Keywords: Transport protocols, TCP/IP, Dynamic Deployment, eBPF/XDP, Protocol Selection, Linux OS. Résumé Transport protocols, TCP/IP, Dynamic Deployment, eBPF/XDP, Protocol Selection, Linux OS

Mes premiers mots de remerciement vont à mes directeurs de thèse, Christophe CHASSOT et Samir MEDJIAH. Je les remercie de m'avoir confié ce projet de recherche, de m'avoir encadré et fourni les moyens nécessaires pour mener à bout ce projet.

Je remercie chacun des membres de mon jury qui malgré les aléas liés à la situation sanitaire ont bien accepté de participer à mon jury de thèse. Je remercie tous mes rapporteurs, Isabelle GUÉRIN-LASSOUS, Damien MAGONI et Ernesto EXPOSITO. Je leur suis reconnaissant du temps qu'ils ont consacré à rapporter cette thèse et de leurs retours enrichissants. Je remercie enfin mes examinateurs Nicolas VAN WAMBEKE et Thierry TURLETTI pour leurs commentaires et nombreuses réflexions perspicaces sur mon travail.

Cette thèse a été le fruit d'un long travail mené au sein du LAAS-CNRS. J'en remercie le directeur, M. Liviu NICU et tout le personnel. J'adresse mes remerciements également à tous les cadres scientifiques de mon équipe de recherche SARA notamment M. Khalil DRIRA, M. Slim ABDELLATIF pour ses conseils réguliers lors de cette thèse et surtout son aide précieuse lors de la préparation de la soutenance de cette thèse. Je remercie également M. Philippe OWEZARSKI avec qui j'ai eu bien d'échanges fructueux. J'adresse une spéciale à tous mes collègues et amis qui de près ou de loin m'ont apporté leur soutien à leur manière. Une spéciale dans la spéciale pour mon jumeau et compatriote de tous les temps, qui a été d'un soutien sans faille au cours de toutes ces années, merci Bénoît.

Je remercie ma famille d'avoir pu me soutenir de là où ils sont. Je remercie mon parrain Damien, pour ses conseils et encouragements, ainsi que sa femme Lydie qui m'a fortement poussé à rédiger ce manuscrit, c'est fait. À travers eux, c'est à toute l'association Five Hearts que j'adresse mes remerciements. Enfin, je ne remercierai jamais assez ma complice de toujours, celle qui a toujours supporté de vivre sa thèse en même temps que la mienne. Merci pour ton soutien de tous les goûts Nour.

Introduction

. Thesis Big Picture

The last two decades have seen a rapid expansion of the Internet and its place in human life. The recent Covid-pandemic proves it: teleworking, teleconference, teleteaching, telehealth, etc., have been massively used. This growth of the Internet has been and remains possible thanks in part to the introduction of a plethora of new paradigms (Cloud/Fog/Edge Computing, SDN, NFV, etc.) and their associated technologies (OpenStack, OpenFlow, eBPF, Docker, etc.). Those paradigms and technologies bring new opportunities and open up new challenges. For instance, Software-Defined Networking (SDN) paradigm [] and its technical expressions OpenFlow and P introduced programmability in the core of networks and eased the configuration, maintenance, and monitoring of networks. In the wake of SDN, Network Function Virtualization (NFV) [] and its relevant implementations enabled more agility and flexibility in managing and deploying network services. At the same time, more recent technologies such as extended Berkeley Packet Filter (eBPF) [] allowed to dynamically insert functionalities (protocol functions, packet filters, etc.) in the operating system (OS) kernel of end-systems, hence introducing programmability at the edge of networks by temporary modification of end-systems behavior. This proliferation of new paradigms and technologies forms a "softwarized" Internet ecosystem (Fig. .) characterized by a broad heterogeneity and high volatility. Indeed, they are heterogeneous in terms of opportunities (programmables network and OS, . . .) as well as in terms of network constraints (delay, loss, ...) and application requirements (reliability, security, . . .). Furthermore, during the same data transfer session, the network state is constantly changing due to a number of events such as the migration of resources (VMs, Containers, etc.) between datacenters, hardware and software failures, datacenter servers overloading, or link quality degradation. This leads to a very volatile ecosystem that requires the design of auto-adaptive systems and frameworks able to follow up these dynamic changes in order to ensure network stability and to provide optimal quality of service (QoS) to applications and, at the end, a better quality of experience (QoE) for the users. Besides, the Internet is the crossroads of more and more stakeholders (OS providers, applications programmers, middleboxes vendors, etc.), each one arriving with its own requirements and expectations. For instance, while application programmers could significantly improve their applications' performance by using a tailored but not necessarily standardized L protocol, middleboxes owners could, for security and reliability reasons, prohibit the use of any non-standardized L protocol on their equipment. Those mostly opposed and contradictory requirements and expectations hamper the introduction of innovation and lead to the well-known ossification of Internet architecture, especially its communication stack.

.

Thesis Scope and Problem

The Internet and its evolutions are essentially based on the same communication model: the TCP/IP standard model, whose main L protocol for end-to-end data transfer between network applications remains TCP (and somewhat UDP). Indeed, with the evolution of the Internet, several Transport layer protocol mechanisms have been proposed in the literature to continually improve end-to-end QoS with the aim to satisfy the increasing requirements of applications and to adapt to a variety of emerging networks.

Unfortunately, most of these protocols either are not available within the mainstream OSes and/or suffer from a limited use within the Internet (see Fig.

. The study under the Wireshark analyzer tool [] of the collected data provides two main insights during this preliminary experiment. On the one hand, to navigate for instance on youtube.com or google.com, the same application (Chrome) uses different Transport protocols depending on whether it is running under Linux . . or under Linux . . ⇒ the used protocol depends on its availability on the OS. On the other hand, the same kind of application (i.e., web browser, here Chrome and Firefox ESR) surfing on the same website does not use the same Transport protocol ⇒ the used protocol depends on the one adopted by the application programmers. Summary and research questions. The review of the literature and the analysis of the results of preliminary experiments we carried out lead us to the following conclusion: despite their convenient conceptual approach and better performances against TCP/UDP in several cases, any new L protocol solutions other than TCP and UDP are (i) faintly deployed (in worst cases not deployed) and (ii) suffer from limited adoption by applications on the Internet. This situation prompts the sclerosis of the Internet Transport layer, also known as ossification of the Transport layer. The Internet Transport layer ossification is a major barrier to the introduction of more agility and flexibility enabled by the evolution of new paradigms in the Internet such as the emerging "softwarized" networks and their main underlying technological concepts SDN and NFV. This thesis proposes to address Transport layer sclerosis at the end-systems by providing practical answers to two major questions: () How to : A Transport Service is an abstraction of a set of Transport functions that provides an end-to-end facility to applications. Examples include but are not limited to: reliable delivery service, ordered delivery service, partially ordered delivery service, encrypted delivery service, etc.

: Throughout this manuscript, legacy application is defined as TCP application that uses the standard socket API to consume Transport layer services. We will use interchangeably the terms "legacy application" and "TCP application".

(effectively) deploy a specific protocol mechanism at the end-system? () And, assuming the availability of mechanisms on the end-system, how, on the one hand, to ensure the deployment of the appropriate protocol to the application requirements and network state and, on the other hand, to ensure its seamless usage by (existing) applications? The focus is placed on the exploration of opportunities provided to us by in-kernel dynamic deployment technologies, namely eBPF.

. Thesis Contributions

Apart from the extensive evaluations performed during our journey, the main contributions of this thesis are listed below.

Dynamic grafting of Transport protocols.

To address the Transport layer's ossification, most of the previous research efforts proposed replacing the limited socket API with a service-oriented API so that the application no longer invokes a specific protocol but asks for a Transport Service . The choice of the appropriate protocol to provide the required service is delegated to the Transport layer. However, in its current state, this approach is based on the assumption that the required protocol is already available on the OS of the end-system and, therefore, lacks a method to dynamically deploy a new protocol (or protocol component) when it is not available at the end-system. To fill this gap, we extend the service-oriented approach by introducing the concept of dynamic deployment of protocol grafts. Dynamic grafting of protocols consists of on-the-fly integration of protocol components within the endsystem either at A protocol graft is a pluggable protocol component that consists of a set of Transport functions with their associated interaction pattern. The interaction model defines the way the Transport Functions are orchestrated. Chapter describes in more details this notion.

the user-space or the kernel-space of the operating system (OS). Dynamic and on-the-fly properties refer to the fact that we provide the technique ensuring that the deployments are realized without the need to recompile and reboot the OS.

Transparent reconfiguration/integration of legacy applications.

As previously stated, our first contribution is an extension of the service-oriented approach that is under standardization within the IETF working group TAPS []. However, once the standardization stage is over, we believe a major problem will arise: porting current legacy applications to the new service-oriented API. This will require a modification of the applications that could be a barrier to the adoption of this approach, as we will see in the subsequent chapter. This might result in limited use of () the protocols integrated within the service-oriented architecture as well as () the architecture itself. To prevent this eventual limited adoption, we design and implement an approach that permits to replace at runtime TCP by another protocol X. We realize it in a transparent way to TCP applications, i.e., there is no need to rewrite the code of the latter. During the experiments of the proposed approach, we also notice that the suitable Transport protocol X that should be used as an alternative to TCP varies depending on the application requirements and the network conditions. The goal of our last contribution, listed below, is to enable the selection of the most appropriate L protocol to replace TCP in a given context.

Optimal selection of protocols. As stated above, we noticed that if the choice of the protocol X is made blindly, the application could present suboptimal performances (often) lower than its initial performances under TCP. Hence, we propose an approach that must ensure the selection of the best alternative to replace TCP. This choice is driven by a set of machine learning models, namely decision trees that we trained to feed the knowledge base of our decision algorithms. The attributes of the decision trees are the applications requirements and the network conditions. Therefore, prior to the selection of the better L protocol, we propose () a profiling method that allows inferring the requirements of the (legacy) application and () a parsimonious monitoring that is useful to estimate the state of the network in terms of RTT, loss rate and maximum available bandwidth.

We realize the above contributions within Virtual Transport Layer (VTL), a protocol deployment and data delivery management system designed and implemented during this thesis. VTL follows three main design principles: / the seamless support of legacy applications, i.e., legacy applications might consume Transport layer services without the need to rewrite their code; / the separation of protocol from aware-application Throughout this manuscript, awareapplication is defined as a new brand of application that uses the API provided by VTL system to consume Transport layer services. See Chapter for more details.

, i.e., in line with the serviceoriented approach, aware-application should request Transport services instead of invoking a specific protocol as it is the case in the standard socket API; and / the protocol modularization, i.e., the Transport layer data plane must be organized in such a way to allow the implementation of reconfigurable protocols whose components might be dynamically instantiated and parameterized. We implemented VTL by leveraging and combining two kernel subsystems: XDP and TC, part of eBPF technology. VTL design principles and implementation tools are described more in-depth in the next chapters.

At last, although we fully address Transport layer sclerosis at the end-systems, more investigation and algorithms are required to deal with the middleboxes that populate the core of the Internet. In fact, the current algorithm integrated into our approach seems limited and consists of systematic fallback to TCP or UDP in case of rejection by one middlebox.

. Dissertation Structure

Except for the conclusion, subject of Chapter , the rest of this dissertation is structured around four main chapters.

Chapter , after an insightful analysis of the Transport layer ossification causes, revisits the limitations of previous works that address the ossification of the Transport layer. The lessons learned from this analysis allow us to lay down the fundamentals for what could be the requirements and design principles for VTL. We conclude the chapter by presenting these design principles.

Chapter first introduces VTL and presents its key concepts. Then, we present the detailed functional architecture of VTL by emphasizing on the aspects of dynamic deployment of protocols as well as on the interaction with aware-applications. Finally, we conduct extensive experiments to evaluate VTL, namely the deployment delay of the protocols and the performances (in terms of data transfer rate and latency) of those protocols under VTL.

In Chapter , we present our approach that allows legacy applications to transparently replace TCP with another L protocol at runtime (i.e., during the application execution). Then, we discuss the implementation and evaluate the "costs" and benefits induced by our proposed approach. Finally, we conclude the chapter by analyzing the evaluation results and discussing the findings that motivate the last contribution of this thesis.

Finally, Chapter presents the last contribution of this thesis. It details the approach we adopted to achieve the selection of a better alternative to TCP in order to maximize the performance gains of legacy applications. To conclude the chapter, we evaluate our proposed selection algorithm's precision, and we estimate its benefits, i.e., the average performance (in terms of throughput) it permits the legacy applications to gain. This chapter aims to introduce the general approach followed during this thesis and position it regarding the previous works.

To this end, the chapter is organized into four parts as follows.

First, we provide an insightful literature review that enumerates the different elements that hamper the introduction of innovation within the Internet's Transport layer. Those elements could be summarized by the so-called vicious circle, which is introduced in Section . . Then, Section . presents the previous research efforts that address the Transport layer's ossification issues and points out the shortcomings of those works. Learning from this preliminary review of the literature, we introduce in Section . the requirements and design principles of a new Transport layer system called VTL, which aims to enable the deployment of any new Transport protocol (or protocol component), and ease/stimulate its use by legacy as well as aware-applications. Finally, in Section . , we conclude the chapter.

. Vicious Circle

The deployment and wide adoption of any Transport protocol mechanisms on the Internet rise up several challenges and require taking into account three main stakeholders:

The run-time environment of the protocol components principally managed by OS developers, The consumers of the services provided by the protocols, namely application programmers, The middleboxes vendors which maintain the network infrastructure over which data packets handled by the protocols are transmitted.

Each one of these actors comes with its own requirements and expectations. Thus, the foremost complexity is to find approaches that consistently meet the often opposed requirements of these actors.

: The term userland is often employed : Processors offer several privilege levels that define the permitted actions of the process. Depending on the attributed privilege level, the process might execute certain assembly language instructions, access to specific parts of the virtual address space, etc. In Linux OS, processors use two different modes: kernel mode and user mode. The major difference between the two is that access to the kernelspace of the virtual memory area is forbidden in user mode.

. . Deployment Barriers

The Operating System (OS) constitutes the location environment of the Transport protocols. Basically, every normal process (i.e., user application) running on the OS has a virtual memory associated with it. As illustrated in Fig. . , OS separates the virtual memory space into two main parts: the kernel-space and the user-space . The user process owns the latter whereas the kernel-space is common to all processes running on the system. Therefore, to prevent user processes from interfering with each other, the OS uses a security model based on system calls (syscall for short) to control access to the kernel-space. System calls allow a user process to interact in a safe fashion with the kernel and to delegate to it critical tasks that take place in the kernel-space such as accessing a network device in order to manipulate raw data packets, creating a new file, changing files' permission, etc. As soon as a user process issues a syscall, the processor changes its privilege level and switches from user mode to kernel mode. Then the kernel checks the permit of the requested task and performs it on behalf of the user process.

System calls guarantee the safety of the system. However, due to their built-in operations (functions checks, contexts switching, etc.), the path from the user program to the network interface card (NIC) during data transfer could be very slow. Thus, for selfevident reasons of performance, early works on the Transport layer suggested implementing and executing the protocol mechanisms in the kernel-space of the OS [,]. Most of them went further and proposed to offload these mechanisms in the NIC driver of the endsystem [-]. However, at the expense of performance, a series of studies [-] proposed to move protocol stacks in the user-space of the OS with the goal to gain more flexibility and to ease the integration of new protocol solutions. More recent works in line with this latter approach leveraged software acceleration tools such : The term "benevolent dictator" was used by Eric Steven Raymond to designate, in a project, the developer who decides whether improvements should be integrated or not into the system. The latter usually intervenes to settle disputes and to ensure the sustainability of the system.

System

as DPDK [] or NetMap [] to reduce performance degradation induced by the execution of protocols within a user-space of the OS. Nevertheless, user-space protocol implementations leave security and efficiency concerns on the table (see Section .).

Altogether, the appearance of software acceleration tools such as DPDK or NetMap is relatively recent. So, as stated in the above paragraph, the choice that has been made by OS developers is to dedicate the kernel to the implementation and execution of Transport protocol components. This choice is not without consequence. To provide support for a new protocol, OS developers must integrate it into the kernel which requires an upgrading of their system. OS upgrade is not only time-consuming, very tedious, and error-prone, but it also poses significant software and hardware compatibility issues. For instance, let us consider a memory error such as an attempt of access to an unavailable or not-reserved memory address. In the user-space, this error is managed by the kernel and will lead to a "simple" segmentation fault (or core dump) and the halt of the application involved in the error. However, the same error in the kernel itself might take down the whole OS "at best" as soon as the error occurs, and at worst, several hours after the appearance of the error, which further complicates debugging that is basically difficult due to a dire lack of kernel-friendly debugger tools. Any modification of the kernel code requires the utmost attention to detail. Those modifications are therefore left to the experienced developers of OS vendors and even for open systems like Linux, it takes benevolent dictators to ensure the stability and reliability of the OS. As a result, OS upgrade frequency is slow and for OS developers, only a high demand from application programmers can motivate and quick-off the integration of any new protocol solution.

. . Limited Adoption Root Cause

The standard model TCP/IP of the Internet is a layered model in which each layer offers services to the upper layer and leverages the services provided by the lower layer. Generally, each layer exposed its services via standard interfaces containing the signatures of functions that implement the exposed services.

The main interface used by applications to consume the services provided by the Transport layer (protocols) is the standard socket API []. This API, presented later more in-depth in Chapter , is designed in such a way that the application programmers are required to explicitly choose the L protocol at the designtime of the application (i.e., when the code is written). The first evident consequence is that the Transport services (provided to the applications) are limited to those of the chosen Transport protocol. Also and foremost, to adopt any new protocol solution, programmers must modify their applications' code. This latter corollary might be a factor of more and more complexity and a potential source of instability since it is necessary to rewrite the application each time a new protocol solution is released and best matches the needs of the application.

Our analysis is that to prevent the issues associated with frequent modifications and ensure the stability of their applications, most of the application programmers prefer to rely on standard protocol solutions such as TCP or UDP, which are recognized as stable and available on the mainstream operating systems and supported throughout the Internet, rather than using a new protocol whose reliability and acceptability are not guaranteed, even if this latter is more appropriate to meet the requirements of their applications.

. . Other Factors Out of End-systems

At the birth of the Internet, the logic that prevailed was based on the end-to-end principle [] where the network, composed mainly of routers, had no visibility over what happens beyond the L level.

The only concern of any network router was to forward L packets to the next hop towards the final destination by looking exclusively at the IP header information of the packets. The end-systems should implement the L and above additional services such as reliability, security, etc. The end-to-end principle clearly defines and separates the role of each networked component. Its goal was to enable the introduction of new applications and services at the edge without the need to modify the core network, i.e., the routers.

For a long time, this principle was the subject of global agreement and ensured the popularity and stability of the Internet's TCP/IP architecture. Nevertheless, the situation has changed today, especially for network operators. The latter need to have visibility on the flow of data packets passing through their equipment in order, for example, to troubleshoot and repair failures or to apply judicious differentiation rules on the services they provide. These requirements have gradually led them to populate the network with middleboxes. A middlebox (illustrated in Fig. .) is a kind of enhanced router able to read and modify packets up to the L level and decide to reject any unrecognized protocol. Examples include but are not limited to NATs, IPS/IDS, firewalls, or proxies. The massive introduction of middleboxes has "violated" the end-to-end principle but permits network operators to meet their requirements in terms of performance improvement, security enhancement, optimization of resource usage, fast network troubleshooting, etc. To ensure all of these requirements, middleboxes vendors (and somewhat network operators) are often unwilling to configure their devices to whitelist any new protocol until the most popular OS developers support this latter protocol.

All in all, this global context leads to the well-known vicious circle that we illustrated in Fig.

