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Résumé étendu en français

Ce travail de thèse porte sur les écoulements granulaires sur un fond plan incliné et lisse,
confinés entre deux parois également lisses. Ces écoulements ont été simulés numériquement
en utilisant la méthode des éléments discrets. Dans cette étude, nous avons considéré une
très large gamme d’angles d’inclinaison et de débits, et différentes largeurs du canal, en se
focalisant sur les régimes stationnaires. Nous avons également fait varier les paramètres
mécaniques des grains et des parois, notamment le coefficient de restitution grain/grain et
les coefficients de frottement grain/grain et grain/parois.

Ce manuscript se divise en 6 chapitres. Le premier chapitre est un état de l’art portant
sur les écoulements granulaires sur plan incliné. Dans le deuxième chapitre, nous étudions
numériquement l’écoulement de particules sphériques de diamètre D dans un canal de
largeur W = 68D, en faisant varier l’angle d’inclinaison θ et le nombre de particules im-
pliquées dans l’écoulement. Au chapitre 3, nous étudions l’influence de la largeur du canal
sur les caractéristiques de l’écoulement. Le chapitre 4 porte sur le rôle du coefficient de
restitution grain/grain. Le chapitre 5 s’intéresse à l’effet d’autres paramètres mécaniques :
coefficients de frottement grain/paroi et grain/grain. Le chapitre 6 expose la conclusion et
les perspectives.

Le premier chapitre présente l’état de l’art sur les écoulements sur plan incliné. Lorsque
l’angle d’inclinaison est faible, des écoulements stationnaires établis, unidirectionnels et
denses, sont observés. Avec l’augmentation de l’angle d’inclinaison (typiquement au-dessus
de 20 degrés), on observe une déstabilisation des écoulements denses avec l’apparition de
rouleaux et une augmentation de la longueur d’établissement, si bien que les écoulements
observés expérimentalement à ces angles-là sont généralement accélérés. Lorsque les écoulements
sont confinés entre deux parois, on obtient des régimes stationnaires et établis sur une
plus large gamme d’angles d’inclinaison. On observe le même type de transition régime
dense/régime à rouleaux mais en restant dans un régime stationnaire. Des similations
numériques récentes Brodu et al. (2015) montrent l’existence de nouveaux régimes à très
forts angles (au-delà de 30 degrés). Un régime particulièrement intéressant est le régime dit
”supporté” qui présente un noyau dense entouré d’une couche ”gazeuse” très diluée. Ce
nouveau régime s’avère être un excellent candidat pour expliquer les écoulements naturels
à longue portée.

Dans le deuxième chapitre, nous étudions numériquement les écoulements stationnaires
obtenus dans une configuration confinée où l’écartement entre les parois est W = 68d. Ce
travail constitue un approfondissement des résultats obtenus par Nicolas Brodu Brodu et al.
(2015). Nous décrivons les différents régimes stationnaires obtenus en fonction de l’angle θ
et de la masse par unité de surface mesurée en terme de hauteur H et nous définissons des
critères quantitatifs pour caractériser les transitions observées. L’organisation du chapitre
est la suivante. Nous présentons en préambule la méthode des éléments discrets utilisée
pour les simulations et la géométrie de l’écoulement. Le reste constitue un article publié
dans la revue ”Granular Matter”. Nous fournissons dans celui-ci une étude détaillée des
différents régimes stationnaires d’écoulement, à savoir les écoulements denses unidirec-
tionnels, les régimes à rouleaux, les régimes supportés symétriques et asymétriques. Nous
décrivons les transitions entre ces régimes en suivant les variations de certaines grandeurs
physiques clés, telles que la vorticité, la fraction volumique maximale et l’asymétrie du pro-
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fil instantané de fraction volumique transversale intégré en profondeur.
Nous montrons ensuite que la vitesse moyenne de ces écoulements est essentiellement

contrôlée par la vitesse de glissement, de sorte que les deux vitesses sont fortement corrélées.
Ainsi la connaissance et la caractérisation de la vitesse de glissement sont d’une grande im-
portance. Nous montrons en particulier que la vitesse de glissement en régime stationnaire
dépend principalement de l’angle d’inclinaison et dépend peu de la hauteur H de grains
dans l’écoulement.

Nous étudions enfin comment le frottement effectif en parois et au fond varie avec l’angle
et la masse de l’écoulement. Nous trouvons de façon remarquable que le frottement est
une fonction monotone croissante qui dépend uniquement d’un nombre sans dimension, le
nombre de Froude, construit à partir de la vitesse de glissement et de la pression mesurées
en parois ou au fond. Nous montrons que cette loi de frottement, appelée par la suite
µ(Fr), est valable à une échelle locale et globale et que celle-ci s’applique non seulement
aux écoulements stationnaires, mais aussi aux écoulements instationnaires.

Dans le chapitre 3, nous étudions l’influence de la largeur du canal sur les caractéristiques
d’écoulement. Les résultats sont présentés sous la forme d’un article qui sera soumis prochaine-
ment. Dans le chapitre précédent, nous avons mis en évidence l’existence d’une loi uni-
verselle pour le frottement basal et latéral et nous avons montré que ce dernier peut être
décrit comme une fonction unique du nombre de Froude. Ce résultat a été établi pour une
largeur de canal fixe W = 68D. Il est donc naturel de se demander si la loi de frottement
vaut également pour d’autres largeurs de canal. Pour répondre à cette question, nous avons
réalisés des simulations pour les largeurs suivantes: W = 20D, 40D, 60D, 75D et 140D.

On montre que l’effet principal d’une variation de la largeur du canal est de modifier les
seuils d’apparition des différents régimes stationnaires. À mesure que la largeur du canal
diminue, les transitions se produisent à des angles de plus en plus élévées. Cela conduit
à la disparition de certains régimes d’écoulement dans des configurations très confinées. À
titre d’exemple, le régime ”supporté” disparaı̂t pour une largeur de canal inférieure ou égale
W = 20D. En revanche, il semble subister, au moins en régime instationnaire, jusqu’ à des
largeurs abitrairement grandes. En d’autres termes, les parois latérales ne sont probable-
ment pas la cause de l’existence du régime d’écoulement ”supporté”, mais peuvent être la
cause de sa disparition.

Par ailleurs, nous montrons que la vitesse moyenne stationnaire VL des écoulements sup-
portés obéit à des lois d’échelles très simples avec H et W:

VL − Vc
L ∝ W0.7H0.3 (sin θ − sin θc) , (1)

où θc l’angle critique au-dessus duquel les états supportés apparaissent et VC
L est leur vitesse

critique. On trouve que θc diminue avec W (θc ≈ 26.5◦ pour W = 40D et θc ≈ 23.5◦ pour
W = 140D) alors que la vitesse critique est indépendante de W. Nous confirmons que les
vitesses de glissement Vg restent très corrélées à la vitesse moyenne de l’écoulement. Celles-
ci dépendent de la même façon de W mais sont indépendantes de H:

Vg − Vc
g ∝ W0.7 (sin θ − sin θc) . (2)

Un des résultats majeurs de ce chapitre concerne les lois sur le frottement et la fraction
volumique en parois et au fond (i.e., µ(Fr) et ϕ(Fr)). Nous montrons que ces lois restent
valables et sont inchangées quand on modifie la largeur du canal ce qui tend à montrer
l’universalité de celles-ci. Ces lois fournissent ainsi une description complète des conditions
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aux limites aux parois et au fond. Nous proposons une expression approchée de ces lois à
partir de fonctions exponentielles:

µ = µ2 + (µ1 − µ2) exp
(
− Fr

Frµ0

)
(3)

ϕ = ϕ2 + (ϕ1 − ϕ2) exp
(
− Fr

Frϕ0

)
(4)

où Fr = V/
√

P/ρ est le nombre de Froude construit sur la vitesse de glissement V et la pres-
sion P en parois. Les coefficients µ1, µ2, Frµ0 , ϕ1, ϕ2 et Frϕ0 sont des paramètres indépendants
de la largeur du chenal mais ils peuvent être sensibles aux paramètres mécaniques des grains
et des parois comme nous le verrons dans le chapitre suivant.

Nous avons regardé quelles étaient les propriétés de l’écoulement qui peuvent être décrites
par la théorie cinétique des gaz granulaires. Nous montrons que les pressions et les con-
traintes cisaillantes au niveau des parois et du fond sont relativement bien décrites par les
prédictions de la théorie cinétique tant que l’écoulement n’est pas trop dense. Nous avons
aussi fait quelques tests préliminaires pour savoir si la rhéologie µ(I) est pertinente pour
décrire la rhéologie de nos écoulements. Les écoulements denses et les régimes à rouleaux
semblent pouvoir être décrits correctement par cette rhéologie.

Une autre loi importante a été mise en évidence. Elle concerne la hauteur de frotte-
ment Z qui caractérise la hauteur sur laquelle le frottement latéral contribue de manière
significative. Cette hauteur est bien sûr inférieure à la hauteur totale de l’écoulement h.
Nous trouvons que la rapport (Z/H) ne dépend que de la fraction volumique moyenne de
l’écoulement ϕ̄ et qu’il est une fonction monotone décroissante. Cette loi combinée avec les
versions globales des lois µ(Fr) et ϕ(Fr) fournit les informations nécessaires pour résoudre
les équations régissant la dynamique du système.

Le chapitre 4 étudie l’effet de la variation du coefficient du restitution e sur les propriétés
des écoulements. Le coefficient e caractérise l’élasticité de la collision entre les grains. Un
coefficient égal à 1 correspond à une collision parfaitement élastique alors qu’une valeur
inférieure à 1 indique une collision inélastique. Plus e est petit, plus la dissipation est
importante. Les résultats de nos simulations indiquent que le coefficient de restitution e
joue un rôle majeur notamment sur les propriétés cinématiques de l’écoulement. La vitesse
moyenne stationnaire de l’écoulement augmente lorsque e diminue. Cet effet contre-intuitif
s’explique par le fait que l’écoulement se contracte lorsque la dissipation augmente. De
ce fait, l’écoulement présente une hauteur plus faible et a ainsi une surface de frottement
réduite lui permettant d’augmenter sa vitesse. On montre également qu’un abaissement du
coefficient de restitution favorise l’apparition des régimes supportés. Ainsi, il est possible
d’obtenir des écoulements supportés à W = 20D si on utilise un coefficient de restitution
abaissé. De nouvelles figures d’écoulement apparaissent aussi quand on baisse e, avec des
structures secondaires dont la direction d’enroulement est très sensible aux variations de e.
Ainsi un abaissement de e peut conduire à un changement du sens de rotation des rouleaux.

Nous nous sommmes également intéressés à l’effet de e sur les lois µ(Fr) et ϕ(Fr) établies
dans les chapitres précédents. Nous montrons que ces lois sont robustes: elles sont invari-
antes dans leur forme mais peuvent changer de manière quantitative. Une variation de e
n’affecte que marginalement la loi µ(Fr) alors qu’elle a un effet quantitatif majeur sur la loi
ϕ(Fr). Nous montrons également que la loi sur la hauteur de frottement reste inchangée
dans sa forme et ses valeurs. Elle semble avoir un caractère universel (i.e., indépendante des
paramètres mécaniques), ce qui sera confirmé dans le chapitre suivant.
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Dans le chapitre 5, nous abordons l’effet de la variation des autres paramètres mécaniques
sur les propriétés de l’écoulement. On étudie en particulier le rôle des coefficients de frot-
tement grain/grain (µgg) et grain-paroi (µgw). L’étude est réalisée pour W = 40D. Nous
analysons d’abord comment ces paramètres mécaniques modifient la vitesse moyenne sta-
tionnaire de l’écoulement. Nous avons trouvé des effets contrastés. Comme e, µgw a une in-
fluence monotone sur la vitesse moyenne. Une augmentation de µgw entraı̂ne une diminu-
tion de cette vitesse. Ce n’est pas le cas pour µgg. Nous avons en effet une évolution qui
dépend de l’angle d’inclinaison. En dessous d’un certain angle, la vitesse de l’écoulement
diminue quand µgg augmente, tandis qu’au-dessus l’évolution inverse est observée. Cette
inclinaison critique dépend de µgw. Les raisons de ce changement d’évolution restent pour
l’instant inexpliquées. Les variations de la vitesse moyenne sont liées principalement à des
changements de la vitesse de glissement. Ces résultats peuvent donc avoir une certaine
utilité pour guider les recherches pratiques et déterminer les conditions optimales pour min-
imiser la dissipation lors du transport de matériaux granulaires.

Nous étudions ensuite comment les lois de frottement et de fraction volumique aux
parois et au fond sont affectées par une modification des coefficients de frottement miscro-
scopiques µgw et µgg. Nous confirmons la robustesse de ces lois vis à vis des variations des
coefficients de frottement microscopiques. Les valeurs des paramètres de ces lois changent
mais celles-ci gardent la même forme.

Enfin, la loi qui décrit l’évolution de Z/H en fonction de ϕ̄ reste inchangée quand on fait
varier les paramètres µgg et µgw. Cette loi s’avère non seulement indépendante de la largeur
de l’écoulement W mais aussi des paramètres mécaniques. Cela suggère fortement que cette
loi doit résulter d’une équation de conversation que nous n’avons pas encore identifiée.

En conclusion, nous avons réalisé des simulations numériques d’écoulements granu-
laires, confinés entre parois lisses, en faisant varier de manière systématique l’angle d’inclinaison
du canal et la hauteur (masse par unité de surface) H de l’écoulement pour des largeurs de
canaux allant de W = 20D à W = 140D. Nous avons également fait varier les paramètres
mécaniques du système, dont le coefficient de restitution normal entre grains, le coefficient
de frottement grain/grain et le coefficient de frottement grain/paroi. Nous avons montré
que la vitesse moyenne stationnaire de ces écoulements est essentiellement contrôlée par la
vitesse de glissement, de sorte que les deux vitesses sont fortement corrélées. Ainsi com-
prendre comment la vitesse de glissement évolue avec H, θ et W est une question cruciale.
Nous avons donc étudié en détail les caractéristiques de ces écoulements et mis en évidence
que le frottement et la fraction volumique aux parois et au fond peuvent s’exprimer comme
des fonctions simples du nombre de Froude pariétal construit à partir de la vitesse de glisse-
ment et la pression. Ces lois sont robustes aux modifications des propriétés mécaniques des
particules et des parois. Seuls les paramètres de ces lois sont affectés par ces changements.
Les relations entre les paramètres de ces lois et les paramètres mécaniques du système sont,
pour certaines d’entre elles, complexes et encore difficiles à interpréter.

Nous avons identifié quelques pistes importantes pour de futures recherches. Une ex-
tension de notre travail au cas des écoulements instationnaires de même qu’une confirma-
tion expérimentale des résultats numériques sont des perspectives intéressantes. Ces deux
questions sont en fait étroitement liées. Les écoulements rapides stationnaires sont difficiles
à réaliser dans des expériences réelles parce qu’ils nécessitent une très grande longueur
de chute. Par conséquent, les écoulements rapides expérimentaux sont souvent observés
dans des états non matures (accélérés). Ainsi, si nous avons une compréhension claire des
écoulements instationnaires, cela pourrait grandement aider à l’analyse et à l’interprétation
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des écoulements expérimentaux rapides.
Aussi, la description rhéologique de ces écoulements rapides reste une question ou-

verte. Nous ne l’avons que timidement abordé dans ce travail de thèse. Enfin, les travaux
expérimentaux sur les écoulements rapides se heurtent à la difficulté d’accéder à la struc-
ture interne de l’écoulement et de mesurer les forces mises en jeu. L’effort devrait se porter
sur le développement de nouvelles techniques expérimentales pour sonder l’intérieur de
l’écoulement et quantifier les forces de frottement aux parois et au fond.
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Chapter 1

State of the art

1 Introduction

A granular material can be defined as any material composed of many individual solid par-
ticles, irrespective of the particle size. In this thesis, we will only study dry granular flows,
with grain size (D > 100µm), in this case, we do not have to take into account electrostatic
interactions, capillary or van der Walls forces etc. . Even with this restriction, the behavior
of assemblies of grains can be very complex. As we know, granular flows are found in many
industrial processes, especially in the mining, food-processing and building industries like
transportation, powdering, mixing, storage etc. (Ramaioli, 2008; Smith and T., 2015; Torres-
Serra et al., 2017). They are also important in nature, mountain slopes, avalanches and vol-
canic edifices (Drake, 1990; Calder et al., 2002; GDR MiDi, 2004; Delannay et al., 2017), and
even in the area of space exploration (Treiman and Louge, 2004). In fact, the second most
common substance manipulated by humans is granular material (Duran, 1997), the impor-
tance of granular materials should not be underestimated.

Figure 1.1: An example of granular flow in nature. Pictured: Earthquake-triggered landslide in Las Colinas,
Santa Tecla (El Salvador, 13 January 2001).

The understanding and modeling of granular flows is still an active field of research;
there is no unified theory describing the diversity of the behaviors observed in granular
flows. They often exhibit flow regimes where ”solid”, motionless, phases coexist with ”liq-
uid” ones (dense flows) and ”gaseous” ones (dilute flows) (Taberlet et al., 2003; Richard
et al., 2008; Forterre and Pouliquen, 2008). The complexity of the granular flows mainly
arises from the nature of the interactions between grains: according to the relative contribu-
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tion of brief, collisional contacts dominant in the dilute parts compared to enduring contacts
associated with friction, dominant in the dense parts, the macroscopic behavior of the flows
changes drastically in space and time (Treiman and Louge, 2004).

Figure 1.2: Scheme of the simulated system. The channel is inclined with an angle θ with respect to the
horizontal. Cartesian coordinate system with unit vectors x along the flow, y perpendicular to side-walls, and
z normal to bottom.

Gravity driven dry Granular flows down an inclined plane are important for a large
number of problems. For example, rock avalanches are composed of individual particles
flowing down an inclined plane. Therefore they are important in natural as well as in indus-
trial processes (grain and mineral transport). So it is of great significance to understand these
flows and develop predictive models. For studying granular flows, two different methods
are mainly used: experiment and numerical simulations using discrete elements (DEM).

This thesis focus on flows down an inclined plane chute. According to the lateral bound-
ary conditions, granular flows are usually divided into unconfined flows and confined flows.
The numerical simulations generally have periodic boundary conditions in the flow direc-
tion: x (see figure1.2). In the width direction (y) they may also have periodic condition,
in this case they produce ”unconfined flows” without lateral boundaries. On the contrary,
there are side walls perpendicular to y-axis in the case of ”confined flows”. Experimental
set-ups for granular flows always have side walls. If the grains are not injected along the
whole width, they begin by spreading out until they flow between levees or occupy the
entire width, the flow is then confined between the side walls. It is an important question
to know what is the effect of these side-walls on the flow. When the walls are very far
apart from each other, it is tempting to presume that their effect on the flow is negligible, so
that the flow could be considered as unconfined and compared to unconfined numerically
simulated flows. We lack here a precise definition to distinguish when the influence of the
side-walls on granular flows can be ignored. This is one of the reasons to study confined
granular flows.

Starting from initial position and velocity, which are chosen according to some rule in
the numerical simulations, and given by the way of injection in the experiments, the grains
begin to move. The position and velocity of the grains will thus evolve with time, giving
birth to a flow. The properties of this flow consequently change, for example, its mean
velocity increases. After some time, and thus some travelled distance, the properties of
the flow eventually become invariant in time and space, in the direction of the flow. The
transient is thus followed by a stationary fully and developed flow (SFD). In fact, the SFD
flow is a limit which is never exactly achieved. Although the amount of change in velocity,
for example, is getting smaller and smaller, the velocity is always changing. Therefore, it is
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difficult to distinguish between accelerating flows with small acceleration and SFD flows.
We lack a precise definition to determine when we can ignore the change and study it as
SFD flows.

In the following chapters we will give some of the results described in the literature, con-
cerning first the unconfined flows, and then confined flows, in each case we will point out
in which conditions appear the SFD flows, their different flow regimes and their properties.
We will also describe what is known about transients.

2 Unconfined flows

Many chute flow experiments and numerical simulations have been carried out and differ-
ent configurations have been investigated, changing the bumpiness of the bed, using dif-
ferent kinds of materials etc. The typical experimental set-up of unconfined flows down
an inclined plane is shown in Fig.1.3. It consists of an inclined plane at an angle θ from
horizontal.

Figure 1.3: Typical experimental configuration of unconfined flows on inclined plane extracted from article
GDR MiDi (2004).

If we increase the inclination angle θ above a critical angle θstart, an initially static bed of
thickness h will start to flow. Conversely, if we decrease the inclination, an initially flowing
grain layer of thickness h will stop when the inclination decreases below θstop. These two
critical angles, θstart and θstop, depend on h. Correspondingly, for a given inclination angle
θ, there exists a critical thickness hstop where the flow stops. Pouliquen (1999) studied the
change of the critical thickness hstop with the inclination angles θ, using a 2m long and 70cm
wide plane (data used in this section are summarised in in Table (1.1)). Those critical num-
bers divide the phase diagram (h, θ) in two regions (see Fig.1.4): no flow for h < hstop; for
h > hstop the particles flow. The curves hstop exhibit the same shape for all the materials (see
Fig.1.4 (b)) and can be fitted by:

hstop(θ) = LD
µ2 − tan θ

tan θ − µ1
(1.1)

where D is the particle diameter, L is a characteristic dimensionless thickness, µ1 = tan θ1,
µ2 = tan θ2 ; θ1 corresponds to the angle where hstop diverges, θ2 to the angle where hstop
vanishes. The fit parameters depend on both the bulk material and roughness conditions
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of the base ( see Fig.1.4(a,b)). Weinhart et al. (2012) showed that for a nearly smooth base,
steady flows initiate and reside at or very tightly around one small inclination for all heights.
This conclusion is in agreement with the angle found in the experimental research of Goujon
et al. (2003). This shows that hstop does not exist for a smooth base. In their experiments
Louge and Keast (2001) find a relatively large angle range for which SFD flows occur. This
is an indication of confinement effects. From this point of view, the experiments of Louge
and Keast (2001) are confined flow experiments.

(a) (b)

Figure 1.4: (a) Phase diagram in space (h/D,θ◦) extracted from Pouliquen (1999). (b), dimensionless h as a
function of θ for different basal roughness λ. λ is the size ratio of the flowing particles and those fixed at the
base. When λ becomes small, the demarcation line tends to become vertical at θ = 12.5◦ (not shown). Extracted
from Weinhart et al. (2012).

2.1 Conditions for SFD flows

As already mentioned, when the inclined plane is smooth (Augenstein and Hogg, 1978;
Goujon et al., 2003; Weinhart et al., 2012; Artoni et al., 2012; Kumaran and Bharathraj, 2013;
Zhang et al., 2019), SFD flows only exist in a very narrow range of inclination angles. Below
these angles the material stops, and above these angles the granular flow seems to contin-
uously accelerate along the inclined plane (or during the whole running time in numerical
simulations). On a bumpy bed, for moderate inclinations, the flow becomes SFD after a
short time (or distance). But, at large inclinations, the flows continuously accelerate along
the slope length L of the plane in experiments and during the whole running time in nu-
merical simulations (Silbert et al., 2002; Forterre and Pouliquen, 2001; Börzsönyi et al., 2009).
For example, Forterre and Pouliquen (2001) have observed continuously accelerating flows
for an inclination larger than θ = 38◦ and h larger than 20D (hatched zone in figure 1.5). In
these flows, the granular material flowing out from the reservoir accelerates along the whole
slope while the thickness of the granular layer decreases. As we will discuss later in this
chapter, these flows exhibit longitudinal rolls. Using numerical method (DEM), Börzsönyi
et al. (2009) have also found this instability over a range of parameter values: slope angle
34◦–39◦, restitution 0.80–0.95 and width greater than 50D.
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Figure 1.5: Phase diagram in space (hg/D,θ◦) the roll instability is observed in the hatched zone. The picture is
a close-up of the free surface in the saturated regime (θ = 41◦ and hg = 13mm). extracted from article Forterre
and Pouliquen (2001).

2.2 SFD flows

There is some experimental research on a flat base (Augenstein and Hogg, 1978; Goujon
et al., 2003), but SFD flows on a smooth base have been mainly studied with numerical meth-
ods (Weinhart et al., 2012; Artoni et al., 2012; Kumaran and Bharathraj, 2013; Zhang et al.,
2019). A much larger corpus of studies exists on dense granular flows down rough base.
The steady fully developed flows have been discussed, in both experiments (Pouliquen,
1999; GDR MiDi, 2004; Forterre and Pouliquen, 2008; Börzsönyi et al., 2009; Kumaran and
Bharathraj, 2013) and numerical simulations (Silbert et al., 2001; GDR MiDi, 2004; Börzsönyi
et al., 2009).

Since it is difficult to reach a steady state, there is not much research on smooth base. So
in the following parts, we will start with the rough base and then compare it, when possible,
with smooth base.

2.2.1 Dense flows

Velocity scaling law: In the SFD flow regimes, with rough base, Pouliquen (1999) ob-
served that the Froude number built with the mean velocity varies linearly with h

hstop
:

Fr =
< V >√

gh
= β

h
hstop(θ)

(1.2)

Where β is a number independent of the inclination, the bead size, and the roughness of the
base.
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Figure 1.6: Froude number as a function of h/hstop extracted from article Pouliquen (1999).

Velocity profiles Silbert et al. (2001) simulated gravity-driven 3D granular flow on a
bumpy base using DEM (with friction coefficient µ = 0.5 and restitution coefficient e = 0.88).
The bottom of figure 1.7 (a,b) shows that the velocity reaches its maximum at the free-surface
of granular flows, and that increasing θ and h increases velocity. The sliding velocity is very
small compared to the average speed and can be ignored. The velocity roughly obeys a
Bagnold-like profile where Vx(z) ∝ hα, with α ≈ 1.5 (Bagnold, 1954) :

Vx(z)√
gd

= A(θ)
h3/2 − (h − z)3/2

D3/2 (1.3)

Where A is a dimensionless coefficient containing the inclination θ dependency. From equa-
tion (1.3), it is possible to express the mean flow velocity < V > as:

< V >=
1
h

∫ h

0
Vx(z)dz =

3
5

√
gh

h
D

A(θ) (1.4)

By identification to the empirical scaling law (equation (1.2)), we get an expression of A(θ):

A(θ) =
5
3

β
D

hstop(θ)
(1.5)

For a smooth base, the form of the velocity profile is similar, but the sliding velocity is
much greater (Delannay et al., 2007; Weinhart et al., 2012; Artoni et al., 2012; Kumaran and
Bharathraj, 2013; Zhang et al., 2019). The Bagnold velocity profile is a robust feature of
dense SFD flows on incline plane and has been checked numerically and experimentally
(Pouliquen, 1999; Silbert et al., 2001; GDR MiDi, 2004; Baran et al., 2006; Börzsönyi et al.,
2009; Weinhart et al., 2012; Kumaran and Bharathraj, 2013).

Packing fraction profile For rough bottom, dense SFD flows exhibit a nearly constant
packing fraction through the depth. This is nicely shown in the DEM simulations of Silbert
et al. (2001) (see Fig.1.7). Packing fraction decreases with increasing inclination but it is
rather independent of the thickness of the flows.
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(a) (b)

Figure 1.7: Velocity Vx and packing fraction ϕ profiles for thin flows from 3D simulations for (a) various angles
θ = [20◦, 26◦] at height H = 40 and (b) for heights H = [40, 100] at an inclination angle θ = 24◦. Extracted
from Silbert et al. (2001).

The height H is calculated by the formula: H = ND2/A (or ND/L in two dimensions),
where N is the number of grains, D is the grain diameter and A is the basal area (L is the
length in two dimensions). The packing fraction profile for smooth base are similar (Artoni
et al., 2012; Kumaran and Bharathraj, 2013).

Role of particle interaction parameters There is no experience studying the influence
of the particle interaction parameters because it is difficult. For bumpy base, Silbert et al.
(2001) have studied, by numerical simulations, the sensitivity of the results to variations of
the coefficient of restitution e and of the Coulomb friction coefficient µ. Figure1.8 (a) presents
the effect of a variation of the restitution coefficient e on velocity profiles for θ = 22◦, H = 40
and for e = 0.58, 0.78, 0.88, 0.98. The results show that the variation of e has little effect on
the flow behavior over this range of e. Nonetheless, we can see that the speed slightly in-
creases as the restitution coefficient e decreases. Similarly, figure 1.8 (b) presents the velocity
and volume fraction profiles for the same system as the one described in Figure1.8 (a), but
with a fixed e = 0.88 for various friction coefficients µ = [0.15, 0.25, 0.5, 1]. The data shows
that the velocity increases with decreasing µ. The packing fraction is weakly dependent of
the restitution and friction coefficients, but the packing fraction when µ = 0.15 is slightly
smaller.
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(a) (b)

Figure 1.8: Velocity and packing fraction profiles for (a) various restitution coefficients e = [0.58, 0.98] (θ = 22◦,
H = 40) and (b) various friction coefficients µ = [0.15, 1] (θ = 22◦, H = 40). Figure extracted from Silbert et al.
(2001).

For smooth flat frictional base the velocity profiles exhibit a large sliding velocity at the
base, but are always of the Bagnold form. The average velocity decreases as the friction
coefficient increases (Artoni et al., 2012). But if the sliding velocity is subtracted, then unlike
for the bumpy base (see Fig.1.8(b)), the averaged velocity does not change when the friction
coefficient varies. For smooth base, there is a lack of research on the role of the coefficient of
restitution.

