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UNIVERSITE PARIS-SACLAY
Abstract

The LHC and the advent of gravitational wave observation have motivated tremen-
dous progress in developing approaches to precision predictions in fundamental gauge
theories and classical general relativity, and the two can be intimately connected. The
color-kinematics duality of Bern, Carrasco, and Johansson (BCJ) for gauge theories is
aduality where in amplitudes, graph-by-graph, kinematic weights obey the same gen-
eral algebraic constraints as color weights. When arranged in such a representation
the color-weights can be replaced by another copy of kinematic weights, generating
diffeomorphic invariant scattering amplitudes for gravitational theories in a procedure
known as double-copy construction. These gravitational amplitudes can then in turn
be applied to predicting classical observables.

The color-dual form for gauge theory predictions means we only need to fix the
physical information in a small number of basis graphs, and algebraic relations propa-
gate this to the full prediction—both at tree-level and importantly at loop-level for the
integrand description.  This thesis develops a BCJ duality satisfying representation
of tree- and loop-level amplitudes in massive scalar coupled QCD. The double-copy
amplitudes are then relevant to non-rotating black hole scattering. We use the BCJ
duality to reduce the set of graphs of amplitudes up to one-loop five-point to a smaller
set of basis graphs, to which we give ansatze that are constrained by unitarity cuts
and color-kinematics relations.

Our color-dual representations have an important feature. The same kinematic
weights, graph by graph, are applicable to scalars regardless of whether they are
charged in the fundamental or the adjoint. Indeed one can use adjoint-type ordered
cuts to constrain these kinematic weights to be used for predictions in a multitude
of theories, depending on which graphs you allow to contribute and how you weight
their color.

The double copy construction maps from the scattering of gluons to the scattering
of gravitons in N = 0 supergravity, with additional massless states beyond the gravi-
ton coupling to the massive scalars. At tree- and loop-level we show that a projective
double copy, combining naive double-copy with an application of the method of max-
imal cuts, can be easily exploited to project out non-gravitational states from the
naive double copy, bootstrapping the predictions associated with pure-gravitational
interactions between massive scalars.

We expect that the integrands found in this thesis can be used to find one-loop
five-point predictions towards radiative corrections to classical observables. With that
in mind, we warm up by using the amplitudes found in this thesis to reproduce known
results for the color-impulse at leading and next-to-leading order, and radiation at
leading order.
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Résume

Le LHC et ’avénement de 1’observation des ondes gravitationnelles ont motivé des
progrés considérables dans le développement d’approches des prédictions de précision
dans les théories de jauge fondamentales et la relativité générale classique, et les
deux peuvent étre intimement liés. La dualité couleur-cinématique de Bern, Carrasco
et Johansson (BCJ) pour les théories de jauge est une dualité ou en amplitudes,
graphique par graphique, les poids cinématiques obgissent aux mémes contraintes
algébriques générales que les poids de couleur. Lorsqu’ils sont disposés dans une telle
représentation, les poids de couleur peuvent étre remplacés par une autre copie des
poids cinématiques, générant des amplitudes de diffusion invariantes diffeomorphes
pour les théories gravitationnelles dans une procédure connue sous le nom de con-
struction en double copie. Ces amplitudes gravitationnelles peuvent a leur tour &étre
appliquées a la prédiction d’observables classiques.

La forme bicolore pour les prédictions de la théorie de jauge signifie que nous
n’avons besoin de fixer les informations physiques que dans un petit nombre de
graphes de base, et les relations algébriques propagent cela a la prédiction compléte,
a la fois au niveau de I’arbre et surtout au niveau de la boucle pour I’intégrande
la description. Cette thése développe une dualité BCJ satisfaisant la représentation
des amplitudes au niveau de I’arbre et de la boucle dans la QCD massive couplée
scalaire. Les amplitudes en double copie sont alors pertinentes pour la diffusion des
trous noirs non rotatifs. Nous utilisons la dualitt BCJ pour réduire ’ensemble de
graphes d’amplitudes jusqu’a une boucle & cing points & un ensemble plus petit de
graphes de base, auxquels nous donnons des ansatze qui sont contraints par des coupes
unitaires et des relations couleur-cinématique.

Nos représentations a double couleur ont une caractéristique importante. Les
mémes poids cinématiques, graphe par graphe, sont applicables aux scalaires qu’ils
soient chargés dans le fondamental ou dans I’adjoint. En effet, on peut utiliser des
coupes ordonnées de type adjoint pour contraindre ces poids cinématiques a utiliser
pour les prédictions dans une multitude de théories, en fonction des graphiques que
vous autorisez a contribuer et de la fagon dont vous pondérez leur couleur.

La construction en double copie va de la diffusion des gluons a la diffusion des
gravitons en supergravitt N = 0, avec des états sans masse supplémentaires au-
deld du couplage du graviton aux scalaires massifs. Au niveau de I’arbre et de la
boucle, nous montrons qu’une double copie projective, combinant une double copie
naive avec une application de la méthode des coupes maximales, peut étre facilement
exploitée pour projeter des états non gravitationnels a partir de la double copie naive,
en amorcant les prédictions associée a des interactions gravitationnelles pures entre
scalaires massifs. Nous nous attendons a ce que les intégrandes trouvés dans cette
thése puissent étre utilisés pour trouver des prédictions a une boucle en cing points
vers des corrections radiatives aux observables classiques. Dans cet esprit, nous nous
réchauffons en utilisant les amplitudes trouvées dans cette thése pour reproduire les
résultats connus pour I'impulsion de couleur a I’ordre dominant et sub-dominant, et
le rayonnement a I’ordre dominant.
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Resumeé

L’avénement de I’observation des ondes gravitationnelles au LIGO et a VIRGO [1] et
les expériences de haute précision pour les théories de jauge fondamentales au LHC
sont une forte motivation pour repousser les limites des calculs analytiques. Dans les
théories de jauge non abéliennes et la gravité, les amplitudes de diffusion ont
toujours &été difficiles a calculer car le nombre de graphes de Feynman contributeurs
augmente de fagon exponentielle avec la multiplicité et le niveau de boucle, et les
expressions intermédiaires deviennent grandes et lourdes. En particulier, parce que
la gravité a des termes de contact a toutes les multiplicités, écrire les graphes de
Feynman d’une amplitude peut rapidement devenir une tache impossible. Au cours
des derniéres décennies, le domaine des amplitudes de diffusion a évolué pour décrire
la physique des hautes énergies d’une maniére moins dépendante des choix tempo-
raires effectués en cours de route dans les calculs, tels que la dépendance de jauge -
en exploitant et parfois en découvrant de nouvelles symétries des quantités observ-
ables de la nature. Un certain nombre de techniques puissantes ont été développées,
telles que les méthodes récursives pour les amplitudes au niveau de I’arbre [2, 3], les
méthodes d’unitarité généralisée [4-6] et la dualité Bern-Carrasco-Johansson (BCJ)
entre couleur et cinématique [7] et sa construction en double copie associée pour les
amplitudes gravitationnelles [8].

La dualité Bern-Carrasco-Johansson (BCJ) entre la couleur et les ingrédients
cinématiques des amplitudes est un bel apercu de la structure des amplitudes de
la théorie de jauge. Dans une théorie de jauge ou cette dualité est manifeste, les
amplitudes peuvent &tre agencées de telle sorte que les poids de couleur et les poids
cinématiques des diagrammes contributeurs obgéissent aux mémes identités algébriques.
Pour le cas des scalaires massifs couplés a la théorie de jauge, ces identités sont
représentées sur la Figure 5.3. Cela signifie que les numérateurs cinématiques des
graphiques d’amplitude ne sont pas independants, mais peuvent en fait &tre exprimés
en termes d’un plus petit ensemble de numérateurs de base. Cela nous permet de
recycler les informations entre les diagrammes et en pratique réduit considérablement
le nombre de calculs nécessaires pour une amplitude a n-points.

Une avancée cruciale dans les prévisions de jauge et de gravité est d’inclure les
effets des particules avec une masse intrinséque. Cependant, I’introduction de masses
pour les amplitudes au niveau de la boucle apporte une complexité plus élevée. On
peut comparer, par exemple, 1’amplitude & une boucle dans N = 4 sYM, ou les co-
efficients des intégrales de triangle et de bulle disparaissent, avec I’amplitude & une
boucle pour les quarks massifs en QCD, ou il faut prendre en compte non seule-
ment les triangles et les bulles, mais inclure des diagrammes de tétards massifs dont
I’accessibilité via les méthodes d’unitarité est subtile. La dualité entre la couleur et
la cinématique a ici un réel potentiel : propager les informations de coupe a partir de
graphiques maitres accessibles vers des contributions plus délicates.

Dans cette thése, je développe une représentation graphique des amplitudes au
niveau des arbres et des boucles avec des scalaires massifs couplés a des bosons de
Yang-Mills qui obgéissent a la dualité BCJ. Les diagrammes relatifs a une amplitude
sont générés simultanément avec les relations BCJ entre eux, ce qui nous permet de
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Figure 1: Représentation schématique des relations possibles entre

les poids de couleurs et les poids cinématiques des diagrammes. Les

lignes pleines (rouges) représentent des particules scalaires de méme
masse.

réduire les numérateurs de diagrammes cinématiques a des ensembles de diagrammes
de base plus petits. Je choisi des ansatze pour les fonctions du numérateur des
diagrammes de base dont les coefficients sont fixés par les relations BCJ entre les
diagrammes, les propriétés de symétrie et les coupes unitaires généralisées. Par ex-
emple, I’amplitude a quatre points au niveau de I’arbre avec un scalaire massif a
deux topologies de diagrammes cubiques qui regoivent des fonctions de numérateur
distinctes

c d d a
Q_M % — n'\ﬁ’(& b,c,d), >u'\ﬁn,<3:§; = n"ﬂa, b,c,d), (1)
b a

c b
ou les fonctions du numérateur sont liges par la relation BCJ suivante
n':,rT’l(a, b, c,d) = n" (a,b,c,d) — n" (b,a,cd). 2)

Un ansatz cinématique est donc donné au diagramme de base n'" , et est complétement
déterminée par les propriétés de symétrie et de factorisation des'diagrammes indi-
viduels et des amplitudes ordonnées. Au niveau de la boucle, les coefficients sont
déterminés en se fixant sur des coupes unitaires généralisées.

Nous constatons que des représentations satisfaisantes BCJ existent a la fois au
niveau de I’arbre et de la boucle, et les numeérateurs cinématiques résultants ont une
caractéristique intéressante : ils peuvent &tre utilisés pour décrire des scalaires massifs
a la fois dans la représentation fondamentale et adjointe du groupe de jauge. Nous
trouvons des représentations satisfaisantes BCJ pour les amplitudes au niveau de
I’arbre & quatre et cing points avec un et deux scalaires massifs respectivement. Nous
trouvons également des représentations pour I’amplitude a quatre points a une boucle
avec deux scalaires massifs, qui a six topologies cubiques distinctes®. Les coefficients
physiquement pertinents de cette amplitude sont fixés sur trois coupes unitaires.
Nous trouvons également une représentation satisfaisante BCJ pour I’amplitude a
cing points a une boucle avec deux scalaires massifs et un gluon externe, qui a 33

"Ne pas inclure les topologies de tétards.
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Figure 2: Coupes unitaires généralisées pour I’amplitude a une
boucle a cing points avec deux scalaires massifs de masse distincte.

topologies cubiques distinctes, et est fixée sur les cing coupes unitaires illustrées a la
Figure 5.4.

Les numérateurs cinématiques qui obgéissent aux relations BCJ manifestent également
un autre ensemble de relations profondes liant les théories physiques et qui doivent
encore étre complétement comprises : la structure en double copie des prédictions.
Pour les numérateurs BCJ, nous pouvons, graphique par graphique, échanger les fac-
teurs de couleur par un autre ensemble de numérateurs cinématiques, ce qui donne
I’amplitude correspondante dans une théorie gravitationnelle. La construction en
double copie a remplacé I’énorme complexité des calculs gravitationnels par la rela-
tive simplicité des prédictions de la théorie de jauge. Cela a été important pour les
explorations formelles des propriétés UV des théories de la supergravité, et a main-
tenant un réel impact phénoménologique a I’ére de I’observation précise des ondes
gravitationnelles. Dans cette thése, la double copie de scalaires massifs couplée a la
théorie de Yang-Mills donne la théorie des scalaires massifs en supergravite N = 0.