. Transport Layer: Protocols and Architectures

In the standard -layer TCP/IP model illustrated in Fig. . (a), the Transport layer occupies a pivotal position between the high and low layers. Fundamentally, the Internet's Transport layer ensures end-to-end reliable data moving between applications and provides multiplexing services based on the port numbers. Additionally, it ensures the regulation of data transmission at end-systems as well as the collapse of the network by preventing/reducing the congestion and its side effects. As already stated, its traditional protocols are TCP and UDP. The services provided by TCP and UDP quite reflect the primary services and characteristics of the Internet's Transport layer. TCP is a connection-oriented and bytestream-oriented protocol that offers full reliable and total order Transport services to applications. In contrast, UDP is a connectionless and message-stream-oriented protocol that offers minimal checksumming and multiplexing Transport services. UDP does guarantee neither reliability nor order of the data packets delivered to the application.

Connection-oriented vs. Connectionless.

A typical Transport session usually occurs in three stages of operation: connection establishment, data transfer, and connection teardown. A connectionoriented Transport protocol provides mechanisms for each of the three operations. Moreover, a connection-oriented protocol maintains state information about the connection (e.g., data packets sequence number, congestion window size, maximum packet size (MSS), etc.) during the whole session. If no state information is maintained and if the Transport session only supports the data transfer stage, the Transport protocol is connectionless.

Message-stream-oriented vs. Byte-stream-oriented. When the application submits its payload to the Transport layer -let us assume the message is KB size -the L protocol could segment or not the message before encapsulating it and sending it through the IP layer. If the L protocol segments the application data (for instance, in two . KB messages), the protocol is byte-stream-oriented. The boundaries of the original data of the application are not preserved. Each of the . KB messages has no significance for the application; it is just raw bytes: a reassembly mechanism is mandatory at the receiver side. In contrast, when the protocol is message-streamoriented, it preserves the application data's boundaries: the K message is delivered as it is without any segmentation from the sender to the receiver. If required, the segmentation should be performed at the underlying IP layer. By flexibility, we mean the degree of ease and time required for a protocol to be modified in its internal architecture, updated and redeployed in its production environment. The extensibility of the protocol designates its ability to allow the add of new functionalities to it.

IP IP

, many research propositions have emerged [,]. Roughly, those works take two research directions: () proposing a single/specific protocol and () rethinking the whole Transport layer architecture in order to arrive at a stable, configurable, and extensible communication framework. We discuss some of those researches in the below sections (see Table .). The following presentation does not aim to describe the internal functioning of the discussed protocols and architectures but, for each of the discussed solutions, we focus on (i) the added values of the solution in terms of the new services it enriches the Transport layer with, (ii) the solution's technical specifications (tools and implementation spaces), (iii) and the solution's interactions with the various elements of its external environment, in particular applications.

The final goal is to learn from the limitations of these solutions regarding the ossification of the Internet's Transport layer.

. . Innovations' Enforcement at End-systems

Recall there are two spaces of the operating system (OS) that can accommodate the Transport protocols: user-space and kernel-space. To "force" the integration of new protocols within the OS, three approaches exist: () act like an OS developer and implement in kernel-space the extensions to standard protocols such as TCP, () implement a part of the protocol in user-space on top of UDP, () or move the entire protocol into user-space by leveraging software acceleration tools. () UDP and User-space Protocols Libraries. Operating system (OS) kernel modification is tricky (see Section .); to overcome the associated constraints (development difficulty, slow updates, etc.), a second approach consists of implementing part of the protocol in the user-space above UDP. Two protocols (among others) perfectly illustrate this approach: the modular ETP [] and the emerging QUIC [,].

ETP, an enhanced version of FPTP framework [,], is a modular and adaptive Transport protocol that primary purpose is to equip and reinforce the Transport layer with dynamic behavioral and structural adaptation properties. Behavioral adaptation consists of keeping the same Transport protocol and tuning its parameters in order to modify the Transport services provided to the application. For instance, congestion window resizing is a sort of behavioral adaptation. In contrast, structural (or architectural) adaptation is achieved by an integral replacement of the Transport mechanisms with other ones more adapted to the ongoing network state to meet the application requirements. Replacing the congestion control (e.g., DCCP TCP-like [] by DCCP TFRC []) is an example of structural adaptation. Fig. . illustrates the high-level view of ETP architecture. ETP is implemented in the userland as a Java library and relies on UDP to send and to receive data throughout the network. Originated at Google in and nowadays under standardization at IETF, QUIC is a low-latency and security-oriented Transport protocol. As such, in addition to the traditional Transport services, i.e., reliability and order, QUIC key features are a built-in (payload) encryption service and a low-latency (connection establishment) service. There are more than twenty official QUIC's implementations [] developed in almost all standard languages: C/C++, Go, Java, Rust, etc. All of these implementations, as in ETP, are userland libraries that depend upon UDP to interact with the network. Fig.

. shows QUIC protocol position in the layered Internet TCP/IP architecture.

() Speedy Full User-space Protocols. Deploying a protocol in the user-space above UDP facilitates the protocol extension and increases its update/upgrade frequency. However, performances would take a hit for two reasons. First, the use of UDP at the underlying level implies that the data packets pass through the kernel network stack which will generate overheads due to several additional operations (not necessarily useful for the protocol itself) imposed per packets: generic socket buffer allocations, multiples memory copies, system calls, scheduling, IP table handling, etc. Second, the protocol mechanisms already provided by default by the OS kernel should be reimplemented in user-space by the protocol. For example, QUIC libraries have one or more embedded congestion control mechanisms. Recall that a user process is slower than a kernel thread (see Section .). As a result, the congestion : (i) Standard Protocol Extensions and OS Kernel Patches, (ii) UDP and User-space Protocols Libraries, and (iii) Speedy Full User-space Protocols. controls (in general, the protocol mechanisms) implemented in the user-space have limited performance compared to the congestion controls built-in in the kernel with TCP [,]. To eliminate unnecessary overheads generated by the OS kernel and speed up the user-space protocol, a third approach is, instead of using UDP as substrate, to implement the whole protocol in user-space on top of kernel bypass tools such as DPDK, NetMap, or PF_RING [].

Typically, a kernel bypass tool (a.k.a. software acceleration toolkit) removes the needless kernel operations (enumerated above) and provides to userland programs shared memory buffers where the latter could directly access and get data packets as well as put their payload for immediate transmission over the network interface driver (NIC). These shared memory buffers are keystone for the so-called zero-copy data transfer technique that reduces memory copies costs and enables the data processing acceleration. Hence, the L protocol totally moved in the user-space above DPDK or NetMap should experience better performance. UTCP [] is one of such protocols that rely on NetMap to implement a full highperformance user-space Transport protocol. However, despite their efficiency, such an approach using kernel bypass tools might still pose some security concerns. Indeed, without any proper control mechanisms such as those provided by the OS kernel (namely system calls), the shared memory between userland and kernel could permit the user applications to access critical kernel memory areas without any precaution and result in the panic and crash of the system at the slightest mistake.

In summary, each of the three above approaches demonstrates how to "force" the deployment of new protocol mechanisms within the end-system OS. Besides the specific drawbacks related to each approach discussed above, they have one more additional common limit: they are specific and limited to a single protocol, i.e., they lack a protocol-independent API and then force applications to bind to a unique protocol at their design-time and may, therefore, lead to a slow/limited adoption as explained in Section . . should rather specify the Transport services it wants. The mapping between the required Transport services and the L protocol that matches those services is done at runtime (i.e. when the application is executed) by the Transport layer system itself. This mapping depends on the available Transport protocols as well as on the network conditions. Such an approach aims to ease the adoption of all protocols available on the end-system by non-legacy applications.

. . Rethinking the L layer architecture and its interactions with Applications

The Transport layer architecture proposed by Mohamed Oulmahdi during his Ph.D. thesis [] is in line with the aforementioned service-oriented approach. In , an IETF working group named TAPS [] was chartered to promote and lead this approach's standardization efforts. As of the writing of this thesis, NEAT is the single official implementation of the TAPS standard.

Transport Services (TAPS) standard. TAPS working group aims to: () define the subset of Transport services that are common to the existing (IETF) Transport protocols services, and () expose the identified Transport services through an abstract service-oriented API. Further, TAPS specifies the necessary procedures to discover and to select the appropriate protocol that meets the required Transport services. The currently proposed TAPS API model is illustrated and compared to the standard socket API in Fig. . .

NEAT framework.

NEAT [] is an integral implementation of the TAPS standard that exposes to applications a TAPS-like API and allows the latter to express their desired/required Transport services without the need to specify the Transport protocol to use at their design-time. NEAT is implemented in C language as a user-space library above most common (IETF) Transport protocols (TCP, UDP, SCTP, etc.) running either in the user-space or in the kernel-space. Fig. . shows the architecture of the NEAT system.

Despite its potential to simplify the way applications consume Transport layer services and to break the dependency (especially the static binding) of the application to a single protocol, the service-oriented approach presents two major drawbacks. First, it relies on the assumption that the best Transport protocol to use is already available on the end-system OS and, therefore, lacks a method to dynamically deploy a new protocol mechanism when it is not available at the end-point; the choice of the appropriate protocol is then dependent on the end-system OS network stack. Second, it does not provide any transparent support for legacy applications; these applications should be rewritten directly on top of the service-oriented API beforehand to leverage the new architecture. This last limit could be a barrier to the adoption of this approach for the reasons mentioned in Section . . .

. Handle Middleboxes Traversals

In addition to the issues related to the protocols' integration within end-systems, more recent Transport layer solutions incorporate the fact that the protocols, to be effectively operable anywhere on the Internet, must take into account the middleboxes present at any point of the Internet. Those middleboxes' operations may have an undesired effect on the protocols functioning. As mentioned in Section . , middleboxes can reject the packets whose format, i.e. protocol, is unrecognized. They can also modify the packets even if the protocol is allowed on the middleboxes. This is what Network Address Translators (NATs) do. To achieve their primary task i.e. the translation between public and private addresses, NATs need to modify the packets passing through them (see Fig Three main techniques can eliminate (at least limit) the impact of middleboxes on the protocol: the signaling, the dissimulation, or the fallback to TCP or UDP. Let us consider a NAT middlebox to illustrate each of these techniques.

Signaling vs. Dissimulation

Signaling. Signaling consists of initiating, before the data transfer, a negotiation between both end-systems and the various elements of the network to agree on the various parameters (e.g., the L protocol) to use throughout the data transfer. If successful, this negotiation allows the application of special treatment to the packets of the flow concerned by the negotiation. Let us take the most common example from the literature and call it "example ".

In Connection reversal, a form of reverse engineering, is then used and is based on the use of an intermediate server S called rendezvous server. The server S is not behind a NAT, is well-known by both clients, and is directly connected to client A. Client B will then send a reverse connection request to the server S, which relays it to client A. The latter will therefore connect directly to client B successfully since its NAT allows outgoing connections.

In the second case, i.e. both clients A and B are behind a NAT, the situation gets more complicated. Neither client can connect directly to the other, as their respective NATs block all incoming connections. In this case, the technique employed is that of relaying, which consists of using a third client C as a relay server. Client C is not behind a NAT and is known to both clients A and B. The most commonly used protocol for relaying is the TURN signaling protocol [] which is an extension of the STUN protocol [].

These scenarios are illustrated in Fig. . that is an adaptation from []. The major drawback of signaling is undoubtedly the additional delay it can introduce on the data transfer. Moreover, in the case of relaying, the relay server could become a concentration point for too many relay requests and gave in to a breakdown under unacceptable overload.

Dissimulation. As its name suggests, dissimulation involves "hiding" the protocol data either with the help of encryption or by encapsulation of the protocol data in the packets that take the format of one of the protocols accepted everywhere on the Internet: TCP or UDP (see Fig. .). For instance, QUIC uses both techniques to ease traversal of middleboxes and to reduce their influence on the protocol functioning. Nevertheless, encryption or over-encapsulation will inevitably result in increasing the number of bytes per packet, thus introducing overhead.

Fallback to TCP or UDP as a last resort

There is finally the case where nothing works because the middlebox is not just a "dumb" outbound NAT but has built-in complex algorithms allowing it to detect reverse engineering and relaying techniques or "even better", is combined with firewalls that simply remove suspicious packets. In such situations, a final approach is to fall back to a protocol accepted by almost all middleboxes on the Internet (mostly TCP or UDP). If we go back to example , when the middleboxes do not allow the Skype default protocol to pass, the protocol implemented by Skype systematically switches to TCP. The purpose in case of systematic fallback is to avoid a complete failure of the application: a minimal quality service is better than a faulty service.

All in all, through extensive measurements, the authors of [] have come to the conclusion that "the blame for the slow evolution of protocols (with extensions taking many years to become widely used) should be placed on end-systems". Therefore, we argue that a handy approach should place focus on the end-systems. Nevertheless, this thesis preconizes and integrates a systematic fallback to TCP or UDP in order to prevent complete failure in case of rejection during middlebox traversal. : According to David D. Clark, the stability of a platform defines its ability to make innovations possible [].

A stable platform provides the necessary tools to allow other stakeholders (users, applications, etc.) to introduce new functionality. The most legendary example of a stable platform is the IP layer, which by design has enabled the deployment of applications regardless of their type. Another example is the "Google store" or "App store" which allow developers to innovate by building and deploying their different applications.

. Thesis Approach and Positioning

In the light of the lessons learned from the limitations of the previous work, this thesis proposes an approach that jointly (i) treats the deployment issues within the end-systems, and (ii) facilitates the adoption of new protocol solutions by (aware as well as legacy) applications. We achieve our approach within VTL, a Virtual Transport Layer.

VTL envisions a stable framework that must allow a dynamic deployment/loading of protocols as would do a typical Web browser that enables plugins insertion to extend its functionalities and features. Therefore and taking into account the points discussed in Section . , VTL should provide a safe and isolated runtime environment for protocol mechanisms in the fashion that the integration of new protocol components is transparent to the OS and has little or no impact on it. This should not be obtained at the sacrifice of flexibility. In straightforward terms, VTL should conciliate the performance and flexibility on one side, and on the other side, guarantee the safety and isolation of the end-system OS. Our technical choices have focused on the in-kernel eBPF Virtual Machine (VM) [] as the runtime environment for protocol mechanisms to fulfill these conceptual requirements. Thanks to its integrated verifier (Fig. . and Fig. .), eBPF VM provides necessary isolation and safety: each protocol component is checked before its insertion in the VM to guarantee that its execution will not harm the OS. Furthermore, eBPF infrastructure provides to VTL the ability to introduce programmability within the OS kernel by enabling on-the-fly user bytecode insertion and temporary modification of the kernel's behavior: protocol components could be inserted at runtime without the need to recompile and upgrade the OS. Last but not least, VTL follows three main design principles described below.

Separation of protocol from aware-application.

As already stated, in the standard socket API, the legacy application specifies the protocol to be used at the design-time. This leads to a binding and a dependency of the application to a unique and specific protocol preventing the timely structural adaptation of the protocol to the evolution of network state or to the change of the application's requirements. Our approach breaks this static tie between the application and protocol by providing a protocol-agnostic API to aware-application in the way that the latter expresses its requirements (in terms of Transport features/services associated with QoS parameters) instead of the specification of the protocol to use. The choice of the most appropriate protocol mechanisms to satisfy the application's needs is left to VTL. This principle is in the same line with the TAPS standard [] but goes far by providing seamless support to legacy applications and a stable framework for runtime deployment of protocol mechanisms.

Transparent integration of legacy applications. To recall, the major existing applications use the standard socket API to consume Transport layer services. Most of the time, application programmers are often unwilling to switch from the standard API socket to the API of any new protocol or architecture. Therefore, to ease and stimulate its adoption, VTL provides transparent support to legacy applications i.e. those applications should consume Transport layer services without the need to rewrite them. This may be performed by seamlessly redirecting the socket API invocations of legacy applications towards the protocol-agnostic interface.

Protocol modularization.

In line with the conceptual choices adopted in the ETP protocol solution, we split any protocol in a set of small units called Transport Function (TF) that are packaged in deployable/pluggable software wrappers (such as eBPF programs, loadable kernel modules, or Docker containers). The distribution of TFs interacting on both sides of the communication leads to providing part of the final end-to-end service. This principle eases per-session protocol configuration and reconfiguration. Further, the integration of this principle brings to our approach most benefits of modularization namely (i) the reusability, i.e., folks other than the TFs developers are able to use them in order to compose another protocol without the need either to know or to change the code inside those TFs; (ii) the adaptability, i.e., the ability to align with the evolution of network conditions or the application's requirements by replacing or inclusion of new TF that provides more appropriate features in the novel context; and (iii) the customization/efficiency, i.e., the capacity to tailor the protocol to the application's requirements and therefore reduce overheads by the elimination of unnecessary services.

. Conclusion

This chapter provided a review of the literature on the Transport layer and its ossification issues. We enumerated the different elements that hamper the introduction of innovation within the Internet's Transport layer during this review. We show that these elements formed the so-called vicious circle phenomena that could be summarized as follow: (i) application programmers are unwilling to use a new Transport protocol that is unlikely to work endto-end; (ii) operating system (OS) developers will not implement a new Transport protocol if application programmers do not express a need for it; and (iii) middleboxes vendors (somewhat network operators), will not add support if the Transport protocol is not in mainstream operating systems; the new protocol will not work end-to-end because of lack of support in middleboxes. In Section . , we discussed the most relevant previous works that address the Transport layer's ossification issues and pointed out the shortcomings of those works. Finally, learning from this preliminary review of the literature, we closed the chapter by introducing the requirements and design principles of a new Transport layer system that we called VTL for Virtual Transport Layer. VTL aims to enable the deployment of any new Transport protocol, not only in the user-space but also in the kernel-space; it also facilitates the utilization of the deployed protocol by legacy and aware-applications. In the next chapter, we introduce the VTL system by emphasizing on its dynamic deployment aspects.

Virtual Transport Layer Introduction

. as SCTP, QUIC, and so on. In the first section of this chapter, we introduce VTL by presenting its core concepts. Then, Section . presents a detailed functional architecture of VTL. This description emphasizes on the aspects of dynamic deployment/integration of L protocols within the end-systems' operating system (OS) as well as on the interaction between VTL and awareapplications. The way legacy applications integrate with VTL is described later in the next chapter. In Section . , we evaluate VTL through extensive experiments. Apart from showing the correctness of VTL, this evaluation presents the deployment delay of the protocols and the performances (under VTL) of the deployed Transport protocol mechanisms by taking as reference TCP performances in the same network context. The selected performance metrics are data transfer throughput and latency. Finally, Section . and Section . conclude the chapter with a discussion on closely related research efforts to the contribution presented in this chapter and a summary of learned lessons. .

VTL Core Concepts

As stated in Chapter , we designed VTL around a set of principles, namely the notion of a protocol composition from a set of basic functions. This section introduces the fundamental concepts of this principle and presents an overview of the services and features provided by VTL. It is worth noting that the concepts related to a protocol composition are not new and specific to VTL. Similar notions have been introduced in previous work such as CTP [] or ETP [] described in Chapter . The main goal of the introduction of the below concepts is to show the readers how VTL organizes its data plane for more efficiency in the management of protocol deployment and data delivery.

. . Transport Function (TF)

A Transport function (TF) is the most atomic entity of the VTL data plane that executes a single protocol processing logic such as a checksum calculation or packet numbering. It implements a single local function that could roughly be grouped as follows (see Each TF must be made loadable or pluggable thanks to its wrapping in a software container (e.g., eBPF programs, in the current implementation of VTL). The packaging in a software component of a TF will provide it with at least two essential interfaces: () the input interfaces from which it should receive any packet data or control information; () the output interfaces to which it should push any packet data. Furthermore, TF should have access to a shared memory created and maintained by the protocol graft to which it belongs. Basically, after numbering and checksum adding to the packet's header (), the packet is sent to the receiver through the NIC (). The receiver will then control the checksum and sequence number values (and). The acknowledgment is then transmitted to the sender to signal whether the packet is correctly received (and).

