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Résumé
Le contrôle des vibrations des structures et de leur rayonnement acoustique sont des problématiques
importantes dans de nombreux contextes industriels, en particulier liés au transport automobile. Dans
un véhicule, l’excitation solidienne générée par une source (le moteur ou un équipement interne tel
qu’une pompe) donne lieu à des phénomènes de propagation et de transmission vers des organes
qualifiés de récepteurs, susceptibles d’induire un rayonnement acoustique génant. Les performances
acoustiques globales sont alors directement liées à sa capacité à réduire la transmission des vibra-
tions. Dans le but de réduire les nuisances acoustiques induites par des pompes automobiles, nous
nous intéressons à une configuration générique où le milieu de propagation est un guide d’ondes élas-
tiques (conduite de carburant) et l’organe récepteur une plaque (représentative d’une cloison pare
feu par exemple). Le travail de thèse porte spécifiquement sur la conception de deux architectures du
guide d’ondes permettant de contrôler la transmission et l’atténuation simultanément pour les trois
types d’ondes vibratoires présentes dans le guide d’ondes (ondes longitudinales, de flexion, de torsion).

La première architecture consiste en une organisation périodique de la structure du guide
d’ondes élastiques : un tube de diamètre intérieur constant, présentant des variations de diamètre
extérieur et de caractéristiques matériau est un cristal phononique, possédant des bandes d’arrêt pour
les ondes longitudinales, de flexion et de torsion. L’optimisation de la géométrie de la cellule unitaire
permet de positionner les bandes d’arrêt de façon à ce qu’elles se recouvrent en fréquence. La bande
de fréquences d’arrêt, commune aux trois ondes est appelée bande absolue et caractérise un filtre
multi-ondes, paramétrable. Les caractéristiques du filtre (diagramme de dispersion du guide d’ondes
périodique) sont modélisées par un modèle semi-analytique basé sur le théorème de Floquet-Bloch,
validé dans le cas conservatif par des simulations numériques (méthode des éléments finis) et par un
démonstrateur expérimental. Le modèle semi-analytique, peu couteux en temps de calcul permet la
prise en compte des mécanismes dissipatifs et des explorations paramétriques à des fins d’optimisation.
Une réalisation expérimentale démontre la faisabilité pratique d’un filtre multi-ondes à bande absolue.

La deuxième architecture consiste en l’utilisation de résonateurs locaux réalisés au moyen de
courtes bagues massiques enfilées sur le guide d’onde et couplées via une couche annulaire élastique.
Les modes de corps rigide de ces bagues mettent en jeu des mouvements à dominante longitudinale,
de flexion ou de torsion (ce dernier étant non exploitée dans la suite). On distingue deux classes de
problèmes : le problème en transmission, conduisant à la conception d’un filtre fixant la transmission
des ondes entre deux régions du guide d’onde et le problème en absorption, conduisant à la concep-
tion d’une terminaison permettant d’absorber les ondes incidentes sur cette terminaison. Ces types
de résonateurs peuvent être accordés en fréquences de façon à contrôler simultanément les ondes
longitudinales et de flexion, constituant ainsi des filtres multi ondes. Des groupes de résonateurs,
à caractéristiques variables permettent par ailleurs de créer des filtres multi-fréquences. Les perfor-
mances de ces stratégies sont explorées de façon semi-analytiques et numériques. Une validation
expérimentale est fournie dans le cas d’un filtre multi-fréquences, pour le problème de flexion en
absorption.

L’intégration d’un filtre vibratoire obtenu au moyen des architectures périodiques est testée
dans trois environnements de complexité croissante : 1/ si un tube guide d’onde rectiligne donne lieu
à un découplage entre ondes longitudinales et de flexion, l’effet d’une courbure du milieu, inévitable
en pratique induit un couplage entre ces deux ondes. L’intérêt pratique d’un filtre multi-ondes à
bande absolue apparait alors car il permet de réaliser une absence de transmission entre source et
récepteur, même en présence de courbure du milieu. 2/ Le rayonnement acoustique d’une plaque
réceptrice est significativement réduit lorsqu’un guide d’onde architecturé est utilisé, 3/ la présence
d’un couplage vibroacoustique via un fluide lourd emplissant un conduit architecturé complexifie les
courbes de dispersion. On montre que certaines géométries présentent néanmoins des bandes abso-
lues pour les ondes élastiques et vibroacoustiques, ce qui permet un découplage remarquable entre
source et organe récepteur, ce qui constitue la configuration recherchée par l’ingénieur.
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Abstract
The control of structural vibrations and their acoustic radiation are important issues in many in-
dustrial contexts, particularly related to automotive transportation. In a vehicle, the structure-born
excitation generated by a source (the engine or an internal equipment such as a pump) gives rise
to propagating and transmission phenomena towards the systems qualified as receivers, which are
likely to induce a disturbing acoustic radiation. The overall acoustic performance is therefore directly
linked to its ability to reduce the transmission of vibrations. In order to reduce the acoustic nui-
sance induced by automotive pumps, we are interested in a generic configuration where the host
medium is an elastic waveguide (fuel line for example) and the receiving system is a plate (rep-
resentative of a wall of a car for example). The PhD thesis focuses specifically on the design of
two waveguide architectures allowing to control the transmission and the attenuation simultaneously
for the 3 types of vibratory waves present in the waveguide (longitudinal, bending and torsion waves).

