
HAL Id: tel-03522406
https://theses.hal.science/tel-03522406

Submitted on 12 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On various graph coloring problems
Dimitri Lajou

To cite this version:
Dimitri Lajou. On various graph coloring problems. Data Structures and Algorithms [cs.DS]. Univer-
sité de Bordeaux, 2021. English. �NNT : 2021BORD0339�. �tel-03522406�

https://theses.hal.science/tel-03522406
https://hal.archives-ouvertes.fr

THÈSE PRÉSENTÉE
POUR OBTENIR LE GRADE DE

DOCTEUR
DE L’UNIVERSITÉ DE BORDEAUX

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET
D’INFORMATIQUE

Spécialité : INFORMATIQUE

Par Dimitri LAJOU

Sur divers problèmes de coloration de graphes
On various graph coloring problems

Sous la direction de : Hervé HOCQUARD et Éric SOPENA

Soutenue le 10 décembre 2021

Membres du jury :

Mme Colette JOHNEN Professeure des universités Université de Bordeaux Présidente
Mme Aline PARREAU Chargée de recherche Université Lyon 1 Examinatrice
M. Alexandre PINLOU Professeur des universités Université de Montpellier Rapporteur
M. Sagnik SEN Assistant professor IIT Dharwad Examinateur
M. Mariusz WOŹNIAK Professor AGH Kraków Rapporteur
M. Hervé HOCQUARD Maître de conférences Université de Bordeaux Directeur
M. Éric SOPENA Professeur des universités Université de Bordeaux Directeur

Titre : Sur divers problèmes de coloration de graphes.
Résumé Dans cette thèse, nous étudions des problèmes de coloration de graphe. Nous
nous intéressons à deux familles de colorations.

La première consiste à colorer des graphes, appelés graphes signés, modélisant des
relations sociales. Ceux-ci disposent de deux types d’arêtes : les arêtes positives pour
représenter l’amitié et les arêtes négatives pour l’animosité. Nous pouvons colorer des
graphes signés à travers la notion d’homomorphisme : le nombre chromatique d’un graphe
signé (G, σ) est alors le nombre minimum de sommets d’un graphe signé (H, π) tel que
(G, σ) admet un homomorphisme vers (H, π). Nous étudions la complexité des homomor-
phismes de graphes signés quand la cible est fixée et quand l’entrée peut être modifiée, et
obtenons des dichotomies P/NP-complet et FPT/W[1]-difficile. Nous obtenons des bornes
supérieures sur le nombre chromatique d’un graphe signé quand le graphe a peu de cy-
cles. Enfin, nous étudions les relations entre les homomorphismes de graphes signés et le
produit Cartésien des graphes signés.

La deuxième famille de coloration consiste à colorer les arêtes au lieu des sommets
en respectant différents critères. Nous étudions quatre types de colorations d’arêtes : la
coloration d’arêtes « packing », la coloration d’arêtes injective, la coloration AVD et les
1-2-3-étiquetages. La coloration d’arêtes « packing » est une forme de coloration propre
d’arêtes où chaque couleur a ses propres règles de conflits, par exemple, la couleur 1
pourrait obéir aux règles de la coloration propre d’arêtes tandis que la couleur 2 obéirait
aux règles de la coloration forte d’arêtes. Nous étudions cette forme de coloration sur
les graphes subcubiques en donnant des bornes supérieures sur le nombre de couleurs
nécessaires pour colorer ces graphes. Une coloration d’arêtes injective est une coloration
d’arêtes telle que pour chaque chemin de longueur 3, les deux arêtes aux extrémités du
chemin n’ont pas la même couleur. Nous déterminons la complexité de la coloration
d’arêtes injective sur plusieurs classes de graphes. Pour les colorations AVD, c’est-à-dire
les colorations propres d’arêtes où les sommets adjacents sont incidents à des ensembles
de couleurs différents, nous obtenons des bornes supérieures sur le nombre de couleurs
requises pour colorer le graphe quand le degré maximum du graphe est significativement
plus grand que son degré moyen maximum, ou quand le graphe est planaire et a un
degré maximum supérieur ou égal à 12. Finalement, nous prouvons la 1-2-3 Conjecture
multiplicative : pour tout graphe connexe (non réduit à une arête), on peut colorer ses
arêtes avec les couleurs 1, 2 et 3 de telle manière que la coloration (de sommets) obtenue
en associant à un sommet le produit des couleurs de ses arêtes incidentes est propre.
Mots-clés graphe, coloration, graphe signé, homomorphisme, coloration d’arêtes.

Title: On various graph coloring problems.
Abstract In this thesis, we study some graph coloring problems. We are interested in
two families of colorings.

The first one consists in coloring graphs, called signed graphs, modeling social links.
These signed graphs dispose of two types of edges: positive edges to represent friendship
and negative edges for animosity. Coloring signed graphs is done through the notion of
homomorphism: the chromatic number of a signed graph (G, σ) is the smallest order of a
signed graph (H, π) to which (G, σ) admits a homomorphism. We study the complexity
of homomorphisms of signed graphs when the target graph is fixed and when the input
can be modified, giving P/NP-complete dichotomies and FPT/W[1]-hard dichotomies. We
also present bounds on the chromatic number of signed graphs when the input graph has
few cycles. Finally, we study the relationship between homomorphisms of signed graphs

On various graph coloring problems page 3

and the Cartesian product of signed graphs.
The second family of colorings consists in coloring edges, instead of vertices, accord-

ing to some constraints. We study four kinds of edge-colorings notions: packing edge-
colorings, injective edge-colorings, AVD colorings and 1-2-3-labellings. Packing edge-
coloring is a form of proper edge-coloring where each color has its own conflict rule, for
example, color 1 may behave according to the rules of proper edge-colorings while color 2
behave according to the rules of strong edge-colorings. We study packing edge-coloring
on subcubic graphs and provide bounds on the number of colors necessary to color the
graphs. An injective edge-coloring is an edge-coloring where for any path of length 3,
the two non-internal edges of the path receive different colors. We determine the com-
plexity of injective edge-coloring for some classes of graphs. For AVD colorings, i.e. a
proper edge-coloring where adjacent vertices are incident with different sets of colors, we
obtain bounds on the number of colors required to color the graph when the graph has
its maximum degree significantly greater than its maximum average degree and when the
graph is planar and has maximum degree at least 12. Finally, we prove the Multiplica-
tive 1-2-3 Conjecture, i.e. that every connected graph (which is not just an edge) can be
edge-labelled with labels 1, 2 and 3 so that the coloring of G, obtained by associating
with each vertex the product of the labels on edges incident with u, is proper.
Keywords graph, coloring, signed graph, homomorphism, edge-coloring.

page 4 Dimitri Lajou

Remerciements

Cette thèse n’aurait pas été possible sans le soutien de plusieurs personnes.
J’aimerais tout d’abord remercier ma famille. Merci maman pour ton soutien moral,

merci papa pour tes nombreux conseils et pour les nombreuses fois où tu es venu me
dépanner, merci tonton Francis pour ton naturel et ta gentillesse. Merci aussi à toute ma
famille maternelle (oncles, tantes, cousins...) que je ne peux malheureusement pas citer
un à un au risque de doubler la taille de cette thèse.

J’aimerais ensuite remercier énormément Hervé et Éric pour le soutien que vous m’avez
apporté pendant ces dernières années. Merci de m’avoir laissé beaucoup de liberté dans
mon travail et notamment sur le choix des sujets abordés. Vous avez été très patients
avec moi et avez relu beaucoup de preuves pas forcement très bien écrites et j’aime croire
que je me suis amélioré sur ce point-là grâce à vos nombreuses remarques.

J’aimerais ensuite remercier Mariusz et Alexandre d’avoir rapportés ma thèse. Compte
tenu du nombre de pages, cela n’a pas dû être une tâche facile. J’aimerais ensuite remercier
aussi les autres membres du jury: Colette, Aline et Sagnik. Ce fut un plaisir pour moi
d’avoir pu faire ma soutenance en physique, et je remercie donc tous les membres du jury
d’avoir fait le déplacement.

I would also like to thank all of my co-authors without which I would not have been
able to produce this thesis. Thanks Borut for your hospitality, I hope that I will be able
to work with you in Slovenia once again. Thanks to my Indian co-authors: Dibyayan,
Sandip, Harmender and Bodhayan. Thanks also to Jan and Nikola, it was cool to work
with you. Merci encore à Hervé et Éric. Deux grands mercis à Florent et Julien, j’ai
eu l’occasion de travailler avec vous deux sur différents projets et ce fut toujours un
plaisir. Merci aussi à Marthe, Nicolas, Valia, Théo et Jonathan avec qui j’ai travaillé plus
ponctuellement.

J’aimerais aussi remercier tous les collègues de l’équipe CombAlgo ainsi que ceux de
l’IUT avec qui j’ai eu l’occasion de préparer des cours. Un remerciement tout particulier
à tous les autres doctorants (et ceux qui sont devenus docteurs entre-temps) de l’équipe
pour la bonne ambiance qui règne au labo.

Enfin, je voudrais tout particulièrement remercier mes collègues du bureau 325 sans
qui l’expérience n’aurait pas été si agréable. Merci à Théo pour avoir montré l’exemple
et pour ta bonne humeur. Merci à Antonin pour tes innombrables conseils que ce soit sur
l’enseignement ou pour naviguer dans les différents dédales administratifs. Merci à Alex
pour avoir animé le bureau et pour les innombrables discussions que nous avons eues.
Merci à Tobias pour ta prise d’initiative pour nous réunir en dehors du travail sur CS
et pour m’avoir invité à participer à ta campagne sur D&D. Au passage merci à Jason,
Benoît, Uli et Yumei pour la bonne humeur lors de ces soirées jeu de rôle. Merci aussi
aux autres personnes du bureau qui ont défilées au fil des ans : Victor, Ibrahim, Sabri,
Rémi, Théo M. ...

On various graph coloring problems page 5

Merci aussi à tous ceux que j’ai oublié de mentionner explicitement mais qui ont aussi
été une part importante de ma vie lors de ces années de thèse.

page 6 Dimitri Lajou

Contents

Contents

Introduction (en français) 9

Introduction (in english) 13

1 Preliminaries 17
1.1 Graphs: definitions, notation . 18
1.2 Colorings and Homomorphisms . 30
1.3 NP-completeness and FPT . 38
1.4 A little bit of algebra . 46

I Signed Graphs 51

2 Introduction to signed graphs 53
2.1 Key definitions . 54
2.2 Homomorphisms and coloring of signed graphs 58
2.3 Classes of cycles . 63
2.4 Complexity . 64
2.5 Similar notions and generalizations . 65

3 Complexity of edge-colored and signed graphs modification problems 67
3.1 Preliminaries . 72
3.2 Edge-colored modification problems . 77
3.3 Limited Switchings (H, π)-Coloring when H has order 2 87
3.4 Vertex Deletion Signed-(H, π)-Coloring 94
3.5 Edge Deletion Signed-(H, π)-Coloring 115
3.6 Conclusion and perspectives . 117

4 Coloring signed graphs with small cyclomatic number 119
4.1 Proofs of Theorems 4.8, 4.9 and 4.10 . 124
4.2 Proof of Theorem 4.11 and 4.12 . 130
4.3 Proof of Theorem 4.13 . 133
4.4 Perspectives . 135

5 Cartesian product of signed graphs 137
5.1 Definitions and preliminary results . 138
5.2 Cartesian products of signed graphs . 139
5.3 Chromatic number of Cartesian products of complete signed graphs and

upper bounds . 149

On various graph coloring problems page 7

Contents

5.4 Chromatic number of Cartesian products of signed cycles 153
5.5 Perspectives . 167

II Edge-coloring with constraints 169

6 Introduction 171
6.1 Distance edge-coloring . 171
6.2 Distinguishing vertices with edge-colors . 172

7 Between proper and strong edge-colorings of subcubic graphs 175
7.1 Preliminaries . 178
7.2 Proofs of Theorem 7.5.1 and Theorem 7.5.3 179
7.3 Proof of Theorem 7.5.2 . 180
7.4 Proof of Theorem 7.5.4 . 184
7.5 Further Work . 200

8 Complexity of the injective edge-coloring problem 205
8.1 NP-completeness for cubic graphs . 208
8.2 Complexity results for planar graphs . 211
8.3 Injective k-Edge-Coloring is FPT when parameterized by the treewidth214
8.4 Injective k-Edge-Coloring is NP-complete even for graphs with max-

imum degree O(
√
k) . 216

8.5 Conclusion . 218

9 Adjacent vertex-distinguishing edge coloring of graphs 221
9.1 Preliminaries . 224
9.2 Sketch of the proofs . 225
9.3 Proof of the reducibility lemmas . 229
9.4 Proof of Lemma 9.20 . 243
9.5 Discharging procedures . 252
9.6 Perspectives . 264

10 The Multiplicative 1-2-3 Conjecture 265
10.1 Proof of the product 1-2-3 Conjecture . 267
10.2 A conjecture for 2-labellings with restricted product conflicts 280
10.3 On the list variant of p-proper labellings 282
10.4 Improved bounds on ch∗

Π for some graph classes 287
10.5 Perspectives . 306

page 8 Dimitri Lajou

Introduction (en français)

Introduction (en français)

Le but de cette thèse est d’étudier certains problèmes de coloration de graphe. Un graphe
(fini) est un objet mathématique composé d’un nombre fini de sommets et d’un nombre
fini d’arêtes reliant des paires de sommets. Les graphes sont un outil d’abstraction utilisé
dans plusieurs domaines, on pourra par exemple citer : les réseaux routiers, les réseaux
de télécommunications, l’analyse de communautés, les bases de données, l’analyse ADN...

L’une des applications des graphes se trouve en psychologie sociale. Cette dernière
étudie la dynamique des relations entre diverses entités. Par exemple, les graphes peuvent
être utilisés pour décrire les relations entre les pays au cours de la première guerre mondiale
(voir [7]). Pour cela, on peut utiliser un type de graphe avec deux sortes d’arêtes, celles-ci
étant soit positives soit négatives, les arêtes positives représentant l’amitié et les arêtes
négatives représentant l’animosité. On appelle un tel graphe un graphe signé et on le note
généralement sous la forme d’un couple (G, σ). Les graphes signés ont été introduits par
Harary en 1953 [92].

Supposons que nous avons trois pays (ou personnes) A, B et C, chacun ayant des
relations avec les deux autres. Certains choix pour les relations forment des situations
stables alors que d’autres sont instables. Cela se généralise bien entendu avec plus de trois
pays (voir [7]). L’étude de ces relations nous permet de déterminer si une configuration est
stable ou instable. Les quatre situations possibles entre ces trois pays sont représentées
sur la Figure 1.

A

B

C

(a)

A

B

C

(b)

A

B

C

(c)

A

B

C

(d)

Figure 1: Les quatre relations possibles entre A, B et C. Les arêtes positives sont dessinées
avec des traits pleins bleus et les arêtes négatives sont dessinées avec des pointillés rouges.

Analysons cela en détail.

• Dans le premier cas, les trois pays sont alliés (voir Figure 1(a)). Dans ce cas, la
situation est stable. Cela ne signifie pas que les relations entre les pays ne peuvent
pas se détériorer mais qu’une détérioration des relations proviendrait de facteurs
extérieurs et ne saurait être due à des instabilités du graphe. Il y a beaucoup
d’exemples de telles situations stables. On peut par exemple évoquer l’Union Eu-
ropéenne où chaque pays membre est allié aux autres.

• Dans le deuxième cas, deux pays, disons A et C, sont alliés contre le troisième (voir
Figure 1(b)). Cette situation est elle aussi stable. C’est l’exemple classique du bloc

On various graph coloring problems page 9

Introduction (en français)

contre bloc en géopolitique. L’alliance entre le Rohan et le Gondor contre les armées
de Sauron dans Le Seigneur des anneaux : Le Retour du roi en est un exemple.

• Le troisième cas se déroule quand deux pays, disons A et C, sont ennemis alors que
le troisième, B, est allié avec chacun d’entre eux (voir Figure 1(c)). Nous avons ici
notre première situation instable : B est forcé de choisir entre son alliance avec A
et son alliance avec C. Il est aussi possible que A et C se réconcilient grâce à leur
ami commun. Dans tous les cas, la situation est condamnée à changer à cause des
relations entre A, B et C. Par exemple, dans Star Wars, épisode III : La Revanche
des Sith, Anakin a été forcé de choisir entre Palpatine et l’ordre des Jedi.

• Enfin, le quatrième cas se produit quand les trois pays sont ennemis (voir Fig-
ure 1(d)). Cette situation est elle aussi instable. En effet, comme dit le dicton :
« l’ennemi de mon ennemi est mon ami ». Il est alors très probable que deux des
trois pays s’allient contre le troisième. Par exemple, dans Game of Thrones, la
Garde de Nuit, le Peuple libre et les Marcheurs Blancs étaient en guerre les uns
contre les autres jusqu’à ce que les deux premiers s’allient contre le troisième pour
survivre.

Ces exemples, présentés avec trois pays, peuvent se généraliser à un nombre arbitraire
d’intervenants. On peut aussi vouloir considérer le cas où deux pays n’ont pas de relations
(bonnes ou mauvaises). Pour représenter ce cas, on préfère n’avoir aucune arête entre A
et B dans le graphe signé.

La notion de « stabilité », formalisée par Harary [92] sous le nom de « balance »
(équilibre), nous permet d’étudier les graphes signés. Il est intéressant de pouvoir com-
parer les graphes signés, c’est-à-dire vérifier si deux graphes signés présentent les même
structures stables et instables. De là découle la notion d’homomorphisme de graphes
signés. Informellement, il y a un homomorphisme entre deux graphes signés (G, σ) et
(H, π) si on peut envoyer les cycles stables (respectivement instables) de (G, σ) vers des
cycles stables (respectivement instables) de (H, π). Appliquer des homomorphismes nous
permet de catégoriser les sommets, c’est-à-dire regrouper les sommets d’un graphe signé
qui se comportent d’une manière similaire.

Les homomorphismes de graphes signés (et de certaines notions dérivées) est l’objet
d’étude de la première partie de cette thèse.

La seconde partie de cette thèse est dédiée aux colorations d’arêtes. L’objectif est de
colorer les arêtes d’un graphe de telle manière que deux arêtes adjacentes ne reçoivent
pas la même couleur. Ce type de coloration prend son origine dans des problèmes de
télécommunications : les sommets représentent des tours radio, les arêtes des canaux de
communication entre les tours et les couleurs représentent les fréquences utilisées pour
communiquer. Dans ce contexte, les contraintes sur les couleurs des arêtes adjacentes
peuvent être interprétées comme une condition nécessaire pour éviter les interférences
entre deux canaux de communication autour d’une tour radio. Le célèbre Théorème de
Vizing [184] nous assure que ∆(G) + 1 couleurs suffisent pour colorer n’importe quel
graphe G, où ∆(G) représente le degré maximum du graphe G (i.e. le maximum, pris sur
tous les sommets u de G, du nombre d’arêtes incidentes à u).

Nous sommes intéressé par plusieurs généralisations de ce problème. Chaque chapitre
de cette seconde partie est consacré à une notion particulière de coloration d’arêtes. Ces
généralisations sont de deux types : soit les conditions interdisant que deux arêtes aient
la même couleur sont modifiées; soit on souhaite que la coloration d’arêtes nous apporte

page 10 Dimitri Lajou

Introduction (en français)

des propriétés plus fortes. Le premier type de généralisation est plutôt simple à décrire :
on augmente juste le nombre de contraintes entre les couleurs d’arêtes. Par exemple, si on
impose que deux arêtes à distance au plus 2 aient des couleurs différentes alors on parle
de coloration forte d’arêtes. Dans la deuxième famille de colorations que nous étudions,
chaque sommet du graphe est associé à une couleur calculée à partir des couleurs de ses
arêtes incidentes. Le but est de colorer les arêtes de telle manière que la coloration des
sommets soit propre (i.e. les sommets adjacents reçoivent des couleurs différentes). Dans
ce cas, on parle de colorations distinguantes.

Organisation du manuscrit
Le chapitre 1 contient des pré-requis. La plupart des concepts introduits dans ce chapitre
sont nécessaires à la compréhension de cette thèse même s’ils n’en sont pas les objets
d’étude. En particulier, plusieurs définitions classiques de théorie des graphes et de com-
plexité y sont présentées.

La première partie de cette thèse « Partie I: Graphes signés » compte quatre chapitres.
Le Chapitre 2 présente les graphes signés et formalise plusieurs notions qui leur sont

associées. La plupart des définitions sur les graphes signés sont données dans ce chapitre.
Dans le Chapitre 3, nous étudions la complexité et la complexité paramétrée de cer-

tains problèmes concernant les homomorphismes de graphes signés. En particulier, nous
répondons à des questions du type : « Combien de sommets/arêtes doit-on enlever à
(G, σ) pour qu’il admette un homomorphisme vers (H, π) ». Nous nous intéressons tout
particulièrement aux cas où le graphe signé (H, π) est petit et fixé. Dans ces cas-là,
admettre un homomorphisme vers (H, π) peut souvent être traduit en une propriété sur
le graphe signé donné en entrée. De plus, nous considérons ces questions pour deux
types d’homomorphismes de graphes signés différents et nous prouvons des dichotomies
de complexité dans chacun des cas.

Le Chapitre 4 est consacré à l’étude du lien entre le nombre chromatique d’un graphe
signé et son nombre de cycles à travers un paramètre appelé le nombre cyclomatique du
graphe. Le nombre cyclomatique d’un graphe G est égal au nombre d’arêtes qu’il faut
retirer à G pour enlever tous les cycles du graphe. Nous donnons des bornes supérieures
sur diverses notions de nombres chromatiques d’un graphe signé (en incluant des versions
liste), qui sont linéaires en le nombre cyclomatique du graphe.

Dans le Chapitre 5, nous étudions l’impact du produit Cartésien sur les graphes signés.
Le produit Cartésien des graphes signés est une opération qui prend en entrée deux (ou
plusieurs) graphes signés et en crée un nouveau qui est le produit de chacun des facteurs
donnés en entrée. Comme n’importe quel produit, nous pouvons nous intéresser à ses
propriétés algébriques, et en particulier nous pouvons nous demander si l’on peut écrire
n’importe quel graphe signé sous la forme d’un unique produit de facteurs premiers (i.e.
des facteurs qui ne sont pas eux-mêmes le produit de graphes signés plus petits). Nous
démontrons non seulement un théorème de factorisation unique en facteurs premiers mais
nous donnons aussi un algorithme permettant de trouver cette factorisation en temps
linéaire. Nous étudions aussi les liens entre le produit Cartésien et le nombre chromatique
des graphes signés. Nous calculons le nombre chromatique de certains produits et nous
en déduisons des bornes supérieures sur le nombre chromatique d’un produit en fonction
des nombres chromatiques de ses facteurs.

On various graph coloring problems page 11

Introduction (en français)

La deuxième partie de cette thèse « Partie II: Coloration d’arête avec contraintes »
compte cinq chapitres.

Le premier chapitre, Chapitre 6, contient une brève introduction aux différentes no-
tions de coloration d’arêtes qui sont étudiées dans les chapitres suivants.

Dans le Chapitre 7, nous étudions un compromis entre la coloration propre d’arêtes
et la coloration forte d’arêtes sur les graphes subcubiques. Étant donné un entier t,
nous donnons une borne supérieure sur le nombre de couleurs requis pour avoir une
coloration propre d’arêtes d’un graphe subcubique telle que deux arêtes à distance au
plus 2 ayant la même couleur soient colorées par l’une des t premières couleurs. Les t
premières couleurs fonctionnent selon les règles de la coloration propre d’arêtes alors que
les autres fonctionnent selon les règles de la coloration forte d’arêtes.

Le Chapitre 8 présente notre étude de la complexité de la coloration injective d’arêtes
pour diverses classes de graphes. Une coloration injective d’arêtes est une coloration
d’arêtes où pour chaque chemin uvwx du graphe, les arêtes uv et wx ne reçoivent pas la
même couleur. Nous montrons que calculer le nombre minimum de couleurs nécessaires
pour avoir une coloration injective d’arêtes est un problème NP-complet quand le nombre
de couleurs est petit (3 ou 4) sur des classes de graphes peu denses. Nous montrons aussi
que O(

√
∆(G)) couleurs suffisent pour que le problème soit NP-complet. Nous donnons

aussi un algorithme FPT pour tester si t couleurs suffisent ou non pour colorer un graphe,
paramétré par la largeur d’arborescence du graphe.

Dans le Chapitre 9, nous prouvons que ∆(G) + 1 couleurs suffisent pour avoir une
coloration AVD d’un graphe sous différentes conditions. Une coloration AVD est une
coloration propre d’arêtes telle que deux sommets adjacents n’aient pas le même ensemble
de couleurs sur leurs arêtes incidentes. Nous prouvons ce résultat quand le degré maximum
du graphe est significativement plus grand que son degré moyen maximum, ou quand le
graphe est planaire et a un degré maximum supérieur ou égal à 12. Ces deux résultats
reposent sur deux arguments clés : un algorithme de recoloration qui permet d’enlever
des petits sommets voisins et un argument de dénombrement qui permet d’enlever les
sommets avec beaucoup de petits voisins.

Finalement, dans le Chapitre 10, nous prouvons la 1-2-3 Conjecture multiplicative :
pour tout graphe connexe (non réduit à une arête), on peut colorer ses arêtes avec les
couleurs 1, 2 et 3 de telle manière que la coloration (de sommets) obtenue en associant
à un sommet le produit des couleurs de ses arêtes incidentes est propre. Nous proposons
aussi une conjecture plus faible dans le cas où nous n’avons que deux couleurs pour les
arêtes. Enfin, nous étudions la version liste de ce problème dans le cas général ou pour
certaines classes de graphes particulières.

page 12 Dimitri Lajou

Introduction (in english)

Introduction (in English)

The goal of this thesis is to study some graph coloring problems. A graph is a mathematical
structure composed of a finite number of vertices and a finite number of edges joining pairs
of vertices. Graphs are an abstract representation which can be used in diverse domains,
for example: road networks, communication networks, communities analysis, databases,
DNA analysis, etc.

An interesting use of graphs is in the domain of social psychology which studies the
dynamic of relationships between entities. For example, in [7], they use graphs to describe
the relationships between countries involved in World War I. For this they use a graph
model where edges can be of two types: positive and negative. Positive edges represent
friendship while negative edges represent enmity. Such a graph is called a signed graph
and is generally noted as an ordered pair (G, σ). Signed graphs were introduced by Harary
in [92].

The main ideas behind this concept are as follows. Suppose that you have three
countries (or persons) A, B and C, having relationships with each other. Then some
situations can be characterized as stable while others can be characterized as unstable.
This of course generalizes with more than three countries (see [7]). Figure 2 represents
the four possible situations between our three countries.

A

B

C

(a)

A

B

C

(b)

A

B

C

(c)

A

B

C

(d)

Figure 2: The four possible relationship situations between A, B and C. Positive edges are
drawn with full blue lines while negative edges are drawn with dashed red lines.

Let us go into more details.

• The first possible case is when the three countries are all friends (See Figure 2(a)).
In this case, the situation is stable. This does not imply that it cannot change
but that a change in the relationships does not originate from instabilities in the
graph. Such examples of this stable relationship are numerous, for example, one can
consider the European Union where every member country is allied with the others.

• The second possible case is when the two countries, say A and C, are allied against
the third one (See Figure 2(b)). In this case, the situation is also stable. This is
the classical block versus block situation in geopolitics. For example, consider the
alliance between the Rohan and the Gondor against the armies of Sauron in The
Lord of the Rings: The Return of the King.

On various graph coloring problems page 13

Introduction (in english)

• The third possible case is when two countries, say A and C, are enemies while
the third one, B, is friend with both of them (See Figure 2(c)). This situation is
unstable: B is forced to choose between is friendship with A and his friendship with
C. Note that it is also possible that A and C reconciliate through their common
friend. In all cases, this situation is bound to change because of the relationships
between A, B and C. For example, in Star Wars: Episode III – Revenge of the Sith,
Anakin had to choose between Palpatine and the Jedi Order.

• The fourth possible case is when all three countries are enemies (See Figure 2(d)).
This situation is also unstable, as the saying goes: “the enemy of my enemy is my
friend”. Hence it is likely that two of the three participants will form an alliance
against the third. For example, in Game of Thrones and in A Song of Ice and Fire,
the Night’s Watch, the Free Folk and the White Walkers were in a three way war
until the two former decided to ally themselves against the latter one in order to
survive.

These examples are presented with only three vertices but can be generalized to a
greater number of vertices. More generally, it is also possible to consider that A and B
do not have a relationship of any kind: in this case, no edge is drawn between A and B
on the signed graph.

The notion of “stability” formalized by Harary [92] under the name of balanced allows
us to study signed graphs. It is interesting to be able to compare signed graphs, to see
whether two signed graphs have similar stable and unstable situations. From this follows
the notion of homomorphisms. Informally, there is a homomorphism between two signed
graphs (G, σ) and (H, π) if we can transfer stable (resp. unstable) cycles of (G, σ) to
stable (resp. unstable) cycles of (H, π). Applying homomorphisms is also a way to do
some clustering on the vertices of a signed graph, that is to say to find vertices which
behave in a similar fashion.

The study of homomorphisms of signed graphs (and of some derived notions) is the
focus of the first part of this thesis.

The second part of this thesis is devoted to edge-coloring of graphs. The goal here
is quite simple to describe. We want to color each edge of the graph so that no two
adjacent edges receive the same color. This problem takes root in telecommunications:
the vertices are radio towers, edges are communication channels between the towers and
the colors represent the frequencies used to communicate. In this context, the constraint
on the colors can be interpreted as a necessary condition to avoid interference between
two communication channels around a tower. A famous theorem by Vizing [184] shows
that ∆(G) + 1 colors are sufficient to properly edge-color any graph G, where ∆(G) is the
maximum degree of the graph G (i.e. the maximum, taken over every vertex u of G, of
the number of edges incident with u).

We are interested into several generalizations of this problem. Each chapter of the
second part is devoted to a particular notion of edge-coloring. These generalizations are
of two main types: either we change the condition that forbids two edges to be assigned the
same color; or we want to obtain stronger properties on the edge-coloring. The first type
of generalization is quite simple to describe: we just increase the number of constraints on
the edges. For example, if any two edges at distance 2 must receive different colors, then
we say our coloring is a strong edge-coloring of G. In the second family of generalizations,
each vertex is associated with a color computed from the edge-colors of its incident edges.

page 14 Dimitri Lajou

Introduction (in english)

The goal is to make this vertex coloring proper (i.e. no two adjacent vertices receive the
same color). We talk about distinguishing colorings.

Layout of the manuscript
Chapter 1 contains some prerequisite notions. Most concepts introduced in this chapter
are not the focal point of this thesis but are necessary to its understanding. In particular,
many classical graph and complexity definitions are introduced in this chapter.

The first part “Part I: Signed graphs” comprises four chapters.
Chapter 2 presents signed graphs in a more complete and formal setting. Most defi-

nitions on signed graphs are given in this chapter.
Chapter 3 contains our study of the complexity and parameterized complexity of some

problems concerning homomorphisms of signed graphs. In particular we answer questions
such as: “how many vertices/edges do we need to remove from (G, σ) so that it admits a
homomorphism to (H, π)”. We mainly focuses on cases where the signed graph (H, π) is
fixed and is quite small. In these cases, admitting a homomorphism to (H, π) can often be
translated to a simple property on the input signed graph. Moreover, we consider these
questions for two types of homomorphisms of signed graphs and prove dichotomies for
the complexity in each considered case.

In Chapter 4, we study the relationship between the chromatic number of a signed
graph and its number of cycles through a parameter called the cyclomatic number of a
graph. The cyclomatic number of a graph G is simply the number of edges that need to
be removed from G so that no cycle remains in G. We give upper bounds on multiple
notions of the chromatic number of a signed graph (including some list versions), which
are linear in the cyclomatic number of the signed graph.

Chapter 5 contains our study of the impact of the Cartesian product on signed graphs.
The Cartesian product of signed graphs is a product operation: it takes two (or more)
signed graphs and produce a new signed graph which is the product of each of the factors.
Like any product, we can question its algebraic behavior, and in particular whether we
can write any signed graph as a product of prime signed graphs (in the sense that these
prime signed graphs cannot be written as the product of smaller signed graphs). We
not only provide a unique prime factorization theorem for signed graphs but also give an
algorithm finding a prime decomposition in linear time. We also study the relationship
between the Cartesian product and the chromatic number of signed graphs. We study the
chromatic number of some products and derive upper bounds on the chromatic number
of a product depending on the chromatic numbers of each of its factors.

The second part “Part II: Edge-coloring with constraints” comprises five chapters.
Chapter 6 gives a brief introduction to the different notions of edge-coloring that are

studied in the following chapters.
In Chapter 7, we study a compromise between two types of edge-coloring on subcubic

graphs. Given a number t, we give an upper bound on the number of colors required
to properly edge-color a subcubic graph so that, except for the first t colors, any pair of
edges with the same color are at distance at least 3 in the graph. This coloring notion
is a mixture of proper edge-coloring and strong edge-coloring. Indeed, the first t colors
behave according to the rules of proper edge-coloring while the remaining colors behave
according to the rules of strong edge-coloring.

On various graph coloring problems page 15

Introduction (in english)

Chapter 8 presents our study of the complexity of injective edge-coloring on various
classes of graphs. An injective edge-coloring is an edge-coloring where for any path uvwx
of the graph, the edges uv and wx do not have the same color. We show NP-completeness
when the number of colors is small (3 or 4) on some sparse classes of graph. We also
show that O(

√
∆(G)) colors are sufficient for the problem to be NP-complete. We also

provide an FPT algorithm for testing whether t colors are sufficient or not for some graph,
parameterized by the treewidth of the input graph.

In Chapter 9, we prove that ∆(G) + 1 colors are sufficient in order to have an adja-
cent vertex distinguishing (AVD) coloring a graph under sufficient conditions. An AVD
coloring is a proper edge-coloring for which no two adjacent vertices have the same set of
colors on their incident edges. We prove this result when the maximum degree ∆(G) of
a graph is significantly greater than its maximum average degree and when the graph is
planar and has maximum degree at least 12. Both results rely on two clever arguments:
a recoloring algorithm which allows us to remove small adjacent vertices and a counting
argument which allows to remove vertices with many small neighbors.

Finally in Chapter 10, we prove the Multiplicative 1-2-3 Conjecture, i.e. that every
connected graph (which is not just an edge) can be edge-colored with colors 1, 2 and 3 so
that the coloring of G, obtained by associating with each vertex the product of the colors
on edges incident with u, is proper. We also propose a weaker conjecture when only the
labels 1 and 2 are available. Finally, we study the list version of the problem for general
graphs and for particular classes of graphs.

page 16 Dimitri Lajou

Chapter 1. Preliminaries

Chapter 1

Preliminaries

This chapter presents general concepts that are necessary to the understanding of this
thesis.

In Section 1.1, we present the core concept of this thesis: graphs. We introduce
notation and present the basic definitions of Graph Theory. We also present some famous
graph parameters and important graph classes.

In Section 1.2, we present the notion of graph coloring. We first focus on vertex
coloring and its links with the notion of homomorphism. We then present other various
ways of coloring a graph.

In Section 1.3, we introduce the fundamental notions of Complexity Theory required
to understand this thesis. We most notably present the notion of NP-completeness and
the notion of parameterized complexity.

Finally, in Section 1.4, we recall some classical algebra concepts. Among the four, this
section is the least central in this thesis but it might shed some light on some particular
sections of the following chapters.

Contents
1.1 Graphs: definitions, notation 18

1.1.1 Other types of graphs . 18
1.1.2 Subgraphs and some important subgraphs 20
1.1.3 Walks . 21
1.1.4 Applications of paths: connectivity and distance in graphs . . . 23
1.1.5 Bipartite graphs . 24
1.1.6 Line graphs . 24
1.1.7 Graph classes and parameters related to the degrees of vertices 25
1.1.8 Planar graphs . 27
1.1.9 Treewidth . 29

1.2 Colorings and Homomorphisms 30
1.2.1 Vertex coloring . 31
1.2.2 Homomorphisms . 33
1.2.3 Homomorphisms on more complex graphs 34
1.2.4 Edge-coloring . 35
1.2.5 List coloring . 37

On various graph coloring problems page 17

1.1. Graphs: definitions, notation

1.3 NP-completeness and FPT . 38
1.3.1 Basics of Complexity Theory 38
1.3.2 Algorithmic representations of graphs 39
1.3.3 NP-completeness . 40
1.3.4 Parameterized complexity . 43
1.3.5 Some problems used in reductions 45

1.4 A little bit of algebra . 46
1.4.1 Well-founded ordering and two classical proof methods in Graph

Theory . 46
1.4.2 Equivalence and quotient . 47
1.4.3 Algebraic structures . 48
1.4.4 Combinatorial Nullstellensatz 49

1.1 Graphs: definitions, notation
We generally follow terminology and notation of [191].

An undirected graph G is a triplet (V (G), E(G), φ) where V (G) and E(G) are two
disjoint sets, the set of vertices and the set of edges respectively. Here φ is an incidence
relation which associate to each edge two incident vertices called its endpoints. In this
thesis, the term “graph” refers to an undirected graph.

A loop in a graph G is an edge whose endpoints are equal. We often consider graphs
without loops, called loopless graphs. If there are edges with the same endpoints u and v
in a graph G, we say that uv is a multi-edge or that the edges between u and v are multiple
edges. The multiplicity of a multi-edge uv is the number of edges incident with both u
and v. An undirected graph is simple if it does not have loops nor multiple edges. To
avoid confusion, we use the term multi-graph for a graph which can have multiple edges.
Note that most graphs in this thesis are simple.

For simplicity, we often “forget” the incidence relation of a graph when we have no
multiple edges. An edge e incident with u and v is treated as a pair {u, v}, denoted uv
for concision, where u and v are two vertices of G. An undirected graph is then noted
(V (G), E(G)) where E(G) ⊆ V (G)2. Note that we often abuse the notation (V (G), E(G))
to also refer to multi-graphs, in this case, the incidence relation is implicit.

The order of G is |V (G)| and its size is |E(G)|. A graph with no edges is an empty
graph. The graph with no vertices nor edges is the null graph G∅.

Two vertices u and v of a graph G are adjacent when uv is an edge of G. Two
edges e and e′ of a graph G are adjacent when e and e′ have a common endpoint. The
neighborhood NG(u) of a vertex u in the graph G is the set of vertices adjacent to u in G.
When the graph G is clear from the context, we note N(u) for the neighborhood of u
in G. A vertex with no neighbors is an isolated vertex.

In a loopless graph, the degree of a vertex u in G, denoted dG(u) or simply d(u), is
the number of edges incident with u. If the graph is simple then the degree of u is also
the number of neighbors of u, |N(u)|. When loops are allowed, the degree of a vertex u is
the number of times u is an endpoint of an edge of G. In other words, a loop count twice

page 18 Dimitri Lajou

Chapter 1. Preliminaries

for the degree of a vertex. A k-vertex (resp. k−-vertex , resp. k+-vertex) of G is a vertex
of degree k (resp. at most k, resp. at least k). A k-neighbor (resp. k−-neighbor , resp.
k+-neighbor) of a vertex u is a k-vertex (resp. k−-vertex , resp. k+-vertex) belonging
to N(u).

Let us see an example. Let P be the Petersen graph drawn in Figure 1.1. The graph P
has order 10 and size 15. The neighborhood of the vertex a0 is the set {b0, a2, a3}. In this
graph all vertices have degree 3.

a0

b0

a1
b1

a2

b2

a3

b3

a4
b4

Figure 1.1: A simple graph: the Petersen graph.

An isomorphism from G to H is a bijection φ from V (G) to V (H) such that for every
vertices x and y of G, xy ∈ E(G) if and only if φ(x)φ(y) ∈ E(H). In this case, we
note G = H. An automorphism of G is an isomorphism from G to G. In general, a graph
can have multiple automorphisms. In the rest of this thesis, we consider graphs up to
isomorphism (see also Section 1.4.2).

1.1.1 Other types of graphs
There are multiple ways to define a graph. These different varieties of graphs are all
dependant on the definition of E(G).

As mentioned before, depending on our definition of the set of edges, we can allow
loops and/or multiple edges in our graphs. See Figure 1.2(a) for an example of graph
with loops and multiple edges.

a b

cd

(a) A graph with loops and
multiple edges.

a b

cd

(b) A directed graph.

a b

cd

(c) An oriented graph.

Figure 1.2: Different varieties of graphs.

Another type of graphs is the notion of directed graphs, where E(G) is replaced
by A(G), the set of arcs. The set A(G) is the set of ordered pairs (instead of pairs) (u, v)

On various graph coloring problems page 19

1.1. Graphs: definitions, notation

where u and v are two vertices. An arc (u, v) can also be noted −→uv. An oriented graph is
a simple directed graph G with the extra condition that if −→uv ∈ A(G) then −→vu /∈ A(G). In
other terms an oriented graph is a directed graph where each pair of vertices can have at
most one arc between them. Oriented graphs can be obtained from a simple undirected
graph by choosing an orientation for each edge. See Figure 1.2(b) and Figure 1.2(c) for
examples of such graphs. Of course it is possible to combine the notion of directed graphs
with the notion of loops and multi-edges. For a directed graph G, the indegree of a ver-
tex u is the number of arcs of the form −→vu in A(G), and the outdegree of a vertex u is the
number of arcs of the form −→uv in A(G).

A mixed graph G is a triplet (V (G), E(G), A(G)) where V (G) is the set of vertices
of G, E(G) is the set of edges of G and A(G) is the set of arcs of G. Informally, a mixed
graph is a graph with edges and arcs. One can consider such graphs to be simple, in which
case they have no loops and for every two vertices u and v of G, G does not contain both
the edge uv and the arc −→uv.

a b

cd

(a) A 3-edge-colored graph.

a b

cd

(b) A (2,2)-mixed graph.

Figure 1.3: Graphs with multiple edge/arc types.

A k-edge-colored graph is a graph G where the set of edges is partitioned into k
sets E1(G), . . . , Ek(G). We note such a graph (V (G), E1(G), . . . , Ek(G)). The set Ei(G)
is the set of edges colored i in G. See Figure 1.3(a) for an example of a 3-edge-colored
graph. Note that we will mainly work with 2-edge-colored graphs in this thesis. By
default, the two colors used in a 2-edge-colored graph will be the color blue and the color
red.

A (m,n)-mixed graph is a graph G with m arc types and n edge types. We note such
a graph (V (G), A1(G), . . . , Am(G), E1(G), . . . , En(G)). The set Ei(G) is the set of edges
colored i in G and the set Aj(G) is the set of arcs colored j in G. See Figure 1.3(b)
for an example of a (2, 2)-mixed graph. Note that a (0, 1)-mixed graph is an undirected
graph, a (1, 0)-mixed graph is a directed graph, a (1, 1)-mixed graph is a mixed graph
and a (0, k)-mixed graph is a k-edge-colored graph.

1.1.2 Subgraphs and some important subgraphs
In this section, we present the notion of subgraph.

Definition 1.1 (Subgraphs). Let H and G be two graphs. We say that H is a subgraph
of G if and only if V (H) ⊆ V (G) and E(H) ⊆ E(G). Let X be a subset of vertices of G,
the induced subgraph G[X] of G is the subgraph of G on vertex set X and where, for every
two vertices u and v of X, uv ∈ E(G[X]) if and only if uv ∈ E(G). If H is a subgraph
of G and H ̸= G, then H is a proper subgraph of G.

page 20 Dimitri Lajou

Chapter 1. Preliminaries

The notion of subgraph is important in Graph Theory as it formalizes the notion of
“containing a particular motif”. It also allows us to focus on particular parts of a graph.
See Figure 1.4 for some examples of subgraphs.

a b

cd

e

(a) A graph G.

a b

cd

(b) A (non-induced) subgraph
of G.

a b

cd

(c) An induced subgraph of G.

Figure 1.4: A graph (a), and one of its non-induced subgraphs (b) and one of its induced
subgraphs (c).

Note that we can create subgraphs by removing edges and vertices from a graph G.

Definition 1.2 (Deleting vertices and edges). Let G be a graph and Sv (resp. Se) be a
subset of vertices (resp. edges) of G. The graph G − Sv is the subgraph of G obtained
from G by removing the vertices of Sv and the edges incident with any vertex of Sv. The
graph G− Se is the subgraph of G obtained from G by removing the edges of Se.

Let us see some important subgraphs that a graph G can contain.

Definition 1.3 (Complete graph, clique, independent set). The complete graph Kp is the
graph of order p such that for every pair of distinct vertices u and v of Kp, uv is an edge
of Kp. If H is a subgraph of G isomorphic to Kp, then we say that H is clique (of order p)
of G. An independent set of order p in a graph G is a set of p vertices which are pairwise
non-adjacent.

In some sense, a clique is the “opposite” of an independent set, the former is a subgraph
with all possible edges while the later is a subgraph with no edges. This idea can be
formalized with the notion of complement graph.

Definition 1.4 (Complement graph). Let G be a graph. The complement of G is the
graph, denoted G, defined by V (G) = V (G) and for any two distinct vertices u and v
of G, uv ∈ E(G) if and only if uv /∈ E(G). Note that the complement of G is the graph G
itself.

Formally, G has an independent set of order p if and only if G has a clique of order p.
These two notions allow us to define two graph parameters.

Definition 1.5 (clique number, independent number). The clique number of G, de-
noted ω(G), is the order of the largest clique of G. The independence number of G,
denoted α(G), is the order of the largest independent set of G.

Note that α(G) = ω(G) for every graph G. See Figure 1.5 for some examples.

On various graph coloring problems page 21

1.1. Graphs: definitions, notation

a b

cd

e

(a) A graph G.

a b

cd

e

(b) Its complementary G.

a b

cd

(c) A complete graph of or-
der 4.

Figure 1.5: A graph G with α(G) = 2 and ω(G) = 3 (a), its complement G (b) and a complete
graph of order 4 (c).

1.1.3 Walks
Another important substructure in a graph is the notion of walks which allows us to
traverse a graph.

Definition 1.6 (Walk, closed walk). A walk in a graph G is a list s0, . . . , sn of vertices
of G such that sisi+1 ∈ E(G) for every i in J0, nK. An (s0, sn)-walk is a walk whose first
vertex is s0 and whose last vertex is sn. More generally, if A and B are two sets of vertices,
then an (A,B)-walk is an (a, b)-walk for some vertices a ∈ A and b ∈ B.

A closed walk is a walk with s0 = sn. An internal vertex of a walk is a vertex of the
walk which is neither the first nor the last vertex of the walk.

The length (number of edges, counted with multiplicity) of a walk W = s0, . . . , sn
is n, and its order (number of vertices, counted with multiplicity) is n if W is a closed
walk, or n+ 1 otherwise. When no confusion is possible, we may write s0s1 . . . sn for the
sequence s0, s1, . . . , sn of a walk.

Note that a walk in G is not stricto sensu a subgraph, it is a sequence of vertices.
Among walks, paths and cycles play an important role.

Definition 1.7 (Path, cycle). If all vertices of a walk are pairwise distinct, then the walk
is a path. An (s0, sn)-path is a (s0, sn)-walk which is a path. If A and B are two sets of
vertices, then an (A,B)-path is an (a, b)-path for some vertices a ∈ A and b ∈ B. A closed
walk where all vertices are pairwise distinct, except s0 and sn, is a cycle.

We may consider the sequence of vertices s0, . . . , sk of G which is a path (resp. cycle) as
the subgraph formed by these vertices and the edges of the form sisi+1 for i ∈ J0, k − 1K.
The path of order k is noted Pk. The cycle of order k is noted Ck. An even cycle (resp.
odd cycle) is a cycle of even length (resp. odd length). A cycle of length 3 is also called a
triangle.

With the notion of cycle, we can define another important graph parameter.

Definition 1.8 (Girth). The girth of a graph G is the length of a smallest induced cycle
of G.

See Figure 1.6 for examples of a walk, a closed walk, a path and a cycle in graphs of
girth 3 and 4.

page 22 Dimitri Lajou

Chapter 1. Preliminaries

a

b

c

d

e

f

gh

ijk

ℓ

(a) A graph G of girth 3 with a path hkℓ (repre-
sented in red dotted edges) and a walk adcfgcb
(represented in blue dashed edges).

a

b

c

d

e

f

gh

ijk

ℓ

(b) A graph G of girth 4 with a cycle hjℓk (rep-
resented in red dotted edges) and a closed walk
edfgcde (represented in blue dashed edges).

Figure 1.6: Examples of a walk, a closed walk, a path and a cycle in graphs of girth 3 and 4.

1.1.4 Applications of paths: connectivity and distance in graphs
With the notion of paths (or walks), we can define the notion of connected graphs.

Definition 1.9 (Connected graph, connected component). A graph is connected if there
exists a path between u and v for every pair of vertices u and v of G. A connected
component of G is a maximal connected subgraph of G. A graph is disconnected if it has
at least two connected components. An cut-vertex is a vertex whose removal from the
graph increases the number of connected components.

A stronger notion is the notion of k-connected graphs.

Definition 1.10 (k-connected graph, connectivity). A graph is k-connected if for every
pair of vertices u and v of G, there exist k paths, with disjoint internal vertices, between u
and v. The connectivity of a graph G is the largest integer k for which G is k-connected.
A 2-connected graph is also called a biconnected graph. A k-connected component of G is
a maximal k-connected subgraph of G.

See Figure 1.7 for some examples of connectivities.

(a) A disconnected graph with
two connected components.

(b) A 1-connected graph with
one cut-vertex and two 2-
connected components.

(c) A 2-connected graph.

Figure 1.7: Graphs with different connectivities.

Definition 1.11 (Edge cut). For a graph G and X, Y ⊆ V (G), let us note E(X, Y) for
the set of edges with one endpoint in X and the other endpoint in Y . An edge cut is an
edge set of the form E(X, V (G) \X).

Note that for every graph G, if X is a proper non-empty subset of V (G) (i.e. ∅ ̸=
X ⊊ V (G)) then the graph G− E(X, V (G) \X) is disconnected.

Another useful application of paths is the notion of distance.

On various graph coloring problems page 23

1.1. Graphs: definitions, notation

Definition 1.12 (Distance). Let u and v be two vertices of G. The distance between u
and v, denoted dG(u, v) is the length of a shortest path connecting u and v. If there is no
path between u and v, then dG(u, v) = +∞. When the context is clear, we note d(u, v)
instead of dG(u, v).

From this notion, we can define the concept of graph powers.

Definition 1.13 (Graph power). Let G be a graph and k be an integer. The k-th power
of G, denoted Gk, is the graph with vertex set V (G) in which two vertices are adjacent if
and only if they are at distance at most k. The graph G2 is also called the square of G.

In particular, G0 is an independent set and G1 = G. See Figure 1.8 for one example
of distance between vertices and one example of square graph.

a b c

d e

f

(a) A graph G.

a b c

d e

f

(b) The graph G2.
a b c d e f

a 0 1 2 3 4 3
b 1 0 1 2 3 2
c 2 1 0 1 2 1
d 3 2 1 0 1 2
e 4 3 2 1 0 1
f 3 2 1 2 1 0

(c) The distances in the graph G.

Figure 1.8: Example of distances in a graph and its square graph.

1.1.5 Bipartite graphs
The notion of cycle help us characterize one of the most studied class of graph: bipartite
graphs.

Definition 1.14 (Bipartite graph, bipartite complete graph). A graph G is bipartite if
we can partition V (G) into A ⊎ B (where ⊎ is the disjoint union operation) such that
each edge xy of G has one endpoint in A and one endpoint in B. In particular, bipartite
graphs are exactly graphs without odd cycles.

The complete bipartite graph Kp,q is the graph composed of two sets of vertices: A of
size p and B of size q. The sets A and B are independent sets and for every u ∈ A and
every v ∈ B, uv ∈ E(Kp,q).

See Figure 1.9 for two examples of bipartite graphs.

1.1.6 Line graphs
Let us continue with one more type of graph constructed from a graph G, the line graph,
which is the graph of relationship between the edges of G.

page 24 Dimitri Lajou

Chapter 1. Preliminaries

(a) A bipartite graph. (b) The bipartite graph K4,3.

Figure 1.9: Examples of bipartite graphs. For both graphs, the set of vertices is partitioned
into the set of white vertices and the set of black vertices.

Definition 1.15 (Line graph). The line graph L(G) of a graph G is the graph whose
vertex set is the set of edges of G and for which two vertices of L(G) (i.e. two edges of G)
are adjacent in L(G) if and only if they are adjacent as edges in G. The degree of an
edge e of G is the degree of the vertex corresponding to e in L(G). Alternatively, it is the
number of edges adjacent to e in G.

See Figure 1.10 for an example of a line graph.

Figure 1.10: The line graph (represented in red) of the Petersen graph (represented in black).

We can also define a notion of distance between edges of a graph G using L(G).

Definition 1.16 (Distance of edges). Let e and e′ be two edges of G. The distance
between e and e′, denoted dG(e, e′) is the length of a shortest path connecting e and e′

in the line graph L(G). If there is no path between e and e′, then dG(e, e′) = +∞. The
distance between e and e′ can also be defined as the smallest number of vertices of a path
v1, . . . , vk of G such that v1 ∈ e and vk ∈ e′.

Note that the distance between two edges e and e′ of a graph G could also have been
defined as the minimum of dG(a, b) for a ∈ e and b ∈ e′.

1.1.7 Graph classes and parameters related to the degrees of
vertices

Let us start by presenting some important graph parameters.

On various graph coloring problems page 25

1.1. Graphs: definitions, notation

Definition 1.17 (Minimum degree, maximum degree). Let G be a graph. The minimum
degree of G, denoted δ(G), is the minimum of the degrees d(u) where u is a vertex of G.
The maximum degree of G, denoted ∆(G), is the maximum of the degrees d(u) where u
is a vertex of G.

For example, the minimum degree of a path is 1 while the maximum degree of a path
of length at least 2 is 2. The Petersen graph (see Figure 1.1) has minimum degree and
maximum degree 3.

The notion of degree can help us characterize some graph classes.

Definition 1.18 (Regular graphs). A graph is regular if all of its vertices have the same
degree: δ(G) = ∆(G). A 3-regular graph is a cubic graph. A graph G with ∆(G) ≤ 3 is
a subcubic graph.

Another important class is the following one.

Definition 1.19 (Degeneracy). A graph G is d-degenerate if all of its subgraphs contain
a vertex of degree at most d.

A particular class of degenerated graphs is the class of forests.

Definition 1.20 (Forests and trees). A forest F is a 1-degenerate graph. Alternatively,
a forest is an acyclic graph (i.e. a graph with no cycle). A tree is a connected forest. A
leaf of a forest is a vertex of degree 1. A subgraph of a graph G which is isomorphic to a
forest (resp. to a tree) is a subforest of G (resp. a subtree of G).

A important type of subforest is the following one.

Definition 1.21 (Spanning forest, spanning tree). Let G be a graph (resp. a connected
graph). A spanning forest is a subforest of G on vertex set V (G) which has the same
number of connected components as G. A spanning tree is a spanning forest of a connected
graph.

See Figure 1.11 for an example of spanning tree.

Figure 1.11: A graph G and one of its spanning trees represented with red dashed edges.

Another notion related to the degree is the notion of average degree.

Definition 1.22 (Average degree, maximum average degree). The average degree of a
graph G, denoted ad(G), is the average of the degrees of the vertices of G:

ad(G) = 2 |E(G)|
|V (G)|

The maximum average degree of a graph G, denoted mad(G), is the maximum of ad(H)
taken over all subgraphs H of G.

page 26 Dimitri Lajou

Chapter 1. Preliminaries

The notion of average degree allows us to determine whether a graph is dense or not.
If ad(G) = o(|V (G)|), then the graph G is sparse, otherwise it is dense.

Definition 1.23 (Hereditary property, hereditary class). A graph property is hereditary
if for every G which verifies the property, the property is true for all subgraphs of G. A
graph class is hereditary if for every G in the class, all subgraphs of G also belong to the
class.

Note that the average degree is not hereditary, for example even if the average degree
of the graph composed of a clique of order p and (p − 1)2 isolated vertices has average
degree 1, it contains a subgraph of average degree p − 1. This is why the notion of
maximum average degree is important: an upper bound on mad(G) is also valid for the
maximum average degree of any subgraph of G. See Figure 1.12 for an example of these
parameters.

Figure 1.12: A graph G of minimum degree 1, maximum degree 5, average degree 10
3 and

maximum average degree 11
3 . The subgraph of G achieving an average degree of 11

3 is represented
with red dashed edges.

Note that a d-degenerate graph G has at most dn edges and thus has average degree
at most 2d. Moreover, the class of d-degenerate graphs is hereditary, hence if G is d-
degenerate, then mad(G) ≤ 2d. Conversely, if mad(G) < k then G is (k − 1)-degenerate.

1.1.8 Planar graphs
One particularly interesting class of graphs is the class of planar graphs. To define them,
we first need the notion of planar embedding.

Definition 1.24 (Drawing of a graph, planar embedding). A drawing M of a graph G
is a function which associate with each vertex v a coordinate M(v) in R2 and which
associate with each edge uv an injective continuous function M(uv) : [0, 1] → R2 such
that {M(0),M(1)} = {M(u),M(v)}.

Moreover, the coordinates of the vertices are distinct, and if uv is an edge and w is
a vertex different from u and v, then M(w) does not belong to the embedding of the
edge uv. Finally, for every two edges e1 and e2 and every two real numbers t1 and t2
with 0 < t1 < 1 and 0 < t2 < 1, if M(e1)(t1) = M(e2)(t2) then this point is a crossing.

A planar embedding is a drawing of a graph without crossings.

Definition 1.25 (Planar graph). A planar graph is a graph G which admits a planar
embedding M . A plane graph is a planar graph G with a particular planar embedding M
of G.

On various graph coloring problems page 27

1.1. Graphs: definitions, notation

See Figure 1.13 for an example of a planar graph. From Figure 1.13, one can see that
a planar graph may be drawn on the plane with crossings. Moreover, note that a planar
graph can have multiple non-topologically equivalent planar embeddings. For example,
in Figure 1.13(c), placing the vertex e in between a and b yield another planar embedding
which is not topologically equivalent to the one in the figure.

(a) A planar graph: K4 ... (b) ... and the same graph drawn with a planar
embedding.

a

b

c

d

e

f

gh

ijk

ℓ

(c) Another planar graph.

Figure 1.13: Two planar graphs.

Of course, not all graphs are planar. Two minimal (for the subgraph relation) non-
planar graphs are K5 and K3,3 (see Figure 1.14).

(a) K5. (b) K3,3.

Figure 1.14: Two non-planar graphs.

In fact, these two graphs are essential to the study of planar graphs. A subdivision of
a graph G is a graph obtained from G by replacing the edges of G by arbitrary paths of
length at least 1.

Theorem 1.26 (Kuratowski’s Theorem [135]). A graph is planar if and only if it does
not contain a subgraph which is a subdivision of K5 or K3,3.

Also note that it is possible to determine in time O(|E(G)|) whether G is planar or
not thanks to Kuratowski’s Theorem [194].

page 28 Dimitri Lajou

Chapter 1. Preliminaries

Definition 1.27 (Face). Let G be a planar graph together with a planar embedding M .
A face of G in M is a maximal connected region of the plane which does not contain
points of the embedding (i.e. no image of the vertices nor the curves which represent the
edges). The outer face is the only unbounded face of G in M . Let us note F (G,M) the
set of faces of G in M .

A face f is incident with a vertex v (resp. an edge e) if and only if M(v) (resp. the
image of M(e)) belongs to (resp. is included in) the boundary of F , i.e. M(v) (resp. the
image of M(e)) belongs to (resp. is included in) the closure of F . Two faces are adjacent
if and only if they are incident with a common edge e. The length or degree of a face f ,
denoted d(f), is the number of edges incident with f counted with multiplicity (i.e. if an
edge is incident with only one face, we count this edge twice for this face). We often note
a face by the ordered list of its vertices.

The graph in Figure 1.13(c) has eight faces: abcd, adℓ, cdf , cgf , bcghbi, abhjℓ, ℓjhk
and the unbounded face ℓkhgfded.

A well known property of planar graphs is given by Euler’s formula, which connects
the number of vertices, the number of edges and the number of faces of a graph.

Theorem 1.28 (Euler’s Formula). Let G be a planar graph with a planar embedding M .
We have:

|V (G)| − |E(G)|+ |F (G,M)| = 2.
In particular the number of faces of G in M does not depends on the planar embedding M .

This result can easily be shown by induction on the number of vertices. By using the
fact that ∑v∈V (G) d(v) = 2 |E(G)| = ∑

f∈F (G,M) d(f), one can note that Euler’s Formula
is equivalent to the following identity:∑

v∈V (G)
(d(v)− 6) +

∑
f∈F (G,M)

2(d(f)− 3) = −12. (1.1)

A classical way to obtain contradictions on planar graphs is to suppose the existence of
a planar graph verifying some property and then showing that this planar graph does not
follow Euler’s Formula. This implies that no planar graph verifies the supposed property.

Note that Euler’s Formula give a relationship between the girth and the maximum
average degree of a planar graph when observing that 2 |E(G)| ≥ g |F (G,M)|.

Proposition 1.29. If G is a planar graph with girth g then mad(G) < 2g
g−2 .

Also note that Equation (1.1) implies that a simple planar graph is 5-degenerate.

1.1.9 Treewidth
Another important graph parameter of Graph Theory that we use in the context of
parameterized complexity (see Section 1.3), is the notion of treewidth.

Definition 1.30 (Rooted tree). A rooted tree is a tree T where we distinguish one vertex
called the root of T . In a rooted tree, if uv is an edge and d(r, u) < d(r, v), then we say
that u is the parent of v in T , or that v is the child of u in T . A vertex of a rooted tree
is often called a node. The subtree of T rooted at u is the rooted tree obtained from T by
removing the edge between u and its parent and keeping only the vertices which are in
the same connected components as u.

On various graph coloring problems page 29

1.1. Graphs: definitions, notation

The notion of treewidth is defined as follows.

Definition 1.31 (Tree decomposition, treewidth). A tree decomposition of a graph G is a
pair T = (T, (Xu)u∈V (T)) where T is a rooted tree and where, for every node u of T , Xu is
a subset of V (G) associated with u, called the bag of u, verifying the following properties:

1. for every vertex v of G, there is a node u of T such that v ∈ Xu,
2. for every vertex v of G, the set of nodes whose bag contains v induces a subtree

of T ,
3. for every edge vw of G, there is a node u whose bag contains both v and w.

The width w(T) of the tree decomposition T is the largest size of a bag Xu, for u ∈ V (T),
minus 1:

w(T) = max
u∈V (T)

|Xu| − 1.

The treewidth tw(G) of a graph G is the smallest width of a tree decomposition of G.

See Figure 1.15 for an example of a tree decomposition.

a

b

c

d

e

f

gh

ijk

ℓ

(a) A graph G.

{b, d, g, h}

{b, c, d, g}{a, b, d, h}

{c, d, f, g}{b, i}

{d, e}

{a, d, h, ℓ}

{h, k, ℓ}{h, j, ℓ}

(b) A tree decomposition of G of width 3.

Figure 1.15: A graph and a tree decomposition of this graph.

Let us see some examples: a forest F has treewidth 1, the complete graph Kp has
treewidth p− 1 and a cycle has treewidth 2.

Definition 1.32 (Grid). A gridGn,m is a graph on nm vertices (vi,j)1≤i≤n, 1≤j≤m where vi,j
and vk,ℓ are adjacent if and only if i = k and |j − ℓ| = 1, or j = ℓ and |i− k| = 1.

This famous theorem from Robertson and Seymour shows that planar graphs have
unbounded treewidth.

Theorem 1.33 ([167]). For every integer k, there is a grid G with tw(G) > k.

One can add constraints to the tree decomposition to make it easier to work with.
Nice tree decompositions [130] are a well-known tool for designing algorithms on graphs
of bounded treewidth using dynamic programming.

Definition 1.34 (Nice tree decomposition). A nice tree decomposition of a graph G is a
tree decomposition T , rooted at a node Root. Each node of T is of one of the following
types.

page 30 Dimitri Lajou

Chapter 1. Preliminaries

• A join node has exactly two children, with the same bags as their parent join node.
• An introduce node has a unique child and contains exactly one more vertex in its

bag than its child’s bag.
• A forget node also has a unique child, but the forget node’s bag has exactly one less

vertex than its child’s bag.
• A leaf node is a leaf of the tree and contains no vertices.

This type of decomposition can be obtained from a tree decomposition in polynomial
time and will be useful in Chapter 8.

1.2 Colorings and Homomorphisms
Each chapter of this thesis will revolve around the idea of coloring graphs. Depending on
the type of graphs, we may define multiple notions of coloring. In this section, we first
present the classical notion of vertex coloring, and then the notion of homomorphism of
graphs, which gives another point of view on vertex coloring. Finally we describe other
classical notions of coloring: oriented coloring, vertex coloring of (n,m)-mixed graphs,
edge-coloring and list coloring.

Note that each part/chapter of this thesis focuses on a particular coloring notion which
will be described in the corresponding section.

1.2.1 Vertex coloring
Our first notion of coloring is the notion of vertex coloring.

Definition 1.35 (Vertex coloring and chromatic number). A vertex k-coloring of a
graph G is a function from V (G) to the set of colors JkK. A vertex k-coloring of a
graph G is proper if no two adjacent vertices receive the same color.

The chromatic number χ(G) of a graph G is the smallest k such that G admits a
proper vertex k-coloring.

Note that a proper vertex coloring is ill-defined on graphs with loops as a vertex is
adjacent to itself. Also note that multiple edges do not matter here: if u and v are
adjacent, then it does not matter whether there are 1, 2 or 10 edges between them for
the coloring. This is why we often only consider proper vertex coloring on simple graphs.
Also note that a simple graph G always admits a proper vertex |V (G)|-coloring, hence
the chromatic number of a simple graph is always finite.

Remark. Unless stated otherwise, in this thesis, a k-coloring always refer to a vertex
k-coloring.

Even if formally our colors are elements of JkK, when drawing a coloring we associate
with each element of JkK an RGB color. See Figure 1.16 for an example of a proper vertex
3-coloring. The proper vertex 3-coloring in Figure 1.16 implies that the chromatic number
of the Petersen graph is at most 3.

Let us collect some easy facts on the chromatic number.

Proposition 1.36 (Folklore). Let G be a graph. The following statements are true.

On various graph coloring problems page 31

1.2. Colorings and Homomorphisms

1

2

2
1

2

3

3

2

3
1

Figure 1.16: A proper vertex 3-coloring of the Petersen graph.

1. The graph G is an empty graph if and only if χ(G) = 1,
2. the graph G is bipartite if and only if χ(G) ≤ 2,
3. if G is a forest or an even cycle, then χ(G) = 2,
4. if G is an odd cycle, then χ(G) = 3,
5. if H is a subgraph of G, then χ(H) ≤ χ(G),
6. if G has clique number ω(G), then ω(G) ≤ χ(G),
7. if G has order p, then G is the complete graph Kp if and only if χ(G) = p,
8. if G has connected components G1, . . . , Gk, then the chromatic number of G is

the maximum of the chromatic numbers of its connected components: χ(G) =
max(χ(G1), . . . , χ(Gk)).

In particular, the previous theorem implies that the chromatic number of the Petersen
graph is 3 as it contains an odd cycle. Another way to obtain the upper bound for the
Petersen graph is to use Brook’s Theorem.
Theorem 1.37 (Brooks’ Theorem [30]). Let G be a connected graph, we have χ(G) ≤
∆(G) + 1. Moreover χ(G) = ∆(G) + 1 if and only if G is a complete graph or G is an
odd cycle.

We often like to find bounds on the chromatic number of a graph which either depend
on other graphs parameters (like Brook’s Theorem) or which are only true for particular
graphs classes. The most famous theorem in this regard is the Four-Color Theorem.
Theorem 1.38 (Four-Color Theorem [8, 9]). If G is a planar graph, then χ(G) ≤ 4.

The proof of the Four-Color Theorem is famous as it is the first proof of a major result
to be computer assisted. Indeed it relies on the verification of 1834 configurations (this
number was later reduced) which is something complicated for a human to do. It uses a
process call “discharging” that we will use in Chapter 9. See Figure 1.17 for an example
of a 4-coloring of a planar graph.

Note that it is easy to prove that six colors suffices for planar graphs as they are
5-degenerate. It is also not that hard to show that five colors suffices.

As mentioned there is a link between degeneracy and the chromatic number.
Theorem 1.39 (Folklore). If G is a d-degenerate graph, then χ(G) ≤ d+ 1.

page 32 Dimitri Lajou

Chapter 1. Preliminaries

1

2

3

4

1

2

41

142

3

Figure 1.17: A proper vertex 4-coloring of a planar graph.

1.2.2 Homomorphisms
Another point of view on proper vertex coloring is through the concept of homomorphisms.
Definition 1.40 (Homomorphism). A homomorphism from G to H is a function φ
from V (G) to V (H) such that for every x, y ∈ V (G), xy ∈ E(G) implies φ(x)φ(y) ∈ E(H).
When there is a homomorphism φ from G to H, we note φ : G −→ H or simply G −→ H.

See Figure 1.18 for an example of homomorphism.

a b c

def

g

h

i

G −→ H
1 2

34

Figure 1.18: Two graphs G and H such that G −→ H. One such homomorphism φ can be
defined as φ(a) = φ(c) = φ(g) = φ(i) = 1, φ(b) = 2, φ(e) = 3 and φ(d) = φ(f) = φ(h) = 4.

Note that one can compose homomorphisms: if G −→ H and H −→ J , then G −→ J .
Also note that a homomorphism from G to H does not need to be surjective, H can have
more vertices and edges than the image of G.

Let u and v be two non-adjacent vertices of a graph G. Identifying u and v consists
in creating the graph H from G, where V (H) = V (G) \ {u, v}∪{uv} and E(H) is the set
{wz ∈ E(G) : w, z ∈ V (G) \ {u, v}}∪{(uv, w) : w ∈ (NG(u) ∪NG(v))}. In other words,
H is the graph obtained by replacing u and v by a new vertex uv which is adjacent to
every vertex adjacent to u or v. In particular, if H is the graph obtained from G by
identifying u and v, then G −→ H and the corresponding homomorphism is surjective.
See Figure 1.19 for an example of identification.

As mentioned before, there is a deep link between the notion of homomorphism and
the notion of proper vertex coloring.
Proposition 1.41. Let G be a graph and k be an integer. The graph G admits a proper
k-coloring if and only if G −→ Kk.

The previous proposition implies that one can transform a homomorphism from G
into a coloring of G. One way to transform a coloring into a homomorphism is to succes-
sively identify vertices of the same color. This implies that we can use these two notions

On various graph coloring problems page 33

1.2. Colorings and Homomorphisms

a b c

def

g

h

i

(a) A graph G.

a b c

def

gi

h

(b) The graph H obtained from G by identifying
g and i.

Figure 1.19: Identification of vertices.

interchangeably. See Figure 1.20 for an example of a homomorphism constructed from a
coloring.

1

2

3

4

1

2

41

142

3 −→

1 2

34

Figure 1.20: The proper vertex 4-coloring of the planar graph in Figure 1.17 transformed into
a homomorphism to K4.

Definition 1.42 (H-coloring). If φ is a homomorphism from G to H, we say that φ is
a H-coloring of G. Indeed, one can see the vertices of H as colors in a vertex coloring.
Hence the chromatic number of G can also be defined as the smallest order of a simple
graph H such that G admits a H-coloring. As seen in Proposition 1.41, we can always
suppose that such a graph H is complete.

The core of a graph H is the smallest subgraph C of H such that H −→ C. A core
is a graph which is his own core. The core C of a graph H is unique but one might find
multiples copies of C in H. When trying to construct a homomorphism from G to H, it
is interesting to replace H by the core of H as G admits a homomorphism to H if and
only if it admits a homomorphism to the core of H. For example, the core of a bipartite
graph is K2. See Figure 1.21 for some examples.

1.2.3 Homomorphisms on more complex graphs
The notion of homomorphism does not limit itself to undirected graphs. In each example
below, we present the definition of a homomorphism for different varieties of graphs, in
each case, we can derive the notions of core and H-coloring as in the previous section.

First it is possible to consider homomorphisms of multi-graphs.

page 34 Dimitri Lajou

Chapter 1. Preliminaries

(a) (b)

Figure 1.21: Some graphs and their core represented in bold edges.

Definition 1.43 (Homomorphism of multi-graphs). For two multi-graphs G and H, a
homomorphism from G to H is a function φ : V (G) → V (H) such that if e ∈ E(G)
is incident with u and v then there is an edge e′ ∈ E(H) incident with φ(u) and φ(v).
When we want to distinguish the parallel edges, one might require that φ also associate
to an edge of G, incident with u and v, an edge of H among all edges incident with φ(u)
and φ(v).

Note that a graph with parallel edges is not a core, hence when trying to decide
whether a multi-graph G admits a homomorphism to another multi-graph H, it is better
to remove all but one edge of each set of parallel edges in H. Therefore, in this setting,
we do not need to distinguish the parallel edges.

For oriented and directed graphs, there is also a notion of homomorphism.

Definition 1.44 (Homomorphism of directed/oriented graphs). For two directed/oriented
graphs −→G and −→H , a homomorphism from −→G to −→H is a function φ : V (−→G)→ V (−→H) such
that if −→uv is an arc of −→G then there is an arc

−−−−−−→
φ(u)φ(v) in −→H .

This notion is particularly important for oriented colorings.

Definition 1.45 (Oriented k-coloring). An oriented k-coloring of an oriented graph −→G
is function φ from V (−→G) to JkK such that for every arc −→uv, φ(u) ̸= φ(v) and such that no
two arcs −→uv and −→xy verify φ(u) = φ(y) and φ(v) = φ(x). In other words, an oriented k-
coloring is a k-coloring in which all arcs between a vertex colored i and a vertex colored j
have the same orientation. The oriented chromatic number of −→G , denoted χo(

−→
G), is the

smallest k for which −→G admits an oriented k-coloring.

As hinted before, an oriented graph −→G admits an oriented k-coloring if and only −→G
admits a homomorphism to an oriented graph of order at most k.

Finally, we can define the notion of homomorphism for (n,m)-mixed graphs.

Definition 1.46 (Homomorphism of (n,m)-mixed graphs). Let G be a (n,m)-mixed
graph and H be a (p, q)-mixed graph. The function φ : V (G)→ V (H) is a homomophism
from G to H if and only if:

1. for every edge uv ∈ Ei(G), i ≤ n, we have p ≥ i and φ(u)φ(v) ∈ Ei(H),

2. for every arc −→uv ∈ Aj(G), j ≤ m, we have q ≥ j and
−−−−−−→
φ(u)φ(v) ∈ Aj(H).

In this case, we note G −→(n,m) H.

On various graph coloring problems page 35

1.2. Colorings and Homomorphisms

Note that, for this definition, G and H do not have to be the same kind of (n,m)-mixed
graphs, this is an abuse of terminology. This notion homomorphism can be specialized
for k-edge-colored graphs. For simplicity, we note G −→k H instead of G −→(k,0) H.

1.2.4 Edge-coloring
Our second coloring notion is the notion of edge-coloring.

Definition 1.47 (Edge-coloring and chromatic index). A k-edge-coloring of a graph G is
a function from E(G) to the set of colors JkK. A k-edge-coloring of a graph G is proper if
no two adjacent edges receive the same color.

The chromatic index χ′(G) of a graph G is the smallest k such that G admits a proper
k-edge-coloring. By definition, χ′(G) = χ(L(G)) where L(G) is the line graph of G.

See Figure 1.22 for an example of a proper 4-edge-coloring of the Petersen graph.

1
2

3

1
3

2

2

3 2

1

1

4

1

4

3

Figure 1.22: A proper 4-edge-coloring of the Petersen graph.

Note that, contrary to vertex coloring, the definition of proper edge-coloring works
perfectly for multi-graphs. Also, it is important not to confound a k-edge-colored graphG1
and a k-edge-coloring of a graph G2. In the first case, the edge-coloring is often non-proper
and is part of the structure of the graph. In the second case, the edge-coloring is something
constructed for the graph G2, it is an additional object that complements the graph but
is not part of it.

As for the chromatic number, let us see some easy facts about the chromatic index.

Proposition 1.48 (Folklore). Let G be a graph. The following statements are true.

1. If G has maximum degree ∆(G), then χ′(G) ≥ ∆(G),
2. if G is a forest or an even cycle, then χ′(G) = ∆(G),
3. if G is an odd cycle, then χ′(G) = 3,
4. if H is a subgraph of G, then χ′(H) ≤ χ′(G),
5. if G has connected components G1, . . . , Gk, then the chromatic index of G is the

maximum of the chromatic indices of its connected components:

χ′(G) = max(χ′(G1), . . . , χ′(Gk)).

page 36 Dimitri Lajou

Chapter 1. Preliminaries

In particular, the previous proposition implies that the chromatic index of the Petersen
graph is at least 3 as it contains a vertex of degree 3. In fact one can show that three
colors are not sufficient in order to properly edge-color the Petersen graph.

In Section 1.2.1, we presented Brooks’ Theorem. Note that there is a similar theorem
for edge-coloring: Vizing’s Theorem.

Theorem 1.49 (Vizing’s Theorem [184]). Let G be a simple connected graph, we have
χ′(G) ≤ ∆(G) + 1.

Note that contrary to Brooks’ Theorem, Vizing’s Theorem does not characterize the
graphs for which ∆(G) colors suffices, called class I graphs, and the graphs which re-
quire ∆(G) + 1 colors, called class II graphs. Since then, no universal criteria has been
found to determine whether a graph is class I or class II.

Remark. In the context of distinguishing labellings, an edge-coloring is also called a
labelling and an edge-color is called a label.

1.2.5 List coloring
Often we can convert a notion of coloring into its list version. Let us start with vertex
coloring.

Definition 1.50 (List coloring [66]). A k-list assignment L for a graph G is a function
which associates with each vertex of G a (finite) subset of N of size at least k. For a
list assignment L of G, a (vertex) L-coloring is a choice function c which maps every
vertex u ∈ V (G) to an element c(u) ∈ L(u). An L-coloring c is proper if and only if c is
a proper vertex coloring of G. In this case, we say that G is L-choosable.

The choosability of a graph G, denoted ch(G), is the smallest k ∈ N for which G is
L-choosable for every k-list assignment L of G. A graph of choosability k is called a
k-choosable graph.

Again note that ch(G) ≤ |V (G)| for every graph G. Also note that a proper k-coloring
is a proper L-coloring of G where L(u) = JkK for every u ∈ V (G), hence χ(G) ≤ ch(G).
Note however that the gap between χ(G) and ch(G) can be arbitrarily large.

Theorem 1.51 ([66]). For every k ∈ N, there exists a bipartite graph G with choosability
at least k.

The notion of edge coloring also has its list version.

Definition 1.52 (List edge-coloring [66]). A k-list edge-assignment L for a graph G is a
function which associates with each edge of G a (finite) subset of N of size at least k. For
a list edge assignment L of G, an L-edge-coloring is a choice function c which maps every
edge e ∈ E(G) to an element c(e) ∈ L(e). An L-edge-coloring c is proper if and only if c
is a proper edge-coloring of G. In this case, we say that G is L-edge-choosable.

The edge-choosability of a graph G, denoted ch′(G), is the smallest k ∈ N for which G
is L-edge-choosable for every k-list edge-assignment L of G.

Note that a proper k-edge-coloring is a proper L-edge-coloring of G where L(e) = JkK
for every e ∈ E(G), hence χ′(G) ≤ ch′(G). Contrary to the vertex coloring case, it is
conjectured that χ′(G) = ch′(G) for every graph G.

On various graph coloring problems page 37

1.3. NP-completeness and FPT

Remark. In the context of distinguishing labellings, an L-edge-coloring is also called an
L-labelling.

Let us see why the concept of list coloring is useful. We only consider here the vertex
coloring case but the same arguments apply for edge-coloring. Suppose that we want to
find a proper k-coloring of a graph G. Let H be a “small” subgraph of G such that there
is a proper vertex k-coloring c1 of G− V (H) (obtained by induction, for example).

To color G, we want to extend the coloring c1 of G − V (H) to the vertices of H.
For each vertex u of V (H), we create a list L(u) containing the colors among JkK which
are not already assigned to a neighbor of u in G − V (H) by c1. If H admits a proper
L-coloring c2, then the coloring c of G, defined by c(u) = c1(u) if u ∈ V (G) \ V (H) and
c(u) = c2(u) if u ∈ V (H), is a proper vertex k-coloring of G.

Note that this does not hold if we take any arbitrary proper k-coloring of H. Also note
that the difficult parts in this process are finding the subgraph H and the L-coloring c2.
We present in Section 1.4.4 a way to find this L-coloring by using an algebraic method:
the Combinatorial Nullstellensatz.

1.3 NP-completeness and FPT
In this section, we introduce various complexity notions that are used throughout this
thesis. We start with a quick reminder of general complexity notions in section 1.3.1
and a quick overview of different ways to represent graphs in algorithms in Section 1.3.2.
Section 1.3.3 presents the concept of NP-complete problem while Section 1.3.4 focuses on
parameterized complexity. We conclude this section with a list of additional complexity
problems in Section 1.3.5.

Since the theory of calculability and Turing machines are not the focus of this thesis,
we do not get into the rigorous formalism of the field here. Nonetheless, we refer the
reader to [53, 160, 173] for more details on the topics covered in this section.

1.3.1 Basics of Complexity Theory
An algorithm A is a sequence of elementary operations (see RAM model [160, section
2.6]) which can be performed on an input x respecting a given format (e.g. the input is
an integer, a graph ...).

The time tA(x) of an algorithm A on input x is the total number of elementary
operations performed by A on input x before A stops. For every non-negative integer n,
the time complexity tA(n) of an algorithm A is the maximum of tA(x) over all inputs x
of size at most n.

The space sA(x) of an algorithm A on input x is the maximum number of memory
locations used simultaneously by A on input x before A stops. For every non-negative
integer n, the space complexity sA(n) of an algorithm A is the maximum of sA(x) over all
inputs x of size at most n.

While we mainly focus on time complexity from now on, note that analogous notions
exist for space complexity.

We characterize the complexity of an algorithm A by the growth of the function tA(n):
an algorithm is linear (resp. polynomial, resp. exponential ...) if tA(n) = O(n) (resp.
tA(n) = O(nc) for some constant c, resp. tA(n) = 2O(nc) for some positive constant c ...).

page 38 Dimitri Lajou

Chapter 1. Preliminaries

A problem P consists in solving a given problematic given an input. A problem is
a decision problem if the problematic is a yes/no question. An instance I of P is a
positive instance of P if and only if the answer to the problematic of P is yes. An algo-
rithm A solves a problem P if for every input x of the problem, A outputs A(x) such that
A(x) is the answer to the question of the problem on input x. An example of a problem is:

Array Search
Input: An array A, its size n and an element x.
Output: The index of x in A if x is in A and -1 otherwise.

A problem P is in P if there exists a polynomial algorithm solving P . Intuitively, P is
the class of problems that can be solved in “reasonable time”. A goal of the Complexity
Theory is to determine which problems belong to P and which problems do not. For
example, the problem Array Search is in P as it suffices to go sequentially through the
array to find the solution.

Another important class of problems is the class NP, for Non-deterministic Polyno-
mial. It can be informally defined as the set of decision problems for which we can verify,
in polynomial time, whether some given candidate solution x is really a solution of the
problem. Intuitively, NP is the class of problems for which we can verify if an input is
a solution in “reasonable time”. In particular, P ⊆ NP. For more precise definitions (in
terms of non-deterministic Turing machines), we refer the reader to [160, 173]. For exam-
ple, the following problem is in NP.

3-Coloring
Input: A graph G.
Question: Does the graph G admit a proper 3-coloring?

Indeed, even if it is not simple to construct a proper 3-coloring of a graph G, if we are
given a 3-coloring of G, it is easy to verify that this coloring is proper.

1.3.2 Algorithmic representations of graphs
In this section, we see how to represent graphs in algorithms. Let G be a graph with
V (G) = {v1, . . . , vn}. We give an example of such a graph in Figure 1.23 and its two
representations in Figure 1.24 and Figure 1.25.

v1

v2 v3

v4

v5 v6

Figure 1.23: A graph G on 6 vertices.

The first method to represent G is by an adjacency matrix M ∈ Mn({0, 1}), i.e. a
matrix of size n by n such that mij, the coefficient of line i and column j, is 0 if vivj /∈ E(G)
and 1 otherwise. For this data structure, it takes constant time to test whether two
vertices are adjacent, however, it takes O(n) time to recover all the neighbors of a given
vertex. This data structure is more adapted for dense graphs where the number of edges
m is Θ(n2). Finally, note that the adjacency matrix of an undirected graph is symmetric.

On various graph coloring problems page 39

1.3. NP-completeness and FPT



0 1 0 1 0 0
1 0 1 0 0 0
0 1 0 1 1 0
1 0 1 0 1 0
0 0 1 1 0 1
0 0 0 0 1 0


Figure 1.24: The adjacency matrix of the graph G.

The other method to represent G is by an adjacency list, i.e. an array A of n lists
where the cell A[i] contains the list of neighbors of the vertex vi. For this data structure,
it takes O(∆(G)) time to test whether two vertices are adjacent, however, it takes O(d(u))
time to recover all the neighbors of a given vertex u. Note that if the lists are implemented
as sorted arrays, then it actually takes log(∆(G)) time to find if two vertices are adjacent
using dichotomy. This method is more adapted for sparse graphs where the number of
edges m is O(n), like for planar graphs.

v2 v4

v1 v3

v2 v4 v5

v1 v3 v5

v3 v4 v6

v5

v1

v2

v3

v4

v5

v6

Figure 1.25: The adjacency list of the graph G.

The choice of the representation depends on which operations on graphs are more
important in the algorithm. If it is more important to test the adjacency, then we prefer
using adjacency matrices. If it is more important to traverse the graph (and thus to get
the list of neighbors of a vertex), then we prefer using adjacency lists.

Note that there exist more data structures which represent graphs. For more complex
problems, it is often efficient to add more information in the data structure, like repre-
senting faces for planar graphs. One might even find useful to have both the adjacency
matrix and the adjacency list of a graph.

1.3.3 NP-completeness
One of the major questions in Complexity Theory is to determine whether P = NP, or
not; the problem might even be undecidable. This problem is one of the Millennium
Prize Problems stated by the Clay Mathematics Institute in 2000 and has gathered a lot
of attention through the years.

One approach used to attack the question is to try to show that the “hardest” problems
in NP can be solved in polynomial time. While this has yet to be achieved, the developed
notions of reductions and NP-completeness are powerful tools to show that it is very
unlikely that some problems admit polynomial time algorithms.

page 40 Dimitri Lajou

Chapter 1. Preliminaries

Definition 1.53 (Polynomial reduction). A decision problem P reduces (in polynomial
time) to a decision problem P ′ if and only if there exists a computable polynomial func-
tion f (i.e. an algorithm) such that for every instance I of P , I is a positive instance
of P if and only if f(I) is a positive instance of P ′.
Definition 1.54 (NP-hardness, NP-completeness). A problem P is NP-hard if any prob-
lem P ′ in NP reduces to P . A problem is NP-complete if it is NP-hard and belongs to the
class NP.

Intuitively, NP-complete problems are the hardest problems in the NP complexity
class. The most known of these is the SAT-CNF problem. In order to present this
problem, we need to talk first about Boolean formulas.
Definition 1.55 (Boolean formulas). The set of Boolean formulas BF is constructed as
follows:

1. BF contains all variables x1, x2, . . . ,
2. if φ is a Boolean formula, BF contains ¬φ, the negation of φ which is true if and

only if φ is false,
3. if φ1 and φ2 are two Boolean formulas, BF contains φ1 ∧ φ2, the conjunction of φ1

and φ2 which is true if and only if φ1 and φ2 are both true,
4. if φ1 and φ2 are two Boolean formulas, BF contains φ1 ∨ φ2, the disjunction of φ1

and φ2 which is false if and only if φ1 and φ2 are both false.
To simplify notation, we often note xi for ¬xi when xi is a variable. A literal is either a
variable xi or its negation xi. A clause C is a disjunction of literals, i.e. C = (ℓ1 ∨ ℓ2 ∨
· · · ∨ ℓk) where each ℓi is a literal. The size of a clause C is the number of literals in the
clause. A Boolean formula φ is in conjunctive normal form (CNF) if it is a conjunction
of clauses, i.e. φ = C1∧C2∧ · · · ∧Cm where each Ci is a clause. For concision, we use the
term CNF formula to refer to a Boolean formula in conjunctive normal form. A variable
assignment is a function from the set of variables to the set of truth values {true, false}. A
variable assignment satisfies a CNF formula if and only if there is at least one true literal
in each clause.

We can now define the SAT-CNF problem.

SAT-CNF
Input: A Boolean formula φ in conjunctive normal form with n variables and m
clauses.
Question: Is there a variable assignment satisfying φ?

This problem was the first to be shown to be NP-complete by Cook [50] and Levin
[139] independently.
Theorem 1.56 (Cook-Levin [50, 139]). The problem SAT-CNF is NP-complete.

We present two other famous problems:

2-SAT
Input: A Boolean formula φ in conjunctive normal form with n variables and m
clauses where each clause has size at most 2.
Question: Is there a variable assignment satisfying φ?

On various graph coloring problems page 41

1.3. NP-completeness and FPT

3-SAT
Input: A Boolean formula φ in conjunctive normal form with n variables and m
clauses where each clause has size at most 3.
Question: Is there a variable assignment satisfying φ?

One can easily generalize the previous problems to k-SAT. It is known since 1967,
with the work of Krom, that 2-SAT is in P. The key idea is to rewrite a 2-SAT formula as
a sequence of implications. However no such algorithm has been found for 3-SAT, in fact
3-SAT is one of the 21 NP-complete problems presented by Karp in his 1972 paper [126].

Theorem 1.57 ([126]). The problem 3-SAT is NP-complete.

The proof is done by reduction (see Definition 1.53). We first present the general
methodology of a proof by reduction before using the proof of Theorem 1.57 as an example
of this type of proofs, that we will use in Chapter 3 and Chapter 8.

Proof of NP-completeness by reduction. Let P be our problem. The first step of
such a proof is to show that P is in NP. This is generally quite easy as it suffices to show
that one can verify that a proposed solution is indeed a solution of P . This usually boils
down to verifying all the required constraints on the solution.

The second step is the actual reduction. Let P ′ be an NP-hard problem, we want to
show that P ′ reduces to P . For this, take an arbitrary instance I ′ of P ′. We want to
create an instance I of P which “encodes” the instance I ′ of P ′. The goal is to show
that I ′ is a solution of P ′ if and only if I is a solution of P .

Let us see an example of this type of proof.

Proof of Theorem 1.57. First, as SAT-CNF is in NP, and since an instance of 3-SAT is
also an instance of SAT-CNF,3-SAT is in NP.

We want to reduce SAT-CNF to 3-SAT. Let φ be a CNF Boolean formula instance
of SAT-CNF on n variables x1, . . . , xn and m clauses C1, . . . , Cm. Fix i ∈ {1, . . . ,m}
and suppose that Ci = (ℓi1 ∨ · · · ∨ ℓiki

) where each ℓij is a literal. The goal is to create a
new set of clauses for 3-SAT that will mimic the clause Ci.

Let Ci be the following set of clauses:

(ℓi1 ∨ ℓi2 ∨ xi1) ∧ (xi1 ∨ ℓi3 ∨ xi2) ∧ (xi2 ∨ ℓi4 ∨ xi3) ∧ · · · ∧ (xiki−3 ∨ ℓiki−1 ∨ ℓiki
)

where the xij are new variables. Clearly, Ci is satisfiable if and only if at least one of the
literals ℓij is true. Hence ∧mi=1 Ci is satisfiable if and only if ∧mi=1 C

i is satisfiable. This
concludes the proof.

From the previous proof, one can see that we used clauses of size 3 in order to represent
a clause of arbitrary size. Sometimes, the reductions are more convoluted but the principle
always stays the same. In Chapter 3 and Chapter 8, we perform such reductions on several
graph problems to show their NP-completeness.

Showing the NP-completeness of a problem indicates that it is unlikely that the prob-
lem can be solved in polynomial time, but, depending on the reduction, the size of the
constructed instance might grow linearly, quadraticly, or even worse, with the size of the
original instance. This fact is unfortunately lost in the statement of the theorem. The
following hypothesis allows us to be more precise.

page 42 Dimitri Lajou

Chapter 1. Preliminaries

Definition 1.58 (Exponential Time Hypothesis (ETH) [145]). The Exponential Time
Hypothesis (ETH) postulates that 3-SAT cannot be solved in time 2o(n)(n+m)c, where n
and m are the input’s number of variables and clauses, and c is any integer. In particular,
this implies that 3-SAT cannot be solved in time 2o(n+m) (see [53]).

Suppose that 3-SAT reduces to a problem P such that for an instance of 3-SAT
with n variables and m clauses, the constructed instance of P has size O((n+m)2). Then,
assuming ETH, we can show that there is no algorithm solving P in time 2o(

√
s)sc, for any

constant integer c, where s is the size of the instance of P . Indeed, if such an algorithm
existed we could solve 3-SAT in time 2o(n+m)(n + m)2c = 2o(n+m), contradicting ETH.
Even if the ETH was to be false, this type of result shows that P seems “easier” to solve
than 3-SAT is.

This highlights how ETH can help us to be more precise than just saying “P is NP-
complete”. Here the function in the o notation indicates how powerful the problem is
compared to 3-SAT.

1.3.4 Parameterized complexity
A way to construct efficient algorithms for NP-complete problems is to lower our time
complexity expectations. Usually, we consider an algorithm efficient if it is polynomial. By
adding an extra parameter k to the problem, we would like to keep the polynomiality in n,
the size of the instance, while “pushing” the hardness of the problem on the parameter k.
For more details on parameterized complexity, we refer the reader to [53].

Definition 1.59 (Parameter). A parameter is a number k which is either given by the
problem, e.g. an integer when the problem consists in determining whether there is a
solution smaller than k or not, or given as a function of the input, e.g. the treewidth of
the input graph.

For example, Vertex Cover is one of the 21 NP-complete problems of Karp [126].
Let us consider a version parameterized by the solution size.

Vertex Cover Parameter: k.
Input: A graph G and an integer k.
Question: Is there a set S of at most k vertices of G, such that, for each edge uv of
G, at least one of u or v belongs to S?

Definition 1.60 (Fixed Parameter Tractable). A problem P of size n and parameterized
by k is Fixed Parameter Tractable (FPT) if and only if there exists an algorithm solving P
in time f(k) ·O(nc) where c is a fixed integer and f is any computable function.

Theorem 1.61 (Folklore). The problem Vertex Cover is FPT and can be solved in
time 2O(k)n2.

The previous theorem does not give a polynomial complexity but the non-polynomial
part of the complexity part does not depend on the size of the problem n. It is of course
possible to improve the previous theorem. The best known bound at the time of writing
this thesis is O(1.2738k + kn) by Chen, Kanj and Xia [44].

When working with the treewidth as a parameter, we can also use Courcelle’s theorem.
This theorem relies on the notion of monadic second-order logic of graphs which we do
not define here (for more details see [51]).

On various graph coloring problems page 43

1.3. NP-completeness and FPT

Theorem 1.62 (Courcelle’s Theorem [51]). Every graph property definable in the monadic
second-order logic of graphs can be decided in linear time on graphs of bounded treewidth,
i.e. for a graph G of order n the problem can be decided in time f(tw(G))n.

Note that Courcelle’s theorem proves that the problem of deciding whether such a
property holds or not for a given graph is FPT but the generality of this theorem imposes
that the function f is far from optimal (it is a tower of exponentials). This is why it is
often better to construct the algorithm directly to obtain a better function of k.

It is not always possible to find an FPT algorithm for a given problem. Let XP be the
class of problems which can be solved in time O(nf(k)) where f is a computable function.
Note that FPT is included in XP.

Among the problems in XP, a particular class of problems is the class W[i] where i is
an integer. We do not give the exact definition of these classes here but one can find it
in [53, Chapter 13]. By definition W[0] = FPT and W[i] ⊆ W[j] when i ≤ j. By analogy
with NP, we say that a problem P is W[i]-hard if every problem in W[i] reduces to P in
FPT-time.

Definition 1.63 (Parameterized reduction). A parameterized decision problem P reduces
(in FPT time) to a parameterized decision problem P ′ if and only if for every instance I
of P , I is a positive instance of P with parameter k if and only if f(I, k) is a positive
instance of P ′ with parameter g(k) where g is a polynomial computable function and f
is a computable function such that the size of f(I, k) is of the form O(h(k) |I|c) where h
is a computable function and c is a fixed integer.

Here we are only interested in the class W[1]. The class W[1] can be seen as the class of
parameterized problems to which the problem Independent Set, parameterized by the
solution size, reduces to in FPT-time (see [57]). Showing that a parameterized problem
is W[1]-complete implies that it is unlikely that there exists an FPT algorithm solving it.
Here is an example of such a problem.

Multicolored Independent Set Parameter: k.
Input: A graph G, an integer k and a partition of V (G) into k sets V1,. . . ,Vk.
Question: Is there a set S of exactly k vertices of G, such that each Vi contains exactly
one element of S, and S an independent set of G?

Theorem 1.64 ([162]). Multicolored Independent Set is W[1]-complete.

Hence, the previous theorem implies that it is highly unlikely that Multicolored
Independent Set admits an FPT algorithm.

Again using the ETH allows us to be more precise in the statement thanks to this
result.

Theorem 1.65 ([43]). Assuming ETH, Multicolored Independent Set cannot be
solved in time f(k) |V (G)|c where f is a computable function, and c is a fixed integer.

Theorem 1.66 (Consequence of [126], see [53]). Assuming ETH, Vertex Cover, pa-
rameterized by the solution size k, cannot be solved in time 2o(k) |V (G)|c where c is a fixed
integer.

page 44 Dimitri Lajou

Chapter 1. Preliminaries

1.3.5 Some problems used in reductions
In this section, we list a number of problems and present their complexity. These problems
are used in Chapter 3 and Chapter 8.

Odd Cycle Transversal Parameter: k.
Input: A graph G, an integer k.
Question: Is there a set of k vertices of G that can be deleted from G so that the
resulting graph is bipartite?

The NP-completeness of Odd Cycle Transversal follows from a result of Yan-
nakakis [206]. Moreover, Odd Cycle Transversal is FPT (see [166, 127]).

Edge Bipartization Parameter: k.
Input: A graph G, an integer k.
Question: Is there a set of k edges of G that can be deleted from G so that the
resulting graph is bipartite?

Edge Bipartization is NP-complete (see [83]) and even FPT (see [88, 163]).

Variable Deletion Almost 2-Sat Parameter: k.
Input: A 2-CNF Boolean formula F and an integer k.
Question: Is there a set of k variables that can be deleted from F (together with the
clauses containing them) so that the resulting formula is satisfiable?

Even if 2-SAT is in P, Variable Deletion Almost 2-Sat is NP-complete and
even FPT (see [53, Chapter 3.4]).

Example of proof of NP-completeness. First, note that the problem is in NP. The NP-
hardness follows from a reduction to Vertex Cover. Let G be a graph and k be a
integer number. Introduce for each vertex v of G the variable xv. For each edge uv
introduce the set of clauses Cuv: (xv ∨ xu) ∧ (xv ∨ xu) ∧ (xv ∨ xu) ∧ (xv ∨ xu). We obtain
a CNF formula F .

If the graph G has a vertex cover S of size at most k, then we remove the variables
corresponding to the vertices of S. This removes all the clauses of F and thus we obtain
CNF formula which is satisfiable. Conversely, if there is a set S of at most k variables
whose removal from F creates a satisfiable formula, then we remove the vertices corre-
sponding to the variables of S in G. After removal, if some edge uv remains in G, then
Cuv remains in F after the removal of S. This is a contradiction as Cuv is a non-satisfiable
set of clauses.

Clause Deletion Almost 2-Sat Parameter: k.
Input: A 2-CNF Boolean formula F and an integer k.
Question: Is there a set of k clauses that can be deleted from F so that the resulting
formula is satisfiable?

Clause Deletion Almost 2-Sat is NP-complete (see [53, Exercice 3.21] and even
FPT [165].

k-Edge-Coloring
Input: A graph G with maximum degree k.
Question: Does G admit a proper k-edge-coloring?

On various graph coloring problems page 45

1.4. A little bit of algebra

The problem k-Edge-Coloring was proved to be NP-Complete even for regular
graphs in [106] (for the case k = 3) and [140] (for the general case).

Planar Vertex 3-Coloring
Input: A planar graph G with maximum degree 4.
Question: Does G admit a proper vertex 3-coloring?

The problem Planar Vertex 3-Coloring was proved to be NP-Complete in [83].

1.4 A little bit of algebra
In this section, we recall some classical algebraic notions. While this section is not es-
sential in order to understand this thesis, it eases the understanding of Chapter 5. We
also introduce here the Combinatorial Nullstellensatz (Theorem 1.77) which is used in
Chapter 7 and Chapter 10. For more details, we refer the reader to [203] (in French) or
any bachelor level textbook on algebra.

1.4.1 Well-founded ordering and two classical proof methods in
Graph Theory

A number of proofs in this thesis are done either by induction or by minimal counter-
example. These two types of proofs are extremely similar and rely on well-founded orders
on graphs. We first recall some definitions.

Definition 1.67 (Order). An order relation R over a set X is a subset of X2, the set of
ordered pairs of elements of X, verifying:

1. R is irreflexive (i.e. ∀x ∈ X, (x, x) /∈ R),
2. R is transitive (i.e. ∀x, y, z ∈ X, (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R), and
3. R is antisymmetric (i.e. ∀x, y ∈ X, (x, y) ∈ R implies (y, x) /∈ R).

We often note xRy for (x, y) ∈ R. A classical example of this notation is x < y where x
and y are integers and < is the order on the natural numbers.

Definition 1.68 (Well-founded order). A well-founded order R is an order over a set X
for which there is no sequence (ui)i∈N such that (ui+1, ui) ∈ R for all i ∈ N, i.e. there is
no infinitely decreasing sequence for R.

For example, the order < is well-founded on the set of natural numbers but is not
well-founded on the set of relative numbers. Let us now present the two proof methods.
Proof by induction. Let P be a predicate on a set X (for us it would be a set of
graphs), and let ≺ be a well-founded order on X. To prove P(x) for every x ∈ X, it
suffices to prove that for every x ∈ X, if P(y) holds for every y ∈ X with y ≺ x, then
P(x) holds.
Proof by minimal counter-example. Let P be a predicate on a set X (for us it would
be a set of graphs), and let ≺ be a well-founded order on X. Let A = {x ∈ X,¬P(x)}.

page 46 Dimitri Lajou

Chapter 1. Preliminaries

If A is empty, then P(x) holds for every x ∈ X. Otherwise, by contradiction, consider xm
a minimal element of A. Then by definition, P(y) holds for every y ∈ X, y ≺ xm. In this
type of proof, we want to find a contradiction with the existence of xm.

A proof by minimal counter-example can generally be rewritten as a proof by induction
but it is sometimes easier to write it as a minimal counter-example proof. Finally recall
that, when coloring graphs, if each part of a proof by induction is constructive, then we
can derive an algorithm from the proof to construct the coloring. These algorithms are
generally polynomial.

Let us now see how to construct well-founded orders on the set of graphs. One way to
achieve this goal is to consider the proper subgraph relation or, the weaker proper induced
subgraph relation. Even if these relations are natural, they do not offer much freedom on
which “smaller graphs” can be considered.

Another way to construct such orders is to reduce to the order on the natural numbers.
Let f be a function from the set of graphs to the set of natural numbers, and for all
graphs G and H, define G ≺f H if and only if f(G) < f(H). It is easy to verify
that ≺f is a well-founded order. Some classical examples are when fv(G) = |V (G)| or
fe(G) = |E(G)|.

Finally we can combine multiple functions from the previous approach with each other.
Let f1, f2, . . . , fk be k functions from the set of graphs to the natural numbers. The
lexicographic order ≺ is a well-founded order where ≺ is defined by G ≺ H if and only if
there exists i ∈ {1, . . . , k} such that fi(G) < fi(H) and for all j < i, fj(G) = fj(H). We
often note the lexicographic order by listing the functions it is composed of, for example
(|V (G)| , |E(G)|) is the lexicographic order created from the functions fv and fe of the
previous paragraph.

More generally, if ≺1, ≺2, . . . , ≺k are k well-founded orders on the set of graphs,
then the lexicographic order (≺1,≺2, . . . ,≺k), noted ≺ for short, is a well-founded order.
Here ≺ is defined by G ≺ H if and only if there exists i ∈ {1, . . . , k} such that G ≺i H
and for all j < i, neither G ≺j H nor H ≺j G.

1.4.2 Equivalence and quotient
A notion that is underlying in the theory of signed graphs (see Part I) is the notion of
equivalence. We recall some definitions here.

Definition 1.69 (Equivalence relation). An equivalence relation R over a set X is a
subset of X2, the set of ordered pairs of elements of X, verifying:

1. R is reflexive (i.e. ∀x ∈ X, (x, x) ∈ R),
2. R is transitive (i.e. ∀x, y, z ∈ X, (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R), and
3. R is symmetric (i.e. ∀x, y ∈ X, (x, y) ∈ R implies (y, x) ∈ R).

We often note xRy for (x, y) ∈ R. An example of this notation is (a, b) =Q (c, d) where
a and c are relative integers, b and d are positive integers, and =Q is equality over the
rational numbers defined as (a, b) =Q (c, d) if and only if ad = bc (i.e. a

b
= c

d
if only

if ad = bc).

Definition 1.70 (Equivalence class, quotient set). The equivalence class of an element
x ∈ X for the relation R, denoted x, is the set {y ∈ X : xRy}. The quotient set of X for
the relation R, denoted X⧸R, is the set {x : x ∈ X}.

On various graph coloring problems page 47

1.4. A little bit of algebra

Note that the x notation is also used in the context of Boolean formulas, the signifi-
cation of the notation should always be clear from the context.

Considering a property “up to equivalence” is the same as considering this property in
the quotient set. Therefore, a graph can be seen as an element of the quotient of the set
of pairs (V (G), E(G)) by the isomorphism equivalence relation. In Chapter 5 Section 5.4,
we use some notion of quotient on graphs which is defined using the notion of quotient
set.

1.4.3 Algebraic structures
Let us start by recalling some algebraic structures.

Definition 1.71 (Monoid). A monoid (G, ∗) is an ordered pair where G is a set and
∗ : G×G→ G is a binary operation, verifying the following:

1. ∗ is associative (i.e. ∀x, y, z ∈ G, (x ∗ y) ∗ z = x ∗ (y ∗ z)),
2. (G, ∗) has a neutral element e (i.e. ∀x ∈ G, e ∗ x = x ∗ e = x).

A monoid is commutative if and only if for every x, y ∈ G, x ∗ y = y ∗ x. A commutative
monoid is also called an abelian monoid.

Definition 1.72 (Group). A group (G, ∗) is a monoid where each element has an inverse
(i.e. ∀x ∈ G,∃y ∈ G, x ∗ y = y ∗ x = e). We generally write x−1 for the inverse of x.
When using the + binary operation, we prefer to write −x for the inverse of x.

A group (G, ∗) is commutative if and only if (G, ∗) is commutative as a monoid. A
commutative group is also called an abelian group.

To simplify notation, we often note G for the group (G, ∗). If H is a subgroup of G
(i.e. H ⊆ G and (H, ∗) is a group), then the quotient group G⧸H is the group (G⧸∼, ∗)
where x ∼ y if and only if x∗ y−1 ∈ H and where the ∗ operation, in the quotient, verifies
x ∗ y = x ∗ y.

Definition 1.73 (Semiring). A semiring (A,+,×) is a triplet where A is a set and +
and × are two binary operations, verifying the following:

1. (A,+) is a commutative monoid with neutral element 0,
2. (A,×) is a monoid with neutral element 1,
3. × is distributive over + (i.e. ∀x, y, z ∈ A, x×(y+z) = x×y+x×z and (y+z)×x =
y × x+ z × x),

4. 0 is an absorbing element for × (i.e. ∀x ∈ A, 0× x = x× 0 = 0).

A semiring is commutative if and only if (A,×) is a commutative monoid. A semiring has
the cancellation property if and only if ∀x, y, z ∈ A, (x × y = x × z implies y = z) and
(y×x = z×x implies y = z). A commutative semiring is also called an abelian semiring.

Definition 1.74 (Ring). A ring (A,+,×) is a semiring where (A,+) is a group. A ring
is commutative if and only if (A,×) is a commutative monoid. A ring has the cancellation
property if and only if it has the cancellation property as a semiring. A commutative ring
is also called an abelian ring.

page 48 Dimitri Lajou

Chapter 1. Preliminaries

Definition 1.75 (Field). A field (F,+,×) is a ring where (F,×) is an abelian group.

In this thesis, we only consider commutative fields. Note that some authors consider
fields to are non-commutative. Note also that a field has the cancellation property.

Recall that a polynomial is a finite sum of monomials and a monomial is the product
of a coefficient and a finite list of indeterminates with possibly some repetitions.

Example 1.76. Some examples in mathematics:

1. The structure (N,+), where N is the set of natural numbers, is an abelian monoid.
2. The structure (Z,+), where Z is the set of relative numbers, is an abelian group.
3. The structure (N,+,×) is an abelian semiring.
4. The structure (N[(Xi)i∈N],+,×), where N[(Xi)i∈N] is the set of polynomials with

coefficients in N over the indeterminates (Xi)i∈N, is an abelian semiring.
5. The structure (Z,+,×) is an abelian ring.
6. The structures (Q,+,×) and (R,+,×), where Q is the set of rational numbers, and

R is the set of real numbers, are fields.
7. The structure ({−1, 1} ,×) is an abelian group.
8. The structure (Mn(R),+,×), where Mn(R) is the set of n × n matrices over the

set of reals, is a non-commutative ring.
9. The structure (F[X],+,×), where F[X] is the set of polynomials with coefficients

in the field F, is an abelian ring.
10. The structure Fp = (Z/pZ,+,×) is an finite field.

Other examples in graphs:

11. The structure (G,⊎), where G is the set of graphs and ⊎ is the disjoint union
operation (i.e. G1 ⊎ G2 is the graph containing two disjoint copies of G1 and G2),
is an abelian monoid.

12. The structure (G,⊎, ∗), where ∗ is either the Cartesian product of graphs □ (see
[169]), the tensor product of graphs × (see [192] volume 2 p.384), the strong product
of graphs ⊠ (see [169]) or the lexicographical product of graphs · (see [96]), is a
semiring. You can find more discussion about these products in Chapter 5.

1.4.4 Combinatorial Nullstellensatz
Let us conclude this section by presenting the Combinatorial Nullstellensatz. Take a
graph G, an induced subgraph H of G and a k-vertex coloring c of H. One might want
to extend c to all vertices of G but this might be very complicated to do manually. Let
us see how to use the Combinatorial Nullstellensatz.

Theorem 1.77 (Combinatorial Nullstellensatz [4]). Let F be an arbitrary field, and let
P = P (X1, . . . , Xn) be a polynomial in F[X1, . . . , Xp]. Suppose that the coefficient of a
monomial Xk1

1 . . . Xkp
p , where each ki is a non-negative integer, is non-zero in P and the

degree deg(P) of P equals ∑p
i=1 ki.

If moreover S1, . . . , Sp are any subsets of F with |Si| > ki for i = 1, . . . , p, then there
are s1 ∈ S1, . . . , sp ∈ Sp so that P (s1, . . . , sp) ̸= 0.

On various graph coloring problems page 49

1.4. A little bit of algebra

Let v1, . . . , vp be the vertices of V (G) \ V (H) and vp+1, . . . , vn be the vertices of H.
For each vertex vi ∈ V (G) \ V (H), let Si = {1, . . . , k} \ {c(u) : u ∈ N(vi) ∩ V (H)}. By
definition, only the colors of Si can be assigned to vi without creating a conflict with a
neighbor of vi in H. Let P be the following polynomial:

P (X1, . . . , Xp) =
p∏
i=1

∏
vj∈N(vi)
j<i

(Xi −Xj).

Suppose that c′ is an extension of c to G such that c′(vi) ∈ Si. Note that c′ is proper if
and only if for every integer i and j such that j < i ≤ p and vivj ∈ E(G), c′(i)−c′(j) ̸= 0.
In particular c′ is proper if and only if P (c′(v1), . . . , c′(vp)) ̸= 0.

Let us suppose that we can apply the Combinatorial Nullstellensatz: suppose that P
has a maximal non-zero monomial Xk1

1 . . . Xkp
p where ∑p

i=1 ki = deg(P) and that each ki
verifies ki < |Si|. By the Combinatorial Nullstellensatz, there are s1 ∈ S1, . . . , sp ∈ Sp
such that P (s1, . . . , sp) ̸= 0.

