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Résumé de la thèse
Dans cette thèse de doctorat, nous étudions l’apprentissage séquentiel (dit “par renforce-
ment”) en intelligence artificielle, plus particulièrement les notions d’actions et d’interactivité.
En apprentissage par renforcement, un agent reçoit des informations sur son environ-
nement et agit en conséquence. Le but étant de maximiser une quantité appelée récom-
pense. La planification (quelles sont les conséquences à long terme des actions effectuées et
quelle quantité de récompenses peux-t-on en tirer) et l’exploration (comment récupérer un
maximum d’informations en un minimum de temps) sont au cœur de cette discipline.

L’intelligence artificielle et les sciences cognitives ont grandi de concert depuis les années
50. L’étude de la cognition a nourri les pionniers de l’intelligence artificielle et le courant
cognitiviste s’inspirait de la modularité d’un ordinateur pour expliquer le fonctionnement
du cerveau. Depuis, le courant cognitiviste a laissé place à la cognition incarnée. Au lieu
de considérer l’intelligence comme un ensemble de fonctions abstraites, les représentations
mentales sont construites et guidées par les interactions avec le monde. Nous souhaitons
analyser les algorithmes d’apprentissage par renforcement avec ce même regard, en re-
plaçant les intéractions au centre de notre analyse. Les actions définissent l’interface
entre l’agent apprennant et l’environnement: pour le contrôle d’un robot, les actions cor-
respondent aux forces exercées par les moteurs. Dans un jeu vidéo, elles correspondent
aux différents boutons que l’on peut presser. On appelle ces différentes formes d’actions
possibles: espace d’actions.

Dans un premier temps, nous proposons une taxonomie des différents espaces d’actions
et les problèmes qu’ils posent. Par exemple : “Que se passe-t-il lorsqu’un agent doit
choisir parmi plusieurs milliers d’actions ?” ou “Comment ignorer des actions inutiles ou
généraliser à des actions jamais vues ?”

Dans un deuxième temps, nous montrons qu’en intégrant des connaissances sur les actions,
on peut améliorer la vitesse d’apprentissage. Lorsque l’environnement nous empêche
de faire certaines actions par sécurité, la prise en compte de cette information permet
d’apprendre plus vite. Le deuxième cas porte sur l’exploration dans un environnement
contenant multitudes d’objets à utiliser pour résoudre des problèmes type labyrinthe.
Nous montrerons que pousser un agent à chercher les actions clefs qui intéragissent avec
les objets permet une meilleure exploration que les autres méthodes de l’état de l’art.

La troisième partie de ce manuscrit porte sur l’apprentissage multi-but, c’est à dire ap-
prendre une multitude de séquences d’actions, chacune accomplissant une tâche différente.
Nous nous focalisons sur l’apprentissage d’instructions en langage naturel. Le langage
simplifie la définition d’une multitude de sous-tâches en décrivant simplement ce que
l’agent doit accomplir. Nous proposons un algorithme permettant de réduire la complex-
ité d’apprentissage lorsqu’un grand nombre de buts doit être accomplis.

Enfin, la dernière partie porte sur la transformation de tâche non-interactive (supervisée)
en tâche interactive. Rendre l’agent actif dans son apprentissage permet d’élargir les pos-
sibilités de l’apprentissage supervisé en lui permettant de choisir lui-même les informations
intéressantes. Nous montrons qu’en changeant la définition d’une tâche de reconnaissance
de locuteur, on réduit le temps d’apprentissage et le nombre de mots nécessaire à la
reconnaissance.
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Thesis Abstract
In this Ph.D. thesis, we study sequential decision making (a.k.a Reinforcement Learning
or RL) in artificial intelligence, focusing on the notion of *action* and *interactivity*. In
reinforcement learning, an agent receives information from its environment and acts. The
goal is to maximize a constraint called “the reward”. Planning (Anticipating long-term
consequences and higher rewards) and Exploration (How to gather as much information
as possible in a minimal time) are central to this topic.

The term “Reinforcement Learning” comes from psychology, and ever since, Artificial In-
telligence and Cognitive Science have borrowed from each other. Cognitive study inspired
early AI pioneers, and computers’ modularity influenced cognitivism. Then, Embodied
Cognition took over, putting interaction with the world at the center of mental devel-
opments. We study reinforcement learning with a similar stance, putting actions at the
heart of this thesis. Actions define the interface between the agent and its environment.
In robotic control, the actions are the motor’s forces. In a video game, actions are the
controller’s button. We call those differents forms action space

Firstly, we propose an action space taxonomy and analyze challenges posed by each type.
For example “How reinforcement learning algorithm stands when dealing with thousands
of action ?” or “Is it easy to detect and ignore useless actions or generalize to unseen ones
?”

We then study how we can modify current algorithms to take into account action knowl-
edge. The first setting considered is safe RL, where an agent acts under safety constraints.
We show that when the environment prevents the agent from doing specific actions, taking
into account this signal is essential to learn faster. Secondly, we propose an exploration
algorithm nudging the agent to interact as much as possible with the environment.

The third part of the manuscript tackles action abstractions (sequences of interactions
representing more general goals). For example, Natural Language can convey multiple
sub-task by describing what the agent must accomplish. We propose an algorithm re-
ducing sample complexity when dealing with a high number of instructions in natural
language.

The last chapter is more general and formalizes how we can turn supervised setup into
interactive ones. By reframing a speaker recognition task into a multi-turn game, we can
increase the sample efficiency and reduces the number of words needed.
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Introduction

The autonomy of the living is
understood [...] both in regards to its
actions and to the way it shapes a
world into significance.

(Bourgine et al., 1991)

Every Ph.D. student has to face at some point the most challenging question of all:
“What is your Ph.D. about?”
Explaining to the layman may result in an indigestible storm of jargon about your subject,
in this instance, Machine Learning. "The field of Artificial Intelligence (AI) that gives
computers the ability to learn without being explicitly programmed" (Samuel, 1959). It
lies at the intersection of probability, optimization, and computer sciences."

At the end of your conference, the layman will rudely ask: “But ... Are you working
with robots?”. Presumably, in the general audience’s mind, intelligence must be embod-
ied. Automations and machines came long before computers, so acting in the real world
feels more natural than working with abstract domains. However, the field’s history is
different.

In the 1950s, McCarthy, Minsky, Rochester, and Shannon proposed to tackle computerized
intelligence during 1955’ Summer (McCarthy et al., 1955). This very ambitious research
project deals with manipulating abstract concepts, calculation, creativity, and reasoning.
However, none of the seven internship proposals dealt with embodiment, interactivity, or
related concepts.

Concurrently, psychology studied the human brain by examining learning, memory, problem-
solving skills, defining intelligence as a set of abstract tasks. This movement is known as
cognitivism, the study of mental processes (Mandler, 2002).

It was not until the late 1970s that embodied cognition followed cognitivism, grounding
mental processes as part of the body’s interactions with the world (Wilson, 2002). In this
perspective, intelligence is no longer an abstract and autonomous process, disconnected
from the body and its environment. To put it differently, human cognition must be
rooted in sensorimotor processing. Those ideas poured into the machine learning world
and slowly saw the birth of Reinforcement Learning (RL).

It is the subfield of Artificial Intelligence that addresses Sequential Decision Making.
Decision Making because the agent (or program) receives information through sensors,
and in turn, affects the environment through actions. The Sequential term comes from
repeated interaction with the environment. In fine, the agent is optimized to maximize
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rewards or as (Sutton et al., 2018) puts it: “Learning how to get something from the
environment”.

Figure 1: Reinforcement Learning Illustration. The agent (dog) receives observations from
the environment (seeing its pet parent holding a stick) and maximizes rewards (food). At
first, it does not know what to do; it barks, rolls on the floor, etc. However, by trial
and error, the dog eventually learns to perform series of actions (running, fetching the
stick) to gather food. (Image Source: https://fr.mathworks.com/discovery/reinforcement-
learning.html)

Reinforcement learning is a general paradigm, allowing a diverse set of applications such
as the game of Go, where an agent organizes stones to surround more territory than the
opponent (Silver et al., 2016) or automatic stratospheric balloons navigation (Bellemare
et al., 2020). Those two problems do not look remarkably similar, and strategies to
solve one or the other seem unrelated. Go is a board game with long-term planning and
strategy, whereas ballons driving is a navigation task in an unpredictable environment.
However, both can define a set of actions (putting a stone on the board, burning fuel to
go higher) and a reward (winning the game, reaching a destination) and requires trying
different strategies to find out which one dominates the others. Discovering strategies (or
policies) that gather maximum rewards is central to the reinforcement learning paradigm.
In Go, maximizing the reward corresponds to winning every game, whatever strategy
the opponent is using. For ballons navigation, it would be to reach its destination every
time and quickly. Finding an optimal policy is not an easy task as the agent must cope
with environment unpredictability, sensors noises, long-term planning, and exploration.
Thus, reinforcement learning is a unifying view on sequential decision-making problems,
designing general algorithms that could (theoretically) tackle Go, ballons navigation, and
many other problems.

In the last decade, we witnessed great leaps in this direction, Deep Q-Networks played
Atari games using raw pixels (Mnih et al., 2015), AlphaGo (Silver et al., 2017) became
virtually unbeatable and even mastered Chess and Chogi (Silver et al., 2018). Two rein-
forcement learning agents became respectively GrandMaster in Starcraft (Vinyals et al.,
2019) and Dota (Berner et al., 2019). Each algorithm found an excellent strategy through
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long training, crunching millions of data points. However, are they efficient? To reach its
final performance, AlphaGo played around five million games. A game usually lasting an
hour, the algorithm spent about five hundred seventy years playing Go. As a comparison,
its opponent, pro-player Lee Sedol (aged 33 at the time of the match), could not spend
as much time playing. He is said to be more data-efficient : he played less, but extracted
more information from each game.1. Thus, final performance matters, but the number
of interactions to achieve optimality is also central. Chapter 1 introduces more formally
classical and recent reinforcement learning methods and discusses how algorithms tradi-
tionally reduce their data consumption. The whole thesis is aligned with this principle:
increasing the data-efficiency of RL algorithms.

Zooming on the actions in Reinforcement Learning
As we discussed, intelligence must be studied through its interactions with the environ-
ment. We advocate that reinforcement learning agents should be analyzed with the same
considerations. RL paradigm already takes into account sensory mechanisms as agents
must act according to the environment state. Moreover, numerous examples highlight
how changing the world representation affects learning, either by changing the sensors or
slightly modifying the inputs (Zhang et al., 2018; Hussenot et al., 2020b).

However, we believe RL is a partial answer to the questions raised by the embodied
cognition movement. Reinforcement Learning researchers neglected how changing the
actions affects the learning dynamics (Kanervisto et al., 2020). The set of actions available
in an environment is called an action space. For example, on the Atari2600 (a real console),
the joystick selects an orientation (including diagonals) and could be combined with the
button (triggering different effects, depending on the game. Thus, the action space is the
combination of all possible directions with the button being pressed and released. The
Arcade Learning Environment (Bellemare et al., 2013) is a suite of fifty-five games, coming
from the Atari2600, aiming to design a single algorithm tackling all the games. However,
the action space is not standard across all games. RL researchers adapted the action space
for each game, simplifying the learning process but losing research opportunities to design
algorithms that cope with this constraint. The same goes for every environment; those
spaces are heavily designed and modified by hand, for example, by removing action that
seems unnecessary or too similar. Designing general agents implies reducing the action
space engineering to the minimum and the ultimate goal is to tackle those problems with
data-driven approaches.

Several milestones lie before achieving this objective, and a better understanding of the
diversity of actions spaces is necessary to propose a unifying view. We review in chapter 2
questions such as: “What type of actions spaces exist and what algorithms can be used on
each type ?” Also, the more general we want an agent to be, the more actions it requires;
thus we also review how current reinforcement learning algorithms handle large actions
spaces. The survey leads us to this thesis’s contributions.

To illustrate our point, we take as an example behavioral data reported by Tucker et
al., 1998, showing how human visual processing informs actions controllers. Subjects are

1AlphaGo consumes about 170kW/h of energy to play an hour-long game (1202CPU x 100W +
176GPU x 300W for an hour), whereas Lee Sedol consumes about 20W/h, energy efficiency could also
be taken into account.
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tasked to indicate whether common objects (e.g., a teapot, a frying pan) are upright or
inverted by pressing buttons on a remote controller. Authors measure response times
when the left hand or the right hand manipulates the controller. The hand dealing
with the remote controller is called the response hand. Experiments show that response
times are fastest when the response hand is the same as the hand that would be used to
grasp the depicted object (e.g., the left hand if the teapot’s handle is on the left).” We
can conclude that context gives hints about what is possible. Translated coarsely using
RL vocabulary “states should inform which actions can be performed”. For example, a
wall in front of the agent indicates that going forward is impossible, or a danger sign
prevents from doing something foolish. We coined the term "Contextual Ineffectiveness"
to describe actions that are ineffective in certain contexts (for safety reasons, for example).
In a subsequent section (2.3), we show that reinforcement learning agents are struggling to
detect such signal, even when it can be extracted from the state; thus, the agent loses time
by trying actions that are ineffective. Chapter 3 stems from the same principle but dive
into exploration methods. Current strategies focus on state novelty and unpredictability
but fail to push the agent in areas where some specific actions are required. For example,
we show that learning to use the action "push" in front of a button or "open" in front of
a door is hard for current exploration algorithms and propose a method that detects and
rewards rare interactions.

A final disclaimer: Much too often, spurious brain analogies are used to justify some
ML techniques, which brought confusion to a general audience. The approach taken
in the present thesis was to use embodiment theory as a starting point for our journey.
However, results presented in this thesis can only apply to reinforcement learning agents
and algorithms, and we do not conclude about human cognition.

Thesis Outline
Deep Learning and Reinforcement Learning Background are introduced in Chapter 1.
It describes tools developed after 2014/2015 in Deep Reinforcement Learning and gives
entry to a reader willing to catch up with the latest literature.

Chapter 2 introduces a general taxonomy of actions spaces, it delves into the diversity,
structure, and methods to switch between each type. It also covers state-of-the-art tools
to learn an action space structure and tackle large action spaces. The next sections
motivate safe, and constraint reinforcement learning as an application and details the
first contribution of the thesis. By giving an external signal on the action being executed,
an adaptation of a state-of-the-art deep reinforcement learning algorithm can greatly
reduce the sample complexity and learns to avoid hazardous actions.

Chapter 3 is a summary of exploration and intrinsic motivation methods in reinforcement
learning, focusing on large state space, where function approximation is necessary. The
second contribution highlights that embodied domain’s actions are very different by na-
ture. Some actions are contextual, such as triggering a button or opening a door. The
method proposed uses actions with different consequences as an exploration signal.

The next chapter 4 elaborates on the notion of goal in reinforcement learning. Goal-based
methods aim to build multi-objective policy, accomplishing a variety of tasks. Those
higher-level objectives can be seen as more complex actions, especially in open-ended
domains where many goals are available. The background section emphasizes instruction-
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following using natural language as it offers a natural structure of the environment. The
third contribution aims to improve instruction understanding and execution. By learn-
ing a language generator that complements the data collection, the policy learns more
instructions faster.

Chapter 5 gives a general perspective between Supervised Learning and Reinforcement
Learning, thinking about how to convert supervised tasks to interactive ones. Sequential
setup can reduce the data consumption when training supervised models, such as Active
Learning. The final contribution shows that converting a speaker recognition task to a
reinforcement learning setup can reduce the number of samples needed when identifying
speakers.

The final chapter discusses future directions in action-centric reinforcement learning.
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Chapter 1

Deep Reinforcement Learning
Cookbook

Cooking Deep RL requires confident
guesswork and improvisation —
experimentation and substitution,
dealing with failure and uncertainty
in a creative way. —

Paul Theroux (American Novelist)

In this chapter, we lay the technical foundations for this manuscript. Mathematical
notations, definitions, and recipes lie ahead, but this formalism will reward the reader
greatly by broadening its Machine Learning horizons and unlocking access for the following
chapters.

Deep Learning and Reinforcement Learning Chefs can skip to Chapter 2.

1.1 Machine Learning and Deep Learning Background

1.1.1 Machine Learning Ingredients

To get started with machine learning, few utensils are necessary. First, select an area of
interest (see Section 1.1.2) and collect some information that will form a dataset. Secondly,
define how to approach the problem. Machine Learning can be split into three mains
areas (Bishop, 2006): Supervised Learning, Unsupervised Learning, and Reinforcement
Learning. Thirdly, to learn this dataset, select amodel and its associated optimizer in your
kitchen cabinet. The model can be anything, ranging from Decision Tree, Bayesian Linear
Regression, or Neural Network (This thesis will focus on the latter, but many algorithms
presented here can be used with other models). The optimizer depends heavily on the
model, and it describes how to adapt the model to fit the data.

Among the most successful approaches is Supervised Learning. The dataset is composed
of examples x ∈ X, where each example is associated with a label y ∈ Y . The goal is to
predict y from x or more formally: given a dataset of {(x(i), y(i))}Ni=0, learn a model such
as p̂(y|x) that generalizes to new instances of x.
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Figure 1.1: Illustration of different learning paradigms.

The second approach, called Unsupervised Learning, has a broader definition. Given
a dataset {(x(i))}Ni=0, learn a model of p(x) (or a distribution over X). Unsupervised
Learning covers a variety of tasks such as clustering (Rai et al., 2010; Xu et al., 2015),
dimensionality reduction (Cunningham et al., 2015) or self-supervised learning (Jing et
al., 2020; Doersch et al., 2015)).

Reinforcement Learning (RL) (Sutton et al., 2018) is a general paradigm to tackle se-
quential decision making, or learning to act under uncertainty. Reinforcement learning
problems involve learning what to do and mapping observations to actions to maximize
a numerical reward signal. The model is not told which actions to take (as in supervised
learning), but instead must discover which actions yield the most reward by trying them
out. The final goal is to discover the best sequence of actions (called strategy or policy).
A whole section is dedicated to introducing RL (see Section 1.3). A variation called Un-
supervised Reinforcement Learning or Learning without rewards (Lim et al., 2012; Jin et
al., 2020), combines ideas from Unsupervised Learning and Reinforcement Learning and
will not be explored deeply in this manuscript. However, exploration methods covered in
Chapter 3 can tackle partially the no-reward setting.

1.1.2 Exemple of applications

This non-exhaustive list highlights the diversity of topics tackled by machine learning:
Climate Change (Rolnick et al., 2019), Material Design (Mirhoseini et al., 2020), Physics
(Charpagne et al., 2019), Medicine (Rajkomar et al., 2019; Cireşan et al., 2013; Ron-
neberger et al., 2015; Hashimoto et al., 2018), Economic forecasting (stockprediction;
Patel et al., 2015; Asadi et al., 2012), Education (Vie et al., 2017), Biology (Senior et al.,
2020; Zhou et al., 2017), Maths (Lample et al., 2019), Ressource Management (Mao et al.,
2016), Ballons navigation (Bellemare et al., 2020), Autonomous Driving (Leurent, 2020),
Cooking (Xin Wang et al., 2015), Automatic Whisky Brewering (oops, not yet.)
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1.2 Deep Learning

Deep Learning (DL) (LeCun et al., 2015; Goodfellow et al., 2016) is a sub-field of machine-
learning that emerged from the meeting between Neural Network (NN) and Graphics
Processing Unit Hardware (GPU) in the 2010’s (Cireşan et al., 2011; Cireşan et al.,
2012). Using GPU (and later dedicated hardware such as Tensor Processing Unit TPU
Jouppi et al., 2017) decreased by many orders of magnitude the time to train models and
thus increase the capacity to tackle larger datasets.

1.2.1 What tools are necessary to follow this thesis?

Deep Learning architectures are not central to this thesis, but few tools are necessary.
General vision architecture such as Convolutional Neural Network (CNN LeCun et al.,
1995) and a basic understanding of Recurrent Neural Network (RNN) such as Long-
Short-Term-Memory (LSTM Hochreiter et al., 1997). When necessary, we will discuss
the models in greater details.

1.2.2 A brief history of Deep Learning

In about ten years, working with gigabytes (GB) of data became easier, and it translated
into an increase in performance in many tasks. "The more data you can collect, the greater
your results will be," says the deep learning practitioner, which can be problematic. We
will take two examples to illustrate this dramatic increase in data consumption.

The dataset that launched the deep learning trend in image classification was ImageNet,
specially the Image Large Scale Visual Recognition Challenge (ILSVRC Russakovsky et
al., 2015), composed of 1.3 million images. Less than 10 years later, Xie et al., 2020 uses
a dataset made out of 3.5 billion images to train their model.

Another example taken from Natural Language Processing (NLP) where datasets went
from 348 millions tokens (around 500MB of data) (Bahdanau et al., 2015) to rougly 500
billions tokens (570GB) (Brown et al., 2020), and models went from around 60 millions
parameters to 175 millions.

By massively parallelizing gradient estimates and backpropagation (Linnainmaa, 1976;
Rumelhart et al., 1986), the field went from training a network in six days (Krizhevsky
et al., 2012) to a few minutes (You et al., 2018), reducing training cost per parameter (but
increasing cost globally). Faster training and bigger datasets translated into an increase
in performance, but the story does not end here.

A second benefit comes from the generality of backpropagation. Once basic differentiable
blocks are defined, even with crazy recombination and chaining, gradients can be com-
puted. It means that models are much more flexible. They can share information, be
reused and fine-tuned (at least in theory).

For example, merging streams from different models, treating more than two modalities
is called multi-modal learning (Ngiam et al., 2011). Splitting a stream into multiple sub-
components can tackle multi-task learning (Ruder, 2017; Schmidhuber, 2018). Those two
fields are, by no means, new, but the simplicity of combining models and using them for
different tasks spurred great interest in the machine learning community.
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The next section introduces the reinforcement learning paradigm and how it was combined
with deep learning in recent years.

1.3 Reinforcement Learning
Drawing its inspiration from Dynamic Programming (DP) (Bellman, 1957), Reinforce-
ment Learning1 (RL) aims to solve sequential decision-making in uncertain environments
or Learning by trial and error in non-deterministic worlds (Sutton et al., 2018). The
ultimate goal is to discover the best strategy in each state, called the policy. Repeated
interaction is mandatory as doing an action in the same configuration can lead to different
outcomes due to the environment stochasticity. The best strategy is the one that gathers
the maximum amount of reward along its trajectories, following sections describe more
formally how to numerically assess a policy’s quality and compare policies.