The first architecture consists of a periodic organization of the elastic waveguide: a tube of
constant inner diameter, with periodic variations in outer diameter and material characteristics is
known as a phononic crystal, with band gaps for longitudinal, bending and torsional waves. By op-
timizing the geometry of the unit cell, the band gaps can be positioned so that they overlap in
the same frequency range. The frequency band, common to all three waves, is called absolute band
and characterizes a multi-wave filter, which can be parameterized. The characteristics of the filter
(dispersion diagram of the periodic waveguide) are modeled by a semi-analytical approach based
on the Floquet-Bloch theorem, validated in the conservative case by numerical simulations (finite
element method) and by an experimental demonstrator. The semi-analytical model, inexpensive in
computational time, allows the consideration of dissipative mechanisms and parametric explorations
for optimization purposes. An experimental realization shows the practical feasibility of a multi-wave
absolute band filter.

The second architecture consists in the use of local resonators realized by means of short mass
rings threaded on the waveguide and coupled via an elastic ring layer. The rigid body modes of these
rings involve predominantly longitudinal, bending or torsional motions (the latter not being consid-
ered in the following). We distinguish two types of problems: the transmission problem, leading to
the design of a filter fixing the transmission of waves between two regions of the waveguide and the
absorption problem, leading to the design of a termination allowing to absorb the waves incident
on this termination. These types of resonators can be tuned in frequency so as to simultaneously
control longitudinal and bending waves, thus constituting multi-wave filters. Groups of resonators
with varying characteristics can also be used to create multi-frequency filters. The performances of
these strategies are explored in a semi-analytical and numerical way. An experimental validation is
provided in the case of a multi-frequency filter, for the absorption bending problem.

The integration of a vibratory filter obtained by means of periodic architectures is tested in
three environments of increasing complexity: 1/ if a straight waveguide pipe gives rise to a decoupling
between longitudinal and bending waves, the effect of a curvature of the medium, unavoidable in
practice, induces a coupling between these two waves. The practical interest of a multi-wave filter
with absolute band gaps appears then because it makes possible to carry out an absence of trans-
mission between source and receiver, even in presence of curvature of the medium. 2/ The acoustic
radiation of a receiver plate is significantly reduced when an architecturally designed waveguide is
used, 3/ The presence of a vibroacoustic coupling via a heavy fluid filling an architectured waveguide
makes the dispersion curves more complex. It is shown that some geometries nevertheless present
absolute bands for elastic and vibroacoustic waves, which allows a remarkable decoupling between
source and receiver, which is the configuration sought by the engineer.

Key-words: Phononic crystal, Waveguide, Vibration filter, Vibration absorber, Locally
resonant structure, Multi-wave vibration control
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1.1 Context and motivation
1.1.1 Vitesco Technologies France

Vitesco Technologies France SAS, formerly Continental Automotive SAS, designs and produces
automotive engine components such as fuel pumps, fuel injection rails and electric motors. One of
the recurring needs expressed in this industrial context is the reduction of noise pollution inside and
outside the vehicule. Depending on the use of the vehicle, the origin of the noise is different: engine
noise at low speed, road noise at medium speed and aerodynamic noise at high speed.

The Noise Vibration Harshness (NVH) division of CPT France, in which this thesis work is
positioned, deals specifically with problems related to engine noise. In particular, the objective of
this work is to develop techniques to reduce the vibrations emitted by an engine component to the
rest of the engine block. Figure 1.1 illustrates a general example of this problem on which the work
presented in this document is based on.

In this type of automotive vibro-acoustics problem, the technical complexity elements to be
addressed are the following:

• the complex movements of the component playing the role of source cause the generation of
various types of waves (flexion, longitudinal, torsion),

• the bent geometry of the transmission path induces couplings between the different types of
emitted waves,

• the frequency ranges of interest can be quite wide band (several kHz wide),

• the treatment aimed at limiting the vibratory transmission must not induce a significant addi-
tion of mass.

Transmission Element seen 

as an Elastic waveguide

Acoustic radiating 

component

Complex vibration source

Figure 1.1 – Diagram of a generic industrial system as treated in this thesis. An element is
considered as a vibratory source, here schematized as a motor. A transmission elements seen
as an elastic waveguide conducts the vibrations produced by the source to a acoustic radiating
component, which propagates the vibrations emitted by the source.

As in many other examples of this nature, the design of the vibrating source element is heavily
2



constrained by technology, so that it cannot be modified to reduce structural vibration emission. The
same is true for the receiver. However, it is still possible to optimize the transmission element to
introduce an additional vibration filtering function into the overall system.

This PhD developed in a collaborative framework between the Acoustics Laboratory of Le Mans
University (LAUM) and Vitesco Technologies France SAS, is the result of an end-of-study project
between the Ecole Nationale Supérieure d’Ingénieurs du Mans (ENSIM) and Continental Automotive
SAS. The objective of this project is to demonstrate the effectiveness of periodic waveguides as
vibration filters for flexural waves.

1.1.2 Challenges of vibration control for light structures
The global objective of reducing the energy consumption of vehicles is leading to a trend

towards lighter structures. This reduction in consumption is a result of the increasing impact of
air pollution on our society. To counteract this impact, increasingly restrictive legislation is pushing
manufacturers to improve the efficiency of their propulsion systems. In addition to the use of electric
or hybrid motors, this has resulted in a strong trend towards the design of lightweight vehicles that
require less energy to move.

To enhance structural integrity, reliability, drivability and passenger safety, lightweight struc-
tures are typically also designed for higher strength and stiffness. However, the reduction in mass to
stiffness ratio due to this lightweight design results in a lower comfort performance in terms of noise
and vibration. Unfortunately, noise is the second most important environmental threat in Europe,
just after air pollution [1, 2]. The reduction in sound comfort due to lightweight structures is in
contradiction with the demand of the users and also with the legislation on noise exposure, 74 dB(A)
for a private car [3].

