
HAL Id: tel-03523678
https://theses.hal.science/tel-03523678v1

Submitted on 12 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VTL : A Stable Framework for Conception,
Implementation, and Deployment of Internet

Communication Protocols
El-Fadel Bonfoh

To cite this version:
El-Fadel Bonfoh. VTL : A Stable Framework for Conception, Implementation, and Deployment of
Internet Communication Protocols. Networking and Internet Architecture [cs.NI]. INSA de Toulouse,
2021. English. �NNT : 2021ISAT0012�. �tel-03523678�

https://theses.hal.science/tel-03523678v1
https://hal.archives-ouvertes.fr

THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Institut National des Sciences Appliquées de
Toulouse

Présentée et soutenue par

El-Fadel BONFOH

Le 26 janvier 2021

VTL: Une Architecture Stable pour la Conception,
l'Implémentation, et le Déploiement de Protocoles de

Communication d'Internet

Ecole doctorale : EDMITT - Ecole Doctorale Mathématiques, Informatique et
Télécommunications de Toulouse

Spécialité : Informatique et Télécommunications

Unité de recherche :
LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes

Thèse dirigée par
Christophe CHASSOT et Samir MEDJIAH

Jury
M. Ernesto EXPOSITO, Rapporteur

Mme Isabelle GUÉRIN-LASSOUS, Rapporteure
M. Damien MAGONI, Rapporteur

M. Nicolas VAN WAMBEKE, Examinateur
M. Thierry TURLETTI, Examinateur

M. Christophe CHASSOT, Directeur de thèse
M. Samir MEDJIAH, Co-directeur de thèse

En mémoire de mon père,
Balah Bawih

The scientist builds in order to study;
the engineer studies in order to build.

Frederick P. BROOKS Jr.

Remerciements

Mes premiers mots de remerciement vont à mes directeurs de thèse, Christophe CHASSOT et Samir
MEDJIAH. Je les remercie de m’avoir confié ce projet de recherche, de m’avoir encadré et fourni les
moyens nécessaires pour mener à bout ce projet.

Je remercie chacun des membres de mon jury qui malgré les aléas liés à la situation sanitaire
ont bien accepté de participer à mon jury de thèse. Je remercie tous mes rapporteurs, Isabelle
GUÉRIN-LASSOUS, Damien MAGONI et Ernesto EXPOSITO. Je leur suis reconnaissant du temps
qu’ils ont consacré à rapporter cette thèse et de leurs retours enrichissants. Je remercie enfin
mes examinateurs Nicolas VAN WAMBEKE et Thierry TURLETTI pour leurs commentaires et
nombreuses réflexions perspicaces sur mon travail.

Cette thèse a été le fruit d’un long travail mené au sein du LAAS-CNRS. J’en remercie le directeur,
M. Liviu NICU et tout le personnel. J’adresse mes remerciements également à tous les cadres
scientifiques demon équipe de recherche SARAnotammentM.Khalil DRIRA,M. SlimABDELLATIF
pour ses conseils réguliers lors de cette thèse et surtout son aide précieuse lors de la préparation de
la soutenance de cette thèse. Je remercie également M. Philippe OWEZARSKI avec qui j’ai eu bien
d’échanges fructueux.

J’adresse une spéciale à tous mes collègues et amis qui de près ou de loin m’ont apporté leur soutien
à leur manière. Une spéciale dans la spéciale pour mon jumeau et compatriote de tous les temps,
qui a été d’un soutien sans faille au cours de toutes ces années, merci Bénoît.

Je remercie ma famille d’avoir pu me soutenir de là où ils sont. Je remercie mon parrain Damien,
pour ses conseils et encouragements, ainsi que sa femme Lydie qui m’a fortement poussé à rédiger
ce manuscrit, c’est fait. À travers eux, c’est à toute l’association Five Hearts que j’adresse mes
remerciements. Enfin, je ne remercierai jamais assez ma complice de toujours, celle qui a toujours
supporté de vivre sa thèse en même temps que la mienne. Merci pour ton soutien de tous les goûts
Nour.

Abstract

The Internet and its evolutions are fundamentally based on the unique TCP/IP model, whose
primary protocol of the Transport layer (L4) is the TCP protocol (and somewhat UDP). Despite
its well-known limitations, TCP is still widely deployed and used on almost 90% of Internet
traffic. Nearly all the literature’s propositions to overcome TCP’s limitations are not deployed in
the mainstream operating systems (OS) of the market and/or face limited use by the Internet’s
applications. This situation leads to the ossification or sclerosis of the Internet Transport layer and
is a significant barrier to the introduction of innovation into this layer of the Internet’s TCP/IP
architecture. Thus, this thesis proposes to address the issue of ossification of the Transport layer and
is focused on three main contributions disseminated in the six chapters of this manuscript. First,
we propose and implement the architecture of a service-oriented Virtual Transport Layer (VTL)
and extend this service-oriented paradigm by providing the architecture with the capability to
dynamically deploy Transport protocols within the end-systems operating systems (OS). In order
to facilitate the use and stimulate the adoption of the proposed architecture, we then provide the
approach and mechanisms necessary to allow any TCP-based application to use transparently any
Transport protocol other than TCP. The transparency refers to the fact that the TCP application does
not need to be modified. One thing is to know how to replace TCP in a transparent way for the
application, the other thing is to choose the best alternative to TCP. Indeed, depending on network
conditions and application needs, it would be better to choose one protocol over another. The
optimal choice of the alternative to TCP according to the network context and the TCP application’s
needs is the subject of this thesis’s last contribution.

Keywords: Transport protocols, TCP/IP, Dynamic Deployment, eBPF/XDP, Protocol Selection,
Linux OS.

Résumé

L’Internet et ses évolutions technologiques sont fondamentalement basés sur l’unique modèle de
communication TCP/IP dont le protocole principal de la couche Transport (L4) est le protocole TCP
(et dans une moindre proportion UDP). Malgré ses limites bien connues, TCP reste très largement
utilisé sur près de 90% du trafic Internet. La quasi-totalité des propositions de la littérature pour
pallier les limites de TCP sont non déployées dans les principaux systèmes d’exploitations du marché
et/ou font face à une utilisation limitée par les applications sur Internet. Cette situation conduit
à ce qui est connu sous le nom d’ossification ou de sclérose de la couche Transport d’Internet et
constitue une barrière importante à l’introduction d’innovation dans cette couche de l’architecture
TCP/IP d’Internet. Ainsi, cette thèse se propose d’adresser la problématique de l’ossification de la
couche Transport et est centrée sur trois principales contributions disséminées dans les six chapitres
de ce manuscrit. Dans un premier temps, nous proposons et implémentons l’architecture d’une
couche de Transport virtuelle (VTL) orientée-service et étendons ce paradigme de l’orientée-service
en dotant l’architecture de capacité de déploiement dynamique de protocoles de Transport au sein
des systèmes d’exploitation des hôtes d’extrémités. En vue de faciliter l’utilisation et stimuler
l’adoption de l’architecture proposée, nous fournissons dans un deuxième temps, l’approche et les
mécanismes nécessaires pour permettre à toute application TCP d’utiliser de manière transparente
tout protocole de Transport autre que TCP. La transparence fait référence au fait que l’application
TCP n’a pas besoin d’être modifiée. Une chose est de savoir remplacer TCP de façon transparente
pour l’application, l’autre chose est de choisir la meilleure alternative à TCP. En effet, en fonction des
conditions du réseau et des besoins de l’application, il serait plus judicieux de choisir tel protocole
plutôt que tel autre. Le choix optimal de l’alternative à TCP suivant le contexte réseau et les besoins
de l’application TCP est l’objet de la dernière contribution de cette thèse.

Mots-clés: Transport protocols, TCP/IP, Dynamic Deployment, eBPF/XDP, Protocol Selection,
Linux OS.

Contents

Abstract ix

Résumé x

1 Introduction 1

1.1 Thesis Big Picture . 1
1.2 Thesis Scope and Problem . 2
1.3 Thesis Contributions . 4
1.4 Dissertation Structure . 6

2 Background: Related Work and Thesis Positioning 7

2.1 Vicious Circle . 7
2.1.1 Deployment Barriers . 8
2.1.2 Limited Adoption Root Cause . 9
2.1.3 Other Factors Out of End-systems . 10

2.2 Transport Layer: Protocols and Architectures . 12
2.2.1 Innovations’ Enforcement at End-systems . 13
2.2.2 Rethinking the L4 layer architecture and its interactions with Applications . . 16
2.2.3 Handle Middleboxes Traversals . 18

2.3 Thesis Approach and Positioning . 22
2.4 Conclusion . 23

3 Virtual Transport Layer Introduction 25

3.1 VTL Core Concepts . 26
3.1.1 Transport Function (TF) . 26
3.1.2 Protocol Graft . 27
3.1.3 VTL Services and Features . 27

3.2 VTL: Design and Implementation . 29
3.2.1 VTL Architecture Overview . 29
3.2.2 Background . 31
3.2.3 Digging into VTL Implementation . 34
3.2.4 Aware-application Session Initiation . 35
3.2.5 KTFs Deployment Workflow . 38
3.2.6 Data Delivery Path . 38
3.2.7 VTL Aware-application Session Summary . 40

3.3 Carried Out Use Cases and Performance Evaluation 41
3.3.1 Implemented KTFs and Grafts . 42
3.3.2 Runtime (Re)configuration of Grafts Use Case 43
3.3.3 Testbed Setup and Methodology . 44
3.3.4 Microbenchmarks . 46

3.4 Closely Related Work and Discussion . 50
3.5 Conclusion . 51

4 Transparent Integration of Legacy Applications 53

4.1 Related Work . 54
4.2 Socket API Layer and TCP Execution Path . 56
4.3 Hooker Design and Implementation . 59

4.3.1 SOCKMAP: the art of data packets stealing . 61
4.3.2 SOCK_OPS: TCP Execution Path’s Spy . 62
4.3.3 Legacy Application Data Paths . 64

4.4 Performance Evaluation . 65
4.5 Conclusion . 67

5 Optimal Selection of Protocols 69

5.1 Motivation . 70
5.2 Background . 71

5.2.1 Decision Tree Models . 72
5.2.2 C5.0 Algorithm for Decision Trees Induction 73

5.3 Protocols Selection Approach . 75
5.3.1 Receiver-driven Application Profiling . 76
5.3.2 On-request Network Monitoring . 78
5.3.3 Construction of Decision Tree Models for Protocols Selection 79

5.4 Experiments and Evaluations . 81
5.4.1 Testbed Setup and Methodology . 81
5.4.2 Decision Tree Models Benchmarking . 82
5.4.3 Application Performances . 83

5.5 Conclusion . 85

6 Conclusion 87

6.1 Contributions Dissemination in Chapters . 88
6.2 Potentials Future Work . 89

6.2.1 Short-term Perspectives . 90
6.2.2 Mid and Long Term Perspectives . 90

Author’s Scientific Production 93

International Conferences and Workshops . 93
National Conference . 93
Miscellaneous Publications . 93
Technical Reports / Preprints . 93

Appendix 97

A TCP Execution Path 98

B Transport Session Summary 99

Bibliography 101

List of Figures

1.1 A Softwarized Network Ecosystem Illustration . 2
1.2 Usage Distribution of Transport protocols . 3

2.1 High-level overview of general-purpose Operating System (OS) structure. 8
2.2 The impact of middlebox on the end-to-end principle. 10
2.3 Internet’s stakeholders forming the vicious circle. 11
2.4 Internet TCP/IP layered architecture and MPTCP overview. 13
2.5 High-level view of ETP architecture. 14
2.6 QUIC overview in the Internet protocol stack. 15
2.7 Socket API model vs. Transport Services (TAPS) API model. 17
2.8 The architecture of the NEAT framework. 18
2.9 Illustration of NAT middlebox interactions on data packets. 19
2.10 Middlebox traversal by Connection reversal and Relaying techniques. 20
2.11 Example of encapsulation of SCTP over UDP. 21

3.1 Conceptual illustrations of Transport function (TF) and protocol graft. 26
3.2 Illustration of protocol graft providing an ARQ-based reliable service. 27
3.3 VTL system architecture overview. 30
3.4 eBPF programs chain by tail calls. 32
3.5 Traffic Controller (TC) and eXpress Data Path (XDP) positions in the network stack. . . . 33
3.6 eBPF program deployment overview. 34
3.7 Protocol grafts negotiation process under VTL system. 37
3.8 Data moving between application and VTL socket and its associated buffers. 39
3.9 Typical function call flow by VTL aware-applications for data Tx/Rx. 40
3.10 Partial Reliability illustration. 44
3.11 Protocol graft stateful reconfiguration actions. 45
3.12 KTF deployment delay breakdown. 46
3.13 KTFs and Graft negotiation delay. 47
3.14 Data moving performances under various network conditions of protocol grafts. 49
3.15 Throughput variation of VTL aware-application in changing network conditions. 50

4.1 Protocols converter for OSI and TCP/IP end-systems. 55
4.2 A basic sequence of socket API function calls during data transfer. 57
4.3 Simplified TCP Execution Path on egress and ingress paths. 58
4.4 VTL Hooker Component Internal Structure. 60
4.5 Traditional data redirection between sockets on the same host. 62
4.6 Data redirection between sockets based on SOCKMAP and its associated SK_MSG eBPF

program. 62
4.7 SOCKMAP/SK_MSG and SOCK_OPS eBPF hooks location in the network stack. 63
4.8 SOCKMAP illustration. 64
4.9 Latency of the data streaming with and without Hooker. 67

5.1 The considered point-to-point topology for experiments. 70
5.2 L4 protocols’ performances under various network conditions. 71
5.3 Machine learning (ML) models training techniques and algorithms. 72
5.4 High-level conceptual view of protocols selection approach. 76
5.5 Applications profiles based on ITU recommendations. 77
5.6 Application profiling pipeline. 78
5.7 Simplified decision tree to select the most appropriate protocol. 79
5.8 Extended decision tree to select the most appropriate protocol. 80
5.9 Application’s absolute performance (in terms of throughput) on top of various Transport

protocols. 84
5.10 Hooked TCP Application’s performance (in terms of throughput) under VTL. 85

6.1 The expected ideal Internet layered architecture vs. the hourglass Internet architecture in
practice. 88

List of Tables

2.1 Selected Transport Layer protocols and architectures. 21

3.1 Considered Transport Services/Features. 28
3.2 Considered quality of service (QoS) parameters. 29
3.3 Main added helper functions within the VTL system. 35
3.4 VTL protocol-agnostic API functions parameters. 41
3.5 Configurations of Network Testbed. 46
3.6 The code complexity of the implemented grafts. 47

4.1 Primary functions of (TCP) socket API. 56
4.2 List of selected eBPF SOCK_OPS operators (op) in Linux 5.3.5. 63
4.3 Tested network and hosts’ Configurations. 65
4.4 Data redirection cost and Hooker activation delay. 66

5.1 A small training dataset. 73
5.2 Network profiles based on the link quality parameters. 79
5.3 Confusion matrices showing quality parameters of the decision tree model1. 82
5.4 Confusion matrices showing quality parameters of the decision tree model2. 83

Introduction 1

1.1 Thesis Big Picture . 1

1.2 Thesis Scope and Problem 2

1.3 Thesis Contributions 4

1.4 Dissertation Structure 6

1.1 Thesis Big Picture

The last two decades have seen a rapid expansion of the Internet
and its place in human life. The recent Covid-19 pandemic proves
it: teleworking, teleconference, teleteaching, telehealth, etc., have
been massively used. This growth of the Internet has been and
remains possible thanks in part to the introduction of a plethora
of new paradigms (Cloud/Fog/Edge Computing, SDN, NFV,
etc.) and their associated technologies (OpenStack, OpenFlow,
eBPF, Docker, etc.). Those paradigms and technologies bring
new opportunities and open up new challenges. For instance,
Software-Defined Networking (SDN) paradigm [1] and its tech-
nical expressions OpenFlow and P4 introduced programmability
in the core of networks and eased the configuration, maintenance,
and monitoring of networks. In the wake of SDN, Network Func-
tion Virtualization (NFV) [2] and its relevant implementations
enabled more agility and flexibility in managing and deploying
network services. At the same time, more recent technologies
such as extended Berkeley Packet Filter (eBPF) [3] allowed to
dynamically insert functionalities (protocol functions, packet
filters, etc.) in the operating system (OS) kernel of end-systems,
hence introducing programmability at the edge of networks by
temporary modification of end-systems behavior.

This proliferation of new paradigms and technologies forms
a “softwarized” Internet ecosystem (Fig. 1.1) characterized by a
broad heterogeneity and high volatility. Indeed, they are hetero-
geneous in terms of opportunities (programmables network
and OS, . . .) as well as in terms of network constraints (delay,
loss, ...) and application requirements (reliability, security, . . .).
Furthermore, during the same data transfer session, the network
state is constantly changing due to a number of events such
as the migration of resources (VMs, Containers, etc.) between
datacenters, hardware and software failures, datacenter servers
overloading, or link quality degradation. This leads to a very
volatile ecosystem that requires the design of auto-adaptive sys-
tems and frameworks able to follow up these dynamic changes in
order to ensure network stability and to provide optimal quality
of service (QoS) to applications and, at the end, a better quality
of experience (QoE) for the users.

1 Introduction 2

IP

...
End-system

End-system

Virtual Node SDN
Controller

Migrated Virtual Node deployed
dynamically to replace failing node

SDN Network

DataCenter
(DC)

DC

User-space

Kernel-space

IP
Network

Application

Middlebox

Figure 1.1: Softwarized Network Ecosystem Illustration.

Besides, the Internet is the crossroads of more and more stake-
holders (OS providers, applications programmers, middleboxes
vendors, etc.), each one arriving with its own requirements and
expectations. For instance, while application programmers could
significantly improve their applications’ performance by using a
tailored but not necessarily standardized L4 protocol, middleboxes
owners could, for security and reliability reasons, prohibit the use
of any non-standardized L4 protocol on their equipment. Those
mostly opposed and contradictory requirements and expectations
hamper the introduction of innovation and lead to the well-known
ossification of Internet architecture, especially its communication
stack.

1.2 Thesis Scope and Problem

The Internet and its evolutions are essentially based on the same
communication model: the TCP/IP standard model, whose main
L4 protocol for end-to-end data transfer between network ap-
plications remains TCP (and somewhat UDP). Indeed, with the
evolution of the Internet, several Transport layer protocol mecha-
nisms have been proposed in the literature to continually improve
end-to-end QoSwith the aim to satisfy the increasing requirements
of applications and to adapt to a variety of emerging networks.
Unfortunately, most of these protocols either are not availablewithin
the mainstream OSes and/or suffer from a limited usewithin the
Internet (see Fig. 1.2 that shows the distribution usage of Transport
protocols on the Internet). Results (from [4]) reported in Fig. 1.2 (a)
show that almost 90% of Internet traffic is based on TCP. Fig. 1.2

1 Introduction 3

(b) and Fig. 1.2 (c) are additional datasets that we collected during
a preliminary experiment by capturing incoming and outgoing
Internet traffic to and from two Linux servers running different OS.
The study under the Wireshark analyzer tool [5] of the collected
data provides two main insights during this preliminary experi-
ment. On the one hand, to navigate for instance on youtube.com or
google.com, the same application (Chrome) uses different Trans-
port protocols depending on whether it is running under Linux
4.10.0 or under Linux 5.3.5⇒ the used protocol depends on its avail-
ability on the OS. On the other hand, the same kind of application
(i.e., web browser, here Chrome and Firefox ESR) surfing on the
same website does not use the same Transport protocol⇒ the used
protocol depends on the one adopted by the application programmers.

T
C

P
U

D
P

O
th

er
s

(a)
Proportion (%)

0 20 40 60 80 100

TCP

UDP

Others

Linux#5.3.5

(b)

TCP

UDP

Others

Linux#4.10.0

(c)

Figure 1.2: Usage Distribution of
Transport protocols. (a): Almost 90%
of the Internet’s applications use TCP.
(b) and (c): Depends on the protocol’s
availability on the operating system
(OS) and the programmer’s choices,
the trend remains similar.

Summary and research questions. The review of the literature and
the analysis of the results of preliminary experiments we carried
out lead us to the following conclusion: despite their convenient
conceptual approach and better performances against TCP/UDP
in several cases, any new L4 protocol solutions other than TCP and
UDP are (i) faintly deployed (in worst cases not deployed) and (ii)
suffer from limited adoption by applications on the Internet. This
situation prompts the sclerosis of the Internet Transport layer, also
known as ossification of the Transport layer. The Internet Transport
layer ossification is a major barrier to the introduction of more
agility and flexibility enabled by the evolution of new paradigms in
the Internet such as the emerging “softwarized” networks and their
main underlying technological concepts SDN and NFV. This thesis
proposes to address Transport layer sclerosis at the end-systems
by providing practical answers to two major questions: (1) How to

1 Introduction 4

1: A Transport Service is an abstrac-
tion of a set of Transport functions
that provides an end-to-end facility
to applications. Examples include but
are not limited to: reliable delivery ser-
vice, ordered delivery service, partially
ordered delivery service, encrypted de-
livery service, etc.

2: Throughout this manuscript,
legacy application is defined as TCP
application that uses the standard
socket API to consume Transport
layer services. We will use inter-
changeably the terms “legacy appli-
cation” and “TCP application”.

(effectively) deploy a specific protocol mechanism at the end-system? (2)
And, assuming the availability of mechanisms on the end-system,
how, on the one hand, to ensure the deployment of the appropriate protocol
to the application requirements and network state and, on the other
hand, to ensure its seamless usage by (existing) applications? The focus
is placed on the exploration of opportunities provided to us by
in-kernel dynamic deployment technologies, namely eBPF.

1.3 Thesis Contributions

Apart from the extensive evaluationsperformedduringour journey,
the main contributions of this thesis are listed below.

Dynamic grafting ofTransport protocols. To address theTransport
layer’s ossification, most of the previous research efforts proposed
replacing the limited socket API with a service-oriented API so that
the application no longer invokes a specific protocol but asks
for a Transport Service1 . The choice of the appropriate protocol
to provide the required service is delegated to the Transport
layer. However, in its current state, this approach is based on
the assumption that the required protocol is already available
on the OS of the end-system and, therefore, lacks a method to
dynamically deploy a new protocol (or protocol component) when
it is not available at the end-system. To fill this gap, we extend the
service-oriented approach by introducing the concept of dynamic
deploymentofprotocol grafts.Dynamic graftingof protocols consists
of on-the-fly integration of protocol components within the end-
system either at

A protocol graft is a pluggable proto-
col component that consists of a set
of Transport functions with their as-
sociated interaction pattern. The in-
teraction model defines the way the
Transport Functions are orchestrated.
Chapter 3 describes in more details
this notion.

the user-space or the kernel-space of the operating
system (OS). Dynamic and on-the-fly properties refer to the fact
that we provide the technique ensuring that the deployments are
realized without the need to recompile and reboot the OS.

Transparent reconfiguration/integration of legacy applications.
As previously stated, our first contribution is an extension of the
service-oriented approach that is under standardization within the
IETF working group TAPS [6]. However, once the standardization
stage is over, we believe a major problem will arise: porting current
legacy applications2 to the new service-oriented API. This will
require a modification of the applications that could be a barrier
to the adoption of this approach, as we will see in the subsequent
chapter. This might result in limited use of (1) the protocols inte-
grated within the service-oriented architecture as well as (2) the
architecture itself. To prevent this eventual limited adoption, we
design and implement an approach that permits to replace at
runtime TCP by another protocol X. We realize it in a transparent
way to TCP applications, i.e., there is no need to rewrite the code
of the latter. During the experiments of the proposed approach, we

1 Introduction 5

also notice that the suitable Transport protocol X that should be
used as an alternative to TCP varies depending on the application
requirements and the network conditions. The goal of our last
contribution, listed below, is to enable the selection of the most
appropriate L4 protocol to replace TCP in a given context.

Optimal selection of protocols. As stated above, we noticed that if
the choice of the protocol X is made blindly, the application could
present suboptimal performances (often) lower than its initial
performances under TCP. Hence, we propose an approach that
must ensure the selection of the best alternative to replace TCP.
This choice is driven by a set of machine learning models, namely
decision trees that we trained to feed the knowledge base of our
decision algorithms. The attributes of the decision trees are the
applications requirements and the network conditions. Therefore,
prior to the selection of the better L4 protocol, we propose (1) a
profiling method that allows inferring the requirements of the
(legacy) application and (2) a parsimonious monitoring that is
useful to estimate the state of the network in terms of RTT, loss
rate and maximum available bandwidth.

We realize the above contributions within Virtual Transport Layer
(VTL), a protocol deployment and data delivery management sys-
tem designed and implemented during this thesis. VTL follows
three main design principles: 1/ the seamless support of legacy ap-
plications, i.e., legacy applications might consume Transport layer
services without the need to rewrite their code; 2/ the separation
of protocol from aware-application

Throughout this manuscript, aware-
application is defined as a new brand
of application that uses the API pro-
vided by VTL system to consume
Transport layer services. See Chap-
ter 3 for more details.

, i.e., in line with the service-
oriented approach, aware-application should request Transport
services instead of invoking a specific protocol as it is the case in
the standard socket API; and 3/ the protocol modularization, i.e.,
the Transport layer data plane must be organized in such a way
to allow the implementation of reconfigurable protocols whose
components might be dynamically instantiated and parameterized.
We implemented VTL by leveraging and combining two kernel
subsystems: XDP and TC, part of eBPF technology. VTL design
principles and implementation tools are described more in-depth
in the next chapters.

At last, although we fully address Transport layer sclerosis at the
end-systems, more investigation and algorithms are required to
deal with the middleboxes that populate the core of the Internet.
In fact, the current algorithm integrated into our approach seems
limited and consists of systematic fallback to TCP or UDP in case
of rejection by one middlebox.

1 Introduction 6

1.4 Dissertation Structure

Except for the conclusion, subject of Chapter 6, the rest of this
dissertation is structured around four main chapters.

Chapter 2, after an insightful analysis of the Transport layer os-
sification causes, revisits the limitations of previous works that
address the ossification of the Transport layer. The lessons learned
from this analysis allow us to lay down the fundamentals for what
could be the requirements and design principles for VTL. We
conclude the chapter by presenting these design principles.

Chapter 3 first introduces VTL and presents its key concepts. Then,
we present the detailed functional architecture of VTL by empha-
sizing on the aspects of dynamic deployment of protocols as well
as on the interaction with aware-applications. Finally, we conduct
extensive experiments to evaluate VTL, namely the deployment
delay of the protocols and the performances (in terms of data
transfer rate and latency) of those protocols under VTL.

In Chapter 4, we present our approach that allows legacy appli-
cations to transparently replace TCP with another L4 protocol at
runtime (i.e., during the application execution). Then, we discuss
the implementation and evaluate the “costs” and benefits induced
by our proposed approach. Finally, we conclude the chapter by
analyzing the evaluation results and discussing the findings that
motivate the last contribution of this thesis.

Finally, Chapter 5 presents the last contribution of this thesis. It
details the approach we adopted to achieve the selection of a
better alternative to TCP in order to maximize the performance
gains of legacy applications. To conclude the chapter, we evaluate
our proposed selection algorithm’s precision, and we estimate its
benefits, i.e., the average performance (in terms of throughput) it
permits the legacy applications to gain.

Background: Related Work and

Thesis Positioning 2

2.1 Vicious Circle . 7

2.1.1 Deployment Barriers 8

2.1.2 Limited Adoption Root Cause 9

2.1.3 Other Factors Out of End-systems . 10

2.2 Transport Layer: Protocols and Architec-

tures . 12

2.2.1 Innovations’ Enforcement at End-

systems . 13

2.2.2 Rethinking the L4 layer architecture

and its interactions with Applications16

2.2.3 Handle Middleboxes Traversals . . . 18

2.3 Thesis Approach and Positioning 22

2.4 Conclusion . 23

This chapter aims to introduce the general approach followed
during this thesis and position it regarding the previous works.
To this end, the chapter is organized into four parts as follows.

First, we provide an insightful literature review that enumerates
the different elements that hamper the introduction of innovation
within the Internet’s Transport layer. Those elements could be
summarized by the so-called vicious circle, which is introduced
in Section 2.1. Then, Section 2.2 presents the previous research
efforts that address the Transport layer’s ossification issues and
points out the shortcomings of those works. Learning from this
preliminary review of the literature, we introduce in Section
2.3 the requirements and design principles of a new Transport
layer system called VTL, which aims to enable the deployment
of any new Transport protocol (or protocol component), and
ease/stimulate its use by legacy as well as aware-applications.
Finally, in Section 2.4, we conclude the chapter.

2.1 Vicious Circle

The deployment and wide adoption of any Transport protocol
mechanisms on the Internet rise up several challenges and require
taking into account three main stakeholders:

I The run-time environment of the protocol components prin-
cipally managed by OS developers,

I The consumers of the services provided by the protocols,
namely application programmers,

I The middleboxes vendorswhich maintain the network infras-
tructure over which data packets handled by the protocols
are transmitted.

Each one of these actors comes with its own requirements and
expectations. Thus, the foremost complexity is to find approaches
that consistently meet the often opposed requirements of these
actors.