RL differs from DP by the fact that the environment dynamic is unknown. Approximate
Dynamic Programming methods learn a model of the environment and apply DP tech-
niques, whereas reinforcement learning directly learns to navigate by trial and error.

In the following section, we will cover all the notations, objectives, and some classical
algorithms used in RL. Notations follow Sigaud et al., 2008 and a list of symbols can also
be found at the end of the thesis.

1.3.1 Learning to interact with the environment: Markov Deci-
sion Process formalism

Modeling the environment is done using the Markov Decision Process (MDP) paradigm
(Puterman, 2014). At each timestep t, the agent receives a state s ∈ S and chooses
an action a ∈ A according to a policy π ∈ Π. The environement computes a new
state s′, that depends on a transition kernel P and returns a reward r, from the reward
function R : S2 × A → [0, 1] (some environments consider higher rewards, but [0, 1] is
standard).

Ultimately, reinforcement learning algorithms seek to find π∗, the optimal policy. To
compare agents and assess what optimal means, one must consider a numerical criterion,
the higher the value is, the better. The criterion considered in this manuscript is the
discounted cumulative reward, the objective function can be written as:

Eπ

[
∞∑
t=0

γtrt

]
, (1.1)

γ ∈ [0, 1] being the discount factor and Eπ the expection over trajectories when following
policy π. The discounted cumulative reward allows tackling infinite-horizon MDP and to
tune the horizon using the parameter γ. Large γs (close to 1) lead to very long horizons
and small γs generate short-sighted agents.

Thus the MDP is defined as the tuple (S,A, R, P, γ).

1sometimes called Neuro-Dynamic Programming (Bertsekas et al., 1995), highlighting the DP legacy.
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To measure the policy’s quality, we define the value function V : S → R and the state-
action value function Q : S×A→ R. They assess the average quantity of reward received
when following the policy π and are essential to the reinforcement learning paradigm.

∀s ∈ S V π
γ (s) = Eπ

[
∞∑
t=0

γtrt | s0 = s

]
,

∀s ∈ S,∀a ∈ A Qπ
γ(s, a) = Eπ

[
∞∑
t=0

γtrt | s0 = s, a0 = a

]
.

(1.2)

Note that, when writing Vγ or Qγ, γ will be ignored, becoming V or Q. The optimal value
function V ∗ (resp. state-value function Q∗) is defined as :

∀s ∈ S V ∗γ (s) = max
π

V π(s),

∀s ∈ S,∀a ∈ A Q∗γ(s, a) = max
π

Qπ(s, a).
(1.3)

And both value-functions are linked with the following relationship:

∀s ∈ S V ∗(s) = max
a
Q∗(s, a). (1.4)

Thus, the optimal policy π∗ is defined as :

∀s ∈ S π∗(s) = arg max
a

Q∗(s, a). (1.5)

In this instance, π∗ is greedy, it takes the best action indicated by Q. Eq. (1.4) and
Eq. (1.5) highlights that finding Q∗ imply obtaining V ∗ and π∗. Thus, RL practioners
may either: directly learn π∗ or find ways to compute Q∗ to solve an environment.

Efficiency If two algorithms achieve the maximum discounted cumulative reward, one
must consider the number of samples they consume. Thus, a second criterion to consider
is the number of samples needed to discover π∗. A method requiring a low amount of data
is said to have a high sample-efficiency or a low sample-complexity. On the contrary, an
inferior method is said to have a low sample-efficiency or a high sample-complexity.

1.3.2 How to reinforcement learn?

Reinforcement Learning methods can be classified in at least two categories, model-free
and model-based methods. Model-free algorithms learn a value-function or a policy, while
never considering explicitely the overall environment dynamics (thus the name, model-
free). On the other hand, model-based approaches imply learning a transition model,
either by learning the kernel P or other forms of dynamics estimation (forward/inverse
models).

Recent works do not assume anything about the environment dynamics Ha et al., 2018;
Hafner et al., 2020; Schrittwieser et al., 2020 but model-free methods still outperform
their model-based counterpart in discrete actions domains (Hasselt et al., 2019). Thus,
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this thesis focuses on model-free methods, however, later sections (Section 2.1.3.3 and
Section 3.1.2.2) describe how some form of dynamics modelling reduces the sample com-
plexity or refine the exploration.

Model-free methods can be refined in three categories, pure-critics algorithms, pure-actors
and actor-critic algorithms.

1.3.2.1 Learning a Value Function

Pure-critics algorithms estimate the optimal value-function V ∗ (orQ∗) using either Monte-
Carlo estimation or by bootstrapping using temporal differences. The optimal policy π∗
is then derived from the optimal value function by acting greedily w.r.t V ∗ (or Q∗).

Temporal Differences (TD) methods update the current state’s value V (st) by using es-
timates of future states (V (st+1), V (st+2), etc..). The technique is known as boostrapping.
The simplest form of value learning is TD(0) where V (st) is updated using V (st+1)

V (st)← V (st) + α(

TD(0) target︷ ︸︸ ︷
rt + γV (st+1)−V (st)), (1.6)

where α is the learning rate, defining the update’s magnitude. Methods such as SARSA
(Rummery et al., 1994) or Q-learning (Watkins et al., 1992) falls under this category.
Q-learning update rule is defined as follow:

Q(st, at)← Q(st, at) + α(rt + γmax
a′

[Q(st+1, a
′)]−Q(st, at)). (1.7)

At the other end of the spectrum lies Monte-Carlo’s (MC) estimation. MC methods rely
on whole trajectories to estimate the value function instead of using value estimates.

V (st)← V (st) + α(Gn
t − V (st)),

where Gn
t = rt + γrt+1 + γ2rt+2 + · · ·+ γnrt+n.

(1.8)

MC estimates are unbiased but tend to have a higher variance than bootstrapping; thus,
they tend to be less sample-efficient (see Fig. 1.2 for an illustration of MC and bootstrap
methods)

Complementary approaches aims to combine TD and MC methods such as TD(λ) (Sut-
ton et al., 2018; Dayan et al., 1994; Tsitsiklis, 1994), SARSA(λ) (Sutton et al., 2018) or
Q(λ) (Harutyunyan et al., 2016).

TD(λ) can be understood as one particular way of averaging n-step return Gn. This
average contains all the n-step return, each weighted proportionally to λn−1, where λ ∈
[0, 1]:

V (st)← V (st) + α(Gλ
t − V (st)),

where Gλ
t =(1− λ)

∞∑
n=1

λn−1Gn
t ,

and Gn
t = rt + γrt+1 + γ2rt+2 + · · ·+ γnrt+n.

(1.9)
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Figure 1.2: Illustration of Monte-Carlo vs Boostrap vs DP (Image Source:
https://www.davidsilver.uk/wp-content/uploads/2020/03/MC-TD.pdf)

Function Approximation Storing and iterating over every state is impractical when
the number of states is large or even infinite (in continuous domains). Thus, approximat-
ing the value function (or policy) becomes necessary to tackle larger problems. Linear
approximation version of classical dynamic programming were proposed for example in
the game of checkers (Samuel, 1988) and later in reinforcement learning : LSTD (Bradtke
et al., 1996), LSPI (Lagoudakis et al., 2003), TD(λ) (Tsitsiklis et al., 1997). Non-linear
approximation, especially neural network, was popularized by Tesauro, 1995 with TD-
Gammon and later (coulom2002thesis; Riedmiller, 2005; Ernst et al., 2005) proposed
to adapt reinforcement algorithm with neural networks or regression-trees. When using
function approximation, policies and value functions are parametrized by θ, a vector of
parameters, thus we adopt the following notation : Qθ, Vθ for value-functions and πθ for
policies.

1.3.2.2 Learning a Policy

Policy-Learning algorithms directly search the policy space. Policy gradient (PG) meth-
ods (Williams, 1992; Sutton et al., 1999a) differentiate an objective function surrogate
(Eq. (1.1)) and update the policy according to its gradient. The general update rule
is:

θ ← θ +
∂

∂θ
J(θ). (1.10)

The central question is how to compute ∂
∂θ
J(θ). The simplest method rely on computing

gradient’s Monte-Carlo estimates :

∇θJ(θ) =
T−1∑
t=0

∇θ log πθ (at | st)Gt, (1.11)

which in plain english gives : "Sample a trajectory, if the return is positive, increase the
probability of what the agent did, if the return is negative, decrease the probability."

Stemming from this update rule, different methods refines gradient computation by using
second-order methods such as Natural Policy Gradient (Kakade, 2001). For a complete
overview of first-order and second-order methods, see (Pierrot et al., 2018). On the other
hand, Evolutionary methods (Moriarty et al., 1999) are gradient-free methods, relying on
hill-climbing techniques to optimize the policy.
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Figure 1.3: (Left) DQN model illustration and its actions space. (Right) Illustration of
the input receives by the model, an instance of the Atari Games Environment (Bellemare
et al., 2013). (Image Source: https://www.nature.com/articles/nature14236)

Actor-critic algorithms Last but not least, this category of methods intertwine value
estimation and policy optimization (Konda et al., 2000; Kimura et al., 2000). Since policy
gradient methods rely on monte-carlo estimates, they face a high variance. To reduce it
and increase the sample-efficiency, actor-critic methods learn a value function alongside
the policy. Instead of waiting until the end of a trajectory to recover Gt, V estimates are
used, thus giving the following update rule:

∇θJ(θ) =
T−1∑
t=0

∇θ log πθ (at | st)V (st). (1.12)

Concurrently, V (st) is learned using either Monte-Carlo or Temporal Differences.

1.4 Deep Reinforcement Learning (DRL)

DRL refers to the subfield of RL that uses neural networks to approximate the value
function, the policy, or both. The term emerged after Mnih et al., 2015 achieved strong
performances on video games using visual inputs. They combine CNN, Q-learning and a
couple of tricks (described in Section 1.4.1.2). Working in visual domains was especially
challenging because of the high dimensionality of the state space.

In Section 1.4.1, Q-learning is adapted to fit larger neural networks, and Section 1.4.3
describes how to scale such algorithms.

1.4.1 Deep Q-Learning (DQN)

1.4.1.1 Base model : Framing RL as a Supervised Problem

DQN is conceptually simple, since Neural Networks are good at minimizing well defined
loss, DQN reframes the RL problem as a series of regression tasks. Since Q functions can
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be learnt by minimizing the TD error, the problem is written:

min
θ

rt + γmax
at+1

(Qθ(st+1, at+1))︸ ︷︷ ︸
target

−Qθ(st, at)︸ ︷︷ ︸
estimation


2

. (1.13)

For neural networks to learn correctly and converge, it requires batches of uncorrelated
data (Keskar et al., 2017), an hypothesis which does not hold in RL as trajectories are
sampled sequentially. To avoid wasting samples and update the network with independent
datapoints, transitions are stored in a replay buffer (Lin, 1992). When updating the Q-
function, a batch of randomly selected transitions is sampled from this replay buffer. To
benefit even further from the buffer, one can wait for enough transitions to be collected
before updating Q and superseding old transitions with fresher ones.

A second problem arises when using non-linear function approximation and boostrap
estimates, a problem part of the deadly triad (Sutton et al., 2018; Van Hasselt et al.,
2018). In Eq. (1.13) since the target rt + γmaxa(Qθ(st+1, a)) and the estimate Qθ(st, a)
are computed with Qθ it can quickly spiral out of control. To stabilize the training, a
second network called target network θ′ is used to estimate Q(st+1, at+1) and is updated
less frequently than the main network θ, resulting in the following objective:

min
θ

(
rt + γmax

at+1

(Qθ′(st+1, at+1))−Qθ(st, at)

)2

. (1.14)

1.4.1.2 Spicing up your DQN

Over the years, additionnal seasoning were added to the main DQN recipe. DQN uses
the same values both to select (greedy selection) and to evaluate an action (max operator
in Q-learning). This makes it more likely to select overestimated values, resulting in
overoptimistic value estimates. Double Q-learning (Van Hasselt et al., 2016) breaks this
vicious circle by decorrelating the action selection from the target computation. Dueling
(Wang et al., 2016) separates the Q architecture in two streams : Baseline and Advantage
estimation. A third trick, instead of sampling uniformly in the replay buffer, Prioritized
Experience Replay (Schaul et al., 2016) samples transitions proportionnally to the TD-
error (Eq. (1.14)). Intuitively, the higher the error is on a specific transition, the more it
is replayed. Two more tricks : NoisyNet (Fortunato et al., 2018) introduces noise in the
parameters θ to improve the exploration and Bellemare et al., 2017 learns a distribution
over the return instead of learning the mean. Finally, instead of boostrapping the next
state value Q(st+1, at+1), Q can be boostrapped from the value in n timesteps called n-
step estimation, resulting in a faster training. Combining all these refinements results in
Rainbow (Hessel et al., 2018; Hasselt et al., 2019).

1.4.2 Dealing with Partial Observability

The MDP formalism and thus all preceding definitions rely on the Markov property. The
agent receives a state s that contains all the information necessary to act and remembering
past states is unnecessary. However, many environments do not meet this hypothesis, for
example, first-person games (Fig. 1.4). Even in classical problems such as CartPole, the
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Figure 1.4: Two instances where the observation is partial, on the left, the agent can not
see behind doors and on the right, the view is limited to what is in front of the character.
Thus, a monster in the agent’s back will result in the same observation (nothing in sight),
but a very different state (potential death incoming)!

velocity must be given as input; otherwise, multiple states are necessary to estimate the
cart speed.

Partially-Observable MDPs (POMDPs) (Åström, 1965; Kaelbling et al., 1998) formalize
this problem: environment states s are separated from the agent observations o. Multiple
states can correspond to the same observation; thus, remembering past observations is
necessary to build a belief states. If the resulting belief state is Markovian, any reinforce-
ment learning algorithm can be used to tackle a POMDP.

Two techniques are standard to deal with partial observability. The first and simplest
one, used by Mnih et al., 2015 is to stack the last n observations (usually 4) as input
instead of using only the last one. It circumvents simple problems (such as estimating the
direction of moving objects). However, longer memorization is doomed to fail as stacking
too many observations will drastically increase state size, deteriorating sample efficiency
and generalization.

A second strategy employed by Hausknecht et al., 2015 uses a Recurrent Neural Network
(RNN) on top of the Convolution Network (CNN), giving the agent a working memory
over longer horizons. Similar to information state in the POMDP setting (Cassandra,
1998), the RNN aggregates past observations. This improvement requires modifying
the replay buffer to store sequences of transitions and replay them entirely. Replaying
transitions sequentially breaks the sample independence hypothesis, but training remains
stable if enough sequences are used (Kapturowski et al., 2018). The resulting algorithm
is called Recurrent DQN (RDQN).

1.4.3 Scaling up

DRL enables to train models on very high-dimensional domains. However, more complex
domains also imply longer training times. The original DQN data consumption is equiv-
alent to 38 days of human gameplay. Finding ways to speed up algorithms is essential to
use those methods on more complicated and real-world problems.

DRLmethods benefit differently from the scaling observed inDL. The trend where bigger
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Figure 1.5: Illustration of DQN and Distributed-DQN, the overall architecture stays
the same, only the number of actor collecting trajectories changes. (Image Source:
https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/)

architectures endlessly improve is more subtle in RL. For example, even recent papers on
the Atari benchmark are still using Mnih et al., 2015’s CNN architecture (Kapturowski
et al., 2018).

We can point out a few architectural designs that improve performances over simple
architecture (Chaplot et al., 2018; Parisotto et al., 2020; Ammanabrolu et al., 2019) but
many improvements in the supervised setting do not carry over to RL. Moreover, we are
far from seeing gigantic models that are flourishing in vision and language (Brown et al.,
2020).

The main improvement came from the data collection itself. One of the significant suc-
cesses behind AlphaGoZero (Silver et al., 2017) is the massive self-play trajectories col-
lection. DL in supervised setup requires huge amount of annotated data, DRL requires
trajectories to evaluate the policy or update the value function. In the following section,
we describe Distributed algorithms, a way to increase the number of interactions, in the
same amount of time.

1.4.3.1 Distributed DQN

Gorila-DQN (Nair et al., 2015) defines a general distributed framework for RL and Ape-
X DQN (Horgan et al., 2018) implements this idea in a distributed version of prioritize
replay. Instead of having a single actor2 collecting trajectories in the environment, about

2The term "multi-actor" is not to be confused with Multi-Agent learning (Shoham et al., 2008; Nowé
et al., 2012)).
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Figure 1.6: Comparison in term of time-efficiency (top) and sample-efficiency (bottom)
between : Rainbow vs DQN vs Ape-X vs A3C. (Image Source: (Horgan et al., 2018)
https://openreview.net/pdf?id=H1Dy—0Z)

a hundred actors (to thousands Espeholt et al., 2019) interact in parallel to fill the replay
buffer and the main learner samples from this quickly updated buffer (see Fig. 1.5). It
slightly reduces the sample-efficiency compared to Rainbow but greatly increases the
sample throughput and time efficiency (see Fig. 1.6). R2D2 (Kapturowski et al., 2018)
generalizes the idea to Recurrent DQN (RDQN) by having multiple actors collecting
trajectories in parallel. The replay buffer is also modified to handle trajectories instead
of single transitions. Finally, Espeholt et al., 2019 proposes an improvement over Gorila
architecture to increase the communication speed between actors and the learner called
SEED. In Gorila, each actor stores and computes its policy. Since actors are located
on CPU, the inference time (computing the action) can be slow, especially for bigger
models. SEED improves computational speed by moving everything related to the model
on GPU while still maintaining a very high number of actors (see Fig. 1.8).

1.4.3.2 Policy Gradient and Actor Critic

Distributed data collection for policy gradient methods was first introduced with Asyn-
chronous Advantage Actor-Critic (A3C (Mnih et al., 2016) or A2C for its synchronous
version). To evaluate the current policy π multiple actors collect trajectories, combined
with advantage estimation to reduce the gradient variance.

∇θJ(θ) ∼
T−1∑
t=0

∇θ log πθ (at | st) (rt+1 + γVv (st+1)− Vv (st)) ,

=
T−1∑
t=0

∇θ log πθ (at | st)A (st, at) .

(1.15)

To accurately evaluate a policy π, trajectories should be sampled according to π; other-
wise, a bias is introduced (Munos et al., 2016). To ensure this property, A2C waits for
all the actors to complete their trajectories before updating the policy. Then, as soon as
the update finishes, the learner sends a copy of the updated policy to the actors. Queuing
circumvents Policy Lag, a discrepancy between the policy generating the data and the
policy being updated. Nevertheless, this careful management brings a lot of computation
overhead. Waiting for the actors to complete their tasks wastes time that could be used
to update the policy.
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Figure 1.7: (Left) Two A2C versions, either synchronizing at every environment step and
updating the learner (top) or waiting for every worker to finish their steps.
(Right) Actors/Workers send their trajectories continuously to a queue. Babaeizadeh et
al., 2017 directly uses the trajectory and IMPALA (Espeholt et al., 2018) uses importance
sampling to compensate for the discrepency between workers’ and learner’s policy. (Image
Source: (Espeholt et al., 2018) https://arxiv.org/pdf/1802.01561.pdf

Instead of waiting for each actor, Babaeizadeh et al., 2017 creates a trajectories queue.
Actors push trajectory as soon as an episode ends, and the learner continuously updates
the policy, allowing for more updates and faster training. Authors increase the batch
size to compensate for policy lag, however, they still observe training instability and high
variance.

A more principled solution is to compensate for the discrepancy between policies using
importance sampling (Rubinstein et al., 1981). Espeholt et al., 2018 effectively combines
distributed architecture and importance sampling to reduce the bias introduced by policy
lag (see Fig. 1.7).

1.4.3.3 Trust Region Update

Another way to increase the sample efficiency of distributed training is to use collected
trajectories multiple times. As discussed in Section 1.4.4 and Section 1.4.3.2, off-policyness
brings instability and leads to wrong updates. Updating a policy multiple times using the
same trajectory means that after the first update, the policy changed, so the trajectory
becomes off-policy. To avoid catastrophic updates, TRPO and PPO (Schulman et al.,
2015; Schulman et al., 2017) constrain the policy to stay within a region of confidence
called trust-region. TRPO uses a hard constraint, solved by a linear program, while PPO
uses a clipping objective.

1.4.4 Exploration in Reinforcement Learning

So far, we discussed techniques to update the value/policy when given a trajectory and
a stream of rewards. However, based on the TD(0) update rule 1.6 or policy gradient,
in the absence of rewards, the policy can not be updated. Even when few rewards can
be collected easily, should the agent stick to its strategy, exploiting its current knowl-
edge? Or should it sacrifice immediate rewards and explore more substantially? This
problem is known as the Exploration/Exploitation dilemma, faced by every decision-
making agent. Classical techniques perturb the policy slightly to explore around the
current knowledge boundary such Boltzmann Exploration, ε-greedy (Sutton et al., 2018)
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Figure 1.8: SEED Architecture. On the left, the observations are sent to the batching layer
and the GPU learner computes the corresponding actions (right). Everything is stored
in the replay buffer that continuously sends data for the optimization process (updating
the policy). (Image Source: https://github.com/google-research/seed_rl)

or Entropy-Regularization (Haarnoja et al., 2017). A subsequent chapter dives deeper
into exploration strategies (see Chapter 3).

On-Policy/Off-Policy Exploration requires deviating from the current policy to try
other actions, either for a single step or a longer horizon. Certain methods handle this
deviation naturally and can be updated nonetheless, such as Q-Learning. Those types of
methods are called off-policy because the central policy can be updated even when the
exploratory policy is completely different. On the other hand of the spectrum lies on-
policy methods. They require unicity between the main policy and the exploratory one;
otherwise, a bias is introduced (Munos et al., 2016). Methods such as SARSA and REIN-
FORCE (Williams, 1992) refine the current policy, thus are on-policy. However, the degree
of "on-policyness" varies from method to method. As described in Section 1.4.3.2, A2C-
GPU (Babaeizadeh et al., 2017) is more on-policy than IMPALA (Espeholt et al., 2018)
because importance sampling compensates for small differences between policies. DQN
and its extensions is not completely off-policy (Fedus et al., 2020), as the authors point
out "Reducing the oldest policy in the replay buffer improves performance", suggesting
that learning from more on-policy data improves performance. To assess off-policyness,
Batch RL or Offline RL (Wiering et al., 2012; Gulcehre et al., 2020; Fu et al., 2020)
focuses on training agents with logged data in an offline fashion with no further envi-
ronment interactions. This setup requires maximum off-policyness as policies can not be
evaluated in the environment.

