considering the edge ey, we similarly get f,(X?) =
{—1}, a contradiction. O

On this class of graphs, the chromatic number and the choice number are both upper
bounded by 2, while the sign-preserving chromatic number is upper bounded by 3. If
every connected component is a tree then the chromatic number and the choice number
are both upper bounded by 2 as every forest can be switched to be all-positive, reducing
the problem to one for undirected graphs. The sign-preserving chromatic number is upper
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bounded by 4 for forests as every forest admits a sign-preserving homomorphism to the
4-cycle u, v, w, z for which uv and wz are positive while vw and zu are negative.

Hence, in order to find other interesting classes, we need to have connected components
with cycles. The choice number of signed graphs is also unbounded for a rather simple class
of signed graphs, namely the class of signed graphs all of whose connected components
are unbalanced even cycles.

Theorem 4.4. For every two integers k,g > 0, there exists a signed graph (G, o), with
9(G) > g and chs(G,0) > k, such that each connected component of G is an unbalanced
even cycle.

Proof. The proof of this theorem is similar to the proof of Theorem 4.3. For each set X
in P (), we create an unbalanced even cycle of length at least g. The list assignment L
associates with each vertex of this cycle the list X.

Suppose now that (G, o) admits an L-coloring ¢, after (possibly) switching the graph.
After these switchings, each unbalanced even cycle contains at least one positive edge and
one negative edge. By arbitrarily choosing one of the positive (resp. negative) edges of
the cycle associated with X to be eX (resp. ey ), we can follow the same arguments as in
the proof of Theorem 4.3 and obtain a contradiction. O

A similar result can be obtained by replacing each unbalanced even cycle by two odd
cycles: one balanced (i.e. with a positive edge) and one unbalanced (i.e. with a negative
edge).

Theorem 4.5. For every two integers k,g > 0, there exists a signed graph (G, o), with
9(G) > g and chy(G,0) > k, such that each connected component of G is an odd cycle.

In the previous construction, we used many cycles to increase the choice number of the
signed graph. Intuitively, cycles are the key ingredient to increase the chromatic number
of a signed graph. It is then natural to consider the cyclomatic number of the underlying
graph, defined as follows.

Definition 4.6 (Cyclomatic number). The cyclomatic number of a graph G, denoted by
v(@G), is the minimum number of edges such that the graph obtained from G by deleting
these edges is a forest.

It is a basic result that for the cyclomatic number of GG, the following formula holds:
v(G) = |E(G)| — |V(G)] + ¢(G), where ¢(G) is the number of connected components
of G. The parameter corresponds to the dimension of the cycle space of G: i.e. one can
interpret it as the minimum number of subgraphs of G having only vertices with even
degree required to generate all cycles of the graphs by making sums of these subgraphs.
In this context, summing two subgraphs H; and Hs creates the subgraph of G' with vertex
set V(G) and edge set E(H,) A E(Hsy) (where A is the symmetric difference operator).

The cyclomatic number can be found under different names in literature: nullity,
circuit rank, excess, or Betti number. We denote by B;, the class of signed graphs having
an underlying graph with cyclomatic number at most ¢. For any signed graph parameter

A € {xs, X2, chs, ch?}, we denote by \(Bf), the number ax, MG, o).
,0)EBS

The next result shows that it is possible to have high chromatic number, and thus
high choice number, with only a few cycles.
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Theorem 4.7. For every integer n, there exists a signed graph (G,,oc,) such that

V(Gn) =0 (Xs(Gm Jn) ) lOg(Xs<Gm Un))) .

Proof. In [80], Fiiredi, Hordk, Pareek and Zhu show that for every ¢, there exists a signed
graph (G, 0,) of order ¢ such that x2(G,, 0,) = ¢ and |E(G,)| = O(qlogq) (they use the
terminology of edge-colored graphs in their article). By construction of these graphs, if u
and v are two vertices of Gy, then either uv is an edge or there exists a path of length two
uwwv such that o,(uw) = —o,(wv). Indeed, this is exactly the reason why x2(Gy, 04) = ¢.

We shall now construct the signed graph (G, o/,) by adding to (G,,_1, 0,,—1) a universal
vertex all of whose adjacent edges are positive. Hence, if u and v are two vertices of G,
then either uv is an edge or there exists an unbalanced cycle of length four containing
both v and v. By a result of [154], the signed graph (G’ o) is a signed clique (i.e.

n-n

Xs(Gl ., ol)=n). As (G!,0!) has n vertices and O(nlogn) edges, v(G,) = O(nlogn), as

n'-n n’-n

required. O]

The aim of this chapter is to provide bounds on the chromatic number, the choice
number, and the sign-preserving chromatic number of a signed graph as a function of its
cyclomatic number.

Using ideas from [56], we provide an upper bound on the sign-preserving chromatic
number of a signed graph in the form of an affine function of its cyclomatic number.

Theorem 4.8. For every signed graph (G,o0), X2(G,0) < 4+ v(G).
A similar result can be obtained for the chromatic number of a signed graph.

Theorem 4.9. For every signed graph (G, o) satisfying either v(G) # 1, or v(G) = 1
and where (G, ) does not contain an even unbalanced cycle, xs(G,0) <2+ v(G).

Finally, for the choice number, we obtain the following theorem.
Theorem 4.10. For every signed graph (G, o), chs(G,0) < 3+ v(G).

Note that in the previous theorem, one could try to replace the 3 + v(G) by 2 + v(G)
by adding the extra condition that v(G) > 2. However, the proof of such a result would
be significantly more complicated and technical. Nonetheless, we prove a better bound
when v(G) < 2.

Theorem 4.11. For every signed graph (G, o) with v(G) < 2, chy(G,0) < 4.

We then determine the exact value of our parameters for some classes of graphs with
bounded cyclomatic number.

Theorem 4.12.

Xs(Bj) = chy(Bp) = 2,

X5(Bi) =5 and X%(B3) = 6,

if i =1 or2, then xs(Bf) = chs(Bf) = 4,
Xs(B3) =5, and x,(B;) = 6.

MERSEEER
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It is well known that determining the chromatic number of a graph is NP-complete
when the number of colors is at least 3. For signed graphs, we can define the following
analogous coloring problem.

COLORING-SIGNED-GRAPHS Parameter: v(G)
Input: A signed graph (G, o) and an integer k.
Question: Is the number x,(G, o) at most k?

Note that the problem COLORING-SIGNED-GRAPHS is NP-complete as shown in [154].
In order to get a better grasp of the complexity of the problem, one might want to study a
parameterized variant of the problem. Here, we show that COLORING-SIGNED-GRAPHS
is FPT when parameterized by the cyclomatic number of the signed graph.

Theorem 4.13. The problem COLORING-SIGNED-GRAPHS, on input (G,0) and k, can
be solved in time 200 . |V(G)].

Note that the previous theorem also implies that the problem of determining the
chromatic number of an undirected graph is FPT when parameterized by the cyclomatic
number of the graph. Indeed, it is easy to see that x(G) = xs(G,+) where + is the
signature of G which assigns to each edge of G the positive sign.

This work is joint work with Jan Bok, Nikola Jedlickovd, Jonathan Narboni and Eric
Sopena. This work is partially supported by the ANR project HOSIGRA (ANR-17-CE40-
0022) and the IFCAM project “Applications of graph homomorphisms” (MA /IFCAM/18/39).

Section 4.1 focuses on the proofs of the general upper bound theorems: Theorem 4.8,
Theorem 4.9 and Theorem 4.10. In Section 4.2, we prove our results involving small
cyclomatic numbers, namely Theorem 4.11 and Theorem 4.12. Finally, in Section 4.3, we
present our FPT algorithm and prove Theorem 4.13.
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4.1 Proofs of Theorems 4.8, 4.9 and 4.10

This section is devoted to the proofs of each of the three theorems which provide a linear
upper bound on some chromatic number of the form cst+ v (G) where G is the underlying
graph of our input signed graph. These proofs are inspired by the proof of a similar type
of result on oriented graphs (see [56]). Let us start with the sign-preserving chromatic
number.

Proof of Theorem 4.8. A good signed graph (H, ) is a signed graph in which every vertex
v € V(H) is incident with at least one positive edge and at least one negative edge. Let us
prove the following stronger statement: every signed graph (G, o) admits a sign-preserving
homomorphism to a good signed graph of order v(G) + 4. The proof is done by induction
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on (v(G), |E(G)|+|V(G)|). The case v(G) = 0 is proven in Theorem 4.12.1. Now suppose
v(G) > 0.

In each of the following cases, we proceed by induction and we always suppose that
none of the previous cases applies.

1. The graph (G, o) contains a vertex u of degree 1.
Let v be the neighbor of u. By induction, there exists a sign-preserving homomor-
phism ¢ from (G,0) — u to a good signed graph (H,w) of order v(G) + 4. By
definition of a good signed graph, ¢(v) is incident to an edge p(v)w, in (H, ), with
sign o(uv). We can extend ¢ to (G, o) by setting ¢(u) = w.

2. The graph (G,0) contains a vertex u of degree at least 3 such that G — u has the
same number of connected components as G.
Let x1, ..., x, be the neighbors of u such that ux; is a positive edge and let y;, ...,
Yy, be the neighbors of u such that uy; is a negative edge. Without loss of generality,
we can suppose p > ¢. Note that v(G — u) = v(G) — d(u) + 1, hence (G,0) — u
admits a sign-preserving homomorphism ¢ to a good signed graph (H,7) of order
v(G) + 5 — d(u). Note that 1 +¢ < 1+ {@J < d(u) — 1 since d(u) > 3. To
construct our sign-preserving homomorphism ', it is sufficient to assign to each
vertex of (G, o) its image by ¢, except for u, y1, ..., y, for which we use 1 + ¢
vertices among the d(u) — 1 available new vertices.

It is then easy to complete the image of ¢'(G, o) into a good signed graph since
(H, ) is good. Indeed, each ¢(y;) is incident with a positive edge ¢(y;)x where x
is a vertex of H. Hence, we can have the same property for ¢'(y;) by adding the
positive edge ¢'(y;)z to ¢'(G,0). Therefore, only u may not verify the property
when ¢ = 0 but in that case we have an additional new vertex to use in order to
make ¢'(G, o) good.

3. The graph (G, o) contains a cycle C, all whose vertices, except at most one, have
degree 2.
We consider two subcases:

(a) The cycle C has a vertex u of degree 2 with vy and vy being the neighbors of
u and o(uvy) = o(uve).
In this case, let (G’,¢’) be the signed graph obtained from (G, o) by removing
u. By induction, (G, 0’) admits a sign-preserving homomorphism ¢ to a good
signed graph of order v(G') + 4 = v(G) + 3. By adding a new vertex x to
©(G', 0", we can extend ¢ to (G, o) by setting ¢(u) = x. We can then complete
©(G, o) into a good signed graph since u has at most two neighbors.

(b) C contains an alternating path uv,vovsw where each v; has degree 2.
We then consider the graph (G’, ¢’) obtained from (G, o) by deleting the vertex
ve. The vertex vy is not a cut-vertex, so we have v(G’) = v(G) — 1 and, by
induction, (G’, ¢’) admits a sign-preserving homomorphism ¢ to a good signed
graph of order v(G) + 3.

o If p(v1) # p(v3), then we add a new vertex x to ¢(G’,0’) connected to
@(v1) and @(v3) with o(p(v)r) = o(vive) and o(p(vs)r) = o(vav3). We
can then extend ¢ to (G, o) by setting p(vy) = x. Since o(v1vq) # o(vav3),
the new target graph is a good signed graph and we are done.
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o If p(v1) = p(vs3) and o(uvy) = o(p(u)p(w)), then we add a new vertex
x to ¢(G', 0") connected to p(w) and ¢(vy) with o(p(w)z) = o(vivy) and
o(¢(v1)z) = o(vavg). We then let p(v1) = ¢(w) and extend ¢ to (G, o) to
(G, o) by setting ¢(vy) = 2, which is possible since o(uvy) = o(p(u)p(w))
and o(vsw) = o(p(vs)e(w)). Since o(vive) # o(vevs), the new target
graph is a good signed graph, and we are done.

o If p(v1) = p(vs) and o(uve) = o(p(u)p(w)), then we add a new vertex
z to p(G',0’) connected to p(u) and ¢(vy) with o(p(u)x) = o(uvy) and
o(p(v1)x) = o(v1ve). We then let p(v3) = ¢(u) and extend ¢ to (G, o) to
(G, o) by setting ¢(ve) = x, which is possible since o(uvy) = o(p(u)p(v1))
and o(vsw) = o(p(u)p(w)). Once again, since o(v1v9) # o(vav3), the new
target graph is a good signed graph.

Note that if C'is not an alternating cycle, then subcase (3a) applies and otherwise,
subcase (3b) applies.

Consider now a signed graph (G,o) with v(G) > 0. By (1), we can suppose that
(G,0) has minimum degree 2. Let G* be a 2-connected component which is adjacent
to at most one other 2-connected component. By the definition of G*, there is only one
vertex w € V(G*) which connects G* to other vertices in G — G*. If G* is a cycle then
case (3) applies. Otherwise, G* contains a vertex u # w with dg«(u) > 3. Note that
G — u and G have the same number of connected components since u # w and G* is
2-connected. Hence, case (2) applies which concludes the proof. H

The following proof follows the same methodology, the difficulty in this one lies on the
fact that the general formula is not always true. The signed graph UCY is one of these
exceptions.

Proof of Theorem 4.9. The proof is once again done by induction on (v(G),|E(G)| +
[V(G)]). Let (G,0) be a signed graph. We will need the following notion. The pruned
graph of G, denoted P(G), is the graph obtained from G by repeatedly deleting isolated
vertices and vertices of degree 1. Note that v(P(G)) = v(G). We define P(G,0) in a
similar way:.

In each of the following cases, we proceed by induction and we always suppose that
none of the previous cases applies.

1. The graph (G,0) contains a vertez u of degree 1.
We have v(G — u) = v(G) and, by induction, there exists a homomorphism ¢ from
(G,0) —u to a signed graph of order v(G) + 2. Let v be the neighbor of u and w be
a neighbor of v different from u. Up to switching u, we can assume o(uv) = o(vw)
and extend ¢ to u with ¢(u) = p(w).

2. The signed graph (G,o) has v(G) < 2.
If v(G) = 0 then G is a forest and xs(G,0) = 2. If v(G) = 1 and (G, o) does not
contain an even unbalanced cycle then (G, o) is a cycle (by the previous point) which
is not even unbalanced and (G, o) < 3 as such cycles can be switched to be either
all-positive or all-negative. Finally, the case v(G) = 2 is implied by Theorem 4.11
(the proof of which is independent from the proof of this theorem).
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3. The graph (G, o) contains a cut-vertex u.

Let v; and vy be two neighbors of u that are in different connected components in
G — u. Up to switching vy, we can assume o(uv;) = o(uve). We then consider
the graph (H,w) obtained from (G,o) by identifying v; and vy. The graph H
has less vertices than G and v(H) = v(G) and so, by induction, there exists a
homomorphism ¢ from (H,7) to a signed graph of order v(G) + 2. By composing
the homomorphism from (G, o) to (H, ) (obtained from the identification of v and
v9) with ¢, we obtain our result.

4. The graph (G, o) contains two adjacent vertices u and v of degree 2.

Let (G',0’) be the graph obtained from (G, o) by removing u. W.l.o.g., v’ is the
neighbor of u different from v and v’ is the neighbor of v different from u. Note
that ¥(G') = v(G) — 1 # 1, hence we can find, by induction, a homomorphism ¢
from (G’, 0’) to a signed graph of order v(G) + 1. We extend ¢ by fixing ¢(u) to be
our new vertex. If p(u') = p(v) then, up to switching v, one can change ¢(v) to a
vertex different from p(u), ¢(v') and p(u') since v(G)+2 > 5. If p(u’) # p(v) then
¢ is a homomorphism.

5. The graph (G, o) verifies v(G) > 3 and contains a vertex u of degree 2, which is
either not part of a UCYy, or part of a triangle.
Assume that there exists such a vertex u of degree 2, let x and y be the neighbors
of u. We now distinguish two cases.

If x and y are adjacent, then G — u is connected (otherwise (3) would apply), and
thus ¥(G —u) = v(G) — 2+ 1 = v(G) — 1. Moreover, as v(G) > 3, we have
v(G — u) > 2. So, by induction, there exists a homomorphism from (G,0) — u to
a signed graph of order at most v(G) + 1 colors and we can extend ¢ by choosing
¢(u) to be our new vertex.

Otherwise, up to switching x, we have o(uz) = o(uy). Moreover, for any vertex
z # win N(z) N N(y), we have o(zx) = o(zy). We now consider the graph (H, )
which is the image of (G, o) by the homomorphism identifying x and y (this is well
defined due to the previous remarks). We have v(H) < v(G) — 2+ 2 = v(G) and
thus, by induction, there exists a homomorphism from (H,7) to a signed graph of
order at most v(G)+2. Composing the first homomorphism with ¢ yields the result.

6. The graph (G, o) contains a vertex u of degree at least 3 such that P((G,0) —u) is
not an even unbalanced cycle.
Since u is not a cut-vertex, v(G — u) = v(G) — d(u) + 1. If P((G,0) — u) is not
an even unbalanced cycle, then by induction, there exists a homomorphism ¢ from
(G,0) — u to a signed graph of order at most v(G —u) + 2 = v(G) — d(u) + 3. Let
T1,...,T, (resp. Y1, ...,y,) be the neighbors of u connected to u with positive edges
(resp. negative edges). W.l.o.g., we can assume g < p. Note that 14 ¢ < {@J -1
as d(u) > 3. To construct our homomorphism ¢, it is sufficient to assign to each
vertex of (G, o) its image by ¢, except for u, yi, ..., y, for which we use 1+ ¢

vertices among the d(u) — 1 available new vertices.

7. The graph (G, o) verifies v(G) > 3 and there ezists a UCy in (G, o) containing two
vertices of degree 2.
Let {u,v,w, z} be the vertices of this UC, such that u and v have degree 2. If u
and v are adjacent then (4) applies. If u and v are not adjacent and w and z are
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3

Figure 4.1: The graph involved in the proof of Theorem 4.9

adjacent then (5) applies.

If w and v are not adjacent and w and z are not adjacent then let (G’,0’) be the
graph obtained from (G, o) by removing v and v and adding the edge wz. Note
that v(G") = v(G) — 1 # 1, hence we can find a coloring ¢ of (G’,¢’) by induction.
We want to extend ¢ to u and v. Note that ¢(v) # c(w). Let ¢ be a color different
from ¢(w) and ¢(z). W.l.o.g suppose that u has both its incident edges of the same
sign and that both edges incident with v have opposite signs when trying to extend
the coloring c¢. Note that all edges which have endpoints colored ¢y and c¢(v) have
the same signs, and the same property holds for all the edges which have endpoints
colored ¢y and c(w). If the edges which have endpoints colored ¢y and ¢(w) have
the same sign as the edges which have endpoints colored ¢y and ¢(v), then, up to
switching u, we can color v with ¢y and assign our new color to v. If the edges
which have endpoints colored ¢y and ¢(w) do not have the same sign as the edges
which have endpoints colored ¢y and ¢(v), then up to switching v, we can color v
with ¢y and assign our new color to u. In both cases, we extend c to a signed graph
equivalent to (G, o).

8. The graph (G, o) contains a vertex s of degree at least 5.
Since P((G,0) — s) is an unbalanced even cycle by (6), (G,0) — s admits a homo-
morphism ¢ to a signed graph of order 4 and we still have d(s) — 2 new vertices
to extend the coloring to (G,o). Let xq,...,z, (resp. yi,--- ,y,) be the neighbors
of s connected to s with positive edges (resp. negative edges). Without loss of
generality, we can assume ¢ < p. As d(s) > 5, we have d(s) — {@J —2>1. To
construct our homomorphism ¢’ from (G, o), it is sufficient to assign to each vertex
of (G, o) its image by ¢, except for u, yi, ..., y, for which we use 1 + ¢ vertices

among the d(u) — 1 available new vertices.

9. The graph (G, o) contains a vertex s of degree 4.

By (6) and (8), (G, o) has maximum degree 4 and (G, o) — s contains an unbalanced
even cycle UCy, for some integer p. Recall that G is 2-connected by (3). If v(G) # 4
then v(G — s) = v(G) — 3 # 1 and (6) applies. If G has a vertex = of degree 3,
then v(G —x) =4 —2 =2 and (6) applies. As v(G) = 4, there are three vertices of
degree 4 in G and all the other vertices have degree 2. If p > 3 then (G, o) admits
a vertex of degree 2 which is not part of a UC, and (5) applies. Hence p = 2 and
this UC} has two vertices of degree 2 which contradicts (7).

10. The graph (G, o) contains a vertex s of degree 3.
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We denote by n; the number of vertices of degree ¢ in GG. We have:

3-n3  2-n9 n3
—n3 — 1=—+41.
5 B ns N9 + 9 +

Since G is 2-connected by (3), deleting a vertex of degree 3 decreases the cyclomatic
number v(G) by 2. Moreover, since P(G — v) is an unbalanced even cycle for all
vertices v of degree 3 (by 6), ¥(G —v) = 1. Hence we have v(G) = 3 and n3 = 4.

v(G)=m—-n+1=

If (G,0) — s contains an unbalanced even cycle UCy, for some integer p > 3 then
(G, o) admits a vertex of degree 2 which is not part of a UC} and (5) applies. Hence
for all vertices v of degree at least 3, P((G,0) —v) = UC}.

Since P((G,0) — s) = UCy, (G,0) contains a UCy denoted C' on the vertex set
{u,v,w, z}. If C has at least two vertices of degree 2 then (7) applies. Hence C' has
at least three vertices of degree 3, say u, v and w. Since d(z) = 2, we can suppose
w.l.o.g. that u is the nearest vertex from s in C.

We first show that d(u, s) = 1. If d(u, s) > 3 then there are two adjacent vertices of
degree 2 along this path and (5) or (7) applies. If d(u,s) = 2, then there is a path
uyx, where y has degree 2, and thus y should be part of a UCy (by 5) which is only
possible if s is adjacent to a vertex of C'; a contradiction.

So us € FE(G), and we have to distinguish whether u is a neighbor of z or not. If
uz ¢ E(Q), then, as P((G,0)—u) is a UCy, v and w have another common neighbor
y, and this neighbor can only be s, otherwise u would be a cut-vertex and (3) would
apply. So {sv,sw} C FE(G), but this contradicts the fact that P((G,0) — v) is a
UO4.

Hence uz € E(G), there is one vertex from {v,w} which is not a neighbor of u, say
uww ¢ E(G). As P(G —v) is a UCy, then there should be an edge between s and
w; and as P(G — w) is also a UCYy, there exists a vertex y of degree 2 neighboring
s and v. There is a signature corresponding to this graph which has all the edges
positive except for {sw,uv}. This graph can be easily colored with five colors as
depicted in Figure 4.1.

There are no other cases. O

Another similar result can be obtained for the choice number of signed graphs. The
difficulty here is that we do not have “unused colors” at our disposal by simply applying
the induction. Hence we have to carefully manipulate the lists of each vertex to obtain
our result.

Proof of Theorem 4.10. The proof is done by induction on (v(G), |E(G)| + |V(G)|). Let
(G, o) be a signed graph of order n and let L : V(G) — P(N) be a list assignment on the
vertices of G where the lists have size at least 3 + v(G).

With an L-coloring ¢ of (G, o), we associate a signed graph (H.,m.) where H, is a
graph on the vertex set {c(u),u € V(G)} such that two colors are adjacent if and only
if there exists in G two adjacent vertices colored by these two colors. The signature .
verifies that, for any two colors ¢; and cg, m.(c1c2) is the sign of all edges uv of G such
that c(u) = ¢; and ¢(v) = co.

In the following cases, we can apply induction. When considering a particular case, we
suppose that none of the previous cases applies. Finally, note that one can make similar
arguments by inverting the roles of positives edges and negatives edges.
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1. G has a degree 1 vertex.
Let u be a vertex of degree 1 of G and let v be the neighbor of u. By induction, there
exists a signed graph (G’,¢’) equivalent to (G, o) — u which admits an L-coloring
c. Let ¢, be a color in L(u). By switching u, we can suppose that uv has the same
sign as m.(c,c(v)) and extend the coloring to (G, o).

2. G has two adjacent vertices u and v of degree 2.
Let «’ (resp. v') be the neighbor of w (resp. v) which is not v (resp. w). Choose
¢y € L(u) and, for every w € V(G) \ {u}, let L'(w) = L(w) \ {c,}. By induction,
there exists a signed graph (G’,¢’) equivalent to (G,0) — u which admits an L"-
coloring ¢. Color u with ¢,.

If ¢(u') # c(v) then ¢ is a coloring of a signed graph equivalent to (G, o). Otherwise,
let A be the set of colors a € L(v) \ {c(u'), ¢, } for which 7 .(ac(v')) = o(vv'). If Ais
non-empty then we can recolor v with a color in A. Otherwise, switch v, and color
v with an arbitrary color of L'(v) which is different from c(u’).

3. There is a vertex u of degree at least 3 such that G — u has the same number of
connected components as G.
Let vy, ..., v be the k neighbors of u. Let ¢, € L(u), ¢4 € L(vy) \ {cu}, 5 €
L(vs)\{cu, s}, ..., and ¢ € L(vg)\{cu, s, 5, ..., cx1}. Forevery w € V(G)\{u},
let L'(w) = L(w) \ {cu,ca,¢5,...,cx}. Let a be a color of L'(vy) U L'(vy) U L'(v3)
which appears in the greatest number of sets among L'(vy), L'(vy) and L'(vs). Up
to changing the order of vy, vy and v3, we can suppose that there exists ¢ € {1, 2,3}
such that o € L'(v;) fori < fand a ¢ L'(v;) for £ < i < 3. For every w € V(G)\{u},
let L"(w) = L'(w) \ {a}. Note that we removed at most d(u) — 1 colors from each
list from L to L”.

As v(G —u) = v(G) — (d(u) — 1), by induction, there exists a signed graph (G’,0")
equivalent to (G, o) — u which admits an L"-coloring ¢. We extend ¢ to the vertex
u, in two steps. First assign the color ¢, to u and the color ¢; to v; where 3 <1 < k.
When doing so, the obtained coloring may have some problems: it is possible for a
color 8 to be assigned to two neighbors v; and v; of u such that uv; is a positive
edge and wwv; is a negative edge. In this case, 7, j € {1,2,3}. If this happens then
there are two subcases.

(a) The vertices vy, vo and vy all receive the same color.
In this case, ¢ = 3 and either all uv;, ¢ € {1,2,3} have the same sign or one of
these three edges, say uv;, has a sign different from the other two. In the first
case, there is no problem with the coloring, in the second case, one can recolor
v; with o.

(b) Two of the three vertices, say v; and v;, receive the same color.
In this case, £ > 2 and one can recolor vy with «. This removes the conflict as

2 € {i,j}.

Take any signed graph (G,o). By (1), we can suppose that (G,c) has minimum
degree 2. Let G* be a 2-connected component which is adjacent to at most one other
2-connected component. By definition of G*, there is only one vertex w € V(G*), which
connects G* to other vertices in G — G*. If G* is a cycle then case (2) applies. Otherwise,
G* contains a vertex u with dg«(u) > 3 different from w. Note that G — u and G have
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the same number of connected components since u # w and G* is 2-connected. Hence,
case (3) applies. O

4.2 Proof of Theorem 4.11 and 4.12

This section present the proofs of results where we compute exact values of our coloring
parameters when the cyclomatic number of the graph is small. As mentioned before,
Theorem 4.10 could be improved by taking into account the exception of Theorem 4.9.
Theorem 4.11 provides a better upper bound when v(G) < 2.

