
HAL Id: tel-03522585
https://theses.hal.science/tel-03522585

Submitted on 12 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bridging graph and kernel spaces : a pre-image
perspective

Linlin Jia

To cite this version:
Linlin Jia. Bridging graph and kernel spaces : a pre-image perspective. Machine Learning [cs.LG].
Normandie Université, 2021. English. �NNT : 2021NORMIR15�. �tel-03522585�

https://theses.hal.science/tel-03522585
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le diplôme de doctorat

Spécialité Informatique

Préparée au sein de INSA ROUEN NORMANDIE

Bridging Graph and Kernel Spaces: A Pre-image Perspective

Présentée et soutenue par

Linlin JIA

Thèse soutenue publiquement le 09/07/2021
devant le jury composé de

Mme. Florence D’ALCHÉ-BUC
PR de Télécom Paris et Institut Polytech-

nique de Paris
Rapporteuse

M. Donatello CONTE MCF HDR de Université de Tours Rapporteur

M. Sébastien ADAM PR de Université de Rouen Normandie Examinateur

M. Francesc SERRATOSA
PR de Universitat Rovira i Virgili, Tarragona,

Catalonia
Examinateur

M. Florian YGER MCF de Université Paris-Dauphine Examinateur

M. Paul HONEINE PR de Université de Rouen Normandie Directeur de thèse

M. Benoit GAÜZÈRE MCF de INSA Rouen Normandie Encadrant de thèse

Thèse dirigée par Paul HONEINE et Benoit GAÜZÈRE, laboratoire LITIS

ii

Acknowledgements

First, I would like to thank my supervisors, Professor Paul Honeine and Professor

Benoit Gaüzère. They are great mentors and friends for me. They provided me not

only professional tutorials on research, but also the spirit to have an interesting life.

Second, I thank my parents for trusting and supporting me to pursue my own

life and dreams, even though they are so worried about me not having a wife.

Third, I thank my friends, whose names I will not mention here in case I forget

someone. My colleagues in my Lab, my friends from China and the CSC projects,

and all the others. We have shared many wonderful moments.

I would like to give special thanks to Brigitte, Madame Diarra, the secretary of

the LITIS Lab, for helping me deal with all kinds of stuff, with such a kind attitude

and melodious, unhurried French.

Fourth, I would like to thank the two countries, France and China, for provid-

ing me an opportunity to see a bigger world. The drop-dead gorgeous views across

Europe let me forget the difficulties during this period.

Fifth, I would like to thank my money provider. Our research was supported by

CSC (China Scholarship Council) and the French national research agency (ANR)

under the grant APi (ANR-18-CE23-0014). We would like to thank the CRIANN

(Le Centre Régional Informatique et d’Applications Numériques de Normandie) for

providing computational resources.

Last but not least, I would like to thank the guy who finished this job, for there

are so many chances to give up, but instead, he chose to try a little bit more. Thanks

for still believing.

iii

iv

Résumé

Les graphes permettent de modéliser un large éventail de données du monde réel.

Avec les progrès des méthodes d’apprentissage automatique, l’utilisation de ces méthodes

sur les graphes est devenue de plus en plus intéressante au sein de la communauté sci-

entifique. Parmi les différentes études, les problèmes de prédiction et de génération de

graphes suscitent un intérêt grandissant, porté par de nombreuses applications, notam-

ment en chemoinformatique, en analyse de réseaux sociaux et en vision par ordinateur.

La flexibilité associée aux graphes possède un inconvénient majeur. Les algorithmes

d’apprentissage automatique étant définis sur des données vectorielles, leur adaptation aux

graphes n’est pas triviale. Il est donc important de concevoir des outils permettant d’utiliser

ces méthodes d’apprentissage automatique sur les graphes. Les noyaux sur graphes sont

un outil puissant pour traiter ce problème en comblant le fossé entre un espace de graphes

et un espace à noyau. Inversement, étant donné un élément dans un espace à noyau, on

s’intéresse à construire son homologue dans l’espace de graphes ; c’est le problème de pré-

image de graphe. La résolution de ce problème ouvre la voie à de nombreuses applications

prometteuses, telles que la synthèse de molécules et la conception de médicaments.

Pour résoudre les problèmes susmentionnés, nous proposons dans cette thèse de

nouvelles méthodes pour construire la pré-image de graphe. Tout d’abord, nous passons

en revue les noyaux sur graphes basés sur des motifs linéaires, qu’on compare à des noyaux

basés sur des motifs non linéaires. Des analyses théoriques et expérimentales approfondies

sont présentées et trois stratégies sont proposées pour réduire la complexité de calcul et de

stockage de ces noyaux. Ensuite, nous étudions la stabilité des plus récentes heuristiques

de calcul de distance d’édition de graphes et proposons une méthode d’apprentissage de

métrique pour optimiser les coûts d’édition utilisés par la distance d’édition de graphes

pour des problèmes de régression. Les expériences montrent que notre méthode permet

d’améliorer les performances de prédiction par rapport à l’état de l’art. Sur la base de ces

deux travaux, nous proposons une méthode de calcul de pré-image de graphe basée sur

l’apprentissage de métrique. Pour cela, l’espace de graphes, muni d’une distance d’édition

de graphes, est aligné avec l’espace à noyau associé à un noyau particulier. Pour ce faire,

la méthode proposée optimise les coûts d’édition afin de faire correspondre les distances

dans les deux espaces. Ensuite, une estimation de la pré-image de graphe est obtenue par

une méthode générative de graphe médian, configurée avec les coûts d’édition optimisés.

Les expérimentations effectuées montrent que notre méthode est plus performante et plus

générique que l’état de l’art. Enfin, pour aider à résoudre les problèmes susmentionnés,

nous avons publié une bibliothèque en Python pour l’apprentissage automatique de

graphes, comprenant l’implémentation de noyaux sur graphes, d’algorithmes de calcul de

distances d’édition de graphes et de méthodes de calcul de la pré-image de graphes.

Mots-clés : Noyaux sur graphes, pré-images de graphes, distances d’édition de graphes,

apprentissage automatique, reconnaissance de formes, chimioinformatique

v

Abstract

Graphs are able to represent a wide range of real-world data due to the nature of their

structure and their rich expressiveness. With the advance of state-of-the-art machine learn-

ing methods, applying these methods on graph data has become more and more intriguing

for academic and industry societies. Among all studies, graph prediction and graph con-

struction problems draw a lot of interest, since they allow to address many applications

such as in chemoinformatics, social network analysis, and computer vision.

However, the expressiveness of graphs is a double-edged sword. Indeed, it is difficult

to apply most machine learning algorithms on graphs because they were defined for vector

data. Therefore, it is important to design tools to utilize these machine learning methods

on graphs. Graph kernels provide a powerful tool to deal with this problem by bridging

the gap between a graph space and a kernel space. Inversely, given an element in a kernel

space, one is interested in constructing its counterpart in the graph space; this is the so-

called pre-image problem. Solving the pre-image problem for graphs opens the door to

many interesting applications, such as molecule synthesis and drug design.

To address the aforementioned problems, we propose in this thesis novel methods to

construct graph pre-images given a graph kernel. First, we provide an in-depth review

of graph kernels based on linear patterns, and compare them to some kernels based on

non-linear patterns. Thorough theoretical and experimental analyses are provided and

three strategies are proposed to address computational complexity and memory usage of

these kernels. Second, we study the stability of the state-of-the-art graph edit distance

heuristics and propose a metric learning approach to estimate the graph edit costs for

regression. Experiments show that the proposed method outperforms state-of-the-art

methods. Based on these two successful working directions, we then propose a graph

pre-image method based on metric learning. For this purpose, the graph space endowed

with graph edit distances is aligned with the kernel space defined by a graph kernel. To

this end, we optimize the edit costs by matching graph edit distances and distances in the

kernel space. After that, the graph pre-image is estimated by a median generative method.

Experiments show that our method outperforms the state of the art. Finally, to help solve

the aforementioned problems, we published a Python library on graph machine learning,

including the implementations of graph kernels, graph edit distances, and graph pre-image

methods.

Keywords: Graph Kernels, Graph Pre-image, Graph Edit Distance, Machine Learning,

Pattern Recognition, Chemoinformatics

vi

Contents

Contents vii

List of Publications xi

List of Figures xiii

List of Tables xvii

List of Algorithms xix

I Introduction and preliminaries 1

1 Introduction 3

1.1 Background of graph representation . 4

1.2 Graph properties and the kernel paradigm . 6

1.2.1 From human to machine learning . 6

1.2.2 On spaces of graphs . 8

1.2.3 Graph embedding and kernels on graphs 9

1.3 Constructing graphs by solving the pre-image problem 11

1.4 Contributions of the research . 13

1.5 Structure of the thesis . 16

2 Preliminaries 19

2.1 Basic concepts of graph theory . 20

2.2 Kernel methods and pre-image . 22

2.2.1 Kernel methods . 23

2.2.2 Graph kernels . 25

2.2.3 The pre-image problem . 26

2.3 Graph edit distances . 29

2.4 Real-world graph datasets . 31

vii

CONTENTS

II Contributions 35

3 Graph kernels based on sub-patterns 37

3.1 Overview . 39

3.2 Graph kernels based on walks . 41

3.2.1 Common walk kernel . 41

3.2.2 Marginalized kernel . 44

3.2.3 Generalized random walk kernel . 45

3.2.4 Problems raised by walks . 48

3.3 Graph kernels based on paths . 50

3.3.1 Shortest path kernel . 50

3.3.2 Structural shortest path kernel . 51

3.3.3 Path kernel up to length h . 52

3.4 Graph kernels related to walks and paths . 53

3.5 Graph kernels based on non-linear patterns . 55

3.5.1 Treelet kernel . 56

3.5.2 Weisfeiler-Lehman subtree kernel . 59

3.6 Acceleration strategies: FCSP, parallelization, and trie structure 65

3.6.1 The Fast Computation of Shortest Path Kernel method 65

3.6.2 Parallelization . 68

3.6.3 The trie Structure . 73

3.7 Experiments and analyses . 79

3.7.1 Performance on synthesized graphs . 80

3.7.2 Performance on the real-world datasets . 83

3.8 Conclusion . 98

4 Stability and metric learning of graph edit distances 101

4.1 Overview . 102

4.2 Graph edit distances heuristics . 105

4.2.1 The LSAPE-GED paradigm . 105

4.2.2 The LS-GED paradigm . 107

4.3 Stability of GED heuristics . 110

4.4 A metric learning approach to graph edit costs for regression 113

4.4.1 Related work . 113

4.4.2 Problem formulation . 115

4.4.3 Learning the edit costs . 117

4.4.4 Experiments . 119

4.5 Conclusion and future work . 123

viii

CONTENTS

5 Graph pre-image based on graph edit distances 125

5.1 Overview . 126

5.2 Problem formulation . 128

5.3 Proposed graph pre-image framework . 130

5.3.1 Learn edit costs by distances in kernel space 131

5.3.2 Generate graph pre-image . 135

5.4 Experiments . 137

5.4.1 Implementations and computational settings 138

5.4.2 Experiments on real-world datasets . 139

5.4.3 Results and analyses . 139

5.5 Conclusion and future work . 142

6 graphkit-learn for graph machine learning 145

6.1 Overview . 146

6.2 The overall architecture . 147

6.3 Graph data processing . 148

6.4 Implementations of graph kernels . 150

6.4.1 State of the art and motivation . 150

6.4.2 Implementation details of graph kernels 152

6.4.3 Usage example . 155

6.5 Implementations of graph edit distance . 156

6.5.1 State of the art and motivation . 156

6.5.2 The ged module . 157

6.5.3 The gedlib module . 161

6.5.4 Usage example . 162

6.6 Implementations of graph pre-image methods 162

6.7 Auxiliary tools . 165

6.8 Conclusion and Future Work . 168

7 Conclusions and future work 169

7.1 Conclusion . 170

7.2 Future work . 172

III Appendix 177

A Synthèse de la thèse en français 179

A.1 Contexte de la représentation graphique . 180

A.2 Les propriétés des graphes et le paradigme du noyau 183

ix

CONTENTS

A.2.1 De l’apprentissage humain à l’apprentissage automatique 183

A.2.2 Sur les espaces des graphes . 184

A.2.3 Projection des graphes et noyaux sur graphes 186

A.3 Construire des graphes par la résolution du problème de la pré-image 187

A.4 Contributions . 190

A.5 Structure de la thèse . 193

A.6 Conclusion . 194

A.7 Perspectives . 197

Bibliography 199

x

List of Publications

During this Ph.D., the following research works have been published:

Peer-reviewed journal papers

Linlin Jia, Benoit Gaüzère, and Paul Honeine. graphkit-learn: A python library for graph

kernels based on linear patterns. Pattern Recognition Letters, 2021.

Linlin Jia, Benoit Gaüzère, and Paul Honeine. Graph Kernels Based on Linear Patterns:

Theoretical and Experimental Comparisons. working paper or preprint, March 2019.

(submitted to Expert Systems with Applications)

Peer-reviewed international conference papers

Linlin Jia, Benoit Gaüzère, and Paul Honeine. A Graph Pre-image Method Based on Graph

Edit Distances. Proceedings of IAPR Joint International Workshops on Statistical Tech-

niques in Pattern Recognition (SPR 2020) and Structural and Syntactic Pattern Recognition

(SSPR 2020), 2021.

Linlin Jia, Benoit Gaüzère, Florian Yger and Paul Honeine. A Metric Learning Approach

to Graph Edit Costs for Regression. Proceedings of IAPR Joint International Workshops

on Statistical Techniques in Pattern Recognition (SPR 2020) and Structural and Syntactic

Pattern Recognition (SSPR 2020), 2021.

Libraries

graphkit-learn: A Python package on graph kernels, graph edit distances and graph

pre-image problem.

xi

CONTENTS

xii

List of Figures

1.1 Example data and their graph representation . 5

1.2 Illustrative comparison between graph embedding and kernels for two arbi-

trary graphs . 10

1.3 Relationship between graph kernels and graph pre-images 12

2.1 The different types of graphs . 22

2.2 An example of an R-convolution kernel . 26

2.3 Graph kernels based on sub-structures of graphs 26

2.4 A sample of the Letter dataset . 32

3.1 Different types of graph patterns: linear, acyclic and cyclic patterns 39

3.2 Direct product of fully-labeled graphs . 43

3.3 Direct product of unlabeled graphs . 47

3.4 A tottering example . 49

3.5 Timeline of graph kernels based on linear patterns and kernels related to them 55

3.6 Tree patterns of the treelet kernel . 56

3.7 Extended labels of non-linear patterns . 57

3.8 The procedure to compute the WL subtree kernel with h = 1 61

3.9 An example of the redundant comparisons between vertices and edges 65

3.10 Runtimes with and without the FCSP method of the shortest path kernel and

the structural shortest path kernel with parallelization 69

3.11 Runtimes and perform model selections of the shortest path kernel on each

dataset on 28 CPU cores and 7 CPU cores with parallelization 72

3.12 Runtimes to compute the Gram matrices of the shortest path kernel on each

dataset on 28 CPU cores with different chunksize values 73

3.13 The ratio between runtimes of the worst and the best chunksize settings for

each graph kernel on each dataset . 74

3.14 An illustration of a trie structure to store a set of strings 75

3.15 Construction of a trie from paths in a graph . 75

xiii

LIST OF FIGURES

3.16 Memory usages to store paths in all graphs in each dataset under different

maximum length of paths h . 76

3.17 Illustration of the two-layer nested cross validation. 79

3.18 Performance of all graph kernels on synthesized graphs 81

3.19 Computational complexity versus accuracy of all graph kernels on all datasets,

as well as the average performance of each kernel over all datasets 91

3.20 Comparison of accuracy and runtime of all kernels on unlabeled (PAH) and

labeled datasets (MAO, MUTAG) . 93

3.21 Comparison of accuracy and runtime of graph kernels on datasets with and

without non-symbolic labels . 94

3.22 Comparison of computational complexity versus accuracies of all graph ker-

nels on graphs with and without non-symbolic labels 95

3.23 Comparison of the runtime of each kernel on datasets with different average

vertex numbers and average vertex degrees . 96

3.24 Comparison of computational complexity versus accuracies of all graph ker-

nels on small, medium, and big datasets . 97

4.1 An illustration of graph edit operations . 103

4.2 The relative errors of mIPFP on five datasets with respect to the numbers of

solutions and ratios between vertex and edge edit costs 112

4.3 Results on each dataset in terms of RMSE for the 10 splits, measured on the

training and on the test sets . 121

4.4 The relative errors of mIPFP on two datasets with respect to the ratios between

vertex and edge edit costs using different edit costs optimization methods . . . 122

5.1 An illustration of graph pre-image . 126

5.2 Graph kernels and graph pre-images . 129

5.3 Align GEDs in graph space G and distances in kernel space H 133

5.4 Pre-images constructed by different algorithms for Letter-high 141

6.1 The overall architecture of the graphkit-learn library 147

6.2 Graph data processing module shown in a UML class diagram 148

6.3 User interfaces of Dataset . 149

6.4 Implemented graph kernels shown in a UML class diagram 153

6.5 Implemented graph edit distance tools shown in a UML class diagram 158

6.6 The user interface of GEDEnv . 159

6.7 The user interface of EditCost . 160

6.8 The additional user interfaces of gedlib.GEDEnv 161

6.9 Implemented pre-image methods shown in a UML class diagram 163

xiv

LIST OF FIGURES

6.10 Exhibition of a two-layer cross validation (re-presenting Figure 3.17) 167

A.1 Exemples de données et leur représentation graphique 181

A.2 Comparaison illustrative entre la projection de graphes et les noyaux sur deux

graphes arbitraires . 187

A.3 Relation entre les noyaux sur graphes et les pré-images des graphes 188

xv

LIST OF FIGURES

xvi

List of Tables

2.1 Commonly used kernels between two vectors . 24

2.2 Structures and properties of real-world graph datasets 34

3.1 Characteristics of graph kernels based on linear patterns, and two on non-

linear patterns . 40

3.2 Environment settings for experiments . 79

3.3 The ranges of hyper-parameters for each kernel 82

3.4 Results of all graph kernels on datasets for regression tasks 84

3.5 Results of all graph kernels for classification tasks (accuracy in percentage) . . . 85

3.6 Accuracy achieved by graph kernels . 88

3.7 Time used to compute Gram matrices of graph kernels 90

4.1 Results on each dataset in terms of RMSE for the 10 splits, measured on the

training and on the test sets . 120

4.2 Average and standard deviation of fitted edit costs values 122

5.1 Parameter settings for experiments . 138

5.2 Running times and distances in kernel space computed using different methods140

6.1 Available libraries implementing graph kernels based on linear patterns 151

6.2 Comparison of the implementations of graph kernels 152

6.3 Libraries available online implementing GEDs . 157

xvii

LIST OF TABLES

xviii

List of Algorithms

3.1 Simultaneous computation of the WL subtree kernel 64

3.2 Fast computation of the shortest path kernel (FCSP) 66

3.3 FCSP considering edges . 67

3.4 The evaluation of the path kernel up to length h with the Tanimoto kernel us-

ing trie . 77

3.5 Auxiliary functions for Algorithm 3.4 . 78

4.1 Approximation of GED using LSAPE-GED . 106

4.2 Approximation of GED using LS-GED . 108

4.3 Approximation of GED using IPFP . 110

4.4 Approximation of GED using mIPFP . 111

4.5 Optimization of edit costs according to given targets 118

5.1 The graph pre-image method with cost learning 132

xix

LIST OF ALGORITHMS

xx

Part I

Introduction and preliminaries

1

Chapter 1

Introduction

Contents

1.1 Background of graph representation 4

1.2 Graph properties and the kernel paradigm 6

1.2.1 From human to machine learning 6

1.2.2 On spaces of graphs . 8

1.2.3 Graph embedding and kernels on graphs 9

1.3 Constructing graphs by solving the pre-image problem 11

1.4 Contributions of the research . 13

1.5 Structure of the thesis . 16

3

CHAPTER 1. INTRODUCTION

This chapter gives a general introduction to this thesis. It starts with the back-

ground information for this work. After that, the main contributions are presented.

Finally, the structure of the monograph is presented in detail.

1.1 Background of graph representation

Graphs are powerful tools to model a wide range of real-world data. Consisting of

vertices and edges connecting them, graphs are able to encode elements as well as

the relationship between them, which enables to capture the underlying structural

information of the data. Moreover, each vertex and edge can be equipped with dis-

crete and/or continuous attributes, offering the ability to encode a vast variety of

aspects to describe data.

Benefiting from the complexity and the expressiveness of the graph structure,

broad applications in wide domains embrace its representation. In chemoinfor-

matics and bioinformatics, molecules including biomacromolecules can be nat-

urally represented by graphs [Trinajstic, 2018, Huber et al., 2007]. A vertex can

represent an atom, which is labeled by the atom type and sometimes other at-

tributes such as its physical position, while an edge can represent the connec-

tion between the two atoms, normally labeled by the valency. Biological and

biomedical applications can be then based on it, such as drug design and discov-

ery [Vamathevan et al., 2019], biological and chemical effect analysis, as well as bio-

metric identification [Kisku et al., 2011]. In social media analysis, large graphs are

used to model social networks [Scott, 2011, Wasserman et al., 1994]. For instance,

a user profile can be encoded by a vertex labeled by its detailed information, and

the relationship between user profiles can be encoded by edges. This represen-

tation can then be used for applications such as web data mining [Russell, 2013,

Rettinger et al., 2012] and advertising [Guo et al., 2020]. In computer vision, both 2D

and 3D images can be represented by graphs. In 2D applications, a common one is

handwriting recognition, where the lines are represented by edges and the connect-

ing points are represented by vertices labeled by position [Riesen and Bunke, 2008].

This representation allows extracting directly the information. A similar strategy

can be used for applications such as object recognition [Nene et al., 1996]. Other

approaches to model an image as a graph include encoding each pixel with a ver-

tex and connecting the adjacent pixels with an edge [Wang, 2015]. As a 3D data,

a point cloud can be intuitively represented by a graph, with each point as a ver-

4

CHAPTER 1. INTRODUCTION

Domain & Data type Original data Graph representation

chemoinformatics
molecule

social media
social network

computer vision
handwriting

computer vision
3D point cloud

knowledge graph
SupervisedBy

SonOf

SonOf

WinnerOf

ExpertIn
AwardIn

TheoryOf

ProposedBy

BornIn
GraduateFrom

ProfessorOf

Hermann

Einstein

Hans Albert

Einstein

Alfred

Kleiner

Albert

Einstein

Nobel Prize

in Physics

Physics
The theory

of relativity

German

Empire University

of Zurich

state transition

State-transition table

0

0

1 1

Figure 1.1 – Example data and their graph representation.

tex [de Oliveira Rente et al., 2018]. Knowledge graph, as well as its schema-oriented

counterpart ontology, constitutes another domain that is founded on graphs

[Ji et al., 2020]. Coherent to its name, a knowledge graph is a graph constructed

by information from a domain knowledge vault. A large amount of applications

5

CHAPTER 1. INTRODUCTION

falls into this category, such as information retrieval [Reinanda et al., 2020], natural-

language processing [Nastase et al., 2015], the semantic web [Ding et al., 2007], and

manufacturing process modeling [Cao et al., 2018]. Other applications of graphs in-

clude state transition [Conte et al., 2004], temporal graphs [Michail, 2016], etc. The

inter-domain modeling and applications are widely seen. Figure 1.1 presents sev-

eral example data in these domains and their graph representations. The molecule

is from the MUTAG dataset [Debnath et al., 1991]; the images used for the avatars in

the social network are from Wikipedia1; the handwriting letter “A” is from the Letter-

high dataset [Riesen and Bunke, 2008]; the point cloud is generated from a three-

dimensional cat model2 using the Open3D library [Zhou et al., 2018b]; the knowl-

edge graph is built on data from [Ji et al., 2020].

All these applications are founded on the answers to two basic questions to the

graph model:

- Question 1: How to acquire intrinsic features and properties from graph

datasets?

- Question 2: How to construct graphs endowing desired features and prop-

erties?

For example, when a drug molecule is represented as a graph, analyzing the in-

fluence of a sub-structure on its function (e.g., its anti-cancerous ability) relates to

question 1, while question 2 may involve designing new drugs for a given property.

In this thesis, we aim at designing effective and efficient methods to tackle these two

fundamental questions.

1.2 Graph properties and the kernel paradigm

1.2.1 From human to machine learning

As in most data science applications, extracting features and analyzing properties

from graph data have been carried out by domain experts for many years. Tradi-

tional domain-specific methods may be explored to help the procedure. The situa-

tion is the same for graph construction applications. However, these methods suffer

from several major issues. First, to design some methods, domain knowledge is re-

quired a priori, which may have a high influence on the performance. Second, due

1https://www.wikipedia.org.
2Available at https://free3d.com/3d-model/cat-v1--522281.html.

6

https://www.wikipedia.org
https://free3d.com/3d-model/cat-v1--522281.html

CHAPTER 1. INTRODUCTION

to their specification to domains and data, their generalization ability is not gener-

ally very good, which limits their application and expands the designing costs. Last

but not least, these methods normally lack the ability to learn from (new) data, caus-

ing a loss of potential information endowed by the data [George and Hautier, 2020].

With the advent of the so-called big data era, automated methods to analyze

massive amounts of data are called for, where the advantages of machine learning

lie. Kevin P. Murphy [Murphy, 2012] defines machine learning as

a set of methods that can automatically detect patterns in data, and then

use the uncovered patterns to predict future data, or to perform other

kinds of decision making under uncertainty (such as planning how to

collect more data!).

Consistent with this definition, Tom M. Mitchell [Mitchell et al., 1997] provided a

more formal and operational definition of machine learning algorithms:

A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P if its performance at

tasks in T, as measured by P, improves with experience E.

In recent years, machine learning has been providing considerably effective and

efficient tools to address multiple real-world tasks, including regression and clas-

sification problems. Relying on advanced statistics, they can extract information

from data and provide more generalized results than the conventional expert-based

methods. Moreover, they have the potential to be applied in different datasets

and domains with minor modifications. Furthermore, expert knowledge can be

integrated with them to obtain better performance. The advantages of machine

learning make it intriguing to apply machine learning methods on graph data

[Chami et al., 2020], including molecular machine learning [Wu et al., 2018] and

drug discovery [Giguère et al., 2015]. However, machine learning algorithms have

been conventionally defined on vector spaces, allowing to take advantage of the

easiness in linear algebra operations. It is challenging to vectorize many data types

due to their complex structures, such as strings, trees, and graphs, with graph struc-

tures being one of the toughest as they generalize strings and trees.

Despite providing rich expressiveness, the complexity lying in graph struc-

tures becomes its Achilles’ heel when applying machine learning methods for

7

CHAPTER 1. INTRODUCTION

graph data. To unleash the power of these two powerful tools, it is essen-

tial to represent the graph structure in forms that are able to be accepted by

most popular machine learning methods, without losing considerable informa-

tion while encoding the graphs. Since most machine learning algorithms rely

on (dis)similarity measures between data, the problem boils down to measuring

the (dis)similarity between graphs. Within this category lies the graph matching

problem [Conte et al., 2004, Foggia et al., 2014, Livi and Rizzi, 2013, Yan et al., 2016,

Wills and Meyer, 2020]. Graph similarity measures can be roughly grouped into two

major categories: exact similarity and inexact similarity [Conte et al., 2004]. The for-

mer requires a strict correspondence between the two graphs being matched or

between their subparts, such as graph isomorphism and subgraph isomorphism

[Kobler et al., 2012]. Unfortunately, the exact similarity cannot be computed in

polynomial time by these methods; hence, it is not practical for real-world data. For

this reason, inexact similarity measures are commonly applied for graphs. An intu-

itive way to tackle the graph dissimilarity problem is to define distances and metrics

directly on the space of graphs.

1.2.2 On spaces of graphs

We define a space of graphs as all possible graphs whose vertex and edge labels

are defined by a label alphabet or domain. To operate machine learning meth-

ods on a space of graphs, some distance or metric is usually assigned to it. The

cornerstone is defining an appropriate distance between two graphs. Ideally, we

seek distances that are valid metrics, i.e., satisfying the conditions of non-negativity,

identity of indiscernibles, symmetry, positive definiteness, and triangle inequality.

This is the case of the chemical distance, which aims at minimizing edge discrepan-

cies between two graphs [Kvasnička et al., 1991], and the Chartrand-Kubiki-Shultz

(CKS) distance, which uses the pairwise shortest-path distances between vertices

[Chartrand et al., 1998]. However, these distances are computationally expensive

[Bento and Ioannidis, 2019].

Pseudometrics relax these conditions. An intuitive and widely-applied fam-

ily is the edit distance [Garey and Johnson, 1979, Sanfeliu and Fu, 1983], which

measures the dissimilarity between two graphs by the cost of transforming one

graph to the other. Heuristics are proposed to approximate it with tolerable

computational complexity with the possible relaxation of the triangle inequality

8

CHAPTER 1. INTRODUCTION

[Blumenthal et al., 2020]. An extension of the chemical distance is proposed in

[Jain, 2016], which can tackle edge attributes. However, it is limited to the Frobe-

nius norm and requires further relaxations for tractability. Other distances, such as

the maximum common subgraph distance [Bunke and Shearer, 1998, Bunke, 1997]

and the reaction distance [Koca et al., 2012], suffer the same issues as the above two

[Bento and Ioannidis, 2019].

Literature on theoretical properties of graph spaces is limited [Jain, 2016], which

includes graph spaces endowed with the maximum common subgraph distance

[Hurshman and Janssen, 2015] and the ones endowed with an optimal alignment

kernel [Jain and Obermayer, 2009], the latter being extended for tree-shape spaces

[Feragen et al., 2010, Feragen et al., 2011, Feragen et al., 2012]. In [Jain, 2016], the

authors propose a Graph Representation Theorem that induces an orbit space

in which graphs can be considered as points. A related work is carried out in

[Kolaczyk et al., 2020].

The limit of metric distances is well unfolded in [Grattarola et al., 2019]:

The use of metric distances, like graph alignment distances [Jain, 2016],

only mitigates the problem (that application-specific graph distances of-

ten do not satisfy the identity of indiscernibles or the triangular inequal-

ity [Livi and Rizzi, 2013, Wilson et al., 2014]), as they are computation-

ally intractable and hence not useful in practical applications. Therefore,

a common approach is to embed graphs on a more conventional geomet-

ric space, such as the Euclidean one.

As corroborated in [Grattarola et al., 2019] and many others, this limit drives re-

searchers to study the graph embedding and graph kernels methods.

1.2.3 Graph embedding and kernels on graphs

Graph embedding and graph kernels lie in the category of inexact matching. These

strategies consist in embedding the graphs into a space where computations can be

easily carried out, such as combining embedded graphs or performing a classifica-

tion or regression task.

Classic graph embedding maps graphs to finite-dimensional spaces, in which

vectors are computed (explicitly in many cases) by encoding some information

of the graphs. Techniques developed for graph embedding include matrix factor-

ization, random walk, and deep learning [Goyal and Ferrara, 2018, Cai et al., 2018].

9

CHAPTER 1. INTRODUCTION

Kernels

Gra

ph

Embedding

Figure 1.2 – Illustrative comparison between graph embedding and kernels for two arbi-
trary graphs G and G′. Through graph embedding, the two graphs are represented by
two vectors, X and X′. By kernels, the two graphs are implicitly embedded by a function
φH (·) into a Hilbert space H , yielding φH (G) and φH (G′); moreover, their inner product
<φH (G),φH (G′) > is easily computed using a kernel function k(G,G′).

Due to the precision limitation of the graph embedding representations, a loss of

information is anticipated. In contrast, kernels allow an implicit embedding by rep-

resenting graphs in a possibly infinite-dimension feature space that relaxes the lim-

itations on the encoded information. The two strategies are illustrated in Figure 1.2.

Indeed, as generalizations of the scalar inner product, kernels are natural sim-

ilarity measures between data, expressed as inner products between elements in

some feature space. By employing the kernel trick, one can evaluate the inner

products in the feature space without explicitly describing each representation in

that space [Schölkopf and Smola, 2002]. Kernels have been widely applied in ma-

chine learning with well-known popular methods, such as Support Vector Machines

[Cortes and Vapnik, 1995]. Therefore, defining kernels between graphs is a powerful

design to bridge the gap between machine learning and data encoded as graphs and

furthermore provides solutions to answer the first question raised in Section 1.1.

Graph kernels can be constructed using both global and local informa-

tion in graphs, by means of varied strategies. Among these include ker-

nels based on sub-structures, information propagation kernels, and deep graph

kernels [Ghosh et al., 2018]. Of particular interest are kernels based on sub-

patterns/structures. When comparing graphs and analyzing their properties, the

similarity principle has been widely investigated [Johnson and Maggiora, 1990]. It

states that molecules having more common substructures turn to have more similar

10

CHAPTER 1. INTRODUCTION

properties. This principle can be generalized to other fields where data is modeled

as graphs. It provides a theoretical support to construct graph kernels by studying

graphs’ substructures, which are also referred to as patterns.

1.3 Constructing graphs by solving the pre-image

problem

Graph kernels bridge the gap between graph structures and kernel methods, allow-

ing an implicit embedding of graphs into a kernel space. In the meantime, the

counterpart of the (implicit) embedding with graph kernels is the so-called graph

pre-image. The pre-image problem seeks the estimation of the mapping back, from

the kernel space to the input space. This problem and its resolution continue to in-

trigue researchers. The graph pre-image problem consists in constructing a graph

corresponding to some element in the kernel space, thus implying desired features

and properties. Solving the graph pre-image problem provides answers to the sec-

ond question raised in Section 1.1. Figure 1.3 illustrates the relationship between

graph kernels and graph pre-image. Estimating graph pre-images lie in the inter-

discipline of the pre-image problem in machine learning and the graph construc-

tion problem.

The pre-image is a non-linear reverse mapping of elements from the kernel

space back to the input space. The pre-image problem has been primarily inves-

tigated on Euclidean spaces, with many applications including denoising and fea-

ture extraction with kernel principal component analysis [Honeine, 2012] and with

kernel nonnegative matrix factorization [Zhu and Honeine, 2017]. It is also closely

related to the dimensionality-reduction problem. The challenge of finding the pre-

image lies in the fact that the reverse mapping does not exist in general and that

most elements in the kernel space do not own valid pre-images in the input space.

Consequently, various methods have been developed to approximate the solution,

namely, to solve the pre-image problem. We refer interested readers to the tutorial

[Honeine and Richard, 2011].

Solving the pre-image problem for graphs opens the door to many interesting

applications, such as molecule synthesis and drug design. However, finding the

pre-image as a graph inherits the difficulties of the traditional pre-image problem.

Additionally, unlike inputs considered by the traditional pre-image problem (i.e.,

11

CHAPTER 1. INTRODUCTION

molecule 1 graph 1

image reconstruction,

molecule synthesis,

drug design...

Figure 1.3 – Relationship between graph kernels and graph pre-images. The former maps
graphs to a kernel space H , while the latter provides the reverse procedure, by mapping
elements from kernel space back to graphs.

vectors) usually lying in continuous spaces, graphs are structures where the num-

bers of vertices and edges can only be integers. The numbers of vertices and edges

in a graph can be arbitrary and an edge can exist between any pair of vertices. Fur-

thermore, multiple labels and attributes can be plugged into each vertex and edge in

a graph. Given these structure features, the graph pre-image problem is more chal-

lenging to tackle. Several pioneer works to construct graph pre-images have been

proposed [Bakır et al., 2004, Akutsu and Fukagawa, 2005, Nagamochi, 2009]; how-

ever, they are restricted to specific graph kernels or graph types, such as strings. An-

other set of algorithms is based on generative deep neural networks by modeling the

distribution of implied features of the training data, such as the variational autoen-

coder, the recurrent long short-term memory (LSTM) network, and the generative

adversarial network [Schneider et al., 2020, Hamilton, 2020]. It is thus interesting to

propose generalized methods.

Metric learning for graph pre-image

Graph kernels do not directly operate in the graph space; thus, they are difficult

to be used directly to construct graph pre-images. Defining tools and metrics that

12

CHAPTER 1. INTRODUCTION

operate in the graph space is necessary. In this category lie graph edit distances.

Meanwhile, by measuring and adjusting the relationship between graph space and

kernel space, one can construct graph pre-images according to the information in

the kernel space. Metric learning fits perfectly for this purpose.

In the spirit of the no-free-lunch principle [Wolpert and Macready, 1997], metric

learning consists in learning a (dis)similarity measure given a training set composed

of data instances and associated targeted properties. For the classical metric learn-

ing where each data instance is encoded by a real-valued vector, the problem con-

sists in learning a dissimilarity measure, which decreases (resp. increases) where

the vectors have similar (resp. different) targeted properties. Many metric learn-

ing studies focus on Euclidean data, while only a few addresses this problem on

structured data [Bellet et al., 2013]. A complete review for general structured data

representation is given in [Ontañón, 2020]. When it comes to graph edit distances,

a supervised metric learning strategy can help find optimized edit costs for the task

of interest, with the guidance of the information lying in the target space.

In the spirit of metric learning, multidimensional scaling (MDS) seeks

to embed data in a low-dimensional space by preserving pairwise distances

[Cox and Cox, 2008]. Methods under the MDS framework have been proposed to

solve the vector pre-image problem [Kwok and Tsang, 2004]. In Chapter 5, we pro-

pose the resolution of the graph pre-image problem considering the metric learning

of distances in graphs spaces, with the graph edit distances [Jia et al., 2021].

1.4 Contributions of the research

This thesis studies metrics in graph and kernel spaces, to provide connections be-

tween these spaces in the perspective of solving the pre-image problem. The con-

tributions of this thesis constitute these aspects.

The first contributions focus on graph kernels, with an emphasis on the ones

based on linear patterns, and several ones based on non-linear patterns for com-

parison. Among them, the generalized random walk kernel is split into four dif-

ferent kernels due to the computing methods they use. A thorough investigation

and comparison of these kernels are proposed, theoretically and experimentally.

Considering the theoretical aspects, we examine their mathematical expressions

with connections between them, and their computational complexities, as well as

the strengths and weaknesses of each kernel. Moreover, we provide connections

13

CHAPTER 1. INTRODUCTION

to other kernels from the literature. In the exhaustive experimental analysis con-

ducted in this thesis, each kernel is applied on various synthesized and well-known

real-world datasets exhibiting different types of graphs, including labeled and un-

labeled graphs, graphs with different numbers of vertices, graphs with different av-

erage vertex degrees, linear and non-linear graphs, etc. A thorough performance

analysis including the comparison between these types of graphs is made consid-

ering both accuracy and computational time. This rigorous examination allows to

provide suggestions to choose kernels according to the type of graph data at hand.

Since computational complexity is an Achilles’ heel of graph kernels, we pro-

vide several strategies to address this critical issue, including parallelization, the trie

data structure, and the FCSP (Fast Computation of Shortest Path) method that we

extend to other kernels and edge comparison. All proposed strategies save orders of

magnitudes of computing time and memory usage. Experiments are performed to

demonstrate their relevance.

The second contributions concentrate on a metric in graph space, namely the

graph edit distance (GED). When approximating GED by heuristics, the results may

vary and additionally influence the task performance. Based on the revisiting of

two representative heuristics, i.e., bipartite and IPFP, a study of the stability of

the GED computation is carried out on well-known real-world datasets. A criterion

to measure the stability is defined. A multi-start counterpart of bipartite (resp.

IPFP) introduced in [Daller et al., 2018], namely mbipartite (resp. mIPFP), makes

it possible to acquire better approximations. We examine how computation stability

changes with the change of numbers of solutions used for IPFP. Effects of another

factor on the stability are studied simultaneously, namely the ratio between edit

costs on vertices and edges. The reasons that cause these influences are explained,

and the instruction to choose the proper values of these factors are proposed.

A strategy to optimize edit costs of GED according to a particular task is pro-

posed, and thus the use of predefined costs is avoided. The idea is to align the met-

ric in the graph space (namely, the GED) to the target space in the spirit of metric

learning. With this distance-preserving principle, an alternate iterative procedure

is proposed, where the update on edit costs obtained by solving a constrained lin-

ear problem and a re-computation of the optimal edit paths according to the newly

computed costs are performed alternately. The edit costs resulting from the op-

timization procedure can then be analyzed to understand how the graph space is

structured. The relevance of the proposed method is demonstrated on two regres-

14

CHAPTER 1. INTRODUCTION

sion tasks, showing that the optimized costs lead to a lower prediction error com-

pared to random generation, to expert costs, and to the state-of-the-art methods.

Our third contributions, which benefit from these studies on graph and kernel

spaces, lie in the resolution of the graph pre-image problem. We propose a novel

pre-image method for graphs. To this end, we bridge the gap between graph edit

distances (GEDs) and graph kernels, which allows to uncover the relationship be-

tween graph space and kernel space. Borrowing the essence of the aforementioned

metric learning, the edit costs of GED are tuned according to the corresponding

distances in kernel space. The alternate iterative optimization strategy over edit

costs and optimal edit paths is used. Consequently, the metrics of the two spaces

are aligned, thus allowing to construct the graph pre-image by graph construction

methods based on GEDs with the optimized edit costs. Specifically, a pre-image

problem for the median graph of a graph set is addressed, based on the hypoth-

esis that, benefiting from the alignment of the two metrics, the middle of the set

of graphs corresponds to the mean of their embeddings in the kernel space, thus

the median pre-image can be hereby approximated. We take advantage of recent

advances in GEDs to solve this problem, where we revisit an iterative alternate min-

imization procedure introduced in [Boria et al., 2019] to generate median graphs.

Experiments show that our method can generate better pre-images than others, and

the optimized edit costs yield better results than random costs, and are competitive

with expert costs.

The last contribution of this work is the implementation of an open-

source Python library of machine learning tools for graphs, which is pub-

licly available on GitHub3. The library mainly consists of four parts. In

part one, all graph kernels based on linear patterns and two kernels based

on non-linear patterns (namely the Weisfeiler-Lehman (WL) subtree ker-

nel [Shervashidze et al., 2011, Morris et al., 2017] and the treelet kernel

[Gaüzère et al., 2015b, Bougleux et al., 2012, Gaüzère et al., 2012]) are imple-

mented, as well as the strategies to reduce the computational complexity of these

kernels. The implementation of each kernel is able to tackle various types of graphs.

Part two implements a framework for GED computation based on the C++ library

GEDLIB [Blumenthal et al., 2019, Blumenthal et al., 2020]. The paradigm LSAPE-

GED, which uses transformations to the linear sum assignment problem with error

correction (LSAPE), and the heuristic bipartite are included. A median graph

3The GitHub link is https://github.com/jajupmochi/graphkit-learn.

15

https://github.com/jajupmochi/graphkit-learn

CHAPTER 1. INTRODUCTION

estimator and a metric learning module for edit costs are coded based on them.

In addition, a module that defines the Python interface of GEDLIB is integrated

for the sake of computation speed, which is based on the GEDLIBPY library4. Part

three contains methods for graph pre-image, such as our aforementioned method

and the one based on random generation [Bakır et al., 2004]. Part four constitutes

miscellaneous modules. One module fetches, loads, and manipulates graph

datasets from public databases on the Internet; another one fits the computation

of graph kernels to the pipeline of the scikit-learn library [Pedregosa et al., 2011]

and performs the model selection and validation automatically.

1.5 Structure of the thesis

The rest of the thesis is organized as follows:

Chapter 2 introduces preliminaries for the thesis. Section 2.1 presents the basic

concepts and definitions of graph theory. Section 2.2 walks through the mathemat-

ical background of kernel method, patterns-based kernels, graph kernels based on

patterns, and graph pre-image. Then concepts concerning the graph edit distance

are introduced in Section 2.3. Finally, Section 2.4 exhibits and categorizes graph

datasets used in the thesis.

Chapter 3 presents the improvements and analyses on graph kernels. Graph

kernels based on linear patterns and their connections to other kernels from the lit-

erature are first examined thoroughly in Sections 3.2, 3.3, and 3.4. Then two graph

kernels based on non-linear patterns are presented in Section 3.5. Following that

are three strategies to deal with the computational complexity of graph kernels, de-

tailed in Section 3.6. Comprehensive experiments and analyses for these kernels

on various types of graph datasets are performed in Section 3.7. At last, Section 3.8

concludes the work.

Chapter 4 focuses on graph edit distances. First, in Section 4.2, the paradigms to

approximate GED are introduced, with the emphasis on two representative heuris-

tics. Then, a study on the stability of the GED computation is carried out in Sec-

tion 4.3. Next, a metric learning approach to estimate the graph edit costs for re-

gression is proposed and evaluated experimentally in Section 4.4. The work is con-

cluded in Section 4.5.

Chapter 5 proposes a graph pre-image method based on GEDs. Section 5.1

4The GitHub link of GEDLIBPY is: https://github.com/Ryurin/gedlibpy.

16

https://github.com/Ryurin/gedlibpy

CHAPTER 1. INTRODUCTION

presents state-of-the-art pre-image methods and graph generations. Section 5.2

provides the problem formulation and Section 5.3 presents the proposed method

in two folds, learning edit costs for GEDs by the distances in kernel space (Sec-

tion 5.3.1) and inferring the graph pre-image (Section 5.3.2). Section 5.4 gives ex-

periments and analyses. Finally, Section 5.5 concludes the work.

Chapter 6 reveals the implementation details of our Python library on machine

learning for graphs: graphkit-learn. A brief introduction is given in Section 6.1

and the overall architecture is described in Section 6.2. Then from Section 6.3 to 6.7,

we present details of the graphkit-learn library, respectively implementations of

graph data processing, graph kernels, graph edit distances, graph pre-image meth-

ods, and auxiliary tools. Comparison with other libraries is performed during the

presentation. Example codes to use the library are presented in corresponding sec-

tions. Section 6.8 gives the conclusion and future work.

Chapter 7 concludes the thesis and provides perspectives on future work.

17

CHAPTER 1. INTRODUCTION

18

Chapter 2

Preliminaries

Contents

2.1 Basic concepts of graph theory . 20

2.2 Kernel methods and pre-image . 22

2.2.1 Kernel methods . 23

2.2.2 Graph kernels . 25

2.2.3 The pre-image problem . 26

2.3 Graph edit distances . 29

2.4 Real-world graph datasets . 31

19

CHAPTER 2. PRELIMINARIES

This chapter introduces notations and terminologies that will be used in this

thesis. We first define basic concepts of graph theory, and then the main notions in

kernel-based machine learning, including graph kernels and the pre-image prob-

lem. After that, for the purpose of proposing a graph pre-image method, the graph

edit distance is presented. Real-world graph datasets are introduced at last.

2.1 Basic concepts of graph theory

In this section, we introduce notations and terminologies of graph theory that

will be used in this thesis. For more details, we refer interested readers to

[West et al., 2001]. First, we clarify definitions of different types of graphs. Figure 2.1

shows the types of graphs mentioned below. The indicator function 1A : X → {0,1} is

defined as 1A(x) = 1 if x ∈ A, and 0 otherwise. Let | · | denote the cardinality of a set,

namely the number of its elements.

Definition 2.1 (graph). A graph G is defined by an ordered pair of disjoint sets (V,E),

such that V corresponds to a finite set of vertices and E ⊂ V ×V corresponds to a set of

edges. A vertex u ∈ V is adjacent to another vertex v ∈ V if (u, v) ∈ E. A vertex is also

called a node in literature. We denote the number of graph vertices as n, i.e., n = |V|,
which is also called the order of the graph, and the number of graph edges as m, i.e.,

m = |E|.

Definition 2.2 (labeled and unlabeled graph). A labeled graph G is a graph that has

additionally a set of labels L along with a labeling function ` that assigns a label

to each edge and/or vertex. In edge-labeled graphs, the labeling function `e : E → L

assigns labels to edges only; in vertex-labeled graphs, the labeling function `v : V →
L assigns labels to vertices only; in fully-labeled graphs, the labeling function ` f :

V ∪E → L assigns labels to both vertices and edges. Unlabeled graphs have no such

labeling function.

Definition 2.3 (symbolic and non-symbolic labels). Labels defined in Definition 2.2

can be either symbolic or non-symbolic, for vertices and/or edges. A symbolic label

` ∈ {`i | i ∈ N+} is a discrete symbol, such as the type of atoms or chemical bonds;

a non-symbolic label ` ∈ R is a continuous value. Specific similarity measures be-

tween two labels `i and ` j are usually given due to this difference. For instance,

two symbolic labels `i and ` j are considered equal as long as they are the same and

unequal otherwise (namely, the Kronecker delta function; see Definition 2.4 below),

20

CHAPTER 2. PRELIMINARIES

while non-symbolic labels are compared by continuous measures, such as the Gaus-

sian kernel (see Definition 2.5 below). Both symbolic and non-symbolic labels can

be one-dimensional or multi-dimensional vectors. A label is also referred to as an

attribute.

Two similarity measures are used between labeled vertices and edges: Kronecker

delta function for symbolic labels and Gaussian kernel for non-symbolic labels.

Definition 2.4 (Kronecker delta function). The Kronecker delta function between

two labels `i and ` j is defined as

k(`i ,` j) = δ`i ` j =
1, if `i = ` j ;

0, if `i 6= ` j .
(2.1)

For the sake of conciseness, it is denoted as the delta function δ`i ` j .

Definition 2.5 (Gaussian kernel). The Gaussian kernel between labels `i and ` j is

defined as

k(`i ,` j) = exp

(
−‖`i −` j‖2

2σ2

)
, (2.2)

where σ is the tunable bandwidth parameter.

Definition 2.6 (directed and undirected graph). A directed graph is a graph whose

edges are directed from one vertex to another, where the edge set E consists of ordered

pairs of vertices (u, v). An ordered pair (u, v) is said to be an edge directed from u to v,

namely an edge beginning at u and ending at v. In contrast, a graph where the edges

are bidirectional is called an undirected graph, i.e., if (u, v) ∈ E, then (v,u) ∈ E.

Graph substructures, such as walks, paths, and cycles, allow to describe graphs,

thus providing elegant ways to construct graph kernels. The concepts of the adja-

cency matrix, neighbors, and degrees of vertices are fundamental for building these

kernels.

Definition 2.7 (neighbors and degree). In a graph G = (V,E), a neighbor of a vertex

v ∈ V is a vertex u that meets the condition (u, v) ∈ E. We denote the set of all neigh-

bors of v as N (v). If G is undirected, the degree of a vertex v ∈ V is the number of these

neighbors, namely deg(v) = |{u ∈ V | (u, v) ∈ E}|; if G is directed, then deg−(v) = |{u− ∈
V | (u−, v) ∈ E}| is called the indegree of vertex v, deg+(v) = |{u+ ∈ V | (v,u+) ∈ E}| is

21

CHAPTER 2. PRELIMINARIES

unlabeled graph

undirected graph directed graph

edge-labeled graphvertex-labeled graph

Figure 2.1 – The different types of graphs. In vertex- and edge-labeled graphs, vertices and
edges with different labels are distinguished by color in the figure.

the outdegree of v, and the degree of v is the sum of its indegree and outdegree. The

degree of the graph, denoted by d, is the largest vertex degree of all its vertices.

Definition 2.8 (adjacency matrix). The adjacency matrix of an n-vertex graph G =
(V,E) is an n×n matrix A(G) with entries ai j = 1E((vi , v j)), namely ai j = 1 if (vi , v j) ∈
E and 0 otherwise.

Definition 2.9 (walks, paths and cycles). For a graph G = (V,E), a walk of length h is

a sequence of vertices W = (v1, v2, . . . , vh+1) where (vi , vi+1) ∈ E for any i ∈ {1,2, . . . ,h}.

The length of a walk W is defined as its number of edges h. If each vertex appears only

once in W, then W is a path. A walk with v1 = vh+1 is called a cycle. Note that when

h = 0, a walk or path is a single vertex without edges.

Definition 2.10 (label sequences). The (contiguous) label sequence of a length h

walk/path W of a fully-labeled graph is defined as

s = (`v (v1),`e ((v1, v2)),`v (v2),`e ((v2, v3)), . . . ,`v (vh+1)).

For a vertex-labeled or edge-labeled graph, the label sequence of W is constructed by

removing all edge labels `e ((vi , v j)) or vertex labels `v (vi) in s, respectively.

2.2 Kernel methods and pre-image

In this section, we define terminologies about the graph kernel and its reverse pro-

cedure, i.e., graph pre-image. First, formal definitions of a kernel and Gram matrix

22

CHAPTER 2. PRELIMINARIES

are introduced. Then the kernel trick is presented to show its ability of evaluat-

ing inner products in some feature space. To this end, two classical kernel-based

machine learning methods are presented next, kernel ridge regression and support

vector machines for classification, and applied in this thesis to assess the relevance

of graphs. With the help of these definitions, we are able to provide formal defini-

tions of the pre-image. Then the related techniques are introduced. A method to

approximate pre-image, namely the multi-dimensional scaling-based technique, is

presented, which is closely related to the methods we proposed in this thesis.

2.2.1 Kernel methods

Let X denote the input space. A positive semi-definite kernel is defined as follows:

Definition 2.11 (positive semi-definite kernel). A positive semi-definite kernel de-

fined on X is a symmetric bilinear function k : X 2 → R that fulfills the condition∑n
i=1

∑n
j=1 ci c j k(xi , x j) Ê 0, for all x1, . . . , xn ∈X and c1, . . . ,cn ∈R.

Positive semi-definite kernels have some general properties. Of particular inter-

est, the products and sums, weighted with non-negative coefficients, of a set of pos-

itive semi-definite kernels, are also positive semi-definite kernels. Moreover, any

limit limn→∞ kn of a sequence of positive semi-definite kernels kn is also a posi-

tive semi-definite kernel [Schölkopf and Smola, 2002]. These properties are useful

for constructing graph kernels. The first property is applied for all graph kernels

discussed in this thesis, and the second one for the common walk kernel and the

generalized random walk kernel.

Mercer’s theorem states that any positive semi-definite kernel corresponds to

an inner product in some Hilbert space [Mercer, 1909], namely, for all (xi , x j) ∈X 2,

there exists a space H and an embedding function φH : X →H such that:

k(xi , x j) = 〈φH (xi),φH (x j)〉H . (2.3)

The positive semi-definiteness of a kernel is a sufficient condition to the existence of

this function. For the sake of conciseness, positive semi-definite kernels are simply

denoted as kernels in this thesis. Table 2.1 lists several commonly used kernels on

vector representations.

Kernel-based methods in machine learning take advantage of Mercer’s theo-

rem, in order to transform conventional linear models into non-linear ones, by

23

CHAPTER 2. PRELIMINARIES

Table 2.1 – Commonly used kernels between vectors x and y .

Kernels Expressions

Kronecker delta k(x , y) = δx y

Linear k(x , y) = x>y
Monomial k(x , y) = (x>y)d ,d ∈N
Polynomial k(x , y) = (x>y)d + c,c ∈R,d ∈N
Exponential k(x , y) = e

x>y
2σ2 ,σ ∈R+

Cosine k(x , y) = x>y
||x ||||y ||

Intersection k(x , y) =∑N
i=1 min(xi , yi)

Sigmoid k(x , y) = tanh(γx>y + c0),γ,c0 ∈R+

Gaussian/RBF k(x , y) = e− ||x−y ||2
2σ2 ,σ ∈R+

Laplacian k(x , y) = e− ||x−y ||
2σ2 ,σ ∈R+

Multiquadratic k(x , y) =
√
||x − y ||2 + c,c ∈R+

Inverse multiquadratic k(x , y) = 1p
||x−y ||2+c

,c ∈R+

replacing classical inner products between data with a non-linear kernel. Let X =
{x1, x2, . . . , xN} be the finite dataset of N samples available for training the machine

learning method, with associated data labels {y1, y2, . . . , yN} where yi ∈ {−1,+1} for

binary classification and yi ∈R for regression (extensions to multiclass classification

and vector output are straightforward [Honeine et al., 2013]). It turns out that one

does not need access to the raw data X, but only the evaluation of the kernel on all

pairs of the data, namely the Gram matrix K is sufficient. This approach, called the

kernel trick, is often computationally efficient, compared to the direct computation

over the raw data. A Gram matrix K associated to a kernel k for a training set X is an

N×N matrix defined as Ki , j = k(xi , x j), for all (xi , x j) ∈X 2.

Kernel-based machine learning relies on regularized cost functions, of-

ten of the form argminψ∈H
∑N

i=1 c(yi ,ψ(xi)) + λ‖ψ‖2, for some cost function

c and positive regularization parameter λ. The generalized representer theo-

rem [Schölkopf et al., 2001] states that the optimal solution has the form ψ(x) =∑N
i=1ωi k(xi , x) for any x ∈ X , where k is the kernel inducing the Hilbert space

H . The coefficients ωi ’s can be computed only using the Gram matrix, and can

be used to represent x given the decomposition elements xi , for i = 1, . . . ,N. For

example, the kernel ridge regression corresponds to the square loss c(yi ,ψ(xi)) =
(yi −ψ(xi))2, which leads to [ω1 . . .ωN]> = (K+λI)−1[y1 . . . yN]> [Murphy, 2012]. Sup-

port Vector Machines (SVM) for classification consider the hinge loss c(yi ,ψ(xi)) =

24

CHAPTER 2. PRELIMINARIES

max(0,1−yiψ(xi)), and the optimal coefficients are efficiently obtained by quadratic

programming algorithms [Boser et al., 1992].