Basal friction law for rough bottom From the scaling properties, one can extract some
information about the friction forces that arise between the flowing layer and the base. In a
SFD regime, a simple depth-averaged force balance on an elementary slice of material yields
the following relation:

τb = ρgh sin θ

where ρ is the density of the granular medium and τb is the shear stress at the base. When
divided by the normal stress - the pressure, assumed to be hydrostatic: Pb = ρgh cos θ -
on the base, the force balance can be written in terms of an effective friction coefficient µb
defined as the ratio of the shear to the normal stress:

µb =
τb
Pb

= tan θ

Using the results of Pouliquen (1999), it can be expressed as a simple function of hstop(θ) by
inverting equation (1.1):

µb =
µ1

hstop
LD + µ2

1 + hstop
LD

= µ1 +
µ2 − µ1

1 + hstop
LD

Additionally, we have seen that the Froude number associated to the mean flow velocity
Fr =< V > /

√
gh is proportional to h/hstop such that µb can be written as an explicit

function of < V > and h:
µb = µ1 +

µ2 − µ1

1 + β
h
√

gh
LD<V>

(1.6)
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This empirical relation raises several issues. The first one concerns the high velocity regime.
Equation (1.6) indicates that the effective friction tends to a limit equal to µ2 = tan θ2 when
the mean velocity tends to infinity. The existence of an upper limit implies that SFD flows
cannot be obtained for inclination grater than θ2. The second issue concerns the low velocity
regime which is not well described by equation (1.6). The latter indicates that SFD flows
can be achieved for arbitrary small thickness h as soon as the inclination is greater than
θ1 = arctan(µ1). However, one should keep in mind that equation (1.6) was derived using
the equation (1.2) which is only valid for h > hstop and thus for Fr > β. Consequently,
equation (1.6) is also only valid for Fr > β.
In summary the effective friction µB can be written as:

µb = µ1 +
µ2 − µ1

1 + h
LD

Fr0
Fr

(1.7)

where Fr0 = β, with the requirement Fr > Fr0.

Rheology µ(I) The µ(I) rheology (da Cruz et al., 2005) ( in two dimensions 2D) stipulates
that in a 2D uni-directional dense granular flow (homogeneous simple shear flow), the local
effective friction µe f f - defined on surfaces parallel to the base as the ratio of the local shear
stress to the normal stress - is a unique function of the local inertial number. The dimension-
less inertial number I is the square root of the previously defined Savage number (Savage
and Hutter, 1989) or Coulomb number (Ancey et al., 1999). It can also be expressed as the

ratio of two time scales: I = TP
Tγ

. Tp is the confinement time scale: Tp = D
√

ρ
P , where P is

the normal stress (pressure) and ρ the density. Tγ, is the typical time scale of deformation:
Tγ = 1

γ̇ , with shear rate γ̇ = dv
dz (see Fig. (1.9)).

µe f f =
τ

P
= µe f f (I) (1.8)

Figure 1.9: Schema presenting the physical meaning of the typical time of deformation and of the confinement
time scale. Figure extracted from GDR MiDi (2004).

Based on experiments, several function forms have been proposed for µe f f (I). The most
widely used has the following form (see Fig.1.10):

µ(I) = µ1 +
µ2 − µ1

I0/I + 1
(1.9)
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where I0, µ1, µ2 are parameters which are obtained empirically. The parameters µ1, µ2 have
the same meaning that those introduced for the basal friction law (equation (1.6)). Indeed,
if we calculate the value Ib of the number I at the base of the flow for a Bagnold profile, and
we replace its expression in equation (1.9), we recover an equation of the same form as the
basal friction law, we can interpret it as µ(Ib) = µb.

(a) (b)

Figure 1.10: The form of µ(I). Figure extracted from GDR MiDi (2004).

The research in this area is mainly focused on the rough base, and there is a lack of
research on the smooth base. The rheology µ(I) has been tested (GDR MiDi, 2004; da Cruz
et al., 2005; Baran et al., 2006; Forterre and Pouliquen, 2008; Börzsönyi et al., 2009) for small
I: I < 0.5. If we have a large I or a very small I,the rheology µ(I) has been shown to be
ill-posed at least for incompressible flows (Barker et al., 2015).

2.2.2 Rolls

For inclination θ = 37◦, Börzsönyi et al. (2009) have found that longitudinal rolls exist in
numerical simulations of SFD flows on a bumpy base (data used in this section are sum-
marised in Table (1.1)). This convection is similar to the Rayleigh − Bénard regime (Eshuis
et al., 2010). In bumpy base system, the bumpiness of the base leads generally to a higher
granular temperature at the base. The granular bed is then heated from below and cooled
from above. Börzsönyi et al. (2009) showed that as H increases, there is a transition from
a dilute regime to a dense regime. Meanwhile, both regimes exhibit rolls. In the diluted
regime, there are longitudinal rolls leading to a downward motion in the denser part of the
flow, where the height is lower (see figure 1.11). In the dense regime, there are longitudinal
rolls leading to a downward motion where the height is higher, in the dense part of the top
flow. With the emergence of dense rolls, Börzsönyi et al. (2009) have observed that the flow
height is large and the density is inverted i.e. the density decreases with z at the bottom
(the same situation appeared in Forterre and Pouliquen (2002) for rolls in accelerated flows).
Also Börzsönyi et al. (2009) observed a strong correlation between the packing fraction and
the inertial number I for both dense and diluted roll regimes.
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Figure 1.11: The dense regime (left) and dilute regime (right) flow structures. The gray levels indicate the local
density.

However, for this inclination where longitudinal rolls exist, it takes a long running time
(a few months) to reach the steady state, so correspondingly, if experimental methods were
adopted, a very long plane would probably be needed to reach the stable state. So there
are currently no experiments to prove the existence of rolls for unconfined SFD flows. For
smooth base, there is a complete lack of research on rolls regime for unconfined flows.

2.3 Unsteady flows

Before reaching a SFD flow regime, the particles which compose the flow have to acceler-
ate (or decelerate). This acceleration generally decreases with time, the velocity eventually
becomes constant to enter the SFD regime. In experiments, the length of the accelerating
phase changes with the inclination. In numerical simulations, this length corresponds to a
running time which also varies with inclination. So if the length or duration of the acceler-
ating phase is too long, we don’t observe any SFD flow. The acceleration phase is possibly
divided in two parts: a monotonically increasing or decreasing acceleration part (which may
occupy the whole acceleration phase), and a constant acceleration part (where the constant
is zero if a SFD regime is effectively reached). In their experiments or numerical simulations
performed at large inclination angle (see Table (1.1)), Augenstein and Hogg (1978); Forterre
and Pouliquen (2001); Börzsönyi et al. (2009) didn’t reach SFD regime for both rough and
smooth bottom. For rough base, longitudinal rolls exist in both experimental and numerical
methods for accelerating flows (Forterre and Pouliquen, 2001, 2002; Börzsönyi et al., 2009).

3 Confined flows

We report here gravitational granular flows which are confined between two parallel side-
walls (see Fig.1.12). In the following, unless otherwise mentioned, x is the flow direction, y
the transverse direction perpendicular to the side-walls and z is the direction normal to the
base.

3.1 Conditions for SFD flows

Because of the role of lateral walls, a steady state can possibly be obtained, even for very high
inclination angles. Brodu et al. (2015) run simulations with W = 68D, for a large interval
of inclination angles and mass hold-up, up to t = 1200

√
D/g time units. All the flows he
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Figure 1.12: Inclined plane configuration with two parallel rigid walls separated by a gap W.

studied become SFD via an exponential saturation with time. Furthermore, flows definitely
stop below θ ≈ 14◦. The transient regime toward a stationary regime can be described by:

V(t) = VL − (VL − V0) exp(−t/τ) (1.10)

Here V(t) is the average flow velocity at time t, V0 is the initial flow velocity and VL is the
stationary limit of the mean velocity. τ is the characteristic time which depends on the mass
hold-up H and on the inclination angle θ.

But experimentally with a slope of limited length, JOP et al. (2005); Holyoake and McEl-
waine (2012); Faug et al. (2015) showed that confined granular flows accelerate along the
whole chute when its inclination is larger than a critical value that depends of the channel
length and width, of the mass flow rate etc.. For the accelerating flows, they didn’t indicate
whether the acceleration decreases or remains constant.

3.2 SFD flows

3.2.1 Dense flows

As shown experimentally (Louge and Keast, 2001; JOP et al., 2005; Holyoake and McEl-
waine, 2012; Faug et al., 2015; Heyman et al., 2017) and numerically (Brodu et al., 2013, 2015;
Ralaiarisoa et al., 2017; Zhang et al., 2019) the granular flows bounded by smooth walls
and base exhibit considerable slip velocity at the boundaries. The velocity profiles of dense
flows, in the sheared portion of the flow above the basal slip, were well reproduced by a
Bagnold profile (Eq.1.11), they also exhibit a packing fraction nearly constant through the
depth (Brodu et al., 2013; Faug et al., 2015; Zhang et al., 2019), like unconfined granular
flows. The velocity may thus be written under the form:

V(z, y) = Vb + A(θ, y)
√

gD[(
hs

D
)

3
2 − (

z − z0

D
)

3
2 ] (1.11)

where z0 = 1.5D is the thickness of the sliding boundary layer. The sliding velocity Vb is
thus defined at z0 = 1.5D: Vb = V(z0, y)and hs = h − z0 is the effective thickness of the
sheared flow.
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Channel flows down flat frictional surfaces, in a dense regime, are adapted to the µ(I)
rheology theory. JOP et al. (2005); Faug et al. (2015), using experimental methods, and Brodu
et al. (2013) using numerical simulations, showed that µ(I) roughly holds.

(a)

Figure 1.13: Velocity-profiles at the sidewall after subtraction of the basal sliding velocity. The solid lines show
the Bagnold fits given by Eq.1.11. Figure extracted from Faug et al. (2015).

Zhang et al. (2019) also show that the walls play an important role, they look at what hap-
pens when the coefficient of friction between the grains and the lateral walls is decreased.
Figure 1.14 shows that the velocity increases with decreasing friction coefficient at side walls
(noted here µps), and reaches a maximum when µps = 0.0. When µps = 0.0, the velocity is
the same as for unconfined flows. The velocity profile shows that the velocity is nearly con-
stant (plug flow), except for a thin layer near the bottom that is extremely sheared (boundary
layer).

Figure 1.14: Vertical profiles with fixed θ = 26◦ and H = 21D, for various friction coefficients between particles
and side walls µps Figure extracted from Zhang et al. (2019).

So, for dense flows, if we compare the properties of unconfined flows on bumpy bottom
with those of confined flows with smooth boundaries, we see that they are qualitatively sim-
ilar. The main difference is the non-negligible sliding velocity at the boundaries for smooth
boundaries, and the possibility of varying the velocity gradient by changing the friction co-
efficient between the walls and the particles. This shows that A(θ, y) in equation 1.11 varies
with µps and probably with the width W of the channel.



14 State of the art

3.2.2 Roll regime

As in unconfined flows, roll regimes also exist in confined flows in both experiments and
simulations (Brodu et al., 2013, 2015; Heyman et al., 2017; Ralaiarisoa et al., 2017; Zhang
et al., 2019). Because of the lateral walls, the rolls can be observed for small inclinations like
θ = 23◦ (Brodu et al., 2013). Figure 1.15 shows the temperature and transverse velocity map
in the cross-section yz plane in SFD flow obtained at θ = 23◦. There is a pair of rolls in the
traverse plane. The grains move towards the bottom in the center of channel (the denser part
of the flow), and with a reverse movement along side walls (lower density zone). This type
of rolls is similar to the dense rolls which have been previously observed for unconfined
flows on a bumpy base (Börzsönyi et al., 2009).

Figure 1.15: Temperature map with velocity in the transverse plane. Figure extracted from Brodu et al. (2013).

3.2.3 Supported flow regime

When the inclination angle increases, a new interesting flow pattern can appear. it has been
named ”supported” flow regime (Brodu et al., 2015; Ralaiarisoa et al., 2017; Zhang et al.,
2019). This regime was also discovered experimentally by Heyman et al. (2017). For this
regime the distribution of packing fraction is strongly modified. The packing fraction profile
becomes inverted i.e. the maximum of density is in the middle of flow, where a dense core is
floating over a diluted layer of grains (figure 1.16). The temperature is higher at the bottom
and the dense core is very cool . Therefore, these ”supported” flows have been observed
when the temperature gradient between the base and the dense core was strong enough to
overcome the gravity (Liedenfrost effect).

Rapid granular flows in inclined channels with smooth boundaries have been studied
experimentally (Holyoake and McElwaine (2012); Heyman et al. (2017)) and by numerical
simulations (Brodu et al. (2015); Ralaiarisoa et al. (2017); Zhang et al. (2019)). Brodu et al.
(2015) showed the vertical profile of the volume fraction and of the velocity for SFD sup-
ported regimes (figure 1.17). The granular material in the dense core moves with a greater
velocity. As the mass hold-up H increases, the dense core rises and becomes denser. The
packing fraction reaches a value ϕ = 0.6. Meanwhile the difference in packing fraction be-
tween bottom and the dense core increases. The dense core slowly becomes less dense as
the inclination angle increases. However the position of the maximum of packing fraction is
independent of the inclination angle θ, even if the thickness of the dense core decreases. The
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Figure 1.16: Supported flow regime. Temperature and packing fraction maps. Figure extracted from Brodu
et al. (2015).

velocity at the base (sliding velocity) plays a dominant role. It increases with mass hold-up
and then remains constant, it always increases with inclination angle θ.
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Figure 1.17: (Top (a,b)): vertical profiles of the packing fraction and (base (c,d)) of the stream-wise velocity, for
(left (a,c)) θ = 42◦ and various values of the mass hold up H and (right (b,d)) H = 8D and various values of
the inclination angle. Figure extracted from Brodu et al. (2015).

3.2.4 Effective friction coefficient at boundaries

As we know, the boundary conditions are important for the confined flows. So Brodu et al.
(2015) measured the effective mean friction coefficient at the base µb and at the walls µw as a
function of θ (see Fig.1.18). Here the effective coefficients µb and µw are defined as the ratio
of tangential to normal stresses:

µw =
Sw

Nw
, µb =

Sb

Nb
(1.12)

here Sw and Sb correspond respectively to the norm of wall-averaged and bottom-averaged
tangential stresses, Nw and Nb correspond to the wall-averaged and bottom-averaged nor-
mal stresses. The effective friction coefficients µw and µb increase with angle θ, and decrease
with increasing mass hold up.
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Figure 1.18: Effective friction coefficients at the walls and at the base as functions of the inclination angle, for
different values of the mass hold up. Figure extracted from Brodu et al. (2015).

3.2.5 Scaling law

Brodu et al. (2015) found a scaling law for the mean velocity of steady and fully developed
flows (see Fig.1.19). It can be described as:

VL ∝ HαL (1.13)

with αL ≈ 1/4.

The mass flow rate is Q = VLH, giving Q ∝ H5/4. So it corresponds approximately to the
experimental result of Louge and Keast (2001): Q ∝ H3/2 for the uni-directional regime and
to the numerical simulation result: Q ∝ H3/2 of Zhang et al. (2019). In any case the exponent
of the scaling is always much smaller than for the Bagnold scaling (exponent 3/2 for the
velocity). As we have seen on figure 1.17, the sliding velocity doesn’t vary when H is great
enough, and the variation of the average velocity - which is dominated by contribution of
the sliding velocity - with H becomes thus very small.
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Figure 1.19: Rescaled SFD mean velocity VL/H1/4 as a function of sinθ for various mass holdups. Figure
extracted from Brodu et al. (2015).

3.2.6 SSH and others flows

Previous experimental work on granular flows down inclines can be classified in two cat-
egories: height-controlled flows (Pouliquen (1999)) and flow-rate controlled flows (Drake
(1990, 1991); Ancey (2001)).

Using a flow-rate-controlled set-up, Komatsu et al. (2001); Taberlet et al. (2003); JOP et al.
(2005) experimentally observed super-stable heaps (SSH) for granular flows in an inclined
thin channel with flat frictional walls. Later, through numerical simulations using periodic
boundary conditions in the direction of the flow, with high mass hold-up H, Bi et al. (2005);
Richard et al. (2008); Zhang et al. (2019) also obtained this flow pattern. As illustrated in
Fig.1.20 this regime consists apparently in two streaming modes: moving grains in a top
layer at the free-surface and, quasi-static grains in a bottom layer. The figure 1.20 also shows
that the velocity doesn’t change completely abruptly. The velocity profile reveals an expo-
nential variation of this velocity near the transition between the two modes. We have to
change a little our conventions for this SSH section. Following the configuration shown in
the figure 1.20, the flow direction is always x, y is the transverse direction (in the vertical
plane, but oriented downward) and z is the horizontal direction perpendicular to the side
walls.

Figure 1.20: SSH flow regime. Figure extracted from Richard et al. (2008).
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Figure 1.21 shows the packing fraction and the stream-wise velocity profiles for vari-
ous inclination angles θ = [35◦, 40◦, 45◦, 50◦, 55◦]. The quasi-immobile pile corresponds to a
packing fraction ν0 ≈ 0.6. In the flowing part, the stream-wise velocity Vx/

√
gD is approxi-

mately linear in y/D and the packing fraction ν increases with depth y/D. The latter can be
approximated by:

ν(y) =
ν0

2
(1 + tanh(y/lν)) (1.14)

with a characteristic length lν varying linearly with W and θ:

lν/W = η(tan θ − tan θ0) (1.15)

If we plot ν/ν0 as a function of y/lν, all the curves corresponding to different inclination
angles and gap widths W collapse (inset of Fig.1.21 (a)). Meanwhile, lν is also a characteristic
length for the velocity Vx as shown in inset of Fig.1.21 (b) which presents Vx/2lν as a function
y/lν. For the part where ν is significantly greater than zero and θ > 35◦, the rescaled velocity
is independent of the angle θ and of W.

(a) (b)

Figure 1.21: (a) Packing fraction and (b) velocity profiles for various angles θ = [35◦, 55◦]. Inset of (a): linear
variation of the rescaled characteristic length lν/W as a function of tan(θ) for W/D = 5: symbol (□) and
W/D = 10: symbol (+), inset of (b): Vx/2lν as a function y/lν for various angles .Figure extracted from
Richard et al. (2008).

Richard et al. (2008) related the depth of flowing part h to the characteristic length lν:
h = 2lν. If we write µw = 1/(2η) then the equation ((1.15)) is consistent with the SSH
equation of Taberlet et al. (2003), deduced from the force balance equation applied on a
flowing slab:

tan θ = tan θ0 + µwh/W (1.16)

where, µw is the effective side wall friction coefficient and θ0 is the internal friction angle of
the granular material.

The local side wall coefficient of friction is defined as µτ ≡ ∥−→τw∥/|σw
zz| where the −→τw ≡

σw
zx
−→x + σw

zy
−→y is the tangential stress and σw

zz is the normal stress. Figure 1.22 shows that µτ

is not constant, and decreases with depth. The inset of figure 1.22, shows that the value of
µτ remains constant - equal to the microscopic friction coefficient µ - in the flowing part, and
µ/µτ collapses on a single linear line for θ > 35◦, in the quasi-static part .
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Figure 1.22: Friction coefficient profiles for various angles θ = [35◦, 55◦]. Inset: variation of µ/µτ - where
µ = 0.5 is the microscopic coefficient of friction - with y/lν, showing that lν is also a characteristic length for µ.
Figure extracted from Richard et al. (2008).

3.3 Unsteady flows

Experimentally, with a limited channel length, JOP et al. (2005); Holyoake and McElwaine
(2012); Faug et al. (2015) obtained confined granular flows accelerating along the whole
chute at large inclination. If this acceleration decreases along the chute, we can assume that
for an increased channel length, the flow may turn into SFD flow. Even in accelerated flows,
there are still rolls and ”supported” states. For high speed granular flows, the rheology µ(I)
is probably not valid (Holyoake and McElwaine (2012)).

4 Questions

For confined flows:
i) Brodu et al. (2015) provide, for W = 68D, a complete phase diagram, but quantitative

methods to distinguish the different flow regimes are missing, can we give them?
ii) For confined flows, the boundaries conditions are very important, and for SSH regime

Richard et al. (2008) showed that the local friction coefficient at side walls µτ varies with
depth. Can we obtain a local friction describing the variation of µτ, how could it be ex-
pressed?

iii) The flow regimes observed for unsteady flows also exist in SFD flows (Holyoake and
McElwaine (2012)), is there a certain connection between steady flows and unsteady flows?

iv) Ralaiarisoa et al. (2017); Brodu et al. (2015) studied the effect of the variations of mass
hold-up and inclination angle for different channel widths: W = 34D for Ralaiarisoa et al.
(2017) and W = 68D for Brodu et al. (2015). They give the same mean steady state velocity
scaling law, so, is it independent of the channel width? More generally, what is the effect of
the channel width on the flow?

v) Zhang et al. (2019) showed that some interaction parameters, like the restitution coef-
ficient between particles, may have an influence on the flow, on the appearances of the flow
regimes for example. Can we give some insight on the effect of the restitution coefficients
between particles and between particles and walls, of the coefficients of friction between
particles and between particles and walls?

With these questions, I will present my work.
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5 Research aims and approaches

This thesis work focuses on granular flows in flat frictional inclined channels.
This work aims to characterize thoroughly the various regimes observed in fast granu-

lar confined flows with smooth boundaries (e.g., longitudinal rolls, supported flows with
dense core, oscillatory instabilities) and determine the phase diagram in the control param-
eter space (including the inclination angle θ, the mass hold-up H, the channel width W,
the restitution coefficient between grains egg and between grains and walls egw, the friction
coefficient between grains µgg, and between grains and wall µgw). Beyond this systematic
approach, we look for any kind of law which could give us information concerning the
boundary conditions. The most evident of these laws would be a friction law involving the
sliding velocity, this is thus in this direction that we shall go first. Numerical simulations
are necessary because there is a dearth of experimental techniques that would allow com-
plete observations of the interior of the granular flows. Consequently, computer simulations
are necessary to elucidate the behavior of all types of granular flow. For these studies, we
will employ numerical simulations based on a discrete element method (DEM) code imple-
mented by Brodu et al. (2013).

6 Outline of dissertation

In chapter 2, we further analysed the results obtained in (Brodu et al., 2015) for a channel
width W = 68D. We uncover that the effective friction µ at the basal and side walls can be
described as a unique function of a dimensionless boundary Froude number Fr. This Froude
number is called boundary as it is calculated with the sliding velocity and the pressure at
the boundary.

In chapter 3, we study the role of channel width W on granular flows. By changing the
width of the channel, we discover new flow regimes and extend the mean stationary veloc-
ity scaling law obtained by (Brodu et al., 2015) at W = 68D. We verify the universality of
the friction law µ(Fr) and we propose a packing fraction law ϕ̄∗(Fr) and a rescaled effec-
tive frictional flow height law Z/H(ϕ̄∗) - the length Z is a friction length defined by using
the balance equation (1.16) - valid for different channel widths W, mass hold-ups H and
inclinations θ.

In chapter 4, we study the effect of the normal restitution coefficient between grains
e = egg

n . Interestingly, the mean velocity decreases as e increases. We show that for ”sup-
ported” flow regimes, the mean steady velocity follows a power law Hα where the exponent
α decreases linearly when e decreases.

In chapter 5, we focus on the effect of the mechanical parameters: the friction coefficient
between grain and wall (µgw), the friction coefficient between particles (µgg), on our granular
flows. We observe new flow regimes for small µgg where the dense core falls down on the
base. And we find that for θ larger than a critical value θc the velocity interestingly increases
with increasing µgg. We verify the robustness of form of the friction law, of the packing
fraction law and of the rescale effective frictional flow height law when varying e, µgg and
µgw and the effect of these variations on the parameters appearing in the laws.

In chapter 6, we discuss our conclusions and perspectives.
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Exp/Num Material Wall
mass holdup (H)

mass flow (Q)
flows height (h)

θ refs

Exp glass beads
D = 0.5 − 1.3mm

Rough
L
m = 1.23 − 2.9

W = 70cm
h/D = 4 − 25 20◦ − 28◦ Pouliquen

1999

Num e = 0.58 − 0.98
µ = 0.15 − 1

Rough
L = 20D
W = 10D

H/D = 2 − 200 18◦ − 26◦ Silbert et al.
2001

Exp sand & glass beads
D = 0.25 ± 0.03mm

Rough
L = 1.3m
W = 0.3m

h/D = 0 − 55 32◦ − 42◦ Forterre and Pouliquen
2001

Num µ = 0.6
Rough

L = 20D
W = 10D

H/D = 40 − 100 18◦ − 26◦ Silbert et al.
2002

Exp
glass beads

D(glued)= 225µm − 2mm
D = 150µm − 2mm

Rough
L = 2m

W = 60cm
h/mm = 0 − 5 18◦ − 30◦ Goujon et al.

2003

Exp/Num

Exp:
sand & glass beads
D = 0.17 − 0.45mm

Num:
µ = 0.5

e = 0.8 − 0.95

Rough
Exp:

L = 2.27m
W = 0.4m.

Num:
L = 24.3/D
W = 120.15

h/D = 20 − 120

Exp:
20.9◦ − 33.8◦

Num:
34◦ − 39◦

Börzsönyi et al.
2009

Num

Fixed beads: D1
Free beads: D2

m = 1 g = 1
e = 0.88 µ = 0.5

λ = D1
D2

: 0 − 4
L = 10 − 40D
W = 5 − 20D

H/D = 10 − 400 20◦ − 60◦ Weinhart et al.
2012

Exp D = 2.968 ± 0.02mm
e = 0.972 µ = 0.593

Rough
W = 203mm

Smooth
L = 3.6m

W = 152mm

H/D = 0.95 − 6.56 15◦ − 21◦ Louge and Keast
2001

Num D = 2.968 ± 0.02mm
e = 0.972 µgw = 0.596

Smooth
L = 20D
W = 68D

H/D = 4 15◦ − 23◦ Brodu et al.
2013

Exp glass beads
D = 1.2mm

Smooth
L = 1m

W = 100mm
H/D = [0, 25] 25◦ − 40◦ Faug et al.

2015

Exp D = 0.53 ± 0.05mm
Rough

L = 1.5m
W = [1, 30]cm

Q/(D
√

gD) = [0, 50] 25◦ − 40◦ JOP et al.
2005

Exp sand
D = 0.5 − 2.5mm

Smooth & Rough
L = 3m

W = 0.25m
h/D = 4 − 130 30◦ − 55◦ Holyoake and McElwaine

2012

Exp sand & glass beads
D = 0.1 − 0.9mm

Rough
L = 50cm

W = [5, 20]mm
Q/(g/mms) = 0 − 25 30◦ − 60◦ Taberlet et al.

2003

Exp/Num

Exp:
glass beads

D = 0.5 ± 0.1mm
Num:

µ = 0.5 e = 0.88

Rough & Smooth
W = 225mm

L = 3m
h/D = 4 − 130 35◦ − 55◦ Richard et al.

2008

Num
D = 2.968 ± 0.02mm

e = 0.972
µ = 0.593

Smmoth
L = 20D
W = 68D

H/D = 1 − 20 15◦ − 50◦ Brodu et al.
2015

Exp glass beads
D = 1mm

Smooth
L = 1.5m

W = 44mm
H/D = 3 − 12 30◦ Heyman et al.

2017

Num
D = 1mm e = 0.8

µgg = 0.3 µgb = 0.6
µgw = 0.1 − 1.5

Rough
L = 40D
W = 20D

H/D = 1 − 35 15◦ − 50◦ Zhang et al.
2019

Table 1.1: Data sources for inclined-plane flow. For the numerical simulations, in flow direction take the
periodic boundary condition. Above the red line is the unconfined granular flows. For numerical simulations,
the unconfined granular flow in transverse direction y also take the periodic boundary condition.



Chapter 2

Scaling and wall friction laws for channel
width W = 68D

1 Introduction

In this chapter, we further analysed the results obtained by Brodu et al. (2015) on high-speed
confined granular flows for channel width W = 68D.

In chapter 1, we discussed the rich flow regimes obtained for confined granular flows
with W = 68D and the lack of precise description of the transitions between these flow
regimes. We also reported that the effective boundary friction coefficient increases with
the inclination and decreases with the mass hold-up. In this chapter we will study in more
detail the transition between the flow regimes, including unidirectional, rolls and supported
flow regimes. We will further study the relationship between the effective boundary friction
coefficient, the mass hold-up - defined as the depth-integrated particle packing fraction -
and the inclination.

The outline of the chapter is the following. In Sect. 2 we present the flow geometry and
the discrete element method used for the simulations throughout this thesis work.

Section 3 is a published article, in this article, we provide a detailed study of our gran-
ular flow simulations for various flow regimes. We describe the transitions between these
regimes by following the variations of some key physical quantities: vorticity; maximum
packing fraction and asymmetry of the instantaneous depth-integrated transverse packing
fraction profile ϕ(y) through its skewness. Then we propose a boundary friction law where
the effective boundary friction coefficient µb,w can be simply described as a function of a
dimensionless boundary Froude number Frb,w. We prove that this friction law is also valid
at a local level and that this local law applies not only to SFD flows, but also to unsteady
flows.

Finally, we conclude in Sect. 4.

2 Modeling

This thesis work uses the computational code implemented by Nicolas Brodu (Brodu et al.
(2013)). This code adopts the molecular dynamics method to study granular flows. The dis-
crete element method is a classical numerical simulation method that we will now quickly
recall.