The traditional method of increasing sound and vibration damping is through the use of passive
treatments [4–7]. These rely on adding mass to increase sound absorption, which is incompatible with
the concept of lightweighting structures. These classic treatments are therefore no longer used in the
modern transport industry [8]. In addition, technological developments are leading to the emergence
of new noise sources [9]. The solutions usually used in an internal combustion engine are not going
to be relevant in an electric motor. To deal with the inadequacy of traditional noise control solutions,
new solutions are being investigated. They must be efficient but also meet the criteria of modern
vehicles, i.e. have low mass, low volume, low cost and be adapted to the low frequency range.

1.2 Research ojectives
In the initial framework, the system on which the thesis work is to be applied consists in a fuel

pressurisation pump emitting vibrations that are transmitted to a fuel rail through the metal pipe as
described in the Chap. 4. When Continental Automotive France became Vitesco technologies France
SAS, in 2019, the development of technologies related to thermal engines was abandoned, including
the system mentioned earlier, in favor of electric technologies.

The objective of this thesis is to optimize a pipe, in order to create a vibration filter integrated
in an industrial part without altering its primary function. The geometry of the pipe, considered as a
waveguide for vibration is adapted to be integrated in a complete industrial system, which implies a
coupling phenomenon between the different types of waves. For the solution proposed in the thesis to
be relevant in an industrial standpoint, the geometry of the waveguide must be constructed in such
a way that an effective vibratory solution in the same frequency band for different types of waves
(longitudinal, torsional and flexural) is obtained.
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There are several works which provide interesting directions to build this solution. Periodic
structures have the effect of creating frequency bands in which the propagation of a wave is strongly
attenuated. These frequency bands are commonly called band gaps in the case of infinite periodic
structures. They are present for different types of elastic waves, longitudinal, torsional and flexural.
The band gaps associated with each type of wave are not necessarily in the same frequency range.
Locally resonant material does provide possibilities to absorb waves by means of the resonances
opening the well-known stop bands. The problem proposed in this thesis is the following: The
realisation of a multi-wave vibration filter, or absorber, targeted for a given frequency range, by
optimising a periodic waveguide geometry so that it can be integrated into an industrial system.

1.3 State of the art
Before presenting the work done in this PhD, this section gives an overview of the state of art

in the field of vibro-acoustics. As this discipline encompasses many different applications and tech-
niques, we will focus on the vibration control in the transport industry, locally resonant structures
and periodic structures, as they are used and developed.

1.3.1 Common methods for vibration control
As we have seen, the control of noise and vibration in the transport industry, automotive, avi-

ation and railways, is an important issue. There are many methods to obtain an attenuation of noise
and vibration, some of which are based on active and semi-active technologies, others are passive.

Active and semi-active technologies are based on the addition of electrical components that
act on the sound signal to be masked or on the noise source to be attenuated. In acoustics, speakers
are used to obtain a sound masking effect such as those popularised by active noise suppression
headphones [10], which are based on the diffusion of a sound signal in phase inversion with respect
to the noise to be suppressed [11]. In the case of an application on vibratory sources, piezoelectric
transducers [12] are used. The method is said to be active when a current is applied to the patches
[13] and semi-active when it is coupled to an electrical circuit [14] which will dissipate the electrical
voltage produced by the deformation of the piezoelectric patch.

For airborne noise control passive methods are based on the use of silencers, absorbers, barri-
ers, mufflers [15]. For reducing structural vibration the solutions are varied. A first method consists
in modifying the receiving system by adding stiffness or mass, so that its eigenmodes are no longer
excited by the frequency band of the excitation source [16, 17]. However in most cases, the vibrations
need to be isolated or dissipated by using isolator or damping materials. Other methods are widely
discussed in the literature. There are many books and articles to refer to [4–7, 18–21]. The classic
vibro-acoustic treatment is the addition of a viscoelastic layer to increase the damping effects of
the structure. This addition of a viscoelastic layer is done in different ways, free-layer damping, see
Fig. 1.2(a), constrained-layer (Fig. 1.2(b)), or sandwich-layer (Fig. 1.2(c)).

The free layer damping, Fig. 1.2(a), consists of a layer of viscoelastic added to the structure
to be treated. When the host structure undergoes flexural deformation, the viscoelastic deforms
mainly in traction and compression in planes parallel to the host structure. The hysteresis loop of
cyclic stress and strain dissipates energy. The added damping depends on the amount and proper-
ties of the added viscoelastic material. Often, in industrial systems, the degree of damping is limited
by thickness and weight restrictions. This technology is used, for example, for automotive floor panels.
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The constrained layer damping, Fig. 1.2(b), involves adding a elastic surface layer to the vis-
coelastic material. This upper stiff layer forces shear deformation of the viscoelastic material when
the host structure undergoes flexural vibration. In this way more energy is dissipated into heat by the
viscoelastic material. This technology is used for example in aircraft fuselage.

The multilayered viscoelastic beams, Fig. 1.2(c), consist in layering constrained layer treat-
ments. A large number of works have been produced in recent years [22–26] to predict the behaviour
of multilayered structures and how they can attenuate vibrations. This technology makes it possible,
for example, to anticipate temperature changes of the viscoelastic in a brake pad, or to obtain wider
frequency effects.

Base Structure

Damping materiala)

b)

c)

Constraining layer

Base Structure

Damping material

Base Structure

Constraining layer 01

Damping material 01

Constraining layer n

Damping material n

Figure 1.2 – Free layer damping, viscoelastic sheet (a). Constrained layer damping, aircraft
fuselage (b). Multi-layered or sandwich damping, brake pad (c). (Figure inspired from Ref. [8])

Although these methods have been used for a long time [27], they are still relevant today
thanks to the evolution of knowledge and technologies, allowing us us to obtain better performing
viscoelastic materials [28].

