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qui a grandement contribué à définir les pistes de résolution des problèmes, et
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Résumé de la thèse

Cette thèse aborde le sujet de la gestion écologique du trafic urbain. L’objectif est
de réduire la consommation d’énergie et les émissions de polluants, sans détériorer
les performances du trafic. Les stratégies d’éco-gestion, fortement valorisées par
le développement des véhicules connectés et autonomes, peuvent correspondre au
contrôle des véhicules, ou à celui des infrastructures.

Le contrôle des véhicules comprend la planification de mouvement (ou eco-
driving), d’itinéraire (ou eco-routing), ainsi que le contrôle coopératif. Plus le
niveau de connectivité est élevé, plus les avantages environnementaux de ces al-
gorithmes sont grands. De plus, les véhicules autonomes offrent de nouvelles per-
spectives en terme de coopération, en raison de leur commande plus précise. En
pratique, cela correspond à des véhicules qui coordonnent leurs mouvements en
communiquant entre eux et avec l’infrastructure.

Le contrôle des infrastructures correspond à la gestion dynamique d’actionneurs
de régulation de flux tels que les limitations de vitesse et les feux de signalisation.
Son objectif est de réduire les émissions et consommation totales en influant sur
les flux de véhicule. En pratique, de telles approches consistent à collecter les
données des véhicules circulant dans le réseau routier (densité de véhicules, flux,
vitesse moyenne). Ensuite, des algorithmes sont utilisés pour prédire et optimiser
l’état du trafic. Dans ce travail, nous avons choisi de nous concentrer sur le contrôle
des infrastructures.

Les contributions de cette thèse à la gestion écologique du trafic peuvent être
résumées comme suit.

Dans un premier temps, un modèle de trafic macroscopique adapté au milieu ur-
bain est proposé. Il comprend une méthodologie pour traiter les intersections avec
des feux de signalisation. Pour estimer la consommation de carburant, ce modèle
de trafic est associé à un modèle macroscopique basé sur un réseau de neurones
artificiels (ANN). Ce dernier est calibré à l’aide d’un modèle d’énergie physique mi-
croscopique et de données fournies par un simulateur de trafic paramétré avec des
données urbaines de Floating Car Data (FCD). Les modèles macroscopiques sont
préférés pour le contrôle à grande échelle car ils sont plus rapides lorsque le nom-
bre de véhicules considérés est grand. Ils ont également l’avantage de considérer

v



l’efficacité énergétique globale, qui est la métrique d’intérêt pour les gestionnaires
de réseaux routiers en matière d’éco-gestion du trafic.

Ensuite, des expériences sont menées afin d’évaluer la relation entre congestion
et efficacité énergétique, essentiellement en régime permanent. L’impact des limi-
tations de vitesse est analysé pour différents scénarios. Les limitations de vitesse
impactent directement la consommation d’énergie et les émissions polluantes car
elles affectent les accélérations et les vitesses moyennes sur le réseau.

Enfin, un contrôleur est paramétré afin de comparer l’impact du contrôle dy-
namique des limitations de vitesse avec le contrôle d’accès à une zone urbaine, à la
fois dans une zone contrôlée mais aussi dans la zone périurbaine à sa frontière. Le
système est simulé à l’aide du simulateur de trafic SUMO, et un modèle physique
de consommation de carburant et d’émissions de NOx est utilisé. Les limitations
de vitesse sont contrôlées en boucle fermée grâce à une approche de commande
prédictive non linéaire (NMPC), dans laquelle l’évolution du trafic et la consomma-
tion de carburant sont prédites à l’aide de modèles macroscopiques. Les résultats
révèlent que dans les phases transitoires entre différents niveaux de congestion,
le contrôleur en boucle fermée est plus rapide pour décongestionner le réseau, de
manière économe en énergie. Cela améliore la durabilité environnementale et les
performances de trafic à la fois dans le réseau contrôlé, mais aussi au niveau de
ses routes frontalières.



Preface

Abstract

The problem of urban traffic management for improved environmental sustainabil-
ity is addressed. The objective is to reduce the energy consumption (electricity
or fuel), as well as the emission of pollutants, without deteriorating the traffic
performance. Traffic eco-management strategies, which are greatly enhanced by
the development of connected and automated vehicles, can correspond either to
the control of vehicles or infrastructures.

The vehicle-side control includes motion planning (or eco-driving), route plan-
ning (or eco-routing), as well as cooperative control designs. The higher the level of
connectivity, the larger the environmental benefits of such algorithms. Addition-
ally, autonomous vehicles open the door to vehicles cooperation because of their
more precise positioning and control, i.e. vehicles that coordinate their movements
by communicating within each others and with the infrastructure. This includes
vehicle platooning, cooperative adaptive cruise control (CACC), lane changing and
merging control, and cooperative intersection control.

The infrastructure-side control corresponds to the dynamic management of
road-based flow regulation actuators such as speed limits and traffic light signals
duty cycles and offsets. Its objective is to reduce the total pollutant emissions and
energy consumption in the network by influencing the vehicular flow as a whole. In
practice, such approaches consist in collecting data from vehicles traveling in the
road network (vehicle density, traffic flow, average speed, etc.). Then, algorithms
are used to predict and optimize the state of traffic. In this work, we choose to
focus on the infrastructure-side control.

The contributions of this work to traffic ecological management may be sum-
marized as follows.

Firstly, a formalization of a macroscopic traffic model adapted to the urban
environment is proposed. It includes a methodology for treating intersections with
traffic light signals. To estimate the fuel consumption, this traffic model is associ-
ated with a macroscopic model based on an artificial neural network (ANN). The
latter is calibrated using a microscopic physical energy model and data provided
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by a microscopic traffic simulator parameterized in order to be compliant with
real-world urban Floating Car Data (FCD). Macroscopic models are preferred for
large-scale control because they are much faster to compute when the number of
vehicles is large. They also have the advantage of considering the overall energy
efficiency, which is the metric of interest for road network managers when it comes
to traffic eco-management.

Then, experiments are conducted in order to evaluate the relationship between
congestion and vehicles’ energy efficiency, especially at steady state. The impact
of various speed limits are analyzed for different scenarios. Speed limits directly
impact energy consumption and pollutant emissions as they affect the accelerations
and average speeds through the network.

Finally, a control design comparing variable speed limits (VSL) and signalized
access control is proposed for improved environmental sustainability and traffic
performance both in a synthetic urban area and in the peri-urban area at its
boundaries. The traffic system is modeled using the microscopic traffic simulator
SUMO, and a physical fuel consumption and NOx emission model is used. Speed
limits are controlled in closed loop through a nonlinear model predictive control
(NMPC) approach, in which the traffic evolution and the fuel consumption are
predicted with macroscopic models. The results reveal that in transient phases
between different levels of congestion, the closed-loop controller is faster to decon-
gest the network, in an energy-efficient way, resulting in an improvement of the
environmental sustainability and the traffic performance both in the controlled
network, and at its boundary roads.

Dissertation outline

1 Introduction

After a quick overview of the current situation regarding road traffic and its im-
pact on the environment, this chapter mainly deals with a comprehensive state-of-
the-art of the traffic eco-management strategies. It proposes a classification that
distinguishes the single vehicles and the traffic vehicular flows approaches.

2 Models to simulate and predict traffic dynamics in an
urban environment

This chapter reviews microscopic and macroscopic traffic models. Several micro-
scopic car-following models are compared and calibrated using real-world Floating
Car Data (FCD) measured in an urban environment. A macroscopic traffic model,
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namely the cell transmission model (CTM), is adapted to an urban environment
and calibrated in order predict the dynamics of the microscopic traffic model.

3 Models to simulate and predict pollutant emissions and
energy consumption

In this chapter, microscopic and macroscopic approaches to model pollutant emis-
sions and energy consumption are explored. A microscopic physical emission and
energy consumption model is introduced to evaluate the performance of the ur-
ban traffic system, and a macroscopic model based on an artificial neural network
(ANN) is introduced and calibrated for prediction purposes. One main challenge
for macroscopic pollutant and energy consumption models is to be able to esti-
mate the output of microscopic models, as they do not consider the individual
behavior of vehicles, which plays a major role regarding energy efficiency due to
the acceleration of vehicles.

4 Variable speed limits control for enhanced energy effi-
ciency

In this chapter, we propose first to investigate the relationship between energy
efficiency and traffic dynamics. Then, online closed-loop control approaches are
introduced in order to implement VSLs in a Manhattan grid structure. These
approaches consider in a first step macroscopic traffic and energy models, and
in a second step macroscopic traffic and energy models are considered to predict
and optimize the traffic system whose traffic dynamics and pollutant and energy
consumption are determined using microscopic models.

5 Comparative study of urban road traffic fuel consump-
tion optimization via variable speed limits and signalized
access control

This chapter proposes to compare the benefits in terms of energy efficiency of VSLs
and signalized access control in a Manhattan grid structure composed of an urban
and a peri-urban area. The objective function explicitly takes into account the
energy efficiency in both areas.

6 Conclusions

In this chapter, the main contributions of the dissertation are summarized, and
some future perspectives are discussed.
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Preface vii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Contents xiv

List of figures xix

List of tables xx

List of Acronyms xxi

List of Symbols xxv

1 Introduction 1
1.1 Environmental impact of road traffic . . . . . . . . . . . . . . . . . 2
1.2 Ecological management of single vehicles . . . . . . . . . . . . . . . 7

1.2.1 Emission and energy consumption models . . . . . . . . . . 7
1.2.2 Connected vehicle control designs . . . . . . . . . . . . . . . 7
1.2.3 Cooperative vehicle control designs . . . . . . . . . . . . . . 16

1.3 Ecological management of traffic flows . . . . . . . . . . . . . . . . 30
1.3.1 Emission and energy consumption models . . . . . . . . . . 31
1.3.2 Road infrastructure control designs . . . . . . . . . . . . . . 32

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.5 Main contributions of the dissertation . . . . . . . . . . . . . . . . . 41

2 Models to simulate and predict traffic dynamics in an urban
environment 45

xii



Contents

2.1 Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2 Microscopic models for traffic systems simulations . . . . . . . . . . 46

2.2.1 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.2 Comparison and ability to capture stop-and-go waves . . . . 50
2.2.3 Calibration of the car-following model . . . . . . . . . . . . 52

2.3 Macroscopic models for prediction and control purposes . . . . . . . 54
2.3.1 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.2 Urban cell transmission model . . . . . . . . . . . . . . . . . 62
2.3.3 Calibration of the fundamental diagram . . . . . . . . . . . 66

2.4 Comparison of the microscopic and macroscopic models dynamics
in a Manhattan grid structure . . . . . . . . . . . . . . . . . . . . . 70
2.4.1 Manhattan grid structure . . . . . . . . . . . . . . . . . . . 71
2.4.2 Analysis of the prediction performance . . . . . . . . . . . . 72

3 Models to simulate and predict pollutant emissions and energy
consumption 77
3.1 Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2 Microscopic models to simulate pollutant emission and energy con-

sumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2.1 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.2.2 Physical pollutant and energy consumption model . . . . . . 87

3.3 Macroscopic models to predict pollutant emission and energy con-
sumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3.1 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.3.2 Artificial Neural Network-based model . . . . . . . . . . . . 98

4 Variable speed limits control for enhanced energy efficiency 103
4.1 Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2 Analysis of the relationship between energy efficiency and traffic

dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.1 Impact of the car-following model on the energy consumption104
4.2.2 Stationary analysis of the relationship between energy effi-

ciency and traffic dynamics on a ring road . . . . . . . . . . 105
4.2.3 Quasi-stationary analysis of the relationship between energy

efficiency and traffic dynamics in a Manhattan grid structure 106
4.3 Variable speed limits control strategy using macroscopic models . . 110

4.3.1 Control strategy . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.3.2 Simulation and results . . . . . . . . . . . . . . . . . . . . . 115

4.4 Variable speed limits control strategy in a microscopic traffic simulator120
4.4.1 Control strategy . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.4.2 Simulation and results . . . . . . . . . . . . . . . . . . . . . 122

xiii



Contents

5 Comparative study of urban road traffic fuel consumption op-
timization via variable speed limits and signalized access control129
5.1 Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2 Optimal control of signalized access control . . . . . . . . . . . . . . 130
5.3 Comparison between signalized access control and variable speed

limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3.1 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.3.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . 134

6 Conclusions 137
6.1 Review of the contributions . . . . . . . . . . . . . . . . . . . . . . 138
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3 Insights on the urban mobility in the future . . . . . . . . . . . . . 140
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7.3 Modèles pour la simulation et la prédiction des émissions de polluant
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7.5 Optimisation de l’efficacité énergétique par limitations de vitesse

variables et contrôle d’accès . . . . . . . . . . . . . . . . . . . . . . 150
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

xiv



List of Figures

1.1 Largest end-uses of energy by sector in selected International Energy
Agency (IEA) countries [121] [©2017 IEA. All rights reserved]. . . 2

1.2 Energy consumption in transport in selected IEA countries [120]
[©2017 IEA. All rights reserved]. . . . . . . . . . . . . . . . . . . . 3

1.3 Diagram of the global approach for energy consumption and emis-
sions modeling and control for single vehicles and traffic flow. . . . . 6

1.4 Fuel consumption rate as a function of vehicle speed, based on sur-
vey reports of different passenger cars [285] [©2018 Yang et al.]. . . 12

1.5 Illustration of the reduction of the aerodynamic drag in truck pla-
tooning [1] [©Peloton Technology. All rights reserved]. . . . . . . . 17

1.6 Illustration of vehicles forming a CACC string. . . . . . . . . . . . . 19

1.7 Examples of lane change and merge maneuvers. . . . . . . . . . . . 24

1.8 Cooperative intersection [4] [Published with permission of Elsevier]. 26

1.9 Strategy to increase safety by communicating hidden dangers to
approaching vehicles and pedestrians at an intersection [45] [©2019
Continental. All rights reserved]. . . . . . . . . . . . . . . . . . . . 27

1.10 Vehicles traveling along a circular ring road. . . . . . . . . . . . . . 29

1.11 Diagram of the global approach for energy consumption and emis-
sions modeling and control for single vehicles and traffic flow. The
areas covered in this work are depicted in green. . . . . . . . . . . . 43

2.1 Representation of the car-following model paramaters. . . . . . . . . 47

2.2 300-meter single-lane ring road with a 50 km/h speed limit. The
vehicles’ speed profiles are measured at a frequency of 1 Hz. . . . . . 50

2.3 Speed profiles generated with IDM, Krauss, and Wiedemann car-
following models on a 300-meter single-lane ring road with a 50 km/h
speed limit, for various densities (from 2% to 93% of the maximum
density ρM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Real-world acceleration data of 648 journeys made in French cities
and measured at a frequency of 1 Hz, resulting in 30682 data points.
amax and b delineate respectively the 1% highest accelerations and
1% highest decelerations. . . . . . . . . . . . . . . . . . . . . . . . . 53

xv



List of Figures

2.5 Fundamental diagram of the phase transition model, representing
the free region Ωf and the congested region Ωc [44] [Copyright
©2002 Society for Industrial and Applied Mathematics. Reprinted
with permission. All rights reserved]. . . . . . . . . . . . . . . . . . 61

2.6 Trapezoidal fundamental diagram associated with a speed limit Vi,
a backward wave speed w, a maximum vehicle density ρM, and a
maximum flow ϕM(Vi). . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.7 300-meter single-lane ring road with a TLS and a 60-meter long de-
tector measuring traffic density ρ and average speed v at a sampling
frequency of 1 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.8 Behavior of TLS in scenarios (a) and (b). . . . . . . . . . . . . . . . 68
2.9 Fundamental diagrams in both scenarios, with speed limits of 50 km/h

and 20 km/h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.10 Fundamental diagrams associated with speed limits V1 and V2, where

V1 > V2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.11 Scenario considered to compare the dynamics of the microscopic

and macroscopic traffic models. At exogenous sources, vehicles are
continuously generated at a rate of din = 0.2 veh.h−1. At endoge-
nous sources, vehicles are generated between 6 min and 9 min, and
between 31 min and 34 min at a rate of di = 0.1 veh.h−1. . . . . . . 72

2.12 TLS positions and spatial discretization of the roads into cells. . . . 73
2.13 Representation of average traffic prediction errors εi in each cell i

of the network, with 20 km/h and 50 km/h speed limits. . . . . . . . 74
2.14 Comparison of the actual density ρi measured in IDM with the

prediction density ρ̂i given by the CTM in a cell i. The speed limit
is 50 km/h and the average traffic prediction error εi is 4.2% (left).
Comparison of the same cell’s average speed vi measured in IDM
with its prediction v̂i (right). . . . . . . . . . . . . . . . . . . . . . . 75

2.15 Comparison of the actual density ρi measured in IDM with the
prediction density ρ̂i given by the CTM in a cell i. The speed limit
is 20 km/h and the average traffic prediction error εi is 5.2% (left).
Comparison of the same cell’s average speed vi measured in IDM
with its prediction v̂i (right). . . . . . . . . . . . . . . . . . . . . . . 75

2.16 Comparison of the actual number of vehicles measured in IDM with
the prediction based on the CTM. The vehicles are counted in both
the urban and the peri-urban areas, under speed limits of 50 km/h
and 20 km/h. The prediction time horizon is 1 min, i.e. the predic-
tion is corrected every 1 min. . . . . . . . . . . . . . . . . . . . . . . 76

3.1 Classification of emission and energy consumption models for single
vehicles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xvi



List of Figures

3.2 Forces applied to a moving vehicle. . . . . . . . . . . . . . . . . . . 84
3.3 Structure of the CMEM [231] [Published with permission of the

Center for Environmental Research and Technology]. . . . . . . . . 85
3.4 Fuel consumption and burned gas rate maps, defined as functions

of the engine speed and engine torque. . . . . . . . . . . . . . . . . 89
3.5 Structure of the emission and energy consumption meta-model as-

sociated with static average speed-based approaches. . . . . . . . . 90
3.6 Fuel consumption factors of different gasoline passenger cars calcu-

lated with COPERT [236] [Published with permission of Networks
and Spatial Economics]. . . . . . . . . . . . . . . . . . . . . . . . . 92

3.7 Structure of the emission and energy consumption meta-model as-
sociated with dynamic fluid-based traffic models. . . . . . . . . . . 94

3.8 Representation of the ANN inputs and output. . . . . . . . . . . . . 99
3.9 Comparison of the actual fuel consumption given by the microscopic

model (target) with the corresponding macroscopic energy model
output (prediction) in an evaluation scenario. . . . . . . . . . . . . 101

4.1 Comparison of the fuel consumption curves, expressed in L/100km,
as a function of the density for IDM, Krauss, and Wiedemann car-
following models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2 Average fuel consumption on the ring road as a function of the den-
sity and the average speed. Simulations are run with and without
TLS (as described in the scenarios defined in Section 2.3.3), under
20 km/h and 50 km/h speed limits. . . . . . . . . . . . . . . . . . . 107

4.3 TTD, total fuel consumption and NOx emissions for different ini-
tial densities (from 0% to 90% of the maximum density ρM) under
different constant speed limits (from 20 km/h to 50 km/h). . . . . . 108

4.4 Average fuel consumption and NOx emissions for different initial
densities (from 0% to 90% of the maximum density ρM) under dif-
ferent constant speed limits (from 20 km/h to 50 km/h). . . . . . . . 109

4.5 Block diagram of the global approach for ecological VSLs strategy
using macroscopic models. . . . . . . . . . . . . . . . . . . . . . . . 112

4.6 Representation of the NMPC framework, for K = 3. . . . . . . . . . 113
4.7 Manhattan grid network with 300 m roads composed of 5 cells of

60 m. At sources, vehicles are continuously generated at a rate
of 1200 veh/h. Each color represents a cluster of roads, that are
controlled by the same speed limit variable. . . . . . . . . . . . . . 118

4.8 ηX as a function of ρ0, for d = 1200 veh/h. . . . . . . . . . . . . . . 119
4.9 Density distribution in the network after one hour of simulation, for

ρ0 = 0.8ρM, in the uncontrolled Vref = 50 km/h (left) and controlled
(right) scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

xvii



List of Figures

4.10 Block diagram of the global approach for ecological VSLs strat-
egy modeled in a microscopic traffic simulator and controlled with
macroscopic traffic and fuel consumption models. . . . . . . . . . . 121

4.11 Scenario for which the online control approach is performed. Urban
roads of the same color are in the same cluster and hence have the
same speed limit. At exogenous sources, vehicles are continuously
generated at a rate of 0.2 veh.s−1. At endogenous sources, vehicles
are generated between 6 min and 9 min, and between 31 min and
34 min at a rate of 0.1 veh.s−1. . . . . . . . . . . . . . . . . . . . . . 124

4.12 Representation of the evolution of the optimal speed limits, and of
the number of vehicles in the urban area in the controlled and in
the baseline scenarios. The gray zones characterize the phases in
which the endogenous sources are generating vehicles. . . . . . . . . 125

4.13 Comparison of the ecological and the traffic performance metrics
measured when the online VSLs approach is performed, with base-
line scenarios that have constant speed limits of 30 km/h and 50 km/h.127

5.1 Representation of the road network and the signalized access control
actuators. The urban area corresponds to the solid line roads and
the peri-urban area is represented by the dashed line roads. . . . . . 131

5.2 Block diagram of the global approach for ecological signalized access
control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.3 Comparison of the energy efficiency, the pollutant emission level,
and the traffic performance in the baseline scenario, the VSLs ap-
proach, and the access control approach. . . . . . . . . . . . . . . . 135

7.1 Diagramme fondamental trapézöıdal associé à une limitation de
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de consommation macroscopique. . . . . . . . . . . . . . . . . . . . 149

7.5 Anneau de 300 mètres constitué d’une unique voie et d’un feu de
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milieu urbain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
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Êk+1→k+∆p Predicted total fuel consumption in the network between time steps
k + 1 and k + ∆p [L]................................................................... 111

ˆTTD
k+1→k+∆p

Predicted TTD in the network between time steps k+1 and k+∆p

[m] .......................................................................................... 114

ρ̂ Predicted vehicle density [veh m−1] ..................................................... 73

v̂ Predicted average speed [m s−1] .......................................................... 74
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Chapter 1. Introduction

1.1 Environmental impact of road traffic

Today, transport is one of the most energy-intensive sectors. In fact, as indicated
in [121], and represented in Fig. 1.1, the aggregated data of sixteen countries
(Australia, Belgium, Canada, Czech Republic, Finland, France, Germany, Hun-
gary, Italy, Japan, Korea, Luxembourg, New Zealand, Spain, the United Kingdom
and the United States) reveal that it accounted for the highest share of worldwide
energy consumption in 2017 (36%). For example, passenger cars alone used more
energy than the whole residential sector. According to [254], the worldwide trans-
portation sector accounted for 55% of the total liquid fuels consumption, and its
share is not expected to decrease for the next two decades because of the increasing
travel demand.

* Passenger cars includes cars, sport utility vehicles and personal trucks.
** Other industries includes agriculture, mining and construction.

Figure 1.1: Largest end-uses of energy by sector in selected International Energy
Agency (IEA) countries [121] [©2017 IEA. All rights reserved].

The detailed breakdown of energy consumption in the transport sector can be
found in [120] for the same sixteen countries in 2017, and is represented in Fig. 1.2.
The international aviation, marine bunkers and pipeline transport are excluded.
It appears that the transport sector is largely dominated by road vehicles (88%),
especially passenger cars and freight road, that account for 86% of the global
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1.1 Environmental impact of road traffic

energy consumption. This highlights the potential of cars and trucks control to
reduce energy consumption and greenhouse gas emissions.

* Passenger cars includes cars, sport utility vehicles and personal trucks.

Figure 1.2: Energy consumption in transport in selected IEA countries [120]
[©2017 IEA. All rights reserved].

In the future, projections show that the improved energy efficiency in trans-
portation may lead to a net decline of about 2% in energy use until 2040 in the
member countries of the Organisation for Economic Co-operation and Develop-
ment (OECD), thus outpacing the predicted increase of Vehicle-Miles Traveled
(VMT). However, in OECD-Europe, transportation still represents the biggest
source of carbon emissions [250], contributing about 25% of the total carbon diox-
ide (CO2) emissions, with cars and vans representing more than two thirds of this
share [175]. The situation is even more alarming in non-OECD countries, where
the transportation energy demand is expected to rise by 64% until 2040, imply-
ing an increase of about 15% of energy-related CO2 emissions [254], which are
destined to grow well above the levels imposed by the international climate goals
[122]. Population surge and economic growth of the developing countries have
been identified as the main causes of the drastic increase of energy demand and
pollutant emissions in all sectors [122].

As a result, the current acceleration of environmental degradations and climate
change is partly due to the transportation sector. In terms of public health, urban
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Chapter 1. Introduction

traffic is blamed for the deterioration of air quality as more and more epidemi-
ological studies have highlighted that mortality and several cardiovascular and
respiratory diseases are highly correlated with air pollution [277, 17, 226, 66]. A
study conducted in 30 countries revealed that PM2.5 concentrations above mini-
mum exposure levels were responsible for 22% of infant deaths [107]. Although
traffic related pollutants (NO2, NOX, PM10, and PM2.5) have been on a downward
trend in major cities since 2010 due to the presence of more efficient vehicles in car
fleets, pollution levels remain well above the recommended European Limit Value
[80].

To improve air quality in urban areas and address these environmental and
health issues, the development of new engine technologies can be accompanied
by a significant change of individual habits, which can be induced by public au-
thorities [218], and the implementation of innovative intelligent solutions based on
connectivity. Such approaches are known as traffic eco-management strategies, i.e.
the dynamic control of vehicles and/or road infrastructures in order to reduce air
pollution [198].

The benefits of traffic eco-management can be greatly increased thanks to the
technological resources offered by Connected and Automated Vehicles (CAVs).
Their current development constitutes beyond dispute a significant breakthrough
in the movement of people and goods [229]. On the one hand, the number of
connected vehicles, i.e. that are able to communicate bidirectionally with other
systems in order to process and share a large amount of data, is increasing.
Several kinds of connectivity are usually distinguished: Vehicle-to-Infrastructure
(V2I), Infrastructure-to-Vehicle (I2V), and Vehicle-to-Vehicle (V2V) communica-
tions. On the other hand, research and development of fully automated vehicles,
i.e. that are capable of moving safely without human input, are promising as
they ensure much shorter reaction times and more precise positioning and control
than conventional vehicles. This results in high reliability and ability to antic-
ipate which offer huge potentials for improving safety and comfort, and reduc-
ing travel time and fuel consumption. These opportunities are increased through
higher CAVs penetration rates as cooperative control possibilities (vehicles acting
cooperatively) are enhanced. According to [161], they are expected to represent
20–40 % of the sales by 2030. CAVs widen the scope of possibilities in terms of
rerouting, green priority, speed advice at intersections, cooperative control, vehicle
platooning, etc. [229, 264].

Therefore, a lot of attention has been drawn worldwide to finding the most
effective measures to help reduce the current contribution to greenhouse gas emis-
sions from transportation. Governments, practitioners and researchers seem to
agree on the fact that a combination of short-term and long-term strategies must
be adopted. In the short-term, policies and regulations encouraging changes in
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behavior and travel habits represent a key lever. Attractiveness of alternative
means of transportation should be enhanced, a shift to less polluting transport
modes should be promoted, and a change in purchasing habits favoring smaller
and more energy-efficient cars should be encouraged [38]. In the long-term, the
widespread adoption of innovative technological solutions such as electrification,
connectivity and automation are expected to enable a significant shift in the fu-
ture of personal transportation and mobility. The way for such a technological
transformation of mobility is already being paved thanks to the diffusion of CAVs,
V2V and V2I/I2V cooperation and communication networks, in- and over-roadway
sensors, cloud-computing capabilities, etc. [98].

However, the potential energy benefits of these technologies remain uncertain,
mostly because of the high level of non-linear dependence between different aspects
of an automated transportation system operating with conventional vehicles, as
well as possible side-effects of automation [255]. Among the features enabled by
the aforementioned technologies that promise to increase energy efficiency and
reduce pollutant emissions of transportation, it is worth mentioning eco-driving,
eco-routing, platooning, roadway throughput optimization, powertrain electrifi-
cation, vehicle down-sizing, parking search time reduction, ride-sharing. On the
other hand, as for the side-effects that may endanger energy efficiency and emission
reduction, it is likely that technology may increase traffic congestion as a conse-
quence of an increased access to mobility, increase travel speeds as a consequence
of enhanced safety, increase commute distances as an effect of increased comfort
and reduced travel costs, etc. [255].

From a single-vehicle efficiency perspective, research suggests that lightweight,
low-speed, autonomous vehicles have the potential to achieve fuel economies an
order of magnitude higher than current cars [255]. However, at system-wide level,
it is not yet clear whether a high penetration rate of CAVs will have a positive
or a negative impact on fuel consumption and CO2 emissions. In fact, [266] ex-
plains that some effects of the advent of CAVs will reduce energy consumption
(development of platooning and eco-driving, congestion mitigation, vehicle light-
weighting and right-sizing, de-emphasized performance, car-sharing, on-demand
mobility, and reduced infrastructure footprint), whereas other effects will increase
it (travel cost reduction, higher highway speeds, increased vehicle features, and
new user groups). Current estimates suggest that the total energy consumption
impacts can range from a 90% decrease to a 200% increase in fuel consumption as
compared to a projected 2050 baseline energy [33]. The outcomes depend on the
direction that will be favored by future policy making.

Such a large variability in the possible outcome of the adoption of the new
vehicular and traffic technologies makes it somewhat difficult to focus and prior-
itize the research efforts to increase energy efficiency of mobility. Nowadays, the
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Figure 1.3: Diagram of the global approach for energy consumption and emissions
modeling and control for single vehicles and traffic flow.

general trend in research and policy seems to aim to reduce CO2 emissions by
pushing for more efficient vehicles and reducing VMT. This is based on a gener-
ally accepted paradigm that congestion mitigation programs should reduce CO2

emissions. However, it is difficult to prove a clear direct proportionality between
congestion and CO2 emissions [77]. The most reliable approach to improve en-
ergy efficiency and reduce pollutant emissions in the design of a traffic regulation
measure consists in directly considering these aspects as decision and optimization
criteria. Therefore, interest in transportation regulation problems with explicit
environmental considerations is growing [272, 265].

Traffic eco-management strategies include the control of vehicles, that modifies
their individual speed profiles or route choices, and the control of infrastructures,
that influences the vehicular flow as a whole by acting on the typical flow regulation
actuators, such as traffic lights, speed limits, etc. The adopted categorization in
terms of modeling and control approaches both at vehicle and traffic level for
the general problem of reducing environmental impact of road transportation is
illustrated in Fig. 1.3.

In the following, a survey of the emission and energy consumption models and
control strategies will be presented, both at the scale of single vehicles and road
traffic.
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1.2 Ecological management of single vehicles

Ecological management strategies adapted to single vehicles aim at optimizing
their routes and speed profiles in order to reduce their impact on the environment.
Also, vehicles automation opens the door to many strategies for cooperative vehicle
control designs. These approaches are usually based on a traffic and an emission
and/or energy consumption models in order to predict the behavior of the vehicles
under consideration.

1.2.1 Emission and energy consumption models

A microscopic traffic model is used to predict the dynamics of vehicles. Such
models describe the behavior of each single vehicle in the traffic flow. They include
car-following and cellular automata models to represent the longitudinal dynamics
of vehicles. Lane-changing models can also be considered to represent their lateral
dynamics [75]. One difficulty associated with these models corresponds to the
calibration of the parameters.

Once the microscopic traffic kinematics is determined, it can be associated
with a microscopic emission and energy consumption model to predict the behav-
ior of vehicles. Such models estimate the emission and/or energy consumption
rates from the vehicles behavior. This can be done using data-driven approaches,
including look-up tables [213, 239], regression models [288, 215] and machine learn-
ing strategies [5, 193, 123, 284]. Another approach is based on the use of physical
models whose parameters have a physical meaning. Such models can be either
deterministic [230, 231, 85] or based on random velocity disturbances when a pre-
cise knowledge of speed profiles is lacking [35, 132, 278, 83]. A complete review of
microscopic emission and energy consumption models is given in Section 3.2.1.

1.2.2 Connected vehicle control designs

The anticipation and prediction potential of connected vehicles opens the door
to energy-efficient control approaches. CAVs are even more promising because
of their more precise positioning and control. CAVs technology is largely based
on the exchange of different types of data between vehicles (V2V) and with the
infrastructure (V2I/I2V). Two data types may be differentiated:

• Geographic data (time-invariant) that can be embedded on-board or can be
accessible via a Geographic Information System (GIS) server: road network
architecture, road elevation and slope, road speed limits, speed bumps, road
narrowings, safe speeds on curved roads, etc.
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• Traffic data (time-variant) that are provided by other vehicles or by the in-
frastructure (through sensors, cameras, etc.): traffic information, road clos-
ings, state of traffic light signals, weather-related road conditions, etc. Note
that in absence of real-time data, historical data can be used to predict traffic
slow-downs by systematic evaluation [269].

Based on these data, control strategies can be implemented by vehicles in order
to improve their own energy efficiency and reduce their own pollutant emissions,
without consideration of the neighboring vehicles’ energy consumption (“individual
gain” optimization). These strategies are reviewed in this section. Two main
approaches can be distinguished:

• eco-routing that consists in route choice optimization,

• eco-driving that corresponds to the optimization of vehicles speed profiles.

They should be used jointly to increase energy efficiency [248]. In practice, CAVs
recalculate their most energy-efficient routes, and optimize their future speed pro-
files in anticipation of surrounding vehicles motion, road slopes and geometry,
traffic light signals, etc.