Kernel-based methods provide an elegant and powerful framework in machine

learning for any input space, without the need to exhibit the data or optimize in

that space, as long as one can define a kernel on it. Besides conventional kernels,

such as the Gaussian kernel for vector spaces, kernels can be engineered by com-

bining other valid kernels, using additive or multiplicative rules. Of particular in-

terest in kernel engineering are R-convolution kernels [Haussler, 1999], which pro-

vide the foundation of kernels based on bags of patterns and can be regarded as the

cornerstones to engineer graph kernels using graph patterns. For more details on

kernel methods, we refer interested readers to [Shawe-Taylor and Cristianini, 2004,

Schölkopf and Smola, 2002].

2.2.2 Graph kernels

R-convolution kernels propose a way to measure similarity between two objects, by

measuring the similarities between their substructures [Haussler, 1999]. Suppose

that each sample xi ∈X has a composite structure, namely described by its “parts”

(xi 1, xi 2, . . . , xi D) ∈X1×X2×·· ·×XD, for some positive integer D. Since multiple de-

compositions could exist, let R(x) denotes all possible decompositions of x, namely

R(x) = {
x ∈X1 ×X2 ×·· ·×XD

∣∣ x is a decomposition of x
}

. For each decomposition

space Xd , let kd be a kernel defined on this space to measure the similarity on the

d-th part. Then, a generalized convolution kernel, called R-convolution kernel, be-

tween any two samples xi and x j from X is defined as:

k(xi , x j) = ∑
(xi 1,...,xi D)∈R(xi)
(x j 1,...,x j D)∈R(x j)

D∏
d=1

kd (xi d , x j d). (2.4)

Figure 2.2 illustrates an example of computing the R-convolution kernel be-

tween two bunches of bananas with respect to the calories that they contain. First,

each bunch is decomposed into individual bananas, which corresponds to the xi d ’s

and x j d ’s in (2.4). Next, the linear kernel, namely kd in (2.4), is used between the

calories of each pair of bananas in two bunches. At last, the computed values are

summed up, which serves as a similarity measure between the two bunches. Im-

ages of bananas are from the Internet.

Graph kernels are kernels defined on graphs. For a given graph kernel, k(Gi ,G j)

25

CHAPTER 2. PRELIMINARIES

Figure 2.2 – An example of an R-convolution kernel.

Kernel

Figure 2.3 – Graph kernels based on sub-structures of graphs, where Gd is the d-th sub-
structure in G and kd is a kernel defined between sub-structures.

can be regarded as the inner product between the two mapped graphs, φ(Gi) and

φ(G j), in the kernel space H , namely k(Gi ,G j) = 〈φ(Gi),φ(G j)〉H .

By simply changing the decomposition, many different kernels can be obtained

from the R-convolution kernel. When it comes to graphs, it is natural to decom-

pose them into smaller substructures, such as paths, walks, trees and cycles, and

build graph kernels based on similarities between those components, as it is easier

to compare them. Figure 2.3 illustrates this procedure. The kernels differ mainly in

the ways of composition and the similarity measures used to compare the substruc-

tures.

2.2.3 The pre-image problem

With the aforementioned definitions, we can now define the pre-image problem:

Definition 2.12 (the pre-image problem). Given a kernel k : X 2 → R with its cor-

responding mapping φ(·), the pre-image problem of any ψ ∈ H consists in finding

26

CHAPTER 2. PRELIMINARIES

the element x ∈X whose image, under the map φ(·), is ψ, namely ψ=φ(x). Here, x

is called the pre-image of ψ, namely x = φ−1(ψ) where φ−1(·) : H → X denotes the

inverse mapping of φ(·).

Although φ(·) can be implicit and straightforward thanks to the kernel trick, the

reverse map is difficult to compute in general. In most cases, finding the pre-image

is an ill-posed problem, namely, at least one of the following conditions is not satis-

fied [Honeine and Richard, 2011]:

• There is a solution;

• The solution is unique;

• The solution continuously depends on the data (the stability condition).

Indeed, most ψ ∈ H do not have a valid pre-image, as the dimension of the ker-

nel space is usually much higher than the input space. It may not be unique,

even if it exists. Therefore, the pre-image problem generally consists in estimat-

ing an approximate solution, namely x̂ such that φ(x̂) ≈ψ. Since ψ = ∑N
i=1αiφ(xi)

according to the generalized representer theorem, then the pre-image problem

consists in estimating x̂ such that φ(x̂) ≈ ∑N
i=1αiφ(xi). Many strategies to esti-

mate pre-images have been proposed in the literature. They can be grouped into

two categories, methods relying on minimizing the gap between φ(x̂) and ψ with

gradient-based techniques, and methods relying on dimension reduction tech-

niques [Honeine and Richard, 2011].

The first class of pre-image methods rely on minimizing the distance between

φ(x̂) and
∑N

i=1αiφ(xi), generally by solving an optimization problems of the form:

x̂ = argmin
x∈X

∣∣∣∣ N∑
i=1

αiφ(xi)−φ(x)
∣∣∣∣2

H . (2.5)

After expanding the objective function, the terms independent of x can be dropped.

Using the kernel trick, the other two terms can be expressed in the form of an inner

product, namely the kernel function. The problem is therefore reformed as

x̂ = argmin
x∈X

(
k(x, x)−2

N∑
i=1

αi k(xi , x)
)
. (2.6)

Gradient descent techniques rely on computing the gradient of the ob-

jective function given in (2.6) and nullifying it with an iterative update

[Honeine and Richard, 2011]. However, the local minima may be reached as the

27

CHAPTER 2. PRELIMINARIES

optimization problem is non-linear and non-convex. To tackle this issue, the pro-

posed algorithms are often run multiple times with different starting values. The

fixed-point iteration method takes advantage of the closed-form of the gradient of

the objective function given in (2.6) for most kernels, by setting its expression to

zero [Abrahamsen and Hansen, 2009]. Besides local minima, this technique also

suffers from numerical instabilities (e.g., when the denominator of the iterative ex-

pression tends to zero). A regularized solution to prevent this phenomenon is pro-

posed in [Abrahamsen and Hansen, 2009]. The bright side is that the consequential

pre-image lies in the span of the given data, which reduces the search space.

The second class of methods relies on connecting the pre-image problem

with dimension reduction problems. Indeed, the pre-image mapping can be

viewed as embedding elements from a high-dimensional space H into a lower-

dimensional space X . In the same spirit of multi-dimensional scaling (MDS)

[Cox and Cox, 2008], the principle of preserving pairwise distances in both spaces

was used to solve the pre-image problem in [Kwok and Tsang, 2004]. This method

aims at finding the pre-image that minimizes the difference between distances in

the input space and their counterparts in the kernel space. To solve this problem,

one method is to minimize the mean square error between these distances, namely

by solving the following optimization problem:

x̂ = argmin
x∈X

N∑
i=1

(||x −xi ||2 −||ψ−φ(xi)||2H
)2, (2.7)

where ||x−xi || and ||ψ−φ(xi)||H are respectively the distances in the input and ker-

nel spaces. When dealing with Euclidean input spaces, methods such as the fixed-

point iteration are employed to solve this problem. Another way is to consider sep-

arately each distance, where the pre-image is eventually obtained by a least-square

solution [Honeine and Richard, 2011]. Besides the distance-preserving method in

MDS, the conformal map approach proposed in [Honeine and Richard, 2009] seeks

to preserve inner product measures as well as the angular measures, by defining a

coordinate system in the kernel space that is in isometry with the input space.

A thorough survey of the pre-image methods and their applications can be

found in [Honeine and Richard, 2011]. While there are many diverse applications,

including feature extraction, image denoising, and auto-localization in wireless sen-

sor networks, most of the work on the pre-image problem has been addressing vec-

tor data, namely when input space is a Euclidean space.

28

CHAPTER 2. PRELIMINARIES

The graph pre-image problem can be defined in a similar way. Defining a ker-

nel on a space of graphs G , the graph pre-image problem of some ψ ∈ H consists

in estimating a graph Ĝ ∈ G , such that φ(Ĝ) ≈ ψ. In order to consider a distance-

preserving formalism in the same spirit of MDS and (2.7), one needs first to define

a distance in the graph space G (with graph edit distance described in the next sec-

tion), and then optimize on this space (see Chapter 5).

2.3 Graph edit distances

Definition 2.13 (Graph Edit Distance (GED)). The Graph Edit Distance (GED) be-

tween two graphs G1 = (V1,E1) and G2 = (V2,E2) is defined as the cost of a minimal

transformation [Riesen, 2015]:

ged(G1,G2) = min
π∈Π(G1,G2)

C(π,G1,G2), (2.8)

where (2.8), π(G1,G2) is a transformation from G1 to G2, including a series of six ele-

mentary operations: removing a vertex or an edge, inserting a vertex or an edge, and

substituting a label of a vertex or an edge by another label. This sequence of edit op-

erations is known as an edit path from G1 to G2.

As shown in [Bougleux et al., 2015a], the edit path π can be considered as a map-

ping function. Let εbe a dummy symbol denoting dummy vertices and edges as well

as their labels. First, π : V1 → V2 ∪ε encodes the mapping of G1’s vertices to vertices

of G2. If a vertex vi is deleted, we haveπ(vi) = ε. Similarly, we denote asπ−1 the map-

ping of V2 to V1 ∪ε. For the same edit path, we have thus π(vi) = v j ⇒ π−1(v j) = vi .

Given a mapping, the cost associated to vertex operations of an edit path repre-

sented by π is given by:

Cv (π,G1,G2) = ∑
v∈V2

π−1(v)∉V1

cv f i (ε, v)+ ∑
u∈V1

π(u)∉V2

cv f r (u,ε)+ ∑
u∈V1

π(u)∈V2

cv f s(u,π(u)), (2.9)

where cv f r ,cv f i ,cv f s are edit cost functions to perform respectively the removal,

insertion, and substitution edit operations on vertices. The cost associated with

29

CHAPTER 2. PRELIMINARIES

edge operations is defined as:

Ce (π,G1,G2) = ∑
e=(vi ,v j)∈E2|
π−1(vi)=ε∨
π−1(v j)=ε∨

(π−1(vi),π−1(v j))∉E1

ce f i (ε,e) + ∑
e=(vi ,v j)∈E1|
π(vi)=ε∨
π(v j)=ε∨

(π(vi),π(v j))∉E2

ce f r (e,ε) + ∑
e=(vi ,v j)∈E1|
π(vi)6=ε∧
π(v j)6=ε∧

(π(vi),π(v j))∈E2

ce f s(e,π(e)), (2.10)

where ce f r ,ce f i ,ce f s are edit cost functions to perform respectively the removal, in-

sertion, and substitution edit operations on edges. The final cost is then given by:

C(π,G1,G2) = Cv (π,G1,G2)+Ce (π,G1,G2). (2.11)

For graphs with symbolic labels, the delta function (2.1) is normally used for the

comparison between labels, namely, the cost is equal to 1 if the two labels are the

same and 0 otherwise. Then the edit cost functions can be defined by constants,

namely: cv f i (ε, v) = cvi , cv f r (v,ε) = cvr , cv f s(u, v) = cv s ,

ce f i (ε,e) = cei , ce f r (e,ε) = cer , ce f s(e, f) = ces .
(2.12)

The cost associated to vertex and edge operations is then respectively given by:

Cv (π,G1,G2) = ∑
v∈V2

π−1(v)=ε

cvi +
∑

v∈V1
π(v)=ε

cvr +
∑

v∈V1
π(v)6=ε

cv s , (2.13)

and

Ce (π,G1,G2) = ∑
e=(vi ,v j)∈E2|
π−1(vi)=ε∨
π−1(v j)=ε∨

(π−1(vi),π−1(v j))∉E1

cei + ∑
e=(vi ,v j)∈E1|
π(vi)=ε∨
π(v j)=ε∨

(π(vi),π(v j))∉E2

cer + ∑
e=(vi ,v j)∈E1|
π(vi)6=ε∧
π(v j)6=ε∧

(π(vi),π(v j))∈E2

ces . (2.14)

On the other hand, according to [Kaspar and Horst, 2010], the edit cost functions

for graphs with non-symbolic labels can be defined as:

cv f i (ε, v) = cvi , ce f i (ε,e) = cei ,

cv f r (v,ε) = cvr , ce f r (e,ε) = cer ,

cv f s(u, v) = cv s‖`v (u)−`v (v)‖,

ce f s(e, f) = ces‖`e (e)−`e (f)‖.

(2.15)

30

CHAPTER 2. PRELIMINARIES

In (2.12) and (2.15), cvr ,cvi ,cv s ,cer ,cei ,ces are the constant edit costs, namely co-

efficients applied for vertex removal, vertex insertion, vertex substitution, edge re-

moval, edge insertion and edge substitution, respectively; ‖ ·‖ represents a distance

measure between non-symbolic labels, such as the Euclidean norm. We denote by

c = [cvr ,cvi ,cv s ,cer ,cei ,ces]> the edit costs vector.

2.4 Real-world graph datasets

Graph datasets have been springing up in recent years, while public collections

of datasets containing various types of graphs being published. For instance, GR-

EYC’s Chemistry database1 contains various chemical datasets of molecules, each

of them being either a classification or regression problem. TUDataset2 is an ex-

panding database that collects benchmark datasets for the evaluation of graph

kernels [Morris et al., 2020]. Graphs in it come from various domains, such as

bioinformatics, chemoinformatics, computer vision, social networks, and synthetic

graphs. The Open Graph Benchmark (OGB)3 is a collection of realistic, large-scale,

and diverse benchmark datasets for machine learning on graphs, with tools to au-

tomatically download and process the datasets alongside [Hu et al., 2020]. More

databases can be found in the datasets module of the PyTorch Geometric library

[Fey and Lenssen, 2019].

We exhibit 14 well-known benchmark datasets. These datasets come from differ-

ent fields, and cover a wide range of graph properties. The diversity of these partic-

ularities allows to explore and examine comprehensively the behavior of methods

and the library proposed in this thesis. Table 2.2 outlines the properties of these

datasets.

Alkane is a dataset of 150 alkanes with only carbon atoms, which are represented

by acyclic unlabeled graphs [Cherqaoui and Villemin, 1994]. The problem is to pre-

dict boiling points by regression.

Acyclic has 183 acyclic molecules with hetero atoms [Cherqaoui et al., 1994]. It is

associated with a regression problem to predict the boiling points of the molecules.

MAO is a Monoamine Oxidase dataset of 68 cycle-included molecules labeled

by two classes: 38 of them act as antidepressant drugs by inhibiting the monoamine

1Available at https://brunl01.users.greyc.fr/CHEMISTRY.
2Available at www.graphlearning.io.
3Available at https://ogb.stanford.edu.

31

https://brunl01.users.greyc.fr/CHEMISTRY
www.graphlearning.io
https://ogb.stanford.edu

CHAPTER 2. PRELIMINARIES

Figure 2.4 – A sample of the Letter dataset.

oxidase and 30 do not [Brun, 2018]. Thus, it is associated with a classification prob-

lem.

PAH is a polycyclic aromatic hydrocarbon dataset composed of 94 cyclic unla-

beled graphs [Brun, 2018]. Atoms are all carbons and chemical bonds are all aro-

matics. The associated target is to determine whether each molecule is cancerous

or not.

MUTAG is composed of 188 MUTAGenic aromatic and heteroaromatic nitro

compounds [Debnath et al., 1991]. The classification task associated is to correctly

determine whether each compound has a mutagenic effect.

Monoterpens contains different classes of monoterpenoid molecules encoded

by labeled graphs. Depending on the existence of the same precursor, molecules

are grouped into 8 classes.

The Letter dataset involves graphs of distorted letter drawings of 15 capital let-

ters of the Roman alphabet that consist of straight lines only (A, E, F, H, I, K, L,

M, N, T, V, W, X, Y, Z) [Riesen and Bunke, 2008]. According to the strength of dis-

tortion, three sub-datasets consisting of 2250 graphs each are generated, namely

Letter-high, Letter-med, and Letter-low, corresponding respectively to distortions

of high, medium, and low strengths. In each graph, lines are represented by undi-

rected edges and ending points by vertices. Vertices are equipped with 2D non-

symbolic labels “x” and “y”, which represent positions of vertices in a 2D coordinate

system. Figure 2.4 exhibits a sample of Letter dataset, in which the left image “A”

is the original letter, while the other three are its distortions at different levels. The

task is to classify each graph to the proper letter.

Enzymes has 600 enzymes from the Brenda enzyme database

[Schomburg et al., 2004], which represents the tertiary structures of protein

[Borgwardt et al., 2005]. The task is to predict the correct Enzyme Commission

top-level class from all six classes.

AIDS constitutes 2000 molecule compounds represented by graphs, each as-

sociated with a Boolean value indicating whether it is active against HIV or not

[Riesen and Bunke, 2008]. Vertices are labeled with chemical symbols and edges

32

CHAPTER 2. PRELIMINARIES

with valency. A classification task on activity is assigned to it.

NCI1 and NCI109 represent two balanced subsets of datasets of chemical com-

pounds screened for activity against non-small cell lung cancer and ovarian cancer

cell lines respectively [Wale et al., 2008]. Each subset is composed of 4110 and 4127

graphs respectively, with vertices labeled with types of atoms. The associated task

concerns classifying a graph according to its activity against the cancers.

DD is composed of 1178 graphs representing protein structures

[Dobson and Doig, 2003]. Each vertex is labeled by a symbol denoting an

amino acid. If the distance between two vertices is less than 6 Angstroms, an

edge is inserted. Graphs are grouped by whether they are enzymes or not, and a

classification task is assigned.

33

CHAPTER 2. PRELIMINARIES

Ta
b

le
2.

2
–

St
ru

ct
u

re
s

an
d

p
ro

p
er

ti
es

o
fr

ea
l-

w
o

rl
d

gr
ap

h
d

at
as

et
s.

D
at

as
et

s

Su
b

st
ru

ct
u

re
s

N
u

m
b

er
s

o
fL

ab
el

s

D
ir

ec
te

d
N

n̄
m̄

d
C

la
ss

N
u

m
b

er
s

Ta
sk

s
li

n
ea

r
n

o
n

-l
in

ea
r

cy
cl

ic
sy

m
b

o
li

c
n

o
n

-s
ym

b
o

li
c

ve
rt

ic
es

ed
ge

s
ve

rt
ic

es
ed

ge
s

A
lk

an
e

3
3

7
7

7
7

7
7

15
0

8.
87

7.
87

1.
75

-
R

A
cy

cl
ic

3
3

7
3

7
7

7
7

18
3

8.
15

7.
15

1.
47

-
R

M
A

O
3

3
3

3
4

7
7

7
68

18
.3

8
19

.6
3

2.
13

2
C

PA
H

3
3

3
7

7
7

7
7

94
20

.7
0

24
.4

3
2.

36
2

C
M

U
TA

G
3

3
3

7
11

7
7

7
18

8
17

.9
3

19
.7

9
2.

19
2

C
M

on
ot

er
p

en
s

3
3

3
3

3
7

7
7

28
6

11
.0

0
11

.0
7

2.
01

8
C

Le
tt

er
-h

ig
h

3
3

3
7

7
2

7
7

22
50

4.
67

4.
50

1.
89

15
C

Le
tt

er
-m

ed
3

3
3

7
7

2
7

7
22

50
4.

67
3.

21
1.

35
15

C
Le

tt
er

-l
ow

3
3

3
7

7
2

7
7

22
50

4.
67

3.
13

1.
32

15
C

E
n

zy
m

es
3

3
3

3
7

18
7

7
60

0
32

.6
3

62
.1

4
3.

86
6

C
A

ID
S

3
3

3
38

3
4

7
7

20
00

15
.6

9
16

.2
0

2.
01

2
C

N
C

I1
3

3
3

37
7

7
7

7
41

10
29

.8
7

32
.3

0
2.

16
2

C
N

C
I1

09
3

3
3

38
7

7
7

7
41

27
29

.6
8

32
.1

3
2.

15
2

C
D

D
3

3
3

82
7

7
7

7
11

78
28

4.
32

71
5.

66
4.

98
2

C

“S
u

b
st

ru
ct

u
re

s”
ar

e
th

e
su

b
-p

at
te

rn
s

th
at

gr
ap

h
s

co
n

ta
in

;
“N

u
m

b
er

s
o

fl
ab

el
s”

in
cl

u
d

e
n

u
m

b
er

s
o

fs
ym

b
o

lic
an

d
n

o
n

-s
ym

b
o

lic
ve

rt
ex

an
d

ed
ge

la
b

el
s,

w
it

h
7

fo
r

n
o

la
b

el
;

“D
ir

ec
te

d
”

ex
h

ib
it

s
w

h
et

h
er

d
ir

ec
te

d
gr

ap
h

s
ar

e
in

cl
u

d
ed

;
N

is
th

e
n

u
m

b
er

o
fg

ra
p

h
s;

n̄
is

th
e

av
er

ag
e

n
u

m
b

er
o

fg
ra

p
h

ve
rt

ic
es

;
m̄

is
th

e
av

er
ag

e
n

u
m

b
er

o
fe

d
ge

s;
d

is
th

e
av

er
ag

e
ve

rt
ex

d
eg

re
e;

“T
as

ks
”

ar
e

ei
th

er
re

gr
es

si
o

n
(“

R
”)

o
r

cl
as

si
fi

ca
ti

o
n

(“
C

”)
.

34

Part II

Contributions

35

Chapter 3

Graph kernels based on sub-patterns

Contents

3.1 Overview . 39

3.2 Graph kernels based on walks . 41

3.2.1 Common walk kernel . 41

3.2.2 Marginalized kernel . 44

3.2.3 Generalized random walk kernel 45

3.2.4 Problems raised by walks . 48

3.3 Graph kernels based on paths . 50

3.3.1 Shortest path kernel . 50

3.3.2 Structural shortest path kernel 51

3.3.3 Path kernel up to length h . 52

3.4 Graph kernels related to walks and paths 53

3.5 Graph kernels based on non-linear patterns 55

3.5.1 Treelet kernel . 56

3.5.2 Weisfeiler-Lehman subtree kernel 59

3.6 Acceleration strategies: FCSP, parallelization, and trie structure . 65

3.6.1 The Fast Computation of Shortest Path Kernel method 65

3.6.2 Parallelization . 68

3.6.3 The trie Structure . 73

3.7 Experiments and analyses . 79

37

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

3.7.1 Performance on synthesized graphs 80

3.7.2 Performance on the real-world datasets 83

3.8 Conclusion . 98

38

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

3.1 Overview

Graph kernels can be constructed using the global information, the local in-

formation, or both of them in graphs, by means of varied strategies. Among

these strategies, there are kernels based on sub-structures, information propa-

gation kernels, and deep graph kernels [Ghosh et al., 2018]. Of particular inter-

est are kernels based on sub-patterns/structures. When comparing graphs and

analyzing their properties, the similarity principle has been widely investigated

[Johnson and Maggiora, 1990]. It states that molecules having more common sub-

structures turn to have more similar properties. This principle can be generalized

to other fields where data is modeled as graphs. It provides a theoretical support to

construct graph kernels by studying graphs’ substructures, which are also referred

to as patterns. There are three major types of patterns, as illustrated by G1, G2 and

G3 in Figure 3.1. The most fundamental patterns are linear patterns, which are com-

posed of sequences of vertices connected by edges. However, when a substructure

contains vertices that have more than two neighbors, linear patterns are insufficient

to completely describe the structure. This is where non-linear patterns become use-

ful, with either non-linear (acyclic) patterns or cyclic patterns, which contain cycles.

Despite that non-linear patterns may encode more complex structural infor-

mation than linear ones, the latter are of great interest for several reasons. First,

non-linear patterns normally include or imply the linear ones. This is the case for

example of the treelet pattern [Gaüzère et al., 2012]. A treelet is a subtree, rooted

at a vertex v , that can be expanded by iteratively adding all neighbors of the leaf

vertices as their child leaves as long as the size of the subtree is not bigger than 6.

The treelet pattern is non-linear as a whole, while treelets whose maximal size is

less than 4 are linear. A detailed description of the treelet kernel can be found in

Section 3.5.1. Second, linear patterns require lower computational complexity than

non-linear patterns in most cases. Moreover, it could be intractable to compute

non-linear or cyclic-based kernels on large graphs. Therefore in this thesis, we fo-

Figure 3.1 – Different types of graph patterns. G1, G2, G3 are examples of linear patterns,
non-linear (acyclic) patterns and cyclic patterns, respectively.

39

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

Ta
b

le
3.

1
–

C
h

ar
ac

te
ri

st
ic

s
o

fg
ra

p
h

ke
rn

el
s

b
as

ed
o

n
li

n
ea

r
p

at
te

rn
s,

an
d

tw
o

o
n

n
o

n
-l

in
ea

r
p

at
te

rn
s

K
er

n
el

s

Su
b

st
ru

ct
u

re
s

La
b

el
in

g

D
ir

ec
te

d
E

d
ge

W
ei

gh
te

d

T
im

e
C

o
m

p
le

xi
ty

(G
ra

m
M

at
ri

x)

E
xp

lic
it

R
ep

re
se

n
ta

ti
o

n
W

ei
gh

ti
n

g
li

n
ea

r
n

o
n

-l
in

ea
r

cy
cl

ic
sy

m
b

o
li

c
n

o
n

-s
ym

b
o

li
c

ve
rt

ic
es

ed
ge

s
ve

rt
ic

es
ed

ge
s

C
o

m
m

o
n

w
al

k
3

7
7

3
3

7
7

3
7

O
(N

2
n

6
)

7
a

p
ri

o
ri

M
ar

gi
n

al
iz

ed
3

7
7

3
3

7
7

3
7

O
(N

2
rn

4
)

7
7

Sy
lv

es
te

r
eq

u
at

io
n

3
7

7
7

7
7

7
3

3
O

(N
2
n

3
)

7
a

p
ri

o
ri

C
o

n
ju

ga
te

gr
ad

ie
n

t
3

7
7

3
3

3
3

3
3

O
(N

2
rn

4
)

7
a

p
ri

o
ri

F
ix

ed
-p

o
in

ti
te

ra
ti

o
n

s
3

7
7

3
3

3
3

3
3

O
(N

2
rn

4
)

7
a

p
ri

o
ri

Sp
ec

tr
al

d
ec

o
m

p
o

si
ti

o
n

3
7

7
7

7
7

7
3

3
O

(N
2
n

2
+N

n
3
)

7
a

p
ri

o
ri

Sh
o

rt
es

tp
at

h
3

7
7

3
7

3
7

3
3

O
(N

2
n

4
)

7
7

St
ru

ct
u

ra
ls

h
o

rt
es

tp
at

h
3

7
7

3
3

3
3

3
7

O
(h

N
2
n

4
+N

2
n

m
))

7
7

Pa
th

ke
rn

el
u

p
to

le
n

gt
h

h
3

7
7

3
3

7
7

3
7

O
(N

2
h

2
n

2
d

2h
)

3
3

Tr
ee

le
t

3
3

7
3

3
7

7
3

7
O

(N
2
n

d
5
)

3
3

W
ei

sf
ei

le
r-

Le
h

m
an

(W
L)

su
b

tr
ee

3
3

7
3

7
7

7
3

7
O

(N
h

m
+N

2
h

n
)

3
7

T
h

e
“T

im
e

co
m

p
le

xi
ty

”
co

lu
m

n
is

a
ro

u
gh

es
ti

m
at

io
n

fo
r

co
m

p
u

ti
n

g
th

e
G

ra
m

m
at

ri
x.

T
h

e
“E

xp
lic

it
re

p
re

se
n

ta
ti

o
n”

co
lu

m
n

in
d

ic
at

es
w

h
et

h
er

th
e

em
b

ed
d

in
g

o
f

gr
ap

h
s

in
th

e
re

p
re

se
n

ta
ti

o
n

sp
ac

e
ca

n
b

e
en

co
d

ed
b

y
a

ve
ct

o
r

ex
p

li
ci

tl
y;

in
o

th
er

w
o

rd
s,

w
h

et
h

er
th

e
p

at
te

rn
s

o
fg

ra
p

h
ke

rn
el

s
ca

n
b

e
ex

p
lic

it
ly

p
re

se
n

te
d

(s
ee

[K
ri

eg
e

et
al

.,
20

14
]f

o
r

m
o

re
d

et
ai

le
d

an
al

ys
is

).
T

h
e

“W
ei

gh
ti

n
g”

co
lu

m
n

in
d

ic
at

es
w

h
et

h
er

th
e

su
b

st
ru

ct
u

re
s

ca
n

b
e

w
ei

gh
te

d
in

o
rd

er
to

o
b

ta
in

a
si

m
ila

ri
ty

m
ea

su
re

ad
ap

te
d

to
th

e
p

ro
b

le
m

at
h

an
d

,w
h

er
e

“a
p

ri
o

ri
”

in
d

ic
at

es
th

at
th

e
w

ei
gh

ts
ar

e
se

t
w

h
il

e
co

n
st

ru
ct

in
g

ke
rn

el
s.

Fo
r

ex
am

p
le

,w
ei

gh
tλ

h
in

(3
.2

)
is

se
tt

o
γ

h
w

h
en

co
n

st
ru

ct
in

g
th

e
ke

rn
el

b
y

ge
o

m
et

ri
c

se
ri

es
(s

ee
Se

ct
io

n
3.

2.
1)

.

40

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

cus on studying and comparing graph kernels based on different linear patterns, as

well as several kernels based on non-linear patterns for the sake of comparison.

A linear pattern is defined as a walk or a path. A walk is an alternating sequence

of vertices and connecting edges; a path is a walk without repeated vertices. Ma-

jor Kernels based on walks are the common walk kernel [Gärtner et al., 2003], the

marginalized kernel [Kashima et al., 2003], and the generalized random walk kernel

[Vishwanathan et al., 2010]. The shortest path kernel [Borgwardt and Kriegel, 2005],

the structural shortest path kernel [Suard et al., 2007], and the path kernel up to

length h [Ralaivola et al., 2005] are constructed based on paths, which are relieved

from artifacts brought by walks due to tottering and halting (see Section 3.2.4). More

recently, many developments have been carried out to enhance these graph kernels

[Aziz et al., 2013, Xu et al., 2014, Sugiyama and Borgwardt, 2015].

In this chapter, we thoroughly study these graph kernels based on linear pat-

terns, along with the comparison with two kernels based on non-linear patterns. We

propose three strategies to reduce the computational complexity of graph kernels in

time and memory usage and conduct comprehensive experiments and analyses for

these kernels on various types of graph datasets. Our work aims to provide a better

understanding of graph kernels and practice suggestions on how to choose and use

them. We first study their mathematical representations and compare their compu-

tational complexities. Table 3.1 provides an insight into the characteristics of these

kernels.

3.2 Graph kernels based on walks

Depending on how walks are generated, several graph kernels have been proposed.

3.2.1 Common walk kernel

The common walk kernel is based on the simple idea to compare all possi-

ble walks starting from all vertices in two graphs [Gärtner et al., 2003]. By as-

signing a transition probability to each edge while performing walks, the com-

mon walk kernel has the potential to deal with stochastic processes, thus is re-

ferred to as the random walk kernel in some literature [Vishwanathan et al., 2010,

Borgwardt and Kriegel, 2005].

The straightforward way to compute this kernel is by brute force, i.e., searching

41

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

for all walks available and trying to match them one by one. To use this method,

one needs to fix in advance the maximum length of walks to some value h, since

the number of walks in a graph can be infinite. Two steps are required here: Step 1

is to find out all walks in each graph, where the Depth-first search scheme is usu-

ally applied [Cormen et al., 2009]. The time complexity of this step is O (nd h) for a

graph with n vertices and average vertex degree d . Step 2 is to compare walks one

by one in the two graphs under study, which has a time complexity of O (n2d 2h). For

a dataset of N graphs, the computation of the Gram matrix requires O (N2n2d 2h) op-

erations. Therefore, the time complexity is exponential in the length of walks, which

is impractical for large-scale graphs. To overcome this difficulty and better explore

the infinite walk space, other computational methods have been proposed as given

next.

In [Gärtner et al., 2003], the fully-labeled direct product graph is employed to re-

duce the computational complexity within kernels based on contiguous label se-

quences, which can deal with labels on vertices and/or edges. The direct product

graph is defined as

Definition 3.1 (direct product graph). The direct product graph of two graphs G1 =
(V1,E1) and G2 = (V2,E2), denoted G× = G1 ×G2, is defined by

V×(G1 ×G2) ={
(v1, v2) ∈ V1 ×V2

∣∣ `v (v1) = `v (v2)
}

E×(G1 ×G2) =
{

((u1,u2), (v1, v2)) ∈ V2(G1 ×G2)
∣∣

(u1, v1) ∈ E1 ∧ (u2, v2) ∈ E2 ∧`e (u1, v1) = `e (u2, v2)
}

,

(3.1)

where `v (·) and `e (·) are the labeling functions defined in Section 2.1.

In other words, vertices with the same labels from graphs G1 and G2 are com-

pounded to new vertices of graph G×, and an edge between two vertices in graph

G× exists if and only if edges exist between their corresponding vertices in graphs

G1 and G2, while these two edges have the same label. Figure 3.2 illustrates the di-

rect product G1 ×G2 of two fully-labeled graphs G1 and G2, where {`vi | i = 1,2, . . .}

denotes the set of vertex labels and {`ei | i = 1,2, . . .} the set of edge labels. This def-

inition is a generalization of the directed product of unlabeled graphs, which con-

siders that all vertices and edges have the same labels, and is shown by Figure 2 in

[Vishwanathan et al., 2010].

A bijection exists between every walk in the direct product graph and one walk

in each of its corresponding graphs, so that labels of all vertices and edges on these

42

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

1

23

1'

2'

3'4'

11'
22'

33'
34'

=

Figure 3.2 – Direct product of fully-labeled graphs

walks match by order. Consequently, it is equivalent to perform a walk on a direct

product graph and on its two corresponding graphs simultaneously, which makes it

possible to compute the kernel between two graphs by finding out all walks in their

direct product graph. The direct product kernel, a.k.a. the common walk kernel, is

then designed this way.

Definition 3.2 (common walk kernel). For a graph G, let Φ(G) = (Φs1 (G),Φs2 (G), . . .)

be a map to label sequence feature space expanded by basis ΦS(G), where S =
(s1, s2, . . .) is the set of all possible label sequences of walks, and Φs(G) the feature

corresponding to label sequence s. For each possible sequence s of length h, Φs(G) =√
λh |Ws |, where |Ws | is the number of walks that correspond to the label sequence s

in G, and λh ∈ R is some fixed weight for length h. Then we have the direct product

kernel k×(G1,G2) = 〈Φ(G1),Φ(G2)〉, with

k×(G1,G2) =
|V×|∑

i , j=1

[∞∑
h=1

λh Ah
×

]
i j

, (3.2)

if the limit exists, where A× is the adjacency matrix of the direct product graph G×.

As each component [A×]i j indicates whether an edge exists between vertex vi and v j ,

[Ah×]i j is the number of all possible walks of length h from vertex vi to v j .

In practice, this limit cannot be computed directly. However, for A× that satisfies

certain properties and certain choices of λh , closed-forms can be constructed for

computation. Two examples are given here [Gärtner et al., 2003]:

• The first one employs exponential series of square matrices eβA× = I+βA×/1!+
β2A2×/2!+β3A3×/3!+ ... Computing it normally requires the diagonalization of

A× as T−1DT, where D is a diagonal matrix, and weight λh = βh/h! where β is

a constant. In this way, k×(G1,G2) =∑|V×|
i , j=1[T−1eβDT]i j , where eβD can be cal-

43

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

culated component-wise in linear time. Diagonalizing matrix A× has roughly

a cubic time complexity.

• The second example applies geometric series of matrices. Let the weights be

λh = γh , where γ < 1/ min{∆+(G),∆−(G)} and ∆+(G),∆−(G) are the maximal

outdegree and indegree of graph G, respectively. Then the geometric series of

a matrix is defined as I+γ1A1 +γ2A2 + . . . The limit of this series can be com-

puted by inverting the matrix I−γA, which is roughly of cubic time complexity.

The common walk kernel constructs an infinite sequence feature space consist-

ing of all possible walk sequences in graphs whose lengths are theoretically up to

infinity. When the kernel is represented by exponential or geometric series, closed-

forms are available to compute it in O (n6). However, these closed-forms require

that the coefficient λh has forms chosen specially to converge, which not only is

inflexible, but also causes the halting problem, which excessively restrains the ef-

fect of long walk sequences on the kernel (see Section 3.2.4). Moreover, it is still

time-consuming in practice for large-scale graphs and is more likely to induce un-

necessary artifacts into the kernel due to trivial walks, which are irrelevant to the

task and therefore decrease the accuracy.

3.2.2 Marginalized kernel

The marginalized kernel relies on walks generated using marginal distributions on

some hidden variables [Kashima et al., 2003], which is constructed as

k(G1,G2) = ∑
w1∈W(G1)

∑
w2∈W(G2)

kW(w1, w2)pG1 (w1)pG2 (w2), (3.3)

where W(G) is the set of all walks in graph G, kW is a joint kernel between two walks,

usually defined as a delta function of label sequences of the two measured walks,

and pG(w) is the probability of traversing walk w in G. If w = (v1, v2, . . . , vh), then

pG(w) = p0(v1)
h∏

i=2
pt (vi |vi−1)pq (vh), (3.4)

where the initial probability distribution p0(v) indicates the probability that walk w

starts from vertex v , the transition probability on vertex vi−1, denoted pt (vi |vi−1),

describes the probability of choosing vi as the next vertex of vi−1, and the termi-

nation probability pq (vh) gives the probability that walk w stops on vertex vh . The

44

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

latter two probability satisfy the relation
∑n

j=1 pt (v j |vi)+ pq (vi) = 1. Without any

prior knowledge, p0 is set to be uniform over all vertices of graph G, pt (vi |vi−1) is

uniform over all neighbors of vertex vi−1, and pq is a constant.

In [Kashima et al., 2003], an efficient method to compute this kernel is proposed

as

k(G,G′) = ∑
v1,v ′

1

s(v1, v ′
1) lim

h→∞
Rh(v1, v ′

1),

where s(v1, v ′
1) = p0(v1)p ′

0(v ′
1)kv (v1, v ′

1) and Rh(v1, v ′
1) is updated recursively in r

iterations with

Rh(v1, v ′
1) = r1(v1, v ′

1)+ ∑
vi∈V

∑
v ′

j∈V′
t (vi , v ′

j , v1, v ′
1)Rh−1(vi , v ′

j),

where
r1(v1, v ′

1) =q(v1, v ′
1) = R1(v1, v ′

1),

q(vh , v ′
h) =pq (vh)pq (v ′

h),

t (vi , v ′
i , vi−1, v ′

i−1) =pt (vi |vi−1)p ′
t (v ′

i |v ′
i−1)kv (vi , v ′

i)ke (evi−1,vi ,e ′
v ′

i−1,v ′
i
).

By applying this method, the time complexity of the marginalized kernel is the same

as solving a linear system with n2 equations and n2 unknown variables, which boils

down to O (r n4).

3.2.3 Generalized random walk kernel

The generalized random walk kernel, as a unified framework for random walk ker-

nels, was proposed in [Vishwanathan et al., 2010]. Based on the idea of perform-

ing random walks on a pair of graphs and then counting the number of matching

walks, both the common walk kernel and the marginalized kernel are special cases

of this kernel. Besides, it is proven in the same paper that certain rational kernels

[Cortes et al., 2004] also boil down to this kernel when specialized to graphs.

Similar to the marginalized kernel, the generalized random walk kernel intro-

duces randomness with the construction of graphs’ subpatterns, namely random

walks. First, an initial probability distribution over vertices is given, denoted p0,

which determines the probability that walks start on each vertex, same as initial

probability distribution p0 of the marginalized kernel. Then, a random walk gen-

erates a sequence of vertices vi1 , vi2 , vi3 , . . . according to a conditional probability

45

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

p(ik+1 | ik) = Aik+1,ik , where A is the normalized adjacency matrix of the graph.

This probability, which plays a similar role as the transition probability pt of the

marginalized kernel, chooses vik+1 as the next vertex of vik being proportional to the

weight of the edge (vik , vik+1), namely pt (ik+1 | ik) = wik+1 /
∑

j∈N(ik) w j , where N(ik) is

the set of neighbors of the vertex ik . The edge weight here is a special label that rep-

resents the transition probability from one vertex to another rather than a property

of the edge itself. Finally, similar to termination probability pq of the marginalized

kernel, a stopping probability distribution q = (qi1 , qi2 , . . .),nik ∈ V is associated with

a graph G = (V,E) over all its vertices, modeling the phenomenon where a random

walk stops at vertex nik . Both the initial probability and the stopping probability are

practically set as the uniform distribution without prior knowledge.

Similar to the common walk kernel, defining the generalized random walk ker-

nel takes advantage of the direct product. However, when performing the transfor-

mation, graphs are considered unlabeled, which is a special case of Definition 3.1.

It is worth noting that the direct product graph of unlabeled graphs often has much

more edges than the labeled one, as illustrated in Figure 3.3 when taking the graphs

in Figure 3.2 as unlabeled. The generalized random walk kernel between two graphs

G1 and G2 is defined in [Vishwanathan et al., 2010] as

k(G1,G2) =
∞∑

h=0
f (h)q>

×Wh
×p×. (3.5)

In this expression, f (h) is the weight chosen a priori for random walks of length

h, p× = p01

⊗
p02 and q× = q1

⊗
q2 are the initial probability distribution, and the

stopping probability distribution on G×, respectively, where the operator
⊗

denotes

the Kronecker product and W× ∈Rn×n is the weight matrix.

Assuming the initial and the stopping probability distributions to be uniform

and setting W× as the unnormalized adjacency matrix of G×, (3.5) can be trans-

formed to the common walk kernel. Meanwhile, applying f (h) = 1 and W× as a

specific form, the marginalized kernel can be recovered from (3.5).

The complexity of the direct computation is O (N2n6). Four methods are pre-

sented to accelerate the computation [Vishwanathan et al., 2010]:

The Sylvester equation method is based on the generalized Sylvester equa-

tion M = ∑d
i=1 Si MTi + M0. For graphs with symbolic edge labels, when f (h) =

λh , the kernel in (3.5) can be computed by q>× vec(M), with vec(·) the column-

stacking operator and M the solution of the generalized Sylvester equation M =

46

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

1'

2'

3'4'

1

23

=

11'

22'

33'

34'

21'31'

12' 13'

23'

32'

14'

24'

Figure 3.3 – Direct product of unlabeled graphs (compared to the labeled ones in Figure 3.2)

∑d
i=1λ

i A2M i A>
1 +M0, where d is the number of different edge labels, vec(M0) = p×

and i A is the normalized adjacency matrix of graph G filtered by the i -th edge la-

bel i`e of G, namely, i A j k = A j k if `e (v j , vk) = i`e , and zero otherwise. When d = 1,

this equation can be computed in cubic time, while its time complexity remains

unknown when d > 1.

This method does not directly compute weight matrices of direct product

graphs. Benefiting from the Kronecker product, only (normalized) adjacency ma-

trices of original graphs are required, which have the size of n2 and can be pre-

computed for each graph. Besides, computing q>× vec(M) requires O (N2n2) time.

Thus, for N unlabeled graphs, the complexity of computing the corresponding Gram

matrix is O (N2n3), which is reduced compared to the direct computation.

However, it has a strong drawback: libraries currently available to solve the gen-

eralized Sylvester equation, such as dlyap solver in MATLAB and control.dlyap

function in Python Control Systems Library [Murray et al., 2018], can only take d as

1, which means the solver is limited to edge-unlabeled graphs. Some contributions

exist to solve the general problem [Bouhamidi and Jbilou, 2008], but their imple-

mentation are not available yet. Integrating such work into our library is included

in mid-term schedule.

The second method is the conjugate gradient method. It solves the linear system

(I−λW×)x = p× for x, using a conjugate gradient solver, and then computes q>× x.

This procedure can be done in O (r n4) for r iterations.

The third method, fixed-point iterations, rewrites (I−λW×)x = p× as x = p×+
λW×x. Thus, it computes x by finding a fixed point of the equation, namely by iter-

47

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

ating xt+1 = p×+λW×xt . The worst-case time complexity is O (r n4) for r iterations.

The spectral decomposition method applies the W× = P×D×P−1× decomposition,

where the columns of P× are its eigenvectors, and D× is a diagonal matrix of cor-

responding eigenvalues. This method can be performed in O (N2n2 +Nn3) for N

graphs.

The generalized random walk kernel provides a quite flexible framework for

walk-based kernels (see (3.5)). However, the problems lie in the methods to com-

pute the kernel as introduced above. Despite the improvement in time complexity,

the shortcomings of these methods are obvious. First, some methods can only be

applied for special types of graphs. By definition, the Sylvester equation method can

only be applied for graphs unlabeled or with symbolic edge labels. The symbolic

vertex labels of two vertices on an edge can be added to the edge label of that edge.

However, due to the lack of solvers, no label can be dealt with in practice. The spec-

tral decomposition method, on the other hand, can only tackle unlabeled graphs.

Secondly, each method is designated for a special case of the generalized random

walk kernel. The Sylvester equation method, the conjugate gradient method, and

the fixed-point iterations are specified for the geometric kernel only, namely, f (h)

set to λh in (3.5). The spectral decomposition method works on any f (h) that makes

(3.5) converge, but is only efficient for unlabeled graphs.

For conciseness in this thesis, the generalized random walk kernel computed by

the Sylvester equation, the conjugate gradient, the fixed-point iterations, and the

spectral decomposition are denoted as the Sylvester equation kernel, the conju-

gate gradient kernel, the fixed-point kernel and the spectral decomposition ker-

nel, respectively. In our implementation, uniform distributions are applied by de-

fault for both starting and stopping probabilities (i.e., p0 and q), as recommended in

[Vishwanathan et al., 2010]. Users are able to introduce prior knowledge with edge

weights.

3.2.4 Problems raised by walks

There are two problems that may lead to worsening the performance of kernels

based on walks: tottering and halting. We discuss these problems in this section.

Tottering. When constructing a walk in a graph, two connected vertices on this

walk may appear multiple times as the transition scheme allows transiting back.

This phenomenon, called tottering, brings tottering artifacts into the walk. As Fig-

48

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

1

2
3

4

5 6

Figure 3.4 – A tottering example: walk (v1, v2, v5, v2) has tottering between vertices v2 and
v5, i.e., (v2, v5, v2).

ure 3.4 shows, a tottering brings unnecessary structure to the pattern and may

worsen the performance of graph kernels.

To avoid this problem, [Mahé et al., 2004] propose a technique for the marginal-

ized kernel. It first transforms each graph G = (V,E) to G′ = (V′,E′), withV′ =V ∪E

E′ =
{

(v, (v, t))
∣∣∣ v ∈ V,(v, t) ∈ E

}
∪

{
((u, v), (v, t))

∣∣∣ (u, v), (v, t) ∈ E,u 6= t
}

,
(3.6)

and labels its vertices and edges as follows: For a vertex v ′ ∈ V′, if v ′ ∈ V, the la-

bel `′v (v ′) = `v (v ′); if v ′ = (u, v) ∈ E, then the label `′v (v ′) = `v (v). For an edge

e ′ = (v ′
1, v ′

2) ∈ E′, where v ′
1 ∈ V ∪E and v ′

2 ∈ E, the label `′e (e ′) = `e (v ′
2). And then,

it computes the marginalized kernel between transformed graphs. This extension is

able to remove tottering from walks for the marginalized kernel; hence, it enhances

the performance of the kernel. However, this improvement is only minor accord-

ing to the experiments carried out in [Mahé et al., 2004]. Meanwhile, it may sig-

nificantly enlarge the size of graphs, bringing computational complexity problems.

For a graph with n vertices, m edges and average vertex degree d , the transformed

graph may at most have n+m vertices and nd+m2 edges; hence, the worst case time

complexity of the kernel is O ((n+m)2), which is not practical for graphs with a high

average vertex degree. For all these reasons, experiments conducted in Section 3.7

evaluate the conventional marginalized kernel with tottering.

Halting. Besides tottering, a problem called halting may occur for common walk

kernels [Sugiyama and Borgwardt, 2015], where walk patterns with longer lengths

contribute less to the kernel values. It is as if the common walk halts after several

steps of computation. For example, as shown in Section 3.2.1, the geometric com-

mon walk kernel applies geometric series as weights for walks with different lengths,

namely λh = γh , for γ < 1. When γ is small and h is big, λh becomes significantly

small; when γ is small enough, walks of length 1 dominate the other walks in the

final results. Thus, the kernel degenerates to the comparison of single vertices and

edges, and most of the structure information is lost.

49

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

To overcome these issues, several graph kernels based on paths have been pro-

posed, as described in the following section.

3.3 Graph kernels based on paths

3.3.1 Shortest path kernel

The shortest path kernel is built on the comparison of shortest paths between any

pair of vertices in two graphs [Borgwardt and Kriegel, 2005]. The first step to com-

pute this kernel is to transform the original graphs into shortest-paths graphs by

Floyd-Warshall’s algorithm [Floyd, 1962]. A shortest-paths graph contains the same

set of vertices as the original graph, while between each pair of vertices there is an

edge that is labeled by the shortest distance between these two vertices. Then the

shortest path kernel is defined on the Floyd-transformed graphs as follows:

Definition 3.3 (shortest path kernel). Let G?
1 = (V1,E1) and G?

2 = (V2,E2) be the

Floyd-transformed graphs of two graphs G1 and G2, respectively. The shortest path

graph kernel between graphs G1 and G2 is defined as

ksp (G1,G2) = ∑
e1∈E1

∑
e2∈E2

kw (e1,e2), (3.7)

where kw is a positive semi-definite kernel on length 1 walks.

The basic definition of kw (e1,e2) is the product of kernels on vertices and edges

encountered along the walk. The kernel for symbolic vertex labels is usually the

delta function of labels of two compared vertices, while the kernel for non-symbolic

vertex attributes is not given for general cases. In this thesis, we consider the ba-

sic definition where the labels of the compared edges are defined by the weighted

lengths of their corresponding shortest paths. Nevertheless, more information can

be added for more thorough studies [Borgwardt and Kriegel, 2005].

The Floyd-Warshall’s algorithm, required in the shortest path kernel to perform

the Floyd-transformation, can be done in O (n3). For a connected graph G with n

vertices, its shortest-paths graph G? contains n2 edges. Assuming that vertex ker-

nels and edge kernels are computed in O (1), then the pairwise comparison of all

edges in two shortest-paths graphs has a time complexity of O (n4), which is also the

complexity to compute the shortest path kernel.

50

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

Compared to kernels based on walks, the shortest path kernel has some advan-

tages: It avoids tottering while remaining simple both conceptually and practically.

However, this comes with a cost. Its major shortcomings are:

• It simplifies the graph structure by Floyd transformation and only consid-

ers information concerning shortest distances. Only attributes of start and

end vertices of shortest paths are considered, while intermediate vertices and

edges are ignored.

• It cannot deal with graphs whose edges bear continuous attributes other

than distances. Symbolic edge labels are omitted as well. The loss of

structure information may crucially decrease the performance accuracy

[Borgwardt and Kriegel, 2005].

• Although non-symbolic vertex attributes are implied, the kernel for them is

not given explicitly for general cases, and it is not clear how to bind it with the

kernel for symbolic vertex labels. This issue has not been studied properly in

literature, nor solved by any Python or C++ implementation in general case.

To tackle the last issue, our implementation provides a flexible scheme, where

the vertex kernel can be customized by users. In experiments, we introduce a kernel

for vertices as a product of two kernels: the delta function for symbolic vertex labels

and the Gaussian kernel for non-symbolic vertex attributes. The product is applied

because the delta function is binary, thus the kernel between two vertices is equal

to zero if their symbolic labels are different.

3.3.2 Structural shortest path kernel

The structural shortest path kernel is an extension of the shortest path kernel, as

well as a special case of the kernel on bags of paths [Suard et al., 2007]. This kernel

takes into consideration vertices and edges on shortest paths, instead of the short-

est distance between two vertices. As a result, edge weights cannot be taken into

account.

To construct this kernel, all shortest paths between all vertices in each graph

are obtained, where Dijkstra’s algorithm is used [Dijkstra, 1959]. Then, the kernel

function on any two shortest paths p and p ′ of two graphs is defined as

kp (p, p ′) = kv
(
`v (v1),`v (v ′

1)
) n∏

i=2
ke

(
`e (vi−1, vi),`e (v ′

i−1, v ′
i)

)
kv

(
`v (vi),`v (v ′

i)
)

, (3.8)

51

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

where vi and v ′
i , for i = 1,2, . . . ,n, are vertices on paths p and p ′, `v (·) and `e (·) are

label functions of vertices and edges, and functions kv and ke are kernels on labels

of vertices and edges, respectively. In general, these two kernel functions are simply

defined as the delta function for symbolic labels and the Gaussian kernel for non-

symbolic labels, which will be multiplied if both symbolic and non-symbolic labels

exist.

The structural shortest path kernel can then be derived from kp given in (3.8).

We use here the simple and straightforward mean average kernel:

kssp (G1,G2) = 1

n1

1

n2

∑
pi∈P1

∑
p j∈P2

kp (pi , p j), (3.9)

where P1 and P2 are respectively the shortest path sets of graphs G1 and G2. Other

approaches can also be applied, such as the max matching kernel and the path level-

set based kernel [Suard et al., 2007].

Given graphs with n vertices and m edges, the time complexity of

repeated Dijkstra’s algorithm using Fibonacci heaps is O (n2 logn + nm)

[Bajema and Merlin, 1987]. The complexity to match all paths in two graphs

is O (hn4), where h is the average length of the shortest paths. Hence, the

complexity of the kernel computation is O (hn4 +nm).

Compared to the shortest path kernel, the structural shortest path kernel in-

volves more structural information. However, since both kernels adopt only the

shortest paths, structures of other paths are still hidden. The path kernel allows

to overcome this issue.

3.3.3 Path kernel up to length h

The path kernel compares all possible paths rather than the shortest ones

[Ralaivola et al., 2005]. The simple path kernel between graphs G1 and G2 is defined

as

kph(G1,G2) = ∑
p∈P(G1)∪P(G2)

φp (G1)φp (G2), (3.10)

where P(G) is the set of all paths in graph G, and φp (G) denotes the feature map of

path p for graph G. Two definitions of φp (G) are provided: the binary feature map,

where φp (G) = 1P(G)(p), and the counting feature map, defined as φp (G) = |{p | p ∈
P(G)}|.

Based on the definitions of φp (G), different types of path kernels can be con-

52

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

structed. The Tanimoto kernel, based on the binary feature map, is defined as

k t
ph(G1,G2) = kph(G1,G2)

kph(G1,G1)+kph(G2,G2)−kph(G1,G2)
, (3.11)

where kph(G1,G2) is the kernel defined as (3.10) corresponding to the binary feature

map. When φp (G) takes the form of the counting feature map, then the MinMax

kernel can be constructed as

km
ph(G1,G2) =

∑
p∈P(G1)∪P(G2)

min(φp (G1),φp (G2))∑
p∈P(G1)∪P(G2)

max(φp (G1),φp (G2))
. (3.12)

These two kernels are related to the Tanimoto similarity measure in the chemistry

literature, and provide normalization for the path kernel. While the MinMax kernel

considers the frequency of each path rather than just its appearance, it measures

more precisely the similarity between graphs of different sizes.

Similar to walks in the common walk kernel, the number of paths in a graph

can be infinite. However, unlike the common walk kernel, no closed-form solution

has been raised for this phenomenon in the path kernel. The Depth-first search

scheme is then applied to find all paths, which limits the maximum length of paths

to the depth h. Our implementation applies a trie data structure to store paths in

graphs, which saves tremendous memory compared to storing paths directly (e.g.,

in a list) [Fredkin, 1960]. Thus, the path kernel between two graphs is computed in

O (h2n2d 2h).

The path kernel up to length h encodes information of all paths no longer than

h in a graph, which is more expressive than other kernels based on paths. Yet, the

limitation of paths’ maximum length may be a significant drawback, especially for

the running time and memory usage in large-scale graphs.

3.4 Graph kernels related to walks and paths

These two classes of kernels based on linear patterns are the cornerstone of graph

kernels. While many other graph kernels have been proposed under different

frameworks, they are tightly connected to walks and paths.

The R-convolution kernels [Haussler, 1999] are able to compare two objects by

the similarities between their substructures, thus provide the base framework for

53

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

all kernels mentioned above (See Section 2.2.2). The common walk kernel, as one

special case, can be traced back to the diffusion kernel [Kondor and Lafferty, 2002],

established on the matrix exponentiation. The exponential kernel and the geometric

kernel, proposed in [Gärtner, 2003a], construct kernels with exponential and geo-

metric series of matrices, respectively, where the former one is founded on the diffu-

sion kernel. These two series are directly applied in the computation of the common

walk kernel, as described in Section 3.2.1. More recently, due to the phenomenon

of halting, the authors of [Sugiyama and Borgwardt, 2015] argued that the common

walk kernel is surpassed by the k-step random walk kernel in terms of accuracy and

possibly computational complexity, where the latter kernel limits the maximum

length of walks to k rather than infinity as in the former one (See Section 3.2.4).

Meanwhile, when the common walk kernel based on geometric series halts, it boils

down to linear kernels on label histograms [Sugiyama and Borgwardt, 2015], which

compare numbers of vertices that have the same labels in two graphs, as recently

implemented in [Sugiyama et al., 2017].