Proof of Theorem 4.11. The proof is done by induction on (v(G), |E(G)| + |[V(G)|). Let
(G,0) be a signed graph of order n with v(G) < 2 and let L : V(G) — P(N) be a list
assignment on the vertices of G where the lists have size at least 4.

With an L-coloring ¢ of (G, o), we associate a signed graph (H., 7.) as in the proof of
Theorem 4.10.

In the following cases, we can apply induction. When considering a particular case, we
suppose that none of the previous cases applies. Finally, note that one can make similar
arguments by inverting the roles of positive edges and negative edges.

1. G has a degree 1 vertex.
Let u be a vertex of degree 1 of G and let v be the neighbor of u. By induction, there
exists a signed graph (G’,0’) equivalent to (G, o) — w which admits an L-coloring
c. Let ¢, be a color in L(u). By switching u, we can suppose that uv has the same
sign as m.(c,c(v)) and extend the coloring to (G, o).

2. (G,0) is equivalent to an all-positive signed graph (G,oc’).
The signed graph (G, ¢’) is all-positive and is thus 3-choosable since v(G) < 2.

From this point onward, we can suppose that G is composed of either exactly one
vertex of degree 4 and n — 1 vertices of degree 2, or exactly two vertices of degree 3 and

n—2 vertices of degree 2, or only vertices of degree 2. Asv(G) = X2 d(v 240(G) <
veV(G)

C(G) > 1 and d(” 2 > 0 for every v € V(Q), if there is a vertex of degree 4 then all other
vertices have degree 2, if there is a vertex of degree 3 then there must be another vertex
of odd degree (which then has degree 3) and all other vertices must have degree 2.

3. (G,0) is equivalent to a signed graph (G,o’) which has two edges uv and wz where

d(u) =d(v) =d(w) =d(z) =2, G —u— z is a forest and such that beside uv and
wz, all other edges of (G, o) are positive.
Let u' be the neighbor of u which is not v and let 2’ be the neighbor of z which
is not w. Choose ¢, € L(u) and ¢, € L(z) such that ¢, # c¢,. Let L’ be the list
assignment obtained from L by removing the colors ¢, and ¢, from every set. Since
(G,0’) —u — z is an all-positive signed forest, it admits an L’-coloring ¢ as ordinary
forest are 2-choosable. We extend ¢ to (G, o’) by coloring u by the color ¢, and z
by the color ¢,. Some problems may arise from this choice. If c¢(u') = ¢(v) then ¢
is not a coloring of (G, ¢’). One can recolor v by a color in L(v) \ {c(v'), ¢4, ¢, }, in
order for the previous case to be avoided. The same holds if ¢(z') = c(w).
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4. (G,o0) is equivalent to a signed graph (G, c') which has exactly one negative edge uv
where d(u) = d(v) = 2.
In this case, we can do the same analysis as in case 3 by simply ignoring the vertex
z. As G — u is all-positive, with at most one cycle, (G, o) — u is 3-choosable and we
color (G, o) with the same technique.

5. (G,0) has a vertex x of degree 4.
In this case, GG consists of two edge-disjoint cycles with a common vertex z. By
switching some vertices of (G, ), we can ensure that x is incident with only positive
edges and that the obtained signed graph has at most two negative edges. In this
case, we can apply case 3.

Let (G, 0’) be a signed graph equivalent to (G, o) with the least number of negative edges.
The cases (2) and (4), ensure that (G, o) has at least two negative edges uv and zw. Since
v(G) <2, (G,0’) has exactly two negative edges. If we cannot apply case (3), then either
one of u, v, w or z is not of degree 2 or ¥(G —u—2) > 1. If ¥(G —u — 2) > 1 then
there exists a path of vertices of degree 2 between u and z. By switching the vertices of
this path, we can obtain a signed graph with no negative edges and apply case (2). By
switching some vertices, since there are at most two vertices of degree at least 3, one can
ensure that d(u) = d(v) = d(w) = d(z) = 2. In this case, we can apply case (3). O

We now prove Theorem 4.12. Let us start with the case of forests with Theorem 4.12.1
and Theorem 4.12.2.

Proof of Theorem /.12.1. Nesettil and Raspaud in [157, Theorem 1.1] showed that the
chromatic number of 2-edge-colored forests is upper bounded by 4. By bijection between
2-edge-colored graphs and signed graphs, we obtain x?(B) < 4.

Suppose to the contrary that x2(B5) < 3. Then every signed forest admits a sign-
preserving homomorphism to some (K3, 7). Let (F,0) be the signed forest composed of
eight disjoint path of length 3. Each of these path will have a unique signature among the
eight possible ones. Let (K3, 7) such that (F, o) admits a sign-preserving homomorphism
to (K3,m). As the all-positive (resp. all-negative) path of length 3 is in (F,0), (K3,7)
cannot be all-negative (resp. positive). Suppose w.l.o.g. that (K3, 7) has two positive
edges ab and ac and a negative edge be. Then the path of length 3, say wvwz, with

the signature o(uv) = o(wz) = — and o(vw) = + does not admit a homomorphism to
(K3, m), a contradiction.
Hence x2(Bg) = 4. O

Proof of Theorem 4.12.2. First remark that xs(B5) > 1 and chs(B§) > 1 as signed graphs
in these classes contain edges. Recall that all signed forests can be switched to have only
positive edges. These forests can be treated as ordinary graph and thus their chromatic
number is 2 and their choice number is also 2. Hence our result. ]

We now focus on the sign-preserving chromatic number and provide lower bounds

when v(G) =1 and v(G) = 2.

Proof of Theorem 4.12.3. First note that x2(B;) < 5 and x?(Bj5) < 6 by Theorem 4.8.
Consider the alternating cycle (Cg, o) of length 6 (see Figure 4.2(a)). Any possible

identification of a pair of vertices of this Cy involves two antipodal vertices. Once identi-

fied, without loss of generality, we obtain the signed graph with five vertices a, b, ¢, d and
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(a) The alternating C. (b) The signed graph obtained by identifying two
vertices of the alternating Cg.

v

N

(c) The signed graph with cyclomatic number 2 (d) The only possibility for the graph (H,n) in
and signed-preserving chromatic number 6. the proof of Theorem 4.12.3.

Figure 4.2: The graphs involved in the proof of Theorem 4.12.3.

x where xa, xb and cd are the positive edges and xc, xd and ab are the negative edges
(see Figure 4.2(b)). This graph is a sign-preserving clique. Hence x?(Cs, 0) = 5.

Let (G, o) be the signed graph represented in Figure 4.2(c). We claim that we have
XL(G,0) > 6. By contradiction, suppose x?(G,0) < 5, that is, (G,0) admits a sign-
preserving homomorphism to a complete graph (H, ) on five vertices. The signed graph
(H, ) has at least one all-positive triangle and one all-negative triangle. These two are
the images of the two triangles of (G, o). Note that each vertex of the two triangles of
(G, o) is adjacent to at least one positive and one negative edge, hence it must also be
the case for every vertex of (H, 7). Up to some permutation of the vertices, there is only
one possibility for (H, ) which is represented on Figure 4.2(d). Note that the image of u
lies on the positive triangle while the image of v lies on the negative triangle. In (G, o),
there is an alternating path of length 4 between the vertices u and v, hence in (H, )
there must be one such path between their images. There is no such path in (H,7), a
contradiction. O

We continue with the cases where v(G) < 2 for both the chromatic number and the
choice number of signed graphs.

Proof of Theorem 4.12.4. Theorem 4.11 gives the upper bound for both parameters (recall
that xs(G, o) < chs(G, o) for every signed graphs (G, 0)). Now, consider the signed graph
UCy, it has chromatic number and choice number equal to 4, and cyclomatic number equal
to 1. Hence xs(B;5) = chy(B5) = xs(B3) = chy(B5) = 4. O

We finish with the cases where v(G) € {3,4} for the chromatic number of signed
graphs.

Proof of Theorem 4.12.5. First note that x(B5) < 5 and xs(B;) < 6 by Theorem 4.9. To
show the lower bounds, consider the two graphs of Figure 4.3. On the signed graph in
Figure 4.3(a), only one identification is possible (even with switching): the identification
of the two vertices colored 2. After identification, we obtain a signed clique and thus the
chromatic number of this signed graph is 5. The signed graph in Figure 4.3(b) is a signed
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4 5
3
(a) A signed graph (G,o) with ¥(G) = 3 and  (b) A signed graph (G, o) with v(G) = 4 and
xs(G,0) =5. Xs(G,0) = 6.

Figure 4.3: Two signed graphs used in the proof of Theorem 4.12.5.

clique as for every pair of vertices u and v, either v and v are adjacent or they belong to
some UC}. Hence, the chromatic number of this signed graph is 6. O]

4.3 Proof of Theorem 4.13

We present our algorithm solving COLORING-SIGNED-GRAPHS in FPT time when pa-
rameterized by the cyclomatic number of the input graph. Note that computing the
sign-preserving chromatic number can be done in a similar fashion by ignoring switching
is the proof.

Proof of Theorem /.13. Let Z be the instance of COLORING-SIGNED-GRAPHS composed
of the signed graph (G, o) of order n and the integer k.
First, note that if £ > v(G) + 3, then xs(G,0) < k by Theorem 4.9 and we can accept
our instance Z. Therefore, in the rest of the proof, we can assume k£ = O(v(Q)).
Observe that, by definition, if xs(G,0) < k, then (G,0) —4 (H,w) for some signed
graph (H,7) of order at most k. Note that we can always complete H so that H = Kj.

There are at most 2(2) such signed graphs on k vertices. For each of them, we test whether
(G,0) —s (H, ) or not. This step is described below and is repeated at most 2(2) times.

From now on fix (H, ) to be one of the 2(2) candidate targets for the homomorphism.
Fix a spanning forest F' of G. The forest F' can be computed in time O(n+v(G)) through
e.g. a breadth-first search algorithm. Based on F, we partition V(G) into four sets of

vertices in the following way.

A={veV(Q): dp(v) #da(v)},

By ={v e V(G): dp(v) =dg(v) =1},

By ={v e V(G): dp(v) =dg(v) =2}, and
By ={v e V(G): dp(v) =dg(v) > 3}.

First remark that (G,0) —4 (H,n) if and only if (G,0) — By —5 (H,7) when k > 2.
Indeed, we can always, possibly with some switching, map a vertex u of degree 1 to a
vertex of H which is not the image of the neighbor of u. Hence by successively removing
vertices of degree 1 from G, we can assume that B; is empty.
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Note that |A| < 2v(G) as there are at most 2v(G) vertices incident with one of the
v(G) edges which do not belong to F. Note that each leaf of F' belongs to A since By is
empty. Finally, note that in every tree, the number of internal vertices of degree at least
3 is bounded by the number of leaves of this tree. Thus, |Bs| < |A] < 2v(G).

If (G,0) —5 (H, ), then each of the vertices of AUBj; has an image in (H, 7). We test,
for each possible assignment of images to the vertices of A U B3z, whether they lead to a
homomorphism from (G, o) to (H, 7) or not. There are O((2k)*(%)) possible assignments
of such kind to consider. Indeed, H is of size k and each of the O(4v(G)) vertices of
AU Bs may be switched in the homomorphism. Let ¢ be a function which assigns images
in V(H) to the vertices of AU Bs and possibly switch some vertices of AU Bs. If we can
check whether any of the O((2k)*(%) possible ¢ functions can be extended to the vertices
of By, then we are done. Some of these functions are already not homomorphisms and
hence we can ignore them (they can be detected in O(m) = O(n + v(G)) time).

To check whether ¢ extends to B,, it suffices to check that ¢ can be extended to every
maximal path P = uwywsy ... wyw, where u,v € AUB; and w; € By for each i € {1,...,t}.
Note that there are O(n) such paths. To check whether we can find images for the w;’s of
P, it suffices to check whether there exists a walk in (H,7) starting at ¢(u) and ending
at p(v) with length ¢t + 1 and with sign equal to o(P).

Let I'(H, 7) be the ordinary graph with vertex set {+1, —1} x {0, 1} x V(H) where two
vertices (1,0, v1) and (g9, 1, v9) are adjacent if and only if vyvy € E(H) and e169 = 7(v1v3).
Two vertices (e1,4,v1) and (e2,1,v9) for i € {0,1} are not adjacent. There is a walk of
length ¢ and of sign € between two vertices v and v of H if and only if the distance
between (4,0,u) and (e,4,v) in ['(h, 7) is at most ¢ where ¢ = 0 if £ is even and i = 1
otherwise. Hence, it suffices to compute the distances between the vertices of I'(H, ) to
find the answer and that can be done in time O(v(G)?).

To recapitulate, for each possible target (H, ), we consider each possible mapping of
AU B; to V(H) and we try to extend this to a homomorphism from (G, o). To do that it
suffices to check for each maximal path of vertices of By whether there is a corresponding
walk in (H,7) and this can be done by computing the distances in the graph T'(H, 7). If
we find one such homomorphism, we can accept and otherwise, we reject.

In the end, our algorithm runs in time

v(G)

2("7) 5 (20(@) @) x OW(G)) x O(n + (@) = 27V,
This concludes the proof. n

4.4 Perspectives

We proved upper bounds on some chromatic numbers of signed graphs which are linear in
the cyclomatic number of the graph. One interesting question is whether theses bounds
are asymptotically optimal? We showed that some signed graphs have cyclomatic number
of the order of klogk where k is the chromatic number of the signed graph. Hence there
is a gap between this value and our current linear upper bound, in particular we do not
know of a family of signed graphs whose chromatic number is linear in its cyclomatic
number. We raise the following conjecture.

Conjecture 4.14. For every signed graph (G,o0), if k = xs(G,0) (resp. k = x2(G,0),
resp. k = chy(G,0)), then:
klog(k) = O(v(Q)).

page 134 Dimitri Lajou



Chapter 4. Coloring signed graphs with small cyclomatic number

It would also be interesting to determine upper bounds on the chromatic number
(or the other variants) of a signed graph in its number of cycles. It is known that the
number of cycles of a graph can be exponential in the number of edges (and thus in
the cyclomatic number) of the graph, hence we should expect the chromatic number (or
the other variants) of a signed graph to be smaller than some function on the order of

magnetude of the logarithm of its number of cycles. Theorem 4.4 uses (i) cycles in order
to have a signed graph with choice number at least k, where ¢ = 330" acording to [65].

This number of cycles is way over blown and it would be interesting to know what is the
minimum number of cycles that we need to use to obtain this type of result.
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Chapter 5

Cartesian product of signed graphs

We are interested in the study of Cartesian products of signed graphs, defined by Germina,
Hameed and Zaslavsky in [85]. In their paper, the three authors mainly study the spectral
properties of the Cartesian product, i.e. the impact of the Cartesian product on the spectre
of the adjacency matrices of signed graphs. In this chapter, we present algebraic properties
of the Cartesian product and study the chromatic number of some Cartesian products of
signed graphs.

Cartesian products of graphs are useful to represent crystalline structures in which
some metals can aggregate themselves. The study of the Cartesian product of signed
graphs is particularly useful in the context of the Ising model (see Section 2.1.4) used to
represent ferromagnetic materials.

The Cartesian product of two ordinary graphs G and H, noted G [J H, has been
extensively studied. In 1957, Sabidussi [168] showed that x(G O H) = max(x(G), x(H))
where x(G) is the chromatic number of the graph G. Another notable article on the
subject by Sabidussi [169] shows that every connected graph G admits a unique prime
decomposition, i.e. there is a unique way to write a graph G as a Cartesian product
of some graphs up to isomorphism of the factors. This result was also independently
discovered by Vizing in [183]. Another algebraic property, the cancellation property,
which states that if A B = A 0O C, then B = C, was proved by Imrich and Klavzar
[114] using a technique of Fernandez, Leighton and Lépez-Presa [74]. On the complexity
side, the main question associated with the Cartesian product is to decompose a graph
with the best possible complexity. The complexity of this problem has been improved
successively in [72, 195, 70, 10] to finally reach an optimal complexity of O(m) in [115]
where m is the number of edges of the graph.

An extended abstract of this chapter is published in the proceedings of the interna-
tional conference CALDAM 2020 [137]. A full version of the corresponding paper is also
published in Discrete Applied Mathematics [138]. We would like to thank the reviewers
of our submission to CALDAM 2020 for their comments, especially Reviewer 2 of our
submission to CALDAM 2020 for pointing us to the techniques of [116] which improved
our algorithm. We would also like to thank the reviewers of the journal version.

This work is partially supported by the ANR project HOSIGRA (ANR-17-CE40-0022)
and the IFCAM project “Applications of graph homomorphisms” (MA /IFCAM/18/39).

Our study of the Cartesian product of signed graphs is divided in several sections. In
section 5.1, we present some useful results on the Cartesian product of undirected graphs.
In section 5.2, we present the definition of the Cartesian product of signed graphs and give
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some first properties and easy consequences of the definition. We also prove the prime
decomposition theorem for signed graphs and give an algorithm to decompose a Cartesian
product of signed graphs into its factors. We study the chromatic number of Cartesian
products of signed complete graphs in section 5.3 and products of cycles in section 5.4.
Finally, we present some open problematics in Section 5.5.
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5.1 Definitions and preliminary results

Let us start with definitions.

Definition 5.1 (Cartesian product). The Cartesian product of two ordinary graphs G
and H is the graph G [0 H whose vertex set is V(G) x V(H) and where (z,y) and (2, y')
are adjacent if and only if = 2’ and y is adjacent to 3’ in H, or y = 3/ and z is adjacent
to ' in G.

A graph can be written as a product of multiple other graphs. We present a tool useful
in characterizing a product.

Definition 5.2 (Prime decomposition). A decomposition D of a graph G is a multiset
{G1,...,Gk}, k > 1, such that the G,’s are graphs having at least two vertices and
G =G0 --- OG,. The G;’s are called factors of G. A graph G is prime if there are
no graphs A and B on at least two vertices for which G = A O B. A decomposition is
prime if all the G;’s are prime.
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We can also compare distinct decompositions of the same graph. A decomposition D’
is finer than a decomposition D = {G?1, ..., G}, if for all ¢ € [k], there is a decomposition
D! = { i .,G;pi} of G; such that D’ = { 15 GGy ;Wk}. Note that
by definition, every decomposition is finer than itself.

Suppose that G is a graph and D = {G,...,Gy} is a decomposition of G such that
G =G 0O ... G It is useful to add to G some more structure by identifying the
product structure of the graph. To the end, we use the concepts of coordinate systems

and layers.

Definition 5.3 (Coordinate system). A coordinate system for G under the decomposition
D is a bijection 0 : V(G) — 1%, V(G;) verifying that for each vertex v of G, the set of
vertices which differ from v by the ith coordinate induces a graph, noted G} and called a
G-layer, which is isomorphic to G; by the projection on the ith coordinate.

An edge uv of G is a copy of an edge ab of G; if O(u) and O(v) differ only in their ith
coordinate with u; = @ and v; = b. For a vertex u of G and a G;-layer G}, the projection
of u on the G;-layer GY is the vertex w of V(GY) which is the closest to .

Suppose D = {G1,...,G}} is a decomposition of an ordinary graph G. We say that
two Gj-layers X and X, are adjacent by G; if and only if there exists an edge ab of a
Gj-layer such that a € X; and b € X,. In other words, the subgraph induced by the
vertices of X; and X, is isomorphic to G; (1 Ky where K5 corresponds to the edge ab.

Let A and B be two ordinary graphs. The greatest common divisor of A and B is
the graph X such that, for every three graphs W, Y, and Z with A = W O Y and
B=W O Z, X is a factor of W.

The goal of the rest of this section is to present useful results on the Cartesian product
of undirected graphs.

One of the first results on the chromatic number of Cartesian products of undirected
graphs is due to Sabidussi.

Theorem 5.4 (Sabidussi [168]). For every two graphs G and H, we have:
X(G O H) = max(x(G), x(H))-

Following this paper, Sabidussi proved one of the most important results on the Carte-
sian product: the unicity of the prime decomposition of connected graphs. This result
was independently proved by Vizing.

Theorem 5.5 (Sabidussi [169] and Vizing [183]). Ewvery connected ordinary graph G
admits a unique prime decomposition up to the order and isomorphisms of the factors.

Using some arguments of [74] and the previous theorem, Imrich and Klavzar proved
the following theorem.

Theorem 5.6 (Imrich and Klavzar [113, 114]). If A, B and C are three ordinary graphs
such that ALD B=AUOC, then B=C.

These two theorems imply that the set of all graphs together with the disjoint union
operation and the Cartesian product from a semi-ring with the cancellation property.

The unicity of the prime decomposition raises the question of the complexity of finding
such a decomposition. The complexity of decomposition algorithms has been extensively
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(Pp) = e 0 e

Figure 5.1: A signed graph (P, p) obtained as the Cartesian product of two signed paths.

studied. The first algorithm, by Feigenbaum, Hershberger and Schéffer [72] had a complex-
ity of O(n*%) where n is the order of the graph (its size is denoted by m). In [195], Winkler
proposed a different algorithm improving the complexity to O(n*). Then Feder [70] gave
an algorithm in O(mn) time and O(m) space. The same year, Aurenhammer, Hagauer
and Imrich [10] gave an algorithm in O(mlogn) time and O(m) space. The latest result
is an optimal algorithm.

Theorem 5.7 (Imrich and Peterin [115]). The prime factorization of connected ordinary
graphs can be found in O(m) time and space. Additionally a coordinate system can be
computed in O(m) time and space.

5.2 Cartesian products of signed graphs

5.2.1 Definition

We recall the definition of the Cartesian product of signed graphs due to Germina, Hameed
K. and Zaslavsky:

Definition 5.8 ([85]). Let (G, o) and (H, ) be two signed graphs. The Cartesian product
of (G,0) and (H,7), denoted by (G,o) O (H, ), is the signed graph defined as follows:

e V((G,o)O (H,m)) =V(G) x V(H),

o the positive (resp. negative) edges are the pairs {(uy, v1), (ug,v2)} such that:

— uy = uy and vy is a positive (resp. negative) edge of (H,7), or

— v; = vy and wuyuy is a positive (resp. negative) edge of (G, o).

See Figure 5.1 and Figure 5.2 for example of Cartesian products of signed graphs.

Note that the underlying graph of (G, o) O (H, 7) is the ordinary graph G 0 H. From
this definition, we can derive that the Cartesian product is associative and commutative.
In particular (SG,w,d, Ky, K;) is a commutative semi-ring where SG is the set of all
signed graphs and W is the disjoint union for signed graphs.

The following result shows that Cartesian products are compatible with homomor-
phisms of signed graphs and in particular with the switching operation.

Theorem 5.9. If (G,0), (G',0'), (H,7), (H',7") are four signed graphs such that (G,0) —
(G',0') and (H,w) — (H',7"), then:

(G,0) O (H,7) —, (G',¢") O (H', 7).
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(a) The definition of the signed graph (P, p).
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(b) The signed graph (P, p).

Figure 5.2: A signed graph (P, p) obtained as the Cartesian product of three signed graphs.

Proof. By commutativity of the Cartesian product and composition of homomorphisms,
it suffices to show that (G,o) O (H,7) — (G',0’) O (H,w). Since (G,0) —
(G',0"), there exists a set S of vertices and a homomorphism ¢ from G to G’ such
that if (G,o0g) is the signed graph obtained from (G, o) by switching the vertices of
S, then o'(p(e)) = os(e) for every edge e of G. We note P = (G,0) O (H,7) and
X ={(g,h) e V(GO H): g S}. Let P’ be the signed graph obtained from P by
switching the vertices in X.

If (g,h)(g, 1) is an edge of P, then in P’ this edge was either switched twice if g € S
or not switched if ¢ ¢ S. In both cases its sign did not change. If (g,h)(¢’,h) is an
edge of P, then in P’ this edge was switched twice if g, ¢ € S, switched once if g € S,
g ¢ Sorgé¢sS, g €S, and not switched if g, ¢ S. In each case its new sign is og(gg’).
Thus P’ = (G,0s) O (H, ). Now define pp(g,h) = (¢(g), h). It is a homomorphism from
G O H to G’ O H by definition. By construction, the target graph of pp is (G, ¢’) O (H, )
as the edges of H do not change and the target graph of ¢ is (G', o’). m

As mentioned before, we can derive the following corollary from Theorem 5.9.

Corollary 5.10. If (G,0), (G,0'), (H,n), (H,7") are four signed graphs such that o = o’
and m = 7', then:

(G,0) O (H,7) = (G,0') O (H, 7).

From Theorem 5.9, and the fact that (F, o) —, K3 for every signed forest (F, o), we
also get the following corollary:

Corollary 5.11. If (G, 0) is a signed graph and (F,m) is a signed forest with at least one
edge, then:
Xs((G.o) O (F,7)) = x:((G,0) O K7).

In particular, for n,m > 2, xs((Py,01) O (P, 02)) = 2.
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(a) The graph SPal}. (b) The graph SPals. (c) A signed grid (G,o) with
Xxs(G,0) = 5 and a 5-coloring
of (G,0).

Figure 5.3: The signed graphs used in the proof of Theorem 5.12.

5.2.2 Signed grids

Note that there is a difference between considering the chromatic number of the Cartesian
product of two signed graphs and the chromatic number of a signed graph whose under-
lying graph is a Cartesian product. For example, Cy = Ky O Ks but 4 = xs(UCy) #
Xs(BCy) = 2. Another example comes from grid graphs: xs((P,,01) O (P, 02)) = 2, for
any n,m € N, but the following theorem shows that not all signed grids have chromatic
number 2.

Theorem 5.12. If n and m are two integers with 1 < n < m and (G, o) is a signed grid
with G = P, O P, then xs(G,0)) < 6. If n < 4, then xs(G,0) < 5. Moreover there
exist signed grids with chromatic number 5.

On our figures, we use dashed red edges to represent negative edges and solid blue
edges for positive edges.

Proof. We will prove a more precise statement: every signed grid (G, o) verifies (G,0) —
SPalf where SPalf is the graph of Figure 5.3(a). This graph has the following (easy to
check) property:

(P) for every three vertices x,y,z of SPal3, and every sign € € {+1,—1}, if z # z or
e = +1, then there exists v and v in SPal, u # v, such that the closed walks xyzu
and zyzv have sign e.

To map (G, o) to SPalf, we will construct the homomorphism ¢ by induction. The
vertex of G in line ¢ € {1,...,n} and column j € {1,...,m} will be called z; ;. Let H;;
be the subgraph of G induced by the vertices z;, where 1 <k <i,ork=¢and 1 < /¢ < j.
We prove that for all ¢,7, 1 <i <mnand 1< j <m, H;; — Spal;. It is easy to see
that Hy ,, —s SPal.

If H;,, —5 Spalf and 1 < ¢ < n, then ;1 has only one neighbor in H;;,; and we
can extend the previous homomorphism to H;;q ;.

Suppose that ¢ is a homomorphism from H; ; to Spalf, with 1 <i <nand1 < j <m.
Let C' = L j+1L4 jX5—1,jT5—1 541- IfC = BC4 orif C = UO4 and gO(l’Z'J'> 7é (,0((131‘_1’]'4_1), then
we have two choices for z; ;11 by P (we might need to switch z;,) and we can extend
the homomorphism to H; ;. If C = UC, and ¢(z;;) = @(xi_1,+1), then these two
vertices must be different. There were two possibilities for the choice of ¢(z;;_1) in the
previous step by P thus if we take the other one, we are back to the previous case where
o(z;j-1) # p(xi_1,;). Thus we can extend ¢ to H; j1.
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Hence, H,,,, = (G, 0) — s SPal} which gives x(G,0) < 6.

Suppose now that n < 4. If n < 4, then we could add one extra line to our grid to
make it a 4 x m grid. Therefore, we prove only the case where n = 4.

