
HAL Id: tel-03523674
https://theses.hal.science/tel-03523674v2

Submitted on 12 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Planning For Both Robot and Human : Anticipating and
Accompanying Human Decisions

Guilhem Buisan

To cite this version:
Guilhem Buisan. Planning For Both Robot and Human : Anticipating and Accompanying Human
Decisions. Automatic. INSA de Toulouse, 2021. English. �NNT : 2021ISAT0011�. �tel-03523674v2�

https://theses.hal.science/tel-03523674v2
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par :
l’Institut National des Sciences Appliquées de Toulouse (INSA de Toulouse)

Présentée et soutenue le 6 juillet 2021 par :
Guilhem BUISAN

Planning For Both Robot and Human: Anticipating and Accompanying
Human Decisions

JURY
Stéphane CONVERSY Professeur Président du Jury
Olivier SIMONIN Professeur Rapporteur
Daniele NARDI Professeur Rapporteur
Julie SHAH Professeure Associée Examinatrice
Rachid ALAMI Directeur de Recherche Examinateur
Thierry SIMEON Directeur de Recherche Directeur de Thèse

École doctorale et spécialité :
EDSYS : Robotique

Unité de Recherche :
Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS-CNRS)

Directeur de Thèse :
Thierry SIMEON

Rapporteurs :
Olivier SIMONIN et Daniele NARDI

À mes grands-parents, mes quatre éléments

“C’est l’expérience qui dégagera les lois, répondait-il, la
connaissance des lois ne précède jamais l’expérience.”

— Antoine de Saint-Exupéry, Vol de Nuit

“Les savants ont calculé que les chances d’exister d’un
phénomène aussi manifestement absurde sont de une sur un
million. Mais les magiciens, eux, ont calculé que les chances
uniques sur un million se réalisent neuf fois sur dix.”

— Terry Pratchett, Mortimer

i

Remerciements

À la fin de mes études d’ingénieur en aéronautique1, alors que je me questionnais
sur l’idée de faire une thèse, un des membres de l’équipe dans laquelle j’effectuais
mon stage m’a dit “tu verras, une thèse, on n’en est jamais l’auteur principal, on
fait office de catalyseur tout au plus. Les meilleures idées ce n’est pas seul derrière
ton écran que tu les auras, mais en discutant autour de la machine à café, pendant
les repas de famille ou en balade avec des amis”... et le plus beau, c’est qu’il avait
raison. Ainsi, j’aimerais m’attarder pour exprimer ma gratitude à tous les auteurs
de ce document, qui ont aussi écrit leurs lignes dans le livre de ma vie.

Premièrement, je souhaite remercier mon directeur de thèse, Thierry “Nic” Si-
méon pour la confiance qu’il m’a accordée en acceptant de me superviser, ainsi qu’à
la liberté qu’il a su me donner quand mes intérêts portaient sur d’autres thématiques
que les siennes.

Ensuite, je remercie Rachid Alami, directeur officieux de cette thèse, pour
m’avoir guidé et permis d’explorer plusieurs facettes de l’interaction humain ro-
bot. Son plus gros défaut, qui est aussi sa plus belle qualité, est l’inspiration qu’il
procure. Tous ceux ayant déjà travaillé avec lui savent que si l’on entre dans son
bureau avec une question, on en sortira avec mille. Je le remercie aussi pour l’assu-
rance dont il a fait preuve, et la responsabilité qu’il m’a laissée lorsque j’écrivais des
articles ou ma thèse, ainsi que pour m’avoir poussé à toujours me dépasser. J’espère
que le plaisir que j’ai eu à travailler avec lui a été partagé durant ces quatre années.

Mes remerciements vont aussi aux Professeurs Olivier Simonin et Daniele Nardi,
rapporteurs de cette thèse, pour avoir pris le temps d’en lire et d’en commenter le
manuscrit, me permettant de corriger les erreurs et imprécisions qui s’y étaient
glissées. Je tiens à remercier Professeure Julie Shah, d’avoir accepté de faire partie
du jury lors de la soutenance. Enfin, je souhaite exprimer ma plus grande gratitude
au Professeur Stéphane Conversy, non seulement pour avoir présidé le jury, mais
surtout pour m’avoir initié au monde de la recherche académique et pour m’avoir
guidé tout au long de mon parcours à l’ENAC.

Je n’aurais sans doute jamais pu accomplir cette thèse sans mon comité de suivi
composé de Patrick Danès et Michel Taix. Les présentations que j’ai dû leur faire
ont à chaque fois été une grande source de stress et de questionnement, mais aussi
l’occasion de lister l’avancée de mes travaux et de recevoir de précieux retours et
conseils.

De même, je remercie Simon Lacroix pour le temps qu’il m’a consacré lorsque
de mon avancement j’ai douté. Jamais je n’ai entendu de paroles plus libératrices
que “tu as de quoi écrire et soutenir ta thèse avec ce que tu m’as présenté !”.

Merci plus globalement à l’ensemble des membres de l’équipe RIS que j’ai cô-
toyé, anciens et actuels, permanents, doctorants, post-docs, ingénieurs et stagiaires.
Travailler dans cette équipe, où la bonne humeur fréquente une connaissance scien-
tifique sans limite, a toujours été intimidant pour moi, mais aussi infiniment valori-

1je tiens à le préciser.

ii

sant. Pour toutes ces discussions, formelles ou non ; ces idées, bonnes ou mauvaises ;
ces conseils, toujours bienveillants ; ces fois où mes ignorances ont ébranlé votre
patience, je vous remercie.

Je souhaite maintenant présenter des remerciements plus personnels et de pré-
cision plus chirugicale2.

Tout d’abord, j’adresse un immense merci à mes collègues, qui avouons-le, sont
devenus bien plus que de simples équipiers au cours de ces quatre intenses années.
En commençant par les mousquetaires, avec qui nous avons partagé l’intégralité de
nos années de thèse.

Merci Kathleen, étant arrivés le même jour au laboratoire, j’imagine que ça fait
de toi ma jumelle du LAAS ? Avec ton éthique à nous filer Lyme, tu as quand même
résisté à nous faire interner, ce n’étaient pourtant pas les occasions qui manquaient.
Merci aussi pour tous ces moments coréens, que tu as su épicer de ton caractère aussi
piquant que leur nourriture. Pour ce pari gagné, je te souhaite tous les meilleurs
millésimes accompagnés de plein de cacahuètes !

Merci Amandine, volleyeuse libérale, super superviseuse et organisatrice multi-
tâches, pour tes partages d’articles brandant des débats passionnés et pour tes
exigences poussant toujours plus loin nos travaux, ton esprit de compétition et
ta détermination menant forcément aux réussites. Enfin, merci pour ces semaines
d’intégration, en France ou en Finlande, dans lesquelles karaokés improvisés se
mêlaient aux boissons à l’hibiscus.

Merci Guillaume, pour m’avoir supporté pendant cette thèse. Chapeauteur de
l’équipe, chapeauté à sang chaud luttant contre les moulins... à parole, loin d’être
un manche mais toujours prêt à lancer des piques, tu ne te sépares jamais de tes
Cerv...ezas. Des terrasses de Finlande jusqu’aux tours d’Allemagne, on a partagé
des fous rires et des idées, merci pour ces engueulades et ces moments de complicité.

Merci ensuite à tous les membres RIS pour votre soutien et pour ces moments
toujours enrichissants. Merci Amélie, talentueuse carottophobe ludovore dont le rire
éclairait l’open-space. Merci Alejandro, “je sais pas ce qu’on va faire aujourd’hui,
mais on va le faire à fond !”. Merci Jules, écoterroriste pacifiste. Merci Arthur, al-
liage raffiné de connaissance, de sourire et de bienveillance. Merci David, bushi du
rire, et amateur de cacahuètes. Merci Rafa, inventeur de techniques de tarot. Merci
Yannick, triathlète probable, mais ingénieur compétent certain. Merci Phani, cho-
régraphe de Pepper. Merci Miki, qui ne peut pas s’échapper de RIS. Merci Philippe,
amateur de blagues de grands crus. Merci Jérémy, brain and body builder. Merci
Ilinka, qui arrive à nous bluffer en boucle. Merci Alexandre, binôme encadrant
d’INSAïens. Merci Antoine, industriel en sous-marin dans l’équipe. Merci Anthony,
héritier de ce travail à ne pas trop prendre au sérieux. Merci ensuite à Yoann, Har-
mish, Christophe, Ellon, Jérôme, Martin, Gianluca, Dario, Eliott, Andréa, Florian,
Florian, Pierre, Léa, Élise, Vivien, Jean-Hugues, Idriss, Paul, Tanguy, Sylvain et à
tous les autres !

2Mais qui sont faits main, pas de Da Vinci ici.

iii

Merci à tous les membres de l’AMAP Sophie et Gaya, et surtout à Sophie pour
avoir, à la sueur de son front, nourri mon corps et mon esprit pendant ces années
de thèse.

Merci à cette belle et grande famille aéronautique de l’aéroclub Icaria dont les
membres ont toujours des histoires à raconter qui font frémir, de peur ou d’exci-
tation, et des images à partager qui font rêver. Merci à Philippe “Phiphi” Salvato,
maître de l’air à l’humilité à faire givrer un carbu et à l’anticonformisme à faire
pâlir des inspecteurs de la DGAC. Tu as su de nombreuses fois me montrer que
tous les problèmes de la vie paraissent beaucoup plus petits vus du ciel, et à quel
point garder les pieds sur terre était nécessaire pour ne pas perdre le “bon sens
paysan” qui nous fait trop souvent défaut.

Merci Michel, d’avoir été présent dans les différentes étapes de ma vie et de
m’avoir initié à la sensation addictive de voler.

Merci à tous les membres du club robotique de l’ENAC pour avoir initié et
développé mon amour-haine de la robotique. Merci Ludo, Quentin, Seb, Yoann,
Xavier, Florian, Florian, Darian, Manu et tous les autres. Merci à toi Fab, gourou
de la méca, génie de l’élec et virtuose du code de m’avoir tant appris ! J’espère que
les Rusty Ducks connaîtront des roues codeuses instables, des servos qui brûlent et
des bugs laissant des traces encore longtemps !

Mes amis des Los Pollos Hermanos3, je vous remercie grandement. Merci Dzie-
ciol, Pastre, Léopold et Fab, merci pour ces soirées, pour ces énigmes, pour ces jeux
de rôles, pour ces projets, pour ces délires !

Je souhaite à présent remercier mes amis de plus longue date, pour qui se rap-
peler précisément le début de notre amitié n’aurait pas de sens, avec qui je ne peux
plus compter les moments de rire, de peur, de discussions, de tristesse et de bonheur.

Dans cette thèse, j’écris beaucoup sur les modèles d’humains, mais ici, je veux
écrire quelques mots sur l’humain modèle. Merci Guillaume, témoin clé des moments
charnières de ma vie, s’échapper avec toi est à chaque fois un ravissement. Diffuseur
concentré que même Pasteur ne ferait taire, toujours prêt à engager dans la zone
ou à t’engager dans la vie. Merci, bien sûr, Natacha pour tes conseils avisés de
docteure, je vous souhaite le meilleur dans votre belle et grande maison !

Merci Rémi, brasseur de moult malts, conteur passionné lisant nos destins sur
les faces de ses dés, pour ta clairvoyance m’ayant toujours aveuglée, et pour ces
moments où l’on refaisait le monde en satellisant des bières ou en jouant à des
jeux aux règles trop floues. Je sais que nos débats d’idées me créeront des ampoules
encore longtemps, alors dis à Claire de réparer ses chaussures, et prépare les tiennes !

Merci Chloé, pour ces huit dernières années de nos vies que l’on a choisi de
partager ensemble. Merci de m’avoir soutenu pendant ces (trop ?) longues années
d’études et avoir été à mes côtés pour s’en répartir les peines et les joies. Cette
thèse n’aurait sans doute jamais vu le jour sans le support de la prof de maths la
plus swag au monde !

3les initiés sauront quelles lettres remplacer.

iv

Merci à Marie-Hélène et à Michel pour ces débats et ces mots réconfortants,
autour d’un muscat, dans une rivière, lors d’une balade en forêt ou en cueillant des
olives. Merci à Claire et Jeff pour leur bonne humeur et les reportages photos de
leurs vacances. Peu importe d’où le vent souffle, votre nouvelle maison tiendra et
vous saurez surfer sur tous les tracas !

Enfin, un gigantesque merci à ma famille, avec qui les disputes et les schismes
sont si rares que mes collègues la qualifiaient de “dysfonctionnelle”. Alors, pour cette
famille si parfaitement dysfonctionnelle générant des discussions toujours techniques
et intéressantes :

Merci maman de m’avoir élevé dans cet écrin de soleil et de verdure si magnifique
et particulier. Tu as su me donner le goût de la liberté, tout en me faisant apprécier
sa valeur, pour qu’à tous les cous pelés qui essaieraient de me l’acheter je puisse
répondre que je “ne voudrais pas même à ce prix un trésor”.

Merci papa pour ces valeurs que tu m’as transmises ; responsabilité, courage et
franchise en sont juste des exemples. Merci pour ton soutien inconditionnel, ton
humour, mais surtout pour me rappeler de “ne pas me prendre la tête”.

Merci Alexis, Adélaïde, et la nouvelle venue Anna, première de la famille à
toujours m’avoir connu avec le titre de docteur. Avec vos profils, je sais que tout ira
bien dans vos maisons (tout nus) accompagnés de vos Sphynx (tous nus) !

Merci tonton Fabrice, tatie Karine et Loan, votre foyer est tellement intense qu’il
fissure votre maison. Toujours sur la mer, les mains dans le cambouis, au bureau,
auditant dans les plus grandes entreprises ou sur un practice, vous trouvez toujours
du temps pour vos proches, et nous vous en remercions tous.

Enfin, et surtout, mes derniers remerciements vont à mes grands-parents. Merci
pour l’éducation et l’instruction que vous m’avez données et que vous continuez à
me transmettre, sans tout ce que vous m’avez prodigué cette thèse n’aurait jamais
existé, et je ne serai certainement pas l’homme que je suis aujourd’hui. Merci du
fond du cœur à vous quatre pour ces heures de conversations, téléphoniques ou
présentielles, desquelles je sortais toujours avec le sourire et plein de bons conseils.
Merci papi Roger, instructeur de MacGyver, pour nos discussions techniques et tes
enseignements qui ont éveillé ma curiosité dès mon plus jeune âge. Merci mamie
Christine, pour tes histoires abracadabrantes de l’ancien temps qui semblent tou-
jours sortir d’un livre. Merci papi Raymond, manipulant aussi bien les casseroles
que les mots, de régaler mes papilles et mes zygomatiques. Merci mamie Francine,
de me transmettre ce feu de la vie, ce sourire et ces envies de voyages où l’important
n’est pas ce que l’on a, mais ce que l’on vit.

PS : je ne peux quand même pas oublier les petites boules de poils à cajoler, dont
l’oisiveté forçait à l’introspection en cette période de thèse. Merci à Zelda, à Logano
“Monsieur Boubou” et à Olya pour leurs câlins, leurs ronrons, leurs léchouilles et
leurs mignonitude !

Je souhaite aussi créditer certains artistes musicaux m’ayant aidé durant cette
thèse. Pour coder, pour écrire ou pour déprimer, ils m’ont toujours accompagné, et
leurs riffs resteront coincés entre mes deux oreilles encore longtemps ! Merci à :

v

Iron Maiden, Gojira, Jinjer, Arch Enemy, Postmodern Jukebox, Tool, Avenged
Sevenfold, System of a Down, Protest the Hero, Opolopo, Heilung, Dance With The
Dead, Kalisia, Steam Powered Giraffe, Igorrr, Carpenter Brut, Protokseed, Brass
Against, The Police, Soilwork, Ye Banished Privateers, The Night Flight Orches-
tra, David Bowie, Pantera, Earth Wind and Fire, The Dreadnoughts, Epica, Hippo-
campe Fou, Bohren & Der Club Of Gore, Tim Minchin, Soulpersona, Cryochamber,
Aerosmith, Frontback, Manowar, Corpo-Mente, Ultra Vomit, Queen, Orelsan, Me-
tallica, Fejd, Die Antwoord, Black Sabbath, Alestorm, Audioslave, Linkin Park,
McBaise, The Who, Stupeflip, Scorpions, Slaughter To Prevail, Pomplamoose, Frog
Leap, Rage Against the Machine, Sleep, Rammstein, Guns N’ Roses, Intervals,
Limp Bizkit, In This Moment, Dire Straits, Britney, AC/DC, Eminem, Grimes,
Jamiroquai, Foo Fighters, Neil Cicierega, Slipknot et tous les autres !

� 91

Contents

Introduction 1

1 Planning for Human Robot Interaction Context and Challenges 5
1.1 Task and Navigation Planning . 5
1.2 Collaborative Human and Robot Activities 6

1.2.1 Usability and Automation . 7
1.2.2 Joint Action in Human-Robot Interaction 9

1.3 Modeling Human Actions and Shared Plans 11
1.3.1 Notations . 11
1.3.2 Task Modeling and Hierarchical Task Networks 12
1.3.3 Planning for Both the Human and the Robot 13

2 Coplanning for Navigation 17
2.1 Introduction . 17
2.2 Related Work . 19

2.2.1 Human-Aware Robot Navigation 19
2.2.2 Communicating Intents via the Robot Gaze 21

2.3 The Human Aware Timed Elastic Band 22
2.3.1 General Scheme . 23
2.3.2 Constraints . 24

2.4 Evaluating Enhanced Mutual Manifestness in a Crossing Scenario . . 26
2.4.1 Robot Behavior Design . 27
2.4.2 User Study Protocol . 29
2.4.3 Results . 35
2.4.4 Discussion . 38

2.5 On User Studies in HRI . 39
2.5.1 Users in HRI studies . 40
2.5.2 Evaluation Methods . 41
2.5.3 The Replication Crisis in HRI 44
2.5.4 Proposed Guidelines for Better User Studies in HRI 44

2.6 Extending HATEB . 45
2.6.1 Adapting HATEB to Other Robots 45
2.6.2 Using the Estimated Time to Goal to Measure the Execution

of the Planned Trajectory . 49
2.7 Conclusion . 50

3 Evaluating Communications Feasibility and Cost During Human-
Aware Task Planning 53
3.1 Introduction and Example . 53

3.1.1 Example . 54

viii Contents

3.1.2 References and Acknowledgments 56
3.2 Related Work . 57

3.2.1 Referring Expression Generation 58
3.2.2 Task Planning With Communication Actions 60

3.3 Ontology-Based Referring Expression Generation for Human Robot
Interaction . 62
3.3.1 Using Ontologies for Human Robot Interaction 62
3.3.2 REG Features for Communication Action Estimation During

Task Planning . 67
3.3.3 Ontology Based REG Problem Definition 69
3.3.4 Efficient REG Algorithm Presentation 73
3.3.5 Results . 78
3.3.6 Integration . 82

3.4 Planning Communication Actions Using Referring Expression Gen-
eration . 85
3.4.1 Method . 85
3.4.2 Approach . 85
3.4.3 Case Studies . 89

3.5 Conclusion . 93

4 Emulating the Human Decision and Action Processes During Task
Planning 97
4.1 Introduction . 97
4.2 Description . 100
4.3 The Proposed Planning Process . 102

4.3.1 Action Models Restriction . 103
4.3.2 Exploration Algorithm . 104
4.3.3 Conditional Plan Selection 105

4.4 Implementation . 108
4.4.1 A Python Planner . 108
4.4.2 Drawing the Plans . 110

4.5 Examples . 110
4.5.1 Plan for Robot Unknown Human Knowledge 110
4.5.2 Balance Difficult Communications, Decomposition Cost and

Task Attribution . 119
4.6 Conclusion and Future Work . 130

4.6.1 Selecting Conditional Plans Using the Human Model 130
4.6.2 Representing Explicitly Observation Processes 132
4.6.3 Pruning During the Search Space Exploration 132

5 Task Planner Integration Within a Robotic Architecture for Hu-
man Robot Interaction 135
5.1 Introduction . 135
5.2 Integrating With Other Components 136

Contents ix

5.2.1 Retrieving the Current State and Beliefs From the Knowledge
Base . 136

5.2.2 Using REG at Planning Time 138
5.2.3 Communicating Through ROS 138

5.3 The Director Task . 139
5.3.1 A Task Used in Psychology 140
5.3.2 Setup . 141
5.3.3 The Robotic Architecture . 142
5.3.4 Challenges for Planning . 146

5.4 Conclusion . 149

Conclusion 151

A Navigation User Study Questionnaires 157
A.1 Original PeRDITA Questionnaire Without Verbal Dimension (French)158
A.2 Unofficial Translation of the PeRDITA Questionnaire 160
A.3 Situation Assessment Questionnaire (French) 162
A.4 Translation of Situation Assessment Questionnaire Items 164
A.5 AttrakDiff Questionnaire (French) 164

B HATP/EHDA Domains for the Coffee Bringer Examples 167
B.1 Plan for Robot Unknown Human Knowledge 167
B.2 Balance Difficult Communications, Decomposition Cost and Task

Attribution . 172

C Résumé en Français 179

Bibliography 183

Acronyms

AOI Area of Interest. 34, 36, 37

CLLE Cognition, Langues, Langage, Ergonomie. 26, 27, 31

HATEB Human-Aware Timed Elastic Bands. 22, 23, 27, 28, 31, 39, 45, 46, 48,
49, 50, 154

HATP Hierarchical Agent-based Task Planner. 13, 14, 60, 86, 87, 88, 89, 92, 93,
98, 100, 107, 109, 126, 138, 151, 152, 153

HATP/EHDA Human Aware Task Planner with Emulation of Human Decisions
and Actions. 3, 99, 108, 110, 115, 119, 123, 130, 133, 135, 136, 137, 141, 144,
167

HCI Human Computer Interaction. 3, 6, 7, 18, 39, 40, 41, 43, 44

HRI Human Robot Interaction. 1, 6, 18, 39, 40, 41, 42, 43, 44, 45, 57, 62, 67, 69,
85, 98, 100, 108, 119, 128, 135, 149, 151, 152, 154

HTN Hierarchical Task Network. 3, 13, 86, 100, 103, 104, 105, 107, 108, 110, 112,
119, 121, 130, 131, 132, 137, 139, 151, 152, 153, 155

KB Knowledge Base. 85, 86, 136, 137, 142, 149

MuMMER MultiModal Mall Entertainment Robot. 2, 17, 18, 47, 51

PeRDITA Pertinence of Robot Decisions In joinT Action. 29, 33, 34, 35

PyHOP Python Hierarchical Ordered Planner. 108

RE Referring Expression. 58, 59, 60, 70, 73, 79, 81, 85, 86, 91, 92, 138, 144, 145,
146

REG Referring Expression Generation. 57, 58, 59, 60, 62, 67, 68, 69, 70, 71, 72,
73, 74, 78, 79, 82, 84, 86, 88, 89, 92, 93, 114, 128, 136, 138, 144, 146, 149,
151, 154

TEB Timed Elastic Band. 23, 49

TTC Time-to-Collision. 24, 27, 28, 29, 31, 32, 35, 36, 37, 38, 39

UX User Experience. 31, 40, 41, 42

Introduction

Humans use machines for a long time. On one hand, what started as simple tools
quickly gained in complexity and are now robots able to autonomously act on the
world with little to no human supervision. On the other hand, humans are more
and more dependent on these machines, both for everyday and more specific tasks.
However, both acting on the environment and having some autonomy can lead to
incidents and injuries if a robotic system is not well made or if a human has not
received a specific training. This is why currently in the industry we see a complete
physical separation between human and robots, or some annoying light and sound
systems when robots share human environments. Indeed, while the Fitts’s HABA
MABA [Fitts 1951] distinction is getting blurrier, some major interaction challenges
have not been tackled yet.

In this thesis we propose to explore a way to bring the human and robot closer
in order to make them perform tasks in shared environments in a safer and more
usable manner than existing systems. To do so, we claim that robots must be able
to make their decisions based not only on their own perception of the environment
but also on their estimation of the beliefs of their human partner. Moreover, the
robot must be able to plan taking into account that the other agent will also plan,
act and react to the actions of the robot.

Human Robot Interaction

The literature on Human Robot Interaction covers a wide range of approaches and
visions. As in artificial intelligence, a distinction can be made between systems
trying to act like humans and systems trying to act rationally. Moreover, some
approaches also try to implement human cognitive models on robot to validate
them.

In this manuscript, the approach chosen is to make a system acting rationally.
Besides, we define the Human Robot Interaction (HRI) as Goodrich and Schultz
as being the field of study dedicated to understanding, designing, and evaluating
robotic systems for use by or with humans. Thus, the goal is to make a robotic
system allowing to, when used by or with humans, to perform a task in the most
effective, efficient and satisfactory way. To put it otherwise, we aim at making the
most usable (as defined in ISO 9241-11) robotic system.

It is worth mentioning that some work focusing on the goal described above
still mimicry some human behaviors. Indeed, the best working interaction example
we currently have access to is humans collaborating with humans. In this thesis,
even if the human behavior may be taken as an inspiration, the argument that the
robot should act in a certain way because the human does so will not be used.
However, we present ways of using human tasks and actions modeling to improve
robot decisions and planning.

2 Introduction

Motion and Task Planning

Both humans and robots are considered as agents. An agent is an entity able to
modify its environment (and its own state) by performing actions. Now if an agent
is given an objective (a specific environment state) and has an estimation of what
its actions will change in this environment, it can try to figure out a succession of
actions leading to that objective. This process is called planning. We can identify
two main types of planning.

First, task (or symbolic) planning models the world into facts and agents’ ac-
tions as changes over these facts. In this thesis, we explore how human robot task
planning can benefit from communication actions feasibility and cost estimation
(Chapter 3). Moreover, we propose a task planning scheme aiming at emulating
human planning process to generate human robot collaborative conditional plans
(Chapter 4). Then, motion (or geometrical) planning represents the world in a
more refined way, accounting for geometrical models of agents and the environ-
ment. Actions are represented as trajectories, moving objects or (parts of) agents
across space. In this thesis, we will especially deal with navigation, a sub part of
motion planning, and study in Chapter 2 how planning for both the human and
robot trajectories allows to elaborate more efficient trajectories when the robot is
in proximity to the human.

Summary of the Thesis

We are interested in how planning for both the human and the robot can improve
the interaction while doing collaborative tasks. We start in Chapter 1 by giving
context to this thesis by presenting task and navigation planning, what are the
current challenges in human robot interaction and how we can model human actions
and provide shared plans. Then, in Chapter 2 we explore an approach to robot
navigation planning where both the robot and the human trajectories are computed
at position control rate. This approach uses an optimization scheme allowing to
define constraints representing the interaction between the trajectories. We use it to
enhance the mutual manifestness of the robot and show through a user study how
it improves the efficiency of the robot navigation in narrow crossing scenarios. We
also present how we used this approach on other robots and on a complete robotic
system deployed in the wild during the MultiModal Mall Entertainment Robot
(MuMMER) project. Alleviating from inherent ephemeral and implicit nature of
navigation interactions, we continue exploring human and robot planning in task
planning.

In Chapter 3, our objective is to use the observations made in navigation and
to apply them in the symbolic domain, more explicitly. More precisely, we want to
consider communication as actions the robot must plan in order to have the best
interaction possible. Planning communications requires planning for both agents.
This lead to two contributions. First, we present an efficient algorithm running
over an ontology resolving the content of communications aiming at referring to an

Introduction 3

object of the environment to the hearer. This problem is called referring expres-
sion generation and, while it has been studied for over thirty years, we show that
our approach is not only the fastest one to date but also the most suitable for hu-
man robot interaction scenarios. Then, we used this efficient method for resolving
communications content to estimate the feasibility and cost of such communication
actions during task planning. Using this approach allows to avoid plans that would
have been unrecoverable during the execution and to find more efficient ones.

In Chapter 4 we propose a hierarchical task planning scheme that is not only
able to update human and robot beliefs separately throughout the planning pro-
cess, but also able to reason on distinct human and robot action models. While
the robot action model is close to ones used in Hierarchical Task Network planning,
the human one is thought to be made through a task modeling approach as done
in Human Computer Interaction. Actions are represented as functions over the
beliefs and we specify rules on which actions may update or reason on which be-
liefs. We implemented this scheme in a prototype planner which we named Human
Aware Task Planner with Emulation of Human Decisions and Actions (HATP/E-
HDA) and showed that it allows to represent and to plan for intricate human robot
collaborative scenarios.

Finally, in Chapter 5, we present some interesting details about how HATP/E-
HDA can be integrated in a robotic architecture. We end by presenting a novel
human robot collaborative task: the director task. Inspired from psychology stud-
ies, it induces several challenges for human robot interaction. We introduce a full
robotic architecture able to cope with the nominal cases and in which HATP/EHDA
has been integrated.

List of Publications

Published

• Buisan, G., Sarthou, G., Bit-Monnot, A., Clodic, A., & Alami, R. (2020, Au-
gust). Efficient, situated and ontology based referring expression generation
for human-robot collaboration. In 2020 29th IEEE International Conference
on Robot and Human Interactive Communication (RO-MAN) (pp. 349-356).
IEEE.

• Buisan, G., Sarthou, G., & Alami, R. (2020, November). Human aware task
planning using verbal communication feasibility and costs. In International
Conference on Social Robotics (pp. 554-565). Springer, Cham.

• Buisan, G., & Alami, R. (2021, March). A Human-Aware Task Planner Ex-
plicitly Reasoning About Human and Robot Decision, Action and Reaction.
In Companion of the 2021 ACM/IEEE International Conference on Human-
Robot Interaction (pp. 544-548).

4 Introduction

Accepted

• Belhassein, K.*, Buisan, G.*, Clodic, A., & Alami, R. Towards Methodological
Principles for User Studies in Human-Robot Interaction. To be published in
ACM Transactions on Human-Robot Interaction Journal.

Submitted

• Buisan, G., Compan, N., Caroux, L., Clodic, A., Carreras, O., Vrignaud, C.,
& Alami, R. Evaluating the Impact of Time to Collision Constraint and Head
Gaze on Usability for Robot Navigation in a Corridor. Submitted to IEEE
Transactions on Human-Machine Systems Journal.

• Buisan, G., Favier, A., Mayima, A., & Alami, R. HATP/EHDA: A Robot Task
Planner Anticipating and Eliciting Human Decisions and Actions. Submitted
to the IEEE International Conference on Robotics and Automation (ICRA)
2022.

Chapter 1

Planning for Human Robot
Interaction Context and

Challenges

Contents
1.1 Task and Navigation Planning 5
1.2 Collaborative Human and Robot Activities 6

1.2.1 Usability and Automation . 7
1.2.2 Joint Action in Human-Robot Interaction 9

1.3 Modeling Human Actions and Shared Plans 11
1.3.1 Notations . 11
1.3.2 Task Modeling and Hierarchical Task Networks 12
1.3.3 Planning for Both the Human and the Robot 13

This first chapter aims at setting the context for this thesis. While not pro-
viding a exhaustive state of the art, it presents challenges of planning for human
robot interaction. More complete related work will be reviewed in the beginning
of Chapter 2 and Chapter 3. In what follows, we first define robot motion and
task planning, then we describe the challenges arising for the specific context of
human robot interaction and finally we present general approaches trying to cope
with these challenges by modeling and planning for the human.

1.1 Task and Navigation Planning

As put by Ghallab, Nau and Traverso, “the purpose of planning is to synthesize an
organized set of actions to carry out some activity” [Ghallab 2016]. Planning can
be domain-specific if the planning method (and set of actions) is precisely tailored
to solve a specific type of activity. Domain-specific planning includes navigation
aiming at planning a trajectory for moving the robot base from a place to another
while respecting its kinodynamic constraints and avoiding obstacles. On the other
hand, domain independent planning uses methods which can be applied to a wide
varieties of problems using abstraction. Actions are then represented as functions
modeling the changes they have on a symbolic world state to produce a new world

6 Chapter 1. Context and Challenges

state. In any case planning requires to model the environment and the actions
allowing to predict how an agent actions would impact this environment.

Besides, the robot not only needs to plan, but also to act. Acting refers to
the process by which the robot decides “how to perform the chosen actions while
reacting to the context in which the activity takes place”. Indeed, a planning process
can usually only rely on the world state estimated at the beginning of the process
and the models of how it evolves (caused or not by an agent action). However,
this estimation can be coarse and may lack of a lot of information. Moreover the
models used are always imperfect and may not represent exactly how the world
state evolves over time. For example in navigation planning, the map on which the
planning is done may be incomplete as some obstacles may not be detectable at the
robot starting position. Besides the robot controllers might not be able to follow
exactly the planned trajectory, and thus the robot would fall outside the plan. This
is why Ghallab, Nau and Traverso argue for an “interplay” between planning and
acting.

In navigation this is usually done via a global/local planner approach
[Choset 2005]. First the global planning process finds an obstacle-free general tra-
jectory from the start to the end point over a known map of the environment.
Then, a local planner tries to find a more precise and short term trajectory from
the current estimated position of the robot to a point on the global plan while also
dealing with newly detected obstacles. This local trajectory is recomputed at posi-
tion control speed (around 20Hz for speeds around 2 meters per seconds) and can
be as short as only a speed command sent to the controller but can also predict a
trajectory for several seconds in the future. For more abstract task planning this
often translates as having a “descriptive model” for planning, where tasks are rep-
resented as high level symbols and an “operational model” for acting, where tasks
can be refined into low level commands depending on current world state.

Planning seldom condenses to finding a valid plan or not. It also often has to find
the minimal cost plan. Costs are usually associated with actions and can represent
a variety of concepts, ranging from battery consumption to money costs. In the
case of navigation planning, the interest is often to find the shortest obstacle-free
trajectory (i.e. minimizing the trajectory length or duration).

1.2 Collaborative Human and Robot Activities

When robots need to interact with humans, be it for collaborating on a task, for
maintenance, for teleoperation or just because they share a common environment,
new planning constraints and goals arise. The Human Robot Interaction (HRI)
field studies these topics. More precisely, “HRI is a field of study dedicated to un-
derstanding, designing, and evaluating robotic systems for use by or with humans”
[Goodrich 2007]. Other fields study the interaction between humans and systems,
such as Human Computer Interaction (HCI) or Human-Agent Interaction (HAI)
but HRI presents its unique challenges, as the system is able to take autonomous

1.2. Collaborative Human and Robot Activities 7

decision and physically act on its environment. All these fields are strongly linked to
psychology (more precisely cognitive psychology) as the understanding and model-
ing of human behavior is crucial for such intricate interactions between the systems
and the human. In this section we will first define a highly desirable property of
interactive systems: the usability, and how it is applied to highly autonomous sys-
tems and to robots. Then, some principles of the joint action field, studying how
humans handle cooperative tasks, will be presented along with their application in
human robot interaction.

1.2.1 Usability and Automation

Usability is defined by the ISO 9241 as “the extent to which a system, product or
service can be used by specified users to achieve specified goals with effectiveness,
efficiency and satisfaction in a specified context of use”. The interactive system used
by a human must allow them to do the task, while consuming as little resources as
possible (e.g. time, money, number of steps) and being enjoyable to use.

1.2.1.1 Human Computer Interaction

To design such systems a lot of contributions in HCI and ergonomics rely upon
human cognitive models, often drawn from cognitive psychology. One of the
most detailed and still being used and enriched to date is the human processor
model [Card 1983], which can be used for estimating how long a human will take to
achieve a certain task. Another widely used model to help with designing interac-
tive systems is the Norman’s seven stages of action model (Figure 1.1). This model
represents the different cognitive processes involved when a human performs an
action, and allows to design an interactive system accordingly. Moreover, Norman
elicits seven design principles from this model. One of them being highly desirable
for an autonomous agent system is the discoverability [Norman 2013].

Indeed, too many systems require expertise to be used. This often results from
the system designer focusing on the “machine part” and not on the interface. Ma-
chines have been identified to avoid some humans flaws for a long time [Fitts 1951],
but because the “interface” 1 is too often poorly designed, the human needs to
make great effort to use the machine. This effort becomes more important as the
system gains in complexity and automation. This has been identified by Norman
as the “paradox of automation” [Norman 2013]. More precisely, when an auto-
mated system is performing a task the human situation awareness [Endsley 1988]
decreases leading to misuses and errors when they need to interact with the system
(e.g. because of a system error or incapability).

1We refer here to the first meaning of “interface”: the common surface where two systems meet
and interact.

8 Chapter 1. Context and Challenges

Figure 1.1: The seven stages of actions defined by Norman [Norman 2013]. By
giving a precise definition of each stage, this model guides the design and engineering
of interactive systems by emphasizing each step of the cognitive processes taking
place during an action. The designer can estimate the scope of the system and the
potential errors at each stage of action.

1.2.1.2 Human Robot Interaction

When interacting with a robot, the human is no more the only agent taking au-
tonomous decisions and able to act on the world. Indeed, not only the robot has
its own plan-act-sense cycle with its own goal, but it can also physically move and
change its environment. For the decision part, Bradshaw et al. [Bradshaw 2011]
propose eight maxims to complete and specify the recommendations of Norman.
These maxims apply to human-agent interaction when they perform a joint activ-
ity:

• The agent must be observable: its state and intentions are clearly exposed to
others.

• The agent must appraise progress: it should inform others about the status
of its task and warn them for any foreseen potential issues.

• The agent must know its limits: it should be proactive or wait when perform-
ing a task, depending on its evaluation of its capabilities.

• The agent must be predictable and dependable: it should show what its capa-
bilities are, and be trusted to use them at its best.

• The agent must be directable: its (sub)tasks can be preempted or modified if
required and its knowledge can be updated thanks to other agents.

• The agent must be selective: it should expose only relevant facts in the context
of the task.

1.2. Collaborative Human and Robot Activities 9

• The agent must be coordinated: it should negotiate and deconflict plans, share
resources and align beliefs between agents to create a common ground if it is
required to perform the task.

Interestingly, in their “Architecture for autonomy”, Alami et al. propose a
robotic architecture which defines similar levels as the ones identified by Norman
during human action [Alami 1998].

Robot navigation should also respect these maxims. A number of approaches
are trying to cope with these specific human robot issues [Kruse 2013]. Moreover,
more precise concepts have emerged from the maxims especially for the motion of
a robot in a joint activity.

First of all, the motion should ensure the physical safety of the surrounding
humans. This is often respected by constraining the trajectory to stay at a minimal
distance from humans [Kruse 2013, Rios-Martinez 2015].

Moreover, while in a task, the motion of the robot can be used to convey infor-
mation about its intentions, and thus making it more observable and predictable.
Dragan et al. define three types of motions: functional, predictable and legible
[Dragan 2015]. A functional motion is built only to make the robot move from
one state to another one while avoiding humans and obstacles, it does not aim at
conveying any intention — which does not mean it does not convey one. Then, a
predictable motion is a motion expected by an external observer knowing the robot
model and its goal. It is often the quickest or shortest trajectory to reach the goal.
Finally, a legible motion is a motion allowing an external observer to quickly and
reliably infer the robot motion goal.

However, as identified by Sisbot et al., to be identified as legible or predictable,
the robot motion must be seen by the human. Accounting for the visibility of the
robot by the human is paramount [Sisbot 2007]. They integrate this constraint in a
motion planner which is able to compute the safety of trajectories using the distance
to a specified human and also prioritize visibility of the robot by estimating the field
of view of the human and penalizing trajectories outside it.

A lot of work has been made to generate legible paths. In [Beetz 2010], the
robot learns usual motions from humans and generates trajectories based on them.
However, even if the authors highlight the improvement in legibility, one could argue
that the learned motions correspond more to the Dragan’s definition of predictabil-
ity. In [Dragan 2013], a robot motion planner is presented which is dedicated to
generate legible trajectory. They prove its effectiveness through a user study while
reporting an interesting finding: if the legibility of the motion is stressed to much,
it becomes unpredictable and confuses the observer.

1.2.2 Joint Action in Human-Robot Interaction

Besides designing behaviors from scratch, previous work takes inspiration from sit-
uations where humans already perform a task with another autonomous agent:
another human. Several previous contributions have been done studying how hu-
mans perform a so-called joint action. Joint action is defined by Sebanz et al. as

10 Chapter 1. Context and Challenges

“any form of social interaction whereby two or more individuals coordinate their ac-
tions in space and time to bring about a change in the environment” [Sebanz 2006].
Moreover, several work investigate multiple key abilities humans deploy when per-
forming a joint action:

• humans can create and understand joint attention: they are able to direct, or
be directed by, others’ attention [Pacherie 2011, Sebanz 2006].

• humans can predict others’ action effects and goals [Tomasello 2005,
Sebanz 2006].

• humans can represent the shared task: they can infer others’ actions without
directly seeing it, by observing events in the environment [Knoblich 2011,
Sebanz 2006].

• humans can coordinate actions by integrating others’ actions into their own
plan [Sebanz 2006].

• humans consider combined actions results more important than their own
only [Sebanz 2006].

• yet, humans are able to distinguish their own actions from other’s, allow-
ing them to find any divergence in beliefs or intentions and align them
(e.g. through communication) if necessary [Pacherie 2011].

Besides, a joint action can only occur if the involved agents know the presence
of others agents but also their activity and intentions. Pacherie defines it as the
mutual manifestness: “each subject must be aware, in some sense, of the event as
an event that is present to both; in other words the fact that both are attending
to the same object or event should be open or mutually manifest” [Pacherie 2011].
Thus, it is not only necessary for the agents to account for the presence of the other
but they also need to know they are involved in the same task.

Finally, studies show that humans can help the others to predict and coordi-
nate their actions by communicating or slightly modifying their own. Coordination
smoothers are defined as the changes in an agent own behavior to ease the interac-
tion with another one [Vesper 2010].

It is interesting to note that some concepts are already overlapping with the
desirable features for a robot taking part in an activity with a human. For exam-
ple, the legibility and predictability of motion are based on models of the human
capability to understand coordination smoothers and predict future actions effects.
Bradshaw et al. also refer to an “extra work” an agent has to perform to ensure an
efficient interaction with a human partner [Bradshaw 2003], which can be linked to
the mutual manifestness and the several mechanisms which can be used, and which
a human expects, when interacting.

Moreover, some work already tries to incorporate these joint action concepts
and abilities into robotic architectures and behaviors [Khamassi 2016, Clodic 2017].

1.3. Modeling Human Actions and Shared Plans 11

Lemaignan et al. present a robotic architecture composed of several compo-
nents addressing the cognitive skills required to perform a collaborative task
[Lemaignan 2017]. These include shared plan synthesis, human-aware motion plan-
ning — both of which are discussed later in this chapter —, supervision, beliefs
management and situation assessment. The situation assessment is able to gen-
erate symbolic facts from geometric data for the robot and also to estimate the
beliefs of the human partner based on an estimation of their perspective of the
scene [Milliez 2014]. This framework has since been improved to a more modular
approach allowing more refined reasoning, especially for the estimation of human
beliefs [Lemaignan 2018]. The presented supervision component is based on SHARY
[Clodic 2009] allowing the robot to execute shared plans while monitoring the hu-
man activities and deciding when to communicate. Devin & Alami proposed an
extended supervision system, heavily based on theory of mind, which is able to
follow a shared plan but also to compute diverging agents beliefs, deciding if the
divergence endangers the plan and if so, align the beliefs via verbal communications
[Devin 2016].

1.3 Modeling Human Actions and Shared Plans

It has been shown previously that a robotic agent interacting with a human needs
to coordinate its actions with them. Moreover, joint action theory exhibits that
humans interacting together are able to represent the task as a whole, and plan
not only for their actions but also for the actions of other agents. Thus, we think
that for a human to perform the most efficient and satisfactory joint task with a
robot, this robot must explicitly model the human actions and plan not only for
its actions but also for the human ones. In this part we will first introduce some
notations used throughout all this thesis, then we will briefly show some ways of
modeling human tasks and link them with robot task planning. Finally, we review
some systems planning for both humans and robots when performing a joint task.

1.3.1 Notations

In order to help to differentiate between the models presented in this thesis, we
introduce here some notations we will use in the thesis. These notations are partially
inspired by the work of Chakraborti et al. [Chakraborti 2018] (Figure 1.2). We will
refer to the model the robot has of itself asMR, to the model the robot has of the
human it is interacting with asMH

r and to the model the human has of the robot
asMR

h . The models can represent different parts of the agent, ranging from their
beliefs to their action model.

While not being here a formal definition, the notation should help to understand
to which agent we are referring to. It is important to note that all the components
presented in this thesis are considered to be a part of the robot, and thus MR

plays a special role as we consider all the information in it as the ground truth. For
example, if there is a beliefs divergence betweenMR andMH

r , we always consider

12 Chapter 1. Context and Challenges

Figure 1.2: The notation coined by Chakraborti et al. from [Chakraborti 2018] to
represent the robot modelMR, the estimated human modelMH

r and the estimated
robot model the human has M̃R

h (denotedMR
h for simplicity as the real one is not

accessible to the robot).

that theMR is the truth, otherwise, it would make no sense to keep this information
inMR while having access to the one inMH

r .

1.3.2 Task Modeling and Hierarchical Task Networks

Multiple approaches try to model the human activity. It is useful either for psycho-
logical studies, or to design a system that integrates gracefully in human tasks, in
order to improve their performances. These tasks can be seen as hierarchical, where
abstract ones decompose into smaller, more concrete ones. Such a hierarchical ap-
proach is also used in order to elaborate plans for autonomous robots. Interestingly
the underlying structures share several commonalities.

1.3.2.1 Human Task Modeling

A common way of representing human activity (MH
r) and interaction with computer

at high abstraction level is by using task models. The hierarchical structure of
human activity was first exploited by Annett and Duncan [Annett 1967]. They
state that tasks can be described at several levels of abstraction until a certain
criterion is met. Each task can thus be refined into subtasks detailing the procedure
followed by the human to achieve the higher level task.

Task modeling has then evolved to introduce interaction with systems, pro-
duced and needed information, potential errors and a wide variety of operators

1.3. Modeling Human Actions and Shared Plans 13

specifying how tasks interacts with each other during their execution. Task mod-
els are now commonly used in user-centered and user interface designing processes.
Most advanced notations include ConcurTaskTrees [Paternò 2004] and HAMSTERS
[Martinie 2019].

These models are used to design or to evaluate interactive systems. They allow
the designer to better understand the user task or to study the user workflow using
their system. However, these models contain too little information for a system to
be able to reason and take decision on them (either in planning or acting).

1.3.2.2 Robot Hierarchical Task Planning

On the other hand, hierarchical representations of tasks have also been used for
decades in robotic planning (MR). In classical planning, each action of an agent is
atomic and needs some conditions to hold in the environment to be executed, then
it changes the environment when applied. The planning process has then to find
the right sequence of actions, being applicable one after the other to change the
environment to reach a certain goal state.

Hierarchical Task Networks (HTNs) allow the domain designer to help the
plan search by inserting expert knowledge via a hierarchy linking these actions
[Erol 1996]. Indeed, a task network is composed of one or several tasks or actions,
and each task has one or several decompositions. Each decomposition is itself a
task network. The goal of the planner is not to find the sequence of actions to reach
a goal, but rather to select recursively for each task the right decomposition ending
(if possible) with a network of actions applicable from the initial state. Such a pro-
cess is named by Ghallab, Nau and Traverso as planning with refinement methods
[Ghallab 2016].

This planning hierarchy not only allows the domain designer to guide the search
by inserting some expertise into the model, but also to enhance explainability as
the decompositions often offer a semantic to their subtasks (the why can usually be
answered by going up in the hierarchy, while the how is answered by going down).