Comme les numérateurs cinématiques que nous générons obgéissent aux relations
BCJ par construction, nous pouvons facilement prendre la double copie pour obtenir
les amplitudes de supergravité N = 0. Cependant, les amplitudes de cette théorie ont
- en plus des gravitons souhaités - d’autres particules sans masse qui circulent comme
états internes. Nous présentons donc une approche basée sur des diagrammes, que
nous appelons double copie projective, qui combine des idées de la méthode des coupes
maximales [9] et de la construction en double copie pour obtenir des numérateurs
de gravité d’Einstein-Hilbert. Premiérement, les numérateurs N = 0 sont trouvés
en mettant au carré les numérateurs de la théorie de jauge. Ceux-ci sont ensuite
modifiés en effectuant les coupes maximales de toutes les topologies pertinentes, et
en les comparant avec les expressions obtenues avec un projecteur d’état physique qui
permet uniquement aux gravitons de traverser la coupe. Tout écart entre les deux est
ensuite attribué a des etats supplémentaires, puis soustrait des numérateurs. Ensuite,
une procédure similaire est effectuée pour les coupes presque-maximales, les coupes
presque-presque-maximales, et ainsi de suite, jusqu’a ce qu’aucune autre condition de
coupe ne puisse étre retirée. A titre d’exemple, considérons I’amplitude d’une boucle
a quatre points avec deux scalaires massifs. Le numérateur de supergravité N = 0 de
la topologie boite est le carré du numérateur QCD, et avec des conditions de coupe
maximale imposées, nous trouvons

C 5 3 leut
1-loopjcut = Ny =0 = (k1 -ka)*. 3
M, MC1 1 :I:I: 4 } (fa i) ©)
MC1



4 Contents

Nous comparons cela avec la somme des états du projecteur d’états physiques sur le
produit des amplitudes de I’arbre a trois points,

trees — tree ), m1 m1 S3 tree mi1 m1 s2
pMtreesl = MUK 1M 1M (=™ K 1)
states

2

x Miree(—F; Ky, —I yMyee (I k,m—I, ¥ 4
m2m?2 ‘
= gz (ark)®

La contribution des états non gravitationnels est alors donnée par la différence entre
I’expression compléte de la supergravité N = 0 et ’expression médiée par le graviton
MC1 _— pA—loop cut _ pgtrees]
A - I\'Z MC1 M MCT
s o (ki ke)®  (MZm2)? (®)
=2mm, - ,
Ds—2 (Ds — 2)2

et la contribution d’Einstein-Hilbert est alors obtenue en soustrayant le terme d’états
supplémentaires du numérateur N = 0. Nous continuons ainsi, en corrigeant les
numérateurs a 1’aide des coupes proches du maximum etc. La procédure projective
de double copie est complétement systématique, et nous trouvons un ensemble de
numérateurs de gravité d’Einstein-Hilbert pour des amplitudes au niveau de ’arbre
a quatre et cing points avec un et deux scalaires massifs, et pour des intégrandes
d’amplitude & une boucle a quatre et cing- points avec deux scalaires massifs.

Les avantages du calcul des amplitudes de diffusion ont incité les physiciens a
utiliser les connaissances obtenues des théories quantiques dans la recherche d’observables
en physique classique (voir eg [10-54]). Les modéles d’ondes gravitationnelles qui
peuvent étre comparés aux données d’expériences nécessitent que nous combinions
la relativité numérique avec une entrée analytique. Cela peut étre sous la forme
d’hamiltoniens gravitationnels et des équations de mouvement ultérieures, ou directe-
ment sous forme d’observables, tels que le changement d’impulsion de deux corps
gravitationnels en collision. Il y a déja eu d’énormes progrés dans ce domaine — le
potentiel du probléme binaire du trou noir a eté déterminé jusqu’au troisiéme et qua-
triéme ordre dans I’expansion post-minkowskienne [51, 55], ainsi que le rayonnement
effets de réaction [49, 52, 54]. Une méthode d’extraction directe d’observables clas-
siques a partir d’amplitudes de diffusion, le formalisme de Kosower-Maybee-O’Connell
(KMOC), a été introduite dans [36] ol le changement d’impulsion et de rayonnement
dans la limite classique de I'électrodynamique quantique est donné. De maniére ana-
logue, le formalisme KMOC a &été utilisé pour trouver I’impulsion de couleur et la
couleur totale rayonnée dans la limite classique de QCD [56], et nous constatons que
les numérateurs développés dans cette thése reproduisent avec succés certains des
résultats de cet article.

Nous reproduisons I’'impulsion de couleur & I’ordre dominant (au niveau de 1’arbre)
Sgré ’ordre sub-dominant (au niveau d’une boucle), qui est décrit dans [56] et donné

r
A4 A 2

Ac = ACT=T g gim,tg)s2p, DeC (6)
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ou le noyau de couleur G est défini comme

G®=n?[C? C(D)]Ao(p1, P2 = p1 +d, P2 — )
—n d @id(2p: - 0; + nw?)d® (w1 + v, — Tx) C(D)[C? C(D)]
X i=1,2 D,Df
X Abi(pr + 0, p2 — 4 = p1 + @1, P2 + @2, Ix)Ao(P1, P2 = P1 + 01, P2 — w2, Ix).  (7)

Le calcul de I’impulsion de couleur d’ordre suivant dans la représentation BCJ
des amplitudes développée dans cette thése différe de I’article original car toutes les

topologies sont cubiques
O
b 0

@ (b cpo @ BE! m C W % ¢ @

d

— a d b
A =CQO m Ol +CO [l +C O Uy
a d
b c O b?>¢<c ® b>w§;C W
+CDa>L[%idD|tz +Co g atC O, dD't”z

b c b c b c
+C U OW+cO 0D 4cO 0D
(e O OK DIl +eD SOL TG

b c
ob ‘0w, 0 0w, ~0b COw
+CDaE5$< Dk1+CDaZ?“<dez+CD Su< g

d a d
[
b c
S UL

(8)
Dans le formalisme présenté dans [56] les facteurs de couleur avec des constantes
de structure, 2, obtiennent une puissance supplémentaire de n par rapport aux
générateurs, T§j, supprimant ainsi ces termes dans la limite classique. On retrouve
donc une base de couleur cubique qui privilégie les topologies avec des sommets
composés uniquement de gluons, qui différe de la base présentée dans ’article

O O O O O O O O O
b c a c b c b ¢ 0
cU >C)<EQCD O, cOo >Cj<[ycm ~O< o
0-  a d b d a d a ?9)

L’impulsion de couleur calculée a I’aide des représentations satisfaisantes BCJ a
I’ordre dominant et & 1’ordre sub-dominant correspond aux résultats dans [56], tout
comme le rayonnement de couleur a I’ordre dominant.






Chapter 1

Introduction

The advent of gravitational wave observation at LIGO and VIRGO [1] and high preci-
sion experiments for fundamental gauge theories at the LHC are a strong motivation
to push the boundaries of analytic calculations. In non-Abelian gauge theories and
gravity, scattering amplitudes have historically been difficult to calculate because the
number of contributing Feynman graphs increases exponentially with multiplicity and
loop-level, and intermediate expressions grow large and unwieldy. In particular, be-
cause gravity has contact terms at all multiplicities writing down the Feynman graphs
of an amplitude can quickly turn into an impossible task. Over the last decades the
field of scattering amplitudes has evolved to describe high energy physics in a way
that is less dependent on the temporary choices made along the way in calculations,
such as gauge dependence — exploiting and occasionally discovering new symmetries
of nature’s observable quantities. A number of powerful techniques have been devel-
oped, such as recursive methods for tree-level amplitudes [2, 3], generalized unitarity
methods [4-6] and the Bern-Carrasco-Johansson (BCJ) duality between color and
kinematics [7] and its associated double-copy construction for gravitational ampli-
tudes [8].

Recursive methods have allowed for the calculation of tree-level amplitudes of
increasing multiplicity by using on-shell data from lower-level trees. Similarly, uni-
tarity methods — pioneered in the 90s by Bern, Dixon, and Kosower and generalized
to involve three-point trees in the 2000s by Britto, Cachazo, and Feng — allow for
complicated loop-level predictions to be constructed systematically using compact on-
shell tree-level data.

A beautiful insight into the structure of gauge theory amplitudes is the Bern-
Carrasco-Johansson (BCJ) duality between the color and kinematic ingredients of
the amplitudes. In a gauge theory where this duality is manifest, amplitudes can
be arranged in such a way that the color weights and kinematic weights of the con-
tributing graphs obey the same algebraic identities. This means that the kinematic
numerators of the amplitude graphs are not unrelated, but can in fact be expressed
in terms of a smaller set of basis numerators. This allows us to recycle information
between graphs and in practice reduces the number of necessary computations for an
n-point amplitude considerably.

Kinematic numerators that obey the BCJ relations also manifest another set of
deep relationships between physical theories which are still to be completely un-
derstood: the double-copy structure of predictions. For BCJ numerators we can,
graph-by-graph, exchange the color factors by another set of kinematic numerators,
and this yields the corresponding amplitude in a gravitational theory. For example,
the case most relevant to this thesis is that the double copy of massive scalars cou-
pled to Yang-Mills theory yields the theory of massive scalars in N = 0 supergravity.
The double copy construction has replaced the tremendous complexity of gravita-
tional calculations with the relative simplicity of gauge theory predictions. Thishas
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been important for formal explorations of the UV properties of supergravity theories,
and now has real phenomenological impact in the era of precision gravitational wave
observation.

A crucial advance in both gauge and gravity predictions is to include the effects
of particles with intrinsic mass. However introducing masses for amplitudes at loop-
level brings higher complexity. We can compare, for example, the one-loop amplitude
in N = 4 sYM, where the coefficients of triangle and bubble integrals disappear,
with the one-loop amplitude for massive quarks in QCD, where we have to take into
account not only triangles and bubbles, but include massive tadpole diagrams whose
accessibility via unitarity methods is subtle. The duality between color and kinematics
has a real potential upside here—propagating cut information from accessible master-
graphs to more delicate contributions.

In this thesis we develop a graph representation of tree- and loop-level amplitudes
with massive scalars coupled to Yang-Mills that obey the BCJ duality. The graphs
pertaining to an amplitude are generated simultaneously as the BCJ relations between
them, which allows us to reduce the kinematic graph numerators to smaller sets of
basis graphs. We find that these representations exist both at tree- and loop-level.

As the kinematic numerators we generate obey the BCJ relations by construction,
we can easily take the double copy to obtain the N = O supergravity amplitudes.
However, the amplitudes in this theory have — in addition to the desired gravitons
— other massless particles running around as internal states. We therefore present
a graph-based approach, which we call projective double copy, that combines ideas
from the method of maximal cuts [9] and double-copy construction to obtain pure
Einstein-Hilbert gravity numerators.

The computational advantages of scattering amplitudes have inspired physicists to
use quantum insights in the search for classical physics observables (see e.g. [10-54]).
Gravitational wave templates that can be compared with data from experiments
require that we combine numerical relativity with analytic input. This can be in
the form of gravitational Hamiltonians and the subsequent equations of motion, or
directly as observables, such as the change in impulse from two colliding gravitational
bodies. There has already been tremendous progress in this field — the potential of
the binary black-hole problem has been determined up to third and fourth order in
the post Minkowskian expansion [51, 55], as well as radiation reaction effects [49, 52,
54]. A method for directly extracting classical observables from scattering amplitudes,
the Kosower-Maybee-O’Connell (KMOC) formalism, was introduced in [36] where the
classical QED change in impulse and radiation are given. Analogously, the KMOC
formalism was used to find the classical color impulse and total radiated color found in
[56], and we find that the numerators developed in this thesis successfully reproduce
some the results in this paper.

The first chapter of this thesis will give an overview of methods and advances in
the field of scattering amplitudes relevant to this thesis, and introduce graph repre-
sentation. In the second chapter we develop a BCJ duality satisfying representation
for massive amplitudes at one-loop level, based on the publication [57]. In the third
chapter we use projective double copy to determine tree-level amplitudes, and one-
loop integrands in Einstein-Hilbert gravity from gauge theory amplitudes. The fourth
chapter demonstrates how the amplitudes developed in the previous chapters can be
used to find classical observables in Yang-Mills theory using the KMOC formalism.