Now let c′ be an extension of c to G defined by c′(vi) = si for every i ≤ p. Note that
by definition of the si’s, P (c′(v1), . . . , c′(vp)) ̸= 0 and thus c′ is proper. Hence we were
able to extend c to G.

Note that the previous procedure relies on two parts. The first consists in finding the
sets Si’s and the polynomial P . While finding the sets is often easy, it is the set of colors
which do not create a conflict, it might be more difficult to find the polynomial depending
on the problem. In this thesis, all polynomials are fairly simple.

The second step is finding the right monomial in P and showing that it has a non-zero
coefficient. Remark that it is likely that no such monomial exists in P , in this case, one
has to start again by changing the subgraph H. When the polynomial is of constant size
(i.e. when we want to remove a fixed structure like a triangle), we can just exhibit the
monomial and its coefficient. When the polynomial can have an arbitrary size, we must
find manually a monomial and find a formula to show that it is non-zero.

We use the Combinatorial Nullstellensatz in Chapter 7 and Chapter 10.

page 50 Dimitri Lajou

Part I

Signed Graphs

Chapter 2. Introduction to signed graphs

Chapter 2

Introduction to signed graphs

The subject of this first part is the study of different problems on signed graphs. The goal
of this chapter is to present what are signed graphs and to provide tools to manipulate
them.

Signed graphs are a type of graph with two types of edges: positive edges and negative
edges. They were introduced by Heider in [97] and latter formalized by Harary in [92]
to model problems in social psychology [40, 178]. In these applications, the vertices are
actors in a social environment (people in a given community, countries...) and the two
types of edges model some notion of friendship (people who like/dislike each over, alliances
and political tension for countries...). For more details about the diverse applications of
signed graphs, we refer the reader to Section 2.1.4.

Contents
2.1 Key definitions . 54

2.1.1 Definition of signed graphs . 54

2.1.2 Balance of cycles, equivalence of signed graphs 55

2.1.3 Switching . 55

2.1.4 Applications of signed graphs 58

2.2 Homomorphisms and coloring of signed graphs 58

2.2.1 Homomorphisms of signed graphs 59

2.2.2 Coloring of signed graphs . 60

2.2.3 Sign-preserving homomorphisms and sign-preserving colorings . 61

2.2.4 Signed cliques . 62

2.3 Classes of cycles . 63

2.4 Complexity . 64

2.5 Similar notions and generalizations 65

We mainly follow the terminology of [153]. Most definitions in this chapter come from
[92, 154, 208].

On various graph coloring problems page 53

2.1. Key definitions

2.1 Key definitions

2.1.1 Definition of signed graphs
Let us start with the formal definition of a signed graph.

Definition 2.1 (Signed graph). A signed graph (G, σ) is a graph G, called the underlying
graph of (G, σ), along with a function σ : E(G)→ {+1,−1} called the signature of (G, σ).
For every edge e of G, σ(e) is the sign of e. For the sake of simplicity, we sometimes use
+ (resp. −) instead of +1 (resp. −1) for the sign of an edge. The edges in σ−1(+1) are
the positive edges of (G, σ) and the edges in σ−1(−1) are the negative edges of (G, σ).

If the underlying graph G of a signed graph (G, σ) has some property (e.g. G is planar,
simple, bipartite, complete...) then we say that (G, σ) has this property (e.g. (G, σ) is
planar, simple, bipartite, complete...). A signed graph (G, σ) is all-positive (resp. all-
negative) if it does not have negative edges (resp. positive edges). Unless stated otherwise,
signed graphs are simple. See Figure 2.1 for examples of signed graphs. When drawing
signed graphs, we always represent positive edges with blue edges and negative edges with
discontinuous red edges.

(a) A signed graph having the Petersen graph as underlying graph.

(b) The complete signed graph K+
5 . (c) The complete signed graph K−

5 .

Figure 2.1: Examples of signed graphs.

Notation 2.2. We often denote a signed graph (G, σ) as (G,Σ) where Σ is the set of
negative edges, that is Σ = σ−1(−1). This allows us to easily state the signature of the
signed graph. These two ways to represent a signed graph are equivalent and will be used
interchangeably.

We note K+
p (resp. K−

p) for the complete signed graph (Kp,∅) (resp. (Kp, E(Kp))) of
order p with only positive (resp. negative) edges. See Figure 2.1(b) and Figure 2.1(c) for
examples of complete signed graphs.

page 54 Dimitri Lajou

Chapter 2. Introduction to signed graphs

2.1.2 Balance of cycles, equivalence of signed graphs
One key concept of the theory of signed graphs is the notion of balance.

Definition 2.3 (Balance). Let (G, σ) be a signed graph and W be a walk s0, . . . , sn in G.
We say that W is a balanced walk if σ(W) = σ(s0s1)σ(s1s2) . . . σ(sisi+1) . . . σ(sn−1sn) = 1
and an unbalanced walk otherwise. Similarly, this notion can be extended to closed walks,
paths and cycles.

A signed graph where all closed walks are balanced is said to be balanced. A signed
graph (G, σ), such that (G,−σ) is balanced, is antibalanced (−σ is the function which
assign to each edge e of G the sign −σ(e)). In general, for the same ordinary graph G,
there are several signatures σ for which (G, σ) is balanced.

We note an unbalanced path (resp. balanced path) of order k by UPk (resp. BPk) and
an unbalanced cycle (resp. balanced cycle) of order k by UCk (resp. BCk). Note that
there are multiple signed cycles/paths with the same length and the same balance. These
notations refer to any cycle/path with those characteristics.

These notions of balanced and antibalanced graphs where introduced by Harary in [92].
See Figure 2.2 for an example of a balanced signed Petersen graph with some negative
edges.

Figure 2.2: A balanced signed Petersen graph.

2.1.3 Switching
The following important operation on signed graphs was introduced by Zaslavsky in [208].

Definition 2.4. Let (G, σ) be a signed graph and v be a vertex of G. To switch v
is to create the signed graph (G, σ′) where σ′(e) = −σ(e) when e is incident to v and
σ′(e) = σ(e) otherwise. To switch a set X of vertices of (G, σ) is to create the signed
graph (G, σ′) where σ′ is obtained by switching every vertex of X, in any order (it is not
difficult to see that the order does not matter).

See Figure 2.3 for some examples.
Lets us state some easy observations. Switching a vertex v of (G, σ) twice does nothing.

Switching a set X of vertices of (G, σ) creates the signed graph (G, σ′) where for every
edge uv of G, σ(uv) = −σ′(uv) if and only if one of u and v belongs to X and the other

On various graph coloring problems page 55

2.1. Key definitions

a

b

e d

f c

(a) The signed graph (G, σ).

a

b

e d

f c

(b) The signed graph (G, σ′).

a

b

e d

f c

(c) The signed graph (G, σ′′).

Figure 2.3: Example of switchings. The signed graph (G, σ′) is obtained from (G, σ) by
switching d. The signed graph (G, σ′′) is obtained from (G, σ′) by switching f . Alternatively,
(G, σ′′) is obtained from (G, σ) by switching {f, d}.

does not belong to X. Switching a set X of vertices of (G, σ) creates the same signed
graph as switching the set V (G) \ X. The previous observations imply the following
remark.

Remark. The switching operation on a signed graph (G, σ) consists exactly in choosing
an edge cut E(X, V (G)\X) of G and negating the signs of all the edges of E(X, V (G)\X).

Zaslavsky in [208] defined the notion of equivalent signed graphs.

Definition 2.5 (Equivalence of signed graphs). Two signed graphs (G, σ1) and (G, σ2)
on the same underlying graph G are equivalent if and only if we can obtain (G, σ2) from
(G, σ1) by switching a subset of vertices of (G, σ1). In this case, we note (G, σ1) ≡ (G, σ2).
We also say that the two signatures σ1 and σ2 are equivalent and we note σ1 ≡ σ2.

One can observe that switching does not change the balance of closed walks. This
follows from the following observation.

Observation 2.6 (Zaslavsky [208]). If C is a cycle of a graph G, then switching any
number of vertices of G does not change the sign of C.

This implies that every signed graph obtained from (G, σ) by switching a subset of
vertices has the same set of balanced (resp. unbalanced) closed walks. In fact, the set of
signed graphs on the underlying graph G with the same set of balanced (resp. unbalanced)
closed walks as (G, σ) is exactly the equivalence class of (G, σ).

Theorem 2.7 (Zaslavsky [208]). Two signed graphs on the same underlying graph G are
equivalent if and only if they have the same set of balanced cycles.

The previous theorem implies that we can work with the balance of closed walks or
with switchings depending on which notion is the easiest to use when treating equivalence
of signed graphs.

As mentioned before, two signed graphs (G, σ1) and (G, σ2) can both be balanced even
if σ1 ̸= σ2. Nonetheless, as highlighted by their equivalence, these two signed graphs have
similar properties.

Let us see some examples. The signed Petersen graph in Figure 2.2 is equivalent to the
signed Petersen graph with only positive edges. Two signed cycles of the same length are
equivalent if they have the same parity of positive (resp. negative) edges. In particular all
paths (resp. cycles) with the same length (resp. the same length and the same balance)
are equivalent. Two signed forests with the same underlying graph are equivalent. See
Figure 2.4 for one more example.

The following theorem follows from the proof of Theorem 2.7.

page 56 Dimitri Lajou

Chapter 2. Introduction to signed graphs

(a) (b) (c)

Figure 2.4: Three equivalent signed graphs.

Theorem 2.8 (Zaslavsky [208]). For any two signed graphs (G, σ1) and (G, σ2) on the
same underlying graph G, we can test in O(|E(G)|) time whether they are equivalent or
not.

Independently, Harary and Kabell proposed an algorithm to determine if a graph is
balanced using similar techniques [94].

In order to understand how Zaslavsky’s algorithm works, we need to understand how
to switch a signed tree so that the resulting signed tree is all-positive. Let (T, π) be
our signed tree. Suppose that uv is a negative edge of (T, π). Let Vu be the set of
vertices connected to the vertex u in T − uv. Switching Vu modifies the sign of the edge
cut E(Vu, V (T)\Vu). As T is a tree, only uv changes sign and becomes positive. Hence we
were able to reduce the number of negative edges in our tree. By repeating this process,
we can create the all-positive signed tree (T,∅).

Now consider that we are given two signed graphs (G, σ1) and (G, σ2) on the same
underlying graph G. W.l.o.g. we assume that G is connected, otherwise we could perform
the same procedure on each connected component. Choose a spanning tree T in G and
perform switchings on both graphs in such a way that T becomes all-positive. We obtain
(G, σ′

1) and (G, σ′
2) after the last step. If σ′

1 = σ′
2 then (G, σ′

1) and (G, σ′
2) are equivalent,

otherwise they are not. Indeed, if an edge uv verifies σ′
1(uv) ̸= σ′

2(uv) then uv /∈ E(T).
Consider the unique positive path in T joining u and v, the cycle composed of this path
and the edge uv is balanced in one signed graph and unbalanced in the other, hence the
two graphs are not equivalent.

Using a spanning tree is a powerful technique when studying signed graphs. We use
this technique explicitly and implicitly in Chapter 4 and Chapter 5.

2.1.4 Applications of signed graphs
As mentioned in the introduction, signed graphs were designed to model social relation-
ships. The sign of the edge between two vertices models the relationship between the
vertices. A classical example of this is the study of the relationships between countries
involved in both World wars [7].

A central notion of the theory of signed graphs, the balance of cycles, takes a partic-
ular meaning in social studies: this notion characterizes stable situations from unstable
situations. An example, in the context of countries, can be described as follows: consider
three countries A, B and C, B is allied with A and C while A and C are about to declare
war. In this example, the country B will side with one of A or C, thus changing the
nature of their relationship. The same situation but where A and B are already at war, is
stable since the war declaration between A and C will not change the relation between A
and B nor between B and C. Stable situations are represented by balanced cycles while
unbalanced cycles represent unbalanced situations.

On various graph coloring problems page 57

2.2. Homomorphisms and coloring of signed graphs

Another notion, called the frustration index of a signed graph, is the minimum number
of edges to remove from a signed graph (G, σ) in order to obtain a balanced signed graph.
This notion was introduced by Harary [93] under the name of line index of a signed graph.
This notion has been extensively studied (e.g. see [67, 94, 111, 149]) and has applications
in particular in physics. One such application is for ferromagnetic materials under the
Ising model [182, 193]: each vertex has spin up or down, these vertices can switch spin
(i.e. exchange up with down) which also changes the interaction between the vertices. As
the state with the least negative edges, which can be obtained by switching, corresponds
to a minimisation of the energy of the system, these materials tend to converge to this
state. Unfortunately, computing the frustration index is NP-hard [111].

2.2 Homomorphisms and coloring of signed graphs
As we will see, there are multiple definitions of coloring for signed graphs. One of those
colorings was introduced by Zaslavsky in [208]. In this thesis, we will not consider this
coloring.

The one we are the most interested in is the notion of coloring presented by Naserasr,
Rollová and Sopena in [154]. This notion relies on the generalization of the concept of
homomorphism in the context of signed graphs.

2.2.1 Homomorphisms of signed graphs
Let us see how the concept of homomorphism is defined on signed graphs.

Definition 2.9 (Homomorphism of signed graphs). A homomorphism from a signed graph
(G, σ) to a signed graph (H, π) is a homomorphism φ from G to H which maps balanced
(resp. unbalanced) closed walks of (G, σ) to balanced (resp. unbalanced) closed walks
of (H, π).

Alternatively, a homomorphism φ from (G, σ) to (H, π) is a homomorphism from G
to H such that there exists a signature σ′ of G with σ′ ≡ σ, such that if uv is an edge of
G, then π(φ(u)φ(v)) = σ′(uv).

When there is a homomorphism from (G, σ) to (H, π), we note (G, σ) −→s (H, π) and
say that (G, σ) maps to (H, π). Here (H, π) is the target graph of the homomorphism.

See Figure 2.5 for an example of homomorphism of signed graphs.

a

b

e d

f c

(a) The signed graph (G, σ).

a

b

e d

f c

(b) The signed graph (G, σ′).

1

2

4

3

(c) The signed graph (H, π).

Figure 2.5: An example of a homomorphism φ from a signed graph (G, σ) to a signed graph
(H, π) where φ(a) = φ(d) = 1, φ(b) = 2, φ(f) = φ(c) = 3 and φ(e) = 4. The signed graph
(G, σ′) is a signed graph equivalent to (G, σ) such that the edges of (G, σ′) and their images
through φ have the same sign.

page 58 Dimitri Lajou

Chapter 2. Introduction to signed graphs

Proposition 2.10 (Naserasr, Rollová and Sopena [154]). The following statements hold.

1. If (G, σ) −→s (H, π), (G, σ) ≡ (G, σ′) and (H, π) ≡ (H, π′) then (G, σ′) −→s (H, π′),

2. if (A, σA) −→s (B, σB) and (B, σB) −→s (C, σC) then (A, σA) −→s (C, σC).

Note that the previous proposition implies that, when trying to construct a homomor-
phism from (G, σ) to (H, π), we can always switch the signed graph (H, π) in order to fix
a simpler target graph.

Definition 2.11 (Chromatic number of signed graphs). Let (G, σ) be a signed graph.
The chromatic number of (G, σ), denoted χs(G, σ), is the order of the smallest simple
signed graph (H, π) for which (G, σ) −→s (H, π).

Note that by definition, χs(G, σ) ≥ χ(G) for every signed graph (G, σ).

Recall that we can construct homomorphisms of graphs through a sequence of identi-
fications. In the rest of this thesis, a digon will be a UC2, i.e. two vertices linked by two
edges, one positive and one negative. As we require the target graph in a homomorphism
of signed graphs to be simple, we must be sure to never create digons nor loops when
identifying vertices. A digon is created when we identify two vertices u and v which are
endpoints of a UP3 path.

Hence, before identifying two non-adjacent vertices u and v, we need to switch the
signed graph in order to remove every UP3 containing u and v. Note that this is not
always possible. For example, in the unbalanced cycle UC4, we cannot identify any pair
of vertices.

We say that two vertices u and v of a signed graph (G, σ) are identifiable if and only
if there exist σ′ equivalent to σ such that, in (G, σ′), u and v can be identified without
creating a loop nor a digon. The following theorem gives a characterization of identifiable
vertices.

Theorem 2.12 (Naserasr, Rollová and Sopena [154]). Two vertices of a signed graph are
identifiable if and only if they are not adjacent and do not belong to the same UC4.

In Figure 2.5, we identified the two pairs of vertices {a, d} and {c, f} in (G, σ′) to
create (H, π). Note that (H, π) does not contain any pair of identifiable vertices by
Theorem 2.12.

2.2.2 Coloring of signed graphs
As for undirected graphs, we can define a notion of k-coloring for signed graphs. This
leads to an alternative definition of the chromatic number of signed graphs.

Definition 2.13 (k-coloring of signed graphs). A signed graph (G, σ) admits a k-coloring
if there exists σ′ ≡ σ such that (G, σ′) admits a proper vertex coloring c : V (G) → JkK
verifying that for every i, j ∈ JkK, all edges uv with c(u) = i and c(v) = j have the same
sign in (G, σ′).

The chromatic number χs(G, σ) of (G, σ) is the smallest k such that (G, σ) admits a
k-coloring.

On various graph coloring problems page 59

2.2. Homomorphisms and coloring of signed graphs

As for ordinary graphs, one can create a homomorphism from a coloring: the colors
are the vertices of the target graph. To construct a coloring of a signed graph (G, σ)
from a homomorphism φ from (G, σ) to a signed graph (H, π), it suffices to color the
vertices of G with their image through φ and switch (G, σ) in such a way that each edge
has the same sign as its image through the homomorphism (see Figure 2.6). In order to
find which vertices to switch to achieve this signature, one can satisfy a particular 2-Sat
formula with variables (xu)u∈V (G) and switch the vertices assigned to true. Such a formula
can be constructed as follows: for each edge uv ∈ E(G), if uv has the same sign as its
image through φ then add the two clauses (xu ∨ xv)(xu ∨ xv), i.e. u and v must both be
switched or both not be switched. If uv does not have the same sign as its image then
add to the 2-Sat formula the two following clauses: (xu ∨ xv)(xu ∨ xv), i.e. exactly one
of u and v must be switched. Note that such a formula is always satisfiable by definition
of a homomorphism.

1

2

4 1

3 3

Figure 2.6: A coloring of a signed graph. This coloring is a coloring of the graph (G, σ′) of
Figure 2.5 obtained from the homomorphism presented in the figure.

Note that, if (G, σ) is a balanced (resp. antibalanced) signed graph then χs(G, σ) =
χ(G). Indeed if G → H, then (G, σ) −→s (H,∅) (recall that (H,∅) is the all-positive
signed graph with underlying graph H) as every closed walk of (H,∅) is balanced.

Note that a k-coloring of (G, σ) is also a k-coloring of (G,−σ). We can state a more
precise statement with the following observation.

Observation 2.14. Let (G, σ) and (H, π) be two signed graphs.We have (G, σ) −→s

(H, π) if and only if (G,−σ) −→s (H,−π). In particular, χs(G, σ) = χs(G,−σ).

This observation is useful when trying to simplify the case analysis. In particular in
Chapter 3, we reduce some complexity problems to others using this observation.

2.2.3 Sign-preserving homomorphisms and sign-preserving col-
orings

Let us see another important type of homomorphism and coloring of signed graphs.

Definition 2.15 (Sign-preserving homomorphism of signed graphs). A sign-preserving
homomorphism from a signed graph (G, σ) to a signed graph (H, π) is a homomorphism
φ from G to H such that for every edge e ∈ E(G), π(φ(e)) = σ(e). When there is a
sign-preserving homomorphism from (G, σ) to (H, π), we note (G, σ) −→p

s (H, π).
A signed graph (G, σ) admits a sign-preserving k-coloring if (G, σ) admits a proper

vertex coloring c : V (G) → JkK verifying that for every i, j ∈ JkK, all edges uv with
c(u) = i and c(v) = j have the same sign.

The sign-preserving chromatic number of a signed graph (G, σ), denoted χps(G, σ), is
the smallest order of a simple signed graph (H, π) such that (G, σ) −→p

s (H, π). Alterna-
tively, it is the smallest k for which (G, σ) admits a sign-preserving k-coloring.

page 60 Dimitri Lajou

Chapter 2. Introduction to signed graphs

Note that a signed graph can be interpreted as a 2-edge-colored graph where the two
colors are +1 and −1. With this interpretation, a sign-preserving homomorphism is the
same object as a homomorphism of 2-edge-colored graphs. This is why, in the literature,
we often find the term 2-edge-colored graph to designate a signed graph for which we do
not allow switchings. Note however that by specifying that the two colors are +1 and −1
in signed graphs, we obtain an object with more structure than just the two colors as we
can reason on signs.

For example, with the notation of Figure 2.5, φ is a sign-preserving homomorphism
from (G, σ′) to (H, π). Note that there is no sign-preserving homomorphism from (G, σ)
to (H, π).

The notion of sign-preserving homomorphism is related to homomorphisms of signed
graphs through the following construction.

Definition 2.16 (Double switching graph). The double switching graph of (G, σ), denoted
DSG(G, σ), is the signed graph constructed as follows.

1. The vertex set of DSG(G, σ) is V (G)× {0, 1},
2. for every edge uv of G, we create the following four edges (u, 0)(v, 0), (u, 1)(v, 1),

(u, 0)(v, 1) and (u, 1)(v, 0), the first two edges having sign σ(uv) and the latter two
edges having sign −σ(uv).

See Figure 2.7 for an example of a double switching graph.

a

b c

d

(a) A signed graph (G, σ).

a0 b0 c0 d0

a1 b1 c1 d1

(b) The double switching graph
DSG(G, σ).

Figure 2.7: An example of a double switching graph. For simplicity, a vertex (x, ε) of
DSG(G, σ) with x ∈ {a, b, c, d} and ε ∈ {0, 1} is noted xε.

The following theorem justifies such a construction.

Theorem 2.17 (Brewster, Foucaud, Hell and Naserasr [28]). Let (G, σ) and (H, π) be
two signed graphs. The following are equivalent.

1. (G, σ) −→s (H, π),
2. (G, σ) −→p

s DSG(H, π) and,
3. DSG(G, σ) −→p

s DSG(H, π).

We can also construct sign-preserving homomorphism by a sequence of identifications.
Here two vertices u and v can be identified if and only if they are not adjacent and if
there is no vertex w in (G, σ) such that σ(uw) ̸= σ(wv). The path u,w, v is an alternating
path. In general, a walk (resp closed walk) s0, s1, dots, sn is alternating if and only if
σ(sisi+1) ̸= σ(si+1si+2), for every i ∈ J0, n− 2K (resp. i ∈ J0, n− 1K).

On various graph coloring problems page 61

2.3. Classes of cycles

2.2.4 Signed cliques
The notion of homomorphism allows us to generalize the notion of cliques.

Definition 2.18 (Signed clique). A signed graph (G, σ) is a signed clique if χs(G, σ) =
|V (G)|. The absolute signed clique number of a signed graph (G, σ), denoted ωas(G, σ) is
the order of the largest subgraph of (G, σ) which is a signed clique. The relative signed
clique number of a signed graph (G, σ), denoted ωrs(G, σ) is the greatest number of vertices
which are pairwise non-identifiable in (G, σ).

Note that χs(G, σ) ≥ ωrs(G, σ) ≥ ωas(G, σ). Signed cliques are interesting as it is
easy to verify whether a given signed graph is a signed clique or not (see Theorem 2.12)
and their chromatic number is very easy to compute. Because of this, they make useful
examples for bounds on the chromatic number. See Figure 2.8(a) and Figure 2.8(b) for
some examples.

(a) A signed clique. (b) Another signed clique. (c) An sp-clique which is not a
signed clique.

Figure 2.8: Two examples of a signed cliques (a) and (b) and an example of an sp-clique (c).

Other interesting cliques in signed graphs are sp-cliques.

Definition 2.19 (sp-clique). A signed graph (G, σ) is an sp-clique if χps(G, σ) = |V (G)|.

An sp-clique is the same concept as a 2-edge-colored clique. See Figure 2.8(c) for an
example.

One can easily transform an sp-clique into a signed clique by creating a new vertex
adjacent to all the other vertices of the sp-clique with positive edges.

2.3 Classes of cycles
One important part of the study of signed graphs is to study the signed cycles. As we
saw, a signed cycle can be balanced or unbalanced. Another, more usual, way to divide
cycles is through the parity of their lengths. Indeed even cycles behave differently than
odd cycles.

This implies that we can separate the set of all signed cycles into four families BCeven,
BCodd, UCeven and UCodd, depending on the parity of the number of negative edges (even
for BCeven and BCodd and odd for UCeven and UCodd) and the parity of the length of the
cycle (even for BCeven and UCeven and odd for BCodd and UCodd). See Figure 2.9(a) for
some examples.

Note that every graph has balanced even closed walks as long as it is non-empty.
Indeed, if uv is an edge of a signed graph (G, σ), the closed walk uvu is balanced even.
The class of graphs with only signed cycles in BCeven is the class of bipartite balanced
signed graphs, i.e. signed graphs which are bipartite (they do not have odd cycles) and

page 62 Dimitri Lajou

Chapter 2. Introduction to signed graphs

even length odd length

balanced
BCeven BCodd

unbalanced
UCeven UCodd

(a) The usual division between balanced/unbalanced and even/odd for signed
cycles with some examples.
number of edges even number of positive odd number of positive

even number of negative BCeven BCodd
odd number of negative UCodd UCeven

(b) The same classes divided according to the parity of the number of edges of each sign.

Figure 2.9: Classes of signed cycles.

balanced (all of their cycles are balanced). Note that a bipartite balanced signed graph
(G, σ) verifies χs(G, σ) = χ(G) = 2 since every such graph is balanced, and thus equivalent
to (G,∅) which verifies χs(G,∅) = χ(G).

The most difficult class to manipulate is the class UCeven. Indeed this class contains
the signed graph UC4 which forbids identifications of some non-adjacent vertices (see
Theorem 2.12).

This intuition is confirmed when looking at the chromatic number of signed cycles.

Theorem 2.20. Let (C, σ) be a signed cycle. We then have:

1. χs(C, σ) = 2 if (C, σ) ∈ BCeven,
2. χs(C, σ) = 3 if (C, σ) ∈ BCodd ∪ UCodd,
3. χs(C, σ) = 4 if (C, σ) ∈ UCeven.

Proof. By [60], we already have the upper bounds. A homomorphism of signed graphs
is also a homomorphism of graphs thus χ(C) ≤ χs(C, σ). This proves the lowers bounds
for the first two cases. Let (C, σ) ≡ UC2q and suppose χs(C, σ) ≤ 3. Then (C, σ) −→s

(K3, π). In each case, (K3, π) can be switched either to be all-positive or to be all-negative.
This means that (C, σ) can be switched either to be all-positive or to be all-negative, which
is not the case as UC2q has an odd number of negative edges and an odd number of positive
edges, a contradiction. We get the desired lower bounds in each case.

The table in Figure 2.9(b) gives a more accurate representation of the division between
these classes. The “more complicated” class UCeven is the furthest away from the simplest,
BCeven, and we can see the symmetry between BCodd and UCodd. This representation is
important to keep in mind, as at first glance, UCodd seems to be the more complex class
while in reality, UCeven is.

We can define the equivalent of a subgraph for signed graphs.

Definition 2.21 (Signed subgraph). A signed subgraph (H, σ[H]) of a signed graph (G, σ)
is a signed graph such that H is a subgraph of G and for every edge e of H, σ[H](e) = σ(e).
For a subset X of vertices of G, the induced signed subgraph (G, σ)[X] of (G, σ) (or signed
subgraph of (G, σ) induced by X), is the signed subgraph (G[X], σ[X]) of (G, σ) for
which σ[X] = σ[G[X]].

On various graph coloring problems page 63

2.4. Complexity

2.4 Complexity
Let us define two decision problems. Let (H, π) be a fixed signed graph.

Signed-(H, π)-Coloring
Input: A signed graph (G, σ).
Question: Do we have (G, σ) −→s (H, π)?

(H, π)-Coloring
Input: A signed graph (G, σ).
Question: Do we have (G, σ) −→p

s (H, π)?

The switching core (s-core for short) of a signed graph (G, σ) is the smallest subgraph
(H, π) of (G, σ) for which (G, σ) −→s (H, π). A signed graph (G, σ) is a switching core if
(G, σ) is its own switching core. The switch-preserving core (sp-core for short) of a signed
graph (G, σ) is the smallest subgraph (H, π) of (G, σ) for which (G, σ) −→p

s (H, π). A
signed graph (G, σ) is an switch-preserving core if (G, σ) is its own sp-core.

We have the following characterization for the complexity of Signed-(H, π)-Coloring.

Theorem 2.22 (Brewster, Foucaud, Hell and Naserasr [28] and Brewster and Siggers [29]).
Let (H, π) be a signed graph. Signed-(H, π)-Coloring is in P if the s-core of (H, π)
has at most two edges, and is NP-complete otherwise.

To this date, there is no similar characterization for (H, π)-Coloring.

2.5 Similar notions and generalizations
There are many parallels between the study of signed graphs and the study of oriented
graphs. In both cases, we have two types of edges: positive and negative for signed graphs
and two orientations for oriented graphs. The notion of homomorphism of oriented graphs
has many parallels with the notion of sign-preserving homomorphisms.

Oriented graphs also have their own switching operation.

Definition 2.23 (Pushable oriented graphs). Let −→G be an oriented graph. Pushing a
vertex v of −→G consists in inverting the orientation of all the edges incident with v. Two
oriented graphs are equivalent if one can transform one into the other by a sequence of
pushings. A pushable oriented graph −→G is an equivalence class of this equivalence relation.

From these notions, we can derive the corresponding homomorphism and coloring
notions. It is often interesting to look at oriented graphs when dealing with signed graphs
as they have similar behaviors. See [175] for more details on oriented coloring.

A way to generalize signed graphs is to allow the signs to belong to any group.

Definition 2.24 (Gain graph). A gain graph is a graph where the edges are given an
orientation and labelled by elements of a group G. If the edge uv is labelled by g then vu
is labelled by g−1, the inverse of g.

We could define a notion of switching on gain graphs, this would correspond to mul-
tiplying all the edges incident with a vertex v by some element of G (by taking the

page 64 Dimitri Lajou

Chapter 2. Introduction to signed graphs

orientation into account). Note that a signed graph is a gain graph where the group is
({−1, 1} ,×). Note that for gain graphs most of the useful properties of signed graphs
are not guaranteed. For example, with such a definition of switching, if G is not abelian
then the switching operation is not commutative. Moreover, some cycles with different
products may be equivalent, for example it is the case for every triangle labelled with the
group ({0, 1, 2} ,+).

One particular case which preserves many properties of signed graphs is the case of
gain graphs with groups of the form ({0, 1}p ,⊕) where p is a positive integer and ⊕ is the
bit-wise addition. They correspond to graphs where each edge is assigned multiple signs.

Another generalization, called biased graphs, has properties similar to signed graphs
(for more details see [209, 210]).

On various graph coloring problems page 65

Chapter 3. Complexity of edge-colored and signed graphs modification problems

Chapter 3

Complexity of edge-colored and
signed graphs modification problems

Graph coloring problems such as k-Coloring are among the most fundamental prob-
lems in algorithmic graph theory. The problem H-Coloring is a homomorphism-based
generalization of k-Coloring that is extensively studied [35, 71, 98, 150].

In this chapter, we consider parameterized variants of H-Coloring (resp. Signed-
(H, π)-Coloring) where H is an edge-colored graph (resp. (H, π) is a signed graph).
We allow loops and multiple edges, but multiple edges of the same color are irrelevant in
H (resp. (H, π)).

For edge-colored graphs H, the H-Coloring problems are well-studied, see for ex-
ample [16, 26, 25, 27, 28]. They are special cases of Constraint Satisfaction Problems
(CSPs). A large set of CSPs can be modeled by homomorphisms from general relational
structures to a fixed relational structure H [71]. The corresponding decision problem is
noted as H-CSP. When H has only binary relations, H can be seen as an edge-colored
graph (a relation corresponds to the set of edges of a given color) and H-CSP is exactly
H-Coloring. The complexity of H-CSP has been the subject of intensive research in
the last decades, since Feder and Vardi conjectured in [71] that H-CSP is either in P or is
NP-complete — a statement that became known as the Dichotomy Conjecture. The latter
conjecture was recently solved in [33, 214] independently; the criterion for H-CSP to be
in P is based on certain algebraic properties of H. Nevertheless, determining whether
a structure H satisfies this criterion is not an easy task (even for targets as simple as
oriented trees [35]). Thus, the study of more simple and elegant complexity classifications
for relevant special cases is of high importance.

The complexity of H-Coloring when H is uncolored is well-understood: it is in P
if H contains a loop or is bipartite; otherwise it is NP-complete [98]. This was one of
the early dichotomy results in the area. On the other hand, when H is a 2-edge-colored
graph, it was proved that the class of H-Coloring problems captures the difficulty of
the whole class of H-CSP problems [28], and thus the dichotomy classification for this
class of problems is expected to be much more intricate.

Our goal is to study generalizations of H-Coloring problems for edge-colored graphs
by enhancing them as modification problems. In this setting, given a graph property P
and a graph operation π, the graph modification problem for P and π asks whether an
input graph G can be made to satisfy property P after applying operation π a given
number k of times. This is a classic setting studied extensively both in the realms of
classical and parameterized complexity, see for example [37, 52, 129, 141, 205]. In this

On various graph coloring problems page 67

context, the most studied graph operations are vertex-deletion and edge-deletion, see the
seminal papers [141, 205].

For a fixed graphH, let P(H) denote the property of admitting a homomorphism toH.
Certain standard computational problems can be stated as graph modification problems
for P(H). For example, Vertex Cover is the graph modification problem for property
P(K1) and operation vertex-deletion. Similarly, Odd Cycle Transversal and Edge
Bipartization are the graph modification problems for P(K2) and vertex-deletion, and
P(K2) and edge-deletion, respectively.

When considering signed graphs (which can be viewed as edge-colored graphs with
only two edge-colors), another operation of interest is switching. Switching a vertex of a
signed graph transforms a signed graph into another, therefore we can view switching as
a modification operation on signed graphs for the (H, π)-Coloring problem.

Signed graph can be manipulated with two types of homomorphisms: sign-preserving
homomorphisms, in which case they behave like 2-edge-colored graphs, or homomor-
phisms of signed graphs, for which switching is unlimited. This lead us to also consider
modification problems (vertex deletion and edge deletion) for Signed-(H, π)-Coloring.

Let us now formally define the problems we will consider (the parameter is always k).

Vertex Deletion H-Coloring Parameter: k.
Input: An edge-colored graph G, an integer k.
Question: Is there a set S of at most k vertices of G such that (G− S) −→ H?

Edge Deletion H-Coloring Parameter: k.
Input: An edge-colored graph G, an integer k.
Question: Is there a set S of at most k edges of G such that (G− S) −→ H?

Limited Switchings (H, π)-Coloring Parameter: k.
Input: A signed graph (G, σ), an integer k.
Question: Is there a set S of at most k vertices of G such that the signed graph (G, σ′)
obtained from (G, σ) by switching every vertex of S satisfies (G, σ′) −→p

s (H, π)?

Vertex Deletion Signed-(H, π)-Coloring Parameter: k.
Input: A signed graph (G, σ), an integer k.
Question: Is there a set S of at most k vertices of G such that (G, σ)−S −→s (H, π)?

Edge Deletion Signed-(H, π)-Coloring Parameter: k.
Input: A signed graph (G, σ), an integer k.
Question: Is there a set S of at most k edges of G such that (G, σ)− S −→s (H, π)?

In the study of the five above problems, one may assume that H (resp. (H, π)) is some
kind of core (edge-colored core, resp. sp-core or s-core) depending on the nature of the
base problem. Indeed, our target graph H (resp. (H, π)) being a constant of the problem,
we can transform it into its core in constant time. Note that if the target was part of
the input then computing its core (for whatever notion of core that we chose) would be
NP-complete [99].

Of course, if one of the five problems is NP-complete even for k = 0, then the problem
for general k is NP-complete and not in XP (unless P = NP). This is for example the

page 68 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

case when H is an edge-colored graph containing only a monochromatic triangle: then
we have 3-Coloring for k = 0 in the first three problems. Thus, from the point of
view of parameterized complexity, it is of primary interest to consider these problems for
edge-colored graphs H (resp. signed graphs (H, π)) such that the problem for k = 0 is
in P. In that case a simple brute-force algorithm iterating over all k-subsets of vertices of
G implies that the five problems are in XP and hence the interesting question is whether
these problems are FPT or not. For undirected graphs, the only cores H for which H-
Coloring is in P are the three connected graphs with at most one edge [98] (a single
vertex with no edge, a single vertex with a loop, two vertices joined by an edge), so in
that case the interest of these problems is limited. However, for many interesting families
of edge-colored graphs H, the problem H-Coloring is in P, and the class of such graphs
H is not very well understood, see [26, 25, 27]. Even when H is a 2-edge-colored cycle, a
2-edge-colored tree or a 2-edge-colored complete graph, there are infinitely many H’s for
which H-Coloring is NP-complete and infinitely many H for which H-Coloring is
in P [26]. For signed graphs, the complexity of Signed-(H, π)-Coloring is completely
characterized (see Theorem 2.22).

Related work. Several works address the parameterized complexity of graph coloring
problems. Graph coloring problems parameterized by structural parameters are consid-
ered in [118]. In [48], the vertex-deletion variant of H-List-Coloring is studied. Graph
modification problems for Coloring in specific graph classes and for operations vertex-
deletion and edge-deletion are considered, for example in [38] (bipartite graphs, split
graphs) and [180] (comparability graphs).

Every problem Vertex Deletion H-Coloring can be encoded as a special weighted
homomorphism problem H ′-Weighted-Coloring, as considered in [158]. In that set-
ting, the target H ′ is a graph with integer weights, and the goal is to find a homomor-
phism from some input graph G whose weight (i.e. the sum of weights of the images of
the vertices of G) is at most some given integer k′. In our setting, we could generalize
this problem to edge-colored graphs and build H ′ from H by setting all weights to 0
and adding a new vertex x adjacent to all vertices of H with weight 1. Now, finding a
weighted homomorphism from G to H with weight as most k is the same as having a
positive solution to Vertex Deletion H-Coloring (vertices mapped to x represent
the deleted vertices in S). A similar notion was studied for general CSPs in [34]. In that
setting, only one “free” target vertex has weight 0 and all the others, weight 1, and the
goal is to find a homomorphism of weight at most a given integer k. The Boolean CSP
version where there are only two target values, 0 and 1, and we wish to minimize the
number of variables set to 1, is called the Min Ones problem [128].

Algorithmic problems relative to the operation of Seidel switching, similar to our
switching, have been considered. Given an undirected graph G, the Seidel switching
operation performed at a vertex exchanges all adjacencies and non-adjacencies of v. This
can be seen as performing a switching operation in a 2-edge-colored complete graph, where
blue edges are the actual edges of G, and red edges are its non-edges. In [63, 119], the
complexity of graph modification problems with respect to the Seidel switching operation
and the property of being a member of certain graph classes has been studied. Our work
on Limited Switchings H-Coloring problems can be seen as a variation of these
problems, generalized to arbitrary 2-edge-colored graphs.

On various graph coloring problems page 69

Our results. We study the classical and parameterized complexities of the five problems
Vertex Deletion H-Coloring, Edge Deletion H-Coloring, Limited Switch-
ings (H, π)-Coloring, Vertex Deletion Signed-(H, π)-Coloring and Edge Dele-
tion Signed-(H, π)-Coloring. For the first three problems, our focus is on t-edge-
colored graphs H of order at most 2 where t is an integer (t = 2 and we see H as a signed
graph for Limited Switchings (H, π)-Coloring). Despite having only two vertices,
H-Coloring for such an H is interesting and non-trivial; it is proved to be in P by two
different non-trivial methods, see [16, 27]. Thus, the three considered problems are in XP
for such an H. (Note that for suitable 1-edge-colored graphs H of order 1 or 2, Vertex
Deletion H-Coloring and Edge Deletion H-Coloring include Vertex Cover
and Odd Cycle Transversal.)

We completely classify the classical complexity of Vertex Deletion H-Coloring
when H is a t-edge-colored graph of arbitrary order: it is either trivially in P or NP-
complete. It turns out that all Vertex Deletion H-Coloring problems are FPT
when H has order at most 2. To prove this, we extend a method from [27] and reduce
the problem to an FPT variant of 2-Sat.

For Edge Deletion H-Coloring, a classical complexity dichotomy seems more
difficult to obtain, as there are non-trivial polynomial cases. We perform such a clas-
sification when H is a t-edge-colored graph of order at most 2. Similar 2-Sat-based
arguments as for Vertex Deletion H-Coloring give a FPT algorithm for Edge
Deletion H-Coloring when H has order at most 2.

For Limited Switchings (H, π)-Coloring when (H, π) is a signed graph, the clas-
sical dichotomy is again more difficult to obtain. We perform such a classification by using
some characteristics of the switch operation and by giving some reductions to well-known
NP-complete problems. In contrast to the two previous cases for the parameterized com-
plexity, we show that for three signed graphs (H, π) of order 2, Limited Switchings
(H, π)-Coloring is already W[1]-hard (and cannot be solved in time f(k)|V (G)|o(k) for
any computable function f , assuming the ETH). For all other signed graphs of order 2,
we prove that Limited Switchings H-Coloring is FPT.

For Vertex Deletion Signed-(H, π)-Coloring and Edge Deletion Signed-
(H, π)-Coloring, we completely classify the classical complexity of these problems, in-
deed the number of open cases is more limited than in the previous problems. Similar
arguments as for Vertex Deletion H-Coloring can be used for Vertex Deletion
Signed-(H, π)-Coloring while we treat the problem case by case for Edge Dele-
tion Signed-(H, π)-Coloring. For the parameterized complexity of these problems,
we prove that for all signed graphs whose s-core contains at most two edges (i.e. signed
graphs for which the problem with k = 0 is in P), the problems Vertex Deletion
Signed-(H, π)-Coloring and Edge Deletion Signed-(H, π)-Coloring are FPT.

Table 3.1 presents a brief overview of our results, and Table 3.2 lists the classical and
parameterized complexities of the five considered problems for all 2-edge-colored graphs
(resp. signed graphs) of order at most 2.

Sections 3.1 through 3.3 are joint work with Florent Foucaud, Hervé Hocquard, Valia
Mitsou and Théo Pierron. An extended abstract of Sections 3.1 to 3.3 was published [76]
in the proceedings of the international conference IPEC 2019. A full version of the corre-
sponding paper can be found on arXiv [77].

This work is partially supported by the ANR project HOSIGRA (ANR-17-CE40-0022)
and the IFCAM project “Applications of graph homomorphisms” (MA/IFCAM/18/39).

page 70 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

Problem P vs NP-hard FPT vs. W[1]-hard
when |V (H)| ≤ 2

Vertex Deletion H-Coloring
Dichotomy for
all graphs
(Cor. 3.12)

All FPT
(Thm. 3.20)

Edge Deletion H-Coloring
Dichotomy when
|V (H)| ≤ 2
(Thm. 3.13)

All FPT
(Thm. 3.20)

Limited Switchings (H, π)-Coloring
Dichotomy when
|V (H)| ≤ 2
(Thm. 3.22)

Dichotomy
(Thms. 3.23, 3.24)

Vertex Deletion Signed-(H, π)-Coloring
Dichotomy for
all graphs
(Thm. 3.26)

FPT if in XP
(Thm. 3.26)

Edge Deletion Signed-(H, π)-Coloring
Dichotomy for
all graphs
(Thm. 3.38)

FPT if in XP
(Thm. 3.38)

Table 3.1: Overview of our main results, sorted by problem and by type of classification.

H / (H, π) Vertex Deletion
H-Coloring

Edge Deletion
H-Coloring

Limited Switchings
(H, π)-Coloring

Vertex Deletion
Signed-(H, π)-Coloring

Edge Deletion
Signed-(H, π)-Coloring

P P P P P
H1
rb

NP-h but FPT P P NP-h but FPT NP-h but FPT
H1
b

NP-h but FPT P P NP-h but FPT P
H1

−

NP-h but FPT P P NP-h but FPT NP-h but FPT
H2−
r,b

NP-h but FPT NP-h but FPT P NP-h but FPT NP-h but FPT
H2b

−,−

NP-h but FPT NP-h but FPT NP-h but FPT NP-h even for k = 0 NP-h even for k = 0
H2b
r,b

NP-h but FPT NP-h but FPT NP-h but FPT Not an s-core Not an s-core
H2b
r,−

NP-h but FPT NP-h but FPT P Not an s-core Not an s-core
H2b
r,r

NP-h but FPT NP-h but FPT P NP-h but FPT NP-h but FPT
H2rb

−,−

NP-h but FPT NP-h but FPT NP-h and W[1]-h NP-h even for k = 0 NP-h even for k = 0
H2rb
r,b

NP-h but FPT NP-h but FPT NP-h and W[1]-h NP-h even for k = 0 NP-h even for k = 0
H2rb
r,−

NP-h but FPT NP-h but FPT NP-h and W[1]-h NP-h even for k = 0 NP-h even for k = 0
H2rb
r,r

Table 3.2: Our results for target 2-edge-colored graphs H (resp. signed graphs (H, π)) of order
at most 2 (up to inversion of edge-colors (resp. signs), there are twelve such 2-edge-colored
graphs (resp. signed graphs) to consider).

On various graph coloring problems page 71

This chapter is structured as follows. In Section 3.1, we state some definitions and
make some preliminary observations in relation with the literature. We also reformulate
some particular instances of our problems to highlight well known complexity problems.
Section 3.2 presents our study of Vertex Deletion H-Coloring and Edge Dele-
tion H-Coloring. The problem Limited Switchings (H, π)-Coloring is treated
in Section 3.3. In Section 3.4, we analyse the problem Vertex Deletion Signed-
(H, π)-Coloring while Section 3.5 is for the problem Edge Deletion Signed-(H, π)-
Coloring. Finally, we conclude in Section 3.6.

Contents
3.1 Preliminaries . 72

3.1.1 Some known complexity dichotomies 72
3.1.2 Homomorphism dualities and FPT time 74
3.1.3 Reformulating some modification problems 76

3.2 Edge-colored modification problems 77
3.2.1 Vertex Deletion H-Coloring: P/NP-complete dichotomy 77
3.2.2 Edge Deletion H-Coloring: P/NP-complete dichotomy when

H has order 2 . 80
3.2.3 Vertex/Edge Deletion H-Coloring: FPT algorithms when

H has order 2 . 84
3.3 Limited Switchings (H, π)-Coloring when H has order 2 . . . 87

3.3.1 Limited Switchings (H, π)-Coloring: P/NP-complete di-
chotomy . 87

3.3.2 Limited Switchings (H, π)-Coloring: FPT cases 88
3.3.3 Limited Switchings (H, π)-Coloring: W[1]-hard cases . . . 89

3.3.3.1 Generic reduction . 90
3.3.3.2 Gadgets for H2rb

r,r . 91

3.3.3.3 Gadgets for H2rb
r,− . 92

3.3.3.4 Gadgets for H2rb
r,b . 93

3.4 Vertex Deletion Signed-(H, π)-Coloring 94
3.4.1 Vertex Deletion Signed-H2b

−,−-Coloring: an FPT algo-
rithm using iterative compression 96

3.4.2 Vertex Deletion Signed-H2−
r,b -Coloring: an FPT algorithm

using iterative compression . 100
3.4.3 Solving Disjoint Vertex Deletion Signed-H2−

r,b -Coloring 102

3.4.4 Solving Annotated Signed-H2−
r,b -Coloring 103

3.4.5 Separators: definitions and notation 104
3.4.6 Solving Connected Half Annotated Signed-H2−

r,b -Coloring105

3.4.7 Solving Connected Annotated Signed-H2−
r,b -Coloring . . 107

3.4.7.1 Proof of Lemma 3.35 111
3.4.8 Complexity analysis . 114

page 72 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

3.5 Edge Deletion Signed-(H, π)-Coloring 115
3.6 Conclusion and perspectives . 117

3.1 Preliminaries

3.1.1 Some known complexity dichotomies
For a t-edge-colored graph H, recall that whenever H-Coloring is NP-complete, Ver-
tex Deletion H-Coloring and Edge Deletion H-Coloring are NP-complete
even for k = 0, and thus are not in XP, unless P = NP. For example, this is the case when
H is a monochromatic triangle.

On the other hand, when H-Coloring is in P, both problems are in XP for parameter
k by a brute-force algorithm iterating over all k-subsets of vertices (resp. edges) of G, per-
forming the operation on these k vertices (resp. edges), and then solving H-Coloring.

Similarly, for a signed graph (H, π), Limited Switchings (H, π)-Coloring is NP-
complete even for k = 0, if (H, π)-Coloring is NP-complete. If (H, π)-Coloring is
in P, then Limited Switchings (H, π)-Coloring is in XP, by the same brute-force
argument.

When Signed-(H, π)-Coloring is NP-complete, then Limited Switchings (H, π)-
Coloring is NP-complete (but could still be in XP or FPT), and Vertex Dele-
tion Signed-(H, π)-Coloring and Edge Deletion Signed-(H, π)-Coloring are
NP-complete, even for k = 0. Moreover if Signed-(H, π)-Coloring is in P, then
Vertex Deletion Signed-(H, π)-Coloring and Edge Deletion Signed-(H, π)-
Coloring are in XP.

The previous arguments highlight that to determine the complexity of our five prob-
lems, we must first know the complexity of H-Coloring for any edge-colored graphs H,
and the complexity of (H, π)-Coloring and Signed-(H, π)-Coloring for any signed
graph (H, π).

When k = 0 and H is 1-edge-colored (i.e. H is an undirected graph), we have the
following classic theorem.
Theorem 3.1 (Hell and Nešetřil [98]). Let H be a 1-edge-colored graph. The problem
H-Coloring is in P if the core of H has at most one edge (H is bipartite or has a loop),
and NP-complete otherwise.

There is no analogue of Theorem 3.1 for edge-colored graphs. In fact, it is proved
in [28] that a dichotomy classification for H-Coloring restricted to 2-edge-colored H
would imply a dichotomy for all fixed-target CSP problems. Thus, no simple combinatorial
classification is expected to exist. In fact, even for trees, cycles or complete graphs, such
classifications are far from trivial, see the PhD thesis [26] for an overview of some partial
results highlighting the difficulty of the problem. Some classifications exist for certain
classes of graphs H, such as those of order at most 2 (see [16] and [27]) or paths [25].
By isomorphism between signed graphs and 2-edge-colored graphs, the problem (H, π)-
Coloring is also unlikely to have such a dichotomy.

Hence for the three problems Vertex Deletion H-Coloring, Edge Deletion
H-Coloring and Limited Switchings (H, π)-Coloring we focus most of our at-
tention on targets of order at most 2 since H-Coloring and (H, π)-Coloring are
polynomial for them (see [16, 27] or Theorem 3.18).

On various graph coloring problems page 73

3.1. Preliminaries

H1
rb H1

b H1
− H2−

r,b

H2b
−,− H2b

r,b H2b
r,− H2b

r,r

H2rb
−,− H2rb

r,b H2rb
r,− H2rb

r,r

Figure 3.1: The twelve 2-edge-colored cores of order at most 2 considered in this chapter.

The twelve 2-edge-colored graphs of order at most 2 that are cores (up to symmetries of
the colors) are depicted in Figure 3.1. The two depicted colors are red (dashed edges) and
blue (solid edges). We use the terminology of [16]: for α ∈ {−, r, b, rb}, the 2-edge-colored
graph H1

α is the graph of order 1 with no loop, a red loop, a blue loop, and both kinds
of loops, respectively. Similarly, for α ∈ {−, r, b, rb} and β, γ ∈ {−, r, b}, the graph H2α

β,γ

denotes the graph of order 2 with vertex set {0, 1}. The string α indicates the presence
of an edge between 0 and 1: no edge, a red edge, a blue edge and both edges for −, r, b
and rb, respectively. Similarly, β and γ denote the presence of a loop at vertices 0 and 1,
respectively (− for no loop, r for a red loop, b for a blue loop).

When working on the context of signed graphs (i.e. for Limited Switchings (H, π)-
Coloring, Vertex Deletion Signed-(H, π)-Coloring and Edge Deletion Signed-
(H, π)-Coloring), we use the notation H2α

β,γ to refer to the signed graph obtained from
the 2-edge-colored graph H2α

β,γ by making the red edges negative and the blue edges posi-
tive.

For Signed-(H, π)-Coloring, we recall Theorem 2.22.

Theorem 2.22 (Brewster, Foucaud, Hell and Naserasr [28] and Brewster and Siggers [29]).
Let (H, π) be a signed graph. The problem Signed-(H, π)-Coloring is in P if the s-core
of (H, π) has at most two edges, and is NP-complete otherwise.

Note that signed graphs where the s-core has at most two edges either have one vertex
(with zero loop, one loop or two loops of different signs), or two vertices (with either one
edge or two parallel edges of different signs joining them) [28]. If there are two vertices
joined by one edge and a loop at one of the vertices, we can switch at the non-loop vertex
if necessary to obtain a signed graph with only positive or only negative edges, and then
retract the whole graph to the loop-vertex, so this is not an s-core.

By Theorem 2.22, the signed graphs (H, π) for which Signed-(H, π)-Coloring is
polynomial are H1

− (), H1
rb (), H1

b (), H1
r (), H2b

−,− (), H2rb
−,− ()

and H2−
r,b ().

3.1.2 Homomorphism dualities and FPT time
For a t-edge-colored graph H, we say that H has the duality property if there is a set
F(H) of t-edge-colored graphs such that, for any t-edge-colored graph G, G −→ H if
and only if no graph F of F(H) satisfies F −→ G. If F(H) is finite, we say that H has
the finite duality property. If checking whether any graph F in F(H) satisfies F −→ G
(for an input edge-colored graph G) is in P, we say that H has the polynomial duality

page 74 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

property. This is in particular the case when F(H) is finite. For such H, H-Coloring is
in P. This topic is explored in detail for edge-colored graphs in [16]. By a simple bounded
search tree argument, we get the following:

Proposition 3.2. Let H be a t-edge-colored graph with the finite duality property. Let
c = max{|V (F)|, F ∈ F(H)}.

The problem Vertex Deletion H-Coloring can be solved in time O(f(F(H))nc)
for some computable function f .

The problem Edge Deletion H-Coloring can be solved in time O(f(F(H))nc2)
for some computable function f .

If t = 2 and (H, π) is the signed graph isomorphic to H, then Limited Switchings
(H, π)-Coloring can be solved in time O(f(F(H))nc) for some computable function f .

Proof. First, we search for all occurrences of homomorphic images of graphs in F(H)
(there are at most f(F(H)) such images for some exponential function f), which we
call obstructions. This takes time at most O(f(F(H))nc), where c = max{|V (F)|, F ∈
F(H)}. Then, we need to get rid of each obstruction. For Vertex Deletion H-
Coloring (resp. Edge Deletion H-Coloring), we need to delete at least one vertex
(resp. edge) in each obstruction, thus we can branch on all c (resp. c2) possibilities. For
Limited Switchings (H, π)-Coloring, we need to switch at least one of the vertices
of the obstruction (but then update the list of obstructions, as we may have created a new
one). In all cases, this gives a search tree of height k and degree bounded by a function
of F(H), which is FPT.

Some dualities have been obtained for small edge-colored graphs. The following theo-
rem from [16] is crucial for our techniques.

Theorem 3.3 (Bawar, Brewster and Marcotte [16]). Let H be an edge-colored graph of
order at most 2. Then, H has the polynomial duality property. If H has order 1, then H
has the finite duality property.

We next describe the duality sets for some special cases that will be used in our proofs.

Lemma 3.4 (Bawar, Brewster and Marcotte [16]). A 2-edge-colored graph has a homo-
morphism to H2b

r,r () if and only if it contains no homomorphic image of cycles
with an odd number of blue edges.

We present a brief proof of their result. Note that homomorphic images of paths are
walks and that homomorphic images of cycles are closed walks.

Proof. Let G be a 2-edge-colored graph which admits a homomorphism φ to H2b
r,r. Suppose

that G contains a homomorphic image of some cycle with an odd number of blue edges,
that is to say G contains a closed walk W with an odd number of blue edges. Note that
if uv is a blue edge, then ϕ(u) ̸= ϕ(v) and if uv is a red edge, then ϕ(u) = ϕ(v). By going
around the closed walk, we obtain ϕ(u) ̸= ϕ(u) for any vertex u of W , a contradiction.

Let G be a 2-edge-colored graph which contains no homomorphic image of cycles with
an odd number of blue edges. We identify every connected red components of G. The
graph that we obtain has red loops but no other red edges, moreover the graph induced by
the blue components is bipartite (otherwise there would be a cycle with an odd number
of blue edges in G). Hence by identifying the vertices of each bipartition, we obtain H2b

r,r.
Hence G −→ H2b

r,r.

On various graph coloring problems page 75

3.1. Preliminaries

Lemma 3.5 (Bawar, Brewster and Marcotte [16]). A 2-edge-colored graph has a homo-
morphism to H2b

r,b () if and only if it contains no homomorphic image of a
red-blue-red 4-vertex path.

Proof. Let u be the vertex of H2b
r,b with a red loop, and v the vertex with a blue loop.

Given a 2-edge-colored graph G, map all the vertices incident with a red edge to u, and
map all others to v. This is a homomorphism unless two vertices mapped to u are joined
by a blue edge. But in this case, we can find a homomorphic image of a red-blue-red walk
in G. Conversely, note that a red-blue-red path has no homomorphism to H2b

r,b.

Lemma 3.6 (Bawar, Brewster and Marcotte [16]). A 2-edge-colored graph has a homo-
morphism to H2b

r,− () if and only if it contains no homomorphic image of a path
of the form RB2p−1R (where R is a red edge, B a blue edge and p ≥ 1 is an integer) or
of cycles with an odd number of blue edges.

Proof (sketch). First note that none of the two obstructions admit a homomorphism to
H2b
r,−. If a 2-edge-colored graph G has none of these homomorphic images then by identi-

fying every vertex incident with a red edge of G, we obtain a bipartite graph on the blue
edges for which one of the two partitions contains every vertex incident with a red loop.
By mapping this partition to the vertex of H2b

r,− with the red loop and the other partition
to the other vertex, we obtain our homomorphism.

Lemma 3.7 (Bawar, Brewster and Marcotte [16]). A 2-edge-colored graph has a homo-
morphism to H2rb

r,r () if and only if it contains no homomorphic image of an
all blue odd cycle.

Proof (sketch). The idea is to note that the graph induced by the blue edges is bipartite
and that the red edges does not create any constraints.

The proof of the following results are more complicated, hence we refer the reader
to [16] for the details. In a 2-edge-colored graph, a closed walk v0v1 . . . vt is alternating
if for every i < t, vivi+1 and vi+1vi+2 do not have the same color (where the indices are
taken modulo t). An alternating closed walk in a 2-edge-colored graph correspond exactly
to the notion of alternating closed walk in the isomorphic signed graph. An odd figure
eight is a closed walk of the form v0, v1, . . . , v2j, v0, v2j+2, . . . , v2p−1, v0, i.e. two odd
cycles which share a vertex v0.

Lemma 3.8 (Bawar, Brewster and Marcotte [16]). A 2-edge-colored graph has a homo-
morphism to H2rb

r,− () if and only if it contains no homomorphic image of an odd
figure eight v0, v1, . . . , v2j, v0, v2j+2, . . . , v2p−1, v0 for which all edges v2iv2i+1 are blue.

Lemma 3.9 (Bawar, Brewster and Marcotte [16]). A 2-edge-colored graph has a ho-
momorphism to H2rb

r,b () if and only if it contains no homomorphic image of
alternating odd figure eight, that is, an alternating closed walk v0, v1, . . . , v2j, v0, v2j+2,
. . . , v2p−1, v0.

3.1.3 Reformulating some modification problems
As mentioned in the introduction, behind the generality of our modification problems lies
some interesting particular cases. This section is dedicated to highlighting well known
problems which are captured by our five general problems.

page 76 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

The first problem is Vertex Cover which consists in finding the smallest set S of ver-
tices so that every edge of the input graph is incident with a vertex of S. This problem is
equivalent to the two problems Vertex Deletion H1

−-Coloring and Vertex Dele-
tion Signed-H1

−-Coloring. In a similar fashion, Vertex Deletion H1
b -Coloring

is equivalent to solving Vertex Cover on the input graph where the blue edges are
removed.

An undirected graph G admits a homomorphism to K2 if and only if it is bipartite.
Consequently, the problem Odd Cycle Transversal (resp. Edge Bipartization)
which consists in finding the minimum number of vertices (resp. edges) to remove to
make the graph bipartite, is equivalent to Vertex Deletion K2-Coloring (resp.
Edge Deletion K2-Coloring). Note that this problem is also equivalent to Ver-
tex Deletion H-Coloring (resp. Edge Deletion H-Coloring) where H is the
t-edge-colored graph on two vertices u and v such that for every edge-color i, there is an
edge uv colored i. It is also equivalent to Vertex Deletion Signed-H2rb

−,−-Coloring
(resp. Edge Deletion Signed-H2rb

−,−-Coloring) for signed graphs.
It is also possible to encompass a combination of problems. Solving Vertex Dele-

tion H2b
−,−-Coloring is equivalent to solving Odd Cycle Transversal and Vertex

Cover on the input graph where the blue edges are removed at the same time.
Our problems can also easily encode stronger versions of well known problems. For

example consider the following problem.

Annotated Odd Cycle Transversal Parameter: k
Input: A graph G, two sets A0 and B0 of vertices of G and an integer k.
Question: Is there a subset S of vertices of G such that G − S is bipartite with
bipartition (A,B) such that A0 ⊆ A and B0 ⊆ B?

This problem can be seen as a subproblem of Vertex Deletion H-Coloring where
H is the 3-edge-colored graph . Indeed, one can “mark” the two bipartitions
with pendant red or green edges (depending on which set among A0 or B0 the vertex
belongs to) and perform Odd Cycle Transversal on the blue graph. This problem
is not the only one, for example we can perform the same operation for the edge deletion
version. In general, we can even encode list coloring with homomorphisms of edge-colored
graphs: each subset of colors is associated with its own edge-color. The target graph is
a blue Kp (for some integer p) where each vertex is incident to loops of every edge-color
associated with a list containing this vertex. It suffices to add a loop for each vertex u of
the input graph with edge-color corresponding with the list of u.

For signed graphs, many interesting problems can be formulated as homomorphism
problems. For example Signed-H1

b -Coloring is equivalent to determining if the in-
put signed graph is balanced or not. Equivalently Signed-H1

r -Coloring tests whether
the input signed graph is antibalanced or not. Hence the problem Vertex Deletion
Signed-H1

b -Coloring consists in finding the minimum number of vertices to remove
to make the graph balanced. The problem Edge Deletion Signed-H1

b -Coloring is
equivalent to computing the frustration index of the input signed graph, a problem which
has been extensively studied (see Section 2.1.4). The problem Limited Switchings H1

b -
Coloring consists in not only determining whether the input signed graph is balanced
but also the number of switchings necessary to make the input all-positive.

The problems Vertex/Edge Deletion Signed-H2b
−,−-Coloring consist in remov-

ing vertices/edges in order for the input signed graph to be both balanced and bipartite,

On various graph coloring problems page 77

3.2. Edge-colored modification problems

that is, we want to have chromatic number at most 2. This can be reformulated as wanting
to remove both odd cycles and unbalanced cycles.

Unfortunately, in general, determining the chromatic number of a signed graph cannot
be expressed as some Signed-(H, π)-Coloring problem due to the fact that there exist
multiple targets of the same order which are not equivalent.

3.2 Edge-colored modification problems
In this section, we focus on the complexity of the two problems: Vertex Deletion
H-Coloring and Edge Deletion H-Coloring.

We first adapt a general method from [141] to show that Vertex Deletion H-
Coloring is either trivial, or NP-complete in Section 3.2.1.

For Edge Deletion H-Coloring, we cannot use this technique (in fact there exist
non-trivial polynomial cases). Thus, we turn our attention to edge-colored graphs of
order 2 (note that for every edge-colored graph H of order at most 2, H-Coloring is in
P [16, 27]). In Section 3.2.2, we prove a dichotomy result for graphs of order at most 2
for the Edge Deletion H-Coloring problem.

Finally, in Section 3.2.3, we provide FPT algorithms from Vertex Deletion H-
Coloring and Edge Deletion H-Coloring when H has order 2.

3.2.1 Vertex Deletion H-Coloring: P/NP-complete dichotomy
Graph modification problems for operations vertex-deletion and edge-deletion have been
studied extensively. For a graph property P , we denote by Vertex Deletion-P the
graph modification problem for property P and operation vertex-deletion. A property
is hereditary if P(G) implies P(H) for all induced subgraphs H of G. Lewis and Yan-
nakakis [141] defined a non-trivial property P on graphs as a property true for infinitely
many graphs and false for infinitely many graphs. These definitions can be extended
to (m,n)-mixed multi-graphs (which contains edge-colored graphs). They showed the
following general result.

Theorem 3.10 (Lewis and Yannakakis [141]). The Vertex Deletion-P problem for
non-trivial graph-properties P that are hereditary is NP-hard.

By modifying the proof of Theorem 3.10, we can prove the two following results.

Theorem 3.11. Let P be a non-trivial property of (m,n)-mixed multi-graphs that is
hereditary and true for all empty graphs. For such a property, the problem Vertex
Deletion-P is NP-hard.

The proof of this theorem follows the proof of Theorem 3.10 from [141]. The only
difference is that we work with (m,n)-mixed multi-graphs instead of undirected graphs.

Proof. Let G be an (m,n)-mixed multi-graph. We denote by CC(G) the set of connected
components of G. These components are also (m,n)-mixed multi-graphs. For x and v
two vertices of G, let Rv(x) be the set of vertices connected to x in G− v. For any vertex
v ∈ V (G), let CCv(G) be the set of connected subgraphs of G induced by the sets of
vertices of the form Rv(x) ∪ {x} for x ∈ V (G− v). In other words, CCv(G) is the set of

page 78 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

J2

y

xJ1

(a) An (m, n)-mixed multi-
graph J .

y

x

(b) The (m, n)-mixed multi-
graph J+.

J2

x
J ′

1

(c) The (m, n)-mixed multi-
graph J ′.

Figure 3.2: An example of a (2, 2)-mixed multi-graph J and its induced subgraphs J1, J2, J+,
J ′

1 and J ′.

connected components of G− v where we added the vertex v. In particular, if v is not a
cut-vertex, then CCv(G) = {G}.

For a connected (m,n)-mixed multi-graph G and v ∈ G, let αv(G) = (n1, n2, . . . nt)
such that n1 ≥ n2 ≥ · · · ≥ nt, and the multi-sets {n1, . . . , nt} and {|V (C)| : C ∈ CCv(G)}
are equal. In other words, αv(G) is the ordered sequence of the orders of the (m,n)-mixed
multi-graphs in CCv(G). Let α(G) be the smallest sequence (for the lexicographic order)
αv(G) over all possible vertices v ∈ V (G).

For an (m,n)-mixed multi-graph G, let β(G) = (α(G1), α(G1), . . . α(Gt)) such that
α(G1) ≥L α(G2) ≥L · · · ≥L α(Gt) (where ≥L is the lexicographical order) and CC(G) =
{G1, . . . , Gt}. In other words, β(G) is the ordered sequence of α-sequences of the con-
nected components of G.

Recall that P is non-trivial. In particular, P has counter-examples. For an integer
p and an (m,n)-mixed multi-graph G, we denote by pG, the (m,n)-mixed multi-graph
composed of p disjoint copies of G. Let J be an (m,n)-mixed multi-graph such there exists
some k ≥ 1 for which P(kJ) is false, and which has the minimum β-sequence among the
(m,n)-mixed multi-graphs verifying this property. Let k ≥ 1 such that P(kJ) is false and
P((k−1)J) is true. Suppose that β(J) = (α(J1), . . . , α(Jt)) where CC(J) = {J1, . . . , Jt}.
Let x be a vertex of J1 for which α(J1) = αx(J1) and let J+ be the connected (m,n)-mixed
multi-graph of CCx(J1) with the greatest number of vertices. Since all empty graphs verify
P , J contains at least one edge. This implies that J1 and J+ contain at least one edge.
In particular, J+ contains at least two vertices. Let y be a vertex of J+ which is different
from x. Let J ′

1 (resp. J ′) be the (m,n)-mixed multi-graph obtained from J1 (resp. J) by
removing the vertices of V (J+) \ {x, y}. See Figure 3.2 for an example.

Each induced subgraph of J that we defined will be useful to show that Vertex
Deletion-P is NP-hard. We reduce Vertex Cover to Vertex Deletion-P . Note
that it may be complicated to find the (m,n)-mixed multi-graph J . If we cannot find J in
polynomial time then it makes the reduction non-constructive. Let (G, ℓ) be an instance
of Vertex Cover where G is an undirected graph of order p and ℓ is an integer.

We construct the (m,n)-mixed multi-graph H from G as follows. For each vertex
v ∈ V (G), we add a copy J ′

v of J ′ to H. For each edge uv ∈ E(G), we add a copy J+
uv

of J+ to H. We identify the copy xu (resp. xv) of x in J ′
u (resp. J ′

v) with the copy xuv
(resp. yuv) of x (resp. y) in J+

uv. This ends the construction of H. See Figure 3.3 for an
example. We construct the (m,n)-mixed multi-graph H ′ by taking pk disjoint copies of
H.

We claim that (G, ℓ) is a positive instance of Vertex Cover if and only if (H ′, pkℓ)
is a positive instance of Vertex Deletion-P .

Suppose that there is a subset S of vertices of G of size at most ℓ that is a vertex

On various graph coloring problems page 79

3.2. Edge-colored modification problems

J2J2 J ′
1

xu
J ′

1
xv

J∗
uv J ′

vJ ′
u

Figure 3.3: An example of the graph H when J is the (2, 2)-mixed multi-graph of Figure 3.2
and G is just an edge uv. Here, we chose to identify xu with xuv and xv with yuv. Note that if
no vertex is removed from H, then H contains J as an induced subgraph.

cover of G. We construct S ′ ⊆ V (H ′) as follows. For every copy of H in H ′ and every
vertex u ∈ S, we add the copy of the vertex xu of J ′

u to S ′. Note that |S ′| ≤ pkℓ. We
claim that H ′ − S ′ verifies P . Let J be the set of (m,n)-mixed multi-graphs that can
be constructed as follows. Take a copy of J ′

1 and at most ∆(G) copies of J+. For each
copy of J+, delete one of x or y and identify the other vertex with the copy x′ of x in the
copy of J ′

1. The set J contains at most 3∆(G) (m,n)-mixed multi-graphs, J contains all
possible maximal connected induced subgraph of H connected to a vertex xu when every
xv for v ∈ N(u) has been removed in H.

A connected component C of H ′ − S ′ can be one of the following four types:

1. The connected component C belongs to {J2, . . . , Jt}.
2. The connected component C belongs to J .
3. The connected component C is isomorphic to a connected induced subgraph of J ′

1
where the vertex x has been removed.

4. The connected component C is isomorphic to a connected induced subgraph of J+

where the vertices x and y have been removed.

Let J+ be the (m,n)-mixed multi-graph composed of disjoint copies of the vertices of
J and disjoint copies of J2, . . . , Jt−1 and Jt. Note that every connected component of
H ′ − S ′ is an induced subgraph of J∗. Let C ∈ J , note that α(C) ≤ αx′(C) where x′ is
the copy of x in J ′

1. Note that CCx′(C) = CCx(J ′)∪X where X is the set corresponding
to the copies of J+ in C with one of x or y removed. The connected multi-graphs of X
have order |V (J+)| − 1, hence αx′(C) <L αx(J1) = α(J1). Note that β(J∗) <L β(J) since
for every C ∈ J , α(C) <L α(J1).

By minimality of J , any number of disjoint copies of J∗ must verify P , hence H ′ − S ′

verifies P and (H ′, pkℓ) is a positive instance of Vertex Deletion-P .
Suppose that there is a subset S ′ of vertices of H ′ of size at most pkℓ such that

P(H ′−S ′) holds. Note that H ′−S ′ can contain at most k− 1 copies of the (m,n)-mixed
multi-graph J by definition of J . In particular H ′ has at least pk− (k−1) copies of H for
which after removing the vertices of S ′, the (m,n)-mixed multi-graph does not contain a
copy of J .

Suppose that for one of the copies H0 of H, |V (H0) ∩ S ′| ≤ ℓ. In this case, we construct
S ⊆ V (G) as follows. If S ′ ∩ V (J ′

u) ̸= ∅, then add u to S. If S ′ ∩ (V (J+
uv) \ {x, y}) ̸= ∅,

then add arbitrarily one of u or v to S. Note that |S| ≤ ℓ. Suppose that there is an edge
uv ∈ E(G), such that u, v /∈ S. Our copy of H contains J ′

u, J ′
v and J+

uv and these (m,n)-
mixed multi-graphs do not contain vertices from S. The vertex xuv has been identified
with one of xu or xv, say xu. The (m,n)-mixed multi-graph composed of J ′

u and J+
uv with

xu and xuv identified is exactly the (m,n)-mixed multi-graph J . Hence if H−S ′ does not
contain J , then the set S is a vertex cover of G of size at most ℓ.

page 80 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

Suppose, by contradiction, that for every copy of H either H−S ′ contains J or verifies
|V (H0) ∩ S ′| ≥ ℓ+ 1. In this case, S ′ has at least (pk− (k− 1))(ℓ+ 1) vertices. Moreover,
as ℓ < p (otherwise the instance of Vertex Cover is trivial), (pk − (k − 1))(ℓ + 1) ≥
pkℓ+ ℓ+ 1 + k(p− (ℓ− 1)) > pkℓ, a contradiction.

Hence G has a vertex cover of size at most ℓ.

For a t-edge-colored graph, the only case where the property of mapping to H is trivial
(in this case, always true) is when H has a vertex with a loop of each edge-color (in which
case the core of H is this vertex). Thus we obtain the following dichotomy.

Corollary 3.12. Let H be a t-edge-colored graph. Vertex Deletion H-Coloring is
in P if H contains a vertex having a loop of each edge-color, and NP-complete otherwise.

Proof. For every t-edge-colored graph H, Vertex Deletion H-Coloring is in NP.
For a t-edge-colored graph G, the property P(G) : “G −→ H” is an hereditary property
and is verified by all independent sets, thus if it has infinitely many negative instances
(on loopless t-edge-colored graphs), then it is non-trivial, and thus NP-hard. Let us see
when this is the case.

We can observe that the problem is actually trivial if H contains a vertex with all
t-colored loops, indeed every t-edge-colored graph can be mapped to this vertex (in this
case, we accept). Moreover, if not, then the complete graph K|V (H)|+1 with all t-colored
edges between each pair of vertices does not map to H. Indeed by the pigeonhole principle,
two vertices u and v of our input t-edge-colored graph must have the same image vertex
w in H. As there is an edge colored i between u and v, there must be a loop colored i
on w. Thus w should have all t kinds of loops, a contradiction. Thus, in all such cases,
the property is non-trivial on loopless t-edge-colored graphs and hence the problem is
NP-complete.

3.2.2 Edge Deletion H-Coloring: P/NP-complete dichotomy when
H has order 2

No analogue of Theorem 3.10 for the operation edge-deletion exists nor is expected to
exist [205]. We thus restrict our attention to the case of edge-colored graphs H of order
at most 2. For this case we classify the complexity of Edge Deletion H-Coloring.
Since multiple edges of the same color are irrelevant, if H has order 2, for each edge-color
there are three possible edges.

Theorem 3.13. Let H be an edge-colored core of order at most 2. If each color class of
the edges of H contains either only loops or all three possible edges, then Edge Deletion
H-Coloring is in P; otherwise it is NP-complete.

We separate the proof of this theorem into several lemmas.

Lemma 3.14. Let H be an edge-colored core of order at most 2. If each color class of the
edges of H contains either only loops or all three possible edges, then Edge Deletion
H-Coloring is in P.

Proof. First note that if color i has all three possible edges in H, we can simply ignore
this color by removing it from H and G without decreasing the parameter, as it does not
provide any constraint on the homomorphism.

On various graph coloring problems page 81

3.2. Edge-colored modification problems

We can therefore suppose that H contains only loops. If two colors induce the same
subgraph of H, then we can identify these two colors in both G and H as they give the
same constraints.

If G has colors that H does not have, then remove each edge with this color and
decrease the parameter for each removed edge. If it goes below zero then we reject.

We can now assume that H has only loops and G has the same colors as H. We are
left with only three cases, as H is a core (there is no vertex whose set of loops is included
in the set of loops of the other).

1. H has a single loop. Then, G −→ H as G has the same colors as H.

2. H has one loop colored a and one loop colored c on the first vertex and has one loop
colored b and one loop colored c on the second vertex. Up to symmetry, suppose
that H has one blue loop and one green loop on the first vertex and has one red
loop and one green loop on the second vertex. We will reduce to the problem where
we have removed the green loops. Let p be the number of green edges of G. We
construct G′ from G by replacing each green edge by a blue edge and a red edge
(we can end up with multiple blue or red edges that way). We claim that Edge
Deletion H-Coloring with parameter k and input G is true if and only if Edge
Deletion H2−

r,b -Coloring with parameter k + p on input G′ is true.

If the first problem has a solution S, then remove the corresponding edges from G′

(if the original edge of G is green remove the two new edges in G′). Each vertex of
G− S is set to one component, in particular each green edge is set to a vertex with
a blue edge or a red edge. If a green edge uv of G is sent to the first vertex (resp.
second vertex), we remove the edge of G′ corresponding to uv which is red (resp.
blue). We can check that after removing those edges, G′ admits a homomorphism
to H2−

r,b . We removed at most k edges in the first step plus the number of green
edges in S and removed one edge for each green edge left in the second step. Thus,
we removed at most k + p edges in G′.

If the second problem has a solution S, then remove from G all blue and red edges
of S. Remove the green edges of G only if both were removed in G′. Note that
S contains at least one edge in G′ for each green edge of G. Thus we removed at
most k edges in G. Moreover, G −→ H by taking the same homomorphism as in
G′. Indeed, the blue and red edges are sent to one of the two loops while each green
connected component is sent to one vertex.

Using this method we can reduce the problem to Edge Deletion H2−
r,b -Coloring,

which is our last case.

3. H contains two non-incident loops with different colors. In this case, H = H2−
r,b

(). Indeed if there were any other kind of loop, then we would be in the
previous case or we could identify two colors. Note that a 2-edge-colored graph
maps to H2−

r,b if and only if it has no red edge incident to a blue edge. Thus, solving
Edge Deletion H2−

r,b -Coloring amounts to disconnecting red and blue connected
components. This can be done by constructing the following bipartite graph: put
a vertex for each edge of G; two vertices are adjacent if the corresponding edges in
G are adjacent and of different colors. Solving Edge Deletion H2−

r,b -Coloring
is the same as solving Vertex Cover on this bipartite graph, which is in P.

page 82 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

u v w

u′ v′ w′

G . . .

Figure 3.4: Reduction from Vertex Cover to Edge Deletion H2b
r,b-Coloring.

There is no other case as otherwise the set of loops at one vertex would be included in
the set of loops at the other.

The NP-completeness proofs are by reductions from Vertex Cover, based on vertex-
and edge-gadgets constructed using obstructions to the corresponding homomorphisms
from [16].

We start with proving the NP-hardness of two special cases, and then we will show
that we can always reduce the problem from these two cases.

Lemma 3.15. The problem Edge Deletion H2b
r,b-Coloring (i.e.) is NP-

hard.

Proof. We reduce from Vertex Cover. Given an input graph G of Vertex Cover,
we construct a 2-edge-colored graph G′ from G as follows. Take G and color all edges blue,
then add a pending red edge vv′ to each vertex v of G (see Figure 3.4). By Lemma 3.5, a
2-edge-colored graph maps to H2b

r,b if and only if it does not contain a homomorphic image
of a red-blue-red path [16] i.e. a path v0v1v2v3 where v0v1 and v2v3 are red and v1v2 is
blue.

Assume that G has a vertex cover C of size at most k. When removing the edges of
the form vv′ for v ∈ C in G′, the resulting graph does not contain red-blue-red paths and
thus maps to H2b

r,b.
Conversely, assume that we have a set S of k edges of G′ such that (G′− S) −→ H2b

r,b.
In particular, for every blue edge uv of G, we must have one of uu′, uv or vv′ in S. Thus
we can obtain a vertex cover of G of size k from S: for a vertex v, if vv′ belongs to S, we
add v to that vertex cover. If uv ∈ S, we add either u or v to the vertex cover.

We thus have a polynomial-time reduction from Vertex Cover to Edge Deletion
H2b
r,b-Coloring. Therefore this problem is NP-hard.

Lemma 3.16. The problem Edge Deletion H2rb
r,b -Coloring (i.e.) is NP-

hard.

Proof. We again reduce from Vertex Cover. For an input graph G of Vertex Cover,
we construct a 2-edge-colored graph G′ from G as follows. We start with a red copy
of G, then we add a pending blue edge vv′ for each v ∈ G. Finally, for each edge
uv ∈ G, we create three new vertices xuv, yuv, zuv such that u′xuv, v

′xuv, yuvzuv are red and
xuvyuv, xuvzuv are blue (see Figure 3.5).

We then recall Lemma 3.9 proved in [16], stating that a 2-edge-colored graph maps to
H2rb
r,b if and only if it does not contain an alternating odd figure eight, that is, an alternating

closed walk v0, v1, . . . , v2j, v0, v2j+2, . . . , v2p−1, v0. Note that our construction creates
such a pattern for each edge of G.

Assume that G has a vertex cover C of size at most k. Then for each v ∈ C, we delete
vv′ from G′. We prove that the resulting graph G′′ contains no alternating odd figure

On various graph coloring problems page 83

3.2. Edge-colored modification problems

u v

w

t

G

u

u′

xuv

yuv zuv

v

v′

xvt

yvt zvt

w

w′t

t′

xvw

yvwzvw

G′

Figure 3.5: Reduction from Vertex Cover to Edge Deletion H2rb
r,b -Coloring

eight. First observe that in the graph obtained from G′ by removing all edges from G, all
the alternating walks have length at most 7, hence it contains no alternating odd figure
eight. Thus, if G′′ contains an alternating odd figure eight, then it uses an edge uv from
G. Since C is a vertex cover, either uu′ or vv′ is not present in G′′. Then, either u or v
has no incident blue edge. This implies that G′′ has no alternating odd figure eight, and
hence maps to H2rb

r,b .
Conversely, assume that we can remove a set S of k edges from G′ so that G′ \ S −→

H2rb
r,b . We construct a set C ⊂ V (G) as follows: if vv′ ∈ S, then we add v ∈ C. If

uv, u′xuv, v
′xuv, xuvyuv, xuvzuv or yuvzuv lie in S, then we add either u or v to C. Note

that, in each case, |C| ⩽ k. Moreover, we claim that C is a vertex cover of G. Assume
not, and consider an edge uv in G such that u, v /∈ C. By construction, this means that
none of the edges uv, uu′, vv′, u′xuv, v

′xuv, xuvyuv, xuvzuv, yuvzuv lies in S. These vertices
form an alternating odd figure eight, contradicting that G′ \ S −→ H2rb

r,b .
Therefore, Edge Deletion H2rb

r,b -Coloring is NP-hard.

Lemma 3.17. For H an edge-colored core of order at most 2, if there exists a color of H
which contains an edge which is not a loop and does not contain all three possible edges,
then Edge Deletion H-Coloring is NP-complete.

Proof. Take such a graph H. If one color, say blue, contains only one edge from the first
vertex to the second, then for graphs G which are all blue, the problem is equivalent to
Edge Bipartization, which is NP-complete.

Now, if H contains no such edge, then by assumption it must contain a color, say
blue, with a loop and an edge from the first vertex to the second (and no other edge
of this color). Let u be the vertex with the loop and v be the other vertex. Since H
is a core, H does not map to its subgraph induced by u. If for every edge-color of H
there was a loop of this color on u, then H would not be a core. Hence there exists a
color, say red, such that there is a red edge in H and u has no loop colored red. Hence,
the graph obtained by removing all edges which are neither blue nor red, is either H2b

r,b

() or H2rb
r,b () up to symmetry. Thus, by the previous two lemmas,

Lemma 3.15 and Lemma 3.16, the problem is NP-complete using the same reductions on
input edge-colored graphs which only have blue and red edges (the edges of H that are
neither blue nor red can be ignored).

page 84 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

Ei(H) Clause Ei(H) Clause

∅ (xu)(xu) {00, 01} (xu + xv)
{00} (xu)(xv) {01, 11} (xu + xv)
{01} (xu + xv)(xu + xv) {00, 11} (xu + xv)(xu + xv)
{11} (xu)(xv) {00, 01, 11} (xu + xu)

Table 3.3: Clauses appearing in the 2-Sat formula F (G) of Theorem 3.18 proved in [27], for
each edge uv of G colored i. The clauses depend on the edge set of H in color i, described in
the rows (where V (H) = {0, 1}).

3.2.3 Vertex/Edge Deletion H-Coloring: FPT algorithms when
H has order 2

For many edge-colored graphs H of order at most 2, we can show that Vertex Deletion
H-Coloring and Edge Deletion H-Coloring are FPT by giving ad-hoc reductions
to Vertex Cover, Odd Cycle Transversal or a combination of both. However,
a more powerful method is to generalize a technique from [27] used to prove that H-
Coloring is in P by reduction to 2-Sat (see also [26]):

Theorem 3.18 (Brewster, Dedić, Huard and Queen [27]). Let H be an edge-colored
graph of order at most 2. Then, for each instance G of H-Coloring, there exists a
polynomially computable 2-Sat formula F (G) that is satisfiable if and only if G −→ H.
Thus, H-Coloring is in P.

Proof (sketch). The formula F (G) from Theorem 3.18 contains a variable xv for each
vertex v of G, and for each edge uv, a set of clauses that depends on H, as described
in Table 3.3 (reproduced from [27]). The idea is to see the two vertices of H as “true”
(1) and “false” (0), and for each edge uv of a certain color, to express the possible valid
assignments of xu and xv based on the edges of that color that are present in H. For
example, if H has, for color i, a loop at vertex 0 and an edge 01, but no other edge of
color i, for each edge uv of G of color i, we add the clause (xu + xv) to F (G), indeed the
constraint for edge uv is satisfied if at least one of u, v is mapped to 0.

We will show how to generalize this idea to Vertex Deletion H-Coloring and
Edge Deletion H-Coloring. We will need the following parameterized variant of
2-Sat:

Variable Deletion Almost 2-Sat Parameter: k.
Input: A 2-CNF Boolean formula F , an integer k.
Question: Is there a set of k variables that can be deleted from F (together with the
clauses containing them) so that the resulting formula is satisfiable?

Variable Deletion Almost 2-Sat and another similar variant, Clause Dele-
tion Almost 2-Sat (where instead of k variables, k clauses may be deleted), are known
to be FPT: a solution can be found in O(2O(k)(n + m)O(1)) time (see [53, Chapter 3.4]
and [165]) where n is the number of variables and m is the number of clauses of the
formula. We need to introduce a more general variant, that we call Group Deletion
Almost 2-Sat, defined as follows.

On various graph coloring problems page 85

3.2. Edge-colored modification problems

Group Deletion Almost 2-Sat Parameter: k.
Input: A 2-CNF Boolean formula F , an integer k, and a partition of the clauses of F
into groups such that each group has a variable which is present in all of its clauses.
Question: Is there a set of k groups of clauses that can be deleted from F so that the
resulting formula is satisfiable?

By a generalization of [53, Exercise 3.21] for Clause Deletion Almost 2-Sat, we
obtain the following complexity result for Group Deletion Almost 2-Sat.

Proposition 3.19. Group Deletion Almost 2-Sat is FPT and can be solved in
O(2O(k)(n + m)O(1)) time where n is the number of variable and m is the number of
clauses of the formula.

Proof. We will reduce the problem Group Deletion Almost 2-Sat to the problem
Variable Deletion Almost 2-Sat.

Take an instance G of Group Deletion Almost 2-Sat with groups g1, . . . , gp. We
construct an instance V of Variable Deletion Almost 2-Sat as follows. For i ∈ [1, p],
we replace each occurrence of variable x in the clauses of group gi with a new variable xi.
Moreover, for each variable x and for each i, j, such that 1 ≤ i < j ≤ p, we add the two
clauses (xi + xj) and (xi + xj) to V (i.e. xi = xj). The parameter for V remains k.

Suppose that V is a positive instance, i.e. that after removing up to k variables, the
resulting set of clauses V ′ is satisfied by a truth assignment v. For each removed variable
xi, we remove the group of clauses gi in G. Note that at most k groups are removed since
we removed at most k variables in V . We have to show that the new set of clauses G ′ is
satisfiable.

Note that if xi and xj are not removed, then v satisfies (xi + xj) and (xi + xj), which
ensures that v(xi) = v(xj). Thus, defining the truth value of x by the value of v(xi) (for
some non-removed xi) is well-defined. Take a clause (x + y) of G ′, then (xi + yi) is a
satisfied clause of V ′ for some i ∈ [1, p]. By definition of our truth assignment, (x+ y) is
satisfied, so G ′ is satisfiable. Therefore, G is a positive instance.

Conversely, suppose that we can remove k groups from G such that the resulting set
of clauses G ′ is satisfied by v. If we removed the group gi in the solution, then we remove
xi in V where xi is a variable of gi that appears in each of its clauses. Such a variable
exists by definition of G. This removes all the clauses corresponding to the clauses of the
group gi in V . Thus, taking the truth assignment that assigns to each xi the value v(x)
satisfies the instance V .

We are now able to prove the following theorem.

Theorem 3.20. For every edge-colored graph H of order at most 2, Vertex Dele-
tion H-Coloring and Edge Deletion H-Coloring are FPT and can be solved in
O(2O(k)nO(1)) where n is the order of the input edge-colored graph.

Proof. For an instance G, k of Vertex Deletion H-Coloring or Edge Deletion
H-Coloring, we consider the formula F (G) from Theorem 3.18 (see Table 3.3). In F (G),
to each vertex of G corresponds a variable xv. Deleting v from G when mapping G to H
has the same effect as deleting xv when satisfying F (G). Thus, this is an FPT reduction
from Vertex Deletion H-Coloring to Variable Deletion Almost 2-Sat.

Moreover, each edge uv of G corresponds to one or two clauses of F (G). This natu-
rally defines the groups of Group Deletion Almost 2-Sat by grouping the clauses

page 86 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

Ai(H) Clause Ai(H) Clause

∅ (xu)(xu) {01, 10} (xu + xv)(xu + xv)
{00} (xu + c)(xv + c)(c) {01, 11} (xv)
{01} (xu + c)(xv + c)(c) {10, 11} (xu)
{10} (xv + c)(xu + c)(c) {00, 01, 10} (xu + xv)
{11} (xu + c)(xv + c)(c) {00, 01, 11} (xu + xv)
{00, 01} (xu) {00, 10, 11} (xu + xv)
{00, 10} (xv) {01, 10, 11} (xu + xv)
{00, 11} (xu + xv)(xu + xv) {00, 01, 10, 11} (xu + xu)

Table 3.4: Clauses appearing in the 2-Sat formula F (G) of Theorem 3.21, for each arc uv of
the (n, m)-mixed graph G colored i. The clauses depend on the arc set of H in color i, described
in the rows (where V (H) = {0, 1}). The variable c present in this table is unique to each edge
uv, i.e. we create a new variable for each edge.

corresponding to the same edge. Removing an edge is equivalent to removing its corre-
sponding group. To finish, we have to make sure that we can have one variable common
to all the clauses of each group. This is the case in the reduction in [27] for every case
except when Ei(H) (the set of edges of color i in H) is just a loop. Assume without loss
of generality that the loop is on vertex 1 (the other loop can be treated the same way).
Suppose uv has color i in G; then uv must be mapped to the loop on vertex 1. The
original reduction added the clauses (xu)(xv); we modify this part and add instead the
clauses (c + xu)(c + xv)(c) where c is a new variable. This is now a valid and equivalent
instance of Group Deletion Almost 2-Sat, which is FPT by Proposition 3.19.

It is also possible to generalize our two problems to (m,n)-mixed graphs. Note that
the same kind of argument can be generalized to mixed graphs to obtain the following
result.

Theorem 3.21. For every (n,m)-mixed graph H of order 2, Vertex Deletion H-
Coloring and Edge Deletion H-Coloring are FPT.

Proof. The proof is sensibly the same as for the previous theorem. Let H be the target
(n,m)-mixed graph and G be the input (n,m)-mixed graph. Each edge of G is associated
with a group of clauses as in Theorem 3.20. The group of clauses for the arcs of G are
described in Table 3.4. This creates a 2-SAT formula F (G).

If we want to solve Vertex Deletion H-Coloring, then we solve Variable
Deletion Almost 2-Sat on F (G) and k. If we want to solve Edge Deletion H-
Coloring, then we solve Group Deletion Almost 2-Sat on F (G) and k. Note that
in the last case, each group of clauses has a common variable.

On various graph coloring problems page 87

3.3. Limited Switchings (H, π)-Coloring when H has order 2

3.3 Limited Switchings (H, π)-Coloring when H has
order 2

In this section, we study the complexity of the problem Limited Switchings (H, π)-
Coloring for signed graphs (H, π) of order at most 2.

3.3.1 Limited Switchings (H, π)-Coloring: P/NP-complete dichotomy
We start by presenting a P/NP-complete dichotomy theorem for each of the sp-cores of
order 2. Recall that there is an isomorphism between the set of 2-edge-colored graphs
and the set of signed graphs. We use the notations for 2-edge-colored cores when talking
about sp-cores (see Figure 3.1).

Theorem 3.22. Let (H, π) be an sp-core of order at most 2 (i.e. one of the signed
graphs in Figure 3.1). If (H, π) is one of H2b

r,b (), H2b
r,− (), H2rb

r,b

(), H2rb
r,− (), or H2rb

r,r (), then Limited Switchings (H, π)-
Coloring is NP-complete. Otherwise, it is in P.

Proof. We begin with the polynomial cases.

• Every signed graph maps toH1
rb (), thus Limited Switchings H1

rb-Coloring
is trivially in P.

• No graph with an edge can be mapped to H1
− () (regardless of switchings).

• For H1
b (), we need to test whether the signed graph can be switched to an all-

positive graph in less than k switchings or not. There are only two sets of switched
vertices that achieve this signature (one is the complement of the other). It is in P
to test if the graph can be switched to an all-positive signed graph by Theorem 2.8.
Doing that also gives us one of the two sets of switched vertices. We then need to
check if its size is at most k or at least |V (G)| − k. Hence, Limited Switchings
H1
b -Coloring is in P.

• For H2−
r,b (), we just apply the algorithm for H1

b () and H1
r () to each

connected component, one of the two must accept for each of them.

• For H2rb
−,− (), a signed graph (G, σ) is a positive instance if and only if G

(without considering edge-colors) is bipartite, which can be tested in polynomial
time.

• For H2b
−,− () a signed graph (G, σ) is a positive instance if and only if it is

bipartite and maps to H1
b (). We just need to check the two properties, which

are both polynomially testable.

• For H2b
r,r (), a signed graph (G, σ) maps to H2b

r,r if and only if it has no
cycle with an odd number of positive edges (see Lemma 3.4, proved in [16]). This
property is preserved under the switching operation. Thus, switching the graph
does not impact the nature of the instance. It is thus in P (we can test with k = 0)
since H2b

r,r-Coloring is in P [16, 27].

page 88 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

u
v

w

u′ v′ w′

G . . .

Figure 3.6: Reduction from Vertex Cover to Limited Switchings H2b
r,−-Coloring.

We now consider the NP-complete cases. For every signed graph (H, π), Limited
Switchings (H, π)-Coloring clearly lies in NP. The NP-hardness follows from The-
orem 2.22 in all but one case: indeed, H2b

r,b (), H2rb
r,b (), H2rb

r,−

(), and H2rb
r,r () are their own switching cores and have at least three

edges, and thus when (H, π) is one of these, Limited Switchings (H, π)-Coloring is
NP-complete, even with k = |V (G)|.

The last case is for H2b
r,− (). We give a reduction from Vertex Cover to

Limited Switchings H2b
r,−-Coloring. Given an instance G, k of Vertex Cover, we

construct the signed graph (G′, σ′) from an all-negative copy (G,E(G)) of G where we
attach to each vertex v of G a positive edge vv′, with a negative loop on the new vertex
v′ (see Figure 3.6).

Denote by x the vertex of H2b
r,− with a loop, and by y the other one. Assume that G

has a vertex cover C of size at most k. Let (G′, σ′′) be the signed graph obtained from
(G′, σ′) by switching the vertices of C. We map every vertex of the form v′ to x, every
vertex of C to x and the remaining ones to y. Since C is a vertex cover, every negative
edge of (G′, σ′′) is either a loop on some vertex v′, an edge vv′ with v ∈ C or an edge
uv with u, v ∈ C. In each case, both endpoints are mapped to x. The positive edges of
(G′, σ′′) are then of the form vv′ with v /∈ C or uv with u ∈ C and v /∈ C. In both cases,
the two endpoints are mapped to different vertices of H2b

r,−. Hence, (G′, σ′′) −→p
s H

2b
r,− and

G′ −→s H
2b
r,−.

Conversely, assume that we can switch the vertices of a set S in (G′, σ′) such that the
resulting signed graph (G′, σ′′) verifies (G′, σ′′) −→p

s H
2b
r,−. Let C be the set of vertices v of

G such that the vertices v or v′ of G′ lies in S. Note that C has size at most |S|. We claim
that C is a vertex cover of G. Assume that there is an edge uv in G with u, v /∈ C. By
construction, u, u′, v, v′ /∈ S, so uu′, vv′ are positive in (G′, σ′′), and uv is negative. Thus,
u and v have to be mapped to x, and u′ and v′ have to be mapped to y, a contradiction
since u′ has an incident negative loop in (G′, σ′′). Therefore C is a vertex cover of G.

3.3.2 Limited Switchings (H, π)-Coloring: FPT cases
We now consider the parameterized complexity of Limited Switchings (H, π)-Coloring.
By Theorem 3.22, there are five signed graphs (H, π) of order at most 2 for which Lim-
ited Switchings (H, π)-Coloring is NP-complete. We first show that two of them
are FPT:

Theorem 3.23. The problem Limited Switchings (H, π)-Coloring is FPT when
(H, π) is one of H2b

r,b () or H2b
r,− ().

Proof. The signed graph H2b
r,b () has the finite duality property by [16], see

Lemma 3.5: G −→p
s H

2b
r,b if and only if G does not contain a walk abcd where ab and cd are

On various graph coloring problems page 89

3.3. Limited Switchings (H, π)-Coloring when H has order 2

negative edges and bc is a positive edge. This implies FPT time for Limited Switchings
H2b
r,b-Coloring by a simple bounded search tree algorithm (Proposition 3.2).

For the graph H2b
r,− (), as mentioned in Lemma 3.6, the duality set F(H2b

r,−)
discovered in [16] is composed of walks of the form RB2p−1R (where R denotes a negative
edge, B denotes a positive edge and p ≥ 1 is an integer) and of closed walks with an odd
number of positive edges (i.e. cycles in BCodd or UCeven). As seen before, if the graph G
has such a closed walk then switching will not remove it, thus we can reject.

If the graph has a RB2p−1R walk and is a positive instance, then we claim that we
need to switch one of the four vertices incident with the negative edges. Indeed, if we
switch only at the vertices inside the positive walk (i.e. the vertices not incident with one
of the negative edges) then the parity of the number of positive edges will not change
and we will still have some maximal odd positive sub-walk, the two edges next to the
extremities being negative. Thus we would still have a RB2q−1R walk for some q ≥ 1.

Hence, since we need to switch at one of these four vertices, we branch on this config-
uration using the classic bounded search tree technique. This is an FPT algorithm.

3.3.3 Limited Switchings (H, π)-Coloring: W[1]-hard cases
The remaining cases, H2rb

r,b (), H2rb
r,− (), and H2rb

r,r (), yield
W[1]-hard Limited Switchings (H, π)-Coloring problems, even for input graphs of
large girth.

Theorem 3.24. Let (H, π) ∈
{
H2rb
r,b , H

2rb
r,−, H

2rb
r,r

}
. For any integer g ≥ 3, the problem

Limited Switchings (H, π)-Coloring is W[1]-hard, even for signed graphs (G′, σ′)
with girth at least g and which verify (G′, σ′) −→s (H, π). Under the same conditions,
Limited Switchings (H, π)-Coloring cannot be solved in time f(k)|G|o(k) for any
computable function f , assuming the ETH.

We will prove Theorem 3.24 by three reductions from Multicolored Independent
Set, which is W[1]-complete [162]:

Multicolored Independent Set Parameter: k.
Input: A graph G, an integer k and a partition of V (G) into k sets V1,. . . ,Vk.
Question: Is there a set S of exactly k vertices of G, such that each Vi contains exactly
one element of S, that forms an independent set of G?

Our three reductions (one for each possible choice of x) follow the same pattern. In
Section 3.3.3.1, we describe this idea, together with the required properties of the gadgets.
In Sections 3.3.3.2, 3.3.3.3 and 3.3.3.4, we show how to construct the gadgets. Since the
reduction preserves the parameter and is actually polynomial, the ETH-based lower bound
follows from [43].

3.3.3.1 Generic reduction

Let (G, k) be an instance of Multicolored Independent Set, and denote by V1, . . . , Vk
the partition of G. Let us construct a signed graph (G′, σ). We begin by creating for each
Vi a partition gadget (Gi, σi) in (G′, σ). This gadget has |Vi| special vertices, denoted xj
for xj ∈ Vi, in order to associate a vertex of Gi with each vertex of Vi. Moreover, (Gi, σi)
must satisfy the following.

page 90 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

(P1) We do not have (Gi, σi) −→p
s (H, π).

(P2) If we switch exactly one vertex v of (Gi, σi), then the obtained signed graph admits
a sign-preserving homomorphism (H, π) if and only if v is one of the special vertices
of Gi.

(P3) Gi has girth at least g.
(P4) Gi has two reset vertices x and y that are different from the xi’s and such that

the signed graph (Gi, σ
′
i) obtained from (Gi, σi) by switching x and y admits a

sign-preserving homomorphism to (H, π).

Let uv be an edge of G. Recall that u and v can be seen as vertices of the signed graph
(G′, σ). We add an edge gadget (Guv, σuv) (containing two vertices u and v) in (G′, σ) by
identifying the vertex u (resp. v) of (G′, σ) with the vertex u (resp. v) of (Guv, σuv). This
gadget must satisfy the following.

(E1) Let (Guv, σ
′
uv) be the graph obtained from (Guv, σuv) by switching a subset S

of {u, v}. If S ̸= {u, v}, then (Guv, σ
′
uv) −→p

s (H, π).
(E2) Assume that u ∈ Vi and v ∈ Vj and let (P, ρ) be the signed graph obtained from

(Guv, σuv)∪(Gi, σi)∪(Gj, σj) by switching u and v. Then, we do not have (P, ρ) −→p
s

(H, π).
(E3) Guv has girth at least g.
(E4) In Guv, u and v are at distance at least g.

This ends the construction of (G′, σ). Note in particular that every vertex of G is
present in G′.

We say that a set S of vertices of G is valid if, when seen as a subset of V (G′), it
contains at most one special vertex in each edge gadget. We need one last condition about
(G′, σ).

(SP) If, after switching a valid set in (G′, σ), the obtained graph does not map to (H, π),
then this is because a partition gadget or an edge gadget does not map to (H, π)
(that is, each minimal obstruction is entirely contained in an edge gadget or a
partition gadget).

We can now prove that our reduction is valid.

Proposition 3.25. ((G′, σ), k) is a positive instance of Limited Switchings (H, π)-
Coloring if and only if (G, k) is a positive instance of Multicolored Independent
Set.

Proof. Assume we can switch at most k vertices of (G′, σ) such that the obtained signed
graph admits a sign-preserving homomorphism to (H, π). Let S be the set of those
vertices. We claim that S is a valid set of (G′, σ). First note that, due to (P1), S must
contain at least one vertex in each Vi. This enforces |S| = k, thus S contains exactly one
vertex vi in each Vi. By (P2), each of these vi’s has to be one of the special vertices of
Gi. This means that S contains only vertices that are present in G.

We claim that S induces an independent set in G. Assume by contradiction that there
is an edge uv in G with u, v ∈ S. Then, by construction, there is an edge gadget whose
special vertices are u and v, such that the edge gadget and the two partition gadgets

On various graph coloring problems page 91

3.3. Limited Switchings (H, π)-Coloring when H has order 2

x0
x1 x2

x3

r1

r2

(a) Partition gadget for Vi = {x0, x1, x2, x3}
with the two reset vertices r1, r2.

u v

(b) Edge gadget for uv.

Figure 3.7: Partition and edge gadgets in the H2b
r,b-reduction when g = 3.

associated with u and v map to (H, π) when we switch only u and v, contradicting (E2).
(Note that S does not contain any other vertex of the edge gadget nor any other vertex of
the partition gadgets.) Therefore, G has an independent set of size k containing exactly
one vertex in each set Vi.

Conversely, assume that G has an independent set S intersecting each Vi at one vertex.
Then, we denote by (G′, σ′) the signed graph obtained by switching every vertex of S in
(G′, σ). By construction, this is a valid set, hence by (SP) every obstruction for mapping
to (H, π) in (G′, σ′) is actually contained in some gadget. However, it cannot be contained
in a partition gadget due to (P2), nor in an edge gadget due to (E1). Therefore, we have
(G′, σ′) −→p

s (H, π).

Observe moreover that, due to (P3), (E3) and (E4), G′ has girth at least g. Moreover,
let S be the set containing all reset vertices of (G′, σ). Let (G′, σ′) be the signed graph
obtained by switching every vertex of S. By (P4), no partition gadget in H contains an
obstruction. Furthermore, no edge gadget contains an obstruction by (E1). Therefore,
using (SP), we obtain thatH does not contain any obstruction, hence (G′, σ′) −→p

s (H, π).
Thus to prove Theorem 3.24 it suffices to construct the gadgets.

3.3.3.2 Gadgets for H2rb
r,r

We now describe the gadgets for Limited Switchings H2rb
r,r -Coloring ().

As mentioned in Lemma 3.7, for every signed graph (G, σ), we have (G, σ) −→p
s H

2rb
r,r if

and only if (G, σ) does not contain an all-positive odd cycle.
The partition gadget (Gi, σi) is an all-positive cycle of length 2g if g and |Vi| have

the same parity (resp. 2g + 2 is they do not have the same parity) with a positive chord
of order |Vi| between two antipodal vertices. The special vertices are those on the chord
(see Figure 3.7(a)). The reset vertices are defined as any two vertices on the initial cycle
(excluding the two vertices connected to the chord), one on each side of the chord.

Property (P3) directly follows from the construction. Moreover, since Gi contains an
all-positive odd cycle, we have (P1). If we switch exactly one vertex in Gi, then either
this vertex is a special vertex and the obtained graph does not have any all-positive odd
cycle (and thus maps to H2rb

r,r), or it is not a special vertex and there is still an all-positive
odd cycle. Therefore, property (P2) also holds.

Finally, if we switch the two reset vertices, then there is no longer any all-positive odd
cycle, thus (P4) also holds.

We now consider the edge gadget. It is formed by an all-positive odd cycle of length
2g+1 where two vertices u, v at distance g have been switched (see Figure 3.7(b)). These
vertices are the special vertices of the gadget. By construction, properties (E3) and (E4)
hold. Moreover, consider a set S ⊂ {u, v}. The only way to create a graph containing

page 92 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

u v

Figure 3.8: The edge gadget for uv in the H2rb
r,−-reduction when g = 6.

an all-positive odd cycle by switching the vertices of S is to switch both u and v. This
proves (E1). If we switch both special vertices then we do not have (Guv, σuv) −→p

s H
2rb
r,r ,

which implies (E2).
It remains to prove Property (SP). Let S be a valid set, and let (P, ρ) be the graph

obtained from (G′, σ) when switching all vertices of S. Assume that (P, ρ) contains an
all-positive odd cycle. Since S is valid set, at most one vertex has been switched in each
edge gadget. Therefore, no all-positive odd cycle of (P, ρ) can contain an edge from an
edge gadget. It is thus contained in some partition gadget, ensuring that (SP) holds.

3.3.3.3 Gadgets for H2rb
r,−

We now describe the gadgets for Limited Switchings H2rb
r,−-Coloring (). As

mentioned in Lemma 3.8, for every signed graph (G, σ), we have (G, σ) −→p
s H

2rb
r,− if and

only if (G, σ) does not contain a bad walk, i.e. an odd figure eight v0, v1, . . . , v2j, v0,
v2j+2, . . . , v2p−1, v0 such that all edges v2iv2i+1 are positive [16].

The partition gadget (Gi, σi) is the same as in the previous case (see Figure 3.7(a)).
The edge gadget is an odd path of length at least g, whose edges are all-positive except

for the first two and last two ones (see Figure 3.8).
Since the partition gadget (Gi, σi) is the same as for H2rb

r,−, Property (P3) still holds.
Moreover, since all-positive odd cycles still are obstructions, we have (P1).

Observe that if a signed graph (P, ρ) contains an obstruction, then so does its subgraph
obtained by removing recursively its leaves. Note that switching exactly one vertex v in
(Gi, σi) makes its incident edges all-negative. Therefore, v cannot be contained in a bad
walk anymore. In this case, the obstruction is contained in a possibly empty signed cycle
(Cv, πv) (obtained by removing from (Gi, σi) the vertex v and the leaves of Gi recursively).

If we switch exactly one vertex in (Gi, σi), then either this vertex is a special vertex
and (Cv, πv) is empty or an all-positive even cycle (and thus maps to H2rb

r,−), or it is not a
special vertex and (Cv, πv) is still an all-positive odd cycle. Therefore, property (P2) also
holds.

Finally, if we switch the two reset vertices u and v, then Gi \ {u, v} is a tree, thus Gi

does not contain any obstruction, hence (P4) also holds.
By construction, properties (E3) and (E4) hold. Moreover, observe that the edge

gadget does not contain a bad walk since it is a path. Thus (E1) holds. If (P, ρ) is the
graph defined in property (E2) then there is a bad walk starting from u, then turning
around one odd cycle in the partition gadget containing u, crossing the edge gadget to v,
taking a similar turn around an odd cycle of the partition gadget containing v and then
going back to u by the edge gadget. So (E2) holds.

It remains to prove (SP). Let S be a valid set, and (G′, σ′′) be the graph obtained from
(G′, σ′) by switching S. Observe that no bad walk contains two consecutive negative edges.
Moreover, in (G′, σ′), every edge gadget contains two such edges (since its two endpoints
cannot be both in S). Therefore, no bad walk crosses an edge gadget (Guv, σuv), which
implies that no bad walk contains edges in (Guv, σuv). Hence, every bad walk is contained
in some partition gadget, thus ensuring that (SP) holds.

On various graph coloring problems page 93

3.3. Limited Switchings (H, π)-Coloring when H has order 2

x0 x3x1 x2

r1

r2

(a) Partition gadget for Vi = {x0, x1, x2, x3},
with the two reset vertices r1, r2.

u v

x

(b) Edge gadget for uv. The vertex x is
where the two alternating cycles were identi-
fied.

Figure 3.9: Partition and edge gadgets in the H2rb
r,b -reduction when g = 3.

3.3.3.4 Gadgets for H2rb
r,b

We now describe the gadgets for Limited Switchings H2rb
r,b -Coloring ().

As mentioned in Lemma 3.9, for every signed graph (G, σ), we have (G, σ) −→p
s H

2rb
r,b if

and only if (G, σ) does not contain an alternating odd figure eight, that is, an alternating
closed walk v0, v1, . . . , v2j, v0, v2j+2, . . . , v2p−1, v0 for some integers j and p [16].

The partition gadget (Gi, σi) is defined by gluing two obstructions with large girth
along a path of length |Vi| (see Figure 3.9(a)). More precisely, consider an alternating
odd cycle (C, πC) of size |Vi| + g (or |Vi| + g + 1). Note that (C, πC) contains a vertex
u adjacent to two negative edges. We attach an alternating odd cycle (C ′, π′

C) of length
g (or g + 1) to u, such that the edges of (C ′, π′

C) adjacent to u are positive. To obtain
(Gi, σi), we take two copies of this obstruction, and glue their respective largest cycle
along a path of length |Vi|. The vertices of this path are the special vertices of (Gi, σi),
and the two copies of u are the reset vertices of (Gi, σi).

The edge gadget is formed by identifying the vertices having their two incident edges
of the same sign in two alternating odd cycles of length 2g + 1, in such a way that the
common vertex has two positive edges in one cycle and two negative edges in the other
one. To obtain the edge gadget, we switch two vertices u and v, at distance g from each
other, in the same cycle of this signed graph (see Figure 3.9(b)).