Improvements for other walk-based graph kernels have been introduced as

well. [Mahé et al., 2004] proposed an extension of the marginalized graph kernel

by the graph transformation (3.6), aiming to ameliorate the accuracy by avoiding

the tottering problem (See Section 3.2.4). For the generalized random walk ker-

nel, a set of fast random walk kernels (ARK) is proposed in [Kang et al., 2012], which

speeds up the kernel computation by considering a lower rank approximation of

the weight matrix W× as in (3.5); however, it suffers a visible loss of accuracy at

the same time. Moreover, the authors of [Vishwanathan et al., 2010] proved that

the generalized random walk kernel to weighted automata can be viewed as a spe-

cial case of the rational kernel, which computes similarities between weighted au-

tomata [Cortes et al., 2004]. In the meantime, the Fisher kernel [Jaakkola et al., 1999]

from generative models can be viewed as a special case of the marginalized

kernel [Ghosh et al., 2018]. Other novel walk-based graph kernels involve quan-

tum walk kernels [Bai et al., 2015, Rossi et al., 2013, Bai et al., 2017], which combine

the quantum Jensen-Shannon divergence [Lamberti et al., 2008, Majtey et al., 2005]

with quantum walks [Farhi and Gutmann, 1998] and RetGK, a graph kernel based

on return probabilities of random walks [Zhang et al., 2018].

Path-based kernels share similar progress. The graph hopper kernel was de-

signed in [Feragen et al., 2013], exploring the sparsity and small diameters of the

real-world graphs. It compares shortest paths by vertex kernels encountered

54

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

1999 20052002 20122007 20102003

common walk kernel

2004 2017 201820152013

marginalized kernel

shortest path kernel

structural shortest path kernel

path kernel up to length h

generalized random walk kernel

Figure 3.5 – Timeline of graph kernels based on linear patterns (above the timeline) and
kernels related to them (below the timeline).

while hopping along those paths, decomposing the graph kernel as a sum of

vertex kernels with weights, which encode the graph structure. The authors

of [Giscard and Wilson, 2017] then devised the all-paths and cycles graph kernel,

which by applying a path number counting algorithm based on the work in

[Giscard and Rochet, 2018], is able to compute the path kernel up to a moderate

length more efficiently and more enriched by encompassing simple cycles. On the

other hand, the authors of [Schieber et al., 2017] proposed the D-measure to extract

global information of graphs by quantifying differences among the probability dis-

tributions of distances defined by the shortest path lengths between vertices.

Figure 3.5 exhibits these kernels in a timeline. For more informa-

tion about the development of graph kernels, we refer interested readers

to [Borgwardt et al., 2020, Kriege et al., 2020, Ghosh et al., 2018, Kriege et al., 2017,

Gaüzère et al., 2015a, Gärtner, 2003b].

3.5 Graph kernels based on non-linear patterns

In this section, we introduce two benchmark graph kernels based on non-linear pat-

terns for comparison, namely the treelet kernel and the Weisfeiler-Lehman subtree

kernel.

55

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

Figure 3.6 – Tree patterns of the treelet kernel.

3.5.1 Treelet kernel

The treelet kernel is built on the distributions of the sub-pattern treelet in

graphs [Gaüzère et al., 2015b] (see also [Bougleux et al., 2012, Feragen et al., 2013,

Borgwardt et al., 2020]). A treelet is a subtree of size up to 6, in which vertices and

edges can be labeled. The size number 6 is chosen as a trade-off between the ex-

pressiveness and complexity of the kernel. When labels are not considered, there

are 14 non-isomorphic treelets, a.k.a., tree patterns in total, as shown in Figure 3.6

[Gaüzère et al., 2012].

No matter whether a graph is labeled or not, the 14 tree patterns have to be enu-

merated first. Using a recursive depth-first search for all paths in the graph with

lengths up to 6, the distribution of the 6 linear patterns G0, G1, G2, G3, G4, G5 as

shown in Figure 3.6 can be found [Shervashidze et al., 2009]. The foundation to de-

tect the remaining patterns is finding the vertices of degrees 3, 4, and 5, which are

shown as green nodes with borders in Figure 3.6. Patterns G6, G8, G13 can be ex-

tracted directly from these vertices; Patterns G7, G9, G10, G12 are enumerated from

the neighborhood of pattern G6; Pattern G11 is constructed from the neighborhood

of pattern G8.

When labels are considered, each treelet is assigned with a code so that the iso-

morphism is ensured between two treelets with the same code. A code is composed

56

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

3

1

1

1

4

1

1

1

11

1

1

32

11

1

1

1
5

3

22 5 44

1

1

1

1242 3

3

3

5 4

1

1

1

1

3 3

Figure 3.7 – Extended labels of non-linear patterns.

of two parts: a) the index of the corresponding tree pattern indicating the underly-

ing structure and b) a sequence of labels of vertices and edges that forms a canon-

ical key. The key for a linear pattern is the label sequence (Definition 2.10) of that

pattern, i.e., the sequence of alternated labels of vertices and edges on that pattern

that has the lowest lexicographic order. For a non-linear pattern, the key is based

on the extended label of each vertex [Morgan, 1965], which is computed by an iter-

ative process. The extended label of each vertex is initialized by its degree, extended

by the sum of extended labels of its neighbors iteratively, and stops updating once

the number of different labels of the pattern no longer increases. For isomorphic

graphs, the set of extended labels is the same; for each tree pattern, the set of ex-

tended labels is unique. The extended labels of each non-linear pattern in Figure 3.6

are exhibited in Figure 3.7.

A set of extended labels may correspond to several permutations of treelets with

labels. To distinguish among them, a rooted tree is constructed for each treelet,

which encodes the partial order relationship between adjacent vertices. The vertex

with the maximum extended label in each treelet is chosen as the root of the tree.

Notice there are two rooted trees associated with treelets endowing the pattern G12.

The canonical key of a treelet then is constructed by traversing its rooted tree. To

define a unique key, the children of each internal nodes in the rooted tree need to be

sorted by the following recursive process: At the beginning, define the key of each

leaf ke y(v) as null; After that, sort the set of children v1, v2, . . . , vn of each internal

node v first according to their extended labels and then the concatenation of the

57

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

vertex label `v (vi), the edge label `e (v, vi), and the canonical key ke y(vi), where

1 É i É n. The key of vertex v is then defined as

ke y(v) =
(

n⊙
i=1

`v (vi).`e (v, vi)

)
.

n⊙
i=1

ke y(vi), (3.13)

where “
⊙

” and “.” are the concatenation operator. Finally, the key of a tree rooted

on vertex vr is defined as `v (vr).ke y(vr).

As treelets G6 to G11 correspond to a single-rooted tree, their canonical codes

compose of the concatenation of their tree pattern indices and the key of their

rooted trees. Meanwhile, treelet G12 corresponds to two rooted trees, so its code

concatenates its tree pattern index with the key of the rooted trees that has the lower

lexicographic order. The labeled treelets are then enumerated based on the canon-

ical code. The treelet kernel is defined as

ktr eelet (G1,G2) = ∑
t∈T (G1)∩T (G2)

k(ft (G1), ft (G2)), (3.14)

where T (G) denotes the set of treelets in G, T (G1)∩T (G2) denotes the set of com-

mon treelets in G1 and G2, k(·, ·) is a kernel between real numbers (the RBF and the

polynomial kernels are applied in our experiments in Section 3.7), and the function

f : G →Rn associates a graph G to a vector encoding the distribution of its treelets:

f (G) = [ft (G)]t∈T (G), with ft (G) = |t |. (3.15)

The treelet kernel takes advantage of informativeness by exploring both linear

and non-linear (tree) patterns and thus acquires the possibility to obtain better task

performances. Meanwhile, the finite set of treelets limits the complexity of the ker-

nel computation, which is in O (N2nd 5) for the Gram matrix of a dataset consist-

ing of N graphs with n average vertices and d average vertex degree, where d is

small in many applications such as in chemo-/bio-informatics or social networks

field. Moreover, as the treelets are enumerated explicitly, an all-pairs comparison

is avoided and a treelet selection step can be integrated. The drawback of this ker-

nel lies in the fact that the treelet set is fixed a priori, which may not suit well any

datasets or tasks.

Improvements and extensions for this kernel have been proposed. In

[Gaüzère et al., 2012], selection algorithms to weight the treelets, with the good in-

58

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

tention to exclude treelets irrelevant to a given property. This method achieves

the best results on regression tasks, but may be outperformed by other kernels on

classification tasks. In [Gaüzére et al., 2012], a treelet kernel based on cyclic in-

formation is proposed, which allows encoding topological relationships between

relevant cycles. When it comes to the chemoinformatics field, domain knowledge

such as stereoisomerism and chiral information can be incorporated into the kernel

[Gaüzère et al., 2015b, Grenier et al., 2013].

3.5.2 Weisfeiler-Lehman subtree kernel

Another well-known graph kernel that can endow non-linear structural in-

formation is the Weisfeiler-Lehman (WL) kernel [Shervashidze et al., 2011,

Shervashidze and Borgwardt, 2009] (see also [Morris et al., 2017]), which is based

on the 1-dimensional variant of the Weisfeiler-Lehman test of isomorphism

[Weisfeiler and Lehman, 1968] (also known as “naive vertex refinement” and “color

refinement algorithm” [Grohe et al., 2017]). This test is an iterative procedure. In

each iteration i , the label `(i−1)(v) of a vertex v is updated by a new one `(i)(v),

which is a compressed notation that represents the argumentation of `(i−1)(v)

by the sorted multiset of v , namely the set of vertex labels of v ’s neighbors.

This relabeling process for a graph G = (V,E,`(i)) can be denoted by a function

r ((V,E,`(i))) = (V,E,`(i+1)). The iterations stop when the sets of vertex labels of

the two compared graphs G1 and G2 differ, or a given maximum number of the

iterations imax is reached.

Definition 3.4 (Weisfeiler-Lehman sequence). For a graph G = (V,E,`) = (V,E,`(0)),

its Weisfeiler-Lehman graph at height i is defined as G(i) = (V,E,`(i)), and its

Weisfeiler-Lehman sequence up to height h is defined as the sequence of Weisfeiler-

Lehman graphs{
G(0),G(1), . . . ,G(h)

}
=

{
(V,E,`(0)), (V,E,`(1)) . . . , (V,E,`(h))

}
,

where G(0) = G.

Definition 3.5 (Weisfeiler-Lehman kernel). The Weisfeiler-Lehman kernel with h it-

erations between graphs G1 and G2 is defined as

k(h)
wl (G1,G2) =

h∑
i=0

k(G(i)
1 ,G(i)

2), (3.16)

59

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

where
{

G(0)
1 ,G(1)

1 , . . . ,G(h)
1

}
and

{
G(0)

2 ,G(1)
2 , . . . ,G(h)

2

}
are respectively the Weisfeiler-

Lehman sequence of G1 and G2, and k(·, ·) can be any graph kernel and serves as the

base kernel. This kernel will be abbreviated to the WL kernel in the remainder of the

thesis for conciseness.

Three base kernels are introduced in [Shervashidze et al., 2011], namely the sub-

tree kernel [Shervashidze and Borgwardt, 2009], the edge kernel, and the shortest

path kernel [Borgwardt and Kriegel, 2005]. Of particular interest is the Weisfeiler-

Lehman (WL) subtree kernel, which is a natural instance of the WL kernel.

Definition 3.6 (Weisfeiler-Lehman subtree kernel). Given two graphs G1 and G2, let

L(i) =
{

l | l ∈ L(i)
1

⋃
L(i)

2

}
be the union set of vertex label sets L(i)

1 and L(i)
2 of graphs G(i)

1

and G(i)
2 , where L(i)

1 =
{

l (i)
1 | l (i)

1 ∈ `(i)
1

}
and L(i)

2 =
{

l (i)
2 | l (i)

2 ∈ `(i)
2

}
, G(i)

1 = (V1,E1,`(i)
1)

and G(i)
2 = (V2,E2,`(i)

2) are respectively the Weisfeiler-Lehman graphs at height i of G1

and G2, 0 É i É h. Order every L(i), and denote the number of occurrences of a label

l (i , j) ∈ L(i) in the graph G as c (i)(G, l (i , j)), where 1 É j É |L(i)|. The Weisfeiler-Lehman

subtree kernel between G1 and G2 with h iterations is then defined as

k(h)
wl−subtr ee (G1,G2) =<φ(h)

wl−subtr ee (G1),φ(h)
wl−subtr ee (G2) >, (3.17)

with

φ(h)
wl−subtr ee (G) = [c(i)(G, l (i , j))], for 1 É j É |L(i)| and 0 É i É h

being a vector, where each element in this vector is given by a certain j and i . This

kernel will be abbreviated to the WL subtree kernel in the remainder of the thesis for

conciseness.

Figure 3.8 illustrates the procedure to compute the WL subtree kernel with h = 1,

where labels “A” to “D” and “0” to “4” inside the nodes are vertex labels. The WL

subtree kernel shares the same time complexity with the WL kernel of O (hm), where

m is the average number of edges in a graph. To compute the Gram matrix for N

graphs, one can repeat the same procedure between each pair of graphs. The time

required for this native method is in O (N2hm). In contrast, the same procedures can

be processed over N graphs simultaneously. Algorithm 3.1 details this procedure.

From Step 6 to Step 8, the label compression, the relabeling, and the feature vector

construction are performed over all labels in all graphs at the same time. The time

complexity of this algorithm is thereby in O (Nhm+N2hn) for N graphs, with n being

60

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

A

B C

A

B

C

D

A,BC

B,AC C,AB

A,BC

B,ACD

C,AB

D,B

0

1 3

0

2

3

4

A,BC 0

B,AC 1

B,ACD 2

C,AB 3

D,B 4

Original graphs

Iteration 1, Step 1:
Construct and sort multiset

Iteration 1, Step 2:
Compress labels

Iteration 1, Step 3:
Relabel vertices

Construct feature vectors
and compute kernel

A B C D 0 1 2 3 4

1, 1, 1, 0, 1, 1, 0, 1, 0

1, 1, 1, 1, 1, 0, 1, 1, 1

[

[

]

]

Figure 3.8 – The procedure to compute the WL subtree kernel with h = 1.

the average number of vertices in a graph. In general, m is bigger than n, which

enlarges the speed advantage of the simultaneous computation over the naive one.

A drawback of Algorithm 3.1 is that the parallel schemes over pairs of graphs are

difficult to be deployed due to its special procedure (see Section 3.6.2 for detailed

description). Assuming the use of a parallel scheme, the complexity of the naive

pairwise computation is reduced to O (N2hm
p). The ratio between the complexity of

the two algorithms is in O (p
N + pn

m). As long as p Ê m
n , the ratio is bigger than 1 and

61

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

Algorithm 3.1 becomes slower than the naive computation. Therefore, it is not rec-

ommended for graphs with low density. In Section 3.7, the naive computation is

used with a parallelization schema. Nevertheless, the time complexity of the WL

(subtree) kernel is linear to the numbers of vertices and/or edges in a graph; hence,

the WL kernel opens the door to design graph kernels on large-scale graphs.

Variants and improvements of the WL kernel involve multiple aspects. To

strike the balance between the global and local information in graphs, glocalized

Weisfeiler-Lehman graph kernels are proposed in [Morris et al., 2017]. A local vari-

ant of the k-dimensional Weisfeiler-Lehman algorithm is used to capture graph

properties, rather than the 1-dimensional one used in the WL kernel. A stochas-

tic approximation approach is proposed to reduce the time complexity to compute

this kernel. In [Yanardag and Vishwanathan, 2015b], the authors proposed a struc-

tural smoothing framework for graphs inspired by smoothing methods used in nat-

ural language processing. It considers the partial similarity between compressed

multiset labels in the WL kernel, rather than performs an exact matching by as-

signing binary values. The Weisfeiler–Lehman optimal assignment kernel seeks to

achieve high predictive performance by adopting the optimal assignment kernel

[Kriege et al., 2016], where a base kernel is defined on the compressed subtree la-

bels. A deep variant of this kernel is proposed in [Kriege, 2019]. A method that can

be used to improve the WL kernel is proposed in [Kersting et al., 2014], which is im-

plemented by matrix-matrix/vector multiplications, thus readily parallelizable and

scalable in terms of time and space. In [Yao and Holder, 2014], a framework com-

bines the WL kernel with an incremental support vector machine to tackle classifi-

cation tasks on large-scale dynamic graphs. In [Rieck et al., 2019], the WL subtree

kernel is augmented to capture low-dimensional topological information in graphs,

such as connected components and cycles. Wasserstein Weisfeiler-Lehman graph

kernels [Togninalli et al., 2019] introduce the Wasserstein distance between distri-

butions of vertex feature vectors in two graphs, allowing capturing the distribution

information of individual sub-patterns.

Various graph kernels and works are related to or developed on the WL kernel.

During its construction, the compressed label l (i)(v) encodes the neighborhood in-

formation of the vertex v , which corresponds to subtree patterns of height i rooted

at v , the base patterns to construct several kernels [Ramon and Gärtner, 2003,

Bach, 2008]. The neighborhood hash kernel [Hido and Kashima, 2009] developed

in parallel shares the same framework of the iterative refinement of vertex labels,

62

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

where the labels of a vertex are combined with labels of its neighbors and then re-

fined using a hash-like map. Hence the time complexity of this kernel is also lin-

ear to the number of edges, which endows it with the ability to deal with large-

scale graphs. Rather than the perfect hashing used by the WL kernel, the neighbor-

hood hash kernel uses hash functions based on simpler logical operations on bit-

representations of vertex labels. This feature makes it slightly faster to compute the

latter kernel, whereas the price to pay is the possibility of accidental hashing colli-

sions, namely when the same values are assigned to different labels. The nested sub-

tree hash kernel introduced in [Li et al., 2012] aims to enable classification on large-

scale graphs over streams, where the sub-patterns increase when graphs are fed in.

It is proved that this kernel is an unbiased and highly concentrated estimator of the

WL kernel. Algorithms based on the WL kernel have been also developed for ap-

plications in wide domains, such as program similarity computation [Li et al., 2016]

and the fast computation of the kernel on the resource description framework data

that represents semantic webs [de Vries, 2013]. Relationships between the WL ker-

nel and graph neural networks are explored in [Morris et al., 2019].

Many general graph kernel frameworks implement specific cases of the WL

kernel. Fitting it into the hash graph kernel framework [Morris et al., 2016] en-

ables the WL kernel to deal with continuous labels while maintaining the scala-

bility, where randomized hash functions are used to iteratively turn continuous la-

bels into discrete ones. Another attempt to tackle continuous labels with the WL

subtree kernel is to use the graph invariant kernel framework [Orsini et al., 2015,

Borgwardt et al., 2020]. In [Yanardag and Vishwanathan, 2015a], the deep graph ker-

nel framework is applied on the WL subtree kernel, where a weight is given on

each sub-pattern. In [Nikolentzos et al., 2018], the core-based kernel framework is

applied on the WL kernel, which considers sub-structures at multiple different

scales. Message passing graph kernels are constructed by considering a vertex kernel

[Nikolentzos and Vazirgiannis, 2018]. A similar iterative procedure is applied, where

the kernel between vertices in the new iteration is updated by adding the kernel be-

tween their neighbors using the weighted sum. In this way, graphs with continuous

attributes can be taken into consideration. The WL subtree kernel is included in this

framework.

63

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

Algorithm 3.1 Simultaneous computation of the WL subtree kernel
Input: Graph dataset GN = {G1, . . . ,GN}, an alphabet set Σ,

a relabeling function f , the thresholds of stopping criteria h.
Output: The gram matrix K of GN.

1: Let i = 1 and G(0)
N = {

G(0)
j = G j | 0 É j É N

}
.

2: Compute K(0), with K(0)
j1, j2

= k(0)
wl−subtr ee (G j1 ,G j1) using (3.17).

3: while i É h do
(Construct multisets)

4: for G(i−1) = (V,E,`(i−1)) ∈G(i−1)
N do

5: for v ∈ V do
6: Assign a multiset label M(i)(v) = {`(i−1)(u) | (v,u) ∈ E} to v .
7: end for
8: end for
9: Denote the set containing all M(i)(v) asM(i).

(Sort each multiset)
10: for M(i)(v) ∈M(i) do
11: Sort M(i)(v) in ascending order (e.g., in lexicographical order).
12: s(i)(v) = `(i−1)(v).

⊙
(v,u)∈E `

(i−1)(u).
13: end for
14: Denote the set containing all s(i)(v) as S(i).

(Compress labels)
15: for s(i)(v) ∈S(i) do
16: Map s(i)(v) to a compressed label using f :S(i) →Σ,

where ∀ vertices v1, v2, f (s(i)(v1)) = f (s(i)(v2)) ⇔ s(i)(v1) = s(i)(v2).
17: end for

(Relabel)
18: for G(i−1) = (V,E,`(i−1)) ∈G(i−1)

N do
19: for v ∈ V do
20: `(i)(v) = f (s(i)(v)).
21: end for
22: end for
23: Denote the set containing all `(i)(v) as L(i).

(Compute Gram matrix)
24: for G(i) ∈G(i)

N do

25: φ(i)
wl−subtr ee (G(i)) = [c(i)(G(i), l (i ,1)), . . . ,c(i)(G(i), l (i ,|L(i)|))],

where c(i)(G(i), l (i ,k)) is the number of occurrence of l (i ,k) ∈ L(i) in G(i).
26: end for

(Compute kernel)
27: for j1, j2 = 1 to N do
28: K(i)

j1, j2
= K(i−1)

j1, j2
+<φ(i)

wl−subtr ee (G(i)
j1

),φ(i)
wl−subtr ee (G(i)

j2
) >.

29: end for
30: i = i +1.
31: end while
32: K = K(h).
64

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

3.6 Acceleration strategies: FCSP, parallelization, and

trie structure

The computational complexity limits the practicability and scalability of graph ker-

nels. In this section, we present 3 strategies to reduce the computing time and mem-

ory usage to compute graph kernels: The Fast Computation of Shortest Path Kernel

method, parallelization, and the trie structure. Datasets and environment settings

applied in this section are respectively described in detail in Section 2.4 and Sec-

tion 3.7.

3.6.1 The Fast Computation of Shortest Path Kernel method

To compute the shortest path kernel between 2 graphs G1 and G2, shortest paths

between all pairs of vertices in both graphs are compared. Each time we compare 2

shortest paths, both their corresponding pairs of vertices are compared once, caus-

ing significant redundancy during the vertex comparison procedure. To illustrate

such redundancy, consider the example given in Figure 3.9. When comparing short-

est paths (v1, v2) and (v5, v4, v7), the vertex kernels kv (v1, v5) and kv (v2, v7) need to

be computed; while comparing paths (v1, v2, v3) and (v5, v4, v7, v6), the vertex ker-

nels kv (v1, v5) and kv (v3, v6) are evaluated. Kernel between vertices v1 and v5 is un-

necessarily computed twice. In general, if G1 has n1 vertices and G2 has n2 vertices,

then there are at most n2
1 shortest paths in G1 and n2

2 shortest paths in G2, thus n2
1n2

2

comparisons between shortest paths and 2n2
1n2

2 comparisons between vertices are

required to compute the kernel. Each pair of vertices is compared 2n1n2 times on

average.

The Fast Computation of Shortest Path Kernel (FCSP) method reduces this re-

dundancy. Initially introduced in [Xu et al., 2014] for vertex comparing in the short-

est path kernel, we extend it to the structural shortest path kernel, and integrate

1

2

3

4

5 6

7

Figure 3.9 – An example of the redundant comparisons between vertices and edges.

65

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

Algorithm 3.2 Fast computation of the shortest path kernel (FCSP)

Input: Shortest-path graphs G?
1 = (V1,E1) and G?

2 = (V2,E2).
A vertex kernel kv , an edge kernel ke .

Output: The shortest path kernel k between G?
1 and G?

2 .

Compare and store vertex kernels:
1: for vi ∈ V1 do
2: for v j ∈ V2 do
3: VK[(vi , v j)] = kv (vi , v j).
4: end for
5: end for

Compute kernel:
6: Let k = 0.
7: for ei = (vi1 , vi2) ∈ E1 do
8: for e j = (v j1 , v j2) ∈ E2 do
9: k = k +VK[(vi1 , v j1)]∗VK[(vi2 , v j2)]∗ke (ei ,e j).

10: end for
11: end for

it for edge comparison. In the following, we describe the FCSP method and these

proposed extensions, as well as some experimental analysis.

The FCSP is presented in Algorithm 3.2. Instead of comparing vertices during

the procedure of comparing shortest paths, for 2 shortest-paths graphs G?
1 and G?

2 ,

FCSP first compares each vertex in G?
1 with each vertex in G?

2 , and then stores the

comparison results in VK. For the convenience of extension, VK is a dictionary of

length n1n2, rather than a n1 ×n2 matrix which is used in [Xu et al., 2014]. Each

item in VK is a key-value pair. The key is a tuple (v1, v2), where v1 and v2 are re-

spectively vertices in G?
1 and G?

2 , and the value is the vertex kernel between v1 and

v2. After this, when comparing shortest paths, comparison results of corresponding

vertices are retrieved from VK. Notice the edge kernel ke in Algorithm 3.2 deals with

weighted lengths of the shortest paths. This method reduces vertex comparisons

to at most n1n2 times, with an additional memory usage of size O (n1n2). In prac-

tice, FCSP can reduce the time complexity up to several orders of magnitude. See

Figure 3.10 for details.

In our implementation, we apply this vertex comparing method to the short-

est path kernel, as recommended by [Xu et al., 2014]. Moreover, we also extend this

strategy and apply it to the structural shortest path kernel. This allows reducing

66

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

Algorithm 3.3 FCSP considering edges
Input: Graphs G1 = (V1,E1) and G2 = (V2,E2).

A vertex kernel kv , an edge kernel ke .
Output: The structural shortest path kernel k between G1 and G2.

Compare and store vertex kernels:
1: for vi ∈ V1 do
2: for v j ∈ V2 do
3: VK[(vi , v j)] = kv (vi , v j).
4: end for
5: end for

Compare and store edge kernels:
6: for ei ∈ E1 do
7: for e j ∈ E2 do
8: EK[(ei ,e j)] = ke (ei ,e j).
9: end for

10: end for

Compute kernel:
11: Extract all shortest paths P1 = {p1,1, . . . , p1,h1 } and P2 = {p2,1, . . . , p2,h2 } between all

pairs of vertices in G1 and G2, respectively.
12: Let k = 0.
13: for pi = (vi ,0,ei ,1, vi ,1 . . . ,ei ,ni , vi ,ni) ∈ P1 do
14: for p j = (v j ,0,e j ,1, v j ,1 . . . ,e j ,n j , v j ,n j) ∈ P2 do
15: if ni == n j then
16: kp = VK[(vi ,0, v j ,0)].
17: for m ∈ {1, . . . ,ni } do
18: kp = kp ∗EK[(ei ,m ,e j ,m)]∗VK[(vi ,m , v j ,m)].
19: end for
20: k = k +kp .
21: end if
22: end for
23: end for

more redundancy since this kernel requires comparisons between all vertices on

each pair of shortest paths. If the average length of the shortest paths in G1 and G2

is h, the new method is at most n1n2h times faster than the direct comparison.

We further extend this strategy to edge comparison when computing the struc-

tural shortest kernel. Algorithm 3.3 details this extension. First, same as in Al-

gorithm 3.2, a sub-kernel between each vertex of graph G1 and each vertex of

67

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

graph G2 are computed and then stored in the dictionary VK. After that, each

edge of G1 is compared with each edge of G2 using an edge kernel, and the re-

sult stored in a dictionary EK of the same type containing key-value pairs. Each

key stores an edge pair (e1,e2) and value the corresponding comparison result. Fi-

nally, when computing the graph kernels, sub-kernels between vertices and edges

are respectively acquired from VK and EK with the time complexity of O (1). When

undirected graphs are considered, EK stores all possible permutations of (e1,e2),

as an edge may start from its both sides. That is to say, let e1 = (v11, v12) and

e2 = (v21, v22), then ((v11, v12), (v21, v22)), ((v12, v11), (v21, v22)), ((v11, v12), (v22, v21)),

and ((v12, v11), (v22, v21)) are all entries of EK. Notice that G1 and G2 are the original

graphs between which the graph kernel is evaluated, rather than the shortest-paths

graphs as in Algorithm 3.2. If G1 has m1 edges and G2 has m2 edges, then it requires

m1m2 times of edge label comparisons, compared to n2
1n2

2h times by the original

method. The former is often much smaller, as long as the vertex degrees of graphs

are not too high, which is generally the case in many fields, such as bioinformatics

and social media. Table 2.2 in Page 34 lists the average vertex degrees of datasets

that we use in experiments, which vary from 1.32 to 4.98.

Figure 3.10 compares runtimes to compute Gram matrices with and without the

FCSP method. To avoid the influence of parallelization on runtime (see Section 3.6.2

for more detail), all computations are serially run on a single CPU. Graphs with-

out edges are omitted for the shortest path kernel. On the small dataset Alkane,

the FCSP achieves similar performance with the naive computation; while in every

other circumstance, the FCSP dominates the performance, with a speedup up to

more than 28 times for the shortest path kernel (on the PAH dataset) and 37 times

for the structural shortest path kernel (on the PAH dataset).

It may be interesting to generalize this strategy to any graph kernels based on

bags of patterns, as long as it requires explicit comparisons between vertices and/or

edges.

3.6.2 Parallelization

Parallelization may significantly reduce the computational time. The basic concept

of parallelization is to split a set of computation tasks into several pieces, and then

carry them out separately on multiple computation units such as CPUs or GPUs.

We implement parallelization with Python’s multiprocessing.Poolmodule in two

68

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

Alkane Acyclic MAO PAH MUTAG
Monoterpens

Letter-high
Letter-med

Letter-low

datasets

101

102

103

104

ru
nt

im
e(
s)

0

5

10

15

20

25

30

35

ra
tio

s

1

shortest path, with FCSP (tsp1)
shortest path, no FCSP (tsp2)
tsp2/ tsp1

structural sp, with FCSP (tssp1)
structural sp, no FCSP (tssp2)
tssp2/ tssp1

Figure 3.10 – Left y-axis: Runtimes (in seconds) to compute Gram matrices with the FCSP
method (bottom of each pillar) and without it (top of each pillar) of the shortest path kernel
(blue pillar) and the structural shortest path kernel (orange pillar) with parallelization. Right
y-axis: The blue dots are the ratios between the runtimes to compute Gram matrices of the
shortest path kernel with the naive and the FCSP method, while the red dots are the ones of
the structural shortest path kernel.

aspects: In cross-validation, parallelization is carried out over the set of trials; when

computing the Gram matrices of graph kernels, parallelization is performed over

pairs of graphs. The special cases of the latter are listed as follows:

• Marginalized kernel: when the technique to remove tottering is applied (see

Section 3.2.4), parallelization is performed first over graphs to construct un-

tottering graphs and then over pairs of these untottering graphs to compute

the Gram matrix.

• Shortest path kernel: parallelization is performed first over graphs to com-

pute their corresponding shortest-paths graphs and then over pairs of these

shortest-paths graphs to compute Gram matrix (see Section 3.3.1).

• Structural shortest path kernel: parallelization is performed first over graphs

to extract all shortest paths in each graph and then over pairs of sets of short-

est paths corresponding to pairs of graphs to compute the Gram matrix (see

Section 3.3.2).

69

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

• Path kernel up to length h: parallelization is performed first over graphs to

extract the set of paths with length up to h in each graph and then over pairs

of sets of paths corresponding to pairs of graphs to compute the Gram matrix

(see Section 3.3.3). The set of paths can be extracted in the form of a trie (see

Section 3.6.3).

• Treelet kernel: First, parallelization is performed over graphs. For each graph,

a set is constructed to record the number of the occurrence of each treelet in

the form of its canonical key. Then, parallelize over pairs of the constructed

sets that correspond to pairs of graphs to evaluate the Gram matrix (see Sec-

tion 3.5.1).

• WL subtree kernel: parallelization is performed over pairs of graphs. Notice in

this case it is unable to use the simultaneous operations on labels presented

in Algorithm 3.1. Instead, operations on labels are carried out for each graph

every time a kernel between a pair of graphs is evaluated (see Section 3.5.2).

A widely used measure of the quality of a parallelization on a task is speedup

[Amdahl, 1967], which is the ratio between the times used before and after the par-

allelization. Amdahl’s law is a rule of thumb to evaluate the speedup [Amdahl, 1967],

which is defined as

Sl atenc y (n) = 1

(1−p)+ p
n

, (3.18)

where Sl atenc y is the theoretical speedup, n is the number of threads, i.e., computing

cores over which the task is parallelized, and p is the proportion of the runtime

to execute the parallelized part in the task before parallelization. When n → ∞,

Sl atenc y reaches its upper limit 1
1−p .

Amdahl’s law shows that the proportion of the parallelized part and the num-

ber of computing cores will restrict the speedup of a parallelization. However, this

definition is based on the assumption that the time tp to execute the parallelized

part is reversely proportional to the number of computing cores n, which is untrue

in practice. The reason is that extra work needs to be involved to carry out the par-

allelization, such as splitting the data, sending data to each computing core, and

collecting results from these cores. To consider this situation, we modify Amdahl’s

law as

S′
l atenc y (n) = 1

(1−p)+ p
n + 1

r

, (3.19)

where r is the ratio between the time to execute the parallelized part before paral-

lelization and the extra time required to carry out the parallelization. Factors that

70

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

may impact r include the number of computing cores n, the transmission band-

width between computing cores, the method to split the data, and the computa-

tional complexity to tackle one piece of data. In the remainder of this section, we

examine two crucial factors: the number of computing cores n and chunksize.

Number of computing cores

As shown in (3.19), the number of computing cores indicates the potential power of

parallelization. Figure 3.11 reveals the influence of parallelization and CPU core

numbers (7 versus 28), on runtime to compute Gram matrices and to perform

model selections for the shortest path kernel on 8 datasets. Moreover, we present

the speedup between runtimes to compute the Gram matrices on 28 and 7 cores.

The speedup for large-scale datasets are around 4, which turns out to be the in-

verse ratio of the number of CPU cores (28/7). It is worth noting that the Letter-med

dataset has the largest number of graphs (but with relatively “small” graphs), and

Enzymes has the “average-largest” graphs (the second one being PAH).

chunksize

Ideally, parallelization is more efficient when more computing cores are applied.

However, as (3.19) reveals, this efficiency may be suppressed by the parallel pro-

cedure required to distribute data to computing cores and collect returned results.

Parallelizing relatively small graphs to a large number of computing cores may be

more time consuming than non-parallel computation. For instance, Figure 3.11

shows that it takes almost the same time to compute the Gram matrix of the small

dataset Alkane on 28 and 7 CPU cores, indicating that the time efficiency raised by

applying more CPU cores is nearly neutralized by the cost to allocate these cores.

To tackle this problem, it is essential to choose an appropriate chunksize, which

describes how many data are grouped together as one piece to be distributed to a

single computing core.

In Figure 3.12, runtimes to compute the Gram matrices of the shortest path ker-

nel with different chunksize values are compared on 28 CPU cores. When chunk-

sizes are too small, the runtimes become slightly high, as the parallel procedure

costs too much time; as chunksizes become bigger, the runtimes turn smaller,

and then reach the minima; after that, the runtimes may become much bigger as

chunksizes continue growing, due to the waste of computational resources. The

71

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

Alkane Acyclic MAO PAH MUTAG Letter-m
ed
ENZYM

ES AIDS

datasets

100

101

102

103

ru
nt
im

e(
s)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

sp
ee

du
p

compute Gram matrix on 28 CPUs (t1)
model selection on 28 CPUs
compute Gram matrix on 7 CPUs (t2)

model selection on 7 CPUs
speedup= t2/ t1

Figure 3.11 – Left y-axis: Runtimes (in seconds) to compute Gram matrices (bottom of each
pillar) and perform model selections (top of each pillar) of the shortest path kernel on each
dataset on 28 CPU cores (blue pillar) and 7 CPU cores (purple pillar) with parallelization.
Right y-axis: The orange dots are the ratios between the runtimes to compute Gram matrices
of each dataset on 28 and 7 cores.

minimum runtime of each dataset (shown with the vertical dot lines) varies due

to the time and memory consumed to compute Gram matrices. Computations

with wise chunksize choices could be more than 20 times faster than the worst

choices. In our experiments, for convenience of implementations and comparisons,

the chunksize to compute an N×N Gram matrix on n♥ CPU cores is set to 100 if

N2 > 100n♥; and N2/n♥ otherwise. The value 100 is chosen since the corresponding

runtimes are close enough to their minima on all the datasets.

The ratio between runtimes of the worst and the best chunksize settings for

each graph kernel on each dataset is shown in Figure 3.13. On all available settings,

the proper choices of the chunksizes speed up the computation. Some are more

than 30 times faster than the worst chunksize settings (i.e., the path kernel up to

length h and the treelet kernel on Letter-med).

72

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

100 101 102 103 104 105
parallel chunksize

10−5

10−4

10−3

10−2

10−1
ru
nt
im

e(
s)
 p
er
 p
ai
r o

f g
ra
ph

s

Alkane
Acyclic

MAO
PAH

MUTAG
Letter-med

ENZYMES
AIDS

Figure 3.12 – Runtimes to compute the Gram matrices of the shortest path kernel on each
dataset on 28 CPU cores with different chunksize values.

3.6.3 The trie Structure

In some graph kernels that require comparison of paths (i.e., the path kernel up to

length h), the paths are pre-computed for the sake of time complexity. However, for

large datasets, when the maximum limits of the lengths of paths are high, storing

these paths becomes memory-consuming. In [Ralaivola et al., 2005], the authors

proposed a suffix tree data structure for fast computation of path kernels. Inspired

by that, we employ the trie data structure [Fredkin, 1960] to store paths in order to

tackle the memory problem, as described next.

A trie, also called a prefix tree, is a data structure to store dictionaries, where

the keys are normally strings. Each node in a trie represents a string or a prefix of a

string except for the root node, which is associated with an empty string. The string

associated with the child of a node shares the same prefix with the string associ-

ated with that node. Each node may also be associated with a value that represents

the number of occurrences of the associated string. Figure 3.14 illustrates a trie to

store a set of strings. Each orange node corresponds to a string on the left and the

73

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

co
m

m
on

 w
al

k

m
ar

gi
na

liz
ed

Sy
lv

es
te

r
eq

ua
ti
on

co
nj

ug
at

e
gr

ad
ie

nt

fix
ed

-p
oi
nt
 it
er
at
io
ns

sp
ec
tr
al
 d
ec
om

po
si
ti
on

sh
or
te
st
 p
at
h

st
ru
ct
ur
al
 S
P

pa
th
 u
p
to
 le

ng
th
 h

tr
ee

le
t

W
L
su
bt
re
e

Alkane 1.09 24.94 8.1 23.14 24.22 1.71 20.39 23.29 2.75 2.51 1.02

Acyclic 1.24 25.19 8.9 19.11 18.27 1.51 20.36 22.56 4.89 2.72 1.02

MAO 1.68 24.59 4.32 1.14 1.06 7.25 20.96 24.91 6.46 2.0 1.03

PAH 1.32 26.05 5.17 1.15 1.16 10.19 24.98 26.98 2.06 3.26 1.04

Mutag 1.16 27.23 12.09 1.39 1.57 5.69 25.43 27.47 13.5 6.17 1.01

Letter-med 1.43 1.54 14.83 1.46 1.65 1.61 2.63 2.37 31.54 30.35 1.01

Enzymes 1.43 14.66 1.85 2.03 1.73 inf 14.52 inf 16.23 17.22 1.01

AIDS 1.08 1.59 2.0 1.07 1.08 inf 1.8 2.15 1.8 21.04 1.01

NCI1 inf 1.17 1.94 inf inf inf 1.27 inf 4.14 23.94 1.07

NCI109 inf 1.27 1.93 inf inf inf 1.3 inf 6.04 32.0 1.07

D&D inf inf inf inf inf inf inf inf inf inf 1.01

Figure 3.13 – The ratio between runtimes of the worst and the best chunksize settings for
each graph kernel on each dataset. Darker color indicates a better result. Gray cells with
the “inf” marker indicate that the computation of the graph kernel on the dataset is omitted
due to much higher consumption of computational resources than other kernels.

number inside the node counts the occurrence of that string. The latter is not nec-

essarily needed to build a trie. Notice a string is implied in the structure of the trie

itself, namely the position of the corresponding node, rather than stored directly in

that node. Trie tends to occupy less space when common prefixes take larger pro-

portions. In the example given in Figure 3.14, the original strings require 33 units of

space, while the corresponding trie takes only 13. We consider the following basic

operations of a trie:

• Insertion: To insert a string s to a trie of length h, successively look up each

character c in s starting in the children of the root node nr as the current par-

ent. If child ni is associated with c, then set ni as the current parent and move

to the next character; otherwise insert s as a new sub-tree of nr . The worst

time complexity of insertion is O (h).

• Construction: Constructing a trie involves repeating the insertion process. For

n strings with the average length h, the time complexity is O (hn).

• Lookup: Look up a string in a trie uses the same procedure as inserting it, ex-

74

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

a

3
a

c y

a

n

5
can
?

1can?

n
e

r
1 canner

s
1as

o
u

1 you

can you

a

a

a
as
canner

can
can

can can
can?

Figure 3.14 – An illustration of a trie structure to store a set of strings.

A
2

B

CD

1

graph

AB

A

D

C

paths

1

1

trie

A 1
C

1

D
1

B 1
A

1

C 1

D
1C

1
D

1

Figure 3.15 – Construction of a trie from paths in a graph.

cept that no node is inserted into the trie. Thereby the worst time complexity

is also O (h) for a length-h string.

In a labeled graph, we use trie to combine the common prefixes of paths together

to reduce space complexity. Vertex and edge labels with arbitrary dimensions can

be handled, as long as they are symbolic. Figure 3.16 shows an example of how all

paths are extracted from a graph, with labels of vertices (the modern English let-

ters) and edges (the Greek letters) constituting label sequences, and construct a trie

from them. Each node in the trie (except for the root) represents a label sequence

and each orange one represents a path. The trie reduces the required space from 46

units to 23 units. Take the path kernel up to length h for example. Let n be the aver-

age vertex number of each graph, d be the average vertex degree, and l the different

75

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

1 2 3 4 5 6 7 8 9 10
maximum length of paths h

102

103

104

105

106

107
m
em

or
y
us

ag
e
(K
B)

Alkane
PAH

ENZYMES
NCI1

NCI109

Figure 3.16 – Memory usages to store paths in all graphs in each dataset under different
maximum length of paths h. Dot lines represent explicit storage of paths, and solid lines
represent storage using the trie structure. Note that lines of datasets NCI1 and NCI109 over-
lap.

vertex labels in total (for conciseness, only symbolic vertex labels are considered

here). When paths are stored explicitly in memory (e.g. using the Python list ob-

ject), the space complexity to store paths in one graph is in O (n(1+d+·· ·+d h)); The

trie reduces it to O (l (1+ l +·· ·+ l h)), making it very efficient for large datasets and

graphs, or when h is high. See Figure 3.16 for a comparison.

The evaluation of the path kernel up to length h between two graphs G1 and G2

can be carried out while traversing the corresponding tries. Algorithm 3.4 formal-

izes this procedure for the Tanimoto kernel (see Section 3.3.3) in four steps. Step

1, construct the tries for T1 (resp. T2) for the paths up to length h in G1 (resp. G2)

and initialize the numerator sumn and the denominator sumd of (3.11), namely

the intersection and the union of path sets in G1 and G2, respectively. Step 2, find

all paths in T1 with a Deep-first search. For each path, increase sumd by 1 and

check whether it is in T2. If so, then increase sumn by 1 (the first function in Algo-

76

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

Algorithm 3.4 The evaluation of the path kernel up to length h with the Tanimoto
kernel using trie

Input: Graphs G1 and G2.
Output: The path kernel k up to length h between G1 and G2.

1: Construct the tries T1 (resp. T2) for the paths up to length h in G1 (resp. G2), as
illustrated by Figure 3.15.

2: Let sumn = 0 and sumd = 0.
3: Let nr1 (resp. nr2) be the root node of T1 (resp. T2).
4: Update sumn and sumd by function TRAVERSE_TRIE1(nr1 , T2, sumn , sumd) in

Algorithm 3.5.
5: Update sumn and sumd by function TRAVERSE_TRIE2(nr2 , T1, sumn , sumd) in

Algorithm 3.5.
6: k = sumn/sumd .

rithm 3.5). Step 3, find the paths in T2 that are not in T1 by the similar procedure

of Step 2 (the second function in Algorithm 3.5). Step 4, compute the kernel as the

ratio of sumn and sumd . For the MinMax kernel (3.12), a similar four-step process

can be used by modifying Step 2 and Step 3. Each time a path is found, the numbers

of its occurrence in two graphs are also retrieved. sumn and sumd are increased

by the comparing results of these numbers, rather than by 1 (Lines 5, 6, and 22 in

Algorithm 3.5).

Although both saving paths to the trie structure and retrieving paths from it re-

quire extra computing time, less memory usage may avoid swapping between mem-

ory and hard disk, which saves more time in practice. As a result, the users should

use the trie structure according to the limits of their computing resources. In our

implementation, it is implemented for the path kernel up to length h.

77

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

Algorithm 3.5 Auxiliary functions for Algorithm 3.4

1: function TRAVERSE_TRIE1(nr , T2, sumn , sumd , s = ())
2: for each child nc of nr do
3: Add the label ` corresponding to nc to the end of s.
4: if s represents a path then
5: sumd += 1.
6: Look up s in T2, if found, then sumn += 1.
7: end if
8: if nc has children then
9: Run function TRAVERSE_TRIE1(nc , T2, sumn , sumd , s).

10: else
11: Remove the last label from s.
12: end if
13: end for
14: if s is not empty then
15: Remove the last label from s.
16: end if
17: end function

18: function TRAVERSE_TRIE2(nr , T1, sumn , sumd , s = ())
19: for each child nc of nr do
20: Add the label ` corresponding to nc at the end of the label sequence s.
21: if s represents a path then
22: Look up s in T1, if not found, then sumd += 1.
23: end if
24: if nc has children then
25: Run function TRAVERSE_TRIE2(nc , T1, sumn , sumd , s).
26: else
27: Remove the last label from s.
28: end if
29: end for
30: if s is not empty then
31: Remove the last label from s.
32: end if
33: end function

78

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

3.7 Experiments and analyses

In this section, we perform each graph kernel on synthesized graph datasets as well

as real-world benchmark graph datasets listed in Table 2.2. We analyze the accu-

racy and computational complexity according to the type of graphs, thus offering

some advice to choose graph kernels based on the type of the dataset at hand, and

discussing which ones work on particular graphs.

evaluation test

training

validation

outer CV

inner CV

one trial

Figure 3.17 – Illustration of the two-layer nested cross validation.

The methods used for prediction are kernel ridge regression [Murphy, 2012] and

support vector machines [Boser et al., 1992] for classification. A two-layer nested

cross validation (CV) method is applied to select and evaluate models as follows. As

Figure 3.17 shows, in the outer CV, the whole dataset is first randomly split into 10

folds, nine of which serve for model evaluation and one for an unbiased estimate

of the performance. Then, in the inner CV, the evaluation set is split into 10 folds,

nine of which are used for training, and the remaining split is used for validating

the tuning of the hyper-parameters. This procedure is repeated 30 times, a.k.a., 30

trials, and the final results correspond to the average over these trials. Strategies pro-

posed in Section 3.6 are applied through the experiments unless stated otherwise.

Table 3.2 shows the environment settings for the experiments.

Table 3.2 – Environment settings for experiments.

Environments Settings

CPU Intel(R) Xeon(R) E5-2680 v4 @ 2.40GHz
CPU cores 28
Memory (in total) 252 GB
Operating system CentOS Linux release 7.3.1611, 64 bit
Python version 3.6.9

79

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

3.7.1 Performance on synthesized graphs

In this section, the performance and properties of each graph kernel are studied us-

ing synthesized graphs, with runtimes estimated on the Gram matrix computations.

First, we study the scalability of the kernels by increasing the number of graphs

in the dataset (from 100 to 1000 graphs), where the generated unlabeled graphs con-

sist of 20 vertices and 40 edges randomly assigned to pairs of vertices. Figure 3.18(a)

shows the runtimes for all kernels. Since all the lines are linear with the y-axis being

in square root scale, this indicates that the runtimes are quadratic in the number of

graphs.

The scalability is also analyzed by increasing the number of vertices (from 10 to

100), where 10 datasets of 100 unlabeled graphs each were generated. The average

degree of all generated graphs is equal to 2 and the edges are randomly assigned

to pairs of vertices. Figure 3.18(b) shows the runtimes increasing in the number of

vertices for all kernels. The path kernel up to length h and the WL subtree kernel

have the best scalability. One reason that they are fast is that only a small part of

sub-patterns in these two kernels need to be taken into consideration for a good

performance.

To study the scalability of the kernels w.r.t. the average vertex degree, we gen-

erated unlabeled graphs consisting of 20 vertices with increasing degrees (from 1 to

10). The edges are randomly assigned to pairs of vertices. For each of the 10 de-

gree values, we generated 100 graphs. Figure 3.18(c) shows that most kernels have

good scalability to the degrees, the worst being the treelet kernel, as the number of

treelets in each graph increases rapidly with the degree.

To study the scalability of the kernels w.r.t. the alphabet sizes of symbolic ver-

tex labels, we generated unlabeled graphs of 20 vertices and 40 edges randomly as-

signed to pairs of vertices. The vertices are symbolically labeled with increasing

alphabet sizes, and the edges are unlabeled. For each alphabet size (from 0 to 20),

we generated 100 graphs. As Figure 3.18(d) shows, the runtimes of the path kernel

up to length h increases significantly with the alphabet size. This is because the trie

structures to store paths become bigger, and it requires more time to construct and

compare them. In contrast, the runtimes of the common walk kernel and the struc-

tural shortest path kernel become smaller when the alphabet size becomes bigger.

The former is related to smaller direct product graphs (see [Gärtner et al., 2003]),

and the latter is caused by the reduced comparison between vertex labels through

the shortest paths.

80

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

200 400 600 800 1000
of graphs

0

500

1000
1500
2000

ru
nt
im

e(
s)

(a) dataset size

20 40 60 80 100
of vertices

100

101

102

103

104

105

ru
nt
im

e(
s)

(b) number of vertices

2 4 6 8 10
degrees

100
101
102
103
104
105

ru
nt
im

e(
s)

(c) degrees

5 10 15 20
of alphabets

100

101

102
ru
nt
im

e(
s)

(d) alphabet size of vertex labels

10 20 30 40
of alphabets

5

10

15

20

25

ru
nt
im

e(
s)

(e) alphabet size of edge labels

datasets

0

20

40

60

80

100

ac
cu
ra
cy
(%

)

(f) degree dis%ribu%i ns

en%r py ≈ 0.4 en%r py ≈ 2.2

c mm n (alk
marginalized
Sylves%er equa%i n
c njuga%e gradien%

fi)ed-p in% i%era%i ns
spec%ral dec mp si%i n
sh r%es% pa%h
s%ruc%ural sp

pa%h up % leng%h h
%reele%
WL sub%ree

Figure 3.18 – Performance of all graph kernels on synthesized graphs.

81

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

The scalability of the kernels w.r.t. the alphabet sizes of edge labels is studied in

the same way, except that the edges are symbolically labeled with increasing alpha-

bet sizes, and the vertices are unlabeled. For each alphabet size (0,4,8,12, . . . ,40),

we generated 100 graphs. According to Figure 3.18(e), the runtimes of the path ker-

nel up to length h increase with the alphabet sizes, caused by the aforementioned

reason concerning the trie structures. In general, the influence of the alphabet size

on the runtime is small for all kernels.

Finally, we studied the classification performances of the kernels on graphs with

different amounts of entropy on degree distributions. For this reason, we gener-

ated two sets of 200 graphs with 40 vertices. Graphs of the first set have low entropy

on degree distributions, while graphs of the second set have high entropy (0.4 ver-

sus 2.2 on average). Each set has two classes, one consisting of half of the graphs

with one label on vertices and the other class another label. A classification task is

performed on each set using the SVM classifier, and the accuracy is evaluated. Fig-

ure 3.18(f) shows that all graph kernels achieve equivalent accuracy on both sets of

different degree distributions. Except for the Sylvester equation kernel or the spec-

tral decomposition kernel that cannot deal with labels, all graph kernels achieve

high accuracy. It indicates that these graph kernels are suitable for various degree

distributions.

As a conclusion, the dataset size and the number of vertices have the most sig-

nificant effect on the computation runtimes of the aforementioned graph kernels.

Some graph kernels may be limited for large datasets due to their scalability. For the

treelet kernel, the influence of vertex degree is also significant. These effects should

be examined carefully before using the kernels. We provide in the following a deeper

Table 3.3 – The ranges of hyper-parameters for each kernel

Kernels Hyper-parameter ranges

Common walk
method: geo, γ: [0.01, 0.02, . . . , 0.15]

method: exp, γ: [0,1, 2, . . . , 15]
Marginalized iter: [1,5, . . . ,20], pq : [0.1, 0.2, . . . , 1.0]
Sylvester equation λ: [1-10, 1e-9, . . . , 1e-1]
Conjugate gradient λ: [1-10, 1e-9, . . . , 1e-1]
Fixed-point iterations λ: [1-10, 1e-9, . . . , 1e-1]
Spectral decomposition λ: [1-10, 1e-9, . . . , 1e-1]
Path kernel up to length h h: [1, 2, . . . , 10], k f unc: [MinMax, Tanimoto]

kernel: gaussian, γ: [1e-10, 1e-9, . . . , 1]
Treelet

kernel: polynomial, d : [1, 2, . . . , 10], c: [1, 10, . . . , 1e10], γ: [1e-10, 1e-9, . . . , 1]
WL subtree height: [0, 1, . . . , 10]

82

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

analysis by analyzing the performance on well-known real-world datasets.

3.7.2 Performance on the real-world datasets

In this section, experiments and analyses are performed on real-world datasets

listed in Table 2.2 on Page 34. Table 3.3 summarizes the ranges of hyper-parameters

over which each graph kernel is optimized with a grid search CV. Tables 3.4 and 3.5

gather the performances of all these kernels on all datasets for regression and clas-

sification tasks, respectively.

83

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

Ta
b

le
3.

4
–

R
es

u
lt

s
o

fa
ll

gr
ap

h
ke

rn
el

s
o

n
d

at
as

et
s

fo
r

re
gr

es
si

o
n

ta
sk

s

D
at

as
et

s
K

er
n

el
s

Tr
ai

n
Pe

rf
V

al
id

Pe
rf

Te
st

Pe
rf

Pa
ra

m
et

er
s

t g
m

t a
ll

A
lk

an
e

C
o

m
m

o
n

w
al

k
6.

76
±0

.7
2

10
.7

9±
2.

08
15

.5
2±

15
.1

0
m

et
h

o
d

:g
eo

,γ
:0

.0
6,
α

:1
e-

10
2.

24
"/

3.
04

"±
0.

83
"

18
4.

17
"

1

M
ar

gi
n

al
iz

ed
41

.8
2±

2.
41

42
.3

8±
2.

16
43

.7
5±

18
.8

8
it

er
:1

6,
p

q
:0

.1
,α

:1
e-

10
4.

68
"/

3.
25

"±
1.

48
"

33
0.

01
"

2

Sy
lv

es
te

r
eq

u
at

io
n

6.
89

±0
.3

5
12

.6
0±

1.
28

8.
97

±8
.8

4
λ

:0
.0

1,
α

:3
.1

6e
-9

0.
37

"/
0.

38
"±

0.
02

"
20

.1
1"

3

C
o

n
ju

ga
te

gr
ad

ie
n

t
7.

17
±0

.4
8

12
.3

7±
1.

56
11

.1
3±

11
.1

0
λ

:0
.1

,α
:1

e-
8

0.
76

"/
0.

66
"±

0.
04

"
26

.1
9"

4

F
ix

ed
-p

o
in

ti
te

ra
ti

o
n

s
14

.6
6±

0.
38

17
.3

5±
0.

91
12

.7
8±

2.
33

λ
:1

e-
3,
α

:1
e-

8
0.

64
"/

0.
60

"±
0.

06
"

20
.2

8"
5

Sp
ec

tr
al

d
ec

o
m

p
o

si
ti

o
n

10
.6

2±
0.

36
13

.3
3±

1.
13

12
.9

5±
6.

74
λ

:0
.1

,α
:1

e-
10

0.
59

"/
0.

65
"±

0.
08

"
43

.8
4"

6

Sh
o

rt
es

tp
at

h
7.

87
±0

.1
6

8.
76

±0
.2

2
7.

81
±1

.5
1

α
:1

e-
8

0.
75

"
3.

23
"

7

St
ru

ct
u

ra
lS

P
7.

89
±0

.1
7

11
.0

4±
0.

30
8.

65
±1

.5
5

α
:0

.1
1.

05
"

3.
20

"
8

Pa
th

u
p

to
le

n
gt

h
h

0.
52

±0
.0

3
6.

96
±1

.0
4

9.
00

±1
2.

87
h

:9
,k

_f
u

n
c:

M
in

M
ax

,α
:3

.1
6e

-3
0.

48
"/

0.
51

"±
0.

04
"

52
.2

0"
9

Tr
ee

le
t

1.
10

±0
.0

4
2.

57
±0

.2
1

2.
53

±1
.3

2
ke

rn
el

:g
au

ss
ia

n
,γ

:1
e-

6,
α

:1
e-

10
0.

48
"/

0.
50

"±
0.

04
"

21
2.

68
"

10

W
L

su
b

tr
ee

5.
22

±0
.1

1
21

.9
9±

4.
36

26
.4

2±
41

.5
9

h
ei

gh
t:

2,
α

:3
.1

6e
-4

0.
38

"/
1.

45
"±

0.
89

"
53

.6
5"

11

A
cy

cl
ic

C
o

m
m

o
n

w
al

k
7.