Chapter 2

Amplitudes in gauge and gravity
theories

In this chapter | review some relevant concepts in the field of scattering amplitudes.
I give a brief introduction to color factors and color-ordered amplitudes for massive
and massless particles. The BCJ duality between color and kinematics is introduced,
with the subsequent double-copy construction to obtain gravity amplitudes. | also
introduce unitarity methods and graph representation for amplitudes, and how to
perform unitarity cuts using graphs. Finally | give a review on representing kine-
matics, in particular how we represent four-dimensional kinematics using the spinor
helicity formalism.
The general form of a m-point L-loop gauge theory amplitude A(H in D space-
time dimensions with gluons and massive particles can be written as
r
(L) L m—2+2L | L deI 1 niCi

An =i g (p i

o . (2.1)
where g is the gauge coupling constant, and m* _ is the on-shell rrﬂas)s of the particle
with momentum p.,. The sum runs over the complete set I of m-point L-loop graphs
with only cubic vertices, including all possible permutations of external legs. The in-
tegrations are over the independent loop momenta p;, and each graph is dressed with
a kinematic numerator n; unique to the graph topology, a color factor C; and the
propagator structure of the graph. The kinematic numerators n; are in general not
gauge invariant objects. We take the convention of all external kinematics outgo-
ing. Attree level color ordered amplitudes can be constructed from purely kinematic
contributions (numerators over propagators) for graphs with the same external leg
ordering®. Indeed these gauge-invariant expressions emerge naturally when express-
ing the color-weights in terms of a basis of color-factors in full tree-level amplitudes.
The kinematic coefficient of each basis color-weight will be a color-orderedamplitude.

2.1 Color factors

The color factors are constructed from two types of terms: structure constants f2°°
from purely gluonic vertices, and generators T;‘j from vertices with two massive scalar
lines and a gluon (cf. Figure 2.1). As mentioned above, we only concern ourselves
with cubic graphs as we find that quartic vertices, or contact terms, can be expanded
in terms of cubic expressions. For example, the Feynman rule for the four-gluon

!And therefore the same color factor.
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Figure 2.1: Color-weights of cubic vertices. The solid (red) linesrep-
resent massive scalars charged under the fundamental representation
of the group.

vertex can be written as

b c
. 1:abgfgcd N +facgfgbd Ny +fadgfgbc N
a d
T (22
— fabgfgcd Ns (§) + facgfgbd Ny (g) + fadgfgbc Ny %
S u
b c c b d b
a d a d a c

where s = (a+b)?, u=(a+c)?and t = (a+ d)? are the Mandelstam invariants and
n; is the kinematic part of the Feynman rule. We see that we can multiply in factors
of (ki + k;)?/(ki + k;)? to distribute the contribution from the contact term amongst
graphs where the quartic term has been expanded in the propagator (ki + kj)2.

The structure constants are completely antisymmetric, and therefore the color-
weights of adjoint vertices obey a flipping symmetry where exchanging the order
of two of the legs in a vertex introduces a relative minus sign. As noted in [58],
a convenient antisymmetry for the fundamental generators similar to the structure
constants can also be realized,

fabe = — fbac and T =—T. (2.3)
From the structure of the group, the color factors obey Jacobi and analogous com-

mutation relations associated with four-point subgraphs entirely in the adjoint, and
in mixed adjoint-fundamental given by

fdacfcbe _ fdbcfcae — fabcgdce
(2.4)
TiaJ} ijk - Tij jak = fabcTiCk.
We will introduce an additional type of three-term color identity, corresponding
to a four-point sub-graph with all same-mass scalars. One can generalize the SU (N )

Fierz identity to optionally require
TeT2 =TP TP +T°T° ., (2.5)
ij ki ik jl li jk
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Figure 2.2: Pictorial representation of the relations between color
weights and potentially kinematic weights of graphs. The solid (red)
lines represent same-mass scalar particles.

This allows us the freedom to construct either adjoint scalar amplitudes or fundamen-
tal scalar amplitudes at our discretion?. We will refer to the set of these three-term
identities as Jacobi-like relations.

These relations are illustrated graphically in Figure 2.2 for gluons and massive
scalar lines, and also represent the subsequent Jacobi-like and antisymmetry relations
between color factors

Ci — Cj= Cx, Ci = —Ci. (2.6)

The relationship shown in Figure 2.2 applies to the four-point tree sub-graphs shown,
but also to any set of three graphs that only differ by one internal leg with the three
connectivities, where all other legs are held fixed.

2.2 The duality between color and kinematics

In general, due to the cubic-assignment ambiguity of the four-point gluonic contact-
term — as illustrated in Equation (2.2) — there is some degree of gauge freedom
when choosing the kinematic and color numerator basis. The gauge invariance of
an amplitude under different kinematic numerator choices is called generalized gauge
freedom. A fortuitous choice is a representation that obeys color kinematics duality.
This means choosing a representation where the kinematic numerators obey the same
Jacobi-like relations and flipping symmetry as the color factors

Ni —Nj = Nk < Ci —Cj = Ck, 2.7)

ni = —nN; Aad Ci = —Cj

in analogy to Equation (2.6). These relations are known to hold up to all multiplicities
at tree-level and conjectured to hold off-shell to all multiloop levels.
Once we have found a representation of kinematic numerators that satisfy these

?The kinematic weights of individual graphs will be applicable to either.
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relations, we can exchange the color factors in Equation (2.1) for another set of color-
dual kinematic numerators

L) |_+1( E)m—2+2L " IL delDl il
ier 1=1 ;
Mp =i 5 @8 (s o

o B (2.8)

where the tilde on A signifies that there can be two distinct gauge Eﬂet))ries. Indeed,

only one of the numerator sets needs to manifest the color kinematics duality. The

expression obtained in Equation (2.8) is now a gravitational amplitude, and we call

this relationship the double copy construction of gravitational amplitudes. There are

many possible combinations of kinematic numerators from different gauge theories,

with varying degrees of supersymmetry, which lead to amplitudes in different gravi-

tational theories. However, in this thesis | will focus on the double copy construction
of scalar QCD theory.

2.3 Unitarity methods

One of the main focuses of the field og scattering amplitudes is to write amplitudes
in terms of fewer and simpler expressions, by for example relating the kinematics of
graphs using the BCJ duality. As we move upwards in loop-level, writing amplitudes
in terms of simpler components becomes a necessity. Luckily, the unitarity properties
of amplitudes allow us to partially write loop amplitudes as products of tree ampli-
tudes, by using what we call unitarity methods [4]. Recall that we can write an L-loop
amplitude as

oop T o )1 g
A, =i . k=1 (27)P §;

j p

Aj X

To understand how to extract data from integrals of this form, we examine the unitar-
ity property of the S-matrix, SST = 1. We can write S=1 +i T , which requires that
the discontinuity across a branch cut is Disc T = —i(T — T*) = TT*. This constraint
implies that the imaginary part of T is a product of lower-order results. For example,
we can write the four- and five-gluon scattering amplitudes in QCD perturbatively as

Ta=g2TO+g*TO +gsT@ + | (2.9)
4 4 4

Ts=g3TO+gsTO+gT@+ ., (2.10)
5 5 5

where g is the coupling, and T{" is the L-loop n-gluon amplitude. The discontinuities
of the 4-gluon amplitude can now be written in terms of these expansions [59]

DiscT,@=0, (2.11)

DiscT ® = TOT O, (2.12)
4 4 4

DiscT,® = TOT,® + 7M7) 4 70T O, (2.13)

where there is an implied sum over the types and helicites of the intermediate states.
The second equation, Equation (2.12), states that we can write the discontinutiy
of the one-loop amplitude as a product of tree amplitudes, and similarly the third
equation states that we can write the two-loop discontinuity as a product of a one-
loop and a tree amplitude, and of two four-point tree amplitudes. We can think of
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k1 Ka

Figure 2.3: Four-point ordered graph with external momenta
ki, ko, K3, Ka.

the trees on the left sides of these equations as particular values of the loop momenta
— namely their on-shell values i2 = mzi. We refer to this procedure of putting internal
edges on-shell as unitarity cuts , and | will review these in Section 2.5.

One approach of unitarity methods is to compare the information from the gener-
alized unitarity cuts with cuts of this linear function of integrals, in order to determine
such coefficients [60, 61]. This works particularly well when there is a known basis of
relevant loop integrals like at one loop. Another application is known as cut construc-
tion [5, 9, 62, 63]. A sufficient condition for loop integrands organized graphically is
that they satisfy all physical unitarity cuts. This leads to a constructive approach
called the method of maximal cuts which | will describe in detail in Chapter 4 after
reviewing graphical methods in the rest of this chapter.

2.4 Graph representation

An important step in determining an amplitude is to identify the graphs that con-
tribute. The graph representation of an amplitude is not unique — as alluded to
earlier, we can for example choose whether or not to include quartic graphs in our
representation. The methods presented in this thesis will take advantage of the rela-
tionship between cubic graph topologies. | therefore give a brief introduction to the
representation and features of graphs.

Computationally, a graph can be represented in several ways, including in the node
representation and in the edge representation. The former is useful for preserving the
order of a graph and is easily mapped to the edge representation, which is useful for
plotting and finding isomorphisms. In the node representation a graph is represented
as a list of nodes, which we call a necklace. A node represents a trivalent vertex,
and so has three legs. Incoming legs get a minus sign. As an example, the graph in
Figure 2.3 would be represented as

{(kl, k2, e), (—e, k3, k4)},

where e is the internal edge momenta. Similarly, we can find a node representation
of more complicated graphs by enumerating the internal edges. The two-loop four
point diagram in Figure 2.4a can be expressed as the necklace of nodes

(k1, —e1, —eg), (k2, —e2,€1), (€2, €3, €7), (—€3, ks, €4), (—es, —€4, Ks), (€6, —€7,€5) .

To get the ordering of the external momenta one simply collapses the nodes with
matching in- and outgoing edges

{ (kl, kz, e), (—e, k3, k4)} - { (kl, kz, kg, k4)}

The translation from node representation to edge representation is straightfor-
ward, and necessary to visualize graphs in Mathematica. Every vertex is labelled
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ko e €3 ks ko €2 €3 Ks
-« - »- > (sz) — (Vz) — (V3) — (V4) — (Vks)
ey ey sy €1 e7 €4
< < > > (VK1) — (V1) —(vs) — (V5) — (Vvka)
ki € 2 Ka ke €6 e K
(a) Node representation. (b) Edge representation

Figure 2.4: Four-point two-loop ordered graph with external mo-
menta ki, ko, ks and Ka.

vi, where i € 1, ..., m and m is the number of internal vertices. Drawing graphs in
Mathematica requires that external eges are also specified, so these are labelled vk;
where j € 1, ..., n for an n-point graph. Every edge is then specified as the connection
between two vertices. As an example, an edge in Figure 2.4a could be represented as

e1: Vo - € vy,

The full graph representation (vertices and edges) of the graph in Figure 2.4ais shown
in Figure 2.4b.

Ordered graphs

Given an amplitude of multiplicity n with color-ordering ki, ko, K3, ..., ka, We can
generate all contributing tree graphs using a relatively simple algorithm. Consider a
3-point amplitude given by graphs in the node representation

(K, kz, k3).

There is only one graph with the correct ordering. To find the next multiplicity
graphs, i.e. the four-particle graphs, we must add the fourth leg to the right of ks
and to the left of k.. This can be done in two ways

{(kl, kz, E), (—e, k3, k4) } , {(k4, kl, e), (—e, kz, k3) },

so there are two graphs that contribute to this color ordering. We can continue in
this way for five-point, where we find there are five distinct graphs, by always adding
the new leg to an internal propagator or external leg to the right of the last leg, and
to the left of the first leg.

Unordered Graphs

We can go about finding all graphs that contribute to an unordered amplitude in
a few different ways. | will here go through the method that will later allow us to
generate all the unique graph topologies that contribute to a given amplitude. Let
us take the four-point amplitude as an example. In the previous section we saw that
we can generate one of the four-point graphs by simply adding the fourth leg to a
three-point amplitude. By considering the internal edge of the four-point graph as a
Mandelstam s-channel (where s = (a + b)?), we can define operators 0 and t that
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change the graph connectivity from an s-channel to a u- and t-channel, respectively,

b c

(2.14)

a d

We now have three graphs in stead of one. Now, we apply the t and 0 operators on
one of the new graphs, thereby generating new graphs. The algorithm continues in
this fashion until no new graphs are generated.

We can do the same thing for amplitudes with massive particles. Consider the four-
point amplitude with one massive particle, and one massless particle. As shown in
Figure 2.1 we allow three-point interactions between the massless particles, and two-
massive-one-massless interactions. That is, we do not allow massive contact
terms®. We consider one of the four-point graphs for this amplitude, and use the O
and toperators to generate the new graphs

(2.15)
b c

b ca/a d
a df\

a d

Note that the internal edges of the graphs generated by the t and O operators are
now massive. When using these operators on graphs with massive particles, we must
take into account the allowed vertices, and allow the massive lines to flow through the
graphs in a consistent way. Take as an example the massive four-point tree with two
massive particles of distinct mass*. Using the t and O operators in this case yields

SThis could of course be changed to consider a different theory, which would admit other graphs.
*Or graphs that are distinguished by some other quantum number.
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graphs that require vertices which we do not permit

> < \ i . (2.16)
\ C

Therefore, there is only one graph that contributes to the unordered amplitude for
two massive scalars at tree-level.