We construct a homomorphism ¢ : (G,0) —, SPals, column by column, where
SPals is the graph of Figure 5.3(b). The first column is a path and thus, we can map
it arbitrarily to SPals. For a column with vertices x; j, ¥ ;, 73, 24; and 1 < 7 < m, we
extend ¢ to the vertices of the column depending on the images of the vertices z ;_1,
T2,-1, T3,5-1 and T4,5—1- Let Uj_l be the vector (Sp(xl,j—l)’ QD(./L‘QJ‘_l)’ QO(ZEg}j_l), QO(ZL’4,J‘_1)).
Note that any permutation of vertices of SPal; gives a homomorphism from SPals to
SPals (which may require switching some vertices). Hence by symmetry between the
vertices of SPals and since ¢ does not map adjacent vertices to the same image, we
can suppose that v/7! is one of the following vectors: (1,2,1,2), (1,2,1,3), (1,2,3,1),
(1,2,3,2), (1,2,3,4). Note that by inverting the order of the columns and permuting the
colors, (1,2,3,2) and (1,2,1,3) are symmetrical. Hence we only have four cases to check
for the images of the previous column.

Note that we need check that every BCy of (G, o) is mapped to balanced closed walk
in SPals and that every UCy of (G,0) is mapped to a UCy of SPals for ¢ to be a
homomorphism. Hence for each of the three following cycles: C) = x; 72 ;%2 j_121 -1,
Cy = 92331721 and Cs = ¥3 T4 ;T4 1231, We have two cases depending on
whether the cycle is balanced or not. This represents 4 x 8 cases to check. We can reduce
the number of cases as follows. If o(C;) = +1 then we can find an extension of ¢ by
considering that o(Cy) = —1 (i.e. Cy is unbalanced) and replacing the image of x;; in
this extension by (22 _1). The same can be done for the case where o(Cs) = +1. Hence
we only have two cases to consider depending on the sign of Cj.

Let us gives a possible way to extend ¢ in each remaining cases. For each case,
we present an extension of ¢ to this column by giving the value of the vector v/ =
(p(x1,5), p(xa), p(z3;), (x4,;)) corresponding to the extension.

Suppose first that o(Cy) = +1. If v97! = (1,2,1,2), then we choose v/ = (0,4, 3,0).
If v/t = (1,2,1,3), then we choose v/ = (3,0,2,0). If v/=* = (1,2,3,1), then we choose
v/ = (3,0,2,4). If w71 = (1,2,3,4), then we choose v/ = (3,0,2,1). Now assume that
o(Cy) = —1. If v/~1 = (1,2,1,2), then we choose v/ = (3,0,3,0). If v/~ = (1,2,1,3),
then we choose v/ = (4,3,4,2). If v/=! = (1,2,3,1), then we choose v/ = (3,0,4,0). If
v/ = (1,2,3,4), then we choose v/ = (0,4,1,0). In each case, we can find a way to
extend ¢ to the current column. Hence (G, o) — SPals.

It is tedious but not difficult to check that the signed grid of Figure 5.3(c) cannot be
mapped to a signed graph of order 4, thus its chromatic number if at least 5. In fact it is
exactly 5. This concludes the proof. O]

Note that, independantly from our work, Dybizbariski, Nenca and Szepietowski in [61]
presented a computer assisted proof of the following result.

Theorem 5.13 (Dybizbaniski, Nenca and Szepietowski [61]). If (G,0) is a n x m signed
grid with n < 7, then xs(G,0) < 5.

They also prove the upper bound of 6 on every signed grid. Their result is thus better
than Theorem 5.12. Nevertheless, we still do not know whether the upper bound for
signed grids is 5 or 6.
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Question 5.14. What is the mazimal value of xs(G,0) when (G, o) is a signed grid? Is
ithor6?

5.2.3 Prime factor decomposition: existence and unicity

Our goal now is to prove that each connected signed graph has a unique prime s-
decomposition. Let us start with some definitions.

Definition 5.15. A signed graph (G, o) is said to be s-prime if and only if there do
not exist two signed graphs (A, m4) and (B, 7p) such that (G,0) = (A,74) O (B, 7p).
An s-decomposition of a signed connected graph (G, o) is a multiset of signed graphs
D = {(Gy,m),...,(Gg, )} such that:

1. the (Gy,m;)’s are signed graphs containing at least one edge and

2. (G,m) = (Gy,m) O -+ O (G, mp).

An s-decomposition D is prime if all the (G;,m;)’s are s-prime. The (G;, 7;)’s are called
factors of D.

Let (G, o) be a signed graph such that there exist two ordinary graphs A and B for
which G = A O B. A signed A-layer of (G,0) is a signed subgraph (A”,04v) of (G, 0)
where AY is an A-layer of G.

Let D be an s-decomposition of (G, o) and D’ be the decomposition of G corresponding
to D by forgetting the signs. For a factor (A,7m4) of D, an (A, 7a)-layer of (G,0) is a
signed subgraph (A", m4v) of (G,0) such that AV is an A-layer of G for D' where A
is the factor of D’ corresponding to the factor(A,m4) of D. By definition of (A, m,),
(AU, 7TA’U> = (A, 7TA).

Note that if G = A O B, then it is not always true that (G, o) is the Cartesian
product of two signed graphs. For example, UC} is s-prime but C; is not a prime graph
as Cy = Ky O K. The following lemma tells us in which cases (G, 0) = (A, 74) O (B, 7p),
and will be a useful tool for decomposing signed graphs.

Lemma 5.16. If (G,0), (A,7ma) and (B, 7p) are three connected signed graphs with G =
A O B, then (G,0) = (A,m4) O (B, wp) if and only if:

1. all signed A-layers are equivalent to (A, ma),
2. at least one signed B-layer is equivalent to (B, mg), and

3. for each edge e of A and each pair of distinct copies e1,es of e, if e; and ey belong
to the same signed 4-cycle, then this cycle is a BCy.

Note that, in the previous lemma, all signed B-layers are equivalent to (B, 7g) but we
only need to verify that for one of them to conclude.

Proof. (=) This follows from the definition of the Cartesian product.

(<) We will do the following independent switchings: switch all signed A-layers to
have the same signature 4.

Now we claim that all signed B-layers have the same signature 75 equivalent to mp.
Indeed take one edge xy of B and two copies of this edge x1y; and xoys in G. Take a
shortest path P from z; to x5 in the A*-layer. Now if uq,us are two consecutive vertices
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along P and vy and v, are their projections on AY', then ujusvevy is a BCy in (G, o) by
the third hypothesis as u;v; and ugvy are copies of the edge xy.
As ujus and v1vy have the same sign by the previous switchings, it must be that uyv,
and usvo have the same sign. Thus all copies of an edge of B have the same sign.
Hence, (G,0) = (A,m4) O (B,7z) = (A, m4) O (B, wg) by Theorem 5.9. O

One of our main results is the following Prime Decomposition Theorem.

Theorem 5.17 (Prime s-decomposition Theorem). If (G, o) is a connected signed graph
and D is the prime decomposition of G, then (G, o) admits a unique (up to isomorphism
and order of the factors) prime s-decomposition Ds. Moreover, if we see Dy as a decom-
position of G, then D is finer than D;.

For proving this theorem, we need the following lemma.

Lemma 5.18. If (G, 0) is a connected signed graph that admits two prime s-decompositions
Dy and D, then there are two signed graphs (X,nx) and (Y,7my) such that (G,0) =
(X,mx) O (Y,7y) with Dy = {(X,7x)} U D] and Dy = {(X,7x)} U D}, where D} and
D}, are two s-decompositions of (Y, my).

Proof. Suppose there exists a signed graph (G, o) that admits two s-decompositions D,
and Dy. Fix an edge e of (G, o) which belongs to some Z-layer Z¢ of the prime decomposi-
tion of G. The edge e belongs to some (A, m4)-layer in D; and to some (B, wp)-layer in Ds.
The graph Z is a factor of A and B by unicity of the prime factor decomposition of G. Let
X be the greatest common divisor of A and B. Since e € E(Z¢), e is in some X-layer X*.
Now G = X O Y for some graph Y. Let us show that (G,0) = (X,7x) O (Y, my) for
some signatures my and 7y of X and Y, respectively. We can suppose that Y # K and
A # B, as otherwise the result is immediate.

First we want to show that all signed X-layers have equivalent signatures. Take two
adjacent signed X-layers. If they are in different signed A-layers, then they are equivalent
since they represent the same part of (A, 74). If they are in the same signed A-layer, then
they are in different signed B-layers since X is the greatest common divisor of A and B.
The same argument works in this case. Thus two adjacent signed X-layers are isomorphic
to the same signed graph (X, 7x), and since there is only one connected component in Y,
all signed X-layers have equivalent signatures.

Let my be the signature of one signed Y-layer. Fix ¢’ an edge of X, and (X, 7y,),
(Xo,mx,) two signed X-layers. Now consider the signed 4-cycle (if it exists) containing
the copies of this edge in each of the two signed X-layers. If (X, 7x,) and (Xo, 7x,) are
in different signed A-layers, then this signed cycle is a BCy by Lemma 5.16, otherwise
this signed cycle is a BCy as (X, 7my,) and (X, 7y,) are in different signed B-layers by
the same argument.

By Lemma 5.16, we can conclude that (G,0) = (X, 7x) O (Y, 7y).

Now suppose that A = X 0O W. Using Lemma 5.16, we can show that (A, 74) =
(X, mx) O (W, mw). Indeed all signed X-layers have equivalent signatures since (G, o) =
(X,7x) O (Y, my) and all signed 4-cycles between two copies of an edge of X are BC,
by the same argument. As (A, m4) is s-prime, this implies (X, 7y) = (A,74). Thus
(X,mx) = (A, m4) = (B, ) and this proves the lemma. O

Proof of Theorem 5.17. Any signed graph (G, o) has a prime s-decomposition by taking
an s-decomposition that cannot be refined. Every prime s-decomposition of (G, o) can
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be considered as a decomposition of G, and the prime decomposition of G is finer than
every such decomposition. We still have to show that the prime s-decomposition of (G, o)
is unique. Suppose, to the contrary, that (G,o) is a minimal counter-example to the
unicity. Thus (G, o) has two prime s-decompositions D; and D, and, by Lemma 5.18,
(G,0) = (X,7mx) O (Y, 7my) with D; = {(X,7x)} UD}| and Dy = {(X,7x)} U Dj, where
D} and D) are two s-decompositions of (Y, my). By minimality of (G,0), (Y, 7my) has a
unique prime s-decomposition, hence D] = D;. Thus Dy = D,, a contradiction. O]

Note that Theorem 5.17 implies the following result.

Theorem 5.19. If (A, m4), (B, 7g) and (C,7¢) are three signed graphs verifying (A, m4) O (B, ) =
(A, mq) O (C,7e), then (B,mp) = (C,7¢).

The proof of this result is exactly the same as the proof for ordinary graphs presented
in [114]. Indeed, we have all the necessary tools used in the proof. The first one is
Theorem 5.17, the other one is the semi-ring structure of signed graphs (quotiented by
the equivalence relation) with the disjoint union and the Cartesian product which follows
from the definition. See [114] for more details on the proof.

Another application of the prime s-decomposition theorem is to compute the frustra-
tion index (7.e. the minimum number of edges to remove from a signed graph to make it
balanced) of a signed graph. Indeed, it is easy to see that the frustration index of a signed
graph is equal to the product of the frustration indices of each of its factors. Hence given
the prime s-decomposition of a signed graph, one can compute the frustration index of
each prime factor and compute the frustration index of the whole graph.

5.2.4 Recognising Cartesian products of signed graphs

In the last part of this section, we propose an algorithm to decompose connected signed
graphs. Decomposing a graph can be interpreted in multiple ways: finding a decom-
position, identifying which edge of G belongs to which factor, or even better getting a
coordinate system that is compatible with the decomposition. In [115], Imrich and Pe-
terin gave an O(m) time and space (m is the number of edges of G) algorithm for these
three questions for ordinary graphs. More recently, in [116], they gave another algorithm
in O(m) time and space to decompose directed graphs.

Our goal is to give a similar algorithm for signed graphs based on their algorithm for
directed graphs.

Theorem 5.20. Let (G,0) be a connected signed graph of order n and size m. We can
find in time O(m) and space O(m) the prime s-decomposition of (G,o) and a coordinate
system for this decomposition.

We take a coordinate system for a graph G corresponding to its prime decomposition
D which can be computed in O(m) time [115]. Let v be the vertex of G with coordinates
all equal to zero. We order the vertices using a BF'S traversal of the graph starting at v.
If zy is an edge, then it is a down-edge (resp. up-edge, resp. cross-edge) of x when
d(v,z) < d(v,y) (resp. d(v,z) > d(v,y), resp. d(v,z) = d(v,y)) where d denotes the
distance in G. We proceed as described in Algorithm 1. We color the edges of G using
the prime decomposition D of G: we associate to each factor X of D a color, which is
then assigned to every edge belonging to an X-layer of G. We maintain a temporary
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Input : A signed graph (G, o)
Output: The prime factor s-decomposition of (G, )

1 Compute the prime factor decomposition D of G;
2 Set the temporary decomposition of (G, o) to be J = D;
3 Done <+ J;
4 S+ o
5 Treated < @;
6 forall vertices x taken according to a BFS ordering do
7 Add z to S,
8 forall edges xy ¢ Treated do
9 Determine the temporary color 7 of xy and .J; the current factor to which

it belongs in the current decomposition;

10 Let z'y’ be the projection of zy onto JY;

11 if xy and 'y’ do not have the same sign and y ¢ S then

12 Switch the vertex y;

13 Add y to S;

14 else if xy and 2’y have the same sign and y ¢ S then

15 ‘ Add y to S;

16 else if zy and x'y’ do not have the same sign and y € S then

17 Merge the temporary colors of all up-edges of y (and the temporary
color of xy) and update the decomposition;

18 end

19 Add zy to Treated;

20 end

21 Add x to Done;

22 end

Algorithm 1: A decomposition algorithm for signed graphs.

decomposition J of G for which we merge some factors, by means of recoloring the edges,
during the algorithm. Our goal, at the end of the algorithm, is that J = P where P is
the prime s-decomposition of (G, o). We note p;(e) the projection of an edge e = zy € J?
to the temporary J;-layer J'.

First note that in Algorithm 1, the set Done is not used. Therefore, it can be omitted.
Its only purpose is to ease the correctness analysis of the algorithm. Let us make a few
more remarks. The set Done (resp. Treated) is used to record which vertex (resp. edge)
has been processed by the algorithm. At any point of the execution of the algorithm,
the set S corresponds to the set of vertices for which we have decided whether they need
to be switched or not. If z € Done at some point of the algorithm then all its incident
edges belong to the set Treated. Moreover, by construction of the BFS ordering, if xy
is a down-edge of = in J7, then for every vertex z, the projection x'y’ of zy on J7 is a
down-edge of z’.

Claim 5.21. After the merging in line 17 of the algorithm, v, y and x belong to the same
layer.

Proof. We just need to prove that y and v belong to the same layer after merging. Note
that a layer J? corresponds to all the vertices b which differ from a only by the ith
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coordinate (in the current decomposition). Note also that the coordinate vector of a
neighbor of y and the coordinate vector of y differ by only one coordinate. For any non-
zero coordinate of y, there is an up-edge yz of y to a neighbor z of y which differs only on
this non-zero coordinate (as the ordering is a BFS ordering and by the Cartesian product
structure), therefore all factors J, corresponding to non-zero coordinates of y are merged.
Hence, in this new coordinate system, y has at most one non-zero coordinate and thus y
and v are in the same layer. O

Claim 5.22. Let ab and da'b' be two edges of the set Treated at any moment of the
algorithm. If a't’ € J* for some i and p;(a't') = p;(ab) (i.e. they represent the same edge
of J;), then ab and a'b’ have the same sign.

Proof. By contradiction, suppose that a’b’ is the first edge such that, when added to
Treated, there exists some edge ab € Treated such that p;(a'’) = p;(ab) and a’t’ and ab
do not have the same sign. Let a”b” be the edge p;(a’b’). Note that no edge in Treated
can change sign once it is into the set as both its endpoints are in S. By definition of a'b’,
ab and a”b” have the same sign since they both project to a”b”. Hence, it must be that
a'b’ and a”b"” do not have the same sign.

Note that, a'b’ cannot be treated in the third if statement at line 16, as otherwise it
would belong to some layer J? after merging by Claim 5.21 and thus @'t/ would project
to itself. Since o't/ went through one of the first two if statements (lines 11 and 14), o't/
and a”b” have the same sign, a contradiction. O]

Proof of Theorem 5.20.
Correctness: First, let us show that J is finer than P, the prime s-decomposition of
(G,0), at each step of the algorithm. It is true at the beginning of the algorithm by
Theorem 5.17 as J = D. Suppose that J is finer than P at the beginning of step 8. In
the if statement, if we enter the first two cases then we do not change J. Hence it is still
finer than P at the end of the loop.

Suppose zy and z'y’ are not of the same sign and y € S (i.e. we enter line 17). As
y € S and zy ¢ Treated, there is some neighbor z of y for which z € Done. We consider
two cases depending on whether z € JF or z ¢ JF.

Suppose first that z € J7.

Take a shortest path P, in J? from z to the projection p, of v on J. All vertices of
the path appear before z in the BFS ordering, thus all the edges of the path belong to the
set Treated. The same holds for a shortest path P, from p, to z. In particular the walk
W obtained by concatenating yz, P, and P, has all its edges in T'reated. This implies
that W and W’ its projection on J!, have the same sign by Claim 5.22. Hence the closed
walk C' obtained by concatenating W with xy and its projection (W' concatenated with
z'y") have different signs and J and J? do not have the same signature.

Let u be a neighbor of y such that uy is an up-edge of y and u ¢ J*. Every edge ¢’ of
the projection C” of C' on J! is in Treated as d(v,e') < d(v,e) where e is the counterpart
of ¢ in C' (all vertices of C' have an up-edge to their projection on J!). In particular C
and C” do not have the same sign and JF and J# do not have the same signature.

This implies that both layers are in the same factor of P. Indeed suppose that this
is not the case. Then all signed cycles abb'a’, such that ab € J¥ and o'l is its projection
on J*, must be BCy. For all edges ab of W, ab and a'b’ have the same sign by Claim 5.22,

hence aa’ and bb' also have the same sign (since the cycle is balanced). Now let x”y”
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k v
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X Lo, .I',
z a y/
Yy u

Figure 5.4: The second case of the correctness analysis. For simplicity, all edges which are in
Treated are positive. The orientation of the edges represents the BFS order. The neighbors of
v are labelled with the temporary color of their edge with v.

be the projection of zy on J{. By going around W and by the previous observation,
xx” and yy” have the same sign. Note that zy and z”y” do not have the same sign as
z"y" € Treated (x"y" has the same sign as x'y’). This implies that zyy"z” is a UCYy, a
contradiction.

Hence we need to merge all temporary colors of all up-edges of y (including color 7).
Thus after this step J is still finer than P.

Suppose now that z ¢ J? (see Figure 5.4).

In this case, z is the projection of y on J7. Let z, be the projection of x on J?. Since
yz is an up-egde of y, zx, is an up-edge of x and x, € Done. Note that zz, and yz have
the same sign since both are in Treated. Also note that z,z and x’y’ have the same sign
since x,z € Treated. Hence xyzz,, is a UCy. By the same arguments as before, these four
vertices belong to the same signed factor of (G, ), hence we must merge i and, say j, the
temporary colors of xy and yz respectively.

Let u be a neighbor of y such that uy is an up-edge of y of temporary color k ¢ {i,j}.
Let z, be the projection of x on J!. Note that z,u and z'y’ have the same sign as
d(x,,v) < d(z,v) (i.e. x, € Done). If xz, and yu have the same sign, we have a UC}
and must merge the temporary colors ¢ and k. Suppose they have different signs. Note
that y and z (resp. u) differ only by their jth coordinate (resp. kth coordinate). Let a
be the vertex with the same coordinate as u except for its kth coordinate which is equal
to the kth coordinate of z (see Figure 5.4). Note that a appears before z and u in the
BFS ordering. Since the vertex a is a neighbor of z and wu, both edges za and ua are
down-edges of a. Hence za € Treated and za has the same sign as xx, which is different
from the sign of uy, and yz and ua also have the same sign since both are in Treated. In
particular yuaz is a UC, and these four vertices must be in the same factor of P. This
implies that we must merge the temporary colors j and k which implies merging ¢ and k.

At the end J is finer than P and J is an s-decomposition by Claim 5.22. Hence J = P.

Complexity: Due to the similarity of our algorithm with the one in [116], most of the
complexity arguments given in [116] are still valid for our algorithm. The only differences
between the two algorithms are the presence of the three sets Done, S and Treated, two
more if blocks and the need to switch at some vertices. Let us address these three points.
Each set can be encoded by a boolean in the data structure of vertices/edges. The second
for loop checks each edge xy twice, once for each endpoint, but this still amounts to a
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O(m) iteration of the loop. The two additional if blocks are a O(1) overhead for each
iteration of the loop. The switch operation is another O(m) total overhead as each edge
can be switched at most once thanks to the presence of the set S. Hence the algorithm
runs in time O(m). The reader can find more details in [116], and in particular, how to
compute the projections in constant time. L]

Note that this algorithm not only computes the prime s-decomposition of (G, o) but
finds a signature o/ = o for which all layers of the Cartesian products have the same

signature as their corresponding factors.

5.3 Chromatic number of Cartesian products of com-
plete signed graphs and upper bounds

In this section, we show a simple upper bound on the chromatic number of a Cartesian
product of two signed graphs and compute the chromatic number of some special complete
signed graphs. We start by defining a useful tool on signed graphs.

5.3.1 s-redundant sets

In what follows we define the notion of an s-redundant set in a signed graph. Intuitively,
if S is an s-redundant set of (G, o) and x and y are two vertices that cannot be mapped
to a same vertex by any homomorphism from (G, o), then they cannot be mapped to the
same vertex by a homomorphism from (G,0) — S.

Definition 5.23. Let (G, 0) be a signed graph and S C V(G). We say that the set S is
s-redundant if and only if, for every x,y € V(G)— .S such that xy ¢ E(G), every z € S and
every signature o’ with ¢’ = o, if xzy = UP; in (G, 0’), then there exists w € V(G) — S
such that zwy = UP;s in (G, d').

The following proposition provides an alternative formulation of the definition which
is useful in order to prove that a set is an s-redundant set.

Proposition 5.24. If (G, o) is a signed graph and S C V(G), then S is s-redundant if
and only if for every z € S, and every x,y € N(z) — S with xy ¢ E(G), there exists
w e V(G) — S such that zwyz is a BCy.

Proof. Take z,y € V(G)— S such that zy ¢ E(G) and z € S. If xzy = UPs in a signature
o' = o, then z,y € N(z). Now if S is an s-redundant set, then with the notation of the
definition zzyw is a BCy in (G,0’) and thus in (G, o). If zzyw is a BC, and zzy is a
UP; in a given signature o', then zwy is also a U P3 as xzyw is balanced. This proves the
equivalence between the two statements. O

The next theorem is the reason why we defined this notion. It allows us to compute
an upper bound on the chromatic number of a signed graph as a function of the chromatic
number of one of its subgraphs. One example of utilisation of this notion is given by the
proof of Theorem 5.27.

Theorem 5.25. If (G,0) is a signed graph and S is an s-redundant set of (G,0), then

Xs(G,0) <[5+ x:((G,0) = 5).
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(a) Notation of the proof. (b) A coloring of (H, o) with 5 colors.

Figure 5.5: The signed graph (H,o) = K O K3 of Theorem 5.27. The big squared vertices
have been switched.

Proof. Let ¢ be a coloring of a signed graph (G, o) — S with xs((G,0) —S) colors where
(G,0") = (G,0). We define the coloring ¢’ of (G, 0’) as follows: ¢(v) = ¢(v) when v ¢ S
and ¢ (v) is a new color when v € S. Hence ¢’ uses at most |S| + xs((G, o) — S) colors.
It is left to show that it is indeed a coloring of (G,0’). As ¢ is a coloring, ¢ does
not assign the same color to two adjacent vertices. Suppose, by contradiction, that there
exists two edges xy and x'y’ of opposite sign such that ¢(z) = /(2') and ¢ (y) = ¢(y).
As ¢ is a coloring, all four vertices cannot be in G — S. W.l.o.g. suppose that z € S. By
definition of ¢/, 2/ =z, y,y' ¢ S and yxy' is a UP; in (G,0’). As S is an s-redundant set,
there exists w ¢ S such that ywy' is a UP; in (G,0') — S. This contradicts the fact that
¢ is a coloring of (G,0’) — S. O

This result does not hold for any set S. For example, if (G,0) = UCy and S = {v} is
a single vertex of G, then x;(G,0) =4 and xs((G,0) —v) = 2.

5.3.2 Back to Cartesian products of complete signed graphs

As a direct corollary of Theorem 5.9, we get the following upper bound on the chromatic
number of a Cartesian product of signed graphs.

Corollary 5.26. If (G1,01), ..., (Gk,0r) are k signed graphs, then:

Xs((Gry00) O - O (Gry0) < T xs(Gi, ).

1<i<k

We consider the Cartesian product of balanced and antibalanced complete graphs in
our next result. Recall that K;L (resp. K, n ) is the complete graph with only positive edges
(resp. negative edges).

Theorem 5.27. For every two integers p,q with p,q > 2, we have

Xs(K, O K;) = V)ﬂ :

Proof. Let us note (P,m) = K;r 0 K, . By symmetry between the sets of positive and
negative edges, we can suppose p > ¢. First let us show that y4(P,7) > [%ﬂ.

If ¢ = 2, then (P, 7) is balanced and thus x(P,7) = x(K, O K3) = p.

Suppose now that p > ¢ > 3 and that y(P,7) < [%W. Let ¢ be an optimal homomor-
phism from (P, 7). By the pigeon hole principle, there exist x, y and z three vertices of
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(a) The signed graph (P, ). (b) The signed graph (P,7’) where the big

squared vertices have been switched.

(c) The signed graph (P”,#") with the set S.

Figure 5.6: The signed graphs (P,7), (P,7") and (P”,n”) of Theorem 5.27 when (P,7) =
K OK;.

the Cartesian product with the same image by ¢. They belong to three distinct /& -layers
and three distinct K -layer as these are complete graphs. Consider the subgraph (H, o)
of (P,m) composed of vertices which are in the same K -layers as one of , y, z and in
the same K -layers as one of z, y and z. We have (H,0) = K" O K3 (see Figure 5.5(a)).

By assumption z, y and z of (H, o) are identified by ¢ (possibly after switching some
of them). By the pigeon hole principle, two of z, y and z are both switched or both
non-switched. Without loss of generality suppose they are x and y. Then if a is one of
their common neighbors in H, the edges xa and ya are of different signs, thus  and y
cannot be identified. This is a contradiction.

We now prove that x4(P,m) < [%W by induction. If p = 2, then (P,7) = BC, and
Xs(P,m) =2<2 If p=3and g =2, then (P,7) = BC5 O K, whose chromatic number
is 3. If p=3 and ¢ = 3, then (P,7) = K5 0 K5 . In this case, we have y,(P,7) = 5, as
Figure 5.5(b) gives a 5-coloring of (P, 7).

Now we can assume p > 4. Let V(P) = {U(i,j):() <i<p0<j< q} such that for

every i, the set {U(i7j)}o<j<q induces a negative complete graph and for every j, the set

{U(i,j)}0<,< induces a positive complete graph (see Figure 5.6(a)). Now switch all vertices
<i<p

in {U(i,j) RS O} to obtain the signed graph (P, 7’) (see Figure 5.6(b)) and then identify
V(o,j) With v j41) (which are non-adjacent) for every j € [0,¢q — 1], where indices are
taken modulo ¢, to obtain the graph (P”,7”) (see Figure 5.6(c)). Let S be the set of
identified vertices in (P’, 7). We want to show that S is s-redundant in order to use the
induction hypothesis. Take z € S and z,y € N(z) — S such that xy ¢ E(P"). If xzy is
an unbalanced path of length 2, then x is some v(; jy and y is some v j41) with ¢,k > 2.
For a = v j41), rayz is a BCy.
By Proposition 5.24, S is s-redundant and thus

Xs(P,m) < xs(P77") <[5 + xs((P,7) = 5)
by Theorem 5.25. By induction hypothesis, as (P”,7") — S = K, O K, we get
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Figure 5.7: A signed graph K of order 18 such that (K O Kj) = 25.