For the sake of completeness, note that fuel cut-off, cylinder deactivation, ther-
mal load management, and power split in Hybrid Electric Vehicles (HEVs) power-
trains can be used to minize energy consumption. Also, an energy-efficient driving
would include strategic decisions such as vehicle purchase, maintenance, reduction
of on-board elements weight, and reduction of the use of air conditioning systems.
For example, [146] indicates that during idling condition, the fuel consumption of
a conventional gasoline engine vehicle could increase up to 90% because of air-
conditioning operation. An overview of the techniques and algorithms to improve
energy efficiency of CAVs is proposed by [98].

Note that the modeling and control approaches applied to Electric Vehicles
(EVs) and HEVs are much more complex when considering because of their limited
range, recharge times, and ability to regenerate energy during deceleration phases
[57].

Eco-routing

Route choice is a major factor in vehicles energy consumption. Intuitively, a driver
would usually choose the shortest travel distance or the fastest travel time route.
However, these are not always the most energy-efficient routes because the shortest
route may be partially congested, and the fastest route may be longer and contain
high speed limit segments [118]. [143] proposes a model that indicates that the
most energy-efficient route could have 25% reduction in fuel consumption over
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the fastest route and 23% over the shortest route. As a result, a Swedish study
presented by [70] indicates that in 46% of cases the drivers’ spontaneous route
choices were not the most fuel-efficient routes.

Hence, an energy-efficient driving should integrate an eco-routing algorithm
that optimizes the route choice in terms of energy consumption. The eco-routing
optimization problem can be formulated as follows

p∗(o, d, k) = argmin
p∈P

∑
i∈p

g(i, θk) (1.1a)

subject to n0 = o, (1.1b)

n|p| = d. (1.1c)

where P is the set of all paths p = {n0, ..., nd} between origin o and destination
d, and p∗ is the optimal route. Function g returns the energy consumption associ-
ated with the travel on a given segment i. Usually, g depends on the parameters
of segment i, that can be time-dependent and are denoted θk (road congestion,
road type and grade, speed limit, traffic light signals, etc.). These parameters
have a great impact on energy consumption. For example, [128] indicates that a
vehicle traveling on a 250-meter freeway section with a 6% grade increases its fuel
consumption of 86% in comparison with the same section, with identical initial
speed, final speed, and trip time, but with a 0% grade.

state vector field
In addition of energy consumption, energy-efficient control strategies also have

to pay special attention to travel time and distance. Hence, some eco-routing
algorithms formulate the optimization problem with the travel time explicitly ap-
pearing either in the constraints [291] or in the objective function [58]. In the
case of a bi-objective function, the solution found can be a Pareto-Optimal route
[20, 58].

Several formulations of the eco-routing problem can be found in the litera-
ture. [142] proposes a comparison of different approaches: one of them averages
the observed energy consumption, another one estimates fuel consumption with
a regression model, and the last one uses a physical energy model. [70] presents
an eco-routing algorithm that classifies the roads of the network into 6 groups,
depending on their Global Positioning System (GPS) data. Based on the same
data, a fuel consumption factor is calculated for each group. The authors intro-
duce peak and off-peak hours to model the evolution of the traffic during the day.
Similarly, [29] proposes to consider not only historical GPS data, but also real-
time vehicle velocity trajectories to estimate the energy consumption of each link.
[59] presents an innovative eco-routing algorithm especially adapted to EVs in an
urban environment, and that considers the impact of onboard accessories and sys-
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tems on the electricity consumption. The approach considers historical map data
and available average traffic speeds to optimize the route choice. [56] proposes a
formulation adapted to HEVs, in which a constraint on the final State of Charge
(SoC) is defined. However, the eco-routing optimization is relaxed and solved as
a standard Shortest-Path Problem (SPP), the SoC constraints being a-posteriori
enforced. [194] presents an approach related to energy-efficient route choice for
heavy-duty vehicles, which is quite different from eco-routing strategies as they
can only travel on a limited amount of roads. In this work, the approach consists
in a precise reconstruction of the characteristics of the road before departure. This
kind of tool can be of great interest for fleet managers as it allows them to precisely
quantify the fuel cost of different itineraries.

Usually, eco-routing algorithms only take into account the energetic cost of
links and not the vehicle behavior at intersections. However, this aspect is crucial
in energy consumption estimation. To model the energy consumption at intersec-
tions, [58] introduces a transition speed at the interface between two links. Traffic
lights at intersections have also to be considered. For example, [241] proposes an
eco-routing algorithm based on a signalized traffic network in which the authors
use a Markov decision process to model the traffic.

Different methods can be used to solve the eco-routing optimization problem.
For example, some authors implement Dijkstra-type algorithms [139], while others
use heuristic searches [186] or semi-analytical strategies [56]. To reduce the set of
possible solutions, eco-routing algorithms can consider additional constraints on
the maximum travel distance.

Anticipating the evolution of traffic is a particularly critical point in the de-
velopment of eco-routing algorithms. This could be enhanced by implementing
cooperative eco-routing approaches, in which the impact on energy efficiency is
analyzed at the network level, rather than at the vehicle level only [98].

Eco-driving

In addition of eco-routing algorithms that optimize route choice, it is essential
to reduce the occurrences and the intensity of the acceleration phases as they
are the ones that consume the most energy. In other words, the optimal speed
profile in terms of energy efficiency is a constant speed. However, this instruction
is usually impossible to follow in real traffic conditions, especially in an urban
environment with traffic light signals, road congestion, pedestrians, cyclists, road
grade, different speed limits etc. Hence, the core objective of eco-driving is to
predict the traffic evolution and deduce accordingly a speed profile as smooth and
energy-efficient as possible along a given route [118]. For example, [280] presents a
study that shows that it can be more energy-efficient to have high acceleration and
deceleration to catch green lights, rather than idling at red signals and starting
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from stops.
Eco-driving approaches, that control both the longitudinal and the lateral dy-

namics of vehicles, are particularly compatible with autonomous vehicles, as they
can accurately track the instructions generated by the eco-driving algorithm [102].
However, it is expected from an eco-driving approach for Human-driven Vehicles
(HVs) to return rather an advisory speed profile the user can follow. Another
solution is to directly formulate the optimization problem considering the recom-
mended maximal speed of the vehicle as the control input [202, 24].

A key point of eco-driving is the choice of the targeted cruise speed. The
objective is to travel at the speed associated with the lowest energy consumption
rate, expressed in L/100 km for Internal Combustion Engine Vehicles (ICEVs) and
in kWh/100 km for EVs. As indicated by [214], the energy consumption rate is
indeed not constant, as

• firstly, the rate decreases with the increase of vehicle speed. The reason is
that heat losses are reduced at higher engine speed;

• then, the rate starts increasing at high vehicle speed due to increased friction
losses.

As a result, the curve representing fuel consumption rate as a function of
vehicle speed shows a U-shape. The optimal speed depends on the vehicle and
engine sizing, and on the powertrain type (diesel, gasoline, EVs, HEVs). Fig. 1.4
represents the fuel consumption rate-vehicle speed curve for different passenger
cars [285].

Note that vehicles speed profile optimization impacts many other metrics than
energy consumption and CO2 emissions. Hence, eco-driving algorithms may have
other complementary objectives: reducing pollutant emissions such as Nitrogen
Oxide (NOx) and Particulate Matter (PM) emissions, increasing safety, increasing
passenger’s comfort (by ensuring a low jerk), reducing the travel time, etc.

In the following, a formulation of the eco-driving problem and a discussion
about its technical solutions are proposed. The state and control of the vehicle
under consideration are respectively denoted x(t) = {s(t), v(t), ξ(t)} and u(t) =
{Tm(t), Te(t), Fb(t)}. The variables s(t), v(t), and ξ(t) are respectively the position,
the speed, and the SoC of the vehicle at time t. The variables Tm(t), Te(t), and
Fb(t) denote respectively the electric motor torque, the internal combustion engine
torque, and the forces applied by frictional brakes. This formulation is well adapted
to HEVs. Note that for ICEVs, ξ and Tm should not be considered. Similarly,
Te should not be considered with EVs. Based on the vehicle dynamics, f is the
state vector field that returns the new vehicle state from its control and previous
state. Function g returns the energy consumption rate from the vehicle state and
control. In an urban environment, the eco-driving problem can be separated into
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Figure 1.4: Fuel consumption rate as a function of vehicle speed, based on survey
reports of different passenger cars [285] [©2018 Yang et al.].

subproblems such that for each single segment of the vehicle’s route, the following
optimization problem is solved

minimize
u

J =

∫ tf

0

g(u, x(t))dt (1.2a)

subject to ẋ(t) = f(u, x(t)), (1.2b)

0 ≤ s(t) ≤ sf , (1.2c)

vmin(t, s(t)) ≤ v(t) ≤ vmax(t, s(t)), (1.2d)

ξmin ≤ ξ(t) ≤ ξmax, (1.2e)

s(0) = 0, v(0) = vi, ξ(0) = ξi, (1.2f)

s(tf) = sf , v(tf) = vf , ξ(tf) = ξf . (1.2g)

[228] presents a complete overview of the eco-driving problem constraints and
parameterization. In short, Eq. 1.2c - 1.2e are the state constraints. In particu-
lar, Eq. 1.2d represents the fluctuation of traffic speed that can be due to road
congestion, speed limits, traffic light signals, etc. Eq. 1.2f and Eq. 1.2g corre-
spond respectively to the initial and the terminal constraints of the segment under
consideration.

Two paradigms aiming at solving eco-driving problems can be differentiated:
offline optimizations that assume that all road and traffic characteristics and
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constraints are known in advance (or at least estimated with increased aware-
ness thanks to connectivity), and online optimizations that use prediction models
to perform real-time-capable control, e.g., Model Predictive Control (MPC) ap-
proaches [228]. In practice, offline solutions are based on a horizon tf that corre-
sponds to the travel time of the whole trip. Conversely, online solutions are based
on a much shorter horizon tf , over which the behavior of the preceding and the
surrounding vehicles needs to be predicted.

Several approaches can be implemented for offline optimization: dynamic pro-
gramming [64], Pontryagin’s minimum principle [228] or calculating the analytical
solution [203]. Online solutions allow to acquire more information in real time
about the upcoming route. For example, [112] proposes a method with an on
board optimizing controller taking into account the road slope. In the case of
connected vehicles, one may also imagine a control design taking into account the
prediction of the upcoming traffic conditions and accordingly updating the speed
constraints. The main difficulty of online solutions lies in the computation time
as they are expected to be compatible with real-time execution.

Some advancements in online eco-driving approaches are presented in [228].
For ICEVs, the authors propose a parametric optimization technique inspired by
the analytical solution of a simplified version of the eco-driving optimal control
problem. For HEVs, a bi-level algorithm that tries to decouple energy-optimal
drive control from hybrid energy-management control is presented.

As indicated previously, eco-driving strategies for EVs and HEVs are promising
but they introduce additional challenges because of their limited range, recharge
times, and ability to regenerate energy during deceleration phases, which add
constraints to the optimization problem. According to [103], even with full regen-
erative braking, EVs would still benefit from optimized speed profiles that reduce
electromechanical energy conversion losses. Concerning ICEVs, the authors show
that pulse and glide operation of the engine (chattering optimal control) repre-
sent great energy saving potentials, but can be difficult to implement in prac-
tice. Finally, the authors indicate that significant energy savings (5%–30% in each
scenario) can be achieved by optimizing speed profiles over conventional driving
strategies. In particular, energy savings can result from a better utilization of
the energy delivered to the wheels, if vehicles are driven with lower and constant
speeds, reducing the aerodynamic drag.

One common difficulty in the development of eco-driving systems is the neces-
sity to adequately take into account the presence of preceding vehicles. To over-
come this issue, [102] presents an eco-driving control strategy for electric CAVs.
The objective is to optimize the speed profiles of CAVs in order to improve their en-
ergy efficiency, while guaranteeing safety constraints, i.e. respecting the minimum
inter-vehicle distance and maximum speed limits. The controller is set to solve
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optimal control problems and return analytical state-constrained solutions under
different assumptions. According to the authors, the proposed framework is suit-
able for online implementations, and significantly improves the energy efficiency
without increasing trip time. Similarly, [195] proposes an eco-driving strategy for
electric CAVs based on the use of an analytical solution in an MPC framework,
which makes it suitable for a real-time use. In this approach, the controller predicts
the trajectory of the preceding vehicle under the assumption of constant accelera-
tion. The authors indicate that the algorithm is robust and provides near-optimal
speed profiles in terms of energy consumption.

An eco-driving strategy for HEVs, which indicates an energy-optimal speed
profile to follow, is proposed in [297]. To reduce the computation time and enable
online implementation, an Artificial Neural Network (ANN) is trained to decide
which control sequence to apply, and another one is trained to estimate the dura-
tion of each control mode in the control sequence. The control sequences include
maximal hybrid acceleration, maximal electric acceleration, maximal regenerative
braking, maximal hybrid recharge, braking and regenerative braking, optimum hy-
brid operation, optimum electric operation, and constant speed. These multi-class
ANNs are trained in order to return optimal speed profiles from the boundary
conditions, and the constraints of the upcoming trip, which can be estimated
through connectivity and measurements. In practice, the ANNs are trained using
a database provided by the offline resolution of optimal control problems through
Dynamic Programming (DP). In fact, DP is an algorithm capable of providing
accurate optimal solutions of the problem, but has the disadvantage of a high
computational complexity, making real-time implementations of the optimization
procedure difficult. The authors indicate that the online ANN-based speed pro-
files and the offline DP-based speed profiles are reasonably close, both in terms
of speed and in terms of energy efficiency. This result highlights the interest of
machine learning approaches as they give similar results but have much smaller
computation times.

In an urban environment, eco-driving approaches are complex because of the
uncertainty of traffic. In particular, it is very difficult to know the Traffic Light
Signal (TLS) cycles in advance as some signalized intersections have a variable
phase duration depending on the traffic level. If the TLS cycles are unknown by
the eco-driving algorithm, [202] proposes a method that considers traffic lights
as stop signs in the optimization problem. Naturally, the driver is free not to
follow the advised velocity given by the algorithm in the case of green at a traffic
light. To take into account the uncertainty on traffic-light cycles, [240] considers
a stochastic cycle timing that adds to the red-light duration a random variable.
To generate more realistic signal timings, [174] introduces for each intersection a
time-varying probability of green based on measured data. In the optimization
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process, solutions that pass through time intervals with high green probability are
then naturally preferred.

In this sense, the broadcast of Signal Phase and Timing (SPaT) through I2V
communication represents a real opportunity in terms of energy efficiency as this
reduces the uncertainty about TLS. In the case of known and deterministic TLS
cycles, many algorithms can be used to solve the eco-driving problem. For exam-
ple, [184] presents a method based on dynamic programming, [52] uses Dijkstra’s
shortest path algorithm, [115] develops a method with model predictive control,
[232] implements a genetic algorithm, and [179] proposes to relax the integer con-
straints of a Mixed Integer Linear Programming (MILP) approach to transform it
into an optimal control problem and solve it using the direct adjoining approach.
The principle of these algorithms is to add a constraint on the crossing time at
intersections. This allows the CAVs to anticipate the future states of TLS and op-
timize their own speed profile for a timely arrival at a green light. This approach,
known as Green Light Optimal Speed Advice (GLOSA), can be enhanced by V2V
communication as vehicles would also be aware of the traffic state ahead. In [52],
a strategy that optimizes the speed profile of a vehicle is proposed. Its objective is
to improve the energy efficiency by catching the green lights along an arterial road.
In this work, the authors consider that the information about several successive
signalized intersections is available (I2V), but that vehicles do not communicate
with each other (no V2V). The authors indicate that the higher the penetration
rate, the greater the gains in terms of energy efficiency.

To conclude, it is essential to keep in mind that prior knowledge of in-trip
and final trip constraints, such as, inter alia, speed limits, road grade and geom-
etry, state of the road, travel time and distance, and final speed, opens the door
to greater energy savings thanks to better anticipation [103]. Eco-driving algo-
rithms’ efficiency can also be improved with the consideration of other drivers’
aggressiveness, which can be easily addressed when considering CAVs, and with
the use of more complex models to predict the state of the surrounding vehicles
[195]. Yet, some aspects of the problem, such as the presence of pedestrians or
drivers decision making, remain uncertain and hence difficult to predict. This is-
sue can be addressed by the use sensors and cameras. To go further, high CAVs
penetration rates offer very good prospects in terms of energy efficiency as they
considerably improve the anticipation in CAV driving, car following, and lane se-
lection and merging. A democratization of eco-driving systems would need robust
online calculations for all types of powertrains, and the generalization of optimal
in-trip advice in all situations, especially in urban areas. This latter is enhanced
by the use of I2V communication, which represents a great opportunity to develop
green waving, and to approach intersections in an energy-efficient way by antici-
pating SPaT [228]. According to [98], it is necessary to consider the uncertainty
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over the bounds on the predicted vehicle speed. Driver safety, performance im-
provement, and real-time operation are identified as the main technical challenges
for the development of connected CAVs control.

1.2.3 Cooperative vehicle control designs

The first opportunity that is opened up by CAVs consists in the control of vehicles
aiming at improving their own energy efficiency, i.e. “individual gain” optimization
such as eco-routing and eco-driving approaches presented previously. In this case,
CAVs communicate with each other and with the infrastructure, which ensures
reliable predictions as the need for guessing is reduced, but vehicles make their
decisions individually. As a result, vehicles can appear to be competing in some
situations that involve motion conflicts.

Vehicles connectivity and automation offer the possibility to go further and de-
velop vehicles cooperation, i.e. vehicles that communicate (V2V and I2V) and also
coordinate their movements. Coordination algorithms enable to mitigate conflict
situations and guarantee that decisions are jointly feasible [12]. Such algorithms
also open the door to optimal coordinated control, e.g., minimizing the global en-
ergy consumption (“common good” optimization). Vehicles cooperation is almost
impossible to implement with conventional HVs due to unknown plans of neigh-
boring vehicles and lack of precision to coordinate speed, hence the interest in
implementing this kind of approach with CAVs [229].

In practice, cooperation can consist in vehicle platooning, Cooperative Adap-
tive Cruise Control (CACC), lane changing and merging control, and cooperative
intersection control. These points are described and discussed in the following. A
key question in vehicles cooperation is the CAVs penetration rate necessary for
significant energy efficiency improvement.

Vehicle Platooning

Vehicle platooning consists in the formation of groups of vehicles that travel very
closely together. Each platoon is composed of a lead vehicle that controls the speed,
and other vehicles that follow the speed setpoint. Vehicle platooning represent a
real opportunity in terms of energy efficiency as shorter gaps between the vehicles
reduce the aerodynamic drag coefficient. In this sense, the formation of micro-
platoons, even of vehicles of different origins and destinations, can reduce energy
consumption. Also, reduced distances between the vehicles increase road capacity.

CAVs improve opportunities for vehicle platooning as high speed V2V com-
munication and vehicle automation enable faster reactions resulting in reduced
risk of rear-end collision and improved traffic safety. This also allows to reduce
the minimum gap between heavy-duty vehicles from about 10 m [27] to 2 m [8],
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ensuring higher energy efficiency and road capacity. For example, [32] indicates
that an 8-10 meters gap results in an average fuel saving of 8%, while a 3-4 meters
gap results in an average fuel saving of 11%. Generally speaking, [177] indicates
that the closer the longitudinal spacing, the better the energy efficiency of pla-
toons. For improved energy efficiency, note that the gaps between vehicles could
be variable, depending on the road slope [293].

According to [21], three levels of automated platooning can be defined, as
follows

1. human-driven platooning with in-platoon resting in which the lead vehicle
is handled by a driver and the following vehicles can complete the driving
tasks automatically;

2. hybrid platooning in which the following vehicles can be driverless during
platooning phases;

3. driverless platooning which involve full autonomous vehicles.

It appears that vehicle platooning is particularly suitable for the movement of
heavy duty vehicles, especially on highways as they are traveling at high speed,
causing high aerodynamic drag. The opportunity represented by truck platooning
in terms of aerodynamic drag reduction is illustrated in Fig. 1.5. Also, trucks
usually have to travel long distances on highways and could easily join neighboring
trucks to form platoons, even if they have different origins and destinations. The
first studies about truck platooning for fuel saving purposes started in the mid-
1990s with the European project Chauffeur I [27]. A complete overview of fuel
economy in truck platooning can be found in [293].

Figure 1.5: Illustration of the reduction of the aerodynamic drag in truck platoon-
ing [1] [©Peloton Technology. All rights reserved].

As mentioned above, fuel savings in truck platoons can be maximized through
aerodynamic drag coefficient reduction, which is impacted by

• the distance between vehicles, as indicated above;
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• the aerodynamic-trailer configuration, e.g., trailer skirts, trailer boat tails
[293].

• the position in the platoon. For example, a study conducted with three Class
8 tractor-trailer trucks indicates that the fuel savings of the lead, the second,
and the third trucks were respectively 18%, 24%, and 23% [172]. Hence, it
seems to be judicious to establish a rotation of the lead vehicle, especially in
platoons that are not driverless as it would allow drivers to rest.

Several methods can be used to analyze the aerodynamic drag coefficient evolution
and the potential fuel savings: wind tunnel test, road test, track test, and simula-
tion methods. [293] discusses the advantages and disadvantages of each method.
This kind of approach is useful for determining the impact of wind direction on
fuel savings. For example, [176] indicates that there is still an interest in vehicle
platooning under crosswind conditions in terms of energy savings.

In practice, the implementation of vehicle platooning poses some issues. [229]
indicates that the development of truck platooning has resulted in significant chal-
lenges, e.g., platoon string stability (avoid the amplification of disturbances from
the platoon leader to the downstream vehicles.), communication needs, control
design, and formation scheduling. For example, platoons on highways may pre-
vent other vehicles from changing lanes or merging into the highway at on-ramps.
This phenomenon is accentuated by longer platoon sizes, especially for high traffic
densities. This can be solved by dedicating lanes to CAVs and platooning ve-
hicles [190], or by developing adapted algorithms based on V2V communication
that allow platoons to change lanes, and to yield gaps for merging vehicles [271].
Another key point for real-world development of vehicle platooning is to ensure
algorithms of suitable complexity, especially in case of large number of vehicles
platooning. Some researchers have worked in this direction. For example, [258]
proposes to formulate the problem of controlling a large number of trucks in a co-
ordinated manner by using clusters. Similarly, [257] presents a heuristic approach
based on an iterative algorithm. A crucial point in CAVS platooning consists in
the communication needs. In fact, an interruption in the communication with a
small distance between vehicles can pose serious safety problems in the case of
emergency braking of the lead vehicle. Hence, it is safer to keep large gaps ahead
of the platoon leader [234].

Today, truck platooning technology has matured and major manufacturers
could penetrate the market in the near future [229]. In 2016, a European project,
namely the EU Truck Platooning Challenge, gave rise to the first cross border
truck platooning initiative in the world. Six truck platoons (one of each brand:
DAF, Daimler, IVECO, MAN, Scania and Volvo) departed from different Euro-
pean cities to arrive in Rotterdam at the same time. [2] presents the main results
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of the project and the essential points for further development of real-world truck
platooning: involvement of the end users (shippers and haulers), clear segmenta-
tions showing where platooning can be operational, high definition maps, reliable
real-time traffic information, etc.

For improved energy efficiency, vehicle platooning should be combined with
complementary strategies, such as the ones presented in Section 1.2.2: eco-routing,
eco-driving, vehicle choice, maintenance, reduction of weight, reduction of the use
of air condition systems, etc. [258] proposes a centralized approach aiming at
forming and controlling truck platoons. The strategy consists in

1. determining the shortest path for each truck according to their origins and
destinations;

2. establishing possible platoon configurations;

3. optimizing the speed profiles of each platoon.

Cooperative Adaptive Cruise Control

Similarly, CACC research has been strongly progressing over the past few years.
CACC is basically an enhanced Adaptive Cruise Control (ACC) system which, in
addition to using range sensors to adjust the distance from the vehicle ahead, an-
ticipates the motion of neighboring vehicles with a much quicker response through
V2V and/or I2V communication. For example, [182] indicates that the communi-
cation delay to relay a message from the first to the fourth vehicle can be about
only 0.1 seconds with CACC, against more than 5 seconds with autonomous ACC,
as they have to witness speed or direction changes of the vehicle in their direct
line of sight to react and adapt their own behavior. An illustration of vehicles
performing CACC is given in Fig.1.6.

Figure 1.6: Illustration of vehicles forming a CACC string.

The fundamental difference between vehicle platooning and CACC is that a
platoon is necessarily composed of a lead vehicle, that other vehicles are following
as precisely as possible. In other words, vehicle platooning consists in a hierar-
chical control structure, while CACC structures allow communication between all
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vehicles [229]. Usually, vehicle platooning is based on a constant-distance gap, i.e.
a constant distance that does not depend on the speed, while CACC considers a
constant-time-gap, i.e. a distance proportional to vehicles speed [234].

The motivations of CACC are very similar to those of vehicle platooning: im-
proving traffic flow, safety, comfort, convenience, customer satisfaction, and de-
creasing fuel consumption. According to [191], the use of high-speed commu-
nication in CACC systems could reduce the average gap between vehicles from
1.4 seconds to 0.6 seconds, which should result in an increase in energy efficiency
and in highway lane capacity. In [165], the 100% CACC and the 100% ACC are
compared. The results reveal that in the CACC scenario, the fuel consumption
rate can be reduced by half, and the capacity can increase up to 49%, depend-
ing on the traffic demand. Similarly, [144] proposes to investigate the benefits
of a control approach based on cooperation between electric vehicles performing
eco-driving. The energy efficiency and string compactness are compared with two
scenarios: an ACC strategy, and an eco-driving strategy without cooperation. The
results indicate that the cooperating eco-driving control framework outperforms
the other control strategies regarding both criteria. Safety can be improved in
CACC systems by developing collision warning or mitigation systems, but CACC
alone is not primarily a safety system [234].

CAVs are designed to communicate both with the infrastructure (V2I/I2V),
and with other vehicles (V2V). According to [234], two major uses of V2I/I2V
communication in CACC systems are the implementation of

• Variable Speed Limits (VSLs), aiming at reducing congestion at bottleneck
locations by lowering upstream vehicle speeds;

• arterial coordinated start, that coordinates the start of vehicles waiting at a
red traffic signal when the signal turns green. In urban areas, arterial coor-
dinated start is particularly promising because of its simplicity and potential
huge impact on intersections throughput [160].

In CACC systems, V2V communication consists in sharing at least the vehicle
location, speed, acceleration, intentions, and performance limitations. This com-
munication can be used simply to develop more performing ACC, but it also opens
the door to much more complex CACC systems, in which vehicles are able to antic-
ipate their decisions by communicating with vehicles that are beyond their direct
line of sight. This would greatly contribute to stabilizing the responses of the
CACC-equipped vehicles. As with vehicle platooning, V2V CACC is especially
promising on highways.

In practice, several string formation and dissolution strategies for improved
energy efficiency can be implemented, with differing connectivity architectures
and collaboration levels. These strategies can be based on, inter alia, classical
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controllers, receding horizon controllers, constrained optimization based on Pon-
tryagin’s Minimum Principle [67]. An overview of these approaches is proposed by
[234]. The simplest approach for string formation consists in ad-hoc clustering, in
which vehicles do not deliberately seek out other CACC-equipped vehicles. In this
case, the higher the CACC-equipped vehicles penetration rate, the more efficient
this approach is as there are statistically more CACC-equipped vehicles following
each other. The interest of ad-hoc vehicles clustering is negligible at low market
penetration rates.

CACC string formation strategies can also rely on more developed local coor-
dination methods. The idea is to instruct equipped vehicles that are close to each
other to speed up or slow down in order to form a cluster. A still openly debated
point is whether or not the benefits of clustering are greater than the losses due
to coordination, e.g., acceleration or deceleration and lane changes. This issue
is addressed in the COMPANION project led by Scania [151]. It appears that
the amount of fuel saved by a truck catching up a platoon ahead depends on the
initial distance to the platoon and the distance to the destination. Hence, as for
ad-hoc vehicle clustering, local coordination strategies are more energy-efficient
at high penetration rates. The main challenges to local coordination consist in
determining the vehicles’ positions with a great precision, while considering the
traffic conditions, road slopes, etc. This kind of approach gives rise to privacy
concerns as they may need to broadcast identifying information about the vehicle
to catch up. Finally, it is clear that full autonomous vehicles, i.e. CAVs, represent
a geat opportunity for local coordination implementation as they prevent drivers
from having to change lanes to join a cluster.

Another vehicle clustering strategy consists in global coordination, i.e. an
approach that coordinates vehicles with similar origins and destinations in order
to form a cluster before they enter the highway [145]. Ideally, vehicles’ routes
and speed profiles are adjusted to arrive at the same time at the highway entry
points. This poses a significant challenge because of the uncertainty of road traffic,
and requires long-range communication. In practice, it is likely that this kind of
approach will make CACC-equipped vehicles wait before enough vehicles have
gathered to cluster together and enter the highway. Through this approach, the
main issue is the waiting time before departure, which is difficult to get accepted,
especially for short trips. Nevertheless, global coordination strategies can be a good
alternative at low penetration rates, when ad-hoc clustering and local coordination
approaches are inefficient.

CACC string dissolution strategies also require special attention in order to
avoid creating new traffic problems. According to [234], a vehicle can leave a
CACC string by making a lane change without decelerating, or by braking first to
deactivate the CACC function. In the future, research on CACC string dissolution
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approaches needs to be further investigated, especially in unusual cases, such as
when multiple consecutive vehicles leave at the same exit. This would require a
very high precision, which could be provided by CAVs.

The potential benefits of CACC have already been investigated and quantified
through simulations [256] and real-world experiments [182]. In real traffic condi-
tions, [182] indicates that CACC is able to reduce gap variability, and to handle
unequipped vehicles cutting in and out. The authors also demonstrate that CACC
has a shorter response time and a better string stability than ACC. This confirms
the potential for a CACC system to attenuate disturbances, and improve highway
capacity and traffic flow stability.

Despite the fact that CACC offers interesting prospects in terms of energy
efficiency, very little research has been done to explicitly improve the ecological
aspect of the problem. In [273], an approach aiming at minimizing the platoon-
wide energy consumption and pollutant emissions at different stages (sequence
determination, gap closing and opening, platoon cruising with gap regulation, and
platoon joining and splitting) of the CACC system operation is proposed. In
comparison with an existing CACC system, the results show that an eco-CACC
alternative may reduce the global energy consumption by 1.45% during the for-
mation of a platoon, and by 2.17% during platoon joining phases. As indicated
previously in Section 1.2.3, the benefits of vehicle clustering are much higher [172]
in comparison with a scenario in which no cooperative control is implemented.

Note that several incentive strategies can be imagined to develop CACC in the
future, e.g., transfer payments from the following vehicles to the lead vehicle as
they do not all equally benefit from clustering [234], use of managed lanes with
pricing strategies [216], etc.

As with vehicle platooning, a limit must be placed on the length of CACC
clusters for many reasons, e.g., safety, performance limitations, and integration
with conventional vehicles. The main reason for this limit lies in the need to
provide sufficient lane-changing gaps for unequipped vehicles. According to [234],
the range of the wireless V2V communication system is not the limiting factor
anymore as it reaches more than 300 m.

CACC systems raises the question of vehicles clustering within a string. In
fact, the simplest approach is to add vehicles in the rear as they arrive. For
safety reasons, the heaviest vehicles should be at the front, especially if there are
trucks in the string. However, this complicates the string formation and dissolution
problems, and may reduce passengers comfort in light-duty vehicles. Another
option is to group vehicles by destination. This would reduce the number of
maneuvers during the string formation and dissolution, thereby ensuring smoother
speed profiles, improved energy efficiency, and traffic flow [234].

Finally, CACC offers huge opportunities in terms of energy efficiency, through-
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put, safety, and customer comfort. This can even be enhanced by the devel-
opment of CAVs, which are fully autonomous. CACC is also compatible with
semi-autonomous vehicles, in which the driver needs to control the steering but
not the speed of the vehicle, for example. However, this scenario would be less
efficient because of human factors such as drivers’ reaction time and lack of pre-
cision. Drivers would also need a thorough understanding of how CACC works.
V2V CACC seems to produce the greatest benefits on highways, while V2I/I2V
CACC opens the door to new alternatives in urban environments, especially at
intersections. In the future, several challenges regarding CACC string formation
and dissolution will have to be met for a large-scale development of CACC. Ac-
cording to [62], the first step in the deployment of CACC systems is to establish
efficient and robust communications under highly dynamic environments. Addi-
tional issues would also need to be addressed. These include, inter alia, the legal
aspects of crashes caused by failure of the system, users’ privacy and security, tech-
nology certification, and users’ training in the case of vehicles that are not fully
autonomous. According to [98], future developments of CACC systems should pay
special attention to vehicle and string stability with sufficient robustness margins.

Lane Change and Merge

Lane change and merge (into a highway from an on-ramp or exiting to an-off ramp)
represent a complex problem, which can be explained by its combinatorial nature
and the lack of information about the average speed on the different lanes [229].
Some examples of lane change and merge maneuvers are shown in Fig. 1.7. CAVs
offer promising prospects for overcoming the difficulties related to this problem
by using V2V communication to anticipate the intention of neighboring vehicles
and estimate the traffic speed in each lane. The knowledge of the lanes state in
advance could greatly improve eco-routing and eco-driving algorithms for CAVs
by making much more judicious and smooth lane changes. For example, [131]
proposes a control framework aiming at improving the energy efficiency and the
travel time. In this approach, the authors anticipate the behavior of surrounding
vehicles to change lane and adjust their speed. Note that in case of lane reductions
and moving bottlenecks in congested situations, the speed of the bottleneck and
the speed limit play an important role in terms of energy efficiency, traffic flow
rate, average speed, and traffic safety [150].