1.5 Chapter Conclusion

Deep Reinforcement Learning techniques allow training models on more complex tasks,
bigger state space, and longer horizons but still face inherent difficulties. Final policies
are brittle when dealing with new situations (Witty et al., 2018; Cobbe et al., 2019),
and overspecialization makes them very sensitive to adversarial attacks (Gleave et al.,
2019; Hussenot et al., 2020b). Distributed Reinforcement Learning pipeline is becoming
more intricate for the sake of data collection. It increases algorithms’ speed by orders
of magnitude but deteriorates the sample efficiency (see Fig. 1.6). However, as Sutton,
2019 pointed out, methods that scale with the amount of computing stand the test of
time. Increasing sample-efficiency while maintaining scalability should be at the heart

22

https://github.com/google-research/seed_rl


of reinforcement learning methods. Changing model, adapting exploration strategies,
changing how the transitions are dealt with, each component plays an important role
in increasing the sample-efficiency. The following chapter will tackle this problem by
focusing on how action spaces are handled and what could be improved to reduce the
data-consumption.
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Chapter 2

Of Actions And Constraints.

This chapter is the first stopover of our action-centered reinforcement learning journey. In
the RL paradigm, action spaces lie at the lowest level of abstraction. It is the atomic level
of interactivity. The following sections serve four purposes. First, to propose a taxonomy
of action spaces for both continuous and discrete domains. Secondly, to define the notion of
minimality and contextual ineffectiveness as tools to analyze large action spaces. Thirdly,
to present embeddings methods, increasing the learning speed by transferring knowledge
between similar actions. Fourthly, more exotic action spaces are covered, such as hybrid
and stochastic action spaces.

2.1 Action Space Zoo

2.1.1 Domains example

Reinforcement Learning is a unifying view on the sequential decision-making problem. Al-
gorithms are designed with generality in mind, and tools such as Rllib (Liang et al., 2018),
ACME (Hoffman et al., 2020), Coach (Caspi et al., 2017) or Rlberry (Domingues et al.,
2021) facilitate reproducibility by providing state-of-the-art algorithms. Uniformization
on the environment side was also a requirement, and the gym library (Brockman et al.,
2016) was a significant step in this direction. However, generality and standardization
come at a certain cost and may hide a great deal of diversity. This section studies action
spaces, the interface between the agent and its environment. We take a look at some
classical environments and extract a general taxonomy.

Grid Worlds Starting point of almost any RL researcher, grid worlds are discrete
domains where an agent is tasked to reach a specific destination (exit). State space being
discrete, actions are also discrete and finite. Performable actions are moving directions,
usually, NORTH, SOUTH, WEST, EAST, which can be executed one at a time. Recent
instances such as Minigrid (Chevalier-Boisvert et al., 2019) complexify the state space
by adding partial-observation, object encoding, and a variety of tasks such as instruction
following and exploration challenges. The action space is also adapted. Since a state is a
partial view, directions are relative to the agent angle. Thus, the action space becomes
TURN LEFT/RIGHT, GO FORWARD. Additional actions related to objects are also
added, such as PICK UP, TRIGGER, DROP.
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Mujoco (Todorov et al., 2012) A second very popular benchmark is Mujoco, a phys-
ical simulator. Most tasks are based on moving rigid bodies (sticks, legs, ants, humanoid)
with different joints. Actions are forces applied to joints at every timestep. Thus, the
agent sends a scalar within a finite interval (usually [−1, 1]) for each joint.

Atari (Bellemare et al., 2013) The Arcade Learning Environment (ALE) was pop-
ularized with DQN. Since the Atari2600 is a real console, the interface and actions were
standard across all games (55 different ones). The joystick selects an orientation (including
diagonals) and could be combined with the button (triggering different effects, depending
on the game). However, RL researchers adapted the action space for each game, sim-
plifying the learning process but losing research opportunities to design algorithms that
cope with this constraint.

Vizdoom/DMLab (Kempka et al., 2016; Beattie et al., 2016) Both environ-
ments are sets of first-person problems. Shooting opponents, discovering hidden maze
parts, partial observability, and long-horizon are at the core of those benchmarks. Like
Minigrid, the agent can move left, right, forward, diagonally (discrete actions) and com-
bine them with some special actions, such as TOGGLE, OPEN, or SHOOT.

TextWorld (Côté et al., 2018) This environment is a set of textual games reminiscent
of the 70s and 80s computer terminal game. Every interaction is textual; the agent receives
a string describing the surroundings and inventory. For the action space, the agent selects
a verb and an object. The number of actions thus depends on the vocabulary size, which
can become quite significant in the most challenging instances. Nethack (Küttler et al.,
2020) is a procedural dungeon, similar to TextWorld, where actions are a combination of
a verb and an object.

Starcraft/Dota Vinyals et al., 2017; Berner et al., 2019 Both environments are
recent computer games where players confront each other, combining strategy and real-
time skills. The action space is very diverse, where a player can move characters, build,
buy items, cast spells, teleport, etc. The combinations are huge, creating an action space
close to 1026 actions in Starcraft (Vinyals et al., 2019).

Environments are illustrated in Fig. 2.1. From the different benchmarks, we can draw
some regularity. There exist spaces where actions can be enumerated, counted and spaces
where actions lie on a continuous spectrum. Spaces where a single action is sent and
spaces where actions are compound. The following sections address a more systematic
taxonomy and analyze the algorithmic differences to solve each type of environment.

2.1.2 Discrete vs Continuous Domains

Action spaces are split in two general categories : Discrete Finite Action Spaces (DAS),
and Continuous Bounded Action Spaces (CAS).

Discrete Finite Action Spaces (DAS) take two forms. The simplest one is an Index
Form, where each action is an integer between 0 and k − 1 where k is the total number
of actions. At each timestep, an agent chooses one action among this set. In simple grid
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Figure 2.1: (Left to Right, Top to Bottom) Minigrid (Chevalier-Boisvert et al.,
2019), Atari game (Breakout) (Bellemare et al., 2013), Mujoco (Todorov et al., 2012),
TextWorld (Côté et al., 2018), Starcraft (Vinyals et al., 2017)

worlds, four actions are available (up, down, left, right); the Arcade Learning Environ-
ment (Bellemare et al., 2013) uses between 4 and 18 discrete actions (game dependant),
Dialog systems choose among a fixed number of utterance or word (Chandramohan et al.,
2010).

The second type of action space is Vectorial. At each timestep, the agent acts by sending
a vector of integers. In many applications, each dimension represents an independent com-
ponent. For example, one dimension steers the horizontal axis, and the second dimension
the vertical axis.

Traditionally, practitionners convert the vectorial form to a index one by taking the prod-
uct of each dimension (Mnih et al., 2015; Kempka et al., 2016). However, the original
structure is lost, and the combinatorial size might create issues (see Section 2.1.3). The
other way around (index→ vectorial) is not straightforward, Sharma et al., 2017; Phelps,
2020 group actions based on expert knowledge. For example, Sharma et al., 2017 trans-
forms the action domain in Atari to have three independent axes (horizontal movement,
vertical movement, fire).

Continuous Bounded Action Spaces (CAS) Similarly to DAS, CAS can have
a single dimension (scalar continuous action) or be multi-dimensionnal (an action is a
vector). Continuous space is usually associated with robotic setups (Todorov et al., 2012;
Levine et al., 2016). Thus, CAS are bounded: they can only take on values within a
finite interval due to physical constraints (Chou et al., 2017). All Mujoco (Todorov et al.,
2012) environments falls under this category.

Different Action Spaces, Different Methods DAS can be tackled by any type
of model-free methods : Value-based learning algorithms such as Q-Learning (Watkins
et al., 1992; Mnih et al., 2015; Hessel et al., 2018), policy-gradient (Williams, 1992) or
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Figure 2.2: Visual Representation of CAS and DAS both in discrete and vectorial form
(illustrated with two dimensions).

actor-critic methods (Mnih et al., 2016; Schulman et al., 2015; Schulman et al., 2017).
On the other hand, CAS can only rely on policy-gradient and actor-critic (Lillicrap et
al., 2016; Fujimoto et al., 2019). Value Learning algorithms can not tackle continuous
domains in their current definition for two reasons. Greedy action selection is done by
taking the value function’s max. This max operation is not straightforward in very large
or continuous domains, which makes greedy selection impossible. In Q-learning’s case,
boostrapping is also impossible due to the max operation in the update (see Eq. (1.7)
and Section 2.1.3.6). And secondly, value-network’s policy are implicit. Thus, selecting
actions by sampling from the policy is impossible. Actor-critics are designed to solve this
problem, the actor converging to an explicit sampler of the critic’s distribution (Lazaric
et al., 2008).

From Continuous Methods To Discrete Policy gradient methods (on-policy) are
less sample-efficient than off-policy (value-based) methods (Ibarz et al., 2021). Value-
based techniques benefit from bootstrapping and tend to have less variance, which is
more efficient. Off-policy techniques (see Section 1.4.4) can benefit from re-using past
trajectories to update the value function, which adds to the efficiency. One last problem
regarding continuous domains, they are harder to explore. Discrete actions can easily
be counted; thus, adapting the exploration to the time an action was taken is simple.
However, in continuous domains, agents need to model an action density and explore less
selected regions, which is challenging. Thus, continuous domains are harder to work with
and practitioners, when possible, switch to discrete domains by relying on discretization
(Jaśkowski et al., 2018; Andrychowicz et al., 2020; Tavakoli et al., 2018). Tang et al.,
2020b compared PPO/TRPO with different discretizing-level to their continuous coun-
terpart and show that DAS are more robust and achieve better asymptotic performance.
However, discretizing requires careful tunings. A coarse scheme brings inaccuracy, and an
overrefine increases exponentially the action domain. Recent articles propose an adaptive
discretization for unidimensional continuous space but still need to be adapted for higher
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dimensional domain (Sinclair et al., 2019; Sinclair et al., 2020).

Designing action space Few theoretical analyses explore how shaping the action space
impacts learning. An empirical evaluation, assessed how modifications to the action space
alleviate the exploration problem (Kanervisto et al., 2020). The broad conclusion is that
reducing the action space to the minimum necessary seems to be a viable option. RL
algorithms struggle to discover contextual actions, actions that work only in certain con-
texts, as discussed in subsequent section (Section 2.1.3.4) and in a following contribution
(Section 2.3). Removing those actions might prevent convergence to the optimal policy
but alleviates exploration problems by reducing the search space. For example, capping
the force in Mujoco might prevent an agent from running but reduces the problem of
learning to stand or to walk. Overall, those reduction techniques are done by hand and
set in stone, but they drastically impact learning. Data-driven methods replaced carefully
designed feature engineering, and handcrafted action space should be addressed with the
same spirit.

2.1.3 Tackling Large Action Spaces

While using function approximation, the bigger the action space, the more accurate the
approximation needs to be (Thrun et al., 1993). As a result, model training is unsta-
ble and rarely used actions are overestimated (Bahdanau et al., 2016; Zaremba et al.,
2016). This problem poses a significant challenge in many cases described earlier: Fine
discretization, vectorial space, or environments where the number of actions is enormous
such as recommender systems, language models, and industrial plants. We introduce
three concepts to analyze the complexity of action spaces: Minimality, action similarity,
and entanglement.

2.1.3.1 Space Minimality and Contextual Ineffectivness

A minimal action space is defined as a space that restricts its actions to the one used by
the optimal policy π∗. Piot et al., 2017 elaborates on a similar notion called associated
set policy. The associated set-policy of π indicates, for each state, the set of action that
might be choosen by π. A minimal action space would be the union set policy of π∗
(all the actions required to follow π∗). For example, the pause button will never be used
in 99% of games, thus ignoring this action is beneficial. Some actions might be more
subtlely useless, such as a steering angle never used in a driving game, but overall this
type of action is not overrepresented in the current setup. Thus, we introduce a Local
Action Space (LAS) As defining the set of available actions in state s. LAS can also
be non-minimal if π∗ is not using certain actions in s. Finding every local action space
essentially means discovering the optimal policy, but quickly discovering some LAS and
generalize to unseen state might alleviate sample-complexity.

LAS allows the definition of Contextual Ineffectiveness (CI) : actions which are non-
effective in certain context. For example, in games where some interactions are triggered
only in front of objects (’pick up’ or ’open’). Discovering which actions are relevant in
which context can drastically increase the sample efficiency by easing exploration. A
follow-up section (Section 2.1.3.4) describes in which environment CI happens and a
contribution (Section 3.2) addresses contextual effectiveness, using it as an exploration
signal.
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More generally, when considering a class of MDPs, an action set can be minimal for
certain instances but not for others. For example, multi-task agents might use a set of
actions to solve one task (opening doors) and leave aside inventory, while another task
does not involve doors and requires picking up objects. Thus, taking into account the goal
when considering contextual ineffectiveness should be of interest to future works.

2.1.3.2 Facilitating learning by leveraging action similarity

If many actions trigger similar outcomes, an agent wastes time trying all of them in-
dependently. Transferring knowledge between related actions is key to increase sample
efficiency. Action similarity and contextual ineffectiveness are not completely orthogonal:
If action A and B are similar and A is non-effective in particular contexts, it would be
appropriate to transfer this knowledge to B. For example, in text-based games, if the ac-
tion "pick-up sword" is not working, "pick-up katana" is likely to fail too. The following
section on action embeddings addresses this problem.

2.1.3.3 Action Embeddings

Intuition from NLP and Vision Embeddings learning is a subset of representation
learning (Bengio et al., 2013), it converts discrete variables to a continuous domain. For
example, words in NLP are one-hot encoded. However, one-hot representation cannot
encode semantic proximity between words. Thus, embeddings have been mostly used
in NLP to organize words in a space where similarity and composition can be easily
computed (Mikolov et al., 2013). Words like "crown" and "hat" should be close in this
space, and "atomic" should be quite far. How to build such space from data? A simple
word embedding method could take the following form: two words are converted from
one-hot encoding to a continuous vector using a MLP. Both vectors are brought closer
using a mean-square error loss if two words appear in the same sentence. In this example,
the space is constrained directly, but Word2Vec (Mikolov et al., 2013) constrained the
space using a downstream completion task and backpropagating through the network
trains the embeddings.

Computing embeddings for inputs is now standard for many NLP tasks (Pennington et
al., 2014; Brown et al., 2020) but computer vision methods (Akata et al., 2015) propose
to embed label (or class) in a classification task. For example, "baboon" and "gibbon"
should have a closer pixel distribution than "car," this type of information should alleviate
learning and generalization to new classes. RL methods could benefit from the same
general ideas. For example, in a dialog system (Chandramohan et al., 2010; Gao et al.,
2018; Ferreira et al., 2013), each action is a dialog act (or a sentence). Algorithms could
benefit from knowing that some actions are similar: "Greetings!" and "Hello" lead to
closer outcomes than "Calm down, take a pill."

Using pre-computed embeddings in RL van Hasselt et al., 2009 describes a method
to use a continuous domain to tackle a discrete action space. In mountain-car, instead of
using a set of discrete forces, they compute the policy in the continuous domain and then
discretize the action. It enables generalization between similar actions, which reduces
sample complexity. However, the action space consists of a unidimensional steering force,
which is already almost continuous and smooth. Thus, 1. finding the closest action is easy
2. The continuous domain already encode similarity. However, many domains require a
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different approach as action similarity can not be easily computed, and finding the closest
discrete action can take time.

Dulac-Arnold et al., 2015 generalizes van Hasselt et al., 2009’s method to higher dimen-
sional domains, allowing any pre-defined embeddings. To do so, the policy outputs a con-
tinuous action and uses a nearest-neighbor algorithm (Fix et al., 1989) to find the closest
discrete action. To pre-compute action embeddings, Tessler et al., 2019 uses predefined
word embeddings (such as Word2Vec) and they compose actions using an Orthogonal
Matching Pursuit algorithm.

The following section proposes to improve upon pre-computed embeddings or design al-
gorithms that can learn them concurrently with the policy.

Learning Action Embeddings Tennenholtz et al., 2019 proposes Act2Vec, an embed-
ding method using expert demonstrations. Similar to Word2Vec (Mikolov et al., 2013),
they encode action with respect to their surroundings. Actions that appear in the same
context should have a similar function, thus should be close in the representation space.
They showed that action embeddings encode a notion of similarity between actions, and
clusters represent high-level semantic concepts. They also propose to go beyond 1-step
action embeddings and embed sequences of actions (see Fig. 2.3).

Chandak et al., 2019 learns an inverse model (predicting the action between st and st+1)),
using supervised learning and few collected trajectories to build an action representation.
This constrains the embedding to contain information about the transition. Chen et al.,
2019 refines this approach by using a probabilistic transition model. Finally, Pritz et al.,
2020 builds an action representation coupled with state representation, learned alongside
the policy. They also showed that embeddings trained alongside the policy were able to
transfer quickly to new action domains.

We expect to see more work in this direction as action representation increases efficiency,
generalization, and adaptation to new actions.

2.1.3.4 Discussion on Contextual Ineffectiveness

We previously described how to handle actions similarity, and now look to reduce such
large action space by detecting and discarding useless action as defined in Section 2.1.3.1.

Formally, we defined Contextual ineffectiveness (CI) as actions that, in some situations,
do not modify the state. Thus, learning to ignore this action set quickly is key to increase
the sample efficiency ofRL algorithms. Subsequent Section 2.3 and Section 3.2 are framed
under this paradigm.

Availability known before acting Some environments already remove unavailable
actions when not required by the context. Thus, at every time step, the action set can
vary. For example, some Dialog System, depending on the conversation’s stage, propose
a limited amount of utterances. To cope with this challenge, He et al., 2016b; He et al.,
2016a propose a Q-Learning approach. They compute a state, and action embedding for
each action available, then perform a dot product between the two. Since the number of
actions is small, action selection and bootstrapping using an argmax are quick.
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Figure 2.3: (Left) Actor-critic architecture using action embeddings by Dulac-Arnold et
al., 2015. (Right) Example of action embeddings using Act2Vec in a simple navigation
domain (Tennenholtz et al., 2019)

Availability known after acting Zahavy et al., 2018 eliminates actions based on a
signal given by the environment, indicating if a performed action was valid or not. Rapidly
discovering which action will not be valid is essential to complete the environment. They
learn a validness model and use a contextual bandit to assess its certainty. Then, they
remove actions from the action set when the confidence is above a certain threshold.

Huang et al., 2020 provides an empirical analysis of the last two setups. They compare
two methods: invalid masking and penalty masking. When the availability is known,
they mask the invalid actions when querying and updating the policy (invalid masking).
They compare it to penalizing the policy using a small negative reward after the action
is performed (penalty masking). They conclude that actor-critic methods can learn when
masking the policy logit and even increases sample efficiency compared to penalizing
invalid actions.

Availability not known Alshiekh et al., 2018 considers environments where an external
system rejects potentially harmful actions. The agent outputs a set of actions, ordered
by preferences, and the simulator picks the best-allowed action.

Previous papers treat actions that are contextually ineffective as harmful, thus try to avoid
them quickly. In a subsequent part (Section 3.2), we propose an algorithm that detects
contextual ineffectiveness and rewards the agent when it finds out in which context the
action is useful. The algorithm reduces ineffective calls and increases relevant action,
increasing the sample efficiency and exploration.

2.1.3.5 Independency vs Entanglement

We describe two ways to analyze action space: action similarity and space minimality. A
third aspect is dimension independence that we formalize in this section.
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For example, Sallans et al., 2004 describes a bit matching task where the goal is to find a
binary code called a key. Actions are binary vectors, and the reward counts the matching
bits. If all bits are correct, the agent receives the maximum reward. If half of the bits are
right, it halves the reward, etc. Thus, bits can be selected independently of other bits,
and the relation between action and reward is straightforward. On the contrary, it would
be much harder to learn an action space where changing a single bit change drastically
the reward. This bit matching example proposes a second important notion to analyze
action space: the entanglement (or its opposite, the independence).

Factored-MDPs (Dean et al., 1998; Sallans et al., 2004) are a particular case of vecto-
rial spaces (continuous or discrete) and specifically deals with independent actions. The
term describes weakly-coupled MDPs (Meuleau et al., 1998), meaning that each action
controls an independent part of the environment. Factored-MDPs assume an already
disentangled action space (Peshkin et al., 1999; Meuleau et al., 1998; Guestrin et al.,
2002; Dulac-Arnold et al., 2012; Cui et al., 2016; Pierrot et al., 2021) or (Metz et al.,
2017) in continuous domain. Other work design neural architecture to tackle this prob-
lem (Yoshida, 2015; Tavakoli et al., 2018; Song et al., 2019).

Nevertheless, very few papers try to simplify the action space by finding independent
components. Sharma et al., 2017 transforms the action domain in Atari to have three
independent axes (horizontal, vertical, fire). The transformation is done by hand, but
this structural change alleviates the learning problem. Action embeddings are one way of
giving structure, but constraining vectorial spaces to have orthogonal components is an
exciting topic that future work should address.

2.1.3.6 Max Operation Over All the Actions is Long

In large action spaces, Q-learning quickly faces scalability issues as mentioned in Sec-
tion 2.1.2. Indeed, such methods face prohibitive cost of the max operator, both to ex-
tract the policy and for bellman backups. The problem occurs both in continuous action
settings and in large discrete spaces. Alternative methods try to model the distribution
induced by the critic using Gibbs sampling (kimura2007multi) or Sequential Monte
Carlo (Lazaric et al., 2008). Other works rely on cross-entropy method (Lim et al., 2018),
Mixed Integer Programming (Ryu et al., 2019) to perform the maximization step. (Van
de Wiele et al., 2020) propose to learn a function that reduces the action set considered
instead of iterating over all the actions.

Lastly, Pazis et al., 2011 proposed a different value function to avoid the max operation.
Q is an exhaustive action enumeration, and V is the extreme action aggregation (average
overall a’s). They proposed a H function that aggregates over a subset of actions.