1.3.3 Planning for Both the Human and the Robot

While human activity modeling and autonomous planning have been studied sepa-
rately for decades, there are still only few systems proposing to incorporate human
activity into planning for intricate interactive tasks. Planning for both a robotic
agent and a human is not trivial. Indeed, while the robotic agent is planning for it-
self and will surely execute the plan, the human is not directly controllable (making
them follow the plan may require the robot to at least communicate and perhaps
negotiate) and can also have their own plan they are trying to execute.

The Hierarchical Agent-based Task Planner (HATP) proposes a hierarchical
approach to multi agents task planning [Alili 2009, Lallement 2014]. This HTN
based planner is able to elaborate a multi agents plan based on a single HTN tree
(unifying both MR and MH

r). Moreover, it maintains one beliefs base per agent

14 Chapter 1. Context and Challenges

allowing to write task decomposition rules and actions preconditions and effects
in any agent beliefs base. Finally, HATP also computes costs for the plans found
based on action costs and predefined social rules. More details about HATP will
be presented in Chapter 3. This task planner has been coupled with the Geo-
metrical Task Planner (GTP) allowing to also plan the geometrical motion of the
human partner to inform HATP about the feasibility and the cost of a motion ac-
tion [Gharbi 2015a]. As stated before, HATP has been used in complete robotic
architecture [Devin 2016, Lemaignan 2017].

Buckingham et al. propose a planning scheme questioning humans men-
tal models (MH

r) returning the effects of expected future humans actions
[Buckingham 2020]. The planner is then able to determine a robot policy (MR) in-
fluencing the humans actions. In this work, they show how this framework is able to
cope with interactive tasks even without assuming that the human is collaborating.

Similarly, Unhelkar et al. proposed a POMDP-based approach called Comm-
Plan [Unhelkar 2020]. The POMDP is built using a user defined MDP (Markov
Decision Process) representing the collaborative task and an AMM (Agent Markov
Model) to represent the human decision-making process (MH

r). This POMDP is
then solved to produce a robot policy (MR) which, in particular, decides when the
robot has to communicate about its beliefs, to question the human about theirs
and to ask the human to perform an action. Besides, the human AMM (MH

r) is
not only specified by the programmer but also refined during the interaction via
learning.

Besides, to cope with the uncertainty of the human knowledge (MH
r), Petrick

and Foster propose to use conditional planning allowing to plan for incomplete
information [Petrick 2013]. By doing so, the planner elaborates a plan for the
robot (MR) accounting for multiple possible human choices, and depending on the
knowledge received the execution component can execute the right branch of the
plan.

Likewise, Sanelli et al. ([Sanelli 2017]) present an approach not only elaborating
conditional plans for the robot (MR) depending on the possible human choices
(MH

r , e.g. the choice of activity the human wants to perform), but they are able to
transform this conditional plan into a Petri net plan to handle its execution. This
contribution is inspired from a previous work by Nardi and Iocchi ([Nardi 2014])
in which they present a method for transforming (linear) joint plan (both MR

and MH
r) into a Petri net plan managing its execution. Interestingly, the human

actions from the plan are changed into a part of the Petri net where the robot
elicits the action (e.g. via a verbal communication) if the human does not perform
it by themselves. However, this approach only requests the human to make single
actions, instead of sharing a high level goal, which can become unpleasant if done
repeatedly.

Chakraborti et al. uses both the robot model (MR) and the estimation of
the model the human has of the robot (MR

h) to improve plan explicability
[Chakraborti 2017]. Indeed, they propose a novel approach called model recon-
ciliation which they present as a classical planning problem. In this problem, the

1.3. Modeling Human Actions and Shared Plans 15

goal is to make identical both the optimal plans generated via the robot modelMR

and the human estimation of the robot modelMR
h . To do so, they define a list of

operators on the models in order to modify them until the plans match. To our
knowledge it is the only approach both reasoning on MR

h and operating directly
on the action models. However, it only has been applied to robot plans and not to
joint plans. Indeed, the generated plans contain only robot actions, and the robot
and the human do not directly collaborate in the presented tasks.

Geometrical planning in human robot activity has also been studied in several
contributions. For navigation, Khambhaita and Alami propose a planner optimizing
both the human and the robot trajectories (MR andMH

r) [Khambhaita 2017]. This
allows the robot not only to have a prediction of the human future trajectory, but
also to model their interactions and how its own trajectory can affect the human’s
one. This approach will be detailed and used in Chapter 2.

Besides, representing humans as a group has also been showed as beneficial
for robot navigation. For instance, for the robot-waiters problem, where multiple
robots compute trajectories in order to serve multiple moving humans in a room
containing obstacles, Saraydaryan et al. ([Saraydaryan 2015]) showed that consid-
ering clusters of humans to be served allows to decrease the human idleness (the
duration for which a human has not been served by a robot). These humans clus-
ters are called F-Formations when the humans are actively interacting with each
other in the cluster (e.g. a group of humans discussing together). Recognizing them
and integrating them (MH

r) in the robot trajectory computation (MR) in order to
socially integrate them or to not disturb them also allow for more acceptable robot
trajectories ([Althaus 2004]).

Another work presents a motion planner allowing to balance the effort between
the robot and the human, depending on the mobility of the human, for a handover
task [Mainprice 2012]. To do so, they sample an acceptable position for the human
(MH

r) according to several parameters, including its settable mobility, then they
try to plan a trajectory for both the robot (MR) and the human (MH

r) to get them
into an handover configuration. This work has then be extended and generalized by
Waldhart, Gharbi and Alami to handle several robots and humans [Waldhart 2015].

Finally, Waldhart, Clodic and Alami proposed a geometric planner, able to find
the best robot and human positions for the robot to point at a landmark for the
human [Waldhart 2019]. This planner uses the human vision ability and mobility
(MH

r) as well as robot mobility and tries to make a pointing triangle formation
between the robot, the human and the landmark to point (MR).

From all these contributions we see a great interest in planning for both the
human and the robot. Indeed, they allow to represent multiple features highly
desired in human robot interaction scenarios. First, by planning for both, shared
goals and coordinated actions can be represented. The planners are able to elaborate
plans (or trajectories) that do not conflict between the agents, and even that interact
in a collaborative way to reach the shared goal.

Then, it allows to allocate tasks to either one agent or the other if they can

16 Chapter 1. Context and Challenges

be done by both. Unlike other task allocation approaches, modeling the human
helps to estimate the effort taken in the contribution of the joint plan. The planner
can ensure that most of the effort is taken by the robot but can also balance other
solutions depending on the context (e.g. urgency to perform the task, where the
human may accept to contribute more to do it faster).

Finally, when integrated in a robotic architecture and in a real human robot
scenario, planning for both reveals to be key. Indeed, planning before acting usually
avoids deadlocks during execution or sub-optimal solutions which would have been
encountered by short-term only reasoning. But for human robot interaction it also
allows to estimate the effort and the contribution of each agent before involving the
human. Moreover, the resulting joint plan can then be negotiated with the human
before starting the task, allowing for a better efficiency, satisfaction, explainability
and acceptability.

Not all of these challenges have been entirely tackled yet. In this thesis we
propose to explore multiple ways of planning for both agents.

Chapter 2

Coplanning for Navigation

Contents
2.1 Introduction . 17
2.2 Related Work . 19

2.2.1 Human-Aware Robot Navigation 19
2.2.2 Communicating Intents via the Robot Gaze 21

2.3 The Human Aware Timed Elastic Band 22
2.3.1 General Scheme . 23
2.3.2 Constraints . 24

2.4 Evaluating Enhanced Mutual Manifestness in a Crossing
Scenario . 26

2.4.1 Robot Behavior Design . 27
2.4.2 User Study Protocol . 29
2.4.3 Results . 35
2.4.4 Discussion . 38

2.5 On User Studies in HRI . 39
2.5.1 Users in HRI studies . 40
2.5.2 Evaluation Methods . 41
2.5.3 The Replication Crisis in HRI 44
2.5.4 Proposed Guidelines for Better User Studies in HRI 44

2.6 Extending HATEB . 45
2.6.1 Adapting HATEB to Other Robots 45
2.6.2 Using the Estimated Time to Goal to Measure the Execution

of the Planned Trajectory . 49
2.7 Conclusion . 50

2.1 Introduction

In a lot of human robot interaction scenarios, the robot has to move in the envi-
ronment to accomplish its task. It can either be that the task cannot be done in
the direct vicinity of the robot or that the task itself is to move elsewhere or to
transport an object. For example in the MuMMER project, a Pepper robot in a
mall has to give direction instructions to guide a human to their desired location.

18 Chapter 2. Coplanning for Navigation

The robot is also able to point to visible landmarks to locate the beginning of the
route (e.g. saying “Take these stairs, then take the corridor on your right and the
shop will be on your left” while pointing to the stairs). However, some obstacles
in the proximity of the robot and the guided human can prevent them to see the
pointed landmarks, or a corridor crossing can be hidden, making the route descrip-
tion one step longer than it should be. Thus, to perform the task of route guiding
more efficiently, the robot might decide to move.

In the Spencer project, another robot has to guide people to their gate in the
Schiphol airport. Here, the robot will navigate all the way from the starting point
to the final destination while ensuring the human is actually following it, but also
has to avoid other pedestrians. In this example, the navigation of the robot is a
main part of the task.

In both examples, the robot has to plan its motion such as the physical and
psychological safety of surrounding humans are ensured. However, not taking into
account the motion of these humans during the planning process may lead to sub-
optimal trajectories or even deadlocks.

We propose in this chapter, after a survey of related work, to present a navigation
planner algorithm taking into account both the robot and the human, then to
show how this approach can be used to enhance mutual manifestness and improve
efficiency in a narrow corridor crossing scenario through a user study, and finally
report some extension made to the approach to include humanoid robots, flying
drone and to estimate the progression of the navigation task.

This chapter presents three contributions. First, we perform a user study to
evaluate the pertinence of the “planning for both agents” approach. We claim that
planning a trajectory also for the human allows to express constraints on the robot
trajectory that would not have been possible otherwise. One of these constraints
aims at avoiding trajectories in which the robot is facing directly the human at
high speed, besides, it allows for a proactive and more legible behavior. Along
with robot head motions, we designed an autonomous robot behavior aiming at
enhancing mutual manifestness and tested it in a user study while crossing a human
in a narrow corridor. We showed that these mechanisms, only allowed by planning
for both agents, increase efficiency and satisfaction of the user.

Then, from the experience gained through this user study and through a com-
mon work with a psychologist, we propose an analysis and some guidelines for user
studies in HRI. In this work, we review the common issues that we identified in
recent HRI contributions containing user studies. We inspire from Human Com-
puter Interaction and psychology studies to provide several guidelines while still
discussing the differences between these domains and HRI in order to adapt the
proposed solutions.

Finally, we refined and extended this approach by using it in different contexts
and on different robots. Especially on the humanoid (bipedal) robot HRP2 and on
the Pepper robot. The latter has been deployed in a mall in Finland, thanks to the
MuMMER project, using a fully autonomous architecture, including our navigation

2.2. Related Work 19

approach, aiming at providing directions to customers.

2.2 Related Work

2.2.1 Human-Aware Robot Navigation

The aim of robot navigation is to make the robot base (the whole robot) move
from one place to another while avoiding static and moving obstacles. However,
when the robot has to move in an environment where humans are evolving, other
constraints must be added. The robot must not only avoid the humans, as any other
moving obstacle, to ensure their physical safety (not harming them), but also take
into account their psychological safety (not stressing or frightening them), avoid to
block them or to induce drastic changes in their motion [Sisbot 2007], [Kruse 2013].
In order to satisfy these constraints several methods have been used.

The first largely used method is based on costmap exploration. Based on the
robot known humans and obstacles in the environment a grid is built, where each
cell has a cost increasing in places the robot should avoid to pass through. Then,
given a start and an end points, a planner can explore this grid and try to minimize
the cost along the trajectory ([Sisbot 2007], [Lu 2013]). In these contributions, the
costs are computed according to distance to human (the closest the more expensive
the trajectory is), visibility (penalizing trajectories outside the human field of view)
and “surprise” (discouraging trajectories behind an obstacle close to the human).
These costs are merged usually through a weighted sum or a maximum1. Besides,
to compute the cost of a trajectory, the cost of each cell composing it are usually
summed2. These approaches are pretty efficient once provided with a cost grid but
since a whole grid can take time to compute, they can perform poorly in dynamic
environments. Moreover, they do not account for the robot and human speeds.
Thus, a trajectory where the robot is rushing towards the human and another one
having the same path but where the robot is gently approaching them would have
the same cost.

Another approach is to use the social force model [Helbing 1995]. A robot
trajectory is computed based on repulsive or attractive force fields set on humans,
obstacles and goal [Ferrer 2013]. This gives good results in open environments but
the trajectories can be erratic in confined ones with a lot of obstacles and humans
because of the diverging “forces” applied. Besides, humans are applying the same
force whether they have seen the robot or not, or whether they are moving or not.
Lastly, by only considering the robot plan, these planners return no solution if the
robot and the human must cross each other in a narrow corridor where the human
is centered leaving no place for the robot to pass. This is why we need a planner
able to infer that the human can move to one side of the corridor, thus contributing
to the solution and allowing the robot to cross on the other side.

1Merging motion planning costs is still an open challenge and will not be discussed in this thesis.
2Similarly, aggregating costs of configurations to get the trajectory cost is an open challenge

and will not be discussed in this thesis.

20 Chapter 2. Coplanning for Navigation

In their work, Kuderer et al. use social force model to both compute the robot
trajectories and predict the nearby human ones [Kuderer 2012]. However, the re-
sulting human trajectories are more reactions to robot motion than coplanning
solutions.

To overcome this limitation, Khambhaita & Alami propose a navigation plan-
ner based on an optimization scheme of both the robot and the human trajec-
tories. In this approach the trajectories of the robot and of the nearby humans
are optimized together, at position control rate, to create a conavigation solu-
tion [Khambhaita 2017]. This approach will be detailed later in this chapter but
more precisely, it requires a start and an end point (goal) for both the human and
the robot. While for the robot the start point is given by a localization component
and the goal by the supervision, for the human the start point requires a human
position detection component and the goal a intention recognition component. A
global planner (usually an A*) computes coarse but complete paths and estimated
speeds for both the human and the robot from their respective start point to their
goal. Then, the successive positions and the duration between each of them are
optimized from the initial trajectories, resulting in two shot-term but precise tra-
jectories. This ensures that at all time it exists for the humans a solution to go to
their known goal, and that this solution is optimal with respect to a different set of
constraints based on human models.

Although, even if the robot computes an optimal solution for the human and
itself, it also needs to communicate it or to show it to the human (e.g. whether
it plans to go to the left or the right of the corridor, so the human can either
accept or decline this plan). Thus, the robot must also try to make its intention
clear [Pacchierotti 2006]. This ability of a robot to exhibit its future actions is
called legibility. A legible robot will have its future actions and goals inferred early
[Dragan 2013], which is crucial in entangled tasks such as crossing in a narrow
corridor. For navigation, legibility can be increased either by changing the robot
speed along the path [Kruse 2012] or by modifying its path [Khambhaita 2017].

In a broader sense, the changes in an agent’s own behavior in order to
make easier the interaction with another agent are called coordination smoothers
[Vesper 2010]. Actually, Vesper et al. identify two types of coordination smoothers:
either slight changes in an agent behavior — called behavior modulations — to ease
the coordination or the use of special objects of which affordances invite to coordi-
nation. In the case of navigation, we are interested in the former as no objects are
manipulated in our examples. They define four types of behavior modulations:

• First, modulations making the behavior more predictable, by reducing the
variation of a repetitive motion for instance.

• Then, they identify modulations delimiting and structuring the other agent
tasks. Executing motions staying far away from the human allows to delimit
both workspaces.

2.2. Related Work 21

• Another type is coordination signal, it includes legible motions allowing to
infer the goal quicker.

• Finally, synchronization is also identified as a coordination smoother. Copying
and synchronizing motions between agents allow for a increased predictability.

It is clear that a robot should exhibit some coordination smoothers when in-
teracting with a human to increase its usability. Moreover, all the coordination
smoothers are not equal, as some can bring more information than others. A sim-
ple blinking light and beeping sound when the robot is moving are conveying less
information than turn signals for example. In our case, since we deal with anthro-
pomorphic robots, we can try to make even more efficient coordination smoothers
by using what can be identified as the head of the robot.

2.2.2 Communicating Intents via the Robot Gaze

Some robots have a movable part which can be identified as an head, and often
contains camera or similar devices that can be recognized as eyes. The resulting
robot gaze has already been used to effectively increase the user attention and
engagement [Mutlu 2006], [Zaraki 2014]. Besides, it can be used to show what
the robot is attentive to and what it is monitoring [Breazeal 2005]. Moreover,
the robot gaze has also been shown to be useful in navigation to indicate turning
intentions [Lu 2013, May 2015], and thus increase legibility. More precisely, May et
al. compare two navigation intention signals during a crossing with a human: the
head motion and a blinking light on the side the robot planned to move to. They
find that turning signals are more effective and that the human is more comfortable
when the robot uses them compared to head motion. However, we argue that their
experimental setup does not require precise turning indication, as the area in which
the human and the robot cross is wide, and only showing roughly if the robot is
going left or right is enough to ease the crossing. This may not be true in cluttered
environment where showing more precisely the planned trajectory is required.

On the other hand, Lu and Smart propose a gaze behavior where the robot
alternatively cycles between looking straight ahead and looking at a detected human
[Lu 2013]. They performed a user study where the human and the robot cross
each other in a narrow corridor. The study reveals that when the robot gaze is
alternating between the human and ahead of the robot, the crossing is less efficient
(i.e. the human goes slower) than if the robot gaze is only straight ahead. They
hypothesize that the head behavior was distracting as it may have stayed on the
human for too long, which may have been interpreted by the human as an intent
to start an interaction. This is supported by the definition of civil inattention
coined by Goffman specifying that eye contacts made between strangers to manifest
their mutual awareness of their presence are kept under a certain duration to avoid
opening a possibility of further interaction [Goffman 1966].

Finally, Khambhaita et al. present a framework dedicated to decide where to
look when a robot is navigating [Khambhaita 2016]. They combine both looking

22 Chapter 2. Coplanning for Navigation

at the trajectory and at the human behaviors. Through a video user study they
proves that looking at the trajectory improves the robot legibility as users are more
able to predict the destination of the robot. Moreover, when the robot glances
at the human, the satisfaction of users is enhanced as the robot acknowledges the
presence of the human. However, the study has been done in video, putting the
user as an observer of a robot crossing with another human. We can argue that it
is largely different from being directly interacting with the robot as the cognitive
load may not be the same and the physical presence of the robot may also impact
the human perception. We thus propose to further explore gaze behavior through
the user study reported in this chapter.

All the previous contributions support the claim that, in intricate collaborative
activities, each agent must show to the other one that they are aware of their
presence and actions. Pacherie defines it as the mutual manifestness: each subject
must be aware, in some sense, of the event as an event that is present to both;
in other words the fact that both are attending to the same object or event should
be open or mutually manifest [Pacherie 2011]. Thus, it is interesting to know if in
intricate human robot navigation tasks, making the robot show mutual manifestness
increases the efficiency of the task.

To do so, we will use planning for both agents to make the trajectory more
legible and also design a gaze behavior inspired from previous work.

2.3 The Human Aware Timed Elastic Band

The only work to our knowledge being able to, in real time, plan trajectories for the
robot and the humans surrounding it, is the Human-Aware Timed Elastic Bands
(HATEB) [Khambhaita 2017]. Thus, we used it as the backbone of our work,
and made several contributions to it by implementing it on different robots and
integrating it in a complete robotic architecture.

The idea of HATEB is to not only plan a trajectory for the robot while ac-
counting for the current position of humans, but also planning a trajectory for the
human. Using an elastic band optimization scheme, the planner is able in real time
to generate a trajectory for the robot and a trajectory for the human. By doing
so, the planner is able to find solutions where both agents must make an effort,
whereas other approaches only planning for the robot would fail. Moreover, it al-
lows to express constraints between the trajectory of the robot and the trajectory
of the human, not only considering the human as static or moving linearly but also
accounting for their decision capabilities (provided with an accurate enough human
model). Finally, by planning for the human, the robot can compute the effort taken
by the human (e.g. trajectory length and threat induced by the robot) and try to
minimize it by balancing between multiple solutions.

2.3. The Human Aware Timed Elastic Band 23

2.3.1 General Scheme

The human aware timed elastic band algorithm is based on the Timed Elastic Band
(TEB) approach from Rosmann et al. [Rosmann 2013]. This approach is a local
optimization problem where the successive positions (xi, yi) ∈ R and orientations
θi ∈ S1 of the robot along with the time steps ∆Ti ∈ R between each consecutive
poses are optimized to minimize a multi criteria cost function up to a fixed length
horizon n ∈ N. To put it otherwise, the elastic band trajectory of the robot is
represented by its poses:

Q = {si}i=0..n with si = [xi, yi, θi]T

to which are added the time intervals between two consecutive poses:

τ = {∆Ti}i=0..n−1

Resulting in the timed elastic band

B := (Q, τ)

having to be optimized to minimize the cost function f to get the optimal trajectory

B∗ = argmin
B

f(B)

This function takes the form of a multi criteria weighted sum cost function which
can be rewritten as:

f(B) =
∑
k

γkfk(B)

where γk ∈ R are weights allowing the designer to balance the importance between
cost functions fk.

This planner has been integrated has a local planner in the ROS move base
architecture. Provided with a global plan (often generated with an A* algorithm)
of the long trajectory, the local planner generates short term plans (up to several
meters), avoiding static and dynamic obstacles (both known by the global planner
and discovered with the robot sensor during the navigation) and minimizing the
trajectory duration. In addition, the local planner is responsible for generating the
speed command at position control rate (around 10 Hz usually). TEB does it by
optimizing the local trajectory and computing the wanted robot speed from the
first two poses and the time interval between them. Moreover, if the optimization
process takes too long, the length horizon of the global trajectory on which the
local optimization is performed is reduced, and increased if the optimization time
is satisfactory.

In the Human-Aware Timed Elastic Bands (HATEB), multiple timed bands are
considered. In addition to the robot band BR representing the robot trajectory,
it also considers multiple human bands BHk

with k ∈ N the number of humans in

24 Chapter 2. Coplanning for Navigation

vicinity of the robot (simple circles on Figure 2.1). For simplicity purpose, in this
thesis we will only consider one human in the vicinity of the robot, and thus one
human band BH. However, the approach has been shown to be working successfully
up to three humans. Moreover, the weighted-sum cost function becomes:

f(BR, BH) =
∑
a

γafa(BR) +
∑
b

γbfb(BH) +
∑
c

γcfc(BR, BH) (2.1)

where fa, fb and fc represent cost functions associated with respectively robot
trajectory constraints, human trajectory constraints and human-robot social con-
straints (rectangles on the Figure 2.1). Then, the optimization process consists in
finding the optimal robot and human trajectories BR, BH such as:

{B∗R, B∗H} = argmin
{BR,BH}

f(BR, BH)

2.3.2 Constraints

In this optimization scheme, all the constraints are represented as cost in the func-
tion. Thus, there is no hard constraints, but using the weight of each one, we
are able to prioritize some over the others. Moreover, when a trajectory has been
optimized, before being executed, the local planner checks that it respects all the
defined hard constraints (kinodynamic constraints and obstacles clearance).

The new formulation of Khambhaita et al. allows to separate the constraints
into three categories:

• Robot trajectory constraints: these constraints represent the robot kinody-
namic constraints (non holonomic, maximum speed, maximum acceleration)
as well as preventing the robot trajectory to differ too much from the global
plan. Examples are cvelr , caccr , ckinr and cobs on Figure 2.1. They are pre-
sented in [Rosmann 2013].

• Human trajectory constraints: these constraints represent the human kinody-
namic constraints and prevent them to differ too much from the global tra-
jectory. They are the same as the robot ones, but their parameters (e.g. max-
imum speed threshold) must not only be set by the designer but also refined
by the robot during the execution. They are represented as cvelh , cacch

, ckinh

and cobs on Figure 2.1.

• Human-robot social constraints: these constraints represent how the human
and robot trajectory must interact with each other. Khambhaita et al. pre-
sented the safety constraint, ensuring a sufficient distance between the robot
and the human (csafety on Figure 2.1); the directional constraint discouraging
trajectories where the robot and the human move straight to each other (cdir
on Figure 2.1); and the Time-to-Collision (TTC) constraint, preventing the
robot and the human to adopt speeds which, if maintained, would lead to a

2.3. The Human Aware Timed Elastic Band 25

Figure 2.1: Representation of the hypergraph being optimized from
[Khambhaita 2017]. Simple circles represent variables to optimize (poses of
agents and duration between two consecutive poses). Double circles represent fixed
poses (obstacles). Rectangles are the cost functions linked to the variables they
need to be computed. The total cost of the graph is computed using a weighted
sum of all the constraints. This approach allows to express constraints not only
on the robot trajectory (MR), but also on the human ones (modeling the human
behaviors, MH

r) and more importantly on the interaction between the multiple
agents trajectory.

26 Chapter 2. Coplanning for Navigation

collision (cttc on Figure 2.1). Indeed, the idea is that trajectories containing
high speeds pointing directly towards the human can increase the feeling of
threat. The latter will be detailed in what follows as it was studied more in
depth through a user study.

It is worth noting that different weights can be set for each constraint, and
that they can be adjusted dynamically during the navigation. Moreover, by setting
different weight between the robot and the human for the constraint preventing to
move away from the global plan, we can adjust the stiffness of the trajectories, thus
allowing one agent or the other to elongate their trajectory, taking more or less
effort into the collaborative navigation (Figure 2.2).

Figure 2.2: Different trajectory stiffnesses from [Khambhaita 2017]. In (a), the
stiffnesses of the robot and human are set to be equal, resulting in the robot and
the human altering similarly their trajectories. In (b), the robot stiffness is much
lower than the human one, resulting in the robot taking most part of the effort
needed to avoid the human. In rare cases, where the robot is an emergency for
example, the stiffness of the human can be set lower than the robot one (c).

In what follows we want to use this approach to study if planning for both
agents can allow to make more proactive and more legible robot trajectories and
if in turn this would result in a more efficient and satisfactory navigation for the
human. We hypothesize that such an approach is required in intricate navigation
scenarios where human and robot must cooperate to navigate successfully. This is
the case in confined locations.

2.4 Evaluating Enhanced Mutual Manifestness in a
Crossing Scenario

The user study reported in this section has been realized with Nathan Compan,
intern in psychology at the Cognition, Langues, Langage, Ergonomie (CLLE) lab-
oratory (University of Toulouse Jean Jaurès), Loïc Caroux associate professor in
cognitive ergonomics at the CLLE laboratory and Ophélie Carreras associate pro-

2.4. Evaluation Through a User Study 27

fessor in cognitive psychology at the CLLE laboratory. A journal article has been
submitted and is currently under review for the IEEE Transactions on Human-
Machine Systems Journal.

In this section we present a user study aiming at assessing the pertinence of using
a conavigation planner in a situation where a human and a robot must cross each
other in a narrow corridor. This task of crossing in narrow corridor is challenging
as both agents start in the center of either end of the corridor, and there is no way
for one agent to find a way if the other agent does not move to the other side. Thus,
we state that not only coplanning is required to find a plan reaching the other end
of the corridor (by planning that the other agent will also cooperate and move on
one side), but showing intentions and awareness of the other agent is crucial for the
interaction to unfold without trouble.

2.4.1 Robot Behavior Design

For this user study we were particularly interested in finding if and how navigation
coplanning would lead to higher mutual manifestness and to higher efficiency in
crossing. To do so, we designed a robot behavior using the HATEB navigation
planner. In their work Kambhaita et al. showed that during a narrow crossing the
robot is able to plan that the human and the robot will choose opposite sides of the
corridor. But if the robot shows its plan when it faces the human, they would have
little time to react, and might also move to the same side as the robot, needing
negotiation and replanning, reducing the overall efficiency of the crossing. The
robot must thus, indicate the plan (i.e. the planned trajectory, or here, the side of
the corridor it plans to take) early enough in the crossing.

As defined in [Khambhaita 2017] the TTC cost for two consecutive points of
simultaneous parts on the trajectory of the robot and the human is defined as:

fttc(ttc, τ, ε) = max(0, τ + ε− ttc
C2) (2.2)

where τ is the minimum duration allowed for the time-to-collision before penalizing
the configuration, ε is the tolerated gap between the computed ttc and τ and ttc

is the computed duration remaining before a collision between the human and the
robot if they both maintain the speed vectors they have at the considered points of
the trajectories, it is infinity if no collision is computed (the cost is thus equal to
0). The complete TTC cost is the addition of the all the fttc for all the points on
the trajectories.

By reducing the TTC constraint function threshold and increasing its weight,
we discourage trajectories where the robot and the human are facing each other at
short distance or at high speed. Thus, if the robot trajectory stiffness is lower than
the human one, the robot will move to the chosen side of the corridor early in the
trajectory as shown in Figure 2.3.

Moreover, as stated before several papers show that using the head of a robot
can significantly improve legibility and mutual manifestness. Thus, we also chose to

28 Chapter 2. Coplanning for Navigation

Figure 2.3: Influence of the modification of the TTC constraint cost weight on the
trajectory. On the left, the weight is low, the robot will show the side and avoid the
human at the last moment. On the right, the weight is high, the robot will show
the chosen side and avoid the human much earlier.

make the robot look at its future planned trajectory as shown in Figure 2.4. This
is possible thanks to the HATEB algorithm which, unlike many other local planner
only publishing speed commands, also publishes a precise short-term trajectory.
Finally, to show the robot awareness of the human presence, we made it glance at
the human twice when they enter a large and a small radius circles both centered
on the robot.

Figure 2.4: Behavior implemented for the robot head. The robot looks at a point
placed at its planned position X seconds in the future and h meters above the
ground.

2.4. Evaluation Through a User Study 29

2.4.2 User Study Protocol

2.4.2.1 Objective

The aim of this study was to evaluate the impact of the TTC cost constraint and
head behavior on usability. We designed a user study where actual naive users have
to walk through a corridor facing a fully autonomous navigating robot. The afore-
explained robot behavior was used. We measured the quality of the crossing between
the robot and the human with both objective (visual behavior) and subjective data.
The subjective evaluation was based on three dimensions: (1) perceived efficiency
of the robot navigation, (2) user satisfaction and (3) situation awareness.

2.4.2.2 Participants

We recruited a total of 28 participants (12 males and 18 females) aging from 21 to
41 (mean: 27.32, SD: 4.13). All 28 participants had never used or interacted with
a PR2 for navigation tasks, and had a neutral or good vision of robotics (mean:
5.96 over a 7 points Likert scale, SD: 1.07). This research complied with the tenets
of Declaration of Helsinki [Association 2013]. Informed consent was obtained from
each participant.

2.4.2.3 Material

A Willow Garage PR2 robot, at its lower spine position was used in this experi-
ment. The robot measured 1.33 meters from ground to top. The entire robot can
be considered as anthropomorphic and possesses a two degrees of freedom head
integrating cameras resembling eyes.

The participant position was tracked using an Optitrack motion capture sys-
tem3, tracking a worn solid headband. This system allowed the robot to track the
human anywhere in the room, without looking at them.

The experiment was conducted in a L-shaped corridor (Figure 2.5). The par-
ticipant and the robot started from opposite sides of the corridor. The participant
had to walk 6 meters before entering the long straight corridor part and seeing the
robot, then walk 13 meters.

We used a ETG 2w eyetracker from SMI to collect the eye movement data of the
participant. It is a portable device, allowing, after a short calibration process, to
track the user gaze, and measuring where the user looks at. The data were analyzed
using the BeGaze 3.6 software from SMI.

Three questionnaires and an interview were used to collect the subjective mea-
sures. They are available as submitted to the participants in French along with a
proposed translation in Annex A.

• Pertinence of robot decision: The Pertinence of Robot Decisions In joinT
Action (PeRDITA) questionnaire [Devin 2018], jointly developed between the

3https://optitrack.com/

30 Chapter 2. Coplanning for Navigation

Figure 2.5: The study environment. The participant has to go from the yellow cross
marked on the ground to the green square also marked on the ground, which is the
robot starting point. The crossing occurs roughly in the area where the robot and
participant are on the picture. Trajectories are displayed on the picture for example
only and are not marked on the ground or suggested by the experimenters at any
time.

2.4. Evaluation Through a User Study 31

LAAS-CNRS and the CLLE in Toulouse, France, aims at evaluating the par-
ticipant perceived pertinence of robot decision during a human robot collab-
orative task. In its complete form, it measures 5 dimensions: interaction,
competence perception, verbal, acting and collaboration. However, in this
study the robot is mute, and as the dimensions are independent we chose to
remove the verbal dimension.

• Situation Awareness: Several techniques exist to measure the situation aware-
ness during a task [Endsley 1988]. However, they require to freeze and hide
the situation to the user, and probe their working memory by questioning
them about its near future. In our setup, we cannot stop the robot and make
it disappear while it is navigating. Thus, we have developed a series of 6
questions for measuring the user situation awareness. These questions are
presented to the user just after the navigation, and asked them to rank on
a 6 points Likert scale each 3 stages (2 questions per stage) of the Endsley’s
model: perception, comprehension and projection.

• User satisfaction: For measuring the user satisfaction we used the AttrakDiff
questionnaire. It is a standardized User Experience (UX) questionnaire mea-
suring both hedonic qualities and global attractiveness. We used the french
translation of this questionnaire [Lallemand 2015].

• Interview: The interview was constituted of 8 semi directed questions always
asked in the same order. These questions aimed at qualitatively evaluating the
user experience, behavior and perception of the user during the navigation.
The interviewer was only allowed to read the questions and to make the
participant elaborate by asking neutral questions like “why?” or “can you
tell me more?”.

2.4.2.4 Experimental Design

The user study was a 2 × 2 within-participants user study to evaluate how the
time-to-collision constraint and the head behavior impact the robot navigation ef-
fectiveness efficiency and satisfaction. The independent variables were the HATEB
time-to-collision cost parameters (both weight and threshold) and the head behav-
ior. The conditions for the time-to-collision variable were γttc = 0.01 (in Equa-
tion 2.1) with τ = 1s (in Equation 2.2) for the low TTC condition and γttc = 15
(in Equation 2.1) with τ = 4s (in Equation 2.2) for the high TTC condition. For
the both continuous and alternated head behavior conditions the robot head was
pointing towards the robot planned position in 1.5s in the future at 1m above the
ground. In addition, in the alternated head behavior, the robot pointed its head
towards the human when they entered the long part of the corridor during 1.5s and
again during 1.2s when the robot and human were 3.5m apart. The conditions low
TTC with continuous head behavior and high TTC with alternated head behavior
are presented in Figure 2.6 (a) and (b) respectively.

32 Chapter 2. Coplanning for Navigation

Figure 2.6: Two typical crossings. In column (a) the robot behavior is set to the
condition low TTC for the trajectory and continuous for the head. In column (b)
the conditions are high TTC for the trajectory and alternated for the head. In (b),
thanks to the TTC cost, the robot starts to move to one side of the corridor very
early, whereas in (a) the robot moves almost a the last moment. Moreover, in (b)
the robot glances at the human when he enters in the corridor, and once again when
he is nearby. In (a) the robot only looks at its future position.

2.4. Evaluation Through a User Study 33

The participant goal position was marked with a square on the ground, and was
the starting point of the robot. The robot final position was 10m straight ahead
of its starting position. So, the participant was able to reach their natural walking
speed before turning at the corner of the L shaped corridor. The robot was only
started when the participant was about to turn (2m before the turn), giving the
impression that the robot was coming from further away while ensuring that the
crossing happened around the same place independently of the participant walking
speed.

2.4.2.5 Study Procedure

The evaluation was cut into 4 blocks. A block consisted in two same condition
crossings followed by questionnaires filling. A crossing was composed by the place-
ment of the participant and the robot on their respective starting positions, then
the participant was free to go to their previously indicated goal location while cross-
ing the robot. The three questionnaires were filled next to the participant starting
location and concerned only the two crossings made in the current block. The 4
conditions order were randomized between participants and the condition change
was made between two blocks but never between the two crossings inside the same
block.

Before starting the experiment trials, a training trial was made with the robot
starting shifted to one side of the corridor and going in a straight line with its
head fixed looking straight ahead. Just after this training trial, the participant was
brought close to the robot and invited to inspect it. A specific head behavior was
triggered making the robot head to follow the human allowing the participant to
notice without being told that the robot was able to know their position and that
its head could move. Moreover, the experimenter showed that robot arms were
locked in place in a tucked position, and that they kept the emergency stop remote
and was able to stop the robot at any time.

After the 4 blocks have been passed by the participant, the experimenter inter-
viewed them. The audio was recorded and the answer written down.

The whole study lasted around 45 minutes per participant.

2.4.2.6 Measures

The analysis of the data was made on 27 participants because one did not fill all the
questionnaires and their data were thus removed from the study. The quantitative
data (questionnaires and oculometry) were analyzed using a non parametric two-
way repeated measures Friedman ANOVA test.

1. Questionnaires: The three questionnaires have been passed 5 times each (one
trial + four blocks). The results were codified from 1 to 7 for the PeRDITA,
from 0 to 6 for the AttrakDiff and from 1 to 6 for the situation awareness
questionnaire while taking care of reordering inverted items.

34 Chapter 2. Coplanning for Navigation

The PeRDITA Cronbach’s alphas were for each dimension: α = 0.89 for the
interaction, α = 0.87 for the competence, α = 0.85 for the acting and α = 0.86
for the collaboration.

For the situation assessment questionnaire, the Cronbach’s alphas were: α =
0.93 for the perception, α = 0.88 for the comprehension and α = 0.87 for the
projection.

2. Oculometry: The oculometry data were split into two parts: before the robot
crossing, and after the robot crossing (when the robot is behind the human).
As we were not interested in where the participant gaze after the crossing
occurred we did not analyze this part. The number and duration of fixations
were measured for each of the 9 defined Area of Interests (AOIs) (Figure 2.7).
The semantic gaze mapping method was used, it consists in manually selecting
in which AOI each automatically detected fixation lays.

Figure 2.7: The areas of interest defined to analyze the participants oculometric
data.

3. Interview: The first question was a control question, ensuring that the par-
ticipants saw differences between each blocks. After the second question, the
interviewer revealed that the robot behavior was indeed different between each
block, then proceeded to the rest of the interview. The participants answers
were analyzed by excerpting verbatim (keywords or general ideas) from each

2.4. Evaluation Through a User Study 35

question and computing their frequencies.

4. Dependent variables: Therefore, the dependent variables were the participant
scores at the three questionnaires: PeRDITA, Situation Awareness and At-
trakDiff, in addition to the number and duration of their gaze fixation during
the crossing. Prior to the experiment, the participants were asked to fill a
questionnaire inquiring their age, gender, education level, profession, native
language, an open question about past experience with robots and a 7 points
Likert scale assessing their overall opinion about robotics.

2.4.3 Results

2.4.3.1 Quantitative Results

During the crossing almost all participants (95%) went to their left (thus, letting
the robot go to their right) because the experimental setup led them to do so as
the interview revealed. The robot also planned that the optimal path (given the
constraints described above) was to go to the right of the human. Participants who
went to their right stated they were “testing” the robot, thus not respecting the
given goal (which was to go to the marked goal and not to test the robot). These
trials have been removed from the data.

Pertinence of Robot Decision In joinT Action The mean scores of the three
dimensions of the PeRDITA questionnaire were significantly higher with an alter-
nating head behavior than with a continuous one. The quality of interaction was
higher with an alternating head behavior (M = 5.31, SD = 0.97), than with a con-
tinuous head behavior (M = 5.03, SD = 1.17), F(1,26) = 4.41, p < .05, η2

p = .15.
The perceived robot competence was higher with an alternating head behavior (M
= 5.12, SD = 1.14), than with a continuous one (M = 4.73, SD = 1.14), F(1,26) =
9.15, p < .01, η2

p = .26. The quality of collaboration was higher with an alternating
head behavior (M = 5.06, SD = 1.04), than with a continuous one (M = 4.73, SD
= 1.14), F(1,26) = 6.07, p < .05, η2

p = .19.
There was not any significant effect of TTC on the quality of interaction (F(1,26)

= 1.65, p = .21.), on the perceived robot competence (F(1,26) = 0.04, p = .84), and
on the quality of collaboration neither (F(1,26) = 0.43, p = .52). No interaction
between TTC and head behaviors reached significance.

Attrakdiff The mean score of the hedonic qualities dimension was higher with
an alternating head behavior (M = 5.06, SD = 0.87), than with a continuous one
(M = 4.93, SD = 0,82), F(1,26) = 4.13, p < .05, η2

p = .14. There was no significant
differences regarding the scores of the pragmatic qualities (F(1,26) = 0.34, p = .57)
and attractiveness (F(1,26) = 0.14, p = .71) dimensions.

There was not any significant effect of TTC on hedonic qualities (F(1,26) = 3.25,
p = .08), on pragmatic qualities (F(1,26) = 2.97, p = .10), and on attractiveness

36 Chapter 2. Coplanning for Navigation

neither (F(1,26) = 0.37, p = .55). No interaction between TTC and head behaviors
reached significance.

Situation Awareness The mean score of global situation awareness was signifi-
cantly higher with an alternating head behavior (M = 4.64, SD = 0.98), than with
a continuous one (M = 4.33, SD = 1.12), F(1,26) = 7.77, p < .01, η2

p = .23.
The mean scores of all the three dimensions of situation awareness were higher

with an alternating head behavior than with a continuous one. Perception was
significantly higher with an alternating head behavior (M = 4.60, SD = 1.08), than
with a continuous one (M = 4.15, SD = 1.29), F(1,26) = 8.20, p < .01, η2

p = .24.
Comprehension was higher with an alternating head behavior (M = 4.64, SD =
1.05), than on a continuous one (M = 4.36, SD = 1.14), F(1,26) = 5.99, p < .05, η2

p

= .19. Projection was higher (strong tendency) with an alternating head behavior
(M = 4.67, SD = 0.96), than on a continuous one (M = 4.47, SD = 1.16), F(1,26)
= 3.52, p = .07, η2

p = .12.
There was not any significant effect of the TTC on global situation awareness

(F(1,26) = 1.70, p = .20), on the perception dimension (F(1,26) = 0.72, p = .41),
and on the comprehension dimension (F(1,26) = 0.60, p = .45). However, the mean
score of the projection dimension was higher (strong tendency) with a high TTC
(M = 4.69, SD = 0.98), than with a low TTC (M = 4.44, SD = 1.13), F(1,26) =
4.03, p = .06, η2

p = .13. No interaction between TTC and head behaviors reached
significance.

Gaze

• Robot vs. Environment

The mean number of eye fixations was significantly higher on the robot (M =
2.23, SD = 0.98) than on the environment (M = 1.17, SD = 0.90), F(1,21)
= 17.82, p < .001, η2

p = .46. The mean number of eye fixations was higher
(strong tendency) with a high TTC (M = 1.76, SD = 1.04) than with a low
TTC (M = 1.65, SD = 1.11), F(1,21) = 3.86, p = .06, η2

p = .16, regardless
of the AOIs. There was not any significant effect of the robot head behavior
on the mean number of eye fixations, F(1,21) = 0.90, p = .35. No interaction
between the three factors reached significance.

The mean average duration of eye fixations was significantly higher on the
robot (M = 351, SD = 172) than on the environment (M = 260, SD = 123),
F(1,18) = 6.95, p < .05, η2

p = .28. There was not any other significant effects
or interactions regarding the average duration of eye fixations.

• Robot AOIs

As shown in Table 2.1, the head was the part of the robot that was the most
fixated by the participants (M = 6.13 ; SD = 0.59), F(4,84) = 39.10, p <
.001, η2

p = .65. The number of fixations on other parts were M = 1.28 (SD

2.4. Evaluation Through a User Study 37

= 0.31) for the base, M = 1.16 (SD = 0.23) for the torso, M = 0.95 (SD =
0.19) for the right end, and M = 1.64 (SD = 0.37) for the left end.

Robot AoI Low TTC High TTC
Continuous Alternating Continuous Alternating

Head 5.64 (3.42) 5.50 (2.78) 5.93 (2.90) 7.45 (3.80)
Torso 1.39 (1.39) 1.14 (1.49) 1.39 (1.65) 0.73 (0.96)
Left end 0.95 (1.20) 1.07 (1.11) 1.00 (1.15) 0.77 (1.14)
Right end 1.82 (1.92) 1.55 (1.71) 1.55 (1.94) 1.64 (2.27)
Base 1.36 (2.07) 1.23 (1.53) 1.45 (1.65) 1.07 (1.27)

Table 2.1: Mean number of eye fixations made by participants in each Area of
Interest (AOI) of the robot in each experimental condition (TTC x robot head
behavior) in main experiment. Standard deviations are shown in parentheses.

There was a significant interaction between the AOI type and the type of
TTC, F(4,84) = 5.72, p < .001, η2

p = .21. The robot head was more fixated
when the TTC was high (M = 6.69, SD = 3.43) than when it was low (M
= 5.57, SD = 3.08). There was an interaction (strong tendency) between the
AOI type and head behaviors, F(4,84) = 2.34, p = .06, η2

p = .10. The robot
head was more fixated, when the robot head was alternating (M = 6.48, SD
= 3.43) than when it was continuous (M = 5.78, SD = 3.14).

In addition, there was a double interaction (strong tendency) between the
AOI type, head behaviors and the type of TTC, F(4,84) = 2.41, p = .06, η2

p

= .10. Table 2.1 shows that the robot head was more fixated when the robot
head was alternating only with a high TTC.

There was not any significant effect of the robot head behaviors on the mean
number of eye fixations, F(1,21) = 0.13, p = .73. There was not any significant
effect of the TTC type on the mean number of eye fixations, F(1,21) = 1.82,
p = .19. The interaction between the TTC and the head behaviors, F(1,21)
= 0.74, p = .40, did not reach significance.

The ANOVA for the mean duration of eye fixations was not possible due to
an absence of data in some experimental conditions.

2.4.3.2 Qualitative Results

All the participants saw differences between blocks, 19 of them saw head behavior
differences and 10 of them saw trajectory differences. When the participant talked
about the alternated head behavior, positive adjectives were employed (“reassur-
ing”, “sympathetic”, “interactive”4), when they talked about the continuous head
behavior, negative adjectives were employed (“unsettling”5).

4“sécurisant”, “sympathique”, “interactif” in French
5“troublant” in French

38 Chapter 2. Coplanning for Navigation

After the experimenter revealed that the robot behavior was different in each
block, the participants preferred when the robot was “moving its head” (12 partic-
ipants). Five participants also preferred when the robot changed its direction long
before they cross. Participants did not appreciate when the robot kept a “fixed
head” because they thought the robot was not aware of them (8 participants),
when the robot was “hesitating” (4 participants) and when it came “too close” (4
participants).

Fourteen participants found the robot was the most competent in the condition
with the alternated head behavior and high TTC, because the robot became aware
of them when looking at them (10 participants), because the robot changed its di-
rection sooner (4 participants), because it was trying to avoid them (4 participants)
or because it was not coming too close (3 participants).

The participants found the robot more acceptable when it made a “visual con-
tact” (4 participants) and when it changed its trajectory early (3 participants).
They found the robot less acceptable when the robot came too close (6 participants),
when hesitating (3 participants), when not making visual contact (2 participants).