In addition to the benefits brought to individual vehicles, anticipative lane
selection and merging could also have a positive impact at a larger scale, by im-
proving the overall energy efficiency through reduced risks of phantom jam, and
smoother velocity trajectories, as indicated by [220]. These global benefits could
be even greater if the vehicles cooperated, i.e. considered the impact of their de-
cisions on their neighboring vehicles, and behaved in a way that optimizes the

23



Chapter 1. Introduction

Figure 1.7: Examples of lane change and merge maneuvers.

“common good”. In this sense, the vehicles would not act as independent enti-
ties, but as elements of a whole whose objective is the overall minimization of
energy consumption [229]. This cooperative lane change and merge problem, with
“common good” considerations, can be addressed in two different ways:

• by implementing a collaborative distributed control, in which vehicles opti-
mize their own behavior and share their intentions [189, 166];

• by implementing a centralized control, in which the problem is solved at once
for a group of cooperative vehicles.

In [68], the authors propose to compare these two approaches in a multi-lane
environment. The results indicate that both approaches outperform the classic
non-collaborative decentralized controller, i.e. when every vehicle optimizes its
behavior to improve its “individual gain”. It appears that the centralized algorithm
returns the best solutions but its computation time is less suitable for real-time
implementation.

In practice, several cooperative lane change and merge strategies can be estab-
lished. An approach based on cooperative V2V negotiation is presented in [169].
In the same vein, the method presented in [156] consists in the use of transferable
utility games, in which gaps in traffic are created in exchange for monetary com-
pensation. In other words, vehicles can pay to change lane faster and reduce their
travel time. The problem is solved using Nash bargaining theory, and the results
reveal that this kind of approach can help reach win-win situations.

Only a few studies have evaluated the energy savings of cooperative lane change
and merge. One of them is presented in [16]. The authors propose a cooperative
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strategy that considers vehicles in current and target lanes during lane changing
phases. This approach is compared with the traffic model MOBIL, and traffic
simulations reveal that the cooperative approach improves merge time and rate,
wait time, fuel consumption, average velocity, and flow at the cost of a slightly in-
creased travel time. Similarly, [244] proposes an extended CACC approach adapted
to CAVs, which also ensures lane changes. The authors indicate that the system
improves traffic flow, and is also supposed to reduce fuel consumption and CO2
emissions.

Just like for other cooperative vehicle control strategies, the V2V communi-
cation delay represents a major issue in cooperative lane change and merge ap-
proaches. Most of the works on this topic neglect this aspect of the problem. In
[11], a cooperative lane change protocol that integrates the impact of V2V com-
munication delay is proposed. The algorithm considers bounding boxes around
the vehicles in order to determine the risk of collision. Experiments through phys-
ical test drive and simulation reveal that V2V communication systems with 10 Hz
update rate are appropriate [114].

According to [219], efficient cooperative lane change and merge systems should
perfectly integrate both vehicle-based radar data and GPS data transmitted through
V2V communication. To enhance such systems, vehicles could also use the support
of I2V communication. The authors also advocate the implementation of dynamic
role assignment during lane change maneuvers, rather than fixed roles established
prior to the maneuvers.

Cooperative Intersection Control

In urban areas, signalized intersections have a major impact on the energy con-
sumption of vehicles due to braking, idling, and starting from stops. Currently,
many TLS timings are scheduled offline, and are then deployed as fix timetables,
that can vary over time, e.g., peak hours/rest of the day, week days/weekend days,
etc. To reduce idling and improve throughput at intersections, loop-detectors can
be installed, in order to trigger rules to override the pre-optimized timetables, or
even to optimize the SPaT of the intersection under consideration online (cf. Sec-
tion 1.3.2). For this reason, the states of traffic light signals generally cannot be
known in advance with certainty. In such a scenario, it is possible to use historical
data in order to estimate the probability of a green or a red over a future horizon
[23].

CAVs offer promising opportunities to improve the energy efficiency at inter-
sections [229]. In fact, their connectivity and automation features can be used
to control them at intersections in a cooperative way, i.e. in a “common good”
approach. As explained in Section 1.2.3, this can be achieved by CACC systems
that improve the throughput by allowing coordinated vehicles starts, thanks to
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I2V communication.

In the near future, it is conceivable that some urban areas may only be ac-
cessed by CAVs. In these zones where the penetration rate of CAVs would be
100%, traffic light signals as we know them today would not be needed anymore.
For example, [39] proposes a framework that optimizes the speed profiles of two
vehicles approaching an unsignalized intersection. The study aims at optimizing
the travel time and smoothing the CAVs speed profiles for improved passengers’
comfort, while ensuring safety constraints. The authors also investigate the effect
of the range of the V2V communication devices, and indicate that increasing it
up to a specific value is beneficial, but the optimal speed profiles do not change
after this point. In [155], a cooperative framework that allocates priority at au-
tonomous intersections based on transferable utility games is proposed. In this
approach, vehicles can pay for intersection priority. In other words, winners (time
buyers) pay losers (time sellers) in each game. Such strategies are promising as
they takee into account the value of vehicles’ time, and losers are compensated.
The authors also indicate that the approach is robust to adversarial behavior. Sim-
ilarly, [181] presents an approach based on a polling policy, and [242] proposes to
generalize the classical queuing theory to develop slot-based intersections, similar
to those commonly used in aerial traffic. The simulation results reveal that such
autonomous intersections could double capacity and significantly reduce delays,
compared to conventional intersections ruled by traffic light signals. According
to [117], reservation-based intersection control systems could improve the energy
efficiency by 50%. In fact, the energy consumption and the number of stops are
greatly reduced in such systems [72, 71]. [71] indicates that the number of stops can
be reduced 100 times, and the improvement in energy efficiency could reach 20%.
[4] proposes an illustration, given in Fig. 1.8, of such an autonomous intersection,
in which vehicles negotiate the “right of way” using V2V communication.

Figure 1.8: Cooperative intersection [4] [Published with permission of Elsevier].
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More generally, a systematic literature review of intelligent intersection man-
agement systems for CAVs is proposed in [185]. The authors indicate that some
works on this topic consider rule-based methodologies (40%), while others consider
optimization methodologies (45%), and hybrid methodologies (11%). Currently,
few works are based on machine learning approaches (4%). The authors also
explain that the vast majority (93%) of the articles reviewed consider a CAVs
penetration rate of 100%. To be more realistic, autonomous intersections should
be compliant with mixed traffic (CAVs and conventional HVs), pedestrians, and
cyclists. According to the authors, a promising research direction to achieve this
objective is to use the feature of CAVs to collect environmental data and share
them through V2V communication. Pedestrians and cyclists could also be spotted
by fixed cameras or sensors installed at intersections, and their presence could be
indicated to approaching vehicles through I2V communication. To go further, ad-
ditional analysis and artificial intelligence open the door to pedestrians and cyclists
intention prediction [45]. Continental is currently working on the development of
smarter and safer mobility in cities. An illustration of the company’s strategy to
anticipate the presence of pedestrians and cyclists is given in Fig. 1.9.

Figure 1.9: Strategy to increase safety by communicating hidden dangers to ap-
proaching vehicles and pedestrians at an intersection [45] [©2019 Continental. All
rights reserved].

To go further, intelligent intersection management systems for CAVs can be
used in conjunction with CACC systems for increased energy efficiency. According
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to [127], this kind of approach could shorten the average travel time by 30% and
reduce the fuel consumption by around 23% with respect to signalized intersec-
tions, in high traffic demand scenarios. Note that such approaches slightly sacrifice
the energy efficiency to form platoons, which can be challenging in urban areas.

Traffic Harmonization

CAV technology is a great opportunity to improve traffic fluidity, safety, and energy
efficiency. CAVs can optimize their behavior in order to improve their own benefits
(“individual gain” optimization), or the global benefits of a group of cooperating
CAVs (“common good” optimization).

A key point in CAV research is the management of mixed traffic (CAVs with
conventional HVs), as the penetration rate of CAVs will certainly take time be-
fore it reaches 100% [161]. In mixed-traffic situations, coordinated and smoother
motion of CAVs could also improve the energy efficiency of the surrounding non-
automated vehicles, even at low penetration levels [229].

In mixed-traffic conditions, HVs have a strong influence on traffic flow as they
increase the spread of shock waves in the downstream direction, causing stop-and-
go waves [63]. As indicated in [90], CAVs can be designed to explicitly stabilize the
traffic flow and actively dampen stop-and-go waves, which are particularly energy
consuming. Such approaches based on Reinforcement Learning (RL) strategies
are presented in [263]. On highways, stop-and-go waves may appear due to the
presence of bottlenecks. In this kind of situation, [89] proposes to optimize the
speed profiles of the CAVs upstream of the bottleneck in order to hedge against
the backward shockwaves and smooth the traffic. According to the authors, the
resulting speed harmonization greatly improves the energy efficiency (between 12%
and 16%, depending on the traffic demand) and reduces environmental impacts.
Similarly, [152] presents an approach that optimizes the speed profiles of CAVs in
order to use them as moving bottlenecks. The authors indicate that this approach
is especially beneficial when the density is low and medium, but its impact is
limited in highly congested situations. The study conducted in [63] considers
delays due to V2V communication, and confirms the robustness and the efficiency
of such approaches to dampen down traffic waves. In [237], the potential benefits
of traffic stabilization are quantified through field experiments with 20 to 21 HVs
and 1 CAV (∼ 5% of the vehicle fleet) traveling along a circular ring road, as
represented in Fig. 1.10. Vehicle velocity and acceleration data are collected, and
emissions are estimated using the MOVES model. The results reveal that the
presence of a stabilizing CAV may improve the energy efficiency by 15%. The
potential benefits on pollutant emissions are even greater (up to 73% reduction for
nitrogen oxides). These results are promising, but it is essential to keep in mind
that this approach represents a very much tamed scenario, and that less significant
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impacts are expected when the density of vehicle is lower, or when there are several
lanes, as the stop-and-go waves would be rarer and of lower intensity.

Figure 1.10: Vehicles traveling along a circular ring road.

The effectiveness of the harmonizing effect of CAVs varies according to traffic
conditions and CAVs penetration rate. In [294], this phenomenon is analyzed
under mixed-traffic conditions in an urban environment. The authors propose a
control strategy for vehicles crossing signal-free intersections, described as follows:

• speed profiles are optimized for the CAVs in order to cross the merging zone
in a limited time while minimizing the acceleration and comply with safety
requirements;

• HVs are subject to priority rules.

The average fuel consumption is measured for different CAVs penetration rates,
and different traffic conditions, and is compared with the energy consumption
under TLS control, i.e. conventional signalized intersections. In the scenario pro-
posed by the authors, the interest of CAVs in terms of energy efficiency appears
to be obvious because the energy consumption decreases as the penetration rate
increases. However, the strategy seems to lose its usefulness under heavy conges-
tion. The authors indicate that the limit below which the approach is beneficial
is the critical flow rate, which depends on the road capacity, the speed limit, the
number of lanes, etc.

To go further, CAVs cooperation too can have a positive effect on traffic-
flow performance and energy efficiency. For example, [256] studies the impact of
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CACC for a highway-merging scenario from four to three lanes. The simulation
results indicate that CACC can have a positive impact on traffic throughput,
and can increase highway capacity near lane drops. This is particularly true in
conditions with high-traffic volume and high penetration rate of CAVs performing
CACC. The authors indicate that a low penetration rate could even lead to a
degradation of traffic-flow performance. The impact of CACC on energy efficiency
in a complex multi-lane mixed-traffic stream is analyzed in [165]. As indicated
previously, the fuel consumption rate of the 100% CACC is reduced by 50% and
the capacity could be increased by 49%, compared to the 100% ACC scenario. At
40% penetration rate, the capacity can still be increased by 15% to 19% when
adapted control strategies are implemented. The study presented by [165] was
performed at a simple freeway merging area, but it can easily be extended to more
complex scenarios such as complete freeway or arterial corridors.

Note that other CAV-based strategies than CACC can also improve the overall
energy efficiency under mixed-traffic conditions. For example, [268] analyzes the
energetic impact in an urban environment of a speed advisory system that opti-
mizes CAVs’ speed limits in order to reduce idling at red lights. It appears that
this approach not only improves the energy efficiency of CAVs equipped with this
speed advisory system, but also benefits HVs and decreases their fuel consumption,
with a compromise in average traffic flow and travel time. The authors indicate
that the global fuel consumption decreases with the increment of CAVs penetra-
tion rate. The reason is that HVs are more likely to follow a smoother-moving
CAV.

In conclusion, CAVs and their many cooperative strategies have a positive im-
pact on the overall energy efficiency under mixed-traffic conditions. Their impact
varies according to traffic congestion and CAVs penetration rate. In order to im-
prove their impact on energy efficiency, CAVs could cooperate, and coordinate
several strategies such as, inter alia, CACC, cooperative lane change and merge,
autonomous intersection, and speed harmonization.

1.3 Ecological management of traffic flows

From a network-wide road traffic management perspective, the optimal control
of single vehicles can be associated with the control of traffic flows. The main
advantage of this type of control is that it allows for a much more macroscopic
approach and ensures that the implemented strategy provides for the “common
good” at the network level.

When it comes to the control of road infrastructures, microscopic traffic models
and emission and energy consumption models may not be appropriate because
the individual speed profiles of vehicles are generally not available. In fact, such
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measurements represent a huge amount of data which is very difficult to obtain
and process. Even if such data were available, the use of microscopic models
for control approaches would pose the problem of numerical complexity as the
computational load of such models increases sharply with the number of vehicles.
Hence, ecological management strategies of traffic flows generally use macroscopic
traffic models coupled with emission and energy consumption models to predict
and optimize the behavior of road infrastructures, i.e. speed limits, TLS, etc.

1.3.1 Emission and energy consumption models

Macroscopic emission and energy consumption models use aggregate network or
link-based traffic data (vehicle density, traffic flow, average speed) to estimate the
environmental impact of traffic flows. The traffic data can be either measured
by fixed sensors or Floating Car Data (FCD), or predicted using macroscopic
fluid-based models, which are much faster than microscopic car-following models.
In fact, the latter have enormous computation times at a network level because
of the large number of simulated vehicles. Yet, is is essential to keep in mind
that macroscopic traffic modeling is not able to reflect differences in microscopic
drivers’ behavior (e.g. sudden deceleration, merging, lane changing). When traffic
is congested, these can result in shock waves causing traffic breakdown, that a
macroscopic traffic model cannot depict [138].

Once the macroscopic traffic kinematics is determined, it can be associated with
a microscopic emission and energy consumption model, in a mesoscopic framework.
As a result, the average pollutant emission and/or energy consumption rates can be
multiplied by the flow of vehicles to estimate the global environmental impact. In
such a mesoscopic framework, these rates can be provided by emission and energy
consumption models based on the average speed and the fleet composition [192].
Some models also consider additional parameters such as the slope, the driving
conditions (highways, urban roads, stop-and-go traffic), the volume-to-capacity
ratio (number of vehicles divided by the capacity of the link), etc. [29, 105, 187].
To go further, it is possible to consider an emission and energy consumption model
that approximates vehicles’ acceleration from macroscopic traffic data [288, 124],
or that uses machine learning approaches.

As a result, such mesoscopic frameworks consist in coupling a macroscopic
traffic model to a microscopic emission and energy consumption model that re-
turns the average emission rate per vehicle. In this sense, they are referred to as
meta-models in the following. In practice, many associations of models are possi-
ble. For complexity reasons, some are more suitable than others. In order to go
large scale, the objective is to find a balance between accuracy and computation
time, which depends mainly on the use of the framework (e.g. compatibility with
control methods). For example, a question is whether the additional complexity
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introduced by more precise traffic models significantly improves the accuracy in
depicting the traffic behaviors that impact energy efficiency. Note that a micro-
scopic approach to describe large-scale emissions and energy consumption would
provide the best estimations but it would involve a lot of data that can be diffi-
cult to obtain and process, the need to precisely calibrate the model, and a sharp
increase in computation times. However, this approach can be useful for offline
validation purposes.

A complete review of macroscopic emission and energy consumption models is
given in Section 3.3.1.

1.3.2 Road infrastructure control designs

In Sections 1.2.2 and 1.2.3, the CAVs control strategies, either for the optimiza-
tion of their “individual gain” or the “common good”, are based on V2V and/or
I2V communications. In this section, we review the main infrastructure control
strategies to reduce the environmental impact on a large spatial scale and for a
large number of vehicles. Such approaches are based on V2I communication. In
practice, they consist in collecting data from vehicles traveling in the road network
(vehicle density, traffic flow, average speed, etc.), which is greatly simplified with
the current development of connected vehicles. Then, the infrastructure actua-
tors are controlled in order to optimize some metrics (global energy consumption,
pollutant emissions, traffic throughput, average travel time, etc.). Usually, these
actuators are speed limits and TLS duty cycles and offsets, but they can also
include for example dynamic routing, which consists in redistributing the traffic
demand over the network in a more efficient way by controlling the split ratios at
intersections and bifurcations [198].

The objective of road infrastructure ecological management is to determine via
an optimization method, at each control time step, the control inputs that min-
imize the traffic emissions and energy consumption. Note that some approaches
do not explicitly minimize emissions or energy consumption. Instead, they tend to
mitigate congestion and eliminate shock waves through density homogenization,
vehicles interdistance equalization, etc. These methods are likely to indirectly re-
duce emissions and energy consumption as they reduce the number of accelerations
and decelerations [19]. However, it is important to make careful analyses about
the effect of congestion reduction on emissions and energy consumption. In fact,
their relationship depends on many factors such as the speed of traffic [77].

For optimal CAVs control and maximum energy efficiency, the control of in-
frastructures, which is based on V2I communication, should be coordinated with
the control of CAVs, which is based on V2V and I2V communications. In the
following, the control strategies are classified according to the employed actuator.
Their implementations are discussed both in highway and urban environments.
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Variable Speed Limits

One main possibility in the control of road infrastructures is Variable Speed Limits
(VSLs), which consists in imposing variable location-dependent speed limits across
the road network. A general overview of the theoretical background and the main
strategies of variable speed limits frameworks is proposed in [138].

Many VSLs approaches can be found in the literature. Some of them aim at
improving safety [149, 279, 224], increasing road capacity and traffic flow [82, 100,
109], reducing pollution [290], and improving the energy efficiency [199]. Usually,
all these approaches consist in harmonizing the traffic speed. Their control frame-
works can therefore have a positive impact on several of these metrics [69], and
multi-criteria optimization may not always be necessary [137]. VSLs strategies can
be of particular interest in cases of poor visibility, especially under foggy conditions
[295].

Most VSLs approaches are designed to control a highway environment. Some
of them do not aim at explicitly reducing emissions and energy consumption (e.g.
SPECIALIST method that eliminates shock waves [109]). An increasingly com-
mon approach is to use reinforcement learning methods to optimize speed limits.
In [267], the authors propose to follow this approach to minimize the travel time.
Other works are explicitly oriented towards energy efficiency improvement. Gener-
ally, they implement a multi-objective optimization that minimizes also the travel
time so that unrealistic solutions like speed limits equal to zero are avoided. For
example, [299] formulates a VSLs problem as a convex quadratic optimization
problem in order to minimize the global energy consumption, which is derived
from the average speed-based COPERT model. [162] proposes a VSLs control
strategy based on the vehicular trajectory that minimizes the fuel consumption of
a single vehicle under certain traffic conditions. Another framework is proposed
in [290] to control VSLs on highways.

Some approaches have been designed to be compliant in urban environments.
For example, [246] and [204] propose frameworks to evaluate the impact of various
speed limits on emissions, energy consumption, and traffic congestion, without
seeking to optimize speed limits. In [204], the authors use the microscopic traffic
model DRACULA and a data-based emission and energy consumption model. A
case study is conducted in Ghentbrugge, a neighborhood of the city of Ghent,
Belgium. Similarly, [167] proposes to study the effect of speed limits in an urban
network by implementing Intelligent Speed Adaptation (ISA). This system sug-
gests, or imposes, speed limits to the driver through in-vehicle electronic devices.
Note that ISA only informs road users of the speed limits, but does not calculate it
independently for each vehicle. In other words, it is just a communication device.
In this study, the authors consider the speed limits as inputs of the simulation, i.e.
they can vary with locations but are fixed over the simulation time period, and
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are not optimized. Microscopic traffic models, such as DRACULA, highly increase
computation times and are therefore very difficult to use in practice for control
purposes. However, they are particularly adapted to evaluate the impact of various
speed limits in offline frameworks. A few works propose approaches that are based
on microscopic traffic models to perform VSL, but they are largely limited by the
number of vehicles under consideration. For example, [137] presents an approach
to maximize mobility, safety and environmental benefit.

In several works, the authors seek to dynamically optimize speed limits. Some
of them do not consider explicitly the environmental aspect, such as [243] which
aims at harmonizing the speed within the urban network and maximizing the
outflows. Usually, ecological management strategies are based on multi-criteria
objective functions in order to improve both the energy efficiency and the traffic
performance, and avoid trivial solutions, e.g., minimum or maximum speed limits
everywhere. [199] proposes to optimize the weighted sum of energy consumption
and total distance traveled by road users, [55] minimizes the energy consumption
and the total time spent by vehicles by implementing a method based on shock
waves theory, and [51] considers the weighted sum of the energy consumption,
the total time spent, the instantaneous travel time, and the total travel distance
in a single road section. In [55], the authors propose a method based on shock
waves theory to control speed limits in an urban area and optimize the energy
consumption and the travel time. A hybrid approach proposed in [259] aims at
controlling speed limits for mixed urban and highway networks in order to minimize
travel time.

In most of the works presented above, the authors implement MPC strategies.
Such approaches are valuable as MPC is compatible with the uncertainties of the
traffic models, and it can handle non-linear and non-convex optimization. How-
ever, special attention must be paid to the computation time to make it tractable
for real-time operation, especially when the control inputs are very numerous. To
address this issue, MPC approaches can be parameterized to reduce the number
of control inputs. In such frameworks, the number of parameters to optimize is
smaller than the number of control inputs and the set of possible solutions is hence
smaller. This results in faster computation times but also a loss of performance.
For computation time issues, parameterized MPC is more suitable for real-time
application than conventional MPC, but it still may be too slow, depending on the
considered system, the parameterization, and the control time step. Finally, multi-
start optimization algorithms can be implemented to improve the performance of
the controller [199, 290].

Finally, machine learning strategies represent a promising opportunity for VSLs
implementation as they could greatly reduce computation times. For example, an
RL approach aimed at optimizing the total network throughput, the delay time,
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and the emissions is proposed in [296]. In this work, the authors propose a case
study conducted on the Sioux Falls network.

As mentioned previously, the efficiency of V2I communication-based VSLs ap-
proaches can be enhanced when coordinated with cooperative strategies based on
V2V and I2V communications. For instance, CACC systems can be subject to
VSLs control strategies for improved traffic fluidity and energy efficiency [234].

Traffic Light Signals Adaptive Control

In Section 1.2.3, we reviewed the use of V2V and/or I2V communication to control
intersections, that can even be unsignalized when the penetration rate of CAVs
reaches 100%. In this section, we address the use of V2I communication in order to
control the TLS, i.e. control their cycle time, split time and offset, and improve the
overall energy efficiency of the vehicles (HVs and CAVs) traveling in the network.
Note that instead of using V2I communication (for HVs that are not connected
for example), one may imagine a system with fixed sensors in order to count and
locate vehicles. These sensors include loop detectors, proximity sensors, or cameras
associated with image classification systems [133].

In this sense, many studies consider the control of TLS in order to maxi-
mize the bandwidth [93] and minimize the travel time [130, 106], without special
consideration for pollutant emission and energy consumption. Several strategies
aim at performing this function: Split, Cycle and Offset Optimisation Technique
(SCOOT) [119], Sydney Coordinated Adaptive Traffic System (SCATS) [171],
Real-time Hierarchical Optimized Distributed Effective System (RHODES) [183],
Traffic-responsive Urban Control (TUC) [65], max-pressure [262], TRANSYT-7F,
Synchro, PASSER, TSOP, etc. [93]. In [95], the authors formulate the signal tim-
ing control problem as a real-time convex optimization problem whose objective
function is the weighted sum of the total travel distance, the density balancing and
a regularization term that penalizes abrupt changes in the control dynamics. The
density balancing term aims at homogenizing the density over the network. The al-
gorithm is split into subproblems whose sizes are independent of the network size,
thus allowing for scalability. Approaches based on machine learning techniques
are more and more common for TLS control. For example, [276] proposes to use
Knowledge Compilation theory to train an ANN. The controller selects the state of
the TLS by observing the presence of vehicles in different regions of the incoming
roads. In order to compensate for the lack of data and to take into account the
unpredictable behavior of road users, some works propose approaches based on
stochastic methods to control TLS [40, 78]. In practice, the main objective of the
approaches reviewed in this paragraph, which do not explicitly consider the envi-
ronmental impact, consists in reducing congestion by improving the throughput
and reducing the delay. However, this can have a positive impact on the energy
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consumption and pollutant emissions.

In addition, few TLS control strategies in urban areas explicitly consider the re-
duction of energy consumption. For example, [104] expresses the signal timing op-
timization as a MILP problem optimizing both the delays and the emissions. The
authors consider the Link Transmission Model (LTM) and emissions are calculated
as a function of the density of the links. Similarly, [197] proposes a meta-model
that considers the analytical approximations of the travel time and the fuel con-
sumption to solve the urban signal timing optimization using a simulation-based
optimization algorithm. It is also more and more common to use RL methods to
control TLS in an urban network. For example, [136] presents a framework that
considers the microscopic dynamics of vehicles. The authors propose to approx-
imate the energy consumption metric by the average number of vehicles stops,
assuming that this performance index can be directly related to ecological issues.
A more precise approach can be found in [238]. The authors propose to simulate
the traffic dynamics through a microscopic traffic model, namely VISSIM, and
to calculate the emissions by using the Comprehensive Modal Emissions Model
(CMEM) emission and energy consumption model. A signal timings optimiza-
tion is then conducted using VISGAOST, an optimization program based on the
stochastic nature of genetic algorithms. Although the authors propose a case study
on a road network composed of two suburban arteries, an online optimization based
on this method is not possible because of lengthy calculation times. However, such
methods can be implemented for offline optimizations.

It is very common to use MPC to implement TLS control frameworks. For
example, [158] uses this approach in an urban traffic network. The authors consider
a dynamic fluid-based meta-model associating the S traffic model and VT-micro
to characterize emissions. The approach aims at reducing both congestion and
emissions as the objective function considers the weighted sum of the travel time
and the total emissions. A similar approach based on a gradient-based optimization
approach is proposed in [125]. The authors consider an extension of the S traffic
model. The optimization criteria is the weighted sum of the travel time, the total
emissions, and the absolute difference of two temporally successive control inputs,
in order to avoid abrupt variations.

On highways, the equivalent strategy, known as ramp metering, consists in
regulating the traffic flow entering the highway at on-ramps. Many ramp meter-
ing strategies do not explicitly optimize emissions and energy consumption, but
they aim at reaching a desired density. That is the case of ALINEA method,
presented in [205], which uses a feedback law and the traffic density measured
downstream from the merge area. Similarly, [212] presents an approach to balance
the vehicle density on the freeway by formulating the optimization problem as a
non-cooperative Nash game.
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Some authors express the ramp metering control approach as an optimiza-
tion problem aiming at explicitly reducing emissions and energy consumption.
For example, [47] presents a multi-objective optimization based on a constrained
Linear-Quadratic (LQ) control, minimizing both the travel time and the traffic
emissions on freeways. [207] formulates the ramp metering control problem as a
multi-objective nonlinear constrained optimization problem considering the same
objective function. These metrics are calculated considering both the traffic in
the on-ramp and in the mainstream. The emissions are calculated using an aver-
age speed-based model based on COPERT. The nonlinear optimization problem
is solved with a specific version of the feasible direction algorithm: the derivative
backpropagation method RPROP. A specific feature of this work is that the au-
thors consider two classes of vehicles (cars and trucks) individually controlled by
the optimization process. An overview of ramp metering algorithms can be found
in [206].

For optimal energy efficiency and improved throughput, both V2V/I2V and
V2I communication-based approaches should be coordinated, i.e. a bi-directional
CAV-infrastructure communication should be proposed [282, 54, 94]. For example,
[282] presents an approach that combines TLS control and eco-driving in a 100%
CAVs environment. The objective of this study is to optimize the TLS timing and
the vehicles’ arrival time at the intersection in order to reduce the total travel time
and the overall energy consumption. The results reveal a significant improvement
of energy efficiency and traffic performance, both under constant and varying traffic
demand conditions. As mentioned in Section 1.2.3, the communication range has a
significant impact on the performance of such approaches: a wider communication
range gives better results. In this study, it seems that the better results are
obtained with a communication range of about 800m. The TLS cycle length is
also of major importance, and the ideal length is 60s, according to the authors. In
the same vein, [54] presents a strategy based on the same control actuators (traffic
light offsets and recommended speeds) in order to maximize bandwidth along an
arterial, which corresponds mainly to improved energy efficiency, lower idling time
and number of stops. According to the authors, the impact on travel time mainly
depends on the speed advisory. The results of this study show that this kind
of approach outperforms other existing strategies, especially in comparison with
TLS control and eco-driving when they are not simultaneously controlled. Also,
the approach is particularly efficient under free-flow traffic conditions, and energy
consumption is reduced without increasing travel time. TLS control can also be
coordinated with CACC-enabled strategies. As indicated in Section 1.2.3, this
could consist in arterial coordinated start, that coordinates the start of vehicles
waiting at a red traffic signal when the signal turns green [160, 234]. To go further,
one may also imagine a framework in which the TLS offsets are optimized in order
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to minimize the idling of CACC strings [164].
It is also possible to coordinate two control strategies that are both based on

V2I communication. For example, [53] introduces a strategy that maximizes band-
width along an arterial through TLS control and VSL. Here again, the objective
is to improve the energy efficiency and reduce the travel time, and the authors
indicate a potential dramatic reduction of energy consumption without increasing
the travel time. Similarly, [168] and [289] propose approaches that control both
TLS and VSLs to reduce energy consumption.

To improve the efficiency of TLS control strategies, the behavior of vehicles,
especially HVs, should be considered and predicted. The coordination of multiple
intersections, as in bandwidth maximization approaches, also opens the door to
further improvement of both the energy efficiency and the traffic performance [282].
Also, such systems need to be robust and adaptable to any type of intersection
and network in order to be deployable on a large scale [54]. Finally, it would be
interesting to analyze the system response to a traffic demand much higher than
the network capacity [53].

Coordinated speed limits and traffic light signals control

To improve the results of road-based control, it is possible to coordinate road-based
actuators such as speed limits and signal timing control.

For freeways control, [110] proposes a method to optimize the total travel
distance, without considering emissions and energy consumption. The authors
develop an MPC framework, in which the control inputs are speed limits and
ramp metering. Other authors have used coordinated speed limits and signal
timing control to reduce emissions and energy consumption. For example, [289]
optimizes the travel time, the fuel consumption, and NOX emissions via MPC. A
very similar approach is presented in [168]. The authors also use MPC to control
both ramp metering and speed limits on a highway section, and the objective
function is the weighted sum of travel time and total emissions. A specific feature
of this work is that multiple classes of vehicles are considered.

A problem to study in an urban environment is bandwidth maximization along
an artery. Assuming that all the traffic lights have a common cycle, the problem
of bandwidth maximization consist in maximizing the vehicle throughput along
the artery under study, by traffic lights offset control. Usually, the actuators are
only the traffic light signals offset, like presented in [178] in which the authors ex-
press a nonlinear optimization problem and convert it to a MILP. The bandwidth
maximization problem optimizes the flow of vehicles but does not explicitly re-
duce the emissions and energy consumption. Therefore, [53] proposes to formulate
an optimization problem in which the objective function contains also terms ap-
proximating the travel time and the energy consumption. None of the bandwidth
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maximization strategies presented is based on a traffic model. Hence, they work
best in steady-state under-saturated traffic conditions.

Dynamic routing

Another solution to reduce emissions and energy consumption is to use dynamic
routing. This method consists in redistributing the traffic demand over the network
in a more efficient way by controlling the split ratios. In practice, the controller
predicts the optimal routes for the main traffic flow directions, and the associated
recommendations are communicated to the road users by the mean of in-vehicle
devices, radio, or variable message signs [252].

In the literature, the control objective of dynamic routing problems is usually
to reach system-optimum or user-equilibrium. The system-optimum corresponds
to the minimum travel time and the user-equilibrium is characterized by a density
distribution for which all used routes between the same origin-destination pair
have the same travel time [283].

Dynamic routing could also be used to directly reduce emissions and energy
consumption. For example, [173] proposes a real-time en-route diversion control
strategy that minimizes the travel time, total emissions and fuel consumption.
The route recommendation provided by variable message signs is considered as the
control variable. The split ratios are calculated from the route recommendation
considering a drivers’ compliance rate which is supposed to be known. The route
diversion control uses MPC based on a parallel Tabu Search algorithm.

Emission pricing can also be used as a dynamic routing method aiming at
influencing route selection in order to reduce emissions and energy consumption.
This method can be static or dynamic. Dynamic road pricing studies based on
emissions and energy consumption are reviewed in [272].

1.4 Summary

CAVs offer huge opportunities in terms of energy efficiency, pollutant emissions,
throughput, safety, and comfort improvement because of the possibilities regarding
the certainty of predictions of their behavior and the precision of their powertrain
control. A first approach to reduce their energy consumption consists in the de-
velopment of simple rule-based control strategies. However, these are usually not
sufficient and optimization-based strategies appear to be necessary. Such strate-
gies involve the need of precise and reliable energy consumption models, accurate
traffic models for prediction purposes, performing optimization algorithms, as well
as fast and long-range communication devices.