60
±0

.2
2

12
.7

7±
1.

00
12

.9
3±

3.
91

m
et

h
o

d
:g

eo
,γ

:0
.0

4,
α

:1
e-

8
1.

84
"/

2.
27

"±
0.

47
"

17
7.

87
"

12

M
ar

gi
n

al
iz

ed
11

.1
7±

0.
42

17
.7

7±
1.

50
18

.7
7±

3.
75

it
er

:1
9,

p
q

:0
.3

,α
:1

e-
5

6.
66

"/
4.

16
"±

1.
93

"
40

0.
54

"
13

Sy
lv

es
te

r
eq

u
at

io
n

30
.7

5±
0.

50
31

.8
3±

0.
49

32
.5

0±
4.

30
λ

:0
.0

1,
α

:3
.1

6e
-1

0
0.

41
"/

0.
66

"±
0.

83
"

24
.7

1"
14

C
o

n
ju

ga
te

gr
ad

ie
n

t
9.

07
±0

.3
1

12
.8

1±
0.

81
13

.1
5±

3.
64

λ
:0

.0
1,
α

:3
.1

6e
-9

0.
95

"/
0.

92
"±

0.
12

"
31

.8
9"

15

F
ix

ed
-p

o
in

ti
te

ra
ti

o
n

s
11

.3
0±

0.
72

13
.0

6±
0.

97
14

.2
0±

5.
93

λ
:1

e-
3,
α

:3
.1

6e
-9

0.
87

"/
0.

77
"±

0.
11

"
23

.2
8"

16

Sp
ec

tr
al

d
ec

o
m

p
o

si
ti

o
n

30
.9

7±
0.

48
31

.9
0±

0.
60

33
.0

5±
4.

34
λ

:0
.1

,α
:1

e-
9

0.
96

"/
0.

79
"±

0.
11

"
50

.6
0"

17

Sh
o

rt
es

tp
at

h
6.

28
±0

.2
1

9.
77

±0
.6

8
9.

03
±2

.3
6

α
:1

e-
3

0.
84

"
3.

15
"

18

St
ru

ct
u

ra
lS

P
3.

78
±0

.1
3

12
.6

2±
1.

12
13

.1
0±

4.
78

α
:1

e-
3

1.
73

"
4.

43
"

19

Pa
th

u
p

to
le

n
gt

h
h

1.
89

±0
.1

4
6.

83
±0

.4
3

6.
66

±1
.6

3
h

:2
,k

_f
u

n
c:

M
in

M
ax

,α
:3

.1
6e

-3
0.

50
"/

0.
50

"±
0.

04
"

55
.3

8"
20

Tr
ee

le
t

3.
38

±0
.1

6
6.

16
±0

.3
9

5.
99

±1
.4

5
ke

rn
el

:p
o

ly
,d

:1
,c

:1
e+

3,
α

:1
e-

3
0.

51
"/

0.
49

"±
0.

02
"

27
4.

67
"

21

W
L

su
b

tr
ee

13
.1

9±
0.

63
16

.8
8±

1.
02

19
.8

0±
6.

12
h

ei
gh

t:
1,
α

:3
.1

6e
-1

0
0.

37
"/

2.
18

"±
1.

32
"

78
.1

2"
22

“P
ar

am
et

er
s”

in
d

ic
at

es
th

e
h

yp
er

-p
ar

am
et

er
s

va
lu

es
se

le
ct

ed
b

y
C

V,
w

it
h

gr
id

se
ar

ch
va

lu
es

o
fα

an
d

C
b

ei
n

g
[1

e-
10

,1
e-

9,
...

.,
1e

10
].

R
an

ge
s

o
fa

ll
th

e
p

ar
am

et
er

s
ca

n
b

e
fo

u
n

d
in

th
e

d
em

o
s

o
f

o
u

r
P

yt
h

o
n

li
b

ra
ry

(i
n

tr
o

d
u

ce
d

in
C

h
ap

te
r

6)
.

“t
g

m
”

is
th

e
ti

m
e

to
co

m
p

u
te

G
ra

m
m

at
ri

x/
m

at
ri

ce
s

in
se

co
n

d
s.

N
o

te
fo

r
ke

rn
el

s
th

at
n

ee
d

to
tu

n
e

h
yp

er
-p

ar
am

et
er

s
to

co
m

p
u

te
G

ra
m

m
at

ri
ce

s,
m

u
lt

ip
le

G
ra

m
m

at
ri

ce
s

ar
e

co
m

p
u

te
d

,a
n

d
av

er
ag

e
ti

m
e

co
n

su
m

p
ti

o
n

an
d

it
s

co
n

fi
d

en
ce

ar
e

o
b

ta
in

ed
ov

er
th

e
h

yp
er

-p
ar

am
et

er
gr

id
s,

w
h

ic
h

ar
e

sh
ow

n
af

te
r

th
e

la
b

el
“/

”.
T

h
e

ti
m

e
sh

ow
n

b
ef

o
re

“/
”

is
th

e
o

n
e

sp
en

to
n

b
u

il
d

in
g

th
e

G
ra

m
m

at
ri

x
co

rr
es

p
o

n
d

in
g

to
th

e
b

es
tt

es
tp

er
fo

rm
an

ce
.O

n
ce

h
yp

er
-p

ar
am

et
er

s
ar

e
fi

xe
d

,l
ea

rn
in

g
is

o
n

ly
p

er
fo

rm
ed

o
n

a
si

n
gl

e
G

ra
m

m
at

ri
x.

“t
a

ll
”

ex
h

ib
it

s
th

e
to

ta
l

ti
m

e
co

n
su

m
ed

to
co

m
p

u
te

G
ra

m
m

at
ri

x/
m

at
ri

ce
s

as
w

el
l

as
to

p
er

fo
rm

m
o

d
el

se
le

ct
io

n
fo

r
ea

ch
ke

rn
el

.
Fo

r
re

gr
es

si
o

n
ta

sk
s

(A
cy

cl
ic

an
d

A
lk

an
e

in
th

is
Ta

b
le

),
th

e
p

er
fo

rm
an

ce
s

ar
e

gi
ve

n
in

te
rm

s
o

fe
rr

o
rs

o
fb

o
ili

n
g

p
o

in
ts

.
T

h
e

la
st

co
lu

m
n

is
th

e
ro

w
n

u
m

b
er

.

84

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

Ta
b

le
3.

5
–

R
es

u
lt

s
o

fa
ll

gr
ap

h
ke

rn
el

s
fo

r
cl

as
si

fi
ca

ti
o

n
ta

sk
s

(a
cc

u
ra

cy
in

p
er

ce
n

ta
ge

)

D
at

as
et

s
K

er
n

el
s

Tr
ai

n
Pe

rf
V

al
id

Pe
rf

Te
st

Pe
rf

Pa
ra

m
et

er
s

t g
m

t a
ll

M
A

O

C
o

m
m

o
n

w
al

k
98

.2
6±

0.
34

90
.6

2±
2.

28
93

.0
0±

8.
16

m
et

h
o

d
:e

xp
,β

:6
,C

:3
.1

6e
+2

10
.4

8"
/6

.4
7"
±4

.0
7"

11
85

.1
6"

23

M
ar

gi
n

al
iz

ed
97

.2
9±

1.
12

88
.3

7±
3.

20
85

.6
2±

12
.2

5
it

er
:7

,p
q

:0
.5

,C
:1

e+
7

4.
24

"/
4.

85
"±

2.
26

"
56

09
.3

7"
24

Sy
lv

es
te

r
eq

u
at

io
n

90
.7

2±
1.

40
87

.0
9±

2.
67

84
.5

2±
13

.2
3

λ
:0

.1
,C

:1
e+

7
0.

37
"/

0.
34

"±
0.

03
"

21
.0

7"
25

C
o

n
ju

ga
te

gr
ad

ie
n

t
98

.1
5±

0.
47

86
.4

1±
3.

71
88

.5
7±

10
.9

3
λ

:0
.1

,C
:3

.1
6e

+6
0.

86
"/

0.
77

"±
0.

04
"

73
.9

5"
26

F
ix

ed
-p

o
in

ti
te

ra
ti

o
n

s
82

.4
4±

1.
30

78
.2

7±
3.

00
73

.7
1±

11
.8

6
λ

:1
e-

3,
C

:1
e+

10
1.

05
"/

0.
94

"±
0.

15
"

21
.9

9"
27

Sp
ec

tr
al

d
ec

o
m

p
o

si
ti

o
n

79
.5

0±
1.

78
79

.3
3±

1.
92

77
.6

7±
15

.9
3

λ
:1

e-
7,

C
:3

.1
6e

+9
0.

34
"/

1.
38

"±
1.

06
"

55
.2

8"
28

Sh
o

rt
es

tp
at

h
97

.4
3±

0.
76

88
.5

1±
2.

10
87

.8
1±

7.
38

C
:3

.1
6e

+3
1.

79
"

3.
82

"
29

St
ru

ct
u

ra
lS

P
96

.7
0±

0.
76

90
.7

9±
2.

44
91

.6
2±

9.
16

C
:1

e+
3

7.
63

"
9.

60
"

30

Pa
th

u
p

to
le

n
gt

h
h

98
.2

0±
1.

00
91

.1
1±

2.
59

85
.4

3±
12

.6
0

h
:9

,k
_f

u
n

c:
M

in
M

ax
,C

:1
0

1.
03

"/
0.

72
"±

0.
22

"
52

.2
1"

31

Tr
ee

le
t

97
.7

1±
0.

62
90

.9
2±

2.
49

91
.1

9±
9.

74
ke

rn
el

:p
o

ly
,d

:4
,c

:1
e+

7,
C

:1
e+

2
0.

48
"/

0.
52

"±
0.

05
"

10
91

.9
7"

32

W
L

su
b

tr
ee

95
.9

0±
0.

84
90

.7
0±

2.
00

93
.0

5±
8.

66
h

ei
gh

t:
6,

C
:1

0
0.

43
"/

0.
56

"±
0.

36
"

29
.8

2"
33

PA
H

C
o

m
m

o
n

w
al

k
76

.2
6±

1.
31

72
.4

4±
2.

24
71

.8
0±

11
.8

1
m

et
h

o
d

:g
eo

,γ
:0

.1
1,

C
:3

.1
6e

+4
11

.5
9"

/3
6.

39
"±

23
.5

7"
15

74
.1

3"
34

M
ar

gi
n

al
iz

ed
63

.3
7±

2.
20

63
.5

2±
2.

18
57

.6
7±

18
.5

1
it

er
:4

,p
q

:0
.4

,C
:1

e-
5

7.
88

"/
11

.2
7"
±5

.4
2"

82
7.

50
"

35

Sy
lv

es
te

r
eq

u
at

io
n

74
.4

7±
1.

30
71

.8
8±

2.
51

71
.5

0±
12

.3
6

λ
:0

.1
,C

:1
e+

4
0.

37
"/

0.
38

"±
0.

05
"

43
.1

3"
36

C
o

n
ju

ga
te

gr
ad

ie
n

t
75

.6
2±

2.
08

71
.6

9±
2.

49
73

.9
3±

13
.8

9
λ

:0
.1

,C
:3

.1
6e

+4
1.

57
"/

1.
37

"±
0.

12
"

68
.1

7"
37

F
ix

ed
-p

o
in

ti
te

ra
ti

o
n

s
63

.2
9±

1.
80

63
.3

9±
1.

93
58

.3
3±

15
.1

0
λ

:1
e-

4,
C

:1
e-

8
2.

46
"/

1.
79

"±
0.

44
"

30
.3

3"
38

Sp
ec

tr
al

d
ec

o
m

p
o

si
ti

o
n

73
.5

4±
1.

61
71

.0
9±

3.
29

70
.7

3±
12

.7
0

λ
:0

.1
,C

:3
.1

6e
+5

0.
45

"/
2.

33
"±

1.
91

"
78

.0
5"

39

Sh
o

rt
es

tp
at

h
79

.5
3±

1.
26

76
.6

6±
2.

55
69

.4
0±

11
.5

7
C

:3
.1

6e
+2

2.
30

"
32

9.
48

"
40

St
ru

ct
u

ra
lS

P
77

.3
9±

1.
85

74
.2

2±
2.

50
74

.5
0±

13
.3

9
C

:3
.1

6e
+2

20
.9

1"
77

6.
99

"
41

Pa
th

u
p

to
le

n
gt

h
h

76
.3

3±
1.

61
72

.5
1±

2.
34

75
.2

7±
13

.7
2

h
:1

,k
_f

u
n

c:
M

in
M

ax
,C

:1
0

0.
53

"/
0.

53
"±

0.
04

"
49

.2
6"

42

Tr
ee

le
t

82
.8

9±
1.

64
70

.6
6±

3.
23

66
.3

0±
12

.6
8

ke
rn

el
:g

au
ss

ia
n

,C
:1

e+
3

0.
58

"/
0.

58
"±

0.
04

"
84

19
.4

9"
43

W
L

su
b

tr
ee

10
0.

00
±0

.0
0

77
.8

6±
2.

62
75

.9
3±

10
.8

3
h

ei
gh

t:
14

,C
:1

e+
2

1.
86

"/
0.

94
"±

0.
66

"
37

.3
9"

44

M
U

TA
G

C
o

m
m

o
n

w
al

k
91

.8
8±

0.
98

88
.0

9±
1.

31
85

.9
6±

7.
92

m
et

h
o

d
:g

eo
,γ

:0
.0

2,
C

:1
e+

4
9.

86
"/

19
.0

2"
±8

.7
1"

29
45

.8
8"

45

M
ar

gi
n

al
iz

ed
86

.0
7±

0.
91

78
.8

4±
1.

52
76

.1
1±

7.
90

it
er

:7
,p

q
:0

.8
,C

:1
e+

6
19

.7
2"

/2
3.

04
"±

11
.5

7"
72

20
7.

27
"

46

Sy
lv

es
te

r
eq

u
at

io
n

84
.8

9±
1.

24
83

.5
8±

1.
90

82
.7

7±
7.

23
λ

:0
.1

,C
:3

.1
6e

+3
0.

51
"/

0.
50

"±
0.

03
"

56
.5

5"
47

C
o

n
ju

ga
te

gr
ad

ie
n

t
92

.1
9±

0.
76

87
.1

4±
1.

60
86

.1
8±

5.
83

λ
:1

e-
3

C
:3

.1
6e

+6
2.

84
"/

2.
73

"±
0.

09
"

74
.3

9"
48

F
ix

ed
-p

o
in

ti
te

ra
ti

o
n

s
92

.3
1±

0.
73

87
.3

4±
1.

51
86

.5
8±

6.
66

λ
:1

e-
3,

C
:1

e+
6

4.
25

"/
3.

35
"±

0.
62

"
45

.3
6"

49

Sp
ec

tr
al

d
ec

o
m

p
o

si
ti

o
n

83
.7

1±
0.

90
83

.4
1±

1.
14

84
.0

5±
7.

85
λ

:1
e-

7,
C

:3
.1

6e
+8

0.
92

"/
5.

94
"±

5.
14

"
15

9.
06

"
50

Sh
o

rt
es

tp
at

h
98

.2
3±

0.
40

84
.3

9±
2.

35
81

.8
4±

6.
63

C
:1

e+
3

4.
89

"
7.

58
"

51

St
ru

ct
u

ra
lS

P
10

0.
00

±0
.0

0
84

.6
6±

1.
57

86
.2

6±
5.

14
C

:3
.1

6e
+9

68
.8

5"
71

.1
8"

52

Pa
th

u
p

to
le

n
gt

h
h

96
.0

6±
0.

55
89

.8
9±

1.
29

88
.4

7±
5.

84
h

:2
,k

_f
u

n
c:

M
in

M
ax

,C
:1

e+
8

0.
52

"/
0.

86
"±

0.
35

"
51

.1
7"

53

Tr
ee

le
t

98
.8

8±
0.

25
90

.3
3±

1.
45

90
.7

9±
4.

62
ke

rn
el

:p
o

ly
,d

:3
,c

:1
e+

8,
C

:3
.1

6e
+1

0.
55

"/
0.

57
"±

0.
04

"
15

2.
88

"
54

W
L

su
b

tr
ee

92
.7

2±
0.

72
87

.2
4±

1.
36

87
.1

8±
5.

69
h

ei
gh

t:
1,

C
:3

.1
6e

+4
0.

33
"/

1.
56

"±
1.

07
"

41
.2

7"
55

85

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

Le
tt

er
-m

ed

C
o

m
m

o
n

w
al

k
39

.4
0±

0.
34

36
.5

3±
0.

72
36

.1
6±

2.
94

m
et

h
o

d
:g

eo
,γ

:0
.1

1,
C

:3
.1

6e
+6

95
.7

7"
/1

02
.2

0"
±6

.5
8"

37
74

12
.7

3"
56

M
ar

gi
n

al
iz

ed
7.

70
±0

.1
0

5.
59

±0
.6

0
5.

20
±0

.8
2

it
er

:4
,p

q
:0

.8
,C

:1
e+

10
75

.0
3"

/1
20

.9
4"
±6

0.
63

"
21

60
51

.8
9"

57

Sy
lv

es
te

r
eq

u
at

io
n

39
.1

4±
0.

31
36

.2
6±

0.
65

37
.2

7±
1.

93
λ

:0
.1

,C
:1

e+
6

13
.7

6"
/1

3.
63

"±
0.

50
"

29
83

2.
59

"
58

C
o

n
ju

ga
te

gr
ad

ie
n

t
98

.3
2±

0.
11

92
.7

3±
0.

32
93

.1
2±

1.
28

λ
:0

.1
,C

:1
e+

2
10

0.
80

"/
92

.3
5"
±4

.0
9"

32
81

.9
0"

59

F
ix

ed
-p

o
in

ti
te

ra
ti

o
n

s
97

.0
2±

0.
14

91
.4

5±
0.

37
91

.3
0±

1.
56

λ
:1

e-
4,

C
:1

e+
5

78
.4

5"
/7

0.
97

"±
7.

07
"

24
81

.7
8"

60

Sp
ec

tr
al

d
ec

o
m

p
o

si
ti

o
n

38
.4

4±
0.

41
36

.1
0±

1.
10

36
.3

8±
2.

61
λ

:0
.1

,C
:3

.1
6e

+6
56

.8
7"

/6
0.

19
"±

3.
24

"
27

30
8.

51
"

61

Sh
o

rt
es

tp
at

h
98

.9
6±

0.
07

93
.8

7±
0.

29
93

.7
2±

1.
12

C
:1

0
36

.9
8"

25
5.

48
"

62

St
ru

ct
u

ra
lS

P
99

.1
0±

0.
08

94
.8

4±
0.

23
94

.8
8±

1.
24

C
:1

0
41

.9
2"

25
7.

96
"

63

Pa
th

u
p

to
le

n
gt

h
h

49
.6

2±
0.

29
45

.7
3±

0.
71

43
.8

3±
2.

31
h

:9
,k

_f
u

n
c:

M
in

M
ax

,C
:1

e+
7

11
.9

8"
/1

2.
08

"±
0.

20
"

47
07

.1
7"

64

W
L

su
b

tr
ee

40
.8

2±
0.

34
36

.9
0±

0.
91

36
.1

3±
2.

70
h

ei
gh

t:
9,

C
:1

e+
4

17
8.

13
"/

10
4.

55
"±

60
.9

6"
40

47
.5

2"
65

E
n

zy
m

es

C
o

m
m

o
n

w
al

k
71

.8
6±

0.
94

42
.0

1±
1.

44
42

.8
1±

4.
66

m
et

h
o

d
:g

eo
,γ

:0
.0

3,
C

:1
e+

5
90

7.
43

"/
79

60
.3

4"
±3

24
6.

14
"

51
09

20
.7

8"
66

M
ar

gi
n

al
iz

ed
68

.5
2±

0.
78

45
.7

2±
1.

51
45

.9
2±

4.
79

it
er

:1
9,

p
q

:0
.1

,C
:1

e+
4

24
26

.7
7"

/1
51

3.
51

"±
74

3.
16

"
96

65
2.

44
"

67

Sy
lv

es
te

r
eq

u
at

io
n

27
.5

3±
0.

61
22

.8
3±

1.
19

23
.2

4±
4.

42
λ

:0
.0

1,
C

:3
.1

6e
+6

5.
19

"/
5.

20
"±

0.
05

"
10

19
.8

1"
68

C
o

n
ju

ga
te

gr
ad

ie
n

t
10

0.
00

±0
.0

0
61

.9
7±

1.
33

60
.8

9±
5.

62
λ

:1
e-

5,
C

:1
e+

6
41

6.
47

"/
41

8.
57

"±
4.

48
"

43
09

.1
3"

69

F
ix

ed
-p

o
in

ti
te

ra
ti

o
n

s
10

0.
00

±0
.0

0
61

.3
5±

0.
98

63
.1

1±
3.

83
λ

:1
e-

4,
C

:1
e+

5
74

1.
70

"/
61

0.
72

"±
10

2.
94

"
49

78
.3

6"
70

Sp
ec

tr
al

d
ec

o
m

p
o

si
ti

o
n

27
.0

9±
0.

72
23

.1
5±

1.
59

23
.6

8±
3.

87
λ

:0
.1

,C
:1

e+
8

49
39

.3
5"

/2
49

3.
84

"±
24

86
.7

4"
57

49
4.

36
"

71

Sh
o

rt
es

tp
at

h
10

0.
00

±0
.0

0
68

.8
6±

1.
91

70
.0

9±
4.

20
C

:1
e+

6
70

4.
54

"
71

7.
35

"
72

Pa
th

u
p

to
le

n
gt

h
h

10
0.

00
±0

.0
0

57
.5

3±
1.

53
57

.4
9±

5.
19

h
:1

0,
k_

fu
n

c:
M

in
M

ax
,C

:3
.1

6e
+2

91
1.

77
"/

14
2.

91
"±

27
9.

98
"

31
23

.3
0"

73

Tr
ee

le
t

99
.0

2±
0.

14
51

.1
7±

1.
53

52
.2

3±
3.

94
ke

rn
el

:p
o

ly
,d

:2
,c

:1
e+

10
,C

:3
.1

6e
+2

12
0.

15
"/

12
1.

08
"±

0.
71

"
16

57
6.

86
"

74

W
L

su
b

tr
ee

10
0.

00
±0

.0
0

51
.8

1±
1.

28
50

.7
6±

5.
98

h
ei

gh
t:

4,
C

:3
.1

6e
+2

19
.8

8"
/2

5.
70

"±
17

.7
6"

43
3.

76
"

75

C
o

m
m

o
n

w
al

k
95

.6
8±

0.
21

94
.6

2±
0.

28
94

.7
1±

1.
64

m
et

h
o

d
:g

eo
,γ

:0
.1

,C
:1

e+
2

67
4.

46
"/

67
3.

64
"±

1.
07

"
11

26
3.

51
"

76

Sy
lv

es
te

r
eq

u
at

io
n

92
.3

8±
0.

32
91

.9
6±

0.
36

92
.4

2±
1.

66
λ

:0
.1

,C
:3

.1
6e

+6
26

.0
4"

/2
3.

69
"±

0.
83

"
20

09
.4

6"
77

C
o

n
ju

ga
te

gr
ad

ie
n

t
99

.3
0±

0.
06

98
.7

8±
1.

05
98

.9
3±

0.
58

λ
:0

.0
1,

C
:3

.1
6e

+2
83

6.
96

"/
81

0.
79

"±
12

.7
8"

91
96

.2
9"

78

F
ix

ed
-p

o
in

ti
te

ra
ti

o
n

s
99

.2
9±

0.
06

98
.7

3±
0.

12
98

.5
7±

0.
61

λ
:1

e-
3,

C
:3

.1
6e

+3
12

26
.5

6"
/1

07
3.

06
"±

14
9.

68
"

94
98

.7
7"

79

Sp
ec

tr
al

d
ec

o
m

p
o

si
ti

o
n

87
.9

8±
0.

31
87

.7
9±

0.
39

87
.2

1±
2.

62
λ

:0
.1

,C
:3

.1
6e

+6
15

4.
16

"/
55

56
.7

4"
±5

54
2.

56
"

11
36

36
.6

2"
80

Sh
o

rt
es

tp
at

h
99

.9
1±

0.
02

99
.1

3±
0.

11
99

.2
6±

0.
55

C
:1

0
89

2.
26

"
99

4.
27

"
81

St
ru

ct
u

ra
lS

P
99

.8
0±

0.
03

98
.9

0±
0.

10
98

.8
4±

0.
63

C
:3

.1
6

80
21

.9
8"

81
25

.2
8"

82

Pa
th

u
p

to
le

n
gt

h
h

99
.7

0±
0.

04
99

.6
4±

0.
07

99
.6

5±
0.

40
h

:1
,k

_f
u

n
c:

M
in

M
ax

,C
:3

.1
6

5.
09

"/
38

.6
0"
±2

8.
42

"
28

26
.3

3"
83

Tr
ee

le
t

99
.9

2±
0.

03
99

.5
4±

0.
08

99
.5

4±
0.

36
ke

rn
el

:p
o

ly
,d

:1
c:

1e
+3

,C
:3

.1
6e

+
2

8.
27

"/
7.

46
"±

0.
49

"
56

92
.2

9"
84

A
ID

S

W
L

su
b

tr
ee

99
.9

7±
0.

02
98

.7
4±

0.
09

98
.6

3±
0.

67
h

ei
gh

t:
10

,C
:1

0
32

5.
07

"/
16

4.
66

"±
10

5.
33

"
26

57
.8

5"
85

Sy
lv

es
te

r
eq

u
at

io
n

60
.4

3±
0.

28
60

.3
0±

0.
32

59
.7

6±
2.

42
λ

:0
.0

1,
C

:3
.1

6e
+5

19
8.

94
"/

19
9.

35
"±

0.
60

"
80

93
.6

9"
86

C
o

n
ju

ga
te

gr
ad

ie
n

t
72

.9
7±

0.
26

70
.9

6±
0.

40
71

.3
4±

1.
85

λ
:0

.0
1,

C
:1

e+
6

10
66

9.
01

"/
90

50
.2

1"
±9

07
.1

1"
15

05
99

.4
4"

87

St
ru

ct
u

ra
lS

P
92

.7
5±

0.
13

80
.1

3±
3.

86
79

.8
8±

1.
71

C
:3

.1
6e

+2
13

28
48

.4
4"

13
54

83
.9

6"
88

Pa
th

u
p

to
le

n
gt

h
h

97
.8

6±
0.

09
84

.2
2±

0.
37

84
.8

4±
1.

79
h

:1
0,

k_
fu

n
c:

M
in

M
ax

,C
:3

.1
6

30
5.

64
"/

10
8.

88
"±

90
.9

7"
16

93
3.

64
"

89

Tr
ee

le
t

64
.9

6±
0.

38
64

.7
6±

0.
39

64
.8

4±
2.

16
ke

rn
el

:g
au

ss
ia

n
,γ

:1
e-

3,
C

:3
.1

6e
-2

30
.1

4"
/2

9.
95

"±
0.

27
"

70
62

.4
5"

90

N
C

I1

W
L

su
b

tr
ee

99
.5

9±
0.

04
85

.1
2±

0.
38

84
.6

3±
1.

58
h

ei
gh

t:
8,

C
:1

0
17

05
.2

0"
/1

03
9.

54
"±

72
2.

29
"

17
48

4.
36

"
91

86

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

Sy
lv

es
te

r
eq

u
at

io
n

60
.3

0±
0.

39
60

.1
3±

0.
45

60
.6

2±
1.

95
λ

:0
.0

1,
C

:1
e+

5
20

1.
48

"/
20

1.
52

"±
0.

11
"

81
79

.1
5"

92

C
o

n
ju

ga
te

gr
ad

ie
n

t
68

.1
9±

0.
39

67
.0

3±
0.

56
67

.6
0±

1.
93

λ
:1

e-
3,

C
:3

.1
6e

+6
35

10
0.

94
"/

23
71

0.
66

"±
81

41
.4

8"
19

58
76

.9
6"

93

F
ix

ed
-p

o
in

ti
te

ra
ti

o
n

s
68

.1
9±

0.
26

67
.1

6±
0.

36
67

.2
5±

2.
05

λ
:1

e-
3,

C
:1

e+
9

35
19

8.
13

"/
23

88
0.

69
"±

83
03

.1
6"

19
71

93
.9

8"
94

St
ru

ct
u

ra
lS

P
89

.1
6±

0.
21

78
.8

9±
0.

40
79

.0
4±

1.
80

C
:1

0
13

45
39

.5
9"

14
18

44
.2

2"
95

Pa
th

u
p

to
le

n
gt

h
h

97
.9

7±
0.

08
83

.7
7±

0.
26

83
.9

4±
1.

40
h

:1
0,

k_
fu

n
c:

M
in

M
ax

,C
:3

.1
6

31
1.

85
"/

11
1.

22
"±

92
.8

4"
17

26
1.

64
"

96

Tr
ee

le
t

64
.3

7±
0.

23
64

.3
1±

0.
23

63
.4

6±
2.

06
ke

rn
el

:g
au

ss
ia

n
,γ

:1
e-

3,
C

:1
e-

2
30

.1
9"

/2
9.

86
"±

0.
25

"
70

64
.0

0"
97

N
C

I1
09

W
L

su
b

tr
ee

99
.4

1±
0.

05
85

.1
4±

0.
30

85
.4

7±
1.

58
h

ei
gh

t:
7,

C
:1

0
14

41
.5

8/
10

18
.6

7"
±7

09
.7

3"
17

30
8.

16
"

98

Pa
th

u
p

to
le

n
gt

h
h

10
0.

00
±0

.0
0

80
.9

2±
0.

58
81

.4
0±

3.
68

h
:2

,k
_f

u
n

c:
M

in
M

ax
,C

:1
e+

2
19

2.
11

"/
47

2.
38

"±
63

8.
44

"
15

60
.7

0"
99

D
D

W
L

su
b

tr
ee

10
0.

00
±0

.0
0

79
.3

6±
0.

52
77

.3
0±

3.
76

h
ei

gh
t:

6,
C

:1
e+

3
10

62
.8

9"
/8

86
.1

6"
±8

3.
81

"
10

14
3.

36
"

10
0

Sa
m

e
le

ge
n

d
s

as
Ta

b
le

3.
4.

Fo
r

th
e

la
rg

e-
sc

al
e

d
at

as
et

s,
gr

ap
h

ke
rn

el
s

ar
e

n
eg

le
ct

ed
if

th
ei

r
ti

m
e

o
r

m
em

o
ry

co
n

su
m

p
ti

o
n

is
m

u
ch

h
ig

h
er

th
an

o
th

er
ke

rn
el

s.

87

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

Table 3.6 – Accuracy achieved by graph kernels, in terms of regression error (the upper table)
and classification rate (the lower table) estimated on the test set. The red color indicates the
worst results and dark green the best ones. Gray cells with the “inf” marker indicate that the
computation of the graph kernel on the dataset is omitted due to much higher consumption
of computational resources than other kernels.

co
m

m
on

 w
al

k

m
ar

gi
na

liz
ed

Sy
lv

es
te

r
eq

ua
ti
on

co
nj

ug
at

e
gr

ad
ie

nt

fix
ed

-p
oi
nt
 it
er
at
io
ns

sp
ec
tr
al
 d
ec
om

po
si
ti
on

sh
or
te
st
 p
at
h

st
ru
ct
ur
al
 S
P

pa
th
 u
p
to
 le

ng
th
 h

tr
ee

le
t

W
L
su
bt
re
e

Alkane 15.52 43.75 8.97 11.13 12.78 12.95 7.81 8.65 9.0 2.53 26.42

Acyclic 12.93 18.77 32.5 13.15 14.2 33.05 9.03 13.1 6.66 5.99 19.8

MAO 93.0 85.62 84.52 88.57 73.71 77.67 87.81 91.62 85.43 91.19 93.05

PAH 71.8 57.67 71.5 73.93 58.33 70.73 69.4 74.5 75.27 66.3 75.93

Mutag 85.96 76.11 82.77 86.18 86.58 84.05 81.84 86.26 88.47 90.79 87.18

Letter-med 36.16 5.2 37.27 93.12 91.3 36.38 93.72 94.88 43.83 inf 36.13

Enzymes 42.81 45.92 23.24 60.89 63.11 23.68 70.09 inf 57.49 52.23 50.76

AIDS 94.71 inf 92.42 98.93 98.57 87.21 99.26 98.84 99.65 99.54 98.63

NCI1 inf inf 59.76 71.34 inf inf inf 79.88 84.84 64.84 84.63

NCI109 inf inf 60.62 67.6 67.25 inf inf 79.04 83.94 63.46 85.47

D&D inf inf inf inf inf inf inf inf 81.4 inf 77.3

The overall performance

Table 3.6 provides an outline of the accuracies achieved by the aforementioned

graph kernels as given in terms of test performance in Tables 3.4 and 3.5. Each row

corresponds to a dataset and each column to a graph kernel. All kernels achieve bet-

ter results compared with random assignment. It can be seen that, generally speak-

ing, graph kernels based on paths have better accuracy than those based on walks

for both regression and classification tasks, proving that the application of walk pat-

terns are constrained by their common shortcomings, such as tottering and halting.

Moreover, due to their mathematical structures, the common walk kernel and the

marginalized kernel are two of the slowest to compute. For relatively large datasets,

such as Enzymes, the average time to compute Gram matrices for these two kernels

are more than 60 times slower than the fastest kernels. For even larger datasets,

88

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

such as NCI1, NCI109, and DD, these two kernels are ignored in our experiments

due to their expensive time complexity. As a result, these two kernels are not rec-

ommended to be applied in real tasks, but can still be considered as baselines to

test the performance of newly constructed kernels.

Among other kernels based on walks, the Sylvester equation kernel and the spec-

tral decomposition kernel cannot tackle any labeling information. On unlabeled

graphs, such as Alkane and PAH, accuracies that they provide are noteworthy; how-

ever, under other circumstances, the conjugate gradient kernel and the fixed-point

kernel may offer better accuracies. The latter two kernels are able to tackle symbolic

and non-symbolic labels on both vertices and edges; therefore, they are among the

best kernels based on walks with respect to accuracy on all considered datasets.

Their accuracies are sometimes competitive with those of kernels based on paths,

such as on MUTAG and Letter-med datasets.

Among kernels based on paths, the shortest path kernel and the structural short-

est path kernel provide the ability to tackle symbolic and non-symbolic labels. The

latter takes better structure information into consideration than the former one;

thus, it yields higher accuracy on most datasets while requiring much more com-

putational resources. The path kernel up to length h is capable of tackling symbolic

labels only, where it offers the best accuracy in most cases. More importantly, due

to its relatively low computational complexity, it is possible to apply this kernel to

large datasets, such as DD whose average number of vertices is 284.32.

Additionally, the performance of two well-known graph kernels based on non-

linear patterns, namely the treelet kernel and the WL subtree kernel are exhibited.

Several graph kernels based on linear patterns, especially paths, provide compet-

itive or even higher accuracies than these two kernels. On the MAO dataset, the

common walk kernel achieves 93% accuracy (Table 3.5, Line 1), which is compa-

rable to the accuracy of the WL subtree kernel (93.05%, Table 3.5, Line 11) and is

higher than that of the treelet kernel (91.19%, Table 3.5, Line 10). The shortest path

kernel achieves the highest accuracy on dataset Enzymes (70.09%, Table 3.5, Line

49), which is about 20% higher than the treelet kernel and the WL subtree kernel

(Table 3.5, Lines 51 and 52). The structural shortest path kernel has the equivalent

accuracy as the WL subtree kernel on PAH (Table 3.5, Lines 19 and 22). The path ker-

nel up to length h achieves equivalent or higher accuracy with runtime comparable

to or lower than kernels based on non-linear patterns, on the datasets Acyclic, PAH,

MUTAG, Enzymes, as well as larger datasets such as AIDS, NCI1, NCI109 and DD. On

89

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

Table 3.7 – Time used to compute Gram matrices of graph kernels (in log10 of seconds).
Same color legends as Table 3.6 are used.

co
m

m
on

 w
al

k

m
ar

gi
na

liz
ed

Sy
lv

es
te

r
eq

ua
ti
on

co
nj

ug
at

e
gr

ad
ie

nt

fix
ed

-p
oi
nt
 it
er
at
io
ns

sp
ec
tr
al
 d
ec
om

po
si
ti
on

sh
or
te
st
 p
at
h

st
ru
ct
ur
al
 S
P

pa
th
 u
p
to
 le

ng
th
 h

tr
ee

le
t

W
L
su
bt
re
e

Alkane 0.48 0.51 -0.42 -0.18 -0.22 -0.19 -0.12 0.02 -0.29 -0.3 0.16

Acyclic 0.36 0.62 -0.18 -0.04 -0.11 -0.1 -0.08 0.24 -0.3 -0.31 0.34

MAO 0.81 0.69 -0.47 -0.11 -0.03 0.14 0.25 0.88 -0.14 -0.28 -0.25

PAH 1.56 1.05 -0.42 0.14 0.25 0.37 0.36 1.32 -0.28 -0.24 -0.03

Mutag 1.28 1.36 -0.3 0.44 0.53 0.77 0.69 1.84 -0.07 -0.24 0.19

Letter-med 2.01 2.08 1.13 1.97 1.85 1.78 1.57 1.62 1.08 inf 2.02

Enzymes 3.9 3.18 0.72 2.62 2.79 3.4 2.85 inf 2.16 2.08 1.41

AIDS 2.83 inf 1.37 2.91 3.03 3.74 2.95 3.9 1.59 0.87 2.22

NCI1 inf inf 2.3 3.96 inf inf inf 5.12 2.04 1.48 3.02

NCI109 inf inf 2.3 4.37 4.38 inf inf 5.13 2.05 1.48 1.48

D&D inf inf inf inf inf inf inf inf 2.67 inf 2.95

the AIDS dataset, all exhibited kernels have comparable accuracies (Table 3.5, Lines

53 to 57).

The treelet kernel and the WL subtree kernel are not able to tackle non-symbolic

labels. More recent work is able to tackle this problem (a collection of these im-

provements are introduced in Section 3.5.2), which may affect the performance

of these kernels on datasets such as Letter-med, Enzymes, and AIDS. However, on

other datasets that do not contain non-symbolic labels, the performance remains

the same, and the aforementioned analyses still stand.

Besides accuracy, we furthermore examined the computational complexity of

each kernel. Table 3.7 displays the time consumed to compute the Gram matrix of

each kernel on each dataset. The results are consistent with the time complexities

for graph kernels. In most cases, the computation is efficient and it takes seconds or

minutes to compute the whole Gram matrix. On the largest dataset (i.e., DD, which

contains 1178 graphs with 284 vertices and 715 edges per graph on average), two

graph kernels can still be computed in tolerable time. For example, the path kernel

up to length h can be computed within 8 minutes on DD, which benefits from not

90

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

0.0 0.2 0.4 0.6 0.8 1.0
accuracy(%)

0.0

0.2

0.4

0.6

0.8

1.0
pa

irs
 o

f g
ra

ph
s p

ro
ce

ss
ed

 in
 1

s

0 25 50 75 100
101

102

103

104

105

106 (a) All performance

70 75 80 85 90
102

103

104

105

106 (b) Average performance

common walk
marginalized
Sylvester equation
conjugate gradient

fixed-point
spectral decomposition
shortest path
structural SP

path up to length h
treelet
WL subtree

Figure 3.19 – Comparison of computational complexity versus accuracy of all graph kernels
on all datasets (a), as well as the average performance of each kernel over all datasets (b).
Markers correspond to different kernels; Colors blue, green, and red depict graph kernels
based on walks, paths, and non-linear patterns, respectively.

only its relatively lower time complexity, but also the trie structure applied to it (see

Section 3.6.3). Notice that it takes too much time to compute some graph kernels

on some large datasets. For instance, the time complexity for the common walk

kernel is in O (n6) per pair of graphs. To this end, it is irrational to apply this kernel

on graphs with large amounts of vertices.

The joint performance of the computational complexity and accuracy of each

graph kernel on each classification dataset is shown in Figure 3.19. Performances

that cannot be acquired in reasonable time are omitted. In Figure 3.19(b), the per-

formance of each kernel is averaged on at least 5 datasets. Note that for datasets

Letter-med and Enzymes, kernels that cannot tackle non-symbolic labels are omit-

ted. We provide general conclusions on these graph kernels. From a global view-

point, all kernels provide good accuracy on all datasets. We can see that the

marginalized kernel has the worst accuracy, with some regular computational time.

The structural shortest path kernel provides the best accuracy in general, the price

to pay being its computational complexity. The Sylvester equation kernel, the spec-

tral decomposition kernel, and the path kernel up to length h have a good compro-

91

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

mise between time complexity and accuracy. Kernels based on non-linear patterns

are among the best trade-offs; meanwhile, the Sylvester kernel, the conjugate gra-

dient kernel, the shortest path kernel, and the path kernel up to length h achieve

competitive or better trade-offs. Along with the preceding analyses, these facts

prove that these kernels can be reliable for classification and regression problems

on graphs, as well as qualified benchmark kernels for future graph kernels design.

Figure 3.19 provides a helpful guidance to find the best trade-offs for each kernel.

Based on this analysis, before choosing a graph kernel, one can have a rough expec-

tation of its performances.

We then further analyze these kernels based on different types and characteris-

tics of datasets.

Labeled and unlabeled graphs

To study the influence of labeling on the performance of graph kernels, we examine

3 datasets that have similar properties (e.g. n̄, m̄ and d in Table 2.2), except for

labeling: PAH is unlabeled, MAO has 3 symbolic vertex labels and 4 symbolic edge

labels, and MUTAG has 7 symbolic vertex labels and 11 symbolic edge labels.

Figure 3.20 exhibits the accuracy of each kernel and the average time to compute

each kernel between a pair of graphs. We can see that for almost all kernels, the

classification accuracies on dataset PAH are significantly lower and the confidence

intervals around them are wider than the other two datasets, as PAH contains no

labeling information. On each dataset, accuracies of kernels based on walks, paths,

and non-linear patterns are competitive. Meanwhile, the second figure exhibits the

influence of graph structures on time complexity. Take the common walk kernel for

instance, whose time complexity is in O (n6), the runtime is the shortest on MUTAG

and the longest on PAH due to the different average number of graph vertices of

each graph. The runtime for each dataset is also consistent with the time complexity

for each kernel in Table 3.1. The Sylvester equation kernel and the path kernel up

to length h have competitive speed with kernels based on non-linear patterns with

equivalent accuracies.

Graphs with symbolic and non-symbolic labels

Non-symbolic labels are able to introduce continuous attributes to graphs. Among

all graph kernels, the shortest path kernel is able to tackle symbolic and non-

92

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

PAH MAO MUTAG
0

20

40

60

80

100

ac
cu
ra
cy
(%

)

Accuracy

PAH MAO MUTAG
datasets

10−4

10−3

10−2

Ru
nt

im
e(
s)

 p
er

 p
ai

r o
f g

ra
ph

s

Runtime

common walk
marginalized
Sylvester equation
conjugate gradient

fixed-point iterations
spectral decomposition
shortest path
structural sp

path up to length h
treelet
WL subtree

Figure 3.20 – Comparison of accuracy and runtime of all kernels on unlabeled (PAH) and
labeled datasets (MAO, MUTAG). Accuracy is the mean value on 30 trials (pillars), with con-
fidence intervals around it (error bars).

symbolic vertex labels, whereas the conjugate gradient kernel, the fixed-point ker-

nel, and the structural shortest path kernel can deal with both non-symbolic labels

of vertices and edges. In available datasets, Letter-med and Enzymes contain non-

symbolic vertex labels. We compute accuracy and time complexity of each afore-

mentioned kernel on these 2 datasets, then we remove the non-symbolic labels from

the datasets and compute the performance again.

Figure 3.21 shows that, with non-symbolic labels, the classification accuracy of

all kernels exceeds 90% on dataset Letter-med, and more than 60% on dataset En-

zymes; these accuracies drop to about 35% when non-symbolic labels are removed,

which are still better than random assignments because of the large numbers of

93

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

all labels symbolic labels only
0

20

40

60

80

100

ac
cu
ra
cy
(%

)

Accuracy

all labels symbolic labels only
labels

10(5

10(4

10(3

10(2

Ru
nt
im
e(
s)

er

ai
r o

f g
ra
 h
s

Runtime

conjugate gradient, Letter-med
fixed-point iterations, Letter-med
shortest path, Letter-med
structural sp, Letter-med

conjugate gradient, Enzymes
fixed-point iterations, Enzymes
shortest path, Enzymes
structural sp, Enzymes

Figure 3.21 – Comparison of accuracy and runtime of graph kernels on datasets with and
without non-symbolic labels. The last pillar was removed due to its high computational
time.

competing classes (15 and 6, respectively). It reveals how these graph kernels can

take advantage of non-symbolic labels, which carry out essential information of

dataset structures. This consequence is corroborated by the results revealed in Ta-

ble 3.5 and Table 3.6 where graph kernels that cannot tackle non-symbolic labels

work poorly on Letter-med and Enzymes, such as the common walk kernel and the

marginalized kernel.

As a result, non-symbolic labels should always be well examined before design-

ing graph kernels. When only linear patterns are included, the shortest path kernel,

the conjugate gradient kernel, the fixed-point kernel, and the structural shortest

path kernel would be the first to consider.

We then split datasets of classification tasks in Table 2.2 into 2 groups: graphs

containing non-symbolic labels (including Letter-med, Enzymes, AIDS) and those

94

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

0.0 0.2 0.4 0.6 0.8 1.0
accuracy(%)

0.0

0.2

0.4

0.6

0.8

1.0
pa
irs
 o
f g
ra
ph
s p
ro
ce
ss
ed
 in
 1
s

0 25 50 75 100
101

102

103

104

105

106
Contain non-symbolic labels

0 25 50 75 100
101

102

103

104

105

106
Symbolic labels only

common walk
marginalized
Sylvester equation
conjugate gradient

fixed-point
spectral decomposition
shortest path
structural SP

path up to length h
treelet
WL subtree

Figure 3.22 – Comparison of computational complexity versus accuracies of all graph ker-
nels on graphs with and without non-symbolic labels. Markers correspond to different ker-
nels; Colors blue, green, and red depict graph kernels based on walks, paths, and non-linear
patterns, respectively.

with only symbolic labels (including all the rests). Figure 3.22 exhibits the time

complexity and classification accuracies of all kernels on each type of datasets.

On datasets that contain non-symbolic labels, the conjugate gradient kernel, the

fixed-point kernel, the shortest path kernel, and the structural shortest path kernel

yield higher accuracy, except on AIDS, where all kernels achieve high accuracy. On

datasets without non-symbolic labels, the performance of each kernel varies with

respect to datasets. No kernel dominates all others on all datasets. Other properties

of datasets should be taken into consideration under this circumstance.

Graphs with different average vertex numbers

The average vertex number of a graph dataset largely influences the time complexity

of computing graph kernels. To examine it, we choose 3 datasets with a relatively

wide range of vertex numbers, namely PAH, MUTAG and Enzymes, corresponding

to unlabeled, symbolic labeled, and non-symbolic labeled graphs, respectively. For

each dataset, we order the graphs according to the vertex number, and then split

them into 5 subsets with different average vertex numbers.

Figures 3.23(a)(b)(c) show the evolution in the runtime to compute Gram matri-

ces with the growth of average vertex numbers. The runtimes of the common walk

95

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0
ru
nt
im

e(
s)
 p
er
 p
ai
r o

f g
ra
ph

s

18 20 22
average vertex number

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150
(a) PAH

12.5 15.0 17.5 20.0 22.5
ave(age ve(te. numbe(

1013

1012

(b) MUTAG

20 30 40 50
ave(age ve(te. numbe(

1014

1013

1012

1011

100

101
(c) En0yme)

3.25 3.50 3.75 4.00 4.25 4.50
ave(age ve(te. deg(ee

1014

1013

1012

1011

100

101
(d) En0yme) - average vertex degree

common walk
marginalized
Sylvester equation

conjugate gradient
fixed-point iterations
Spectral decomposition

shortest path
structural sp
path up to length h

Figure 3.23 – Comparison of the runtime of each kernel on datasets with different average
vertex numbers and average vertex degrees.

kernel and the structural shortest path kernel grow the fastest, the runtimes of the

Sylvester equation kernel and the path kernel up to length h remain relatively stable,

while the increase rates of runtimes for other kernels are in the middle. This result

is consistent with the time complexity of computing the Gram matrix of each ker-

nel, where average vertex numbers to different powers are involved (see Table 3.1).

However, the time complexity is affected by other factors, such as average vertex

degrees, which causes fluctuations and decreases to the runtime as the average ver-

tex numbers grow. This phenomenon is more observable for small datasets with a

narrower range of vertex numbers, such as PAH shown in Figure 3.23(a).

According to the average graph vertex numbers n̄, datasets that concern clas-

sification tasks in Table 2.2 can be classified into small graphs (including Letter-

med), big graphs (including DD), and medium graphs (including all the rests). Fig-

ures 3.24(a)(b)(c) exhibit the computational time and the classification accuracy of

each kernel on these datasets. For small datasets (Letter-med), the kernels based on

96

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

0.0 0.2 0.4 0.6 0.8 1.0
accuracy(%)

0.0

0.2

0.4

0.6

0.8

1.0

pa
irs

 o
f g

ra
ph

s p
ro

ce
ss

ed
 in

 1
s

0 25 50 75 100
101

102

103

104

105

106 (a) Small graphs

0 25 50 75 100
101

102

103

104

105

106 (b) Medium graphs

0 25 50 75 100
101

102

103

104

105

106 (c) Big graphs

70 75 80 85 90
102

103

104

105

106 (d) Average performance

common walk
marginalized
Sylvester equation
conjugate gradient

fixed-point
spectral decomposition
shortest path
structural SP

path up to length h
treelet
WL subtree

Figure 3.24 – Comparison of computational complexity versus accuracies of all graph ker-
nels on small (a), medium (b), and big (c) datasets. Markers correspond to different kernels;
Colors blue, green, and red depict graph kernels based on walks, paths, and non-linear pat-
terns, respectively.

shortest paths, the conjugate gradient kernel, and the fixed-point kernel achieve

the best compromise between computational complexity and accuracy. Kernels

based on non-linear patterns are omitted as they are not suitable for the Letter-med

dataset (Figure 3.24(a)). As sizes of graphs grow, kernels based on walks, paths, and

non-linear patterns may all strike good trade-offs between computational complex-

ity and accuracy for certain datasets (Figure 3.24(b)). Accuracies of the latter two

groups of kernels are higher in general. On the big dataset DD, the path kernel up to

length h performs better than the WL subtree kernel (Figure 3.24(c)).

97

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

Graphs with different average vertex degrees

As vertex number, vertex degree plays an important role in time complexity of com-

puting graph kernels. Large vertex degrees indicate “dense” graphs where more

edges and connections exist, leading to a much larger number of linear patterns in-

side graphs, such as walks and paths, and more time to explore them. Applying the

same method as in Section 3.7.2, we choose a dataset with a relatively wide range of

vertex degrees, namely Enzymes, order it based on the vertex degree, and split it into

5 subsets. Figure 3.23(d) reveals the relationship between the runtime to compute

the graph kernel and the average vertex degree of each subset.

One can find from Table 3.1 that the time complexity of only two kernels based

on linear patterns is directly affected by the average vertex degrees m: the structural

shortest path kernel and the path kernel up to length h. As a result, Figure 3.23(d)

shows that the runtime of the path kernel up to length h increases as the average

vertex degree grows. Runtimes of most of the other kernels, however, are high for

the first subset (i.e., with the smallest average vertex degree of m = 3.2), and stays

stable afterwards. Other than the average vertex degree of each subset, this runtime

is mainly influenced by the average vertex number, which is much bigger for the

first subset than the others.

These experiments once again reveal the fact that, in practice, graph kernels

based on linear patterns can achieve high performance on graphs containing lin-

ear and non-linear sub-structures compared to graph kernels based on non-linear

patterns, even though these kernels were not specifically designed for the latter

structures. In conclusion, these linear pattern kernels are worth investigating for

any dataset. Structures and properties of datasets should be carefully inspected for

choosing the proper graph kernels.

3.8 Conclusion

In this chapter, an extensive analysis of graph kernels based on linear patterns was

performed. Although graph kernels based on linear patterns have been designed for

linear structures, they were applied with success on datasets containing non-linear

structures. We examined the influence of several factors, such as labeling, average

vertex numbers, and average vertex degrees on the performance of graph kernels.

We found the following observations. All kernels work on graphs with symbolic ver-

98

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

tex labels, while some kernels, such as the marginalized kernel, tend to fail to cap-

ture structure information of graphs when labels are absent. On the other hand,

the existence of symbolic labels matters as well. The conjugate gradient kernel, the

fixed-point kernel, the shortest path kernel, and the structural shortest path ker-

nel, possess the ability to tackle non-symbolic labels, while the other kernels hold

no such ability and thus are strongly discouraged when considering graphs with-

out symbolic labels. A special notice is that the shortest path kernel can only tackle

vertex labels.

The computational complexity – a major issue in designing and working with

graph kernels – was extensively addressed in this chapter. We proposed three strate-

gies to accelerate the computation of graph kernels. The average vertex numbers

and average vertex degrees restrict kernels’ scalability. The time complexity of all

kernels is polynomial to the average vertex numbers, with the common walk kernel

being the worst one, and thus it should be avoided for large-scale datasets. Average

vertex degrees had a trivial influence on the time complexity, which remained low

on all datasets.

Finally, we can conclude that, in general, many graph kernels based on linear

patterns achieved competitive accuracy compared to the ones based on non-linear

patterns with tolerable time complexity, where those based on paths were generally

better than the ones based on walks. Work conducted in this chapter builds the

foundation for the graph pre-image problem.

99

CHAPTER 3. GRAPH KERNELS BASED ON SUB-PATTERNS

100

Chapter 4

Stability and metric learning of graph

edit distances

Contents

4.1 Overview . 102

4.2 Graph edit distances heuristics . 105

4.2.1 The LSAPE-GED paradigm . 105

4.2.2 The LS-GED paradigm . 107

4.3 Stability of GED heuristics . 110

4.4 A metric learning approach to graph edit costs for regression . . . 113

4.4.1 Related work . 113

4.4.2 Problem formulation . 115

4.4.3 Learning the edit costs . 117

4.4.4 Experiments . 119

4.5 Conclusion and future work . 123

101

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

4.1 Overview

Graphs provide a flexible representation framework to encode relationships be-

tween elements. However, graph spaces cannot be endowed with the mathematical

tools and properties associated with Euclidean spaces. This issue prevents the

use of classical machine learning methods mainly designed to operate on vec-

tor representations. To learn models on graphs, several approaches have been

designed to leverage this flaw and among these, we can cite graph embedding

strategy [Goyal and Ferrara, 2018, Cai et al., 2018, Gibert et al., 2012], graph ker-

nels [Borgwardt et al., 2020, Kriege et al., 2020, Ghosh et al., 2018, Kriege et al., 2017,

Gaüzère et al., 2015a, Gärtner, 2003b] and more recently graph neural net-

works [Wu et al., 2020, Zhang et al., 2020, Zhou et al., 2018a, Bronstein et al., 2017,

Balcilar et al., 2021]. Despite their state-of-the-art performances, they seldom op-

erate directly in a graph space, hence reducing the interpretability of the underlying

operations.

To overcome these issues, one needs to preserve the properties of a graph space.

For this purpose, one needs to define a dissimilarity measure or a metric in the

graph space, in order to constitute the minimal requirement to implement simple

machine learning algorithms like the k-nearest neighbors (see Section 1.2.2 for de-

tails). One of the most used dissimilarity measures between graphs is the graph edit

distance (GED) [Bunke and Allermann, 1983, Sanfeliu and Fu, 1983]. As described

in Section 2.3, the GED of two graphs G1 and G2 is the minimal amount of distor-

tion required to transform G1 into G2. This distortion is encoded by a set of edit

operations whose sequence constitutes an edit path. These edit operations include

vertex and edge substitutions (vs and es), removals (vr and er), and insertions (vi

and ei), as shown in Figure 4.1. Depending on the context, each edit operation e

included in an edit path γ is associated with a non-negative cost c(e). The sum of all

edit operation costs included within the edit path defines the cost associated with

this edit path. The minimal cost among all edit paths defines the GED between G1

and G2, namely

ged(G1,G2) = min
γ∈Γ(G1,G2)

C(γ). (4.1)

Therefore, the GED is null when comparing two isomorphic graphs. This situation

relates to an exact graph matching.

Evaluating GED is computationally costly. Even for uniform edit costs,

this computation problem is NP-hard [Zeng et al., 2009]. Thus, it cannot

102

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

C

B
A

A

C

B
A

A D

C

B

A D D

C

B

D

D

C

B

D D

C

B

D D

C

B

D

Figure 4.1 – An illustration of graph edit operations.

be done in practice for graphs having more than 12 vertices in the gen-

eral case [Neuhaus et al., 2006]. To avoid this computational burden, strate-

gies to approximate GED in a limited computational time have been pro-

posed [Abu-Aisheh et al., 2017, Blumenthal et al., 2020] with acceptable classifica-

tion or regression performances. Of particular interest are the two famous methods,

bipartite [Riesen, 2015] and IPFP [Bougleux et al., 2016], where upper and lower

bounds are estimated as an approximation of GED. The computation of the bounds

relies highly on the design of the algorithm, as well as the randomness during the

procedure, which leads to a reduction of stability. In this thesis, we define the insta-

bility of a GED heuristic in terms of the variability of the GED approximations over

repeated trials; see Section 4.3 for details. Methods that can potentially alleviate

this problem are proposed. For instance, by carrying out several local searches in

parallel, the multi-start counterparts of bipartite and IPFP, named mbipartite

and mIPFP respectively, may acquire better approximation with higher stability

[Daller et al., 2018]. Description and analyses of these approximations and the root

of randomness are presented in Section 4.3.