2.4.4 Discussion

This study aimed at exploring how taking into account the human model and plan-
ning for both human and robot during navigation allows to easily design behavior
enhancing the usability of the robot. More precisely, navigation coplanning allows
to easily implement coordination smoothers and increase mutual manifestness, we
thus hypothesized that these changes should lead to a significant impact on robot
usability in the intricate scenario of narrow corridor crossing.

Human gaze analysis showed that the head of the robot was fixed many times
and even more when the robot showed its chosen corridor side early in the naviga-
tion (with a high TTC). Moreover, subjective results revealed that moving the head
of the robot in an alternating pattern (pointing towards its path while sometimes
pointing at the human head) improved the perception of the quality of interaction,
the perceived robot competence, and the quality of collaboration. This alterna-
tive head behavior also increases the situation awareness score. This strongly
supports previous results on using the robot head during human robot
navigation scenarios [Khambhaita 2016, May 2015].

However, the satisfaction seems to have been slightly improved (on hedonic
quality) when the robot presented the alternating gaze behavior rather than the
continuous one. This result is only a tendency, but in the interview, the partici-
pants identified as positive when the robot moved its head to glance at them and
changed its trajectory. They also identified as negative when the robot was too
close or did not look at them. We think these discrepancies between the AttrakDiff
results and the interview are caused by our poor questionnaire choice. Indeed, the
AttrakDiff questionnaire aims at measuring the satisfaction produced by a final
product (e.g. cellphones) and the willingness of a user to buy this product, but not
the satisfaction of a user when dynamically interacting with a robot in a navigation

2.5. On User Studies in HRI 39

scenario. Yet, as no other questionnaire to our knowledge proposed to measure user
satisfaction during human robot interaction, we chose the AttrakDiff.

Results show that using the HATEB navigation co-planner with a high time-
to-collision weight constraint cost and low threshold, alongside an head behavior
signaling future robot trajectory and the human awareness during a crossing in a
constrained space allows the human to have a better situation awareness and to
perceive the robot as acting more pertinently and being more competent. This
finding supports the result from Lu et al. [Lu 2013], where the navigation
efficiency is increased when the robot looks at the human and shows a “social”
navigation behavior.

We speculate that both the high TTC and alternating gaze of the robot are
needed to improve the interaction and that no simple effects are significant for
multiple reasons. First, with only the robot choosing a corridor side early in the
crossing (high TTC condition) without showing the human awareness (continuous
head condition), it may not be obvious to the human that the trajectory change is
due to their presence. Conversely, when the robot signals its awareness of the human
(here by pointing its head towards them) but without taking any action to ease the
interaction (low TTC condition), the human stays in a situation where they don’t
know what the robot will do next. Finally, by both making the robot show its human
awareness and change its own trajectory to facilitate the interaction (coordination
smoother), it becomes clear that the robot is proposing a co-navigation solution
where both agents are avoiding each other.

Finally, oculometry results indicate that when the head is recognized as an
information provider (in the alternating head condition), information is most likely
to be sought in the robot head motion. The head is also looked longer when the
robot alternately looks at the human. We can also note that people tend to think
PR2 is getting data through its head, probably because of the visible cameras on
it, even when it is not the case (like in our experiment).

2.5 On User Studies in HRI

After this user study, we wanted to report the experience and to discuss it with the
community. Thus, we decided, with a PhD student in psychology, Kathleen Belhas-
sein, to participate in a workshop at HRI 2019 entitled Test Methods and Metrics
for Effective HRI. It seemed interesting to collaborate together in order to have two
points of view on user studies, coming from psychology for her, and from HCI and
HRI for us. We identified three main challenges concerning user studies in HRI:
the users, the evaluation methods and the replication. We concluded by present-
ing ten recommendations for user studies in HRI [Belhassein 2019]. According to
the discussion with the community during the workshop, we updated and submit-
ted a contribution, which has been accepted, to the Transactions on Human-Robot
Interaction journal.

40 Chapter 2. Coplanning for Navigation

2.5.1 Users in HRI studies

When conducting a user study, we obviously recruit today’s users, with their past
experiences and expectations with robotics. Kuhnert et al. showed the existence of a
gap between the user’s attitude towards existing robots and their expectations about
the ideal everyday social robot [Kuhnert 2017]. Thus, when evaluating a human
robot interaction it is important to evaluate the three aspects defined by Desmet
and Hekkert: the instrumental interaction (interaction for expected purpose: always
evaluated in current user study), the non-instrumental interaction (interacting for
other than main purpose: often non evaluated) and the non-physical interaction
(expectations: often under evaluated) [Desmet 2007]. Indeed, non-physical interac-
tion refers to all preconceptions of the robot by the user, they could come from past
experiences or imagination. Since today’s users have almost no past experiences
with robots, these anticipations come mainly from imagination and fantasies and
can widely vary from one to another. Thus, it is really important to evaluate the
mindset of the user before the study. Some tools used in psychology can be useful in
this context. For example, the implicit association test [Greenwald 1998], used to
measure automatic and implicit associations like prejudices, or priming paradigms
could be used to control the expectations and beliefs of subjects towards robots.

Moreover, as many of the recruited users has none to very few past experiences
with robots, the novelty (and wouaw) effect when interacting with robot during a
one shot study is huge, and may not be representative of a robot long term use.
To assess this cumulative experience, User Experience (UX) and Human Computer
Interaction (HCI) designers conduct longitudinal studies [Lazar 2017], gathering
data over a long period of time. However, in the human-robot interaction field,
this method may not be applicable as is. Indeed, the used material (robots) is
expensive and often in limited quantities in laboratories. In order to diminish this
effect, the evaluation should be part of a larger, more cognitively intense or time
pressurizing task where the user must almost forget about everything concerning
the robot except the part to be evaluated, which should be crucial in this task. This
effect could also be reduced by making an habituation phase at the beginning of
the experiment, in which the user can act more freely with the robot.

In some HRI studies, a questionnaire is administered before the interaction task
in order to apprehend the degree of familiarity and knowledge of the participants
about the robots. Even if some recruited people are from the same professional envi-
ronment and are therefore already accustomed to robots, this measure of knowledge
about robots is never used to remove participants from the user study. In addition
to the bias that this recruitment may pose, the sample is therefore not represen-
tative of the general population but of a particular sub-population. To ensure a
better representation of the population, it would therefore be necessary to randomly
sample and recruit outside of the professional circle.

Finally, HRI studies have frequently few participants. For example, about 44%
of user studies published in the proceedings of the conference HRI’17 involve fewer
than 30 participants. However, the size of the sample is a prerequisite for obtaining

2.5. On User Studies in HRI 41

sufficient statistical power to conclude on the results obtained, and to avoid type I
errors (false positive) or type II (false negative). Beyond the statistical issues, it
seems important to be modest about the conclusions drawn from studies involving
too few participants, and therefore not to generalize to the population the results
obtained.

The Particular Case of Web Studies

To respond to this difficulty and have a large number of participants, it is now
frequent to be confronted to web studies (as in [Khambhaita 2016]), especially via
the crowd-sourcing web platform Amazon Mechanical Turk. Indeed, it is then
much easier to recruit participants and have them take small tasks or questionnaires
directly online. It seems however important to be vigilant on the study conclusions,
since we are not in a context of human-robot interaction in its strictest sense; the
participant is not confronted to the robot, does not share its physical space, and
therefore will not have the same reactions that he would have during an interaction
in the real world. Nevertheless, it could be an interesting tool for participatory
design studies, i.e. all the studies that do not deal with a fully implemented robot
that must be evaluated but rather that serve to explore the responses of users to
certain specific behaviors and to collect their opinion.

2.5.2 Evaluation Methods

The key concept in HCI is usability, which regroups effectiveness (ability to per-
form a task), efficiency (ability to perform the task without wasting resources) and
satisfaction. More often than not, HRI user studies focus on user satisfaction (and
acceptability) evaluated with questionnaires created or adapted specifically for this
context of interaction or borrowed from HCI. Even if HRI studies join the field of
Human Computer Interaction and User Experience design by the fact that they are
both trying to improve the human use of interactive systems, it is a hugely different
experience to interact either with a robot or a computer. We must not forget that
in the case of HRI studies, there are two agents that interact and no longer an agent
that interacts with a product/an interface. Therefore, the methods and tools of HCI
are not always suitable to be used during a situation of interaction between a human
agent and a robotic agent. First of all, people tend to attribute mental states and
human traits to robots. This human tendency to anthropomorphism is not only
dedicated to robots but also animals, objects or natural phenomenon. However,
robots are more perceived as an agent endowed with lifelike qualities than other
technologies. In addition, the perceived risks to evolve in the same environment as
a robot are obviously not the same than when we use computers or other technolo-
gies, and can induce negative emotions or feeling of insecurity [Dautenhahn 2006].
Thus, these particularities in the subjective experience of interacting with a robot
have to be considered in the build of experimental and evaluation tools.

42 Chapter 2. Coplanning for Navigation

2.5.2.1 Use of Self-Assessment Methods

Although the simplest and most widespread evaluation method in HRI studies is
the self-assessment method with questionnaires, it is necessary to understand that
there may be a significant difference between what subjects self-report of their own
experience and what they really experienced and felt, for example because of the
social desirability bias [Fisher 1993]. In addition, there are very few questionnaires
created for HRI studies that meet the validity and standardization criteria of these
methods. Indeed to be validated, a questionnaire must be reliable and consistent,
i.e. the results must be replicated in comparable situations; it must be valid, that is
to say it actually measures what it is supposed to and not another dimension; and
finally, it must be sensitive to change. More often than not, HRI questionnaires are
simply evaluated on their internal consistency (all the items from one dimension
are correlated to each other) with Cronbach’s alpha. However, to validate that the
questionnaire measures the construct of interest, it is important to use on a pilot
study another method of evaluation for this same construct and use correlation
matrices between them [Tsang 2017].

Finally, it is common to see questionnaires used in another language. However,
if a questionnaire is created in a specific language it has to be used only in that lan-
guage. It is therefore absolutely necessary when using a questionnaire from another
language to use the back translation method (i.e. translate back into the original
language the questionnaire previously translated into the target language). In ad-
dition, the questionnaire once translated must imperatively be validated following
the same rules as an original questionnaire, to ensure that the translated version
measure the exact same construct as the original, as it was the case for example for
the French translation of the UX questionnaire AttrakDiff [Lallemand 2015].

2.5.2.2 Other Evaluation Methods for Acceptability

Including heart rates, brain or skeletal muscles electrical activity, blood pressure,
respiratory frequency or even galvanic skin responses, there are a number of different
physiological measures that can be used to evaluate the participant’s physiological
response in touch with a robot. These evaluation methods have the advantage of
being able to prevent participants from consciously modifying their answers, as this
is the case with self-assessment measures.

In interaction situations and even more in cooperative situations, taking social
signals into account may also be useful for assessing the human ability to accept to
engage into a task with a robotic partner. Behavior observation techniques are for
example used to measure shared gazes, in particular with video recording and eye
tracking [Gharbi 2015b].

2.5. On User Studies in HRI 43

2.5.2.3 Evaluate Efficiency and Effectiveness in Human-Robot Interac-
tion

But what is the point of making a robot behavior satisfying but useless? Once more,
tools exist in HCI to measure the other components of usability but are not always
adapted to HRI studies. For example, freeze-probe techniques are frequently used
in the case of evaluating the situation awareness (i.e. the perception, comprehen-
sion and projection of elements in the environment [Endsley 1988]). They consist
of freezing the task in progress and administrating a questionnaire about the situa-
tion at the exact moment of the freeze point [Salmon 2006]. Such a device, mostly
developed for use in the aviation or military domain, is a real challenge and al-
most impossible to apply in HRI, since we are in the case of a real-world physical
interaction with a robotic agent and we cannot just make the robot disappear.

Most of the existing HRI questionnaires deal more with the physical as-
pect of the robot and its acceptability by the user (e.g. the godspeed question-
naire [Bartneck 2009] and the RoSAS questionnaire [Carpinella 2017]) than its ef-
fectiveness and usefulness. In previous work, we tried to propose a preliminary ver-
sion of a questionnaire specific to HRI studies and measuring the decision-making
processes of the robot in a joint action context with a human [Devin 2018], but
this tool remains at the draft stage and deserves to be refined, coupled with other
evaluation methods, used in other studies and finally validated according to the
criteria of self-assessment methods.

Moreover, adding efficiency/effectiveness measurements in a study can be pretty
simple given the technical abilities inherent to robots (e.g. timing the task comple-
tion, the number of user errors). Thus, we could consider using the robot as a
tool for measuring its impact on the human performance, and therefore evaluate
the efficiency of human-robot interaction. Mayima et al. presented several metrics,
and implemented some of them in a robotic component, to evaluate in real-time
the quality of interaction [Mayima 2020]. These data can also be analyzed more
deeply afterwards to evaluate the interaction. In addition, one of the most widely
used methods of cognitive psychology is mental chronometry, which uses reaction
times as a measure, and refers to the temporal study of information processing
[Posner 1978].

Whether it concerns the evaluation of acceptability or efficiency and effectiveness
in human-robot interactions, a more frequent use of objective measures (e.g. phys-
iological or task performance measures) could improve the validity of the results
of HRI studies and their methodological rigor. These different techniques must
still be consistent with each other in their use in a user study, this recommenda-
tion is not always feasible but should be taken into account when establishing the
methodological plan.

44 Chapter 2. Coplanning for Navigation

2.5.3 The Replication Crisis in HRI

Replication of results is an important concept for any discipline following the sci-
entific approach; it is a question of repeating a study to determine if the results
are reproducible and therefore reliable. Psychology and more generally social and
medical sciences have known since the 2000s what is called the replication crisis,
which is also slowly preparing in HCI and HRI fields. Indeed, if the replication crisis
begins to appear in HCI [Echtler 2018] mainly because of closed source code used in
the experiments, HRI presents other issues. First, the code used in robotic studies
is often much more complex and heavy to use. Indeed, to evaluate a high-level
component (e.g. a task co-planning algorithm) a whole component stack is needed
(e.g. low-level motor controllers, path finding, trajectory following, motion plan-
ning, localization, face detection, speech synthesis, speech recognition). If some of
these components are standard and widely available, others can be state of the art,
unstable or even tweaked by the experimenters to match their own needs, making
it more difficult to replicate the experiment if these components are not precisely
described or not available. Moreover, the material used can also be changed (e.g. by
3D printing a gripper to fit the object manipulation task needed), and components
tuned to work accordingly. These small changes on the hardware and on the soft-
ware need to be reported, else the experiment replication is impossible.

Finally, many user studies in HRI use Wizard of Oz technique, because robotic
systems are often not robust enough to act autonomously in an environment with
humans. The use of Wizard of Oz technique makes very difficult the exact repli-
cation of the situation due to the fact that the complete scenario of the study is
not available. In the case of HRI evaluation, we can also ask ourselves if humans
evaluate the robot or the human controlling the robot.

2.5.4 Proposed Guidelines for Better User Studies in HRI

By taking all these issues and solutions coming from different fields we might provide
some checkpoints when designing a HRI user study:

1. The more users the better. It improves the statistic analysis of the study and
could erase some bias.

2. Widen the recruitment. Your colleagues know a lot about technology: ran-
domly recruit people in your bakery, in the supermarket, using flyers...

3. Be rigorous with your protocol. There are so many unwanted uncontrolled
variables. Don’t be one!

4. Let the user accustom to the robot and its behavior before starting the ex-
periment. In order to diminish the “wouaw” effect and make measures closer
to a long term use.

5. Make sure your experiment is physically and psychologically safe. Apart from
hurting a user, you risk to prevaricate your measures if the experimenter is

2.6. Extending HATEB 45

stressed about something going wrong.

6. Objectively measure if your robot is useful in what you are making it do.
A robot can be really satisfying, but it will be quickly forgotten if it does
nothing.

7. Use the right tools for your measurements. Widely used and standardized
tools will give more credibility to your study. Questionnaires are not the end.

8. Make theoretically solid and valid tools specific to HRI and publish them if
they don’t exist. It will benefit the whole community.

9. Give as much details as possible about your study. Give the source code,
hardware schematics or references and the description of the environment in
order to make others able to reproduce your experiment.

10. When doing a Wizard of Oz be rigorous. Emulate only a small, non-evaluated,
component of your robot. Write the rules you follow down, respect them and
publish them along with your study.

2.6 Extending HATEB

Closing this general parenthesis about user studies in HRI, we continue on
the HATEB navigation planner development. Having shown that providing co-
navigation solution using HATEB can effectively be used to enhance the efficiency
of the interaction, we will present in this section the different extensions made to
HATEB.

2.6.1 Adapting HATEB to Other Robots

Khambhaita et al. [Khambhaita 2016] successfully used HATEB on a PR2 robot,
both in simulation and on the real platform. As the approach is general, we imple-
mented it on other robots.

2.6.1.1 Using HATEB on a Legged Humanoid Robot

Legged humanoid robots are characterized by their bipedal navigation, tremen-
dously increasing the complexity of navigation and control with regard to wheeled
robots. However, legged robots present a large advantage for social and human
robot interaction as human infrastructure are often thought for being navigated
with legs rather than with wheels. Thus, we tried to implement our approach on a
humanoid robot.

To do so, we partnered with the Gepetto team at LAAS-CNRS specialized in
humanoid systems motion. Thanks to their modular software architecture presented
in [Stasse 2008], only minor changes had to be done to HATEB to integrate with
their other components.

46 Chapter 2. Coplanning for Navigation

One of their component [Naveau 2017] takes as parameter a (simplified) robot
kinematic model and is able, in real-time and at typical joint position control fre-
quencies (around 200 Hz), to give position commands to all the robot joints in order
for the center of mass of the robot to respect a speed command given as input.
Thus, we can generate a non-holonomic trajectory for the robot with HATEB and
send the returned speed commands to this component. Given a speed command,
the component is able to generate footstep placements and to compute robot joint
positions ensuring the equilibrium and the respect of the kinodynamic constraints
(between two successive poses) of the robot. However, this component has no ROS
interface whereas HATEB is heavily built for ROS use. Thus, we made a bridge
transferring the speed commands output by HATEB to the Gepetto architecture
and transferring back the joint position commands.

This has only be run virtually, and for simplicity, no simulator was used. Instead,
we assumed the joint position command to be immediately and perfectly executed.
Such an assumption has been made possible because of the effectiveness of the
Gepetto architecture, having a tested precise model of the robot, ensures that the
kinodynamic constraints will be respected, and consequently gives a correct robot
behavior.

We tested this approach on a virtual HRP2 robot, with a virtual human (Fig-
ure 2.8). We were able to make the robot avoid the human in a face to face crossing,
while accounting also for the human ability to avoid the robot. Moreover, using this
approach is pertinent as HRP2 has much slower dynamics than PR2, and thus must
rely a lot on the ability of the human to avoid it. Indeed, if the robot maximum
speed or acceleration parameters were set too high in HATEB, the speed commands
generated would make the robot fall. Planning for both the human and the robot
allows to generate smoother avoiding trajectories for the robot by assuming the
human can take most of the effort.

However, by using HATEB we constrained even more the motion of the legged
robot. Indeed, the presented version of HATEB does not support holonomic tra-
jectories, which would be doable by PR2 and HRP2. Using this approach, HRP2
cannot make a step on the side, but has to turn and move forward. The cur-
rent version of HATEB now integrates holonomic capabilities thanks to Phani-Teja
Singamaneni [Singamaneni 2020], but has not be integrated for the HRP2 robot
yet.

This preliminary work not only shows the versatility of the approach, but also
that planning for both can be useful for a constrained robot. Indeed, with a slow
dynamic robot, a classical navigation planner may find no solution to avoid an
approaching human, but by planning that the human can make a great effort to
avoid the robot, it can generate a trajectory for the robot that elicit a plan for the
human to follow.

2.6. Extending HATEB 47

Figure 2.8: The trajectory generated for the human and HRP2 in simulation. The
green trajectory is the global plan initializing the optimizer. While the red tra-
jectory (robot) is smooth and make a wide turn, the blue trajectory (human) is
planned to turn sharper and to take more effort in the crossing. Indeed, the robot
model was set with slower dynamics (smaller maximum speed and acceleration)
than the human model as HRP2 must move slowly not to fall.

2.6.1.2 An Experiment With the Pepper Robot for Close Human Robot
Motions

The European project MuMMER6 aimed at deploying a Pepper robot in a shop-
ping mall in Finland to entertain and guide customers [Foster 2019]. The project
regrouped seven different stakeholders bringing their knowledge to the project. The
LAAS-CNRS goal was to make the guide task. However, in order to serve the most
customers possible and to cope with large navigation issues of the Pepper platform,
it has been chosen not to go with the customer all the way to the asked shop, but
instead, as the mall employees usually do, give directions to the customer to help
them find the requested shop. We call this more precise task route description.
However, giving only verbal instructions concerning the route is not sufficient, we
chose to make the robot point at the shop, if it is visible from the current position,
or point its direction and the first visible element of the route otherwise.

Although, the surroundings of the robot home place (the place in the mall
where the robot is located, and thus, where the interaction takes place) contains
some obstacles such as barriers, structure poles and advertisement posters. Thus,
the object the robot has to point to the human might not be visible from their
current position. We thus endowed the robot with the ability to compute the
optimal position for the human and the robot for it to point at a landmark. The
computation details of this component can be found in [Waldhart 2019]. Once the

6http://mummer-project.eu/

http://mummer-project.eu/

48 Chapter 2. Coplanning for Navigation

robot has computed these optimal positions, it needs to move to its while ensuring
the human can move to theirs. Moreover, the customers might be hesitant to
approach the robot to start an interaction, thus, the robot is also able to approach
a nearby human to ask them if they need its help. However, it has to consider that
the human might also move towards the robot to encounter it.

To tackle both of these issues, we decided to use HATEB. We made a higher level
component proposing three services: rotate, navigate to and approach. While the
rotate service is only made for in place rotation of the robot in order to reorient itself
for repositioning or to look or point at something, the other two use the HATEB
planner described earlier. The navigate to service expects a robot goal pose and
optionally a human identifier and a human goal (which is shown by the robot before
starting the navigation). The HATEB planner is then called with empirically tuned
weights to make the robot navigate to its goal position while, if provided, ensuring
the human can reach theirs. The approach service expects a human identifier and
a distance, and use the HATEB planner with different weights with a goal at the
specified distance in front of the human. The human goal is predicted from their
current pose and velocity some seconds in the future, and updated at each control
loop with their new sensed pose and speed.

Moreover, by using HATEB, we were able to use the same head behavior as
the one described in Figure 2.4, aiming at improving the legibility of robot motion,
crucial in such close motions.

Figure 2.9: The Pepper robot approaching a human. The planner adapts to the
human moves. In (a) the planned path is long but decrease in (b) and (c) as the
human is actively taking part in the approach task until the robot successfully
reaches a position close in front of the human (d).

2.6. Extending HATEB 49

While this scheme worked well for the approach, with the robot presenting an
efficient approach trajectory reacting the human motion (Figure 2.9), it performed
very poorly for the navigation part. Indeed, the robot navigation was erratic and
made too long trajectories even between close start and goal points. We identified
two causes to this over conservative behavior:

• First, the HATEB algorithm did not support holonomic motion. Although
this was not a problem for long distance scenarios, it made the robot having
to maneuver to achieve small displacements.

• Then, by planning these short trajectories so close to the human, the optimizer
does not have a lot of latitude to play with, and the search space is very noisy
and chaotic.

It has thus been decided in the project to not use HATEB, but simply an
holonomic timed elastic band enriched with social constraints linked to the nearby
humans (i.e. only optimizing the robot trajectory and not the human one).

This allowed to point out some of the limitations of HATEB, it performs
poorly for small, intricate displacements. This led to the creation of HATEB2
[Singamaneni 2020], which is able to switch online between the HATEB planner,
the TEB planner with social constraints or a velocity obstacle planner. Moreover,
tracking the human position was really challenging. Indeed, we were provided with
a human detection system based on the head mounted camera which presented two
drawbacks. First, when the robot was moving, the picture was blurred, prevent-
ing any human detection. Then, as the robot and the human were moving to the
planned pointing position, the human disappeared from the robot field of view.
Because of these tracking problems, any navigation scheme using social constraints
(based on human position) revealed hard to use.

2.6.2 Using the Estimated Time to Goal to Measure the Execution
of the Planned Trajectory

Another benefit of the HATEB approach is that it does not only compute speed
command to follow a global plan while avoiding obstacles like other classic local
planner, but also returns a complete short term trajectory for both the robot and
the human. Moreover, as the trajectories contain the expected duration between
each pose, simply by summing them, we can have an estimate of the time remain-
ing to execute the local trajectories. Besides, we also compute the estimated time
remaining for the global trajectories after the local ones by dividing the computed
speed at the last local trajectory pose by its length. By summing these two es-
timated remaining times, we can have an estimation of the remaining navigation
time (the time to goals) for all the considered agents.

By monitoring the evolution of these times, we can estimate a quality of the
ongoing navigation. Indeed, the local trajectories are computed at a position control
rate and so are the time to goals. Intuitively, if the computed time to goals are

50 Chapter 2. Coplanning for Navigation

decreasing at the same rate as the real time duration (e.g. the estimation for the
robot goes from 12 seconds to 11 seconds while one second has elapsed) the execution
of the trajectories are going according to plan. Instead, if the computed time to
goals are decreasing slower than the real time duration, staying equals or even
increasing, the execution does not go as smoothly as the plan was.

We formalized it as follows:

si(t) = ttgi(t)− ttgi(t− x)
x

(2.3)

with si(t) is the time to goal variation for the trajectory i (either the robot or
one of the considered human) at time t, and x is the time window size parameter,
specifying how old are the previous time to goal values we are comparing the current
one with. With this definition we have:

• s(t) ≈ 1: the execution goes according to plan,

• s(t) > 1: the execution outperforms the plan,

• 0 < s(t) < 1: the execution goes slower than the plan, but progress towards
the goal is still being made,

• and s(t) < 0: the goal is getting further.

This value can then be fed back to a supervision system which can change the
navigation parameters or abort it to make a repair strategy if, combined with other
task monitored values, it judges the navigation action is endangering the higher
level task.

From preliminary tests, we saw that this measure is a good indicator of the
nominal execution of the plan. However it still has to be refined as the measure
can be coarse and does not detect the subtle plan changes. Moreover, even if the
evaluation is deteriorating, it does not give insight on why. Indeed, the plan change
can be caused by multiple factors. It can be from previously unknown obstacles to
the robot leading to a plan change (concerns onlyMR), not necessary representing
a collaboration issue. The deterioration can also be from a plan change from the
human, making the robot to adapt to it. Finally, we cannot, based only on this
measure, determine if the human is not following the computed plan because the
model the robot has is not accurate enough (MH

r) or because the human is really
not willing to cooperate. These questions and a similar approach are part of work
continued by Amandine Mayima in order to evaluate the quality of interaction
during collaborative tasks execution [Mayima 2020].

2.7 Conclusion

In this chapter, we presented a robot navigation planner HATEB, which not only
computes an optimal local trajectory for the robot but also for the surrounding
humans. This approach has been shown to be able to solve complex navigation tasks

2.7. Conclusion 51

where both agents must cooperate to reach their respective goals. Moreover, we
proved via a user study that it allows to implement effective coordination smoothers
to increase the robot mutual manifestness and facilitate the whole interaction.

Besides, the versatility of this approach has been presented via its implementa-
tion on three different robots: PR2, HRP2 and Pepper.

Finally, we used an other benefit of this scheme which is to compute precise local
trajectory at position control loop rate to estimate the remaining time to reach
the navigation goal. By processing this data and monitoring it over the course
of interaction, quality of the ongoing navigation and interaction can be deduced
and returned to a higher level supervision component. A more general approach
including some principles presented here is developed by Amandine Mayima to
measure the quality of interaction by a supervision system in real-time during a
collaborative task execution [Mayima 2020].

The presented navigation approach that plans for both the human and the robot
presents some drawbacks.

First, through the MuMMER project, we saw that it fails to generate small
paths when the human and the robot are close to each other. Indeed, such intricate
trajectories are complex to optimize as they are heavily constrained.

Then, the scheme breaks if the human model parameters are not accurate
enough. Indeed, the optimization scheme will assume the human to follow a tra-
jectory respecting these parameters. We plan to update these parameters on a
per-human basis during the execution to get the most accurate plan for the human.

Finally, the conavigation solutions found are executed as if the human were
aware of them. While it allows to check that a solution can exist it does not
guarantee that it is the solution the human will choose. In most cases, if the human
chooses another trajectory than the one planned, the optimizer will adapt, but in
some intricate cases, not accounting for the communication needed to share the
plan can lead to deadlocks. For navigation, the communication can be explicit by
looking at the trajectory chosen by the robot or pointing at the human planned
one, but it can also be implicit through the use of coordination smoothers.

We are particularly interested in these coordination smoothers, which can be
seen as non verbal communication of the robot intents and of the shared plan.
Planning for these coordination smoothers can only be done if we plan for both the
robot and the human. However, due to the continuous and short duration nature
inherent to navigation tasks, exploring the planning of such communications can
be tedious. We thus propose to move from navigation problems to focus on human
robot symbolic task planning.

Chapter 3

Evaluating Communications
Feasibility and Cost During

Human-Aware Task Planning

Contents
3.1 Introduction and Example . 53

3.1.1 Example . 54
3.1.2 References and Acknowledgments 56

3.2 Related Work . 57
3.2.1 Referring Expression Generation 58
3.2.2 Task Planning With Communication Actions 60

3.3 Ontology-Based Referring Expression Generation for Hu-
man Robot Interaction . 62

3.3.1 Using Ontologies for Human Robot Interaction 62
3.3.2 REG Features for Communication Action Estimation During

Task Planning . 67
3.3.3 Ontology Based REG Problem Definition 69
3.3.4 Efficient REG Algorithm Presentation 73
3.3.5 Results . 78
3.3.6 Integration . 82

3.4 Planning Communication Actions Using Referring Expres-
sion Generation . 85

3.4.1 Method . 85
3.4.2 Approach . 85
3.4.3 Case Studies . 89

3.5 Conclusion . 93

3.1 Introduction and Example

In the previous chapter, we showed interactions are more efficient and satisfactory
if the robot considers the plan of the human in its own course of action. Not only
it allows at least to ensure that the task is feasible for both agents (provided the

54 Chapter 3. Determining Communications During Planning

models are correct enough) but also to perform coordination smoothers or other
communication actions.

In this chapter, we alleviate from the inherently ephemeral nature of interaction
in geometrical navigation planning to further study at symbolic level the planning of
communication actions in plans involving multiple agents. Communication between
the agents can be made in two ways. Either some of the planned actions convey
information but have another main effect or they are dedicated communication
actions having no other (intended) effect. The former is linked to predictability and
legibility of motion as formalized by Dragan [Dragan 2013]. Moreover, we explored
part of it in the previous chapter, as we were using a navigation scheme planning
for both the human and the robot to add coordination smoothers to the robot
trajectory. The latter is what we will be discussed in this chapter. Especially, we
will focus on one type of explicit communication, being verbally designating an
object, a problem called referring expression generation.

This raises two questions:

• How to determine the pertinence and the cost of a communication
action in task planning?

• When must the robot perform a communication action?

These questions can boil down to what and when to communicate [Mavridis 2015].
While determining when to insert the verbal communication actions in a human
robot joint plan is the goal of a task planner, why resolving the what during task
planning may not be obvious. First, some communications are more costly than
others. We use the cost of a communication action to represent the difficulty to
understand it when received by the human and the difficulty to generate it when
emitted by the human. In some contexts designating an object among others can
be hard. Then, in some cases the communication is not feasible not because of a
physical inability (e.g. the robot and the human being far apart) but because the
content cannot be resolved. Thus, determining the what will impact the when.

Similarly, the content of a communication will not be the same depending on
when it is done. The evolving world state along the plan execution will change the
way to refer to an object. Some other objects can be added or removed as the task
progresses. Some communications will be crucial for the plan at a certain point
while others appearing to be needed will reveal to be optional. Thus, we also need
to the when to communicate to know what will be communicated.

3.1.1 Example

In order to clarify the problem and illustrate this chapter contents, let us take the
situation depicted in Figure 3.1(a). In this situation, a human and his robot partner
are trying to organize different car keys. The areas represent which car a key opens,
and multiple keys can open the same car. The keys are distributed randomly at
first. The human does not know which key opens which car, but the robot does

3.1. Introduction and Example 55

Figure 3.1: A simple example where the robot and the human must cooperate to
sort keys. Only the robot knows the goal state (d). It has to communicate to the
human, one at a time, which key to grab and where to put them. From the initial
state (a) the robot can either communicate to move key_1 leading to state (b) or to
move key_2 leading to state (c). In (b) the situation is locked as key_1 and key_2
are identical. In (c) the robot can communicate to move key_1 to reach the goal
state (d).

56 Chapter 3. Determining Communications During Planning

thanks to an integrated RFID system. The robot, for which the keys are too small
to manipulate, has then to give instructions to the human for where to put the
keys. The keys are only distinguishable by the human through their colors and the
color of the area they sit in, and he can manipulate only one at a time. Besides, the
robot cannot use “left” or “right” indications nor use past human actions. The goal,
known only by the robot, is depicted in Figure 3.1(d). The robot has multiple ways
to designate the keys and the areas to the human, it can either point to them or
verbally designate them. While pointing can be straightforward, it becomes less and
less accurate as the distance increases, and impossible if the perspective difference
between the agents is too big. Thus, we propose to make the robot able to verbally
designate the different entities in the environment. Whatever the communication
modality, to move the keys from the initial state (Figure 3.1(a)) to the goal state
(Figure 3.1(d)), the robot has two main options. First, it can ask the human to
move key_1 into the black area (Figure 3.1(b)). However, with the constraints we
defined before, the robot would have no way of telling the human to take key_2,
as the human cannot distinguish them anymore, as both key_1 and key_2 are the
same color and in the same area. The second solution of making the human move
key_2 first, provides more options to the robot, as key_1 is still verbally designable
in the new situation (Figure 3.1(c)).

With this example, we showed that computing communication content during
task planning is important as it can impact the choice of communication modalities,
the plan cost, or even the feasibility of the plan (e.g. if the robot cannot point, the
first option would not be feasible). This raises two issues we treat in this chapter:
how to efficiently estimate the feasibility and cost of communication and how to
use this knowledge during task planning.

To do so, we propose to use a multi-modal planning approach, where a domain-
independent task planner delegates, for specific verbal communication actions, to
a domain-specific planner designed to resolve the content of referring expressions.
While the former will provide specific requests along with the context and the
planned world state in which the communication is made, the latter will indicate
not only the feasibility of the communication in the specific world state, but will
also return a cost representing the estimated complexity to interpret this referring
expression, allowing for balancing between multiple plans. This approach is greatly
inspired by combined task and motion planning schemes [Gharbi 2015a] where a
task planner uses a geometrical planner to refine motion action at the task planning
level, allowing to find more precise plans.

3.1.2 References and Acknowledgments

A large part of this chapter is excerpted from our work, published for the RO-MAN
2020 conference [Buisan 2020b] and for the ICSR 2020 conference [Buisan 2020a].
However, in this manuscript, the examples are more detailed and the approaches
are explained more in depth. Besides, we hope that the link between these two
works appears more clearly.

3.2. Related Work 57

The work presented in this chapter has been done in close collaboration with
Guillaume Sarthou, who is working on knowledge bases for HRI and their uses.

First, we review the literature concerning referring expression generation and
communication actions in task planning. Then we present a novel approach for
referring expression generation, which runs on ontologies and is both efficient and
suitable for human robot interaction scenarios. We then show how such a plan-
ner resolving the content of referring expressions can be included in task planning
allowing for precise estimation of this communication type feasibility and cost at
task planning level. This approach shows the use of hybrid planning (a domain-
independent planner delegating to a domain-specific planner) for HRI, where the
domain-independent planner plans for both agents and the domain-specific planner
needs the estimation of the human beliefs from the first planner.

3.2 Related Work

Estimating the content of some communication at the task planning level is needed
to generate feasible and optimal plans. Indeed, some communication actions are
known to be necessary already while elaborating a plan, but might not be feasible.
We explore this problem by focusing on a specific communication type: the referring
expression. Indeed, verbally referring to an object is challenging for several reasons.

First, it heavily depends on the current situation. If the object to refer to is
among multiple identical objects, the communication may be impossible. Similarly,
the communication is getting easier the more heterogeneous the nearby objects are
and the fewer objects there are.

Then, referring to an object to another agent requires to take their perspective
or to estimate their beliefs. Indeed, to refer to a key in Figure 3.1, the robot must
estimate that the human knows the color of the keys and knows in which area they
are placed.

Finally, generating a referring expression must be done in a specific context that
needs to be defined. In the example depicted in Figure 3.1, they may be other keys
in the building that the human is aware of (and that the robot knows the human
is aware of) but in the context of this task, they are not considered by the human
as being potentially referred to.

However, this type of communication is explicit and can accurately be repre-
sented as an action in a task planning domain. Moreover, a referring communication
action may need multiple expression generation. For instance, in Figure 3.1(a) we
can represent a robot action asking the human to move key_2 in area_white in
one sentence. This sentence would need two referring expressions: one for key_2
and one for area_white. Thus, estimating the feasibility and cost of this action
would require multiple calls to the referring expression generation planner.

In this section, we will firstly review how a robot can autonomously verbally
designate an object to a hearer. This problem is called the Referring Expression
Generation (REG) problem. Then, we will review several task planning approaches

58 Chapter 3. Determining Communications During Planning

allowing to account for communication actions.

3.2.1 Referring Expression Generation

As defined by Reiter and Dale, Referring Expression Generation (REG) “is con-
cerned with how we produce a description of an entity that enables the hearer to
identify that entity in a given context” [Reiter 1997]. An intuition about what a well
constructed Referring Expression (RE) is given by the Grice’s maxims [Grice 1975].
These maxims aim at defining principles for smooth cooperative activities (including
verbal designation communication). They fall into four categories:

• Quantity: The communication should be as informative as required but not
more.

• Quality: The communication should be as true as possible. The sender should
not communicate information that they consider false or unsure.

• Relation: The communication should be relevant in the current context. This
is especially important when performing a collaborative task, where the world
state is constantly changing and the relevance of a communication can quickly
change.

• Manner : The communication should be unambiguous and brief.

The REG problem is actually composed of two parts: the content determination
— aiming at deciding which attributes (and relations) to use — and the linguistic
realization — refining the attributes of the content into verbalizable/writable words
[Krahmer 2012]. In this thesis, we will only consider the content determination, as
we assume that the linguistic realization will not have any impact on the feasibility
and the cost of the referring communication action once the content of the RE has
been decided.

To our knowledge, the first REG formulation and algorithm was coined by
Dale and used a depth-first search over a knowledge base being a key-value tree
representing the attributes of objects [Dale 1989]. However, this approach leads
to over-specified referring expressions, containing redundant information and thus
violating the maxim of quantity. On the example depicted in Figure 3.1(a), to refer
to the key_1, provided with the right knowledge base, this approach would have
led to a set of relations which could have been verbalized as “the black key in the
red area on the table” while only “the key in the red area” would have sufficed in
this context. This defect was corrected in a subsequent contribution with the Full
Brevity algorithm [Dale 1992], always generating the shortest referring expression,
but at the cost of an exhaustive search. Besides, to be as relevant as possible, the
attributes of the referred object to be included in the RE should be chosen carefully.
Indeed, not all the attributes are equally understandable by the hearer, the color
or the shape for example will often be quicker to apprehend than spatial relation.
The Incremental Algorithm is the first approach tackling this issue [Dale 1995]. By

3.2. Related Work 59

taking as input a preference list of ordered attributes, it is able to generate the
smallest RE while prioritizing the attribute used.

However, all the presented approaches are running on dedicated key-value knowl-
edge bases representing only the attribute of the entities and are thus unable to use
relations between them to generate REG. For example, an object having the same
attributes (color, size, shape, ...) as another one will not have any RE generated by
the previous approaches, even if one is in a blue box and the other in a green one.
By introducing a new knowledge representation, being a labeled directed multi-
graph linking entities (as vertices) and attributes (as edges), Krahmer et al. were
able to solve this issue. The graph is dedicated to the problem of REG and is
called a REG graph. Moreover, a cost can be set on each edge of the graph to
represent the complexity of the hearer to understand this relation. Indeed, some
relations are harder to interpret than others as shown in [Belke 2002] where they
show that humans infer quicker a referred object if the referring expression con-
tains an absolute attribute (e.g. color) rather than a relative one (e.g. the size). By
exploring this graph through a branch and bound approach, the Graph-Based Algo-
rithm [Krahmer 2003] is able to generate the smallest and less costly RE for a given
entity. The costs are provided as a separate function and are set for each vertex
and edge of the graph. The cost of a referring expression is determined by summing
the cost of each vertex and edge composing the expression. This algorithm has
then been refined to integrate types of entities in the exploration [Krahmer 2012].
Indeed, previously they were not considering types of objects but only the minimal
set of relations needed. Doing so can lead to suboptimal solutions or even not ver-
balizable or still ambiguous ones as the types (e.g. a key, a table) of an object is
needed to verbalize the expression, and multiple objects can have the same type,
requiring more attributes to be distinguished. Then, the approach has been reim-
plemented to be more computationally efficient [Li 2017]. Finally, this approach
has also be modified to over-specify the RE [Viethen 2013]. In this version, the
search algorithm can be given a minimum length parameter specifying the number
of attributes the RE must contain. The algorithm explores the REG graph until
this length is reached and returns the solution. The two last approaches will be
further discussed and compared with ours in Section 3.3.5.3.

Other approaches also include learning for generating REs. Yamakata et al. use
a beliefs network-based method to disambiguate entities based on multiple at-
tributes [Yamakata 2004]. Besides, they state that their algorithm runs on the
hearer estimated belief network, we think that it is an important feature to gener-
ate relevant REs. However, they indicate that a belief network should be trained
for each attribute, which can be impractical in a real-world robotic application.

Every approach presented until then is relying on REG dedicated knowledge
bases or data structures. Such structures can be cumbersome to maintain in a dy-
namic world where relations between entities can change along the task. Moreover,
in complete robotic architecture knowledge bases managing relations already exist,
but are not dedicated to REG. The DIST-PIA method tries to mitigate this issue
by having a domain-independent Incremental Algorithm querying dedicated knowl-

60 Chapter 3. Determining Communications During Planning

edge base (called consultants) to elaborate the RE [Williams 2017]. By specifying
four minimal features each consultant in a robotic architecture must have, the al-
gorithm is able to query them to build a RE. To our knowledge, it is the first and
only approach that does not assume a specific knowledge base format to operate.
This approach has been successfully integrated into a complete robotic architecture
[Williams 2019]. Another work having been integrated into a robotic architecture
is made by Ros et al. [Ros 2010]. The knowledge base used is an ontology, which
is now widely used in robotics to store symbolic knowledge. However, it does not
support using the relations to generate REs (it only relies on the attributes of the
entities). It has been integrated into a robotic architecture allowing the robot to
play a game with the human where it has to guess, through a series of questions,
which object they are thinking of in a scene. The approach successfully allows to
find the right questions to ask (which would discard the most of potential objects)
and to discriminate the right objects when receiving the answer [Lemaignan 2012].

To the best of our knowledge, none of these approaches have been used to
determine the feasibility and the cost of a referring communication action during
task planning.

3.2.2 Task Planning With Communication Actions

Recently, more and more research is dedicated to human robot verbal commu-
nication planning, mainly to answer the what and the when to communicate
[Mavridis 2015]. The vast majority of contributions treats these questions dur-
ing execution. Indeed, they assume a given plan (multi-agents or not) and insert
verbal communication actions when needed.

Chaski is a plan execution system allowing to perform a collaborative activ-
ity with a human [Shah 2011]. The system generates verbal communication when
starting or finishing a task allowing agents to coordinate their actions and to up-
date their plans. However, it does so without any reasoning on the communication
necessity and expects the human does also communicate each task they start and
end.

With their inverse semantic algorithm, Tellex et al. provide the robot with a
capability to ask a nearby human for help when it fails [Tellex 2014]. Indeed, when
following a plan, if the robot detects an unfeasible action, it decides if and which
human action would help it in the plan and is able, using REG inter alia, to verbally
ask them to perform the selected action with the selected objects.

Sebastiani et al. are able, by merging multiple multi-agent HATP plans, to gen-
erate conditional plans which then can be verbally negotiated (by asking the human
about task allocation) during the execution with the human [Sebastiani 2017].

Devin and Alami proposed a supervision component which is able, when given a
multi-agent plan elaborated by HATP, to estimate the beliefs of the human partner
[Devin 2016]. Then, they monitor divergences between the robot and the human’s
beliefs. If a divergence is detected as not allowing the human to perform their next
actions of the plan, a verbal communication aligning the needed belief is done by

3.2. Related Work 61

the robot. It does so on five levels. (1) The robot is monitoring if the human knows
that a shared goal has been reached or aborted, and informs them if they do not.
(2) The robot constantly checks if the human knows their next planned action and
communicate it if the robot estimates the human does not know it; or ask them
to start it if the human is estimated to know it but is lacking information about
the previous finished actions, enabling theirs; or gives them the necessary beliefs
about the world state if a divergence is computed to prevent the human to perform
their next action. (3) The robot can also communicate that the next action the
human is estimated to perform is not the right one. (4) The robot also monitors
whether the next action it has to perform is the same as in the estimated human
plan (i.e. the next action of the robot inMR is the same as inMR

h) and corrects
it if they diverge. Finally (5) if the human is expected to perform an action but is
not detected to do so, the robot can asks them explicitly to do it. While some of
these communications are tightly linked to the execution, such as communication
about the progress of the plan or failures, others can be expected as early as during
task planning, and be part of the plan.

In all the previous work, the need and the content of communication actions
are solved only when executing the plan. While being unavoidable for execution
related communications (e.g. failures), others can be known to be required during
task planning and inserted into the plan, simplifying the supervision. Besides, by
planning the communication needs, their costs can be balanced with other plan
alternatives, leading to better plans. Finally, by not planning the communications
and resolving them during the execution of the plan, the supervision can get stuck
in a situation where it decides that a communication is needed but is not feasible
as it can be too late in the plan (e.g. the human and the robot are not in the same
room anymore). This is why more recent work focuses on tackling communication
needs already at the task planning level.

Roncone et al. propose a task planner where domains are easily written and
visualized thanks to a high-level task tree representation [Roncone 2017]. This do-
main is then translated into a POMDP which can be solved to obtain a policy.
They define three types of verbal communication: (1) command is a robot instruc-
tion to the human, which can be accepted or declined; (2) ask allows the robot
to question the human about the progress of their task; and (3) inform makes the
robot speak about its next intended action. These three types of actions are coded
in the POMDP and may be included in the policy depending on the situation and
their cost.

A similar approach has been realized by Unhelkar et al. where they add one type
of communication: answer allowing the robot to answer a human querying about
its next intent [Unhelkar 2020]. These verbal communication actions are then inte-
grated into a POMDP. This POMDP is elaborated thanks to a provided task model
represented as a multi-agent MDP, a robot communication model (including com-
munication cost model), and a human action selection model represented with an
agent Markov model. This human model can be refined throughout the interaction.

62 Chapter 3. Determining Communications During Planning

The POMDP is then solved to generate a robot policy.
It is interesting to note that in the presented work, the communication costs are

only based on the time of execution (the when) — to ensure multiple communica-
tions are not too close in time — but not on the content of said communication (the
what, e.g. the length of the communication, the complexity of understanding it).
Moreover, by not considering the content of the communication at planning time
(communication actions are considered as a template instantiation with arguments
determined at execution time) they do not ensure that it will be feasible when
executing. They mitigate this issue by only considering communication about the
plan and actions, and not about belief alignment or object referring. This shows
the interest of our approach as it tries to tackle, at planning level, two of the five
challenges identified by Unhelkar et al.: “estimating benefit of communication” and
“quantifying cost of communication” [Unhelkar 2017]. Finally, it appears clear in
the presented studies that planning for communication can only be done if the robot
plans for both agents.