In the soft-sphere molecular dynamics simulations, each grain is a non-deformable sphere
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with diameter D and density ρ. The walls are treated like spheres of infinite mass and ra-
dius. The grains in contact can overlap. The contact forces between two particles have both
a normal and a tangential component (figure 2.1). The normal force F i→j

n is modelled by a
spring and a dash-pot: Fn = (knδ + γnvn)ni→j with δ the overlap, ni→j the contact normal
(unit vector directed from the center of grain i to grain j), vn = (vi − vj) · ni→j the relative
translational grain velocity, kn and γn the spring stiffness and viscous damping coefficients.

Figure 2.1: The overlapping spheres contact model. Grain i moves with a translation velocity vi, and similarly
for j. The force exerted by grain i on grain j during contact (characterized by the normal vector ni→j) is divided
into a tangential component F i→j

t and a normal component F i→j
n . They depend on the overlap δ according to a

contact model detailed in the main text. Figure extracted from Brodu et al. (2013).

A similar model is used for the tangential component Ft = (kts + γtvt)ti→j with vtti→j =
(vi − vj) − vnni→j the tangential impact velocity. The coefficients kt and γt are the spring
stiffness and the viscous damping, and |s| ≤ |Ft|/kt. It is a bounded version of the sliding
displacement

∫ τ
τ0

vtdτ in tangential plane, since contact time τ0. On the tangential compo-
nent, the Coulomb friction is enforced, that is |Ft| ≤ µ|Fn| where µ is the friction coefficient.
For boundaries, the same method is used but with different parameters: kgw

n ,kgw
t , γ

gw
n , γ

gw
t

µgw.
The torque acting on a grain is q = −r(Ft × n) where r = D/2 is the radius of a grain.

Both force and torque are applied in integrating the motion equation ∑ F = ma and ∑ q =
Iω̇ where m is the mass of a grain, a is the grain acceleration, I is the grain moment of inertia,
and ω is the gain angular velocity vector. Numerical integration use the Verlet method.

For a normal collision between two particles the damped harmonic oscillator defined
by the above interaction model leads to a contact duration τc during which δ > 0. The
normal relative velocities before and after contact are related by a constant normal restitution
coefficient en that sets γn. Similarly, for tangential model, the same duration time leads to a
relation 7kt(π2 + (ln en)2) = 2kn(π2 + (ln et)2), which corrects the 7kt = 2kn relation from
(Silbert et al., 2001) when en ̸= et.

Throughout the thesis work, the numerical system is a channel with flat bottom and
side walls. The later are separated by a gap width W whose value can be fixed (control
parameter). Periodic boundary conditions are applied in the x direction. the length of the
periodic cell is L = 20D (it doesn’t change). The y direction is perpendicular to the side
walls (and to the direction x), the direction z is perpendicular to the bottom (see figure 2.2).
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An external gravity field g is applied, with an inclination angle θ between the directions of
g and z.

Figure 2.2: Figure for numerical simulation system (periodic cell). The flow is driven by gravity g, periodic
conditions are applied in direction x. The flow direction corresponds thus to x, y is the horizontal transverse
direction perpendicular to the side walls and z is perpendicular to the base. The angle θ between z and g is the
inclination angle.

At time t = 0, N particles are randomly distributed in the cell and have a small initial
velocity V0(x, y, z) (and no rotation). This initial velocity include a fixed, deterministic part
of module 5/

√
gD in the direction x, and a random one whose components along x, y and

z are uniformly distributed between −2.5/
√

gD and 2.5/
√

gD. After letting the program
run during a time t, we obtain the position and velocity of the particles at time t, as well
as the forces acting at contacts. To calculate the packing fraction field ϕ(y, z, t) and velocity
field Vx,y,z(y, z, t) we have to divide the space into small volumes dydzdx = 0.1D × 0.1D × L
and add (or average) the contributions of the grains which are in those small volumes. The
temperature and angular velocity fields are obtained in a similar manner.

We use those data to analyse the granular flows, they are independent of the variable
x as the flow is supposed to be fully developed in virtue of the periodical character of the
simulation cell. Some of the quantities of interest like the mean value of the velocity of the
grains at time t: V(t), can be obtained by direct calculation of the average of the velocities
of the grains as well as by integration of Vx(y, z, t)× ϕ(y, z, t).

We calculate two types of data, instantaneous data and time averaged data, according to
the time average used during the process. So called instantaneous data is the data per time
unit δt = 3

√
D/g, the time averaged data at time t is the average value within 20 time units

before t.
To calculate the boundary force fields, we divide the base in small surfaces of area dydx =

0.1D × L and the side walls in surfaces of area dzdx = 0.1D × 20D. By adding the contribu-
tions of the contacts at these portions of surface during a given interval of time, we obtain the
normal force field fn(y, t) (resp. fn(z, t)) and the tangential force field ft(y, t) (resp. ft(z, t))
exerted on the base (resp. on the side-walls) during this interval of time. The effective fric-
tion coefficient µb and µw are the ratio of the tangential force to the the normal force norms,
on the bottom and on the side walls, respectively. They can be calculated globally, on the
whole surface, or locally, on small surfaces.



26 Scaling and wall friction laws for channel width W = 68D

To generate a simulation we have to choose the values of the mechanical parameters egg
n ,

egw
n , egg

t , egw
t µgw and µgg, the inclination angle θ, the gap width W, the number of grains N,

and the running time t. The number of grains is encoded in the form of the mass hold up
H = ∑i(mi/A)/(ρD), A = L × W is the basal area of the cell, mi, is the mass of the grain i.
The grains have not exactly the same mass, as we have to vary their diameter to try to avoid
ordering and crystallization. The diameter of the grains is uniformly distributed around D:
D ± 0.1D%.

We take as standard values of the normal restitution coefficient between grains egg
n =

0.972, and between grains and walls egw
n = 0.8, and for the tangential ones egg

t = 0.25,
egw

t = 0.35. The standard value of the coefficient of friction between grains is µgg = 0.33 and
between grains and walls µgw = 0.593. The spring stiffness between grains and between
grains and walls is kgg

n = kgw
n = 21̇05mg/D. The integration time step is dt = 10−4

√
D/g.

In the thesis we study the effect of changing H and θ, but also W, egg
n , µgw and µgg, as

summarized in the tables

channel width W/D mass holdup H/D inclination angle θ(◦)
20 4 − 22 17 − 65
40 4 − 22 15 − 85
60 4 − 14, 18 20 − 50
68 4 − 14 20 − 85
75 4 − 14 20 − 50

140 4 − 6 20 − 40

Table 2.1: The role of channel width W (chapter 3).

egg
n mass holdup H/D inclination angle θ(◦)

0.49 − 1, δe ≈ 0.03 4, 5, 7, 12, 13, 15 17 − 65

Table 2.2: The role of normal restitution coefficient between particles e, for channel width W = 20, 40D (chapter
4,5).

µgg µgw mass holdup H/D inclination angle θ(◦)
0.1 − 1, δµgg ≈ 0.1 0.1 − 1.5, δµgw ≈ 0.1 5 11 − 65

Table 2.3: The role of normal friction coefficient between particle and wall µgw and between particles µgg for
channel width W = 40D (chapter 5)

During a run we can study non steady flows as the mean velocity varies with t. We
consider that the SFD regime is achieved when the mean velocity appears to be converging
to within 1% ((dV/ < V >) < 1%).

3 Scaling and wall friction laws for W = 68D (copy pub-
lished article)
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Abstract
Recent numerical work has shown that high-speed confined granular flows down smooth inclines exhibit a rich variety of 
flow patterns, including dense unidirectional flows, flows with longitudinal vortices and supported flows characterized by a 
dense core surrounded by a dilute hot granular gas [1]. Here, we further analyzed the results obtained in [1]. More precisely, 
we characterize carefully the transition between the different flow regimes, including unidirectional, roll and supported flow 
regimes and propose for each transition an appropriate order parameter. Importantly, we also uncover that the effective fric-
tion at the basal and side walls can be described as a unique function of a dimensionless number which is the analog of a 
Froude number: Fr = V∕

√
gH cos � where V is the particle velocity at the walls, � is the inclination angle and H the particle 

holdup (defined as the depth-integrated particle volume fraction). This universal function provides a boundary condition for 
granular flows running on smooth boundaries. Additionally, we show that there exists a similar universal law relating the 
local friction to a local Froude number Frloc = Vloc∕

√
Ploc∕� (where Vloc and Ploc are the local velocity and pressure at the 

boundary, respectively, and � the particle density) and that the latter holds for unsteady flows.

Keywords  High-speed granular flows · Longitudinal vortices · Supported flows · Effective friction

1  Introduction

The scientific community has paid particular attention to 
gravitational granular flows over the past 20 years. These 
flows are ubiquitous in natural and industrial processes [2, 
3]. However, their modeling and understanding still leave 
us with open issues. The complexity arises from grain-grain 
interactions, and also from grain-boundary interactions 
which may induce correlations over distances much greater 
than a grain diameter.

The inclined plane geometry was the most employed con-
figuration to study gravity-driven granular flows [4, 5]. It 
is simple and relevant for many practical situations, but it 
can be also seen as a rheological test with constant friction. 

To date, experiments [4] and simulations [6] have focused 
mainly on mildly sloping and bumpy planes, leading to slow 
and dense flows which are now fairly well understood [2, 7]. 
More complex flows, including span-wise vortices [8–10], 
were obtained at slightly higher angles suggesting that 
upon further steepening, granular flows may reveal original 
features.

Obtaining steady and fully developed (SFD) flows at 
steep angles is both an experimental and numerical chal-
lenge. Indeed, for unconfined flows, there is in general a 
limit angle above which flows keep accelerating. This limit 
angle may depend on many parameters such as the mechani-
cal properties of the grain and the nature of the base (flat or 
bumpy). A simple way to obtain SFD flows at high angles is 
to introduce frictional side walls. Indeed, if the grain–wall 
friction coefficient is high enough, one may expect that the 
base friction supplemented by the sidewall friction will be 
able to balance the driving component of the weight. This 
is what has been done recently by Brodu et al. [1] by means 
of discrete element method simulations. These simulations 
showed that SFD flows can be produced at high angles and 
revealed the existence of new flow regimes characterized 
by complex internal structures with heterogeneous particle 
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volume fraction and secondary flows [1, 11, 12]. One of 
these regimes, referred to as “supported flow” , is particu-
larly interesting since it displays uncommonly high bulk 
velocity, the granular flow being “supported” on a dilute 
granular gaseous layer of highly agitated grains. Similarly 
to an air-cushion suspension, this layer reduces the effective 
wall friction and increases significantly the bulk velocity. 
These ”supported” flows are particularly interesting with 
respect to geophysical issues. The reduction in the effec-
tive friction due to the gaseous granular layer could indeed 
explain unexpected long run-out distances of large granular 
avalanches.

In this paper, we further analyzed the results obtained by 
Brodu et al [1] on high-speed confined granular flows. We 
describe in details the transition between the different flow 
regimes, including unidirectional, roll and supported flow 
regimes and provide a unified picture to describe the vari-
ation of the effective friction at the boundaries, in terms of 
a Froude number defined as Fr = V∕

√
gH cos � where V is 

the particle velocity at the walls, � is the inclination angle 
and H the particle holdup (defined as the depth-integrated 
particle volume fraction). This universal function can be 
seen as a boundary condition for granular flows running 
on smooth boundaries. In addition, we find that a similar 
universal law relating the local friction to a local Froude 
number Frloc = Vloc∕

√
Ploc∕� (where Vloc and Ploc are the 

local velocity and pressure at the boundary, respectively, and 
� the particle density) can be established and that the latter 
holds for unsteady flows.

The outline of the paper is the following. In Sect. 2 we 
briefly present the flow geometry and the discrete element 
method used for the simulations. Then, in Sect. 3 we recall 
the different steady and fully developed flow regimes and 
their main properties. Section  4 is devoted to the detailed 
analysis of the transition between the different flow regimes. 
In Sect. 5, we focus on the basal and sidewall frictions and 
discuss their relationship with velocities at the boundary. 
Finally, we conclude in Sect. 6.

2 � Flow geometry

We consider gravity-driven chute flows with flat frictional 
bottom and side walls, as shown in Fig. 1. The chute is 
inclined with an angle � with respect to the horizontal. (0x) 
is the main direction flow, (0y) the cross-wise direction 
and (0z) is the direction perpendicular to the flow base. 
This geometry is similar to that used in [1, 11, 13, 14]. 
Here, the simulation cell has similar dimensions as those 
employed by Brodu and co-workers [1, 11]. In particular, 
the longitudinal length L and the gap W between the side-
walls are set to L = 20D and W = 68D , respectively (where 
D is the particle diameter). The channel is not bounded in 

the (0z) direction and periodic boundary conditions are 
employed in the stream-wise direction (0x).

We use soft-sphere molecular dynamics simulations 
where particles in contact can overlap [1, 11]. The con-
tact forces between two particles have both a normal and 
a tangential component. The normal force, Fn , is mod-
eled by a spring and a dashpot: Fn = kn𝛿 + 𝛾n𝛿̇ , where � 
is the overlap and 𝛿̇ its derivation with respect to time, 
respectively, and, kn and �n are the spring stiffness and 
the viscous damping coefficient, respectively. A similar 
model is used for the tangential component enforced by 
the Coulomb friction |Ft| ≤ �|Fn| where � is the friction 
coefficient.

We employ the same mechanical parameters as those in 
the experiments by Louge et al. [15] and in the numerical 
simulations of Brodu and co-workers [1, 11]. We choose 
values for kn and �n (resp. kt and �t ) such that the normal 
restitution coefficient en

g
 (resp. the tangential one et

g
 ) is equal 

to en
g
= 0.972 (resp. et

g
= 0.25 ). The particle-particle friction 

coefficient is set to �g = 0.33.
The walls (i.e., the bottom and the side-walls) are treated 

like spheres of infinite mass and radius. The normal resti-
tution coefficient en

w
 and the friction coefficient �w for the 

grain-wall interaction are set to en
w
= 0.8 and �w = 0.593 , 

respectively. These values are also taken from Louge’s 
experiments [15].

The control parameters of the simulation are the mass 
holdup H and the inclination angle � , while the the channel 
width W is kept fixed (i.e., W = 68D ). The particle hold-up 
H, defined as the depth-integrated particle volume fraction 
(i.e., H = ∫ ∞

0
�(z)dz , where � is the particle volume fraction 

at height z averaged over the width and length of the cell) is 
varied from 4D to 12D, and the inclination from 15◦ to 50◦.

Fig. 1   Scheme of the simulated system. The channel consists of fric-
tional and flat bottom and sides and is inclined with an angle � with 
respect to the horizontal. The longitudinal length L and width W of 
the channel are set to 20D and to 68D, respectively. The channel is 
not bounded in the (0z) direction and we use periodic boundary con-
ditions in the stream-wise direction

28 Scaling and wall friction laws for channel width W = 68D
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In the following, unless otherwise specified, particle vol-
ume fraction, velocity and velocity fluctuations are averaged 
spatially in the stream-wise direction and over time during 
30 time units (i.e., 

√
D∕g ). We mainly focus on steady and 

fully developed (SFD) flow regimes, that are flows with an 
averaged velocity that is time-independent.

3 � Steady and fully developed flow regimes

3.1 �  General description of the flow regimes

In [1], 5 different steady and fully developed flow regimes 
were identified: (i) A unidirectional, dense and layered flow; 
(ii) a dense and layered flow regime with two longitudinal 
vortices located at the side wall and close to the free surface; 
(iii) a roll regime which exhibits a pair of counter-rotative 
longitudinal vortices that spans the entire width of the cell; 
(iv) and (v) two types of unusual flows characterized by a 
dense core floating over a dilute basal layer (referred here 
after to as supported regimes). Four of these regimes are 
illustrated in Fig. 2 for H = 6D where the two-dimensional 
particle volume fraction map in the cross-section of the flow 
are presented together with the streamlines.

Additional features are worth mentioning. While the uni-
directional flow presents a layered structure (see "Appen-
dix" for further details) with a high particle volume fraction 
(i.e., the depth-averaged volume fraction is close to 0.6), 
the roll regime exhibits a slight density inversion, that is 
a lower particle volume fraction close to the bottom and a 
higher volume fraction in the bulk flow (see Fig. 2e). The 
appearance of the longitudinal rolls can be explained as the 
result of a ”Rayleigh-Bénard”-like instability [9]. This roll 
regime has been observed in discrete numerical simulations 
for the first time for unconfined geometries [10] (i.e., with 
absence of lateral walls). Our simulations indicate that the 
lateral confinement does not prevent from the emergence of 
the roll regime. Interestingly, with the gap width used here 
(i.e., W = 68D ), we always get a single pair of rolls. We 
could however conjecture that flow configurations with a 
much larger gap width should give rise to the formation of 
several pairs of rolls. In our configuration, the pair of rolls 
always exhibits the same direction of rotation, leading to a 
downward motion of the particles in the center of the cell 
and an upward motion at the lateral walls.

Supported flows exhibit striking feature with a dense core 
floating on a dilute basal layer. This regime has been first 
uncovered by Brodu et al. [1]. In comparison with the roll 
regime, the density inversion of the volume fraction profile 
is much more marked (see Fig. 2e) and the core get denser 
with increasing angle as detailed in the next section. As 
argued in [1], the appearance of a dense core is possibly 
linked to the clustering instability observed in the cooling 

process of granular gas [16, 17] and in vibrated granular sys-
tems [18, 19]. Gravity-driven flows are of course somewhat 
different from vibro-fluidized granular systems but share 
some similarities. The former can be seen as the result of 
two effects: a shearing, induced by gravity and collisions 
with the boundaries, which act as an energy source. Thus, 
the motion along the flow, mainly driven by gravity, could 
be considered as independent from the motion in the trans-
verse direction, which, according to this hypothesis, would 
be mainly driven by the interactions of the grains with the 
boundaries.

Additionally, it is important to note that the longitudi-
nal rolls are still present in the supported flow regime and 

(a) (b)

(c) (d)

(e) (f)

Fig. 2   Volume fraction map in the cross-section of the flow for dif-
ferent flow regimes with a fixed particle hold-up ( H = 6D ). The color 
codes the volume particle fraction (blue indicates dilute regions while 
red dense ones) and the solid lines stands for the streamlines. a Unidi-
rectional, dense and layered flow ( � = 19

◦ ); b Roll regime ( � = 22
◦ ); 

c and d supported flow regimes with a symmetric core ( � = 27
◦ ) and 

an asymmetric core ( � = 40
◦ ), respectively. e and f Correspond verti-

cal and transverse profiles of the packing fraction (color figure online)
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are not suppressed by the presence of the dense core. They 
give rise to particle exchange between the dense core and 
the dilute surrounding region. At the onset of the supported 
regime (i.e., � = 25◦ for H = 6D ), the core possesses two 
planes of symmetry, a vertical and an horizontal one. How-
ever, for larger inclination angles (i.e., 𝜃 > 30◦ ), the horizon-
tal symmetry is broken and the core get bended. As a result, 
the core starts to rock back and forth. This transition will be 
discussed in further detail in the next section.

The above flow regimes are all steady and fully devel-
oped: they have an averaged velocity VL which is time-inde-
pendent. Each of them has a limited domain of existence in 
the parameter space (H, �) as illustrated in Fig. 3. Several 
remarks follow. First, at low angles (i.e., � ≤ 17◦ ), the flow 
is not steady: the mean flow velocity does not reach a steady 
value but fluctuates a lot. These flows are close to the jam-
ming transition and have been named as intermittent flows. 
Brodu et al. [1] indicated that flows definitively stop below 
�min ≈ 14◦ . Second, we can note that the inclination angle 
is the main parameter which drives the transition of the dif-
ferent flow regimes. As the inclination angle is increased, 
several transitions occurs successively: at roughly 20◦ uni-
directional flows give rise to roll regime which itself leads 
to supported flow above 25◦ . The critical angles character-
izing these transitions increases slightly with increasing par-
ticle hold-up. We will describe carefully these transitions 
in Sect. 4.

3.2 � Velocity and granular temperature

Vertical and transverse profiles of the stream-wise particle 
velocity for different flow regimes are displayed in Fig. 4. As 
expected, the flow velocity increases with increasing angle. 
We can note however that the increase is not only due to an 
increase of the shear rate but also to a large augmentation 
of the velocity at the boundaries. It is important to realize 
that the velocity is discontinuous in the two first layers close 
to the walls (in particular for moderate inclination angles), 
indicating that the latter play a peculiar role. This disconti-
nuity may pause a problem to define the relevant slip veloc-
ity. However, the velocity difference between the first and 
second layer remains small and never exceeds a few 

√
gD . In 

the vertical direction, the flow is sheared over the whole flow 
depth at low inclination angles (i.e., 19◦ and 20◦ ), while the 
shear zone is essentially localized in the dilute layer close to 
the bottom at higher angles (i.e., for supported flows). In the 
transverse direction, similar features are observed. At low 
inclination angles, the flow is sheared almost uniformly over 
the whole width. In contrast, at larger angles, the shear rate 
is more pronounced in the dilute layer close to the vertical 
walls than within the dense core. At � = 40◦ , the dense core 
flows as a plug and does not exhibit any shear within it. 

Importantly, we confirm the scaling law proposed by 
Brodu et al. [1] concerning the mean flow velocity VL:

with � ≈ 0.25 , A ≈ 122 and �c ≈ 17.5◦ . One can note that 
the value of the critical angle �c is very close to the lower 
boundary for SFD flows (see Fig. 3). The values of the 
fitting parameters A and �c are expected to be dependent 
both of the channel width W and the microscopic friction 
coefficients �g and �w . This scaling indicates that the mean 
velocity increases both with the inclination angle and the 

(1)
VL

√

gD
≈ A(H∕D)�

�

sin � − sin �c
�
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Fig. 3   Phase diagram in the parameter space (H, �) for W = 68D . 
Unidirectional and dense flows with layering observed close to the 
base; Dense flow regime with longitudinal vortices located at the flow 
surface and close to the side walls; Flows with a pair of longitudi-
nal rolls that spans over the entire cell width; Supported flows with 
a symmetric dense core; Supported flows with an asymmetric dense 
core. The black asterisk correspond to the flow regimes illustrated in 
Fig. 2 (color figure online)

(a) (b)

Fig. 4   a Vertical and b transverse profiles of the stream-wise parti-
cle velocity for � = 19, 20, 27 and 40◦ and a fixed particle hold-up 
H = 6D
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particle hold-up. However, it is important to note that the 
increase of the mean flow velocity with the particle hold-
up is rather mild and drastically differs from the Bagnold 
scaling law (i.e.,VL ∝ H3∕2 ) which is relevant for slow and 
dense granular flows on bumpy bottoms. For the latter, the 
particle velocity almost vanishes at the bumpy bottom while 
our flows that run over a smooth base have a finite and large 
velocity at the base. We believe that the difference in the 
scaling law results essentially from the different nature of 
the basal boundary condition.

In addition to the mean flow velocity, the velocities at 
the boundaries are also interesting and relevant quantities. 
The basal and side-wall slip velocities are calculated at 
z = 0.5D and at y = 0.5D , respectively, that is within the 
first wall particle layer. Note that this choice differs from 
that made in [11], where the basal slip velocity was evalu-
ated in the second particle layer at z = 1.5D . Although 
velocities are discontinuous in the two first layers, their 
difference remains small and both definitions of the slip 
velocity leads to similar results. The velocities at the bot-
tom and at the side walls are found to be almost independ-
ent of the particle hold-up within the range investigated so 
far (i.e., 4 ≤ H∕D ≤ 12 ) and increase with increasing incli-
nation angle (see Fig. 5). Interestingly, they are quantita-
tively similar and are linearly correlated with the rescaled 
flow velocity VL∕(H∕D)0.25:

This invariance with the particle hold-up is quite surpris-
ing but it is in line with the fact that the mean velocity VL 
moderately increases with H. It is important to note that this 
invariance is well verified for supported flows but does not 
hold for flows with small inclination angles (i.e., 𝜃 < 25◦ ), 
including both unidirectional and dense flows and the roll 

(2)Vb ≈ Vw ≈ VL∕(H∕D)0.25 ≈ A
�

sin � − sin �c
�
√

gD .

regime. For the latter, we observe a clear increase of Vb and 
Vw for increasing particle hold-up.

Granular temperature is a measure of the parti-
cle velocity f luctuations. It is an important param-
eter in various theories aiming to capture granular flow 
behaviors. It is defined as T = (Txx + Tyy + Tzz)∕3 where 
Tij =< uiuj > − < ui >< uj > , ui is the i component of the 
instantaneous particle velocity and < . > stands for time 
averaging and spatial averaging in the stream-wise direc-
tion. We provide in Fig. 6 temperature map within the 
cross-section of the flow as well as vertical and transverse 
profiles of the temperature for various flow regimes. We 
observe contrasting features for slow and large angles, 
respectively. For unidirectional flows, the temperature is 

(a) (b)

Fig. 5   a Particle velocity Vb and Vw , respectively at the base and at 
the side-walls, as function of the particle hold-up H for increas-
ing inclination. Both velocities are almost invariant with the particle 
hold-up H, except for small inclination angles where a slight increase 
is observed. In contrast, they increases significantly with increasing 
inclination angle

(a) (b)

(c) (d)

(e) (f)

Fig. 6   Temperature map for different flow regimes. H = 6D and 
W = 68D . a Unidirectional dense regime; ( � = 19

◦ ); b Roll regime 
( � = 22

◦ ): c and d supported flows: symmetric core ( � = 27
◦ ) and 

asymmetric core ( � = 40
◦ ); e Corresponding vertical and f transverse 

profiles of the granular temperature

3 Scaling and wall friction laws for W = 68D (copy published article) 31
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relatively homogeneous with a temperature at the bottom 
slightly greater than within the bulk flow (see Fig. 6a). In 
the roll regime, the temperature is still very homogene-
ous within the bulk flow but there is a larger contrast of 
temperature between the bottom temperature and the bulk 
one. For large angles (i.e., for supported flows), the tem-
perature map exhibits contrasting features. The supported 
dense core is very cold and surrounded by a dilute hot gas. 
This flow regime thus displays strong heterogeneities of 
temperature which is strongly correlated to particle vol-
ume fraction.

Lastly, it should be noted that the granular temperature 
profile exhibits discontinuities close to the boundaries, simi-
larly as the velocity profile: the first wall layer is generally 
much colder than the second layer, emphasizing that the two 
first wall layers play an important role.

4 � Flow regime transition

In this section, we describe the transition between the dif-
ferent flow regimes. For that purpose, we investigate the 
variation of several key parameters that highlight the flow 
regime transition.

4.1 � Vorticity

We first consider the transition from the unidirectional flow 
regime towards the roll regime. The vorticity is the natural 
quantity for characterizing the presence of longitudinal vor-
tices. It is defined as Ω = ∇ × �.

In Fig.  7, we present the vorticity map for different 
flow regimes. For unidirectional flows, (e.g., H = 6D 
and � = 19◦ ), the vorticity is close to zero (i.e., less than 
2.10−2

√
g∕D ). Upon increasing inclination angle (i.e., for 

� = 22◦ ), roll regime develops with a visible pair of coun-
ter-rotative longitudinal vortices (see Fig. 7b). Upon further 
increase of the inclination angle (i.e., for � = 27◦ and 40◦ ), 
the flow exhibits similar vorticity pattern but with increasing 
values of the vorticity. The behavior is illustrated in Fig. 8 
that displays the maximum value of the vorticity within the 
vortex as a function of the inclination angle for various par-
ticle hold-up. This plot confirms that for dense undirectional 
flows ( 𝜃 < 20◦ ) the maximum vorticity is extremely small 
and start to increase at the onset of the roll regime. Besides, 
one can note that the vorticity increases with the inclination 
angle at a greater rate when one enters the supported regime 
(i.e., for � ≈ 25◦ ) and tends to saturate at large angles cor-
responding to the asymmetric core regime (i.e., 𝜃 > 30◦).

As a summary, we confirmed that the vorticity is the 
appropriate parameter to delineate the transition from the 
dense flow regime towards the roll regime.

4.2 � Maximum packing fraction

We then focus on the transition from the roll regime 
towards the supported regime. As the supported regime is 

Fig. 7   Vorticity map for different flow regimes. H = 6D and 
W = 68D . Solid lines represents the streamline in the flow cross-
section. a Unidirectional dense regime; ( � = 19

◦ ); b Roll regime 
( � = 22

◦ ): c and d supported flows: symmetric core ( � = 27
◦ ) and 

asymmetric core ( � = 40
◦)

Fig. 8   Vorticity versus inclination angle for various particle hold-up. 
The value of the vorticity stands for the maximum value of the vorti-
city within the rolls (see Fig. 7)

32 Scaling and wall friction laws for channel width W = 68D
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accompanied with the formation of a dense core, it is then 
natural to investigate how the volume fraction evolves with 
increasing inclination angle.

In Fig. 9, we present the maximum value of the volume 
fraction �max in the cross-section of the flow as a function 
of the inclination angle. For a given particle hold-up, this 
value first decreases with increasing angle, as naturally 
expected. However, we observe a critical angle around 25◦ 
at which the decrease is stopped and the packing frac-
tion reaches a local minimum. Above this critical angle, 
the maximum packing fraction increases with increasing 
angle and eventually reaches a peak value at � ≈ 30◦ before 
decreasing again. The appearance of the local minimum 
coincides with the emergence of the supported flow regime 
with a dense core floating on a gaseous layer. As previ-
ously discussed, the increase of the packing fraction can 
be seen as the signature of the clustering instability in 
granular gas [16].

Importantly, the local maximum of the packing fraction 
is reached just before the transition towards the asymmetric 
core regime. After the local maximum, the packing fraction 
starts a new decrease with increasing angle. This decrease 
is concomitant with a shrinkage of the latter: particles from 
the core evaporate and enter the surrounding gaseous region.