2 Background: Related Work and Thesis Positioning 8

1: The term userland is often em-
ployed

2: Processors offer several privilege
levels that define the permitted ac-
tions of theprocess.Dependingon the
attributed privilege level, the process
might execute certain assembly lan-
guage instructions, access to specific
parts of the virtual address space, etc.
In Linux OS, processors use two dif-
ferent modes: kernel mode and user
mode. The major difference between
the two is that access to the kernel-
space of the virtual memory area is
forbidden in user mode.

2.1.1 Deployment Barriers

The Operating System (OS) constitutes the location environment of
the Transport protocols. Basically, every normal process (i.e., user
application) running on the OS has a virtual memory associated
with it. As illustrated in Fig. 2.1, OS separates the virtual memory
space into two main parts: the kernel-space and the user-space1 . The
user process owns the latter whereas the kernel-space is common
to all processes running on the system. Therefore, to prevent user
processes from interfering with each other, the OS uses a security
model based on system calls (syscall for short) to control access to
the kernel-space. System calls allow a user process to interact in
a safe fashion with the kernel and to delegate to it critical tasks
that take place in the kernel-space such as accessing a network
device in order to manipulate raw data packets, creating a new file,
changing files’ permission, etc. As soon as a user process issues
a syscall, the processor changes its privilege level2 and switches
from user mode to kernel mode. Then the kernel checks the permit of
the requested task and performs it on behalf of the user process.

System calls guarantee the safety of the system. However, due
to their built-in operations (functions checks, contexts switching,
etc.), the path from the user program to the network interface
card (NIC) during data transfer could be very slow. Thus, for self-
evident reasons of performance, early works on the Transport layer
suggested implementing and executing the protocol mechanisms
in the kernel-space of the OS [7, 8]. Most of them went further and
proposed to offload these mechanisms in the NIC driver of the end-
system [9–12]. However, at the expense of performance, a series of
studies [13–16] proposed to move protocol stacks in the user-space
of the OS with the goal to gain more flexibility and to ease the
integration of new protocol solutions. More recent works in line
with this latter approach leveraged software acceleration tools such

System Calls

Device
DriversCore Kernel

Applications

C Standard Library

Hardware (NIC, etc.)

User-Space

Kernel-Space
Figure 2.1: High-level overview of
general-purpose Operating System
(OS) structure.

2 Background: Related Work and Thesis Positioning 9

3: The term “benevolent dictator”
was used by Eric Steven Raymond to
designate, in a project, the developer
who decides whether improvements
should be integrated or not into the
system. The latter usually intervenes
to settle disputes and to ensure the
sustainability of the system.

as DPDK [17] or NetMap [18] to reduce performance degradation
induced by the execution of protocols within a user-space of the OS.
Nevertheless, user-space protocol implementations leave security
and efficiency concerns on the table (see Section 2.2).

Altogether, the appearance of software acceleration tools such as
DPDK or NetMap is relatively recent. So, as stated in the above
paragraph, the choice that has been made by OS developers is
to dedicate the kernel to the implementation and execution of
Transport protocol components. This choice is not without con-
sequence. To provide support for a new protocol, OS developers
must integrate it into the kernel which requires an upgrading
of their system. OS upgrade is not only time-consuming, very
tedious, and error-prone, but it also poses significant software
and hardware compatibility issues. For instance, let us consider
a memory error such as an attempt of access to an unavailable
or not-reserved memory address. In the user-space, this error is
managed by the kernel and will lead to a “simple” segmentation
fault (or core dump) and the halt of the application involved in
the error. However, the same error in the kernel itself might take
down the whole OS “at best” as soon as the error occurs, and
at worst, several hours after the appearance of the error, which
further complicates debugging that is basically difficult due to
a dire lack of kernel-friendly debugger tools. Any modification
of the kernel code requires the utmost attention to detail. Those
modifications are therefore left to the experienced developers of OS
vendors and even for open systems like Linux, it takes benevolent
dictators3 to ensure the stability and reliability of the OS. As a
result, OS upgrade frequency is slow and for OS developers, only
a high demand from application programmers can motivate and
quick-off the integration of any new protocol solution.

2.1.2 Limited Adoption Root Cause

The standard model TCP/IP of the Internet is a layered model in
which each layer offers services to the upper layer and leverages the
services provided by the lower layer. Generally, each layer exposed
its services via standard interfaces containing the signatures of
functions that implement the exposed services.

The main interface used by applications to consume the services
provided by the Transport layer (protocols) is the standard socket
API [19]. This API, presented later more in-depth in Chapter
4, is designed in such a way that the application programmers
are required to explicitly choose the L4 protocol at the design-
time of the application (i.e., when the code is written). The first
evident consequence is that the Transport services (provided to
the applications) are limited to those of the chosen Transport

2 Background: Related Work and Thesis Positioning 10

LAN

IP

TCP

LAN

IP

TCP

LAN

IP

LAN

IP

Server Router Router Client

At the inception ...

App App

⇒

LAN

IP

TCP

LAN

IP

TCP

LAN

IP

LAN

IP

LAN

IP

Server Router Router ClientMiddlebox

Today ...

App App

TCP

Figure 2.2: The impact of middlebox
on the end-to-end principle.

protocol. Also and foremost, to adopt any new protocol solution,
programmers must modify their applications’ code. This latter
corollary might be a factor of more and more complexity and a
potential source of instability since it is necessary to rewrite the
application each time a new protocol solution is released and best
matches the needs of the application.

Our analysis is that to prevent the issues associated with frequent
modifications and ensure the stability of their applications, most
of the application programmers prefer to rely on standard protocol
solutions such as TCP or UDP, which are recognized as stable and
available on the mainstream operating systems and supported
throughout the Internet, rather than using a new protocol whose
reliability and acceptability are not guaranteed, even if this latter is
more appropriate to meet the requirements of their applications.

2.1.3 Other Factors Out of End-systems

At the birth of the Internet, the logic that prevailed was based on
the end-to-end principle [20] where the network, composed mainly
of routers, had no visibility over what happens beyond the L3 level.
The only concern of any network router was to forward L3 packets
to the next hop towards the final destination by looking exclusively
at the IP header information of the packets. The end-systems
should implement the L4 and above additional services such as
reliability, security, etc. The end-to-end principle clearly defines
and separates the role of each networked component. Its goal was

2 Background: Related Work and Thesis Positioning 11

to enable the introduction of new applications and services at
the edge without the need to modify the core network, i.e., the
routers.

For a long time, this principle was the subject of global agreement
and ensured the popularity and stability of the Internet’s TCP/IP
architecture. Nevertheless, the situation has changed today, es-
pecially for network operators. The latter need to have visibility
on the flow of data packets passing through their equipment in
order, for example, to troubleshoot and repair failures or to apply
judicious differentiation rules on the services they provide. These
requirements have gradually led them to populate the network
with middleboxes. A middlebox (illustrated in Fig. 2.2) is a kind
of enhanced router able to read and modify packets up to the
L4 level and decide to reject any unrecognized protocol. Exam-
ples include but are not limited to NATs, IPS/IDS, firewalls, or
proxies. The massive introduction of middleboxes has “violated”
the end-to-end principle but permits network operators to meet
their requirements in terms of performance improvement, security
enhancement, optimization of resource usage, fast network trou-
bleshooting, etc. To ensure all of these requirements, middleboxes
vendors (and somewhat network operators) are often unwilling
to configure their devices to whitelist any new protocol until the
most popular OS developers support this latter protocol.

All in all, this global context leads to the well-known vicious
circle that we illustrated in Fig. 2.3. Application programmers are
unwilling to use a new protocol that is unlikely to work end-to-end;
OS developers will not implement a new protocol if application
programmers do not express a need for it; middleboxes vendors,
(somewhat network operators), will not add support if the protocol
is not in mainstream operating systems; the new protocol will not
work end-to-end because of lack of support in middleboxes.

Vicious

Circle
01

02

03
Application programmers

OS Developers

Middleboxes Vendors

Will the protocol work
end-to-end?

Do the apps programmers
express a need?

Does the protocol be supported by
OS vendors?

Figure 2.3: Internet’s stakeholders
forming the vicious circle.

2 Background: Related Work and Thesis Positioning 12

2.2 Transport Layer: Protocols and

Architectures

In the standard 4-layer TCP/IP model illustrated in Fig. 2.4 (a), the
Transport layer occupies a pivotal position between the high and
low layers. Fundamentally, the Internet’s Transport layer ensures
end-to-end reliable datamovingbetweenapplications andprovides
multiplexing services based on the port numbers. Additionally,
it ensures the regulation of data transmission at end-systems as
well as the collapse of the network by preventing/reducing the
congestion and its side effects. As already stated, its traditional
protocols are TCP and UDP. The services provided by TCP and
UDP quite reflect the primary services and characteristics of the
Internet’s Transport layer. TCP is a connection-oriented and byte-
stream-oriented protocol that offers full reliable and total order
Transport services to applications. In contrast, UDP is a connec-
tionless and message-stream-oriented protocol that offers minimal
checksumming and multiplexing Transport services. UDP does
guarantee neither reliability nor order of the data packets delivered
to the application.

Connection-oriented vs. Connectionless. A typical Transport ses-
sion usually occurs in three stages of operation: connection estab-
lishment, data transfer, and connection teardown. A connection-
oriented Transport protocol provides mechanisms for each of the
three operations. Moreover, a connection-oriented protocol main-
tains state information about the connection (e.g., data packets
sequence number, congestion window size, maximum packet size
(MSS), etc.) during the whole session. If no state information is
maintained and if the Transport session only supports the data
transfer stage, the Transport protocol is connectionless.

Message-stream-oriented vs. Byte-stream-oriented. When the ap-
plication submits its payload to the Transport layer— let us assume
the message is 1KB size — the L4 protocol could segment or not
the message before encapsulating it and sending it through the IP
layer. If the L4 protocol segments the application data (for instance,
in two 0.5KB messages), the protocol is byte-stream-oriented. The
boundaries of the original data of the application are not preserved.
Each of the 0.5KB messages has no significance for the application;
it is just raw bytes: a reassembly mechanism is mandatory at the
receiver side. In contrast, when the protocol is message-stream-
oriented, it preserves the application data’s boundaries: the 1K
message is delivered as it is without any segmentation from the
sender to the receiver. If required, the segmentation should be
performed at the underlying IP layer.

2 Background: Related Work and Thesis Positioning 13

IP IP

TCP TCP

MPTCP

Application LayerApplication Layer

Transport Layer

Network Layer (IP)

Data Link Layer Data Link Layer

(a) Standard TCP/IP Model (b) MPTCP Protocol Stack Figure 2.4: Internet TCP/IP layered
architecture and MPTCP overview.

As the Internet grows, TCP and UDP services appear more and
more too limited to meet new (notably multimedia) applications’
requirements and emergent networks’ characteristics. To enrich
the Internet’s Transport layer with additional Transport services as
well as bring to it more flexibility and extensibility By flexibility, we mean the degree of

ease and time required for a protocol
to be modified in its internal archi-
tecture, updated and redeployed in
its production environment. The ex-
tensibility of the protocol designates
its ability to allow the add of new
functionalities to it.

, many research
propositions have emerged [21, 22]. Roughly, those works take two
research directions: (1) proposing a single/specific protocol and (2)
rethinking thewhole Transport layer architecture in order to arrive at
a stable, configurable, and extensible communication framework.
We discuss some of those researches in the below sections (see
Table 2.1). The following presentation does not aim to describe the
internal functioning of the discussed protocols and architectures
but, for each of the discussed solutions, we focus on

I (i) the added values of the solution in terms of the new
services it enriches the Transport layer with,

I (ii) the solution’s technical specifications (tools and imple-
mentation spaces),

I (iii) and the solution’s interactions with the various elements
of its external environment, in particular applications.

The final goal is to learn from the limitations of these solutions
regarding the ossification of the Internet’s Transport layer.

2.2.1 Innovations’ Enforcement at End-systems

Recall there are two spaces of the operating system (OS) that can
accommodate the Transport protocols: user-space and kernel-space.
To “force” the integration of new protocols within the OS, three
approaches exist: (1) act like an OS developer and implement in
kernel-space the extensions to standard protocols such as TCP, (2)
implement a part of the protocol in user-space on top of UDP, (3)
or move the entire protocol into user-space by leveraging software
acceleration tools.

2 Background: Related Work and Thesis Positioning 14

Figure 2.5: High-level view of ETP
architecture.

(1) StandardProtocol Extensions andOSKernel Patches. A kernel
patch is a (huge) piece of code integrated into the kernel and that
repairs the latter or adds to it new features. Extending standard
protocols such as TCPand implementing those extensions as a set of
kernel patches [23] is a very common approach to add new services
to the Internet’s Transport layer. The most recent and famous
example of this approach is the Multipath TCP (MPTCP) protocol
[24]. MPTCP is a set of extensions that add a multipath capability
to the regular TCP. It enables a TCP host to simultaneously use
multiple network interfaces (4G/5G, Wi-Fi, etc.). This permits
bandwidth aggregation and ensures the resilience of the Transport
connection. The architectural overview of MPTCP is provided in
Fig. 2.4 (b).

(2) UDP and User-space Protocols Libraries. Operating system
(OS) kernel modification is tricky (see Section 2.1); to overcome the
associated constraints (development difficulty, slow updates, etc.),
a second approach consists of implementing part of the protocol in
the user-space above UDP. Two protocols (among others) perfectly
illustrate this approach: the modular ETP [25] and the emerging
QUIC [26, 27].

ETP, an enhanced version of FPTP framework [28, 29], is a modular
and adaptive Transport protocol that primary purpose is to equip
and reinforce the Transport layer with dynamic behavioral and
structural adaptation properties. Behavioral adaptation consists of
keeping the same Transport protocol and tuning its parameters in
order to modify the Transport services provided to the application.
For instance, congestion window resizing is a sort of behavioral
adaptation. In contrast, structural (or architectural) adaptation is
achieved by an integral replacement of the Transport mechanisms

2 Background: Related Work and Thesis Positioning 15

with other ones more adapted to the ongoing network state to meet
the application requirements. Replacing the congestion control
(e.g., DCCP TCP-like [30] by DCCP TFRC [31]) is an example of
structural adaptation. Fig. 2.5 illustrates the high-level view of
ETP architecture. ETP is implemented in the userland as a Java
library and relies on UDP to send and to receive data throughout
the network.

HTTP/2

TLS

TCP

IP

HTTP/2 shim

UDP

Application

Session

Transport

Network

QUIC

Figure 2.6: QUIC overview in the In-
ternet protocol stack.

Originated at Google in 2012 and nowadays under standardization
at IETF, QUIC is a low-latency and security-oriented Transport
protocol. As such, in addition to the traditional Transport services,
i.e., reliability and order, QUIC key features are a built-in (payload)
encryption service and a low-latency (connection establishment)
service. There are more than twenty official QUIC’s implementa-
tions [32] developed in almost all standard languages: C/C++, Go,
Java, Rust, etc. All of these implementations, as in ETP, are userland
libraries that depend upon UDP to interact with the network. Fig.
2.6 shows QUIC protocol position in the layered Internet TCP/IP
architecture.

(3) Speedy Full User-space Protocols. Deploying a protocol in
the user-space above UDP facilitates the protocol extension and
increases its update/upgrade frequency. However, performances
would take a hit for two reasons. First, the use of UDP at the
underlying level implies that the data packets pass through the
kernel network stack which will generate overheads due to several
additional operations (not necessarily useful for the protocol itself)
imposed per packets: generic socket buffer allocations, multiples
memory copies, system calls, scheduling, IP table handling, etc.
Second, the protocol mechanisms already provided by default
by the OS kernel should be reimplemented in user-space by the
protocol. For example, QUIC libraries have one or more embedded
congestion control mechanisms. Recall that a user process is slower
than a kernel thread (see Section 2.1). As a result, the congestion

2 Background: Related Work and Thesis Positioning 16

4: (i) Standard Protocol Extensions
and OS Kernel Patches, (ii) UDP and
User-space Protocols Libraries, and
(iii) Speedy Full User-space Protocols.

controls (in general, the protocol mechanisms) implemented in the
user-space have limited performance compared to the congestion
controls built-in in the kernel with TCP [7, 33]. To eliminate
unnecessary overheads generated by the OS kernel and speed up
the user-space protocol, a third approach is, instead of using UDP
as substrate, to implement the whole protocol in user-space on top
of kernel bypass tools such as DPDK, NetMap, or PF_RING [34].

Typically, a kernel bypass tool (a.k.a. software acceleration toolkit)
removes the needless kernel operations (enumerated above) and
provides to userland programs shared memory buffers where the
latter could directly access and get data packets as well as put their
payload for immediate transmission over the network interface
driver (NIC). These shared memory buffers are keystone for the
so-called zero-copy data transfer technique that reduces memory
copies costs and enables the data processing acceleration. Hence,
the L4 protocol totally moved in the user-space above DPDK or
NetMap should experience better performance. UTCP [13] is one
of such protocols that rely on NetMap to implement a full high-
performance user-space Transport protocol. However, despite their
efficiency, such an approach using kernel bypass tools might still
pose some security concerns. Indeed, without any proper control
mechanisms such as those provided by the OS kernel (namely
system calls), the shared memory between userland and kernel
could permit the user applications to access critical kernel memory
areas without any precaution and result in the panic and crash of
the system at the slightest mistake.

In summary, each of the three above approaches4 demonstrates
how to “force” the deployment of newprotocolmechanismswithin
the end-system OS. Besides the specific drawbacks related to each
approach discussed above, they have onemore additional common
limit: they are specific and limited to a single protocol, i.e., they
lack a protocol-independent API and then force applications to bind
to a unique protocol at their design-time and may, therefore, lead
to a slow/limited adoption as explained in Section 2.1.

2.2.2 Rethinking the L4 layer architecture and its

interactions with Applications

Instead of proposing a single protocol, more recent research inves-
tigations to address Transport layer sclerosis propose to rethink
the whole architecture of the Transport layer in a way to eliminate
current socket API limitations [35]. Their main idea consists of
replacing the regular socket API with a common Transport services
interface (a.k.a. service-oriented API). Contrary to the socket API,
the application that uses the service-oriented API will no longer
have to choose a unique Transport protocol at its design-time but

2 Background: Related Work and Thesis Positioning 17

Application

TCP
Socket API

Network Layer Interface
(NIC)

Application

Transport Services API

Network Layer Interface
(NIC)

UDP Socket
API

Kernel’s Networking Stack
TCP UDP

(a) Socket API Model (b) TAPS API Model

(Using: TCP, UDP, SCTP, DCCP, etc.)

Transport Services Implementation

Figure 2.7: Socket API model (a) vs.
Transport Services (TAPS) API model
(b).

should rather specify the Transport services it wants. The mapping
between the required Transport services and the L4 protocol that
matches those services is done at runtime (i.e. when the application
is executed) by the Transport layer system itself. This mapping
depends on the available Transport protocols as well as on the net-
work conditions. Such an approach aims to ease the adoption of all
protocols available on the end-system by non-legacy applications.
The Transport layer architecture proposed byMohamed Oulmahdi
during his Ph.D. thesis [36] is in line with the aforementioned
service-oriented approach. In 2014, an IETF working group named
TAPS [6] was chartered to promote and lead this approach’s stan-
dardization efforts. As of the writing of this thesis, NEAT is the
single official implementation of the TAPS standard.

Transport Services (TAPS) standard. TAPS working group aims
to: (1) define the subset of Transport services that are common to
the existing (IETF) Transport protocols services, and (2) expose the
identified Transport services through an abstract service-oriented
API. Further, TAPS specifies the necessary procedures to discover
and to select the appropriate protocol that meets the required
Transport services. The currently proposed TAPS API model is
illustrated and compared to the standard socket API in Fig. 2.7.

NEAT framework. NEAT [37] is an integral implementation of
the TAPS standard that exposes to applications a TAPS-like API
and allows the latter to express their desired/required Transport
services without the need to specify the Transport protocol to use
at their design-time. NEAT is implemented in C language as a
user-space library above most common (IETF) Transport protocols
(TCP, UDP, SCTP, etc.) running either in the user-space or in the
kernel-space. Fig. 2.8 shows the architecture of the NEAT system.

Despite its potential to simplify the way applications consume
Transport layer services and to break the dependency (especially

2 Background: Related Work and Thesis Positioning 18

the static binding) of the application to a single protocol, the
service-oriented approach presents two major drawbacks. First, it
relies on the assumption that the best Transport protocol to use
is already available on the end-system OS and, therefore, lacks a
method to dynamically deploy a new protocol mechanism when
it is not available at the end-point; the choice of the appropriate
protocol is then dependent on the end-system OS network stack.
Second, it does not provide any transparent support for legacy
applications; these applications should be rewritten directly on
top of the service-oriented API beforehand to leverage the new
architecture. This last limit could be a barrier to the adoption of
this approach for the reasons mentioned in Section 2.1.

Signaling &
handover

Framework

Transport

Selection
Policy

manager

PIB

CIB

Policy

P
ol

ic
y

In
te

rfa
ce

NEAT User API

Application

D
ia

gn
os

tic
 &

st

at
is

tic
s

In
te

rfa
ce

User-space Transport API

QUIC SCTP new transport...

User-space Transport API

UDP TCP new transport...SCTP

IPv4 / IPv6

USER

KERNEL

Figure 2.8: The architecture of the
NEAT framework [37].

2.2.3 Handle Middleboxes Traversals

In addition to the issues related to the protocols’ integration within
end-systems, more recent Transport layer solutions incorporate
the fact that the protocols, to be effectively operable anywhere on
the Internet, must take into account the middleboxes present at
any point of the Internet. Those middleboxes’ operations may have
an undesired effect on the protocols functioning. As mentioned
in Section 2.1, middleboxes can reject the packets whose format,
i.e. protocol, is unrecognized. They can also modify the packets
even if the protocol is allowed on the middleboxes. This is what
Network Address Translators (NATs) do. To achieve their primary
task i.e. the translation between public and private addresses, NATs
need to modify the packets passing through them (see Fig. 2.9).
Without necessarily being designed to, NATs operations could

2 Background: Related Work and Thesis Positioning 19

172.200.100.2 140.100.10.2172.200.100.2

...... 10.0.0.2 172.200.100.2

......

...... 140.100.10.2 172.200.100.2

10.0.0.2

...... 172.200.100.2

Source IP Destination IP

Source IP Destination IP

140.100.10.2
Source IP Destination IP

......

...... 172.200.100.2 10.0.0.2
Source IP Destination IP

Middlebox (NAT)

Private Domain

Public Internet

Figure 2.9: Illustration of NAT mid-
dlebox interactions on data packets.

effectively impact the well-functioning of the Transport protocols.
For instance, MPTCP wide-deployment has been hampered by
NATs’ presence on the Internet [38]. Additionally to NATs, the
Internet is plenty of several examples of middleboxes, namely (1)
firewalls that based on the packets headers information could drop
or modify data packets, (2) “specialized” middleboxes dedicated to
the modification of Transport headers information [24, 39, 40], (3)
etc.

Three main techniques can eliminate (at least limit) the impact of
middleboxes on the protocol: the signaling, the dissimulation, or
the fallback to TCP or UDP. Let us consider a NAT middlebox to
illustrate each of these techniques.

Signaling vs. Dissimulation

Signaling. Signaling consists of initiating, before the data transfer,
a negotiation between both end-systems and the various elements
of the network to agree on the various parameters (e.g., the L4
protocol) to use throughout the data transfer. If successful, this
negotiation allows the application of special treatment to the
packets of the flow concerned by the negotiation. Let us take the
most common example from the literature and call it “example 1”.
In example 1, we consider two Skype clients, A and B, trying to
connect via the Internet. Two recurrent cases are possible: either
only one of the two clients (say client A) is behind a NAT, or both
clients are behind a NAT. NAT works as follows: by default, it
allows only outgoing sessions to traverse it; incoming packets are
dropped unless theNAT identifies them as being part of an existing
session initiated from within the private network. This mode of
operation corresponds to the functioning of the so-called traditional
or outbound NAT [41].

In the first case, since the NAT of client A allows outgoing connec-
tions, the latter can connect directly to client B. However, if client B
wants to connect to client A, this connection cannot be established
directly because client A’s NAT will reject any connection request
from a host not directly connected to A. The technique known as

2 Background: Related Work and Thesis Positioning 20

NAT NATNAT NAT

NAT

Internet Internet

Client A

Internet

NAT

Client B Client A Client B

Client A Client B Client A Client B

Rendezvous
Server

Realy
Server

Internet

⇒

⇒

(1) Reverse
Connection Request

(2) Relayed
Connection Request

(3) Reverse
Connection

(a1) B cannot reach A (a2) B uses rendezvous server to reach A

(b1) Neither A or B can reach the other client (b2) Relay server is used as an intermediary

Figure 2.10: Middlebox traversal by
Connection reversal and Relaying
techniques.

Connection reversal, a form of reverse engineering, is then used and
is based on the use of an intermediate server S called rendezvous
server. The server S is not behind a NAT, is well-known by both
clients, and is directly connected to client A. Client B will then send
a reverse connection request to the server S, which relays it to client
A. The latter will therefore connect directly to client B successfully
since its NAT allows outgoing connections.

In the second case, i.e. both clients A and B are behind a NAT,
the situation gets more complicated. Neither client can connect
directly to the other, as their respective NATs block all incoming
connections. In this case, the technique employed is that of relaying,
which consists of using a third client C as a relay server. Client C
is not behind a NAT and is known to both clients A and B. The
most commonly used protocol for relaying is the TURN signaling
protocol [42] which is an extension of the STUN protocol [43].

These scenarios are illustrated in Fig. 2.10 that is an adaptation
from [41]. The major drawback of signaling is undoubtedly the
additional delay it can introduce on the data transfer. Moreover, in
the case of relaying, the relay server could become a concentration
point for too many relay requests and gave in to a breakdown
under unacceptable overload.

Dissimulation. As its name suggests, dissimulation involves "hid-
ing" the protocol data either with the help of encryption or by
encapsulation of the protocol data in the packets that take the
format of one of the protocols accepted everywhere on the In-
ternet: TCP or UDP (see Fig. 2.11). For instance, QUIC uses both
techniques to ease traversal of middleboxes and to reduce their

2 Background: Related Work and Thesis Positioning 21

UDP
header

IP
header

SCTP
header SCTP chunks

SCTP
header SCTP chunksIP

header

Original Packet

8-byte overhead

Figure 2.11: Example of encapsula-
tion of SCTP over UDP.

influence on the protocol functioning. Nevertheless, encryption or
over-encapsulation will inevitably result in increasing the number
of bytes per packet, thus introducing overhead.

Fallback to TCP or UDP as a last resort

There is finally the case where nothing works because the middle-
box is not just a “dumb” outboundNAT but has built-in complex
algorithms allowing it to detect reverse engineering and relaying
techniques or “even better”, is combined with firewalls that simply
remove suspicious packets. In such situations, a final approach is
to fall back to a protocol accepted by almost all middleboxes on the
Internet (mostly TCP or UDP). If we go back to example 1, when
the middleboxes do not allow the Skype default protocol to pass,
the protocol implemented by Skype systematically switches to TCP.
The purpose in case of systematic fallback is to avoid a complete
failure of the application: a minimal quality service is better than a
faulty service.

All in all, through extensive measurements, the authors of [13]
have come to the conclusion that “the blame for the slow evolution
of protocols (with extensions taking many years to become widely used)
should be placed on end-systems”. Therefore, we argue that a handy
approach should place focus on the end-systems. Nevertheless,
this thesis preconizes and integrates a systematic fallback to TCP
or UDP in order to prevent complete failure in case of rejection
during middlebox traversal.

Table 2.1 summarizes a set of selected Transport protocols and
architectures that we discussed above. We refer readers interested
in the chronological history of the Transport layer protocols and
architectures to [21, 22].

MPTCP QUIC ETP UTCP NEAT

Deployment Space Kernel User User User User
Protocol-agnostic API 5 5 5 5 3

Legacy Appli Support 3 5 5 5 5

Middlebox Traversal 3 3 3 N.A 5

Table 2.1: Selected Transport Layer
protocols and architectures.

2 Background: Related Work and Thesis Positioning 22

5: According to David D. Clark, the
stability of a platform defines its abil-
ity to make innovations possible [8].
A stable platform provides the nec-
essary tools to allow other stakehold-
ers (users, applications, etc.) to intro-
duce new functionality. The most leg-
endary example of a stable platform
is the IP layer, which by design has
enabled the deployment of applica-
tions regardless of their type. Another
example is the "Google store" or "App
store"which allowdevelopers to inno-
vate by building and deploying their
different applications.

2.3 Thesis Approach and Positioning

In the light of the lessons learned from the limitations of the
previous work, this thesis proposes an approach that jointly (i)
treats the deployment issues within the end-systems, and (ii)
facilitates the adoption of new protocol solutions by (aware as well
as legacy) applications. We achieve our approach within VTL, a
Virtual Transport Layer.