. . Protocol Graft

As illustrated in Fig. . , a protocol graft is a list of loadable TFs with their interaction pattern. The interaction pattern defines the way the TFs are connected, i.e., the sequence in which data are processed by the different TF composing the graft. A protocol graft might provide one or more services such as reliability service, ordering service, multipath service, encryption service, and so on. Contrary to a primary TF which is located on a single side of the Transport session, a protocol graft is conceptually distributed between the sender end-system and receiver ones and provides a comprehensive single or more Transport service(s)/feature(s). The sender side maintains the egress graft, whereas the receiver side maintains an ingress graft. Fig.

.

illustrates a protocol graft distribution for a typical ARQ-based

ARQ is a protocol mechanism that relies on acknowledgments and timeouts to provide reliable Transport service during data transfer. The implementations of its variants are further described in Section . . reliable service; note that this is only for illustration purposes; a more comprehensive reliable service should have many other functions such as duplication control. Finally, at each side of a session, a protocol graft should create and maintain a memory buffer shared between TFs serving to ensure data persistence.

. . VTL Services and Features

VTL core functionality is to deploy the appropriate protocol graft on behalf of the application in order to ensure that data are moved according to the application requirements. To do that, VTL provides applications with an access point to Transport services in order to allow the latter () to express their requirements, () to send and receive data, and () to reset their requirements on-the-fly. The

Transport features Definition Granularity / Scope

Full Reliability Data packets are delivered to the receiver without corruption, no duplication, and no loss.

Single packet Processing Partial Reliability

Data packets are delivered with an acceptable but bounded loss rate.

Full Order Data packets are submitted to the receiver in the same sequence the sender transmitted them.

Partial Order Some out-of-sequence data packets might be delivered to the receiver.

Encryption Data packet contents are not transmitted in plain "text".

Flow Control

Control the sending rate of sender and receiver.

Packets Stream Control Congestion Control

Control the rate of data sending over the network to prevent the latter collapses under congestion.

Multipath

Use multiple network interfaces to transfer data.

: Message-stream-oriented and byte-stream-oriented notions are defined in Section . of Chapter .

access point is explicitly provided from a protocol-agnostic API in the case of aware-application and seamlessly attributed to a legacy application so that the latter can consume VTL services without requiring any modification of its code. From an internal point of view, VTL: ensures the Transport session establishment following a classical client (connect) / server (accept) model; ensures the selection, the negotiation, and the deployment of the appropriate protocol graft; and monitors both the network and application states in order to adapt the protocol graft at runtime to the change of environment.

VTL provides by default a message-stream-oriented service that should be replaced if the underlying deployed protocol graft provides a byte-stream-oriented one. VTL expects to provide protocol developers with the facilities to write, test, and publish new protocols within the end-systems. Again, as stated above, VTL makes it possible to consider (i) the use of protocols that already exist in the operating system and (ii) the deployment of protocols (which do not yet exist in the operating system) in the form of user libraries. We will demonstrate these latter points in Chapters and with QUIC and an SCTP userland version.

VTL allows applications to express their requirements by firstly characterizing the desired Transport services and then associating those Transport services with a set of required or desirable QoS parameters. For instance, a requested Transport feature or service might be expressed in terms of reliability (full or partial), order (full or partial), flow control, congestion control, security, or multipath.

QoS Definition Value Type

Delay

The end-to-end elapsed time between the sending applicative entity has invoked the sending primitive (e.g. send()), and the moment the data has been made available to the receiving applicative entity.

scalar in ms

Throughput

The amount of sent or received data per unit of time. scalar in Mb/s

Loss rate

The ratio of packets that should fail to arrive at the receiver without impact application well functioning.

scalar in percentage

: There is no standard definition of control or data planes. In the SDN context, for instance, the data plane is composed of switches ensuring data forwarding. In contrast, the control plane is responsible for dispatching and dictating the forwarding rules to the switches. In our work, the control plane is responsible for the management and deployment of the protocol functions, and the data plane is in charge of ensuring the execution of the deployed protocol functions by providing the appropriate runtime environment.

In addition to these Transport features, VTL allows applications to associate QoS parameters that can be expressed in terms of maximum acceptable delay or latency (max _ delay, expressed in ms), minimum throughput (min _ throughput, expressed in Mb/s), and allowable loss rate (max _ loss, expressed in percentage). Some requirements defined by applications may be redundant. For instance, an application that requests to set its allowable loss rate (max _ loss) to zero and simultaneously invokes the use of a fully reliable Transport service. This thesis does not consider these redundant (and somewhat inconsistent) cases. The set of considered Transport services and QoS parameters are provided in Table . andTable . , respectively.

. VTL: Design and Implementation

In this section, we begin with a description of the main functional components of VTL architecture. Then, we present the background on relevant technical aspects of VTL. For recall, we discussed in Section . (of Chapter) the design requirements that lead to the major technical choices we made. Finally, the rest of the section describes in more details the implementation of VTL, namely the Transport session initiation, the protocol negotiation and deployment, and the data transfer stage between and within the end-systems.

. . VTL Architecture Overview

We present the main components and workflows of VTL in Fig.

. Two main actors interact with the VTL system: the aware-application and the legacy application. In general, an application is defined as a computer program running in the user-space of the OS and that uses explicitly or implicitly VTL to send and to receive data in order to perform its business process (e.g., web browser, media player, file transfer, etc.). To recall and more specifically, () aware-application is defined as an application that should be aware of VTL and uses the provided Protocol-agnostic API to send and to receive data, and () legacy application is defined as an application that uses the standard socket API to consume Transport layer services; the latter should be supported seamlessly, i.e. without any modification of its code.

VTL control plane and data plane share information (ACK/NACK, KTF negotiation state, data packets, ...) thanks to a set of shared MAPS (described more in-depth later). These MAPS are attached to the root filesystem /sys and serve as a buffer for deployed protocol grafts. VTL defines two main workflows: KTF deployment workflow and data delivery workflow that we further described in subsection . . and subsection . . , respectively.

. . Background

This Tail calls. In its early versions, eBPF limits each program to a maximum size of BPF instructions. In order to overcome this size limitation, eBPF integrates the concept of tail calls that could be used to chain up to different eBPF programs; tail calls feature is an enabler of implementation of modularization. Nevertheless, it is worth noting that since Linux version . . , released in , an eBPF program can contain up to M (one million) instructions. Tail calls concept is illustrated in Fig. . .

Helper functions.

Recall the security model used by the kernel to protect itself from user-space programs is based on system calls that can only be used by the user-space processes; the processes already running in the kernel, such as eBPF programs, cannot use the system calls. Therefore, the question is: how can the kernel protect itself from the program running in the kernel-space without limiting the program capacity/functionality? To face this concern, eBPF introduced the so-called helper functions. Basically, helper functions define a list of functions that an eBPF program can call during its execution. Thanks to helper functions (and eBPF verifier), access to kernel functions by eBPF programs is strictly controlled to prevent OS damage. In other words, helper functions allow eBPF programs to interact directly with the kernel in a safe manner. For instance, to perform tail calls, bpf _ tail _ call() helper function may be used : The full name is BPF _ PROG _ TYPE _ -SOCKET _ FILTER. We omit the suffix BPF _ PROG _ TYPE each time we refer to the type of eBPF program.

: sk _ buff is the common data structure used by the Linux OS to represent any packet in the kernel.

by the ongoing eBPF program to ask the kernel to jump to another eBPF program.

Each eBPF program that is deployed inside the OS kernel has a specific type and must be attached to a hook point, also known as a kernel event (incoming packet, system calls, socket operations, etc.). Then, each time the event occurs, the eBPF program attached to it is executed. For instance, eXpress Data Path (XDP) [] and Traffic Controller (TC) [] are two main networking hook points around which we built the VTL system. XDP and TC reside at different levels of the network stack as depicted in Fig. . . The type of eBPF program indicates three primary information: () the set of helper functions it has access to, () the data structures (i.e., the maps) that the program is allowed to use, and () the hook point to which the program is attached. For example, a SOCKET _ FILTER program type can access and manipulate sk _ buff structure [] whereas an XDP program type cannot do that but must instead use a specialized xdp _ buff structure [].

eBPF technology introduces programmability in the Linux kernel by allowing runtime code injection within the kernel. As illustrated in Fig. . , it provides the ability to dynamically add functionalities to the kernel from user-space programs compiled by LLVM/Clang, a user-space compiler. Thanks to the Just-In-Time (JIT) kernel compiler and the eBPF verifier, each functionality is safely added and is efficiently executed. Contrary to kernel patches [] that permanently modify the operating system (OS), eBPF has the additional advantage of allowing temporary modification of OS kernel behavior. This enables fast prototyping and testing of new features so far as in the case of failures or bugs, the last added features may be "easily" removed to restore the initial and stable state of the kernel. To deploy Transport functions in the OS kernel, we first considered the use of Linux Loadable Kernel Module (LKM) approach []. As eBPF, LKM allows hot plugging of modules in the OS kernel thanks to tools such as modprobe []. As its name suggested, a kernel module is a regular program that code resides and executes in the kernel-space rather than in user-space. Unfortunately, during our first prototyping, we face the most common issue of kernel module utilization: the whole system frequently crashes at the slightest mistake; in other words, there is no verifier to guarantee the safety of the OS. This is a major difference with eBPF programs; kernel modules are entirely part of the kernel. As such, kernel modules have the same rights as the kernel itself and can perform without any control, any operations (call any kernel functions, access any memory buffer and register, etc.). Furthermore, there is a lack of kernel debug tools and it takes time to troubleshoot the code and repair the bug.

. . Digging into VTL Implementation

In this subsection and the following, we begin by diving more in-depth on the technical aspects of VTL design. VTL leverages and combines two kernel subsystems: eXpress Data Path (XDP) and Traffic Controller (TC). The aim of their association is (i) to grasp the outgoing packets as late as possible just before they reach the network interface card (NIC) and (ii) to pick up the incoming packets as early as possible before they reach the legacy network stack. Therefore, on its egress path, VTL places TC hooks under the IP layer in order to process all outgoing packets as soon as they left the kernel network stack. hooks to the network interface card (NIC) to get and process the raw incoming frames as soon as they enter the NIC without letting them reach the legacy network stack. The goal is to fast deliver the data to the application and altogether remove the legacy network stack's overheads at the receipt. TC and XDP are incorporated into eBPF infrastructure, which allows using its verifier to guarantee the deployed bytecode are safe and then reduce most security concerns and end-system crash risks.

KTF: an eBPF instantiation of TF.

In the current implementation of VTL, a Transport function (TF) is instantiated in the form of eBPF programs and called KTF for Kernel Function Transport. KTF inherits common properties of an eBPF program, i.e.:

() Input interface: a hook point serving as an entry point of the function (TC to get all egress packets, and XDP to pick all ingress packets as soon as they arrived at the network interface card); () Shared Memory: MAPS, serving as data buffers to store packets for eventual retransmission, or to share control information with the user-space programs such as a list of already acknowledged packet or connection negotiation state; () Output interfaces: helper functions used to implement the core algorithms of the protocols and serving as output points towards the next KTF, the application, or the network.

VTL extends helper functions provided by the native eBPF VM in order to address some specificity related to L protocols functioning. For instance, a "simple" stop-and-wait protocol needs a timer to trigger packet retransmission in case of loss. Nevertheless, there is currently no timing control helpers. VTL then adds and exposes to KTFs a set of helper functions necessary to start and stop a timer. Table . summarizes the set of helper functions added by VTL.

. . Aware-application Session Initiation

Obtaining VTL Socket. In order to transmit and receive data, the aware-application must first obtain a VTL socket. value to NEGO. The packet is finally transmitted to the network device . The negotiation acknowledgment packet, sent by the receiver . in reply to the negotiation request, is intercepted and processed by listener _ tf _ sec which updates the qos _nego _ MAP to signal to Control Broker the receiver response to negotiation request . In the case of acceptance (value set to N _ ACCEPT in the map), Control Broker triggers the deployment of the selected egress graft to replace the canonical one .

Receiver side: the server of the negotiation. After the application has finished obtaining a VTL socket, it issues a blocking request to the protocol-agnostic API ' to expect and to retrieve the outcome of the negotiation handled by Control Broker. At the receipt of a negotiation packet from the sender , ingress _tf _ sec delivers it to Control Broker which extracts the gid value of the packet . Then, it consults the KTFs pool to confirm the availability of the ingress graft requested by the sender and updates the qos _ nego _ MAP to N _ ACCEPT; if the availability of the requested KTF is not confirmed, the map is updated at N _ REFUSE . . In the case of availability of the requested graft, after updating the map, Control Broker triggers the requested ingress graft deployment that provokes systematic deactivation of the ingress canonical graft . . Each time it receives and passes a negotiation packet, ingress _ tf _ sec waits for a while, then reads qos _ nego _ MAP to check the decision taken by Control Broker . and ends up by sending acknowledgment packet to : A common list of verifications include but are not limited to: (i) the syntax of C code instructions, is there any infinite loop without explicit stop condition; (ii) the way the protocol component interacts with the kernel, is there any use of unknown or unauthorized helper function; (iii) the memory access, does the KTF try to access a specific memory without prior check the accessibility of this memory; and (iv) the number of instructions in the KTF that must be under M (for all Linux version prior to v . .). the sender . . This acknowledgment packet should take one of the two following values: NEGO _ ACK in case Control Broker validates the graft negotiation request or NEGO _ NACK if it does not.

. . KTFs Deployment Workflow

KTF deployment workflow defines how VTL deploys a new protocol function within the eBPF VM and attaches it to the right hook (TC or XDP) depending on whether the KTF is intended to process incoming and/or outgoing packets. Control Broker component handles the KTF deployment that can be triggered by three events:

(i) an invocation of the regular socket API or the protocolagnostic API by applications, (ii) a request for a connection from remote end-system received on VTL socket (VTL_SOCK), and (iii) a change in network condition reported by the NetMonitor component.

When Control Broker requests the deployment of a specific KTF stored as a user-space object file, Launcher component picks it in the KTFs pool and starts its loading within the eBPF VM. KTFs pool is a repository of a set of precompiled and ready to be deployed KTFs. The precompilation of KTF in the form of an object file eliminates overheads of the userspace compiler (Clang/LLVM) during the deployment of protocol functions (see Section .). Before its effective loading, a KTF is checked by the verifier that performs a series of verifications to ensure that the deployed KTF will not crash the OS kernel. As soon as the verifier finishes its checking, the KTF is compiled by the in-kernel compiler (JIT) in the eBPF native assembly code of the end-system CPU. The loaded KTF is finally attached to the network interface and ready to process all incoming packets if attached to the XDP hook and all outgoing packets if attached to the TC hook.

. . Data Delivery Path

Data delivery workflow determines how application payloads and protocol headers are moved on egress/ingress paths by VTL framework in order to ensure optimal data transfer between endsystems. Application data transfer may be preceded by a protocol graft negotiation stage that ensures that the appropriate KTFs (i.e., satisfying application needs) are deployed and ready to process incoming and outgoing traffics. Data Broker controls data moving by configuring and providing to the application a VTL socket that, as previously stated, emulates either a RAW socket for data emission and/or an XSK socket for data receipt (see Fig. .). After having obtained a VTL socket, a VTL aware-application is able to use the protocol-agnostic interface to send and to receive data. During data moving, the interactions between the application and VTL system are performed asynchronously thanks to a pair of buffers at the transmission (Tx buff and skb buff in Fig. .) as well as at the reception (Rx buff and umem in Fig. .). Rx buff and Tx buff are useful to ensure the protocol graft reconfiguration without interrupting application. Application ready to send data puts it in its Tx buff where Data Broker picks it up, forms VTL packet payload, and pushes it on the skb buff for the IP layer.

There is no intermediate IP layer processing at the packets' reception, and the received data should be sent directly to Data Broker in userland for fast delivery to the application. With the aim of making use of XSK socket zero-copy capability, Data Broker and the OS kernel share the umem buffer. Since the umem buffer is shared, the memory access conflicts and deadlock events might happen. To prevent that, VTL leverages AF_XDP socket family [] features to associate two ring buffers to the umem buffer: the fill ring and the Rx ring. The former is used by Data Broker to pass the ownership of the packet buffer to the kernel (i in Fig. .) whereas the kernel uses the Rx ring to pass the ownership of packet buffer to Data Broker (ii in Fig. .). In this way, when the kernel receives a buffer on its fill ring, it knows that the umem memory space associated with the buffer is free and that it can safely put incoming frame data on this space. In the same way, when Data Broker receives a buffer on its Rx ring it knows that the umem space associated with that buffer is free and that it can pick up the data there without conflict with the kernel. Finally, Data Broker makes payload data available on the Rx buff for the application where this latter may retrieve it by making use of the protocol-agnostic API.

. . VTL Aware-application Session Summary

This section summarizes a typical Transport session of an awareapplication by a description of the Protocol-agnostic API and its interaction with applications. Protocol-agnostic API component ensures the principle of the separation between application and protocol. It is a shared library used by aware-applications to express their requirements and to send/receive data. The protocol-agnostic API is easily extensible and may integrate other functions in the future to respond to more extensive use cases. We describe the currently implemented functions through a typical function call flow as illustrated in Fig. . . Furthermore, Table . summarizes the way applications should specify parameters when using the protocol-agnostic API.

Prior to any request, the aware-application must call into vtl _init() function that will trigger the creation and configuration of a new VTL socket. At this stage, thanks to canonical grafts associated with the newly created VTL socket, the application (without any special requirements) may directly enter in its Tx/Rx loops to start data transfer by issuing vtl _ send _ data() or vtl _ recv _ data().

In contrast, before entering in its Tx/Rx loops, a sender application having specific requirements may call into vtl _ negotiate() to transmit its needs to the VTL system. At the receiver side, the application must invoke the blocking function Close VTL socket and free its associated resources (buffers, KTFs, etc.)

should return a positive value (the file descriptor of the newly deployed graft) to signal a successful negotiation to the application or a negative value in case of failure. At the end of data transfer, applications should issue vtl _ close() function to close the file descriptor associated with VTL socket; this will (i) free the buffers associated with the VTL socket as well as (ii) unload the KTFs of grafts associated with the socket.

. Carried Out Use Cases and Performance Evaluation

This section aims to demonstrate the ability of the VTL to allow the dynamic plugin of KTFs in response to service requests. We also assess VTL outlooks' benefits, thanks to the evaluation of the performances resulting from the deployment (under the VTL) of Transport protocol mechanisms. The reference we used to discuss the obtained results is TCP (cubic) that we evaluated in similar network conditions.

In terms of developments, we revisited and implemented, from scratch, a set of protocol mechanisms well-known in the literature.

As stated above, the goal is to demonstrate the dynamic deployment ability of VTL and show how the L protocol functions can be implemented as eBPF programs. All implemented mechanisms have the same structure. At the sender side, the egress graft maintains two KTFs: one TC section named egress _ tf _ sec that ensures the processing of all outgoing VTL packets, and one XDP section named listener _ tf _ sec whose job is to process acknowledgment packets. At the receiver side, the ingress graft runs a single KTF On its side, at each packet it receives, the ingress canonical graft extracts the type value of the packet before passing it either to Control Broker or to Data Broker in userland. When the packet type is DATA, the ingress canonical graft immediately passes it to the Data Broker and continues processing the next incoming packet. Otherwise (i.e., the received packet is negotiation one), it waits for the outcome of negotiation handled by Control Broker, transmits an acknowledgment to the sender, and pursues the next packet's processing. Moreover, the ingress canonical graft has the property to be systematically activated (resp. deactivated) when there is no other XDP section running on the network interface driver (resp. when a new XDP section is attached to the network interface driver). This latter property is essential to ensure a stateful reconfiguration of KTFs (discussed in subsection . .).

ARQ Reliable Graft Based on Go-back-N.