2.1.4 Working with Hybrid Action Spaces

Hybrid spaces are vectorial, but some dimensions are discrete, and others are continuous.
Stochastic Actor-Critic and Policy Gradients methods naturally handle such spaces (Ne-
unert et al., 2020), but pure-critics do not because of the continuous dimensions, see
Section 2.1.2. However, some methods proposed in Section 2.1.3.6 work nicely in this con-
text (Van de Wiele et al., 2020) as they generalize Q-learning to continuous domain.

Hausknecht et al., 2015; Masson et al., 2016; Xiong et al., 2018 propose methods for a
particular instance called Parametrized -MDP : A discrete number of actions, but each
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action is parametrized by a real value. All methods combine a discrete algorithm and a
continous one. The same strategy is used in the large scale Dota environment (Berner
et al., 2019).

2.1.5 More Exotic Action Spaces

To conclude this overview, we present variations of the action spaces that do not fit in
categories and methods abovementioned. Sunehag et al., 2015 defines Slate-MDP’s, a
type of vectorial action space where multiple actions are sent at the same time. The
central point of slate-MDPs is that the agent chooses a tuple of actions instead of taking
one action. Then the environment chooses which one to execute in the underlying MDP.
They take as an example a recommendation system. An agent proposes a set of items,
but the user chooses whatever he requires within this set; thus, the action selection is not
100% in the agent’s hand.

Boutilier et al., 2018 proposes a type of MDP where the action availability is stochastic.
To say it differently: in the same state, actions availability can vary. Suppose one wants
to use Q-learning directly. Each state is augmented with all possible subsets of actions. In
that case, it creates an exponential blow-up in state space size. Thus, Stochastic MDP’s
require tailored methods.

2.1.6 Conclusion

In this section, we introduced a taxonomy of discrete and continuous space, both taking a
scalar and vectorial form. We studied other forms of action spaces such as hybrid, slate,
and stochastic and surveyed the problem of large action spaces. Concepts to study action
spaces are sketched, such as space minimality, entanglement, and action similarity. The
following contribution builds upon this survey as Section 2.3 and Section 3.2 are placed
under the contextual ineffectiveness analysis. In Seurin et al., 2020a, availability is known
after acting and modifies DQN to integrate this information. In the next sections, we
show how it complements safe and constraint RL methods to foster safer and quicker
learning.

2.2 Deep Garcia and Fernandez

The more constraints one imposes,
the more one frees one’s self.

Igor Stravinsky

In this section, we take a look at constraint reinforcement learning. Constraining re-
inforcement learning might be beneficial for two reasons : first, for safety reasons. by
avoiding certain hazardous state or reaching an objective while minimizing the energy
consumption, RL could be applied to real world system with greater confidence. Sec-
ondly, constraining may reduce the exploration space and thus, focus on relevant parts of
the environment.

In Section 2.2, we update García et al., 2015 survey by giving recent directions that
combine safe reinforcement learning and non-linear function approximation. We deem an
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update necessary as hard-constraining and guaranteeing that neural networks will behave
correctly in unseen situations is still an open problem (Goodfellow et al., 2015; Pei et al.,
2017; Silva et al., 2020).

2.2.1 Worst Case Min Max formulation

In critical applications, such as healthcare and energy management, considering the most
harmful situation is essential. The average reward might hide unlikely but highly haz-
ardous events. Let us illustrate with an automatic surgeon application. The reward
received by the surgeon is proportional to the speed at which it operates. A careful sur-
geon A takes between 95 and 105 minutes to intervene on a patient. One of its caffeinated
colleague (B) takes 20 minutes to perform the same operation, but 25% of the time, an
over-energetic cut causes complication that takes 340 minutes to fix. They both take on
average 100 minutes to intervene, but it seems reasonable to prefer A over B. The first
category of methods that fall within the safe RL class modifies the average reward crite-
rion to consider such variations. For example, Markowitz, 1959 introduces a penalization
using the variance (σ) of the return, creating an objective taking the following form :
maxπ E

π [
∑∞

t=0 γ
trt]− σπ [

∑∞
t=0 γ

trt].

Other methods consider worst-case scenarii. Anticipating such situations is tedious as
designing every edge case is untractable. Instead of carefully designing scenarios for each
application, adversarial rl methods learn the optimal policy alongside an adversary. The
adversary tries to exploit the agent’s weaknesses by coming up with the hardest situation
(either applying small modification to the state or leading the agent into complicated
state).

The adversarial setting can be expressed as a two-player, zero-sum game, called Markov
Game (Littman, 1994; Perolat et al., 2015) in theMDP formalism. Morimoto et al., 2000
use this formulation to learn against a disturbing agent. The disturber tries to perform
the worst possible state modification. At the same time, the control agent acts stoically
with respect to noises and optimally with respect to rewards.

2.2.2 Risk-Sensitive Criterion (CVaR)

Adversarial attacks can be arbitrarily difficult, and being robust to every perturbation
is impossible (Gleave et al., 2019; Hussenot et al., 2020b; García et al., 2020). Thus,
most methods rely on a relaxed worst-case criterion, the Conditionnal Value at Risk
(CVaR Artzner et al., 1999; Rockafellar et al., 2000). Instead of lower bounding the worst
possible (but very unlikely) incident, CVaR methods maximize a percentile of the reward
distribution. It effectively discards near-impossible outcome, but still deals with more
frequent events associated with low rewards (or high cost).

Chow et al., 2015; Chow et al., 2017 surveyed CVaR reinforcement learning and proposed
a minmax formulation, analoguous to the worst-case setting (people with a control theory
background might want to check (Tamar et al., 2016)). Methods of this class tackle the
CVaR objective using policy-gradient updates to fit non-linear function approximation.
For example, Pinto et al., 2017 adapts the TRPO objective to stay within a region of safe
update, Tang et al., 2020a; Singh et al., 2020 use the distributionnal setting (Bellemare
et al., 2017) and Rajeswaran et al., 2016 use an ensemble of model.
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2.2.3 Constrained Criterion

A Constrained Markov Decision Process (CMDP Altman, 1999) is an MDP augmented
with constraints that restrict the set of possible policies using additional cost functions,
like usual reward R.

Although optimal policies for finite CMDPs with known models can be obtained by linear
programming (Simão et al., 2021), methods for high-dimensional control are lacking.
Achiam et al., 2017a proposed a constrained policy optimization algorithm. It adapts the
TRPO objective to ensure the policy satisfies constraints after each update. Pham et al.,
2018; Dalal et al., 2018 project π(s) within regions that satisfy constraints. They achieve
good performance on robotics tasks and keep the policies within constraints but still need
to demonstrate robustness in richer domains.

A special case of CMDP called Budgeted-MDP (Boutilier et al., 2016) where actions
cost a certain amount of budget, that the policy needs to take into account. Carrara
et al., 2019b proposed to tackle this problem by learning concurrently multiple policies
for different budget amounts.

2.2.4 Conclusion

We briefly presented different optimization criteria to address safe reinforcement learning.
They are a necessary step to tackle real-world applications. However, "It is impossible
to completely avoid undesirable situations in high-risk environments without a certain
amount of external knowledge" - (García et al., 2015). The survey presents ways to
incorporate external information such as Imitation, Teacher Advice, or Exploration (the
latter, covered in Chapter 3). To complement those approaches, we want to incorporate
knowledge on the action space inspired by industrial applications.

2.3 First contribution (IJCNN’19):
I’m sorry Dave, I’m Afraid I Can’t Do That - Deep
Q-learning from Forbidden Actions

Real-world environments (e.g. industrial robots or power grids) are generally designed
with safety constraints in mind implemented in the shape of valid actions masks (see
Section 2.1.3.4) or contingency controllers. For example, over-temperature monitoring
regulates servo-motors present in robots, disabling motors when approaching their heat
limit. Cleaning robots also automatically u-turn when facing an obstacle, preventing
damage to the machine and its environment. Violating constraints thus results in rejected
actions or entering in a safe mode driven by an external controller, making RL agents
incapable of learning from their mistakes.

Beyond critical systems, many areas could benefit from forbidden actions. In Natural
Language Generation (Reiter et al., 1997) or Dialogue systems (Chandramohan et al.,
2010; Chen et al., 2017), syntax parsers or auto-correct mechanisms can act as an exter-
nal rejection signal. Indicating which word does not fit a generated sentence or point-
ing out grammar mistakes could improve language generation by greatly reducing the
search space, leveraging language learning and generation. These examples show a po-
tential misalignment between the standard RL frameworks and the potential real-world
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applications. Of course, designing constraints to avoid critical situations requires expert
knowledge about the system to be controlled. However, we argue that many environments
already implement such contingency measures (obstacle avoidance, circuit breaker).

Thus, we consider a simple type of external constraint prevalent in many real-world prob-
lems. When the agent is about to perform a hazardous action, the system rejects it and
prevents it from doing so. The agent then follows the natural dynamics of the environ-
ment (Alshiekh et al., 2018). We aim at building an algorithm that learns from these
rejected actions.

In the general Markov Decision Process (MDP) framework (Puterman, 2014), a rejected
action, from the agent’s point of view, would be seen as a transition to the same state.
Everything happens as if the action had no effect. In earlier section, we coined the term
Contextual Ineffectivness (Section 2.1.3.1). We argue that it misrepresents the potential
harmfulness of the action and prevents the agent from learning (See Section 2.4.1 for a
detailed explanation). Especially, we want Q-learning algorithms to benefit from those
constraints. They would learn faster to avoid hazardous states and alleviate exploration
problems.

Learning when the environment takes over Orseau et al., 2016 design agents to
not take into account feedback from the environment. For example, for an agent op-
erating in real-time, it may be necessary for a human operator to prevent executing a
harmful sequence and lead the agent into a safer situation. However, if the learning agent
expects to receive rewards from this sequence, it may learn in the long run to avoid such
interruptions, for example, by disabling the off-button. Under this setup, they showed
that Q-learning could be interrupted safely, supporting our hypothesis that Q-learning is
not integrating the feedback signal.

In the coming sections, we propose a constrained version of Deep Q-learning (DQN) (Mnih
et al., 2015) by adding a classification loss that maintains Q-values of forbidden actions
below valid ones. We validate our method empirically on two tasks: A maze navigation
using visual features and a text-based game. Experiments show that vanilla DQN strug-
gles at solving tasks with rejected actions. Our algorithm reduces the number of calls
to forbidden actions and accelerates convergence to near-optimal policies compared to
standard DQN.

2.4 Method

2.4.1 Feedback Signal and MDP-F
In this section, we formalize how to incorporate forbidden actions in the MDP framework.
We define a Feedback Signal, a Boolean indicating whether an action was accepted by the
environment or rejected. A MDP-F is then defined as a tuple < S,A, P,R, γ,F > where
F is a function mapping a state st and action at to a binary value.

F : S× A→ {0, 1},

with 0 meaning the action is valid and 1 meaning unsafe/rejected action.

Vanilla Q-learning struggles to differentiate between actions flagged as forbidden and valid
ones. Consider the following example: an agent in a state s takes action a flagged as for-

37



Classification Network

Valid UNK Not ValidValid

Margin

Q-Values

State

UNK

Action taken by π

Figure 2.4: Illustration of frontier loss.

bidden (F(a, st) = 1). When applying the Q-learning update (Q(s, afeed) = r(st, afeed) +
γmaxQ(st+1, at+1)), since the action was rejected, r(st, at) = 0 and st+1 = st. Thus the
update becomes Q(s, afeed) = γmaxQ(s, a′). In current Deep Reinforcement Learning
setup γ is usually set between 0.99 (Mnih et al., 2015) and 0.999 (Pohlen et al., 2018).
DQN-like algorithm will require lots of transitions to make the Q-function of forbidden
actions smaller, thus wasting time to explore and collect useful samples. We emphasize
that an invalid action indicates an action that could be harmful, so rapidly identifying
and avoiding those potentially dangerous situations is crucial.

2.4.2 Frontier loss

We take inspiration from the learning from demonstrations paradigm where one wants
to use expert demonstrations to induce the usage of preferred actions in RL agents. For
example, Piot et al., 2014; Hester et al., 2018 slightly modify the Q-learning update to
nudge expert actions-value above other actions.

The optimal policy π∗ (derived from Q∗) will never take a forbidden action as it keeps the
agent in the same state. Based on this assumption, we can derive the following rule: for
every state encountered during training, the Q-values of all forbidden actions should be
below the one of each valid actions, within a certain margin m. This defines a new loss
we want to minimize that we call frontier loss JF :

JF(Q) = Q(s, a−)−min
a∈Vs

[Q(s, a)−m], (2.1)

where Vs = A ∩ {a s.t. ,F(s, a) = 0},
and a− ∈ A ∩ {a s.t. F(s, a) = 1}.

The margin m is an hyper-parameter that depends mostly on the Q-values magnitude.
In our experiments, since the rewards are bounded between 0 and 1, the margin is small
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(m = 0.1). Zaremba et al., 2016 uses a similar frontier technique but only for binary
Q-values (0 or 1).

Frontier loss and classification The main problem regarding this objective function
is the need to know which actions are valid for every state. In most tasks, it’s unlikely
that the agent visits a specific state more than once (e.g. visual domains). Thus, function
approximation is required to estimate which actions are valid in a given state. To achieve
this, we train a neural network to predict, for each state, which action will be valid.
Along agent’s trajectories, for every action taken, we store the corresponding feedback,
creating a dataset of < s, a, F (s, a) > tuple. The network, taking the state as input,
predicts a binary value for every action (0 for valid, 1 for invalid). For each state, since
only one action is labelled, we need to adapt the training regime. We can achieve this
by masking the gradients from untaken action, only backpropagating for the action the
policy π took. The training procedure is illustrated in Fig. 2.5.

To consider an action as valid and to avoid early mis-classifications, we put a threshold
after the sigmoid function. The action is considered valid if its activation is above the
threshold.

DQN-F The resulting algorithm is DQN-F , combining the frontier loss and Deep Q-
learning. We build a composite loss by using weighting factors ηDQN and ηF to balance
the DQN and the frontier losses:

J(Q) = ηDQNJDQN(Q) + ηFJF(Q).

For all the experiments described below, we use ηDQN = 1 and ηF = 0.5.

Algorithm 1: Frontier loss and classification network.
Data: minibatch b from replay buffer R, Q-network Q, classification network C
Result: Frontier loss

1 loss = 0;
2 for (state s, action a, feedback F (s, a)) in minibatch b do
3 if F (s, a) = 1 then
4 a− ← a . Renaming for clarity
5 valid_set ← C(s); . Estimated valid action set
6 minQ_valid ← minai∈valid_set[Q(s, ai)]; . Smallest Q for valid actions
7 if minQ_valid < Q(s, a−) - m then
8 loss = loss + || minQ_valid - m - Q(s, a−) ||2

9 . Bring Q(s, a−) below the smallest valid with margin

10 return loss;
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Figure 2.5: Training procedure: the model predicts the validity for each action, and we
only backpropagate for the action the agent took.

2.5 Experiments

2.5.1 MiniGrid Enviroment

The first environment is a visual gridworld called Minigrid (Chevalier-Boisvert et al.,
2019). The goal is to reach the green zone starting from a random point (see Fig. 2.6).
Since we want to study how the agent can integrate feedback about the validity of actions,
we increase the action space size. To do so, we create k different room types where the
color of the background indicates which set of actions is valid. The primary action space
is composed of 3 actions (Turning Left, Turning Right, Going Forward) for navigation,
but each action is duplicated k times. The action space size becomes 3× k but only 3 are
valid in a given room. For example, in the red room, only actions 11, 12, 13 are valid,
and all the others are returning a not valid feedback. In our setup, we use k = 5 making
a total of 15 actions.

The state space is an embedding of the agent’s point of view represented as different
feature maps allowing the use of convolution layers (more details in Chevalier-Boisvert
et al., 2019). Since the environment is partially observable, we stack the last three frames
as in Mnih et al., 2015 but we do not use frame-skipping. An episode ends when the agent
reaches the green zone or after 200 environment steps (illustrated in Fig. 2.6).

2.5.2 TextWorld Environment

TextWorld (Côté et al., 2018) is a text-based game where the agent interacts with the
environment using a verb and an object. States are textual description of the agent’s
surrounding and the inventory content. Games can be generated, varying in difficulty by
changing the number of rooms and number of action before reaching the objective, varying
the number of random objects within each rooms etc. We generated a game composed of
3 rooms, 7 objects, and quest length of size 4. An example is shown in Fig. 2.7. In this
context, we modified the environment to fit our needs. The action space is composed of
all <action> <object> pairs, creating a total of 46 actions. Most of the actions created
will be rejected by the simulator since they will not fit the situation the agent is facing.
For example, the action "take sword" will be rejected if no sword is available.
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Figure 2.6: An instance of the MiniGrid
problem. The state is a partial view of the
maze (point of view of the agent) to avoid
problem regarding partial observability, we
stacked the last 3 frames.

Figure 2.7: An example of interaction
in TextWorld. The agent has access
to: what happened after its latest action
("You open the door, it’s very dark in
here, [...]"), a room description ("Attic,
an empty room, maybe you should head
back. You can go North, East") and its
inventory content ("Keycard, Mask").

Figure 2.8: DQN-F (yellow) DQN (blue), the shaded area represents one standard de-
viation. Results are averaged over 5 random seeds. Left: Number of times a forbidden
action is taken. Right: Percentage of success over time.

2.5.3 Model and architecture

During all experiments, we use Double Deep Q-Network (DQN) (Hasselt et al., 2016)
with uniform Experience Replay and ε-greedy exploration. In the Minigrid environment,
we use a Convolution Neural Network (LeCun et al., 1995) with a fully-connected layer
on top. In TextWorld, inventory, observation, and room descriptions are each encoded by
an LSTM (Hochreiter et al., 1997) processed by a fully-connected layer on top.

The classification network matches exactly the architecture used by DQN, i.e. ConvNet
for Minigrid and LSTM’s for TextWorld, the only difference resides in training (explained
in Fig. 2.5).

2.6 Results

In Fig. 2.8 and Fig. 2.9, we compare DQN and DQN-F . In the Minigrid domain, DQN
struggles to find the optimal policy and reaches the exit only 20% of the time. Most of
the time, DQN is able to solve one room but fails to find the set of actions for each room,
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Figure 2.9: DQN-F (yellow) DQN (blue). Results are averaged over nine random seeds.
The shaded area represents one standard deviation. Left Number of invalid actions taken
by the agent. Right Percentage of success over time.

performing forbidden actions over and over. On the contrary, the frontier loss is guiding
DQN-F , reducing the number of feedback signals from the environment, and helping to
find the optimal policy. Those results are echoed in the TextWorld experiment. DQN
solves the game half of the time, and the other half does not encounter the reward and as
a result, can not solve the game. This could be mitigated by having a better exploration
strategy, but it shows that shaping Q-values with the frontier loss is enough to reduce the
sample complexity and guide exploration. We want to emphasize that in early stages of
training, the classification network performs poorly due to low quantity of samples but it
does not hurt the performances of DQN-F , it is able to quickly learn to avoid forbidden
actions. Visualization of Q-values at different stages of training can be found in Fig. 2.10.
They clearly illustrate the benefits of using the frontier loss in those setups. Even in the
early training stage, the separation between valid actions and invalid is clear, alleviating
the difficulty of finding the optimal policy. Whereas DQN Q-values are really hard to
distinguish from each other.

2.7 Conclusion
Critical real-world systems are constrained by safety measures that prevent hazardous
actions. We hypothesize that Q-learning, a model-free reinforcement learning method
struggles with those constraints. In this chapter, we proposed a frontier loss, combined
with a classification network, to help DQN. This algorithm nudges rejected actions Q-
values below Q-values of valid actions. We showed empirically that the frontier loss
reduces the number of calls to rejected actions and guides early exploration, helping
Deep Q-learning achieving higher performances. We demonstrate its effectiveness on two
benchmarks, a visual grid world and a TextWorld domain.

Broader scope At the moment, applying the frontier to continuous action space is
non-trivial but it would be a key to use this type of algorithm in robotics and more
realistic settings. Another future improvement would be to combine the loss with action’s
embedding could allow generalization to unseen actions. For example, learning that "Take
sword" is rejected "Grab sword" shouldn’t be considered by the algorithm.
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Figure 2.10: Top: Q-values, after 150 episodes of training (30 000 environment steps) for
a handpicked state. Bottom: Q-values, after 100 000 training steps on another state.
Left: DQN; Right: DQN-F .
We can clearly see how the frontier-loss shapes Q-values, separating forbidden action
(blue) from good ones (green). This cherry-picked example illustrates well how the Q-
distribution is modified, even at that early training stage.
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Chapter 3

Exploring using Action Relevance

Lost in the forest, an agent must find ways to survive. A small house is near him, with few
apple trees (dense reward, easily accessible). The agent can exploit its ressources until
the end or try to explore the forest more deeply. Deeper exploration is more dangerous,
as many paths lead to dead trees and hostile animals, but potentially lead to better
ressources such as meat, bigger fruits etc. (sparser rewards).

Exploration has thus been one of the longest-running problems of RL (Mozer et al.,
1990; Sato et al., 1988; Schmidhuber, 1991; Barto et al., 1991). This chapter sketches
a taxonomy of current explorations methods and link them to traditional reinforcement
learning strategies (TL;DR in Fig. 3.1). Secondly, by focusing on the actions and their
consequences, we propose a method that exploits knowledge about the action space, called
Don’t Do What Doesn’t Matter.

3.1 Press E to Explore

Instead of chronologically enumerating methods, we will rely on the classification first
proposed by Thrun, 1992 and refine each category as we go. The broader taxonomy
proposes two categories: directed and undirected exploration. Undirected methods do
not use any domain knowledge and ensure exploration by introducing stochasticity in the
agent’s policy. In many simple environments, dithering allows enough deviation from the
current policy to collect rewards spread in the environment. On the other hand, Directed
methods try to explore the space more methodically, relying on policy and environment
uncertainty, state count, etc.

3.1.1 Undirected Methods in Exploration

The two most common approaches are Epsilon-greedy, forcing random actions with
probability ε and taking the optimal action with probability 1-ε, and Boltzmann ex-
ploration where an agent draws actions proportionally to the Q-values magnitude. The
agent will pick up actions associated with higher Q-valuesf more often.