Upon increasing the particle hold-up, the same trend is 
observed for the maximum packing fraction. The packing 
fractions at the local minima and maxima both increase with 
increasing particle hold-up but the difference between the 
maximum and minimum packing fraction tends to decrease. 
This behavior of the packing fraction is reminiscent of the 
liquid-gas first-order transition of a molecular gas. There is 
indeed a striking resemblance with the isothermal curves of 
a simple gas in the pressure-volume diagram.

As a conclusion, the evolution of the maximum packing 
fraction �max as a function of the inclination provides a clear 

indicator of the transition between the roll regime and the 
supported flows. The minimum of the curve �max(�) deline-
ates the onset of the supported flow regimes.

4.3 � Skewness

The last transition concerns the supported regime with a 
asymmetric core. We attempted to characterize the asymme-
try of the dense core by investigating the asymmetry of the 
instantaneous depth-integrated transverse packing fraction 
profiles �(y) through the skewness parameter S defined as

with � = ∫ W

0
dy�(y) y∕ ∫ W

0
dy�(y).

We present in Fig. 10a the skewness as a function of time. 
The skewness S is small at low and moderate inclination 
angles (e.g., � = 19, 22 and 27◦ ) but becomes significant at 
larger inclination angle (e.g., � ≥ 40◦ ) and oscillates between 
positive and negative values with a well defined periodicity 
which is directly related to the rocking motion of the dense 
core. The variation of the amplitude of the skewness as a 
function of the inclination is shown in Fig. 10b for various 
particle hold-up H. The amplitude is negligible (i.e., smaller 
than 0.005) for low inclinations and starts to increase pro-
gressively at the onset of the appearance of the supported 
regime (i.e., for 𝜃 > 25◦ ). This means that the asymmetry of 
the flow develops as soon as the supported regime emerges. 
However, the amplitude of the asymmetry reaches a sig-
nificant value for larger inclination angles. For definiteness, 
we have set the onset of the transition when the amplitude 
of the asymmetry goes beyond the critical value �c = 0.01 . 
With this criterion, we find that the asymmetric transition 
slightly increases with increasing particle hold-up: it occurs 

(3)S =
∫ W

0
dy�(y) (y − �)3∕

(

∫ W

0
dy�(y)

)

[

∫ W

0
dy�(y) (y − �)2∕

(

∫ W

0
dy�(y)

)]3∕2

Fig. 9   Maximum packing fraction �max as a function the inclination 
angle for various particle hold-up

(a) (b)

Fig. 10   a Evolution of the skewness S of the depth-integrated trans-
verse packing fraction profile �(y) as function of time for inclination 
angles � = 19, 22, 27 and 40◦ and a fixed particle hold-up H = 6D . b 
Standard deviation of the skewness S as a function of the inclination 
angle for various particle hold-up
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at � ≈ 30◦, 35◦ and 37◦ for H = 4D, 8D and 12D, respec-
tively. This parameter thus allows to delineate a transition 
between supported regimes with a symmetric and asymmet-
ric core, respectively.

5 � Sidewall and basal friction

In these types of confined flows, boundaries play an impor-
tant role. It is thus instructive to investigate in particular how 
the effective sidewall and bottom friction, defined as the ratio 
of tangential to normal stresses, evolve according to the flow 
regimes reported below. Brodu and co-workers [1] showed 
the sidewall and bottom friction both increase with increas-
ing inclination angle but surprisingly decrease with increasing 
particle hold-up. Here, we are going further by investigating 
how these trends could be cast into simple laws.

We first investigate the averaged effective friction at the 
basal and lateral walls computed from the ratio of the wall-
averaged tangential stress to the wall-averaged normal stress. 
Second, we analyze the basal and lateral friction at the local 
scale.

5.1 � Averaged friction law

The salient outcome of our data analysis is that the variation 
of both the averaged basal and sidewall friction can be sim-
ply described through a unique dimensionless number, analog 
to a Froude number, Fr = Vboundary∕

√
gH cos � , where H is 

the particle hold-up, � the angle of inclination and Vboundary 
the velocity at the considered boundary (i.e., either Vb or Vw ). 
Indeed, if we plot the effective basal friction and sidewall fric-
tion as a function of the Froude number Fr for all the SFD flow 
regimes investigated so far (i.e., within the parameter range: 
4 ≤ H∕D ≤ 12 and 15◦ ≤ � ≤ 50◦ ), we get a nice collapse of 
all the data onto a unique curve (see Fig. 11).

The �(Fr) curve increases monotonically with the Froude 
number and seems to saturate at large Froude number to an 
asymptotic value. Interestingly, the �(Fr) curve shares strong 
resemblance with the �(I) rheological curve for dense granular 
flows over bumpy bottoms and can be well approximated by a 
similar functional form:

where �1 , �2 and Fr0 are fitting parameters. The best fit to the 
data provides �1 ≈ 0.24 , �2 ≈ 0.63 and Fr0 ≈ 8 . Formally, 
the parameters �1 and �2 correspond to the value of the wall 
friction for vanishing and large Froude number, respectively. 
For the basal friction law, �1 = arctan(�1) ≈ 13.5 has the 
same physical meaning as the corresponding parameter in 
the �(I) rheology and stands for the minimum inclination 

(4)�(Fr) = �1 +
�2 − �1

1 + Fr0∕Fr
,

angle at which a flow is sustainable. This value is smaller 
but reasonably close to the critical inclination angle inclina-
tion below which the flow stops: �min ≈ 14◦ [11]. Similarly, 
�2 = arctan(�2) can be interpreted as the maximum inclina-
tion angle at which steady flows can be achieved in absence 
of side-wall friction. Physically, this value is bounded by the 
microscopic friction angle between the particles and the wall 
(i.e., �w = arctan(�w) = 30.7◦ ). The best fit gives �2 ≈ 32.2◦ 
which is greater than the theoretical upper bound �w . This 
means that the functional form we employ, although it pro-
vides a good approximation in the range of studied Froude 
number, is probably not fully relevant. A functional form 
based on the exponential law,

seems to provide a better alternative. This functional form 
is similar to the original friction law proposed by Pouliquen 
for flows over bumpy bases in [4]. However, it differs in a 
subtle aspect. The original Pouliquen’s friction law phrased 
as a function of the Froude number would be written as 
� = �1 +

(

�2 − �1

)

exp
(

−Fr0∕Fr
)

 . This form has the same 
asymptotic values for vanishing and large Froude number ( �1 
and �2 , respectively) but has a different slope at zero Froude 
number: the slope is zero whereas with the form given by 
Eq. 5 the slope is finite. A detailed analysis at vanishing 
Froude number would be required to determine which is the 
better form. With the functional form given by Eq. 5, the 
best fit gives �1 ≈ 0.27 , �2 = 0.57 and Fr0 ≈ 10.1 . This fit 

(5)�(Fr) = �2 +
(

�1 − �2

)

exp
(

−Fr∕Fr0
)

,

0 10 20 30 40

Fr
b
 ,  Fr

w

0,2

0,3

0,4

0,5

0,6

µ b , 
µ w

Bottom
Side walls

Fig. 11   Effective basal friction �b (circle symbols) and sidewall 
friction �w (square symbols) as a function of the Froude num-
ber Frb = Vb∕

√
gH cos � and Frw = Vw∕

√
gH cos � , respectively, 

for all the SFD flow regimes investigated so far (i.e., within the 
parameter range: 4 ≤ H∕D ≤ 12 and 15◦ ≤ � ≤ 50

◦ ). All the data 
collapse on a unique master curve (solid line) which is obtained 
by a fit using Eq.  4. An exponential fit (dash line) of the form 
�(Fr) = �

2
+ (�

1
− �

2
) exp(−Fr∕Fr

0
) with �

1
≈ 0.27 , �

2
= 0.57 and 

Fr
0
≈ 10.1 works well too
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provides a value of �2 which is satisfactorily smaller than the 
upper bound �w = 0.593.

Several additional comments follow. (i) It is important 
to note that the �b(Frb) law (resp. �w(Frw) ) should be con-
sidered as a boundary condition which relates the effective 
friction at smooth boundaries to the flow velocity at the 
boundaries (through the Froude number Frb or Frw ). Con-
sequently, they do not have the same status as the frictional 
�(I) rheology which relates the internal effective friction 
(between adjacent granular layers parallel to the base) to 
the local internal shear rate through the inertial number I.

(ii) The Froude numbers Frb and Frw are defined from 
the flow velocity evaluated at the boundary (i.e., Vb or Vw ) 
because we are interested in what occurs at the boundaries. 
Our definition of the Froude number thus differs from the 
one used in related works [4, 20, 21] and which is based on 
the mean flow or free surface velocity. If we use the latter 
definition for the Froude number, we also obtain a good 
collapse but with a slightly larger scattering. This result 
is not surprising since we have seen that the mean flow 
velocity is of the same order of magnitude as the velocities 
at the boundaries (see Eq. 2). In contrast, dense and slow 
flows over a bumpy bottom have a vanishing basal velocity 
(i.e., no-slip condition) and thus the latter does not scale 
with the mean flow velocity.

(iii) It is worthwhile to highlight the similarities and 
differences between the �b(Frb) law and the �(I) rheologi-
cal law obtained for dense flows over a bumpy bottom. As 
already mentioned, the latter describes the internal effec-
tive friction as a function of the local inertial number I or 
equivalently to the local shear rate. By continuity of the 
stresses, one can deduce a relationship between the friction 
and the inertial number at the base, respectively �b and Ib . 
The �(I) rheology thus provides a relationship between 
the basal friction and Ib while the �b(Frb ) law relates the 
basal friction to the flow velocity at the base through the 
Froude number Frb . The question that arises is how the 
basal inertial number Ib is related to the Froude number 
Frb . For dense flows over bumpy bottom, the basal veloc-
ity is generally assumed to vanish such that the Froude 
number Frb is reduced to zero. This contrasts with flows 
on smooth inclines, where the flow velocity Vb at the base 
is finite and closely related to the mean flow velocity VL 
( Vb ∝ VL∕H

1∕4 ). The relation between Frb and Ib in the 
context of granular flows on smooth inclines is not known 
in general, except for unidirectional and dense flows. In 
the latter regime, the bulk flow can be still reasonably 
well described by the �(I) rheology as shown in [11] (this 
is not the case for the other flow regimes), while the basal 
friction was shown to obey the �b(Frb) law. The continuity 
of the friction at the bottom provides us with the follow-
ing relation �(Ib) = �b(Frb) , which thus relates Ib and Frb.

(iv) The �(Fr) friction law provides a simple explana-
tion for the decrease of the bottom and wall friction with 
increasing particle hold-up. Indeed, recalling that the 
velocities at the boundaries are almost invariant with the 
particle hold-up (see Eq. 2), the Froude number decreases 
with increasing particle hold-up at a fixed inclination 
angle. This results in a decrease of the basal friction since 
�(Fr) is an increasing function of the Froude number.

(v) Equation 4 or Eq. 5 together with Eq. 2 and the defi-
nition of the Froude number provides us with an explicit 
expression of the basal and sidewall friction as a function of 
the inclination angle and particle hold-up.

(vi) In kinetic theories for granular flows, the effective 
friction at bumpy wall is often expressed as a function of 
the dimensionless quantity V∕

√
T  [22]. In the case of flat 

frictional wall [22], the relevant quantity is g∕
√
T  where 

g = ||� − (D∕2)� × �|| is the contact slip velocity at the wall 
( � is the unit vector normal to the wall and � is the mean 
angular velocity). It is thus instructive to check whether the 
friction at the basal and side walls can be also described in 
terms of the ratio g∕

√
T  . We present in Fig. 12 the effective 

bottom friction as a function of the dimensionless quantity 
gb∕

√
Tb calculated at the base. We find a nice collapse of 

the data on a single curve which is very similar to the �(Fr) 
curve. We can note however a deviation of the monotonic 
behavior at low value of the friction (i.e., at small inclina-
tion angles corresponding to dense flows). It thus turns out 
that the Froude number and the dimensionless contact slip 
velocity g∕

√
T  play a similar role and are closely related. 

We find indeed the following correlation:

(6)Frb ≈ 9.95

�

gb
√

Tb

− 1.86

�

.

Fig. 12   Bottom friction �b as a function of the dimensionless contact 
slip velocity gb∕

√
Tb . The solid line represent the best exponential fit 

of the form: �b = �
2
+ (�

1
− �

2
) exp[−0.85(gb∕

√
Tb − 1.86)] with 

�
1
≈ 0.32 and �

2
= 0.575 . The data corresponding to unidirectional 

dense flows do not fall on the master curve represented by the solid 
line
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The above correlation works well for large Froude number 
but fails for small Froude number below 2, corresponding 
to dense flows.

(vii) Interestingly, we noted that if we use a definition 
of the Froude number based on the contact slip velocity gb 
(resp. gw ) instead of the translational velocity Vb (resp. Vw ), 
we also obtain a nice collapse of the data on a unique mas-
ter curve. This confirms that there is a close relationship 
between the contact slip velocity and translational velocity 
at the boundaries (see Fig. 13).

(vii) Finally, the exact form of the �(Fr) curve is expected 
to be dependent of the material properties of the grains and 
the walls and in particular of the microscopic friction coef-
ficients �w (resp. �g ) between the particles and the walls 
(resp. between the particles). Preliminary numerical inves-
tigations indicate that the scaling with the Froude number 
is however preserved when changing the material properties 
of the grains and the walls. In other words, only the fitting 
parameters �1 , �2 and Fr0 are sensitive to a change of the 
micro-mechanical parameters.

5.2 � Local friction law

In the previous subsection, we analyzed the effective fric-
tion at the base and at the side-walls at a global scale. It can 
be interesting to check whether the friction law established 
previously also holds at a local scale. The effective fric-
tion at the base and at the side-walls are not uniform along 
the cross-wise direction (y) and the depth (z), respectively, 
as illustrated in Fig. 14. The basal wall friction is smaller 
close to the side-walls than in the center of the channel. The 
influence of the sidewall extends over 10D–20D. Similarly, 
side-wall friction exhibits a strong gradient according to the 
depth: it decreases with increasing depth and reaches its 
minimum value at the base.

D e f i n i n g  a  l o c a l  F ro u d e  n u m b e r  ( i . e . , 
Frloc = Vloc∕

√
Ploc∕� , where Vloc and Ploc are the local par-

ticle velocity and pressure, respectively, at a given location 
at the basal or side wall, and � is the particle density), we 
can display how the local friction varies as a function of the 
local Froude number. Similarly, as for the global friction, we 
obtain for both the local basal and side-wall friction a nice 
collapse on a unique master curve �loc(Frloc) (see Fig. 15a). 
This curve differs slightly from the global law �(Fr) essen-
tially at large Froude number. Using an exponential fit (cf 
Eq. 5), we obtained slightly different values for the fitting 
parameters: �loc

1
≈ 0.25 �loc

2
≈ 0.59 and Frloc

0
≈ 9.6 . The 

most significant difference concerns the value of �2 (0.59 
against 0.57) which is closer to the upper bound �w = 0.593.

Fig. 13   Relationship between the contact slip velocity gb and the 
translational velocity Vb at the base for increasing particle hold-up 
from H = 4D to H = 12D . The solid line is an affine fit to the data

(a) (b)

Fig. 14   a Cross-wise profiles of the effective basal friction �b(y) for 
H = 6D and various inclination angles. b Vertical profiles of the 
effective sidewall friction �w(z) for H = 6D and various inclination 
angles

(a) (b)

Fig. 15   a Local basal friction �loc
b

 and sidewall friction �loc
w

 as a func-
tion the local Froude number Frloc

b
= Vloc

b
∕
√

Ploc
b
∕� and 

Frloc
w

= Vloc
w
∕
√

Ploc
w
∕� , respectively. The solid line stands for the best 

exponential fit while the dash line represents the exponential fit for 
the global friction �(Fr) . b Evolution of the local basal friction in the 
transient regime for H = 10D and � = 40

◦ as a function of the local 
Froude number Frloc

b
= Vloc

b
∕
√

Ploc
b
∕� . The solid line stands for the 

master local friction curve established in (a). Inset: Evolution of the 
local side-wall friction in the transient regime for H = 10D and 
� = 40

◦ as a function the local Froude number Frloc
w

= Vloc
w
∕
√

Ploc
w
∕�
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Interestingly, the local friction law seems to hold also 
for unsteady flows. As detailed in [1], the flow exhibits a 
transient before reaching a steady state: the mean velocity 
increases monotonically in course of time and eventually sat-
urates to a steady value. Figure 15b shows that even during 
the transient regime, the local friction both at the base and at 
the side-walls evolves along the master local friction curve 
�loc(Frloc) . This result thus indicates that the local friction 
laws are robust features for both steady and unsteady flows.

6 � Conclusion

We have studied high-speed confined granular flows down 
smooth inclines and describe in detail the different SFD flow 
regimes, including unidirectional dense flows, roll regime 
and supported flows. We have identified key parameters that 
allows to delineate precisely the domain of existence of the 
different flow regimes in the parameter space (H, � ). Impor-
tantly, we have highlighted that the friction at the basal and 
side walls can be described by a unique curve that depends 
solely of the Froude number defined as V∕

√
gH cos � , where 

V is the particle velocity at the walls. We showed addition-
ally that the friction at the local scale also obeys a unique 
law as a function of the local Froude number defined as 
Frloc = Vloc∕

√
Ploc∕� . This local friction law is shown to be 

very robust since it holds both for steady and unsteady flows. 
We thus strongly believe that the local friction law may be 
used successfully as a reliable boundary condition for flows 
running on smooth walls.

A crucial question is the extent to which the SFD flow 
regimes and their features are specific to the material param-
eters and the confined geometry that we have considered. 
Further extensive simulations where the material parameters 
(friction and restitution coefficient) and channel width W 
are varied would be required to check the generality of our 
outcomes. This is a work planned for the near future. Pre-
liminary results show that the SFD flows identified in this 
paper are very robust to parameter change but their onset 
of appearance may be significantly affected. For example, 
increasing the dissipation in the grain-grain collision favors 
and reinforces the development of supported flows.

Finally, these results provide a unique set of very complex 
granular flow regimes for testing theoretical and rheological 
models.
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A Layering index

In the undirectional and dense flow regime, the particle vol-
ume fraction exhibits strong oscillations. It could be interest-
ing to introduce a layering index IL to quantify the number of 
oscillation cycles. It is defined as follows. As the wavelength 
of the oscillation is of the order of one grain diameter, we 
look at within each layer of one diameter thickness and par-
allel to the bottom whether the volume fraction oscillates.

In each layer i, we thus calculate the maximum and the 
minimum of the volume fraction, �min

i
 and �max

i
 , respec-

tively. If the amplitude of the oscillation (i.e., �max
i

− �min
i

 ) 
in a given layer is greater than a critical value �� , the layer 
is associated to an ordered layer of particles and the layer-
ing index is incremented by one unit. The layer index IL is 
defined as IL = (1∕Nmax)

∑

i Y
�

�max
i

− �min
i

− ��
�

 where Y 
is the Heaviside function and Nmax = H∕0.6 is the highest 
possible number of ordered layers within a uniform and 
dense flow with a mean volume fraction of 0.6 and particle 
hold-up H. The renormalization of IL by Nmax provides an 
index which is bounded by 1. The critical value �� used 
to quantify the layering is taken to be 0.1. This choice is 
somewhat arbitrary but it is good comprise to capture the 
oscillation of the packing fraction and eliminate random 
fluctuations of the packing fraction profile.

The variation of the layering index with the inclination 
angle is shown in Fig. 16. SFD unidirectional and dense 
flows exhibit a strong layering with a layering index close 
to 1, indicating that the whole depth of the flow dense 

Fig. 16   Layering index IL as a function of the inclination angles for 
various particle hold-up: IL = (1∕Nmax)

∑

i Y
�

�max
i

− �min
i

− 0.1

�

 
where Y is the Heaviside function
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flows) is layered. Upon increasing the inclination angle 
(from 20◦ to 25◦ ), the layering index decreases progres-
sively towards zero. Above 25◦ (i.e., in the supported flow 
regime), the layering index has fallen to a small but finite 
residual value (below 0.2). This mean that even in the sup-
ported regime, there remains one ordered layer which is 
located at the bottom. This residual dense ordered layer 
disappears at very large inclination angle. The layering 
index can thus not be employed to delineate the transition 
towards the supported flow regime.
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4 Conclusion and perspectives

In this chapter, we revisited the results of Brodu et al. (2015). we gave some precisions on
granular flows in an inclined smooth channel with a gap width W = 68D, we describe
in details, the transitions between the different flow regimes, including unidirectional, roll
and supported ones. We highlight that the variation of the effective boundary friction as a
function of the mass hold up H and the inclination angle θ can be expressed as a boundary
friction law: µ(Fr). It can be interpreted as a boundary condition since the Froude number
Fr is obtained from the sliding velocity and the normal stress at the boundary. This local
friction law holds for all the flows: steady as unsteady.

From a theoretical point of view, this boundary condition is an important information
which could be used in complement of an internal rheology - like the µ(I) rheology, or the
kinetic theory - to determine the flow, but it will not be enough to allow a full resolution.
We can see it in the article above (section 3): even at a global scale, it is necessary to use
the mean velocity scaling law if we want resolve the problem of finding the SFD velocity
for a given set of parameters (θ, H). An important question is thus to see if one can find
complementary laws. Another question is the universality of the friction law: how does
it change, if we change the channel width, the coefficient of restitution, the coefficients of
friction?
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Chapter 3

Effect of channel width on confined
granular flows

1 Introduction

In this chapter, we study the influence of the channel width on the flow features. The out-
comes have been presented in an article which is under preparation for a forthcoming sub-
mission. We briefly here introduce the content of the article which is reproduced in Sect 2.

In the previous chapter, we have highlighted the existence of a universal law for the basal
and side-wall friction and have shown that the latter can be described as a unique function
of a dimensionless Froude number. This outcome was established for a fixed channel width
set to W = 68D. It is thus natural to wonder whether the friction law µ(Fr) holds for
other channel widths W. Also, we would like to know whether the different flow regimes
identified for W = 68D persist for smaller and wider channel widths. In this article, we
present first a rather exhaustive and detailed picture on the flow regimes obtained for a
gap width W = 40D. We then make an analysis of the role of W by comparing outcomes
obtained for various gap widths W = 20, 40, 60, 68, 75 and 140D.

2 Article: Discrete simulations of confined high-speed gran-
ular flows: Influence of the channel width

2.1 Introduction

Recently, several works have been devoted to the effect of lateral confinement on the prop-
erties of granular flows Brodu et al. (2013, 2015). Both experimental and numerical stud-
ies have pointed out that frictional lateral walls induce new flow properties. For example,
steady and fully developed (SFD) flows have been observed up to large angles of inclination
whereas accelerated ones are usually expected (Brodu et al., 2015). These SFD regime exhibit
a rich variety of flow patterns, depending on inclination angle θ and mass holdup H (defined
as the depth-integrated particle volume fraction). Brodu et al. (2015) found in particular a
new SFD regime, called ”supported flow” and characterized by a dense core moving at a
rapid and uniform speed and surrounded by a very dilute and agitated granular gas.The
mean velocity VL of the supported flows obeys a simple scaling law with the mass hold-up
H: VL ∝ H1/4 for a given inclination angle and a fixed gap width W = 68D (where D is
the particle diameter). This scaling law differs drastically from the Bagnold law or the one
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derived from the µ(I) rheology for dense granular flows (i.e., VL ∝ H3/2). The origin of this
new scaling has not yet been identified and requires definitively further studies.

Additionally, the simulations of Brodu et al. (2013, 2015); Zhu et al. (2020) was conducted
with a fixed gap width W = 68D. An subsequent issue is to determine where the supported
flow regime is robust and can emerge in flow configurations with smaller gap widths. In
this paper, we study the effect of channel width on the flow regimes and analyse the key
influence of the bottom and side-wall friction. We provide a complete phase diagram for
reduced gap width W = 40D and describe the new flow regimes we uncovered. Interest-
ingly, we extend the validity of the scaling law by Brodu et al. (2015) for different gap width
and establish that for supported flows VL ∝ HαWβ

L with α = 0.3 ± 0.05 and β = 0.7 ± 0.05.
Importantly, we show that the effective friction at the base and at the side walls obey a
universal behavior which can be captured by a unique dimensionless number, the Froude
number defined as Fr = Vs/

√
gH cos θ where Vs is the slip velocity at the boundary.

2.2 DEM

Figure 3.1: Figure for numerical simulation system on W = 40D. The system is driven by gravity g with
periodic condition (L = 20D) along the flow direction x, y is the transverse direction normal to the flat side-
walls (width of the cell: W) and z is normal to the flat base. The angle θ between g and z is the inclination
angle.

The discrete element method (DEM) is a classical numerical simulation method for study-
ing granular flows. The principle of DEM simulations is to treat each grain as a sphere (of
diameter D) subject to gravity and contact forces with both the other grains and the bound-
aries. Particle-particle interaction is modelled by using linear visco-elastic approach. Two
grains i and j interact when they overlap. The overlapping distance between i and j is de-
fined as δij = (Di + Dj)/2 − rij where rij is the center-to-center grain separation. The force
applied by the grain i on grain j is decomposed into normal and tangential components (re-
spectively Fn and Ft). The normal contact force is given by: Fn = (knδij + γnvn) where kn is
a spring constant, γn a damping coefficient set by the normal coefficient of restitution en ,
and vn the normal component of the relative translational grain velocity. A similar model is
used for the tangential component enforced by the Coulomb friction |Ft| ≤ µ|Fn| where µ is
the model friction coefficient. The torque acting on a grain is given by: q = −(D/2)(Ft × n)
where n is the normal unit vector. We use the same microscopic mechanical parameters as
in Louge and Keast (2001); Brodu et al. (2013, 2015) with egg

n = 0.972 and µgg = 0.33 for the
particle-particle interactions and egw

n = 0.8 and µgw = 0.593 for the particle-wall interactions.
We adopt this method to study gravity-driven chute flows, with flat and frictional bottom

and side walls, as illustrated in Fig. 3.1. The flow configuration is similar to the one studied
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in Brodu et al. (2013) with a gap width W = 68D. The channel is inclined with an angle θ
with respect to the horizontal. (0x) and (0y) are the stream-wise and cross-wise direction of
the flow, respectively, and (0z) is the direction perpendicular to the flow base. The stream-
wise length of the channel is set to L = 20D and the width W is varied between 20D and
140D. The channel is not bounded in the (0z) direction and we use periodic boundary
conditions in the stream-wise direction. The control parameters of the system are the mass
hold-up H, the inclination angle θ, and the channel width W.

2.3 Transient

We describe the transient through the mean flow velocity defined as V = (1/N)∑i

√
v2

ix + v2
iy + v2

iz,
where the sum is done over all the particles of the system, N is the total number of the par-
ticles, and vix, viy and viz are the instantaneous velocity components of the particle i. As an
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Figure 3.2: (a) Temporal evolution of the mean velocity for shallow angles θ = 16◦, 17◦ and 18◦. H = 5D
and W = 40D. These flows are referred to as intermittent regime. (b) Velocity profiles at different times
corresponding the flow at θ = 17◦.

example, we describe the transient regimes according to the angle of inclination for a given
mass hold-up H = 5D. For small angles, typically below 15◦, the flow comes to rest. Be-
tween 16◦ and 18◦, after a short transient, the system keeps flowing but with a small mean
velocity that fluctuates a lot (see Fig. 3.2). The standard deviation about the mean value is
of the order of the latter. We refer to these flows as intermittent regime.

For angles between 20◦ and 50◦, the mean velocity of the flow increases monotonously
in course of time towards a limiting value VL (see Fig. 3.3.a). For a fixed particle hold-
up, the steady value increases with increasing angle but the characteristic time to reach the
steady state does not vary much with the inclination angle. For practical purpose, it can
be interesting to convert the time into a travelling distance defined as the distance travelled
by the center of mass of the granular system. We can thus plot the evolution of the mean
flow velocity as a function of the travelling distance (see Fig. 3.3). We clearly observe that
the travelling distance needed to reach the steady state increases with increasing angle. A
quantitative analysis reveals that the characteristic travelling distance Lc, defined as V(Lc) =
0.9 VL, scales as V0.85

L for a given particle hold-up (see Fig. 3.3c ). Interestingly, we get the
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Figure 3.3: Evolution of the mean velocity V as a function as the travelling distance l (defined as the dis-
tance travelled by the center of mass of the granular system) for various angles smaller or equal to 50◦

(θ = 20, 25, 30, 35, 40, 45 and 50◦) and H = 5D. (a) W = 40D and (b) W = 68D. Inset: Corresponding
temporal evolution of the mean velocity V. (c) Characteristic length Lc rescaled by W as a function of the
steady velocity VL for various particle hold-up and two gap widths W = 40D (solid symbols) and W = 68D
(filled symbols).

same scaling for W = 68D and we can cast the data for both gap widths into a unique scaling
law:

Lc

W
≈ 4.5

(
VL√
gD

)0.85

. (3.1)

For higher angles (i.e. θ ≥ 55◦), the transient towards the steady regime is not longer
monotone but exhibits an overshoot and then subsequent oscillations around a mean value
surprisingly independent of the inclination angle (see Fig. 3.4). This oscillation regime is
different from the oscillation regime in Brodu et al. (2015) which is defined through fluctu-
ations of flow structure. The amplitude of the oscillations seems to decay in course of time
but it is not possible to tell whether they go to zero or to a finite limit. It would require
longer simulations to get a definite answer. Interestingly, the period of oscillation seems to
decrease with increasing angle. The peak value corresponding to the overshoot increases
with increasing angles but it is reached for roughly the same distance. The transient of these
flows thus contrasts markedly with those obtained at smaller angles and are observed both
for W = 40D and W = 68D. Further analysis reveals that the oscillation of the mean ve-
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Figure 3.4: Evolution of the mean velocity V as a function of the traveling distance l for very large angles
(θ = 55, 65, 75 and 85◦) and H = 5D. (a) W = 40D and (b) W = 68D. Inset: Corresponding temporal evolution
of the mean velocity V.

locity has a clear signature in the motion of the center of mass of the granular system. The
latter exhibits a vertical oscillation which is out of phase with the former: a maximum of
the position of the mass center corresponds to a minimum of the mean velocity. These flows
will be referred later to as oscillating flows.