Go-back-N is an optimized version of stop-and-wait algorithm []. Instead of sending only one packet at a time, the Go-back-N mechanism allows the sender to transmit at a time N > packets without waiting for acknowledgment from the receiver. The aim is to reduce at maximum the idle time of the simple stop-and-wait flow control. Furthermore, to ensure in-order packet delivery, sender and receiver make use of : Note that the assumption is made here that there is no loss on ACK packets.

sequence numbers as opposed to stop-and-wait algorithm where there is no need for numbering packets . Therefore, at the receiver, in addition to data integrity validation, ingress _ tf _ sec makes sure that the packet is in sequence before positively acknowledging it.

Selective Repeat (SR) Protocol Graft. Selective Repeat protocol is a bit more complex and optimized version of Go-Back-N protocol mechanism. Like the latter, Selective Repeat mechanism allows the sender to transmit at a time N > packets without waiting for acknowledgment from the receiver. N is the sender window size. But, contrary to Go-Back-N, a lost packet is retransmitted alone rather than retransmit all packets of the window from that point. At this end, the receiver side (ingress _ tf _ sec) accepts and buffers out-of-order but not corrupted packets, waits for retransmission by the sender of lost/corrupted packets of the window before delivering the out-of-order packets to the application.

Partial Reliable (PR) Graft. Partial reliability concept consists of allowing KTFs not to issue at reception all the data packets submitted by the sender, provided to respect a maximum percentage MAX_LOSS of allowable losses (e.g. % of the packet data may be lost). The goal is to deliver, as quickly as possible, the out-of-sequence packets data to applications that tolerate a certain amount of loss (such as multimedia applications). This considerably reduces the transmission delay with less impact on the proper execution of the application. The assumption is made that the loss of one data packet (i.e. image) every ten images is acceptable because it is not perceptible by the human's eye. In the first case, only one image (I) is lost, the data packet containing that image is not retransmitted. In the second scenario, the images I and I are lost. The first lost data packet is not retransmitted but to fulfill the MAX_LOSS requirement (% here), the second lost data packet (I) is retransmitted.

. . Runtime (Re)configuration of Grafts Use Case

VTL leverages eBPF infrastructure dynamic reloading features to guide runtime configuration or reconfiguration of protocol grafts. It consists of a dynamic deployment / replacement of KTFs attached to TC or XDP hooks without application outage. Reconfiguration may be performed either to end up a successful protocol grafts negotiation process or when NetMonitor component reveals change within the network that requires adaptation actions. VTL can perform two types of runtime reconfiguration: a stateless reconfiguration, to fasten the adaptation actions at the expense of packet loss, or a stateful reconfiguration, more conservative reconfiguration approach that ensures that no packet is lost or dropped at the cost of additional overheads and delay, especially at the sender (see Fig.

.

). The right tradeoff must therefore be found depending on the application use scenario.

During a stateful reconfiguration, on the egress path, VTL leverages the fact that TC subsystem allows running more than one TC hook at a time on the network interface driver to load the new egress graft before unloading the old one. In this way, during a while, all packets data transmitted by the application are processed sequentially by both egress grafts. Contrary to TC hook, on the ingress path, XDP subsystem does not allow executing more than one XDP hook at a time on the same NIC. To solve this issue, owing to make heavy use of a new map to store umem buffers (see Fig. .) before old ingress graft unloading, VTL leverages the systematic activation properties of the ingress canonical graft (when there is no XDP section running on the NIC) to ensure the persistence of incoming packets processing. At the loading of the new graft, the canonical graft is systematically deactivated.

. . Testbed Setup and Methodology

We implemented and evaluated VTL under Ubuntu distribution running Linux . . . The goals of carried experimentation were to evaluate (i) the correctness of VTL, i.e. its protocol deployment and reconfiguration capabilities, (ii) the performances of VTL especially in terms of deployment delay, and (iii) the performances under VTL of the implemented KTFs and protocol grafts namely in terms of data transfer latency and throughput. VTL experiments are performed under a testbed constituted by two hosts linked by one router. The router and the associated network parameters are emulated thanks to netem tool []. Indeed, netem allows us to apply random delay on the network link. The delay is uniformly distributed with mean value at the fixed RTT (ms in this experiment). This property is useful to simulate the delay variations that occur in the Internet. Finally, combined with the delay and the bandwidth, the random loss applied to the link permits us to assess the protocol reaction to data packet losses and the way this reaction could affect the final end-to-end performance achieved by the protocol and perceived by the application. Unless otherwise stated, the network parameters used during experimentation are reported in Table . . Each host is equipped with Intel Core i -U CPUs, . GiB RAM, and Qualcomm Atheros QCA NIC driver.

Further, we built two VTL aware-applications, one acting as a data streaming server and the other one playing the client role. The server application is able to stream several kinds of files with different sizes and formats ranging from a simple KB file text to more than MB video files. In order to capture outliers and thus avoid biases, for each metric evaluated, we repeated the experiment enough (at least trials) and observed the standard deviation of the sample. The mean of the observed sample is taken only for a relatively small standard deviation. As already stated, the reported evaluation of the legacy TCP (Cubic) is provided only as a reference to discuss the evaluated KTFs and protocol grafts. Therefore, this is not an absolute comparison with TCP so far as a fair comparison would (among other requirements) require a large scale configuration and deployment. The window size of the Go-Back-N, the Selective Repeat, and the partial reliability grafts is set to . Finally, to avoid interference with packets not directed to VTL within the testbed environment, we set the IP protocol number of VTL packets to experimental value (that corresponds to the hexadecimal notation 0xfd) [].

. . Microbenchmarks

KTF's Size and Graft Negotiation Delay.

Basically, a connectionoriented Transport session takes place in three stages: connection establishment, data transfer, and connection closing (Section .). Under VTL, the delay of session establishment is the amount of time required to negotiate and deploy protocol grafts. The delay of grafts negotiation is an important metric because it indicates the opportunity of whether or not to consider a dynamic deployment. Long negotiation delay could be a real limit to the practicality of the dynamic deployment, especially for latency-sensitive applications. Therefore, the first step of our evaluations consisted in assessing the delay required to complete protocol graft negotiation procedure. This delay is composed of / packets processing delay (negotiation one and its associated acknowledgement), and / KTFs deployment delay at both sides (sender and receiver). Nevertheless, the carried-out experiments demonstrated that the packet processing delay is negligible compared to the delay of KTFs deployment precisely when the RTT is low (as that is the case here). Consequently, the results reported in Fig. . As illustrated in Fig. . , the delay of one KTF deployment is the sum of the compilation delay (T) and the loading delay (T +T). The former measures the time required by the userland compiler Clang/LLVM to compile the KTF from a source file to object file. Further, the loading delay is the total time elapsed during verifier/JIT operations (see note in Section .) and the XDP (resp. TC) hooks attaching performed by iproute2 [] (resp. tc []) tool. Based on this breakdown of the negotiation delay, to reduce the deployment delay (i.e. the negotiation delay), the first and intuitive approach is to precompile and to store KTFs/grafts as an object file rather than a source file. This will obviously eliminate userland compilation delay during the deployment. The results reported in Fig. . validated this intuition and most importantly showed that the benefit of precompiled grafts is not negligible. In fact, we found that when the KTFs are precompiled and stored as object files, the total delay of protocol grafts negotiation could be reduced by % to %. Moreover, we noted that the negotiation delay increases with the size of the grafts, which makes sense in view of the important part of the deployment delay over the total cost of the negotiation procedure. : We define FCT as the amount of time elapsed between the first packet sent and the last packet received during the Transport session.

Grafts

The SLoC indicates the number of instructions in the source code. It is commonly used to estimate the complexity of the code and the effort required to produce the code. The SLoC can also be used to get information by the program size.

Given the significant reduction enabled by precompiled grafts on the negotiation delay, one might be tempted to precompile all grafts and store them as object files in the KTFs pool. Nevertheless, a closer look at Table . that provides the statistics on the complexity of the grafts shows that even if the precompiled grafts have a definite advantage on the negotiation delay, they are bulkier than the nonprecompiled grafts (i.e. stored as source files). For example, for a canonical graft, it takes times more memory space to store its precompiled version (. KB) than its source version (. KB). If the KTFs pool is small and the end-system has a large storage capacity (as in most commodity computers.), the size of the precompiled grafts will not be a limit. This will not be the case when the KTFs pool will store more and more protocol grafts or when the end-system will have less storage capacity (such as on a microcontroller). Moreover, in a scenario where protocol grafts, instead of being stored locally, should be retrieved from a remote server, a large graft will undoubtedly take longer to be downloaded. This will have a negative impact on the delay of the graft negotiation phase. Finally, the impact of protocol graft negotiation delay should be more or less cushioned by the actual duration of the transfer of the application's data. That is to say, for a short duration data transfer, it might be more interesting to keep the canonical grafts whereas for a transfer of large amounts of data, the application could afford to trigger and wait for the completion of a negotiation procedure more.

Data Moving Performances: latency & throughput.

In addition to the session establishment latency represented by the graft negotiation delay, we evaluated the data transfer performances of each implemented protocol graft under the streaming of files of different sizes. The evaluations were performed within several network conditions by the variation of the network loss rate. The results are reported in Fig. . and show the file completion time (FCT) and the data transfer speed rate. The acceptable loss rate in partial reliability graft is set approximately at %. According to [], this is the maximum loss rate that can be resorbed by adaptive coding [] for some applications such as multimedia transfer.

When there is no packet loss in the network, all protocol grafts have almost equal performances (i.e. FCT and throughput). For small files (MB), TCP clearly presents the lowest performances. However, when the file is a bit larger MB), TCP achieves better throughput and FCT than all protocol grafts executed in VTL. Under packet losses, as expected, Go-Back-N graft presents the worst performance. The severity of this poor performance is proportional to the level of the loss rate. Contrary to the lossless network environment where TCP always presents better performance than all protocol grafts when the file size is large, we could : The window size is definitely not the throughput, but their variations trends are similar. Indeed, th gpt (1 -loss_rate) * win_size. note in Fig. . (e) and (f) that partial reliability graft has better performance than TCP. Two factors could explain this: first, the partial reliability graft does not systematically retransmit all windows containing lost packets unless the number of lost packets is greater than the acceptable loss rate (out of packets %). Second, it is well-known that when TCP experiences losses, it exponentially decreases its congestion window (i.e. its data sending speed rate).

Finally, we demonstrated that VTL can perform a runtime reconfiguration of protocols based on a straightforward predefined reconfiguration rule. The metric under monitoring by NetMonitor component during this test scenario is the RTT that is reported with . ms periodicity. That is to say, the RTT of the network link is calculated every . ms.

The rule is the following one: when RTT < 300ms, VTL deploys and maintains the use of the Go-Back-N protocol graft and as soon as RTT300ms, it systematically triggers the replacement of Go-Back-N by the partial reliability protocol graft with MAX_LOSS keep at approximately %.

The file used in this use case is a MB video file. We evaluated two types of applications: VTL aware-application and TCP application. For each application, the scenario is identical. During the first seconds, data packets are transferred under RTT of ms. Between the th and the th second, we switched the RTT from to ms and observed the adaptation actions implemented by the VTL. The results (see Fig. .) show that VTL is able to adapt to the network conditions in order to limit performance degradation. Indeed, we can observe in Fig. . that when an additional delay is introduced at ~ ms, TCP throughput significantly decreases. This decrease remains permanent. However, VTL first experiences the effects of the increased delay before slightly offsetting the impacts of the change in network context by replacing the Go-Back-N protocol graft with partial reliability one.

. Closely Related Work and Discussion

There are some works in the literature that relies on the dynamic deployment of code to extend the Transport layer and make it more flexible. The seminal work that relies on this approach is STP [] proposition. STP is a framework that allows the deployment of TCP extensions. Its primary goal is to speed up the upgrading of TCP protocol within the end-system by the use of mobile codes [] that are exchanged remotely between end-systems. STP prototype is written in Cyclone [], a safe dialect of C language.

More recently, PQUIC [] introduced a prototype of a framework able to dynamically extend QUIC protocol by loading at runtime new Transport protocol plugins that contain the code implementation of the mechanisms. PQUIC relies on a user-space version of eBPF infrastructure. Nevertheless, STP and PQUIC keep the binding to a specific protocol, TCP in the case of STP and QUIC in the case of PQUIC. That is to say, they do not provide a protocol-independent API to applications: this prevents applications from the use of new dynamically added functionalities if these applications are not written for the specific protocol and its extensions. As discussed in Chapter , this might present a limit to the use of these solutions. In fact, that is already the case with STP that was released several years ago but is not available on the Internet.

. Conclusion

In this chapter, we introduced VTL, a system that can timely and effectively deploy Transport protocol functions within the OS kernel and ensure their flexible usage by applications. We implemented VTL by relying on a combination of XDP and TC Linux subsystems, part of the eBPF infrastructure. The use of eBPF allows VTL to ensure the extensibility and flexibility of the Transport layer without sacrificing the isolation and the safety of the end-system OS. To evaluate VTL, we implemented from scratch a set of protocol mechanisms. During our experimentation, we found that VTL can quickly deploy protocol functions (KTF), especially when the deployed KTFs are precompiled and stored in a dedicated repository. Further, we evaluated the implemented protocol mechanisms' performances in terms of the data transfer latency and data speed rate. Taking reference to the legacy TCP, the results showed that implemented protocol mechanisms present good performances when executed under VTL. This chapter focused on the dynamic deployment aspect of VTL and the way it interacts with aware-applications. In the next chapter, we will present how VTL integrates into a transparent way legacy application and allows the latter to use any Transport protocols other than the standard TCP. To address this limited use of L protocols other than TCP, one possibility is to replace the socket API with a generic protocolindependent or service-oriented API so that the application no longer chooses the L protocol to use neither during its development nor during its execution. Our first contribution, presented in the previous chapter, is in line with this approach that we enhanced by providing a stable system called VTL that enables dynamic deployment of Transport protocol functions within the end-system OS. The aim of the service-oriented approach is to break the dependency (namely the static binding) of the application to a single protocol. This approach is promising and is currently promoted by the IETF working group TAPS [].

Transparent

However, a major question remains: how to port existing TCP applications to the new API? Right now, the answer to this question will require to modify the legacy applications. Based on the lessons learned from the vicious circle (see Chapter), we argue that the need to rewrite the legacy applications could be a barrier to the adoption of the new service-oriented API. This should result in limited use of () the protocols integrated within the VTL, as well as () the VTL system itself. To prevent this eventual limited adoption, we proposed in this chapter an approach that permits to replace at runtime TCP by another protocol X. We realized it in a transparent way to TCP applications, i.e. there is no need to modify the code of the applications. The approach is implemented by the Hooker component of VTL (go back to Fig.

.

for VTL architecture overview).

This chapter is organized as follows. We first outline in Section . the state of the art of existing approaches similar to our proposition. In order to apprehend the introduction of Hooker, subject of Section . , we provide a background on TCP and the socket API in Section . . Then, in Section . , we carry out thorough evaluations of the Hooker component in order to assess the functional properties as well as the performances of Hooker namely the delay of the TCP replacement and data redirection operations. Finally, Section . concludes the chapter and motivates the contribution presented in the next chapter.

Note: This chapter's reading cannot be dissociated from that of the previous chapter (at least from subsection . .). In the following, we assume that the reader has a basic knowledge of eBPF and the main elements of its architecture, notably the maps and hook points. .

. Related Work

(a)

). To ensure the interconnection between these different types of systems, the need for host-level (i.e. Transport-level) interoperability appeared. To fulfill this requirement, in , I. Groenbaek proposed, in [], protocols converter illustrated in Fig.

. . The fundamental idea of protocols converters is to split the Transport session in two: TCP session at one side and TP session at the other side. This is one of the first steps towards the violation of the end-to-end principle described in Chapter . Since many researchers followed and extended Groenbaek's idea leading to what is commonly known today as proxy [,].

Like a protocol converter, proxy is a kind of relay equipment that ensures the translation between two different protocols of the same layer of TCP/IP. In addition to the primary task of protocol conversion, a series of proxies known as PEPs (Performance Enhancing Proxies) [] are able to improve the performance of several protocols such as TCP over satellite links. Albeit most of the proxies operate at the Internet's Transport layer, there exist also several kinds of proxy operating at the application layer namely web proxies such as Squid tool [] that targets and enhances HTTP(S) protocol [].

While proxies were originally developed to ensure interoperability between different protocols and to improve these protocols' performance, it soon became apparent that their use could also be useful to address the limited use of Transport protocols. To achieve this goal, the use of the proxy should not require the modification of the applications on the end systems, i.e. the client application should not have to send data packets to the proxy but instead continues to send data to the server application: in this case, the proxy is qualified as a transparent proxy. Following this approach, several works have aimed to stimulate the use of Transport protocols other than TCP, in particular SCTP or MPTCP.

In order to gradually enable the deployment and the use of SCTP on the Internet, the authors of [] and [] propose TCP-SCTP mapping system for transparent redirection of TCP connections to SCTP. In [], the mapping tool acts like a transparent proxy called CMG (Connection Manager Gateway) that merges multiple TCP connections into a single SCTP association whereas in [] the mapping tool is a "shim layer" designed to be directly integrated into the end-system OS. Similar to CMG and Shim Layer, MiMBox [] is a protocol converter that ensures the translation between the regular TCP and its multipath extension i.e. MPTCP.

However, the above-mentioned solutions present two main drawbacks. First, they address only the adoption issues of only one Transport protocol: for instance, SCTP in the case of CMG and Shim Layer mapping tools, and MPTCP in the case of MiMBox protocol converter. They are what we could call a one-to-one protocol translator and therefore do not provide a comprehensive way for mapping TCP to multiple protocols. Second, even if there is no need to alter the application itself, most of those solutions require the change of the socket API thanks either to kernel patches such as done by Shim Layer, or to the preloading technique in CMG. Further, MiMBox is developed as a Linux kernel module and as such, it inherits the drawbacks associated with kernel modules namely the lack of security and safety of the end-system (see Chapter).

Contribution positioning.

The approach we explored in this contribution allows the invocation, during the execution of the legacy application, of the alternative protocol X, without any modification of the application's code. This approach, which we introduced and implemented through the Hooker VTL component, leads at the level of the host machines to intercept the system calls related to the socket API (i.e., connect(), sendmsg(), recvmsg(), etc.) in order to ultimately invoke the alternative protocol X. Therefore, the Hooker component does not act as a simple proxy insofar as (i) the TCP protocol is not activated but rather replaced by the protocol X and (ii) there is no one-to-one static and permanent mapping of TCP to a single Transport protocol.

. Socket API Layer and TCP Execution Path

A socket is a special structure that provides an abstraction of a bidirectional endpoint represented by the tuple IP address and port number. Technically, it is identified by a file descriptor, i.e. a small non-negative integer. The socket API is a set of standard functions that are used to manipulate sockets in order to correctly send and receive data. The commonly used functions of the socket interface are provided in and one port number. To do so, on the client-side, the application should use connect() function to make a connection towards the remote server and bind the remote IP address and port number to the socket in case of a successful connection. To do the same, the server will call sequentially bind(), listen() and accept() functions. Now, the client and the server could enter in their data transfer loop and use send() (resp. recv()) to send data (resp. to receive data). After data transfer completion, the socket is closed thanks to the function close(). The closing is necessary to free resources such as the file associated with the socket or the IP addresses assigned to the socket during connection opening.

The invocation of each function of the socket API will trigger a call to further functions on the TCP execution path necessary to convey data packets. Let us assume that the TCP connection is established and let us take a look at the packet journey at the sending and the receiving of data packets from the socket API function call to the end of TCP's network kernel path and vice versa (see Fig. .). When the application invokes send() function to transmit data, the socket layer, after completion of its own operations, uses the virtual function sock _ ops _ sendmsg() to pass the control to tcp _ sendmsg() kernel function that first reserves memory space necessary to store the application payload as well as its associated protocols' headers. In Linux OS, for instance, this memory is the so-called skb _ buff (see note in Chapter). After the memory allocation, tcp _ sendmsg() copies application data into the reserved memory and passes the control to tcp _ push _one() function. Again, TCP is a reliable protocol that is based on the retransmission of lost packets. As such, the sending TCP entity should save a copy (more precisely a clone) of the packet and trigger a retransmission timer. This is the task of tcp _ push _ one() function which puts the packet into the retransmission queue and associates a timer to that packet. Finally, before passing the packet to the IP layer, the sending TCP entity builds a complete TCP packet with the help of tcp _ transmit _ skb() function that adds the TCP headers to the packet.