3.3 Ontology-Based Referring Expression Generation
for Human Robot Interaction

To estimate the feasibility and the cost of communication action during task plan-
ning, we need to be able to quickly find if a communication is feasible and what is
its content. To further study verbal communication planning we restrain ourselves
to only one type of verbal communication: referring expressions. In this section,
we present an efficient algorithm that is able to generate referring expressions for
human-robot interaction based on ontologies. We first introduce the ontology rep-
resentation and argue about its use in human-robot interaction scenarios. Then
we propose a list of features needed for REG in human-robot interaction. Next,
we formally define the problem of ontology-based REG for HRI, and present an
efficient algorithm to solve it. Finally, we show the results of this approach both in
terms of found solutions and time complexity.

3.3.1 Using Ontologies for Human Robot Interaction

Ontology definition An ontology is a data representation used in many domains.
In robotics, it is now widely used as a knowledge base. It is richer than a “flat” key-
value (or vector) of facts. Indeed, it allows to represent multiple concepts inheriting
from one another and entities as the instantiation of these concepts. Moreover, the
entities can be linked through properties representing relations. Reasoners can use
this structure to deduce other facts through first order logic (e.g. if a key is in an area
then the area contains the key; if the key is in an area and the area is on the table
then the key is on the table) and add them to the ontology. Recently, ontologies are
even standardized for robotic applications such as the IEEE-SA P1872.2 Standard
for Autonomous Robotics Ontology.

3.3. Referring Expression Generation for HRI 63

Figure 3.2: The TBox: the types and their hierarchy (in blue), and a part of the
ABox (A and C0): the entities and their types (in red), of an example of an ontology
representing the situation depicted in Figure 3.1.

Figure 3.3: A part of the ABox (A and R) of an example of ontology representing
the situation depicted in Figure 3.1(a).

64 Chapter 3. Determining Communications During Planning

Formally, as coined by Fokoue et al. [Fokoue 2006] and Krötzsch et al., a knowl-
edge base ontology is defined by the tuple K = 〈A, T ,R〉. The TBox T contains
the concepts, called classes representing the possible types of entities known by the
agent. More specifically, it is a finite directed acyclic graph (DAG) T = 〈T,H〉
with T the set of classes/types and H the directed edges representing the inheri-
tance/inclusion links between them. For simplicity purposes, we will refer to them
as “isA” links. For instance, in an ontology representing the example depicted in
Figure 3.1(a), we have:

{Key, Table, Area,Object, Agent, P ickable,Robot,Human} ⊂ T,
{(Key, P ickable), (Pickable,Object), (Table,Object),

(Robot, Agent), (Human,Agent)} ⊂ H

(i.e. (Key, isA, Pickable), (Pickable, isA, Object), (Table, isA, Object), (Robot, isA,
Agent), (Human, isA, Agent)) as represented by the blue graph in Figure 3.2.

The RBox R = 〈P, Incl, Inv〉 contains the properties, their inheritances and
inverses known by the agent. P is the set of properties, Incl the finite DAG rep-
resenting inheritances/inclusions between the properties and Inv = {(pi, pj) ∈ P 2}
representing the inverse properties. The properties can denote both the attributes
of objects (e.g. the color) and the relations between the objects (e.g. which object is
on which other one) In an ontology representing the example depicted in Figure 3.1
the RBox may include:

{isIn, hasIn, isOn, hasOn, geometricProperty} ⊂ P,
{(isIn, geometricProperty), (hasIn, geometricProperty),

(isOn, geometricProperty), (hasOn, geometricProperty)} ⊂ Incl,
{(isIn, hasIn), (hasIn, isIn), (isOn, hasOn), (hasOn, isOn)} ⊂ Inv

Note that to fully match the definition of Fokoue et al. [Fokoue 2006] it would
require to declare the disjunctive, transitive, reflexive and chain relations in R and
the disjunctive classes in T . As they will be reasoned upon in this thesis, we chose
to omit them.

Finally, the ABox A = 〈A,C0, R〉 contains the entities, their types and relations.
A is the set of entities. C0 = {(a, t)|a ∈ A, t ∈ T} contains the direct types of each
entities (an entity must have at least one direct type, but can have multiple ones).
Finally R = {(s, p, o)|(s, o) ∈ A2, p ∈ P} is the set of relations between entities. s
is called the subject of the relation, p the property and o the object. The relations
set R actually contains both attributes of objects (e.g. (key_1, hasColor, red)) and
relations between objects (e.g. (key_1, isOn, table_1)) in our case. For example,
in an ontology representing the example of Figure 3.1(a) we would have as part of

3.3. Referring Expression Generation for HRI 65

the ABox:

{key_1, key_2, area_red, table_1, human_3, pr2_robot} ⊂ A,
{(key_1,Key), (key_2,Key), (area_red,Area), (table_1, Table),

(human_3, Human), (pr2_robot, Robot)} ⊂ C0 (red part of Figure 3.2),
(key_1, isOn, table_1) ∈ R (Figure 3.3)

By using the hierarchy of types we also define C representing the graph of di-
rect and inherited types of entities. C is constructed by adding all the types
that can be reached from a direct type of an entity by following a path in H.
For example (key_2,Key) ∈ C0 =⇒ (key_2,Key) ∈ C ∧ (key_2, P ickable) ∈
C ∧ (key_2, Object) ∈ C if we reuse the example H presented before. We de-
fine the “isA” property for simplicity purpose. The “isA” property allows to rep-
resent hierarchy of types and entities types (as defined in C) while only repre-
senting triplet, as typical relation (e.g. (key_2, isA,Key), (key_2, isA, P ickable),
(key_2, isA,Object). This definition is only intended to help with the notation. It
is important to note that the id of an entity must remain internal to the robot and is
not intended to be communicated. It is a unique identifier that can be shared across
all the robotic architecture. In our examples (and in practice) we use meaningful
ids in order for the ontology to be understandable when analyzing it.

In what follows we will consider the TBox and RBox as static. They will be
defined before any experiment and will not be modified at runtime. In our architec-
ture, they contain the semantic knowledge of the robot and are not meant to change
during a scenario (we do not consider cases where the robot would learn about new
categories of objects or about unknown attribute types of objects). The ABox, on
the other hand, will contain both predefined entities and relations but also sensed
entities and computed facts. It will contain usual symbolic facts, computed by the
situation assessment, found in the knowledge bases of typical robotics architecture.
However, thanks to their typing and the hierarchy of both types and properties
deduction and reasoning can be done on them.

In this thesis we will not present the different reasoners of the ontology, but
rather assume that the ontologies used are all been preprocessed and are consistent
(e.g. if a relation is in R, all the inverse properties of this relation have been added
to R). More in depth descriptions and uses of ontology in robotic architecture can
be found in [Sarthou 2019] and in Guillaume Sarthou’s thesis.

SparQL queries In addition, ontologies often come with a way of requesting data
upon them. A common way of doing so is using SparQL queries. SparQL queries
allow to bind variables with classes or entities respecting the relations specified in
the request. The syntax which we will follow in this thesis is for the variable names

66 Chapter 3. Determining Communications During Planning

to begin with a question mark. Let define a SparQL query:

SELECT ?key
WHERE{?key isA Key. ?key isOn table_1. ?key hasColor black}

This query, issued on the ontology representing the scene depicted in Figure 3.1(a),
would return {(key_1), (key_2)}. Indeed, the first clause1 ?key isA Key would
lookup for all the entities which are inhering from the Key class (Figure 3.2). At
this stage, ?key can thus be bound to key_1, key_2 and key_3. The second clause,
?key isOn table_1, make the SparQL engine lookup for entities from the previous
set being subject of a relation having as property isOn and as object table_1 in R
(Figure 3.3). All the entities previously returned does have that relation, so for now
?key can still be bound to key_1, key_2 and key_3. The last clause ?key hasColor
black would again make the engine lookup in R (Figure 3.3). key_3 does not have
the relation hasColor black so it is removed from the possible bindings of ?key. The
final result is thus {(key_1), (key_2)}.

A more complete example would be the query:

SELECT ?key ?area
WHERE {?key isA Key. ?area isA Area. ?key isIn ?area.}

Again, thanks to the first clause ,?key can thus be bound to key_1, key_2 and
key_3. For the second clause, we need to find all the entities inheriting from Area
in the ABox (Figure 3.2). This results in the variable ?area being possibly bound to
area_red, area_white and area_black. For the last clause, possible bindings com-
binations of both variables are processed, and if R (Figure 3.3) contains a relation
linking them with the isIn property, the couple is added to the set of results. The full
query thus returns {(key_1, area_red),(key_2, area_black), (key_3, area_white)}

The multi-agent case Finally, we want to be able to estimate and reason on the
human beliefs. To do so, we will use one knowledge base (i.e. ontology) per agent
considered by the robot in addition to its own. To follow the notation of Chakraborti
[Chakraborti 2018] presented earlier in this thesis, we will note KR = 〈AR, T R,RR〉
the knowledge base of the robot and KH

r = 〈AHr , T Hr ,RHr 〉 the robot estimated
knowledge base of the human it is interacting with. In practice, we will have
T R = T Hr and RR = RHr , and only have differences in the ABoxes. Indeed, we
assume that the robot estimates that the human knows the same concepts (classes
and properties along with their inheritances) as itself. Only the relations between
the entities can differ. While this requirement is not needed in our approach, we
assume it for clarity purposes.

1Actually, SparQL engines do not necessary process the clauses in the order they were submit-
ted. Requests are often analyzed and their processing optimized to get the best performance.

3.3. Referring Expression Generation for HRI 67

The content of the ontology in HRI The content of the ontology should be
carefully chosen for HRI. In our architecture, the content of the robot ontology can
be decomposed into three parts (usually not exclusive).

First, there are the classes and properties used for consistency and to reason
on the represented world state. They correspond for example to the inheritance of
properties, disjoint classes, inverse properties.

Then, some classes and properties are dedicated to the “programming” of the
robot. They allow to abstract some facts in the knowledge base in such a manner
that other components can easily access the data they need. For example, the Con-
tainer and Support classes can be used by a task planner to easily retrieve objects
in the environment that can contain other objects or on which other objects can be
placed. Another example can be the hasMesh property, allowing the components
of the architecture (e.g. motion planner, situation assessment) to share the same
geometrical model of an entity.

Finally, some classes and properties are more HRI oriented as they allow to
make the interface between the robot knowledge representation and the human.
They allow to verbally communicate about entities, to understand situated dialog
or to draw the scene for example. They include the classes such as Cube, Key, Color
and properties such as the label of entities or hasColor.

It is clear that some of the knowledge does not intend to be communicated to
the human, however, it can still be in their estimated ontology. For example, the
hasMesh property cannot be verbally communicated but is in the human estimated
ontology as it allows to represent how the human may perceive an object, and allow
for perspective taking.

3.3.2 REG Features for Communication Action Estimation During
Task Planning

We saw previously that REG is an important and interesting problem for human-
robot interaction scenarios. However, as its application will be on an environment
perceived in real-time, along with a collaborative task and with respect to a specific
human, additional constraints have to been considered.

1. We want to be able to use the relations between entities. Indeed, we saw
that some state of the art approaches were able to only use the attributes of
entities in their referring expression and not the relations between them. For
instance in Figure 3.4(e) and (f) the pen can only be referred to by using its
relations to the pencil boxes.

2. Then, we want the algorithm to run on existing knowledge bases. Many
presented approaches rely on a dedicated knowledge representation. Such
representation can be cumbersome to maintain during an interaction in an
evolving environment. Moreover, as stated before, the ontologies used in HRI
may already contain the knowledge needed to perform the REG (but often
much more).

68 Chapter 3. Determining Communications During Planning

Figure 3.4: Six scenes as viewed by a human interacting with a robot at the other
side of a table. In each scene, the configuration of objects leads to different mecha-
nisms to refer to a pen without ambiguities.

3. We also want to support the preference ordering per agent. Indeed, some
relations are understood better and quicker than others, and this preference
can change depending on the agent we are interacting with.

4. In addition, we want the algorithm to consider the verbalization through the
use of types. All the approaches presented before only focus on the content
determination of the REG and consider that the linguistic realization (the
verbalization) will be perfect. They consider that all the contents of the used
graph (often dedicated to REG) can be verbalized (e.g. it exists a word for
every edge of the REG graph and each word correspond to only one edge).
While this can be assumed when dealing with a dedicated knowledge base, in
an ontology we need the type of an entity as the minimal information needed
to refer to an entity (e.g. the pen_6 in Figure 3.4 (a) cannot be verbalized
directly as “pen 6”, only its type can be verbalized as “the pen”).

5. Likewise, in large robotic ontologies, every type or relation cannot be verbal-
ized. Indeed, we saw that they also can contain data to be used by other
components (e.g. planners) or to be shared across the architecture. For in-
stance we do not want the robot to say Pickable type, the geometricProperty
or the hasMesh property. Thus, our algorithm should be able to select only
verbalizable types and properties.

6. Finally, in an interaction, it is clear for the hearer that some entities will
not be referred, and should not be taken into account as distractors by the

3.3. Referring Expression Generation for HRI 69

algorithm (in the example depicted in Figure 3.4(a), it should be clear to the
human that, unless specified otherwise, if the robot asks about a pen, it is
one on the table and not one in another room). Also, some relations will be
implicit in the communication (e.g. if the robot asks the human to give it a
pen, it is implied that the pen is not reachable by the robot and reachable by
the human, as in the Figure 3.4(b) and (c)). Thus, the algorithm must use
the context of the ongoing task.
Determining the right context (what are the implicit relations, which do not
need to be said) is an open challenge. It appears to be linked to the location
of the agents and to the action intended to perform with the referred object.
We think affordances of objects can be a way of determining this context
[Gibson 2014, Norman 2013]. Indeed, by emulating the perceived affordances
of the different objects perceived by the human, we can deduce which one
would be filtered out when asking to perform an action with a referred object.
For instance, if the robot asks the human to place the object they are holding
on top of a referred object, the human will probably not consider all the
object not providing a support as an affordance, the implicit communication
would be that the referred object is a support. For now, some affordances are
represented as classes in the ontology (e.g. Pickable, Support). While some
effort has still to be put in clearly defining and determining the context for
each referring expression, in this thesis the contexts will be deduced by hand
and provided to the REG algorithm.

3.3.3 Ontology Based REG Problem Definition

To formally define the REG problem for HRI, we need to enhance our knowledge
base with three functions. First, we define a class labeling function Lt : T 7→ str∪⊥
where str denotes a set of character strings used as words in the common human
robot vocabulary. We define that a class t ∈ T is labeled iif Lt(t) 6= ⊥ and call
Lt(t) ∈ str the label of t. Besides, we require this label to be unique, i.e. for any
pair of labeled classes t, t′ ∈ T 2, t 6= t′ ⇔ Lt(t) 6= Lt(t′). We define similarly a
an entity labeling function La : A 7→ str ∪ ⊥ associating some entities to their
speakable/writable unique names (gray names in Figure 3.2). These functions can
be defined in the ontology by using the commonly used property rdf:label to the
labeled classes and entities. Adding them that way, allows to make these function
agent dependent. In the example depicted in Figure 3.1(a) we would have among
others Lt(Table) = ”table”, Lt(Pickable) = ⊥ and Lt(Key) = ”key”. Indeed,
the types and entities are defined by their identifier in the ontology, however these
identifiers usually make no sense to the human (e.g. key_1), or are not intended
to be verbalized (e.g. Pickable). The labels serve to distinguish the individuals and
types that are verbalizable from the other and to give a unique verbalizable name
to them. In practice, entities are rarely named except for very specific objects that
would have been given a unique name.

Moreover, to support the preference ordering we introduce a comprehension

70 Chapter 3. Determining Communications During Planning

cost function depending on the agent CH : P 7→ R+∗ assigning a positive cost to
properties. It allows to represent that some relations are harder to interpret for
the hearer than others. We will not present in this thesis how to compute these
costs. However, some approaches manage to estimate this cost and the preference
order [Belke 2002, Koolen 2012]. Belke and Meyer evaluated the reaction times to
find if two patterns were different, moreover, they analyzed the referring expression
generated by participants when presented with two different patterns to refer to one.
They found that differences in object colors (absolute difference) appear to make the
distinction easier than differences in the size (relative difference). Besides, people
tend to over-specify the Referring Expression (RE) by specifying the color even
when it is not needed. This shows that color attributes should be preferred over size
when generating a RE [Belke 2002]. Koolen et al. used a learning approach based
on human generated RE to assign costs to the relations used by the Incremental
Algorithm and Graph-Based Algorithm [Koolen 2012]. In what follows, all the
properties have a unit cost.

We are aiming to unambiguously designate, through its relations to other enti-
ties, an entity at ∈ A in a knowledge base K. We will call the entity we are trying
to refer to the target entity at. However, the RE is meant to be used in the context
of a task. As stated previously, the RE needs to account for certain implicit rela-
tions. This is why the problem must be given a context Ctx = (Rctx, Cctx), a set
of relations and direct types that are implicit in the current situation, which will
be used to reference at, but not included in the generated RE. For the interactions
of Figure 3.1, the context could be defined as:

Ctx = ({〈at, isOn, table_1〉, 〈at, isV isibleBy, human_3〉,
〈at, isReachableBy, human_3〉}, ∅)

With this context, we restrict the disambiguation to the entities present on the
table table1 and visible and reachable by human_3, the human partner. Indeed,
when engaged in a tabletop scenario, objects on the table are prioritized when
designating one. Besides, as the robot asks to move the keys, we model that the
human infer that the keys referred to are reachable and visible by him.

Finally, to be able to run on our ontologies and select only verbalizable prop-
erties, we provide the problem with a set of usable properties U ⊆ P . Because
of properties inheritance Incl all the properties inheriting from the ones in U are
usable in the problem.

We thus define the REG problem as follows:

Definition 1 (The referring expression generation problem). The Referring Ex-
pression Generation (REG) problem is a tuple REG = 〈at,K,Ctx, U〉 with at ∈ A
the target entity, K the hearer’s estimated knowledge base as an ontology contain-
ing the facts the robot estimates the hearer knows, Ctx the context and U ⊂ P the
set of usable properties.

3.3. Referring Expression Generation for HRI 71

It is important to note that the knowledge base we use is the hearer’s one.
Indeed, for the referring expression to make sense, we need to ensure that all the
types and attributes used are known to the hearer. We see here that such a problem
requires the robot to perform perspective taking.

A solution to the REG problem is a set of relations (the attribute of object, their
relations between them and their type) which could be verbalized afterward. We
define more precisely what must be a solution to the REG problem. Because some
entities (actually the vast majority) are not labeled (anonymous,) and thus cannot
be referred to directly (their id e.g. key_1 is only an internal identifier, and does
not make any sense for the human), some of the relations might be under-specified.
For instance in Figure 3.1, the sentence “the black key” is under-specified in that
“the key” does not identify a unique entity but any entity with the class Key. In
addition, it might be the case that a unique, anonymous, entity participates in more
than one relation, e.g. “the black key on the table”. To keep track of anonymous
entities in under-specified relations, we introduce a variable set X, representing the
anonymous entities, just as in SparQL queries. Again, we choose a syntax where
variables will be prefixed with a question mark (e.g. ?y ∈ X). An under-specified
relation is thus a triplet (s, p, o) ∈ (X ∪A)×U × (X ∪A), e.g. (?y, hasColor, black)
where ?y ∈ X is a variable and black ∈ A is a labeled entity in the knowledge base.

When speaking about anonymous entities, one must know its type to serve as a
placeholder in sentences (e.g. “the pen”). Thus, the solution should associate each
variable and a type (previously denoted as “isA” relations). For simplicity, we chose
to represent them also as triplets: X × ”isA”× T (e.g. (?y, isA, Cube)).

Definition 2 (Reference). Thus, a reference E is a set of triplets, each triplet
in E being either an under-specified relation in (X ∪ A) × U × (X ∪ A) or a type
ascription in (X × ”isA”× T).

For example for the ontology depicted in Figure 3.2 and Figure 3.3,
{(area_white, hasColor, white)}, {(?0, isOn, table_1), (?0, isA, Key)} and
{(key_2, hasColor, ?0), (?1, hasColor, ?0), (?0, isA, Color)} are three references.
However, a reference may not be verbalizable as is, nor represent a valid situation
of the knowledge base. We thus introduce three constraints:

Constraint 3.3.1 (Nameability of entities). Each entity a ∈ A present in any tuple
of a reference E (as first or third component) must have a label: La(a) 6= ⊥.

For instance for Figure 3.1(a) with the ontology depicted in Figure 3.2 and Fig-
ure 3.3 a reference being: {(key_3, hasColor, red)} violates the Constraint 3.3.1.
Indeed, even if red does have a label (La(red) = ”red”), key_3 does not
(La(key_3) = ⊥, the individual key_3 does not have a gray name in Figure 3.2).

Constraint 3.3.2 (Nameability of variables). For each variable x ∈ X present
in any tuple of a reference E (as first or third component) there must also be a
unique tuple in E specifying one of its labeled type ((x, ”isA”, t) ∈ E with t ∈ T and
Lt(t) 6= ⊥).

72 Chapter 3. Determining Communications During Planning

Again, in the situation of Figure 3.1(a) with the ontology in Figure 3.2 and
Figure 3.3, the references {(?0, hasColor, red)} and {(?0, hasColor, red), (?0, isA,
P ickable)} respect the Constraint 3.3.1 (red has a label) but violate the Con-
straint 3.3.2. For the first one, ?0 is a variable but the reference does not con-
tain an isA relation linking it to a type. For the second one, it does contain an
isA relation linking the variable ?0 to a type, but Pickable does not have a label
(Lt(Pickable) = ⊥; it does not have a gray name in Figure 3.2).
Constraint 3.3.3 (Correct instantiation of variables). For a reference E there
must exist at least one mapping function f : X 7→ A of the variables in E into
entities in A such that the types and relations linking entities in E are still present
in T and R once f has been applied. In practice, f transforms the under-specified
relations of E into fully specified ones that must appear in the knowledge base.

As an example, in the context of the Figure 3.1(a) represented by the ontology
depicted on Figure 3.2 and Figure 3.3, the reference {(?0, isA, Key), (?0, hasColor,
white)} respects the Constraints 3.3.1 and 3.3.2, but does not respect the Con-
straint 3.3.3. Indeed, the variable ?0 cannot be replaced by an entity having the
specified relation in the given ontology (no entity of type Key has the relation
hasColor with the entity white).

We can now define a valid reference:
Definition 3 (Valid reference). A reference E is valid with respect to an ontology
K if and only if it respects the constraints 3.3.1, 3.3.2 and 3.3.3.

Besides, we define a solution and a complete solution to a REG problem REG =
〈at,K,Ctx, U〉:
Definition 4 (Referring expression). A solution to a REG problem REG =
〈at,K,Ctx, U〉 is called a referring expression and is a tuple S = 〈E, xg〉. E is
a valid reference and xg ∈ X is a variable, such as for each mapping function f

respecting the constraint 3.3.3, f(xg) = at.
Definition 5 (Complete referring expression). A complete solution to a REG prob-
lem REG = 〈at,K,Ctx, U〉 is a solution where the mapping function f respecting
the constraint 3.3.3 is unique.

In the situation of Figure 3.1(b), a referring expression for the entity area_black
could be {(?0, isA,Area), (?1, isA,Key), (?1, hasColor, black), (?1, isIn, ?0)} with
xg =?0. In this situation, ?1 can be bound to both key_1 or key_2, (two possible
mapping functions), but in either case ?0 can only be bound to area_black. Thus,
this referring expression is not complete.

The aim of the hearer is then to instantiate all the variables from their knowledge
to find the entity referred to.

Finally, we define an optimal solution (referring expression) S∗ = 〈E∗, xg〉 as
being the a solution minimizing

∑
(s,p,o)∈E∗ C(p) over the set of all possible solutions

for a REG problem, where C : P 7→ R+∗ is the properties cost function defined
previously. In this thesis, all the properties will have a unit cost, the optimal
referring expression will then be the shortest one.

3.3. Referring Expression Generation for HRI 73

3.3.4 Efficient REG Algorithm Presentation

We aim at building an algorithm to find a solution to the REG problem. The
algorithm must build a set of relations, from the content of a provided ontology, of
which all possible substitution of variables would result, for a specific variable xg
to a unique entity of the ontology, the target entity. We choose to inspire from the
previous contributions of REG and to formalize the problem as a graph search. The
nodes of this graph are references (as defined in Definition 2), and the transitions
(edges) are relations from the ontology being added to this reference.

3.3.4.1 Formalization as a Graph Search Problem

Let node n = 〈Tn, Xn, An,Sn〉. T ⊆ R ∪ C is a set of triplet relations representing
some relations in the knowledge base K. Xn ⊆ X is the variable set used in
this node, An ⊆ A is the set of anonymous entities of Tn and Sn : Xn 7→ An is
the bijective mapping function linking variables to the anonymous entities they
represent. We will note S−1(T) the resulting reference (as defined in Definition 2)
after the application of S−1 on all the entities in each triplet of T which is also in
An. The initial node is specified by the user’s query through the context of the
problem. The idea is then to explore these nodes until the reference generated from
the node S−1(T) is valid and solution of the REG problem.

To find all substitution functions defined in the Constraint 3.3.3, and thus, all the
entities which can be bound to the variables in the reference (what the hearer will
do to find the entity referred to), we use the SparQL queries presented previously.
From any node n we can construct a SparQL query from S−1(T), and submit it
on the knowledge base to know how many entities can bound to the variables of
the request. In some sense, the SparQL queries can be seen as an emulation of
the cognitive process the hearer will do when receiving the RE. A node n is a goal
node if at is the only solution to the variable xg of the SparQL query created from
the node (Definition 4), and possibly all the variables in the SparQL query have
only one assignation (Definition 5).

A transition t in the unambiguous reference generation problem consists in the
insertion of a new triplet (s, p, o) to the set Tn of a node n resulting in the creation of
a new node n′. The inserted relation in a node n can be a typing relation (p ≡ isA)
or a relation which differs between ambiguous entities in n. We define two kinds of
difference between ambiguous entities.

Definition 6 (Hard difference). A hard difference ai ∆ aj exists when two entities
have the same property towards a different entity (i.e (ai, p, bi) ∈ R ∧ (aj , p, bj) ∈
R|bi 6= bj).

Definition 7 (Soft difference). A soft difference ai δ aj exists when an entity
has a property that is not present for any other ambiguous entity (i.e (ai, p, bi) ∈
R ∧ (aj , p, ·) /∈ R).

74 Chapter 3. Determining Communications During Planning

For example, in Figure 3.1(b) we would have for a hard difference:

(area_black, hasColor, black) ∈ area_black∆ area_red

as both area_black and area_red have a relation containing the property hasColor
but area_black has this property with the entity black while area_red has it with
the entity red. Then, a soft difference would be:

(key_1, isIn, area_black) ∈ area_black δ area_red

as the property isIn is present in this relation concerning area_black but not
present in any relation concerning area_red.

As the hard differences respect the open-world assumption but the soft dif-
ferences do not, we propose to encourage the use of hard differences when possible
by adding an extra cost to transitions coming from soft differences.

Finally, the cost of a node is the sum of the costs of each transition leading
to this node. If we assume that each transition tj corresponds to the addition of
a triplet (sj , pj , oj) to the set Tn of a node n with a cost C(pj), the cost to n is
Cn =

∑
(s,p,o)∈Tn C(p).

3.3.4.2 Algorithm Presentation

We chose to perform this search and solve the REG problem to use a uniform cost
search algorithm on the graph presented before. From an initial node built from
the context of the query, the algorithm generates new nodes by adding possibly
disambiguating relations to the current node. We use a uniform-cost search which
is optimal and complete with positive transition costs and a finite number of
entities and properties in K. Just like Dijkstra’s algorithm, it expands the nodes in
increasing cost order until a solution is discovered or the search space is exhausted.

The graph search algorithm is presented in Algorithm 1. The different transi-
tions (edges) (GetTransitions function) exploring through the nodes can be of
two types. Either the reference S−1(T) of the node contains some variable that
are not typed (violating the Constraint 3.3.2) and the function returns a typing
(isA) relation to be added to the set of relations (TypingTransitions function);
or it returns the set of soft and hard differences between the anonymous individ-
uals of the node and the other individuals having matched in the SparQL query
(DifferenceTransitions function) for their substituting variable. By doing so,
we ensure that if a node produces a reference that is not valid (violating the Con-
straint 3.3.2), the next transitions are only dedicated to make it valid through typing
(isA) relations. Moreover, by only adding relations that are in the ontology K we
ensure that all the relations of a node are in the ontology, and thus respecting the
Constraint 3.3.3). Then, the transitions returned are explored and used to create
new nodes (ApplyTransition function). A new node is created by copying the
relations of its parent and adding the relation of the transition. Moreover, if the
transition adds a new anonymous entity, it creates a new variable and adds the

3.3. Referring Expression Generation for HRI 75

Algorithm 1 Uniform cost search algorithm for referring expression generation.
1: function REG(at, K, Ctx, U)
2: node← Ctx
3: frontier ← a priority queue of nodes ordered by their cost, initialized with
node having a cost 0 as only element

4: explored← an empty set of nodes
5: loop
6: if IsEmpty(frontier) then
7: return failure
8: node← Pop(frontier)
9: if GoalTest(node) then

10: return S−1(Tnode)
11: explored← explored ∪ node
12: for each transition in GetTransitions(node) do
13: child← ApplyTransition(node, transition)
14: if child /∈ explored and child /∈ frontier then
15: Insert(child, frontier)

binding to the mapping function, ensuring the respect of the Constraint 3.3.1). Fi-
nally, when a node is explored, its reference is created using its mapping function,
then the validity of the reference is checked and if it is valid, a SparQL query is
constructed and submitted to the ontology to check if the valid reference is solution;
if not, the exploration continues.

The different called functions are presented hereafter and the pseudo-codes are
given for the most interesting ones:

ToQuery: Performs a direct translation of a reference into a SparQL query.
SparqlResult: The function that takes a SparQL query as input and returns

a match tableM : X 7→ P(A)2 in the way thatM(x) is the set of entities matching
the variable x ∈ X in the given query.

GoalTest: First, this function checks if the reference produced with S−1(T)
is valid. Then, it constructs a SparQL query from a node using the ToQuery
function. Then, it submit it to the ontology K with the function SparqlResult.
Finally, using the resulting match table, it returns > (true) if the variable denoting
the target entity xg has only one match, being the target entity at (M(xg) = {at})
and ⊥ (false) otherwise.

GetTransitions: (Algorithm 2) At each step, we consider two kinds of pos-
sible transitions. The TypingTransitions function (Algorithm 4) consisting in
the addition of an inheritance (isA) relation if at least one entity has no label and
no inheritance relation in Tn. Otherwise, the DifferenceTransitions concate-
nates the transitions from the hard difference transitions (Algorithm 3) and the
soft differences transitions (Algorithm 3 with the δ operator at line 7). These

2This is a simplification of the result returned by a SparQL query, as we do not use the relation
between the tuples really returned.

76 Chapter 3. Determining Communications During Planning

transitions add relations that differ as hard and soft differences between ambiguous
entities for each variable inM.

Algorithm 2 The pseudo-code of the function returning the different transitions
(edges) to explore.
1: function GetTransitions(node)
2: transitions← TypingTransitions(node)
3: if transitions 6= ∅ then
4: return transitions
5: transitions← DifferenceTransitions(node)
6: return additions

Algorithm 3 Hard difference transitions pseudo-code.
1: function HardDifferenceTransitions(node)
2: transitions← an empty set of transitions
3: M← SparqlResult(ToQuery(S−1

node(Tnode)))
4: for each x in Xnode do
5: for each a inM(x) do
6: if a 6= Snode(x) then
7: for each r = (Snode(x), p, o) in Snode(x)∆a do
8: rinv ← (o, Inv(p),Snode(x))
9: if r /∈ Tnode ∧ rinv /∈ Tnode ∧ p ∈ U then
10: transitions← transitions ∪ {r}
11: return transitions

The ∆ (resp. δ) operator returns all the relations that are hard differences
(resp. soft) between two entities as defined in 3.3.4.1. In the difference actions
algorithm, an action can be added only once and must not be present in the current
state to avoid redundancy. The inverse relation to the one added by the action is also
retrieved from the Inv set defined in the knowledge base and checked if not present
in the current state and in the current actions set, again to avoid redundancy.

TypingTransitions: The TypingTransitions function (Algorithm 4) stops
at the first entity which has no label nor type. This specificity reduces the branching
factor while ensuring that each entity has a label or at least a type. Since typing
actions are the first tested in the GetTransitions function, all entities not typed
during a first execution will be during the next ones. In the implementation, this
function has been optimized by observing that once all the entities from the context
are typed, the only entities in Tn which may not be typed are added as the object
of a DifferenceTransitions. Thus, by storing the object entity of a transition
and only checking if it is labeled or has already been typed (and is thus present in
An) we reduce the complexity of the TypingTransitions function.

UsableClass: The function UsableClasses returns the most specific labeled
classes of an entity a, i.e. the set of classes t ∈ T such that (a, t) ∈ C, t is labeled
and there are no labeled sub-classes of t.

3.3. Referring Expression Generation for HRI 77

Algorithm 4 Typing transitions pseudo-code.
1: function TypingTransitions(node)
2: for each (s, p, o) in Tnode do
3: if @x s.t. (s,"isA", x) ∈ Tnode ∧ La(s) = ⊥ then
4: return { (s, "isA", t) | t ∈ UsableClasses(s) } and the creation of

a new variable
5: return ∅

This strategy differs from the one of [Dale 1995] that prefers the least specific
types (so-called basic-level classes). However, in domain-independent knowledge
bases such as ours, their scheme could often result in “Object” or “Thing” which
can lead to confusion. Furthermore, by being conservative in our estimation of
the receiver’s knowledge base, we can guarantee that the labels of the considered
classes are known to the human partner. Finally, using the most specific classes
might reduce the ambiguities, and thus the branching factor early in the search,
without impacting completeness. Note that the restriction to the most specific
classes is not necessary but might reduce the branching factor of the algorithm
without impacting completeness.

ApplyTransition: The ApplyTransition function (Algorithm 5) creates a
new node n′ by applying a transition to an existing node n. It always add the triplet
of the transition to Tn′ but, in case of a transition coming from the TypingTran-
sitions function, a new variable is created and added to the mapping function Sn
(line 8 of Algorithm 5). Indeed, if an entity needs to be typed, it means that it is
unlabeled and thus need to be represented through a variable in a valid reference.

Algorithm 5 Transition application pseudo-code.
1: function ApplyTransition(node, transition)
2: newnode← a copy of node
3: (s, p, o)← transition
4: if p ≡ "isA" then
5: x← a new variable such that x ∈ X ∧ x /∈ Xnewnode

6: Xnewnode ← Xnewnode ∪ x
7: Anewnode ← Anewnode ∪ s
8: Update Snewnode such that Snewnode(x) = s

9: Tnewnode ← Tnewnode ∪ (s, p, o)
10: return newnode

3.3.4.3 Implementation

The algorithm has been implemented in C++. This choice was motivated by the
performance we want our algorithm to have since we aim at using it during task
planning. The software must be able to solve several requests per second.

The interface between the algorithm and the ontology (to compute the hard

78 Chapter 3. Determining Communications During Planning

and soft differences and to make the SparQL requests) has been done with the
Ontologenius API, ultimately using ROS for low level communications. This allows
to have the ontology and the REG algorithm to run on different computers. How-
ever, it is important to note that a low-level interface has also been used, linking
Ontologenius as a dynamic library and running on the same process to avoid com-
munications latency. This approach, while preventing Ontologenius to be used by
other software, allows for the best performance. This is the version used to compare
the computation times of our approach with the others in what follows.

Besides, the software has been integrated as a ROS node allowing other compo-
nents, such as the supervision and the task planner presented later in this thesis,
to perform REG requests in a distributed architecture.

3.3.5 Results

We present hereafter the solutions given by our algorithm to the illustrative exam-
ples. Then we provide results involving a large scale knowledge base describing a
full apartment in terms of execution time, solution length and composition. Finally,
we provide comparative performance measures with two state-of-the-art methods
on their own domains.

3.3.5.1 Solutions Analysis

Figure 3.5: A simple example showing how our ontology-based referring expression
generation algorithm explores the search space. The scene is depicted in the top left
corner, and C and R represent respectively the graph of direct and inherited types
of the entities and the relations between them. The graph exploration is presented
to generate a referring expression for the entity P_1. Dotted arrows represent
typing transitions and grayed nodes do not respect 3.3.2.

In order to have a better grasp of the solutions, we propose to present some
of them. For every presented solution, the variable denoting the entity to refer to
will be xg =?0. The first setup is for illustration purpose, and operates on the
static knowledge base Kpens illustrated in Figure 3.5. In this setup, three pens

3.3. Referring Expression Generation for HRI 79

of two colors are represented, two of them are in two different cups of different
colors. Since this setup is really small, the context is always empty, all the relations
are usable and no entity is labeled. Moreover, the knowledge base being small,
we specify that all the properties Ppens are usable. Thus, based on this setup we
propose two REG problems. The first one REG1 aims at finding a RE for the pen
P_1 : REG1 = 〈P_1,Kpens,∅, Ppens〉. The second one REG2 aims at finding a
RE for the cup G_1 : REG2 = 〈G_1,Kpens,∅, Ppens〉. We only tested with two
interesting entities since the others present similar characteristics. The solution for
REG1 is {(?0, isA, Pen), (?0, isIn, ?1), (?1, isA, Cup), (?1, Color, blue)}. For
REG2 it is {(?0, isA, Cup), (?0, Color, blue)}. They can be read respectively as
“the pen in the blue cup” and “the blue cup”. These two solutions are complete
(as in Definition 5, allowing to read “the” and not “a” in the verbalization), as ?0
and ?1 bind to only one entity. Here, we see how referring to another entity lead to
interesting solutions.

In order to give the reader a sense of how the context is useful as defined
in the problem, we propose to come back to Figure 3.4. In a knowledge base
describing Figure 3.4(b), with a labeled entity Bob, representing the human, giving
a empty context to the problem would lead to the solution {(?0, isA, Pen), (?0,
isReachableBy, Bob)}, which would read as “The pen reachable by Bob”. Whereas,
if the robot wants the human to give it the pen, the reachability of the pen is
obvious. So the context would become: {(pen0, isReachableBy, Bob)}, the ensuing
solution would be {(?0, isA, Pen)}, simply verbalizable as “the pen”, as taking into
account the given context resolve the ambiguity.

3.3.5.2 Scaling Up

To assess the relevance of our approach, we created a larger, realistically-sized,
knowledge base (101 entities, 36 classes, 40 properties and 497 relations), describing
an apartment with three rooms including several furniture (tables, shelves) and
objects (cups, boxes) linked through geometrical relations (atLeftOf, onTopOf) and
attributes (color, weight). We ran our algorithm over all the 77 entities inheriting
from the “Object” class, representing physical entities.

As this algorithm must be used in a human robot interaction application, we
want it not to spoil the interaction when the robot is computing an explanation. In
this setup, 100% of the entities have been referred in under 4.33ms that is well below
100ms which is the maximum system response time for the user to get a feeling of
instantaneity [Miller 1968]. Moreover, 50% are referred under 357µs and 75% under
772µs (Figure 3.6). On average, 10.6 nodes are explored to refer to an object with
an average of 67.35µs/node explored3. These execution times are promising from
a combined use with a task planner, as many requests can be performed while
planning without slowing too much the task planner.

Over the 77 entities, 32 (41.56%) are referred to with 2 or less relation meaning
that only the type of the entity and one relation is needed to refer to them. We can

3Times reported are run on a CPU Intel Core i7-7700 CPU @ 3.60GHz with 32 Go RAM

80 Chapter 3. Determining Communications During Planning

Figure 3.6: Computation times for generating a referring expression on all the 77
objects of the knowledge base representing a three rooms apartment. Orange lines
correspond to the minimal size of the RE found at that duration.

also note that 25 entities (32.46%) are referred to using 4 or more relations with
a maximum of 6 for one of them. Finally, 49.4% need to be referred by referring
to another entity and two of them need to be referred by referring to two other
entities. This means that 49.4% of the entities can not be referred using approaches
like [Ros 2010] or [Dale 1995].

These results over a large scale knowledge base highlight the need to be able to
refer to an entity through the use of relation linking it with other entities. They
also show that the use of the type of an entity is often sufficient with the use of
only one attribute. With this experiment, we also demonstrate that our algorithm
is suitable for use with a realistic large scale knowledge base.

3.3.5.3 Comparisons With Other State-of-the-Art Algorithms

Longest First The Longest First (LF)4 algorithm [Viethen 2013] has been tested
on the GRE3D3 Corpus composed of 20 scenes with three objects with different
spatial relations relative to one another (onTopOf, atLeftOf). Each object can be
referenced by its color, its size (large or small) and its type (cube or ball). The
target referent is marked by an arrow and is always in a direct adjacency relation
(onTopOf or inFrontOf). Among the 20 scenes, 8 target objects can be referenced
without any ambiguity using only their type, 7 can be referenced using only their
type in addition to an attribute (color or size) and the other five can be referenced
using their types and both color and size attribute. This means that spatial relations
are never necessary to reference the target object. We perform the comparison on
the 19th case which consists of a small green cube on a large green cube and a small
blue cube to the right of the green cubes (Figure 3.7). We chose this case with only
cubes because the LF algorithm does not consider the types when generating the

4http://www.m-mitchell.com/code

3.3. Referring Expression Generation for HRI 81

RE and adds them only as a post-process. The other cases requiring only the type
are resolved in less than 100µs and those requiring the type and an attribute are
resolved in less than 250µs with our algorithm.

Since their objective is to obtain an over-specification of the RE, their results
are strongly impacted by the maximum length parameter. By setting it to 4 as
recommended, we get the result which we can read as “The small green cube on top
of a cube” in 311ms. By setting the maximum length to 3 we obtain the shortest
admissible result which can be read as “The small green cube” in 109ms. This last
result is the one given by our algorithm in just 0.87ms.

Figure 3.7: The scene 19 of the corpus GRE3D3 [Viethen 2013].

We see here that the results given by the LF algorithm largely depend on the
maximum length parameter. This parameter also has a significant impact on the
execution time. Besides, in the realistic scenario presented previously, 13% of the
entity need a reference expression length greater than 4. Thus, even if the over-
specification is the goal of the LF approach, it can hardly scale-up. Moreover, for
a maximum length fixed at the optimal length, both their approach and ours give
identical results.

Graph Based Algorithm A computationally improved version of the original
Graph-Based Algorithm [Viethen 2013] is presented in [Li 2017]. It aims at extract-
ing, from a dedicated entities relations graph G, the lowest cost subgraph which is
graph isomorphic to one and only one subgraph in G containing the entity to refer
to. Their approach is evaluated on a corpus containing multiple tabletop scenes
[Scalise 2018], presenting numerous cubes of different colors.

We generated the graph (relations and costs) used for scene 1 (Figure 3.8),
converted it into an ontology, and ran our algorithm on it. This scene contains 15
cubes, GBA algorithm and ours are able to find a solution for the same 10 of them.
In all the 10 cases, as we used the same costs, both algorithms returned the same
solution (with the types of used entities added in our approach). For the other 5
cases, the two algorithms detect the absence of a solution in a few milliseconds.

On all the 10 cases with a solution, our approach performs faster than the GBA
algorithm (29.4 times faster on average). We can note that the speed increase is
more important in cases where there are many solutions (under 4 times faster on
50% of the cases, but more than 50 times faster for 25% of the cases, up to 130

82 Chapter 3. Determining Communications During Planning

Figure 3.8: The scene 1 of the Li & Scalise corpus.

times faster). Indeed, the GBA approach uses a branch and bound algorithm where
the search graph is bounded if the branch exceeds the cost of the current best found
solution. Thus, it can explore a large part of the graph if the optimal solution is
not found early in the search. Whereas our approach uses a uniform cost search
algorithm, ensuring the first found solution is optimal. Moreover, we think that in
cases where the knowledge base contains entities with different types, our approach
should work faster, since we prioritize the use of the type. We were not able to test
this, as we could not manage to run the GBA algorithm on other data than their
own corpus.

3.3.6 Integration

Our ontology-based REG method has been integrated on a PR2 robotic platform
and used in a tabletop scenario. The used architecture presented in this section is
represented in Figure 3.9.

The objects on the tables are detected with the ROBOSHERLOCK5 perception
system [Beetz 2015]. This software does not require any a priori on the environment
such as CAD model, mesh or training. It provides the position (not used to extract
relations), the shape (“circular” or “rectangular”), represented through a hasShape
property in the ontology; the color, represented with a hasColor property; and
the size of the objects (“large”, “medium” or “small”), represented with a hasSize
property. Since the types of objects is not determined by the system, all the objects
were set in the ontology with the labeled type “Object”. This allows us to challenge
our method with situations where the robot is not able to use high-level concepts
and where various ambiguities will be raised.

As presented before, the knowledge base is managed using the Ontologenius6

system [Sarthou 2019]. It uses a custom internal structure to store and manipu-
5http://robosherlock.org/
6https://sarthou.github.io/ontologenius/

http://robosherlock.org/
https://sarthou.github.io/ontologenius/

3.3. Referring Expression Generation for HRI 83

Figure 3.9: The robotic architecture built to test the presented REG approach in
real conditions. The blue components are the ones presented in this thesis.

late assertions as triplets, and offers reasoning capabilities in the form of plugins.
Ontologenius provides a low level API allowing to manipulate the knowledge base
as a classical data structure in addition to a SparQL interface. The ontology is
dynamically fed to keep it up to date on the basis of a simple situation assessment
consisting only of filtering and object tracking. The software used is TOASTER,
which is an improved version of SPARK [Milliez 2014]. However, only basic ca-
pabilities are used, consisting solely of filtering and object tracking. Based on the
confidence on the properties extracted, it dynamically feeds the knowledge base to
keep it up to date.

A simple linguistic realization has been made, taking as input a SparQL query
and generating an English sentence as output. For example, it transforms the query
“?0 isA Cup, ?0 isOn ?1, ?1 isA Table, ?1 hasColor black” into “the cup on the black
table”. It is an ad-hoc implementation based on a simple grammar and on the labels
contained in the ontology.

Finally, a supervision component was built by another PhD. student Amandine
Mayima. This supervision component orchestrates all the other ones. It receives as
input an object being clicked on the RViz visualization, finds its identifier from the
ontology, requests the REG component for a referring expression to this object, then
sends it to the verbalization component and finally sends the produced sentence to
the text-to-speech component making the robot play it.

The task involves six objects on a table (Figure 3.10). A commented video is
available at https://youtu.be/mKDLvDbHfvk. The entity to reference is obj_4 (a
white mug). The robot generates the solution “The white circular object” since
there are other non-white circular objects and other white non-circular objects
(Figure 3.10(a)). Then, a human adds a new object which is a white and circular

https://youtu.be/mKDLvDbHfvk

84 Chapter 3. Determining Communications During Planning

Figure 3.10: The experimental setup for the integration of the REG algorithm.
The robot only perceives the size, color and shape of the objects on the table. It
estimates that the human is also aware of these attributes. To refer to the white
mug (obj_4) the sentence generated in condition (a) is “The white circular object”,
while in condition (b) it is “The white small circular object”. Indeed, in (a) only
the color and the shape of the mug are enough to discriminate it, but in (b) a milk
bottle is added, as it is also small and white, the algorithm adds the size of the mug
to referring expression.