Although they enable learning the optimal policy in the tabular setting, they require a
number of steps that grow exponentially with the state space (Whitehead, 1991; Kakade
et al., 2003; Strehl et al., 2008) and careful scheduling (Ghavamzadeh et al., 2020; Jin

45



Figure 3.1: Chapter TL;DR : Exploration methods
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et al., 2018). Despite this inherent lack of sample efficiency, they remain valuable task-
agnostic exploration strategies in large-scale problems with dense rewards (Mnih et al.,
2015).

Besides, recent undirected exploration methods have been developed to fit deep neural
architectures, such as injecting random noise in the network parameter space (Fortunato
et al., 2018; Plappert et al., 2018). Yet, undirected methods still struggle with sparse
reward signals (Plappert et al., 2018), or any task requiring deep exploration (Osband
et al., 2016; Kearns et al., 2002).

The sparse reward problem occurs when rewards are not a dense stream. Since rewards
guide policies, its absence leave the agent wandering aimlessly. Thus, pushing the agent
to navigate and explore the environment, even in the absence of reward is essential in this
setting.

3.1.2 Directed Methods in Exploration

3.1.2.1 Modeling the uncertainty

Bayesian Machine Learning is designed to model uncertainty and uses it as an exploration
signal. High uncertainty defines points of interest, thus, agents should explore more deeply
when unsure about the environment or the policy’s behavior.

Bayesian Deep Q-Learning (Azizzadenesheli et al., 2018) directly applies this idea to Q-
network by replacing the last layer of linear regression with Bayesian linear regression,
using the variance of the posterior as an exploration signal. Osband et al., 2018; Osband
et al., 2016 use a similar idea by using an ensemble of Q-functions. Among others,
uncertainty has been used to guide exploration towards ill-estimated state-action pairs by
relying on the Bellman equation (Geist et al., 2010; O’Donoghue et al., 2018).

Despite being theoretically sound, these methods face scaling difficulties and still struggle
with the sparse reward problem.

3.1.2.2 Optimism and Intrinsic Motivation

In the following section, we study another directed exploration approach based on reward
bonuses to densify the reward signal. In this setting, the environment reward, namely
extrinsic rewards, is augmented with an exploration guidance reward signal, namely
intrinsic rewards (Singh et al., 2004; Simsek et al., 2006). This intrinsic reward spurs ex-
ploration by tipping the agent to take a specific course of actions. Furthermore, it makes
undirected exploration mechanisms applicable again by spreading milestone rewards dur-
ing training. Inspired by cognitive science, this intrinsic reward often encodes a degree
of “novelty,” “surprise,” ,“curiosity” (Oudeyer et al., 2007; Berlyne, 1965; Schmidhuber,
1991), “learning progress” (Lopes et al., 2012) or “boredom” (Schmidhuber, 1991; Oudeyer
et al., 2008). These common intrinsic motivation mechanisms are broadly categorized into
three families: count-based, dynamic-prediction-based, and goal-based methods.

Count-based exploration aims to catalog visited states (or action-states pairs) along
episodes to detect unseen states, and drive the agent towards them. It has first been
proposed as an exploration heuristic in the early days of RL (Thrun, 1992; Sato et al., 1988;
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Figure 3.2: Random Network Distillation : A learning network tries to predict the output
of a random network with fixed weights. The error is used as an exploration signal, high
prediction error indicates novelty. The random network acts as a locally robust hash
function (changing one pixel does not completely change the output, thus the learning
network should be able to accurately predict states visited many times by the agent.

Barto et al., 1991), before being framed as an intrinsic exploration reward mechanisms in
the tabular case (Strehl et al., 2008; Kolter et al., 2009)1.

Pseudo-counts were then introduced to approximate the state counts (Lopes et al., 2012),
where pseudo-counts were estimated through different density models to produce intrinsic
rewards. Density models range from contextual trees (Bellemare et al., 2016), generative
neural models, e.g. PixelCNN (Ostrovski et al., 2017), or autoencoders combined with
a local hashing function (Tang et al., 2017). Differently, Random Network Distillation
(RND) Burda et al., 2019b uses the prediction error between a randomly initialized
network and a trained network as a state-count proxy. The random network acts as a
pseudo-count proxy by modeling a locally preserving hashing function. At the same time,
the regression error diminishes with the visit count (illustrated in Fig. 3.2). Badia et al.,
2020b uses this technique and compose it with multiple intrinsic bonuses by getting both
inter and intra-episodic reward mechanisms.

Finally, other methods incorporate back the reward in the pseudo-count state represen-
tation using value-state representations (Martin et al., 2017) or the distance between two
successor features (Machado et al., 2020).

Yet, count-based methods may explore the immediate surrounding and heavily depend
on the state representation quality.

Dynamics prediction exploration aims to encourage the agent to uncover the en-
vironment dynamics rather than cataloging states. Such agents learn a world model
predicting the consequences of their actions; and they take an interest in challenging and
refining it (Haber et al., 2018; Oudeyer et al., 2007; Oudeyer, 2018; Erraqabi et al., 2021).
In RL, this intuition is transposed by taking the current state and action to predict the
next state representation; the resulting prediction error is then turned into the intrinsic
reward signal. Approaches mostly differ in learning the state representation: Stadie et

1Count-based were also used as an incertitude metric, which later lead to other exploration strategy
based on optimism under uncertainty (Strehl et al., 2008; Auer et al., 2008; Jaksch et al., 2010)
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Figure 3.3: Illustration of a dynamic model used to compute intrinsic reward. A for-
ward model (predicting st+1 from st and at) is used to compute the intrinsic reward (In
practice, more complicated dynamics can be used, such as using an inverse model). In-
trinsic Curiosity Module (Pathak et al., 2017) uses prediction error as a signal to explore.
RIDE (Raileanu et al., 2020) rewards a great change between φ(st) and φ(st+1).

al., 2015 compresses raw observations with autoencoders, RND (Burda et al., 2019a) uses
random projections, VIME (Houthooft et al., 2016) captures the environment stochas-
ticity by maximizing mutual information with Bayesian Networks. In parallel, Pathak
et al., 2017 argues that the state representation should mainly encode features altered
by the agent. They thus introduce an inverse model that predicts the action given two
consequent states as a training signal. Achiam et al., 2017b; Azar et al., 2019 compute
the intrinsic reward across multiple timesteps predictions to better estimate information
gain. Other forms of dynamics modeling have been explored with empowerment (Mo-
hamed et al., 2015; Gregor et al., 2016) or auxiliary-task prediction (Kamienny et al.,
2020).

Yet, those intrinsic rewards based on prediction errors may attract the agent into irrelevant
yet unpredictable transitions. Another drawback is reward evanescence: the intrinsic
reward slowly vanishes as the model is getting better. Schmidhuber, 1991; Oudeyer et
al., 2007 originally proposed to measure the mean error evolution rather than immediate
errors to account for the agent progress. Differently, Raileanu et al., 2020 replace the
error prediction by the difference between consecutive representation states, removing the
need to compute a vanishing prediction error (Model illustrated in Fig. 3.3).

Finally, environment dynamics can be used to compute a knowledge frontier, states that
are reachable, but which lead to unseen states (Topiwala et al., 2018; Yamauchi, 1998).
Frontier states can be rewarded with a reachability model (Savinov et al., 2019), directly
resetting to frontier states (Ecoffet et al., 2019) or storing them in memory (Ecoffet et al.,
2021) and finally computing them using count-methods (Zhang et al., 2020).

Goal-based methods provide identifiable and intermediate goals to reward the agent
upon completion. Such approaches perform an explicit curriculum by slowly increasing
the exploration depth through goal difficulties. They often build on top of the UVFA
framework to condition the agent policy (Schaul et al., 2015). Goal-based methods may
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Figure 3.4: An illustration of AMIGO (Campero et al., 2020). The policy model controls
the red triangle and must reach the blue ball. A goal-setter proposes a task, illustrated
by the red square. Goals should be of increasing complexity to alleviate policy’s learning.
(Image Source: https://arxiv.org/pdf/2006.12122.pdf)

take several forms ranging from hindsight experience replay (Andrychowicz et al., 2017),
curriculum (Nguyen et al., 2021), goal-generation (Forestier et al., 2017; Campero et
al., 2020; Sukhbaatar et al., 2018; Florensa et al., 2018; Colas et al., 2019) and hand-
crafted goals (Hermann et al., 2017). Yet, they may face unstable training, complex goal
definition (Cideron et al., 2020), or require fully observable environments (Campero et al.,
2020). For a more detailed taxonomy, see (Colas et al., 2020c)

Intrinsic motivation has also been explored in hierarchical reinforcement learning (Barto
et al., 2004; Kulkarni et al., 2016; Duminy et al., 2021), but it goes beyond the scope of
this chapter.

It is worth mentioning imitation learning strategies such as (Hussenot et al., 2020a) which
retrieve intrinsic motivation signals from human trajectories or methods that selects which
demonstrations to choose from (Nguyen et al., 2012; Nguyen et al., 2021).

3.2 Second Contribution (IJCAI’21):
Don’t Do What Doesn’t Matter, Intrinsic Motiva-
tion from Action Usefulness

So far, exploration strategies rarely mention action structure or action usage, mainly
focusing on state structure. Action are only used to build a transition model.

We therefore aim to shift the emphasis from state novelty distributions towards novel
action distributions to develop new intrinsic motivation signals, and consequently, change
the exploration behavior. More precisely, we aim at encouraging the agent to visit states
that allow rare and relevant actions, i.e. actions that can only be performed in rare
occasions.

Imagine that an infant discovers that pushing a button triggers a light; s/he is likely to
push everywhere to switch on new lights. By repeating his/her action, the infant may
eventually uncover new buttons, and start associating the action push to the relevant
state features of buttons. A similar observation can be made within virtual environments
and embodied agents. We expect the agent to first detect rare actions to learn while being
nudged towards the states that allow performing such actions.

In this spirit, we propose a new approach we name Don’t Do What Doesn’t Matter
(DoWhaM). Instead of uniformly seeking for novel states, DoWhaM encourages ex-
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ploring states allowing actions that are rarely useful; those rarely relevant actions are
generally hard to retrieve by random exploration. In other words, the agent is intrin-
sically rewarded when successfully performing an action that is usually ineffective. We
observe that this simple mechanism induces a remarkably different exploration behavior
differing from the common state-count and curiosity-based patterns.

Formally, DoWhaM keeps track of two quantities for each action: the number of times
the action has been used and the number of times the action led to a state change. The
resulting intrinsic reward is inversely proportional to the number of times the action has
led to a state change. Noticeably, DoWhaM primarily keeps count of actions, and can
thus be defined as an action count-based method. Besides, tracking actions (as opposed
to states) naturally scales in RL: in the discrete case, there is generally less than a few
thousand actions, allowing for an exact count. In the continuous case, actions may easily
be discretized without using complex density models (Tang et al., 2020b).

We study this approach in the MiniGrid procedurally generated environment (Chevalier-
Boisvert et al., 2019). Despite their apparent simplicity, these tasks contain intermediate
decisive actions, e.g. picking keys, which have kept in check advanced exploration methods
(Raileanu et al., 2020; Campero et al., 2020). We empirically show that DoWhaM
reduces the sample complexity by a factor of 2 to 10 in a diverse set of environments while
resolving the hardest tasks. We then study how DoWhaM amends the agent’s behavior
and compare it to other methods. Finally, we also analyze whether DoWhaM may lead
to unwanted agent behaviors when facing environments with multiple interactions, which
we refer as the BallPit-problem.

3.3 Notation Adjustment

In this setting, the reward function is decomposed into an extrinsic reward returned by
the environment re(st, at) and a new intrinsic reward ri(st, at, st+1). Therefore, the new
reward function is defined as : R(st, at, st+1) = re(st, at, st+1) + βri(st, at, st+1) where β
is an hyperparameter to balance the two return signals. In practice, the extrinsic reward
is often a sparse task-specific signal while the intrinsic reward is usually a dense training
signal that fosters exploration.

3.4 Don’t Do What Doesn’t Matter!

3.4.1 Intuition

While most actions consistently move the agent to a new state, some actions do not affect
specific states, i.e., the agent remains in the same state after performing it. We hence
define an effective action if the new state of the environment is different from what it
would have been if no action were to be taken. For instance, in tasks involving embodied
interaction, such state-action pairs include moving forward while facing a wall or grabbing
non-existent objects. Although one may update the MDP only to keep effective actions,
such an operation may not always be feasible or desirable in practice. It is thus up to the
agent to learn the correct actionable states through exploration. Noticeably, those rare
state-actions are often landmarks in the environment dynamics, e.g., triggering buttons
or opening doors. One idea is thus to bias the agent to visit states that effectively allow
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rare actions. DoWhaM encapsulates this exploration pattern by (1) detecting rare but
effective actions, (2) rewarding the agent when performing these rare actions in context
where they are effective. In short, rare and effective actions are the ones that matter.

3.4.2 Method

For every action ai, the agent tracks two quantities. The number U of times an action
has been used during past trajectories, and the number I of times the action impacted,
i.e. changed the state st 6= st+1

2. Formally, given the whole history of transitions across
episodes H = (sh, ah, sh+1)

H
h=0:

UH(a) =
H∑
h=0

1{ah=a}, (3.1)

IH(a) =
H∑
h=0

(1{ah=a} × 1{sh 6=sh+1}), (3.2)

where 1 is the indicator function and × the product operator.

Intuitively, the ratio IH(a)/UH(a) indicates how often the action a has been effective along
the history H. For instance, actions that move an agent would update the state most of
the time, therefore U(ai) ≈ I(ai). On the other hand, grabbing objects only changes the
state in rare occurrences, and U(ai) ≥ I(ai). We then define the bonus as:

B(at) =
ξ
1− IH(at)

UH(at) − 1

ξ − 1
, (3.3)

where η is a hyperparameter. This function is a continuous approximation of an exponen-
tial decay exp−ξI

H(at)/UH(at). It ranges from 1 when IH = 0 and goes to 0 when IH = UH.
Small ξ leads to a uniform bonus on all actions whereas large values favor rare and efficient
actions (see Section 3.4.3 for an illustration).

An intrinsic reward mechanism often requires to discount the intrinsic bonus within an
episode. Hence, it prevents the agent from overexploiting, and being stuck in local explo-
ration minima. Inspired by theoretically sound count-based methods (Strehl et al., 2008),
we thus divide the previous ratio by an episodic state-count.

Finally, we want to reward actions only in context where they are effective, thus the agent
is rewarded only when st 6= st+1, defining the final DoWhaM intrinsic reward:

riRAM(st, at, st+1) =

{
B(at)√
Nτ (st+1)

if st 6= st+1

0 otherwise
, (3.4)

where τ = (st, at, rt)
l
t=0 is an episodic trajectory of length l andN τ (s) =

∑l
h=0 1{s=sh} is an

episodic state count which is reset at the beginning of each episode. In high-dimensional
state space, the episodic state count can be replaced by a pseudo-count (Bellemare et al.,
2016) or an episodic novelty mechanism (Badia et al., 2020a).

2In noisy or dynamic environment, it is possible to relax or learn this as mentioned in Section 3.6.3.
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Action-based Counter As counting methods may sound anachronistic, we emphasize
again that actions are ascertainable in RL, i.e. they can be easily enumerated. As opposed
to state-counting which requires complex density models (Ostrovski et al., 2017), discrete
actions suffer less from the curse of dimensionality, and can easily be binned together in
the case of a large action set (Dulac-Arnold et al., 2015). Besides, although DoWhaM
relies on an episodic state count, a raw approximation is sufficient as it encodes a reward
decay.

3.4.3 Decay illustration

The DoWhaM reward is a function of the action ratio: IH(a) the number of times an
action impacted the state over UH(a) the number of usage. The function B Eq. (3.3) acts
as an exponential decay starting from 1 when the ratio is 0 (the action never impacted
the environment so we want to reward it highly when it is actually modifying the state)
and giving 0 reward when the ratio is 1. The action a modifies the state all the time;
thus, a is of low interest.

In Fig. 3.5, we illustrate how the parameter ξ shapes the intrinsic reward.
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Figure 3.5: Ratio decay function illustrated for different values of ξ

3.5 Experimental settings
We evaluateDoWhaM in the procedurally-generated environments MiniGrid (Chevalier-
Boisvert et al., 2019). MiniGrid is a partially observable 2D gridworld with a diverse set of
tasks. The RL agent needs to collect items and open locked doors before reaching a final
destination. Despite its apparent simplicity, several MiniGrid environments require the
agent to perform exploration with few specific interactions, and state-of-the-art procedures
still struggle to solve them (Raileanu et al., 2020). For each experiment, we report the
rolling mean (over 40k timesteps) and standard deviation over 5 seeds.

3.5.1 MiniGrid Environment

Each new MiniGrid world contains a combination of rooms that are populated with objects
(balls, boxes or keys), and are linked together through (locked/unlocked) doors. Balls and
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Figure 3.6: Environments used to assess all methods. From top left to down right :
MultiRoom (N7S4, N12S10), ObstructedMaze (2Dlh, 2Dlhb), KeyCorridor (S4R3, S5R3),
ObstructedMaze(1Q, Full)

keys can be picked up or dropped and the agent may only carry one of them at a time.
Boxes can be opened to discover a hidden colored key. Doors can be unlocked with keys
matching their color. The agent is rewarded after reaching the goal tile. At each step,
the agent observes a 7x7 representation of its field of view and the item it carries if any.
The agent may perform one out of seven actions: move forward, turn right, turn left,
pick-up object, drop object, toggle. Noticeably, some actions are ineffective in specific
states, e.g. moving forward in front of a wall, picking-up/dropping/toggling objects when
none is available. Following (Raileanu et al., 2020; Campero et al., 2020), we focus on
three hard exploration tasks, which are illustrated in Fig. 3.7.

MultiRoom(N-S): The agent must navigate through a sequence of empty rooms con-
nected by doors of different colors. A map contains N rooms, whose indoor width and
height are sampled within 2 and S − 2 tiles. MultiRoom maps entail limited interaction
as the agent only has to toggle doors and no object manipulation is required. Yet, this
bare-bone environment constitutes a good preliminary trial.

KeyCorridor(S-R): The agent must explore multiple adjacent unlocked rooms to re-
trieve a key, open the remaining locked room, and collect the green ball. A map contains a
large main corridor connected to 2×R square rooms of fixed indoor dimension S−2. Solv-
ing a KeyCorridor map requires the agent to perform a specific sequence of interactions,
which makes the task more difficult than MultiRoom.

ObstructedMaze: The agent must explore a grid of rooms that are randomly connected
to each others in order to collect a blue ball. Some of the doors are locked and the agent
has to either directly collect the keys or toggle boxes to reveal them. Besides, distractor
balls are added to block door access. ObstructedMaze can quickly become a hard maze
with false leads and complex interactions.
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Figure 3.7: Comparison between intrinsically motivated methods on multiple MiniGrid
tasks.

3.5.2 Experimental Setting

3.5.2.1 Training

We follow the training protocol defined in (Raileanu et al., 2020; Campero et al., 2020). We
use 3 convolution layers with a kernel size of 3, followed by 2 fully-connected layers of size
1024, and an LSTM of hidden size 1024. Finally, we use two separate fully-connected layers
of size 1024 for the actor’s and critic’s head. We train our model with the distributed actor-
critic algorithm IMPALA (Espeholt et al., 2018) TorchBeast implementation (Küttler et
al., 2019).

3.5.2.2 Baselines

We here cover three families of intrinsically motivated reward mechanisms: counting
method (COUNT, RND), dynamic-based (RIDE) and goal-based (AMIGO).

COUNT (Strehl et al., 2008) is a counting method that baits the agent to explore less vis-
ited states. In this setting, we use a tabular-count to catalog the state-action pairs.

RND (Burda et al., 2019b) acts as a states’ pseudo-count method. The states are first
projected with a random network, while a second network is trained to predict this state
representation. The normalized prediction error is then used as an intrinsic reward (Illus-
trated in Fig. 3.2).

RIDE (Raileanu et al., 2020) is a dynamic-based model that builds upon (Pathak et al.,
2017). It computes the difference between two consecutive states, encouraging the agent to
perform actions that lead it to a maximally different states (illustrated in Fig. 3.3).

AMIGO (Campero et al., 2020) is a hierarchical goal-based method, splitting the agent
into two components: an adversarial goal-setter and a goal-condition learner that adver-
sarially creates goals (illustrated in Fig. 3.4).

55



3.6 Experimental Results

3.6.1 Base environment

Fig. 3.7 displays the results on 8 MiniGrid tasks. Noticeably, DoWhaM outperforms
all the baselines in sample complexity, and even solves among the most complex worlds.
In MultiRoom, we observe that DoWhaM outperforms RIDE, RND, and COUNT in
the simple setup (N7S4), and matches RIDE’s sample complexity performance on the
challenging setup (N12S10). Note that DoWhaM does not seem to be penalized by
the small amount of possible interactions. In KeyCorridor and ObstructedMaze, RIDE,
RND, and AMIGO learn in the easiest instances but they struggle as the difficulty,
i.e. exploration depth, increases as first observed in (Campero et al., 2020). On the
other hand, DoWhaM consistently solves all the environments, even the challenging
ObstructedMaze-Full.

We derive two hypotheses from those results: (1) State-count rewards exhaustively explore
the state space, reducing the overall exploration coverage (2) Curiosity-based rewards do
not emphasize enough salient interactions and then explore new but irrelevant state-action
pairs. Although such approaches were successful in many environments, those exploration
behaviors may fail as soon as specific interactions must be regularly performed in the
exploration process. In the following, we thus try to assess those hypotheses.

3.6.2 Intrinsic exploration behavior

We first conduct a series of experiments without external reward to study what type of
exploration each bonus creates. In other words, what are the inductive exploration biases
that arise from the different intrinsic reward mechanisms. To do so, we rely on two
metrics: the state visit (plotted as heatmaps) and the action distribution (plotted as bar
plots).

3.6.2.1 Rewardless Playground

Playground is designed to visually assess how exploration strategies behave when lots of
object are present. Playground is a 14x14 grid, objects are always spawned at the same
location but the color changes from episode to episode. An episode lasts 200 steps, no
external reward is given and the agent is always spawned in the center, facing a random
direction. This sandbox environment has no specific goal, akin to a kindergarten. This
environment contains multiple keys, balls, and boxes located in the corners and spawns
the agent facing a random direction. Fig. 3.8 shows the agent state visits for during 106

training timesteps when only using the intrinsic reward signal.