VTL envisions a stable5 framework that must allow a dynamic de-
ployment/loading of protocols as would do a typical Web browser
that enables plugins insertion to extend its functionalities and
features. Therefore and taking into account the points discussed
in Section 2.1, VTL should provide a safe and isolated runtime
environment for protocol mechanisms in the fashion that the in-
tegration of new protocol components is transparent to the OS
and has little or no impact on it. This should not be obtained at
the sacrifice of flexibility. In straightforward terms, VTL should
conciliate the performance and flexibility on one side, and on the
other side, guarantee the safety and isolation of the end-system
OS. Our technical choices have focused on the in-kernel eBPF
Virtual Machine (VM) [3] as the runtime environment for protocol
mechanisms to fulfill these conceptual requirements. Thanks to
its integrated verifier (Fig. 3.3 and Fig. 3.6), eBPF VM provides
necessary isolation and safety: each protocol component is checked
before its insertion in the VM to guarantee that its execution will
not harm the OS. Furthermore, eBPF infrastructure provides to
VTL the ability to introduce programmability within the OS kernel
by enabling on-the-fly user bytecode insertion and temporarymod-
ification of the kernel’s behavior: protocol components could be
inserted at runtime without the need to recompile and upgrade the
OS. Last but not least, VTL follows three main design principles
described below.

Separation of protocol from aware-application. As already stated,
in the standard socket API, the legacy application specifies the
protocol to be used at the design-time. This leads to a binding and
a dependency of the application to a unique and specific protocol
preventing the timely structural adaptation of the protocol to the
evolution of network state or to the change of the application’s
requirements. Our approach breaks this static tie between the
application and protocol by providing a protocol-agnostic API to
aware-application in the way that the latter expresses its require-
ments (in terms of Transport features/services associated with
QoS parameters) instead of the specification of the protocol to use.
The choice of the most appropriate protocol mechanisms to satisfy
the application’s needs is left to VTL. This principle is in the same
line with the TAPS standard [6] but goes far by providing seamless

2 Background: Related Work and Thesis Positioning 23

support to legacy applications and a stable framework for runtime
deployment of protocol mechanisms.

Transparent integrationof legacyapplications. To recall, themajor
existing applications use the standard socket API to consume
Transport layer services.Most of the time, applicationprogrammers
are often unwilling to switch from the standard API socket to the
API of any new protocol or architecture. Therefore, to ease and
stimulate its adoption, VTL provides transparent support to legacy
applications i.e. those applications should consume Transport layer
services without the need to rewrite them. This may be performed
by seamlessly redirecting the socket API invocations of legacy
applications towards the protocol-agnostic interface.

Protocol modularization. In line with the conceptual choices
adopted in the ETP protocol solution, we split any protocol in
a set of small units called Transport Function (TF) that are pack-
aged in deployable/pluggable software wrappers (such as eBPF
programs, loadable kernel modules, or Docker containers). The
distribution of TFs interacting on both sides of the communication
leads to providing part of the final end-to-end service. This princi-
ple eases per-session protocol configuration and reconfiguration.
Further, the integration of this principle brings to our approach
most benefits of modularization namely (i) the reusability, i.e., folks
other than the TFs developers are able to use them in order to
compose another protocol without the need either to know or
to change the code inside those TFs; (ii) the adaptability, i.e., the
ability to align with the evolution of network conditions or the
application’s requirements by replacing or inclusion of new TF that
provides more appropriate features in the novel context; and (iii)
the customization/efficiency, i.e., the capacity to tailor the protocol to
the application’s requirements and therefore reduce overheads by
the elimination of unnecessary services.

2.4 Conclusion

This chapter provided a review of the literature on the Transport
layer and its ossification issues. We enumerated the different
elements that hamper the introduction of innovation within the
Internet’s Transport layer during this review. We show that these
elements formed the so-called vicious circle phenomena that could
be summarized as follow: (i) application programmers are unwilling
to use a new Transport protocol that is unlikely to work end-
to-end; (ii) operating system (OS) developers will not implement
a new Transport protocol if application programmers do not
express a need for it; and (iii) middleboxes vendors (somewhat
network operators), will not add support if the Transport protocol

2 Background: Related Work and Thesis Positioning 24

is not in mainstream operating systems; the new protocol will
not work end-to-end because of lack of support in middleboxes.
In Section 2.2, we discussed the most relevant previous works
that address the Transport layer’s ossification issues and pointed
out the shortcomings of those works. Finally, learning from this
preliminary review of the literature, we closed the chapter by
introducing the requirements and design principles of a new
Transport layer system that we called VTL for Virtual Transport
Layer. VTL aims to enable the deployment of any new Transport
protocol, not only in the user-space but also in the kernel-space;
it also facilitates the utilization of the deployed protocol by legacy
and aware-applications. In the next chapter, we introduce the VTL
system by emphasizing on its dynamic deployment aspects.

1: We define correctness as the ability
of the system to successfully perform
its primary tasks. It is also known
as functional evaluation as opposed
to non-functional evaluation that as-
sesses the systems’ performances.

Virtual Transport Layer

Introduction 3

3.1 VTL Core Concepts 26

3.1.1 Transport Function (TF) 26

3.1.2 Protocol Graft . 27

3.1.3 VTL Services and Features 27

3.2 VTL: Design and Implementation 29

3.2.1 VTL Architecture Overview. 29

3.2.2 Background . 31

3.2.3 Digging into VTL Implementation 34

3.2.4 Aware-application Session Initia-

tion. 35

3.2.5 KTFs Deployment Workflow. 38

3.2.6 Data Delivery Path 38

3.2.7 VTL Aware-application Session Sum-

mary . 40

3.3 Carried Out Use Cases and Performance

Evaluation . 41

3.3.1 Implemented KTFs and Grafts 42

3.3.2 Runtime (Re)configuration of Grafts

Use Case . 43

3.3.3 Testbed Setup and Methodology . . 44

3.3.4 Microbenchmarks 46

3.4 Closely Related Work and Discussion . 50

3.5 Conclusion . 51

The previous chapter outlined the limitations of current Trans-
port layer protocols and architectures to address the ossification
issues. Moreover, it motivated the need to revisit the Transport
layer architecture and provided the guidelines for designing a
newarchitecture of the Internet’s Transport layer. Following these
guidelines, we designed and implemented a novel Transport
layer able to break the vicious circle’s substantial consequence,
i.e., the Transport layer’s sclerosis. Fundamentally, the novel
Transport layer 1/ provides a stable framework to accommodate
(new) Transport protocols dynamically deployed and 2/ exposes
a protocol-agnostic API to aware-applications in order to facilitate
and promote the use of the deployed L4 protocols. Further, it
provides the necessary architecture elements and mechanisms
that allow legacy applications to leverage the available Transport
services without the need for those applications to be rewritten.
We will discuss this latter aspect of VTL in Chapter 4.

This chapter, organized into four sections, presents the design
and implementation of such a novel Transport layer, which we
called VTL (for Virtual Transport Layer). It is worth noting that
VTL is not a new Transport protocol but rather a new Transport
layer architecture, which in essence, aims to allow the deployment
and the use of any (new or existing) Transport protocols such
as SCTP, QUIC, and so on. In the first section of this chapter,
we introduce VTL by presenting its core concepts. Then, Sec-
tion 3.2 presents a detailed functional architecture of VTL. This
description emphasizes on the aspects of dynamic deploymen-
t/integration of L4 protocols within the end-systems’ operating
system (OS) as well as on the interaction between VTL and aware-
applications. The way legacy applications integrate with VTL is
described later in the next chapter. In Section 3.3, we evaluate
VTL through extensive experiments. Apart from showing the
correctness1 of VTL, this evaluation presents the deployment
delay of the protocols and the performances (under VTL) of the
deployed Transport protocol mechanisms by taking as reference
TCP performances in the same network context. The selected
performance metrics are data transfer throughput and latency.
Finally, Section 3.4 and Section 3.5 conclude the chapter with a
discussion on closely related research efforts to the contribution
presented in this chapter and a summary of learned lessons.

3 Virtual Transport Layer Introduction 26

Protocol graft

Appli

Transport

...
IP

Entry point

Packaging of each function within Software Container (eBPF programs, etc.)

⇒ TF: Transport Function

⇒

Dynamic composition of protocol graft by compilation of the interaction pattern

⇒

Reliability
functions

Flow control
functions

Congestion ctrl
functions

Encryption
functions

Reliability
functions

Flow control
functions

Congestion ctrl
functions

Encryption
functions

Reliability
functions

Flow control
functions

Congestion ctrl
functions

Encryption
functions

Figure 3.1:Conceptual illustrations of
Transport function (TF) and protocol
graft.

3.1 VTL Core Concepts

As stated in Chapter 2, we designed VTL around a set of principles,
namely the notion of a protocol composition from a set of basic functions.
This section introduces the fundamental concepts of this principle
and presents an overview of the services and features provided
by VTL. It is worth noting that the concepts related to a protocol
composition are not new and specific to VTL. Similar notions
have been introduced in previous work such as CTP [44] or ETP
[25] described in Chapter 2. The main goal of the introduction
of the below concepts is to show the readers how VTL organizes
its data plane for more efficiency in the management of protocol
deployment and data delivery.

3.1.1 Transport Function (TF)

A Transport function (TF) is the most atomic entity of the VTL
data plane that executes a single protocol processing logic such
as a checksum calculation or packet numbering. It implements a
single local function that could roughly be grouped as follows (see
Fig. 3.1): reliability functions, flow control functions, congestion
control functions, security/encryption functions. Conceptually, the
group to which a TF belongs indicates the Transport service (e.g. a
congestion control service) the TF participates in implementing.
Indeed, a TF as alone cannot provide any Transport service; it
must be composed with other TFs. Readers should note that all
functions related to connection management (opening, parameters
negotiation, teardown, etc.) are provided by default within the
control plane of VTL by Control Broker component (see Fig. 3.3).

Each TF must be made loadable or pluggable thanks to its wrapping
in a software container (e.g., eBPF programs, in the current imple-
mentation of VTL). The packaging in a software component of a
TF will provide it with at least two essential interfaces: (1) the input
interfaces from which it should receive any packet data or control
information; (2) the output interfaces to which it should push any

3 Virtual Transport Layer Introduction 27

packet data. Furthermore, TF should have access to a shared memory
created and maintained by the protocol graft to which it belongs.

get payload()

compute
checksum()

NIC

put payload()

NIC

validate
checksum()

acknowledge()

control
sequence()

Appli AppliSENDER RECEIVER

egress graft ingress graft

Entry point

Interactions pattern “Loadable” Transport Function (TF)

numbering()

send packet()

retransmit()

TF()

recv packet()

①

②
③

④

⑤

⑥

Figure 3.2: Illustration of protocol
graft providing an ARQ-based re-
liable service. Basically, after num-
bering and checksum adding to the
packet’s header (1), the packet is
sent to the receiver through the NIC
(2). The receiver will then control
the checksum and sequence number
values (3 and 4). The acknowledg-
ment is then transmitted to the sender
to signal whether the packet is cor-
rectly received (5 and 6).

3.1.2 Protocol Graft

As illustrated in Fig. 3.1, a protocol graft is a list of loadable TFs with
their interaction pattern. The interaction pattern defines the way the
TFs are connected, i.e., the sequence in which data are processed by
thedifferent TF composing the graft.Aprotocol graftmight provide
one or more services such as reliability service, ordering service,
multipath service, encryption service, and so on. Contrary to a
primaryTFwhich is locatedona single side of theTransport session,
a protocol graft is conceptually distributed between the sender
end-system and receiver ones and provides a comprehensive single
or more Transport service(s)/feature(s). The sender side maintains the
egress graft, whereas the receiver side maintains an ingress graft. Fig.
3.2 illustrates a protocol graft distribution for a typical ARQ-based ARQ is a protocol mechanism that

relies on acknowledgments and time-
outs to provide reliable Transport ser-
vice during data transfer. The imple-
mentations of its variants are further
described in Section 3.3.

reliable service; note that this is only for illustration purposes;
a more comprehensive reliable service should have many other
functions such as duplication control. Finally, at each side of a
session, a protocol graft should create and maintain a memory
buffer shared between TFs serving to ensure data persistence.

3.1.3 VTL Services and Features

VTL core functionality is to deploy the appropriate protocol graft
on behalf of the application in order to ensure that data are moved
according to the application requirements. Todo that, VTLprovides
applications with an access point to Transport services in order to
allow the latter (1) to express their requirements, (2) to send and
receive data, and (3) to reset their requirements on-the-fly. The

3 Virtual Transport Layer Introduction 28

Table 3.1: Considered Transport Services/Features.

Transport features Definition Granularity / Scope

Full Reliability Data packets are delivered to the receiver without
corruption, no duplication, and no loss.

Single packet
ProcessingPartial Reliability Data packets are delivered with an acceptable but

bounded loss rate.

Full Order Data packets are submitted to the receiver in the
same sequence the sender transmitted them.

Partial Order Some out-of-sequence data packets might be de-
livered to the receiver.

Encryption Data packet contents are not transmitted in plain
“text”.

Flow Control Control the sending rate of sender and receiver. Packets Stream
ControlCongestion Control Control the rate of data sending over the network

to prevent the latter collapses under congestion.
Multipath Use multiple network interfaces to transfer data.

2: Message-stream-oriented and
byte-stream-oriented notions are
defined in Section 2.2 of Chapter 2.

access point is explicitly provided from a protocol-agnostic API in
the case of aware-application and seamlessly attributed to a legacy
application so that the latter can consume VTL services without
requiring any modification of its code. From an internal point of
view, VTL:

I ensures the Transport session establishment following a
classical client (connect) / server (accept) model;

I ensures the selection, the negotiation, and the deployment
of the appropriate protocol graft;

I and monitors both the network and application states in
order to adapt the protocol graft at runtime to the change of
environment.

VTL provides by default a message-stream-oriented2 service that
should be replaced if the underlying deployed protocol graft pro-
vides a byte-stream-oriented one. VTL expects to provide protocol
developers with the facilities to write, test, and publish new proto-
cols within the end-systems. Again, as stated above, VTL makes it
possible to consider (i) the use of protocols that already exist in the
operating system and (ii) the deployment of protocols (which do
not yet exist in the operating system) in the form of user libraries.
We will demonstrate these latter points in Chapters 4 and 5 with
QUIC and an SCTP userland version.

VTL allows applications to express their requirements by firstly
characterizing the desired Transport services and then associating
those Transport services with a set of required or desirable QoS
parameters. For instance, a requested Transport feature or service
might be expressed in terms of reliability (full or partial), order
(full or partial), flow control, congestion control, security, or multipath.

3 Virtual Transport Layer Introduction 29

Table 3.2: Considered quality of service (QoS) parameters.

QoS Definition Value Type

Delay

The end-to-end elapsed time between the sending
applicative entity has invoked the sending primi-
tive (e.g. send()), and the moment the data has
been made available to the receiving applicative
entity.

scalar in ms

Throughput The amount of sent or received data per unit of
time. scalar in Mb/s

Loss rate
The ratio of packets that should fail to arrive
at the receiver without impact application well
functioning.

scalar in percentage

3: There is no standard definition of
control or data planes. In the SDN
context, for instance, the data plane is
composed of switches ensuring data
forwarding. In contrast, the control
plane is responsible for dispatching
and dictating the forwarding rules to
the switches. In our work, the control
plane is responsible for the manage-
ment and deployment of the protocol
functions, and the data plane is in
charge of ensuring the execution of
the deployed protocol functions by
providing the appropriate runtime
environment.

In addition to these Transport features, VTL allows applications
to associate QoS parameters that can be expressed in terms of
maximum acceptable delay or latency (max_delay, expressed in
ms), minimum throughput (min_throughput, expressed in Mb/s),
and allowable loss rate (max_loss, expressed in percentage). Some
requirements defined by applications may be redundant. For
instance, an application that requests to set its allowable loss
rate (max_loss) to zero and simultaneously invokes the use of
a fully reliable Transport service. This thesis does not consider
these redundant (and somewhat inconsistent) cases. The set of
considered Transport services and QoS parameters are provided
in Table 3.1 and Table 3.2, respectively.

3.2 VTL: Design and Implementation

In this section, we begin with a description of the main functional
components of VTL architecture. Then, we present the background
on relevant technical aspects of VTL. For recall, we discussed
in Section 2.3 (of Chapter 2) the design requirements that lead
to the major technical choices we made. Finally, the rest of the
section describes in more details the implementation of VTL,
namely the Transport session initiation, the protocol negotiation
and deployment, and the data transfer stage between and within
the end-systems.

3.2.1 VTL Architecture Overview

We present the main components and workflows of VTL in Fig.
3.3. VTL components are separated between two planes: a control
plane3 constituted by a userland library and a data plane constituted

3 Virtual Transport Layer Introduction 30

User Space

Kernel Space

C-Std Library (libc)

User Space Socket API

Legacy Application

Kernel’s networking
datapath

Kernel Space Socket API

Network Interface Card

Aware-Application

Protocol-agnostic API

Launcher

Control
Broker

NetMon

Kernel VM

VTL_SOCK

Data
Broker

Hooker Userspace

Hooker Kernelspace

VTL Control plane

VTL Data plane

MAPS

Ingress GraftEgress Graft

KTF1() KTFn() KTF1() KTFn()

Figure 3.3: VTL system architecture
overview. Blue arrows represent the
legacy application datapath, green ar-
rows the aware-application datapath,
and black arrows the KTFs deploy-
ment path.

mainly by the runtime environment of Transport functions (TFs),
i.e. the eBPF kernel VM.

Control Broker is the central piece of VTL control plane and its
operations during the end-systems’ features discovery, session
initiation, session maintenance, and session teardown. Among
others, it is responsible for ensuring the protocol graft negotiation
phase at the end of which the appropriate Transport functions
should be deployed at the sender side as well as the receiver side
of the Transport session. Launcher component, driven by Control
Broker, is in charge of the configuration and the instantiation of the
requested TFs inside the eBPF Kernel VM. Prior to each deployment,
Launcher leverages the extended eBPF verifier to ensure that the
protocol functions’ execution inside the runtime environment is
safe for the overall system. To observe the network and measure
its key quality parameters (delay, loss rate, and throughput), VTL
provides NetMonitor component. This component captures the
network parameters mentioned earlier and reports them to the
Control Broker component on-request for further analysis. Control
plane components work together to ensure a (structural) recon-
figuration of a session if necessary. Currently, a typical structural
reconfiguration loop is triggered by the change in the network
state thanks to the quality parameters captured by the NetMonitor
component which reports feedback to the Control Broker. After ana-
lyzing the reported network parameters, the Control Broker should
determine whether a (structural) reconfiguration is necessary. If a
reconfiguration is required, Control Broker will ask the Launcher to
remove the old protocol mechanisms and replace them with new
ones.

3 Virtual Transport Layer Introduction 31

VTL socket is a data plane structure manipulated through the
protocol-agnostic API by aware-applications to send and receive
data. It is a virtual socket that emulates either a RAW socket [45]
for data transmission and/or an XSK socket [46] for data receipt.
Briefly, TCP/UDP sockets give access to the Transport layer, a RAW
socket gives direct access to the IP layer, and an XSK socket gives
direct access to the network interface card (NIC). VTL socket is
created, maintained, and exposed to applications by Data Broker
that ensures data moving and dispatching between the application
buffers and the deployed Transport protocol mechanisms running
inside the eBPF Kernel VM component. The latter, i.e. the eBPF
Kernel VM, is responsible for providing a safe and isolated runtime
environment for TFs.

Two main actors interact with the VTL system: the aware-application
and the legacy application. In general, an application is defined as a
computer program running in the user-space of the OS and that
uses explicitly or implicitly VTL to send and to receive data in order
to perform its business process (e.g., web browser, media player, file
transfer, etc.). To recall and more specifically, (1) aware-application
is defined as an application that should be aware of VTL and
uses the provided Protocol-agnostic API to send and to receive data,
and (2) legacy application is defined as an application that uses the
standard socket API to consume Transport layer services; the latter
should be supported seamlessly, i.e. without any modification of
its code.

VTL control plane and data plane share information (ACK/NACK,
KTF negotiation state, data packets, ...) thanks to a set of shared
MAPS (describedmore in-depth later). TheseMAPS are attached to
the root filesystem /sys and serve as a buffer for deployed protocol
grafts. VTL defines two main workflows: KTF deployment workflow
and data delivery workflow that we further described in subsection
3.2.5 and subsection 3.2.6, respectively.

3.2.2 Background

This subsection provides the reader with a background on eBPF [3],
the core technology on top of which VTL implementation currently
relies on. In 1992, S. McCanne and V. Jacobson presented the
Berkeley Packet Filter (BPF) virtual machine [47] as a kernel agent
aiming to capture as early as possible incomingpackets on thehost’s
network interface card (NIC). For a long time, BPF has been used for
packet filtering in popular tools such as tcpdump [48] or Wireshark
[5]. Recently, Linux introduced an extended version of BPF and
named it eBPF, for extended BPF. The name of eBPF no longer
reflects the reality and might be confusing because many new
features are added to it, and its usage scenarios go far beyond the

3 Virtual Transport Layer Introduction 32

BPF program A BPF program D

BPF program B BPF program C BPF program D

Entry point

Figure 3.4: eBPF programs chain by
tail calls [49].

naive filtering. Indeed, eBPF is used today by many industrials like
Facebook or Netflix to perform tracing, monitoring, networking, or
enhancing their systems’ security. Like its predecessor, eBPF allows
injecting bytecode within the OS kernel at runtime, i.e. without
having to recompile the OS. eBPF infrastructure is constructed
around three major elements: maps, tail calls, and helper functions
(see Fig. 3.6).

Maps are generic data structures storing a set of {key, value} pairs
used to exchange data either between user-space programs and
in-kernel eBPF programs or between eBPF programs running at
different points of the kernel. There are several types of maps;
each type serves a different purpose. For example, a map of type
SOCKMAP (more discussed in Chapter 4) must be used to store
only sockets’ file descriptors. Maps are often attached/pinned to
the root filesystem (i.e., /sys) to ensure data persistence between
successive invocations of eBPF programs.

Tail calls. In its early versions, eBPF limits each program to a
maximum size of 4096 BPF instructions. In order to overcome this
size limitation, eBPF integrates the concept of tail calls that could
be used to chain up to 32 different eBPF programs; tail calls feature
is an enabler of implementation of modularization. Nevertheless,
it is worth noting that since Linux version 5.2.0, released in 2020,
an eBPF program can contain up to 1M (one million) instructions.
Tail calls concept is illustrated in Fig. 3.4.

Helper functions. Recall the security model used by the kernel to
protect itself from user-space programs is based on system calls
that can only be used by the user-space processes; the processes
already running in the kernel, such as eBPF programs, cannot use
the system calls. Therefore, the question is: how can the kernel protect
itself from the program running in the kernel-space without limiting the
program capacity/functionality? To face this concern, eBPF introduced
the so-called helper functions. Basically, helper functions define a
list of functions that an eBPF program can call during its execution.
Thanks to helper functions (and eBPF verifier), access to kernel
functions by eBPF programs is strictly controlled to prevent OS
damage. In other words, helper functions allow eBPF programs to
interact directly with the kernel in a safe manner. For instance, to
perform tail calls, bpf_tail_call() helper function may be used

3 Virtual Transport Layer Introduction 33

Socket Layer

Transport Layer

IP Layer

Traffic Controller
(TC)

eXpress Data Path
(XDP)

NIC Figure 3.5:TrafficController (TC) and
eXpress Data Path (XDP) positions in
the network stack.

4: The full name is BPF_PROG_TYPE_-
SOCKET_FILTER. We omit the suffix
BPF_PROG_TYPE each time we refer to
the type of eBPF program.

5: sk_buff is the common data struc-
tureusedby theLinuxOS to represent
any packet in the kernel.

by the ongoing eBPF program to ask the kernel to jump to another
eBPF program.

Each eBPF program that is deployed inside the OS kernel has a
specific type and must be attached to a hook point, also known as a
kernel event (incoming packet, system calls, socket operations, etc.).
Then, each time the event occurs, the eBPF program attached to it
is executed. For instance, eXpress Data Path (XDP) [50] and Traffic
Controller (TC) [51] are two main networking hook points around
which we built the VTL system. XDP and TC reside at different
levels of the network stack as depicted in Fig. 3.5. The type of
eBPF program indicates three primary information: (1) the set of
helper functions it has access to, (2) the data structures (i.e., the
maps) that the program is allowed to use, and (3) the hook point
to which the program is attached. For example, a SOCKET_FILTER4

program type can access and manipulate sk_buff5 structure [52]
whereas an XDP program type cannot do that but must instead use
a specialized xdp_buff structure [49].

eBPF technology introduces programmability in the Linux kernel
by allowing runtime code injectionwithin the kernel. As illustrated
in Fig. 3.6, it provides the ability to dynamically add functionalities
to the kernel from user-space programs compiled by LLVM/Clang,
a user-space compiler. Thanks to the Just-In-Time (JIT) kernel
compiler and the eBPF verifier, each functionality is safely added
and is efficiently executed. Contrary to kernel patches [23] that
permanently modify the operating system (OS), eBPF has the
additional advantage of allowing temporary modification of OS
kernel behavior. This enables fast prototyping and testing of new
features so far as in the case of failures or bugs, the last added
features may be “easily” removed to restore the initial and stable
state of the kernel.

3 Virtual Transport Layer Introduction 34

User eBPF Prog
(C, Go,)

eBPF Prog
(Bytecode)

LLVM/Clang

eBPF VM

kern eBPF Prog
(Native Code)

Kern eBPF Prog
(Native Code)

eBPF Verifier + JIT

Socket

TCP/IP
Stack

XDP hook NIC

sk_msg hook
MAPS

Tail calls

User Space

Kernel Space

Applications

Figure 3.6: eBPF program deploy-
ment overview.

To deploy Transport functions in the OS kernel, we first considered
the use of Linux Loadable Kernel Module (LKM) approach [53]. As
eBPF, LKM allows hot plugging of modules in the OS kernel thanks
to tools such as modprobe [54]. As its name suggested, a kernel
module is a regular program that code resides and executes in the
kernel-space rather than in user-space. Unfortunately, during our
first prototyping, we face the most common issue of kernel module
utilization: the whole system frequently crashes at the slightest
mistake; in other words, there is no verifier to guarantee the safety
of the OS. This is a major difference with eBPF programs; kernel
modules are entirely part of the kernel. As such, kernel modules
have the same rights as the kernel itself and can perform without
any control, any operations (call any kernel functions, access any
memory buffer and register, etc.). Furthermore, there is a lack of
kernel debug tools and it takes time to troubleshoot the code and
repair the bug.

3.2.3 Digging into VTL Implementation

In this subsection and the following, we begin by diving more
in-depth on the technical aspects of VTL design. VTL leverages
and combines two kernel subsystems: eXpress Data Path (XDP)
and Traffic Controller (TC). The aim of their association is (i) to
grasp the outgoing packets as late as possible just before they reach
the network interface card (NIC) and (ii) to pick up the incoming
packets as early as possible before they reach the legacy network
stack. Therefore, on its egress path, VTL places TC hooks under
the IP layer in order to process all outgoing packets as soon as they
left the kernel network stack. To reduce the legacy network stack’s
overheads on the transmission path, VTL takes advantage of RAW
sockets to send applications’ payload data directly to the IP layer
without any L4 processing. On its ingress path, VTL attaches XDP

3 Virtual Transport Layer Introduction 35

Helper functions Description

vtl_start_timer(i, n) Set timer i to n ms.
vtl_stop_timer(i) Stop the timer i

vtl_build_graft()
An exogenous wrapper of
tail_call() helper

Table 3.3: Main added helper func-
tions within the VTL system.

hooks to the network interface card (NIC) to get and process the
raw incoming frames as soon as they enter the NIC without letting
them reach the legacy network stack. The goal is to fast deliver the
data to the application and altogether remove the legacy network
stack’s overheads at the receipt. TC and XDP are incorporated into
eBPF infrastructure, which allows using its verifier to guarantee
the deployed bytecode are safe and then reduce most security
concerns and end-system crash risks.

KTF: an eBPF instantiation of TF. In the current implementation
of VTL, a Transport function (TF) is instantiated in the form of
eBPF programs and called KTF for Kernel Function Transport. KTF
inherits common properties of an eBPF program, i.e.:

I (1) Input interface: a hook point serving as an entry point of
the function (TC to get all egress packets, and XDP to pick
all ingress packets as soon as they arrived at the network
interface card);

I (2) Shared Memory: MAPS, serving as data buffers to store
packets for eventual retransmission, or to share control infor-
mation with the user-space programs such as a list of already
acknowledged packet or connection negotiation state;

I (3) Output interfaces: helper functions used to implement the
core algorithms of the protocols and serving as output points
towards the next KTF, the application, or the network.

VTL extends helper functions provided by the native eBPF VM in
order to address some specificity related to L4 protocols function-
ing. For instance, a “simple” stop-and-wait protocol needs a timer
to trigger packet retransmission in case of loss. Nevertheless, there
is currently no timing control helpers. VTL then adds and exposes
to KTFs a set of helper functions necessary to start and stop a timer.
Table 3.3 summarizes the set of helper functions added by VTL.

3.2.4 Aware-application Session Initiation

Obtaining VTL Socket. In order to transmit and receive data, the
aware-application must first obtain a VTL socket. The application
indicates its transfer mode in one of the following three modes:
sender, receiver, or both. Based on the transfer mode specified
by the application, Control Broker creates and configures a new

3 Virtual Transport Layer Introduction 36

VTL socket and its associated buffers (see Fig. 3.8) and triggers
the deployment of the canonical graft (described in Section 3.3).
Finally, Control Broker associates the deployed canonical graft’s
file descriptor to the VTL socket and gets back the resulting VTL
socket structure to the application. At this stage, the application
gets a ready VTL socket that it uses to send and receive its data.
The canonical graft’s purpose is to allow the application that does
not require specific requirements to instantly send and receive its
data without additional overheads and unnecessary delays of the
negotiation stage. For applications with specific requirements, the
canonical graft is used to conduct the KTFs and protocol grafts
negotiation stage. Additionally, the ingress canonical graft is useful
to conduct a stateful runtime reconfiguration of protocols (see
Section 3.3).