One first layer in the optimal control of CAVs corresponds to route planning
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(or eco-routing) and motion planning (or eco-driving) strategies based on V2V and
I2V communications. In this case, the vehicles are performing “individual gain”
optimization. These approaches are more efficient when the CAVs penetration
rate is high, because the predictions are more reliable and the need for guessing
is reduced. Overall, the more knowledge a CAV has about its in-trip and final
trip constraints before its departure, the more effective this kind of approach is.
Some uncertainties remain regarding the consideration and the prediction of HVs’
aggressiveness.

Another layer in the optimal control of CAVs is the development of cooper-
ative strategies between CAVs in order to improve the overall energy efficiency.
These approaches are also based on V2V and I2V communications, but vehicles
are here considering the impact of their decisions on the behavior and the en-
ergy consumption of other vehicles, i.e. vehicles are performing a “common good”
optimization. These control strategies include vehicle platooning, CACC, lane
change and merge, and cooperative intersection control. For an optimal control,
these cooperative strategies should perfectly integrate both vehicle-based radar
data and GPS data transmitted through V2V communication. Also, CAVs can
have a harmonizing effect on the speed of the surrounding traffic, especially in case
of cooperating CAVs. This harmonization appears to have a beneficial impact on
the global energy consumption, but it is difficult to estimate because it depends on
the CAVs penetration rate, on traffic congestion, and on the network architecture.

Finally, one last layer consists in the control of infrastructures, especially TLS
and VSL, which are based on V2I communication. These approaches are compat-
ible with HVs, but the potential gains are greater with CAVs because they are
more precise and have much shorter reaction times.

Based on the works reviewed in this chapter, the orders of magnitude of the
gains in energy efficiency offered by the different control strategies are summarized
in Table 1.1. These values are to be taken in perspective as the proposed control
strategies are highly dependent on traffic conditions, CAVs penetration rate, net-
work architecture, etc. It is essential to note that coordinating complementary
control strategies seems particularly promising to improve the overall energy ef-
ficiency. In this sense, coordinated VSLs and TLS approaches for example could
reduce the energy consumption by up to 40%. Some directions have already been
investigated in the literature:

• cooperative intersection control and CACC [127];

• VSLs and CACC [234];

• TLS control and eco-driving [282, 54];

• TLS control and VSLs [53].
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• eco-driving and cooperation [144]

Table 1.1: Potential energy efficiency improvement of the control strategies pre-
sented in this chapter.

Control strategy

Potential
energy

efficiency
improvement

CAVs control

Connected
control

Eco-routing 10% – 15%

Eco-driving 15% – 40%

Cooperative
control

Car following 20%

Cooperative intersection 20% – 50%

Harmonization effect 15%

Infrastructure
control

Variable speed limits control 15%

Traffic light signals control 15%

1.5 Main contributions of the dissertation

The areas covered in this work are depicted in green in Fig.1.11. The main contri-
butions to traffic ecological management lie in the modeling and control strategies,
and may be summarized as follows.

Firstly, a complete formalization of a macroscopic traffic model adapted to the
urban environment is proposed. It includes a methodology for treating signalized
intersections. To estimate the fuel consumption, this traffic model is associated
with a macroscopic energy consumption model based on an ANN. The latter is
calibrated using a microscopic physical energy model and data provided by a mi-
croscopic traffic simulator which is parameterized in order to be compliant with
real-world urban FCD. The choice to use an ANN-based model is essentially jus-
tified by its performance at low average speeds. Macroscopic models are preferred
for large-scale control because they are much faster to compute when the number
of vehicles under consideration is large. They also have the advantage of consider-
ing the overall energy efficiency of traffic flows, which is the metric of interest for
road network managers when it comes to traffic eco-management.

Then, experiments are conducted in order to evaluate the relationship between
congestion and vehicles’ energy efficiency, especially at steady state. The impact
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of various speed limits on the macroscopic traffic variables (density, average speed,
flow) is analyzed for different categories of road and traffic demand levels. Speed
limits directly impact energy consumption and pollutant emissions as they affect
the accelerations and average speeds through the network.

Finally, a parameterized model predictive control design comparing VSLs and
signalized access control is proposed for improved environmental sustainability and
traffic performance both in a synthetic urban area and in the peri-urban area at
its boundaries. The traffic system is modeled using the microscopic traffic simu-
lator SUMO, and a physical fuel consumption and NOx emission model is used
to assess the vehicles’ energy efficiency. Speed limits are controlled in closed loop
through a Nonlinear Model Predictive Control (NMPC) approach, in which the
traffic evolution and the future fuel consumption are respectively predicted with
a macroscopic traffic model, namely the Cell Transmission Model (CTM), and
the calibrated ANN. The results reveal that in transient phases between different
levels of congestion, the closed-loop controller is faster to decongest the network,
in an energy-efficient way, resulting in an improvement of the environmental sus-
tainability and the traffic performance both in the controlled network, and at
its boundary roads. Moreover, for the chosen set of parameters, it appears that
the VSLs strategy leads to smoother density variations than the signalized access
control, resulting in a more energy-efficient approach.
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Figure 1.11: Diagram of the global approach for energy consumption and emissions
modeling and control for single vehicles and traffic flow. The areas covered in this
work are depicted in green.
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Chapter 2. Models to simulate and predict traffic dynamics in an urban
environment

2.1 Foreword

The first step of traffic eco-management strategies lies in the modeling of traffic
dynamics. This step is crucial as it requires traffic models that are able to cap-
ture realistic traffic phenomena such as shock waves, physical queues and queue
spillbacks [84].

In this chapter, we will introduce a microscopic traffic model, which is used to
represent the dynamics of the vehicles in the road network. The model is calibrated
with real-world FCD measured in an urban environment. A macroscopic traffic
model will also be introduced. This latter is useful for prediction purposes as its
computational burden is much lower.

The main challenges faced in this chapter correspond to the choice and the
calibration of the microscopic model in order to be representative of real-world
drivers’ behavior, and the calibration of the macroscopic model so as to be able to
depict the traffic dynamics of the microscopic model.

2.2 Microscopic models for traffic systems simu-

lations

Vehicle movement data can be measured with sensors. In this sense, a solution
that has been widely democratized is the use of road users’ smartphone devices
[247]. Methodologies can then be adopted to express the operation variables of
vehicles from such data [253].

In order to implement control strategies, or to simulate a traffic system, it
is necessary to introduce a microscopic traffic model. Such models describe the
behavior of each single vehicle in the traffic flow. They usually correspond to
car-following models that represent the longitudinal dynamics of vehicles. Lane-
changing models can also be considered to represent their lateral dynamics [75].
One difficulty associated with these models corresponds to the calibration of the
parameters.

2.2.1 State-of-the-art

Car-following approaches

Most of the microscopic traffic models correspond to car-following approaches,
which were introduced in the 50s [86, 30]. Such models aim at describing the
longitudinal dynamics of vehicles by characterizing at every time step all vehicles’
position and speed. The drivers’ decision to accelerate or to brake depends on
their own speed and on the position and speed of the leading vehicle immediately
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ahead. The acceleration aveh
p (k) of a vehicle p at time step k is defined as a function

of the speed of the leading vehicle vveh
p−1(k), the speed difference ∆vveh(k) and gap

sveh(k) between the leading and the following vehicles, as well as some constant
parameters denoted θ [22].

aveh
p (k) =

vveh
p (k + 1)− vveh

p (k)

δt
= f(vveh

p−1(k),∆vveh(k), sveh(k), θ) (2.1)

where δt denotes the time step duration.

In this work, we assume that all vehicles are identical, and their length is
denoted lveh. An illustration of the notations is proposed in Fig. 2.1, in which a
following vehicle in xveh

p (k) is traveling at speed vveh
p (k) behind a leading vehicle

in xveh
p−1(k), traveling at a speed vveh

p−1(k).

following vehicle leading vehicle
xveh
p (k) xveh

p−1(k)

vveh
p (k) vveh

p−1(k)

sveh(k) lvehlveh

Figure 2.1: Representation of the car-following model paramaters.

The variables ∆vveh(k) and sveh(k) are defined as

∆vveh(k) = vveh
p (k)− vveh

p−1(k) (2.2)

sveh(k) = xveh
p−1(k)− xveh

p (k)− lveh (2.3)

In the literature, some works go further and consider as additional inputs of
the model the speed of a group of several leading vehicles instead of one single
leader [116].

Most car-following approaches can be categorized into the following strategies
[75]:

• Stimulus–response models, which are mainly based on the speed difference
between the leader and the following vehicles [87]. Such models may lack
precision and realism in certain free-flow situations with large distance head-
way.

• Safety-distance or collision-avoidance models, which assume that drivers re-
act to the headway distance instead of the speed difference [148].
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• Reference-signal models, which introduce signals that the drivers are sup-
posed to track. These can for example correspond to the desired speed or
space headway [251].

• Psycho-physical models, which include human factors and aim at character-
izing the impact of human perception on car-following models [25]. This is
due to the fact that drivers’ behavior is not always optimal, they do not
continuously react to stimuli, they have different driving styles, etc.

It is essential to bear in mind that the use of a microscopic traffic model,
especially in order to estimate emissions and energy consumption, requires a precise
calibration of model parameters. An example of methodology to perform such a
parameters calibration can be found in [126]. The authors emphasize on its benefits
in terms of speed and acceleration estimation.

In the following, we focus on three car-following models that are widespread
in the literature [22], namely Krauss, the Intelligent Driver Model (IDM), and
Wiedemann.

Krauss model

The default model of the microscopic traffic simulator SUMO [170] is an extension
of the Krauß car-following model introduced in [141]. It consists in letting vehicles
drive as fast as possible while ensuring safety conditions, i.e. vehicles adjust their
speed in order to always be able to avoid a collision if the leading vehicle starts
braking. At time step k, the safe speed vsafe

p of the following vehicle in xveh
p (k) is

defined as follows

vsafe
p (k) = vveh

p−1(k) +
sveh(k)− s∗(vveh

p (k))
vveh
p−1(k)+vveh

p (k)

2bmax
+ τ

(2.4)

Parameters bmax and τ denote respectively the vehicles maximum deceleration and
the drivers’ reaction time. The desired dynamical distance, or desired gap, s∗

corresponds to the gap when following other vehicles under steady-state traffic
conditions. In Krauss approaches, it is usually defined as

s∗(vveh
p (k)) = vveh

p (k)τ + s0 (2.5)

where s0 denotes the minimum gap at complete standstill, which corresponds
to the minimum distance between vehicles, i.e. the distance between vehicles in
dense jam situations.

In order to take into account the constraints regarding the maximum speed
allowed vmax, the vehicles’ acceleration capabilities, and the safe speed, the desired
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speed vdes
p (k) of the following vehicle is defined as

vdes
p (k) = min

{
vmax, v

veh
p (k) + amaxδt, v

safe
p (k)

}
(2.6)

where amax denotes the maximum acceleration. Note that the maximum speed
allowed vmax characterizes the speed limits, but also the environmental constraints,
e.g. red traffic light signals.

Finally, the speed of the following vehicle is updated as follows

vveh
p (k + 1) = max

{
0, vdes

p (k)− η
}

(2.7)

where η is a random perturbation that is introduced to allow for deviations from
optimal driving.

The SUMO-extended Krauß model proposes to slightly modify this model in
order to handle different deceleration capabilities among the vehicles, and to adapt
the safe speed calculation when using the Euler-position update rule.

Intelligent driver model

The IDM was introduced in [251]. At time step k, the IDM calculates the ac-
celeration aveh

p (k) of the following vehicle using the following ordinary differential
equation

aveh
p (k) =

vveh
p (k + 1)− vveh

p (k)

δt
= a

1−

(
vveh
p (k)

vmax

)δ

−

(
s∗(vveh

p (k),∆vveh(k))

sveh(k)

)2


(2.8)
where δ denotes the acceleration exponent. The IDM defines the desired dynamical
distance s∗ as

s∗(vveh
p (k),∆vveh(k)) = s0 + max

{
0, vveh

p (k)τ +
vveh
p (k)∆vveh(k)

2
√
amaxb

}
(2.9)

where s0, τ , amax, and b are IDM parameters denoting respectively the minimum
gap at complete standstill, the time headway, the maximum acceleration, and the
comfortable deceleration.

Wiedmann model

The Wiedemann model [275] is a psycho-physical car-following model used in the
microscopic traffic simulator VISSIM [73]. It distinguishes four driving situations

1. free-flow
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2. approaching slower vehicles

3. car-following near steady-state equilibrium

4. critical situations requiring braking action

The thresholds between each situation can be characterized by the distance and
speed differences between the leading and the following vehicle. In each situation,
different acceleration functions (described in Eq. 2.1) are considered. In practice,
this corresponds to different reactions from the drivers to the stimuli generated by
the leading vehicle, depending on the situation [298].

2.2.2 Comparison and ability to capture stop-and-go waves

In the literature, several works have compared the performances of car-following
models [260, 196]. They have for example highlighted the importance of using
models that take into account the drivers’ reaction time. In this work, many
car-following models can be used to simulate the traffic dynamics. We decide to
conduct a comparative study under stationary conditions of the three car-following
models discussed above (cf. Section 2.2.1), without claiming to select the best
model.

To be in a stationary situation, we propose to consider a 300-meter single-lane
ring road with a 50 km/h speed limit, as represented in Fig. 2.2. Simulations are
run in SUMO traffic simulator [170], with a density of vehicles varying from 2%
to 93% of the maximum density ρM. In each simulation the speed profile of one
vehicle is measured at a frequency of 1 Hz. The speed profiles generated with IDM,
Krauss, and Wiedemann models are compared in Fig. 2.3

Figure 2.2: 300-meter single-lane ring road with a 50 km/h speed limit. The
vehicles’ speed profiles are measured at a frequency of 1 Hz.
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(a) 2% of the maximum density.
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(b) 12% of the maximum density.
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(c) 23% of the maximum density.
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(d) 35% of the maximum density.
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(e) 47% of the maximum density.
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(f) 58% of the maximum density.
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(g) 70% of the maximum density.
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(h) 82% of the maximum density.
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(i) 93% of the maximum density.
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Figure 2.3: Speed profiles generated with IDM, Krauss, and Wiedemann car-
following models on a 300-meter single-lane ring road with a 50 km/h speed limit,
for various densities (from 2% to 93% of the maximum density ρM).
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Simulations based on the IDM highlight several phases. First, for densities
between 2% and 47% of the maximum density (Fig. 2.3a–2.3e), an increase of
the density results in a decrease of the speed. In these cases, the speed remains
constant. At a certain point (58% of the maximum density in Fig. 2.3f), the stop-
and-go phenomenon appears, resulting in oscillating speed profiles. Finally, for
densities higher than 82% of the maximum density (Fig. 2.3h–2.3i), the regularity
of the oscillations is lost and the variations of the speed profile seem chaotic.

With the Krauss model, the oscillations appear sooner (35% of the maximum
density in Fig. 2.3d), and they become almost immediately chaotic. Yet, the
average speed is very close to the one observed with IDM, whatever the density
level. This highlights the similarity between these two models.

The simulations based on Wiedemann model return very different results from
the other two models because of its psycho-physical nature. The vehicles slow
down strongly from a density of 23% of the maximum density (Fig. 2.3c), and the
average speed is much lower than the other two models, whatever the density level.

Any of these car-following models could be retained for the rest of this work.
The IDM is chosen because of its ability to simulate different situations (lower
speed without oscillations – regular stop-and-go waves – chaotic stop-and-go waves).
An additional motivation for retaining the IDM is given in Section. 4.2.1 regarding
the impact of the car-following model on the energy consumption curves. Note
that the simulations in this section have been carried out with the parameters cal-
ibrated in Section 2.2.3 and SUMO default parameters. These parameters could
be adapted to make the models more realistic and representative of a more or less
aggressive driving style. This reinforces the idea that any model could have been
chosen for the rest of the study.

2.2.3 Calibration of the car-following model

In order to calibrate the microscopic traffic simulator based on the IDM as ac-
curately as possible, we use real-world driving data, collected in France. The
motivation of using experimental data to calibrate the model’s parameters lies in
the fact that several values can be found in the literature, especially on highways
or in urban areas [135]. These data are used to calibrate the maximum acceleration
and comfortable deceleration parameters of IDM, i.e. amax and b respectively. The
accelerations and decelerations of 648 journeys made in French cities are recorded
with the drivers’ smartphones at a frequency of 1 Hz, resulting in 30682 data
points. The measured accelerations and decelerations are shown in Fig. 2.4 in the
form of a box plot. It appears that the maximum acceleration is close to 10 m.s−2

and the maximum deceleration is about -7.5 m.s−2. However, these points can
be associated with unusual driving behaviors, other means of transportation (e.g.,
motorbikes), or even measurement errors because they are much higher than clas-
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sical observed maximum accelerations. In order to reduce the influence of outliers,
we decide to remove the 1% highest accelerations and the 1% highest decelerations.
These boundaries are represented by the dashed red lines in Fig. 2.4. We deduce
amax = 2.4 m.s−2 and b = 2.8 m.s−2, which are of the same order of magnitude
as the SUMO parameters (respectively amax = 2.6 m.s−2 and b = 4.5 m.s−2), and
are also consistent with maximum acceleration values deduced from real data and
given in the literature [26, 43, 153].

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
Acceleration [m/s²]

ab

Figure 2.4: Real-world acceleration data of 648 journeys made in French cities
and measured at a frequency of 1 Hz, resulting in 30682 data points. amax and b
delineate respectively the 1% highest accelerations and 1% highest decelerations.

Note that the calibration of the comfortable deceleration b is not of primary
importance in the sense that vehicles can always perform emergency brakings (up
to 9 m.s−2) in order to avoid crashes, to stop at a red TLS, etc. Also, the impact
of b on vehicles’ energy consumption and pollutant emission is smaller than the
one of amax, as vehicles’ energy efficiency mostly depends on acceleration phases.

The other IDM parameters are set to standard values, namely s0 = 2 m, δ =
4, and τ = 1 s [251]. The desired speed vmax corresponds to the speed limit,
which is denoted V . Its maximum value in an urban area is considered to be
50 km/h. The descriptions and values of IDM parameters considered in this article
are summarized in Table 2.1.

It is essential to note that the IDM has some shortcomings to capture real-world
phenomena, such as the fact that the maximum vehicles’ acceleration remains
constant under all traffic conditions. According to [61], the exceeding of the real
vehicle deceleration in case of emergency braking is another drawback. Also, the
minimum desired gap can be not enough to guarantee safety in critical situations
such as accidents for example. Finally, the IDM being a collision free model, it can
lead to non-realistic deceleration to avoid collision. In terms of scalability of the
traffic network, SUMO has a limited amount of memory and is restricted by the
power of the CPU of the system. In practice, SUMO is able to cope with networks
of up to 10,000 edges, which is not an issue in this study [140].
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Symbol Description Value Unit

amax Maximum acceleration 2.4 m.s−2

b Comfortable deceleration 2.8 m.s−2

s0 Minimum distance between vehicles 2 m
vmax Desired speed V m.s−1

δ Acceleration exponent 4 –
τ Time headway 1 s

Table 2.1: Microscopic car-following IDM calibrated parameters.

2.3 Macroscopic models for prediction and con-

trol purposes

The macroscopic traffic dynamics can be measured with fixed or vehicle embedded
sensors. These latter are based on FCD methods that use the drivers’ smartphone
devices for example. To complete this information, induction loops and cameras
can be used to count the number of vehicles.

When this data is not available, or incomplete, or when it is necessary to
predict the evolution of traffic for control purposes, dynamic fluid-based models
that describe the evolution of traffic in the network as a fluid in a pipe can be used.
Some overviews presenting this kind of models can be found in [74, 76, 261, 116].

Such approaches provide the traffic variables, i.e. the density ρ(x, t), the speed
v(x, t), and the flow ϕ(x, t), at given position x and time t. They consider the
traffic speed as a function of x and t. Therefore, these models reflect the speed
differences along links and provide a dynamic traffic speed.

2.3.1 State-of-the-art

Some macroscopic traffic models are reviewed in the following. They are all based
on the following conservation law

∂

∂t
ρ(x, t) +

∂

∂x
(ρ(x, t)v(x, t)) = 0 (2.10)

Some of these models are continuous and others are spatially and temporally
discretized. A distinction is made between first and higher-order models.

First-order models

• Lighthill-Whitham-Richard model
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[154] and [223] assume that v depends only on ρ. Hence, the flow can be
expressed as a function Φ of only ρ as

ϕ = ρv(ρ) = Φ(ρ) (2.11)

The conservation law presented in (2.10) can then be expressed as

∂

∂t
ρ+

∂

∂x
Φ(ρ) = 0 (2.12)

where Φ is a strictly concave C1 function defined on [0, ρM] and satisfying

Φ(0) = Φ(ρM) = 0 (2.13)

The relationship ϕ = Φ(ρ) is called the fundamental diagram. The most com-
mon fundamental diagrams are listed in Table 2.2 [84]. The parameters w, ϕM,
and v0 denote respectively the backward wave speed, the maximum traffic flow,
and a positive constant.

Fundamental Diagram Expression

Greenshields [97] Φ(ρ) = ρvmax

(
1−

(
ρ
ρM

)p)
, p ∈ N

Greenberg [96] Φ(ρ) = ρv0 ln
(
ρM

ρ

)
Underwood Φ(ρ) = ρvmax exp

(
− ρ
ρM

)
California Φ(ρ) = ρv0

(
1
ρ
− 1

ρM

)
Trapezoidal [48] Φ(ρ) = min

{
ρvmax, ϕ

M, (ρM − ρ)w
}

Triangular [188] Φ(ρ) = min
{
ρvmax, (ρ

M − ρ)w
}

Table 2.2: List of most common fundamental diagrams.

• Cell transmission model

The Cell Transmission Model (CTM) [48] is a temporally and spatially dis-
cretized version of the Lighthill-Whitham-Richard (LWR) model based on the
triangular or the trapezoidal fundamental diagram. The model is defined as

ρi(k + 1) = ρi(k) + δt
δx

(ϕin
i (k)− ϕin

i+1(k))

ϕin
i (k) = min

{
ρi−1(k)vmax, ϕ

M, w(ρM − ρi(k))
} (2.14)
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where i and δx denote respectively the cell index and the discrete-space cell length.
The variable ϕin

i (k) is the traffic flow entering cell i during [kδt, (k + 1)δt].

• Variable-length model

In order to depict density evolution and track the congestion front, [36] proposes
the Variable-Length Model (VLM) for highway traffic modeling. Illustrations are
given on a closed ring road and on an urban road with traffic lights in [37].

The VLM is also a discrete version of the LWR model based on the triangular
fundamental diagram. The idea is to model any road section with only two lumped
cells that are variable in length: an upstream cell in free flow and a downstream
congested cell. Consider a road section of length L, then the length of the free and
the congested cells will respectively be L− l and l.

The main advantage of the VLM is that it is based on only three state variables:
density in the upstream free cell ρf , density in the downstream congested cell ρc,
and position of the congestion front l. The model reads

ρ̇f = [ϕin− Φ(ρf)]
1
L−l

ρ̇c = [Φ(ρc)− ϕout]
1
l

l̇ = Φ(ρf)−Φ(ρc)
ρc−ρf

(2.15)

where the interface flows Φ(ρf) and Φ(ρc), which correspond to the demand of the
free cell and the supply of the congested cell respectively, can be expressed as

Φ(ρf) =ρfvmax

Φ(ρc) =w(ρM − ρc)
(2.16)

ϕin and ϕout are the inflow and outflow at the boundaries of the section of length
L. They are defined as

ϕin = min {Din, sf}
ϕout = min {Dc, Sout}

(2.17)

where Din and Sout are respectively the input demand and the output supply. Dc

and sf are
Dc = min {ρcvmax, vmaxρ

cr(vmax)}
sf = min

{
w(ρM − ρf), vmaxρ

cr(vmax)
} (2.18)

where ρcr(vmax) is the critical density relative to vmax. It is defined as

ρcr(vmax) =
wρM

vmax + w
(2.19)
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[51] proposes to adapt the VLM to the urban environment by considering a
binary variable α multiplying the boundary flows in (2.17) to model the behavior
of traffic lights, as

α =

{
1 , if the traffic light is green
0 , otherwise

(2.20)

• Link transmission model

[286] proposes the Link Transmission Model (LTM), which is a discrete version
of the LWR model based on the triangular fundamental diagram, with only one
cell per road. Therefore, computation times are reduced.

The LTM introduces the notion of cumulative vehicle counts. N tot
up (kδt) and

N tot
down(kδt) are respectively the cumulative entering and exiting vehicle count of a

given link at kδt, based on given split ratios at intersections.
The maximum number of vehicles that can be sent by this link to the next one

during time interval [kδt, (k + 1)δt] is

Sboundary(k) = N tot
up

(
(k + 1)δt −

L

vmax

)
−N tot

down(kδt) (2.21)

The maximum number of vehicles that can leave the considered link during the
time interval [kδt, (k + 1)δt] is

Slink(k) = ρMLδt (2.22)

The number of vehicles sent by the link to the next one is then simply

S(k) = min {Sboundary(k), Slink(k)} (2.23)

In the same way, the number of vehicles R(k) received by the link is expressed
as 

R(k) = min {Rboundary(k), Rlink(k)}

Rboundary(k) = N tot
down

(
(k + 1)δt − L

w

)
+ ρML−N tot

up (kδt)

Rlink(k) = ρMLδt

(2.24)

• Queue models

Queue models are interested in the length of the queues at the end of each
link i. An example is the Berg-Lin-Xi (BLX) model, presented in [259] and [159].
An extension of the model is proposed in [157]. Like the LTM, the BLX model
considers flows between the links.
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The queue on link i is composed of N q
i vehicles. When the traffic light is green,

the number of vehicles entering cell i from the upstream cell during time interval
[kδt, (k + 1)δt] is

δtϕ
in
i (k) = max

{
0, min

{
N q
i−1(k) + δtϕ

in
i−1(k), Si(k), δtϕ

M
}}

(2.25)

where Si(k) denotes the available storage of link i at time step k, expressed in
number of vehicles.

The queue length and the available storage can be expressed as
N q
i (k + 1) = N q

i (k) + δt(ϕ
in
i (k)− ϕin

i+1(k))

Si(k + 1) = Si(k) + δt(ϕ
in
i+1(k)− ϕin

i (k))
(2.26)

The total number of vehicles in link i at time step k can be determined as

Ni(k) = ρML− Si(k) (2.27)

• Summary

The LWR model and its discrete variations, presented above, are simple first-
order mathematical representations of the traffic inspired by fluid mechanics. They
are based on fundamental diagrams that associate ϕ to ρ. These models are able
to capture realistic traffic phenomena such as shock waves, physical queues and
queue spillbacks [84].

However, first-order models based on the fundamental diagram are not suffi-
cient to capture unstable traffic variations caused by the inertia of vehicles because
they assume that v is always in equilibrium. Consequently, they have limitations
in capturing complex traffic phenomena such as stop-and-go waves, capacity drops
and phantom jams (formation of clusters of cars with high densities due to the
driving style of road users [134]). These must be taken into account in order to
best estimate emissions and energy consumption.

Second-order models

Second-order models have been developed in order to capture more realistic traffic
behavior in congested areas. They still consider the equation for the conservation
of vehicles presented in (2.10) and use the fundamental diagram to determine the
steady state of the system, but they have an additional equation for the conserva-
tion of momentum.

• Payne-Whitham model
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An example of a well known second-order model is proposed in [208]. The
model has the following form{

∂tρ+ ∂x(ρv) = 0
∂tv + v∂xv + 1

ρ
∂x(p(ρ)) = 1

τ
(ve(ρ)− v)

(2.28)

where ve(ρ) is the equilibrium speed given by the fundamental diagram, and p(ρ)
is analogous to the pressure in the fluid dynamics equations and depends on the
density [210].

The anticipation term 1
ρ
∂x(p(ρ)) models the reaction of vehicles, i.e. accelera-

tion or deceleration, to the variations of ρ. The relaxation term 1
τ
(ve(ρ)−v) models

the tendency of vehicles to travel from v towards ve(ρ) within a time τ > 0 that
represents the time needed by the vehicles to adjust their actual speed to ve(ρ).

The second equation of (2.28) is the acceleration equation. [274] proposes to
simplify the model by considering p(ρ) as a constant. Other expressions for this
term exist, they are presented in [84], as well as the modeling of an additional
viscous term in this equation.

• Aw-Rascle-Zhang model

[49] highlights some limitations of the Payne-Whitham model presented above.
In particular, the model allows the vehicles to travel with negative speed.

To tackle this problem, [15] and [292] propose the following model{
∂tρ+ ∂x(ρv) = 0
∂t(v + p(ρ)) + v∂x(v + p(ρ)) = 0

(2.29)

where the pressure term p may be defined as

p(ρ) = ργ, γ > 0 (2.30)

• METANET model

[180] presents the METANET model which is a discrete version of the Payne-
Whitham model presented in (2.28). It reads

ρi(k + 1) = ρi(k) + δt
δx

(ϕin
i (k)− ϕin

i+1(k))

vi(k + 1) = vi(k) + δt
γ1

[ve(ρi(k))− vi(k)]

+ δt
δx
vi(k)[vi−1(k)− vi(k)]− γ2δt[ρi+1(k)−ρi(k)]

γ1δx[ρi(k)+γ3]

(2.31)

and the authors propose the following fundamental diagram to define the equilib-
rium speed ve(ρ)

ve(ρi) = vmax exp

[
− 1

γ4

(
ρi(k)

ρcr

)γ4
]

(2.32)
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where γ1 – γ4 are model coefficients.
METANET was originally introduced to capture traffic phenomena on high-

ways. The proceeding of flows between the segments is fully presented in [180].

Phase transition and higher-order models

Second-order models generally have higher computation times. Phase transition
models are a good alternative to the extent that they behave like the classic LWR
model when the traffic is free and like a second-order model when the traffic
is congested. This allows to capture complex traffic phenomena while keeping
reasonable computation times for free-flow traffic.

In [44], the following phase transition model is proposed

• For free flow traffic, the author considers the LWR model, presented in (2.12),
with the Greenshields fundamental diagram (cf. Table 2.2, with p = 1).

• For congested traffic, v cannot be considered as a function only of the den-
sity anymore. In this case, the density-flow points are scattered in a two-
dimensional region, based on the following second-order model{

∂tρ+ ∂x(ρv) = 0
∂tq + ∂x((q −Q)v) = 0

(2.33)

where q is the momentum, Q is a parameter of the road considered, and v is
expressed as

v =

(
1− ρ

ρM

)
q

ρ
(2.34)

The associated hybrid fundamental diagram is shown in Fig. 2.5.
Finally, higher-order models exist but they are less appropriate for emissions

and energy consumption estimation as their computation times are higher. An
example of third order model, where the additional equation is for the variance of
the speed, can be found in [111]. This method is useful to describe the increase of
the speed variance just before traffic jams occur.

Network-wide extension

The traffic models presented above can be extended across a network. The junc-
tions represent a very important part of the extended model. Basically, each
junction can be reduced to a combination of simple merge and diverge junctions
[84]. A complete overview of macroscopic node models can be found in [245].
The authors present macroscopic node model instances both for signalized and
unsignalized intersections.
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Figure 2.5: Fundamental diagram of the phase transition model, representing the
free region Ωf and the congested region Ωc [44] [Copyright ©2002 Society for
Industrial and Applied Mathematics. Reprinted with permission. All rights re-
served].

In the case of the extended CTM, a fundamental diagram is associated with
each link, each link being partitioned into uniform cells. An urban version of the
CTM is proposed in [281]. The authors use turning ratios assigned to intersections
and distinguish two possibilities. First, a cell preceding an intersection can be
composed of one traffic light. Such cells have one unique queue, and all the vehicles
merge into it. Second, the cell can be divided into sub cells so that each direction
has its own traffic light.

Similarly, the LTM can be extended considering the flows sent and received by
links [84]. Regarding queue models, [157] considers the case of links with multiple
junctions (connected to several upstream and downstream links) and, for control
purposes, present the S model, which is basically a simplification of the BLX
model, with a time interval equal to the traffic-light cycle.

The network-wide extension approach is similar for second-order traffic mod-
els. For example, [84] presents the extension of the Aw-Rascle-Zhang model on a
network scale. A more detailed description of this model at junctions can be found
in [113].

For control purposes, [51] suggests to simplify the VLM by assuming an average
continuous flow through the traffic lights by replacing the binary variable α with
Tgreen

Tcycle
, where Tgreen and Tcycle denote respectively the green phase time and the cycle

time of the traffic light. This method is inspired by store-and-forward models,
originally suggested by [88]. It allows to describe the urban traffic without using
binary variables. Hence, polynomial complexity control methods can be applied
to the system, which allows for consideration of large-scale networks. However,
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due to this simplification, the effect of offsets between traffic lights of successive
intersections is not depicted. Moreover, the oscillations of the system (stop-and-go
waves, propagation waves, etc.) are not represented, which is a crucial point for
emissions and energy consumption estimation [101, 3].

2.3.2 Urban cell transmission model

In this work, an urban version of the CTM [48], which is a first-order Godunov-type
[91] discretization of the LWR model [154, 223], is chosen to predict the evolution
of the traffic system. To be compliant with the constraints associated with urban
environments, the CTM is extended to consider TLS, and the First In, First Out
(FIFO) policy at intersections. In this study, we make the assumption that any
type of intersection can be decomposed into simple merges and diverges. We are
therefore only interested in the modeling of this type of intersection.

Many other macroscopic traffic models could be used to predict the behavior
of the system. In particular, one may consider using second-order macroscopic
traffic models, which are more precise than first-order models under certain traffic
conditions such as jam waves [180, 111]. Also, they estimate the average traffic
speed more precisely. Nevertheless, first-order traffic models have been widely
used for traffic control applications in urban areas [249, 243], especially because
of their reduced numerical complexity. These models are generally sufficient to
estimate traffic evolution in an urban environment. According to [225], nonlinear
flow dynamics are of less importance for the description of traffic phenomena in
urban networks, which is mainly due to the presence of intersections and TLS.
Among first-order models, the CTM [48] clearly remains one of the most prevalent.
When the spatial discretization is adequate, the CTM can also capture variations in
density and average velocity between adjacent cells, which are crucial for pollutant
emissions and energy consumption.