At the reception of data packets, once the control is passed to the tcp _ v4 _ rcv() function, it dispatches the packet either to the tcp _ ack() or to the tcp _ rcv _ established() function. Indeed, when the received packet is an acknowledgment packet, tcp _ack() deletes the acknowledged packet from the retransmission queue and stops the associated timer. The received packet that contains data for the application is passed to the latter thanks to the tcp _ rcv _ established() function. If the application process is already waiting for data, the packet is directly copied to the userspace memory, otherwise, the sk _ data _ ready() virtual function is used to wake-up the user application and signals to it that new data are available for reading.

The insight of the TCP layer and socket API functioning and interactions is necessary to make the most appropriate design and technical choices toward Hooker component implementation. Indeed, each of the above-described functions could be used as a "hook" point, i.e. and for recall, the invocation of the hooked function will systematically trigger the execution of an attached eBPF program. For instance, an eBPF program could be attached to connect() function in a way that each time TCP application tries to establish connection it can be identified and registered if necessary. Also, eBPF programs could be attached to tcp _ transmit _ skb() kernel function so that the add a custom TCP option during headers forming [].

.

Hooker Design and Implementation

Hooker goals and requirements. Hooker is the component of VTL that achieves the dynamic and transparent replacement of TCP by another protocol X. To achieve this objective, the Hooker component must interrupt TCP's execution path (described in the previous section). At data sending, as soon as the application calls into the send()/sendmsg() function, Hooker must take control of the packets before the kernel network stack. Therefore, it is necessary to place a hook point on the tcp _ sendmsg() function so that each time this latter function is invoked, the Hooker component executes a dedicated program before the kernel. As for incoming packets, they should be intercepted as soon as they arrive at the network interface card (NIC), here also, to avoid their control by the kernel network stack. The conceptual and technical choices we made to meet these different specifications are described in the following paragraphs and subsections.

Functional Architecture Overview. Resulting from the above requirements, Fig.

. depicts the internal structure of Hooker component and its interactions with the kernel network stack as well as with the legacy applications. Conceptually, Hooker is separated in three main subcomponents: hooker_userspace, hooker_egress, and hooker_ingress. As its name suggested, hooker_userspace is a normal program running in user-space and that, among other tasks, is in charge of creating and configuring sockets, namely the redirection socket (redir _ sock) and the socket of the selected Transport protocol X. The rest of Hooker's subcomponents, i.e. hooker_ingress and hooker_egress, are eBPF programs and as such, they are executed in the kernel-space and deployed by Launcher component of the VTL (go back to Fig. . of Chapter) as soon as Hooker is activated. The eBPF program composing hooker_ingress is an XDP program that attaches to the network interface driver in order to process as early as possible all incoming data packets. The previous chapter describes in detail the XDP program and its associated hook. Hence, in the next sections, we will principally present the different types of eBPF programs as well as their associated hooks that constituted hooker_egress subcomponent.

Design choices discussion.

In the architecture illustrated in Fig.

. , the choice we made was to pass the hooker_userspace subcomponent in the user-space. This choice, which initially meets a proof-of-concept purpose, opens up in a more global perspective the possibility of using protocols deployed both in kernel-space and in user-space such as QUIC (we will see it in the next chapter). At the price of higher implementation complexity, it is quite conceivable to bring the hooker_userspace subcomponent back into kernel-space. Our current hypothesis is that this could improve performance (which however, as we will see later, remains at an acceptable level with the current implementation choice of leaving the hooker_userspace subcomponent in user-space). Though, pushing back the hooker_userspace in kernel-space will deprive us of the use of user-space protocols like QUIC for which, no kernel implementation exists as of this thesis writing.

. . SOCKMAP: the art of data packets stealing

To redirect data between the TCP socket (tcp _ sock in Fig. .) and the redirection socket (redir _ sock in Fig. .), the most straightforward (but bad) idea would be to use the classical send()/recv() approach in which the TCP application sends the data to the hooker_userspace via the address attached to the redirection socket (redir _ sock) and vice versa. This approach is illustrated in Fig. . . Despite its simplicity, the send()/recv() method presents two drawbacks. First, significant overheads might be generated due to the fact data will traverse twice the TCP kernel path at the outgoing as well as at the incoming of data packets. Second, the legacy application should be rewritten to send data to the local redirection socket rather than to the remote server that is the default destination. By doing so, this solution does not fulfill the transparency requirement. The above-described send()/recv() approach is also known as a non-transparent proxy practical implementation inside an end-system.

Without any modification of the legacy application as well as the TCP's execution path (shown in Fig. .), once the application issues a send()/sendmsg() function call, the kernel systematically takes control, handles the data encapsulation, and sends encapsulated data packets over the network directly to the remote server without passing by the hooker_userspace subcomponent. Herewith, the main concern is, when the application calls send()/sendmsg() function upon the TCP socket, how to get data before they reach the kernel network stack in order to interrupt TCP execution path, and then to redirect the data towards another L protocol? As discussed in Chapter and illustrated in Fig. . , XDP and TC hooks cannot take control of the data packets before the kernel Transport layer, i.e. TCP kernel processing in case of TCP applications. Fortunately, SOCKMAP and its associated SK _ MSG eBPF program could be used to comply with the transparency requirement and at the same time to pick up the data before the kernel network stack. Besides transparency, this approach permits also to reduce the overheads introduced on the kernel's network path.

SOCKMAP is a special type of eBPF map

For recall, maps are generic data structures storing a set of key, value pairs used to exchange data either between different programs distributed between user-space and kernel-space.

and as such, it stores a set of {key, value} tuples. The specificity of this map is that the value at each index of the map can only be a TCP socket descriptor (see Fig. .). A SOCKMAP has attached to it, at least, one eBPF program that gets executed upon data receipt on one of the TCP socket descriptors stored in the map. Under Hooker, it is an SK _ MSG eBPF program that is part of hooker_egress subcomponent. SK _ MSG is a type of eBPF program that gets executed before the tcp _ sendmsg() function upon a send()/sendmsg() call on any TCP socket stored in the SOCKMAP. By taking the control of the data packets directly from the socket layer before TCP kernel network stack, SK _ MSG could, for instance, seamlessly redirect the grasped data towards another socket (e.g. redirection socket in the case of Hooker). SOCKMAP data redirecting between sockets is illustrated in Fig. . .

. . SOCK _ OPS: TCP Execution Path's Spy

Once a SK _ MSG program is attached to a SOCKMAP, it also gets systematically attached to all TCP socket descriptors stored in the map. In this way, the SK _ MSG program is executed each time a write operation is performed on any one of the stored socket descriptors. Hence, the SOCKMAP needs to be priorly populated with the right values of these TCP socket descriptors. However, the value of a TCP socket descriptor of the legacy application is unknown before the end of the three-way handshake. Indeed, this value is attributed randomly by the kernel at the end of the TCP connection establishment. As a consequence, there is a need to accurately monitor the TCP's execution path in order to get notified at the end of a passive as well as active connection. The aim is to grab and add the value of the attributed socket descriptor in the SOCKMAP just before the application issued the first send()/sendmsg() call. To fulfill this goal, we used the SOCK _ OPS eBPF program. type of eBPF program that allows getting notified upon a call to any function of TCP's execution path. Originally, it was released to enable the programmability of the TCP layer by the means of fine-tuning of TCP's connections parameters from userland application processes. For instance, SOCK _ OPS program could be used to dynamically set up the value of the initial congestion window (INIT_CWND) of a TCP connection or the buffer sizes of a TCP socket. SOCK _ OPS programs rely on the single system call tcp _ call _ bpf(..., int op, ...) that could be called from any function on the TCP's execution path. The parameter op is used to signal to the eBPF program exactly from which function of TCP execution path the system call is invoked. This is a key feature that permits accurate monitoring of TCP sessions from connection opening to the closing of the connection without a need to add any code to the legacy applications.

A selected list of possible values of op parameters is shown in Table . . For instance, when the op parameter value is BPF _ SOCK _ -OPS _ ACTIVE _ ESTABLISHED _ CB, the eBPF program knows that the call comes from the tcp _ finish _ connect() function and can then deduce that an active connection requested by the application has been successfully established. After being notified about some TCP events such as connection establishment, the eBPF program can, for op Description

TCP _ CONNECT _ CB
Call eBPF program right before an active connection is initialized.

ACTIVE _ ESTABLISHED _ CB

Call eBPF program when an active connection is established.

PASSIVE _ ESTABLISHED _ CB

Call eBPF program when a passive connection is established.

TCP _ LISTEN _ CB

Call eBPF program on listen() invocation, right after socket transition to LISTEN state.

RTT _ CB

Call eBPF program on every RTT. From that point, every data from the application could be seamlessly grasped and redirected during data transfer. Within the Hooker component, we used a SOCK _ OPS program as a part hooker_egress subcomponent in order to identify, register, and monitor TCP applications of interest based on their port number. This is only an implementation choice; one can easily decide to blindly handle and monitor all TCP applications within the end-system OS.

. . Legacy Application Data Paths

The internal structure of Hooker component (see Fig. .) also depicted the application data packets paths from the send()/sendmsg() call to the transmission over the network interface card and vice versa. Once it is activated, Hooker attaches three different types of eBPF programs at various levels of the network stack: () a SOCK _ OPS program attached to the root cgroupv2 [], () a SK _ MSG attached to a SOCKMAP at the socket layer, and () an XDP program placed at the network interface card (NIC) in order to process incoming data packets. By leveraging the hierarchical model of cgroups, Hooker is able to process at the socket layer any ingress and egress data packets of all TCP application processes running on the end-system.

Hooker maintains several maps, especially the SOCKMAP described below. In the first implementation of Hooker, the key at each index of the SOCKMAP is a structure containing the addressing information enumerated in the code Listing . In order to optimize the map manipulation operations such (updating, searching, etc.), the key in the current version of the Hooker component is a small integer that is a hash of the addressing information listed in the code Listing . This key is used by the hooker_egress programs to identify the right socket towards which the packet data must be forwarded to. Furthermore, as previously discussed, the SOCKMAP is helpful to keep a trace of applications whose packet data should be intercepted and redirected by Hooker. Each time a connection is established or closed by one process, the map is updated by hooker_egress thanks to the SOCKS _ OPS bpf program section attached to cgroupv2. In addition to SOCKMAP updating at the connection opening, the SOCK _ OPS bpf section is used to add to the SYN packet a VTL_COMPLIANT option that, as its name suggested, is useful to advertise to the receiver that the sender is VTL compliant. This feature is more described in Chapter .

Every time the TCP application process sends data by the invocation of the sendmsg() function upon the TCP socket, the SK _ MSG bpf program running by hooker_egress intercepts the data packet and rewrites it if necessary thanks to the helper function bpf _ msg _push _ data(). Then, to redirect the egress data packets to the redirection socket, hooker_egress program leverages the bpf _ msg _redirect _ map() helper function. At the incoming of data packets, hooker_egress uses the same helper to redirect the packets to the TCP socket. The redirection socket is created and maintained by hooker_userspace program which will use the recvmsg() operation to get the redirected data packet and send it to the VTL datapath that should emulate the selected Transport protocol functioning. At the receipt of a data, as soon as the network interface driver (NIC) receives the data packet, the XDP bpf program section running by hooker_ingress intercepts the data packet and processes it by issuing the right verdict. The hooker_ingress program can drop the packet data (XDP _ DROP verdict), redirect it to the same network interface card (XDP _ TX verdict), or, as currently done, pass the packet to the ingress VTL datapath (XDP _ VTL _ ACK verdict) for further processing.

. Performance Evaluation

Evaluation's goals. Hooker is evaluated through experiments based on the transfer of three files of different types (text, image, and video) having different sizes (KB, KB, and MB respectively). We assume that the transmitted multimedia (image and video) allows a data packets loss rate lower than %. We empirically validate this assumption by observing whether the received multimedia is clearly readable by human eyes. However, as stated in Chapter , more formal approaches to compensate data packet losses should rely on methods such as redundancy (e.g., FEC []) or adaptive coding []. The consideration of these methods is out of the scope of the goal of the experiments we carried out here. Indeed, the main goal of the carried out assessment is to demonstrate the ability of Hooker to effectively replace TCP with another L protocol during legacy applications data transfer. Therefore, we performed the evaluations by considering the above assumptions on the application requirements and with a limited set of alternative L protocols notably UDP and QUIC. In addition to the functional evaluations, we measured the cost in terms of delay of the data redirection operations, as well as the delay of the dynamic deployment of the Hooker's programs namely the SOCK _ OPS, SK _ MSG, and XDP programs. Finally, we evaluated each protocol's performance in terms of file completion time (FCT) that, as defined in Chapter , is the time necessary to complete the transfer of a whole file.

Testbed configurations. The topology of the testbed used during experiments is similar to the one used in Chapter and is illustrated in Fig. . of the next chapter. For recall, the client host as well as the server host run on Linux . . OS and are equipped with Intel Core i -U CPUs and . GiB RAM. Here also, we used netem emulator to set the RTT of the network link to ms, the link capacity to Mb/s, and the loss rate between and %. Table . provides a summary of the specifications of the VMs and the emulated network that constituted the experiments' environment.

Evaluation scenarios and validation approach.

For each file, we considered the identical scenario consisting of two steps: () a first data streaming is performed without running Hooker, and () in a second time, we performed the data transfer under the activation of the Hooker component. In the first case, the native performance of the application on top of each Transport protocol is measured. During the second stage, we measured the performance in terms of file completion time (FCT) of the TCP application that accesses the alternative Transport protocol X thanks to the Hooker VTL component. At each step, we first check that the client correctly received the streamed file. Then, with the Wireshark analyzer [], we validate the correctness of the data redirection by checking the Transport protocol used on the wire during data transfer. Microbenchmarks. As reported in Table . , it takes less than one second to activate the Hooker component. Further, we could also note that when the Hooker is precompiled, its activation delay is reduced to less than ms. Besides the activation delay, once the Hooker is activated, its operations namely data redirection introduce additional overheads. We computed these overheads in terms of the average delay required for data redirection operations that are achieved in hooker_egress (i.e. SK _ MSG) and hooker_userspace subcomponents. The results are reported in Table . and showed that it takes approximately ms to redirect packets during data transfer. Finally, the results reported in Fig. . , characterized the achieved file completion time of each protocol in various network conditions. As we can note, natively, TCP applications take more time to complete the file transfer. This time is considerably reduced when Hooker seamlessly replaces TCP either by QUIC or by UDP during data transfer. Note that contrary to QUIC, if the alternative protocol is UDP, there will be data packet losses when the network link loss rate is not null. This could be crippling if the application does not tolerate losses. However, if the application tolerates losses, UDP looks like the best alternative since it takes to it less time in any network situation to complete data transfer. The choice of the better alternative is a tradeoff between the application requirements and the network conditions. The necessary algorithms to achieve this choice is the subject of the next Chapter.

. Conclusion

In this chapter, we presented the design, the implementation, and the evaluation of the Hooker component. Hooker is the VTL component that enables the transparent integration of legacy applications into the VTL system by achieving the replacement of TCP with any other Transport protocol during application data transfer. The transparency property refers to the fact that the dynamic replacement of TCP is realized without any modification of the legacy application. This is a key factor to ease and to stimulate the use of VTL as well as its associated Transport protocols either deployed by VTL or already existing in the end-system OS.

We carried out thorough experiments to demonstrate the effectiveness of Hooker component, i.e. its ability to replace at runtime TCP by alternative Transport protocol X without any modification of the legacy application. Further, the performance evaluation of Hooker showed that once it is activated, its data redirection operations take approximately less than ms to complete. Nevertheless, the performance in terms of file completion time (FCT) achieved by the legacy application on top of native TCP is significantly poor compared to the performance achieved by the same application when Hooker redirects its connection and data seamlessly towards alternative Transport protocols. That is to say, even if Hooker introduced additional overheads that impact the native alternative protocol X, it considerably improves the performances of its initial target, i.e. the TCP applications. Besides the transparent integration of legacy applications within the VTL, this performance improvement is an additional motivation to the design and implementation of the Hooker component.

Finally, the evaluation also showed that the best alternative Transport protocol to TCP is not always the same and varies depending on the network conditions and the application requirements. In the next chapter, we will discuss the proposed algorithms and approach for the selection of the best alternative L protocol to the TCP. In the previous chapter, we substantially presented our technique that allows legacy applications to use another Transport protocol other than TCP without code rewriting. Further, the experiments carried out during this preceding chapter also showed that there is no universal alternative L protocol to TCP. That is to say, the best Transport protocol varies with the application requirements and the network state. Even worse, if the alternative protocol X is chosen without caution, the application could present suboptimal performances compared to its initial performances under TCP, as we will see in the first section of this chapter. Consequently, it sounds essential that we have an approach that enables VTL to craftily select the alternative to TCP based on the application requirements and the network conditions. In this chapter, we propose such a method that ensures selecting the best choice to replace TCP during data transfer.

To select the most appropriate L protocol to the network context and the application requirements, we used machine learning models, namely decision trees, that we trained using the C . algorithm (presented later in this chapter). Since application QoS requirements and network conditions are the decision tree models' attributes, we need first to get both information. However, a legacy application does not express its QoS requirements via the standard socket API. Indeed, this API's invocation simply expresses the desire to see the TCP (or UDP) protocol activated.

All we know when hooking on some legacy application is that it is a TCP-based application. The critical concern is then how to get the hooked TCP application QoS needs? To cope with these concerns, we proposed (i) a profiling technique enabling us to infer the requirements of the legacy applications, and (ii) a parsimonious network monitoring useful to estimate the state of the network in terms of RTT, maximum link capacity, and packet loss rate. On this basis, the decision tree models, feeding the VTL knowledge base, could be used to select the "best" L protocol.

To train the decision trees, we generated a dataset via thorough evaluations of several IETF L protocols under various network conditions and different application requirements. Part of these evaluations is presented in Section . as a preamble of this chapter to motivate the need for an approach in order to carefully select the alternative protocol to TCP during data transfer.

In Section . , we provide the theoretical background on the : Recall throughout this manuscript we used interchangeably TCP and TCP Cubic (the default version of TCP in the mainstream operating systems namely Linux). Hybla is an extension to TCP and as previously discussed, the alternatives to TCP as well as its own extensions suffer from the same issue: the lack of wide deployment and/or the limited use by applications on the Internet.

machine learning techniques, namely decision tree classifiers and the C . algorithm that we used to induce the decision trees. Section . presents the design and implementation of the proposed approach. In particular, we describe the application profiling method (Subsection . .) as well as the network state estimation approach (Subsection . .). We end the section by detailing the application of the decision trees induction algorithm to our approach (Subsection . .). In Section . , we focus on the evaluation of the proposed solution. We first assess the precisions and recalls of the constructed models. Then, we estimate how much the proposed selection approach enhances the performance (in terms of throughput) of TCP applications under VTL. Finally, we conclude the chapter in Section . .

. Motivation

Let us extend the experiments of Chapter to another network type namely the satellite network links. Let us first consider the satellite link. Without packet loss, TCP has equivalent performance to QUIC as well as to Hybla that is more adapted to satellite links []. However, once the link starts by experiencing losses, we notice a significant TCP throughput degradation. As it can be deduced from the results reported in Fig.