Protocol Grafts Negotiation and Deployment. Protocol grafts ne-
gotiation process between a sender and receiver is shown in Fig.
3.7. In case of successful negotiation, it ends up with the deploy-
ment of the suitable KTFs to satisfy the application’s requirements.
Each side of the connection maintains its own map named qos_-

nego_MAP. Each index or key of the qos_nego_MAP associates a
value containing the file descriptor of the VTL socket and the
associated graft negotiation outcome: N_ACCEPT or N_REFUSE. At
the sender side, the canonical graft named egress_cano_graft runs
two KTFs: one TC section named egress_tf_sec and one XDP sec-
tion named listener_tf_sec. The receiver side canonical graft,
named ingress_cano_graft, executes a single XDP program section
named ingress_tf_sec.

I Sender side: the client of the negotiation. Aware-application
that requires specific Transport services and QoS defines them
by invoking the protocol-agnostic API 1 . Based on a set of prede-
fined matching rules, Control Broker selects in the KTFs pool the
most appropriate egress and ingress grafts to meet application
needs. Then, it pre-builds a negotiation packet by setting up its
gid header field especially useful to tell the receiver the specific
ingress graft it must deploy. Once it finishes packet pre-forming,
Control Broker transmits it to the IP layer 2 and waits for a while
before looking up the negotiation state in the qos_nego_MAP

which must be updated by listener_tf_sec at the receipt of
the receiver reply. As soon as the packet leaves the IP layer, it
is intercepted by egress_tf_secwhich, based on the gid field,
may determine if the intercepted packet is a negotiation one
or not. When the gid value is not set (the value is, in that case,
NULL), the packet contains application payload and it is not a
negotiation packet. Therefore, egress_tf_sec sets packet type
value to DATA. Otherwise, i.e. the gid value is not NULL, the packet
is a negotiation one and egress_tf_sec sets the packet type

3 Virtual Transport Layer Introduction 37

egress_cano_graft

Application

proto-agnostic API

Control Broker

TCP/UDP

IP

listener_tf_sec
XDP section

NIC

qos_nego_MAP

index=0
VTL_SOCK_fd0

nego_state...
index=n

VTL_SOCK_fdn

nego_state

Launcher

egress_tf_sec
TC section update()

create()

lookup()

ingress_cano_graft

Application

proto-agnostic API

Control Broker

NIC

ingress_tf_sec
XDP section

Launcher

index=0
VTL_SOCK_fd0

nego_state...
index=n

VTL_SOCK_fdn

nego_state

qos_nego_MAP

SENDER RECEIVER

Kernel-space

Userland Userland

Kernel-space

KTF deployment control path

Data delivery management path

Interactions with shared MAP

create()

lookup()

update()

1

2

3

4

5

1

6.1

6.2

7.2

8

9

VTL_SOCK VTL_SOCK

7.1

Figure 3.7: Protocol grafts negotiation process under VTL system.

value to NEGO. The packet is finally transmitted to the network
device 3 . The negotiation acknowledgment packet, sent by the
receiver 7.2 in reply to the negotiation request, is intercepted
and processed by listener_tf_sec which updates the qos_-
nego_MAP to signal to Control Broker the receiver response to
negotiation request 8 . In the case of acceptance (value set to
N_ACCEPT in the map), Control Broker triggers the deployment
of the selected egress graft to replace the canonical one 9 .

I Receiver side: the server of the negotiation. After the applica-
tion has finished obtaining a VTL socket, it issues a blocking
request to the protocol-agnostic API 1’ to expect and to retrieve
the outcome of the negotiation handled by Control Broker. At
the receipt of a negotiation packet from the sender 4 , ingress_-
tf_sec delivers it to Control Broker which extracts the gid value
of the packet 5 . Then, it consults the KTFs pool to confirm the
availability of the ingress graft requested by the sender and
updates the qos_nego_MAP to N_ACCEPT; if the availability of
the requested KTF is not confirmed, the map is updated at
N_REFUSE 6.1 . In the case of availability of the requested graft,
after updating the map, Control Broker triggers the requested
ingress graft deployment that provokes systematic deactivation
of the ingress canonical graft 6.2 . Each time it receives and
passes a negotiation packet, ingress_tf_sec waits for a while,
then reads qos_nego_MAP to check the decision taken by Control
Broker 7.1 and ends up by sending acknowledgment packet to

3 Virtual Transport Layer Introduction 38

6: A common list of verifications in-
clude but are not limited to: (i) the syn-
tax of C code instructions, is there any
infinite loopwithout explicit stop con-
dition; (ii) the way the protocol com-
ponent interacts with the kernel, is
there any use of unknownor unautho-
rized helper function; (iii) the mem-
ory access, does theKTF try to access a
specific memory without prior check
the accessibility of this memory; and
(iv) the number of instructions in the
KTF that must be under 1M (4096 for
all Linux version prior to v5.2.0).

the sender 7.2 . This acknowledgment packet should take one
of the two following values: NEGO_ACK in case Control Broker
validates the graft negotiation request or NEGO_NACK if it does
not.

3.2.5 KTFs Deployment Workflow

KTF deployment workflow defines how VTL deploys a new pro-
tocol function within the eBPF VM and attaches it to the right
hook (TC or XDP) depending on whether the KTF is intended to
process incoming and/or outgoing packets. Control Broker compo-
nent handles the KTF deployment that can be triggered by three
events:

I (i) an invocation of the regular socket API or the protocol-
agnostic API by applications,

I (ii) a request for a connection from remote end-system re-
ceived on VTL socket (VTL_SOCK), and

I (iii) a change in network condition reported by theNetMonitor
component.

When Control Broker requests the deployment of a specific KTF
stored as a user-space object file, Launcher component picks it in
the KTFs pool and starts its loading within the eBPF VM. KTFs pool
is a repository of a set of precompiled and ready to be deployed
KTFs. The precompilation of KTF in the form of an object file
eliminates overheads of the userspace compiler (Clang/LLVM)
during the deployment of protocol functions (see Section 3.3).
Before its effective loading, a KTF is checked by the verifier that
performs a series of verifications6 to ensure that the deployed KTF
will not crash the OS kernel. As soon as the verifier finishes its
checking, the KTF is compiled by the in-kernel compiler (JIT) in the
eBPF native assembly code of the end-systemCPU. The loadedKTF
is finally attached to the network interface and ready to process
all incoming packets if attached to the XDP hook and all outgoing
packets if attached to the TC hook.

3.2.6 Data Delivery Path

Data delivery workflow determines how application payloads
and protocol headers are moved on egress/ingress paths by VTL
framework in order to ensure optimal data transfer between end-
systems. Application data transfer may be preceded by a protocol
graft negotiation stage that ensures that the appropriate KTFs (i.e.,
satisfying application needs) are deployed and ready to process
incoming and outgoing traffics. Data Broker controls data moving
by configuring and providing to the application a VTL socket

3 Virtual Transport Layer Introduction 39

that, as previously stated, emulates either a RAW socket for data
emission and/or an XSK socket for data receipt (see Fig. 3.8). After
having obtained a VTL socket, a VTL aware-application is able to
use the protocol-agnostic interface to send and to receive data.

Fig. 3.8 depicts how internally the VTL socket transfers data
through its associated buffers; for the sake of clarity, Data Broker
and protocol-agnostic API components are not shown in this figure.
During data moving, the interactions between the application and
VTL system are performed asynchronously thanks to a pair of
buffers at the transmission (Tx buff and skb buff in Fig. 3.8) as well
as at the reception (Rx buff and umem in Fig. 3.8). Rx buff and Tx
buff are useful to ensure the protocol graft reconfiguration without
interrupting application. Application ready to send data puts it in
its Tx buff whereData Broker picks it up, forms VTL packet payload,
and pushes it on the skb buff for the IP layer.

There is no intermediate IP layer processing at the packets’ recep-
tion, and the received data should be sent directly to Data Broker
in userland for fast delivery to the application. With the aim of
making use of XSK socket zero-copy capability,Data Broker and the
OS kernel share the umem buffer. Since the umem buffer is shared,
the memory access conflicts and deadlock events might happen.
To prevent that, VTL leverages AF_XDP socket family [46] features
to associate two ring buffers to the umem buffer: the fill ring and the
Rx ring. The former is used by Data Broker to pass the ownership of
the packet buffer to the kernel (i in Fig. 3.8) whereas the kernel
uses the Rx ring to pass the ownership of packet buffer to Data
Broker (ii in Fig. 3.8). In this way, when the kernel receives a buffer
on its fill ring, it knows that the umem memory space associated
with the buffer is free and that it can safely put incoming frame

NIC

Fill
Ring

Rx
Ring

Application

Rx Buff

VTL_SOCK

RAW_SOCK XSK_SOCK

Tx Buff

Running KTFs associated to
the VTL socket (VTL_SOCK)

sk Buff umem

i ii

Packet buffers moving

Packet data moving

Figure 3.8: Data moving between ap-
plication and VTL socket and its asso-
ciated buffers.

3 Virtual Transport Layer Introduction 40

data on this space. In the same way, when Data Broker receives a
buffer on its Rx ring it knows that the umem space associated with
that buffer is free and that it can pick up the data there without
conflict with the kernel. Finally, Data Broker makes payload data
available on the Rx buff for the application where this latter may
retrieve it by making use of the protocol-agnostic API.

3.2.7 VTL Aware-application Session Summary

This section summarizes a typical Transport session of an aware-
application by a description of the Protocol-agnostic API and its
interaction with applications. Protocol-agnostic API component
ensures the principle of the separation between application and
protocol. It is a shared library used by aware-applications to express
their requirements and to send/receive data. The protocol-agnostic
API is easily extensible and may integrate other functions in the
future to respond to more extensive use cases. We describe the
currently implemented functions through a typical function call
flow as illustrated in Fig. 3.9. Furthermore, Table 3.4 summarizes
the way applications should specify parameters when using the
protocol-agnostic API.

Prior to any request, the aware-application must call into vtl_-

init() function that will trigger the creation and configuration of
a newVTL socket. At this stage, thanks to canonical grafts associated
with the newly created VTL socket, the application (without any
special requirements) may directly enter in its Tx/Rx loops to start
data transfer by issuing vtl_send_data() or vtl_recv_data().
In contrast, before entering in its Tx/Rx loops, a sender application
having specific requirements may call into vtl_negotiate() to
transmit its needs to the VTL system. At the receiver side, the
application must invoke the blocking function vtl_validate() to
indicate to the VTL system that it is waiting for a graft negotiation
stage result. Both functions vtl_negotiate() / vtl_validate()

Sender

vtl_init()
Here, Canonical
Grafts are ready

vtl_negotiate()

DATATX Loop

vtl_close()
Here, egress/ingress Grafts are

unloaded and VTL socket and its
associated buffers freed

QoS?

Receiver

vtl_init()

vtl_validate()

RX Loop

vtl_close()

QoS?
YesNo YesNo

vtl_send_data() vtl_recv_data()

Figure 3.9: Typical function call flow
by VTL aware-applications for data
Tx/Rx.

3 Virtual Transport Layer Introduction 41

Table 3.4: VTL protocol-agnostic API functions parameters.

Functions Parameters Description

vtl_init() mode, src_ip, dst_ip

Create a new VTL socket and its as-
sociated resources (buffers, canonical
grafts, etc.).

vtl_negotiate()
vtl_sock,l4_services,

qos_values

Get application’s requirements and
trigger a graft negotiation process.

vtl_validate() vtl_sock
Retrieve graft negotiation outcome
for the application.

vtl_send_data()
vtl_sock, buffer,

buffer_size

Send application’s payload data and
retrieve the size of written data.

vtl_recv_data()
vtl_sock, buffer,

buffer_size

Fetch application’s payload data and
return the read data size.

vtl_close() vtl_sock
Close VTL socket and free its associ-
ated resources (buffers, KTFs, etc.)

should return a positive value (the file descriptor of the newly
deployed graft) to signal a successful negotiation to the application
or a negative value in case of failure. At the end of data transfer,
applications should issue vtl_close() function to close the file
descriptor associated with VTL socket; this will (i) free the buffers
associated with the VTL socket as well as (ii) unload the KTFs of
grafts associated with the socket.

3.3 Carried Out Use Cases and Performance

Evaluation

This section aims to demonstrate the ability of the VTL to allow
the dynamic plugin of KTFs in response to service requests. We
also assess VTL outlooks’ benefits, thanks to the evaluation of the
performances resulting from the deployment (under the VTL) of
Transport protocol mechanisms. The reference we used to discuss
the obtained results is TCP (cubic) that we evaluated in similar
network conditions.

In terms of developments, we revisited and implemented, from
scratch, a set of protocol mechanisms well-known in the literature.
As stated above, the goal is to demonstrate the dynamic deploy-
ment ability of VTL and show how the L4 protocol functions can
be implemented as eBPF programs. All implemented mechanisms
have the same structure. At the sender side, the egress graft main-
tains two KTFs: one TC section named egress_tf_sec that ensures
the processing of all outgoing VTL packets, and one XDP section
named listener_tf_secwhose job is to process acknowledgment
packets. At the receiver side, the ingress graft runs a single KTF

3 Virtual Transport Layer Introduction 42

Listing 3.1: Template of protocol graft
and Kernel Transport Function (KTF).

#include <vtl.h>

// and other useful headers

/* Declare a MAP to store

data packet for retx */

struct bpf_elf_map SEC("

maps")

EGRESS_PKT_WND_MAP = {

.type=BPF_MAP_TYPE_HASH,

.size_key=sizeof(int),

.size_value=sizeof(

vtl_pkt_t),

.pinning=PIN_GLOBAL_NS,

.max_elem=16,

};

SEC("egress_tf_sec")

int _tf_tc_egress(struct
__sk_buff *skb) {

// skb is the entry point

of the TF

/*** TF code here ***/

}

SEC("listener_tf_sec")

int _listener_tf(struct

xdp_md *xskb) {

// xskb is the entry point

of the TF

/*** TF code here ***/

}

that consists of an XDP section named ingress_tf_sec and that
is sufficient to process incoming packets as well as to send ac-
knowledgment if necessary thanks to the verdict XDP_VTL_ACK.
Code Listing 1 illustrates a template of an egress graft part of a
protocol. Subsection 3.3.1 introduces some L4 protocolmechanisms
we implemented. Later, in subsection 3.3.2, we present a runtime
(structural) reconfiguration technical approach under VTL. Finally,
subsection 3.3.3 and subsection 3.3.4 present the configuration
of the experiments environment and discuss the outcomes of the
evaluations.

3.3.1 Implemented KTFs and Grafts

Egress/Ingress Canonical Grafts. Canonical grafts, egress one as
well as ingress one, purposes are (i) to enable the immediate transfer
of data of applications that do not have special requirements
and (ii) to conduct the KTFs negotiation stage for QoS-oriented
applications. Additionally, the ingress canonical graft is useful
to ensure the reconfiguration of protocols. Canonical grafts are
deployed at the creation of a new VTL socket to which the KTFs
composing the canonical grafts are associated by default (go back to
Fig. 3.8). For each packet it processes, the egress canonical graft sets
up the type header field of the packet (either to DATA or to NEGO),
ensures the processing of acknowledgment packet and signals
to Control Broker the receiver’s reply thanks to the shared MAPS.
On its side, at each packet it receives, the ingress canonical graft
extracts the type value of the packet before passing it either to
Control Broker or to Data Broker in userland. When the packet type
is DATA, the ingress canonical graft immediately passes it to the
Data Broker and continues processing the next incoming packet.
Otherwise (i.e., the received packet is negotiation one), it waits for
the outcome of negotiation handled by Control Broker, transmits
an acknowledgment to the sender, and pursues the next packet’s
processing. Moreover, the ingress canonical graft has the property
to be systematically activated (resp. deactivated) when there is no
other XDP section running on the network interface driver (resp.
when a new XDP section is attached to the network interface driver).
This latter property is essential to ensure a stateful reconfiguration
of KTFs (discussed in subsection 3.3.2).

ARQ Reliable Graft Based on Go-back-N. Go-back-N is an opti-
mized version of stop-and-wait algorithm [55]. Instead of sending
only one packet at a time, the Go-back-N mechanism allows the
sender to transmit at a time N > 1 packets without waiting for ac-
knowledgment from the receiver. The aim is to reduce at maximum
the idle time of the simple stop-and-wait flow control. Furthermore,
to ensure in-order packet delivery, sender and receiver make use of

3 Virtual Transport Layer Introduction 43

7: Note that the assumption is made
here that there is no loss on ACK
packets.

sequence numbers as opposed to stop-and-wait algorithm where
there is no need for numbering packets7 . Therefore, at the receiver,
in addition to data integrity validation, ingress_tf_sec makes
sure that the packet is in sequence before positively acknowledging
it.

Selective Repeat (SR) Protocol Graft. Selective Repeat protocol is
a bit more complex and optimized version of Go-Back-N protocol
mechanism. Like the latter, Selective Repeat mechanism allows
the sender to transmit at a time N > 1 packets without waiting for
acknowledgment from the receiver. N is the sender window size.
But, contrary to Go-Back-N, a lost packet is retransmitted alone
rather than retransmit all packets of the window from that point.
At this end, the receiver side (ingress_tf_sec) accepts and buffers
out-of-order but not corrupted packets, waits for retransmission
by the sender of lost/corrupted packets of the window before
delivering the out-of-order packets to the application.

Partial Reliable (PR) Graft. Partial reliability concept consists
of allowing KTFs not to issue at reception all the data packets
submitted by the sender, provided to respect a maximum per-
centage MAX_LOSS of allowable losses (e.g. 20% of the packet
data may be lost). The goal is to deliver, as quickly as possible,
the out-of-sequence packets data to applications that tolerate a
certain amount of loss (such as multimedia applications). This
considerably reduces the transmission delay with less impact on
the proper execution of the application.

Fig. 3.10 illustrates the partial reliability concept under video
streaming where each packet data carries one image. The assump-
tion is made that the loss of one data packet (i.e. image) every ten
images is acceptable because it is not perceptible by the human’s
eye. In the first case, only one image (I3) is lost, the data packet
containing that image is not retransmitted. In the second scenario,
the images I3 and I8 are lost. The first lost data packet is not
retransmitted but to fulfill theMAX_LOSS requirement (10% here),
the second lost data packet (I8) is retransmitted.

3.3.2 Runtime (Re)configuration of Grafts Use Case

VTL leverages eBPF infrastructure dynamic reloading features to
guide runtime configuration or reconfiguration of protocol grafts. It
consists of a dynamic deployment / replacement of KTFs attached
to TC or XDP hooks without application outage. Reconfiguration
may be performed either to end up a successful protocol grafts
negotiation process or whenNetMonitor component reveals change
within the network that requires adaptation actions. VTL can

3 Virtual Transport Layer Introduction 44

perform two types of runtime reconfiguration: a stateless reconfig-
uration, to fasten the adaptation actions at the expense of packet
loss, or a stateful reconfiguration, more conservative reconfiguration
approach that ensures that no packet is lost or dropped at the cost
of additional overheads and delay, especially at the sender (see Fig.
3.11). The right tradeoff must therefore be found depending on the
application use scenario.

During a stateful reconfiguration, on the egress path, VTL leverages
the fact that TC subsystem allows runningmore than one TC hook at
a time on the network interface driver to load the new egress graft
before unloading the old one. In thisway, during awhile, all packets
data transmitted by the application are processed sequentially by
both egress grafts. Contrary to TC hook, on the ingress path, XDP
subsystem does not allow executing more than one XDP hook at a
time on the same NIC. To solve this issue, owing to make heavy
use of a new map to store umem buffers (see Fig. 3.8) before old
ingress graft unloading, VTL leverages the systematic activation
properties of the ingress canonical graft (when there is no XDP

section running on the NIC) to ensure the persistence of incoming
packets processing. At the loading of the new graft, the canonical
graft is systematically deactivated.

3.3.3 Testbed Setup and Methodology

We implemented and evaluated VTL under Ubuntu distribution
running Linux 5.3.5. The goals of carried experimentation were to
evaluate (i) the correctness of VTL, i.e. its protocol deployment and
reconfiguration capabilities, (ii) the performances of VTL especially
in terms of deployment delay, and (iii) the performances under

Sender Receiver

I10

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I1

I1

I2

I4

I5

I6

I7

I8

I9

I10

I2

I3

I4

I5

I6

I7

I8

I9

I10

Sender Receiver

I1

I2

I3

I4

I5

I6

I7

I9

I1

I1

I2

I4

I5

I6

I7

I8

I9

I2

I3

I4

I5

I6

I7

I8

I9

I10

I10

I8

I8

“Acceptable” loss of Image I3 ⇒ no Retransmission “Acceptable” loss of Image I3 ⇒ no Retransmission

“Unacceptable” loss of Image I8 ⇒ Retransmission

Case 1 Case 2

Figure 3.10: Partial Reliability illus-
tration under video streaming with
acceptable loss rate set toMAX_LOSS
= 10%.

3 Virtual Transport Layer Introduction 45

VTL of the implemented KTFs and protocol grafts namely in terms
of data transfer latency and throughput. VTL experiments are
performed under a testbed constituted by two hosts linked by
one router. The router and the associated network parameters are
emulated thanks to netem tool [56]. Indeed, netem allows us to
apply random delay on the network link. The delay is uniformly
distributed with mean value at the fixed RTT (100 ms in this
experiment). This property is useful to simulate the delay variations
that occur in the Internet. Finally, combined with the delay and
the bandwidth, the random loss applied to the link permits us to
assess the protocol reaction to data packet losses and the way this
reaction could affect the final end-to-end performance achieved by
the protocol and perceived by the application. Unless otherwise
stated, the network parameters used during experimentation are
reported in Table 3.5. Each host is equipped with Intel Core i7-
7500U CPUs, 3.8 GiB RAM, and Qualcomm Atheros QCA6174
NIC driver.

Further, we built two VTL aware-applications, one acting as a
data streaming server and the other one playing the client role.
The server application is able to stream several kinds of files with
different sizes and formats ranging from a simple 4KB file text to
more than 32MB video files. In order to capture outliers and thus
avoid biases, for eachmetric evaluated, we repeated the experiment
enough (at least 300 trials) and observed the standard deviation
of the sample. The mean of the observed sample is taken only
for a relatively small standard deviation. As already stated, the
reported evaluation of the legacy TCP (Cubic) is provided only
as a reference to discuss the evaluated KTFs and protocol grafts.

NIC

protocol-agnostic API

App

NIC

protocol-agnostic API

App

new egress Graft

old egress Graft old egress Graft

NIC

protocol-agnostic API

App

new egress Graft⇒
Load new progs

⇒
Unload old progs

Packets data are
processed by both
Grafts till unloading

NIC

protocol-agnostic API

App

NIC

protocol-agnostic API

App

old ingress Graft

NIC

protocol-agnostic API

App

new ingress Graft⇒
Unload old progs

⇒
Load new progs

Systematic activation of
ingress canonical Graft

ingress canonical
Graft

E
gr

es
s

pa
th

In
gr

es
s

pa
th

Figure 3.11: Protocol graft stateful re-
configuration actions. To ensure no
packet loss, the egresspathmaygener-
ate moderate overheads during state-
ful reconfiguration.

3 Virtual Transport Layer Introduction 46

iproute2/tcVerifier+JIT

Clang/LLVMdeployment
delay precompiled?

T0: userland compilation

yes

no

T1: kernel compilation

=

T2: attaching delay

Loading delay

Figure 3.12: KTF deployment delay
breakdown. Precompiled KTFs elimi-
nate Clang/LLVM compilation delay
(T0). T1 and T2 represent the delay of
KTF loading inside the eBPF VM.

Therefore, this is not an absolute comparison with TCP so far as
a fair comparison would (among other requirements) require a
large scale configuration and deployment. The window size of the
Go-Back-N, the Selective Repeat, and the partial reliability grafts is
set to 16. Finally, to avoid interference with packets not directed to
VTLwithin the testbed environment, we set the IP protocol number
of VTL packets to experimental value 253 (that corresponds to the
hexadecimal notation 0xfd) [57].

3.3.4 Microbenchmarks

KTF’s Size and Graft Negotiation Delay. Basically, a connection-
oriented Transport session takes place in three stages: connection
establishment, data transfer, and connection closing (Section 2.2).
Under VTL, the delay of session establishment is the amount of
time required to negotiate and deploy protocol grafts. The delay of
grafts negotiation is an important metric because it indicates the
opportunity of whether or not to consider a dynamic deployment.
Long negotiation delay could be a real limit to the practicality of the
dynamic deployment, especially for latency-sensitive applications.
Therefore, the first step of our evaluations consisted in assessing
the delay required to complete protocol graft negotiation procedure. This
delay is composed of 1/ packets processing delay (negotiation one
and its associated acknowledgement), and 2/ KTFs deployment delay
at both sides (sender and receiver). Nevertheless, the carried-out
experiments demonstrated that the packet processing delay is
negligible compared to the delay of KTFs deployment precisely
when the RTT is low (as that is the case here). Consequently, the
results reported in Fig. 3.13 illustrate essentially the delay of KTFs
deployment within the end-system OS. We compute delays with
the help of time tool [58].

Min RTT Link Capacity Loss Rate

10 ms 16 Mbps 0 - 5%

Table 3.5: Configurations of Network
Testbed.

3 Virtual Transport Layer Introduction 47

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Canonical Grafts Negotiation Delay
Time (s)

C
D

F

TCP
Precompiled
Not Precompiled

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Go−Back−N Grafts Negotiation Delay
Time (s)

C
D

F

TCP
Precompiled
Not Precompiled

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Selective Repeat Grafts Negotiation Delay
Time (s)

C
D

F

TCP
Precompiled
Not Precompiled

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Partial Reliability Grafts Negotiation Delay
Time (s)

C
D

F

TCP
Precompiled
Not Precompiled

Figure 3.13: KTFs and Graft negotia-
tion delay. Precompiled grafts (green
curve) considerably reduce protocol
graft negotiation delay. As a refer-
ence, the curve in blue illustrates the
latency of TCP’s 3 way-handshake
connection setup with RTT at 100 ms
and loss rate set at 2%.

As illustrated in Fig. 3.12, the delay of one KTF deployment is the
sum of the compilation delay (T0) and the loading delay (T1+T2).
The former measures the time required by the userland compiler
Clang/LLVM to compile the KTF from a source file to object
file. Further, the loading delay is the total time elapsed during
verifier/JIT operations (see note 6 in Section 3.2) and the XDP (resp.
TC) hooks attaching performed by iproute2 [59] (resp. tc [51]) tool.
Based on this breakdown of the negotiation delay, to reduce the
deployment delay (i.e. the negotiation delay), the first and intuitive
approach is to precompile and to store KTFs/grafts as an object
file rather than a source file. This will obviously eliminate userland
compilation delay during the deployment. The results reported
in Fig. 3.13 validated this intuition and most importantly showed
that the benefit of precompiled grafts is not negligible. In fact, we found
that when the KTFs are precompiled and stored as object files, the
total delay of protocol grafts negotiation could be reduced by 20%
to 60%. Moreover, we noted that the negotiation delay increases with
the size of the grafts, which makes sense in view of the important
part of the deployment delay over the total cost of the negotiation
procedure.

Grafts SLoC Source File Size Object File Size
egress ingress Total egress ingress Total egress ingress Total

Canonical 102 65 167 3.45 KB 2.13 KB 5.58 KB 21.4 KB 11.7 KB 33.1 KB

Go-Back-N 187 81 268 8.12 KB 2.84 KB 10.96 KB 25.6 KB 14.7 KB 40.3 KB

Selective Repeat 193 65 258 8.83 KB 2.21 KB 11.04 KB 26.8 KB 13.7 KB 40.5 KB

Partial Reliability 206 104 310 9.13 KB 3.07 KB 12.2 KB 27.8 KB 14.5 KB 42.3 KB

Table 3.6: The code complexity of
the implemented grafts. It shows the
number of source lines of code (SLoC)
and the sizes of non-precompiled
(source file) as well as precompiled
(object file) grafts

3 Virtual Transport Layer Introduction 48

8: We define FCT as the amount of
time elapsed between the first packet
sent and the last packet received dur-
ing the Transport session.

The SLoC indicates the number of
instructions in the source code. It is
commonly used to estimate the com-
plexity of the code and the effort re-
quired to produce the code. The SLoC
can also be used to get information
by the program size.

Given the significant reduction enabled by precompiled grafts on
the negotiation delay, onemight be tempted to precompile all grafts
and store them as object files in theKTFs pool. Nevertheless, a closer
look at Table 3.6 that provides the statistics on the complexity of
the grafts shows that even if the precompiled grafts have a definite
advantage on the negotiation delay, they are bulkier than the non-
precompiled grafts (i.e. stored as source files). For example, for
a canonical graft, it takes 6 times more memory space to store
its precompiled version (33.1 KB) than its source version (5.58
KB). If the KTFs pool is small and the end-system has a large
storage capacity (as in most commodity computers.), the size of
the precompiled grafts will not be a limit. This will not be the
case when the KTFs pool will store more and more protocol grafts
or when the end-system will have less storage capacity (such as
on a microcontroller). Moreover, in a scenario where protocol
grafts, instead of being stored locally, should be retrieved from
a remote server, a large graft will undoubtedly take longer to be
downloaded. This will have a negative impact on the delay of
the graft negotiation phase. Finally, the impact of protocol graft
negotiation delay should be more or less cushioned by the actual
duration of the transfer of the application’s data. That is to say, for
a short duration data transfer, it might be more interesting to keep
the canonical grafts whereas for a transfer of large amounts of data,
the application could afford to trigger and wait for the completion
of a negotiation procedure more.