In the following sections, we will focus on the advantages brought by the use of resonant
structures and the use of phononic crystal to the field of vibration control. In particular, these
structures bring possibilities to tune the working frequency range. However, there are many other
innovative vibro-acoustic treatments, such as the development of acoustic black holes where an
incident wave trapped by a property gradient is dissipated by the addition of a viscoelastic layer
[29–36], or the use of granular materials where the interactions between grains lead to an absorption
phenomenon [37].
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1.3.2 Resonant structures
This section discusses the use of resonators in vibro-acoustic treatments. A resonator consists

of three elements:
• a mass M,
• a stiffness k,
• a damping C.

The resonant frequency, ω0, of the conservative resonator is calculated:

ω0 =
√

k
m . (1.1)

The use of a resonator tuned to a specific frequency makes it possible to obtain a vibration-
absorbing effect [4–7]. This principle is the one of the dynamic absorber and is widely used in industry
to dampen the vibrations of rotating machines, we discuss the main features as follows.

In this type of systems the absorbing frequency occurs at the resonant frequency, Eq. 1.1. The
objective here is to tune the resonators to the generator frequency. Figure 1.3(a) shows the schematic
of a dynamic absorber as commonly described. The effect of an undamped dynamic absorber is to
eliminate the vibration for the frequency of interest but also to introduce two resonant frequencies
of the system Ω1 and Ω2, see Fig. 1.3(b). The addition of damping in the rubber helps to smooth
the curve.

a) b)

Figure 1.3 – Drawing of an undamped dynamic vibration absorber (a). Effect of undamped
vibration absorber on the response of the machine (b). (Figure from Ref. [7])

The disadvantage of this type of system is that it requires a high mass to be effective at low
frequencies. It is well suited to the treatment of machines where mass is not an issue in conventional
use. In audible acoustics, the use of acoustic resonators to attenuate noise is widely discussed in the
literature [38–43], and even already used in architecture [44], but also in the context of automotive
[45] or aeronautic [46].

The addition of a mass element is not compatible with the current ligthweigth philosophy of
the transport industry. However, it is still possible to use these structures to control the transmission
of waves through the waveguides connecting the vibration source to the other elements. There are a
number of references in the literature where the control of wave propagation using a local resonator
is discussed [40, 45, 47–51].
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The addition of a tuned vibration absorber on a beam [47–49] allows us to control the propa-
gation of flexural waves in this beam [50], see Fig. 1.4. This control is evidenced by the reflection and
transmission coefficients [52, 53] showing that at the resonance frequency there is not propagation
of waves through the waveguide.

The influence of the tuned vibration absorber will depend on many parameters: its resonant
frequency, its mass, the damping of the resonator and its distance from the vibration source. If the
tuned vibration absorber can be considered in the far field, the distance to the source can be ignored.
The far-field condition is considered when the source-resonator distance is large compared to the
wavelength of interest. The optimisation of a tuned vibration absorber consists in finding the com-
bination of parameters allowing a minimum of power transmitted or a maximum of power absorbed
by the resonator [50].

Figure 1.4 shows the effect of a local resonant vibration absorber. The measurement is
performed using two pairs of accelerometers: A1 and A2 are the locations of the accelerometers used
to estimate the upstream propagating flexural waves. A3 and A4 are the same for the downstream
propagation waves. The ends of the beam were embedded in sand boxes to reduce waves reflection.
The incident wave a+ experiences a drop in transmission and reflection at the analytically predicted
frequency. In this configuration, in transmission, and with a single tuned vibration absorber, a
maximum absorption of α = 0.5 can be obtained [54]. The flexural wave is partially filtered and
absorbed around a frequency corresponding to the resonance frequency of the resonator.

a)

b)

Figure 1.4 – Experimental set-up (a) and reflection and transmission ratio (b), (—) for the
analytical method and (- · - ·) for the experimental reflection, and (- - - ) fot the experimental
transmission, (Figure from Ref. [50])
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Vibration absorption phenomena using a local resonator are also used on more atypical struc-
tures. Figure 1.5 shows an example of flexural wave control by designing part of the beam as a
resonator [54]. Here the beam section that has an absorbing effect can be considered as a resonator
placed at the end of the beam (a). In this configuration only the reflection coefficient is playing role.
By analyzing the complex frequency plane of the reflection coefficient, perfect absorption is achieved
when the zero of |R| is placed in the real frequency axis. This is known as the critical coupling
condition and represents the impedance matching of the system (b). With a single tuned vibration
absorber and taking into account the losses, a perfect absorption, α = 1, can be obtained at the
resonance frequency (c). This phenomenon is the interpretation of the acoustic Black Hole effect [29].

a)

b)

c)

Figure 1.5 – Analysis of the open resonators in reflection configuration. Diagrams of the beam
terminaison (a). Representation of log10(|Rr |) in the complex frequency plane for the lossless and
lossy configurations respectively (b). Analytical and experimental measurement of the reflection
|Rr |2 and absorption α (c). (Figure from Ref. [54])

Many papers discuss the use of a resonator inside the waveguide [55–57], which is of interest
for load bearing structures such as automotive substructures. The shape and use of the resonators
can be various [58–63].
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1.3.3 Phononic crystals

Generalities

The control of elastic waves by periodic structures have been considerably developed during
the last decades by using phononic crystals [64] as analogously done for light waves by Photonic
crystals [65]. These systems, made of either periodic distributions of scatterers embedded in a phys-
ically dissimilar host material [66] (Fig. 1.6(a)), or simply periodic geometries [67–69], are driven by
a particular dispersion relation showing band gaps [70, 71], ranges of frequencies produced by the
Bragg interferences in which the propagation of waves is forbidden [72–76]. In Fig. 1.6(b) the first
band gap occurs at 1670 Hz, identified by the arrows [100].

a)

b)