Xs((P",7") = S) < [@W. Thus xs(P,7) < g+ [%W —q< [Ig] 0

For the Cartesian product K; [ K, the upper bound of Corollary 5.26 is p? while
we proved in Theorem 5.27 that the chromatic number is [%ﬂ . We thus have an example
where the chromatic number is greater than half the simple upper bound.

Question 5.28. What is the supremum of the set of real numbers \ € [%, 1] such that
there exist signed graphs (G1,01), ..., (Gk,0r), each with at least one edge, such that:

Xs((Gr,00) O --- O (Gy,01)) <A ] xs(Gir03)?

1<i<k

In Figure 5.7, we have an example of a graph K such that K [0 K, has chromatic
number 25 (checked by computer). The ratio between the chromatic number and the
upper bound is % = 0.69444. Tt is the largest ratio we have found by randomly sampling
bigger and bigger complete signed graphs. This leads us to believe that the following

conjecture holds.

Conjecture 5.29. For every fived € > 0, there exist signed graphs (Gy1,01),...,(Gk, o%),
with each at least one edge, such that:

Xs((Gr,00) O - O(Gr,0k)) =2 (1 =)~ [T xs(Gi, 09).

1<i<k
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5.4 Chromatic number of Cartesian products of signed
cycles

The goal of this section is to determine the chromatic number of the Cartesian product of
two signed cycles. As there are four kind of cycles (balanced/unbalanced and even/odd
length), we have a number of cases to analyse. In most cases some simple observations
are sufficient to conclude. For the other cases, we need the following lemma whose proof
is given in subsections 5.4.1 to 5.4.6, due to its length.

Lemma 5.30. For every two integers p,q € N such that p > 1 and g > 3:
XS(BC2p+1 O ch) > 4.
With this lemma, we can state the main result of this section.

Theorem 5.31. If (C,0) and (Cy, 09) are two signed cycles, then the chromatic number
of (P,m) = (Cy,01) O (Cy,09) is given by Table 5.1, depending on the types of (Cy,01)
and (Cy, 03).

(017 01) 0 (027 02) Bceven Bcodd Uceven UCodd
BCeyen, 2 3 4 3
BCoiq 3 3 ) 5
UCeven 4 5 4 5
UCodd 3 5 5 3

Table 5.1: The chromatic number of Cartesian products of signed cycles.

Proof. 1f G is a cycle of type BCpepen (resp. BCoaa, UCewen, UCoaq), then G — 4 BCy = K,
(resp. BC3, UCy, UC3). By computing the chromatic numbers of the Cartesian products
of (G, o) and (H, ) when they belong to { Ky, BC3, UC4, UC3}, we get an upper bound for
each of the Cartesian product type equal to the corresponding value in the table. These
cases, up to symmetry between the sets of positives and negatives edges, are represented
in Figure 5.8. Note that to color some graphs, we switched some vertices.

For the lower bound, note that x,((C1,01) O (Cy, 09)) > max(xs(C1, 01), xs(C2, 02)).
Theorem 2.20 concludes for the cases where the chromatic number is at most 4. Lemma 5.30
allows us to conclude for the remaining cases as xs(BCqpi1 O UC,) = xs(UCo1 O UC,)
by symmetry between the two edge signs. O]

One further question would be to compute the chromatic number of the Cartesian
product of an arbitrary number of signed cycles. Note that if H € {K5, BC3,UC3,UC4},
then H 0 H —¢ H. This implies that, for these four graphs, it is only interesting to
look at Cartesian products of the form K¢ 00 BC? O UC$ O UCY where a, b, ¢,d € {0,1}.
Moreover, we can suppose that a = 0 if one of b, ¢ or d is non-zero. Thus the only
interesting case left to solve is determining the value of xs(BC3 O UC3 O UCYy).

To extend this to any length, using the same argument as in Theorem 5.31, would
require that we obtain a lower bound for x;(BCs,41 O UCy1 O UCy,) which is equal to
Xs(BC3 O UCg O UC4)
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9 1 1 2
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(a) xs(Ko O Kp) <2 (b) xs(BCs O K3) < 3
3 /l1 /|2 2 /I3 /l1 /|5
2 \13 |1 2 ([ T2 13
1 2 3 1 2 3 4

(d) xs(BCs O BCs) <3 (e) xs(UC, O BC3) <5 (f) xs(BC; O UC;) <5

\ - T~
-" '~ "

1 2 3 4
(8) xs(UC, O UCy) <4

Figure 5.8: Coloring of Cartesian products of signed cycles. The large squared vertices have
been switched in the Cartesian product.

5.4.1 Signed complete graphs of order 4

We count the number of signed complete graphs on four vertices. This result will be useful
in the proof of Lemma 5.30.

Theorem 5.32. There are three complete signed graphs of order 4 (see Figure 5.9).
They are the signed graph Ki = (K,, @) with only positive edges, the signed graph K; =
(K4, E(Ky)) with only negative edges and the signed graph K*¢d = (K4, {ab}) where a
and b are two vertices of K.

Proof. Let (K4, 0) be a complete signed graph on four vertices. Arbitrarily choose u to be
one of the vertices of (K, o). By switching the neighbors of u if needed, we can suppose
that u is only incident to positive edges. Let x,y, z be the other three vertices of (K4, o).
If the triangle zyz is all-positive, then (K4, o) = K, if the triangle is all-negative, then
by switching u, we get (Ky,0) = K, . If the triangle has only one negative edge, then
(Ky,0) = KM@ed Otherwise, the triangle has two negative edges, by switching the vertex
with the two negative edges, we get (Ky, o) = Kjwed, O
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a b a b
e -
C d c RO :\L d
(a) Kf (b) Kjriwed (c) Ky

Figure 5.9: The three complete signed graphs of order 4

5.4.2 Beginning of the proof of Lemma 5.30

Our goal is to prove Lemma 5.30. For that, take some integers p and ¢ such that p > 1
and g > 3, let (P, m) = BCy,+; O UC,, and suppose that, by absurd, x,(P,7) < 4.

Claim 5.33. We have (P,7) —, Kj¥eed,

Proof. Since xs(P,m) < 4, (P,m) —s (K4, p) for some signature p of Kj.

Every equivalent signature of BCy,:1 has at least one positive edge. Similarly, every
equivalent signature of UC, has at least one negative edge. Thus, in every equivalent
signature of (P, ), there is at least one positive edge and one negative edge. So (H, p)
cannot be (Ky, @) nor (Ky, F(K4)). By Theorem 5.32, since there are only three complete
signed graphs of order 4, (H, p) is Kjed, O

From now on, we suppose that we fixed a homomorphism ¢ from (P, ) to K zed,
We label the vertices of K[**d as in Figure 5.9(b). Therefore, there exists a signed graph
(P, ") = (P, ) for which v — ¢(v) is a coloring.

The proof of Lemma 5.30 is divided into four parts. First, by considering the graph
P as a toroidal grid, we define what we mean for a walk to make a “turn” around the
torus in subsection 5.4.3. Then, by considering the coloring of (P, 7’) corresponding to ¢
and the connected components of (P, ') induced by colors a and b, we link the number
of “crossings” of some boundaries of the components with a vertical (or horizontal) cycle
and the number of ab edges of this cycle in subsection 5.4.4. In subsection 5.4.5, we
connect this number of ‘crossings” to the number of turns and we conclude the proof in
subsection 5.4.6.

5.4.3 Number of turns in P

The goal of this subsection is twofold. First, we want to establish another definition of P
as a toroidal grid ¢.e. the quotient of some infinite grid. Secondly, we want to define the
quantities 7,,(W) and 7, (W) for each closed walk W of T". They represent the number of
turns in each direction of the torus made by the closed walk W.

If G is a graph with vertex set a group H and () is a subgroup of H, then the
quotient graph G/Q over the vertices H/Q is defined by identifying the vertices in the
same equivalence class. Slmﬂarly, if W =sq,...,s, isa walk on GG, then the quotient walk
W' on G/Q is the sequence 3g,...,S

Definition 5.34. We can associate with Z? an infinite graph G* whose vertex set V (G*)
is the set {v,,, : (z,y) € Z*} and whose edge set is the set of pairs {v, ,v, v}, where either
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Figure 5.10: A subgraph of the graph G. Vertices with the same label are identified in P.
Here g =4 and 2p+ 1 = 3.

r=21o"and l[y—9y| =1, or y =y and |x — 2/| = 1. We can then redefine the graph P
as the quotient GOO/Q where ) = Zgp11 X Z,. In other words take the graph G*° where
we identify each vertex v,, with v, ,, when z — 2’ is a multiple of 2p + 1 and y — ¢/
is a multiple of ¢q. The graph G* can be seen as an unfolding of the toroidal grid P.
Figure 5.10 represents a subgraph of G*° when ¢ = 4 and 2p + 1 = 3. An edge of G* of
the form vy Vutiw (T€SP. Vywlywii) for i € {—1,1}, is an horizontal edge (resp. vertical
edge) of G*®. An edge e of P is an horizontal edge (resp. vertical edge) if it is the quotient
of horizontal (resp. vertical) edges of G*.

Definition 5.35. Let Wgw be a walk in G* and Wp a walk in P. We say that Wg is a
representation of Wp if and only if WG“’/Q = Wp. We also say that Wge represents Wp.

By definition, all representations of Wp have the same number of vertices as Wp. Let
us make the following observation on the representations of a walk Wp.

Observation 5.36. If Wi« = (5] )o<i<n and We = (83)o<i<n are two walks (of the same
length) in G representing Wp, then there exist v, B € Z such that for alli € {0,...,n},

if ST = VUyy, then $7 = Vpya@pi1)yipq- In particular, if they have the same first vertices,
then Wieo = Wi

We are now ready to define what is a turn of a walk around the torus.

Definition 5.37. Let Wge be a (v,,,v,,)-walk in G*. We define the number of hori-
zontal turns 7, and the number of vertical turns 7, of Wgee by:

z—x
2p+1

t_
=[]

7o (W) = q

For a closed walk Wp in P, let 7,(Wp) = 7,(Wgee) (resp. 7,(Wp) = 7,(Wge)) be the
number of horizontal (resp. vertical) turns of W, where W is an arbitrary representation
of Wp.

Claim 5.38. For every closed walk Wp, the two quantities T,(Wp) and 1,(Wp) are inte-
gers and do not depend on the choice of the representation Wge of Wp.
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Proof. First if Wp is a closed walk in P and Wge represents Wp, then v, = v,; thus
z=x+n(2p+1) and t = y + mq for some integers n,m € Z. Hence 7,(Wg=) and
Ty(Wgee ) are integers.

Now take two representations Wil and W« of Wp. By Observation 5.36, if Wl is a
(Vay 1 Vzy 1y )-Walk and Wis s a (Uzy 4y, Usytp )-Walk , then 2o = z1+a(2p+1), yo = y1+f4q,
2o = z1+a(2p+1) and ty = t1+B¢. Thus 7,(Wie) = 7.(Wis) and 7,(Wis) = 7,(Wis).
Hence this quantity is well defined for Wp. m

The main result of this subsection is the following proposition.

Proposition 5.39. If Wp is a closed walk in P of even length, then:

qry(Wp) + 7.(Wp) =0 (mod 2).

Proof. Let Wgeo be a (vg,,v,)-walk which is a representation of Wp in G*°. For each
horizontal (resp. vertical) edge e of the form vy ,Uytiw (X€SP. VywVuwii) for i € {—1,1},
let £(e) = i. Let E,(Wgw) be the set of horizontal edges of Wge and E,(Wg) the set
of vertical edges of Wge. We then have:

Yo le)=z—z=2p+1)1(Wp) =7(Wp) (mod 2),

e€Ep(Wgoo)
and
Yoo le) = 1 =|Ey(Wee)| (mod 2).
e€ B (Wgeo) e€Ep(Waeo)
Similarly,

|Ey(Wgee)| =t —y = qr,(Wp) (mod 2).
As Wp and Wge are of even length, we get:

0= |EWg)| = qry(Wp) + 7(Wp) (mod 2).

5.4.4 Regions induced by a coloring of (P, )

The aim of this section is to define a suitable set of walks in order to apply Proposition 5.39.
For this, we will introduce several topological notions.

Definition 5.40. Let Pyp = Plp ' a,b}] and Pop = P[p~'{c,d}], the subgraphs of P
induced by the vertices colored a and b and by the vertices colored ¢ and d, respectively.
A region X of P is a connected component of P4g or Pop. We say that X is of type ab
in the first case and of type cd in the latter. The boundary 0X of a region X is the subset
of vertices of X that are adjacent to a vertex not in X:

OX={reX: N(x) ¢ X}.

The configuration of Figure 5.11 is called the flat border configuration. That is to
say, for a region X, this configuration consists in two vertices x,y € X and two vertices
w,z ¢ X such that zy, xz, yw and wz belong to E(P).

Claim 5.41. The flat border configuration does not appear in the coloring of (P, ').
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Figure 5.13: A region X delimited by the bold line and the only border B of X is represented
by the square vertices. The dotted line represents the only walk in Wpg.

Proof. Suppose to the contrary that the configuration appears. Then, the cycle zywz of
length 4 is unbalanced. Thus, before switching, xywz was already an unbalanced cycle
of length 4 in (P, 7) since balance is preserved by switching. By definition of (P, 7) as a
Cartesian product of cycles, the signs of zy and wz are the same. This is also the case
for zo and wy. Thus this cycle is balanced (it has an even number of negative edges), a
contradiction. O]

Definition 5.42. Two vertices x and y on the boundary of the region X are border
neighbors if x and y have a common neighbor in X and a common neighbor in P — X
(see Figure 5.12). We note BN(x) the set of border neighbors of x.

A border B of a region X is a subset of 0X corresponding to an equivalence class for
the transitive closure of the border neighborhood relation (see Figure 5.13). That is to
say, two vertices x and y of X are in the same border B of X if and only if there exists
a sequence ug, U1, - . . , up of vertices of B such that ug = x, up, = y and for all 0 < i < k,
u; and wu; ;1 are border neighbors.
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(a) Case 1: |BN(z)| = 1. (b) Case 2: |[BN(x)| = 3. (c) Case: |BN(z)| = 0.

Figure 5.14: The two cases up to symmetry where |[BN(x)| has an odd number of vertices
and the case where BN (x) = @. The square vertices represent vertices not in the region of z,
the circular ones are in the region.

Claim 5.43. All vertices of a border B of a region X have the same color called the color
of B.

Proof. By definition of B it suffices to show that any two border neighbors x and y have
the same color. Let z be their common neighbor in X. Without loss of generality, suppose
X is of type ab and z has color b. Since the coloring is proper, x and y have color a. [

Claim 5.44. A vertex x of a border B has an even number of border neighbors. Moreover

if BN(x) = &, then X = {x}.

Proof. 1f |[BN(x)| is odd, then we are in one of the first two cases of Figure 5.14. We will
use the notation of the figure.

If |BN(z)| = 1, then up to rotation and symmetry, we can suppose that the vertex 1
is the border neighbor of x and that j is their common neighbor in X. Thus i ¢ X. Now
¢ ¢ X, as otherwise the vertices i, ¢, 4 and x would be in the flat border configuration,
which cannot be by Claim 5.41. The same argument implies £ € X by considering x, k,
j and 2. Thus z, ¢, k and 3 are in the flat border configuration. A contradiction.

If |BN(z)| = 3, then up to rotation and symmetry, we can suppose that the vertex 4
is not a border neighbor of . As 2 is a border neighbor of x, one of k and 7 is in X and
the other is not. Without loss of generality, suppose k ¢ X and j € X. As 3 is a border
neighbor of x, we have £ € X. As 1 is a border neighbor of x, we have i ¢ X. Thus 4, i,
¢ and x are in the flat border configuration, a contradiction.

Now if BN(z) = &, we can suppose that i ¢ X as z is in 0X. Now to avoid the flat
border configuration, 7, k and ¢ must not be in X. This proves that X = {x}. O

We can now define the set of walks associated with the border.

Definition 5.45. We associate with a border B of X, a set of closed walks Wp in (P, ')
included in X (see Figure 5.13). This set of walks delimits the border of X. We use v; ;
to refer to the vertex v;; of P for concision.

We will define the walks piece by piece. In the particular case that X has only one
vertex, then Wp = @. Now we can suppose that for each z € B, we have BN (x) # @ by
Claim 5.44.

First pick an arbitrary vertex x of B. The vertex x is a border vertex thus there exists
at least one vertex w adjacent to x which is not in X. In case there are more than one
such vertex, we choose one of them arbitrarily. Up to rotation of the coordinate system,
we can suppose = v;; and w = v; j11. We will choose y € BN(z) according to the
order in Figure 5.15(a). Meaning the first vertex among v; 1 j4+1, Vit1,—1 and v;_ j_1 that
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vertices to choose.

Figure 5.15: The first step in constructing the walk. The square vertices represent vertices not
in the region of z, the circular ones are in the region while the triangular ones are undecided.
The dashed edges are the edges of G*° while the bold edges are the edges of the walk.
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(a) The order of the (b) Case 1. (c) Case 2. (d) Case 3.
vertices to choose.

Figure 5.16: The next step in constructing the walk. We use the same notation as in Fig-
ure 5.15. We constructed s;—o = u, s;—1 = v, 5; = x. We then construct s;y1 = z and s;42 = ¥.

belongs to BN (z). The three cases are depicted in Figure 5.15(b), 5.15(c) and 5.15(d).
Note that as BN(z) is non-empty, BN (z) has at least two vertices by Claim 5.44, thus
we are in at least one of the three cases above.

Through the constructlon the “turn left” property, which implies that the vectors
321321+1 and 521+1821+2 form a direct base, will be conserved. That is to say for every i,
the vectors 535211 and 53415245, which belong to {(1,0), (—1,0),(0,1),(0,—1)}, are
orthogonal and such that the angle between the two vectors is 5 and not —7. Informally,
if someone travels from sg; to s9;11 then this person would have to turn left to go to sg;io.

Now that we have z and y we can start to construct our walk W, by taking sy = =z,
s1 = z and sy = y where z is the common neighbor of x and y which is in X. Note that
the position of z is forced since otherwise we have a flat border configuration.

Suppose now that we have constructed the walk up to sq, ..., S¢_2, S¢_1, Sy with £ even.
If sp_o = sg, Ss—1 = s1 and sy = s9, then we stop and close this walk by removing
the last two vertices. Otherwise we will construct s, ; and sp.o. Suppose that s; =
v; ;- Up to rotation of the coordinate system, we can suppose that sy_o = v;_1 ;41 and
S¢-1 = Vj—1,. The vertex s, could in principle be v; ;1 but this would contradict
the “turn left” property. We construct s,o as the first vertex among vi41 41, Vit1,j-1
and v;_1 j_; that belong to BN (x) (see Figure 5.16(a)). The three cases are depicted in
Figure 5.16(b), 5.16(c) and 5.16(d). As before, since BN(z) is non-empty and of even
cardinality, we are in one of those three cases. As in the first step, the vertex s,y; is the
common neighbor of s, and sy, 5 in X.

If we stop and there are pairs of border neighbors that are not in the same walk, we
can start the process again with this pair of vertices as the first and third vertices of the
walk. See Figure 5.17 for an example where we need to construct another walk. To keep
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Figure 5.17: A closed walk W in W, where the vertex = of the walk does not have all of its
border neighbors in W.

the assumption of the construction true, we must carefully choose the first vertex of the
walk among these two in such a way that the “turn left” property is conserved. With
the notation of Figure 5.17, the vertices x and y4 are not in the same walk. To restart
our process, we have two choices: sy = x, s = 21 and sy = y4 or So = Y4, S1 = 21 and
sy = x. In the first case, the vectors 5951 and 5153, which are equal to (—1,0) and (0, 1)
respectively, form an indirect base of the plane. Hence we must choose sqg = y4, 51 = 21
and sy = x, which ensures that the “turn left” property holds.

Claim 5.46. The construction of Definition 5.45 has the following properties:

1. the construction terminates and all walks are closed,
2. the walks are of even length,

3. all vertices with even indices have the same color,

4

. all vertices with odd indices have the same color which is different from the color of
the vertices with even indices,

a

all vertices of the border B are vertices of some walk with even indez,

6. the number of occurrences of a vertex x of the border B in all the walks of Wpg is
given by |BN(x)| /2.

Proof. Suppose we do not terminate. As the number of possible edges is finite, the se-
quence we construct is ultimately periodic. Since sq, s1, So do not appear consecutively in
this order in the rest of the sequence, as we did not stop, the sequence is not periodic. Thus
there exists a first moment at which there exist ¢ and j such that s; o, s; 1, s;, Siv1, Sivo
and s;_2,5;5_1, 5,541,542 are subsequences of the sequence we constructed, verifying
S;—2 7é Sj—2, Si—1 7é Si—1, §i = Sj, Si+1 = Sj+1 and Si+2 = Sj42- Note that kIlOWil’lg Si—2,
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s; and s;;o imposes the choices of s;_; and s;,1 by the “turn left” property, this is why
these two indices exist. Without loss of generality, up to rotating the grid, we can as-
sume that s; = v,, and s;12 = vz41441. By reversing the construction, we can observe
that s;_o is the first border neighbor of s; among v,_1 411, Vz—1y-1 and vg41,-1 in this
order. In this case, sj12 and s;_y are uniquely determined by construction and are equal,
a contradiction. Now the process terminates, thus the walks are closed by definition of
the terminating condition. This proves 1.

Since the walks are included in X which is bipartite, they have even length which
proves 2. In a similar way, all vertices with even indices are on the border B of X thus
they have the same color by Claim 5.43, thus 3 is true. Thus all vertices with odd indices
have the other color of X which proves 4.

We already saw that the vertices of even indices are on B. Suppose that x is not part
of a walk. We removed the case BN (z) = @ by not considering those B’s thus there
exists y € BN (z). Then z and y are not in the same walk, thus we create a new one with
these two vertices, a contradiction. This proves 5.

Similarly, if the number of occurrences is strictly smaller than |BN(z)| /2, we would
have restarted the process in x. Now suppose that this number is strictly greater than
|BN(x)| /2. Then there exists a pair of border neighbors = and y that belong to two walks
(and there is a vertex z in between them in those two walks) by the pigeon hole principle.
Since the construction of the walks only use the position of three consecutive vertices
to decide the next two ones, the two walks are identical after passing through xzy. By
construction, we can choose the first vertices of the walks arbitrarily among the vertices of
even indices by shifting the indices, thus we can consider that the two walks start by xzy.
Thus the two walks are identical which cannot be the case as we would not have restarted
to create the second walk. O]

We define the set of closed walks W, as the union of all closed walks Wg where B is
a border with color a.

Take C to be a vertical or horizontal cycle of P. For the sake of simplicity, we will
take C' to be the vertical cycle induced by the vertices {vg,, : vy € Z} where { = 2p +1
and o € {0,...,0 — 1} (i.e. C'is a UC,-layer). All the following definitions can be stated
in the other case by symmetry.

Let W be a closed walk in P (resp. a representation of a closed walk of P in G*).
We define a positive crossing of C' by W in P (resp. G*) as a sub-walk to, t1, ...,k 1,k
of W (possibly going through the end of W and going back at the beginning) such that
to = Upg_1y (r€SP. to = Vyy—14ney for n € Z) for some y € Z, the vertex t; belongs to C
(vesp. is of the form v, e, for some y; € Z) for every i € {1,...,k — 1} and tg = Vyor1 47
(resp. tx = Uy t14neyr) for some 3y’ € Z. The set of positive crossings Crossh(W, C') (resp.
Crossgs (W, C)) is the set of all-positive crossings of C' by W in P (resp. G*).

We can similarly define a negative crossing of C by W in P (resp. G*) by a sub-
walk to,t1,...,tk_1,t of W (possibly going through the end of W and going back at
the beginning) such that t) = Uyy31, (resp. to = Vyyt14ney for n € Z) for some y € Z,
the vertex ¢; belongs to C' (resp. is of the form VUzo+ney, fOr some y. € 7) for every
ie{l,...,k—1} and t; = Uyy_1,7 (vesp. ty = Uyy—14ney) for some y” € Z. The set of
negative crossings Crossp(W, C) (resp. Crossg« (W, C)) is the set of all-negative crossings
of C by Win P (resp. G™).
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Claim 5.47. If Wg= represents Wp, then
‘CTOSSJIS(WP,C’)‘ = }Crossgw (WGoo,C’)‘ and ’C’ross;(Wp, C)’ = ‘Crosséw(WGm, C)’

Proof. We will only consider positive crossings, the proof for negative crossings is similar.
By taking the quotient of a sub-walk of W, we see that each crossing in G* is also
present in P. Thus ‘CrossJ]S(Wp, C’)‘ > ‘C’rosszgoo (Wgeo, C)‘ Now take a crossing of C
by Wp in P, it is a sub-walk of Wp. Thus if we take the corresponding sub-walk in W,
we get a crossing in G*°. Thus the two sets are equal. O

One of our main results is the following proposition.
Proposition 5.48.

> (‘C’rosslﬁ(W, C)‘ + ‘Cmss;(W’, C’)D = {uv € C: wv has color ac or ad} (mod 2).
WeW,

Proof. Take a vertex x of C' in (P,7’) colored a. If the region of x is {x}, then z has
two incident edges colored ac or ad and x is not contained in any crossing as it does not
belong to a walk in W, by definition. Thus we can ignore them.

If x has at least one incident edge colored ac or ad, then it belongs to some border
colored a.

Now take a vertex z of color a in some walk W € W,. Depending on the size of BN(z)
there are one or two occurrences of z in W, by Claim 5.46. Up to rotation we can suppose
that we have v;_; j11,v;—1;,v;; = = as a sub-walk of W. Depending on the orientation
of C' (vertical or horizontal), for each sub-case, we must consider the two orientations.
For one orientation there are four sub-cases: |[BN(z)| = 4, |[BN(z)| = 2 and v;41,j41 18
the border neighbor of x different from v;_1 j11, |BN(z)| = 2 and v;41,;_1 is the border
neighbor of z different from v;_; j+1 or |BN(x)| = 2 and v;_1 j_1 is the border neighbor of
x different from v;_; j1;. For each case, the local structure of the walk is determined by
our construction process and the “turn left” property. All the sub-cases are depicted in
Figure 5.18. In each case the number of crossings for the sub-walks considered is equal,
modulo 2, to the number of edges colored ab of x in C.

Now note that no vertices of color b in W € W, has both neighbors in the same layer.
Thus a crossing of C' by W always contains a vertex colored a of C'. Thus all crossings
are counted in the above case analysis.

Since for each edge colored ac or ad, the vertex colored a has a neighbor not in its
region, it is on some border and thus we counted those edges in the case analysis or when
we treated the case of the region of size one.

Thus the number of edges colored ac or ad in C' is equal to the sum of the number of
crossings of C' by walks in W, modulo 2. O

Claim 5.49. The number of edges colored ac or ad in C' is equal to the number of edges
of C' colored ab modulo 2.

Proof. Let us call E,. (resp. E,q, resp. Eqyp) the set of edges colored ac (resp. ad, resp.
ab). Let N'(x) be the set of edges of P incident with a vertex z. Since a vertex of color
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(a) Case l.a: 2 cross- (b) Case 2.a: 1 cross- (c) Case 3.a: 1 cross- (d) Case 4.a: 0 cross-

ings and 2 edges ac or ing and 1 edge ac or ing and 1 edge ac or ing and 2 edges ac or
ad.