Data Moving Performances: latency & throughput. In addition
to the session establishment latency represented by the graft
negotiation delay, we evaluated the data transfer performances
of each implemented protocol graft under the streaming of files
of different sizes. The evaluations were performed within several
network conditions by the variation of the network loss rate. The
results are reported in Fig. 3.14 and show the file completion time
(FCT8) and the data transfer speed rate. The acceptable loss rate
in partial reliability graft is set approximately at 10%. According to
[25], this is the maximum loss rate that can be resorbed by adaptive
coding [60] for some applications such as multimedia transfer.

When there is no packet loss in the network, all protocol grafts
have almost equal performances (i.e. FCT and throughput). For
small files (8 MB), TCP clearly presents the lowest performances.
However, when the file is a bit larger (> 8 MB), TCP achieves
better throughput and FCT than all protocol grafts executed in
VTL. Under packet losses, as expected, Go-Back-N graft presents
the worst performance. The severity of this poor performance is
proportional to the level of the loss rate. Contrary to the lossless
network environment where TCP always presents better perfor-
mance than all protocol grafts when the file size is large, we could

3 Virtual Transport Layer Introduction 49

0
20

60
10

0

(a) No Loss
File Size (Bytes)

F
C

T
 (

s)

64K 512K 2M 8M 32M

TCP gBn SR PR

0
20

60
10

0

(c) Max Loss at 2%
File Size (Bytes)

F
C

T
 (

s)

64K 512K 2M 8M 32M

TCP gBn SR PR

0
20

60
10

0

(e) Max Loss at 5%
File Size (Bytes)

F
C

T
 (

s)

64K 512K 2M 8M 32M

TCP gBn SR PR
0

2
4

6
8

10

(b) No Loss
File Size (Bytes)

T
hr

ou
gh

pu
t (

M
bp

s)

64K 512K 2M 8M 32M

TCP gBn SR PR
0

2
4

6
8

10

(d) Max Loss at 2%
File Size (Bytes)

T
hr

ou
gh

pu
t (

M
bp

s)

64K 512K 2M 8M 32M

TCP gBn SR PR

0
2

4
6

8
10

(f) Max Loss at 5%
File Size (Bytes)

T
hr

ou
gh

pu
t (

M
bp

s)

64K 512K 2M 8M 32M

TCP gBn SR PR

Figure 3.14: Data moving performances under various network conditions of protocol grafts: Go-Back-N (gBn), Selective
Repeat (SR) and Partial Reliability (PR).

9: The window size is definitely not
the throughput, but their variations
trends are similar. Indeed, th gpt �

(1 − loss_rate) ∗ win_size.

note in Fig. 3.14 (e) and (f) that partial reliability graft has better
performance than TCP. Two factors could explain this: first, the par-
tial reliability graft does not systematically retransmit all windows
containing lost packets unless the number of lost packets is greater
than the acceptable loss rate (2 out of 16 packets ' 10%). Second, it
is well-known that when TCP experiences losses, it exponentially
decreases its congestion window9 (i.e. its data sending speed
rate).

Finally, we demonstrated that VTL can perform a runtime recon-
figuration of protocols based on a straightforward predefined
reconfiguration rule. The metric under monitoring by NetMonitor
component during this test scenario is the RTT that is reported
with 0.5 ms periodicity. That is to say, the RTT of the network link
is calculated every 0.5 ms.

The rule is the following one: when RTT < 300ms, VTL deploys
and maintains the use of the Go-Back-N protocol graft and as
soon as RTT300ms, it systematically triggers the replacement of
Go-Back-N by the partial reliability protocol graft withMAX_LOSS
keep at approximately 10%.

The file used in this use case is a 32MB video file.We evaluated two
types of applications: VTL aware-application and TCP application.
For each application, the scenario is identical. During the first 20
seconds, data packets are transferred under RTT of 20 ms. Between

3 Virtual Transport Layer Introduction 50

0 10 20 30 40

0
2

4
6

8
10

Video Timeline (s)

T
hr

ou
gh

pu
t (

M
bp

s)

0
2

4
6

8
10

TCP application VTL aware−application

Figure 3.15: Throughput variation of
VTL aware-application in changing
network conditions.

the 20th and the 25th second, we switched the RTT from 20 to
320 ms and observed the adaptation actions implemented by the
VTL. The results (see Fig. 3.15) show that VTL is able to adapt to
the network conditions in order to limit performance degradation.
Indeed, we can observe in Fig. 3.15 that when an additional delay is
introduced at ~22ms, TCP throughput significantly decreases. This
decrease remains permanent. However, VTL first experiences the
effects of the increased delay before slightly offsetting the impacts
of the change in network context by replacing the Go-Back-N
protocol graft with partial reliability one.

3.4 Closely Related Work and Discussion

There are some works in the literature that relies on the dynamic
deployment of code to extend the Transport layer andmake it more
flexible. The seminal work that relies on this approach is STP [61]
proposition. STP is a framework that allows the deployment of TCP
extensions. Its primary goal is to speed up the upgrading of TCP
protocol within the end-system by the use of mobile codes [62]
that are exchanged remotely between end-systems. STP prototype
is written in Cyclone [63], a safe dialect of C language.

More recently, PQUIC [64] introduced a prototype of a framework
able to dynamically extend QUIC protocol by loading at runtime
new Transport protocol plugins that contain the code implementa-
tion of themechanisms. PQUIC relies on a user-space version of eBPF
infrastructure. Nevertheless, STP and PQUIC keep the binding to
a specific protocol, TCP in the case of STP and QUIC in the case of
PQUIC. That is to say, they do not provide a protocol-independent
API to applications: this prevents applications from the use of new
dynamically added functionalities if these applications are not
written for the specific protocol and its extensions. As discussed in
Chapter 2, this might present a limit to the use of these solutions.
In fact, that is already the case with STP that was released several
years ago but is not available on the Internet.

3 Virtual Transport Layer Introduction 51

3.5 Conclusion

In this chapter, we introduced VTL, a system that can timely
and effectively deploy Transport protocol functions within the
OS kernel and ensure their flexible usage by applications. We
implemented VTL by relying on a combination of XDP and TC

Linux subsystems, part of the eBPF infrastructure. The use of
eBPF allows VTL to ensure the extensibility and flexibility of the
Transport layer without sacrificing the isolation and the safety
of the end-system OS. To evaluate VTL, we implemented from
scratch a set of protocol mechanisms. During our experimentation,
we found that VTL can quickly deploy protocol functions (KTF),
especially when the deployed KTFs are precompiled and stored
in a dedicated repository. Further, we evaluated the implemented
protocol mechanisms’ performances in terms of the data transfer
latency and data speed rate. Taking reference to the legacy TCP, the
results showed that implemented protocol mechanisms present
good performances when executed under VTL.

This chapter focused on the dynamic deployment aspect of VTL
and the way it interacts with aware-applications. In the next chapter,
we will present how VTL integrates into a transparentway legacy
application and allows the latter to use any Transport protocols
other than the standard TCP.

Transparent Integration of

Legacy Applications 4

4.1 Related Work . 54

4.2 Socket API Layer and TCP Execution

Path . 56

4.3 Hooker Design and Implementation . . . 59

4.3.1 SOCKMAP: the art of data packets steal-

ing . 61

4.3.2 SOCK_OPS: TCPExecutionPath’s Spy62

4.3.3 Legacy Application Data Paths 64

4.4 Performance Evaluation 65

4.5 Conclusion . 67

Till today, TCP remains the de facto L4 protocol of the Internet’s
Transport layer despite its well-known limitations in different
contexts [65]. To address TCP limitations, a plethora of propo-
sitions have emerged in the academic literature and in the
industries, from the early IETF standards such as DCCP [66],
SCTP [67], etc. to more recent proposals like DCTCP [68], QUIC
[26, 27], etc. All of these alternatives to TCP, including its own
extensions such as Hybla [69], have seen limited use due in part
to the weakness of the socket API (as discussed in Chapter 2).

To address this limited use of L4 protocols other than TCP, one
possibility is to replace the socket API with a generic protocol-
independent or service-oriented API so that the application no
longer chooses the L4 protocol to use neither during its develop-
ment nor during its execution. Our first contribution, presented
in the previous chapter, is in line with this approach that we
enhanced by providing a stable system called VTL that enables
dynamic deployment of Transport protocol functions within
the end-system OS. The aim of the service-oriented approach
is to break the dependency (namely the static binding) of the
application to a single protocol. This approach is promising and
is currently promoted by the IETF working group TAPS [6].
However, a major question remains: how to port existing TCP
applications to the new API? Right now, the answer to this question
will require to modify the legacy applications. Based on the
lessons learned from the vicious circle (see Chapter 2), we argue
that the need to rewrite the legacy applications could be a barrier
to the adoption of the new service-oriented API. This should
result in limited use of (1) the protocols integrated within the
VTL, as well as (2) the VTL system itself. To prevent this eventual
limited adoption, we proposed in this chapter an approach that
permits to replace at runtime TCP by another protocol X. We
realized it in a transparentway to TCP applications, i.e. there is
no need to modify the code of the applications. The approach is
implemented by the Hooker component of VTL (go back to Fig.
3.3 for VTL architecture overview).

This chapter is organized as follows. We first outline in Section
4.1 the state of the art of existing approaches similar to our
proposition. In order to apprehend the introduction of Hooker,
subject of Section 4.3, we provide a background on TCP and
the socket API in Section 4.2. Then, in Section 4.4, we carry

4 Transparent Integration of Legacy Applications 54

out thorough evaluations of the Hooker component in order to
assess the functional properties as well as the performances
of Hooker namely the delay of the TCP replacement and data
redirection operations. Finally, Section 4.5 concludes the chapter
and motivates the contribution presented in the next chapter.

Note: This chapter’s reading cannot be dissociated from that
of the previous chapter (at least from subsection 3.2.2). In the
following, we assume that the reader has a basic knowledge of
eBPF and the main elements of its architecture, notably the maps
and hook points.

4.1 Related Work

Long time ago, before being superseded by the TCP/IP standard
model, the standard reference model OSI was popular too as the
TCP/IP model. Organized in several layers as the TCP/IP model
(see Fig. 4.1 (b)), its dominant Transport protocol was TP4 [70]
different from the TCP protocol in terms of Transport services
specifications. Internet, more precisely ARPANET [71], was then
plenty of two major kinds of systems: on one hand OSI end-
systems and on the other hand TCP/IP end-systems (see Fig.
4.1 (a)). To ensure the interconnection between these different
types of systems, the need for host-level (i.e. Transport-level)
interoperability appeared. To fulfill this requirement, in 1986, I.
Groenbaek proposed, in [72], protocols converter illustrated in Fig.
4.1. The fundamental idea of protocols converters is to split the
Transport session in two: TCP session at one side and TP4 session
at the other side. This is one of the first steps towards the violation
of the end-to-end principle described in Chapter 2. Since many
researchers followed and extended Groenbaek’s idea leading to
what is commonly known today as proxy [73, 74].

Like a protocol converter, proxy is a kind of relay equipment that
ensures the translation between two different protocols of the
same layer of TCP/IP. In addition to the primary task of proto-
col conversion, a series of proxies known as PEPs (Performance
Enhancing Proxies) [73] are able to improve the performance of
several protocols such as TCP over satellite links. Albeit most of
the proxies operate at the Internet’s Transport layer, there exist also
several kinds of proxy operating at the application layer namely
web proxies such as Squid tool [75] that targets and enhances
HTTP(S) protocol [76].

While proxies were originally developed to ensure interoperabil-
ity between different protocols and to improve these protocols’
performance, it soon became apparent that their use could also

4 Transparent Integration of Legacy Applications 55

TCP
C

TP4
A

TP4

TCPTP4
B

TP4
C

TCP
A

TCP
B

PROTOCOL
CONVERTER

TCP/IP
END-SYSTEMS

OSI
END-SYSTEMS

OSI Based
Network

TCP/IP Based
Network

Application
Presentation

Session
TP4

Network
Data Link

Application

TCP
Network

Data Link
Network

Data Link

TP4 TCP

Physical

(a) Mode of Interconnexions

(b) Layered view

PROTOCOL
CONVERTER

TCP
C

TP4
A

TP4 Session TCP Session

Figure 4.1:Protocols converter forOSI
and TCP/IP end-systems. Adapted
from [72].

be useful to address the limited use of Transport protocols. To
achieve this goal, the use of the proxy should not require the
modification of the applications on the end systems, i.e. the client
application should not have to send data packets to the proxy
but instead continues to send data to the server application: in
this case, the proxy is qualified as a transparent proxy. Following
this approach, several works have aimed to stimulate the use of
Transport protocols other than TCP, in particular SCTP or MPTCP.
In order to gradually enable the deployment and the use of SCTP
on the Internet, the authors of [77] and [78] propose TCP-SCTP
mapping system for transparent redirection of TCP connections
to SCTP. In [77], the mapping tool acts like a transparent proxy
called CMG (Connection Manager Gateway) that merges multiple
TCP connections into a single SCTP association whereas in [78] the
mapping tool is a “shim layer” designed to be directly integrated
into the end-system OS. Similar to CMG and Shim Layer, MiMBox
[79] is a protocol converter that ensures the translation between
the regular TCP and its multipath extension i.e. MPTCP.

However, the above-mentioned solutions present two main draw-
backs. First, they address only the adoption issues of only one
Transport protocol: for instance, SCTP in the case of CMG and Shim
Layer mapping tools, and MPTCP in the case of MiMBox protocol
converter. They are what we could call a one-to-one protocol transla-
tor and therefore do not provide a comprehensiveway formapping
TCP to multiple protocols. Second, even if there is no need to alter
the application itself, most of those solutions require the change

4 Transparent Integration of Legacy Applications 56

Table 4.1: Primary functions of (TCP) socket API.

Functions Parameters Description

socket() domain, type, protocol Create a new socket.

bind() sock_fd, addr, addr_size
Assign a local IP address and port
number to a socket.

listen() sock_fd, max_connection Set the socket in listen mode.

connect() sock_fd, addr, addr_size

Make a connection request and bind
the socket to the remote IP address
and port number.

accept() sock_fd, addr, addr_size Accept incoming connection request.
send() sock_fd, data, data_size Send data over a socket.
recv() sock_fd, data, data_size Receive data from a socket.
close() sock_fd Teardown a connection.

1: Conceptually, the preloading tech-
nique consists of overloading func-
tions namely system calls of the OS
kernel [80]. It relies on the LD_-
PRELOAD environment variable.

of the socket API thanks either to kernel patches such as done by
Shim Layer, or to the preloading1 technique like in CMG. Further,
MiMBox is developed as a Linux kernel module and as such, it
inherits the drawbacks associated with kernel modules namely the
lack of security and safety of the end-system (see Chapter 3).

Contribution positioning. The approach we explored in this con-
tribution allows the invocation, during the execution of the legacy
application, of the alternative protocolX, without anymodification
of the application’s code. This approach, which we introduced and
implemented through the Hooker VTL component, leads at the
level of the host machines to intercept the system calls related to
the socket API (i.e., connect(), sendmsg(), recvmsg(), etc.) in
order to ultimately invoke the alternative protocol X. Therefore,
the Hooker component does not act as a simple proxy insofar as
(i) the TCP protocol is not activated but rather replaced by the
protocol X and (ii) there is no one-to-one static and permanent
mapping of TCP to a single Transport protocol.

4.2 Socket API Layer and TCP Execution Path

A socket is a special structure that provides an abstraction of a
bidirectional endpoint represented by the tuple IP address and
port number. Technically, it is identified by a file descriptor, i.e.
a small non-negative integer. The socket API is a set of standard
functions that are used to manipulate sockets in order to correctly
send and receive data. The commonly used functions of the socket
interface are provided in Table 4.1. Those functions fail in twomain
categories: (1) the configuration functions used for instance to create
and to set up a socket, to establish or to close a connection between
different sockets, etc.; and (2) the I/O functions namely send()

4 Transparent Integration of Legacy Applications 57

socket()

connect()

send()

recv()

close()

socket()

bind()

listen()

accept()

recv()

send()

recv()

close()

TCP Connection Opening
3-way Handshake

Client sending data
Server receiving data

Server sending data
Client receiving data

Client closing connection

CLIENT

SERVER

Figure 4.2:Abasic sequence of socket
API function calls during data trans-
fer.

and recv() that are used to transfer data between applications.
Fig. 4.2 illustrates a typical sequence of function calls between TCP
applications that use the socket API during a data transfer.

On the client-side as well as on the server-side, the application uses
socket() function to create a new socket. The socket() function
enables the application to specify the domain (also known as
protocol family) that should be attributed to the socket. Possible
values of the domain parameter include but are not limited to:
AF_INET (resp. AF_INET6) for IPv4 protocols family (resp. for IPv6
protocols domain), AF_UNIX for local communication domain, or
AF_XDP for XDP interface family. For a TCP application, the type
parameter value is always SOCK_STREAM that indicates that the
socket should provide connection-oriented, byte-stream-oriented,
bidirectional, and reliable Transport services. Recall that the socket
API imposes on applications to explicitly specify the L4 protocol to
be used to transfer data. That is the role of the protocol parameter
of the socket() function. If this latter parameter is set to 0, the
default L4 protocol associated with the type parameter is used: it is
TCP protocol in the case of SOCK_STREAM.

Since the socket returned by the socket() function is a simple
file descriptor that is just an integer, to be ready to send and to
receive data through this socket, the TCP application needs to
associate with the socket a tuple composed by one IP address

4 Transparent Integration of Legacy Applications 58

send()/sendmsg() tcp_sendmsg() tcp_transmit_skb()

recv()/recvmsg() tcp_recvmsg() tcp_v4_rcv()tcp_rcv_established()

tcp_ack()

sk_data_ready()

tcp_send_ack()

Socket Layer TCP Layer IP Layer

sock_ops_sendmsg()

Figure 4.3: Simplified TCP Execution
Path on egress and ingress paths. Full
version is available at appendix A.

and one port number. To do so, on the client-side, the application
should use connect() function to make a connection towards the
remote server and bind the remote IP address and port number
to the socket in case of a successful connection. To do the same,
the server will call sequentially bind(), listen() and accept()

functions. Now, the client and the server could enter in their data
transfer loop and use send() (resp. recv()) to send data (resp. to
receive data). After data transfer completion, the socket is closed
thanks to the function close(). The closing is necessary to free
resources such as the file associated with the socket or the IP
addresses assigned to the socket during connection opening.

The invocation of each function of the socket API will trigger a
call to further functions on the TCP execution path necessary to
convey data packets. Let us assume that the TCP connection is
established and let us take a look at the packet journey at the
sending and the receiving of data packets from the socket API
function call to the end of TCP’s network kernel path and vice
versa (see Fig. 4.3). When the application invokes send() function
to transmit data, the socket layer, after completion of its own
operations, uses the virtual function sock_ops_sendmsg() to pass
the control to tcp_sendmsg() kernel function that first reserves
memory space necessary to store the application payload as well
as its associated protocols’ headers. In Linux OS, for instance, this
memory is the so-called skb_buff (see note 5 in Chapter 3). After
the memory allocation, tcp_sendmsg() copies application data
into the reserved memory and passes the control to tcp_push_-

one() function. Again, TCP is a reliable protocol that is based on
the retransmission of lost packets. As such, the sending TCP entity
should save a copy (more precisely a clone) of the packet and
trigger a retransmission timer. This is the task of tcp_push_one()
function which puts the packet into the retransmission queue and
associates a timer to that packet. Finally, before passing the packet
to the IP layer, the sending TCP entity builds a complete TCP
packet with the help of tcp_transmit_skb() function that adds
the TCP headers to the packet.

At the reception of data packets, once the control is passed to
the tcp_v4_rcv() function, it dispatches the packet either to the
tcp_ack() or to the tcp_rcv_established() function. Indeed,

4 Transparent Integration of Legacy Applications 59

when the received packet is an acknowledgment packet, tcp_-
ack() deletes the acknowledged packet from the retransmission
queue and stops the associated timer. The received packet that
contains data for the application is passed to the latter thanks to
the tcp_rcv_established() function. If the application process
is already waiting for data, the packet is directly copied to the user-
space memory, otherwise, the sk_data_ready() virtual function
is used to wake-up the user application and signals to it that new
data are available for reading.

The insight of the TCP layer and socket API functioning and
interactions is necessary to make the most appropriate design
and technical choices toward Hooker component implementation.
Indeed, each of the above-described functions could be used as
a “hook” point, i.e. and for recall, the invocation of the hooked
function will systematically trigger the execution of an attached
eBPF program. For instance, an eBPF program could be attached to
connect() function in away that each time TCP application tries to
establish connection it can be identified and registered if necessary.
Also, eBPF programs could be attached to tcp_transmit_skb()

kernel function so that the latter add a custom TCP option during
headers forming [81].

4.3 Hooker Design and Implementation

Hooker goals and requirements. Hooker is the component of VTL
that achieves the dynamic and transparent replacement of TCP by
another protocolX. To achieve this objective, theHooker component
must interrupt TCP’s execution path (described in the previous
section). At data sending, as soon as the application calls into
the send()/sendmsg() function, Hooker must take control of the
packets before the kernel network stack. Therefore, it is necessary
to place a hook point on the tcp_sendmsg() function so that each
time this latter function is invoked, the Hooker component executes
a dedicated program before the kernel. As for incoming packets,
they should be intercepted as soon as they arrive at the network
interface card (NIC), here also, to avoid their control by the kernel
network stack. The conceptual and technical choices we made to
meet these different specifications are described in the following
paragraphs and subsections.

Functional Architecture Overview. Resulting from the above re-
quirements, Fig. 4.4 depicts the internal structure of Hooker com-
ponent and its interactions with the kernel network stack as well
as with the legacy applications. Conceptually, Hooker is separated
in three main subcomponents: hooker_userspace, hooker_egress, and
hooker_ingress. As its name suggested, hooker_userspace is a normal

4 Transparent Integration of Legacy Applications 60

redir_sockselected protocol API

hooker_userspace

hooker_egress

hooker_ingress

Legacy App

VTL datapath
TCP/IP stack

Outcoming packets data path
Incoming packets data path

SK_MSGSOCK_OPS

Userland

Kernel-Space

tcp_sock

 NIC

XDP

recvmsg()sendmsg()

re
cv
ms
g(
)

sendmsg()

XDP_TX

XDP_DROPXD
P_
VT
L_
AC
K

Figure 4.4: VTL Hooker Component
Internal Structure.

program running in user-space and that, among other tasks, is in
charge of creating and configuring sockets, namely the redirection
socket (redir_sock) and the socket of the selected Transport pro-
tocol X. The rest of Hooker’s subcomponents, i.e. hooker_ingress and
hooker_egress, are eBPF programs and as such, they are executed in
the kernel-space and deployed by Launcher component of the VTL
(go back to Fig. 3.3 of Chapter 3) as soon as Hooker is activated.
The eBPF program composing hooker_ingress is an XDP program
that attaches to the network interface driver in order to process as
early as possible all incoming data packets. The previous chapter
describes in detail the XDP program and its associated hook. Hence,
in the next sections, we will principally present the different types
of eBPF programs as well as their associated hooks that constituted
hooker_egress subcomponent.

Design choices discussion. In the architecture illustrated in Fig.
4.4, the choice we made was to pass the hooker_userspace sub-
component in the user-space. This choice, which initially meets a
proof-of-concept purpose, opens up in a more global perspective
the possibility of using protocols deployed both in kernel-space
and in user-space such as QUIC (we will see it in the next chap-
ter). At the price of higher implementation complexity, it is quite
conceivable to bring the hooker_userspace subcomponent back into
kernel-space. Our current hypothesis is that this could improve
performance (which however, as we will see later, remains at an
acceptable level with the current implementation choice of leaving
the hooker_userspace subcomponent in user-space). Though, push-
ing back the hooker_userspace in kernel-space will deprive us of
the use of user-space protocols like QUIC for which, no kernel
implementation exists as of this thesis writing.

4 Transparent Integration of Legacy Applications 61

4.3.1 SOCKMAP: the art of data packets stealing

To redirect data between the TCP socket (tcp_sock in Fig. 4.4) and
the redirection socket (redir_sock in Fig. 4.4), the most straightfor-
ward (but bad) idea would be to use the classical send()/recv()
approach in which the TCP application sends the data to the
hooker_userspace via the address attached to the redirection socket
(redir_sock) and vice versa. This approach is illustrated in Fig. 4.5.
Despite its simplicity, the send()/recv() method presents two
drawbacks. First, significant overheads might be generated due to
the fact data will traverse twice the TCP kernel path at the outgo-
ing as well as at the incoming of data packets. Second, the legacy
application should be rewritten to send data to the local redirection
socket rather than to the remote server that is the default desti-
nation. By doing so, this solution does not fulfill the transparency
requirement. The above-described send()/recv() approach is
also known as a non-transparent proxy practical implementation
inside an end-system.

Without any modification of the legacy application as well as the
TCP’s execution path (shown in Fig. 4.3), once the application issues
a send()/sendmsg() function call, the kernel systematically takes
control, handles the data encapsulation, and sends encapsulated
data packets over the network directly to the remote server without
passing by the hooker_userspace subcomponent. Herewith, the main
concern is, when the application calls send()/sendmsg() function
upon the TCP socket, how to get data before they reach the kernel
network stack in order to interrupt TCP execution path, and then to
redirect the data towards another L4 protocol? As discussed in Chapter
3 and illustrated in Fig. 4.7, XDP and TC hooks cannot take control of
the data packets before the kernel Transport layer, i.e. TCP kernel
processing in case of TCP applications. Fortunately, SOCKMAP and
its associated SK_MSG eBPF program could be used to comply with
the transparency requirement and at the same time to pick up the
data before the kernel network stack. Besides transparency, this
approach permits also to reduce the overheads introduced on the
kernel’s network path.

SOCKMAP is a special type of eBPF map For recall,maps are generic data struc-
tures storing a set of key, value pairs
used to exchange data either between
differentprogramsdistributedbetween
user-space and kernel-space.

and as such, it stores a set
of {key, value} tuples. The specificity of this map is that the value
at each index of the map can only be a TCP socket descriptor (see
Fig. 4.8). A SOCKMAP has attached to it, at least, one eBPF program
that gets executed upon data receipt on one of the TCP socket
descriptors stored in the map. Under Hooker, it is an SK_MSG eBPF
program that is part of hooker_egress subcomponent. SK_MSG is a
type of eBPF program that gets executed before the tcp_sendmsg()
function upon a send()/sendmsg() call on any TCP socket stored in
the SOCKMAP. By taking the control of the data packets directly from

4 Transparent Integration of Legacy Applications 62

Socket
TCP
IP

Data Link

Application

Socket
TCP
IP

Data Link

hooker user

Localhost

send to remote

recv from remote
send() recv() recv()send()

Figure 4.5: Traditional data redirec-
tion between sockets on the same host.
The kernel network path is crossed
twice at the sending as well as at the
receiving of data.

the socket layer before TCP kernel network stack, SK_MSG could,
for instance, seamlessly redirect the grasped data towards another
socket (e.g. redirection socket in the case of Hooker). SOCKMAP data
redirecting between sockets is illustrated in Fig. 4.6.

4.3.2 SOCK_OPS: TCP Execution Path’s Spy

Once a SK_MSG program is attached to a SOCKMAP, it also gets
systematically attached to all TCP socket descriptors stored in the
map. In this way, the SK_MSG program is executed each time a write
operation is performed on any one of the stored socket descriptors.
Hence, the SOCKMAP needs to be priorly populated with the right
values of these TCP socket descriptors. However, the value of
a TCP socket descriptor of the legacy application is unknown
before the end of the three-way handshake. Indeed, this value is
attributed randomly by the kernel at the end of the TCP connection
establishment. As a consequence, there is a need to accurately
monitor the TCP’s execution path in order to get notified at the end
of a passive as well as active connection. The aim is to grab and
add the value of the attributed socket descriptor in the SOCKMAP
just before the application issued the first send()/sendmsg() call.
To fulfill this goal, we used the SOCK_OPS eBPF program.

SOCK_OPS, introduced in the TCP-BPF framework [82], is a new

 Socket
TCP
IP

Data Link

Application

Socket
TCP
IP

Data Link

hooker user

Localhost

send to remote

recv from remote
send() recv() recv()send()

SOCKMAP/SK_MSG

Figure 4.6: Data redirection between
sockets based on SOCKMAP and its asso-
ciated SK_MSG eBPF program. The ker-
nel network path is bypassed and its
subsequent overheads is eliminated.