Figure 1.6 – Eusebio Sempere’s sculpture in Madrid, Spain, (a). Measured sound attenuation
as a function of frequency. The inset illustrates the direction of propagation of sound waves.
Arrows indicate the calculated maxima and minima due to interference from the different crystal
planes of the sculpture, (b). (Figures from Ref [66])

Dispersion relation of phononic crystals

The dispersion relation of phononic crystals can be obtained by using the Transfer Matrix
Method [77–82], Plane Wave Expansion Method [83, 84], Waveguide Finite Element method [85,
86] or varying amplitudes method [87] among others. Significant progress has been made on the
control of flexural or longitudinal waves by phononic crystals showing different applications including
filtering [88], wave trapping [89, 90], wave-guiding [91], focusing by refracting [92, 93] or scattering
waves [94] as well as self-collimation [95, 96], among others [97, 98]. Figure 1.7 show the dispersion
diagrams of the acoustic and elastic periodic structures. Evidence of band structure in acoustic wave
propagation in a system made up of several dangling side branches periodically grafted at each of
the equidistant sites on a slender tube. We can see the relationship between the dispersion relation
(right) and the actual transmission (left) in a finite system. A drop in transmission appears around
band gap frequencies [99] (Fig. 1.7(a)). Pass and stop bands were found in 1D layered composites,
mokume-gane, consisting of steel and copper foils [100] (Fig. 1.7(b)).
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a) b)

Figure 1.7 – Band structure and transmission spectrum for a system of open tubes. N ′ is the
number of dangling side branches( of length d2 and cross-section a2) grafted on N equidistant
sites (with period d1) ofa slender tube. Reduced wave-vector refers to the dimensionless Bloch
vector kb ltot and the reduced frequency is defined by Ω = ω(ltot/c1), (c1 is the speed of sound
in the segment 1). We consider identical fluid both inside the dangling side branches and inside
slender tube (a). Theorical dispersion of waves propagating normal to the layering in 1D layered
composites(b) (Figures from Refs. [99, 100])

Figure 1.8 shows a classic example of a periodic structure from the work of Hvatov and
Sorokin [79]. The segments of the periodic cell are defined by their respective lengths l1 and l2, with
ltot = l1 + l2, h1, h2 the segment width, E , ρ, ν respectively Young’s modulus, density and Poisson’s
ratio. The calculation of the frequency bands is done by writing the continuity equations, at the ends
of each segment of the cell, for continuity of displacement vi , slope Ψi , flexural moment Mi and
shear force Qi :

v1(l1) = v2(l1) , v2(ltot) = v3(ltot),
Ψ1(l1) = Ψ2(l1) , Ψ2(ltot) = Ψ3(ltot),
M1(l1) = M2(l1) , M2(ltot) = M3(ltot),
Q1(l1) = Q2(l1) , Q2(ltot) = Q3(ltot).

(1.2)

The periodicity is described by the Floquet conditions

v1(0)=Λv3(ltot),
Ψ1(0)=ΛΨ3(ltot),
M1(0)=ΛM3(ltot),
Q1(0)=ΛQ3(ltot),

(1.3)

where Λ = eikb and kb is the unknown Bloch wavenumber.

A periodic unit cell can be constructed with segments of different geometry and materials as
illustrated in Fig. 1.8(a) and (b). It is the periodicity phenomenon described by Eq. 1.3 that allows
the band gap to open. In Fig. 1.8(c), the band gaps are identified when |Λ| ̸= 1, these band gaps
are controlled by the parameters of the periodic cell.
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a)

b)

c)

Figure 1.8 – Example of infinite periodic waveguide with two component (a). Periodic cylindrical
shell (b). Dependant of Λ = e ikb upon Ω = ωh1

c1
, |Λ| ̸= 1: stop-band, |Λ| = 1: pass-band (c).

(Figure from Ref. [79]).

1D phononic crystal

Periodic structures allow to obtain particularly interesting bandgap effects. This periodicity
can be obtained by many means, the repetition of segments [79, 101–104], 1D phononic crystals
with alternating materials in the radial and axial directions [105]. It is also possible to obtain a band
gap with kirigami inspired structure [106, 107] (Fig. 1.9). It is a hexagonal shape that is widely
used in bio-inspired honeycomb structures. This shape is used for its mechanical strength properties
compatible with the philosophy of lightweight structures [108]. This honeycomb structure allows for
multiple band gaps that can be modified by adjusting the parameters of the structure.
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a)

b)

Figure 1.9 – Example of a kirigami phononic crystal with a hexagonal unit cell, (a), this type
of cell leads to the following dispersion diagram, real part at the top and imaginary part at the
bottom, (b). (Figure from Ref. [106])

Bent or curved structure can also be used to generate periodicity band gaps [109–111]. In this
case the curvature taken by the guide is used to design a phononic crystal waveguide, with the pres-
ence of a band gap. Figure 1.10 shows an example of the results that can be obtained. Alternating
straight and curved waveguides, in a periodic cell (a), allows interesting loss effects to be obtained
depending on the number of cells used (b). This logic of using the curvature of the guides to obtain
a vibration filter effect can be applied to such common shapes as springs [111]. It is as compact as
the conventional design, but provides the stopband effect in virtually significant frequency ranges.

a)

b)

Figure 1.10 – Pipe segments used as a periodique repeated substructure (a). Insertion losses
(IL) in a pipe with variable number of inserted periodicity cells. The grey strips indicate Floquet-
predicted stop bands, (b). (Figure from Ref. [109])
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Absolute band gap