(e) Case 1.b: 0 crossing and 0 (f) Case 2.b: 0 crossing and 0  (g) Case 3.b: 1 crossing and 1
edge ac or ad. edge ac or ad. edge ac or ad.

(h) Case 4.b: 1 crossing and 1
edge ac or ad.

Figure 5.18: All cases for the central vertex to belong to a closed walk W € W,. We use the
same notation as in Figure 5.15. The dotted lines in sub-figures 5.18(a) and 5.18(e) are a second
passage in the central vertex by a walk in W, (possibly the same as the bold line). The edges
ac or ad are the edges between a circular vertex and a square vertex. For each case we count
the number of crossings of the drawn walks and the number of edges of color ac or ad incident
to the central vertex and belonging to the cycle C.
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a has two incident edges in C, we have:

(Bae UE) NE(C) = ). [(BaeUE)NN'(z)NE(C)|  (mod 2)

z€C of color a

> dege(z) — |Ew NN'(z) N E(C)|  (mod 2)

zeC of color a

Y 2—|ExNN(z)NE(C)] (mod 2)

zeC of color a

> |EaxNN'(z)NE(C)] (mod 2)

z€C of color a

= |Eyp N E(C)] (mod 2).

5.4.5 Crossings and turns

In this section, we will suppose that C is the vertical cycle of (P, 7’) equal to {v5, , : v € Z}
for ¢ = 2p+1 and zy € {0,...,¢ —1}. We identify the cycle C' on (P,7’) and the set
{vpy 1 Upy € C} of vertices of G*°. All what is defined below also works for a horizontal
cycle with ¢ = q. Here we want to connect the number of crossings of the previous section
with the number of turns of Section 5.4.3.

Definition 5.50. Let v, , be a vertex of G*. We define the function g¢ as follows:

e

For a (sg, $,)-walk Wge in G, we define fo as follows:

JeWeae) = ge(sn) = go(so)-

Claim 5.51. For a (v, v,4)-walk Wee of G representing a closed walk Wp of P such
that v, ¢ C, we have:

fe(Wes) = ‘Crossgo@ (We, C’)‘ — ’C'Tosséoo(WGoo, C’)‘ (mod 2).

.....

of C' by Wge are sub-walks that do not go through the end of Wge and go back at the
beginning. Take a crossing tg, ..., tx. By definition of a crossing, the x coordinate of t; is
of the form xy 4 € + nl for some n € Z and € € {—1,1} and the = coordinate of tj is of
the form xy — € + nl. Hence, we have go(tx) — go(to) = 1 if the crossing is positive and
go(ty) — go(to) = —1 if it is negative.

Now we just have to show that the other sub-walks of Wge do not contribute to
fe(Wgs). We can write Wgee = Wy, WS Wy, ..., WES® Wy, for some integer k where
each W% is a crossing and the other sub-walks are not. Note that:

feWee) = > feW)+ > fe(W™).
k} '

If for alli € {0,...,k}, fo(W;) =0, then fe(We=) = 3 fe(W ). As each

positive crossing counts for 1 in the sum and each negative crossing counts for —1 in
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the sum, fo(Wg=) = ’Cmssgm (Weeo, C’)‘ - ‘C’rossgm(Wgw, C)‘ which implies our result
when taking these numbers modulo 2.

Since the last vertices of the W;’s are the same as the first vertices of the crossings,
we know that they do not belong to C'. The same is true for the first vertices of the W;’s.
Then, for a (v, 4, v, ¢)-walk, we have x,z € {zg+nl +1,..., 29+ nl + ¢ — 1} for some n.
But in all cases the value of g¢ is n. Indeed, if t = 29+ nl + X with 1 < A </ —1 then

9o (Ve y) = V’Z"OJ = {"78 + %J =n+0. Thus fo(W;) = 0. This concludes the proof. [

Claim 5.52. For a closed walk Wp in P and Wge a representation of Wp on G*:

fe(Weee) = 17,(Wp)  (mod 2).

Proof. Suppose that Wge is a (v, v,,)-walk. Note that z = x + nf for some n € Z. We
have:

Z—XT

.(Wp) = / (mod 2)
=n (mod 2),
while:
o= |52 [£52]
ERET R
=n (mod 2).

5.4.6 End of the proof

We can now prove Lemma 5.30.

Proof. Note that by shifting the indices, we can suppose that the first vertex of each walk
Wp € W, does not belong to C. By using Claim 5.49, Proposition 5.48, Claim 5.47,
Claim 5.51 and Claim 5.52, in this order, we get:

|Eq NEC) = )] ‘C’TOSSIJS(WP, C’)’ + ’Cross;(Wp, C’)’ (mod 2)
WpeW,

> ‘Crossgw(WGoo, C)’ — ‘Cmssaw (Wges, C)‘ (mod 2)

WpeW,
Wegoo represents Wp and
its first vertex ¢ C'

Z fc(W(;oo) (mod 2)

WpeW,
Wegoo represents Wp and
its first vertex ¢ C

WZW 7.(Wp) (mod 2).
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By the choice of C' in the previous subsection, C' = UC, and thus |E, NC| = 1
(mod 2). Therefore:

1= WZW 7.(Wp) (mod 2).

By taking C' = BCyp41, a horizontal cycle, we obtain:

0=|EuxNEQC) = WZ;V 7,(W) (mod 2).

Recall that Proposition 5.39 states that:
0=qr,(W)+71,(W) (mod 2).

Thus:
0=¢x0+1 (mod2).

This is a contradiction. O

This concludes the proof of Lemma 5.30.

5.5 Perspectives

We studied the Cartesian product of signed graphs both on an algebraic point of view,
and in relation with the chromatic number of signed graphs.

On top of the already mentioned open problems, it would be interesting to study the
behavior of the Cartesian product with respect to other signed graphs parameters, the
sign-preserving chromatic number being one of the more interesting of these.

Other interesting questions relate to other graph products. The tensor product of
signed graphs x was defined in [85] under the names of “strong product” and “categorical
product”. For two signed graphs (G, o) and (H, ), the tensor product of (G, o) and (H, ),
denoted (G, o) x (H, ), is the signed graph with vertex set V(G) x V(H); (G, o) x (H, )
contains the two edges (u, w)(v, z) and (v, w)(u, z) with sign o(uv)m(wz), for every edges
w € E(G) and wz € E(H).

One can also define the strong product of signed graphs as a generalization of the
strong product of graphs [169]. For two signed graphs (G,o) and (H, ), the strong
product of (G, o) and (H, ), denoted (G, o) X (H,7), is the signed graph with vertex set
V(G)x V(H), the set of positive edges (resp. negative edges) of (G, o)X (H, ) is obtained
from the union of the set of positive edges (resp. negative edges) of (G,0) O (H,7) and
the set of positive edges (resp. negative edges) of (G,0) x (H, ).

For these products, the following are equivalent:

and (H, ) are balanced,

)
) O (H, ) is balanced,
)
)

, O

Q

Q

Y

X

Q

(G

- (G,
(G,0) x (H, ) is balanced, and
(G,0) X (H, ) is balanced.

Y
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In particular these products are all compatible with switching. We can therefore ask
questions similar to the ones of this chapter for the tensor product and the strong product.
Are there unique prime decompositions? Can we recognize them? What can we say about
the chromatic number of a product?

Another product of signed graphs, called the lexicographical product of signed graphs,
has been defined in [91] but unfortunately lacks these nice properties [31]. Finding a
signature which would work well with switching for this product seems impossible. Under
these conditions, this product behave more as a product of 2-edge-colored graphs than
signed graphs.
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Chapter 6

Introduction

In this second part, we study diverse notions of edge-coloring of undirected graphs. Con-
trary to signed graphs, here the colors of the edges are not part of the structure of the
graph. The goal is as follows: we are given an undirected graph and we want to assign
colors to its edges in such a way that some property holds.

The most well-known edge-coloring problem is the one requiring to find a proper edge-
coloring with the least number of colors (see Section 1.2.4). In this setting, the constraints
on the colors of the edges are completely characterized by the graph structure. It is easy
to generate many other notions of edge-coloring by choosing a general rule which decides
which edges can receive the same color and which cannot. This type of edge-coloring can
be reduced to (vertex) coloring a graph which has E(G) for vertex set. On that account,
proper edge-coloring a graph G is equivalent to coloring the line graph L(G) of G. In
Section 6.1, we present a particular family of such edge-colorings where the constraints
on the edges are determined by the distance separating them.

Another way to construct edge-coloring notions is to put constraints on subgraphs
(possibly induced) composed of edges of the same color. For example, the arboricity of
a graph G is the minimum number of colors required to edge-color G (not necessarily
properly) in such a way that each subgraph composed of edges of the same color is a
forest (see [155]).

Chapter 7 and Chapter 8 explore edge-coloring notions which are related to distance
edge-coloring. In particular, both edge-coloring notions can be expressed as vertex color-
ing problems and can be reformulated as constraints on the subgraphs composed of edges
of the same color.

Another family of edge-coloring problems is obtained by creating a vertex coloring
from the edge-coloring of the graph. Here, given a graph G, the goal is to color the edges,
with the fewest number of colors possible, in such a way that the vertex coloring obtained
from the edge-coloring is proper. There are multiple ways to generate the vertex coloring
from the edge-coloring, moreover we can also add constraints on the edge-coloring itself
depending on the problem. We present some of these edge-coloring notions in Section 6.2.

Chapter 9 and Chapter 10 both explore such edge-coloring notions.

6.1 Distance edge-coloring

In 1983, Fouquet and Jolivet introduced the notion of strong edge-coloring. This coloring
is a particular case of distance edge-coloring.
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Figure 6.1: A strong 5-edge-coloring of the Petersen graph.

Definition 6.1 (¢-distance edge-coloring). A k-edge-coloring ¢ of a graph G is a t-distance
k-edge-coloring if and only if for every two edges e and €’ at distance at most ¢ in G,
c(e) # c(€'). The t-distance chromatic index of G, denoted x;(G), is the smallest k for
which G admits a t-distance k-edge-coloring.

A 2-distance edge-coloring is also called a strong edge-coloring (see [78]), and the
2-distance chromatic index of G is also called the strong chromatic index of G.

See Figure 6.1 for an example of a strong edge-coloring of the Petersen graph.

As mentioned before, t-distance edge-coloring of a graph G can be reduced to vertex
coloring some graph which can be computed from G. This graph is a power graph of
the line graph of G, i.e. the graph obtained from L(G) by adding an edge between any
two vertices which are at distance at most ¢. It is however often impractical to study the
corresponding vertex coloring problem to obtain precise results on the t-distance edge-
coloring. For more results on distance edge-coloring, we refer the reader to the PhD
Thesis [58] and the articles [117, 122, 123, 181].

Strong edge-coloring has also been extensively studied, see for example [49, 64, 104,
106] or the PhD Thesis [100]. One particularly interesting result for us is the following
upper bound for subcubic graphs.

Theorem 6.2 (Andersen [5] and Hordk, Qing, and Trotter [107]). For every subcubic
graph G, we have x4(G) < 10.

This bound is sharp: a K33 with one subdivided edge cannot be strong edge-colored
with 9 colors (see figure 6.2).

6.2 Distinguishing vertices with edge-colors

An interesting family of edge-coloring problems is the concept of distinguishing labellings,
where the aim, given an undirected graph, is to edge-color the graph so that adjacent
vertices get distinguished by some function f computed from the edge-colors. Note that,
in this context, the edge-colors are often called labels and we talk about k-labellings instead
of k-edge-colorings. As reported in a survey [81] by Gallian on the topic, there actually
exist dozens and dozens different types of distinguishing labelling notions, which all have
their own particular behaviors and subtleties.
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Figure 6.2: A strong 10-edge-coloring of K33 with one subdivided edge.

In this thesis, we mainly study two different notions of distinguishing labellings. For
both, the function f, which determines the color of the vertex, associates with a vertex
u a color obtained from the labels (i.e. edge-colors) of the edges incident with u. To
simplify notation, we often say that a label ¢ is incident with a vertex v if there is an edge
e labelled ¢ incident with v.

The weakest labelling notion which satisfies this scheme is the one for which the
multi-set of labels incident with a vertex w is the vertex color of u. For such a labelling,
two adjacent vertices cannot receive the same multi-sets of labels. One can see that
a graph containing an isolated edge cannot be labelled with this definition: the two
endpoints of the edge would receive the same vertex color and would not be distinguished.
Graphs without connected components isomorphic to K, are called nice graphs. In [186],
Vuckovié¢ showed that every nice graph G admits a 3-labelling (i.e. 3-edge-coloring) for
which adjacent vertices have different multi-sets of incident labels (see Chapter 10 for
more details).

Stronger variants can be obtained in two ways. The first way to obtain more restrictive
edge-coloring notions is to add constraints to the edge-coloring: an adjacent vertex dis-
tinguishing coloring of a graph is a proper edge-coloring of the graph which distinguishes
adjacent vertices through their sets of incident edge-colors. Note that the literature on
adjacent vertex distinguishing coloring does not use the term “labelling” for edge-colors.
We study this variant in Chapter 9.

An other way to obtain other distinguishing labellings is to use more restrictive func-
tions to compute the vertex color. For example, if the labels are integers, one can sum
or multiply them to obtain the vertex color. The famous 1-2-3-Conjecture [125] states
that every nice graph G admits a 3-labelling for which the vertex coloring, obtained by
summing the labels on edges incident with the colored vertex, is proper. We prove the
product version of this conjecture (where we multiply labels instead of summing them) in
Chapter 10.
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Chapter 7

Between proper and strong
edge-colorings of subcubic graphs

Due to a remarkable result of Vizing [184] (see Theorem 1.49), we know that the minimum
number of colors needed to color the edges of a graph G, the chromatic index }'(G) of G,
is either A(G) or A(G)+1. Recall that the graphs with the former value of the chromatic
index are commonly said to be class I, and the other ones class II.

In this chapter, we are interested in subcubic multi-graphs. Through this chapter, we
use the term graph to designate multi-graphs (possibly with loops). We need at most 4
colors to color such graphs, the complete graph on four vertices with one edge subdivided
being the smallest representative of a class II subcubic graph, and the Petersen graph
being the smallest 2-connected class I cubic graph. For subcubic graphs of class II, it
has been shown that they can be colored in such a way that one of the colors (usually
denoted 0) is used relatively rarely (cf. [3, 79]). This motivates the question whether the
edges of color 0 can be pairwise distant. Payan [161] and independently Fouquet and
Vanherpe [79] proved that every subcubic graph with chromatic index 4 admits a proper
edge-coloring such that the edges of one color are at distance at least 3 from each other,
i.e. , the end-vertices of those edges induce a matching in the graph.

Gastineau and Togni [84] investigated a generalization of edge-colorings taking into
account the distance between edges of the same color.

Definition 7.1 (S-packing). For a given non-decreasing sequence of integers S = (sy, ..., Sg),
an S-packing edge-coloring of a graph G is a decomposition of E(G) into disjoint sets
Xq,..., X, where the edges in the set X; are pairwise at distance at least s; + 1.

A set X; is called an s;-packing; a 1-packing is simply a matching, and a 2-packing is
an induced matching.

To simplify the notation, we denote repetitions of same elements in .S using exponents,
e.g., (1,2,2,2) can be written as (1,23).

The notion of an S-packing edge-coloring is motivated by its vertex counterpart, in-
troduced by Goddard and Xu [87] as a natural generalization of the packing chromatic
number [86]. In [84], the authors consider S-packing edge-coloring of subcubic graphs
with prescribed number of 1’s in the sequence. Vizing’s result translated to S-packing
edge-coloring gives that every subcubic graph admits a (1,1, 1, 1)-packing edge-coloring,
while class I subcubic graphs are (1,1, 1)-packing edge-colorable. Moreover, by Payan’s,
Fouquet’s and Vanherpe’s result, every subcubic graph admits a (1, 1,1, 2)-packing edge-
coloring.
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(a) The Petersen graph. (b) The Tietze graph.

Figure 7.1: The Petersen graph (a) and the Tietze graph (b) admit a (1,1, 1, 2)-packing edge-
coloring, and 2 cannot be increased to 3.

Figure 7.2: The Wagner graph is the smallest cubic graph which needs 10 colors for a strong
edge-coloring.

Theorem 7.2 (Payan [161], and Fouquet and Vanherpe [79]). Every subcubic graph ad-
mits a (1,1, 1,2)-packing edge-coloring.

Here 2 cannot be changed to 3, due to the Petersen graph and the Tietze graph
(depicted in Figure 7.1). They both have chromatic index 4, and we need at least two
edges of each color. Since every two edges are at distance at most 3, we have the tightness.
However, Gastineau and Togni do believe that the following conjecture is true.

Conjecture 7.3 (Gastineau and Togni [84]). Every cubic graph different from the Pe-
tersen graph and the Tietze graph is (1,1, 1, 3)-packing edge-colorable.

Clearly, reducing the number of 1’s in sequences increases the total number of needed
colors, i.e. , the length of the sequence. In fact, if there is no 1 in a sequence, then the
coloring is a strong edge-coloring. Theorem 6.2, which states that every subcubic graph
admits a strong edge-coloring with at most 10 colors, can be reformulated using packing
edge-coloring: every subcubic graph admits a (2!9)-packing edge-coloring. Another ex-
ample of tightness of this result is given by the Wagner graph in Figure 7.2 which needs
10 colors for a strong edge-coloring. Let us remark here that the Wagner graph is class
[, meaning that smallest chromatic index does not necessarily mean less number of colors
for a strong edge-coloring of a graph.

Proper and strong edge-coloring of subcubic graphs have been studied extensively
already in the previous decades. More recently, Gastineau and Togni [84] started filling
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(a) (b)

Figure 7.3: The smallest subcubic graph which does not admit a (1, 1, 23)-packing edge-coloring
(Conjecture 7.4.1) nor a (1, 25)-packing edge-coloring (Conjecture 7.4.2), and the smallest class I
subcubic graph which does not admit a (1, 1,22)-packing edge-coloring (Conjecture 7.4.3) nor a
(1,25)-packing edge-coloring (Conjecture 7.4.4).

the gap by considering (1%, 2%)-packing edge-colorings for & € {1,2}. They proved that
every cubic graph with a 2-factor admits a (1, 1, 2%)-packing edge-coloring, and the number
of required 2-packings reduces by one if the graph is class I. For the case with one 1-
packing, they remark that using the bound for the strong edge-coloring one obtains that
every subcubic graph admits a (1,2%)-packing edge-coloring. These bounds are clearly
not tight, and they propose a conjecture (the items 1 and 3 in Conjecture 7.4), which
motivated the research presented in this chapter. The case 2 has been formulated as a
question, and we added the case 4, due to affirmative results of computer tests on subcubic
graphs of small orders.

Conjecture 7.4. Fvery subcubic graph G admits:
1. a (1,1,2%Y)-packing edge-coloring [84],
2. a (1,2")-packing edge-coloring [84],
3. a (1,1,2%)-packing edge-coloring if G is class I [84],
4. a (1,25 -packing edge-coloring if G is class I.

The conjectured bounds, if true, are tight. For Conjecture 7.4.1 and Conjecture 7.4.2,
a subcubic graph that achieves the upper bound is the complete bipartite graph K3 3 with
one subdivided edge (the left graph in Figure 7.3). Recall that this graph is also class
IT and needs 10 colors for a strong edge-coloring, hence achieving the upper bounds for
proper edge-coloring, strong edge-coloring, (1,1,2%)-packing edge-coloring, and (1,27)-
packing edge-coloring. Indeed, each 1-packing contains at most three edges and each
2-packing contains at most one edge. An analogous argument holds for Conjecture 7.4.3
and Conjecture 7.4.4 on the complete bipartite graph K3 3.

Conjecture 7.4 bridges two of the most important edge-colorings, proper and strong,
basically claiming that each 1-packing could be replaced by three 2-packings. Indeed, if
such operations were possible, then one could transform a (1,1, 1, 2)-packing edge-coloring
into a strong edge-coloring. Note that this does not apply to subclasses of graphs, e.g.,
the Wagner graph needs 10 colors for a strong edge-coloring and it is class I.

This chapter contributes to answering the conjecture by providing upper bounds with
one additional color for all four cases of Conjecture 7.4.

Theorem 7.5. Every subcubic graph G admits:
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7.1. Preliminaries

a (1,1,25)-packing edge-coloring,
a

1.

2. 1, 28)-packing edge-coloring,
3. a
4.

1,1,2%Y)-packing edge-coloring if G is class I,

(
(
(
a (1,27)-packing edge-coloring if G is class I.

This work is joint work with Hervé Hocquard and Borut Luzar. An extended ab-
stract of this chapter is published in the proceedings of the international conference
IWOCA 2020 [101]. A full version is also available on arXiv [102].

This research has been done in the scope of the bilateral project between France and
Slovenia, BI-FR/19-20-PROTEUS-001. The third author of the corresponding paper was
partly supported by the Slovenian Research Agency Program P1-0383 and the project
J1-1692.

The structure of the chapter is the following. We begin by presenting notation, defi-
nitions and auxiliary results in Section 7.1. In Section 7.2, we give proofs of the cases 1
and 3 of Theorem 7.5. In Sections 7.3 and 7.4, we prove the cases 2 and 4 of Theorem 7.5
in even stronger settings. We conclude the chapter with an overview of open problems
and possible further work on this topic in Section 7.5.
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7.1 Preliminaries

For a vertex v, we denote the set of edges incident to v by N’(v), and the edges incident
to the neighbors of v (including the edges in N'(v)) by N”(v). We refer to the former as
the edge-neighborhood of v and to the latter as the 2-edge-neighborhood of v. Analogously,
we define the edge-neighborhood and the 2-edge-neighborhood of an edge e.

When coloring the edges, we deal with two types of colors. The ones allowing the
edges of those colors to be at distance 2 from each other are called the 1-colors, and the
one requiring the edges to be at distance at least 3 from each other are called the 2-colors.
An edge colored with a 1-color (resp. a 2-color) is a 1-edge (resp. a 2-edge). We denote
the number of 1-edges (resp. 2-edges) incident with a vertex v by dy(v) (resp. da(v)). For
an edge uv, we denote by As(uv) the number of available 2-colors, i.e. , the 2-colors with
which the edge can be colored without violating the coloring requirements.
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Sometimes, we will need a more careful analysis for choosing colors from the lists of
available colors. For that purpose, we will use the classical result due to Hall [90].

Theorem 7.6 (Hall’s Theorem [90]). Let A = (A;)icr be a finite family of (not necessarily
distinct) subsets of a finite set A. A system of representatives for the family A is a set
{a;,i € I} of distinct elements of A such that a; € A; for alli € I. A has a system of
representatives if and only if | U,y As| > |J| for all subsets J of I.

Perhaps the strongest tool for determining if one can always choose colors from the
lists of available colors such that given conditions are satisfied is the Combinatorial Null-
stellensatz (see Section 1.4.4).

Theorem 1.77 (Combinatorial Nullstellensatz [4]). Let F be an arbitrary field, and let
P = P(Xy,...,X,) be a polynomial in F[Xy,...,X,]. Suppose that the coefficient of a
monomial X' .. .Xzfp, where each k; is a non-negative integer, is non-zero in P and the
degree deg(P) of P equals >-0_ k;.

If moreover Sy, ..., S, are any subsets of F with |S;| > k; fori=1,....p, then there
are sy € S1,...,8, €S, so that P(sy,...,s,) # 0.

When considering lists of available colors for an edge, we are in fact dealing with
the list version of the packing edge-coloring. In each use case, we actually apply the
Combinatorial Nullstellensatz with 2-colors, thus limiting ourselves to the list version of
strong edge-coloring. For any list edge-assignment L, if a graph GG admits a strong edge-
coloring ¢ such that o(e) € L(e) for all edges in F(G), then we say that G is strong
L-edge-choosable or o is a strong L-edge-coloring of G. The graph G is strong k-edge-
choosable if it is strong L-edge-choosable for every k-list edge-assignment L. The strong
edge-choosability chy(G) of G is the minimum k such that G is strong k-edge-choosable.

We will use the following result, due to Horndk and Wozniak [200], which deals with
adjacent vertex-distinguishing list edge-coloring of cycles, i.e. proper list edge-coloring
where the sets of colors for every pair of adjacent vertices are distinct (see Chapter 9). It
is easy to see that such a coloring is also a strong edge-coloring of a cycle, and we write
the statement in this language.

Theorem 7.7 (Hornak and Wozniak [200]). Let n be an integer with n > 3. We have:
1. chy(Cy) =5 if n =5,
2. chly(C,) =4 ifn# 0 (mod 3),
3. chly(Cy) =3 if n =0 (mod 3).

7.2 Proofs of Theorem 7.5.1 and Theorem 7.5.3

We begin with the cases of Theorem 7.5 using two 1-colors. These two cases provide
straightforward extensions of the results by Gastineau and Togni [84], who established
them for bridgeless cubic graphs. The extension comes from the following easy observa-
tion.

Proposition 7.8. Let G be a connected subcubic graph and let X be a set of edges in
G such that every two edges in X are at distance evactly 2 from each other. Then, X
contains at most five edges. Moreover, if | X| =5, then G is a cubic graph with 10 vertices.
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Proof. Let X be a set of edges in a subcubic graph G satisfying assumptions of the
proposition. Each edge e € X, has at most four adjacent edges, say e, es, e3, and ey.
Each edge e;, 1 < i < 4, can be adjacent to at most one other edge from X, since otherwise
there would be two edges at distance 1 in X. This means, X contains at most five edges.

In the case where | X| = 5, every edge of G not in X and adjacent to an edge of X,
connects two edges of X, hence every vertex of GG is an end-vertex of some edge from X
and thus the number of vertices in G is 10. Since every edge from X is adjacent to four
edges, we infer that G is cubic. O

Now, we are ready to prove Theorem 7.5.1 and Theorem 7.5.3.

Proof of Theorem 7.5.1 and Theorem 7.5.3. We begin with Theorem 7.5.1. Let G be a
subcubic graph (we may assume it is connected) and let 7 be a (1,1, 1, 2)-packing edge-
coloring of G (which exists by Theorem 7.2). To establish the statement, we only need to
replace one 1-color in 7 with four 2-colors. Let X be the set of all the edges in G colored
by one 1-color in 7, and let G* be the graph obtained from G by contracting all the edges
in X (and removing loops that are created in the process). Clearly, G* has maximum
degree at most 4, and it is 4-colorable by Brooks’ Theorem, unless it is isomorphic to
K5. Observe that the vertex coloring of G* induces a strong edge-coloring of the edges
in X. Furthermore, by Proposition 7.8, the only graphs in which it may happen that
five colors are needed to color G*, are cubic with 10 vertices. For these graphs we have
determined (using a computer) that they admit a (1, 1,2%)-packing edge-coloring. This
establishs Theorem 7.5.1.

Theorem 7.5.3 follows immediately from the argument above, since we do not have an
extra 2-color in the coloring 7. O]

7.3 Proof of Theorem 7.5.2

In order to prove Theorem 7.5.2, we prove a bit stronger result. We say that a (1,2%)-
packing edge-coloring of a subcubic graph G with the color set {0,1,...,8}, where 0 is a
1-color and the others are 2-colors, is a good (1,2%)-packing edge-coloring if no 2~ -vertex
of G is incident with a 1-edge (i.e. an edge colored 0).

Theorem 7.9. Every subcubic graph admits a good (1,2%)-packing edge-coloring.