2.4 Phase diagram

In configurations with a gap width W = 68, Brodu et al. (2015) identified different steady
flow regimes (see Fig. 3.5): i) A unidirectional, dense and layered flow (labelled here after
U for unidirectional); (ii) A dense and layered flow regime with two longitudinal vortices
located at the side walls and close to the free surface (named U S−); (iii) a roll regime R−

which exhibits a pair of counter-rotative longitudinal vortices that spans the entire width of
the cell; (iv) and (v) two types of unusual flows characterized by a dense core floating over
a dilute basal layer (referred here after to as ”supported regimes”);

For W = 40D, we observe the same diversity of flow regimes. Interestingly, two addi-
tional regimes at high particle hold-up are found: a flow regime with a double dense parts
(CR−

+) and another characterized by the formation of a quasi-static bed below the flowing
zone. The latter will be referred to as SSH flow. These new regimes were not observed for
W = 68D but probably exist too. Simulations for W = 68D were limited to particle hold-up
H smaller or equal to 20D and it requires probably higher particle hold-up.

Fig. 3.5 displays the phase diagram for W = 40D in the parameter space (θ, H). It is
very similar to that found for W = 68D. For moderate particle hold-up, as we increase
the inclination angle, we visit the same successive flow regimes as for W = 68D. At mod-
erate angle, we first have dense unidirectional flows (U) with layered structure. Upon in-
creasing inclination angle, a pair of count-rotative longitudinal vortices emerge. In the roll
regime, particles at the middle of the cell move downwards whereas particles at the side
walls migrate upwards. A further increase of the inclination angle leads to the supported
flow regimes characterized by the formation of dense core that float over a dilute basal layer.
In the supported regime, the vortices are still present and the convection is even enhanced.
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Figure 3.5: Phase diagram in the phase space (H, θ) for W = 40D (a) and W = 68D (b). The regimes are coded
by colors. Purple region: states with no flow; White region: intermittent regimes. Gray region: unidirectional
SFD flows; Green region: roll regime R− which exhibits a pair of longitudinal vortices that spans the entire
cell width; Blue region: ”supported” flows CR− characterized by a dense core C and a pair of vortices R−;
Cyan zone: ”supported” flows ACR− with a asymmetric core AC and a pair of vortices R−; Pink region:
flows with two layers of longitudinal of vortices (a basal pair of vortices R+ topped by a supported core CR−);
Violet region: oscillating ”supported” flows OCR−. Teal region: SSH flows (flow over a Sided-wall Stabilized
Heap); Black dots represent simulations that were achieved ( 500 for W = 40D and 100 for W = 68D).
The phase diagram is supplemented with two-dimensional maps representing the particle volume fraction in
cross-section of the flow together with the streamlines (left and right panels). These data are averaged over the
periodic direction x and over 60 time units.
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Differences with the case W = 68D should be however highlighted. First, the transition
between the different flow regimes are systematically shifted towards higher angles. Thus,
it seems that a decrease of gap width delays the transition. Second, new flow regimes (SSH
and CR−

+) appear at high particle hold-up and are detailed below.
The SSH regime is obtained at high particle hold-up and moderate angle (i.e., H >

15D and 20◦ < θ < 24◦). It is characterized by a quasi-static bed topped with a flowing
layer. This flow regime was already reported and studied numerically (Taberlet et al., 2003;
Richard et al., 2008) but with stronger confinement (i.e., smaller gap widths W = 10 and
20D). It is worth noting that longitudinal vortices develop within the flowing layer. These
vortices have a reverse direction of rotation in comparison with those developing in the roll
and supported flow regime.

The double core (CR−
+) regime occurs at high angle and particle hold-up (i.e., H > 16D

and 35◦ < θ < 55◦). These flows consist of two superposed dense core separated by a
dilute layer. The lower dense core is in contact with the base and a pair of counter-rotating
longitudinal vortices develops within it. The direction of rotation is however opposite to that
observed in the vortices of the supported flow regime. In the upper dense core, longitudinal
vortices are also present and they share the same properties as those of the supported flow
regime. In particular, the upper dense core can be termed as supported because it lies on a
dilute layer of high energy which keeps it suspended. Second, the direction of rotation is
similar to that of the vortices of the supported flow regime.

2.5 Flow features for W = 40D

2.5.1 Mean flow velocity

It is interesting to investigate how the mean flow velocity VL varies with the inclination
angle and particle hold-up. We recall that Brodu et al. (2015) reported a simple scaling for
the velocity: VL ≈ Hα(A sin θ + B) with α ≈ 0.25. The question is to determine whether a
similar scaling law holds for smaller gap width W and in particular for W = 40D.

For W = 40D, we observe clearly two different behaviors of the mean velocity with H
for small and large angles, respectively (see Fig. 3.6). At small angles of inclination, we do
not observe any dependence of the mean flow velocity with the particle hold-up as soon as
H remains moderate (typically H < 10D) and the mean flow velocity can be captured with
the following simple law:

VL ≈ AL
√

gD (sin θ − sin θ1) for θ < θc (3.2)

with AL = 110 ± 10 and θ1 ≈ 15.5◦. This expression is valid for slope smaller than a crit-
ical value θc discussed later on. For greater H (H > 10D) the mean flow velocity clearly
decreases with increasing H and we did found simple laws to describe the observed trends.

At large inclination angles, the trend is reversed: at moderate mass hold-up, the mean
flow increases with increasing H while at greater H, the mean velocity stays invariant with
changes of H. The change of behaviors between shallow and steep slope at moderate H
seems to correspond to the appearance of the supported flow regime. The latter emerges
for angles greater than a critical angle θc ≈ 26.5◦. The trends of the mean flow velocity for
angles greater than θc can be approximated by two distinct scaling laws for small and large
H:

VL − VL(θc) ≈ BL
√

gD
(

H
Hc

)αL

(sin θ − sin θc) for θ > θc (3.3)
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Figure 3.6: (a) Mean flow velocity VL as a function of the inclination angle θ for various mass holdups H
(W = 40D). (b) Rescaled flow velocity (VL − Vc

L)/(H/Hc)αL as a function of the inclination angle for steep
slope (i.e., θ > θc ≈ 26.5◦). αL = 0.3 ± 0.05 for H < Hc (green squares) and αL = 0 for H ≥ Hc (red circles).

with BL = 170 ± 10 and Hc = 14D. The scaling exponent αL is found to be equal to αL =
0.3 ± 0.05 for H < Hc and αL ≈ 0 for H > Hc. The mean velocity of the supported flows
with moderate particle hold-up (i.e., θ > θc and H < Hc) scales as HαL . The scaling exponent
is close to that found for W = 68D. Above Hc, the scaling exponent falls to zero. The reason
for this change of scaling was not clearly identified.

2.5.2 Packing fraction, velocity and temperature profiles

Fig. 3.7 present the vertical profiles of the packing fraction ϕ(z), the longitudinal velocity
Vx(z) and the granular temperature T(z) for various SFD regimes.

Fig. 3.7 a, c and d display vertical profiles for increasing inclination angle at a parti-
cle hold-up H = 5. Upon increasing inclination, we visit successively the unidirectional
dense flow regime (θ = 20◦), the roll regime (θ = 23◦) and the supported regime with a
dense supported core (θ = 30◦ and 40◦). While the unidirectional and roll regime exhibits
a Bagnoldian velocity profile, the supported regimes are characterized by a plug flow. In
the latter regime, the dense core moves with a quasi-uniform longitudinal velocity above
a dilute layer which is strongly sheared. It is also important to note that the slip velocity
at the base increases with increasing inclination angle. Temperature profiles indicate that
the temperature is always maximum close to the base. For moderate inclination angle (i.e.
in the unidirectional dense regime and the roll regime) the temperature decreases mono-
tonically when approaching the free surface. In contrast, at higher inclination angle (i.e.,
in the supported flow regime), the temperature profile is no longer monotonous: the dense
core appears to be colder than the free surface. Increasing the particle hold-up at a fixed
inclination angle leads in general to a decrease of the granular temperature.

Fig. 3.7 b, d and e display vertical profiles for much thicker flows with H = 20 which in-
cludes the new flow regime. At θ = 22◦, we get a SSH flow with a static region which spans
nearly over the whole flow depth. Only the superficial layers of the system are flowing. At a
slightly higher angles (i.e., θ = 25◦), we obtain a dense flow which is sheared over the whole
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Figure 3.7: Vertical profiles of the packing fraction, the longitudinal flow velocity Vx, and the granular temper-
ature. Quantities were averaged across the cell width (i.e., y direction). (a,c,d) Profiles for H = 5D obtained for
various inclinations θ = 20◦, 23◦, 30◦ and 40◦: These profiles include an unidirectional dense flow (θ = 20◦), a
flow with a pair of roll (θ = 23◦), a supported flow with a symmetric core (θ = 30◦) and an asymmetric core
(θ = 40◦). (b,d,e) Profiles for H = 20D obtained for various inclinations θ = 22◦, 25◦, 30◦, 40◦ and 50◦: These
profiles represent a SSH flow (θ = 22◦), a R+ flow (θ = 25◦), a R+SR− flow (θ = 30◦), and a flow with a double
layer of vortices CR−

+ (θ = 40◦) and a supported flow regime with symmetric core (θ = 50◦).
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depth and exhibits a pair of longitudinal vortices R+ having a rotation direction opposite
to that observed for supported flows. The packing fraction is almost invariant through the
depth. Upon a further increase of the inclination angle (i.e., θ = 30◦), the flow develops
two superposed rows of longitudinal vortices (a R+ pair of rolls at the base and a R− pair
of rolls at the free surface). The bottom rolls are dense while the upper rolls are slightly
more dilute. The flow is the prelude to a new supported regime. Indeed, at a much higher
angle (i.e., θ = 40◦), the flow splits into two dense cores separated by a dilute region. This
is clearly visible on the packing fraction profile. The upper core presents the same features
as a supported flow: it is floating over the bottom core and is flowing much faster than the
latter. This flow regime still includes superposed vortices: the bottom and upper cores are
respectively the location of a R+ and R− pair of rolls.

Fig. 3.8 a, c, and d show the cross-wise profiles of the particle velocity, volume fraction
and temperature for H = 5D and various inclination angles. Cross-wise profiles of the
longitudinal velocity reveal that the sliding velocity at the side-walls is significant and of
the same order than the sliding velocity at the bottom. Additionally, we can note that at
low angle and moderate inclination (i.e., in the unidirectional dense regime and in the roll
regime), the flow is sheared almost uniformly through the whole width. In contrast, at large
inclination (i.e., in the supported flow regime) the cross-wise strain rate is much stronger
and is essentially localized in the dilute layer close to the vertical walls. Cross-wise profiles
of the packing fraction and granular temperature reveal similar features.

2.5.3 Velocity and temperature at the bottom and side walls

Like the mean flow velocity, the velocities at the bottom and side walls exhibit remarkable
behaviors when varying the particle hold-up and inclination. For small angles and moderate
particle hold-up (i.e., H < 10D), both bottom and side walls velocities do not show any
dependence with the particle hold-up. They thus behave as VL and depend only on the
inclination angle (see Fig. 3.9). We find that they are similar in magnitude:

Vb√
gD

≈ Vw√
gD

≈ 0.75
VL√
gD

≈ 0.75AL (sin θ − sin θ1) for θ < θc and H < 10D (3.4)

with AL ≈ 80 and θ1 ≈ 15.5◦.

H < Hc H ≥ Hc
αL 0.3 ± 0.05 0
αb 0 −1.5 ± 0.1
αw 0 0

Table 3.1: Values of the scaling exponents αL, αb and αw for H < Hc and H ≥ Hc in the large inclination regime
(i.e., for θ ≥ θc). VL − Vc

L ∝ (H/Hc)αL(sin θ − sin θc), Vb − Vc
b ∝ (H/Hc)αb(sin θ − sin θc), and Vw − Vc

w ∝
(H/Hc)αw(sin θ − sin θc)

For steeper angles (i.e., θ > θc), the bottom and side walls velocities are still invariant
with H as soon as H < Hc. This behavior thus differs from VL which increases with increas-
ing H. They display an affine behavior with sin θ as for shallow angle but with a greater
slope:

Vb,wL − Vb,w(θc) ≈ 100
√

gD (sin θ − sin θc) for θ > θc and H < Hc (3.5)

For H > Hc, the bottom velocity decreases with increasing H while the side wall velocity
still remains invariant with H. The decrease of Vb with H can be described by a simple
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Figure 3.8: Transverse profiles of the packing fraction(a,b), longitudinal velocity(c,d) and temperature (e,f).
Quantities were averaged through the depth of the flow from z = 0 to z = h (where h corresponds to the
height below which 97% of the mass stands). (a,c,e) Profiles for H = 5D obtained for angles θ = 20, 23, 30 and
40◦. (b,d,f) Profiles for H = 20D obtained for angles θ = 22, 25, 30, 40, and 50◦.
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Figure 3.9: Vb (a) and Vw (b) as a function of sin θ for various mass holdups H. Vb (c) and Vw (d) as a function
of VL for the same mass holdups H.

scaling law (see Fig. 3.10):

Vb − Vb(θc) ≈ 100
√

gD
(

H
Hc

)αb

(sin θ − sin θc) for θ > θc and H > Hc (3.6)

with αb = −1.5 ± 0.1.
Let us summarize our findings concerning the bottom and side-wall velocities. We find

two distinct regimes for small and large inclinations. The critical angle θc ≈ 26.5◦ delimits
these two regimes. The large angle regime coincide with the emergence of the supported
flow regime. In the small angle regime, the mean, bottom and side-wall velocities are almost
invariant with H as soon as H remains moderate (H < 10D). In contrast in the large angle
regime, the mean flow velocity increase with increasing hold-up for H < Hc (as a power law
with an exponent αL = 0.3 ± 0.05). while the bottom and side-wall velocities still remains
invariant with H. For greater hold-ups (i.e., H > Hc), the mean velocity become invariant
with increasing H as the side-wall velocity but the bottom velocity exhibits a decrease with
H with a power exponent αb = −1.5 ± 0.1.

At the transition between small and large angle regimes (i.e., for θ = θc), we have intro-
duced critical values Vc

L, Vc
b and Vc

w for the mean, bottom and side-wall velocities, respec-
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Figure 3.10: Renormalized bottom (a) and side-wall (b) velocities as a function of sin θ for steep angles (i.e., θ >
θc) and various mass holdups H ranging from 4D to 20D. (a) Rescaled bottom velocity (Vb − Vc

b )/(H/Hc)αb

versus sin θ; (b) Rescaled side-wall velocity (Vw − Vc
w)/(H/Hc)αw versus sin θ. The values of the scaling expo-

nents αb and αw are summarized in Table 3.1.
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Figure 3.11: Critical velocity Vc for the mean, bottom and side-wall velocities as a function of the mass hold-
up H: Vc

L,b,w = VL,b,w(θ = θc) where θc is the critical angle that delimits the small and large angle regime.
θc ≈ 26.5◦

tively. The latter are almost invariant with H for moderate H (i.e., H < 10D) but decreases
with increasing H for large H (see Fig. 3.11).

We present in Fig. 3.12.a the variation of the bottom and side-walls temperature as a
function of the bottom and side-wall velocities. We observe a nice linear correlation between
the square root of the temperature and the velocity at the walls. This correlation also holds
at the local scale, i.e., when we compute the temperature and the velocity at the grain scale
(see Fig. 3.12.b).

We can note however that the correlation between temperature and wall velocity be-
comes poorer at large temperature. This would require further studies to understand the
dispersion at large temperature.

2.5.4 Characterization of the flow regime transition

We describe the transition between the different flow regimes. Zhu et al. (2020) proposed
criteria to identify and characterize the different flow transitions. Some of them are not easy
to calculate, which limits the application to experiments. We thus propose some additional
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Figure 3.12: (a) Square root of the bottom and side-wall granular temperature (
√

Tb and
√

Tw) as a function
of bottom and side-wall velocity, respectively Vb and VL, for mass holdups H ranging from 4D to 22D and
inclination angles between θ = 19◦ and 50◦. (b) and (c) Similar data but computed at the grain scale.

criteria which could be used in experiments. We also provided criteria to identify the new
regimes that were not observed for W = 68D.

Transition to the supported flow regime: In their article, Zhu et al. (2020) showed that
the evolution of the maximum packing fraction ϕmax as a function of the inclination provides
a clear indicator of the transition between the roll regime and the supported flows. Here for
W = 40D, this criterion is also relevant to identify the transition towards supported flows
(see Fig. 3.13.a).

The packing fraction is however not easy to get in experiments. We find that another
criterion could be used to describe the transition towards the supported flow regime. We
noted that in the supported regime there is a significant gaseous atmosphere above the dense
core. In this atmosphere, the packing fraction decreases exponentially with the height z as
ϕ(z) = ϕ(zgas)exp−(z−zgas)/Lgas , where zgas is the height at which starts the atmosphere and
Lgas is the characteristic layer height of the latter. We present in Fig. 3.13.b the characteristic
layer height Lgas of the atmosphere. The data indicate that the atmosphere layer height
increases significantly with increasing angle for inclination greater than θc corresponding to
the emergence of supported flows. In contrast, below θc, the increase is extremely moderate.
The assessment of the height of the upper atmosphere could be thus used successfully to
characterize the transition to supported flows.

The depth-averaged longitudinal velocity can be also used to identify the transition to
the supported regime. The difference between the maximum of the width-averaged longi-



2 Article: Discrete simulations of confined high-speed granular flows: Influence of the
channel width 55

20 25 30 35 40 45 50
( )

0.3

0.4

0.5

0.6

0.7

m
ax

H = 4D
H = 5D
H = 6D
H = 8D
H = 10D

(a)

0.3 0.4 0.5 0.6 0.7 0.8
sin

0
1
2
3
4
5
6
7

L c
/H

20 25 30 35 40 45 50
( )

0.4 0.5 0.6
sin

0

1

2

3

L c
/H

H = 4D
H = 5D
H = 6D
H = 8D
H = 10D

25 30 35
( )

(b)

Figure 3.13: (a) Maximum packing fraction ϕmax within the flow as a function of inclination for mass holdup H
ranging from 4D to 10D. (b) The characteristic layer height Lgas of the upper gaseous of the flow as a function
the inclination angle for various particle hold-ups.

tudinal velocity (i.e., < Vx >max
z ) and that at the lateral walls (i.e., Vw) undergoes a drastic

change at the transition (see Fig. 3.14). The amplitude of the depth-averaged longitudinal
velocity increases with increasing inclination in the small angle regime while in the large
angle regime, the latter reaches a plateau or even decreases. The change of behavior of the
amplitude of the depth-averaged longitudinal velocity with the slope angle thus provide a
useful indicator for the transition to the supported regime.
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Figure 3.14: Amplitude of the depth-averaged longitudinal velocity as a function the inclination angle for
various particle hold-ups.

Roll regime: In our article (Zhu et al., 2020), we showed that the vorticity is the appropri-
ate parameter to delineate the transition from the dense flow regime towards the roll regime.
Again this criterion is easily calculated in DEM simulations but hardly accessible to exper-
imental measurements. An alternative way is to take advantage of the vertical profiles of
the vertical velocity Vz in the vicinity of the lateral walls. For H = 5D (see Fig. 3.15.a), these
profiles indicate clearly the threshold for the appearance of the roll regime. For θ = 20◦, the
profiles is flat and reduced to zero, indicating that there is no upward nor downward motion
at the wall, while for slightly greater angle (i.e. θ = 23◦, the profile indicate an upward mo-
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tion close to the lateral walls, thus revealing the existence of R− longitudinal vortices. Upon
further increase of the angle, the upward motion at the wall is enhanced. For H = 20D,
these profiles provide also a clear picture of the presence of the longitudinal vortices (see
Fig. 3.15.b). For θ = 22◦, no vortices are present while at larger angles (i.e., θ = 25 and 27◦),
we observe R+ longitudinal vortices producing a downward motion at the wall. At even
large angles (i.e., θ = 30◦), the profile of the vertical velocity exhibits two extrema with neg-
ative and positive velocity which reveals the presence of two rows of longitudinal vortices
with R+ vortices at the bottom and R− vortices at the top of the flow: this is the R−

+ flow
regime.

As a matter of fact, the vertical profiles of the vertical velocity is useful to reveal the
presence of longitudinal vortices. We can use the extrema of the vertical velocity as a good
indicator to identify the transition towards the R−, R+ and R−

+ regimes. We recall that an
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Figure 3.15: Vertical profiles of the vertical velocity Vz computed in the vicinity of the lateral walls (i.e., 0 <
y < 5D and 35D < y < 40D) for (a) H = 5D and (b) H = 20D, respectively, and various inclinations.
Transverse profiles of the depth-averaged transverse velocity Vy for (c) H = 5D and (d) H = 20D, respectively,
and various inclinations.

extremum with a positive vertical velocity corresponds to a R− pair of vortices (inducing a
upward motion of the particles at the lateral wall) while a negative value stands for a R+

pair of rolls (inducing a downward motion of the particles at the wall).
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We thus have at our disposal two different criterions, one based on the vorticity and
used in Zhu et al. (2020) and the other on the extrema of the vertical profiles of the vertical
velocity at the walls. Both criterions are compared in Fig. 3.16. The criterion based on the
vorticity is the most accurate. It indicates that for small particle hold-ups, vortices appear
above a critical angle of about 20◦ and the critical angle increases slightly with increasing H.
At large particle hold-ups (e.g., H = 20D) and small inclination angle, the maximum of the
vorticity changes sign indicating the presence of R+ roll. Above a critical angle (θ = 27.5◦

for H = 20D), the curve splits into two branches revealing the appearance of a second row
of vortices with opposite rotation direction. The alternative criterion based on the vertical
velocity of the later walls provides similar trends.
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Figure 3.16: Extrema of the vorticity (a) and extrema of the vertical velocity at the wall (b) as a function of the
inclination angle for various mass hold-ups.

2.5.5 Effective friction and packing fraction at the boundaries

We now investigate how the effective friction at the boundaries (i.e., bottom and side walls,
respectively) varies with the particle hold-up and inclination angle. We recall that the global
effective friction µb and µw, respectively at the base and at the side-walls: µb = Fb

T/Fb
N and

µw = Fw
T /Fw

N , where FT is the tangential force exerted by the wall on the flow and FN is the
force normal to the wall.

We also define an effective friction at the local scale, µloc
b (y) and µloc

w (z). To evaluate these
local quantities, we decompose the walls into strips parallel to the flow with a width of a
few grain diameters (typically between 2D and 10D according to the local packing fraction)
for which we compute the local tangential and normal forces.

We proceed in the same way to compute local quantities at the walls like the velocity
(V loc

b and V loc
w ), the pressure (Ploc

b and Ploc
w ), the packing fraction (ϕloc

b and ϕloc
w ), and the

temperature (Tloc
b and Tloc

w ).
In a preceding paper (Zhu et al., 2020), we showed that the global effective friction µb

and µw depend on a unique variable which is a Froude-like number built from the velocity
and the pressure at the wall as Frb,w = Vb,w/

√
Pb,w/ρ with Pb ≈ Pw ≈ ρgH cos θ. These laws

µb(Frb) and µw(Frw) were established for confined flows with a gap widths W = 68D. We
confirm here that for a narrower channel width W = 40D these global laws still hold (see
Fig. 3.17.a). We can note that both curves µb(Frb) and µw(Frw) overlap which is not really
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surprising since the bottom and the side-walls have the same mechanical properties. This
thus indicates that these laws encode the mechanical interactions between the wall and the
particles. We expect that a change of the mechanical properties of the walls or the particles
should not alter the general shape of the curve but only in a quantitative way.
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Figure 3.17: (a) Global basal and lateral friction coefficient (µb and µw) as the function of the global Froude
number (Frb and Frw). Frb,w = Vb,w/

√
H cos θ. (b) and (c): Local basal and lateral friction coefficient as

the function of the local Froude number. (b) µloc
b versus Frloc

b = V loc
b /

√
Ploc

b /ρ; (c) µloc
w versus Frloc

w =

V loc
b /

√
Ploc

w /ρ. Insets: Same data in a semi-log plot, red and green symbols correspond to SHH and inter-
mittent regime, respectively. The solid line corresponds to the best fit to the data in (b) using the following
exponential form: µloc

b ≈ µ2 + (µ1 − µ2)(exp
(
−Fr/Frµ0

)
) with µ1 = 0.29, µ2 = 0.59, and Frµ0 = 12.2. This fit

is reported in (a) and (c) and captures reasonably well the other data.

In (Zhu et al., 2020), we also showed the above laws established at the system scale holds
actually at the local scale. This is also the case here for flows with W = 40D (see Fig. 3.17.b
and c). This thus supports the idea that these laws encode particle-wall interactions at the
particle scale.

Interestingly, we present in the inset of Fig. 3.17 the effective friction as a function of
the logarithm of the Froude number. This representation allows to see what happens at
low Froude number (i.e., below 1). These low Froude numbers correspond to the SHH and
intermittent regime (red and green symbols in the figure). In the range of Froude number
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between 0.01 and 0.1, we observe a plateau corresponding to a friction of 0.25. For very small
number Froude number (below 0.01), the effective friction decreases again with decreasing
Froude number. This branch correspond to SSH flows and should be taken with caution
because the deep part of the flow which is quasi-static may not be in a fully stationary state.

In addition to the effective friction law, we uncover that the packing fraction also obeys a
simple law which depends uniquely on the Froude number. The local packing fraction at the
bottom and side-wall as a function of the local Froude number is shown in Fig. 3.18.a and
b. All the data collapse on a single curve which decreases with increasing Froude number.
This decreasing behavior can be reasonably well captured by a law of the following form:

ϕloc
b,w = ϕ1 + (ϕ2 − ϕ1) exp

(
−Frloc

b,w/Frϕ0

)
(3.7)

with ϕ1 = 0.57, ϕ2 = 0.03 and Frϕ0 = 6.8. The packing fraction at the bottom and the side-
walls presents a similar behavior and can be described by the same law with similar fitting
parameters.

In (Zhu et al., 2020), we showed the law for the effective friction at the walls are also
valid for unsteady flows. It is thus natural to test whether the ϕloc(Frloc) law holds also
for unsteady flows. This is indeed the case as illustrated in Fig. 3.18.c. We calculated the
local packing fraction at the walls during the transient accelerated regime before reaching
the stationary state.
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Figure 3.18: (a) The local basal packing fraction on bottom ϕloc
b as a function of the local basal Froude number

Frloc
b = V loc

b /
√

Ploc
b /ρ. (b) The local packing fraction at the side-walls ϕloc

w as a function of the local side-wall

Froude number Frloc
w = V loc

w /
√

Ploc
w /ρ. (c) ϕloc

b as a function of Frloc
b for a flow in the transition regime (θ = 40◦

and H = 12D). Inset: ϕloc
w as a function of Frloc

w for the same flow. The solid line is the best fit to the data in (a)
using Eq. 3.7. This fit is reported in (b) and (c) and captures well the other data.

Interestingly, the law for the packing fraction holds also at the global scale. If we compute
the mean packing fraction at bottom ϕb as a function of the global basal Froude number
Frb = Vb/

√
Hcos(θ) (where Vb is the mean velocity at the bottom), we find a nice collapse

of the data (see Fig. 3.19). It is also interesting to note that the mean packing fraction of the
flow ϕ̄∗ - defined as ϕ̄∗ =

∫ h∗

0

∫W
0 dzdyϕ(y, z) where h∗ is the height below which one finds

97% of the flowing material - shows also a similar behavior as a function of the global basal
Froude number. This relation may be useful for the development of a phenomenological
model as discussed later on.
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Figure 3.19: (a) Mean packing fraction at the bottom ϕb as a function of the global basal Froude number
Frb = Vb/

√
Hcos(θ). (b) Mean mean packing fraction ϕ̄∗ as a function of the global basal Froude number Frb.

The flows with two superposed rows of vortices (empty symbols) do not follow the main trends. The solid
line represents the best fit obtained for the local law ϕloc

b (Frloc
b ) (see Eq. 3.7).

In summary, we showed that the effective friction at the boundaries as well as the pack-
ing fraction at the boundaries can be described with simple laws which depend only on the
Froude number. These laws, µb,w(Frb,w) and ϕb,w(Frb,w), can be seen as the analogue of the
laws µ(I) and ϕ(I) introduced in the theological model for dense granular flows. However,
they do not have the same status. The laws we established should be taken as boundary
conditions for flat boundaries but does not inform about the rheology of the flow.

2.5.6 Effective frictional flow height Z

A force balance applied to our system leads the following relationship:

tan θ = µb(Frb) + µw(Frw)
Z
W

(3.8)

where

Z =
2
Pb

∫ h

0
dz P(0, z) (3.9)

h is defined at the critical altitude below which one finds 100% of the flowing material. To
establish this relation, we employ the same assumption as done in Taberlet et al. (2003);
Richard et al. (2008). In particular, the pressure P(y, z) within the flow is assumed to be
isotropic. The height Z can be seen as an effective frictional height. For dense flows, the fric-
tional height can be identified to the thickness of the flowing layer. For our rapid flows with
heterogeneous packing fraction, the relationship between Z and h is not straightforward.