. , an application using TCP could, on average, get ~ x better throughput on a satellite link if it used Hybla instead. Now, assume that in this context, instead of using Hybla, we selected QUIC. The results (Fig. . (a)) show that the performance is not only suboptimal compared to Hybla, but also, and more importantly, that it is worse than the initial performance of the application under TCP. In simple terms, QUIC will perform worse than TCP on the satellite link, when data packet losses occur. q 0 2 5 0 1 2 3 4 5 6 From these first results, we could speculate that it would be enough to use Hybla continually as the alternative to TCP. Nevertheless, let us resume the same experiments on a terrestrial link. Here again, without data packet losses, TCP remains near equivalent to the QUIC and Hybla protocols. However, as soon as the network link suffers its first packet losses, a TCP application that would switch to QUIC will achieve about . ~ x better performance in terms of experienced throughput. Further, the results (Fig. . (b)) also demonstrated that contrary to the satellite link, QUIC presents better performance than Hybla and seems the best alternative to TCP in the terrestrial network context.

The more we continue the experiments by changing the state of the network and the requirements of the application, the more we observe that the best alternative to TCP changes regularly. This preliminary assessment allows us to validate TCP's performance limitations in specific environments, and demonstrates that replacing TCP may or may not be justified depending on the context. Hence, the interest of having an approach that permits VTL to choose the appropriate protocol X because, as we have just seen in the above experiments, the protocol X might not be the same in all network and application contexts and could even perform worse than TCP.

. Background

For the sake of clarity, we describe here the theoretical background on machine learning models and algorithms, namely the decision tree classifiers and the C . algorithm above which we built our approach. Traditionally, machine learning is recognized as the field that gives any computer system the ability to learn to do without being explicitly programmed for []. In other words, with the help of machine learning models learned most of the time off-line from past experiences (a.k.a. datasets), the computer system can take or predict future decisions alone. Roughly, the models could be trained following two principal learning approaches:

. . Decision Tree Models

Suppose that we want to decide whether it is an excellent day to practice some activity outside based on the weather forecast information. The weather is characterized by four attributes: outlook, temperature, humidity, and windy. Table . provides a small training dataset of the decision taken in the previous days based on those days' weather attributes. Shall we play outside the day D ? Intuitively, to predict the answer, one could use a sequence of questions on the values of the attributes of the day D and learn from the past decisions to make the right decision. The first question might be what the value of the outlook is? If the outlook is "overcast", we know from the training dataset that the decision will systematically be "yes" whatever are the values of others attributes: the series of questions ends. However, the day D , the outlook is "sunny" rather than "overcast". We need to ask a second question about another attribute. Assume that the second question is on the level of humidity? If it is "high" (the value of the humidity level the day D), we could deduce from the training set that the decision should be "no" and stop the sequence of questions. information from the past to predict or classify the future. A decision tree could be used to express this sequence of questions and their associated answers. In theory, a decision tree is a hierarchical data structure composed of nodes or vertices connected by a set of edges. A decision tree has two main types of nodes: () leaf nodes corresponding to a decision called class in decision theory terminology, and () test nodes that contain a test condition on the value of a specific attribute. Test nodes are either internal nodes or the root node of the decision tree.

. . C . Algorithm for Decision Trees Induction

The representation of a decision tree is often straightforward, as well as its use for prediction and classification. However, at each stage, choosing the attribute on which the test condition should be applied is tricky. Let us go back to the previous example of subsection . . . If either at the first question, the choice was made to test the windy attribute or, after the first question on the outlook attribute and its associated "sunny" answer, the second question examined the windy attribute's value rather than the humidity attribute. In either case, the result would have been either a larger decision tree or a decision tree that is not only large but also inaccurate in terms of the quality of prediction and classification. For a single dataset, there exist a huge number of candidate decision trees. This number is exponential and, for instance, is greater than x for the small training dataset of Table . []. As a result, contrary to its representation and its use, the induction/construction of an optimal and consistent decision tree is an NP-complete problem []. The academic literature is plenty of different machine learning algorithms to find an efficient decision tree within an "acceptable" computational time. Many of those algorithms are fundamentally based on the recursive Hunt's algorithm (Fig. .). As the algorithm's name suggested, it is proposed by Hunt et al. in [] and can be summarized as follows.

Let us consider T as the training dataset consisting of past cases, and let us note C {C , C , ..., C n }, the classes. The recursive procedure is:

T is not empty, and all the cases in T belong to a single class C j : the decision tree for T is a leaf labeling C j . T is empty: the decision tree is a leaf node labeled following some specific arbitrary rule. For instance, in the C . variant, the most frequent class at this node's parent is attributed. T contains cases that belong to more than one class: find the "best" attribute on which the set T should be appropriately partitioned into smaller subsets. The best attribute is one that maximizes some local measures. For instance, in C . , this measure is based on information theory metrics.

Similar to the local optimum search algorithms such as gradient descent [], Hunt's procedure is a greedy algorithm that uses a heuristic based on the maximization of some local measure. The criteria used to evaluate this local measure is the main difference between the variants decision tree algorithms of Hunt's procedure. C . is one of these algorithms. It heavily uses the information theory metrics as the criteria for the selection of the "best" attribute at stage of Hunt's algorithm.

C . is an improvement of the well-known C . decision tree induction algorithm. As stated above, C . is based on Hunt's algorithm. At the splitting step, i.e., stage of Hunt's procedure, the criteria used by the C . algorithm to select the "best" attribute are based on the information theory metrics, namely the entropy and the information gains. The main idea is as follows: the "best" attribute at each stage is one that provides the maximum gain of information. Let us consider T i as any subset of the training dataset T, A as the attribute on which the splitting test is applied so that T {T , T , ..., T m }, and C {C , C , ..., C n }, as the set of classes. If p(C j , T i) stands for the probability that all cases in the subset T i belong to the class C j , entropy and information gains are calculated by the following formulas. .) where:

p(C j , T i) f re q(C j , T i) |T i | (
f req(C j , T i) is the number of cases in S that belong to C j , and |T i | is the size of the subset T i .) where:

Entrop y(T) -

n j 1 p(C j , T i) × log 2 (p(C j , T i)) (.) Entrop y A (T) m i 1 |T i | |T | × Entrop y(T i) (.) Gain(A) Entrop y(T) -Entrop y A (T) (.
Entrop y A (T) is the weighted entropy of small subsets generated when splitting from attribute A.

Split_e ntrop y(

A) m i 1 |T i | |T | × log 2 (|T i | |T |) (.) Gain_ratio(A) Gain(A) Split_e ntrop y(A) (.)
Basically, at each splitting step, C . algorithm will compute the above values and will select the attribute that gives the highest gain ratio.

. Protocols Selection Approach

We illustrate in Fig.

. the high-level conceptual view of the approach adopted to select the most appropriate Transport protocol alternative to TCP. The selection relies on a set of decision tree models whose attributes are the application requirements and network conditions. The use of the decision tree models is therefore guided and preceded by () an application profiling that allows us to infer their needs and () a parsimonious monitoring that allows to estimate the current state of the network with limited/low cost on the link traffic. We discuss both techniques in this order in subsection . . and subsection . . . : Profiling is attempted on the first ten packages. This number is arbitrary but higher than the recommendations in [].

. . Receiver-driven Application Profiling

The purpose of profiling is to identify the nature of the TCP application. It permits to infer the requirements of the application. We have established the profiles on the basis of data from the ITU recommendations [,]. To each profile, we associate requirements expressed in terms of Transport services and QoS parameters. The profiling, driven by the server (receiver of the connection), is initiated as soon as the first TCP packet (SYN) is received and continues over the following nine packets. When profiling is successfully completed, the application is classified into one of the following profiles (see Fig. .).

Profile : time-sensitive applications; e.g., multimedia streaming applications (YouTube, NetFlix, etc.) or videoconferencing applications (skype, zoom, etc.). Transport service requirements associated with this application profile are: partial reliability, partial order, and flow control to contribute into the jitter management. The multimedia streaming applications might tolerate a maximum delay of seconds whereas the delay allowed by videoconferencing applications fluctuates between milliseconds and several hundred milliseconds. The time-sensitive applications could experience a loss rate between and %. However, it is worth noting that this profile of applications rarely uses TCP. packet is then extracted from the raw packet by removing the L header of the packet. This phase's final result is a flow and an IP packet ready to be used in the second phase.

() Flow pre-identification. The flows in the table might be already classified or not. A flow is classified when the application to which it belongs has already been detected. Therefore, the purpose of this phase is to directly retrieve this information from the table rather than systematically and blindly launch the application detection loop.

() Application detection loop. If the flow is not yet classified, it is either a new one or the first packets of the flow have not been sufficient to identify it. The detection loop is based on a hybrid approach to identify the application whose flow it receives: it integrates the signature-oriented approach based on protocol dissectors and the standard method based on port number mapping. It first attempts to identify the application by contrasting the flow to a set of predefined protocol dissectors. Dissectors are snippets of code that identify a specific protocol by reading/processing the entire IP packet (headers and payload included). For instance, an HTTP protocol dissector might fetch the "GET" string in the IP packet to determine whether the flow is an HTTP flow. As soon as a dissector correctly identifies the flow, the loop stops. If the application is not identified, the next packets of the stream (up to the th packet) are used to attempt a new detection of the application and its classification in one of the four profiles described above.

. . On-request Network Monitoring

In addition to the application's requirements, the network state is used to drive the selection of the best protocol X to replace TCP. To minimize the impact of monitoring on the network traffic load, monitoring these two parameters is only triggered on demand through a set of functions exposed by the internal API of the monitoring component (NetMon in Fig. . of Chapter). The caller of the monitoring component has the possibility to specify the periodicity of the monitoring as well as its duration. The period defines the time interval between packets injection for calculation of RTT and loss rate. The larger the interval, the less expensive the monitoring is at the price of the estimation's accuracy.

. . Construction of Decision Tree Models for Protocols Selection

Application profiling and network monitoring are prerequisites to the selection of the most suitable alternative L protocol to TCP. They provide two information: the application profile (i.e., its requirements) and the network state. This information is the attributes (i.e., the inputs) of decision tree models on which are based the selection rules of the most appropriate protocol to replace TCP. These decision trees feed and represent VTL's knowledge base that dictates the selection rules based on the above two information attributes.

Dataset. For the models' training, we generated a labeled dataset of more than a hundred cases. The labels or classes are the L protocols and the attributes, as stated above, are the application requirements and the network conditions. Following the traditional/classical approach, we separated the dataset into two main parts: the training dataset (% of the initial dataset) and the test dataset (% of the initial dataset). As its name suggests, the training dataset is the part of the dataset used to train the models. Additionally, it allows evaluating the trained model's ability to classify correctly the already seen cases. What about the unseen cases? The answer to the latter concern is the task of the test dataset. It permits us to evaluate the trained model's prediction quality, i.e., the precision at which the model can classify unseen cases. The dataset is generated from extensive evaluations of all considered Transport protocols for diverse application requirements and network conditions. Suppose two or more protocols satisfy application requirements and feet the network characteristics. In that situation, the performance criterion used to assign a label to the case is the throughput experienced during data transfer. . This assumption leads to a more simplified decision tree that, as we will see later, could provide satisfactory classification and prediction quality compared to a more extended decision tree. The complete evaluation of these models' quality and their use benefits are extensively evaluated and presented in Section . .

. Experiments and Evaluations

The main goals of carried experiments are to evaluate the VTL's benefits (in terms of performances) on TCP applications by using decision tree models. We also assessed the precisions and recalls of the trained decision tree models used to drive the best L protocol selection.

. . Testbed Setup and Methodology

The experiments have been performed under a testbed constituted by two hosts linked by one router (Fig. .). As in Chapter , each host was equipped with Intel Core i -U CPUs, . GiB RAM, and Qualcomm Atheros QCA NIC driver. In addition to TCP and its extension Hybla, we evaluated the following IETF protocols: UDP, UDP-Lite, SCTP, DCCP , DCCP , and the QUIC protocol. For each protocol, we implemented a distributed application (one server and client). The server part can stream several kinds of files with different sizes ranging from a simple K file text to more than M video or text files. The network link parameters are still emulated thanks to netem tool. The network parameters used during experimentations are reported in Table . . For each emulated link, the random loss rate is variable between and %.

Satellite links emulation.

Often used as backup Internet links, satellite Internet is useful for critical missions such as SAR (search and rescue) operations as well as to provide Internet access in rural areas. The main characteristic of satellite links is their long delay that can cause severe performance degradation. Based on [], we used the following parameters to emulate a satellite link between the client and the server during experiments: RTT to ms, and Mbps of bandwidth.

Terrestrial Internet links emulation. To emulate a classical Internet link between the server and the client, we set the bandwidth to the arbitrary value of Mbps and fix the RTT to ms. To estimate the average RTT value on the classical Internet, we used the WonderNetwork [] tool to find out the mean RTT between different locations all over the world within the Internet.

Local Network links emulation. The third emulated network profile is a local network (LAN), such as a home network. The RTT is set up to the highest value ms whereas the available bandwidth is Mbps.

The experiments were carried out in stages: () First, we compared performances of the application data transfer under each protocol, i.e., TCP and all other protocols (UDP, UDP-Lite, SCTP, DCCP , DCCP , QUIC). In this first step, the application had an API allowing it to directly access each of the protocols evaluated (SCTP API, DCCP API, etc.). This stage allowed us to assess the maximum benefits achievable by using the protocol selected as the most suitable alternative to TCP according to the target application and network contexts and to generate the dataset we used to train the decision tree models. () Secondly, we repeated the same experiments by comparing TCP with each of the protocols identified by the trained models as the best alternatives to TCP. But this time, the application accesses the service of the selected protocol indirectly thanks to VTL. The application invokes the socket API of TCP, but, thanks to the redirection mechanisms (implemented by the Hooker component of VTL), it will transparently use the services of the selected protocol as an alternative to TCP. TCP applications performance improvement. Then, we evaluated VTL impacts on the performance enhancement of TCP applications.

For each considered scenario, we show only the protocols that the decision tree model selects for the considered context. For instance, when the application is loss-tolerant and the network state is { ms, Mbps, %}, the selected protocol by model to replace TCP is UDP-Lite. In the same network context, when the application is sensitive to data packet losses, the protocol selected by the decision tree model and model is Hybla. Then, Fig. . (a

. Conclusion

In this chapter, we presented our approach to address the problem of the selection of the "best" Transport protocol to use rather than TCP. The choice aims to meet the application's requirements and take into account the network conditions. To perceive this information (i.e., applications needs and network state), our approach relies on the dynamic identification of the TCP applications' requirements and the underlying network characteristics. We used a set of machine learning models, namely decision trees that we trained to feed the knowledge base of VTL.

We evaluated our proposed solution within the context of experimental measurements based on the use of a distributed variable application profiles in an emulated environment of (i) satellite networks, (ii) long-distance terrestrial networks, and finally (iii) local networks. Apart from the proposed approach assessments, this measurements' campaign serves us to generate the dataset used to train priorly the decision tree models. Based on extensive evaluations of the quality parameters of the trained, we showed that on average times out of , VTL correctly selects the best alternative to TCP. The immediate consequence of this is the improvements of the hooked TCP applications' performance under VTL. We ended by evaluating these performance gains in the different considered contexts. Attendee. Yet another Transport protocol? Me. No, VTL is a Transport layer architecture that envisions achieving effectively dynamic deployment of any Transport protocol and stimulating its adoption by new aware-applications and existing legacy applications.

Conclusion

This is a short conversation with an attendee at one of my first presentations at some academic convention. This question often appeared when I pitched the work presented in this thesis manuscript. Indeed, for several decades, the Internet's Transport layer has been the center of many research contributions leading to a plethora of new Transport protocols such as DCCP or SCTP, to name a few. These research contributions generally share the objective of fulfilling the QoS requirements of new applications and/or taking into the underlying networks' characteristics. The outcome is a theoretical layered architecture of the Internet illustrated in Fig.

. (a). The Internet's designers expected a Transport layer with plenty of L protocols, each protocol serving a particular purpose in some specific contexts.

There is no one-fits-all solution; that is to say, there is no single L protocol that meets any application requirements on any network conditions. Nevertheless, it is clear that TCP remains the most widely deployed and adopted Transport protocol on top of which almost % of the Internet's applications run. The result is the hourglass model of Any L protocol other than TCP lacks a wide deployment and/or encounters limited use on the Internet. This phenomenon is known as the ossification or sclerosis of the Internet's Transport layer that hampers the introduction of new protocol solutions at this of the Internet. Throughout this thesis, the contributions we presented aim to tackle this ossification of the Internet's Transport layer at the end-system. We explored and proposed technical and conceptual approaches that pave the way for the effective use of any existing Transport protocol and the dynamic deployment in the end-systems of a new one so far as the protocol meets the application's requirements and the network's characteristics. We summarize this thesis's main contributions in Section . and open up the way for further research directions in Section . .

. Contributions Dissemination in Chapters

In summary, the contributions of this thesis are disseminated in the manuscript's chapters as follows.

In Chapter , we detailed the limitations of the current Transport layer protocols and architectures to address the ossification issues. The insights from these limitations' analysis defined the guidelines for the design of a new architecture of the Internet's Transport layer. For recall, the fundamentals of these guidelines are the following. In order to limit the OS implication in the deployment of a new protocol, the new Transport layer system should provide a safe and isolated runtime environment where the protocol functions are dynamically deployed without the need to recompile the OS. To prevent the limited adoption on the Internet by application developers of the new Transport layer, the system should provide a protocol-agnostic interface to applications in the way that the latter are removed from the complexity of choosing the L protocol to use. Further, we should allow the legacy applications to transparently use the new Transport layer, that is to say, the existing applications do not have to be rewritten. Following these guidelines, we designed and implemented a novel Transport layer called VTL for Virtual Transport Layer.

In Chapter , we introduced the VTL system that can (i) timely and effectively deploy Transport protocols within the OS kernel and (ii) ensures the flexible use of the deployed protocol by any application, i.e., aware and legacy ones. Following a modular approach, we implemented each considered Transport protocol component as a set of basic Transport functions called TF. In the current implementation of VTL, each TF is implemented in the form of an eBPF program that can be deployed at runtime in the kernel-space of the operating system. The deployed TF in kernel-space is called KTF (that is a pluggable form of TF) and could be composed with other KTFs to form a comprehensive protocol mechanism that we called a protocol graft. To evaluate the dynamic deployment capability of VTL, we implemented from scratch a set of protocol grafts. During our experiments, we found that VTL could speedily deploy the protocol grafts and KTFs, notably when the deployed grafts and KTFs are precompiled and stored in a dedicated repository. Finally, we evaluated the implemented protocol mechanisms' performances and showed that they achieve excellent performances under VTL. The reference during this evaluation was TCP (cubic) performances in the same testbed configurations.

In Chapter , we presented the design of the Hooker, a VTL component that enables the replacement of TCP with another Transport protocol during data transfer. We performed TCP's replacement transparently for legacy applications, i.e., there is no need to modify these applications. The goal is to comply with the transparency requirement learned from the guidelines provided in Chapter . Fulfilling this requirement is a key factor in promoting the use of VTL and its associated Transport protocols either deployed by VTL or already existing in the end-system OS. We performed extensive evaluations to show the effectiveness of the Hooker solution, i.e., its ability to replace at runtime TCP by an alternative L protocol X without any modification of the legacy application. Finally, we assessed Hooker's impact on TCP application's performance. The results showed that the most appropriate alternative protocol to TCP varies depending on the network conditions and the legacy application's requirements. Further, we noted that the selected alternative protocol's performance could even be worse than TCP's one if the alternative is chosen without thought.

Therefore, in Chapter , we presented our last contribution that addresses the problem of the selection of the "best" Transport protocol to use in replacement to TCP based on the application's requirements and the network conditions. To perceive this latter information, we proposed and implemented dynamic identification algorithms of the TCP applications' needs and the underlying network characteristics. We used a set of machine learning models, namely decision trees that we trained to guide the best protocol selection. Finally, we carried out thorough assessments of our proposed algorithms and models. The evaluations showed that leveraging the trained models feeding its knowledge base, VTL accurately selects the most appropriate Transport protocol for diverse application profiles on different network conditions. The outcome is the improvement of the hooked TCP applications' performance.