Observe that (Gi, σi) has girth at least g, hence Property (P3) holds. Moreover, by
construction, (Gi, σi) contains an obstruction, hence (P1) holds. Note that there are
exactly two (minimal) obstructions in (Gi, σi), the ones used to construct it. Therefore, if
we switch a non-special vertex in (Gi, σi), one of the these obstructions is unchanged, and
the obtained graph does not map to H2rb

r,b . Conversely, assume that we switch a special
vertex u of (Gi, σi) and there remains an obstruction. Note that all the paths of length
two starting from u are now all-positive or all-negative, hence no alternating odd figure
eight can go through u. This implies that every alternating odd figure eight in this graph
does not use the internal vertices of the glued path. When removing these vertices from
(Gi, σi), the former endpoints of the glued path have their incident edges of the same sign,
hence they cannot be contained in an alternating odd figure eight. Removing the whole
glued path and (recursively) the leaves of Gi gives two disjoint alternating odd cycles,
which do not contain any alternating odd figure eight. Thus we have (P2).

Finally, if we switch the two reset vertices of (Gi, σi), all the paths of length 2 starting
at these vertices are all-positive or all-negative, hence no alternating odd figure eight goes
through them. Removing the reset vertices, and recursively the obtained leaves gives
the empty graph. Therefore, there is no alternating odd figure eight in the signed graph

page 94 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

obtained from (Gi, σi) by removing the reset vertices, it thus maps to H2rb
r,b , and (P4)

holds.
The construction of the edge gadget ensures that (E3) and (E4) are satisfied. More-

over, if we switch u and v, we obtain an obstruction, ensuring that (E2) holds. Finally,
let (Guv, σ

′
uv) be the graph obtained from (Guv, σuv) by possibly switching v. Then every

path of length two starting at u is all-positive or all-negative, hence no alternating odd
figure eight in H contains u. Removing u and leaves of (Guv, σ

′
uv) yields an alternating

odd cycle, which does not contain any alternating odd figure eight. Therefore, (Guv, σ
′
uv)

maps to H2rb
r,b , and by exchanging u with v, we obtain (E1).

It remains to prove (SP). Let S be a valid set and (G′, σ′′) be the graph obtained
from (G′, σ′) by switching every vertex of S. Consider an alternating odd figure eight
containing an edge from an edge gadget and an edge from a partition gadget. This walk
goes through a vertex u ∈ Vi such that the edge before u in the walk lies in (Gi, σi) and
the other one lies in some (Guv, σuv). If u ∈ S, the paths of length 2 starting from u in
(Gi, σi) are all-positive or all-negative. Conversely, if u /∈ S, the paths of length 2 starting
at u in (Guv, σuv) are all-positive or all-negative. In both cases we reach a contradiction
with the existence of a bad walk going through u. Therefore, every alternating odd figure
eight of (G′, σ′′) is contained either in an edge gadget or in a partition gadget.

3.4 Vertex Deletion Signed-(H, π)-Coloring
In the previous section, we considered “switching” as the modification operation on signed
graphs. As seen in Chapter 2, we can color signed graphs using sign-preserving homomor-
phisms or using homomorphisms of signed graphs. Hence for a given signed graph (H, π),
we have two coloring problems: (H, π)-Coloring and Signed-(H, π)-Coloring.

Until now, we applied modifications operations to sign-preserving homomorphisms (or
homomorphisms of 2-edge-colored graphs) as the homomorphism type on signed graphs
(or equivalently, 2-edge-colored graphs). From now on, we will use homomorphisms of
signed graphs (i.e. homomorphisms with an unlimited number of switchings) and consider
modification problems of Signed-(H, π)-Coloring.

Of the three previous modification types, vertex deletion, edge deletion and switching,
only the first two are interesting in this setting since homomorphisms of signed graphs
are built in with an unlimited number of switchings. In this section, we focus on vertex
deletion for the problem Signed-(H, π)-Coloring.

Vertex Deletion Signed-(H, π)-Coloring Parameter: k
Input: A signed graph (G, σ) and an integer k.
Question: Is there a set S of at most k vertices of G such that (G, σ)−S −→s (H, π)?

As always, if (H, π) is not some type of core then the problem reduces to another
problem with a smaller target graph. Here the relevant notion of core is the notion of
s-core. By Theorem 2.22, if (H, π) is an s-core with at least three edges, then Vertex
Deletion Signed-(H, π)-Coloring is NP-complete even for k = 0.

Up to equivalence, there are seven s-cores which have at most two edges: H1
− (), H1

rb

(), H1
b (), H1

r (), H2b
−,− (), H2rb

−,− () and H2−
r,b (). Note

that H2b
−,− () and H2r

−,− () are equivalent: switching one of the two vertices
transform one signed graph into the other.

On various graph coloring problems page 95

3.4. Vertex Deletion Signed-(H, π)-Coloring

The following theorem completely characterizes the complexity of Vertex Deletion
Signed-(H, π)-Coloring both in terms of P/NP-complete dichotomy and in terms of
parameterized complexity.

Theorem 3.26. Let (H, π) be an s-core. The following statements hold.

1. The problem Vertex Deletion Signed-H1
rb-Coloring is in P.

2. The problem Vertex Deletion Signed-(H, π)-Coloring is NP-complete when
(H, π) is one of H1

−, H1
b , H1

r , H2b
−,−, H2rb

−,− or H2−
r,b .

3. The problem Vertex Deletion Signed-(H, π)-Coloring is NP-complete even
for k = 0 when (H, π) /∈

{
H1

−, H
1
rb, H

1
b , H

1
r , H

2b
−,−, H

2rb
−,−, H

2−
r,b

}
.

4. The problem Vertex Deletion Signed-(H, π)-Coloring is FPT and can be
solved in 2O(k) |V (G)|O(1) time when (H, π) is one of H1

−, H1
b , H1

r or H2rb
−,−.

5. The problem Vertex Deletion Signed-H2b
−,−-Coloring is FPT and can be

solved in 2O(k3) |V (G)|O(1) time.
6. The problem Vertex Deletion Signed-H2−

r,b -Coloring is FPT and can be solved
in 2O(k2) |V (G)|O(1) time.

Proof.

1. As always, every signed graph admits a homomorphism to the signed graph H1
rb

(). Hence we can accept any instance of Vertex Deletion Signed-H1
rb-

Coloring for which k ≥ 0.
2. By Theorem 2.17, for every signed graph (H, π), the problem Vertex Dele-

tion Signed-(H, π)-Coloring is equivalent to the problem Vertex Deletion
DSG(H, π)-Coloring where DSG(H, π) is the double switching graph of (H, π)
seen as a 2-edge-colored graph (see Theorem 2.17).
Hence, by Theorem 3.12, if (H, π) ∈

{
H1

−, H
1
b , H

1
r , H

2b
−,−, H

2rb
−,−, H

2−
r,b

}
then Vertex

Deletion Signed-(H, π)-Coloring is NP-complete.
3. This follows directly from Theorem 2.22.
4. The problem Vertex Deletion Signed-H1

−-Coloring is equivalent to Vertex
Cover, and is thus FPT.
For the signed graph H1

b (), note that DSG(H1
b) is a signed graph isomor-

phic to the 2-edge-colored graph H2r
b,b (). By Theorem 2.17 and The-

orem 3.20, Vertex Deletion Signed-H1
b -Coloring is FPT and can be solved

in 2O(k) |V (G)|O(1) time.
The problem Vertex Deletion Signed-H1

r -Coloring is also FPT as it is equiv-
alent to Vertex Deletion Signed-H1

b -Coloring on input (G,−σ) and k by
Observation 2.14.
For the signed graph H2rb

−,− (), the sign of the edges do not matter in the
homomorphism: (G, σ) −→s H

2rb
−,− if and only if G is bipartite. Hence Vertex

Deletion Signed-H2rb
−,−-Coloring is equivalent to Odd Cycle Transversal

which is FPT and can be solved in 2O(k) |V (G)|O(1) time (see [166, 127]).

page 96 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

5. The remaining problems are more complicated. The problem Vertex Deletion
Signed-H2b

−,−-Coloring, on an input composed of a signed graph (G, σ) and an
integer k, consists in finding a set S of at most k vertices of G such that χs((G, σ)−
S) ≤ 2, or equivalently such that (G, σ) − S is a bipartite balanced signed graph.
In some sense, this problem consists in solving Vertex Deletion Signed-H1

b -
Coloring and Vertex Deletion Signed-H2rb

−,−-Coloring at the same time.
Unfortunately, DSG(H2b

−,−) has four vertices and we cannot apply the techniques
of Theorem 3.20 to solve the problem. Indeed each vertex of H2b

−,− would need
to be represented by two variables and we cannot ensure that a solution of the
corresponding Variable Deletion Almost 2-Sat instance deletes variables in
pairs.
Nonetheless, this problem is very similar to Odd Cycle Transversal except that
we need to delete not only odd cycles but also unbalanced cycles. Our algorithm
uses the “iterative compression” technique (see [53, Chapter 4]) which was created
to solve Odd Cycle Transversal (see [166]). We present this algorithm in
Section 3.4.1.

6. The problem Vertex Deletion Signed-H2−
r,b -Coloring (), on input signed

graph (G, σ) and integer k, consists in finding a set S of at most k vertices of G such
that each connected components of (G, σ) − S is either balanced or antibalanced.
In Section 3.4.2, we use iterative compression to construct our FPT algorithm.

Note that, we completely characterize the complexity of all s-cores.

3.4.1 Vertex Deletion Signed-H2b
−,−-Coloring: an FPT algorithm

using iterative compression
We want to prove that Vertex Deletion Signed-H2b

−,−-Coloring is FPT.
First note that, other than the empty graph of order 2, H2b

−,− is the only simple signed
graph of order 2 (up to equivalence). Hence χs(G, σ) ≤ 2 if and only if (G, σ) −→s H

2b
−,−.

Since χ(G) ≤ χs(G, σ), (G, σ) → H2b
−,− implies that G is bipartite. Moreover since H2b

−,−
has no unbalanced closed walks, (G, σ)→ H2b

−,− implies that (G, σ) is balanced. Finally, if
(G, σ) is bipartite balanced, then (G, σ) is equivalent to (G,∅) and since χs(G,∅) = χ(G),
χs(G, σ) ≤ 2. Hence χs(G, σ) ≤ 2 if and only if (G, σ) −→s H

2b
−,− if and only if (G, σ) is

bipartite balanced. This leads us to reformulate the problem as follows.

Vertex Deletion Signed-H2b
−,−-Coloring Parameter: k

Input: A signed graph (G, σ) and an integer k.
Question: Is there a set S of at most k vertices of G such that (G, σ)−S is a bipartite
balanced signed graph?

To this end, we define the following two problems.

Disjoint Vertex Deletion Signed-H2b
−,−-Coloring Parameter: k

Input: A signed graph (G, σ), an integer k and a set S ′ of at most k+ 1 vertices of G
such that (G, σ)− S ′ is a bipartite balanced signed graph.
Question: Is there a set S of at most k vertices of G such that S ∩ S ′ = ∅ and
(G, σ)− S is a bipartite balanced signed graph?

On various graph coloring problems page 97

3.4. Vertex Deletion Signed-(H, π)-Coloring

Annotated Bipartite Balanced Coloring Parameter: k
Input: A bipartite balanced signed graph (G, σ), an integer k and four sets of vertices
B1, B2, B+, B−.
Question: Is there a set S of at most k vertices of G such that (G, σ) − S admits
a sign-preserving homomorphism φ to H2r

b,b () (where the two vertices of
H2r
b,b are named ⊕ and ⊖) and a proper 2-coloring c : V (G) \ S → {1, 2} verifying the

following properties:

1. φ(B+ \ S) = {⊕}, φ(B− \ S) = {⊖},
2. c(B1 \ S) = {1} and c(B2 \ S) = {2}?

Note that (G, σ) −→p
s H

2r
b,b if and only if (G, σ) is balanced as H2r

b,b is the double
switching graph of H1

b (), thus justifying the name of the problem.
Our goal is to use Disjoint Vertex Deletion Signed-H2b

−,−-Coloring in order
to solve Vertex Deletion Signed-H2b

−,−-Coloring and to use Annotated Bipar-
tite Balanced Coloring in order to solve Disjoint Vertex Deletion Signed-
H2b

−,−-Coloring. In order to construct an FPT algorithm for Annotated Bipartite
Balanced Coloring, we consider the following problem.

Vertex Multicut Parameter: k
Input: A graph G, ℓ ordered pairs (s1, t1), . . . and (sℓ, tℓ) of vertices of G and an
integer k.
Question: Is there a set S of at most k vertices of G such that, for every i ∈ J1, ℓK, if
si, ti /∈ S, then the graph G− S does not contain a path from si to ti?

As ℓ = O(|V (G)|2), the following result follows from [151].

Theorem 3.27 ([151]). The problem Vertex Multicut can be solved in 2O(k3) |V (G)|O(1)

time.

Our first goal is to prove the following lemma.

Lemma 3.28. The following statements hold.

1. The problem Annotated Bipartite Balanced Coloring can be solved in
2O(k3) |V (G)|O(1) time.

2. The problem Disjoint Vertex Deletion Signed-H2b
−,−-Coloring can be solved

in 2O(k3) |V (G)|O(1) time.

Proof of Lemma 3.28.1. Consider an instance of Annotated Bipartite Balanced
Coloring composed of a bipartite balanced signed graph (G, σ), an integer k and four
subsets of V (G): B1, B2, B+ and B−.

Since G is bipartite, G admits a 2-coloring c : V (G) → {1, 2}. We want to construct
a 2-coloring c′ for which non-deleted vertices of B1 have color 1 and non-deleted vertices
of B2 have color 2. Suppose that there exists a solution S of at most k vertices of G,
and let v ∈ V (G − S). If v ∈ B2 and c(v) = 1 then we need to change the color of
v from c to c′. If we change the color of v, we also need to change the color of its
neighbors in G − S to keep the property of the coloring. In particular, the vertices of
Changebip = (B1∩c−1({2}))∪(B2∩c−1({1})) must be removed or must have distinct colors

page 98 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

by c and c′. To the contrary, the vertices of Staybip = (B1 ∩ c−1({1})) ∪ (B2 ∩ c−1({2}))
must be removed or have the same color in c and c′. Hence if S is a solution, then for
every two vertices u ∈ Changebip \ S and v ∈ Staybip \ S, there must be no path between
u and v in G− S.

Moreover, if S is a set of at most k vertices of G such that for any two vertices
u ∈ Changebip \ S and v ∈ Staybip \ S, there is no path between u and v in G − S, then
there exists a 2-coloring c′ of G − S for which c′(B1 \ S) = {1} and c′(B2 \ S) = {2}.
To construct c′, it suffices to change the color (with respect to the 2-coloring c) of every
vertex of a connected component of G− S containing a vertex of Changebip.

As (G, σ) is balanced, there exists a sign-preserving homomorphism φ from (G, σ)
to H2r

b,b (). We want to find another sign-preserving homomorphism φ′ from
(G, σ) − S to H2r

b,b () where S is the desired solution. As for the bipartite
case, some vertices of G must change to have distinct images by φ and φ′ (or must
be deleted) and other must have the same image by φ and φ′ (or must be deleted).
Suppose that φ(v) ̸= φ′(v), for some vertex v, then each non-deleted neighbor u of v
must also verify φ(u) ̸= φ′(u) so that the edge uv maps to an edge of H2r

b,b ()
with sign σ(uv). Hence we can apply the same arguments as for the bipartite condition.
We can define two sets Changesw = (B+ ∩ φ−1({⊖})) ∪ (B− ∩ φ−1({⊕})) and Staysw =
(B+∩φ−1({⊕}))∪(B−∩φ−1({⊖})). A solution S must disconnects vertices of Changesw\S
from vertices of Staysw\S. Moreover, any set S of at most k vertices of G which disconnect
vertices of Changesw \S from vertices of Staysw \S implies the existence of φ′ as described
in the problem definition. To construct φ′ it suffices to change the image (with respect to
the φ) of every vertex of a connected component of G−S containing a vertex of Changesw.

To conclude, in order to solve Annotated Bipartite Balanced Coloring, it
suffices to find a set S which disconnects vertices of Changebip\S from vertices of Staybip\S
and disconnects vertices of Changesw \ S from vertices of Staysw \ S.

We construct the set T of ordered pairs of vertices of G as follows, T is composed
of all pairs (s, t) where s ∈ Changebip and t ∈ Staybip and all pairs (s, t) where s ∈
Changesw and t ∈ Staysw. The graph G along with the set of ordered pairs of T and the
integer k forms an instance of Vertex Multicut. A subset S of V (G) is a solution
of this instance of Vertex Multicut if and only if it is a solution of our instance
of Annotated Bipartite Balanced Coloring. Hence, we can solve Annotated
Bipartite Balanced Coloring in 2O(k3) |V (G)|O(1) time by Theorem 3.27.

Proof of Lemma 3.28.2. Consider an instance of Disjoint Vertex Deletion Signed-
H2b

−,−-Coloring composed of a signed graph (G, σ), an integer k and a set S ′ of at most
k + 1 vertices of G such that (G, σ) − S ′ is a bipartite balanced signed graph. Let
(G[S ′], σ[S ′]) be the signed subgraph of (G, σ) induced by S ′. If (G[S ′], σ[S ′]) is not
bipartite balanced then the problem does not have a solution and we can reject this
instance.

Suppose that S is a solution for our instance. The signed graph (G, σ)−S is balanced
bipartite. Hence, (G, σ) − S has a 2-coloring (resp. a sign-preserving homomorphism to
H2r
b,b). This coloring (resp. sign-preserving homomorphism) has a restriction c∗ (resp. φ∗)

to (G[S ′], σ[S ′]).
Given a 2-coloring c of (G[S ′], σ[S ′]) and a sign-preserving homomorphism φ from

(G[S ′], σ[S ′]) to H2r
b,b, we want to be able to test whether we can remove some set of

vertices S ⊆ V (G)\S ′ in such a way that c and φ extend to the vertices of V (G)\(S∪S ′).

On various graph coloring problems page 99

3.4. Vertex Deletion Signed-(H, π)-Coloring

Let (G′, σ′) be the signed subgraph of (G, σ) induced by V (G) \ S ′. We define the
following sets:

B1(c) = {u ∈ V (G′) : ∃v ∈ S ′ ∩N(u), c(v) = 2} ,
B2(c) = {u ∈ V (G′) : ∃v ∈ S ′ ∩N(u), c(v) = 1} ,
B+(φ) = {u ∈ V (G′) : ∃v ∈ S ′ ∩N(u), φ(v) = σ(uv)} ,
B−(φ) = {u ∈ V (G′) : ∃v ∈ S ′ ∩N(u), φ(v) = −σ(uv)} .

Note that in order to extend c to the rest of G, a vertex in B1(c) must be removed or
must be assigned color 1. The same remarks holds for the other sets. Hence a set S
is a solution of our instance of Disjoint Vertex Deletion Signed-H2b

−,−-Coloring
if and only if it is a solution of the instance of Annotated Bipartite Balanced
Coloring composed of (G′, σ′), the integer k and the four sets B1(c), B2(c), B+(φ) and
B−(φ) for some choice of c and φ. In particular c = c∗ and φ = φ∗ (if they exist) is a
good choice for these two functions. Note that the choices of c∗ and φ∗ were arbitrary
and it may be possible that other choices might correspond to a solution of Annotated
Bipartite Balanced Coloring.

Therefore, it suffices to test for every pair {c, φ}, where c is a 2-coloring of (G[S ′], σ[S ′])
and φ is a sign-preserving homomorphism from (G[S ′], σ[S ′]) to H2r

b,b, whether there is a
solution to the corresponding instance of Annotated Bipartite Balanced Color-
ing. If there is no solution then we can reject as this contradicts the existence of c∗

and φ∗. If there is a solution S then we can accept and return this solution.
Note that the number of choices for the pair {c, φ} is upper bounded by (2k+1)2.

Hence we can solve Disjoint Vertex Deletion Signed-H2b
−,−-Coloring in (2k+1)2×

2O(k3) |V (G)|O(1) = 2O(k3) |V (G)|O(1) time.

We can now prove Theorem 3.26.5 using the lemma.

Proof of Theorem 3.26.5. Consider an instance I of Vertex Deletion Signed-H2b
−,−-

Coloring composed of a signed graph (G, σ) and an integer k. We solve the problem
by induction on the number of vertices. If G has at most k vertices than we can accept
and return V (G). This is our base case.

Let x be a vertex of G. By induction, we can test whether there is a solution of
Vertex Deletion Signed-H2b

−,−-Coloring on the instance I ′ composed of the signed
graph (G, σ) − x and the integer k. If there is no solution for I ′ then I does not have
a solution and we can reject. Hence we can suppose that there is a solution S ′′ for the
instance I ′. Note that, by definition, (G, σ) − (S ′′ ∪ {x}) is a bipartite balanced signed
graph but S ′ = S ′′ ∪ {x} might contain k + 1 vertices. In this case, we need to find a
smaller solution. If I has a solution S∗ then we try to determine the (possibly empty) set
S∗ ∩S ′. For every possible subset X of S ′, we test whether this set can correspond to the
intersection of S∗ and S ′.

To do that it suffices to test whether there is a solution to the problem Disjoint
Vertex Deletion Signed-H2b

−,−-Coloring on the instance composed of the signed
graph (G, σ)−X, the integer k− |X| and the set S ′ \X. Note that (G, σ)−X − (S ′ \X)
is a bipartite balanced signed graph. If such a solution S exists then S ∪X is a solution
of I and we can accept. Otherwise, the set X does not correspond to the intersection of
S∗ and S ′.

If none of the 2k+1 possible intersections yields a solution then we can reject. Hence we
can solve I with a solution to I ′ in (2k+1)×2O(k3) |V (G)|O(1) time. As we need to perform

page 100 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

O(|V (G)|) recursive calls which correspond to the removal of x, we need to multiply
the complexity by O(|V (G)|). In the end, it takes a 2O(k3) |V (G)|O(1) time to solve our
problem.

3.4.2 Vertex Deletion Signed-H2−
r,b -Coloring: an FPT algorithm

using iterative compression

The problem Vertex Deletion Signed-H2−
r,b -Coloring can be reformulated in the

following way: how many vertices do we need to remove from the input signed graph
(G, σ) so that we obtain a signed graph with no unbalanced even closed walk? Note that
we cannot replace “closed walk” by “cycle” in the previous characterization. Due to this,
we cannot apply the same arguments as in Lemma 3.28.1. Fortunately, we can still use
iterative compression in order to reduce our problem.

The algorithm for this section starts in a similar fashion to the algorithm of the
previous section. Consider from now on that H2−

r,b () has for vertex set {⊕,⊖} where
⊕ is the vertex with the positive loop and ⊖ is the vertex with the negative loop. Remark
that we can solve Vertex Deletion Signed-H2−

r,b -Coloring with O(2k |V (G)|) calls
to Disjoint Vertex Deletion Signed-H2−

r,b -Coloring as in the previous section.

Disjoint Vertex Deletion Signed-H2−
r,b -Coloring Parameter: k

Input: A signed graph (G, σ), an integer k and a set S ′ of at most k+ 1 vertices of G
such that (G, σ)− S ′ −→s H

2−
r,b .

Question: Is there a set S of at most k vertices of G such that S ∩ S ′ = ∅ and
(G, σ)− S ′ −→s H

2−
r,b ?

Let D(n, k) be the maximal time taken by our algorithm to solve an instance of
Disjoint Vertex Deletion Signed-H2−

r,b -Coloring with parameter at most k and
where the input signed graph has order at most n.

To solve the disjoint version of our problem let us introduce new problems. The first
of these intermediate problems is Annotated Signed-H2−

r,b -Coloring.

Annotated Signed-H2−
r,b -Coloring Parameter: k

Input: A signed graph (G, σ), an integer k and two disjoint sets of vertices B+, B−
such that (G, σ)− (B+ ∪B−) −→s H

2−
r,b .

Question: Is there a subset S of V (G) of size at most k such that (G, σ)− S admits
a homomorphism φ to H2−

r,b (), verifying S ∩ (B+ ∪ B−) = ∅, φ(B+) = ⊕ and
φ(B−) = ⊖?

This problem can have two types of instances: instances which behave well (called nice
instances) and the others. Let I be an instance of Annotated Signed-H2−

r,b -Coloring
composed of a signed graph (G, σ), an integer k and two disjoint sets B+ and B−. The
instance I is nice if and only if, for every u ∈ V (G) \ (B+ ∪B−), either u is disconnected
from the vertices of B+ ∪ B− or, there exist a (u,B+)-path and a (u,B−)-path whose
internal vertices belong to V (G) \ (B+ ∪ B−). Unfortunately, in general, we cannot
suppose that our instances are nice. Nice instances will appear as a byproduct of some
recursive calls of the algorithm. This notion of nice instance is important as not making
the distinction gives a non-FPT run-time for our algorithm.

On various graph coloring problems page 101

3.4. Vertex Deletion Signed-(H, π)-Coloring

Let A(n, k) be the maximal time taken by our algorithm to solve an instance of An-
notated Signed-H2−

r,b -Coloring with parameter at most k and where the input signed
graph has order at most n. Let Anice(n, k) be the maximal time taken by our algorithm
to solve a nice instance of Annotated Signed-H2−

r,b -Coloring with parameter at most
k and where the input signed graph has order at most n.

We define two other problems.

Connected Annotated Signed-H2−
r,b -Coloring Parameter: k

Input: A signed graph (G, σ), an integer k and two non-empty disjoint sets of vertices
B+, B− such that G− (B+ ∪B−) is connected and (G, σ)− (B+ ∪B−) −→s H

2−
r,b .

Question: Is there a set S of at most k vertices of G such that (G, σ) − S admits
a homomorphism φ to H2−

r,b (), verifying S ∩ (B+ ∪ B−) = ∅, φ(B+) = ⊕ and
φ(B−) = ⊖?

Connected Half Annotated Signed-H2−
r,b -Coloring Parameter: k

Input: A signed graph (G, σ), an integer k and a non-empty set of vertices B+ such
that (G, σ)−B+ is connected and (G, σ)−B+ −→s H

2−
r,b .

Question: Is there a set S of at most k vertices of G such that (G, σ) − S admits a
homomorphism φ to H2−

r,b (), verifying S ∩B+ = ∅ and φ(B+) = ⊕?

There are a few things to note. The connectivity requirement for these two problems
is not on the input signed graph (G, σ) but on the graph G− (B+ ∪B−). Intuitively, the
vertices of B+∪B− can be interpreted as “hints” for the homomorphism which cannot be
interacted with: we cannot remove them and they do not intervene in the connectivity.
Of the two, the problem Connected Annotated Signed-H2−

r,b -Coloring behaves the
nicest. In particular, nice instances of Annotated Signed-H2−

r,b -Coloring will be re-
duced to a number of instances of Connected Annotated Signed-H2−

r,b -Coloring.
Unfortunately, the usual instance of Annotated Signed-H2−

r,b -Coloring will also re-
duce to some instances Connected Half Annotated Signed-H2−

r,b -Coloring. This
problem has less constraints than Connected Annotated Signed-H2−

r,b -Coloring
which makes its resolution more complicated. In particular, it is possible that our algo-
rithm for Connected Half Annotated Signed-H2−

r,b -Coloring reduces to Anno-
tated Signed-H2−

r,b -Coloring with an instance of roughly the same size. Fortunately,
in this case, the instance of Annotated Signed-H2−

r,b -Coloring is nice, which avoids
infinite loops and ensure our FPT complexity.

Finally, even though Connected Half Annotated Signed-H2−
r,b -Coloring is

defined for B− = ∅ and B+ ̸= ∅, we could define the following symmetrical problem.

Connected Half Annotated Signed-H2−
r,b -Coloring (v2) Parameter: k

Input: A signed graph (G, σ), an integer k and a non-empty set of vertices B− such
that (G, σ)−B− is connected and (G, σ)−B− −→s H

2−
r,b .

Question: Is there a set S of at most k vertices of G such that (G, σ) − S admits a
homomorphism φ to H2−

r,b (), verifying S ∩B− = ∅ and φ(B−) = ⊖?

In practice, we consider that the problem Connected Half Annotated Signed-
H2−
r,b -Coloring (v2) is the same as Connected Half Annotated Signed-H2−

r,b -
Coloring. This means that we do not make the distinction between the two in the rest

page 102 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

of this section.
Let CA(n, k) be the maximal time taken by our algorithm to solve an instance of

Connected Annotated Signed-H2−
r,b -Coloring with parameter at most k and where

the input signed graph has order at most n. Let CHA(n, k) be the maximal time taken
by our algorithm to solve an instance of Connected Half Annotated Signed-H2−

r,b -
Coloring with parameter at most k and where the input signed graph has order at
most n.

The rest of this section is structured as follows. We present our algorithm for Disjoint
Vertex Deletion Signed-H2−

r,b -Coloring and Annotated Signed-H2−
r,b -Coloring

in Section 3.4.3 and Section 3.4.4 respectively. Section 3.4.5 contains a number of def-
initions used for solving the last two problems. Section 3.4.6 presents how we handle
the problem Connected Half Annotated Signed-H2−

r,b -Coloring. Finally, Sec-
tion 3.4.7 contains the algorithm for Connected Annotated Signed-H2−

r,b -Coloring,
this section is where most of the work of the algorithm is done. In Section 3.4.8, we com-
pute the complexity of our algorithm.

Finally, note that when computing the complexity, we use the following abuse of
notation f(n, k) ≤ O(g(n, k)) + h(n, k) to signify that there exists a function e(n, k) =
O(g(n, k)) + h(n, k) such that f(n, k) ≤ e(n, k) for all n ∈ N and k ∈ N.

3.4.3 Solving Disjoint Vertex Deletion Signed-H2−
r,b -Coloring

Let I be an instance of Disjoint Vertex Deletion Signed-H2−
r,b -Coloring com-

posed of a signed graph (G, σ), an integer k and a set S ′ of at most k + 1 vertices such
that (G, σ)− S ′ −→s H

2−
r,b .

For every homomorphism φ : (G, σ)[S ′] −→s H
2−
r,b , we create the instance I ′(φ) of

Annotated Signed-H2−
r,b -Coloring composed of (G, σ), k and the two disjoint sets

B+ = φ−1(⊕) and B+ = φ−1(⊖).
Suppose that S is a solution to I and let φS : (G, σ) − S −→s H

2−
r,b . In particular,

φS has a restriction φ′
S to S ′. Note that S is a solution to I ′(φ′

S) by definition of φ′
S.

Moreover, if S ′′ is a solution to I ′(φ) then S ′′ is also a solution of I.
For every homomorphism φ : (G, σ)[S ′] −→s H

2−
r,b , our algorithm test whether I ′(φ)

is a positive instance or not. If there is a positive instance then our algorithm accepts,
otherwise it rejects. There are at most 2k+1 homomorphisms φ from (G, σ)[S ′] to H2−

r,b ,
and we can test in O(k2) time, for each function from S ′ to V (H2−

r,b), whether it is a
homomorphism or not.

Lemma 3.29. We have

D(n, k) ≤ 2k+1(O(k2) + A(n, k)).

3.4.4 Solving Annotated Signed-H2−
r,b -Coloring

Let I be an instance of Annotated Signed-H2−
r,b -Coloring composed of a signed graph

(G, σ), an integer k and two disjoint sets B+ and B− such that (G, σ)− (B+ ∪B−) −→s

H2−
r,b . See Figure 3.10 for a schematic view of some instance of Annotated Signed-

H2−
r,b -Coloring. The instance presented in Figure 3.10 is not nice due to the presence of

(G4, σ4) which is not connected to B−.

On various graph coloring problems page 103

3.4. Vertex Deletion Signed-(H, π)-Coloring

B+ B−

(G1, σ1)

(G2, σ2)

(G3, σ3)(G4, σ4)

Figure 3.10: A possible instance of Annotated Signed-H2−
r,b -Coloring. Each rectangle

(with a label inside) represents a connected signed graph. Two rectangles sharing a border are
connected. There are no edges between signed graphs whose rectangles do not intersect.

If k < 0, then we can reject. If k = 0, then we can solve our problem in polynomial
time, it suffices to check whether each connected component maps to ⊕ or ⊖. Our
algorithm separates our problem into a number of sub-problems where G− (B+ ∪B−) is
connected.

Let CC be the set of connected components of G−(B+∪B−). For C ∈ CC, and k′ ≤ k,
we construct the instance I ′(C, k′) of Annotated Signed-H2−

r,b -Coloring composed
of the signed graph (G, σ)[V (C)∪NG(V (C))] (i.e. the signed subgraph of (G, σ) induced
by the vertices of C and their neighbors which belong to B+∪B−), the integer k′ and the
two sets B+ ∩NG(V (C)) and B− ∩NG(V (C)).

Let CCgood be the subset of CC for which I ′(C, 0) is a positive instance. We can
determine CCgood in O(n2) time as it suffices to check if (G, σ)[V (C) ∪ NG(V (C))] −→s

H2−
r,b . The set CCbad = CC \CCgood is the set of instances for which at least one vertex must

belong to a solution to I. If |CCbad| > k, then we can reject as we cannot remove a vertex
in each connected component of CCbad. We can safely ignore the connected components
in CCgood as they are already solved.

Note that I ′(C, k′) is an instance of Connected Annotated Signed-H2−
r,b -Coloring

if both B+ ∩ NG(V (C)) and B− ∩ NG(V (C)) are non-empty, and an instance Con-
nected Half Annotated Signed-H2−

r,b -Coloring if exactly one of B+ ∩ NG(V (C))
and B− ∩ NG(V (C)) is empty. If both B+ ∩ NG(V (C)) and B− ∩ NG(V (C)) are empty,
then C ∈ CCgood since (G, σ)− (B+ ∪B−) −→s H

2−
r,b .

For C ∈ CCbad, let λ(C) be the smallest integer k′ for which I ′(C, k′) has a solution.
Note that ∑

C∈CCbad

λ(C) ≤ k if and only if our problem has a solution. Hence to solve our

problem, it suffices, for every C ∈ CCbad, to compute λ(C) which can be done in O(log(k))
calls to a solver of Connected Annotated Signed-H2−

r,b -Coloring or Connected
Half Annotated Signed-H2−

r,b -Coloring by dichotomy. Hence in O(k log(k)) calls
to these algorithms, we can determine whether there is a solution to I or not.

Moreover, we can avoid solving two instances of the form I ′(C, k) and I ′(C ′, k). In-
deed, if we need to solve both, then this implies that I ′(C, k − 1) and I ′(C ′, k − 1) are
negative instances. In particular, both problems need at least k vertices to be removed in
their input signed graph and since k ≥ 1, this means that we cannot solve both instances
at the same time and we can reject. Therefore, at most one instance of the form I ′(C, k)
has to be solved by our algorithm.

page 104 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

Finally, remark that if I is a nice instance then, for every C ∈ CCbad, both B+ ∩
NG(V (C)) and B− ∩ NG(V (C)) are non-empty. This implies that for every k′ ≤ k,
I ′(C, k′) is an instance of Connected Annotated Signed-H2−

r,b -Coloring. In Fig-
ure 3.10, the connected components (G1, σ1) and (G2, σ2) induce instances of Connected
Annotated Signed-H2−

r,b -Coloring while (G4, σ4) induces an instance of Connected
Half Annotated Signed-H2−

r,b -Coloring.

Lemma 3.30. We have

A(n, k) ≤ O(n2) + k log(k) max (CA(n, k − 1),CHA(n, k − 1))
+ max (CA(n, k),CHA(n, k)) ,

and
Anice(n, k) ≤ O(n2) + k log(k)CA(n, k − 1) + CA(n, k).

3.4.5 Separators: definitions and notation
In this section, we introduce the main concept that we use to find the solution.

Definition 3.31 (Separator). For every graph G and every two disjoint subsets of vertices
A and B, an (A,B)-separator X is a set of vertices, disjoint from A and B, whose removal
disconnects vertices of A from vertices of B. Let X, A and B be three sets of vertices of a
graph G such that A and B are disjoint. The set R(A,X) is the set of vertices of G−X
which are connected to any vertex of A. If X is an (A,B)-separator then let Rrest(X) be
the set of vertices of G −X which are connected to none of the vertices of A ∪ B. Note
that if X is an (A,B)-separator, then R(A,X) and R(B,X) are disjoint.

Our goal is to find some separator of size O(k) which intersects the solution to our
problem. This way we can test, for every vertex of our separator, whether it belongs to
the solution or not.

Definition 3.32 (Important (A,B)-separator). Let G be a graph, and let A and B
be two disjoint sets of vertices. An important (A,B)-separator is an (A,B)-separator,
minimal for inclusion, such that there is no (A,B)-separator S ′ verifying |S ′| ≤ S and
R(A, S) ⊊ R(A, S ′).

Theorem 3.33 ([45]). The set Sk(A,B) of all important (A,B)-separators of size at most
k, has size at most 4k and can be constructed in O(4kk2n2) time.

In particular, the previous theorem implies that we can find an (A,B)-separator in
O(4kk2n2) time, if there is one. For more details, see [53].

3.4.6 Solving Connected Half Annotated Signed-H2−
r,b -Coloring

Let I be an instance of Connected Half Annotated Signed-H2−
r,b -Coloring com-

posed of a signed graph (G, σ), an integer k and a set of vertices B+ such that G−B+ is
connected and (G, σ)−B+ −→s H

2−
r,b .

If k < 0 then we can reject I. If k = 0, then it suffices to check whether (G, σ) −→s H
1
b ,

which can be done in O(n2) time (see Theorem 2.8). Hence we can suppose k > 0.

On various graph coloring problems page 105

3.4. Vertex Deletion Signed-(H, π)-Coloring

B+

Y Rrest

R(B+, Y) \B+

C
y

Figure 3.11: The structure of the input signed graph (G, σ) once an important (y, B+)-
separator Y has been found. Each polygon represent a subgraph of (G, σ). The set R(B+, Y)\B+
is the set of vertices of G which are not in B+ and which are connected to a vertex of B+ in
G−Y . The set Rrest is the set of vertices which are disconnected from B+ in G−Y . The signed
subgraph of (G, σ) induced by Rrest contains an unbalanced cycle C whose vertex set contains y.

If there is a solution S1 to Vertex Deletion H1
b -Coloring on input (G, σ) and

integer k, then return S1. Suppose that there is no solution to Vertex Deletion H1
b -

Coloring on input (G, σ) and integer k, i.e. we cannot map (G, σ) to the positive loop by
removing k vertices. Because of the previous assumption, it holds that (G, σ)−B+ −→s

H1
r (as (G, σ) − B+ is connected and (G, σ) − B+ −→s H

2−
r,b). Moreover if a solution S

to I exists, at least one connected component of (G, σ) − S cannot be mapped to ⊕,
otherwise Vertex Deletion H1

b -Coloring would have a solution. This implies that
S is a separator which separates the vertices of B+ from the vertices of some unbalanced
cycle C. In particular, there exists x ∈ V (C), such that S is an ({x} , B+)-separator.

If the set S exists, then there is an important ({x} , B+)-separator X of size at most k,
possibly equal to S, for which R({x} , S) ⊆ R({x} , X). In particular, the signed subgraph
of (G, σ) induced by R({x} , X) contains the unbalanced cycle C.

For every vertex y ∈ V (G) \ B+, we construct the set Sk({y} , B+). This way, we
construct at most 4kn important separators in O(4kk2n3) time. Recall that a signed
graph (A, π) contains an unbalanced cycle if and only if it is not balanced, that is (A, π)
is not equivalent to (A,∅), hence we can test the existence of an unbalanced cycle in a
signed graph in O(n2) time by Theorem 2.8. If one important ({y} , B+)-separator Y ,
for some vertex y ∈ V (G) \ B+, verifies that the signed subgraph of (G, σ) induced by
R({y} , Y) contains an unbalanced cycle, then we keep this separator and discard the
others. If no such separator exists, then X does not exist and we can reject.

Let Y be an important ({y} , B+)-separator, for a vertex y ∈ V (G)\B+, which verifies
that the signed subgraph of (G, σ) induced by R({y} , Y) contains an unbalanced cycle
(see Figure 3.11). If Y is a solution to I, we can return Y . Otherwise, suppose that Y is
not a solution.

Fix a solution S of I and a homomorphism φS : (G, σ) − S −→s H
2−
r,b such that

φ(B+) = ⊕. The vertices of Y can belong to S, have image ⊕ through φ or have image
⊖ through φ. This separates Y into three sets. Set Y S

∩ = Y ∩S, Y S
+ = Y ∩φ−1({⊕}) and

Y S
− = Y ∩ φ−1({⊖}). For their part, the vertices of the solution S can belong to Y (and

thus to Y∩), they can be connected to B+ in G−Y , or they can be disconnected from B+
in G − Y . Let kS+ = |S ∩R(B+, Y)| be the number of vertices of S connected to B+ in
G−Y , let Rrest = V (G)\(Y ∪R(B+, Y)) be the vertices of G−Y which are not connected
to B+ and kSrest = |S ∩Rrest| be the number of vertices of S which belong to G− Y and
are not connected to B+. Our goal is to find the tuple θS = (Y S

∩ , Y
S

+ , Y
S

− , k
S
+, k

S
rest).

Let Θ be the set of all tuples of the form (Y∩, Y+, Y−, k+, krest) where Y∩, Y+ and
Y− form a partition of Y and k+ and krest are two non-negative integers such that k =

page 106 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

|Y∩| + k+ + krest. For θ = (Y∩, Y+, Y−, k+, krest) ∈ Θ, we define the instance I+(θ) of
Annotated Signed-H2−

r,b -Coloring composed of the signed subgraph G+(θ) of (G, σ)
induced by R(B+, Y) ∪ (Y \ Y∩), the integer k+ and the sets B+ ∪ Y+ and Y−. Similarly,
we define the instance Irest(θ) of Annotated Signed-H2−

r,b -Coloring composed of the
signed subgraph Grest(θ) of (G, σ) induced by Rrest ∪ (Y \ Y∩), the integer krest and the
sets Y+ and Y−.

Note that S ∩R(B+, Y) is a solution to the instance I+(θS) of Annotated Signed-
H2−
r,b -Coloring and that S ∩Rrest is a solution to the instance Irest(θS) of Annotated

Signed-H2−
r,b -Coloring.

Moreover suppose that for some θ = (Y∩, Y+, Y−, k+, krest) ∈ Θ, there exists a solution
S+ to I+(θ) and a solution Srest to Irest(θ). Let φ+ (resp. φrest) be a homomorphism
from G+(θ) − S+ (resp. Grest(θ) − Srest) to H2−

r,b such that φ+(B+ ∪ Y+) = ⊕ (resp.
φrest(Y+) = ⊕) and φ+(Y−) = ⊖ (resp. φrest(Y−) = ⊖). The homomorphism φ defined
by φ(x) = φ+(x) if x ∈ V (G+(θ)) and φ(x) = φrest(x) otherwise, verifies that φ :
(G, σ)− (S+∪Y∩∪Srest) −→s H

2−
r,b and φ(B+) = ⊕. Indeed, if not, then there exist u and

v in V (G)\(S+∪Y∩∪Srest) which are adjacent and such that φ(u) = ⊕ and φ(v) = ⊖. By
definition of φ, one of u or v, say u, belongs to V (G+(θ)) and the other belongs to Rrest.
Since no vertex of R(B+, Y) and Rrest are adjacent (recall that Y is a separator), u ∈ Y
and thus u ∈ V (Grest). This contradicts the fact that Srest is a solution of Irest(θ). Hence
S+ ∪ Y∩ ∪ Srest is a solution to I of size at most k+ + |Y∩|+ krest = k.

Hence to solve our problem, it suffices to find some θ ∈ Θ for which the two instances
I+(θ) and Irest(θ) of Annotated Signed-H2−

r,b -Coloring have a solution. If no such
θ exists then θS does not exist and we can reject.

In order to find this θ, we will try every possibility. There are at most 3k ways to
partition Y into three sets, there are at most k+ 1 choices for k+ and once k+ and Y∩ are
chosen, we only have one choice for krest. Hence we will make at most 2 · 3k(k + 1) calls
to a solver of Annotated Signed-H2−

r,b -Coloring.
In most calls to a solver of Annotated Signed-H2−

r,b -Coloring, the instance of
Annotated Signed-H2−

r,b -Coloring has a parameter (k+ or krest) smaller than k. In
some cases, the parameter does not decrease.

The first of those cases is when krest = k. Since (G, σ) − B+ −→s H
2−
r,b , any set is

a solution to Irest(θ) for any θ of the form (∅, Y+, Y−, 0, k). As Y is not a solution, the
empty set is not a solution of I+(θ) for any θ of the form (∅, Y+, Y−, 0, k), i.e. a solution
S must intersect the signed subgraph of (G, σ) induced by R(B+, Y). Hence any θ ∈ Θ
with krest = k does not yield a solution, hence we can ignore these θ’s when trying all
possibilities.

The other case is when k+ = k. We claim that the only interesting θ ∈ Θ to test with
k+ = k is (∅,∅, Y, k, 0). Indeed, recall that the signed subgraph G′ of (G, σ) induced
by Y ∪ Rrest contains an unbalanced cycle. Moreover G′ is connected as G is connected
and Y is an important separator, hence every vertex of G′ must be mapped to ⊖. In
particular this is the case for the vertices of Y . This implies Y+ = ∅ and Y− = Y .

Moreover, for θ = (∅,∅, Y, k, 0), the instance I+(θ) is actually a nice instance of
Annotated Signed-H2−

r,b -Coloring. Indeed let u be a vertex of V (G+(θ))\(Y ∪B+) =
R(B+, Y) \ B+, u is connected to a vertex of B+ by a path with internal vertices in
R(B+, Y) by definition of R(B+, Y). Since G−B+ is connected, there is a shortest path
between u and a vertex of Y in G − B+, this path has internal vertices in R(B+, Y) by
definition of Y , hence it is also a path in G+(θ).

On various graph coloring problems page 107

3.4. Vertex Deletion Signed-(H, π)-Coloring

Let us summarize. We make at most 2 · 3k(k + 1) calls to a solver of Annotated
Signed-H2−

r,b -Coloring on a instance with a smaller parameter. Hence it takes a
O(3k(k + 1)A(n, k − 1)) time to perform these calls. On top of these, we perform at
most one call to the solver of Annotated Signed-H2−

r,b -Coloring on a nice instance
with parameter k. Hence it takes a time Anice(n, k) to perform this call.

Lemma 3.34. We have:

CHA(n, k) ≤ 2O(k)nO(1) + 2 · 3k(k + 1)A(n, k − 1) + Anice(n, k).

3.4.7 Solving Connected Annotated Signed-H2−
r,b -Coloring

Let I be an instance of Connected Annotated Signed-H2−
r,b -Coloring composed of

a signed graph (G, σ) of order n, an integer k and two disjoint non-empty sets of vertices
B+ and B− such that G− (B+ ∪B−) is connected and (G, σ)− (B+ ∪B−) −→s H

2−
r,b . In

order to solve Connected Annotated Signed-H2−
r,b -Coloring, we need to introduce

some notation.
A subset of vertices A of V (G) is big if |A| ≥ 9

10n. A subset of vertices A of V (G) is
small if |A| ≤ 1

10n. Note that in a partition of V (G), there is at most one big part and if
there is a big part, then all the other parts are small.

The main idea of the resolution of Connected Annotated Signed-H2−
r,b -Coloring

is to find some “good” (B+, B−)-separator in G. The following lemma realizes just that.

Lemma 3.35. Let G be a graph of order n, k be an integer and A and B be two disjoint
sets of vertices such that G − (A ∪ B) is connected. We can find in f(k)nd time one of
the following:

1. an (A,B)-separator X of size at most k such that R(A,X) and R(B,X) are not
big, or

2. two (A,B)-separators X and Y of size at most k such that R(B,X) is big, R(A, Y)
is big and the graph G[Rrest(X ∪ Y) ∪X ∪ Y] contains at least k + 1 paths P1, ...,
Pk+1, with disjoint internal vertices, such that each Pi is a (ui, vi)-path for ui ∈ X
and vi ∈ Y , or

3. an (A,B)-separator X (resp. Y) of size at most k such that R(B,X) (resp. R(A, Y))
is big, and the graph G[R(B,X)∪X] (resp. G[R(A, Y)∪Y]) contains at least k+ 1
paths P1, ..., Pk+1, with disjoint internal vertices, such that each Pi is a (ui, vi)-path
for ui ∈ X and vi ∈ B (resp. ui ∈ A and vi ∈ Y), or

4. two (A,B)-separators X and Y of size at most k such that R(A,X) and R(B, Y)
are small and there is a (u, v)-path, u ∈ A and v ∈ B, which contains only vertices
in R(A,X) ∪X ∪ Y ∪R(B, Y), or

5. an (A,B)-separator X (resp. Y) of size at most k such that R(B,X) (resp. R(A, Y))
is big and there exists a (u, v)-path for two vertices u ∈ A and v ∈ B whose internal
vertices are contained in R(A,X) ∪X (resp. R(B, Y) ∪ Y), or

6. we can determine that there exists no (A,B)-separator X of size at most k.

See Figure 3.12 for a schematic view of the first five cases.

page 108 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

A BX

Rrest(X)

not big not big
R(A,X) \ A R(B,X) \B

(a) Case 1.

A B
X Y

P1

Pk+1

small small
R(A,X) \ A R(B, Y) \BRrest(X ∪ Y)

(b) Case 2.

A BX

Rrest(X)

P1

Pk+1

small
R(A,X) \ A R(B,X) \B

(c) Case 3.

A BX Ysmall small
R(A,X) \ A R(B, Y) \BRrest(X ∪ Y)

(d) Case 4.

A BX

Rrest(X)

small big
R(A,X) \ A R(B,X) \B

(e) Case 5.

Figure 3.12: The first five cases of Lemma 3.35. Each polygon represent a subgraph of G.
Wavy lines between two vertices represent arbitrary long paths between these two vertices.

On various graph coloring problems page 109

3.4. Vertex Deletion Signed-(H, π)-Coloring

Note that every solution S to I must disconnect the vertices of B+ from the vertices
of B− as they are mapped to disconnected vertices of H2−

r,b . If n < 100k, then we can solve
the problem by a brute force approach. Assume that n > 100k. We start by applying
Lemma 3.35 for A = B+ and B = B−. If we are in case 6, then S does not exist and we
can reject.

Let X be an (B+, B−)-separator. Up to modifying X, we can suppose that X is mini-
mal for inclusion. Let Θ(X) be the set of all tuples of the form (X∩, X+, X−, k+, k−, krest)
where X∩, X+ and X− are a partition of X and k+, k− and krest are three non-negative
integers such that |X∩|+k+ +k− +krest = k. If |X| ≤ k then we remove every θ for which
krest = k from Θ(X).

For θ ∈ Θ(X), let I+(θ) (resp. I−(θ), resp. Irest(θ)) be the instance of Annotated
Signed-H2−

r,b -Coloring composed of the signed graph (G, σ)[R(B+, X)∪(X\X∩)] (resp.
(G, σ)[R(B−, X)∪ (X \X∩)], resp. (G, σ)[Rrest(X)∪ (X \X∩)]), the integer k+ (resp. k−,
resp. krest) and the two sets B+ ∪ X+ (resp. X+, resp. X+) and X− (resp. B− ∪ X−,
resp. X−).

Let S be a solution to I and φS : (G, σ) − S −→s H
2−
r,b for which φS(B+) = {⊕}

and φS(B−) = {⊖}. Let XS
+ = φ−1

S ({⊕}) ∩ X, XS
− = φ−1

S ({⊖}) ∩ X and θS = (X ∩
S,XS

+, X
S
−, |S ∩R(B+, X)| , |S ∩R(B−, X)| , |S ∩Rrest(X)|).

Let us highlight a few facts. First if |S ∩Rrest(X)| = k and |X| ≤ k, then S ⊆ Rrest(X)
and X is a solution since (G, σ) − (B+ ∪ B−) −→s H

2−
r,b . Hence, if X is not a solution

and has size at most k, then we do not need to test the cases for which krest = k.
Moreover, S ∩R(B+, X) (resp. S ∩R(B+, X), resp. S ∩Rrest(X)) is a solution to I+(θS)
(resp. I−(θS), resp. Irest(θS)). Hence, if S exists, then X is a solution or there exists
θ ∈ Θ(X) for which I+(θ), I−(θ) and Irest(θ) are positive instances of Annotated
Signed-H2−

r,b -Coloring. Finally, if S+ is a solution to I+(θ), S− is a solution to I−(θ)
and Srest is a solution to Irest(θ) for some θ = (X∩, X+, X−, k+, k−, krest) ∈ Θ(X), then
X∩ ∪ S+ ∪ S− ∪ Srest is a solution to I since the three problems intersect only on X and
we fixed the homomorphism on X with the choice of X+ and X−.

Hence to solve our problem, it suffices to find some θ ∈ Θ(X) for which I+(θ), I−(θ)
and Irest(θ) are positive instances of Annotated Signed-H2−

r,b -Coloring. Finally, note
that if |X| ≤ 2k, then |Θ(X)| ≤ 32k(k + 1)2. Let us note g(k) = 32k(k + 1)2.

We can now treat the other cases of Lemma 3.35.

1. Suppose that we have found a minimal (B+, B−)-separator X of size at most k such
that R(B+, X) and R(B−, X) are not big. If X is a solution, then return X. For
each θ ∈ Θ(X), we solve the instances I+(θ), I−(θ) and Irest(θ) of Annotated
Signed-H2−

r,b -Coloring. If the three instances are positive instances, then we
accept. If no θ yields to our algorithm accepting, then we reject. In most cases, the
parameters (k+, k− and krest) are all smaller than k, hence the three sub-problems
are solved in time at most 3A(n, k − 1). The case krest = k does not occur, by
construction of Θ(X) as X is not a solution.
The case where k+ = k, implies θ = (∅,∅, X, k, 0, 0) as every vertex of X is
connected to B− (and we cannot disconnect them since k− = 0). Moreover, in
this case, I−(θ) and Irest(θ) can be solved in polynomial time as k− and krest are
equal to 0. We can start by solving these two instances, and if one of the two
instances is not a positive instance, then we do not have to solve I+(θ) to rule out
this θ.

page 110 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

Similarly, the case k− = k, implies θ = (∅, X,∅, 0, k, 0). Note that it is not possible
to solve both I+(∅,∅, X, k, 0, 0) and I−(∅, X,∅, 0, k, 0) as this would imply that X
is a solution. Indeed if we call both instances then this means that (G, σ)[R(B+, X)∪
X] −→s H

1
b , (G, σ)[R(B−, X) ∪ X] −→s H

1
r , and (G, σ)[Rrest(X) ∪ X] −→s H

2−
r,b

and thus (G, σ)−X −→s H
2−
r,b .

Hence at most one resolved sub-problem has its parameter equal to k. Recall that
by the choice of X, |R(B+, X)| ≤ 9

10n and |R(B−, X)| ≤ 9
10n. This implies that

the instance with parameter equal to k can be solved in A(91
100n, k) time (recall that

k < n
100).

2. Suppose that we have found two (B+, B−)-separators X and Y of size at most k
such that R(B−, X) is big, R(B+, Y) is big and the graph G[Rrest(X ∪ Y)∪X ∪ Y]
contains at least k + 1 paths P1, ..., Pk+1, with disjoint internal vertices, such that
each Pi is a (ui, vi)-path for ui ∈ X and vi ∈ Y . If one of X or Y is a solution then
we return it. We consider the (B+, B−)-separator X ∪Y . Since |X ∪ Y | > k, X ∪Y
is not a solution thus it is possible to have to test some θ with krest = k. Since
G[Rrest(X ∪ Y)∪X ∪ Y] contains k+ 1 paths (with disjoint internal vertices) from
B+ to B−, a solution S cannot be contained in Rrest(X ∪ Y) ∪X ∪ Y , as it would
not be a (B+, B−)-separator. Hence, we do not have to test any θ ∈ Θ(X ∪Y) with
krest = k. As in the previous case, most sub-problems have a parameter smaller
than k.
The case where k+ = k, implies θ = (∅,∅, X ∪ Y, k, 0, 0) as every vertex of X ∪ Y
is connected to B− (and we cannot disconnect them since k− = 0 and krest = 0).
Moreover, in this case, I−(θ) and Irest(θ) can be solve in polynomial time as k−
and krest are equal to 0. We can start by solving these two instances, and if one of
the two instances is not a positive instance, then we do not have to solve I+(θ) to
rule out this θ.
Similarly, the case k− = k, implies θ = (∅, X ∪ Y,∅, 0, k, 0). We can apply the
same argument as before: if we call both I+(∅,∅, X ∪ Y, k, 0, 0) and I−(∅, X ∪
Y,∅, 0, k, 0) then this means that both X and Y are solutions to our problem.
Hence we need to resolve at most one sub-problem having its parameter equal to k.
Recall that by the choice of X and Y , |R(B+, X)| ≤ 1

10n and |R(B−, Y)| ≤ 1
10n (as

R(B−, X) and R(B+, Y) are big). This implies that the instance with parameter
equal to k can be solved in A(11

100n, k) time (recall that k < n
100).

3. Suppose that we have found an (B+, B−)-separator X of size at most k such that
R(B−, X) is big, and the graph G[R(B−, X) ∪ X] contains at least k + 1 paths
P1, ..., Pk+1, with disjoint internal vertices, such that each Pi is a (ui, vi)-path for
ui ∈ X and vi ∈ B−. This case is very similar to the previous case. The subgraph
G[R(B−, X) ∪X] of G cannot entirely contain a solution S due to the existence of
the k + 1 paths P1, ..., Pk+1. Hence, we do not have to test any θ ∈ Θ(X) with
k− = k. Since R(B−, X) is big, R(B+, X) and Rrest(X) are small. The only θ for
which k+ = k is (∅,∅, X, k, 0, 0) and if krest = k, then X is a solution. Hence
we only have one sub-problem with parameter equal to k, and it can be solved in
A(11

100n, k) time.
4. Suppose that we have found two (B+, B−)-separators X and Y of size at most k

such that R(B+, X) and R(B−, Y) are small and there is a (u, v)-path P , u ∈ B+

On various graph coloring problems page 111

3.4. Vertex Deletion Signed-(H, π)-Coloring

and v ∈ B−, which contains only vertices in R(B+, X) ∪X ∪ Y ∪ R(B−, Y). This
case is very similar to the second case. If one of X or Y is a solution, then return it.
We will test every θ ∈ Θ(X ∪Y) to find our solution. Note that a solution S cannot
be included in Rrest(X ∪ Y) as it would not intersect P , hence we can suppose that
krest ̸= k. The rest of the analysis is the same as for the second sub-case.

5. Suppose that we have found a (B+, B−)-separator X of size at most k such that
R(B−, X) is big and there exists a (u, v)-path P for two vertices u ∈ B+ and v ∈ B−
whose internal vertices are contained in R(B+, X)∪X. As before, since |X| ≤ k, we
do not have to test any θ with krest = k. Due to the existence of P , any solution S
must intersect R(B+, X)∪X and cannot be entirely contained in R(B−, X). Hence,
we do not have to test any θ with k− = k. The only case where the parameter is k,
is when k+ = k and θ = (∅,∅, X, k, 0, 0) which we can solve in A(11

100n, k) time.

To conclude in every case, after applying Lemma 3.35, we can solve our problem in at
most 3g(k) calls to a solver of Annotated Signed-H2−

r,b -Coloring on an instance where
k decreases and at most one call to a solver of Annotated Signed-H2−

r,b -Coloring on
an instance where the order of the input graph is at most 91

100n.

Lemma 3.36. We have:

CA(n, k) ≤ f(k)nd + 3g(k)A(n, k − 1) + A
(91

100n, k
)
.

3.4.7.1 Proof of Lemma 3.35

This section is dedicated to the proof of Lemma 3.35. In this proof, we always suppose that
our separators are minimal since we can transform a separator into a minimal separator
in polynomial time.

Let G be a graph of order n, k be an integer and A and B be two disjoint sets of
vertices such that G− (A∪B) is connected. If no (A,B)-separator of size at most k exists
then we are in case 6. Suppose otherwise and let G0 = G, X0 = A and Y0 = B. Let us
find a minimal (X0, Y0)-separator S0 of size at most k in G0. If S0 verifies 1, i.e. none
of R(X0, S0) or R(Y0, S0) is big, then we can conclude. W.l.o.g assume that R(X0, S0) is
big. Let G1 be the graph G0[R(X0, S0) ∪ S0] and set X1 = X0 and Y1 = S0.

Suppose that we have constructed Gi and two disjoint sets of vertices Xi and Yi of
Gi. Since we work with several graphs, we note Ri(S, T) for the set R(S, T) taken in the
graph Gi. The notation R(S, T) always refer to R0(S, T). If no (Xi, Yi)-separator of size
at most k exists, then we stop. Find a minimal (Xi, Yi)-separator Si of size at most k
in Gi. If none of R(A, Si) or R(B, Si) is big, then we also stop. If R(A, Si) is big, then
set Gi+1 = Gi[Ri(Xi, Si) ∪ Si], Xi+1 = Xi and Yi+1 = Si. If Ri(B, Si) is big, then set
Gi+1 = Gi[Ri(Yi, Si) ∪ Si], Xi+1 = Si and Yi+1 = Yi. As Gi+1 has less vertices than Gi,
this process stops in at most n steps. See Figure 3.13 for an example of construction of
Gi+1 from Gi.

Suppose that the process stops for Gp and the two sets Xp and Yp where p ≥ 1 (see
Figure 3.14). Let us see one important property of our construction.

Claim 3.37. For every i ≤ p− 1, the minimal (Xi+1, Yi+1)-separator Si+1 in Gi+1 is also
a minimal (Xi, Yi)-separator in Gi.

page 112 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

Xi YiSi

Rrest
i (Si)

Ri(Xi, Si) \Xi Ri(Yi, Si) \ Yi

Figure 3.13: Some graph Gi constructed in the algorithm for Lemma 3.35. In this case, we
suppose that R(A, Si) is big. The bold rectangle highlights the graph Gi+1.

A
X0
X1

B
Y0X2 X3

X4
Xp

Y1
Y2
Y3

Y4Yp · · ·· · ·

Figure 3.14: An example of execution of the algorithm yielding to Lemma 3.35. In this
execution, we chose Y1 = S0, X2 = S1, X3 = S2 and Y4 = S3.

Proof. By symmetry, suppose that R(A, Si) is big and thus Xi+1 = Xi and Yi+1 = Si.
Let u ∈ Xi and v ∈ Yi be two vertices of Gi and let P be a (u, v)-path P . By definition

of Si, P intersect Si. Therefore P is the concatenation of two paths P 1 and P 2 such that
P 1 is a (u,w)-path contained in Gi+1 where w ∈ Si. By definition of Si+1, P 1 intersects
Si+1 which implies that P intersects Si+1. Hence Si+1 is an (Xi, Yi)-separator.

Suppose, by contradiction that Si+1 is not a minimal (Xi, Yi)-separator. This implies
that there exists s ∈ Si+1 such that Si+1 \ {s} is also an (Xi, Yi)-separator. Note that
since Si+1 is a minimal (Xi, Si)-separator, there is a path P1 from s to a vertex x of
Xi whose internal vertices are in Ri+1(Xi, Si+1) ⊆ Ri(Xi, Si+1). If there is an (s, y)-
path P2 for some y ∈ Yi whose internal vertices are in Ri(Yi, Si+1), then the path P
obtained by concatenating P1 and P2 is a path from Xi to Yi not intersecting Si+1 \ {s},
a contradiction. By minimality of Si+1, there is an (s, w)-path P3 whose internal vertices
belong to Ri+1(Si, Si+1) and for which w ∈ Si. By minimality of Si, there is a (w, y)-
path P4 whose internal vertices belong to Ri(Yi, Si) and for which y ∈ Yi. Note that
Ri(Yi, Si)∩V (Gi+1) = ∅, hence Si+1 does not intersect P3 nor P4. Hence the concatenation
of P3 and P4 is a path from s to some vertex y of Yp whose internal vertices do not intersect
Si+1, they thus belong to Ri(Yi, Si+1), a contradiction.

In particular, Claim 3.37 proves that every Si is an (A,B)-separator.
There are multiple cases which can make us stop. Recall that, by our assumption

on S0, we have Yp ̸= B. We first distinguish between the case where Xp = A and the case
where Xp ̸= A. When treating a case, we suppose that all previous cases do not occur.
Suppose that Xp = A. Since Xp = A, for every i ≤ p−1, R(A, Si) is big and Yi+1 = Si.
Recall that Yp is a minimal (A,B)-separator by Claim 3.37.

• Suppose that there is no (A, Yp)-separator of any size in Gp. This implies that there
is an edge xy between a vertex x of A and a vertex y of Yp. Since Yp is a minimal

On various graph coloring problems page 113

3.4. Vertex Deletion Signed-(H, π)-Coloring

(A,B)-separator, there is a path from y to a vertex b of B whose internal vertices
belong to R(B, Yp). By concatenating this path with the edge xy, we obtain an
(x, b)-path whose internal vertices belong to R(B, Yp) ∪ Yp. Hence Yp verifies 5.

• Suppose that there is no (A, Yp)-separator of size at most k in Gp. We want to
show that Yp verifies 3. Note that by construction R(A, Yp) is big. Note that,
Gp = G[R(A, Yp) ∪ Yp]. As there is no (A, Yp)-separator of size at most k in Gp,
there exist at least k + 1 paths P1, ..., Pk+1 in Gp, with disjoint internal vertices,
such that each Pi is a (ui, vi)-path for some ui ∈ A and vi ∈ Yp. Hence Yp verifies 3.

• Suppose that Sp exists and none of R(A, Sp) or R(B, Sp) is big. By Claim 3.37, Sp
is an (A,B)-separator, hence 1 holds.

Suppose that Xp ̸= A. Recall that both Xp and Yp are minimal (A,B)-separators
by Claim 3.37. Note also that by construction, one of Xp or Yp is the minimal (A,B)-
separator Sp−1. In particular one of R(A, Sp−1) or R(B, Sp−1) is big. By symmetry,
suppose w.l.o.g. that R(A, Sp−1) is big and Sp−1 = Yp. In particular, R(B, Yp) is small.

• Suppose that there is no (Xp, Yp)-separator of any size in Gp. This implies that
there is an edge xy between a vertex x of Xp and a vertex y of Yp. By construction
of the algorithm, Xp is some Six , ix ≤ p−1, for which R(B, Six) is big. As R(B,Xp)
is big, R(A,Xp) is small. As Xp and Yp are minimal (A,B)-separators, there exists
a (u, x)-path for some u ∈ A which contains only vertices in R(A,Xp) ∪ Xp and
a (y, v)-path for some v ∈ B which contains only vertices in R(B, Yp) ∪ Yp. By
concatenating these two paths, we obtain a (u, v)-path containing only vertices in
R(A,Xp)∪Xp ∪R(B, Yp)∪ Yp. As Yp ∩R(A,Xp) = ∅ and Xp ∩R(B, Yp) = ∅, this
concatenated path contains only vertices in R(A,Xp∪Yp)∪Xp∪Yp∪R(B,Xp∪Yp),
which implies 4.

• Suppose that there is no (Xp, Yp)-separator of size at most k in Gp. We want to show
that Xp and Yp verify 2. Note that by construction R(A, Yp) is big. By construction,
Xp is some Six , ix ≤ p−1, for which R(B, Six) is big. Note that, V (Gp) ⊆ R(B,Xp)
and V (Gp) ⊆ R(A, Yp). This implies that in G−Xp − Yp, u is not connected to A
nor to B, hence V (Gp) ⊆ Rrest(Xp∪Yp)∪Xp∪Yp. As there is no (Xp, Yp)-separator
of size at most k in Gp, there exist at least k + 1 paths P1, ..., Pk+1, with disjoint
internal vertices, such that each Pi is a (ui, vi)-path for ui ∈ Xp and vi ∈ Yp. Hence
Xp and Yp verify 2.

• Suppose that Sp exists and none of R(A, Sp) or R(B, Sp) is big. By Claim 3.37, Sp
is an (A,B)-separator, hence 1 holds.

Complexity. Let us conclude with some complexity analysis. It takes an FPT time to
find a separator of size at most k. We repeat this step at most n times. Moreover, each
stop conditions can be checked in polynomial time. Hence, we find our separator in a
f(k)nd time for some computable function f and some fixed integer d.

3.4.8 Complexity analysis

We recall that we have obtained the following bounds:

page 114 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

D(n, k) ≤ 2k+1(O(k2) + A(n, k)),
A(n, k) ≤ O(n2) + k log(k) max (CA(n, k − 1),CHA(n, k − 1))

+ max (CA(n, k),CHA(n, k)) ,
Anice(n, k) ≤ O(n2) + k log(k)CA(n, k − 1) + CA(n, k),

CA(n, k) ≤ f(k)nd + 3g(k)A(n, k − 1) + A
(91

100n, k
)
, and

CHA(n, k) ≤ 2O(k)nO(1) + 2 · 3k(k + 1)A(n, k − 1) + Anice(n, k).

First note that CA(n, k) ≤ CHA(n, k) ≤ A(n, k), hence, we can express A(n, k) as
follows.

A(n, k) ≤ O(n2) + k log(k)CHA(n, k − 1) + CHA(n, k),
≤ O(n2) + k log(k)

(
2O(k)nO(1) + 2O(k)A(n, k − 2) + Anice(n, k − 1)

)
+
(
2O(k)nO(1) + 2 · 3k(k + 1)A(n, k − 1) + Anice(n, k)

)
,

≤ 2O(k)nO(1) + 2O(k)A(n, k − 1) + Anice(n, k),
≤ 2O(k)nO(1) + 2O(k)A(n, k − 1) +O(n2) + k log(k)CA(n, k − 1) + CA(n, k),
≤ 2O(k)nO(1) + 2O(k)A(n, k − 1) + CA(n, k).

With the upper bound on CA(n, k) and since f(k) = 2O(k) and g(k) = 2O(k), we can
simplify the previous identity as follows.

A(n, k) ≤ 2O(k)nO(1) + 2O(k)A(n, k − 1)

+ f(k)nd + 3g(k)A(n, k − 1) + A
(91

100n, k
)
,

≤ 2O(k)nO(1) + 2O(k)A(n, k − 1) + A
(91

100n, k
)
.

Hence for some integers λ, µ and c, we have:

A(n, k) ≤ 2λknc + 2µkA(n, k − 1) + A
(91

100n, k
)
.

Let x > 0 be a real number such that
(

100
91

)x
= n. We have x = log(n)

log(100/91) . Note that
x ≤ 25 log(n). Let us expand the last term of the sum.

On various graph coloring problems page 115

3.5. Edge Deletion Signed-(H, π)-Coloring

A(n, k) ≤
25 log(n)∑
i=0

(
2λk

(91
100

)ic
nc + 2µkA

(
n
(91

100

)i
, k − 1

))
,

≤ 25 log(n)
(
2λknc + 2µkA(n, k − 1)

)
,

≤ 25 · 2λknc log(n) + 25 log(n)2µkA(n, k − 1),

≤ 25 · 2λknc log(n)×
k∑
i=0

(
25 log(n)2µk

)i
,

≤ 25 · 2λknc log(n)× k
(
25 log(n)2µk

)k
,

≤ 2O(k2)nO(1) log(n)k.

As log(n)k = O(n), we obtain:

A(n, k) ≤ 2O(k2)nO(1).

This implies D(n, k) ≤ 2O(k2)nO(1) and proves Theorem 3.26.6 since we can solve our
problem in O(2kn)D(n, k) time.

3.5 Edge Deletion Signed-(H, π)-Coloring
As for the vertex deletion case, this problem is only interesting when (H, π) is an s-core.

Among these problems, the problem Edge Deletion Signed-H1
b -Coloring cor-

responds to computing the minimum number of edges which need to be removed from
the input in order to make the input signed graph balanced. This problem is exactly
the problem of determining the frustration index of the input. Since being introduced by
Harary [93] in 1959, this notion has been extensively studied (e.g. see [67, 94, 111, 149]).
Computing the frustration index of a signed graph is NP-hard [111]. We complete the
result by showing that this problem is FPT.

The following theorem solves Edge Deletion Signed-(H, π)-Coloring for all
cases.

Theorem 3.38. Let (H, π) be an s-core. The following statements hold.

1. The problem Edge Deletion Signed-H1
rb-Coloring and the problem Edge

Deletion Signed-H1
−-Coloring are in P.

2. The problem Edge Deletion Signed-(H, π)-Coloring is NP-complete even for
k = 0 when (H, π) has at least three edges (see Theorem 2.22).

3. The problem Edge Deletion Signed-(H, π)-Coloring is NP-complete when
(H, π) is one of H1

b (), H2b
−,− (), H2r

−,− (), H2rb
−,− () or H2−

r,b

().

4. The problem Edge Deletion Signed-(H, π)-Coloring is FPT when (H, π) is
one of H1

b (), H1
r (), H2b

−,− (), H2rb
−,− () or H2−

r,b ().

page 116 Dimitri Lajou

Chapter 3. Complexity of edge-colored and signed graphs modification problems

Proof. The problem Edge Deletion Signed-H1
rb-Coloring is in P as every signed

graph admits a homomorphism to H1
rb (). The problem Edge Deletion Signed-

H1
−-Coloring is equivalent to counting the number of edges of the input graph, hence it is

in P. By Theorem 2.22, if (H, π) has at least three edges then Edge Deletion Signed-
(H, π)-Coloring is NP-complete even for k = 0. Note that for every (H, π), Edge
Deletion Signed-(H, π)-Coloring is in NP. By Observation 2.14, the complexity for
H1
r () is the same as for H1

b (). The problem Edge Deletion Signed-H2rb
−,−-

Coloring is exactly the problem Edge Bipartization, hence it is NP-complete and
FPT. The problem Edge Deletion Signed-H1

b -Coloring is equivalent to computing
the frustration index of the input graph which is NP-hard [111]. It is also equivalent to
Edge Deletion H-Coloring where H is the 2-edge-colored graph isomorphic to the
signed graph DSG(H1

b), hence the problem is FPT by Theorem 3.20. The problem Edge
Deletion Signed-H2b

−,−-Coloring is equivalent to the problem Edge Bipartization
on input signed graphs which are all-positive, and is hence NP-complete.

We reduce Edge Deletion Signed-H1
b -Coloring to Edge Deletion Signed-

H2−
r,b -Coloring in order to show that Edge Deletion Signed-H2−

r,b -Coloring is NP-
hard. Let ((G, σ), k) be an instance of Edge Deletion Signed-H1

b -Coloring. We
denote by x1, . . . , xn the vertices of G. We add n(k+1) vertices y1

1, . . . , y
1
k+1, y

2
1 . . . , y

n
k+1 to

G. For every i ∈ JnK, we add positive edges such that the vertices xi, yi1, . . . , yik+1 induce
a positive clique. Let (G′, σ′) be this new signed graph. We claim that ((G, σ), k) is a
positive instance of Edge Deletion Signed-H1

b -Coloring if and only if ((G′, σ′), k)
is a positive instance of Edge Deletion Signed-H2−

r,b -Coloring.
If there exists some S ⊆ E(G) of size at most k such that (G, σ)−S is balanced, then

(G′, σ′)− S is also balanced. Indeed every cycle of (G′, σ′)− S is either a cycle of (G, σ),
in which case it is balanced by definition of S, or a positive triangle of an added clique,
which is also balanced.

If there exists some S ⊆ E(G) of size at most k such that (G′, σ′)−S −→s H
2−
r,b , then

(G′, σ′)− S −→s H
1
b . Indeed every vertex of (G′, σ′) belongs to a positive clique of order

k + 2. This clique is connected in (G′, σ′) − S and contains at least one balanced cycle,
hence every vertex of (G′, σ′)− S maps to the positive loop of H2−

r,b . Hence ((G, σ), k) is
a positive instance of Edge Deletion Signed-H1

b -Coloring.
This proves that Edge Deletion Signed-H2−

r,b -Coloring is NP-complete.

For the parameterized complexity of the two problems Edge Deletion Signed-
H2b

−,−-Coloring and Edge Deletion Signed-H2−
r,b -Coloring, we can mimic the proof

of the vertex deletion versions to obtain FPT algorithms. We do not describe in length
these algorithms as the ideas are exactly the same as in Section 3.4. Nonetheless let us
describe some changes.

In order to reduce to the disjoint version, we need to add the edges one by one (instead
of vertices) and guess (i.e. try all possibilities) for the intersection. As the homomorphism
is a function of the vertices and not the edges, we guess the homomorphism on the vertices
incident with the removed edges in the solution of size k + 1. There are at most 2(k + 1)
of them, hence it is still possible to do this in FPT time. After that, it suffices to find
cuts instead of separators using the same techniques as for the vertex version. For Edge
Deletion Signed-H2−

r,b -Coloring, we can use an analogue of Theorem 3.33 (see [53])
for cuts instead of separators to have similar reductions.

On various graph coloring problems page 117

3.6. Conclusion and perspectives

3.6 Conclusion and perspectives
We have introduced Vertex Deletion H-Coloring, Edge Deletion H-Coloring
and Limited Switchings (H, π)-Coloring and characterized their complexity for some
small H (resp. (H, π)). The full complexity landscape still needs to be determined. We
have fully classified the classic complexity of Vertex Deletion H-Coloring problems.
It remains to do the same for Edge Deletion H-Coloring and Limited Switchings
(H, π)-Coloring.

We proved that both Vertex Deletion H-Coloring and Edge Deletion H-
Coloring are FPT when H has order at most 2. However, if H has order 3, for example
if H is a monochromatic triangle, we obtain 3-Coloring, which is not in XP. Lim-
ited Switchings (H, π)-Coloring seems particularly interesting, since we obtained an
FPT/W[1]-hard dichotomy when (H, π) has order at most 2 (in which case the problem is
always in XP). But again for some H of order 3, Limited Switchings (H, π)-Coloring
is not in XP. It would be very interesting to obtain FPT/W[1]/XP trichotomies for Vertex
Deletion H-Coloring, Edge Deletion H-Coloring and Limited Switchings
(H, π)-Coloring, at least for some interesting classes of targets H (resp. (H, π)).

We also introduced Vertex Deletion Signed-(H, π)-Coloring and Edge Dele-
tion Signed-(H, π)-Coloring and completely characterized their classic complexity
and their parameterized complexity.

One may also study restricted classes of inputs for each of the five problems, such as
planar graphs (studied in the context of homomorphisms of signed graphs in [59, 124]).
For example, do the W[1]-hard cases of Limited Switchings (H, π)-Coloring become
FPT (or even polynomial) when the input is planar?

Another possibility is to allow the removal of vertices and edges in the same problem.
A way to define this is to have a bound on the total number of vertices and edges allowed
to be removed. One could also decide to have a bound for the vertices and one for the
edges. It is very likely that this kind of problem would behave similarly as when only
vertices or edges are allowed to be removed.

page 118 Dimitri Lajou

Chapter 4. Coloring signed graphs with small cyclomatic number

Chapter 4

Coloring signed graphs with small
cyclomatic number

In this chapter, we study the behavior of the chromatic number (and other coloring
parameters) of signed graphs on some “simple” classes of graphs.

Up to now, we only considered two types of colorings for signed graphs, coloring
of signed graphs and sign-preserving colorings of signed graphs, by studying the two
corresponding types of homomorphisms. These two types of colorings are characterized
by the two corresponding chromatic numbers χs and χps. Let us introduce two other
colorings of signed graphs.

For undirected graphs, a simple way to generalize coloring is to add lists of available
colors on each vertex. It is possible to define a similar generalization for signed graphs.

Definition 4.1 (L-coloring). A k-list-assignment of a signed graph (G, σ) is a function L
which assigns to each vertex of G a set of k colors. Recall that when dealing with homo-
morphisms, we view the vertices of a target graph as colors. Given a k-list-assignment
L of (G, σ), an L-coloring of (G, σ) is a coloring c of (G, σ) such that for every vertex
v ∈ V (G), we have c(u) ∈ L(u).

If c is an L-coloring of (G, σ), then we can view c as a homomorphism from (G, σ) to
some signed graph (Hc, πc) such that V (Hc) = ⋃

v∈V (G)
L(v) and for each vertex v ∈ V (G),

c(v) ∈ L(v) holds.
The notion of sign-preserving L-coloring is defined similarly, requiring that the color-

ing c is a sign-preserving coloring.

From the notion of list coloring, we can define the choice number.

Definition 4.2 (Choice number). The choice number of a signed graph (G, σ), de-
noted chs(G, σ), is the smallest k for which (G, σ) admits an L-coloring for any k-list-
assignment L. Similarly, the sign-preserving choice number of a signed graph (G, σ),
denoted chps(G, σ), is the smallest k for which (G, σ) admits a sign-preserving L-coloring
for any k-list-assignment L.

It is well known that the chromatic number of an undirected graph equals the maxi-
mum chromatic number of its connected components. That is why the chromatic number
of undirected graphs is generally studied on connected graphs.

This is not true for signed graphs. For example the chromatic number of the signed
graph composed of a positive triangle and a negative triangle is 4 (and not 3). This also

On various graph coloring problems page 119

holds for the three other parameters: sign-preserving chromatic number, choice number
and sign-preserving choice number. This is due to the fact that coloring signed graphs
cannot be done locally without considering the rest of the signed graph. For example,
when computing the sign-preserving chromatic number of a signed graph, if one edge e
has endpoints colored i and j somewhere in the signed graph, then every edge of the
signed graph with endpoints colored i and j, no matter how far they are from e, has to
have the same sign as e.

For undirected graphs, we usually try to bound the chromatic number by some other
parameters. This is for example the case for Brooks’ Theorem (see Theorem 1.37) which
bounds the chromatic number with the maximum degree of the graph. This is also possible
for signed graphs, Das, Nandi, Paul, Sen [54] showed that any signed graph (G, σ) with
∆(G) ≥ 3 verifies χs(G, σ) ≤ (∆(G) − 1)2 · 2∆(G)−1 + 2. Unfortunately, their bound is
exponential in ∆(G), in particular for subcubic graphs, this bound on χs is already 18.
We are looking for other paramaters which can bound the chromatic number of signed
graphs.

First, let us see whether there are signed graphs where each connected component is
“simple” (i.e. trees, cycles, ...) for which one of our coloring parameters is unbounded.
The easiest class to consider is the class of signed graphs where each connected component
contains a single edge. On this class, the sign-preserving choice number is unbounded.

Theorem 4.3. For every integer k ≥ 0, there exists a signed graph (G, σ) such that each
connected component of G is an isolated edge and chps(G, σ) ≥ k.

Proof. By a result of Erdős and Rado [65], for every integer k, there exists an integer ℓ0
such that for every ℓ > ℓ0 and every function f : {1, . . . , ℓ}2 → {−, 0,+}, there exists a
subset X of {1, . . . , ℓ} of cardinality at least k for which f(X2) is a singleton.

Let k and ℓ be two integers such that ℓ is sufficiently large to apply the aforementioned
result. Set n =

(
ℓ
k

)
and let (G, λ) be the signed graph composed of 2n isolated edges, n of

which are positive while the others are negative. The set of positive (resp. negative) edges
of (G, λ) is in one-to-one correspondence with the set Pk({1, . . . , ℓ}), the set of subsets
of size k of {1, . . . , ℓ}. For each such subset X, we denote by e+

X (resp. e−
X) the positive

(resp. negative) edge associated with X. We construct the list assignment L by assigning
to the two endpoints of the edge e+

X (resp. e−
X) the list X.

Suppose now that (G, σ) admits an L-coloring φ. For each pair of colors (a, b), either
all edges with an endpoint colored a and one endpoint colored b are positive, or they are
all-negative, or there is no such edge. Construct the mapping fφ : {1, . . . , ℓ}2 → {−, 0,+}
as follows: if there is a positive (resp. negative) edge whose endpoints are colored a and
b, then fφ(a, b) = + (resp. fφ(a, b) = −); if no such edge exists, then fφ(a, b) = 0.

By [65], there exists a set X of size k such that fφ(X2) is a singleton. Surely, fφ(X2) ̸=
{0} since the endpoints of the edge e+

X are colored. The previous remark even implies
fφ(X2) = {+} since e+

X is positive. By considering the edge e−
X , we similarly get fφ(X2) =

{−}, a contradiction.

On this class of graphs, the chromatic number and the choice number are both upper
bounded by 2, while the sign-preserving chromatic number is upper bounded by 3. If
every connected component is a tree then the chromatic number and the choice number
are both upper bounded by 2 as every forest can be switched to be all-positive, reducing
the problem to one for undirected graphs. The sign-preserving chromatic number is upper

page 120 Dimitri Lajou

Chapter 4. Coloring signed graphs with small cyclomatic number

bounded by 4 for forests as every forest admits a sign-preserving homomorphism to the
4-cycle u, v, w, z for which uv and wz are positive while vw and zu are negative.

Hence, in order to find other interesting classes, we need to have connected components
with cycles. The choice number of signed graphs is also unbounded for a rather simple class
of signed graphs, namely the class of signed graphs all of whose connected components
are unbalanced even cycles.

Theorem 4.4. For every two integers k, g ≥ 0, there exists a signed graph (G, σ), with
g(G) ≥ g and chs(G, σ) ≥ k, such that each connected component of G is an unbalanced
even cycle.

Proof. The proof of this theorem is similar to the proof of Theorem 4.3. For each set X
in Pk(ℓ), we create an unbalanced even cycle of length at least g. The list assignment L
associates with each vertex of this cycle the list X.

Suppose now that (G, σ) admits an L-coloring φ, after (possibly) switching the graph.
After these switchings, each unbalanced even cycle contains at least one positive edge and
one negative edge. By arbitrarily choosing one of the positive (resp. negative) edges of
the cycle associated with X to be e+

X (resp. e−
X), we can follow the same arguments as in

the proof of Theorem 4.3 and obtain a contradiction.

A similar result can be obtained by replacing each unbalanced even cycle by two odd
cycles: one balanced (i.e. with a positive edge) and one unbalanced (i.e. with a negative
edge).

Theorem 4.5. For every two integers k, g ≥ 0, there exists a signed graph (G, σ), with
g(G) ≥ g and chs(G, σ) ≥ k, such that each connected component of G is an odd cycle.

In the previous construction, we used many cycles to increase the choice number of the
signed graph. Intuitively, cycles are the key ingredient to increase the chromatic number
of a signed graph. It is then natural to consider the cyclomatic number of the underlying
graph, defined as follows.

Definition 4.6 (Cyclomatic number). The cyclomatic number of a graph G, denoted by
ν(G), is the minimum number of edges such that the graph obtained from G by deleting
these edges is a forest.

It is a basic result that for the cyclomatic number of G, the following formula holds:
ν(G) = |E(G)| − |V (G)| + c(G), where c(G) is the number of connected components
of G. The parameter corresponds to the dimension of the cycle space of G: i.e. one can
interpret it as the minimum number of subgraphs of G having only vertices with even
degree required to generate all cycles of the graphs by making sums of these subgraphs.
In this context, summing two subgraphs H1 and H2 creates the subgraph of G with vertex
set V (G) and edge set E(H1) ∆ E(H2) (where ∆ is the symmetric difference operator).

The cyclomatic number can be found under different names in literature: nullity,
circuit rank, excess, or Betti number. We denote by Bsi , the class of signed graphs having
an underlying graph with cyclomatic number at most i. For any signed graph parameter
λ ∈ {χs, χps, chs, chps}, we denote by λ(Bsi), the number max

(G,σ)∈Bs
i

λ(G, σ).
The next result shows that it is possible to have high chromatic number, and thus

high choice number, with only a few cycles.

On various graph coloring problems page 121

Theorem 4.7. For every integer n, there exists a signed graph (Gn, σn) such that

ν(Gn) = Θ (χs(Gn, σn) · log(χs(Gn, σn))) .

Proof. In [80], Füredi, Horák, Pareek and Zhu show that for every q, there exists a signed
graph (Gq, σq) of order q such that χps(Gq, σq) = q and |E(Gq)| = Θ(q log q) (they use the
terminology of edge-colored graphs in their article). By construction of these graphs, if u
and v are two vertices of Gq, then either uv is an edge or there exists a path of length two
uwv such that σq(uw) = −σq(wv). Indeed, this is exactly the reason why χps(Gq, σq) = q.

We shall now construct the signed graph (G′
n, σ

′
n) by adding to (Gn−1, σn−1) a universal

vertex all of whose adjacent edges are positive. Hence, if u and v are two vertices of G′
n,

then either uv is an edge or there exists an unbalanced cycle of length four containing
both u and v. By a result of [154], the signed graph (G′

n, σ
′
n) is a signed clique (i.e.

χs(G′
n, σ

′
n) = n). As (G′

n, σ
′
n) has n vertices and Θ(n log n) edges, ν(Gn) = Θ(n log n), as

required.

The aim of this chapter is to provide bounds on the chromatic number, the choice
number, and the sign-preserving chromatic number of a signed graph as a function of its
cyclomatic number.

Using ideas from [56], we provide an upper bound on the sign-preserving chromatic
number of a signed graph in the form of an affine function of its cyclomatic number.

Theorem 4.8. For every signed graph (G, σ), χps(G, σ) ≤ 4 + ν(G).

A similar result can be obtained for the chromatic number of a signed graph.

Theorem 4.9. For every signed graph (G, σ) satisfying either ν(G) ̸= 1, or ν(G) = 1
and where (G, σ) does not contain an even unbalanced cycle, χs(G, σ) ≤ 2 + ν(G).

Finally, for the choice number, we obtain the following theorem.

Theorem 4.10. For every signed graph (G, σ), chs(G, σ) ≤ 3 + ν(G).

Note that in the previous theorem, one could try to replace the 3 + ν(G) by 2 + ν(G)
by adding the extra condition that ν(G) ≥ 2. However, the proof of such a result would
be significantly more complicated and technical. Nonetheless, we prove a better bound
when ν(G) ≤ 2.

Theorem 4.11. For every signed graph (G, σ) with ν(G) ≤ 2, chs(G, σ) ≤ 4.

We then determine the exact value of our parameters for some classes of graphs with
bounded cyclomatic number.

Theorem 4.12.

1. χps(Bs0) = 4,
2. χs(Bs0) = chs(Bs0) = 2,
3. χps(Bs1) = 5 and χps(Bs2) = 6,
4. if i = 1 or 2, then χs(Bsi) = chs(Bsi) = 4,
5. χs(Bs3) = 5, and χs(Bs4) = 6.

page 122 Dimitri Lajou

Chapter 4. Coloring signed graphs with small cyclomatic number

It is well known that determining the chromatic number of a graph is NP-complete
when the number of colors is at least 3. For signed graphs, we can define the following
analogous coloring problem.

Coloring-Signed-Graphs Parameter: ν(G)
Input: A signed graph (G, σ) and an integer k.
Question: Is the number χs(G, σ) at most k?

Note that the problem Coloring-Signed-Graphs is NP-complete as shown in [154].
In order to get a better grasp of the complexity of the problem, one might want to study a
parameterized variant of the problem. Here, we show that Coloring-Signed-Graphs
is FPT when parameterized by the cyclomatic number of the signed graph.

Theorem 4.13. The problem Coloring-Signed-Graphs, on input (G, σ) and k, can
be solved in time 2O(ν(G)2) · |V (G)|.

Note that the previous theorem also implies that the problem of determining the
chromatic number of an undirected graph is FPT when parameterized by the cyclomatic
number of the graph. Indeed, it is easy to see that χ(G) = χs(G,+) where + is the
signature of G which assigns to each edge of G the positive sign.

This work is joint work with Jan Bok, Nikola Jedličková, Jonathan Narboni and Éric
Sopena. This work is partially supported by the ANR project HOSIGRA (ANR-17-CE40-
0022) and the IFCAM project “Applications of graph homomorphisms” (MA/IFCAM/18/39).

Section 4.1 focuses on the proofs of the general upper bound theorems: Theorem 4.8,
Theorem 4.9 and Theorem 4.10. In Section 4.2, we prove our results involving small
cyclomatic numbers, namely Theorem 4.11 and Theorem 4.12. Finally, in Section 4.3, we
present our FPT algorithm and prove Theorem 4.13.

Contents
4.1 Proofs of Theorems 4.8, 4.9 and 4.10 124
4.2 Proof of Theorem 4.11 and 4.12 130
4.3 Proof of Theorem 4.13 . 133
4.4 Perspectives . 135

4.1 Proofs of Theorems 4.8, 4.9 and 4.10
This section is devoted to the proofs of each of the three theorems which provide a linear
upper bound on some chromatic number of the form cst+ν(G) where G is the underlying
graph of our input signed graph. These proofs are inspired by the proof of a similar type
of result on oriented graphs (see [56]). Let us start with the sign-preserving chromatic
number.

Proof of Theorem 4.8. A good signed graph (H, π) is a signed graph in which every vertex
v ∈ V (H) is incident with at least one positive edge and at least one negative edge. Let us
prove the following stronger statement: every signed graph (G, σ) admits a sign-preserving
homomorphism to a good signed graph of order ν(G) + 4. The proof is done by induction

On various graph coloring problems page 123

4.1. Proofs of Theorems 4.8, 4.9 and 4.10

on (ν(G), |E(G)|+ |V (G)|). The case ν(G) = 0 is proven in Theorem 4.12.1. Now suppose
ν(G) > 0.

In each of the following cases, we proceed by induction and we always suppose that
none of the previous cases applies.

1. The graph (G, σ) contains a vertex u of degree 1.
Let v be the neighbor of u. By induction, there exists a sign-preserving homomor-
phism φ from (G, σ) − u to a good signed graph (H, π) of order ν(G) + 4. By
definition of a good signed graph, φ(v) is incident to an edge φ(v)w, in (H, π), with
sign σ(uv). We can extend φ to (G, σ) by setting φ(u) = w.

2. The graph (G, σ) contains a vertex u of degree at least 3 such that G − u has the
same number of connected components as G.
Let x1, . . . , xp be the neighbors of u such that uxi is a positive edge and let y1, . . . ,
yq be the neighbors of u such that uyi is a negative edge. Without loss of generality,
we can suppose p ≥ q. Note that ν(G − u) = ν(G) − d(u) + 1, hence (G, σ) − u
admits a sign-preserving homomorphism φ to a good signed graph (H, π) of order
ν(G) + 5 − d(u). Note that 1 + q ≤ 1 +

⌊
d(u)

2

⌋
≤ d(u) − 1 since d(u) ≥ 3. To

construct our sign-preserving homomorphism φ′, it is sufficient to assign to each
vertex of (G, σ) its image by φ, except for u, y1, . . . , yq for which we use 1 + q
vertices among the d(u)− 1 available new vertices.
It is then easy to complete the image of φ′(G, σ) into a good signed graph since
(H, π) is good. Indeed, each φ(yi) is incident with a positive edge φ(yi)x where x
is a vertex of H. Hence, we can have the same property for φ′(yi) by adding the
positive edge φ′(yi)x to φ′(G, σ). Therefore, only u may not verify the property
when q = 0 but in that case we have an additional new vertex to use in order to
make φ′(G, σ) good.

3. The graph (G, σ) contains a cycle C, all whose vertices, except at most one, have
degree 2.
We consider two subcases:

(a) The cycle C has a vertex u of degree 2 with v1 and v2 being the neighbors of
u and σ(uv1) = σ(uv2).
In this case, let (G′, σ′) be the signed graph obtained from (G, σ) by removing
u. By induction, (G′, σ′) admits a sign-preserving homomorphism φ to a good
signed graph of order ν(G′) + 4 = ν(G) + 3. By adding a new vertex x to
φ(G′, σ′), we can extend φ to (G, σ) by setting φ(u) = x. We can then complete
φ(G, σ) into a good signed graph since u has at most two neighbors.

(b) C contains an alternating path uv1v2v3w where each vi has degree 2.
We then consider the graph (G′, σ′) obtained from (G, σ) by deleting the vertex
v2. The vertex v2 is not a cut-vertex, so we have ν(G′) = ν(G) − 1 and, by
induction, (G′, σ′) admits a sign-preserving homomorphism φ to a good signed
graph of order ν(G) + 3.

• If φ(v1) ̸= φ(v3), then we add a new vertex x to φ(G′, σ′) connected to
φ(v1) and φ(v3) with σ(φ(v1)x) = σ(v1v2) and σ(φ(v3)x) = σ(v2v3). We
can then extend φ to (G, σ) by setting φ(v2) = x. Since σ(v1v2) ̸= σ(v2v3),
the new target graph is a good signed graph and we are done.

page 124 Dimitri Lajou

Chapter 4. Coloring signed graphs with small cyclomatic number

• If φ(v1) = φ(v3) and σ(uv1) = σ(φ(u)φ(w)), then we add a new vertex
x to φ(G′, σ′) connected to φ(w) and φ(v1) with σ(φ(w)x) = σ(v1v2) and
σ(φ(v1)x) = σ(v2v3). We then let φ(v1) = φ(w) and extend φ to (G, σ) to
(G, σ) by setting φ(v2) = x, which is possible since σ(uv1) = σ(φ(u)φ(w))
and σ(v3w) = σ(φ(v3)φ(w)). Since σ(v1v2) ̸= σ(v2v3), the new target
graph is a good signed graph, and we are done.

• If φ(v1) = φ(v3) and σ(uv2) = σ(φ(u)φ(w)), then we add a new vertex
x to φ(G′, σ′) connected to φ(u) and φ(v1) with σ(φ(u)x) = σ(uv1) and
σ(φ(v1)x) = σ(v1v2). We then let φ(v3) = φ(u) and extend φ to (G, σ) to
(G, σ) by setting φ(v2) = x, which is possible since σ(uv1) = σ(φ(u)φ(v1))
and σ(v3w) = σ(φ(u)φ(w)). Once again, since σ(v1v2) ̸= σ(v2v3), the new
target graph is a good signed graph.

Note that if C is not an alternating cycle, then subcase (3a) applies and otherwise,
subcase (3b) applies.

Consider now a signed graph (G, σ) with ν(G) > 0. By (1), we can suppose that
(G, σ) has minimum degree 2. Let G∗ be a 2-connected component which is adjacent
to at most one other 2-connected component. By the definition of G∗, there is only one
vertex w ∈ V (G∗) which connects G∗ to other vertices in G − G∗. If G∗ is a cycle then
case (3) applies. Otherwise, G∗ contains a vertex u ̸= w with dG∗(u) ≥ 3. Note that
G − u and G have the same number of connected components since u ̸= w and G∗ is
2-connected. Hence, case (2) applies which concludes the proof.

The following proof follows the same methodology, the difficulty in this one lies on the
fact that the general formula is not always true. The signed graph UC4 is one of these
exceptions.

Proof of Theorem 4.9. The proof is once again done by induction on (ν(G), |E(G)| +
|V (G)|). Let (G, σ) be a signed graph. We will need the following notion. The pruned
graph of G, denoted P (G), is the graph obtained from G by repeatedly deleting isolated
vertices and vertices of degree 1. Note that ν(P (G)) = ν(G). We define P (G, σ) in a
similar way.

In each of the following cases, we proceed by induction and we always suppose that
none of the previous cases applies.

1. The graph (G, σ) contains a vertex u of degree 1.
We have ν(G− u) = ν(G) and, by induction, there exists a homomorphism φ from
(G, σ)−u to a signed graph of order ν(G) + 2. Let v be the neighbor of u and w be
a neighbor of v different from u. Up to switching u, we can assume σ(uv) = σ(vw)
and extend φ to u with φ(u) = φ(w).

2. The signed graph (G, σ) has ν(G) ≤ 2.
If ν(G) = 0 then G is a forest and χs(G, σ) = 2. If ν(G) = 1 and (G, σ) does not
contain an even unbalanced cycle then (G, σ) is a cycle (by the previous point) which
is not even unbalanced and χs(G, σ) ≤ 3 as such cycles can be switched to be either
all-positive or all-negative. Finally, the case ν(G) = 2 is implied by Theorem 4.11
(the proof of which is independent from the proof of this theorem).

On various graph coloring problems page 125

4.1. Proofs of Theorems 4.8, 4.9 and 4.10

3. The graph (G, σ) contains a cut-vertex u.
Let v1 and v2 be two neighbors of u that are in different connected components in
G − u. Up to switching v1, we can assume σ(uv1) = σ(uv2). We then consider
the graph (H, π) obtained from (G, σ) by identifying v1 and v2. The graph H
has less vertices than G and ν(H) = ν(G) and so, by induction, there exists a
homomorphism φ from (H, π) to a signed graph of order ν(G) + 2. By composing
the homomorphism from (G, σ) to (H, π) (obtained from the identification of v1 and
v2) with φ, we obtain our result.

4. The graph (G, σ) contains two adjacent vertices u and v of degree 2.
Let (G′, σ′) be the graph obtained from (G, σ) by removing u. W.l.o.g., u′ is the
neighbor of u different from v and v′ is the neighbor of v different from u. Note
that ν(G′) = ν(G) − 1 ̸= 1, hence we can find, by induction, a homomorphism φ
from (G′, σ′) to a signed graph of order ν(G) + 1. We extend φ by fixing φ(u) to be
our new vertex. If φ(u′) = φ(v) then, up to switching v, one can change φ(v) to a
vertex different from φ(u), φ(v′) and φ(u′) since ν(G) + 2 ≥ 5. If φ(u′) ̸= φ(v) then
φ is a homomorphism.

5. The graph (G, σ) verifies ν(G) ≥ 3 and contains a vertex u of degree 2, which is
either not part of a UC4, or part of a triangle.
Assume that there exists such a vertex u of degree 2, let x and y be the neighbors
of u. We now distinguish two cases.
If x and y are adjacent, then G − u is connected (otherwise (3) would apply), and
thus ν(G − u) = ν(G) − 2 + 1 = ν(G) − 1. Moreover, as ν(G) ≥ 3, we have
ν(G − u) ≥ 2. So, by induction, there exists a homomorphism from (G, σ) − u to
a signed graph of order at most ν(G) + 1 colors and we can extend φ by choosing
φ(u) to be our new vertex.
Otherwise, up to switching x, we have σ(ux) = σ(uy). Moreover, for any vertex
z ̸= u in N(x) ∩ N(y), we have σ(zx) = σ(zy). We now consider the graph (H, π)
which is the image of (G, σ) by the homomorphism identifying x and y (this is well
defined due to the previous remarks). We have ν(H) ≤ ν(G) − 2 + 2 = ν(G) and
thus, by induction, there exists a homomorphism from (H, π) to a signed graph of
order at most ν(G)+2. Composing the first homomorphism with φ yields the result.

6. The graph (G, σ) contains a vertex u of degree at least 3 such that P ((G, σ)− u) is
not an even unbalanced cycle.
Since u is not a cut-vertex, ν(G − u) = ν(G) − d(u) + 1. If P ((G, σ) − u) is not
an even unbalanced cycle, then by induction, there exists a homomorphism φ from
(G, σ)− u to a signed graph of order at most ν(G− u) + 2 = ν(G)− d(u) + 3. Let
x1, . . . , xp (resp. y1, . . . , yq) be the neighbors of u connected to u with positive edges
(resp. negative edges). W.l.o.g., we can assume q ≤ p. Note that 1 + q ≤

⌊
d(u)

2

⌋
− 1

as d(u) ≥ 3. To construct our homomorphism φ′, it is sufficient to assign to each
vertex of (G, σ) its image by φ, except for u, y1, . . . , yq for which we use 1 + q
vertices among the d(u)− 1 available new vertices.

7. The graph (G, σ) verifies ν(G) ≥ 3 and there exists a UC4 in (G, σ) containing two
vertices of degree 2.
Let {u, v, w, z} be the vertices of this UC4 such that u and v have degree 2. If u
and v are adjacent then (4) applies. If u and v are not adjacent and w and z are

page 126 Dimitri Lajou

Chapter 4. Coloring signed graphs with small cyclomatic number

1

4 5
3

2

2

Figure 4.1: The graph involved in the proof of Theorem 4.9

adjacent then (5) applies.

If u and v are not adjacent and w and z are not adjacent then let (G′, σ′) be the
graph obtained from (G, σ) by removing u and v and adding the edge wz. Note
that ν(G′) = ν(G)− 1 ̸= 1, hence we can find a coloring c of (G′, σ′) by induction.
We want to extend c to u and v. Note that c(v) ̸= c(w). Let c0 be a color different
from c(w) and c(z). W.l.o.g suppose that u has both its incident edges of the same
sign and that both edges incident with v have opposite signs when trying to extend
the coloring c. Note that all edges which have endpoints colored c0 and c(v) have
the same signs, and the same property holds for all the edges which have endpoints
colored c0 and c(w). If the edges which have endpoints colored c0 and c(w) have
the same sign as the edges which have endpoints colored c0 and c(v), then, up to
switching u, we can color u with c0 and assign our new color to v. If the edges
which have endpoints colored c0 and c(w) do not have the same sign as the edges
which have endpoints colored c0 and c(v), then up to switching v, we can color v
with c0 and assign our new color to u. In both cases, we extend c to a signed graph
equivalent to (G, σ).

8. The graph (G, σ) contains a vertex s of degree at least 5.
Since P ((G, σ)− s) is an unbalanced even cycle by (6), (G, σ)− s admits a homo-
morphism φ to a signed graph of order 4 and we still have d(s) − 2 new vertices
to extend the coloring to (G, σ). Let x1, . . . , xp (resp. y1, · · · , yq) be the neighbors
of s connected to s with positive edges (resp. negative edges). Without loss of
generality, we can assume q ≤ p. As d(s) ≥ 5, we have d(s) −

⌊
d(s)

2

⌋
− 2 ≥ 1. To

construct our homomorphism φ′ from (G, σ), it is sufficient to assign to each vertex
of (G, σ) its image by φ, except for u, y1, . . . , yq for which we use 1 + q vertices
among the d(u)− 1 available new vertices.

9. The graph (G, σ) contains a vertex s of degree 4.
By (6) and (8), (G, σ) has maximum degree 4 and (G, σ)−s contains an unbalanced
even cycle UC2p for some integer p. Recall that G is 2-connected by (3). If ν(G) ̸= 4
then ν(G − s) = ν(G) − 3 ̸= 1 and (6) applies. If G has a vertex x of degree 3,
then ν(G− x) = 4− 2 = 2 and (6) applies. As ν(G) = 4, there are three vertices of
degree 4 in G and all the other vertices have degree 2. If p ≥ 3 then (G, σ) admits
a vertex of degree 2 which is not part of a UC4 and (5) applies. Hence p = 2 and
this UC4 has two vertices of degree 2 which contradicts (7).

10. The graph (G, σ) contains a vertex s of degree 3.

On various graph coloring problems page 127

4.1. Proofs of Theorems 4.8, 4.9 and 4.10

We denote by ni the number of vertices of degree i in G. We have:

ν(G) = m− n+ 1 = 3 · n3

2 + 2 · n2

2 − n3 − n2 + 1 = n3
2 + 1.

Since G is 2-connected by (3), deleting a vertex of degree 3 decreases the cyclomatic
number ν(G) by 2. Moreover, since P (G − v) is an unbalanced even cycle for all
vertices v of degree 3 (by 6), ν(G− v) = 1. Hence we have ν(G) = 3 and n3 = 4.
If (G, σ) − s contains an unbalanced even cycle UC2p for some integer p ≥ 3 then
(G, σ) admits a vertex of degree 2 which is not part of a UC4 and (5) applies. Hence
for all vertices v of degree at least 3, P ((G, σ)− v) = UC4.
Since P ((G, σ) − s) = UC4, (G, σ) contains a UC4 denoted C on the vertex set
{u, v, w, z}. If C has at least two vertices of degree 2 then (7) applies. Hence C has
at least three vertices of degree 3, say u, v and w. Since d(z) = 2, we can suppose
w.l.o.g. that u is the nearest vertex from s in C.
We first show that d(u, s) = 1. If d(u, s) ≥ 3 then there are two adjacent vertices of
degree 2 along this path and (5) or (7) applies. If d(u, s) = 2, then there is a path
uyx, where y has degree 2, and thus y should be part of a UC4 (by 5) which is only
possible if s is adjacent to a vertex of C; a contradiction.
So us ∈ E(G), and we have to distinguish whether u is a neighbor of z or not. If
uz ̸∈ E(G), then, as P ((G, σ)−u) is a UC4, v and w have another common neighbor
y, and this neighbor can only be s, otherwise u would be a cut-vertex and (3) would
apply. So {sv, sw} ⊆ E(G), but this contradicts the fact that P ((G, σ) − v) is a
UC4.
Hence uz ∈ E(G), there is one vertex from {v, w} which is not a neighbor of u, say
uw ̸∈ E(G). As P (G − v) is a UC4, then there should be an edge between s and
w; and as P (G − w) is also a UC4, there exists a vertex y of degree 2 neighboring
s and v. There is a signature corresponding to this graph which has all the edges
positive except for {sw, uv}. This graph can be easily colored with five colors as
depicted in Figure 4.1.

There are no other cases.

Another similar result can be obtained for the choice number of signed graphs. The
difficulty here is that we do not have “unused colors” at our disposal by simply applying
the induction. Hence we have to carefully manipulate the lists of each vertex to obtain
our result.

Proof of Theorem 4.10. The proof is done by induction on (ν(G), |E(G)| + |V (G)|). Let
(G, σ) be a signed graph of order n and let L : V (G)→ P(N) be a list assignment on the
vertices of G where the lists have size at least 3 + ν(G).

With an L-coloring c of (G, σ), we associate a signed graph (Hc, πc) where Hc is a
graph on the vertex set {c(u), u ∈ V (G)} such that two colors are adjacent if and only
if there exists in G two adjacent vertices colored by these two colors. The signature πc
verifies that, for any two colors c1 and c2, πc(c1c2) is the sign of all edges uv of G such
that c(u) = c1 and c(v) = c2.

In the following cases, we can apply induction. When considering a particular case, we
suppose that none of the previous cases applies. Finally, note that one can make similar
arguments by inverting the roles of positives edges and negatives edges.

page 128 Dimitri Lajou

Chapter 4. Coloring signed graphs with small cyclomatic number

1. G has a degree 1 vertex.
Let u be a vertex of degree 1 of G and let v be the neighbor of u. By induction, there
exists a signed graph (G′, σ′) equivalent to (G, σ) − u which admits an L-coloring
c. Let cu be a color in L(u). By switching u, we can suppose that uv has the same
sign as πc(cuc(v)) and extend the coloring to (G, σ).

2. G has two adjacent vertices u and v of degree 2.
Let u′ (resp. v′) be the neighbor of u (resp. v) which is not v (resp. u). Choose
cu ∈ L(u) and, for every w ∈ V (G) \ {u}, let L′(w) = L(w) \ {cu}. By induction,
there exists a signed graph (G′, σ′) equivalent to (G, σ) − u which admits an L′′-
coloring c. Color u with cu.
If c(u′) ̸= c(v) then c is a coloring of a signed graph equivalent to (G, σ). Otherwise,
let A be the set of colors α ∈ L(v)\{c(u′), cu} for which πc(αc(v′)) = σ(vv′). If A is
non-empty then we can recolor v with a color in A. Otherwise, switch v, and color
v with an arbitrary color of L′(v) which is different from c(u′).

3. There is a vertex u of degree at least 3 such that G − u has the same number of
connected components as G.
Let v1, . . . , vk be the k neighbors of u. Let cu ∈ L(u), c4 ∈ L(v4) \ {cu}, c5 ∈
L(v5)\{cu, c4}, . . . , and ck ∈ L(vk)\{cu, c4, c5, . . . , ck−1}. For every w ∈ V (G)\{u},
let L′(w) = L(w) \ {cu, c4, c5, . . . , ck}. Let α be a color of L′(v1) ∪ L′(v2) ∪ L′(v3)
which appears in the greatest number of sets among L′(v1), L′(v2) and L′(v3). Up
to changing the order of v1, v2 and v3, we can suppose that there exists ℓ ∈ {1, 2, 3}
such that α ∈ L′(vi) for i ≤ ℓ and α /∈ L′(vi) for ℓ < i ≤ 3. For every w ∈ V (G)\{u},
let L′′(w) = L′(w) \ {α}. Note that we removed at most d(u)− 1 colors from each
list from L to L′′.
As ν(G− u) = ν(G)− (d(u)− 1), by induction, there exists a signed graph (G′, σ′)
equivalent to (G, σ)− u which admits an L′′-coloring c. We extend c to the vertex
u, in two steps. First assign the color cu to u and the color ci to vi where 3 < i ≤ k.
When doing so, the obtained coloring may have some problems: it is possible for a
color β to be assigned to two neighbors vi and vj of u such that uvi is a positive
edge and uvj is a negative edge. In this case, i, j ∈ {1, 2, 3}. If this happens then
there are two subcases.

(a) The vertices v1, v2 and v3 all receive the same color.
In this case, ℓ = 3 and either all uvi, i ∈ {1, 2, 3} have the same sign or one of
these three edges, say uvj, has a sign different from the other two. In the first
case, there is no problem with the coloring, in the second case, one can recolor
vj with α.

(b) Two of the three vertices, say vi and vj, receive the same color.
In this case, ℓ ≥ 2 and one can recolor v2 with α. This removes the conflict as
2 ∈ {i, j}.