The mass conversation provides us with a simple relationship between h and the mean
packing fraction ϕ̄:

h =
H
ϕ̄

(3.10)

with

ϕ̄ =
1

Wh

∫ h

0

∫ W

0
dy dz ϕ(y, z) (3.11)
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Guided by this relation, we investigate whether the rescaled friction height Z/H obeys also
a simple law as a function of the mean packing fraction. When we plot Z/H as a function
ϕ̄ for all SFD flows, we get a nice collapse of the data on a single curve (see Fig. 3.20) which
can be approximated by the following functional form:

Z
H

=
1 + aϕ(ϕ̄ − ϕ1)

ϕ̄
(3.12)

with ϕ1 ≈ 0.57 and aϕ ≈ 1.6. Note that the determination of the mean packing fraction is
very sensitive to the definition of the flow height h. If we use the alternative flow height
h∗ (defined as the thickness below which 97% of the flowing material stands), the resulting
mean packing fraction ϕ̄∗ is significantly different in particular for very dilute flows. As a
consequence, the relationship between Z/H and ϕ̄∗ differs from that between Z/H and ϕ̄
(see Fig. 3.20). However the trend remains similar.
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Figure 3.20: (a) Rescaled frictional height Z/H as a function of the mean packing fraction ϕ̄. (b) Rescaled
frictional height Z/H as a function of the mean packing fraction ϕ̄∗ based on the flow height h∗ which is
defined as the height where one finds 97% of the flowing material. The solid and dash lines correspond to best
fits using Eq. 3.12: aϕ ≈ 1.6 and ϕ1 ≈ 0.57 (solid line), aϕ ≈ 1.0 and ϕ1 ≈ 0.57 (dash line).

2.6 Role of the channel width W

2.6.1 On the critical inclination for the appearance of the supported flows

We investigate first the influence of the gap width W on the appearance of the supported
regime. We saw that for W = 40D, the supported regime emerges above a critical angle
θc ≈ 26.5◦ for H = 4D. The latter slightly increases with increasing particle hold-up H.

The numerical simulations show that this critical angle decreases with increasing gap
width W (see Fig. 3.21). The data can captured by the following functional form:

θc = θ∞ +
W0

W − Wc
(3.13)

with θ∞ = 22.8◦, W0 = 80D, and Wc = 18D. This law predicts that there is a minimum
gap width Wc ≈ 18 below which the supported regime can not occur. This prediction seems
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to agree reasonably well with simulations achieved at W = 20D which reveal an absence
of supported flows. Interestingly, this law also suggests that supported flows should exist
for infinite wide channels. The widest channel width used in the simulations is W = 140D
which still reveal the existence of supported flows.

Interestingly, the mean flow velocity Vc
L at the critical inclination as well as the basal and

lateral velocities (Vb(θc) and Vw(θc)) are independent of the channel width W (see Fig.3.21.b).
This suggests that the appearance of the supported regime is governed by the mean flow
velocity. Thus as larger channels provide faster flows, the appearance of the supported flow
is favoured for wide channels.
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Figure 3.21: (a) Critical inclination θc for the appearance of the supported flow regime as a function of W
for a fixed hold-up H = 4D. The solid line is a least-squares fit with the following functional form: θc =
θ∞ +W0/(W −Wc), where θ∞ = 22.8◦, W0 = 80D, and Wc = 18.3D. (b) Corresponding mean flow velocity Vc

L
as a function of the channel width W.
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Figure 3.22: (a) Renormalized mean flow velocity (VL − Vc
L)/HαL as a function of sin θ − sin θc for supported

flows (i.e., θ > θc(W) and H ≤ Hc(W)) obtained with channel widths W = 40D, 68D, and 75D. (b) Renormal-
ized mean flow velocity (VL − Vc

L)/HαLWβL as a function of sin θ − sin θc. αL = 0.3± 0.05 and βL = 0.7± 0.05.
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2.6.2 On the velocity scaling

Here, we are interested to determine how the scaling law established for the mean velocity
is altered by changing the channel width. We focus here exclusively on the supported flow
regime.

The outcomes of the simulations achieved for various channel widths (i.e., W = 40D,
68D and 75D) reveal that the mean flow velocity VL of the supported flows can be well
approximated by the following law (see Fig. 3.22):

VL − VL(θc) ≈ 6.6
√

gD HαLWβL (sin θ − sin θc) for θ > θc(W) and H < Hc(W) (3.14)

with αL = 0.3 ± 0.05 and βL = 0.7 ± 0.05. where θc is the critical angle for the appearance of
the supported flows and Hc is the limit particle hold-up above which the supported regime
disappears.
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Figure 3.23: Renormalized basal velocity (Vb − Vc
b )/Wβb (a) and side-wall velocity (Vb − Vc

b )/Wβb (b) as a
function of sin θ − sin θc, for supported flows (i.e., θ > θc(W) and H ≤ Hc(W)) obtained with channel widths
W = 40D, 68D, and 75D. βb ≈ βw = 0.7 ± 0.05.

It is also important to note that θc depends on W as shown previously and that Hc is also
expected to vary with W. For W = 40D, Hc is about 14D. For W = 68D, we were not able
to determine Hc but we know it is greater than 20D.

It could be instructive to check whether the basal and lateral wall velocities (Vb and Vw)
obeys a similar scaling law with W as for the mean flow velocity. Fig 3.23 shows that the
basal and side-wall velocities (Vb − Vc

b and Vw − Vc
w) scale reasonably as W0.7 as for VL. We

can also note that the linearity with inclination θ still holds when changing W. We also con-
firm that in the supported flow regime, the basal and side-wall velocities do not show any
significant dependence with the particle hold-up H.

2.6.3 On the friction and packing fraction law at the walls

Here we investigate the role of the gap width on the effective friction and packing fraction
at the walls. For this, we ran simulation for various gaps widths from 20D to 75D with in-
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clinations ranging from θ = 15 to 50◦ and particle hold-ups from 4D to 22D.
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Figure 3.24: Local effective friction as a function of the local Froude number for various gap widths: (a) Bottom
friction; (b) Side-wall friction. The solid line in (a) correspond to the best fit to the data using the exponential
form: µloc

b = µ2 + (µ1 − µ2) exp
(
−Fr/Frµ0

)
. µ1 = 0.29, µ2 = 0.59, Frµ0 = 12.2. This fit is reported in (b) and

works well.

Fig 3.24 presents the local effective friction law both at the bottom and side-walls as a
function of the local Froude number for various channel widths. All the data for different
gap widths collapse on a single curve. This means that The local effective friction law do
not depend on the gap width. This confirms that the local friction law µloc

b,w(Frloc
b,w) encode

the local interactions between the particle and the walls and these interactions are governed
by the local Froude number. Importantly, the bottom and side-wall friction laws are similar
qualitatively and quantitatively. The inset of Fig. 3.24 makes a focus on very small Froude
numbers and indicates there exists a plateau for Froude ranging from 0.01 and 1. For even
smaller Froude number, the data should be taken with caution since we are not ensured that
the flows with vanishing Froude number are in a fully stationary state.

It is important to mention that the global friction laws µb,w(Frb,w) remain as well un-
changed by varying the gap width. Concerning the local packing fraction laws at the walls
(i.e., ϕloc

b (Frloc
b ) and ϕloc

w (Frloc
w )), we also obtain an invariance when changing the gap widths

as illustrated in Fig. 3.25. This reinforces the relevance of these local laws. In contrast, the
corresponding global law for the mean packing fraction of the flow (i.e., ϕ̄∗(Frb)) is less ro-
bust to change in W as expected (see Fig. 3.25.d). In particular, the data corresponding to
very confined flows (i.e., W = 20D) (red squares) deviate from the main trend. We observed
as well as a deviation of the law at W = 40D for the thick flows with two rows of vortices
(empty green squares).

2.6.4 On the effective frictional flow height Z

We established previously that the rescaled effective frictional flow height Z/H defined by
Eq. 3.9 obeys a simple law with the mean packing fraction of the flow ϕ̄∗. The law is found
to be remarkably independent of the gap width. This is illustrated in Fig. 3.26. We will see
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Figure 3.25: Local packing fraction at the base (a) and at the side-walls (b) as a function of the local Froude
number for various gap widths. (c) Basal packing fraction ϕb as a function of the basal Froude number Frb =
Vb/

√
gH cos θ for various gap widths; (d) Mean packing fraction ϕ̄∗ as a function of the basal Froude number

Frb for various gap widths. The solid line corresponds to the same fit as used in Fig. 3.18.

later on that this law will be useful to propose a phenomenological model that allows to
determine the basal and side-walls velocities for a given particle hold-up H, inclination θ
and gap width W.

2.7 Kinetic theory for granular gas and µ(I) rheology

In this section, we investigate which properties of the flow can be described either by the
kinetic theory for granular gas or by the µ(I) rheology.

We recall first the salient features of the kinetic theory for granular gas. For friction-
less spheres, Lun et al. (1984) derived constitutive relations. In a simple shearing flow, the
granular pressure can be written as

P = ρF1(ϕ)T (3.15)

with

r =
1 + e

2
(3.16)

g0(ϕ) =
2 − ϕ

2(1 − ϕ)3 (3.17)
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Figure 3.26: Rescaled effective frictional height Z/H as a function of the mean flow packing fraction ϕ̄∗ for
different channel widths W = 20D, W = 40D, W = 68D and W = 75D. The solid line is the best fit obtained
for W = 40D (see Eq. 3.12).

where ρ is the particle density and e is the normal restitution coefficient, while the shear
stress S in the mean shear direction is expressed as

S = ρDF2(ϕ)
√

Tγ̇ (3.18)

where D is the grain diameter and γ̇ is the strain rate. F1 and F2 are functions of packing
fraction and are given by

F1(ϕ) = ϕ + 4rϕ2g0(ϕ) (3.19)

F2(ϕ) =
5
√

π

96

[
1

r(2 − r)g0(ϕ)
+

8
5

3r − 1
2 − r

ϕ +
64
25

r(
3r − 2
2 − r

+
12
π
)ϕ2g0(ϕ)

]
(3.20)

We first investigate whether the ratio of the pressure to temperature obeys a similar re-
lationship to that given by the kinetic theory (cf. Eq. 3.15). To do this, we compute the local
pressure and temperature close to the walls. However, to avoid the singularity introduced
by the flat walls, we compute this ratio in the interior of the flow but still close to the wall,
i.e., at a distance d = 1.5D ± 0.5D. We recall in the previous section the quantities at the wall
were calculated at a distance d = 0.5D ± 0.5D. We will use here a notation with a dagger for
the new calculation.

Fig. 3.27.(a,b) shows the evolution of Ploc
b† /Tloc

b† and Ploc
w† /Tloc

w† as a function of the local
packing fraction at the bottom ϕloc

b† and at side-wall ϕloc
w† , respectively. First, we note that

there is a nice collapse of the data for various mass hold-up, inclination angle and gap width.
This indicates that the ratio P/T depends solely on the packing fraction. The solid line is the
prediction of the kinetic theory using Eq. 3.15 where the coefficient of restitution was set to
the value used in the simulations (i.e., e = 0.972). The latter is in good agreement with the
simulations up to a packing fraction of 0.5. Above this value, there is a significant deviation
from the main trend. Interestingly, we checked that the ratio between the pressure and the
temperature works also at the global scale (see Fig. 3.27.c).

The kinetic theory also tells us that the ratio of the shear to the pressure in the main flow
direction obeys a simple relation:

S
P
= D

F2(ϕ)γ̇√
TF1(ϕ)

(3.21)

yielding
S
√

T
Pγ̇

=
F2(ϕ)

F1(ϕ)
(3.22)
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Figure 3.27: (a) Ploc
b† /Tloc

b† as a function of the local packing fraction at bottom ϕloc
b† . (b) Ploc

w† /Tloc
w† as a function

of the local packing fraction at the side-walls ϕloc
w† . The solid line is the prediction of the kinetic theory with

e = 0.972 (see Eq. 3.15). (c) Pb† /Tb† as a function of the mean packing fraction at the bottom ϕb† . The solid line
is the prediction of the kinetic theory with e = 0.972 (see Eq. 3.15).

The above ratio according to the kinetic theory is a function of the packing fraction ϕ through
F1 and F2. This could be checked from the data of the simulations. We computed the above
ratio close to the bottom wall at a distance d = 1.5D (see Fig. 3.28). The data obtained for
various inclinations, particle hold-up and gap width collapse on a unique trend. The predic-
tion of the kinetic theory also agrees remarkably well with the simulation outcomes. These
results indicate that the kinetic theory is a good candidate to describe the rheology of our
flows. However, it is not capable of predicting properly the slip velocity at the boundaries
when they are flat.

Lastly, we made a first attempt to check whether the µ(I) rheology is relevant to describe
the rheology of our flows. To do this, we compute the inertial number in the interior of the
flow close to the bottom. Again, the calculation was not made at the wall (i.e., z = 0.5D)
because the first layer plays a singular role due to the flat boundary. We thus evaluate the
inertial number I†

b at z = 1.5D and plot the basal friction µb as a function of I†
b . We obtain a

remarkable collapse of the data on a single curve for inertial number smaller than 2.5. Above
2.5, the collapse breaks down and the curve seems to be multi-valued. Similar with Brodu
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Figure 3.28: µb
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Tb/ ˙γb† as a function of the mean packing fraction at bottom ϕb† . The solid line corresponds
to the prediction of the kinetic theory.

et al. (2013), at the transition from the uni-direction to the roll regime the inertial number
drops.

0 1 2 3
Ib = D b

gHcos

0.2

0.3

0.4

0.5

0.6

b

W=20D
W=40D
W=68D
W=75D

Figure 3.29: µb as a function of inertia number at the bottom Ib† =
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gH cos θ

for various mass holdup, various

inclination and various channel width.

2.8 Phenomenological model for predicting the slip velocities at the bound-
aries

While the kinetic theory or the µ(I) rheology may have some potentiality to capture some
features of the rheology of our flows, they are not able to predict the slip velocity at flat
boundary. From the laws we established, we propose a set of closed equations which pro-
vides a theoretical frame to predict the slip velocity of the flow for prescribed mass hold-up,
inclination and gap width.

We recall the force balance provide us with the following equation:

tan θ = µb(Frb) + µw(Frw)
Z
W

(3.23)

We have seen that the basal and side-wall friction law provide similar trends because they
have the same material properties. It is thus legitimate to assume that µb(Frb) ≈ µb(Frw)
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such that the balance equation reduces to:

tan θ = µb(Frb)

(
1 +

Z
W

)
(3.24)

We recall that µb(Frb) can be approximated by the following exponential function:

µb(Frb) = µ2 + (µ1 − µ2) exp
(
−Frb/Frµ0

)
(3.25)

with µ1 ≈ 0.29, µ2 ≈ 0.59 and Frµ0 ≈ 12.2.
We also saw that the rescaled effective frictional height Z obeys a simple law as a function

of the mean packing fraction of the flow ϕ̄∗ which can be expressed as:

Z
H

=
1 + aϕ(ϕ̄∗ − ϕ1)

ϕ̄∗ (3.26)

with aϕ ≈ 1. Additionally, ϕ̄∗ was shown to depend only on the basal Froude number and
can be described by the following law

ϕ̄∗ = ϕ1 + (ϕ2 − ϕ1) exp
(
−Frb/Frϕ0

)
(3.27)

with ϕ1 ≈ 0.57, ϕ2 ≈ 0.03 and Frϕ0 ≈ 6.8.
The equation 3.24 completed with Eqs 3.25,3.26 and 3.27 provide a close system of equa-

tions to solve for the basal Froude number and the mean flow packing fraction ϕ̄∗.

2.9 Conclusion

In this article, we studied the influence of the channel width on rapid granular flows. The
main effect of the channel width is to change the critical angle or particle hold-up for the
appearance of the different flow regimes. As the channel width decreases, the flow regime
transition are shifted toward larger angles. This could lead to the disappearance of some
flow regimes in the case of very confined flows. As the example, the supported flow regime
disappears for gap width smaller than W = 20D while it seems to persist even for very wide
channels. In other words, the side-walls are probably not the cause of the ”supported” flow
regime, but can be the cause of its disappearance.

We also highlighted that flat boundaries induce large slip velocities. We carefully anal-
ysed the properties of the flow close to the boundaries. We found the local friction at the
boundary can be captured by a simple law which depends only the local Froude number
defined as the ratio of the local slip velocity to the square of the local pressure. The lo-
cal packing fraction at the wall exhibits as well a simple dependence of the local Froude
number. These relations provide a relevant framework to predict the slip velocity at the
boundary for a given flow configuration.

It would be worth examining in the future several further issues: (i) what is the influence
of the wall and particle material properties on the flow regimes and the subsequent friction
and packing fraction laws at the walls?; (ii) Can these numerical flow regimes be reproduced
in real experiments?; (iii) What is the limit with infinitely large gap width?

3 Perspectives

In this chapter, we studied the effect of channel width on rapid granular flows and showed
that many flow features can be drawn independently of the gap width. This is the case for
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the friction and packing fraction laws at the walls. Of course, the flow velocity is crucially
dependent of the gap width W and we showed that the mean flow velocity as well as the
slip velocity at the wall scale as W0.7.

In the two next chapter, we will focus on the influence of the mechanical properties of
both the particles and the walls on the nature of the flow regime. We will investigate in
particular the role of e, µgw and µgg.



Chapter 4

The effect of normal restitution coefficient
e on confined granular flows

1 Introduction

Few studies have focused on the influence of mechanical parameters on granular flows.
As we know, in granular flows, the particles interact via contact forces including collisions
and enduring contacts. A collision involving two macroscopic grains is inelastic and thus
dissipates energy. The dissipation is commonly characterized by the coefficient of restitution
(Ogawa et al., 1980; Lun et al., 1984; Farrell et al., 1986).

This chapter attempts a first global approach of the effect of the normal restitution coeffi-
cient between grains: egg

n on granular flows in inclined channels. In the following, egg
n will be

simply referred to as the restitution coefficient, and denoted by e. This restitution coefficient
between particles plays an important role in diluted granular flows McNamara and Young
(1994). In contrast, the restitution coefficient between particles has little effect on very dense
granular flows Silbert et al. (2001).

In conditions similar to ours, a channel width W = 20D and e = 0.8, Zhang et al. (2019)
observed a supported flow regime. However, as already mentioned in the preceding chap-
ter, in our simulations with W = 20D and e = 0.972, the supported flow regime does not
exist. This observation reveals an important influence of the restitution coefficient on the
flow regimes, at least for W = 20D.

In this chapter, we will rapidly explore the influence of the restitution coefficient e on the
flow regimes and on their kinematic properties. We first study the effect of e for a channel
width W = 20D and then for W = 40D to see if the effect of e is only important in case of
strong confinement, or if it persists as a general effect independent of the channel width.

The outline of the chapter is the following. Section 2 is a short article, published in
EPJ Web of Conferences for Powders & Grains 2021, showing the influence of restitution
coefficient e when the gap width W is 20D. It confirms the important role played by e in rapid
confined flows. The mean velocity surprisingly increases when decreases e, as a result of the
clustering instability. Changes of flow structure and new flow regimes are also mentioned.

In section 3 we study the effect of varying the restitution coefficient on flows in a channel
of width W = 40D. We are more specifically interested in the effect on the flow regimes,
and in the alteration or invariance of the ”universal” global laws evidenced in the preceding
chapters.

Finally, we conclude in Sect. 4
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Abstract. We investigate numerically high speed granular flows down an incline and focus our attention on
the influence of the restitution coefficient e of binary collisions on the nature of the flow regimes. We show in
particular that e plays a major role in rapid flows. Decreasing e leads in general to denser flows but also quicker
flows which was not expected. The increase of the mean flow velocity with decreasing e is explained as the
result of the clustering instability which produces a dense and cold core moving very fast as a plug.

1 Introduction

Recently, several works have been devoted to rapid gran-
ular flows confined between side walls. Due to side-wall
frictional, steady and fully developed flows (SFD flows)
have been observed up to large angles of inclination where
accelerated ones are usually expected [1–4]. These new
SFD regimes present non-trivial features, including sec-
ondary flows (rolls) and heterogeneous volume fraction.
Among these, the supported flow regime is particularly in-
teresting: It consists of a dense core floating over a dilute
flowing layer and may have implications in the context of
geophysical flows [2]. In recent numerical works [2, 4],
the authors explore extensively and systematically these
different flow regimes as a function of the inclination angle
θ and of the mass holdup H for a given gap width W = 68D
between side walls.

Here we investigate flows with a narrower width W =

20D and a fixed particle hold-up H = 5D. We deal with
rather small systems and thus have reasonable computing
time to obtain SFD flows. This allows to conduct a para-
metric study to investigate the role of the restitution coeffi-
cient e of binary collisions. We report here an unexpected
result which could be phrased as follows: the more dissi-
pative the flow are, the faster they run.

2 Simulation setup

The simulation mimics a granular system flowing on a
flat base and bounded by two side walls. We used clas-
sical discrete element model (DEM). We considered N
spheres with a mean diameter D and slight poly-dispersity
(±10%D). The motion of each individual particle is com-
puted from forces acting on them, including contact forces
with other particles, with basal and side walls and gravity
effect. Periodic boundary conditions (PBC) are used in the

?e-mail: yajuan.zhu@univ-rennes1.fr
??e-mail: renaud.delannay@univ-rennes1.fr

???e-mail: alexandre.valance@univ-rennes1.fr

x−direction (figure 1). The system length in the stream-
wise direction is L = 20D and the width is W = 20D.
Details of the simulation method are given in [1, 2]. The
restitution coefficient e of particle-particle collision is var-
ied between 1 and 0.55 while the one for the particle-wall
collision is kept fixed and set to 0.8. Particle-particle and
particle-wall friction coefficients are taken from experi-
ments [5] and set to 0.33 and 0.593, respectively.

Figure 1: Configuration setup. The granular flow is con-
fined by lateral walls with a width W = 20D. Periodic
boundary conditions are used in the stream-wise direction
with a length L and an angle of inclination θ.

Here we set the particle hold-up H to a fixed value
H = 5D. The particle hold up represents the depth-
integrated particle volume fraction φ(z): H =

∫ ∞
0 φ(z)dz

and is directly related to the number of grains N in the
system (i.e., N = 6HLW/πD3). We have varied the incli-
nation angle between 30◦ and 50◦ together with the resti-
tution coefficient e from 1 down to 0.55. An illustration
of the different flow regimes obtained when varying these
parameters is given in Fig. 2.
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Figure 2: Cross-section of the flow showing the particle volume fraction together with the streamlines for various values
of inclination angles and restitution coefficients e. A variety of different flow regimes are observed:(i) Dilute flow regime
R− with a pair of longitudinal rolls R− leading to a downward motion in the dense part of the flow (i.e., in the center of the
cell); (ii) Dense flow regime R+ with a pair of longitudinal vortices leading to an upward motion in the denser part of the
flow; (iii) Supported flow regime CR− characterized by a dense core C and a pair of longitudinal roll R−; (iv) flow regime
S R with a single longitudinal vortex.

Preliminary comments can be already made. Increas-
ing the dissipation leads the flow to contract and thus to
make it denser. This contraction triggers a transition in the
flow regime: the dilute flow regime turns into a supported
flow which is characterized by a dense core floating over a
dilute and energetic gaseous phase. Additionally, the gran-
ular system exhibits secondary flows appearing as a pair of
counter-rotative longitudinal vortices. The emergence of
longitudinal vortices is a common feature of rapid flows
[1, 6, 7]. In the dilute flow regime the pair of vortices
(referred as R−) induces a net downwards motion in the
denser part of the flow (i.e., in center of the cell) and an
upward motion at the more dilute region of the flow (i.e.,
at the side-walls). The transition from dilute flow regime
to the supported flow regime is accompanied with a rein-
forcement of the secondary flows. When the restitution
coefficient is further decreased, we observe an other tran-
sition which modifies the rotation direction of the pair of
longitudinal vortices: The downward motion is localized
at the side-walls while the upward motion occurs at the
center of the cell (R+ flow regime in Fig. 2). This transi-
tion occurs via an intermediate state where one of the two

vortices disappears. The remaining vortex extends over
the whole width of the flow leading to a symmetry break-
ing (S R in Fig. 2).

3 General features of the flow vs
inelasticity

We first investigate how the mean flow velocity is altered
by the restitution coefficient. Unlike dense flows obtained
at shallow angles, our rapid flows show a high sensitiv-
ity to the restitution coefficient as illustrated in Fig. 3.
Surprisingly, the mean velocity increases with decreasing
restitution coefficient. This velocity increase is more and
more impressive as the angle of inclination increases. The
more the system is dissipative, the faster it goes.

We can anticipate here that this outcome results from
the contraction of the flow, which leads to a decrease of
the side wall friction. We plot in Fig. 4 the variation of
the flowing height h, defined as the height below which
one find 97% of the flowing material. The flow height is
clearly decreasing with decreasing restitution coefficient.
The increase of the mean flow velocity seems to be di-
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Figure 3: Mean flow velocity as a function of the restitu-
tion coefficient for various values of the inclination angle.
The hold-up is H = 5D.

0.5 0.6 0.7 0.8 0.9 1.0
e

20

40

h/
D

= 30
= 35
= 40
= 45
= 50

Figure 4: Flow height h as a function of the restitution
coefficient for various values of the inclination angle. The
hold-up is H = 5D.

rectly correlated to the flow contraction. The contraction
of the flow can be interpreted as a consequence of the well-
known clustering instability in granular gas [8, 9].

4 Concentration, velocity and temperature
profiles vs inelasticity

It is instructive now to look more carefully about the flow
structure and its change with decreasing restitution coeffi-
cient. We first present the vertical and transverse packing
fraction profiles for a given angle θ = 40◦ and hold-up
H = 5D (see Fig. 5). For small inelasticity, the flow at
θ = 40◦ is rather dilute and the packing fraction decreases
monotonically as we move to the free surface. For higher
inelasticity the flow undergoes a marked transition where
the volume fraction profile is inverted: it first increases and
then decreases at larger height. A dense core emerges in
the bulk flow with a high packing fraction which increases
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Figure 5: (a) Vertical packing fraction profiles for decreas-
ing restitution coefficient. (b) Corresponding transverse
packing fraction profiles. The inclination angle is θ = 40◦

and the hold-up is H = 5D.

with decreasing restitution coefficient fraction and is sur-
rounded by a dilute atmosphere at the base and at the side-
walls. This is the so-called "supported flow" which has
been discovered by Brodu et al. in rapid flows [2]. Upon
a further decrease of the restitution coefficient, we get an-
other transition characterized by a change of the vortex
pattern. The pair of vortices destabilizes and gives rise to
a single longitudinal vortex which breaks the symmetry, as
can be seen in the transverse packing fraction profile (cf.
Fig. 5b).

The influence of the inelasticity is also clearly seen on
the vertical velocity profiles (see Fig. 6). For weak inelas-
ticity (i.e., restitution coefficient close to 1), the velocity
increases smoothly with increasing height and the slip ve-
locity at the base is moderate. For increasing inelasticity,
the slip velocity is increasing drastically. The shape of the
velocity profile is also changed with a greater strain rate
at the base and almost flat profile within the dense core.
This is the classical feature of the supported regime with
a dense core flowing as plug and moderately sheared in its
interior.

The temperature profiles are also very informative with
regards to the role of inelasticity (see Fig. 7). For small in-
elasticity, the temperature is almost uniform through the
depth. This is not the case for larger inelasticity where
strong temperature gradients are present. In particular,
the base of the flow is very "hot" while the bulk flow is
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Figure 6: Vertical velocity profiles for decreasing restitu-
tion coefficient. The inclination angle is θ = 40◦ and the
hold-up is H = 5D.
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Figure 7: Vertical temperature profiles for decreasing
restitution coefficient. The inclination angle is θ = 40◦

and the hold-up is H = 5D.

very "cold". This contrast of temperature increases with
increasing inelasticity. The high temperature at the base is
explained by the large slip velocity.

5 Discussion and Conclusion

Our simulation results have shown that the inelasticity
plays an important role in the flow structure but also in the
mean flow velocity in the context of rapid flows confined
between frictional side walls. We found surprisingly that

inelastic flows runs faster than elastic ones. This counter-
intuitive feature results in fact from the competition of two
antagonist mechanisms. This first one already mentioned
earlier in the text is the effect of the flow contraction to-
gether with the creation of a dense core for increasing
inelasticity. We believe that this is a direct consequence
from the cluster instability in granular gas. The flow con-
traction reduces the area of friction with the side-wall and
contribute to an increase of the mean flow velocity. The
antagonist mechanism results from the increase of the ef-
fective side-wall friction coefficient when the flow veloc-
ity increases [4]. We showed indeed in a recent paper than
the effective wall friction is an increasing function of the
Froude number. Thus for a given inclination angle and par-
ticle hold-up, the effective friction increases with increas-
ing velocity. However, the increase of the effective friction
coefficient is moderate in comparison with the contraction
of the flow such that the latter prevails and is responsible
for the mean velocity increase for increasing inelasticity.