An essential ingredient of GED is the underlying edit cost function c(e), which

quantifies the distortion carried by any edit operation e. The values of the edit costs

for each edit operation have a major impact on the computation of GED and its

performance, including its stability. Thus, the cost edit function may be different

depending on the data encoded by the graph and the one as the target of the task.

Generally, they are fixed a priori by an expert of the domain, and are provided with

the datasets.

However, these predefined costs are not optimal for all tasks, in the same

spirit as the no free lunch theorem for machine learning and statistical inference

[Wolpert and Macready, 1997]. Moreover, these costs may greatly influence both the

103

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

task performance and the computational time required to compute the graph edit

distance. In [Bunke, 1999], the authors show that a particular set of edit costs may

reduce the problem of computing graph edit distance to well-known problems in

graphs like (sub)graph isomorphism or finding the maximum common subgraph of

a pair of graphs. In [Abu-Aisheh et al., 2017], the authors evaluate the influence of

different cost settings for different methods. These points show again the impor-

tance of the underlying cost function when computing a graph edit distance.

It is interesting to challenge the costs given by experts. By adapting costs accord-

ing to some given targets, the GED between graphs may be changed. The optimiza-

tion of this metric furthermore relates to a graph space tuning based on the infor-

mation of the target space. For a prediction task, this target space may be founded

on a metric measure between target values; while in terms of pre-image problem,

the target space is constructed by graph kernels. Thus, a metric learning framework

can be applied to connecting the GED space and either of the latter two spaces.

In this chapter, we propose a simple strategy to optimize edit costs according

to a particular prediction task, and thus avoid the use of predefined costs. The

idea is to align the metric in the graph space (namely, the GED) to the predic-

tion space. While the concept of aligning the metric to the target space has been

largely used in machine learning (e.g. with the so-called kernel-target alignment

[Cristianini et al., 2002]), this is the first time that such a line of attack is investigated

to estimate the optimal edit costs. With a distance-preserving principle, we provide

a simple linear optimization procedure to optimize a set of constant edit costs. The

edit costs resulting from the optimization procedure can then be analyzed to un-

derstand how the graph space is structured. The relevance of the proposed method

is demonstrated on two regression tasks, showing that the optimized costs lead to a

prediction error lower than the random and expert costs.

The remaining part of the chapter is organized as follows. Section 4.2 introduces

widely used GED heuristic paradigms. Section 4.3 examines the stability of these

heuristics and ensures the necessary parameter choices to compute them. Then,

Section 4.4 presents a metric learning approach to graph edit costs for regression,

providing the state of the art, the problem formulation, the proposed optimization

method, and the results from conducted experiments. Finally, we conclude and

open perspectives on this work, as well as its prospective usage in the graph pre-

image problem. For the sake of conciseness, we restrict to undirected graphs in this

chapter unless otherwise specified.

104

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

4.2 Graph edit distances heuristics

Over the years, many heuristics have been proposed to approximate the GED. The

authors of [Blumenthal et al., 2020] categorize these heuristics according to their

underlying paradigms. The first paradigm is based on transforming the compu-

tation to a linear sum assignment problem with error correction (LSAPE-GED) de-

rived from [Bunke, 1999], where the famous bipartite method lies. The second

paradigm is based on local search (LS-GED), which includes the instantiation IPFP.

The third one is based on linear programming (LP-GED) and other heuristics are

categorized as miscellaneous. As milestones and baselines to many other meth-

ods, both bipartite and IPFP achieve high performance [Abu-Aisheh et al., 2017].

Thereby, in the following sections, we focus on these two heuristics and the related

paradigms, provide a novel formalism to introduce our method, and conduct anal-

yses and experiments to evaluate its relevance.

4.2.1 The LSAPE-GED paradigm

GED can be approximated by solving a linear sum assignment problem with edi-

tion or error correction (LSAPE). For any two sets V1 and V2, consider a transforma-

tion from V1 to V2, with elementary operations on each element i ∈ V1: substitu-

tion (i → j), insertion (ε→ j), and removal (i → ε), where j ∈ V2 and ε represents

a dummy element. An assignment with edition, also known as the ε-assignment

[Bougleux and Brun, 2016], is a bijection between set Vε
1 = V1 ∪ {ε} and set Vε

2 =
V2 ∪ {ε} relaxed on ε, namely π : Vε

1 → Vε
2 where |π(i)| = 1 for any i ∈ V1, |π−1(j)| = 1

for any j ∈ V2, and π(ε) = ε. We denote the set of all possible ε-assignments from Vε
1

to Vε
2 as Π(V1,V2).

Each elementary operation in an ε-assignment π can be associated with a non-

negative cost c. Consequently, a cost C is associated with π, namely

C(π) = ∑
i∈V1
π(i)= j

c(i , j)+ ∑
j∈V2

π−1(j)=ε

c(ε, j)+ ∑
i∈V1
π(i)=ε

c(i ,ε), (4.2)

where each term on the right side successively represents substitutions, insertions,

and removals. The costs of all operations induced by π can be represented by a

matrix C ∈R(|V1|+1)×(|V2|+1). LSAPE aims at minimizing this cost over allπ ∈Π, namely

105

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

finding

C?(π?) = min
π∈Π(V1,V2)

C(π). (4.3)

We denote the set of all optimal solutions as Π?(V1,V2). Variants of the Hungar-

ian algorithm have been used to acquire an optimal solution of (4.3) [Kuhn, 1955,

Munkres, 1957], with a time complexity of O (min{|V1|, |V2|}2 max{|V1|, |V2|}) and

space complexity of O (|V1||V2|) [Bougleux et al., 2020].

The GED between two graphs G1 = (V1,E1) and G2 = (V2,E2) can be approxi-

mated by solving an LSAPE between vertex sets V1 and V2. Each row and column

in the cost matrix C respectively correspond to a vertex in V1 and V2, each en-

try π?(G1,G2) = π?(V1,V2) ∈ Π?(G1,G2) represents a optimal feasible transforma-

tion from G1 to G2 as in (4.16), and the optimal cost C? in (4.3) corresponds to

the approximation of GED. This paradigm, named LSAPE-GED, is presented in Al-

gorithm 4.1 [Blumenthal et al., 2020].

Algorithm 4.1 Approximation of GED using LSAPE-GED
Input: Graphs G1 = (V1,E1) and G2 = (V2,E2).

Vertex edit cost cv , edge edit cost ce .
Output: An approximation of GED between G1 and G2.

1: Construct the cost matrix C ∈ R(|V1|+1)×(|V2|+1) and the corresponding LSAPE us-
ing G1, G2, cv , and ce .

2: Compute a solution π ∈ Π(|V1|, |V2|) to the LSAPE problem using a solver (e.g.,
using a variant of Hungarian algorithm).

3: Set the upper bound as C(π), namely the required approximation.

The bipartite heuristic

The bipartite is a representative heuristic under the LSAPE-GED paradigm. The

name comes from its relevance to the weighted bipartite graph matching prob-

lem [Bougleux and Brun, 2016, Bougleux et al., 2017]. It constructs the cost matrix

C by adding the cost of vertices and the cost of the edges adjacent to them. For

each vertex pair (vi ,u j) ∈ V1 × V2, construct an auxiliary edge cost matrix Ci , j
e ∈

R(deg(vi)+1)×(deg(u j)+1) and the corresponding LSAPE, where deg(v) is the degree of

vertex v . The k-th (1 É k É deg(vi)) row and l -th column (1 É l É deg(u j)) in Ce cor-

respond respectively to the k-th edge e i
k in the set of edges adjacent to vi and to the

106

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

l-th edge e j
l in the set of edges adjacent to u j . The entries in Ci , j

e are then given by
c i , j

k,l = ce f s(e i
k ,e j

l)

c i , j
k,deg(u j)+1 = ce f r (e i

k ,ε)

c i , j
deg(vi)+1,l = ce f i (ε,e j

l),

(4.4)

for k = 1,2, . . . ,deg(vi) and l = 1,2, . . . ,deg(u j), where ce f s , ce f r , ce f i are respec-

tively the cost functions of edge substitution, removal, and insertion, as defined in

(2.10). After that, an optimal LSAPE solution πi , j for Ci , j
e and the corresponding cost

Ci , j
e (πi , j) are computed. Then, the entries in C are constructed as

ci , j = cv f s(vi , v j)+Ci , j
e (πi , j)

ci ,|V2|+1 = cv f r (vi ,ε)+
deg(vi)∑

k=1
ce f r (e i

k ,ε)

c|V1|+1, j = cv f i (ε,u j)+
deg(u j)∑

l=1
ce f i (ε,e j

l),

(4.5)

where cv f s , cv f r , cv f i are respectively the cost functions of vertex substitution, re-

moval, and insertion, as defined in (2.9).

Besides bipartite, other heuristics inheriting the LSAPE-GED were proposed as

well. For instance, when constructing the LSAPE problem, the algorithm STAR con-

siders the neighbors of each pair of vertices [Zeng et al., 2009]; the algorithm SUB-

GRAPH considers more global information, namely graphlets [Carletti et al., 2015];

while the algorithm WALKS associates each vertex in the input graphs to the set of

walks of a given size starting at this vertex [Gaüzère et al., 2014]. Moreover, based on

the upper bound computed by heuristics under the LSAPE-GED paradigm, possible

refinement can be carried out, such as the procedure of the LS-GED paradigm.

4.2.2 The LS-GED paradigm

The local search (LS-GED) paradigm is composed of two steps. First, the trans-

formation π and the cost C(π) are initialized randomly or by a heuristic, such as

one under the LSAPE-GED paradigm. Then, starting at these initial results, a re-

finement procedure is carried out by a local search method to search for improved

transformation with a lower cost. This paradigm is summarized in Algorithm 4.2

[Blumenthal et al., 2020]. With different strategies applied in the second step, vari-

107

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

Algorithm 4.2 Approximation of GED using LS-GED
Input: Graphs G1 = (V1,E1) and G2 = (V2,E2).

Vertex edit cost cv , edge edit cost ce .
Output: An approximation of GED between G1 and G2.

1: Compute the initial GED with an upper bound C0(π0) and the corresponding
transformation π0 ∈Π(G1,G2) randomly or by a heuristic (e.g. bipartite).

2: Construct a new transformation π ∈Π(G1,G2) by a local search strategy starting
at π0 using G1, G2, cv , and ce so that C(π) < C0(π0).

3: Set the upper bound as C(π), namely the required approximation.

ous heuristics have been designed. IPFP is a well-known representative one.

The IPFP heuristic

GED can be modeled as a quadratic problem. The LSAPE-GED paradigm simplifies

this problem by only considering the linear part of GED, namely the costs of ver-

tex transformations, costs of edge transformations can only be implied as patches,

as done by the bipartite method. In contrast, IPFP heuristics under the LS-GED

paradigm provides a method to extend LSAPE-GED, by including the edge transfor-

mations as a quadratic part of GED. We present this idea by following a narration

similar to [Bougleux et al., 2016].

An ε-assignment π : Vε
1 → Vε

2 transforms vertices in a graph G1 = (V1,E1) to ver-

tices in a graph G2 = (V2,E2). Simultaneously, the transformation between E1 and

E2 is conducted as follows:

• Substitution: an edge (vi , v j) ∈ E1 is substituted by an edge (π(vi),π(v j) ∈ E2 if

and only if π(vi) ∈ V2 ∧π(v j) ∈ V2 ∧ (π(vi),π(v j)) ∈ E2.

• Removal: an edge (vi , v j) ∈ E1 is removed (i.e., mapped to ε) if and only if

π(vi) ∉ V2 ∨π(v j) ∉ V2 ∨ (π(vi),π(v j)) ∉ E2.

• Insertion: an edge (uk ,ul) ∈ E2 is inserted to E1 if and only if the substitutions

did not affect it, namely π−1(uk) ∉ V1 ∨π−1(ul) ∉ V1 ∨ (π−1(uk),π−1(ul)) ∉ E1.

For any vi , v j ∈ Vε
1 and uk ,ul ∈ Vε

2, the cost to transform (vi , v j) to (uk ,ul) can be

presented as

q((vi , v j), (uk ,ul)) = ce f s((vi , v j), (uk ,ul))δ(vi ,v j)(E1)δ(uk ,ul)(E2)

+ ce f r ((vi , v j),ε)δ(vi ,v j)(E1)(1−δ(uk ,ul)(E2))

+ ce f i (ε, (uk ,ul))(1−δ(vi ,v j)(E1))δ(uk ,ul)(E2),

(4.6)

108

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

where the delta function δx(S) = 1 if x ∈ S and 0 otherwise. Then the cost Q(π) of

transform π can be written as

Q(π) = g
∑

vi∈Vε
1

∑
uk∈π(vi)

∑
v j∈Vε

1

∑
ul∈π(v j)

q((vi , v j), (uk ,ul)), (4.7)

where the coefficient is set to g = 0.5 if the graphs are undirected, as

d((vi , v j), (uk ,ul)) = d((uk ,ul), (vi , v j)), and g = 1 otherwise. We define a binary ma-

trix X ∈ {0,1}(|V1|+1)×(|V2|+1) equivalent to an ε-assignment π whose entries are

xi , j = δπ(vi),v j , ∀(vi , v j) ∈ V1 ×V2

xi ,|V2|+1 = δπ(vi),ε, ∀vi ∈ V1

x|V1|+1, j = δπ−1(v j),ε, ∀v j ∈ V2

x|V1|+1,|V2|+1 = 1,

(4.8)

where the Kronecker delta function δx,y equals to 1 if x = y and 0 otherwise (see

(2.1)). The corresponding binary vector x = vec(X) ∈ {0,1}(|V1|+1)(|V2|+1) vectorizes X

by concatenating its rows. Using x, (4.7) can be compacted as

Q(π) = g
|V1|+1∑

i=1

|V2|+1∑
k=1

|V1|+1∑
j=1

|V2|+1∑
l=1

q((vi , v j), (uk ,ul)) = g x>Qx, (4.9)

where Q ∈ R((|V1|+1)(|V2|+1))×((|V1|+1)(|V2|+1)) is a matrix containing all costs between

edges, whose (i k, j l)-th entry is q((vi , v j), (uk ,ul)) in (4.6). As a result, the cost of

the transformation π can be formalized as

C(x) = g x>Qx+c>x, (4.10)

where c = vec(C) is the edit cost vector. A tighter form of (4.10) is given in some liter-

ature [Bougleux et al., 2016], and can be summarized as follows. Let ∆= Q for undi-

rected graphs and otherwise ∆= Q+Q>, meanwhile ∆̂= 1
2∆+diag(c). By rewriting

(4.10), the approximation of GED can be then formalized as a quadratic assignment

problem with edition (QAPE):

ged(G1,G2) = min
X∈Π(|V1|,|V2|)

x>∆̂x, (4.11)

where Π(|V1|, |V2|) represents the set of all possible maps between G1 and G2.

109

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

Algorithm 4.3 Approximation of GED using IPFP
Input: Graphs G1 = (V1,E1) and G2 = (V2,E2).

Vertex edit cost cv , edge edit cost ce .
Output: An approximation of GED between G1 and G2.

1: Initialize X0 and the corresponding cost C0 randomly (or by a heuristic).
2: Let i = 0 and set imax .
3: while Not converged and i < imax do
4: Compute Bk+1 = argminB∈Π(|V1|,|V2|)(x>

i ∆̂)vec(B) with a LSAPE solver.
5: Ci+1 = min{Ci ,C(Bk+1)}.
6: αi+1 = argminα∈[0,1] C(Xi +α(Bi+1 −Xi).
7: Xi+1 = Xi +αi+1(Bi+1 −Xi).
8: i = i +1.
9: end while

10: Ci+1 is the required approximation of the GED.

By adapting the integer projected fixed point (IPFP) algorithm

[Leordeanu et al., 2009] designed for the quadratic assignment problem (QAP),

the IPFP heuristic approximates the GED with the procedure presented in Al-

gorithm 4.3 [Bougleux et al., 2016, Bougleux et al., 2015b]. The algorithm is first

initialized randomly or by a heuristic such as bipartite (line 1), then updates by

iterations (lines 3 to 8). In each iteration, a linear approximation is computed by a

LSAPE solver where x>
i ∆̂ is regarded as the edit cost matrix (line 4). Then the local

minimum of the cost and the corresponding binary solution is estimated by a line

search (lines 6-7) [Bougleux et al., 2015b].

4.3 Stability of GED heuristics

The nature of the GED heuristics leads to a drop in computational stability, namely

different trials may lead to different results. In the following, we analyze this insta-

bility by measuring the variability of the GED approximations over repeated trials.

For instance, in the LSAPE-GED paradigm, the cost matrix C (Algorithm 4.1) may

vary given vertex set with different orders, which affects the solution of the LSAPE

problem, furthermore causing the instability. Likewise, in the LS-GED paradigm,

the instability can be traced back to the initial procedure (Algorithm 4.2), where a

random transformation may be assigned.

Low stability can degrade the performance of the GED heuristics, which implies

a broader range of the confidence interval in a prediction task such as regression

110

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

Algorithm 4.4 Approximation of GED using mIPFP

Input: Graphs G1 = (V1,E1) and G2 = (V2,E2).
Vertex edit cost cv , edge edit cost ce . The number of solutions m.

Output: An approximation C? of GED between G1 and G2.

1: Initialize cost C? = C0 =∞.
2: Let j = 0.
3: while j < m do
4: Approximate a new cost C j+1 with Algorithm 4.3.
5: if C? > C j+1 then
6: C? = C j+1.
7: end if
8: j = j +1.
9: end while

10: ged(Gi ,G j) = C?.

and classification, or instability of the produced graphs in a pre-image problem. A

straightforward method to mitigate this problem is repeating the GED computa-

tion. The minimum cost over repetitions is then chosen as the GED approxima-

tion. Strategies have been proposed to refine this method. Well-known ones are

the mbipartite and mIPFP, which are the multi-start counterparts of bipartite

and IPFP [Daller et al., 2018]. These two heuristics start several initial candidates

simultaneously to acquire tighter upper bounds. The stability is concurrently ame-

liorated, which is examined in Figure 4.2 (a) and in the following analyses. Algo-

rithm 4.4 presents the procedure of mIPFP.

Another factor that significantly influences the stability of GED heuristics turns

out to be the relative values of vertex and edge edit costs. When vertex costs are

markedly larger than edge costs, the GED stability often shows an observable im-

provement. This phenomenon is detailed in Figure 4.2 (b) and in the corresponding

analyses.

In the remaining part of this section, we conduct experimental analyses on the

GED stability. We first define a measure of the GED stability named relative error.

Given a set of graphs G1,G2 . . . ,GN, we compute the GED with a heuristic between

each pair of graphs Nt times (trials). The relative error Er is defined as

Er = 1

N2

Nt∑
k=1

∑N
i , j=1 ‖(ged(k)(Gi ,G j)−ged0(Gi ,G j)‖

1
2

(∑N
i , j=1ged

(k)(Gi ,G j)+ged0(Gi ,G j)
) , (4.12)

111

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

0 20 40 60 80 100
f # luti n# m

10−6
10−5
10−4

10−3
10−2
10−1

re
la
tiv

e
er
r
r#
 E

r (
%
)

(a) N%mber f s l%ti ns

10)1 100 101
rati s Rec

10)3

10)2

10)1

re
la
tiv

e
er
r
rs
 E

r (
%
)

(b) Rati between edit c sts

Alkane Ac(clic MAO M n terpens MUTAG

Figure 4.2 – The relative errors of mIPFP on five datasets with respect to the numbers of
solutions and ratios between vertex and edge edit costs.

where ged(k)(Gi ,G j) is the approximation of the GED in the k-th trial using Algo-

rithm 4.4 and ged0(Gi ,G j) is the exact GED between Gi and G j . In practice, we re-

place ged0 with the minimum approximation over all trials, namely ged0(Gi ,G j) =
min1ÉkÉNt ged

(k)(Gi ,G j). The relative error Er measures the average ratio between

the offsets and the exact GEDs over trials and pairs of graphs. A smaller value indi-

cates higher stability.

We analyse the stability with respect to two factors. The first one is the num-

ber of random initial candidates of the GED heuristic, namely “# of solutions”. For

mIPFP, it is equal to the parameter m in Algorithm 4.4. The second factor is the

ratio between vertex and edge edit costs. Let cv f s , cv f i , cv f r , ce f s , ce f i , ce f r ∈ R+
be the cost functions associated with, respectively, vertex substitutions, insertions,

removals and edge substitutions, insertions, removals. Then the ratio is defined as

Rec =
average(cv f i ,cv f r ,cv f s)

average(ce f i ,ce f r ,ce f s)
, (4.13)

where average(·) computes the average value of its inputs.

Figure 4.2 shows the effect of these factors on the relative error Er defined in

(4.12), considering the mIPFP algorithm on datasets Alkane, Acyclic, MAO, Monoter-

pens, and MUTAG. The first dataset is unlabeled, while the others contain symbolic

labels. The left figure (a) exhibits how Er drops with the increase of the “# of solu-

tions” m. Er drops rapidly when the solution number increases from 1 to 10, and

112

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

reaches at a relatively small value; the tendency mitigates afterwards. This result

indicates that an adequately large number of solutions is necessary, thus a trade-

off decision between stability and time complexity needs to be made for different

applications.

The right figure (b) reveals the relation between Er and the ratio Rec between

vertex and edge edit costs. Without loss of generality, the edit cost is set to be con-

stant for each edit operation. The edge costs are set to be 1 and the vertex costs to

be the ratio value (for insertions, removals, and substitutions). The removal costs of

vertices (resp. edges) are set to 0 if vertices (resp. edges) are not labeled. Er is rela-

tively large when the ratio is smaller than 1, namely when edge costs are bigger than

vertex costs, and drops with the increase of the ratio. We can observe that a larger

ratio leads to higher stability. A possible cause of this phenomenon is that large

edge costs amplify the arbitrariness of the edge edit operations. For graphs with n

vertices, there are n2 possible edges that can be inserted, removed, and substituted,

which causes more uncertainty when constructing edit paths as well as computing

their costs. Taking IPFP for instance, large edge costs lead to a big cost matrix Q

in (4.10), implying the possibility of more variance on the value of the term g x>Qx.

Many edit costs given by domain experts are in accordance with this empirical rule,

such as the ones in [Abu-Aisheh et al., 2017].

With the pre-knowledge of GED heuristics and their stability, we propose in the

following a metric learning approach to optimize the edit costs, which is later ap-

plied to regression problems.

4.4 A metric learning approach to graph edit costs for

regression

4.4.1 Related work

As stated in the overview, the choice of edit costs has a major impact on the com-

putation of graph edit distance, and thus on the performance associated with the

prediction task.

The first approach to design these costs is to set them manually, based on the

knowledge on a given dataset/task (when such knowledge is available). This strat-

egy leads, for instance, to the classical edit cost functions associated with the IAM

dataset [Riesen and Bunke, 2008]. However, it is interesting to challenge these pre-

113

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

defined settings and experiment with how they can improve the prediction perfor-

mance.

In order to fit a particular targeted property to predict, tuning the edit costs and

thus the GED can be seen as a subproblem of metric learning. Metric learning con-

sists in learning a dissimilarity (or similarity) measure given a training set composed

of data instances and associated targeted properties. For the classical metric learn-

ing where each data instance is encoded by a real-valued vector, the problem con-

sists in learning a dissimilarity measure, which decreases (resp. increases) where the

vectors have similar (resp. different) targeted properties. Most metric learning stud-

ies focus on Euclidean data, while only a few addresses this problem on structured

data [Bellet et al., 2013]. A complete review for general structured data representa-

tion is given in [Ontañón, 2020]. In the following, we will focus on existing studies

to learn edit costs for graph edit distance.

A trivial approach to tune the edit costs is to use a grid search strategy among a

predefined range. However, the complexity required to compute graph edit distance

and the number of different edit costs forbid such an approach.

String edit distance constitutes a particular case of graph edit distance, associ-

ated with a lower complexity, where graphs are restricted to be only linear and se-

quential. In [Ristad and N.yianilos, 1998], the authors propose to learn edit costs us-

ing a stochastic approach. This method shows a performance improvement, hence

demonstrating the interest to tune edit costs; it is however restricted to strings.

Another strategy is based on a probabilistic approach, as proposed by

a series of papers [Neuhaus and Bunke, 2004, Neuhaus and Bunke, 2005,

Neuhaus and Bunke, 2007]. By providing a probabilistic formulation for the

common edition of two graphs, an Expectation-Maximization algorithm is used

to derive weights applied to each edit operation. The tuning is then evaluated

in an unsupervised manner. More especially in [Neuhaus and Bunke, 2005], the

strategy consists in modifying the label space associated with vertices and edges

such that edit operations occurring more often will be associated with lower

edit costs. Conversely, higher values will be associated with edit operations

occurring less often. The learning process was validated on two datasets. How-

ever, this approach is computationally too expensive when dealing with general

graphs [Bellet et al., 2012].

In [Bellet et al., 2012], the authors propose an interesting way to evaluate

whether a distance is a “good” one. This criterion is based on the following con-

114

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

cept:

a similarity function is (ε,γ,τ)− g ood if a 1− ε proportion of examples

are on average 2γ more similar to reasonable examples of the same class

than to reasonable examples of the opposite class, where a τ proportion

of examples must be reasonable.

This principle is then derived to define an objective function to optimize. The ma-

trix encoding the edit costs minimizing this objective function is then used to com-

pute edit distances. However, this approach has only been adapted to strings and

trees, but not to general graphs.

Another class of methods that address the problem of learning edit costs for GED

is proposed in [Cortés and Serratosa, 2015, Cortés et al., 2019]. These methods pro-

pose to optimize the edit costs by maximizing the similarity between the computed

mapping and a ground truth mapping between vertices of graphs. This framework

requires thus a ground truth mapping, which is not available on most datasets such

as the ones in the chemoinformatics domain.

4.4.2 Problem formulation

In this section, we propose an optimization procedure to learn edit costs in the con-

text of regression tasks. Consider a dataset G of N graphs such that each graph

Gk = (Vk ,Ek), for k = 1,2, . . . ,N, where Vk represents the set of vertices of Gk la-

beled by a function `v : V → Lv , and Ek encodes the set of edges of Gk , namely

ei j = (vi , v j) ∈ Ek if and only if an edge connects vertices vi and v j in Gk .

Recalling Section 2.3, the graph edit distance between two graphs is defined as

the minimal cost associated with an optimal edit path. Given two graphs G1 and G2,

an edit path between them is defined as a sequence of edit operations transforming

G1 into G2. An edit operation e can correspond to a vertex substitution e = (vi →
v j), removal e = (vi → ε) or insertion e = (ε → v j). Similarly, for edges, we have

(ei j → ekl), (ei j → ε), and (ε→ ekl). Each edit operation is associated with a cost

characterizing the distortion induced by this edit operation on the graph. These

costs can be encoded by a cost function c that associates a positive real value to

each edit operation, depending on the elements being transformed.

In the remainder of this chapter, we will restrict ourselves to only constant cost

functions. Therefore, we can associate each edit operation to a constant value. Let

115

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

cv s , cvi , cvr , ces , cei , cer ∈ R+ be the cost values associated with, respectively, vertex

substitutions, insertions, removals and edge substitutions, insertions, removals.

As shown in Section 2.3, given a mapping and considering constant cost func-

tions, the cost associated with edit operations of an edit path represented by π is

given by:

C(π,G1,G2) = Cv (π,G1,G2)+Ce (π,G1,G2), (4.14)

where Cv (π,G1,G2) is the cost associated with vertex operations (2.13), namely

Cv (π,G1,G2) = ∑
v∈V2

π−1(v)=ε

cvi +
∑

v∈V1
π(v)=ε

cvr +
∑

v∈V1
π(v)6=ε

cv s ,

and Ce (π,G1,G2) is the one associated with edge operations (2.14), namely

Ce (π,G1,G2) = ∑
e=(vi ,v j)∈E2|
π−1(vi)=ε∨
π−1(v j)=ε∨

(π−1(vi),π−1(v j))∉E1

cei + ∑
e=(vi ,v j)∈E1|
π(vi)=ε∨
π(v j)=ε∨

(π(vi),π(v j))∉E2

cer + ∑
e=(vi ,v j)∈E1|
π(vi)6=ε∧
π(v j) 6=ε∧

(π(vi),π(v j))∈E2

ces .

Let nv s be the number of vertex substitutions, i.e., the cardinality of the subset

of V1 being mapped onto V2. This number is given by the number of terms of the

first sum in (2.13), i.e., nv s = |{vi ∈ V1 | π(vi) 6= ε}|. Similarly:

• The number of vertex removals is nvr = |{vi ∈ V1 | π(vi) = ε}|;

• The number of vertex insertions is nvi = |{vi ∈ V2 | π−1(vi) = ε}|;

• The number of edge substitutions is nes = |{e = (vi , v j) ∈ E1 |π(vi) 6= ε∧π(v j) 6=
ε∧ (π(vi),π(v j)) ∈ E2}|;

• The number of vertex removals is nei = |{e = (vi , v j) ∈ E1 | π(vi) = ε∨π(v j) =
ε∨ (π(vi),π(v j)) ∉ E2}|;

• The number of vertex insertions is ner = |{e = (vi , v j) ∈ E2 | π−1(vi) = ε∨
π−1(v j) = ε∨ (π−1(vi),π−1(v j)) ∉ E1}|.

Then, let x ∈ N6 encode the number of each edit operation as x =
[nvi ,nvr ,nv s ,nei ,ner ,nes]>. Note that these values depend on both graphs be-

ing compared and a given mapping between vertices. Similarly, we define a

vector representation of the costs associated with each edit operation by c =

116

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

[cvi ,cvr ,cv s ,cei ,cer ,ces]> ∈R6+. Given these representations, the cost associated with

an edit path, as defined by (4.14), can be rewritten as:

C(π,G1,G2,c) = x>c. (4.15)

Therefore, the graph edit distance between two graphs is defined as:

ged(G1,G2,c) = argmin
π,

C(π,G1,G2,c). (4.16)

4.4.3 Learning the edit costs

Consider that each graph Gk ∈ G is associated with a particular targeted property

yk ∈ Y , namely the target in regression tasks (e.g. Y ⊆ R for real-valued output

regression). Furthermore, a distance dY : Y ×Y → R+ is defined on this targeted

property. Since this target space Y is often a vector space, we consider in this thesis

two distances on Y :

• The Euclidean distance: dY (yi , y j) = ‖yi − y j‖2.

• The Manhattan distance: dY (yi , y j) = ‖yi − y j‖1.

The main idea behind the proposed method is that the best metric in the GED

space is the one best aligned to the target distances (i.e., dY). With this distance-

preserving principle, we seek to learn the edit cost vector c by fitting the GEDs be-

tween graphs to the distances between their targeted properties. Ideally, we seek

to preserve the GED between any two graphs Gi and G j and the distance between

their targeted properties. Considering the set of N available graphs G1, . . . ,GN and

their corresponding targets y1, . . . , yN, we seek to have

ged(Gi ,G j ,c) ≈ dY (yi , y j) for all i , j = 1,2, . . .N. (4.17)

Let ω : G ×G ×R6+ → N6 be the function that computes an optimal edit path

between Gi and G j according to the cost vector c and returns the vector x? ∈ R6+
of numbers of edit operations associated with this optimal edit path, namely x? =
ω(Gi ,G j ,c). This function can be obtained by any method computing an exact or

sub-optimal graph edit distance [Abu-Aisheh et al., 2017, Blumenthal et al., 2020].

For any pair of graphs (Gi ,G j), let xi , j be a vector encoding the number of each

edit operation. Let X ∈ NN2×6 be the matrix of the numbers of edit operations for

117

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

Algorithm 4.5 Optimization of edit costs according to given targets
1: c ← random(6)
2: X ← [ω(G1,G1,c) ω(G1,G2,c) · · · ω(GN,GN,c)]>

3: while not converged do
4: c ← argminc ||Xc−d||22, subject to c > 0
5: X ← [ω(G1,G1,c) ω(G1,G2,c) · · · ω(GN,GN,c)]>

6: end while

each pair of graphs, namely its (i N+ j)-th row is xT
i , j . Then, Xc is the N2 × 1 vec-

tor composed of edit distances computed according to c and X between all pairs

of graphs. Let d ∈ RN2

+ be a vector of the differences on targeted properties accord-

ing to dY , with d(i N+ j) = dY (yi , y j). Therefore, the optimization problem can be

rewritten as:

argmin
c

L (Xc,d) subject to c > 0, (4.18)

where L denotes a loss function and the constraint on c forces non-negative

costs. Besides this constraint, one can also integrate a constraint to satisfy the

triangular inequality, or one to ensure that a removal cost is equal to an insertion

cost [Riesen, 2015].

In the case of a regression problem, L can be defined as the mean square error

between computed graph edit distances and dissimilarities between the targeted

properties. Therefore, the final optimization problem is:

argmin
c

||Xc−d||22 subject to c > 0. (4.19)

Estimating c by solving this constrained optimization problem allows to linearly fit

graph edit distances to a particular targeted property according to the edit paths ini-

tially given by ω. However, changing the edit costs may influence the optimal edit

path, and consequently its description in terms of the number of edit operations.

There is thus an interdependence between the function ω computing an optimal

edit path according to c, and the objective function optimizing c according to edit

paths encoded within X. To solve this interdependence, we propose an alternated

optimization strategy, summarized in Algorithm 4.5. The two main steps of the al-

gorithm are described next:

• Estimate c for fixed X (line 4): This optimization problem is a constrained

118

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

linear problem that can be resolved using off-the-shelf solvers, such as

CVXPY [Diamond and Boyd, 2016] and scipy [Virtanen et al., 2020]. This op-

timization problem can also be viewed as a non-negative least squares prob-

lem [Lawson and Hanson, 1995]. For a given set of edit operations between

each pair of graphs, this step linearly optimizes the constant costs to be ap-

plied by minimizing the difference between graph edit distances and dis-

tances between targets.

• Estimate X for fixed c (line 5): The modification performed on costs in the pre-

vious step may have an influence on the associated edit path. To address this

point, the optimization of costs is followed by a re-computation of the optimal

edit paths according to the newly computed c vector encoding the edit costs.

This step can be achieved by any method computing graph edit distance. For

the sake of computational time, one can choose an approximated version of

GED [Bougleux et al., 2015a, Blumenthal et al., 2020].

This alternated optimization is repeated to compute both edit costs and edit

operations. Since we do not have any theoretical proof of the convergence of this

optimization scheme, we limit the number of iterations to 5 in our implementation,

which turns out to be sufficient in the conducted experiments.

4.4.4 Experiments

We conducted experiments1 on two well-known datasets in chemoinformatics,

both composed of molecules and their boiling points, namely Alkane and Acyclic

presented in Section 2.4. Alkane is composed of 150 acyclic molecules that are mod-

eled as acyclic unlabeled graphs, while Acyclic is composed of 185 acyclic molecules

that are represented as acyclic labeled graphs.

To evaluate the predictive power of different settings of edit costs, we used a k-

nearest-neighbors regression [Altman, 1992] model, where k is the number of the

neighbors considered to predict a property. The performances are estimated on ten

different random splits. For each split, a test set representing 10% of the graphs

in the dataset is randomly selected and used to measure the performance of the

prediction. The remaining 90% are used to optimize the edit costs and the value of

1For the sake of reproducibility, the code is available at the following repository: https:

//github.com/jajupmochi/graphkit-learn/tree/master/gklearn/experiments/thesis/

ged/fit_distances.

119

https://github.com/jajupmochi/graphkit-learn/tree/master/gklearn/experiments/thesis/ged/fit_distances
https://github.com/jajupmochi/graphkit-learn/tree/master/gklearn/experiments/thesis/ged/fit_distances
https://github.com/jajupmochi/graphkit-learn/tree/master/gklearn/experiments/thesis/ged/fit_distances

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

Table 4.1 – Results on each dataset in terms of RMSE for the 10 splits, measured on the
training and on the test sets.

Dataset Distance Method
bipartite IPFP

Train errors Test errors Train errors Test errors

Alkane

Euclidean

random 11.77±2.59 15.54±5.58 9.001±1.08 9.56±2.39
expert 9.75±0.75 13.45±3.98 7.53±0.23 8.26±1.15
GH2020 10.92±1.08 12.61±2.47 8.50±0.97 9.19±2.35
fitted 5.93±0.39 6.88±3.23 5.83±0.25 5.03±0.93

Manhattan

random 17.30±6.36 22.00±12.66 14.13±6.09 15.82±6.40
expert 9.63±0.42 10.83±1.71 8.14±0.80 7.95±1.28
GH2020 10.92±1.08 12.61±2.47 8.50±0.97 9.19±2.35
fitted 6.10±0.23 5.32±0.91 5.56±0.22 5.97±0.90

Acyclic

Euclidean

random 25.96±2.63 31.79±4.90 21.94±4.03 27.48±7.84
expert 26.63±0.59 33.46±2.22 22.92±0.62 25.68±2.65
GH2020 28.62±4.23 33.30±6.67 21.98±4.85 23.04±3.78
fitted 10.62±0.98 17.29±2.52 10.66±1.06 14.71±3.14

Manhattan

random 26.33±4.34 32.36±7.06 17.73±3.57 23.15±5.83
expert 27.34±0.52 31.29±3.22 23.11±0.74 26.53±3.52
GH2020 28.62±4.23 33.30±6.67 21.98±4.85 23.04±3.78
fitted 10.66±0.56 16.66±2.83 10.93±1.29 16.68±3.12

k, where k is optimized through a 5-fold cross-validation (CV) procedure over the

candidate values {3,5,7,9,11}. The number of iterations for the optimization of the

edit costs is fixed to 5.

The proposed optimization procedure is compared to three other edit costs set-

tings: the first one is a random set of edit costs. The second one is a predefined

cost setting given in [Abu-Aisheh et al., 2017], namely the so-called expert costs

with cvi = cvr = cei = cer = 3, cv s = ces = 1. The third setting is obtained from

a state-of-the-art method that optimizes the edit costs, as proposed recently in

[Garcia-Hernandez et al., 2020] (denoted GH2020 in the following). We made some

adaptations to this method to have a fair comparison:

• GH2020 was initially targeted at a binary classification problem and their

objective function is an accumulation of a log loss function that measures

whether the compared graphs are in the same class. To adapt it to regression

problems, we use the RMSE between targets (e.g., boiling points) instead.

• GH2020 used extended reduced graphs (ErG). We use our dataset directly on

120

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

RM
SE train test

0

5

10

15

20

Al
ka
ne

bipartite, Euclidean

train test
0

10

20

30

bipartite, Manhattan

train test
0

5

10

IPFP, Euclidean

train test
0

5

10

15

20

IPFP, Manhattan

train test
0

10

20

30

40

Ac
yc
lic

train test
0

10

20

30

40

train test
0

10

20

30

train test
0

10

20

30

random expert Garcia-Hernandez2020 fitted

Figure 4.3 – Results on each dataset in terms of RMSE for the 10 splits, measured on the
training and on the test sets.

this method.

• GH2020 defined an edit cost between each pair of vertex/edge attributes. We

use constant costs instead.

• In [Garcia-Hernandez et al., 2020], only one edit cost over all costs was up-

dated in each experiment, and 4 experiments were conducted. We update all

constant edit costs simultaneously.

Table 4.1 shows the average root mean squared errors (RMSE) obtained for each

cost settings over the 10 splits, estimated on the training set and on the test set.

The ± sign gives the 95% confidence interval computed over the 10 repetitions. Fig-

ure 4.3 shows a different representation of the same results with error bars model-

ing the 95% confidence interval. As expected, a clear and significant gain in accu-

racy is obtained when using fitted costs on the two datasets, using both bipartite

and IPFP heuristics and both Euclidean and Manhattan distances between target

values. These promising results confirm the hypothesis that ad-hoc edit costs may

help the graph edit distance catch better targeted properties that are associated with

a graph, and thus improve the prediction accuracy while still operating in the graph

space.

The fitted values of edit costs are summarized in Table 4.2. From these results,

we can observe that insertion and removal costs are almost similar when using our

optimization method, hence showing the symmetry of these operations. Also, one

121

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

Table 4.2 – Average and standard deviation of fitted edit costs values.

Dataset Edit cost Distance cni cnr cns cei cer ces

Alkane
bipartite

Euclidean 26.45±0.48 26.24±0.60 - 0.13±0.06 0.14±0.09 -
Manhattan 26.67±0.37 26.63±0.58 - 0.11±0.04 0.11±0.06 -

IPFP
Euclidean 26.12±0.24 25.88±0.25 - 0.74±0.23 0.78±0.23 -
Manhattan 25.94±0.38 25.71±0.44 - 0.89±0.30 0.77±0.29 -

Acyclic
bipartite

Euclidean 13.81±0.48 13.83±0.80 10.46±0.40 1.37±0.46 1.45±0.46 1.41±0.09
Manhattan 13.76±0.39 14.14±0.57 10.28±0.44 1.44±0.20 1.45±0.19 1.45±0.07

IPFP
Euclidean 11.61±0.45 11.68±0.43 11.07±0.53 4.49±0.30 4.46±0.24 4.48±0.18
Manhattan 11.52±0.40 11.40±0.40 10.61±0.52 4.50±0.31 4.50±0.31 4.50±0.10

10−1 100 101
ratios Rec

10−3

10−2

re
la
tiv

e
er
ro
rs
 E

r (
%
)

Alkane Acyclic Expert With Euclidean With manhattan

Figure 4.4 – The relative errors Er of mIPFP on datasets Alkane and Acyclic with respect
to the ratios Rec between vertex and edge edit costs using different edit costs optimization
methods.

can observe that removal and insertion costs are more important than substitution

costs, which shows that the number of atoms is more important than the atom itself.

This is coherent with the chemistry theory [Cherqaoui and Villemin, 1994]. Finally,

we can note that costs associated with vertices are higher than the ones associated

with edges.

We further examine the stability of the IPFPmethod when using these edit costs.

Figure 4.4 demonstrates the relations between the relative errors Er and the ratios

Rec between vertex and edge costs (See Section 4.3 and Figure 4.2 for more details).

Therein the colors represent datasets (i.e., blue for Alkane and orange for Acyclic),

and shapes represent different edit costs, with 6, , and respectively for the ex-

pert costs, the optimized costs using the Euclidean distance, and the optimized

costs using the Manhattan distance. For the expert costs, Rec ’s for the two datasets

122

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

are both 1, and Er ’s are 0.02 for Alkane and 0.013 for Acyclic; when using the Eu-

clidean distance, Rec = 34.21, Er = 0.002 for Alkane, and Rec = 2.6, Er = 0.002 for

Acyclic; when using the Manhattan distance, Rec = 3.11, Er = 2.33×10−3 for Alkane,

and Rec = 2.55, Er = 2.68× 10−3 for Acyclic. It can be observed that using the op-

timized costs corresponds to much higher ratios and an order of magnitude lower

relative errors than using the expert costs. Thus, an empirical conclusion can be de-

rived, that the obtained optimized edit costs correspond to higher stability of GEDs.

4.5 Conclusion and future work

In this chapter, we first conducted analyses of the stability of GED heuristics, show-

ing its strong connection with the number of random initial candidates of multi-

start GED heuristics and the relation between vertex and edge edit costs. After that,

we introduced a new principle to define optimal graph edit costs of a GED for a

given task. Based on this principle, we defined the optimization problem of fitting

the edit costs to a particular metric, measured for instance on a targeted property

to predict. An alternated optimization strategy was proposed to solve this optimiza-

tion problem. The conducted experiments on two well-known datasets showed that

the optimization process leads to a GED with a better predictive power compared

to other methods. All these observations confirm that the proposed method helps

to fit edit costs and outperforms other methods. A further investigation indicates

higher stability of GED computation given the optimized edit costs.

There are still several challenges to address in future work. First, a clear and

complete comparison to other methods cited in the introduction and related work

will be established. Second, we seek to examine other criteria than the distance-

preserving criterion, such as the conformal map [Honeine and Richard, 2011].

Third, from a theoretical point of view, we are interested in establishing conver-

gence proof on our alternated optimization strategy, and to extend these proofs to

approximate computations of graph edit distances. Fourth, this scheme will be ex-

tended to classification problems and non-constant costs to be applicable in most

application domains. Considering non-constant costs will need to optimize para-

metric functions rather than scalar values, hence complexifying the procedure.

The optimization problem defined in this chapter provides a new perspective

to metric learning on graphs, allowing aligning graph space according to a target

space. From this idea, we propose in the next chapter a graph pre-image strategy.

123

CHAPTER 4. STABILITY AND METRIC LEARNING OF GRAPH EDIT DISTANCES

124

Chapter 5

Graph pre-image based on graph edit

distances

Contents

5.1 Overview . 126

5.2 Problem formulation . 128

5.3 Proposed graph pre-image framework 130

5.3.1 Learn edit costs by distances in kernel space 131

5.3.2 Generate graph pre-image . 135

5.4 Experiments . 137

5.4.1 Implementations and computational settings 138

5.4.2 Experiments on real-world datasets 139

5.4.3 Results and analyses . 139

5.5 Conclusion and future work . 142

125

CHAPTER 5. GRAPH PRE-IMAGE BASED ON GRAPH EDIT DISTANCES

5.1 Overview

Graph kernels provide an elegant strategy to deal with graphs in kernel space by

implicitly embedding graphs into that space, where a given graph kernel function

k :G2 →R+ constructs a graph kernel space H and φH (G) represents the (implicit)

mapping of a graph G in H . Graph pre-image is the reverse process of this embed-

ding, aiming at constructing a graph G? given an element ψ in the kernel space H ,

such that φ(G?) =ψ. Finding graph pre-images has many interesting applications,

including molecule synthesis, drug design, and image reconstruction. Figure 5.1

illustrates the process of constructing a molecule by graph pre-image.

molecule (the pre-image)graph

Figure 5.1 – An illustration of graph pre-image

The pre-image problem was originally defined on vectors and has been largely

studied on Euclidean spaces. Finding the exact pre-image is challenging as most

elements in the kernel space do not correspond to valid pre-images in the input

space. Meanwhile, the reverse mapping of an element in kernel space to the input

space does not exist in most cases. Methods to approximate pre-images have been

therefore proposed. We refer interested readers to Section 2.2.3 for more details.

The graph pre-image problem inherits the difficulties of the traditional one on

vectors and even more challenging to tackle due to the complexity of its inputs,

namely the graphs. Graphs do not lie in a continuous space as vectors do. The num-

ber of vertices and edges in a graph are arbitrary integers, leading to a variation of

graph sizes in a dataset. Moreover, each vertex and edge can be equipped with mul-

tiple symbolic and non-symbolic labels, possibly multi-dimensional. These struc-

ture features make it an involved problem to look for and construct a graph pre-

image.

Some pioneer works have been proposed to deal with the graph pre-image prob-

lem. In [Bakır et al., 2004], the authors present a method based on a random search.

To find a graph pre-image of an elementΨ in kernel space, an iterative procedure is

126

CHAPTER 5. GRAPH PRE-IMAGE BASED ON GRAPH EDIT DISTANCES

employed. The target pre-image is initialized by the pre-image of the nearest neigh-

bor if Ψ. In each iteration, an initial set is constructed consisting of the graph pre-

images of the k-nearest neighbors of Ψ and the target pre-image. For each graph in

the initial set, l new candidate graphs are generated by randomly adding and delet-

ing edges. After that, the target pre-image is updated by the candidate graph whose

mapping in the kernel space is the closest toΨ. This method is simple to implement,

but has a very high computational complexity and is not applicable to continuous

real-value labels, while the quality of the synthesized graph pre-images is not guar-

anteed as the random search is applied. Authors in [Akutsu and Fukagawa, 2005]

and [Nagamochi, 2009] propose methods to infer a graph from path frequency. The

former considers two types of structures: sequences are inferred from feature vec-

tors corresponding to the spectrum kernel, while trees of bounded degree are in-

ferred from feature vectors, which are composed of frequency of paths of fixed

length under a fixed alphabet. The latter regards the problem as inferring a graph

from a feature vector of path frequency with length 1. By formulating it as a loopless

and connected detachment finding problem, the problem is solved by a method

based on matroid intersection in discrete optimization. However, these methods

are either restricted to applying a specific sub-structure of graphs, or ignoring ver-

tex and edge labels, which are important information for graphs. All these studies

do not fully benefit from discrete optimization that needs to be carried out for graph

pre-image.

Benefiting from the ability of graph edit distances (GEDs) to construct graphs,

we propose a generalized pre-image framework for graphs in this chapter, by bridg-

ing the gap between GEDs and any given graph kernel. The relationship between

graph space and kernel space is studied. Within the proposed framework, three

variants are proposed, depending on if the edit costs of the GEDs are given ran-

domly, by experts, or optimized automatically. We emphasize particularly on the

last variant, where the metric learning strategy is applied, aligning GEDs and dis-

tances of the elements in the kernel space. A method that optimizes the edit costs

of the GED edit operations is proposed for this purpose, which is inspired by the

similar procedure proposed in Section 4.4. The graph pre-image is then constructed

in the aligned graph space, which is endowed with the GED measure with the opti-

mized edit costs, in the spirit of metric learning in machine learning. we address a

pre-image problem for median graph G of a graph set G , where the median graph

is approximated by the pre-image of the mean ψ of a set of elements in the kernel

127

CHAPTER 5. GRAPH PRE-IMAGE BASED ON GRAPH EDIT DISTANCES

space, which corresponds to the mappings of graphs in G . In [Boria et al., 2019],

the authors show that the value of an attribute of a vertex or an edge in the gen-

eralized median graph takes the form of the mean of the replacing values of that

attribute in all graphs in G . This form shows the underlying connection between

G and ψ. Experimental results in Section 5.4 confirm this relevance. To solve

the graph pre-image problem in this chapter, we revisit a recently developed it-

erative alternate minimization procedure that was proposed to generate median

graphs [Boria et al., 2019]. This procedure can be replaced by any other gener-

ative median graph algorithms, such as the ones based on heuristic procedures

[Musmanno and Ribeiro, 2016], graph embedding [Ferrer et al., 2010], combinato-

rial search and genetic algorithms [Bunke et al., 1999].

In the remainder of this chapter, we first formulate the problem (Section 5.2),

then present the proposed method in two folds, namely the metric learning using

distances in kernel spaces (Section 5.3.1) and the graph pre-image construction pro-

cedure (Section 5.3.2). After that, the experiments are conducted (Section 5.4), and

the conclusion and future work are presented (Section 5.5).

5.2 Problem formulation

In this section, we formulate a novel pre-image procedure by generative graph edit

distance methods. Given a spaceG of possibly labeled graphs, we consider a dataset

GN ⊂G of N graphs in which each graph is defined by Gi = (Vi ,Ei), for i = 1,2, . . . ,N,

with Vi being the vertex set of Gi labeled by a function `v : V → Lv , and Ei the edge

set of Gi labeled by a function `e : V → Le , as defined in Section 2.1. We denote the

adjacent matrix of each graph Gi as Ai .

Following the definitions in Section 2.2 as shown in Figure 5.2, a given graph

kernel function k : G2 → R+ constructs a graph kernel space H . Let k(Gi ,G j) =<
φH (Gi),φH (G j) > be the inner product in H , where φH (Gi) represents the (im-

plicit) mapping of Gi in H . Given a ψ ∈H , the object of the exact graph pre-image

problem is to find a graph G? such that φ(G?) = ψ, namely the pre-image of ψ.

As ψ does not have a valid pre-image in general, the pre-image problem consists

in estimating an approximate solution, namely Ĝ such that φ(Ĝ) ≈ψ. This defini-

tion is suitable for any special situations, such as the pre-image of the combination

ψ=∑
i αiφ(Gi) for i = 1,2, . . . ,N, where αi ∈R+ is a coefficient.

The graph edit distance is used as the dissimilarity measure in the graph space,

128

CHAPTER 5. GRAPH PRE-IMAGE BASED ON GRAPH EDIT DISTANCES

molecule 1 graph 1

molecule 2

(pre-image)
graph 2:

Figure 5.2 – Graph kernels and graph pre-images.

which is defined as the minimal cost associated with an optimal edit path (Sec-

tion 2.3). An edit path consists of a sequence of edit operations transforming graph

Gi to G j , namely the removal, insertion, and substitutions of vertices and edges.

A mapping π from Gi to G j is defined by an edit path. A cost is assigned to each

operation measuring the distortion induced by that operation. A cost function c en-

codes these costs by associating a positive real value to each edit costs, relying on

the vertex or the edge being transformed.

In this chapter, we consider only constant edit costs. That is to say, we associate

constant values cvr , cvi , cv s , cer , cei , ces ∈ R+ with respectively vertex removals, in-

sertions, substitutions and edge removals, insertions, substitutions. To construct

an edit path, a coefficient is associated with each edit cost. Various settings can

be assigned to these coefficients. For removal and insertion operations, one of the

commonly used corresponding coefficients is the numbers of occurrences of these

operations, namely

• The number of vertex insertions is nvi = |{vi ∈ V2 | π−1(vi) = ε}|;

• The number of vertex removals is nvr = |{vi ∈ V1 | π(vi) = ε}|;

• The number of vertex insertions is ner = |{e = (vi , v j) ∈ E2 | π−1(vi) = ε∨
π−1(v j) = ε∨ (π−1(vi),π−1(v j)) ∉ E1}|;

• The number of vertex removals is nei = |{e = (vi , v j) ∈ E1 | π(vi) = ε∨π(v j) =

129

CHAPTER 5. GRAPH PRE-IMAGE BASED ON GRAPH EDIT DISTANCES

ε∨ (π(vi),π(v j)) ∉ E2}|,
where ε represents a dummy element. For graphs with vertices and edges labeled by

continuous values, one option of the coefficient of substituting elements is given by

the sum of distance measures between the values of the original and the new labels

over all substituted elements, namely

• The sum of distances of vertex substitution is

ωv s =
∑

vi∈V1,π(vi)∈V2

‖`v1 (vi)−`v2 (π(vi))‖;

• The sum of distances of edge substitution is

ωes =
∑

e=(vi ,v j)∈E1,π(vi)6=ε∧π(v j)6=ε∧(π(vi),π(v j))∈E2

‖`e1 (e)−`e2 (π(e)‖.

Let c = [cvr , cvi , cv s , cer , cei , ces]> be the edit costs vector and ω =
[nvr ,nvi ,ωv s ,ner ,nei ,ωes]> the weight vector. The cost associated with π is given

by

C(Gi ,G j ,π,c) =ω>c. (5.1)

The GED between Gi and G j is defined as

ged(Gi ,G j ,c) = argmin
π

C(Gi ,G j ,π,c). (5.2)

In the next section, we propose a general graph pre-image framework, based on

generative graph edit distance methods. Setting c by different strategies provides

three variants of this framework. Particularly, we propose to optimizeω and c, such

that the GED between each pair of graphs in G is as close as possible to its corre-

sponding distance in H .

5.3 Proposed graph pre-image framework

The main motivation of this work is to address the pre-image problem by taking

advantage of GED’s ability to construct graphs. As the edit costs of GEDs consti-

tute core properties that depict the performance of GEDs, we propose three variant

methods under this framework, following the different strategies to choose the edit

costs of GEDs:

130

CHAPTER 5. GRAPH PRE-IMAGE BASED ON GRAPH EDIT DISTANCES

• The first variant takes the random edit costs, requiring no prior knowledge of

the data. The non-negativity property is required to constraint the choice of

the edit costs. Besides, one can also integrate a constraint to satisfy the trian-

gular inequality, or one to ensure that a removal cost is equal to an insertion

cost [Riesen, 2015].

• The second variant uses the expert edit costs, which often come with the

datasets. Some empirical costs can also be applied for a set of datasets with

common structures or properties, such as molecules with symbolic vertex la-

bels [Abu-Aisheh et al., 2017].

• The third variant uses the optimized edit costs, which we will address in detail

in the following.

We propose to construct the graph pre-image by GED, with edit costs optimized un-

der the guidance of the feature extracted in the kernel space. To achieve this goal,

we borrow the basic idea of metric learning by building connections between graph

and kernel spaces under the assumption that the corresponding elements in simi-

lar space structures possess similar properties and features. We propose to align the

metrics of the two spaces by optimizing these edit costs such that GEDs approxi-

mate the distances in kernel space. Then, once GEDs and kernel distances are simi-

lar, we propose to recast the pre-image problem as a graph generation problem. An

iterative alternate minimization method is adapted for this purpose, in which GEDs

with the optimized edit cost distances are used. These two steps are detailed next,

and the proposed method is summarized in Algorithm 5.1.

5.3.1 Learn edit costs by distances in kernel space

When computing GEDs, the choice of edit costs values is essential. However, these

constants are normally determined by domain experts for a given dataset, instead of

being tuned automatically. With our original idea of aligning the GEDs to the kernel

metric, we propose to learn edit costs by distances of elements in kernel space.

On one hand, based on the features of graph kernels introduced in Section 5.2,

the distance in graph kernel space H between two elements φ(Gi) and φ(G j) is

dH (φ(Gi),φ(G j)) =
√

k(Gi ,Gi)+k(G j ,G j)−2k(Gi ,G j), (5.3)

131

CHAPTER 5. GRAPH PRE-IMAGE BASED ON GRAPH EDIT DISTANCES

Algorithm 5.1 The graph pre-image method with cost learning
Input: Graph dataset GN, graph kernel k,

thresholds of stopping criteria (rmax , imax).