One of the main challenges of phononic crystals has been the design of absolute band gaps over
which the propagation of all elastic waves is forbidden, whatever their polarisation and wave vector.
Phononic crystals with a fluid-type host medium, known as sonic crystals [66], have theoretically
and experimentally reported absolute band gaps in broad ranges of frequencies [88, 112–114]. These
systems represent the most simple phononic crystal as only longitudinal waves are propagating in
the medium. Perhaps the most known application of sonic crystals is the design of tunable sound
screens [41, 115, 116] and are interesting to concept acoustics filter for audible sound [99], seis-
mic protection [117], or ultrasonics filter [118–120]. However, once the host medium is a solid, the
problem becomes more complex as different polarisations can be excited in the system. In this case,
theoretical evidences of absolute band gaps are also widely reported in the literature. 1D phononic
crystals exhibiting absolute band gaps have been analysed by the transfer matrix method [78] and
recently, 1D phononic crystals with alternating materials in the radial and axial directions have been
used to show absolute band gaps [105], see Fig. 1.11. 2D phononic crystal slabs consisting of either
solid [121] or piezoelectric [122] inclusions placed periodically in an isotropic host material have been
theoretically analysed, showing absolute band gaps with a variable bandwidth for elastic waves of any
polarisation and incidence. Bulk 2D phononic crystals have been also proposed for bulk wave atten-
uation with solid [123] or magnetostrictive [124] inclusions. Using specialised genetic algorithms, 2D
phononic crystal formed from silicon and solid voids have been optimized to obtain unit cell designs
exhibiting absolute band gaps for both in- and out-of-plane motions [125].

a) b)

Figure 1.11 – Band structures of the phononic crystal pipes composed of steel and epoxy for
a classical Bragg-type cell (a) and for a two parts 180° along circumferential direction cell (b)
(Figures from Ref. [105]).

Absolute band gaps are also used in the case of curved waveguides. The dispersion diagrams
in Fig.1.12 are obtained by transfer matrix method on curved beam. It is observed that when the
band gap concerns both flexural and longitudinal waves, it is preserved in the curved guide. This
property is important and will be used in the following. When the bands gap concern longitudinal or
flexural waves, they do not appear in the curved waveguide. In order to preserve the filter effects of
a phononic crystal, the band gaps must be superposed.
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a)

b)

Figure 1.12 – Example of curved beam of phononic crystals (a). (CBPC) Band structures of
in-plane elastic wave of curved beam of phononic crystals (CBPC) and equivalent straigth beam
of phononic crysals (SBPC). The red lines represent the absolute value of the real and imaginary
parts of the in-plane energy band structure of CBPC and the light blue ones represent those
of equivalent SBPC. The grey regions are the band gaps of CBPC, The regions with slash are
longitudinal and bending wave band gaps of equivalent SBPC. (b) (Figures from Ref. [126])

From the experimental point of view, absolute band gaps have been also reported in the lit-
erature. 2D binary solid/solid composite media with cylindrical inclusions embedded in an epoxy
resin matrix showed dips of transmission evidencing the presence of absolute band gaps [127]. More
recently, the presence of absolute band gaps in pillared phononic crystal slabs have been shown by
double-vibrator three-components [128] and temperature-driven adaptive systems [129]. 3D phononic
crystals made of face centered cubic unit cells composed of a single material have been used to experi-
mentally show ultra-wide absolute band gaps [130, 131]. Recently, 3D load-bearing architected lattice
Fig. 1.13, composed of a single material, have been designed for presenting broadband frequency
band gaps for all directions and polarizations for airborne sound and elastic vibrations simultaneously
[132]. However, although 2D and 3D phononic crystals have been widely validated experimentally,
less attention has been paid to the experimental analysis of 1D case acting simultaneously on longitu-
dinal, flexural and torsional waves. The control of vibrations in such a 1D phononic crystals systems
can impact the design of piping systems which can be exploited in areas such as the automotive
industry, heat exchanger tubes in chemical plants, oil pipelines, marine risers, pump discharge lines,
among others [133].
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(a) (b)

(c)

Figure 1.13 – A three-dimensional realization of the metamaterial. The material box encloses
a piezoelectric transducer for generating mechanical vibrations and a loudspeaker for airborne
sound. (b) The acoustic frequency response of the metamaterial compared with and without
metamaterial box. (c) The elastic frequency response of the metamaterial (Figures from
Ref. [132]).

Tunability and optimization

In an industrial context it is important to be able to target the frequency ranges to be treated.
The tunability and optimization of the band structure has been studied, with for example the study of
glass plate structure in water consisting of two subsets with different periods [134] depending on the
arrangement, either a narrow or a wide bandwidth can be achieved. To reach the frequency ranges
of interest, it is possible to use optimization algorithms to obtain a periodic structure to achieve the
desired objectives.

Using specialised genetic algorithms, focusing on one-dimensional layered phononic crystal
and longitudinal wave propagation [135], it is possible to obtain an optimised structure (Fig. 1.14).
2D phononic crystal formed from silicon and voids have been optimized to obtain unit cell designs
exhibiting absolute band gaps for both in- and out-of-plane motions [125] (Fig. 1.15). Genetic algo-
rithms is an nature-based optimization. It typically starts with a set of candidate according to some
cost function, then applies a group of parameter variations, and then a selection in order to tend
to the objective. Genetic algorithms are coded according to a binary function, for each parameter
2 solutions are possible (0 or 1). Compared to gradient-based methods, genetic algorithms are less
likely to get trapped in local minima, especially for problems with large search spaces and a large
number of variables [136].