The mean flow velocity increases with decreasing e is
one of the salient features concerning the role of the in-
elasticity in the context of rapid granular flows. We also
mentioned the change of flow structure with increasing in-
elasticity, including the transition to the supported flow
regime and the appearance of various patterns of longitu-
dinal vortices. Further analysis are required to characterize
and understand these flow transitions.
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3 The effect of normal restitution coefficient e on confined
granular flows

3.1 Introduction

As shown in the preceding chapter, flow properties may depend on channel width. For
example, in the standard conditions used in chapter 3, there is no supported regime when
W = 20D, but there are supported regimes for W ≥ 40D. It is thus important to check that
the decreasing of the coefficient of restitution as the same effect of mobilization of the flow,
for larger values of W.

Here we study the properties of high-speed granular flows in a smooth channel of width
W = 40D, when varying the restitution coefficient. For the first time, we observe flows
which are still clearly accelerated until the end of the running time tmax/

√
D/g = 900.

We give the various temporal scenarios and the SFD regimes when they are achieved in a
phase diagram in space (e − θ) for a mass hold-up H = 5D. We then focus on the SFD flow
regimes. As usually, these flow regimes depend on the mass hold-up. We choose two values
of the mass hold-up to exemplify the effect of varying e: H = 5D and H = 12D. We study
how the mean velocity scaling law is modified by changing the restitution coefficient. Then
we investigate the role of e on the global friction at the boundaries and on the mean packing
fraction of the flow. At the end, we show the invariance of the rescaled effective frictional
height law when e varies.

3.2 Characterization of the flows at H = 5D

We use numerical simulations with discrete element model to study the effect of the resti-
tution coefficient e, while fixing the other mechanical parameters to their standard value:
µgg = 0.33, µgw = 0.593, egg

t = 0.25, egw
n = 0.8, egw

t = 0.35.

3.2.1 Phase diagram in space e − θ

In (Brodu et al., 2015) and the preceding chapters of this thesis, the restitution coefficient
was set to e = 0.972. All the flows reached a steady state whatever the inclination angle
15◦ ≤ θ ≤ 50◦, the mass hold-ups 4D ≤ H ≤ 22D and the channel width W = 40D, 68D,
within a running time t ≤ 600

√
D/g. To establish the phase diagram (e− θ) shown in figure

4.2, the channel width and mass hold-up are fixed to W = 40D and H = 5D respectively.
The restitution coefficients e varies from 0.49 to 1 over a range of inclinations 20◦ − 60◦. Our
system was run for tmax = 900 time units (i.e.,

√
D/g). For some values of the parameters,

the steady flows were not achieved within the usual 600 time units. As a matter of fact,
the flows remained accelerated even with a maximum running time equal to 900 time units.
We thus report, in our phase diagram, the various scenarios of evolution we observe in our
simulations. For each scenario, the temporal evolution of the mean flow velocity is shown
in Fig.(4.1(a)
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Figure 4.1: The mean velocity V as a function of time t for different values of the inclination angles θ. (a)
For e = 0.64, the curve θ = 23◦ - also shown in insert - presents the intermittent flow regime (♢), the curve
θ = 30◦ presents the scenario (D0) where the flow reaches a SFD flow regime (□), the curve θ = 42◦ presents
the scenario (D) where the acceleration monotonically decreases without converging within the maximum
running time tmax = 900

√
D/g ( ), the curve θ = 50◦ presents the scenario (DC) where the acceleration

decreases to reach a finite constant value ( ). (b) For e = 0.972, the curve θ = 60◦ presents the scenario (O)
where the mean velocity oscillates around a fixed value (△).

Scenario D0 (labeled by a square symbol □): SFD flow regime. The flow reaches a steady
state via a monotonic exponential saturation within 1%, in a time less than the maximum
running time tmax = 900/

√
D/g. The acceleration decreases to zero, reason why we name

this scenario D0.

Scenario DC (labeled by a circle symbol ): the flow acceleration uniformly decreases
down to a non-zero constant before the maximum running time tmax. It then keeps its con-
stant and finite value.

Scenario D (labeled by a pentagon symbol ): as for scenario DC, the flows acceleration
monotonically decreases with time, but it is still decreasing at the end of the simulation. This
scenario is expected to turn into a ”D0” or ”DC” scenario, after a running time longer than
900/

√
D/g.

Scenario O (labeled by a triangle symbol △): the acceleration first decreases and then
oscillates around zero. This scenario thus leads to a periodic oscillation of the mean flow
velocity around a fixed value. We already met this scenario called oscillating flows in the
preceding chapter.

A last scenario (labeled by a lozenge symbols ♢) leads to an intermittent regime where
the mean velocity fluctuates a lot. This concerns flows close to the jamming transition. These
flows have been called intermittent flow regime Brodu et al. (2015); Zhu et al. (2020).

In some cases, for the scenario DC, at the end of the simulation, the mean velocity reaches
very high values. It then drops rapidly (case labeled by ⊖ in figure4.2). It is difficult to know
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if this behavior is physical since, for such high values of the velocity, physical mechanisms
which are not encoded in the numerical simulation, as air friction or mechanical rupture of
the grains, would intervene. We didn’t study this case in details.
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Figure 4.2: Phase diagram in parameter space e− θ for H = 5D and W = 40D, running time t = 900
√

D/g. (♢)
intermittent regime; (□) SFD flows with ”D0” scenarios (■: unidirectional U, ■: dense rolls R−, ■: supported
flows CR−); ( ) ”DC” scenarios ((⊖) in case of final drop); ( ) ”D” scenarios and (△) ”O” scenarios.

The phase diagram (figure4.2) presents interesting features. First we see that the interval
of angle within which SFD flows exist reduces when the restitution coefficient e decreases:
intermittent flows replace SFD flows at small angles ; oscillating flows, and then accelerating
flows replace SFD flows at large angles. For small values of e, the SFD domain probably
disappears. Small values of e induce a collapse producing nearly jammed flows at small
inclination angles. On the contrary, when inclination is larger, in supported regime, the
collapse induces a large dense core reaching high velocities and thus accelerating during a
very long time.

In the SFD regime, three different flow patterns - already described in previous chapters
- exist:
i) the unidirectional regime (U), with a dense and layered flow;
ii) the roll regime (R−) with a pair of longitudinal vortices leading to an downward motion
in the denser part of the flow;
iii) the ”supported” regime (CR−) where the dense core floats on the dilute basal layer.

Besides the reduction of the SFD domain, we don’t see much effect on the transition
between the different SFD regimes when e varies: the angle θc at which the transition to
supported regime occurs does not seem to change.

3.2.2 Cross-section of the flows

In the rest of this article, we will focus on the SFD flow regime. To get some insight into
what happens to the structure of the SFD flows when the restitution coefficient e decreases,
we observe the packing fraction maps. Figure 4.3 presents the cross-section of the flows,
showing the particle volume fraction together with the streamlines for various values of
inclination angles and restitution coefficients e with H = 5D. We notice that the variation
of the restitution coefficient has a relatively small effect at θ = 25◦ (dense flows R−) but it
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has an obvious influence at larger angles (supported flows CR−) where large parts of the
flow are diluted. We can think that the effect of the restitution coefficient can be related
to a variation of the flow concentration: as the restitution coefficient decreases, the flow
height decreases, the dense core is larger, and it becomes bigger and bigger. This leads to an
increase of the mean packing fraction. Similar results were found in McNamara and Young
(1994), where the clusters size and density increase with decreasing restitution coefficient for
a 2-D, zero-gravity, system. So the effect of the restitution coefficient on the flow manifests
itself in changing the flow concentration. For dense flows, concentration cannot increase
much, thus the influence of the restitution coefficient is small. This is in agreement with
the results of Silbert et al. (2001): the restitution coefficient has no obvious effect for dense
unconfined inclined flows.
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Figure 4.3: Cross-section of the SFD flows showing 2D maps of the packing fraction together with the stream-
lines for different values of inclination angles and restitution coefficients with H = 5D. Two different flow
regimes are observed: (i) Dense flow regime R− with a pair of longitudinal rolls leading to a downward mo-
tion in the denser part of the flow (i.e., in the center of the cell); (ii) Supported flow regime CR− (not labeled
on the maps) characterized by a dense core and a pair of longitudinal rolls.
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3.2.3 Variation of effective flow height

As shown on figure 4.4(a), the effective height of the flow h∗ - defined as the height below
which one find 97% of the flowing material - systematically increases with increasing e at a
given θ, and with increasing θ at a given e. For the dense flow regime, in agreement with
our preceding observations, h∗ weakly increases with inclination. But for the supported
flow regime, it varies linearly at a high constant rate, independent of the value of e. In this
regime, the relationship between the effective flow height and the restitution coefficient can
thus be made explicit: h∗ = A tan θ − (a1 + a2(1 − e2)), where the A = 116 ± 2, a1 = 45,
a2 = 30.8 (see Fig.4.4(b)). The fit coefficients can depend on H and W.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
tan( )

10
20
30
40
50
60
70

h*/D

e=1
e=0.94
e=0.88

e=0.82
e=0.76

25 30 35 40 45
( )

(a)

0.0 0.1 0.2 0.3 0.4 0.5
1 e2

45

50

55

60

B

(b)

Figure 4.4: (a) Effective height h∗ as a function of tan θ for various restitution coefficients e, H = 5D. The solid
line corresponds to: h∗ = A tan θ − B, where A = 116 and B is a function of e. (b) Coefficient B as a function of
1 − e2, the solid line is B = a1 + a2(1 − e2) with a1 = 45, a2 = 30.8.

3.3 Mean velocity scaling law

3.3.1 Effect of restitution coefficient on mean flow velocity at H = 5D

We study here, for H = 5D and W = 40D, the effect of the restitution coefficient on the
mean velocity of SFD flows. In figure 4.5 we can see how varies the mean steady velocity
VL when we vary the restitution coefficient e between 0.49 and 1, for various inclination
angles θ ∈ [25◦, 48◦]. The steady velocity VL clearly increases as the coefficient of restitution
e decreases, for all the inclinations. This velocity increase is more and more pronounced
as the angle of inclination increases. The same tendency has been seen with channel width
W = 20D (figure 3, section 2 of the present chapter).
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Figure 4.5: The mean stationary velocity VL as a function of the coefficient of restitution e for θ ∈
{25◦, 28◦, 30◦, 35◦, 38◦, 40◦, 45◦, 48◦} and H = 5D.

As we can see in figure 4.5, for small inclinations θ ≤ 35◦, when the coefficient of restitu-
tion decreases, the mean velocity first increases linearly and and then undergoes inflection
and tends to saturate (see Fig. 4.5). This behavior is similar to the one observed at W = 20D
in figure 3, section 2 of the present chapter.

For larger inclinations θ > 35◦, when the coefficient of restitution decreases, the mean
velocity increases more rapidly without inflexion, and the greater the angle, the faster the
speed increases. For these inclinations, the (DO) scenario is rapidly replaced by (D) or
(O) scenarios while the velocity increase produced by the contraction of the flow becomes
important.

3.3.2 Cross-sections of the flow at H = 12D

All the results we have shown up to now are obtained with H = 5D. To determine how
the velocity scaling law is changed when e varies, we have to characterize flows with dif-
ferent mass hold-up, we performed numerical simulations for flows with H = nD, n ∈
{4, 5, 7, 12, 13, 15}. Varying e, H and θ give birth to a huge number of results that are diffi-
cult to fully report. We will just see here what is the effect of the variation of the restitution
coefficient on flows when H = 12D and then try to use the approach developed in chapter
3 for the velocity scaling law.

The figure 4.6 presents the cross-section maps of the packing fraction together with the
streamlines for various values of inclination angles and restitution coefficients e with H =
12D. Similarly to the figure4.3 it shows that the effective flow height h∗ decreases with
decreasing e, but it also reveals the emergence of new flow regimes. The effect of the decrease
of e depends on the angle of inclination.

When θ = 30◦ as the flow height decreases, when the diluted part nearly disappears, the
rotation direction of the rolls reverses. The regime change from (R−) to (R+). To realize this
change, it passes through (at least) another roll regime: R±

−, with three pairs of longitudinal
rolls with alternate directions of rotation (the upper and the lower are of (R−) type, the
intermediate is of (R+) type).

When θ = 35◦, the flow regime which is initially supported (CR−) first becomes ”one
roll” (1R) - a dense regime with a main large roll and some very small rolls - and finally
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reaches a dense regime with two pairs of rolls: (R+
−), with alternate directions of rotation.

The upper pair with an upward motion in the dense middle ((R+) type), the lower with an
downward motion in the middle ((R−) type).

For θ = 40◦, the dense core of the supported regime becomes larger and more symmetric
when e decreases. The flow regime then evolve from CR− to R+

−.

For θ = 50◦, the dense core of the supported regime also becomes larger, but the asym-
metry of the flow does not disappear. The flow regime evolve from the classical supported
regime (CR−) to a supported regime (C1R) which consists in a dense core driven by a large
roll and some very small rolls. The C1R regime seems to have a rather complex time evolu-
tion with decreases of the main roll which is replaced by a growing secondary roll rotating
in the opposite direction. The direction of rotation of the main roll is thus switching over
time. We did not study it in details.
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Figure 4.6: Cross-section of the SFD flows showing the particle volume fraction together with the streamlines
for various values of inclination angle and restitution coefficient, with H = 12D. Various flow regimes are
observed: (i) Dilute flow regime R− ; (ii) Dense flow regime R+ ; (iii) Three pairs of rolls R±

−; (iv) Dense flow
regime with two pairs of rolls R+

−; (v) Supported flow regime CR− characterized by a dense core C and a pair
of rolls R−; (vi) Dense regime with a main large roll and some very small rolls 1R; (vii) Dense core with a main
large roll and some very small rolls C1R.
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3.3.3 Mean velocity scaling law

Let us recall that, in chapter 3, we established a mean velocity scaling law for the SFD sup-
ported flows appearing for inclinations larger than a critical angle θc. The mean velocity for
θ > θc follows a scaling law : (VL − Vc

L) = KLHαL(sin θ − sin θc), with Vc
L = VL(θc), and a

scaling exponent αL = 0.3 ± 0.05. This was obtained for the standard values of the parame-
ters and thus for e = 0.972.
If we want to generalize this approach to other values of e we have first to determine θc for
these values of e. As we already observed (see Fig. 4.2) for H = 5D, the angle θc does not
change with e. It is thus the same than in chapter 3 : θ ≈ 26.5◦, for all e. If we assume that
there is a scaling of the same form, whatever e, we can then try to adjust the value of the
exponent αL for different values of e. To make this fit we use the mean velocities obtained
for H = nD, n ∈ {4, 5, 7, 12, 13, 15} and θ > θc.
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Figure 4.7: (a): renormalized mean velocity V∗
L as a function of sin θ − sin θc for H = 5D (+) and H = 12D (◦).

The insert shows that αL is a linear function of 1− e2, the solid line is the affine fit: αL = 0.39− 0.86(1− e2). (b):
renormalized basal velocity V∗

b as a function of (sin θ − sin θc) for H = 5D (+) and H = 12D (◦). The insert
shows αb as a function of 1 − e2, the solid line is the affine fit: αb = 0.11 − 1.33(1 − e2). (c): K(e)− K(e = 1)
as a function of (1 − e2) in log-scale for various inclinations, blue: KL , red: Kb. The solid line is K(e)− K(e =
1) = A(1 − e2)1.3 where AL ≈ 600, Ab ≈ 1100 and KL(e = 1) ≈ 65, Kb(1) ≈ 77.

Figure 4.7(a) reports the renormalized mean velocity V∗
L = (VL −Vc

L)/HαL versus (sin θ −
sin θc) for H = 5D and H = 12D and for various restitution coefficients e. The insert of
Figure 4.7(a) shows that the exponent αL seems to be a linear function of (1 − e2). The
exponent αL increases with e. Figure 4.7(a) confirms the linear behavior of V∗

L as a function
of (sin θ − sin θc), but the quality of the linear approximation is lower when e decreases. A
linear fit give us KL(e), figure 4.7(c) shows KL(e)− KL(e = 1) as a function of (1− e2) in log-
scale for various inclinations. The blue solid line shows the least-squares fit with the fitting
formula: KL(e)− KL(e = 1) = AL(1 − e2)kL with a exponent kL = 1.3, a constant AL ≈ 600
and KL(e = 1) ≈ 65.

We can also check the basal velocity Vb obeys a similar law, as predicted in chapter 3.
The figure 4.7(b) shows the rescaled velocity V∗

b = (Vb − Vc
b )/Hαb , with Vc

b = Vb(θc), as
a function of (sin θ − sin θc) for H = 5D (+) and H = 12D (◦). The insert shows that αb
is a linear function of (1 − e2) with an affine fit: αb = 0.11 − 1.33(1 − e2). We can see that
αb < αL. The slope Kb vary in the same way as KL: Kb(e)− Kb(e = 1) = Ab(1 − e2)kb with
the same exponent kb = 1.3, but the constant is different Ab ≈ 1100 and Kb(e = 1) ≈ 77 (Fig.
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4.7(c)). We see that Kb is larger than KL whatever e.
We can notice that both exponents αL and αb take negative values when e decreases.

There is thus an inversion of the behavior of the velocity when H increases: for e ≈ 1 the
velocity increases (weakly) with H, when e is small enough the velocity decreases with H.
This behavior is increasingly distant from Bagnold type behavior when e decreases.

3.4 Boundary friction and packing fraction laws

3.4.1 Effective coefficient of friction

If we plot the global effective basal friction coefficient (see Figure4.8(a)) and side-wall fric-
tion coefficient (see Figure4.8(b)) as functions of the global boundary Froude number for all
the SFD flow regimes investigated, with different restitution coefficients e, inclinations θ and
mass hold-ups H = 5D, 12D, we get a nice collapse of all the data onto a unique curve. The
solid line in Figure4.8 (a,b) presents the usual fit: µ(Fr) = µ2 + (µ1 − µ2)(exp

(
−Fr/Frµ0

)
)

with the same values of parameters than in chapter 3: µ1 = 0.292, µ2 = µgw = 0.593,
Frµ0 = 12.2. We can thus confirm the robustness of the µ(Fr) boundary friction law.
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Figure 4.8: Global effective coefficient of friction at the bottom (a) and at the walls (b) as a function of the
global boundary Froude number: Frb,w = Vb,w/

√
gH cos θ, where Vb,w is the sliding velocity at the boundary,

for various coefficients of restitution e = [0.73, .., 1], mass holdup H ∈ {5D, 12D} and inclination angle in
the range 25◦ to 50◦ . The solid lines in (a) and (b) present µ(Fr) = µ2 + (µ1 − µ2)(exp

(
−Fr/Frµ0

)
) here

µ1 = 0.292, µ2 = µgw = 0.593, Frµ0 = 12.2.

3.4.2 Mean packing fraction

In chapter 3 we saw that the mean packing fraction of the flow ϕ̄∗, calculated over the 97%
of the flowing material, also takes a simple functional form which depends on the global
basal Froude number Frb.

If we compute ϕ̄∗ as a function of Frb using our set of data for H = 5D (see Fig.4.9(a)).
We found that ϕ̄∗ can always described as ϕ̄∗ = ϕ2 + (ϕ1 − ϕ2)(exp

(
−Frb/Frϕ0

)
), where

ϕ1 = 0.65 whatever e, but ϕ2 and Frϕ0 depend noticeably on e (see Fig.4.9(b)). We already
noticed that the variation of e induces an important variation of the concentration and height
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of the flows. It is thus not astonishing to see that the packing fraction law parameters are
dependent of e. Both parameters ϕ2 and Frϕ0 increase when e decreases, this corresponds
to the contraction of the flow. When e is smaller, the packing fraction limit at large Froude
number ϕ2 is higher and Frϕ0 is also larger, the packing fraction decreases more slowly when
the Froude number increases. Nevertheless the form taken by the law seems robust, only
the values of the parameters change.
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Figure 4.9: (a) ϕ̄∗ as a function of Frb = Vb/
√

gH cos θ for H = 5D, various restitution coefficients e, θ in the
range 25◦ to 50◦ (a) the solid least-squares fit line is ϕ̄∗ = ϕ2 + (ϕ1 − ϕ2)(exp

(
−Frb/Frϕ0

)
) with ϕ1 = 0.65. (b)

Presents the variations of Frϕ0 with (1 − e2), with a continuous fit line: Frϕ0 = 6.26 + 19.3(1 − e2), ϕ2 is shown
in insert.

3.5 Effective frictional flow height Z

As showed in chapter 3, the rescaled effective frictional flow height Z/H obeys a simple law
with the mean packing fraction ϕ̄∗. This law is independent of θ, of W, and of H. In this
paragraph, we will see this relationship also does not depend on the mechanical parameters
e. The figure 4.10 shows Z/H as a function of ϕ̄∗ for various restitution coefficients e. It
demonstrates that the law of effective frictional flow height is invariant when we change the
restitution coefficient e.



4 Conclusion and perspectives 87

0.0 0.1 0.2 0.3 0.4 0.5
*

0

2

4

6

8

Z/
H

e = 1
e = 0.972
e = 0.94
e = 0.91
e = 0.88

e = 0.85
e = 0.82
e = 0.79
e = 0.76
e = 0.73

(a)

Figure 4.10: The rescaled effective frictional flow height Z/H as a function of mean packing faction ϕ̄∗ for
various inclinations in the range 25◦ to 50◦ and mass hold-ups H ∈ {5D, 12D}. Z is calculated by tan(θ) =
µb + µw

Z
W . The fit curves is: Z/H = (1 + (ϕ̄∗ − 0.57))/ϕ̄∗.

4 Conclusion and perspectives

In this chapter, we focused on the role of the dissipation on confined granular flows. We
highlighted that the mean velocity increases with decreasing e, a result that is somewhat
counter-intuitive but that can be explained by the contraction of the flow induced by clus-
tering. When e was small enough we observed the emergence of new scenarios of evolution
of the system (D and DC). We also uncovered new SFD flow regimes, like the ”single roll”
1R, the ”two pairs rolls” R+

−, a ”three pairs rolls” R±
− and a regime with a dense core and a

single roll C1R. We gave the mean and sliding velocities scaling laws for various e and we
extended the boundary friction law µ(Fr), thus showing its robustness. We tested the mean
packing fraction law ϕ̄∗(Fr) for various e, this relation is invariant in its form, but the values
of the parameters change with e. We checked and confirmed the universality of the rescaled
effective frictional flow height law Z/H vs ϕ̄∗.

Altogether we have seen that the restitution coefficient has a noticeable and very inter-
esting effect on confined flows in smooth channels. It is now very tempting to look at the
effect of other mechanical parameters: the friction coefficients µgw and µgg.
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Chapter 5

The effect of mechanical parameters e,
µgw, µgg on granular flows

1 Introduction

This chapter deals with the effect of mechanical parameters e, µgw and µgg on confined gran-
ular flows.

We saw in the previous chapter that the restitution coefficient for particle-particle col-
lision plays an important role in the flow structure. For rapid and heterogeneous flows,
a change of the restitution coefficient may radically modify the structure of the flow. We
showed also that the mean flow velocity surprisingly increases with decreasing restitution
coefficient.

In this chapter, we supplement the research on the effect of restitution coefficient e be-
tween particles and investigate in addition the role of the friction coefficient µgw between
wall and particle and of the friction coefficient µgg between particles. We consider flows
confined between two lateral walls with a gap width W = 40D.

We first analyse how the mechanical parameters affect the different flow regimes and
modify the mean flow velocity. We then investigate how the friction and packing fraction
laws at the walls (i.e., µb,w(Frb) and ϕb,w(Frw) are affected by a change of the mechanical
parameters.

2 Phase diagram in the parameter space e − θ, µgw − θ,µgg − θ

In chapter 2 and 3, the values of e, µgw and µgg were kept constant and set to: e = 0.972,
µgw = 0.593 and µgg = 0.33. These values were referred to as standard values. Here, we
present the different flow regimes we obtained when we vary one mechanical parameter
while the two other are kept constant and set to the standard values.

2.1 Parameter space e − θ

We already have seen in chapter 4 the phase diagram in the parameter space (e − θ) for
H = 5D, W = 40D and all the mechanical parameters except e set to the standard values.
We recall it in Fig 5.1.
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Figure 5.1: (a) Phase diagram in the parameter space (e − θ) for H = 5D and W = 40D. Mechanical param-
eters: µgw = 0.593 and µgg = 0.33. (□) SFD flows with ”D0” scenarios (gray: U, green: R−, blue: CR−; ( )
”DC” scenarios; (⃝) ”D” scenarios and (△) ”O” scenarios. (b) Cross-section of the SFD flows showing the
2D map of the packing fraction together with the streamlines. Only the regimes different from the supported
regime are labeled. We recall that the R− regime corresponds to a flow with a pair of two longitudinal vertices
with a downward motion in the denser part of the flow.

To prevent the reader from having to go back to the previous chapter we recall the dif-
ferent temporal scenarios observed in our simulations:
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- the D0 scenario (□) leads to a stationary flow after a monotonic exponential saturation
within a finite time smaller than the maximum running time tmax = 900/

√
D/g.

-the DC scenario (⃝) leads to a flow with a constant and finite acceleration after a finite
transient where the flow acceleration uniformly decreases down to a constant value before
the maximum running time tmax.
-the D scenario ( ) is characterized by a finite acceleration which is still decreasing at the
end of the simulation.
-the O scenario (△) leads to an oscillating state characterized by a periodic oscillation of the
mean flow velocity.
-a last scenario (⋄) leads flows close to the jamming transition to an intermittent regime
where the mean velocity fluctuates a lot.

As already mentioned, when the dissipation increases, the region with steady states (□)
shrinks. We observe in particular that the transition from supported flows (blue square) to
oscillating flows (empty triangle) occurs at smaller angle when e decreases. This is a quite
surprising effect but it is related to the fact that the main effect of increasing dissipation is to
make the core of the supported flows denser and to make it go faster as discussed in details
in chapter 4.

2.2 Parameter space µgw − θ

We present in Fig 5.2 the phase diagram in the parameter space (µgw − θ) for H = 5D and
W = 40D. The mechanical parameters except µgw are set to the standard values. We vary
the particle-wall friction µgw from 0.2 to 1.5. We note that there is a drastic reduction of the
region with SFD flows when µgw gets smaller than 0.5. In particular for µgw = 0.4, SFD
flows are obtained only for angles smaller than 25◦. This means that the wall friction plays
a major role in the existence of steady flows at large inclination angles.

It is important to realize here that the particle-particle dissipation and the wall-particle
friction have opposite effects. While increasing particle-particle dissipation leads to faster
and faster flows, increasing wall friction reduces the flow velocity and allows SFD flows at
larger and larger angle.

2.3 Parameter space µgg − θ

In Fig 5.3, we present the phase diagram in the parameter space (µgg − θ) for H = 5D
and W = 40D. µgg varies from 0.1 to 1 while the other mechanical parameters are set to the
standard values. The particle-particle friction µgg does not have a major effect on the domain
of existence of stationary flows. However, a new flow regime is observed when µgg is set to
0.1. This regime shares many features with the supported flow regime. It has a dense core
surrounded by a dilute atmosphere but the latter is not longer suspended but lies directly
on the basal wall. We name it WCR− flow.
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Figure 5.2: (a) Phase diagram in the parameter space (µgw − θ) for H = 5D and W = 40D. Mechanical
parameters: e = 0.972 and µgg = 0.33. (□) SFD flows with ”D0” scenarios (gray: U, green: R−, blue: CR−;
( ) ”DC” scenarios; (⃝) ”D” scenarios and (△) ”O” scenarios. (b) Cross-section of the SFD flows showing the
2D map of the packing fraction together with the streamlines. Only the regimes different from the supported
regime are labeled.
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Figure 5.3: (a) Phase diagram in the parameter space (µgg − θ) for H = 5D and W = 40D. Mechanical
parameters: e = 0.972 and µgw = 0.593. (□) SFD flows with ”D0” scenarios (gray: U, green: R−, blue: CR−,
yellow : WCR−); (△) ”O” scenarios. (b) Cross-section of the SFD flows showing the 2D map of the packing
fraction together with the streamlines. Only the regimes different from the supported regime are labeled. A
new regime (WCR−) is observed: it has similar features as a supported flow but the dense core is not longer
suspended but lies on the bottom.
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3 Kinematic and structural properties of the flow

3.1 Mean flow velocity vs mechanical parameters

We analyse here the effect of the mechanical parameters e, µgw and µgg on the mean flow
velocity. As previously, only one parameter is varied while the two other are kept fixed and
are set up to the standard values. We focus here on steady flows and their mean stationary
velocity VL.

In Fig. 5.4, we can see the evolution of the mean flow velocity when we vary indepen-
dently e, µgw and µgg. e and µgw have significant effect on the mean flow velocity. Decreas-
ing e and µgg always lead to faster and faster flows. However, the mechanism leading to
this velocity increase is different. As discussed in the previous chapter, the particle-particle
collision dissipation favours the contraction of the flow resulting in a diminution of the con-
tribution of the side-wall friction in the force balance which accelerates the flow. Concerning
the effect of the wall-friction, it is a direct reduction of the microscopic wall friction which
leads to faster flows.
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Figure 5.4: (a) Mean flow velocity VL as a function of e for different inclinations; (b) VL as a function of µgw for
different inclinations; (c) VL as a function of µgg for different inclinations. Only one mechanical parameters is
varied while the other are set to the standard values (e = 0.972, µgg = 0.33, and µgw = 0.593). H = 5D and
W = 40D.

The effect of µgg on the mean flow velocity seems to be more subtle. We identify two
different evolution according to the inclination. Below 40◦, the velocity decreases with in-
creasing friction. However, above 40◦, we observe a reverse trend: the velocity surprisingly
increases with increasing friction. The mechanism here is possibly the same as that observed
for e. The internal particle friction participates to the internal dissipation and can act in the
way as e. The mechanism is probably more efficient at large inclination angles where we
observe supported flows but the reason for a transition between the two contrasting be-
haviours is not completely understood.