The method decribed above can be used to find something even more useful than
the graphs of an unordered amplitude — we can use it to find all the unique topologies.
Consider the two graphs generated on the right-hand side of Equation (2.15). These
are in fact two versions of the same type of graph, or topology, with differently labelled

legs
a b b a

N~ > e

d c d c

To this unique topology we can assign a kinematic numerator ni, which goes into
Equation (2.1) and is a function of the external legs of the graph. In the above
case we would then have ni(a, b, ¢, d) and ni(b, a, ¢, d). We can now go about finding
all unique topologies in a similar way as graphs — by using the 0- and f-operators
to generate new graphs until no new topologies show up. This might seem trivial,
and at four-point and five-point it can in fact be done as a quick back-of-envelope
calculation, but as we move to higher multiplicity and loop-level it might be less
apparent whether two graphs are equivalent. For this purpose we must find all graph
isomorphisms.

If two graphs are isomorphic, there exists a map between their vertices that can
transform one graph into the other. Consider again the example in Equation (2.17),
these two graphs are isomorphic because we can use the map

{a->b, b-a} (2.18)

to transform one graph into the other. In contrast, there is no relabeling of vertices
that can transform the graph on the left-hand side of Equation (2.15) into either
graph in Equation (2.17).

2.5 Unitarity cuts with graphs

Now that we have established tools for representing graphs and introduced unitarity
methods, we can look at unitarity cuts in terms of graphs. We consider as an example
an ordered two-particle cut of a one-loop five-point amplitude, with two massive
particles of different masses m: and mz, and an emitted massless particle. For this cut
we put the two internal massive propagators on-shell, which means the integrand
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Figure 2.5: Graph representation of a unitarity cut of the one-loop
five-point amplitude.

factorizes into the following product of tree amplitudes

cut
A%—Ioop(amz, bml , le , d, emz)l — Atreeﬁam21 bm11 |511 |512) )

S1,52

x APee(—[2, — 5% c™ d™ e), (2.19)
where the sum is over the possible states s; of the loop momenta li. For this particular

cut there is only one possibility for the crossing states, as these have to be scalars® of
a certain mass, so the sum is trivial

AL, b ™ d, ey = AT, b I 1)
X Agee(—In2, —IT, c™, d,e™). (2.20)

This cut is illustrated in terms of graphs in the first line of Figure 2.5.

The right-hand side of Equation (2.20) is simply the product of two on-shell tree-
level amplitudes. In general we want to use this product to extract information about
the integrand AtL'°°P. We can find the right hand side of Equation (2.20) by writing
down the full mtegrand and then imposing the cut conditions I = m?and I> = m?.,
However, it is often the case that the right-hand side is not known and we Want to
attribute the information of the trees to the loop integrand. We can do this is in an
effective way using the graphs that contribute to the tree amplitudes. The ordered
four-point amplitude in Equation (2.20) has a single contributing graph, while the
five-point amplitude has three contributing graphs. These are shown on the second
line of Figure 2.5, separated by a dashed cutting line. By sewing together the cut legs

5So there are no helicities to sum over.
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of the four-point graph with the three possible five-point graphs, we obtain the three
one-loop graphs that contribute to this cut, shown on the third line of Figure 2.5.
We can now write Equation (2.20) as a sum over these graphs, with cut conditions
imposed

b C O b O
n d n d
Ua

Al-loop(a, b, c,d, e)jcut = l2

1l +
. 1 0 0
+ 11 +|2—1 + + 11 C—Ih1 + e
(]

nb Cno
n L d
0, e O

+ 2.21
(b+1)%(c—1)*(c+d— 11)2’( )

where mass superscripts have been suppressed, and the loop graphs are dressed with

kinematic numerators and the uncut propagators. This way we can probe and deter-

mine the one-loop graphs by using on-shell tree amplitudes, which will be central to
the methods presented in this thesis.

2.6 Representing kinematics

We have so far focused on the gauge structure and graph composition of the general
amplitudes described in Equation (2.1) and the double copied amplitudes in Equa-
tion (2.8). Finding the color factors of an amplitude and its contributing graphs are
usually not the most difficult parts of expressing an amplitude: most of the work
is put into findig the kinematic graph numerators, to which the main body of this
thesis is dedicated. These kinematic expressions can be described in various forms
depending on the dimension D in which they are given, and the two most relevant
cases are the four-dimensional and the general D-dimensional forms.

2.6.1 Kinematics in four dimensions: The spinor helicity formalism

In four dimensions we use a clever formalism called the spinor helicity formalism,
which is convenient for many purposes. As almost all fermions are ultra-relativistic
inhigh-energy collider experiments, they behave as massless particles. Helicity isthus
conserved for particles interacting under a gauge group. Vector particle helicity is
not conserved, but most helicity violating processes turn out to be zero at tree level.
To exploit the massless helicity states, we use the two-dimensional Weyl spinors
to represent kinematic variables. The traditional four-momentum k' is now repre-
sented by two spinors, u«(ki) and u-(ki). The spinors are right- and left-handed,
respectively. The massless spinors can be chosen in the following way

0 v O Oov_ O
vk e
1 1 oo+
. N—gitx 0 Vi k 0
v = v ~
w)=v-=v, o, * u-()=va) =V,

k—ei#« k+
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where

i KE K

O k= = KO = 1.

e

For simplicity we use a braket representation for the spinors, where

ue(k) =v—(k) =i ,  u=(k)=v(k) = |il, (2.22)
Ue(ki) =v=(k) = [i|,  G-(k) = Va(k) = i|, (2.23)

where the v+ (ki)’s are the negative energy solutions, which are indistinct from u=(k;)
for k¥ = 0. The spinors solve the massless Dirac equation

Kiuz(ki) = K;|it =0, (2.24)
and we can use them to build the Lorentz invariants

ij =u0-(k)u+(kj), (2.25)
[ij] = U+ (ki)u-(k;), (2.26)

which we can think of as the square roots of the momentum invariants, up to a phase
ij [ij] = (ki + kj)? = sij. (2.27)

We also have the following relations between spinors

anti-symmetry : [ij1 = —[il, ij =—ji, (2.28)
four-momenta : i|lpH[1] = 2k¥, (2.29)
n
momentum conservation : ij [ji]=0, (2.30)
=1
Schouten identity : ij kIl — ik jl =il kj, (2.31)

and the projection operators

1 5

lp [p] = (1 +7°)P (2.32)
1

Pl pl =5 (@ =P (2:33)

Massless gauge bosons

The spinor helicity formalism also provides a simple way of representing the polar-
ization vectors of massless spin-1 particles, such as gluons. The polarization vectors
are represented by the four-momentum of the boson, k", and a reference momentum,
p", that factors out of the final amplitude. The polarization vectors for positive and
negative helicity gluons are

ki 8
E-(k“;q“) = iﬂ, E+(k“;q“) =i / lf] . (2.34)
2[qgk] 2 gk

This representation allows us to simply express amplitudes with external gluons,
which could otherwise be a tedious (and at times impossible) task.
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Maximally helicity violating amplitudes

As an example of an amplitude with external gluons, consider the four-gluon tree
level amplitude

AL 2232 4%),

where v; indicates the helicity of the gluon with momentum ki. Investigating the
different helicity combinations we find that the only non-vanishing amplitude has
two positive and two negative helicity gluons [59]

Atreee(l+2+3+4+) =0’
Alreee(1-2%3%4%) = 0,
Aleee(1-2-3%4%) /= 0.
Gluon amplitudes with two negative helicity gluons are called maximally helicity

violating (MHV) amplitudes, and can be written in a surprisingly simple form using
spinor helicity

12
12 23 34 41°

Alreee(1-2—3%4%) =

The MHV amplitudes are also called Parke-Taylor amplitudes, and the general form
for a color-ordered n-gluon MHV amplitude is

H
Atree(1+ i j ,.am )= ———4 o (2.35)

Amplitudes with exactly two positive helicity gluons have a similar form, and are
called the anti-MHV amplitudes (MHV). They are expressed using square brackets
defined in Equation 2.26

reecq— i+ i+ N — [ij]*
Aree(1-, it L)t mT) = (210231 — L miim 1]’ (2.36)

Note that for the 4-point case, the MHV and the anti-MHV are the same.
Amplitudes with more than two negative helicity gluons are named according to
their ‘proximity’ to the MHV amplitudes. For example, the amplitude with three
negative helicity gluons is called the next-to-MHV amplitude, and denoted NMHV.
Similarly, the amplitude with k+2 negative helicity gluons is the NMHV amplitude.

Massive states

The spinor helicity formalism can also be used to describe massive states. The de-
scription given here, in particular of massive scalars, will follow [64] closely, although
a more general formulation can be found in [65]. Amplitudes with massive scalars are
related to amplitudes with massless scalars in D dimensions. The massless condition,
P5= 0, gives the four-dimensional mass-shell equation P ; = m?, where m? comes
from the D — 4 extra dimensions of momenta.

We will build amplitudes involving gluons and massive scalars from the three-
point vertices using on-shell recursion®. The all-gluon three-point on-shell vertices

SRecursion is not described here, but several good descriptions can be found, e.g. in [66].
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can have helicity configurations (— —+)(MHV) or (+ + =)(MHV), and are given by

tree — — + 12 3 tree ++ — [12]3

As (12 3)= g7 A; (123 )= 23R (2.37)

assuming complex momenta k;.
To find the three-point amplitudes involving scalars, such as Af*¢(1°, 2*, 2°), we
begin with the vertex rule for a gluon, a scalar and an anti-scalar

s M S TR
where ps1 and psfzare the momenta of the scalar and anti-scalar, respectively, and k"

is the momentum of the gluon. To get the three point amplitudes we contract the
vertex rule with the gluon polarization vector given in Equation 2.34,

AtreE(ls 2+ 35) =Q.I, M
3 i) 1 1

g2
2| p1/d]
Atee(1s, 2— 3%) = ——+ HLAL
5°( ) [02]

where g is the reference momentum of the gluon. Note that the amplitude is still
gauge invariant, in spite of the appearance of q in the expression. We can see this by
exchanging the polarization vector with the momentum &*(p2, q) = p ,and imposing
conservation of momenta (pz + p1)? = p> = g1 - p2 = 0. Using the three-point
amplitudes and recursion relations we also get the four-point amplitudes for two
gluons and two massive scalars [64]

tree s + + 45) . m12[23] (2.39)
A 1,2,3 =1 ) .

4 ( 23110

tree s + — s 3| 1|2]2
Ar (1,2,3,4)=i ¢4 —, (2.40)

where tjj = 2pi - pj and p| P|q] = Pup| »*|ql.

2.6.2 Kinematics in D dimensions

When calculating kinematics in amplitudes in D dimensions we resort to Lorentz
products. All amplitudes are expressed in terms of D-dimensional momenta p" and
external polarization vectors &

Pi-pi ., Piv& o, &icE, (2.41)

where & = ¢(pi) is the polarization vector of the particle with momenta p;.

The spinor helicity formalism is very useful for representing complicated kine-
matics in four dimensions, but when we extract information about loop amplitudes
from unitarity cuts some information is lost if we only consider the results in four
dimensions. This thesis will be focused on amplitudes where at least some of the
external particles are massive. However, even in physical processes where external
particles are massless, we cannot ignore massive contributions that could for example
appear in loops at energies close to the mass threshold. We can find the massive
loop contributions using unitarity cuts as described above, up to rational terms that
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do not appear on any four-dimensional cuts. These rational terms can still be de-
termined by knowing the form of the integrals that contribute to the amplitude, as
described in [61]. Recall that in one-loop integrals we use dimensional regularization
to get rid of divergences. That is, we integrate over D =4 — 2E dimensions, where
E is a small perturbation. In massive theories, this means we can have polynomial
ambiguities proportional to factors of the form (K?)—F, where K? is some kinematic
variable. For massive particles these terms become proportional to m=25, which can
soak up dimensions and become terms that are not visible on any four-dimensional
cuts. When dealing with massive loop amplitudes it is therefore especially useful to
have the D-dimensional form of the kinematics.
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Chapter 3

Loop-Level Double-Copy for
Massive Quantum Particles

We find that scattering amplitudes in massive scalar QCD can manifest the dual-
ity between color and kinematics at loop-level. Specifically we construct the one-loop
integrands for four-point scattering between two distinct massive scalars, and the five-
point process encoding the first correction to massive scalar scattering with gluonic
radiation. We find that factorization and the color-kinematics duality are sufficient
principles to entirely bootstrap these calculations, allowing us to construct all con-
tributions ultimately from the three-point tree-level amplitudes which are themselves
entirely constrained by symmetry. Double-copy construction immediately provides
the associated predictions for massive scalars scattering in the so called N = 0 su-
pergravity theory.