Take any signed graph (G, σ). By (1), we can suppose that (G, σ) has minimum
degree 2. Let G∗ be a 2-connected component which is adjacent to at most one other
2-connected component. By definition of G∗, there is only one vertex w ∈ V (G∗), which
connects G∗ to other vertices in G−G∗. If G∗ is a cycle then case (2) applies. Otherwise,
G∗ contains a vertex u with dG∗(u) ≥ 3 different from w. Note that G − u and G have

On various graph coloring problems page 129

4.2. Proof of Theorem 4.11 and 4.12

the same number of connected components since u ̸= w and G∗ is 2-connected. Hence,
case (3) applies.

4.2 Proof of Theorem 4.11 and 4.12
This section present the proofs of results where we compute exact values of our coloring
parameters when the cyclomatic number of the graph is small. As mentioned before,
Theorem 4.10 could be improved by taking into account the exception of Theorem 4.9.
Theorem 4.11 provides a better upper bound when ν(G) ≤ 2.

Proof of Theorem 4.11. The proof is done by induction on (ν(G), |E(G)| + |V (G)|). Let
(G, σ) be a signed graph of order n with ν(G) ≤ 2 and let L : V (G) → P(N) be a list
assignment on the vertices of G where the lists have size at least 4.

With an L-coloring c of (G, σ), we associate a signed graph (Hc, πc) as in the proof of
Theorem 4.10.

In the following cases, we can apply induction. When considering a particular case, we
suppose that none of the previous cases applies. Finally, note that one can make similar
arguments by inverting the roles of positive edges and negative edges.

1. G has a degree 1 vertex.
Let u be a vertex of degree 1 of G and let v be the neighbor of u. By induction, there
exists a signed graph (G′, σ′) equivalent to (G, σ) − u which admits an L-coloring
c. Let cu be a color in L(u). By switching u, we can suppose that uv has the same
sign as πc(cuc(v)) and extend the coloring to (G, σ).

2. (G, σ) is equivalent to an all-positive signed graph (G, σ′).
The signed graph (G, σ′) is all-positive and is thus 3-choosable since ν(G) ≤ 2.

From this point onward, we can suppose that G is composed of either exactly one
vertex of degree 4 and n− 1 vertices of degree 2, or exactly two vertices of degree 3 and
n−2 vertices of degree 2, or only vertices of degree 2. As ν(G) = ∑

v∈V (G)

d(v)−2
2 +C(G) ≤ 2,

C(G) ≥ 1 and d(v)−2
2 ≥ 0 for every v ∈ V (G), if there is a vertex of degree 4 then all other

vertices have degree 2, if there is a vertex of degree 3 then there must be another vertex
of odd degree (which then has degree 3) and all other vertices must have degree 2.

3. (G, σ) is equivalent to a signed graph (G, σ′) which has two edges uv and wz where
d(u) = d(v) = d(w) = d(z) = 2, G − u − z is a forest and such that beside uv and
wz, all other edges of (G, σ) are positive.
Let u′ be the neighbor of u which is not v and let z′ be the neighbor of z which
is not w. Choose cu ∈ L(u) and cz ∈ L(z) such that cu ̸= cz. Let L′ be the list
assignment obtained from L by removing the colors cu and cz from every set. Since
(G, σ′)− u− z is an all-positive signed forest, it admits an L′-coloring c as ordinary
forest are 2-choosable. We extend c to (G, σ′) by coloring u by the color cu and z
by the color cz. Some problems may arise from this choice. If c(u′) = c(v) then c
is not a coloring of (G, σ′). One can recolor v by a color in L(v) \ {c(u′), cu, cz}, in
order for the previous case to be avoided. The same holds if c(z′) = c(w).

page 130 Dimitri Lajou

Chapter 4. Coloring signed graphs with small cyclomatic number

4. (G, σ) is equivalent to a signed graph (G, σ′) which has exactly one negative edge uv
where d(u) = d(v) = 2.
In this case, we can do the same analysis as in case 3 by simply ignoring the vertex
z. As G− u is all-positive, with at most one cycle, (G, σ)− u is 3-choosable and we
color (G, σ) with the same technique.

5. (G, σ) has a vertex x of degree 4.
In this case, G consists of two edge-disjoint cycles with a common vertex x. By
switching some vertices of (G, σ), we can ensure that x is incident with only positive
edges and that the obtained signed graph has at most two negative edges. In this
case, we can apply case 3.

Let (G, σ′) be a signed graph equivalent to (G, σ) with the least number of negative edges.
The cases (2) and (4), ensure that (G, σ′) has at least two negative edges uv and zw. Since
ν(G) ≤ 2, (G, σ′) has exactly two negative edges. If we cannot apply case (3), then either
one of u, v, w or z is not of degree 2 or ν(G − u − z) ≥ 1. If ν(G − u − z) ≥ 1 then
there exists a path of vertices of degree 2 between u and z. By switching the vertices of
this path, we can obtain a signed graph with no negative edges and apply case (2). By
switching some vertices, since there are at most two vertices of degree at least 3, one can
ensure that d(u) = d(v) = d(w) = d(z) = 2. In this case, we can apply case (3).

We now prove Theorem 4.12. Let us start with the case of forests with Theorem 4.12.1
and Theorem 4.12.2.

Proof of Theorem 4.12.1. Nešetřil and Raspaud in [157, Theorem 1.1] showed that the
chromatic number of 2-edge-colored forests is upper bounded by 4. By bijection between
2-edge-colored graphs and signed graphs, we obtain χps(Bs0) ≤ 4.

Suppose to the contrary that χps(Bs0) ≤ 3. Then every signed forest admits a sign-
preserving homomorphism to some (K3, π). Let (F, σ) be the signed forest composed of
eight disjoint path of length 3. Each of these path will have a unique signature among the
eight possible ones. Let (K3, π) such that (F, σ) admits a sign-preserving homomorphism
to (K3, π). As the all-positive (resp. all-negative) path of length 3 is in (F, σ), (K3, π)
cannot be all-negative (resp. positive). Suppose w.l.o.g. that (K3, π) has two positive
edges ab and ac and a negative edge bc. Then the path of length 3, say uvwx, with
the signature σ(uv) = σ(wx) = − and σ(vw) = + does not admit a homomorphism to
(K3, π), a contradiction.

Hence χps(Bs0) = 4.

Proof of Theorem 4.12.2. First remark that χs(Bs0) > 1 and chs(Bs0) > 1 as signed graphs
in these classes contain edges. Recall that all signed forests can be switched to have only
positive edges. These forests can be treated as ordinary graph and thus their chromatic
number is 2 and their choice number is also 2. Hence our result.

We now focus on the sign-preserving chromatic number and provide lower bounds
when ν(G) = 1 and ν(G) = 2.

Proof of Theorem 4.12.3. First note that χps(Bs1) ≤ 5 and χps(Bs2) ≤ 6 by Theorem 4.8.
Consider the alternating cycle (C6, σ) of length 6 (see Figure 4.2(a)). Any possible

identification of a pair of vertices of this C6 involves two antipodal vertices. Once identi-
fied, without loss of generality, we obtain the signed graph with five vertices a, b, c, d and

On various graph coloring problems page 131

4.2. Proof of Theorem 4.11 and 4.12

(a) The alternating C6. (b) The signed graph obtained by identifying two
vertices of the alternating C6.

u v

(c) The signed graph with cyclomatic number 2
and signed-preserving chromatic number 6.

(d) The only possibility for the graph (H, π) in
the proof of Theorem 4.12.3.

Figure 4.2: The graphs involved in the proof of Theorem 4.12.3.

x where xa, xb and cd are the positive edges and xc, xd and ab are the negative edges
(see Figure 4.2(b)). This graph is a sign-preserving clique. Hence χps(C6, σ) = 5.

Let (G, σ) be the signed graph represented in Figure 4.2(c). We claim that we have
χps(G, σ) ≥ 6. By contradiction, suppose χps(G, σ) ≤ 5, that is, (G, σ) admits a sign-
preserving homomorphism to a complete graph (H, π) on five vertices. The signed graph
(H, π) has at least one all-positive triangle and one all-negative triangle. These two are
the images of the two triangles of (G, σ). Note that each vertex of the two triangles of
(G, σ) is adjacent to at least one positive and one negative edge, hence it must also be
the case for every vertex of (H, π). Up to some permutation of the vertices, there is only
one possibility for (H, π) which is represented on Figure 4.2(d). Note that the image of u
lies on the positive triangle while the image of v lies on the negative triangle. In (G, σ),
there is an alternating path of length 4 between the vertices u and v, hence in (H, π)
there must be one such path between their images. There is no such path in (H, π), a
contradiction.

We continue with the cases where ν(G) ≤ 2 for both the chromatic number and the
choice number of signed graphs.

Proof of Theorem 4.12.4. Theorem 4.11 gives the upper bound for both parameters (recall
that χs(G, σ) ≤ chs(G, σ) for every signed graphs (G, σ)). Now, consider the signed graph
UC4, it has chromatic number and choice number equal to 4, and cyclomatic number equal
to 1. Hence χs(Bs1) = chs(Bs1) = χs(Bs2) = chs(Bs2) = 4.

We finish with the cases where ν(G) ∈ {3, 4} for the chromatic number of signed
graphs.

Proof of Theorem 4.12.5. First note that χs(Bs3) ≤ 5 and χs(Bs4) ≤ 6 by Theorem 4.9. To
show the lower bounds, consider the two graphs of Figure 4.3. On the signed graph in
Figure 4.3(a), only one identification is possible (even with switching): the identification
of the two vertices colored 2. After identification, we obtain a signed clique and thus the
chromatic number of this signed graph is 5. The signed graph in Figure 4.3(b) is a signed

page 132 Dimitri Lajou

Chapter 4. Coloring signed graphs with small cyclomatic number

1

4 5
3

2

2

(a) A signed graph (G, σ) with ν(G) = 3 and
χs(G, σ) = 5.

(b) A signed graph (G, σ) with ν(G) = 4 and
χs(G, σ) = 6.

Figure 4.3: Two signed graphs used in the proof of Theorem 4.12.5.

clique as for every pair of vertices u and v, either u and v are adjacent or they belong to
some UC4. Hence, the chromatic number of this signed graph is 6.

4.3 Proof of Theorem 4.13
We present our algorithm solving Coloring-Signed-Graphs in FPT time when pa-
rameterized by the cyclomatic number of the input graph. Note that computing the
sign-preserving chromatic number can be done in a similar fashion by ignoring switching
is the proof.

Proof of Theorem 4.13. Let I be the instance of Coloring-Signed-Graphs composed
of the signed graph (G, σ) of order n and the integer k.

First, note that if k ≥ ν(G) + 3, then χs(G, σ) ≤ k by Theorem 4.9 and we can accept
our instance I. Therefore, in the rest of the proof, we can assume k = O(ν(G)).

Observe that, by definition, if χs(G, σ) ≤ k, then (G, σ) →s (H, π) for some signed
graph (H, π) of order at most k. Note that we can always complete H so that H = Kk.
There are at most 2(k

2) such signed graphs on k vertices. For each of them, we test whether
(G, σ)→s (H, π) or not. This step is described below and is repeated at most 2(k

2) times.
From now on fix (H, π) to be one of the 2(k

2) candidate targets for the homomorphism.
Fix a spanning forest F of G. The forest F can be computed in time O(n+ν(G)) through
e.g. a breadth-first search algorithm. Based on F , we partition V (G) into four sets of
vertices in the following way.

A = {v ∈ V (G) : dF (v) ̸= dG(v)} ,
B1 = {v ∈ V (G) : dF (v) = dG(v) = 1} ,
B2 = {v ∈ V (G) : dF (v) = dG(v) = 2} , and
B3 = {v ∈ V (G) : dF (v) = dG(v) ≥ 3} .

First remark that (G, σ) →s (H, π) if and only if (G, σ)− B1 →s (H, π) when k ≥ 2.
Indeed, we can always, possibly with some switching, map a vertex u of degree 1 to a
vertex of H which is not the image of the neighbor of u. Hence by successively removing
vertices of degree 1 from G, we can assume that B1 is empty.

On various graph coloring problems page 133

4.4. Perspectives

Note that |A| ≤ 2ν(G) as there are at most 2ν(G) vertices incident with one of the
ν(G) edges which do not belong to F . Note that each leaf of F belongs to A since B1 is
empty. Finally, note that in every tree, the number of internal vertices of degree at least
3 is bounded by the number of leaves of this tree. Thus, |B3| ≤ |A| ≤ 2ν(G).

If (G, σ)→s (H, π), then each of the vertices of A∪B3 has an image in (H, π). We test,
for each possible assignment of images to the vertices of A ∪ B3, whether they lead to a
homomorphism from (G, σ) to (H, π) or not. There are O((2k)4ν(G)) possible assignments
of such kind to consider. Indeed, H is of size k and each of the O(4ν(G)) vertices of
A∪B3 may be switched in the homomorphism. Let φ be a function which assigns images
in V (H) to the vertices of A ∪B3 and possibly switch some vertices of A ∪B3. If we can
check whether any of the O((2k)4ν(G)) possible φ functions can be extended to the vertices
of B2, then we are done. Some of these functions are already not homomorphisms and
hence we can ignore them (they can be detected in O(m) = O(n+ ν(G)) time).

To check whether φ extends to B2, it suffices to check that φ can be extended to every
maximal path P = uw1w2 . . . wtv, where u, v ∈ A∪B3 and wi ∈ B2 for each i ∈ {1, . . . , t}.
Note that there are O(n) such paths. To check whether we can find images for the wi’s of
P , it suffices to check whether there exists a walk in (H, π) starting at φ(u) and ending
at φ(v) with length t+ 1 and with sign equal to σ(P).

Let Γ(H, π) be the ordinary graph with vertex set {+1,−1}×{0, 1}×V (H) where two
vertices (ε1, 0, v1) and (ε2, 1, v2) are adjacent if and only if v1v2 ∈ E(H) and ε1ε2 = π(v1v2).
Two vertices (ε1, i, v1) and (ε2, i, v2) for i ∈ {0, 1} are not adjacent. There is a walk of
length ℓ and of sign ε between two vertices u and v of H if and only if the distance
between (+, 0, u) and (ϵ, i, v) in Γ(h, π) is at most ℓ where i = 0 if ℓ is even and i = 1
otherwise. Hence, it suffices to compute the distances between the vertices of Γ(H, π) to
find the answer and that can be done in time O(ν(G)3).

To recapitulate, for each possible target (H, π), we consider each possible mapping of
A∪B3 to V (H) and we try to extend this to a homomorphism from (G, σ). To do that it
suffices to check for each maximal path of vertices of B2 whether there is a corresponding
walk in (H, π) and this can be done by computing the distances in the graph Γ(H, π). If
we find one such homomorphism, we can accept and otherwise, we reject.

In the end, our algorithm runs in time

2(ν(G)
2) × (2ν(G))4ν(G) ×O(ν(G)3)×O(n+ ν(G)) = 2O(ν(G)2)n.

This concludes the proof.

4.4 Perspectives
We proved upper bounds on some chromatic numbers of signed graphs which are linear in
the cyclomatic number of the graph. One interesting question is whether theses bounds
are asymptotically optimal? We showed that some signed graphs have cyclomatic number
of the order of k log k where k is the chromatic number of the signed graph. Hence there
is a gap between this value and our current linear upper bound, in particular we do not
know of a family of signed graphs whose chromatic number is linear in its cyclomatic
number. We raise the following conjecture.
Conjecture 4.14. For every signed graph (G, σ), if k = χs(G, σ) (resp. k = χps(G, σ),
resp. k = chs(G, σ)), then:

k log(k) = O(ν(G)).

page 134 Dimitri Lajou

Chapter 4. Coloring signed graphs with small cyclomatic number

It would also be interesting to determine upper bounds on the chromatic number
(or the other variants) of a signed graph in its number of cycles. It is known that the
number of cycles of a graph can be exponential in the number of edges (and thus in
the cyclomatic number) of the graph, hence we should expect the chromatic number (or
the other variants) of a signed graph to be smaller than some function on the order of
magnetude of the logarithm of its number of cycles. Theorem 4.4 uses

(
ℓ
k

)
cycles in order

to have a signed graph with choice number at least k, where ℓ = 33O(k) acording to [65].
This number of cycles is way over blown and it would be interesting to know what is the
minimum number of cycles that we need to use to obtain this type of result.

On various graph coloring problems page 135

Chapter 5. Cartesian product of signed graphs

Chapter 5

Cartesian product of signed graphs

We are interested in the study of Cartesian products of signed graphs, defined by Germina,
Hameed and Zaslavsky in [85]. In their paper, the three authors mainly study the spectral
properties of the Cartesian product, i.e. the impact of the Cartesian product on the spectre
of the adjacency matrices of signed graphs. In this chapter, we present algebraic properties
of the Cartesian product and study the chromatic number of some Cartesian products of
signed graphs.

Cartesian products of graphs are useful to represent crystalline structures in which
some metals can aggregate themselves. The study of the Cartesian product of signed
graphs is particularly useful in the context of the Ising model (see Section 2.1.4) used to
represent ferromagnetic materials.

The Cartesian product of two ordinary graphs G and H, noted G □ H, has been
extensively studied. In 1957, Sabidussi [168] showed that χ(G □ H) = max(χ(G), χ(H))
where χ(G) is the chromatic number of the graph G. Another notable article on the
subject by Sabidussi [169] shows that every connected graph G admits a unique prime
decomposition, i.e. there is a unique way to write a graph G as a Cartesian product
of some graphs up to isomorphism of the factors. This result was also independently
discovered by Vizing in [183]. Another algebraic property, the cancellation property,
which states that if A □ B = A □ C, then B = C, was proved by Imrich and Klavžar
[114] using a technique of Fernández, Leighton and López-Presa [74]. On the complexity
side, the main question associated with the Cartesian product is to decompose a graph
with the best possible complexity. The complexity of this problem has been improved
successively in [72, 195, 70, 10] to finally reach an optimal complexity of O(m) in [115]
where m is the number of edges of the graph.

An extended abstract of this chapter is published in the proceedings of the interna-
tional conference CALDAM 2020 [137]. A full version of the corresponding paper is also
published in Discrete Applied Mathematics [138]. We would like to thank the reviewers
of our submission to CALDAM 2020 for their comments, especially Reviewer 2 of our
submission to CALDAM 2020 for pointing us to the techniques of [116] which improved
our algorithm. We would also like to thank the reviewers of the journal version.

This work is partially supported by the ANR project HOSIGRA (ANR-17-CE40-0022)
and the IFCAM project “Applications of graph homomorphisms” (MA/IFCAM/18/39).

Our study of the Cartesian product of signed graphs is divided in several sections. In
section 5.1, we present some useful results on the Cartesian product of undirected graphs.
In section 5.2, we present the definition of the Cartesian product of signed graphs and give

On various graph coloring problems page 137

5.1. Definitions and preliminary results

some first properties and easy consequences of the definition. We also prove the prime
decomposition theorem for signed graphs and give an algorithm to decompose a Cartesian
product of signed graphs into its factors. We study the chromatic number of Cartesian
products of signed complete graphs in section 5.3 and products of cycles in section 5.4.
Finally, we present some open problematics in Section 5.5.

Contents
5.1 Definitions and preliminary results 138
5.2 Cartesian products of signed graphs 139

5.2.1 Definition . 139
5.2.2 Signed grids . 141
5.2.3 Prime factor decomposition: existence and unicity 143
5.2.4 Recognising Cartesian products of signed graphs 146

5.3 Chromatic number of Cartesian products of complete signed
graphs and upper bounds . 149

5.3.1 s-redundant sets . 150
5.3.2 Back to Cartesian products of complete signed graphs 151

5.4 Chromatic number of Cartesian products of signed cycles . . 153
5.4.1 Signed complete graphs of order 4 155
5.4.2 Beginning of the proof of Lemma 5.30 155
5.4.3 Number of turns in P . 156
5.4.4 Regions induced by a coloring of (P, π) 158
5.4.5 Crossings and turns . 165
5.4.6 End of the proof . 167

5.5 Perspectives . 167

5.1 Definitions and preliminary results
Let us start with definitions.

Definition 5.1 (Cartesian product). The Cartesian product of two ordinary graphs G
and H is the graph G □ H whose vertex set is V (G)×V (H) and where (x, y) and (x′, y′)
are adjacent if and only if x = x′ and y is adjacent to y′ in H, or y = y′ and x is adjacent
to x′ in G.

A graph can be written as a product of multiple other graphs. We present a tool useful
in characterizing a product.

Definition 5.2 (Prime decomposition). A decomposition D of a graph G is a multiset
{G1, . . . , Gk}, k ≥ 1, such that the Gi’s are graphs having at least two vertices and
G = G1 □ · · · □ Gk. The Gi’s are called factors of G. A graph G is prime if there are
no graphs A and B on at least two vertices for which G = A □ B. A decomposition is
prime if all the Gi’s are prime.

page 138 Dimitri Lajou

Chapter 5. Cartesian product of signed graphs

We can also compare distinct decompositions of the same graph. A decomposition D′

is finer than a decomposition D = {G1, . . . , Gk}, if for all i ∈ JkK, there is a decomposition
D′
i =

{
G′
i,1, . . . , G

′
i,pi

}
of Gi such that D′ =

{
G′

1,1, . . . , G
′
1,p1 , G

′
2,1, . . . , G

′
k,pk

}
. Note that

by definition, every decomposition is finer than itself.
Suppose that G is a graph and D = {G1, . . . , Gk} is a decomposition of G such that

G = G1 □ . . . □ Gk. It is useful to add to G some more structure by identifying the
product structure of the graph. To the end, we use the concepts of coordinate systems
and layers.

Definition 5.3 (Coordinate system). A coordinate system for G under the decomposition
D is a bijection θ : V (G) → ∏k

i=1 V (Gi) verifying that for each vertex v of G, the set of
vertices which differ from v by the ith coordinate induces a graph, noted Gv

i and called a
Gi-layer, which is isomorphic to Gi by the projection on the ith coordinate.

An edge uv of G is a copy of an edge ab of Gi if θ(u) and θ(v) differ only in their ith
coordinate with ui = a and vi = b. For a vertex u of G and a Gi-layer Gv

i , the projection
of u on the Gi-layer Gv

i is the vertex w of V (Gv
i) which is the closest to u.

Suppose D = {G1, . . . , Gk} is a decomposition of an ordinary graph G. We say that
two Gi-layers X1 and X2 are adjacent by Gj if and only if there exists an edge ab of a
Gj-layer such that a ∈ X1 and b ∈ X2. In other words, the subgraph induced by the
vertices of X1 and X2 is isomorphic to Gi □ K2 where K2 corresponds to the edge ab.

Let A and B be two ordinary graphs. The greatest common divisor of A and B is
the graph X such that, for every three graphs W , Y , and Z with A = W □ Y and
B = W □ Z, X is a factor of W .

The goal of the rest of this section is to present useful results on the Cartesian product
of undirected graphs.

One of the first results on the chromatic number of Cartesian products of undirected
graphs is due to Sabidussi.

Theorem 5.4 (Sabidussi [168]). For every two graphs G and H, we have:

χ(G □ H) = max(χ(G), χ(H)).

Following this paper, Sabidussi proved one of the most important results on the Carte-
sian product: the unicity of the prime decomposition of connected graphs. This result
was independently proved by Vizing.

Theorem 5.5 (Sabidussi [169] and Vizing [183]). Every connected ordinary graph G
admits a unique prime decomposition up to the order and isomorphisms of the factors.

Using some arguments of [74] and the previous theorem, Imrich and Klavžar proved
the following theorem.

Theorem 5.6 (Imrich and Klavžar [113, 114]). If A, B and C are three ordinary graphs
such that A □ B = A □ C, then B = C.

These two theorems imply that the set of all graphs together with the disjoint union
operation and the Cartesian product from a semi-ring with the cancellation property.

The unicity of the prime decomposition raises the question of the complexity of finding
such a decomposition. The complexity of decomposition algorithms has been extensively

On various graph coloring problems page 139

5.2. Cartesian products of signed graphs

(P, ρ) = □

=

Figure 5.1: A signed graph (P, ρ) obtained as the Cartesian product of two signed paths.

studied. The first algorithm, by Feigenbaum, Hershberger and Schäffer [72] had a complex-
ity of O(n4.5) where n is the order of the graph (its size is denoted by m). In [195], Winkler
proposed a different algorithm improving the complexity to O(n4). Then Feder [70] gave
an algorithm in O(mn) time and O(m) space. The same year, Aurenhammer, Hagauer
and Imrich [10] gave an algorithm in O(m log n) time and O(m) space. The latest result
is an optimal algorithm.

Theorem 5.7 (Imrich and Peterin [115]). The prime factorization of connected ordinary
graphs can be found in O(m) time and space. Additionally a coordinate system can be
computed in O(m) time and space.

5.2 Cartesian products of signed graphs

5.2.1 Definition
We recall the definition of the Cartesian product of signed graphs due to Germina, Hameed
K. and Zaslavsky:

Definition 5.8 ([85]). Let (G, σ) and (H, π) be two signed graphs. The Cartesian product
of (G, σ) and (H, π), denoted by (G, σ) □ (H, π), is the signed graph defined as follows:

• V ((G, σ) □ (H, π)) = V (G)× V (H),
• the positive (resp. negative) edges are the pairs {(u1, v1), (u2, v2)} such that:

– u1 = u2 and v1v2 is a positive (resp. negative) edge of (H, π), or
– v1 = v2 and u1u2 is a positive (resp. negative) edge of (G, σ).

See Figure 5.1 and Figure 5.2 for example of Cartesian products of signed graphs.
Note that the underlying graph of (G, σ) □ (H, π) is the ordinary graph G □ H. From

this definition, we can derive that the Cartesian product is associative and commutative.
In particular (SG,⊎,□, K0, K1) is a commutative semi-ring where SG is the set of all
signed graphs and ⊎ is the disjoint union for signed graphs.

The following result shows that Cartesian products are compatible with homomor-
phisms of signed graphs and in particular with the switching operation.

Theorem 5.9. If (G, σ), (G′, σ′), (H, π), (H ′, π′) are four signed graphs such that (G, σ) −→s

(G′, σ′) and (H, π) −→s (H ′, π′), then:

(G, σ) □ (H, π) −→s (G′, σ′) □ (H ′, π′).

page 140 Dimitri Lajou

Chapter 5. Cartesian product of signed graphs

(P, ρ) =
30

1 2
□

01

2
□

0
1

(a) The definition of the signed graph (P, ρ).

000 100 200 300

010

020

110 210 310

320220120

001 101 201 301

011

021

111

121

211

221

311

321

(b) The signed graph (P, ρ).

Figure 5.2: A signed graph (P, ρ) obtained as the Cartesian product of three signed graphs.

Proof. By commutativity of the Cartesian product and composition of homomorphisms,
it suffices to show that (G, σ) □ (H, π) −→s (G′, σ′) □ (H, π). Since (G, σ) −→s

(G′, σ′), there exists a set S of vertices and a homomorphism φ from G to G′ such
that if (G, σS) is the signed graph obtained from (G, σ) by switching the vertices of
S, then σ′(φ(e)) = σS(e) for every edge e of G. We note P = (G, σ) □ (H, π) and
X = {(g, h) ∈ V (G □ H) : g ∈ S}. Let P ′ be the signed graph obtained from P by
switching the vertices in X.

If (g, h)(g, h′) is an edge of P , then in P ′ this edge was either switched twice if g ∈ S
or not switched if g /∈ S. In both cases its sign did not change. If (g, h)(g′, h) is an
edge of P , then in P ′ this edge was switched twice if g, g′ ∈ S, switched once if g ∈ S,
g′ /∈ S or g /∈ S, g′ ∈ S, and not switched if g, g′ /∈ S. In each case its new sign is σS(gg′).
Thus P ′ = (G, σS) □ (H, π). Now define φP (g, h) = (φ(g), h). It is a homomorphism from
G□H toG′ □H by definition. By construction, the target graph of φP is (G′, σ′) □ (H, π)
as the edges of H do not change and the target graph of φ is (G′, σ′).

As mentioned before, we can derive the following corollary from Theorem 5.9.

Corollary 5.10. If (G, σ), (G, σ′), (H, π), (H, π′) are four signed graphs such that σ ≡ σ′

and π ≡ π′, then:
(G, σ) □ (H, π) ≡ (G, σ′) □ (H, π′).

From Theorem 5.9, and the fact that (F, σ) −→s K
+
2 for every signed forest (F, σ), we

also get the following corollary:

Corollary 5.11. If (G, σ) is a signed graph and (F, π) is a signed forest with at least one
edge, then:

χs((G, σ) □ (F, π)) = χs((G, σ) □ K+
2).

In particular, for n,m ≥ 2, χs((Pn, σ1) □ (Pm, σ2)) = 2.

On various graph coloring problems page 141

5.2. Cartesian products of signed graphs

(a) The graph SPal∗
5.

0

1

2

3 4
(b) The graph SPal5.

1

0

1

2

4

3

3

0

1

1

4

3

(c) A signed grid (G, σ) with
χs(G, σ) = 5 and a 5-coloring
of (G, σ).

Figure 5.3: The signed graphs used in the proof of Theorem 5.12.

5.2.2 Signed grids
Note that there is a difference between considering the chromatic number of the Cartesian
product of two signed graphs and the chromatic number of a signed graph whose under-
lying graph is a Cartesian product. For example, C4 = K2 □ K2 but 4 = χs(UC4) ̸=
χs(BC4) = 2. Another example comes from grid graphs: χs((Pn, σ1) □ (Pm, σ2)) = 2, for
any n,m ∈ N, but the following theorem shows that not all signed grids have chromatic
number 2.

Theorem 5.12. If n and m are two integers with 1 ≤ n ≤ m and (G, σ) is a signed grid
with G = Pn □ Pm, then χs(G, σ)) ≤ 6. If n ≤ 4, then χs(G, σ) ≤ 5. Moreover there
exist signed grids with chromatic number 5.

On our figures, we use dashed red edges to represent negative edges and solid blue
edges for positive edges.

Proof. We will prove a more precise statement: every signed grid (G, σ) verifies (G, σ) −→s

SPal∗5 where SPal∗5 is the graph of Figure 5.3(a). This graph has the following (easy to
check) property:

(P) for every three vertices x,y,z of SPal∗5, and every sign ϵ ∈ {+1,−1}, if x ̸= z or
ϵ = +1, then there exists u and v in SPal∗5, u ̸= v, such that the closed walks xyzu
and xyzv have sign ϵ.

To map (G, σ) to SPal∗5, we will construct the homomorphism φ by induction. The
vertex of G in line i ∈ {1, . . . , n} and column j ∈ {1, . . . ,m} will be called xi,j. Let Hi,j

be the subgraph of G induced by the vertices xk,ℓ where 1 ≤ k < i, or k = i and 1 ≤ ℓ ≤ j.
We prove that for all i, j, 1 ≤ i ≤ n and 1 ≤ j ≤ m, Hi,j −→s Spal

∗
5. It is easy to see

that H1,m −→s SPal
∗
5.

If Hi,m −→s Spal
∗
5 and 1 ≤ i < n, then xi+1,1 has only one neighbor in Hi+1,1 and we

can extend the previous homomorphism to Hi+1,1.
Suppose that φ is a homomorphism from Hi,j to Spal∗5, with 1 < i ≤ n and 1 ≤ j < m.

Let C = xi,j+1xi,jxi−1,jxi−1,j+1. If C = BC4 or if C = UC4 and φ(xi,j) ̸= φ(xi−1,j+1), then
we have two choices for xi,j+1 by P (we might need to switch xi,j) and we can extend
the homomorphism to Hi,j+1. If C = UC4 and φ(xi,j) = φ(xi−1,j+1), then these two
vertices must be different. There were two possibilities for the choice of φ(xi,j−1) in the
previous step by P thus if we take the other one, we are back to the previous case where
φ(xi,j−1) ̸= φ(xi−1,j). Thus we can extend φ to Hi,j+1.

page 142 Dimitri Lajou

Chapter 5. Cartesian product of signed graphs

Hence, Hn,m = (G, σ) −→s SPal
∗
5 which gives χs(G, σ) ≤ 6.

Suppose now that n ≤ 4. If n < 4, then we could add one extra line to our grid to
make it a 4×m grid. Therefore, we prove only the case where n = 4.

We construct a homomorphism φ : (G, σ) −→s SPal5, column by column, where
SPal5 is the graph of Figure 5.3(b). The first column is a path and thus, we can map
it arbitrarily to SPal5. For a column with vertices x1,j, x2,j, x3,j, x4,j and 1 < j ≤ m, we
extend φ to the vertices of the column depending on the images of the vertices x1,j−1,
x2,j−1, x3,j−1 and x4,j−1. Let vj−1 be the vector (φ(x1,j−1), φ(x2,j−1), φ(x3,j−1), φ(x4,j−1)).
Note that any permutation of vertices of SPal5 gives a homomorphism from SPal5 to
SPal5 (which may require switching some vertices). Hence by symmetry between the
vertices of SPal5 and since φ does not map adjacent vertices to the same image, we
can suppose that vj−1 is one of the following vectors: (1, 2, 1, 2), (1, 2, 1, 3), (1, 2, 3, 1),
(1, 2, 3, 2), (1, 2, 3, 4). Note that by inverting the order of the columns and permuting the
colors, (1, 2, 3, 2) and (1, 2, 1, 3) are symmetrical. Hence we only have four cases to check
for the images of the previous column.

Note that we need check that every BC4 of (G, σ) is mapped to balanced closed walk
in SPal5 and that every UC4 of (G, σ) is mapped to a UC4 of SPal5 for φ to be a
homomorphism. Hence for each of the three following cycles: C1 = x1,jx2,jx2,j−1x1,j−1,
C2 = x2,jx3,jx3,j−1x2,j−1 and C3 = x3,jx4,jx4,j−1x3,j−1, we have two cases depending on
whether the cycle is balanced or not. This represents 4× 8 cases to check. We can reduce
the number of cases as follows. If σ(C1) = +1 then we can find an extension of φ by
considering that σ(C1) = −1 (i.e. C1 is unbalanced) and replacing the image of x1,j in
this extension by φ(x2,j−1). The same can be done for the case where σ(C3) = +1. Hence
we only have two cases to consider depending on the sign of C2.

Let us gives a possible way to extend φ in each remaining cases. For each case,
we present an extension of φ to this column by giving the value of the vector vj =
(φ(x1,j), φ(x2,j), φ(x3,j), φ(x4,j)) corresponding to the extension.

Suppose first that σ(C2) = +1. If vj−1 = (1, 2, 1, 2), then we choose vj = (0, 4, 3, 0).
If vj−1 = (1, 2, 1, 3), then we choose vj = (3, 0, 2, 0). If vj−1 = (1, 2, 3, 1), then we choose
vj = (3, 0, 2, 4). If vj−1 = (1, 2, 3, 4), then we choose vj = (3, 0, 2, 1). Now assume that
σ(C2) = −1. If vj−1 = (1, 2, 1, 2), then we choose vj = (3, 0, 3, 0). If vj−1 = (1, 2, 1, 3),
then we choose vj = (4, 3, 4, 2). If vj−1 = (1, 2, 3, 1), then we choose vj = (3, 0, 4, 0). If
vj−1 = (1, 2, 3, 4), then we choose vj = (0, 4, 1, 0). In each case, we can find a way to
extend φ to the current column. Hence (G, σ) −→s SPal5.

It is tedious but not difficult to check that the signed grid of Figure 5.3(c) cannot be
mapped to a signed graph of order 4, thus its chromatic number if at least 5. In fact it is
exactly 5. This concludes the proof.

Note that, independantly from our work, Dybizbański, Nenca and Szepietowski in [61]
presented a computer assisted proof of the following result.

Theorem 5.13 (Dybizbański, Nenca and Szepietowski [61]). If (G, σ) is a n×m signed
grid with n ≤ 7, then χs(G, σ) ≤ 5.

They also prove the upper bound of 6 on every signed grid. Their result is thus better
than Theorem 5.12. Nevertheless, we still do not know whether the upper bound for
signed grids is 5 or 6.

On various graph coloring problems page 143

5.2. Cartesian products of signed graphs

Question 5.14. What is the maximal value of χs(G, σ) when (G, σ) is a signed grid? Is
it 5 or 6?

5.2.3 Prime factor decomposition: existence and unicity
Our goal now is to prove that each connected signed graph has a unique prime s-
decomposition. Let us start with some definitions.

Definition 5.15. A signed graph (G, σ) is said to be s-prime if and only if there do
not exist two signed graphs (A, πA) and (B, πB) such that (G, σ) ≡ (A, πA) □ (B, πB).
An s-decomposition of a signed connected graph (G, σ) is a multiset of signed graphs
D = {(G1, π1), . . . , (Gk, πk)} such that:

1. the (Gi, πi)’s are signed graphs containing at least one edge and
2. (G, π) ≡ (G1, π1) □ · · · □ (Gk, πk).

An s-decomposition D is prime if all the (Gi, πi)’s are s-prime. The (Gi, πi)’s are called
factors of D.

Let (G, σ) be a signed graph such that there exist two ordinary graphs A and B for
which G = A □ B. A signed A-layer of (G, σ) is a signed subgraph (Av, σAv) of (G, σ)
where Av is an A-layer of G.

Let D be an s-decomposition of (G, σ) and D′ be the decomposition of G corresponding
to D by forgetting the signs. For a factor (A, πA) of D, an (A, πA)-layer of (G, σ) is a
signed subgraph (Av, πAv) of (G, σ) such that Av is an A-layer of G for D′ where A
is the factor of D′ corresponding to the factor(A, πA) of D. By definition of (A, πA),
(Av, πAv) ≡ (A, πA).

Note that if G = A □ B, then it is not always true that (G, σ) is the Cartesian
product of two signed graphs. For example, UC4 is s-prime but C4 is not a prime graph
as C4 = K2 □K2. The following lemma tells us in which cases (G, σ) ≡ (A, πA) □ (B, πB),
and will be a useful tool for decomposing signed graphs.

Lemma 5.16. If (G, σ), (A, πA) and (B, πB) are three connected signed graphs with G =
A □ B, then (G, σ) ≡ (A, πA) □ (B, πB) if and only if:

1. all signed A-layers are equivalent to (A, πA),
2. at least one signed B-layer is equivalent to (B, πB), and

3. for each edge e of A and each pair of distinct copies e1,e2 of e, if e1 and e2 belong
to the same signed 4-cycle, then this cycle is a BC4.

Note that, in the previous lemma, all signed B-layers are equivalent to (B, πB) but we
only need to verify that for one of them to conclude.

Proof. (⇒) This follows from the definition of the Cartesian product.
(⇐) We will do the following independent switchings: switch all signed A-layers to

have the same signature πA.
Now we claim that all signed B-layers have the same signature π′

B equivalent to πB.
Indeed take one edge xy of B and two copies of this edge x1y1 and x2y2 in G. Take a
shortest path P from x1 to x2 in the Ax1-layer. Now if u1,u2 are two consecutive vertices

page 144 Dimitri Lajou

Chapter 5. Cartesian product of signed graphs

along P and v1 and v2 are their projections on Ay1 , then u1u2v2v1 is a BC4 in (G, σ) by
the third hypothesis as u1v1 and u2v2 are copies of the edge xy.

As u1u2 and v1v2 have the same sign by the previous switchings, it must be that u1v1
and u2v2 have the same sign. Thus all copies of an edge of B have the same sign.

Hence, (G, σ) ≡ (A, πA) □ (B, π′
B) ≡ (A, πA) □ (B, πB) by Theorem 5.9.

One of our main results is the following Prime Decomposition Theorem.

Theorem 5.17 (Prime s-decomposition Theorem). If (G, σ) is a connected signed graph
and D is the prime decomposition of G, then (G, σ) admits a unique (up to isomorphism
and order of the factors) prime s-decomposition Ds. Moreover, if we see Ds as a decom-
position of G, then D is finer than Ds.

For proving this theorem, we need the following lemma.

Lemma 5.18. If (G, σ) is a connected signed graph that admits two prime s-decompositions
D1 and D2, then there are two signed graphs (X, πX) and (Y, πY) such that (G, σ) ≡
(X, πX) □ (Y, πY) with D1 = {(X, πX)} ∪ D′

1 and D2 = {(X, πX)} ∪ D′
2, where D′

1 and
D′

2 are two s-decompositions of (Y, πY).

Proof. Suppose there exists a signed graph (G, σ) that admits two s-decompositions D1
and D2. Fix an edge e of (G, σ) which belongs to some Z-layer Ze of the prime decomposi-
tion of G. The edge e belongs to some (A, πA)-layer in D1 and to some (B, πB)-layer in D2.
The graph Z is a factor of A and B by unicity of the prime factor decomposition of G. Let
X be the greatest common divisor of A and B. Since e ∈ E(Ze), e is in some X-layer Xe.
Now G = X □ Y for some graph Y . Let us show that (G, σ) ≡ (X, πX) □ (Y, πY) for
some signatures πX and πY of X and Y , respectively. We can suppose that Y ̸= K1 and
A ̸= B, as otherwise the result is immediate.

First we want to show that all signed X-layers have equivalent signatures. Take two
adjacent signed X-layers. If they are in different signed A-layers, then they are equivalent
since they represent the same part of (A, πA). If they are in the same signed A-layer, then
they are in different signed B-layers since X is the greatest common divisor of A and B.
The same argument works in this case. Thus two adjacent signed X-layers are isomorphic
to the same signed graph (X, πX), and since there is only one connected component in Y ,
all signed X-layers have equivalent signatures.

Let πY be the signature of one signed Y -layer. Fix e′ an edge of X, and (X1, πX1),
(X2, πX2) two signed X-layers. Now consider the signed 4-cycle (if it exists) containing
the copies of this edge in each of the two signed X-layers. If (X1, πX1) and (X2, πX2) are
in different signed A-layers, then this signed cycle is a BC4 by Lemma 5.16, otherwise
this signed cycle is a BC4 as (X1, πX1) and (X2, πX2) are in different signed B-layers by
the same argument.

By Lemma 5.16, we can conclude that (G, σ) ≡ (X, πX) □ (Y, πY).
Now suppose that A = X □ W . Using Lemma 5.16, we can show that (A, πA) ≡

(X, πX) □ (W,πW). Indeed all signed X-layers have equivalent signatures since (G, σ) ≡
(X, πX) □ (Y, πY) and all signed 4-cycles between two copies of an edge of X are BC4
by the same argument. As (A, πA) is s-prime, this implies (X, πX) ≡ (A, πA). Thus
(X, πX) ≡ (A, πA) ≡ (B, πB) and this proves the lemma.

Proof of Theorem 5.17. Any signed graph (G, σ) has a prime s-decomposition by taking
an s-decomposition that cannot be refined. Every prime s-decomposition of (G, σ) can

On various graph coloring problems page 145

5.2. Cartesian products of signed graphs

be considered as a decomposition of G, and the prime decomposition of G is finer than
every such decomposition. We still have to show that the prime s-decomposition of (G, σ)
is unique. Suppose, to the contrary, that (G, σ) is a minimal counter-example to the
unicity. Thus (G, σ) has two prime s-decompositions D1 and D2 and, by Lemma 5.18,
(G, σ) ≡ (X, πX) □ (Y, πY) with D1 = {(X, πX)} ∪D′

1 and D2 = {(X, πX)} ∪D′
2, where

D′
1 and D′

2 are two s-decompositions of (Y, πY). By minimality of (G, σ), (Y, πY) has a
unique prime s-decomposition, hence D′

1 = D′
2. Thus D1 = D2, a contradiction.

Note that Theorem 5.17 implies the following result.

Theorem 5.19. If (A, πA), (B, πB) and (C, πC) are three signed graphs verifying (A, πA) □ (B, πB) ≡
(A, πA) □ (C, πC), then (B, πB) ≡ (C, πC).

The proof of this result is exactly the same as the proof for ordinary graphs presented
in [114]. Indeed, we have all the necessary tools used in the proof. The first one is
Theorem 5.17, the other one is the semi-ring structure of signed graphs (quotiented by
the equivalence relation) with the disjoint union and the Cartesian product which follows
from the definition. See [114] for more details on the proof.

Another application of the prime s-decomposition theorem is to compute the frustra-
tion index (i.e. the minimum number of edges to remove from a signed graph to make it
balanced) of a signed graph. Indeed, it is easy to see that the frustration index of a signed
graph is equal to the product of the frustration indices of each of its factors. Hence given
the prime s-decomposition of a signed graph, one can compute the frustration index of
each prime factor and compute the frustration index of the whole graph.

5.2.4 Recognising Cartesian products of signed graphs

In the last part of this section, we propose an algorithm to decompose connected signed
graphs. Decomposing a graph can be interpreted in multiple ways: finding a decom-
position, identifying which edge of G belongs to which factor, or even better getting a
coordinate system that is compatible with the decomposition. In [115], Imrich and Pe-
terin gave an O(m) time and space (m is the number of edges of G) algorithm for these
three questions for ordinary graphs. More recently, in [116], they gave another algorithm
in O(m) time and space to decompose directed graphs.

Our goal is to give a similar algorithm for signed graphs based on their algorithm for
directed graphs.

Theorem 5.20. Let (G, σ) be a connected signed graph of order n and size m. We can
find in time O(m) and space O(m) the prime s-decomposition of (G, σ) and a coordinate
system for this decomposition.

We take a coordinate system for a graph G corresponding to its prime decomposition
D which can be computed in O(m) time [115]. Let v be the vertex of G with coordinates
all equal to zero. We order the vertices using a BFS traversal of the graph starting at v.
If xy is an edge, then it is a down-edge (resp. up-edge, resp. cross-edge) of x when
d(v, x) < d(v, y) (resp. d(v, x) > d(v, y), resp. d(v, x) = d(v, y)) where d denotes the
distance in G. We proceed as described in Algorithm 1. We color the edges of G using
the prime decomposition D of G: we associate to each factor X of D a color, which is
then assigned to every edge belonging to an X-layer of G. We maintain a temporary

page 146 Dimitri Lajou

Chapter 5. Cartesian product of signed graphs

Input : A signed graph (G, σ)
Output: The prime factor s-decomposition of (G, σ)

1 Compute the prime factor decomposition D of G;
2 Set the temporary decomposition of (G, σ) to be J = D;
3 Done← ∅;
4 S ← ∅;
5 Treated← ∅;
6 forall vertices x taken according to a BFS ordering do
7 Add x to S;
8 forall edges xy /∈ Treated do
9 Determine the temporary color i of xy and Ji the current factor to which

it belongs in the current decomposition;
10 Let x′y′ be the projection of xy onto Jvi ;
11 if xy and x′y′ do not have the same sign and y /∈ S then
12 Switch the vertex y;
13 Add y to S;
14 else if xy and x′y′ have the same sign and y /∈ S then
15 Add y to S;
16 else if xy and x′y′ do not have the same sign and y ∈ S then
17 Merge the temporary colors of all up-edges of y (and the temporary

color of xy) and update the decomposition;
18 end
19 Add xy to Treated;
20 end
21 Add x to Done;
22 end

Algorithm 1: A decomposition algorithm for signed graphs.

decomposition J of G for which we merge some factors, by means of recoloring the edges,
during the algorithm. Our goal, at the end of the algorithm, is that J = P where P is
the prime s-decomposition of (G, σ). We note pi(e) the projection of an edge e = xy ∈ Jxi
to the temporary Ji-layer Jvi .

First note that in Algorithm 1, the set Done is not used. Therefore, it can be omitted.
Its only purpose is to ease the correctness analysis of the algorithm. Let us make a few
more remarks. The set Done (resp. Treated) is used to record which vertex (resp. edge)
has been processed by the algorithm. At any point of the execution of the algorithm,
the set S corresponds to the set of vertices for which we have decided whether they need
to be switched or not. If x ∈ Done at some point of the algorithm then all its incident
edges belong to the set Treated. Moreover, by construction of the BFS ordering, if xy
is a down-edge of x in Jxi , then for every vertex z, the projection x′y′ of xy on Jzi is a
down-edge of x′.

Claim 5.21. After the merging in line 17 of the algorithm, v, y and x belong to the same
layer.

Proof. We just need to prove that y and v belong to the same layer after merging. Note
that a layer Jai corresponds to all the vertices b which differ from a only by the ith

On various graph coloring problems page 147

5.2. Cartesian products of signed graphs

coordinate (in the current decomposition). Note also that the coordinate vector of a
neighbor of y and the coordinate vector of y differ by only one coordinate. For any non-
zero coordinate of y, there is an up-edge yz of y to a neighbor z of y which differs only on
this non-zero coordinate (as the ordering is a BFS ordering and by the Cartesian product
structure), therefore all factors Jℓ corresponding to non-zero coordinates of y are merged.
Hence, in this new coordinate system, y has at most one non-zero coordinate and thus y
and v are in the same layer.

Claim 5.22. Let ab and a′b′ be two edges of the set Treated at any moment of the
algorithm. If a′b′ ∈ Ja′

i for some i and pi(a′b′) = pi(ab) (i.e. they represent the same edge
of Ji), then ab and a′b′ have the same sign.

Proof. By contradiction, suppose that a′b′ is the first edge such that, when added to
Treated, there exists some edge ab ∈ Treated such that pi(a′b′) = pi(ab) and a′b′ and ab
do not have the same sign. Let a′′b′′ be the edge pi(a′b′). Note that no edge in Treated
can change sign once it is into the set as both its endpoints are in S. By definition of a′b′,
ab and a′′b′′ have the same sign since they both project to a′′b′′. Hence, it must be that
a′b′ and a′′b′′ do not have the same sign.

Note that, a′b′ cannot be treated in the third if statement at line 16, as otherwise it
would belong to some layer Jvi after merging by Claim 5.21 and thus a′b′ would project
to itself. Since a′b′ went through one of the first two if statements (lines 11 and 14), a′b′

and a′′b′′ have the same sign, a contradiction.

Proof of Theorem 5.20.
Correctness: First, let us show that J is finer than P , the prime s-decomposition of
(G, σ), at each step of the algorithm. It is true at the beginning of the algorithm by
Theorem 5.17 as J = D. Suppose that J is finer than P at the beginning of step 8. In
the if statement, if we enter the first two cases then we do not change J . Hence it is still
finer than P at the end of the loop.

Suppose xy and x′y′ are not of the same sign and y ∈ S (i.e. we enter line 17). As
y ∈ S and xy /∈ Treated, there is some neighbor z of y for which z ∈ Done. We consider
two cases depending on whether z ∈ Jxi or z /∈ Jxi .

Suppose first that z ∈ Jxi .
Take a shortest path Pz in Jxi from z to the projection pv of v on Jxi . All vertices of

the path appear before z in the BFS ordering, thus all the edges of the path belong to the
set Treated. The same holds for a shortest path Px from pv to x. In particular the walk
W obtained by concatenating yz, Pz and Px has all its edges in Treated. This implies
that W and W ′, its projection on Jvi , have the same sign by Claim 5.22. Hence the closed
walk C obtained by concatenating W with xy and its projection (W ′ concatenated with
x′y′) have different signs and Jvi and Jxi do not have the same signature.

Let u be a neighbor of y such that uy is an up-edge of y and u /∈ Jxi . Every edge e′ of
the projection C ′ of C on Jui is in Treated as d(v, e′) < d(v, e) where e is the counterpart
of e′ in C (all vertices of C have an up-edge to their projection on Jui). In particular C
and C ′ do not have the same sign and Jxi and Jui do not have the same signature.

This implies that both layers are in the same factor of P . Indeed suppose that this
is not the case. Then all signed cycles abb′a′, such that ab ∈ Jxi and a′b′ is its projection
on Jui , must be BC4. For all edges ab of W , ab and a′b′ have the same sign by Claim 5.22,
hence aa′ and bb′ also have the same sign (since the cycle is balanced). Now let x′′y′′

page 148 Dimitri Lajou

Chapter 5. Cartesian product of signed graphs

uy

x xu

xz

z a

v

ij

k

x′

y′

Figure 5.4: The second case of the correctness analysis. For simplicity, all edges which are in
Treated are positive. The orientation of the edges represents the BFS order. The neighbors of
v are labelled with the temporary color of their edge with v.

be the projection of xy on Jui . By going around W and by the previous observation,
xx′′ and yy′′ have the same sign. Note that xy and x′′y′′ do not have the same sign as
x′′y′′ ∈ Treated (x′′y′′ has the same sign as x′y′). This implies that xyy′′x′′ is a UC4, a
contradiction.

Hence we need to merge all temporary colors of all up-edges of y (including color i).
Thus after this step J is still finer than P .

Suppose now that z /∈ Jxi (see Figure 5.4).
In this case, z is the projection of y on Jzi . Let xz be the projection of x on Jzi . Since

yz is an up-egde of y, xxz is an up-edge of x and xz ∈ Done. Note that xxz and yz have
the same sign since both are in Treated. Also note that xzz and x′y′ have the same sign
since xzz ∈ Treated. Hence xyzxw is a UC4. By the same arguments as before, these four
vertices belong to the same signed factor of (G, σ), hence we must merge i and, say j, the
temporary colors of xy and yz respectively.

Let u be a neighbor of y such that uy is an up-edge of y of temporary color k /∈ {i, j}.
Let xu be the projection of x on Jui . Note that xuu and x′y′ have the same sign as
d(xu, v) < d(x, v) (i.e. xu ∈ Done). If xxu and yu have the same sign, we have a UC4
and must merge the temporary colors i and k. Suppose they have different signs. Note
that y and z (resp. u) differ only by their jth coordinate (resp. kth coordinate). Let a
be the vertex with the same coordinate as u except for its kth coordinate which is equal
to the kth coordinate of z (see Figure 5.4). Note that a appears before z and u in the
BFS ordering. Since the vertex a is a neighbor of z and u, both edges za and ua are
down-edges of a. Hence za ∈ Treated and za has the same sign as xxu which is different
from the sign of uy, and yz and ua also have the same sign since both are in Treated. In
particular yuaz is a UC4 and these four vertices must be in the same factor of P . This
implies that we must merge the temporary colors j and k which implies merging i and k.

At the end J is finer than P and J is an s-decomposition by Claim 5.22. Hence J = P .
Complexity: Due to the similarity of our algorithm with the one in [116], most of the
complexity arguments given in [116] are still valid for our algorithm. The only differences
between the two algorithms are the presence of the three sets Done, S and Treated, two
more if blocks and the need to switch at some vertices. Let us address these three points.
Each set can be encoded by a boolean in the data structure of vertices/edges. The second
for loop checks each edge xy twice, once for each endpoint, but this still amounts to a

On various graph coloring problems page 149

5.3. Chromatic number of Cartesian products of complete signed graphs and upper
bounds

O(m) iteration of the loop. The two additional if blocks are a O(1) overhead for each
iteration of the loop. The switch operation is another O(m) total overhead as each edge
can be switched at most once thanks to the presence of the set S. Hence the algorithm
runs in time O(m). The reader can find more details in [116], and in particular, how to
compute the projections in constant time.

Note that this algorithm not only computes the prime s-decomposition of (G, σ) but
finds a signature σ′ ≡ σ for which all layers of the Cartesian products have the same
signature as their corresponding factors.

5.3 Chromatic number of Cartesian products of com-
plete signed graphs and upper bounds

In this section, we show a simple upper bound on the chromatic number of a Cartesian
product of two signed graphs and compute the chromatic number of some special complete
signed graphs. We start by defining a useful tool on signed graphs.

5.3.1 s-redundant sets
In what follows we define the notion of an s-redundant set in a signed graph. Intuitively,
if S is an s-redundant set of (G, σ) and x and y are two vertices that cannot be mapped
to a same vertex by any homomorphism from (G, σ), then they cannot be mapped to the
same vertex by a homomorphism from (G, σ)− S.

Definition 5.23. Let (G, σ) be a signed graph and S ⊆ V (G). We say that the set S is
s-redundant if and only if, for every x, y ∈ V (G)−S such that xy /∈ E(G), every z ∈ S and
every signature σ′ with σ′ ≡ σ, if xzy = UP3 in (G, σ′), then there exists w ∈ V (G)− S
such that xwy = UP3 in (G, σ′).

The following proposition provides an alternative formulation of the definition which
is useful in order to prove that a set is an s-redundant set.

Proposition 5.24. If (G, σ) is a signed graph and S ⊆ V (G), then S is s-redundant if
and only if for every z ∈ S, and every x, y ∈ N(z) − S with xy /∈ E(G), there exists
w ∈ V (G)− S such that xwyz is a BC4.

Proof. Take x, y ∈ V (G)−S such that xy /∈ E(G) and z ∈ S. If xzy = UP3 in a signature
σ′ ≡ σ, then x, y ∈ N(z). Now if S is an s-redundant set, then with the notation of the
definition xzyw is a BC4 in (G, σ′) and thus in (G, σ). If xzyw is a BC4 and xzy is a
UP3 in a given signature σ′, then xwy is also a UP3 as xzyw is balanced. This proves the
equivalence between the two statements.

The next theorem is the reason why we defined this notion. It allows us to compute
an upper bound on the chromatic number of a signed graph as a function of the chromatic
number of one of its subgraphs. One example of utilisation of this notion is given by the
proof of Theorem 5.27.

Theorem 5.25. If (G, σ) is a signed graph and S is an s-redundant set of (G, σ), then

χs(G, σ) ≤ |S|+ χs((G, σ)− S).

page 150 Dimitri Lajou

Chapter 5. Cartesian product of signed graphs

a

x

y

z

(a) Notation of the proof.

1

2

3

4

1

2

3

5

4

(b) A coloring of (H, σ) with 5 colors.

Figure 5.5: The signed graph (H, σ) = K+
3 □ K−

3 of Theorem 5.27. The big squared vertices
have been switched.

Proof. Let c be a coloring of a signed graph (G, σ′)− S with χs((G, σ)− S) colors where
(G, σ′) ≡ (G, σ). We define the coloring c′ of (G, σ′) as follows: c′(v) = c(v) when v /∈ S
and c′(v) is a new color when v ∈ S. Hence c′ uses at most |S|+ χs((G, σ)− S) colors.

It is left to show that it is indeed a coloring of (G, σ′). As c is a coloring, c′ does
not assign the same color to two adjacent vertices. Suppose, by contradiction, that there
exists two edges xy and x′y′ of opposite sign such that c′(x) = c′(x′) and c′(y) = c′(y′).
As c is a coloring, all four vertices cannot be in G− S. W.l.o.g. suppose that x ∈ S. By
definition of c′, x′ = x, y, y′ /∈ S and yxy′ is a UP3 in (G, σ′). As S is an s-redundant set,
there exists w /∈ S such that ywy′ is a UP3 in (G, σ′)− S. This contradicts the fact that
c is a coloring of (G, σ′)− S.

This result does not hold for any set S. For example, if (G, σ) = UC4 and S = {v} is
a single vertex of G, then χs(G, σ) = 4 and χs((G, σ)− v) = 2.

5.3.2 Back to Cartesian products of complete signed graphs
As a direct corollary of Theorem 5.9, we get the following upper bound on the chromatic
number of a Cartesian product of signed graphs.

Corollary 5.26. If (G1, σ1), . . . , (Gk, σk) are k signed graphs, then:

χs((G1, σ1) □ · · · □ (Gk, σk)) ≤
∏

1≤i≤k
χs(Gi, σi).

We consider the Cartesian product of balanced and antibalanced complete graphs in
our next result. Recall that K+

p (resp. K−
q) is the complete graph with only positive edges

(resp. negative edges).

Theorem 5.27. For every two integers p, q with p, q ≥ 2, we have

χs(K+
p □ K−

q) =
⌈
pq

2

⌉
.

Proof. Let us note (P, π) = K+
p □ K−

q . By symmetry between the sets of positive and
negative edges, we can suppose p ≥ q. First let us show that χs(P, π) ≥

⌈
pq
2

⌉
.

If q = 2, then (P, π) is balanced and thus χs(P, π) = χ(Kp □ K2) = p.
Suppose now that p ≥ q ≥ 3 and that χs(P, π) <

⌈
pq
2

⌉
. Let φ be an optimal homomor-

phism from (P, π). By the pigeon hole principle, there exist x, y and z three vertices of

On various graph coloring problems page 151

5.3. Chromatic number of Cartesian products of complete signed graphs and upper
bounds

v(0,0)

v(3,0)

v(0,2)

v(3,2)

(a) The signed graph (P, π).

v(0,0)

v(3,0)

v(0,2)

v(3,2)

(b) The signed graph (P, π′) where the big
squared vertices have been switched.

S

(c) The signed graph (P ′′, π′′) with the set S.

Figure 5.6: The signed graphs (P, π), (P, π′) and (P ′′, π′′) of Theorem 5.27 when (P, π) =
K+

4 □ K−
3 .

the Cartesian product with the same image by φ. They belong to three distinct K+
p -layers

and three distinct K−
q -layer as these are complete graphs. Consider the subgraph (H, σ)

of (P, π) composed of vertices which are in the same K+
p -layers as one of x, y, z and in

the same K−
q -layers as one of x, y and z. We have (H, σ) = K+

3 □ K−
3 (see Figure 5.5(a)).

By assumption x, y and z of (H, σ) are identified by φ (possibly after switching some
of them). By the pigeon hole principle, two of x, y and z are both switched or both
non-switched. Without loss of generality suppose they are x and y. Then if a is one of
their common neighbors in H, the edges xa and ya are of different signs, thus x and y
cannot be identified. This is a contradiction.

We now prove that χs(P, π) ≤
⌈
pq
2

⌉
by induction. If p = 2, then (P, π) ≡ BC4 and

χs(P, π) = 2 ≤ 2. If p = 3 and q = 2, then (P, π) ≡ BC3 □ K2 whose chromatic number
is 3. If p = 3 and q = 3, then (P, π) ≡ K+

3 □ K−
3 . In this case, we have χs(P, π) = 5, as

Figure 5.5(b) gives a 5-coloring of (P, π).
Now we can assume p ≥ 4. Let V (P) =

{
v(i,j), 0 ≤ i < p, 0 ≤ j < q

}
such that for

every i, the set
{
v(i,j)

}
0≤j<q

induces a negative complete graph and for every j, the set{
v(i,j)

}
0≤i<p

induces a positive complete graph (see Figure 5.6(a)). Now switch all vertices
in
{
v(i,j) : i = 0

}
to obtain the signed graph (P, π′) (see Figure 5.6(b)) and then identify

v(0,j) with v(1,j+1) (which are non-adjacent) for every j ∈ J0, q − 1K, where indices are
taken modulo q, to obtain the graph (P ′′, π′′) (see Figure 5.6(c)). Let S be the set of
identified vertices in (P ′, π′). We want to show that S is s-redundant in order to use the
induction hypothesis. Take z ∈ S and x, y ∈ N(z) − S such that xy /∈ E(P ′′). If xzy is
an unbalanced path of length 2, then x is some v(i,j) and y is some v(k,j+1) with i, k ≥ 2.
For a = v(i,j+1), xayz is a BC4.

By Proposition 5.24, S is s-redundant and thus

χs(P, π) ≤ χs(P ′′, π′′) ≤ |S|+ χs((P ′, π′)− S)

by Theorem 5.25. By induction hypothesis, as (P ′′, π′′) − S = K+
p−2 □ K−

q , we get

page 152 Dimitri Lajou

Chapter 5. Cartesian product of signed graphs

Figure 5.7: A signed graph K of order 18 such that χs(K □ K2) = 25.

χs((P ′′, π′′)− S) ≤
⌈

(p−2)q
2

⌉
. Thus χs(P, π) ≤ q +

⌈
pq
2

⌉
− q ≤

⌈
pq
2

⌉
.

For the Cartesian product K+
p □ K−

p , the upper bound of Corollary 5.26 is p2 while
we proved in Theorem 5.27 that the chromatic number is

⌈
p2

2

⌉
. We thus have an example

where the chromatic number is greater than half the simple upper bound.

Question 5.28. What is the supremum of the set of real numbers λ ∈ [1
2 , 1] such that

there exist signed graphs (G1, σ1), . . . , (Gk, σk), each with at least one edge, such that:

χs((G1, σ1) □ · · · □ (Gk, σk)) ≤ λ
∏

1≤i≤k
χs(Gi, σi)?

In Figure 5.7, we have an example of a graph K such that K □ K2 has chromatic
number 25 (checked by computer). The ratio between the chromatic number and the
upper bound is 25

36 = 0.69444. It is the largest ratio we have found by randomly sampling
bigger and bigger complete signed graphs. This leads us to believe that the following
conjecture holds.

Conjecture 5.29. For every fixed ε > 0, there exist signed graphs (G1, σ1), . . . , (Gk, σk),
with each at least one edge, such that:

χs((G1, σ1) □ · · · □ (Gk, σk)) ≥ (1− ε) ·
∏

1≤i≤k
χs(Gi, σi).

On various graph coloring problems page 153

5.4. Chromatic number of Cartesian products of signed cycles

5.4 Chromatic number of Cartesian products of signed
cycles

The goal of this section is to determine the chromatic number of the Cartesian product of
two signed cycles. As there are four kind of cycles (balanced/unbalanced and even/odd
length), we have a number of cases to analyse. In most cases some simple observations
are sufficient to conclude. For the other cases, we need the following lemma whose proof
is given in subsections 5.4.1 to 5.4.6, due to its length.

Lemma 5.30. For every two integers p,q ∈ N such that p ≥ 1 and q ≥ 3:

χs(BC2p+1 □ UCq) > 4.

With this lemma, we can state the main result of this section.

Theorem 5.31. If (C1, σ) and (C2, σ2) are two signed cycles, then the chromatic number
of (P, π) = (C1, σ1) □ (C2, σ2) is given by Table 5.1, depending on the types of (C1, σ1)
and (C2, σ2).

(C1, σ1) □ (C2, σ2) BCeven BCodd UCeven UCodd
BCeven 2 3 4 3
BCodd 3 3 5 5
UCeven 4 5 4 5
UCodd 3 5 5 3

Table 5.1: The chromatic number of Cartesian products of signed cycles.

Proof. IfG is a cycle of typeBCeven (resp. BCodd, UCeven, UCodd), thenG −→s BC2 = K2
(resp. BC3, UC4, UC3). By computing the chromatic numbers of the Cartesian products
of (G, σ) and (H, π) when they belong to {K2, BC3, UC4, UC3}, we get an upper bound for
each of the Cartesian product type equal to the corresponding value in the table. These
cases, up to symmetry between the sets of positives and negatives edges, are represented
in Figure 5.8. Note that to color some graphs, we switched some vertices.

For the lower bound, note that χs((C1, σ1) □ (C2, σ2)) ≥ max(χs(C1, σ1), χs(C2, σ2)).
Theorem 2.20 concludes for the cases where the chromatic number is at most 4. Lemma 5.30
allows us to conclude for the remaining cases as χs(BC2p+1 □ UCq) = χs(UC2p+1 □ UCq)
by symmetry between the two edge signs.

One further question would be to compute the chromatic number of the Cartesian
product of an arbitrary number of signed cycles. Note that if H ∈ {K2, BC3, UC3, UC4},
then H □ H −→s H. This implies that, for these four graphs, it is only interesting to
look at Cartesian products of the form Ka

2 □ BCb
3 □ UCc

4 □ UCd
3 where a, b, c, d ∈ {0, 1}.

Moreover, we can suppose that a = 0 if one of b, c or d is non-zero. Thus the only
interesting case left to solve is determining the value of χs(BC3 □ UC3 □ UC4).

To extend this to any length, using the same argument as in Theorem 5.31, would
require that we obtain a lower bound for χs(BC2p+1 □ UC2q+1 □ UC2r) which is equal to
χs(BC3 □ UC3 □ UC4).

page 154 Dimitri Lajou

Chapter 5. Cartesian product of signed graphs

1

2

2

1

(a) χs(K2 □ K2) ≤ 2

1

2

3

2

3

1

(b) χs(BC3 □ K2) ≤ 3

1

2
3

4
2

3
4

1

(c) χs(UC4 □ K2) ≤ 4

1

2

3

2

3

1

3

1

2

(d) χs(BC3 □ BC3) ≤ 3

1

4

2

2

1

3

3

2

1

4

3

5

(e) χs(UC4 □ BC3) ≤ 5

1

2

3

4

1

2

3

5

4

(f) χs(BC3 □ UC3) ≤ 5

1

2

3

4

2

3

4

1

3

4

1

2

4

1

2

3

(g) χs(UC4 □ UC4) ≤ 4

Figure 5.8: Coloring of Cartesian products of signed cycles. The large squared vertices have
been switched in the Cartesian product.

5.4.1 Signed complete graphs of order 4

We count the number of signed complete graphs on four vertices. This result will be useful
in the proof of Lemma 5.30.

Theorem 5.32. There are three complete signed graphs of order 4 (see Figure 5.9).
They are the signed graph K+

4 = (K4,∅) with only positive edges, the signed graph K−
4 =

(K4, E(K4)) with only negative edges and the signed graph Kmixed
4 = (K4, {ab}) where a

and b are two vertices of K4.

Proof. Let (K4, σ) be a complete signed graph on four vertices. Arbitrarily choose u to be
one of the vertices of (K4, σ). By switching the neighbors of u if needed, we can suppose
that u is only incident to positive edges. Let x, y, z be the other three vertices of (K4, σ).
If the triangle xyz is all-positive, then (K4, σ) = K+

4 , if the triangle is all-negative, then
by switching u, we get (K4, σ) = K−

4 . If the triangle has only one negative edge, then
(K4, σ) = Kmixed

4 . Otherwise, the triangle has two negative edges, by switching the vertex
with the two negative edges, we get (K4, σ) = Kmixed

4 .

On various graph coloring problems page 155

5.4. Chromatic number of Cartesian products of signed cycles

c

a

d

b

(a) K+
4

c

a

d

b

(b) Kmixed
4

c

a

d

b

(c) K−
4

Figure 5.9: The three complete signed graphs of order 4

5.4.2 Beginning of the proof of Lemma 5.30
Our goal is to prove Lemma 5.30. For that, take some integers p and q such that p ≥ 1
and q ≥ 3, let (P, π) = BC2p+1 □ UCq, and suppose that, by absurd, χs(P, π) ≤ 4.

Claim 5.33. We have (P, π) −→s K
mixed
4 .

Proof. Since χs(P, π) ≤ 4, (P, π) −→s (K4, ρ) for some signature ρ of K4.
Every equivalent signature of BC2p+1 has at least one positive edge. Similarly, every

equivalent signature of UCq has at least one negative edge. Thus, in every equivalent
signature of (P, π), there is at least one positive edge and one negative edge. So (H, ρ)
cannot be (K4,∅) nor (K4, E(K4)). By Theorem 5.32, since there are only three complete
signed graphs of order 4, (H, ρ) is Kmixed

4 .

From now on, we suppose that we fixed a homomorphism φ from (P, π) to Kmixed
4 .

We label the vertices of Kmixed
4 as in Figure 5.9(b). Therefore, there exists a signed graph

(P, π′) ≡ (P, π) for which v 7→ φ(v) is a coloring.
The proof of Lemma 5.30 is divided into four parts. First, by considering the graph

P as a toroidal grid, we define what we mean for a walk to make a “turn” around the
torus in subsection 5.4.3. Then, by considering the coloring of (P, π′) corresponding to φ
and the connected components of (P, π′) induced by colors a and b, we link the number
of “crossings” of some boundaries of the components with a vertical (or horizontal) cycle
and the number of ab edges of this cycle in subsection 5.4.4. In subsection 5.4.5, we
connect this number of ‘crossings” to the number of turns and we conclude the proof in
subsection 5.4.6.

5.4.3 Number of turns in P

The goal of this subsection is twofold. First, we want to establish another definition of P
as a toroidal grid i.e. the quotient of some infinite grid. Secondly, we want to define the
quantities τx(W) and τy(W) for each closed walk W of T . They represent the number of
turns in each direction of the torus made by the closed walk W .

If G is a graph with vertex set a group H and Q is a subgroup of H, then the
quotient graph G⧸Q over the vertices H⧸Q is defined by identifying the vertices in the
same equivalence class. Similarly, if W = s0, . . . , sn is a walk on G, then the quotient walk
W ′ on G⧸Q is the sequence s0, . . . , sn.

Definition 5.34. We can associate with Z2 an infinite graph G∞ whose vertex set V (G∞)
is the set {vx,y : (x, y) ∈ Z2} and whose edge set is the set of pairs {vx,yvx′,y′}, where either

page 156 Dimitri Lajou

Chapter 5. Cartesian product of signed graphs

0 1 2
3 4 5
6 7 8
9 10 11
0 1 2
3 4 5
6 7 8
9 10 11

0 1 2
3 4 5
6 7 8
9 10 11
0 1 2
3 4 5
6 7 8
9 10 11

0 1 2
3 4 5
6 7 8
9 10 11
0 1 2
3 4 5
6 7 8
9 10 11

0 1 2
3 4 5
6 7 8
9 10 11
0 1 2
3 4 5
6 7 8
9 10 11

Figure 5.10: A subgraph of the graph G. Vertices with the same label are identified in P .
Here q = 4 and 2p + 1 = 3.

x = x′ and |y − y′| = 1, or y = y′ and |x− x′| = 1. We can then redefine the graph P

as the quotient G
∞
⧸Q where Q = Z2p+1 × Zq. In other words take the graph G∞ where

we identify each vertex vx,y with vx′,y′ when x − x′ is a multiple of 2p + 1 and y − y′

is a multiple of q. The graph G∞ can be seen as an unfolding of the toroidal grid P .
Figure 5.10 represents a subgraph of G∞ when q = 4 and 2p + 1 = 3. An edge of G∞ of
the form vu,wvu+i,w (resp. vu,wvu,w+i) for i ∈ {−1, 1}, is an horizontal edge (resp. vertical
edge) of G∞. An edge e of P is an horizontal edge (resp. vertical edge) if it is the quotient
of horizontal (resp. vertical) edges of G∞.

Definition 5.35. Let WG∞ be a walk in G∞ and WP a walk in P . We say that WG∞ is a
representation of WP if and only if WG∞⧸Q = WP . We also say that WG∞ represents WP .

By definition, all representations of WP have the same number of vertices as WP . Let
us make the following observation on the representations of a walk WP .

Observation 5.36. If W 1
G∞ = (s1

i)0≤i≤n and W 2
G∞ = (s2

i)0≤i≤n are two walks (of the same
length) in G∞ representing WP , then there exist α, β ∈ Z such that for all i ∈ {0, . . . , n},
if s1

i = vx,y, then s2
i = vx+α(2p+1),y+βq. In particular, if they have the same first vertices,

then W 1
G∞ = W 2

G∞.

We are now ready to define what is a turn of a walk around the torus.

Definition 5.37. Let WG∞ be a (vx,y, vz,t)-walk in G∞. We define the number of hori-
zontal turns τx and the number of vertical turns τy of WG∞ by:

τx(WG∞) =
∣∣∣∣∣ z − x2p+ 1

∣∣∣∣∣ , τy(WG∞) =
∣∣∣∣∣t− yq

∣∣∣∣∣ .
For a closed walk WP in P , let τx(WP) = τx(WG∞) (resp. τy(WP) = τy(WG∞)) be the

number of horizontal (resp. vertical) turns ofWp whereWG∞ is an arbitrary representation
of WP .

Claim 5.38. For every closed walk WP , the two quantities τx(WP) and τy(WP) are inte-
gers and do not depend on the choice of the representation WG∞ of WP .

On various graph coloring problems page 157

5.4. Chromatic number of Cartesian products of signed cycles

Proof. First if WP is a closed walk in P and WG∞ represents WP , then vx,y = vz,t thus
z = x + n(2p + 1) and t = y + mq for some integers n,m ∈ Z. Hence τx(WG∞) and
τy(WG∞) are integers.

Now take two representations W 1
G∞ and W 2

G∞ of WP . By Observation 5.36, if W 1
G∞ is a

(vx1,y1 , vz1,t1)-walk and W 2
G∞ is a (vx2,y2 , vz2,t2)-walk , then x2 = x1+α(2p+1), y2 = y1+βq,

z2 = z1 +α(2p+1) and t2 = t1 +βq. Thus τx(W 1
G∞) = τx(W 2

G∞) and τy(W 1
G∞) = τy(W 2

G∞).
Hence this quantity is well defined for WP .

The main result of this subsection is the following proposition.

Proposition 5.39. If WP is a closed walk in P of even length, then:

qτy(WP) + τx(WP) ≡ 0 (mod 2).

Proof. Let WG∞ be a (vx,y, vz,t)-walk which is a representation of WP in G∞. For each
horizontal (resp. vertical) edge e of the form vu,wvu+i,w (resp. vu,wvu,w+i) for i ∈ {−1, 1},
let ℓ(e) = i. Let Eh(WG∞) be the set of horizontal edges of WG∞ and Ev(WG∞) the set
of vertical edges of WG∞ . We then have:

∑
e∈Eh(WG∞)

ℓ(e) ≡ z − x ≡ (2p+ 1)τx(WP) ≡ τx(WP) (mod 2),

and ∑
e∈Eh(WG∞)

ℓ(e) ≡
∑

e∈Eh(WG∞)
1 ≡ |Eh(WG∞)| (mod 2).

Similarly,
|Ev(WG∞)| ≡ t− y ≡ qτy(WP) (mod 2).

As WP and WG∞ are of even length, we get:

0 ≡ |E(WG∞)| ≡ qτy(WP) + τx(WP) (mod 2).

5.4.4 Regions induced by a coloring of (P, π)
The aim of this section is to define a suitable set of walks in order to apply Proposition 5.39.
For this, we will introduce several topological notions.

Definition 5.40. Let PAB = P [φ−1{a, b}] and PCD = P [φ−1{c, d}], the subgraphs of P
induced by the vertices colored a and b and by the vertices colored c and d, respectively.
A region X of P is a connected component of PAB or PCD. We say that X is of type ab
in the first case and of type cd in the latter. The boundary ∂X of a region X is the subset
of vertices of X that are adjacent to a vertex not in X:

∂X = {x ∈ X : N(x) ⊈ X} .

The configuration of Figure 5.11 is called the flat border configuration. That is to
say, for a region X, this configuration consists in two vertices x, y ∈ X and two vertices
w, z /∈ X such that xy, xz, yw and wz belong to E(P).

Claim 5.41. The flat border configuration does not appear in the coloring of (P, π′).

page 158 Dimitri Lajou

Chapter 5. Cartesian product of signed graphs

x

w y

z
∈ X/∈ X

Figure 5.11: The flat border configuration when x, y ∈ X and z, w /∈ X, where X is a region.

x

y w

z
∈ X/∈ X

Figure 5.12: The vertices x and y of the region X are border neighbors.

c a c a c d

a b a b a c

d a b a b a

b c a b a c

a b d a c d

Figure 5.13: A region X delimited by the bold line and the only border B of X is represented
by the square vertices. The dotted line represents the only walk in WB.

Proof. Suppose to the contrary that the configuration appears. Then, the cycle xywz of
length 4 is unbalanced. Thus, before switching, xywz was already an unbalanced cycle
of length 4 in (P, π) since balance is preserved by switching. By definition of (P, π) as a
Cartesian product of cycles, the signs of xy and wz are the same. This is also the case
for zx and wy. Thus this cycle is balanced (it has an even number of negative edges), a
contradiction.

Definition 5.42. Two vertices x and y on the boundary of the region X are border
neighbors if x and y have a common neighbor in X and a common neighbor in P − X
(see Figure 5.12). We note BN(x) the set of border neighbors of x.

A border B of a region X is a subset of ∂X corresponding to an equivalence class for
the transitive closure of the border neighborhood relation (see Figure 5.13). That is to
say, two vertices x and y of ∂X are in the same border B of X if and only if there exists
a sequence u0, u1, . . . , uk of vertices of B such that u0 = x, uk = y and for all 0 ≤ i < k,
ui and ui+1 are border neighbors.

On various graph coloring problems page 159

5.4. Chromatic number of Cartesian products of signed cycles

x

i 1

23

j

k

ℓ

4

(a) Case 1: |BN(x)| = 1.

x

i 1

23

j

k

ℓ

4

(b) Case 2: |BN(x)| = 3.

x

i 1

23

j

k

ℓ

4

(c) Case: |BN(x)| = 0.

Figure 5.14: The two cases up to symmetry where |BN(x)| has an odd number of vertices
and the case where BN(x) = ∅. The square vertices represent vertices not in the region of x,
the circular ones are in the region.

Claim 5.43. All vertices of a border B of a region X have the same color called the color
of B.

Proof. By definition of B it suffices to show that any two border neighbors x and y have
the same color. Let z be their common neighbor in X. Without loss of generality, suppose
X is of type ab and z has color b. Since the coloring is proper, x and y have color a.

Claim 5.44. A vertex x of a border B has an even number of border neighbors. Moreover
if BN(x) = ∅, then X = {x}.

Proof. If |BN(x)| is odd, then we are in one of the first two cases of Figure 5.14. We will
use the notation of the figure.

If |BN(x)| = 1, then up to rotation and symmetry, we can suppose that the vertex 1
is the border neighbor of x and that j is their common neighbor in X. Thus i /∈ X. Now
ℓ /∈ X, as otherwise the vertices i, ℓ, 4 and x would be in the flat border configuration,
which cannot be by Claim 5.41. The same argument implies k ∈ X by considering x, k,
j and 2. Thus x, ℓ, k and 3 are in the flat border configuration. A contradiction.

If |BN(x)| = 3, then up to rotation and symmetry, we can suppose that the vertex 4
is not a border neighbor of x. As 2 is a border neighbor of x, one of k and j is in X and
the other is not. Without loss of generality, suppose k /∈ X and j ∈ X. As 3 is a border
neighbor of x, we have ℓ ∈ X. As 1 is a border neighbor of x, we have i /∈ X. Thus 4, i,
ℓ and x are in the flat border configuration, a contradiction.

Now if BN(x) = ∅, we can suppose that i /∈ X as x is in ∂X. Now to avoid the flat
border configuration, j, k and ℓ must not be in X. This proves that X = {x}.

We can now define the set of walks associated with the border.

Definition 5.45. We associate with a border B of X, a set of closed walksWB in (P, π′)
included in X (see Figure 5.13). This set of walks delimits the border of X. We use vi,j
to refer to the vertex vi,j of P for concision.

We will define the walks piece by piece. In the particular case that X has only one
vertex, then WB = ∅. Now we can suppose that for each x ∈ B, we have BN(x) ̸= ∅ by
Claim 5.44.

First pick an arbitrary vertex x of B. The vertex x is a border vertex thus there exists
at least one vertex w adjacent to x which is not in X. In case there are more than one
such vertex, we choose one of them arbitrarily. Up to rotation of the coordinate system,
we can suppose x = vi,j and w = vi,j+1. We will choose y ∈ BN(x) according to the
order in Figure 5.15(a). Meaning the first vertex among vi+1,j+1, vi+1,j−1 and vi−1,j−1 that

page 160 Dimitri Lajou

Chapter 5. Cartesian product of signed graphs

x

w 1

23
(a) The order of the
vertices to choose.

x

w y

23

z

(b) Case 1.

x

w 1

y3 z

(c) Case 2.

x

w 1

2y

z

(d) Case 3.

Figure 5.15: The first step in constructing the walk. The square vertices represent vertices not
in the region of x, the circular ones are in the region while the triangular ones are undecided.
The dashed edges are the edges of G∞ while the bold edges are the edges of the walk.

x

w 1

23

v

u

(a) The order of the
vertices to choose.

x

w y

23

zv

u

(b) Case 1.

x

w 1

y3 z

v

u

(c) Case 2.

x

w 1

2y

v, z

u

(d) Case 3.

Figure 5.16: The next step in constructing the walk. We use the same notation as in Fig-
ure 5.15. We constructed sl−2 = u, sl−1 = v, sl = x. We then construct sl+1 = z and sl+2 = y.

belongs to BN(x). The three cases are depicted in Figure 5.15(b), 5.15(c) and 5.15(d).
Note that as BN(x) is non-empty, BN(x) has at least two vertices by Claim 5.44, thus
we are in at least one of the three cases above.

Through the construction, the “turn left” property, which implies that the vectors
−−−−→s2is2i+1 and −−−−−−→s2i+1s2i+2 form a direct base, will be conserved. That is to say for every i,
the vectors −−−−→s2is2i+1 and −−−−−−→s2i+1s2i+2, which belong to {(1, 0), (−1, 0), (0, 1), (0,−1)}, are
orthogonal and such that the angle between the two vectors is π

2 and not −π
2 . Informally,

if someone travels from s2i to s2i+1 then this person would have to turn left to go to s2i+2.
Now that we have x and y we can start to construct our walk W , by taking s0 = x,

s1 = z and s2 = y where z is the common neighbor of x and y which is in X. Note that
the position of z is forced since otherwise we have a flat border configuration.

Suppose now that we have constructed the walk up to s0, . . . , sℓ−2, sℓ−1, sℓ with ℓ even.
If sℓ−2 = s0, sℓ−1 = s1 and sℓ = s2, then we stop and close this walk by removing
the last two vertices. Otherwise we will construct sℓ+1 and sℓ+2. Suppose that sl =
vi,j. Up to rotation of the coordinate system, we can suppose that sℓ−2 = vi−1,j+1 and
sℓ−1 = vi−1,j. The vertex sℓ−1 could in principle be vi,j+1 but this would contradict
the “turn left” property. We construct sℓ+2 as the first vertex among vi+1,j+1, vi+1,j−1
and vi−1,j−1 that belong to BN(x) (see Figure 5.16(a)). The three cases are depicted in
Figure 5.16(b), 5.16(c) and 5.16(d). As before, since BN(x) is non-empty and of even
cardinality, we are in one of those three cases. As in the first step, the vertex sℓ+1 is the
common neighbor of sℓ and sℓ+2 in X.

If we stop and there are pairs of border neighbors that are not in the same walk, we
can start the process again with this pair of vertices as the first and third vertices of the
walk. See Figure 5.17 for an example where we need to construct another walk. To keep

On various graph coloring problems page 161

5.4. Chromatic number of Cartesian products of signed cycles

d a b a d c d a b a d

d c a b a c a b a c d

d c d a b a b a d c d

d c d c a c a c d c d

d c d c d c d c d c d

c d a b a
y4

d a
y3

b a d c

c d c a b

z1
a
x

b

z2
a c d c

c d c d a
y1

d a
y2

d c d c

c d c d c d c d c d c

Figure 5.17: A closed walk W in Wa where the vertex x of the walk does not have all of its
border neighbors in W .

the assumption of the construction true, we must carefully choose the first vertex of the
walk among these two in such a way that the “turn left” property is conserved. With
the notation of Figure 5.17, the vertices x and y4 are not in the same walk. To restart
our process, we have two choices: s0 = x, s1 = z1 and s2 = y4 or s0 = y4, s1 = z1 and
s2 = x. In the first case, the vectors −−→s0s1 and −−→s1s2, which are equal to (−1, 0) and (0, 1)
respectively, form an indirect base of the plane. Hence we must choose s0 = y4, s1 = z1
and s2 = x, which ensures that the “turn left” property holds.

Claim 5.46. The construction of Definition 5.45 has the following properties:

1. the construction terminates and all walks are closed,
2. the walks are of even length,
3. all vertices with even indices have the same color,
4. all vertices with odd indices have the same color which is different from the color of

the vertices with even indices,
5. all vertices of the border B are vertices of some walk with even index,
6. the number of occurrences of a vertex x of the border B in all the walks of WB is

given by |BN(x)| /2.

Proof. Suppose we do not terminate. As the number of possible edges is finite, the se-
quence we construct is ultimately periodic. Since s0, s1, s2 do not appear consecutively in
this order in the rest of the sequence, as we did not stop, the sequence is not periodic. Thus
there exists a first moment at which there exist i and j such that si−2, si−1, si, si+1, si+2
and sj−2, sj−1, sj, sj+1, sj+2 are subsequences of the sequence we constructed, verifying
si−2 ̸= sj−2, si−1 ̸= sj−1, si = sj, si+1 = sj+1 and si+2 = sj+2. Note that knowing si−2,

page 162 Dimitri Lajou

Chapter 5. Cartesian product of signed graphs

si and si+2 imposes the choices of si−1 and si+1 by the “turn left” property, this is why
these two indices exist. Without loss of generality, up to rotating the grid, we can as-
sume that si = vx,y and si+2 = vx+1,y+1. By reversing the construction, we can observe
that si−2 is the first border neighbor of si among vx−1,y+1, vx−1,y−1 and vx+1,y−1 in this
order. In this case, sj+2 and si−2 are uniquely determined by construction and are equal,
a contradiction. Now the process terminates, thus the walks are closed by definition of
the terminating condition. This proves 1.

Since the walks are included in X which is bipartite, they have even length which
proves 2. In a similar way, all vertices with even indices are on the border B of X thus
they have the same color by Claim 5.43, thus 3 is true. Thus all vertices with odd indices
have the other color of X which proves 4.

We already saw that the vertices of even indices are on B. Suppose that x is not part
of a walk. We removed the case BN(x) = ∅ by not considering those B’s thus there
exists y ∈ BN(x). Then x and y are not in the same walk, thus we create a new one with
these two vertices, a contradiction. This proves 5.

Similarly, if the number of occurrences is strictly smaller than |BN(x)| /2, we would
have restarted the process in x. Now suppose that this number is strictly greater than
|BN(x)| /2. Then there exists a pair of border neighbors x and y that belong to two walks
(and there is a vertex z in between them in those two walks) by the pigeon hole principle.
Since the construction of the walks only use the position of three consecutive vertices
to decide the next two ones, the two walks are identical after passing through xzy. By
construction, we can choose the first vertices of the walks arbitrarily among the vertices of
even indices by shifting the indices, thus we can consider that the two walks start by xzy.
Thus the two walks are identical which cannot be the case as we would not have restarted
to create the second walk.

We define the set of closed walks Wa as the union of all closed walks WB where B is
a border with color a.

Take C to be a vertical or horizontal cycle of P . For the sake of simplicity, we will
take C to be the vertical cycle induced by the vertices {vx0,y : y ∈ Z} where ℓ = 2p + 1
and x0 ∈ {0, . . . , ℓ− 1} (i.e. C is a UCq-layer). All the following definitions can be stated
in the other case by symmetry.

Let W be a closed walk in P (resp. a representation of a closed walk of P in G∞).
We define a positive crossing of C by W in P (resp. G∞) as a sub-walk t0, t1, . . . , tk−1, tk
of W (possibly going through the end of W and going back at the beginning) such that
t0 = vx0−1,y (resp. t0 = vx0−1+nℓ,y for n ∈ Z) for some y ∈ Z, the vertex ti belongs to C
(resp. is of the form vx0+nℓ,y′

i
for some y′

i ∈ Z) for every i ∈ {1, . . . , k − 1} and tk = vx0+1,y′′

(resp. tk = vx0+1+nℓ,y′′) for some y′′ ∈ Z. The set of positive crossings Cross+
P (W,C) (resp.

Cross+
G∞(W,C)) is the set of all-positive crossings of C by W in P (resp. G∞).

We can similarly define a negative crossing of C by W in P (resp. G∞) by a sub-
walk t0, t1, . . . , tk−1, tk of W (possibly going through the end of W and going back at
the beginning) such that t0 = vx0+1,y (resp. t0 = vx0+1+nℓ,y for n ∈ Z) for some y ∈ Z,
the vertex ti belongs to C (resp. is of the form vx0+nℓ,y′

i
for some y′

i ∈ Z) for every
i ∈ {1, . . . , k − 1} and tk = vx0−1,y′′ (resp. tk = vx0−1+nℓ,y′′) for some y′′ ∈ Z. The set of
negative crossings Cross−

P (W,C) (resp. Cross−
G∞(W,C)) is the set of all-negative crossings

of C by W in P (resp. G∞).

On various graph coloring problems page 163

5.4. Chromatic number of Cartesian products of signed cycles

Claim 5.47. If WG∞ represents WP , then∣∣∣Cross+
P (WP , C)

∣∣∣ =
∣∣∣Cross+

G∞(WG∞ , C)
∣∣∣ and

∣∣∣Cross−
P (WP , C)

∣∣∣ =
∣∣∣Cross−

G∞(WG∞ , C)
∣∣∣ .

Proof. We will only consider positive crossings, the proof for negative crossings is similar.
By taking the quotient of a sub-walk of WG∞ , we see that each crossing in G∞ is also
present in P . Thus

∣∣∣Cross+
P (WP , C)

∣∣∣ ≥ ∣∣∣Cross+
G∞(WG∞ , C)

∣∣∣. Now take a crossing of C
by WP in P , it is a sub-walk of WP . Thus if we take the corresponding sub-walk in WG∞ ,
we get a crossing in G∞. Thus the two sets are equal.

One of our main results is the following proposition.

Proposition 5.48.
∑

W∈Wa

(∣∣∣Cross+
P (W,C)

∣∣∣+ ∣∣∣Cross−
P (W,C)

∣∣∣) ≡ {uv ∈ C : uv has color ac or ad} (mod 2).

Proof. Take a vertex x of C in (P, π′) colored a. If the region of x is {x}, then x has
two incident edges colored ac or ad and x is not contained in any crossing as it does not
belong to a walk in Wa by definition. Thus we can ignore them.

If x has at least one incident edge colored ac or ad, then it belongs to some border
colored a.

Now take a vertex x of color a in some walk W ∈ Wa. Depending on the size of BN(x)
there are one or two occurrences of x inWa by Claim 5.46. Up to rotation we can suppose
that we have vi−1,j+1, vi−1,j, vi,j = x as a sub-walk of W . Depending on the orientation
of C (vertical or horizontal), for each sub-case, we must consider the two orientations.
For one orientation there are four sub-cases: |BN(x)| = 4, |BN(x)| = 2 and vi+1,j+1 is
the border neighbor of x different from vi−1,j+1, |BN(x)| = 2 and vi+1,j−1 is the border
neighbor of x different from vi−1,j+1 or |BN(x)| = 2 and vi−1,j−1 is the border neighbor of
x different from vi−1,j+1. For each case, the local structure of the walk is determined by
our construction process and the “turn left” property. All the sub-cases are depicted in
Figure 5.18. In each case the number of crossings for the sub-walks considered is equal,
modulo 2, to the number of edges colored ab of x in C.

Now note that no vertices of color b in W ∈ Wa has both neighbors in the same layer.
Thus a crossing of C by W always contains a vertex colored a of C. Thus all crossings
are counted in the above case analysis.

Since for each edge colored ac or ad, the vertex colored a has a neighbor not in its
region, it is on some border and thus we counted those edges in the case analysis or when
we treated the case of the region of size one.

Thus the number of edges colored ac or ad in C is equal to the sum of the number of
crossings of C by walks in Wa modulo 2.

Claim 5.49. The number of edges colored ac or ad in C is equal to the number of edges
of C colored ab modulo 2.

Proof. Let us call Eac (resp. Ead, resp. Eab) the set of edges colored ac (resp. ad, resp.
ab). Let N ′(x) be the set of edges of P incident with a vertex x. Since a vertex of color

page 164 Dimitri Lajou

Chapter 5. Cartesian product of signed graphs

a

a

bb

a

C

(a) Case 1.a: 2 cross-
ings and 2 edges ac or
ad.

a

a

bb

a

C

(b) Case 2.a: 1 cross-
ing and 1 edge ac or
ad.

a

ab

b

a

C

(c) Case 3.a: 1 cross-
ing and 1 edge ac or
ad.

a

a

b

a

C

(d) Case 4.a: 0 cross-
ing and 2 edges ac or
ad.

a

a

bb

a

C

(e) Case 1.b: 0 crossing and 0
edge ac or ad.

a

a

bb

a

C

(f) Case 2.b: 0 crossing and 0
edge ac or ad.

a

ab

b

a

C

(g) Case 3.b: 1 crossing and 1
edge ac or ad.

a

a

b

a

C

(h) Case 4.b: 1 crossing and 1
edge ac or ad.

Figure 5.18: All cases for the central vertex to belong to a closed walk W ∈ Wa. We use the
same notation as in Figure 5.15. The dotted lines in sub-figures 5.18(a) and 5.18(e) are a second
passage in the central vertex by a walk in Wa (possibly the same as the bold line). The edges
ac or ad are the edges between a circular vertex and a square vertex. For each case we count
the number of crossings of the drawn walks and the number of edges of color ac or ad incident
to the central vertex and belonging to the cycle C.

On various graph coloring problems page 165

5.4. Chromatic number of Cartesian products of signed cycles

a has two incident edges in C, we have:

|(Eac ∪ Ead) ∩ E(C)| ≡
∑

x∈C of color a
|(Eac ∪ Ead) ∩N ′(x) ∩ E(C)| (mod 2)

≡
∑

x∈C of color a
degC(x)− |Eab ∩N ′(x) ∩ E(C)| (mod 2)

≡
∑

x∈C of color a
2− |Eab ∩N ′(x) ∩ E(C)| (mod 2)

≡
∑

x∈C of color a
|Eab ∩N ′(x) ∩ E(C)| (mod 2)

≡ |Eab ∩ E(C)| (mod 2).

5.4.5 Crossings and turns
In this section, we will suppose that C is the vertical cycle of (P, π′) equal to {vx0,y : y ∈ Z}
for ℓ = 2p + 1 and x0 ∈ {0, . . . , ℓ− 1}. We identify the cycle C on (P, π′) and the set
{vx,y : vx,y ∈ C} of vertices of G∞. All what is defined below also works for a horizontal
cycle with ℓ = q. Here we want to connect the number of crossings of the previous section
with the number of turns of Section 5.4.3.

Definition 5.50. Let vx,y be a vertex of G∞. We define the function gC as follows:

gC(vx,y) =
⌊
x− x0

ℓ

⌋
.

For a (s0, sn)-walk WG∞ in G∞, we define fC as follows:

fC(WG∞) = gC(sn)− gC(s0).

Claim 5.51. For a (vx,y, vz,t)-walk WG∞ of G∞ representing a closed walk WP of P such
that vx,y /∈ C, we have:

fC(WG∞) ≡
∣∣∣Cross+

G∞(WG∞ , C)
∣∣∣− ∣∣∣Cross−

G∞(WG∞ , C)
∣∣∣ (mod 2).

Proof. SupposeWG∞ = (si)i∈{0,...,n}, by assumption s0 /∈ C. This ensures that all crossings
of C by WG∞ are sub-walks that do not go through the end of WG∞ and go back at the
beginning. Take a crossing t0, . . . , tk. By definition of a crossing, the x coordinate of t0 is
of the form x0 + ε + nℓ for some n ∈ Z and ε ∈ {−1, 1} and the x coordinate of tk is of
the form x0 − ε + nℓ. Hence, we have gC(tk) − gC(t0) = 1 if the crossing is positive and
gC(tk)− gC(t0) = −1 if it is negative.

Now we just have to show that the other sub-walks of WG∞ do not contribute to
fC(WG∞). We can write WG∞ = W0,W

cross
0 ,W1, . . . ,W

cross
k−1 ,Wk for some integer k where

each W cross
i is a crossing and the other sub-walks are not. Note that:

fC(WG∞) =
∑

i∈{0,...,k}
fC(Wi) +

∑
i∈{0,...,k−1}

fC(W cross
i).

If for all i ∈ {0, . . . , k}, fC(Wi) = 0, then fC(WG∞) = ∑
i∈{0,...,k−1}

fC(W cross
i). As each

positive crossing counts for 1 in the sum and each negative crossing counts for −1 in

page 166 Dimitri Lajou

Chapter 5. Cartesian product of signed graphs

the sum, fC(WG∞) =
∣∣∣Cross+

G∞(WG∞ , C)
∣∣∣− ∣∣∣Cross−

G∞(WG∞ , C)
∣∣∣ which implies our result

when taking these numbers modulo 2.
Since the last vertices of the Wi’s are the same as the first vertices of the crossings,

we know that they do not belong to C. The same is true for the first vertices of the Wi’s.
Then, for a (vx,y, vz,t)-walk, we have x, z ∈ {x0 + nℓ+ 1, . . . , x0 + nℓ+ ℓ− 1} for some n.
But in all cases the value of gC is n. Indeed, if x = x0 + nℓ+ λ with 1 ≤ λ ≤ ℓ− 1 then
gC(vx,y) =

⌊
x−x0
ℓ

⌋
=
⌊
nℓ
ℓ

+ λ
ℓ

⌋
= n+ 0. Thus fC(Wi) = 0. This concludes the proof.

Claim 5.52. For a closed walk WP in P and WG∞ a representation of WP on G∞:

fC(WG∞) ≡ τx(WP) (mod 2).

Proof. Suppose that WG∞ is a (vx,y, vz,t)-walk. Note that z = x+ nℓ for some n ∈ Z. We
have:

τx(WP) ≡
∣∣∣∣z − xℓ

∣∣∣∣ (mod 2)

≡ n (mod 2),

while:

fC(WG∞) ≡
⌊
z − x0

ℓ

⌋
−
⌊
x− x0

ℓ

⌋
(mod 2)

≡ n+
⌊
x− x0

ℓ

⌋
−
⌊
x− x0

ℓ

⌋
(mod 2)

≡ n (mod 2).

5.4.6 End of the proof
We can now prove Lemma 5.30.

Proof. Note that by shifting the indices, we can suppose that the first vertex of each walk
WP ∈ Wa does not belong to C. By using Claim 5.49, Proposition 5.48, Claim 5.47,
Claim 5.51 and Claim 5.52, in this order, we get:

|Eab ∩ E(C)| ≡
∑

WP ∈Wa

∣∣∣Cross+
P (WP , C)

∣∣∣+ ∣∣∣Cross−
P (WP , C)

∣∣∣ (mod 2)

≡
∑

WP ∈Wa
WG∞ represents WP and

its first vertex /∈ C

∣∣∣Cross+
G∞(WG∞ , C)

∣∣∣− ∣∣∣Cross−
G∞(WG∞ , C)

∣∣∣ (mod 2)

≡
∑

WP ∈Wa
WG∞ represents WP and

its first vertex /∈ C

fC(WG∞) (mod 2)

≡
∑

WP ∈Wa

τx(WP) (mod 2).

On various graph coloring problems page 167

5.5. Perspectives

By the choice of C in the previous subsection, C = UCq and thus |Eab ∩ C| ≡ 1
(mod 2). Therefore:

1 ≡
∑

WP ∈Wa

τx(WP) (mod 2).

By taking C = BC2p+1, a horizontal cycle, we obtain:

0 ≡ |Eab ∩ E(C)| ≡
∑

W∈Wa

τy(W) (mod 2).

Recall that Proposition 5.39 states that:

0 ≡ qτy(W) + τx(W) (mod 2).

Thus:
0 ≡ q × 0 + 1 (mod 2).

This is a contradiction.

This concludes the proof of Lemma 5.30.

5.5 Perspectives
We studied the Cartesian product of signed graphs both on an algebraic point of view,
and in relation with the chromatic number of signed graphs.

On top of the already mentioned open problems, it would be interesting to study the
behavior of the Cartesian product with respect to other signed graphs parameters, the
sign-preserving chromatic number being one of the more interesting of these.

Other interesting questions relate to other graph products. The tensor product of
signed graphs × was defined in [85] under the names of “strong product” and “categorical
product”. For two signed graphs (G, σ) and (H, π), the tensor product of (G, σ) and (H, π),
denoted (G, σ)× (H, π), is the signed graph with vertex set V (G)×V (H); (G, σ)× (H, π)
contains the two edges (u,w)(v, z) and (v, w)(u, z) with sign σ(uv)π(wz), for every edges
uv ∈ E(G) and wz ∈ E(H).

One can also define the strong product of signed graphs as a generalization of the
strong product of graphs [169]. For two signed graphs (G, σ) and (H, π), the strong
product of (G, σ) and (H, π), denoted (G, σ) ⊠ (H, π), is the signed graph with vertex set
V (G)×V (H), the set of positive edges (resp. negative edges) of (G, σ)⊠(H, π) is obtained
from the union of the set of positive edges (resp. negative edges) of (G, σ) □ (H, π) and
the set of positive edges (resp. negative edges) of (G, σ)× (H, π).

For these products, the following are equivalent:

• (G, σ) and (H, π) are balanced,

• (G, σ) □ (H, π) is balanced,

• (G, σ)× (H, π) is balanced, and

• (G, σ) ⊠ (H, π) is balanced.

page 168 Dimitri Lajou

Chapter 5. Cartesian product of signed graphs

In particular these products are all compatible with switching. We can therefore ask
questions similar to the ones of this chapter for the tensor product and the strong product.
Are there unique prime decompositions? Can we recognize them? What can we say about
the chromatic number of a product?

Another product of signed graphs, called the lexicographical product of signed graphs,
has been defined in [91] but unfortunately lacks these nice properties [31]. Finding a
signature which would work well with switching for this product seems impossible. Under
these conditions, this product behave more as a product of 2-edge-colored graphs than
signed graphs.

On various graph coloring problems page 169

Part II

Edge-coloring with constraints

Chapter 6. Introduction

Chapter 6

Introduction

In this second part, we study diverse notions of edge-coloring of undirected graphs. Con-
trary to signed graphs, here the colors of the edges are not part of the structure of the
graph. The goal is as follows: we are given an undirected graph and we want to assign
colors to its edges in such a way that some property holds.

The most well-known edge-coloring problem is the one requiring to find a proper edge-
coloring with the least number of colors (see Section 1.2.4). In this setting, the constraints
on the colors of the edges are completely characterized by the graph structure. It is easy
to generate many other notions of edge-coloring by choosing a general rule which decides
which edges can receive the same color and which cannot. This type of edge-coloring can
be reduced to (vertex) coloring a graph which has E(G) for vertex set. On that account,
proper edge-coloring a graph G is equivalent to coloring the line graph L(G) of G. In
Section 6.1, we present a particular family of such edge-colorings where the constraints
on the edges are determined by the distance separating them.

Another way to construct edge-coloring notions is to put constraints on subgraphs
(possibly induced) composed of edges of the same color. For example, the arboricity of
a graph G is the minimum number of colors required to edge-color G (not necessarily
properly) in such a way that each subgraph composed of edges of the same color is a
forest (see [155]).

Chapter 7 and Chapter 8 explore edge-coloring notions which are related to distance
edge-coloring. In particular, both edge-coloring notions can be expressed as vertex color-
ing problems and can be reformulated as constraints on the subgraphs composed of edges
of the same color.

Another family of edge-coloring problems is obtained by creating a vertex coloring
from the edge-coloring of the graph. Here, given a graph G, the goal is to color the edges,
with the fewest number of colors possible, in such a way that the vertex coloring obtained
from the edge-coloring is proper. There are multiple ways to generate the vertex coloring
from the edge-coloring, moreover we can also add constraints on the edge-coloring itself
depending on the problem. We present some of these edge-coloring notions in Section 6.2.

Chapter 9 and Chapter 10 both explore such edge-coloring notions.

6.1 Distance edge-coloring
In 1983, Fouquet and Jolivet introduced the notion of strong edge-coloring. This coloring
is a particular case of distance edge-coloring.

On various graph coloring problems page 173

6.2. Distinguishing vertices with edge-colors

3

3

1

1

4

4

2

2
5

5
3

4

5 1

2

Figure 6.1: A strong 5-edge-coloring of the Petersen graph.

Definition 6.1 (t-distance edge-coloring). A k-edge-coloring c of a graph G is a t-distance
k-edge-coloring if and only if for every two edges e and e′ at distance at most t in G,
c(e) ̸= c(e′). The t-distance chromatic index of G, denoted χ′

t(G), is the smallest k for
which G admits a t-distance k-edge-coloring.

A 2-distance edge-coloring is also called a strong edge-coloring (see [78]), and the
2-distance chromatic index of G is also called the strong chromatic index of G.

See Figure 6.1 for an example of a strong edge-coloring of the Petersen graph.
As mentioned before, t-distance edge-coloring of a graph G can be reduced to vertex

coloring some graph which can be computed from G. This graph is a power graph of
the line graph of G, i.e. the graph obtained from L(G) by adding an edge between any
two vertices which are at distance at most t. It is however often impractical to study the
corresponding vertex coloring problem to obtain precise results on the t-distance edge-
coloring. For more results on distance edge-coloring, we refer the reader to the PhD
Thesis [58] and the articles [117, 122, 123, 181].

Strong edge-coloring has also been extensively studied, see for example [49, 64, 104,
106] or the PhD Thesis [100]. One particularly interesting result for us is the following
upper bound for subcubic graphs.

Theorem 6.2 (Andersen [5] and Horák, Qing, and Trotter [107]). For every subcubic
graph G, we have χ′

2(G) ≤ 10.

This bound is sharp: a K3,3 with one subdivided edge cannot be strong edge-colored
with 9 colors (see figure 6.2).

6.2 Distinguishing vertices with edge-colors
An interesting family of edge-coloring problems is the concept of distinguishing labellings,
where the aim, given an undirected graph, is to edge-color the graph so that adjacent
vertices get distinguished by some function f computed from the edge-colors. Note that,
in this context, the edge-colors are often called labels and we talk about k-labellings instead
of k-edge-colorings. As reported in a survey [81] by Gallian on the topic, there actually
exist dozens and dozens different types of distinguishing labelling notions, which all have
their own particular behaviors and subtleties.

page 174 Dimitri Lajou

Chapter 6. Introduction

1
2

34
5

67
8

9

10

Figure 6.2: A strong 10-edge-coloring of K3,3 with one subdivided edge.

In this thesis, we mainly study two different notions of distinguishing labellings. For
both, the function f , which determines the color of the vertex, associates with a vertex
u a color obtained from the labels (i.e. edge-colors) of the edges incident with u. To
simplify notation, we often say that a label c is incident with a vertex v if there is an edge
e labelled c incident with v.

The weakest labelling notion which satisfies this scheme is the one for which the
multi-set of labels incident with a vertex u is the vertex color of u. For such a labelling,
two adjacent vertices cannot receive the same multi-sets of labels. One can see that
a graph containing an isolated edge cannot be labelled with this definition: the two
endpoints of the edge would receive the same vertex color and would not be distinguished.
Graphs without connected components isomorphic to K2 are called nice graphs. In [186],
Vučković showed that every nice graph G admits a 3-labelling (i.e. 3-edge-coloring) for
which adjacent vertices have different multi-sets of incident labels (see Chapter 10 for
more details).

Stronger variants can be obtained in two ways. The first way to obtain more restrictive
edge-coloring notions is to add constraints to the edge-coloring: an adjacent vertex dis-
tinguishing coloring of a graph is a proper edge-coloring of the graph which distinguishes
adjacent vertices through their sets of incident edge-colors. Note that the literature on
adjacent vertex distinguishing coloring does not use the term “labelling” for edge-colors.
We study this variant in Chapter 9.

An other way to obtain other distinguishing labellings is to use more restrictive func-
tions to compute the vertex color. For example, if the labels are integers, one can sum
or multiply them to obtain the vertex color. The famous 1-2-3-Conjecture [125] states
that every nice graph G admits a 3-labelling for which the vertex coloring, obtained by
summing the labels on edges incident with the colored vertex, is proper. We prove the
product version of this conjecture (where we multiply labels instead of summing them) in
Chapter 10.

On various graph coloring problems page 175

Chapter 7. Between proper and strong edge-colorings of subcubic graphs

Chapter 7

Between proper and strong
edge-colorings of subcubic graphs

Due to a remarkable result of Vizing [184] (see Theorem 1.49), we know that the minimum
number of colors needed to color the edges of a graph G, the chromatic index χ′(G) of G,
is either ∆(G) or ∆(G)+1. Recall that the graphs with the former value of the chromatic
index are commonly said to be class I, and the other ones class II.

In this chapter, we are interested in subcubic multi-graphs. Through this chapter, we
use the term graph to designate multi-graphs (possibly with loops). We need at most 4
colors to color such graphs, the complete graph on four vertices with one edge subdivided
being the smallest representative of a class II subcubic graph, and the Petersen graph
being the smallest 2-connected class II cubic graph. For subcubic graphs of class II, it
has been shown that they can be colored in such a way that one of the colors (usually
denoted δ) is used relatively rarely (cf. [3, 79]). This motivates the question whether the
edges of color δ can be pairwise distant. Payan [161] and independently Fouquet and
Vanherpe [79] proved that every subcubic graph with chromatic index 4 admits a proper
edge-coloring such that the edges of one color are at distance at least 3 from each other,
i.e. , the end-vertices of those edges induce a matching in the graph.

Gastineau and Togni [84] investigated a generalization of edge-colorings taking into
account the distance between edges of the same color.

Definition 7.1 (S-packing). For a given non-decreasing sequence of integers S = (s1, . . . , sk),
an S-packing edge-coloring of a graph G is a decomposition of E(G) into disjoint sets
X1, . . . , Xk, where the edges in the set Xi are pairwise at distance at least si + 1.

A set Xi is called an si-packing ; a 1-packing is simply a matching, and a 2-packing is
an induced matching.

To simplify the notation, we denote repetitions of same elements in S using exponents,
e.g., (1, 2, 2, 2) can be written as (1, 23).