4 Transparent Integration of Legacy Applications 63

Socket Layer

Transport Layer

IP Layer

Traffic Controller
(TC)

eXpress Data Path
(XDP)
NIC

XDP and TC are placed
after L4 processing

SOCKMAP / SK_MSG
and SOCK_OPS hooks

Figure 4.7: SOCKMAP/SK_MSG and
SOCK_OPS eBPF hooks location in the
network stack.

type of eBPF program that allows getting notified upon a call to
any function of TCP’s execution path. Originally, it was released
to enable the programmability of the TCP layer by the means
of fine-tuning of TCP’s connections parameters from userland
application processes. For instance, SOCK_OPS program could be
used to dynamically set up the value of the initial congestion
window (INIT_CWND) of a TCP connection or the buffer sizes of
a TCP socket. SOCK_OPS programs rely on the single system call
tcp_call_bpf(..., int op, ...) that could be called from any
function on the TCP’s execution path. The parameter op is used to
signal to the eBPF program exactly from which function of TCP
execution path the system call is invoked. This is a key feature
that permits accurate monitoring of TCP sessions from connection
opening to the closing of the connection without a need to add any
code to the legacy applications.

A selected list of possible values of op parameters is shown in
Table 4.2. For instance, when the op parameter value is BPF_SOCK_-
OPS_ACTIVE_ESTABLISHED_CB, the eBPF program knows that the
call comes from the tcp_finish_connect() function and can then
deduce that an active connection requested by the application has
been successfully established. After being notified about some TCP
events such as connection establishment, the eBPF program can, for

op Description

TCP_CONNECT_CB
Call eBPF program right before an
active connection is initialized.

ACTIVE_ESTABLISHED_CB
Call eBPF program when an active
connection is established.

PASSIVE_ESTABLISHED_CB
Call eBPF program when a passive
connection is established.

TCP_LISTEN_CB

Call eBPF program on listen() invo-
cation, right after socket transition to
LISTEN state.

RTT_CB Call eBPF program on every RTT.

Table 4.2:List of selected eBPF SOCK_-
OPS operators (op) in Linux 5.3.5. The
name of each op must be preceded by
the prefix BPF_SOCK_OPS

4 Transparent Integration of Legacy Applications 64

SOCKMAP

key #1 value #1

... ...

key #n value #n

KEYS VALUES

index 0
.
.
.

index n

Must be a TCP socket file
descriptors

Figure 4.8: SOCKMAP illustration. The
mapvalue can only be a file descriptor
of listening TCP sockets.

Listing 4.1: Example of a SOCKMAP key
structure.

struct sock_key {
__u32 src_ip4;
__u32 dst_ip4;
__u32 src_port;
__u32 dst_port;

}

instance, decide to register the TCP socket descriptor attributed to
the application in the special eBPF map SOCKMAP. From that point,
every data from the application could be seamlessly grasped and
redirected during data transfer. Within the Hooker component, we
used a SOCK_OPS program as a part hooker_egress subcomponent in
order to identify, register, and monitor TCP applications of interest
based on their port number. This is only an implementation choice;
one can easily decide to blindly handle and monitor all TCP
applications within the end-system OS.

4.3.3 Legacy Application Data Paths

The internal structure of Hooker component (see Fig. 4.4) also de-
picted the applicationdatapackets paths from thesend()/sendmsg()
call to the transmission over the network interface card and vice
versa. Once it is activated, Hooker attaches three different types
of eBPF programs at various levels of the network stack: (1) a
SOCK_OPS program attached to the root cgroupv2 [83], (2) a SK_MSG
attached to a SOCKMAP at the socket layer, and (3) an XDP program
placed at the network interface card (NIC) in order to process
incoming data packets. By leveraging the hierarchical model of
cgroups, Hooker is able to process at the socket layer any ingress
and egress data packets of all TCP application processes running
on the end-system.

Hookermaintains several maps, especially the SOCKMAP described
below. In the first implementation of Hooker, the key at each
index of the SOCKMAP is a structure containing the addressing
information enumerated in the code Listing 1. In order to optimize
the map manipulation operations such (updating, searching, etc.),
the key in the current version of the Hooker component is a small
integer that is a hash of the addressing information listed in the
code Listing 2. This key is used by the hooker_egress programs to
identify the right socket towards which the packet data must be
forwarded to. Furthermore, as previously discussed, the SOCKMAP
is helpful to keep a trace of applications whose packet data should
be intercepted and redirected by Hooker. Each time a connection

4 Transparent Integration of Legacy Applications 65

is established or closed by one process, the map is updated by
hooker_egress thanks to the SOCKS_OPS bpf program section attached
to cgroupv2. In addition to SOCKMAP updating at the connection
opening, the SOCK_OPS bpf section is used to add to the SYN packet
a VTL_COMPLIANT option that, as its name suggested, is useful
to advertise to the receiver that the sender is VTL compliant. This
feature is more described in Chapter 5.

Every time theTCPapplicationprocess sendsdata by the invocation
of the sendmsg() function upon the TCP socket, the SK_MSG bpf
program running by hooker_egress intercepts the data packet and
rewrites it if necessary thanks to the helper function bpf_msg_-

push_data(). Then, to redirect the egress data packets to the
redirection socket, hooker_egress program leverages the bpf_msg_-
redirect_map() helper function. At the incoming of data packets,
hooker_egress uses the same helper to redirect the packets to the
TCP socket. The redirection socket is created and maintained by
hooker_userspace program which will use the recvmsg() operation
to get the redirected data packet and send it to the VTL datapath
that should emulate the selected Transport protocol functioning. At
the receipt of a data, as soon as the network interface driver (NIC)
receives the data packet, the XDP bpf program section running
by hooker_ingress intercepts the data packet and processes it by
issuing the right verdict. The hooker_ingress program can drop the
packet data (XDP_DROP verdict), redirect it to the same network
interface card (XDP_TX verdict), or, as currently done, pass the
packet to the ingress VTL datapath (XDP_VTL_ACK verdict) for
further processing.

4.4 Performance Evaluation

Evaluation’s goals.Hooker is evaluated through experiments based
on the transfer of three files of different types (text, image, and
video) having different sizes (64 KB, 512 KB, and 1MB respectively).
We assume that the transmitted multimedia (image and video)
allows a data packets loss rate lower than 10%. We empirically
validate this assumption by observing whether the received mul-
timedia is clearly readable by human eyes. However, as stated in
Chapter 3, more formal approaches to compensate data packet

VMs Specifications
CPU RAM NIC

Intel 2.70GHz × 4 3.8 GiB Atheros QCA6174
Emulated Network

RTT Bandwidth Loss rate
100 ms 100 Mb/s 0-5%

Table 4.3: Tested network and hosts’
Configurations.

4 Transparent Integration of Legacy Applications 66

Compilation Deployment Redirection ops
SK_MSG 0.06 s 0.062 s 11 µs
SOCK_OPS 0.09 s 0.064 s N.A

XDP 0.08 s 0.057 s N.A
Hooker User 0.456 s N.A 2019 µs

Total 0.686 s 0.183 s 2030 µs

Table 4.4: Data redirection cost and
Hooker activation delay.

losses should rely on methods such as redundancy (e.g., FEC
[84]) or adaptive coding [60]. The consideration of these meth-
ods is out of the scope of the goal of the experiments we carried
out here. Indeed, the main goal of the carried out assessment is
to demonstrate the ability of Hooker to effectively replace TCP
with another L4 protocol during legacy applications data transfer.
Therefore, we performed the evaluations by considering the above
assumptions on the application requirements and with a limited
set of alternative L4 protocols notably UDP and QUIC. In addition
to the functional evaluations, we measured the cost in terms of
delay of the data redirection operations, as well as the delay of
the dynamic deployment of the Hooker’s programs namely the
SOCK_OPS, SK_MSG, and XDP programs. Finally, we evaluated each
protocol’s performance in terms of file completion time (FCT) that,
as defined in Chapter 3, is the time necessary to complete the
transfer of a whole file.

Testbed configurations. The topology of the testbed used during
experiments is similar to the one used inChapter 3 and is illustrated
in Fig. 5.1 of the next chapter. For recall, the client host as well
as the server host run on Linux 5.3.5 OS and are equipped with
Intel Core i7-7500U CPUs and 3.8 GiB RAM. Here also, we used
netem emulator to set the RTT of the network link to 100 ms,
the link capacity to 100 Mb/s, and the loss rate between 0 and
5%. Table 4.3 provides a summary of the specifications of the
VMs and the emulated network that constituted the experiments’
environment.

Evaluation scenarios and validation approach. For each file, we
considered the identical scenario consisting of two steps: (1) a first
data streaming is performed without running Hooker, and (2) in a
second time, we performed the data transfer under the activation
of the Hooker component. In the first case, the native performance
of the application on top of each Transport protocol is measured.
During the second stage, we measured the performance in terms
of file completion time (FCT) of the TCP application that accesses
the alternative Transport protocol X thanks to the Hooker VTL
component. At each step, we first check that the client correctly
received the streamed file. Then, with the Wireshark analyzer [5],
we validate the correctness of the data redirection by checking the
Transport protocol used on the wire during data transfer.

4 Transparent Integration of Legacy Applications 67

0% 2% 5%

TCP(native)
TCP(HK−UDP)
UDP(native)
TCP(HK−QUIC)
QUIC(native)

Text File: 64K

Loss Rate

F
C

T
 (

se
co

nd
s)

0
5

10
15

0% 2% 5%

TCP(native)
TCP(HK−UDP)
UDP(native)
TCP(HK−QUIC)
QUIC(native)

Image File: 512K

Loss Rate

F
C

T
 (

se
co

nd
s)

0
5

10
15

0% 2% 5%

TCP(native)
TCP(HK−UDP)
UDP(native)
TCP(HK−QUIC)
QUIC(native)

Video File: 1M

Loss Rate

F
C

T
 (

se
co

nd
s)

0
5

10
15

20

Figure 4.9: Latency of the data streaming with and without Hooker. TCP(HK-UDP) shows TCP application performance
when Hooker replaces TCP with UDP during data transfer. The same note applied for TCP(HK-QUIC).

Microbenchmarks. As reported in Table 4.4, it takes less than one
second to activate the Hooker component. Further, we could also
note that when the Hooker is precompiled, its activation delay is
reduced to less than 200 ms. Besides the activation delay, once
the Hooker is activated, its operations namely data redirection
introduce additional overheads. We computed these overheads in
terms of the average delay required for data redirection operations
that are achieved in hooker_egress (i.e. SK_MSG) and hooker_userspace
subcomponents. The results are reported in Table 4.4 and showed
that it takes approximately 2 ms to redirect packets during data
transfer. Finally, the results reported in Fig. 4.9, characterized the
achieved file completion time of each protocol in various network
conditions. As we can note, natively, TCP applications take more
time to complete the file transfer. This time is considerably reduced
when Hooker seamlessly replaces TCP either by QUIC or by UDP
during data transfer. Note that contrary to QUIC, if the alternative
protocol is UDP, there will be data packet losses when the network
link loss rate is not null. This could be crippling if the application
does not tolerate losses. However, if the application tolerates losses,
UDP looks like the best alternative since it takes to it less time in any
network situation to complete data transfer. The choice of the better
alternative is a tradeoff between the application requirements and
the network conditions. The necessary algorithms to achieve this
choice is the subject of the next Chapter.

4.5 Conclusion

In this chapter, we presented the design, the implementation,
and the evaluation of the Hooker component. Hooker is the VTL
component that enables the transparent integration of legacy
applications into the VTL system by achieving the replacement
of TCP with any other Transport protocol during application
data transfer. The transparency property refers to the fact that the
dynamic replacement of TCP is realized without any modification
of the legacy application. This is a key factor to ease and to stimulate

4 Transparent Integration of Legacy Applications 68

the use of VTL as well as its associated Transport protocols either
deployed by VTL or already existing in the end-system OS.

We carried out thorough experiments to demonstrate the effective-
ness of Hooker component, i.e. its ability to replace at runtime TCP
by alternative Transport protocolXwithout anymodification of the
legacy application. Further, the performance evaluation of Hooker
showed that once it is activated, its data redirection operations
take approximately less than 2 ms to complete. Nevertheless, the
performance in terms of file completion time (FCT) achieved by the
legacy application on top of native TCP is significantly poor com-
pared to the performance achieved by the same application when
Hooker redirects its connection and data seamlessly towards alter-
native Transport protocols. That is to say, even ifHooker introduced
additional overheads that impact the native alternative protocol X,
it considerably improves the performances of its initial target, i.e.
the TCP applications. Besides the transparent integration of legacy
applications within the VTL, this performance improvement is an
additional motivation to the design and implementation of the
Hooker component.

Finally, the evaluation also showed that the best alternative Trans-
port protocol to TCP is not always the same and varies depending
on the network conditions and the legacy application requirements.
In the next chapter, we will discuss the proposed algorithms and
approach for the selection of the best alternative L4 protocol to the
TCP.

1: Parsimonious monitoring refers to
the fact that monitoring operations
have little or no impact on the data
traffic load.

Optimal Selection of Protocols 5

5.1 Motivation . 70

5.2 Background . 71

5.2.1 Decision Tree Models 72

5.2.2 C5.0 Algorithm for Decision Trees In-

duction . 73

5.3 Protocols Selection Approach 75

5.3.1 Receiver-driven Application Profil-

ing . 76

5.3.2 On-request Network Monitoring . . 78

5.3.3 Construction ofDecision TreeModels

for Protocols Selection 79

5.4 Experiments and Evaluations 81

5.4.1 Testbed Setup and Methodology . . 81

5.4.2 Decision Tree Models Benchmark-

ing . 82

5.4.3 Application Performances 83

5.5 Conclusion . 85

In the previous chapter, we substantially presented our technique
that allows legacy applications to use another Transport protocol
other than TCPwithout code rewriting. Further, the experiments
carried out during this preceding chapter also showed that there
is no universal alternative L4 protocol to TCP. That is to say, the
best Transport protocol varies with the application requirements
and the network state. Even worse, if the alternative protocol
X is chosen without caution, the application could present
suboptimal performances compared to its initial performances
under TCP, as we will see in the first section of this chapter.
Consequently, it sounds essential that we have an approach that
enables VTL to craftily select the alternative to TCP based on the
application requirements and the network conditions. In this
chapter, we propose such a method that ensures selecting the
best choice to replace TCP during data transfer.

To select the most appropriate L4 protocol to the network context
and the application requirements, we used machine learning
models, namely decision trees, that we trained using the C5.0
algorithm (presented later in this chapter). Since application QoS
requirements and network conditions are the decision tree mod-
els’ attributes, we need first to get both information. However,
a legacy application does not express its QoS requirements via
the standard socket API. Indeed, this API’s invocation simply
expresses the desire to see the TCP (or UDP) protocol activated.
All we know when hooking on some legacy application is that it
is a TCP-based application. The critical concern is then how to get
the hooked TCP application QoS needs? To cope with these concerns,
we proposed (i) a profiling technique enabling us to infer the
requirements of the legacy applications, and (ii) a parsimonious1

network monitoring useful to estimate the state of the network
in terms of RTT, maximum link capacity, and packet loss rate. On
this basis, the decision tree models, feeding the VTL knowledge
base, could be used to select the “best” L4 protocol.

To train the decision trees, we generated a dataset via thorough
evaluations of several IETF L4 protocols under various network
conditions and different application requirements. Part of these
evaluations is presented in Section 5.1 as a preamble of this
chapter to motivate the need for an approach in order to care-
fully select the alternative protocol to TCP during data transfer.
In Section 5.2, we provide the theoretical background on the

5 Optimal Selection of Protocols 70

Server Client
Emulated
Network
(netem)

Figure 5.1: The considered point-to-
point topology for experiments. The
link between Client and Server emu-
lates either a classical terrestrial Inter-
net or a satellite Internet link.

2: Recall throughout this manuscript
we used interchangeably TCP and
TCPCubic (the default version of TCP
in the mainstream operating systems
namely Linux). Hybla is an extension
to TCP and as previously discussed,
the alternatives to TCP as well as its
own extensions suffer from the same
issue: the lack of wide deployment
and/or the limited use by applica-
tions on the Internet.

machine learning techniques, namely decision tree classifiers
and the C5.0 algorithm that we used to induce the decision
trees. Section 5.3 presents the design and implementation of the
proposed approach. In particular, we describe the application
profiling method (Subsection 5.3.1) as well as the network state
estimation approach (Subsection 5.3.2). We end the section by
detailing the application of the decision trees induction algo-
rithm to our approach (Subsection 5.3.3). In Section 5.4, we
focus on the evaluation of the proposed solution. We first assess
the precisions and recalls of the constructed models. Then, we
estimate how much the proposed selection approach enhances
the performance (in terms of throughput) of TCP applications
under VTL. Finally, we conclude the chapter in Section 5.5.

5.1 Motivation

Let us extend the experiments of Chapter 4 to another network
type namely the satellite network links. Fig. 5.1 presents the point-
to-point topology used for the experiments. Here, the link between
the two hosts emulates either the classical terrestrial Internet or
a satellite link. Section 5.4 describes in detail the network links
configuration and emulation tools as well as the values of the
network parameters (delay, bandwidth, and loss rate). The Hooker
component is also activated. The performance criterion under
observation is the throughput, whose formal definition has been
given in Chapter 4.

Let us first consider the satellite link. Without packet loss, TCP
has equivalent performance to QUIC as well as to Hybla2 that is
more adapted to satellite links [69]. However, once the link starts
by experiencing losses, we notice a significant TCP throughput
degradation. As it can be deduced from the results reported in Fig.
5.2, an application using TCP could, on average, get 3~4x better
throughput on a satellite link if it usedHybla instead. Now, assume
that in this context, instead of using Hybla, we selected QUIC.
The results (Fig. 5.2 (a)) show that the performance is not only
suboptimal compared to Hybla, but also, and more importantly,
that it is worse than the initial performance of the application
under TCP. In simple terms, QUIC will perform worse than TCP
on the satellite link, when data packet losses occur.

5 Optimal Selection of Protocols 71

●

●●●●●

●

●

●

●

●

●●●●●●●●
●

●
●●
●

●
●

●

●

●●

●● ●

●

●
●

●

●●●

0 2 5

0
1

2
3

4
5

6

(a) Satellite Internet Link
Loss Rate (%)

T
hr

ou
gh

pu
t (

M
bp

s)

TCP
HYBLA
QUIC

●

●

●

●

●

0 2 5

0
5

10
15

(b) Terrestrial Internet Link
Loss Rate (%)

T
hr

ou
gh

pu
t (

M
bp

s)

TCP
HYBLA
QUIC

Figure 5.2: L4 protocols’ perfor-
mances under various network con-
ditions. Boxes span the 25th to 75th
percentiles, with a notch at the me-
dian.

From these first results, we could speculate that it would be enough
to use Hybla continually as the alternative to TCP. Nevertheless, let
us resume the same experiments on a terrestrial link. Here again,
without data packet losses, TCP remains near equivalent to the
QUIC and Hybla protocols. However, as soon as the network link
suffers its first packet losses, a TCP application that would switch
to QUIC will achieve about 1.5~2x better performance in terms
of experienced throughput. Further, the results (Fig. 5.2 (b)) also
demonstrated that contrary to the satellite link, QUIC presents
better performance than Hybla and seems the best alternative to
TCP in the terrestrial network context.

The more we continue the experiments by changing the state of
the network and the requirements of the application, the more we
observe that the best alternative to TCP changes regularly. This
preliminary assessment allows us to validate TCP’s performance
limitations in specific environments, and demonstrates that replac-
ing TCP may or may not be justified depending on the context.
Hence, the interest of having an approach that permits VTL to
choose the appropriate protocol X because, as we have just seen in
the above experiments, the protocol X might not be the same in all
network and application contexts and could even perform worse
than TCP.

5.2 Background

For the sake of clarity, we describe here the theoretical background
on machine learning models and algorithms, namely the decision
tree classifiers and the C5.0 algorithm above which we built our
approach. Traditionally, machine learning is recognized as the
field that gives any computer system the ability to learn to do
without being explicitly programmed for [85]. In other words,
with the help of machine learning models learned most of the time
off-line from past experiences (a.k.a. datasets), the computer system
can take or predict future decisions alone. Roughly, the models
could be trained following two principal learning approaches:

5 Optimal Selection of Protocols 72

ML

Supervised

Unsupervised

Classification

Regression

Decision trees

Naïve Bayes

ANN

C4.5 / C5.0

CART

ID3

We know the classes

Classes are discretes
rather than continuous

No assumption
on attributes

...

...

Based on Hunt’s
Algorithm

+ Attributes are not
necessarily numeric

Figure 5.3: Machine learning (ML)
models training techniques and al-
gorithms. ANN stands for Artificial
Neural Network.

(1) supervised learning and (2) unsupervised learning. In supervised
learning, each case in the training dataset is associated with a
class or label (i.e., the expected output). The dataset is a so-called
labeled dataset. For instance, in our case, each case, i.e. the pair
{application requirements / network context}, is associated with an L4
protocol from the set of the considered IETF Transport protocols.
Unsupervised learning allows training models when the dataset
cases’ classes are unknown, which means the dataset is not labeled.
Fig. 5.3 summarizes those learning techniques and justifies our
use of decision tree models in this work. As the reader can guess,
the models we used in our work are trained using the supervised
learning technique.

5.2.1 Decision Tree Models

Suppose that we want to decide whether it is an excellent day
to practice some activity outside based on the weather forecast
information. Theweather is characterized by four attributes: outlook,
temperature, humidity, and windy. Table 5.1 provides a small training
dataset of the decision taken in the previous 14 days based on those
days’weather attributes. Shall we play outside the dayD15? Intuitively,
to predict the answer, one could use a sequence of questions on
the values of the attributes of the day D15 and learn from the past
decisions to make the right decision. The first question might be
what the value of the outlook is? If the outlook is “overcast”, we
know from the training dataset that the decision will systematically
be “yes” whatever are the values of others attributes: the series
of questions ends. However, the day D15, the outlook is “sunny”
rather than “overcast”. We need to ask a second question about
another attribute. Assume that the second question is on the level
of humidity? If it is “high” (the value of the humidity level the
day D15), we could deduce from the training set that the decision
should be “no” and stop the sequence of questions.

This elementary example shows how, based on a series of ques-
tions, one could use the current measures and the background

5 Optimal Selection of Protocols 73

Outlook Temperature Humidity Windy Decision

D1 sunny hot high false no
D2 sunny hot high true no
D3 sunny mild high false no
D4 sunny cool normal false yes
D5 sunny mild normal true yes
D6 overcast hot high false yes
D7 overcast cool normal true yes
D8 overcast mild high true yes
D9 overcast hot normal false yes
D10 rain mild high false yes
D11 rain cool normal false yes
D12 rain cool normal true no
D13 rain mild normal false yes
D14 rain mild high true no
D15 sunny cool high true ?

Table 5.1: A small training dataset
from [86].

information from the past to predict or classify the future. A deci-
sion tree could be used to express this sequence of questions and
their associated answers. In theory, a decision tree is a hierarchical
data structure composed of nodes or vertices connected by a set
of edges. A decision tree has two main types of nodes: (1) leaf
nodes corresponding to a decision called class in decision theory
terminology, and (2) test nodes that contain a test condition on the
value of a specific attribute. Test nodes are either internal nodes or
the root node of the decision tree.

5.2.2 C5.0 Algorithm for Decision Trees Induction

The representation of a decision tree is often straightforward, as
well as its use for prediction and classification. However, at each
stage, choosing the attribute on which the test condition should
be applied is tricky. Let us go back to the previous example of
subsection 5.2.1. If either at the first question, the choice was
made to test the windy attribute or, after the first question on the
outlook attribute and its associated “sunny” answer, the second
question examined the windy attribute’s value rather than the
humidity attribute. In either case, the result would have been
either a larger decision tree or a decision tree that is not only
large but also inaccurate in terms of the quality of prediction
and classification. For a single dataset, there exist a huge number
of candidate decision trees. This number is exponential and, for
instance, is greater than 4x106 for the small training dataset of
Table 5.1 [87]. As a result, contrary to its representation and its use,
the induction/construction of an optimal and consistent decision
tree is an NP-complete problem [87]. The academic literature is

5 Optimal Selection of Protocols 74

plenty of different machine learning algorithms to find an efficient
decision tree within an “acceptable” computational time. Many
of those algorithms are fundamentally based on the recursive
Hunt’s algorithm (Fig. 5.3). As the algorithm’s name suggested, it
is proposed by Hunt et al. in 1966 [86] and can be summarized as
follows.

Let us consider T as the training dataset consisting of past cases,
and let us note C � {C1 , C2 , ..., Cn}, the classes. The recursive
procedure is:

I T is not empty, and all the cases in T belong to a single class Cj:
the decision tree for T is a leaf labeling Cj.

I T is empty: the decision tree is a leaf node labeled following
some specific arbitrary rule. For instance, in the C4.5 variant,
the most frequent class at this node’s parent is attributed.

I T contains cases that belong tomore than one class: find the “best”
attribute on which the set T should be appropriately partitioned
into smaller subsets. The best attribute is one that maximizes
some localmeasures. For instance, in C4.5, thismeasure is based
on information theory metrics.

Similar to the local optimum search algorithms such as gradient
descent [88], Hunt’s procedure is a greedy algorithm that uses
a heuristic based on the maximization of some local measure. The
criteria used to evaluate this local measure is the main difference
between the variants decision tree algorithms of Hunt’s procedure.
C5.0 is one of these algorithms. It heavily uses the information
theorymetrics as the criteria for the selection of the “best” attribute
at stage 3 of Hunt’s algorithm.

C5.0 is an improvement of the well-known C4.5 decision tree
induction algorithm. As stated above, C5.0 is based on Hunt’s
algorithm. At the splitting step, i.e., stage 3 of Hunt’s procedure,
the criteria used by the C5.0 algorithm to select the “best” attribute
are based on the information theory metrics, namely the entropy
and the information gains. The main idea is as follows: the “best”
attribute at each stage is one that provides the maximum gain of
information. Let us consider T i as any subset of the training dataset
T, A as the attribute on which the splitting test is applied so that
T � {T1 , T2 , ..., Tm}, and C � {C1 , C2 , ..., Cn}, as the set of classes.
If p(Cj , T i) stands for the probability that all cases in the subset T i
belong to the class Cj, entropy and information gains are calculated
by the following formulas.

p(Cj , T i) �
f req(Cj , T i)
|T i |

(5.1)

where:

5 Optimal Selection of Protocols 75

I f req(Cj , T i) is the number of cases in S that belong to Cj,
I and |T i | is the size of the subset T i.

Entrop y(T) � −
n∑

j�1
p(Cj , T i) × log2(p(Cj , T i)) (5.2)

Entrop yA(T) �
m∑

i�1

|Ti |
|T | × Entrop y(Ti) (5.3)

Gain(A) � Entrop y(T) − Entrop yA(T) (5.4)

where:

I Entrop yA(T) is theweighted entropyof small subsets generated
when splitting from attribute A.

Split_entrop y(A) �
m∑

i�1

|Ti |
|T | × log2(

|Ti |
|T |) (5.5)

Gain_ratio(A) �
Gain(A)

Split_entrop y(A) (5.6)

Basically, at each splitting step, C5.0 algorithm will compute the
above values and will select the attribute that gives the highest
gain ratio.

5.3 Protocols Selection Approach

We illustrate in Fig. 5.4 the high-level conceptual view of the
approach adopted to select themost appropriate Transport protocol
alternative to TCP. The selection relies on a set of decision tree
models whose attributes are the application requirements and
network conditions. The use of the decision treemodels is therefore
guided and preceded by (1) an application profiling that allows us
to infer their needs and (2) a parsimonious monitoring that allows
to estimate the current state of the network with limited/low cost
on the link traffic. We discuss both techniques in this order in
subsection 5.3.1 and subsection 5.3.2.

5 Optimal Selection of Protocols 76

Application Profiling

Network State Estimation

Decision Tree models Protocol selection Algorithm

Network

Socket API

Application

L4 protocol

to use

Monitoring

Figure 5.4: High-level conceptual
view of protocols selection approach.

3: Profiling is attempted on the first
ten packages. This number is arbi-
trary but higher than the recommen-
dations in [91].

5.3.1 Receiver-driven Application Profiling

The purpose of profiling is to identify the nature of the TCP appli-
cation. It permits to infer the requirements of the application. We
have established the profiles on the basis of data from the ITU rec-
ommendations [89, 90]. To each profile, we associate requirements
expressed in terms of Transport services and QoS parameters.
The profiling, driven by the server (receiver of the connection),
is initiated as soon as the first TCP packet (SYN) is received and
continues over the following nine3 packets. When profiling is
successfully completed, the application is classified into one of the
following profiles (see Fig. 5.5).

Profile 1: time-sensitive applications; e.g., multimedia streaming
applications (YouTube, NetFlix, etc.) or videoconferencing applica-
tions (skype, zoom, etc.). Transport service requirements associated
with this application profile are: partial reliability, partial order,
and flow control to contribute into the jitter management. The mul-
timedia streaming applications might tolerate a maximum delay
of 10 seconds whereas the delay allowed by videoconferencing ap-
plications fluctuates between 10 milliseconds and several hundred
milliseconds. The time-sensitive applications could experience a
loss rate between 2 and 4%. However, it is worth noting that this
profile of applications rarely uses TCP.