3.1 Introduction

Traditional methods of calculating quantum gravitational scattering amplitudes us-
ing Feynman rules quickly run into difficulties. There are two aspects to Feynman
rule gravitational calculation that conspire to cause trouble. First, off-shell Feyn-
man rules for gravitation are large and unwieldy, and have contact terms for every
multiplicity of interaction. Second, the scattering amplitudes involve a factorially
growing number of local graphs — either as multiplicity or loop level increases. The
former trouble can be alleviated by using unitarity methods — the idea that one
should only ever write down on-shell physical expressions when constructing predic-
tions. The latter can be mitigated by exploiting the double-copy structure to consider
smaller building-blocks of physical predictions relevant to gravity, which are easier
to calculate in gauge theories. We will take advantage of both of these approaches
to calculate D-dimensional scattering amplitudes in the N = O supergravity theory
through the integrand of one-loop five-point scattering between two distinct massive
scalars with emitted gravitational radiation. In the classical limit this will describe
the gravitationally radiative correction to the scattering of scalar black holes. We
will do this by bootstrapping D-dimensional predictions in massive scalar Quantum
Chromodynamics (QCD).

Unitarity cuts [4] allow for the integrands of incredibly complicated loop-level
predictions to be verified systematically and invariantly with compact on-shell tree-
level data. Better yet, they allow for a principled fusing [60, 61] of tree-level data
into multi-loop integrands. This is true independent of presence or absence of su-
persymmetry, independent of number and representation of colors, or flavors, and
independent of number or type of massive particles. Ref. [9] inverted the verification
of generalized unitarity cuts [5, 62, 63] towards a constructive approach that was
ansatz free (cf. [67]), an approach called the method of maximal cuts. This does not
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mitigate the factorial explosion in graphs, but it means every stage of construction
need only deal with a subset of graphs, and only their compact on-shell expressions.

Double-copy structure is more subtle, but may ultimately prove just as useful
for higher order corrections to phenomenological gravitational scattering. We have
known since the 1980s, from string theory limits, that color-stripped gauge theory
semi-classical (tree-level) amplitudes encode gravitational amplitudes [68, 69]. This
realization is often informally referred to as the idea that “Gravity is the square of
Yang-Mills.” Bern, Carrasco and Johansson, discovered a local graphical story (BCJ)
relating these predictions [7], called double-copy construction, one that generalizes
straightforwardly to quantum (multi-loop) corrections [8] at the integrand level.

The key idea behind double-copy construction is that for gauge theory predictions
(by definition containing both color and kinematic components), one can find repre-
sentations where term by term kinematic weights obey the same algebraic relations as
generic color weights. Such kinematic weights are said to be color-dual. This makes
dynamics and charges interchangeable and indeed realizes graviton (spin-2) scatter-
ing, in asymptotically flat space, as gluonic (spin-1) predictions whose charges are the
kinematics of gluons (spin-1). This offers a profound calculational advantage even for
gauge theories. Because of the rigid algebraic rules locking the kinematic weights of
each graph, only a small fraction of the graphs need to be dressed functionally, and
all other local graphs inherit that dressing. Color-dual loop-level construction has
largely occurred only in massless theories (or those where mass can be clearly associ-
ated with the dimensional reduction of a massless higher-dimensional theory). Here
we make the novel demonstration that loop-level massive integrands in scalar-QCD
admit color-dual descriptions. This is a non-trivial step towards color-dual loop-level
massive quark amplitudes.

In four dimensions there are two physical states for every gluon, so one should
expect four physical states in the double-copy (the outer product of gluonic states).
As (in four dimensions) gravitons also have two physical states, this means the natural
double-copy in four-dimensions accounts for additional states beyond gravitons. In
D dimensions the double copy of gluonic states means tracking (D — 2)? states (see
discussions in [70] and references therein). Indeed, besides a graviton ((D(D — 3)/2)
states), naive double-copy amplitudes generically will have a dilaton (1 state) as well
as anti-symmetric tensors ((D — 2)(D — 3)/2 states) contributing to loop-predictions
for massless external states. In gravitational double-copy amplitudes for massive
external states, even at tree level, one can generically expect the contributions of
dilatons [71]. This state counting and attribution naturally fits in with the states
that contribute to supergravity theories, which is why the naive double-copy of pure
Yang-Mills is often called N = 0 supergravity. This theory involves Einstein gravity
coupled to a scalar field (known as the dilaton) as well as a two-form (often called
the Kalb-Ramond field)—understandable as an axion in four dimensions. Indeed the
amplitudes presented in this chapter double-copy to massive scalars coupled to the
N = 0 supergravity theory. Although it does not concern us for the purposes of this
chapter, it is worth pointing out that for pure gravities with less than half-maximal
supersymmetry, including pure Einstein-Hilbert gravity, there are various strategies
for projecting out such extra-gravitational double-copy states (see eg. [39, 72, 73] and
references therein).

Besides inviting a calculational virtuosity in gauge theories, there have been many
motivations for studying quantum gravitational scattering amplitudes. One recent
driver of the field has been to understand the ultraviolet behavior of supergravity
theories. This question is indeed responsible for the discovery of the duality between
color and kinematics, as well as the associated double-copy construction, and has
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benefitted from it in return — see e.g. [8, 74-84]. Even pure gravity manifests many
unexpected cancellations beyond naive powercounting [85], suggesting that only a
little help in the ultraviolet may be sufficient for perturbative finiteness. The advent
of precision gravitational wave observation has provided a new urgency to discovering
whether or not the simplicity in quantum gravitational gauge-invariant observable
calculation can be applied to classical gravitational observables (see e.g. refs. [10—
47]). Recent work has shown that multi-loop scattering amplitudes encode higher-
order corrections to classical observables. Indeed the highest order correction in the
gravitational coupling, Gn , (often called post-Minkowskian [PM]) to conservative
Black Hole binding energy (3 PM) was only made within the past couple of years and
centered amplitudes insights (see [38, 39] and references therein). This calculation
required the classical remnant of the two-loop four-point scattering amplitude between
two massive scalars.

Optimizing for the classical result, refs. [38, 39] exploit double-copy construction
at tree-level, building the classically relevant gravitational integrand using unitarity
methods from double-copied gravitational trees. The approach we present here is
complementary. All unitarity construction occurs for the gauge theory only. The
subsequent gravitational loop-level integrand arises from double-copy directly. In
conjunction with an appropriate classicalization procedure, this approach offers in-
teresting possibilities. By lining up simultaneous classical Yang-Mills and Gravita-
tional gauge-invariant observables where the duality between color and kinematics is
manifest, one may hope to resolve ambiguities around applying double-copy directly
in classical construction. We leave associated extraction of classical predictions from
the quantum integrands presented here to future consideration.

We will begin our bootstrap at tree-level in Section 3.2 where we will find sym-
metry considerations alone completely fix the three-point amplitude, and higher mul-
tiplicity are entirely constrained by factorization and the color-kinematics duality.
Similarly we will only need to exploit these principles to construct our loop level re-
sults at four-point one-loop in Section 3.3.2 and five-point one-loop in Section 3.3.3.
We conclude and present next steps in Section 4.5.

3.2 Bootstrapping Tree Amplitudes

The calculational setup for arriving at the tree level amplitudes in scalar QCD will
be a bootstrapping method that takes advantage of factorization as well as the color-
kinematics duality relations to fix kinematic ansatze for the graphs that contribute
to a given amplitude. Let us sketch in general how such a calculation proceeds, then
consider specific calculation of relevant tree-level amplitudes needed to constrain via
factorization the loop-level amplitudes we will eventually construct.

In general there will be some set of graphs I" contributing to a tree-level amplitude
of a given multiplicity with particular external legs. The graphs and color-kinematic
relations between the numerators can be generated simultaneously. As is standard
in massless theories in the adjoint, one can introduce an operator that takes an edge
of a graph, and returns a different graph which is identical to the first graph except
for the rearranged connectivity about the originally specified edge, as illustrated in
Figure 3.1. Briefly summarized, a t'-operation takes an internal edge in a trivalent
graph as a Mandelstam s-channel subgraph, and rearranges the connectivity to a
Mandelstam t-channel subgraph, while holding all other legs fixed. Similarly, the 0-
operator rearranges an s-channel to a u-channel subgraph. So given an edge of one
graph, one can understand the potential three-term identities it contributes to by
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Figure 3.1: Graph manipulation operators that rearrange one in-
ternal edge’s connectivity. This is useful for specifying Jacobi-like

relations, e.g. ¢(g) = c(fg) + c(0g).

simply considering for each edge: n(g) = n(t° g) + n(0 ° g). By tracking any novel
topologies introduced into a graph set by these operators, one can start with one tree-
graph and generate all cubic graphs relevant to that amplitude simultaneously with all
requisite color-dual kinematic constraints by operating on every edge of every graph
until closure.

Once all the graphs of an amplitude are determined, the set of graphs can be
arranged into a number of distinct topologies with different labelings. Each topology
is assigned with a numerator function ni(ka, ..., km), which encodes all the kinematics
of that specific topology, and is fully determined by the order of the m external legs
(K1, ..., km). The generated color-dual kinematic relations then become a system of
equations between the numerator functions, which we can solve for in terms of the
kinematic weights of basis graph topologies. All numerator functions can then be ex-
pressed as linear combinations of the basis graphs relabeled with different arguments.
The kinematic weight of every basis graph topology is given an ansatz consisting of
kinematic products of momenta and polarization vectors, depending on the ampli-
tude in question. For example, consider the purely gluonic amplitude. For such an
amplitude there is only one such basis graph at every multiplicity at tree-level, the
so-called “half-ladder”” or multi-peripheral graph. All other topologies follow from t
operations (the color-order preserving whitehead move) away from the half-ladder.
The 0 operator on a half-ladder simply takes one to a half-ladder with permuted
leg-label arguments. This means for each multiplicity at tree-level for purely gluonic
amplitudes, one need only supply an ansatz to a single topology. We will see in
various cases how this may change when we allow a combination of external massive
scalars as well as glue.

To constrain the coefficients of the ansatze given to the basis graphs, we consider
the relabeling symmetries — or isomorphisms — of each topology. The set of all sym-
metries of all graphs, along with the kinematic duality relations which are not trivial
after solving for the basis graphs, constrain the ansatz coefficients. One should note
critically — these are operations simply between functional numerators, not the facto-
rial expanse of entire amplitudes nor even the relative exponential expanse of ordered
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amplitudes. Any remaining parameters for this theory can be entirely constrained by
factorization by considering all cuts of any single-propagator from all of the graph-
topologies. This color-kinematic bootstrap begins at the three-point tree-level. For
scalar QCD amplitudes, these are entirely-fixed up to the coupling constant by mass
dimension and anti-symmetry. It should be noted, this means that for Yang-Mills
amplitudes: factorization with color-dual kinematics encodes gauge-invariance.

3.2.1 Three-point trees

Let us consider first the purely-gluonic three-point amplitude. If it has a chance of
being gauge invariant, every external polarization must appear in each term once and
only once. As all external legs are on-shell, conservation of momentum means any
inner product between any two external momenta must vanish. The Yang-Mills mass
dimension allows us only three potential monomials in our basis:

n3(k1, ko, k3) = al(k3 . El)(az . 83) + az(kg . 82)(81 . 83) + ag(kz . 83)(81 . 82) . (3.1)

Antisymmetry immediately constrains our ansatz via: az; = —as, and ax = as. We
are left with only one free parameter a3z which can be taken to be the gluonic coupling
g appropriately scaled, fixed to canonical normalization by comparing with Feynman
rules in a particular gauge (c.f. Feynman rules in e.g. refs. [58, 87]), or set to unity,
absorbing coupling constants in the definition of full amplitudes, and a phase in the
definition of ordered amplitudes. We choose the latter to minimize the complexity of
kinematic numerator weights.

Next, to complete the three-point amplitudes for scalar QCD we need only con-
sider the three-point amplitude with one external gluon and two external same-mass
scalars. Again we are not allowed any inner-products between external momenta,
and we only have one polarization. The mass-dimension means we can only write
down a single inner-product, fortunately it itself is anti-symmetric via conservation
of momenta: ki - e3= —kz - e3as ks - &3 =0, yielding:

ns,z(km, kn;, k3) = al(kl '83) . (32)

Here, once again, we can take a1 to be the coupling constant suitably normalized, or
as is our convention we will set a1 = —1, having pulled the coupling constant into
the definition of the full amplitude. We have written down all three-point ampli-
tudes purely by considering mass-dimension and anti-symmetry up to normalization
convention. Everything else will follow through loop-level by simply considering fac-
torization and the duality between color and kinematics.