We observe that RND and DoWhaM are both attracted by the objects and explore the
space thoroughly, whereas RIDE and COUNT remain close to the center and seldomly
reach the objects. This observation backs our results in ObstructedMaze2Dlh, where RND
and DoWhaM are the only methods exploring thoughtfully the environment. It also
confirms our hypothesis that standard state-based approaches, e.g., COUNT, may not be
pushed enough to perform in-depth exploration. Surprisingly, the curiosity-based method
RIDE has not been strongly incentivized to interact with remote objects, suggesting that it
may suffer from its dependency on the state representation. However, these experiments
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Playground RND RIDE COUNT DoWhaM

Figure 3.8: States visitation in Playground environment. Bright orange means more visits,
darker and blue means less visits
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Figure 3.9: Playground Action Distribution for all baselines. The same pattern can be
observed, baseline algorithms scarcely use pickup, drop and toggle and when they do, it
does not impact the environment. DoWhaM on the other hand discovers how to use
pickup and drop.

do not explain the performance difference between RND and DoWhaM on the most
challenging setups. Thus, looking at the action distribution is necessary.

Qualitative Analysis After training the agents in Playground, we wanted to assess
visually the difference between RIDE and DoWhaM. In Fig. 3.10 are displayed two
scenarios where we force paths and only inspect the intrinsic bonus given. We see that
DoWhaM rewards are sparser and pushes the agent to interact with environment’s key el-
ements where as RIDE’s reward are harder to dissect and less relevant to the objects.

Rewardless KeyCorridorS4R3 We then study the behavior that is solely intrinsically
motivated in the KeyCorridor environment to better grasp the DoWhaM performance
in this setting. Similarly, we trained the agents on KeyCorridorS4R3 for 107 timesteps
with only the intrinsic reward signal, and results are displayed in Fig. 3.11.

All the baselines – RIDE, RND, and COUNT – remain mostly stuck in the central corridor,
where DoWhaM explores rooms more uniformly. More impressively, the DoWhaM
agent naturally picks the key, enters the locked room, and grabs the ball 7% of the times
without any extrinsic reward. COUNT, RIDE, and RND all have a success ratio below
0.6%, which may explain why DoWhaM manages to solve this task. Further details can
be found in Fig. 3.10 and Table 3.1.

We also observe a large discrepancy in the action distribution between the different meth-
ods. First, we observe that RND and DoWhaM action distributions remain approxi-
mately uniform while RIDE and COUNT favor moving actions, reducing the opportunity
for interactions. Second, and crucially, the impact distributions EH(a) differs drastically
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Figure 3.10: Forced Scenario. We enforce a trajectory and observe how the different
intrinsic bonuses are given.
(Left) Forced path : Interaction scenario (Middle) DoWhaM (Right) RIDE

Algorithm RND COUNT RIDE DoWhaM
% of extrinsic
reward collection

0% 0.4% 0.6% 7%

Table 3.1: Rewardless KeyCorridor : Percentage of times the agent collects extrinsic
rewards while only receiving intrinsic rewards (average over 420 episodes)
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Figure 3.11: State and action distributions in rewardless KeyCorridor (S4R3). UH(a)
and IH(a) action-count are in blue and green. Only DoWhaM correctly uses pickup/-
drop/toggle during exploration.

between DoWhaM and other methods. All agents are trying actions such as pick, toggle
or drop, but those actions are rarely changing the agent’s state. These actions are not
used in the appropriate context, i.e., in front of an object. It means that rewarding state
novelty might not be enough to discover effective actions, thus wasting samples. Although
DoWhaM and RND had similar state-visitation and action distribution patterns, only
DoWhaM correctly apprehend rarely effective actions, and correctly use them to explore
its environment.

3.6.3 Intrinsic Motivation Pitfalls

The Ball Pit Problem As DoWhaM biases the state visit distribution towards per-
forming rare actions, it may introduce a poor exploration pattern when facing too many
of such states. We refer to this potential issue as the Ballpit problem: the agent remains in
rooms with plenty of balls to interact with. We build it on top of MultiRoomN4S6, a sim-
ple environment solved by all baselines. No Ball is the baseline environment. In Small
instances, 1 random object is spawned, More contains 3 random objects and Max rooms
are completely filled without blocking the agent path. We emphasize that the agent does
not need to interact with anything (with the exception of door) to solve the environment
and objects are never in the way of the agent (illustrated on Fig. 3.12).

As the number of objects grows, the performance of all algorithms deteriorates. RND,
COUNT are mostly affected by this problem, as the number of states is growing exponen-
tially; thus, counting state occurrence is challenging. RIDE is less affected by the BallPit
problem, but most surprisingly, DoWhaM is the only one to reach the exit consistently
in the most challenging setup. The IH(a)/UH(a) ratio correctly balances the exploration
bonus, and does not take over the final extrinsic reward (See Fig. 3.12).
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Figure 3.12: As distractors are added (from left to right), we observe a drop in performance
for all methods.

The Noisy-TV problem State-count based agent are attracted to state-action pairs
with random noise. In its current definition, DoWhaM is also affected while computing
IH. Similar to (Burda et al., 2019b), this effect can be circumvented by using an inverse
model, and we leave it for future work.

ColorMaze In Fig. 3.13, we design a map with a sequence of open rooms, colored floor
changing every episode, two boxes with one hidden key, and a locked door leading to the
reward.

ColorMaze is a variation of ObstructedMaze2Dlh. Before accessing the room containing
keys within boxes, the agent must cross 4 colored rooms. A distractor room is placed at
the beginning, leading to nothing. The colors are picked randomly at the beginning of an
episode and remains the same until the episode’s end. The agent must catch the blue ball
within a 576 steps limit to receive the reward. One main difference between MultiRoom
and ColorMaze is the absence of doors between colored room.

All baselines remain in the first part of the maze while DoWhaM quickly reaches the
objects and solves the task. This experiment highlights again how shifting the empha-
sis from exhaustive state-visit to relevant state-visit can be beneficial, and change the
exploration pattern.

ColorMaze RND RIDE COUNT DoWhaM

Figure 3.13: RND, RIDE and COUNT remain within the colored region whereas
DoWhaM learns to go straight to the boxes and keys.
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3.7 Conclusion
We introduced Don’t Do What Doesn’t Matter (DoWhaM), a new action-based in-
trinsic exploration algorithm. As opposed to count-based and curiosity-driven meth-
ods, DoWhaM shifts the emphasis from novel state to state with relevant actions, re-
warding actions that are rarely effective in the environment. Combined with a simple
episodic count, DoWhaM outperforms recent exploration methods on a variety of hard
exploratory tasks in a Minigrid environment. This proof of concept illustrates that action-
based exploration is a promising approach as it induces surprisingly different exploration
patterns. We also pointed out a new category of problems called BallPit, which deteriorate
performance of many intrinsically motivated reward approaches.
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Chapter 4

Abstraction and Goals

4.1 Introduction
The first part of this thesis dealt with the lowest level of interaction, the action space.
In this chapter, we want to go HIGhER (Cideron et al., 2020) by working with more
general tasks and goals. When tying up actions together, we create more meaningful
policies and focus on dunes instead of looking at individual grains of sand. Going beyond
step by step planning, an agent could reason using higher-level objectives. Thus, working
with hierarchy gives the ability to reason over longer horizons by letting go of low-level
details. Once an agent mastered some skills, it opens the door to transfer and new
recombination. Then, nothing prevents further aggregation, composing dunes together to
form a desert. However, from low-level interaction to concepts and objects lie thousands
of years of evolution. From grasping to forging and assembling complex objects, many
simple steps must be understood and mastered. Thus, building a self-organizing hierarchy
in reinforcement learning (Fikes et al., 1972; Dayan et al., 1993; Sutton et al., 1999b;
Barto et al., 2003; Flet-Berliac, 2019) is a daunting task (an oasis, if we want to keep
going with this analogy).

Fortunately, as humans, we developed multiple tools to avoid learning from scratch over
and over; one of them is natural language. Language has slowly evolved to communicate
intents, state objectives, describe complex situations (Kirby et al., 2015). It conveys infor-
mation compactly by relying on composition and highlighting salient facts. As language
can express a vast diversity of goals and situations, it may help to condition the training
of interactive agents over heterogeneous and composite tasks (Luketina et al., 2019) and
help transfer (Narasimhan et al., 2018). Language is also a reasonning tool, its struc-
ture and its alignment with the world create a rich abstraction (Vygotsky, 1934; Colas
et al., 2021). Thus, instead of presenting the Hierarchical Reinforcement Learning setting
exhaustively, we will focus on the subfield called Language-Conditioned Reinforcement
Learning (Schaul et al., 2015; Colas et al., 2020c), where goals are specified by natural
language instructions.

In this setting, the agent is given a text description of its goal (e.g. "pick the red ball")
and is rewarded when achieving it (Tellex et al., 2011; Chen et al., 2011; Artzi et al., 2013;
Luketina et al., 2019; Hermann et al., 2020). The agent has thus to ground the language,
i.e., linking and disentangling visual attributes (shape, color) from language description
("ball", "red") by using rewards to condition its policy toward task completion. The
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language compositionality allows for a high number of goals and offers generalization op-
portunities. Unfortunately, conditioning a policy on language also entails a supplementary
difficulty as the agent needs to understand linguistic cues to alter its behavior. The agent
thus needs to ground its language understanding by relating the words to its observa-
tions, actions, and rewards before being able to leverage the language structure (Kiela
et al., 2016; Hermann et al., 2017). Once the linguistic symbols are grounded, the agent
may then take advantage of language compositionality to condition its policy on new
goals (Colas et al., 2020b).

Instruction following have recently drawn much attention following the emergence of sev-
eral 2D and 3D environments (Chevalier-Boisvert et al., 2019; Brodeur et al., 2017; Ander-
son et al., 2018). This section first provides an overview of the different approaches, i.e.,
fully-supervised agent, before exploring approaches focusing on reinforcement learning
such as reward shaping, auxiliary losses, and hindsight approaches.

4.1.1 Vision and Language Navigation

Learning to follow natural language instruction is sometimes coined as Vision and Lan-
guage Navigation tasks in computer vision (Anderson et al., 2018; Wang et al., 2019).
Most strategies are based on imitation learning, relying on expert demonstrations and
knowledge from the environment. For example, Zang et al., 2018 relates instructions to
an environment graph, requiring both demonstrations and high-level navigation informa-
tion. Misra et al., 2018 learns to map a sequence of instructions to landmarks for the
low-level controller to follow. Fried et al., 2018 also learns a navigation model and an
instruction generator, but the latter is used to generate additional training data for the
agent. The setup is hence fully supervised, and requires human demonstrations. These
policies are sometimes finetuned to improve navigation abilities in unknown environments.
Noticeably, Wang et al., 2019 optimizes an agent to find the shortest path by leveraging
language information. The agent learns an instruction generator, and they derive an in-
trinsic reward by aligning the generator predictions over the ground truth instructions.
Those approaches complete long sequences of instructions in visually rich environments
but they require a substantial amount of annotated data. In Section 4.3, we intend to
discard human supervision to explore learning synergies.

4.2 Goal-Conditionned Reinforcement Learning

4.2.1 Background And Notation

To tackle instruction following using RL, few adjustements are required to condition the
policy on the goal. We augment our environment with a goal space G which defines a new
reward function r : S×A×G→ R and policy π : S×G→ A by conditioning them on a
goal descriptor g ∈ G. Similarly, the Q-function is also conditioned on the goal, and it is
referred to as Universal Value Function Approximator (UVFA) Schaul et al., 2015. This
approach allows learning holistic policies that generalize over goals in addition to states
at the expense of complexifying the training process. We emphasize that agents do not
need to balance between different objectives (as opposed to multi-objective-RL Moffaert
et al., 2014).

Using this formalism does not constrain how the goal is formulated. They can take various
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form : state to reach (Andrychowicz et al., 2017), images (Sahni et al., 2019), logic abstrac-
tion formulas (Li et al., 2018), binary code, and natural language instruction (Luketina
et al., 2019).

4.2.2 Hindsight Experience Replay

HER (Andrychowicz et al., 2017) is designed to increase the sample efficiency of off-
policy RL algorithms such as DQN in the goal-conditioning setting. It reduces the sparse
reward problem by taking advantage of failed trajectories, relabelling them with new
goals. An expert then assigns the goal that was achieved by the agent when performing
its trajectory, before updating the agent memory replay buffer with an additional positive
trajectory.

Formally, HER assumes the existence of a predicate v : S × G → {0, 1} which encodes
whether the agent in a state s satisfies the goal v(s, g) = 1, and defines the reward function
r(st, a, g) = v(st+1, g). At the beginning of an episode, a goal g is drawn from the space
G of goals. At each time step t, the transition (st, at, rt, st+1, g) is stored in the DQN
replay buffer, and at the end of an unsuccessful episode, an expert provides an additional
goal g′ that matches the trajectory. New transitions (st, at, r

′
t, st+1, g

′) are thus added to
the replay buffer for each time step t, where r′ = r(st, at, st+1, g

′). The DQN update rule
remains identical to Mnih et al., 2015, transitions are sampled from the replay buffer, and
the network is updated using one step td-error minimization.

4.2.3 HER variants

HER has been extended to multiple settings since the original paper. These extensions
deal with automatic curriculum learning (Liu et al., 2019a), dynamic goals (Fang et al.,
2019), or they adapt goal relabelling to policy gradient methods (Rauber et al., 2019).
Closer to our work, Sahni et al., 2019 trains a generative adversarial network to hallucinate
visual near-goals state over failed trajectories. However, their method requires heavy
engineering as visual goals are extremely complex to generate, and they lack the compact
generalization opportunities inherent to language. Chan et al., 2018 also studies HER in
the language setting, but the authors only consider the context where a language expert
is available.

HER assumes that a mapping m between states s and goals g is given. In the original
paper, this requirement is not restrictive as the goal space is a subset of the state space.
Thus, the mapping m is straightforward since any state along the trajectory can be used
as a substitution goal. In the general case, the goal space differs from the state space, and
the mapping function is generally unknown. In the instruction following setting, there is
no obvious mapping from visual states to linguistic instructions. It thus requires expert
intervention to provide a new language goal given the trajectory, which drastically reduces
the interest of HER. Therefore, we here explore how to learn this mapping without any
form of expert knowledge nor supervision.
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Figure 4.1: Upon positive trajectory, the agent trajectory is added to the RL replay buffer
and the goal mapper dataset. Upon failed trajectory, the goal mapper is used to relabel
the episode, and both trajectories are appended to the replay buffer. In the original HER
paper, the mapping function is bypassed since they are dealing with spatial goals, and
therefore, vanilla HER cannot be applied without external expert.

4.3 Third Contribution (SCCI’20): HIGhER : Improv-
ing instruction following with
Hindsight Generation for Experience Replay

In the following sections, we take advantage of language compositionality to compensate
for the lack of reward signals. To do so, we extend Hindsight Experience Replay (HER) to
language goals (Andrychowicz et al., 2017). HER originally deals with the sparse reward
problems in spatial scenario; it relabels unsuccessful trajectories into successful ones by
redefining the policy goal a posteriori. As a result, HER creates additional episodes
with positive rewards and a more diverse set of goals. Unfortunately, this approach
cannot be directly applied when dealing with linguistic goals. As HER requires a mapping
between the agent trajectory and the goal to substitute, it requires expert supervision to
describe failed episodes with words. Hence, this mapping should either be handcrafted
with synthetic bots (Chan et al., 2018), or be learned from human demonstrations, which
would both limit HER generality. More generally, language adds a level of semantics,
which allows generating textual objective that could not be encoded by simple spatial
observations as in regular HER, e.g., "fetch a ball that is not blue" or "pick any red
object".

In this work, we introduce Hindsight Generation for Experience Replay (HIGhER), a
training procedure where the agent jointly learns the language-goal mapping and the nav-
igation policy by solely interacting with the environment illustrated in Fig. 4.1. HIGhER
leverages positive trajectories to learn a mapping function, and tackles the sparse reward
problem by relabeling language goals upon negative trajectories in a HER fashion. We
evaluate our method on the BabyAI world (Chevalier-Boisvert et al., 2019), showing a
clear improvement over RL baselines while highlighting the robustness of HIGhER to
noise.
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4.4 Hindsight Generation for Experience Replay
Hindsight Generation for Experience Replay (HIGhER) aims to learn a mapping from
past experiences that relates a trajectory to a goal in order to apply HER, even when no
expert is available. The mapping function relabels unsuccessful trajectories by predicting
a substitute goal ĝ as an expert would do. The transitions are then appended to the
replay buffer. This mapping learning is performed alongside agent policy training.

Besides, we wish to discard any form of expert supervision to learn this mapping as it
would reduce the practicability of the approach. Therefore, the core idea is to use en-
vironment signals to retrieve training mapping pairs. Instinctively, in the sparse reward
setting, trajectories with positive rewards encode ground-truth mapping pairs, while tra-
jectories with negative rewards are mismatched pairs. These cues are thus collected to
train the mapping function for HIGhER in a supervised fashion. We emphasize that such
signals are inherent to the environment, and an external expert does not provide them.
In the following, we only keep positive pairs in order to train a discriminative mapping
model.

Formally, HIGhER is composed of a dataset D of 〈s, g〉 pairs, a replay buffer B and a
parametrized mapping model mθm . For each episode, a goal g is picked, and the agent
generates transitions (st, at, rt, st+1, g) that are appended to the replay buffer B. The Q-
function parameters are updated with an off-policy algorithm by sampling minibatches
from D. Upon episode termination, if the goal is achieved, i.e. f(sT , g) = 1, the 〈sT , g〉 pair
is appended to the dataset D. If the goal is not achieved, a substitute goal is sampled from
the mapping model1 mθm(sT ) = ĝ′ and the additional transitions {(st, at, rt, st+1, ĝ

′)}Tt=0

are added to the replay buffer. At regular intervals, the mapping model mθm is optimized
to predict the goal g given the trajectory τ by sampling mini-batches from D. Noticeably,
HIGhER can be extended to partially observable environments by replacing the predicate
function v(s, g) by v(τ, g), i.e., the completion of a goal depends on the full trajectory
rather than one state. Although we assess HIGhER in the instruction following setting,
the proposed procedure can be extended to any other goal modalities.

4.5 Related Methods

4.5.1 Conditioned Language Policy

There have been other attempts to leverage language instruction to improve the agent
policy. For instance, (Jiang et al., 2019) computes a high-level language policy to give
textual instruction to a low-level policy, enforcing a hierarchical learning training. The
authors manage to resolve complicated manipulating task by decomposing the action with
language operation. The language mapper performs instruction retrieval into a predefined
set of textual goals and yet, the low-level policy benefits from language compositionality
and is able to generalize to unseen instructions, as mentioned by the authors. Co-Reyes et
al., 2019 trains an agent to refine its policy by collecting language corrections over multiple
trajectories on the same task. While the authors focus their effort on integrating language
cues, it could be promising to learn the correction function in a HIGhER fashion.

1The mapping model can be utilized with an accuracy criterion over a validation set to avoid random
goal sampling.
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Figure 4.2: Left: Illustration of the experimental setup, the agent receives state, encod-
ing its encoded field of view as input and an instruction. Each object has four attributes
(only two are visible on the rendering, but the agent can see all four attributes)
Right: Illustration of the architecture used. Top: Instruction Generator Model, com-
posed of three layers of convolutionnal neural network, followed by a gated recurrent unit
and a two-layer fully connected with dropout using a softmax. Bottom: Policy model,
composed of three layers of convolutionnal layers to treat the state and a word embedding
followed by a gated recurrent unit to encode the instruction. Resulting hidden states are
concatenated and fed to a two-layer perceptron followed by a softmax.

4.5.2 IRL for instruction following

Bahdanau et al., 2019a learns a mapping from <instruction, state> to a reward function.
The method’s aim is to substitute the environment’s reward function when instructions
can be satisfied by a great diversity of states, making hand-designing reward function
tedious. Similarly, Fu et al., 2019 directly learns a reward function and assess its trans-
ferability to new environments. Those methods are complementary to ours as they seek
to transfer reward function to new environment and we are interested in reducing sample
complexity.

4.6 Experiments

4.6.1 Experimental Setting

Environment We experiment our approach on a visual domain called Minigrid (Chevalier-
Boisvert et al., 2019). This environment offers a variety of instruction-following tasks using
a synthetic language for grounded language learning. We use a 10x10 grid with 10 ob-
jects randomly located in the room. Each object has 4 attributes (shade, size, color, and
type) inducing a total of 300 different objects (240 objects are used for training, 60 for
testing). To the best of our knowledge, the number of different objects and its diversity
is greater than concurrent works ((Chaplot et al., 2018) uses 55 train instructions and
15 test instructions and (Hill et al., 2017) has a total of 40 different objects). The agent
has four actions {forward, left, right, pick}, and it can only see the 7x7 grid in front of
itself. For each episode, one object’s attribute is randomly picked as a goal, and the text
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Generator Policy
Batchsize 128 128
Learning Rate 3e-4 1e-5
Word embedding size 32 32
Hidden MLP Size 256 128
Conv channel [32,64,128] [32,64,128]
Conv size [2,2,2] [2,2,2]
Conv stride [1,1,1] [1,1,1]
GRU size 256 128
Dropout 0.5 X
Buffer Size X 20000
Gamma X 0.99

Table 4.1: Generator and Policy Hyperparameters.

generator translates it in a synthetic language, e.g., "Fetch a tiny light blue ball." The
agent is rewarded when picking one object matching the goal description, which ends the
episode; otherwise, the episode stops after 40 steps or after taking an incorrect object (see
Fig. 4.2).

Task Complexity It is important to underline the complexity of this task. To get
rewards over multiple episodes, the agent must learn to navigate and inspect objects
in the room while learning the meaning of each word and how they relate to visual
characteristics. The burden comes from reward sparsity as the replay buffer is filled
with unsuccessful trajectories RL fails to learn. Alleviating this problem is essential and
minigrid is an excellent testbed to assess algorithmic performances as an agent deals with
partial observability, visual representation learning, and language grounding only from
sparse rewards signal.