All in all, the work we carried out during this thesis journey contributes to replace the vicious circle (described in Chapter) with a virtuous circle where the Transport layer () provides an isolated, efficient, and flexible environment for dynamic deployment of any protocols within the OS, and () allows application programmers, without modifying their applications, to take advantage of new Transport solution so far as the new solution meets their needs.

. Potentials Future Work

The work carried out in this thesis opens up a way for potential further research efforts. We outline the most relevant of these works by structuring them into short-term works and then into mid and long term works. We consider as short-term perspectives the work that can be carried out in the direct prolongation of this thesis and classify as long-term perspectives, the work whose realization would require going beyond the scope of this thesis's initial objectives.

We situate the considered perspectives in three main interdependent research directions which are as follows:

Heterogeneity of the context. In work presented in this manuscript, we have implicitly addressed heterogeneity at the level of applications (QoS needs, legacy vs. aware, etc.) and at the level of networks (presenting different characteristics). However, in order to consider the use of VTL in a more extended context, the problem of heterogeneity must be addressed more broadly by extending it, for example, to the level of host machines whose capacities and resources might be different.

Dynamic and autonomous (re)-configuration of protocols.

The ability to (re)-define and (re)-deploy protocols at the right moment (e.g. when the context changes) is a fundamental challenge for VTL. In this perspective, the discovery of opportunities and constraints of the context or the choice of protocol deployment modalities are necessary functionalities beyond those currently covered by VTL. Consequently, the autonomy of the VTL, i.e. its capacity to operate its actions with the minimum of human intervention, is a relevant perspective to be explored in greater depth beyond the question of choosing the best protocol proposed in this thesis.

Scalability and VTL.

Finally, the modalities of VTL deployment and instantiation must be questioned in the case an increasing number of transport sessions are to be established. Would it make more sense to activate one instance/agent per end-system, per application, or per connection? The answer to these concerns meets, here also, the objective of using VTL in a more general context. The resistance to the scale factor of the VTL with respect to the number to a high number of connections at the host machine level, is a property to be considered in relation (in particular) to the resources of the VTL deployment nodes.

. . Short-term Perspectives

Protocol mechanisms and performance evaluation. The protocol mechanisms we have relied on (especially in Chapter) to assess and demonstrate VTL's capabilities are basic mechanisms. A quite feasible and relevant perspective would be implementing more complex mechanisms such as those of the QUIC protocol or recent congestion control mechanisms such as PCC [] in the form of eBPF programs. This enrichment of the protocol mechanisms set would lead to the extension of the carried out evaluations and to the reinforcement of the results obtained. It would also involve assessing the VTL within more elaborate case studies and considering other performance metrics such as per data packet transit delay, jitter, or fairness and friendliness of the Transport session flows. The deployment of a connection involving a TCP-based VoD server and a VoD client using (thanks to VTL) a protocol other than TCP, but compatible with the latter, is an illustrative case study.

eBPF technology. Although conceptually robust, eBPF technology presents at some places limitations related to the current implementation choices of some of its components, notably SOCKMAP (described in Chapter). For example, in the implementation of the Hooker component of VTL, these limitations have led us to not being able to bypass TCP socket calls without "going back" from the kernel-space to the user-space. At the cost of an implementation effort (and potentially higher complexity), we could initially consider replacing SOCKMAP with a DATAMAP which would allow the Hooker to share data with the application directly in the kernel without the need to open and manage additional sockets from the user-space. A contribution to the eBPF community (more broadly to Linux's one) to address this limitation is a possible technical area of future work.

. . Mid and Long Term Perspectives

General perspectives concerning the need for heterogeneity management

In the emerging Internet, we could expect some nodes might have VTL, and others will not. Similarly, some nodes will be able to allow on-demand deployment of VTL, and others will not. The communication opportunities between "VTL nodes" and "non-VTL nodes" raises a relevant challenge that must be tackled to allow the interoperability of different protocols with the objective (for example) to optimize QoS.

Potential VTL deployment nodes will present different resources in terms of usable Transport services and protocols deployment technologies. Some technologies might allow the deployment in the user-space whereas others might permit it in the kernel-space. On this line, operating systems will present different capabilities/opportunities (e.g., eBPF in the Linux world). It is then necessary to study when, how, and under what conditions to leverage these opportunities' heterogeneity, especially in terms of deployment technologies. It is advisable, where the technologies are sufficiently mature, to initiate work similar to the one carried out in this thesis (around eBPF) in other OS contexts, starting, for example, from work opened in []. The question of the choice among these protocol deployment opportunities will thus have to be addressed.

Finally, the generalization of cloud computing capabilities will gradually make it possible to deploy virtualization containers (virtual machine or container) on end nodes. One perspective is, therefore, to define how to take advantage of this capacity to deploy VTL where it is not present by leveraging softwarization and network programming technologies, namely SDN and NFV (introduced in Chapter). As a result, the VTL architecture needs to be revisited to enrich it with the necessary functionalities.

General perspectives concerning the need for autonomous (re-)configuration management

Architecture of the VTL. The architecture of the VTL is currently designed to allow the dynamic deployment of protocol components in the kernel (via eBPF on Linux OS) based on the acquisition of application requirements and network characteristics. At the same time, the reconfiguration dimension is only partially addressed.

Enriching the VTL is a fundamental perspective with the aim to: / discovering the context and its opportunities (e.g. in terms of deployment capacity in the kernel or user-space, available Transport services, the presence or absence of middleboxes on the data path, etc.), and / choosing, as a consequence, the configuration methods for protocol solutions, and the solutions themselves. A work extending the design and implementation of the VTL components might be carried out based on the available technological evolutions and the targeted degree of autonomy for the VTL. Concerning this last point, approaches based on the autonomic computing model have already been pushed forward.

It would be a matter of re-studying them in the new context considered.

Offline learning vs. Online learning. During our work, the machine learning models used to select the most appropriate Transport protocol have been trained offline beforehand of the deployment of the VTL system. A future direction could be to enhance this approach with online learning. That is to say, VTL should be able to learn and update alone the initially trained models. This will permit to limit the risk of inaccurate models when the network environments radically changed or integrated new characteristics not considered in the initial training.

General perspectives concerning the need for VTL scalability management

The VTL was designed without any preconceived expectations in terms of scalability concerning the number of connections likely to benefit simultaneously from VTL services. However, it is clear that a VTL inability to handle numerous connections "at the sufficient pace" would be a potentially significant obstacle to its deployment. Without answering the question, the subject refers to ways of considering the deployment/instantiation of VTL at the node level: per session, per application, or per end-system. Exploring these possibilities through the prism of their consequences on scalability is a perspective of our work.

.

Figure . :

 . Figure . : Softwarized Network Ecosystem Illustration.

 that shows the distribution usage of Transport protocols on the Internet). Results (from []) reported in Fig. . (a) show that almost % of Internet traffic is based on TCP. Fig. . (b) and Fig. . (c) are additional datasets that we collected during a preliminary experiment by capturing incoming and outgoing Internet traffic to and from two Linux servers running different OS.

Figure . :

 . Figure . : Usage Distribution of Transport protocols. (a): Almost % of the Internet's applications use TCP. (b) and (c): Depends on the protocol's availability on the operating system (OS) and the programmer's choices, the trend remains similar.

 .

Figure . :

 . Figure . : High-level overview of general-purpose Operating System (OS) structure.

Figure . :

 . Figure . :The impact of middlebox on the end-to-end principle.

Figure . :

 . Figure . : Internet's stakeholders forming the vicious circle.

Figure . :

 . Figure . : High-level view of ETP architecture.

 Figure . : QUIC overview in the Internet protocol stack.

Figure . :

 . Figure . : Socket API model (a) vs. Transport Services (TAPS) API model (b).

Figure . :

 . Figure . : The architecture of the NEAT framework [].

Figure . :

 . Figure . : Middlebox traversal by Connection reversal and Relaying techniques.

Figure . :

 . Figure . : Example of encapsulation of SCTP over UDP.

 Figure . : Conceptual illustrations of Transport function (TF) and protocol graft.

 Fig. .): reliability functions, flow control functions, congestion control functions, security/encryption functions. Conceptually, the group to which a TF belongs indicates the Transport service (e.g. a congestion control service) the TF participates in implementing. Indeed, a TF as alone cannot provide any Transport service; it must be composed with other TFs. Readers should note that all functions related to connection management (opening, parameters negotiation, teardown, etc.) are provided by default within the control plane of VTL by Control Broker component (see Fig. .).

Figure . :

 . Figure .: Illustration of protocol graft providing an ARQ-based reliable service. Basically, after numbering and checksum adding to the packet's header (), the packet is sent to the receiver through the NIC (). The receiver will then control the checksum and sequence number values (and). The acknowledgment is then transmitted to the sender to signal whether the packet is correctly received (and).

Figure . :

 . Figure . : Traffic Controller (TC) and eXpress Data Path (XDP) positions in the network stack.

 Figure . : eBPF program deployment overview.

Fig

 Fig. . depicts how internally the VTL socket transfers data through its associated buffers; for the sake of clarity, Data Broker and protocol-agnostic API components are not shown in this figure.During data moving, the interactions between the application and VTL system are performed asynchronously thanks to a pair of buffers at the transmission (Tx buff and skb buff in Fig..) as well as at the reception (Rx buff and umem in Fig..). Rx buff and Tx buff are useful to ensure the protocol graft reconfiguration without interrupting application. Application ready to send data puts it in its Tx buff where Data Broker picks it up, forms VTL packet payload, and pushes it on the skb buff for the IP layer.

Figure . :

 . Figure .: Data moving between application and VTL socket and its associated buffers.

Fig

 Fig. . illustrates the partial reliability concept under videostreaming where each packet data carries one image. The assumption is made that the loss of one data packet (i.e. image) every ten images is acceptable because it is not perceptible by the human's eye. In the first case, only one image (I) is lost, the data packet containing that image is not retransmitted. In the second scenario, the images I and I are lost. The first lost data packet is not retransmitted but to fulfill the MAX_LOSS requirement (% here), the second lost data packet (I) is retransmitted.

Figure . :

 . Figure . : Partial Reliability illustration under video streaming with acceptable loss rate set to MAX_LOSS = %.

Figure . :

 . Figure . : Protocol graft stateful reconfiguration actions. To ensure no packet loss, the egress path may generate moderate overheads during stateful reconfiguration.

Figure . :

 . Figure . : KTF deployment delay breakdown. Precompiled KTFs eliminate Clang/LLVM compilation delay (T). T and T represent the delay of KTF loading inside the eBPF VM.

Figure . :

 . Figure . :KTFs and Graft negotiation delay. Precompiled grafts (green curve) considerably reduce protocol graft negotiation delay. As a reference, the curve in blue illustrates the latency of TCP's way-handshake connection setup with RTT at ms and loss rate set at %.

Figure . :

 . Figure . : Data moving performances under various network conditions of protocol grafts: Go-Back-N (gBn), Selective Repeat (SR) and Partial Reliability (PR).

 Figure . variation of VTL aware-application in changing network conditions.

 Conclusion . Till today, TCP remains the de facto L protocol of the Internet's Transport layer despite its well-known limitations in different contexts []. To address TCP limitations, a plethora of propositions have emerged in the academic literature and in the industries, from the early IETF standards such as DCCP [], SCTP [], etc. to more recent proposals like DCTCP [], QUIC [,], etc. All of these alternatives to TCP, including its own extensions such as Hybla [], have seen limited use due in part to the weakness of the socket API (as discussed in Chapter).

 Long time ago, before being superseded by the TCP/IP standard model, the standard reference model OSI was popular too as the TCP/IP model. Organized in several layers as the TCP/IP model (see Fig. . (b)), its dominant Transport protocol was TP [] different from the TCP protocol in terms of Transport services specifications. Internet, more precisely ARPANET [], was then plenty of two major kinds of systems: on one hand OSI endsystems and on the other hand TCP/IP end-systems (see Fig.

Figure . :

 . Figure . : Protocols converter for OSI and TCP/IP end-systems. Adapted from [].

 Figure . : VTL Hooker Component Internal Structure.

Figure . :

 . Figure . : Traditional data redirection between sockets on the same host.The kernel network path is crossed twice at the sending as well as at the receiving of data.

Figure . :Figure . :

 .. Figure .: Data redirection between sockets based on SOCKMAP and its associated SK _ MSG eBPF program. The kernel network path is bypassed and its subsequent overheads is eliminated.

Figure . :

 . Figure . : Latency of the data streaming with and without Hooker. TCP(HK-UDP) shows TCP application performance when Hooker replaces TCP with UDP during data transfer. The same note applied for TCP(HK-QUIC).

:

 Parsimonious monitoring refers to the fact that monitoring operations have little or no impact on the data traffic load.

Figure . :

 . Figure . : The considered point-topoint topology for experiments. The link between Client and Server emulates either a classical terrestrial Internet or a satellite Internet link.

 Fig. . presents the pointto-point topology used for the experiments.Here, the link between the two hosts emulates either the classical terrestrial Internet or a satellite link. Section . describes in detail the network links configuration and emulation tools as well as the values of the network parameters (delay, bandwidth, and loss rate). The Hooker component is also activated. The performance criterion under observation is the throughput, whose formal definition has been given in Chapter .

 Figure . : L protocols' performances under various network conditions. Boxes span the th to th percentiles, with a notch at the median.

Flow

 Figure . : Application profiling pipeline.

Fig

 Fig. . and Fig. . illustrates examples of the outcomes of the training stage. In the instance of Fig. . , the application is considered to be either loss-tolerant (profiles and , Fig. .) or not (profiles and , Fig. .). This assumption leads to a more simplified decision tree that, as we will see later, could provide satisfactory classification and prediction quality compared to a more extended decision tree. The complete evaluation of these models' quality and their use benefits are extensively evaluated and presented in Section . .

 Fig. . and Fig. . illustrates examples of the outcomes of the training stage. In the instance of Fig. . , the application is considered to be either loss-tolerant (profiles and , Fig. .) or not (profiles and , Fig. .). This assumption leads to a more simplified decision tree that, as we will see later, could provide satisfactory classification and prediction quality compared to a more extended decision tree. The complete evaluation of these models' quality and their use benefits are extensively evaluated and presented in Section . .

Figure . :

 . Figure . : Application's absolute performance (in terms of throughput) on top of various Transport protocols.

) compares the TCP application's performance without redirection and its performance when it is redirected to UDP-Lite or Hybla. The evaluations reported from Fig. . (b) to Fig. . (i) follow the same logic in order to alleviate the figures. The results show that VTL allows TCP applications to achieve at average ~ x better performances in most scenarios.

Figure . :

 . Figure . : Hooked TCP Application's performance (in terms of throughput) under VTL.

.

 Fig. . (b) that perfectly illustrated the Internet's architecture in practice.

Figure . :

 . Figure . : The expected ideal Internet layered architecture (a) vs. the hourglass Internet architecture in practice (b).

Table .

 .

	summarizes a set of selected Transport protocols and
	architectures that we discussed above. We refer readers interested
	in the chronological history of the Transport layer protocols and
	architectures to [,].

MPTCP QUIC ETP UTCP NEAT

	Deployment Space	Kernel	User User User	User
	Protocol-agnostic API			
	Legacy Appli Support			
	Middlebox Traversal		N.A	

Table . :

 . Selected Transport Layer protocols and architectures.

 The previous chapter outlined the limitations of current Transport layer protocols and architectures to address the ossification issues. Moreover, it motivated the need to revisit the Transport layer architecture and provided the guidelines for designing a new architecture of the Internet's Transport layer. Following these guidelines, we designed and implemented a novel Transport layer able to break the vicious circle's substantial consequence, i.e., the Transport layer's sclerosis. Fundamentally, the novel

Transport layer / provides a stable framework to accommodate (new) Transport protocols dynamically deployed and / exposes a protocol-agnostic API to aware-applications in order to facilitate and promote the use of the deployed L protocols. Further, it provides the necessary architecture elements and mechanisms that allow legacy applications to leverage the available Transport services without the need for those applications to be rewritten. We will discuss this latter aspect of VTL in Chapter . This chapter, organized into four sections, presents the design and implementation of such a novel Transport layer, which we called VTL (for Virtual Transport Layer). It is worth noting that VTL is not a new Transport protocol but rather a new Transport layer architecture, which in essence, aims to allow the deployment and the use of any (new or existing) Transport protocols such

Table . :

 . Considered Transport Services/Features.

Table . :

 . Considered quality of service (QoS) parameters.

 NetMonitor component. This component captures the network parameters mentioned earlier and reports them to the Control Broker component on-request for further analysis. Control plane components work together to ensure a (structural) reconfiguration of a session if necessary. Currently, a typical structural reconfiguration loop is triggered by the change in the network state thanks to the quality parameters captured by the NetMonitor component which reports feedback to the Control Broker. After analyzing the reported network parameters, the Control Broker should VTL socket is a data plane structure manipulated through the protocol-agnostic API by aware-applications to send and receive data. It is a virtual socket that emulates either a RAW socket [] for data transmission and/or an XSK socket [] for data receipt. Briefly, TCP/UDP sockets give access to the Transport layer, a RAW socket gives direct access to the IP layer, and an XSK socket gives direct access to the network interface card (NIC). VTL socket is created, maintained, and exposed to applications by Data Broker that ensures data moving and dispatching between the application buffers and the deployed Transport protocol mechanisms running inside the eBPF Kernel VM component. The latter, i.e. the eBPF Kernel VM, is responsible for providing a safe and isolated runtime environment for TFs.

			Aware-Application		Legacy Application
					VTL Control plane
	Protocol-agnostic API		
						User Space Socket API
	Control Broker		VTL_SOCK		Hooker Userspace	C-Std Library (libc)
	NetMon	Launcher	Data Broker		
						User Space
			MAPS			Kernel Space
				Hooker Kernelspace
			Egress Graft		Ingress Graft	Kernel Space Socket API
		KTF1()	KTFn()	KTF1()	KTFn()	Kernel's networking
						datapath	Figure . : VTL system architecture
					Kernel VM	overview. Blue arrows represent the
					VTL Data plane	legacy application datapath, green ar-
						rows the aware-application datapath,
			Network Interface Card	and black arrows the KTFs deploy-ment path.

. VTL components are separated between two planes: a control plane constituted by a userland library and a data plane constituted mainly by the runtime environment of Transport functions (TFs), i.e. the eBPF kernel VM.

Control Broker is the central piece of VTL control plane and its operations during the end-systems' features discovery, session initiation, session maintenance, and session teardown. Among others, it is responsible for ensuring the protocol graft negotiation phase at the end of which the appropriate Transport functions should be deployed at the sender side as well as the receiver side of the Transport session. Launcher component, driven by Control Broker, is in charge of the configuration and the instantiation of the requested TFs inside the eBPF Kernel VM. Prior to each deployment, Launcher leverages the extended eBPF verifier to ensure that the protocol functions' execution inside the runtime environment is safe for the overall system. To observe the network and measure its key quality parameters (delay, loss rate, and throughput), VTL provides determine whether a (structural) reconfiguration is necessary. If a reconfiguration is required, Control Broker will ask the Launcher to remove the old protocol mechanisms and replace them with new ones.

 subsection provides the reader with a background on eBPF [], the core technology on top of which VTL implementation currently relies on. In , S. McCanne and V. Jacobson presented the Berkeley Packet Filter (BPF) virtual machine [] as a kernel agent aiming to capture as early as possible incoming packets on the host's network interface card (NIC). For a long time, BPF has been used for packet filtering in popular tools such as tcpdump [] or Wireshark []. Recently, Linux introduced an extended version of BPF and named it eBPF, for extended BPF. The name of eBPF no longer reflects the reality and might be confusing because many new features are added to it, and its usage scenarios go far beyond the

	Entry point		
	BPF program A	BPF program D	
	BPF program B	BPF program C	BPF program D
			Figure . : eBPF programs chain by
			tail calls [].
	naive filtering. Indeed, eBPF is used today by many industrials like
	Facebook or Netflix to perform tracing, monitoring, networking, or
	enhancing their systems' security. Like its predecessor, eBPF allows
	injecting bytecode within the OS kernel at runtime, i.e. without
	having to recompile the OS. eBPF infrastructure is constructed
	around three major elements: maps, tail calls, and helper functions
	(see Fig. .).		