3.2.2 Four-point trees

At four-point tree level in scalar QCD there are three distinct amplitudes. The
two distinct amplitudes that involve external masses: one with one pair and one
with two pairs of massive scalars respectively, are illustrated in Figure 3.2. The third
amplitude, the purely gluonic amplitude, is not required for our one-loop construction
so we do not report on it here, but it follows by the same bootstrap method we apply
to these massive scalar amplitudes.
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() Massive scalars scattering (b) Massive scalar scattering off

gluon

Figure 3.2: The four-point tree amplitudes in scalar QCD.

Two massive scalars

The ordered four-point tree-amplitude for two pairs of massive scalars can be easily
computed with a simple product of the three-point color-ordered Feynman rules [58,
87]. The result, up to normalization and phase, is given by
ki —kj) - k
Atree (K™, K™ kM2 kM2) = w
4,2 (Feyn.) 1 2 3 4 2(k1 + k2)2

(3.3)

In this section we will introduce the bootstrapping framework amplitudes to recon-
struct this amplitude — overkill in this case, but as we will see this technique is quite
generalizable and indeed takes us to loop-level.

Bootstrapping the two pairs of massive scalars four-point amplitude

Writing down the graphs that contribute to the two massive scalar pairs amplitude,
we see that one graph topology, or graph type, appears. The topology has a massless
propagator, and for canonical external legs (a, b, ¢, d) is given the kinematic numerator
function

b c

>Lm< =naz(a, b, ¢, d). (3.4)

a d

We note that this is the only graph that contributes to the amplitude, but to maintain
bose-symmetry of the full-amplitude this kinematic weight must obey the same (anti-
)symmetry properties as it’s color weight with both massive scalars dressed in the
adjoint.

We will now give an ansatz to the numerator function in Equation (3.4). The
graph has no external gluons, so the ansatz will consists solely of Lorentz products
of momenta,

Na2(a, b, ¢, d) = aitay + aotop + astoe + aatee, (3.5)

where ti; = (ki - k), and o are the free coefficients of the ansatz.
We determine some of the coefficients in Equation (3.5) by using the isomorphisms
of the graph in Equation (3.4). The isomorphisms are expressed as relabelings of the
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numerator function

Na2=—n42(b,a,c,d),
Ns2 = —nNa2(a,b,d,c),
Ns2 = na2(b,a,d,c),

Ng2 =—nNg2(c,d,b,a),
Na2 =—ny2(d,c,a,b), (3.6)
Ni2 = na2(c,d,a,b), Nz2 = Na2(d,c,b,a),

where we have suppressed the canonical arguments (a, b, ¢, d) on the left-hand side
of each equation. Writing out the symmetry relations in terms of the ansatz in
Equation (3.5) fixes three of the coefficients

_ 23
a4 =0, ar=ax ~ ;' (3.7)

and the numerator function is determined up to an overall factor
_“ )
n4,2(a’ b, ¢, d) _ftab +top +2tpc . (3.8)

The numerator in Equation (3.8) now obeys the symmetries of the graph for this
amplitude. The overall factor as is completely determined by considering the cut of
the only propagator in the ordered amplitude,

Atree(g™ ™ c™2 dm2) = M

42 (a+ b)?

(3.9)

Satisfying factorization means that the sum over on-shell physical (cut) gluonic states
of the three-point amplitudes is equal to ns; evaluated under the cut condition:

A3’2(am1 , bml , IS)A3'2(—|ST Cm21 dm2) = n4’2(a, b, C, d)l(CaU;[_B) =0 (310)
sEstates

The sum runs over the polarization states of the D-dimensional polarization vectors
and is given (e.g. [39, 70, 88] and references therein) by the physical state projector

, q"p” + ptg”
P, @)= oH(=pe’(p)=n"— ———
pols. q-p

(3.11)

where q is an arbitrary null reference momenta. Any such reference momenta must
cancel out of any physical expression once the cut conditions and conservation of mo-
menta have been imposed. It turns out for the cuts we consider in this chapter, when
each side is dressed with color-dual kinematic weights, the above general projector is
equivalent to a much simpler gauge-dependent projector,

e"(—=p)e’(p) = ™" (3.12)

pols.

This projector is a gauge-dependent choice, so if ever used in construction its appro-
priateness must be ensured (c.f. [88]) or all gauge-compatibility must be verified via
comparison with the above general projector (or equivalent constraints) as we have
in this chapter on a cut-by-cut basis. This completely fixes az = —1, matching via
bootstrap exactly what is given by Feynman rules in Equation (3.5). The numerator
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function is therefore
1( )
na2(a, b, c,d) = > ab +1tob +2thc . (3.13)

The functional ordered amplitude for two massive scalar pairs at tree level fol-
lows from simply dividing the kinematic numerator by the single graph’s massless
propagator.

One massive scalar

The amplitude for one massive scalar pair scattering with a gluon represents a more
lively application of bootstrapping approach, as it requires contributions from two
distinct graph topologies whose kinematics are related by a color-dual identity. The
relevant topologies are distinguished by whether the propagator is massive, M , or

massless, M ,
c d
M M
=ny{a,b,c,d), (3.14)
b a

d a

>&ﬁ4§i = n"{a, b,c,d). (3.15)

c b

It suffices to consider only one of the duality equations in order to identify a basis
graph: B
nY(a,b,c,d) =n"%ga,b,c,d) —n"(b,a,c,d). (3.16)

As n"}:'l can be expressed entirely in terms of n™ 4yve identify M as the basis graph
and proceed to develope a kinematic ansatz for its numerator weight, n}{f'l.

As shown in Equation (3.14), two of the external legs are gluons, so the ansatz
will contain products of their polarization vectors. Each polarization vector appears
once, and only once, in every term. We therefore apply the following ansatz

(
N (a, b, ¢, d) = “aatar + catoe + astec tog, + catie tas,

+ aStCSata{:b + aetbgatcgb + a?tcgatcgb y (3. 17)

where a; are the free coefficients of the ansatz, and ¢, = &(p) is the polarization
vector of the particle with momenta p.

Similarly to the previous amplitude, we identify the isomorphisms of each of the
contributing graphs,

Yi=-nY{bacd), n}=n%(badc)

HE_ = —nﬂa,b,d,C), n2{|1 = nl\z/lllib!awd!(:)v

n
(3.18)

where we have again suppressed the canonical arguments (a, b, ¢, d) on the left-hand
side of each equation. Constraining the single ansatz in terms of these relations offers

o5 = o7 — 0. (3.19)
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(a) Massive scalars scattering with (b) Massive scalar and gluon scatter-
emitted gluon ing with emitted gluon

Figure 3.3: The five-point tree amplitudes in scalar QCD.

To constrain the remaining coefficients of the numerator function one imposes
factorization constraints as we did for the two-pairs of mass case considered earlier.
This yields,

o1=az=as =0, as=o7 =2, ax=-—1. (3.20)

The basis numerator weight for the scattering of a massive scalar and gluon is then

1
nxl(a! b, C1 d) = tCSb (tbea + tCCa) - 2tth8a8b ' (321)

The resulting ordered amplitude follows,

ny{a, b,c, d) N n't(a, b, c,d)

(b+c)2 —m? (a+ b)?
(tba + tce: )tca - ltthS &
— a a b 2 a

(b +c)2 —m?
e tcsb — tee taeb + lz(tac — tbc) t%ﬁ

a @+ by

Azrele(a, b,c™, d™) =

b

. (3.22)

The ordered amplitudes for a massive scalar and gluon scattering are known for
explicit helicity configurations in D = 4 spacetime dimensions. It is a useful exercise
to compare our D-dimensional amplitude with appropriately chosen polarizations
with the two independent four-dimensional amplitudes of ref. [64].

3.2.3 Five-point trees

At five-point tree level we again consider two distinct amplitudes with one and two
massive scalar pairs, each now with an additional emitted gluon as shown in Fig-
ure 3.3. The amplitudes are bootstrapped using precisely the same procedure. The D-
dimensional form of these tree level amplitudes we arrive at will allow a simple
calculation of the unitarity cuts required for loop level.

Two massive scalars

We consider first the five-point amplitude with two massive scalar pairs. The graph
topologies for this amplitude are shown in Figure 3.4. We now distinguish between
the topology with two massless propagators (M ), and the graph topology with one
of the propagators massive (M ).

To identify a basis graph for this amplitude we write down one of the duality
equations,

n¥{a,b,c,d,e) =n'%¢a,b,c,d,e) — n“iga,c,b,d,e), (3.23)
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Figure 3.4: Graph topologies contributing to the amplitude for two
massive scalars scattering with an emitted gluon.

from which see the massless propagator graph’s kinematic weight, r@, can be entirely
expressed in terms of the M graph’s kinematics weight ng"z As such, we need only give
the basis numerator ng', an ansatz, which we will constrain via color-dual relations
and factorization. The rest of the amplitude follows directly. The ansatz is given in
terms of Lorentz invariants of all momenta, including the polarization vector of the
external gluon, labelled ¢(a) in our canonical expression, which should appear once
and only once in every term. We therefore begin with an ansatz of the form,

M _
n5’2(a, b,c,d,e) =ty a (a1tap + astac + o7lag + aqotpe + A13tee + a1pted + 19tdd)
+ tee, (aztap + astac + agtad + a11toe + aratec + ar7ted + a2otdd)
+ tae, (astap + astac + astad + a1otoe + austec + assted + o21taa) . (3.24)

The isomorphisms of the graphs in Figure 3.4 are

Y= —n"y@, b, ¢, e, d), n¥,= —nMa, d, e, b, c),
nM=—n"A(a, b, c, e, d), "™=nM1(a, d, ¢, c, b),

ngff —nMg@\, c, b, d,e), ng’é = n'gia, e, d, b, c),
ng, = ng4a,cb,ed),n?, =—n¥fa e dc b)),

(3.25)

where the canonical labeling (a, b, ¢, d, €) has been suppressed on the left-hand sides
of the equations.

After imposing the symmetry constraints, eight coefficients remain to be deter-
mined. The five-point ordered amplitude Agfz‘*(a, b, c, d, e) is given,

tree mi mi mz mz nM (al bl C1d1e) nM (al e’ dl b! C)
52 5,2
Aso (b ,c ,d e )

T (d +e)? ((a + b)2 — n%Z) (b + )2 ((a +e)2 — %2)
ns(a,b,c,d,e)
, . (3.26)
(b +c)?(d + e)?

where mzlis the square mass of the scalar particle b, ¢, and m? iszthe square mass of

the scalar particle d, e. Factorization involving one-particle cuts of both the massive
propagator and the massles propagator fixes the remaining coefficients.

The basis numerator function then takes the simple form matching results in the
literature [89],

1
n(a,b,c,d,e)="[tt +2tt +(tab+2t
al

+2t +2t + 4t3 t ], (327
52 Zab cea ab dea bc cc cd bea

c
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Figure 3.5: Graph topologies contributing to the amplitude for a
massive scalar and gluon scattering, with an emitted gluon.

and the massless numerator function is given

+t )+t (t +3t +2t )
C&a

a ab  bea cea dea

1
n*Ha,b,c,d,e)="[2(t +2t +1t)(t
5,2 Z bc cd cc be,

+tac (tb{;a+ 3tc{;a - 2td{;a) + 4tadtcga] . (328)

One massive scalar

The five-point amplitude with one massive scalar pair has three possible graph topolo-
gies, all shown in Figure 3.5. The topologies are distinguished by whether they have
zero (MM ), one (MM ), or two (MM ) massive propagators. To determine the ba-
sis graph under the kinematic algebra relations we need consider a subset of two
kinematic color-dual relations, suppressing arguments (a, b, ¢, d, ) on the LHS of the
equations,

n¥Y =n"¥(a,b,c,d,e) — n"¥(a,b,c,e,d), (3.29)

A= Y (a, b, G, d, &) — Y (a, ¢, b, d, €).