Proof. We prove Theorem 7.9 by contradiction. Let G be a minimal counter-example
to the theorem in terms of |V(G)| + |E(G)|. Clearly, G is connected and has maximum
degree 3. In the following claims, we establish some structural properties of G which
will eventually yield a contradiction with the existence of G. In most of the claims, we
consider a graph G’ smaller than G, which, by minimality of G, admits a good (1,2%)-
packing edge-coloring 7, and we show that 7 can be extended to G by recoloring some
edges of G' and coloring the edges of G not being colored by 7.
We start by proving that G is a simple 2-connected cubic graph.

Claim 7.10. G is simple.

Proof. Suppose there are vertices u and v in G connected by at least two parallel edges.
Let e be one of these edges. Remove e from G to obtain a smaller graph G’, and let 7 be
a good (1,2%)-packing edge-coloring of G’. We can extend 7 to G, since Ay(e) > 1, and
hence there is an available 2-color for e.
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Loops can be removed in a similar fashion. [ |
Claim 7.11. G is cubic.

Proof. Suppose first that there exists a 1-vertex v adjacent to a vertex w in G. By
minimality of G, there exists a good (1,28)-packing edge-coloring m of G' = G — v,
meaning u is not incident with a 1-edge. We can extend 7 to GG, by coloring uv with any
of the (at least two) 2-colors that do not appear in the 2-edge-neighborhood of u. Hence,
G does not contain 1-vertices.

Suppose now that there exists a 2-vertex v adjacent to two vertices u and w. By
minimality of G, G’ = G — v admits a good (1, 2®)-packing edge-coloring 7, and hence u
and w are not incident with a 1-edge. We show that 7 can be extended to G as follows.
First observe that if As(uv) > 2 and Az(vw) > 1, or Ay(uv) > 1 and Ay(vw) > 2, then 7
can be extended and we are done. So, we may assume As(uv) < 1 and Ay(vw) < 1. It
follows that v and w are both 3-vertices in G, and moreover, u and w are not adjacent.
Next, let u; and uy be the neighbors of u distinct from v, and analogously, let w; and
wy be the neighbors of w. By the above argument, do(u;) + da(uz) > 5, meaning that
at least one of u; and us is a 3-vertex not incident with a 1-edge, say u;. Moreover, u;
is not adjacent to w. Now, we recolor wu; with 0. By an analogous argument, we can
recolor one of the edges adjacent to w with 0, obtaining a contradiction on the number of
available colors. Hence, 7 can be extended to G. [

Claim 7.12. G is 2-connected.

Proof. Since GG is cubic, the claim is equivalent to saying that G is bridgeless. Suppose
the contrary and let wv be a bridge in G. Let G, (resp. G,) be the component of G — uv
containing u (resp. v). By minimality of G, there is a good (1, 2%)-packing edge-coloring
7, of G, +wv and a good (1,2%)-packing edge-coloring , of G, + uv. The edge uv is
in both cases colored with a 2-color. Now, we permute (if necessary) the 2-colors in the
coloring m, so that the color of uv is the same in both colorings, 7, and m,, and the colors
on the other two edges incident with v are distinct from the colors on the other two edges
incident with u (except possibly the color 0). In this way, we obtain a good (1, 2%)-packing
edge-coloring of (G, a contradiction. [ |

From now on, we show that G has girth greater than any constant £ € N. Hence, we
show that G is a 2-connected cubic tree, a contradiction.
We start by showing that the graph has no triangles and no 4-cycles.

Claim 7.13. G does not contain triangles.

Proof. Suppose the contrary and let C' = uvw be a triangle in G. If C' is adjacent to two
other triangles, then G is the complete graph on four vertices, and hence (1,2%)-packing
edge-colorable. So, we may assume C' is adjacent to at most one triangle. We consider
two cases.

Suppose first that C' is adjacent to a triangle C" = wvz. Let w’ and 2’ be the neighbors
of w and x, respectively, distinct from u and v. Since G is bridgeless, by Claim 7.12,
w' # /. Now, by minimality of G, there is a good (1,2%)-packing edge-coloring 7 of
G — {uwv,vw,wz,zu} + w'z’ (if w'z" are already connected, we add a parallel edge). Let
m(w'z") = a and consider the coloring of G induced by 7 by coloring za’ and ww’ by a.
The edges uw, uzx, vw, and vr have each at least five available 2-colors, while the edge
uv has at least seven available 2-colors. This means that we are always able to extend 7
to G. Thus, C is not adjacent to any triangle.
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N/

Figure 7.4: In a triangle where all three pendent edges are colored with a 2-color, we cannot
forbid the same 2-color on all three edges.

Hence, the third neighbors of u, v, and w (denote them u', v', and w’, resp.), are all
distinct. Let G’ be the graph obtained from G by removing C and adding a new vertex
x adjacent to the vertices v/, v/, and w’. Let 7 be a good (1, 2%)-packing edge-coloring of
G' and let a = w(v'z), b = w(v'z), and ¢ = w(w'z). Let ¢ be the partial coloring of G
induced by 7, and set p(u'u) = a, p(v'v) = b, and p(w'w) = c¢. Notice that only the edges
uv, ww, and vw are not colored yet in ¢, and each of them has at most seven colored
neighbors in its 2-edge-neighborhood. If 0 € {a, b, ¢}, say a = 0, then for each edge of C'
there are two available 2-colors, and moreover, the edge vw can be colored with 0, so ¢
can be extended to all the edges.

Hence, we may assume a, b, and ¢ are all 2-colors and moreover, they all have the
same one 2-color available, otherwise ¢ can be extended to all the edges using the color 0
and two of the available 2-colors. This means that every non-colored edge must see the
same seven colors in its colored 2-edge-neighborhood. Suppose uv has 7 distinct colors
in its 2-edge-neighborhood (as depicted in Figure 7.4). Then, in order to have the same
forbidden colors for ww and vw, it must hold that {«, 5} = {5,6} and {a, 5} = {2, 3},
respectively. We obtain a contradiction and so ¢ can always be extended to all the edges
of G. [ |

Claim 7.14. G does not contain 4-cycles.

Proof. We again proceed by contradiction. Suppose there is a 4-cycle C' = uvwz in G.
Let «/, v/, w’, and 2’ be the neighbors of u, v, w, and z, respectively which do not belong
to C. Since G has girth at least 4, the eight edges uv, vw, wz, zu, uwu', vv', ww', and
zz" are distinct. Note that it is possible for the vertices v’ and w’ (resp. v" and 2’) to be
equal; in such a case, there is at least one more 2-color available for the uncolored edges
at distance two from this vertex. This counter-balance the fact that we may need to use
one more 2-color on the edges incident with this vertex. Therefore, we can assume that
o', v, w' and 2" are distinct. We construct the graph G' = (G \ V(C)) U {v/w’,v'2'} (see
Figure 7.5(b)). By minimality of G, G’ admits a good (1,2%)-packing edge-coloring T,
and we show that we can always extend 7 to all the edges of G. We consider three cases
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(b)
Figure 7.5: A 4-cycle with its neighborhood in G (a), and its replacement in the graph G’ (b).

regarding the colors of the edges v/'w" and v'z" in .

o Both u'w' and v’z are colored with the 1-color 0. Then the coloring ¢ of G induced
by 7 has only the edges of C' non-colored, while the four pendent edges of C' (the
edges with one end-vertex in C') are colored with 0. This means that there are at
least four available 2-colors for every edge of C, so we can complete the coloring by
Theorem 7.6.

e One of the edges, say v'w', is colored with 0, and the others with a 2-color, say 1.
Then, in the induced coloring ¢, we have p(u'u) = p(w'w) = 0 and p(v'v) =
©(z'z) = 1. Now, the color 1 appears on two edges of every 2-edge-neighborhood of
the edges of C'. So, each of them has at least three available 2-colors. We consider
two subcases. If the union of all sets of available colors contains at least four distinct
colors, we can always choose distinct colors for all the edges, by Hall’s theorem.

So, we may assume that all four edges have the same set of three available colors,
say {6,7,8}. This means that on the edges incident to v’ and v’ there are colors 2,
3, 4, and 5. The same four colors must appear on the edges incident to v' and w’,
but this implies that at least two edges of the same 2-color are at distance 2 in G,
a contradiction.

e Both, v'w' and v'z', are colored with some 2-color. In this case, we may color two
opposite edges of C' with the color 0. The remaining two non-colored edges have
at least two available colors each, so we can always complete the coloring. This
completes the proof of the claim.

[ |
We can now forbid cycles of greater length.
Claim 7.15. G contains no cycle of length at least 5.

Proof. Suppose the contrary and let C' = ujus ... u, be a minimal induced n-cycle in G,
with n > 5. For every i, 1 <i < n, let u, be the neighbor of the vertex u; not in C', and
let G' = G\ V(C). Note that the u} are pairwise distinct by minimality of C'. Then, by
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minimality of G, there is a good (1, 2%)-packing edge-coloring 7 of G’. Since 7 is good, no
w, is incident with the color 0. So, in the coloring ¢ of G induced by 7, we can color every
edge u;u; with 0. In this way, only the edges of C are left non-colored and each edge of
C has at least four 2-colors available.

Suppose first that n = 5. We can color C, except if all five edges have the same four
2-colors available. If we are in this case, then suppose that 1 and 2 are the two colors on
the edges incident to u}, and 3 and 4 are the two colors on the edges incident to uj. Then
{1,2} must also be on the edges incident to u}, {3,4} on the edges incident to uf, and
again {1,2} on the edges incident to u;. Thus the edge ujus has five available 2-colors, a
contradiction.

If n > 6, then we can complete the coloring by Theorem 7.7, a contradiction. |

By Claims 7.11-7.15, GG is a cubic bridgeless graph without cycles, a contradiction.
This concludes the proof of Theorem 7.9. n

7.4 Proof of Theorem 7.5.4

We split this section into two parts. First, we introduce notation and auxiliary results,
and then use them to prove Theorem 7.5.4 in a stronger setting.

7.4.1 Auxiliary results

To show that certain graphs are strongly edge-colorable from given lists, we will use
the Combinatorial Nullstellensatz, ¢.e. Theorem 1.77. For this purpose we introduce the
following. For two positive integers k and ¢, where k£ < ¢, we define the polynomial P,
as follows:

¢
Peo(Xpy ., Xe) = (X1 — Xi) - J] (Xi — Ximo)(Xi — Xia). (7.1)
=kt

If k = ¢, by convention we take P ¢(X})) = 1. Furthermore, for a monomial m, we denote
by pr.e(m) the coefficient of m in the polynomial Py ;.

Proposition 7.16. For k + 2 < {, we have the following equalities:

2 —1ifl—k=0 (mod 3),
Dk (Xk ( H Xf) Xg_1Xg) = 1ifl—k=1 (mod 3), (7.2)

1=l 0ifl —k=2 (mod3),

-1 0if{—k=0 (mod 3),
Pt (Xk ( 11 X?)) =q-Llifl—k=1 (mod3), (7.3)
Lif¢—k=2 (mod3),

-2 -1
Die (Xk ( 11 Xf) Xe1Xe) = — Dkyu (XkaH ( 11 Xf) Xe) ; (7.4)

i=k+1 i=k+2
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j (Xk (ﬁ ng)) = — Dk ((ﬁ Xzz) Xé) : (7.5)

Proof. First, note that by shifting the indices we can assume, without loss of generality,
that k = 1. Next, let ap = p1 (X1 X5 ... X7 5 X, 1Xy) and by = p1 (X1 X5 ... X7 . X7 ).
By expanding the factor (X, — X,_2)(X,— X,—1) of Py, we obtain the following equalities
on a, and by for ¢ > 3:

ap=—pre 1 (X1 X5 . X7 3 X oXo 1) — o1 (X Xs . X7 53X )

= —ap1 — by,
be = p1o—1(X1X5 ... X[ 3 X 20Xy 1)
= Qp—1-
Thus,
Ay = —Qg—1 — Qp—2 .
Moreover, a; = 1 and as = 0, thus a3 = —1. By induction, we infer Equalities (7.2)

and (7.3) for a, and by.
Symmetrically, by expanding the factor (X5 — X;)(Xs—X;) of P4, we infer analogous
recurrences, and consequently Equalities (7.4) and (7.5) follow. We omit the proof. [

A graph with k distinct edges ey, ..., e, is an (aq, as, ..., ag)-graph if its i-th edge e;

is associated with a list of colors L; of size at least a;. We say that an (ay,as, ..., ax)-
graph is strongly choosable (or (ay, as, ..., ax)-choosable) if it admits a strong edge-coloring
verifying that the color of e; belongs to L; for every assignment of L;’s. A (a1, aq, ..., ax)-

path is an (aq, asg, . . ., ax)-graph which is a path.

To simplify the notation, we denote repetitions of same elements using exponents e.g.,
a (2,3,3,3,1)-path is abbreviated as a (2,32, 1)-path.

Now, we show strong choosability of several configurations that will be used later in
the proof.

Lemma 7.17. For any positive integer £, £ > 3, a path of length { is
1. (2,2,3°3,2)-choosable if £ £ 0 (mod 3),
2. (2,3%72,2)-choosable.

Proof. Let P be an (-path with the consecutive edges eq,...,e, each edge e¢; having a
list of available colors L; for every ¢, 1 < i < {. Moreover, to each edge ¢;, 1 < i </, we
associate the variable X;.

Consider the first case. By Theorem 1.77, if the coefficient of X; X, (Hf;; Xf) Xy is
non-zero, then there is a solution (1, ...,2,) € Ly X---X Ly such that Py (1, ..., 2¢) # 0.
By Equation (7.2) of Proposition 7.16, this coefficient is non-zero if and only if £ — 1 £ 2
(mod 3), thus only in the case when ¢ is not a multiple of 3. This proves the first case.

Now, we proceed with the second case. If P is a (2,3°72,2)-path, then it is also a
(2,2,3%73,2)-path. Thus, by the first case, it suffices to consider the case where ¢ is a
multiple of 3. By Equation (7.3) of Proposition 7.16, the coefficient of X} (Hf;% Xf) is 1
if £ = 0 (mod 3), and so, by Theorem 1.77, P is strongly edge-colorable from its lists.
This completes the proof. O
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Uy Up—1

Figure 7.6: The graph D,. Note that we do not color the edge uju,_1 when considering this
configuration.

Note that in the second case of Lemma 7.17 we proved a stronger result; namely, a
(2,32, 1)-path is strongly choosable if £ = 0 (mod 3).

Proposition 7.18. For a positive integer {, let X be a set of colors with | X| = 3,
and P be a (2,3,...,3,a)-path of length 3¢ + 1, with a € {2,3}, such that L; C X for
every i € {1,...,30 + 1}. If o is a strong edge-coloring of P with o(e;) € L;, then
0'(61) = 0'<€3g+1) elin L3€+1'

Proof. Without loss of generality, let X = {1,2,3}, Ly = {1,2}, and o(e;) = 1. Then,
o(e2),0(es) € {2,3}, and hence o(es) = 1. By induction, o(es;41) = 1 and o(esj—1),0(es;) €
{2,3}. Thus, o(ez1) =1 =0c(ey). O

Given an n-path P = uguy . .. u,, we define the graph D,, as the graph obtained from
P by adding the edge uju, 1 (see Figure 7.6). In D,,, we will only color the edges of the
initial path but with restrictions established also by the edge uiu,_1.

Now, we define polynomials that will be used in proving the strong choosability of D,,.
For an integer n, n > 5, we define the following:

n

Co(X1, - Xn) = (X1 = X 1) (X1 = X)) (X = X)) (X = X)) [T (X5 = Xi2) (Xi = X)),

1=3

and
Dy(Xy,.... X)) =Ch- (Xo— X, 1)

Note that they correspond to the coloring polynomial of the edges of C), and D,,. For
example, if (xy,...,x,) is a non-zero solution of C,,, then it corresponds to a valid strong
edge-coloring of the cycle of length n where c(e;) = ;. For a monomial m, by ¢,(m) we
denote the coefficient of m in C,,. Similarly, d,,(m) is the coefficient of m in D,,.

Lemma 7.19. For every integer n, n > 10, D,, is (3,4,2,3,5,3,2,3"72 4, 2)-choosable.
Proof. By Theorem 1.77, it suffices to show

Ao (X7 Xo X3 XIXSXEX X2 ... X2 , X2 1 X,)#0.

n
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By the definition of D,,, we have

do(XTXS X3 XIXEXEX X2 ... X2 L, X2 X))
= ey (XEXIX3 XIXEXEX, X2 X2 X2 X)) — en( XEXS X3 XEXAXEX, X2 ... X2 ,X2 X,).

Let
= (XEXEXs XOXAX2X X3 ... X2 X2 X,)

and
B = —cp(X X3X3X4X4X X7X2 Xﬁ 2X2 1X0).

We consider the values of o and [ separately.
Claim 7.20. For every integer n > 10, we have o = 0.

Proof. Suppose to the contrary that there is some n for which a # 0. Then by The-
orem 1.77, a (3,3,2,3,5,3,2,3"% 4,2)-cycle is strongly choosable. To reach a contra-
diction, we will find a (3,3,2,3,5,3,2,3"% 4, 2)-cycle, for every n, which is not strongly
choosable.

We distinguish three cases depending on the value of n (mod 3).

o Suppose n = 0 (mod 3). Set Ly = {1,2,3}, Ly = {1,2,3}, L3 = {2, 3} L, =
(1,23}, Ly = {1,2,3,4,5), L — {1,3,4}, L — {1,4}, Ly = {1.3,4}, .., Ly s —
{1,3,4}, L,—» ={2,3,4}, L,_1 = {1,2,3,4}, and L, = {1,2} (see Flgure 7.7( ).

By Proposition 7.18, using the path e, es, €1, e,,, we have o(e,) = o(e3) = 2. Then,
the color 2 is forbidden in L, 5, so we may assume L, o = {3,4}. By using
Proposition 7.18 on the path ez, es, ..., e,_3,€,_2, we infer o(e,_2) = o(e;) = 4.
Now, since there are only colors 1 and 3 to color ey, ey, and e4, by symmetry, we
may set o(e;) = o(eq) = 1 and o(eg) = 3. This forces o(e,_1) = 3. Now the colors
for the edges e,_3,...,es, and eg are forced and o(eg) = 1. But, e, and eg are at
distance 2, so the cycle cannot be colored.

o Suppose n = 1 (mod 3). Set L, = {1,2,3}, Ly = {1,2,3}, Lz = {2, 3} L, =
{2,3,5}, Ls = {1,2,3,4,5}, Lg = {1,4,5}, Ly = {1,4}, Ls = {1,3,4}, ..., L_s
{1,3,4}, L,,—» ={1,2,4}, L,y = {1,2,3,4}, and L, = {1, 2}(seeFlgure7.7(b)).

Again, using the path es, es, €1, €,, by Proposition 7.18, we have o(e,) = c(e3) = 2.

Similarly, using the path e7, es, ..., e, 3, we infer o(e,_3) € {1,4}. Now, o(e,_2)
and o(e,—3) both belong to {1,4} and thus o(e,—;) = 3. Hence, we deduce the
following colors: o(ey) = 1, o(ez) = 3, o(es) = 5, o(en—g) = 3,...,0(e9) = 3,

o(e7),o(es) € {1,4}, and o(eg) = 5. But, e and eg are at distance 2, and so the
cycle cannot be colored.

o Suppose n = 2 (mod 3). Set Ly = {1,2,3}, Ly = {1,2,3}, Ly = {2, 3} Ly =
{1,2,3}, Ly = {1,2,3,4,5}, L = {1,3,4}, Ly = {1,3}, Ls = {1,3,4}, ..., Lp_y =
(1,34}, L5 = {1,3,4}, L = {1,2,3}, L1 — {1,2,3,4}, and L, — {1,2} (see
Figure 7.7(c)).

Using the path es, ey, €1, e,,, by Proposition 7.18, we again have o(e,) = c(e3) = 2,
and hence o(e,—2) € {1,3}. Then, using the path ez, es, ..., e,_4, we infer o(e,_4) €
{1,3}. Now, o(e,_2) and o(e,_4) both belong to {1,3} thus o(e,_3) = 4. After
coloring these three edges, we can assume o(e,_ ;) = 1. It follows that we have
o(er) =3, 0(e2) =1, 0(eq) =3, 0(ep—2) =3, 0(en—a) =1,...,0(e9) =3, o(es) =4,
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(b) Case: n =1 (mod 3). (c) Case: n =2 (mod 3).

Figure 7.7: Three cases for cycles of length n which are not (3,3,2,3,5,3,2,3"79 4, 2)-
choosable depending on the value of n (mod 3). For each cycle, the edge e; is given the list
corresponding to the numbers present between the edge and the ‘center” of the cycle. For ex-
ample, in Figure 7.7(a), the edge e4 is given the list {1,2,3} while the edge e5 is given the list
{1,2,3,4,5}. These lists can also be found in the proof of Claim 7.20.
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o(er) =1, and o(eg) = 3. But e4 and ¢4 are at distance 2, and so the cycle cannot
be colored.

Since there are non-strongly edge-colorable cycles for every length n, we obtain a contra-
diction. Thus a = 0. |
Claim 7.21. For every integer n > 12, we have 5 # 0.

Proof. We first define the polynomial @),, as

Qn :(Xn—l - Xn—Q)(Xn—l - Xn—3)(Xn - Xn—l)(Xn - Xn—Q)
(X1 = X0 ) (X1 — X)) (Xa — Xo).

Observe that C,, = @, X P; 2. Since P, ,_» does not contain X,,_; and X, it suffices
to find the coefficients of @,, having X2 X, as a factor to calculate 5. Let us write
Q. = ZXé_lX%ani,j, where R, ; ; is a polynomial in X;,..., X, _5. We have

Z7‘7

Ry21 :X12X2Xn—3 + X12Xn—3Xn—2 + X1 X0 X, 3X, 9
+ XPX2 4+ XX, 3 X2 o+ Xo X, 3X2 .

For a monomial m, we denote by 7,21(m) the coefficient of m in R, 21(m). So, we may
write [ as

B= o XIXIX3 XZXIX2X X3 .. X2 ,X2 X))

n—1<*n
B1
= —Tno1(XiXo X0 3) - Pimo( X3 Xs Xo Xa Xo X7 X3 ... X2, X 3X2 )
B2
— Tn’g’l(X%Xn,:an,Q) . p1,n72(X§X3XZX§X62X7X§ . X274Xn,3Xn,2>
B3
- 7’n,2,1(X1X2Xn—3Xn—2) ‘pl,n72<X1X22X3X2X§X62X7X82 .. -Xs_4Xn73Xn72) (7 6)
Ba ’
— T (X1 X2 o) Pra—2 (X Xs XE XS XG X X3 ... X7, X))
Bs
— o1 (Xi X0 3X2 5) P o Xa XS X3 XIXE X0 X7 Xg ... X2, X0 3)
Be
— Tt (Xo Xy 3X2 5)  pra o XPXIXs XPXIXEX X3 ... X2, X 3)

= —(B1+ B2+ B3+ Ba+ Bs + Bs)-

It remains to determine the coefficients of P;,_ for the monomials appearing in
Equation (7.6). We compute them by reducing them in simpler forms. In particular, we
make use of the facts that

Poo( Xk, Xo) = (Xip1 — Xi) (Xir2 — Xi) - Pogr.o( X1, -, Xo),

Proo(Xpy oo, Xe) = (Xo — Xo—1) (X — Xi2) - Pro1( Xy oo, Xooa)

and that X5 must appear in four terms of P, ,_», meaning that X5 must be chosen in
each of these terms when we expand the polynomial. The same is true for X; when it is
raised to the power 3 as it appears in three terms.
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Let us now compute the six coefficients.

B = prao(XaXs Xo XS XEX, X3 . X2, X, 3X2 )
= pon o (Xo XFXE XX, XZ . X2 X, 3X2 )
= P3n o Xy X§XEX7 X2 X2 X, 3X2 )
= Pan o (XEXEX7 X3 ... X2, X0 3X2 )
= Py o Xe X6 X7 Xg .. X2, X, 3X2 )
= Do XeX: X2, X2 X, 3X2 )
= pon3(Xe X7 X2 .. . X2 , X0 3)
-1 ifn=0 (mod 3),
=¢ 1 ifn=1 (mod3), by Proposition 7.16: Equations (7.4) and (7.2)
0 ifn=2 (mod3).

XX X2XAX2X7 X2 ... X2, X0 3X )

XIXIXIXEX X2 ... X2, X, 3X,0)

XIXSXEX X2, X2, X, 3X, 0)

= Pun o (XuXEXEX7 X2 ... X2, X0 53X 2)

= Psn o XEXEX: X3 .. X2, X0 53X, 2)

= Pon2(Xe X7 X3 ... X2, X0 53X, 0)

= Prao(XeXZ. . X2, X, 3X, 0)
1 ifn=0 (mod 3),

=< -1 ifn=1 (mod 3), by Proposition 7.16: Equation (7.2)
0 ifn=2 (mod 3).

= P1n-2
= P2,n—2

= P3,n—2

A~ /N A/~

Bs = prao(XiXa X Xg Xa Xe X0 X3 . X2, X 3X, )

= Pon o XEXIXAXZX X2 ... X2, X, 3X, )

— Do o (KXo Xs XZXSXEX, XZ .. X2, X, 3X, )

= —fo+ D3 o(XaXu Xe XEX7 X3 ... X2, X0 53X, 2)

+ s o(XEXAXEX X2 X2, X 53X 0)

= B2 — P2 (XuXPXGX2 X5 .. X2 4 X 3Xn o) + o

= oo XEXGX7 X3 .. X2, X0 53X, 2)

= Pom_2(XEX X2, .. X2 X, 35X, 2)

= prno(Xe X3 . X2, X, 3X, )
-1 ifn=0 (mod 3),

= 1 ifn=1 (mod 3), by Proposition 7.16: Equation (7.2)
0 ifn=2 (mod 3).

Note that when reducing py,,_o, we used the fact that X2 cannot appear in any monomial
of Py,_o. Similarly, X has at most power 2 in the monomials of P} .
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= Pin— 2(X§X3XZX§X62X7X§ X -X§—4X73—3)

= Pon—2(XFXIXSXEXFXE . X2, X2 3)
= D3 o( XPXSXEX7 X3 ... X2 X2 )

= an o Xu X3XEX, X3 ... X2 ,X2,)

= Psn o XEXZX, X3 ... X2 X2 )

= Pom o XgX7 X3 ... X2 X2 )

= —P7,n—2(X7X82 .- -X3—4X5—3)

= Prns(Xe X2 X2 (X, 14X, 3)

0 ifn=0 (mod3),
=¢ 1 ifn=1 (mod3), by Proposition 7.16: Equation (7.2)
-1 ifn=2 (mod 3).

Bs = prao(Xi Xa Xa X3 Xs Xe X7 X3 .. X2, X, 3)
= Pon o XEX3XPXAXEX7 X2 ... X2, X0s)
= 3o Xa XPXSXo X7 X3 ... X2, X, 3)
= —puno(XFXEXEXXE .. X2 4 X, 3)
= Psa o XEX2X, X2 .. X2 , X, 3)

=0 as there is no monomial with Xg’ in Ps,_o.

B = pra—o(XFXIXs XPXFXEX7XE . X2, X, )
= Do o (XEX3 XIXAXEX X2 ... X2, Xs)
= P3no( Xs XIXS X2 X7 X3 ... X2 , X, 3)
= —55
= 0.

Hence, inserting the values in Equation (7.6), we obtain

1 ifn=0 (mod 3),
f=¢ -2 ifn=1 (mod 3),
1 ifn=2 (mod 3).

[ |
From Claims 7.20 and 7.21, we have
Ay (XEX3X3 XIXEXEX, X2 .. X2 X3 X)) =a—3+#0.
This establishes the lemma. ]

For smaller values of n, we prove another result.
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Lemma 7.22. For every integer n, n € {6,7,9,10}, D,, is (3,4,3"* 4, 3)-choosable. For
n € {8,11}, D, is (3,3,3,5,3"77, 2,4, 3)-choosable.