The notion of an S-packing edge-coloring is motivated by its vertex counterpart, in-
troduced by Goddard and Xu [87] as a natural generalization of the packing chromatic
number [86]. In [84], the authors consider S-packing edge-coloring of subcubic graphs
with prescribed number of 1’s in the sequence. Vizing’s result translated to S-packing
edge-coloring gives that every subcubic graph admits a (1, 1, 1, 1)-packing edge-coloring,
while class I subcubic graphs are (1, 1, 1)-packing edge-colorable. Moreover, by Payan’s,
Fouquet’s and Vanherpe’s result, every subcubic graph admits a (1, 1, 1, 2)-packing edge-
coloring.

On various graph coloring problems page 177

(a) The Petersen graph. (b) The Tietze graph.

Figure 7.1: The Petersen graph (a) and the Tietze graph (b) admit a (1, 1, 1, 2)-packing edge-
coloring, and 2 cannot be increased to 3.

Figure 7.2: The Wagner graph is the smallest cubic graph which needs 10 colors for a strong
edge-coloring.

Theorem 7.2 (Payan [161], and Fouquet and Vanherpe [79]). Every subcubic graph ad-
mits a (1, 1, 1, 2)-packing edge-coloring.

Here 2 cannot be changed to 3, due to the Petersen graph and the Tietze graph
(depicted in Figure 7.1). They both have chromatic index 4, and we need at least two
edges of each color. Since every two edges are at distance at most 3, we have the tightness.
However, Gastineau and Togni do believe that the following conjecture is true.

Conjecture 7.3 (Gastineau and Togni [84]). Every cubic graph different from the Pe-
tersen graph and the Tietze graph is (1, 1, 1, 3)-packing edge-colorable.

Clearly, reducing the number of 1’s in sequences increases the total number of needed
colors, i.e. , the length of the sequence. In fact, if there is no 1 in a sequence, then the
coloring is a strong edge-coloring. Theorem 6.2, which states that every subcubic graph
admits a strong edge-coloring with at most 10 colors, can be reformulated using packing
edge-coloring: every subcubic graph admits a (210)-packing edge-coloring. Another ex-
ample of tightness of this result is given by the Wagner graph in Figure 7.2 which needs
10 colors for a strong edge-coloring. Let us remark here that the Wagner graph is class
I, meaning that smallest chromatic index does not necessarily mean less number of colors
for a strong edge-coloring of a graph.

Proper and strong edge-coloring of subcubic graphs have been studied extensively
already in the previous decades. More recently, Gastineau and Togni [84] started filling

page 178 Dimitri Lajou

Chapter 7. Between proper and strong edge-colorings of subcubic graphs

(a) (b)

Figure 7.3: The smallest subcubic graph which does not admit a (1, 1, 23)-packing edge-coloring
(Conjecture 7.4.1) nor a (1, 26)-packing edge-coloring (Conjecture 7.4.2), and the smallest class I
subcubic graph which does not admit a (1, 1, 22)-packing edge-coloring (Conjecture 7.4.3) nor a
(1, 25)-packing edge-coloring (Conjecture 7.4.4).

the gap by considering (1k, 2ℓ)-packing edge-colorings for k ∈ {1, 2}. They proved that
every cubic graph with a 2-factor admits a (1, 1, 25)-packing edge-coloring, and the number
of required 2-packings reduces by one if the graph is class I. For the case with one 1-
packing, they remark that using the bound for the strong edge-coloring one obtains that
every subcubic graph admits a (1, 29)-packing edge-coloring. These bounds are clearly
not tight, and they propose a conjecture (the items 1 and 3 in Conjecture 7.4), which
motivated the research presented in this chapter. The case 2 has been formulated as a
question, and we added the case 4, due to affirmative results of computer tests on subcubic
graphs of small orders.

Conjecture 7.4. Every subcubic graph G admits:

1. a (1, 1, 24)-packing edge-coloring [84],
2. a (1, 27)-packing edge-coloring [84],
3. a (1, 1, 23)-packing edge-coloring if G is class I [84],
4. a (1, 26)-packing edge-coloring if G is class I.

The conjectured bounds, if true, are tight. For Conjecture 7.4.1 and Conjecture 7.4.2,
a subcubic graph that achieves the upper bound is the complete bipartite graph K3,3 with
one subdivided edge (the left graph in Figure 7.3). Recall that this graph is also class
II and needs 10 colors for a strong edge-coloring, hence achieving the upper bounds for
proper edge-coloring, strong edge-coloring, (1, 1, 24)-packing edge-coloring, and (1, 27)-
packing edge-coloring. Indeed, each 1-packing contains at most three edges and each
2-packing contains at most one edge. An analogous argument holds for Conjecture 7.4.3
and Conjecture 7.4.4 on the complete bipartite graph K3,3.

Conjecture 7.4 bridges two of the most important edge-colorings, proper and strong,
basically claiming that each 1-packing could be replaced by three 2-packings. Indeed, if
such operations were possible, then one could transform a (1, 1, 1, 2)-packing edge-coloring
into a strong edge-coloring. Note that this does not apply to subclasses of graphs, e.g.,
the Wagner graph needs 10 colors for a strong edge-coloring and it is class I.

This chapter contributes to answering the conjecture by providing upper bounds with
one additional color for all four cases of Conjecture 7.4.

Theorem 7.5. Every subcubic graph G admits:

On various graph coloring problems page 179

7.1. Preliminaries

1. a (1, 1, 25)-packing edge-coloring,
2. a (1, 28)-packing edge-coloring,
3. a (1, 1, 24)-packing edge-coloring if G is class I,
4. a (1, 27)-packing edge-coloring if G is class I.

This work is joint work with Hervé Hocquard and Borut Lužar. An extended ab-
stract of this chapter is published in the proceedings of the international conference
IWOCA 2020 [101]. A full version is also available on arXiv [102].

This research has been done in the scope of the bilateral project between France and
Slovenia, BI-FR/19-20-PROTEUS-001. The third author of the corresponding paper was
partly supported by the Slovenian Research Agency Program P1–0383 and the project
J1–1692.

The structure of the chapter is the following. We begin by presenting notation, defi-
nitions and auxiliary results in Section 7.1. In Section 7.2, we give proofs of the cases 1
and 3 of Theorem 7.5. In Sections 7.3 and 7.4, we prove the cases 2 and 4 of Theorem 7.5
in even stronger settings. We conclude the chapter with an overview of open problems
and possible further work on this topic in Section 7.5.

Contents
7.1 Preliminaries . 178
7.2 Proofs of Theorem 7.5.1 and Theorem 7.5.3 179
7.3 Proof of Theorem 7.5.2 . 180
7.4 Proof of Theorem 7.5.4 . 184

7.4.1 Auxiliary results . 184
7.4.2 Proof . 192

7.5 Further Work . 200
7.5.1 Planar graphs . 200
7.5.2 Bipartite graphs . 202
7.5.3 Graphs with large girth . 202

7.1 Preliminaries
For a vertex v, we denote the set of edges incident to v by N ′(v), and the edges incident
to the neighbors of v (including the edges in N ′(v)) by N ′′(v). We refer to the former as
the edge-neighborhood of v and to the latter as the 2-edge-neighborhood of v. Analogously,
we define the edge-neighborhood and the 2-edge-neighborhood of an edge e.

When coloring the edges, we deal with two types of colors. The ones allowing the
edges of those colors to be at distance 2 from each other are called the 1-colors, and the
one requiring the edges to be at distance at least 3 from each other are called the 2-colors.
An edge colored with a 1-color (resp. a 2-color) is a 1-edge (resp. a 2-edge). We denote
the number of 1-edges (resp. 2-edges) incident with a vertex v by d1(v) (resp. d2(v)). For
an edge uv, we denote by A2(uv) the number of available 2-colors, i.e. , the 2-colors with
which the edge can be colored without violating the coloring requirements.

page 180 Dimitri Lajou

Chapter 7. Between proper and strong edge-colorings of subcubic graphs

Sometimes, we will need a more careful analysis for choosing colors from the lists of
available colors. For that purpose, we will use the classical result due to Hall [90].

Theorem 7.6 (Hall’s Theorem [90]). Let A = (Ai)i∈I be a finite family of (not necessarily
distinct) subsets of a finite set A. A system of representatives for the family A is a set
{ai, i ∈ I} of distinct elements of A such that ai ∈ Ai for all i ∈ I. A has a system of
representatives if and only if |⋃i∈J Ai| ≥ |J | for all subsets J of I.

Perhaps the strongest tool for determining if one can always choose colors from the
lists of available colors such that given conditions are satisfied is the Combinatorial Null-
stellensatz (see Section 1.4.4).

Theorem 1.77 (Combinatorial Nullstellensatz [4]). Let F be an arbitrary field, and let
P = P (X1, . . . , Xn) be a polynomial in F[X1, . . . , Xp]. Suppose that the coefficient of a
monomial Xk1

1 . . . Xkp
p , where each ki is a non-negative integer, is non-zero in P and the

degree deg(P) of P equals ∑p
i=1 ki.

If moreover S1, . . . , Sp are any subsets of F with |Si| > ki for i = 1, . . . , p, then there
are s1 ∈ S1, . . . , sp ∈ Sp so that P (s1, . . . , sp) ̸= 0.

When considering lists of available colors for an edge, we are in fact dealing with
the list version of the packing edge-coloring. In each use case, we actually apply the
Combinatorial Nullstellensatz with 2-colors, thus limiting ourselves to the list version of
strong edge-coloring. For any list edge-assignment L, if a graph G admits a strong edge-
coloring σ such that σ(e) ∈ L(e) for all edges in E(G), then we say that G is strong
L-edge-choosable or σ is a strong L-edge-coloring of G. The graph G is strong k-edge-
choosable if it is strong L-edge-choosable for every k-list edge-assignment L. The strong
edge-choosability ch′

2(G) of G is the minimum k such that G is strong k-edge-choosable.
We will use the following result, due to Horňák and Woźniak [200], which deals with

adjacent vertex-distinguishing list edge-coloring of cycles, i.e. proper list edge-coloring
where the sets of colors for every pair of adjacent vertices are distinct (see Chapter 9). It
is easy to see that such a coloring is also a strong edge-coloring of a cycle, and we write
the statement in this language.

Theorem 7.7 (Horňák and Woźniak [200]). Let n be an integer with n ≥ 3. We have:

1. ch′
2(Cn) = 5 if n = 5,

2. ch′
2(Cn) = 4 if n ̸≡ 0 (mod 3),

3. ch′
2(Cn) = 3 if n ≡ 0 (mod 3).

7.2 Proofs of Theorem 7.5.1 and Theorem 7.5.3
We begin with the cases of Theorem 7.5 using two 1-colors. These two cases provide
straightforward extensions of the results by Gastineau and Togni [84], who established
them for bridgeless cubic graphs. The extension comes from the following easy observa-
tion.

Proposition 7.8. Let G be a connected subcubic graph and let X be a set of edges in
G such that every two edges in X are at distance exactly 2 from each other. Then, X
contains at most five edges. Moreover, if |X| = 5, then G is a cubic graph with 10 vertices.

On various graph coloring problems page 181

7.3. Proof of Theorem 7.5.2

Proof. Let X be a set of edges in a subcubic graph G satisfying assumptions of the
proposition. Each edge e ∈ X, has at most four adjacent edges, say e1, e2, e3, and e4.
Each edge ei, 1 ≤ i ≤ 4, can be adjacent to at most one other edge from X, since otherwise
there would be two edges at distance 1 in X. This means, X contains at most five edges.

In the case where |X| = 5, every edge of G not in X and adjacent to an edge of X,
connects two edges of X, hence every vertex of G is an end-vertex of some edge from X
and thus the number of vertices in G is 10. Since every edge from X is adjacent to four
edges, we infer that G is cubic.

Now, we are ready to prove Theorem 7.5.1 and Theorem 7.5.3.

Proof of Theorem 7.5.1 and Theorem 7.5.3. We begin with Theorem 7.5.1. Let G be a
subcubic graph (we may assume it is connected) and let π be a (1, 1, 1, 2)-packing edge-
coloring of G (which exists by Theorem 7.2). To establish the statement, we only need to
replace one 1-color in π with four 2-colors. Let X be the set of all the edges in G colored
by one 1-color in π, and let G∗ be the graph obtained from G by contracting all the edges
in X (and removing loops that are created in the process). Clearly, G∗ has maximum
degree at most 4, and it is 4-colorable by Brooks’ Theorem, unless it is isomorphic to
K5. Observe that the vertex coloring of G∗ induces a strong edge-coloring of the edges
in X. Furthermore, by Proposition 7.8, the only graphs in which it may happen that
five colors are needed to color G∗, are cubic with 10 vertices. For these graphs we have
determined (using a computer) that they admit a (1, 1, 24)-packing edge-coloring. This
establishs Theorem 7.5.1.

Theorem 7.5.3 follows immediately from the argument above, since we do not have an
extra 2-color in the coloring π.

7.3 Proof of Theorem 7.5.2
In order to prove Theorem 7.5.2, we prove a bit stronger result. We say that a (1, 28)-
packing edge-coloring of a subcubic graph G with the color set {0, 1, . . . , 8}, where 0 is a
1-color and the others are 2-colors, is a good (1, 28)-packing edge-coloring if no 2−-vertex
of G is incident with a 1-edge (i.e. an edge colored 0).

Theorem 7.9. Every subcubic graph admits a good (1, 28)-packing edge-coloring.

Proof. We prove Theorem 7.9 by contradiction. Let G be a minimal counter-example
to the theorem in terms of |V (G)| + |E(G)|. Clearly, G is connected and has maximum
degree 3. In the following claims, we establish some structural properties of G which
will eventually yield a contradiction with the existence of G. In most of the claims, we
consider a graph G′ smaller than G, which, by minimality of G, admits a good (1, 28)-
packing edge-coloring π, and we show that π can be extended to G by recoloring some
edges of G′ and coloring the edges of G not being colored by π.

We start by proving that G is a simple 2-connected cubic graph.
Claim 7.10. G is simple.
Proof. Suppose there are vertices u and v in G connected by at least two parallel edges.
Let e be one of these edges. Remove e from G to obtain a smaller graph G′, and let π be
a good (1, 28)-packing edge-coloring of G′. We can extend π to G, since A2(e) ≥ 1, and
hence there is an available 2-color for e.

page 182 Dimitri Lajou

Chapter 7. Between proper and strong edge-colorings of subcubic graphs

Loops can be removed in a similar fashion. ■

Claim 7.11. G is cubic.

Proof. Suppose first that there exists a 1-vertex v adjacent to a vertex u in G. By
minimality of G, there exists a good (1, 28)-packing edge-coloring π of G′ = G − v,
meaning u is not incident with a 1-edge. We can extend π to G, by coloring uv with any
of the (at least two) 2-colors that do not appear in the 2-edge-neighborhood of u. Hence,
G does not contain 1-vertices.

Suppose now that there exists a 2-vertex v adjacent to two vertices u and w. By
minimality of G, G′ = G− v admits a good (1, 28)-packing edge-coloring π, and hence u
and w are not incident with a 1-edge. We show that π can be extended to G as follows.
First observe that if A2(uv) ≥ 2 and A2(vw) ≥ 1, or A2(uv) ≥ 1 and A2(vw) ≥ 2, then π
can be extended and we are done. So, we may assume A2(uv) ≤ 1 and A2(vw) ≤ 1. It
follows that u and w are both 3-vertices in G, and moreover, u and w are not adjacent.
Next, let u1 and u2 be the neighbors of u distinct from v, and analogously, let w1 and
w2 be the neighbors of w. By the above argument, d2(u1) + d2(u2) ≥ 5, meaning that
at least one of u1 and u2 is a 3-vertex not incident with a 1-edge, say u1. Moreover, u1
is not adjacent to w. Now, we recolor uu1 with 0. By an analogous argument, we can
recolor one of the edges adjacent to w with 0, obtaining a contradiction on the number of
available colors. Hence, π can be extended to G. ■

Claim 7.12. G is 2-connected.

Proof. Since G is cubic, the claim is equivalent to saying that G is bridgeless. Suppose
the contrary and let uv be a bridge in G. Let Gu (resp. Gv) be the component of G− uv
containing u (resp. v). By minimality of G, there is a good (1, 28)-packing edge-coloring
πu of Gu + uv and a good (1, 28)-packing edge-coloring πv of Gv + uv. The edge uv is
in both cases colored with a 2-color. Now, we permute (if necessary) the 2-colors in the
coloring πv so that the color of uv is the same in both colorings, πu and πv, and the colors
on the other two edges incident with v are distinct from the colors on the other two edges
incident with u (except possibly the color 0). In this way, we obtain a good (1, 28)-packing
edge-coloring of G, a contradiction. ■

From now on, we show that G has girth greater than any constant k ∈ N. Hence, we
show that G is a 2-connected cubic tree, a contradiction.

We start by showing that the graph has no triangles and no 4-cycles.
Claim 7.13. G does not contain triangles.

Proof. Suppose the contrary and let C = uvw be a triangle in G. If C is adjacent to two
other triangles, then G is the complete graph on four vertices, and hence (1, 28)-packing
edge-colorable. So, we may assume C is adjacent to at most one triangle. We consider
two cases.

Suppose first that C is adjacent to a triangle C ′ = uvx. Let w′ and x′ be the neighbors
of w and x, respectively, distinct from u and v. Since G is bridgeless, by Claim 7.12,
w′ ̸= x′. Now, by minimality of G, there is a good (1, 28)-packing edge-coloring π of
G − {uv, vw,wx, xu} + w′x′ (if w′x′ are already connected, we add a parallel edge). Let
π(w′x′) = a and consider the coloring of G induced by π by coloring xx′ and ww′ by a.
The edges uw, ux, vw, and vx have each at least five available 2-colors, while the edge
uv has at least seven available 2-colors. This means that we are always able to extend π
to G. Thus, C is not adjacent to any triangle.

On various graph coloring problems page 183

7.3. Proof of Theorem 7.5.2

v

u w

v′

u′ w′
1

4

7

6 5

2

3 α

β

Figure 7.4: In a triangle where all three pendent edges are colored with a 2-color, we cannot
forbid the same 2-color on all three edges.

Hence, the third neighbors of u, v, and w (denote them u′, v′, and w′, resp.), are all
distinct. Let G′ be the graph obtained from G by removing C and adding a new vertex
x adjacent to the vertices u′, v′, and w′. Let π be a good (1, 28)-packing edge-coloring of
G′ and let a = π(u′x), b = π(v′x), and c = π(w′x). Let φ be the partial coloring of G
induced by π, and set φ(u′u) = a, φ(v′v) = b, and φ(w′w) = c. Notice that only the edges
uv, uw, and vw are not colored yet in φ, and each of them has at most seven colored
neighbors in its 2-edge-neighborhood. If 0 ∈ {a, b, c}, say a = 0, then for each edge of C
there are two available 2-colors, and moreover, the edge vw can be colored with 0, so φ
can be extended to all the edges.

Hence, we may assume a, b, and c are all 2-colors and moreover, they all have the
same one 2-color available, otherwise φ can be extended to all the edges using the color 0
and two of the available 2-colors. This means that every non-colored edge must see the
same seven colors in its colored 2-edge-neighborhood. Suppose uv has 7 distinct colors
in its 2-edge-neighborhood (as depicted in Figure 7.4). Then, in order to have the same
forbidden colors for uw and vw, it must hold that {α, β} = {5, 6} and {α, β} = {2, 3},
respectively. We obtain a contradiction and so φ can always be extended to all the edges
of G. ■

Claim 7.14. G does not contain 4-cycles.

Proof. We again proceed by contradiction. Suppose there is a 4-cycle C = uvwz in G.
Let u′, v′, w′, and z′ be the neighbors of u, v, w, and z, respectively which do not belong
to C. Since G has girth at least 4, the eight edges uv, vw, wz, zu, uu′, vv′, ww′, and
zz′ are distinct. Note that it is possible for the vertices u′ and w′ (resp. v′ and z′) to be
equal; in such a case, there is at least one more 2-color available for the uncolored edges
at distance two from this vertex. This counter-balance the fact that we may need to use
one more 2-color on the edges incident with this vertex. Therefore, we can assume that
u′, v′, w′ and z′ are distinct. We construct the graph G′ = (G \ V (C)) ∪ {u′w′, v′z′} (see
Figure 7.5(b)). By minimality of G, G′ admits a good (1, 28)-packing edge-coloring π,
and we show that we can always extend π to all the edges of G. We consider three cases

page 184 Dimitri Lajou

Chapter 7. Between proper and strong edge-colorings of subcubic graphs

z

z′

u

u′

v

v′

w

w′

(a)

z′

u′ v′

w′

(b)

Figure 7.5: A 4-cycle with its neighborhood in G (a), and its replacement in the graph G′ (b).

regarding the colors of the edges u′w′ and v′z′ in π.

• Both u′w′ and v′z′ are colored with the 1-color 0. Then the coloring φ of G induced
by π has only the edges of C non-colored, while the four pendent edges of C (the
edges with one end-vertex in C) are colored with 0. This means that there are at
least four available 2-colors for every edge of C, so we can complete the coloring by
Theorem 7.6.

• One of the edges, say u′w′, is colored with 0, and the others with a 2-color, say 1.
Then, in the induced coloring φ, we have φ(u′u) = φ(w′w) = 0 and φ(v′v) =
φ(z′z) = 1. Now, the color 1 appears on two edges of every 2-edge-neighborhood of
the edges of C. So, each of them has at least three available 2-colors. We consider
two subcases. If the union of all sets of available colors contains at least four distinct
colors, we can always choose distinct colors for all the edges, by Hall’s theorem.
So, we may assume that all four edges have the same set of three available colors,
say {6, 7, 8}. This means that on the edges incident to u′ and v′ there are colors 2,
3, 4, and 5. The same four colors must appear on the edges incident to v′ and w′,
but this implies that at least two edges of the same 2-color are at distance 2 in G′,
a contradiction.

• Both, u′w′ and v′z′, are colored with some 2-color. In this case, we may color two
opposite edges of C with the color 0. The remaining two non-colored edges have
at least two available colors each, so we can always complete the coloring. This
completes the proof of the claim.

■

We can now forbid cycles of greater length.
Claim 7.15. G contains no cycle of length at least 5.
Proof. Suppose the contrary and let C = u1u2 . . . un be a minimal induced n-cycle in G,
with n ≥ 5. For every i, 1 ≤ i ≤ n, let u′

i be the neighbor of the vertex ui not in C, and
let G′ = G \ V (C). Note that the u′

i are pairwise distinct by minimality of C. Then, by

On various graph coloring problems page 185

7.4. Proof of Theorem 7.5.4

minimality of G, there is a good (1, 28)-packing edge-coloring π of G′. Since π is good, no
u′
i is incident with the color 0. So, in the coloring φ of G induced by π, we can color every

edge uiu′
i with 0. In this way, only the edges of C are left non-colored and each edge of

C has at least four 2-colors available.
Suppose first that n = 5. We can color C, except if all five edges have the same four

2-colors available. If we are in this case, then suppose that 1 and 2 are the two colors on
the edges incident to u′

1, and 3 and 4 are the two colors on the edges incident to u′
2. Then

{1, 2} must also be on the edges incident to u′
3, {3, 4} on the edges incident to u′

4, and
again {1, 2} on the edges incident to u′

5. Thus the edge u1u5 has five available 2-colors, a
contradiction.

If n ≥ 6, then we can complete the coloring by Theorem 7.7, a contradiction. ■

By Claims 7.11-7.15, G is a cubic bridgeless graph without cycles, a contradiction.
This concludes the proof of Theorem 7.9.

7.4 Proof of Theorem 7.5.4
We split this section into two parts. First, we introduce notation and auxiliary results,
and then use them to prove Theorem 7.5.4 in a stronger setting.

7.4.1 Auxiliary results
To show that certain graphs are strongly edge-colorable from given lists, we will use
the Combinatorial Nullstellensatz, i.e. Theorem 1.77. For this purpose we introduce the
following. For two positive integers k and ℓ, where k ≤ ℓ, we define the polynomial Pk,ℓ
as follows:

Pk,ℓ(Xk, . . . , Xℓ) = (Xk+1 −Xk) ·
ℓ∏

i=k+2
(Xi −Xi−2)(Xi −Xi−1) . (7.1)

If k = ℓ, by convention we take Pk,ℓ(Xk) = 1. Furthermore, for a monomial m, we denote
by pk,ℓ(m) the coefficient of m in the polynomial Pk,ℓ.

Proposition 7.16. For k + 2 ≤ ℓ, we have the following equalities:

pk,ℓ

Xk

 ℓ−2∏
i=k+1

X2
i

Xℓ−1Xℓ

 =


−1 if ℓ− k ≡ 0 (mod 3),

1 if ℓ− k ≡ 1 (mod 3),
0 if ℓ− k ≡ 2 (mod 3),

(7.2)

pk,ℓ

Xk

 ℓ−1∏
i=k+1

X2
i

 =


0 if ℓ− k ≡ 0 (mod 3),
−1 if ℓ− k ≡ 1 (mod 3),

1 if ℓ− k ≡ 2 (mod 3),
(7.3)

pk,ℓ

Xk

 ℓ−2∏
i=k+1

X2
i

Xℓ−1Xℓ

 = − pk,ℓ

XkXk+1

 ℓ−1∏
i=k+2

X2
i

Xℓ

 , (7.4)

page 186 Dimitri Lajou

Chapter 7. Between proper and strong edge-colorings of subcubic graphs

pk,ℓ

Xk

 ℓ−1∏
i=k+1

X2
i

 = − pk,ℓ

 ℓ−1∏
i=k+1

X2
i

Xℓ

 . (7.5)

Proof. First, note that by shifting the indices we can assume, without loss of generality,
that k = 1. Next, let aℓ = p1,ℓ(X1X

2
2 . . . X

2
ℓ−2Xℓ−1Xℓ) and bℓ = p1,ℓ(X1X

2
2 . . . X

2
ℓ−2X

2
ℓ−1).

By expanding the factor (Xℓ−Xℓ−2)(Xℓ−Xℓ−1) of P1,ℓ, we obtain the following equalities
on aℓ and bℓ for ℓ ≥ 3:

aℓ = −p1,ℓ−1(X1X
2
2 . . . X

2
ℓ−3Xℓ−2Xℓ−1)− p1,ℓ−1(X1X

2
2 . . . X

2
ℓ−3X

2
ℓ−2)

= −aℓ−1 − bℓ−1,

bℓ = p1,ℓ−1(X1X
2
2 . . . X

2
ℓ−3Xℓ−2Xℓ−1)

= aℓ−1.

Thus,
aℓ = −aℓ−1 − aℓ−2 .

Moreover, a1 = 1 and a2 = 0, thus a3 = −1. By induction, we infer Equalities (7.2)
and (7.3) for aℓ and bℓ.

Symmetrically, by expanding the factor (X3−X1)(X2−X1) of P1,ℓ, we infer analogous
recurrences, and consequently Equalities (7.4) and (7.5) follow. We omit the proof.

A graph with k distinct edges e1, . . . , ek is an (a1, a2, . . . , ak)-graph if its i-th edge ei
is associated with a list of colors Li of size at least ai. We say that an (a1, a2, . . . , ak)-
graph is strongly choosable (or (a1, a2, . . . , ak)-choosable) if it admits a strong edge-coloring
verifying that the color of ei belongs to Li for every assignment of Li’s. A (a1, a2, . . . , ak)-
path is an (a1, a2, . . . , ak)-graph which is a path.

To simplify the notation, we denote repetitions of same elements using exponents e.g.,
a (2, 3, 3, 3, 1)-path is abbreviated as a (2, 33, 1)-path.

Now, we show strong choosability of several configurations that will be used later in
the proof.

Lemma 7.17. For any positive integer ℓ, ℓ ≥ 3, a path of length ℓ is

1. (2, 2, 3ℓ−3, 2)-choosable if ℓ ̸≡ 0 (mod 3),
2. (2, 3ℓ−2, 2)-choosable.

Proof. Let P be an ℓ-path with the consecutive edges e1, . . . , eℓ, each edge ei having a
list of available colors Li for every i, 1 ≤ i ≤ ℓ. Moreover, to each edge ei, 1 ≤ i ≤ ℓ, we
associate the variable Xi.

Consider the first case. By Theorem 1.77, if the coefficient of X1X2
(∏ℓ−1

i=3 X
2
i

)
Xℓ is

non-zero, then there is a solution (x1, . . . , xℓ) ∈ L1×· · ·×Lℓ such that P1,ℓ(x1, . . . , xℓ) ̸= 0.
By Equation (7.2) of Proposition 7.16, this coefficient is non-zero if and only if ℓ− 1 ̸≡ 2
(mod 3), thus only in the case when ℓ is not a multiple of 3. This proves the first case.

Now, we proceed with the second case. If P is a (2, 3ℓ−2, 2)-path, then it is also a
(2, 2, 3ℓ−3, 2)-path. Thus, by the first case, it suffices to consider the case where ℓ is a
multiple of 3. By Equation (7.3) of Proposition 7.16, the coefficient of X1

(∏ℓ−1
i=2 X

2
i

)
is 1

if ℓ ≡ 0 (mod 3), and so, by Theorem 1.77, P is strongly edge-colorable from its lists.
This completes the proof.

On various graph coloring problems page 187

7.4. Proof of Theorem 7.5.4

u0

u1

u2

u3 un−3

un−2

un−1

un

Figure 7.6: The graph Dn. Note that we do not color the edge u1un−1 when considering this
configuration.

Note that in the second case of Lemma 7.17 we proved a stronger result; namely, a
(2, 3ℓ−2, 1)-path is strongly choosable if ℓ ≡ 0 (mod 3).

Proposition 7.18. For a positive integer ℓ, let X be a set of colors with |X| = 3,
and P be a (2, 3, . . . , 3, a)-path of length 3ℓ + 1, with a ∈ {2, 3}, such that Li ⊆ X for
every i ∈ {1, . . . , 3ℓ + 1}. If σ is a strong edge-coloring of P with σ(ei) ∈ Li, then
σ(e1) = σ(e3ℓ+1) ∈ L1 ∩ L3ℓ+1.

Proof. Without loss of generality, let X = {1, 2, 3}, L0 = {1, 2}, and σ(e1) = 1. Then,
σ(e2), σ(e3) ∈ {2, 3}, and hence σ(e4) = 1. By induction, σ(e3j+1) = 1 and σ(e3j−1), σ(e3j) ∈
{2, 3}. Thus, σ(e3ℓ+1) = 1 = σ(e1).

Given an n-path P = u0u1 . . . un, we define the graph Dn as the graph obtained from
P by adding the edge u1un−1 (see Figure 7.6). In Dn, we will only color the edges of the
initial path but with restrictions established also by the edge u1un−1.

Now, we define polynomials that will be used in proving the strong choosability of Dn.
For an integer n, n ≥ 5, we define the following:

Cn(X1, . . . , Xn) = (X1−Xn−1)(X1−Xn)(X2−Xn)(X2−X1)
n∏
i=3

(
(Xi−Xi−2)(Xi−Xi−1)

)
,

and
Dn(X1, . . . , Xn) = Cn · (X2 −Xn−1) .

Note that they correspond to the coloring polynomial of the edges of Cn and Dn. For
example, if (x1, . . . , xn) is a non-zero solution of Cn, then it corresponds to a valid strong
edge-coloring of the cycle of length n where c(ei) = xi. For a monomial m, by cn(m) we
denote the coefficient of m in Cn. Similarly, dn(m) is the coefficient of m in Dn.

Lemma 7.19. For every integer n, n ≥ 10, Dn is (3, 4, 2, 3, 5, 3, 2, 3n−9, 4, 2)-choosable.

Proof. By Theorem 1.77, it suffices to show

dn(X2
1X

3
2X3X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−2X

3
n−1Xn) ̸= 0 .

page 188 Dimitri Lajou

Chapter 7. Between proper and strong edge-colorings of subcubic graphs

By the definition of Dn, we have

dn(X2
1X

3
2X3X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−2X

3
n−1Xn)

= cn(X2
1X

2
2X3X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−2X

3
n−1Xn)− cn(X2

1X
3
2X3X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−2X

2
n−1Xn).

Let
α = cn(X2

1X
2
2X3X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−2X

3
n−1Xn)

and
β = −cn(X2

1X
3
2X3X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−2X

2
n−1Xn).

We consider the values of α and β separately.
Claim 7.20. For every integer n ≥ 10, we have α = 0.
Proof. Suppose to the contrary that there is some n for which α ̸= 0. Then by The-
orem 1.77, a (3, 3, 2, 3, 5, 3, 2, 3n−9, 4, 2)-cycle is strongly choosable. To reach a contra-
diction, we will find a (3, 3, 2, 3, 5, 3, 2, 3n−9, 4, 2)-cycle, for every n, which is not strongly
choosable.

We distinguish three cases depending on the value of n (mod 3).

• Suppose n ≡ 0 (mod 3). Set L1 = {1, 2, 3}, L2 = {1, 2, 3}, L3 = {2, 3}, L4 =
{1, 2, 3}, L5 = {1, 2, 3, 4, 5}, L6 = {1, 3, 4}, L7 = {1, 4}, L8 = {1, 3, 4}, . . . , Ln−3 =
{1, 3, 4}, Ln−2 = {2, 3, 4}, Ln−1 = {1, 2, 3, 4}, and Ln = {1, 2} (see Figure 7.7(a)).
By Proposition 7.18, using the path e3, e2, e1, en, we have σ(en) = σ(e3) = 2. Then,
the color 2 is forbidden in Ln−2, so we may assume Ln−2 = {3, 4}. By using
Proposition 7.18 on the path e7, e8, . . . , en−3, en−2, we infer σ(en−2) = σ(e7) = 4.
Now, since there are only colors 1 and 3 to color e1, e2, and e4, by symmetry, we
may set σ(e1) = σ(e4) = 1 and σ(e2) = 3. This forces σ(en−1) = 3. Now the colors
for the edges en−3, . . . , e8, and e6 are forced and σ(e6) = 1. But, e4 and e6 are at
distance 2, so the cycle cannot be colored.

• Suppose n ≡ 1 (mod 3). Set L1 = {1, 2, 3}, L2 = {1, 2, 3}, L3 = {2, 3}, L4 =
{2, 3, 5}, L5 = {1, 2, 3, 4, 5}, L6 = {1, 4, 5}, L7 = {1, 4}, L8 = {1, 3, 4}, . . . , Ln−3 =
{1, 3, 4}, Ln−2 = {1, 2, 4}, Ln−1 = {1, 2, 3, 4}, and Ln = {1, 2} (see Figure 7.7(b)).
Again, using the path e3, e2, e1, en, by Proposition 7.18, we have σ(en) = c(e3) = 2.
Similarly, using the path e7, e8, . . . , en−3, we infer σ(en−3) ∈ {1, 4}. Now, σ(en−2)
and σ(en−3) both belong to {1, 4} and thus σ(en−1) = 3. Hence, we deduce the
following colors: σ(e1) = 1, σ(e2) = 3, σ(e4) = 5, σ(en−4) = 3, . . . , σ(e9) = 3,
σ(e7), σ(e8) ∈ {1, 4}, and σ(e6) = 5. But, e4 and e6 are at distance 2, and so the
cycle cannot be colored.

• Suppose n ≡ 2 (mod 3). Set L1 = {1, 2, 3}, L2 = {1, 2, 3}, L3 = {2, 3}, L4 =
{1, 2, 3}, L5 = {1, 2, 3, 4, 5}, L6 = {1, 3, 4}, L7 = {1, 3}, L8 = {1, 3, 4}, . . . , Ln−4 =
{1, 3, 4}, Ln−2 = {1, 3, 4}, Ln−2 = {1, 2, 3}, Ln−1 = {1, 2, 3, 4}, and Ln = {1, 2} (see
Figure 7.7(c)).
Using the path e3, e2, e1, en, by Proposition 7.18, we again have σ(en) = c(e3) = 2,
and hence σ(en−2) ∈ {1, 3}. Then, using the path e7, e8, . . . , en−4, we infer σ(en−4) ∈
{1, 3}. Now, σ(en−2) and σ(en−4) both belong to {1, 3} thus σ(en−3) = 4. After
coloring these three edges, we can assume σ(en−1) = 1. It follows that we have
σ(e1) = 3, σ(e2) = 1, σ(e4) = 3, σ(en−2) = 3, σ(en−4) = 1, . . . , σ(e9) = 3, σ(e8) = 4,

On various graph coloring problems page 189

7.4. Proof of Theorem 7.5.4

e1

e2

e3
e4

e5

e6

e7

e8

e9

en

en−1

en−2

en−3en−4

· · ·

123

1
2

3

2
3

1
2
3

1
2
3
4
5

1 3 4
1 4

1 3 4

1 3 4

1
3
4

1
3
4

1
3

4 2
3

4 1234
12

(a) Case: n ≡ 0 (mod 3).

e1

e2

e3
e4e5

e6

e7

e8

e9

en

en−1

en−2

en−3en−4
en−5

· · ·

123

123

2
3

2
3
5

1
2
3
4
5

1 4 51 4

1 3 4

1 3 4

1 3 4

1
3
4

1
3
4

1
3

4 124 1234
12

(b) Case: n ≡ 1 (mod 3).

e1

e2

e3
e4e5

e6

e7

e8

e9

en

en−1

en−2

en−3
en−4en−5

en−6

· · ·

123

123

2
3

2
3
5

1
2
3
4
5

1
4

51 4
1 3 4

1 3 4

1 3 4

1
3

4

1
3
4

1
3
4

1
3

4 124 1234
12

(c) Case: n ≡ 2 (mod 3).

Figure 7.7: Three cases for cycles of length n which are not (3, 3, 2, 3, 5, 3, 2, 3n−9, 4, 2)-
choosable depending on the value of n (mod 3). For each cycle, the edge ei is given the list
corresponding to the numbers present between the edge and the ‘center” of the cycle. For ex-
ample, in Figure 7.7(a), the edge e4 is given the list {1, 2, 3} while the edge e5 is given the list
{1, 2, 3, 4, 5}. These lists can also be found in the proof of Claim 7.20.

page 190 Dimitri Lajou

Chapter 7. Between proper and strong edge-colorings of subcubic graphs

σ(e7) = 1, and σ(e6) = 3. But e4 and e6 are at distance 2, and so the cycle cannot
be colored.

Since there are non-strongly edge-colorable cycles for every length n, we obtain a contra-
diction. Thus α = 0. ■

Claim 7.21. For every integer n ≥ 12, we have β ̸= 0.
Proof. We first define the polynomial Qn as

Qn =(Xn−1 −Xn−2)(Xn−1 −Xn−3)(Xn −Xn−1)(Xn −Xn−2)
(X1 −Xn−1)(X1 −Xn)(X2 −Xn).

Observe that Cn = Qn × P1,n−2. Since P1,n−2 does not contain Xn−1 and Xn, it suffices
to find the coefficients of Qn having X2

n−1Xn as a factor to calculate β. Let us write
Qn = ∑

i,j
X i
n−1X

j
nRn,i,j, where Rn,i,j is a polynomial in X1, . . . , Xn−2. We have

Rn,2,1 =X2
1X2Xn−3 +X2

1Xn−3Xn−2 +X1X2Xn−3Xn−2

+X2
1X

2
n−2 +X1Xn−3X

2
n−2 +X2Xn−3X

2
n−2 .

For a monomial m, we denote by rn,2,1(m) the coefficient of m in Rn,2,1(m). So, we may
write β as

β = −cn(X2
1X

3
2X3X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−2X

2
n−1Xn)

= −rn,2,1(X2
1X2Xn−3) ·

β1︷ ︸︸ ︷
p1,n−2(X2

2X3X
2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3X

2
n−2)

− rn,2,1(X2
1Xn−3Xn−2) ·

β2︷ ︸︸ ︷
p1,n−2(X3

2X3X
2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3Xn−2)

− rn,2,1(X1X2Xn−3Xn−2) ·
β3︷ ︸︸ ︷

p1,n−2(X1X
2
2X3X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3Xn−2)

− rn,2,1(X2
1X

2
n−2) ·

β4︷ ︸︸ ︷
p1,n−2(X3

2X3X
2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4X

2
n−3)

− rn,2,1(X1Xn−3X
2
n−2) ·

β5︷ ︸︸ ︷
p1,n−2(X1X

3
2X3X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3)

− rn,2,1(X2Xn−3X
2
n−2) ·

β6︷ ︸︸ ︷
p1,n−2(X2

1X
2
2X3X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3)

= −(β1 + β2 + β3 + β4 + β5 + β6).

(7.6)

It remains to determine the coefficients of P1,n−2 for the monomials appearing in
Equation (7.6). We compute them by reducing them in simpler forms. In particular, we
make use of the facts that

Pk,ℓ(Xk, . . . , Xℓ) = (Xk+1 −Xk)(Xk+2 −Xk) · Pk+1,ℓ(Xk+1, . . . , Xℓ),

Pk,ℓ(Xk, . . . , Xℓ) = (Xℓ −Xℓ−1)(Xℓ −Xℓ−2) · Pk,ℓ−1(Xk, . . . , Xℓ−1) .
and that X5 must appear in four terms of P1,n−2, meaning that X5 must be chosen in
each of these terms when we expand the polynomial. The same is true for X1 when it is
raised to the power 3 as it appears in three terms.

On various graph coloring problems page 191

7.4. Proof of Theorem 7.5.4

Let us now compute the six coefficients.

β1 = p1,n−2(X2
2X3X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3X

2
n−2)

= p2,n−2(X2X
2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3X

2
n−2)

= −p3,n−2(X4X
4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3X

2
n−2)

= −p4,n−2(X3
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3X

2
n−2)

= −p5,n−2(X2
5X6X7X

2
8 . . . X

2
n−4Xn−3X

2
n−2)

= −p6,n−2(X6X7X
2
8 . . . X

2
n−4Xn−3X

2
n−2)

= −p6,n−3(X6X7X
2
8 . . . X

2
n−4Xn−3)

=


−1 if n ≡ 0 (mod 3),
1 if n ≡ 1 (mod 3), by Proposition 7.16: Equations (7.4) and (7.2)
0 if n ≡ 2 (mod 3).

β2 = p1,n−2(X3
2X3X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3Xn−2)

= p2,n−2(X2
2X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3Xn−2)

= p3,n−2(X2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3Xn−2)

= p4,n−2(X4X
3
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3Xn−2)

= −p5,n−2(X2
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3Xn−2)

= −p6,n−2(X2
6X7X

2
8 . . . X

2
n−4Xn−3Xn−2)

= −p7,n−2(X7X
2
8 . . . X

2
n−4Xn−3Xn−2)

=


1 if n ≡ 0 (mod 3),
−1 if n ≡ 1 (mod 3), by Proposition 7.16: Equation (7.2)
0 if n ≡ 2 (mod 3).

β3 = p1,n−2(X1X
2
2X3X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3Xn−2)

= −p2,n−2(X2
2X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3Xn−2)

− p2,n−2(X2X3X
2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3Xn−2)

= −β2 + p3,n−2(X3X4X
4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3Xn−2)

+ p3,n−2(X2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3Xn−2)

= −β2 − p4,n−2(X4X
3
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3Xn−2) + β2

= p5,n−2(X2
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3Xn−2)

= p6,n−2(X2
6X7X

2
8 . . . X

2
n−4Xn−3Xn−2)

= p7,n−2(X7X
2
8 . . . X

2
n−4Xn−3Xn−2)

=


−1 if n ≡ 0 (mod 3),
1 if n ≡ 1 (mod 3), by Proposition 7.16: Equation (7.2)
0 if n ≡ 2 (mod 3).

Note that when reducing p4,n−2, we used the fact that X4
5 cannot appear in any monomial

of P4,n−2. Similarly, Xk has at most power 2 in the monomials of Pk,ℓ.

page 192 Dimitri Lajou

Chapter 7. Between proper and strong edge-colorings of subcubic graphs

β4 = p1,n−2(X3
2X3X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4X

2
n−3)

= p2,n−2(X2
2X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4X

2
n−3)

= p3,n−2(X2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4X

2
n−3)

= p4,n−2(X4X
3
5X

2
6X7X

2
8 . . . X

2
n−4X

2
n−3)

= −p5,n−2(X2
5X

2
6X7X

2
8 . . . X

2
n−4X

2
n−3)

= −p6,n−2(X2
6X7X

2
8 . . . X

2
n−4X

2
n−3)

= −p7,n−2(X7X
2
8 . . . X

2
n−4X

2
n−3)

= −p7,n−3(X7X
2
8 . . . X

2
n−5Xn−4Xn−3)

=


0 if n ≡ 0 (mod 3),
1 if n ≡ 1 (mod 3), by Proposition 7.16: Equation (7.2)
−1 if n ≡ 2 (mod 3).

β5 = p1,n−2(X1X
3
2X3X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3)

= −p2,n−2(X2
2X3X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3)

= −p3,n−2(X3X
2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3)

= −p4,n−2(X2
4X

3
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3)

= −p5,n−2(X3
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3)

= 0 as there is no monomial with X3
5 in P5,n−2.

β6 = p1,n−2(X2
1X

2
2X3X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3)

= p2,n−2(X2
2X3X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3)

= p3,n−2(X3X
2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−4Xn−3)

= −β5

= 0.

Hence, inserting the values in Equation (7.6), we obtain

β =


1 if n ≡ 0 (mod 3),
−2 if n ≡ 1 (mod 3),
1 if n ≡ 2 (mod 3).

■

From Claims 7.20 and 7.21, we have

dn(X2
1X

3
2X3X

2
4X

4
5X

2
6X7X

2
8 . . . X

2
n−2X

3
n−1Xn) = α− β ̸= 0 .

This establishes the lemma.

For smaller values of n, we prove another result.

On various graph coloring problems page 193

7.4. Proof of Theorem 7.5.4

Lemma 7.22. For every integer n, n ∈ {6, 7, 9, 10}, Dn is (3, 4, 3n−4, 4, 3)-choosable. For
n ∈ {8, 11}, Dn is (3, 3, 3, 5, 3n−7, 2, 4, 3)-choosable.

Proof. To prove the lemma, we again use Theorem 1.77 and for each n ∈ {6, 7, 8, 9}, we
provide a monomial mn such that dn(mn) ̸= 0 in Dn.

• d6(X2
1X

3
2X

2
3X

2
4X

2
5X

2
6) = 2,

• d7(X2
1X

3
2X

2
3X

2
4X

2
5X

2
6X

2
7) = 1,

• d8(X2
1X

2
2X

2
3X

3
4X

2
5X6X

3
7X

2
8) = −1,

• d9(X2
1X

3
2X

2
3X

2
4X

2
5X

2
6X

2
7X

2
8X

2
9) = 2,

• d10(X2
1X

3
2X

2
3X

2
4X

2
5X

2
6X

2
7X

2
8X

2
9X

2
10) = 1,

• d11(X2
1X

2
2X

2
3X

3
4X

2
5X

2
6X

2
7X

2
8X9X

3
10X

2
11) = −1.

It is easy to verify that the degree of every variable is less than the number of available
colors assumed by the lemma, and thus we infer the desired choosabilities of Dn.

7.4.2 Proof
Recall that in Theorem 7.5.4, we assume the graph is class I. In our proof, this is an
important feature which enables us to confirm Conjecture 7.4.2 for this class of graphs.
We again prove a stronger version of the theorem.

Theorem 7.23. Let G be a graph of class I. Then for every proper 3-edge-coloring π
with colors a, b, and c, and for every color α ∈ {a, b, c} there exists a (1, 27)-packing
edge-coloring σ such that the edges of color α in π are colored with 0 in σ.

For simplicity, we will refer to a (1, 27)-packing edge-coloring σ obtained from a proper
3-edge-coloring π, in which the edges of color α in π are colored with 0 in σ, as an α-induced
coloring σαπ .

Proof. We prove the theorem by contradiction. Let G be a minimal counter-example to
the theorem minimizing the sum |V (G)| + |E(G)|. Let π be a proper 3-edge-coloring
(using colors a, b, and c) and let the color a be the color class for which there is no
(1, 27)-packing edge-coloring σ (using colors in {0, 1, . . . , 7} and 0 being the 1-color) of G
such that all edges colored a in π are colored 0 in σ.

We begin by establishing some structural properties of G.

Claim 7.24. G is simple.

Proof. Suppose there are vertices u and v in G connected by at least two parallel edges.
Remove one of the edges, call it e, between them (if possible, take the one colored with
a) to obtain a smaller graph G′. By minimality of G, there is an a-induced coloring σaπ of
G′. If e is colored by a in π, then extend σaπ by coloring e with 0. Otherwise there is no
edge colored a between u and v. Therefore, if u′ and v′ are the respective other neighbors
of u and v, when they exist, then uu′ and vv′ are colored a. Thus, A2(e) ≥ 2 and we can
extend σaπ to G, a contradiction. Loops can be treated similarly. ■

Claim 7.25. G is cubic.

page 194 Dimitri Lajou

Chapter 7. Between proper and strong edge-colorings of subcubic graphs

z

z′

u

u′

v

v′

w

w′

Figure 7.8: A 4-cycle with its neighborhood in G.

Proof. Suppose the contrary and let u be a 2−-vertex. By minimality of G, there is an
a-induced coloring σaπ of G− u.

Suppose first that u is a 1-vertex with a neighbor v. If uv is colored with a in π, then
we color uv with 0 and hence extend σaπ to all the edges of G. If uv is not colored a in π,
then there are at least three available 2-colors for uv and σaπ can be extended to G.

So, we may assume that u is a 2-vertex and let v and w be its two neighbors. We
consider two subcases. First, if in π none of uv and uw is colored with a, then A2(uv) ≥ 2
and A2(uw) ≥ 2, and so we can color the two edges. Second, if in π one of uv and uw
is colored with a, say uv, then we color uv with 0 and we obtain A2(uw) ≥ 1. Hence we
can extend σπ to all the edges of G. ■

Recall that G being cubic implies that in π every color appears at every vertex.
Claim 7.26. G does not contain triangles.
Proof. Suppose the contrary and let C = uvw be a triangle in G. Let u′, v′, and w′ be
the neighbors of u, v, and w, respectively, not on C. Since G is cubic, by Claim 7.25, u′,
v′, and w′ are 3-vertices and in the coloring π exactly one of the edges uu′, vv′, and ww′

is colored with a, say uu′. By minimality, there is a coloring σaπ of G \ E(C) induced by
π. We can extend it to the edges of C in the following way. First, we color vw with 0.
Next, observe there are at least two available 2-colors for each of the edges uv and uw,
hence we can always color them, a contradiction. ■

Claim 7.27. G does not contain 4-cycles.
Proof. Suppose the contrary and let C = uvwz be a 4-cycle in G. Let u′, v′, w′, and z′

be the neighbors of u, v, w, and z, respectively, not on C (see Figure 7.8). By Claim 7.25
and Claim 7.26, the vertices u′, v′, w′, and z′ are all of degree 3 and the vertices u′ and w′

(resp. v′ and z′) are distinct. Note that it is possible that u′ = w′ (resp. v′ = z′) but in
such a case one would have even more 2-colors available to color the cycle. Hence, we may
assume that u′, v′, w′, and z′ are distinct. There are three non-symmetric possibilities
for π to assign colors to the edges uu′, vv′, ww′, and zz′. We consider each of them
separately. Before the case analysis, observe that it is not possible to have two opposite
pendent edges to C colored with a, and at least one edge of the other pair of the pendent
edges not colored with a, since the edges of C could not be colored with three colors.

On various graph coloring problems page 195

7.4. Proof of Theorem 7.5.4

• The edges uu′, vv′, ww′, and zz′ are all colored with a in π. By minimality, there
is an a-induced coloring σaπ′ of G′ = (G \ V (C4)) ∪ {u′w′, v′z′}, where π′ is a proper
3-edge-coloring of G′ obtained from π by coloring u′w′ and v′z′ by a. Now, consider
the partial coloring of G induced by σaπ′ and color the edges uu′, vv′, ww′, and
zz′ with 0. In this way, every edge of C has at most four 2-colors in its 2-edge-
neighborhood and thus at least three available 2-colors. If the union of the available
colors of all three edges contains at least four colors, we can color the edges by the
Hall’s Theorem.
So, we may assume that all four edges have the same three available colors, say 5,
6, and 7. This implies that on the edges incident to u′ and v′ there are colors 1, 2,
3, and 4 (together with 0 on the two edges incident with C). The same four colors
must appear on the edges incident to v′ and w′. But this means that at least two
pairs of edges of the same 2-color are at distance 2 in G′, and since u′w′ ∈ E(G′),
we have a contradiction.

• Two edges pendent to C and one edge of C are colored with a in π, say uu′, vv′,
and wz. Consider the graph G′ = (G \ {u, v})∪{u′v′} and a proper 3-edge-coloring
π′ of G′ induced by π by coloring u′v′ by a. By minimality, there is an a-induced
coloring σaπ′ of G′.
Now, consider the coloring σ of G induced by σπ′ , where only the edges uz, vw, and
uv remain non-colored. There are at most six 2-colors in the 2-edge-neighborhood
of uv, so we may color it. After that, there are at most six 2-colors in the 2-
edge-neighborhoods of uz and vw, since z′ and w′ are each incident with one edge
of color 0. However, there are four distinct 2-colors incident with the vertices u′

and v′ (recall that u′v′ ∈ E(G′)), and thus the union of available colors for uz
and vw contains at least two colors, meaning that we can complete the coloring, a
contradiction.

• Two edges of C are colored with a in π, say uv and wz. Let G′ = G \ V (C) and
let π′ be a proper 3-edge-coloring of G′ induced by π. By the minimality, there
is an a-induced coloring σaπ′ of G′. Now, consider the coloring σ of G induced by
σaπ′ and color the edges uv and wz with 0. For the non-colored edges, we have the
following numbers of available colors: A2(uu′) = A2(vv′) = A2(ww′) = A2(zz′) = 3
and A2(uz) = A2(vw) = 5. To show that σ can be extended to non-colored edges,
we apply Theorem 1.77 in the following way. First, associate the variables X1, X2,
X3, X4, X5, and X6 to the edges uu′, uz, zz′, vv′, vw, and ww′, respectively. The
chromatic polynomial of a subgraph induced by the non-colored edges and setting
adjacencies whenever two edges are at distance at most 2 is

f(X1, . . . , X6) = (X1 −X2)(X1 −X3)(X1 −X4)(X1 −X5)
× (X2 −X3)(X2 −X4)(X2 −X5)(X2 −X6)
× (X3 −X5)(X3 −X6)(X4 −X6)(X4 −X5)(X5 −X6)

Expanding the polynomial, we infer that the coefficient of the monomialX2
1X

4
2X

2
3X

2
4X

3
5

in f equals +1. Thus, by Theorem 1.77, we can extend σ to all the edges of G, a
contradiction.

This establishes the claim. ■

page 196 Dimitri Lajou

Chapter 7. Between proper and strong edge-colorings of subcubic graphs

u0u1

u2

u3

u4 u5

u′
1

a

b
c

u′
2

a

b

c

u′
3

a
b

c

u′
4

a

b
c

a

b

a

b

c

b

c

b

c

(a)

u0u1

u2

u3

u4 u5

u′
1

b
c

u′
2

b

c

u′
3b

c

u′
4

b
c

a

b

a

b

a

a

(b)

Figure 7.9: A path P on which we perform a crossing in G (a), and the configuration in G′

(b).

Hence, G has girth at least 5. We continue by considering properties of longer cycles
in G. First, we introduce some additional definitions. A cycle colored only with the colors
b and c is called a bc-cycle. Let P = u0u1u2u3u4u5 be a path of distinct vertices on a bc-
cycle. Let u′

i be the neighbor of ui such that uiu′
i is colored with a in π for i ∈ {0, . . . , 5}.

A P -crossing is a pair (G′, π′) such that G′ = G−E(P)−{uju′
j}1≤j≤4 + {u′

1u
′
3, u

′
2u

′
4} and

π′ is obtained from π by coloring u′
1u

′
3 and u′

2u
′
4 with the color a (see Figure 7.9). By

minimality of G, there exists an a-induced coloring σaπ′ of G′. The partial coloring σaπ of
G induced by σaπ′ leaves uncolored the edges of P and the four edges uju′

j for 1 ≤ j ≤ 4.
Clearly, we can color the latter four edges with 0, and so only the edges of P need to be
colored. In the next claim, we give a useful property about their lists of available colors.

Claim 7.28. Let Li be the set of 2-colors available for the edge uiui+1 of P , where 1 ≤
i ≤ 3. In the coloring σaπ, one of the following properties hold:

1. |L2| = 5, or

2. there exists a color x ∈ L2 such that |L1 \ x| ≥ 3 and |L3 \ x| ≥ 3, or

3. |L2| ≥ 4 and L1 ∩ L3 = ∅. Moreover, there is a color x ∈ L1 such that x /∈ L2, and
a color y ∈ L3 such that y /∈ L2.

Proof. Note first that the edges u1u2, u2u3, and u3u4 all have four colored edges in their
2-edge-neighborhood. Without loss of generality, we may assume that u′

1 is incident with
edges colored 1 and 2, u′

3 is incident with edges colored 3 and 4 (the colors are distinct as

On various graph coloring problems page 197

7.4. Proof of Theorem 7.5.4

u0u1

u2

u3

u4 u5

u′
1

0

u′
2

0

u′
3 0

u′
4

0

12

x1

x2

3
4

x3
x4

0

0

L1

L2

L3

Figure 7.10: Configuration in G for considering properties of L1, L2, and L3.

u′
1 and u′

3 are adjacent in G′). Denote by S1 = {x1, x2} the set of 2-colors on the edges
incident with u′

2, and by S2 = {x3, x4} the set of 2-colors on the edges incident with u′
4

(see Figure 7.10). Again, S1 ∩ S2 = ∅.
We consider possibilities regarding the sets S1 and S2. Note that if |L1| ≥ 4 and

|L3| ≥ 4, then we always can choose such a color in L2 to satisfy condition (2). Suppose
first that S1 = {1, 2}. Then |L1| = 5 and L2 = {5, 6, 7}. Since S2 does not contain 1 nor
2, {1, 2} ⊂ L3. Thus, either |L3| ≥ 4 or L2 contains a color which is not in L3.

Next, suppose that S1 = {1, 3}. Then |L1| ≥ 4. If 4 ∈ S2, then also L3 ≥ 4 and we
are done. Otherwise, by symmetry, we may assume that x3 = 5 and x4 ∈ {2, 6}. Observe
that x4 ∈ L2 and x4 /∈ L3, thus setting x = x4 gives us condition (2) of the claim.

Suppose now that S1 = {1, 5}. Again, |L1| ≥ 4. If 3 ∈ S2, then L3 ≥ 4 and we are
done. Thus, we may assume x3 = 6 and x4 ∈ {2, 7}. As above, observe that x4 ∈ L2 and
x4 /∈ L3, thus setting x = x4 gives us condition (2).

If S1 = {3, 4}, we are done as |L2| = 5.
If S1 = {3, 5}, we have L1 = {4, 6, 7} and L2 = {1, 2, 6, 7}. If 1 ∈ S2 or 2 ∈ S2, then

we set x = 2 or x = 1, respectively, to obtain condition (2). Thus, we may assume x3 = 6
and x4 ∈ {4, 7}. If x4 = 4, then we set x = 1, and if x4 = 7, then L3 = {1, 2, 5}, and we
have condition (3).

Finally, if S1 = {5, 6}, then, by symmetry, S2 = {1, 2}, and setting x = 1 gives us
condition (2). This completes the proof. ■

Our goal is now to show that G contains no bc-cycles.

Claim 7.29. There is no bc-cycle with chords in G.

page 198 Dimitri Lajou

Chapter 7. Between proper and strong edge-colorings of subcubic graphs

Proof. Suppose the contrary and let C be a bc-cycle with a chord in G. Let P = u0 . . . un
be a path of C such that u1un−1 is a chord of C and P is the shortest path with this
property in C. For every i ∈ {0, . . . , n}, denote by u′

i the neighbor of ui such that
π(uiu′

i) = a. Note that π(uiu′
i) = a implies that all u′

is are pairwise distinct. Note that by
definition u′

1 = un−1 and u′
n−1 = u1. We split the proof in two cases regarding the length

of P .
Suppose first that n ≥ 12. Let P ′ = u2u3u4u5u6u7 and let (G′, π′) be the P ′-crossing

and σaπ′ an a-induced coloring of G′. Let σaπ be the partial coloring of G induced by σaπ′ .
For every i, i ∈ {3, 4, 5, 6}, color uiu′

i with 0. Now, only the edges of P ′ are non-colored.
To extend σaπ to all edges of G, we first uncolor the edges of P that are already colored.
Next, for every i, 0 ≤ i ≤ n − 1, denote by Li the list of available 2-colors of the edge
uiui+1 in G. Note that |L0| ≥ 3, |L1| ≥ 4, |Ln−2| ≥ 4, |Ln−1| ≥ 3, and |Lj| ≥ 3 for
2 ≤ j ≤ n − 3. By the minimality of P the 2-edge-neighborhood of an edge e of P
contains the same non-colored edges as in the graph Dn obtained from P by adding the
edge u1un−1. Therefore, it suffices to color Dn using the lists Li to extend σaπ.

To show that we can color Dn, we make use of Claim 7.28 applied to P ′. In the case
(1), i.e. , if |L4| = 5, we can color Dn by Lemma 7.19, a contradiction. In the case (2),
i.e. , if there exists a color x ∈ L4 such that |L3 \ x| ≥ 3 and |L5 \ x| ≥ 3, we proceed
as follows. We first color u4u5 with x. We obtain, after updating the lists, the following:
|L2| ≥ 2, |L3| ≥ 3, |L5| ≥ 3, |L6| ≥ 2. Note that since u4u5 is already colored, we can
simply assume |L4| ≥ 5 to be able to apply Lemma 7.19 on the other edges of Dn. Hence,
we again extend σaπ to all edges of G, a contradiction. In the case (3), i.e. , if |L4| ≥ 4
and L3 ∩ L5 = ∅, we use the color x ∈ L3, which is not in L4, to color u3u4. By doing
this, we only decrease the number of available colors in L1 and L2 to 3 and 2, respectively.
Next, we consecutively color u2u3, u1u2, and u0u1. By doing this, we obtain |L4| ≥ 3,
|Ln−2| ≥ 2, and |Ln−1| ≥ 1. All the other non-colored edges still have at least three
available colors, and hence we can extend σaπ by coloring consecutively the edges un−1un,
un−2un−1,. . . , u4u5, a contradiction.

Hence, we may assume n < 12. By Claim 7.27, we also have that n ≥ 7. We first
consider the case when n /∈ {8, 11}. Let P ′ = u1u2u3u4u5u6 and let (G′, π′) be the P ′-
crossing and σaπ′ an a-induced coloring of G′. Let σaπ be the partial coloring of G induced
by σaπ′ . For every i, i ∈ {2, 3, 4, 5}, color uiu′

i with 0, and uncolor the colored edges of P .
It is easy to see that all the edges have at least three available colors and the edges u1u2
and un−2un−1 have at least four. Note that the edges of P together with the edge u1un−1
form the graph Dn, which is (3, 4, 3n−4, 4, 3)-choosable by Lemma 7.22 for n ∈ {6, 7, 9, 10}.
Thus we can extend σaπ to G, a contradiction.

So, we may assume n ∈ {8, 11}. Let P ′ = u1u2u3u4u5u6 and let (G′, π′) be the P ′-
crossing and σaπ′ an a-induced coloring of G′. Let σaπ be the partial coloring of G induced
by σaπ′ . For every i, i ∈ {2, 3, 4, 5}, color uiu′

i with 0. Now, only the edges of P ′ are non-
colored. To extend σaπ to all edges of G, we first uncolor the edges of P that are already
colored. As above, it suffices to find a list coloring of the graph Dn obtained from P by
adding the edge u1un−1. We will again apply Claim 7.28. Suppose first that |L3| = 5.
Then, we can extend the coloring by Lemma 7.22, saying that Dn is (3, 3, 3, 5, 3n−7, 2, 3, 4)-
choosable. Suppose now that there exists x ∈ L3 such that |L2 \ x| ≥ 3 and |L4 \ x| ≥ 3.
We color u3u4 with x, we obtain |L1| ≥ 3, |L2| ≥ 3, |L4| ≥ 3, |L5| ≥ 2, and we can assume
that |L3| ≥ 5, since it is already colored anyway. Hence, we can color Dn by Lemma 7.22,
a contradiction. Finally, suppose that |L2| ≥ 4 and L1 ∩ L3 = ∅. In this case, we color

On various graph coloring problems page 199

7.4. Proof of Theorem 7.5.4

the edges of P as follows. First, color u1u2 with a color that is not contained in L7. Next,
color u0u1 and then u2u3. Note that at this point, |L3| ≥ 2, |L4| ≥ 3, |L5| ≥ 3, |L6| ≥ 2,
and |L7| ≥ 2. This means that we can complete the coloring by using Lemma 7.17(a), a
contradiction. ■

Claim 7.30. There is no bc-cycle in G.

Proof. Suppose, to the contrary, that C = u1u2 . . . uℓ is a bc-cycle of length ℓ in G. By
Claim 7.29, we already have that C is chordless. Clearly, ℓ is even and by Claim 7.27,
ℓ ≥ 6. For every i, 1 ≤ i ≤ ℓ, let u′

i be the neighbor of ui such that π(uiu′
i) = a (and thus

all u′
i are distinct). Since C is chordless, no u′

i is a vertex of C. We consider three cases
regarding ℓ.

• ℓ ≡ 0 (mod 3). Let G′ = G−E(C). By minimality of G, there exists an a-induced
coloring σaπ of G′. To extend σaπ to all edges of G, we only need to color the edges
of C. Since C is chordless, the only conflicts among its edges are those generated
by C. Hence, every edge of C has at least three available colors, by Theorem 7.7,
every cycle of length divisible by 3 is 3-choosable. Thus, we can extend σaπ to G.

• ℓ ≡ 2 (mod 3) (and so ℓ ≥ 8). In this case, we perform two crossings at the
same time, one with the path P = uℓu1u2u3u4u5, and the other with the path
P ′ = u4u5u6u7u8uj, where j = 1 if ℓ = 8, and j = 9 otherwise. Note that the
properties for the lists of available colors guaranteed in Claim 7.28 still hold. Let

G′ = G− E(C)− {uiu′
i}1≤i≤8 + {u′

1u
′
3, u

′
2u

′
4, u

′
5u

′
7, u

′
6u

′
8} .

By the minimality, there exists an a-induced coloring σaπ of G′; thus u′
1u

′
3, u′

2u
′
4, u′

5u
′
7,

and u′
6u

′
8 are colored with 0 in σaπ. Without loss of generality, we may assume that

the two 2-colors incident with u′
5 are 1 and 2, and that the two 2-colors incident with

u′
7 are 3 and 4. Denote by S the set containing the two 2-colors incident with u′

6.
Moreover, for every i, 1 ≤ i ≤ ℓ − 1, let Li be the set of available 2-colors for the
edge uiui+1 (and the list for the edge uℓu1 we denote by Lℓ). As in the previous
case, we have |Li| ≥ 3 for every i.
We consider two possibilities regarding S. Suppose first that 3 /∈ S. Then, 3 ∈ L5
and we color u5u6 with 3. Since u′

7 is incident with an edge colored with 3, the sizes
of L6 and L7 do not decrease. Now, consider the lists of available colors for the
edges of P . By Claim 7.28, we have three possibilities. Suppose first that |L2| = 5.
In this case, we may color it last, since it will have at least one available color after
all the edges at distance 2 on C are colored, thus we may ignore it for now. We
color u4u5 (decreasing the size of L6 by one) and u3u4 (decreasing the size of L1
by one). It remains to color the edges of the path u6u7 . . . uℓu1u2, which is possible
by Lemma 7.17, and finally coloring L2, a contradiction. Suppose next that there
exists x ∈ L2 such that |L1 \x| ≥ 3 and |L3 \x| ≥ 3. In this case, color u2u3 with x.
We obtain |L1| ≥ 3, |L3| ≥ 2, |L4| ≥ 1, |L6| ≥ 3, . . . , |Lℓ−1| ≥ 3, and |Lℓ| ≥ 2. Color
u4u5 and then u3u4. It remains to color the path u6 . . . uℓu1u2 (of length ℓ− 4 ≡ 1
(mod 3)), which can be done by Lemma 7.17(a), a contradiction. Finally, suppose
that |L2| ≥ 4 and L1 ∩ L3 = ∅. In this case, we again color u4u5 (decreasing |L6|
and |L2| by one) and u3u4 (only decrasing |L2| by one). The remaining edges are
lying on a path which is strongly edge-colorable by Lemma 7.17, a contradiction.

page 200 Dimitri Lajou

Chapter 7. Between proper and strong edge-colorings of subcubic graphs

Therefore, by symmetry, we may assume S = {3, 4}. Moreover, by the same rea-
soning, the set of 2-colors incident with u′

2 is the same as the set of 2-colors incident
with u′

3. This altogether means that L2 and L6 both have size at least five, and thus
we can color the edges u2u3 and u6u7 last. We first color u3u4, u4u5, and u5u6 (de-
creasing |L7| and |L1| by one), and then color the path u7 . . . uℓu1u2 by Lemma 7.17.
Finally, color u2u3 and u6u7, a contradiction.

• ℓ ≡ 1 (mod 3) (and so ℓ ≥ 10). As in the previous case, we perform two crossings
at the same time, one with the path P = uℓu1u2u3u4u5, and the other with the path
P ′ = u5u6u7u8u9uj, where j = 1 if ℓ = 10, and j = 11 otherwise. Let

G′ = G− E(C)− {uiu′
i}1≤i≤4 − {uiu′

i}6≤i≤9 + {u′
1u

′
3, u

′
2u

′
4, u

′
6u

′
8, u

′
7u

′
9}.

By minimality of G, there exists an a-induced coloring σaπ of G′; thus u′
1u

′
3, u′

2u
′
4,

u′
6u

′
8, and u′

7u
′
9 are colored with 0 in σaπ. Without loss of generality, we may assume

that the two 2-colors incident with u′
6 are 1 and 2, and the two 2-colors incident with

u′
8 are 3 and 4. Denote by S the set containing the two 2-colors incident with u′

7.
Moreover, for every i, 1 ≤ i ≤ ℓ − 1, let Li be the set of available 2-colors for the
edge uiui+1 (and the list for the edge uℓu1 we denote by Lℓ). Again, we have |Li| ≥ 3
for every i.

We consider two possibilities regarding S. Suppose first that 3 /∈ S. Then, 3 ∈ L6
and we color u6u7 with 3. Since u′

8 is incident with an edge colored with 3, the sizes
of L7 and L8 do not decrease. Now, consider the lists of available colors for the
edges of P . By Claim 7.28, we have three possibilities. Suppose first that |L2| = 5.
In this case, we may color it last, since it will have at least one available color after
all the edges at distance 2 on C are colored, thus we may ignore it for now. We
first consecutively color the edges u5u6, u4u5, and u3u4 (each of them has at least
one available color when being colored), by that, we decrease the sizes of L1 and
L7 by at most 1, and hence we can color the edges of the path u7 . . . uℓu1u2 by
Lemma 7.17. Finally, we color u2u3, a contradiction. Suppose next that there exists
x ∈ L2 such that |L1 \ x| ≥ 3 and |L3 \ x| ≥ 3. In this case, color u2u3 with x, and
then consecutively u4u5, u5u6, and u3u4. It remains to color the edges of the path
P ′′ = u7 . . . uℓu1u2, where every edge has at least three available colors, except for
the edges u1u2, uℓu1, and u7u8, which have at least two. Since the length of P ′′ is
ℓ−5 ≡ 2 (mod 3), we can color its edges by Lemma 7.17(a), a contradiction. Finally,
suppose that |L2| ≥ 4 and L1 ∩L3 = ∅. In this case, we first color u5u6 (decreasing
|L7| by one), u4u5, u3u4 (not decrasing |L1|), and u2u3 (decreasing |L1| and |Lℓ| by
one). The remaining edges are lying on a path which is strongly edge-colorable by
Lemma 7.17(a), a contradiction.

Therefore, by symmetry, we may assume S = {3, 4}. Moreover, by the same rea-
soning, the set of 2-colors incident with u′

2 is the same as the set of 2-colors incident
with u′

3. This altogether means that L2 and L7 both have size at least 5, and thus
we can color the edges u2u3 and u7u8 last. Now, color u3u4, u4u5, u5u6, and u6u7 in
this order (decreasing |L1| and |L8| by one), and then color the path u7 . . . uℓu1u2
by Lemma 7.17. Finally, color u2u3 and u7u8, a contradiction.

■

On various graph coloring problems page 201

7.5. Further Work

Since G is cubic by Claim 7.25, the subgraph of G induced by the edges colored b or
c in π is 2-regular, meaning that there must be at least one bc-cycle in G, which is in
contradiction with Claim 7.30. This establishes Theorem 7.23.

7.5 Further Work
Conjecture 7.4 remains open, but our upper bounds are only by one 2-color off. Unfortu-
nately, we were not able to apply the techniques we used to prove tight bounds for proper
edge-coloring and strong edge-coloring of subcubic graphs, to the problems considered in
this chapter. Therefore, since solving Conjecture 7.4 in the general setting seems to be
challenging, we suggest in this section additional problems which arise naturally when
dealing with the considered colorings. All of them are supported with computational
results on graphs of small orders.

We begin with a general conjecture for strong edge-coloring.

Conjecture 7.31. Every bridgeless subcubic graph G, not isomorphic to the Wagner
graph or the complete bipartite graph K3,3 with one edge subdivided, admits a (29)-packing
edge-coloring.

We proceed with an overview of results in specific graph classes and list open problems
for each of them. For that, we follow the conjecture on strong edge-coloring of subcubic
graphs proposed by Faudree, Gyárfás, Schelp, and Tuza [68] in 1990.

Conjecture 7.32 (Faudree, Gyárfás, Schelp and Tuza [68]). For every subcubic graph G
it holds:

1. G admits a (210)-packing edge-coloring,
2. If G is bipartite, then it admits a (29)-packing edge-coloring,
3. If G is planar, then it admits a (29)-packing edge-coloring,
4. If G is bipartite and each edge is incident with a 2-vertex, then it admits a (26)-

packing edge-coloring,
5. If G is bipartite of girth at least 6, then it admits a (27)-packing edge-coloring,
6. If G is bipartite and has girth large enough, then it admits a (25)-packing edge-

coloring.

All the cases of the conjecture, except Case 5, are already resolved, and we present
the results in what follows.

7.5.1 Planar graphs
It was the well-known connection between edge-coloring of bridgeless cubic planar graphs
and the Four Color Problem, established by Tait [179], which initiated the research in this
area. By the Four Color Theorem, we thus have that every bridgeless cubic planar graph
admits a (1, 1, 1)-packing edge-coloring. The condition of being cubic is necessary, since
already K4 with one subdivided edge is class II. However, not all questions are resolved.
The following conjecture of Albertson and Haas [3], which is a special case of Seymour’s
conjecture [172], is still widely open.

page 202 Dimitri Lajou

Chapter 7. Between proper and strong edge-colorings of subcubic graphs

Figure 7.11: A cubic planar graph which needs nine colors for a strong edge-coloring.

Figure 7.12: A subcubic planar graph which does not admit a (1, 25)-packing edge-coloring
nor a (1, 1, 22)-packing edge-coloring.

Conjecture 7.33 (Albertson and Haas [3]). Every bridgeless subcubic planar graph with
at least two vertices of degree 2 admits a (1, 1, 1)-packing edge-coloring.

The number of required colors for strong edge-coloring of planar graphs is also deter-
mined. Just recently, Kostochka, Li, Ruksasakchai, Santana, Wang and Yu [133] proved
the following (and resolved Conjecture 7.32.3).

Theorem 7.34 (Kostochka, Li, Ruksasakchai, Santana, Wang and Yu [133]). Every
subcubic planar graph admits a (29)-packing edge-coloring.

The upper bound is tight due to the 3-prism, depicted in Figure 7.11. For now, this is
the only known planar graph with maximum degree 3 with strong chromatic index equal
to 9.

On the other hand, there are no results for planar graphs on the colorings with one or
two matchings. We propose the following conjecture.

Conjecture 7.35. Every subcubic planar graph admits a (1, 26)-packing edge-coloring and
a (1, 1, 23)-packing edge-coloring.

The conjectured upper bounds, if true, are tight and attained by infinitely many
bridgeless subcubic planar graphs for both values. Indeed, in Figure 7.12, we present
a planar bridgeless graph which does not admit a (1, 25)-packing edge-coloring nor a
(1, 1, 22)-packing edge-coloring. Moreover, this graph can be appended to other subcubic
graphs by the two 2-vertices, thus creating an infinite family of bridgeless subcubic planar
graphs not admitting such a coloring. This conjecture also appears to be more demanding
than the result of Theorem 7.34. Thus, some partial results, with additional restrictions
on the structure of planar graphs, might also be interesting in order to understand the
general problem better.

On various graph coloring problems page 203

7.5. Further Work

Figure 7.13: A subcubic bipartite graph which does not admit a (1, 25)-packing edge-coloring
nor a (1, 1, 22)-packing edge-coloring.

7.5.2 Bipartite graphs
In the class of bipartite graphs, the proper and the strong case of the colorings are long
solved. In 1916, König [132] proved that every bipartite graph is class I, and in 1993,
Steger and Yu [177] established the following (and resolved Conjecture 7.32.2).

Theorem 7.36 (Steger and Yu [177]). Every subcubic bipartite graph admits a (29)-
packing edge-coloring.

Again, the bound is tight; it is attained by, e.g., K3,3.
Since all bipartite graphs are class I, the results and conjectures for them apply also

in the bipartite case. It is known that as soon as we require some 2-colors instead just
1-colors, the problems become much harder. E.g., a tight upper bound for a strong edge-
coloring of bipartite graphs is still not known (c.f. [68, 177]). Therefore, Conjecture 7.4.3
and Conjecture 7.4.4 may be considered just in the bipartite setting. Moreover, we have
an infinite number of graphs attaining the conjectured upper bounds also among bipartite
graphs; the bipartite graph with two 2-vertices presented in Figure 7.13 does not admit a
(1, 25)-packing edge-coloring nor a (1, 1, 22)-packing edge-coloring, and so an infite family
of such graphs can again be constructed.

If we consider subcubic graphs with only edges of weight at most 5, i.e. , edges where
at least one of the end-vertices is of degree at most 2, the number of required colors
decreases substantially. In particular, Conjecture 7.32.4 was resolved by Maydanskiy [152]
and independently by Wu and Lin [201].

Theorem 7.37 (Maydanskiy [152], and Wu and Lin [201]). Every subcubic bipartite
graph, in which each edge has weight at most 5, admits a (26)-packing edge-coloring.

Clearly, an analogous question for coloring such graphs with two 1-colors is whether
they admit a (1, 1, 22)-packing edge-coloring. It is answered in affirmative [176]. The
bound is tight already in the class of trees. On the other hand, we do not have the answer
for the following.

Question 7.38. Is it true that every subcubic bipartite graph, in which each edge has
weight at most 5, admits a (1, 24)-packing edge-coloring?

This bound is again attained in the class of trees.

7.5.3 Graphs with large girth
Similarly as the bipartiteness, having large girth does not really simplify edge-colorings in
which some colors must be 2-colors. Even more, due to Kochol [131], we know that there

page 204 Dimitri Lajou

Chapter 7. Between proper and strong edge-colorings of subcubic graphs

are graphs with arbitrarily large girth which are class II. Anyway, if the girth is infinite,
i.e. we consider the trees, the following simple observation is immediate.

Observation 7.39. Every subcubic tree admits:

1. a (1, 1, 1)-packing edge-coloring,
2. a (1, 1, 22)-packing edge-coloring,
3. a (1, 24)-packing edge-coloring,
4. a (25)-packing edge-coloring.

The bounds are tight already if we just consider a neighborhood of one edge with both
end-vertices of degree 3.

In the case of strong edge-coloring, Conjecture 7.32.6 was also rejected just recently
by Lužar, Mačajová, Škoviera, and Soták [147], who proved that a cubic graph is a cover
of the Petersen graph if and only if it admits a (25)-packing edge-coloring.

Before we consider the intermediate colorings, we first recall the result of Gastineau
and Togni [84].

Proposition 7.40 (Gastineau and Togni [84]). Every cubic graph admitting a (1, 1, 22)-
packing edge-coloring is class I and has order divisible by four.

Hence, the analogue of Conjecture 7.32.6 when having two 1-colors does not hold.
However, the following remains open.

Question 7.41. Is it true that every subcubic bipartite graph with large enough girth
admits a (1, 24)-packing edge-coloring?

To conclude, we believe that studying properties of the considered edge-colorings will
have impact to the initial problem of strong edge-coloring, which is in general case still
widely open. Namely, the conjectured upper bound for graphs with maximum degree
∆(G) is 1.25∆(G)2, while currently the best upper bound is due to Hurley, de Joannis de
Verclos, and Kang [112], set at 1.772∆(G)2.

On various graph coloring problems page 205

Chapter 8. Complexity of the injective edge-coloring problem

Chapter 8

Complexity of the injective
edge-coloring problem

We study the algorithmic complexity of the injective edge-coloring problem. Our aim is
to determine restricted graph classes where the problem is NP-hard, while in contrast,
designing polynomial algorithms for other graph classes.

Definition 8.1 (Injective edge-coloring). An injective k-edge-coloring of an undirected
graph G is an edge-coloring of G verifying that every two edges uv and u′v′, for which uu′

or vv′ is also an edge of G, receive distinct colors. In other words, for any 3-edge path of
G (possibly forming a triangle), the first and last edge of the path receive distinct colors.
The injective chromatic index of G, denoted χ′

i(G), is the smallest integer k for which G
admits an injective k-edge-coloring.

See Figure 8.1 for an example of injective 4-edge-coloring.

The concept of an injective edge-coloring is the natural edge-version of the notion of
an injective vertex coloring, introduced in [89] and well-studied since then. This edge-
version was recently introduced by Cardoso, Cerdeira, Cruz and Dominic in [39], where
it is studied for some classes of graphs, and the question of determining the injective
chromatic index of a graph was proved to be NP-complete. Bounds on the injective
chromatic index of planar graphs, graphs of given maximum degree, and other important
graph classes, have been recently determined in [11, 32, 73, 134, 143, 207]. In particular,
as mentioned in [73], it follows from [11] that all planar graphs are injectively 30-edge-
colorable, while outerplanar graphs are injectively 9-edge-colorable [73]. It is also proved
in [134] that subcubic graphs are injectively 7-edge-colorable, while subcubic bipartite
graphs [73] and subcubic planar graphs [134] are injectively 6-edge-colorable. Moreover
all subcubic planar bipartite graphs are injectively 4-edge-colorable [134].

Note that in [11], this notion is studied as the induced star arboricity of a graph, that
is, the smallest number of star forests into which the edges of the graph can be partitioned:
this is an equivalent way to interpret injective edge-coloring (see [73]).

Injective edge-coloring is closely related to strong edge-coloring: a strong edge-coloring
of a graph G is an injective edge-coloring which is also proper. It follows from the
definitions that for any graph G, χ′

i(G) ≤ χ′
s(G) holds. The algorithmic complexity of

determining the strong chromatic index of a graph is well-studied, see for example [106]
for a classic reference, and [49, 104] for more recent ones. In this chapter, we wish to
undertake similar types of studies for the injective chromatic index. The problem at hand
is formally defined as follows.

On various graph coloring problems page 207

1
1

12
2

23
3

3

4

Figure 8.1: An injective 4-edge-coloring of K3,3 with one subdivided edge.

Injective k-Edge-Coloring
Input: A graph G.
Question: Does G admit an injective k-edge-coloring?

Injective k-Edge-Coloring was proved NP-complete (for every fixed k ≥ 3)
in [39], with no particular restriction on the inputs. We strengthen this as follows.

Theorem 8.2. The two following problems are NP-complete:

1. Injective 3-Edge-Coloring, even for triangle-free cubic graphs, and
2. Injective 4-Edge-Coloring, even for cubic graphs.

Answering a question from [39] about the complexity of Injective k-Edge-Coloring
for planar graphs, we also study restricted subclasses of planar graphs.

Theorem 8.3. Let g ≥ 3. Injective 3-Edge-Coloring is NP-complete even for:

1. planar subcubic graphs with girth at least g,
2. planar bipartite subcubic graphs of girth 6.

The two items in Theorem 8.3 cannot be combined, because we can prove the following
(note that all planar bipartite subcubic graphs are injectively 4-edge-colorable [134]).

Theorem 8.4. Every planar bipartite subcubic graph of girth at least 16 is injectively
3-edge-colorable.

We also obtain an FPT algorithm when Injective k-Edge-Coloring is parameter-
ized by the treewidth of the input graph.

Theorem 8.5. For every graph G of order n and every positive integer k, there exists a
2O(k·tw(G)2)n time algorithm that solves Injective k-Edge-Coloring.

It is proved in [11] that χ′
i(G) ≤ 3

(
tw(G)

2

)
, and so using the above algorithm, one can

determine the injective chromatic index of a graph of order n in time 2O(tw(G)4)n.
Contrasting with our hardness results for planar graphs, Theorem 8.5 implies that

Injective k-Edge-Coloring can be solved in polynomial-time on subclasses of pla-
nar graphs: K4-minor-free graphs (i.e. graphs of treewidth 2), and thus, on outerplanar
graphs.

In [39], Cardoso, Cerdeira, Cruz and Dominic use a reduction on graphs having their
maximum degree linear in the number of colors. We improve it with the following result.

page 208 Dimitri Lajou

Chapter 8. Complexity of the injective edge-coloring problem

Theorem 8.6. For every integer k ≥ 45, Injective k-Edge-Coloring is NP-complete
even for graphs with maximum degree at most 5

√
3k.

The bound of Theorem 8.6 is tight up to a constant factor: by a standard maximum
degree argument of a conflict graph, every graph with maximum degree at most

√
k/2

is injectively k-edge-colorable. Indeed, for every edge e of a graph G, there are at most
2(∆(G) − 1)2 edges which cannot have the same color as e. Hence having at least one
more color than 2(∆(G)− 1)2 allows us to color the graph.

This chapter is joint work with Florent Foucaud and Hervé Hocquard. An article
version of this chapter is published in Information Processing Letters [75].

This research was supported by the IFCAM project “Applications of graph homomor-
phisms” (MA/IFCAM/18/39) and by the ANR project HOSIGRA (ANR-17-CE40-0022).

This chapter is divided as follows. Each of the following sections is devoted to the proof
of one of our theorems. Section 8.1 contains the proof of Theorem 8.2 which deals with
cubic graphs. For planar graphs, Section 8.2 presents the proofs of our results on planar
graphs, namely Theorem 8.3 and Theorem 8.4. Section 8.3 contains the FPT algorithm
of Theorem 8.5. Finally, Section 8.4 contains the proof of Theorem 8.6. We conclude in
Section 8.5.

Contents
8.1 NP-completeness for cubic graphs 208

8.1.1 Proof of Theorem 8.2.1 . 208

8.1.2 Proof of Theorem 8.2.2 . 209

8.2 Complexity results for planar graphs 211

8.2.1 Proof of Theorem 8.3.1 . 211

8.2.2 Proof of Theorem 8.3.2 . 213

8.2.3 Proof of Theorem 8.4 . 214

8.3 Injective k-Edge-Coloring is FPT when parameterized by the
treewidth . 214

8.4 Injective k-Edge-Coloring is NP-complete even for graphs
with maximum degree O(

√
k) 216

8.5 Conclusion . 218

8.1 NP-completeness for cubic graphs
For the two problems we consider, we reduce from 3-Edge-Coloring, which is NP-
complete even for cubic graphs [106].

3-Edge-Coloring
Input: A cubic graph G.
Question: Does G admit a proper 3-edge-coloring?

On various graph coloring problems page 209

8.1. NP-completeness for cubic graphs

fuv

euvduv

cuv

buvauv

zuv

wuv
uv 11

1

1 1
1

2

2
2

3

3
3

(a) Edge gadget Euv with an
injective 3-edge-coloring.

ruv suv

puv

quv

f 1
uv

e1
uv

d1
uv

c1
uv

b1
uv

a1
uv

z1
uvw1

uv

u1

v1

f 2
uv

e2
uv

d2
uv c2

uv b2
uv

a2
uv

z2
uv

w2
uv

u2

v2

f 3
uv

e3
uv

d3
uv

c3
uv

b3
uv

a3
uv

z3
uv

w3
uv

u3

v3

1

1

1

1

1

1

2 2

2

3 3

3

2

2

2

2

2

2

1

11 3

3

3

3

33

3

3 3

2

2

2

1

11

3

3

3

2

2

2 1

1

1

(b) Connecting three copies of Euv in the construction of G′′, along
with an injective 3-edge-coloring.

Figure 8.2: Edge gadgets used in the proof of Theorem 8.2.1.

8.1.1 Proof of Theorem 8.2.1
Proof of Theorem 8.2.1. Let G be the input cubic graph. We will proceed in two steps:
first, we create a triangle-free subcubic graph G′ which has an injective 3-edge-coloring
if and only if G is properly 3-edge-colorable. Then we describe how to make the graph
cubic.

We create the graph G′ from G by removing all the edges of G. For each edge uv of
G, we create a copy of a gadget Euv (see Figure 8.2(a) for an illustration) and connect it
to u and v as follows. We add eight new vertices wuv, zuv, auv, buv, cuv, duv, euv and fuv.
We create the following edges uwuv, vwuv, wuvzuv, zuvauv, zuvbuv, auvcuv, buvcuv, auvduv,
buveuv, cuvfuv, duvfuv and euvfuv.

Claim 8.7. Euv is injectively 3-edge-colorable, and for every injective 3-edge-coloring γ
of Euv, we have γ(uwuv) = γ(vwuv) = γ(wuvzuv). Moreover, for any partial injective
3-edge-coloring of Euv where uwuv, vwuv and wuvzuv are the only colored edges of Euv and
have the same color, we can extend the coloring to an injective 3-edge-coloring of Euv.

Proof. Let us injectively 3-edge-color Euv. W.l.o.g., we can assume that duvfuv is colored 1,
buvcuv is colored 2 and auvzuv is colored 3. We deduce that buveuv is colored 2, cuvfuv is

page 210 Dimitri Lajou

Chapter 8. Complexity of the injective edge-coloring problem

colored 1, auvduv and auvcuv are colored 3, buvzuv is colored 2 and euvfuv is colored 1.
Hence uwuv, vwuv and wuvzuv must all be colored 1.

Now, given one same color for these three edges, one can color the rest of the gadget,
for example using the previously constructed coloring. ■

If G has a proper 3-edge-coloring γ, we injectively 3-edge-color G′ by assigning to
uwuv, vwuv and wuvzuv in G′ the color γ(uv); then we extend the coloring to each Euv
using Claim 8.7.

Conversely, if G′ has an injective 3-edge-coloring, then we color an edge uv of G with
the color of the edge uwuv (or vwuv) of G′. This coloring is proper since Claim 8.7 insures
that uwuv and vwuv have the same color. Indeed if ux is an edge adjacent to uv, then
uwuv and xwux have different colors.

We now show how to make the construction cubic. We create the cubic graph G′′ as
follows. First, take three disjoint copies G1, G2 and G3 of G′. To differentiate the vertices
of each copy, we add an exponent to the name of the vertex corresponding to the number
of the copy. For example, vertex wuv of G1 will be noted w1

uv. For each edge uv of G,
connect G1, G2 and G3 via K1,3 with vertex classes {ruv} and {suv, puv, quv} as follows.
The vertex suv (resp. puv, resp. quv) is adjacent to d3

uv (resp. d1
uv, resp. d2

uv), e2
uv (resp.

e3
uv, resp. e1

uv) and ruv (see Figure 8.2(b)). The graph G′′ is simply the graph where the
edge gadget is represented in Figure 8.2(b) and for each u ∈ V (G), the three copies of ui
for i ∈ {1, 2, 3} are identified.

As G is cubic, G′′ is triangle-free and cubic. Note that if G′′ admits an injective 3-
edge-coloring, then in particular G′ also admits an injective 3-edge-coloring and thus by
our previous arguments, G is properly 3-edge-colorable.

If G is properly 3-edge-colorable, then we fix such a coloring γ : E(G) → {1, 2, 3}.
For i ∈ {1, 2, 3}, we color the edges incident with wiuv with the color γ(uv) + i, where
the colors are considered to be taken modulo 3. Then it suffices to extend the obtained
coloring to each edge gadget (see Figure 8.2).

8.1.2 Proof of Theorem 8.2.2
Proof of Theorem 8.2.2. Let G be the input graph. For each vertex u of G, we replace it
by the following vertex gadget Su (see Figure 8.3). The gadget Su is made of a 9-cycle
xu0x

u
1 . . . x

u
8 and three other vertices yui (i ∈ {0, 3, 6}) that will be connected to the rest

of the graph. We add the edges xu1xu8 , xu2xu4 , xu5xu7 , xu0yu0 , xu3yu3 and xu6y
u
6 . For any edge-

coloring γ of Su, we note Cu
i (γ) =

{
γ(xui xui+1), γ(xui xui−1)

}
where i ∈ {0, 3, 6} and where

the indices are taken modulo 9.

Claim 8.8. For every injective 4-edge-coloring γ of Su and for every i ∈ {0, 3, 6}, the
color γ(xui yui) belongs to the set Cu

i (γ). Moreover, Cu
0 (γ) ∪ Cu

3 (γ) ∪ Cu
6 (γ) = {1, 2, 3, 4}

and there exists a color a ∈ {1, 2, 3, 4} such that for all i ∈ {0, 3, 6}, a ∈ Cu
i (γ).

Furthermore, for any choice of color for xu0yu0 , xu3yu3 , xu6yu6 and sets of colors Cu
i (γ),

i ∈ {0, 3, 6} verifying the previous necessary conditions, there exists an injective 4-edge-
coloring γ of Su matching those choices.

Proof. Let us try to construct an injective 4-edge-coloring γ of Su. Up to permuting the
colors, we assume that γ(xu0xu1) = 1, γ(xu0xu8) = 2 and γ(xu8xu1) = 3. Note that xu2xu4 and
xu5x

u
7 cannot both be colored 4, w.l.o.g. assume that γ(xu2xu4) ̸= 4. Hence γ(xu2xu4) = 2

and γ(xu2xu3) = 4. Remark that γ(xu5xu6) ̸= 2. Moreover xu5xu7 and xu6x
u
7 can only receive

On various graph coloring problems page 211

8.1. NP-completeness for cubic graphs

xu0 xv0

xu1

xv1

xu2

xv2

xu3

xv3

xu4

xv4xu5

xv5

xu6

xv6

xu7

xv7

xu8

xv8

yu0 yv0

yu3

yv3yu6

yv6

wuv

zuv

Figure 8.3: Two vertex gadgets Su and Sv, corresponding to the vertices u and v of a graph
G, connected by an edge gadget corresponding to the edge uv of G.

colors 1 or 4 and they must receive different colors. Hence γ(xu5xu6) = 3, γ(xu3xu4) = 1,
γ(xu5xu7) = 4 and γ(xu6xu7) = 1. Now there are two ways to complete the coloring of Su,
either γ(xu1xu2) = 4, γ(xu4xu5) = 3 and γ(xu7xu8) = 2 or, γ(xu1xu2) = 3, γ(xu4xu5) = 2 and
γ(xu7xu8) = 4. In both cases all properties of the first part of the claim hold (with a = 1).

Finally, note that the second of the two previous coloring options allows us to color
xui y

u
i , i ∈ {0, 3, 6} with any color among those of xui xui+1 and xui xui−1, and to complete the

coloring. ■

For every edge uv of G, we construct the following edge gadget Euv (see Figure 8.3).
First, choose yui (resp. yvj) of degree 1 among the vertices of Su (resp. Sv). Create two
new adjacent vertices wuv and zuv such that yui wuvyvj zuv is a 4-cycle.

Claim 8.9. For every injective 4-edge-coloring γ of G and every edge gadget Euv con-
necting yui and yvj (i, j ∈ {0, 3, 6}), we have Cu

i (γ) = Cv
j (γ).

Furthermore, any injective 4-edge-coloring γ of Su and Sv such that Cu
i (γ) = Cv

j (γ)
and γ(xui yui) = γ(xvjyvj) can be extended to an injective 4-edge-coloring of Su ∪ Euv ∪ Sv.

Proof. Suppose, w.l.o.g. by Claim 8.8, that xui xui+1 is colored 1, xui xui−1 is colored 2 and
xui y

u
i is colored 1. Now w.l.o.g., yui wuv is colored 3 and yui zuv is colored 4. This implies

that wuvzuv is colored 2, yvjwuv is colored 3, yvj zuv is colored 4, yvjxvj is colored 1 and
Cv
j (γ) = {1, 2}.

The second part of the claim is proved by taking the previous coloring and extending
it using the second part of Claim 8.8. ■

Let G′ be the cubic graph constructed from G by the above process. By Claim 8.9,
if uv is an edge connecting yui and yvj then for any injective coloring γ of G′, Cu

i (γ) =
Cv
j (γ) = {a, b} for some a and b. Hence this set somehow characterizes the edge gadget

Euv, we say that Euv is colored by {a, b}.
Suppose that there exists an injective 4-edge-coloring γ of G′. For each edge uv of G,

we color uv depending on the coloring of Euv. When Euv is colored {1, 2} or {3, 4} (resp.
{1, 3} or {2, 4}, resp. {1, 4} or {2, 3}) then we color uv by color 1 (resp. 2, resp. 3). We
argue that this edge-coloring, noted γ, is proper. Indeed suppose it is not, then for some
vertex u, w.l.o.g., uv and uw are both colored 1. This means that the coloring of G′ is

page 212 Dimitri Lajou

Chapter 8. Complexity of the injective edge-coloring problem

such that Cu
i (γ) = Cu

j (γ) or Cu
i (γ) ∩ Cu

j (γ) = ∅ for some i ̸= j and i, j ∈ {0, 3, 6}. This
contradicts Claim 8.8. Hence we get a proper 3-edge-coloring of G.

Conversely, suppose that there exists a proper 3-edge-coloring of G. In G′, we color
each edge of the form xui y

u
i by 1. If an edge uv of G is colored 1 (resp. 2, resp. 3) then

we assign the color {1, 2} (resp. {1, 3}, resp. {1, 4}) to Euv. By Claim 8.8, this coloring
can be extended to an injective 4-edge-coloring of each Su, u ∈ V (G). By Claim 8.9,
this injective 4-edge-coloring can be extended to each edge gadget to color the whole
graph.

8.2 Complexity results for planar graphs
In the proof of the two results presented in Theorem 8.3, we will reduce from the following
problem.

Planar Vertex 3-Coloring
Input: A planar graph G with maximum degree 4.
Question: Does G admit a proper (vertex) 3-coloring?

This problem was proven to be NP-complete in [83]. Let G be a planar graph with
maximum degree 4.

8.2.1 Proof of Theorem 8.3.1
Proof of Theorem 8.3.1. Recall that we want to construct a graph G′ with girth at least g.

For each vertex u ∈ V (G), we construct a vertex gadget Su as follows (see Figure 8.4).
First create a cycle xu1xu2 . . . xuℓ where ℓ ≥ g and ℓ is an odd multiple of 3. To each xui add a
single pendant neighbor yui of degree 1. To the vertex yu1 , add two non-adjacent neighbors
wu and zu. Create four more vertices au1 , bu1 , cu1 and du1 . The vertex wu is adjacent to au1
and bu1 while zu is adjacent to cu1 and du1 . Now construct a path au1au2 . . . aug of length g and
add to each aui for i ≤ g − 1 a pendant vertex of degree 1 called a′u

i . Similarly we create
the vertices bu1 . . . bug , b′u

1 . . . b
′u
g−1, cu1 . . . cug , c′u

1 . . . c
′u
g−1 and du1 . . . d

u
g , d

′u
1 . . . d

′u
g−1. Finally add

a vertex αu (resp. βu, resp. γu, resp. δu) adjacent to aug (resp. bug , resp. cug , resp. dug).

Claim 8.10. For any injective 3-edge-coloring ρ of Su, ρ(augαu) = ρ(bugβu) = ρ(cugγu) =
ρ(dugδu). We call this color ρ(Su). Moreover, for any choice of a color ρ(Su), there exists
an injective 3-edge-coloring ρ with these properties.

Proof. Suppose that there exists i ∈ {1, . . . , ℓ} such that the property P(i) = “ρ(xui xui+1) =
ρ(xui yui) ̸= ρ(xui xui−1)” holds (the indices are taken modulo ℓ). Then P(i) holds for all
i ∈ {1, . . . , ℓ}. Indeed, take such an i, then ρ(xui+1x

u
i+2) = ρ(xui+1y

u
i+1) is the color {1, 2, 3}\{

ρ(xui yui), ρ(xui xui−1)
}
. Hence the property holds for i+ 1, by induction it holds for every

i. Note that the same can be said for the property P ′(i) = “ρ(xui xui−1) = ρ(xui yui) ̸=
ρ(xui xui+1)”. Also note that if ρ(xui xui−1) = ρ(xui xui+1) ̸= ρ(xui yui) then we have P(i + 1)
which is a contradiction because we do not have P(i).

Suppose now that for all i, neither P(i) nor P ′(i) holds. This means that the edges
incident to a vertex xui are either of the same color, or of three distinct colors. If they
have the same color, then the edges incident with xui+1 have three distinct colors, the
ones incident to xui+2 have the same color, and so on. This would imply that the cycle

On various graph coloring problems page 213

8.2. Complexity results for planar graphs

xu1 yu1

xu2

yu2xu3

yu3

xu4

yu4

xu5

yu5

xu6
yu6

xu7

yu7

xu8

yu8

xu9

yu9

1

1

2 23

3

1

1

2

2

3
3

1
1

2

2

3

3

wu

zu

au1 au2 au3 au4

bu1 bu2 bu3 bu4

cu1 cu2 cu3 cu4

du1 du2 du3 du4

αu

βu

γu

δu

a′u
1 a′u

2 a′u
3

b′u
1 b′u

2 b′u
3

c′u
1 c′u

2 c′u
3

d′u
1 d′u

2 d′u
3

2

2

3
3

3
3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

2

2

3

3

1

1

1

1

Figure 8.4: Vertex gadget Su for planar subcubic graphs with girth at least g (in this example
g = 4 and ℓ = 9).

xu1 . . . x
u
ℓ is even, which is a contradiction. Moreover, if the edges incident to xui have three

distinct colors, then the edges incident to xui+1 (or xui−1) would all have the same color,
and therefore no injective 3-edge-coloring would be possible.

Thus, w.l.o.g. we can suppose that ρ(xu1xu2) = ρ(xu1yu1) = 1 and ρ(xu1xuℓ) = 3. By
extending the coloring to the rest of Su, we can infer that ρ(yu1wu) = ρ(yu1zu) = 2,
ρ(wuau1) = ρ(wubu1) = 3 and ρ(zucu1) = ρ(zudu1) = 3. By the same reasoning, we can
see that all the edges of Su (ignoring the edges involving one of the vertices xui) have
only one possible color which depends only on their distance to yu1 and in particular
ρ(augαu) = ρ(bugβu) = ρ(cugγu) = ρ(dugδu).

Conversely, Su admits a coloring (see Figure 8.4 for an example). To choose a coloring
of Su having the desired color ρ(Su), it suffices to permute the colors in the previous
coloring. ■

To finish the construction, for any edge uv ∈ E(G), we add an edge euv to G′ between
a vertex among {αu, βu, γu, δu} and a vertex among {αv, βv, γv, δv} in such a way that
the planarity of G′ is preserved. This can be done by cyclically ordering the vertices of
{αu, βu, γu, δu} according to a planar embedding of G, and adding the edge euv between
the right pair of vertices.

Note that G′ is planar and subcubic with girth at least g.
Suppose that G′ admits an injective 3-edge-coloring ρ. Assign to the vertex u of G

the color ρ(Su). Take two adjacent vertices u and v of G. The edge euv in G′ is an edge
between two vertices, one of Su and one of Sv: w.l.o.g. say euv = αuαv. This implies that
augα

u and avgα
v receive different colors and thus ρ(Su) ̸= ρ(Sv). Hence this coloring of G

is a proper 3-coloring.

page 214 Dimitri Lajou

Chapter 8. Complexity of the injective edge-coloring problem

xu3,1

xu1,1xu14,1

xu4,1

xu24,1 xu2,1

xu12,1

xu13,1

xu34,1

xu23,1

yu13,1

yu34,1

yu23,1

yu14,1

yu24,1

yu12,1 yu12,2

1

1

11

1

1

2

2

2

2

22

3

3

3

3

3

3

3 xu3,2

xu1,2 xu14,2

xu4,2

xu24,2xu2,2

xu12,2

xu13,2

xu34,2

xu23,2

yu13,2

yu34,2

yu23,2

yu14,2

yu24,2

yu1

wu zu

...

2

2

2 2

2

2

3

3

3

3

3 3

1

1

1

1

1

13

2 2

Figure 8.5: Vertex gadget for planar bipartite subcubic graphs with girth at least 6.

Conversely, suppose that G admits a proper 3-coloring. Let ρ be a partial edge-coloring
of G′ with no colored edges. We choose the color ρ(Su) to be the color of u in G (and we
color the appropriate edges of G′). By Claim 8.10, we can extend ρ to each gadget Su.
Note that by the choice of ρ(Su), there is no conflict between edges of Su and Sv when
u and v are adjacent in G. It is left to color the edges of the form euv. By construction,
there are only two edges at distance 2 of euv (and this edge does not belong to a triangle).
Hence there is at least one remaining color for euv. After coloring theses edges, ρ is an
injective 3-edge-coloring of G′.

8.2.2 Proof of Theorem 8.3.2
Proof of Theorem 8.3.2. In order to prove this result, we will modify the previous con-
struction to make it bipartite (the girth condition will be lost).

First we modify Su (see Figure 8.5). Create the following gadget H. Start with a
complete graph on four vertices x1, . . . , x4. For each edge xixj, create a vertex xij adjacent
to both xi and xj and remove the edge xixj. To each of these vertices of degree 2, add a
pendant edge, with yij the vertex of degree 1 adjacent to xij.

We claim that in every injective 3-edge-coloring γ of H, for any i ̸= j, the vertex xij
is incident to only one color. Suppose it is not the case, then there must exist an injective
3-edge-coloring γ for which we have one of x12x2 and x12x1 colored differently from x12y12,
say w.l.o.g. γ(x12x1) = 1 and γ(x12y12) = 2. We deduce that γ(x2x23) = γ(x2x24) = 3,
γ(x14x4) = γ(x3x13) = 2, γ(x3x34) = 1, and there is no color available for x23y23, a
contradiction.

Now, take two disjoint copies of H named Hu
1 and Hu

2 . Add an edge between the two
vertices yu12,1 and yu12,2 and add the edge yu12,1y

u
1 where yu1 is a new vertex. Now repeat the

construction process of Su, for g = 6 for example, as described in the previous section by
starting at the step where the vertices wu and zu are added. As we observed, the edges
incident to vertex xu12,1 of Hu

1 (resp. xu12,2 of Hu
2) have the same color in any injective

3-edge-coloring ρ. Hence, ρ(yu12,1y
u
12,2) = ρ(yu12,1y

u
1) ̸= ρ(xu12,1y

u
12,1). Note that this graph

also admits an injective 3-edge-coloring (see Figure 8.5). We are in the same configuration
as in the proof of Theorem 2.1. Thus Claim 8.10 also holds for this gadget Su. Note that

On various graph coloring problems page 215

8.3. Injective k-Edge-Coloring is FPT when parameterized by the treewidth

this gadget is bipartite.
The edge gadget does not change, it is still the edge euv. We need to be careful with the

bipartiteness of the constructed graph. To ensure that the constructed graph is bipartite,
it suffices that all vertices yu1 , u ∈ V (G), belong to the same part of the bipartition. To
that end, if there is a path of odd length between yu1 and yv1 , then w.l.o.g. this path is
yu1a

u
1 . . . a

u
gα

uαvavg . . . a
v
1y
v
1 . If we increase the length of a sequence au1 . . . aug in Su by 3 (and

also adding a′u
g , a′u

g+1 and a′u
g+2), then this path now has even length. With this trick, we

can ensure the bipartiteness of the constructed graph G′ as well as keeping Claim 8.10
true in this new setting.

Hence, as before, G admits a proper 3-coloring if and only if G′ admits an injective
3-edge-coloring.

8.2.3 Proof of Theorem 8.4
Proof of Theorem 8.4. Let G be a planar bipartite subcubic graph with girth at least 16.
Let A and B be the two parts of the bipartition of G. We construct the graph GA as
follows: for each u ∈ A, we create a vertex u in GA. For each pair of vertices u, v of
A which are at distance 2, we add an edge between u and v in GA. As G is subcubic,
a planar embedding of G also serves as a planar embedding of GA, where the edges of
GA follow their corresponding path of length 2 in G. Hence, GA is a planar graph with
maximum degree at most 6. Note that, by the girth condition on G, GA does not have
any k-cycle, for all k with 4 ≤ k ≤ 7. Then, by the main result from [23], the graph GA

admits a 3-coloring γ.
We now color G as follows: each edge uv of G, where u ∈ A and v ∈ B, is colored

by the color γ(u) in GA. We claim that this is an injective 3-edge-coloring of G. Indeed,
take any path uvwz of G. W.l.o.g., assume u,w ∈ A and v, z ∈ B. By construction,
uw ∈ E(GA) and thus uv and wz receive different colors.

8.3 Injective k-Edge-Coloring is FPT when parame-
terized by the treewidth

This section presents the proof of Theorem 8.5.

Proof of Theorem 8.5. We give a fixed-parameter tractable (FPT) algorithm parameter-
ized by the treewidth tw(G) of our input graph G. We use a nice tree decomposition
(see [130] and Section 1.1.9) of the input graph for our dynamic programming algorithm.

In our notation, the set of vertices of the graph associated with a node v of the tree,
its bag, is denoted Xv. We call G≤v the subgraph of G induced by the subtree of the
decomposition rooted at v and Gv the subgraph of G induced by Xv.

We define the following set associated with a node v:

Tv =
{
t1 : Xv → P({1, 2, . . . , k})2

}
× {t2 : E(Gv)→ {1, 2, . . . , k}} ,

where P(X) is the power set of X. For T ∈ Tv with T = (t1, t2), to simplify notation, we
note T [u] for t1(u) when u ∈ Xv and T [e] = t2(e) when e ∈ E(Gv). For a vertex u ∈ Xv,
we also note Au and Bu the two sets such that T [u] = t1(u) = (Au, Bu).

The set Val(v) is the subset of Tv such that T ∈ Val(v) if and only if there exists an
injective k-edge-coloring γ of G≤v such that:

page 216 Dimitri Lajou

Chapter 8. Complexity of the injective edge-coloring problem

1. for all u ∈ Xv, Au = {γ(uw), w ∈ V (G≤v) \Xv}, i.e. Au is the set of colors of the
edges of G≤v (not in Gv) incident with u,

2. for all u ∈ Xv, Bu =
{
γ(zw), zw ∈ E(G≤v) \ E(Gv) and z ∈ NG≤v

(u)
}
, i.e. Bu is

the set of colors of the edges of G≤v (not in Gv) at distance 2 of u (or contained in
a triangle containing u),

3. for all e ∈ E(Gv), T [e] is the color γ(e).

In this case we say that γ is associated with T . Note that for each injective k-edge-coloring
of G≤v, there exists an associated T ∈ Tv and hence, T ∈ Val(v). The set Val(v) is thus
the set of T ∈ Tv associated with an injective k-edge-coloring of G≤v.

Note that Val(Root) ̸= ∅ if and only if there exists an injective k-edge-coloring of G.
We will compute Val(Root) with a dynamic programing algorithm. Also note that |Tv| ≤
2O(k·tw(G)2).

First suppose that v is a leaf node. Then Val(v) = Tv = {(∅,∅)}.
Suppose that v is a forget node where v′ is its child node such that Xv ∪ {a} = Xv′ .

Let T ∈ Tv, T ∈ Val(v) if and only if there exists an associated coloring γ of G≤v. This
coloring γ is also a coloring of G≤v′ and thus is associated with some T ′ ∈ Val(v′). In this
case, since T and T ′ share the same coloring γ, we have the following constraints on T
and T ′:

• for all e ∈ E(Gv), T [e] = T ′[e] = γ(e),
• for all u ∈ Xv such that au ∈ E(Gv′), Au = A′

u ∪ {T [au]} and Bu = B′
u ∪

{T [aw], w ∈ Xv ∩NG(a), w ̸= u} where T [u] = (Au, Bu) and T ′[u] = (A′
u, B

′
u),

• for all u ∈ Xv such that au /∈ E(Gv′), we have Au = A′
u and Bu = B′

u ∪
{T [aw], w ∈ Xv ∩NG(u) ∩NG(a)} where T [u] = (Au, Bu) and T ′[u] = (A′

u, B
′
u).

The last two constraints reflect the fact that Au and Bu must be updated after the removal
of a. The only new colors that can be added to these sets come from edges incident with a.
There are multiple cases, depending on whether u and a are adjacent or not, determining
which colors of edges need to be added to these sets.