Network characterization

In order to run the CTM in a large scale urban network, it is essential to accurately
characterize the network connections, the drivers’ behavior at intersections, and
the operation of TLS.

We consider an urban road network composed of one-way roads, each road being
divided into several cells of same length δx. The set of all cells that constitute the
network is denoted R. To characterize the connections between cells, each cell
i ∈ R is associated with two sets Pi and Ni containing respectively the upstream
and the downstream cells connected to i. We introduce the function |.| that returns
the number of elements in a set. Hence, the cells i entering the network verify
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Table 2.3: Examples of cells connections.

Cells structure |Pi| |Ni|
i

1 1

i 1 2

i 2 1

|Pi| = 0, and the ones exiting the network verify |Ni| = 0. A few illustrating
examples are given in Table 2.3.

Based on all the network connections {Pi, Ni | i ∈ R}, we define C as the set of
intersections. An intersection connects cells that verify Pi ≥ 2 or Ni ≥ 2. To each
intersection c ∈ C is associated the set of its upstream cells Pc and its downstream
cells Nc.

In order to determine the drivers’ behavior at intersections, we introduce split
ratios β ∈ [0, 1]. For an intersection c ∈ C, the split ratios represent the fraction
of vehicles coming from the upstream cells i ∈ Pc that want to go in each of the
downstream cells i ∈ Nc. We assume that they are known and constant over time.
They are subject to

∀c ∈ C,
∑
i∈Nc

βi = 1 (2.35)

In this study, we consider that all intersections are regulated by TLS. Hence,
each intersection c ∈ C has |Pc| cells regulated by a TLS. In the whole network,
the number of cells regulated by a TLS is

∑
c∈C
|Pc|. The behavior of the TLS of

each of these cells i is defined by a function of time αi(k) that returns 1 (green)
or 0 (red), i.e.

∀c ∈ C, ∀i ∈ Pc, αi : [0..T ]→ {0, 1} (2.36)

The functions αi are fully determined in advance, they must ensure the right
of way by verifying at each time step

∀c ∈ C,
∑
i∈Pc

αi(k) = 1 (2.37)

Note that we define αi as binary functions as this reflects the phenomenon
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of stop-and-go at intersections, which is of particular interest in our study as
it has a significant impact on emissions and energy consumption, due to higher
accelerations.

Cell transmission model

Based on this network characterization, road traffic is modeled at the network level
using the CTM. We define vectors ρk = [ρi(k)]i∈R and V k = [Vi(k)]i∈R containing
respectively the vehicle densities and the speed limits of all the cells at time step
k. The system state xk is defined as

xk = [ρk−1, ρk] (2.38)

Note that it includes previous densities ρk−1 because they are used in the macro-
scopic fuel consumption model (cf. Section 3.3.2).

The flows of vehicles through the network can be determined from the cells
demand and supply by applying the Godunov scheme [91]. The demand Di and
supply Si of cell i are respectively

Di(k) = min{Vi(k)ρi(k) + di(k), ϕM(Vi(k))} (2.39a)

Si(k) = min{ϕM(Vi(k)),max{0, w(ρM − ρi(k))}} (2.39b)

where ϕM and ρM denote respectively the maximum flow, that depends on
the speed limit Vi, and the maximum density. Each cell i is associated with an
endogenous traffic demand term di(k), which is a modification of the standard
CTM that aims to model the generation of vehicles within the network (vehicles
leaving homes, parking lots, etc.).

Moreover, the cells entering and exiting the network are considered as vehicle
sources and sinks, respectively. As a result, the following parameters are intro-
duced at the network boundaries:

• din(k) denotes the demand on all network entering cells (exogenous traffic
demand) at time k, i.e. the vehicles from the network upstream that are
aiming at entering it;

• sout(k) denotes the network downstream supply, i.e. the vehicles that can
leave the network exiting cells at time k.

Several models can be considered to approximate the fundamental diagram,
i.e. the relationship between the vehicles’ flow and density at steady state [270].
Some approaches propose to determine its shape in a heuristic way [287]. In
the literature, different models have been considered to represent the impact of
speed limits on the fundamental diagram [217, 108]. We propose to consider the
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trapezoidal fundamental diagram, which was originally considered in [48]. As
mentioned in Table 2.2, several other fundamental diagrams can be found in the
literature. The main justification of this choice is given in 2.3.3. As illustrated in
Fig. 2.6, the trapezoidal fundamental diagram is fully characterized by the speed
limit Vi, the backward wave speed w, the maximum vehicle density ρM, and the
maximum flow ϕM(Vi).

ϕ

ρ

V i
w

ρM

ϕM(Vi)

Figure 2.6: Trapezoidal fundamental diagram associated with a speed limit Vi, a
backward wave speed w, a maximum vehicle density ρM, and a maximum flow
ϕM(Vi).

In case of signalized intersections, the flow of vehicles exiting each cell i of
the network at time step k, denoted ϕout

i , depends on the number of downstream
cells connected to i. It is calculated as indicated in Table 2.4. Note that only the
outflows of cells preceding intersections (|Ni| ≥ 2) are multiplied by αi(k) because
the other cells are not regulated by TLS.

|Ni| ϕout
i (k)

0 min
{
Di(k), ϕM(Vi(k)), sout(k)

}
1 min

{
Di(k), ϕM(Vi(k)), SNi

(k)
}

≥ 2 αi(k) min

{
Di(k), ϕM(Vi(k)),

{
Sj(k)

βj

}
j∈Ni

}
Table 2.4: Outflows of cells in a network.

Similarly, the flow of vehicles entering each cell i of the network at time step
k, denoted ϕin

i (k), depends on the number of upstream cells connected to i. It is
calculated as indicated in Table 2.5.

System dynamics

The dynamics of the system is governed by the function f defined as
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|Pi| ϕin
i (k)

0 min
{
din(k), ϕM(Vi(k)), Si(k)

}
1 ϕout

Pi
(k)

≥ 2 βi
∑
j∈Pi

ϕout
j (k)

Table 2.5: Inflows of cells in a network.

xk+1 = f(xk, Vk) (2.40)

where

f : xk, Vk →
(

ρi(k)
ρi(k) + δt

δx
(ϕin

i (k)− ϕout
i (k))

)
i∈R

(2.41)

In order to guarantee the descriptive ability of the spatiotemporally discrete model
and to ensure numerical stability, the Courant–Friedrichs–Lewy (CFL) condition
[46] must be verified. It is expressed as

δtvmax ≤ Cδx (2.42)

In the literature, some authors suggest to consider the Courant number C = 1
2

[31, 60]. In our approach, the chosen set of parameters corresponds to δtvmax

δx
≈

1
3
< C.

Based on the fundamental diagram hypotheses and considering that ϕ = ρv,
it is possible to estimate the average traffic speed vi(k) in each cell i at time
step k from its density ρi(k) and speed limit Vi(k). According to the trapezoidal
fundamental diagram proposed by [48],

vi(k) = min

{
Vi(k),

ϕM(Vi(k))

ρi(k)
, w
ρM − ρi(k)

ρi(k)

}
(2.43)

It is essential to keep in mind that, based on the intrinsic definition of the fun-
damental diagram, this kind of approach determines the speed corresponding to
a given density at steady state, and does not always return the precise average
speed, because the density does not fully characterize the microscopic behavior of
vehicles.

2.3.3 Calibration of the fundamental diagram

The calibration of the macroscopic traffic model is a crucial step in order to ensure
accurate predictions of the densities evolution in the controller. According to
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[41], calibrating the fundamental diagram by aggregating loop detectors data has
several drawbacks. In particular, real traffic systems evolve through equilibrium
and transient states, which are difficult to identify. These states can even be
mixed in measurements if the sampling period is not adequate. Also, traffic waves
cannot be captured at single locations. To go beyond these difficulties, we propose
to calibrate the fundamental diagram associated with the IDM set of parameters by
modeling in SUMO a synthetic single-lane ring road of 300 m with a TLS. In fact,
such networks are particularly suitable for this purpose because they ensure that
the system remains in an equilibrium state as the number of vehicles on the road
does not change. This facilitates the observation of the fundamental diagram as the
transient regimes associated with the variation of the density are not represented.
Here, the objective is mainly to understand the impact of the control, i.e. the speed
limit, on the fundamental diagram, and to highlight the impact of TLS. Since the
parameterization of the microscopic traffic model is identical, we assume that the
fundamental diagram thus calibrated is representative of the traffic dynamics in
any other network structure.

In order to measure the vehicle density with more precision, a 60-meter long
detector upstream of the TLS is introduced instead of using loop detectors. This
detector measures the traffic density ρ and the average speed v. The flow of
vehicle is a quantity that is supposed to be defined at a point of the road. Yet,
to be consistent with the proposed approach, we propose to define it on the whole
detector as ϕ = ρ× v. The whole approach is depicted in Fig. 2.7.

Detector

Figure 2.7: 300-meter single-lane ring road with a TLS and a 60-meter long de-
tector measuring traffic density ρ and average speed v at a sampling frequency of
1 Hz.
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Two different scenarios are considered to calibrate the fundamental diagram
associated with IDM:

• In order to reproduce precisely the shape of the fundamental diagram, we
define a scenario (a) in which the TLS is always green (cf. Fig. 2.8a).

• Another scenario (b) is introduced to characterize the impact of a TLS on
vehicles’ behavior at a macroscopic level. Hence, the TLS alternates between
green and red phases in this scenario (cf. Fig. 2.8b).

(a) Scenario (a): TLS always green.

time
0 1

2
Tc Tc

3
2
Tc 2Tc

5
2
Tc

TLS state

Green
phase

Red
phase

(b) Scenario (b): TLS alternating between
green and red phases.

time
0 1

2
Tc Tc

3
2
Tc 2Tc

5
2
Tc

TLS state

Green
phase

Red
phase

Figure 2.8: Behavior of TLS in scenarios (a) and (b).

In order to cover all density values, several simulations are run for both scenar-
ios, with an increasing number of vehicles on the road, until the maximum density
ρM is reached. It can be calculated from the vehicles’ length lveh and the minimum
distance between vehicles s0, as follows

ρM =
1

lveh + s0

(2.44)

In this work, we consider identical vehicles with a length of lveh = 5 m, and the
IDM parameter s0 has been set at 2 m (cf. 2.2.3). This results in a maximum
density ρM equal to about 0.143 veh.m−1.

In scenario (b), we consider a TLS cycle time Tc = 88 s (green and red phases
of 44 s each). The detector sampling period is 1

8
Tc = 11 s, in order to capture

variations within TLS green and red phases. Also, the fact that the detector
sampling period is a divisor of green and yellow/red phases duration ensures that
points are captured at the maximum flow rate. The scatter plots associated with
both scenarios, simulated over a period of 1 h with a speed limit V = 50 km/h are
given in Fig. 2.9a & 2.9b.
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It appears that scenario (a) (cf. Fig. 2.9a) leads to the classical bell shape of
fundamental diagrams [210]. In particular, the IDM set of parameters previously
calibrated corresponds to a shape that seems close to [96] or [97] fundamental
diagrams. Yet, we decide to approximate the scatter plot with the trapezoidal
fundamental diagram introduced in [48] and presented in Section 2.3.2, as it can
almost perfectly follow the shape of the scatter plot and it is easy to calibrate,
unlike the other approaches. The left slope of the trapezoidal fundamental diagram
is set at the road speed limit, i.e. V = 50 km/h, and the right slope, which is the
backward wave speed w, is adjusted to fit the points in the congested area. The
calibration gives a value of w equal to 7 m.s−1. Also, based on the scatter points,
the value of the maximum flow rate ϕM(V ) is set at 80% of the ordinate of the
two slopes theoretical intersection, i.e. ϕM = 0.8× wρM V

V+w
.

Similarly, the same shape of the fundamental diagram and the same value of w
and ϕM(V ) are obtained with scenario (b) (cf. Fig. 2.9b). However, the transient
states caused by the TLS lead to more scattered points within the fundamental
diagram, which describes an envelope that contains all points. Note that with the
CTM, all these transient states are reproduced by the TLS variable α, defined in
Section 2.3.2.

To go further, it is essential to calibrate the fundamental diagram for other
speed limit values in order to accurately predict the impact of VSLs. For example,
the scatter plots associated with both scenarios with a speed limit V = 20 km/h
are given in Fig. 2.9c & 2.9d. It appears that the same maximum density and
backward wave speed values, respectively ρM = 0.143 veh.m−1 and w = 7 m.s−1,
perfectly fit the vehicles’ behavior in the congested area. The only difference is
the value of the free-flow slope, which is now equal to V = 20 km/h. Naturally,
the value of the maximum flow rate ϕM(V ) is lower with V = 20 km/h. However,
as can be seen in Fig. 2.9c & 2.9d, considering the value of 80% of the ordinate
of the two slopes theoretical intersection is still a realistic approximation of the
observed maximum vehicle flow.

To illustrate the impact of the speed limit on the fundamental diagram, the
differences between two fundamental diagrams associated with speed limits V1 and
V2, where V1 > V2, are summarized in Fig.2.10.

Finally, the descriptions and values of the CTM parameters associated with
the previously calibrated IDM set of parameters are summarized in Table 2.6.
It is essential to note that even after the fundamental diagram calibration, the
relationship between vehicle density ρ and traffic flow ϕ remains an approximation
insofar as it is true only at steady state.
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(a) Scenario (a): TLS always green, with
V = 50 km/h.
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(b) Scenario (b): TLS alternating between
green and red phases, with V = 50 km/h.
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(c) Scenario (a): TLS always green, with
V = 20 km/h.
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(d) Scenario (b): TLS alternating between
green and red phases, with V = 20 km/h.
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Figure 2.9: Fundamental diagrams in both scenarios, with speed limits of 50 km/h
and 20 km/h.

2.4 Comparison of the microscopic and macro-

scopic models dynamics in a Manhattan grid

structure

In this section, we are interested in the comparison between the dynamics of the
microscopic and macroscopic traffic models in order to validate the predictions
made by the macroscopic one. Its predictive capabilities are tested on a more
complex network than the ring road considered in Sections 2.2.2 & 2.3.3 so as
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ϕ

ρ
V 1

w

ρM

ϕM(V1)

V 2

ϕM(V2)

Figure 2.10: Fundamental diagrams associated with speed limits V1 and V2, where
V1 > V2.

Symbol Description Value Unit

V Speed limit (left slope) V m.s−1

w Backward wave speed (right slope) 7 m.s−1

ρM Maximum vehicle density 0.143 veh.m−1

ϕM(V ) Maximum vehicle flow rate 0.8×wρM V
V+w veh.s−1

Table 2.6: Calibrated parameters of the trapezoidal fundamental diagram.

to avoid analyzing steady-state situations only, which are much easier to predict
because they perfectly fit the fundamental diagram. To this end, we introduce a
Manhattan grid network with TLS at each intersection. Also, peaks are introduced
in the traffic demand profile in order to assess the behavior of the model under
different congestion levels.

2.4.1 Manhattan grid structure

We consider a Manhattan grid network composed of an urban area (38 roads of
300 meters represented by solid lines in Fig. 2.11) and a peri-urban area (7 roads of
2400 meters represented by dashed lines in Fig. 2.11). The peri-urban area, whose
roads can be seen as highway links leading to the urban area, have a speed limit
of 70 km/h. The objective of introducing two areas is to analyze the performance
of the CTM to predict the dynamics not only in the urban area, but also in a
peri-urban area upstream.

As represented in Fig. 2.12, all the roads have the same spatial discretization
with cells of 60 m, i.e. 5 cells in the urban roads and 40 cells in the peri-urban
roads. At each intersection, both downstream roads have a split ratio of 0.5 and all
TLS have cycles of 88 s (44 s green and 44 s red). Also, all TLS are synchronized in

71



Chapter 2. Models to simulate and predict traffic dynamics in an urban
environment

Peri-urban area B

Urban area A

2400m 300m

din

sout

di(k)

Exogenous vehicle sources

Endogenous vehicle sources

Vehicle sinks

Figure 2.11: Scenario considered to compare the dynamics of the microscopic
and macroscopic traffic models. At exogenous sources, vehicles are continuously
generated at a rate of din = 0.2 veh.h−1. At endogenous sources, vehicles are
generated between 6 min and 9 min, and between 31 min and 34 min at a rate of
di = 0.1 veh.h−1.

the sense that horizontal (and vertical) roads have the same phases without delay.

2.4.2 Analysis of the prediction performance

Simulations of T = 1 h are run with an initial density of 20% of the maximum
density. Exogenous sources are considered at the beginning of the peri-urban
roads. They generate vehicles at a constant rate of 0.2 veh.h−1. In order to
analyze the predictive capabilities of the CTM under different congestion levels,
endogenous sources are also considered inside the urban areas. They can be seen as
parking lots or residential areas. They generate vehicles between 6 min and 9 min,
and between 31 min and 34 min at a rate of 0.1 veh.h−1. Simulations are run with
speed limits of 20 km/h and 50 km/h, which are the upper and lower bounds of

72



2.4 Comparison of the microscopic and macroscopic models dynamics in a
Manhattan grid structure

cell Pi cell i cell Ni

Figure 2.12: TLS positions and spatial discretization of the roads into cells.

the controller presented in Section 4. Tt is therefore essential to evaluate the
performance of the prediction on this range.

The actual densities in each cell ρi are measured at every time step (of 1 s),
and are compared with the densities ρ̂i predicted along a time horizon of 1 min.
The accuracy of the CTM can be analyzed by evaluating an average error on the
whole simulation duration T , expressed as a percentage of the maximum density
ρM, as follows

εi =
1

T

T∑
k=0

1

∆avg

∣∣∣∣∣∣∣
k+

∆avg
2∑

e=k−∆avg
2

ρi(e)−
k+

∆avg
2∑

e=k−∆avg
2

ρ̂i(e)

∣∣∣∣∣∣∣×
100%

ρM
(2.45)

In Eq. 2.45, the error εi at each time step k is defined as a moving average
error on a horizon ∆avg = 20 s. This choice is justified by the fact that densities
vary much more abruptly in the microscopic simulator SUMO than in the CTM.
This is due to the fact that in SUMO, the density is defined as the ratio between
the number of vehicles in a cell and the length of cells. Also, it is known that the
CTM behaves like a low-pass filter that smooths the densities variation.

The average errors εi regarding traffic prediction in each cell i are represented
in Fig. 2.13. These errors are evaluated with speed limits of 20 km/h (Fig. 2.13a)
and 50 km/h (Fig. 2.13b). It appears that the performance of the traffic predictor
is similar for these two speed limits. With 20 km/h, the average error is 5.1% and
the maximum error is 8.7%. With 50 km/h, the average error is 4.7% and the
maximum error is 8.9%.

In order to better visualize the performance of the prediction, Fig. 2.14 com-
pares the evolution of the time-varying density and average speed given by the
microscopic and the macroscopic models in one cell of the network. The chosen
cell is preceding a TLS and the speed limit is 50 km/h. Fig. 2.14a represents the
evolution in time of the actual density ρi in the microscopic traffic simulator (tar-
get) and the predicted density ρ̂i given by the CTM (prediction). For this cell, the
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(a) Representation of εi with 20 km/h
speed limits.
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(b) Representation of εi with 50 km/h
speed limits.
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Figure 2.13: Representation of average traffic prediction errors εi in each cell i of
the network, with 20 km/h and 50 km/h speed limits.

average traffic prediction error εi is 4.2%. Similarly, the cell’s measured average
speed vi (target) is compared in Fig. 2.14b with its predicted speed v̂i (prediction),
calculated with Eq. 2.43.

The same results are given in Fig. 2.15 for a speed limit of 20 km/h. The average
traffic prediction error εi is 5.2%. The oscillations observed in Fig. 2.14 & 2.15
with the IDM, especially for the evaluation of the density, are due to the counting
of vehicles.

In order to take a more macroscopic view of the prediction performances, we
are interested here in the measurement and the prediction of the number of vehicles
present in the urban and the peri-urban areas, under 20 km/h and 50 km/h. These
results are shown in Fig. 2.16, they all have errors lower than 1%.

In view of these results, we decide to adopt the CTM as macroscopic model
to predict the traffic dynamics determined by the microscopic simulator. It is a
priori difficult to obtain better results with a first-order model due to their nature
based on steady-state situations.
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(a) Visualization of the density prediction.
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(b) Visualization of the average speed pre-
diction.
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Figure 2.14: Comparison of the actual density ρi measured in IDM with the pre-
diction density ρ̂i given by the CTM in a cell i. The speed limit is 50 km/h and
the average traffic prediction error εi is 4.2% (left). Comparison of the same cell’s
average speed vi measured in IDM with its prediction v̂i (right).

(a) Visualization of the density prediction.
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(b) Visualization of the average speed pre-
diction.
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Figure 2.15: Comparison of the actual density ρi measured in IDM with the pre-
diction density ρ̂i given by the CTM in a cell i. The speed limit is 20 km/h and
the average traffic prediction error εi is 5.2% (left). Comparison of the same cell’s
average speed vi measured in IDM with its prediction v̂i (right).
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(a) Number of vehicles in the urban
area, with V = 50 km/h.
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(b) Number of vehicles in the peri-
urban area, with V = 50 km/h.
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(c) Number of vehicles in the urban
area, with V = 20 km/h.
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(d) Number of vehicles in the peri
-urban area, with V = 20 km/h.

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

200

400

600

800

1000

1200

Nu
m
be

r o
f v

eh
icl
es
 [v

eh
]

Target (IDM)
Prediction (CTM)

Figure 2.16: Comparison of the actual number of vehicles measured in IDM with
the prediction based on the CTM. The vehicles are counted in both the urban and
the peri-urban areas, under speed limits of 50 km/h and 20 km/h. The prediction
time horizon is 1 min, i.e. the prediction is corrected every 1 min.
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Chapter 3. Models to simulate and predict pollutant emissions and energy
consumption

3.1 Foreword

Another crucial step of traffic eco-management strategies lies in the modeling of
pollutant emissions and energy consumption. Such models take as inputs the
traffic dynamics, which can be described using microscopic data, such as vehicles’
speed profiles, or macroscopic data.

In this chapter, both approaches are explored. A microscopic emission and
energy consumption model is introduced to evaluate the performance of the urban
traffic system, and a macroscopic model is introduced for prediction purposes.

One main challenge for macroscopic pollutant and energy consumption models
is to be able to estimate the output of microscopic models, as they do not consider
the individual behavior of vehicles, which plays a major role regarding energy
efficiency due to the acceleration of vehicles.

3.2 Microscopic models to simulate pollutant emis-

sion and energy consumption

Microscopic emission and energy consumption models estimate the rates of pol-
lutant emission and energy consumption (electricity or fuel) from the vehicles’
individual dynamics. In this section, the main categories of this kind of models
are reviewed in Section 3.2.1, and the physical model considered in the rest of this
work is presented in Section 3.2.2.

3.2.1 State-of-the-art

Different models estimating the emission and energy consumption rates (Jy) of a
vehicle as a function of its constant parameters (θ) and time-varying operation
variables (θk) have been investigated in the past. This section presents the data-
driven and the physical modeling approaches employed to estimate Jy.

In the proposed formalization, Jy refers to the prediction of the rate of y, which
can be calculated per distance traveled by the vehicle (J spat

y ) or per time unit
(J temp
y ), depending on the modeling method. The variable y corresponds either to

the emission of a pollutant (CO, NOx, HC, ...) or the energy consumption (fuel
or electricity consumption, depending on the vehicle powertrain considered):

y ∈ { fuel or electricity consumption, emission of CO, NOx, HC, ...}

Such emission and energy consumption models are said microscopic because
they consider each vehicle individually. They can be described as

Jy = g(θk, θ) (3.1)
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Microscopic
emission/energy models

Data-driven
approach

Look-up table
models

Regression
models

Physical modeling
approach

Deterministic
methods

Probabilistic
methods

Figure 3.1: Classification of emission and energy consumption models for single
vehicles.

where g is a function that relates the model inputs to the output.
The function g can be constructed in different ways. The different approaches

detailed in this section to estimate emissions and energy consumption are classified
as illustrated in Fig. 3.1.

The first step to determine the emission and energy consumption rates of a
vehicle is to determine its operation variables (e.g. speed, acceleration). This
aspect has been addressed in Section 2.2. The second step consists in using a
microscopic emission and energy consumption model whose inputs are the vehicle
operating variables and parameters. This step is presented in detail in the following
sections.

In real driving conditions, it is essential to bear in mind that several factors
contribute to an increase in energy consumption compared to the certification
value. [81] indicates that these factors include, inter alia, certification margins,
vehicle’s mass and rolling resistance, wind and temperature conditions, additional
electric auxiliaries, air conditioning, road grade, and traffic conditions. The impact
of these factors are quantified in Table 3.1. According to [81], the actual fuel
consumption could be increased, on average, by 24% to 54% in comparison with
the official certification value.
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3.2 Microscopic models to simulate pollutant emission and energy
consumption

Data-driven methods

Emission and energy consumption rates can be calculated using data-driven ap-
proaches. Basically, they consist in measuring fuel consumption or CO2 emissions
and deducing look-up tables, regression models, or machine learning approaches to
estimate the energy consumption from the vehicle dynamics. The measurements
can be made indoors using a chassis dynamometer, or outdoors during on-road
experiments using a portable emissions measurement system (PEMS) [118].

It is generally acknowledged that the impact of vehicular mobility on climate
change, i.e. the amount of CO2 emitted by vehicles, is proportional to the fuel
consumption. The reason is that the relationship between fuel consumption and
CO2 emissions is almost linear [211].

• Look-up table models

One old common approach to estimate emission and fuel consumption rates
consists in performing chassis dynamometer tests and recording the emissions and
fuel consumption in a look-up table, also called emission matrix. Usually, such
look-up tables provide Jy from speed and acceleration [213, 239] for a given set of
vehicle parameters. These reference emission look-up tables can be used later to
instantly estimate emissions and fuel consumption.

Although this method is easy to use, usually the available matrices are sparse,
due to measurement difficulties. Moreover, empirical matrix-based prediction con-
cerns only steady-state emissions, and not transient operations [231]. Finally, this
method is sensitive to the driving cycle and the quality of on-line measurements.
This may lead to large errors.

Another possibility is to determine emission and fuel consumption rates as a
function of the vehicle position. [13] proposes to associate to each road a corre-
sponding fuel consumption, based on average measurements. The amount of fuel
consumed by a vehicle during a trip is therefore simply approximated by the sum
of the average fuel consumption associated with the corresponding roads. This ap-
proach is very simple but it cannot distinguish between different types of vehicle,
as they are all mixed in the same computed average value. Also, it cannot reflect
the evolution of emissions and fuel consumption in case of traffic congestion.

• Regression models

Emissions and energy consumption of a single vehicle can also be predicted on a
second-by-second basis by using data-based models, such as regression techniques
or neural networks. The inputs of these models can typically be the speed, accel-
eration or power demand, and the outputs are the emission or energy consumption
rates prediction.

Regression techniques and neural networks for emission and energy consump-
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tion modeling both use the collected data in order to train a model that mimics
these data. In regression techniques, it is necessary to identify the model pa-
rameters by curve fitting, while in neural networks the weight of the connections
between neurons is to be identified.

The use of neural networks to estimate emissions and energy consumption is
motivated by the heavy nonlinearity of emissions. There is also a need of high com-
putational efficiency in order to be compatible with second-by-second microscopic
traffic models. Such neural network frameworks can be found in [5, 193, 123, 284].

[5] presents non-linear multiple regression models constructed with quadratic
and cubic speed-acceleration terms. The data used to determine the coefficients
of these models for a given type of vehicle is obtained from dynamometer emission
tests, based on the New European Drive Cycle (NEDC) [7]. It is also desirable
to use data from vehicles in real urban traffic situations, when available [204].
In fact, it is important to note that emission levels obtained from dynamometer
tests can be much lower than those produced in real traffic [209]. For example, a
criticism against the NEDC is that its acceleration profile is very smooth and not
sufficiently realistic [14].

Based on this technique, the VT-micro model can be formulated in matrix form
[288] as

ln(J temp
y (k)) = ~v(k)My~a(k) (3.2)

where My denotes the regression coefficients matrix of y for the type of vehicle
under consideration, ~v(k) and ~a(k) are respectively the speed and acceleration
vectors defined as

~v(k) =
[
1, vveh

p (k), vveh
p (k)2, vveh

p (k)3
]

~a(k) =
[
1, aveh

p (k), aveh
p (k)2, aveh

p (k)3
]T (3.3)

Note that the VT-micro model can also be expressed with a regression coeffi-
cients matrix for positive accelerations, and another matrix for negative accelera-
tions, depending on the data used to calibrate the model [9]. VT-micro estimates
emissions and energy consumption from instantaneous speed and acceleration, i.e.
measured at the present time. [215] formulates a regression model, named POLY,
which also takes into account the past accelerations and the road grade angle. The
model reads

J temp
y = β0 + β1v

veh
p (k) + β2v

veh
p (k)2 + β3v

veh
p (k)3

+β4T
acc(k) + β5T

dec(k)

+β6ga(k) + ...+ β15ga(k − 9) + β16v
veh
p (k)ga(k)

(3.4)

where β0 to β16 are the parameters determined by least-square method for one type
of vehicle, T acc(k) and T dec(k) are respectively the acceleration and deceleration
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duration since their inception up to the current time step k. At each time step, at
least one of them is zero. To consider the road grade angle ψ, the function ga is
defined as follows

ga(k) = aveh
p (k) + ggrav

[
ψ(k)√

1 + ψ2(k)

]
(3.5)

where ggrav denotes the gravitational constant. POLY is an accurate emission
model. However, it may underestimate emissions of higher emitting vehicles as it
is built from average measured data [215].

While data-driven models can be developed quickly without prior knowledge on
the vehicle or roads, they usually lack a clear physical interpretation and might be
too coarse. They may also over-fit the calibration data if the number of variables
considered is too large.

Physical modeling approach

An alternative method for estimating emissions and energy consumption is to
employ a physical approach that leads to model parameters with physical meaning.
Two types of models can be distinguished, the deterministic and probabilistic
models, that are both described in the following sections.

• Deterministic methods

The emission and energy consumption rates can be determined from the power
engine demand P , which can be calculated using the vehicle longitudinal dynamics
governed by Newton’s second law of motion, as in [228]. For a vehicle p at time
step k, it can be expressed as

(M +Mi(γ(k)))aveh
p (k) = Fw(k)− Fa(k)− Fr(k)− Fg(k) (3.6)

where the resistive forces Fa, Fr, and Fg represent respectively the aerodynamic
drag, the rolling resistance force, and the force due to gravity in case of non-
negative road grade ψ. The variable Fw denotes the wheel force. These forces are
illustrated in Fig. 3.2. The variables M and Mi denote respectively the vehicle
mass and inertial mass. The inertial mass is defined as a function of the gear ratio
γ(k) associated with gear numbers from 1 to 5, and updated according to a gear
law based on the value of the engine speed. The vehicle acceleration aveh

p (k) is
calculated as the discrete derivative of its speed vveh

p .
The resistive forces can be calculated as follows

Fa(k) =
1

2
ρairSCXv

veh
p (k)2 (3.7a)

Fr(k) = CrrMggrav (3.7b)

Fg(k) = Mggrav sinψ (3.7c)
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ψ

−→
Fw

−→
Fr

−→
Fa

Figure 3.2: Forces applied to a moving vehicle.

where ρair, CX, Crr, and ggrav denote respectively the mass density of air, the
aerodynamic drag coefficient, the rolling resistance coefficient, and the gravita-
tional constant.

Based on Eq. 3.6, the wheel force can be positive if aveh
p (k) ≥ −Fa(k)+Fr(k)+Fg(k)

M+Mi(γ(k))
.

In this case, the driver is accelerating and a force is applied by the powertrain at
the wheels. The wheel force is negative if aveh

p (k) < −Fa(k)+Fr(k)+Fg(k)

M+Mi(γ(k))
. In this case,

the driver is actually braking.
The total tractive power of the vehicle Pw is calculated as follows

Pw = Fwv
veh
p (3.8)

Finally, the power engine demand P can be calculated as follows

P =
Ptrac

ηtf

+ Pacc (3.9)

where ηtf and Pacc denote respectively the efficiency of the transmission and final
drive and the engine power demand associated with accessories.

Once the power demand is known, [213] proposes to estimate the emission and
energy consumption rates as follows

J temp
y =

{
ay + byP , if P ≥ 0
ay , if P < 0

(3.10)

where ay and by are the regression coefficients determined for a given y and vehicle
type. When y represents the fuel consumption, ay can be approximated by a linear
function of the engine displacement.

[18] proposes to replace the regression coefficients by physical parameters and
operation variables to approximate the fuel use rate. The model is defined as

J temp
fuel LHVfuel ≈ λair/fuel

(
Ceωede +

P

ηe

)
(3.11)

where the engine friction factor Ce is the energy used at zero-power output to
overcome engine friction. The variables LHVfuel, Ce, ωe, ee, ηe denote respectively
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the fuel lower heating value, the engine friction factor, the engine speed, the engine
displacement, and the engine efficiency.

In [10], the authors then propose to calculate the pollutant emission rates as
follows

J temp
y = J temp

fuel

dy

d(fuel)
CPFy (3.12)

where y refers here only to emissions, dy
d(fuel)

corresponds to the grams of engine-
out emissions per gram of fuel consumed for pollutant y, and the Catalyst Pass
Fraction (CPF) CPFy can be modeled as

CPFy = 1− εy exp

[[
−bCPF − cCPF

(
1− 1

λ

)]
J temp

fuel

]
(3.13)

The parameters εy, bCPF, and cCPF denote respectively the maximum catalyst effi-
ciency of y, the stoichiometric CPF coefficient, and the enrichment CPF coefficient.