3.4. Planning Communication Actions Using Referring Expression
Generation 85

milk bottle (obj_5) (Figure 3.10(b)). When the robot is asked to describe the white
cup, it generates the sentence “The white small circular object”. With this simple
task, we show that our REG algorithm can be used within a robotic architecture,
can deal with a dynamic environment and can adapt its explanation to the current
situation.

3.4 Planning Communication Actions Using Referring
Expression Generation

We are now able to determine efficiently the content needed for the robot to refer
to an object to a human based on an ontology as knowledge base. Moreover, this
algorithm is able to determine if such a communication is feasible (whether it fails
or not to find a solution) and gives an estimation of the cost of interpreting the
referring expression. In what follows we integrate this approach in a task planner,
allowing to evaluate the feasibility and the cost of verbal referring communication
actions during task planning.

3.4.1 Method

In this section, we first provide an overview of our approach and briefly describe
the used Hierarchical Agent-based Task Planner [Lallement 2014]. Then, we present
the integration of the REG in it and how it allows the planner to be informed of
the feasibility and the cost of the communication actions.

3.4.2 Approach

The communication actions that we consider in this paper are instructions issued
by the robot to its human partner based on Referring Expressions (REs). Typical
instructions are “Take X” and “Put it in Y ”. We thus have a static part and the
rest depends on the situation when the communication is performed and must be
solved by a REG. It is this variable part that could make a communication costly
or infeasible. As stated before, REG must be performed on the human’s partner
Knowledge Base (KB) to only use facts and concepts that the robot estimates to
be known by the human. Thus, we target a planner that is already suitable for
HRI to integrate the estimation of communications. This means that we need a
planner able to distinguish between the different agents involved in the task and to
maintain a representation of the environment for each of them.

Because the task the planner has to solve does not necessarily imply all the
elements present in the current environment, the planner does not need a full rep-
resentation of the environment. In the same way, it does not necessarily need to
have all the characteristics of the entities such that their colors or their types. In
the example of Figure 3.1, the two keys to move can only be represented as movable
objects in the planner and not as keys to make the planning domain more generic.

86 Chapter 3. Determining Communications During Planning

However, the REG needs all the semantic information of each entity of the
environment to generate accurate RE. Furthermore, if another key which is not
part of the task, thus not part of the planner internal representation, is present on
the table (such as key_3), it will also impact the REG and thus the complexity
and feasibility of the communication action. Hence, the REG can not be performed
on the planner internal representation of the world only. To solve this issue, we
endow the planner with the ability to update a semantic KB that is used by the
REG. Since maintaining this external representation can be a heavy process, it is
updated only when a communication action has to be evaluated.

The general workflow executed for each communication action encountered dur-
ing the planning process consists of: 1) updating the external semantic KB of the
human partner with the expected world state 2) identifying the objects to which
to refer to in the communication 3) execute the REG for each of these objects 4)
calculate the feasibility and the cost of the communication action according to the
feasibility and the cost of each individual RE involved in the planned communica-
tion. Note that the examples used in this paper only involve one RE but the same
method can be used for communications of type “give me X and Y ”. In this case,
the external semantic KB is only updated once and both REG are executed on this
KB.

3.4.2.1 Hierarchical Task Planner

In order to implement our approach, we need a task planner able to maintain
an estimated knowledge base of each agent at each planning step. We chose the
Hierarchical Agent-based Task Planner (HATP) [Lallement 2014]. HATP extends
the classical Hierarchical Task Network (HTN) planning by being able to produce
shared plans to reach a joint goal. A HATP planning domain describes how to
decompose tasks into subtasks down to atomic symbolic actions. Both the robot
and human feasible tasks and actions are described in the domain. A context-
dependent cost function is associated with each action.

During the task decomposition, HATP will explore several applicable sub-tasks
until the global task is totally refined into feasible actions, and will return the
minimal cost plan. HATP also supports social rules, allowing to balance the effort
of involved agents depending on human preferences and to penalize plans presenting
certain undesirable sequences of actions. We will not use these social rules in what
follows, but our approach stays totally compatible with them.

Moreover, during the exploration of the task tree, HATP will assign actions to
available agents, robot or human (when an action can be done by both). By doing
so, HATP is able to elaborate one action stream per agent, together with causality
and synchronization links. Besides, HATP domain syntax supports Multiple Val-
ues State Variables (MVSV) [Guitton 2012] which is used to represent and reason
about each agent mental state. The value of each variable depends on the agent
it is requested for. This allows to represent action preconditions depending on the
knowledge of the agent performing the action and also to represent their effect on

3.4. Using REG in Task Planning 87

each agent mental state which can depend on the agent perspective.
Finally, the last argument which motivated our choice was the previous integra-

tion of HATP with a Geometrical Task Planning (GTP) [Gharbi 2015a]. This work
aimed at refining geometric and motion planning requests during the task planning
process. The geometric planner would then compute, in context, the feasibility,
the cost and the side effects of the action. In a similar way, we propose here to
integrate and run REG, in context, to determine communication action feasibility
and pertinence with respect to other courses of actions.

The HATP Data Structures As presented in [De Silva 2015], the HATP data
structures are organized around the so-called HATP entities. These entities are
a collection of any number of attributes being manipulated during the planning
process. The type of the attributes can either be a basic type (i.e. integer, floating
point number, boolean or string) or another entity type. Besides, an attribute can
either be a set, holding multiple values of the specified type or an atom, being a
unique element of the specified type. Finally, an attribute can either be set as
static or dynamic. Static attributes cannot be modified once they have been set in
the world state initialization, they will only be read during the planning process,
whereas dynamic attributes can also be changed by the effects of the primitive
tasks (actions). The Listing 3.1 gives an example of entity definitions in order to
represent the situation in Figure 3.1.

// Agent en t i t y type i s imp l i c i t
define entityType Cube , Area ;
define entityAttributes Cube{
dynamic atom Area i s I n ;
dynamic atom Agent isHeldBy ;

}
define entityAttributes Area{
dynamic set Cube hasIn ;

}
define entityAttributes Agent{

stat ic atom s t r i n g type ;
dynamic atom Cube i sHo ld ing ;

}

Listing 3.1: Example of a part of the HATP domain describing the situation of
Figure 3.1.

3.4.2.2 Integration of REG Within Action Planning

The representation of the communication actions: For clarity purposes, we
only place ourselves in scenarios where only the robot knows the goal of a joint
task and issues command to its human partner one at a time when the human
has to do an action. Thus, while planning, if a task is allocated to the human,

88 Chapter 3. Determining Communications During Planning

as she has no way of guessing it, a preceding communication is required. In the
HATP domain, this translates as a method being decomposed into a sequence of
a communication action (the instruction to the human) and an action made by
the human when the task is attributed to the human. The communication action
feasibility is determined by both symbolic preconditions (e.g. the human and the
robot are in the same room) and REG result (whether a solution is found or not). If
the communication action is feasible, the cost of the communication action is then
computed as the sum of a fixed cost depending on the type of communication and
the REG solution cost depending on the human receiver and the entities to refer to
in the communication.

We have chosen here for illustration purposes a simple planning problem where a
communication needing a REG is involved in each plan step concerning the human,
but the method is general and compatible with problems which need to estimate
and ensure the pertinent context and plan step (the when) of a communication
action during plan elaboration (e.g. [Devin 2016], [Unhelkar 2020]).

Updating the right knowledge base, at the right time: On one hand,
we have large, complete semantic knowledge bases on which a REG algorithm is
able to run and to return the feasibility, the cost and the content of a verbal entity
referring communication for a specified agent (top part of Figure 3.11). On the
other hand, we have reduced knowledge bases dedicated to task planning (bottom
part of Figure 3.11). In order to know the feasibility and cost of a verbal commu-
nication action during the planning, we have to reconcile both sides. Indeed, the
estimated ontology of the communication receiver must be updated to reflect her
planned estimated beliefs at the time of the communication. All the knowledge
representation used here are from the robot point-of-view and managed internally
by the robot decisional and knowledge management processes.

First, the attributes of all the entities present in the planning knowledge base
are initialized for each agent (left part of Figure 3.11). To do so, the name of
every HATP entity types declared in the planning domain are listed. Then, for
each entity type, the entities in the ontology inheriting from these types are created
in the planning knowledge base. Then, each attribute (both static and dynamic)
declared in the domain of every entity has its value updated. If the attribute is a set,
multiple relations with the same name originating from the same entity and pointing
to different ones can be found in the ontology. If so, all the pointed entities are added
to the set. If the attribute is an atom, only one value is retrieved from the ontology
and is set to the planner entity attribute. For instance, if we initialize the planning
knowledge base defined in Listing 3.1 with the content of the ontology depicted in
Figure 3.2 and Figure 3.3 representing the situation of Figure 3.1, the entity types
retrieved from the domain would be Agent, Key, Area, the planning knowledge
base would then be initialized with the entities human_3, pr2_robot as Agent;
key_1, key_2, key_3 as Key; and area_red, area_white, area_black as Area. Then,
the attributes of key_1 would be retrieved from the ontology and set as isIn =
area_red, the same process is repeated for all the other attributes. Attributes
that are not in the ontology can be set in the planning domain manually. Finally,

3.4. Using REG in Task Planning 89

an ontology dedicated to the task planning process (called planning ontology) is
created by copy of the present one for every agent other than the robot present
in the planning domain. These copies are made to avoid modifying the original
ontologies during the planning process as other components may rely on them.

When a communication action is encountered during the task tree exploration
(right part of Figure 3.11), the ontology of the communication receiver needs to
be updated to be able to run the REG on it. The planning ontology copy of the
receiver human is retrieved by her identifier. Then, for each of the entities of her
planned beliefs at the time of the communication, an update is made. The update is
only made on dynamic attributes as static ones do not change during the planning
process. All the relations having the same name as the attribute of the entity in
the planning domain are deleted from the ontology, and replaced with new planned
values. If the attribute is a set, a new relation with the same name is created for
every value in the set.

A REG request is then issued on the updated ontology with the goal individual
being the entity to refer. The REG returns a solution with a cost or a failure which
is taken into account by the planner as classical cost or a non fulfillment of the
action preconditions respectively. Alternatively, a communication action may need
to refer to multiple entities. In that case, multiple REG requests are issued on the
same updated ontology and their costs are summed.

With this approach, we are able to change the context and usable relations
provided to the REG algorithm depending on the task and world state the planner
is in. For example, if the human and the robot are in front of the same table, the
context would be to consider only entities on that table. Moreover, if the currently
explored action is to ask the human for pick, the context provided would be to
consider only the Pickable objects that are estimated in the human beliefs to be
reachableBy themselves.

By doing so, we are linking two knowledge bases: the HATP on one side and the
ontology on the other. While the former can hardly represent inheritances between
entity types and deduce facts as we do not want to put more load on the task
planner, using the latter at specific chosen steps of the task planning process allows
to use its rich semantic to make the resulting plan more precise.

3.4.3 Case Studies

In this section, we present three case studies. The two first ones are run in sim-
ulation on a minimalist setup and show respectively that the estimation of the
communication content during the planning can prevent execution dead-end and
can reduce the global communication complexity during the task. The third case
study is run on a PR2 robot with a perception of its environment and presents a
more complex task with twelve objects to organize. With this last case, we show
that our method makes it possible to compare different means of communication
and to choose the most appropriate.

To realize tests in laboratory conditions, we chose to replace the keys of Fig-

90 Chapter 3. Determining Communications During Planning

Figure 3.11: A representation of the exploration of potential mental states and
ontologies conducted by the planner. The ontology representing estimated human
knowledge is first copied in order to plan it without altering the original one. The
human and robot planning information is extracted from the ontologies. During
the tree exploration, for each verbal communication action, the planned human
ontology is updated with the current explored state and the REG is executed on it.

ure 3.1 with cubes (Figure 3.12). Thus, all three case studies are based on a cube
arrangement task. The human can distinguish the cubes by their color and the digit
written on them (one or two) if there is one. As in Figure 3.1, the table surface is
composed of three storage areas of different colors and cubes can be placed only in
one of them. This symbolic position information can also be used by the human
to distinguish the cubes. In this way, the robot can refer to a cube with a REG of
the type: “the black cube with the number 2 which is in the black area”. In all the
cases, only the robot knows the goal position of the cubes but can not manipulate
them. It thus has to guide the human in the arrangement task. The robot can only
point at the cubes in the third case study. In the first two, it can only use verbal
communication.

3.4.3.1 Preventing Execution Deadlocks

In this case study, we consider the initial state presented in Figure 3.12(a). The cube
C1 is in the red area and the cube C2 in the black one. The goal state is to have
the cube C1 in the black area and the cube C2 in the white one (Figure 3.12(b)).
Taking into account the cost and the feasibility of the communication, the planner
elaborated the plan presented in Listing 3.2. Cube C2 is moved first because
otherwise the two cubes would be in the black area at the same time. Such a
situation would cause a dead-end during the execution of the plan or require another
communication mean.
HR - TellHumanToTake (C2) // (?0 , isA , Cube), (?0 , isIn , ?1) ,

// (?1 , isA , Area), (?1 , hasColor , black)

3.4. Using REG in Task Planning 91

Figure 3.12: The situation depicted in Figure 3.1 with keys replaced with cubes
to realize the setup in laboratory conditions. The human and the robot are in
the situation depicted in (a). Only the robot knows the goal configuration (b) but
cannot move the cube. It has to elaborate a plan in which it asks the human to
move the cubes.

H - Take(C2)
HR - TellHumanToPlace (C2 , AW) // (?0 , isA , Area), (?0 , hasColor , white)
H - Place (C2 , AW)
HR - TellHumanToTake (C1) // (?0 , isA , Cube), (?0 , isIn , ?1) ,

// (?1 , isA , Area), (?1 , hasColor , red)
H - Take(C1)
HR - TellHumanToPlace (C1 , AB) // (?0 , isA , Area), (?0 , hasColor , black)
H - Place (C1 , AB)

Listing 3.2: The obtained plan for the first case study where cube C1 must be
moved from the red to the black area and cube C2 moved from the black to the
white area. The lines beginning with H represent the actions of the human and
the lines beginning with HR represent actions involving the human and the robot
(communication actions). In green are the REG results for each communication
action.

We consider once again the initial state presented in Figure 3.12(a). This time
the goal is to invert the positions of the two cubes. In this situation, if the communi-
cation cost and feasibility are not taken into account during planning, both actions
directly leading to the goal state (i.e. cube C1 moved to the black area or cube
C2 to the red area) will lead to a deadlock at plan execution. Indeed, regardless
of the first cube moved, if it is moved directly to its goal position, it will end up in
the same area as another cube of the same color. In such a situation, no RE can
be found for the other cube, leading to a deadlock in the execution. The solution
found with our method is to add a supplementary action. It consists of putting
the cube C1 away (in the white area). This additional action avoids a deadlock by
making the referring to the cube C2 feasible.

92 Chapter 3. Determining Communications During Planning

Figure 3.13: The initial state (left) and the goal state (right) of a task where the
robot has to explain to the human partner how to move the cubes to complete the
task.

3.4.3.2 Reduction of the Overall Communication Complexity

In this second case study, we show how the estimation of communication by verbal
designation can be used to reduce the complexity of global communication. This
time we consider the initial state and the target state represented in Figure 3.13.
Only cubes C2 and C3 should be moved. The extended HATP with REG capabil-
ities finds the solution consisting in moving cube C2 first, then cube C3. With this
order, cube C2 is referred by three relations: its type (i.e. cube), the number on
it and the colored area in which it is located. After that, the cube C3 can also be
referred to only by three relationships being its type, its color and the colored area
in which it is located. Considering the reverse order, this would have generated a
more complex RE first for cube C3 with four relationships: its type, its color, the
number on it and the colored area in which it is located. The solution chosen by
HATP extended with REG capabilities communicates a sum of six relations rather
than seven with the reverse order.

3.4.3.3 Balancing Between Communication Means

In this last case study, we show how the estimation of verbal designation commu-
nication cost can be used to compare it with other communication means, here
pointing. Now, we consider twelve cubes. The initial state and the goal state are
represented in Figure 3.14. Such a number of similar objects leads to long expla-
nations to refer to certain cubes. Therefore, we would like to end with the task
planner choosing another means of communication to refer to these cubes (e.g. a
pointing action). We model the pointing action as having a constant cost that
is higher than a simple verbal referring expression but lower than a complex one
(with three or more relations to verbalize). To exemplify the comparison with other
communication means, the arrangement order is predefined in this setup.

This setup has been implemented on a real PR2 robot. The architecture is simi-
lar to the one presented in Figure 3.9, but HATP has been added, and the perception
has been replaced by an AR tags reader. The verbalization has been made through
an ad-hoc grammar-based component, and a simple supervision has been written
by Amandine Mayima to follow the plan generated by HATP. Finally, a situation
assessment component named TOASTER, inspired from SPARK [Milliez 2014] has

3.5. Conclusion 93

Figure 3.14: The initial state (left) and the goal state (right) of a task where the
robot has to explain to the human partner how to move the cubes to complete the
task.

been used in its simplest form, only to read AR tags from the cubes, finding if their
position is inside predefined zones on the table (the area) and feeding the ontology
with relevant facts. The execution of the computed plan can be found in the video
available at https://youtu.be/3YnGh_t-UpY.

The cubes C5 and C7 are chosen to be pointed instead of verbalized. Indeed, in
the world states where these cubes need to be moved, verbal referring is considered
to be too costly, thus a pointing motion is preferred. For example, the cube C7 in
the initial situation needs a long and complex explanation that is: “Can you take the
green cube, with the number two, which is in the black storage area” (Figure 3.15).
Even in the case where the pointing action takes more execution time, it could be
faster for the human partner to interpret and so make the human action faster.

Here, we see another benefit of our approach, it allows the planner to balance
between the use of verbal communication actions, which can become complex in
some states (hard to predict without a task planner), and other communication
modalities. Here, verbal communication is balanced with other communication
means, but it can also be balanced with other actions or assignments requiring less
or no communication.

3.5 Conclusion

In this chapter, we have presented an approach allowing to accurately estimate
the feasibility and the cost of verbal communication actions containing referring
expressions during task planning.

First, we introduced the referring expression generation problem and proposed
a formalization of it dedicated to human robot interaction scenarios. Then, we pre-
sented an efficient algorithm generating referring expressions by using an ontology
as a knowledge base.

Finally, we integrated this algorithm into a task planner HATP, allowing it to
resolve the content of such verbal communication when needed. With this extended
version of HATP enhanced with REG capabilities, the planner can check if com-
munication can be done in the planned world state, and it can plan different order
or sequence of action depending on the communication estimation.

However, even if HATP is able to maintain one belief base per agent during the

https://youtu.be/3YnGh_t-UpY

94 Chapter 3. Determining Communications During Planning

Figure 3.15: The PR2 robot and a human sorting cubes. To designate the cube C7,
the robot can either use the verbal referring (a) or point at it (b). However, the
planner has found the pointing less costly for the human to understand and thus,
has returned a pointing action in the executed plan (b).

planning process, it only allocates task between agents (considering the capability
of each one) but does not ensure that the generated plan is known to the human nor
that they have every piece of information needed to accomplish the task. Moreover,
we do not take into account that the human might also plan for their own goal
(which may or may not be shared with the robot). We propose to extend this

3.5. Conclusion 95

approach by not only planning for the robot and the human, but instead planning
for the robot and emulating the action, reaction and planning processes of the
human the robot is interacting with.

Chapter 4

Emulating the Human Decision
and Action Processes During

Task Planning

Contents
4.1 Introduction . 97
4.2 Description . 100
4.3 The Proposed Planning Process 102

4.3.1 Action Models Restriction . 103
4.3.2 Exploration Algorithm . 104
4.3.3 Conditional Plan Selection 105

4.4 Implementation . 108
4.4.1 A Python Planner . 108
4.4.2 Drawing the Plans . 110

4.5 Examples . 110
4.5.1 Plan for Robot Unknown Human Knowledge 110
4.5.2 Balance Difficult Communications, Decomposition Cost and

Task Attribution . 119
4.6 Conclusion and Future Work 130

4.6.1 Selecting Conditional Plans Using the Human Model 130
4.6.2 Representing Explicitly Observation Processes 132
4.6.3 Pruning During the Search Space Exploration 132

4.1 Introduction

In the previous chapter, we successfully integrated a verbal communication planner
for referring expressions into a multi-agents human-aware task planner. This allows
for a communication action containing reference to an object of the environment,
to find its feasibility by not relying only on symbolic facts the task planner is
manipulating but by precisely determining its content. Moreover, by determining
the content of the referring expression, the complexity for the human to understand
it can be estimated and is returned as a cost to the task planner. Thus, during the

98 Chapter 4. Planning Accounting For Human Decisions

execution, we can avoid many plan failures, repair actions or inefficiency. Although
we saw that this approach needs a task planner able to maintain one set of beliefs
per agent during the planning process, HATP, the planner used was only allocating
tasks to the human without considering if the human was aware or not of the
generated plan.

HATP is provided with a human model (MH
r) in several ways. The planning

domain contains the actions the humans can perform and their beliefs are updated
all along the planning process. Moreover, human preferences can be set on the plan
through the social cost, adding extra-cost to the plan if some criteria are met such
as bad chaining of actions (e.g. the robot mopping the floor just before making
a sandwich). However, HATP assumes that a shared goal has been established
between the robot and the human. This shared goal is supposed to have been
acquired previously in the interaction, for example via a human request. Besides,
as stated before, it generates a plan which is unknown if it needs to be communicated
to the human or if it can be easily guessed (i.e. which is predictable) by the human.
Finally, the plan is “fixed” and does not account for whether the human chooses to
perform a different path of actions or not. Any deviation of the human from their
generated stream of action either needs the supervision to perform repair actions
or to request for a replanning. This approach has been shown to be suitable and
pertinent in some applications (e.g. when communication can easily be done at any
point of the plan).

In this chapter, we present a novel task planning approach dedicated to HRI
which, by planning for both the human and the robot, tries to satisfy multiple
objectives:

1. Plan without assuming a prior shared goal. In HRI scenarios, the robot
and the human are not always sharing a goal. The robot can for example plan
to perform a task around humans that are not involved at first, or it may be
requested by a human to do a task without wanting to take a part in it. By
doing so, our planner can balance between integrating the sharing of a goal
with a human (assumed to be collaborative) in the plan and making the robot
do the task alone, or integrate the eventuality to ask for punctual human help.

2. Model the human decision processes. When taking part in a task, a
human (assumed willing to collaborate with the robot) will also plan to reach
their (potentially shared) goal. Our planner must be able to account for this
to provide plans that are expected and explainable by the human partner.

3. Help the human decision, but not compel it. Unlike HATP, our planner
should account for the human flexibility in their decision. While by modeling
the human decision processes it is possible to narrow down the possible human
actions, the generated plans must be able to help the supervision to avoid to
replan or to repair during the execution by considering several human actions.

4. Model the potential human reactions. It is possible to predict that the

4.1. Introduction 99

human may react to some situations, interrupting or helping their current
task. We identify two causes of these reactions. First, they can ensue from
some specific world states, that have been perceived and interpreted by the
human. Then, they can also originate from explicit communications issued by
the robot. These communications can either be a belief alignment, updating
the human knowledge and impacting their decisions; a request to perform a
specific action or a request to help the robot along with a shared goal, needing
the human to plan for it.

5. Act and decide on the different agents’ beliefs. It is important to be
able to represent actions as having different effects on the beliefs of the robot
or the human. Indeed, some robot actions are partially or not observable by
the human, when performing them, the human has no way of knowing the
complete new world state. Besides, these effects and their observability often
depend on the current world state, which representation must be supported
in the planner. Then, decisions made while planning may require to reason on
both the robot and the human beliefs. This is especially the case with commu-
nication actions aiming at aligning knowledge or ask questions for example.
Finally, some actions of pure decision have no direct effect on the world, but
only on the internal beliefs of the agents. For example, observation actions
will only update the beliefs of the agent doing it.

6. Decide not only on the world state but also on the decision pro-
cesses of the agents. Some decisions made during the planning process
require access not only to the beliefs of the agents representing the world
state, but also to the estimation of their planning processes. For example,
the decomposition of a task by the robot may be impossible if some other
task is already performed in its partial plan. Other decisions may also need
the estimation of the human current planning process. For example, if it has
been estimated earlier in the plan that the human will perform a certain de-
composition of a task, the planner would assign a complementary task to the
robot.

7. Adapt to the human experience, trust and preferences. We also want
the planning process to be adjusted depending on the actual human it is
planning with. It must perform its plan search differently whether the human
has the habit to perform this particular task with the robot or not. Moreover,
the human model can be adjusted to the trust the human has in the robot
and to their preferences.

First, we describe our approach and introduce the notations used in this chapter
before detailing the planning process. Then, we present the implementation of this
approach into a prototype planner in Python that we named Human Aware Task
Planner with Emulation of Human Decisions and Actions (HATP/EHDA). Finally,
we demonstrate the planner capabilities in two illustrative situations.

100 Chapter 4. Planning Accounting For Human Decisions

4.2 Description

We separate the agents who may take part in a given task into two categories: the
controllable agent (i.e. the robot) for which the planner needs to select the best
course of actions to generate a plan; and the uncontrollable agent (i.e. the human)
on whom the planner has no direct control but, still, has a representation of their
decision, action and reaction models.

The two agent types are fundamentally different:

1. the robot is controllable since the process is run by the robot,

2. the human agent is not controllable since the process can only “speculate”
on their decisions and actions, but can model that the robot actions can still
influence them and that some of them are observable by the robot,

3. the two agents are not equivalent, the robot agent role is to help, assist and
facilitate human and to synthesize pertinent, legible and acceptable behavior.

We want to devise a planner allowing the controllable agent to plan for its actions
while anticipating the decisions, actions and reactions of the uncontrollable agent.
Moreover, we want the planner to be able to generate plans where the robot actions
elicit situations calling for human decision, action and reaction, thus creating and
anticipating collaboration and interaction.

This problem may be seen as a classical non deterministic planning problem,
but enriched with the ability of the robot to model the actions, beliefs and decision
process of the human. Thus, we have to consider distinct action models, beliefs and
execution streams for each of the agents involved. Doing so with classical STRIPS-
style planning approaches would potentially lead to an intractable search space.
Moreover, HTN approaches have already been shown to be suitable for HRI as they
allow to communicate about the plan more easily [Lallement 2014]. Therefore, we
chose to use HTN planning for both the controllable and uncontrollable agents.
HTN planning aims at decomposing abstract tasks into atomic, primitive tasks by
choosing from a list of available context-dependent refinements for each abstract
task, ensuring that preconditions and effects of refined primitives tasks are satisfied
throughout the created plan. Similarly to HATP [Sebastiani 2017], our planner
elaborates a plan with several streams of actions each assigned to an agent involved
in the task. But while in HATP, all the streams are built starting from on initial
root node corresponding to a shared goal between all agents, our planner starts from
multiple initial root nodes corresponding to the decision process of the different
agents.

The main structure manipulated by our planner is the agent, more precisely
two will be represented, the human and the robot. Each agent has their own beliefs,
action model, agenda, plan and triggers. The planner has to use their action
models and beliefs to decompose the tasks in their agenda into primitive tasks
(actions) that are inserted in their plan. By doing so, it also has to update the
beliefs of each agent and to model their reaction by executing the triggers.

4.2. Description 101

Agents: First, we define an agent state as a tuple σα = 〈dα, πα, sα〉, with dα
the agenda, πα the partial plan and sα the beliefs of the agent α (more de-
tails are presented in what follows). Then, we define an agent as being α =
〈nameα, σα,Λα, T rα〉, with nameα the agent name, σα the agent state, Λα the ac-
tion model and Trα the triggers of the agent α (detailed in what follows). Then
we define two agents: the controllable one — the robot —; and the uncontrollable
one — the human —. We have σ = 〈σrobot, σhuman〉 representing an agents state,
being the state of all the agents at a certain plan step. Let Σ be the set of all the
possible agents states.

Beliefs: Let S be the set of all possible world states, we call beliefs of an agent
α the state sα ∈ S in which this agent thinks the world is in. It is important to
note that the state of the controllable agent (robot) is assumed to be the real world
state estimation for the planner, as we consider the planner as being part of the
controllable agent.

Action models: We represent the action model of an agent α as Λα =
〈Opα, Abα,Meα〉 where Opα are the primitive tasks (i.e. operators, actions) that
the agent α can perform, Abα the set of abstract tasks and Meα are the meth-
ods (i.e. decompositions) describing how an agent α can perform an abstract task
through a refinement process. It is important to note that while this representa-
tion makes a clear distinction between the robot and the human tasks, it does not
prevent representing joint abstract tasks or tasks that can be either done by one
or the other agent. Indeed, as we show later, complementary abstract tasks can be
represented and some tasks can have the same operational model even if they are
not in the same agent action model.

More precisely, the primitive tasks (operators) are defined as functions: Op 3
o : Σ→ Σ ∪ ⊥ which produce new agents state, being the effect of the application
of the primitive task, or false if the task is not applicable. We represent operators
as being instantaneous (or all having the same duration) in their realization. In the
future, to represent more accurately intricate coordination, we want to include the
expected duration of an operator.

Then, methods are defined as tuple, containing an abstract task and a decompo-
sition function: Me 3 m = 〈α, δ〉 with α ∈ Ab and δ : Σ→ (Op∪Ab)n∪ ()∪⊥ with
n ∈ N∗, which, depending on agents states, decompose the abstract task returning
a sequence of tasks (primitive or abstract), an empty sequence if the abstract task
does not need to be decomposed, or false if the task cannot be decomposed in the
current state. Multiple methods can address the same abstract task, the goal of the
HTN planner is then to choose the right one to create a plan.

Agents agendas and plans: An agenda dα and a plan πα (this agent only
stream of actions) are defined for each agent α. The agenda dα is a sequence of
tasks (abstract or primitive) having to be performed by the agent. The plan πα is a

102 Chapter 4. Planning Accounting For Human Decisions

sequence of primitive tasks, built from the agenda, which the agent has to perform.
The links of actions order between the two streams of actions (plans) are kept in
each plan, allowing for coordination.

Agent triggers: Finally, we define for each agent α a set of so-called trigger
functions Trα. These trigger functions aim at representing reactions of agents to
certain situations (subsets of world states). They are useful to model event-driven
behavior, as in PRS [Ingrand 1996], when a specific world state triggers a reaction
from an agent. Besides, these triggers can be used to represent social norms as
defined in [Carlucci 2015], where the user can specify literals which, if true in the
world state during the planning process, add some specific robot actions to the plan.

Trigger functions are defined as: Tr 3 t : Σ → (Op ∪ Ab)n ∪ () with n ∈
N∗, returning a sequence of tasks to be inserted in an agent agenda as a reaction
to specific agent states. For now, the tasks returned by a trigger function are
added on top of the agenda, thus preempting any task that may have started to
be decomposed. A considered solution is to support the flagging of some abstract
tasks in the domain as being atomic. We can then prevent the tasks returned by
a trigger to be inserted between any tasks resulting from the decomposition of an
atomic task.

4.3 The Proposed Planning Process

The cooperative agents planning problem consists of two agents Agstart with
their respective agenda filled with tasks to achieve and their beliefs about the
current world. For the controllable agent (i.e. the robot), the beliefs cor-
respond to the planner ground truth, for the uncontrollable agent, their be-
liefs need to be estimated, through, for example, situation assessment compo-
nent [Milliez 2014, Lemaignan 2018]. Both beliefs are then updated separately
during the planning process, allowing to detect and correct belief divergences for
example.

The result is a robot conditional plan Π being a tree of alternating robot and
human primitive tasks. Any path from the root to the leaves is a feasible sequence
of primitive tasks (i.e. each primitive task application leads to a state where the
following one is applicable) leading to a state where the robot agenda is empty1

To solve such a problem we need to augment the search space from world states
S only to all the agents states considered by the planner σ, with their agenda, plan
and beliefs. The exploration starts with σstart and consecutively applies operators
associated to the robot and to the human, leading to new agents states σi until the
controllable agent has an empty agenda: drobot = ().

The search, which will be detailed after, is done in two parts:

1We also intend to make the planner stops at a certain depth. Thus, it could be used during
the execution to plan a few steps ahead but not until the task is over.

4.3. The Proposed Planning Process 103

1. First, the robot and human HTNs are explored to find all the feasible plans
(and in future works, also all the failing plans). This first exploration results
in a tree of alternating robot and human primitive tasks but where robot ones
are not selected yet (in the tree, several robot actions can be issued after a
human one). Moreover, this tree has an additional dimension corresponding
to the task hierarchy originating from the HTNs decompositions.

2. Then, a conditional plan is selected from this tree. The conditional plan is
also a tree of alternating human and robot primitive tasks, but the robot
tasks have been selected (according to cost functions detailed later in this
chapter) so only one robot primitive task can follow a human one (i.e. the
human primitive tasks now have only one child).

Again, the generated conditional plan keeps the task hierarchy of the HTNs
decomposition, allowing the supervision component to more easily communicate
about it, to be reasoned on, or to be stored with a semantic meaning for it to be
reused later in other components. Selecting robot actions while still accounting
for the possible human ones allows for simpler plan post-processing at the execu-
tion. For example, Levine and Williams propose to let the robot action choices
and causality analysis to the execution [Levine 2014]. While with this approach
repairing plan is easier, the execution component may not have all the information
to make decisions.

4.3.1 Action Models Restriction

Some constraints on the operator, method and trigger functions must be respected.
Indeed, depending on whether the agent is controllable or not, their planning process
will not take decisions based on the same information, and their action will not
impact the world state in the same manner. We thus impose restrictions on what
a function can read and write (writing means here having effects on agents states
and is only in the case of primitive task functions) in the agents state. Then, the
function constraints also depend on which agent is performing the action or making
the decision (in method and trigger functions). The rules for read and write accesses
are given in Table 4.1.

Agent type Readable Writable

Controllable (robot) srobot, shuman,
πrobot, πhuman (a)

shuman, srobot,(b)
dhuman, drobot (c)

Uncontrollable (human) sself , πself (d) sself , sother, dself (e)

Table 4.1: Readable and writable elements (belief states, agenda, plan) of the agents
state by method, primitive task and trigger functions.

Table 4.1(a): During robot planning, the decision and the action can depend
on the beliefs of the robot and on the planned estimated beliefs of the human.

104 Chapter 4. Planning Accounting For Human Decisions

Moreover, the current partial plan of the robot and the anticipated plan of human
one can also be used to make decisions.

Table 4.1(b): The effects of robot actions obviously impact its own belief state
(considered as the real world state by the planner), but also the beliefs of the human,
for example, through their observation process and first order logic reasoning. More
elaborate schemes to compute the effects can also be devised such as those described
in [Gharbi 2015a].

Table 4.1(c): Besides, a robot action can add a new task to the agenda of the
human. This is to account for communication actions requesting the human to do
something.

Table 4.1(d): The human decisions and actions can only be done according to
her own beliefs and partial plan. Indeed, we cannot add the robot ones as it is,
or we would consider that the human estimation of the robot knowledge and past
actions is always perfect. This would require a third type of agent, being the robot
model as estimated by our estimation of the human. For now, we chose not to
represent the estimation of the robot partial plan in the human beliefs. Indeed, it
would require to reason on the observability of the robot actions to represent them
in the human beliefs. However, the human beliefs can be updated through robot
actions.

Table 4.1(e): The effects of the human actions obviously impact their beliefs
and the robot (planner) ones. Moreover, the human agenda could also be updated
through, for example, a positive answer to a task request.

4.3.2 Exploration Algorithm

Our planner operates in a turn-taking scheme, based on the update of the agents’
beliefs states, the HTNs of the robot and the human are explored successively.

4.3.2.1 Controllable Agent HTN Exploration

The robot HTN exploration is a pretty standard depth-first algorithm presented
in Algorithm 6. The first task λ from its agenda drobot is popped, then if it is an
abstract task λ ∈ Ab, all the applicable methods are applied, and their results are
prepended to the agenda, thus giving new agents states (with the same beliefs as
the previous ones but with the robot agenda updated) and branching our search
space. We iterate with the new task popped from the new robot agenda. Eventually,
the popped task will be a primitive one λ ∈ Op, its function will then be applied
to the currently explored agent states. If it returns false(⊥), the action is not
applicable, and the exploration backtracks to another decomposition of an abstract
task. However, if the action is applicable (returns a new agents state), the triggers

4.3. The Proposed Planning Process 105

are run for each agent, updating their agenda if necessary. Then, we question the
human HTN to get their possible next actions from this new agents state, and, for
each possible new agents state, we apply the triggers of each agent then we continue
the robot HTN exploration. This exploration continues until the robot agenda is
empty, or all the branches return false.

4.3.2.2 Uncontrollable Agent HTN Exploration

The human HTN exploration differs from classical HTN planners as the goal is not
to produce a complete plan, but rather to list all the actions the human is likely
to perform in a given agents state. As presented in Algorithm 7, we recursively
decompose the first task of the human agenda dhuman with every applicable method,
until we reach an applicable operator. All the operators from all the applicable
decompositions are returned to the robot HTN exploration and applied.

4.3.2.3 Default Actions

Two special cases are handled during the exploration. If the human agenda is
empty whereas the robot one is not, the exploration returns a default action IDLE
— which does not modify agents beliefs nor agendas — for the human. This action
represents the non-involvement of the human in a task. Besides, if for the human no
applicable action is found a default action WAIT — which does not modify agents
nor agendas — is returned. This action represents the impossibility of the human
to act in the current situation, making them wait for the robot to proceed. This
default action can also be used in a domain to represent the human decision to wait
for the robot to act.

Once the robot agenda is emptied, the agents state is set as a success, the plan is
added to the valid plans tree and the search can be continued until no decomposition
is left for any task.

4.3.3 Conditional Plan Selection

Once this exhaustive search has been done, the result is a valid plans tree of alter-
nating robot and human feasible actions along with their current beliefs leading to
a task completion. For simplicity we will represent the function returning the chil-
dren of each operator in this tree as NextActions : Op 7→ P(Op). More precisely,
as the agents of the action alternate between the robot and the human we have
NextActions ∈ P(Ophuman)Oprobot ∪ P(Oprobot)Ophuman (a robot action can only
have human actions as children and a human action can only have robot actions as
children).

The goal of this second planning step is to select robot actions such as each
human action in the plan has only one robot action as a child. To do so, we define
a cost function cost : σ × Op 7→ R+ representing the cost of an action in a specific
state. The data structure is now similar to a two players game tree. However,
MinMax approaches are not suitable here, as we are not in an adversarial setup

106 Chapter 4. Planning Accounting For Human Decisions

Algorithm 6 Double HTN main exploration algorithm.
1: function SeekPlans(robot, human)
2: solutions← an empty list of plans
3: result← ExploreTree(robot, human, solutions)
4: if result = failure then return failure
5: return solutions

6: function ExploreTree(r, h, solutions)
7: if isEmpty(dr) then
8: add the plan πr ∪ πh in solutions
9: return success
10: λ← Pop(dr)
11: if λ ∈ Abr then
12: isOneDecompositionV alid← false
13: for each 〈α, δ〉 in Mer s.t. α = λ do
14: decomposition← δ(sr, πr, dr, sh, πh, dh)
15: if decomposition 6= ⊥ then
16: r′, h′ ← Copy(r, h) . The exploration is branching

on the robot decompositions, so we deep copy the agents to avoid interactions
between branches

17: dr′ ← decomposition.dr′

18: result← ExploreTree(r′, h′, solutions)
19: if result = success then isOneDecompositionV alid← true
20: if isOneDecompositionV alid then return success
21: if λ ∈ Opr then
22: result← λ(sr, πr, dr, sh, πh, dh)
23: if result = ⊥ then return failure
24: r′, h′ ← Copy(r, h) . The exploration is branching on the human

operators, so we deep copy the agents to avoid interactions between branches
25: sr′ , dr′ , sh′ , dh′ ← Apply(result)
26: πr′ ← πr′ .λ
27: dr′ , dh′ ← ApplyTriggers(sr′ , πr′ , dr′ , sh′ , πh′ , dh′)
28: humanApplicableOperators← GetHApplicableOperators(h′)
29: isOneOperatorV alid← false
30: for each o in humanApplicableOperators do
31: r′′, h′′ ← Copy(r′, h′)
32: sr′′ , sh′′ , dh′′ ← Apply(o)
33: dr′′ , dh′′ ← ApplyTriggers(sr′′ , πr′′ , dr′′ , sh′′ , πh′′ , dh′′)
34: result← ExploreTree(r′′, h′′, solutions)
35: if result = success then isOneOperatorV alid← true
36: if isOneOperatorV alid then return success

but more into a collaborative one. Indeed, trying to minimize the maximal possible
cost is assuming that the human will always do the actions leading to the worst

4.3. The Proposed Planning Process 107

Algorithm 7 Human HTN exploration algorithm, returning the feasible human
actions.
1: function GetHApplicableOperators(h)
2: solution← ExploreApplicableOps(h)
3: if solution = () then return (WAIT)

4: function ExploreApplicableOps(h)
5: if isEmpty(dh) then return (IDLE)
6: λ← Pop(dh)
7: if λ ∈ Abh then
8: applicableOps← an empty set of operators
9: for each 〈α, δ〉 in Meh s.t. α = λ do

10: decomposition← δ(sh, πh)
11: if decomposition 6= ⊥ then
12: h′ ← Copy(h)
13: dh′ ← decomposition.dh′

14: applicableOps← applicableOps ∪ ExploreApplicableOps(h′)
15: return applicableOps

16: if λ ∈ Oph then
17: if λ(sh, πh, dh) 6= ⊥ then
18: return {λ}
19: else
20: return an empty set

plan. This defensive behavior could lead to non optimal plans. We assume that
given the right indications, the human will do their best to achieve the task with
minimal cost. We thus propose to explore this tree differently.

Moreover, like in HATP we allow to define social costs functions. These func-
tions take a complete human and robot sequence of actions (πr and πh) and return
a cost (R+) which is added to the cost of the plan previously determined. By doing
so, we can penalize non acceptable sequence of robot actions (e.g. serving a meal
just after taking out the trash) or non satisfactory human required contribution
(e.g. a plan requiring the human to act after a long series of IDLE actions, mean-
ing the human could have disengaged from the task; or requesting the human to
perform small tasks multiple times instead of giving the big picture of the real task
to perform).

Minimizing the Average Cost The approach we propose for plan selection is
to minimize the average cost (Algorithm 8). It represents the human potentially
selecting any course of actions in their stream (while still respecting the action
model defined in their HTN).

The algorithm is given the root action of the task network previously generated
and returns the cost of the conditional plan selected while having selected the robot

108 Chapter 4. Planning Accounting For Human Decisions

actions in the task network. The functions used in Algorithm 8 are described
hereafter:

• PathEndingWith: This function recursively backtracks from an action to
get all its parents. This results in a path in the conditional plan tree, i.e. a
plan as a sequence of alternating human and robot actions on which a social
cost can be computed.

• PerformingAgent: This function returns the agent performing the action
given as argument (either the robot or the human).

• ApplicationState: Return the state σ on which the action given as argument
is applied.

While this is a first step and additional work is required for conditional plan
selection, it has proven to work on several examples shown later in this chapter.

This method for selecting a conditional plan is quite simple but is enough to show
the principles and how the approach can be useful for planning in HRI. We propose
other methods of plan selection, accounting even more on the human modeling,
which have yet to be refined in Section 4.6.1.

4.4 Implementation

The previous section presented the general ideas and concepts behind this new plan-
ning paradigm. This short section shows some interesting details about the actual
implementation of a prototype of the planner, along with some explanations prepar-
ing the following examples presentation. We named this prototype planner Human
Aware Task Planner with Emulation of Human Decisions and Actions (HATP/E-
HDA). In the next chapter, we will also show how it has been integrated with other
components to extend its capabilities and be used in a real robotic architecture.

4.4.1 A Python Planner

We chose to implement HATP/EHDA in Python2. It is originally based upon the
Python Hierarchical Ordered Planner (PyHOP) from Nau but has been largely
modified, and only remain the general data structures. As in PyHOP, it allows to
represent world states as Python objects having dictionary as attributes. For exam-
ple s.isReachableBy["cube_23"] = ["human_3", "pr2_robot"] specifies that
the cube_23 is reachable by both the human_3 and the pr2_robot. Moreover,
like in PyHOP the planning domains (HTNs for both the robot and the human)
are written using plain Python functions. While using a separate domain-specific

2This prototype is available, as work in progress, at https://github.com/guilhembn/HATPEHDA
along with the example presented in this chapter, and the interfaces with the other components
presented in the following chapter.

https://github.com/guilhembn/HATPEHDA

4.4. Implementation 109

Algorithm 8 Conditional plan selection algorithm. Explores a search space (a
bipartite tree of alternating robot and human actions) to choose the robot actions
minimizing the average of the total plan cost over all the possible human actions.
1: function SelectRobotActions(action, actualCost)
2: if NextActions(action) = ⊥ then . If it is the last action, we compute

the social cost of the plan and return its addition with the per-action cost.
3: actualCost← actualCost+ Cost(ApplicationState(action), action)
4: return actualCost + SocialCost(PathEndingWith(action))
5: if PerformingAgent(action) = robot then . If this action is done by

the robot, its direct children are performed by the human
6: totalCost← 0
7: actionCost← Cost(ApplicationState(action), action)
8: for each child in NextActions(action) do
9: totalCost← SelectRobotActions(child,

10: actualCost+ actionCost)
11: return totalCost/Card(NextActions(action))
12: else . This action is done by the human, its direct children are done by

the robot and need to be selected
13: minCost← +∞
14: chosenChild← null
15: actionCost← Cost(ApplicationState(action), action)
16: for each child in NextActions(action) do
17: childCost← SelectRobotActions(child,
18: actualCost+ actionCost)
19: if childCost < minCost then
20: minCost← childCost
21: chosenChild← child
22: Set the result of NextActions(action) to chosenChild
23: return minCost

language (DSL) for writing planning domains enables some optimizations and ad-
vanced search algorithms, it tremendously reduces the expressiveness and makes
representing real worlds scenarios more complex. Besides, Python being an inter-
preted language, iterating over these domains is quicker as, unlike HATP, they do
not require any compiling before being planned upon. The decomposition functions
take the world states (beliefs), partial plans of the agents (depending on the type
of the agent Table 4.1) and any other optional parameters (e.g. goals, entities) as
arguments, and return a list of tasks with optional parameters to be put in the
agent’s agenda. Likewise, the actions receive as arguments the world states (be-
liefs), the partial plans and the agendas of the agents (also depending on the type
of the agent Table 4.1) and return new world states and agendas.

The search algorithms have also been implemented in Python. A lot of opti-
mization can be done, and it is planned to entirely rewrite the software in C++.
The current prototype, while not being efficient compared to other approaches, still

110 Chapter 4. Planning Accounting For Human Decisions

allows to find plans in a reasonable time for realistic human robot scenarios.

4.4.2 Drawing the Plans

Thinking about the robot programmer is almost as important as considering the
human partner the robot will interact with. Thus, in order to debug the designed
HTNs, we provide a way of visualizing the valid plans tree and the generated con-
ditional plan.