Proof. To prove the lemma, we again use Theorem 1.77 and for each n € {6,7,8,9}, we
provide a monomial m,, such that d,(m,) # 0 in D,,.

o do(XPXGXGXEXEXG) =2,

« G(XPXIXFXTXEXGXT) =1,

o dg(XPXGXEXIXEXGXPXE) = -1,

o« do(XPXZXIXTXTXGXTXEXG) =2,

o dip(XPXGXGXIXFXGXTXEXGXT) = 1,

. dll(X12X22X§X2X§X62X72X82X9X?OX121) = -1

It is easy to verify that the degree of every variable is less than the number of available
colors assumed by the lemma, and thus we infer the desired choosabilities of D,,. O]

7.4.2 Proof

Recall that in Theorem 7.5.4, we assume the graph is class I. In our proof, this is an
important feature which enables us to confirm Conjecture 7.4.2 for this class of graphs.
We again prove a stronger version of the theorem.

Theorem 7.23. Let GG be a graph of class I. Then for every proper 3-edge-coloring m
with colors a, b, and ¢, and for every color a € {a,b,c} there exists a (1,27)-packing
edge-coloring o such that the edges of color o in w are colored with 0 in o.

For simplicity, we will refer to a (1, 27)-packing edge-coloring o obtained from a proper
3-edge-coloring 7, in which the edges of color « in 7 are colored with 0 in o, as an a-induced
coloring o5 .

Proof. We prove the theorem by contradiction. Let G be a minimal counter-example to
the theorem minimizing the sum |V(G)| + |E(G)|. Let m be a proper 3-edge-coloring
(using colors a, b, and ¢) and let the color a be the color class for which there is no
(1,27)-packing edge-coloring o (using colors in {0,1,...,7} and 0 being the 1-color) of G
such that all edges colored a in 7 are colored 0 in o.

We begin by establishing some structural properties of G.

Claim 7.24. G is simple.

Proof. Suppose there are vertices v and v in GG connected by at least two parallel edges.
Remove one of the edges, call it e, between them (if possible, take the one colored with
a) to obtain a smaller graph G’. By minimality of G, there is an a-induced coloring ¢ of
G'. If e is colored by a in 7, then extend o2 by coloring e with 0. Otherwise there is no
edge colored a between u and v. Therefore, if v’ and v’ are the respective other neighbors
of u and v, when they exist, then uu’ and vv’ are colored a. Thus, As(e) > 2 and we can
extend o2 to G, a contradiction. Loops can be treated similarly. [ |

Claim 7.25. G s cubic.

page 194 Dimitri Lajou



Chapter 7. Between proper and strong edge-colorings of subcubic graphs

Figure 7.8: A 4-cycle with its neighborhood in G.

Proof. Suppose the contrary and let v be a 27-vertex. By minimality of G, there is an
a-induced coloring o2 of G — w.

Suppose first that u is a 1-vertex with a neighbor v. If uv is colored with a in m, then
we color uv with 0 and hence extend of to all the edges of G. If uv is not colored a in T,
then there are at least three available 2-colors for uv and of can be extended to G.

So, we may assume that u is a 2-vertex and let v and w be its two neighbors. We
consider two subcases. First, if in 7 none of uv and uw is colored with a, then As(uv) > 2
and As(uw) > 2, and so we can color the two edges. Second, if in 7 one of wv and uw
is colored with a, say uv, then we color uv with 0 and we obtain As(uw) > 1. Hence we
can extend o, to all the edges of G. |

Recall that G being cubic implies that in 7 every color appears at every vertex.
Claim 7.26. G does not contain triangles.

Proof. Suppose the contrary and let C' = uvw be a triangle in G. Let ', v/, and w’ be
the neighbors of u, v, and w, respectively, not on C. Since G is cubic, by Claim 7.25, v/,
v', and w’ are 3-vertices and in the coloring 7 exactly one of the edges uu’, vv’, and ww’
is colored with a, say uu’. By minimality, there is a coloring o2 of G \ E(C') induced by
m. We can extend it to the edges of C' in the following way. First, we color vw with 0.
Next, observe there are at least two available 2-colors for each of the edges uv and uww,
hence we can always color them, a contradiction. [

Claim 7.27. G does not contain 4-cycles.

Proof. Suppose the contrary and let C' = uwvwz be a 4-cycle in G. Let v/, v/, w’, and 2’
be the neighbors of u, v, w, and z, respectively, not on C' (see Figure 7.8). By Claim 7.25
and Claim 7.26, the vertices u/, v/, w’, and 2" are all of degree 3 and the vertices v’ and w’
(resp. v’ and 2’) are distinct. Note that it is possible that v’ = w’ (resp. v = 2’) but in
such a case one would have even more 2-colors available to color the cycle. Hence, we may
assume that «/, v’, w’, and 2’ are distinct. There are three non-symmetric possibilities
for m to assign colors to the edges uu/, vv’, ww', and zz'. We consider each of them
separately. Before the case analysis, observe that it is not possible to have two opposite
pendent edges to C' colored with a, and at least one edge of the other pair of the pendent
edges not colored with a, since the edges of C' could not be colored with three colors.
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e The edges uu', vv', ww', and zz' are all colored with a in w. By minimality, there
is an a-induced coloring ¢% of G' = (G \ V(Cy)) U{u'w’,v'2'}, where 7' is a proper
3-edge-coloring of G’ obtained from 7 by coloring v'w" and v'2’ by a. Now, consider
the partial coloring of G induced by ¢% and color the edges uu’, vv', ww', and
27" with 0. In this way, every edge of C' has at most four 2-colors in its 2-edge-
neighborhood and thus at least three available 2-colors. If the union of the available
colors of all three edges contains at least four colors, we can color the edges by the
Hall’s Theorem.

So, we may assume that all four edges have the same three available colors, say 5,
6, and 7. This implies that on the edges incident to «’ and v’ there are colors 1, 2,
3, and 4 (together with 0 on the two edges incident with C'). The same four colors
must appear on the edges incident to v" and w’. But this means that at least two
pairs of edges of the same 2-color are at distance 2 in G’, and since v'w’ € E(G"),
we have a contradiction.

o Two edges pendent to C' and one edge of C' are colored with a in 7, say uu', vv’,
and wz. Consider the graph G’ = (G \ {u,v}) U{u'v'} and a proper 3-edge-coloring
7’ of G’ induced by 7 by coloring u/v" by a. By minimality, there is an a-induced
coloring o of G'.

Now, consider the coloring ¢ of GG induced by o,+, where only the edges uz, vw, and
uv remain non-colored. There are at most six 2-colors in the 2-edge-neighborhood
of uv, so we may color it. After that, there are at most six 2-colors in the 2-
edge-neighborhoods of uz and vw, since 2’ and w’ are each incident with one edge
of color 0. However, there are four distinct 2-colors incident with the vertices v’
and v (recall that u'v’ € FE(G")), and thus the union of available colors for uz
and vw contains at least two colors, meaning that we can complete the coloring, a
contradiction.

o Two edges of C are colored with a in w, say uv and wz. Let G' = G\ V(C) and
let 7" be a proper 3-edge-coloring of G’ induced by n. By the minimality, there
is an a-induced coloring o2 of G’. Now, consider the coloring ¢ of G induced by
02, and color the edges uv and wz with 0. For the non-colored edges, we have the
following numbers of available colors: As(uu') = Ag(vv') = Ax(ww') = Ay(z2') =3
and As(uz) = As(vw) = 5. To show that o can be extended to non-colored edges,
we apply Theorem 1.77 in the following way. First, associate the variables X7, Xo,
X3, X4, X5, and Xg to the edges uu', uz, zz', vv', vw, and ww’, respectively. The
chromatic polynomial of a subgraph induced by the non-colored edges and setting
adjacencies whenever two edges are at distance at most 2 is

f(Xl,...,XG) = (X1—Xg)(Xl—Xg)(Xl—X4)(X1—X5)
x (Xa — X3)(Xa — X0)(Xa — X5)(Xo — Xg)
X (X3 — X5)( X3 — Xe) (X4 — X6)( Xy — X5)(X5 — Xi)

Expanding the polynomial, we infer that the coefficient of the monomial X7 X5 X2 X? X3
in f equals +1. Thus, by Theorem 1.77, we can extend ¢ to all the edges of G, a
contradiction.

This establishes the claim. [ |

page 196 Dimitri Lajou



Chapter 7. Between proper and strong edge-colorings of subcubic graphs

<l
/
R & O
— B b
@? AN
)
g
g

&
(a)

e

W
® @

\C
—9 @ a@ b\

() /

3
\

/CT

C @

/b

(b)

Figure 7.9: A path P on which we perform a crossing in G (a), and the configuration in G’

(b).

Hence, G has girth at least 5. We continue by considering properties of longer cycles
in G. First, we introduce some additional definitions. A cycle colored only with the colors
b and c is called a be-cycle. Let P = ugujususugsus be a path of distinct vertices on a be-
cycle. Let u; be the neighbor of u; such that w;u] is colored with a in 7 for i € {0,...,5}.
A P-crossing is a pair (G', 7') such that G’ = G — E(P) — {u;u; }1<j<a + {ujus, ujuy } and
7' is obtained from 7 by coloring wju} and whu) with the color a (see Figure 7.9). By
minimality of G, there exists an a-induced coloring 0%, of G'. The partial coloring ¢2 of
G induced by of, leaves uncolored the edges of P and the four edges u;u} for 1 < j < 4.
Clearly, we can color the latter four edges with 0, and so only the edges of P need to be
colored. In the next claim, we give a useful property about their lists of available colors.

Claim 7.28. Let L; be the set of 2-colors available for the edge u;u;i1 of P, where 1 <
1 < 3. In the coloring o, one of the following properties hold:

1. |Ly| =5, or
2. there ezists a color x € Ly such that |Ly \ x| > 3 and |L3 \ x| > 3, or

3. |Ls| >4 and Ly N Ly = &. Moreover, there is a color x € Ly such that x & Lo, and
a colory € Ly such that y ¢ Ls.

Proof. Note first that the edges ujus, usus, and uzuy all have four colored edges in their
2-edge-neighborhood. Without loss of generality, we may assume that u) is incident with
edges colored 1 and 2, uj is incident with edges colored 3 and 4 (the colors are distinct as
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/
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Figure 7.10: Configuration in G for considering properties of Ly, Lo, and Ls.

u)y and uj are adjacent in G’). Denote by S; = {x1, 22} the set of 2-colors on the edges
incident with )}, and by Sy = {23, 24} the set of 2-colors on the edges incident with u
(see Figure 7.10). Again, S; NSy = @.

We consider possibilities regarding the sets S; and Sy. Note that if |L;| > 4 and
|Ls| > 4, then we always can choose such a color in Ly to satisfy condition (2). Suppose
first that S; = {1,2}. Then |L,| =5 and Ly = {5,6,7}. Since Sy does not contain 1 nor
2, {1,2} C Ls. Thus, either |L3| > 4 or L, contains a color which is not in Ls.

Next, suppose that S; = {1,3}. Then |L,| > 4. If 4 € Sy, then also Ly > 4 and we
are done. Otherwise, by symmetry, we may assume that x3 = 5 and x4 € {2,6}. Observe
that x4 € Ly and x4 ¢ Lg, thus setting x = x4 gives us condition (2) of the claim.

Suppose now that S; = {1,5}. Again, |Li| > 4. If 3 € Sy, then L3 > 4 and we are
done. Thus, we may assume z3 = 6 and x4 € {2,7}. As above, observe that z; € Ly and
x4 ¢ Ls, thus setting © = x4 gives us condition (2).

If S; = {3,4}, we are done as |Ly| = 5.

If Sy = {3,5}, we have L; = {4,6,7} and L, = {1,2,6,7}. If 1 € Sy or 2 € Sy, then
we set x = 2 or x = 1, respectively, to obtain condition (2). Thus, we may assume z3 = 6
and x4 € {4,7}. If z4 = 4, then we set x = 1, and if x4 = 7, then L3 = {1,2,5}, and we
have condition (3).

Finally, if S; = {5,6}, then, by symmetry, Sy = {1,2}, and setting = 1 gives us
condition (2). This completes the proof. [

Our goal is now to show that G contains no be-cycles.

Claim 7.29. There is no be-cycle with chords in G.
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Proof. Suppose the contrary and let C' be a be-cycle with a chord in G. Let P =g ... u,
be a path of C' such that wju,_; is a chord of C' and P is the shortest path with this
property in C. For every i € {0,...,n}, denote by wu} the neighbor of u; such that
7(u;u;) = a. Note that m(u;u}) = a implies that all u}s are pairwise distinct. Note that by
definition v} = u,_; and w],_; = uy. We split the proof in two cases regarding the length
of P.

Suppose first that n > 12. Let P’ = ugusugusuguy and let (G', ") be the P’-crossing
and ¢ an a-induced coloring of G'. Let 02 be the partial coloring of G' induced by o%.
For every i, i € {3,4,5,6}, color w;u; with 0. Now, only the edges of P" are non-colored.
To extend o to all edges of GG, we first uncolor the edges of P that are already colored.
Next, for every i, 0 < ¢ < n — 1, denote by L; the list of available 2-colors of the edge
u;uit1 in G. Note that |Lo| > 3, |L1| > 4, |Ly—2| > 4, |Lnp—1| > 3, and |L;| > 3 for
2 < j < n—3. By the minimality of P the 2-edge-neighborhood of an edge e of P
contains the same non-colored edges as in the graph D, obtained from P by adding the
edge uju,_1. Therefore, it suffices to color D,, using the lists L; to extend o2.

To show that we can color D,,, we make use of Claim 7.28 applied to P’. In the case
(1), i.e. , if |Ly] = 5, we can color D, by Lemma 7.19, a contradiction. In the case (2),
i.e. , if there exists a color x € L4 such that |Ls \ z| > 3 and |Ls \ x| > 3, we proceed
as follows. We first color usus with . We obtain, after updating the lists, the following:
|Ls| > 2, |Ls| > 3, |Ls| > 3, |Lg| > 2. Note that since uqu; is already colored, we can
simply assume |L4| > 5 to be able to apply Lemma 7.19 on the other edges of D,,. Hence,
we again extend o2 to all edges of G, a contradiction. In the case (3), i.e. , if |Ly| > 4
and L3N Ly = &, we use the color x € L3, which is not in L4, to color uzus. By doing
this, we only decrease the number of available colors in L; and Ly to 3 and 2, respectively.
Next, we consecutively color usus, ujus, and ugu;. By doing this, we obtain |L| > 3,
|L,_2| > 2, and |L,_1] > 1. All the other non-colored edges still have at least three
available colors, and hence we can extend o by coloring consecutively the edges u,—1uy,
Up_9Up_1,. - -, Uslls, & contradiction.

Hence, we may assume n < 12. By Claim 7.27, we also have that n > 7. We first
consider the case when n ¢ {8,11}. Let P’ = ujusuguqusug and let (G',7’) be the P’'-
crossing and ¢¢, an a-induced coloring of G’. Let o2 be the partial coloring of G induced
by o¢,. For every i, i € {2,3,4,5}, color w;u; with 0, and uncolor the colored edges of P.
It is easy to see that all the edges have at least three available colors and the edges uqus
and u,_osu,_1 have at least four. Note that the edges of P together with the edge uiu,_1
form the graph D,,, which is (3,4, 3", 4, 3)-choosable by Lemma 7.22 for n € {6,7,9,10}.
Thus we can extend o2 to G, a contradiction.

So, we may assume n € {8,11}. Let P’ = ujususugusug and let (G', ') be the P’-
crossing and ¢%, an a-induced coloring of G'. Let o2 be the partial coloring of G induced
by o%. For every i, i € {2,3,4,5}, color w;u, with 0. Now, only the edges of P’ are non-
colored. To extend o2 to all edges of GG, we first uncolor the edges of P that are already
colored. As above, it suffices to find a list coloring of the graph D,, obtained from P by
adding the edge uju,_;. We will again apply Claim 7.28. Suppose first that |Ls| = 5.
Then, we can extend the coloring by Lemma 7.22, saying that D, is (3,3, 3,5,3"", 2, 3, 4)-
choosable. Suppose now that there exists € L such that |Ly \ | > 3 and |Ly \ z| > 3.
We color uguy with x, we obtain |Ly| > 3, |La| > 3, |L4| > 3, | Ls| > 2, and we can assume
that |L3| > b, since it is already colored anyway. Hence, we can color D,, by Lemma 7.22,
a contradiction. Finally, suppose that |Ls| > 4 and L; N Ly = &. In this case, we color
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the edges of P as follows. First, color uyus with a color that is not contained in L;. Next,
color ugu; and then usus. Note that at this point, |Ls| > 2, |Ly4| > 3, |Ls| > 3, |Lg¢| > 2,
and |L7| > 2. This means that we can complete the coloring by using Lemma 7.17(a), a
contradiction. [ |

Claim 7.30. There is no bc-cycle in G.

Proof. Suppose, to the contrary, that C' = ujus ... u, is a be-cycle of length ¢ in G. By
Claim 7.29, we already have that C' is chordless. Clearly, ¢ is even and by Claim 7.27,
¢ > 6. For every i, 1 <i </, let u; be the neighbor of u; such that 7(u,u) = a (and thus
all u; are distinct). Since C'is chordless, no u} is a vertex of C. We consider three cases
regarding ¢.

e /=0 (mod 3). LetG'=G—E(C). By minimality of GG, there exists an a-induced
coloring o2 of G'. To extend o2 to all edges of GG, we only need to color the edges
of C. Since C' is chordless, the only conflicts among its edges are those generated
by C. Hence, every edge of C' has at least three available colors, by Theorem 7.7,
every cycle of length divisible by 3 is 3-choosable. Thus, we can extend o to G.

e / =2 (mod 3) (and so ¢ > 8). In this case, we perform two crossings at the
same time, one with the path P = wsujusususus, and the other with the path
P = uqusugusugu;, where j = 1 if £ = 8, and j = 9 otherwise. Note that the
properties for the lists of available colors guaranteed in Claim 7.28 still hold. Let

G' =G = E(C) — {uiu; hr<ics + {uyus, upuly, usur, ugug} -

By the minimality, there exists an a-induced coloring o of G’; thus w)u}, ubu}, usur,
and ugug are colored with 0 in o%. Without loss of generality, we may assume that
the two 2-colors incident with ug are 1 and 2, and that the two 2-colors incident with
ur are 3 and 4. Denote by S the set containing the two 2-colors incident with wg.
Moreover, for every ¢, 1 < ¢ < £ — 1, let L; be the set of available 2-colors for the
edge w;u;1 (and the list for the edge uyu; we denote by L;). As in the previous
case, we have |L;| > 3 for every 1.

We consider two possibilities regarding S. Suppose first that 3 ¢ S. Then, 3 € Ls
and we color usug with 3. Since u’ is incident with an edge colored with 3, the sizes
of Lg and L; do not decrease. Now, consider the lists of available colors for the
edges of P. By Claim 7.28, we have three possibilities. Suppose first that |Ly| = 5.
In this case, we may color it last, since it will have at least one available color after
all the edges at distance 2 on C' are colored, thus we may ignore it for now. We
color uyus (decreasing the size of Lg by one) and uguy (decreasing the size of L
by one). It remains to color the edges of the path ugus ... usujus, which is possible
by Lemma 7.17, and finally coloring Lo, a contradiction. Suppose next that there
exists © € Lo such that |L; \ z| > 3 and |L3 \ z| > 3. In this case, color ugug with x.
We obtain |Ly| > 3, |Ls| > 2, |L4| > 1, |Lg| >3, ..., |Li—1| > 3, and |Ly| > 2. Color
ugus and then uguy. It remains to color the path wug. .. wujus (of length £ —4 =1
(mod 3)), which can be done by Lemma 7.17(a), a contradiction. Finally, suppose
that |Lg| > 4 and Ly N Ly = @. In this case, we again color usus (decreasing |Lg|
and |Ls| by one) and wuguy (only decrasing |Ls| by one). The remaining edges are
lying on a path which is strongly edge-colorable by Lemma 7.17, a contradiction.
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Therefore, by symmetry, we may assume S = {3,4}. Moreover, by the same rea-
soning, the set of 2-colors incident with uf is the same as the set of 2-colors incident
with u5. This altogether means that Ly and Lg both have size at least five, and thus
we can color the edges usus and uguy last. We first color usuy, ugus, and usug (de-
creasing | L| and |L;| by one), and then color the path u; ... uujus by Lemma 7.17.
Finally, color usus and uguy, a contradiction.

e /=1 (mod 3) (and so £ > 10).  As in the previous case, we perform two crossings
at the same time, one with the path P = u,ujusususus, and the other with the path
P" = usugurugugu;, where j = 1if £ = 10, and j = 11 otherwise. Let

G' =G — E(C) = {uu;}r<ica — {uig Yo<ico + {u]us, upu), ugug, urig}.

By minimality of G, there exists an a-induced coloring o% of G’; thus wjuj, uhu},
ugug, and urug are colored with 0 in o2. Without loss of generality, we may assume
that the two 2-colors incident with ug are 1 and 2, and the two 2-colors incident with
ug are 3 and 4. Denote by S the set containing the two 2-colors incident with w7.
Moreover, for every ¢, 1 <1 < £ — 1, let L; be the set of available 2-colors for the
edge u;u; 41 (and the list for the edge u,u; we denote by Ly). Again, we have |L;| > 3
for every 1.

We consider two possibilities regarding S. Suppose first that 3 ¢ S. Then, 3 € Lg
and we color uguy with 3. Since ug is incident with an edge colored with 3, the sizes
of L; and Lg do not decrease. Now, consider the lists of available colors for the
edges of P. By Claim 7.28, we have three possibilities. Suppose first that |Ly| = 5.
In this case, we may color it last, since it will have at least one available color after
all the edges at distance 2 on C' are colored, thus we may ignore it for now. We
first consecutively color the edges usug, usus, and uguy (each of them has at least
one available color when being colored), by that, we decrease the sizes of L; and
L; by at most 1, and hence we can color the edges of the path w;...usujus by
Lemma 7.17. Finally, we color usus, a contradiction. Suppose next that there exists
x € Lo such that |L; \ x| > 3 and |L3 \ | > 3. In this case, color usuz with =, and
then consecutively ugqus, usug, and usuy. It remains to color the edges of the path
P" = w7 ... upuius, where every edge has at least three available colors, except for
the edges ujug, upuy, and ur;u8, which have at least two. Since the length of P” is
(=5 =2 (mod 3), we can color its edges by Lemma 7.17(a), a contradiction. Finally,
suppose that |Ls| > 4 and L; N Ly = @. In this case, we first color usug (decreasing
|L7| by one), ugus, usuy (not decrasing |L;|), and usus (decreasing |L;| and |L,| by
one). The remaining edges are lying on a path which is strongly edge-colorable by
Lemma 7.17(a), a contradiction.

Therefore, by symmetry, we may assume S = {3,4}. Moreover, by the same rea-
soning, the set of 2-colors incident with u} is the same as the set of 2-colors incident
with uj. This altogether means that Ly and L; both have size at least 5, and thus
we can color the edges usus and urug last. Now, color uguy, usus, usug, and uguy in
this order (decreasing |L;| and |Lg| by one), and then color the path wu; ... upujusg
by Lemma 7.17. Finally, color usus and u;ug, a contradiction.
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Since G is cubic by Claim 7.25, the subgraph of GG induced by the edges colored b or
¢ in 7 is 2-regular, meaning that there must be at least one bc-cycle in GG, which is in
contradiction with Claim 7.30. This establishes Theorem 7.23. [

7.5 Further Work

Conjecture 7.4 remains open, but our upper bounds are only by one 2-color off. Unfortu-
nately, we were not able to apply the techniques we used to prove tight bounds for proper
edge-coloring and strong edge-coloring of subcubic graphs, to the problems considered in
this chapter. Therefore, since solving Conjecture 7.4 in the general setting seems to be
challenging, we suggest in this section additional problems which arise naturally when
dealing with the considered colorings. All of them are supported with computational
results on graphs of small orders.
We begin with a general conjecture for strong edge-coloring.

Conjecture 7.31. FEvery bridgeless subcubic graph G, not isomorphic to the Wagner
graph or the complete bipartite graph Kz 5 with one edge subdivided, admits a (2°)-packing
edge-coloring.

We proceed with an overview of results in specific graph classes and list open problems
for each of them. For that, we follow the conjecture on strong edge-coloring of subcubic
graphs proposed by Faudree, Gyérfas, Schelp, and Tuza [68] in 1990.

Conjecture 7.32 (Faudree, Gyarfas, Schelp and Tuza [68]). For every subcubic graph G
it holds:

1. G admits a (2'°)-packing edge-coloring,

2. If G is bipartite, then it admits a (2°)-packing edge-coloring,
3. If G is planar, then it admits a (2°)-packing edge-coloring,
4

. If G is bipartite and each edge is incident with a 2-vertex, then it admits a (2°)-
packing edge-coloring,

“

If G is bipartite of girth at least 6, then it admits a (27)-packing edge-coloring,

6. If G is bipartite and has girth large enough, then it admits a (2°)-packing edge-
coloring.

All the cases of the conjecture, except Case 5, are already resolved, and we present
the results in what follows.

7.5.1 Planar graphs

It was the well-known connection between edge-coloring of bridgeless cubic planar graphs
and the Four Color Problem, established by Tait [179], which initiated the research in this
area. By the Four Color Theorem, we thus have that every bridgeless cubic planar graph
admits a (1,1, 1)-packing edge-coloring. The condition of being cubic is necessary, since
already K, with one subdivided edge is class II. However, not all questions are resolved.
The following conjecture of Albertson and Haas [3], which is a special case of Seymour’s
conjecture [172], is still widely open.
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Figure 7.11: A cubic planar graph which needs nine colors for a strong edge-coloring.

Figure 7.12: A subcubic planar graph which does not admit a (1, 2%)-packing edge-coloring
nor a (1,1,22)-packing edge-coloring.

Conjecture 7.33 (Albertson and Haas [3]). Every bridgeless subcubic planar graph with
at least two vertices of degree 2 admits a (1,1, 1)-packing edge-coloring.

The number of required colors for strong edge-coloring of planar graphs is also deter-
mined. Just recently, Kostochka, Li, Ruksasakchai, Santana, Wang and Yu [133] proved
the following (and resolved Conjecture 7.32.3).

Theorem 7.34 (Kostochka, Li, Ruksasakchai, Santana, Wang and Yu [133]). Every
subcubic planar graph admits a (2°)-packing edge-coloring.

The upper bound is tight due to the 3-prism, depicted in Figure 7.11. For now, this is
the only known planar graph with maximum degree 3 with strong chromatic index equal
to 9.

On the other hand, there are no results for planar graphs on the colorings with one or
two matchings. We propose the following conjecture.

Conjecture 7.35. Fvery subcubic planar graph admits a (1,2°)-packing edge-coloring and
a (1,1,2%)-packing edge-coloring.

The conjectured upper bounds, if true, are tight and attained by infinitely many
bridgeless subcubic planar graphs for both values. Indeed, in Figure 7.12, we present
a planar bridgeless graph which does not admit a (1,2%)-packing edge-coloring nor a
(1,1, 2%)-packing edge-coloring. Moreover, this graph can be appended to other subcubic
graphs by the two 2-vertices, thus creating an infinite family of bridgeless subcubic planar
graphs not admitting such a coloring. This conjecture also appears to be more demanding
than the result of Theorem 7.34. Thus, some partial results, with additional restrictions
on the structure of planar graphs, might also be interesting in order to understand the
general problem better.
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Figure 7.13: A subcubic bipartite graph which does not admit a (1,2°)-packing edge-coloring
nor a (1, 1,22)-packing edge-coloring.