1: Initialize randomly c (0) = [c(0)
vr ,c(0)

vi ,c(0)
v s ,c(0)

er ,c(0)
ei , c(0)

es]>.
2: Compute kernel distances dH of all pairs of graphs in GN with (5.3).
3: Let r = 0.
4: while termination criteria not met (see Section 5.3.1) do
5: Estimate W(r) by solving (5.7) using a GED heuristic (e.g. bipartite or IPFP).
6: Estimate c (r+1) by solving (5.8) using quadratic programming (e.g. CVXPY).
7: r = r +1.
8: end while
9: Find set-median Ĝ(0) by (5.11).

10: Let i = 0.
11: while i < imax do
12: Compute transformation π̂(i+1)

p by (5.12) for Ĝ(i) with c (r+1).

13: Generate Ĝ(i+1) by (5.13) with π̂(i+1)
p and c (r+1).

14: i = i +1.
15: end while
16: Ĝ(i+1) is the approximated graph pre-image.

where k(Gi ,G j) is a graph kernel between graphs Gi and G j . On the other hand,

when transformation π is settled in (5.2), the GED between graphs Gi and G j can be

formalized by (5.1), namely ged(Gi ,G j) =ω>c (See (5.1) and (5.2)).

A major difficulty, which is not straightforward from (5.1), is that the GED is not

linear in c , because the weight vectorω also depends on the c (since the number of

times to perform the edit operations depends on their costs). Therefore, for a given

pair of graphs, Gi and G j , estimating the optimal edit costs vector for a fixed value

of the metric ged(Gi ,G j) (e.g. ≈ dH (φ(Gi),φ(G j)) as in the following) requires an

alternate optimization strategy over c andω.

Given a graph space G of attributed graphs and a kernel space H , we propose to

align their metrics, namely the GED inG and the distance in H between each pair of

available graphs. In other words, we seek to learn the edit costs of the GED, such that

the GED between each pair of graphs inG is as close as possible to its corresponding

distance in H (see Figure 5.3). To achieve this goal, a least-squares optimization on

the available graph set GN = {G1,G2, . . . ,GN} ⊂G is considered, namely

argmin
c ,ω

N∑
i , j=1

‖ged(Gi ,G j)−dH (φ(Gi),φ(G j))‖2, (5.4)

132

CHAPTER 5. GRAPH PRE-IMAGE BASED ON GRAPH EDIT DISTANCES

Figure 5.3 – Align GEDs in graph space G and distances in kernel space H .

where ged is defined by the edit costs vector c and weight vector ω, as given in

(5.1). Since an optimal ω exists for each pair of graphs Gi and G j in GN, we de-

note it by ω(i , j). Moreover, to ensure that the minimum cost edit transformation

π in (5.2) can be found, all edit costs need to be positive. The triangular inequal-

ity rule [Riesen, 2015] can also be affiliated, otherwise all substitutions will be re-

placed by a pair of deletion/insertion and the corresponding costs will be redundant

[Brun et al., 2012]. With these constraints, the optimization problem becomes:

argmin
c ,W

‖W>c −dH ‖2

subject to c > 0

cvr + cvi Ê cv s

cer + cei Ê ces ,

(5.5)

where W> is the N2-by-6 matrix with rows ω(i , j)> and dH the vector of N2 entries

dH (φ(Gi),φ(G j)), for i , j = 1, . . . ,N, namely

W> =

ω(1,1)>
...

ω(i , j)>
...

ω(N,N)>

N2×6

and dH =

dH (φ(G1), φ(G1))
...

dH (φ(Gi), φ(G j))
...

dH (φ(GN), φ(GN))

N2×1

. (5.6)

To solve this constrained optimization problem, we propose an alternative iter-

ative optimization strategy over c and W (Lines 4 to 8 of Algorithm 5.1), after initial-

izing c randomly or by expert costs:

• Step 1: for fixed c, estimate W (line 5). The optimization problem (5.5) boils

133

CHAPTER 5. GRAPH PRE-IMAGE BASED ON GRAPH EDIT DISTANCES

down to

argmin
W

‖W>c −dH ‖2. (5.7)

The weight matrix W is computed by any method computing graph edit dis-

tance. Heuristics to approximate GED can be used for the sake of computa-

tional complexity, such as the ones introduced in Chapter 4.

• Step 2: for fixed W, estimate c (line 6). The constrained optimization problem

(5.5) becomes

argmin
c

‖W>c −dH ‖2

subject to c > 0

cvr + cvi Ê cv s

cer + cei Ê ces .

(5.8)

This optimization problem can be viewed as a constrained linear problem

or a non-negative least squares problem [Lawson and Hanson, 1995].

Off-the-shelf solvers, such as CVXPY [Diamond and Boyd, 2016] and

scipy [Virtanen et al., 2020] can be used to solve it. As a result, the dif-

ference between graph edit distances and distances between elements in the

kernel space is minimized.

Termination criteria

We adapt the termination criteria in [Blumenthal et al., 2021]. Several termination

criteria can be assigned to the aforementioned iterative process:

• Global convergence: the iteration stops if (5.4) is no longer improved, i.e., the

difference between the sums in two adjacent iterations, namely the residual,

is smaller than a threshold εg .

• Edit cost convergence: the iteration stops if the edit costs are no longer opti-

mized, i.e., the difference between each optimized cost in two adjacent itera-

tions is smaller than a threshold εec .

• Maximum number of iterations: the iteration stops if a maximum number of

iterations rmax is reached.

• Time limit: the iteration stops if a time limit tmax has been reached.

134

CHAPTER 5. GRAPH PRE-IMAGE BASED ON GRAPH EDIT DISTANCES

The global and edit cost convergences are always supposed to be met, which en-

sures that the local best edit costs are acquired. In this case, the alignment of the

graph and kernel spaces can normally achieve good performance on given tasks.

The choices of the thresholds εg and εec play an important role in the convergence.

On one hand, if the values are set too big, the iteration will stop quickly and the

acquired edit costs may not be the best local; On the other hand, if they are set

too small, a possible oscillation of the edit costs over iterations can be anticipated,

which may lead to the failure of the convergence. The proper choices of the values

of the thresholds depend on the absolute value of the residual and edit costs. In

our experiments, εg and εec are empirically set to 0.01, which is no more than one

tenth of the corresponding absolute value (see Section 5.4.1 and Table 5.1 for more

details).

The maximum number of iterations and the time limit thresholds, respectively

rmax and tmax , are set in addition to achieve a trade-off between the quality of the

optimized edit costs and time complexity. The design of the iteration procedure

allows returning edit costs on the fly even before the convergence. Intuitively, the

quality of the edit costs may not be optimized in this situation. However, the experi-

ments show that the convergence can be achieved in 5 iterations in most cases for a

well-designed problem, namely, there is no oscillation during the optimization. The

time complexity of this amount of iterations is normally acceptable. To this end, we

set rmax to 6 and tmax is unlimited in the experiment. The quality of the edit costs

and the time complexity can be found in Section 5.4.3.

5.3.2 Generate graph pre-image

By aligning the distances in both graph and kernel spaces as we have done in Sec-

tion 5.3.1, we propose to solve the pre-image problem by recasting it as a graph

generation problem. Given a set GN ⊂ G of N graphs and a graph kernel k : G→H ,

the average of the set in the kernel space H is computed as ψ = ∑N
i=1αiφ(Gi) with

αi = 1/N. The main objective is to estimate its pre-image, namely the graph Ĝ whose

image φ(Ĝ) is as close as possible to ψ.

With the metric alignment principle thanks to (5.4), we get the relations

ged(Gi ,G j) ≈ dH (φ(Gi),φ(G j)), for all Gi ,G j ∈ GN. Under the assumption that the

corresponding elements in the similar space structures possess similar properties

and features, estimating the pre-image Ĝ is equivalent to estimating the graph me-

135

CHAPTER 5. GRAPH PRE-IMAGE BASED ON GRAPH EDIT DISTANCES

dian, which can be tackled as the minimization of the sum of distances (SOD) from

the graph median to all the graphs in GN, namely

Ĝ = argmin
G∈G

∑
Gp′∈GN

ged(G,Gp ′). (5.9)

A first attempt to solve this problem is to restrict the solution to the set GN,

namely

Ĝ = argmin
Gp∈GN

∑
Gp′∈GN

ged(Gp ,Gp ′). (5.10)

By expanding the expression of the GED, we get

Ĝ =argmin
Gp∈GN

∑
Gp′∈GN

ged(Gp ,Gp ′)

=argmin
Gp∈GN

N∑
p ′=1

min
πp′∈Π(Gp ,Gp′)

c(πp ′ ,Gp ,Gp ′)

=argmin
Gp∈GN

N∑
p ′=1

min
πp′∈Π(Gp ,Gp′)

cv (πp ′ ,`vp ,`vp′)+ 1
2 ce (πp ′ , Ap ,`ep , Ap ′ ,`ep′),

(5.11)

where cost c(πp ′ ,Gp ,Gp ′) consists of two parts, cv (πp ′ ,`vp ,`vp′) and

ce (πp ′ , Ap ,`ep , Ap ′ ,`ep′), respectively the costs of vertex and edge transforma-

tions. This problem can be solved by computing GEDs between all pairs of graphs

in GN. The time complexity is in O (aN2), where a is the complexity of computing

a GED between two graphs (for instance, by bipartite or IPFP). The resulting

pre-image Ĝ, restricted to elements of the set GN, corresponds to the so-called

set-median of GN [Jiang et al., 2001].

Despite its simplicity, the set-median can only be chosen from the given

dataset GN, which strongly limits the possibility of the pre-image. To obtain the

pre-image from a bigger search space, we take advantage of recent advances in

[Boria et al., 2019], where the proposed iterative alternate minimization procedure

(IAM) allows generating new graphs. Next, we revisit this method and adapt it for

the pre-image problem (lines 11 to 16 of Algorithm 5.1). Alternatively, other gener-

ative median graph algorithms can be also applied [Musmanno and Ribeiro, 2016,

Ferrer et al., 2010, Bunke et al., 1999].

After initializing Ĝ with the set-median, the proposed strategy alternates the op-

timization over all the π̂p (i.e., transformations from Ĝ to Gp) and over the pre-image

estimate Ĝ:

136

CHAPTER 5. GRAPH PRE-IMAGE BASED ON GRAPH EDIT DISTANCES

• Step 1: for fixed Ĝ, estimate all π̂p by solving the following optimization prob-

lem:

π̂p = argmin
πp∈Π(Ĝ,Gp)

c(πp , Ĝ,Gp) ∀p ∈ {1, . . . ,N}. (5.12)

The resolution of (5.12) is carried out by solving the GED problem N times,

between Ĝ and each Gp ∈GN. Its time complexity is in O (aN), given O (a) the

time complexity of evaluating GED between two graphs, such as with heuris-

tics like bipartite or IPFP.

• Step 2: for fixed π̂p , construct Ĝ by solving the following optimization prob-

lem:

Ĝ = argmin
ϕ∈H n̂

v

A∈{0,1}n̂×n̂

Φ∈H n̂×n̂
e

N∑
p=1

cv (π̂p ,`v ,`vp)+ 1
2 ce (π̂p , A,`e , Ap ,`ep). (5.13)

In the computation of (5.13), the vertices and edges are updated separately.

The new non-symbolic labels assigned for a vertex v or an edge e is given by

the average values of the corresponding labels of the vertices substituted to

v or the edges substituted to e, respectively. For each vertex vi in Ĝ, its label̂̀(vi) is updated by

̂̀(vi) = 1∑N
p=1δπp (vi)(Vp)

N∑
p=1

δπp (vi)(Vp)`p (πp (vi)), (5.14)

where the delta function δπp (vi)(Vp) = 1 if vertex πp (vi) ∈ Vp and 0 otherwise.

The iteration stops when no better pre-image can be generated. The ob-

tained graph pre-image Ĝ can be viewed as the generalized median of GN

[Jiang et al., 2001]. It is considered as the approximation of the pre-image in our

method.

5.4 Experiments

In this section, we report experimental results. First, we introduce implementations

applied for our algorithms. Then computational settings are presented. Finally, per-

formances are exhibited and analyzed on the benchmark dataset Letter.

137

CHAPTER 5. GRAPH PRE-IMAGE BASED ON GRAPH EDIT DISTANCES

Table 5.1 – Parameter settings for experiments.

Parameters Settings

Global threshold εg 0.01
Edit cost threshold εec 0.01
Maximum number of iterations rmax 6
Time limit tmax unlimited

5.4.1 Implementations and computational settings

To perform experiments, we implemented the proposed graph pre-image frame-

work and Algorithm 5.1 in Python. To this end, the C++ library GEDLIB with its

Python interface gedlibpy is used as the core implementation to compute graph

edit distances and perform the IAM algorithm [Blumenthal et al., 2019].

In the original implementation of GEDLIB, a specific edit cost is implemented

for each dataset. For example, an edit cost method Letter is designated for dataset

Letter. However, this implementation uses an α coefficient to constrain relations

between edit costs, and the constants for insertion and removal have to be equal. It

limits the variability of edit costs and cannot fit into (5.5). The same problem arises

for other graph datasets with non-symbolic labels. To burst these constraints, we

implemented a general edit cost function NonSymbolic for graphs containing only

non-symbolic vertex and/or edge labels. In this method, all edit costs can be freely

set, which is more convenient for the optimization proposed in Section 5.3.1. We

also implemented an edit cost method Letter2 specifically for dataset Letter based

on NonSymbolic. Library gedlibpy has been modified accordingly1.

All experiments exhibited in this section are executed on a computer with 8 CPU

cores of Intel(R) Core(TM) i7-7920HQ @ 3.10GHz, 32GB memory, and 64-bit oper-

ating system Ubuntu 16.04.3 LTS. Table 5.1 lists the parameter settings for experi-

ments.

To estimate the graph edit distances, a multi-start counterpart of IPFP, namely

mIPFP is applied in both procedures of producing the set-median and the gener-

1Links to implementations presented in Section 5.4.1 are listed below:
- GEDLIB: https://github.com/dbblumenthal/gedlib;
- NonSymbolic and Letter2 methods:
https://github.com/jajupmochi/gedlib/tree/master/src/edit_costs;
- gedlibpy (modified): https://github.com/jajupmochi/gedlibpy;
- our pre-image algorithm:
https://github.com/jajupmochi/graphkit-learn/tree/master/gklearn/preimage.

138

https://github.com/dbblumenthal/gedlib
https://github.com/jajupmochi/gedlib/tree/master/src/edit_costs
https://github.com/jajupmochi/gedlibpy
https://github.com/jajupmochi/graphkit-learn/tree/master/gklearn/preimage

CHAPTER 5. GRAPH PRE-IMAGE BASED ON GRAPH EDIT DISTANCES

alized median (see Section 5.3.2), where the number of solutions is set to m = 40

[Daller et al., 2018].

5.4.2 Experiments on real-world datasets

In this section, we evaluate our algorithm on Letter datasets2: Letter-high, Letter-

med, and Letter-low. Each dataset consists of 2250 graphs representing distorted

drawings of 15 capital letters of the Roman alphabet, where “high”, “med”, and “low”

represent different distortions. Graph vertices are equipped with two non-symbolic

labels “x” and “y” representing their positions. See Section 2.4 for more details.

The goal of this experiment is to compute, for a given kernel, the pre-image of

the average of each class of letters, namely ψ= ∑N
i=1αiφ(Gi) with αi = 1/N. A good

estimator may be the median graph of the same set. Therefore, we propose to es-

timate the pre-image of ψ by using the median graph generated by our framework,

using the random costs, the expert costs, and the optimized costs computed in Al-

gorithm 5.1. Two graph kernels are applied in experiments, namely the shortest

path kernel [Borgwardt and Kriegel, 2005] and the structural shortest path kernel

[Ralaivola et al., 2005]. Both of them are able to deal with non-symbolic labels. See

Section 3.3 for more details.

To exhibit and analyze the performance of proposed methods, we apply them

on each class of each dataset, which corresponds to distortions of each letter at a

given distortion level. In each class, all 150 graphs are chosen to compose the graph

set GN.

5.4.3 Results and analyses

Designing evaluation measures of the performances of the generalized pre-image is

an interesting topic. A straightforward method is to measure the distance between

the generalized pre-image and the desired pre-image in the kernel space, which can

be easily computed by (5.3). For datasets such as Letter, the visualization of each

graph is possible, where the quality of the pre-image can be measured by the legi-

bility. We analyze the performance of our methods with respect to both measures in

the conducted experiments.

Table 5.2 exhibits results of our pre-image methods. First, we give results as

a baseline of a method to generate median graphs (denoted “From median set”),

2Link: http://graphkernels.cs.tu-dortmund.de.

139

http://graphkernels.cs.tu-dortmund.de.

CHAPTER 5. GRAPH PRE-IMAGE BASED ON GRAPH EDIT DISTANCES

Table 5.2 – Running times and distances between the desired elements in kernel space and
the mappings of the constructed pre-images computed using different methods for 2 graph
kernels (shortest path and structural shortest path kernels).

Datasets Graph Kernels Algorithms dH

Running Times (in seconds)

Optimization Generation Total

Letter-high

shortest path

From median set 0.406 - - -
IAM (random costs) 0.467 - 142.59 142.59
IAM (expert costs) 0.451 - 30.31 30.31

IAM (optimized costs) 0.460 5968.92 26.55 5995.47

structural sp

From median set 0.413 - - -
IAM (random costs) 0.435 - 30.22 30.22
IAM (expert costs) 0.391 - 29.71 29.71

IAM (optimized costs) 0.394 24.79 25.60 50.39

Letter-med

shortest path

From median set 0.425 - - -
IAM (random costs) 0.303 - 25.61 25.61
IAM (expert costs) 0.288 - 26.93 26.93

IAM (optimized costs) 0.288 23.72 24.79 48.52

structural sp

From median set 0.380 - - -
IAM (random costs) 0.286 - 24.77 24.77
IAM (expert costs) 0.248 - 27.51 27.51

IAM (optimized costs) 0.248 27.06 29.24 56.30

Letter-low

shortest path

From median set 0.139 - - -
IAM (random costs) 0.116 - 26.47 26.47
IAM (expert costs) 0.116 - 24.87 24.87

IAM (optimized costs) 0.116 26.35 29.97 56.31

structural sp

From median set 0.112 - - -
IAM (random costs) 0.103 - 30.22 30.22
IAM (expert costs) 0.086 - 29.43 29.43

IAM (optimized costs) 0.104 21.95 24.59 46.53

where the median graph is directly chosen from the median set GN whose repre-

sentation in kernel space is the closest to the true median’s (ψ). After that, re-

sults of two sets of edit costs are presented, corresponding to the first two vari-

ants of the proposed framework. The first set of constants is randomly generated

for each class of graphs, while the second set is given by domain experts, where

cvi = cvr = 0.675,cei = cer = 0.425,cv s = 0.75 and ces = 0 [Blumenthal et al., 2020].

It is worth noting that these expert values take into account prior knowledge of the

data, such as setting ces to 0 as graphs in Letters do not contain edge labels. Finally,

results of the third variant of the proposed framework are presented, computed with

the optimized costs using Algorithm 5.1. All three variants are denoted “IAM”, as

they are essentially Iterative Alternate Minimization (IAM) procedures, and they are

distinguished from each other by edit costs. The average results over all classes are

presented for all methods. Column “dH ” gives the distances between the embed-

140

CHAPTER 5. GRAPH PRE-IMAGE BASED ON GRAPH EDIT DISTANCES

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

SP, from median set
0

1

2
3
4

0

12

3

4
5

6

0

1

2 3

4 0

1
2

3

4
5

0

1

0
1

2

3

4

5

0

1
2

0

1

2
3

4 0

1

2

3

0 1

2

3 0

1

2 0

1

2

3

4

01

2 3

0

1

2

3 0 1

2 3

SP, random costs
0

1

2

3 4

0

1
2

3
4

5

0

1

2

3

4 0

1
2

3

4
5

0

1

0 1

2

3

4

0

1 2

0

1

23

4 0

1

2

3

0 1

2

3 0

1

2 0

1

2

3

4

01

2 3

0

1

2

3 0 1

2 3

SP, expert costs
0

1

2

3 4

0

12

3

4 5

0

1

2 3

4 0

1 2

3

4 5

0

1

0 1

2

3

4

0

1 2

0

1

23

4 0

1

2

3

0 1

2

3 0

1

2 0

1

2

3

4

01

2 3

0

1

2

3 0 1

2 3

SP, optimized costs
0

1

2

3 4

0

12

3

4 5

0

1

2 3

4 0

1 2

3

4 5

0

1

0 1

2

3

4

0

1 2

0

1

23

4 0

1

2

3

0 1

2

3 0

1

2 0

1

2

3

4

01

2 3

0

1

2

3 0 1

2 3

SSP, from median set
0

1

2

3
4

0

1
2

3

4 5

0

1

2
3

4 0

1
2

3

4

5

6

0

1

0
1

2

3

4

5

0

1
2

0
1

23

4 0

1

2

3

0 1

2

3 0

1

2 0

1

2

3

4

0
1

2 3

0

1

2

3 0 1

2 3

SSP, random costs
0

1

2

3 4

0

12

3

4
5

0

1

2 3

4 0

1
2

3

4
5

0

1

0 1

2

3

4

0

1 2

0

1

23

4 0

1

2

3

0 1

2

3 0

1

2 0

1

2

3

4

01

2 3

0

1

2

3 0 1

2 3

SSP, expert costs
0

1

2

3 4

0

12

3

4 5

0

1

2 3

4 0

1 2

3

4 5

0

1

0 1

2

3

4

0

1 2

0

1

23

4 0

1

2

3

0 1

2

3 0

1

2 0

1

2

3

4

01

2 3

0

1

2

3 0 1

2 3

SSP, optimized costs
0

1

2

3 4

0

12

3

4 5

0

1

2 3

4 0

1 2

3

4 5

0

1

0 1

2

3

4

0

1 2

0

1

23

4 0

1

2

3

0 1

2

3 0

1

2 0

1

2

3

4

01

2 3

0

1

2

3 0 1

2 3

Figure 5.4 – Pre-images constructed by different algorithms for Letter-high with shortest
path (SP) and structural shortest path (SSP) kernels.

ding of the computed pre-image and the element we want to approximate in the

kernel space (dH). A lower distance indicates a better estimation of the pre-image.

Columns “Running Times” give the time used to optimize edit costs and generate

pre-images.

On all three datasets, almost all proposed methods applying our framework pro-

vide better pre-images than choosing from the median set with respect to the dH s

of the generalized medians, no matter what edit costs are chosen. On Letter-high for

the structural SP kernel, compared to dH of pre-image choosing from median sets,

dH is respectively 5.33% and 4.60% smaller for the algorithm with expert and opti-

mized costs. Moreover, dH of the algorithm with optimized costs is 9.43% smaller

than that with random costs and is almost the same as the algorithm with expert

costs, which is also the case for the SP kernel. The advantage of the proposed

framework is even more significant on Letter-med and Letter-low, where they dom-

inate the performances. These results show that the algorithm with the optimized

costs works better than the one with random costs to generate pre-images as me-

dian graphs, and can serve as a method to tune edit costs to help find expert costs,

for both median generation problems using IAM and graph pre-image problems.

Moreover, the running times to optimize edit costs and generate pre-images are ac-

ceptable in most cases.

Besides these improvements, the advantage of our methods can be evaluated

from other aspects. Figure 5.4 presents the pre-images generated as the median

graphs for each letter of the Letter-high dataset using the aforementioned methods,

141

CHAPTER 5. GRAPH PRE-IMAGE BASED ON GRAPH EDIT DISTANCES

which correspond to the first eight rows of Table 5.2, row by row. Vertices are drawn

according to coordinates determined by their attributes “x” and “y”. In this way,

plots of graphs are able to display the letters that they represent, which are possible

to be recognized by human eyes. When using the shortest path (SP) kernel (the first

row to the fourth row), it can be seen that the pre-images chosen directly from the

median set (the first row) are illegible in almost all cases, while the IAM with random

costs provides more legible results, where letters A, K, Y can be easily recognized (the

second row). When the expert and optimized costs are used, almost all letters are

readable, despite that the pre-images of letter F are slightly different (the third and

fourth rows). The same conclusion can be derived for the structure shortest path

kernel as well (the fifth row to the eighth row).

This analysis indicates that even though the distances dH are similar, the pro-

posed pre-image algorithms are able to generate better pre-images, especially when

edit costs are optimized. This phenomenon may benefit from the nature of the IAM

algorithm. In the update procedure (5.13), the new non-symbolic label assigned for

a vertex v is given by the average values of the corresponding labels of the vertices

substituted to v [Boria et al., 2019]. It provides a “direction” to construct pre-images

with respect to the features and structures of graphs. For instance, the “x” and “y”

attributes on the vertices of the letter graphs represent the coordinates of the ver-

tices. To this end, it makes sense to compute their average values as the new values

of a vertex as the vertex will be re-positioned at the middle of all vertices substituted

to it.

5.5 Conclusion and future work

In this chapter, we proposed a novel framework to estimate graph pre-images by

taking advantage of GED’s ability to construct graphs. Three variants were pro-

posed, given the random, expert, and optimized costs. This last approach is based

on the hypothesis that metrics in both kernel space and graph space can be aligned.

We first proposed a method to align GEDs to distances in the kernel space. Within

the procedure, the edit costs are optimized. Then the graph pre-image was gener-

ated by a new method to construct the graph generalized median, where we revis-

ited the IAM algorithm. Our framework can generate better pre-images than other

methods, as demonstrated on the Letter datasets.

Future work will focus on several aspects. First, establishing a convergence

142

CHAPTER 5. GRAPH PRE-IMAGE BASED ON GRAPH EDIT DISTANCES

proof of the optimization procedure is interesting. Second, our methods can be

generalized to graphs with symbolic labels and to the construction of pre-images

as arbitrary graphs rather than median graphs by improving both the IAM algo-

rithm and the distance alignments. Third, consider non-constant costs to estab-

lish a more flexible scheme. Fourth, other criteria such as the conformal map

will be examined to build connections between GEDs to distances in kernel space

[Honeine and Richard, 2011].

143

CHAPTER 5. GRAPH PRE-IMAGE BASED ON GRAPH EDIT DISTANCES

144

Chapter 6

graphkit-learn: a Python library for

graph machine learning

Contents

6.1 Overview . 146

6.2 The overall architecture . 147

6.3 Graph data processing . 148

6.4 Implementations of graph kernels 150

6.4.1 State of the art and motivation 150

6.4.2 Implementation details of graph kernels 152

6.4.3 Usage example . 155

6.5 Implementations of graph edit distance 156

6.5.1 State of the art and motivation 156

6.5.2 The ged module . 157

6.5.3 The gedlib module . 161

6.5.4 Usage example . 162

6.6 Implementations of graph pre-image methods 162

6.7 Auxiliary tools . 165

6.8 Conclusion and Future Work . 168

145

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

6.1 Overview

In previous chapters, we explored graph kernels, graph edit distance, and the

graph pre-image problem, which constitute important and intriguing parts in the

field of machine learning on graphs. As Python becomes a useful and popular

platform-independent programming language in the machine learning commu-

nity, it has included the implementation of a wide range of machine learning tools

[Van Rossum and Drake Jr, 1995, Van Rossum and Drake, 2009]. To study the afore-

mentioned problems on graphs and take advantage of the advances of Python, it is

necessary to implement with this language the tools to deal with these problems as

well.

Although several open-source libraries to solve these problems have been pub-

lished, they all suffer from some shortcomings or are incompatible with our re-

quirements, such as the lack of certain methods and the choice of a different pro-

gramming language. In this chapter, we present a new open-source Python library

named graphkit-learn, implementing methods to solve all three aforementioned

problems on graphs. The library is publicly available to the community on GitHub:

https://github.com/jajupmochi/graphkit-learn,

and can be installed by pip:

pip install graphkit-learn.

The detailed description is carried out in each corresponding section in the follow-

ing part of this chapter.

Through the implementation, the following underlying technologies are ap-

plied:

• NumPy is a fundamental package for scientific computing with Python, which

offers numerous linear algebra operations [Harris et al., 2020].

• SciPy provides many user-friendly and efficient numerical routines, such as

routines for numerical integration, interpolation, optimization, linear alge-

bra, and statistics [Virtanen et al., 2020].

• NetworkX is for the creation, manipulation, and study of the structure, dy-

namics, and functions of complex networks [Hagberg et al., 2008]. It is used

to model graphs in graphkit-learn.

• scikit-learn is a machine learning tool for predictive data analysis, such as

regression and classification problems [Pedregosa et al., 2011].

146

https://github.com/jajupmochi/graphkit-learn

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

Technologies that are applied for specific modules in graphkit-learn will be in-

troduced in the corresponding sections of this chapter.

The remainder of this chapter is organized as follows: The overall architecture of

the library is first summarized in Section 6.2, then the graph data processing meth-

ods are introduced in Section 6.3. After that, the implementations of graph kernels,

graph edit distances, and graph pre-image methods are respectively detailed in Sec-

tions 6.4, 6.5, and 6.6. Next, Section 6.7 categorizes the auxiliary functions. Finally,

Section 6.8 concludes the chapter.

6.2 The overall architecture

gklearn

kernels preimage ged gedlib dataset utils

Figure 6.1 – The overall architecture of the graphkit-learn library.

As Figure 6.1 shows, gklearn is the module name of the graphkit-learn li-

brary, which is in total composed of six modules:

• The kernels module implements 9 graph kernels based on linear patterns

and 2 on non-linear patterns examined in Chapter 3.

• The preimage module implements 2 graph pre-image methods including the

one proposed in Chapter 5.

• The ged module implements the environment to deal with GED heuristics.

The LSAPE-GED paradigm and the subordinate bipartite heuristic are im-

plemented. A framework to define edit costs and a median graph estimator

based on GED are provided.

• The gedlib module integrates the Python interface gedlibpy of the C++ li-

brary GEDLIB for GED computation [Blumenthal et al., 2019]. GEDLIB is mod-

ified for the integration. Upgrades are made on both gedlibpy and GEDLIB to

provide more plentiful functions.

• The dataset module handles graph datasets, including fetching graph

datasets from several online databases, loading graphs from various formats,

and processing them.

147

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

• The utils collects auxiliary tools, such as graph manipulation tools, kernels

between labels, parallelization tools, and the methods to perform model se-

lection with cross-validation.

The following sections describe these contents in detail.

6.3 Graph data processing

dataset

Dataset

DataFetcher DataLoader

Figure 6.2 – Graph data processing module shown in a UML class diagram.

We first introduce the dataset module, which deals with graph data processing.

A graph in graphkit-learn is represented by a networkx.Graph class if undirected

or a networkx.DiGraph class if directed. Names of vertex and edge labels can be

extracted at the same time. As shown in Figure 6.2, dataset includes mainly three

classes:

DataFetcher is able to fetch graph data from databases publicly available on-

line. DataFetcher supports several widely-used graph dataset formats, including

the Graph eXchange Language file (GXL) [Winter et al., 2002], the structure data file

(SDF)1, and TUDataset format. For now, three benchmark databases can be fetched:

• GREYC’s Chemistry database2: contains various chemical datasets of small

molecules, each of which concerns either a classification or a regression prob-

lem.

• TUDataset3: collects benchmark datasets for the evaluation of graph

kernels, which come from various domains such as bioinformatics,

chemoinformatics, computer vision, social networks, and synthetic graphs

[Morris et al., 2020]. New datasets are still being added to this database and

DataFetcher is designed to be able to fetch them.

1See http://www.gupro.de/GXL/Introduction/background.html.
2Available at https://brunl01.users.greyc.fr/CHEMISTRY.
3Available at www.graphlearning.io.

148

http://www.gupro.de/GXL/Introduction/background.html
https://brunl01.users.greyc.fr/CHEMISTRY
www.graphlearning.io

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

Dataset

......

+ set_labels() // Sets the names of labels that will be processed.
+ get_dataset_infos() // Extracts properties of the dataset, such as its size, the

average vertex number and edge number, the average
vertex degree, whether the graphs are directed, labeled
symbolically and non-symbolically on their vertices and
edges, etc.

+ print_dataset_infos() // Prints out the properties of the dataset.
+ remove_labels() // Removes irrelevant labels from the graphs.
+ cut_graphs() // Cuts graphs into a given range.
+ trim_dataset() // Removes graphs with no vertex or no edges.
...

Figure 6.3 – User interfaces of Dataset.

• IAM4: consists of several graph datasets from chemoinformatics, image recog-

nition, and social network domains. As most datasets in IAM are also included

in TUDataset, we only fetch two datasets from this database, namely Web and

GREC.

After DataFetcher obtains a dataset online and saves it locally, DataLoader is

able to read graphs from the dataset file and transforms them to NetworkX graphs

[Hagberg et al., 2008]. NetworkX supports rather comprehensive graph attributes,

including symbolic and non-symbolic labels on vertices and edges, edge weights,

directness, etc.

Taking advantage of DataFetcher and DataLoader, class Dataset can fetch and

load graph dataset by a single Python statement, as given in line 3 of the following

example:

1 from gklearn.dataset import Dataset

2

3 ds = Dataset(’Alkane ’, # The input.

4 root=’’) # The root path to save the dataset.

5 graphs = ds.graphs

6 y = ds.targets

The input of Dataset can be a pre-defined dataset name, the path to the

dataset files, or a list of NetworkX graphs. The variables Dataset.graphs and

4Available at http://www.iam.unibe.ch/fki/databases/iam-graph-database.

149

http://www.iam.unibe.ch/fki/databases/iam-graph-database

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

Dataset.targets are the loaded graphs and the corresponding targets. Moreover,

Dataset provides a set of member functions to facilitate the manipulation of the

dataset, which is shown in Figure 6.3.

6.4 Implementations of graph kernels

6.4.1 State of the art and motivation

Graph kernels have become a powerful tool in bridging the gap between machine

learning and graph representations. Of particular interest are graph kernels based

on linear patterns. Despite that non-linear patterns may encode more complex

structural information than linear ones, the latter require much lower computa-

tional complexity on many occasions. Nevertheless, non-linear patterns normally

include or imply linear ones. For example, the treelet pattern is non-linear as a

whole, while treelets whose maximal size is less than 4 are linear (see Section 3.5.1).

Thus, the linear patterns are the cornerstone of most graph kernels. In practice, it

is intractable to compute non-linear or cyclic-based kernels on large graphs. Exper-

iments conducted on kernels based on linear patterns in Section 3.7 demonstrate

their relevance compared to kernels based on non-linear kernels. Moreover, they

have been serving as a baseline for designing new kernels. These kernels have been

constructed using either walk or path patterns, as detailed in Chapter 3.

Several open-source libraries have been published and are available online to

compute graph kernels; however, only parts of the aforementioned kernels have

been implemented so far and only limited types of graphs were tackled. Ta-

ble 6.1 exhibits these libraries and shows the graph kernels each library imple-

mented. Of particular interest is the GraKel library, which provides an object-

oriented framework for graph kernel implementation, thus intriguing many follow-

ers [Siglidis et al., 2020]. As a result, it is essential to clarify the reasons that we in-

cline to publish a new library rather than add implementations of new kernels into

existing libraries (e.g. GraKeL). We would like to explain our motivations from the

following aspects:

First, as a result of the advantages of graph kernels based on linear patterns,

graphkit-learn focuses mainly on graph kernels based on linear patterns. Ta-

ble 6.1 shows that our library is the only Python library available online which im-

plements all graph kernels based on linear patterns. For example, GraKeL imple-

150

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

Table 6.1 – Available libraries implementing graph kernels based on linear patterns.

Libraries GraKeLa pykernelsb ChemoKernelc graphkernelsd graph-kernelse graphkit-learnf

(our work)

Common
walk

3 7 7 3 3 3

Marginalized 7 7 3 7 7 3

Sylvester
equation

7 7 7 7 7 3

Conjugate
gradient

7 3 7 7 7 3

Fixed-point
iterations

7 7 7 7 7 3

Spectral
decomposition

7 7 7 7 7 3

Shortest
path

3 3 7 3 7 3

Kernels
implemented

Structural
shortest path

7 7 7 7 7 3

Path up to
length h

7 7 3 7 7 3

Languages Python Python C++
Python

(C++ core)
C++, R

(C++ core)
Python

a: https://github.com/ysig/GraKeL b: https://github.com/gmum/pykernels

c: https://github.com/bgauzere/ChemoKernel d: https://github.com/BorgwardtLab/GraphKernels

e: https://github.com/BorgwardtLab/graph-kernels f: https://github.com/jajupmochi/graphkit-learn

mented only two kernels based on linear patterns, namely the common walk ker-

nel and the shortest path kernel. These implementations provide a set of baseline

benchmarks for graph kernels, which not only can be easily used for comparisons

with newly-created kernels, but more importantly, can be computed in reasonable

time in most cases.

Second, graphkit-learn implements a more flexible and ease-of-use frame-

work, where symbolic and/or non-symbolic vertex and edge labels, as well as other

parameters for kernel computation, can be taken into consideration by simply set-

ting arguments of Python functions. As a result, all the graph kernels can be sim-

ply computed with a single Python statement. More importantly, this framework

makes it possible to use simultaneously symbolic and non-symbolic labels in graph

kernels, which enables graph kernels to tackle more types of graph datasets. Other

Python libraries cannot do this. For example, GraKeL uses two different classes for

the random walk kernel, RandomWalkLabeled for labeled graphs and RandomWalk

for unlabeled graphs, and two different classes for the shortest path kernel, Short-

estPath for symbolic labels and ShortestPathAttr for non-symbolic labels.

Third, graphkit-learn implements three methods to accelerate the compu-

151

https://github.com/ysig/GraKeL
https://github.com/gmum/pykernels
https://github.com/bgauzere/ChemoKernel
https://github.com/BorgwardtLab/GraphKernels
https://github.com/BorgwardtLab/graph-kernels
https://github.com/jajupmochi/graphkit-learn

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

Table 6.2 – Comparison of the implementations of graph kernels.

Kernels

Labeling

Directed
Edge

weighted
Weighting Implementationssymbolic non-symbolic

vertices edges vertices edges

Common walk 3 3 7 7 3 7 a priori CommonWalk

Marginalized 3 3 7 7 3 7 7 Marginalized

Sylvester equation 7 7 7 7 3 3 a priori SylvesterEquation

Conjugate gradient 3 3 3 3 3 3 a priori ConjugateGradient

Fixed-point iterations 3 3 3 3 3 3 a priori FixedPoint

Spectral decomposition 7 7 7 7 3 3 a priori SpectralDecomposition

Shortest path 3 7 3 7 3 3 7 ShortestPath

Structural shortest path 3 3 3 3 3 7 7 StructuralSP

Path kernel up to length h 3 3 7 7 3 7 3 PathUpToH

Treelet 3 3 7 7 3 7 3 Treelet

WL subtree 3 7 7 7 3 7 7 WLSubtree

“Weighting” indicates whether the substructures can be weighted in order to obtain a similarity measure adapted to a particular prediction task.

tation of graph kernels, namely parallelization, Fast Computation of Shortest Path

Kernel (FCSP) method, and the trie structure. Moreover, we have extended some of

these methods to other graph kernels. Description and analyses of these methods

are conducted in detail in Section 3.6.

Finally, graphkit-learn integrates more machine learning tools for graphs,

such as graph edit distance methods and tools to solve the graph pre-image prob-

lems, which are closely related to graph kernels and depend on their implementa-

tions. This is the main reason the library is named “graphkit-learn”, rather than

names such as “graphkernel-learn”.

In conclusion, even though libraries such as GraKeL are great contributions, we

believe it is necessary to implement a new library that addresses the cornerstone

graph kernels (i.e., kernels based on linear patterns), with a focus on improving the

computational complexity and providing further contributions in graph edit dis-

tance and graph pre-image methods.

6.4.2 Implementation details of graph kernels

In this section, we detail the implementations of these kernels, which are col-

lected under the kernels module. For comparison, two graph kernels based on

non-linear patterns are also implemented, namely the Weisfeiler-Lehman (WL)

subtree kernel [Shervashidze et al., 2011, Morris et al., 2017] and the treelet kernel

[Gaüzère et al., 2015b, Bougleux et al., 2012, Gaüzère et al., 2012]. Our implemen-

tations provide the ability to address various types of graphs, including unlabeled

graphs, vertex-labeled graphs, edge-labeled, and fully-labeled graphs, directed and

152

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

kernels

GraphKernel

CommonWalk

Marginalized

RandomWalkMeta

SylvesterEquation

ConjugateGradient

FixedPoint

SpectralDecomposition

ShortestPath

StructuralSP

PathUpToH

Treelet

WeisfeilerLehman

WLSubtree

Figure 6.4 – Implemented graph kernels shown in a UML class diagram.

undirected graphs, and edge-weighted graphs. Only parts of these types have been

tackled by other available libraries. Table 6.2 shows the types of graphs that each

kernel can process.

Figure 6.4 shows the implementations of the graph kernels in a UML class dia-

gram. Each graph kernel is implemented by a Python class inherited from the ba-

sic class GraphKernel. The corresponding relation between graph kernels and the

Python class is presented in Table 6.2 (first and last columns).

Each kernel class is initialized with the parameters required to specify the com-

puting methods and to serve as the tunable hyper-parameters of the kernel, accord-

ing to the definition of the kernel (e.g., the maximum number of iterations of the

marginalized kernel and the maximum path length of the path kernel up to length

h). Meanwhile, the names of vertex and edge labels should also be provided if they

exist. The computation of the graph kernel is then carried out by the member func-

tion compute, which takes any of the following three types of inputs:

• A list of NetworkX graph objects. In this case, a Gram matrix is returned whose

entries are the evaluations of the kernel on pairs of graphs from the list. The

parallelization is carried out over pairs of graphs if applied.

153

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

• A NetworkX graph object G0 and a list of NetworkX graph objects GN. In this

case, a list is returned where each entry is the graph kernel between G0 and an

entry in GN. The parallelization is carried out over GN if applied.

• Two NetworkX graph objects. In this case, a real value is returned represent-

ing the graph kernel between these two graphs. No parallelization scheme is

applied under this situation.

Auxiliary arguments can be provided to compute, namely:

• parallel: sets the parallelization scheme. If set to imap_unordered, then

the parallelization is carried out by the imap_unordered method of Python’s

multiprocessing.Pool module; If set to None, then no parallelization

scheme is applied. Its default value is imap_unordered.

• n_jobs: sets the number of jobs if parallelization is applied. Its default value

is the number of all available CPU cores.

• normalize: decides whether to normalize the Gram matrix after computa-

tion. Its default value is True.

The specific implementation of each graph kernel is described next.

CommonWalk implements the common walk kernel [Gärtner et al., 2003]. Two

computing methods are provided based on exponential series and geometric se-

ries as introduced by [Gärtner et al., 2003]. The direct product of labeled graphs is

implemented for the convenience of computation.

Marginalized computes the marginalized kernel with the recursion algorithm

[Kashima et al., 2003]. The users can set the argument remove_totters=True to

remove tottering with the method introduced by [Mahé et al., 2004].

Four graph kernels derived from the generalized random walk kernel are im-

plemented. The classes SylvesterEquation, ConjugateGradient, FixedPoint,

and SpectralDecomposition compute respectively the Sylvester equation kernel,

the conjugate gradient kernel, the fixed-point iterations kernel, and the spectral de-

composition kernel, as introduced in [Vishwanathan et al., 2010]. For the conjugate

gradient kernel and the fixed-point iterations kernel, the labels of vertices at the two

ends of an edge are added to both sides of the corresponding edge labels.

The shortest path kernel is computed by ShortestPath. The Floyd-Warshall’s

algorithm [Floyd, 1962] is employed to transform the original graphs into shortest-

paths graphs [Borgwardt and Kriegel, 2005], where the parallelization over graphs

can be switched on. StructuralSP computes the structural shortest path kernel

154

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

introduced by [Ralaivola et al., 2005]. The shortest paths in each graph are found

out a priori to reduce running time, where the parallelization over graphs can be

applied. The Fast Computation of Shortest Path Kernel (FCSP) method is applied for

both kernels. See Section 3.6.1 for details.

PathUpToH computes the path kernel up to length h. Two normalization ker-

nels can be chosen, the Tanimoto kernel and the MinMax kernel, studied by

[Suard et al., 2007]. The paths in each graph are extracted a priori for the sake of run-

ning time, where the parallelization over graphs can be applied. By default, the trie

data structure is applied to store paths; nevertheless, it is recommended to choose

the trie data structure according to h and structure properties of graphs (see Sec-

tion 3.6.3).

Two graph kernels based on non-linear patterns are implemented. Treelet

tackles the treelet kernel [Gaüzère et al., 2015b, Gaüzère et al., 2012]. A set record-

ing the number of the occurrence of each treelet is constructed a priori, where paral-

lelization can be applied over graphs. The WLSubtree class deals with the Weisfeiler-

Lehman (WL) subtree kernel, which is derived from the WeisfeilerLehman class

for the Weisfeiler-Lehman framework [Shervashidze et al., 2011]. When paralleliza-

tion is applied, WLSubtree carries out operations on labels for each graph every

time a kernel between a pair of graphs is evaluated; otherwise, the simultaneous

operations on labels presented in Algorithm 3.1 is implemented.

Besides, user-defined vertex kernels and/or edge kernels of labeled graphs are

supported in the shortest path kernels, the structural shortest path kernel, the con-

jugate gradient kernel, and the fixed-point iterations kernel. These kernels allow

using simultaneously symbolic and non-symbolic labels, which enables graph ker-

nels to tackle more types of graph datasets. The module utils contains several pre-

defined kernels between labels of vertices or edges, which is detailed in Section 6.7.

Moreover, edge weights can be included in the shortest path kernel, the structural

shortest path kernel, the Sylvester equation kernel, and the spectral decomposition

kernel.

6.4.3 Usage example

The following piece of code shows an example to compute the path kernel up to

length h:

1 from gklearn.kernels import PathUpToH

2

155

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

3 gram_matrix , run_time = PathUpToH(

4 node_labels=node_labels , # The list of node label names.

5 edge_labels=edge_labels , # The list of edge label names.

6 ds_infos ={’directed ’: True}, # Dataset information required

for computation.

7 depth=3, # The longest length of paths.

8 k_func=’MinMax ’, # Or ’tanimoto ’.

9 compute_method=’trie’ # Or ’naive ’.

10).compute(graphs , # The list of graphs.

11 parallel=’imap_unordered ’, # Or None.

12 n_jobs=1, # The number of jobs to run in parallel.

13 normalize=True , # Whether to normalize the Gram matrix.

14 verbose=True , # Whether to print out results.

15)

The Gram matrix and the time spent to compute it are returned.

6.5 Implementations of graph edit distance

6.5.1 State of the art and motivation

The graph edit distance (GED), as a natural and flexible dissimilarity measure be-

tween graphs, has been widely studied and used. However, it suffers from high

computational complexity. To overcome this issue, various heuristics to estimate

GED have been proposed over the years [Blumenthal et al., 2020]. To facilitate the

use of these heuristics, several open-source libraries have been implemented and

are available online. Table 6.3 lists the state-of-the-art ones, including:

• GEDLIB: a C++ library for (suboptimally) computing graph edit distances using

various state-of-the-art methods [Blumenthal et al., 2019]. This library imple-

ments an integrated framework for GED computation, including an environ-

ment which encodes the information required to compute GED and user in-

terfaces, the implementations of the complete list of GED heuristics examined

in [Blumenthal et al., 2020], varied edit costs designated to different datasets,

and a median graph estimator based on the extension of the method pro-

posed in [Boria et al., 2019]. GEDLIB is one of the best-implemented libraries

for GED.

• gedlibpy: a Python interface of the GEDLIB library implemented by Cython

[Behnel et al., 2011]. Most of the functions provided by GEDLIB can be used in

156

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

Table 6.3 – Libraries available online implementing GEDs.

Libraries Languages Links

GEDLIB C++ https://github.com/dbblumenthal/gedlib

gedlibpy Python (C++ core) https://github.com/Ryurin/gedlibpy

ged-toolbox MATLAB https://github.com/bgauzere/ged-toolbox

graph-lib C++ https://github.com/bgauzere/graph-lib

Python through this interface.

• ged-toolbox: a MATLAB library implementing several GED heuristics

based on bipartite matching and quadratic assignment [Gaüzère et al., 2014,

Bougleux et al., 2015b].

• graph-lib: A C++ library implementing GED heuristics, such as bi-

partite and IPFP with their multi-start counterparts [Gaüzère et al., 2014,

Bougleux et al., 2015b, Gaüzère et al., 2016, Daller et al., 2018].

None of these libraries are written in pure Python; therefore, they may cause

compatibility problems when used by our library. To deal with these problems, we

implement GED heuristics in graphkit-learn with two different strategies. In the

ged module, a GED framework written in pure Python is provided, allowing it to

take full advantage of the Python language and other parts of the library, while easy

to modify and extend. Moreover, an extended compatible version of the gedlibpy

is integrated into the gedlib module, providing the full state-of-the-art functions

of GEDLIB, allowing speedup of computation thanks to the use of C++. These two

strategies are detailed in the following sections.

6.5.2 The ged module

The overall architecture of the ged module is shown in Figure 6.5, which follows the

one in the GEDLIB library. Four modules are included in ged: env, methods, edit_-

costs, and median.

The env module

The main class in env is GEDEnv, which deals with GED informations and pro-

vides general interfaces to compute GED. Figure 6.6 displays the major interfaces

of GEDEnv, inlcuding:

157

https://github.com/dbblumenthal/gedlib
https://github.com/Ryurin/gedlibpy
https://github.com/bgauzere/ged-toolbox
https://github.com/bgauzere/graph-lib

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

ged

env

edit_costs
methods

util

median

GEDEnv

GEDData NodeMap

EditCost
GEDMethod

LSAPEBasedMethod

BipartiteLSAPESolver

MedianGraphEstimator

Figure 6.5 – Implemented graph edit distance tools shown in a UML class diagram.

• add_nx_graph(): adds a NetworkX graph into the environment.

• set_edit_cost(): adds edit cost functions to the environment, where the

predefined cost functions can be selected.

• init(): initializes the environment.

• set_method(): selects a GED heuristic predefined in the methods module

and sets parameters.

• init_method: initializes the selected GED heuristic.

• run_method: runs the GED heuristic between two specified graphs.

The results of the heuristics can be accessed by the getter member functions of

GEDEnv.

Auxiliary classes are designed for the use of GEDEnv. GEDData provides inter-

faces to manipulate the data that is used for GED computation, such as the graphs

and the edit costs, where the latter is acquired by invoking the EditCost class.

158

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

GEDEnv

......

+ add_nx_graph() + set_edit_cost() + init()
+ set_method() + init_method() + run_method()
...

Figure 6.6 – The user interface of GEDEnv.

NodeMap models the vertex to vertex transformation given by an edit path between

two graphs.

The methods module

The methods module contains heuristics to approximate GED. All heuristics are de-

rived from the GEDMethod class, which provides a general interface for GED com-

putation. GEDMethod initializes a GED heuristic with given parameters, runs the

method, and returns the results.

The LSAPE-GED paradigm, based on the linear sum assignment problem with

error-correction (see Section 4.2.1), is implemented by the LSAPEBasedMethod

class, with the full capacity to realize any heuristic derived from it. The

LSAPESolver class in the ged.util module provides the interface to solve the

LSAPE problem. Notice that owing to the lack of LSAPE solver in Python, the

linear_sum_assignment function in the optimize module of the SciPy library is

actually used, which solves the linear sum assignment problem (LSAP). The heuris-

tic bipartite is implemented by the Bipartite class, which is a derived class of

LSAPEBasedMethod.

The edit_costs module

The edit_costs module includes implementation of varied edit cost functions.

The EditCost class provides the interfaces to implement these functions and is

used in the GEDData class. Figure 6.7 displays its main interfaces, including:

• node_ins_cost_fun(): computes the cost of inserting a vertex with a given

label.

• node_del_cost_fun(): computes the cost of deleting a vertex with a given

label.

159

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

EditCost

......

+ node_ins_cost_fun() + node_del_cost_fun() + node_rel_cost_fun()
+ edge_ins_cost_fun() + edge_del_cost_fun() + edge_rel_cost_fun()
...

Figure 6.7 – The user interface of EditCost.

• node_rel_cost_fun(): computes the cost of relabeling a vertex with a given

label by another label.

• edge_ins_cost_fun(): computes the cost of inserting an edge with a given

label.

• edge_del_cost_fun(): computes the cost of deleting an edge with a given

label.

• edge_rel_cost_fun(): computes the cost of relabeling an edge with a given

label by another label.

The constant cost functions are implemented in the Constant class, which can be

used for any data.

The median module

The median module contains the class MedianGraphEstimator, which estimates

the generalized median graph of a given graph set by the extent of the algorithm

proposed in [Boria et al., 2019]. After initialization and parameter settings, the al-

gorithm can be executed by the member function run(). Then the results can be

collected by the getter member functions. Classes GEDEnv and NodeMap are needed.

Compared to [Boria et al., 2019], MedianGraphEstimator allows the change of the

number of vertices while updating the median graph, which is consistent with the

implementation in the GEDLIB library.

In the implementation of graph pre-image methods, MedianGraphEstimator is

used to perform the graph generation function. See Section 6.6.

160

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

6.5.3 The gedlib module

The gedlibmodule is adapted from the gedlibpy library, which provides interfaces

to the C++ library GEDLIB. The interfaces are written in Cython [Behnel et al., 2011]

and the C++ code is encapsulated into a dynamic library file that comes along with

graphkit-learn. Comparing to gedlibpy, the gedlib module differs in the fol-

lowing three aspects:

First, to keep consistent with the interfaces in the ged module, a Python class

named GEDEnv is defined to hold all functions derived from the GEDLIB library. The

member functions of GEDEnv are redesigned to match their counterparts in the ged

module. As a result, the same code to approximate GEDs can be used to invoke both

Python and C++ implementations by simply importing the proper module.

Second, interfaces in gedlib are enriched, making it possible to implement

more tasks, such as the estimation of generalized median graphs. Principal addi-

tional member functions are exhibited in Figure 6.8.

gedlib.GEDEnv

......

+ get_induced_cost() // Returns the induced cost between the two
indicated graphs.

+ compute_induced_cost() // Computes the edit cost between two graphs induced
by a node map.

+ get_median_node_label() // Computes median node label.
+ get_median_edge_label() // Computes median edge label.
+ get_nx_graph() // Get graph with a given id in the form of the

NetworkX Graph.
+ get_node_cost() // Returns the edit cost between two node labels.
...

Figure 6.8 – The additional user interfaces of gedlib.GEDEnv.

Third, two edit costs are designed and added to the GEDLIB library, namely

• NonSymbolic is designed for graphs containing only non-symbolic vertex

and/or edge labels, where all edit costs can be set freely.

• Letter2 is designed for the Letter dataset, which is a special case of Non-

Symbolic.

The Python interfaces are revised accordingly.

161

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

6.5.4 Usage example

The following piece of code shows an example to compute the GED between two

graphs with the GED module, where bipartite is used:

1 from gklearn.ged.env import GEDEnv

2

3 ged_env = GEDEnv () # Initailize GED environment.

4 ged_env.set_edit_cost(’CONSTANT ’, # Edit cost function.

5 edit_cost_constants =[3, 3, 1, 3, 3, 1] # The constant edit

costs.

6 ged_env.add_nx_graph(graph1 , ’’) # Add graph1.

7 ged_env.add_nx_graph(graph2 , ’’) # add graph2.

8 listID = ged_env.get_all_graph_ids () # Get list IDs of graphs.

9 ged_env.init() # Initialize the GED environment.

10 ged_env.set_method(’BIPARTITE ’), # Set GED method.

11 ged_env.init_method () # Initialize the GED method.

12 ged_env.run_method(listID [0], listID [1]) # Run method.

13

14 pi_forward = ged_env.get_forward_map(listID [0], listID [1]) # Get

the forward map.

15 pi_backward = ged_env.get_backward_map(listID [0], listID [1]) #

Get the backward map.

16 dis = ged_env.get_upper_bound(listID [0], listID [1]) # Get the GED

between two graphs.

In this example, pi_forward consists of mapping each vertex in graph1 to a vertex

in graph2 according to the edit path, while pi_backward is the reverse mapping

from graph2 to graph1. Finally, dis is the evaluated GED.

This piece of code can be directly used to invoke the gedlib module to compute

GEDs, as long as replacing the import statement (line 1) by:

1 from gklearn.gedlib import librariesImport

2 from gklearn.gedlib.gedlibpy import GEDEnv

6.6 Implementations of graph pre-image methods

The graph pre-image methods are implemented in the preimage module. To our

knowledge, there is no attempt of realizing these methods in other libraries publicly

available. Two generative models, the random iterative model [Bakır et al., 2004]

and the median pre-image model [Jia et al., 2021] are respectively implemented

162

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

preimage

PreimageGenerator

RandomPreimageGenerator MedianPreimageGenerator

Figure 6.9 – Implemented pre-image methods shown in a UML class diagram.

by classes RandomPreimageGenerator and MedianPreimageGenerator (see Chap-

ter 5 for detail). These two classes are derived from the abstract class PreimageGen-

erator, which defines the basic getter and setter interfaces for the generator.

Both generators provide two main interfaces, namely the member functions

set_options() and run(). The former one chooses the parameters used to con-

struct the graph pre-image. For RandomPreimageGenerator, it sets the graph ker-

nel method and setting used to construct the kernel space, as well as the parameters

controlling the iterative procedure, such as the maximum number of iterations and

number of random graphs generated in each iteration. For MedianPreimageGener-

ator, it determines the parameters for the graph kernel, the graph edit distance, the

iterative procedure, and the termination criteria used to construct the graph pre-

image. Instances of these settings are exhibited in the example codes at the end of

this section.