Hence, for all T ∈ Val(v), it suffices to check whether there exists a T ′ ∈ Val(v′) for
which the previous conditions are verified. This can be done in time 2O(k·tw(G)2), as T is
uniquely determined by T ′ in the above constraints.

Suppose that v is an introduce node where v′ is its child node such that Xv = Xv′∪{a}.
Let T ∈ Tv, T ∈ Val(v) if and only if there exists an associated coloring γ of G≤v. This
coloring γ is also a coloring of G≤v′ and thus is associated with some T ′ ∈ Val(v′). In other
words T is associated with a coloring γ obtained by extending a coloring γ′ associated
with some T ′ ∈ Val(v′). Thus T ′ ∈ Val(v′), we have the following constraints on T and T ′,
in order to ensure that γ is the extension of γ′:

• for all e ∈ E(Gv′), T [e] = T ′[e],
• for all u ∈ Xv′ , T [u] = T ′[u],
• for T [a] = (Aa, Ba), Aa = ∅ and Ba = ⋃

u∈Xv ,ua∈E(Gv) Au,
• the coloring of Xv is an injective k-edge-coloring,
• for all ua ∈ E(Gv), T [ua] /∈ Bu ∪

⋃
u′∈Xv ,u′ ̸=u,u′a∈E(Gv) Au′ .

On various graph coloring problems page 217

8.4. Injective k-Edge-Coloring is NP-complete even for graphs with maximum
degree O(

√
k)

The first two constraints correspond to the fact that γ is an extension of γ′. As a is a new
vertex, Aa = ∅ and the only colors in Ba can be obtained by edges incident with some
vertex u ∈ Xv itself adjacent to a, hence the third constraint. The last two constraints
correspond to the fact that the coloring of the new edges around a cannot be in conflict
with edges already colored. The fourth constraint checks that no such conflict arises in
Xv and the fifth constraint ensures that for each new edge ua the color T [ua] does not
appear around an edge at distance 2 from a or u. For each T ′, there are at most 2tw(G)

possible candidates to be added to Val(v). Hence 2O(k·tw(G)2) time is sufficient to compute
Val(v) from Val(v′).

Suppose that v is a join node where v1 and v2 are its children nodes such that Xv =
Xv1 = Xv2 . Let T ∈ Tv, T ∈ Val(v) if and only if there exists an associated coloring γ of
G≤v. As both G≤v1 and G≤v2 are subgraphs of G≤v, γ is also a coloring of G≤vi

(i ∈ {1, 2})
and thus is associated with some Ti ∈ Val(vi). In this case, since T , T1 and T2 share the
same coloring γ, we have the following constraints on T , T1 and T2:

• for all e ∈ E(Gv), T [e] = T1[e] = T2[e],
• for all u ∈ Xv, Au = A1

u∪A2
u and Bu = B1

u∪B2
u where Ti[u] = (Aiu, Bi

u) for i ∈ {1, 2},
• for all uw ∈ E(Gv), Au ∩ Aw = ∅.

The last constraint corresponds to the fact that the coloring is an injective k-edge-coloring
(i.e. with no conflicts between the two subtrees). Given T1 ∈ Val(v1) and T2 ∈ Val(v2), T
is uniquely determined by the above constraints. Hence it suffices to try all the pairs of
T1, T2 and when the obtained set T verifies all conditions, we can add it to Val(v). This
can be done in time (2O(k·tw(G)2))2 = 2O(k·tw(G)2).

8.4 Injective k-Edge-Coloring is NP-complete even for
graphs with maximum degree O(

√
k)

We can now prove our last result: Theorem 8.6.

Proof of Theorem 8.6. We reduce from k-Edge-Coloring, which is proven to be NP-
complete even for k-regular graphs in [140].

k-Edge-Coloring
Input: A k-regular graph G.
Question: Does G admit a proper k-edge-coloring?

We choose p to be the largest integer such that k =
(
p
2

)
+ r for some r ≥ 0 (and thus

r < p). Recall that k ≥ 45. Moreover, we set ℓ = 2p.
Let G be the input k-regular graph. For uv ∈ E(G), we define the edge gadget Euv

as follows (see Figure 8.6). First create the following vertices auv, buv, xuv1 , . . . , xuvp−3, cuv,
duv, euv, yuv1 , . . . , yuvr , suv1 , . . . , suv2ℓ−1 and suv2ℓ . The vertices suvi have degree 1 in Euv and
will be connected to the rest of the graph. The vertices

{
xuv1 , . . . , x

uv
p−3, a

uv, buv, cuv
}

form
a clique; this is also the case for

{
xuv1 , . . . , x

uv
p−3, a

uv, buv, duv
}

and {yuv1 , . . . , yuvr , d
uv}. The

vertex euv is adjacent to cuv, duv, xuv1 , . . . , xuvp−3, suv1 , . . . , suv2ℓ−1 and suv2ℓ . In the case where
r = 0, i.e. k =

(
p
2

)
, we delete duv.

page 218 Dimitri Lajou

Chapter 8. Complexity of the injective edge-coloring problem

euv

xuv1 xuv2 · · · xuvp−3

auv buv

cuvduv

yuv1

yuv2

...

yuvr

suv1

suv2
· · · suvℓ

· · ·

suv2ℓ

1
1 1

1

1

Figure 8.6: The edge gadget Euv when r > 0. The vertices inside each of the two rectangles
form a clique. The vertex cuv is adjacent to every vertex inside the largest rectangle. The vertex
duv is adjacent to every vertex inside the two rectangles.

Let u be a vertex of G having v1, . . . , vk as its neighbors. We construct the vertex
gadget Su from k×ℓ vertices v1,1, . . . , v1,ℓ, v2,1, . . . , vk,ℓ−1 and vk,ℓ. We successively consider
pairs vi, vj of neighbors. For each pair, we add an edge between one of vi,1, . . . , vi,ℓ of
minimum degree and one of vj,1, . . . , vj,ℓ with minimum degree. By adding edges one by
one in this way, we ensure that the maximum degree of the vertices of Su is at most k

ℓ
+1.

Finally, for each edge uv of G, we identify the 2ℓ vertices suv1 , . . . , suv2ℓ with the ℓ
vertices of Su corresponding to v (since v is a neighbor of u, by the construction of Su
in the previous paragraph, there are ℓ such vertices in Su) and with the ℓ vertices of
Sv corresponding to u. This creates the graph G′. Note that its maximum degree is
max(2ℓ+ p− 1, k

ℓ
+ 2) ≤ 5p ≤ 5

√
3k.

Claim 8.11. For any injective k-edge-coloring γ of Euv, we have γ(euvsuv1) = γ(euvsuv2) =
· · · = γ(euvsuv2ℓ). Moreover if γ is a partial injective k-edge-coloring of Euv where γ(euvsuv1) =
γ(euvsuv2) = · · · = γ(euvsuv2ℓ) and there are no other colored edges, we can extend γ to Euv.

Proof. First note that the clique
{
xuv1 , . . . , x

uv
p−3, a

uv, buv, cuv
}

needs exactly
(
p
2

)
distinct

colors. W.l.o.g. auvbuv is colored 1 and the colors used for this clique are 1, 2, . . . ,
(
p
2

)
.

None of these colors can be used to color the r edges of the form duvyuvi hence they must
be colored with

(
p
2

)
+ 1, . . . ,

(
p
2

)
+ r. One can observe that an edge euvsuvi cannot have a

color among
(
p
2

)
+ 1, . . . ,

(
p
2

)
+ r as it is at distance 2 from the edges of the form duvyuvj

(j ∈ {1, . . . , r}). Moreover this edge cannot receive the same color as one of the edges of
the clique

{
xuv1 , . . . , x

uv
p−3, a

uv, buv, cuv
}

except for the color 1 on the edge auvbuv. Hence
all edges of the form euvsuvi have the same color.

Now suppose we have a coloring γ such that theses edges euvsuvi (i ∈ {1, . . . , 2ℓ}) are
all colored with the same color, say 1. We color auvbuv with color 1 and use the

(
p
2

)
+r−1

other colors to color the rest of the edges of the clique
{
xuv1 , . . . , x

uv
p−3, a

uv, buv, cuv
}

and

On various graph coloring problems page 219

8.5. Conclusion

the edges of the form duvyuvj (j ∈ {1, . . . , r}). We color euvz for z ∈
{
xuv1 , . . . , x

uv
p−3, c

uv
}

with the color of auvz.
If r = 0, then Euv is colored and γ is an injective k-edge-coloring.
If r > 0, we color duveuv and duvauv with the color of duvyuv1 . We color duvz for

z ∈
{
xuv1 , . . . , x

uv
p−3, b

uv
}

with the color of cuvz. It is left to color the edges of the
clique {yuv1 , . . . , yuvr }, for which we have available the

(
p−1

2

)
colors used to color the clique{

xuv1 , . . . , x
uv
p−3, a

uv, buv
}
, which is enough as r ≤ p−1. This is an injective k-edge coloring

of Euv. ■

Suppose there is an injective k-edge-coloring γ of G′. For an edge uv of G, we color
it with the color γ(euvsuv1). Take two adjacent edges of G: uv1 and uv2. In Su, there is
an edge between v1,i and v2,j for some indices i and j. Thus the edges euv1v1,i and euv2v2,j
receive different colors. By Claim 8.11, uv1 and uv2 receive different colors. Hence G
admits a k-edge-coloring.

Suppose there is a k-edge coloring γ of G. For each edge uv, we color euvsuvi with the
color γ(uv). By Claim 8.11, we can extend this coloring to all Euv. At this point there is
no conflict between the colored edges. Indeed the only pairs of edges which are at distance
2 and not in the same edge gadget are of the form euwsuwi , and since γ is proper, there is
no conflict here. It is left to color the edges inside the vertex gadget. Let e = vi,jvi′,j′ be
an uncolored edge. As the maximum degree of the vertices of Su is at most k

ℓ
+2, there are

at most (k
ℓ

+ 2)2 edges incident to a vertex of Su that can be in conflict with e. We must
also consider the edges incident with euvi and euvj . For each of the two vertices there is
one forbidden color γ(uvi) which is common to 2ℓ edges incident to euvi to which we need
to add p− 1 colors for the other edges of euvi . In the end, there are at most 2p+ (k

ℓ
+ 2)2

forbidden colors for e. As 2p + (k
ℓ

+ 2)2 ≤ 2p + (p−1
4 + 2)2 = (p−1

4)2 + 3p + 3 ≤ k when
k ≥ 45 and p ≥ 10, G′ admits an injective k-edge-coloring.

8.5 Conclusion
We proved that Injective 3-Edge-Coloring and Injective 4-Edge-Coloring are
NP-complete on some restricted classes of subcubic graphs. One can ask whether Injec-
tive 5-Edge-Coloring is NP-complete on subcubic graphs. A conjecture proposed by
Ferdjallah, Kerdjoudj and Raspaud [73] states that every subcubic graph admits an injec-
tive 6-edge-coloring (it is proved for planar graphs in [134]). In fact, we only know of two
connected subcubic graphs which require six colors: K4 and the prism. Perhaps these are
the only examples that are not 5-colorable, in which case Injective 5-Edge-Coloring
would be polynomial-time solvable for this class.

We have also proved that for planar bipartite subcubic graphs, Injective 3-Edge-
Coloring is polynomial-time solvable when the girth is at least 16 (because the answer
is always YES), but NP-complete when the girth is 6. It would be interesting to determine
the values of the girth of planar bipartite subcubic graphs for which Injective 3-Edge-
Coloring stays NP-complete, becomes polynomial-time solvable, and always has YES
as an answer.

We also do not know whether Injective 4-Edge-Coloring is NP-complete for
bipartite subcubic graphs.

page 220 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

Chapter 9

Adjacent vertex-distinguishing edge
coloring of graphs

In this chapter, we study adjacent vertex-distinguishing edge-colorings of graphs.

Definition 9.1 (AVD k-edge-coloring). An adjacent vertex-distinguishing k-coloring (AVD
k-coloring for short) is a proper k-edge-coloring such that, for any two adjacent vertices
u and v, the set of colors assigned to edges incident with u differs from the set of colors
assigned to edges incident with v. The AVD-chromatic index of G, denoted by χ′

avd(G),
is the smallest integer k such that G admits an AVD k-coloring.

It should be noted that, while an isolated edge admits no AVD coloring, the AVD-
chromatic index is finite for all connected graphs on at least three vertices. AVD color-
ings are also known as adjacent strong edge-colorings [212], neighbor-distinguishing edge-
colorings [108] or 1-strong edge-colorings [2]. Note that AVD coloring is a special case of
vertex-distinguishing proper edge-coloring. Such a coloring is a proper edge-coloring such
that no two (not necessarily adjacent) vertices are incident with the same set of colors.
The corresponding chromatic index is called the observability and was studied for different
graph classes [12, 36, 41, 69].

Since an AVD coloring is a proper edge-coloring, every graph G satisfies χ′
avd(G) ≥

∆(G). In addition, every graph G with two adjacent vertices of degree ∆(G) satisfies
χ′
avd(G) ≥ ∆(G) + 1. Zhang, Liu and Wang [212] completely determined the AVD-

chromatic index of paths, cycles, trees, complete graphs, and complete bipartite graphs.
They noted that a cycle of length five requires five colors, but conjectured that it is the
only graph with such a gap between χ′

avd(G) and ∆(G).

Conjecture 9.2. [212] Every connected graph G on at least 6 vertices satisfies χ′
avd(G) ≤

∆(G) + 2.

For general graphs, Hatami [95] proved that Conjecture 9.2 is off by just a constant,
and Joret and Lochet improved the constant as follows.

Theorem 9.3. [120] Every connected graph G with ∆(G) ≥ ∆0 satisfies χ′
avd(G) ≤ ∆+19

for some large constant ∆0.

Akbari, Bidkhori and Nosrati [2] showed that χ′
avd(G) ≤ 3∆(G) for every graph G

without isolated edges. This bound was further improved in [211] and then in [190], the
latest improvement by Vučković [187] being as follows.

On various graph coloring problems page 221

Theorem 9.4. [187] For every connected graph G without isolated edges, χ′
avd(G) ≤

2∆(G) + 2.

Balister, Győri, Lehel and Schelp [13] proved Conjecture 9.2 for connected graphs with
∆(G) = 3 and for connected bipartite graphs on at least three vertices. For edge-coloring,
Theorem 1.49 ensures that the chromatic index of a graph is either ∆(G) or ∆(G)+1. The
classification of graphs depending on this received considerable interest (see for instance
[170]). For AVD coloring, Conjecture 9.2 would imply that the AVD chromatic index of
a graph can only have three values: ∆(G), ∆(G) + 1 or ∆(G) + 2. When considering a
given graph class that allows two vertices of maximum degree to be adjacent, there are
only two possible upper bounds: ∆(G) + 1 or ∆(G) + 2. Similarly, the classification of
graph classes depending on this received subsequent interest, see for instance [47, 189] or
the following results on planar graphs.

Theorem 9.5. [46, 62] Every connected bipartite planar graph G with ∆(G) ≥ 9 satisfies
χ′
avd(G) ≤ ∆(G) + 1.

Theorem 9.6. [109] Every connected triangle-free planar graph G with ∆(G) ≥ 12 sat-
isfies χ′

avd(G) ≤ ∆(G) + 1.

Theorem 9.7. [110] Every triangle-free planar graph G without isolated edges satisfies
χ′
avd(G) ≤ max(10,∆(G) + 1).

However, Conjecture 9.2 remains essentially open for planar graphs. The only results
obtained so far on planar graphs, are as follows.

Theorem 9.8. [108] Every connected planar graph G with ∆(G) ≥ 12 satisfies χ′
avd(G) ≤

∆(G) + 2.

Theorem 9.9. [204] Every connected planar graph G with girth at least 5 which is not
C5 satisfies χ′

avd(G) ≤ ∆(G) + 2.

Wang and Wang [188] made the link between maximum average degree and AVD
chromatic index and proved Conjecture 9.2 for graphs with ∆(G) ≥ 3 and mad(G) < 3.

Theorem 9.10. [188] Every connected graph G with ∆(G) ≥ 3 and mad(G) < 3 satisfies
χ′
avd(G) ≤ ∆(G) + 2.

They also gave sufficient conditions for graphs of bounded maximum average degree to
be AVD (∆(G) + 1)-colorable. Combined with results of Hocquard and Montassier [103],
we have the following result.

Theorem 9.11. [103, 188] Every connected graph G with ∆(G) ≥ 3 and mad(G) <
3− 2

∆(G) satisfies χ′
avd(G) ≤ ∆(G) + 1.

A result from Hocquard and Przybyło [105], obtained for the neighbor sum distin-
guishing index, implies the following theorem.

Theorem 9.12. [105] Every connected graph G with ∆(G) ≥ 6 and mad(G) < 3 satisfies
χ′
avd(G) ≤ ∆(G) + 1.

page 222 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

Two main questions arise from these partial results: can this threshold of 3 as an
upper-bound on mad(G) be reached with a sufficiently large lower-bound on ∆(G) in the
case of Theorem 9.11, and broken in the case of Theorem 9.10 and Theorem 9.12? We
answer positively to these questions with Theorem 9.13: there is no threshold in the case
of Theorem 9.11 (and thus in the case of Theorem 9.10 and Theorem 9.12).

Theorem 9.13. Every connected graph G with ∆(G) > 3(mad(G)+1)2 satisfies χ′
avd(G) ≤

∆(G) + 1.

In the case of edge-coloring, the best lower bound is due to Woodall [198]: every
graph G with ∆(G) > 3×mad(G)

2 satisfies χ′(G) = ∆(G). There is a very large gap between
this bound and its AVD counterpart, but this is essentially due to the fact that most
methods on edge-coloring are not transposable to AVD coloring. On the other hand, the
gap between the bound for AVD coloring and its list edge counterpart is a mere constant
factor [24] (note that list edge-coloring is similarly conjectured to be always possible with
∆(G) + 1 colors [185]).

Since planar graphs have a maximum average degree bounded by 6, Theorem 9.13
implies that planar graphs with sufficiently large maximum degree are AVD (∆(G) + 1)-
colorable. We provide a more refined lower-bound on the maximum degree, and prove
here that the triangle-free hypothesis in Theorem 9.6 is unnecessary, as is the extra color
in Theorem 9.8.

Theorem 9.14. Every connected planar graph G with ∆(G) ≥ 12 satisfies χ′
avd(G) ≤

∆(G) + 1.

This work is joint work with Marthe Bonamy, Nicolas Bousquet and Hervé Hocquard.
My coauthors first presented these results as an extended abstract at Eurocomb 2013 [21].
My contribution started in late 2019 when I was tasked to complete the proofs and the
corresponding paper.

We start by presenting some basic definitions in Section 9.1. Section 9.2 presents
the outline of the proofs of our two results along with the key lemmas that make them
possible. Section 9.3 contains the proofs of most of these lemmas while Section 9.4 is
devoted to the proof of Lemma 9.20. Finally, Section 9.5 contains the two discharging
procedures to prove Theorem 9.13 and Theorem 9.14.

Contents
9.1 Preliminaries . 224
9.2 Sketch of the proofs . 225

9.2.1 Rephrasing Theorem 9.13 and Theorem 9.14 225
9.2.2 Reducible configurations . 226
9.2.3 Discharging method . 228

9.3 Proof of the reducibility lemmas 229
9.3.1 Proofs of Lemma 9.21 and Lemma 9.22 229
9.3.2 Back to other lemmas . 231
9.3.3 Proof of Lemma 9.25 . 233

9.4 Proof of Lemma 9.20 . 243
9.4.1 Definitions . 243

On various graph coloring problems page 223

9.1. Preliminaries

9.4.2 Overview of the proof . 243

9.4.3 Recoloring algorithm . 244

9.4.4 Proof of Lemma 9.31 . 246

9.5 Discharging procedures . 252
9.5.1 The ghost vertices method for mad discharging 253

9.5.2 Proof of Theorem 9.13 . 253

9.5.3 Proof of Theorem 9.14 . 255

9.5.3.1 Discharging rules . 255

9.5.3.2 Introducing a tool to simplify the case analysis 258

9.5.3.3 Back to the analysis of the discharging 261

9.6 Perspectives . 264

9.1 Preliminaries
Let G be a graph. Let γ be an edge-coloring of G. We denote by Cu(γ) the set of colors
in γ which appear on some edge incident with u. If there is no ambiguity, we may simply
write Cu. The set of colors incident with an edge uv, denoted by Cuv, is (Cu∪Cv)\{γ(uv)}.
A color c is incident with an edge uv if c ∈ Cuv.

A (partial) proper edge-coloring is a (partial) edge-coloring such that two colored edges
which share an endpoint have different colors. Two vertices u, v are in conflict if uv is an
edge, Cu = Cv and all the edges adjacent to exactly one of u or v are colored (intuitively,
two neighbors are in conflict if no extension of the partial coloring can possibly distinguish
them). Note that the edge uv does not need to be colored for u and v to be in conflict. A
(partial) safe edge-coloring is a (partial) proper edge-coloring without conflict. Note that
a total safe edge-coloring is an AVD coloring. Given a partial edge-coloring where uv is
not colored, the color c creates a conflict for uv if u or v are in conflict with one of their
neighbors when uv is colored with c. A color is compatible with uv if it does not create
any conflict for u nor for v. Let us first state two easy observations. The first one is an
immediate consequence of the definition of conflict.

Observation 9.15. Let γ be a partial safe edge-coloring where uv is not colored. Assume
that a vertex x is in conflict with u when uv is colored with c, then d(x) = d(u) in G and
Cx = Cu ∪ {c}.

In a partial safe edge-coloring where uv is the only uncolored edge, the next observation
implies that each neighbor of u can be in conflict with u for at most one color of uv.

Observation 9.16. Let γ be a partial safe edge-coloring where uv is not colored. Let c, c′

be two colors not compatible for uv. Assume that a vertex x is in conflict with u when uv
is colored with c and that a vertex x′ is in conflict with u when uv is colored with c′. If
c ̸= c′, then x ̸= x′.

Proof. By Observation 9.15, we have c ∈ Cx = Cu ∪ {c} and c /∈ Cx′ = Cu ∪ {c′}. Thus
x ̸= x′.

page 224 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

Let us finally define the split of a vertex in a graph. Let G be a graph and u be a vertex
of degree at least 2. We define G ⊗ {u} as the graph G where u has been replaced with
d(u) vertices v1, v2, . . . , vd(u) of degree 1 where every vi is adjacent to a distinct neighbor
of u. By abuse of notation, we still refer to the edges in G⊗ {u} by their name in G, i.e.
if w is a neighbor of u in G and a neighbor of v1 in G⊗{u}, then we can refer to the edge
wv1 as “wu”.

We define similarly G⊗ S, where S ⊆ V , by deleting the edges in G[S] and splitting
all the elements of S successively.

For a vertex u ∈ V (G) and an integer p, we denote by dp(u) the number of neighbors
of u that are of degree p.

9.2 Sketch of the proofs
Let k be an integer. We will assume from now on that none of the graphs we consider
have a vertex of degree higher than k (in other words, their maximum degree is always at
most k). Due to the hypotheses of Theorem 9.13 and Theorem 9.14, we can assume that
k ≥ 4 in the rest of this chapter.

9.2.1 Rephrasing Theorem 9.13 and Theorem 9.14
For the sake of simplicity, we consider a very slight variation of AVD coloring: a proper
edge-coloring where no two adjacent vertices are in conflict, unless they are both of de-
gree 1. The two definitions are equivalent for every connected graph except K2: we
merely state that since there is no possible AVD coloring of K2, we settle for a proper
edge-coloring (which is always possible as soon as there at least one color in play). This
allows us to remove the condition that the graph has to be on at least 3 vertices, and
thus to apply induction more conveniently. From now on, AVD coloring means implicitely
AVD coloring except for the connected components that are isomorphic to K2.

The proof of these two statements are discharging proofs. For each case, we will
consider a “minimal” counter-example, and prove strong structural properties on it, too
strong for such a graph to exist. The definition of “minimal” depends on an underlying
partial order on graphs, which we will define differently on the class of planar graphs and
on the class of graphs with bounded maximum average degree.

Let G be a graph with maximum degree at most k. In the following, ni(G) denotes the
number of vertices of degree i in G (similarly for ni+(G) with “at least i”). The P -sequence
of G is the quadruplet (n2+(G), |E(G)|,−n1(G), |V (G)|). The M-sequence of G is the se-
quence (nk(G), · · · , n2(G), |{v|d(v) = 2 and v is not adjacent to a 2-vertex}|, n1(G)). The
M -sequence of G is the sequence of the number of vertices of given degree, sorted by de-
creasing degree with as slight modification for vertices of degree 2.

Let G and G′ be two graphs. The graph G is P -smaller than G′, denoted by G ≺P G′

if the P -sequence of G is lexicographically smaller than the P -sequence of G′. We define
M-smaller similarly to P -smaller. Note that in both cases, removing vertices, edges or
splitting vertices of degree at least 2 produce a smaller graph.

A planar graph G is P -reducible to another planar graph G′ if G′ ≺P G and G is
AVD (k + 1)-colorable if G′ is. A graph with maximum average degree smaller than
a is Ma-reducible to another graph G′ with maximum average degree smaller than a if

On various graph coloring problems page 225

9.2. Sketch of the proofs

G′ ≺M G and G is AVD (k + 1)-colorable if G′ is. A graph G is reducible to G′ if G is
both P -reducible and Ma-reducible to G′ for every a > mad(G).

Note that these notions of reducibility are transitive. Indeed if G is P -reducible to H
and H is P -reducible to H ′, then G is P -reducible to H ′, and similarly for M -reducibility.
Note that a graph is reducible to the empty graph G∅ iff it is AVD (k + 1)-colorable.

The notion of Ma-reducibility (resp. P -reducibility) induces a partial order over the
set of graphs with maximum average degree at most a (resp. planar graphs). Lemmas 9.17
and 9.18 rephrase Theorems 9.13 and 9.14 with these notions of reducibility.

Lemma 9.17. Every graph with mad(G) < m and ∆(G) ≤ k where k ≥ 3(m + 1)2 is
Mm-reducible to G∅.

Lemma 9.18. Assume k ≥ 12. Every planar graph G with ∆(G) ≤ k is P -reducible
to G∅.

In the remaining of this chapter, we prove Lemmas 9.17 and 9.18. The method is
the following. First, we prove that non-reducible graphs cannot contain some struc-
tures, called reducible configurations. The reducible configurations are presented in Sec-
tion 9.2.2. Then, we prove that a non-reducible graph has to be G∅. This last part
consists in a discharging proof.

9.2.2 Reducible configurations
The aim of this part is to prove that a non-reducible graph cannot contain some con-
figurations. This section is devoted to stating the reducible configurations and giving a
short idea of their proofs. Complete proofs can be found in Sections 9.3 and 9.4. In this
section, G denotes a simple graph such that ∆(G) ≤ k and a is a real which is greater
than mad(G). Note that K2 is considered to be a reducible graph.

First note that every graph which is not connected is reducible.

Lemma 9.19. If G has a vertex v such that G− v has at least two connected components
which are not an isolated vertex, then G is reducible.

The proof of Lemma 9.19 is quite simple since it just consists in AVD coloring every
graph Gi obtained from a connected component Ci on at least two vertices by adding
a vertex v′ and vertices of degree 1 in order to emulate v, then gluing these colorings
appropriately.

Lemma 9.20. If G contains any of the following configurations, then G is reducible:

1. Two adjacent vertices u and v with d(v) < d(u) ≤
⌊
k
2

⌋
.

2. A vertex v2 adjacent to two vertices v1 and v3, with d(v1) = d(v2) = d(v3) ≤
⌊
k−1

2

⌋
.

Both statements follow from an involved recoloring algorithm. We consider an AVD
coloring of the graph without the edge v1v2. First we prove that we can locally modify
the coloring in such a way that the set of colors adjacent to v1 is almost the set of colors
adjacent to v2. We then prove that, under this condition, there is an AVD coloring of the
whole graph.

Before stating Lemmas 9.21 and 9.22, let us introduce some definitions and notation.
Let u be a vertex and v1, . . . , vp be a subset of N(u). The conflict index of vi, denoted by

page 226 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

⌊
k
2

⌋−
v ⌊

k
2

⌋−
u

d(v) < d(u)

(a)

d(v2)
v1 ⌊

k−1
2

⌋−

v2

d(v2)
v3

d(v1) = d(v2) = d(v3)

(b)

Figure 9.1: The configurations for Lemma 9.20.

c(vi), is the number of neighbors of vi which have degree exactly d(vi). The conflict index
is the maximum number of compatible colors which can create a conflict with vi when we
color uvi.

The recoloring index of v1, . . . , vp is maxi∈{1,...,p}(d(vi) + c(vi) − i). The recoloring
index roughly denotes, given a set of colors compatible with the edges incident with u, if
{uv1, . . . , uvp} are not colored, the maximum number of these colors which are forbidden
for uvi when the edges uv1 to uvi−1 are still not colored.

Lemma 9.21. Let v1, . . . , vp be p neighbors of a vertex u (p ≥ 1) with degrees different
from d(u). Let m = maxi(d(vi) + c(vi)− i).

If
(
k+1−(d(u)−p)−m

p

)
≥ dd(u)(u)+1, then every AVD (k+1)-coloring α of G−{uvi}1≤i≤p,

where we allow u to be in conflict with other vertices, can be extended to an AVD (k+ 1)-
coloring of G. In particular, G is reducible.

Note that Lemma 9.21 is more interesting when the vi’s are sorted in such a way that
d(v1) + c(v1) ≤ d(v2) + c(v2) ≤ . . . ≤ d(vp) + c(vp). We will mainly use Lemma 9.21 to
prove that G is reducible.

The proof of Lemma 9.21 is quite involved. However, the idea is simple: consider a
coloring of G − {uvi}1≤i≤p. If there are sufficiently many different sets of colors which
can be put on the edges {uvi}1≤i≤p in such a way that there is no conflict between vi and
its neighbors, then one of them will not create a conflict for u. The point of this proof
is to show that sufficiently many such sets exist. Let us now explain a little bit more
each part of the formula. The term (k + 1 − (d(u) − p)) denotes the number of possible
colors for edges incident with u when the p edges {uvi}1≤i≤p are not colored. The term
d(vi) + c(vi) represents the number of constraints added on the edge uvi because of vi.
The −i translates the fact that we color the edges in the decreasing order from uvp down
to uv1 (thus uvp has extra room compared to uv1).

Using the same kind of arguments, we can prove the following easier statement.

Lemma 9.22. Let v1, · · · , vp be p neighbors of u, of degrees different from d(u), with
d(vp) ≥ 2. If maxi(d(vi) + c(vi)− i) = 0, then G is reducible.

The next lemma is a consequence of Lemma 9.21 and Lemma 9.22.

Lemma 9.23. Suppose G has a vertex u of degree at least 2 adjacent to a vertex of
degree 1. If u verifies one of the following, then G is reducible:

1. u is adjacent to a vertex of degree 2, or

2. u has at most
⌊
k
2

⌋
neighbors of degree ≥ 3.

On various graph coloring problems page 227

9.2. Sketch of the proofs

Let i be an integer such that 2 ≤ i <
⌊
k
2

⌋
, the set Di of a graph G is the set of vertices

with degree at least 2 and at most i while B is the set of big vertices, i.e. having a degree
at least

⌊
k
2

⌋
+ 1.

Lemma 9.24. If there exists an integer i such that 2 ≤ i <
⌊
k
2

⌋
and |Di| > 4(i − 1)|B|,

then G is reducible.

The proof of this lemma is heavily inspired from a beautiful proof by Woodall [199]
for a similar statement in the case of list edge-coloring with ∆ colors.

In a planar embedding, a neighbor v of u is weak if two neighbors w1 and w2 of v verifies
that uvw1 and uvw2 are triangular faces. Let us now prove that a set of configurations is
reducible when we consider planar graphs.

Lemma 9.25. For k ≥ 12, if G is a planar graph containing any of the following config-
urations, then G is P -reducible.

1. Two adjacent 2-vertices.
2. A vertex adjacent to two 2-vertices.
3. Two adjacent vertices v1, v2 of degree d, where d ∈ {3, 4, 5}, such that the edge v1v2

belongs to at most one triangle.
4. Two adjacent 3-vertices not having two adjacent common neighbors.
5. A vertex adjacent to two adjacent 3-vertices and a 3−-vertex.
6. A vertex adjacent to two adjacent 3-vertices and a weak 4-vertex.
7. A 9−-vertex u (with d(u) ≥ 4) adjacent to two adjacent 3-vertices.
8. A vertex adjacent to three 3-vertices such that two of them are weak.
9. A vertex adjacent to two adjacent weak 4-vertices and a 2−-vertex.

10. A vertex adjacent to two pairs of adjacent 4-vertices.
11. A 9-vertex u with d9(u) ≤ 4 adjacent to two adjacent 4-vertices.

Note that, in Lemma 9.25, the hypothesis k ≥ 12 is not necessary for every statement.
The exact lower-bound on k that is used for each statement can be found in the proofs.

The proofs of the reduction lemmas are not independent and can be found in Sec-
tions 9.3 and 9.4. Their dependence is given by the order of their statement. Nevertheless,
due to the complexity of the proof of Lemma 9.20, this lemma is proved after all the other
ones.

9.2.3 Discharging method
We prove both theorems by contradiction. Assume they are not true, and take a min-
imal counter-example (with respect to the appropriate order on graphs). As stated in
Section 9.2.2, there is a list of configurations that a minimal counter-example cannot con-
tain. We prove that a graph that does not contain any of those configurations cannot
satisfy the hypothesis on the maximum average degree (or the planarity hypothesis).

To that purpose, in the case of graphs with maximum average degree less than m
we assign to each vertex v a weight of d(v) − m, introduce discharging rules as to how

page 228 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

the weight can be redistributed along the graph (with conservation of the total weight
of the graph), and prove that after application of the discharging rules, knowing which
configurations are forbidden, every vertex has a non-negative final weight. Since no weight
was created nor deleted, this implies that the average degree of the graph is at least m,
hence the maximum average degree is at least m. Thus a minimal counter-example cannot
satisfy the hypothesis on the maximum average degree. This completes the proof.

Similarly for planar graphs: we consider a planar embedding of the graph, and we
assign to each vertex its degree minus six as a weight, and to each face two times its
degree minus six. We apply discharging rules to redistribute weights along the graph with
conservation of the total weight. As some configurations are forbidden, we can prove that
after application of the discharging rules, every vertex and every face has a non-negative
final weight. This implies that ∑v(d(v)− 6) +∑

f (2d(f)− 6) = 2×|E(G)|− 6×|V (G)|+
4 × |E(G)| − 6 × |F (G)| ≥ 0, a contradiction with Euler’s Formula which states that
|E| − |V | − |F | = −2. Hence a minimal counter-example cannot exist.

This method of proof is called a discharging method, and was introduced in the be-
ginning of the 20th century.

9.3 Proof of the reducibility lemmas
This section is devoted to the proof of the reducibility lemmas.

Proof of Lemma 9.19. Assume there exists a vertex v such that G − v has at least two
connected components which are not an isolated vertex. Let C1 be one of them, and let
C2 be the rest of the graph. Consider the graph G1 induced by C1 in G where we add
all the edges of the form {uv|u ∈ N(v)}. We define similarly the graph G2. Those two
graphs both have maximum degree at most k. Since C1 and C2 both contain at least one
edge, G1 ≺ G and G2 ≺ G, so we can obtain two AVD (k + 1)-colorings α1 and α2 of G1
and G2, respectively.

Up to permuting the colors of α2, we can assume that every edge incident with v is
colored the same in α1 and α2. We then obtain a coloring β of G by coloring the edges
in G1 with α1, the edges in G2 with α2. The only overlapping edges are the edges incident
with v, which are colored the same in α1 and α2. Hence, the coloring β is well-defined.

By construction, there is no conflict between two adjacent vertices in G1, nor in G2.
Since there is no edge in G between a vertex in C1 and a vertex in C2, it follows that β
is actually an AVD (k + 1)-coloring.

Note that Lemma 9.19 allows us to most often ignore the cases where we create a K2
connected component when removing part of the graph. Indeed, in most cases if such a
situation appears, then we could apply Lemma 9.19 to reduce the graph.

9.3.1 Proofs of Lemma 9.21 and Lemma 9.22
Color Game. Before proving Lemma 9.21 and Lemma 9.22, let us first introduce the
color game. The Color Game has as input a set X of colors, p boxes and a set Xi of
forbidden colors for each box. We denote by di the number of colors in Xi. We assume
for simplicity that the number of forbidden colors is non-decreasing, i.e. (di)1≤i≤p is a
non-decreasing sequence. The goal of the game is to find the number of sets of p colors
which can be one-to-one affected to the p boxes in such a way the color of the i-th box

On various graph coloring problems page 229

9.3. Proof of the reducibility lemmas

is not a color of Xi. Such an assignment is called a correct assignment and the set of
size p is a correct set. The Color Game is a function that assigns to every element of
(|X|, p, (Xi)i≤p) an integer, the number of corresponding correct sets, which is called the
box choice. Note that even if there are several correct assignments for the same set of
colors, it still counts as only one. Let us prove two claims which are at the core of the
proofs of Lemma 9.21 and Lemma 9.22.

Claim 9.26. If |X| = p and di ≤ i− 1, then the box choice equals one.

Proof. Clearly there is only one possible set (namely X), so the only thing to prove is
that X is a correct set. We proceed by induction on p. Since |Xp| ≤ p− 1 and |X| = p,
there is a compatible color a for the p-th box. We forget the color a and the last box.
There remain (p − 1) boxes and (p − 1) colors and di is non-increasing, so we apply
induction on the remaining boxes.

We can actually generalize the claim when there is no restriction on the size of X.

Claim 9.27. The box choice is at least
(

|X|−maxi(di−i+1)
p

)
.

Proof. Let ℓ = |X|. We proceed by induction on ∑p
i=1 di. If ∑p

i=1 di = 0, then every di
equals 0. Since there is no constraint, all the subsets of size p are correct. So the box
choice equals

(
ℓ
p

)
.

So we may assume that dp ≥ 1 since di is non decreasing. If there exists an x such
that x is in every Xi, then x is never in a correct assignment. Thus the box choice is
not modified when x is deleted from X and from every Xi. Hence by induction, the box
choice is at least

(
ℓ−1−(maxi(di−1−i+1))

p

)
=
(
ℓ−(maxi(di−i+1))

p

)
. In the following, we assume

that every x ∈ X does not appear in at least one Xi.
Let x be an element of Xp. Let jx be the greatest integer such that x /∈ Xjx . The box

choice is at least the number of correct sets which do not contain x plus the number of
correct sets where x is assigned to the jx-th box.

In the first case, let d′
i = |Xi \ {x}| be the new number of forbidden colors of Xi

after removing x, note that d′
i ≤ di. In particular d′

p = dp − 1 so we can apply the
induction hypothesis and the box choice is at least

(
ℓ−1−maxi(d′

i−i+1)
p

)
≥
(
ℓ−1−maxi(di−i+1)

p

)
,

as
(
a
p

)
≥
(
b
p

)
when a ≥ b.

In the second case, there remain (p− 1) boxes to affect. Let d′
i be the new number of

forbidden colors of the ith box after removing x and the box jx. Let us prove maxi(d′
i−i) ≤

maxi(di − i). For i < jx, the indices are not modified and d′
i ≤ di. For i > jx, the indices

decrease by 1 (since the jx-box is deleted) and x ∈ Xi by definition of jx, therefore
d′
i−1 = di − 1. In each case, maxi(d′

i − i) ≤ maxi(di − i). By induction, the box choice is
at least

(
ℓ−1−maxi(d′

i−i+1)
p−1

)
≥
(
ℓ−1−maxi(di−i+1)

p−1

)
.

Pascal’s triangle ensures that the sum is at least:(
ℓ− 1−maxi(di − i+ 1)

p

)
+
(
ℓ− 1−maxi(di − i+ 1)

p− 1

)
=
(
ℓ−maxi(di − i+ 1)

p

)
.

We can now prove both lemmas.

page 230 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

Proof of Lemma 9.21. Let u be a vertex of G adjacent to p vertices v1, · · · , vp of degree
different from d(u). Let c(vi) be the number of neighbors of vi that are of degree d(vi)
and m = maxi(d(vi) + c(vi)− i). Assume in addition that

(
k+1−(d(u)−p)−m

p

)
≥ dd(u)(u) + 1.

Let G′ be the graph G − {uvi}i. Note that G′ ≺P G and G′ ≺M G and G′ is still
connected by Lemma 9.19. Also remark that mad(G′) ≤ mad(G) and G′ is planar if G is.
Let α be the given AVD (k + 1)-coloring of G′ where u can possibly have conflicts with
other vertices.

Let X be the subset of colors which are not adjacent to u in G′. We have |X| =
k + 1 − (d(u) − p). For every vi, the set Xi of colors of X which cannot be given to uvi
is the set of colors adjacent to vi (at most d(vi) − 1 colors) plus the set of colors which
create a conflict with a neighbor of vi (at most c(vi) colors). So the set Xi has size at
most d(vi) + c(vi)− 1. Note that a correct assignment of the color game on this instance
is a coloring which does not yield any conflict for vi.

Claim 9.27 ensures that at least dd(u)(u) + 1 sets do not create any conflict for the
vertices vi. Since the total number of possible conflicts for u is dd(u)(u) and u cannot be
in conflict with a vi, at least one coloring does not create a conflict for u. It provides an
AVD (k + 1)-coloring of G.

In particular, if G′ is AVD (k + 1)-colorable, then G also is. Thus G is reducible.

Proof of Lemma 9.22. Assume that G contains a vertex u adjacent to p vertices v1, · · · , vp
with degrees different from d(u) such that d(vp) ≥ 2 and maxi(d(vi)+c(vi)−i) = 0. Let G′

be the graph obtained from G by deleting the edges uvi for every i and adding p vertices
w1, . . . , wp of degree one adjacent to u. Note that G′ ≺P G as n2+ is non-increasing,
the number of edges is constant and n1 increases since d(vp) ≥ 2. Also G′ ≺M G since
d(vp) ≥ 2 decreases and no degree increases.

Assume that G′ is AVD (k + 1)-colorable and let α be such a coloring. Let us
prove that we can extend α to G by coloring the edges uv1, . . . uvp with colors X =
{α(uw1), . . . , α(uwp)}. We denote by Xi the set of colors adjacent to vi plus the set
of colors which create a conflict with vi and denote by di the size of Xi. Note that
di − i = d(vi)− 1 + c(vi)− i ≤ −1. By Claim 9.26, there exists a correct assignment for
which does not yield a conflict for vi. Moreover, there is no conflict for u since the set of
colors adjacent to u in G and G′ are the same.

9.3.2 Back to other lemmas
Let us prove Lemma 9.23 and Lemma 9.24.

Proof of Lemma 9.23.1. Assume that there is a vertex u of degree at least 2 adjacent to
a vertex v1 of degree 1 and to a vertex v2 of degree 2. By Lemma 9.20, we can assume
that u is of degree at least 3. Recall that c(vi) is the number of neighbors of vi that are
of the same degree, so we have c(v1) = 0.

Suppose first that c(v2) ≥ 1, as v2 has only one neighbor different from u, c(v2) = 1.
Let x be the neighbor of v2 of degree 2 and w its other neighbor different from v2. We
color G − xv2 by minimality. If uv2 and xw have the same color, we can permute the
colors of uv2 and uv1. Thus we can suppose that they have distinct colors. In this case
x and v2 have different set of colors and there is at least one free color for xv2 which
does not create any conflict as k ≥ 4. Thus the graph is reducible. If c(v2) = 0, then

On various graph coloring problems page 231

9.3. Proof of the reducibility lemmas

maxi(d(vi) + c(vi) − i) = 0 and v1 and v2 are not of the same degree as u. Thus, by
Lemma 9.22, the graph is reducible.

Proof of Lemma 9.23.2. Indeed, assume that there is a vertex u of degree at least 2 adja-
cent to a vertex v1 of degree 1 and to no more than

⌊
k
2

⌋
neighbors of degree at least 3. By

Lemma 9.20, we can assume that u is of degree at least three. Let v2, · · · , vp be the other
neighbors of u of degree at most 2 (if any). By Lemma 9.23.1, all of them are of degree
one. So maxi(d(vi) + c(vi)− i) = 0. Since d(u)− p ≤

⌊
k
2

⌋
and p ̸= k + 1− (d(u)− p), we

have
(
k+1−(d(u)−p)

p

)
≥ k + 1 − (d(u) − p) ≥

⌈
k
2

⌉
+ 1 ≥ dd(u)(u) + 1. Thus, since d(u) ≥ 3,

by Lemma 9.21, the graph is reducible.

Let uv and uw be two edges. We switch the colors of uv and uw when we color uw
with the color of uv and conversely. Note that if there is no conflict for u before switching
the colors, there is no conflict for u after the switch since the set of colors adjacent to u
is not modified.

Proof of Lemma 9.24. The proof is heavily inspired from a beautiful proof by Woodall [199]
for a similar statement in the case of list edge-coloring with ∆ colors.

Let i <
⌊
k
2

⌋
. Let Di be the set of vertices of G of degree at most i and at least 2. Let B

be the set of vertices with degree at least
⌊
k
2

⌋
+ 1. Let Bi be the subset of vertices of B

adjacent to at least one vertex of Di. The connected components of the graph induced
by Di are singletons or edges by Lemma 9.20. Moreover, vertices of Di are adjacent to
either other vertices in Di or vertices in Bi by Lemma 9.20. Consider the multigraph
obtained from G by identifying the vertices of Di which are adjacent. Denote by Ai the
image of the set Di when edges are contracted, and consider the bipartite multigraph Gi

on vertex set (Ai, Bi). Note that we keep multi-edges and delete the edges inside Bi.
Every vertex of Ai has degree at most 2(i − 1) and |Di| ≤ 2|Ai|. By the hypothesis of
Lemma 9.24, |Ai| > 2(i− 1)|Bi|.

We start with an easy structural claim on bipartite multigraphs.
Claim 9.28. Let H be a bipartite multigraph with vertex set V (H) bipartitioned into A∪B,
with B ̸= ∅. For α > 0, if for every non-empty subset A′ ⊆ A and B′ = N(A′) ⊆ B,
there exists a vertex u ∈ B′ with dA′(u) < α, then α|B| > |A|.

Proof. By induction on |A|. If |A| < α, since |B| ≥ 1, the conclusion holds. If |A| ≥ α,
there exists u ∈ B with d(u) < α. We apply the induction hypothesis to the graph
H − (N(u) ∪ {u}). It follows that α(|B| − 1) > |A| − α, hence the result. ■

We claim that there is a non-empty set S ⊆ Ai such that the subgraph H of Gi

obtained by considering Gi[S ∪N(S)] is such that every vertex in B′ = N(S) has degree
at least 2(i − 1) in H. Indeed, otherwise, in every non-empty subset S ⊆ Ai and B′ =
N(S) ⊆ Bi, there exists a vertex u ∈ B′ with dH(u) < 2(i − 1). Thus Claim 9.28 holds
and 2(i− 1)|Bi| > |Ai|, a contradiction.

Consequently, there is a non-empty set S ⊆ Ai such that the subgraph H of Gi

obtained by considering Gi[S ∪N(S)] is such that every vertex in B′ = N(S) has degree
at least 2(i− 1) in H. Let S ′ be the pre-image of S before the contraction of edges in Di.
As S ′ is a non-empty set of vertices of degree at least 2, we can color by minimality
of G⊗ S ′.

To each vertex u ∈ B′, assign a list of dS′(u) colors corresponding to the color of each
edge incident with u and to a vertex in S ′. Similarly, this corresponds to an edge list

page 232 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

assignment of H such that ∀u ∈ B′,∀v ∈ S, if uv is an edge, then |L(uv)| = dH(u) ≥
2(i− 1) ≥ dH(v).

To obtain our AVD (k + 1)-coloring of G, we use the following result.
Theorem 9.29. [24] Let G be a bipartite multigraph and suppose that every edge e = uv
of G is given a list L(e) of at least max{d(u), d(v)} colors. Then G is edge-L-colorable.

Consequently, Theorem 9.29 applies, and H can be colored. To obtain an AVD (k+1)-
coloring of G, it suffices to color all edges which are in G⊗S ′ and not in H by their color
in the coloring of G ⊗ S ′. All edges in H are colored by their color in H and it remains
to color every uncolored edge between two vertices of S ′. Note that at this moment, all
vertices which are not in S ′ have the same set of colors as in the AVD (k + 1)-coloring
of G⊗S ′. Two adjacent vertices of S ′ are already distinguished since they were contracted
in H, so their incident sets of colors will be disjoint except for the color of their common
edge. To color an edge between vertices of S ′, it suffices to take any color beside the
2(i − 1) ≤ k that may already appear around one of the two vertices. Note that this is
an AVD (k + 1)-coloring. Hence the conclusion, G is reducible.

9.3.3 Proof of Lemma 9.25
We will prove all configurations of Lemma 9.25. When proving that a configuration is
P -reducible, we suppose that G does not contains any of the previous configurations.

Proof of Lemma 9.25.1. Assume there are two adjacent vertices v1 and v2 of degree 2. Let
w1 (resp. w2) be the neighbor of v1 (resp. v2) other than v2 (resp. v1). By Lemma 9.20.2,
d(w1), d(w2) ̸= 2. Depending on whether w1 = w2, we color by minimality G − v1v2 or
the graph obtained from G by contracting the edge v1v2. Note that the resulting graph
is still planar. In both cases, the edges w1v1 and w2v2 receive two different colors since
they are adjacent. Finally since d(wi) ̸= 2, any coloring of v1v2 with a third color induces
an AVD (k + 1)-coloring of G.

Proof of Lemma 9.25.2. Suppose that u is adjacent to two vertices v1 and v2 of degree 2.
Let w1 (resp. w2) be the neighbor of v1 (resp. v2) that is not u. By Lemma 9.25.1,
d(w1), d(w2) ̸= 2. We consider two different cases depending on whether u and w1 (resp.
w2) are adjacent.

• Assume, up to symmetry, that u is adjacent to w1. Let α be an AVD coloring of
G′ = G⊗{v1}. If α(uv1) ̸= α(v1w1), then the coloring can be immediately extended
to G. Otherwise, if α(uv1) ̸= α(v2w2), switch the colors uv1 and uv2 and apply the
first case. Finally, in the last case, switch the colors of uw1 with the color of uv1
and v1w1 (which are the same otherwise we can apply the first point). After the
switching, the second case holds since the color of uv1 has been modified.

• Assume that u is adjacent neither to w1 nor to w2. Let G′ be the graph obtained by
deleting v1 and v2 and adding the edges uw1 and uw2. Let α be an AVD coloring
of G′. We color uv1 and v2w2 with α(uw2), and uv2 and v1w1 with α(uw1). Vertices
v1 and v2 cannot raise a conflict, and the set of colors incident with each other vertex
has not changed, thus this produces an AVD (k + 1)-coloring of G.

On various graph coloring problems page 233

9.3. Proof of the reducibility lemmas

v1

v2

x1

x2

y1

y2

w −→

v

v′
1

x1

x2

y1

y2

w

Figure 9.2: One case of Lemma 9.25.3. Here d(v1) = d(v2) = 4 and they have one common
neighbor w. On the left is the neighborhood of v1 and v2 in G and on the right, the resulting
graph G′. Vertices with bold boundary have no other edges in the graph.

v1

v2

w1 w2

−→
x

w1 w2

Figure 9.3: Illustration of Lemma 9.25.4. On the left is the neighborhood of v1 and v2 in G
and on the right, the resulting graph G′. Vertices with bold boundary have no other edges in
the graph. Dashed edges represent non-edges.

Proof of Lemma 9.25.3. Assume that G has two adjacent vertices v1 and v2 of degree
d ∈ {3, 4, 5} such that the edge v1v2 does not belong to two triangles (see an example on
Figure 9.2). By Lemma 9.20.2, the only neighbor of v1 (resp. v2) of degree d is v2 (resp.
v1). In particular, modifing the colors incident with v1, v2 will not create any conflict with
other neighbors.

Since the edge v1v2 does not belong to two triangles, v1 and v2 have at most one
neighbor in common. If v1 and v2 have exactly one neighbor w in common, we split v1
into a vertex v′

1 of degree 1 adjacent to w and a vertex v′′
1 of degree d − 1 with the

remaining adjacencies. Then, in both cases, we contract the edge v1v2 (or v′′
1v2), thus

creating a vertex v, and color by minimality the resulting graph G′. Indeed remark that,
by construction, G′ is planar, simple, of maximum degree at most k, and G′ ≺p G. We
obtain a coloring of G by merely switching the colors of wv1 and wv2 if necessary to
ensure a proper coloring, and by coloring v1v2 arbitrarily. Since v1 and v2 have no other
neighbor of degree d, there is no other conflict to deal with. All their respective incident
edges, except maybe one, were adjacent in the smaller graph. Hence, except wv′

1, all edges
incident with v have pairwise different colors. Since d ≥ 3, this ensures that there is no
conflict between v1 and v2. The edge v1v2 has at most 2d− 2 ≤ k constraints, so we can
color it.

Proof of Lemma 9.25.4. Let v1 and v2 be the two adjacent 3-vertices. By Lemma 9.25.3,
v1 and v2 belong to at least two common triangles. Let w1 and w2 their two common
neighbors. By assumption, w1 and w2 are not adjacent (see See Figure 9.3). We con-
struct G′ from G by removing v1 and v2, adding w1w2, w1x and xw2 where x is a new
vertex. The graph G′ is planar and P -smaller than G. Let α be an AVD (k + 1)-coloring
of G′. Color v1w1 and v2w2 with color α(w1w2), v1w2 with color α(xw2) and v2w1 with

page 234 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

u

v1

v2

x

w

v3

v4

(a) Case d(v3) = 3 and v3 has
a 3-neighbor.

u

v1

v2

v3

w

(b) Case d(v3) = 1.

u

v1

v2

v3

w

x

y

(c) Case d(v3) = 2 or 3 and v3
has no 3-neighbor.

Figure 9.4: Illustration of Lemma 9.25.5. Vertices with bold boundary have no other edges in
the graph. Dashed edges represent non-edges.

color α(xw1). Finally color v1v2 properly. By construction α(xw1) ̸= α(xw2), thus v1 and
v2 are not in conflict and we did not modify the color set of any other vertex.

Proof of Lemma 9.25.5. Suppose u is adjacent to two adjacent 3-vertices v1 and v2 and
to a vertex v3 of degree at most 3. Note that by Lemma 9.25.4, the graph G is such
that v1 and v2 are both adjacent to a same vertex w ̸= u such that uw is an edge. By
Lemma 9.20, d(w) > 3. We consider three cases (see Figure 9.4).

Let us first consider the case where v3 also has a neighbor v4 of degree 3 (hence
d(v3) = 3). Then by Lemma 9.25.4, the vertex v4 is also adjacent to u, and both v3
and v4 are adjacent to a same vertex x ̸= u (which may or may not differ from w) such
that ux is an edge. Again, we have d(x) > 3. In that case, we consider the graph
G′ = G⊗ {v1, v2, v3, v4}, and obtain an AVD (k + 1)-coloring α of G′ by minimality. We
switch if necessary the colors of {uv1, uv2, uv3, uv4} so that α(uv1) ̸∈ {α(wv1), α(wv2)}
and α(uv3) ̸∈ {α(xv3), α(xv4)}. This is possible as the set is of size 4. Then, by switching
if necessary the colors of wv1 and wv2, or those of xv3 and xv4, and coloring arbitrarily
the edges v1v2 and v3v4, we obtain an AVD (k + 1)-coloring of G.

Consider now the case where v3 has no neighbor of degree 3. Suppose that v3 has
degree 1. Let G′ be the graph obtained from G by deleting the edge v1v2. We obtain
an AVD (k + 1)-coloring α of G′ by minimality. If {α(wv1), α(wv2)} ̸= {α(uv1), α(uv2)},
then we can add v1v2 back and color it arbitrarily. Otherwise, without loss of generality
α(v1w) ̸= α(uv3). By switching the colors of uv1 and uv3, the first case holds.

Now, v3 is a 2-vertex or a 3-vertex. Let x (and y if it exists) be its two neighbors
other than u. Let G′ be the graph obtained from G by deleting the edge uv3 and adding
a pendant vertex v′

3 to u. We obtain an AVD (k + 1)-coloring α of G′ by minimality. We
uncolor the edge v1v2. Assume w.l.o.g. that α(uvi) = i for 1 ≤ i ≤ 3. Let 4 be the color
of uw. If v3 has no edge colored 3, other than uv3, then we can color uv3 with 3. If none
of wv1 or wv2 is colored 3, then by switching the colors of uv3 with one of uv1 or uv2 we
obtain the desired coloring after coloring v1v2.

W.l.o.g. assume that wv1 is colored 3. If α(wv2) /∈ {1, 2, 3}, then we can extend the
coloring by setting α(uv3) = 2 and α(uv2) = 3 or by setting α(uv3) = 1, α(uv2) = 3
and α(uv1) = 2, and then by coloring v1v2 properly. Now we can assume that α(wv2) ∈
{1, 2, 3} and thus α(wv2) = 1. By coloring uv3 and wv1 with 1 (resp. 4), uv1 and wv2

On various graph coloring problems page 235

9.3. Proof of the reducibility lemmas

u

v1

v2

v3

w

x

y

z

−→ u

v1

v2

v3

w

x

y

z

Figure 9.5: Illustration of Lemma 9.25.6. On the left is the neighborhood of u in G and on the
right, how it is modified in G′. Vertices with bold boundary have no other edges in the graph.

with 4 (resp. 3) and uw with 3 (resp. 1), we obtain an AVD (k + 1)-coloring of G when
v3 has no edge colored 1 (resp. 4), other than uv3. Note that v3 cannot be incident with
an edge colored 3, another colored 1 and a third colored 4 when all of these edges are
different from uv3 since v3 has degree at most 3.

Proof of Lemma 9.25.6. Suppose u is adjacent to two adjacent 3-vertices v1 and v2 and
to a weak vertex v3 of degree 4 (see Figure 9.5). Note that by Lemma 9.25.4, the graph G
is such that v1 and v2 are both adjacent to a same vertex w ̸= u such that uw is an edge.
By Lemma 9.20, we have d(w) > 3.

Let x, y and z be the three other neighbors of v3. Let G′ be the graph obtained from G
by deleting the edge v1v2. We obtain an AVD (k + 1)-coloring α of G′ by minimality.
Assume w.l.o.g. that α(uvi) = i for 1 ≤ i ≤ 3 and α(uw) = 4. If {α(wv1), α(wv2)} ≠
{1, 2}, then we can add v1v2 back and color it arbitrarily.

If v3 is adjacent to a 4-vertex, assume w.l.o.g. that it is z. Uncolor v3z and let S be
the set of colors containing α(v3x), α(v3y) and possibly a color a which creates a conflict
with z when uv3 is colored a. If v3 is not adjacent to a 4-vertex then let S be the set of
colors containing α(v3x), α(v3y) and α(v3z). In both case, if we color uv3 with a color
not in S, then there will be no conflict for v3.

Assume S ̸= {1, 2, 4}. If 1 /∈ S, then exchange the colors of uv1 and uv3, recolor v1v2
and possibly v3z. The same holds if 2 /∈ S. If 4 /∈ S, then color uw with 1 and the two
edges uv1 and wv2 with 4 to get back to the previous case.

Assume now S = {1, 2, 4}. Note that if d(z) = 4, then S is the set of colors of the
three colored edges of z. Without loss of generality, assume that uxv3 is a triangular face
of G. Let b ∈ S be the color of v3x. In particular x ̸= w since w is already incident with
all three colors of S on wu, wv1 and wv2. W.l.o.g. ux is colored 5. If b = 1, then color
v3x with 5, ux with 1 and uv1 with 5. A similar construction works for b = 2. If b = 4,
then color v3x with 5, ux with 4, uv1 with 5, v2w with 2 and uw with 1. In both cases,
we can recolor v1v2 (and possibly v3z) arbitrarily without conflict.

Proof of Lemma 9.25.7. Suppose u is adjacent to two adjacent 3-vertices v1 and v2 and
4 ≤ d(u) ≤ 9 (see Figure 9.6). Note that by Lemma 9.25.4, the graph G is such that v1 and
v2 are both adjacent to a same vertex w ̸= u such that uw is an edge. Let G′ be the graph
obtained from G by deleting the edge v1v2. We obtain an AVD (k+1)-coloring α of G′ by

page 236 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

u

9−
G

v1

v2

w

−→

G′

u

v1

v2

w

2
2

3
1

1 −→

G′′

u

v′
1

v′
2

v′′
1

v′′
2

x1

x2

w

1

23

2

1

Figure 9.6: Illustration of Lemma 9.25.7. On the left is the neighborhood of u in G, in the
middle is the graph G′ with the coloring requiring the creation of the graph G′′ which is on the
right. Vertices with bold boundary have no other edges in the graph.

u v′′
1v′

1

v2

v3

x1

x2

x3

w1

w2

w3 4 1

1

5

1

2

3

u v1

v2

v3

x1

x2

x3

w1

w2

w3 4 1

5

1

5

2

3

(a)

u v′′
1v′

1

v2

v3

x1

x2

x3

w1

w2

w3 4 1

4
5

1

5

1

4

1

2

3

u v′′
1

v2

v3

x1

x2

x3

w1

w2

w3 4 1

4
5

5

1

1

4
5

2

3

(b)

u v′′
1v′

1

v2

v3

x1

x2

x3

w1

w2

w3 4 1

5
2

1

5

1

4

1

2

3

u v1

v2

v3

x1

x2

x3

w1

w2

w3 41

2
5

1

5

1

4

4

2

3

(c)

u v′′
1v′

1

v2

v3

x1

x2

x3

w1

w2

w3 4 1

2

1

4

1

2

3

u v1

v2

v3

x1

x2

x3

w1

w2

w3 4 1

2

1

4

1

2

3

(d)

Figure 9.7: Illustration of Lemma 9.25.8 representing part of the neighborhood of u in G.
Vertices with bold boundary have no other edges in the graph. Each subcase is composed of the
initial coloring on G′ on the left and the constructed coloring of G on the right.

minimality. Assume w.l.o.g. that α(uvi) = i for 1 ≤ i ≤ 2. If {α(wv1), α(wv2)} ≠ {1, 2},
then we can add v1v2 back and we can color it arbitrarily.

Let G′′ be the graph obtained from G′⊗{v1, v2} by adding two edges v′
2x1, v′

2x2 where
v′

2 is the neighbor of u obtained from splitting v2 (see Figure 9.6). Note that G′′ ≺P G.
We can extend α to G′′ − {uv′

1, uv
′
2} by coloring v′

2x1 and v′
2x2 with colors 1 and 2. We

can apply Lemma 9.21 to color G′′. Indeed, m = max(1 − 1, 3 − 2) = 1 and p = 2, thus(
k+1−d(u)+p−m

p

)
≥
(

5
2

)
= 10 ≥ dd(u)(u) + 1. Now let a and b be the colors of uv′

1 and uv′
2

in this new coloring. Color G with the colors of α and recolor uv1 and uv2 with a and b.
As b ̸= 1, 2, v1 and v2 do not have the same colors by the construction of the coloring in
Lemma 9.21 and we can properly recolor v1v2.

Proof of Lemma 9.25.8. Assume that G has a vertex u adjacent to v1, v2, v3 of degree 3
where v1, v2 are weak neighbors of u (see Figure 9.7). By Lemma 9.25.5, {v1, v2, v3} is
a stable set. For 1 ≤ i ≤ 3, let wi and xi be the two other neighbors of vi. Note that

On various graph coloring problems page 237

9.3. Proof of the reducibility lemmas

Lemma 9.25.5 ensures that none of w1, w2, w3, x1, x2, x3 is of degree 3. However, some of
the wi’s and xi’s may coincide.

Let G′ be the graph obtained from G by deleting uv1 and adding a vertex v′
1 adjacent

only to u. We obtain an AVD (k + 1)-coloring α of G′ by minimality. Consider w.l.o.g.
that α(uv′

1) = 1, α(uv2) = 2, and α(uv3) = 3.
If 1 ̸∈ {α(v1x1), α(v1w1)}, then we can extend α to G. Hence we can assume w.l.o.g.

that α(v1w1) = 1. Consider w.l.o.g. that α(uw1) = 4.
Similarly, for each i ∈ {2, 3}, if 1 ̸∈ {α(vixi), α(viwi)} and i ̸= α(v1x1), then we switch

the colors of uvi and uv1, thus obtaining an AVD (k + 1)-coloring of G. Therefore, for
each i ∈ {2, 3}, it holds that 1 ∈ {α(vixi), α(viwi)} or α(v1x1) = i.

If α(v1x1) ̸= 4, then we can color v1w1 and uv′
1 with 4 and uw1 with 1, and we repeat

the previous arguments. Therefore, if α(v1x1) ̸= 4, for each i ∈ {2, 3}, then it holds that
{α(vixi), α(viwi)} = {1, 4} or α(v1x1) = i.

Assume first that 1 ∈ {α(v2x2), α(v2w2)}. Assume w.l.o.g. 1 = α(v2w2). Note that
w1 ̸= w2. Let 5 = α(uw2) and observe that 5 ̸∈ {1, 2, 3, 4}.We consider the following three
cases.

• If 5 ̸∈ {α(v2x2), α(v1x1)}(see Figure 9.7.a), then we color w2v2 with 5, uw2 with 1,
uv1 with 5: this provides an AVD (k + 1)-coloring of G.

• If 5 = α(v1x1) (see Figure 9.7.b), then, in particular α(v1x1) ̸∈ {2, 3, 4} and
{α(v2x2), α(v2w2)} = {α(v3x3), α(v3w3)} = {1, 4}. We can easily extend the color-
ing to an AVD (k+1)-coloring of G by setting α(w2v2) = 5, α(uw2) = 1, α(uv2) = 3,
α(uv1) = 2 and α(uv3) = 5.

• If 5 = α(v2x2) (see Figure 9.7.c), then this implies α(v1x1) = 2 and {α(v3x3), α(v3w3)} =
{1, 4}. We can obtain an AVD (k + 1)-coloring of G by setting α(uw1) = 1,
α(w1v1) = 4, α(uv1) = 3, α(uv2) = 4 and α(uv3) = 2.

Assume now 1 ̸∈ {α(v2x2), α(v2w2)} (see Figure 9.7.d). This implies α(x1v1) = 2,
which in turn implies {α(v3x3), α(v3w3)} = {1, 4}. We can extend the coloring to an
AVD (k + 1)-coloring of G by setting α(uv1) = 3, α(uv2) = 1 and α(uv3) = 2.

Before proving Lemma 9.25.9, Lemma 9.25.10 and Lemma 9.25.11, we present a generic
reduction technique. Suppose u is adjacent to two adjacent weak 4-vertices v1 and v2. Let
x1 and x2 such that ux1v1 and ux2v2 are triangular faces of G. By Lemma 9.25.3, v1 and
v2 have a common neighbor w different from u. When w ∈ {x1, x2}, we say that we are
in a type A configuration and in a type B configuration otherwise (see Figure 9.8). We
construct the graph G′ from G by identifying v1 and v2 to form a vertex v and by adding
two 1-vertices t1 and t2 which are respectively adjacent to u and w.

We obtain an AVD (k + 1)-coloring α of G′ by minimality. When we are in a type
A configuration, suppose w.l.o.g. w = x1, α(uv) = 1, α(zv) = 2, α(wv) = 3 and
α(x2v) = 4 where z is the fourth neighbor of v1 (see Figure 9.8). When we are in a
type B configuration, suppose w.l.o.g. α(uv) = 1, α(x1v) = 2, α(wv) = 3 and α(x2v) = 4
(see Figure 9.8).

Claim 9.30. The following statements hold.

1. Suppose we are in a type A configuration.

(a) If G′ admits an AVD (k + 1)-coloring α such that α(ut1) ̸= α(wt2), then we
can extend the coloring α to G.

page 238 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

u

Type A

v1

v2

w

x2

z

u

Type B

v1

v2

x1

x2

w

u−→

G′

v

w

x2

z

t1

t2

1 2

3

4

u−→

G′

v

x1

x2

w

t1 t2

1

2

3

4

Figure 9.8: The two types of adjacent weak 4-neighbors of u. On the left is the neighborhood
of v1 and v2 in G and on the right is the reduced graph G′.

(b) If G′ admits an AVD (k + 1)-coloring α such that α(ut1) = α(wt2) = c1,
α(uw) = c2 and {c1, c2} ≠ {2, 4}, then we can extend the coloring α to G.

(c) If G′ admits an AVD (k + 1)-coloring α such that α(ut1) = α(wt2) = c1,
α(uw) = c2 and {c1, c2} = {2, 4}, then there exists an AVD (k+ 1)-coloring α′

of G′ such that α′(ut1) = α′(wt2) = c2, α(uw) = c1, α and α′ differ only on
these three edges and every vertex r except t1 and t2 verify Cr(α) = Cr(α′).

2. Suppose we are in a type B configuration.

(a) If G′ admits an AVD (k + 1)-coloring α such that either α(ut1) ̸= α(wt2) or
α(ut1) = α(wt2) /∈ {2, 4}, then we can extend the coloring α to G.

(b) If G′ admits an AVD (k + 1)-coloring α such that α(ut1) = α(wt2) ∈ {2, 4},
say w.l.o.g α(ut1) = 2, and α(ux1) /∈ {3, 4} or, α(ux1) = 4 and α(ux2) ̸= 3,
then we can extend the coloring α to G.

(c) If G′ admits an AVD (k + 1)-coloring α such that α(ut1) = α(wt2) ∈ {2, 4},
say w.l.o.g α(ut1) = 2, and α(ux1) = 3 or, α(ux1) = 4 and α(ux2) = 3, then
there exists an AVD (k + 1)-coloring α′ of G′ such that α′(ut1) = α′(wt2) = 3,
α and α′ only differ on edges among ux1, ux2 and the edges incident with v,
t1, t2. Moreover every vertex r except v, t1 and t2 verify Cr(α) = Cr(α′).

In other words, for both types, we can either directly extend α to G or we can modify
α such that the color of ut1 is different from its previous color. Remark that if α(ut1) ̸=
α(wt2), then we can color G for both types.

Proof. Let us start with the proof of (1a), (1b), (2a) and (2b). In each case, we extend
α to G. First, let α(ut1) = a and α(wt2) = b. We want to prove (1a), hence we suppose
a ̸= b. See Figure 9.9 for an illustration of the following three cases.

On various graph coloring problems page 239

9.3. Proof of the reducibility lemmas

u v1

v2

w

x2

z1 2

3

4

b
a

u v1

v2

w

x2

z4 2

3,b

4

b,3
1

u v1

v2

w

x2

z1,a 2

4

4

3
a,1

Figure 9.9: The coloring of G in each of the three cases of Claim 9.30.1a. On the left there is
the case a, b ̸= 4, in the middle it is the case a = 4 and on the right we have the case b = 4.

u v1

v2

w

x2

zc1 2

3

4

c1

1
u v

w

x2

z

t1

t2

1 2

3

4c2

c2

c1

Figure 9.10: The two cases of Claim 9.30.1b. On the left there is the coloring of G for the case
c1 /∈ {2, 4}, and on the right there is the coloring of G′ for the case c1 ∈ {2, 4} and c2 /∈ {2, 4}.

• If both a and b are different from 4, then set α(uv1) = 1, α(zv1) = 2, α(wv1) = 3,
α(x2v2) = 4, α(uv2) = a and α(wv2) = b. Remark that v1 and v2 cannot be in
conflict and finally we can color v1v2 properly.

• If a = 4, then set α(uv1) = 4, α(zv1) = 2, α(x2v2) = 4, α(uv2) = 1. If b ̸= 1, then
set α(wv2) = b and α(wv1) = 3, otherwise set α(wv2) = 3 and α(wv1) = b = 1.
Remark that v1 and v2 cannot be in conflict and finally we can color v1v2 properly.

• If b = 4, then set α(wv1) = 4, α(zv1) = 2, α(x2v2) = 4, α(wv2) = 3. If a ̸= 3,
then set α(uv2) = a and α(uv1) = 1, otherwise set α(uv2) = 1 and α(uv1) = a = 3.
Remark that v1 and v2 cannot be in conflict and finally we can color v1v2 properly.

This proves (1a). We want to prove (1b), hence we suppose a = b = c1. Let c2 = α(uw).
See Figure 9.10 for an illustration of the following two cases.

• If c1 /∈ {2, 4}, then set α(uv1) = c1, α(zv1) = 2, α(wv1) = 3, α(x2v2) = 4, α(uv2) = 1
and α(wv2) = c1. Remark that v1 and v2 cannot be in conflict and finally we can
color v1v2 properly.

• If c1 ∈ {2, 4}, then c2 /∈ {2, 4} and take a coloring α′ coinciding with α except for
the following three edges: α′(ut1) = α′(wt2) = c2 and α′(uw) = c1. Remark that it
is an AVD (k + 1)-coloring of G′ for which we can apply the previous case.

This proves (1b). Remark that (1c) follows directly from the construction of the previous
case when {c1, c2} = {2, 4}.

Let us continue with type B. We want to prove (2a). See Figure 9.11 for an illustration
of the following three cases.

• If a ̸= b and both are different from 4, then set α(uv1) = 1, α(x1v1) = 2, α(wv1) = 3,
α(x2v2) = 4, α(uv2) = a and α(wv2) = b. Remark that v1 and v2 cannot be in

page 240 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

u

v1

v2

x1

x2

w
1

2

3

4

a b
u

v1

v2

x1

x2

w
1

2

3

4

2
4

u

v1

v2

x1

x2

w
1

2

3

4

a
a

Figure 9.11: The coloring of G in each of the three cases of Claim 9.30.2a. On the left there
is the case a ̸= b and a, b ̸= 4, in the middle it is the case a = 2 and b = 4 and on the right we
have the case a = b ̸= 2, 4.

u

α

v

x1

x2

w

t1 t2

1

2

22

3

4

5
u−→

α′

v

x1

x2

w

t1 t2

1

5

25

3

4

2

u v

x1

x2

w

t1 t2

1

2

22

3

4

4

5

u−→ v

x1

x2

w

t1 t2

1

4

25

3

5

2

4

Figure 9.12: The two cases of Claim 9.30.2b. On the top, there is the case α(ux1) = 5 /∈ {3, 4},
and on the bottom we have the case α(ux1) = 4 and α(ux2) = 5 ̸= 3.

conflict and finally we can color (v1v2) properly. The case a ̸= b and a, b ̸= 2 can be
solved in a similar fashion.

• If a ̸= b and a = 2 and b = 4, then set α(uv1) = 1, α(x1v1) = 2, α(wv1) = 4,
α(x2v2) = 4, α(uv2) = 2 and α(wv2) = 3. Remark that v1 and v2 cannot be in
conflict and finally we can color v1v2 properly. The case a ̸= b and a = 4 and b = 2
can be solved in a similar fashion.

• If a = b and both are different from 2 and 4, then set α(uv1) = 1, α(x1v1) = 2,
α(wv1) = a, α(x2v2) = 4, α(uv2) = a and α(wv2) = 3. Remark that v1 and v2
cannot be in conflict and finally we can color v1v2 properly.

This proves (2a). We now want to prove (2b), hence we suppose w.l.o.g a = b = 2. See
Figure 9.12 for an illustration of the following two cases.

• If α(ux1) /∈ {3, 4}, say α(ux1) = 5, then take a coloring α′ coinciding with α except
for the following three edges: α′(ut1) = α′(x1v) = 5, α′(ux1) = 2. The coloring α′

is an AVD (k + 1)-coloring for which α′(ut1) ̸= α′(wt2) and thus (2a) applies.

On various graph coloring problems page 241

9.3. Proof of the reducibility lemmas

u

α

v

x1

x2

w

t1 t2

1

2

22

3

4

3
u−→

α′

v

x1

x2

w

t1 t2

1

3

33

2

4

2

u v

x1

x2

w

t1 t2

1

2

22

3

4

4

3

u−→ v

x1

x2

w

t1 t2

1

4

33

2

3

2

4

Figure 9.13: The two cases of Claim 9.30.2c. On the top, there is the case α(ux1) = 3, and
on the bottom we have the case α(ux1) = 4 and α(ux2) = 3.

• If α(ux1) = 4 and α(ux2) ̸= 3, say α(ux2) = 5, then take a coloring α′ coinciding
with α except for the following edges: α′(ut1) = α′(x2v) = 5, α′(ux2) = α′(vx1) = 4
and α′(ux1) = 2. The coloring α′ is an AVD (k + 1)-coloring for which α′(ut1) ̸=
α′(wt2) and thus (2a) applies.

This proves (2b). We finally want to prove (2c), hence we suppose w.l.o.g a = b = 2. See
Figure 9.13 for an illustration of the following two cases.

• If α(ux1) = 3, then take a coloring α′ coinciding with α except for the following
edges: α′(ut1) = α′(x1v) = α′(wt2) = 3 and α′(ux1) = α′(vw) = 2. The coloring α′

has the desired properties.
• If α(ux1) = 4 and α(ux2) = 3, then take a coloring α′ coinciding with α except for

the following edges: α′(ut1) = α′(x2v) = α′(wt2) = 3, α′(ux1) = α′(vw) = 2 and
α′(vx1) = α′(ux2) = 4. The coloring α′ has the desired properties.

This proves (2c).

We can now present the proofs of the remaining cases of Lemma 9.25.

Proof of Lemma 9.25.9. Suppose u is adjacent to two adjacent weak 4-vertices v1 and v2
and to a 2−-vertex v3. Perform the generic reduction presented before Claim 9.30 to
create G′ from G. If we can apply Claim 9.30 to color G, then we have nothing to do.
Otherwise, let a be the color of ut1. If v3 is not incident with an edge colored a, then we
can exchange the color of uv3 and ut1. Now ut1 and wt2 do not have the same color, thus
we can color G using Claim 9.30. If v3 is incident with an edge colored a, then we can
apply Claim 9.30 (1c or 2c) to change the color of ut1 and then we apply the previous
case.

Proof of Lemma 9.25.10. Suppose u is adjacent to two adjacent weak 4-vertices v1 and v2
and to two adjacent weak 4-vertices v′

1 and v′
2. Let w (resp. w′) be the common neighbor

page 242 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

of v1 and v2 (resp. v′
1 and v′

2) other than u. Note that the two pairs of adjacent 4-vertices
do not have to be of the same type (A or B).

Let G′ be the graph obtained from G by contracting v1v2 to form a vertex v and by
adding the two vertices t1 and t2 adjacent respectively to u and w. Let G′′ be the graph
obtained from G′ by contracting v′

1v
′
2 to form a vertex v′ and by adding the two vertices

t′1 and t′2 adjacent respectively to u and w′. Let α be an AVD (k + 1)-coloring of G′′

obtained by minimality.
If we can extend α to G by applying Claim 9.30 twice (from G′′ to G′ and then from G′

to G), then we have nothing to do. Otherwise, we are in one of the non-extendable cases
either on the side of v1,v2 or on the side of v′

1,v′
2. Suppose w.l.o.g. that α(ut1) = α(wt2).

Let α′ be the coloring obtained from α by exchanging the colors of ut1 and ut′1. Now
α′(ut1) ̸= α′(wt2). If we can extend α′ to G using Claim 9.30, then we can conclude,
otherwise it means that α′(ut′1) = α′(w′t′2). In particular α(wt2) = α(w′t′2). By applying
Claim 9.30 to G′′ colored with α, we can obtain α′′ an AVD (k + 1)-coloring of G′′ where
α′′(w′t′2) = α(w′t′2) = α(wt2) ̸= α′′(wt2). By applying the same procedure as before we
are able to extend α′′ to G since α′′(w′t′2) ̸= α′′(wt2).

Proof of Lemma 9.25.11. Suppose u is a 9-vertex, with d9(u) ≤ 4, adjacent to two adja-
cent weak 4-vertices v1 and v2. Let G′ as presented in the context of Claim 9.30. Let α
be an AVD (k + 1)-coloring of G′. If we can apply Claim 9.30 to color G, then we are
done.

If not, let us consider the graph G′′ obtained from G′ ⊗ v by deleting uv and adding
uv′ where v′ is a new vertex. Also add an edge t1y and three edges v′xi for i ∈
{1, 2, 3}. Consider the graph G′′ − {ut1, uv′} and its coloring α′ obtained from α by
coloring t1y by α(wt2), and the three edges v′xi for i ∈ {1, 2, 3}, by the three colors
{α(vx1), α(vx2), α(vw)}. It is an AVD (k+ 1)-coloring of G′′−{ut1, uv′} except possibly
for u. We can apply Lemma 9.21 to find an AVD (k+1)-coloring of G′′ by coloring only ut1
and uv′ (note thatG′′ does not have to be P -smaller thanG in order to apply Lemma 9.21).
Indeed in this case, p = 2, m = max(2−1, 4−2) = 2 and

(
12+1−9+p−m

p

)
=
(

4
2

)
= 6 ≥ 4+1

by hypothesis.
Now we can color G′ by identifying v and v′ and removing the vertices y, x1, x2 and x3.

This is a proper AVD (k + 1)-coloring of G′ such that ut1 and wt2 have different colors.
We can therefore apply Claim 9.30 to color G.

9.4 Proof of Lemma 9.20
This section is devoted to the proof of Lemma 9.20. The proof of this lemma is substan-
tially more difficult than the proofs of the previous section.

9.4.1 Definitions
A partial edge-coloring γ is a uv-partial edge-coloring if all edges except uv are colored.
Such a coloring is safe when no two vertices are in conflict for γ. We say that γ is almost-
safe when no two vertices are in conflict for γ except possibly for u and v. In other words,
a safe edge-coloring is an almost-safe edge-coloring where u and v are not in conflict.

Fix a uv-partial safe edge-coloring γ. We note ninc(γ) = |Cuv(γ)| the number of
incident colors with the edge uv. We note Ccom(γ) = Cu(γ) ∩ Cv(γ) the set of colors

On various graph coloring problems page 243

9.4. Proof of Lemma 9.20

which are both on an edge incident with u and an edge incident with v. The number
ϱ(γ) = |Ccom(γ)| is the number of such colors. Remark that when uv is the only uncolored
edge, ninc(γ) = (d(u)− 1) + (d(v)− 1)− ϱ(γ).

A vertex x ̸= v is in a γ-conflict with u if it is in conflict with u when uv is colored
with c /∈ Cuv(γ) in γ. The set Su(γ) is the set of vertices in a γ-conflict with u and
Confu(γ) is the set of colors c for which u has a γ-conflict when uv is colored c. Let
Fu(γ) = |Confu(γ)| be the number of such colors, the inequality Fu ≤ |Su| follows from
the definitions. It is often more convenient to count separately the conflicts for u and
for v.

We denote by ncompa(γ) the number of colors for which uv can be properly colored
without creating a conflict. Note that:

ncompa(γ) = k + 1− ninc(γ)− |Confu(γ) ∪ Confv(γ)| ≥ k + 1− ninc(γ)− Fu(γ)− Fv(γ).

9.4.2 Overview of the proof
The proof is organized as follows. We first state one quite technical lemma. The proof of
this lemma will be detailed later. We then prove Lemma 9.20 which is a consequence of
Lemma 9.31. This ensures that in a non-reducible graph, each vertex of degree at most⌊
k
2

⌋
is adjacent to at most one vertex of degree at most

⌊
k−1

2

⌋
, which must then have the

same degree.

Lemma 9.31. Let G = (V,E) be a graph with ∆(G) ≤ k which contains an edge uv with
d(u) ≤ d(v) ≤

⌊
k
2

⌋
and d(u) ≤

⌊
k−1

2

⌋
. Let δ = 1 if d(v) >

⌊
k−1

2

⌋
and δ = 0 otherwise.

If d(u) < d(v) and there is a uv-partial safe (k + 1)-edge-coloring γ of G, then there
is a uv-partial safe (k + 1)-edge-coloring α of G with ncompa(α) ≥ 2− δ.

If d(u) = d(v) and there is a uv-partial safe (k + 1)-edge-coloring γ of G, then there
is a uv-partial safe (k + 1)-edge-coloring α of G with ncompa(α) ≥ 1.

Let us now prove Lemma 9.20.

Proof of Lemma 9.20.1. By minimality, the graph G′ = G−{uv} admits an AVD (k+1)-
coloring γ. If we create a K2 connected component, then we can apply Lemma 9.19 on G.
Otherwise, this coloring γ is a uv-partial safe edge-coloring of G, and Lemma 9.31 applies.
By coloring uv with one of the compatible colors, we obtain an AVD (k + 1)-coloring
of G.

Proof of Lemma 9.20.2. Note that for all i, d(vi) ≤
⌊
k−1

2

⌋
. By minimality, the graph

G′ = G − {v1v2, v2v3} admits an AVD (k + 1)-coloring γ. If one or more connected
component is isomorphic to K2, then either v2 is a cut-vertex and Lemma 9.19 applies, or
v2 is adjacent to a vertex of degree 1 and Lemma 9.20.1 applies. Otherwise, this coloring γ
is a v1v2-partial safe edge-coloring for G. Lemma 9.31 ensures that there is a v1v2-partial
coloring α of G′ = G − {v2v3} with ncompa(α) ≥ 2 as v1 and v2 have different degrees in
G′ which are both at most

⌊
k−1

2

⌋
. In other words there exist two AVD (k + 1)-colorings

α1 and α2 for G′, matching on all edges but v1v2, and such that α1(v1v2) ̸= α2(v1v2).
In particular, Cv3(α1) = Cv3(α2) and Cv2(α1) ̸= Cv2(α2). Thus we can assume w.l.o.g.
that Cv2(α1) ̸= Cv3(α1). Hence Lemma 9.31 ensures that α1 can be extended to a safe
edge-coloring to the whole graph G.

page 244 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

1 Uncolor uu1;
2 Let x be a vertex in conflict with u1 for color cx such that cx ∈ {c1, c2};
3 while uu1 cannot be colored with c1 or c2 do
4 Let y be a vertex in conflict with u1 for color cy such that cy ∈ {c1, c2} and

cx ̸= cy;
5 Recolor u1y with a color distinct from c1, c2, and from the current color of u1y

(and distinct from γ(uu1) when d(u) ≤
⌊
k−1

2

⌋
);

6 Set x to be the current vertex y;
7 end
8 Recolor uu1 with c1 or c2;

Algorithm 2: Recoloring uu1.

The rest of this section is devoted to the proof of Lemma 9.31. We start by presenting
a recoloring algorithm in Lemma 9.32 which can be used when the number of common
colors ϱ is “small”. After using the previous algorithm on our coloring, we present a
simpler algorithm but quite technical in its formulation in Claim 9.38 when the number
of common colors is “large”. We conclude by proving Lemma 9.31 by using the previous
recoloring algorithms and dividing the proof into a number of subcases.

9.4.3 Recoloring algorithm
In this subsection, we present a recoloring algorithm that will help us in the rest of the
proof.

Lemma 9.32. Let G be a graph and u, v be two vertices such that d(u) ≤
⌊
k
2

⌋
. Let γ be

a uv-partial safe edge-coloring, such that u has a neighbor u1 that is in a γ-conflict with
u when uv is colored a.

If c1, c2 /∈ Cu(γ) ∪ {a} are two colors, then there exists a uv-partial almost-safe edge-
coloring α such that all edges e non-incident with u1 verify α(e) = γ(e), α(u1v) = γ(u1v)
(if the edge exists) and such that α(uu1) ∈ {c1, c2}.

Moreover when d(u) ≤
⌊
k−1

2

⌋
, if u1z was recolored, then we can suppose that α(u1z) ̸=

γ(uu1) and γ(uu1) /∈ Cz(γ).

This lemma is used to increase the number of colors which appear on both u and v.
With the right choice of colors c1 and c2, e.g. c1, c2 ∈ Cv(γ) \ Cu(γ), we can add one more
common color between the two vertices. Note that we do not require that Cu(β) ̸= Cv(β)
(β is almost-safe and not necessarily safe), indeed this property will be a consequence of
the choice of c1 and c2.

Proof. Since u and u1 are in a γ-conflict when uv is colored a, Observation 9.15 ensures
that Cu1 \ Cu = {a} and the definition ensures that a /∈ Cv(γ). Let c1, c2 /∈ Cu(γ) ∪ {a}.
The coloring α is obtained from γ by recoloring only edges incident with u1 (except u1v
if it exists), as described in Algorithm 2.

We first prove that instructions of Algorithm 2 are well-defined, and then that Algo-
rithm 2 ends. A step will denote the sequence of operations made during an iteration of
the while loop. The vertices x and y are said to be relative to the step.
Claim 9.33. Algorithm 2 is well-defined.

On various graph coloring problems page 245

9.4. Proof of Lemma 9.20

Proof. At the beginning, uu1 cannot be recolored with c1 or c2. Remember that d(u1) =
d(u), and Cu1(γ) \ Cu(γ) = {a}, with a ̸∈ Cv(γ). In particular, c1, c2 /∈ Cu1(γ). Therefore,
a neighbor of u1, denoted by x, in conflict with u1 for the color cx ∈ {c1, c2}, exists.

At each iteration of the while loop, uu1 cannot be recolored with c1 or c2 and u1 is in
conflict with x. Since we only recolor edges incident with u1, with colors different from
c1 and c2, both c1 and c2 are not part of Cu1 at this step of the algorithm. Therefore, a
neighbor of u1, denoted by y, in conflict with u1 for the color cy ∈ {c1, c2} with cy ̸= cx,
exists. Note that by definition of a conflict in that case, this means that all the edges
incident with y are colored, and in particular that y ̸= v (the same holds for x). Note
that Cx = Cu1 ∪ {cx} and Cy = Cu1 ∪ {cy} since uu1 is uncolored. Hence both x and y
are well-defined and are distinct since they are not incident with the same set of colors.
Uncolor u1y.

By Observation 9.15, d(y) = d(u1) ≤
⌊
k
2

⌋
. Hence at most d(y)− 1 colors are incident

with u1y. There remains a set A of k + 2− d(y) colors non-incident with u1y.
At most d(y)−1 neighbors may be in conflict with y or u1 for some color of xu1. Indeed,

no neighbor of u1 can be in conflict with u1 for some color of yu1 since uu1 is uncolored
and y has d(y)− 1 neighbors distinct from u1. Therefore, we can set A′ to be the colors
of A that are compatible with yu1 and we have |A′| ≥ k+ 3−2d(y). Additionally, cy ̸∈ A′

since there must be an edge incident with y (other than u1y) that is colored in cy. We
remove cx from A′ and the previous color of u1y from A′ (if they are included in this set).
Now there remains at least one color compatible with u1y in A′ since k+3−2d(x)−2 ≥ 1
as d(y) ≤

⌊
k
2

⌋
. Moreover when d(u) ≤

⌊
k−1

2

⌋
, k + 3 − 2d(x) − 2 ≥ 2, thus we can forbid

one extra color, namely γ(uu1) on the edge uy. ■

At the end of a step, by construction, the new color of u1y does not belong to Cx.
Indeed, x was in conflict with u1 for a coloring of u1u by cx, thus before the recoloring,
Cx = Cu1 ∪ {cx}. Then we recolored u1y with a color different from cx, and from any
element of Cu1 before the recoloring, thus different from any element of Cx (both before
and after the recoloring, since the coloring is proper). Hence x cannot be in conflict with
u1 for any color of uu1 as both the new color of u1y and cx do not belong to Cu1 .

Claim 9.34. Algorithm 2 ends.

Proof. Let us prove by contradiction a stronger statement: no edge u1w is recolored
twice during the algorithm. Consider by contradiction the first vertex w such that u1w
is recolored twice. Let i and j be the rank of the corresponding steps where the edge is
recolored with i < j. In the step i + 1, w plays the role of x and there is some vertex r
which plays the role of y. Let us denote by γi the coloring at the end of first step i, γi+1
the coloring at the end of the step i + 1, and γj−1 the coloring at the beginning of the
step j. When u1w is recolored a second time, at step j, it must play the role of y thus
step j must occur after step i+ 1.

Since edges recolored during Algorithm 2 are edges incident with u1 and since w is the
first vertex which is recolored at least twice during the algorithm, we have γi+1(u1r) =
γj−1(u1r), and Cw(γi) = Cw(γi+1) = Cw(γj−1). However, as argued before Claim 9.34, we
have γi+1(u1r) /∈ Cw(γi+1). Thus w cannot be in conflict with u1 for any choice of color
for uu1 at step j, a contradiction.

So every edge is recolored at most once. Therefore the condition of the while is satisfied
in at most d(u)− 1 steps. Therefore, Algorithm 2 ends. ■

page 246 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

At the end of the algorithm, we obtain a uv-partial safe edge-coloring α. Only edges
incident with u1 and not with v were recolored in the algorithm. Moreover, uu1 is now
colored with color c1 or c2. Suppose that d(u) ≤

⌊
k−1

2

⌋
. If u1z was recolored, then

α(u1z) ̸= γ(uu1) as we forbid this color. Moreover if γ(uu1) ∈ Cz(γ), then z cannot be in
conflict with u1 as, for any coloring of uu1 among c1 and c2, γ(uu1) /∈ Cu1 .

9.4.4 Proof of Lemma 9.31
We start this section by providing some useful observations that we will use in our com-
putations (x is any real number):

• 2d(v) ≤ k − 1 + δ,
• x− 1 ≤ ⌊x⌋ ≤ x, x ≤ ⌈x⌉ ≤ x+ 1 and ⌊x+ 1⌋ = ⌊x⌋+ 1,
• x = ⌊x⌋+ ⌈x⌉,

• 2
⌊
x
2

⌋
≥ x− 1 and 2

⌈
x
2

⌉
≤ x+ 1.

Proof of Lemma 9.31. Let γ be a uv-partial safe edge-coloring maximizing ϱ = |Ccom(γ)|.
Its existence is given by the hypothesis of Lemma 9.31.

We start the proof by proving a useful claim.
Claim 9.35. Suppose that γ is a uv-partial safe edge-coloring maximizing ϱ = |Ccom(γ)|.
If d(v) ≥ 3 + ϱ (resp. d(u) ≥ 3 + ϱ) and x is in a γ-conflict with u (resp. v), then
γ(ux) ∈ Ccom(γ) (resp. γ(vx) ∈ Ccom(γ)).
Proof of Claim 9.35. Suppose it is not the case. Take any such vertex x ∈ Su, i.e. x is in
a γ-conflict with u for some color a /∈ Cu(γ) ∪ Cv(γ). As d(v) ≥ 3 + ϱ, v has at least two
neighbors y1, y2 different from u such that γ(vy1), γ(vy2) /∈ Cu(γ).

By Lemma 9.32 applied to u, u1 = x, c1 = γ(vy1) and c2 = γ(vy2) (which is possible
since a ̸= c1 and a ̸= c2), there is a uv-partial almost-safe edge-coloring α such that
|Ccom(α)| = ϱ(γ) + 1 as we replace an edge which is not in Ccom(γ) by c1 or c2 and no
other edge adjacent to u or v was recolored. Moreover Cu(α) ̸= Cv(α) as one of c1 or c2
(the one which was not assigned to ux) belongs to Cv(α) \ Cu(α). Thus α is a uv-partial
safe edge-coloring with |Ccom(γ)| ≥ ϱ+ 1, a contradiction with the definition of γ. ■

Our following recoloring claim shows the existence of a coloring maximizing ϱ with a
small number of conflict for vertex v under some favorable conditions.
Claim 9.36. Suppose that γ is a uv-partial safe edge-coloring maximizing ϱ = |Ccom(γ)|.
If ϱ is at most d(u)−3, then there exists a uv-partial safe edge-coloring α also maximizing
ϱ such that Fv(α) ≤

⌊
ϱ+1

2

⌋
.

Proof of Claim 9.36. Suppose it is not the case, then |Sv(γ)| ≥
⌊
ϱ+1

2

⌋
+ 1. Take any

vertex x ∈ Sv(γ) such that γ(xv) ∈ Ccom(γ), i.e. x is in a γ-conflict with v for some color
a /∈ Cu(γ)∪Cv(γ). It is possible to make such a choice by Claim 9.35. As d(u) ≥ 3+ϱ, the
vertex u has at least two neighbors y1, y2 different from v such that γ(uy1), γ(uy2) /∈ Cv(γ).

By Lemma 9.32 applied to u = v, u1 = x, c1 = γ(uy1) and c2 = γ(uy2) (which is
possible since a ̸= c1 and a ̸= c2), there is a uv-partial almost-safe edge-coloring α with
the properties of Lemma 9.32. Note that Cu(α) ̸= Cv(α), indeed one of c1 or c2 (the
one which was not assigned to vx) belongs to Cu(α) \ Cv(α). Thus α is a uv-partial safe

On various graph coloring problems page 247

9.4. Proof of Lemma 9.20

edge-coloring. Moreover α maximizes ϱ as we remove one common color γ(vx) and we
add one new common color α(vx).

By Claim 9.35, if v is in conflict with z, then α(vz) ∈ Ccom(α). The vertex v might be
in a α-conflict with x but not with any vertex of Sv(γ)\{x}. Indeed if z ∈ Sv(γ)\{x} is in a
α-conflict with v, then Cz(α) = Cv(α)∪{b} for some colors b. Remark that γ(vx) ∈ Cz(γ)
(since z ∈ Sv(γ)), zx (if it exists) is the only edge incident with z which might have
changed color between the two colorings and in this case γ(zx) ̸= γ(vx) (since the edges
are adjacent). Therefore γ(vx) ∈ Cz(α). This implies that b = γ(vx) as γ(vx) /∈ Cv(α). In
particular b ∈ Cu(α) by the choice of x, a contradiction with the definition of a α-conflict.

Finally, as 2
⌊
x
2

⌋
≥ x− 1:

Fv(α) ≤ ϱ− (|Sv(γ)| − 1) ≤ ϱ−
(⌊
ϱ+ 1

2

⌋
+ 1− 1

)
≤ ϱ−

⌊
ϱ+ 1

2

⌋
≤
⌊
ϱ+ 1

2

⌋
.

■

Now, we show that we can do the same for vertex u. We must be careful to not
introduce more conflicts for vertex v.

Claim 9.37. Suppose that γ is a uv-partial safe edge-coloring maximizing ϱ = |Ccom(γ)|.
If ϱ is at most d(v)−3, then there exists a uv-partial safe edge-coloring α also maximizing
ϱ such that Fu ≤

⌊
ϱ+1

2

⌋
and such that Fv is non-increasing.

Proof. This proof is sensibly the same as the proof of Claim 9.36. Therefore, we just
need to prove that Fv is non-increasing in the process. For this, we dispose of the extra
assumption d(u) ≤

⌊
k−1

2

⌋
.

Suppose the result does not hold when α = γ, hence |Su(γ)| ≥
⌊
ϱ+1

2

⌋
+ 1. Take any

vertex x ∈ Su(γ) such that γ(uv) ∈ Ccom(γ). As d(v) ≥ 3+ϱ, v has at least two neighbors
y1, y2 different from u such that γ(vy1), γ(vy2) /∈ Cu(γ).

By Lemma 9.32 applied to u, u1 = x, c1 = γ(vy1) and c2 = γ(vy2), there is a uv-partial
almost-safe edge-coloring α with the properties (and extra properties) of the lemma since
d(u) ≤

⌊
k−1

2

⌋
. As before, α is a safe edge-coloring and we can show that Fu ≤

⌊
ϱ+1

2

⌋
.

It is left to show that no new vertex z becomes in conflict with v after the recoloring.
Note first that x is not incident with color γ(ux) in α and γ(ux) ∈ Cv(γ) = Cv(α), hence x
cannot be in conflict with v.

Suppose there exists z ̸= x in a α-conflict with v but not in a γ-conflict with v. The set
of non-incident colors with uv is unchanged since γ(ux) ∈ Cv(γ) = Cv(α) and c1, c2 ∈ Cv(γ),
thus Cz changed and xz was recolored. As γ(ux) ∈ Cv(γ) = Cv(α), γ(ux) ∈ Cz(α). By
Lemma 9.32, xz was not recolored by γ(ux) thus γ(ux) ∈ Cz(γ). By Lemma 9.32, xz was
not recolored, a contradiction. ■

We have the necessary tools to resolve our first case.

Proof of case: ϱ ≤ d(u) − 3. As d(u) ≤ d(v), remark that ϱ ≤ d(v) − 3. We start
by applying Claim 9.36 to γ to get a coloring α. We then apply Claim 9.37 to α to
get a coloring β. The coloring β is a uv-partial safe edge-coloring by these two claims.
Moreover, β maximizes |Ccom| ≤ d(u)− 3.

The number of incident colors with uv in β is ni(β) = (d(u)− 1) + (d(v)− 1)− ϱ. The
number of β-conflicts for uv is at most Fu(β) + Fv(β). By Claim 9.36 and Claim 9.37,
both Fu(β) and Fv(β) are at most

⌊
ϱ+1

2

⌋
.

page 248 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

As d(u) ≤ d(v) ≤
⌊
k
2

⌋
, the number of compatible colors with uv is at least:

ncompa(β) ≥ k + 1− ni(β)− (Fu(β) + Fv(β))

≥ k + 3− d(u)− d(v) + ϱ− 2
⌊
ϱ+ 1

2

⌋
≥ k + 3−

⌊
k

2

⌋
−
⌊
k

2

⌋
+ ϱ− (ϱ+ 1)

≥ k + 2− k
≥ 2.

■

Claim 9.38. Suppose that γ is a uv-partial safe edge-coloring. Suppose ϱ = d(u)− 1 or
d(u)− 2. Let x ∈ Sv(γ) and cf be an arbitrary color different from γ(vx). There exists a
uv-partial almost-safe edge-coloring α such that either, α = γ and Fv(γ) ≤

⌈
d(v)

2

⌉
, or all

the following properties hold.

1. |Confv(α) \ {γ(vx)}| ≤
⌈
d(v)

2

⌉
− 1.

2. γ and α differ only on vx.

3. α(vx) ̸= cf .

4. If γ(vx) ∈ Ccom(γ), then

(a) |Ccom(α)| = |Ccom(γ)| − i where i ∈ {0, 1},
(b) Su(α) ⊆ Su(γ), and
(c) γ(vx) /∈ Ccom(α).

5. If γ(vx) /∈ Ccom(γ), then

(a) |Ccom(α)| ≥ |Ccom(γ)|,
(b) Su(α) ⊆ Su(γ) ∪ {x} ∪ A where A is the subset of neighbors of u in conflict

with u when uv is colored γ(vx).

The same holds by exchanging u with v.

Proof of Claim 9.38. Suppose |Sv(γ)| ≥ Fv(γ) ≥
⌈
d(v)

2

⌉
+ 1. We note a = γ(vx).

Uncolor vx. There are at least k + 1 − 2(d(x) − 1) ≥ 3 colors compatible with this
edge, as Cv(γ) ⊆ Cx(γ) and x cannot be in conflict with v since it has an uncolored edge.
Choose a color for vx which is not a nor cf . Let α be the obtained uv-partial almost-safe
edge-coloring.

As all vertices of Sv \ {x} are adjacent to a (as they were in conflict before), they
can only be in conflict with v if uv is colored a. Hence all of them can only remove one
possible color for uv which is a. Therefore:

|Confv(α) \ {a}| ≤ d(v)− 1− (|Sv| − 1) ≤ d(v)−
⌈
d(v)

2

⌉
− 1 ≤

⌊
d(v)

2

⌋
− 1.

This concludes the proof of Claim 9.38.1-3.

On various graph coloring problems page 249

9.4. Proof of Lemma 9.20

Suppose a ∈ Cu(γ). We remove one common color between u and v, depending
on whether α(vx) ∈ Ccom(α) or not, we get the two possibilities for Claim 9.38.4a.
Claim 9.38.4c follows from the fact that we choose α(vx) different from γ(vx) and all
the other colors of edges incident with v. Suppose that z ∈ Su(α) \ Su(γ). As only vx
changed and all non-incident colors with uv in γ are non-incident in α (as an edge of u
is colored a), we have z = x. The edge ux is not colored a since it is adjacent to vx and
α(vx) ̸= a. As x and u are in conflict, a ∈ Cx(α) which implies that x has two incident
edges colored a in γ, a contradiction. This proves Claim 9.38.4b.

Suppose a /∈ Cu(γ). We remove no common color between u and v, depending on
whether α(vx) ∈ Ccom(α) or not, we might add one, hence we get Claim 9.38.5a. Suppose
that z ∈ Su(α) \ (Su(γ)∪ {x}). As only vx changed and the only non-incident color with
uv in α which is incident in γ is a, we obtain Cz(α) = Cu(α) ∪ {a}. Indeed recall that z
had none of its incident recolored edges. This proves Claim 9.38.5b. ■

The cases where Sv or Su are empty sets are simple cases where we take α = γ in the
previous claims. Finally, we can prove our result in the last three cases.
Proof of case: ϱ = d(u) − 2 and d(u) < d(v). In this case, ϱ ≤ d(v) − 3 as
d(u) < d(v).

We apply Claim 9.37 to γ to get a coloring α. The number of incident colors with uv
in α is ni(α) = d(u) + d(v) − ϱ − 2 = d(v) and Fu(α) ≤

⌊
d(u)−1

2

⌋
. The coloring α is a

uv-partial safe edge-coloring.
Take an arbitrary vertex x ∈ Sv, we apply Claim 9.38 to α to get a coloring β.

As d(u) ̸= d(v), β is a uv-partial safe edge-coloring. If α = β, then Fv(β) ≤
⌈
d(v)

2

⌉
.

When α ̸= β, we have two more cases depending on whether α(vx) ∈ Cu(α) or not.
If α(vx) ∈ Cu(α), then by Claim 9.38, Fv(β) ≤

⌈
d(v)

2

⌉
(1), Fu(β) ≤ Fu(α) ≤

⌊
d(u)−1

2

⌋
(4b) and |Ccom(β)| ≥ |Ccom(α)| − 1 (4a). This last point implies ni(β) ≤ ni(α) + 1 .
If α(vx) /∈ Cu(α), then by Claim 9.38, Fv(β) ≤

⌈
d(v)

2

⌉
(1), Fu(β) ≤

⌊
d(u)−1

2

⌋
+ 1 (5b)

as the set A is a set of vertices in conflict with u for the same color of uv. Moreover
ni(β) ≤ ni(α) ≤ d(v) (5a).

Hence, in all cases, and as d(v) ≤
⌊
k
2

⌋
, the number of compatible colors with uv in β

is at least:

ncompa(β) ≥ k + 1− ni(β)− Fu(β)− Fv(β)

≥ k + 1− d(v)−
⌊
d(u)− 1

2

⌋
−
⌈
d(v)

2

⌉
− 1

≥ k − d(v)−
⌊
d(v)

2

⌋
+ 1−

⌈
d(v)

2

⌉
≥ k + 1− 2d(v)
≥ k + 1− (k − 1 + δ)
≥ 2− δ.

■

Proof of case: ϱ = d(u) − 2 and d(u) = d(v). In this case, d(v) = d(u) ≤
⌊
k−1

2

⌋
.

The number of incident colors with uv is ni(γ) = d(u) = d(v).
Suppose there is no color a such that, for some vertices x and y, u is in a γ-conflict

with x where γ(ux) = a and v is in a γ-conflict with y where γ(vy) = a. Then, as each

page 250 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

color in Ccom(γ) cannot be both on an edge ux and vy for x ∈ Su(γ) and y ∈ Sv(γ):
Fu + Fv ≤ (d(u) − 1 − ϱ) + (d(v) − 1 − ϱ) + ϱ = d(u). Thus the number of compatible
colors is at least:

ncompa(γ) ≥ k + 1− ni(γ)− Fu(γ)− Fv(γ)
≥ k + 1− d(u)− d(u)
≥ 2.

Suppose now that such a color exists. Let x and y such that u is in a γ-conflict with x
where γ(ux) = a and v is in a γ-conflict with y where γ(vy) = a.

Choose bu ∈ Cu(γ) \ Cv(γ) (which exists since γ is safe) and remark that a ̸= bv. We
apply Claim 9.38 to γ, v and y to get a coloring α with cf = bu.

• Suppose α = γ. Choose bv ∈ Cv(α) \ Cu(α) (which exists since α = γ is safe)
and remark that a ̸= bv. We apply Claim 9.38 to α, u and x to get a coloring β
where cf = bv. Let ε = 1 when β = α and 0 otherwise. We use ε to remove the
case analysis (the arguments will be given for the case α ̸= β). By Claim 9.38,
properties (2) and (3), bv ∈ Cv(β) \ Cu(β). In particular, Cu(β) ̸= Cv(β), hence, β
is safe. We have |Confu(β)| ≤

⌈
d(u)

2

⌉
− 1 + ε (1) as a /∈ Confu(β) since a ∈ Cv(β).

Moreover, ni(β) ≤ ni(γ) + 1− ε (4a) and Fv(β) ≤ Fv(γ) ≤
⌈
d(u)

2

⌉
(4b). Hence,

ncompa(β) ≥ k + 1− ni(β)− Fu(β)− Fv(β)

≥ k + 1− d(v)− 1 + ε− 2
⌈
d(v)

2

⌉
+ 1− ε

≥ k + 1− 2d(v)− 1
≥ 1.

• Suppose α ̸= γ. By Claim 9.38, properties (2) and (3), bu ∈ Cu(α) \ Cv(α). In
particular, Cu(α) ̸= Cv(α), hence, α is safe. We have, |Confv(α) \ {a}| ≤

⌈
d(v)

2

⌉
− 1

(1), ni(α) ≤ ni(γ) + 1 (4a) and Fu(α) ≤ Fu(γ) (4b).

Recall that α(ux) = γ(vy) /∈ Ccom(α) by (4c). Choose bv ∈ Cv(α) \ Cu(α) and
remark that a ̸= bv. Therefore, we apply Claim 9.38 to α, u and x with cf = bv
to get a coloring β. If β = α, then set ε = 1, and 0 otherwise. By Claim 9.38,
properties (2) and (3), bv ∈ Cv(β) \ Cu(β). In particular, Cu(β) ̸= Cv(β) and β

is safe. Moreover, |Confu(β) \ {a}| ≤
⌈
d(u)

2

⌉
− 1 + ε (1), ni(β) ≤ ni(α) (5a) and

|Confv(β) \ {a}| ≤
⌈
d(v)

2

⌉
− 1 (5b) as x cannot be in conflict with v since bv ∈ Cv(β)

and bv /∈ Cx(β). If β = α, then a ∈ Cu(β) and thus a is not in Confu(β) nor
Confv(β).

As d(v) ≤
⌊
k−1

2

⌋
, the number of compatible colors with uv is at least (the last term

On various graph coloring problems page 251

9.4. Proof of Lemma 9.20

of the first line is an upper bound on whether a belongs to Confu(β) ∪ Confv(β)):

ncompa(β) ≥ k + 1− ni(β)− |Confu(β) \ {a}| − |Confv(β) \ {a}| − (1− ε)

≥ k + 1− (d(v) + 1)−
⌈
d(u)

2

⌉
+ 1− ε−

⌈
d(v)

2

⌉
+ 1− 1 + ε

≥ k + 1− d(v)−
(⌊

d(v)
2

⌋
+ 1

)
−
⌈
d(v)

2

⌉
≥ k − 2d(v)
≥ k − (k − 1)
≥ 1.

This is the desired number of possibilities when d(u) = d(v). ■

Proof of case: ϱ = d(u) − 1. In this case, d(u) ≤ d(v)− 1. In particular, all colorings
are safe. The number of incident colors with uv is ni(γ) = d(v)− 1.

Suppose there is no color a such that, for some vertices x and y, u is in a γ-conflict
with x where γ(ux) = a and v is in a γ-conflict with y where γ(vy) = a. Then, as in the
previous case, Fu +Fv ≤ (d(u)− 1− ϱ) + (d(v)− 1− ϱ) + ϱ ≤ d(v)− 1. Thus the number
of compatible colors is at least:

ncompa(γ) ≥ k + 1− ni(γ)− Fu − Fv
≥ k + 1− d(v) + 1− d(v) + 1
≥ 3.

Suppose now that such a color exists. Let x and y such that u is in a γ-conflict with x
where γ(ux) = a and v is in a γ-conflict with y where γ(vy) = a.

We apply Claim 9.38 to γ, v and y to get a coloring α.

• Suppose α = γ. We apply Claim 9.38 to α, u and x to get a coloring β. Let ε = 1 if
β = α and 0 otherwise. We use ε to remove the case analysis (the arguments will be
given for the case α ̸= β). We have |Confu(β)| ≤

⌈
d(u)

2

⌉
−1 + ε (1) as a /∈ Confu(β)

since a ∈ Cv(β). Moreover, ni(β) ≤ ni(γ) + 1− ε (4a) and Fv(β) ≤ Fv(γ) ≤
⌈
d(v)

2

⌉
(4b). Hence,

ncompa(β) ≥ k + 1− ni(β)− Fu(β)− Fv(β)

≥ k + 1− d(v) + ε−
⌈
d(v)− 1

2

⌉
+ 1− ε−

⌈
d(v)

2

⌉

≥ k + 2− d(v)−
⌊
d(v)

2

⌋
−
⌈
d(v)

2

⌉
≥ k + 2− 2d(v)
≥ 2.