Maps are generic data structures storing a set of {key, value} pairs used to exchange data either between user-space programs and in-kernel eBPF programs or between eBPF programs running at different points of the kernel. There are several types of maps; each type serves a different purpose. For example, a map of type SOCKMAP (more discussed in Chapter) must be used to store only sockets' file descriptors. Maps are often attached/pinned to the root filesystem (i.e., /sys) to ensure data persistence between successive invocations of eBPF programs.

Table . :

 . Main added helper functions within the VTL system.

	vtl _ stop _ timer(i)	Stop the timer i
	vtl _ build _ graft()	An exogenous wrapper of tail _ call() helper

To reduce the legacy network stack's overheads on the transmission path, VTL takes advantage of RAW sockets to send applications' payload data directly to the IP layer without any L processing. On its ingress path, VTL attaches XDP

Helper functions Description

vtl _ start _ timer(i, n) Set timer i to n ms.

 Control Broker creates and configures a newVTL socket and its associated buffers (see Fig..) and triggers the deployment of the canonical graft (described in Section .). Finally, Control Broker associates the deployed canonical graft's file descriptor to the VTL socket and gets back the resulting VTL socket structure to the application. At this stage, the application gets a ready VTL socket that it uses to send and receive its data. The canonical graft's purpose is to allow the application that does not require specific requirements to instantly send and receive its data without additional overheads and unnecessary delays of the negotiation stage. For applications with specific requirements, the canonical graft is used to conduct the KTFs and protocol grafts negotiation stage. Additionally, the ingress canonical graft is useful to conduct a stateful runtime reconfiguration of protocols (see Section .). KTFs pool the most appropriate egress and ingress grafts to meet application needs. Then, it pre-builds a negotiation packet by setting up its gid header field especially useful to tell the receiver the specific ingress graft it must deploy. Once it finishes packet pre-forming, Control Broker transmits it to the IP layer and waits for a while before looking up the negotiation state in the qos _ nego _ MAP which must be updated by listener _ tf _ sec at the receipt of the receiver reply. As soon as the packet leaves the IP layer, it is intercepted by egress _ tf _ sec which, based on the gid field, may determine if the intercepted packet is a negotiation one or not. When the gid value is not set (the value is, in that case,

				SENDER				RECEIVER	
	Application					Userland	Application			Userland
		1						1		
	proto-agnostic API					proto-agnostic API	
				9					6.2	
	Control Broker	Launcher	qos_nego_MAP	Control Broker	Launcher	qos_nego_MAP
	TCP/UDP IP	2 VTL_SOCK	lookup()	create()	index=0 index=n	VTL_SOCK_fd0 nego_state ... VTL_SOCK_fdn nego_state	5 VTL_SOCK	6.1 update()	index=0 index=n	VTL_SOCK_fd0 nego_state nego_state VTL_SOCK_fdn ...
	egress_tf_sec		egress_cano_graft				ingress_cano_graft	
	TC section	listener_tf_sec		8	update()	ingress_tf_sec XDP section		create() lookup()	7.1
	3			XDP section					
								4		
							Kernel-space				Kernel-space
	NIC						NIC		
							7.2			
									Interactions with shared MAP
									KTF deployment control path
									Data delivery management path

The application indicates its transfer mode in one of the following three modes: sender, receiver, or both. Based on the transfer mode specified by the application, Protocol Grafts Negotiation and Deployment. Protocol grafts negotiation process between a sender and receiver is shown in Fig.

. . In case of successful negotiation, it ends up with the deployment of the suitable KTFs to satisfy the application's requirements. Each side of the connection maintains its own map named qos _nego _ MAP. Each index or key of the qos _ nego _ MAP associates a value containing the file descriptor of the VTL socket and the associated graft negotiation outcome: N _ ACCEPT or N _ REFUSE. At the sender side, the canonical graft named egress_cano_graft runs two KTFs: one TC section named egress _ tf _ sec and one XDP section named listener _ tf _ sec. The receiver side canonical graft, named ingress_cano_graft, executes a single XDP program section named ingress _ tf _ sec.

Sender side: the client of the negotiation. Aware-application that requires specific Transport services and QoS defines them by invoking the protocol-agnostic API . Based on a set of predefined matching rules, Control Broker selects in the NULL), the packet contains application payload and it is not a negotiation packet. Therefore, egress _ tf _ sec sets packet type value to DATA. Otherwise, i.e. the gid value is not NULL, the packet is a negotiation one and egress _ tf _ sec sets the packet type Figure . : Protocol grafts negotiation process under VTL system.

 vtl _ validate() to indicate to the VTL system that it is waiting for a graft negotiation stage result. Both functions vtl _ negotiate() / vtl _ validate()

			Sender		Receiver
		vtl_init()	Here, Canonical Grafts are ready	vtl_init()
		No	QoS?	Yes		No	QoS?	Yes
			vtl_negotiate()			vtl_validate()
	TX Loop	vtl_send_data()	DATA	vtl_recv_data()	RX Loop
					Here, egress/ingress Grafts are	
		vtl_close()	unloaded and VTL socket and its	vtl_close()
					associated buffers freed	

Figure . : Typical function call flow by VTL aware-applications for data Tx/Rx.

Table . :

 . VTL protocol-agnostic API functions parameters.

	Functions	Parameters	Description
			Create a new VTL socket and its as-
	vtl _ init()	mode, src _ ip, dst _ ip	sociated resources (buffers, canonical
			grafts, etc.).
	vtl _ negotiate()	vtl _ sock,l4 _ services, qos _ values	Get application's requirements and trigger a graft negotiation process.
	vtl _ validate()	vtl _ sock	Retrieve graft negotiation outcome for the application.
	vtl _ send _ data()	vtl _ sock, buffer, buffer _ size	Send application's payload data and retrieve the size of written data.
	vtl _ recv _ data()	vtl _ sock, buffer, buffer _ size	Fetch application's payload data and return the read data size.
	vtl _ close()	vtl _ sock	

Implemented KTFs and Grafts Egress/Ingress Canonical Grafts.

 that consists of an XDP section named ingress _ tf _ sec and that is sufficient to process incoming packets as well as to send acknowledgment if necessary thanks to the verdict XDP _ VTL _ ACK. Code Listing illustrates a template of an egress graft part of a protocol. Subsection . . introduces some L protocol mechanisms we implemented. Later, in subsection . . , we present a runtime (structural) reconfiguration technical approach under VTL. Finally, subsection . . and subsection . . present the configuration of the experiments environment and discuss the outcomes of the evaluations. Canonical grafts, egress one as well as ingress one, purposes are (i) to enable the immediate transfer of data of applications that do not have special requirements and (ii) to conduct the KTFs negotiation stage for QoS-oriented applications. Additionally, the ingress canonical graft is useful to ensure the reconfiguration of protocols. Canonical grafts are deployed at the creation of a new VTL socket to which the KTFs composing the canonical grafts are associated by default (go back to Fig..). For each packet it processes, the egress canonical graft sets up the type header field of the packet (either to DATA or to NEGO), ensures the processing of acknowledgment packet and signals to Control Broker the receiver's reply thanks to the shared MAPS.

	Listing . : Template of protocol graft
	and Kernel Transport Function (KTF).
	#include <vtl.h>
	// and other useful headers
	/ * Declare a MAP to store
	data packet for retx * /
	struct bpf _ elf _ map SEC("
	maps")
	EGRESS _ PKT _ WND _ MAP = {
	.type=BPF _ MAP _ TYPE _ HASH,
	.size _ key=sizeof(int),
	.size _ value=sizeof(
	vtl _ pkt _ t),
	.pinning=PIN _ GLOBAL _ NS,
	.max _ elem=16,
	};
	SEC("egress _ tf _ sec")
	int _ tf _ tc _ egress(struct
	__ sk _ buff * skb) {
	// skb is the entry point
	of the TF
	/ *** TF code here *** /
	}
	SEC("listener _ tf _ sec")
	int _ listener _ tf(struct
	xdp _ md * xskb) {
	// xskb is the entry point
	of the TF
	/ *** TF code here *** /
	}

. .

Table . :

 . illustrate essentially the delay of KTFs deployment within the end-system OS. We compute delays with the help of time tool []. Configurations of Network Testbed.

	Min RTT Link Capacity Loss Rate
	ms	Mbps	-%

Table . :

 . The

	SLoC	Source File Size	Object File Size	
	egress ingress Total egress	ingress	Total	egress	ingress	Total
	Canonical	. KB	. KB	. KB	. KB	. KB	. KB
	Go-Back-N	. KB	. KB	. KB	. KB	. KB	. KB
	Selective Repeat	. KB	. KB	. KB	. KB	. KB	. KB
	Partial Reliability	. KB	. KB	. KB	. KB	. KB	. KB

code complexity of the implemented grafts. It shows the number of source lines of code (SLoC) and the sizes of non-precompiled (source file) as well as precompiled (object file) grafts

Table . :

 . Primary functions of (TCP) socket API.

	Functions	Parameters	Description
	socket()	domain, type, protocol	Create a new socket.
	bind()	sock _ fd, addr, addr _ size	Assign a local IP address and port number to a socket.
	listen()	sock _ fd, max _ connection	Set the socket in listen mode.
			Make a connection request and bind
	connect() sock _ fd, addr, addr _ size	the socket to the remote IP address
			and port number.
	accept()	sock _ fd, addr, addr _ size	Accept incoming connection request.
	send()	sock _ fd, data, data _ size	Send data over a socket.
	recv()	sock _ fd, data, data _ size	Receive data from a socket.
	close()	sock _ fd	Teardown a connection.
			: Conceptually, the preloading tech-
			nique consists of overloading func-
			tions namely system calls of the OS
			kernel []. It relies on the LD_-
			PRELOAD environment variable.

 AF _ UNIX for local communication domain, or AF _ XDP for XDP interface family. For a TCP application, the type parameter value is always SOCK _ STREAM that indicates that the socket should provide connection-oriented, byte-stream-oriented, bidirectional, and reliable Transport services. Recall that the socket API imposes on applications to explicitly specify the L protocol to be used to transfer data. That is the role of the protocol parameter of the socket() function. If this latter parameter is set to , the default L protocol associated with the type parameter is used: it is TCP protocol in the case of SOCK _ STREAM.

	Socket Layer		TCP Layer			SERVER	IP Layer
	send()/sendmsg()	sock_ops_sendmsg()	tcp_sendmsg()	socket() tcp_transmit_skb()
				tcp_send_ack()	bind()
	recv()/recvmsg()	tcp_recvmsg()	sk_data_ready()	tcp_rcv_established()	tcp_v4_rcv()	Figure . : Simplified TCP Execution
					tcp_ack()		Path on egress and ingress paths. Full
	CLIENT				listen()	version is available at appendix A.
	socket()					
					accept()
	connect()	TCP Connection Opening 3-way Handshake		
	send()	Client sending data Server receiving data		recv()
	recv()	Server sending data Client receiving data		send()
	close()	Client closing connection		recv()
							Figure . : A basic sequence of socket
					close()	API function calls during data trans-fer.

Table

.

. Those functions fail in two main categories: () the configuration functions used for instance to create and to set up a socket, to establish or to close a connection between different sockets, etc.; and () the I/O functions namely send() and recv() that are used to transfer data between applications. Fig. . illustrates a typical sequence of function calls between TCP applications that use the socket API during a data transfer.

On the client-side as well as on the server-side, the application uses socket() function to create a new socket. The socket() function enables the application to specify the domain (also known as protocol family) that should be attributed to the socket. Possible values of the domain parameter include but are not limited to: AF _ INET (resp. AF _ INET6) for IPv protocols family (resp. for IPv protocols domain), Since the socket returned by the socket() function is a simple file descriptor that is just an integer, to be ready to send and to receive data through this socket, the TCP application needs to associate with the socket a tuple composed by one IP address

Table . :

 . List of selected eBPF SOCK _ -OPS operators (op) in Linux . . . The name of each op must be preceded by the prefix BPF _ SOCK _ OPS

			KEYS	VALUES
		index 0	key #1	value #1
		.		
	SOCKMAP
		index n	key #n	value #n
				Figure . : SOCKMAP illustration. The
		Must be a TCP socket file	map value can only be a file descriptor
		descriptors		of listening TCP sockets.
	instance, decide to register the TCP socket descriptor attributed to
	the application in the special eBPF map SOCKMAP.	
				Listing . : Example of a SOCKMAP key
				structure.
				struct sock _ key {
				__ u32 src _ ip4;
				__ u32 dst _ ip4;
				__ u32 src _ port;
				__ u32 dst _ port;
				}

Table . :

 . Tested network and hosts' Configurations.

	Compilation Deployment Redirection ops
	SK _ MSG	. s	.	s	µs
	SOCK _ OPS	. s	.	s	N.A
	XDP	. s	.	s	N.A
	Hooker User	.	s	N.A		µs
	Total	.	s	.	s	µs
			VMs Specifications	
	CPU		RAM		NIC	
	Intel . GHz ×	. GiB	Atheros QCA
			Emulated Network	
	RTT		Bandwidth	Loss rate
	ms		Mb/s	-%	

Table . :

 . Data redirection cost and Hooker activation delay.

) supervised learning and () unsupervised learning. In supervised learning, each case in the training dataset is associated with a class or label (i.e., the expected output). The dataset is a so-called labeled dataset. For instance, in our case, each case, i.e. the pair {application requirements / network context}, is associated with an L protocol from the set of the considered IETF Transport protocols. Unsupervised learning allows training models when the dataset cases' classes are unknown, which means the dataset is not labeled. Fig..summarizes those learning techniques and justifies our use of decision tree models in this work. As the reader can guess, the models we used in our work are trained using the supervised learning technique.

						C4.5 / C5.0
			Decision trees	CART ...	Based on Hunt's Algorithm
		Classification	Naïve Bayes		ID3
			...	No assumption	
			ANN	on attributes	
	Supervised					
	ML	Regression	Classes are discretes rather than continuous	+	Attributes are not necessarily numeric	Figure . : Machine learning (ML) models training techniques and al-
	Unsupervised	We know the classes				gorithms. ANN stands for Artificial Neural Network.

(

 This elementary example shows how, based on a series of questions, one could use the current measures and the background

		Outlook Temperature Humidity Windy Decision
	D	sunny	hot	high	false	no
	D	sunny	hot	high	true	no
	D	sunny	mild	high	false	no
	D	sunny	cool	normal	false	yes
	D	sunny	mild	normal	true	yes
	D	overcast	hot	high	false	yes
	D	overcast	cool	normal	true	yes
	D	overcast	mild	high	true	yes
	D	overcast	hot	normal	false	yes
	D	rain	mild	high	false	yes
	D	rain	cool	normal	false	yes
	D	rain	cool	normal	true	no
	D	rain	mild	normal	false	yes
	D	rain	mild	high	true	no
	D	sunny	cool	high	true	?

Table . :

 . A small training dataset from [].

 To do this, we associate to each network link a state or profile characterized by three main parameters: {[RTT min , RTT max], BW max , loss moy }. The RTT min (resp. RTT max) denotes the minimum (resp. maximum) round-trip-time experienced under the network. The loss moy is the average rate of packet loss, and BW max is the maximum bandwidth available within the network link. In Table., we can see that typical LDN networks such as satellite networks have pro-

file P = {[500ms, ∞[, -, 1Mbps} []. Note that the loss parameter

Table . :

 . Network profiles based on the link quality parameters.Since the bandwidth (the incoming data rate, in fact) estimation does not require any packet injection into the network, the monitoring component continuously captures a copy of the incoming packets to deduce the network link's bandwidth. However, we estimate the RTT and loss rate values by injecting out-of-band, albeit lightweight, ICMP ECHO/REPLY packets on the network.

		RTT		Bandwidth (B.W)
	Long-delay Networks (LDN, e.g. Satellite)	>=	ms	Mbps
	Terrestrial Internet Links	ms to	ms	Mbps
	LAN (e.g. Internal D.C, home network)	< ms	Mbps to	Gbps
	is neither static nor closely bound to a specific network profile but	
	depends more on the network's congestion state. Therefore, it is	
	possible (probably the fact) to experience more data packet losses	
	under congested wired-LAN than non-congested wireless-LAN.	

Remerciements

: We define correctness as the ability of the system to successfully perform its primary tasks. It is also known as functional evaluation as opposed to non-functional evaluation that assesses the systems' performances.

• multimédias streaming (YouTube, NetFlix, etc.)

• Visioconférence (Skype, Zoom, etc.)

time and *loss* sensitive applications

• Remote login/access (SSH, etc.)

• Web browsing (Chrome, Firefox, etc.)

S tr ea m in g

In te ra ct iv e Bu lk *loss* sensitive applications insensitive applications

• File/Data Down/Uploading (FTP, Bittorrent, etc.)

• Fax, etc.

Loss Tole rant

. . Decision Tree Models Benchmarking

We started by evaluating the precision and the recall of the trained decision tree models provided in requirements / network context} is already encountered. The trend is reversed for the recall's values where on weight-average, model presents % recall, whereas model achieves % recall. As stated previously, the ability to classify correctly already seen cases is not sufficient to assess a model's quality. Its prediction quality, i.e., its ability to classify accurately new and never seen instances, gives more insights. Therefore, we apply the trained models model and model on a test dataset containing around forty cases. We observed that model classify almost with the same precision (. %) seen as well as unseen cases. The trend is slightly different for model , where the achieved precision (%) on the unseen instances is not so better as the precision of the classification of seen cases.

All in all, we note that the simplicity of a model is not necessarily a restriction to its usage. The quality achieved by a simplified model (for instance, model in our work) could be good enough for its use. A model could classify correctly all seen cases but perform worst on new and unseen instances. The trained models model and model are able to make accurate selection of the appropriate protocol times out of .

. . Application Performances

Absolute throughput evaluations. In a first step, we assessed all protocols' absolute performance, i.e., without VTL operations and use of trained models. The results reported in Fig. . show the throughput of the evaluated protocols. These results are those used to generate and construct the dataset used to train the decision tree models. Furthermore, they provide us insights into what significant benefits might be achieved by using on the wire another protocol instead of TCP (as presented in Section .).

Author's Scientific Production

International Conferences and Workshops

Miscellaneous Publications

• The above figure provides an overview of a Transport session under VTL. When the TCP client requests a connection, its SYN packet is intercepted VTL and, thanks to a SOCK _ OPS bpf program attached to cgroupv , it adds to the SYN packet a VTL_COMPLIANT option to advertise to the server that the client is VTL compliant as well as to discover the server property. If the server is also VTL compliant, it should reply with a VTL_NEGO option and the transfer might continue under VTL; otherwise, the connection should fallback systematically to TCP.

Technical Reports / Preprints

When the VTL at the server-side receives a SYN packet, it parses it thanks to an XDP bpf program attached to the network interface driver (NIC). If it finds a VTL_COMPLIANT option, it triggers the application profiling and gets the network state. Based on the trained decision tree models, VTL at the server-side should select the appropriate protocol to replace TCP. The selected protocol, identified by tfid (the IP_PROTO number in fact), should be added as an option to the SYN/ACK packet. A SOCK _ OPS program adds this option to signal to the VTL at the client-side the L protocol B Transport Session Summary to use for the data transfer. Here, if the application profiling fails, TCP is kept as the default protocol. One might choose another protocol as the default one.

Finally, the SYN/ACK packet containing VTL_NEGO and tfid options is intercepted by an XDP program at the client-side. VTL configures the requested L protocol to replace TCP at the client-side. Then, the ACK of the SYN/ACK is modified by a SOCK _ OPS program. The modification consists of adding a VTL_NEGO_ACK option to indicate to the VTL at the server-side the connection opening's success. When an XDP program at the server-side intercepts an ACK packet containing a VTL_NEGO_ACK option, it removes this option to keep transparency vis-à-vis the legacy application.