From the duality relations we see that MM can be selected as the basis graph, and
therefore proceed to give its numerator function a kinematic ansatz.
The amplitude has three external gluons, each of which should have a polarization

vector in every term in the numerator ansatz. We construct an 81 term ansatz for
n, from monhomials of the forms t;. ti. t. and t. ; t tmn.

i 1 n ij 1
The graphs in Figure 3.5 have the following isomorphisms

nyy = —n'54(a b, c,e,d), nyy = —n'54(a,c b,d,e),
n¥M = n¥M(a,c,b,e,d), N = —nMM(a, ¢, b, d, ),
n¥Y = —nMM(c,b,a,e,d), (3.30)

where the canonical labeling (a, b, ¢, d, e) has been omitted on the left-hand side of the
equations. Imposing the symmetries fixes 38 of the 81 coefficients of the ansatz, the
remaining physical 40 parameters are fixed by factorization involving only one-particle
cuts. It is amusing to note that three remaining unconstrained coefficients never show
up in a physical amplitude, representing residual generalized gauge freedom available
to this five-point color-dual representation. The resulting D-dimensional ordered
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b c

N~

Figure 3.6: The four-point loop amplitude for massive scalar scat-
tering in scalar QCD.

amplitude is given by

ATe(a, b, ¢, d™ &™) = n¥(a, b, c,d,e) N n¥{a,b,c,d,e)
>1 ((c+d)2—m?)((a+e)?—m?) ((a+e)>— m?)(b+c)?
n;"“l" (a,b,c,d,e) n“;'“f(c b, a, e, d) r%“‘f“‘fc b, a, d, €)

(b+o)2d+e)2  ((crd)2—m2)(a+h)2 (d+e)2a+b)?’ (3.31)

This amplitude can be numerically compared with the 4D amplitudes given in [64]*

3.3 Bootstrapping One-loop Integrands

3.3.1 Loops (Just like trees!)

Because the bootstrap approach — applied at tree-level in the previous section — is
functional in terms of graph topologies, we can apply it directly towards constructing
loop integrands. At loop level the role of tree-level one-particle factorization consider-
ations is replaced by more general multi-leg unitarity cuts. At one-loop the humerator
functions now take an additional argument compared to the same-multiplicity tree
level case, namely the loop momentum . The kinematic Jacobi-like relations are
used to find a minimal set of basis graphs, which are in turn dressed with ansatze
consistent with expected power counting. The ansatze are finally constrained using
the remaining kinematic Jacobi-like relations, symmetries of the graph topologies,
and a spanning set of generalized unitarity cuts.

Recall that the full gauge amplitudes will be given by Equation (2.1), and the
full N = 0 supergravity amplitudes given by Equation (2.8). The subsequent sec-
tions will be concerned with identifying the appropriate color-dual kinematic weights,
n(g), of each graph topology relevant to one-loop four-point, and one-loop five-point
amplitudes respectively.

3.3.2 Four-point one-loop construction

In this section we determine a color-dual representation of the four-point one-loop
amplitude for two pairs of massive scalars. The possible graph topologies of this
amplitude are shown in Figure 5.1, including the snail graph? and excluding tad-
poles. By inspecting the kinematic duality relations we find that we have some free-
dom in choosing the basis graphs for this amplitude. We will take as basis graphs:
nz(a, b,c,d, )and ni(a, b,c,d, ). The remaining numerator functions can be written

Werifying all of [64]’s five-point three-glue and two-scalar amplitudes, with a corrected relative
sign for the case where two of the external gluons are positive and one negative.
2We refer to graphs with a bubble on an external leg as snail graphs.
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Figure 3.7: Graph topologies that contribute to A°, °°P.

as linear combinations of these,

n3=ni(a b,c,d,c+d— )—n*a b, d c,c+d—),
n* Eni(a, b,c,d,c+d— ) +4n1(a, b,c,d,)
1 1
—ny(a,b,d,c,c+d— ) —ny(a,b,d,c, ), (3.32)
n%=n¥%a, c,d b,a— )+niacdb —b+),

nS= niab,cd)—dec —n¥acdb,),

where all kinematic numerator weights on the LHS of the equalities functionally take
arguments: (a, b, ¢, d, ), ]

The basis graphs nlsa, b, c,d,)and n3(?, b, c, d, ) are given ansatze, based on
power counting and the known form of tree level amplitudes in the previous section.
All external particles are scalars, and we expect to see a monomial of degree two
in Lorentz invariants per term. The number of independent monomials of the form
tavtca including inner products with loop momenta give 36 parameter ansatz for
ny. The basis numerator né js the same size, so the total number of free coefficients
is therefore 72. As with the tree-level amplitudes we impose symmetries and color-
kinematic constraints (see, e.g. Appendix 3.4.1), which fix 43 of the coefficients. This
leaves 29 coefficients to constrain via generalized unitarity cuts.

The unitarity cuts are performed using the tree amplitudes generated in the pre-
vious section. Three unitarity cuts will be sufficient to determine the physical part of
the numerators®, and they are illustrated in Figure 3.8. The first unitarity cut puts
two massless internal legs on-shell, and the second and third cuts put two massive
internal legs on-shell with distinct and equal masses, respectively.

The massless ordered cut in Figure gSa gets contributions %om n:, ni and n“‘,1
and can be written as graphs dressed with numerator functions and corresponding
propagator structures

1-loop my m ms v = n*a,b,c,d—-a—b—1)_ n¥d,c,a b a+b+l)
Ay e R0 = R G R (e S e e by

1,

=0 1 4 1 5
4 Na b, c, d,2|1) + (a d, I, 2y (3.33)

R AN K 1 . 3
3The numerators contain some generalized gauge freedom that cannot contribute to any integrated
expression.
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Figure 3.8: Generalized unitarity cuts on the four-point one-loop
amplitude.

where ml2 is the squared mass of the scalar a, b and mz is the squared mass of the other

scalar c, d. To determine coefficients, but also to verify the validity of our numerators
so far, this cut should be equal to the product of two four-point trees with one massive
scalar. We determined these tree amplitudes in the previous section, allowing us to
easily work out,

t
1-loo m m m m y St _ tree,_ m mi Sy S
Ay p(a b, e, 22_|12—>0_ A4‘1(a ',b 111I12! |2)
13-0 1,52

X A%~ —5L ¢™ d™2), (3.34)
where the sum is over the possible states of the gluonic cut legs |1, .. The sum
runs over the polarization states of the D-dimensional polarization vectors just as we
did when considering factorization at tree-level, so we can employ the same physical
projectors (e.g. Egs. (3.11) and (3.12)).

To further determine the coefficients of the amplitude we perform the massive cut
in Figure 3.8b. This cut only gets a contribution from the box graph, which is now
dressed in the following way

loop(@™ b™ ¢ dm2) et = nfab.cdl, _b) (3.35)
* om (b= 1)%a+ )2
2

On the tree side of this cut, we get a product of the four-point trees with two massive
scalars from the previous section,

11 cut
AP@™ 0™ ™, Moy o= As@™ L I ™)

12->m2

4,2

The cut legs are now massive scalars with only o¥eA fwd®statd® s6'the &Tate £3:36)
is trivial and the cut fixes five coefficients.

After the massive and massless cut we are left with 13 undetermined coefficients.
Some of these are fixed on the third and final cut shown in Figure 3.8c. This unitarity
cut puts two massive internal lines on shell, now of the same type. There are two
possibilities, I? = 12 = m?and I? = I> 3 m?, and we need only consider the latter, e.g.
1%, 15 = m% Once this set of cuts is satisfied it fixes an additional eight coefficients.

*We are free to consider cuts where we fix the mass of the particle crossing the cut.
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Because of the symmetry of the amplitude and the individual graphs, the correspond-
ing unitarity cuts with 17 = I2,= m? s also satisfied but puts no further constraints
on the ansatz. Finally the amplitude numerators are determined up to five free co-
efficients, which represent generalized gauge freedom that cannot contribute to any
integrated expression.

It is worth discussing this last cut in a little more detail. What do we mean by
an ordered four-point tree when all external scalar masses are the same? This is the
only distinction for one-loop four-point that occurs depending on when we allow the
color version of Equation (2.5) to be satisfied. If we are to allow this, our ordered
amplitudes can be thought of as adjoint-type, so e.g. we can have two channels
contribute to an ordered color-stripped amplitude:

Atree (1m1 , 2m1 , 3m1 , 4m1) = E'{' & . (337)
4,ad]j S t
where
Ns = Ng(1™,2M,3M, 4M), (3.38)

Ne = Ngp(4™, 17, 2™, 3™,
and s, t are Mandelstam invariants:

s = (k1 + k2)?, (3.39)
t= (kz + k3)2 .
If on the other hand, we demand that external scalars labeled 1 and 3 are particles

distinct from anti-particle legs labeled 2 and 4, all still with the same mass, we have
two distinct ordered color-stripped amplitudes with one channel each:

= - n
Aze;(1m1,2m1,3m1,4m1) =2 (3.40)
Atree(lml Zml 3mi Eml) — &S

4’2 ) 1 ) t

We can refer to these types of ordered trees as fundamental-type. As is perhaps
not so surprising, the same kinematic weights written functionally can be used for
both theories, the amplitudes differ simply in which graphs one allows to contribute.
Demanding the kinematic analog of Equation (2.5) for functional numerators:

Naz(1™, 2™, 3™ 4M) =y p(3™, 1M, 4™ 2™ )an, (4™, 1M, 2™ 3™ | (3.41)

is simply an additional constraint that can be imposed on the kinematic dressings. If
we could not satisfy these types of conditions, we would be unable to satisfy adjoint-
type cuts, but it turns out both for four-point one-loop and five-point one-loop
there is no problem establishing such constraints. As a result our same kinematic
weights satisfy both adjoint-type and fundamental-type cuts, and indeed one can use
adjoint-type cuts to constrain all parameters in our-bootstrap. The pattern we see
here of adjoint-type ordered amplitudes being sums over individually gauge-invariant
fundamental-type ordered amplitudes persists to higher multiplicity.

3.3.3 Five-point one-loop construction

In this section we will consider the five-point one-loop amplitude with two pairs of
massive scalars. Compared to the construction of the four-point loop amplitude in
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the previous section, at five-point the number of graph topologies is much larger and
the external gluon contributes with a polarization vector that makes the form of the
numerators more complicated.

The five-point one-loop amplitude has 33 possible graph topologies, shown in
Figures 3.9-3.10, again including snails but not tadpoles. The two massive scalars are
illustrated by a blue and red line representing the different masses, and we impose
that the numerators be symmetric under the exchange of these lines. Note that some
of the graphs with purely massive loops belong to two mdependent topologies that
dependon the mass of thé internal loop. For example, n? and n? are two distinct
topologies. This plays a role in determining the Jacobi-like relatlonshlp between the
graphs. Solving for these Jacobi-like relations we find that a possible set of basis
graphs is ny n?.n%,n'_n*® and n*. Each basis graph is given a non-zero kinematic
ansatz.

The ansatze for the kinematic numerators must contain the polarization vector of
the external gluon, &, and have the correct power counting. We therefore propose
the following form

312
nga,b,c,d,e, )= aé (ki - Kj)(Ki = km)(Kn - €a), (3.42)
p=1

where a;b are the free coefficients, and k. are the momenta of external particles or
loop momenta. Each ansatz has 312 terms, so the total number of coefficients is 1872
for all six ansatze.

Imposing the symmetries of all graphs, along with the remaining relationships
from the Jacobi-like relations, constrains 1190 of the coefficients. After imposing
the symmetries, there are then 682 coefficients left to determine using generalized
unitarity cuts.

The ordered unitarity cuts required to constrain the five-point amplitude are
graphically depicted in Figure 3.11. One new feature at five-point one-loop is that
ability to have two-particle cuts (bubble cuts) where one of the cut legs is massive
and one is massless (c.f Figure 3.11b). Here are all the cuts that must be performed
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Figure 3.9: One-loop five-point graph topologies (excluding tad-
poles) related by Jacobi and commutation relations (1-18).
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expressed in terms of the tree amplitudes that contribute:

cut

A5 |00P( bm1 mi , ma , em2 )1|21—>0 - Aztlrie(d m2 ’Slllszz |2)
P—s0  s1.s2
X A"ee( ISl b™, a,c™), (3.43)
-loop ml m m2 M2 cut tree mi_Mg S2
As "% (a,b c e ) enmy = Agr(@ b hYL)

R0 2y Alee(—[s2 |1 cM gT2 eMm2) (3.44)
o 2, 1 f ’ 3 3
-1 1 M m2 ot ' ’
AS OOD( bm , )1I%—>m% A4tre m ’ m :nlzlr’n12)

13->m2;

xAtree _|m1 _|m2 mo bm1 345
5’2( o iea, ), (3.49)

cut

l 1 mi 2 2 2
A5 oop( bm 1 mz2  gm )1|g_,mg—A4tr§e(d m1 Izrry
|2_,m2
i X A=, —I™ 2, b™ c™),  (3.46)
1-|00p mi mi ma mg cut tree 1
A% (a,b™ ,c™ Mizomz = Agzid™ f‘f, 12
|12—>m?2
5,2

After these cuts all but 123 &f our origin A%fembRers-4Fe, adpBtraiiod. THE4R
sufficient to ensure that all physical cuts are satisfied. The resulting integrand with

all color-dual consistent gauge freedom is included in an ancillary file with the arXiv
version of this chapter.