• Suppose α ̸= γ. We have, |Confv(α) \ {a}| ≤
⌈
d(v)

2

⌉
− 1 (1), ni(α) ≤ ni(γ) + 1

(4a) and Fu(α) ≤ Fu(γ) (4b).
Recall that α(ux) = γ(vy) /∈ Ccom(α) by (4c). Therefore, we apply Claim 9.38 to
α, u and x to get a coloring β. If β = α, then set ε = 1, and 0 otherwise. We have,

page 252 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

|Confu(β) \ {a}| ≤
⌈
d(u)

2

⌉
− 1 + ε (1), ni(β) ≤ ni(α) (5a) and |Confv(β) \ {a}| ≤⌈

d(v)
2

⌉
− 1 (5b) as x and v cannot be in conflict since they do not have the same

degree. If β = α, then a ∈ Cu(β) and thus a is not in Confu(β) nor Confv(β).
Hence, the number of compatible colors with uv is at least (the last term of the first
line is an upper bound on whether a belongs to Confu(β) ∪ Confv(β)):

ncompa(β) ≥ k + 1− ni(β)− |Confu(β) \ {a}| − |Confv(β) \ {a}| − (1− ε)

≥ k + 1− d(v)−
⌈
d(v)− 1

2

⌉
+ 1− ε−

⌈
d(v)

2

⌉
+ 1− 1 + ε

≥ k + 2− d(v)−
⌊
d(v)

2

⌋
−
⌈
d(v)

2

⌉
≥ k + 2− 2d(v)
≥ 2.

■

This concludes the proof of Lemma 9.31.

9.5 Discharging procedures
We can now present the proofs of our two results. Let us first present the ghost vertices
method.

9.5.1 The ghost vertices method for mad discharging
The following observation will be useful for the proof of Lemma 9.17. Let G = (V,E) be
a graph. In the remaining of this section, m denote a real number greater than mad(G).
Recall that the weight function w : V → R where w(v) = d(v) −m has a global weight
which is negative, i.e. w(V) < 0.

Observation 9.39. Let w be the weight function where w(v) = d(v) −m. Let H be an
induced subgraph of G. If there exists a weight function w′ such that w′(G) ≤ w(G) and
such that w′(G− V (H)) ≥ w(G− V (H)) + |E(H,G− V (H))|, then w′(H) < 0.

Proof. Since m > mad(G), the function w′′ : H → R such that w′′(v) = dH(v) − m is
a function such that w′′(H) < 0. The difference between d(v) and dH(v) is exactly the
number of neighbors of v in G− V (H). So ∑v∈H dH(v) = ∑

v∈H d(v)− |E(H,G− V (H))|
and we have

w′′(H) =
∑
v∈H

(dH(v)−m) =
∑
v∈H

(d(v)−m)−|E(H,G−V (H))| = w(H)−|E(H,G−V (H))|.

By hypothesis w′(G) ≤ w(G). Using w(G) = w(G − V (H)) + w(H), one can easily
derive that w′(H) ≤ w(G−V (H))+w(H)−w′(G−V (H)). Using the second assumption
of the observation, we obtain w′(H) ≤ w(H) − |E(H,G − V (H))| = w′′(H). Hence we
have w′(H) ≤ w′′(H) < 0.

On various graph coloring problems page 253

9.5. Discharging procedures

(
⌊
k
2

⌋
+ 1)+ Banki 2 ≤ d(u) ≤ i

4(i− 1) 1

Figure 9.14: The discharging rules (R2) and (R3).

In other words, the vertices in G− V (H) can be seen but, in a way, do not contribute
to the sum analysis (the meaning of their final weight is essentially “this vertex has no
positive contribution on the total weight of the rest of the graph”). This particularity
leads us to informally refer to them as ghost vertices. Any result proved using ghost
vertices can be proved, albeit more tediously perhaps, when deleting them completely
from the graph. However, they can simplify the presentation of the discharging analysis,
and this is the point of their introduction. See [20] for a reference on this technique.

9.5.2 Proof of Theorem 9.13
Proof of Lemma 9.17. We assign a weight of w(u) = d(u)−m to every vertex u of G. Let
H be the subgraph of G induced by the vertices of degree at least

⌈
m
2

⌉
. Each vertex u of

G−V (H) has at most d(u) neighbors in H. Hence the number of edges in E(H,G−V (H))
is at most ∑u∈G−V (H) d(u). Hence a weight function w′ where the weight of each vertex u
of G\H is at least 2d(u)−m verifies w′(G−V (H)) ≥ w(G−V (H))+ |E(H,G−V (H))|.
We aim at redistributing the weights in the graph in such a way as to reveal a contradiction
with ad(H) < m. By Observation 9.39, it suffices to ensure that every vertex u of H has
a non-negative weight and each vertex of G− V (H) has weight at least 2d(u)−m.

For each integer i such that
⌈
m
2

⌉
≤ i ≤ ⌈m− 1⌉, we create a “bank” Banki with

initial value 0. In the discharging procedure some vertices will give some of their weight
to the banks and other vertices will receive some weight. To ensure that the total weight
is non-increasing, we need to make sure that each bank has a non-negative weight after
the discharging procedure.

We design the following discharging rules.

(R1) Every vertex u of degree 1 receives 1 from its neighbor.

(R2) For every i such that
⌈
m
2

⌉
≤ i ≤ ⌈m− 1⌉, every vertex of degree at least

⌊
k
2

⌋
+ 1

gives 4(i− 1) to Banki.

(R3) For every i such that
⌈
m
2

⌉
≤ i ≤ ⌈m− 1⌉, every vertex of degree at least 2 and at

most i receives 1 from Banki.

We need to prove that the vertices of H receive a non-negative weight and vertices of
G− V (H) have a weight of at least 2d(u)−m. Let w′ be the new weight function after
the discharging procedure. First note that k

2 >
3
2(m + 1)2 > m. Remark that vertices of

degree 1 can only have neighbors of degree at least
⌊
k
2

⌋
+ 1 by Lemma 9.20. Thus, by the

previous remarks, a vertex cannot both receive and give in the procedure.

Case u ∈ G−V (H). If u is a vertex of G−V (H), then it verifies d(u) ≤
⌈
m
2

⌉
−1 ≤

⌊
m
2

⌋
.

• If d(u) = 1, then it receives 1 from its neighbor by (R1) thus w′(u) = d(u)−m+1 =
2d(u)−m.

page 254 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

• If d(u) ≥ 2, then u receives 1 from each bank. Thus, it verifies:

w′(u) = w(u) +
⌈m−1⌉∑
i=⌈m/2⌉

1 = d(u)−m+ ⌈m− 1⌉ −
⌈
m

2

⌉
+ 1

≥ d(u)−m+m−
⌈
m

2

⌉
≥ d(u)−m+

⌊
m

2

⌋
≥ 2d(u)−m.

Case u ∈ H. In this case, d(u) ≥
⌈
m
2

⌉
.

• If d(u) ≤ ⌈m− 1⌉. As d(u) ≥
⌈
m
2

⌉
, u receives 1 from each bank of index at least

d(u). Thus:

w′(u) = w(u) +
⌈m−1⌉∑
i=d(u)

1 = d(u)−m+ ⌈m− 1⌉ − d(u) + 1

= ⌈m⌉ −m ≥ 0.

• If u is a vertex of H with degree at least ⌈m− 1⌉+1 = ⌈m⌉ but less than
⌊
k
2

⌋
+1, it

receives nothing and gives nothing thus w′(u) = w(u) = d(u)−m ≥ ⌈m⌉ −m ≥ 0.

• If u is a vertex of H with degree at least
⌊
k
2

⌋
+1. Note that d(u)−d1(u) ≥

⌊
k
2

⌋
+1 ≥ k

2
by Lemma 9.23. Then, we obtain:

w′(u) = d(u)−m− d1(u)−
⌈m−1⌉∑
i=⌈m/2⌉

4(i− 1)

≥ k

2 −m− 4

(
⌈m− 1⌉ − 1 +

⌈
m
2

⌉
− 1

) (
⌈m− 1⌉ −

⌈
m
2

⌉
+ 1

)
2

≥ k

2 −m− 2
(
m+ m

2 + 1− 2
)(

m− m

2 + 1
)

since ⌈x⌉ ≤ x+ 1

≥ k

2 −m− 2
(3m

2 − 1
)(

m

2 + 1
)

≥ k

2 −m− 2
(

3m2

4 +m− 1
)

≥ 3
2(m+ 1)2 −m− 3m2

2 − 2m+ 2 since k > 3(m+ 1)2

≥ 7
2 .

Banki has non-negative weight. Now if i verifies
⌈
m
2

⌉
≤ i ≤ ⌈m− 1⌉, then Banki

receives 4(i−1) from each vertex in the set B = {u | d(u) ≥
⌊
k
2

⌋
+ 1} and gives 1 for each

vertex in the set Di = {u | 2 ≤ d(u) ≤ i}. In total Banki = 4(i − 1)|B| − |Di| which is
non-negative by Lemma 9.24 as i ≤ m <

⌊
k
2

⌋
.

Thus w′(G) ≤ w(G) and Observation 9.39 implies w′(H) < 0, a contradiction.

On various graph coloring problems page 255

9.5. Discharging procedures

Proof of Theorem 9.13. Let G be a connected graph with ∆(G) > 3 · (mad(G) + 1)2. We
can apply Lemma 9.17 to ensure that for every m such that m > mad(G), G is AVD
(3(m+ 1)2)-colorable. By taking m = mad(G) + ϵ, we obtain 3(m+ 1)2 = 3 · (mad(G) +
1)2 + 3ϵ · (2mad(G) + 2 + ϵ) < ∆(G), for a small enough ϵ, and hence our result.

Possible generalizations. Note that it is possible to obtain a O(mad(G)2) lower bound
in the previous result with an easier discharging. Most notably, using a weaker version
of Lemma 9.20 (e.g. where the k

2 bound is replaced by a k
4 bound) would yield a similar

result with a worse multiplicative constant. In such a way, it would be possible to obtain a
similar result for other types of vertex-distinguishing edge-colorings: total AVD coloring,
neighbor sum distinguishing total coloring... The case of neighbor sum distinguishing
coloring is more complicated as it is unclear how to obtain a result similar to Lemma 9.20.

9.5.3 Proof of Theorem 9.14
Let k ≥ 12. We aim at proving Lemma 9.18, using a discharging method.

9.5.3.1 Discharging rules

Let G be a non P -reducible planar graph, we want to show that G = G∅.
Before moving to the actual discharging part of the proof, we make one observation

that is a direct corollary of lemmas 9.20 and 9.25.1.

Observation 9.40. In G, for every edge uv with d(u) ≤ 2, we have d(v) ≥ 7.

In [22], Bonamy and Przybyło stated the planar version of Observation 9.39.

Observation 9.41 (reformulated from [22]). Consider a planar graph G and a partition
(V1, V2) of its vertices. For i ∈ {1, 2}, let Gi be the graph induced by Vi in G. Consider a
mapping M of G1 to the plane. Assign to each vertex v of G a weight of dG(v) − 6 and
to each face of M a weight of 2d(f) − 6. It is not possible to discharge the weight over
the graph in such a way that all the vertices and faces of M have a non-negative weight,
while every vertex v of V2 has a weight of at least dG(v) + dG1(v)− 6.

We define G′ as the graph G where all the vertices of degree 1 or 2 have been removed.
Let M be an embedding of G′ on the plane.

In the following, the degree of a face is taken in M, while the degree of a vertex is
taken in G unless specified otherwise. Recall that a vertex v is a weak (resp. semi-weak)
neighbor of a vertex u if both belong to G′ and, inM, the edge uv belongs to two (resp.
exactly one) faces of degree 3. Recall that c(v) is the number of vertices of degree d(v)
adjacent to v.

We assign to each vertex u of G a weight of dG(u) − 6, and to each face f of M a
weight of 2dM(f)− 6. We define the discharging rules as follows (see also Figure 9.15).

• (Rf) Every face f of degree at least 4 gives 1 to each 5−-vertex incident with f .

• (R1) Every 7+-vertex u gives 1 to every adjacent 2−-vertex.

• (R2) Every 7+-vertex u gives 1 to every adjacent weak 3-vertex v with c(v) = 0 and
1
2 to every adjacent semi-weak 3-vertex v with c(v) = 0 .

page 256 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

5−

1

(Rf)

7+ 2−

1

(R1)

7+ 7+

3

3
7+

7+

1

(R2)

0.5

7+ 3

3

7+

7+

1.5
(R3)

1

7+ 4

4

7+

7+

2
3

(R4)

1
6

7+ 5

5

7+

7+

1
4

(R5)

Figure 9.15: The discharging rules. Dashed edges represent arbitrary long path. The figures of
(R4) and (R5) represent adjacent 4-vertices and adjacent 5-vertices in order to keep the figures
small. The rules also apply when they are non-adjacent. Note that the adjacency or absence
of adjacency between the 3-vertices is important for (R2) and (R3). Hollow vertices may have
additional edges and may coincide with other vertices.

• (R3) Every 7+-vertex u gives 3
2 to every adjacent weak 3-vertex v with c(v) = 1 and

1 to every adjacent semi-weak 3-vertex v with c(v) = 1 .
• (R4) Every 7+-vertex u gives 2

3 to every adjacent weak 4-vertex and 1
6 to every

adjacent semi-weak 4-vertex.
• (R5) Every 7+-vertex u gives 1

4 to every adjacent weak 5-vertex.

Using Observation 9.41, in order to derive a contradiction with the existence of G, we
aim at redistributing the weight along the graph as follows. Each vertex u of degree 1
or 2 has a weight of at least 2d(u)− 6, while all the other vertices and all the faces have
a non-negative weight. To that purpose, we apply all the rules, and prove that all the
vertices and faces have the required weight.

First let f be a face of M.

• If d(f) = 3, then f gives and receives no weight thus has final weight 0.
• If d(f) = 4, then f has at most two incident 5−-vertices by Lemma 9.20 and has

initial weight 2. The face f gives at most 2 by rule (Rf) and therefore has a non-
negative final weight.

• If d(f) ≥ 5, then f has at most
⌊

2
3d(f)

⌋
incident 5−-vertices by Lemma 9.20 and

has initial weight 2d(f) − 6. The face f gives at most
⌊

2
3d(f)

⌋
by rule (Rf) and

therefore has a final weight of at least 4
3d(f)− 6 which is non-negative.

On various graph coloring problems page 257

9.5. Discharging procedures

Now let u be a vertex of G.

• If d(u) ≤ 2, then u has d(u) neighbors, each of degree at least 7 by Observation 9.40.
Thus u receives 1 from each neighbor by rule (R1) and has final weigh 2d(u) − 6
which is the required weight.

All other vertices must have non-negative weight in order to use Observation 9.41.
Let us start with 5−-vertices which have initially a negative weight. Note that they do
not have a 2−-neighbor by Lemma 9.20. Moreover by Lemma 9.20, each 5−-vertex has at
most one adjacent 6−-vertex. If d(u) ≤ 5, then let a be the number of 4+-faces incident
with u and t be the number of triangular faces incident with u. Let w be the number of
weak neighbors of u and s be its number of semi-weak neighbors. Note that a+ t = d(u)
and 2w + s = 2t. Thus d(u) = a+ w + s

2 .

• If d(u) = 3 and c(u) = 0, then u must receive at least 3. By (Rf) and (R2), u receives
exactly a + w + s

2 as u has only 7+-neighbors by Lemma 9.20 and the hypothesis
c(u) = 0. This is equal to 3 in this case, so u has non-negative final weight.

• If d(u) = 3 and c(u) = 1, then u must receive at least 3. By Lemma 9.25.3, u
and its neighbor v of degree 3 have two common neighbors w1 and w2. If the face
containing u, w1 and w2 is a triangle, then u receives 3

2 from w1 and 3
2 from w2 by

rule (R3). Otherwise, this face gives 1 to u by (Rf) and each wi, for i ∈ {1, 2}, gives
1 to u by (R3). In both cases u has final weight 0.

• If d(u) = 4, then u must receive at least 2. If a ≥ 2, then we are done by (Rf). If
a = 0, then w = 4 and u has final weight at least −2 + (4− 1)× 2

3 = 0 by (R4) since
u has at most one 6−-neighbor, which is non-negative. If a = 1, then t = 3, w = 2
and s = 2. In this case, u receives 1 from its non triangular incident face by (Rf).
The vertex u has at most one 4-neighbor by Lemma 9.20, thus u receives at least
2
3 + 2× 1

6 = 1 by (R4) from its other neighbors, as in the worst case, it has a weak
4-neighbor. Therefore, in all cases, u has non-negative weight.

• If d(u) = 5, then u must receive at least 1. If a ≥ 1, then we are done by (Rf). If
a = 0, then w = 5 and we also have a non-negative weight by (R5) as u has at most
one 6−-neighbor by Lemma 9.20.

• If d(u) = 6, then u has initial weight 0 and gives/receives nothing.

9.5.3.2 Introducing a tool to simplify the case analysis

In order to simplify the analysis of the cases, we will introduce a notion of configuration.
A configuration is a set of neighbors of u, all receiving weight from u, and we require for
configurations with multiple vertices that the graph induced by these vertices and u is
a face of M. One can see a configuration as a set of 5−-neighbors of u which are close
to each other in M. All different configurations in an unreducible graph are described
in Table 9.1. Some configurations are ignored since they cannot appear around a vertex
u with a negative final weight, we describe two of them in Claim 9.44 below. We only
consider maximal configurations i.e. we associate neighbors of u when possible. Moreover
we can always partition the set of neighbors of u which receive weight from u into a set
of configurations. For example a weak 3-neighbor of u is a configuration 3w and two

page 258 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

adjacent weak 4-neighbors v1, v2 of u such that v1v2u is a face ofM form a configuration
4w-4w. Another example is given in Figure 9.16.

We can associate a weight w(c) with each configuration c as the sum of the weights
given by u to the vertices of c. The total weight given by u by the discharging rules is
equal to the sum of the weights of each configuration of u.

Now, suppose that we have a way to count the number of configurations around u, we
would be able to bound the maximal weight given by u in the discharging procedure.
A naive way to do this is to remark that the sum of the number of vertices in the
configurations around u cannot exceed the degree of u but this is too rough to be used in
the case analysis.

We define the degree d(c) of a configuration c as the number of vertices of the con-
figuration plus half of the number of triangular faces uvz such that v belongs to the
configuration and z does not. For example, the degree of the configuration 3sw which
contains one semi-weak 3-neighbor of u is 1 + 1

2 = 3
2 . The degree of each configuration is

given in Table 9.1. One can see an example in Figure 9.16. The following claim helps us
to bound the number of configurations around u.
Claim 9.42. If u has t configurations c1, . . . , ct, then ∑

i d(ci) ≤ d(u).
Proof. We claim that each neighbor of u contributes to at most 1 to the sum of the degrees
of the configurations, as there are d(u), we get the conclusion from this statement. Remark
that if z is a neighbor of u, then z can belong to at most two triangular faces with u. The
vertices of the configuration c contribute to 1 of the degree of c and the vertices z such
that uvz is a triangular face, v ∈ c and z /∈ c, contribute to 1

2 of the degree of c. Hence,
vertices which are not in a configuration contribute to at most 1 to the sum of the degrees
of the configurations.

Suppose uvz is a triangular face such that v belongs to a configuration c and z does
not, then z does not receive weight from u since we only consider maximal configurations.
Hence a vertex in a configuration cannot contribute 1

2 to the degree of another configura-
tion. Therefore, each vertex contributes to at most 1 of the degrees of the configurations
around u, we get the conclusion.

Finally we define the density ρ(c) of a configuration c as the ratio w(c)
d(c) . The density

of each configuration is given in Table 9.1. Let us see how to use the density to bound
the total given weight of a vertex. Suppose, for example, that d(u) = 11 and that u has
exactly one 1-neighbor, no 2-neighbor, exactly two non-adjacent weak 3-neighbors and no
other 3−-neighbor. This means that these configurations {1, 3w, 3w} receive a weight of 3
from u and have total degree 5. What is the maximal weight that u could give in this
case? A first upper bound is the following: of all other configurations that can appear
around u, the 4w-4w is the one with the largest density, as we have no other 3−-neighbor,
its density is 4

9 . Thus u gives at most 3 + 4
9 × (11− 5) of weight. Indeed suppose c1, . . . , ct

are the other configurations around u. Then the weight given by u is 3 +∑
iw(ci). And,

we have:

3 +
∑
i

w(ci) ≤ 3 +
∑
i

ρ(ci)d(ci)

≤ 3 + 4
9
∑
i

d(ci)

≤ 3 + 4
9(d(u)− 5).

On various graph coloring problems page 259

9.5. Discharging procedures

u 7+

5
57+

4

7+

7+

7+ 4
3

5w-5w

4w

4sw

32

1.5

Figure 9.16: The vertex u has three configurations: 4w, 4sw and 5w-5w. Each configuration
is circled by a dashed ellipse. Each arc set around u represents the degree of the corresponding
configurations. The number of “sectors” they span is the degree of the configuration and corre-
sponds to the number next to the arc.

Name Weight Degree Density Description

1 1 1 1 A 1-neighbor

2 1 1 1 A 2-neighbor

3sw 1
2

3
2

1
3 A semi-weak 3-neighbor with no adjacent 3-vertex

3w 1 2 1
2 A weak 3-neighbor with no adjacent 3-vertex

4sw 1
6

3
2

1
9 A semi-weak 4-neighbor

4w 2
3 2 1

3 A weak 4-neighbor

4sw-4sw 1
3 2 1

6 Two adjacent semi-weak 4-neighbors

4sw-4w 5
6

5
2

1
3 Two adjacent 4-neighbors, one weak and one semi-weak

4w-4w 4
3 3 4

9 Two adjacent weak 4-neighbors

5w 1
4 2 1

8 A weak 5-neighbor

5w-5w 1
2 3 1

6 Two adjacent weak 5-neighbors

Table 9.1: All possible configurations in the neighborhood of u. In the case of 4sw, 4w, 5sw
and 5w, we suppose that the corresponding vertices are not part of a larger configuration 4sw-
4sw, 4sw-4w, 4w-4w or 5w-5w.

page 260 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

Hence the conclusion. We can do a better analysis by remarking that the 4w-4w con-
figuration appears at most once by Lemma 9.25.10. Thus the weight given by u is at
most 3 + 4

3 + 1
3 × (11 − 5 − 3) as 1

3 is the largest density among the remaining allowed
configurations. Indeed, if the configurations are sorted by decreasing density and j is the
smallest index for which ∑j

i=1 d(ci) ≥ 3, then:

3 +
t∑
i=1

w(ci) ≤ 3 +
j∑
i=1

ρ(ci)d(ci) +
t∑

i=j+1
ρ(ci)d(ci)

≤ 3 + 4
9 × 3 + 1

3

t∑
i=j+1

d(ci)

≤ 3 + 4
3 + 1

3(d(u)− 5− 3).

This type of analysis will greatly decrease the number of cases as a simple computation
gives a good enough upper bound in most cases. To get a similar result without these
notions would require to analyse all possible cases in the neighborhood of u.

By Lemma 9.25.3 and Lemma 9.25.4, we have the following observation.

Observation 9.43. If v is a 3-neighbor of u with c(v) = 1, then its 3-neighbor w is also
a neighbor of u. Moreover, v and w cannot be both weak neighbors of u.

Let us continue with a small claim.

Claim 9.44. If u is a 7+-vertex with negative final weight, then u does not have two
adjacent 3-neighbors.

Proof. By Lemma 9.25.7, such a vertex u has degree at least 10. By Lemma 9.25.5 and
Lemma 9.25.6, u has no other 3−-neighbor and no weak 4-neighbor. In this case, with
Observation 9.43, u gives in total at most 5

2 + 1
6 × (d(u) − 5

2) as 1
6 is the largest density

available for the other configurations. But u has weight d(u)− 6. If u has negative final
weight, then by solving the inequality, we obtain d(u) < 10, a contradiction.

In particular, this claim implies that we can ignore the configurations where v is a
3-neighbor of u and c(v) = 1. Indeed, in this case, we know that u has non-negative final
weight.

9.5.3.3 Back to the analysis of the discharging

It is left to check the cases where d(u) ≥ 7. In these cases, u receives no weight but gives
some to other vertices. Note that u starts with a weight of d(u) − 6 ≥ 0. Let us prove
that their final weight is still non-negative. Remark that c(vi) ≤ 1 when vi is a 5−-vertex
by Lemma 9.20 and c(vi) = 0 when vi is a 2−-vertex by Lemma 9.25.1.

From now on, suppose by contradiction that u has negative weight. In particular with
Claim 9.44, we can suppose that every 3-neighbor v of u verifies c(v) = 0.

Note that u has at most
⌊

2
3d(u)

⌋
weak 5−-neighbors. Indeed, assume this is not the

case, by ordering the neighbors of u in a clockwise order around u in M, there must be
at least three consecutive weak 5−-neighbors of u in this order. In this case, they form a
path which contradicts Lemma 9.20.

On various graph coloring problems page 261

9.5. Discharging procedures

• If d(u) = 7, then u has initial weight 1. If u has at most one 5− neighbor, then its
maximal given weight is 1 and u has a non-negative final weight, a contradiction.
If u has a 4−-neighbor v1 and a 5−-neighbor v2, then d(v1) + c(v1) ≤ 5 and
d(v2) + c(v2) ≤ 6 by Lemma 9.20. In order to apply Lemma 9.21, we have m ≤
max(5− 1, 6− 2) ≤ 4 and

(
k+1−d(u)+p−m

p

)
≥
(

12+1−7+2−4
2

)
= 6. Note that d7(u)+1 ≤

5 + 1 = 6. Using Lemma 9.21, we can reduce G, a contradiction.
Thus u has only 5+-neighbors. If u has at most one configuration 5w-5w, then its
maximal given weight is 1

2 + 1
8 × (7 − 3) ≤ 1 as 1

8 is the density of 5w, the only
configuration left. Otherwise, the worst case is to have two 5w-5w configurations
but in this case, u gives 1. Indeed u cannot have any more weak 5-neighbor than
these four. In both cases, u has non-negative weight, a contradiction.

• If d(u) = 8, then u has initial weight 2. If u has at most two 5− neighbors, then its
maximal given weight is 2 and u has a non-negative final weight, a contradiction.
If u has a 4−-neighbor and three 5− neighbors, then we can apply Lemma 9.21 as
m ≤ 4, p = 4 and

(
5
4

)
= 5 ≥ d8(u) + 1, a contradiction.

Suppose u has a 3−-neighbor. If u has a 3−-neighbor, a 4− neighbor and a 5−

neighbor, then we can apply Lemma 9.21 with m ≤ 3 and p = 3 as
(

5
3

)
= 10 ≥

d8(u)+1, a contradiction. Thus, by the previous remark, u has no other 4−-neighbor.
It has at most two 5-neighbors by the second remark. Thus u gives at most 1+2× 1

4
by (R1), (R2) and (R5) and therefore has non-negative final weight. Hence u has no
3−-neighbor.
If u has a 4-neighbor, then u can have only two other 5−-neighbors by the second
remark. In this case, the maximal given weight is 3 × 2

3 = 2 by (R4). Hence u has
a non-negative final weight, a contradiction.
Thus u has only 5-neighbors and u gives at most 8 × 1

4 = 2 by (R5), again ending
with a non-negative weight, a contradiction.

• If d(u) = 9, then u has initial weight 3. If u has at most three 5−-neighbors, then it
has non-negative final weight, a contradiction.
Suppose that u has two 3−-neighbors. If u has two 3−-neighbors and a 4−-neighbor,
then with m ≤ 2 and p = 3, we can apply Lemma 9.21 as

(
5
3

)
= 10 ≥ d9(u) + 1, a

contradiction. If u has at most four 5-neighbors, then u gives at most 1+1+4× 1
4 = 3

by (R1), (R2) and (R5) and u has a non-negative weight. Then u has at least five
5-neighbors. We can apply Lemma 9.21 with m ≤ 3, p = 5 by taking the two
3−-vertices and three of the 5-vertices as

(
6
5

)
≥ d9(u) + 1, a contradiction.

Hence u has at most one 3−-neighbor. If u has at most three other 5−-vertices, then
it has non-negative final weight as each of them receives at most 2

3 by (R4) and (R5).
Suppose that u has a 3−-neighbor. If u has a 3−-neighbor and a 4−-neighbor,
then by considering these two vertices and three other 5−-neighbors, we can apply
Lemma 9.21 with m ≤ 3 and p = 5, a contradiction. Thus u has no other 4−-
neighbor and gives at most 1 + 8× 1

4 = 3 by (R1), (R2) and (R5). Thus u does not
have a 3−-neighbor.
Thus u only has 4+-neighbors. If it has at most four 5−-neighbors, then u gives at
most 2

3 × 4 < 3 by (R4) and (R5). By Lemma 9.25.11, two weak 4-neighbors of u

page 262 Dimitri Lajou

Chapter 9. Adjacent vertex-distinguishing edge coloring of graphs

cannot be adjacent as d(u) = 9 and d9(u) ≤ 4. Then u gives at most 1
3 × 9 = 3, as

1
3 is the largest density among the allowed configurations. Thus u has non-negative
weight, a contradiction.

• If d(u) = 10, then u has initial weight 4. As we supposed that the final weight of u
is negative, u must have at least five 5−-neighbors.

Suppose that u has two 3−-neighbors. If u has two 3−-neighbors and a 4−-neighbor,
then as it has at least two other 5−-neighbors, we can apply Lemma 9.21 with m ≤ 2
and p = 5, a contradiction. If u has two 3−-neighbors and no 4−-neighbor, then u
needs at least eleven 5-neighbors to be negative by (R5), a contradiction with the
degree of u. Thus u has at most one 3−-neighbor.

If u has one 2−-neighbor, then by Lemma 9.25.9, u cannot have two weak adjacent
4-neighbors. The largest density remaining is 1

3 as it cannot have a 3-neighbor.
Thus u gives at most 1 + 1

3 × (10 − 1) = 4. Thus it has a non-negative weight, a
contradiction.

Suppose u has one 3-neighbor. It can have at most one 4w-4w configuration by
Lemma 9.25.10. The largest density left is 1

3 . Thus u gives at most 1+ 4
3 + 1

3× (10−
2− 3) = 4. Thus u has non-negative final weight, a contradiction.

If u has no 3−-neighbor, then the same argument works as u gives at most 4
3 + 1

3 ×
(10− 3) ≤ 4 to its neighbors, a contradiction.

• If d(u) = 11, then u has initial weight 5. As we supposed that the final weight of u
is negative, u must have at least six 5−-neighbors.

Suppose that u has two 1-neighbors. If u has two 1-neighbors and a 3−-neighbor,
then Lemma 9.21 allows us to reduce G with m = 0 and p = 3, a contradiction. If u
has two 1-neighbors and no other 3−-neighbor, then after the first two 1-neighbors,
the largest density left is 1

3 by Lemma 9.25.9. Thus u gives at most 1+1+ 1
3× (11−

1− 1) = 5. Therefore, u has non-negative weight, a contradiction. Thus u does not
have two 1-neighbors.

If u has two 2−-neighbors, then one of them is a 2-vertex by the previous argument
and Lemma 9.23.1 or Lemma 9.25.2 allows us to reduce, a contradiction.

Suppose u has a 2−-neighbor. If u has a 2−-neighbor, two 3-neighbors, a 4−-neighbor
and two 5−-neighbors, then Lemma 9.21 allows us to reduce with m = 1 and p = 6,
a contradiction. If u has a 2−-neighbor, two 3-neighbors, no other 4−-neighbor, then
u gives at most 1 + 1 + 1 + 1

6 × (11− 1− 2− 2) = 4 ≤ 5. Thus u has non-negative
weight, a contradiction. If u has a 2−-neighbor and at most one other 3−-neighbor,
then u gives at most 1 + 1 + 1

3 × (11 − 1 − 2) = 14
3 ≤ 5, as the largest density is 1

3
by Lemma 9.25.9. Thus u has non-negative weight, a contradiction.

If u has no 2−-neighbor, then u can have at most two weak 3-neighbors by Lemma 9.25.8.
Thus u gives at most 1 + 1 + 4

3 + 1
3 × (11− 2− 2− 3) = 14

3 ≤ 5 by Lemma 9.25.10.
Therefore, u has non-negative weight, a contradiction.

• If d(u) ≥ 12, then u has weight d(u)− 6 ≥ d(u)
2 .

If u has no 2−-neighbors, then the largest density remaining is 1
2 thus u gives at

most 1
2 × d(u) ≤ d(u)− 6 and has a non-negative final weight, a contradiction.

On various graph coloring problems page 263

9.6. Perspectives

If u has no neighbors v such that 2 ≤ d(v) ≤ 5, then Lemma 9.23.2 implies that u
has non-negative final weight since it gives at most d(u)−

⌈
k
2

⌉
≤ d(u)

2 .
If it has five 1-neighbors, then there exists at least one vertex of degree at least 2
and at most 5 in the neighborhood of u by the previous remark and Lemma 9.22
raises a contradiction.
Suppose u has four 1-neighbors. If it has four 1-neighbors and a vertex of degree at
least 2 and at most 4, then Lemma 9.22 applies again. If it has four 1-neighbors,
then u gives at most 4× 1 + 1

6 × (d(u)− 4) ≤ d(u)− 6 as its other neighbors have
degree at least 5. Thus u has at most three 1-neighbors.
If it has two 1-neighbors and a 3-neighbor, then Lemma 9.22 concludes. Note that
if u has a 1-neighbor, then it has no 2-neighbor by Lemma 9.23.1. By combining the
previous remarks with Lemma 9.25.8, if u has a 1-neighbor, then it has at most two
other 3−-neighbors receiving exactly 1 from u (either 1-vertices or weak 3-neighbors).
Then u gives at most 1 + 1 + 1 + 1

3 × (d(u) − 3) ≤ d(u) − 6 by Lemma 9.25.9, a
contradiction.
Thus u has no 1-neighbor.
Suppose u has a 2-neighbor. By Lemma 9.25.2, u has at most one 2-neighbor.
Thus, as in the previous case, by Lemma 9.25.8 and Lemma 9.25.9, u gives at most
1 + 1 + 1 + 1

3 × (d(u)− 3) ≤ d(u)− 6, a contradiction.

Thus we can apply Observation 9.41 and this concludes the proof of Lemma 9.18.

Proof of Theorem 9.14. Let G be a connected planar graph with ∆(G) ≥ 12. Let k =
∆(G). By Lemma 9.18, G is P-reducible to G∅ thus G is AVD (∆(G) + 1)-colorable.

9.6 Perspectives
As mentioned previously, it might be possible to generalize Theorem 9.13 to other coloring
notions. The key ingredient in this proof is to be able to remove “small vertices” adjacent
to other “small vertices”. In particular, the notion of a “small vertex” has some leeway in
the way it is defined.

It would also be interesting to lower the lower bound on ∆(G) in Theorem 9.14. In
particular, for ∆(G) = 11, Lemma 9.20 fails to remove 6-vertices adjacent to 5−-vertices
which would be a problem with our current discharging proof. Note that it may be possible
to refine the analysis of the proof of Lemma 9.20 to get a more precise statement when
the differences between the degrees of the two vertices is at least 2, possibly removing
6-vertices adjacent to 4-vertices. Nonetheless, 5-vertices adjacent to 6-vertices would still
pose problems and would need to be dealt with in some other ways.

It would also be interesting to show that ∆(G) + 1 colors are sufficient for some other
classes of graphs: e.g. graphs with bounded maximum average degree or graphs with
bounded maximum degree.

page 264 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

Chapter 10

The Multiplicative 1-2-3 Conjecture

In this chapter, we are particularly interested in the so-called 1-2-3 Conjecture, which is
defined through the following notions.

Definition 10.1 (s-proper labelling). Given a labelling ℓ (i.e. a not necessarily proper
edge-coloring) of a graph G, we can compute for every vertex v its sum σℓ(v) of incident
labels (i.e. edge-colors), being formally σℓ(v) = Σu∈N(v)ℓ(uv). We say that ℓ is s-proper if
σℓ yields a proper vertex coloring of G, i.e. σℓ(u) ̸= σℓ(v) for every edge uv. We denote
by χΣ(G) the smallest k ≥ 1 such that G admits an s-proper k-labelling.

The parameter χΣ is the local version of another famous parameter, the irregularity
strength of a graph, introduced by Chartrand, Jacobson, Lehel, Oellermann, Ruiz and
Saba in 1988 [42]. The irregularity strength of a graph G is defined as the smallest
integer k for which there exists a k-labelling of G such that no two vertices of the graph
(not necessarily adjacent) have the same sum of incident labels. For such a labelling ℓ,
replacing each edge e of G by ℓ(G) parallel edges creates a multi-graph which is irregular,
that is to say where no two vertices have the same degree. The corresponding replacing
procedure applied with an s-proper labelling creates a multi-graph where no two adjacent
vertices have the same degree.

Greedy arguments show that there exists only one connected graph G for which χΣ(G)
is not defined, and that graph is K2. This implies that χΣ(G) is defined for every graph
G with no component isomorphic to K2, which we call a nice graph. It is then legitimate
to wonder how large can χΣ(G) be in general, for a nice graph G. Karoński, Łuczak and
Thomason [125] conjectured that this value cannot exceed 3 in general.

Conjecture 10.2 (1-2-3 Conjecture [125]). If G is a nice graph, then χΣ(G) ≤ 3.

Several aspects towards this conjecture have been investigated to date. For an in-depth
review of most of our knowledge on the problem, we refer the reader to the survey [171]
by Seamone.

One could naturally wonder about slight modifications of the 1-2-3 Conjecture, where
the aim would be to design labellings ℓ which distinguish adjacent vertices accordingly to
a function f that is somewhat close to the sum function σℓ. There actually exist at least
two such variants which sound particularly interesting due to their respective subtleties
and to some behaviors they share with the original 1-2-3 Conjecture.

The first such variant we consider is the one where adjacent vertices of a graph G are
required, by a labelling ℓ, to be distinguished by their multiset of incident labels. Recall

On various graph coloring problems page 265

that a multiset is a set in which elements can be repeated. This notion is similar to AVD
coloring, except that the labels do not have to form a proper edge-coloring of the graph.

Definition 10.3 (m-proper labelling). For a vertex v ofG, we denote by µℓ(v) the multiset
of labels assigned to the edges incident with v. We say that ℓ is m-proper if µℓ is a proper
vertex coloring of G. We denote by χM(G) the smallest k ≥ 1 such that G admits an
m-proper k-labelling.

The second such variant is the one where adjacent vertices of G must be, by ℓ, distin-
guished accordingly to the product of their incident labels.

Definition 10.4 (p-proper labelling). Formally, for a vertex v of G, we define ρℓ(v) as
the product of labels assigned to the edges incident with v. We say that ℓ is p-proper if
ρℓ is a proper vertex coloring of G. We denote by χΠ(G) the smallest k ≥ 1 such that G
admits a p-proper k-labelling.

There exist several interesting connections between the previous three series of no-
tions. For instance, it can be easily noted that an s-proper or p-proper labelling is always
m-proper. As a result, χM(G) ≤ min{χΣ(G), χΠ(G)} holds for every graph G for which
the parameters are defined (see below). In general, there is no other systematic relation-
ship between these three notions, though some exist in particular contexts. For instance,
s-proper 2-labellings, m-proper 2-labellings and p-proper 2-labellings are equivalent no-
tions in regular graphs [15]. It can be noted that s-proper {0, 1}-labellings and p-proper
{1, 2}-labellings are equivalent notions [148]. Another illustration is that an m-proper
k-labelling yields a p-proper {l1, . . . , lk}-labelling, for any set {l1, . . . , lk} of k pairwise
coprime integers.

Just as for the 1-2-3 Conjecture, one can wonder how large can χM(G) and χΠ(G)
be for a given graph G. As mentioned in Chapter 6, similarly as for s-proper labellings,
the only connected graph admitting no m-proper labellings is K2. This also holds for
p-proper labellings. Thus, the notion of nice graph coincides for the three types of proper
labellings. It actually turns out that the straight analogue of the 1-2-3 Conjecture was
formulated for each of the two variants, that is, three colors suffice for both variants.

The multiset version of the 1-2-3 Conjecture was introduced by Addario-Berry, Aldred,
Dalal and Reed in [1], while the product version was introduced by Skowronek-Kaziów
in [174]. By an argument above, recall that the sum version and the product version
of the 1-2-3 Conjecture, if true, would actually imply the multiset version. From that
angle, the multiset version does appear, at least intuitively, as the most feasible out of
the three versions. This is reinforced by unique behaviors of m-proper labellings over
s-proper labellings and p-proper labellings. In particular, if ℓ is a labelling of a graph and
µℓ(u) = µℓ(v) for any two vertices u and v, then we must have d(u) = d(v).

Regarding the sum version, the best result to date, proved by Kalkowski, Karoński
and Pfender in [121], is that χΣ(G) ≤ 5 holds for every nice graph G. The conjecture was
verified for all 3-colorable graphs [125]. Regarding 4-chromatic graphs, the conjecture was
verified for 4-edge-connected ones [202]. In [164], it was recently shown that χΣ(G) ≤ 4
holds for every nice regular graph G.

Regarding the multiset version, for long the best result, proved by Addario-Berry,
Aldred, Dalal and Reed in [1], was that χM(G) ≤ 4 holds for every nice graph G. A few
years ago, a breakthrough result was obtained by Vučković in [186], in which he gave a
full proof of the conjecture.

page 266 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

Theorem 10.5 (Multiset 1-2-3 Theorem [186]). If G is a nice graph, then χM(G) ≤ 3.

Regarding the product version, the best results to date were mainly obtained via
adaptations of arguments used to provide results towards the sum and multiset ver-
sions. Specifically, Skowronek-Kaziów proved in [174] that χΠ(G) ≤ 4 holds for every
nice graph G. In the same article, she proved the product version of the 1-2-3 Conjecture
for 3-colorable graphs.

This chapter is devoted to studying various facets of p-proper labellings. Our main
result is a proof of the Multiplicative 1-2-3 Conjecture.

Theorem 10.6 (Multiplicative 1-2-3 Theorem). If G is a nice graph, then χΠ(G) ≤ 3.

This work is joint work with Julien Bensmail, Hervé Hocquard and Éric Sopena.
See [17, 18, 19] for the arXiv versions of the three papers related to this chapter.

Our main intention in this chapter is to investigate how the mechanisms in the proof
of Theorem 10.5 can be used in the product setting. Our proof of the Multiplicative 1-2-3
Conjecture is presented in Section 10.1.

The Multiplicative 1-2-3 conjecture is tight since some graphs do not admit p-proper 2-
labellings. Nonetheless, we aim to see how far 2-labellings are from achieving p-properness.
In Section 10.2, our goal is to create 2-labellings which are “almost” p-proper. This
leads us to raising a conjecture on almost p-proper 2-labellings, that matches an existing
weakening of the sum version of the 1-2-3 Conjecture from [82], which we verify for several
classes of graphs.

Another way to improve upon the Multiplicative 1-2-3 Conjecture is to consider its list
variant. The list variant of the conjecture is a generalisation where edges must be assigned
labels from fixed-size lists that might be different from {1, 2, 3}. Section 10.3 stands as a
preliminary section in which we raise first observations. In that section, we also explore
the connections between our list problem and the List 1-2-3 Conjecture, from which we
get first systematic upper bounds on the minimum size of the lists for which a p-proper
labelling exists. Through the use of the Combinatorial Nullstellensatz, we improve some
of these first bounds. These improved bounds are gathered in Section 10.4, and are about
both general graphs (Subsection 10.4.1) and particular classes of graphs, such as trees,
planar graphs with large girth, and subcubic graphs (Subsection 10.4.2).

Contents
10.1 Proof of the product 1-2-3 Conjecture 267
10.2 A conjecture for 2-labellings with restricted product conflicts 280
10.3 On the list variant of p-proper labellings 282

10.3.1 Early remarks on the parameter chΠ 283
10.3.2 Connections with the sum variant, and first bounds on chΠ . . 285
10.3.3 Algebraic tools . 286

10.4 Improved bounds on ch∗
Π for some graph classes 287

10.4.1 General graphs . 288
10.4.2 Particular classes of graphs . 289

10.4.2.1 Paths and cycles . 289
10.4.2.2 Trees . 291

On various graph coloring problems page 267

10.1. Proof of the product 1-2-3 Conjecture

10.4.2.3 Planar graphs with large girth 294
10.4.2.4 Subcubic graphs . 299

10.5 Perspectives . 306

10.1 Proof of the product 1-2-3 Conjecture
Let us start by introducing some terminology and recalling some properties of p-proper
labellings, which will be used throughout the proof. Let G be a graph, and ℓ be a 3-
labelling of G. For a vertex v ∈ V (G) and a label i ∈ {1, 2, 3}, we denote by di(v)
the i-degree of v by ℓ, being the number of edges incident with v that are assigned
label i by ℓ. Note then that ρℓ(v) = 2d2(v)3d3(v). We say that v is 1-monochromatic if
d2(v) = d3(v) = 0, while we say that v is 2-monochromatic (resp. 3-monochromatic) if
d2(v) > 0 and d3(v) = 0 (resp. d3(v) > 0 and d2(v) = 0). In case v has both 2-degree and
3-degree at least 1, we say that v is bichromatic. We also define the {2, 3}-degree of v as
the sum d2(v) + d3(v) of its 2-degree and its 3-degree. Thus, if v is bichromatic, then its
{2, 3}-degree is at least 2.

Because ℓ assigns labels 1, 2, 3, and, in particular, because 2 and 3 are coprime, note
that, for every edge uv of G, we have ρℓ(u) ̸= ρℓ(v) as soon as u and v have different
2-degrees, 3-degrees, or {2, 3}-degrees. In particular, u and v cannot be in conflict, i.e.,
verify ρℓ(u) = ρℓ(v), if u and v are i-monochromatic and j-monochromatic, respectively,
for i ̸= j, or if u is monochromatic while v is bichromatic.

This property makes labels 2 and 3 very close in terms of vertex multisets and vertex
products, since also µℓ(u) ̸= µℓ(v) holds as soon as d2(u) ̸= d2(v) or d3(u) ̸= d3(v).
Thus, the difference between m-proper 3-labellings and p-proper 3-labellings only lies in
the behavior of label 1: for the first objects, every edge uv labelled 1 contributes to both
µℓ(u) and µℓ(v), while, for the second objects, every edge uv labelled 1 contributes to none
of ρℓ(u) and ρℓ(v). For that reason, m-proper 3-labellings are not p-proper in general;
however, there are contexts where this is the case, such as the following meaningful one:

Observation 10.7. Nice regular graphs verify the product version of the 1-2-3 Conjecture.

Proof. Let G be a nice k-regular graph. By Theorem 10.5, there exists an m-proper 3-
labelling ℓ of G. We claim it is also p-proper. Indeed, by arguments above, if ρℓ(u) = ρℓ(v)
holds for some edge uv, then d2(u) = d2(v) and d3(u) = d3(v). Since d(u) = d(v) = k, this
means also d1(u) = d1(v) holds. We then deduce that µℓ(u) = µℓ(v) holds, a contradiction.
Thus, no two adjacent vertices of G have the same product of labels.

Before going into the more general proof of Theorem 10.6, let us start by giving an
overview of it. Let G be a nice graph. Our goal is to build a p-proper 3-labelling ℓ of
G. We can clearly assume that G is connected. We also set t = χ(G). Without loss of
generality, we can suppose that t ≥ 2 (and even t ≥ 4 by [174]).

In what follows, we construct ℓ through three main steps. First, we need to partition
the vertices of G in a way verifying specific cut properties, forming what we call a valid
partition of V (G) (see later Definition 10.8 for a more formal definition). A valid partition
V = (V1, . . . , Vt) is a partition of V (G) into t independent sets V1, . . . , Vt fulfilling two main
properties, being, roughly put, that 1) every vertex v in some part Vi with i > 1 has an
incident upward edge to every part Vj with j < i, and 2) for every connected component

page 268 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

of G[V1 ∪ V2] having only one edge, we can freely swap its two vertices in V1 and V2 while
preserving the properties of a valid partition.

Once we have this valid partition V in hand, we can then start constructing ℓ. The
main part of the labelling process, Step 2 below, consists in starting from all edges of G
being assigned label 1 by ℓ, and then processing the vertices of V3, . . . , Vt one after another,
possibly changing the labels by ℓ assigned to some of their incident edges, so that certain
product types are achieved by ρℓ. These desired product types can be achieved due to the
many upward edges that some vertices are incident with (in particular, the deeper a vertex
lies in V , the more upward edges it is incident with). The product types we achieve for
the vertices depend on the part Vi of V they belong to. In particular, the modifications we
make on ℓ guarantee that all vertices in V3, . . . , Vt are bichromatic, every two vertices in Vi
and Vj with i, j ∈ {3, . . . , t} and i ̸= j have different 2-degrees or 3-degrees, all vertices in
V2 are 1-monochromatic or 2-monochromatic, and all vertices in V1 are 1-monochromatic
or 3-monochromatic. By itself, achieving these product types makes ℓ almost p-proper,
in the sense that the only possible conflicts are between 1-monochromatic vertices in V1
and V2. An important point also, is that, through these label modifications, we will make
sure that all edges of G[V1 ∪ V2] remain assigned label 1, and no vertex in V3 ∪ · · · ∪ Vt
has 3-degree 1, 2-degree at least 2, and odd {2, 3}-degree; in last Step 3 below, we will
use that last fact to remove remaining conflicts by allowing some vertices of V1 ∪ V2 to
become special, i.e., make their product realising these exact label conditions.

Step 3 is designed to get rid of the last conflicts between the adjacent 1-monochromatic
vertices of V1 and V2 without introducing new ones in G. To that end, we will consider
the set H of the connected components of G[V1 ∪ V2] having conflicting vertices, and, if
needed, modify the labels assigned by ℓ to some of their incident edges so that no conflicts
remain, and no new conflicts are created in G. To make sure that no new conflicts are
created between vertices in V1 ∪ V2 and vertices in V3 ∪ · · · ∪ Vt, we will modify labels
while making sure that all vertices in V1∪V2 are monochromatic or special. An important
point also, is that the fixing procedures we introduce require the number of edges in a
connected component of H to be at least 2. Because of that, once Step 2 ends, we must
make sure that H does not contain a connected component with only one edge incident
with two 1-monochromatic vertices. To guarantee this, we will also make sure, during
Step 2, to modify labels and the partition V slightly so that H has no such configuration.

Step 1: Constructing a valid partition
Let V = (V1, . . . , Vt) be a partition of V (G) where each Vi is an independent set. Note
that such a partition exists, as, for instance, any proper t-coloring of G forms such a
partition of V (G). For every vertex u ∈ Vi, an incident upward edge (resp. downward
edge) is an edge uv for which v belongs to some Vj with j < i (resp. j > i). Note that
all vertices in V1 have no incident upward edges, while all vertices in Vt have no incident
downward edges.

We denote by M0(V) (also denoted M0 when the context is clear) the set of isolated
edges in the subgraph G[V1 ∪ V2] of G induced by the vertices of V1 ∪ V2. That is, M0
contains the edges of the connected components of G[V1 ∪ V2] that consist in one edge
only. To lighten the exposition, whenever referring to the vertices of M0, we mean the
vertices of G incident with the edges in M0.

For an edge uv ∈ M0 with u ∈ V1 and v ∈ V2, swapping uv consists in modifying the
partition V by removing u from V1 (resp. v from V2) and adding it to V2 (resp. V1). In

On various graph coloring problems page 269

10.1. Proof of the product 1-2-3 Conjecture

V1

V2

V3

V4

V5

V6

u

Figure 10.1: The neighborhood of some vertex u of G in a valid partition of G. Note that u
belongs to V4 and has at least one neighbor in each of V1, V2 and V3. The vertex u can have
many other neighbors (here represented by the two other neighbors of u in V2 and V6).

other words, we exchange the parts to which u and v belong. Note that if V1 and V2 are
independent sets before the swap, then, because uv ∈M0, by definition the resulting new
V1 and V2 remain independent. Also, the set M0 is unchanged by the swap operation.

We can now give a formal definition for the notion of valid partition.
Definition 10.8 (Valid partition). For a t-colorable graph G, a partition V = (V1, . . . , Vt)
of V (G) is a valid partition (of G) if V verifies the following properties.

(I) Every Vi is an independent set.
(P1) Every vertex in some Vi with i ≥ 2 has a neighbor in Vj for every j < i.
(S) For every sequence (ei)i of edges of M0(V), successively swapping every ei (in any

order) results in a partition V ′ verifying Properties (I) and (P1).
Note that Property (S) implies the following property:

(P2) Successively swapping any number of edges of M0(V) results in a valid partition V ′.
See Figure 10.1 for an example of a valid partition.

In order to prove Theorem 10.6, as mentioned earlier, to start constructing ℓ we first
need to have a valid partition of G in hand. The following result guarantees its existence.
Lemma 10.9. Every nice t-colorable graph G admits a valid partition.

Proof. For a partition V = (V1, . . . , Vt) of V (G) where each Vi is an independent set (note
that a such partition exists, as every proper t-coloring of G is one such partition), set
f(V) = ∑t

k=1 k · |Vi|. Among all possible V ’s, we consider a V that minimises f(V).
Suppose that there is a vertex u ∈ Vi with i ≥ 2 for which Property (P1) does not

hold, i.e., there is a j < i such that u has no incident upward edge to Vj. By moving
u to Vj, we obtain another partition V ′ of V (G) where every part is an independent set.
However, note that f(V ′) = f(V) + j − i < f(V), a contradiction to the minimality of V .
From this, we deduce that every partition V minimising f must verify Property (P1).

Let now V ′ be the partition of V (G) obtained by successively swapping edges of M0(V).
Recall that the swapping operation preserves Property (I) and observe that f(V) = f(V ′).
Hence, V ′ minimises f and thus verifies Properties (I) and (P1). Thus Property (S) also
holds, and V is a valid partition of G.

page 270 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

From here, we thus assume that we have a valid partition V = (V1, . . . , Vt) of G.

Step 2: Labelling the upward edges of V3, . . . , Vt

From G and V , our goal now is to construct a 3-labelling ℓ of G achieving certain proper-
ties, the most important of which being that the only possible conflicts are between pairs
of vertices of V1 and V2 that do not form an edge of M0. The following result sums up the
exact conditions we want ℓ to fulfil. Recall that a vertex v is special by ℓ, if d3(v) = 1,
d2(v) ≥ 2 and d2(v) + d3(v) is odd. Note that special vertices are bichromatic.

Lemma 10.10. For every nice graph G and every valid partition (V1, . . . , Vt) of G, there
exists a 3-labelling ℓ of G such that:

1. all vertices of V1 are either 1-monochromatic or 3-monochromatic,
2. all vertices of V2 are either 1-monochromatic or 2-monochromatic,
3. all vertices of V3 ∪ · · · ∪ Vt are bichromatic,
4. no vertex is special,
5. if u ∈ V1 and v ∈ V2 are adjacent, then ℓ(uv) = 1,
6. if two vertices u and v are in conflict, then u ∈ V1 and v ∈ V2 (or vice versa), and

at least one of u or v has a neighbor w in V1 ∪ V2.

Proof. From now on, we fix the valid partition V = (V1, . . . , Vt) of G. During the construc-
tion of ℓ, we may have, however, to swap some edges of M0, resulting in a different valid
partition of G. Abusing the notations, for simplicity we will still denote by V any valid
partition of G obtained this way, through swapping edges. Recall that valid partitions
are closed under swapping edges of M0 (Property (P2) of Definition 10.8).

Our goal is to design ℓ so that it not only verifies the four color properties of Items 1
to 4 of the statement, but also achieves the following refined product types, for every
vertex v in a part Vi of V :

• v ∈ V1: v is 1-monochromatic or 3-monochromatic,
• v ∈ V2: v is 1-monochromatic or 2-monochromatic,
• v ∈ V3: v is bichromatic, has 2-degree 1 and even {2, 3}-degree,
• v ∈ V4: v is bichromatic, has 3-degree 2 and odd {2, 3}-degree,
• v ∈ V5: v is bichromatic, has 2-degree 2 and even {2, 3}-degree,
• ...
• v ∈ V2n, n ≥ 3: v is bichromatic, has 3-degree n and odd {2, 3}-degree,
• v ∈ V2n+1, n ≥ 3: bichromatic, has 2-degree n and even {2, 3}-degree,
• ...

We start from ℓ assigning label 1 to all edges of G. Let us now describe how to
modify ℓ so that the conditions above are met for all vertices. We consider the vertices
of Vt, . . . , V3 following that order, from “bottom to top”, and modify labels assigned to
upward edges. An important condition we will maintain, is that every vertex in an odd

On various graph coloring problems page 271

10.1. Proof of the product 1-2-3 Conjecture

part V2n+1 (n ≥ 0) has all its incident downward edges (if any) labelled 3 or 1, while every
vertex in an even part V2n (n ≥ 1) has all its incident downward edges (if any) labelled 2
or 1. Note that this is trivially verified for the vertices in Vt, since they have no incident
downward edges.

At any point in the process, let M be the set of edges of M0 for which both ends
are 1-monochromatic (initially, M = M0). When treating a vertex u ∈ V3 ∪ · · · ∪ Vt, we
define Mu as the subset of edges of M having an end that is a neighbor of u. For every
edge e ∈ Mu, we choose one end of e that is a neighbor of u and we add it to a set Su.
Note that |Su| = |Mu|. Another goal during the labelling process, to fulfil Item 6, is to
label the edges incident with u so that at least one end of every edge in Mu is no longer
1-monochromatic. Note that the set Mu considered when labelling the edges incident with
u is not necessarily the set of edges of M0 incident with a neighbor of u, as, during the
whole process, some of these edges might be removed from M when dealing with previous
vertices in V3 ∪ · · · ∪ Vt.

Let us now consider the vertices in Vt, . . . , V3 one by one, following that order. Let
thus u ∈ Vi be a vertex that has not been treated yet, with i ≥ 3. Recall that every
vertex belonging to some Vj with j > i was treated earlier on, and thus has its desired
product. Suppose that i = 2n with n ≥ 2 (resp. i = 2n+ 1 with n ≥ 1). Recall also that
u is assumed to have all its incident downward edges labelled 1 or 2 (resp. 3), due to how
vertices in Vj’s with j > i have been treated earlier on. Also, all upward edges incident
with u are currently assigned labelled 1 by ℓ.

If Mu ̸= ∅, then we swap edges of Mu, if necessary, so that every vertex in Su belongs
to V2 (resp. V1). This does not invalidate any of our invariants since both ends of an edge
in Su are 1-monochromatic.

In any case, by Property (P1), we know that, for every j < i, there is a vertex xj ∈ Vj
which is a neighbor of u. In particular, the vertex x1 (resp. x2) does not belong to Su
(but may be the other end of an edge in Mu). We label the edges ux3, ux5, . . . , ux2n−1
with 3 (resp. ux4, ux6, . . . , ux2n with 2). Note that, at this point, d3(u) = n − 1 (resp.
d2(u) = n− 1). To finish dealing with u, we need to distinguish two cases depending on
whether Mu is empty or not.

• Suppose first that Mu = ∅. Label ux1 with 3 (resp. ux2 with 2). Now u has
the desired 3-degree (resp. 2-degree). If i > 3, then label uxi−2 with 2 (resp. 3)
so that u is sure to be bichromatic. If i > 3 and the {2, 3}-degree of u does not
have the desired parity, then label ux2 with 2 (resp. ux1 with 3). If u ∈ V3 and
the {2, 3}-degree of u is even, then u is already bichromatic since d2(u) = 1. If
u ∈ V3 and the {2, 3}-degree of u is odd, then label ux1 with 3 to adjust the parity
of the {2, 3}-degree of u and making u bichromatic. In all cases, at this point u is
bichromatic with 3-degree n (resp. 2-degree n) and odd {2, 3}-degree (resp. even
{2, 3}-degree), which is precisely what is desired for u.

• Suppose now that Mu ̸= ∅. Let z ∈ Su and let e be the edge of Mu containing z.
For every vertex w ∈ Su \ {z}, we label the edge uw with 2 (resp. 3). Then:

– If d2(u) + d3(u) is odd (resp. even), then label uz with 2 (resp. 3) and ux1
with 3 (resp. ux2 with 2). In this case, every edge in Mu is incident with at
least one vertex which is not 1-monochromatic, while u is bichromatic with
3-degree n (resp. 2-degree n) and odd {2, 3}-degree (resp. even {2, 3}-degree).

page 272 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

– If d2(u) + d3(u) is even (resp. odd) and d2(u) > 0 (resp. d3(u) > 0), then swap
e and label uz with 3 (resp. 2). Note that, after the swap of e, we have z ∈ V1
(resp. z ∈ V2). In this case, every edge in Mu is incident with at least one
vertex which is not 1-monochromatic, while u is bichromatic with 3-degree n
(resp. 2-degree n) and odd {2, 3}-degree (resp. even {2, 3}-degree).

– The last case is when d2(u) + d3(u) is even (resp. odd) and d2(u) = 0 (resp.
d3(u) = 0). If i > 4, then we can label uxi−2 with 2 (resp. 3) and fall back into
one of the previous cases. If i = 4, then the only edge labelled 3 is the edge
ux3 which implies that d3(u) = 1, which is impossible since d2(u) = 0 (resp.
d3(u) = 0) and d2(u) + d3(u) is odd. If i = 3, then the conditions of this case
imply that d2(u) = 1 while every upward edge incident with u is labelled 1 or 3
and similarly for every incident downward edge; this case thus cannot occur.

To finish, we remove the edges of Mu from M since their two ends are not both
1-monochromatic any more.

At the end of this process, all vertices in V1 are 1-monochromatic or 3-monochromatic,
while all vertices in V2 are 1-monochromatic or 2-monochromatic. Every vertex in V3 ∪
· · · ∪ Vt is bichromatic and there are no conflicts involving any pair of these vertices.
Indeed if a ∈ Vi and b ∈ Vj are adjacent with i > j ≥ 3, then either i and j do not have
the same parity, in which case a and b do not have the same {2, 3}-degree; or both i and
j are even (resp. odd) and d3(a) = i

2 ̸=
j
2 = d3(b) (resp. d2(a) = i−1

2 ̸=
j−1

2 = d2(b)).
Note also that no vertex in G is special, as, by definition, special vertices have 3-degree 1,
2-degree at least 2, and odd {2, 3}-degree. Moreover, we did not change the label of any
edge in the cut (V1, V2).

Finally, suppose that there is a conflict between two vertices u and v. Previous remarks
imply that u ∈ V1 and v ∈ V2 (or vice versa) and that both u and v are 1-monochromatic.
If none of u and v has another neighbor w in V1 ∪ V2, then the edge uv belongs to the set
M0. Since G is nice, one of u or v must have a neighbor z in V3∪· · ·∪Vt. Hence uv ∈Mz.
Recall also that we relabelled the edges incident with z in such a way that, for every
edge of Mz, at least one incident vertex became 2-monochromatic or 3-monochromatic, a
contradiction to the existence of u and v. Hence, all properties of the lemma hold.

Step 3: Labelling the edges between V1 and V2

From now on, we will modify a 3-labelling ℓ of G obtained by applying Lemma 10.10.
We denote by H the set of the connected components of G[V1 ∪ V2] that contain two
adjacent vertices u ∈ V1 and v ∈ V2 having the same product by ℓ. By Items 1 and 2 of
Lemma 10.10, such u and v are 1-monochromatic. Also, by Item 6 of Lemma 10.10, recall
that every connected component of H has at least two edges. In what follows, we only
relabel edges of some connected components H ∈ H with making sure that their vertices
(in V1∪V2) are monochromatic or special. This ensures that only vertices of H have their
product affected, thus that no new conflicts involving vertices in V3 ∪ · · · ∪Vt are created.

For a subgraph X of H ∈ H (possibly X = H), if, after having relabelled edges of X,
no conflict remains between vertices of X and all vertices of X are either monochromatic
or special, then we say that X verifies Property (P3).

Lemma 10.11. If we can relabel the edges of every H ∈ H so that every H verifies
Property (P3), then the resulting 3-labelling is p-proper.

On various graph coloring problems page 273

10.1. Proof of the product 1-2-3 Conjecture

Proof. This is because if we get rid of all conflicts in H, then the only possible remaining
conflicts are between vertices in V1 ∪ V2 and in V3 ∪ · · · ∪ Vt. In particular, recall that
any two vertices of two distinct connected components H1, H2 ∈ H cannot be adjacent.
Note also that, because we only relabelled edges in H, the vertices in V3 ∪ · · · ∪ Vt retain
the product types described in Lemma 10.10. In particular, they remain bichromatic and
none of them is special. Thus, they cannot be in conflict with the vertices in V1 ∪ V2.

In order to show that we can relabel the edges of every H ∈ H so that it fulfils Property
(P3), the following result will be particularly handy.

Lemma 10.12. For every integer s ∈ {2, 3}, every connected bipartite graph H whose
edges are labelled 1 or s, and any vertex v in any part Vi ∈ {V1, V2} of H, we can relabel
the edges of H with 1 and s so that ds(u) is odd (resp. even) for every u ∈ Vi \ {v}, and
ds(u) is even (resp. odd) for every u ∈ V3−i.

Proof. As long as H has a vertex u different from v that does not verify the desired
condition, apply the following. Choose P any path from u to v, which exists by the
connectedness of H. Now follow P from u to v, and change the labels of the traversed
edges from 1 to s and vice versa. It can be noted that this alters the parity of the s-degrees
of u and v, while this does not alter that parity for any of the other vertices of H. Thus,
this makes u satisfy the desired condition, while the situation did not change for the other
vertices different from u and v. Thus, once this process ends, all vertices of H different
from v have their s-degree being as desired by the resulting labelling.

We are now ready to treat the connected components H ∈ H independently, so that
they all meet Property (P3). To ease the reading, we distinguish several cases depending
on the types and on the degrees of the vertices that H includes. In each of the successive
cases we consider, it is implicitly assumed that H does not meet the conditions of any
previous case.

Claim 10.13. If H ∈ H contains a 3-monochromatic vertex v ∈ V1, or a 1-monochromatic
vertex v1 ∈ V1 having two 1-monochromatic neighbors u1, u2 ∈ V2 with degree 1 (in H),
then we can relabel edges of H so that H verifies Property (P3).

Proof. Recall that all edges of H (and thus in H) are assigned label 1; thus, if a vertex of
H is 3-monochromatic, then it must be due to incident downward edges with V3, . . . , Vt.

If H has a 1-monochromatic vertex v1 ∈ V1 having two 1-monochromatic 1-neighbors
u1, u2 ∈ V2, then we set ℓ(v1u1) = ℓ(v1u2) = 3. Note that u1 and u2 become 3-
monochromatic with 3-degree 1, and are thus no longer in conflict with v1, as it becomes
3-monochromatic with 3-degree 2. Note that either we got rid of all conflicts in H and H
now verifies Property (P3) as desired, or conflicts between other 1-monochromatic vertices
of H remain. In the latter case, we continue with the following arguments.

Assume H has remaining conflicts, and that H has a 3-monochromatic vertex v ∈ V1
(and, due to the previous process, perhaps 3-monochromatic vertices u1 and u2 in V2, in
which case their 3-degree (and degree) is precisely 1, while their unique neighbor v in
V1∩V (H) is 3-monochromatic with 3-degree 2). Let X be the set of all 3-monochromatic
vertices of H belonging to V1. Let C1, . . . , Cq denote the q ≥ 1 connected components
of H − X that do not consist in a 3-monochromatic vertex of V2 (the vertices u1 and
u2 we dealt with earlier on). For every Ci, we choose arbitrarily a vertex xi ∈ X and a
vertex yi ∈ Ci such that xi and yi are adjacent in H. Note that the vertices of Ci are

page 274 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

either 1-monochromatic or 2-monochromatic (in which case they belong to V2), since all
3-monochromatic vertices of H are part of X (or are the vertices u1 and u2 dealt with
earlier on, which we have omitted for now and are not part of the Ci’s).

By Lemma 10.12, in every Ci we can relabel the edges with 1 and 2 so that all
vertices in (V2 ∩ V (Ci)) \ {yi} are 2-monochromatic with odd 2-degree, while all vertices
in V1 ∩ V (Ci) are 2-monochromatic with even 2-degree or possibly 1-monochromatic if
their even 2-degree is 0. In particular, recall that yi must be 1-monochromatic or 2-
monochromatic. If yi has odd 2-degree, then there are no conflicts between vertices of Ci.
If yi has even non-zero 2-degree, then we set ℓ(xiyi) = 3, thereby making yi special.

Let Y be the set containing all 1-monochromatic yi’s having a 1-monochromatic neigh-
bor wi in Ci. Let H ′ be the subgraph of H induced by Y ∪X. Note that every edge of
H ′ is labelled 1. Let now Q1, . . . , Qp denote the connected components of H ′ and choose
xk ∈ X ∩ V (Qk) for every k ∈ {1, . . . , p}. For every k, we apply Lemma 10.12 with
labels 1 and 3 so that all vertices in V2 ∩ V (Qk) get 3-monochromatic with odd 3-degree,
while all vertices in V1∩V (Qk)\{xk} get 3-monochromatic with even 3-degree or possibly
1-monochromatic if their 3-degree is 0.

If xk is involved in a conflict with a vertex yi ∈ V2 ∩ V (Qk), then this is because xk
has odd 3-degree. Then:

• If ℓ(xkyi) = 3, then d3(yi) = d3(xk) ≥ 3 since xk ∈ X (xk must thus be incident with
at least one other edge labelled 3, either a downward edge to V3, . . . , Vt or an edge
incident with u1 (and similarly an edge incident with u2)). We here assign label 1
to the edge xkyi and label 3 to the edge yiwi. This way, xk gets even 3-degree while
the 3-degree of yi does not change. Note that yi and wi are not in conflict since
d3(wi) = 1 and d3(yi) ≥ 3.

• Otherwise, if ℓ(xkyi) = 1, then we assign label 3 to the edge xkyi and label 3 to
the edge yiwi. This way, xk gets even 3-degree while the 3-degree of yi remains odd
and must be at least 3. Again yi and wi are not in conflict since d3(wi) = 1 and
d3(yi) ≥ 3.

We claim that we got rid of all conflicts in H. Indeed, consider two adjacent vertices
a ∈ V1 ∩ V (H) and b ∈ V2 ∩ V (H). Suppose first that a and b belong to some Ci. Note
that, with the exception of yi and maybe of the vertex wi (if it exists and yi ∈ Y), every
vertex of Ci is 1-monochromatic or 2-monochromatic, the vertices of V1 ∩ V (Ci) having
even 2-degree and the vertices of V2 ∩ V (Ci) having odd 2-degree. Thus, no conflict
involves two of these vertices. Suppose now that b = yi. If yi is 2-monochromatic with
odd 2-degree, then there is no conflict involving yi in Ci since all of its neighbors in Ci
have even 2-degree. If yi is special, then it is the only special vertex of Ci, so, here again, it
cannot be involved in a conflict. If yi /∈ Y and yi is 1-monochromatic, then yi has no other
1-monochromatic neighbor in Ci by definition of Y . If yi ∈ Y , then yi is 3-monochromatic
with odd 3-degree, the only other possible 3-monochromatic neighbor of yi in Ci being
wi, but we showed previously that their 3-degrees differ. Thus, in all cases, there cannot
be conflicts between vertices of Ci.

We are left with the case where a and b do not belong to the same Ci. In particular, this
implies that a ∈ X and that a is 3-monochromatic. The only possible 3-monochromatic
vertices in V2 are the vertices of Y , which have odd 3-degree, and the 3-monochromatic
vertices u1 and u2 with 3-degree 1 and degree 1 in H which might have been created at the
very beginning of the proof. If b ∈ Y , then, due to the application of Lemma 10.12 above,

On various graph coloring problems page 275

10.1. Proof of the product 1-2-3 Conjecture

u

v1
v5

v2 v3
v4

V2

V1

V2

V1

x4
1

C4

J4
1

x3
1

C3

J3
1x2

2x2
1

C2

J2
2J2

1x1
2x1

1

C1

J1
2J1

1

Figure 10.2: An example of the notation of the proof of Claim 10.14. Every rectangular
box represents a connected component (in particular every vertex represented inside a box is
connected by paths to the others even though not all edges are represented). Boxes with a full
border represent the Ci’s while boxes with a dotted border represent the J ij ’s. Note that if
there are no other vertices beside the ones on the figure in both C3 and C4, then C3 is a tricky
component while C4 is a bad component.

the only vertex of X which can have odd 3-degree is some xk, but for this vertex we either
ensured that it was involved in no conflict, or we tweaked the labelling so that it got even
3-degree without modifying the labelling properties obtained through Lemma 10.12. If
b is u1 or u2, then b has only one neighbor v. Note that the edges vu1 and vu2 are still
labelled 3 as they are not part of the Qi’s, and, thus, d3(b) = 1 and d3(v) ≥ 2. Hence,
there is no conflict between vertices of X and other vertices of H. This implies that H
verifies Property (P3).

Claim 10.14. If H contains a 1-monochromatic vertex u ∈ V2 with at least two neighbors
in H, then we can relabel edges of H so that H verifies Property (P3).

Proof. Let v1, . . . , vp denote the neighbors of u in H. Due to Lemma 10.10 and because
Claim 10.13 does not apply on H, for every vertex v of H we have d3(v) = 0. In particular,
none of the vi’s is 3-monochromatic, implying that they are all 1-monochromatic. Let
C1, . . . , Cq be the q ≥ 1 connected components of H − u. Every Ci contains at least one
of the vi’s. Up to renaming the vi’s, we can suppose w.l.o.g. that vi ∈ V (Ci) if i ≤ q. The
vertices vi with i > q (if any) can belong to any of the Ci’s.

Let us focus on one component Ci. Let J i1, . . . , J ir denote the r connected components
of Ci − vi. If Ci has order 1, then by convention we set r = 0. In every J ij , choose a
neighbor xij of vi (see Figure 10.2). By Lemma 10.12, we can relabel edges of J ij with 1
and 2 so that every vertex of V1∩V (J ij) has even 2-degree, while every vertex of V2∩V (J ij),
except possibly xij, has odd 2-degree. Let Xi be the set containing all xij’s with even 2-
degree. Note that vi has even 2-degree, being precisely 0 since it is 1-monochromatic;
thus the only possible conflicts in Ci involve vertices of Xi as they are the only ones not
following the parity rule on their 2-degree (that is, they have even 2-degree).

If |Xi| = 0, |Xi| ≥ 2 or if Xi = {wi} and d2(wi) ≥ 1 for some vertex wi, then we say
that Ci is nice. In this case, we can relabel edges of Ci so that Ci verifies Property (P3).
If |Xi| = 0, then Ci already verifies Property (P3). If |Xi| ≥ 2, then, for every z ∈ Xi, set
ℓ(viz) = 3. If Xi = {wi} and d2(wi) ≥ 1, then set ℓ(viwi) = 3. In the last two cases, all
vertices of Xi either become special while they have no special neighbors; or they become
3-monochromatic with 3-degree 1 in which case vi is their only 3-monochromatic neighbor

page 276 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

and d3(vi) ≥ 2. Moreover, in both cases, d3(vi) ≥ 1 and all the neighbors of vi which are
not in Xi have 3-degree 0. Thus, vi cannot be in conflict with its neighbors. Because the
products of the other vertices of Ci were not altered by these labelling modifications, Ci
verifies Property (P3).

If Xi = {wi} and wi is 1-monochromatic with no such neighbors in Ci − vi, then we
say that Ci is bad. In such a bad component Ci, the only current conflict is between
vi and wi. If Xi = {wi} and wi is 1-monochromatic with at least one 1-monochromatic
neighbor yi in Ci − vi, then we say that Ci is tricky. We denote by Nn the number of
nice components, by Nb the number of bad components, and by Nt the number of tricky
components. Let also Nan be the number of neighbors of u with 2-degree 0 belonging to
nice components. Note that Nan ≥ Nn as, in particular, for every nice component Ci,
vertex vi is a neighbor of u with 2-degree 0.

In what follows, we consider several cases. In each case, we implicitly assume that
none of the previous cases applies.

• Case 1. Nt > 0.
Let Ci be a tricky component. For every bad or tricky component Cj with j ̸= i,
set ℓ(vjwj) = 2 and ℓ(uvj) = 2. In Cj, every vertex of V1 now has even 2-degree
since d2(vj) = 2 and every vertex of V2 has odd 2-degree since d2(wj) = 1.
At this point, if d2(u) is even, then set ℓ(viwi) = 2 and ℓ(uvi) = 2. Here, Ci behaves
exactly like the other bad or tricky components and thus contains no conflicts.
If d2(u) is odd, then set ℓ(viwi) = ℓ(wiyi) = 3. Recall that all conflicts of Ci
involved wi. Note that wi is now 3-monochromatic with 3-degree 2 and no such
neighbors. The vertices yi and vi are now 3-monochromatic with 3-degree 1 and no
such neighbors (in particular, they are not adjacent since they both belong to V1).
Hence Ci does not contain any conflict.
In both cases, note that u is 2-monochromatic with odd 2-degree. To summarise,
we have reached the following situation. Special vertices (which were only created
when dealing with nice components) only belong to V2. 3-monochromatic vertices
are involved in no conflicts inside their component Cj and have no 3-monochromatic
neighbors outside Cj since d3(u) = 0. All the other vertices of H are either 1-
monochromatic or 2-monochromatic: in particular, they have even 2-degree if they
belong to V1, while they have odd 2-degree if they belong to V2. Hence, there is no
conflict in H, and H thus verifies Property (P3).

From now on, we can thus suppose that none of the Ci’s is tricky.

• Case 2. Nan = Nn = 0.
Note that we must indeed have Nan = Nn when Nn = 0. In this case, all Ci’s are bad.
If Nb = 1, i.e., H contains only one (bad) component C1, then set ℓ(v1w1) = 2 and
ℓ(uv1) = 2. Then every vertex of H in V1 is 1-monochromatic or 2-monochromatic
with even 2-degree, while every vertex of H in V2 is 2-monochromatic with odd
2-degree. Indeed d2(w1) = 1, d2(vi) = 2 and d2(u) = 1.
If Nb > 1, then, for every (bad) component Ci, set ℓ(uvi) = 3. Note that this makes
all vertices of H be monochromatic. Every neighbor z of u verifies d3(z) ≤ 1 and,
because d3(u) ≥ 2, vertex u cannot be in conflict with any of its neighbors in H.

On various graph coloring problems page 277

10.1. Proof of the product 1-2-3 Conjecture

The vertices vi with i ≤ q are 3-monochromatic with 3-degree 1 and have no such
neighbors. The wi’s are 1-monochromatic and have no 1-monochromatic neighbors
since the Ci’s were bad and their vi’s are no longer 1-monochromatic. The other
1-monochromatic vertices and 2-monochromatic vertices raise no conflicts since, for
every such vertex z in Vj ∩V (H) (where j ∈ {1, 2}), we have d2(z) ≡ j−1 (mod 2).
Hence H verifies Property (P3) in both cases.

• Case 3. Nan = 1.
Recall that this implies Nn = 1. Let thus C1 be the nice component. Suppose
first that H − u is connected, i.e., q = 1 and C1 is the only component. As we
assumed that d(u) ≥ 2, vertex u has at least one other neighbor v2 in C1. Since
Nan = 1 and d2(v1) = 0, vertex v2 cannot have 2-degree 0, meaning that v2 has
even 2-degree with d2(v2) ≥ 2 (since, in a nice component, every vertex of V1 has
even 2-degree). If v1 is 3-monochromatic, then there are no conflicts involving u in
H. If v1 is 1-monochromatic, then H contains no 3-monochromatic vertex and no
special vertex (due to how we modified labels in nice components). Thus, setting
ℓ(uv2) = 3 makes u become 3-monochromatic with no such neighbor and v2 become
special with no such neighbor. The 1-monochromatic vertices and 2-monochromatic
vertices raise no conflicts, as, for every such vertex z in Vj ∩ V (H), j ∈ {1, 2}, we
have d2(z) ≡ j − 1 (mod 2). Hence H verifies Property (P3).
Suppose now that there are at least two connected components in H − u. Since
Nt = 0 and Nn ≤ Nan = 1, all the components different from C1 must be bad. For
every bad component Cj, set ℓ(viwi) = 2 and ℓ(uvi) = 2. In Cj, every vertex of V1
has even 2-degree since d2(vj) = 2 and every vertex of V2 has odd 2-degree since
d2(wj) = 1. Now:

– If d2(u) is odd, then we claim that we have no conflicts in H. First, we saw
earlier that any two vertices of C1 cannot be in conflict. Next, in every Ci
with i > 1, every vertex of V1 has even 2-degree, while every vertex of V2 has
odd 2-degree; hence any two vertices of Ci cannot be in conflict. Thus, every
possible conflict in H must involve u. Note that u is 2-monochromatic with
odd 2-degree while every vertex of V1∩V (H) has even 2-degree. Thus u cannot
be in conflict with a vertex of H, and H verifies Property (P3).

– If d2(u) is even, then set ℓ(uv1) = 3. Again there is no conflict between two
vertices in any Ci with i > 1. Since only v1 changed product in C1, if there
is a conflict between two vertices of C1, then it must involve v1. Note that
v1 is 3-monochromatic. If d3(v1) ≥ 2, then it is the only vertex of C1 with
this property. If d3(v1) = 1, then v1 was 1-monochromatic before the labelling
of uv1, in which case v1, now, has no 3-monochromatic neighbors in C1 by
construction. In both cases, v1 cannot be in conflict with any other vertex of
C1. The last possibility for a conflict involves u. Note that u is special and that
every special vertex of H belongs to V2 (more precisely, to the nice component
C1); thus, once again, u cannot be involved in a conflict. Hence H verifies
Property (P3).

Thus, in both cases, H verifies Property (P3).
• Case 4. Nan ≥ 2.

page 278 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

Thus, Nn ≥ 1. Let A = {a1, . . . , ar} be the subset of neighbors of u with 2-degree 0
that are not a vi for which i ≤ q and Ci is a bad component. In other words, the
ai’s are all neighbors of u with 2-degree 0 that are not a vi with Ci bad. Note that
some of these ai’s are vi’s (thus in nice components), in which case, by how the nice
components were treated earlier, they can be 3-monochromatic. Note also that A
may contain more than Nan vertices since it may also contain 1-monochromatic vi’s
with 2-degree 0 and i > q and which belong to a bad component.
For every bad component Ci, set ℓ(uvi) = 3. Then, for every ai ∈ A, we define
ni as the value of d3(ai) at the beginning of this case. Recall that we can have
d3(ai) > 0, in case ai is a vj for which Cj is nice. Also, by the choice of A, at this
point, ℓ(uai) = 1. The goal now, is to relabel some of the uai’s with 3 in such a
way that u is not in conflict with the vertices of A. To show this can be achieved,
we use the Combinatorial Nullstellensatz (see [4] or Theorem 1.77).
For every i ∈ {1, . . . , r}, let Xi be a variable belonging to Si = {0, 1} and represent-
ing whether uai is assigned label 3 (Xi = 1) or not (Xi = 0). Let P be the following
polynomial:

P (X1, . . . , Xr) =
r∏
i=1

 r∑
j=1
j ̸=i

Xi +Nb − ni

 .
Since r ≥ Nan ≥ 2, note that P has degree r. Furthermore, the monomial ∏r

i=1 Xi

has non-zero coefficient (since every Xi has positive coefficient in the description of
P). Hence the Combinatorial Nullstellensatz applies and there is a way to choose
values x1, . . . , xr in {0, 1} for X1, . . . , Xr so that P (x1, . . . , xr) ̸= 0.
For every i ∈ {1, . . . , r} for which xi = 1, set ℓ(uai) = 3. Note that d3(u) =
Nb+

∑r
j=1 xi and d2(u) = 0. Now, if d3(vi) = d3(u) (in which case this value is 1) for

some bad component Ci, then set ℓ(viwi) = 3. This makes u and vi have different
3-degrees, and similarly for vi and wi.
Suppose that there is a conflict in H between two vertices x ∈ V1 and y ∈ V2. For
now, suppose that u is not one of these two vertices. If d2(x) > 0, then x and y are
2-monochromatic but we did not modify their 2-degrees in this case, and, hence,
d2(x) is even while d2(y) odd, a contradiction. If x and y are 1-monochromatic,
then y must be some wi in a bad component Ci. By definition of a bad component,
wi can only be in conflict with vi, which is now 3-monochromatic, a contradiction.
Special vertices only belong to V2 (in nice components), and, hence, they cannot be
involved in conflicts. If x and y are 3-monochromatic, then, again, the only vertex
of V2 which might be 3-monochromatic is some wi in a bad component Ci. Thus,
for y = wi, we have d3(wi) = 1, and hence x cannot be vi (since d3(vi) = 2) and
must instead be some other neighbor z of u which belongs to A. In particular, z was
1-monochromatic at the beginning of this case, and, thus, wi and z were already in
conflict before, meaning that Ci was a tricky component and not a bad component,
which is impossible.
Hence, every possible conflict must involve u. Vertex u has three types of neighbors:
those with non-zero 2-degree, the vertices of A, and the vi’s with i ≤ q such that Ci is
a bad component. Since d2(u) = 0, the first group of neighbors cannot be in conflict
with u. The third group of neighbors cannot be in conflict with u since we made

On various graph coloring problems page 279

10.2. A conjecture for 2-labellings with restricted product conflicts

sure that they do not have the same 3-degree as u through the application of the
Combinatorial Nullstellensatz. This leaves us with the second group of neighbors,
the vertices of A. Suppose that ai ∈ A is in conflict with u. Note that d3(ai) =
ni + xi. Since d3(ai) = d3(u) = Nb + ∑r

j=1 xi, we have ∑r
j=1
j ̸=i

xi + Nb − ni = 0 and

thus P (x1, . . . , xr) = 0, a contradiction.
Hence there is no conflict in H, and H verifies Property (P3).

We are now ready to get rid of the last possible conflicts in H.

Claim 10.15. For every remaining H, we can relabel edges so that H verifies Prop-
erty (P3).

Proof. Let v ∈ V1 and u ∈ V2 be two adjacent 1-monochromatic vertices of H (which
must exist as otherwise H would verify Property (P3)). Because H has at least two edges
(as otherwise it would belong to M , not to H), at least one of v and u must have another
neighbor in H. Since Claim 10.14 does not apply, note that u must have degree 1 in H
(since all neighbors of u in H must be 1-monochromatic due to Claim 10.13 not applying).
So v is also adjacent to k ≥ 1 vertices x1, . . . , xk ∈ V2 different from u, which must all
be 2-monochromatic (because of incident downward edges with V3, . . . , Vt; recall that all
edges of H are labelled 1) as otherwise Claim 10.14 would apply.

Set H ′ = H − u. According to Lemma 10.12, we can relabel edges in H ′ with 1 and 2
so that all vertices in (V1∩V (H ′))\{v} have odd 2-degree, while all vertices in V2∩V (H ′)
have even 2-degree. Recall that u is 1-monochromatic. Thus, if also v is 2-monochromatic
with odd 2-degree, then we are done. Assume thus that v is 2-monochromatic with even
2-degree.

• Assume first that the 2-degree of v is even at least 2. In that case, set ℓ(vu) = 3.
This way, u becomes 3-monochromatic, while v becomes special.

• Assume now v is 1-monochromatic. This implies that ℓ(vx1) = 1. Change ℓ(vx1)
to 3. This way, x1 becomes special (recall its 2-degree is even and at least 1, due to
incident downward edges), while v becomes 3-monochromatic. Note that u remains
1-monochromatic.

In both cases, it can be checked that H now fulfils Property (P3).

At this point, we dealt with all connected components of H, and the resulting la-
belling ℓ of G is p-proper by Lemma 10.11. The whole proof is thus complete.

10.2 A conjecture for 2-labellings with restricted prod-
uct conflicts

According to Theorem 10.6, every nice graph G admits a p-proper 3-labelling. It is
unfortunately impossible to design p-proper 2-labellings for every nice graph. Indeed
consider the path u1u2u3u4u5u6. Since u1 and u2 must have different products, u2u3 must
be labelled 2. The same can be said for u5 and u6: the edge u4u5 must be labelled 2.
Regardless of the label of u3u4, the vertices u3 and u4 have the same product. Hence the
path P6 does not admit a p-proper 2-labelling.

page 280 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

We investigate the possibility that every graph admits a 2-labelling ℓ which is “almost”
p-proper. By that, we mean that if there are product conflicts by ℓ, then the structures
induced by the conflicting vertices are somewhat weak. Formally, for any integer x ≥ 1, we
denote by Sx the set of vertices v of G with ρℓ(v) = x. Rephrased differently, the product
version of the 1-2-3 Conjecture states that every nice graph G admits a 3-labelling such
that Sx is an independent set for every x ≥ 1. We would like to know the smallest class C
of graphs for which every (nice) graph G admits a 2-labelling ℓ such that G[Sx] belongs
to C, for every x ≥ 1. Note that if C contains isolated edges, we can drop the “nice”
requirement on G.

One particular relaxation of the problem is when G[Sx] is allowed to be some particular
kind of forest. One can naturally wonder whether 2-labellings are powerful enough to
achieve this goal. As we did not manage to come up with any obvious reason why this
could be wrong, we raise the following conjecture.

Conjecture 10.16. Every graph G can be 2-labelled so that G[Sx] is a forest for every
x ≥ 1.

It is worth noting that Conjecture 10.16 matches a similar conjecture raised in [82]
by Gao, Wang and Wu in the sum context. They notably proved that the sum version
of Conjecture 10.16 holds for graphs with maximum average degree at most 3 and series-
parallel graphs. Recall that a p-proper 2-labelling is equivalent to an s-proper {0, 1}-
labelling, this remark still holds for our relaxed setting and translates to a conjecture in the
sum setting with labels 0 and 1. In what follows, as support, we prove Conjecture 10.16
(sometimes in an actually stronger form) for three classes of graphs: complete graphs,
bipartite graphs, and subcubic graphs.

Theorem 10.17. Every complete graph Kn admits a 2-labelling such that one of the Sx’s
induces an edge, while all other Sx’s are independent sets.

Proof. We give an iterative labelling scheme which, starting from K2, yields a desired
2-labelling for larger and larger complete graphs Kn. To that end, we need a stronger
hypothesis, namely that for every complete graph Kn there is a desired 2-labelling with the
additional requirement that either, there is no vertex incident only with edges labelled 1,
or there is no vertex incident only with edges labelled 2. This implies that there cannot
be two vertices u and v in Kn such that u has product 1 and v has product 2k−1. It is
nonetheless possible for one of the two products to appear with our labelling.

This is true for K2: by assigning label 1 to the only edge, we get a 2-labelling where S1
induces an edge (while there are no other Sx’s) and no vertex is incident only with edges
labelled 2. Assume now our stronger claim is true for Kn−1 for some n ≥ 3, and consider
a 2-labelling of Kn−1, with vertex set {v1, . . . , vn−1}, obtained by induction (thus with the
desired properties). Let us extend this labelling to the incident edges of a newly-added
vertex vn joined to all vertices in {v1, . . . , vn−1}, by assigning label 1 to all edges incident
with vn if no vertex in {v1, . . . , vn−1} is incident only with edges labelled 1, or by assigning
label 2 to all edges incident with vn if no vertex in {v1, . . . , vn−1} is incident only with
edges labelled 2. Note that the 2-degree of all vertices in {v1, . . . , vn−1} grows by the
same amount, either 0 or 1. Thus, no new conflict involving two vertices in {v1, . . . , vn−1}
arises. Now, regarding vn, its 2-degree is either the smallest possible (0) or the largest
possible (n − 1) for a vertex with degree n − 1. By our choice of making vn incident
with either only edges assigned label 1 or only edges assigned label 2, we deduce that vn

On various graph coloring problems page 281

10.2. A conjecture for 2-labellings with restricted product conflicts

cannot be involved in a conflict. Thus, there remains only one conflict, and there is either
no vertex in {v1, . . . , vn} incident only with edges labelled 2, or no vertex in {v1, . . . , vn}
incident only with edges labelled 1. This concludes the proof.

Theorem 10.18. Every connected bipartite graph G admits a 2-labelling such that one of
the Sx’s induces at most one star and isolated vertices, while all other Sx’s are independent
sets.

Proof. This is a direct consequence of applying Lemma 10.12. Let A and B be the two
parts of G. Choose a vertex v in A. Lemma 10.12 ensures that we can relabel the edges
of G with labels 1 and 2 so that every vertex of A \ {v} has odd 2-degree while every
vertex of B has even 2-degree. Hence if some conflicts remain, they all involve the vertex
v and the corresponding Sx induces a star.

Theorem 10.19. Every subcubic graph G admits a 2-labelling such that all Sx’s induce
a forest.

Proof. We prove the claim by induction on |V (G)| + |E(G)|. As the claim can easily be
proved when G is small, we focus on proving the general case, which we do by considering
the possible cases for the minimum degree δ(G) of G.

• First assume δ(G) = 1, and let v be a 1-vertex of G. Let us consider G′ = G − v.
By the induction hypothesis, there is a 2-labelling of G′ which is as desired. We
extend this labelling to G by assigning label 1 to the edge incident with v. This way,
note that the resulting labelling is as desired, since G′[S1] gets added a pending or
isolated vertex.

• Next assume δ(G) = 2, and let u be a 2-vertex with neighbors v and w of degree
at least 2. We here consider G′ = G − u, which has a 2-labelling with the desired
properties. Let us first try to extend this labelling to G by assigning label 1 to uv
and uw. Note that if the desired properties are not met, then it must be because
G′[S1] has a path from v to w. In particular, both v and w have product 1, and
each of these two vertices is adjacent, in G′[S1], to another vertex. Then, assign
label 2 to uv and label 1 to uw. Now the resulting labelling of G must be as desired,
since this removed v from G′[S1], and added a pending or isolated path of length 2
to G′[S2]. This is because G is subcubic, which, at this point, implies that v has at
most one neighbor in S2.

• Lastly assume δ(G) = 3, i.e. G is cubic, and consider u a 3-vertex with neighbors
v, w, x of degree 3. We consider G′ = G − u, which, again, has a 2-labelling with
the desired properties. If we do not obtain a desired labelling of G when assigning
label 1 to uv, uw and ux, then it must be because, say, v and w have product 1 and
are joined by a path in G′[S1]. By arguments above, due to the bounded maximum
degree of G, if we do not obtain a desired labelling when assigning label 2 to uv
and label 1 to uw and ux, then this must be because x has product 2, and G′[S2]
contains a path from x to a neighbor of v. Then we deduce that, by the labelling
of G′, in G′ the two remaining neighbors of v have product 1 and 2, and x has a
neighbor with product 2. Then note that we are done when assigning label 2 to uv
and ux, and label 1 to uw. Indeed, this removes v from G′[S1] and x from G′[S2],
adds to G′[S2] a pending or isolated edge (attached to v), and adds to G′[S4] a
pending or isolated path of length 2 (attached to u).

page 282 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

This concludes the proof.

We proved Conjecture 10.16 for three classes of graphs. The first two results are
stronger than the general conjecture. For subcubic graphs, there is actually some leeway in
the proof that may allow to have only a few degree 3 vertices in each G[Sx]. Unfortunately,
it seem quite complicated to use similar arguments in more general contexts making
Conjecture 10.16 somewhat difficult to attack.

10.3 On the list variant of p-proper labellings
In this section, we explore the variant of the p-proper k-labellings where the label of each
edge e of a graph must belong to some list L(e) of possible labels.

Let L be a k-list edge-assignment, recall that an L-labelling (i.e. an L-edge-coloring)
ℓ of G is a labelling where each edge is assigned a label from its list, i.e. ℓ(e) ∈ L(E) for
every e ∈ E(G). Note that the notion of p-proper labellings can be extended naturally
to L-labellings. Now, for a nice graph G, we define chΠ(G) as the smallest k such that
G admits a p-proper L-labelling for every k-list assignment L where the labels belong to
the set of real numbers.

This definition is inspired by the sum version of this problem. For a nice graph G,
the number chΣ(G) is the smallest k such that G admits an s-proper L-labelling for every
k-list assignment L where the labels belong to the set of real numbers. The List 1-2-3
Conjecture, introduced in 2009 by Bartnicki, Grytczuk and Niwczyk in [14], is the straight
analogue of the 1-2-3 Conjecture to the list version.

Conjecture 10.20 (List 1-2-3 Conjecture [14]). If G is a nice graph, then chΣ(G) ≤ 3.

The List 1-2-3 Conjecture is of course much stronger than the original conjecture,
and, as a matter of fact, there is still no known general constant upper bound on chΣ.
To date, the best bound we know of, is that chΣ(G) ≤ ∆(G) + 1 holds for every nice
graph G [55]. Constant upper bounds were established for some classes of graphs; see
later Section 10.3.2 for more details.

In the rest of this chapter, we study the parameter chΠ. To the best of our knowledge,
this parameter was, to date, only briefly discussed by Seamone in his survey [171], in which
he suggests a few of its properties. This parameter is also somewhat close to other studied
parameters, such as the notions of product irregularity strength [6] (related to labellings
for which all vertices, not only the adjacent ones, must be incident with distinct products
of labels) and neighbor-product-distinguishing index [142] (related to labellings for which
the labels assigned to the edges must form a proper edge-coloring, it is a stronger version
of AVD coloring).

10.3.1 Early remarks on the parameter chΠ

As remarked in [171], note that, given an edge uv of a graph G, if ℓ(uv) = 0 by a labelling ℓ
of G, then ℓ cannot be p-proper, since this would imply ρℓ(u) = ρℓ(v) = 0. Thus, for any
list assignment L of G, a p-proper L-labelling is actually a p-proper L∗-labelling, where
L∗ is the list assignment of G verifying L∗(e) = L(e) \ {0} for every edge e ∈ E(G).
Therefore, throughout this work, we consider list assignments not assigning label 0 to
the edge lists. To catch this point, we refine the parameter chΠ(G) of a graph G to the

On various graph coloring problems page 283

10.3. On the list variant of p-proper labellings

parameter ch∗
Π(G), which is the smallest k ≥ 1, if any, such that G admits p-proper

L-labellings for every k-list assignment L not assigning label 0.
By the previous remarks, obviously the following holds.

Observation 10.21. If G is a nice non-empty graph, then chΠ(G) = ch∗
Π(G) + 1.

Note that the set in which the labels are taken is extremely important. We already
mentioned the role of the label 0 but other subtleties appear when the labels can be
negative or even complex numbers. Note that it does not make much sense to limit
ourselves to only positive real numbers. As suggested by Seamone in [171], there is a
straight connection between the parameters chΣ and ch∗

Π, which follows from the product
rule of logarithms (see Section 10.3.2 for more details). If we limit ourselves to only
positive real numbers then the two problems become equivalent. Introducing negative
numbers makes the problem interesting as his own. If we also allow complex numbers,
then we might end up with a finite number of possible products. Indeed let Uk be the
set of all k-roots of 1 in C. If there is a p-proper Uk-labelling of a graph G, then every
product must belong to Uk and thus χ(G) must be at most k. Even though allowing
complex numbers would be interesting, we consider from now on that the labels must be
non-zero real numbers.

Our goal is to determine possible values for/bounds on ch∗
Π(G) for any nice graph G.

We note that if L is the 1-list assignment of G where L(e) = {1} for every edge e, then G
admits no p-proper L-labellings, since every such labelling ℓ would verify ρℓ(u) = ρℓ(v) = 1
for every edge uv ∈ E(G).

Observation 10.22. There is no non-empty graph G verifying ch∗
Π(G) = 1.

Analogous conclusions can be reached regarding graphs G with ch∗
Π(G) = 2. Here,

consider the 2-list assignment L of G where L(e) = {−1, 1} for every edge e. Then, by an
L-labelling ℓ of G, we have ρℓ(v) ∈ {−1, 1} for every vertex v ∈ V (G). This implies that
ℓ is p-proper if and only if ρℓ is a proper 2-coloring of G. This case is a particular case of
the labels belonging to Uk mentioned previously. In turn, this yields the following (also
mentioned in [171]):

Observation 10.23. If G is a graph with ch∗
Π(G) = 2, then G is bipartite.

The previous condition is not sufficient, however, as nice connected bipartite graphs
G with ch∗

Π(G) = 2 must fulfil an additional property.

Proposition 10.24. Let G be a connected bipartite graph with bipartition (A,B). If
ch∗

Π(G) = 2, then at least one of |A| and |B| must be even.

Proof. Assume the claim is wrong, and letG be a connected bipartite graph with ch∗
Π(G) =

2 in which the two parts A and B are of odd size. Consider L, the 2-list assignment of G
where L(e) = {−1, 1} for every edge e ∈ E(G). As mentioned earlier, by every L-labelling
ℓ of G, we have ρℓ(v) ∈ {−1, 1} for every vertex v ∈ V (G). Thus, because G is connected,
for such an ℓ to be p-proper we must have, say, ρℓ(a) = −1 for every a ∈ A and ρℓ(b) = 1
for every b ∈ B. For the first condition to occur, for every a ∈ A there must be an odd
number of incident edges labelled −1 by ℓ. Since |A| is odd, this means that we must
have an odd number of edges of G labelled −1 by ℓ. For the second condition to occur, for
every b ∈ B there must be an even number of incident edges labelled −1 by ℓ. For that,
we must have an even number of edges of G labelled −1 by ℓ, which is a contradiction.

page 284 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

v1v2

v3v4

v5 v6 v7 v8

{1, 2}

{1, 2}

{1, 4}

Figure 10.3: A tree with two even part which cannot be labelled with any list assignment L
verifying L(v5v2) = {1, 2}, L(v5v4) = {1, 2} and L(v6v7) = {1, 4}.

Thus, connected graphs G with ch∗
Π(G) = 2 are connected bipartite graphs with at

least one part of even cardinality. This condition is necessary but still not sufficient,
however, even in simple graph classes such as trees. To see this, consider the following
easy remarks.

Suppose we have a graph G with a pending path wvu of length 2, where d(u) = 1 and
d(v) = 2, and suppose L is a 2-list assignment to the edges of G. Assume more particularly
that L(wv) = {1, a} for some a ̸= 1. Then, note that, in any p-proper L-labelling ℓ of G,
we cannot have ℓ(vw) = 1, as otherwise we would have ρℓ(v) = ρℓ(u) whatever ℓ(vu) is,
a contradiction. In other words, the label of wv by a p-proper L-labelling of G is forced
to a.

From this, we can construct arbitrarily many trees T with ch∗
Π(T) = 3 and any wanted

cardinality parity for the parts of its bipartition. As an illustration (which admits obvious
generalisations), consider the tree T (see Figure 10.3) with vertex set V (T) = {v1, . . . , v8}
and edge set E(T) = {v1v2, v2v5, v3v4, v4v5, v5v6, v6v7, v7v8}, and note that T has no p-
proper L-labelling for any list assignment L where L(v6v7) = {1, a2} and L(v2v5) =
L(v4v5) = {1, a} (for some a ̸∈ {1,−1}).

10.3.2 Connections with the sum variant, and first bounds on
chΠ

As suggested by Seamone in [171], there is a straight connection between the parameters
chΣ and ch∗

Π, due to logarithms. Despite this fact being easy to visualize, we give a
detailed proof to establish the precise relationship between the two.

Theorem 10.25. If G is a nice graph, then ch∗
Π(G) ≤ 2chΣ(G)− 1.

Proof. Assume we have chΣ(G) ≤ k for some nice graph G and k ≥ 2. We prove that
ch∗

Π(G) ≤ 2k − 1. Let L be a (2k − 1)-list assignment to the edges of G, where none of
the L(e)’s contains label 0. For every e ∈ E(G), since |L(e)| = 2k − 1, there must be
S(e) ⊂ L(e) such that |S(e)| = k and no two elements of S(e) have the same absolute
value. We set X(e) = {|x| : x ∈ S(e)} and L′(e) = {log(x) : x ∈ X(e)}1. Then L′ is
a k-list assignment of G where each edge e is associated k nonnegative values that are
logarithms of values of L(e) with different absolute values.

1Throughout this chapter, any used log function can be in any fixed base.

On various graph coloring problems page 285

10.3. On the list variant of p-proper labellings

Our original assumption chΣ(G) ≤ k implies that G admits an s-proper L′-labelling ℓ′.
We now consider an L-labelling ℓ of G obtained as follows. We consider every edge e of G,
and we choose, as ℓ(e), any label from L(e) that resulted in L′(e) containing ℓ′(e). Thus,
ℓ is an L-labelling. As a result, for every v ∈ V (G) with incident edges e1, . . . , ed, we get

σℓ′(v) =
d∑
i=1

ℓ′(ei) =
d∑
i=1

(log |ℓ(ei)|) = log
(

d∏
i=1
|ℓ(ei)|

)
= log(|ρℓ(v)|).

In particular, ℓ is p-proper since ℓ′ is s-proper.

The connection between chΣ and ch∗
Π in Theorem 10.25 implies that, for any constant

upper bound on chΣ for some graph class, we deduce a constant upper bound on ch∗
Π as

well. In the next result, we have listed some constant bounds on chΣ from the literature,
together with the bounds on ch∗

Π we get as a consequence. It is worth emphasising that
we do not claim this list to be exhaustive in any way. Namely, we only list the bounds
that seem the most significant to us, and the interested reader has to be aware that more
results of the sort can be established from results mentioned in the references below.

Corollary 10.26. Let G be a nice connected graph.

• Since chΣ(G) ≤ 5 (see [213]), we have ch∗
Π(G) ≤ 9.

• Since chΣ(G) ≤ ∆(G) + 1 (see [55]), we have ch∗
Π(G) ≤ 2∆(G) + 1.

• If G is complete, complete bipartite, or a tree, then chΣ(G) ≤ 3 (see [14]); thus
ch∗

Π(G) ≤ 5.

• If G is 2-degenerate and non-bipartite, then chΣ(G) ≤ 3 (see [197]); thus ch∗
Π(G) ≤

5.

• If G is a wheel, then chΣ(G) ≤ 3 (see [159]); thus ch∗
Π(G) ≤ 5.

• If mad(G) ≤ 11
4 , then chΣ(G) ≤ 3 (see [144]); thus ch∗

Π(G) ≤ 5.

• If G is outerplanar, then chΣ(G) ≤ 4 (see [159]); thus ch∗
Π(G) ≤ 7.

• If ∆(G) ≤ 4, then chΣ(G) ≤ 4 (see [146]); thus ch∗
Π(G) ≤ 7.

• If G is 2-connected and chordal, or a line graph, then chΣ(G) ≤ 5 (see [196]); thus
ch∗

Π(G) ≤ 9.

As a consequence of the first item in Corollary 10.26, there is a general constant upper
bound on ch∗

Π. In particular, we currently have no evidence that the following, which
would be a legitimate guess, might be false.

Conjecture 10.27 (List Multiplicative 1-2-3 Conjecture). If G is a nice graph, then
ch∗

Π(G) ≤ 3.

Recall that observations raised at the end of Subsection 10.3.1 establish that this
conjecture, if true, would actually be tight.

page 286 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

10.3.3 Algebraic tools
To improve, in next Section 10.4, some of the bounds from Corollary 10.26, we will apply
the Combinatorial Nullstellensatz (see Theorem 1.77).

Consider a graph G with edges e1, . . . , em, and a list assignment L to the edges of G.
For a vertex u and an edge e of G, we write e ∼ u if e is incident with u. Let G⃗ be any
orientation of G. With each edge ei of G, we associate a variable Xi. Now, we associate
with G (through G⃗) a polynomial QG⃗ with variables X1, . . . , Xm, being

QG⃗(X1, . . . Xm) =
∏

u⃗v∈A(G⃗)

(∑
ei∼u

Xi −
∑
ei∼v

Xi

)
.

It is easy to see that G has an s-proper L-labelling if and only if there are values l1 ∈
L(e1), . . . , lm ∈ L(em) such that QG⃗(l1, . . . , lm) does not vanish. Bounds on chΣ(G) can
be obtained via the Combinatorial Nullstellensatz through studying the monomials in the
expansion of QG⃗, more precisely monomials with nonzero coefficient, maximum degree,
and, preferably, low exponent values. Note that all the monomials of QG⃗ share the very
convenient property that they are all of maximum degree m. The tricky part, actually, is
about anticipating the coefficients of the monomials ofQG⃗ (the nonzero ones, particularly),
which are far from being obvious in general. In [14], the authors developed a very nice
dedicated approach, which is based on studying the permanent of a particular matrix
representing QG⃗.

A similar polynomial approach can of course be applied for deducing bounds on
chΠ(G). The main difference is that, this time, we have to consider the products of
labels incident with the vertices, instead of their sums. More precisely, the polynomial of
interest is here

PG⃗(x1, . . . xm) =
∏

u⃗v∈A(G⃗)

(∏
ei∼u

xi −
∏
ei∼v

xi

)
.

Compared to the polynomial QG⃗, a big difference is that, in the expansion of PG⃗, the
monomials are likely to have different degrees, which means that the Combinatorial Null-
stellensatz might apply to a few of them only. Even worse is that the degree of PG⃗ is
generally bigger than that of QG⃗, and, in particular, the exponents of the monomials
generally tend to be bigger too. Note indeed that the degree of QG⃗ is precisely m, while
the degree of PG⃗ can be as large as ∑uv∈E(G) max{d(u), d(v)} (which can be reached, e.g.
when no two adjacent vertices of G have the same degree).

For these reasons, as will be seen in next Section 10.4, deducing bounds on ch∗
Π via

the Combinatorial Nullstellensatz only, seems to be viable in particular contexts only.
One particular idea is to translate our product problem into a sum problem. For each

variable Xi, let Yi = log(|Xi|). Let P ′
G⃗

be the following polynomial:

P ′
G⃗

(Y1, . . . Ym) =
∏

u⃗v∈A(G⃗)

(∑
ei∼u

Yi −
∑
ei∼v

Yi

)
.

It is easy to see that G has a p-proper L-labelling if there are values l1 ∈ L(e1), . . . , lm ∈
L(em) such that P ′

G⃗
(log |l1| , . . . , log |lm|) does not vanish. Indeed P ′

G⃗
(log |l1| , . . . , log |lm|) ̸=

0 implies that for every edge uv:

0 ̸=
∑
ei∼u

log |li| −
∑
ei∼v

log |li| = log
∣∣∣∣∣ ∏
ei∼u

li

∣∣∣∣∣− log
∣∣∣∣∣ ∏
ei∼v

li

∣∣∣∣∣ .
On various graph coloring problems page 287

10.4. Improved bounds on ch∗
Π for some graph classes

With this trick, we can transform our product problem into a sum problem. However,
some problems arise when doing so. First it is not necessary simple to compute coefficients
of the monomials of P ′

G⃗
, this is why we often apply the Combinatorial Nullstellensatz on

just parts of G and apply induction on the rest of the graph. The second problem is
even more critical, applying the logarithm can actually reduce the set of possible labels
for an edge. Indeed, due to the absolute value, we cannot distinguish between x and −x,
essentially dividing by 2 our number of labels. Nonetheless, this trick is still viable since
not been able to apply it implies that we have many pairs of the form {x,−x} in the set
of labels for some edges.

10.4 Improved bounds on ch∗Π for some graph classes
We here improve some of the bounds on ch∗

Π from Corollary 10.26. We first consider graphs
in general, in Subsection 10.4.1. We then focus, in Subsection 10.4.2, on particular classes
of graphs, including trees, planar graphs with large girth, and subcubic graphs. In the
latter subsection, the exhibited improved bounds are optimal, or close to optimal.

10.4.1 General graphs
The bounds on ch∗

Π we establish in this section are expressed as functions of the maximum
degree, our goal being to improve the bound of the second item of Corollary 10.25 (which
is useful only for graphs with maximum degree at most 6). In order to improve this
bound, we must yet again generalize our problem.

A total list assignment of G is a function L which assigns to each vertex and to each
edge of G, a list of possible labels. For a total L-labelling ℓ, the color ρℓ(u) of a vertex
u is obtained by multiplying the label of u and the labels of the edges incident with u.
The notion of p-properness follows naturally. The following result is heavily inspired by
a similar result in the sum setting by Ding, Duh, Wang, Wong, Wu, Yu and Zhu [55].

Theorem 10.28. If G is a nice graph and L is a total list assignment of G such that
|L(uv)| ≥ min (d(u), d(v)) + 2 for every edge uv and |L(v)| = 1 for every vertex v, then
G admits a p-proper total L-labelling.

Proof. The proof of this result is inspired by the proof in [55]. We can suppose that G is
connected. Take a vertex u in G with maximum degree, in particular d(u) ≥ 2 since G
is nice (empty graphs are a trivial case). Let v1, ..., vk be the neighbors of u. We create
the graph G′ = G− u and want to construct a p-proper total L-labelling of G. Note that
since there is only one choice for the label of a vertex, we can set ℓ(x) to be this label for
every vertex x of G.