5 Optimal Selection of Protocols 77

Profile 4
Profile 1

Profile 2

Profile 3

Dmax <= 10 s

𝜏max = 3%±1

Thmin = 384kbps±4

Partial Reliability

Partial Order

Dmax <= 10 s

𝜏max = 0

Thmin = N.A

Full Reliability

Partial Order

Dmax = 60s±15

𝜏max = 0

Thmin = N.A

Full Reliability

Full Order

Dmax = infini~

𝜏max = 10⁻⁶

Thmin = N.A

Full Reliability

Full Order

time sensitive applications

● multimédias streaming (YouTube, NetFlix, etc.)

● Visioconférence (Skype, Zoom, etc.)

time and *loss* sensitive applications

● Remote login/access (SSH, etc.)

● Web browsing (Chrome, Firefox, etc.)

Streaming

Interactive

Bulk *loss* sensitive applications

insensitive applications

● File/Data Down/Uploading (FTP, Bittorrent, etc.)

● Fax, etc.

Loss Tolerant

Time sensitive

No Loss

No time constraint

Flow Control

Figure 5.5: Applications profiles
based on ITU recommendations. The
associated requirements of each pro-
file are also shown.

Profile 2: time and loss-sensitive applications; e.g., interactive
applications such as remote login based on Telnet or SSH, web
browsers (Chrome, Firefox, etc.), or online games (Call of Duty,
Fortnite, etc.). The Transport services required by this application
profile are: total reliability and partial order. The associated QoS
parameters in terms of delay are a fraction of a second for remote
login and online games whereas web browsing could accept delay-
ing up to 10 seconds. The applications of this profile do not allow
any loss of data.

Profile 3: loss-sensitive applications; e.g., (large) file transfer ap-
plications based on FTP/HTTP or BitTorrent, and email or text
messaging / online chatting (Facebook Messenger, WhatsApp,
etc.). For these applications, Transport services with total reliability
and order are required. They do not tolerate any loss of data. On
the other hand, these applications are less constraining with regard
to the delay, which can go beyond 60 seconds.

Profile 4: insensitive applications; e.g., Fax. These applications
are the least constraining in terms of packet loss and data transit
delay.

The pipeline of application profiling by packet classification is
shown in Fig. 5.6. The identification of the TCP application takes
place in three main stages.

(1) Flow and IP packet extraction. In this work context, a flow is
basically defined by the tuple {ipsrc , ipdst , portsrc , portdst}. The L4
protocol type information is not "necessary" because only TCP
packets are processed, so it is impossible to differentiate flows
based on this information. During this first step, matching between
the intercepted raw packet and the flow table enables the extraction
of the flow to which the packet belongs. If the packet does not
belong to any stream in the table, a new stream is created. An IP

5 Optimal Selection of Protocols 78

Flow and IP Packet
Extraction

Flow
Pre-identification

Application Detection
 Loop

Dissector Dissector Dissector

Flows Table

STEP 1 STEP 2 STEP 3

Raw

Packet

Flow

IP Packet

Unclassified

Flow
Detected

Profile

Figure 5.6: Application profiling
pipeline.

packet is then extracted from the raw packet by removing the L2
header of the packet. This phase’s final result is a flow and an IP
packet ready to be used in the second phase.

(2) Flow pre-identification. The flows in the table might be already
classified or not. A flow is classified when the application to which
it belongs has already been detected. Therefore, the purpose of this
phase is to directly retrieve this information from the table rather
than systematically and blindly launch the application detection
loop.

(3) Application detection loop. If the flow is not yet classified, it
is either a new one or the first packets of the flow have not been
sufficient to identify it. The detection loop is based on a hybrid
approach to identify the application whose flow it receives: it
integrates the signature-oriented approach based on protocol dis-
sectors and the standard method based on port number mapping.
It first attempts to identify the application by contrasting the flow
to a set of predefined protocol dissectors. Dissectors are snippets
of code that identify a specific protocol by reading/processing
the entire IP packet (headers and payload included). For instance,
an HTTP protocol dissector might fetch the "GET" string in the
IP packet to determine whether the flow is an HTTP flow. As
soon as a dissector correctly identifies the flow, the loop stops. If
the application is not identified, the next packets of the stream
(up to the 10th packet) are used to attempt a new detection of
the application and its classification in one of the four profiles
described above.

5.3.2 On-request Network Monitoring

In addition to the application’s requirements, the network state is
used to drive the selection of the best protocol X to replace TCP. To
do this, we associate to each network link a state or profile character-
izedby threemainparameters: {[RTTmin , RTTmax], BWmax , lossmoy}.
The RTTmin (resp. RTTmax) denotes the minimum (resp. maxi-
mum) round-trip-time experiencedunder the network. The lossmoy
is the average rate of packet loss, and BWmax is the maximum
bandwidth available within the network link. In Table 5.2, we can
see that typical LDN networks such as satellite networks have pro-
file P1 = {[500ms ,∞[,−, 1Mbps} [92]. Note that the loss parameter

5 Optimal Selection of Protocols 79

Table 5.2: Network profiles based on the link quality parameters.

RTT Bandwidth (B.W)

Long-delay Networks (LDN, e.g. Satellite) >= 500 ms 4 Mbps

Terrestrial Internet Links 50 ms to 500 ms 100 Mbps

LAN (e.g. Internal D.C, home network) <50 ms 100 Mbps to 100 Gbps

is neither static nor closely bound to a specific network profile but
depends more on the network’s congestion state. Therefore, it is
possible (probably the fact) to experience more data packet losses
under congested wired-LAN than non-congested wireless-LAN.

Since the bandwidth (the incoming data rate, in fact) estimation
does not require any packet injection into the network, the mon-
itoring component continuously captures a copy of the incoming
packets to deduce the network link’s bandwidth. However, we
estimate the RTT and loss rate values by injecting out-of-band,
albeit lightweight, ICMP ECHO/REPLY packets on the network.
To minimize the impact of monitoring on the network traffic load,
monitoring these two parameters is only triggered on demand
through a set of functions exposed by the internal API of the
monitoring component (NetMon in Fig. 3.3 of Chapter 3). The caller
of the monitoring component has the possibility to specify the
periodicity of the monitoring as well as its duration. The period
defines the time interval between packets injection for calculation
of RTT and loss rate. The larger the interval, the less expensive the
monitoring is at the price of the estimation’s accuracy.

5.3.3 Construction of Decision Tree Models for Protocols

Selection

Application profiling and network monitoring are prerequisites
to the selection of the most suitable alternative L4 protocol to
TCP. They provide two information: the application profile (i.e.,
its requirements) and the network state. This information is the
attributes (i.e., the inputs) of decision tree models on which are

Loss-tolerant
application?

Delay (ms)UDP-Lite

Hybla QUIC

Yes No

> 350 <= 350 Figure 5.7: Simplified decision tree
to select the most appropriate pro-
tocol. Leaf nodes (gray box) repre-
sent classes, whereas internal nodes
(white box) represent the attributes.

5 Optimal Selection of Protocols 80

Loss-tolerant
Application?

Time-sensitive
Application?

UDP-Lite UDP

Hybla Packet Loss
rate (%)

QUIC SCTP

Yes

NoYes

No

UDP-Lite

Bandwidth
(Mbps)

Delay
(ms)

Delay
(ms)

DCCP

> 350 ≤ 350

> 350 ≤ 350 > 475 ≤ 475 > 3 ≤ 3

Figure 5.8: Extended decision tree
to select the most appropriate pro-
tocol. Leaf nodes (gray box) repre-
sent classes, whereas internal nodes
(white box) represent the attributes.

based the selection rules of themost appropriate protocol to replace
TCP. These decision trees feed and represent VTL’s knowledge base
that dictates the selection rules based on the above two information
attributes.

Dataset. For the models’ training, we generated a labeled dataset of
more than ahundred cases. The labels or classes are theL4protocols
and the attributes, as stated above, are the application requirements
and the network conditions. Following the traditional/classical
approach,we separated the dataset into twomain parts: the training
dataset (' 66% of the initial dataset) and the test dataset (' 33% of
the initial dataset). As its name suggests, the training dataset is
the part of the dataset used to train the models. Additionally, it
allows evaluating the trained model’s ability to classify correctly
the already seen cases. What about the unseen cases? The answer
to the latter concern is the task of the test dataset. It permits us to
evaluate the trainedmodel’s prediction quality, i.e., the precision at
which themodel can classify unseen cases. The dataset is generated
from extensive evaluations of all considered Transport protocols for
diverse application requirements and network conditions. Suppose
two ormore protocols satisfy application requirements and feet the
network characteristics. In that situation, the performance criterion
used to assign a label to the case is the throughput experienced
during data transfer.

Fig. 5.7 and Fig. 5.8 illustrates examples of the outcomes of the
training stage. In the instance of Fig. 5.7, the application is con-
sidered to be either loss-tolerant (profiles 1 and 4, Fig. 5.5) or
not (profiles 2 and 3, Fig. 5.5). This assumption leads to a more
simplified decision tree that, as we will see later, could provide
satisfactory classification and prediction quality compared to a
more extended decision tree. The complete evaluation of these
models’ quality and their use benefits are extensively evaluated
and presented in Section 5.4.

5 Optimal Selection of Protocols 81

5.4 Experiments and Evaluations

The main goals of carried experiments are to evaluate the VTL’s
benefits (in terms of performances) on TCP applications by using
decision tree models. We also assessed the precisions and recalls of
the trained decision tree models used to drive the best L4 protocol
selection.

5.4.1 Testbed Setup and Methodology

The experiments have been performed under a testbed constituted
by two hosts linked by one router (Fig. 5.1). As in Chapter 4, each
host was equipped with Intel Core i7-7500U CPUs, 3.8GiB RAM,
and Qualcomm Atheros QCA6174 NIC driver. In addition to TCP
and its extensionHybla, we evaluated the following IETF protocols:
UDP, UDP-Lite, SCTP, DCCP2, DCCP3, and the QUIC protocol.
For each protocol, we implemented a distributed application (one
server and one client). The server part can stream several kinds
of files with different sizes ranging from a simple 4K file text to
more than 132M video or text files. The network link parameters
are still emulated thanks to netem tool. The network parameters
used during experimentations are reported in Table 5.2. For each
emulated link, the random loss rate is variable between 0 and
5%.

Satellite links emulation. Often used as backup Internet links,
satellite Internet is useful for critical missions such as SAR (search
and rescue) operations as well as to provide Internet access in rural
areas. The main characteristic of satellite links is their long delay
that can cause severe performance degradation. Based on [92], we
used the following parameters to emulate a satellite link between
the client and the server during experiments: RTT to 600 ms, and
4 Mbps of bandwidth.

Terrestrial Internet links emulation. To emulate a classical Internet
link between the server and the client, we set the bandwidth to
the arbitrary value of 100 Mbps and fix the RTT to 100 ms. To
estimate the average RTT value on the classical Internet, we used
the WonderNetwork [93] tool to find out the mean RTT between
different locations all over the world within the Internet.

Local Network links emulation. The third emulated network pro-
file is a local network (LAN), such as a home network. The RTT is
set up to the highest value 50 ms whereas the available bandwidth
is 850 Mbps.

The experiments were carried out in 2 stages: (1) First, we com-
pared performances of the application data transfer under each

5 Optimal Selection of Protocols 82

protocol, i.e., TCP and all other protocols (UDP, UDP-Lite, SCTP,
DCCP2, DCCP3, QUIC). In this first step, the application had an
API allowing it to directly access each of the protocols evaluated
(SCTP API, DCCP API, etc.). This stage allowed us to assess the
maximum benefits achievable by using the protocol selected as the
most suitable alternative to TCP according to the target application
and network contexts and to generate the dataset we used to train
the decision tree models. (2) Secondly, we repeated the same exper-
iments by comparing TCP with each of the protocols identified by
the trainedmodels as the best alternatives to TCP. But this time, the
application accesses the service of the selected protocol indirectly
thanks to VTL. The application invokes the socket API of TCP,
but, thanks to the redirection mechanisms (implemented by the
Hooker component of VTL), it will transparently use the services
of the selected protocol as an alternative to TCP.

5.4.2 Decision Tree Models Benchmarking

We started by evaluating the precision and the recall of the trained
decision tree models provided in Fig. 5.7 and Fig. 5.8. We con-
structed the models from exactly 146 instances/cases by using an
open-source C implementation [94] of the supervised machine
learning algorithm C5.0 (described previously in Section 5.2). For
the rest of this section, we will call the simplified decision tree
illustrated in Fig. 5.7 model1 and the extended one shown in Fig.
5.8 model2.

The confusion matrices of model1 and model2 are shown in Table
5.3 and Table 5.4, respectively. The reported results show that
model2 achieves more precision (around 10%) than model1 when
it comes to select the appropriate protocol if the pair {application

(a) training dataset
Predicted

Hybla UDP UDPLite SCTP QUIC Precision Recall

Hybla 18 0 0 0 0 100% 100%
UDP 0 0 6 0 0 — 0%

UDPLite 0 0 42 0 0 78% 100%
SCTP 0 0 0 0 12 — 0%

Actual

QUIC 0 0 6 0 24 67% 80%
Weighted Average 78.7% 93.3%

(b) test dataset
Predicted

Hybla UDP UDPLite SCTP QUIC Precision Recall

Hybla 6 0 0 0 0 100% 100%
UDP 0 0 2 0 0 — 0%

UDPLite 0 0 15 0 0 79% 100%
SCTP 0 0 0 0 4 — 0%

Actual

QUIC 0 0 2 0 9 69% 82%
Weighted Average 79.5% 93.8%

Table 5.3: Confusion matrices show-
ing quality parameters of the decision
tree model1.

5 Optimal Selection of Protocols 83

(a) training dataset
Predicted

Hybla UDP UDPLite SCTP DCCP QUIC Precision Recall

Hybla 20 0 0 0 0 0 100% 100%
UDP 0 12 3 0 0 0 67% 80%

UDPLite 0 3 15 0 3 0 83% 71%
SCTP 0 0 0 12 0 0 100% 100%
DCCP 0 0 0 0 15 0 83% 100%

Actual

QUIC 0 3 0 0 0 24 100% 89%
Weighted Average 90% 89%

(b) test dataset
Predicted

Hybla UDP UDPLite SCTP DCCP QUIC Precision Recall

Hybla 6 0 0 0 0 0 100% 100%
UDP 0 4 1 0 0 0 67% 80%

UDPLite 0 1 5 0 1 0 83% 71%
SCTP 0 0 0 4 0 0 67% 100%
DCCP 0 0 0 0 5 0 83% 100%

Actual

QUIC 0 1 0 2 0 6 100% 67%
Weighted Average 86% 83%

Table 5.4: Confusion matrices show-
ing quality parameters of the decision
tree model2.

requirements / network context} is already encountered. The trend is
reversed for the recall’s values where on weight-average, model1
presents 93% recall, whereas model2 achieves 89% recall. As stated
previously, the ability to classify correctly already seen cases is not
sufficient to assess a model’s quality. Its prediction quality, i.e., its
ability to classify accurately new and never seen instances, gives
more insights. Therefore, we apply the trained models model1 and
model2 on a test dataset containing around forty cases. We observed
that model1 classify almost with the same precision (79.5%) seen
as well as unseen cases. The trend is slightly different for model2,
where the achieved precision (86%) on the unseen instances is not
so better as the precision of the classification of seen cases.

All in all, we note that the simplicity of a model is not necessarily a
restriction to its usage. The quality achieved by a simplified model
(for instance, model1 in our work) could be good enough for its
use. A model could classify correctly all seen cases but perform
worst on new and unseen instances. The trained models model1
and model2 are able to make accurate selection of the appropriate
protocol 8 times out of 10.

5.4.3 Application Performances

Absolute throughput evaluations. In a first step, we assessed all
protocols’ absolute performance, i.e., without VTL operations and
use of trained models. The results reported in Fig. 5.9 show the
throughput of the evaluated protocols. These results are those used
to generate and construct the dataset used to train the decision
tree models. Furthermore, they provide us insights into what
significant benefits might be achieved by using on the wire another
protocol instead of TCP (as presented in Section 5.1).

5 Optimal Selection of Protocols 84

T
C

P

H
yb

la

U
D

P
Li

te

U
D

P

S
C

T
P

D
C

C
P

2

D
C

C
P

3

Q
U

IC
(a0) Satellite Link 0%

T
hr

ou
gh

pu
t (

M
bp

s)

0

1

2

3

4

5

6

T
C

P

H
yb

la

U
D

P
Li

te

U
D

P

S
C

T
P

D
C

C
P

2

D
C

C
P

3

Q
U

IC

(a2) Satellite Link 2%

T
hr

ou
gh

pu
t (

M
bp

s)

0

1

2

3

4

5

T
C

P

H
yb

la

U
D

P
Li

te

U
D

P

S
C

T
P

D
C

C
P

2

D
C

C
P

3

Q
U

IC

(a5) Satellite Link 5%

T
hr

ou
gh

pu
t (

M
bp

s)

0

1

2

3

4

5

T
C

P

H
yb

la

U
D

P
Li

te

U
D

P

S
C

T
P

D
C

C
P

2

D
C

C
P

3

Q
U

IC

(b0) Terrestrial Link 0%

T
hr

ou
gh

pu
t (

M
bp

s)

0

10

20

30

40

50

60

T
C

P

H
yb

la

U
D

P
Li

te

U
D

P

S
C

T
P

D
C

C
P

2

D
C

C
P

3

Q
U

IC
(b2) Terrestrial Link 2%

T
hr

ou
gh

pu
t (

M
bp

s)

0

5

10

15

20

T
C

P

H
yb

la

U
D

P
Li

te

U
D

P

S
C

T
P

D
C

C
P

2

D
C

C
P

3

Q
U

IC

(b5) Terrestrial Link 5%

T
hr

ou
gh

pu
t (

M
bp

s)

0

5

10

15

T
C

P

H
yb

la

U
D

P
Li

te

U
D

P

S
C

T
P

D
C

C
P

2

D
C

C
P

3

Q
U

IC

(c0) Local Network 0%

T
hr

ou
gh

pu
t (

M
bp

s)

0

10

20

30

40

50

60

T
C

P

H
yb

la

U
D

P
Li

te

U
D

P

S
C

T
P

D
C

C
P

2

D
C

C
P

3

Q
U

IC

(c2) Local Network 2%

T
hr

ou
gh

pu
t (

M
bp

s)

0
2
4
6
8

10
12
14

T
C

P

H
yb

la

U
D

P
Li

te

U
D

P

S
C

T
P

D
C

C
P

2

D
C

C
P

3

Q
U

IC
(c5) Local Network 5%

T
hr

ou
gh

pu
t (

M
bp

s)

0
2
4
6
8

10
12
14

Figure 5.9:Application’s absoluteper-
formance (in terms of throughput) on
top of various Transport protocols.

TCP applications performance improvement. Then, we evaluated
VTL impacts on the performance enhancement of TCP applications.
For each considered scenario, we show only the protocols that
the decision tree model selects for the considered context. For
instance, when the application is loss-tolerant and the network
state is {600 ms, 4 Mbps, 0%}, the selected protocol by model1 to
replace TCP is UDP-Lite. In the same network context, when the
application is sensitive to data packet losses, the protocol selected
by the decision tree model1 and model2 is Hybla. Then, Fig. 5.10 (a)
compares the TCP application’s performance without redirection
and its performance when it is redirected to UDP-Lite or Hybla.
The evaluations reported from Fig. 5.10 (b) to Fig. 5.10 (i) follow
the same logic in order to alleviate the figures. The results show
that VTL allows TCP applications to achieve at average ~5x better
performances in most scenarios.

5 Optimal Selection of Protocols 85

3.
5

4.
5

5.
5

6.
5

(a) Satellite Link 0%

T
hr

ou
gh

pu
t (

M
bp

s) TCP
HYBLA
UDP

4
6

8
10

12

(b) Terrestrial Link 0%

T
hr

ou
gh

pu
t (

M
bp

s)

TCP
SCTP
UDPLite 4

6
8

10
12

(c) Local Network 0%

T
hr

ou
gh

pu
t (

M
bp

s)

TCP
SCTP
UDP

0
1

2
3

4

(d) Satellite Link 2%

T
hr

ou
gh

pu
t (

M
bp

s) TCP
HYBLA
UDPLite

2
4

6
8

12

(e) Terrestrial Link 2%

T
hr

ou
gh

pu
t (

M
bp

s) TCP
QUIC
UDPLite

0
2

4
6

8

(f) Local Network 2%

T
hr

ou
gh

pu
t (

M
bp

s) TCP
QUIC
UDPLite

0
1

2
3

4

(g) Satellite Link 5%

T
hr

ou
gh

pu
t (

M
bp

s) TCP
HYBLA
UDPLite

0
5

10
15

(h) Terrestrial Link 5%

T
hr

ou
gh

pu
t (

M
bp

s) TCP
QUIC
UDPLite

0
2

4
6

8
12

(i) Local Network 5%

T
hr

ou
gh

pu
t (

M
bp

s) TCP
QUIC
UDPLite

Figure 5.10: Hooked TCP Appli-
cation’s performance (in terms of
throughput) under VTL.

5.5 Conclusion

In this chapter, we presented our approach to address the problem
of the selection of the “best” Transport protocol to use rather than
TCP. The choice aims to meet the application’s requirements and
take into account the network conditions. To perceive this infor-
mation (i.e., applications needs and network state), our approach
relies on the dynamic identification of the TCP applications’ re-
quirements and the underlying network characteristics. We used
a set of machine learning models, namely decision trees that we
trained to feed the knowledge base of VTL.

We evaluated our proposed solution within the context of experi-
mental measurements based on the use of a distributed variable
application profiles in an emulated environment of (i) satellite net-
works, (ii) long-distance terrestrial networks, and finally (iii) local
networks. Apart from the proposed approach assessments, this
measurements’ campaign serves us to generate the dataset used to
train priorly the decision tree models. Based on extensive evalua-
tions of the quality parameters of the trained, we showed that on
average 8 times out of 10, VTL correctly selects the best alternative
to TCP. The immediate consequence of this is the improvements of
the hooked TCP applications’ performance under VTL. We ended
by evaluating these performance gains in the different considered
contexts.

Conclusion 6

6.1 Contributions Dissemination in Chap-

ters . 88

6.2 Potentials Future Work 89

6.2.1 Short-term Perspectives 90

6.2.2 Mid and Long Term Perspectives . . 90

Attendee. Yet another Transport protocol?
Me. No, VTL is a Transport layer architecture that envisions
achieving effectively dynamic deployment of any Transport proto-
col and stimulating its adoption by new aware-applications and
existing legacy applications.

This is a short conversation with an attendee at one of my first
presentations at some academic convention. This question of-
ten appeared when I pitched the work presented in this thesis
manuscript. Indeed, for several decades, the Internet’s Trans-
port layer has been the center of many research contributions
leading to a plethora of new Transport protocols such as DCCP
or SCTP, to name a few. These research contributions generally
share the objective of fulfilling the QoS requirements of new
applications and/or taking into the underlying networks’ char-
acteristics. The outcome is a theoretical layered architecture of
the Internet illustrated in Fig. 6.1 (a). The Internet’s designers
expected a Transport layer with plenty of L4 protocols, each
protocol serving a particular purpose in some specific contexts.
There is no one-fits-all solution; that is to say, there is no single
L4 protocol that meets any application requirements on any net-
work conditions. Nevertheless, it is clear that TCP remains the
most widely deployed and adopted Transport protocol on top of
which almost 90% of the Internet’s applications run. The result
is the hourglass model of Fig. 6.1 (b) that perfectly illustrated the
Internet’s architecture in practice.

Any L4 protocol other than TCP lacks awide deployment and/or
encounters limited use on the Internet. This phenomenon is
known as the ossification or sclerosis of the Internet’s Transport
layer that hampers the introduction of new protocol solutions
at this layer of the Internet. Throughout this thesis, the con-
tributions we presented aim to tackle this ossification of the
Internet’s Transport layer at the end-system. We explored and
proposed technical and conceptual approaches that pave the
way for the effective use of any existing Transport protocol and
the dynamic deployment in the end-systems of a new one so
far as the protocol meets the application’s requirements and
the network’s characteristics. We summarize this thesis’s main
contributions in Section 6.1 and open up the way for further
research directions in Section 6.2.

6 Conclusion 88

TCP, DCCP, SCTP, …
IP

Online
Games

VoIP

Chat
Video

emailWeb

Wi-Fi
Ethernet

4G/5G
Wide-area

IP

Online
Games

VoIP

ChatVideo

emailWeb

Wi-Fi

Ethernet
4G/5G Wide-area

TCP

Strong heterogeneity

Broad diversity

(a) (b)

Figure 6.1: The expected ideal Inter-
net layered architecture (a) vs. the
hourglass Internet architecture in
practice (b).

6.1 Contributions Dissemination in Chapters

In summary, the contributions of this thesis are disseminated in the manuscript’s chapters as follows.
In Chapter 2, we detailed the limitations of the current Transport layer protocols and architectures to
address the ossification issues. The insights from these limitations’ analysis defined the guidelines
for the design of a new architecture of the Internet’s Transport layer. For recall, the fundamentals of
these guidelines are the following. In order to limit the OS implication in the deployment of a new
protocol, the new Transport layer system should provide a safe and isolated runtime environment
where the protocol functions are dynamically deployed without the need to recompile the OS. To
prevent the limited adoption on the Internet by application developers of the new Transport layer,
the system should provide a protocol-agnostic interface to applications in the way that the latter are
removed from the complexity of choosing the L4 protocol to use. Further, we should allow the legacy
applications to transparently use the new Transport layer, that is to say, the existing applications
do not have to be rewritten. Following these guidelines, we designed and implemented a novel
Transport layer called VTL for Virtual Transport Layer.

In Chapter 3, we introduced the VTL system that can (i) timely and effectively deploy Transport
protocols within the OS kernel and (ii) ensures the flexible use of the deployed protocol by any
application, i.e., aware and legacy ones. Following a modular approach, we implemented each
considered Transport protocol component as a set of basic Transport functions called TF. In the current
implementation of VTL, each TF is implemented in the form of an eBPF program that can be deployed
at runtime in the kernel-space of the operating system. The deployed TF in kernel-space is called KTF
(that is a pluggable form of TF) and could be composed with other KTFs to form a comprehensive
protocol mechanism that we called a protocol graft. To evaluate the dynamic deployment capability
of VTL, we implemented from scratch a set of protocol grafts. During our experiments, we found that
VTL could speedily deploy the protocol grafts and KTFs, notably when the deployed grafts and KTFs
are precompiled and stored in a dedicated repository. Finally, we evaluated the implemented protocol
mechanisms’ performances and showed that they achieve excellent performances under VTL. The
reference during this evaluation was TCP (cubic) performances in the same testbed configurations.

In Chapter 4, we presented the design of the Hooker, a VTL component that enables the replacement
of TCP with another Transport protocol during data transfer. We performed TCP’s replacement
transparently for legacy applications, i.e., there is no need to modify these applications. The goal is
to comply with the transparency requirement learned from the guidelines provided in Chapter 2.
Fulfilling this requirement is a key factor in promoting the use of VTL and its associated Transport
protocols either deployed by VTL or already existing in the end-system OS. We performed extensive
evaluations to show the effectiveness of the Hooker solution, i.e., its ability to replace at runtime
TCP by an alternative L4 protocol X without any modification of the legacy application. Finally,

6 Conclusion 89

we assessed Hooker’s impact on TCP application’s performance. The results showed that the most
appropriate alternative protocol to TCP varies depending on the network conditions and the legacy
application’s requirements. Further, we noted that the selected alternative protocol’s performance
could even be worse than TCP’s one if the alternative is chosen without thought.

Therefore, in Chapter 5, we presented our last contribution that addresses the problem of the
selection of the “best” Transport protocol to use in replacement to TCP based on the application’s
requirements and the network conditions. To perceive this latter information, we proposed and
implemented dynamic identification algorithms of the TCP applications’ needs and the underlying
network characteristics. We used a set of machine learning models, namely decision trees that we
trained to guide the best protocol selection. Finally, we carried out thorough assessments of our
proposed algorithms andmodels. The evaluations showed that leveraging the trainedmodels feeding
its knowledge base, VTL accurately selects the most appropriate Transport protocol for diverse
application profiles on different network conditions. The outcome is the improvement of the hooked
TCP applications’ performance.

All in all, the work we carried out during this thesis journey contributes to replace the vicious circle
(described in Chapter 2) with a virtuous circle where the Transport layer (1) provides an isolated,
efficient, and flexible environment for dynamic deployment of any protocols within the OS, and (2)
allows application programmers, without modifying their applications, to take advantage of new
Transport solution so far as the new solution meets their needs.

6.2 Potentials Future Work

The work carried out in this thesis opens up a way for potential further research efforts. We outline
the most relevant of these works by structuring them into short-term works and then into mid and
long term works. We consider as short-term perspectives the work that can be carried out in the
direct prolongation of this thesis and classify as long-term perspectives, the work whose realization
would require going beyond the scope of this thesis’s initial objectives.

We situate the considered perspectives in three main interdependent research directions which are
as follows:

Heterogeneity of the context. In work presented in this manuscript, we have implicitly addressed
heterogeneity at the level of applications (QoS needs, legacy vs. aware, etc.) and at the level of
networks (presenting different characteristics). However, in order to consider the use of VTL in a
more extended context, the problem of heterogeneity must be addressed more broadly by extending
it, for example, to the level of host machines whose capacities and resources might be different.