In Fig. 5.5, we present the same data in Fig 5.4 but plotted as a function of the inclination.
In almost all the cases (except for µgg = 0.1), for prescribed mechanical parameters, the flow
velocity always increases with increasing inclination. When e or µgw is decreased, the mean
flow velocity systematically increases. This is not the case when µgg is varied as previously
mentioned. There is a focus point where all the curves cross at angle θ = 40◦. This focus
point delineates two contrasting behaviours: below it, velocity decreases with increasing
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friction while above it, the reverse trend is seen. We will see later on how the focus point
varies when e and µgw are different from the standard values.
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Figure 5.5: Mean flow velocity VL as a function of sin θ for various values of e (a), of µgw (b) and µgg (c).
H = 5D and W = 40D.

3.2 Packing fraction, velocity and temperature profiles vs e

In this section, we will scrutinize the effect of e on the packing fraction, velocity and temper-
ature profiles.
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Figure 5.6: Vertical (a and b) and transverse (c and d) profiles for the packing fraction for various e. (a) and
(c) θ = 25◦ and H = 5D (roll regime); (b) and (d) θ = 30◦ and H = 5D (supported regime). Mechanical
parameters µgg = 0.33, and µgw = 0.593.

The friction coefficients µgw and µgg are kept constant and set to the standard values
(µgg = 0.33, µgw = 0.593).

Volume fraction profiles

Figure 5.6 shows the vertical and transverse profiles of the packing fraction for various e and
two inclination angles: θ = 25 and 30◦. At θ = 25◦, we have a roll flow (R−) and at θ = 30◦

a supported flow (CR−). When the restitution coefficient decreases, the flow contracts and
densifies. Unlike the volume fraction that remains constant at the boundaries, the volume
fraction far from the border increases with decreasing e.
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Figure 5.7: (a) Vertical and (c) transverse profiles of the stream-wise flow velocity V′ = V − Vb,w for various e
and two angles θ = 25◦ (dashed lines) and θ = 30◦ (solid lines). (b) and (d) corresponding slip velocity Vb and
Vw. H = 5D and W = 40D. Mechanical parameters µgg = 0.33, and µgw = 0.593.

Velocity profiles

Figure 5.7 shows the vertical and transverse profiles of the stream-wise velocity V′ = V −
Vb,w for the same flows as those displayed in the previous figure. We recall that the basal
and lateral velocity (Vb and Vw) are calculated at a distance d = 0.5D ± 0.5 from the walls.
We can see that the velocity increase with decreasing e is essentially due to an augmentation
of the slip velocity at the wall. The form of the vertical and transverse profiles is almost
unchanged once the slip velocity is withdrawn. We can see a slight evolution but which
remains small in comparison with the change of the sliding velocity.

Granular temperature profiles

Figure 5.8 displays the vertical and transverse profiles of the granular temperature corre-
sponding to the flows shown in Figs 5.6 and 5.7. These profiles reveal that the granular
temperature within the bulk flow decreases with increasing dissipation. The decrease is
more pronounced in the supported regime (at θ = 30◦) than in the roll regime (at θ = 25◦).
At the walls, the trend is reversed. The temperature increases with increasing dissipation.
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Figure 5.8: Vertical (a and b) and transverse (c and d) profiles of the granular temperature for various e. (a)
and (c) θ = 25◦ and H = 5D (roll regime); (b) and (d) θ = 30◦ and H = 5D (supported regime). Mechanical
parameters µgg = 0.33, and µgw = 0.593.

3.3 Packing fraction, velocity and temperature profiles vs µgw

We now look at the influence of the wall friction on the flow structure.



3 Kinematic and structural properties of the flow 99

0.0 0.2 0.4
Width-averaged packing fraction

0

5

10

15

20

25

30

He
ig

ht
 z

/D

gw=0.51
gw=0.593
gw=0.69
gw=1

(a)

0 10 20 30 40
Transverse direction y/D

0.0

0.1

0.2

0.3

0.4

0.5

De
pt

h-
av

er
ag

ed
 p

ac
ki

ng
 fr

ac
tio

n

(b)

Figure 5.9: Vertical (a) and transverse (b) profiles of the packing fraction for various µgw at two different
inclinations: θ = 25◦ and H = 5D (dashed lines, R− flow), and θ = 45◦ and H = 5D (solid lines, CR−).
W = 40D. Mechanical parameters: µgg = 0.33 and e = 0.972.

0 5 10 15 20
Width-averaged velocity V ′/ gD

0

5

10

15

20

25

30

He
ig

ht
 z/

D 

gw=0.51
gw=0.593
gw=0.69
gw=1

(a)

0.4 0.6 0.8 1.0
gw

0

20

40

60

80

100

Vb

gD

= 20
= 25
= 30
= 35
= 40
= 45
= 50

(b)

0 10 20 30 40
Transverse direction y/D

0.0

2.5

5.0

7.5

10.0

12.5

15.0

D
ep

th
-a

ve
ra

ge
d 

ve
lo

ci
ty

 V
′ /

gD

gw=0.51
gw=0.593

gw=0.69
gw=1

(c)

0.4 0.6 0.8 1.0
gw

0

20

40

60

80

100

120

Vw

gD

= 20
= 25
= 30
= 35
= 40
= 45
= 50

(d)

Figure 5.10: (a) Vertical and (c) transverse profiles of the stream-wise flow velocity V′ = V − Vb,w for various
µgw and two angles θ = 25◦ (dashed lines) and θ = 45◦ (solid lines). (b) and (d) corresponding slip velocity Vb
and Vw. H = 5D and W = 40D. Mechanical parameters: µgg = 0.33 and e = 0.972.

Volume fraction profiles

Figure 5.9 presents the vertical and transverse profiles of the packing fraction for various
µgw and two inclination angles (θ = 25 and 45◦). At θ = 25◦, we have a roll flow (R−) and at
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θ = 45◦) a supported flow (CR−). The packing fraction is weakly dependent of µgw both at
θ = 25◦ (dashed lines) and at θ = 45◦ (solid lines).

Velocity profiles

Figure 5.10 presents the vertical and transverse profiles of the stream-wise velocity V′ =
V − Vb,w for the same flows as those displayed in the previous figure. When we subtract the
sliding velocity to the profiles, they are almost invariant with µgw. The major effect of the
wall friction is to alter the sliding velocity which increases with decreasing µgw.

Granular temperature profiles

Figure 5.11 displays the vertical and transverse profiles of the granular temperature cor-
responding to the flows shown in Figs 5.9 and 5.10. The granular temperature generally
decreases with increasing wall friction. This decrease is clearly visible at θ = 45◦. It ex-
ists also at θ = 25◦ but it is not visible on the graph because the temperature scale is not
appropriate. We can note also that the decrease is more pronounced at the walls.
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Figure 5.11: Vertical (a) and transverse (b) profiles of the granular temperature for various µgw and two in-
clinations angles: θ = 25◦ and H = 5D (dashed lines, roll regime), and θ = 45◦ and H = 5D (solid lines,
supported regime). W = 40D. Mechanical parameters: µgg = 0.33 and e = 0.972.

3.4 Packing fraction, velocity and temperature profiles vs µgg

We finally discuss on the influence of the particle friction on the flow structure.

Volume fraction profiles

Figure 5.12 presents the vertical and transverse profiles of the packing fraction for various
µgg and two inclination angles (θ = 25 and 45◦).
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Figure 5.12: Vertical (a) and transverse (b) profiles of the packing fraction for various µgg at two different
inclinations: θ = 25◦ and H = 5D (dashed lines), and θ = 45◦ and H = 5D (solid lines, CR−). W = 40D.
Mechanical parameters: µgw = 0.593 and e = 0.972.
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Figure 5.13: (a) Vertical and (c) transverse profiles of the stream-wise flow velocity V′ = V − Vb,w for various
µgg and two angles θ = 25◦ (dashed lines) and θ = 45◦ (solid lines). (b) and (d) corresponding slip velocity Vb
and Vw. H = 5D and W = 40D. Mechanical parameters: µgw = 0.593 and e = 0.972.

At θ = 45◦, we have supported flows, while at θ = 25◦ we have roll flows except at very
low friction where we enter a WCR− flow, a supported-like flow with a dense core lying on
the bottom like a non-wetting drop.
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At θ = 25◦, the packing fraction increases with increasing µgg. The situation is different
at higher angles where supported flows exist. The packing fraction profiles are almost un-
changed when the friction is decreased. However, for a very small friction (i.e., µgg = 0.1)
we observe a significant change which however does not alter the nature of the flow regime.
The low friction case seems to be singular and will be discussed in more details later on.

Velocity profiles

Figure 5.13 displays the vertical and transverse profiles of the stream-wise velocity V′ =
V − Vb,w for the same flows as those displayed in the previous figure. When we subtract the
sliding velocity to the profiles, the latter remains almost unchanged as long as the particle
friction is not too weak. For µgg = 0.1, we observe a significant change of the profiles both
at θ = 25◦ and 45◦. As previously mentioned, the evolution of the sliding velocity with
µgg is not monotonic. The sliding velocity decreases with increasing friction for inclinations
smaller than 40◦ but a reversed trend is observed at high angle. At the moment, we do not
have a clear explanation for this cross-over.
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Figure 5.14: Vertical (a and b) and transverse (c and d) profiles of the granular temperature for various e. (a)
and (c): θ = 25◦ and H = 5D ; (b) and (d): θ = 45◦ and H = 5D (supported regime). W = 40D. Mechanical
parameters e = 0.972, and µgw = 0.593.

Granular temperature profiles

Figure 5.14 presents the vertical and transverse profiles of the granular temperature corre-
sponding to the flows shown in Figs 5.12 and 5.13. The granular temperature is expected
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to increase with decreasing particle friction. At θ = 25◦, the temperature increases with
decreasing µgg. This increase is moderate as long as the particle friction is greater or equal
to 0.33. In contrast, as the particle friction is decreased to 0.1, we see a significant increase
of the granular temperature. At θ = 45◦, there is almost no variation as long as the particle
friction is greater or equal to 0.33. When µgg = 0.1, the temperature increase is localized in
the upper zone, where the packing fraction decreases with z. Surprisingly, the temperature
clearly decreases in the lower dense part, where the packing fraction is uniform and at its
maximum.

Low particle friction case µgg = 0.1

In the previous discussion, we observed that the law friction case (µgg = 0.1) leads drastic
changes in the flow structure and the emergence of a new regime WCR− with a dense core
wetting the bottom wall. Here we will study how the flow structure changes for increasing
angle when the particle friction is set to 0.1.
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Figure 5.15: Vertical (a and c) and transverse (b and d) profiles of the packing fraction and stream-wise velocity
for increasing inclination angles. H = 5D and W = 40D. Mechanical parameters: µgg = 0.1, e = 0.972, and
µgw = 0.593.

Figure 5.15 presents vertical and transverse profiles of the packing fraction and stream-
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wise velocity for increasing inclination angles with µgg = 0.1. Generally, the velocity always
increases monotonically with increasing angle. Here, this is not the case. First, the velocity
increases from 25◦ to 30◦, decreases from 30◦ to 35◦ and then monotonically increases for
angles greater than 40◦. The velocity decrease from 30◦ to 35◦ coincides with the detachment
of the dense core from the bottom wall. At the moment, we do not have identified the
mechanisms which could explain these observations.

3.5 Cross-influence of the mechanical parameters

Here, we study the cross-influence of the mechanical parameters. e is set to the standard
value and we vary both the particle and wall friction coefficient as illustrated in Fig. 5.16.
We saw that when we vary the particle friction µgg, we have a change of behaviour above
a critical angle where the velocity increases with increasing particle friction. This cross-
over regime was found at θ = 40◦ when e and µgw are set to the standard values. It is
clearly identified as the locus where the iso-particle friction curves VL(θ) cross as shown
in Fig. 5.16.a. Fig. 5.16.b indicates that the cross-over regime is shifted to higher angles as
µgw increases. Again, we do not have explanation for this but this illustrate that the cross-
variation of the mechanical parameters have non-trivial effects on the nature and velocity of
the flow regime.
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Figure 5.16: (a) VL as a function of inclination angles for cross-variations of the particle and wall friction
coefficient. e = 0.972, H = 5D and W = 40D. (b) Critical inclination angle of the cross-over regime as a
function of µgw. Inset: corresponding flow velocity at the cross-over regime.

4 Friction and packing fraction laws

Here we want to know whether the friction and packing fraction laws, µb,w(Frb,w) and
ϕb,w(Frb,w), still holds when we vary the mechanical parameters and if so, how their shape
are modified.
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4.1 Local effective friction law

Figure 5.17 presents the local basal and lateral friction as a function of the local Froude num-
ber for varying restitution coefficient e. As already mentioned in the preceding chapter, for
each value of e, the data still collapse on a master curve which do not differ much from that
obtained with the standard value of the restitution coefficient (solid line). It thus indicates
that particle-particle coefficient restitution has no effect on the effective wall friction and
confirms that the effective friction law encodes the local interaction between the wall and
the particle. We expect a different story with µgw.
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Figure 5.17: Local effective basal (a) and lateral (b) friction as a function of the local Froude number for various
coefficient of restitution ranging from 0.64 to 1: (a) µloc

b /µgw vs Frloc
b and (b) µloc

w /µgw vs Frloc
w . Mechanical

parameters: µgw = 0.593 and µgg = 0.33. The solid line corresponds to the fit obtained for the standard

values of the mechanical parameters using the following form: µloc
b,w = µ2 + (µ1 − µ2) exp

(
−Frloc

b,w/Frµ0

)
with

µ1 = 0.29, µ2 = 0.59 and Frµ0 = 12.2

We recall that the local wall friction law is well captured by the following exponential
law:

µloc
b,w = µloc

1 + (µloc
2 − µloc

1 ) exp
(
−Fr/Frloc

µ0

)
(5.1)

where µloc
1 , µloc

2 and Frµ0 are fitting parameters. µloc
1 is the minimum friction while µloc

2 is the
asymptotic value of the friction obtained at large Froude number. The previous results indi-
cate that the fitting parameters of the law are independent of the particle-particle coefficient
restitution e. We find: µloc

1 = 0.29, µloc
2 = µgw and Frµ0 = 12.2.

Figure 5.18 displays the local basal and lateral friction as a function of the local Froude
number for increasing particle-wall friction coefficient µgw. For a given µgg, the data still
collapse on a master curve which differ from that obtained with the standard value of the
particle-wall friction. The asymptotic value µloc

2 is changed as expected and is roughly equal
to the microscopic value of the particle-wall friction µgw. The minimal friction value µloc

1 is
however invariant when changing µgw: µloc

1 ≈ 0.29. The characteristic Froude number Frµ0

is found to increase with increasing µgw from 10 to 30.
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Figure 5.18: Local effective basal (a) and lateral (b) friction as a function of the local Froude number for various
wall-particle friction coefficient ranging from 0.51 to 1.2: (a) µloc

b /µgw vs Frloc
b and (b) µloc

w /µgw vs Frloc
w . The

solid lines corresponds to the best fit using Eq. 5.1. The best fits gives: µloc
1 = 0.292, µloc

2 = µgw and Frloc
µ0

≈
35 (µgw − 0.3). (c) Variation of Frloc

µ0
with µgw. Other Mechanical parameters: µgg = 0.33 and e = 0.972.

Finally, changing the particle-particle friction leads to modification of the local wall fric-
tion law (see Fig. 5.19). The change of the law is seen only through the minimum friction
coefficient µloc

1 which increases from 0.25 to 0.35 when µgg is varied from 0.2 to 1. For very
weak value of the particle-wall friction (µgg = 0.1), the collapse on a master curve remains
uncertain.

4.2 Global effective friction law

We also checked that the global effective friction law holds as well when the mechanical
parameters are changed. We recall that for the global law, the effective friction and the
Froude number are calculated at the scale of the entire wall. We find the same evolution of
the global friction law with the mechanical parameters as for the local one. The data can be
reasonably well described with a similar exponential law:

µb,w = µ1 + (µ2 − µ1) exp
(
−Fr/Frµ0

)
(5.2)
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Figure 5.19: Local effective basal (a) and lateral (b) friction as a function of the local Froude number for different
particle-particle friction coefficient ranging from 0.1 to 1: (a) µloc

b /µgw vs Frloc
b and (b) µloc

w /µgw vs Frloc
w . The

solid lines corresponds to the best fit using Eq. 5.1. The best fits give: µloc
1 ranging from 0.2 to 0.35, µloc

2 =

µgw = 0.593 and Frloc
µ,0 = 12.2. (c) Variation of Frloc

µ0
with µgg. Other mechanical parameters: µgw = 0.593 and

e = 0.972.

where µ1 and Frµ0 are fitting parameters depending on the mechanical parameters. µ2 rep-
resents the asymptotic value of the friction and is bounded by the microscopic value of the
particle-wall friction such µ2 = µgw.

Fig. 5.20 displays the evolution of the global effective bottom friction µb as a function of
the local Froude number Frb when e, µgw and µgg are varied successively. The variation of
the fitting parameters µ1 and Frµ0 with the mechanical parameters are illustrated in Fig. 5.21.

As a summary, e does not alter the friction law, while µgw essentially acts on the asymp-
totic value µ2 but also on the characteristic Froude number Frµ0 . Concerning the influence
of µgg, it modifies the minimum value µ1 of the friction.
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Figure 5.20: Global effective bottom friction law as a function of the global Froude number Fb = Vb/
√

gH cos θ
for varying mechanical parameters: (a) Varying e; (b) Varying µgw and (c) varying µgg. The solid lines are fits
of the form: µb = µ2 + (µ1 − µ2) exp

(
−Frb/Frµ0

)
with µ2 = µgw. (a) µ1 = 0.292 and Frµ0 = 12.2, (b) µ1 ≈ 0.3

and Frµ0 increases from 10 to 50 with increasing µgw; (c) µ1 increases from 0.3 to 0.4 with increasing µgg (see
details in Fig. 5.21).
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Figure 5.21: Fitting parameters µ1 and Frµ0 as a function of µgw (a) and µgg (b). Mechanical parameters: (a)
e = 0.972 and µgg = 0.33; (b) e = 0.972 and µgw = 0.593.

4.3 Packing fraction law

In chapter 3, we provided a local packing fraction law, ϕloc
b,w(Frloc

b,w), which was robust and
invariant with the channel width. Here we want to know how this law is affected when the
mechanical parameters e, µgw and µgg are varied.

Figure 5.22 presents the local bottom packing fraction as a function of the local Froude
number. The local side-wall friction (not shown here) exhibits the same behaviour. As for the
effective wall friction, the packing fraction at the wall can be approximated by the following
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exponential law:

ϕloc
b,w = ϕloc

1 + (ϕloc
2 − ϕloc

1 ) exp
(
−Fr/Frloc

ϕ0

)
(5.3)

where ϕloc
1 , ϕloc

2 and Frloc
ϕ0

are fitting parameters that depends a priori on the mechanical
parameters e, µgw and µgg.

The data reveal that e and µgw have a significant effect on the packing fraction law while
the influence of µgg is rather weak. At a given Froude number, decreasing e (i.e., increas-
ing the dissipation) leads to larger packing fraction at the wall. In contrast, increasing the
wall-particle friction µgw results in smaller packing fraction. These contrasting behaviours
may be one of the possible causes explaining why the mean flow velocity increases with
increasing particle-particle dissipation but decreases with increasing wall-particle friction.
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Figure 5.22: Local packing fraction at the wall ϕloc
b as a function of the local Froude number Frloc

b =

V loc
b /

√
Ploc

b /ρ for various e (a), µgw (b) and µgg (c). The solid lines are the best fits using Eq. 5.3. Only the
data corresponding to the two limit values of the range of variation of the mechanical parameters are adjusted.
Fitting parameters: ϕloc

1 and and Frloc
ϕ0

are almost invariant with e, µgw and µgg (ϕloc
1 ≈ 0.57 and Frloc

ϕ0
≈ 6.8);

ϕloc
2 depends both on e and µgw but not on µgg (see Fig. 5.23).
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Figure 5.23: Variation of the fitting parameter ϕloc
2 with (1 − e2) (a) and µgw (b).
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Figure 5.24: Mean packing fraction ϕ̄∗ as a function of the global Froude number Frb = Vb/
√

gH cos θ for
various e (a), µgw (b) and µgg (c). The solid lines are the best fits using Eq. 5.3. Only the data corresponding to
the two limit values of the range of variation of the mechanical parameters are adjusted. Fitting parameters:
ϕ1 is invariant with with e, µgw and µgg (ϕ1 ≈ 0.65). In contrast, ϕ2 and Frϕ0 depends on e and µgw but not on
µgg. For (c): ϕ2 ≈ 0.025 and Frϕ0 ≈ 7.5.
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Figure 5.25: Variation of the fitting parameters ϕ2 and Frϕ0 with 1 − e2 (a) and µgw (b).

We observe the same trends for the global law, ϕ̄∗ versus the global basal Froude Frb, as
illustrated in Fig. 5.24.

4.4 Effective frictional flow height Z

In chapter 3, we determined a law for the effective frictional height Z as a function the mean
flow packing fraction ϕ̄∗. We saw that this law robust to change of gap widths.

We show here that the law for the effective frictional flow height is also robust when we
vary the mechanical parameters e, µgg and µgg. The robustness of the law is illustrated in
Fig. 5.26.
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Figure 5.26: Rescaled effective frictional height Z/H as a function of the mean flow packing fraction ϕ̄∗ for
various e (a), µgw (b) and µgg (c). Solid curve: Z/H = (1 + (ϕ̄∗ − 0.57))/ϕ̄∗.

5 Conclusion

In this chapter, we completed the study of the role of the mechanical parameters. We studied
in details the effect of e, µgw and µgg on the structural properties of the flow, the mean flow
velocity and also on the friction and packing fraction laws.

We found contrasting effects. e and µgw have a monotonic influence on the mean flow
velocity. Increasing e or µgw leads to a diminution of the flow velocity. This is not the case
for µgg. We indeed a cross-over regime characterized by a critical angle. Below it, the mean
flow velocity decreases with increasing particle friction, while above it, the reverse trend is
observed.

We also highlighted that the flow features at the wall can be described by simple laws,
in particular the wall friction and packing fraction. We showed that these laws are robust
when changing the mechanical parameters. Only their form is sensitive to changes of e, µgw
and µgg.

Finally, we confirm that the effective frictional flow height Z when rescaled by H obeys
a universal law as a function of the mean flow packing fraction. This law is independent on
the gap width and on the microscopic mechanical parameters. It strongly suggests that this
law should result from a conversation equation we have not yet identified.

Lastly, the set of the three laws, µb,w(Frb,w), ϕ̄∗(Frb) and Z/H versus ϕ̄∗, combined with
the force balance equation (i.e., tan θ = µb(Frb) + µw(Frw)

Z
W ) should help us in understand-

ing how the mean flow velocity varies with the mechanical parameters of the granular sys-
tem. This is a future line of investigation.

Note also that we restrained our analysis to flows with a given mass hold-up (H = 5D),
so we were not able to determine how the scaling law of the mean flow velocity with H is
affected by changes of the mechanical parameters. This will be a future study.
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Chapter 6

Conclusion and perspectives

1 Conclusion

In this thesis, we investigated rapid granular flows confined between two flat lateral walls
by exploring extensively and systematically the parameter space H − θ for various channel
widths W = 20, 40, 60, 68, 75, and 140D, and the parameter spaces e − θ, µgw − θ, and
µgg − θ for two different channel widths (W = 20D and W = 40D). A reach variety of flow
regimes were uncovered, including flows with pairs of longitudinal vortices (i.e., R+, R−,
R−
+), supported flows (CR−, CR−

+ and ACR−) and oscillating supported flows (OCR−).
Among these flow regimes, ”supported” flows are ubiquitous. Under prescribed me-

chanical parameters, there is a minimum channel width below which supported flows non
longer exist. In contrast, we did not find an upper limit in gap width above which the sup-
ported flows would disappear. In other words, side-walls confinement is probably not the
cause of the existence of ”supported” flow regime, but it is clearly the cause of its disap-
pearance. For the standard values of the mechanical parameters (e = 0.972, µgg = 0.33 and
µgw = 0.593), the minimum gap width is found to be about 20D. This critical value can be
however lowered if, for example, the dissipation in the particle collision is increased.

We uncovered that supported flows obey a simple scaling law with the particle hold-
up H and the gap width W: VL − Vc

L ∝ W0.7H0.3, where VC
L is the critical velocity of the

appearance of the supported flows. For a given gap width, the supported flows emerges
above a critical angle θc that decreases with increasing gap width. For W = 40D, θc ≈ 26.5◦

while for W = 140D, θc ≈ 23.5◦.
Importantly, for these rapid flows, the mean velocity is essentially controlled by the slid-

ing velocity so that both velocities are strongly correlated. It thus appears that understand-
ing how the sliding velocity evolves with H, θ and W is a crucial issue. We consequently
studied in details the evolution of the flow features at the bottom and lateral walls.

We evidenced that the local effective wall friction µloc
b,w and the local packing fraction

at the walls ϕloc
b,w can be both described by a unique curve (for a fixed set of mechanical

parameters) that depends solely of the Froude number defined as Vb,w/
√

Pb,w/g as:

µloc = µloc
2 + (µloc

1 − µloc
2 )exp(−Frloc

Frµ0

) (6.1)

ϕloc = ϕloc
2 + (ϕloc

1 − ϕloc
2 )exp(−Frloc

Frϕ0

) (6.2)

where µloc
1 , µloc

2 , Frloc
µ0

, ϕloc
1 , ϕloc

2 , and Frloc
ϕ0

are fitting parameters. These laws have been
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established for steady flows but we showed that they hold as well for unsteady flows.
Importantly, we found that these laws are robust to changes of the particle and wall me-

chanical properties. Only, the fitting parameters of these laws are affected by such changes.
We studied extensively how the exact form of theses law are modified when we vary succes-
sively e, µgw and µgg. We showed that e has a very weak effect on the friction law whereas
changes of µgg and µgw have a quantitative effect on the fitting parameters of the friction
law. These changes were not fully understood and demand to be further analyzed by cross-
variations of the mechanical parameters.

We also investigated how the mean flow evolves when we vary the mechanical param-
eters. We found complex evolutions. While increasing the particle-wall friction coefficient
µgw leads to an expected decrease of the mean velocity, increasing the particle-particle resti-
tution coefficient e results in a surprising augmentation of the mean flow velocity, explained
by the contraction of the flow and the subsequent reduction of the contribution of the wall
friction. The effect of the coefficient of friction between grains is even more subtle: we found
that there is a critical inclination below which the mean flow velocity decreases with increas-
ing µgg and above which the trend is reserved. This critical inclination depends essentially
on µgw. These variations of the mean velocity are essentially caused by changes of the slid-
ing velocity and may be useful to guide practical researches for determining the optimum
condition to minimize the energy dissipation during the transportation of granular materi-
als.

We strongly believe that the local friction and packing fraction law may be used success-
fully as a reliable boundary condition for flows running on smooth walls. In addition, we
uncovered that the rescaled frictional flow height Z/H obeys a universal law as a function
of the mean packing fraction ϕ̄∗:

Z
H

=
1 + (ϕ̄∗ − 0.57)

ϕ̄∗ (6.3)

This law is independent of the inclination angle, gap width and of the mechanical parame-
ters.

Finally, we suggest that a phenomenological model can be built using the force balance
equation,

tan θ = µ(Fr)(1 +
Z
W

) (6.4)

supplemented with the global version of the effective wall friction and packing friction law,
µ(Fr) and ϕ̄∗(Fr), and Eq. 6.3 for the frictional flow height Z. This model provides a set
of closed equations to solve the Froude number, the mean packing fraction and the sliding
velocity for prescribed inclination θ, particle hold-up H and gap width W.

2 Perspectives

We identified at least two important avenues for future researches: (i) To confirm the nu-
merical findings in real experiments and ii) to extend these numerical outcomes to unsteady
flows.

Both issues are actually strongly linked. Those rapid flows are difficult to be achieved in
real experiments as steady and fully developed flows because it requires chute flows with
long running distances. Therefore, experimental rapid flows are often observed in non-
mature states. Thus, if we have a clear understanding of unsteady or non-uniform flows, it
could greatly help the analysis and interpretation of rapid experimental flows.
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We started to address these issues and present here some preliminary results. We con-
firmed that the friction and packing friction laws still hold for unsteady flows that are in the
route towards the stationary state. During this transient where the flow has a finite but de-
clining acceleration in course of time, the flow visits successive states that resemble steady
states but are obtained at smaller inclination angles. In other words, at each time of its evo-
lution, we can find a correspondence between the actual flow features and a steady state
obtained at a smaller inclination. This finding is very important since it allows to get some
information about steady state flows from unsteady or non-uniform flows.

We used this conclusion in our experimental research which is not reported in the manuscript
because of lack of time but will be published in the near future. We were able to confirm sev-
eral numerical findings and to give credits to the relevance of the wall and packing fraction
laws. We also identified most of the flow regimes seen in the simulations: R−, R+, CR− . . . .

Other avenues of research would be interesting as well. We disregard small inclinations
and large mass hold-up regime which would merit attention too. We also concentrate our
efforts on what happens close to the boundary. The next step would be to investigate the
rheology of these rapid flows and to determine whether the kinetic theory or the µ(I) rhe-
ology are relevant to describe some of internal features of the flow. Experimental researches
on rapid flows are jeopardized by the lack of information about the internal flow structure
and stresses. Effort should be made in the development of new experimental techniques
to probe the interior of the flow because the classical imaging techniques are limited to the
characterization of what happens at the wall and the free surface.
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