An example of visualization of valid plans tree (before selecting a conditional
plan) is presented in Figure 4.3. The ellipses correspond to primitive tasks while
rectangles represent abstract ones. The octagons represent the default actions
(IDLE and WAIT). The blue shapes are robot tasks and the orange ones are the
human ones. Finally, red arrows indicate the sequence of actions in the plans and
gray ones represent hierarchical links, i.e. the links between the tasks as defined in
the HTNs, along with the decomposition numbers next to them.

It is interesting to note that in Figure 4.3 some human actions are followed by
two potential robot actions (orange shapes of which originate red arrows leading
to several blues shapes). Indeed, these actions are feasible by the robot, but no
plan has been selected yet. Whereas in Figure 4.4, representing a conditional plan
selected from the previous figure, the robot actions are set, and the non determinism
is only on the human actions.

4.5 Examples

In this section, we will present some case studies in which are presented small task
examples. Each example will present some features of the planner and comparisons
between multiple plans depending on some initial conditions (beliefs or action costs).
Besides, they will give insights into the rationale used when creating the domains
for both the robot and the human. The Python domains for both examples are
available in Annex B.

The two following cases are set in the same context presented in Figure 4.1. We
envision a super-scenario in a company office where a robot assistant is verbally
requested by a human worker to bring her a coffee. The robot must take her mug,
go to the coffee machine, manage to fill the mug with coffee and bring back the
filled mug to the worker. We instantiate this scenario into two precise subtasks
highlighting multiple features of HATP/EHDA.

4.5.1 Plan for Robot Unknown Human Knowledge

First of all, after the robot has been commanded by the worker to bring her a coffee,
it must pick her mug. We want to illustrate how we can represent human knowledge
that is unknown to the robot (but with a small number of possibilities), and how
the planner can elaborate different plans depending on action costs and the number
of possibilities. To do so, we place the robot in a scenario where the worker and it

4.5. Examples 111

Figure 4.1: An example scenario where the robot is requested by a worker to bring
her a coffee. It must first take her mug, then go to the coffee machine, fill it with
water and coffee grounds and finally fill the mug with coffee.

112 Chapter 4. Planning Accounting For Human Decisions

are face to face when she asks it for a coffee. There is a table between them and
n ∈ N mugs are placed on it. Only one mug belongs to the worker, the robot knows
she knows which one it is (MH

r) but the robot does not know it (MR). The goal
of the robot is thus to take the right mug, and to go to the coffee machine. The
general idea is that we want the robot to have two ways of grabbing the right mug.
Either it can take a random one, and if the human is not protesting, the robot can
proceed with the rest of the task, else it tries again while knowing this mug was
not the right one; or the robot can ask the human for the right mug and take it.
However, as specifying the right mug through verbal communication can be costly
for the human (e.g. highly resembling mugs, a noisy environment), asking her might
not always be feasible not be the optimal solution.

Figure 4.2: The action models (HTNs) of the robot and the human for the mug
selection task. Rectangles represent abstract tasks, ellipses represent primitive tasks
and hexagons represent triggers. The links with an arrow are “and” links, the others
are “or” links. Please note that some decompositions have been merged for clarity.

First, we go through the design of the robot HTN (Figure 4.2). The com-

4.5. Examples 113

plete domain in Python code is presented as supplementary material in An-
nex B.1. The robot agenda is initialized with two tasks get_right_mug and
go_to_coffee_machine. The robot abstract tasks and their decompositions are
presented here:

• get_right_mug aims at making the robot pick the mug belonging to the
human. It has two decompositions:

– robot_ask_and_take_mug representing the robot asking the human
which one is her mug. It returns either pick_mug if the human’s mug is
known or ask_mug_to_take and get_right_mug

– take_one_random_mug representing the robot go through trial and er-
rors. It returns either pick_mug if the human’s mug is known or
pick_mug with all the mugs potentially belonging to the human.

The primitive tasks (operators) of the robot and their effects are presented here:

• pick_mug updating the beliefs of all the agents in the room by removing the
mug given as parameter from the table and adding it to the robot gripper.

• ask_mug_to_take adding the task answer_right_mug_a to the human
agenda.

• drop_mug updating the beliefs of all the agents in the room by removing the
mug they believe the robot is currently holding and adding it on top of the
table.

• go_to_coffee_machine updating the beliefs of all agents in the room that
the robot has left the room and is now in the coffee room. Moreover it updates
all agents in the coffee room beliefs such as the robot is in the coffee room
and updates their beliefs of what it is carrying.

Moreover, if the human is complaining about the mug the robot is currently holding,
we want the robot to drop it, and to know that this mug is not the right one. To do
so, we use the triggers mechanisms and we define a trigger function for the robot:

• drop_wrong_mug checking if the human just complained about the mug we
taken (complain_mug ∈ πh) and if so, adds drop_mug and get_right_mug to
the robot agenda.

Then, we go through the human task model. We assume the order of getting
a coffee has already been given to the robot, and thus assume the human has no
task to decompose initially in her agenda. When asked for which mug belongs to
her, we model that she can answer whatever mug she has not ruled out. Moreover,
we model that when the robot picks a mug, she will complain if it is not the right
one. Here are the two abstract tasks and their decompositions we used to model
this human behavior:

114 Chapter 4. Planning Accounting For Human Decisions

• answer_right_mug_a representing the task of answering the robot for the
right mug. For this example, it has only one decomposition:

– answer_right_mug if the right mug is present in the human beliefs, it
returns only the verbally_answer_right_mug primitive task, else, it re-
turns m ∈ N alternatives of verbally_answer_right_mug with m being
the number of mug not having been ruled out in the plan at this state.

• check_mug_taken models the human expectation of the robot taking the right
mug. It has two decompositions:

– agree_mug_taken when the robot has the right mug in its gripper. It
always returns an empty task list.

– complain_mug_taken when the robot has a wrong mug in its gripper. It
return the primitive task complain_mug.

The following presents the modeled human primitive tasks:

• verbally_answer_right_mug updating the beliefs of all the agents in the
room with the human being the owner of the mug passed as a parameter. To
estimate the feasibility and the cost of this action we run our REG component
as detailed in the previous chapter.

• complain_mug updating the beliefs of all the agents in the room with the
human not being the owner of the mug passed as parameter.

Finally, to model the human reaction when the robot grabs the wrong mug, we use
the triggers system for the human:

• check_mug adding the task check_mug_taken to the human agenda each time
the robot takes a mug that has not been specially designated by the human
(i.e. the robot has a mug in its gripper and verbally_answer_right_mug /∈
πh).

Another way of representing the human reaction is to represent the shared goal
of the human and the robot (as the human just asked the robot to perform a task) by
adding a monitoring task to the human agenda in the initial state. This monitoring
task could then be refined into a WAIT or into a complain_mug or an empty task
list depending on the mug taken by the robot. Such a representation allows to
model the joint activity between the human and the robot. However, it also models
that the human can do nothing else except monitor the robot actions until it has
picked the right mug. Using the triggers as presented here, allows to represent that
the human is maybe performing another task (modeled by the IDLE) action and
is not committed to interact with the robot. The triggers still present a drawback
in this case, as it would be triggered whenever the robot is picking a mug (provided
that the human is estimated to see the action), even if it is not for serving the
human. It is not an issue in the presented example as the task is quite short, but

4.5. Examples 115

we still have to find ways to provide more context to the triggers. An easy solution
would be to add a fact to the human beliefs enabling or not the trigger. We are
currently investigating how to represent complex shared goals, and think they can
be an answer to this issue.

The search space for n = 2 mugs is presented in Figure 4.3. In this example,
both mugs are distinct and RE can be computed. On the right hand side of the
figure is the decomposition where the robot explicitly asks the human to designate
her mug. The answer can either be mug_0 or mug_1. The robot then picks the
right one and goes to the coffee machine, leaving no task to decompose. On the left
hand side of the figure is the decomposition where the robot proceeds via trials and
errors. The robot can either pick mug_0 or mug_1 and the human will either react by
doing nothing (if the robot took the right mug) or by complaining, in which case the
robot will drop the mug, take the other one, and leave. Interestingly, we model the
human reaction such as not expecting her to complain when taking the second mug
after a first failure (in Figure 4.3, the only modeled returned human action after the
pick_mug actions denoted (a) and (b) is IDLE and there are no complain_mug_taken
action as the other mug as been excluded before in this branch, so we assume that
the last one is the right one).

Next, we will compare different action costs and conditional plan selection
criteria based on the same search space. To select a plan we used the Algo-
rithm 8. First, we set the cost of complain_mug action much lower than the
verbally_answer_right_mug action. Here, the costs might have been set by the
supervision component, estimating we are interacting in a noisy environment, where
verbal communications are difficult to make, or that the human does not bother to
correct the robot. The conditional plan returned is presented in Figure 4.4. The
chosen plan is the one containing trials and errors. Indeed, as it can lead to much
shorter and thus less costly plans, it is the minimum average.

However, imagine that the human (who has still not had her coffee) is in a hurry,
or that the mugs are really easy to distinguish from one another (e.g. different
color) and thus, we decrease the cost of the verbally_answer_right_mug action
and increase the cost of the complain_mug action. The conditional plan selected
is presented in Figure 4.5. The robot now prefers to ask for the right mug rather
than trying to pick one at random.

As we increase the number of mugs n, the cost of verbally_answer_right_mug
has to also increase to make the robot choose the trials and errors decomposition,
as the average of this decomposition increases since the number of potential errors
increases.

In this example, we show one really interesting feature of HATP/EHDA: repre-
senting human knowledge that is not known by the robot. While not being tractable
when there are a lot of possibilities, which is expected when exploring all the pos-
sibilities in non-deterministic planners, it allows to select more or less conservative
conditional plans depending on the cost of each action. Computational times are
given in Table 4.2. We see that this task modeling begins to fail at 4 mugs, as
a large computation time will spoil the interaction. Although, we think it is still

116 Chapter 4. Planning Accounting For Human Decisions

Figure 4.3: The valid plans tree produced after the exploration of the HTNs.

4.5. Examples 117

Figure 4.4: A conditional plan selected from the tree depicted in Figure 4.3. In
this plan, the robot starts by picking the mug_0 and expects the human to either
complain that it is not her mug or do nothing allowing the robot to leave. If it is
not the right mug, the robot would take the other one before leaving the room.

118 Chapter 4. Planning Accounting For Human Decisions

Figure 4.5: Another conditional plan selected from the tree depicted in Figure 4.3.
In this plan, the robot starts by asking which mug belongs to the human. Depending
on the answer, the robot would then pick one or the other and leave the room.

4.5. Examples 119

Number of mugs Number of
explored branches

Duration of
the exploration step (s)

Duration of
the plan selection step (s)

1 2 0.010 <0.001
2 8 0.115 0.003
3 30 1.162 0.006
4 128 26.425 0.035
5 650 987.057 0.149

Table 4.2: Planning computation durations depending on the specified number of
mugs on the table.

pertinent in HRI as we seldom deal with a large number of objects and long plans.
Besides, thanks to the task decomposition being Python functions, we can make a
decomposition fail if it would lead to a combinatorial explosion. Here we could have
made the “trial and error” decomposition fails if the number of mugs was greater
than 4. Moreover, this example allowed to see how updating the human agenda
and how triggers can be used to model the agents interaction in the HTNs plan-
ning. However, the human model was pretty simple, and we propose to challenge
HATP/EHDA in the next example with a task where the human is more involved.
The complete domain in Python code is presented as supplementary material in
Annex B.2.

4.5.2 Balance Difficult Communications, Decomposition Cost and
Task Attribution

The robot is now heading to the coffee machine with the right mug in its gripper.
On its way it detects another human taking a break near the coffee machine. The
coffee has to be made. To brew coffee, ground coffee and water must be put in the
coffee machine, and then the coffee can be served. While water is considered as
always available, ground coffee is not. There are two places where ground coffee
can be retrieved: either in the kitchen cupboard (close to the coffee machine) or in
the pantry cupboard.

4.5.2.1 Handling the Robot Only Case

First, we want the robot to be able to make coffee by itself, without requiring
human help. To do so, we implement the following abstract tasks tree depicted in
Figure 4.6 in the robot model (here we prepend the task names with r where task
are different in the robot and the human model):

• r_make_coffee only having one decomposition (for now), represented by Fig-
ure 4.6(a):

– r_make_coffee_alone returning, in both orders (to represent partially
ordered task tree), the tasks get_water, pour_water_in_machine and
r_get_coffee, put_coffee_in_machine. Only r_get_coffee is an ab-
stract task.

120 Chapter 4. Planning Accounting For Human Decisions

Figure 4.6: The action models (HTN) of the robot for the coffee preparation task.
Rectangles represent abstract tasks and ellipses represent primitive tasks. The
links with an arrow are “and” links, the others are “or” links. Please note that
some decompositions have been merged for clarity.

4.5. Examples 121

• r_get_coffee representing the ways for the robot to obtain coffee. It has
only one decomposition:

– the decomposition returns () if the robot has already coffee in its gripper.
Else, it selects the closest cupboard and returns r_pick_coffee with it
as parameter.

The robot primitive tasks as are follow:

• get_water returning ⊥ if the robot is already holding something; updating
the beliefs of all the agents in the room with the fact that the robot holds
water otherwise.

• pour_water_in_machine updating all the agents in the room beliefs with the
machine being filled with water.

• r_pick_coffee returning ⊥ if the robot is already holding something or if the
cupboard passed as parameter does not contains coffee (in the robot beliefs);
updating the beliefs of all agents in the room with the fact the the robot holds
coffee otherwise.

• put_coffee_in_machine updating all the agents in the room beliefs with the
machine being filled with coffee.

• r_serve_coffee updating all the agents in the room with the mug being filled
with coffee.

Now, for the initial conditions we set that the robot knows there is coffee in the
kitchen cupboard (the closest) and we add two tasks in its agenda: r_make_coffee
and r_serve_coffee. The human has nothing in its agenda. The two possible
plans for this really simple case are presented in Figure 4.7(a) and (b). The plan
selection would then choose one of the plans based on robot action costs.

This simple example shows that our approach can still be used as a classical
HTN planner and that it can plan for partially ordered task networks. By doing so,
we show the planner does not require to always involve the human and can balance
joint plans with plans where it does all the task when applicable.

4.5.2.2 Incorporating the Human Planning Process

As we also want the robot to be able to ask the idle human to help it, we add, to
its action model, a decomposition to the abstract task r_make_coffee and a new
abstract task help_make_coffee:

• r_make_coffee containing the previous decomposition and the new one, rep-
resented in Figure 4.6(b):

– r_make_coffee_collaboratively returning a sequence containing
the primitive task r_ask_human_for_help and the abstract task
help_make_coffee

122 Chapter 4. Planning Accounting For Human Decisions

Figure 4.7: The conditional plans generated by our approach. In both (a) and (b)
the robot chooses not to involve the human and do the coffee on its own, only the
order of action changes.

4.5. Examples 123

Figure 4.8: The conditional plan involving the human selected by HATP/EHDA.
The robot chooses to ask for human help. We plan that the human will either get
the coffee or fill the water and adapt accordingly, the choice of human actions is
not made, but thanks to the conditional plan, both possible solutions are planned
and it is up to the supervision component to follow the right one depending on the
human action detected during execution.

124 Chapter 4. Planning Accounting For Human Decisions

• help_make_coffee representing the ways for the robot to help another agent
to make coffee. It has only one decomposition:

– It returns get_water and pour_water_in_machine if there is no wa-
ter in the machine (in srobot) and the human is doing a task related
to bringing coffee (in dhuman). Likewise, it returns r_get_coffee and
put_coffee_in_machine if there is no coffee in the machine (in srobot)
and the human is doing a task related to fill the machine with water
(in dhuman). Then, if the human is not doing any task (in dhuman),
we add to the exploration r_get_coffee, put_coffee_in_machine and
help_make_coffee if there is no coffee in the machine (in srobot) and
get_water, pour_water_in_machine and help_make_coffee if there is
no water in the coffee machine (in srobot). The idea here is to complete
the human actions if they take the initiative of a task, but to be proac-
tive by exploring both possible alternatives if they are not. The recursion
allows to reevaluate the need for this task later in the planning process.

The primitive action added to the robot model is:

• r_ask_human_for_help adding the task help_make_coffee to the human
agenda. Here we could have represented the possible refusal of the human by
adding an abstract task leading to two possible decompositions for the human,
accepting or declining, leading in similar schemes as in 4.5.2.1. However, to
keep this example as simple as possible, we assume the human will always
help the robot if asked to do so.

Figure 4.9: The action models (HTN) of the human for the coffee preparation
task. Rectangles represent abstract tasks and ellipses represent primitive tasks.
The links with an arrow are “and” links, the others are “or” links. Please note that
some decompositions have been merged for clarity.

We model the human actions similarly to the robot ones. Their abstract tasks
are represented in Figure 4.9 and defined as:

4.5. Examples 125

• help_make_coffee representing the ways for the human to help another agent
to make coffee. It has only one decomposition, which is the same as the robot
one.

• h_get_coffee representing the ways for the human to obtain coffee. It has
only one decomposition:

– the decomposition returns () if the human is already holding cof-
fee (in shuman). Else, it selects the closest cupboard and returns
h_try_pick_coffee with it as parameter and h_get_coffee. It dif-
fers from the robot one, indeed, whereas the knowledge of the robot is
assumed to be the world state, the human’s one can be false. Thus,
the human might try to perform h_try_pick_coffee on a cupboard not
containing coffee. We take this into account with the recursion of this
abstract task, and with the primitive task h_try_pick_coffee described
hereafter.

The model of the human primitive tasks are:

• get_water as defined for the robot

• pour_water_in_machine as defined for the robot

• h_try_pick_coffee differs from the one defined for the robot as it checks
if the cupboard passed as parameter really contains coffee (i.e. in the robot
beliefs srobot). If it does not, the human’s beliefs (shuman) about this cupboard
are updated to match the robot ones (srobot, modeling the human going in
front of the cupboard, opening it and seeing the absence of coffee). If the
cupboard does contain coffee in the robot beliefs, all the agents in the room
beliefs are updated with the human having coffee in their hand.

• put_coffee_in_machine as defined for the robot.

The initial conditions are the same as presented before, but we also add that
the kitchen cupboard contains coffee in the human beliefs. In addition to the two
plans where the robot does not seek human help (Figure 4.7(a) and (b)), another
valid plan is found. This plan is presented in Figure 4.8. This conditional plan has
two alternatives, depending on the initiative taken by the human.

Moreover, we see how recursive abstract tasks are used to reevaluate the agents
state later in the plan to adapt for the other agent planned actions. However, re-
cursions in abstract tasks usually break the semantic of the returned plan hierarchy
and can prevent (or alter) their communication or storage. We envision in the fu-
ture to allow to flag some abstract tasks as iterative to decouple their exploration
from the returned plan hierarchy.

The planner is then able to balance between asking the human to take part in
the task (Figure 4.8) or doing it all on its own (Figure 4.7(a) and (b)). Creating
a shared goal or engaging in a joint action now depends on the costs set and is

126 Chapter 4. Planning Accounting For Human Decisions

decided by the planner. Moreover, we chose to not impose a specific task to the
human (either fetching the coffee or filling the water) but to give a high level shared
goal of making coffee. We thus rely on the human planning capabilities to perform
the actions. Besides, the human has the initiative of the part of the shared goal
he wants to perform, but thanks to conditional plans, both choices are covered and
planned for. It allows to make more accurate plans and to choose between them
in a more informed way as they account for multiple alternatives. Once a plan is
selected, it is up to the supervision component to follow the right branch depending
on the detected human action during the execution (i.e. for the plan represented in
Figure 4.8 if the human is getting water from the tap, or if he is picking coffee from
the cupboard).

4.5.2.3 Updating Human Beliefs

We can also change the initial conditions to elicit new behaviors. We keep the same
action models for both the robot and the human, but we change the estimation of
the human beliefs given as initial conditions to the planner. In a real robotic archi-
tecture, the human knowledge base would be updated with an estimation provided
by situation assessment components. We specify that the human believes that both
the kitchen and the pantry cupboard contain coffee (shuman). However, the robot
knows (e.g. using specific sensors or having been told about) that there is coffee only
in the pantry cupboard (srobot). With these conditions, the search space extends
from the three plans presented in Figure 4.7(a), (b) being when the robot prepares
the coffee by itself, to include the one presented in Figure 4.10. In this last plan,
we indeed model that the human will tend to first go to the nearest cupboard he
thinks contains coffee. If this cupboard does not contain coffee, he will go to the
next one. We can also note that only the left branch of the plan in Figure 4.10 is
impacted by this beliefs divergence. However, this branch choice is not up to the
robot as we modeled the human as having the initiative of selecting a task. This
subtlety cannot be represented in HATP. Indeed, in HATP, only one task would
have been assigned to the human corresponding to the optimal plan being the one
where the human fills the water. However, without the communication of the plan,
the human would have had no way of knowing which task is preferred.

Depending on the cost of the human being disappointed and of the actions,
the plan selected can either be that the robot does all the task (Figure 4.7(a) and
(b)), as the human first searching in the wrong cupboard can increase too much the
average cost; or the new plan (Figure 4.10) asking the human for help but taking
the risk that he may do the coffee part and, given his beliefs, go to the wrong
cupboard.

To improve our robot, we want to make it able to realign the beliefs of the
human, so, whatever the task he chooses, he will not go to the wrong cupboard.

To do so, we add a third decomposition to the r_make_coffee abstract task
and one new primitive task to the robot models.

• r_make_coffee containing the previous two decompositions and the new one,

4.5. Examples 127

Figure 4.10: A conditional plan returned by the planner to make coffee with human
help in case of (known) beliefs divergence. The robot chooses to keep this diver-
gence, potentially leading to the human erroneously opening the wrong cupboard
to fetch coffee before trying the right one.

128 Chapter 4. Planning Accounting For Human Decisions

represented in Figure 4.6(c):

– r_align_and_make_coffee_collaboratively returning ⊥ if no be-
liefs divergence is detected between the robot and the human.
Otherwise, the decomposition returns the new primitive task
r_update_human_inventory along with r_ask_human_for_help and
r_help_make_coffee. An alternative for r_update_human_inventory
is returned with as parameter each cupboard in diverging beliefs between
the robot and the human.

• r_update_human_inventory being a primitive task. It updates the human
beliefs (shuman) concerning the cupboard passed as parameter with the beliefs
of the robot (srobot).

In this example, we see how representing separately the agents beliefs allows
to plan for communication actions helping human decision and hopefully avoiding
their disappointment (increasing their satisfaction). Our planning scheme allows
to plan for communication actions aligning the beliefs, thanks to the rich operator
model (as Python functions) presented before. Not discovering the need of aligning
the beliefs during the execution allows to include the cost (or even the feasibility)
of such communication during the planning process and thus to balance with other
plans not needed them.

With this new decomposition, the new plan presented in Figure 4.11 is added to
the search space. In this plan, the human beliefs are updated before asking him to
help the robot to make coffee. The human does not make the first failure of going
first to the kitchen cupboard to take the coffee.

Depending on the communication cost (estimated using the REG approach pre-
sented in the previous chapter to designate the cupboards), the human disappoint-
ment cost (which can be added as a social cost) and the other actions cost, any one
of the four possible plans can be selected. For example, to minimize the human
involvement and if the communication has a high cost, the selected plan would be
Figure 4.7(a) or (b). If the communication is costly but the pantry and kitchen
cupboard are not too far away, the selected plan is Figure 4.10, finally, if we rep-
resent that the human would be upset if he makes an erroneous action or if the
communication for aligning beliefs is not expensive, the plan Figure 4.11 would be
returned. Indeed, the planner may choose to leave the human with their false beliefs
as it finds that it does not prevent to successfully perform the task.

Through all these examples we show that this task planning approach, which
separates human and robot beliefs and action models, can be suitable for multi-
ple problems. We are able to plan for robot unknown human beliefs, to rely on
the human planning process while keeping inherent uncertainties (i.e. not making
choices for them, without communicating them) and also to plan diverging beliefs
and balance the actions of realigning them with plans containing mistakes. In the
next chapter, we present a HRI task, inspired from psychology, that has never

4.5. Examples 129

Figure 4.11: A conditional plan returned by the planner to make coffee with human
help in case of (known) beliefs divergence. Here, the robot chooses to communicate
to realign the beliefs with the human, then asking him for help, preventing any
human misleading.

130 Chapter 4. Planning Accounting For Human Decisions

been tackled in robotics and we show how HATP/EHDA is integrated into a fully
functional robotic architecture dedicated for this task.

4.6 Conclusion and Future Work

In this chapter, we have proposed a new task planning approach for human robot
interaction. This approach not only explicitly represents and plan upon both the
human and the robot beliefs but also use two separate action models as HTNs for
the human and the robot.

We proposed a formalism along with an algorithm allowing to plan for robot
actions, while considering the possible human actions according to their task model.
By doing so, we are able to represent and to account for the human planning and
reaction processes.

Then, we presented a successful implementation of this approach in Python
called Human Aware Task Planner with Emulation of Human Decisions and Ac-
tions (HATP/EHDA) and showed the first results through two examples. These
examples highlighted both the features of HATP/EHDA and the rationale behind
the action models crafting. The planner is able to represent and to plan for robot
unknown human knowledge, human reactions to robot actions, multiple human pos-
sible plans and intricate human robot tasks. It is also capable of balancing between
communicating, letting the human perform a mistake and attributing different roles
to the robot or the human.

We look forward to continuing exploring this approach, find its benefits and
its limits. More importantly, we aspire at improving it, especially on the following
topics.

4.6.1 Selecting Conditional Plans Using the Human Model

We presented and implemented a method for selecting a conditional plan among
the multiple possible ones, by selecting robot actions that minimize the average cost
of the plan. This method intends to model the human as being cooperative but
maybe not having all the information to be able to project themselves throughout
the whole task, and maybe not performing the action leading to the optimal plan.
However, this method is quite simple and does not reflect the full complexity of
human decision process. We propose two other methods for conditional plan selec-
tion, which use even more the human model, that have yet to be implemented and
tested.

4.6.1.1 The Human Planning Process Modeled as a Limited Depth
Planner

First, we propose to consider the human as being able to plan a few steps ahead.
Thus, instead of considering the average cost of all the possible human actions, we
could set less importance to the ones failing a few steps ahead (as the human is

4.6. Conclusion and Future Work 131

likely to have foreseen the failure, and will probably not perform this action) and
more importance to the ones leading to a smaller cost in the near future (as the
human is likely to perform a greedy approach on the short horizon we model they
can plan to).

To do so would require to also store the failing operators in the valid plans tree
during the first exploration step. Moreover, it would require a new parameter being
the depth at which the human is modeled to foresee in the plan.

Then, when exploring the valid plans tree, if a failing operator is encountered
at a depth smaller than the depth parameter, the cost of the corresponding plan
would not be added to the average as we assume the human would not make an
action leading to a failure that they can foresee.

Moreover, the average can be weighted with smaller number for plans being
evaluated as more costly than others at the depth specified by the parameter. It
models that the human will not perform actions that they estimate to lead in costly
plans.

This approach still needs refinement but is seen as a great improvement over
considering only the cost average.

4.6.1.2 Guiding Human Choices Towards the Least Costly Solution

Then, we also want to add another step between the HTNs exploration and the con-
ditional plan selection being the addition of communication actions related to the
plan. The general idea is to analyze the valid plans tree resulting from the HTNs
exploration and to insert robot communication action before some potential human
actions that are leading to a plan failure or a costly plan. These communications
would aim at encouraging some human decisions toward less costly plans, or to in-
form the human about the difference in the plan their actions will induce. To avoid
unnecessary communications, the insertion can be conditional on the human predic-
tion depth defined before. If the human can foresee the failure the communication
is not needed.

Such communication can hardly be inserted in the HTNs or during the HTNs
exploration step, as it requires having the full plan to decide whether they are needed
or not. However, analyzing and inserting them during planning rather than after a
plan has been selected or at the execution is interesting as it would allow to balance
between keeping some uncertainty for non crucial human decisions or accepting
the additional cost of these communication actions but reducing the uncertainty in
human actions for plans easily risking a failure.

Finally, the decision to add or not such a communication can also depend on
the trust the robot has in this human and on the estimated experience the human
has in doing this specific task or in working with the robot.

132 Chapter 4. Planning Accounting For Human Decisions

4.6.2 Representing Explicitly Observation Processes

A lot of code is common between the primitive tasks not only in a planning domain
but also between multiple ones. Indeed, the part where we update the beliefs of
the agent performing the action, but also the ones of the other agents in the room
is present in almost all the primitive actions. This commonality raises the question
of the observability of actions. Indeed, even if we can assume that when an agent
is planned to do an action they will be aware of its effects, and that if the human
is planned to perform an action, even if it is not observable from the planned robot
position, we update the beliefs of the robot (as it is emulating the human actions),
it is not the case for a robot action and the update of human beliefs. We can
represent it coarsely in the primitive task effects by relying on heuristics such as
the presence of the agents in the same room. Still, observability of actions may
need a specific representation for belief update in the planner core.

Besides, even if we plan that the human will do one action or the other at one
point in the plan, recognizing and distinguishing between them may not be possible
during the execution. This can endanger the interaction as the wrong branch of the
plan may be executed. Thus, the supervision component must be informed, along
with the plan, of the observability of the human actions, which can, in turn, impact
the plan selection process.

4.6.3 Pruning During the Search Space Exploration

For now, all the search space is explored to find valid plans, and only then the cost
of actions are evaluated to select the optimal conditional plan. However, even if the
search is guided by the HTNs, the branching factor can become large, especially
if the planning process is executed in a robotic architecture while interacting with
a human. Thus, it is possible to evaluate the plan cost during exploration and to
prune some branches in the search space according to the best plan found so far.
Yet, doing so would prevent from applying plan wide (social) costs, as they could
change the optimality of the plan used during the search.

Another approach would be to learn which actions a human is more likely to
perform in a certain state. We could then prune all the least probable human
actions (still returned by their modeled task tree). Although this approach can be
easy to implement, learning must be done per human (as two humans may react
differently in the same situation) and on a few learning samples as the same world
state seldom appears during specific tasks on typical short term laboratory scenarios
and generalization could be difficult.

Finally, we can also imagine that the robot might ask the human which tasks
they are likely to perform at a specific step in the plan, while elaborating the
plan. This would lead to negotiations with the human making the final plan more
acceptable while also reducing the branching factor as only the tasks answered
by the human would be explored. However, for long and complex domains, this
solution may confuse the human because it would require them to project on the

4.6. Conclusion and Future Work 133

long-term among multiple conditional eventualities.
In the next chapter, we will show how HATP/EHDA can be integrated into

a robotic architecture and introduce a simple to reproduce yet challenging collab-
orative task inspired by psychology studies: the director task. To be performed
by a robot, this task includes several prerequisites such as being able to take the
perspective of the human partner and to refer objects in a dynamically evolving
environment. Moreover, it involves some challenges by the approach presented in
this chapter. The robot architecture which will be presented is built to handle the
task allowing us to show how HATP/EHDA can be used on a real task in a complete
robotic architecture.

Chapter 5

Task Planner Integration
Within a Robotic Architecture
for Human Robot Interaction

Contents
5.1 Introduction . 135
5.2 Integrating With Other Components 136

5.2.1 Retrieving the Current State and Beliefs From the Knowledge
Base . 136

5.2.2 Using REG at Planning Time 138
5.2.3 Communicating Through ROS 138

5.3 The Director Task . 139
5.3.1 A Task Used in Psychology 140
5.3.2 Setup . 141
5.3.3 The Robotic Architecture . 142
5.3.4 Challenges for Planning . 146

5.4 Conclusion . 149

5.1 Introduction

In the last chapter, we have presented a task planning approach dedicated to HRI
where the robot not only plans for itself but also models the human decisions, ac-
tions and reactions in order to predict and adapt to their actions and elicit or even
guide their decisions. This approach has been implemented on a prototype plan-
ner named Human Aware Task Planner with Emulation of Human Decisions and
Actions (HATP/EHDA) and used on several examples demonstrating its strengths
and drawbacks.

In this short chapter, we present how this prototype planner has been integrated
into a complete robotic architecture, once again showing the versatility and useful-
ness of this new task planning approach. First, we provide details on the integration
of HATP/EHDA with different components of the architecture. We conclude this
chapter by presenting a new simple yet challenging task for Human Robot Interac-
tion which, to our knowledge, has not been tackled by the community and for which

136 Chapter 5. Integrating Planning in an Architecture

we have developed a robotic architecture, integrating HATP/EHDA, to handle it
in the nominal case.

Integrating into a complete robotic architecture is obviously not only personal
work, so we want to thank two other PhD. students Guillaume Sarthou, for de-
signing and developing the ontology engine used by the planner in this chapter
and Amandine Mayima for designing and developing the supervision component in
charge of requesting plans and using them to perform the task while managing the
interaction and handling any contingencies.

5.2 Integrating With Other Components

Such a task planning component as the one presented earlier only takes on its
full meaning when integrated into a robotic architecture. Indeed, its use is quite
limited if initial world states have to be set by hand in the planning domain and
if the elaborated plans are not executed. In this section we describe how we have
integrated HATP/EHDA with other components allowing to retrieve the initial
states (including human beliefs) from an ontology, to match the hybrid approach
presented in Chapter 3 by using the REG component and to communicate with the
supervision through ROS.

5.2.1 Retrieving the Current State and Beliefs From the Knowl-
edge Base

Before any planning process could start, the planner must be initialized with the
current world state (robot beliefs) and the estimation of the human’s beliefs. To
do so, we use the Knowledge Base (KB) presented in Chapter 3: Ontologenius,
a component managing the acquired symbolic knowledge and representing it as
ontologies. In our architecture, each human the robot is interacting with has a
dedicated ontology, fed by a perspective taking component estimating the human
beliefs; in addition to the robot own ontology, representing the world state. Thus,
each agent beliefs σ are initialized with the facts in its respective ontology. However,
ontologies can contain a lot of information that is not needed for planning, and
worse, that can hamper keeping world state consistency if the planning domains do
not consider some of these facts (e.g. an action deleting a fact but not deleting the
inverse relation). To cope with this issue, we define two special attributes in the
world state objects: the types and the individuals attributes.

The types attribute must be set by the user before retrieving the current world
state. It is a dictionary linking a type name to a list of property names. A world
state must be initialized solely with these attributes before being passed to a func-
tion retrieving the world state from the ontology. This function takes the agent
name as the argument, and will fill the world state with the ontology matching
to this name. This function fills the individuals attribute of the world state with
a dictionary linking the types specified as keys of the types dictionary to a list of
entities/individuals inheriting from these types. Then, a world state attribute is

5.2. Integrating With Other Components 137

created for each property defined in the type attribute, and filled with a map linking
a subject entity to existing entities list according to the relations in the ontology.

Communication with the ontology is done using the Ontologenius [Sarthou 2019]
python API. This API allows to make low level requests to the KB. The underly-
ing communications are done between HATP/EHDA through the ROS framework.
The entities inheriting from a certain type are for example retrieved through the
function getTypes, querying the ontology with the name specified as parameter
and returning the list of such entities.

For example, in the ontology from Chapter 3 describing the situation of Fig-
ure 3.1(a) represented in Figure 3.2 and 3.3, in a domain aiming at sorting the keys
collaboratively does not need to represent the color of the keys nor of the areas. In
this example, the type attribute would be set to:

[...]
state.types = {’Key’: [’isIn’, ’reachableBy’], ’Agent’: [], ’Area’: [’isOn’

]}
[...]

In which case, the resulting state would have its individuals attribute filled and
have new attributes created such as:

[...]
print(state.individuals)
{’Key’: [’key_1’, ’key_2’, ’key_3’], ’Agent’: [’human_3’, ’pr2_robot’], ’

Area’: [’area_black’, ’area_white’, ’area_red’], ’Table’: [’table_1’]}

print(state.isIn)
{’key_1’: [’area_red’], ’key_2’: [’area_black’], ’key_3’: [’area_white’]}

print(state.reachableBy)
{’key_1’: [’human_3’, ’pr2_robot’], ’key_2’: [’human_3’, ’pr2_robot’], ’

key_3’: [’human_3’, ’pr2_robot’]}

print(state.isOn)
{’area_black’: [’table_1’], ’area_white’: [’table_1’], ’area_red’: [’

table_1’]}
[...]

Besides reading an initial state from the KB, the prototype planner is also able to
write in it. Indeed, HTNs can not only be used as operational models for planning,
but also can be used as a semantic source making verbal communications able to use
past plans. To do so, however, the KB must be informed with the decompositions
of task and with the parameters and their types they require. Our prototype is able
to parse a planning domain in order to extract the required information and write
them in an ontology friendly format.

138 Chapter 5. Integrating Planning in an Architecture

5.2.2 Using REG at Planning Time

In Chapter 3, we presented how we integrated referring expression generation al-
gorithm during task planning to precisely evaluate communication feasibility and
cost. We showed how we successfully integrated this approach in HATP. However,
because of the HATP architecture, its use was restrained to compute only action
feasibility and cost when an action was explored by the planner. With this new
planning scheme, we are able to make a REG request and fully use the returned RE
at any time in action or decomposition functions (as they are Python functions).
For example, in a decomposition, we can request a REG for multiple entities and
return sub-tasks concerning only the least costly one.

Besides, we can also use the REG failure information to know which entities
prevent another from being referred and select decomposition accordingly. For
example, if an entity is not distinguishable from another through the REG, we
can try to rely on another communication mean, such as pointing, or to move the
distractor entity to remove it from the context entities.

The REG component is available to be requested via a ROS service. The re-
quests must contain:

• The name of the ontology on which to perform the REG: in our case we pass
the name of the ontology of the hearer agent that we copied and updated for
the planning, as described in Chapter 3.

• The context: here, the context can be defined in the planning domain. By
doing so, we can define it depending on the task in which the communication
is planned to occur.

• The target entity: the entity for which we want a referring expression.

5.2.3 Communicating Through ROS

Finally, even if the planning process can be initialized and started through a Python
script, it is not enough to make it useful in a real robotic architecture. Thus, we
integrated planning requests support via the ROS framework. This allows the
supervision component to use the planner with a specified domain by requesting a
sequence of tasks to decompose for both agents. The resulting conditional plan is
then used to manage the execution.

Once the planning service is launched, the specified domains are loaded for
controllable and uncontrollable agents, then a service server is started, waiting for
planning requests.

The requests need to be filled with two parameters for each of both controllable
and uncontrollable agents:

• The name of each agent is used to retrieve their beliefs and to run the REG
on their ontologies (retrieved by name) if needed.

5.3. The Director Task 139

• The sequence of tasks to decompose (which will be inserted in the initial
agenda) along with their parameters for both the controllable and the uncon-
trollable agents.

While the tasks for the controllable agent are simply the tasks a classical HTN
planner would have to decompose, the uncontrollable agent’s ones represent
the tasks that the robot estimates the human is performing. Such information
can be given via actions and intentions recognition components.

The parameters of the task can be given as strings if they are simple enough
(e.g. entity names, agent names) but they also can be formatted through
JSON, allowing for more complex parameters (e.g. goals — which are rep-
resented as partial world state) allowing more subtle reasoning in the de-
composition functions. The complex parameters are then deserialized into
corresponding Python objects.

Once a request is received the planning process can start, and, once a conditional
plan has been elaborated is sent back as a response to the request.

The response is constituted of a list of tasks each containing multiple fields:

• a unique id,

• a list of their parameters,

• the name of the agent to whom it has been assigned,

• its type (either abstract or primitive/action),

• the id of the previous task (if any),

• the id of the task it decomposes from (if any)

• a list of ids of the following tasks (if any),

• and a list of ids of the task it decomposes into (for an abstract task only)

Using this information a component can easily reconstruct the conditional plan
computed.

In the future, we envision changing this ROS interface to allow for replanning
accounting for past failed plans; and to perform anytime planning, by being able
to return a plan early in the search while keeping refining plans to decrease the
solution cost.

5.3 The Director Task

This work has been made in close collaboration with three other PhD. students
Amandine Mayima, Kathleen Belhassein and Guillaume Sarthou.

140 Chapter 5. Integrating Planning in an Architecture

5.3.1 A Task Used in Psychology

The director task is an experiment setup largely used and derived in psychology. It
places two agents, the director and the receiver, in front of each other with a shelf in
between. Usually, only the receiver is the participant, and the director is either an
accomplice or a remote controlled-agent (for computer-based experiment). The shelf
consists in several compartments possibly containing objects. Each compartment
can either be open on both opposite faces or open on only the receiver’s side (hiding
any contained object from the director, and being obvious for the receiver that the
director cannot see inside it).

Figure 5.1: An example of the perspective difference between the director and the
receiver.

The director asks the receiver to move some objects by (verbally) giving infor-
mation allowing to discriminate them. However, some descriptions of the director
will also match other objects —called competitors— that are only visible by the re-
ceiver. Hence, the receiver must think that the object matching the given director’s
utterance cannot be the one referred by the director as they are not aware of it, and
find the object matching the description in the director’s beliefs. This process must
then be maintained all along the interaction as the situation evolves. For example,
to designate the starred apple in Figure 5.1, the director may say “the small ap-
ple”, however in the receiver’s perspective, directly interpreting this sentence does
not result in the starred apple. A decisional process is required, called perspective
taking, to decide that the smallest apple in the receiver’s perspective cannot be the
one designated by the director as they cannot see it, so they are referring to the
second smallest (being the smallest in their perspective)

This task is used in psychology to study how perspective-taking is used
for communication understanding while performing a task with another agent
[Keysar 2000]. Results show that, even if the receiver considered or took a com-
petitor for the first trial, they are able to take the one designated by the director
during subsequent trials. This shows that even if participants understand language
in an egocentric way, they are able to do perspective-taking to successfully perform
the task [Keysar 2003].

Even if this task is well known by psychologists, to our knowledge, no robot has
ever performed it. A robot that does would illustrate its ability to maintain the

5.3. The Director Task 141

self-other distinction of beliefs but also to perform perspective taking on its human
partner. We propose a robotic architecture integrating HATP/EHDA, that is able
to handle both sides of the director task: both the director role giving instructions
to its human partner and the receiver role interpreting instructions and selecting the
right object. Besides, we propose some changes for both the director and receiver
roles to be interesting along with planning challenges some modifications of the task
can arise.

5.3.2 Setup

The setup we propose is a slight variation of the original director task used in
psychology. First, instead of moving objects between compartments, the high level
known goal is to remove a subset of the objects in the compartments and to place
them in a receiver accessible only area (on top of a table).

Then, objects are replaced with blocks having four special attributes: their
color, the color of their border, the shape drawn on them and the color of this
shape. The colors can either be blue or green, and the shapes either a triangle or a
circle. This allows for a maximum of ambiguity between the blocks. The material
used is presented in Figure 5.2.

Figure 5.2: The material used for the director task. It aims at being simple and
cheap to build to encourage the replication of the task.

Besides, to make the task interesting for both the director and receiver roles,
compartments are not only either fully opened or hiding content from the director,
they can also be hiding content from the receiver while being opened towards the
director. Thus, not only the receiver must take the perspective of the director
to understand the right block, but the director has also to take the perspective
of the receiver to make the smallest instruction possible to respect the maxim of

142 Chapter 5. Integrating Planning in an Architecture

quantity [Grice 1975]. In the example depicted in Figure 5.3, the minimal sentence
to designate the circled block is “the blue block”, but it requires both agents to
perform perspective taking. Indeed, to rule out the distractors (designated with an
arrow on the figure), it requires to deduce that they cannot have been referred by
the other as they are not visible (and to an other extent, not known) by them.

Figure 5.3: An example of both the director and receiver perspective in the director
task. Here, to designate the circled block the sentence “the blue block” is enough as
the distractors (designated with red arrows) can be ruled out through perspective
taking.

In addition, to increase the number of ambiguous situations, we prohibit the use
of geometrical relations during the communications (e.g. “the leftmost block”, “the
block above the green one”) to only allow the use of the block attributes. Likewise,
pointing at a block is forbidden.

Finally, all blocks and compartments are equipped with AR-tags (different on
each face1) allowing the robot to easily detect them and to make an accurate rep-
resentation of the environment (Figure 5.2).

5.3.3 The Robotic Architecture

The robotic architecture (Figure 5.4) is inspired by the one described by Lemaignan
et al. [Lemaignan 2017] and is composed of several elements.

First, the Knowledge Base chosen is managed by Ontologenius and is structured
as multiple ontologies. As we have shown before, ontologies are more and more com-
mon in robotics as they allow for rich and complete reasoning mechanisms and effi-
cient requests of symbolic facts. The software used is Ontologenius [Sarthou 2019].
An ontology is created for the robot (MR, which we use as the true state of the
environment) and another one is created for the human (MH

r) representing the
robot estimation of the human knowledge. As stated in the previous chapter, these
ontologies can be queried or updated through an efficient low-level API or higher-
level SparQL queries. The interfaces between the ontologies and our planner are

1Even if we assume that the humans cannot read and use the tags, we still stipulate to the
participant that they are not the same on both sides of the cubes and compartments.

5.3. The Director Task 143

Figure 5.4: The robotic architecture implemented to handle both perspectives of
the director task. The components circled with a dashed green line are presented
in this thesis.

144 Chapter 5. Integrating Planning in an Architecture

presented in Section 5.2. The ontology is initialized with static facts being (1)
the link between each AR-tag and their matching block and compartment, (2) the
attributes of each block, (3) the 3D models of each block and compartment.

To gather all the robot sensing data, create a geometric representation of the
environment, compute symbolic facts from it for both the robot and the human and
update the ontologies with them, a situation assessment component is added to the
architecture. This component is based on Underworlds [Lemaignan 2018] allowing
for modular and reusable reasoners. It first gathers the data from the perception
algorithm (AR-tags positions for the objects and motion capture for the human),
then creates a geometrical scene of the environment. Based on it, the component
is able to compute symbolic facts on the objects present in the scene (and whose
tags are detected): isIn when a block is inside a compartment, isVisibleBy when an
agent is seeing an object, isReachableBy when an agent can reach (pick) an object
and isOnTopOf when an object is on top of another. These symbolic facts are
then fed in real time to the robot ontology. This component also estimates the
geometrical scene viewed and known by the human, computes the symbolic facts
defined before on this estimated scene and feeds the human ontology.

Then, to be able to give and understand instructions, the REG component
presented in the previous chapter is also included. A grammar-based verbalization
component allows to transform the generated RE into natural language. Similarly,
a natural language request can be interpreted as a SparQL query and matched
against an ontology.

To orchestrate all the components, the supervision system called JAHRVIS
(Joint Action-based Human-aware supeRVISor) is dedicated to managing the inter-
action. It not only handles the robot actions but also estimates the human mental
state, monitors the human actions and manages the communication with them. It
manages five facets of the interaction: (1) interaction sessions, (2) communication,
(3) human, (4) task and (5) quality of interaction. It is responsible for task planning
requests and plans execution and monitoring.

Finally, the task planning component used in this architecture is HATP/EHDA,
presented in the previous chapter. Task planning is only required when the robot
is the director, since when the robot is receiver it only has to execute the director
instructions one at a time after a request. When the robot is the director, the
supervision system is given a list of blocks (via their ids) to remove from the shelves.
This list is then passed as the goal parameter of a task to decompose to the planner.

The task to decompose is called clear_blocks and is filled with a parame-
ter representing the goal and another one being the human id. The goal is sim-
ply an under specified world state, composed of triplets containing for example
(block_23, isIn, disposalArea). The robot task planning domain (MR) is
presented hereafter.

• The clear_blocks abstract task has only one (recursive) decomposition. The
decomposition returns () if the blocks specified in the goal matches the rela-
tions also specified in the goal. Otherwise, a REG request is performed for all

5.3. The Director Task 145

the misplaced blocks, and the tasks clear_one_block and clear_blocks are
returned, with the easiest block to refer to (i.e. lowest RE cost) as parameter
of the clear_one_block task.