We classify the neighbors of u according to four types. We say that vi is a type I
neighbor of u, if the connected component of vi in G′ is not an isolated edge. We say
that vi is a type II neighbor of u, if the connected component of vi in G′ is an isolated
edge and its only neighbor in G′ is some vertex wi /∈ {u, v1, . . . , vk}. If vivj is an isolated
edge in G′ and i < j, then we say that vi is a type III neighbor of u and that vj is a
type IV neighbor of u. Up to changing the indices of the vi’s, we can suppose that the
other neighbor of a type III neighbor vi of u is the vertex vi+1. Note that neighbors vi of
u of type II, type III and type IV all have degree 2 and thus L(uvi) has size at least 4.

page 288 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

For each neighbor vi of u, we define ai to be a label from L(uvi) with minimal absolute
value. For every i, let bi be an element of L(uvi)\{ai,−ai} (which exists since L(uvi) has
size at least 3) with minimal absolute value in this set.

In G′, each connected component contains a neighbor of u. Moreover, a connected
component is an isolated edge if and only if it does not contain a type I neighbor of u.
Let G′′ be the graph obtained from G′ after removing every isolated edge. Let L′ be the
labelling of G′′ defined by L′(xy) = L(xy) if xy ∈ E(G′′), L′(x) = L(x) if x is not one
of the vi’s and L′(vi) = {ℓ(vi)ai} for every i. Note that L′ verifies the hypotheses of the
theorem for the graph G′′. Hence we can apply induction and obtain a total L′-labelling
ℓ′ of G′′ which is p-proper. We obtain a total L-labeling of G by using the labelling ℓ′

for the edges on which it is defined. We complete this partial labelling: for every isolated
edge xy of G′, we choose ℓ(xy) to have maximal absolute value in L(xy) and for every
edge uvi, we choose ℓ(uvi) = ai.

We claim that the total L-labelling ℓ can only have conflicts involving u or conflicts
with some type II, III or IV vi and its only other neighbor. Indeed by construction of L′,
every vertex of G′′ has the same product in G′′ by ℓ′ and in G by ℓ.

Suppose that vi is a type II neighbor of u and is in conflict with wi, then we set ℓ(uvi) to
be the label of L(uvi) \ {ai} with the lowest absolute value. We now have ρℓ(vi) ̸= ρℓ(wi).
Suppose that vi+1 is a type IV neighbor of u and is in conflict with vi (which is type III),
then we set ℓ(uvi+1) to be the label of L(uvi+1) \ {ai+1} with the lowest absolute value.
We get ρℓ(vi+1) ̸= ρℓ(vi).

Now the only remaining conflicts are between u and its neighbors. An edge uvi is safe
if |ρℓ(u)| > |ρℓ(vi)|. In what follows, the absolute value of ρℓ(u) never decreases and a
safe edge always stays safe.

Suppose that u and vi are in conflict. Consider the vertex vi+1. There are d(vi+1) + 2
labels in L(uvi+1). Among those labels, at most d(vi+1)− 1 can cause a conflict between
vi+1 and one of its neighbors (other than u) when labelling uvi+1 with them. Hence there
are at least three labels for uvi+1 which do not create conflicts for vi+1. Let Xi+1 be this
set of labels of uvi+1 which do not create conflicts for vi+1. If there is in Xi+1 a label with
absolute value greater than |ℓ(uvi+1)|, then we can relabel uvi+1 with this label. This
makes uvi safe (since |ρℓ(u)| increases), does not create conflicts for vi+1 and keep every
previously safe edge, possibly including uvi+1, safe.

If ℓ(uvi+1) = ai+1 or ℓ(uvi+1) = −ai+1, then in Xi+1, at least one label has absolute
value greater than |ai+1| and we can apply the previous procedure. If |ℓ(uvi+1)| ≠ |ai+1|,
then the label of uvi+1 was changed in a previous step. The edge uvi is not safe since u
and vi are in conflict, hence the label of uvi+1 was changed when dealing with conflicts
between endpoints of isolated edges of G′. Since ℓ(uvi+1) ̸= −ai+1, we can conclude that
−ai+1 /∈ L(uvi+1) and that ℓ(uvi+1) = ±bi+1. In particular, since vi+1 is a type II or IV
neighbor of u, it has degree 2 and L(uvi+1) has at least four labels. Hence there is a
label ci+1 in L(uvi+1) \ {ai+1, bi+1,−bi+1}, which thus has an absolute value greater than
ℓ(uvi+1). If our previous remark does not apply then ci+1 /∈ Xi+1 and thus, the other
neighbor of vi+1 is in conflict with vi+1 if we label uvi+1 with ci+1.

If vi+1 is type II, then ai+1 is the only color which can create a conflict with wi+1.
Indeed, recall that the labels of vi+1, wi+1 and uvi+1 are the only ones which determine
whether vi+1 and wi+1 are in conflict. Since the two former are fixed and we changed the
label of uvi+1 from ai+1 to its current value, it means that ai+1 is the one which creates
a conflict between vi+1 and wi+1. Hence ci+1 ∈ Xi+1.

On various graph coloring problems page 289

10.4. Improved bounds on ch∗
Π for some graph classes

If vi+1 is type IV, then vi is the only other neighbor of vi+1. Choosing a label for vivi+1
with lower absolute value does not create a conflict between vi and vi+1, and makes uvi
safe and keep uvi+1 safe if it already was.

Since every conflict between u and some vi makes uvi safe, these two vertices can never
be in conflict again. As we never introduce conflicts not involving the vertex u, there are
no more conflicts in G and ℓ is p-proper.

By choosing the label of every vertex to be 1, Theorem 10.28 implies the following:

Corollary 10.29. If G is a nice graph, then ch∗
Π(G) ≤ ∆(G) + 2.

10.4.2 Particular classes of graphs
In this subsection, we give tighter results for some classes of graphs.

10.4.2.1 Paths and cycles

Note that Corollary 10.29 implies that four labels for each edge are sufficient when ∆(G) ≤
2, i.e. for paths and cycles. In such simple cases, this can actually be refined to a tightest
result, proving the List Multiplicative 1-2-3 Conjecture.

Theorem 10.30. For any integer n ≥ 3, we have:

• ch∗
Π(Pn) = 2 if n is odd or n = 4,

• ch∗
Π(Pn) = 3 otherwise.

For any integer n ≥ 3, we have:

• ch∗
Π(Cn) = 2 if n ≡ 0 (mod 4),

• ch∗
Π(Cn) = 3 otherwise.

Proof. We deal with cycles first. Let us denote by v0, . . . , vn−1 the successive vertices of
Cn and let ei = vivi+1 (where, here and further, operations over the indices are understood
modulo n). For any two adjacent vertices vi and vi+1, note that, in order to get ρℓ(vi) ̸=
ρℓ(vi+1) by a labelling ℓ of Cn, we must have ℓ(vi−1vi) ̸= ℓ(vi+1vi+2). Thus, for ℓ to be
p-proper, ℓ must be an injective edge-coloring of G.

Now consider G, the graph constructed from Cn by adding one vertex vei
in G for every

edge ei of Cn. For every i, we add an edge between vei
and vei+2 . The graph G is the graph

of conflicts between edges of Cn for an injective edge-coloring. By the remark above, we
have ch∗

Π(Cn) = ch(G). Note that G is an odd-length cycle when n is odd, an union of
two odd-length cycles when n ≡ 2 (mod 4), and an union of two even-length cycles when
n ≡ 0 (mod 4). Since even-length cycles have choice number 2 and odd-length cycles
have choice number 3 (see e.g. [66]), the result follows.

Regarding paths, remark first that ch∗
Π(Pn) ≤ 3. Indeed for a path Pn = v0v1 . . . vn−1,

first remove the label 1 from the all lists and label v0v1 and v1v2 arbitrarily. For 2 ≤ i <
n − 1, label vivi+1 with a label different from the label of vi−2vi−1. Remark that no two
vertices are in conflict with such a labelling.

For a given n ≥ 3, similarly as in the case of cycles, let us denote by v0, . . . , vn−1
the successive vertices of Pn, and set ei = vivi+1 for every i ∈ {0, . . . , n − 2}. Note

page 290 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

that, contrary to the case of cycles, labelling Pn is not similar to coloring the constraint
graph G for the injective edge-coloring of Pn, because, when labelling Pn, we must also
guarantee that e1 and en−2 are not assigned label 1, so that v0 and v1 and not in conflict,
and similarly for vn−2 and vn−1.

Let us now consider the following cases.

• If n ≡ 2 (mod 4), then Pn is a bipartite graph in which the two parts of the
bipartition have odd cardinality. As described in Proposition 10.24, we must have
ch∗

Π(Pn) > 2 in such a situation, which implies ch∗
Π(Pn) = 3.

• If n = 4, then first assign to e1 a label from L(e1) different from 1, before assigning
distinct labels from L(e0) and L(e2) to e0 and e2, respectively. Clearly, ℓ is p-proper
and ch∗

Π(P4) = 2.
• If n ≡ 0 (mod 4) and n > 4, then set L(e1) = {1, 2}, L(ek) = {2, 3} for every
k ∈ {3, . . . , n− 5}, and L(en−3) = {1, 3}. Since e1 and en−3 cannot be labelled 1,
it must be that ℓ(e1) = 2 and ℓ(en−3) = 3. We deduce ℓ(e3) = 3, ℓ(e5) = 2, ...,
and ℓ(en−5) = 3 since n is a multiple of 4. But then en−5 and en−3 have the same
label, making vn−4 and vn−3 have the same product. Hence ch∗

Π(Pn) > 2 and thus,
ch∗

Π(Pn) = 3.
• If n = 3, then, clearly, we are done when assigning labels from L(e0) and L(e1)

different from 1 to e0 and e1, respectively.
• If n is odd and n ≥ 5. We first label the edges e0, e2, . . . , en−2 with even index with

labels from their respective lists, in such a way that 1) ℓ(en−2) ̸= 1, and that 2)
no two of these edges at distance 2 are assigned the same label. These conditions
can clearly be achieved by labelling these edges one by one following the ordering
en−2, en−4, . . . , e2, e0. We then achieve the same thing for the edges e1, e3, . . . , en−1
with odd index, so that 1) ℓ(e1) ̸= 1, and that 2) no two of these edges at distance 2
are assigned a same label. Again, this can be easily achieved, e.g. by labelling these
edges following the ordering e1, e3, . . . , en−1. By arguments above, ℓ is eventually
p-proper.

10.4.2.2 Trees

We now prove an upper bound on ch∗
Π in the case of trees. The exhibited bound is optimal

in general, due to some of the remarks at the end of Subsection 10.3.1. Even some paths
attain the upper bound, recall Theorem 10.30.

Theorem 10.31. If T is a nice tree, then ch∗
Π(T) ≤ 3.

Proof. The proof is by induction on the number of vertices and edges of T . The base case
is when T is a path of length 2, in which situation the claim holds by Theorem 10.30.
Thus, we can focus on proving the general case. Let L be a 3-list assignment to the edges
of T .

We can assume that T has no pending path of length at least 3, i.e. a path uvwx such
that d(u) = 1, d(v) = d(w) = 2, and d(x) ≥ 2. Indeed, assume T has such a path. Let
T ′ = T − {u, v}. Clearly T ′ is nice (as otherwise T would be a path, a case for which
Theorem 10.30 yields the desired conclusion), and thus T ′ admits a p-proper L′-labelling
ℓ′, where L′ denotes the restriction of L to the edges of T ′. To extend ℓ′ to a p-proper

On various graph coloring problems page 291

10.4. Improved bounds on ch∗
Π for some graph classes

L-labelling of T , we have to assign to uv and vw labels from their lists, so that no conflict
arises. To that aim, we first assign to vw a label different from 1 and from ρℓ′(x)

ℓ′(xw) so that
w does not get in conflict with x. Note that this is possible since |L(vw)| = 3. Note
that, now, because ℓ(vw) ̸= 1, whatever label we assign to uv, we cannot get a conflict
between u and v. Thus, when labelling uv, we just need to make sure that v does not get
in conflict with w, which can easily be ensured since |L(uv)| = 3.

We may also assume that T has branching vertices, i.e. vertices with degree at least 3.
Indeed, if T has no branching vertex, then T is a path, ∆(T) = 2, and the claim follows
from Theorem 10.30. So assume that T has branching vertices. Root T at any branching
vertex r. This defines the usual root-to-leaf orientation, through which every non-root
vertex has a unique parent, i.e. a neighbor that is closer to r, and every non-leaf vertex
v has sons, i.e. neighbors that are farther from r, and, more generally, descendants, i.e.
vertices for which the unique path to r goes through v.

Let u be a branching vertex of T that is at farthest distance from r. Note that we
have u = r if r is the unique branching vertex of T . By this choice, u has at least two
descendants, all of which have degree at most 2. In other words, the descendants of u form
k ≥ 2 disjoint pending paths, none of which has length more than 2, as mentioned earlier.
There are then k = p + q ≥ 2 pending paths attached at u formed by its descendants,
where p ≥ 0 of these paths have length 2, while q ≥ 0 of them have length 1. We
denote by v1, . . . , vp, w1, . . . , wq the sons of u, where v1, . . . , vp belong to pending paths
of length 2, while w1, . . . , wq are leaves. We also denote by v′

1, . . . , v
′
p the neighbor of

v1, . . . , vp, respectively, different from u. Thus, the vi’s have degree 2, while the v′
i’s and

the wi’s have degree 1. Lastly, we denote by t the parent of u, if it exists (recall that we
have u = r when T has only one branching vertex, in which case u has no parent).

Let T ′ = T −
{
v1, . . . , vp, v

′
1, . . . , v

′
p, w1, . . . , wq

}
. The tree T ′ is nice, because either r

is a branching vertex (case where u ̸= r) or T ′ consists in only one vertex (case where
u = r), and thus T ′ admits a p-proper L′-labelling ℓ′, where L′ denotes the restriction of
L to the edges of T ′. To extend ℓ′ to a p-proper L-labelling of T , we just have to assign
labels from their lists to the edges incident with the descendants of u, so that no conflict
arises.

We distinguish several cases, based mainly on the value of q.

• Suppose that q = 0. Label every edge uvi with i ∈ {1, . . . , p− 1} with an arbitrary
label from L(uvi) different from 1. Now, label uvp with a label from L(uvp) different
from 1 so that u does not get in conflict with t, if it exists (in case it does not, just
assign any label different from 1 to uvp). Note that this is possible since |L(uvp)| = 3.
Lastly, consider every edge viv′

i. Since ℓ(uvi) ̸= 1, note that vi and v′
i cannot get in

conflict, whatever label from L(viv′
i) is assigned to viv′

i. Thus, when labelling viv′
i,

we just need to ensure that vi and u do not get in conflict, which can be avoided
since |L(viv′

i)| = 3.

• Suppose now that q = 1. Recall that p ≥ 1 since k = p + q ≥ 2. We start by
labelling, for every i ∈ {1, . . . , p− 1}, the edge uvi with any label different from 1,
chosen from L(uvi). We then consider uvp, and assign to this edge a label from
L(uvp) different from 1 so that the resulting partial product of u is different from 1.
Note that this is possible since |L(uvp)| = 3. Now, note that, by this choice of
ℓ(uvp), no matter what ℓ(uw1) is, we cannot get a conflict between u and w1. We
then assign as ℓ(uw1) a label from L(uw1) so that u does not get in conflict with t

page 292 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

(if it exists). Lastly, we consider every i ∈ {1, . . . , p}, and, to every edge viv′
i, we

assign a value from L(viv′
i) so that vi and u do not get in conflict. This results in ℓ

being p-proper. Recall, in particular, that any two vi, v′
i cannot be in conflict since

ℓ(uvi) ̸= 1.

Suppose now that q ≥ 2. We start by stating the following general claim:
Claim 10.32. Let S be a star with center u and q + 1 ≥ 3 leaves t, w1, . . . , wq. Assume
we have a partial labelling ℓ′ of S where ut is the only edge being assigned a label, a, and
that t has (virtual) product ρℓ′(t) = A. If L is a 3-list assignment to the uwi’s, then, for
every i ∈ {1, . . . , q}, we can assign a label from L(uwi) to uwi, so that ℓ′ is extended to a
labelling ℓ of S verifying ρℓ(u) ̸∈ {A, ρℓ(w1), . . . , ρℓ(wq)}.
Proof. Suppose first that q = 2. We first assign to uw1 a label from L(uw1) different from
1/a. This way, no matter what label is assigned to uw2, note that u and w2 cannot get
in conflict. We now assign a label from L(uw2) to uw2 so that the resulting product of u
is different from A and the product of w1. This is possible since |L(uw2)| = 3.

Assume now that q ≥ 3. We distinguish the following cases:

• Assume, w.l.o.g., that the three values in L(uw1) have pairwise distinct absolute
values. With each edge uwi, we associate a variable Xi, and we consider the poly-
nomial

P (X1, . . . , Xq) =
(
a

q∏
i=1

Xi − A
)
·
q∏
i=1

a q∏
j=1

Xj −Xi

 .
For every i ∈ {1, . . . , q}, we set Yi = logXi. Now considering the polynomial P
translates to considering

P ′(Y1, . . . , Yq) =
(

log(a) +
q∑
i=1

Yi − log(A)
)
·
q∏
i=1

log(a) +
q∑
j=1

Yj − Yi

 .
Note that, in the expansion of P ′, the monomial Y 2

1 Y2 . . . Yq has strictly positive
coefficient. Thus, by the Combinatorial Nullstellensatz, we can assign values to the
Yi’s so that P ′ does not vanish, as long as we are given a set of at least three possible
distinct values for Y1, and a set of at least two possible distinct values for each of
Y2, . . . , Yq. In turn, this means we can assign values to the Xi’s so that P does
not vanish, as long as we have a set of at least three possible values with pairwise
distinct absolute values for X1, and a set of at least two possible values with distinct
absolute values for each of X2, . . . , Xq. Recall that we made the assumption that
the three values in L(uw1) have pairwise distinct absolute values, while, for every
i ∈ {2, . . . , q}, there must be at least two values in L(uwi) with distinct absolute
values, since |L(uwi)| = 3. Thus, ℓ′ can correctly be extended to ℓ, in the desired
way.

• Now assume that every L(uwi) is of the form {αi, βi,−βi}, where αi and βi are
distinct values with the same sign. Let us start from the labelling ψ of S obtained
from ℓ′ after setting ℓ(uwi) = αi for every i ∈ {1, . . . , q}. We denote by s ∈ {−,+}
the sign of ρψ(u), while, for every sign ϵ ∈ {−,+}, we denote by W ϵ the set of
vertices wi for which the sign of ρψ(wi) (thus, of αi and βi) is ϵ. Note that W− and
W+ partition the wi’s.
To conclude the proof, we consider two last main cases.

On various graph coloring problems page 293

10.4. Improved bounds on ch∗
Π for some graph classes

– Suppose that s = + and W− = ∅. We start by assigning label −β1 from
L(uw1) to uw1. Note that, as long as each uwi with i ∈ {2, . . . , q} is assigned
a label from {αi, βi}, we cannot get a conflict between u and wi due to their
products having different signs. Thus, under that convention, the only conflicts
we must pay attention to are along the edges uw1 and, possibly, ut (in case A
is negative).
We here assign a variable Xi to each edge uwi with i ∈ {2, . . . , q}, and consider

P (X2, . . . , Xq) =
(
−β1a

q∏
i=2

Xi − A
)
·
(
−β1a

q∏
i=2

Xi − β1

)
.

For every i ∈ {1, . . . , q}, we again set Yi = log |Xi|. Then considering P
translates to considering

P ′(Y2, . . . , Yq) =
(

log(−β1a) +
q∑
i=2

Yi − log(A)
)
·
(

log(−β1a) +
q∑
i=2

Yi − log(β1)
)
.

Recall that q ≥ 3. Then, whatever q is, in the expansion of P ′ the monomial
Y2Y3 has strictly positive coefficient. The Combinatorial Nullstellensatz then
implies that we can assign values to Y2, . . . , Yq so that P ′ does not vanish, as-
suming we have at least two values to choose from for each of Y2 and Y3, and at
least one value to choose from for each of Y4, . . . , Yq. From this, we deduce that
we can assign values to vw2, . . . , vwq from {α2, β2}, {α3, β3}, {α4}, {α5}, . . . , {αq},
respectively, so that u is in conflict with none of w1 and t. Recall that the result-
ing sign of ρℓ(u) is negative, while the sign of all vertices wi with i ∈ {2, . . . , q}
is positive. Thus, these vertices also cannot be in conflict.

– Suppose that s = + and W− ̸= ∅. Assume w.l.o.g. that w1 ∈ W−. Recall
that, as long as u and w1 get products with different signs by a labelling,
they cannot be in conflict. Thus, we here get our conclusion through the
Combinatorial Nullstellensatz, by not modelling the possible conflict between
u and w1. The precise details are as follows. For every i ∈ {1, . . . , q}, let Xi

be a variable associated with uwi. We consider the polynomial

P (X1, . . . , Xq) =
(
a

q∏
i=1

Xi − A
)
·
q∏
i=2

a q∏
j=1

Xj −Xi

 .
For every i ∈ {1, . . . , q}, we set Yi = log |Xi|. Then considering P translates
to considering

P ′(Y1, . . . , Yq) =
(

log(a) +
q∑
i=1

Yi − log(A)
)
·
q∏
i=2

log(a) +
q∑
j=1

Yj − Yi

 .
In the expansion of P ′, the monomial Y1 . . . Yq has strictly positive coefficient,
and, thus, by the Combinatorial Nullstellensatz, we can assign labels from
{α1, β1}, . . . , {αq, βq} to uw1, . . . , uwq, respectively, resulting in a labelling ℓ
of S where u gets in conflict with none of w2, . . . , wq, t. Proceeding that way,
recall that the sign of ρℓ(u) is positive, while that of ρℓ(w1) is negative. Then,
also u and w1 cannot be in conflict, and ℓ is p-proper.

page 294 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

To conclude the proof, let us point out that the cases where s = − can be treated in
a symmetric way, by considering whether W+ is empty or not. ■

We are now ready to conclude the proof of Theorem 10.31. Recall that we have
obtained a labelling ℓ′ of T ′ = T −

{
v1, . . . , vp, v

′
1, . . . , v

′
p, w1, . . . , wq

}
by induction, and

that we are in the case where u is adjacent to q ≥ 2 leaves (and, possibly, p vi’s and one
parent t). We start extending ℓ′ to T by considering every edge uvi (if such edges exist)
and assigning to it a label from L(uvi) different from 1. This is clearly possible, since
|L(uvi)| = 3. We now apply Claim 10.32 to the uwi’s to get all edges incident with u
labelled, in such a way that u is not in conflict with any of t (if it exists; if it does not,
then note that the claim applies in a very close way) and the wi’s. The main difference
here, is that, though we do not have to care about possible conflict between u and the vi’s
for now, the claim must be employed with taking into consideration the contribution of
the uvi’s to the product of u. In particular, A = ρℓ′(t) and a = ℓ′(ut)∏p

i=1 ℓ
′(uvi). Lastly,

it remains to label every viv
′
i with a label from L(viv′

i) so that vi and u do not get into
conflict, which is possible since we have three possible labels. Recall in particular that vi
and v′

i cannot be in conflict since ℓ(uvi) ̸= 1. Eventually, ℓ is p-proper, as desired.

10.4.2.3 Planar graphs with large girth

Planar graphs with large enough girth are known to be 2-degenerate and to have low
maximum average degree. Thus, the fourth and sixth items of Corollary 10.26 establish 5
as a constant upper bound on ch∗

Π(G) when G is indeed a nice planar graph with large
girth. In what follows, we improve this upper bound down to 4 when g(G) ≥ 16, getting
closer to the List Multiplicative 1-2-3 Conjecture for this class of graphs. Our proof
involves arguments that are reminiscent to those used to prove Theorem 10.31, combined
together with the following structural result:

Theorem 10.33 (e.g. Nešetřil, Raspaud, Sopena [156]). If G is a planar graph with girth
g(G) ≥ 5ℓ+ 1 for some ℓ ≥ 1, then either:

• δ(G) = 1, or
• G contains an ℓ-thread, i.e. a path uv1 . . . vℓw where d(u), d(w) ≥ 2, and d(vi) = 2

for every i ∈ {1, . . . , ℓ}.

We are now ready to prove our result.

Theorem 10.34. If G is a nice planar graph with girth g(G) ≥ 16, then ch∗
Π(G) ≤ 4.

Proof. Assume the claim is wrong, and let G be a minimal counterexample to the claim.
We may assume that G is connected, and, due to Theorems 10.30 and 10.31, that ∆(G) ≥
3 and that G is not a tree. Let L be a 4-list assignment to the edges of G. We prove
the result by contradicting the existence of G, i.e. by showing that G admits p-proper
L-labellings, whatever L is.

If δ(G) ≥ 2, then, by Theorem 10.33, we can find a 3-thread uv1v2v3w in G. In
that case, we consider G′ = G − v2. Note that G′ may consist in up to two connected
components, each of which has at least two edges (since d(u), d(w) ≥ 2, by the assumption
on δ(G)) and girth at least 16 (in case there is only one connected component, G′ might
be a tree; in that case, g(G′) = ∞, and the girth condition remains true). So G′ is nice
and planar, and, by minimality of G, there is a p-proper L′-labelling ℓ′ of G′, where L′

On various graph coloring problems page 295

10.4. Improved bounds on ch∗
Π for some graph classes

denotes the restriction of L to the edges of G′. To obtain a contradiction, it now suffices
to extend ℓ′ to a p-proper L-labelling of G, and, for this, we just have to assign labels from
L(v1v2) and L(v2v3) to v1v2 and v2v3, respectively, so that no conflict arises. This can
clearly be done since |L(v1v2)| = |L(v2v3)| = 4, by first assigning to v1v2 a label different
from ℓ′(v3w) for which v1 and u get different partial products, and then assigning to v2v3
a label so that v1 and v2 are not in conflict, and similarly for v3 and w.

We may thus assume that δ(G) = 1. Since G is not a tree, this means that, by
repeatedly removing vertices of degree 1 while there are some, we end up with a planar
connected graph G− such that δ(G−) ≥ 2 and g(G−) ≥ 16. More precisely, for every
v ∈ V (G) ∩ V (G−), we can denote by Tv the pending tree rooted at v in G, which,
if dG(v) = dG−(v), is reduced to the single vertex v. Then G− is obtained from G by
contracting every Tv to v. For every v ∈ V (G) ∩ V (G−), we deal, in G, with Tv through
the terminology introduced in the proof of Theorem 10.31 (in particular, the notions of
parent, son, descendant and branching vertex have the exact same meaning).

Because g(G−) ≥ 16, then, by Theorem 10.33, we deduce that G− has a 3-thread
P = uv1v2v3w. Note that P also exists back in G, the difference being that v1, v2, v3
might each be the root of a pending tree (denoted Tv1 , Tv2 , Tv3 , respectively, following our
terminology) that might have edges. In case we have V (Tvi

) = {vi} for every i ∈ {1, 2, 3},
then note that P is actually a 3-thread in G, in which case a contradiction can be obtained
in the similar way as in the previous case δ(G) ≥ 2. Thus, in what follows, we assume
that some of Tv1 , Tv2 , Tv3 are not reduced to a single vertex.

By arguments similar to some used in the proof of Theorem 10.31, we may assume
that none of Tv1 , Tv2 , Tv3 has 1) a non-root branching vertex, or 2) a pending path of
length at least 3 (remind, in particular, that in the current context there is even more
room for labelling extensions, due to L being a 4-list assignment). This means that each
Tvi

is a subdivided star with center vi, where the pending paths attached to vi (if any)
have length 1 or 2.

We start by handling a very particular case, which is when every Tvi
has only one edge

viv
′
i, i.e. is a star with a single edge viv′

i. In this case, we consider G′ = G−v2. A p-proper
L′-labelling of G′ (where, again, L′ denotes the restriction of L to G′), which exists by
minimality of G, can then be extended to a p-proper L-labelling of G, a contradiction,
by first labelling v1v2 with a label from L(v1v2) so that no conflict between v1 and its
two neighbors different from v2 arises, then labelling v2v3 with a label from L(v2v3) so
that 1) no conflict between v3 and its two neighbors different from v2 arises, and 2) v2
gets partial product different from 1; and lastly labelling the edge v2v

′
2 of Tv2 with a label

from L(v2v
′
2) so that no conflict between v2 and its two neighbors different from v′

2 arises.
Recall, in particular, that v2 and v′

2 cannot be in conflict due to how v2v3 was labelled.
Note also that lists of four labels are indeed sufficient to achieve this whole process.

In the more general case, let us consider the graph G′ = G−(V (Tv1)\{v1})−V (Tv2)−
(V (Tv3)\{v3}) (obtained by removing the non-root vertices of Tv1 and Tv3 , and the whole
of Tv2). By arguments used earlier in the case where δ(G) ≥ 2, there is a p-proper L′-
labelling ℓ′ of G′, where L′ denotes the restriction of L to the edges of G′. Our goal, to get
a final contradiction, is to extend ℓ′ in a p-proper way to the edges v1v2, v2v3 and those
in Tv1 , Tv2 , Tv3 , assigning labels from their respective lists, so that a p-proper L-labelling
of G results.

We start by assigning labels from L(v1v2) and L(v2v3) to v1v2 and v2v3, respectively,
in such a way that, for the resulting partial products of v1, v2, v3, 1) v2 is in conflict with

page 296 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

none of v1 and v3, 2) v1 is not in conflict with u, 3) v3 is not in conflict with w, and
4) no vi in {v1, v2, v3} for which Tvi

contains only one edge, gets product 1 as a result.
This is possible to achieve since |L(v1v2)| = |L(v2v3)| = 4. More precisely, this can be
achieved by labelling v1v2 first and v2v3 second if Tv1 has only one edge, or by labelling
v2v3 first and v1v2 second otherwise. Recall, in particular, that we have treated separately
the case where all of Tv1 , Tv2 , Tv3 have only one edge, so we are not in that case; the fourth
condition must thus be fulfilled for at most two of the vi’s.

It now remains to label the edges from the Tvi
’s. We achieve this by considering Tv1 , Tv2

and Tv3 in turn, so that, once every Tvi
has been treated, no vertex in V (Tv1)∪· · ·∪V (Tvi

)
is involved in conflicts, and none of the vertices in V (Tvi+1)∪ · · · ∪V (Tv3) had its product
altered. This way, the desired p-proper L-labelling of G will result once Tv3 has been
treated. In what follows, we focus on Tv1 , but the arguments apply similarly for Tv2 and
Tv3 .

Recall that Tv1 consists of some (possibly none) pending paths of length 1 or 2 attached
to v1. Let us assume that p ≥ 0 of these paths have length 2, while q ≥ 0 of them have
length 1. We denote by b1, . . . , bp the sons of v1 that belong to the pending paths of
length 2, while we denote by c1, . . . , cq those from the pending paths of length 1. Finally,
for every i ∈ {1, . . . , p}, we denote by b′

i the son of bi in Tv1 . By how v1v2 was labelled
earlier, note that we already have the desired conclusion around v1 if p = q = 0. We thus
focus on the cases where p+ q > 0.

• The cases where q ∈ {0, 1} can be treated quite similarly as the cases q = 0 and
q = 1 in the proof of Theorem 10.31. Namely, we first label the edges v1b1, . . . , v1bp−1
(if such edges exist) with labels different from 1 from their respective lists. If q = 0,
then we label v1bp with a label different from 1 from its list, with making sure that
the resulting product of v1 is different from that of u and v2. Otherwise, if q = 1,
then we label v1bp with a label different from 1 from its list, with making sure that
the resulting partial product of v1 does not get equal to 1 (if p = 0, then recall that
this property is already verified at v1, due to how v1v2 and v2v3 have been labelled).
Still in the case where q = 1, this guarantees that v1 and c1 cannot get in conflict
no matter how v1c1 is labelled; thus, we can label v1c1 with a label from its list so
that v1 does not in conflict with u and v2. Note that lists of size 4 are sufficient to
achieve these conditions in all cases. We lastly label every edge bib′

i (if any) with a
label from its list, with making sure that bi does not get in conflict with v1. Because
v1bi was assigned a label different from 1, recall that bi and b′

i cannot be in conflict.
• The cases where q = 2 can be treated quite similarly. Start by labelling every edge
v1bi (if there are any) with a label different from 1 from its list. Then, label v1c1
with a label from its list, so that the resulting partial product of v1 does not get
equal to 1. Last, label v1c2 with a label from its list, so that v1 gets in conflict
with none of u, v2 and c1. Note that this is possible, since we do not have to care
about a possible conflict between v1 and c2, and |L(v1c2)| = 4. To conclude, we can
eventually label the bib′

i’s just as in the previous case.

The general case is when q ≥ 3. We need a generalisation of Claim 10.32 to the current
context.

Claim 10.35. Let S be a star with center u and q+ 2 ≥ 5 leaves t, t′, w1, . . . , wq. Assume
we have a partial labelling ℓ′ of S where ut and ut′ are the only edges being assigned

On various graph coloring problems page 297

10.4. Improved bounds on ch∗
Π for some graph classes

a label, a and a′, respectively, and that t and t′ have (virtual) product ρℓ′(t) = A and
ρℓ′(t′) = A′. If L is a 4-list assignment to the uwi’s, then, for every i ∈ {1, . . . , q}, we
can assign a label from L(uwi) to uwi, so that ℓ′ is extended to a labelling ℓ of S verifying
ρℓ(u) ̸∈ {A,A′, ρℓ(w1), . . . , ρℓ(wq)}.
Proof. Note that each L(uwi) contains two, three or four values with pairwise distinct
absolute values. We consider several cases based on that fact.

• Assume, w.l.o.g., that the four values in L(uw1) have pairwise distinct absolute val-
ues. With each edge uwi, we associate a variable Xi, and we consider the polynomial

P (X1, . . . , Xq) =
(
aa′

q∏
i=1

Xi − A
)
·
(
aa′

q∏
i=1

Xi − A′
)
·
q∏
i=1

aa′
q∏
j=1

Xj −Xi

 .
For every i ∈ {1, . . . , q}, we set Yi = log |Xi|. Once again P gets translated to

P ′(Y1, . . . , Yq) =
(

log(aa′) +
q∑
i=1

Yi − log(A)
)
·
(

log(aa′) +
q∑
i=1

Yi − log(A′)
)

·
q∏
i=1

log(aa′) +
q∑
j=1

Yj − Yi

 .
In the expansion of P ′, the monomial Y 3

1 Y2 . . . Yq has strictly positive coefficient.
Thus, by the Combinatorial Nullstellensatz, we can assign values to the Yi’s so that
P ′ does not vanish, as long as we are given a set of at least four possible distinct
values for Y1, and a set of at least two possible distinct values for each of Y2, . . . , Yq.
Regarding P , this implies we can assign values to the Xi’s so that P does not vanish,
assuming we have a set of a least four possible values with pairwise distinct absolute
values for X1, and a set of at least two possible values with distinct absolute values
for each of X1, . . . , Xq. This is met in the current case, since L(uw1) is assumed to
have four values with pairwise distinct absolute values, and |L(uwi)| = 4 for every
i ∈ {2, . . . , q}. Thus, ℓ′ can be extended to ℓ as desired.

• Assume now that, w.l.o.g., both L(uw1) and L(uw2) include three values with pair-
wise distinct absolute values. Then the same conclusion as in the previous case can
be reached from considering the monomial Y 2

1 Y
2

2 Y3 . . . Yq in the expansion of P ′.
• We can thus assume that none of the two previous cases applies, i.e. that, w.l.o.g.,
L(uw1) includes two or three values with pairwise distinct absolute values, while
L(uw2), . . . , L(uwq) include each exactly two values with pairwise distinct abso-
lute values. In other words, we have L(uwi) = {αi,−αi, βi,−βi} for every i ∈
{2, . . . , q}, for some distinct αi, βi, while L(uw1) = {α1,−α1, β1,−β1} or L(uw1) =
{α1,−α1, β1, γ1}, for some distinct α1, β1, γ1. To conclude the proof, we consider a
few more cases:

– Assume first that A and A′ have the same sign s ∈ {−,+}. For every i ∈
{1, . . . , q − 2}, let us assign to uwi a label with sign s from its list. Then:

∗ If s and the sign of the partial product of u are the same, then we assign to
uwq−1 a label with sign s from its list, chosen so that the partial product of
u gets different from 1. Note that this is possible, since L(uwq−1) contains

page 298 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

two values with sign s. This guarantees that u and wq cannot be in conflict,
whatever the label of uwq is. We then assign to uwq a label with sign −s
from its list, so that all edges are labelled and no conflict remains. In
particular, u gets product with sign −s, while only wq has this property.

∗ Otherwise, i.e. if s and the sign of the partial product of u are different,
then we assign to uwq−1 and uwq a label with sign s from their lists. As
a result, no conflict remains, since u is the only vertex with product being
of sign −s.

– Now assume that A and A′ have different signs, say A is positive while A′ is
negative. We here start by assigning, for every i ∈ {1, . . . , q − 2}, a positive
label to uwi from its list L(uwi). Now:

∗ If currently u has negative product, then we assign to uwq−1 and uwq a
positive label from their respective lists, with making sure that the product
of u gets different from A′. This is possible since L(uwq−1) and L(uwq)
have two positive values each. Since only u and t′ have negative product,
no conflict remains.

∗ Otherwise, i.e. u currently has positive product, then we first assign a
positive label to uwq−1 from its list, chosen so that the current product
of u does not get equal to 1. This is possible, since L(uwq−1) contains
two positive values. This guarantees that u and wq cannot get in conflict.
We then assign to uwq a negative label from L(uwq), chosen so that u
gets product different from A′. This is possible since L(uwq) contains two
negative values. Since only A′ and the products of u and wq are negative,
no conflict remains.

In all cases, we end up with the desired labelling ℓ, which concludes the proof. ■

We can now conclude the case q ≥ 3 of the proof of Theorem 10.34, thus proving the
whole statement. We start by labelling every edge v1bi (if any) with any label different
from 1 from its list L(v1bi). We now apply Claim 10.35 to get all v1ci’s labelled with
labels from their lists, so that v1 is not in conflict with any of u, v2 and the ci’s. This
can be done by applying Claim 10.35 with v1, u and v2 playing the role of u, t and t′,
respectively, ρℓ′(u) and ρℓ′(v2) playing the role of A and A′, respectively, ℓ′(uv1)

∏p
i=1 ℓ(ubi)

and ℓ′(v1v2) playing the role of a and a′, respectively, and the ci’s playing the role of the
wi’s. It remains to label the bib′

i’s (if any), and, for each such edge bib′
i, it suffices to assign

a label from its list so that bi and v1 do not get in conflict. Recall that we do not have to
mind about a possible conflict between bi and b′

i, since ℓ(v1bi) ̸= 1.

10.4.2.4 Subcubic graphs

We now consider subcubic graphs, i.e. graphs with maximum degree 3. Note that, at
this point, the best upper bound we have on ch∗

Π for these graphs is 5, obtained from
Corollary 10.29. We get one step closer to the List Multiplicative 1-2-3 Conjecture for
this class of graphs, by lowering the upper bound down to 4 in the next result.

Theorem 10.36. If G is a nice subcubic graph, then ch∗
Π(G) ≤ 4.

Proof. Assume the claim is wrong, and consider G a minimal counterexample to the claim.
Clearly, G is connected. Let L be a 4-list assignment to the edges of G. We prove below

On various graph coloring problems page 299

10.4. Improved bounds on ch∗
Π for some graph classes

that G admits a p-proper L-labelling whatever L is, a contradiction. To that aim, we first
show that G is cubic:

• Assume first that δ(G) = 1, and consider u a 1-vertex of G with unique neighbor v.

– Assume first that d(v) = 2, and let w denote the second neighbor of v. Set
G′ = G − {u, v}. We can assume that G′ is nice, as otherwise G would be
the path of length 3, in which case even ch∗

Π(G) ≤ 3 holds by Theorem 10.30,
a contradiction. Then, by minimality of G, there is a p-proper L′-labelling ℓ′

of G′, where L′ denotes the restriction of L to the edges of G′. We extend ℓ′

to a p-proper L-labelling of G, getting a contradiction, by correctly assigning
labels to uv and vw from their respective lists. We first label vw, by assigning
a label from L(vw) that is different from 1, and so that w does not get in
conflict with any of its at most two other neighbors different from v. Note that
this is possible since |L(vw)| = 4. We can now extend the labelling to uv by
assigning a label from L(uv) so that v does not get in conflict with w. Note
that by how vw was labelled, u and v cannot get in conflict.

– Assume now that d(v) = 3, and let w1, w2 denote the two neighbors of v
different from u. Set G′ = G − {u, v}. We can assume that G′ is nice, as
otherwise either 1) one of the wi’s is a 2-vertex adjacent to a 1-vertex, or 2)
w1w2 exists and both w1 and w2 have degree 2. In the former case, we fall into
the previous case (where d(v) = 2) we have handled. In the latter case, G has
only four edges and the claim can be checked by hand. So G′ is nice, and, by
minimality of G, there is a p-proper L′-labelling ℓ′ of G′, where L′ denotes the
restriction of L to the edges of G′. To extend it to one of G, thus getting a
contradiction, we proceed as follows. For every i ∈ {1, 2}, note that there are
at least two values ai, bi ∈ L(uwi) that can be assigned to vwi without causing
any conflict between wi and its at most two neighbors different from v. We
assign labels to vw1 and vw2 from {a1, b1} and {a2, b2}, respectively, so that
the product of these two labels is different from 1. It then suffices to assign to
uv a label from L(uv) so that v gets in conflict with none of w1 and w2, which
is possible since |L(uv)| = 4. Again, u and v cannot be in conflict due to how
vw1 and vw2 have been labelled.

• Assume now that δ(G) = 2, and consider u a 2-vertex of G with neighbors v1, v2. By
the minimum degree assumption, each of v1 and v2 has one or two neighbors different
from u. We here consider G′ = G− u. We can assume that G′ is nice, as, because
δ(G) = 2, otherwise it would mean that v1v2 is the only other edge, thus that G
is C3, the cycle of length 3, in which case ch∗

Π(G) ≤ 3 holds by Theorem 10.30, a
contradiction. So G′ admits a p-proper L′-labelling ℓ′, where L′ is the restriction of
L to the edges of G′. We show that this p-proper labelling can be extended to uv1
and uv2 by assigning labels from their lists, thereby getting a contradiction.
Let X1, X2 be variables associated with uv1 and uv2, respectively. Let us denote by
y1, y2 the values ρℓ′(v1), ρℓ′(v2), respectively. Let us now consider the polynomial

P (X1, X2) =(X1X2 −X1Y1) · (X1X2 −X2Y2)
·

∏
w∈N(v1)\{u}

(X1y1 − ρℓ′(w)) ·
∏

w∈N(v2)\{u}
(X2y2 − ρℓ′(w)).

page 300 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

If X1 and X2 can be assigned values in L(uv1) and L(uv2), respectively, so that P
does not vanish, then we get a p-proper L-labelling of G. Since X1 and X2 are the
only variables of P , it is easy to see that, in the expansion of P , the monomial M
with largest degree is either x4

1x
4
2 (when d(v1) = d(v2) = 3), x3

1x
4
2 (when d(v1) = 2

and d(v2) = 3), x4
1x

3
2 (when d(v1) = 3 and d(v2) = 2) or x3

1x
3
2 (when d(v1) =

d(v2) = 2). In all cases, since M has nonzero coefficient, then, by the Combinatorial
Nullstellensatz, desired values for X1 and X2 can be chosen from lists of size at
least 5, thus from lists of size at least 4 if we are guaranteed that they do not
include 0 (due to the first two factors of P). From this, we deduce that a p-proper
L-labelling of G can be obtained from ℓ′, a contradiction.

Thus, from now on, G can be assumed to be cubic. Let C = u1 . . . upu1 be a smallest
induced cycle of G. For every i ∈ {1, . . . , p}, we denote by u′

i the neighbor of ui which
does not belong to C. Let G′ = G − E(C). Note that G′ is nice, since the ui’s have
degree 1 and are not adjacent in G′, while all other vertices have degree 3. Thus, by
minimality of G, there is a p-proper L′-labelling ℓ′ of G′, where L′ denotes the restriction
of L to the edges of G′. Our goal is to extend ℓ′ to the edges of C in a p-proper way to
an L-labelling of G, thereby getting a final contradiction.

To ease the exposition of the upcoming arguments, let us introduce some notation.
For every i ∈ {1, . . . , p}, we set Li = L(uiui+1), a′

i = ℓ′(uiu′
i) and A′

i = ρℓ′ (u′
i)

a′
i

(where,
here and further, we set up+1 = u1 and u0 = up). For some set X of values and λ ∈ R∗,
we define λX = {λx : x ∈ X} and λ

X
=
{
λ
x

: x ∈ X
}
. For two sets X and Y , we define

XY = {xy : x ∈ X, y ∈ Y }.
The proof goes by distinguishing several cases depending on some lists by L and on

the structure of G. In each considered case, it is implicitly assumed that none of the
previous cases applies.

1. There are i0 ∈ {1, . . . , p} and α ∈ Li0−1 such that, for all α′ ∈ Li0, we have
αα′ ̸= A′

i0.
W.l.o.g., assume that i0 = 1. The assumption implies that u1 and u′

1 can never be in
conflict in an extension of ℓ′ assigning label α to upu1. Let us thus start by assigning
label α to upu1. We then consider the other edges up−1up, up−2up−1, . . . , u1u2 of C
one by one, following this exact ordering. For every edge uiui+1 considered that
way, we assign a label from L(uiui+1) chosen in the following manner:

• If i ∈ {3, . . . , p− 1}, then we assign to uiui+1 a label so that ui+1 is in conflict
with neither ui+2 nor u′

i+1. Note that this is possible since |L(uiui+1)| = 4. In
the case where i = p− 1, we note that ui+2 = u1 is a vertex whose product is
not fully determined yet; the conflict between up and u1 will actually be taken
care of in a later stage of the extension process.

• If i = 2, then we assign to u2u3 a label so that u3 is in conflict with neither u4
not u′

3, and the resulting partial product of u2 gets different from the partial
product of u1. This is possible, since |L(u2u3)| = 4. In case p = 3 and, thus,
u4 = u1, the possible conflict between u3 and u1 will be handled during the
next step of the process.

• If i = 1, the we assign to u1u2 a label so that u2 gets in conflict with neither
u3 not u′

2, and u1 and up are not in conflict. Again, this is possible because

On various graph coloring problems page 301

10.4. Improved bounds on ch∗
Π for some graph classes

|L(u1u2)| = 4. Recall further that u1 and u2 cannot be in conflict due to the
choice of the label assigned to u2u3. Also, u1 and u′

1 cannot be in conflict by
the initial assumption on α.

Thus, once the whole process has been carried out, we get an L-labelling of G which
is p-proper, a contradiction.

Since Case 1 does not apply, then, throughout what follows, for every i ∈ {1, . . . , p},
we have

Li−1 = A′
i

Li
and Li = A′

i

Li−1
. (10.1)

2. There are i0 ∈ {1, . . . , p} and α ∈ Li0 such that, for all α′ ∈ Li0+2, we have
αa′

i0+1 ̸= α′a′
i0+2.

W.l.o.g., assume that i0 = 1. The assumption implies that u2 and u3 can never be
in conflict in an extension of ℓ′ assigning label α to u1u2. Let us thus assign label
α to u1u2. We then consider the other edges of C, and label them with labels from
their respective lists so that no conflict arises. We consider a special value of p,
before considering the general case.

• Assume first that p = 3, i.e. C is a triangle. We start by assigning a label from
L(u2u3) to u2u3 so that u2 does not get in conflict with u′

2, and the partial
product of u3 gets different from the partial product of u1. Note that this is
possible since |L(u2u3)| = 4. We then assign a label from L(u1u3) to u1u3 so
that u1 gets in conflict with neither u′

1 nor u2, and u3 does not get in conflict
with u′

3. Again, such a label exists since |L(u1u3)| = 4. Recall that u1 and u3
cannot be in conflict due to how u2u3 was labelled. Also, u2 and u3 cannot be
in conflict by the assumption on α.

• Otherwise, i.e. p ≥ 4, we start by assigning a label from L(u2u3) to u2u3 so
that u2 and u′

2 do not get in conflict. We then consider the remaining edges
upu1, up−1up, . . . , u3u4 of C one by one, following this exact ordering. For every
edge uiui+1 considered that way, we assign a label from L(uiui+1) chosen in
the following way:

– If i ∈ {5, . . . , p}, then we assign to uiui+1 a label chosen so that ui+1 gets in
conflict with neither ui+2 nor u′

i+1. This is possible since |L(uiui+1)| = 4.
– If i = 4, then we assign to u4u5 a label chosen so that u5 gets in conflict

with neither u6 nor u′
5, and the partial product of u4 does not get equal to

the partial product of u3. This is possible since |L(u4u5)| = 4.
– If i = 3, then we assign to u3u4 a label so that u4 gets in conflict with

neither u5 nor u′
4, and u3 does not get in conflict with u′

3. Again, this is
possible since |L(u3u4)| = 4. Recall that u4 and u3 cannot be in conflict
due to how u4u5 has been labelled. Also, u2 and u3 cannot be in conflict
by the assumption on α.

Thus, in all cases, we get a p-proper L-labelling of G, a contradiction.

Since Case 2 does not apply in what follows, then, for every i ∈ {1, . . . , p}, we have

Li = a′
i+2
a′
i+1

Li+2. (10.2)

page 302 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

3. G is K4, the complete graph on four vertices.
Here, C is a cycle u1u2u3u1 of length 3, and we have u′ = u′

1 = u′
2 = u′

3. Also,
ℓ′ assigns labels to the three edges incident with u′, since G′ is a star. Note that,
as long as we label the edges of C last and handle all conflicts at that point, then,
prior to labelling C, we might actually change the labels assigned to u1u

′, u2u
′, u3u

′

by ℓ′ for other labels from their respective lists.
Note now that, for any choice of label a′

3 from L(u3u
′) assigned to u3u

′, Iden-
tity (10.2) must apply, i.e. we must have L1 = a′

3
a′

2
L3, as otherwise previous Case 2

would apply the very same way. This implies that |L3| ≥ 5, a contradiction, by the
following arguments. Since |L(u3u

′)| = 4, there are at least two values x, y ∈ L(u3u
′)

with distinct absolute values, say |x| < |y|. Start by assigning label x to L(u3u
′);

because Identity (10.2) applies, we deduce that for every α ∈ L1 we have xα ∈ L3.
The other way around, we have L3 = L′

3 = {xα : α ∈ L1} and |L′
3| = |L3| = 4. Now

change the label of u3u
′ to y. Because |x| < |y|, we deduce that, for an α ∈ L1 with

largest absolute value, yα ̸∈ L′
3. This implies that L3 must contain a fifth value not

in L′
3 for Identity (10.2) to apply with y.

4. p = 3 and C shares an edge with another triangle.
Assume u1u2 belongs to a triangle u′u1u2u

′ different from C, where u′ = u′
1 = u′

2
is the common neighbor of u1 and u2 different from u3. Because we are not in
Case 3, we have u′

3 ̸= u′, and u′ has a neighbor w ̸∈ V (C). Note that, by ℓ′, there
are actually three possible values in L(u′

2u
′) that can be assigned to u′

2u
′ without

causing u′ to be in conflict with w, thus two such values x, y, with, say, |x| < |y|.
Start by setting a′

2 = y. By an application of Identity (10.2) (which applies as
otherwise Case 2 would), we deduce that L1 = a′

3
a′

2
L3, which reveals the exact four

values in L3. Now, just as in previous Case 3, we note that by changing the value of
a′

2 to x and applying Identity (10.2) again, we deduce that L3 must contain a fifth
value not among the previous four revealed ones. This is a contradiction.

At this point, note that if we modify the label a′
i assigned to any edge uiu′

i by ℓ′, then
this has no impact on the value A′

i+1 (and, symmetrically, on A′
i−1). Indeed, if modifying

a′
i also modified A′

i+1, then this would imply that uiu′
i is incident with u′

i+1, thus that
u′
i = u′

i+1. But, in this case, we would deduce that uiui+1u
′
i is a triangle sharing an edge

with C, thereby getting a contradiction to the fact that none of Cases 3 and 4 applies.
By manipulating Identities (10.1) and (10.2), note that we can establish the relation-

ship

Li = a′
i+2A

′
i+2

a′
i+1A

′
i+1

Li = a′
i+1A

′
i+1

a′
i+2A

′
i+2

Li (10.3)

between any list Li and some of the a′
i’s and A′

i’s. For every i ∈ {1, . . . , p}, we define
λi = A′

i+1
a′

i+2A
′
i+2

; then, Li = a′
i+1λiLi by the above.

5. There are i ∈ {1, . . . , p} and a p-proper L-labelling ℓ of G′ matching ℓ′ on all edges
but possibly ui+1u

′
i+1, and such that

∣∣∣ℓ(ui+1u
′
i+1)λi

∣∣∣ ̸= 1.
The definition of ℓ and the fact previous Cases 3 and 4 do not apply, imply that
A′
i+1, A′

i+2 and a′
i+2 are the same by both ℓ′ and ℓ. From Identity 10.3, we deduce

On various graph coloring problems page 303

10.4. Improved bounds on ch∗
Π for some graph classes

that Li = ℓ(ui+1u
′
i+1)λiLi, where λi is the same by both ℓ′ and ℓ. Now consider

x0 ∈ Li; from what we have just deduced, we now get that{
(ℓ(ui+1u

′
i+1)λi)jx0

}
j∈N
⊆ Li.

Because
∣∣∣ℓ(ui+1u

′
i+1)λi

∣∣∣ ̸= 1, we then deduce that the set
{
(ℓ(ui+1u

′
i+1)λi)jx0

}
j∈N

has infinite cardinality and is included in Li, which has size 4; a contradiction.

Note that, by ℓ′, there are actually at least two values in L(uiu′
i) that could be assigned

to uiu′
i without breaking p-properness. This is because |L(uiu′

i)| = 4, and, when labelling
uiu

′
i, we only have to make sure that u′

i gets product different from that of its at most two
neighbors different from ui in G′ (in particular, note that we must have A′

i ̸= 1 by ℓ′ so
that ρℓ′(ui) ̸= ρℓ′(u′

i), and thus we do not have to care about ui and u′
i getting in conflict

when relabelling uiu
′
i). Because Case 5 does not apply, this actually implies that there

are exactly two such values from every L(uiu′
i), and that these two values are precisely ai

and −ai.

6. There exists i ∈ {1, . . . , p} such that Li ̸= {α,−α, β,−β} for some distinct α, β ∈
R∗.
Let us consider the identity Li = a′

i+1λiLi again. Since Case 5 does not apply, we
have

∣∣∣ℓ′(ui+1u
′
i+1)λi

∣∣∣ = 1 for any possible value as ℓ′(ui+1u
′
i+1) from L(ui+1u

′
i+1).

Since u′
i+1 has, in G′, two neighbors different from ui+1, there are, in L(ui+1u

′
i+1),

two possible values for ui+1u
′
i+1 that make u′

i+1 being not in conflict with these
two neighbors, and these at least two possibilities must include a′

i+1 and −a′
i+1.

Now, by considering the p-proper L′-labelling of G′ obtained from ℓ′ by changing
the label of ui+1u

′
i+1 to −ai+1, the same reasoning process leads us to deduce that

Li = −a′
i+1λiLi. This implies that Li = −Li, a contradiction.

We are now ready to conclude the proof, by considering a few cases on the length
of C. The crucial points to keep in mind from now on, are that L verifies, for every
i ∈ {1, . . . , p}, that 1) a′

i,−a′
i ∈ L(uiu′

i) and, in ℓ′, changing the label of uiu′
i from a′

i to
−a′

i cannot raise a conflict in G′, and that 2) there are nonzero real numbers αi, βi such
that Li = {αi,−αi, βi,−βi}.

7. p is even.
For every i ∈ {1, . . . , p}, we associate a variable Xi with the edge uiui+1. We
consider the polynomial

P (X1, . . . , Xp) =
p∏
i=1

(Xi−1Xi − A′
i) ,

which translates to considering

P ′(Y1, . . . , Yp) =
p∏
i=1

(Yi−1 + Yi − log(A′
i))

where Yi = log |Xi| for every i ∈ {1, . . . , p}. Note that the monomial Y1 . . . Yp
has maximum degree and nonzero coefficient in the expansion of P ′. Thus, by the

page 304 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

Combinatorial Nullstellensatz, we can assign values to the Yi’s so that P ′ does not
vanish, assuming we have at least two possible values to choose from for each of
the Yi’s. This implies that we can assign values to the Xi’s so that P does not
vanish, assuming we have at least two possible values with distinct absolute values
to choose from, for each of the Xi’s. Particularly, since |L(uiui+1)| = 4 for every
edge uiui+1, this implies that ℓ′ can be extended to the edges of C, resulting in an
L-labelling ℓ of G where ρℓ(ui) and ρℓ(u′

i) have distinct absolute values for every
i ∈ {1, . . . , p}. Now, the only possible remaining conflicts are between the ui’s. Due
to all the assumptions made this far, recall, for every i ∈ {1, . . . , p}, that ℓ assigns
label a′

i to every edge uiu′
i, that −a′

i ∈ L(uiu′
i), and that switching ℓ(uiui) from a′

i

to −a′
i cannot raise a conflict between u′

i and its neighbors. Thus, to get a p-proper
L-labelling of G, we can just consider each of the uiu′

i’s in turn, and for each uiu
′
i

of them, switch, if necessary, its label to −a′
i so that ui gets positive product if i is,

say, even, or negative product otherwise.
8. p = 3.

Because Cases 3 and 4 do not apply, recall that u′
1, u

′
2, u

′
3 are pairwise different. We

extend ℓ′ as follows. We start by assigning any label from L(u1u2) to u1u2. Next,
we assign to u3u1 a label from L(u3u1) so that no conflict between u1 and u′

1 arises,
and the resulting partial products of u2 and u3 have different absolute values. Note
that this is possible, since L3 is of the form {α,−α, β,−β}. We finally assign to
u2u3 a label from L(u2u3) so that there is no conflict between u2 and u′

2, u3 and
u′

3, and u1 and u3. Recall that u2 and u3 cannot be in conflict due to how u3u1
was labelled. Thus, the only potential conflict that can remain is between u2 and
u1, and, if it occurs, then we can get rid of it by simply changing the label of u2u

′
2

from a′
2 to −a′

2. Recall that this cannot make u′
2 get in conflict with its neighbors

different from u2, and that u2 and u′
2 also cannot get in conflict unless they already

were before switching the label of u2u
′
2.

9. p is odd at least 5.
We first use the Combinatorial Nullstellensatz similarly as in Case 7, to label the
edges of C in such a way that, for certain pairs of vertices, the resulting prod-
ucts have distinct absolute values. More precisely, we want to achieve this for the
pairs {u1, u

′
1}, {u1, u2}, {u2, u3}, {u3, u

′
3}, {u4, u

′
4}, {u5, u

′
5}, . . . , {up−2, u

′
p−2} and

{up, u′
p}. We denote by S the set of those pairs. In order to show that such an

extension exists, for every i ∈ {1, . . . , p} we associate a variable Xi with the edge
uiui+1, and consider the polynomial

P (X1, . . . , Xp) = (XpX1 − A′
1) · (Xpa

′
1 −X2a

′
2) · (X1a

′
2 −X3a

′
3)

·

p−2∏
i=3

(Xi−1Xi − A′
i)
 · (Xp−1Xp − A′

p

)
,

which, if Yi = log |Xi| for every i ∈ {1, . . . , p}, is the same as considering

P ′(Y1, . . . , Yp) = (Yp + Y1 − log(A′
1)) · (Yp + log(a′

1)− Y2 − log(a′
2))

· (Y1 + log(a′
2)− Y3 − log(a′

3))

·

p−2∏
i=3

(Yi−1 + Yi − log(A′
i))
 · (Yp−1 + Yp − log(A′

p)
)
.

On various graph coloring problems page 305

10.5. Perspectives

It can be checked that, in the expansion of P ′, the monomial Y1 . . . Yp has maximum
degree and nonzero coefficient −2. Thus, by the Combinatorial Nullstellensatz we
deduce that there is a way to label the edges of C with labels from their respectives
lists, so that the desired conflicts (between the adjacent vertices in the pairs of S)
are avoided. In particular, this is possible because all these lists are of the form
{α,−α, β,−β}, and, in particular, contain two values with distinct absolute values.
The resulting labelling might be not p-proper, and, to turn it into a p-proper one,
we will switch some edges incident with the vertices in C, and, by that, we mean
changing the current label l of an edge to −l. More particularly, we will switch
edges of the form uiui+1 and uiu

′
i; due to some of the assumptions made this far,

recall that for every such edge e with current label l, we do have −l ∈ L(e).
We start by switching, if necessary, u2u

′
2 and up−1u

′
p−1 so that the products of u′

2 and
u′
p−1 get positive and negative, respectively. Next, we switch u1u2, if necessary, so

that the product of u2 gets negative. Now, we consider the edges u3u4, u4u5, . . . , upu1
one by one following this ordering, and, for every such considered edge uiui+1, we
switch it, if necessary, so that the product of ui gets negative if i is odd, and
positive otherwise. Lastly, we switch u1u

′
1, if necessary, so that the product of u1

gets negative.
We claim that the eventual labelling of G is p-proper, our final contradiction. First
recall, as mentioned earlier, that the switching operation guarantees that the re-
sulting labelling is an L-labelling. Its p-properness follows from the following argu-
ments. First, for all the pairs of adjacent vertices in S, the products are different
due to distinct absolute values (preserved under the switching operation). Regard-
ing the two adjacent vertices in the pair {up−1, u

′
p−1}, the products have different

signs and are thus different. Now, for every two adjacent vertices in the pairs
{u3, u4}, {u4, u5}, . . . , {up, u1}, the products are different due to their signs being
different.

10.5 Perspectives
In this work, we presented two open problems on p-proper labellings.

We proposed a conjecture (Conjecture 10.16) regarding almost p-proper 2-labellings.
We were able to prove this conjecture on particular classes of graphs. Regarding the
general case, it seems that the problem is quite complicated: the fact that only two labels
are available leave very few breathing room when constructing a labelling. Moreover, one
of the two labels is the label 1 whose particular behavior regarding products adds even
more in complexity to the problem. It may be possible that changing the two possible
labels makes the conjecture easier to prove. However, there is no certainty that the
conjecture holds for arbitrary labels. We raise the following question.

Question 10.37. Given any two labels a and b, does every graph G can be {a, b}-labelled
so that G[Sx] is a forest for every integer x?

We showed that the answer to the previous question is “no” if a = 1 and b = −1 in
Observation 10.23. The answer is also “no” if one of the two labels is 0. As these pairs of
labels are the only ones yielding a finite set of possible products, it may be that they are
the only cases where such a labelling is not achievable.

page 306 Dimitri Lajou

Chapter 10. The Multiplicative 1-2-3 Conjecture

We also considered the problem of the List Multiplicative 1-2-3 Conjecture. In partic-
ular, we have exhibited a few bounds on the parameter ch∗

Π, both for graphs in general
and for more specific classes of graphs. While some of these bounds are tight, some others
remain a bit distant from what we believe should be optimal.

As a main perspective for further work on the topic, it would be nice to obtain a
constant upper bound on ch∗

Π for graphs in general. Recall that, due to Theorem 10.25,
this could be obtained through establishing a constant upper bound on chΣ. This apart,
it would be interesting to verify the List Multiplicative 1-2-3 Conjecture for more classes
of graphs. For instance, it would be interesting to improve any of the upper bounds in
Corollary 10.26, some of which we have already improved in Subsection 10.4.2. Notably,
it is worth mentioning that the arguments used to prove Theorems 10.34 and 10.36 are
tight, and, as a result, it seems that our proofs would be hard to improve to lower the
bound of 4. From this, we would be interested in having a proof of the List Multiplicative
1-2-3 Conjecture for planar graphs with girth at least 16 or for subcubic graphs.

On various graph coloring problems page 307

Index

(A,B)-path, 22
(A,B)-separator, 105
(A,B)-walk, 22
(A, πA)-layer, 144
(m,n)-mixed, 20
(s0, sn)-path, 22
(s0, sn)-walk, 22
1-colors, 180
1-edge, 180
1-monochromatic, 268
2-colors, 180
2-edge, 180
2-edge-neighborhood of v, 180
2-monochromatic, 268
3-monochromatic, 268
Gi-layer, 139
H-coloring, 34
L-choosable, 37
L-coloring, 119
L-edge-choosable, 37
L-edge-coloring, 37
L-labelling, 38
M -sequence of G, 225
M -smaller, 225
Ma-reducible, 225
P -crossing, 197
P -reducible, 225
P -sequence of G, 225
P -smaller, 225
S-packing edge-coloring, 177
γ-conflict, 244
{2, 3}-degree, 268
bc-cycle, 197
d-degenerate, 26
i-degree, 268
k-choosable graph, 37
k-coloring of signed graphs, 59

k-connected component, 23
k-edge-colored, 20
k-edge-coloring, 36
k-labelling, 174
k-list assignment, 37
k-list edge-assignment, 37
k-list-assignment, 119
k-neighbor, 19
k-th power, 24
k-vertex, 19
k+-neighbor, 19
k+-vertex, 19
k−-neighbor, 19
k−-vertex, 19
s-decomposition, 144
s-prime, 144
s-redundant, 150
si-packing, 177
t-distance k-edge-coloring, 174
t-distance chromatic index, 174
uv-partial edge-coloring, 243

almost-safe, 243
safe, 243

(partial) proper edge-coloring, 224
(partial) safe edge-coloring, 224
2-SAT, 41
3-Edge-Coloring, 209
3-SAT, 42
k-Edge-Coloring, 45, 218
3-Coloring, 39
Annotated Odd Cycle

Transversal, 77
Array Search, 39
Coloring-Signed-Graphs, 123
Edge Bipartization, 45
Odd Cycle Transversal, 45
Planar Vertex 3-Coloring, 46, 213

309

Index

SAT-CNF, 41
Variable Deletion Almost 2-Sat,

45
Vertex Cover, 43
(H, π)-Coloring, 64
Annotated Bipartite Balanced

Coloring, 97
Annotated Signed-H2−

r,b -Coloring,
101

Clause Deletion Almost 2-Sat, 45
Connected Annotated

Signed-H2−
r,b -Coloring, 102

Connected Half Annotated
Signed-H2−

r,b -Coloring (v2),
102

Connected Half Annotated
Signed-H2−

r,b -Coloring, 102
Disjoint Vertex Deletion

Signed-H2−
r,b -Coloring, 101

Disjoint Vertex Deletion
Signed-H2b

−,−-Coloring, 97
Edge Deletion H-Coloring, 68
Edge Deletion

Signed-(H, π)-Coloring, 68
Group Deletion Almost 2-Sat, 85
Injective k-Edge-Coloring, 207
Limited Switchings

(H, π)-Coloring, 68
Multicolored Independent Set,

44, 90
Signed-(H, π)-Coloring, 64
Variable Deletion Almost 2-Sat,

85
Vertex Deletion H-Coloring, 68
Vertex Deletion

Signed-(H, π)-Coloring, 68,
95

Vertex Deletion
Signed-H2b

−,−-Coloring, 97
Vertex Multicut, 98
NP, 39
NP-complete, 41
NP-hard, 41
P, 39
XP, 44

absolute signed clique number, 62
acyclic, 26

adjacence (of edges), 18
adjacence (of vertices), 18
adjacency list, 40
adjacency matrix, 39
adjacent layers, 139
adjacent vertex-distinguishing

k-coloring, 221
algorithm, 38

exponential, 38
linear, 38
polynomial, 38

all-negative, 54
all-positive, 54
alternating, 61
antibalanced, 55
arboricity, 173
arc, 19
AVD k-coloring, 221
AVD-chromatic index, 221
average degree, 26

balanced, 55
balanced walk, 55
biased graphs, 65
bichromatic, 268
biconnected graph, 23
bipartite, 24
Boolean formula, 41

satisfiability, 41
border, 159
border neighbors, 159
box choice, 230

Cartesian product, 138, 140
child, 29
choice number, 119
choosability, 37
chromatic index, 36
chromatic number, 31, 59
chromatic number of signed graphs, 59
clause, 41
clique, 21
clique number, 21
Color Game, 229

correct assignment, 230
correct set, 230

compatible with uv, 224
complement, 21

page 310 Dimitri Lajou

Index

complete bipartite graph, 24
complete graph, 21
configuration, 258

degree, 259
density, 259
weight, 259

conflict, 224
conflict index, 226
conjunctive normal form (CNF), 41
connected

k-connected graph, 23
connected graph, 23

connected component, 23
connectivity, 23
Constraint Satisfaction Problems, 67
coordinate system, 139
copy (of an edge) in a product, 139
core, 34
core of a graph, 34
creates a conflict for uv, 224
crossing, 27
cubic graph, 26
cut-vertex, 23
cycle, 22
cyclomatic number, 121

decomposition, 138
degree, 18
degree of an edge, 25
dense, 27
directed graphs, 19
disconnected, 23
distance, 24
distance of edges, 25
distinguishing labellings, 174
double switching graph, 61
downward edge, 269
drawing of a graph, 27
duality property, 74

edge cut, 23
edge-choosability, 37
edge-neighborhood of v, 180
empty graph, 18
endpoints of an edge, 18
equivalence class, 47
equivalence relation, 47
equivalent, 56

even cycle, 22
Exponential Time Hypothesis (ETH), 43

face, 29
adjacency, 29
degree, 29
incidence, 29
length, 29

factors, 138, 144
field, 49
finer decomposition, 139
finite duality property, 74
Fixed Parameter Tractable (FPT), 43
flat border configuration, 158
forest, 26
forget node, 31
frustration index, 58

gain graph, 64
ghost vertices, 254
girth, 22
good (1, 28)-packing edge-coloring, 182
greatest common divisor, 139
grid, 30
group, 48

abelian group, 48
commutative group, 48

hereditary, 27
homomophism of (n,m)-mixed graphs,

35
homomorphism, 33, 58
homomorphism of directed/oriented

graphs, 35
homomorphism of multi-graphs, 35
horizontal edge, 157

identifiable, 59
Identifying, 33
important (A,B)-separator, 105
incidence relation, 18
incident (color), 224
incident with, 175
indegree, 20
independence number, 21
independent set, 21
induced signed subgraph, 63
induced subgraph, 20
injective k-edge-coloring, 207

On various graph coloring problems page 311

Index

injective chromatic index, 207
internal vertex, 22
introduce node, 31
irregular, 265
irregularity strength, 265
isolated vertex, 18

join node, 31

label, 37, 174
labelling, 37
leaf, 26
leaf node, 31
lexicographic order, 47
line graph, 25
literal, 41
loop, 18
loopless graphs, 18

m-proper labelling, 266
maximum average degree, 26
maximum degree, 26
minimum degree, 26
mixed graph, 20
modification problems, 67
monoid, 48

abelian monoid, 48
commutative monoid, 48

monomial, 49
multi-edge, 18
multi-graph, 18
multiple edges, 18
multiplicity, 18
multiset, 265

negative crossing, 163
negative edges, 54
neighborhood of a vertex, 18
nice graph, 265
nice graphs, 175
nice tree decomposition, 30
node, 29
null graph, 18
number of horizontal turns, 157
number of vertical turns, 157

observability, 221
odd cycle, 22
order, 46

order of a graph, 18
oriented k-coloring, 35
oriented chromatic number, 35
oriented graph, 20
outdegree, 20
outer face, 29

p-proper, 266
parameter, 43
parameterized reduction, 44
parent, 29
path, 22
planar embedding, 27
planar graph, 27
plane graph, 27
polynomial, 49
polynomial duality property, 74
polynomial reduction, 41
positive crossing, 163
positive edges, 54
positive instance, 39
prime, 138, 144
prime decomposition, 138
problem, 39

decision problem, 39
Proof by induction, 46
Proof by minimal counter-example, 46
proper, 20, 31, 36
proper L-coloring, 37
proper L-edge-coloring, 37
pruned graph, 125
pushable oriented graph, 64
Pushing, 64

quotient graph, 156
quotient group, 48
quotient set, 47
quotient walk, 156

recoloring index, 227
reducible, 226
region, 158

boundary, 158
color, 160
type, 158

regular, 26
relative signed clique number, 62
representation, 157
ring, 48

page 312 Dimitri Lajou

Index

abelian ring, 48
cancellation property, 48
commutative ring, 48

root, 29
rooted tree, 29

s-proper labelling, 265
semiring, 48

abelian semiring, 48
cancellation property, 48
commutative semiring, 48

sign, 54
sign-preserving k-coloring of signed

graphs, 60
sign-preserving L-coloring, 119
sign-preserving choice number, 119
sign-preserving chromatic number, 60
sign-preserving homomorphism, 60
signature, 54
signed A-layer, 144
signed clique, 62
signed graph, 54

switch-preserving core, 64
signed subgraph, 63
simple graph, 18
size of a graph, 18
sp-clique, 62
space complexity

space on an input, 38
space on any input of given size, 38

spanning forest, 26
spanning tree, 26
sparse, 27
split of a vertex, 225
square graph, 24
strong k-edge-choosable, 181
strong L-edge-choosable, 181
strong L-edge-coloring, 181
strong chromatic index, 174
strong edge-choosability, 181
strong edge-coloring, 174
strong product, 168
subcubic graph, 26
subdivision, 28

subforest, 26
subgraph, 20
subtree, 26
subtree of T rooted at u, 29
sum of incident labels for a vertex, 265
swapping, 269
switch-preserving core, 64
switching a set of vertices, 55
switching a vertex, 55
switching core, 64
switching core of a signed graph, 64

tensor product, 168
time complexity

time on an input, 38
time on any input of given size, 38

total list assignment, 288
tree, 26
tree decomposition, 30

bag, 30
width, 30

treewidth, 30
triangle, 22
truth values, 41

unbalanced walk, 55
underlying graph, 54
undirected graph, 18
upward edge, 269

valid partition, 270
variable assignment, 41
vertex k-coloring, 31
vertex L-coloring, 37
vertical edge, 157

walk, 22
closed walk, 22
length, 22
order, 22

weak, 228
weak (vertices), 256

semi-weak, 256
well-founded order, 46

On various graph coloring problems page 313

Bibliography

Bibliography

[1] L. Addario-Berry, R. E. Aldred, K. Dalal, and B. A. Reed. Vertex colouring edge
partitions. Journal of Combinatorial Theory, Series B, 94(2):237–244, 2005.

[2] S. Akbari, H. Bidkhori, and N. Nosrati. r-strong edge colorings of graphs. Discrete
Mathematics, 306:3005–3010, 2006.

[3] M. O. Albertson and R. Haas. Parsimonious edge coloring. Discrete Mathematics,
148:1–7, 1996.

[4] N. Alon. Combinatorial Nullstellensatz. Combinatorics, Probability and Computing,
8(1–2):7–29, 1999.

[5] L. D. Andersen. The strong chromatic index of a cubic graph is at most 10. Discrete
Mathematics, 108:231–252, 1992.

[6] M. Anholcer. Product irregularity strength of graphs. Discrete Mathematics,
309(22):6434–6439, 2009.

[7] T. Antal, P. L. Krapivsky, and S. Redner. Social balance on networks: The dynamics
of friendship and enmity. Physica D: Nonlinear Phenomena, 224(1):130–136, 2006.
Dynamics on Complex Networks and Applications.

[8] K. Appel and W. Haken. Every planar map is four colorable. part I: Discharging.
Illinois Journal of Mathematics, 21(3):429–490, 09 1977.

[9] K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. part II:
Reducibility. Illinois Journal of Mathematics, 21(3):491–567, 09 1977.

[10] F. Aurenhammer, J. Hagauer, and W. Imrich. Cartesian graph factorization at
logarithmic cost per edge. Computational complexity, 2(4):331–349, Dec 1992.

[11] M. Axenovich, P. Dörr, J. Rollin, and T. Ueckerdt. Induced and weak induced
arboricities. Discrete Mathematics, 342(2):511–519, 2019.

[12] P. Balister, O. Riordan, and R. Schelp. Vertex-distinguishing edge-colorings of
graphs. Journal of Graph Theory, 42:95–109, 2003.

[13] P. N. Balister, E. Győri, J. Lehel, and R. H. Schelp. Adjacent vertex distinguishing
edge-colorings. SIAM Journal on Discrete Mathematics, 21:237–250, 2007.

[14] T. Bartnicki, J. Grytczuk, and S. Niwczyk. Weight choosability of graphs. Journal
of Graph Theory, 60(3):242–256, 2009.

On various graph coloring problems page 315

Bibliography

[15] O. Baudon, J. Bensmail, T. Davot, H. Hocquard, J. Przybylo, M. Senhaji,
E. Sopena, and M. Woźniak. A general decomposition theory for the 1-2-3 Con-
jecture and locally irregular decompositions. Discrete Mathematics and Theoretical
Computer Science, 21(1), Apr. 2019.

[16] Z. Bawar, R. Brewster, and D. Marcotte. Homomorphism duality in edge-coloured
graphs. Annales des Sciences Mathématiques du Québec, 29(1):21–34, 2005.

[17] J. Bensmail, H. Hocquard, D. Lajou, and E. Sopena. Further evidence towards the
multiplicative 1-2-3 conjecture, 2020. https://arxiv.org/abs/2004.09090.

[18] J. Bensmail, H. Hocquard, D. Lajou, and E. Sopena. On a list variant of the
multiplicative 1-2-3 conjecture, 2021. https://arxiv.org/abs/2102.08052.

[19] J. Bensmail, H. Hocquard, D. Lajou, and E. Sopena. A proof of the multiplicative
1-2-3 conjecture, 2021. https://arxiv.org/abs/2108.10554.

[20] M. Bonamy. Global discharging methods for coloring problems in graphs. PhD thesis,
Université de Montpellier, 2015.

[21] M. Bonamy, N. Bousquet, and H. Hocquard. Adjacent vertex-distinguishing edge
coloring of graphs. In The Seventh European Conference on Combinatorics, Graph
Theory and Applications, pages 313–318. Springer, 2013.

[22] M. Bonamy and J. Przybyło. On the neighbor sum distinguishing index of planar
graphs. Journal of Graph Theory, 85:669–690, 2017.

[23] O. V. Borodin, A. N. Glebov, A. Raspaud, and M. R. Salavatipour. Planar graphs
without cycles of length from 4 to 7 are 3-colorable. Journal of Combinatorial
Theory, Series B, 93(2):303–311, 2005.

[24] O. V. Borodin, A. V. Kostochka, and D. R. Woodall. List edge and list total
colorings of multigraphs. Journal of Combinatorial Theory, Series B, 71(2):184–
204, 1997.

[25] R. Brewster. The complexity of colouring symmetric relational systems. Discrete
Applied Mathematics, 49(1):95–105, 1994. Special Volume Viewpoints on Optimiza-
tion.

[26] R. C. Brewster. Vertex colourings of edge-coloured graphs. PhD thesis, Simon Fraser
University, 1993.

[27] R. C. Brewster, R. Dedić, F. Huard, and J. Queen. The recognition of bound quivers
using edge-coloured homomorphisms. Discrete Mathematics, 297(1):13–25, 2005.

[28] R. C. Brewster, F. Foucaud, P. Hell, and R. Naserasr. The complexity of signed
graph and edge-coloured graph homomorphisms. Discrete Mathematics, 340(2):223–
235, 2017.

[29] R. C. Brewster and M. Siggers. A complexity dichotomy for signed H-colouring.
Discrete Mathematics, 341(10):2768–2773, 2018.

page 316 Dimitri Lajou

https://arxiv.org/abs/2004.09090
https://arxiv.org/abs/2102.08052
https://arxiv.org/abs/2108.10554

Bibliography

[30] R. L. Brooks. On colouring the nodes of a network. Mathematical Proceedings of
the Cambridge Philosophical Society, 37(2):194–197, 1941.

[31] M. Brunetti, M. Cavaleri, and A. Donno. Erratum to the article ’a lexicographic
product for signed graphs’. The Australasian Journal of Combinatorics, 75:256–258,
2019.

[32] Y. Bu and C. Qi. Injective edge coloring of sparse graphs. Discrete Mathematics,
Algorithms and Applications, 10(02):1850022, 2018.

[33] A. A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), pages 319–330,
2017.

[34] A. A. Bulatov and D. Marx. Constraint satisfaction parameterized by solution size.
SIAM Journal on Computing, 43(2):573–616, 2014.

[35] J. Bulín. On the complexity of H-coloring for special oriented trees. European
Journal of Combinatorics, 69(C):54–75, Mar. 2018.

[36] A. Burris and R. Schelp. Vertex-distinguishing proper edge-colorings. Journal of
Graph Theory, 26:73–83, 1997.

[37] L. Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58(4):171–176, 1996.

[38] L. Cai. Parameterized complexity of vertex colouring. Discrete Applied Mathemat-
ics, 127(3):415–429, 2003.

[39] D. M. Cardoso, J. Orestes Cerdeira, J. P. Cruz, and C. Dominic. Injective edge
coloring of graphs. Filomat, 33:6411–6423, 2019.

[40] D. Cartwright and F. Harary. Structural balance: a generalization of Heider’s theory.
Psychological Review, 63(4):277–293, 1956.

[41] J. Cerný, M. Horn̆ák, and R. Soták. Observability of a graph. Mathematica Slovaca,
46(1):21–31, 1996.

[42] G. Chartrand, M. Jacobon, J. Lehel, O. Oellermann, S. Ruiz, and F. Saba. Irregular
networks. Congressus Numerantium, 64:197–210, 1988.

[43] J. Chen, X. Huang, I. A. Kanj, and G. Xia. Strong computational lower bounds via
parameterized complexity. Journal of Computer and System Sciences, 72(8):1346–
1367, 2006.

[44] J. Chen, I. A. Kanj, and G. Xia. Improved parameterized upper bounds for vertex
cover. In Mathematical Foundations of Computer Science 2006, pages 238–249,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[45] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. A fixed-parameter algorithm
for the directed feedback vertex set problem. In Proceedings of the Fortieth Annual
ACM Symposium on Theory of Computing, STOC ’08, page 177–186, New York,
NY, USA, 2008. Association for Computing Machinery.

On various graph coloring problems page 317

Bibliography

[46] X. Chen and Z. Li. Adjacent-vertex-distinguishing proper edge colorings of planar
bipartite graphs with δ = 9, 10 or 11. Information Processing Letters, 115(2):263–
268, 2015.

[47] X. Chen and S. Liu. Adjacent vertex distinguishing proper edge colorings of bicyclic
graphs. International Journal of Applied Mathematics, 48(4):1–11, 2018.

[48] R. Chitnis, L. Egri, and D. Marx. List H-coloring a graph by removing few vertices.
Algorithmica, 78:110–146, 2017.

[49] R. Cole and L. Kowalik. New linear-time algorithms for edge-coloring planar graphs.
Algorithmica, 50(3):351–368, 2008.

[50] S. A. Cook. The complexity of theorem proving procedures. In Proceedings of the
Third Annual ACM Symposium, pages 151–158, New York, 1971. ACM.

[51] B. Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite
graphs. Information and Computation, 85(1):12–75, 1990.

[52] C. Crespelle, P. G. Drange, F. V. Fomin, and P. A. Golovach. A survey of pa-
rameterized algorithms and the complexity of edge modification, 2020. https:
//arxiv.org/abs/2001.06867.

[53] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.

[54] S. Das, S. Nandi, S. Paul, and S. Sen. Chromatic number of signed graphs with
bounded maximum degree, 2016. https://arxiv.org/abs/1603.09557.

[55] L. Ding, G.-H. Duh, G. Wang, T.-L. Wong, J. Wu, X. Yu, and X. Zhu. Graphs are
(1, ∆+ 1)-choosable. Discrete Mathematics, 342(1):279–284, 2019.

[56] M. H. Dolama and Éric Sopena. On the oriented chromatic number of graphs with
given excess. Discrete Mathematics, 306(13):1342 – 1350, 2006.

[57] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness II:
On completeness for W[1]. Theoretical Computer Science, 141(1):109–131, 1995.

[58] K. Drira. Coloration d’arêtes ℓ-distance et clustering : études et algorithmes auto-
stabilisants. PhD thesis, Université Claude Bernard Lyon 1, 2010.

[59] F. Dross, F. Foucaud, V. Mitsou, P. Ochem, and T. Pierron. Complexity of planar
signed graph homomorphisms to cycles. Discrete Applied Mathematics, 284:166–178,
2020.

[60] C. Duffy, F. Jacques, M. Montassier, and A. Pinlou. The chromatic number of
2-edge-colored and signed graphs of bounded maximum degree, 2020. https://
arxiv.org/abs/2009.05439.

[61] J. Dybizbański, A. Nenca, and A. Szepietowski. Signed coloring of 2-dimensional
grids. Information Processing Letters, 156:105918, 2020.

page 318 Dimitri Lajou

https://arxiv.org/abs/2001.06867
https://arxiv.org/abs/2001.06867
https://arxiv.org/abs/1603.09557
https://arxiv.org/abs/2009.05439
https://arxiv.org/abs/2009.05439

Bibliography

[62] K. Edwards, M. Horn̆ák, and M. Woźniak. On the neighbor-distinguishing index of
a graph. Graphs and Combinatorics, 22(3):341–350, 2006.

[63] A. Ehrenfeucht, J. Hage, T. Harju, and G. Rozenberg. Complexity issues in switch-
ing of graphs. In Theory and Application of Graph Transformations, pages 59–70,
Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[64] P. Erdős. Problems and results in combinatorial analysis and graph theory. In Graph
Theory and Applications, volume 38 of Annals of Discrete Mathematics, pages 81–
92. Elsevier, 1988.

[65] P. Erdős and R. Rado. Combinatorial theorems on classifications of subsets of a
given set. Proceedings of the London Mathematical Society, s3-2(1):417–439, 1952.

[66] P. Erdős, A. L. Rubin, and H. Taylor. Choosability in graphs. In Proc. West Coast
Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium,
volume 26, pages 125–157, 1979.

[67] E. Estrada and M. Benzi. Are social networks really balanced?, 2014. https:
//arxiv.org/abs/1406.2132.

[68] R. J. Faudree, A. Gyárfás, R. H. Schelp, and Z. Tuza. The strong chromatic index
of graphs. Ars Combinatoria, 29B:205–211, 1990.

[69] O. Favaron, H. Li, and R. Schelp. Strong edge coloring of graphs. Discrete Mathe-
matics, 159:103–109, 1996.

[70] T. Feder. Product graph representations. Journal of Graph Theory, 16(5):467–488,
1992.

[71] T. Feder and M. Y. Vardi. The computational structure of monotone monadic
SNP and constraint satisfaction: A study through datalog and group theory. SIAM
Journal on Computing, 28(1):57–104, 1998.

[72] J. Feigenbaum, J. Hershberger, and A. A. Schäffer. A polynomial time algorithm for
finding the prime factors of cartesian-product graphs. Discrete Applied Mathematics,
12(2):123–138, 1985.

[73] B. Ferdjallah, S. Kerdjoudj, and A. Raspaud. Injective edge-coloring of sparse
graphs, 2019. https://arxiv.org/abs/1907.09838.

[74] A. Fernández, T. Leighton, and J. L. López-Presa. Containment properties of prod-
uct and power graphs. Discrete Applied Mathematics, 155(3):300–311, 2007.

[75] F. Foucaud, H. Hocquard, and D. Lajou. Complexity and algorithms for injective
edge-coloring in graphs. Information Processing Letters, 170:106121, 2021.

[76] F. Foucaud, H. Hocquard, D. Lajou, V. Mitsou, and T. Pierron. Parameterized
Complexity of Edge-Coloured and Signed Graph Homomorphism Problems. In
14th International Symposium on Parameterized and Exact Computation (IPEC
2019), volume 148 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 15:1–15:16, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

On various graph coloring problems page 319

https://arxiv.org/abs/1406.2132
https://arxiv.org/abs/1406.2132
https://arxiv.org/abs/1907.09838

Bibliography

[77] F. Foucaud, H. Hocquard, D. Lajou, V. Mitsou, and T. Pierron. Parameter-
ized complexity of edge-coloured and signed graph homomorphism problems, 2019.
https://arxiv.org/abs/1910.01099.

[78] J.-L. Fouquet and J.-L. Jolivet. Strong edge-coloring of graphs and applications to
multi-k-gons. Ars Combinatoria, 16A:141–150, 1983.

[79] J.-L. Fouquet and J.-M. Vanherpe. On Parsimonious Edge-Colouring of Graphs
with Maximum Degree Three. Graphs and Combinatorics, 29(3):475–487, 2013.

[80] Z. Füredi, P. Horák, C. Pareek, and X. Zhu. Minimal oriented graphs of diameter 2.
Graphs and Combinatorics, 14(4):345–350, Jan. 1998.

[81] J. A. Gallian. A dynamic survey of graph labeling. Electronic Journal of combina-
torics, 1(DynamicSurveys):DS6, 2018.

[82] Y. Gao, G. Wang, and J. Wu. A relaxed case on 1-2-3 conjecture. Graphs and
Combinatorics, 32(4):1415–1421, 2016.

[83] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete
graph problems. Theoretical Computer Science, 1(3):237–267, 1976.

[84] N. Gastineau and O. Togni. On S-packing edge-colorings of cubic graphs. Discrete
Applied Mathematics, 259:63–75, 2019.

[85] K. Germina, S. H. K, and T. Zaslavsky. On products and line graphs of
signed graphs, their eigenvalues and energy. Linear Algebra and its Applications,
435(10):2432–2450, 2011. Special Issue in Honor of Dragos Cvetkovic.

[86] W. Goddard, S. M. Hedetniemi, S. T. Hedetniemi, J. M. Harris, and D. F. Rall.
Broadcast chromatic numbers of graphs. Ars Combinatoria, 86:33–49, 2008.

[87] W. Goddard and H. Xu. The S-packing chromatic number of a graph. Discussiones
Mathematicae Graph Theory, 32:795–806, 2012.

[88] J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke. Compression-based
fixed-parameter algorithms for feedback vertex set and edge bipartization. Journal
of Computer and System Sciences, 72(8):1386–1396, 2006.

[89] G. Hahn, J. Kratochvíl, J. Širáň, and D. Sotteau. On the injective chromatic number
of graphs. Discrete Mathematics, 256(1):179–192, 2002.

[90] P. Hall. On Representatives of Subsets. Journal of the London Mathematical Society,
10(1):26–30, 1935.

[91] S. Hameed and G. A. On composition of signed graphs. Discussiones Mathematicae
Graph Theory, 2012:507–516, 01 2012.

[92] F. Harary. On the notion of balance of a signed graph. The Michigan Mathematical
Journal, 2(2):143–146, 1953.

[93] F. Harary. On the measurement of structural balance. Behavioral Science, 4(4):316–
323, 1959.

page 320 Dimitri Lajou

https://arxiv.org/abs/1910.01099

Bibliography

[94] F. Harary and J. A. Kabell. A simple algorithm to detect balance in signed graphs.
Mathematical Social Sciences, 1(1):131–136, 1980.

[95] H. Hatami. ∆+300 is a bound on the adjacent vertex distinguishing edge chromatic
number. Journal of Combinatorial Theory, Series B, 95(2):246–256, 2005.

[96] F. Hausdorff. Grundzüge der Mengenlehre. Veit and Company, Leipzig, 1914.

[97] F. Heider. Attitudes and cognitive organization. The Journal of Psychology,
21(1):107–112, 1946. PMID: 21010780.

[98] P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of Combinatorial
Theory, Series B, 48(1):92–110, 1990.

[99] P. Hell and J. Nešetřil. The core of a graph. Discrete Mathematics, 109(1):117–126,
1992.

[100] H. Hocquard. Colorations de graphes sous contraintes. PhD thesis, Université
Bordeaux 1, 2011.

[101] H. Hocquard, D. Lajou, and B. Lužar. Between proper and strong edge-colorings
of subcubic graphs. In Combinatorial Algorithms, IWOCA 2020, volume 12126 of
Lecture Notes in Computer Science, pages 355–367. Springer, 2020.

[102] H. Hocquard, D. Lajou, and B. Luzar. Between proper and strong edge-colorings
of subcubic graphs, 2020. https://arxiv.org/abs/2011.02175.

[103] H. Hocquard and M. Montassier. Adjacent vertex-distinguishing edge coloring of
graphs with maximum degree ∆. Journal of Combinatorial Optimization, 26:152–
160, 2013.

[104] H. Hocquard, P. Ochem, and P. Valicov. Strong edge-colouring and induced match-
ings. Information Processing Letters, 113(19):836–843, 2013.

[105] H. Hocquard and J. Przybyło. On the neighbor sum distinguishing index of graphs
with bounded maximum average degree. Graphs and Combinatorics, 33:1459–1471,
2017.

[106] I. Holyer. The NP-completeness of edge-coloring. SIAM Journal on Computing,
10(4):718–720, 1981.

[107] P. Horák, H. Qing, and W. T. Trotter. Induced matchings in cubic graphs. Journal
of Graph Theory, 17(2):151–160, 1993.

[108] M. Horňák, D. Huang, and W. Wang. On neighbor-distinguishing index of planar
graphs. Journal of Graph Theory, 76(4):262–278, 2014.

[109] D. Huang, Z. Miao, and W. Wang. Adjacent vertex distinguishing indices of planar
graphs without 3-cycles. Discrete Mathematics, 338(3):139–148, 2015.

[110] D. Huang, X. Zhang, W. Wang, and S. Finbow. Adjacent vertex distinguishing edge
coloring of planar graphs without 3-cycles. Discrete Mathematics, Algorithms and
Applications, 12(04):2050035, 2020.

On various graph coloring problems page 321

https://arxiv.org/abs/2011.02175

Bibliography

[111] F. Hüffner, N. Betzler, and R. Niedermeier. Separator-based data reduction for
signed graph balancing. Journal of Combinatorial Optimization, 20(4):335–360,
2010.

[112] E. Hurley, R. de Joannis de Verclos, and R. J. Kang. An improved procedure for
colouring graphs of bounded local density, 2020. https://arxiv.org/abs/2007.
07874.

[113] W. Imrich and S. Klavžar. Product Graphs, Structure and Recognition. Wi-
ley–Blackwell, 01 2000.

[114] W. Imrich, S. Klavžar, and D. F. Rall. Cancellation properties of products of graphs.
Discrete Applied Mathematics, 155(17):2362–2364, 2007.

[115] W. Imrich and I. Peterin. Recognizing Cartesian products in linear time. Discrete
Mathematics, 307(3):472–483, 2007. Algebraic and Topological Methods in Graph
Theory.

[116] W. Imrich and I. Peterin. Cartesian products of directed graphs with loops. Discrete
Mathematics, 341(5):1336–1343, 2018.

[117] T. Ito, A. Kato, X. Zhou, and T. Nishizeki. Algorithms for finding distance-edge-
colorings of graphs. Journal of Discrete Algorithms, 5(2):304–322, 2007. 2004 Sym-
posium on String Processing and Information Retrieval.

[118] L. Jaffke and B. M. P. Jansen. Fine-grained parameterized complexity analysis of
graph coloring problems. In Algorithms and Complexity, pages 345–356, Cham,
2017. Springer International Publishing.

[119] E. Jelínková, O. Suchý, P. Hliněný, and J. Kratochvíl. Parameterized problems
related to Seidel’s switching. Discrete Mathematics and Theoretical Computer Sci-
ence, 13(2):19–42, 2011.

[120] G. Joret and W. Lochet. Progress on the adjacent vertex distinguishing edge coloring
conjecture. SIAM Journal of Discrete Mathematics, 34(4):2221–2238, 2020.

[121] M. Kalkowski, M. Karoński, and F. Pfender. Vertex-coloring edge-weightings: to-
wards the 1-2-3-conjecture. Journal of Combinatorial Theory, Series B, 100(3):347–
349, 2010.

[122] R. Kang and P. Manggala. On distance edge-colourings and matchings. Electronic
Notes in Discrete Mathematics, 34:301–306, 2009. European Conference on Combi-
natorics, Graph Theory and Applications (EuroComb 2009).

[123] R. J. Kang and P. Manggala. Distance edge-colourings and matchings. Discrete
Applied Mathematics, 160(16):2435–2439, 2012.

[124] F. Kardoš and J. Narboni. On the 4-color theorem for signed graphs. European
Journal of Combinatorics, 91:103215, 2021. Colorings and structural graph theory
in context (a tribute to Xuding Zhu).

[125] M. Karoński, T. Łuczak, and A. Thomason. Edge weights and vertex colours.
Journal of Combinatorial Theory, Series B, 91(1):151–157, 2004.

page 322 Dimitri Lajou

https://arxiv.org/abs/2007.07874
https://arxiv.org/abs/2007.07874

Bibliography

[126] R. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Plenum Press, 1972.

[127] K.-i. Kawarabayashi and B. Reed. An (almost) linear time algorithm for odd cycles
transversal. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’10, page 365–378, USA, 2010. Society for Industrial
and Applied Mathematics.

[128] S. Khanna, M. Sudan, L. Trevisan, and D. P. Williamson. The approximability of
constraint satisfaction problems. SIAM Journal on Computing, 30(6):1863–1920,
2001.

[129] S. Khot and V. Raman. Parameterized complexity of finding subgraphs with hered-
itary properties. Theoretical Computer Science, 289(2):997–1008, 2002. Computing
and Combinatorics.

[130] T. Kloks. Treewidth, Computations and Approximations. Springer, 1994.

[131] M. Kochol. Snarks without Small Cycles. Journal of Combinatorial Theory, Series
B, 67(1):34–47, 1996.

[132] D. König. Über graphen und ihre anwendung auf determinantentheorie und men-
genlehre. Mathematische Annalen, 77:453–465, 1916.

[133] A. Kostochka, X. Li, W. Ruksasakchai, M. Santana, T. Wang, and G. Yu. Strong
chromatic index of subcubic planar multigraphs. European Journal of Combina-
torics, 51:380–397, 2016.

[134] A. Kostochka, A. Raspaud, and J. Xu. Injective edge-coloring of graphs with given
maximum degree. European Journal of Combinatorics, 96:103355, 2021.

[135] C. Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta
Mathematicae, 15(1):271–283, 1930.

[136] D. Lajou. On the achromatic number of signed graphs. Theoretical Computer
Science, 759:50–60, 2019.

[137] D. Lajou. On Cartesian products of signed graphs. In Algorithms and Discrete Ap-
plied Mathematics, pages 219–234, Cham, 2020. Springer International Publishing.

[138] D. Lajou. On Cartesian products of signed graphs. Discrete Applied Mathematics,
2021.

[139] L. Leonid. Universal search problems. Problems of Information Transmission,
9(3):115–116, 1973.

[140] D. Leven and Z. Galil. NP-completeness of finding the chromatic index of regular
graphs. Journal of Algorithms, 4(1):35–44, 1983.

[141] J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary prop-
erties is NP-complete. Journal of Computer and System Sciences, 20(2):219–230,
1980.

On various graph coloring problems page 323

Bibliography

[142] T. Li, C. Qu, G. Wang, and X. Yu. Neighbor product distinguishing total colorings.
Journal of Combinatorial Optimization, 33(1):237–253, 2017.

[143] Y. Li and L. Chen. Injective edge coloring of generalized petersen graphs. AIMS
Mathematics, 6(8):7929–7943, 2021.

[144] Y.-C. Liang, T.-L. Wong, and X. Zhu. Graphs with maximum average degree less
than 114 are (1, 3)-choosable. Discrete Mathematics, 341(10):2661–2671, 2018.

[145] D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the exponential
time hypothesis. Bulletin of the EATCS, 105:41–71, 2011.

[146] Y. Lu, C. Li, and Z. K. Miao. Weight choosability of graphs with maximum degree
4. Acta Mathematica Sinica, English Series, 36(6):723–732, 2020.

[147] B. Lužar, E. Mačajová, M. Škoviera, and R. Soták. On the conjecture about strong
edge-coloring of subcubic graphs. Manuscript, 2020.

[148] K. Lyngsie. On neighbour sum-distinguishing 0,1-weightings of bipartite graphs.
Discrete Mathematics and Theoretical Computer Science (Online Edition), 20(1),
2018.

[149] F. Martin. Frustration and isoperimetric inequalities for signed graphs. Discrete
Applied Mathematics, 217:276–285, 2017.

[150] D. Marx. Parameterized coloring problems on chordal graphs. Theoretical Computer
Science, 351(3):407–424, 2006.

[151] D. Marx and I. Razgon. Fixed-parameter tractability of multicut parameterized by
the size of the cutset. In Proceedings of the Forty-Third Annual ACM Symposium
on Theory of Computing, STOC ’11, page 469–478, New York, NY, USA, 2011.
Association for Computing Machinery.

[152] M. Maydanskiy. The incidence coloring conjecture for graphs of maximum degree
3. Discrete Mathematics, 292(1–3):131–141, 2005.

[153] R. Naserasr, Éric Sopena, and T. Zaslavsky. Homomorphisms of signed graphs:
An update. European Journal of Combinatorics, 91:103222, 2021. Colorings and
structural graph theory in context (a tribute to Xuding Zhu).

[154] R. Naserasr, E. Rollová, and Éric Sopena. Homomorphisms of signed graphs. Jour-
nal of Graph Theory, 79(3):178–212, 2015.

[155] C. S. J. Nash-Williams. Decomposition of finite graphs into forests. Journal of the
London Mathematical Society, 1(1):12–12, 1964.

[156] J. Nešetřil, A. Raspaud, and É. Sopena. Colorings and girth of oriented planar
graphs. Discrete Mathematics, 165:519–530, 1997.

[157] J. Nešetřil and A. Raspaud. Colored homomorphisms of colored mixed graphs.
Journal of Combinatorial Theory, Series B, 80(1):147–155, 2000.

page 324 Dimitri Lajou

Bibliography

[158] K. Okrasa and P. Rzążewski. Subexponential algorithms for variants of the homo-
morphism problem in string graphs. Journal of Computer and System Sciences,
109:126–144, 2020.

[159] H. Pan and D. Yang. On total weight choosability of graphs. Journal of Combina-
torial Optimization, 25(4):766–783, 2013.

[160] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[161] C. Payan. Sur quelques problèmes de couverture et de couplage en combinatoire.
PhD thesis, Institut National Polytechnique de Grenoble - INPG, Université Joseph-
Fourier - Grenoble I, 1977. In French.

[162] K. Pietrzak. On the parameterized complexity of the fixed alphabet shortest com-
mon supersequence and longest common subsequence problems. Journal of Com-
puter and System Sciences, 67(4):757–771, 2003. Parameterized Computation and
Complexity 2003.

[163] M. Pilipczuk, M. Pilipczuk, and M. Wrochna. Edge bipartization faster than 2k.
Algorithmica, 81(3):917–966, 2019.

[164] J. Przybyło. The 1–2–3 conjecture almost holds for regular graphs. Journal of
Combinatorial Theory, Series B, 147:183–200, 2021.

[165] I. Razgon and B. O’Sullivan. Almost 2-SAT is fixed-parameter tractable. Journal
of Computer and System Sciences, 75(8):435–450, 2009.

[166] B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Operations
Research Letters, 32:299–301, 2004.

[167] N. Robertson and P. D. Seymour. Graph minors. V. excluding a planar graph.
Journal of Combinatorial Theory, Series B, 41(1):92–114, 1986.

[168] G. Sabidussi. Graphs with given group and given graph theoretical properties.
Canadian Journal of Mathematics, 9:515–525, 01 1957.

[169] G. Sabidussi. Graph multiplication. Mathematische Zeitschrift, 72:446–457,
1959/60.

[170] D. P. Sanders and Y. Zhao. Planar graphs of maximum degree seven are class I.
Journal of Combinatorial Theory, Series B, 83(2):201–212, 2001.

[171] B. Seamone. The 1-2-3 conjecture and related problems: a survey, 2012. https:
//arxiv.org/abs/1211.5122.

[172] P. D. Seymour. On Tutte’s Extension of the Four-Color Problem. Journal of Com-
binatorial Theory, Series B, 31:82–94, 1981.

[173] M. Sipser. Introduction to the theory of computation. PWS Pub. Co, 1st edition,
1997.

[174] J. Skowronek-Kaziów. Multiplicative vertex-colouring weightings of graphs. Infor-
mation Processing Letters, 112(5):191–194, 2012.

On various graph coloring problems page 325

https://arxiv.org/abs/1211.5122
https://arxiv.org/abs/1211.5122

Bibliography

[175] E. Sopena. The oriented coloring page. https://www.labri.fr/perso/sopena/
pmwiki/index.php?n=TheOrientedColoringPage.TheOrientedColoringPage.

[176] R. Soták. Private communication.

[177] A. Steger and M.-L. Yu. On induced matchings. Discrete Mathematics, 120:291–295,
1993.

[178] S. Strogatz. The enemy of my enemy. The New York Times, February 14th 2010.

[179] P. G. Tait. On the colouring of maps. Proceedings of the Royal Society of Edinburgh
Section A, 10:501–503, 729, 1880.

[180] Y. Takenaga and K. Higashide. Vertex coloring of comparability+ke and –ke graphs.
In Graph-Theoretic Concepts in Computer Science, pages 102–112, Berlin, Heidel-
berg, 2006. Springer Berlin Heidelberg.

[181] S.-L. Tian and P. Chen. Distance coloring and distance edge-coloring of d- dimen-
sional lattice. In Intelligent Computing Theories and Applications, pages 561–568,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[182] G. Toulouse. Theory of the frustration effect in spin glasses: I. Spin Glass Theory
and Beyond: An Introduction to the Replica Method and Its Applications, 9:99, 1987.

[183] V. G. Vizing. The cartesian product of graphs (In Russian). Vycisl. Sistemy, 9:30–
43, 1963.

[184] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Metody Diskret.
Analiz, 3:25–30, 1964.

[185] V. G. Vizing. Coloring the vertices of a graph with prescribed colors. Diskret.
Analiz., 29:3–10, 1976.

[186] B. Vučković. Multi-set neighbor distinguishing 3-edge coloring. Discrete Mathemat-
ics, 341(3):820–824, 2018.

[187] B. Vučković. Edge-partitions of graphs and their neighbor-distinguishing index.
Discrete Mathematics, 340(12):3092–3096, 2017.

[188] W. Wang and Y. Wang. Adjacent vertex distinguishing edge-colorings of graphs
with smaller maximum average degree. Journal of Combinatorial Optimization,
19:471–485, 2010.

[189] Y. Wang, J. Cheng, R. Luo, and G. Mulley. Adjacent vertex-distinguishing edge
coloring of 2-degenerate graphs. Journal of Combinatorial Optimization, 31:874–
880, 2016.

[190] Y. Wang, W. Wang, and J. Huo. Some bounds on the neighbor-distinguishing index
of graphs. Discrete Mathematics, 338(11):2006–2013, 2015.

[191] D. B. West. Introduction to Graph Theory. Prentice Hall, 2nd edition, September
2000.

page 326 Dimitri Lajou

https://www.labri.fr/perso/sopena/pmwiki/index.php?n=TheOrientedColoringPage.TheOrientedColoringPage
https://www.labri.fr/perso/sopena/pmwiki/index.php?n=TheOrientedColoringPage.TheOrientedColoringPage

Bibliography

[192] A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge University
Press, 1925–1927.

[193] Wikipedia, The Free Encyclopedia. Ising model. http://en.wikipedia.org/w/
index.php?title=Ising%20model&oldid=1015490779, 2021.

[194] S. G. Williamson. Depth-first search and Kuratowski subgraphs. Journal of the
Association for Computing Machinery, 31(4):681–693, Sept. 1984.

[195] P. Winkler. Factoring a graph in polynomial time. European Journal of Combina-
torics, 8(2):209–212, 1987.

[196] T.-L. Wong. 2-connected chordal graphs and line graphs are (1, 5)-choosable. Eu-
ropean Journal of Combinatorics, 91:103227, 2021.

[197] T.-L. Wong and X. Zhu. Total weight choosability of d-degenerate graphs, 2015.
https://arxiv.org/abs/1510.00809.

[198] D. R. Woodall. The average degree of an edge-chromatic critical graph II. Journal
of Graph Theory, 56(3):194–218, 2007.

[199] D. R. Woodall. The average degree of a multigraph critical with respect to edge or
total choosability. Discrete Mathematics, 310:1167–1171, 2010.

[200] M. Woźniak and M. Horňák. On neighbour-distinguishing colourings from lists.
Discrete Mathematics & Theoretical Computer Science, 14, 2012.

[201] J. Wu and W. Lin. The strong chromatic index of a class of graphs. Discrete
Mathematics, 308:6254–6261, 2008.

[202] Y. Wu, C.-Q. Zhang, and B.-X. Zhu. Vertex-coloring 3-edge-weighting of some
graphs. Discrete Mathematics, 340(2):154–159, 2017.

[203] G. Xavier. Les Maths en tête, Algèbre. Les maths en tête, mathématiques pour
MP*. Ellipses, Paris, 2009.

[204] C. Yan, D. Huang, D. Chen, and W. Wang. Adjacent vertex distinguishing edge
colorings of planar graphs with girth at least five. Journal of Combinatorial Opti-
mization, 28:893–909, 2014.

[205] M. Yannakakis. Edge-deletion problems. SIAM Journal on Computing, 10(2):297–
309, 1981.

[206] M. Yannakakis and F. Gavril. Edge dominating sets in graphs. SIAM Journal on
Applied Mathematics, 38(3):364–372, 1980.

[207] J. Yue, S. Zhang, and X. Zhang. Note on the perfect EIC-graphs. Applied Mathe-
matics and Computation, 289:481 – 485, 2016.

[208] T. Zaslavsky. Signed graphs. Discrete Applied Mathematics, 4(1):47–74, 1982.

[209] T. Zaslavsky. Biased graphs. I. Bias, balance, and gains. Journal of Combinatorial
Theory, Series B, 47(1):32–52, 1989.

On various graph coloring problems page 327

http://en.wikipedia.org/w/index.php?title=Ising%20model&oldid=1015490779
http://en.wikipedia.org/w/index.php?title=Ising%20model&oldid=1015490779
https://arxiv.org/abs/1510.00809

Bibliography

[210] T. Zaslavsky. Biased graphs. II. The three matroids. Journal of Combinatorial
Theory, Series B, 51(1):46–72, 1991.

[211] L. Zhang, W. Wang, and K. Lih. An improved upper bound on the adjacent
vertex distinguishing chromatic index of a graph. Discrete Applied Mathematics,
163(C):348–354, 2014.

[212] Z. Zhang, L. Liu, and J. Wang. Adjacent strong edge coloring of graphs. Applied
Mathematics Letters, 15(5):623–626, 2002.

[213] X. Zhu. Every nice graph is (1,5)-choosable, 2021. https://arxiv.org/abs/2104.
05410.

[214] D. Zhuk. A proof of CSP dichotomy conjecture. In 2017 IEEE 58th Annual Sym-
posium on Foundations of Computer Science (FOCS), pages 331–342, 2017.

page 328 Dimitri Lajou

https://arxiv.org/abs/2104.05410
https://arxiv.org/abs/2104.05410

	Introduction (en français)
	Introduction (in english)
	Preliminaries
	Graphs: definitions, notation
	Colorings and Homomorphisms
	NP-completeness and FPT
	A little bit of algebra

	I Signed Graphs
	Introduction to signed graphs
	Key definitions
	Homomorphisms and coloring of signed graphs
	Classes of cycles
	Complexity
	Similar notions and generalizations

	Complexity of edge-colored and signed graphs modification problems
	Preliminaries
	Edge-colored modification problems
	Limited Switchings (H,)-Coloring when H has order 2
	Vertex Deletion Signed-(H,)-Coloring
	Edge Deletion Signed-(H,)-Coloring
	Conclusion and perspectives

	Coloring signed graphs with small cyclomatic number
	Proofs of Theorems 4.8, 4.9 and 4.10
	Proof of Theorem 4.11 and 4.12
	Proof of Theorem 4.13
	Perspectives

	Cartesian product of signed graphs
	Definitions and preliminary results
	Cartesian products of signed graphs
	Chromatic number of Cartesian products of complete signed graphs and upper bounds
	Chromatic number of Cartesian products of signed cycles
	Perspectives

	II Edge-coloring with constraints
	Introduction
	Distance edge-coloring
	Distinguishing vertices with edge-colors

	Between proper and strong edge-colorings of subcubic graphs
	Preliminaries
	Proofs of Theorem 7.5.1 and Theorem 7.5.3
	Proof of Theorem 7.5.2
	Proof of Theorem 7.5.4
	Further Work

	Complexity of the injective edge-coloring problem
	NP-completeness for cubic graphs
	Complexity results for planar graphs
	Injective k-Edge-Coloring is FPT when parameterized by the treewidth
	Injective k-Edge-Coloring is NP-complete even for graphs with maximum degree O(k)
	Conclusion

	Adjacent vertex-distinguishing edge coloring of graphs
	Preliminaries
	Sketch of the proofs
	Proof of the reducibility lemmas
	Proof of Lemma 9.20
	Discharging procedures
	Perspectives

	The Multiplicative 1-2-3 Conjecture
	Proof of the product 1-2-3 Conjecture
	A conjecture for 2-labellings with restricted product conflicts
	On the list variant of p-proper labellings
	Improved bounds on ch* for some graph classes
	Perspectives