The Comprehensive Modal Emissions Model (CMEM) is based on (3.12) [231].
It considers different categories of vehicle and different modes of operation (idling,
cruising, acceleration, and deceleration). Emission and fuel consumption rates are
calculated as a function of the vehicle fleet composition (vehicle categorization
based on model year, weight, etc.), operation variables and model-calibrated pa-
rameters. The structure of the model is shown in Fig. 3.3. The CMEM predicts
emissions well, but may underestimate them for high-emitting vehicles because
the model is based on the average data of 300 vehicles (including about 30 high
emitters) measured during dynamometer tests, along different driving cycles [222].

Figure 3.3: Structure of the CMEM [231] [Published with permission of the Center
for Environmental Research and Technology].
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Another model proposed by [85] estimates emissions from fuel consumption at
engine mechanics level. The model relies on the first Law of Thermodynamics and
chemical kinetic reaction rate considerations. For NOx emissions, the model reads

log

(
d(NOx)

d(fuel)

)
= a0 + a1COC + a2mcyl + a3mO2 (3.14)

where a0 – a3 are model coefficients, d(NOx)
d(fuel)

is the mass of nitrogen oxides emitted

per mass of fuel consumed, COC is the center of combustion (50% energy conver-
sion, from Top Dead Center), and mair and mO2 denote respectively the in-cylinder
air and oxygen masses per stroke and displaced volume.

A simplified version of (3.14) is proposed by [247]. The authors propose to
express log(JNOx) as a linear function of the in-cylinder burned gas rate RBGR, as
follows

log

(
d(NOx)

d(fuel)

)
= a4 + a5RBGR (3.15)

where a4, a5 are model coefficients.
RBGR is expressed as a function of the engine speed and the engine torque for a

given type of vehicle, based on the data from the NEDC. The engine conditions are
physically determined from the speed of the vehicle and its constant parameters.

The same approach can be considered to estimate the emissions of other pol-
lutants.

• Probabilistic methods

The previous models estimate emissions and energy consumption as a function
of real vehicle operation variables (e.g. speed and acceleration, power demand,
engine mechanics).

However, these data are not always available. One may obtain the velocity
through microscopic traffic model simulation. But such models can be difficult
to implement, especially on a large spatial scale with a lack of precise knowledge
about the traffic situation, and can lead to unrealistically smooth velocity profiles.
Hence, probabilistic models, based on random velocity disturbances, have been
proposed in the literature.

The general idea of the random velocity disturbances approach is to run the
emission and energy consumption models while replacing, for a given route, the
actual speed of the vehicle by an approximate second-by-second speed profile ṽveh

p

built from a deterministic and a stochastic component as

ṽveh
p = v̄ + η (3.16)

where v̄ is the average traffic speed estimated from the road attributes provided
by a geographical information system (e.g. speed limit, traffic signs, road grade)
and η is a random variation in velocity for the subject vehicle.
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It is possible to consider a spatial distribution of speed or acceleration based
on driving cycles or statistical distributions [35].

[132] combines Markov chains with deterministic route attributes to generate
the speed profile. In this model, η is adjusted according to

P (X(k + 1) = Xi|X(k) = Xj) = MTP(i, j) (3.17)

where X(k) = [vveh
p (k) aveh

p (k)]T is the state vector of the vehicle p at time step k,
and the transition probability matrix MTP is built from real data.

Another probabilistic model is the Motor Vehicle Emission Simulator (MOVES),
presented by [278]. The aim of this method is to make the velocity trajectory more
realistic. Thus, it is assumed that vehicle detector stations provide an estimation
of v̄. The random variation in velocity is defined as

η(k) = ṽveh
p (k − 1) + aveh

p (k − 1)− v̄(k) (3.18)

A procedure to determine the acceleration aveh
p is presented in [278].

Probabilistic approaches are a solution in case of lack of information about
the vehicle dynamics. By construction, they are less accurate than models based
on the actual speed, but can be effectively used to estimate emissions and energy
consumption [142]. To improve these methods, traffic prediction models could be
integrated to determine v̄.

Note that the variability of certain unobserved parameters between vehicles
(e.g. temperature, Reid vapor pressure) can affect the emissions and energy con-
sumption. These issues can be addressed by introducing probabilistic correction
factors [83].

3.2.2 Physical pollutant and energy consumption model

In this section, a microscopic physical model, similar to the approaches reviewed in
Section 3.2.1, is proposed to calculate the energy consumption and NOx emissions
of internal combustion engine vehicles one by one, based on their longitudinal
dynamics.

Note that even in the presence of lateral maneuvers such as lane changes, con-
sidering the longitudinal motion alone is sufficient because the energy associated
with transient maneuvers can usually be neglected [230].

As in Eq. 3.6–3.7, Newton’s second law of motion is used to determine the
wheel force of the vehicle under consideration Fw. Then, the wheel torque Tw can
be calculated as follows

Tw(k) = Fw(k)R (3.19)

where R denotes the wheel radius.
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The engine torque Te and the engine speed ωe can be directly calculated using
the following relationships

Te(k) =
Tw(k)

γ(k)ηgb

(3.20a)

ωe(k) = min

{
max

{
vveh
p (k)γ(k)

R
,ωmin

}
, ωmax

}
(3.20b)

where ηgb, ωmin, and ωmax denote respectively the gear box efficiency, the minimum
engine speed, and maximum engine speed. Based on the engine torque and speed,
the fuel consumption rate yfuel, expressed in liters per second, can be given by fuel
consumption maps, such as the one shown in Fig. 3.4a for the same Euro 4 diesel
light vehicle.

Based on the original work of [85] and the extension proposed in [247], a new
regression model is introduced to calculate NOx emissions. The model returns
the NOx emission rate yNOx, expressed in kilograms per second, based on the fuel
consumption rate yfuel, the burned gas rate RBGR, and the in-cylinder fuel mass
per stroke and displaced volume mfuel. It reads

log

(
yNOx

yfuelρfuel

)
= a1 + a2RBGR + a3mfuel (3.21)

where a1 – a3 are regression coefficients, RBGR is obtained from Te and ωe using
the map given in Fig. 3.4b, and the in-cylinder fuel mass per stroke and displaced
volume mfuel is defined as follows

mfuel = yfuelρfuel × 1000× 60× 2π

60× ωeng

2

4

Ncyl

de

(3.22)

where ρfuel and Ncyl denote respectively the fuel density and the number of cylin-
ders. The factor 2

4
characterizes the fact that the cycle of four-stroke engines

consists of two crankshaft revolutions and four piston strokes.

Finally, the total fuel consumption E0→T and NOx emissions NOx0→T in the
whole network between time steps 0 and T can be calculated as follows

E0→T =
T∑
k=0

∑
p

δty
fuel
p (k) (3.23a)

NOx0→T =
T∑
k=0

∑
p

δty
NOx
p (k) (3.23b)

The choice of the values of the parameters introduced above are given in Ta-
ble 3.2. They correspond to a Euro 4 diesel passenger car, which represented
around 27.8% of the French statistical vehicle fleet in 2017 [42].
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(a) Fuel consumption map.
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(b) Burned gas rate map.
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Figure 3.4: Fuel consumption and burned gas rate maps, defined as functions of
the engine speed and engine torque.

3.3 Macroscopic models to predict pollutant emis-

sion and energy consumption

Macroscopic emission and energy consumption models estimate the rates of pol-
lutant emission and energy consumption (electricity or fuel) from the macroscopic
traffic dynamics (vehicle density, flow, average speed). In this section, the main
categories of this kind of models are reviewed in Section 3.3.1, and the calibration
and validation of a macroscopic model based on an artificial neural network (ANN)
is presented in Section 3.3.2.

3.3.1 State-of-the-art

As mentioned in Section 2.3, the macroscopic traffic dynamics can be measured
(average speed) or estimated through dynamic fluid-based traffic models. In this
section, the meta-models used to calculate emissions and energy consumption from
the traffic dynamics are presented. These meta-models consist in a mesoscopic
framework as they usually associate macroscopic traffic data with models based
on the microscopic functioning of vehicles. Two approaches are considered: meta-
models associated with static average speed-based approaches or with dynamic
fluid-based models. A discussion on the impact of the spatial and temporal dis-
cretizations is also proposed.
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Symbol Description Value Unit

Crr Rolling resistance coefficient 0.007 –
CX Drag coefficient 0.27 –
M Vehicle mass 1340 kg
Ncyl Number of cylinders 4 –
R Wheel radius 0.32 m
S Vehicle cross-section 1.95 m2

de Engine displacement 1,87 L
ggrav Gravitational acceleration 9.81 m.s−2

ηgb Gear box efficiency 0.95 –
ρair Air density 1.22 kg.m−3

ρfuel Fuel density 0.845 kg.L−1

ωmax Maximum engine speed 4250×2π
60

rad.s−1

ωmin Minimum engine speed 800×2π
60

rad.s−1

Table 3.2: Microscopic fuel consumption and NOx emission model parameters and
variables.

Meta-model associated with static average speed-based approaches

The average speed of the traffic on each link i is defined as

v̄(i) =
1

T

T∑
k=1

1

Ni(k)

Ni(k)∑
j=1

vveh
j (k) (3.24)

where N i(k) is the number of vehicles on link i at time step k. In the following,
the average speed of link i, v̄(i), is referred to as v̄ for simplicity.

Emissions and energy consumption can be calculated by considering an average
speed-based approach. This is done by a meta-model whose general procedure is
illustrated in Fig. 3.5, and operation steps are presented below.

Measurements
Microscopic

emission/energy model
Macroscopic

emissions/energy
v̄ Jy(v̄)

N

Figure 3.5: Structure of the emission and energy consumption meta-model associ-
ated with static average speed-based approaches.
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1. The average speed v̄ and the number of vehicles N are measured, or esti-
mated.

2. The emission or energy consumption rate of a single vehicle Jy is calculated
from v̄ using a microscopic emission and energy consumption model (cf.
Section 1.2.1).

3. Jy(v̄) is then multiplied by N to approximate the total emission or energy
consumption rate.

Note that this procedure can be conducted at different scales. The average
speed v̄ and the number of vehicles associated N can refer to a single link of
a network, if the data are available, or to a larger spatial area. Moreover, the
duration between two successive measurements usually depend on the measuring
devices. These issues are addressed in Section 3.3.1.

This meta-model can be associated either with a data-based or a physical mi-
croscopic emission and energy consumption model. These approaches are detailed
below. Note that they involve measuring, or estimating, the number of vehicles
on the roads under consideration.

Some authors propose to associate the meta-model with a data-based micro-
scopic emission and energy consumption model.

For instance, [29] proposes the following regression-based model in order to
estimate the fuel use rate of a single vehicle

ln
(
J spat

fuel

)
= β0 + β1v̄ + β2v̄

2 + β3v̄
3 + β4v̄

4 + β5ψ (3.25)

where β0 to β5 are the regression coefficients.

Another common approach to estimate emissions and energy consumption on a
large spatial scale is to associate this meta-model with a microscopic model based
on aggregated data-driven emission or energy consumption factors Jy(v̄, θ) that
depend on the traffic average speed v̄ and some vehicle parameters θ.

Let Ω be the set of possible parameters sets. Aggregated factors are usually
simply the mean values of experimental measurements and are typically expressed
in mass of pollutant emitted (or mass of fuel consumed) per vehicle and per unit
distance traveled. Hence, the total emission or energy consumption rate, i.e. the
output of the meta-model, of a link i containing N θ

i vehicles with the set of pa-
rameters θ is denoted J iy and is given by

J iy =
∑
θ∈Ω

N θ
i Jy(v̄, θ) (3.26)
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In practice, detailed information on the fleet composition is not available.
Hence, a reference set can be considered, i.e. all the vehicles have the same param-
eters θ̄, and the emission or energy consumption rate on link i simply becomes:

J iy = N θ̄
i Jy(v̄, θ̄) (3.27)

The COPERT (COmputer Programme to calculate Emissions from Road Trans-
port) model [192] developed by the European Environment Agency is based on this
method. Several vehicle parameters are included in θ: the vehicle type (passen-
ger car, light commercial vehicle, heavy duty vehicle, L-category vehicle), the fuel
type, the engine displacement and its registration date. The sets of parameters of
all the vehicles constitute the vehicle fleet composition. An example of emission
factors obtained with COPERT for different types of vehicle as a function of the
speed is given in Fig. 3.6.

Figure 3.6: Fuel consumption factors of different gasoline passenger cars calcu-
lated with COPERT [236] [Published with permission of Networks and Spatial
Economics].

[105] proposes the HBEFA (HandBook Emission FActors for road transport)
model, which is more precise. This method additionally considers the driving
conditions (highways, urban roads, stop-and-go traffic) and the volume-to-capacity
ratio (number of vehicles divided by the capacity of the link), which is a dynamic
variable, to determine Jy(v̄, θ).

The accuracy can also be improved by multiplying the emission and energy
consumption factor Jy(v̄, θ) by a congestion correction factor, as does the Traffic
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Energy and Emissions (TEE) model. The objective is to represent the effect of
congestion on emissions and energy consumption. The congestion correction factor
depends on the average speed, the traffic-light timing, the link length, and the
traffic density [187]. These variables and parameters are used to estimate the time
spent in each traffic situation (cruising, acceleration, deceleration and idling) and
thus reflect the speed variability along the considered road link. The corresponding
speed profile can then be reconstructed.

One limitation of these aggregated factors models is that the emission and
energy consumption factors are not fundamental, as they depend on the driving
cycle used during the measurements.

It is also possible to use this meta-model by associating it with a physical
emission and energy consumption model.

For example, [129] proposes to use the following microscopic physical model
to estimate the energy consumption needed by a vehicle p to travel a section of
length L.

E =

{
Er + (ν − 1)Ep , if Ep ≤ 0
Er , if Ep > 0

(3.28)

where ν∈ [0, 1] is the downhill potential energy recuperation coefficient. The
resistance and the potential energies are respectively given by

Er =
ρair

2
SCdv̄

2L+MggravCrrL cosψ

Ep(i) = MggravL sinψ
(3.29)

where Cd is the Reynolds coefficient.
To model more precisely the speed change at an intersection, [58] introduces

a transition speed at the interface between two links of respective average speeds
v̄before and v̄after defined as

vtransition = µ
v̄before + v̄after

2
(3.30)

where µ ∈ [0, 1] is a parameter depending on the type of interface (e.g. stop
sign, traffic light, turning movement, etc.). This transition speed can be intro-
duced to any model similar to the one presented in (3.28) – (3.29) to better model
intersections.

Meta-model associated with dynamic fluid-based models

Emissions and energy consumption can be calculated by considering the fluid-based
models dynamics. This is done by another meta-model whose general procedure
is illustrated in Fig. 3.7, and operation steps are presented below.
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Macroscopic
traffic model

Interface
Microscopic

emission/energy model

Macroscopic emissions/energy

ρ(x, t)
v(x, t)
ϕ(x, t)

v(h(x, t))
a(h(x, t))

N(h(x, t)) Jy(v, a)

Figure 3.7: Structure of the emission and energy consumption meta-model associ-
ated with dynamic fluid-based traffic models.

1. First, a dynamic fluid-based traffic model is chosen (cf. Section 2.3.1). It
provides the traffic variables, i.e. ρ(x, t), v(x, t), ϕ(x, t).

2. Then, these variables are processed by an interface to generate groups of
vehicles h(x, t) sharing the same speed and acceleration. The interface cal-
culates the speed, acceleration and number of vehicles of each group. They
are respectively denoted v(h(x, t)), a(h(x, t)) and N(h(x, t)).

3. A microscopic emission and energy consumption model is chosen (cf. Sec-
tion 1.2.1). It provides the emission or energy consumption rate Jy(v, a) of
a vehicle of group h(x, t) using the outputs v(h(x, t)) and a(h(x, t)) of the
interface.

4. The emission or energy consumption rate Jy(v, a) of a vehicle of group h(x, t)
is multiplied by the number of vehicles in the corresponding group N(h(x, t))
to provide the total emission or energy consumption rate of group h(x, t).

The procedure presented above is repeated as many times as there are groups.
It is important to note that this generation of groups with homogeneous operation
variables relies on the spatial and temporal discretizations of the traffic model.
This issue is addressed in Section 3.3.1.

The procedure of the interface presented above is detailed in the following [288].
To compute emissions and energy consumption, the employed traffic models

are often discrete both in time and in space. Hence, two acceleration components
have to be considered: the temporal and the spatio-temporal accelerations:

- The temporal acceleration atemp is experienced by the vehicles that stay
within the same cell from one time step to the next one. It reflects the speed
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variation within a cell. It is expressed as

atemp
i (k) =

vi(k + 1)− vi(k)

δt
(3.31)

The number of vehicles N temp subject to this acceleration, i.e. that stay
within the cell i during time interval [kδt, (k + 1)δt] is equal to

N temp
i (k) = δxρi(k)− ϕouti (k)δt (3.32)

The first term represents the number of vehicles initially in cell i at time
step k, and the second term characterizes the number of vehicles that have
leaving it. These vehicles constitute a group h(x, t) mentioned above. There
are as many groups of this type as there are cells in the spatial discretization
of the traffic model.

- The spatio-temporal acceleration aspat is experienced by the vehicles that
move from one cell to another one. It reflects the speed difference between
adjacent cells. For each cell i, the acceleration aspat

r,i from its upstream cell r
is defined as

aspat
r,i (k) =

vi(k)− vr(k − 1)

δt
(3.33)

The number of vehicles N spat subject to this acceleration, i.e. that have
moved from the cell r to cell i during time interval [kδt, (k + 1)δt] is

N spat
r,i (k) =


δtϕ

in
i (k) if |Pi| = 0

δtϕ
out
r (k) |Pi| = 1

βiδtϕ
out
r (k) if |Pi| = 2

(3.34)

These vehicles constitute a group h(x, t) mentioned above. There are as many
groups of this type as there are cells interfaces in the spatial discretization
of the traffic model.

Ultimately, a generic formulation to calculate the emissions and energy con-
sumption rate in a network made of n cells is

Jnetwork
y (k) =

∑n
i=1 Jy(a

temp
i (k), vi(k))N temp

i (k)+∑n
i=1

∑n
j=1 Jy(a

spat
i,j (k), vi(k))N spat

i,j (k)
(3.35)

where N spat
i,j is always zero if there is no connection between cells i and j. The

first term of (3.35) refers to the emissions and energy consumption of vehicles
staying in the same cell from time step k to k + 1 (temporal acceleration term),
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and the second term refers to those of vehicles moving from one cell to another
(spatio-temporal acceleration term).

To estimate emissions and energy consumption more precisely, this calculation
can be done by differentiating classes of vehicles. In that case, the function Jy can
consider the real parameters θ of the vehicles instead of average values.

This meta-model can be associated either with a data-based or a physical mi-
croscopic emission and energy consumption model. Some examples are presented
below. Naturally, the meta-model procedure is generic and can be adopted to
other models.

Some authors propose to use this meta-model by associating it with a data-
based emission and energy consumption model. For example, [288] proposes to
integrate the macroscopic traffic second order model METANET with the micro-
scopic data-driven emission and fuel consumption model VT-micro. The resulting
meta-model, called VT-macro, is mainly suitable for modeling emissions and en-
ergy consumption on highways.

Similarly, [158] suggests to associate the traffic first order S model with VT-
micro in an urban network. The authors present a set of possible behaviors for
the vehicles (e.g. free, idling, accelerating, decelerating, start-and-stop behavior).
Another use of the meta-model in an urban environment can be found in [124], in
which the authors propose the same models association.

It is also possible to use this meta-model by associating it with a physical
emission and energy consumption model. For example, [51] develops a method
based on the VLM and a physical approach to determine energy consumption.
This model considers only the spatio-temporal component of acceleration. In each
cell, energy consumption is determined from the cell average speed (either free or
congested), considering zero temporal acceleration. At the interface of the cells,
the energy is calculated based on the following spatio-temporal acceleration

aspat
i,j = min

{
a,
vj − vi
δt

}
(3.36)

where the maximum acceleration a is a model parameter. Note that time does
not appear in the formulation of [51] because the analysis is performed at steady
state.

Spatial and temporal discretizations

The spatial and temporal discretizations of the methods used are a crucial point
in emissions and energy consumption estimation: a compromise has to be found
between precision and computation time.

• Spatial discretization
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Concerning the use of the average speed meta-model, measurements of average
speed and number of vehicles made on a road level would naturally give better
results than measurements made on a larger spatial scale. But this depends mainly
on the devices used to monitor the traffic. Some average speed-based meta-models
consider a fine spatial discretization in order to be compatible with urban networks
(e.g. COPERT Street Level [221]).

When using the meta-model associated with dynamic fluid-based models, the
choice of the spatial discretization step size should be given some thought. A
balance concerning the number of cells and their length has to be found in order
to satisfy the desired accuracy without excessively increasing computation times.

• Temporal discretization

Some authors have proposed methods to use the average speed meta-model with
high-frequency data inputs, i.e. average speeds and number of vehicles updated
at high frequency. For example, [147] proposes a method to adapt the COPERT
emission and fuel consumption model to high-frequency data inputs. This kind of
approach is more precise. However, it is essential to note that the average speed-
based meta-model is static. In other words, even with high frequency data inputs,
emissions and energy consumption are calculated for successive average speeds,
but do not consider the acceleration of vehicles, yet crucial to fully characterize
emissions and energy consumption [6].

Dynamic fluid-based meta-models can consider macroscopic accelerations, and
should therefore be more precise. However, the choice of δt is particularly critical
as it must lead to realistic acceleration values while respecting the CFL condition
given in Eq. 2.42.

• Summary

In other words, adopting a dynamic fluid-based approach with very long time
step size and length of cells is similar to having an average speed-based approach.
The difference would be that the data are obtained by simulation instead of being
measured.

Finally, the most precise way to calculate emissions and energy consumption
at a large spatial scale would be to use a microscopic traffic model and to associate
it with a microscopic emission and energy consumption model (cf. Section 1.2.1).
In fact, this approach is the only one able to reflect differences in microscopic
drivers’ behavior (e.g. sudden deceleration, merging, lane changing). When traffic
is congested, these can result in shock waves causing traffic breakdown, that a
macroscopic traffic model cannot depict [138]. However, microscopic models are
not appropriate at large scale because of the enormous computation times gen-
erated by the large number of vehicles considered. [227] proposes a statistical
approach to process this large amount of data by introducing sampling methods.
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The author suggests to estimate emissions and energy consumption only in some
relevant locations of the network, and to extend the estimations at larger scales.

3.3.2 Artificial Neural Network-based model

Macroscopic pollutant emission and energy consumption models are particularly
adapted to eco-management control strategies based on prediction because of their
lower numerical complexity.

As discussed previously in Section 3.3.1, several approaches can be implemented
to estimate fuel consumption from the macroscopic traffic variables. A first strat-
egy consists in using emission factors, which are typically defined as a function of
the average speed, but can also take additional macroscopic variables as arguments
[192, 105]. Such models are particularly efficient to estimate aggregated emission
levels, but they do not take into account the dynamic aspect of traffic. To con-
sider traffic dynamics, some works propose to introduce macroscopic accelerations,
which are defined as the temporal and spatio-temporal numerical derivatives of the
average speed [288]. Yet, such approaches raise the question of model calibration
and temporal discretization fineness, which is crucial in the calculation of acceler-
ation. Spatial calibration also plays an essential role because this type of model
assumes that all vehicles in the same cell are subject to the same acceleration.

Therefore, we propose in this work to calibrate an ANN-based macroscopic fuel
consumption model which is consistent with the parameterization of the problem.
In particular, it is expected that this model will be more accurate because of its
greater sensitivity to fuel overconsumption at low average speeds. This latter is
caused by successive acceleration and deceleration phases, that are not necessarily
captured by other macroscopic models. Finally, it is essential to note that despite
good performances expected for the following study cases, this ANN-based model
may not be adapted to all types of networks and all types of vehicle driving style.

Calibration

The model predicts the fuel consumption rate of vehicles in each cell i, expressed in
liters per second per vehicle, from the variables returned by the traffic prediction
model, namely the CTM. Because of the granularity of the information provided
by the CTM, the macroscopic energy model associates the same fuel consumption
rate to all the vehicles of the same cell at a given time.

In practice, the ANN is composed of three hidden layers. It is trained with
traffic data obtained through SUMO simulations, and energy consumption data
determined from the vehicles’ speed profiles using the microscopic physical fuel
consumption model. The data are measured at a frequency of 1 Hz, generating
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about 3.5 million data. As a result, the ANN predicts the average fuel consump-
tion rate per vehicle of vehicles in cell i at time k, denoted ŷfuel

i (k). The ANN
inputs are listed in Fig.3.8, they include the densities and speeds at current and
previous time steps, the speed limit, and the TLS state. In case cell i is not reg-
ulated by a TLS, we consider ∀k, αi(k) = 1. The densities and speeds at previous
time steps are included in the model inputs as they add information on the dynam-
ics of the system. This partially compensates for the fact that the macroscopic
CTM variables do not contain any information on vehicles accelerations. Such
approaches have already been proposed in the literature. For example, [288] intro-
duces macroscopic accelerations in the VT-macro model, based on the derivatives
of cells’ average speeds.

ρi(k) ρi(k − 1) vi(k) vi(k − 1) ui(k) αi(k) Inputs

ANN

ŷfuel
i (k) Output

Figure 3.8: Representation of the ANN inputs and output.

As a result, the prediction of the total fuel consumption in the whole network
over a prediction time horizon ∆p (between time steps k and k + ∆p), expressed
in liters, can be calculated as

Êk→k+∆p =

k+∆p∑
e=k

∑
i∈R

δxδtρi(e)ŷ
fuel
i (k) (3.37)

The ANN model is trained using the Manhattan grid network introduced in
Fig. 2.11. To generate training data, eight simulations are run with two different
initial densities (0% and 70% of the maximum density ρM), and four different
constant speed limits (20 km/h, 30 km/h, 40 km/h, 50 km/h) are considered in the
urban area. Note that a constant speed limit of 70 km/h is always considered in
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the peri-urban area as its speed limit will not be considered as a control actuator
in this work. Measurements of the density, speed, and energy consumption rate
are carried out in each cell i with a frequency of 1 Hz. All simulations have the
same duration of 15 minutes.

Validation

It is essential to evaluate the performance of the ANN-based macroscopic energy
model by running it on new data. To that extent, four simulations of T = 15 min
are run with initial densities of 30% and 20% of the maximum density in the urban
and the peri-urban areas, respectively. The demand is constant over time and
equal to 0.2 veh.s−1 at each source. The simulations are run with constant speed
limits of 20 km/h, 30 km/h, 40 km/h, and 50 km/h. In each simulation, the fuel
consumption is calculated using the microscopic energy model, and constitutes the
target, which is compared with the output of the ANN-based macroscopic energy
model. The results are shown in Fig. 3.9. On average, the error between the target
and the prediction is 11.5% (from 4% with 20 km/h speed limits to 16.4% with
50 km/h speed limits). This gap is mainly due to the fact that not all information
on vehicles’ behavior can be captured using macroscopic traffic variables alone,
and that a set of macroscopic variables may correspond to different microscopic
situations. However, it appears that the trend of the two curves is similar, which
corresponds to the expected result.
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Figure 3.9: Comparison of the actual fuel consumption given by the microscopic
model (target) with the corresponding macroscopic energy model output (predic-
tion) in an evaluation scenario.
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4.1 Foreword

In this chapter, we propose first to investigate the relationship between energy
efficiency and traffic dynamics. Then, online closed-loop control approaches are
introduced in order to implement VSLs in a Manhattan grid structure. These
approaches consider in a first step macroscopic traffic and energy models. In
a second step, macroscopic traffic and energy models are considered to predict
and optimize the traffic system whose traffic dynamics and pollutant and energy
consumption are determined using microscopic models.

4.2 Analysis of the relationship between energy

efficiency and traffic dynamics

The relationship between energy efficiency and traffic dynamics can be investigated
in different ways. In this section, we propose first to analyze the impact of the car-
following model on the energy consumption, calculated with the microscopic energy
consumption model. Then, the relationship between energy efficiency and traffic
dynamics is characterized on the ring road (cf. Fig. 2.7) and in the Manhattan
grid network (cf. Fig. 2.11). In particular, the impact of congestion and speed
limits is characterized.

4.2.1 Impact of the car-following model on the energy con-
sumption

A comparison between IDM, Krauss, and Wiedemann car-following models based
on the speed profiles of the vehicles has been proposed in Section 2.2.2. To go
further, we propose in this section to analyze the impact of the choice of the
car-following model on the energy consumption curves.

Simulations are run with the physical energy model described in Section 3.2.2.
They are performed on the ring road presented in Fig. 2.2 so as to characterize the
behavior of the models in a steady-state situation. The speed limit is 50 km/h.

The fuel consumption is normalized by the distance traveled by the vehicles,
and the average consumption is represented in Fig. 4.1 as a function of the density,
i.e. the number of vehicles on the ring road.

The average fuel consumption is increasing with the density for all models. The
fuel consumption curve determined with Wiedemann car-following model reaches
much higher levels than the other two models. This was expected in view of the
very low speed and the numerous acceleration and deceleration phases of vehicles
observed with this model in Fig. 2.3. It is interesting to note that the three phases
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Figure 4.1: Comparison of the fuel consumption curves, expressed in L/100km, as
a function of the density for IDM, Krauss, and Wiedemann car-following models.

identified with the IDM in Fig. 2.3 (lower speed without oscillations – regular
stop-and-go waves – chaotic stop-and-go waves) appear clearly in Fig. 4.1 with
two main steps around 20% and 50% of the maximum density. Also, the IDM
is preferred to Krauss model because the curve of this latter is not monotonous,
which a priori does not really make physical sense. These elements reassure us in
our choice to consider the IDM as car-following model in this work, although each
of the 3 models presented could have been taken as reference.

4.2.2 Stationary analysis of the relationship between en-
ergy efficiency and traffic dynamics on a ring road

The relationship between energy consumption and traffic dynamics can be further
analyzed using the IDM and the physical emission and energy consumption model
presented in Section 3.2.2. In particular, we are interested in analyzing the impact
of the speed limit and the presence of a TLS for different congestion levels. This
study is conducted considering the ring road presented in Fig. 2.7 to reach steady-
state conditions, with a TLS that is either always green or that alternates between
green and red phases.

The results are given in Fig. 4.2. As mentioned in Section 4.2.1, the average
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fuel consumption is always globally increasing with the density. This is due to the
fact that thermal vehicles are more energy efficient at 50 km/h than at lower speed
limits, because of the u-shaped consumption curve presented in Fig. 1.4. Also,
the apparition of stop-and-go waves at higher densities deteriorates the energy
efficiency because of successive acceleration and braking phases.

The results also reveal that regardless of the presence of TLS, 50 km/h speed
limits are always more energy efficient than 20 km/h for low density values, but
that this observation is reversed when the density exceeds a certain threshold.
Again, this can be explained by the u-shaped consumption curve and by the fact
that accelerations up to 50 km/h naturally consume more energy than accelerations
up to 20 km/h.

These results highlight the potential of speed limit control in urban areas to
optimize energy consumption. Also, the fact that the fuel consumption curves
under 20 km/h and 50 km/h speed limits have different shapes depending on the
presence of TLS, and that their intersections do not occur for the same density
level (around 50% of the maximum density without TLS, around 60% of the max-
imum density with TLS) highlights the fact that control must be adapted to each
situation.

4.2.3 Quasi-stationary analysis of the relationship between
energy efficiency and traffic dynamics in a Manhat-
tan grid structure

To go further, we propose in this section to analyze the relationship between
energy efficiency and traffic dynamics in the Manhattan grid structure presented
in Fig. 2.11. In particular, we are interested in analyzing the impact of the speed
limit in the urban area for different congestion levels. To that extent, simulations
of T = 15 min are run with an initial density of 20% of the maximum density in the
peri-urban area (and different initial densities of 0%, 30%, 60%, and 90% of the
maximum density in the urban area). For each initial density level, simulations are
run with constant speed limits varying from 20 km/h to 50 km/h, with a step of
5 km/h. The traffic demand at each exogenous source is considered constant over
time and equal to din = 0.2 veh.s−1 (the endogenous sources are not considered
here). A short simulation time T is chosen in order to limit the decongestion and
keep densities of the same order of magnitude within each simulation. The higher
the initial density, the longer it takes to decongest the network.

The results are given in Fig. 4.3 & 4.4. On the one hand, the observation
of Fig. 4.3a reveals that the TTD in the urban area, which is to be maximized
to improve traffic fluidity, is always increasing with the speed limit, whatever
the level of congestion. However, it is higher with initial densities of 30% and
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(a) Fuel consumption as a function of the
density, without TLS.
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(b) Fuel consumption as a function of the
average speed, without TLS.
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(c) Fuel consumption as a function of the
density, with TLS.
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(d) Fuel consumption as a function of the
average speed, with TLS.
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Figure 4.2: Average fuel consumption on the ring road as a function of the density
and the average speed. Simulations are run with and without TLS (as described in
the scenarios defined in Section 2.3.3), under 20 km/h and 50 km/h speed limits.

60% than 0% and 90%, which suggests that the network TTD is maximized for
density values close to the plateau of the trapezoidal fundamental diagram, which
corresponds to the critical density. On the other hand, the TTD in the peri-
urban area, represented in Fig. 4.3b, seems to be monotonously decreasing with
an increasing congestion level in the network, because of the presence of queues
that mechanically reduce the flow entering the network. However, it appears that
its loss is negligible as long as the density is lower than the critical density.