• The clear_one_block task has also only one decomposition returning
the primitive task tell_human_to_clear_block and the abstract one
wait_for_human_to_clear_block.

• The wait_for_human_to_clear_block abstract task has only one decompo-
sition. It aims at recursively planning to wait until we planned the human
has removed and put the right block away. It recursively decomposes into ()
if the block passed as argument is in the right place; and returns wait and
wait_for_human_to_clear_block otherwise.

The robot primitive tasks are defined as follow:

• The tell_human_to_clear_block primitive task returns ⊥ if the block spec-
ified as parameter is not reachable by the human, or if it is not present in the
human beliefsMH

r . Else, it adds the abstract task clear_told_block to the
human agenda passing the specified block as parameter and does not update
any beliefs.

• The wait primitive task does not update any beliefs.

On the human tasks side, we modeled a cooperative human, non declining asked
tasks. Thus, the task model is as follows:

• The abstract task clear_told_block has only one decomposition, returning
the primitive tasks pick_block and place_block.

• The primitive task pick_block returns ⊥ if the block passed as parameter is
not reachable by the human in their beliefs; and updates the beliefs of all the
agents in the room with the human holding the block otherwise.

• The primitive task place_block returns ⊥ if the human is not carrying any-
thing; else it updates the beliefs of all the agents in the room with the block
being placed in the area specified as parameter, and the human not holding
anything.

In the domain described previously, we compute in the abstract task the least
costly block to refer to decompose the task. This greedy approach can be used
because we remove the block during the task. The referring cost of blocks thus
can only decrease at each iteration of the task. However, it would be completely
different if some blocks were to be added to the shelf along with others to remove.
There, our greedy approach would not work as a not costly action would make
future actions more costly leading to a sub-optimal plan. Another approach could
be to have the decomposition of clear_blocks to return all the orders of the block
removing instructions to explore.

146 Chapter 5. Integrating Planning in an Architecture

In the proposed version of the director task, only the cube order can be planned.
Thus, in the following subsection, we propose slight variations of the task increasing
the planning complexity and interest, along with some possible modeling directions
to overcome these challenges.

A video presenting the architecture used in a real interaction to both tackle the
director and the receiver perspective is available at https://www.youtube.com/
watch?v=jtSyZeqBkp0. When the robot is the director, thanks to the planning
scheme presented in this thesis, it is able to compute the minimal referring expres-
sion to designate the blocks while accounting for the human perspective. Moreover,
it gives the instructions in the order minimizing the complexity of referring expres-
sions at each step (Figure 5.5). Finally, the robot is also able to handle the receiver
role by taking the human perspective when it processes their instructions. More-
over, using the REG algorithm presented in Chapter 3, if the human instruction is
detected as being ambiguous (multiple entities matching the SparQL built from
the sentence they said), the robot is able to ask the right questions to find the right
entity (Figure 5.6). For each matching entity, a REG is performed with the rela-
tions found in the human utterance (and used in the SparQL query) are given as
context. This allows to find the missing relations disambiguating the entities. The
supervision then uses the REs returned to ask “Do you mean RE1 or RE2?”, and
keeps the previous context to add it to the SparQL query built with the human
answer.

5.3.4 Challenges for Planning

To spice up the planning challenge in the director task, we propose some extensions
to the presented task. First, by adding blocks with identical visual features to the
shelf, and asking to remove a precise one of them, we introduce situations where
verbal communication (and REG) is not enough to refer to a block. To solve this
problem, we could for example add a decomposition to clear_one_block. In this
decomposition, we could have the robot moving one distractor of the REG in a non
visible compartment to be able to refer to the intended block. The planner would
then have to balance between making the referring easier by moving a block before
giving the instruction and giving a long and complex instruction (when feasible).

With the same scenario, using the REG extension presented in the previous
chapter, allowing the RE to contain relations to past common actions, we could
introduce another way for the robot to refer to a block. The planner would need
to balance previous communication means with creating a unique past experience
with a block to easily refer to it (e.g. “the blue block that I just moved”).

Besides, we can add multiple distinct disposal areas for blocks. The director
would then have to instruct the receiver not only the block to pick but also which
area they have to place it in. Furthermore, we could also add a decomposition where
the robot asks to pick an under specified block, ensuring that all the matching ones
need to be removed, and plan for all the possible blocks picked by the human
matching this description. Depending on the block picked, it would be planned to

https://www.youtube.com/watch?v=jtSyZeqBkp0
https://www.youtube.com/watch?v=jtSyZeqBkp0

5.3. The Director Task 147

Figure 5.5: The director task handled by an autonomous PR2 robot in the director
role. The computed human perspective is displayed in the bottom left hand corner
of the picture. The robot said sentence is printed under each picture.

148 Chapter 5. Integrating Planning in an Architecture

Figure 5.6: The director task handled by an autonomous PR2 robot in the receiver
role. The robot is able to take the perspective of the human to understand his
instructions, and can ask pertinent questions if the human instruction is ambiguous.
Please note that some shapes on the blocks have been redrawn on the picture to
enhance the contrast and improve its readability.

5.4. Conclusion 149

ask to place the cube in its corresponding area. This may result in better efficiency
as it would lead to less complex referring expressions.

Finally, performing this task will necessarily bring errors, either from the human
(e.g. the wrong block may be picked) or the robot (e.g. a block may fail to be picked).
Even if some errors can be planned for (e.g. modeling all the blocks the human can
pick and planning accordingly) doing so for all the possible contingencies is not
possible. Therefore, a strong link with supervision must be envisioned as it will ask
for replanning. Replanning is not as simple as passing the current state and the
same goal and starting the process all over again, since some task decomposition
may have been executed partially and cannot be changed in the replanning process.

5.4 Conclusion

In this chapter, we have shown how the task planning scheme presented earlier can
be integrated into a robotic architecture. It can use larger Knowledge Bases to
initialize the robot and the human beliefs, interface with domain-specific planners
such as the REG approach presented in Chapter 3 and provide a service mechanism
of ROS for the supervision to make planning requests.

Finally, an easy to reproduce yet challenging task for HRI was presented, along
with a robotic architecture to handle this task. The planning scheme presented in
Chapter 4 was used when the robot is the director to plan for the sequence of actions
minimizing the communication complexity, and the REG component presented in
Chapter 3 was used for both the director and receiver role to either find referring
expressions for objects to be included in the instructions or to refine a human
instruction when it has been detected as ambiguous.

Conclusion

In this thesis, we presented several contributions focusing on endowing the robot
with the ability to plan explicitly for itself and for the human. Indeed, several
approaches to human-aware navigation planning (and motion planning in general)
account for human presence by including social costs influencing the trajectory, but
only plan a course of actions for the robot. While being successful when humans
are static or when evolving in large environments, these approaches are challenged
when the interaction becomes intricate, where the robot and the human must col-
laborate to solve a problem. In robotic task planning, where human robot intricate
interactions are easier to explore, some approaches do include planning for both
the human and the robot. However, these approaches seldom maintain different
beliefs for both agents during the planning process, whereas it is what a human
is expecting according to joint action theory. Moreover, these approaches consider
the human as a totally controllable agent, close to what is done in multi robot
planning. They do not account for communications needed to align beliefs or to
share the plan.

In Chapter 2, we showed why planning for both the human and the robot is
important for navigation planning in intricate interaction scenarios. Not only it
allows finding valid solutions where other approaches would have not, but, by an-
ticipating the possible human trajectory we can make the robot more efficient and
its behavior more satisfactory for the human. Indeed, by estimating the human
future positions and speed, we are able to make the robot trajectory less threat-
ening, more legible and to enhance the mutual manifestness of the robot. These
results were validated through a user study, involving a totally autonomous PR2
robot crossing a human in a narrow corridor. We also presented how this naviga-
tion scheme has been implemented on other robots, including an HRP2 humanoid
robot and a Pepper robot which has been deployed autonomously for several weeks
providing route descriptions to customers in a mall.

Alleviating from the ephemeral nature of human robot navigation interaction,
we presented a new way of planning for communication during task planning
in Chapter 3. We chose to make a hybrid planning approach where a domain-
independent HTN planner (HATP) delegates the resolution of feasibility and cost
of communication actions to a domain-specific communication planner. We focused
on communication actions needing to designate objects to the other agent. Thus,
we needed a domain-specific planner able to determine the content of such commu-
nications. This problem is called referring expression generation and, albeit studied
for a long time, we did not find any suitable existing work to be integrated into
a human robot task planning scheme. Indeed, to be used in task planning, such
a planner must be efficient and some specific constraints imposed by human robot
interaction have to be satisfied. We formalized the REG problem for HRI using
an ontology as a knowledge base and we proposed an efficient algorithm to solve

152 Conclusion

it. This algorithm has been shown to be the most efficient to our knowledge while
being designed for HRI scenarios. It then has been integrated into HATP, an HTN
planner able to maintain beliefs of multiple agents during task planning. Resolving
the content of communication actions at this stage is only doable if the planner
plans for both human and robot, it allows preventing to reach situations where the
execution is blocked because a communication action cannot be performed and also
improve the quality of plans.

However, HATP relies on exploring only one Hierarchical Task Network (HTN)
and allocate tasks to either the robot or the human depending on the task con-
straints to find an optimal plan. Representing interactive tasks this way leads to
execution where the human is considered as knowing the plan before it begins.
Indeed, several works use similar approaches and solve contingencies (e.g. beliefs
divergence, plan communication) during the plan execution.

In Chapter 4 we propose a new task planning scheme enriching current human-
aware task planners. The general idea is to not only keep distinct beliefs between
the robot and the human but also have two separate action models. Both models are
HTNs, but do not represent the same concepts. The robot HTN, as in classical HTN
planning, is designed to give expert knowledge to the planner on the different ways
for the robot to perform a task. The human HTN on the other hand, is closer to a
human task model as used in interactive systems engineering in human computer
interaction. It aims at representing how a human may achieve a task (i.e. emulating
parts of their planning process) and how they may react to a particular world state
or to a robot request. The presented planner uses both HTNs to elaborate valid
conditional plans then selects the optimal one. These conditional plans contain the
possible human actions deduced via their task model. We presented our approach in
scenarios involving intricate human robot interactions and showed how it is suitable
and results in interesting plans.

Finally, in Chapter 5, we presented how this new task planning scheme can
be integrated into a complete robotic architecture dedicated to HRI. Moreover, we
introduced a new task for HRI inspired by psychology experiments along with an
implemented robotic architecture including our planning scheme, allowing to tackle
some of the challenges of this task.

On the Human Agent Interaction Guidelines

We presented in Chapter 1 maxims coined by Bradshaw et al. [Bradshaw 2011] for
human-agent interaction. We propose here to sum up which maxims have guided
the work presented in this thesis and to what extent we were able to implement
them.

By completely exploring the search space with the proposed planning method of
Chapter 4, we can increase the progress appraisal of the robot. Indeed, by returning
the complete conditional plan to the supervision it can compute how much the task
is progressing, and communicate it to the human if needed. Besides, we proposed

Limitations and Future Work 153

a plan post-processing step where robot actions are added to guide human actions
away from potential errors and to the optimal plan.

Moreover, by explicitly representing the action effects in the beliefs of both
agents, we explicitly represent the observability of the robot. Moreover, as we
consider some effects (or even some actions) to be not observable, and thus, not
updating the human beliefs, the robot observability will impact the elaborated plan.

Then, we showed our approach can be used to balance plans where the robot
is proactive and ones where it let the human choose the tasks attributions. This
matches the agent knowing its limits maxim. Moreover, unlike HATP, the human
decisions are not set, the planner provides a robot course of action for multiple
possible human actions, thus adapting to the human choices. We also envision
using the HTNs exploration to guide the human choices or inform them about
potential outcomes.

Moreover, by representing robot unknown human beliefs, the robot is able to
plan to ask questions and predict possible human answers to them, making the
robot more directable. A strong link between the task planning process and the
supervision is required to explore further this maxim.

Similarly, a first step has been made towards the negotiation and deconfliction
of plans and beliefs alignment, increasing the robot coordination. Some possible
approaches were presented in Chapter 4 to increase it even more by interacting
with the human during the plan elaboration process, in addition to the human
planning process emulation. This also requires a stronger link with supervision,
currently being explored.

Besides, we allowed making the robot more selective as we showed in Chapter 4,
by allowing to plan belief alignment actions only when they are needed, and only
with the beliefs required by the human to perform better.

Finally, we showed in Chapter 2 that planning navigation for both the human
and the robot allows to make the robot deconflict the trajectories earlier increas-
ing the robot predictability. Moreover, we implemented a head behavior for the
navigation aiming at showing its future trajectory while acknowledging the human
presence.

Limitations and Future Work

We think there is plenty of potential for the task planning approach presented
in Chapter 4 and it must be refined and enriched. While it seems promising, as
it allows to represent and find plans for intricate interaction scenarios, has been
integrated with a domain-specific communication planner and used in a robotic
architecture, limitations can be identified. First, the turn-taking approach used
does not translate the duration of actions. Indeed, some actions will be longer than
others, and not accounting for it may lead to suboptimal plans and wrong prediction
of human actions. Then, by not pruning some part of the exploration graph during
the search, the approach is not efficient for large HTN domains. Efficiency can also

154 Conclusion

be gained by a better implementation in C++ rather than in Python. However,
pruning while searching would prevent applying plan-wide costs.

Bringing Planning and Supervision Closer

Some future work has already been identified to extend the approaches presented in
this thesis. The first one, already mentioned before, is to build a stronger link with
supervision. In common robotic architectures, the link between the supervision and
geometric and task planning comes down to planning request and plan response.
However, this link may not be enough for long term interaction or intricate and
dynamic situations usually found in HRI.

For HATEB, the navigation scheme presented in Chapter 2, the solution pro-
posed assumes the human will respect the model provided, and adjust the robot
trajectory accordingly. For example, if the robot is following the human in a narrow
corridor, if the human goes slower than what is set in the navigation planner pa-
rameters, the robot will never overtake them. Indeed, the planned trajectory for the
human is for them to accelerate making the robot following the human permanently.
The human model provided to the planner (MH

r) must be as accurate as possible.
Providing a perfect model for each human encountered is obviously impossible, that
is why the supervision must not only provide an initial model to the planner with
the planning request but must also update this human model during the execution,
especially if contingencies are detected to happen while following the plan. Here,
for example, a supervision system might decrease the human speed parameter if
they are repeatedly detected to move slower than expected.

For the REG algorithm presented in Chapter 3 this human model update is also
crucial to have a good estimate of the communication capabilities of the human and
the associated difficulties to understand. As presented, some relations to describe an
object are more difficult to understand than others. In our approach, we represented
it by a cost associated with each property. This difficulty depends on the person
the robot is interacting with. For example, using color to refer to an object is
less efficient or even impossible when speaking to a color-blind person. Our costs
are indeed defined per human we are interacting with. Besides, the difficulty to
understand is also context-dependent. For instance, colors relation can be hard or
even impossible to perceive if the scene is lit with colored lights. Again, to cope with
these issues, the supervision must update on the human model used for planning
during the execution. Moreover, it can request and iterate with the planner during
the planning process to allow for more or less risky communications, leading to
more or less efficient plans.

The same is true for the planning approach depicted in Chapter 4. The human
action model along with associated costs must be updated on a per-human basis
all along the interaction. By refining the human model the best prediction would
be made for them, leading to more efficient plans. Besides, some tasks or actions
can be enabled or disabled depending on the human and their level of expertise in
the task and for robot collaboration. Heuristics can also be learned as to which

Limitations and Future Work 155

decomposition a human may use for a task in a specific context. Highly probable
decompositions can then be explored first, resulting in a more efficient planning
process.

To reduce the branching factor in human HTN exploration, we can also try to
negotiate the plan while elaborating it. For example, if too many human actions
are returned during the search, the planning process can request the supervision to
propose the different task alternatives to the human and ask which one they would
perform in the specific state the planner is in. Only the answered alternatives can
then be explored by the planner. Not only it would help to reduce the branching
factor, but the robot may appear more predictable and the plan more explainable as
some actions would have been chosen by the human. Thanks to the HTN structure,
communication about the tasks made easier. This negotiation may need multiple
iterations as the alternatives proposed by the human may lead to unfeasible plans.
However, if the choice is proposed for a point too far in the future, the human may
have a hard time projecting themselves in that situation.

In addition to considering the possible human actions in the conditional plan,
the planner could also expose the effects of the actions and more precisely their
observable effects. By doing so, the supervision would know what to expect from the
human and what to monitor to determine which action the human did, influencing
the branch of the plan executed. Going further, the supervision may use the entire
human action model to be able to also predict human behavior, in case of plan
repair for example.

Theory of Mind Level Up

To make a better prediction of the human decisions and actions, some advanced
scenarios require the robot to represent the model the human has made of it (MR

h).
Indeed, as shown by Chakraborti et al. [Chakraborti 2017], using it can lead to
more legible and predictable plans. As described in Chapter 1, joint action theory
informs about the capabilities a human is using when interacting with another
agent. Especially, humans can predict other’s actions and integrate them into their
own plan. Thus, the model the human is making about the robot will influence
their decision process and how they will perform a task. This is why it is important
to build this model. One approach to do so is to analyze the actions performed by
the robot by taking the perspective of the human and emulate an inferring process
to build a robot model.

For example, in the navigation scheme from Chapter 2, integrating this model
would lead to a better prediction of human trajectory. The robot trajectory costs
would also be more accurate, as more constraints could be added. A surprise cost
for instance can be estimated by comparing the planned robot trajectory (MR),
with the one expected by the human (MR

h). This could, in turn, be used to better
respect and evaluate the respect of the maxim of predictability and dependability.

Likewise, in the planning approach presented in Chapter 4, using the estimation
of the robot model that the human has would result in more accurate predictions

156 Conclusion

of human actions. Indeed, we know that the human will integrate actions of other
agents in their own plan, as shown by joint action theory. Until now, we assumed
that it would not be the case as we envisioned interaction with novice users who have
never interacted with a robot before, or not enough to be confident to integrate the
robot action in their planning process. But, as they would gain experience, trust
and habits, human partners will expect the robot to perform in a certain way.
Plans quality would increase by integrating these expectations in the emulation
of the human planning process. Moreover, we could improve the directability and
observability of the robot by adding possible actions explicitly updating the human’s
robot model.

Appendix A

Navigation User Study
Questionnaires

158 Appendix A. Navigation User Study Questionnaires

A.1 Original PeRDITA Questionnaire Without Verbal
Dimension (French)

	
Numéro	de	participant	:			
	
	
Afin	d’étudier	votre	évaluation	personnelle	du	robot,	vous	allez	répondre	à	un	questionnaire.	
Vous	allez	devoir	vous	 situer	entre	deux	adjectifs	en	plaçant	une	croix	dans	 la	 case	qui	 se	
rapporte	le	plus	à	votre	impression.		

- Lisez	attentivement	 les	énoncés	en	gras	avant	de	 répondre	aux	échelles.	 Si	besoin,	
n’hésitez	pas	à	vous	y	reporter.	

- Plus	vous	vous	rapprochez	d’un	adjectif,	plus	il	correspond	à	votre	impression.	
- Veillez	à	ne	mettre	qu’une	seule	croix	par	échelle.	
- Ne	vous	reportez	pas	à	une	réponse	donnée	précédemment.	
- Veuillez	répondre	à	toutes	les	échelles.	
- Il	n’y	a	pas	de	bonne	ou	de	mauvaise	réponse.	Répondez	le	plus	sincèrement	possible.	

	
	

Selon	vous,	le	robot	est	plutôt	:	
	

	
Non	réactif	 	 	 	 	 	 	 	 Réactif	

	
	

Performant	 	 	 	 	 	 	 	 Non	performant	
	
	

Inintelligent	 	 	 	 	 	 	 	 Intelligent	
	
	

Incompétent	 	 	 	 	 	 	 	 Compétent	
	

	
	
	

Selon	vous,	l’interaction	avec	le	robot	a	été	:	
	
	

Négative	 	 	 	 	 	 	 	 Positive	
	
	

Simple	 	 	 	 	 	 	 	 Compliquée	
	
	

Pas	pratique	 	 	 	 	 	 	 	 Pratique	
	
	

Claire	 	 	 	 	 	 	 	 Ambiguë	
	
	

Déplaisante	 	 	 	 	 	 	 	 Plaisante	
	

A.1. PeRDITA (French) 159

	
	
	

Selon	vous,	la	collaboration	avec	le	robot	a	été	:	
	
	
Contraignante	 	 	 	 	 	 	 	 Adaptative	

	
	

Utile	 	 	 	 	 	 	 	 Inutile	
	
	

Acceptable	 	 	 	 	 	 	 	 Perturbante	
	
	

Insatisfaisante	 	 	 	 	 	 	 	 Satisfaisante	
	
	

Inefficace	 	 	 	 	 	 	 	 Efficace	
	
	
	
	

Selon	vous,	le	robot	a	choisi	d’agir	de	manière	:	
	
	

Adéquate	 	 	 	 	 	 	 	 Inadéquate	
	
	

Gênante	 	 	 	 	 	 	 	 Accommodante	
	
	

Imprévisible	 	 	 	 	 	 	 	 Prévisible	
	
	

Sécurisante	 	 	 	 	 	 	 	 Insécurisante	
	
	

	
	
	
	

160 Appendix A. Navigation User Study Questionnaires

A.2 Unofficial Translation of the PeRDITA Question-
naire

In order to study your personal evaluation of the robot, you are going to fill this
questionnaire. You need to place yourself between two adjectives by checking the box that
matches the most to your impression.

- Carefully read the bold statements before checking the boxes. If needed, do not
hesitate to read them again.

- The closest you place yourself to an adjective, the more it matches your
impression.

- Only check one box per scale.
- Do not refer to a previous answer.
- Please fill all scales.

- There are no wrong or right answers. Answer as genuinely as possible.

From your point of view, the robot is rather:

Unresponsive Responsive

Efficient Not efficient

Not intelligent Intelligent

Incompetent Competent

From your point of view, the interaction with the robot has been:

Negative Positive

Simple Complicated

Not convenient Convenient

Clear Ambiguous

Unpleasant Pleasant

A.2. PeRDITA (Translated) 161

From your point of view, the collaboration with the robot has been:

Restrictive Adaptive

Useful Useless

Acceptable Confusing

Not satisfying Satisfying

Not effective Effective

From your point of view, the robot chose to act in a way:

Appropriate Inappropriate

Inflexible Compliant

Not expectable Expectable

Reassuring Unsafe

162 Appendix A. Navigation User Study Questionnaires

A.3 Situation Assessment Questionnaire (French)

Consigne : Pour chacune des affirmations suivantes, indiquez à quel point vous êtes en accord ou en
désaccord en entourant la bonne réponse.

J'étais en capacité d'anticiper quel déplacement le robot allait effectuer. (entourez la bonne réponse)

1 2 3 4 5 6

Pas du tout
d'accord

Pas d'accord Plutôt pas
d'accord

Plutôt
d'accord

D'accord Tout à fait
d'accord

J'ai remarqué les signaux envoyés par le robot lors de son déplacement. (entourez la bonne réponse)

1 2 3 4 5 6

Pas du tout
d'accord

Pas d'accord Plutôt pas
d'accord

Plutôt
d'accord

D'accord Tout à fait
d'accord

Les indications du robot concernant son déplacement avaient du sens pour moi. (entourez la bonne
réponse)

1 2 3 4 5 6

Pas du tout
d'accord

Pas d'accord Plutôt pas
d'accord

Plutôt
d'accord

D'accord Tout à fait
d'accord

J'ai trouvé les déplacements du robot prévisibles. (entourez la bonne réponse)

1 2 3 4 5 6

Pas du tout
d'accord

Pas d'accord Plutôt pas
d'accord

Plutôt
d'accord

D'accord Tout à fait
d'accord

A.3. Situation Assessment Questionnaire (French) 163

J'ai compris le comportement de déplacement du robot. (entourez la bonne réponse)

1 2 3 4 5 6

Pas du tout
d'accord

Pas d'accord Plutôt pas
d'accord

Plutôt
d'accord

D'accord Tout à fait
d'accord

J'ai perçu les élements pertinents indiquant les déplacements du robot. (entourez la bonne réponse)

1 2 3 4 5 6

Pas du tout
d'accord

Pas d'accord Plutôt pas
d'accord

Plutôt
d'accord

D'accord Tout à fait
d'accord

164 Appendix A. Navigation User Study Questionnaires

A.4 Translation of Situation Assessment Questionnaire
Items

• J’ai perçu les éléments pertinents indiquant les déplacements du robot.

I perceived the relevant elements indicating the robot motion.

• J’ai remarqué les signaux envoyés par le robot lors de son déplacement.

I noticed the signals sent by the robot during its motion.

• J’ai compris le comportement de déplacement du robot.

I understood the robot motion behavior.

• Les indications du robot concernant son déplacement avaient du sens pour
moi.

The robot signs about its motion made sense to me.

• J’étais en capacité d’anticiper quel déplacement le robot allait effectuer.

I was able to anticipate which motion the robot was going to do.

• J’ai trouvé les déplacements du robot prévisibles.

It seemed to me that the robot motions were predicatables.

A.5 AttrakDiff Questionnaire (French)

This questionnaire is the official translation of the AttrakDiff questionnaire
[Lallemand 2015].

A.5. AttrakDiff Questionnaire (French) 165

Ce questionnaire se présente sous forme de paires de mots pour vous assister dans l'évaluation du

système. Chaque paire de mots représente des contrastes. Les échelons entre les deux extrémités

vous permettent de décrire l'intensité de la qualité choisie. Ne pensez pas aux paires de mots et

essayez simplement de donner une réponse spontanée. Vous pourrez avoir l'impression que certains

termes ne décrivent pas correctement le système. Dans ce cas, assurez-vous de donner tout de même

une réponse. Gardez à l'esprit qu'il n'y a pas de bonne ou de mauvaise réponse.

Consigne: Notez le ROBOT sur les dimensions suivantes en cochant les cases qui correspondent à

vos choix.

Appendix B

HATP/EHDA Domains for the
Coffee Bringer Examples

The Human Aware Task Planner with Emulation of Human Decisions and Actions
(HATP/EHDA) is presented in Chapter 4 along with illustrative examples allowing
to present its features. We propose to report here the interesting parts of the
domains in Python, as they were used for running the examples.

B.1 Plan for Robot Unknown Human Knowledge

In this example, the robot has been asked by a human to bring her a coffee. However,
multiple mugs are on the table in front of the robot and the human, and the robot
does not know which one belongs to the human.
import hatpehda
from copy import deepcopy
from hatpehda import gui
from hatpehda.reg import REGHandler

regHandler = None

Helpers

def same_last_tasks(plan, n, task=None):
"""
Given a partial ’plan’, returns True if the ’n’ last tasks of the

partial plan are the same (and optionally equal to ’task’)
"""
if len(plan) < n:

return False
last_tasks = [plan[-i].name for i in range(1, n + 1)]
if task is not None and last_tasks[0] != task:

return False
return last_tasks.count(last_tasks[0]) == len(last_tasks)

Primitive tasks

def robot_pick_mug(agents, self_state, self_name, mug):
"""
Checks if the ’mug’ is reachable by the agent (robot) and if the agent

does not carry anything.

168 Appendix B. HATP/EHDA Example Domains

Then updates the beliefs of all the agents in the same room as the
robot as for the robot having picked the ’mug’

"""
if self_name in self_state.isReachableBy[mug] and self_state.isHolding[

self_name] == []:
robot_room = self_state.isInRoom[self_name][0]
for agent_name in self_state.agentsInRoom[robot_room]:

a = agents[agent_name]
a.state.isReachableBy[mug] = []
a.state.isHolding[self_name] = [mug]
a.state.isHeldBy[mug] = [self_name]

return agents
return False

def robot_ask_mug_to_take(agents, self_state, self_name, human):
"""
Asks the ’human’ which one is their mug by adding to their agenda that

they will answer the question.
Note that we could have checked if the communication was feasible
"""
hatpehda.add_tasks(human, [("human_answer_mug_a", self_name)], agents)
return agents

def robot_drop_mug(agents, self_state, self_name):
"""
Checks if the robot is holding something.
If so, update all the agents in the room beliefs with the fact that the

robot as dropped what they thought it was holding.
"""
if self_state.isHolding[self_name] != []:

robot_room = self_state.isInRoom[self_name][0]
for agent_name in self_state.agentsInRoom[robot_room]:

a = agents[agent_name]
mug = a.state.isHolding[self_name]
if mug != []:

mug, = mug
a.state.isReachableBy[mug] = [self_name]
a.state.isHolding[self_name] = []
a.state.isHeldBy[mug] = []

return agents
return False

def robot_go_to_coffee_machine(agents, self_state, self_name):
"""
This action has no effect nor preconditions. It only represents the

robot leaving the room (for the example)
"""
return agents

B.1. Plan for Robot Unknown Human Knowledge 169

def human_verbally_answer_right_mug(agents, self_state, self_name, robot,
mug):
"""

"""
We make a REG request to check if we estimate that the human will be

able to refer to their mug
ctx = [("?0", "isAbove", "table_1")]
symbols = {"?0": mug}
This function copy the ontology of ’self_name’ (human), update it

with beliefs from ’self_state’ and runs
a REG request with ’ctx’ and ’symbols’ as context with the target

entity ’mug’
reg = regHandler.get_re(self_name, self_state, ctx, symbols, mug)
if not reg.success:

return False

human_room = self_state.isInRoom[self_name][0]
for agent_name in self_state.agentsInRoom[human_room]:

a = agents[agent_name]
a.state.isOwnedBy[mug] = self_name

return agents

def human_complain_mug(agents, self_state, self_name, robot):
"""
This primitive task models the human complaining about the mug that the

robot is ’holding’ not being theirs.
We update all the agents in the room beliefs, with the mug held by the

’robot’ not being the one ’self_name’ (human)
"""
human_room = self_state.isInRoom[self_name][0]
for agent_name in self_state.agentsInRoom[human_room]:

a = agents[agent_name]
mug = a.state.isHolding[robot]
if mug is not None and mug != []:

mug, = mug
a.state.isNotOwnedBy[mug] = self_name

return agents

As we don’t know the agents name in advance, we store the operators here,
until a plan request

ctrl_operators = [robot_pick_mug, robot_drop_mug, robot_ask_mug_to_take,
robot_go_to_coffee_machine]

unctrl_operators = [human_verbally_answer_right_mug, human_complain_mug]

Abstract tasks decompositions

170 Appendix B. HATP/EHDA Example Domains

def robot_ask_take_mug(agents, self_state, self_name, human):
if same_last_tasks(agents[human].plan, 3, "WAIT"):

return False
for mug, h in self_state.isOwnedBy.items():

if h == human:
return [("robot_pick_mug", mug)]

for mug in self_state.individuals["Mug"]:
if mug not in self_state.isNotOwnedBy or human not in self_state.

isNotOwnedBy[mug]:
return [("robot_ask_mug_to_take", human), ("robot_get_right_mug"

, human)]
return False

This decorator informs the planner that this decomposition return several
disjunctive sequences of tasks

(typically for multiple possible parameter instantiation
@hatpehda.multi_decomposition
def robot_take_one_random_mug(agents, self_state, self_name, human):

if same_last_tasks(agents[human].plan, 3, "WAIT"):
return False

for mug, h in self_state.isOwnedBy.items():
if h == human:

return False
task_list = []
for mug in self_state.individuals["Mug"]:

if mug not in self_state.isNotOwnedBy or human not in self_state.
isNotOwnedBy[mug]:
task_list.append([("robot_pick_mug", mug)])

if task_list == []:
return False

return task_list

def human_agree_mug_taken(agents, self_state, self_name, robot, mug):
return []

def human_disagree_mug_taken(agents, self_state, self_name, robot, mug):
return [("human_complain_mug", robot)]

@hatpehda.multi_decomposition
def human_answer_mug(agents, self_state, self_name, robot):

for mug, h in self_state.isOwnedBy.items():
if h == self_name:

return [[("human_verbally_answer_right_mug", robot, mug)]]
task_list = []
for mug in self_state.individuals["Mug"]:

if mug not in self_state.isNotOwnedBy or self_name not in self_state
.isNotOwnedBy[mug]:
task_list.append([("human_verbally_answer_right_mug", robot, mug

B.1. Plan for Robot Unknown Human Knowledge 171

)])
if task_list == []:

return False
return task_list

We don’t know the agents name beforehand so we store them here, until we
can add the proper agents

Syntax: (’abstract_task_name’, decompo1, decompo2, ...)
ctrl_methods = [("robot_get_right_mug", robot_take_one_random_mug,

robot_ask_take_mug)]
unctrl_methods = [("human_answer_mug_a", human_answer_mug), ("

human_check_mug_taken", human_agree_mug_taken, human_disagree_mug_taken
)]

Triggers
def human_check_mug(agents, self_state, self_name):

if agents["robot"].plan[-1].name == "robot_pick_mug":
mug = self_state.isHolding["robot"][0]
if mug in self_state.isNotOwnedBy and self_state.isNotOwnedBy[mug]

== self_name:
return False

for action in agents[self_name].plan:
if action.name == "human_verbally_answer_right_mug" and action.

parameters[1] == mug:
return False

return [("human_check_mug_taken", "robot", mug)]
return False

def robot_check_wrong_mug(agents, self_state, self_name):
if self_state.isHolding[self_name] is not None and self_state.isHolding

[self_name] != []:
heldMug = self_state.isHolding[self_name][0]
if heldMug in self_state.isNotOwnedBy and "human" == self_state.

isNotOwnedBy[heldMug]:
return [("robot_drop_mug",), ("robot_get_right_mug", "human")]

return False

if __name__ == "__main__":
regHandler = REGHandler()

n_mug = 2

state = hatpehda.State("robot_init")
state.types = {"Agent": ["isHolding"], "Mug": ["isHeldBy", "

isReachableBy"]}
state.individuals = {’Mug’: ["mug_{}".format(i) for i in range(n_mug)]}

172 Appendix B. HATP/EHDA Example Domains

state.isHeldBy = {m: [] for m in state.individuals["Mug"]}
state.isHolding = {"human": [], "robot": []}
state.isOwnedBy = {}
state.isNotOwnedBy = {}
state.isReachableBy = {m: ["human", "robot"] for m in state.individuals

["Mug"]}
state.agentsInRoom = {"office": ["human", "robot"]}
state.isInRoom = {"human": ["office"], "robot": ["office"]}

hatpehda.declare_operators("robot", *ctrl_operators)
for me in ctrl_methods:

hatpehda.declare_methods("robot", *me)
hatpehda.declare_triggers("robot", *ctrl_triggers)
hatpehda.declare_operators("human", *unctrl_operators)
for me in unctrl_methods:

hatpehda.declare_methods("human", *me)
hatpehda.declare_triggers("human", *unctrl_triggers)

hatpehda.set_state("robot", state)
hatpehda.add_tasks("robot", [("robot_get_right_mug", "human"), ("

robot_go_to_coffee_machine",)]) # Agenda initialization

human_state = deepcopy(state) # No beliefs divergence (detected) in
this example

human_state.__name__ = "human_init"
hatpehda.set_state("human", human_state)

sols = []
fails = []
hatpehda.seek_plan_robot(hatpehda.agents, "robot", sols, "human", fails

)

cost, cplan = select_plan(sols)
gui.show_plan(cplan, "robot", "human")

B.2 Balance Difficult Communications, Decomposition
Cost and Task Attribution

In this example, the robot has to prepare coffee. It detects a human nearby, who
does not appear to be performing a task. To prepare coffee, coffee needs to be
retrieved from one of the two cupboards (one is closer than the other) and put
in the machine; and water must be poured in the machine. We want the robot
to balance between doing all on its own or asking the human for help. Moreover,
we estimate that the human thinks there are some coffee in the nearest cupboard,
while the robot knows there is not. Thus, we also want the robot to balance between

B.2. Balancing Decompositions Costs 173

aligning these beliefs or letting the human potentially make the mistake.

import hatpehda
from copy import deepcopy
from hatpehda import gui

Helpers

def agent_plan_contains(plan, task_name):
for p in plan:

if p.name == task_name:
return True

return False

Primitive tasks

def robot_get_water(agents, self_state, self_name):
if self_state.isHolding[self_name] is not None and self_state.isHolding

[self_name] != []:
return False

for ag in agents.values():
ag.state.isHolding[self_name] = ["water"]

return agents

def robot_pour_water_in_machine(agents, self_state, self_name):
if self_state.isHolding[self_name] is None or self_state.isHolding[

self_name] == []:
return False

for ag in agents.values():
ag.state.contains["coffee_machine"].append(ag.state.isHolding[

self_name][0])
ag.state.isHolding[self_name] = []

return agents

def robot_pick_coffee(agents, self_state, self_name, closet):
if self_state.isHolding[self_name] is not None and self_state.isHolding

[self_name] != []:
return False

if self_state.contains[closet] is None or self_state.contains[closet]
== []:
return False

for ag in agents.values():
ag.state.isHolding[self_name] = ["coffee"]

return agents

def robot_put_coffee_in_machine(agents, self_state, self_name):
if self_state.isHolding[self_name] is None or self_state.isHolding[

self_name] == []:
return False

for ag in agents.values():

174 Appendix B. HATP/EHDA Example Domains

ag.state.contains["coffee_machine"].append(ag.state.isHolding[
self_name][0])

ag.state.isHolding[self_name] = []
return agents

def robot_ask_human_for_help(agents, self_state, self_name, human):
hatpehda.add_tasks(human, [("human_help_make_coffee", self_name)],

agents)
return agents

def robot_serve_coffee(agents, _, __):
return agents

def robot_update_human_inventory(agents, self_state, self_name, human,
closet):
agents[human].state.contains[closet] = self_state.contains[closet]
return agents

def human_get_water(agents, self_state, self_name):
if self_state.isHolding[self_name] is not None and self_state.isHolding

[self_name] != []:
return False

for ag in agents.values():
ag.state.isHolding[self_name] = ["water"]

return agents

def human_pour_water_in_machine(agents, self_state, self_name):
if self_state.isHolding[self_name] is None or self_state.isHolding[

self_name] == []:
return False

for ag in agents.values():
ag.state.contains["coffee_machine"].append(ag.state.isHolding[

self_name][0])
ag.state.isHolding[self_name] = []

return agents

def human_try_pick_coffee(agents, self_state, self_name, closet):
if self_state.isHolding[self_name] is not None and self_state.isHolding

[self_name] != []:
return False

if agents["robot"].state.contains[closet] is None or agents["robot"].
state.contains[closet] == []:
self_state.contains[closet] = agents["robot"].state.contains[closet]
return agents

for ag in agents.values():
ag.state.isHolding[self_name] = ["coffee"]

return agents

def human_put_coffee_in_machine(agents, self_state, self_name):

B.2. Balancing Decompositions Costs 175

if self_state.isHolding[self_name] is None or self_state.isHolding[
self_name] == []:
return False

for ag in agents.values():
ag.state.contains["coffee_machine"].append(ag.state.isHolding[

self_name][0])
ag.state.isHolding[self_name] = []

return agents

As we don’t know the agents name in advance, we store the operators here,
until a ros plan call

ctrl_operators = [robot_get_water, robot_pour_water_in_machine,
robot_pick_coffee, robot_put_coffee_in_machine,

robot_update_human_inventory, robot_ask_human_for_help,
robot_serve_coffee]

unctrl_operators = [human_get_water, human_pour_water_in_machine,
human_try_pick_coffee, human_put_coffee_in_machine]

Abstract Tasks

@hatpehda.multi_decomposition
def robot_make_coffee_alone(agents, self_state, self_name):

return [[("robot_get_water",), (’robot_pour_water_in_machine’,), ("
robot_get_coffee",), ("robot_put_coffee_in_machine",)],

[("robot_get_coffee",), ("robot_put_coffee_in_machine",), ("
robot_get_water",), (’robot_pour_water_in_machine’,)]]

def robot_collaborate_make_coffee_no_comm(agents, self_state, self_name):
return [("robot_ask_human_for_help", "human"), ("robot_help_make_coffee

", "human")]

@hatpehda.multi_decomposition
def robot_collaborate_make_coffee_with_belief_update(agents, self_state,

self_name):
tasks = []
for cupboard in self_state.individuals["Cupboard"]:

if agents[’human’].state.contains[cupboard] != self_state.contains[
cupboard]:
tasks.append([("robot_update_human_inventory", "human", cupboard

), ("robot_ask_human_for_help", "human"), ("
robot_help_make_coffee", "human")])

if tasks == []:
return False # Another decomposition handles it

return tasks

@hatpehda.multi_decomposition
def robot_help_make_coffee(agents, self_state, self_name, human):

if "water" in self_state.isHolding[human] and "coffee" not in

176 Appendix B. HATP/EHDA Example Domains

self_state.contains["coffee_machine"]:
return [[("robot_get_coffee",), ("robot_put_coffee_in_machine",)]]

if agent_plan_contains(agents[human].plan, "human_try_pick_coffee") and
"water" not in self_state.contains["coffee_machine"]:

return [[("robot_get_water",), ("robot_pour_water_in_machine",)]]
tasks = []
if "coffee" not in self_state.contains["coffee_machine"]:

tasks.append([("robot_get_coffee",), ("robot_put_coffee_in_machine"
,), ("robot_help_make_coffee", human)])

if "water" not in self_state.contains["coffee_machine"]:
tasks.append([("robot_get_water",), ("robot_pour_water_in_machine",)

, ("robot_help_make_coffee", human)])
return tasks

def robot_get_coffee(agents, self_state, self_name):
if "coffee" in self_state.isHolding[self_name]:

return []
min_cupboard = None
min_dist = 999999.0
for cupboard in self_state.individuals["Cupboard"]:

if "coffee" in self_state.contains[cupboard] and self_state.
distances[cupboard][0] < min_dist:
min_dist = self_state.distances[cupboard][0]
min_cupboard = cupboard

if min_cupboard is None:
return False

return [("robot_pick_coffee", min_cupboard), ("robot_get_coffee",)]

@hatpehda.multi_decomposition
def human_help_make_coffee(agents, self_state, self_name, robot):

if "water" in self_state.isHolding[robot] and "coffee" not in
self_state.contains["coffee_machine"]:
return [[("human_get_coffee",), ("human_put_coffee_in_machine",)]]

if "coffee" in self_state.isHolding[robot] and "water" not in
self_state.contains["coffee_machine"]:
return [[("human_get_water",), ("human_pour_water_in_machine",)]]

tasks = []
if "coffee" not in self_state.contains["coffee_machine"]:

tasks.append([("human_get_coffee",), ("human_put_coffee_in_machine"
,), ("human_help_make_coffee", robot)])

if "water" not in self_state.contains["coffee_machine"]:
tasks.append([("human_get_water",), ("human_pour_water_in_machine",)

, ("human_help_make_coffee", robot)])
return tasks

def human_get_coffee(agents, self_state, self_name):
if "coffee" in self_state.isHolding[self_name]:

return []

B.2. Balancing Decompositions Costs 177

min_cupboard = None
min_dist = 999999.0
for cupboard in self_state.individuals["Cupboard"]:

if "coffee" in self_state.contains[cupboard] and self_state.
distances[cupboard][0] < min_dist:
min_dist = self_state.distances[cupboard][0]
min_cupboard = cupboard

if min_cupboard is None:
return False

return [("human_try_pick_coffee", min_cupboard), ("human_get_coffee",)]

We don’t know the agents name in advance so we store them here, until we
can add the proper agents

ctrl_methods = [("robot_make_coffee", robot_make_coffee_alone,
robot_collaborate_make_coffee_no_comm,
robot_collaborate_make_coffee_with_belief_update),

("robot_help_make_coffee", robot_help_make_coffee),
("robot_get_coffee", robot_get_coffee)]

unctrl_methods = [("human_help_make_coffee", human_help_make_coffee), ("
human_get_coffee", human_get_coffee)]

if __name__ == "__main__":
state = hatpehda.State("robot_init")
state.types = {"Agent": ["isHolding"]}
state.individuals = { "Cupboard": ["kitchen_cupboard", "pantry_cupboard

"]}
state.isHolding = {"human": [], "robot": []}
state.contains = {"coffee_machine": [], "kitchen_cupboard": [], "

pantry_cupboard": ["coffee"]}
state.distances = {"kitchen_cupboard": [2.0], "pantry_cupboard": [4.0]}

hatpehda.declare_operators("robot", *ctrl_operators)
for me in ctrl_methods:

hatpehda.declare_methods("robot", *me)
hatpehda.declare_operators("human", *unctrl_operators)
for me in unctrl_methods:

hatpehda.declare_methods("human", *me)
hatpehda.set_state("robot", state)
hatpehda.add_tasks("robot", [("robot_make_coffee",), ("

robot_serve_coffee",)]) # Agenda initialization

human_state = deepcopy(state)
human_state.__name__ = "human_init"
human_state.contains = {"coffee_machine": [], "kitchen_cupboard": ["

coffee"], "pantry_cupboard": ["coffee"]}
Belief divergence: while the robot knows that kitchen_cupboard does

not contain anything, the human thinks it is

178 Appendix B. HATP/EHDA Example Domains

containing coffee
hatpehda.set_state("human", human_state)

sols = []
fails = []
hatpehda.seek_plan_robot(hatpehda.agents, "robot", sols, "human", fails

)

cost, cplan = select_policies(sols)
gui.show_plan(cplan, "robot", "human", with_abstract=True)

Appendix C

Résumé en Français

Nous fournissons ici un résumé en langue française des travaux présentés dans ce
manuscrit de thèse.

Introduction

Les outils utilisés par les humains, autrefois simples, ont rapidement gagné en com-
plexité. Ces outils aujourd’hui devenus robots sont capables d’agir de manière au-
tonome et nécessitent de moins en moins de supervision humaine. Dans le même
temps, les humains sont devenus de plus en plus dépendants de ces machines à la
fois pour la vie quotidienne et pour des tâches plus spécifiques. Cependant, dans
l’industrie, les robots et les humains ont très souvent leurs espaces de travail sépa-
rés, lorsque ce n’est pas le cas, les machines voient leurs capacités limitées et les
humains requièrent une formation poussée pour les utiliser.

Dans cette thèse, nous explorons des méthodes pour rapprocher les humains et
les robots afin de leur faire effectuer des tâches collaboratives au sein d’environne-
ments partagés. Pour ce faire, nous soutenons que les robots doivent être capables de
prendre des décisions non seulement sur leurs propres connaissances et perception
de l’environnement, mais aussi sur leurs estimations des croyances de leur parte-
naire humain. De plus, le robot doit pouvoir planifier en prenant en compte que
l’agent humain va aussi planifier, agir et réagir aux actions du robot.

Résumé de la Thèse

Nous nous intéressons aux moyens de planifier à la fois pour le robot, mais aussi
pour son partenaire humain afin de permettre d’améliorer l’interaction lors de tâches
collaboratives.

Chapitre 1 : Contexte et défis de l’interaction humain robot Dans le
Chapitre 1 nous présentons le contexte de cette thèse en donnant une définition
de la planification de tâches et de navigation, quels sont les défis de l’interaction
humain robot et comment peut-on modéliser les actions de l’humain et élaborer des
plans partagés.

Nous définissons tout d’abord les problèmes de planification de tâches et de na-
vigation en robotique. La planification de tâche consiste à construire une séquence
avec des actions données, permettant au robot (à un agent) d’atteindre un but

180 Appendix C. Résumé en Français

donné. La navigation, quant à elle, a pour but de générer (et de suivre) une tra-
jectoire menant le robot (l’agent) d’un point A à un point B tout en évitant les
obstacles qu’il rencontrera éventuellement sur son chemin.