7.5.2 Bipartite graphs

In the class of bipartite graphs, the proper and the strong case of the colorings are long
solved. In 1916, Konig [132] proved that every bipartite graph is class I, and in 1993,
Steger and Yu [177] established the following (and resolved Conjecture 7.32.2).

Theorem 7.36 (Steger and Yu [177]). Every subcubic bipartite graph admits a (2°)-
packing edge-coloring.

Again, the bound is tight; it is attained by, e.g., K3 3.

Since all bipartite graphs are class I, the results and conjectures for them apply also
in the bipartite case. It is known that as soon as we require some 2-colors instead just
1-colors, the problems become much harder. E.g., a tight upper bound for a strong edge-
coloring of bipartite graphs is still not known (c.f. [68, 177]). Therefore, Conjecture 7.4.3
and Conjecture 7.4.4 may be considered just in the bipartite setting. Moreover, we have
an infinite number of graphs attaining the conjectured upper bounds also among bipartite
graphs; the bipartite graph with two 2-vertices presented in Figure 7.13 does not admit a
(1,2%)-packing edge-coloring nor a (1, 1, 2?)-packing edge-coloring, and so an infite family
of such graphs can again be constructed.

If we consider subcubic graphs with only edges of weight at most 5, i.e. , edges where
at least one of the end-vertices is of degree at most 2, the number of required colors
decreases substantially. In particular, Conjecture 7.32.4 was resolved by Maydanskiy [152]
and independently by Wu and Lin [201].

Theorem 7.37 (Maydanskiy [152], and Wu and Lin [201]). Every subcubic bipartite
graph, in which each edge has weight at most 5, admits a (2°)-packing edge-coloring.

Clearly, an analogous question for coloring such graphs with two 1-colors is whether
they admit a (1,1,22)-packing edge-coloring. It is answered in affirmative [176]. The
bound is tight already in the class of trees. On the other hand, we do not have the answer
for the following.

Question 7.38. Is it true that every subcubic bipartite graph, in which each edge has
weight at most 5, admits a (1,2%)-packing edge-coloring?

This bound is again attained in the class of trees.

7.5.3 Graphs with large girth

Similarly as the bipartiteness, having large girth does not really simplify edge-colorings in
which some colors must be 2-colors. Even more, due to Kochol [131], we know that there
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are graphs with arbitrarily large girth which are class II. Anyway, if the girth is infinite,
i.e. we consider the trees, the following simple observation is immediate.

Observation 7.39. Fvery subcubic tree admits:

1. a (1,1,1)-packing edge-coloring,
2. a (1,1,2%)-packing edge-coloring,
3. a (1,2%)-packing edge-coloring,

a (25)-packing edge-coloring.

The bounds are tight already if we just consider a neighborhood of one edge with both
end-vertices of degree 3.

In the case of strong edge-coloring, Conjecture 7.32.6 was also rejected just recently
by Luzar, Mac¢ajové, Skoviera, and Sotak [147], who proved that a cubic graph is a cover
of the Petersen graph if and only if it admits a (2°)-packing edge-coloring.

Before we consider the intermediate colorings, we first recall the result of Gastineau
and Togni [84].

Proposition 7.40 (Gastineau and Togni [84]). Fvery cubic graph admitting a (1,1, 22)-
packing edge-coloring is class I and has order divisible by four.

Hence, the analogue of Conjecture 7.32.6 when having two 1-colors does not hold.
However, the following remains open.

Question 7.41. Is it true that every subcubic bipartite graph with large enough girth
admits a (1,2%)-packing edge-coloring?

To conclude, we believe that studying properties of the considered edge-colorings will
have impact to the initial problem of strong edge-coloring, which is in general case still
widely open. Namely, the conjectured upper bound for graphs with maximum degree
A(G) is 1.25A(G)?, while currently the best upper bound is due to Hurley, de Joannis de
Verclos, and Kang [112], set at 1.772A(G)2.
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Chapter 8

Complexity of the injective
edge-coloring problem

We study the algorithmic complexity of the injective edge-coloring problem. Our aim is
to determine restricted graph classes where the problem is NP-hard, while in contrast,
designing polynomial algorithms for other graph classes.

Definition 8.1 (Injective edge-coloring). An injective k-edge-coloring of an undirected
graph G is an edge-coloring of G verifying that every two edges uv and u'v’, for which uu’
or vv’ is also an edge of G, receive distinct colors. In other words, for any 3-edge path of
G (possibly forming a triangle), the first and last edge of the path receive distinct colors.
The injective chromatic index of G, denoted x;(G), is the smallest integer k for which G
admits an injective k-edge-coloring.

See Figure 8.1 for an example of injective 4-edge-coloring.

The concept of an injective edge-coloring is the natural edge-version of the notion of
an injective vertex coloring, introduced in [89] and well-studied since then. This edge-
version was recently introduced by Cardoso, Cerdeira, Cruz and Dominic in [39], where
it is studied for some classes of graphs, and the question of determining the injective
chromatic index of a graph was proved to be NP-complete. Bounds on the injective
chromatic index of planar graphs, graphs of given maximum degree, and other important
graph classes, have been recently determined in [11, 32, 73, 134, 143, 207]. In particular,
as mentioned in [73], it follows from [11] that all planar graphs are injectively 30-edge-
colorable, while outerplanar graphs are injectively 9-edge-colorable [73]. It is also proved
in [134] that subcubic graphs are injectively 7-edge-colorable, while subcubic bipartite
graphs [73] and subcubic planar graphs [134] are injectively 6-edge-colorable. Moreover
all subcubic planar bipartite graphs are injectively 4-edge-colorable [134].

Note that in [11], this notion is studied as the induced star arboricity of a graph, that
is, the smallest number of star forests into which the edges of the graph can be partitioned:
this is an equivalent way to interpret injective edge-coloring (see [73]).

Injective edge-coloring is closely related to strong edge-coloring: a strong edge-coloring
of a graph G is an injective edge-coloring which is also proper. It follows from the
definitions that for any graph G, xi(G) < x4(G) holds. The algorithmic complexity of
determining the strong chromatic index of a graph is well-studied, see for example [106]
for a classic reference, and [49, 104] for more recent ones. In this chapter, we wish to
undertake similar types of studies for the injective chromatic index. The problem at hand
is formally defined as follows.
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Figure 8.1: An injective 4-edge-coloring of K33 with one subdivided edge.

INJECTIVE k-EDGE-COLORING
Input: A graph G.
Question: Does G admit an injective k-edge-coloring?

INJECTIVE k-EDGE-COLORING was proved NP-complete (for every fixed k& > 3)
in [39], with no particular restriction on the inputs. We strengthen this as follows.

Theorem 8.2. The two following problems are NP-complete:

1. INJECTIVE 3-EDGE-COLORING, even for triangle-free cubic graphs, and

2. INJECTIVE 4-EDGE-COLORING, even for cubic graphs.

Answering a question from [39] about the complexity of INJECTIVE k-EDGE-COLORING
for planar graphs, we also study restricted subclasses of planar graphs.

Theorem 8.3. Let g > 3. INJECTIVE 3-EDGE-COLORING is NP-complete even for:

1. planar subcubic graphs with girth at least g,
2. planar bipartite subcubic graphs of girth 6.

The two items in Theorem 8.3 cannot be combined, because we can prove the following
(note that all planar bipartite subcubic graphs are injectively 4-edge-colorable [134]).

Theorem 8.4. Fvery planar bipartite subcubic graph of girth at least 16 is injectively
3-edge-colorable.

We also obtain an FPT algorithm when INJECTIVE k-EDGE-COLORING is parameter-
ized by the treewidth of the input graph.

Theorem 8.5. For cvery graph G of order n and every positive integer k, there exists a
20(ktw(G)*)p, time algorithm that solves INJECTIVE k-EDGE-COLORING.

It is proved in [11] that x}(G) < S(tng)), and so using the above algorithm, one can

determine the injective chromatic index of a graph of order n in time 20(tw(G)) .
Contrasting with our hardness results for planar graphs, Theorem 8.5 implies that
INJECTIVE k-EDGE-COLORING can be solved in polynomial-time on subclasses of pla-
nar graphs: K -minor-free graphs (i.e. graphs of treewidth 2), and thus, on outerplanar
graphs.
In [39], Cardoso, Cerdeira, Cruz and Dominic use a reduction on graphs having their
maximum degree linear in the number of colors. We improve it with the following result.
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Chapter 8. Complexity of the injective edge-coloring problem

Theorem 8.6. For every integer k > 45, INJECTIVE k-EDGE-COLORING is NP-complete
even for graphs with maximum degree at most 5v/ 3k.

The bound of Theorem 8.6 is tight up to a constant factor: by a standard maximum
degree argument of a conflict graph, every graph with maximum degree at most \/m
is injectively k-edge-colorable. Indeed, for every edge e of a graph G, there are at most
2(A(G) — 1)? edges which cannot have the same color as e. Hence having at least one
more color than 2(A(G) — 1)? allows us to color the graph.

This chapter is joint work with Florent Foucaud and Hervé Hocquard. An article
version of this chapter is published in Information Processing Letters [75].

This research was supported by the IFCAM project “Applications of graph homomor-
phisms” (MA/IFCAM/18/39) and by the ANR project HOSIGRA (ANR-17-CE40-0022).

This chapter is divided as follows. Each of the following sections is devoted to the proof
of one of our theorems. Section 8.1 contains the proof of Theorem 8.2 which deals with
cubic graphs. For planar graphs, Section 8.2 presents the proofs of our results on planar
graphs, namely Theorem 8.3 and Theorem 8.4. Section 8.3 contains the FPT algorithm
of Theorem 8.5. Finally, Section 8.4 contains the proof of Theorem 8.6. We conclude in
Section 8.5.
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8.1 NP-completeness for cubic graphs

For the two problems we consider, we reduce from 3-EDGE-COLORING, which is NP-
complete even for cubic graphs [106].

3-EDGE-COLORING
Input: A cubic graph G.
Question: Does GG admit a proper 3-edge-coloring?
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(a) Edge gadget E,, with an  (b) Connecting three copies of F,, in the construction of G”, along
injective 3-edge-coloring. with an injective 3-edge-coloring.

Figure 8.2: Edge gadgets used in the proof of Theorem 8.2.1.

8.1.1 Proof of Theorem 8.2.1

Proof of Theorem 8.2.1. Let G be the input cubic graph. We will proceed in two steps:
first, we create a triangle-free subcubic graph G’ which has an injective 3-edge-coloring
if and only if G is properly 3-edge-colorable. Then we describe how to make the graph
cubic.

We create the graph G’ from G by removing all the edges of G. For each edge uv of
G, we create a copy of a gadget E,, (see Figure 8.2(a) for an illustration) and connect it
to v and v as follows. We add eight new vertices Wyy, Zuvs Quvs Duvs Cuvs Auv, €up and fi,.
We create the following edges uwy,, VWyy, WuwZuwws Zuvluvs Zuvbuvs GuwCuvs BuvCuvs Qunduw,
buvCuv, Cuv fuvs Auw fuv a0 €4y fuo-

Claim 8.7. E,, is injectively 3-edge-colorable, and for every injective 3-edge-coloring -y
of Euy, we have y(uwy,) = Y(vwy) = Y(Wwzw). Moreover, for any partial injective
3-edge-coloring of E,, where uw,,, vW,, and Wy,2,., are the only colored edges of E,, and
have the same color, we can extend the coloring to an injective 3-edge-coloring of E,.

Proof. Let us injectively 3-edge-color E,,. W.l.o.g., we can assume that d,, f,. is colored 1,
buvCup 1s colored 2 and @y, 2., is colored 3. We deduce that b,,e,, is colored 2, ¢y, fuy iS
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colored 1, auudy, and ay,cy, are colored 3, by,z., is colored 2 and ey, fu, is colored 1.
Hence uw,,, vw,, and w,,z,, must all be colored 1.

Now, given one same color for these three edges, one can color the rest of the gadget,
for example using the previously constructed coloring. [

If G has a proper 3-edge-coloring ~, we injectively 3-edge-color G’ by assigning to
Uiy, VWyy aNd WyyZyy in G’ the color y(uv); then we extend the coloring to each E,,
using Claim 8.7.

Conversely, if G' has an injective 3-edge-coloring, then we color an edge uv of G with
the color of the edge uw,, (or vw,,) of G'. This coloring is proper since Claim 8.7 insures
that ww,, and vw,, have the same color. Indeed if uz is an edge adjacent to uwv, then
UW,, and zw,, have different colors.

We now show how to make the construction cubic. We create the cubic graph G” as
follows. First, take three disjoint copies G, G, and G5 of G’. To differentiate the vertices
of each copy, we add an exponent to the name of the vertex corresponding to the number
of the copy. For example, vertex w,, of G; will be noted w!,. For each edge uv of G,
connect Gy, Gy and G5 via K3 with vertex classes {ru,} and {Suy, Duvs quo} as follows.
The vertex S, (resp. puy, Tesp. ¢u) is adjacent to d3, (resp. d.,, resp. d2,), €2, (resp.
el resp. el ) and r,, (see Figure 8.2(b)). The graph G” is simply the graph where the
edge gadget is represented in Figure 8.2(b) and for each u € V(G), the three copies of u’
for i € {1,2,3} are identified.

As G is cubic, G” is triangle-free and cubic. Note that if G admits an injective 3-
edge-coloring, then in particular G’ also admits an injective 3-edge-coloring and thus by
our previous arguments, GG is properly 3-edge-colorable.

If G is properly 3-edge-colorable, then we fix such a coloring v : E(G) — {1,2,3}.
For i € {1,2,3}, we color the edges incident with w!, with the color y(uv) + i, where
the colors are considered to be taken modulo 3. Then it suffices to extend the obtained
coloring to each edge gadget (see Figure 8.2). O]

8.1.2 Proof of Theorem 8.2.2

Proof of Theorem 8.2.2. Let G be the input graph. For each vertex u of G, we replace it
by the following vertex gadget S, (see Figure 8.3). The gadget S, is made of a 9-cycle
zgxt ... xy and three other vertices y¥ (i € {0,3,6}) that will be connected to the rest
of the graph. We add the edges x{xy, bz}, xta¥, ziyy, vhys and zgyg. For any edge-
coloring v of S, we note C¥(vy) = {y(x?x;ﬁrl),y(m;‘x;il)} where i € {0, 3,6} and where
the indices are taken modulo 9.

Claim 8.8. For every injective 4-edge-coloring v of S, and for every i € {0,3,6}, the
color y(z¥y¥) belongs to the set C*(y). Moreover, C§(y) U CY¥(y) U C¥(v) = {1,2,3,4}
and there ezists a color a € {1,2,3,4} such that for all i € {0,3,6}, a € C*(Y).

Furthermore, for any choice of color for xiyl, x4yy, xgyd and sets of colors C*(7),
i € {0,3,6} verifying the previous necessary conditions, there exists an injective 4-edge-
coloring v of S, matching those choices.

Proof. Let us try to construct an injective 4-edge-coloring v of S,. Up to permuting the
colors, we assume that y(z§z}) = 1, v(zfzy) = 2 and y(zgay) = 3. Note that bz} and
z¥x¥ cannot both be colored 4, w.l.o.g. assume that y(zhz}) # 4. Hence y(ziz}) = 2
and y(z4zy) = 4. Remark that v(ztzf) # 2. Moreover z¥z¥ and xgz¥ can only receive

On various graph coloring problems page 211



8.1. NP-completeness for cubic graphs

Figure 8.3: Two vertex gadgets S, and .5, corresponding to the vertices u and v of a graph
G, connected by an edge gadget corresponding to the edge uv of G.

colors 1 or 4 and they must receive different colors. Hence ~y(ztxy) = 3, y(ahzy) = 1,
y(z¥z¥) = 4 and y(zgz¥) = 1. Now there are two ways to complete the coloring of S,,,
either y(z¥zy) = 4, v(zfx¥) = 3 and y(z¥zf) = 2 or, y(zialy) = 3, y(zfz¥) = 2 and
v(z¥xy) = 4. In both cases all properties of the first part of the claim hold (with a = 1).

Finally, note that the second of the two previous coloring options allows us to color
ziyi, i € {0,3,6} with any color among those of z¥z},, and z{'z} |, and to complete the
coloring. [ |

For every edge uv of G, we construct the following edge gadget E,, (see Figure 8.3).
First, choose y;' (resp. yj) of degree 1 among the vertices of S, (resp. S,). Create two
new adjacent vertices w,, and z,, such that Yi WY Zuw 18 & 4-cycle.

Claim 8.9. For every injective 4-edge-coloring v of G and every edge gadget E,, con-
necting y;* and y5 (i,j € {0,3,6}), we have C{(y) = Cj (7).

Furthermore, any injective 4-edge-coloring v of S, and S, such that C{(y) = C}(v)
and y(ziy;') = y(z3y;) can be extended to an injective 4-edge-coloring of Sy U Ey, U S,

u

Proof. Suppose, w.l.o.g. by Claim 8.8, that zj'z{ ;| is colored 1, zjzj | is colored 2 and
xiy is colored 1. Now w.l.o.g., yiw,, is colored 3 and y;'z,, is colored 4. This implies
that wy, 2y, is colored 2, Y Wy 18 colored 3, Y Zuw 18 colored 4, yjxy is colored 1 and
Cy() = {12,

The second part of the claim is proved by taking the previous coloring and extending
it using the second part of Claim 8.8. [ |

Let G be the cubic graph constructed from G by the above process. By Claim 8.9,
if uv is an edge connecting y;' and y§ then for any injective coloring v of G', Ci(v) =
C? () = {a,b} for some a and b. Hence this set somehow characterizes the edge gadget
E\y, we say that E,, is colored by {a,b}.

Suppose that there exists an injective 4-edge-coloring v of G’. For each edge uv of G,
we color uv depending on the coloring of E,,. When £, is colored {1,2} or {3,4} (resp.
{1,3} or {2,4}, resp. {1,4} or {2,3}) then we color uv by color 1 (resp. 2, resp. 3). We
argue that this edge-coloring, noted =, is proper. Indeed suppose it is not, then for some
vertex u, w.l.o.g., uv and ww are both colored 1. This means that the coloring of G’ is
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such that C'(y) = C}(y) or Ci*(y) N Cf(y) = @ for some i # j and 4,5 € {0,3,6}. This
contradicts Claim 8.8. Hence we get a proper 3-edge-coloring of G.

Conversely, suppose that there exists a proper 3-edge-coloring of G. In G’, we color
each edge of the form z¥y¥ by 1. If an edge uv of G is colored 1 (resp. 2, resp. 3) then
we assign the color {1,2} (resp. {1,3}, resp. {1,4}) to E,,. By Claim 8.8, this coloring
can be extended to an injective 4-edge-coloring of each S,, v € V(G). By Claim 8.9,
this injective 4-edge-coloring can be extended to each edge gadget to color the whole
graph. O

8.2 Complexity results for planar graphs

In the proof of the two results presented in Theorem 8.3, we will reduce from the following
problem.

PLANAR VERTEX 3-COLORING
Input: A planar graph G with maximum degree 4.
Question: Does G admit a proper (vertex) 3-coloring?

This problem was proven to be NP-complete in [83]. Let G be a planar graph with
maximum degree 4.

8.2.1 Proof of Theorem 8.3.1

Proof of Theorem 8.5.1. Recall that we want to construct a graph G’ with girth at least g.

For each vertex u € V(G), we construct a vertex gadget S, as follows (see Figure 8.4).
First create a cycle zjz§ . .. xj where ¢ > g and ¢ is an odd multiple of 3. To each z}' add a
single pendant neighbor ;' of degree 1. To the vertex ¥}, add two non-adjacent neighbors
w" and 2*. Create four more vertices a{, b}, ¢} and df. The vertex w" is adjacent to af
and 0} while 2" is adjacent to cf and df. Now construct a path ajay .. .ag of length g and
add to each a¥ for i < g — 1 a pendant vertex of degree 1 called a}*. Similarly we create
the vertices by ... by, 01" .. by, cf ... cp et ety and df .. dy,dyt . dyt . Finally add
a vertex " (resp. %, resp. 7%, resp. 0*) adjacent to ay (vesp. by, resp. cg, resp. dy).

Claim 8.10. For any injective 3-edge-coloring p of Su, plazat) = p(byB") = p(cgy") =
p(dyo*). We call this color p(S,). Moreover, for any choice of a color p(S,), there exists
an injective 3-edge-coloring p with these properties.

Proof. Suppose that there exists ¢ € {1, ..., ¢} such that the property P(i) = “p(ax},,) =
p(aty) # p(atzt ;)" holds (the indices are taken modulo ¢). Then P(i) holds for all
i € {1,...,¢}. Indeed, take such an i, then p(zf, ;2% ) = p(x} i) is the color {1,2,3}\
{ p(xtyl), p(x%‘:c}il)}. Hence the property holds for i 4+ 1, by induction it holds for every
i. Note that the same can be said for the property P'(i) = “p(aiz? ) = p(alyl) #
p(xixi )" Also note that if p(ziz} ) = p(aix},,) # p(zi'y;') then we have P(i + 1)
which is a contradiction because we do not have P(i).

Suppose now that for all 4, neither P(i) nor P’(i) holds. This means that the edges
incident to a vertex z; are either of the same color, or of three distinct colors. If they
have the same color, then the edges incident with z7 ; have three distinct colors, the

ones incident to xj, , have the same color, and so on. This would imply that the cycle
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Figure 8.4: Vertex gadget S, for planar subcubic graphs with girth at least ¢ (in this example
g=4and (=09).

x} ...z} is even, which is a contradiction. Moreover, if the edges incident to z}* have three
distinct colors, then the edges incident to zf,, (or zj ;) would all have the same color,
and therefore no injective 3-edge-coloring would be possible.

Thus, w.l.o.g. we can suppose that p(zizh) = p(ziy}) = 1 and p(ziz}) = 3. By
extending the coloring to the rest of S,, we can infer that p(yjw") = p(yjz") = 2,
p(w"a?) = p(w"by) = 3 and p(z¥ct) = p(z“d¥) = 3. By the same reasoning, we can
see that all the edges of S, (ignoring the edges involving one of the vertices z}) have
only one possible color which depends only on their distance to y}' and in particular
plaga) = p(by ") = p(cgr") = p(dgd").

Conversely, S, admits a coloring (see Figure 8.4 for an example). To choose a coloring
of S, having the desired color p(S,), it suffices to permute the colors in the previous
coloring. [ |

To finish the construction, for any edge uv € E(G), we add an edge "’ to G’ between
a vertex among {a*, 5%, v*, "} and a vertex among {a’, 3%,v",d"} in such a way that
the planarity of G’ is preserved. This can be done by cyclically ordering the vertices of
{a®, 5", 4", 6"} according to a planar embedding of GG, and adding the edge " between
the right pair of vertices.

Note that G’ is planar and subcubic with girth at least g.

Suppose that G’ admits an injective 3-edge-coloring p. Assign to the vertex u of G
the color p(S,). Take two adjacent vertices u and v of G. The edge e in G’ is an edge
between two vertices, one of S, and one of S,: w.l.o.g. say e*¥ = a”a". This implies that
aga® and aga” receive different colors and thus p(S,) # p(S,). Hence this coloring of G
is a proper 3-coloring.
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Figure 8.5: Vertex gadget for planar bipartite subcubic graphs with girth at least 6.

Conversely, suppose that G admits a proper 3-coloring. Let p be a partial edge-coloring
of G' with no colored edges. We choose the color p(S,) to be the color of v in G (and we
color the appropriate edges of G'). By Claim 8.10, we can extend p to each gadget S,.
Note that by the choice of p(S,), there is no conflict between edges of S, and S, when
u and v are adjacent in GG. It is left to color the edges of the form e“¥. By construction,
there are only two edges at distance 2 of e*? (and this edge does not belong to a triangle).
Hence there is at least one remaining color for e“’. After coloring theses edges, p is an
injective 3-edge-coloring of G. O

8.2.2 Proof of Theorem 8.3.2

Proof of Theorem 8.3.2. In order to prove this result, we will modify the previous con-
struction to make it bipartite (the girth condition will be lost).

First we modify S, (see Figure 8.5). Create the following gadget H. Start with a
complete graph on four vertices x1, ..., x4. For each edge z;z;, create a vertex z;; adjacent
to both x; and x; and remove the edge z;x;. To each of these vertices of degree 2, add a
pendant edge, with y;; the vertex of degree 1 adjacent to z;.

We claim that in every injective 3-edge-coloring v of H, for any ¢ # j, the vertex x;;
is incident to only one color. Suppose it is not the case, then there must exist an injective
3-edge-coloring ~ for which we have one of x1525 and 152, colored differently from x1912,
say w.l.o.g. y(z1221) = 1 and y(z12y12) = 2. We deduce that y(zox93) = v(22724) = 3,
Y(z1424) = y(x3w13) = 2, Y(23234) = 1, and there is no color available for xa3ys3, a
contradiction.

Now, take two disjoint copies of H named H{ and HY. Add an edge between the two
vertices yis ; and yj5 , and add the edge y; ;" where 3 is a new vertex. Now repeat the
construction process of 9, for g = 6 for example, as described in the previous section by
starting at the step where the vertices w" and z" are added. As we observed, the edges
incident to vertex w,, of Hy' (resp. zj,, of H3) have the same color in any injective
3-edge-coloring p. Hence, p(yi51¥ia2) = p(Yi21¥1) # p(215,1¥i51). Note that this graph
also admits an injective 3-edge-coloring (see Figure 8.5). We are in the same configuration
as in the proof of Theorem 2.1. Thus Claim 8.10 also holds for this gadget S,. Note that
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this gadget is bipartite.

The edge gadget does not change, it is still the edge ¢*’. We need to be careful with the
bipartiteness of the constructed graph. To ensure that the constructed graph is bipartite,
it suffices that all vertices y!', u € V(G), belong to the same part of the bipartition. To
that end, if there is a path of odd length between y} and yj, then w.l.o.g. this path is
yray...agata’ay . .. ajyy. If we increase the length of a sequence af ... aj in S, by 3 (and
also adding ay', aj’y; and ag',), then this path now has even length. With this trick, we
can ensure the bipartiteness of the constructed graph G’ as well as keeping Claim 8.10
true in this new setting.

Hence, as before, G admits a proper 3-coloring if and only if G’ admits an injective
3-edge-coloring. O

8.2.3 Proof of Theorem 8.4

Proof of Theorem 8.4. Let GG be a planar bipartite subcubic graph with girth at least 16.
Let A and B be the two parts of the bipartition of G. We construct the graph G4 as
follows: for each u € A, we create a vertex u in G4. For each pair of vertices u, v of
A which are at distance 2, we add an edge between u and v in G4. As G is subcubic,
a planar embedding of G also serves as a planar embedding of G4, where the edges of
G 4 follow their corresponding path of length 2 in G. Hence, G4 is a planar graph with
maximum degree at most 6. Note that, by the girth condition on G, G4 does not have
any k-cycle, for all k with 4 < k < 7. Then, by the main result from [23], the graph G 4
admits a 3-coloring 7.

We now color G as follows: each edge uv of G, where u € A and v € B, is colored
by the color y(u) in G4. We claim that this is an injective 3-edge-coloring of G. Indeed,
take any path wvwz of G. W.lo.g., assume u,w € A and v,z € B. By construction,
uw € F(G4) and thus uv and wz receive different colors. ]

8.3 Injective k-Edge-Coloring is FPT when parame-
terized by the treewidth

This section presents the proof of Theorem 8.5.

Proof of Theorem 8.5. We give a fixed-parameter tractable (FPT) algorithm parameter-
ized by the treewidth tw(G) of our input graph G. We use a nice tree decomposition
(see [130] and Section 1.1.9) of the input graph for our dynamic programming algorithm.
In our notation, the set of vertices of the graph associated with a node v of the tree,
its bag, is denoted X,. We call G, the subgraph of G induced by the subtree