There are different optimisation methods, all of which try to obtain from a set of parameters
a cost function to be minimised. The choice of the optimisation method depends on the input pa-
rameters, the design of the component, and the amount of computing time we wish to allocate to it.
The algorithm used in Fig. 1.15 is a genetic algorithm, and its cost function is formulated in terms
of the size of a particular band-gap width normalized with respect to its midpoint frequency. The
results presented are the different configurations obtained according to the optimization parameters:
1st band gap (a), 2nd band gap (b) for an out-of-plane wave. For in-plane waves (c), the second band
gap is optimized. In Fig. 1.15(d) and (e), the first bandgap is optimized for combined out-of-plane
and in-plane waves, the result of (e) being obtained with the smoothing of sharp edges.
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a)

b)

c) d)

Figure 1.14 – Unit configuration for non-optimised filter design (a), and configuration for
optimised filter design (b). The black color denotes material phase with high stifness and density;
the white color denotes material phase with low stifness and density. Frequency band diagram for
non-optimised filter design (c). Frequency band diagram for optimised filter design (d). Target
frequency ranges for phononic filter with pass band (PB) and stop band (SB) shaded in grey.
(Figure from Ref. [135])
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Figure 1.15 – Optimized unit-cell design and band structure for out-of-plane waves: First band
gap (a), second band gap (b). Optimized for in-plane waves: second band gap (c). Optimized for
combined out-of-plane and in-plane waves, lowest band gap: pixels (d) and splines (e). (Figure
from Ref. [125])

Resonant phononic crystals

It is possible to produce phononic crystals by assembling cells consisting of an elastic support
with a resonant element [49, 137, 138]. Work has been conducted on 1D phononic crystals [56,
139–149] and 2D [137, 150, 151]. These works include the use of binary materials with the inclusion
material being very flexible [58, 59], hollow cylinders or spheres [60], split rings [61], beams or plates
with suspended masses, plates or surfaces with pillars [51, 62, 63]. Effects of band gaps coupled to
resonance bands [152] and their application for guiding the propagation of a wave [153] in a 2D
medium emerged.
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Figure 1.16 shows different models of resonators designed to be used fixed to a plate, (a) and
(b), or a cylinder, (c) and (d). The resonance frequencies of the resonators and their effects on the
structure are calculated numerically. These resonators can be multiplied [154] or periodised [155].
Each resonator is fixed on a unitary support cell, see (a). This coupling allows to take advantage of
a periodicity effect in order to exploit the resonant effect in the framework of a phononic crystal,
see (e). The use of resonators allows the opening of a resonance band and to obtain a damping ef-
fect at lower frequencies than those obtained with a simple phononic crystal for equivalent dimensions.

a)

b)

c)

d)

e)

Resonant band gap

Figure 1.16 – Unite cell of a locally resonant metamaterial plate (a). Flexural mode for a fixed
resonator base (b). Picture of a PMMA resonators produced to a vibroacoustic pipe used (c).
Finite elements modeling mode shape of the first and second eigenfrequencies of the resonant
structure (d). Dispersion curves for a infinite periodic structure with resonators, Compararison
between undamped (black dash line), and damped (red solid line) curve (e). (Figures from
Refs. [51, 68, 156–158])

A medium consisting of periodically arranged resonators has a resonant band gap at a wave-
length much bigger than that corresponding to the band gap based on the spatial periodicity which
leads to "Bragg dispersion" [159–162] if the resonance is tuned at very low frequencies. Figure 1.17
shows the results obtained for a geometry that seems close to the one intended in this thesis. The
results presented concern only the flexural waves, the longitudinal and torsional waves are not dis-
cussed. However, the addition of resonators as complements to a periodic structure allows to obtain
a frequency band where the propagation of flexural waves is attenuated due to the increasing of the
imaginary part of (k).

a)

b)

c) d) e)

Figure 1.17 – Simple model of a locally resonant beam (a). Sketch of a locally resonant beam
with finite local resonators (b).Complex flexural band structure of the locally resonant beam and
the displacement FRF of its finite sample (c). Real (d) and imaginary (e) part of the dispersion
diagram. (Figures from Ref. [159])
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Many other configurations of periodic materials with local resonance have been proposed.
These include the use of binary materials with the inclusion material being very flexible [58, 59],
hollow cylinders or spheres [60], split rings [61], beams or plates with suspended masses, plates or
surfaces with pillars [51, 62, 63]. These exemples use periodic resonators to obtain partial or complete
band gap.

In audible acoustics, the use of acoustic resonators to attenuate noise is widely discussed in the
literature [38–41], and even already used in architecture [44], but also in the context of automotive
[45]. These acoustic systems can also be used with frequency shifting to produce graded materials or
rainbow trapping, i.e. the gradual reduction of propagation velocity which leads to energy trapping in
graded structures, [42, 43]. Figure 1.18 shows an acoustic rainbow trapping system design to absorb
acoustic waves. Resonant frequencies are targeted from 300 Hz to 1000 Hz with sufficient frequency
step to be partially coupled. The result is a frequency band producing quasi-perfect sound absorption
of the incident wave.

Figure 1.18 – (a) Photograph of an acoustic rainbow-trapping manufactured sample. (b)
Absorption obtained by using the TMM (continuous line), FEM simulations (circles) and
measured experimentally (dotted line). (c) Corresponding reflection (red curves) and transmission
(blue curves) coefficients in amplitude. (d,e) Complex frequency representation of the eigenvalues
of the scattering matrix. (Figures from Ref. [42])

In the acoustic medium, the losses are well known and the incident wave is regularly considered
to be plane. However the problems become more complex when the host medium is solid. The losses
are not well defined as in acoustic [27, 147, 163]. The losses can be related to the materials charac-
teristics, to the interactions between the different parts of the system but also to the viscothermal
exchanges between the system and its environment. In a solid medium we consider the propagation
of several waves which are polarised according to their direction of propagation. In this work, they are
named longitudinal wave for the wave propagating in the same direction as the axis of the waveguide
and resulting in a traction-compression motion, flexural wave for the wave resulting in a bending
motion and torsional wave for the wave resulting in a torsional deformation of the guide. A solution
is usually designed to control only one type of motion.