Nous déclinons ensuite ces problèmes au contexte particulier de l’interaction hu-
main robot en nous concentrant sur les concepts d’utilisabilité (efficacité, efficience
et satisfaction dans la réalisation d’une tâche) et d’automatisation. De plus, nous
présentons une liste de fonctionnalités requises par un agent autonome (e.g. robot)
pour collaborer avec un humain. Ces prérequis sont ensuite mis en contexte par
rapport aux capacités déployées par un humain lorsqu’il interagit avec un autre
humain telles que décrites dans le domaine de la psychologie cognitive et plus par-
ticulièrement de l’étude de l’action jointe.

Enfin, plusieurs approches permettant la modélisation de l’activité humaine ainsi
que la génération de plans incluant à la fois l’humain et le robot sont présentées.

Chapitre 2 : Coplanification pour la navigation Dans le Chapitre 2, nous
explorons une approche à la planification de navigation pour le robot dans laquelle
les trajectoires du robot, mais aussi de l’humain sont calculées à une fréquence de
contrôle en position. Cette approche utilise un schéma d’optimisation permettant
de définir des contraintes entre les trajectoires, représentant l’interaction entre elles.
Nous nous servons de ces contraintes afin d’améliorer la manifesteté mutuelle du
robot, notamment en décourageant les mouvements du robot pouvant être perçus
comme menaçants par un humain. Ce faisant, le robot expose ses décisions plus tôt
dans l’interaction, améliorant ainsi la lisibilité de ses mouvements. De plus, nous
avons conçu et implémenté un mouvement de la tête du robot, permettant d’encore
augmenter la lisibilité de la trajectoire tout en montrant à l’humain qu’il a bien été
perçu.

Nous montrons grâce à une étude utilisateur, effectuée en partenariat avec des
chercheurs en psychologie cognitive et ergonomie du CLLE, que ce comportement
permet d’améliorer l’efficience de la navigation du robot dans des scénarios de croi-
sement dans des passages étroits. Cette étude utilisateur a été soumise au journal
IEEE Transactions on Human-Machine Systems et est en cours de revue. Suite à
cette étude utilisateur, nous menons, avec une doctorante en psychologie, une ré-
flexion sur les défis, problèmes et conduites à tenir concernant les études utilisateurs
dans le domaine particulier de l’interaction humain robot. Cette discussion a été
acceptée en tant qu’article dans le journal Transactions on Human-Robot Interac-
tion.

De plus, nous présentons comment nous avons utilisé cette approche sur d’autres
robots ainsi que dans un système robotique complet déployé “dans la nature" en
Finlande au cours du projet MuMMER (MultiModal Mall Entertainment Robot1).
Puis, nous continuons d’explorer la planification pour le robot et l’humain dans la
planification de tâches.

1robot de divertissement multi-modal pour centres commerciaux

181

Chapitre 3 : Évaluation des communications pendant la planification de
tâches Dans le Chapitre 3, notre objectif est d’utiliser les observations effectuées
au cours du chapitre précédent pour les appliquer dans le domaine symbolique, de
manière plus explicite. Le but est de considérer la communication comme actions à
part entière que le robot doit planifier pour obtenir la meilleure interaction possible.
Planifier de telles communications nécessite bien sûr de planifier pour les deux
agents. Ce chapitre contient deux contributions.

Premièrement, nous présentons un algorithme efficient, utilisant une ontologie,
permettant de calculer le contenu d’une communication visant à référencer (dé-
signer) un objet de l’environnement à un autre agent. Ce problème est appelé le
problème de la génération d’expressions de référence (referring expression genera-
tion) et, bien qu’il est étudié depuis plus de trente ans, nous montrons que notre
approche n’est pas seulement la plus rapide à ce jour, mais qu’elle est aussi la plus
adaptée pour des scénarios d’interaction humain robot. Notre algorithme se base sur
l’exploration de l’ontologie (utilisée en tant que base de connaissances) de l’agent à
qui est destiné la communication. Il est capable de prendre en compte le contexte
dans lequel s’effectue la tâche ainsi qu’un coût représentant la difficulté de certaines
propriétés à être interprétées par rapport à d’autres (e.g. la couleur est plus rapide
à interpréter que la taille d’un objet).

Enfin, nous utilisons cette approche rapide pour déterminer le contenu d’une
communication afin d’estimer la faisabilité et le coût de telles actions de commu-
nication durant la phase de planification de tâche. Pour ce faire, nous intégrons
HATP, un planificateur pour réseaux hiérarchisés de tâches multi-agents, conçu
pour l’interaction humain robot avec notre algorithme de génération d’expression
de référence. Cette approche permet d’éviter la génération de plans qui auraient pu
mener dans des situations irrécupérables durant leur exécution ainsi que de trouver
les plans les plus efficients.

Chapitre 4 : Planification de tâches avec émulation des décisions et des
actions de l’humain Dans le Chapitre 4 nous présentons un schéma de plani-
fication hiérarchique de tâches qui n’est pas seulement capable de maintenir les
croyances du robot et de l’humain séparément durant le processus de planification,
mais qui raisonne aussi sur deux modèles de l’action distincts de l’humain et du
robot. Tandis que le modèle de l’action du robot est proche de ceux utilisés dans
la planification avec réseaux hiérarchisés de tâches, celui de l’humain vise à s’ins-
pirer d’approches de modélisation de tâches telles qu’utilisées dans le domaine de
l’interaction humain machine. Les actions sont représentées en tant que fonctions
qui opèrent sur les croyances des agents. Nous spécifions aussi des règles concernant
les croyances pouvant être mises à jour ou accédées suivant l’agent effectuant l’ac-
tion. Ainsi, les plans conditionnels générés ne fixent pas d’actions à l’humain, mais
comportent des actions possibles issues de l’émulation de ses processus décisionnels.
Ce schéma a été implémenté dans un planificateur prototype en Python dont nous
donnons quelques détails importants d’implémentation.

182 Appendix C. Résumé en Français

De plus, au travers de deux exemples que nous construisons de manière incré-
mentale, nous montrons qu’il permet de représenter et de planifier pour des scénarios
d’étroite collaboration entre le robot et l’humain.

Chapitre 5 : Intégration du planificateur de tâches dans une architec-
ture robotique complète Enfin, dans le Chapitre 5, nous présentons des dé-
tails intéressants concernant l’intégration de ce planificateur prototype dans une
architecture robotique. Nous finissons en proposant une nouvelle tâche pour la col-
laboration humain robot : la tâche du directeur. Cette tâche inspirée d’expériences
de psychologie induit plusieurs défis pour l’interaction humain robot. De plus, à
notre connaissance, elle n’a jamais été étudiée dans le cadre de l’interaction humain
robot et aucun robot n’a jamais été conçu pour y répondre. Nous présentons donc
ensuite une architecture robotique complète capable d’effectuer cette tâche dans
son cas nominal et dans laquelle notre planificateur prototype a été intégré.

Conclusion Nous concluons cette thèse en revenant sur les contributions princi-
pales. De plus, nous les résumons en les mettant en correspondance avec les prérequis
de l’interaction humain agent présentés dans le Chapitre 1.

Enfin, nous décrivons les limitations de nos approches ainsi que certaines pistes
d’amélioration. Deux améliorations nous semblent particulièrement intéressantes :
celle de rapprocher l’exécution et la planification, ce qui est crucial dans des envi-
ronnements réactifs tels que rencontrés dans l’interaction humain robot ; ainsi que
celle de non pas raisonner seulement sur le modèle du robot et celui de l’humain,
mais aussi sur celui que l’humain se fait du robot durant son utilisation.

Bibliography

[Alami 1998] Rachid Alami, Raja Chatila, Sara Fleury, Malik Ghallab and Félix In-
grand. An architecture for autonomy. The International Journal of Robotics
Research, vol. 17, no. 4, pages 315–337, 1998. (Cited in page 9.)

[Alili 2009] Samir Alili, Rachid Alami and Vincent Montreuil. A task planner for
an autonomous social robot. In Distributed autonomous robotic systems 8,
pages 335–344. Springer, 2009. (Cited in page 13.)

[Althaus 2004] Philipp Althaus, Hiroshi Ishiguro, Takayuki Kanda, Takahiro
Miyashita and Henrik I Christensen. Navigation for human-robot interac-
tion tasks. In IEEE International Conference on Robotics and Automation,
2004. Proceedings. ICRA’04. 2004, volume 2, pages 1894–1900. IEEE, 2004.
(Cited in page 15.)

[Annett 1967] John Annett and Keith D Duncan. Task analysis and training design.
Journal of Occupational Psychology, 1967. (Cited in page 12.)

[Association 2013] World Medical Associationet al. World Medical Association Dec-
laration of Helsinki: ethical principles for medical research involving human
subjects. Jama, vol. 310, no. 20, pages 2191–2194, 2013. (Cited in page 29.)

[Bartneck 2009] Christoph Bartneck, Dana Kulić, Elizabeth Croft and Susana
Zoghbi. Measurement instruments for the anthropomorphism, animacy, like-
ability, perceived intelligence, and perceived safety of robots. International
journal of social robotics, vol. 1, no. 1, pages 71–81, 2009. (Cited in page 43.)

[Beetz 2010] Michael Beetz, Freek Stulp, Piotr Esden-Tempski, Andreas Fedrizzi,
Ulrich Klank, Ingo Kresse, Alexis Maldonado and Federico Ruiz. Generality
and legibility in mobile manipulation. Autonomous Robots, vol. 28, no. 1,
page 21, 2010. (Cited in page 9.)

[Beetz 2015] Michael Beetz, Ferenc Bálint-Benczédi, Nico Blodow, Daniel Nyga,
Thiemo Wiedemeyer and Zoltán-Csaba Marton. Robosherlock: Unstructured
information processing for robot perception. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 1549–1556. Citeseer,
2015. (Cited in page 82.)

[Belhassein 2019] Kathleen Belhassein, Guilhem Buisan, Aurélie Clodic and Rachid
Alami. Towards methodological principles for user studies in Human-Robot
Interaction. In Test Methods and Metrics for Effective HRI in Collaborative
Human-Robot Teams Workshop, ACM/IEEE International Conference on
Human-Robot Interaction, 2019. (Cited in page 39.)

184 Bibliography

[Belke 2002] Eva Belke and Antje S Meyer. Tracking the time course of multidimen-
sional stimulus discrimination: Analyses of viewing patterns and processing
times during “same”-“different “decisions. European Journal of Cognitive
Psychology, vol. 14, no. 2, pages 237–266, 2002. (Cited in pages 59 and 70.)

[Bradshaw 2003] Jeffrey M Bradshaw, Maarten Sierhuis, Alessandro Acquisti, Paul
Feltovich, Robert Hoffman, Renia Jeffers, Debbie Prescott, Niranjan Suri,
Andrzej Uszok and Ron Van Hoof. Adjustable autonomy and human-agent
teamwork in practice: An interim report on space applications. In Agent
autonomy, pages 243–280. Springer, 2003. (Cited in page 10.)

[Bradshaw 2011] Jeffrey M Bradshaw, Paul Feltovich and Matthew Johnson.
Human-agent interaction. Handbook of Human-Machine Interaction, pages
283–302, 2011. (Cited in pages 8 and 152.)

[Breazeal 2005] Cynthia Breazeal, Cory D Kidd, Andrea Lockerd Thomaz, Guy
Hoffman and Matt Berlin. Effects of nonverbal communication on efficiency
and robustness in human-robot teamwork. In 2005 IEEE/RSJ international
conference on intelligent robots and systems, pages 708–713. IEEE, 2005.
(Cited in page 21.)

[Buckingham 2020] David Buckingham, Meia Chita-Tegmark and Matthias
Scheutz. Robot Planning with Mental Models of Co-present Humans. In
International Conference on Social Robotics, pages 566–577. Springer, 2020.
(Cited in page 14.)

[Buisan 2020a] Guilhem Buisan, Guillaume Sarthou and Rachid Alami. Human
aware task planning using verbal communication feasibility and costs. In
International Conference on Social Robotics, pages 554–565. Springer, 2020.
(Cited in page 56.)

[Buisan 2020b] Guilhem Buisan, Guillaume Sarthou, Arthur Bit-Monnot, Aurélie
Clodic and Rachid Alami. Efficient, situated and ontology based referring
expression generation for human-robot collaboration. In 2020 29th IEEE
International Conference on Robot and Human Interactive Communication
(RO-MAN), pages 349–356. IEEE, 2020. (Cited in page 56.)

[Card 1983] Stuart K Card, Allen Newell and Thomas P Moran. The Psychology
of Human-Computer Interaction. 1983. (Cited in page 7.)

[Carlucci 2015] Fabio Maria Carlucci, Lorenzo Nardi, Luca Iocchi and Daniele
Nardi. Explicit representation of social norms for social robots. In 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4191–4196. IEEE, 2015. (Cited in page 102.)

[Carpinella 2017] Colleen M Carpinella, Alisa B Wyman, Michael A Perez and
Steven J Stroessner. The robotic social attributes scale (rosas) development

Bibliography 185

and validation. In Proceedings of the 2017 ACM/IEEE International Confer-
ence on human-robot interaction, pages 254–262, 2017. (Cited in page 43.)

[Chakraborti 2017] Tathagata Chakraborti, Sarath Sreedharan, Yu Zhang and Sub-
barao Kambhampati. Plan Explanations as Model Reconciliation: Moving
Beyond Explanation as Soliloquy. In Proceedings of the Twenty-Sixth In-
ternational Joint Conference on Artificial Intelligence, IJCAI-17, pages 156–
163, 2017. (Cited in pages 14 and 155.)

[Chakraborti 2018] Tathagata Chakraborti, Sarath Sreedharan and Subbarao
Kambhampati. Human-aware planning revisited: A tale of three models.
In Proc. of the IJCAI/ECAI 2018 Workshop on EXplainable Artificial In-
telligence (XAI). That paper was also published in the Proc. of the ICAPS
2018 Workshop on EXplainable AI Planning (XAIP), pages 18–25, 2018.
(Cited in pages 11, 12, and 66.)

[Choset 2005] Howie M Choset, Seth Hutchinson, Kevin M Lynch, George Kantor,
Wolfram Burgard, Lydia E Kavraki, Sebastian Thrun and Ronald C Arkin.
Principles of robot motion: theory, algorithms, and implementation. MIT
press, 2005. (Cited in page 6.)

[Clodic 2009] Aurélie Clodic, Hung Cao, Samir Alili, Vincent Montreuil, Rachid
Alami and Raja Chatila. Shary: a supervision system adapted to human-
robot interaction. In Experimental robotics, pages 229–238. Springer, 2009.
(Cited in page 11.)

[Clodic 2017] Aurélie Clodic, Elisabeth Pacherie, Rachid Alami and Raja Chatila.
Key elements for human-robot joint action. In Sociality and Normativity for
Robots, pages 159–177. Springer, 2017. (Cited in page 10.)

[Dale 1989] Robert Dale. Cooking up referring expressions. In 27th Annual Meeting
of the association for Computational Linguistics, pages 68–75, 1989. (Cited
in page 58.)

[Dale 1992] Robert Dale. Generating referring expressions: Constructing descrip-
tions in a domain of objects and processes. The MIT Press, 1992. (Cited in
page 58.)

[Dale 1995] Robert Dale and Ehud Reiter. Computational interpretations of the
Gricean maxims in the generation of referring expressions. Cognitive science,
vol. 19, no. 2, pages 233–263, 1995. (Cited in pages 58, 77, and 80.)

[Dautenhahn 2006] Kerstin Dautenhahn, Michael Walters, Sarah Woods,
Kheng Lee Koay, Chrystopher L Nehaniv, A Sisbot, Rachid Alami
and Thierry Siméon. How may I serve you? A robot companion approach-
ing a seated person in a helping context. In Proceedings of the 1st ACM
SIGCHI/SIGART conference on Human-robot interaction, pages 172–179,
2006. (Cited in page 41.)

186 Bibliography

[De Silva 2015] Lavindra De Silva, Raphaël Lallement and Rachid Alami. The
HATP hierarchical planner: Formalisation and an initial study of its usabil-
ity and practicality. In 2015 IEEE/RSJ international conference on intelli-
gent robots and systems (IROS), pages 6465–6472. IEEE, 2015. (Cited in
page 87.)

[Desmet 2007] Pieter MA Desmet and Paul Hekkert. Framework of product experi-
ence. International journal of design, vol. 1, no. 1, pages 57–66, 2007. (Cited
in page 40.)

[Devin 2016] Sandra Devin and Rachid Alami. An implemented theory of mind
to improve human-robot shared plans execution. In 2016 11th ACM/IEEE
International Conference on Human-Robot Interaction (HRI), pages 319–
326. IEEE, 2016. (Cited in pages 11, 14, 60, and 88.)

[Devin 2018] Sandra Devin, Camille Vrignaud, Kathleen Belhassein, Aurelie Clodic,
Ophelie Carreras and Rachid Alami. Evaluating the Pertinence of Robot De-
cisions in a Human-Robot Joint Action Context: The PeRDITA Question-
naire. In 2018 27th IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN), pages 144–151, Nanjing, August
2018. IEEE. (Cited in pages 29 and 43.)

[Dragan 2013] Anca D. Dragan, Kenton C.T. Lee and Siddhartha S. Srinivasa.
Legibility and predictability of robot motion. In 2013 8th ACM/IEEE In-
ternational Conference on Human-Robot Interaction (HRI), pages 301–308,
March 2013. ISSN: 2167-2148. (Cited in pages 9, 20, and 54.)

[Dragan 2015] Anca D Dragan, Shira Bauman, Jodi Forlizzi and Siddhartha S Srini-
vasa. Effects of robot motion on human-robot collaboration. In 2015 10th
ACM/IEEE International Conference on Human-Robot Interaction (HRI),
pages 51–58. IEEE, 2015. (Cited in page 9.)

[Echtler 2018] Florian Echtler and Maximilian Häußler. Open source, open sci-
ence, and the replication crisis in HCI. In Extended Abstracts of the 2018
CHI Conference on Human Factors in Computing Systems, pages 1–8, 2018.
(Cited in page 44.)

[Endsley 1988] Mica R. Endsley. Design and Evaluation for Situation Awareness
Enhancement. Proceedings of the Human Factors Society Annual Meeting,
vol. 32, no. 2, pages 97–101, October 1988. (Cited in pages 7, 31, and 43.)

[Erol 1996] Kutluhan Erol, James Hendler and Dana S Nau. Complexity results for
HTN planning. Annals of Mathematics and Artificial Intelligence, vol. 18,
no. 1, pages 69–93, 1996. (Cited in page 13.)

[Ferrer 2013] G. Ferrer, A. Garrell and A. Sanfeliu. Robot companion: A social-force
based approach with human awareness-navigation in crowded environments.

Bibliography 187

In IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1688–1694, November 2013. (Cited in page 19.)

[Fisher 1993] Robert J Fisher. Social desirability bias and the validity of indirect
questioning. Journal of consumer research, vol. 20, no. 2, pages 303–315,
1993. (Cited in page 42.)

[Fitts 1951] Paul M. Fitts. Human engineering for an effective air-navigation and
traffic-control system. Human engineering for an effective air-navigation and
traffic-control system. National Research Council, Div. of, Oxford, England,
1951. Pages: xxii, 84. (Cited in pages 1 and 7.)

[Fokoue 2006] Achille Fokoue, Aaron Kershenbaum, Li Ma, Edith Schonberg and
Kavitha Srinivas. The summary abox: Cutting ontologies down to size. In In-
ternational Semantic Web Conference, pages 343–356. Springer, 2006. (Cited
in page 64.)

[Foster 2019] Mary Ellen Foster, Bart Craenen, Amol Deshmukh, Oliver Lemon,
Emanuele Bastianelli, Christian Dondrup, Ioannis Papaioannou, Andrea
Vanzo, Jean-Marc Odobez, Olivier Canévetet al. Mummer: Socially
intelligent human-robot interaction in public spaces. arXiv preprint
arXiv:1909.06749, 2019. (Cited in page 47.)

[Ghallab 2016] Malik Ghallab, Dana Nau and Paolo Traverso. Automated planning
and acting. Cambridge University Press, 2016. (Cited in pages 5 and 13.)

[Gharbi 2015a] Mamoun Gharbi, Raphaël Lallement and Rachid Alami. Combining
symbolic and geometric planning to synthesize human-aware plans: toward
more efficient combined search. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 6360–6365. IEEE, 2015.
(Cited in pages 14, 56, 87, and 104.)

[Gharbi 2015b] Mamoun Gharbi, Pierre-Vincent Paubel, Aurélie Clodic, Ophélie
Carreras, Rachid Alami and Jean-Marie Cellier. Toward a better understand-
ing of the communication cues involved in a human-robot object transfer. In
2015 24th IEEE international symposium on robot and human interactive
communication (RO-MAN), pages 319–324. IEEE, 2015. (Cited in page 42.)

[Gibson 2014] James J Gibson. The ecological approach to visual perception: clas-
sic edition. Psychology Press, 2014. (Cited in page 69.)

[Goffman 1966] Erving Goffman. Behavior in Public Places: Notes on the Social
Organization of Gatherings. Free Press, New York, NY, reissue edition
edition, September 1966. (Cited in page 21.)

[Goodrich 2007] Michael A. Goodrich and Alan C. Schultz. Human-Robot Interac-
tion: A Survey. Foundations and Trends® in Human-Computer Interaction,
vol. 1, no. 3, pages 203–275, 2007. (Cited in page 6.)

188 Bibliography

[Greenwald 1998] Anthony G Greenwald, Debbie E McGhee and Jordan LK
Schwartz. Measuring individual differences in implicit cognition: the im-
plicit association test. Journal of personality and social psychology, vol. 74,
no. 6, page 1464, 1998. (Cited in page 40.)

[Grice 1975] Herbert P Grice. Logic and conversation. In Speech acts, pages 41–58.
Brill, 1975. (Cited in pages 58 and 142.)

[Guitton 2012] Julien Guitton, Matthieu Warnier and Rachid Alami. Belief man-
agement for hri planning. In European Conference on Artificial Intelligence-
Workshop on Belief change, Non-monotonic reasoning and Conflict Resolu-
tion BNC@ ECAI 2012, 2012. (Cited in page 86.)

[Helbing 1995] D. Helbing and P. Molnár. Social force model for pedestrian dynam-
ics. Physical Review E, pages 4282–4286, 1995. (Cited in page 19.)

[Ingrand 1996] François Félix Ingrand, Raja Chatila, Rachid Alami and Frédéric
Robert. PRS: A high level supervision and control language for autonomous
mobile robots. In Proceedings of IEEE International Conference on Robotics
and Automation, volume 1, pages 43–49. IEEE, 1996. (Cited in page 102.)

[Keysar 2000] Boaz Keysar, Dale J Barr, Jennifer A Balin and Jason S Brauner.
Taking perspective in conversation: The role of mutual knowledge in com-
prehension. Psychological Science, vol. 11, no. 1, pages 32–38, 2000. (Cited
in page 140.)

[Keysar 2003] Boaz Keysar, Shuhong Lin and Dale J Barr. Limits on theory of
mind use in adults. Cognition, vol. 89, no. 1, pages 25–41, 2003. (Cited in
page 140.)

[Khamassi 2016] Mehdi Khamassi, Benoît Girard, Aurélie Clodic, Sandra Devin,
Erwan Renaudo, Elisabeth Pacherie, Rachid Alami and Raja Chatila. Inte-
gration of action, joint action and learning in robot cognitive architectures.
Intellectica-La revue de l’Association pour la Recherche sur les sciences de
la Cognition (ARCo), vol. 2016, no. 65, pages 169–203, 2016. (Cited in
page 10.)

[Khambhaita 2016] Harmish Khambhaita, Jorge Rios-Martinez and Rachid Alami.
Head-Body Motion Coordination for Human Aware Robot Navigation. In 9th
International workshop on Human-Friendlly Robotics (HFR 2016), page 8p,
2016. (Cited in pages 21, 38, 41, and 45.)

[Khambhaita 2017] Harmish Khambhaita and Rachid Alami. Viewing Robot Nav-
igation in Human Environment as a Cooperative Activity. In International
Symposium on Robotics Research (ISSR 2017), page 18p., Puerto Varas,
Chile, December 2017. (Cited in pages 15, 20, 22, 25, 26, and 27.)

Bibliography 189

[Knoblich 2011] Günther Knoblich, Stephen Butterfill and Natalie Sebanz. Psycho-
logical research on joint action: theory and data. Psychology of learning and
motivation, vol. 54, pages 59–101, 2011. (Cited in page 10.)

[Koolen 2012] Ruud Koolen, Emiel Krahmer and Mariët Theune. Learning prefer-
ences for referring expression generation: Effects of domain, language and
algorithm. In INLG 2012 Proceedings of the Seventh International Natural
Language Generation Conference, pages 3–11, 2012. (Cited in page 70.)

[Krahmer 2003] Emiel Krahmer, Sebastiaan van Erk and André Verleg. Graph-
based generation of referring expressions. Computational Linguistics, vol. 29,
no. 1, pages 53–72, 2003. (Cited in page 59.)

[Krahmer 2012] Emiel Krahmer and Kees Van Deemter. Computational generation
of referring expressions: A survey. Computational Linguistics, vol. 38, no. 1,
pages 173–218, 2012. (Cited in pages 58 and 59.)

[Kruse 2012] T. Kruse, P. Basili, S. Glasauer and A. Kirsch. Legible robot naviga-
tion in the proximity of moving humans. In IEEE Workshop on Advanced
Robotics and its Social Impacts, pages 83–88, May 2012. (Cited in page 20.)

[Kruse 2013] Thibault Kruse, Amit Kumar Pandey, Rachid Alami and Alexan-
dra Kirsch. Human-aware robot navigation: A survey. Robotics and Au-
tonomous Systems, vol. 61, no. 12, pages 1726–1743, December 2013. (Cited
in pages 9 and 19.)

[Kuderer 2012] Markus Kuderer, Henrik Kretzschmar, Christoph Sprunk and Wol-
fram Burgard. Feature-Based Prediction of Trajectories for Socially Compli-
ant Navigation. In Proceedings of Robotics: Science and Systems, Sydney,
Australia, July 2012. (Cited in page 20.)

[Kuhnert 2017] Barbara Kuhnert, Marco Ragni and Felix Lindner. The gap between
human’s attitude towards robots in general and human’s expectation of an
ideal everyday life robot. In 2017 26th IEEE international symposium on
robot and human interactive communication (RO-MAN), pages 1102–1107.
IEEE, 2017. (Cited in page 40.)

[Lallemand 2015] C. Lallemand, V. Koenig, G. Gronier and R. Martin. Créa-
tion et validation d’une version française du questionnaire AttrakDiff pour
l’évaluation de l’expérience utilisateur des systèmes interactifs. Revue Eu-
ropéenne de Psychologie Appliquée/European Review of Applied Psychol-
ogy, vol. 65, no. 5, pages 239–252, September 2015. (Cited in pages 31, 42,
and 164.)

[Lallement 2014] Raphaël Lallement, Lavindra De Silva and Rachid Alami. HATP:
An HTN planner for robotics. In 2nd ICAPS Workshop on Planning and
Robotics, 2014. (Cited in pages 13, 85, 86, and 100.)

190 Bibliography

[Lazar 2017] Jonathan Lazar, Jinjuan Heidi Feng and Harry Hochheiser. Research
methods in human-computer interaction. Morgan Kaufmann, 2017. (Cited
in page 40.)

[Lemaignan 2012] Séverin Lemaignan, Raquel Ros, E Akin Sisbot, Rachid Alami
and Michael Beetz. Grounding the interaction: Anchoring situated dis-
course in everyday human-robot interaction. International Journal of Social
Robotics, vol. 4, no. 2, pages 181–199, 2012. (Cited in page 60.)

[Lemaignan 2017] Séverin Lemaignan, Mathieu Warnier, E Akin Sisbot, Aurélie
Clodic and Rachid Alami. Artificial cognition for social human–robot inter-
action: An implementation. Artificial Intelligence, vol. 247, pages 45–69,
2017. (Cited in pages 11, 14, and 142.)

[Lemaignan 2018] Séverin Lemaignan, Yoan Sallami, Christopher Wallhridge, Au-
rélic Clodic, Tony Belpaeme and Rachid Alami. Underworlds: cascading
situation assessment for robots. In 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 7750–7757. IEEE,
2018. (Cited in pages 11, 102, and 144.)

[Levine 2014] Steven Levine and Brian Williams. Concurrent plan recognition and
execution for human-robot teams. In Proceedings of the international con-
ference on automated planning and scheduling, volume 24, 2014. (Cited in
page 103.)

[Li 2017] Shen Li. Automatically evaluating and generating clear robot explanations.
Master’s thesis, 2017. (Cited in pages 59 and 81.)

[Lu 2013] David V. Lu and William D. Smart. Towards more efficient navigation
for robots and humans. In 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1707–1713, Tokyo, November 2013.
IEEE. (Cited in pages 19, 21, and 39.)

[Mainprice 2012] Jim Mainprice, Mamoun Gharbi, Thierry Siméon and Rachid
Alami. Sharing effort in planning human-robot handover tasks. In 2012
IEEE RO-MAN: The 21st IEEE International Symposium on Robot and
Human Interactive Communication, pages 764–770. IEEE, 2012. (Cited in
page 15.)

[Martinie 2019] Célia Martinie, Philippe Palanque, Elodie Bouzekri, Andy Cock-
burn, Alexandre Canny and Eric Barboni. Analysing and demonstrating
tool-supported customizable task notations. Proceedings of the ACM on
Human-Computer Interaction, vol. 3, no. EICS, pages 1–26, 2019. (Cited in
page 13.)

[Mavridis 2015] Nikolaos Mavridis. A review of verbal and non-verbal human–robot
interactive communication. Robotics and Autonomous Systems, vol. 63,
pages 22–35, 2015. (Cited in pages 54 and 60.)

Bibliography 191

[May 2015] A. D. May, C. Dondrup and M. Hanheide. Show me your moves! Con-
veying navigation intention of a mobile robot to humans. In 2015 European
Conference on Mobile Robots (ECMR), pages 1–6, September 2015. (Cited
in pages 21 and 38.)

[Mayima 2020] Amandine Mayima, Aurélie Clodic and Rachid Alami. Toward a
Robot Computing an Online Estimation of the Quality of its Interaction
with its Human Partner. In 2020 29th IEEE International Conference on
Robot and Human Interactive Communication (RO-MAN), pages 291–298.
IEEE, 2020. (Cited in pages 43, 50, and 51.)

[Miller 1968] Robert B Miller. Response time in man-computer conversational
transactions. In Proceedings of the December 9-11, 1968, fall joint com-
puter conference, part I, pages 267–277, 1968. (Cited in page 79.)

[Milliez 2014] Grégoire Milliez, Matthieu Warnier, Aurélie Clodic and Rachid
Alami. A framework for endowing an interactive robot with reasoning capa-
bilities about perspective-taking and belief management. In The 23rd IEEE
international symposium on robot and human interactive communication,
pages 1103–1109. IEEE, 2014. (Cited in pages 11, 83, 92, and 102.)

[Mutlu 2006] B. Mutlu, J. Forlizzi and J. Hodgins. A Storytelling Robot: Model-
ing and Evaluation of Human-like Gaze Behavior. In 2006 6th IEEE-RAS
International Conference on Humanoid Robots, pages 518–523, December
2006. (Cited in page 21.)

[Nardi 2014] Lorenzo Nardi and Luca Iocchi. Representation and execution of social
plans through human-robot collaboration. In International Conference on
Social Robotics, pages 266–275. Springer, 2014. (Cited in page 14.)

[Naveau 2017] M. Naveau, M. Kudruss, O. Stasse, C. Kirches, K. Mombaur and
P. Souères. A Reactive Walking Pattern Generator Based on Nonlinear
Model Predictive Control. IEEE Robotics and Automation Letters, vol. 2,
no. 1, pages 10–17, 2017. (Cited in page 46.)

[Norman 2013] Don Norman. The design of everyday things: Revised and expanded
edition. Basic books, 2013. (Cited in pages 7, 8, and 69.)

[Pacchierotti 2006] Elena Pacchierotti, Henrik I. Christensen and Patric Jensfelt.
Evaluation of Passing Distance for Social Robots. In ROMAN 2006 - The
15th IEEE International Symposium on Robot and Human Interactive Com-
munication, pages 315–320, September 2006. ISSN: 1944-9437. (Cited in
page 20.)

[Pacherie 2011] Elisabeth Pacherie. 14 The Phenomenology of Joint Action: Self-
Agency versus Joint Agency. Joint attention: New developments in psychol-
ogy, philosophy of mind, and social neuroscience, page 343, 2011. (Cited in
pages 10 and 22.)

192 Bibliography

[Paternò 2004] Fabio Paternò. ConcurTaskTrees: an engineered notation for task
models. The handbook of task analysis for human-computer interaction,
pages 483–503, 2004. (Cited in page 13.)

[Petrick 2013] Ronald Petrick and Mary Ellen Foster. Planning for social interac-
tion in a robot bartender domain. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 23, 2013. (Cited in
page 14.)

[Posner 1978] Michael I Posner. Chronometric explorations of mind. Lawrence
Erlbaum, 1978. (Cited in page 43.)

[Reiter 1997] Ehud Reiter and Robert Dale. Building applied natural language gen-
eration systems. Natural Language Engineering, vol. 3, no. 1, pages 57–87,
1997. (Cited in page 58.)

[Rios-Martinez 2015] Jorge Rios-Martinez, Anne Spalanzani and Christian Laugier.
From proxemics theory to socially-aware navigation: A survey. International
Journal of Social Robotics, vol. 7, no. 2, pages 137–153, 2015. (Cited in
page 9.)

[Roncone 2017] Alessandro Roncone, Olivier Mangin and Brian Scassellati. Trans-
parent role assignment and task allocation in human robot collaboration. In
2017 IEEE International Conference on Robotics and Automation (ICRA),
pages 1014–1021. IEEE, 2017. (Cited in page 61.)

[Ros 2010] Raquel Ros, Séverin Lemaignan, E Akin Sisbot, Rachid Alami, Jasmin
Steinwender, Katharina Hamann and Felix Warneken. Which one? ground-
ing the referent based on efficient human-robot interaction. In 19th Interna-
tional Symposium in Robot and Human Interactive Communication, pages
570–575. IEEE, 2010. (Cited in pages 60 and 80.)

[Rosmann 2013] Christoph Rosmann, Wendelin Feiten, Thomas Wosch, Frank
Hoffmann and Torsten Bertram. Efficient trajectory optimization using a
sparse model. In 2013 European Conference on Mobile Robots, pages 138–
143, Barcelona, Catalonia, Spain, September 2013. IEEE. (Cited in pages 23
and 24.)

[Salmon 2006] Paul Salmon, Neville Stanton, Guy Walker and Damian Green. Sit-
uation awareness measurement: A review of applicability for C4i environ-
ments. Applied ergonomics, vol. 37, no. 2, pages 225–238, 2006. (Cited in
page 43.)

[Sanelli 2017] Valerio Sanelli, Michael Cashmore, Daniele Magazzeni and Luca Ioc-
chi. Short-term human-robot interaction through conditional planning and
execution. In Proceedings of the International Conference on Automated
Planning and Scheduling, volume 27, 2017. (Cited in page 14.)

Bibliography 193

[Saraydaryan 2015] Jacques Saraydaryan, Fabrice Jumel and Olivier Simonin.
Robots delivering services to moving people: Individual vs. group patrolling
strategies. In 2015 IEEE International Workshop on Advanced Robotics and
its Social Impacts (ARSO), pages 1–8. IEEE, 2015. (Cited in page 15.)

[Sarthou 2019] Guillaume Sarthou, Aurélie Clodic and Rachid Alami. Ontologe-
nius: A long-term semantic memory for robotic agents. In 2019 28th IEEE
International Conference on Robot and Human Interactive Communication
(RO-MAN), pages 1–8. IEEE, 2019. (Cited in pages 65, 82, 137, and 142.)

[Scalise 2018] Rosario Scalise, Shen Li, Henny Admoni, Stephanie Rosenthal and
Siddhartha S Srinivasa. Natural language instructions for human–robot col-
laborative manipulation. The International Journal of Robotics Research,
vol. 37, no. 6, pages 558–565, 2018. (Cited in page 81.)

[Sebanz 2006] Natalie Sebanz, Harold Bekkering and Günther Knoblich. Joint ac-
tion: bodies and minds moving together. Trends in cognitive sciences, vol. 10,
no. 2, pages 70–76, 2006. (Cited in page 10.)

[Sebastiani 2017] Eugenio Sebastiani, Raphaël Lallement, Rachid Alami and Luca
Iocchi. Dealing with on-line human-robot negotiations in hierarchical agent-
based task planner. In Proceedings of the International Conference on Au-
tomated Planning and Scheduling, volume 27, 2017. (Cited in pages 60
and 100.)

[Shah 2011] Julie Shah, James Wiken, Brian Williams and Cynthia Breazeal. Im-
proved human-robot team performance using chaski, a human-inspired plan
execution system. In Proceedings of the 6th international conference on
Human-robot interaction, pages 29–36, 2011. (Cited in page 60.)

[Singamaneni 2020] Phani-Teja Singamaneni and Rachid Alami. HATEB-2: Re-
active Planning and Decision making in Human-Robot Co-navigation. In
International Conference on Robot & Human Interactive Communication,
2020, 2020. (Cited in pages 46 and 49.)

[Sisbot 2007] Emrah Akin Sisbot, Luis F. Marin-Urias, Rachid Alami and Thierry
Siméon. A Human Aware Mobile Robot Motion Planner. Transactions on
Robotics, vol. 23, no. 5, pages 874–883, 2007. (Cited in pages 9 and 19.)

[Stasse 2008] Olivier Stasse, Bjorn Verrelst, Pierre-Brice Wieber, Bram Vander-
borght, Paul Evrard, Abderrahmane Kheddar and Kazuhito Yokoi. Modular
Architecture for Humanoid Walking Pattern Prototyping and Experiments.
Advanced Robotics, vol. 22, 06 2008. (Cited in page 45.)

[Tellex 2014] Stefanie Tellex, Ross Knepper, Adrian Li, Daniela Rus and Nicholas
Roy. Asking for help using inverse semantics. 2014. (Cited in page 60.)

194 Bibliography

[Tomasello 2005] Michael Tomasello, Malinda Carpenter, Josep Call, Tanya Behne
and Henrike Moll. Understanding and sharing intentions: The origins of
cultural cognition. Behavioral and brain sciences, vol. 28, no. 5, pages 675–
691, 2005. (Cited in page 10.)

[Tsang 2017] Siny Tsang, Colin F Royse and Abdullah Sulieman Terkawi. Guide-
lines for developing, translating, and validating a questionnaire in perioper-
ative and pain medicine. Saudi journal of anaesthesia, vol. 11, no. Suppl 1,
page S80, 2017. (Cited in page 42.)

[Unhelkar 2017] Vaibhav V Unhelkar, X Jessie Yang and Julie A Shah. Challenges
for communication decision-making in sequential human-robot collaborative
tasks. In Workshop on Mathematical Models, Algorithms, and Human-
Robot Interaction at R: SS, 2017. (Cited in page 62.)

[Unhelkar 2020] Vaibhav V Unhelkar, Shen Li and Julie A Shah. Decision-
making for bidirectional communication in sequential human-robot collabora-
tive tasks. In Proceedings of the 2020 ACM/IEEE International Conference
on Human-Robot Interaction, pages 329–341, 2020. (Cited in pages 14, 61,
and 88.)

[Vesper 2010] Cordula Vesper, Stephen Butterfill, Günther Knoblich and Natalie
Sebanz. A minimal architecture for joint action. Neural Networks, vol. 23,
no. 8-9, pages 998–1003, October 2010. (Cited in pages 10 and 20.)

[Viethen 2013] Jette Viethen, Margaret Mitchell and Emiel Krahmer. Graphs and
spatial relations in the generation of referring expressions. In Proceedings
of the 14th European Workshop on Natural Language Generation, pages
72–81, 2013. (Cited in pages 59, 80, and 81.)

[Waldhart 2015] Jules Waldhart, Mamoun Gharbi and Rachid Alami. Planning
handovers involving humans and robots in constrained environment. In
2015 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 6473–6478. IEEE, 2015. (Cited in page 15.)

[Waldhart 2019] J. Waldhart, A. Clodic and R. Alami. Reasoning on Shared Visual
Perspective to Improve Route Directions. In 2019 28th IEEE International
Conference on Robot and Human Interactive Communication (RO-MAN),
pages 1–8, 2019. (Cited in pages 15 and 47.)

[Williams 2017] Tom Williams and Matthias Scheutz. Referring expression gener-
ation under uncertainty: Algorithm and evaluation framework. In Proceed-
ings of the 10th International Conference on Natural Language Generation,
pages 75–84, 2017. (Cited in page 60.)

[Williams 2019] Tom Williams, Fereshta Yazdani, Prasanth Suresh, Matthias
Scheutz and Michael Beetz. Dempster-shafer theoretic resolution of refer-

Bibliography 195

ential ambiguity. Autonomous Robots, vol. 43, no. 2, pages 389–414, 2019.
(Cited in page 60.)

[Yamakata 2004] Yoko Yamakata, Tatsuya Kawahara, Hiroshi G Okuno and Michi-
hiko Minoh. Belief network based disambiguation of object reference in spo-
ken dialogue system. Transactions of the Japanese Society for Artificial
Intelligence, vol. 19, no. 1, pages 47–56, 2004. (Cited in page 59.)

[Zaraki 2014] A. Zaraki, D. Mazzei, M. Giuliani and D. De Rossi. Designing and
Evaluating a Social Gaze-Control System for a Humanoid Robot. IEEE
Transactions on Human-Machine Systems, vol. 44, no. 2, pages 157–168,
April 2014. (Cited in page 21.)

Abstract: Robots are capable to autonomously handle more and more complex
tasks. However, today’s robots either have their workspaces physically separated
from the humans’ ones or their abilities severely restricted when acting near humans.
In this thesis, we investigate several approaches allowing to plan not only for the
robot but also for the human, enabling to predict and elicit their decision process
and actions, leading to better human-robot interactions (HRI).

First, we show through a user study, why such a scheme applied to robot nav-
igation is crucial for efficient and satisfactory interaction. Planning for the robot
and the human allows to find solutions in intricate situations where collaboration
is necessary but also for the robot to be proactive and legible while navigating.
Secondly, we alleviate from inherent ephemeral nature of interaction in collabora-
tive navigation to explore how co-planning can be applied for task planning. We
introduce a new referring expression generation algorithm, using an ontology as a
knowledge base, and show that it is the fastest one to date while being designed
for HRI application. We use it in a human-aware task planner to estimate the
feasibility and cost of communication during task planning, preventing deadlock
or suboptimal plans. Finally, a novel approach to human-aware task planning is
proposed where action models and decision streams of the robot and the human are
distinct and used to produce conditional plans.

Résumé : Les robots sont aujourd’hui capables d’effectuer de manière au-
tonome des tâches toujours plus complexes. Cependant, ils sont encore soit utilisés
avec une séparation physique des humains, soit limités lorsqu’ils évoluent au voisi-
nage immédiat d’humains. Dans cette thèse, nous proposons plusieurs approches
visant à planifier pour le robot mais aussi pour l’humain. Les plans alors produits
prennent en compte l’humain en prédisant et encourageant leurs actions, menant à
de meilleures interactions humains-robots (HRI).

Premièrement, nous montrons à travers une étude utilisateur, dans quelle mesure
une telle approche appliquée à la navigation est cruciale pour une interaction effi-
ciente et satisfaisante. Planifier pour le robot et l’humain permet en effet de trouver
des solutions dans des situations d’interaction complexes mais aussi au robot d’avoir
un comportement plus lisible et proactif. Deuxièmement, nous présentons un algo-
rithme de génération d’expression de référence, rapide et pensé pour la HRI. Nous
utilisons ensuite cet algorithme pour estimer la faisabilité et le coût des actions de
communication pendant la planification de tâches, permettant d’éviter des impasses
et des plans sous optimaux. Enfin, nous proposons une approche novatrice à la plan-
ification de tâches humain robot, dans laquelle les modèles de l’action et décision
des deux agents sont distincts et utilisés pour produire des plans conditionnels.

Keywords: human-robot interaction, navigation, task planning
Mots clés : interaction humain-robot, navigation, planification de tâches

	Introduction
	Planning for Human Robot Interaction Context and Challenges
	Task and Navigation Planning
	Collaborative Human and Robot Activities
	Usability and Automation
	Joint Action in Human-Robot Interaction

	Modeling Human Actions and Shared Plans
	Notations
	Task Modeling and Hierarchical Task Networks
	Planning for Both the Human and the Robot

	Coplanning for Navigation
	Introduction
	Related Work
	Human-Aware Robot Navigation
	Communicating Intents via the Robot Gaze

	The Human Aware Timed Elastic Band
	General Scheme
	Constraints

	Evaluating Enhanced Mutual Manifestness in a Crossing Scenario
	Robot Behavior Design
	User Study Protocol
	Results
	Discussion

	On User Studies in HRI
	Users in HRI studies
	Evaluation Methods
	The Replication Crisis in HRI
	Proposed Guidelines for Better User Studies in HRI

	Extending HATEB
	Adapting HATEB to Other Robots
	Using the Estimated Time to Goal to Measure the Execution of the Planned Trajectory

	Conclusion

	Evaluating Communications Feasibility and Cost During Human-Aware Task Planning
	Introduction and Example
	Example
	References and Acknowledgments

	Related Work
	Referring Expression Generation
	Task Planning With Communication Actions

	Ontology-Based Referring Expression Generation for Human Robot Interaction
	Using Ontologies for Human Robot Interaction
	REG Features for Communication Action Estimation During Task Planning
	Ontology Based REG Problem Definition
	Efficient REG Algorithm Presentation
	Results
	Integration

	Planning Communication Actions Using Referring Expression Generation
	Method
	Approach
	Case Studies

	Conclusion

	Emulating the Human Decision and Action Processes During Task Planning
	Introduction
	Description
	The Proposed Planning Process
	Action Models Restriction
	Exploration Algorithm
	Conditional Plan Selection

	Implementation
	A Python Planner
	Drawing the Plans

	Examples
	Plan for Robot Unknown Human Knowledge
	Balance Difficult Communications, Decomposition Cost and Task Attribution

	Conclusion and Future Work
	Selecting Conditional Plans Using the Human Model
	Representing Explicitly Observation Processes
	Pruning During the Search Space Exploration

	Task Planner Integration Within a Robotic Architecture for Human Robot Interaction
	Introduction
	Integrating With Other Components
	Retrieving the Current State and Beliefs From the Knowledge Base
	Using REG at Planning Time
	Communicating Through ROS

	The Director Task
	A Task Used in Psychology
	Setup
	The Robotic Architecture
	Challenges for Planning

	Conclusion

	Conclusion
	Navigation User Study Questionnaires
	Original PeRDITA Questionnaire Without Verbal Dimension (French)
	Unofficial Translation of the PeRDITA Questionnaire
	Situation Assessment Questionnaire (French)
	Translation of Situation Assessment Questionnaire Items
	AttrakDiff Questionnaire (French)

	HATP/EHDA Domains for the Coffee Bringer Examples
	Plan for Robot Unknown Human Knowledge
	Balance Difficult Communications, Decomposition Cost and Task Attribution

	Résumé en Français
	Bibliography