Dynamic and autonomous (re)-configuration of protocols. The ability to (re)-define and (re)-deploy
protocols at the right moment (e.g. when the context changes) is a fundamental challenge for VTL.
In this perspective, the discovery of opportunities and constraints of the context or the choice of
protocol deployment modalities are necessary functionalities beyond those currently covered by VTL.
Consequently, the autonomy of the VTL, i.e. its capacity to operate its actions with the minimum of
human intervention, is a relevant perspective to be explored in greater depth beyond the question of
choosing the best protocol proposed in this thesis.

Scalability and VTL. Finally, themodalities of VTL deployment and instantiationmust be questioned
in the case an increasing number of transport sessions are to be established. Would it make more

6 Conclusion 90

sense to activate one instance/agent per end-system, per application, or per connection? The answer
to these concerns meets, here also, the objective of using VTL in amore general context. The resistance
to the scale factor of the VTL with respect to the number to a high number of connections at the host
machine level, is a property to be considered in relation (in particular) to the resources of the VTL
deployment nodes.

6.2.1 Short-term Perspectives

Protocol mechanisms and performance evaluation. The protocol mechanisms we have relied on
(especially in Chapter 3) to assess and demonstrate VTL’s capabilities are basic mechanisms. A quite
feasible and relevant perspective would be implementing more complex mechanisms such as those
of the QUIC protocol or recent congestion control mechanisms such as PCC [95] in the form of eBPF
programs. This enrichment of the protocol mechanisms set would lead to the extension of the carried
out evaluations and to the reinforcement of the results obtained. It would also involve assessing the
VTL within more elaborate case studies and considering other performance metrics such as per data
packet transit delay, jitter, or fairness and friendliness of the Transport session flows. The deployment
of a connection involving a TCP-based VoD server and a VoD client using (thanks to VTL) a protocol
other than TCP, but compatible with the latter, is an illustrative case study.

eBPF technology. Although conceptually robust, eBPF technology presents at some places limitations
related to the current implementation choices of some of its components, notably SOCKMAP (described
in Chapter 4). For example, in the implementation of the Hooker component of VTL, these limitations
have led us to not being able to bypass TCP socket calls without "going back" from the kernel-space
to the user-space. At the cost of an implementation effort (and potentially higher complexity), we
could initially consider replacing SOCKMAPwith a DATAMAPwhich would allow the Hooker to share
data with the application directly in the kernel without the need to open and manage additional
sockets from the user-space. A contribution to the eBPF community (more broadly to Linux’s one) to
address this limitation is a possible technical area of future work.

6.2.2 Mid and Long Term Perspectives

General perspectives concerning the need for heterogeneity management

In the emerging Internet, we could expect some nodes might have VTL, and others will not.
Similarly, some nodes will be able to allow on-demand deployment of VTL, and others will not.
The communication opportunities between "VTL nodes" and "non-VTL nodes" raises a relevant
challenge that must be tackled to allow the interoperability of different protocols with the objective
(for example) to optimize QoS.

Potential VTL deployment nodes will present different resources in terms of usable Transport services
and protocols deployment technologies. Some technologies might allow the deployment in the
user-space whereas others might permit it in the kernel-space. On this line, operating systems will
present different capabilities/opportunities (e.g., eBPF in the Linux world). It is then necessary
to study when, how, and under what conditions to leverage these opportunities’ heterogeneity,
especially in terms of deployment technologies. It is advisable, where the technologies are sufficiently
mature, to initiate work similar to the one carried out in this thesis (around eBPF) in other OS

6 Conclusion 91

contexts, starting, for example, from work opened in [96]. The question of the choice among these
protocol deployment opportunities will thus have to be addressed.

Finally, the generalization of cloud computing capabilities will gradually make it possible to deploy
virtualization containers (virtual machine or container) on end nodes. One perspective is, therefore, to
define how to take advantage of this capacity to deploy VTL where it is not present by leveraging
softwarization and network programming technologies, namely SDN andNFV (introduced in Chapter
1). As a result, the VTL architecture needs to be revisited to enrich it with the necessary functionalities.

General perspectives concerning the need for autonomous (re-)configuration management

Architecture of the VTL. The architecture of the VTL is currently designed to allow the dynamic
deployment of protocol components in the kernel (via eBPF on Linux OS) based on the acquisition
of application requirements and network characteristics. At the same time, the reconfiguration
dimension is only partially addressed.

Enriching the VTL is a fundamental perspective with the aim to: 1/ discovering the context and its
opportunities (e.g. in terms of deployment capacity in the kernel or user-space, available Transport
services, the presence or absence of middleboxes on the data path, etc.), and 2/ choosing, as a
consequence, the configuration methods for protocol solutions, and the solutions themselves. A work
extending the design and implementation of the VTL components might be carried out based on the
available technological evolutions and the targeted degree of autonomy for the VTL. Concerning this
last point, approaches based on the autonomic computing model have already been pushed forward.
It would be a matter of re-studying them in the new context considered.

Offline learning vs. Online learning. During our work, the machine learning models used to select
the most appropriate Transport protocol have been trained offline beforehand of the deployment of
the VTL system. A future direction could be to enhance this approach with online learning. That is to
say, VTL should be able to learn and update alone the initially trained models. This will permit to
limit the risk of inaccurate models when the network environments radically changed or integrated
new characteristics not considered in the initial training.

General perspectives concerning the need for VTL scalability management

The VTL was designed without any preconceived expectations in terms of scalability concerning
the number of connections likely to benefit simultaneously from VTL services. However, it is clear
that a VTL inability to handle numerous connections "at the sufficient pace" would be a potentially
significant obstacle to its deployment. Without answering the question, the subject refers to ways of
considering the deployment/instantiation of VTL at the node level: per session, per application, or
per end-system. Exploring these possibilities through the prism of their consequences on scalability
is a perspective of our work.

Author’s Scientific Production

International Conferences and Workshops

• El-Fadel Bonfoh, D. C. Tape, C. Chassot, S. Medjiah, “Transparent and Dynamic Deployment of
Lightweight Transport Protocols”, The 2019 IEEE Global Communications Conference (GLOBECOM),
December 2019, Waikoloa, Hawaii, USA.
• El-Fadel Bonfoh, S. Medjiah, C. Chassot, Jose Aguilar, “Towards the Virtualization of Transport-level
Functions and Protocols”, 7th IEEE International Conference on Smart Communications in Network
Technologies (Saconet), October 2018, El Oued, Algeria.

National Conferences

• El-Fadel Bonfoh, D. C. Tape, C. Chassot, S. Medjiah, “Déploiement et Utilisation Transparente de
mécanismes protocolaires légers”, CORES 2020 – 5ème Rencontres Francophones sur la Conception
de Protocoles, l’Évaluation de Performance et l’Expérimentation des Réseaux de Communication, Sep
2020, Lyon, France.

Miscellaneous Publications

• El-Fadel Bonfoh, S. Medjiah, C. Chassot, “A Parsimonious Monitoring Approach for Link Bandwidth
Estimationwithin SDN-basedNetworks”, NetsoftWorkshop onApproaches, Analyses, and Performance
Issues in Virtualized Environments and Software Defined Networking (IEEE Netsoft PVE-SDN), June
2018, Montreal, Canada.
• C. A. Ouedraogo, El-Fadel Bonfoh, S. Medjiah, C. Chassot, S. Yangui, “A Prototype for Dynamic
Provisioning of QoS-oriented Virtualized Network Functions in the Internet of Things”, 4th IEEE
International Conference on Network Softwarization (NetSoft). June 2018. Montreal, Canada.

Technical Reports / Preprints

• El-Fadel Bonfoh, S. Medjiah, D. C. Tape, C. Chassot, “VTL: Timely Deployment and Seamless Adoption
of Network Protocols”. URL: https://bit.ly/3ndzQce.

Implementations

• VTL: Virtual Transport Layer
URL1: https://github.com/elfadel/vtl
URL2: https://redmine.laas.fr/projects/vtl

https://bit.ly/3ndzQce
https://github.com/elfadel/vtl
https://redmine.laas.fr/projects/vtl

Dans certains cas, comprendre,
c’est comprendre qu’il ne faut pas chercher à comprendre

et qu’il faut agir !

Christian MOREL

Appendix

A
TCP Execution Path

The Figure below is derived from https://wiki.linuxfoundation.org/. It illustrates any TCP packets’
complete pathway throughout the operating system (OS) kernel. Originally based on the old kernel
2.6.20, this path is still fundamentally the same on newer versions of the operating system (OS).

B
Transport Session Summary

App VTL

Host A (TCP Client)

VTL App

Host B (TCP Server)

SYN SYN + VTL_COMPLIANT
SYN

SYN + ACK

SYN + ACK + VTL_NEGO (tfid)

SYN + ACK

ACK ACK + VTL_NEGO_ACK (tfid)
ACK

FIN
FIN + VTL_CLOSE (tfid)

FIN

FIN + ACK

FIN + ACK + VTL_CLOSE_ACK (tfid)

FIN + ACK

ACK
ACK (tfid)

ACK

TCP TCPVTL Session

Discovery +
Opening

Transfer +
Reconfiguration

Closing

6

1

2

34

5

The above figure provides an overview of a Transport session under VTL. 1 When the TCP client
requests a connection, its SYN packet is intercepted VTL and, thanks to a SOCK_OPS bpf program
attached to cgroupv2, it adds to the SYN packet a VTL_COMPLIANT option to advertise to the
server that the client is VTL compliant as well as to discover the server property. If the server is also
VTL compliant, it should reply with a VTL_NEGO option and the transfer might continue under
VTL; otherwise, the connection should fallback systematically to TCP.

2 When the VTL at the server-side receives a SYN packet, it parses it thanks to an XDP bpf program
attached to the network interface driver (NIC). If it finds a VTL_COMPLIANT option, it triggers the
application profiling and gets the network state. Based on the trained decision tree models, VTL
at the server-side should select the appropriate protocol to replace TCP. 3 The selected protocol,
identified by tfid (the IP_PROTO number in fact), should be added as an option to the SYN/ACK
packet. A SOCK_OPS program adds this option to signal to the VTL at the client-side the L4 protocol

B Transport Session Summary 100

to use for the data transfer. Here, if the application profiling fails, TCP is kept as the default protocol.
One might choose another protocol as the default one.

4 Finally, the SYN/ACK packet containing VTL_NEGO and tfid options is intercepted by an XDP

program at the client-side. VTL configures the requested L4 protocol to replace TCP at the client-side.
Then, the 5 ACK of the SYN/ACK is modified by a SOCK_OPS program. The modification consists
of adding a VTL_NEGO_ACK option to indicate to the VTL at the server-side the connection
opening’s success. When an XDP program at the server-side intercepts an ACK packet containing
a VTL_NEGO_ACK option, 6 it removes this option to keep transparency vis-à-vis the legacy
application.

Bibliography

[1] Sibylle Schaller and Dave Hood. ‘Software defined networking architecture standardization’.
In: Computer standards & interfaces 54 (2017), pp. 197–202 (cited on page 1).

[2] Mehmet Ersue. ‘ETSI NFV management and orchestration-An overview’. In: Presentation at
the IETF 88 (2013) (cited on page 1).

[3] Matt Fleming. ‘A thorough introduction to eBPF’. In: Linux Weekly News (2017) (cited on
pages 1, 22, 31).

[4] David Murray et al. ‘An analysis of changing enterprise network traffic characteristics’. In:
2017 23rd Asia-Pacific Conference on Communications (APCC). IEEE. 2017, pp. 1–6 (cited on
page 2).

[5] Laura Chappell. Wireshark network analysis. Podbooks. com, Llc, 2012 (cited on pages 3, 31, 66).

[6] Tommy Pauly et al. ‘An architecture for transport services’. In: Internet-Draft draft-ietf-taps-
arch-00, IETF (2018) (cited on pages 4, 17, 22, 53).

[7] David D Clark. Modularity and efficiency in protocol implementation. Tech. rep. RFC 817, July,
1982 (cited on pages 8, 16).

[8] David D Clark. Designing an Internet. MIT Press, 2018 (cited on pages 8, 22).

[9] Douglas Freimuth et al. ‘Server Network Scalability and TCP Offload.’ In: USENIX Annual
Technical Conference, General Track. 2005, pp. 209–222 (cited on page 8).

[10] Martina Zitterbart. ‘A multiprocessor architecture for high speed network interconnections’.
In: IEEE INFOCOM’89, Proceedings of the Eighth Annual Joint Conference of the IEEE Computer
and Communications Societies. IEEE Computer Society. 1989, pp. 212–213 (cited on page 8).

[11] Hemant Kanakia and David Cheriton. ‘The VMP network adapter board (NAB): High-
performance network communication for multiprocessors’. In: Symposium proceedings on
Communications architectures and protocols. 1988, pp. 175–187 (cited on page 8).

[12] Jeffrey C Mogul. ‘TCP Offload Is a Dumb Idea Whose Time Has Come.’ In: HotOS. 2003,
pp. 25–30 (cited on page 8).

[13] Michio Honda et al. ‘Rekindling network protocol innovation with user-level stacks’. In: ACM
SIGCOMM Computer Communication Review 44.2 (2014), pp. 52–58 (cited on pages 8, 16, 21).

[14] Chandramohan A Thekkath et al. ‘Implementing network protocols at user level’. In:
IEEE/ACM Transactions on Networking 1.5 (1993), pp. 554–565 (cited on page 8).

[15] Kenichi Yasukata et al. ‘StackMap: Low-Latency Networking with the {OS} Stack and
Dedicated NICs’. In: 2016 {USENIX} Annual Technical Conference ({USENIX}{ATC} 16). 2016,
pp. 43–56 (cited on page 8).

[16] EunYoung Jeong et al. ‘mtcp: a highly scalable user-level {TCP} stack for multicore systems’.
In: 11th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 14).
2014, pp. 489–502 (cited on page 8).

[17] Linux Foundation. Myth-busting DPDK in 2020. Revealed: the past, present, and future of the most
popular data plane development kit in the world. Tech. rep. White Paper, 2020 (cited on page 9).

[18] Luigi Rizzo. ‘Netmap: a novel framework for fast packet I/O’. In: 21st USENIX Security
Symposium (USENIX Security 12). 2012, pp. 101–112 (cited on page 9).

[19] David Coffield and Doug Shepherd. ‘Tutorial guide to Unix sockets for network communica-
tions’. In: Computer Communications 10.1 (1987), pp. 21–29 (cited on page 9).

[20] JeromeH Saltzer, David P Reed, and David D Clark. ‘End-to-end arguments in system design’.
In: ACM Transactions on Computer Systems (TOCS) 2.4 (1984), pp. 277–288 (cited on page 10).

[21] Michele Polese et al. ‘A survey on recent advances in transport layer protocols’. In: IEEE
Communications Surveys & Tutorials 21.4 (2019), pp. 3584–3608 (cited on pages 13, 21).

[22] Ernesto Exposito. Advanced Transport Protocols: Designing the Next Generation. John Wiley &
Sons, 2013 (cited on pages 13, 21).

[23] Yujuan Jiang, Bram Adams, and Daniel M German. ‘Will my patch make it? and how fast?
case study on the linux kernel’. In: 2013 10th Working Conference on Mining Software Repositories
(MSR). IEEE. 2013, pp. 101–110 (cited on pages 14, 33).

[24] Alan Ford et al. TCP extensions for multipath operation with multiple addresses. Tech. rep. RFC
6824, 2013 (cited on pages 14, 19).

[25] Nicolas VanWambeke et al. ‘ATP: AMicroprotocol Approach to Autonomic Communication’.
In: IEEE Transactions on Computers 62.11 (2012), pp. 2131–2140 (cited on pages 14, 26, 48).

[26] Jim Roskind. ‘QUIC: Multiplexed stream transport over UDP’. In: Google working design
document (2013) (cited on pages 14, 53).

[27] Adam Langley et al. ‘The quic transport protocol: Design and internet-scale deployment’.
In: Proceedings of the Conference of the ACM Special Interest Group on Data Communication. 2017,
pp. 183–196 (cited on pages 14, 53).

[28] Ernesto Exposito, Patrick Senac, and Michel Diaz. ‘FPTP: the XQoS aware and fully pro-
grammable transport protocol’. In: The 11th IEEE International Conference on Networks, 2003.
ICON2003. IEEE. 2003, pp. 249–254 (cited on page 14).

[29] J Ernesto and G Exposito. ‘Design and Implementation of a QoS Oriented Transport Protocol
for Multimedia Applications’. PhD thesis. PhD dissertation, Institut Nat’l Polytechnique de
Toulouse, Networks and . . ., 2003 (cited on page 14).

[30] Sally Floyd and Eddie Kohler. Profile for datagram congestion control protocol (DCCP) congestion
control ID 2: TCP-like congestion control. Tech. rep. RFC 4341, March, 2006 (cited on page 15).

[31] Mark Handley et al. TCP friendly rate control (TFRC): Protocol specification. Tech. rep. RFC, 2003
(cited on page 15).

[32] QUIC Implementations. https://bit.ly/3nTFiBf. accessed 2020-11-24 (cited on page 15).

[33] Richard W Watson and Sandy A Mamrak. ‘Gaining efficiency in transport services by
appropriate design and implementation choices’. In: ACM Transactions on Computer Systems
(TOCS) 5.2 (1987), pp. 97–120 (cited on page 16).

[34] Sebastian Gallenmüller et al. ‘Comparison of frameworks for high-performance packet IO’.
In: 2015 ACM/IEEE Symposium on Architectures for Networking and Communications Systems
(ANCS). IEEE. 2015, pp. 29–38 (cited on page 16).

[35] Giorgos Papastergiou et al. ‘De-ossifying the internet transport layer: A survey and future
perspectives’. In: IEEE Communications Surveys & Tutorials 19.1 (2016), pp. 619–639 (cited on
page 16).

[36] Mohamed Oulmahdi. ‘Architecture Autonome et Extensible pour une Couche de Transport
Évolutive. Application aux Communications Aéronautique par Satellites’. PhD thesis. INSA
de Toulouse, 2017 (cited on page 17).

https://bit.ly/3nTFiBf

[37] Naeem Khademi et al. ‘NEAT: a platform-and protocol-independent internet transport API’.
In: IEEE Communications Magazine 55.6 (2017), pp. 46–54 (cited on pages 17, 18).

[38] Costin Raiciu et al. ‘How hard can it be? designing and implementing a deployable multipath
{TCP}’. In: 9th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
12). 2012, pp. 399–412 (cited on page 19).

[39] D Borman. TCP options and maximum segment size (MSS). Tech. rep. RFC 6691, July, 2012 (cited
on page 19).

[40] Yuchung Cheng et al. ‘Rfc 7413-tcp fast open’. In: (2014) (cited on page 19).

[41] Bryan Ford, Pyda Srisuresh, and Dan Kegel. ‘Peer-to-Peer Communication Across Network
Address Translators.’ In: USENIX Annual Technical Conference, General Track. 2005, pp. 179–192
(cited on pages 19, 20).

[42] Rohan Mahy, Philip Matthews, and Jonathan Rosenberg. Traversal using relays around nat
(turn): Relay extensions to session traversal utilities for nat (stun). Tech. rep. RFC 5766, 2010 (cited
on page 20).

[43] Dan Wing et al. ‘Session traversal utilities for NAT (STUN)’. In: RFC5389, October (2008) (cited
on page 20).

[44] Gary T Wong, Matti A Hiltunen, and Richard D Schlichting. ‘A configurable and extensible
transport protocol’. In: Proceedings IEEE INFOCOM 2001. Conference on Computer Communica-
tions. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat.
No. 01CH37213). Vol. 1. IEEE. 2001, pp. 319–328 (cited on page 26).

[45] Linux Page. Raw sockets. https://bit.ly/3l68sLR. accessed 2020-11-25 (cited on page 31).

[46] Magnus Karlsson and Björn Töpel. ‘The path to DPDK speeds for AF XDP’. In: Linux Plumbers
Conference. 2018 (cited on pages 31, 39).

[47] Steven McCanne and Van Jacobson. ‘The BSD Packet Filter: A New Architecture for User-level
Packet Capture.’ In: USENIX winter. Vol. 46. 1993 (cited on page 31).

[48] Felix Fuentes and Dulal C Kar. ‘Ethereal vs. Tcpdump: a comparative study on packet
sniffing tools for educational purpose’. In: Journal of Computing Sciences in Colleges 20.4 (2005),
pp. 169–176 (cited on page 31).

[49] Cilium. BPF and XDP Reference Guide. https://docs.cilium.io/en/v1.5/bpf/. accessed
2019-05-09 (cited on pages 32, 33).

[50] Toke Høiland-Jørgensen et al. ‘The express data path: Fast programmable packet processing
in the operating system kernel’. In: Proceedings of the 14th International Conference on Emerging
Networking EXperiments and Technologies. 2018, pp. 54–66 (cited on page 33).

[51] Bert Hubert et al. ‘Linux advanced routing & traffic control HOWTO’. In: Netherlabs BV 1
(2002) (cited on pages 33, 47).

[52] Linux Foundation. sk_buff. https://bit.ly/37bqqHw. accessed 2020-11-25 (cited on
page 33).

[53] Wolfgang Mauerer. Professional Linux kernel architecture. John Wiley & Sons, 2010 (cited on
page 34).

[54] Peter Jay Salzman, Michael Burian, and Ori Pomerantz. The linux kernel module programming
guide. 2007 (cited on page 34).

https://bit.ly/3l68sLR
https://docs.cilium.io/en/v1.5/bpf/
https://bit.ly/37bqqHw

[55] Marc Moeneclaey et al. ‘Throughput optimization for a generalized stop-and-wait ARQ
scheme’. In: IEEE transactions on communications 34.2 (1986), pp. 205–207 (cited on page 42).

[56] Stephen Hemminger et al. ‘Network emulation with NetEm’. In: Linux conf au. 2005, pp. 18–23
(cited on page 45).

[57] Joyce Reynolds and Jon Postel. RFC1700: Assigned Numbers. 1994 (cited on page 46).

[58] Linux manuel page. time - time a simple command or give resource usage. https://bit.ly/
3nStJub. accessed 2020-11-25 (cited on page 46).

[59] Alexey Kuznetsov. IPROUTE2 utility suite howto. 1998 (cited on page 47).

[60] Ming-Chieh Lee and Wei-ge Chen. Video coding using adaptive coding of block parameters for
coded/uncoded blocks. US Patent 5,946,043. Aug. 1999 (cited on pages 48, 66).

[61] Parveen Patel et al. ‘Upgrading transport protocols using untrusted mobile code’. In: Proceed-
ings of the nineteenth ACM symposium on Operating systems principles. 2003, pp. 1–14 (cited on
page 50).

[62] Parveen Patel et al. ‘TCP Meets Mobile Code.’ In: HotOS. 2003, pp. 31–36 (cited on page 50).

[63] Trevor Jim et al. ‘Cyclone: A Safe Dialect of C.’ In:USENIX Annual Technical Conference, General
Track. 2002, pp. 275–288 (cited on page 50).

[64] Quentin De Coninck et al. ‘Pluginizing quic’. In: Proceedings of the ACM Special Interest Group
on Data Communication. 2019, pp. 59–74 (cited on page 50).

[65] E Dubois et al. ‘Enhancing TCP based communications in mobile satellite scenarios: TCP PEPs
issues and solutions’. In: 2010 5th advanced satellite multimedia systems conference and the 11th
signal processing for space communications workshop. IEEE. 2010, pp. 476–483 (cited on page 53).

[66] Eddie Kohler et al. ‘Datagram congestion control protocol (DCCP)’. In: (2006) (cited on
page 53).

[67] Randall Stewart et al. Stream control transmission protocol. 2007 (cited on page 53).

[68] Mohammad Alizadeh et al. ‘Data center tcp (dctcp)’. In: Proceedings of the ACM SIGCOMM
2010 conference. 2010, pp. 63–74 (cited on page 53).

[69] Carlo Caini and Rosario Firrincieli. ‘TCP Hybla: a TCP enhancement for heterogeneous
networks’. In: International journal of satellite communications and networking 22.5 (2004),
pp. 547–566 (cited on pages 53, 70).

[70] M Zitterbart. ‘Parallel Protocol Implementations an Transputers-Experiences with OSI TP4,
OSICLNP, andXTP’. In: IEEEWorkshop on theArchitecture and Implementation ofHighPerformance
Communication Subsystems. IEEE. 1992, 0_19–0_22 (cited on page 54).

[71] Stephen Lukasik. ‘Why the ARPANET was built’. In: IEEE Annals of the History of Computing
33.3 (2010), pp. 4–21 (cited on page 54).

[72] Inge Groenbaek. ‘Conversion between the TCP and ISO transport protocols as a method of
achieving interoperability between data communications systems’. In: IEEE Journal on Selected
Areas in Communications 4.2 (1986), pp. 288–296 (cited on pages 54, 55).

[73] J Griner, G Montenegro, and Z Shelby. ‘RFC 3135 PILC- Performance Enhancing Proxies June
2001’. In: (2001) (cited on page 54).

[74] David Dolson, Matthew Desmond, and Jim Kuhn. TCP proxy providing application layer
modifications. US Patent 7,277,963. Oct. 2007 (cited on page 54).

https://bit.ly/3nStJub
https://bit.ly/3nStJub

[75] Kulbir Saini. Squid Proxy Server 3.1: beginner’s guide. Packt Publishing Ltd, 2011 (cited on
page 54).

[76] T Manesh, B Brĳith, TM Bhraguram, et al. ‘Network forensic investigation of HTTPS protocol’.
In: (2013) (cited on page 54).

[77] Michael Welzl, Florian Niederbacher, and Stein Gjessing. ‘Beneficial transparent deployment
of SCTP: the missing pieces’. In: 2011 IEEE Global Telecommunications Conference-GLOBECOM
2011. IEEE. 2011, pp. 1–5 (cited on page 55).

[78] RyanW Bickhart. Transparent TCP-to-SCTP translation shim layer. Tech. rep. DELAWARE UNIV
NEWARK DEPT OF COMPUTER and INFORMATION SCIENCES, 2005 (cited on page 55).

[79] Gregory Detal, Christoph Paasch, and Olivier Bonaventure. ‘Multipath in the middle (box)’.
In: Proceedings of the 2013 workshop on Hot topics in middleboxes and network function virtualization.
2013, pp. 1–6 (cited on page 55).

[80] Stefan Klaas. Quelques astuces avec LD_PRELOAD. https://bit.ly/3q9xc9M. accessed
2020-11-27 (cited on page 56).

[81] Viet-Hoang Tran and Olivier Bonaventure. ‘Beyond socket options: making the Linux TCP
stack truly extensible’. In: 2019 IFIP Networking Conference (IFIP Networking). IEEE. 2019,
pp. 1–9 (cited on page 59).

[82] Lawrence Brakmo. ‘Tcp-bpf: Programmatically tuning tcp behavior through bpf’. In: NetDev
2.2 (2017) (cited on page 62).

[83] TejunHeo. ‘ControlGroupv2.Oct. 2015. url: https://www.kernel. org/doc’. In:Documentation/cgroup-
v2. txt () (cited on page 64).

[84] Yanlin Liu and Mark Claypool. ‘Using redundancy to repair video damaged by network
data loss’. In: Multimedia Computing and Networking 2000. Vol. 3969. International Society for
Optics and Photonics. 1999, pp. 73–84 (cited on page 66).

[85] Arthur L Samuel. ‘Some studies in machine learning using the game of checkers’. In: IBM
Journal of research and development 3.3 (1959), pp. 210–229 (cited on page 71).

[86] J. Ross Quinlan. ‘Induction of decision trees’. In: Machine learning 1.1 (1986), pp. 81–106 (cited
on pages 73, 74).

[87] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014 (cited on page 73).

[88] Danilo P Mandic. ‘A generalized normalized gradient descent algorithm’. In: IEEE signal
processing letters 11.2 (2004), pp. 115–118 (cited on page 74).

[89] IT Union. ‘ITU-T G. 1010: End-User Multimedia Qos Categories’. In: G SERIES: Transmission
Systems and Media, Digital System and Networks-Multimedia Quality of Service and Performance
Generic and User-Related Aspects (2001) (cited on page 76).

[90] ITUT Rec. ‘X. 641 Information technology–Quality of Service’. In: Framework (1997) (cited on
page 76).

[91] Luca Deri et al. ‘ndpi: Open-source high-speed deep packet inspection’. In: 2014 International
Wireless Communications and Mobile Computing Conference (IWCMC). IEEE. 2014, pp. 617–622
(cited on page 76).

[92] VSat System. https://www.vsat-systems.com/. accessed 2020-10-11 (cited on pages 78, 81).

[93] WonderNetwork. https://bit.ly/33TWfVf. accessed 2020-10-11 (cited on page 81).

https://bit.ly/3q9xc9M
https://www.vsat-systems.com/
https://bit.ly/33TWfVf

[94] J Ross Quinlan. ‘Data mining tools See5 and C5. 0’. In: http://www. rulequest. com/see5-info. html
(2004) (cited on page 82).

[95] Tong Meng et al. ‘PCC proteus: Scavenger transport and beyond’. In: Proceedings of the Annual
conference of the ACMSpecial Interest Group onData Communication on the applications, technologies,
architectures, and protocols for computer communication. 2020, pp. 615–631 (cited on page 90).

[96] Yutaro Hayakawa. ‘eBPF Implementation for FreeBSD’. In: BSDCan 2018. The BSD Conference,
2018 (cited on page 91).