MedianPreimageGenerator takes advantage of classes GraphKernel, GEDEnv

and MedianGraphEstimator in the aforementioned modules. The number of ver-

tices can be optimized through the update procedure. The following codes display

an example of generating graph pre-image by MedianPreimageGenerator. Param-

eters are first determined.

1 ### Set parameters.

2

3 # Parameters for MedianPreimageGenerator (our method).

4 mpg_options = {’fit_method ’: ’k-graphs ’, # How to fit edit costs.

"k-graphs" means use all graphs in the median set while

fitting.

5 ’init_ecc ’: [4, 4, 2, 1, 1, 1], # Initialize edit costs.

6 ’ds_name ’: ds_name , # Name of the dataset.

7 ’parallel ’: True , # Whether the parallel scheme is to be

used.

8 ’time_limit_in_sec ’: 0, # Maximum time limit to compute

163

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

the pre -image. If set to 0 then there is no limit.

9 ’max_itrs ’: 100, # Maximum iteration limit to optimize

edit costs. If set to 0 then there is no limit.

10 ’max_itrs_without_update ’: 3, # If the time that edit

costs are not updated is more than this number , then the

optimization stops.

11 ’epsilon_residual ’: 0.01, # In optimization , the

residual is only considered changed if the change is bigger

than this number.

12 ’epsilon_ec ’: 0.1, # In optimization , the edit costs are

only considered changed if the changes are bigger than this

number.

13 ’verbose ’: 2 # Whether or not to print out results.

14 }

15

16 # Parameters for graph kernel computation.

17 kernel_options = {’name’: ’PathUpToH ’, # Use path kernel up to

length h.

18 ’normalize ’: True # Whether to use a normalized Gram

matrix to optimize edit costs.

19 }

20

21 # Parameters for GED computation.

22 ged_options = {’method ’: ’IPFP’, # Use IPFP huristic.

23 ’initialization_method ’: ’RANDOM ’, # or ’NODE ’, etc.

24 ’initial_solutions ’: 10, # When bigger than 1 after

multiplied by "ratio_runs_from_initial_solutions", then the

method is considered mIPFP.

25 ’edit_cost ’: ’CONSTANT ’, # Use CONSTANT cost.

26 ’attr_distance ’: ’euclidean ’, # The distance between non

-symbolic node/edge labels is computed by euclidean distance.

27 ’ratio_runs_from_initial_solutions ’: 1,

28 ’threads ’: 1 # parallel threads. Do not work if

mpg_options[’parallel ’] = False.

29 }

30

31 # Parameters for MedianGraphEstimator (Boria ’s method).

32 mge_options = {’init_type ’: ’MEDOID ’, # How to initial median (

compute set -median). "MEDOID" is to use the graph with the

smallest SOD.

33 ’random_inits ’: 10, # Number of random initializations

when ’init_type ’ == ’RANDOM ’.

164

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

34 ’time_limit ’: 600, # Maximum time limit to compute the

generalized median. If set to 0 then no limit.

35 ’verbose ’: 2, # Whether to print out results.

36 ’refine ’: False # whether to refine the final SODs or

not.

37 }

We exhibit as many parameters as possible to facilitate users to understand their

meanings and exhibit the flexibility of our implementation. In practice, most of

them are equipped with default values or can be computed automatically. After

these settings, the generation process can be carried out as follows:

1 ### Run median preimage generator.

2

3 from gklearn.preimage import MedianPreimageGenerator

4 # Create a median preimage generator instance.

5 mpg = MedianPreimageGenerator ()

6 # Add dataset.

7 mpg.dataset = dataset

8 # Set parameters.

9 mpg.set_options (** mpg_options.copy())

10 mpg.kernel_options = kernel_options.copy()

11 mpg.ged_options = ged_options.copy()

12 mpg.mge_options = mge_options.copy()

13 # Run.

14 mpg.run()

15 # Get results.

16 graph = mpg.gen_median

6.7 Auxiliary tools

To facilitate the use of the aforementioned modules, we implement a set of auxiliary

tools in the utils module.

The first group of tools consists of graph manipulation functions applied in the

graph kernels, GEDs, and graph pre-images, including:

• getSPLengths computes the shortest paths between each pair of vertices in

a graph.

• getSPGraph transforms a given graph to its corresponding shortest-paths

graph by Floyd transformation [Floyd, 1962].

165

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

• get_shortest_paths returns all shortest paths in a graph.

• untotterTransformation transforms a given graph according to

[Mahé et al., 2004] to filter out tottering patterns for the marginalized

kernel.

• direct_product_graph returns the direct / tensor product graph of two

given directed graphs [Gärtner et al., 2003].

• compute_gram_matrices_by_class computes the Gram matrix of each set

of graphs belonging to the same class in a given dataset and graph kernel.

• find_paths finds all paths no longer than a certain length that start from a

given source node in a graph. A recursive depth-first search is applied.

• find_all_paths finds all paths no longer than a certain length in a given

graph. A recursive depth-first search is applied.

• compute_distance_matrix converts a Gram matrix to a distance matrix.

The second group of tools computes kernels between labels, all included in the

sub-module kernels. Among them, functions deltakernel computes the Kro-

necker delta function between symbolic labels, while gaussiankernel, polynomi-

alkernel, and linearkernel compute respectively the Gaussian kernel, the poly-

nomial kernel, and the linear kernel between non-symbolic labels. Functions ker-

nelsum and kernelproduct are respectively the sum and product of kernels be-

tween symbolic and non-symbolic labels.

The third group provides concise wrappers of parallelization methods using

Python’s Pool module, especially for graph kernel computations. The parallel

module envelopes these wrappers.

In the fourth group, a complete model selection and evaluation pro-

cedure is implemented in the module model_selection_precomputed,

for the convenience of use. All work in it is carried out by function

model_selection_for_precomputed_kernel. This function first pre-processes

the input dataset, then computes Gram matrices and performs the model

evaluation with machine learning methods from the scikit-learn library

[Pedregosa et al., 2011]. Support Vector Machines (SVM) are applied for classifica-

tion tasks and kernel ridge regression for regression [Schölkopf and Smola, 2002].

As shown in Figure 6.10, a two-layer nested cross-validation (CV) is applied to

select and evaluate models, where the outer CV randomly splits the dataset into 10

166

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

evaluation test

training

validation

outer CV

inner CV

one trial

Figure 6.10 – Exhibition of a two-layer cross validation (re-presenting Figure 3.17).

folds with 9 as evaluation set, and the inner CV then randomly splits the evalua-

tion set to 10 folds with 9 as the training set and 1 as the validation set. The hyper-

parameters are optimized on the evaluation set by grid search. The whole procedure

is performed 30 times, and the average performance is computed over these trials.

The kernel parameters are tuned within this procedure. This design allows the users

to perform model selection in a single Python statement. The following code shows

a demo to use this function:

1 from gklearn.utils import model_selection_for_precomputed_kernel

2 from gklearn.kernels import untilhpathkernel

3 import numpy as np

4

5 # Set parameters.

6 datafile = ’DATA_FOLDER/MUTAG/MUTAG_A.txt’

7 param_grid_precomputed = {

8 ’depth’: np.linspace(1, 10, 10),

9 ’k_func ’: [’MinMax ’, ’tanimoto ’],

10 ’compute_method ’: [’trie’]}

11 param_grid = {’C’: np.logspace (-10, 10, num=41, base =10)}

12

13 # Perform model selection and classification.

14 model_selection_for_precomputed_kernel(

15 datafile , # The path of dataset file.

16 untilhpathkernel , # The graph kernel used for estimation.

17 param_grid_precomputed , # The parameters used to compute gram

matrices.

18 param_grid , # The penalty parameters used for penalty items.

19 ’classification ’, # Or ’regression ’.

20 NUM_TRIALS =30, # The number of the random trials of the outer

CV loop.

21 ds_name=’MUTAG’, # The name of the dataset.

22 n_jobs=1,

23 verbose=True)

167

CHAPTER 6. GRAPHKIT-LEARN FOR GRAPH MACHINE LEARNING

The “param_grid_precomputed” and the “param_grid” arguments specify grids of

hyper-parameter values used for grid search in the cross-validation procedure. The

results are automatically saved.

More demos and examples can be found in the notebooks directory and the

gklearn.examples module of the library.

6.8 Conclusion and Future Work

In this chapter, we presented the Python library graphkit-learn for machine

learning methods on graphs. It is the first library that provides a thorough cover-

age of graph kernels based on linear patterns (9 kernels based on linear patterns

and 2 on non-linear patterns for comparison). The first attempt to implement a

well-structured collection of graph edit distance computing methods was provided,

with state-of-the-art paradigms and heuristics. Graph pre-image methods are in-

cluded, building the foundation for solving this problem. Graph dataset processing

and other auxiliary functions extend the ability of the library.

Future work includes implementations of other non-linear kernels, a more thor-

ough test of graph kernels on a wider range of benchmark datasets, a C++ imple-

mentation bound to Python interface for faster computation. Moreover, more graph

edit distance methods and tools to solve the graph pre-image problem will be in-

cluded. Furthermore, we will integrate more machine learning tools for graphs into

the library, such as graph neural networks applied for kernels, GEDs, and pre-image

problems. Finally, we encourage interested users and authors of graph machine

learning problems to commit their implementations to the library.

168

Chapter 7

Conclusions and future work

Contents

7.1 Conclusion . 170

7.2 Future work . 172

169

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusion

In this thesis, we explored machine learning methods on graphs, focusing on graph

kernels, graph edit distances, and the graph pre-image problem. On one hand, we

provided thorough examination and improvements on graph kernels based on lin-

ear patterns. On the other hand, we studied the stability property of graph edit dis-

tances (GEDs) and proposed metric learning algorithms to optimize GEDs for re-

gression problems. Based on these advances, we proposed a new strategy to deal

with the pre-image problem on graphs. We detail each work in the following.

• In Chapter 3, we provided a survey on graph kernels, with an emphasis on

the ones based on linear patterns and two kernels based on non-linear pat-

terns for comparison. The theoretical foundations of these kernels were well-

examined, including their mathematical expression, their computational

complexities, their strengths and weaknesses, types of graphs that they can

be used on, relationships between themselves, as well as their connections

with other classic and state-of-the-art kernels from literature. Moreover, ex-

periments were conducted on various types of graphs, both synthesized and

real-world ones, where the prediction performance and the time complexity

of each graph kernel were analyzed and compared. Experiments showed that

graph kernels based on linear patterns, such as the path kernel up to length

h, can achieve a comparable performance with the ones based on non-linear

patterns. As a conclusion, we gave the recommendation of the choice of the

proper kernels according to the properties of the given graph data. This work

provides a baseline for the analyses of graph kernels and cornerstones to de-

velop new kernels.

To better utilize these kernels, we proposed three strategies to reduce their

computational complexity and memory usage. The first one was the FCSP

method, where the sub-kernels between vertices and edges were computed

a priori. The second one was parallelization, which was conducted between

pairs of graphs and the cross-validation procedure. The third one was the use

of the trie structure, which stores the path sub-patterns to reduce memory

occupation. Conducted experiments proved the ability of these methods to

reduce the time and space complexity of graph kernels.

• In Chapter 4, the graph edit distance, a dissimilarity measure between graphs,

170

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

was examined. Based on the revisiting of two paradigms LSAPE-GED (resp.

LS-GED) and two representative heuristics lying in these paradigms, i.e., bi-

partite (resp. IPFP), we studied the stability of GED heuristics, which is the

first time in literature. We found out empirically the effects of two factors on

the stability, namely the choice of edit costs and the repeated time to compute

the GED. Experiments were carried out with IPFP on several datasets, showing

that the stability of IPFP decreases as the ratio between vertex and edge edit

costs increases. The same phenomenon was observed when the parameter

ratio is replaced by the repeated time. As these factors may affect the stability

and further the task performances of the GED, they should be carefully taken

care of.

Moreover, we developed a metric learning algorithm to optimize the GED for

regression problems. The edit costs were tuned by aligning GEDs and dis-

tances between targets. With the distance-preserving principle, we proposed

an alternate iterative procedure, where two steps are carried out alternately:

the update of edit costs obtained by solving a constrained linear problem; and

a re-computation of the optimal edit paths according to the newly computed

costs were performed alternately. The optimized edit costs were analyzed to

have an insight into the structure of the graph space with respect to the tar-

gets. Experiments showed that the optimized costs produced significant im-

provement on the prediction performance, where a k-nearest neighbors re-

gression was performed.

• Inspired by this metric learning procedure, we proposed a new strategy to

tackle the pre-image problem on graphs in Chapter 5. To construct an approx-

imation of a graph pre-image, we first aligned the graph space to the kernel

space by minimizing the differences between distances in both spaces. The

distances in graph space can be measured by graph edit distances, while the

distances in kernel space were computed by a graph kernel. A linear optimiza-

tion problem was established for the minimization, where the edit costs were

optimized according to the distances in kernel space. To this end, the afore-

mentioned two-step alternate iterative optimization procedure over edit costs

and edit paths was used, with the distances in kernel space replacing the dis-

tances between targets. After that, using the optimized edit costs, a graph gen-

erative algorithm was used for the generation of the graph pre-image. Specif-

171

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

ically, we proposed a method to generate the desired graph pre-image, by

adapting a recently introduced method for the construction of the generalized

median graph, where an iterative alternate minimization procedure to gener-

ate median graphs is applied. The conducted experiments demonstrated that

our method outperforms the pre-image from the dataset and the random edit

costs, and was competitive with the expert costs. Our method allows to au-

tomatically construct good graph pre-images even without expert edit costs,

which is a solid foundation for the future study of the graph pre-image prob-

lem.

• To facilitate the use and examination of the aforementioned work and car-

ried out experiments, we released the open-source Python library graphkit-

learn online, which was described in detail in Chapter 6. This library includes

machine learning tools on graphs, mainly graph kernels, graph edit distances,

and graph pre-image methods. To support these tools, a graph dataset fetch-

ing, loading, and processing module is included. Auxiliary tools are provided,

such as the ones for the model selection and evaluation process.

7.2 Future work

Plenty of intriguing future work can be conducted for the graph pre-image problem,

beginning with the work on graph kernels and graph edit distance methods used for

that problem:

• The most interesting work for graph kernels includes investigating the rela-

tion between kernels based on linear patterns and the state-of-the-art ker-

nels, especially the ones based on non-linear patterns. Novel kernels are

developed ceaselessly with respect to various strategies and sub-patterns. Be-

sides the treelet kernel and the WL kernel examined in this thesis, widely-

known sub-patterns include subtree patterns, cyclic patterns, quantum walks,

etc. Experiments in Chapter 3 have exhibited promising performance of

some kernels based on linear patterns, so how much advantage did these

newly-developed kernels gain? By answering this question, we look forward

to digging into the properties of different types of sub-patterns, and reveal-

ing the necessity of applying these patterns when facing varied graph types

172

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

and tasks, considering the trade-off between performance and computa-

tional complexity. Meanwhile, graph kernels constructed by strategies other

than sub-patterns have been investigated as well, such as the ones based

on propagation, message passing, and deep frameworks. Integrating kernels

based on linear patterns into these strategies constitutes another intriguing

research direction. These strategies and sub-patterns have been well stud-

ied in several recent survey papers [Borgwardt et al., 2020, Kriege et al., 2020,

Ghosh et al., 2018], demonstrating that graph kernels are still of great interest

to the community. A deeper investigation of the taxonomy proposed in these

surveys will help better understand the strengths and weaknesses of each type

of kernels and that of graph kernels as a whole, compared to other graph ma-

chine learning methods. Promising future development of new graph kernels

can be anticipated derived from these researches.

• Another future research topic will concentrate on the computational effi-

ciency and scalability of graph kernels. On one side, we will explore the

feasibility of improving our methods to reduce the computational complexity

proposed in Section 3.6, and of adapting them onto state-of-the-art graph ker-

nels. On the other side, many methods have been proposed over the decades

to lower the computational complexity of graph kernels, such as graph kernels

based on iterative label refinement [Shervashidze and Borgwardt, 2009] and

the use of hashing functions [Morris et al., 2016, Hido and Kashima, 2009]. We

would like to take advantage of these strategies to generalize them into graphs

of various types while enhancing their efficiency. Underlying principles of

these strategies, such as hashing, can be borrowed to improve our methods.

• The future work for the GED consists of a thorough study of the stability of

heuristics. For the edit cost optimization method, the convergence proof will

be conducted. We are also looking forward to extending this scheme to clas-

sification problems and non-constant edit costs. To achieve these goals, a

more sophisticated cost updating procedure is required, where the parame-

ters to optimize include the edit costs between each pair of labels on vertices

and edges. This work has the potential to capture information brought by

labels. Recent advances on learning edit costs, such as genetic algorithms

[Garcia-Hernandez et al., 2020] and neural networks [Martineau et al., 2020],

can be applied for this procedure. Criteria other than distance-preserving can

173

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

be considered for optimization as well, such as the conformal map that can

be used to align the graph space and target space by preserving inner product

measures, thus leading to a redesigning of the edit cost updating procedure.

• The future work for the graph pre-image problem will be carried out in

three folds. First, for the current methods, the convergence proof will be

conducted. Meanwhile, the generalization of the proposed method can be

included, such as on graphs with symbolic labels, on the construction of user-

defined pre-images, and on the non-constant edit costs. In general, a uni-

fied framework can be constructed for the graph pre-image problem based on

metric learning with tuned edit costs. Any cost learning method can be em-

braced by this framework, such as the ones introduced in Section 4.4.1. Sec-

ond, inquiring into the distance measures on graphs and parameter updating

criteria can help to catch their influence on the produced pre-images. Ex-

amples of these distances include the chemical distance and the Chartrand-

Kubiki-Shultz (CKS) distance, as introduced in Section 1.2.2. Meanwhile,

the aforementioned conformal map is a promising candidate for the space-

aligning criteria. Third, it is worth exploring the advantages of many emerg-

ing tools, such as knowledge graphs and graph neural networks, to tackle

the graph pre-image problem, where the former can integrate prior expertise

from a model-driven perspective, while the latter capitalizes on neural net-

works employed on graphs.

• All the aforementioned work was on kernel framework; while the graph neu-

ral networks (GNNs) have sprung up in recent years and have achieved state-

of-the-art performance on many tasks [Wu et al., 2020, Zhang et al., 2020,

Zhou et al., 2018a]. GNNs provide an elegant framework to bridge the gap

between graphs and machine learning methods, which have a strong back-

ground connection to the Weisfeiler-Lehman propagation [Morris et al., 2019,

Xu et al., 2018]. Their properties have recently been increasingly investigated

[Balcilar et al., 2021]. We would like to revisit our work within the GNN

framework, in the sense of examining the similarities and differences, pros

and cons, and performances between GNN and graph kernel frameworks.

• GNNs that endow the ability to construct graphs, namely generative GNNs,

provide new perspectives to solve the graph pre-image problem. For in-

stance, a graph autoencoder model takes a graph as input and maps it into

174

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

a feature space with a probabilistic encoder model, then a probabilistic de-

coder model is trained to sample realistic graphs, where the last step can

be regarded as a pre-image procedure [Simonovsky and Komodakis, 2018,

Grover et al., 2019, Kipf and Welling, 2016]. Other approaches, such as autore-

gressive generative models [Liao et al., 2019, You et al., 2018] and generative

adversarial networks (GANs) [De Cao and Kipf, 2018, Wang et al., 2018], can

generate new samples, which would be useful in the generative procedure

when designing graph pre-image methods.

• To reinforce these work, enriching the graphkit-learn library is necessary.

Among those include the implementations of state-of-the-art graph kernels,

graph edit distances, and pre-image algorithms. The integration with other

tools will also be considered, such as graph neural networks applied for these

problems.

175

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

176

Part III

Appendix

177

Annexe A

Synthèse de la thèse en français

Contents

A.1 Contexte de la représentation graphique 180

A.2 Les propriétés des graphes et le paradigme du noyau 183

A.2.1 De l’apprentissage humain à l’apprentissage automatique . 183

A.2.2 Sur les espaces des graphes . 184

A.2.3 Projection des graphes et noyaux sur graphes 186

A.3 Construire des graphes par la résolution du problème de la pré-

image . 187

A.4 Contributions . 190

A.5 Structure de la thèse . 193

A.6 Conclusion . 194

A.7 Perspectives . 197

179

ANNEXE A. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

Ce chapitre présente un résumé de cette thèse en français. Premièrement, nous

présentons le contexte général de ce travail. Ensuite, les contributions principales

portant sur la distance d’édition, les noyaux sur graphes et le problème de calcul de

la pré-image sont présentées. Enfin, nous concluons sur les contributions apportées

ainsi que sur les perspectives ouvertes par ces travaux.

A.1 Contexte de la représentation graphique

Les graphes permettent de modéliser un large éventail de données du monde réel.

Constitués de sommets et d’arêtes les reliant, les graphes sont capables d’enco-

der des éléments ainsi que leurs relations, ce qui permet de saisir les informations

structurelles sous-jacentes des données. En outre, chaque sommet et chaque arête

peut être doté d’attributs discrets et/ou continus, ce qui permet de représenter une

grande variété d’informations pour décrire les données.

Grâce à la complexité et à l’expressivité de la structure des graphes, de nom-

breuses applications dans divers domaines utilisent cette représentation. En ché-

moinformatique et en bioinformatique, les molécules, y compris les biomacromo-

lécules, peuvent être naturellement représentées par des graphes [Trinajstic, 2018,

Huber et al., 2007]. Un sommet est associé à un atome, et est étiqueté par le type

d’atome et parfois d’autres attributs tels que sa position dans l’espace, tandis qu’une

arête peut représenter la connexion entre les deux atomes, généralement étique-

tée par la valence. Des applications biologiques et biomédicales peuvent alors se

baser sur ces représentations, comme pour la conception et la découverte de mé-

dicaments [Vamathevan et al., 2019], l’analyse des effets biologiques et chimiques,

ainsi que l’identification biométrique [Kisku et al., 2011]. Dans l’analyse des ré-

seaux sociaux, de grands graphes sont utilisés pour modéliser ces réseaux et les

interactions entre utilisateurs [Scott, 2011, Wasserman et al., 1994]. Par exemple,

un profil d’utilisateur peut être codé par un sommet étiqueté par ses informa-

tions détaillées, et la relation entre les profils d’utilisateurs peut être codée par

des arêtes. Cette représentation peut ensuite être utilisée pour des applications

telles que l’exploration de données sur le web [Russell, 2013, Rettinger et al., 2012]

et la publicité [Guo et al., 2020]. En vision par ordinateur, les images 2D et 3D

peuvent être représentées par des graphes. Dans les applications 2D, une ap-

plication courante est la reconnaissance de l’écriture manuscrite, où les lignes

tracées sont représentées par des arêtes et les points de connexion entre lignes

180

ANNEXE A. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

Domaine & Type de données Données originales Représentation graphique

chémoinformatique
molécule

médias sociaux
réseau social

vision par ordinateur
écriture manuscrite

vision par ordinateur
nuage de points 3D

graphe de connaissances
SuperviséPar

FilsDe

FilsDe

GagnantDe

ExpertEn
PrixEn

ThéorieDe

ProposéPar

NéEn
DiplôméDe

ProfesseurDe

Hermann
Einstein

Hans Albert
Einstein

Alfred
Kleiner

Albert
Einstein

Prix Nobel
en Physique

Physique
La théorie

de la relativité

Empire
allemand Université

de Zurich

transition d’état

Table de transition d’état
Entrée

État actuel
0 1

S1 S2 S1

S2 S1 S2

0

0

1 1

FIGURE A.1 – Exemples de données et leur représentation graphique.

sont représentés par des sommets étiquetés par leurs positions dans le plan

[Riesen and Bunke, 2008]. Cette représentation permet de représenter directement

l’information. Une stratégie similaire peut être utilisée pour des applications telles

que la reconnaissance d’objets [Nene et al., 1996]. D’autres approches pour mo-

déliser une image comme un graphe incluent l’encodage de chaque pixel par un

181

ANNEXE A. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

sommet et les arêtes par la connexion aux pixels adjacents [Wang, 2015]. En consi-

dérant des données 3D, un nuage de points peut être représenté intuitivement

par un graphe, chaque point 3D étant un sommet [de Oliveira Rente et al., 2018].

Le graphe de connaissances, ainsi que son dérivé sous forme d’ontologie, consti-

tuent un autre domaine reposant sur des représentations sous forme de graphes

[Ji et al., 2020]. Comme son nom l’indique, un graphe de connaissances est un

graphe construit par des informations provenant d’un ensemble de connaissances

du domaine. Un grand nombre d’applications entrent dans cette catégorie, comme

la recherche d’information [Reinanda et al., 2020], le traitement automatique du

langage naturel [Nastase et al., 2015], le Web sémantique [Ding et al., 2007], et la

modélisation des processus de l’industrie [Cao et al., 2018]. D’autres applications

des graphes incluent la transition d’état [Conte et al., 2004], les graphes temporels

[Michail, 2016], etc. La modélisation et les applications inter-domaines ont été lar-

gement explorées. FIGURE A.1 présente plusieurs exemples de données sous forme

de graphes dans différents domaines. La molécule provient du jeu de données MU-

TAG [Debnath et al., 1991] ; les images utilisées pour les avatars du réseau social pro-

viennent de Wikipedia1 ; la lettre manuscrite “A” provient du jeu de données Letter-

high [Riesen and Bunke, 2008] ; le nuage de points est généré à partir d’un modèle

de chat tridimensionnel à l’aide de la bibliothèque Open3D2 [Zhou et al., 2018b] ; le

graphe de connaissances est construit sur les données de [Ji et al., 2020].

Toutes ces applications sont fondées sur les réponses à deux questions fonda-

mentales pour la modélisation sous forme de graphe :

- Question 1 : Comment acquérir des caractéristiques et propriétés intrin-

sèques des jeux de données de graphes?

- Question 2 : Comment construire des graphes dotés des caractéristiques et

propriétés souhaitées?

Par exemple, lorsqu’une molécule de médicament est représentée sous forme de

graphe, l’analyse de l’influence d’une sous-structure sur sa fonction (par exemple,

sa capacité anticancéreuse) relève de la question 1, tandis que la question 2 peut im-

pliquer la conception de nouveaux médicaments pour une propriété donnée. Dans

cette thèse, nous visons à concevoir des méthodes efficaces pour aborder ces deux

questions fondamentales.

1https://www.wikipedia.org.
2Disponible à l’adresse https://free3d.com/3d-model/cat-v1--522281.html.

182

https://www.wikipedia.org
https://free3d.com/3d-model/cat-v1--522281.html

ANNEXE A. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

A.2 Les propriétés des graphes et le paradigme du

noyau

A.2.1 De l’apprentissage humain à l’apprentissage automatique

Comme dans la plupart des applications en science des données, l’extraction de ca-

ractéristiques et l’analyse de propriétés à partir de données sous forme de graphes

sont généralement effectuées à partir des connaissances des experts du domaine

depuis de nombreuses années. Cependant, ces méthodes souffrent de plusieurs

problèmes majeurs. Tout d’abord, pour concevoir certaines méthodes, la connais-

sance du domaine est nécessaire a priori, et les choix effectués en amont peuvent

avoir une grande influence sur les performances. Deuxièmement, en raison de leur

spécificité à un certain domaine et un jeu de donnés particulier, la capacité de géné-

ralisation peut être limitée. Enfin, ces méthodes n’ont généralement pas la capacité

d’apprendre à partir de (nouvelles) données, ce qui entraîne une potentielle perte

d’informations [George and Hautier, 2020].

Avec l’avènement de l’ère dite du Big Data, les méthodes d’apprentissage auto-

matique sont de plus en plus utilisées pour analyser des quantités massives de don-

nées. Kevin P. Murphy [Murphy, 2012] définit l’apprentissage automatique comme

suit :

L’apprentissage automatique est un ensemble de méthodes permettant de

détecter automatiquement des motifs dans les données, puis d’utiliser les

motifs découverts pour prédire les propriétés de données futures ou pour

prendre d’autres types de décisions en situation d’incertitude (comme la

planification de la collecte de données supplémentaires).

Ces dernières années, l’apprentissage automatique est devenu un outil efficace dans

de nombreuses tâches du monde réel, telles que les problèmes de régression et de

classification. Les algorithmes d’apprentissage automatique se concentrent sur les

données elles-mêmes, en extrayant des informations pertinentes. Les avantages de

l’apprentissage automatique incitent fortement à leur adaptation sur des données

sous forme de graphes [Chami et al., 2020], incluant l’apprentissage automatique de

données moléculaires [Wu et al., 2018] et la découverte de nouveaux médicaments

[Giguère et al., 2015]. Cependant, les algorithmes d’apprentissage automatique ont

été généralement définis sur des espaces vectoriels, ce qui permet d’utiliser les pro-

priétés d’algèbre linéaire. Cependant, il est difficile de vectoriser de nombreux types

183

ANNEXE A. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

de données en raison de leurs structures complexes, comme les chaînes de carac-

tères, les arbres et les graphes, les structures de graphes étant l’une des plus diffi-

ciles car elles peuvent être vues comme une généralisation des séquences (et donc

des chaînes de caractères) et des arbres.

Malgré le pouvoir d’expression structurelle permis par les graphes, leur com-

plexité structurelle devient un talon d’Achille lorsque l’on souhaite appliquer des

méthodes d’apprentissage automatique sur données sous forme de graphe. Pour

exploiter la puissance combinée de ces deux puissants outils, il est essentiel de re-

présenter la structure des graphes sous des formes qui peuvent être utilisées par

les méthodes d’apprentissage automatique les plus courantes, tout en limitant la

perte d’informations lors de la transformation des graphes. Étant donné qu’une

partie des algorithmes d’apprentissage automatique reposent sur des mesures de

(dis)similarité entre les données, le problème peut premièrement se résumer à cal-

culer une mesure de la (dis)similarité entre les graphes, ce qui peut être inter-

prété via le problème de l’appariement de nœuds de graphes [Conte et al., 2004,

Foggia et al., 2014, Livi and Rizzi, 2013, Yan et al., 2016, Wills and Meyer, 2020]. Les

mesures de similarité de graphes basées sur l’appariement de nœuds peuvent être

grossièrement regroupées en deux grandes catégories : la similarité exacte et la

similarité inexacte [Conte et al., 2004]. La première nécessite une correspondance

stricte entre les deux graphes appariés, comme pour le problème d’isomorphisme

de graphes [Kobler et al., 2012]. Malheureusement, la similarité exacte ne peut pas

être calculée en temps polynomial par ces méthodes ; elle n’est donc pas utili-

sable sur une grande partie des données issues du monde réel. De plus, elle four-

nit une comparaison binaire et ne permet pas de quantifier la différence entre deux

graphes. Pour cette raison, les mesures de similarité inexactes sont couramment ap-

pliquées aux graphes. Une façon intuitive d’aborder le problème de la dissimilarité

des graphes est de définir les distances et les métriques directement sur l’espace des

graphes.

A.2.2 Sur les espaces des graphes

Un espace des graphes est généralement considéré comme un ensemble de graphes,

doté d’une certaine distance ou métrique. La pierre angulaire est la définition

d’une distance appropriée entre deux graphes. Idéalement, nous cherchons des dis-

tances qui sont des métriques valides, c’est-à-dire qui satisfont aux conditions de

184

ANNEXE A. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

non-négativité, d’identité, de symétrie et d’inégalité triangulaire. C’est le cas de la

distance chimique, qui vise à minimiser les différences entre les arêtes appariées

de deux graphes [Kvasnička et al., 1991], et de la distance Chartrand-Kubiki-Shultz

(CKS), qui utilise les distances des plus courts chemins entre chaque paire de som-

mets [Chartrand et al., 1998]. Cependant, ces distances sont coûteuses en termes de

calcul [Bento and Ioannidis, 2019].

Les pseudométriques permettent d’alléger ces contraintes. Une fa-

mille de méthodes intuitive et largement utilisée est la distance d’édition

[Garey and Johnson, 1979, Sanfeliu and Fu, 1983], qui mesure la dissimilarité

entre deux graphes par le coût associé à la transformation d’un graphe en un

autre. Des heuristiques sont proposées pour approximer la distance d’édition

avec une complexité de calcul acceptable en pratique [Blumenthal et al., 2020].

Une extension de la distance chimique est proposée dans [Jain, 2016], qui peut

prendre en compte les attributs des arêtes. Cependant, elle est limitée à la

norme de Frobenius et nécessite d’autres relaxations pour être calculée sur des

données réelles. D’autres distances, telles que la distance du sous-graphe com-

mun maximal [Bunke and Shearer, 1998, Bunke, 1997] et la distance de réaction

[Koca et al., 2012], souffrent des mêmes problèmes que les deux précédentes

[Bento and Ioannidis, 2019].

La littérature sur les propriétés théoriques des espaces des graphes est limi-

tée [Jain, 2016], ce qui inclut les espaces des graphes dotés de la distance du

sous-graphe commun maximal [Hurshman and Janssen, 2015] et ceux dotés d’un

noyau d’alignement optimal [Jain and Obermayer, 2009], ce dernier étant étendu

aux espaces de motifs sous forme d’arbres [Feragen et al., 2010, Feragen et al., 2011,

Feragen et al., 2012]. Dans [Jain, 2016], les auteurs proposent un Théorème de Re-

présentation des Graphes qui induit un espace d’orbite dans lequel les graphes

peuvent être considérés comme des points. Un travail connexe est réalisé dans

[Kolaczyk et al., 2020].

La limite des distances métriques est bien résumée dans [Grattarola et al., 2019] :

L’utilisation de distances métriques, comme les distances d’alignement

de graphes [Jain, 2016], ne fait qu’atténuer le problème (que les dis-

tances de graphes spécifiques à une application ne satisfont souvent pas

la propriété d’identité ou l’inégalité triangulaire [Livi and Rizzi, 2013,

Wilson et al., 2014]), car elles sont coûteuses à calculer et donc inutiles

pour des applications pratiques. Par conséquent, une approche commu-

185

ANNEXE A. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

nément utilisée consiste à projeter les graphes dans un espace géomé-

trique plus conventionnel, tel qu’un espace euclidien.

Comme corroboré dans [Grattarola et al., 2019] et bien d’autres, cette limite pousse

les chercheurs à étudier les méthodes de projection de graphes et des méthodes à

noyaux sur graphes.

A.2.3 Projection des graphes et noyaux sur graphes

Les méthodes de projection de graphes et les noyaux sur graphes peuvent être assi-

milées à des méthodes de similarité inexacte. Ces stratégies consistent à projeter les

graphes dans un espace où les calculs peuvent être facilement effectués, comme un

calcul de moyenne ou la mise en œuvre de méthodes de classification ou de régres-

sion.

Les méthodes de projection classique de graphes permettent de projeter les

graphes dans des espaces euclidiens à dimension finie, dans lesquels les vecteurs

sont calculés (explicitement dans de nombreux cas) en encodant certaines informa-

tions contenues dans les graphes. Les techniques utilisées par les méthodes de plon-

gement des graphes incluent la factorisation de matrices, les marches aléatoires et

l’apprentissage profond [Goyal and Ferrara, 2018, Cai et al., 2018]. En raison de la

perte en précision de la représentation d’un graphe sous forme d’un vecteur, une

perte d’information est anticipée. En revanche, les noyaux se basent sur un plonge-

ment implicite en représentant les graphes dans un espace de caractéristiques de

dimension éventuellement infinie, ce qui réduit les restrictions sur les informations

encodées. Les deux stratégies sont illustrées dans la FIGURE A.2.

En effet, en tant que généralisation du produit scalaire, les noyaux peuvent

être vus comme des mesures de similarité naturelle entre les données. En utili-

sant l’astuce des noyaux, on peut calculer un produit scalaire dans l’espace des

caractéristiques sans décrire explicitement chaque représentation dans cet espace

[Schölkopf and Smola, 2002]. Les noyaux ont été largement utilisés en apprentis-

sage automatique avec des méthodes bien connues, telles que les machines à vec-

teurs de support (SVM) [Cortes and Vapnik, 1995]. Par conséquent, la définition de

noyaux entre les graphes est une approche intéressante pour rapprocher l’appren-

tissage automatique et les données représentées sous forme de graphes. Cette mé-

thode fournit également des solutions pour répondre à la Question 1 posée dans la

Section A.1.

186

ANNEXE A. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

Noyaux

Plongement

des g
ra

phes

FIGURE A.2 – Comparaison illustrative entre la projection des graphes et les noyaux sur deux
graphes arbitraires G et G′. Pour les méthodes de projection, les deux graphes sont représen-
tés par deux vecteurs, X et X′. Pour les méthodes à noyaux, les deux graphes sont implici-
tement projetés dans un espace de Hilbert H par une fonction φH (·), donnant φH (G) et
φH (G′) ; de plus, leur produit scalaire <φH (G),φH (G′) > est facilement calculé en utilisant
une fonction noyau k(G,G′).

Les noyaux sur graphes peuvent être calculés en utilisant des informations glo-

bales et/ou locales dans les graphes, au moyen de stratégies variées. Parmi celles-ci,

on trouve les noyaux basés sur des sous-structures, les noyaux de propagation de

l’information et les noyaux profonds sur graphes [Ghosh et al., 2018]. Les noyaux

basés sur des sous-motifs/structures présentent un intérêt particulier. Pour compa-

rer des graphes et analyser leurs propriétés, le principe de similarité a été largement

étudié [Johnson and Maggiora, 1990]. Il stipule que les molécules ayant des sous-

structures similaires ont des propriétés similaires. Ce principe peut être généralisé

à d’autres domaines où les données sont modélisées sous forme de graphes. Il four-

nit un support théorique pour construire des noyaux sur graphes en étudiant les

sous-structures des graphes, qui sont également appelées motifs.

A.3 Construire des graphes par la résolution du pro-

blème de la pré-image

Les noyaux sur graphes permettent de combler le fossé entre les structures de

graphes et les méthodes à noyaux, grâce à un plongement implicite des graphes

dans un espace à noyau. En contrepartie, L’inverse du plongement (implicite) ob-

187

ANNEXE A. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

molécule 1 graphe 1

reconstruction de l'image,
synthèse de molécules,
conception de médicaments...

FIGURE A.3 – Relation entre les noyaux sur graphes et les pré-images des graphes. Le premier
relie les graphes à un espace à noyau H , tandis que le second effectue la transformation
inverse, en reliant les éléments de l’espace à noyau aux graphes.

tenu via les noyaux sur graphes est ce qu’on appelle le problème de la pré-image

des graphes. Le problème de la pré-image consiste à estimer l’application inverse de

celle associée aux noyaux, c’est-à-dire de l’espace à noyau vers l’espace de départ,

l’espace des graphes. Le problème de la pré-image du graphe consiste à recons-

truire un graphe associé à un point particulier de l’espace à noyau, ce qui implique

de reconstruire un graphe ayant certaines caractéristiques et propriétés souhaitées.

La résolution du problème de la pré-image des graphes apporte des réponses à la

Question 2 soulevée dans la Section A.1. La Figure A.3 illustre la relation entre les

noyaux sur graphes et la pré-image des graphes. L’estimation des pré-images des

graphes se situe à la frontière entre le problème général de la pré-image et le pro-

blème de la génération de graphes.

La pré-image est une application inverse non linéaire des éléments de l’es-

pace à noyau vers l’espace de départ. Le problème de la pré-image a été princi-

palement étudié sur les espaces euclidiens, avec de nombreuses applications, in-

cluant le débruitage et l’extraction de caractéristiques avec l’analyse en compo-

santes principales à noyau [Honeine, 2012] et avec la factorisation de matrices non

négatives à noyau [Zhu and Honeine, 2017]. Il est également étroitement lié au pro-

blème de la réduction de la dimension. Le défi de trouver la pré-image réside dans

le fait que l’application inverse n’existe pas en général et que la plupart des élé-

188

ANNEXE A. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

ments dans l’espace à noyau ne possèdent pas de pré-images valides dans l’es-

pace d’entrée. Par conséquent, diverses méthodes ont été développées pour ap-

procher une solution. Nous invitons les lecteurs intéressés à consulter le tutoriel

[Honeine and Richard, 2011].

La résolution du problème de la pré-image pour les graphes ouvre la porte à

de nombreuses applications intéressantes, telles que la synthèse de molécules et la

conception de médicaments. Cependant, la recherche de la pré-image sous forme

de graphe hérite des difficultés du problème de la pré-image traditionnelle. De plus,

contrairement aux entrées considérées par le problème traditionnel de la pré-image

(c’est-à-dire les vecteurs) qui se trouvent généralement dans des espaces continus,

les graphes sont des structures où les nombres de sommets et d’arêtes ne peuvent

être que des entiers naturels. Les nombres de sommets et d’arêtes dans un graphe

peuvent être arbitraires et une arête peut exister entre n’importe quelle paire de

sommets. En outre, plusieurs étiquettes et attributs peuvent être associés à chaque

sommet et à chaque arête d’un graphe. Compte tenu de ces caractéristiques struc-

turelles, le problème de la pré-image des graphes est plus difficile à résoudre. Plu-

sieurs travaux pionniers pour construire des pré-images des graphes ont été propo-

sés [Bakır et al., 2004, Akutsu and Fukagawa, 2005, Nagamochi, 2009] ; cependant,

ils sont limités à des noyaux sur graphes particuliers ou des types de graphes spé-

cifiques, tels que les chaînes de caractères. Il est donc intéressant de proposer des

méthodes plus généralistes.

Apprentissage de métrique pour la pré-image des graphes

Les noyaux sur graphes ne fonctionnent pas directement dans l’espace des graphes;

il est donc difficile de les utiliser pour construire des pré-images des graphes. Il

est nécessaire de définir des outils et des métriques qui opèrent dans l’espace des

graphes. Dans cette catégorie se trouve la distance d’édition entre graphes. En ajus-

tant la relation entre l’espace des graphes et l’espace à noyau, on peut construire

des pré-images de graphes en fonction des informations contenues dans l’espace

à noyau. L’apprentissage de métrique convient parfaitement à cet objectif et de-

vrait permettre d’optimiser la distance d’édition afin de se rapprocher de l’espace à

noyaux en termes de mesure de dissimilarité.

L’apprentissage de métrique consiste à apprendre une mesure de (dis)similarité

à partir d’un ensemble d’apprentissage composé d’instances de données et de pro-

189

ANNEXE A. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

priétés à prédire associées. Pour l’apprentissage de métrique classique, où chaque

instance de données est encodée par un vecteur à valeurs réelles, le problème

consiste à apprendre une mesure de dissimilarité qui diminue (resp. augmente)

lorsque les vecteurs ont des propriétés similaires (resp. différentes). De nombreuses

études sur l’apprentissage de métrique se concentrent sur les données euclidiennes,

alors que seulement quelques-unes abordent ce problème sur des données struc-

turées [Bellet et al., 2013]. Une revue complète de la représentation générale des

données structurées est donnée dans [Ontañón, 2020]. Lorsqu’il s’agit de distances

d’édition de graphes, une stratégie d’apprentissage de métrique supervisée peut ai-

der à trouver des coûts d’édition optimisés pour une tâche particulière, en s’ap-

puyant sur les informations contenues dans l’espace cible.

Dans l’esprit de l’apprentissage de métrique, le positionnement multidimen-

sionnel (MultiDimensionnal Scaling ou MDS) cherche à projeter les données dans

un espace de faible dimension en préservant les distances entre chaque paire

d’observations [Cox and Cox, 2008]. Des méthodes basées sur ce principe ont été

proposées pour résoudre le problème de la pré-image de données vectorielles

[Kwok and Tsang, 2004]. Dans le Chapitre 5, nous proposons de résoudre le pro-

blème de la pré-image des graphes en considérant l’apprentissage de métrique

dans les espaces des graphes, via l’utilisation de la distance d’édition de graphes

[Jia et al., 2021].

A.4 Contributions

Cette thèse étudie les métriques dans les espaces de graphes et à noyaux, afin de

connecter ces espaces dans la perspective de la résolution du problème de la pré-

image.

Les premières contributions se concentrent sur les noyaux sur graphes, en met-

tant l’accent sur ceux basés sur des motifs linéaires, et plusieurs autres basés sur des

motifs non linéaires pour comparaison. Une étude approfondie et une comparaison

de ces noyaux sont proposées, tant sur le plan théorique que sur le plan expérimen-

tal. En ce qui concerne les aspects théoriques, nous examinons leurs expressions

mathématiques et mettons en évidence leurs relations, nous étudions leurs com-

plexités de calcul, ainsi que les forces et les faiblesses de chaque noyau. De plus,

nous établissons des connexions avec d’autres noyaux de la littérature. Dans l’ana-

lyse expérimentale exhaustive menée dans cette thèse, chaque noyau est appliqué

190

ANNEXE A. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

sur divers jeux de données synthétiques et également issus du monde réel. Chaque

jeu de données présente différents types de graphes, y compris des graphes étique-

tés et non étiquetés, des graphes avec différents nombres de sommets, des graphes

avec différents degrés moyens de sommets, des graphes linéaires et non linéaires,

etc. Une analyse approfondie des performances, y compris la comparaison entre

ces types de graphes, est effectuée en tenant compte de la précision de la prédic-

tion et du temps de calcul. Cet examen rigoureux permet de fournir des suggestions

pour choisir les noyaux en fonction du type de graphes à disposition.

La complexité de calcul étant un point faible des noyaux sur graphes, nous pro-

posons plusieurs stratégies pour résoudre ce problème critique, incluant la paral-

lélisation, la structure de données trie et la méthode FCSP (Fast Computation of

Shortest Path) que nous étendons à d’autres noyaux et à la comparaison des arêtes.

Toutes les stratégies proposées permettent de gagner des ordres de grandeur en

termes de temps de calcul et d’utilisation de la mémoire. Des expériences sont réa-

lisées pour démontrer leur pertinence.

Les secondes contributions se concentrent sur une métrique dans l’espace des

graphes, à savoir la distance d’édition entre graphes (GED). Lors du calcul de la GED

par des heuristiques, la précision de l’approximation peut varier et donc influencer

sur la performance de la tâche. En se basant sur le réexamen de deux heuristiques

représentatives, à savoir bipartite et IPFP, une étude de la stabilité du calcul de

la GED est réalisée sur des ensembles de données réelles bien connues. Un cri-

tère pour mesurer la stabilité est défini. Une alternative à initialisations multiples

de bipartite et IPFP introduite dans [Daller et al., 2018], à savoir mbipartite et

mIPFP, permet d’obtenir de meilleures approximations. Nous examinons comment

la stabilité du calcul change avec le nombre de solutions utilisées. Les effets d’un

autre facteur sur la stabilité sont également étudiés, à savoir le rapport entre les

coûts d’édition sur les sommets et sur les arêtes. Les raisons qui induisent ces in-

fluences sont expliquées, et des conseils pour choisir les valeurs appropriées de ces

facteurs sont proposés.

Une stratégie visant à optimiser les coûts d’édition de la GED en fonction d’une

tâche particulière est proposée, ce qui permet d’éviter l’utilisation de coûts prédéfi-

nis. L’idée est d’aligner la métrique dans l’espace des graphes (à savoir, la GED) sur

l’espace cible dans l’esprit de l’apprentissage de métrique. Avec ce principe de pré-

servation de la distance, une procédure d’optimisation itérative est proposée, en al-

ternant une mise à jour des coûts d’édition par la résolution d’un problème linéaire

191

ANNEXE A. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

sous contraintes et un nouveau calcul des chemins d’édition optimaux en fonction

des nouveaux coûts calculés. Les coûts d’édition résultant de la procédure d’opti-

misation peuvent ensuite être analysés pour mieux comprendre comment l’espace

des graphes est structuré. La pertinence de la méthode proposée est démontrée sur

deux tâches de régression, montrant que les coûts optimisés conduisent à une er-

reur de prédiction plus faible par rapport à l’état de l’art où les coûts sont définis

aléatoirement, par des experts, ou encore par optimisation.

Notre troisième contribution, qui bénéficie de ces études sur les espaces des

graphes et à noyaux, porte sur la résolution du problème de la pré-image des

graphes. Nous proposons une nouvelle méthode de pré-image pour les graphes, en

reliant la distance d’édition entre graphes (GED) et les noyaux sur graphes. En em-

pruntant les méthodes d’apprentissage de métrique susmentionné, les coûts d’édi-

tion de la GED sont ajustés en fonction des distances correspondantes dans l’espace

à noyau. La stratégie d’optimisation itérative alternée sur les coûts d’édition et les

chemins d’édition optimaux est utilisée. En conséquence, les métriques des deux

espaces sont alignées, ce qui permet de construire la pré-image du graphe par des

méthodes de construction de graphe basées sur les GED avec les coûts d’édition

optimisés. Plus précisément, le problème de pré-image est abordé par le calcul du

graphe médian, en se basant sur l’hypothèse que, grâce à l’alignement des deux mé-

triques, le graphe médian d’un ensemble de graphes correspond à la pré-image de

la moyenne de leurs projections dans l’espace à noyau. Ainsi, le graphe pré-image

correspondant peut être approximé via le calcul du graphe médian. Nous profitons

des avancées récentes dans le domaine de la GED pour résoudre ce problème, où

nous revisitons une procédure de minimisation itérative alternée introduite dans

[Boria et al., 2019] pour générer des graphes médians. Les expériences effectuées

montrent que notre méthode peut générer de meilleures pré-images que les mé-

thodes existantes, et que les coûts d’édition optimisés donnent de meilleurs résul-

tats que les coûts aléatoires, et sont compétitifs avec les coûts experts.

La dernière contribution de ce travail est l’implémentation d’une bi-

bliothèque Python open-source d’outils d’apprentissage automatique pour les

graphes, qui est disponible publiquement sur GitHub3. La bibliothèque se

compose principalement de quatre parties. Dans la première partie, tous les

noyaux sur graphes basés sur des motifs linéaires et deux noyaux basés sur

des motifs non linéaires (à savoir le noyau de sous-arbres de Weisfeiler-

3Le lien GitHub est https://github.com/jajupmochi/graphkit-learn.

192

https://github.com/jajupmochi/graphkit-learn

ANNEXE A. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

Lehman (WL) [Shervashidze et al., 2011, Morris et al., 2017] et le noyau de treelets

[Gaüzère et al., 2015b, Bougleux et al., 2012, Gaüzère et al., 2012]) sont implémen-

tés, ainsi que les stratégies permettant de réduire la complexité de calcul de ces

noyaux. L’implémentation de chaque noyau est capable de traiter différents types

de graphes. La deuxième partie met en œuvre un ensemble de méthodes pour

le calcul de GED basé sur la bibliothèque C++ GEDLIB [Blumenthal et al., 2019,

Blumenthal et al., 2020]. Le paradigme LSAPE-GED, qui utilise des transformations

du problème d’affectation à somme linéaire avec correction d’erreur (LSAPE), et

l’heuristique bipartite sont inclus. Un estimateur de graphe médian et un mo-

dule d’apprentissage de métrique pour les coûts d’édition sont également inclus

dans cette bibliothèque. En outre, un module définissant l’interface Python de

GEDLIB est intégré pour améliorer la vitesse de calcul, qui est basé sur la biblio-

thèque GEDLIBPY. La troisième partie inclut des méthodes de calcul de pré-image

de graphes, dont la méthode précitée et celle basée sur la génération aléatoire

[Bakır et al., 2004]. La quatrième partie constitue des modules divers. Un module

permet de récupérer, charger et manipuler des ensembles de données de graphes à

partir de bases de données publiques ; un autre module adapte le calcul des noyaux

sur graphes au pipeline de la bibliothèque scikit-learn [Pedregosa et al., 2011] et

effectue automatiquement la sélection et la validation de modèles.

A.5 Structure de la thèse

Le reste de la thèse est organisé comme suit :

Le Chapitre 2 introduit les préliminaires nécessaires à cette thèse. La Section 2.1

présente les concepts de base et les définitions issues de la théorie des graphes. La

Section 2.2 présente le contexte mathématique des méthodes à noyaux, des noyaux

basés sur la décomposition, des noyaux sur graphes basés sur les motifs et de la pré-

image des graphes. Les concepts relatifs à la distance d’édition entre graphes sont

ensuite présentés dans la Section 2.3. Enfin, la Section 2.4 présente et catégorise les

jeux de données de graphes utilisés dans la thèse.

Le Chapitre 3 présente les améliorations et les analyses des noyaux sur graphes.

Les noyaux sur graphes basés sur des motifs linéaires et leurs connexions avec

d’autres noyaux de la littérature sont d’abord examinés en détail dans les Sec-

tions 3.2, 3.3, et 3.4. Ensuite, deux noyaux sur graphes basés sur des motifs non

linéaires sont présentés dans la Section 3.5. La Section 3.6 détaille ensuite trois stra-

193

ANNEXE A. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

tégies permettant de traiter la complexité de calcul des noyaux sur graphes. Des

expériences et des analyses complètes de ces noyaux sur différents types de jeux de

données de graphes sont présentées dans la Section 3.7. Enfin, la Section 3.8 conclut

ce travail.

Le Chapitre 4 se concentre sur la distance d’édition de graphes. Tout d’abord, la

Section 4.2, présente les heuristiques d’approximation de la GED, en mettant l’ac-

cent sur deux heuristiques représentatives. Ensuite, une étude sur la stabilité du

calcul de la GED est réalisée dans la Section 4.3. Puis, une approche d’apprentissage

de métrique pour estimer les coûts d’édition entre graphes pour la régression est

proposée et évaluée expérimentalement dans la Section 4.4. La Section 4.5 conclut

ce travail.

Le Chapitre 5 propose une méthode pour calculer la pré-image des graphes ba-

sée sur la GED. La Section 5.1 présente les méthodes de pré-image et de génération

de graphes les plus récentes. La Section 5.2 fournit la formulation du problème et la

Section 5.3 présente la méthode proposée en deux volets, l’apprentissage des coûts

d’édition des GED en fonction des distances dans l’espace à noyau (Section 5.3.1)

et le calcul de la pré-image du graphe (Section 5.3.2). La Section 5.4 présente des

expériences et des analyses de ces travaux. Enfin, la Section 5.5 conclut le travail.

Le Chapitre 6 présente les détails d’implémentation de notre bibliothèque Py-

thon pour l’apprentissage automatique avec les graphes : graphkit-learn. Une

brève introduction est donnée dans la Section 6.1 et l’architecture globale est dé-

crite dans la Section 6.2. Ensuite, de la Section 6.3 à la Section 6.7, nous présentons

les détails de la bibliothèque graphkit-learn, dont les implémentations du traite-

ment des données de graphes, les noyaux sur graphes, des méthodes de calcul de

distances d’édition entre graphes, des méthodes de pré-image des graphes, et des

outils auxiliaires. Une comparaison avec d’autres bibliothèques est également pré-

sentée. Des exemples de codes pour utiliser la bibliothèque illustrent les sections

correspondantes. La Section 6.8 présente la conclusion et les travaux futurs.

Le chapitre 7 conclut la thèse et offre des perspectives sur les travaux futurs.

A.6 Conclusion

Dans cette thèse, nous avons exploré les méthodes d’apprentissage automatique sur

les graphes, en nous concentrant sur les noyaux sur graphes, la distance d’édition

entre graphes et le problème de la pré-image des graphes. D’une part, nous avons

194

ANNEXE A. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

fourni un examen approfondi et des améliorations sur les noyaux sur graphes basés

sur des motifs linéaires. D’autre part, nous avons étudié la stabilité des méthodes

de calcul de distances d’édition entre graphes (GED) et proposé des algorithmes

d’apprentissage de métrique pour optimiser la GED dans un cadre de problèmes de

régression. Sur la base de ces avancées, nous avons proposé une nouvelle stratégie

pour traiter le problème des pré-images sur les graphes. Nous détaillons chaque

travail dans la partie suivante.

• Dans le chapitre 3, nous avons présenté une étude des noyaux sur graphes,

en mettant l’accent sur les noyaux basés sur des motifs linéaires et sur deux

noyaux basés sur des motifs non linéaires à des fins de comparaison, à savoir

le noyau de treelet et le noyau de sous-arbre de Weisfeiler-Lehman. Les fon-

dements théoriques de ces noyaux ont été examinés en détail, y compris leur

expression mathématique, leur complexité de calcul, leurs forces et faiblesses,

les types de graphes sur lesquels ils peuvent être utilisés, les relations entre

eux, ainsi que leurs connexions avec d’autres noyaux classiques et de pointe

de la littérature. De plus, des expériences ont été menées sur différents types

de graphes, à la fois synthétiques et réels, où les performances de prédiction et

la complexité en temps de chaque noyau sur graphe ont été analysées et com-

parées. Les expériences montrent que les noyaux sur graphes basés sur des

motifs linéaires, tels que le noyau de chemin jusqu’à la longueur h, peuvent

atteindre des performances comparables à celles des noyaux basés sur des

motifs non linéaires. En conclusion, nous avons recommandé le choix des

noyaux appropriés en fonction des propriétés des données du graphe donné.

Ce travail fournit une base pour les analyses des noyaux sur graphes et des

éléments pour développer de nouveaux noyaux.

Pour mieux utiliser ces noyaux, nous avons proposé trois stratégies pour ré-

duire leur complexité de calcul. La première était la méthode FCSP, où les

sous-noyaux entre les sommets et les arêtes étaient calculés a priori. La se-

conde était la parallélisation, qui a été effectuée entre des paires de graphes et

la procédure de validation croisée. La troisième est l’utilisation de la structure

trie. Elle stocke les sous-motifs de chemin pour réduire l’occupation de la mé-

moire. Les expériences menées montrent la capacité de ces méthodes afin de

réduire la complexité en termes de temps de calcul et d’espace mémoire des

noyaux sur graphes.