Models In this experiment, HIGhER is composed of two separate models (see Fig. 4.2
for an illustration and details). The instruction generator is a neural network outputting
a sequence of words given the final state of a trajectory. It is trained by gradient descent
using a cross-entropy loss, adam optimizer (learning rate of 3e4, batchsize of 128) on the
dataset D collected as described in Section 4.4. We train a DQN network following Mnih
et al., 2015 with a dueling head (Wang et al., 2016), double Q-learning (Hasselt et al.,
2016), and a prioritized replay buffer (Schaul et al., 2016) over trajectories. The network
receives a tuple < s, g > as input and outputs an action corresponding to the argmax
over states-actions values Q(s, a, g). We use ε-greedy exploration with decaying ε.

4.6.2 Instruction Generator Analysis

This section examines the feasibility of HIGhER by analysing two potential issues. We first
show that HER is robust to a noisy mapping function (or partially incorrect goals), we then
estimate the accuracy and generalisation performance of the instruction generator.
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Algorithm 2: Hindsight Generation for Experience Replay (HIGhER)
Given:

• an off-policy RL algorithm (e.g. DQN) A and its associated behavioral policy π

• a reward function r : S× A×G→ R.

• a language score (e.g. parser accuracy, BLEU etc.)

1 Initialize A, replay buffer B, dataset Dtrain and Dval of 〈instruction, state〉, Instruction
Generator mθm ;

2 for episode=1,M do
3 Sample a goal g and an initial state s0;
4 t = 0;
5 repeat
6 Execute an action at chosen from the behavioral policy, at ← π(st||g);
7 Observe a reward rt = r(st, at, g) and a new state st+1;
8 Store the transition (st, at, rt, st+1, g) in B;
9 Update Q-network parameters using sampled minibatches from B;

10 t = t+ 1;
11 until episode ends;
12 if v(st, g) = 1 then
13 Store the pair 〈st, g〉 in Dtrain or Dval;
14 Update mθm parameters by sampling minibatches from Dtrain;
15 end
16 else
17 if mθm language validation score is high enough and Dval is big enough

then
18 Sample ĝ′ = mθm(st);
19 Replace g by ĝ′ in the transitions of the last episode and set r̂ = r(st, at, ĝ

′).
20 end
21 end
22 end
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Figure 4.3: Top: Agent performance with noisy mapping function. Bottom: Instruction
generator accuracy over 5k pairs. Figures are averaged over 5 seeds and error bars shows
one standard deviation.

4.6.2.1 Noisy instruction generator and HER

We investigate how a noisy mapping m affects performance compared to a perfect map-
ping. As the learned instruction generator is likely to be imperfect, it is crucial to assess
how a noisy mapping may alter the training of the agent. To do so, we train an agent
with HER and a synthetic bot to relabel unsuccessful trajectories. We then inject noise
in our mapping where each attribute has a fixed probability p to be swapped, e.g. color
blue may be changed to green. For example, when p = 0.2, the probability of having the
whole instruction correct is 0.84 ≈ 0.4. The resulting agent performance is depicted in
Fig. 4.3 (left).

The agent performs 80% as well as an agent with perfect expert feedback even when
the mapping function has a 50% noise-ratio per attribute. Surprisingly, even highly
noisy mappers, with a 80% noise-ratio, still provides an improvement over vanilla DQN-
agents. Hence, HER can be applied even when relabelling trajectories with partially
correct goals.

We also examine whether this robustness may be induced by the environment properties
(e.g. attribute redundancy) rather than HER. We thus compute the number of dis-
criminative features required to pick the correct object. On average, an object can be
discriminated with 1.7 features in our setting - which facilitates training, but any object
shares at least one property with any other object 70% of the time - which tangles train-
ing. Besides, the agent does not know which features are noisy or important. Thus, the
agent still has to disentangle the instructions across trajectories in the replay buffer, and
this process is still relatively robust to noise.

4.6.2.2 Learning an Instruction Generator

We briefly analyze the sample complexity and generalization properties of the instruction
generator. If training the mapping function is more straightforward than learning the
agent policy, then we can thus use it to speed up the navigation training. We artificially
generate datasets to train the instruction generator on and assess its generalization.

We first split the set of instructions G into two disjoint sets Gtrain and Gtest. Although
all object features are present in both sets, they contain dissimilar combinations of target
objects. For instance, blue, dark, key, and large are individually present in instructions
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Figure 4.4: Left: learning curves for DQN, DQN+HER, DQN+HIGhER in a 10x10
gridworld with 10 objects with 4 attributes. The instruction generator is used after the
vertical bar. Right: the mapping accuracy for the prediction of instructions. mw starts
being trained after collecting 1000 positive trajectories. Results are averaged over 5 seeds
with one standard deviation.

of Gtrain and Gtest but the instruction to get a large dark blue key is only in Gtest. We
therefore assess whether a basic compositionality is learned. In the following, we use
train/split ratio of 80/20, i.e., 240 vs 60 goals.

We here observe than 1000 positive episodes are necessary to reach around 20% accuracy
with our model, and 5000 pairs are enough to reach 70% accuracy. The instruction gener-
ator also correctly predicts unseen instructions even with fewer than 1000 samples and the
accuracy gap between seen and unseen instructions slowly decrease during training, show-
ing basic compositionality acquisition. As further discussed in Section 4.5, we here use a
vanilla mapping architecture to assess the generality of our HIGhER, and more advanced
architectures may drastically improve sample complexity (Bahdanau et al., 2019b).

4.6.3 HIGhER for Instruction Following

In the previous section, we observe that: (1) HER is robust to noisy relabeled goals, (2) an
instructor generator requires few positive samples to learn basic language compositionality.
We thus here combine those two properties to execute HIGhER, i.e. jointly learning the
agent policy and language prediction in a online fashion for instruction following.

4.6.3.1 Baselines

We want to assess if the agent benefits from learning an instruction generator and using
it to substitute goals as done in HER. We denote this approach DQN+HIGhER. We com-
pare our approach to DQN without goal substitution (called DQN) and DQN with goal
substitution from a perfect mapping provided by an external expert (called DQN+HER)
available in the BabyAI environment. We emphasize again that it is impossible to have
an external expert to apply HER in the general case. Therefore, DQN is a lower bound
that we expect to outperform, whereas DQN+HER is the upper bound as the learned
mapping can not outperform the expert. Note that we only start using the parametrized
mapping function after collecting 1000 positive trajectories, which is around 18% valida-
tion accuracy. Finally, we compute an additional DQN baseline denoted DQN+reward:
we reward the agent with 0.25 for each matching properties when picking a object given
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an instruction. It enforces a hand-crafted curriculum and dramatically reduces the reward
sparsity, which gives a different perspective on the current task difficulty.

4.6.3.2 Results

In Fig. 4.4 (left), we show the success rate of the benchmarked algorithms per environment
steps. We first observe that DQN does not manage to learn a good policy, and pick a
random object every episode (with 10 objects, picking at random gives a success rate of
0.1). DQN+HER and DQN+reward quickly manage to pick the correct object 40% of
the time. Finally, DQN+HIGhER’s success rates increases as soon as we use the mapping
function, to rapidly perform nearly as well as DQN+HER. Fig. 4.4 (right) shows the
performance accuracy of the mapping generator by environment steps. We observe a
steady improvement of the accuracy during training before reaching 78% accuracy after
5M steps. In the end, DQN+HIGhER outperforms DQN by using the exact same amount
of information, and even matches the conceptual upper bond computed by DQN+HER.
Besides, HIGhER does not alter the optimal policy which can occur when reshaping the
reward (Ng et al., 1999). As stated in Section 4.6.3.1, a gap remains between DQN+HER
and HIGhER as the latter is building an approximate model of the instruction, thus
sometimes failing to relabel correctly as pointed out in Fig. 4.3

4.6.4 Discussion

Improvements over DQN As observed in the previous noisy-HER experiment, the
policy success rate starts increasing even when the mapping accuracy is 20%, and DQN+
HIGhER becomes nearly as good as DQN+HER despite having a maximum mapping
accuracy of 78%. It demonstrates that DQN+HIGhER manages to trigger the policy
learning by better leveraging environment signals compared to DQN. As the instruction
generator focuses solely on grounding language, it quickly provides additional training
signal to the agent, initiating the navigation learning process.

Generator Analysis We observe that the number of positive trajectories needed to
learn a non-random mapping mθm is lower than the number of positive trajectories needed
to obtain a valid policy with DQN (even after 5M environment steps the policy has 10%
success rate). Noticeably, we artificially generate a dataset in Section 4.6.2.2 to train the
instruction generator, whereas we follow the agent policy to collect the dataset, which is
a more realistic setting. For instance, as the instructor generator is trained on a moving
dataset, it could overfit to the first positive samples, but in practice it escapes from local
minima and obtains a high final accuracy.

Different factors may also explain the learning speed discrepancy: supervised learning
has less variance than reinforcement learning as it has no long-term dependency. The
agent instructor generator can also rely on simpler neural architectures than the agent.
HIGhER takes advantage of those training facilities to reward the agent ultimately.

Robustness Finally, we observe a virtuous circle that arises. As soon as the mapping is
correct, the agent success rate increases, initiating the synergy. The agent then provides
additional ground-truth mapping pairs, which increases the mapping accuracy, which
improves the quality of substitute goals, which further increases the agent success rate.
As a result, there is a natural synergy that occurs between language grounding and

73



navigation policy as each module iteratively provides better training samples to the other
model. If we ignore time-out trajectories, around 90% of the trajectories are negative
at the beginning of the training. As soon as we start using the instruction generator,
40% the transitions are relabelled by the instructor generator, and 10% of the transitions
belong to positive trajectories. As training goes, this ratio is slowly inverted, and after
5M steps, there is only 15% relabelled trajectories left while 60% are actual positive
trajectories.

Figure 4.5: The instruction generator is triggered after collecting 0, 1000 and 2000 positive
trajectories (i.e, approximately 0%, 20%, 50% accuracy). Even when the instruction
generator is not accurate, the policy still makes steady progress and the final success rate
is not impacted. Delaying the generator instructor does not provide additional benefit

Figure 4.6: Transition distributions in the replay buffer between successful, unsuccessful
and relabeled trajectories. We remove time-out trajectories for clarity, which accounts for
54% of the transition in average (±3% over training). Right: Evaluating the language
learned by the instruction generator on unseen instructions. Over time, the number of
correct attributes (purple) is increasing, as the number of irrelevant words (orange) is
decreasing. The number of repeated attributes (green) stays low. The beginning clause
is ignored as it doesn’t provide information regarding the objective.
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4.6.5 Language Learned by the Instruction Generator

We here analyze further the language quality of the instruction generator. To do so, we
rely on three metrics to assess the generated language quality. The first metric, called
attribute fidelity, assesses whether every target attribute is present in the generated sen-
tence. For example, for the objective a large dark blue key, the generated sentence "Fetch
me a large key" only containing two attributes and receives a score of two. Language
precision counter this effect by counting how many words are not relevant to describe the
target object. This second metric is related to precision (or positive predictive value),
as generated instructions only contain relevant attributes. Finally, we count repeated
attributes as language models are known to stutter during early training.

In Fig. 4.6, we compute the three metrics over unseen goal states, examining the compo-
sitionality properties of the instruction generator. We observe that generated instructions
get more accurate, contain less irrelevant attributes, thus providing the agent with valid
goals, even in unseen scenarios. As the instruction generator is trained until convergence
as new <state, instruction> pairs are collected, it naturally preserve the overall language
structure, and correctly ground symbols: repeated attributes score remains low and gen-
erated sentences start with the verb and end with the noun while randomly shuffling the
attributes as shown in Table 4.2.

#Samples
Instruction

get a small very_light green key go fetch a dark grey giant ball

200 get a neutral very_light tiny ball go get a grey giant neutral giant neutral grey
1000 get a very_light green small ball you must fetch a grey dark giant ball
10000 get a very_light green small key go fetch a grey dark giant ball

Table 4.2: Examples of language errors during the training

4.6.6 Complementary Experiment

An n-gram is a sequence of words, e.g. 2-gram corresponds to a two-word sequence. For
example the sentence Get a red ball. is composed of three 2-gram: Get a, a red, red ball
and two 3-gram: get a red and a red ball. The n-gram measure assesses the language
model accuracy by counting how many n-grams in the original sentence is present in the
generated one. This measure is close to BLEU score used in machine translation (Papineni
et al., 2002).

In our experiments, the language used is synthetic, and attributes order is random. There-
fore, the attributes’ presence is more important than the position of each word. To assess
the learned language accuracy, we compare generated sequences to what we call ran-
domized ground truth. Comparing generated instruction to instructions generated by the
environment is not relevant as the beginning clause (i.e., Get a or Fetch a, etc.) and
attributes order are random. Therefore, for a given ground truth instruction, object at-
tributes are shuffled in the sentence, and the beginning clause is sampled from all possible
clauses. Since the beginning clause is random, even randomized ground truth cannot reach
an accuracy of 1. The lower bound called Random Attributes corresponds to sampling a
clause and each attribute randomly.

Fig. 4.7 shows that the language learned by the instruction generator is close to the
upper bound randomized ground truth. These results correlate with Fig. 4.6 (right),
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Figure 4.7: Quality of the language learned by the instruction generator with 10 000
samples. For randomized ground truth the sentences are the same as the ones from the
ground truth but the order of the attributes is shuffled and the clause is changed. For
random attributes beginning clause and object attributes are picked randomly.

indicating that the instruction generator can produce instruction containing correct object
attributes. The fast decrease in accuracy when n grows can be explained by the attributes
order randomness.

4.6.7 Limitations

Albeit generic, HIGhER also faces some inherent limitations. From a linguistic perspec-
tive, it cannot transcribe negative instructions (Do not pick the red ball), or alterna-
tives (Pick the red ball or the blue key) in its current form. However, this problem
could be alleviated by batching several trajectories with the same goal. Therefore, the
model would potentially learn to factorize trajectories into a single language objective.
On the policy side, HIGhER still requires a few trajectories to work, and it thus relies on
the navigation policy. In other words, historical HER could be applied in the absence of
reward signals, while HIGhER only alleviate the sparse reward problem by better lever-
aging successful trajectories. A natural improvement would be to couple HIGhER with
other exploration methods, e.g, intrinsic motivation (Bellemare et al., 2016) or DQN with
human demonstration (Hester et al., 2018). Finally, under-trained goal generators might
hurt the training in some environments although we did not observe it in our setting as
shown in Fig. 4.5. However, a simple validation accuracy allows to circumvent this risk
while activating the goal mapper (More details in Algorithm 2). We emphasize again
that the instruction generator can be triggered anytime to kick-start the learning as it is
independent from the agent.

4.7 Conclusion
We introduced Hindsight Generation for Experience Replay (HIGhER) as an extension
to HER for language. We defined a protocol to learn a mapping function to relabel
unsuccessful trajectories with predicted consistent language instructions. We showed that
HIGhER nearly matches HER performances despite only relying on signals from the
environment. We provide empirical evidence that HIGhER manages to alleviate the
instruction-following task by jointly learning language grounding and navigation policy
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with training synergies. HIGhER has mild underlying assumptions, making it valuable
to complement to other instruction following methods. More generally, HIGhER can be
though as a generative goal mechanism. Automatic goal generation is central to building
autonomous agents that learn in open environment and many recent work build upon
goal self-generation (Forestier et al., 2017; Colas et al., 2019; Colas et al., 2020a; Kurita
et al., 2020; Akakzia et al., 2021), and we expect to see more work in this direction.

77



78



Chapter 5

Turning Supervised Learning Into
Multi-Turn Interactive Tasks

In this chapter, we will take a step aside and think more broadly about Reinforcement
Learning and how its interactivity may help Supervised Learning (SL). Supervised learn-
ing is a fixed framework, the model receives an input and outputs a prediction. The
process is, by design, non-sequential. However, by changing the way the problem is
framed, by turning the problem into a multi-turn interactive task, we may reduce the
number of samples required to solve such tasks.

The term "interactive" in the following context means that the model can query informa-
tion during the training phase. Asking to annotate additionnal examples falls under the
umbrella of active learning. A section is dedicated to the usage of reinforcement learn-
ing in this context (Section 5.1). Another interactive setup, under which our work falls
(Section 5.3 and Seurin et al., 2020b) is to query information on the input (Section 5.2),
a setup we call Sequential Interactive Learning.

Output / Loss / Label Outputs Labels

Inputs

Models

Query Query

Query
Outputs

Outputs / LabelOutputs / Labels

Supervised
Learning

Active
Learning

Sequential
Representation

Learning

Figure 5.1: Three setups described in this chapter : Supervised Learning, Active Learning
and Sequential Representation Learning. Reinforcement Learning and its interactivity can
help during the querying in Active Learning and Sequential Representation Learning
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5.1 Active Learning and Reinforcement Learning

Active learning (Tong, 2001) is a supervised learning paradigm where the dataset is not
labeled. The model selects some samples and query an oracle (e.g human annotator) for
labels. The goal is to reduce the burden of annotating the whole dataset beforehand while
still maintaining (or even increasing) accuracy. The field of active learning mostly relies
on uncertainty estimation (Ren et al., 2020) of each sample. The problem can be framed
as single turn game (Contardo et al., 2017), all samples are selected for annotation at the
same time. However, we lack a multi-turn approach. Thus, the problem becomes sequen-
tial, starting with an untrained model and refining iteratively, alternating training and
querying phases. Uncertainty methods are "greedy", picking the most uncertain samples
at each step. Since there exists a great diversity of uncertainty measures, none of which
stands out as the "best" for active learning, the problem can be seen as an exploration/ex-
ploitation problem (Collet et al., 2015; Haussmann et al., 2019). Reinforcement learning
can be seen as a nice complementary approach to balance between different measures
and adjust the querying mechanism (Liu et al., 2019b). Fang et al., 2017 uses a similar
strategy in low-ressource language.

5.2 Sequential Representation Learning

In the following section we consider a second form of interactive learning, where part of the
input is queried sequentially. We call this approach Sequential Representation Learning
(SRL). The supervised framework cannot account for this type of granularity where the
system must query information before classifiying a sample, instead of processing the
input entirely. Sequential Representation Learning can be seen as a form of Structured
Prediction solved using the MDP formalism Maes et al., 2009; Maes, 2009

Computer vision application blossomed (Minut et al., 2001; Mnih et al., 2014), as such
techniques reduce model size, by focusing on small object detector (König et al., 2019)
instead of using large global models. SRL was also used in object tracking (Jiang et al.,
2018) and face tracking in video (Rao et al., 2017). It was also used in the multi-modal
dialog, Guesswhat?! (Strub et al., 2017) to locate an object secretly picked up by another
player.

In subsequent sections, we focus on Automatic Speaker Recognition (ASR Saquib et al.,
2010), where a system must identify speakers using few samples of raw audio. Speaker
Recognition systems are trained to extract speaker-specific features from speech signals,
and during evaluation, test speaker utterances are compared with the already existing
utterances. However, dozens of tests recordings are necessary, limiting usage when in-
teracting with humans. When identifying a speaker, only some key features might be
necessary, such as certain inflexions or speech mannerisms. However, those discrimative
features vary from speaker to speaker. Some pronunciation might be typical of certain
speakers. For example, the phoneme ’r’ might be pronounced differently depending on
your accent. Thus starting with general phoneme and refining based on the received ut-
terances could result in better recognition systems and reduce the amount of phonemes
needed.
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5.3 Fourth Contribution (INTERSPEECH’20):
Machine of Few Words - Interactive Speaker Recog-
nition with Reinforcement Learning

"Good words are worth much and cost little." - George Herbert
In the following section, we build a speaker recognition system that can identify a speaker
by using a limited and personalized number of words. Instead of relying on full test
utterances across all individuals, we interact with the speakers to iteratively select the
most discriminative words.

More generally, a desirable feature of speaker recognition is to adapt its strategy to the
current speaker as important features vary from person to person.

Here we propose to envision the problem of building a representation of the speaker as a
sequential decision-making problem. The system we want to develop will select words that
a speaker must utter so that it can be recognized as fast as possible. We adapt a standard
RL algorithm to interact with a speaker to maximize the identification accuracy given
as little data as possible. After introducing an Interactive Speaker Recognition (ISR)
game based on the TIMIT dataset to simulate the speaker ASR interaction, we show that
the RL agent builds an iterative strategy that achieves better recognition performance
while querying only a few words. RL has been used in speech-based applications such as
dialog (Chandramohan et al., 2010; Chandramohan et al., 2012; Khouzaimi et al., 2015)
but not to the problem of speaker identification (note that Pietquin et al., 2005 combines
RL and phonemes similarity).

The contribution of the following sections are thus:

1. To introduce the Interactive Speaker Recognition as an interactive game between the
SR module and a human (Sec. 5.4);

2. To formalize ISR as a Markov Decision Process (Puterman, 2014) so as to solve the
problem with RL (Sec. 5.5);

3. To introduce a practical Deep RL ISR model, and train it on actual data (Sec. 5.6).

Finally, we test our method on the TIMIT dataset and show that ISR model successfully
personalized the words it requests toward improving speaker identification, outperforming
two non-interactive baselines (Sec. 5.7).

5.4 Interactive Speaker Recognition Game

We aim to design an Interactive Speaker Recognition (ISR) module that identifies a
speaker from a list of speakers only by requesting to utter a few user-specific words. To
do so, we first formalize the ISR task as an interactive game involving the speaker and
the ISR module. We then define the notation used to formally describe the game before
detailing how we designed the ISR module.
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Figure 5.2: Interactive Speaker Recognition game overview

5.4.1 Game Rules

To instantiate the ISR game, we first build a list of random individuals, or guests. Each
guest is characterized by a few spoken sentences (enrolment phase), which act as their
signature that we call voice print. In a second step, we label one of the guests as the
target speaker that we aim to identify. Hence a game is defined by d guests characterized
with d voice prints, and one of these guests is labeled as the speaker.

As the game starts, the M voice prints are provided to the ISR module, and it needs
to identify the speaker among the guests. To do so, the ISR engine may interact with
the speaker, but it can only request the speaker to utter T words within a predefined
vocabulary list. At each turn of the game, the ISR module asks the speaker to say
a word, the speaker pronounces it, and the ISR engine updates its internal speaker
representation, as detailed in Section 5.6.3, before asking the next word. Again, the ISR
module may only request T words. Thus, it needs to carefully choose them to correctly
identify the speaker.