Concerning the environmental impact, Fig. 4.3c & 4.3d show that the total
fuel consumption and NOx emissions in the urban area, calculated using the mi-
croscopic model, are monotonously increasing with the speed limit. However, it is
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(a) TTD in the urban area.
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(b) TTD in the peri-urban area.
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(c) Total fuel consumption in the urban
area.
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(d) Total NOx emissions in the urban
area.
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Figure 4.3: TTD, total fuel consumption and NOx emissions for different initial
densities (from 0% to 90% of the maximum density ρM) under different constant
speed limits (from 20 km/h to 50 km/h).
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(a) Average fuel consumption in the ur-
ban area.
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(b) Average NOx emissions in the ur-
ban area.
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(c) Average fuel consumption in the
peri-urban area.

20 25 30 35 40 45 50
Speed limit (km/h)

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Av
er

ag
e 

fu
el

 c
on

su
m

pt
io

n 
(L

/1
00

 k
m

)

0%
30%
60%
90%

(d) Average NOx emissions in the peri-
urban area.
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Figure 4.4: Average fuel consumption and NOx emissions for different initial den-
sities (from 0% to 90% of the maximum density ρM) under different constant speed
limits (from 20 km/h to 50 km/h).
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difficult to draw a conclusion from these observations in the sense that the TTD
in the urban area is also increasing with the speed limit. Hence, it is necessary
to define new criteria to be able to compare the different scenarios, such as an
objective function that integrates the TTD. In this sense, we define the average
fuel consumption E0→T

avg and NOx emissions NOx0→T
avg , per vehicle and per distance

traveled. Classically, these criteria are respectively expressed in L/100km and in
mg/km, and are defined as follows

E0→T
avg =

E0→T

TTD0→T (4.1a)

NOx0→T
avg =

NOx0→T

TTD0→T (4.1b)

The average fuel consumption and NOx emissions are represented in Fig. 4.4a
& 4.4b. These functions seem to be convex, and the position of the minimum
appears to depend on the level of congestion.

In the peri-urban area, Fig. 4.4c & 4.4d show that the appearance of queues
due to a highly congested urban area can have a major impact on the average fuel
consumption and NOx emissions.

As a result, both the environmental and the traffic performance criteria reveal
a switch in the system efficiency around the critical density, i.e. the density values
close to the plateau of the trapezoidal fundamental diagram that correspond to the
maximum flow. Also, there seems to be a trade-off between energy efficiency and
traffic performance, and the best compromise lies around the critical density in the
network. For a given level of congestion at steady state, the choice of the speed
limit characterizes another trade-off between TTD, which is to be maximized,
and Eavg and NOxavg that are to be minimized. These results are instinctive and
allow a priori to validate the approach developed in this study. To go further, the
optimal speed limit might be above 50 km/h but this range of speed limits are not
analyzed here as it would pose safety issues in an urban environment.

4.3 Variable speed limits control strategy using

macroscopic models

In view of the results presented in Section 4.2, it appears that the online closed-
loop control of speed limits, is of particular interest as it could maintain the system
at desired density levels, and ensure smooth transitions between different levels of
congestion. In this section, we propose to analyze the performance of an ecological
VSLs approach aimed at reducing the environmental impact and improving the
traffic performance using an NMPC framework. In this section, we only consider
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4.3 Variable speed limits control strategy using macroscopic models

macroscopic traffic (CTM) and emission/energy consumption (VT-macro) models,
both for simulation and prediction purposes. Simulations are run in a Manhattan
grid network.

4.3.1 Control strategy

Model predictive control framework

The closed-loop MPC control framework implemented in this study is given in
Fig. 4.5. The block diagram shows the inputs and outputs of the different blocks
considered. In practice, the closed-loop controller operates as follows:

1. At each control time step k, i.e. multiple of the control time horizon ∆c,
the current state of the system xk is measured and provided to the MPC
controller.

2. The traffic predictor estimates the evolution of the system state x̂k+1→k+∆p

(here, x̂k+1→k+∆p = xk+1→k+∆p because the same models are used for simu-
lation and prediction) on a prediction time horizon ∆p, i.e. between k + 1
and k + ∆p. As indicated in Eq. 2.38, the predicted state is defined as

x̂k = [ρ̂k−1, ρ̂k] (4.2)

where ρ̂(k) denotes the predicted densities at time step k.

3. The fuel consumption Êk+1→k+∆p between time steps k + 1 and k + ∆p,
expressed in liters, is predicted using a macroscopic fuel consumption model
(here again, Êk+1→k+∆p = Ek+1→k+∆p).

4. An optimizer based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm repeats steps 2 and 3 in order to find system inputs, i.e. a trajectory
of speed limits V k+1→k+∆p =

[
[Vi(e)]i∈R

]
e∈[k+1..k+∆p]

, minimizing an objec-

tive function J along the prediction time horizon ∆p. Once this optimum
trajectory of speed limits is found, its first iteration, i.e. between k + 1 and
k + ∆c is applied to the system. Note that to reduce the computational
burden of the approach, clusters of roads can be introduced to parameterize
the trajectory of speed limits. In practice, all the roads of the same cluster
are controlled by the same variable, i.e. they are subject to the same speed
limit at any time of the simulation.

The BFGS algorithm, used in the optimizer block, is an iterative method, which
is able to solve unconstrained nonlinear optimization problems [34, 79, 92, 233].
It is based on an approximation of the inverse of the second derivative of the
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Figure 4.5: Block diagram of the global approach for ecological VSLs strategy
using macroscopic models.

objective function, rather than explicitly constructing the Hessian matrix. In
practice, this approximation is obtained from gradient evaluations via a secant
method. As a result, the computational complexity of the algorithm is only O(n2).
In the literature, several works have evaluated the numerical performance of this
quasi-Newton method, and have demonstrated its global convergence properties
on uniformly convex problems, which is not the case in this work [163]. In this
work, we are using L-BFGS-B, which is a limited-memory version of the algorithm
that is particularly suited to high-dimensional problems. This version also handles
bound constraint minimization, which is necessary to remain within the allowable
speed limits.

To improve the performance of the solver, the BFGS algorithm is used in a two-
phase method that combines a global stepping algorithm with local minimization
at each time step. In total, we consider in this work 6 runs of the local minimizer
in order to improve the global solution and to reduce the risk of local optimum.
As a result, the controller takes an average of 8 min 30 s to run at each control
time step, which makes it compatible with off-line approaches only.

For implementation reasons, the prediction time horizon ∆p should be a mul-
tiple of the control time horizon ∆c. The corresponding proportionality coefficient
K is defined as follows

∃K ∈ N∗, ∆p = K∆c (4.3)

The operation of the MPC controller of this study is illustrated in Fig. 4.6. In
order to simplify the implementation of such a methodology, it is parameterized
as follows:

• Between two successive control time steps k and k + ∆c, the control, i.e.
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4.3 Variable speed limits control strategy using macroscopic models

the speed limits, remain constant. They are continuous and bounded by
Vmin = 20 km/h and Vmax = 50 km/h.

• All the cells of a given road have the same speed limit.

• In order to reduce the degree of freedom of the system, it is possible to
go further and group the roads in a few clusters, each cluster then being
controlled by a single speed limit variable. A counterpart of this approach
is that the solution obtained may be suboptimal. However, it is usually
necessary when going large scale because considering nclusters clusters of roads
results in an optimization problem with K × nclusters variables only at each
control time step. In practice, K and nclusters can both be adapted to have
convenient computation times. The choice of the value of K should be a
compromise between the computational burden and the robustness of the
controller. The choice of nclusters mainly depends on the structure of the
network.

Time
k

State

k + ∆c k + 2∆c k + ∆pk + 1

Past Future

• • •
•
•
• • • • • • • •

• •

Time
k

Control

k + ∆c k + 2∆c k + ∆pk + 1

Vk

Vk + ∆c

Vk + 2∆c

δt
∆c

∆p

Figure 4.6: Representation of the NMPC framework, for K = 3.
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As a result, the controller solves the following optimization problem

min
V k→k+∆p

J(x̂k→k+∆p , V k→k+∆p)

s.t. ρi(e+ 1) = ρi(e) + δt
δx

(
ϕin
i (e)− ϕout

i (e)
)
,∀e ∈ [k, . . . , k + ∆p − 1]

Vi(e) ∈ [20, 50] km/h,∀i ∈ R,∀e ∈ [0..T ]
(4.4)

The control horizon is set to ∆c = 5 min, so as to have a compromise between
the flexibility of the controller and the comfort of road users. In order to ensure
the robustness of the controller, we propose to consider K = 6 (i.e. ∆p = 30 min).

Objective function

The choice of the objective function is crucial in traffic eco-management control
strategies. Several formulations can be implemented to solve ecological traffic man-
agement problems [198]. Usually, this kind of objective function is the weighted
sum of an ecological metric, and a traffic efficiency metric. The purpose of this
multi-objective optimization, based on metrics that can be antagonistic, is to avoid
trivial solutions (for example, reduce the speed limits of the entering roads in order
to reduce the number of vehicles in the network, which will naturally reduce the
fuel consumption), and find a compromise between energy efficiency and traffic
performance. In this study, we consider

J(x̂k→k+∆p , V k→k+∆p) = λ
Êk+1→k+∆p

σE

− (1− λ)
ˆTTD

k+1→k+∆p

σTTD

(4.5)

where σE and σTTD are normalization coefficients, and λ is a weighting coeffi-

cient. The variables Êk+1→k+∆p (in liters) and ˆTTD
k+1→k+∆p

(in meters) are the
spatial (in the whole network) and temporal (over the prediction time horizon ∆p)
integrals of the fuel consumption and the total distance traveled by the vehicles,
respectively. They are defined as follows

Êk+1→k+∆p = δt

k+∆p∑
e=k+1

∑
i∈R

Ei(xe, Ve) (4.6a)

ˆTTD
k+1→k+∆p

= δtδx

k+∆p∑
e=k+1

∑
i∈R

ρi(e)vi(e) (4.6b)

The average speed in cell i at time step k, denoted vi(k), is determined with
Eq. 2.43. Ei(xk, Vk) denotes the fuel consumption, in liters per second, in cell i
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during time interval [kδt, (k+ 1)δt]. It is calculated using the VT-macro approach
[288], described as

Ei(xk, Vk) = Etemp
i (xk, Vk) +

∑
r∈Pi

Espat
r,i (xk, Vk) (4.7)

where the energy consumption quantities on account of macroscopic temporal
and spatio-temporal accelerations are respectively

Etemp
i (xk, Vk) = N temp

i (k)ξ(atemp
i (k)) ·Mfuel · ξ(vi(k))T (4.8a)

Espat
r,i (xk, Vk) = N spat

r,i (k)ξ(aspat
r,i (k)) ·Mfuel · ξ(vi(k))T (4.8b)

Mfuel is the model regression parameters matrix [288, 9]. It can be calibrated
for fuel consumption, but also for pollutant emissions (for example, MNOx for NOx
emissions). The function ξ is defined as

ξ(x) =
[
1 x x2 x3

]
(4.9)

Note that Mfuel can depend on the acceleration, in which case there is a set of
parameters Mfuel,+ calibrated for positive accelerations, and a set of parameters
Mfuel,− calibrated for negative accelerations.

The exact acceleration values of vehicles cannot be obtained with certainty
from the traffic flow models. Thus, we propose to estimate them following the
approach presented in [288]. This method considers that each vehicle is subject
to either a temporal or a spatio-temporal acceleration. The way to calculate these
accelerations atemp

i and aspat
r,i , as well as the number of vehicles subject to these

accelerations N temp
i and N spat

r,i have been detailed in Eq. 3.31–3.34.
We introduce acceleration lower and upper bounds, respectively denoted amin

and amax, to be realistic and remain in the domain of definition of the energetic
model. When atemp

i (k) or atemp
r,i (k) exceeds amax, (4.8) becomes

Etemp
i (k) = N temp

i (k)
atemp
i (k)

amax

ξ(amax) Mfuel ξ(vi(k))T (4.10a)

Espat
r,i (k) = N spat

r,i (k)
aspat
r,i (k)

amax

ξ(amax) Mfuel ξ(vi(k))T (4.10b)

4.3.2 Simulation and results

In this section, we evaluate the control performance by comparing the following
cases

• case ref : constant speed limit Vref (uncontrolled);

• case vsl : VSLs managed by the controller (controlled).
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Traffic performance metrics

In order to evaluate the impact of the VSLs strategy on the environment, and on
the traffic performance within and at the boundaries of the network, we propose
to connect it to a performance evaluation model.

Additional metrics, which are not in the objective function, are introduced and
listed in Table 4.1. The variable Qi(k) denotes the number of vehicles queuing in
front of the network entering cell i at time step k. Depending on the value of the
weighting coefficient λ, a trade-off is expected between the ecological metrics (E
and NOx), and the traffic performance metrics. We propose to set λ = 0.5.

Simulations are run considering the baseline (ref ) and the controlled (vsl)
scenarios. Based on the Symmetric Mean Absolute Percentage Error (SMAPE)
approach, we define the relative improvement of each metric X, denoted ηX as

• ηX = − Xref−Xvsl

(Xref+Xvsl)/2
, if X is to be maximized;

• ηX = Xref−Xvsl

(Xref+Xrefvsl)/2
, if X is to be minimized.

where Xref and Xvsl are the values of metric X evaluated in cases ref and vsl,
respectively. All metrics are to be minimized, except TTD and SoD, which are to
be maximized.

If ηX > 0, the control is beneficial for metric X. If ηX < 0, the control has
degraded metric X.

Case study

We propose to consider the Manhattan grid network composed of n = 40 identical
one-way roads of 300 m each, as represented in Fig. 4.7. The network is composed
of 8 entering roads and 8 exiting roads. Four clusters of roads are considered in
this network (the roads of one cluster are controlled with the same speed limit
variable):

1. the roads entering the network,

2. the roads exiting the network,

3. the horizontal inner roads,

4. the vertical inner roads.

The horizontal and vertical roads are grouped in two different clusters because
they have different split ratios.

The duration of simulation is set to T = 1 h. We consider an initial density of
vehicles ρ0, and a constant traffic demand on each entering road d = 1200 veh/h,
i.e. a global demand on the network of 9600 veh/h.
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Table 4.1: Metrics introduced to evaluate the environmental sustainability and
traffic performance.

Symbol Unit Description Formula

E L Total fuel consumption. Ê1→T (cf. 4.6 – 4.10)

NOx kg Total NOx emissions. ˆNOx
1→T

(cf. 4.6 – 4.10)

Eveh L Average fuel consumption
per vehicle that has been in
the network.

E

δx
∑
i∈R

ρi(0)+δt
T∑

k=1

∑
i∈{j| |Pj |=0}

ϕin
i (k)

NOxveh kg Average NOx emissions per
vehicle that has been in the
network.

NOx

δx
∑
i∈R

ρi(0)+δt
T∑

k=1

∑
i∈{j| |Pj |=0}

ϕin
i (k)

TTD m Distance traveled by all ve-
hicles in the network.

ˆTTD
1→T

(cf. 4.6b)

TTSnet s Total time spent by all ve-
hicles in the network.

δtδx
T∑
k=1

∑
i∈R

ρi(k)

TTSqueue s Total time spent by vehicles
queuing in front of the en-
tering roads of the network
(outside the network).

δt
T∑
k=1

∑
i∈{j| |Pj |=0}

Qi(k)

QoS veh Total number of vehicles
queuing outside the network
at the end of the simulation.

∑
i∈{j| |Pj |=0}

Qi(T )

SoD – Ratio between the number
of vehicles that have entered
the network and those aim-
ing at entering the network.

δt
T∑

k=1

∑
i∈{j| |Pj |=0}

ϕin
i (k)

QoS+δt
T∑

k=1

∑
i∈{j| |Pj |=0}

ϕin
i (k)
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Sources
Sinks

Figure 4.7: Manhattan grid network with 300 m roads composed of 5 cells of 60 m.
At sources, vehicles are continuously generated at a rate of 1200 veh/h. Each color
represents a cluster of roads, that are controlled by the same speed limit variable.

In order to alter the symmetry of the network, we propose to introduce privi-
leged directions: the split ratios βi are set to 0.7 for the vertical roads, and 0.3 for
the horizontal roads. The TLS at each intersection have cycles of 1 min, without
any offset, characterized as follows

• 30 s of green for the horizontal roads;

• 30 s of green for the vertical roads;

In order to find a compromise between the computational burden and the traffic
model precision, we propose to consider a discretization of ncells = 5 cells per road.

Results

For environmental reasons, more and more cities have made the choice to gen-
eralize the 30 km/h speed limit [28]. Hence, we propose to calculate the metrics
improvements with respect to both Vref = 50 km/h and Vref = 30 km/h. In each
case, simulations are run for an initial density ρ0 varying from 0 to 0.8ρM in order
to get a broad view of the control performance. The results are given in Fig. 4.8.

For initial densities ρ0 ≤ 0.7ρM, when compared to the uncontrolled case with
Vref = 50 km/h (cf. Fig. 4.8a), the controller improves the ecological metrics (ηEveh

and ηNOxveh
are positive), without deteriorating the traffic performance within and

at the boundaries of the network. When compared to the case with Vref = 30 km/h
(cf. Fig. 4.8b), the solutions proposed by the controller constitute a compromise
between the ecological metrics (ηEveh

and ηNOxveh
are negative) and the traffic

performance metrics, which are improved both within and at the boundaries of
the network.
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Figure 4.8: ηX as a function of ρ0, for d = 1200 veh/h.
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For initial densities ρ0 > 0.7ρM, all metrics start to improve significantly, with
respect to both Vref = 50 km/h and Vref = 30 km/h. The reason is that the
NMPC prediction makes the VSLs strategy able to avoid gridlocks, while both
uncontrolled cases fail to prevent it.

An illustration of this is given in Fig. 4.9, where after T = 1 h of simulation,
the uncontrolled case with Vref = 50 km/h gives rise to a gridlock, while the VSLs
control is able to maintain traffic fluidity.

Figure 4.9: Density distribution in the network after one hour of simulation, for
ρ0 = 0.8ρM, in the uncontrolled Vref = 50 km/h (left) and controlled (right) sce-
narios.

For the chosen set of parameters, simulation results reveal that the controller
improves ecological metrics when compared to the uncontrolled 50 km/h speed
limits scenario, and improves traffic performance metrics when compared to the
uncontrolled 30 km/h speed limits scenario. The controller is more efficient in
congested situations, in particular via gridlock avoidance. This is consistent with
VSLs designs applied to highways, which are mostly effective in congested systems
[100].

4.4 Variable speed limits control strategy in a

microscopic traffic simulator

In this section, we propose to implement the VSLs control strategy introduced in
Section 4.3 in a closed-loop framework whose dynamics and calculation of pollutant
emissions/fuel consumption are performed by microscopic models. The simulations
are run in the Manhattan grid network presented in Fig. 2.11, with the urban and
peri-urban areas. Both exogenous and endogenous sources are considered here.
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4.4.1 Control strategy

In the proposed framework, the traffic system is modeled using the microscopic
traffic simulator SUMO [170], and a physical fuel consumption and NOx emission
model is used to assess the vehicles’ environmental impact. The speed limits are
controlled through the same nonlinear model predictive control (NMPC) approach,
in which the traffic evolution and the future fuel consumption are respectively
predicted with the CTM and ANN-based model presented in Section 3.3.2. This
strategy is summarized in Fig. 4.10.

MPC

Fuel
(ANN )

Traffic
(CTM )

Optimizer
(BFGS )

System
(SUMO)

Fuel/NOx
(Physical)

x̂k+1→k+∆p

Êk+1→k+∆p

V k+1→k+∆c

V k+1→k+∆p

vveh

xk

E0→T ,
NOx0→T

Figure 4.10: Block diagram of the global approach for ecological VSLs strategy
modeled in a microscopic traffic simulator and controlled with macroscopic traffic
and fuel consumption models.

In the literature, MPC strategies constitute a commonly used methodology to
control traffic systems [290, 137, 243]. Yet, [50] highlights shortcomings associated
with this framework, which can be summarized as follows

• Although the computing power nowadays allows the use of complex predic-
tion models, it is difficult in practice to have access to the large amount of
real data needed to run them, such as dynamic origin-destination matrices.

• The route choice of road users when considering vehicles as individual entities
constitute an unpredictable gaming activity.

• Road networks behave chaotically under heavy congestion situations.

To alleviate these issues, the framework of this work is positioned downstream
of the traffic assignment problem. In practice, we consider in this study that the
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Chapter 4. Variable speed limits control for enhanced energy efficiency

origin-destination matrices and the precise routes of all vehicles are fully deter-
mined in advance. They are randomly generated by the traffic simulator to be
compliant with the split ratio values at each intersection, which are not controlled.

In this study, we propose to define the objective function as the ratio between
the predicted total fuel consumption Êk+1→k+∆p and the predicted total travel

distance ˆTTD
k+1→k+∆p

between k+1 and k+∆p. Minimizing this ratio is relevant
for optimizing the traffic energy efficiency as it corresponds to the average fuel
consumption of a vehicle per unit distance. Usually, it is expressed in liters per
100 kilometers traveled.

In this study, the fuel consumption Êk+1→k+∆p is predicted using the ANN-
based macroscopic fuel consumption model presented in Section 3.3.2. Our moti-
vations lie in the fact that it is calibrated to mimic the behavior of the microscopic
models under consideration. This is also due to the advantages of this kind of
model, quickly discussed in Section 3.3.2.

As a result, the objective function J can be expressed as

J(x̂k→k+∆p , V k→k+∆p) =
Êk+1→k+∆p

ˆTTD
k+1→k+∆p

(4.11)

4.4.2 Simulation and results

We propose to evaluate the controller in a time-varying demand scenario in order
to transit between different states of congestion. The scenario is defined as follows:

• The simulation is run in the Manhattan grid network with an urban and
a peri-urban area, as described in Fig. 2.11. Both areas are considered in
this approach in order to measure the vehicles’ speed profiles not only in
the controlled urban area, but also in the upstream area. This is essential
in order to get a complete picture and evaluate the impact of the controller
on energy efficiency and traffic performance at the network boundaries, if
queues are appearing for example. Contrary to the approach presented in
Section 4.3.2 with alternating directions for each road (cf. Fig. 4.7), a net-
work with privileged directions (upwards and to the right) is considered in
order to broaden the range of possibilities and avoid situations in which the
controller only needs to avoid gridlocks for example.

• The simulation duration is T = 1 h. The control time horizon ∆c is set at
1 min and the prediction time horizon ∆p is set at 5 min, i.e. K = 5. Note
that ∆c is set longer than the simulation time step δt = 1 s in order to make
the controller more realistic. The control time horizon ∆c is shorter than in
the approach considering only macroscopic models (cf. Section 4.3) in order
to avoid the prediction to drift too much from the dynamics of the system.
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4.4 Variable speed limits control strategy in a microscopic traffic simulator

• In order to reduce the computational burden, two clusters of roads are con-
sidered (the roads of one cluster are controlled with the same speed limit
variable). Due to the simple network architecture, the first one is composed
of the roads at the interface between the urban and the peri-urban area. The
other one is composed of the inner urban roads. The peri-urban area is not
controlled but the effect of the control of the urban area on the peri-urban
area is investigated in detail. The clusters of the urban area are identified in
Fig. 4.11.

• At the peri-urban sources (cf. green dots in Fig. 4.11), vehicles are continu-
ously generated at a rate of din = 0.2 veh.s−1 (exogenous demand). With this
kind of network, it is difficult to significantly increase the level of congestion
simply by varying the generation rate of these sources. This is mainly due to
the presence of TLS at each intersection, and to the fact that all roads have
the same capacity. Hence, some additional endogenous sources that generate
vehicles intermittently are added in the network (cf. red dots in Fig. 4.11).
These sources aim at reaching a congested situation in a short time in order
to simulate a peak demand. They have the following demand

di(k) =


0.1 veh/s, if 6 min ≤ k ≤ 9 min

0.1 veh/s, if 31 min ≤ k ≤ 34 min

0 veh/s, otherwise

(4.12)

Fig. 4.12 represents the optimal speed limits found by the closed-loop control,
as well as the evolution of the number of vehicles in the urban area both in the
closed-loop control approach and in the baseline scenarios that have constant speed
limits of 30 km/h and 50 km/h (these baseline scenarios both have 70 km/h speed
limits in the peri-urban area). It appears that in situations of peak demand, the
controller is able to decongest the network faster than the baseline scenarios.

Fig. 4.13 compares the metrics measured in the closed-loop control approach
and in the baseline scenarios. The ecological metrics, i.e. average fuel consumption
and NOx emissions are represented in Fig. 4.13a & 4.13b respectively, and the
traffic performance metrics, i.e. the TTD and the number of arrived vehicles, are
represented in Fig. 4.13c & 4.13d respectively. These metrics are always measured
both in the urban and the peri-urban areas. Peri-urban roads have constant speed
limits of 70 km/h in all simulations. For the urban area, the number of arrived
vehicles corresponds to those that went in one of the sinks, and for the peri-urban
area, the number of arrived vehicles corresponds to those that have entered the
urban area by the end of the simulation.

The results indicate that the controller is able to reduce the average fuel con-
sumption in the urban area, which corresponds to the objective function, from
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Peri-urban area B

Urban area A

2400m 300m

din

sout

di(k)

Exogenous vehicle sources

Endogenous vehicle sources

Vehicle sinks

Urban roads in cluster 1

Urban roads in cluster 2

Figure 4.11: Scenario for which the online control approach is performed. Ur-
ban roads of the same color are in the same cluster and hence have the same
speed limit. At exogenous sources, vehicles are continuously generated at a rate
of 0.2 veh.s−1. At endogenous sources, vehicles are generated between 6 min and
9 min, and between 31 min and 34 min at a rate of 0.1 veh.s−1.

7.7 L/100km to 6.5 L/100km, i.e. by approximately 16%. On a macroscopic
scale, the total fuel consumption (in both areas) during 1 h is 1167 L in the open-
loop 30 km/h approach and 998 L in the closed-loop control approach. This gap
corresponds to a total reduction of 451 kilograms of CO2. Thanks to a faster
decongestion of the urban area, the lengths of queues in the peri-urban roads are
reduced. This results in a reduction of the average fuel consumption on these roads
also (respectively 29% and 5% reduction with the 30 km/h and 50 km/h baseline
scenarios).

Similarly, the faster decongestion performed by the controller results in a reduc-
tion of NOx emissions in both areas. In comparison with the open-loop 30 km/h
approach, the controller reduced the average NOx emissions by 14% in the ur-
ban area and by 27% in the peri-urban area. In comparison with the open-loop
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4.4 Variable speed limits control strategy in a microscopic traffic simulator

Figure 4.12: Representation of the evolution of the optimal speed limits, and
of the number of vehicles in the urban area in the controlled and in the baseline
scenarios. The gray zones characterize the phases in which the endogenous sources
are generating vehicles.

50 km/h approach, the controller reduced the average NOx emissions by 16% in
the urban area and by 7% in the peri-urban area.

In addition to the average fuel consumption and NOx emissions reduction, the
controller also improves traffic fluidity. In comparison with the open-loop 30 km/h
approach, the controller increases the TTD by 16% in the urban area and by 4%
in the peri-urban area. In comparison with the open-loop 50 km/h approach, the
controller increases the TTD by 4% in the urban area and by 1% in the peri-urban
area. This indicates that, despite a lower number of vehicles present in the urban
area at each moment of the simulation (cf. Fig. 4.12), the global flow of vehicles
is improved by the controller.

The improvement of traffic fluidity is also highlighted by the number of arrived
vehicles. In total, 940 and 259 more vehicles have completed their journeys, i.e.
have reached a sink, in the closed-loop control scenario, in comparison with the
open-loop 30 km/h and 50 km/h approaches respectively. This indicates that

Note that the controller could be more realistic by limiting the possible speed
limits to multiple of 5 km/h, for example. A simulation has been made by rounding
the controller outputs in this way. The resulting average fuel consumption is
6.8 L/100km, i.e. a reduction of 12% (instead of 16% with continuous speed limits
values) in comparison with the baseline scenarios.
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In brief, the developed closed-loop control strategy is particularly efficient in
the proposed traffic scenario, which aims at reproducing a high congestion resulting
from a peak demand. In fact, it appears that the controller is able to decongest the
network much faster than in the baseline scenarios. This results in an improvement
of both the ecological and the traffic performance metrics. Most importantly,
these metrics are not only improved inside the controlled network, but also at its
boundaries, i.e. in the uncontrolled peri-urban area.

It is interesting to note that inside the network, the controller keeps a speed
limit close to 50 km/h. This can be interpreted as a way to accelerate the de-
congestion of the network. Indeed, the analysis conducted in Section 4.2 shows
that 50 km/h speed limits constitute a good compromise between average fuel
consumption and TTD.
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(b) Average NOx emissions.
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(c) Total travel distance.
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(d) Number of arrived vehicles.

Open-loop
30 km/h

Open-loop
50 km/h

Closed-
loop

control

0

2,000

4,000

6,000 5,306
5,987 6,246

4,446
4,957 5,077

A
rr

iv
ed

ve
h
ic

le
s

(v
eh

)

Figure 4.13: Comparison of the ecological and the traffic performance metrics
measured when the online VSLs approach is performed, with baseline scenarios
that have constant speed limits of 30 km/h and 50 km/h.
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Chapter 5. Comparative study of urban road traffic fuel consumption
optimization via variable speed limits and signalized access control

5.1 Foreword

In this chapter, we propose to compare the ecological potential of two control
actuators: VSLs performed within an urban area and a signalized access control to
this area. This study is conducted in the closed-loop microscopic traffic simulator.
The use of signalized access control actuators to optimize the flow of vehicles
between different areas of a network is a well-known subject in the literature
[99, 235]. These approaches usually focus on developing control systems for efficient
congestion management in large-scale urban networks.

The control strategy presented in Chapter 4 is considered as the VSL controller.
The same Manhattan grid network composed of an urban and a peri-urban area
(Fig. 4.11) with the same demand scenario presented in Chapter 4 are used in the
following.

5.2 Optimal control of signalized access control

In this section, we present the signalized access control approach, which consists
in regulating the green time of the access control actuators located at the interface
between the urban and the peri-rban area, as indicated in Fig. 5.1.

Control framework

The control framework is identical to the one detailed for VSLs in Fig. 4.10. The
only difference is that the control variable corresponds to the actuators duty cycle
κ instead of the speed limits Vi. The corresponding block diagram is represented
in Fig. 5.2. The duty cycle κ takes on continuous values between 0 (closed access)
and 1 (open access). It is defined as

κ =
∆green

∆c

(5.1)

where ∆green and ∆c denote respectively the green and the cycle durations.
As a result, the behavior of the access control actuators is characterized by the

green function Θ defined as

Θ(k) =

{
1, if k ≤

⌊
k

∆c

⌋
+ κ∆c

0, otherwise
(5.2)

This modification impacts the flow at the interface between the urban and the
peri-urban area. Let us introduce B′ ⊂ B as the subset of cells in the peri-urban
area that contain the cells at the border with the urban area, i.e. the ones whose
outflow is regulated by the access control actuators. The impact of the access
control actuators on the flow of vehicles are specified in Fig. 5.1.

130



5.2 Optimal control of signalized access control

Peri-urban area B

Urban area A

2400m 300m

din
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di(k)

Exogenous vehicle sources

Endogenous vehicle sources

Vehicle sinks

Access control actuators

Urban roads in cluster 1

Urban roads in cluster 2

Figure 5.1: Representation of the road network and the signalized access control
actuators. The urban area corresponds to the solid line roads and the peri-urban
area is represented by the dashed line roads.

Objective function

In this chapter, we propose to use an objective function that explicitly considers
the energy efficiency in both areas of the network in order to ensure that the energy
efficiency in the peri-urban area is not compromised for the benefit of the urban
area. The most natural way to do so is to consider the weighted sum of the average
energy consumption in each area, as follows

J(x̂k→k+∆p , κk→k+∆p) = λ
E
k→k+∆p

A

σATTD
k→k+∆p

A

+ (1− λ)
E
k→k+∆p

B

σBTTD
k→k+∆p

B

(5.3)

where σA and σB are normalization coefficients, and λ is a weighting coefficient.
The two terms are normalized because the fuel consumption rates can be very dif-
ferent in both areas due to the presence of TLS and to different speed limits. In this
sense, the actuators seek to obtain a compromise of the energy efficiency between

131



Chapter 5. Comparative study of urban road traffic fuel consumption
optimization via variable speed limits and signalized access control

MPC

Fuel
(ANN )

Traffic
(CTM )

Optimizer
(BFGS )

System
(SUMO)

Fuel/NOx
(Physical)

x̂k+1→k+∆p
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Figure 5.2: Block diagram of the global approach for ecological signalized access
control.

both areas. E1→T
A and E1→T

B are calculated using the ANN-based macroscopic fuel
consumption model presented in Section 3.3.2.