195

ANNEXE A. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

• Les noyaux sur graphes fournissent une mesure de similarité dans un espace

à noyau. Dans le chapitre 4, la distance d’édition entre graphes, une mesure

de dissimilarité entre les graphes, a été présentée. En se basant sur la révision

de deux paradigmes, LSAPE-GED et LS-GED, et de deux heuristiques représen-

tatives de ces paradigmes, bipartite et IPFP, nous avons étudié la stabilité

des heuristiques GED, ce qui est une première dans la littérature. Nous avons

découvert empiriquement les effets de deux facteurs sur la stabilité, à savoir le

choix des coûts d’édition et le nombre de répétitions du calcul de la GED. Des

expériences sont menées avec IPFP sur plusieurs jeux de données. En conclu-

sion, nous avons observé que plus le rapport (ratio) entre les coûts d’édition

des sommets et des arêtes augmente, plus la stabilité de IPFP diminue. Le

même phénomène a été observé lorsque le paramètre ratio est remplacé par

le nombre de répétitions du calcul. Comme ces facteurs peuvent affecter la

stabilité et les performances de la GED, ils doivent être soigneusement pris en

compte.

De plus, nous avons développé un algorithme d’apprentissage de métrique

pour optimiser la GED pour des problèmes de régression. Les coûts d’édition

sont ajustés en alignant les GED et les distances entre les propriétés à prédire.

Avec le principe de préservation de la distance, nous avons proposé une pro-

cédure itérative, où les deux étapes sont exécutées en alternance : la mise à

jour des coûts d’édition est obtenue en résolvant un problème linéaire sous

contraintes ; et un nouveau calcul des chemins d’édition optimaux en fonc-

tion des nouveaux coûts calculés. Les coûts d’édition optimisés ont été analy-

sés pour avoir un aperç̧u de la structure de l’espace des graphes par rapport

aux propriétés à prédire. Les expériences ont montré que les coûts optimisés

permettent d’améliorer de manière significative les performances en prédic-

tion, où un algorithme de k-plus proches voisins a été appliqué.

• Inspirés par cette procédure d’apprentissage de métrique, nous avons pro-

posé au chapitre 5 une nouvelle stratégie pour aborder le problème du cal-

cul de la pré-image sur les graphes. Le calcul de pré-image de graphes peut

être vu comme la transformation inverse de celle appliquée par les noyaux

sur graphes. Pour construire une approximation d’une pré-image de graphe,

nous avons d’abord aligné l’espace des graphes et celui à noyau en minimi-

sant les différences entre les distances dans les deux espaces. Les distances

196

ANNEXE A. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

dans l’espace des graphes peuvent être mesurées par les distances d’édition

entre graphes, tandis que les distances dans l’espace à noyau ont été calcu-

lées via les valeurs de noyaux sur graphe. Un problème d’optimisation linéaire

a été établi pour la minimisation des coûts d’édition ont été optimisés en

fonction des distances dans l’espace à noyau. À cette fin, la procédure sus-

mentionnée d’optimisation alternée en deux étapes, sur les coûts d’édition

et les chemins d’édition, a été mise en œuvre, les distances dans l’espace à

noyau remplaç̧ant les distances entre les propriétés à prédire. Ensuite, en uti-

lisant les coûts d’édition optimisés, un algorithme de génération de graphe a

été utilisé pour construire la pré-image. Plus précisément, nous avons adapté

une contribution récente sur la construction du graphe médian généralisé

pour générer la pré-image de graphe souhaitée, où une procédure itérative de

minimisation alternée pour générer des graphes médians est appliquée. Les

expériences ont montré la pertinence de notre approche. Elle a surpassé la

pré-image issu du jeu de de données et les coûts d’édition définis de manière

aléatoire. De plus, elle a été compétitive avec les résultats obtenus en prenant

directement les coûts des experts. Notre méthode permet de construire auto-

matiquement de bonnes pré-images de graphes même sans coûts d’édition

experts, ce qui constitue une base solide pour l’étude future du problème des

pré-images de graphes.

• Pour faciliter l’utilisation et l’examen des travaux mentionnés précédemment

et la réalisation des expériences, nous avons publié en ligne la bibliothèque

open-source Python graphkit-learn, qui a été décrite en détail au Cha-

pitre 6. Cette bibliothèque inclut des outils d’apprentissage automatique sur

les graphes, principalement des noyaux sur graphes, des algorithmes de cal-

cul de la distance d’édition entre graphes et des méthodes de calcul de pré-

image de graphes. Pour soutenir ces outils, un module pour récupérer, pour

charger et pour traiter des données de graphes est inclus. Des outils auxiliaires

tels que celui pour le processus de sélection et d’évaluation des modèles sont

également implémentés.

A.7 Perspectives

Nous détaillons les futurs travaux pour chaque partie de notre travail comme suit :

197

ANNEXE A. SYNTHÈSE DE LA THÈSE EN FRANÇAIS

• La prochaine étape pour les noyaux sur graphe comprend la comparaison

avec les noyaux de l’état de l’art, en particulier ceux basés sur des motifs

non linéaires. Des expériences sur un ensemble plus complet de jeux de don-

nées pourraient être intéressantes. En outre, nous explorerons la possibilité

d’améliorer nos méthodes pour réduire la complexité de calcul et les adapter

à d’autres noyaux sur graphes. Les analyses de relations et la comparaison des

performances avec les réseaux de neurones sur graphes font également partie

des perspectives envisagées.

• Concernant la GED, les futurs travaux consistent en une étude approfondie de

la stabilité des heuristiques. Pour la méthode d’optimisation des coûts d’édi-

tion, une comparaison avec d’autres méthodes et la preuve de la convergence

seront effectuées. Nous envisageons également d’étendre cette méthode aux

problèmes de classification et aux coûts d’édition sous forme de fonctions

non constantes.

• Pour le problème des pré-images de graphes, la preuve de convergence et la

comparaison avec d’autres méthodes seront également effectuées. De plus, la

généralisation de la méthode proposée peut être incluse, par exemple sur les

graphes avec des étiquettes symboliques, sur la construction de pré-images

définies par l’utilisateur, et sur les coûts d’édition non constants. En outre,

d’autres mesures de distance sur les graphes et d’autres critères peuvent être

utilisées et comparées. Une direction plus ambitieuse consiste à tirer parti

d’autres outils pour aborder le problème des pré-images de graphes, tels que

les modèles de réseaux de neurones génératifs de graphes et les graphes de

connaissances.

• Le dernier axe de travail concerne la bibliothèque graphkit-learn, y com-

pris les implémentations des noyaux sur graphes les plus récents, des dis-

tances d’édition entre graphes et des algorithmes de pré-image. L’intégration

avec d’autres outils sera également envisagée, tels que les réseaux de neu-

rones de graphes appliqués à ces problèmes.

198

Bibliography

[Abrahamsen and Hansen, 2009] Abrahamsen, T. J. and Hansen, L. K. (2009). Input

space regularization stabilizes pre-images for kernel pca de-noising. In 2009 IEEE

International Workshop on Machine Learning for Signal Processing, pages 1–6.

IEEE.

[Abu-Aisheh et al., 2017] Abu-Aisheh, Z., Gaüzère, B., Bougleux, S., Ramel, J.-Y.,

Brun, L., Raveaux, R., Héroux, P., and Adam, S. (2017). Graph edit distance con-

test: Results and future challenges. Pattern Recognition Letters, 100:96–103.

[Akutsu and Fukagawa, 2005] Akutsu, T. and Fukagawa, D. (2005). Inferring a graph

from path frequency. In Annual Symposium on Combinatorial Pattern Matching,

pages 371–382. Springer.

[Altman, 1992] Altman, N. S. (1992). An introduction to kernel and nearest-

neighbor nonparametric regression. The American Statistician, 46(3):175–185.

[Amdahl, 1967] Amdahl, G. M. (1967). Validity of the single processor approach to

achieving large scale computing capabilities. In Proceedings of the April 18-20,

1967, spring joint computer conference, pages 483–485.

[Aziz et al., 2013] Aziz, F., Wilson, R. C., and Hancock, E. R. (2013). Backtrackless

walks on a graph. IEEE Transactions on Neural Networks and Learning Systems,

24(6):977–989.

[Bach, 2008] Bach, F. R. (2008). Graph kernels between point clouds. In Proceedings

of the 25th international conference on Machine learning, pages 25–32.

[Bai et al., 2017] Bai, L., Rossi, L., Cui, L., Zhang, Z., Ren, P., Bai, X., and Hancock, E.

(2017). Quantum kernels for unattributed graphs using discrete-time quantum

walks. Pattern Recognition Letters, 87:96–103.

199

BIBLIOGRAPHY

[Bai et al., 2015] Bai, L., Rossi, L., Torsello, A., and Hancock, E. R. (2015). A quan-

tum jensen–shannon graph kernel for unattributed graphs. Pattern Recognition,

48(2):344–355.

[Bajema and Merlin, 1987] Bajema, K. and Merlin, R. (1987). Raman scattering

by acoustic phonons in fibonacci gaas-aias superlattices. Physical Review B,

36(8):4555.

[Bakır et al., 2004] Bakır, G. H., Zien, A., and Tsuda, K. (2004). Learning to find graph

pre-images. In Joint Pattern Recognition Symposium, pages 253–261. Springer.

[Balcilar et al., 2021] Balcilar, M., Renton, G., Héroux, P., Gaüzère, B., Adam, S., and

Honeine, P. (2021). Analyzing the expressive power of graph neural networks in a

spectral perspective. In International Conference on Learning Representations.

[Behnel et al., 2011] Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S.,

and Smith, K. (2011). Cython: The best of both worlds. Computing in Science &

Engineering, 13(2):31–39.

[Bellet et al., 2012] Bellet, A., Habrard, A., and Sebban, M. (2012). Good edit simi-

larity learning by loss minimization. Machine Learning, 89(1-2):5–35.

[Bellet et al., 2013] Bellet, A., Habrard, A., and Sebban, M. (2013). A survey on metric

learning for feature vectors and structured data. arXiv preprint arXiv:1306.6709.

[Bento and Ioannidis, 2019] Bento, J. and Ioannidis, S. (2019). A family of tractable

graph metrics. Applied Network Science, 4(1):107.

[Blumenthal et al., 2021] Blumenthal, D. B., Boria, N., Bougleux, S., Brun, L., Gam-

per, J., and Gaüzère, B. (2021). Scalable generalized median graph estimation

and its manifold use in bioinformatics, clustering, classification, and indexing.

Information Systems, page 101766.

[Blumenthal et al., 2020] Blumenthal, D. B., Boria, N., Gamper, J., Bougleux, S., and

Brun, L. (2020). Comparing heuristics for graph edit distance computation. The

VLDB Journal, 29(1):419–458.

[Blumenthal et al., 2019] Blumenthal, D. B., Bougleux, S., Gamper, J., and Brun,

L. (2019). Gedlib: A c++ library for graph edit distance computation. In

200

BIBLIOGRAPHY

International Workshop on Graph-Based Representations in Pattern Recognition,

pages 14–24. Springer.

[Borgwardt et al., 2020] Borgwardt, K., Ghisu, E., Llinares-López, F., O’Bray, L., and

Rieck, B. (2020). Graph kernels: State-of-the-art and future challenges. arXiv

preprint arXiv:2011.03854.

[Borgwardt and Kriegel, 2005] Borgwardt, K. M. and Kriegel, H.-P. (2005). Shortest-

path kernels on graphs. In Data Mining, Fifth IEEE International Conference on,

pages 8–pp. IEEE.

[Borgwardt et al., 2005] Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan,

S., Smola, A. J., and Kriegel, H.-P. (2005). Protein function prediction via graph

kernels. Bioinformatics, 21(suppl_1):i47–i56.

[Boria et al., 2019] Boria, N., Bougleux, S., Gaüzère, B., and Brun, L. (2019). Gen-

eralized median graph via iterative alternate minimizations. In International

Workshop on Graph-Based Representations in Pattern Recognition, pages 99–

109. Springer.

[Boser et al., 1992] Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A train-

ing algorithm for optimal margin classifiers. In Proc. fifth annual workshop on

Computational learning theory, pages 144–152. ACM.

[Bougleux and Brun, 2016] Bougleux, S. and Brun, L. (2016). Linear sum assign-

ment with edition. arXiv preprint arXiv:1603.04380.

[Bougleux et al., 2015a] Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B.,

and Vento, M. (2015a). Graph edit distance as a quadratic assignment problem.

Pattern Recognition Letters.

[Bougleux et al., 2015b] Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzere, B.,

and Vento, M. (2015b). A quadratic assignment formulation of the graph edit

distance. arXiv preprint arXiv:1512.07494.

[Bougleux et al., 2012] Bougleux, S., Dupé, F.-X., Brun, L., and Mokhtari, M. (2012).

Shape similarity based on a treelet kernel with edition. In Gimel’farb, G. and et al.,

editors, Structural, Syntactic, and Statistical Pattern Recognition, pages 199–207,

Berlin, Heidelberg. Springer Berlin Heidelberg.

201

BIBLIOGRAPHY

[Bougleux et al., 2020] Bougleux, S., Gaüzère, B., Blumenthal, D. B., and Brun, L.

(2020). Fast linear sum assignment with error-correction and no cost constraints.

Pattern Recognition Letters, 134:37–45.

[Bougleux et al., 2016] Bougleux, S., Gaüzère, B., and Brun, L. (2016). Graph edit

distance as a quadratic program. In 2016 23rd International Conference on

Pattern Recognition (ICPR), pages 1701–1706.

[Bougleux et al., 2017] Bougleux, S., Gaüzère, B., and Brun, L. (2017). A hungarian

algorithm for error-correcting graph matching. In International Workshop on

Graph-Based Representations in Pattern Recognition, pages 118–127. Springer.

[Bouhamidi and Jbilou, 2008] Bouhamidi, A. and Jbilou, K. (2008). A note on the

numerical approximate solutions for generalized sylvester matrix equations with

applications. Applied Mathematics and Computation, 206(2):687–694.

[Bronstein et al., 2017] Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Van-

dergheynst, P. (2017). Geometric deep learning: going beyond euclidean data.

IEEE Signal Processing Magazine, 34(4):18–42.

[Brun, 2018] Brun, L. (2018). Greyc chemistry dataset. accessed October 30, 2018.

[Brun et al., 2012] Brun, L., Gaüzère, B., and Fourey, S. (2012). Relationships

between graph edit distance and maximal common structural subgraph. In

SSPR/SPR, pages 42–50.

[Bunke, 1997] Bunke, H. (1997). On a relation between graph edit distance and

maximum common subgraph. Pattern Recognition Letters, 18(8):689–694.

[Bunke, 1999] Bunke, H. (1999). Error correcting graph matching: On the influ-

ence of the underlying cost function. IEEE transactions on pattern analysis and

machine intelligence, 21(9):917–922.

[Bunke and Allermann, 1983] Bunke, H. and Allermann, G. (1983). Inexact graph

matching for structural pattern recognition. Pattern Recognition Letters,

1(4):245–253.

[Bunke et al., 1999] Bunke, H., Münger, A., and Jiang, X. (1999). Combinatorial

search versus genetic algorithms: A case study based on the generalized median

graph problem. Pattern recognition letters, 20(11-13):1271–1277.

202

BIBLIOGRAPHY

[Bunke and Shearer, 1998] Bunke, H. and Shearer, K. (1998). A graph distance met-

ric based on the maximal common subgraph. Pattern recognition letters, 19(3-

4):255–259.

[Cai et al., 2018] Cai, H., Zheng, V. W., and Chang, K. C.-C. (2018). A comprehen-

sive survey of graph embedding: Problems, techniques, and applications. IEEE

Transactions on Knowledge and Data Engineering, 30(9):1616–1637.

[Cao et al., 2018] Cao, Q., Zanni-Merk, C., and Reich, C. (2018). Ontologies for

manufacturing process modeling: A survey. In International Conference on

Sustainable Design and Manufacturing, pages 61–70. Springer.

[Carletti et al., 2015] Carletti, V., Gaüzère, B., Brun, L., and Vento, M. (2015).

Approximate graph edit distance computation combining bipartite matching

and exact neighborhood substructure distance. In International Workshop on

Graph-Based Representations in Pattern Recognition, pages 188–197. Springer.

[Chami et al., 2020] Chami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., and Murphy, K.

(2020). Machine learning on graphs: A model and comprehensive taxonomy.

arXiv preprint arXiv:2005.03675.

[Chartrand et al., 1998] Chartrand, G., Kubicki, G., and Schultz, M. (1998). Graph

similarity and distance in graphs. Aequationes Mathematicae, 55(1-2):129–145.

[Cherqaoui and Villemin, 1994] Cherqaoui, D. and Villemin, D. (1994). Use of a

neural network to determine the boiling point of alkanes. Journal of the Chemical

Society, Faraday Transactions, 90(1):97–102.

[Cherqaoui et al., 1994] Cherqaoui, D., Villemin, D., Mesbah, A., Cense, J.-M., and

Kvasnicka, V. (1994). Use of a neural network to determine the normal boiling

points of acyclic ethers, peroxides, acetals and their sulfur analogues. Journal of

the Chemical Society, Faraday Transactions, 90(14):2015–2019.

[Conte et al., 2004] Conte, D., Foggia, P., Sansone, C., and Vento, M. (2004). Thirty

years of graph matching in pattern recognition. International journal of pattern

recognition and artificial intelligence, 18(03):265–298.

[Cormen et al., 2009] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.

(2009). Introduction to algorithms. MIT press.

203

BIBLIOGRAPHY

[Cortes et al., 2004] Cortes, C., Haffner, P., and Mohri, M. (2004). Rational kernels:

Theory and algorithms. Journal of Machine Learning Research, 5(Aug):1035–

1062.

[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support-vector net-

works. Machine learning, 20(3):273–297.

[Cortés et al., 2019] Cortés, X., Conte, D., and Cardot, H. (2019). Learning edit cost

estimation models for graph edit distance. Pattern Recognition Letters, 125:256–

263.

[Cortés and Serratosa, 2015] Cortés, X. and Serratosa, F. (2015). Learning graph-

matching edit-costs based on the optimality of the oracle’s node correspon-

dences. Pattern Recognition Letters, 56:22–29.

[Cox and Cox, 2008] Cox, M. A. and Cox, T. F. (2008). Multidimensional scaling. In

Handbook of data visualization, pages 315–347. Springer.

[Cristianini et al., 2002] Cristianini, N., Shawe-Taylor, J., Elisseeff, A., and Kan-

dola, J. (2002). On kernel-target alignment. In Advances in neural information

processing systems, pages 367–373.

[Daller et al., 2018] Daller, É., Bougleux, S., Gaüzère, B., and Brun, L. (2018). Ap-

proximate graph edit distance by several local searches in parallel. In 7th

International Conference on Pattern Recognition Applications and Methods.

[De Cao and Kipf, 2018] De Cao, N. and Kipf, T. (2018). Molgan: An implicit gener-

ative model for small molecular graphs. arXiv preprint arXiv:1805.11973.

[de Oliveira Rente et al., 2018] de Oliveira Rente, P., Brites, C., Ascenso, J., and

Pereira, F. (2018). Graph-based static 3d point clouds geometry coding. IEEE

Transactions on Multimedia, 21(2):284–299.

[de Vries, 2013] de Vries, G. K. (2013). A fast approximation of the weisfeiler-lehman

graph kernel for rdf data. In Joint European Conference on Machine Learning and

Knowledge Discovery in Databases, pages 606–621. Springer.

[Debnath et al., 1991] Debnath, A. K., Lopez de Compadre, R. L., Debnath, G., Shus-

terman, A. J., and Hansch, C. (1991). Structure-activity relationship of mutagenic

204

BIBLIOGRAPHY

aromatic and heteroaromatic nitro compounds. correlation with molecular or-

bital energies and hydrophobicity. Journal of medicinal chemistry, 34(2):786–797.

[Diamond and Boyd, 2016] Diamond, S. and Boyd, S. (2016). Cvxpy: A python-

embedded modeling language for convex optimization. The Journal of Machine

Learning Research, 17(1):2909–2913.

[Dijkstra, 1959] Dijkstra, E. W. (1959). A note on two problems in connexion with

graphs. Numerische mathematik, 1(1):269–271.

[Ding et al., 2007] Ding, L., Kolari, P., Ding, Z., and Avancha, S. (2007). Using ontolo-

gies in the semantic web: A survey. In Ontologies, pages 79–113. Springer.

[Dobson and Doig, 2003] Dobson, P. D. and Doig, A. J. (2003). Distinguishing en-

zyme structures from non-enzymes without alignments. Journal of molecular

biology, 330(4):771–783.

[Farhi and Gutmann, 1998] Farhi, E. and Gutmann, S. (1998). Quantum computa-

tion and decision trees. Physical Review A, 58(2):915.

[Feragen et al., 2013] Feragen, A., Kasenburg, N., Petersen, J., de Bruijne, M., and

Borgwardt, K. (2013). Scalable kernels for graphs with continuous attributes. In

Advances in Neural Information Processing Systems, pages 216–224.

[Feragen et al., 2010] Feragen, A., Lauze, F., Lo, P., de Bruijne, M., and Nielsen,

M. (2010). Geometries on spaces of treelike shapes. In Asian Conference on

Computer Vision, pages 160–173. Springer.

[Feragen et al., 2012] Feragen, A., Lo, P., de Bruijne, M., Nielsen, M., and Lauze, F.

(2012). Toward a theory of statistical tree-shape analysis. IEEE transactions on

pattern analysis and machine intelligence, 35(8):2008–2021.

[Feragen et al., 2011] Feragen, A., Nielsen, M., Hauberg, S., Lo, P., de Bruijne, M.,

and Lauze, F. (2011). A geometric framework for statistics on trees. Technical

report, Technical report, Department of Computer Science, University of Copen-

hagen.

[Ferrer et al., 2010] Ferrer, M., Valveny, E., Serratosa, F., Riesen, K., and Bunke, H.

(2010). Generalized median graph computation by means of graph embedding

in vector spaces. Pattern Recognition, 43(4):1642–1655.

205

BIBLIOGRAPHY

[Fey and Lenssen, 2019] Fey, M. and Lenssen, J. E. (2019). Fast graph representation

learning with PyTorch Geometric. In ICLR Workshop on Representation Learning

on Graphs and Manifolds.

[Floyd, 1962] Floyd, R. W. (1962). Algorithm 97: shortest path. Communications of

the ACM, 5(6):345.

[Foggia et al., 2014] Foggia, P., Percannella, G., and Vento, M. (2014). Graph match-

ing and learning in pattern recognition in the last 10 years. International Journal

of Pattern Recognition and Artificial Intelligence, 28(01):1450001.

[Fredkin, 1960] Fredkin, E. (1960). Trie memory. Communications of the ACM,

3(9):490–499.

[Garcia-Hernandez et al., 2020] Garcia-Hernandez, C., Fernández, A., and Ser-

ratosa, F. (2020). Learning the edit costs of graph edit distance applied to ligand-

based virtual screening. Current topics in medicinal chemistry, 20(18):1582–

1592.

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. (1979). Computers and

intractability, volume 174. freeman San Francisco.

[Gärtner, 2003a] Gärtner, T. (2003a). Exponential and geomteric kernels for graphs.

NIPS Workshop on Unreal Data : Principles of Modeling Nonvectorial Data, 2003.

[Gärtner, 2003b] Gärtner, T. (2003b). A survey of kernels for structured data. ACM

SIGKDD Explorations Newsletter, 5(1):49–58.

[Gärtner et al., 2003] Gärtner, T., Flach, P., and Wrobel, S. (2003). On graph ker-

nels: Hardness results and efficient alternatives. Learning Theory and Kernel

Machines, pages 129–143.

[Gaüzère et al., 2016] Gaüzère, B., Bougleux, S., and Brun, L. (2016). Approximat-

ing graph edit distance using gnccp. In Joint IAPR International Workshops on

Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic

Pattern Recognition (SSPR), pages 496–506. Springer.

[Gaüzère et al., 2014] Gaüzère, B., Bougleux, S., Riesen, K., and Brun, L. (2014). Ap-

proximate graph edit distance guided by bipartite matching of bags of walks.

In Joint IAPR International Workshops on Statistical Techniques in Pattern

206

BIBLIOGRAPHY

Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR),

pages 73–82. Springer.

[Gaüzère et al., 2012] Gaüzère, B., Brun, L., and Villemin, D. (2012). Two new graphs

kernels in chemoinformatics. Pattern Recognition Letters, 33(15):2038–2047.

[Gaüzère et al., 2015a] Gaüzère, B., Brun, L., and Villemin, D. (2015a). Graph

kernels in chemoinformatics. In Dehmer, M. and Emmert-Streib, F., editors,

Quantitative Graph Theory Mathematical Foundations and Applications, pages

425–470. CRC Press.

[Gaüzére et al., 2012] Gaüzére, B., Brun, L., Villemin, D., and Brun, M. (2012). Graph

kernels based on relevant patterns and cycle information for chemoinformat-

ics. In Proceedings of the 21st International Conference on Pattern Recognition

(ICPR2012), pages 1775–1778. IEEE.

[Gaüzère et al., 2015b] Gaüzère, B., Grenier, P.-A., Brun, L., and Villemin, D. (2015b).

Treelet kernel incorporating cyclic, stereo and inter pattern information in

chemoinformatics. Pattern Recognition, 48(2):356 – 367.

[George and Hautier, 2020] George, J. and Hautier, G. (2020). Chemist versus ma-

chine: Traditional knowledge versus machine learning techniques. Trends in

Chemistry.

[Ghosh et al., 2018] Ghosh, S., Das, N., Gonçalves, T., Quaresma, P., and Kundu, M.

(2018). The journey of graph kernels through two decades. Computer Science

Review, 27:88–111.

[Gibert et al., 2012] Gibert, J., Valveny, E., and Bunke, H. (2012). Graph embedding

in vector spaces by node attribute statistics. Pattern Recognition, 45(9):3072–

3083.

[Giguère et al., 2015] Giguère, S., Laviolette, F., Marchand, M., Tremblay, D.,

Moineau, S., Liang, X., Biron, É., and Corbeil, J. (2015). Machine learning as-

sisted design of highly active peptides for drug discovery. PLoS Comput Biol,

11(4):e1004074.

[Giscard and Rochet, 2018] Giscard, P.-L. and Rochet, P. (2018). Enumerating sim-

ple paths from connected induced subgraphs. Graphs and Combinatorics,

34(6):1197–1202.

207

BIBLIOGRAPHY

[Giscard and Wilson, 2017] Giscard, P.-L. and Wilson, R. C. (2017). The all-paths and

cycles graph kernel. arXiv preprint arXiv:1708.01410.

[Goyal and Ferrara, 2018] Goyal, P. and Ferrara, E. (2018). Graph embedding tech-

niques, applications, and performance: A survey. Knowledge-Based Systems,

151:78–94.

[Grattarola et al., 2019] Grattarola, D., Zambon, D., Livi, L., and Alippi, C. (2019).

Change detection in graph streams by learning graph embeddings on constant-

curvature manifolds. IEEE Transactions on neural networks and learning

systems, 31(6):1856–1869.

[Grenier et al., 2013] Grenier, P.-A., Brun, L., and Villemin, D. (2013). Treelet ker-

nel incorporating chiral information. In International Workshop on Graph-Based

Representations in Pattern Recognition, pages 132–141. Springer.

[Grohe et al., 2017] Grohe, M., Kersting, K., Mladenov, M., and Schweitzer, P. (2017).

Color refinement and its applications. Van den Broeck, G.; Kersting, K.; Natarajan,

S, page 30.

[Grover et al., 2019] Grover, A., Zweig, A., and Ermon, S. (2019). Graphite: Iterative

generative modeling of graphs. In International conference on machine learning,

pages 2434–2444. PMLR.

[Guo et al., 2020] Guo, Q., Zhuang, F., Qin, C., Zhu, H., Xie, X., Xiong, H., and He,

Q. (2020). A survey on knowledge graph-based recommender systems. arXiv

preprint arXiv:2003.00911.

[Hagberg et al., 2008] Hagberg, A., Swart, P., and S Chult, D. (2008). Exploring net-

work structure, dynamics, and function using networkx. Technical report, Los

Alamos National Lab.(LANL), Los Alamos, NM (United States).

[Hamilton, 2020] Hamilton, W. L. (2020). Graph representation learning. Synthesis

Lectures on Artifical Intelligence and Machine Learning, 14(3):1–159.

[Harris et al., 2020] Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R.,

Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,

Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del R’ıo, J. F.,

Wiebe, M., Peterson, P., G’erard-Marchant, P., Sheppard, K., Reddy, T., Weckesser,

208

BIBLIOGRAPHY

W., Abbasi, H., Gohlke, C., and Oliphant, T. E. (2020). Array programming with

NumPy. Nature, 585(7825):357–362.

[Haussler, 1999] Haussler, D. (1999). Convolution kernels on discrete structures.

Technical report, Technical report, Department of Computer Science, University

of California at Santa Cruz.

[Hido and Kashima, 2009] Hido, S. and Kashima, H. (2009). A linear-time graph ker-

nel. In 2009 Ninth IEEE International Conference on Data Mining, pages 179–188.

IEEE.

[Honeine, 2012] Honeine, P. (2012). Online kernel principal component analysis:

a reduced-order model. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 34(9):1814 – 1826.

[Honeine et al., 2013] Honeine, P., Noumir, Z., and Richard, C. (2013). Multiclass

classification machines with the complexity of a single binary classifier. Signal

Processing, 93(5):1013 – 1026.

[Honeine and Richard, 2009] Honeine, P. and Richard, C. (2009). Solving the pre-

image problem in kernel machines: A direct method. In 2009 IEEE International

Workshop on Machine Learning for Signal Processing, pages 1–6. IEEE.

[Honeine and Richard, 2011] Honeine, P. and Richard, C. (2011). Preimage problem

in kernel-based machine learning. IEEE Signal Processing Magazine, 28(2):77–88.

[Hu et al., 2020] Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M.,

and Leskovec, J. (2020). Open graph benchmark: Datasets for machine learning

on graphs. arXiv preprint arXiv:2005.00687.

[Huber et al., 2007] Huber, W., Carey, V. J., Long, L., Falcon, S., and Gentleman, R.

(2007). Graphs in molecular biology. BMC bioinformatics, 8(6):1–14.

[Hurshman and Janssen, 2015] Hurshman, M. and Janssen, J. (2015). On the conti-

nuity of graph parameters. Discrete Applied Mathematics, 181:123–129.

[Jaakkola et al., 1999] Jaakkola, T. S., Diekhans, M., and Haussler, D. (1999). Using

the fisher kernel method to detect remote protein homologies. In ISMB, vol-

ume 99, pages 149–158.

209

BIBLIOGRAPHY

[Jain, 2016] Jain, B. J. (2016). On the geometry of graph spaces. Discrete Applied

Mathematics, 214:126–144.

[Jain and Obermayer, 2009] Jain, B. J. and Obermayer, K. (2009). Structure spaces.

Journal of Machine Learning Research, 10(11).

[Ji et al., 2020] Ji, S., Pan, S., Cambria, E., Marttinen, P., and Yu, P. S. (2020). A sur-

vey on knowledge graphs: Representation, acquisition and applications. arXiv

preprint arXiv:2002.00388.

[Jia et al., 2021] Jia, L., Gaüzère, B., and Honeine, P. (2021). A graph pre-image

method based on graph edit distances. In Proceedings of the IAPR Joint

International Workshops on Statistical Techniques in Pattern Recognition (SPR)

and Structural and Syntactic Pattern Recognition (S+SSPR), Venice, Italy.

[Jiang et al., 2001] Jiang, X., Munger, A., and Bunke, H. (2001). An median graphs:

properties, algorithms, and applications. IEEE Transactions on pattern analysis

and machine intelligence, 23(10):1144–1151.

[Johnson and Maggiora, 1990] Johnson, M. A. and Maggiora, G. M. (1990).

Concepts and applications of molecular similarity. Wiley.

[Kang et al., 2012] Kang, U., Tong, H., and Sun, J. (2012). Fast random walk graph

kernel. In Proceedings of the 2012 SIAM International Conference on Data

Mining, pages 828–838. SIAM.

[Kashima et al., 2003] Kashima, H., Tsuda, K., and Inokuchi, A. (2003). Marginalized

kernels between labeled graphs. In Proc. of the 20th international conference on

machine learning (ICML-03), pages 321–328.

[Kaspar and Horst, 2010] Kaspar, R. and Horst, B. (2010). Graph classification and

clustering based on vector space embedding, volume 77. World Scientific.

[Kersting et al., 2014] Kersting, K., Mladenov, M., Garnett, R., and Grohe, M. (2014).

Power iterated color refinement. In Twenty-Eighth AAAI Conference on Artificial

Intelligence.

[Kipf and Welling, 2016] Kipf, T. N. and Welling, M. (2016). Variational graph auto-

encoders. arXiv preprint arXiv:1611.07308.

210

BIBLIOGRAPHY

[Kisku et al., 2011] Kisku, D. R., Gupta, P., and Sing, J. K. (2011). Graphs in biomet-

rics. In Cases on ICT Utilization, Practice and Solutions: Tools for Managing

Day-to-Day Issues, pages 151–180. IGI Global.

[Kobler et al., 2012] Kobler, J., Schöning, U., and Torán, J. (2012). The graph

isomorphism problem: its structural complexity. Springer Science & Business

Media.

[Koca et al., 2012] Koca, J., Kratochvil, M., Kvasnicka, V., Matyska, L., and Pospichal,

J. (2012). Synthon model of organic chemistry and synthesis design, volume 51.

Springer Science & Business Media.

[Kolaczyk et al., 2020] Kolaczyk, E. D., Lin, L., Rosenberg, S., Walters, J., Xu, J., et al.

(2020). Averages of unlabeled networks: Geometric characterization and asymp-

totic behavior. The Annals of Statistics, 48(1):514–538.

[Kondor and Lafferty, 2002] Kondor, R. I. and Lafferty, J. (2002). Diffusion kernels

on graphs and other discrete input spaces. In ICML, volume 2, pages 315–322.

[Kriege et al., 2014] Kriege, N., Neumann, M., Kersting, K., and Mutzel, P. (2014).

Explicit versus implicit graph feature maps: A computational phase transition for

walk kernels. In 2014 IEEE International Conference on Data Mining, pages 881–

886. IEEE.

[Kriege, 2019] Kriege, N. M. (2019). Deep weisfeiler-lehman assignment kernels via

multiple kernel learning. arXiv preprint arXiv:1908.06661.

[Kriege et al., 2016] Kriege, N. M., Giscard, P.-L., and Wilson, R. (2016). On valid

optimal assignment kernels and applications to graph classification. In Advances

in Neural Information Processing Systems, pages 1623–1631.

[Kriege et al., 2020] Kriege, N. M., Johansson, F. D., and Morris, C. (2020). A survey

on graph kernels. Applied Network Science, 5(1):1–42.

[Kriege et al., 2017] Kriege, N. M., Neumann, M., Morris, C., Kersting, K., and

Mutzel, P. (2017). A unifying view of explicit and implicit feature maps for struc-

tured data: systematic studies of graph kernels. arXiv preprint arXiv:1703.00676.

[Kuhn, 1955] Kuhn, H. W. (1955). The hungarian method for the assignment prob-

lem. Naval research logistics quarterly, 2(1-2):83–97.

211

BIBLIOGRAPHY

[Kvasnička et al., 1991] Kvasnička, V., Pospíchal, J., and Baláž, V. (1991). Reaction

and chemical distances and reaction graphs. Theoretica chimica acta, 79(1):65–

79.

[Kwok and Tsang, 2004] Kwok, J.-Y. and Tsang, I.-H. (2004). The pre-image problem

in kernel methods. IEEE transactions on neural networks, 15(6):1517–1525.

[Lamberti et al., 2008] Lamberti, P., Majtey, A., Borras, A., Casas, M., and Plastino,

A. (2008). Metric character of the quantum jensen-shannon divergence. Physical

Review A, 77(5):052311.

[Lawson and Hanson, 1995] Lawson, C. L. and Hanson, R. J. (1995). Solving least

squares problems. SIAM.

[Leordeanu et al., 2009] Leordeanu, M., Hebert, M., and Sukthankar, R. (2009). An

integer projected fixed point method for graph matching and map inference.

Advances in neural information processing systems, 22:1114–1122.

[Li et al., 2012] Li, B., Zhu, X., Chi, L., and Zhang, C. (2012). Nested subtree hash

kernels for large-scale graph classification over streams. In 2012 IEEE 12th

International Conference on Data Mining, pages 399–408. IEEE.

[Li et al., 2016] Li, W., Saidi, H., Sanchez, H., Schäf, M., and Schweitzer, P.

(2016). Detecting similar programs via the weisfeiler-leman graph kernel. In

International conference on software reuse, pages 315–330. Springer.

[Liao et al., 2019] Liao, R., Li, Y., Song, Y., Wang, S., Nash, C., Hamilton, W. L., Du-

venaud, D., Urtasun, R., and Zemel, R. S. (2019). Efficient graph generation with

graph recurrent attention networks. arXiv preprint arXiv:1910.00760.

[Livi and Rizzi, 2013] Livi, L. and Rizzi, A. (2013). The graph matching problem.

Pattern Analysis and Applications, 16(3):253–283.

[Mahé et al., 2004] Mahé, P., Ueda, N., Akutsu, T., Perret, J.-L., and Vert, J.-P. (2004).

Extensions of marginalized graph kernels. In Proc. the twenty-first international

conference on Machine learning, page 70. ACM.

[Majtey et al., 2005] Majtey, A., Lamberti, P., and Prato, D. (2005). Jensen-shannon

divergence as a measure of distinguishability between mixed quantum states.

Physical Review A, 72(5):052310.

212

BIBLIOGRAPHY

[Martineau et al., 2020] Martineau, M., Raveaux, R., Conte, D., and Venturini, G.

(2020). Learning error-correcting graph matching with a multiclass neural net-

work. Pattern Recognition Letters, 134:68–76.

[Mercer, 1909] Mercer, B. (1909). Xvi. functions of positive and negative type, and

their connection the theory of integral equations. Phil. Trans. R. Soc. Lond. A,

209(441-458):415–446.

[Michail, 2016] Michail, O. (2016). An introduction to temporal graphs: An algorith-

mic perspective. Internet Mathematics, 12(4):239–280.

[Mitchell et al., 1997] Mitchell, T. M. et al. (1997). Machine learning.

[Morgan, 1965] Morgan, H. L. (1965). The generation of a unique machine descrip-

tion for chemical structures-a technique developed at chemical abstracts service.

Journal of Chemical Documentation, 5(2):107–113.

[Morris et al., 2017] Morris, C., Kersting, K., and Mutzel, P. (2017). Glocalized

weisfeiler-lehman graph kernels: Global-local feature maps of graphs. In 2017

IEEE International Conference on Data Mining (ICDM), pages 327–336.

[Morris et al., 2020] Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel, P., and

Neumann, M. (2020). Tudataset: A collection of benchmark datasets for learning

with graphs. In ICML 2020 Workshop on Graph Representation Learning and

Beyond (GRL+ 2020).

[Morris et al., 2016] Morris, C., Kriege, N. M., Kersting, K., and Mutzel, P. (2016).

Faster kernels for graphs with continuous attributes via hashing. In Data Mining

(ICDM), 2016 IEEE 16th International Conference on, pages 1095–1100. IEEE.

[Morris et al., 2019] Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E.,

Rattan, G., and Grohe, M. (2019). Weisfeiler and leman go neural: Higher-order

graph neural networks. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 33, pages 4602–4609.

[Munkres, 1957] Munkres, J. (1957). Algorithms for the assignment and transporta-

tion problems. Journal of the society for industrial and applied mathematics,

5(1):32–38.

213

BIBLIOGRAPHY

[Murphy, 2012] Murphy, K. P. (2012). Machine Learning: A Probabilistic

Perspective. MIT Press.

[Murray et al., 2018] Murray, R. M. et al. (2018). Python Control Systems Library.

[Musmanno and Ribeiro, 2016] Musmanno, L. M. and Ribeiro, C. C. (2016). Heuris-

tics for the generalized median graph problem. European Journal of Operational

Research, 254(2):371–384.

[Nagamochi, 2009] Nagamochi, H. (2009). A detachment algorithm for inferring a

graph from path frequency. Algorithmica, 53(2):207–224.

[Nastase et al., 2015] Nastase, V., Mihalcea, R., and Radev, D. R. (2015). A survey of

graphs in natural language processing. Natural Language Engineering, 21(5):665–

698.

[Nene et al., 1996] Nene, S. A., Nayar, S. K., Murase, H., et al. (1996). Columbia ob-

ject image library (coil-100).

[Neuhaus and Bunke, 2004] Neuhaus, M. and Bunke, H. (2004). A probabilistic ap-

proach to learning costs for graph edit distance. Proceedings ICPR, 3(C):389–393.

[Neuhaus and Bunke, 2005] Neuhaus, M. and Bunke, H. (2005). Self-organizing

maps for learning the edit costs in graph matching. IEEE transactions on systems,

man, and cybernetics, 35(3):503–14.

[Neuhaus and Bunke, 2007] Neuhaus, M. and Bunke, H. (2007). Automatic learning

of cost functions for graph edit distance. Information Sciences, 177(1):239–247.

[Neuhaus et al., 2006] Neuhaus, M., Riesen, K., and Bunke, H. (2006). Fast sub-

optimal algorithms for the computation of graph edit distance. In Joint

IAPR International Workshops on Statistical Techniques in Pattern Recognition

(SPR) and Structural and Syntactic Pattern Recognition (SSPR), pages 163–172.

Springer.

[Nikolentzos et al., 2018] Nikolentzos, G., Meladianos, P., Limnios, S., and Vazir-

giannis, M. (2018). A degeneracy framework for graph similarity. In IJCAI, pages

2595–2601.

[Nikolentzos and Vazirgiannis, 2018] Nikolentzos, G. and Vazirgiannis, M. (2018).

Message passing graph kernels. arXiv preprint arXiv:1808.02510.

214

BIBLIOGRAPHY

[Ontañón, 2020] Ontañón, S. (2020). An overview of distance and similarity func-

tions for structured data. Artificial Intelligence Review, pages 1–43.

[Orsini et al., 2015] Orsini, F., Frasconi, P., and De Raedt, L. (2015). Graph invariant

kernels. In Proceedings of the Twenty-fourth International Joint Conference on

Artificial Intelligence, pages 3756–3762.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Van-

derplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay,

E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning

Research, 12:2825–2830.

[Ralaivola et al., 2005] Ralaivola, L., Swamidass, S. J., Saigo, H., and Baldi, P. (2005).

Graph kernels for chemical informatics. Neural networks, 18(8):1093–1110.

[Ramon and Gärtner, 2003] Ramon, J. and Gärtner, T. (2003). Expressivity versus

efficiency of graph kernels. In Proceedings of the first international workshop on

mining graphs, trees and sequences, pages 65–74.

[Reinanda et al., 2020] Reinanda, R., Meij, E., de Rijke, M., et al. (2020). Knowl-

edge graphs: An information retrieval perspective. Foundations and Trends®

in Information Retrieval, 14(4):1–158.

[Rettinger et al., 2012] Rettinger, A., Lösch, U., Tresp, V., d’Amato, C., and Fanizzi,

N. (2012). Mining the semantic web. Data Mining and Knowledge Discovery,

24(3):613–662.

[Rieck et al., 2019] Rieck, B., Bock, C., and Borgwardt, K. (2019). A persis-

tent weisfeiler-lehman procedure for graph classification. In International

Conference on Machine Learning, pages 5448–5458.

[Riesen, 2015] Riesen, K. (2015). Structural pattern recognition with graph edit dis-

tance. In Advances in computer vision and pattern recognition. Springer.

[Riesen and Bunke, 2008] Riesen, K. and Bunke, H. (2008). Iam graph database

repository for graph based pattern recognition and machine learning. In Joint

IAPR International Workshops on Statistical Techniques in Pattern Recognition

and Structural and Syntactic Pattern Recognition, pages 287–297. Springer.

215

BIBLIOGRAPHY

[Ristad and N.yianilos, 1998] Ristad, E. S. and N.yianilos, P. (1998). Learning string-

edit distance. IEEE Transactions on Pattern Analysis and Machine Intelligence,

20(5):522–532.

[Rossi et al., 2013] Rossi, L., Torsello, A., and Hancock, E. R. (2013). A continuous-

time quantum walk kernel for unattributed graphs. In International Workshop on

Graph-Based Representations in Pattern Recognition, pages 101–110. Springer.

[Russell, 2013] Russell, M. A. (2013). Mining the social web: data mining Facebook,

Twitter, LinkedIn, Google+, GitHub, and more. " O’Reilly Media, Inc.".

[Sanfeliu and Fu, 1983] Sanfeliu, A. and Fu, K.-S. (1983). A distance measure be-

tween attributed relational graphs for pattern recognition. IEEE transactions on

systems, man, and cybernetics, (3):353–362.

[Schieber et al., 2017] Schieber, T. A., Carpi, L., Díaz-Guilera, A., Pardalos, P. M., Ma-

soller, C., and Ravetti, M. G. (2017). Quantification of network structural dissimi-

larities. Nature communications, 8:13928.

[Schneider et al., 2020] Schneider, P., Walters, W. P., Plowright, A. T., Sieroka, N.,

Listgarten, J., Goodnow, R. A., Fisher, J., Jansen, J. M., Duca, J. S., Rush, T. S., et al.

(2020). Rethinking drug design in the artificial intelligence era. Nature Reviews

Drug Discovery, 19(5):353–364.

[Schölkopf et al., 2001] Schölkopf, B., Herbrich, R., and Smola, A. J. (2001). A gener-

alized representer theorem. In Proc. 14th Annual Conference on Computational

Learning Theory and 5th European Conference on Computational Learning

Theory, COLT/EuroCOLT, pages 416–426, London, UK. Springer-Verlag.

[Schölkopf and Smola, 2002] Schölkopf, B. and Smola, A. J. (2002). Learning with

kernels: support vector machines, regularization, optimization, and beyond. MIT

press.

[Schomburg et al., 2004] Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt,

C., Huhn, G., and Schomburg, D. (2004). Brenda, the enzyme database: updates

and major new developments. Nucleic acids research, 32(suppl_1):D431–D433.

[Scott, 2011] Scott, J. (2011). Social network analysis: developments, advances, and

prospects. Social network analysis and mining, 1(1):21–26.

216

BIBLIOGRAPHY

[Shawe-Taylor and Cristianini, 2004] Shawe-Taylor, J. and Cristianini, N. (2004).

Kernel methods for pattern analysis. Cambridge university press.

[Shervashidze and Borgwardt, 2009] Shervashidze, N. and Borgwardt, K. (2009).

Fast subtree kernels on graphs. In Advances in neural information processing

systems, pages 1660–1668.

[Shervashidze et al., 2011] Shervashidze, N., Schweitzer, P., Leeuwen, E. J. v.,

Mehlhorn, K., and Borgwardt, K. M. (2011). Weisfeiler-lehman graph kernels.

Journal of Machine Learning Research, 12(Sep):2539–2561.

[Shervashidze et al., 2009] Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn,

K., and Borgwardt, K. (2009). Efficient graphlet kernels for large graph compari-

son. In Artificial Intelligence and Statistics, pages 488–495.

[Siglidis et al., 2020] Siglidis, G., Nikolentzos, G., Limnios, S., Giatsidis, C., Skianis,

K., and Vazirgiannis, M. (2020). Grakel: A graph kernel library in python. Journal

of Machine Learning Research, 21(54):1–5.

[Simonovsky and Komodakis, 2018] Simonovsky, M. and Komodakis, N. (2018).

Graphvae: Towards generation of small graphs using variational autoencoders. In

International Conference on Artificial Neural Networks, pages 412–422. Springer.

[Suard et al., 2007] Suard, F., Rakotomamonjy, A., and Bensrhair, A. (2007). Kernel

on bag of paths for measuring similarity of shapes. In ESANN, pages 355–360.

[Sugiyama and Borgwardt, 2015] Sugiyama, M. and Borgwardt, K. (2015). Halting

in random walk kernels. In Advances in neural information processing systems,

pages 1639–1647.

[Sugiyama et al., 2017] Sugiyama, M., Ghisu, M. E., Llinares-López, F., and Borg-

wardt, K. (2017). graphkernels: R and python packages for graph comparison.

Bioinformatics, 34(3):530–532.

[Togninalli et al., 2019] Togninalli, M., Ghisu, E., Llinares-López, F., Rieck, B., and

Borgwardt, K. (2019). Wasserstein weisfeiler-lehman graph kernels. In Advances

in Neural Information Processing Systems, pages 6439–6449.

[Trinajstic, 2018] Trinajstic, N. (2018). Chemical graph theory. Routledge.

217

BIBLIOGRAPHY

[Vamathevan et al., 2019] Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I.,

Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., Spitzer, M., et al. (2019). Appli-

cations of machine learning in drug discovery and development. Nature Reviews

Drug Discovery, 18(6):463–477.

[Van Rossum and Drake, 2009] Van Rossum, G. and Drake, F. L. (2009). Python 3

Reference Manual. CreateSpace, Scotts Valley, CA.

[Van Rossum and Drake Jr, 1995] Van Rossum, G. and Drake Jr, F. L. (1995). Python

reference manual. Centrum voor Wiskunde en Informatica Amsterdam.

[Virtanen et al., 2020] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,

Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,

et al. (2020). Scipy 1.0: fundamental algorithms for scientific computing in

python. Nature methods, 17(3):261–272.

[Vishwanathan et al., 2010] Vishwanathan, S. V. N., Schraudolph, N. N., Kondor,

R., and Borgwardt, K. M. (2010). Graph kernels. Journal of Machine Learning

Research, 11(Apr):1201–1242.

[Wale et al., 2008] Wale, N., Watson, I. A., and Karypis, G. (2008). Comparison of

descriptor spaces for chemical compound retrieval and classification. Knowledge

and Information Systems, 14(3):347–375.

[Wang et al., 2018] Wang, H., Wang, J., Wang, J., Zhao, M., Zhang, W., Zhang, F., Xie,

X., and Guo, M. (2018). Graphgan: Graph representation learning with generative

adversarial nets. In Proceedings of the AAAI conference on artificial intelligence,

volume 32.

[Wang, 2015] Wang, X. (2015). Graph based approaches for image segmentation

and object tracking. PhD thesis, Ecully, Ecole centrale de Lyon.

[Wasserman et al., 1994] Wasserman, S., Faust, K., et al. (1994). Social network

analysis: Methods and applications, volume 8. Cambridge university press.

[Weisfeiler and Lehman, 1968] Weisfeiler, B. and Lehman, A. A. (1968). A reduc-

tion of a graph to a canonical form and an algebra arising during this reduction.

Nauchno-Technicheskaya Informatsia, 2(9):12–16.

218

BIBLIOGRAPHY

[West et al., 2001] West, D. B. et al. (2001). Introduction to graph theory, volume 2.

Prentice hall Upper Saddle River.

[Wills and Meyer, 2020] Wills, P. and Meyer, F. G. (2020). Metrics for graph compar-

ison: A practitioner’s guide. Plos one, 15(2):e0228728.

[Wilson et al., 2014] Wilson, R. C., Hancock, E. R., Pekalska, E., and Duin, R. P.

(2014). Spherical and hyperbolic embeddings of data. IEEE transactions on

pattern analysis and machine intelligence, 36(11):2255–2269.

[Winter et al., 2002] Winter, A., Kullbach, B., and Riediger, V. (2002). An overview

of the gxl graph exchange language. In Software Visualization, pages 324–336.

Springer.

[Wolpert and Macready, 1997] Wolpert, D. H. and Macready, W. G. (1997). No

free lunch theorems for optimization. IEEE transactions on evolutionary

computation, 1(1):67–82.

[Wu et al., 2020] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip, S. Y. (2020).

A comprehensive survey on graph neural networks. IEEE Transactions on Neural

Networks and Learning Systems.

[Wu et al., 2018] Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C.,

Pappu, A. S., Leswing, K., and Pande, V. (2018). Moleculenet: a benchmark for

molecular machine learning. Chemical science, 9(2):513–530.

[Xu et al., 2018] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018). How powerful are

graph neural networks? arXiv preprint arXiv:1810.00826.

[Xu et al., 2014] Xu, L., Wang, W., Alvarez, M., Cavazos, J., and Zhang, D.

(2014). Parallelization of shortest path graph kernels on multi-core cpus and

gpus. Proceedings of the Programmability Issues for Heterogeneous Multicores

(MultiProg), Vienna, Austria.

[Yan et al., 2016] Yan, J., Yin, X.-C., Lin, W., Deng, C., Zha, H., and Yang, X. (2016).

A short survey of recent advances in graph matching. In Proceedings of the 2016

ACM on International Conference on Multimedia Retrieval, pages 167–174.

[Yanardag and Vishwanathan, 2015a] Yanardag, P. and Vishwanathan, S. (2015a).

Deep graph kernels. In Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 1365–1374. ACM.

219

BIBLIOGRAPHY

[Yanardag and Vishwanathan, 2015b] Yanardag, P. and Vishwanathan, S. (2015b). A

structural smoothing framework for robust graph comparison. In Advances in

Neural Information Processing Systems, pages 2134–2142.

[Yao and Holder, 2014] Yao, Y. and Holder, L. (2014). Scalable svm-based classifica-

tion in dynamic graphs. In 2014 IEEE international conference on Data Mining,

pages 650–659. IEEE.

[You et al., 2018] You, J., Ying, R., Ren, X., Hamilton, W., and Leskovec, J. (2018).

Graphrnn: Generating realistic graphs with deep auto-regressive models. In

International Conference on Machine Learning, pages 5708–5717. PMLR.

[Zeng et al., 2009] Zeng, Z., Tung, A. K., Wang, J., Feng, J., and Zhou, L. (2009). Com-

paring stars: On approximating graph edit distance. Proceedings of the VLDB

Endowment, 2(1):25–36.

[Zhang et al., 2020] Zhang, Z., Cui, P., and Zhu, W. (2020). Deep learning on graphs:

A survey. IEEE Transactions on Knowledge and Data Engineering.

[Zhang et al., 2018] Zhang, Z., Wang, M., Xiang, Y., Huang, Y., and Nehorai, A.

(2018). Retgk: Graph kernels based on return probabilities of random walks. In

Advances in Neural Information Processing Systems, pages 3968–3978.

[Zhou et al., 2018a] Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., and

Sun, M. (2018a). Graph neural networks: A review of methods and applications.

arXiv preprint arXiv:1812.08434.

[Zhou et al., 2018b] Zhou, Q.-Y., Park, J., and Koltun, V. (2018b). Open3D: A modern

library for 3D data processing. arXiv:1801.09847.

[Zhu and Honeine, 2017] Zhu, F. and Honeine, P. (2017). Online kernel nonnegative

matrix factorization. Signal Processing, 131:143 – 153.

220

	Contents
	List of Publications
	List of Figures
	List of Tables
	List of Algorithms
	I Introduction and preliminaries
	Introduction
	Background of graph representation
	Graph properties and the kernel paradigm
	From human to machine learning
	On spaces of graphs
	Graph embedding and kernels on graphs

	Constructing graphs by solving the pre-image problem
	Contributions of the research
	Structure of the thesis

	Preliminaries
	Basic concepts of graph theory
	Kernel methods and pre-image
	Kernel methods
	Graph kernels
	The pre-image problem

	Graph edit distances
	Real-world graph datasets

	II Contributions
	Graph kernels based on sub-patterns
	Overview
	Graph kernels based on walks
	Common walk kernel
	Marginalized kernel
	Generalized random walk kernel
	Problems raised by walks

	Graph kernels based on paths
	Shortest path kernel
	Structural shortest path kernel
	Path kernel up to length h

	Graph kernels related to walks and paths
	Graph kernels based on non-linear patterns
	Treelet kernel
	Weisfeiler-Lehman subtree kernel

	Acceleration strategies: FCSP, parallelization, and trie structure
	The Fast Computation of Shortest Path Kernel method
	Parallelization
	The trie Structure

	Experiments and analyses
	Performance on synthesized graphs
	Performance on the real-world datasets

	Conclusion

	Stability and metric learning of graph edit distances
	Overview
	Graph edit distances heuristics
	The LSAPE-GED paradigm
	The LS-GED paradigm

	Stability of GED heuristics
	A metric learning approach to graph edit costs for regression
	Related work
	Problem formulation
	Learning the edit costs
	Experiments

	Conclusion and future work

	Graph pre-image based on graph edit distances
	Overview
	Problem formulation
	Proposed graph pre-image framework
	Learn edit costs by distances in kernel space
	Generate graph pre-image

	Experiments
	Implementations and computational settings
	Experiments on real-world datasets
	Results and analyses

	Conclusion and future work

	graphkit-learn for graph machine learning
	Overview
	The overall architecture
	Graph data processing
	Implementations of graph kernels
	State of the art and motivation
	Implementation details of graph kernels
	Usage example

	Implementations of graph edit distance
	State of the art and motivation
	The ged module
	The gedlib module
	Usage example

	Implementations of graph pre-image methods
	Auxiliary tools
	Conclusion and Future Work

	Conclusions and future work
	Conclusion
	Future work

	III Appendix
	Synthèse de la thèse en français
	Contexte de la représentation graphique
	Les propriétés des graphes et le paradigme du noyau
	De l'apprentissage humain à l'apprentissage automatique
	Sur les espaces des graphes
	Projection des graphes et noyaux sur graphes

	Construire des graphes par la résolution du problème de la pré-image
	Contributions
	Structure de la thèse
	Conclusion
	Perspectives

	Bibliography