5.4.2 Game notation

A game is composed of a list of d guests characterized by their voice print m = [mu]du=1

wherem is a subset from a larger group of registered guests M of sizeM , and a predefined
vocabulary C of size c. The ISR module aims at building a list of words w = [wt]

T
t=1 ∈ C

to be uttered by the speaker. The uttered version of w is z = {zt}Tt=1, where zt is the
representation of word wt pronounced by the speaker. Note that, for a given w, z differs
from one speaker to another.
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5.4.3 Modelling the Speaker Recognition Module

From a machine learning perspective, we aim to design an ISR module that actively
builds an internal speaker representation to perform voice print classification. As further
discussed in Section 5.6.2, this setting differs from standard SR methods that rely on
generic but often long utterances (Snyder et al., 2018). In practice, we can split this
task into two sub-modules: 1) an interactive module that queries the speaker to build
the representation, and 2) a module that performs the voice print classification. In the
following, we refer to these modules as enquirer and guesser.

Formally, the guesser must retrieve the speaker in a list of d guests characterized by
their voice print m ∈ M and a sequence of words z uttered by the speaker m∗ ∈ m.
Thus, the guesser has to link the speaker’s uttered words to the speaker’s voice print.
The enquirer must select the next word wt+1 in vocabulary C that should be pronounced
by the speaker given a list of d guests and the sequence of t previously spoken words
[zt′ ]

t
t′=1. Thus, the enquirer’s goal is to pick the word that maximizes the guesser’s success

rate. Therefore, the ISR module first queries the speaker with the enquirer. Once the T
words are collected, they are forwarded to the guesser to perform the speaker retrieval. In
practice, this artificial split allows training the guesser with vanilla supervised learning,
i.e., by randomly sampling words to retrieve speakers. The enquirer can hence be trained
through reinforcement learning, as explained in the next section.

5.5 Speaker Recognition as an RL Problem

We aim at maximizing the guesser success ratio by allowing the enquirer to interact with
the speaker, which makes RL a natural fit to solve the task. In this section, we thus
provide the necessary RL terminology before relating the enquirer to the RL setting and
defining the optimization protocol.

5.5.1 Markov Decision Process

The enquirer is a parametric policy πθ where θ is a vector of neural network weights that
will be learnt with RL. At the beginning of an episode, the initial state corresponds to the
list of guests: s0 = {m}. At each time step t, the enquirer picks the action at by selecting
the next word to utter wt, where wt ∼ πθ(st). at is choosen among a fixed vocabulary that
the speaker can pronounce. The speaker then pronounces the word wt, which is processed
to obtain zt before being appended to the state st+1 = st ∪{zt}. After T words, the state
sT = {g, z} is provided to the guesser. The enquirer is rewarded whenever the guesser
identifies the speaker, i.e. r(st, at) = 0 if t < T and r(sT , aT ) = 1[argmaxk p(mk|sT )=m∗]
where 1 is the indicator function and p(mk|sT ) is the output probability given by the
guesser.

5.5.2 Enquirer optimization Process

In RL, policy search aims at learning the policy πθ∗ that maximizes the expected return
by directly optimizing the policy parameters θ. More precisely, we search to maximize the
mean value defined as J(θ) = Eπθ

[∑T
t=1 γ

t−1r(st, at)
]
. To do so, the policy parameters

are updated in the direction of the gradient of J(θ). In practice, direct approximation of
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∇J(θ) may lead to destructively large policy updates, may converge to a poor determin-
istic policy at early training and it has a high variance. We thus use the recent Proximal
Policy Optimization approach (PPO) (Schulman et al., 2017). PPO clips the gradient
estimate to have smooth policy updates, adds an entropy term to soften the policy dis-
tribution (Geist et al., 2019), and introduce a parametric baseline to reduce the gradient
variance (Mnih et al., 2016; Schulman et al., 2017).

5.6 Experimental Protocol
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Figure 5.3: (Left) The guesser must retrieve the speaker in the list of guests. (Right) The
enquirer must select the next word to utter.

We first detail the data we used to create the ISR game before describing the speech
processing phase. Finally, we present the neural training procedure.

5.6.1 Dataset

We build the ISR game using the TIMIT corpus (Garofolo et al., 1992). This dataset
contains the voice recordings of 630 speakers with eight different accents. Each speaker
uttered ten sentences, where two sentences are shared among all the speakers, and the eight
others differ. Sentences are encoded as 16-bit, 16kHz waveforms. First, we define the ISR
vocabulary by extracting the words of the two shared sentences, so the enquirer module
may always request these words whatever the target speaker. In total, we obtained twenty
distinct words such as dark, year, carry while dropping the uninformative specifier a.
Second, we use the eight remaining sentences to build the speakers’ voice print.

5.6.2 Audio Processing

Following Snyder et al., 2018; Snyder et al., 2017; Snyder et al., 2016, we first down-
sample the waveform to 8kHz before extracting the Mel Frequency Cepstral Coefficient
(MFCC). We use MFCCs of dimension 20 with a frame-length of 25ms, mean-normalized
over a sliding window of three seconds. We then process the MFCCs features through a
pretrained X-Vector network to obtain a high quality voice embedding of fixed dimension
128, where the X-Vector network is trained on augmented Switchboard (Godfrey et al.,
1992), Mixer 6 (Chodroff et al., 2016), and NIST SREs (Doddington et al., 2000)1. To
get the spoken word representation (word that the enquirer will query), we split the two
shared sentences into individual words by following the TIMIT word timestamps. We then

1available in kaldi library (Povey et al., 2011) at http://www.kaldi-asr.org/models/m3
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extract the X-Vector of each word wt of every speaker u to obtain zut . We compute the
voice print by extracting the X-Vector of the eight remaining sentences before averaging
them into a final vector of size 128 for each guest mu.

5.6.3 Speaker Recognition Neural Modules

We here describe the ISR training details and illustrate the neural architectures in
Fig. 5.3.

Guesser. To train the guesser, we first model the speaker by averaging the voice print
into a single vector m̂ = 1

d

∑
m. We then pool the X-Vectors with an attention layer

conditioned on ĝ to get the guesser embedding ẑ (Bahdanau et al., 2015):

et = MLP ([zt, m̂]) ; α = softmax(e) ; ẑ =
∑
t

αtzt,

where [.,.] is the concatenation operator and MLP is a multilayer perceptron with one
hidden layer of size 256. We concatenate the guesser embedding with the speaker voice
print before projecting them through a MLP of size 512. Finally, we use a softmax to
estimate the probability pu of each guest to be the speaker, i.e. p(mu = m∗|z,m) =
softmax

(
MLP ([mu, ẑ])

)
. Both MLP have ReLU activations (Nair et al., 2010) with a

dropout ratio of 0.5% (Srivastava et al., 2014). The guesser is trained by minimizing
the cross-entropy with ADAM (Kingma et al., 2015), a batch size of 1024 and an initial
learning rate of 3.10−4 over 45k games with five random guests.

Enquirer. To model the enquirer, we first represent the pseudo-sequence of words by
feeding the X-Vectors into a bidirectional LSTM (Hochreiter et al., 1997) to get the
word hidden state x̄t of dimension 2*128. Note that we use a start token for the first
iteration. In parallel, we average the voice print into a single vector m̄ = 1

d

∑
mu to get

the guests context. We then concatenate the word hidden state z̄ and the guest contexts
m̄ before processing them through a one-hidden-layer MLP of size 256 with ReLU. Finally,
a softmax activation estimates the probability of requesting the speaker to utter wt+1 as
the next word: p(wt+1|zt, · · · , z1,m) = softmax

(
MLP ([z̄t, m̄])

)
. The enquirer is trained

by maximizing the reward encoded as the the guesser success ratio with PPO (Schulman
et al., 2017). We use the ADAM optimizer (Kingma et al., 2015) with a learning rate of
5e-3 and gradient clipping of 1 (Pascanu et al., 2013). We perform 80k episodes of length
T = 3 steps and d = 5 random guests. When applying PPO, we use an entropy coefficient
of 0.01, a PPO clipping of 0.2, a discount factor of 0.9, an advantage coefficient of 0.95,
and we apply four training batches of size 512 every 1024 transitions.

5.7 Experiments
We run all experiments over five seeds, and report the mean and one-standard deviation
when not specified otherwise.

5.7.1 Guesser Evaluation

In this section, we evaluate the guesser accuracy in different settings. As mentioned, we
opt to request T = 3 words to identify the speaker among d = 5 guests. In this default
setting, a random policy has a success ratio of 20%, whereas the neural model reaches
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Figure 5.4: (a-b) Guesser test accuracy, respectively varying the number of words (resp.
guests) being used (c) Enquirer test accuracy varying the number of queried words. The
RL enquirer outperforms the heuristic baseline when selecting a low number of words.

74.1%±0.2 on the test set. As the guesser is trained on random words, these scores may be
seen as an ISR lower-bound for the enquirer, which would later refine the word selection
toward improving the guesser success ratio. Thus, this setting shows an excellent ratio
between task difficulty and guesser initial success, allowing to train the enquirer with a
relatively dense reward signal.

Word Sweep. We assess the guesser quality to successfully perform speaker recognition
when increasing the number of words T in Fig. 5.4a. We observe that a single word
only gives 50% speaker retrieval, but the accuracy keeps improving when requesting more
words. Noticeably, collecting the full vocabulary only scores up to 97% accuracy.

Guest Sweep. We report the impact of the number of guests d in Fig. 5.4b. The guesser
accuracy quickly collapses when increasing the number of guests with d = 50 having a 46%
success ratio. As the number of words remains small, the guesser experiences increasing
difficulty in discriminating the guests. One way to address this problem would be to use a
Probabilistic Linear Discriminant Analysis (PLDA Ioffe, 2006) to enforce a discriminative
space and explicitly separate the guests based on their class.

5.7.2 Enquirer Evaluation

Model. As previously mentioned, the enquirer aims to find the best sequence of words w
that maximizes the guesser accuracy by interacting with the speaker. At each time step,
we thus select the word with the highest probability p(wt+1|zt, · · · , z1,m) according to
the policy without replacement, i.e., the model never requests the same word twice.

Baseline. We compare our approach to two baselines: a random policy, and a heuristic
policy. As the name suggests, the random baseline picks T random words without re-
placement. To obtain a strong baseline, we pre-select words by taking advantage of the
guesser model, where we value a sequence of words by computing the guesser accuracy
over ρ = 20000 games. Optimally, we want to iterate over every tuple of words to retrieve
the optimal set; yet, it is computationally intractable as it requires ρ ∗

(
c
T

)
estimations,

where c is vocabulary’s size. Therefore, we opt for a heuristic sampling mechanisms. We
curated a list of the most discriminant words (words that increase globally the recognition
scores) and sample among those instead of the whole list.

Results. In our default setting, the random baseline reaches 74.1% ± 0.2 speaker iden-
tification, and the heuristic baseline scores up to 85.1%. The RL enquirer obtains up to
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Figure 5.5: Enquirer test accuracy averaged over 3 random seeds

88.6% ± 0.5, showing that it successfully leverages the guests’ voice prints to refine its
policy. We show the RL training in Fig. 5.5. At early training, we observe that the ISR
module still has high variance, and may behave randomly. However, RL enquirer steadily
improves upon training, and it consistently outperforms the heuristic baseline.

Word Diversity. To verify whether the enquirer adapts its policy to the guests, we
generate a game for every speaker in the test set, and collect the requested words. We then
compute the overlap Ω between the tuple of words by estimating the averaged Jaccard-
index Jaccard, 1901 of every pair of speakers as follow:

Ω =
1∑N−1
n n

N−1∑
i=1

N∑
j=i

J(wi,wj) ; where J(A,B) =
A ∩B
A ∪B

,

where N is the number of speakers in the test set and wi is the word tuple of game
i. Intuitively, the lower this number, the more diverse the policy, e.g, the deterministic
policy has a Jaccard-index of 1. In the default setting, the random policy has an index
of 0.14 while the RL agent has an index of 0.65. Thus, the requested words are indeed
diverse.

Requesting Additional Words We here study the impact of increasing the number
of words T requested by the enquirer (see Fig. 5.4c for results). First, we observe that
the ISR module manages to outperform the heuristic policy when requesting two to four
words, showing that the interaction with the speaker is beneficial in the low data regime.
This effect unsurprisingly diminishes when increasing the number of words. However, we
noticed that the enquirer always outputs the same words when t = 1. It suggests that
the model faces some difficulties contextualizing the guests’ voice print before listening
to the first speaker utterance. We assume that more advanced multimodal architecture,
e.g., multimodal transformers (Lu et al., 2019; Tan et al., 2019), may ease representation
learning, further improving the ISR agent.
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5.8 Conclusions and Future Directions
In the last sections, we introduced the Interactive Speaker Recognition paradigm as an in-
teractive game to improve speaker recognition accuracy while querying only a few words.
We formalized it as a Markov Decision Process and trained a neural model using Rein-
forcement Learning. We showed empirically that the ISR model successfully personalizes
the words it requests to improve speaker identification, outperforming two non-interactive
baselines. Our protocol may go beyond speaker recognition. The model can be adapted
to select speech segments in the context of Text-To-Speech training. Interactive query-
ing may also prevent malicious voice generator usage by asking complex words to the
generator in a speaker verification setting.

Ideas from preceding sections could be included to this setup. Action are words, thus
considering the proximity between words (in the speech domain) could help to simplify
policy’s work.
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Conclusion and Future Directions

I’m part of the second generation of deep reinforcement learning researchers. The first
generation witnessedDQN (Mnih et al., 2015) and AlphaGo (Silver et al., 2016) while my
generation saw the birth of AlphaStar (Vinyals et al., 2019). Reproducing and competing
with those recents advances seems to be a lost cause. Algorithms such as IMPALA (Es-
peholt et al., 2018), R2D2 (Kapturowski et al., 2018) or SEED (Espeholt et al., 2019)
require thousands of CPU and large GPUs or even TPUs. Exciting and eye-catching
benchmarks were proposed (Beattie et al., 2016; Vinyals et al., 2017; Berner et al., 2019),
but the amount of compute will always gives an edge over potential rivals. It is easy to get
attracted by those appealing subjects and I plead guilty for trying to compete on those
grounds. On the other hand plenty of subjects are still underexplored, and interesting
topics are the ones that are still under the radar.

Thesis Summary

Chapter 5 starts with the idea that interactivity in machine learning is beneficial, even
when facing supervised setups. By framing the problem of speaker identification as an
interactive game, we reduced the amount of utterances required and increase recognition
scores. Adaptivity to the speaker being queried is what gives the method an edge. Build-
ing upon this idea that interactivity is what set reinforcement learning appart from other
methods, we focused our analysis on the actions. Chapter 2 surveys the different action
spaces and highlights problem such as the curse of large spaces. We propose contextual
ineffectiveness, actions that in certain context do not work, to explain why some envi-
ronments are hard to learn. We showed experimentally that DQN struggles to detect
contextual ineffectiveness and proposed an auxiliary loss to shape the Q-values. By using
a signal given by the environment, this auxiliary loss is enough to make DQN efficient
in two environements. A recent paper (Huang et al., 2020) provides an empirical anal-
ysis comparing invalid action masking and penalty masking (analogous to our method).
They conclude that actor-critic methods can learn when masking the policy logit and
even increases sample efficiency compared to penalizing invalid actions. Thus spending
more time on modifying directly the action space to remove invalid actions might be a
better strategy than shaping the Q-values (Zahavy et al., 2018). In 3, we played out
with the idea that current exploration methods fail to use actions that rarely affects the
environment. Thus, we designed DoWhaM an exploration strategy that exploits the
action consequence as a signal to explore. Finally, in chapter 4 we developped the idea
that goals are high-level actions and that learning and generalizing across goal is essential
in building autonomous agent. To this end, we developped HIGhER, a generalization of
Hindsight Experience Replay (HER) for language goal. This side-stepping was suppose
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to open new possibilities for goal-generation, by using the generator as a self-rewarding
mechanism but sometimes, it does not work according to the plan.

Future Directions
In this thesis, we focused our attention on the actions, more specifically how informations
on the actions spaces can increase the data-efficiency of reinforcement learning algorithms.
The ambition layed in the introduction still remains, trying to build an agent that is
able to adapt to the actions, without engineering. The contributions proposed a tiny
step in this direction but generality is still far ahead. The following paragraph either
develop promising directions treated in the thesis or propose new paths not explored in
the preceding chapters.

Exploration using action knowledge Exploring actions with different consequences
was a key idea behind DoWhaM. Detecting contextual ineffectiveness and focusing on
actions that rarely trigger changes in the environment was one of many possibilites. Some
actions can trigger a set of diverse consequences, for example shooting at an explosive bar-
rel, an enemy or a wall impacts the environment differently. Finding states where actions
trigger rare (or unseen) consequences and go beyond the binary approach in DoWhaM
(effective or not effective) could be a next intesting step. One could build a cluster of
consequences for each action and try to reach state that will fall in the smallest cluster,
to explore under visited areas.

Continuous action spaces are harder to explore than discrete, potentially creating a con-
flict with action embeddings. Action embeddings reduce sample complexity but combining
it with other exploration strategy is still an open problem. Also, developing better explo-
ration strategy in continuous domains would benefit as a whole the community as many
problems use continuous actions.

Adaptation and Transfer to new action spaces Quick adaptation to new domains
and tasks is another potential application. Chen et al., 2019 used action embeddings
to transfert between fighters in an arcade game and we expect to see more work in this
direction. At the moment, standard benchmarks in this domain are missing, thus design-
ing environments to assess adaptation capability will be key to advance the field. For
example a set of standard games where actions concepts are similar but games looks dif-
ferent such as Cobbe et al., 2019. Concepts such as action removal at testing time, to
assess robustness or adding new actions during training should be at the heart of those
benchmarks. Another potential direction for transfer is to use language description to
give quick insights on what the action are doing. For example, quick explanation such as
"Action A jumps, B interact with object", similar to Zhong et al., 2019.

Strenghening of our understanding of actions spaces. Action embeddings has
only been used for discrete domains, assessing how well this method adapts to continuous
domain seems like a natural enhancement. In Chapter 2, we developped the idea of some
action being independent such as in Factored-MDPs or space being entangled. Some spaces
are harder to learn than others, thus it should inspire to learn some transformation that
reduces the complexity of vectorial spaces, by finding orthogonal component for example.
This idea could also be used to study how well action embeddings are disentangled.
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Coming up with algorithms that are able to tackle hybrid domains will be essential as
agents get more and more general, and tackle more complex setups. Games like Dota
already have hybrid spaces and we expect to see more environments using those.

Goal-based method and language When considering a class of MDP’s, an action
set can be minimal for certain instances but not for others. For example, multi-goal agents
might use a set of actions to solve one task (opening doors) and leave aside inventory while
another task do not involve doors and requires picking up objects. Thus, generalizing
DoWhaM type of methods to multi-goal setups in another interesting venue.

Questions raised with action spaces (in Section 2.1) are relevant to goal spaces and study-
ing more systematically those questions could leverage both domains:

1. "How many goals current methods can handle ?"

2. "How to measure goal space complexity ?"

3. "How can we leverage transfer between goals ?"

4. "How goal representation alleviates policy learning ?"

More generally, goal-based methods and finding ways for agents to generate their goals
is a very interesting research avenue. HIGhER was a first step, using a goal-generation
mechanisms, however, we expect to see more work in this direction in combination of
language methods.
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List of Acronyms

A

A2C Advantage Actor-Critic

A3C Asynchronous Advantage Actor-Critic

AI Artificial Intelligence

ASR Automatic Speaker Recognition

C

CAS Continuous Bounded Action Space

CMDP Constraint Markov Decision Process

CNN Convolutionnal Neural Network

D

DAS Discrete Finite Action Space

DDQN Dueling Double Q-Learning

DL Deep Learning

DoWhaM Do What Matters!

DP Dynamic Programming

DQN Deep Q-Learning

DRL Deep Reinforcement Learning

G

GB Giga-Bytes

GPU Graphics Processing Unit

H

HER Hinsight Experience Replay

I

ISR Interactive Speaker Recognition

L
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LSTM Long Short-Term Memory : Recurrent Neural Architecture

M

MB Mega-Bytes

MDP Markov Decision Process

ML Machine Learning

MLP Multi-Layer Perceptron

N

NLP Natural Language Processing

NN Neural Network

P

PG Policy Gradient

POMDP Partially-Observable Markov Decision Process

R

RDQN Recurrent Deep Q-Network, DQN adaptation for POMDP

RL Reinforcement Learning

S

SL Supervised Learning

SRL Sequential Representation Learning

T

TB Tera-Bytes

TPU Tensor Processing Unit, hardware specialized in tensor processing, used in Deep
Learning cluster

TTS Text-To-Speech
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List of Symbols

Mathematical notations

E expectation over a distribution

x sample to be classified

N set of integers

y sample’s label

θ weights of a neural net

R set of real numbers

t time index, discrete value greater than 0

Algorithm Constant

β Intrinsic reward weighting parameter

k number of discrete actions

γ discount factor in [0, 1]

ε ε-greedy exploration parameter

η Weighting parameter for a defined loss

ξ Decaying parameter, in ratio function B

Markov Decision Processes

Q state-action value function (? for optimal value, π for policy value)

V state value function (? for optimal value, π for policy value)

A set of actions a ∈ A

B replay buffer

IH Impact function EH : A→ N

F feedback function, F : S× A→ {0, 1}

D goal dataset

G set of goals g ∈ G

mθm mapping function, parametrized by θm, mθm : S→ G
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π? optimal policy

πθ parametrized policy

π policy

B ratio function B : A→ [0, 1] for DoWhaM intrinsic reward

R(st, a, st+1) reward function R : S× A× S→ [0, 1]

N τ episodic state count within trajectory τ

S set of states s ∈ S

τ episodic trajectory of length l [(st, at, rt)]
l
t=0

P (s′ | s, a) stochastic transition fonction

UH usage function UH : A→ N

v goal validness function v : S×G→ {0, 1}

Interactive Speaker Recognition

m list of voice print for the current game

d number of guest within an episode

C vocabulary composed of c words w

M set of all guests of size M

z word representation (X-vector)
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