Note that the above cuts involve ordered partial amplitudes. It may seem sur-
prising that we require no additional partial-amplitude orderings under the same
kinematic constraints. After all at five-point tree-level, for a single pair of mas-
sive scalars, there are two independent ordered partial-amplitudes under amplitude
relations. We witness here one of the benefits of using functional kinematic graph
dressings tightly constrained by algebraic relations. In general one need only consider
a smaller set of cuts (or factorization channels as at tree-level) to entirely constrain
an integrand. Indeed for the maximally supersymmetric gauge theory at three-loop
four-points only one maximal cut of one graph is required to constrain the entire
color-dual integrand [90]. If one is concerned that additional ordered cuts may be
required one can always examine the full color-dressed cut. Equivalently, for each set
of kinematic cut conditions, one can verify that no additional orderings are required
by simply considering the associated double-copy gravitational cut and noting the
vanishing of any coefficients of remaining ansatz parameters. In any case we verify
our final integrand on a set of physical spanning cuts as we discuss in the next section.

3.3.4 Verification

For both four-point one-loop and five-point one-loop, we consider the potential re-
duction to an integral basis by verifying the above integrands on all bubble, box, and
triangle cuts with distinct color-orders under the following restrictions:

* Every bubble cut (two-particle cut) must involve a physical tree amplitude
(multiplicity four or higher).

* Every triangle cut (three-particle cut) must involve the loop momenta flowing
through each tree.
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Figure 3.11: Generalized unitarity cuts on the five-point one-loop
amplitude.

* Every box cut (four-particle cut) must involve the loop-momenta flowing through
each tree.

This set of restrictions precludes snail diagrams (e.g. diagrams 18, 19, 20, 28, 29, 30,
31, 32, and 33 of Figures 3.9 and 3.10) as well as tadpole diagrams from contributing
to the cuts. As practical applications of the gravitational double-copy of these am-
plitudes will involve the n — 0 limit, we expect this to be completely sufficient [39].
We verify on this spanning set of cuts that no remaining parameters contribute to
physical cuts, and can be taken as pure gauge choice relative to any set of related
physical observables.

We should emphasize that there are important questions around how to appro-
priately consider snail and tadpole contributions to the UV. We refer the interested
reader to ref. [61] for analysis handling similar issues in the context of unitarity based
approaches.

3.4 Conclusion

In this chapter, we frame a constructive bootstrap solely in terms of factorization and
color-dual representations for D-dimensional massive scalar QCD amplitudes, leading
to integrands at one loop in massive scalar QCD. Specifically we found the first loop
correction to scattering between two different massive scalar fields, as well as the first
loop correction to such scattering with an emitted gluon. Along the way we recalcu-
lated a number of tree-level amplitudes in this theory, starting with the three-point
amplitudes constrained entirely by mass-dimension and symmetry. By exploiting the
duality between color and kinematics — known to hold at tree-level, but still conjec-
tural at loop level, we found tremendously simplified representations — requiring a
small number of basis graph topologies whose functional kinematic weights encode
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the entire amplitude. We confirmed the validity of this approach at tree-level by com-
paring with results in the literature, and at loop level on a spanning set of physical
cuts. Besides the computational simplicity in the gauge theory, and further evidence
for the conjecture of loop-level color-dual representations, a critical advantage of our
current approach is that once the gauge amplitudes have been constructed in this
color-dual form, building the corresponding gravity integrand in N = 0 supergravity
is trivial: one simply exchanges the color-weights with kinematics weights graph by
graph.

The gauge theory representations we constructed in this chapter have a number
of intriguing properties. Notably these representations land naturally on a gauge
that plays well with summing Yang-Mills states over a simplified projector (cf. Equa-
tion (3.12) relative to Equation (3.11)) which aids in unitarity-based constructions.
Indeed all loop-level cuts were preformed with the gauge-dependent simplified projec-
tor and verified against the gauge invariant physical one. Even more notably, through
tree-level and one-loop we find that the same kinematic graph weights can apply to
both fundamental and adjoint-type representations, the only difference being which
graphs are allowed to contribute. This discovery resonates with the color-dual/double-
copy program, where a small number of building blocks are at the heart of prediction
intimately relating seemingly disparate theories. Finally these color-dual represen-
tations propagate cut information to graphs with ambiguous or ill-defined cuts like
massive snail or tadpole graphs. While these do not contribute to physical cuts rel-
evant to classical limits, such graphs will be relevant to quantum UV behavior and
mass renormalization. This implies a generalized gauge choice. It will be intriguing
to apply the approach presented here to massive quark amplitudes in QCD with care
to reproduce standard regularization schemes.

There is significant current interest in massive scattering amplitudes in pure
Einstein-Hilbert gravity due to relevance to precision gravitational wave physics. A
natural next step will be to take our N = 0 supergravity double-copy results and
project out any unwanted massless states. More non-trivial will be to generalize this
type of multiloop scattering amplitude methods to massive particles with arbitrary
spin. While ambitious, important clarifying progress is already being made both in
field theory and scattering communities (see, e.g., [48, 55, 91-102], and references
therein). We expect color-dual methods to play an increasingly vital role in this
exploration.

In summary, the combination of unitarity methods and the duality between color
and kinematics is incredibly powerful. While originally discovered in the quest of
understanding the UV behavior of maximally supersymmetric gravity theory in four-
dimensions, the duality between color and kinematics is both dimension-agnostic as
well as entirely independent of the presence or absence of supersymmetry. It is grat-
ifying to discover that massive scattering amplitudes at loop-level can be compatible
with these principles, and we look forward to continuing to extend our visibility into
loop-level prediction now in increasingly more phenomenological theories.
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Appendix

3.4.1 Kinematic Jacobi-like relations at one-loop four-point

Here we tabulate the Jacobi relations satisfied by four-point one-loop, two pairs of
massive external scalars. Five-point one-loop is included in a machine readable an-
cillary file.

ni(a, b, c,d,)=n’a,b,c,d —a—b— )+p’*arc,db —a—b—),

ni(a, b,c,d,)=—ni(a, b,c,d,c+d— )+pn*a b,c,dc+d—),

ni@a, b,c,d,)=—n%b,a,c,d)+nac,db —),

ni(a, b, c,d,)=nYa, b,c,d,c+d— ) —,nia b,d,c,c+d— ),

ni(a, b,c,d,)=n3a, b,c,d,c+d— ) —,nacdb,),

ni(a, c,d,b,)=n@a,b,c,d —)+psb,acd —),

n¥}a,c,d,b, ) = —n®*@a,cdba—b— )+n%gc,db,b+), (3.48)
ni(a, c,d, b,)=n%a, b,c,d,c+d— ) —,n%a,b,c,d,),

ny@ b,c,d, )=nic,d,a b, —c—d+)—n*dc,ab, —c—d+),
ni@, b, c,d,)=n%a, b,c,d,c+d— )+p3ab,cd),

ni(a, b, c,d,)=n%c,d,a, b, —)+pia b, dc,c+d—),

nia, b, c,d,)=n%a, b,c,d,c+d— )+p'(b,ac,dc+d— ),

ny@, c,d,b,)=n%acd b, —b—c—d— );n@c,dba+c+d+)
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Chapter 4

Extracting Einstein from the
Loop-Level Double-Copy

The naive double-copy of (multi) loop amplitudes involving matter coupled to gauge
theories will generically produce amplitudes in a gravitational theory that contains
additional contributions from propagating antisymmetric tensor and dilaton states.
We present a graph-based approach that combines the method of maximal cuts with
double-copy construction to offer a systematic framework to isolate the pure Einstein-
Hilbert gravitational contributions at loop level. Indeed this allows for a bootstrap of
pure-gravitational results from the double-copy bootstrap of ref. [57]. We construct
the amplitudes relevant to non-spinning black-hole pure-gravitational scattering from
tree-level and one-loop integrands of the N = 0 supergravity double-copy of massive
scalar-QCD.

4.1 Introduction

The color-dual double copy construction [7, 103] of quantum field theory predictions
can be used to build scattering amplitudes for a wide variety of theories from phe-
nomenological effective field theories to formal completions of Yang-Mills and Gravity
like open and closed string theories®. The first concrete hint of this web of theories was
the construction of closed string tree-level amplitudes from sums over permutations of
Chan-Paton-stripped open-string amplitudes via the celebrated relations of Kawaii,
Lewellen and Tye [68] (KLT). In the low energy limit these relations allow the expres-
sion of tree-level graviton amplitudes in terms of sums over permutations of ordered
tree-level Yang-Mills amplitudes. In the color-dual approach of Bern, Carrasco and
Johansson (BCJ) the building blocks of gravitational predictions are gauge theory
kinematic graph weights that satisfy the duality between color and kinematics. This
means that the gauge theory predictions can be expressed in a representation where,
graph-by-graph, kinematic weights obey the same algebraic relations as the color
weights. The gravitational double copy prediction is then obtained by exchanging
the gauge theory’s color factors for a second set of kinematic weights. This approach
can be used to generate the field-theory limit of KLT relations at tree-level [7], by in-
verting the relationship between color-dual numerators and ordered-amplitudes, and
generalizes to integrand representations at multiloop levels [103, 105]. The theory of
massive scalars minimally coupled to Yang-Mills, massive scalar-QCD, is compatible
with this duality both at tree level [58, 87], as well as at the one-loop integrand level
[57].

The advent of precision gravitational wave science has invited a renewed interest
inapplyingquantuminsightstoclassical predictions (see,e.g.,refs.[10-38,40-54,101,

See, e.g., Section 5 of ref. [104] for a recent review of the color-dual web of theories.
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106]). Indeed, the highest precision post-Minkowskian O(G*) correction to the scat-
tering of classical non-rotating black holes has involved a synthesis of effective field
theory techniques, advanced multiloop integration innovation, and double-copy ap-
plied to tree-level scattering amplitudes [51]. Scattering amplitudes in massive scalar-
QCD, where massive scalars are coupled via Yang-Mills, can be used via double-copy
to construct the scattering of massive scalars coupled to gravitons, whose classical
limit describes the evolution and interaction of non-rotating black holes. At tree level,
color-dual amplitudes in massive scalar QCD have been presented for up to six-points
with three pairs of massive scalars [87], and in ref. [57] it was conjectured that a sim-
ple bootstrap extends to all multiplicity and loop-level using only color-kinematics
and factorization, verifying through 1-loop five-point.

The straightforward double copy of Yang-Mills scattering without any particular
state management results in predictions of the so called N = 0 supergravity, where
— in addition to gravitons — a massless scalar (often called a dilaton) and an anti-
symmetric two-form (dual to an axion in four dimensions) can propagate. These
contributions can be avoided for external gravitons at tree-level for massless theories
by coordinating the external states of gluons, but become relevant at loop level. Such
extra-state contributions affect even tree-level when gravitons are coupled to massive
matter. Such long-range mediators can survive the classical limit, and so must be
projected out or otherwise removed if one is targeting classical predictions equivalent
to that of pure Einstein-Hilbert gravity. There can be additional differences in double-
copy amplitudes, such as additional local contact terms only between massive states.
Such massive-state local contact terms are irrelevant to long range classical physics
and so will not concern us here.

There are many strategies for removing the extra states arising from naive double-
copy. The first examples of gravitational multi-loop cut-construction involved tree-
level cuts built from ordered gauge-theory cuts by applying field theory KLT relations
(see, e.g. [107]). Cut construction for pure-gravity theories can progress by explic-
itly subtracting out contributions from unwanted states (c.f. refs. [108, 109]). At
loop level, the classical limit of amplitude integrands for binary black holes has been
calculated up to three-loops using generalized unitarity cuts and the double copy of
tree-level amplitudes to construct pure-graviton integrands [51] via the method of
maximal cuts [9] .

The method of maximal cuts [9] offers a hierarchical approach to perturbative
guantization. Here we combine it with double-copy construction at the off-shell inte-
grand level. Thus we construct pure Einstein-Hilbert gravity integrands by starting
with compact expressions for the N = 0 supergravity integrands and systematically
project out any non-gravitational propagating modes. This projective double-copy
offers a systematic isolation of local gravitational contributions.

Of course, if one is only interested in classical gravitation, it is not necessary to
build consistent loop-level integrands at all, not to mention the generation of off-shell
N = 0 supergravity integrands. One can employ [51] a variant of the method of
maximal cuts to directly target only the relevant classical contributions. If we aspire,
however, to apprehend the connections between theories in the web of theories at the
integrand level, it is natural to develop techniques to map out and relate graph by
graph the relevant integrands of both N = 0 supergravity as well as Einstein-Hilbert
as 