In this approach, the control actuators are the access points between the peri-
urban and the urban area, whose behavior is characterized by the duty cycle κ.
It appears explicitly in equation 5.2 and in the expressions of flows in Table 5.1.
Due to the network symmetry and the fact that the exogenous demands are all
equal, we propose to control all the access points with the same control variable.
Therefore, the controller solves the following problem at each control iteration k

min
κk→k+∆p

J(x̂k→k+∆p , κk→k+∆p)

s.t. ρi(e+ 1) = ρi(e) + δt
δx

(
ϕin
i (e)− ϕout

i (e)
)
,∀e ∈ [k..k + ∆p − 1]

κ(e) ∈ [0, 1] , ∀e ∈ [0..T ]

(5.4)

The fact that the controller optimizes the duty cycle κ, which takes continuous
values between 0 and 1, rather than the binary function Θ leads to a NonLinear
Programming (NLP) problem and avoids a Mixed-Integer NonLinear Program-
ming (MINLP) formulation, whose complexity would be much higher.
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Table 5.1: Expression of cells outflows and inflows in presence of access control
actuators, depending on the number of upstream and downstream connections.

|Ni| Expression of ϕout
i (k)

0 min
{
Di(k), ϕM

i , s
out(k)

}
1

If i ∈ B′:
Θ(k)×min

{
Di(k), ϕM

i , SNi
(k)
}

Else:
min

{
Di(k), ϕM

i , SNi
(k)
}

≥ 2 αi(k) min

{
Di(k), ϕM

i ,
{
Sj(k)

βj

}
j∈Ni

}
|Pi| Expression of ϕin

i (k)

0 min
{
din(k), ϕM

i , Si(k)
}

1

If Pi ∈ B′:
g(k)×min

{
DPi

(k), ϕM
Pi
, Si(k)

}
Else:
min

{
DPi

(k), ϕM
Pi
, Si(k)

}
≥ 2 βi

∑
j∈Pi

αj(k) min

{
Dj(k), ϕM

j ,
{
Sl(k)
βl

}
l∈Nj

}

5.3 Comparison between signalized access con-

trol and variable speed limits

5.3.1 Case study

Three traffic scenarios are defined

1. Uncontrolled baseline: the accesses from the peri-urban to the urban area
are permanently open. The speed limits are constantly equal to 70 km/h in
the peri-urban area and 50 km/h in the urban area.

2. Controlled VSL: the accesses from the peri-urban to the urban area are per-
manently open. The speed limits are constantly equal to 70 km/h in the
peri-urban, but they are dynamically optimized in the urban area, taking
continuous values between 20 km/h and 50 km/h.

3. Controlled with access control : the accesses from the peri-urban to the urban
area are controlled, but the speed limits are constant over the simulation
duration (70 km/h in the peri-urban area and 50 km/h in the urban area).
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To satisfy the Courant-Friedrichs-Lewy (CFL) [46] condition, the time step
duration δt is set to 1 s because δx is equal to 60 meters. The control and prediction
horizons of the NMPC strategy are respectively set at ∆c = 1 min and ∆p = 5 min.
The weighting coefficient λ is set to 0.7 in order to privilege the environmental
sustainability in the urban area because it is supposed to be denser with more
traffic.

In the urban area, all roads are one-way, of equal length and capacity. At each
intersection, both downstream roads have the same split ratio βi = 0.5.

We consider a simulation of duration T = 1 h during which the exogenous
demand is set at din = 0.2 veh/s and the intermittent endogenous vehicle sources
have the following demand

di(k) =


0.1 veh/s, if 6 min ≤ k ≤ 9 min

0.1 veh/s, if 31 min ≤ k ≤ 34 min

0 veh/s, otherwise

(5.5)

5.3.2 Simulation results

The results of the three scenarios defined in Section 5.3.1 are summarized in
Fig. 5.3. The fuel consumption, the NOX emissions, and the TTD are calcu-
lated using the data of the microscopic traffic simulator SUMO and the physical
energy and NOX models.

The average fuel consumption and NOX emissions presented in Fig. 5.3a & 5.3b
indicate that the VSL controller is able to improve the energy efficiency both in
the urban (18%) and in the peri-urban (14%) areas. Similar results are observed
with NOX emissions, which are reduced by 18% in the urban area and by 13% in
the peri-urban area. However, the access control approach only allows to improve
the environmental sustainability in the urban area (fuel consumption reduced by
7% and NOX emissions reduced by 6%) in exchange for a deterioration of the
performances in the peri-urban area (fuel consumption increased by 21% and NOX

emissions increased by 19%).
Fig. 5.3c reveals that the impact of both controllers on the TTD is lower,

which is conceivable because it is not explicitly the optimization criterion. The
VSL controller improves it both in the urban (5%) and in the peri-urban (1%)
areas. The access control approach deteriorates it in the urban area (2%) and
does not affect it in the peri-urban area.

As a result, the VSL controller is more appropriate in this study because it
gives better results in both areas in terms of energy efficiency, pollutant emissions,
and traffic performance. In practice, both controllers aim at reducing the inflow in
the urban area during peak times because the congestion deteriorates the energy
efficiency. The difference is that the control of accesses is much more discriminating
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(b) Average NOX emissions.
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Figure 5.3: Comparison of the energy efficiency, the pollutant emission level, and
the traffic performance in the baseline scenario, the VSLs approach, and the access
control approach.

towards vehicles in the peri-urban area as it forces them to stop and start, which is
very energy consuming. On the other hand, the VSL controller leads to smoother
variations of the densities in the peri-urban area, which improves the potential of
fuel consumption reduction.
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Chapter 6. Conclusions

6.1 Review of the contributions

Several microscopic car-following models can be considered in a traffic simulator.
Based on the generated speed profiles and energy consumption curves under differ-
ent levels of congestion, the IDM is chosen in this work. It is calibrated to be com-
pliant with urban accelerations captured by real-world FCD. A macroscopic traffic
model, namely the CTM, is calibrated to predict the dynamics in the microscopic
simulator. The results indicate an average error of 5% on density prediction. An
ANN is calibrated to predict the fuel consumption from macroscopic traffic data.
The average error on fuel consumption prediction is 11.5% in comparison with the
reference calculated with a microscopic physical energy model.

The analysis of the relationship between energy efficiency and traffic dynamics
highlights the negative impact of congestion and queuing on fuel consumption.
However, reducing the speed limit in congested situations has been shown to have
a positive impact on the average vehicle fuel consumption, expressed in L/100 km.
Additionally, the impact of the presence of a TLS has been investigated. The
results indicate that it plays a role in the optimal speed limit regarding energy
efficiency and NOX emissions. More generally, this observation emphasizes taking
into account the details of the road infrastructure to develop a control approach.
Finally, while the TTD is optimal at critical density, the energy efficiency is optimal
for any density value below the critical density.

The implementation of closed-loop VSLs shows that they have great poten-
tial in terms of avoiding gridlocks, regulating flows between different areas of a
road network, which can result in a significant reduction in fuel consumption and
emissions, as well as a smoother and more efficient road traffic. In the proposed
scenarios, the closed-loop control strategy not only improves the environmental
sustainability and traffic performance in the controlled network, but also improves
these metrics at the network boundaries, i.e. in the uncontrolled peri-urban area.
These benefits are mainly due to a faster decongestion of the network. It seems
that VSLs in an urban road network is most effective during transient phases be-
tween different levels of density, such as demand peaks that lead to congestion.
Additionally, a comparison of the effect on energy efficiency of VSLs and signalized
access control in a synthetic two-region network of intermediate size reveals that
the VSL approach is more efficient. In fact, it reduces the global fuel consumption
up to 18% in the urban area, against 7% for the access control which also decreases
the performance in the peri-urban area. The reason is that VSL leads to smoother
density variations, which are more energy-efficient.
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6.2 Outlook

6.2 Outlook

The use of macroscopic models to predict the evolution of traffic and energy con-
sumption is inherently critical as the behavior of vehicles cannot be determined
with certainty using macroscopic traffic variables only. In this sense, machine learn-
ing techniques, such as the ANN used in this work, are promising because such
models can be trained in various situations with inputs of different types. However,
the risk of overfitting associated with these approaches is significant. Typically, it
is not guaranteed that the ANN calibrated in this work will perform as well with
other network structures, driver behaviors, time and spatial discretizations, etc.
In the near future, the quick development of connected vehicles will considerably
increase the available data. In addition to this, computing capabilities have re-
cently been greatly improved. Macroscopic models should consequently be more
and more efficient and robust for a wide range of scenarios.

The VSLs control strategy proposed in this dissertation is of interest in sce-
narios corresponding to heavy congestion, and more particularly in scenarios in
which traffic transits between different levels of congestion. In this sense, the ap-
plicability of this kind of controller in urban areas is similar to the one observed
in highways. Furthermore, with the proposed set of parameters, VSLs are more
promising than signalized access control in urban areas. However, this is condi-
tioned by the formal compliance with speed limits, which is not guaranteed as long
as no monitoring measures are put in place, or as long as CAVs are not yet widely
deployed.

To go further, the macroscopic control approaches proposed in this work can be
combined with microscopic strategies (eco-driving, eco-routing, vehicle platooning,
CACC, cooperative lane change and merge, cooperative intersection control, etc.)
to improve the energy efficiency. This is particularly useful in situations where
macroscopic control is of less interest, such as during phases of low congestion.
A natural extension of this work is the implementation of a real road network
with a more complex architecture. Typically, this would be accompanied by a new
cluster definition for the VSLs approach, with more than 2 clusters. In this work,
analyzes of the controller performance with more than 2 clusters was an issue
because of local optima. Other possible extensions correspond to the addition of
driver uncertainty, the impact of other means of transport such as buses, bicycles
and pedestrians, as well as the analysis of the compliance with speed limits.

In this work, we consider that the speed limits take continuous values between
20 km/h and 50 km/h. In order to facilitate the implementation of this strategy
if the controlled vehicles are not autonomous, the possible values should be lim-
ited to multiples of 10 km/h for example. From the road network management
perspective, implementing macroscopic control approaches represents a significant
investment. Yet, this kind of approaches may call into question the choice of
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fixed speed limits, and be an element of consideration, with the safety and noise
pollution aspects.

6.3 Insights on the urban mobility in the future

The current situation regarding pollutant emissions and energy consumption of
road transportation in urban areas is alarming both for environmental and health
reasons. Traffic eco-management strategies appear to be a promising lever in the
long-term to reduce the environmental impact of transportation. These approaches
are mainly based on the communication between vehicles and infrastructures. To
go further, autonomous vehicles represent a great opportunity to improve the
performance of these techniques because of their more precise and predictable
behavior. In this sense, CAVs are considered the next major technological advance
in the mobility sector. They have a crucial role to play in road safety, as well as
traffic fluidity and energy efficiency improvement.

Today the technology of CAVs is mature and could be rapidly developed in
countries with an adequate road infrastructure. However, just as with the first
driverless elevators in the 1940s, people are concerned and still have a lot of resis-
tance in trusting CAVs. One reason is certainly that we all have this psychological
bias that makes us believe that we are better at certain tasks than we actually
are. For example, surveys show that 74% of people believe they are above aver-
age drivers. Yet, according to the National Transportation Safety Board (NTSB),
94% of the 60 million people killed on the road during the 20th century are due
to human errors. Furthermore, recent studies on CAVs allow us to draw unequiv-
ocal conclusions about their safety. For example, a study conducted with Waymo
vehicles in 2019, based on 6.1 million miles of automated driving, reveals that
among the 18 accidents recorded, none was serious enough to expect serious in-
juries. More importantly, all 8 significant accidents recorded involved an error of
a human driver of another vehicle that was driving the wrong side of the road,
running a red traffic light, over the speed limit, etc. In a context of increasingly
multi-modal urban mobility (pedestrians, bicycles, scooters), autonomous vehicles
open up new perspectives and solutions to the ban on vehicles in cities.

A likely scenario for the future urban mobility is based on the combination
of different solutions such as CAVs, extended public transportation services, at-
tractive network architectures for bikes and pedestrians, etc. Such scenarios, that
aims at improving energy efficiency, air quality, road safety, and traffic throughput,
would be accompanied by measures by public authorities to encourage people to
adapt their behavior. With the fast development of connected vehicles, such multi-
modal cities would promote demand-driven traffic control, and more particularly
the cooperation of complementary traffic eco-management strategies.
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When it comes to designing the cities of the future, a main and recurring
idea is generally to adopt a low-carbon and non-polluting mobility. In this sense,
the development of EVs should accelerate in the coming years. This is due to
supportive regulatory frameworks in several countries, an increased number of
models, and ever more competitive price of batteries. According to the IEA, there
were 10 million EVs in the world at the end of 2020. In 2020, their registrations
increased by 41% and represented 4.6% of total sales share. In the Sustainable
Development Scenario, it is expected that around 230 million EVs will be on the
world’s roads in 2030, representing a stock share of 12%.

In urban areas, EVs have the main advantage of having a motorization that
does not emit pollutants, which is a major drawback of ICEVs during acceleration
phases. Moreover, they emit very few fine particles due to braking because of
their regenerative braking feature, which consists in turning into energy some of
the deceleration’s kinetic energy to charge the batteries. Regarding air pollution,
their only negative point could come from a faster wear of the tires because of the
heavy batteries that compose them.

Today, a very important point regarding the large-scale development of EVs
corresponds to the production and recycling of their batteries. Despite this, EVs
are still much cleaner than ICEVs over their lifetime, according to the International
Council of Clean Transportation (ICCT). Typically, an EV produces half of the
greenhouse gas emission of an average European ICEV. In countries with very low-
carbon electricity, such as Norway or France, the life-cycle emissions of an EV are
less than 30% of an ICEV. As a result, battery manufacturing life-cycle emissions
debt is rather quickly paid off (typically less than 2 years compared to driving an
ICEV). Yet, it appears that battery manufacturing emissions can vary by a factor
of up to 10, which highlights the need for additional investigation on this topic.

Besides these points, the main difference between EVs and ICEVs is associated
with the eco-routing paradigm, as the limited range, recharge times, and ability to
regenerate energy during deceleration phases need to be taken into account when
dealing with EVs. As a result, traffic eco-management strategies are very similar
for ICEVs and EVs.
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7.1 Introduction

Les véhicules autonomes offrent de grandes opportunités en termes d’amélioration
de l’efficacité énergétique, des émissions de polluants, de la fluidité du trafic, de la
sécurité routière et du confort en raison de l’aspect prédictif de leur comportement.
Certaines règles de contrôle simples peuvent être implémentées afin de réduire
leur consommation énergétique. Cependant, celles-ci ne sont généralement pas
suffisantes et des méthodes d’optimisation semblent alors nécessaires. De telles
stratégies nécessitent des modèles de trafic et de consommation d’énergie précis
et fiables, d’algorithmes d’optimisation performants, ainsi que de dispositifs de
communication longue distance rapides.

Une première approche d’optimisation de l’efficacité énergétique des véhicules
autonomes porte sur des stratégies de recherche d’itinéraire (eco-routing) et d’opti-
misation des profils de vitesse (eco-driving), basées non seulement sur la communi-
cation entre les véhicules, mais également sur la communication avec l’infrastruc-
ture routière. Les véhicules effectuent alors une optimisation du “gain individuel”
visant à réduire leur propre consommation. Ces approches sont plus efficaces
lorsque le taux de pénétration des véhicules autonomes est élevé car les prédictions
deviennent plus fiables. Globalement, plus les contraintes du voyage sont connues
avant le départ, plus ce type d’approche est efficace.

Une deuxième approche correspond au développement de stratégies coopéra-
tives entre les véhicules autonomes afin d’améliorer l’efficacité énergétique globale.
Ces approches sont également basées sur les communications entre les véhicules et
avec l’infrastructure, mais les véhicules envisagent ici l’impact de leurs décisions
sur le comportement et la consommation d’énergie des autres véhicules également,
ils effectuent donc une optimisation du “bien commun”. Ces stratégies de contrôle
comprennent par exemple le peloton de véhicules, le CACC, le changement de voies
coopératif et le contrôle coopératif des intersections. Par ailleurs, les véhicules au-
tonomes peuvent avoir un effet d’harmonisation sur la vitesse du trafic environnant,
en particulier dans les cas de coopération. Cette harmonisation semble avoir un
impact bénéfique sur la consommation énergétique globale, mais elle est difficile à
estimer car elle dépend du taux de pénétration, de la congestion du trafic et de
l’architecture du réseau.

Enfin, une dernière approche visant à optimiser l’efficacité énergétique corre-
spond non pas au contrôle des véhicules, mais à celui des infrastructures routières.
Ce potentiel a été exploré en milieu autoroutier avec des limitations de vitesse
variables ou des approches de type ramp metering. En milieu urbain, de telles
approches, n’ont été que très rarement évaluées avec une considération explicite
de la consommation énergétique dans le problème d’optimisation. En ville, cette
approche pourrait se traduire en pratique par la mise en place de limitations de
vitesse variables, ou d’un contrôle des feux de signalisation.
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Dans ce manuscrit, nous nous intéressons à l’évaluation du potentiel de cette
troisième approche car cela constitue un vide dans la littérature scientifique. Toute-
fois, il est essentiel de noter que la coordination de stratégies de contrôle complé-
mentaires semble particulièrement prometteuse pour améliorer l’efficacité énergé-
tique globale des véhicules. Ainsi, les contributions de la thèse peuvent être
résumées comme indiqué ci-dessous.

D’abord, la formalisation complète d’un modèle de trafic macroscopique adapté
au milieu urbain est proposée. Elle comprend une méthodologie pour le traitement
des intersections. Pour estimer la consommation de carburant, ce modèle de trafic
est associé à un modèle de consommation d’énergie macroscopique basé sur un
réseau de neurones. Ce dernier est calibré à l’aide d’un modèle d’énergie physique
microscopique et de données fournies par un simulateur de trafic microscopique
préalablement paramétré à partir de données réelles. L’utilisation d’un réseau
de neurones est essentiellement justifiée par ses bonnes performances lorsque la
vitesse moyenne du trafic routier est faible. Les modèles macroscopiques sont
préférés pour le contrôle à grande échelle en raison de leur faible complexité. Ils
ont également l’avantage de considérer l’efficacité énergétique globale, qui est la
métrique d’intérêt pour les gestionnaires de réseaux routiers lorsqu’il est question
d’efficacité énergétique.

Ensuite, des simulations sont menées afin d’évaluer la relation entre la con-
gestion et l’efficacité énergétique des véhicules, notamment en régime perma-
nent. L’impact des différentes limitations de vitesse sur le trafic (densité, vitesse
moyenne, débit) est analysé pour différents niveaux de demande du trafic. Les
limitations de vitesse ont un impact direct sur la consommation d’énergie ainsi
que sur les émissions polluantes car elles affectent les accélérations et les vitesses
moyennes sur l’ensemble du réseau.

Enfin, un contrôleur en boucle fermée est introduit afin d’analyser et de com-
parer l’impact de limitations de vitesse variables et de contrôle d’accès à une zone
urbaine en termes de durabilité environnementale et de fluidité du trafic. L’impact
du contrôleur est évalué dans la zone urbaine contrôlée, mais aussi dans la zone
péri-urbaine qui la borde. Les résultats révèlent que dans les phases transitoires
entre différents niveaux de congestion, le contrôleur permet de décongestionner
le réseau plus rapidement, réduisant ainsi la consommation de carburant et les
émissions de polluant, et assurant un trafic plus fluide dans les zones urbaine et
péri-urbaine. De plus, pour les paramètres considérés, les limitations de vitesse
variables conduisent à des variations de densité plus douces qu’avec le contrôle
d’accès, se traduisant par des économies d’énergie.
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7.2 Modèles pour la simulation et la prédiction

de la dynamique du trafic routier en milieu

urbain

La première étape des stratégies de gestion écologique du trafic correspond à la
modélisation de la dynamique du trafic. Cette étape est cruciale car elle nécessite
des modèles de trafic capables de capturer des phénomènes de trafic complexes
comme l’apparition d’ondes de choc ou la dynamique des files d’attente.

Pour ce faire, nous utilisons dans ces travaux un modèle de trafic microscopique.
Après comparaison de plusieurs modèles, nous décidons de conserver le Intelli-
gent Driver Model car il donne lieu à des niveaux de consommation de carburant
cohérents pour différentes densités de véhicules. Les paramètres du modèle sont
calibrés avec des données d’accélération réelles mesurées en milieu urbain.

Un modèle de trafic macroscopique de premier ordre est également introduit.
Cette famille de modèle a l’avantage de présenter une complexité bien plus faible
et indépendante du nombre de véhicules dans le système, car les variables d’état
sont les densités dans les différentes cellules du réseau. Toutefois, ces modèles
sont en contrepartie moins précis. Ces caractéristiques sont idéales pour prédire
la dynamique réelle du système (simulée avec le modèle microscopique) dans un
contrôleur en boucle fermée, afin d’ajuster les actionneurs du réseau le plus efficace-
ment possible. En particulier, nous utilisons dans ces travaux le Cell Transmission
Model. Ce modèle repose sur l’hypothèse du diagramme fondamental, qui définit
une relation entre flux et densité de véhicules. Nous considérons le diagramme
fondamental trapézöıdal présenté en Fig. 7.1.

ϕ

ρ

V i
w

ρM

ϕM(Vi)

Figure 7.1: Diagramme fondamental trapézöıdal associé à une limitation de vitesse
Vi, une vitesse de propagation d’onde w, une densité de véhicules maximum ρM,
et un flux de véhicules maximum ϕM(Vi).

Ce diagramme fondamental a été calibré afin de prédire au mieux la dynamique
du modèle de trafic microscopique. Comme nous pouvons le voir sur la Fig. 7.2
qui montre la densité de véhicules ainsi que la vitesse moyenne du trafic calculées
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de la consommation énergétique

dans une cellule avec les modèles microscopique et macroscopique, il apparâıt que
la prédiction est très bonne puisque l’erreur est inférieure à 5%.

(a) Prédiction de la densité.

300 350 400 450 500 550 600
Time [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

De
ns

ity
 [v

eh
/m

]

Target (IDM)
Prediction (CTM)

(b) Prédiction de la vitesse moyenne.
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Figure 7.2: Comparaison de la densité réelle ρi mesurée avec IDM avec la densité
prédite ρ̂i donnée par le CTM dans la cellule i. La vitesse limite est 50 km/h
et nous observons une erreur moyenne εi de 4.2% (gauche). Comparaison de la
vitesse moyenne vi dans la même cellule mesurée avec IDM avec sa prédiction v̂i
(droite).

Les principaux défis rencontrés dans ce chapitre correspondent au choix et à
la calibration du modèle microscopique afin d’être représentatif du comportement
réel des conducteurs, ainsi qu’à la calibration du modèle macroscopique afin de
pouvoir prédire la dynamique du modèle microscopique.

7.3 Modèles pour la simulation et la prédiction

des émissions de polluant et de la consom-

mation énergétique

Une autre étape cruciale des stratégies de gestion écologique du trafic correspond
à la modélisation des émissions de polluants et de la consommation d’énergie. De
tels modèles prennent en entrée la dynamique du trafic, qui peut être décrite à
l’aide de données microscopiques, telles que les profils de vitesse des véhicules, ou
de données macroscopiques comme les densités et flux de véhicules ainsi que les
vitesses moyennes.

Dans notre approche, un modèle microscopique de consommation et d’émission
de polluants est associé au modèle de trafic microscopique précédemment décrit
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(a) Cartographie du taux de consommation
de carburant.
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(b) Cartographie du BGR.
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Figure 7.3: Cartographies de consommation de carburant et de BGR, définies
comme des fonctions des couples et régimes moteur.

afin d’évaluer l’impact environnemental du système. A partir du principe fonda-
mental de la dynamique et des paramètres des véhicules considérés, les couples
Teng et régimes Ωeng moteur sont calculés pour chaque véhicule à chaque instant.
Il est alors possible de calculer le taux de consommation de carburant yfuel as-
socié en utilisant une cartographie comme celle donnée Fig. 7.3a. De même,
le taux d’émission de NOx peut être calculé en utilisant la relation suivante :

log
(

yNOx

yfuelρfuel

)
= a1 + a2RBGR + a3mfuel

où a1 – a3 sont des coefficients de régression, RBGR est obtenu avec la cartographie
en Fig. 7.3b, et mfuel représente la masse de carburant dans le cylindre par course
du piston et volume déplacé.

Ensuite, la consommation de carburant et les émissions de NOx réelles entre
les instants 0 et T peuvent alors être calculées comme indiqué ci-dessous :

E0→T =
T∑
k=0

∑
p

δty
fuel
p (k) (7.1a)

NOx0→T =
T∑
k=0

∑
p

δty
NOx
p (k) (7.1b)

Un modèle macroscopique de consommation est également introduit à des fins
prédictives. Nous calibrons un réseau de neurones qui prend en entrée les variables
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macroscopiques indiquées Fig. 7.4. Ce modèle prédit le taux de consommation des
véhicules dans une cellule i, plutôt que de calculer le taux de consommation de
chaque véhicule indépendamment. C’est ce qui lui permet d’être plus efficace et de
s’affranchir de l’impact du nombre de véhicules dans le système sur la complexité de
la prédiction. En moyenne, l’erreur avec ce modèle est de 11.5%, ce qui représente
un bon résultat dans le sens où cette approche n’a pas toute l’information en entrée
puisqu’elle se contente de l’information macroscopique.

En effet, un état macroscopique du système peut en réalité correspondre à
une infinité d’états microscopiques. C’est essentiellement là que réside toute la
difficulté lorsqu’il est question de prédire la sortie du modèle microscopique à
l’aide de modèles macroscopiques : le comportement individuel des véhicules, qui
joue un rôle majeur dans l’efficacité énergétique en raison des accélérations, ne
peut pas être pris en compte.

ρi(k) ρi(k − 1) vi(k) vi(k − 1) ui(k) αi(k) Inputs

ANN

ŷfuel
i (k) Output

Figure 7.4: Représentation des entrées et sortie du réseau de neurones du modèle
de consommation macroscopique.

7.4 Relation entre dynamique et efficacité énergétique

du trafic

Afin de quantifier l’impact du niveau de congestion et de la limitation de vitesse sur
l’efficacité énergétique des véhicules, nous proposons de simuler un flux de véhicules
sur un anneau constitué d’une voie et d’un feu de signalisation (cf. Fig. 7.5). Cette
approche présente l’avantage de donner lieu à un état quasi-stationnaire du trafic.
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Figure 7.5: Anneau de 300 mètres constitué d’une unique voie et d’un feu de
signalisation.

Plusieurs simulations sont alors réalisées, pour différentes densités et limitations
de vitesse. Les résultats sont présentés en Fig. 7.6.

Deux phases apparaissent clairement :

• Pour les faibles densités, une grande limitation de vitesse est moins con-
sommatrice en énergie car les moteurs des véhicules se rapprochent de leur
fonctionnement optimal.

• Au-delà d’une certaine densité, une congestion se forme et des phénomènes
de stop-and-go apparaissent, une limitation de vitesse plus faible devient
moins consommatrice en énergie car cela réduit les accélérations.

Encore une fois, ces résultats obtenus à partir de simulations très simplistes
décrivent le comportement des véhicules en régime permanent uniquement. Toute-
fois, cela permet de souligner l’impact des limitations de vitesse sur la consomma-
tion des véhicules, et montre qu’il n’existe a priori pas une limitation de vitesse
optimale, mais que cela dépend des conditions de trafic.

7.5 Optimisation de l’efficacité énergétique par

limitations de vitesse variables et contrôle

d’accès

Un contrôleur basé sur une approche de Nonlinear Model Predictive Control est
implémenté afin d’optimiser l’efficacité énergétique des véhicules dans une zone
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Figure 7.6: Consommation de carburant en fonction de la densité.

urbaine. Ce contrôleur est constitué des modèles introduits précédement comme
indiqué dans la Fig. 7.7.

MPC

Fuel
(ANN )

Traffic
(CTM )

Optimizer
(BFGS )

System
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Fuel/NOx
(Physical)

x̂k+1→k+∆p
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contrôle vveh

xk

E0→T ,
NOx0→T

Figure 7.7: Schéma-bloc de l’approche de gestion écologique du trafic routier en
milieu urbain.

Le contrôleur est évalué dans le scénario décrit en Fig. 7.8. Nous considérons
une zone péri-urbaine et une zone urbaine avec 7 points de passage de la première
vers la deuxième. Les véhicules sont générés au niveau des sources de véhicules
exogènes en amont de la zone péri-urbaine. Les sources de véhicules endogènes
génèrent également des véhicules de manière intermittente afin de simuler des pics
dans la demande de trafic qui correspondent par exemple aux heures de pointe.
Les puits de véhicules se situent en aval de la zone urbaine.

Les outils de contrôle du trafic considérés dans cette approche se situent dans
la zone urbaine uniquement, mais l’impact du contrôle sur la zone péri-urbaine est
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Zone péri-urbaine B

Zone urbaine A
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Sources de véhicules endo.

Puits de véhicules
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Figure 7.8: Réseau routier constitué d’une zone urbaine et d’une zone péri-urbaine.

également pris en compte. Ainsi, la fonction objectif considérée par le contrôleur
est une somme pondérée des efficacités énergétiques dans les deux zones :

J(x̂k→k+∆p , κk→k+∆p) = λ
E
k→k+∆p

A

σATTD
k→k+∆p

A

+ (1− λ)
E
k→k+∆p

B

σBTTD
k→k+∆p

B

En pratique, nous comparons les stratégies suivantes :

• Limitations de vitesse variables dans la zone urbaine entre 20 km/h et 50 km/h.

• Contrôle d’accès entre les zones peri-urbaine et urbaine.

• Scénario de référence sans contrôleur.

Les résultats obtenus sont décrits dans la Fig. 7.9. Sur le plan de la consom-
mation et des émissions, ils indiquent que le contrôle des limitations de vitesse de
vitesse est bien plus intéressant que le contrôle d’accès. En effet, pour le scénario
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(a) Consommation de carburant moyenne.
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(b) Émissions de NOX moyennes.
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Figure 7.9: Consommation de carburant, émissions de NOx, et fluidité du trafic
pour chacune des trois stratégies de contrôle.

considéré, le premier améliore les résultats significativement dans les zones tandis
que le deuxième les améliore dans la zone urbaine au détriment de la zone péri-
urbaine. Les limitations de vitesse variables permettent par ailleurs de fluidifier le
trafic routier.

Malgré le fait que chacun des deux contrôleurs imaginés cherchent essentielle-
ment à réguler le flux de véhicules entrant dans la zone urbaine, les meilleures
performances des limitations de vitesse variables s’expliquent par le fait que le
contrôle d’accès est beaucoup plus discriminant envers les véhicules en zone péri-
urbaine car il les oblige à s’arrêter puis à repartir, ce qui est très énergivore. En
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Chapter 7. Résumé substantiel

d’autres termes, les limitations de vitesse variables conduisent à des variations de
densité plus douces en zone péri-urbaine, ce qui améliore le potentiel de réduction
de la consommation de carburant.

7.6 Conclusion

Les principaux résultats et contributions des travaux réalisés dans cette thèse
peuvent résumés comme suit.

Un modèle de trafic microscopique, l’IDM, a été sélectionné à partir des courbes
de consommation d’énergie simulées sous différents niveaux de congestion. Il a été
calibré pour être représentatif d’accélérations réelles mesurées en milieu urbain. Un
modèle de trafic macroscopique, le CTM, est calibré pour prédire la dynamique
du simulateur microscopique. Les résultats indiquent une erreur moyenne de 5%
sur la prédiction de densité. Un réseau de neurones est calibré pour prédire la
consommation de carburant à partir de données de trafic macroscopiques. L’erreur
moyenne sur la consommation prédite est de 11,5% par rapport à la référence
calculée avec un modèle d’énergie physique microscopique.

L’analyse du lien entre efficacité énergétique et dynamique du trafic met en
évidence l’impact négatif des embouteillages sur la consommation de carburant.
Cependant, il a été démontré que la réduction de la limitation de vitesse dans
des situations de congestion pouvait permettre de réduire cette surconsommation,
mais qu’elle pouvait au contraire dégrader l’efficacité énergétique lorsqu’elle était
réduite alors que la circulation est fluide. Par ailleurs, l’analyse de l’impact de la
présence d’un feu de signalisation dans cette étude met l’accent sur l’importance
de la prise en compte du détail de l’infrastructure routière pour développer une
démarche de contrôle. Enfin, alors que la fluidité du trafic est optimale à densité
critique, l’efficacité énergétique est quant à elle optimale pour toute valeur de
densité inférieure à la densité critique.

Les limitations de vitesse variables ont démontré avoir un grand potentiel en
milieu urbain pour éviter les embouteillages et réguler les flux entre les différentes
zones, ce qui peut significativement réduire la consommation de carburant et les
émissions tout en fluidifiant le trafic. Dans les scénarios proposés, la stratégie de
contrôle en boucle fermée améliore non seulement les performances dans la zone
contrôlée, mais également dans sa zone frontalière. Ces bénéfices sont principale-
ment dus à une décongestion plus rapide du réseau. Il semble que les limitations de
vitesse variables soient plus efficaces pendant les phases transitoires entre différents
niveaux de densité. Une comparaison avec le contrôle d’accès a mis en évidence
la plus-value apportée par les limitations de vitesse variables dans les scénarios
considérés. La raison principale est qu’elles conduisent à des variations de densité
plus douces, qui sont plus économes en énergie.
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2004.

[197] C. Osorio and K. Nanduri. Energy-efficient urban traffic management: a
microscopic simulation-based approach. Transportation Science, 49(3):637–
651, 2015.

[198] B. Othman, G. De Nunzio, D. Di Domenico, and C. Canudas-de-Wit. Eco-
logical traffic management: A review of the modeling and control strategies
for improving environmental sustainability of road transportation. Annual
Reviews in Control, 48:292 – 311, 2019.

[199] B. Othman, G. De Nunzio, D. Di Domenico, and C. Canudas-de-Wit. Vari-
able speed limits control in an urban road network to reduce environmental
impact of traffic. In 2020 Annual American Control Conference (ACC),
pages 1179–1184. IEEE, 2020.

172



Bibliography

[200] B. Othman, G. De Nunzio, D. Domenico, and C. Canudas-De-Wit. Urban
road traffic fuel consumption optimization via variable speed limits or signal-
ized access control: A comparative study. In IEEE Conference on Decision
and Control (CDC) 2021, 2021.

[201] B. Othman, G. de Nunzio, A. Sciarretta, D. Di Domenico, and C. C. de Wit.
Connectivity and Automation as Enablers for Energy-Efficient Driving and
Road Traffic Management. Springer New York, 2021.

[202] E. Ozatay, S. Onori, J. Wollaeger, Ü. Özgüner, G. Rizzoni, D. Filev, J. Miche-
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