There are a number of references in the literature where the control of vibration wave prop-
agation using a local resonator is discussed. In the case of flexural waves, the periodic addition of
a mass-spring assembly has been discussed in 1D [56, 139–146] and 2D [150] with many variations
on the geometries of the supports and resonators. From this work, the effects of band gaps coupled
to resonance bands [152] and their application for guiding the propagation of a wave [153] in a 2D
medium emerged. Another approach consists in using a reduced number of resonators as vibration
absorbers, [50, 54]. These vibration absorbers can be multiplied [154] or periodised [155]. For the case
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of longitudinal and torsional waves, the influence of the periodic inclusion of mass-spring systems in
1D [148, 149] and 2D [137, 151] media is explored. The influence of torsional vibrations on the prop-
agation of bending waves is also considered [164]. While the damping of flexural [159], longitudinal
[148] and torsional [48] waves has been studied and experimentally validated in many configurations
[57, 165], there is no ready-to-use solution for 1D waveguides with industrial constraints.

Work has been done to obtain a multi-wave resonator that allows, when a resonant cell is
periodized, to obtain an absolute band gap [57]. Figure 1.19 shows a vibration filter obtained with
a waveguide made of resonant periodic cells. These periodic cells are composed of acrylic cylinders
where a mass is suspended with three types of spring, see Fig. 1.19(a-i). The resonant cylinders
are designed so that the resonant frequency of the cylinder is close for the three types of waves.
This allows to obtain resonance band gaps in the same frequency range for each type of wave. This
absolute band gap is then translated into a damping effect when the waveguide is composed of 10
periodic cells, see Fig. 1.19(j-l). The methodology is similar to the one used in Chap. 2.

(j)

k)

(l)

Figure 1.19 – (a-i) Structure of the cell, with resonant mass, periodised. The spring components
are identified for each movement as well as the displacement of the mass and the strains on the
springs. (j -l) Experimentally observed Input/output ratio for each acoustic eigenmode for a finite
metarod, with (j) for longitudinal eigenmode, (k) for flexural, and (l) for torsional. (Figure from
Ref. [57])

Many solutions propose the use of a resonator inside the waveguide [55–57]. Ogasawara’s work,
Fig. 1.19, is close to what we are trying to achieve. However, the materials and dimensions described
are not compatible with our industrial context. In the case of piping systems that can be operated in
areas such as the automotive industry, heat exchanger tube in chemical plants, oil pipelines, marine
risers, pump discharge line, vibration treatments must be applied outside the waveguide. This thesis
focuses on solutions to control wave propagation in a targeted frequency range with minimal space
requirements.
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1.4 Outline of the thesis
The PhD is concerned by the control of vibratory waves in a tube by the use of vibratory filters

or absorbers. After presenting the context, the research objectives and a quick overview of the state
of the art, we introduce how to obtain a band gap by designing of a vibratory filter composed of
a periodically structured tube. Then, the use of local resonances allows to design filter or vibration
absorber effects without impacting the geometry and materials of the host waveguide. Finally, the
application of the proposed solutions in an industrial setting will be discussed.

This document is structured in 5 chapters:

— Chapter 1: Introduction.
This chapter provides an introduction to the context. It is rooted in the transportation industry.
The problematic of the thesis is to obtain a vibration filter, which can be integrated in a set
of industrial elements without altering their primary functions. A state of the art of common
solutions for vibration damping, vibration absorbers, and phononic crystals, gives an overview
of the work discussed in this thesis.

— Chapter 2: Design of multi-wave vibration filter based on Phononic Crystal pipes with absolute
bandgap.
In this chapter a design of a vibration filter based on phononic crystals is developed. The
analytical method for calculating the dispersion diagram of an infinite periodic waveguide is
developed. The results are correlated with a numerical model. A parametric optimisation is
performed in order to obtain a multi-wave vibratory filter centred on a selected frequency band.
The theoretical results are experimentally validated.

— Chapter 3: Design of 1D multi-wave vibration filters and absorbers based on tunable local
resonators embedded in pipes.
In this chapter several designs of vibration filter and vibration absorber are developed. This
work uses local resonators to propose a design independent of any industrial context. A set of
designs are proposed and an experimental validation is provided.

— Chapter 4: Cases study inspired by industrial situations. Use of multi-wave vibration filter pipes.
In this chapter previously developed designs are numerically confronted with situations com-
mon in the industrial context. Waveguides are bent and the effects of the bends are studied.
The waveguides are coupled to radiating elements and the acoustic propagation is observed.
Finally the influence of the addition of a heavy fluid in a periodic pipe is investigated.

— Chapter 5: Conclusions.
In this chapter the work and results of this thesis are summarised, followed by some perspectives
for future works.
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2.1 Introduction

This chapter is dealing with the design of architectured waveguide to control vibrations in the
framework of this thesis. It is based on the previously published article [166] (Appendix A) which is
further developed and detailed here. The developped system is a waveguide periodically structured
in order to obtain a vibration filtering effect over a given bandwidth for all types of waves propa-
gating on it. As the waveguide is subjected to complex excitation we apply the concept of absolute
band gap in order to design and experimentally validate 1D phononic crystals pipes able to mitigate
longitudinal, flexural and torsional waves in a same target frequency band.

The mitigation of noise pollution is a major societal challenge for which extensive research
has been conducted [19]. Noise, Vibration and Harshness (NVH) departments have been widely in-
tegrated notably in transportation industry. Structure borne sound results from both the flexural
vibrations and their couplings with other types of waves, produced by the complex geometries clas-
sically encountered in industrial systems [4]. An effective reduction of the radiated sound levels then
requires to mitigate all types of waves. To reach such "absolute filter" features, the design strategy
is based on the concept of absolute band gap.

The chapter is organised as follows. The study presents first the theoretical model used to
analyse the 1D models for the wave propagation in periodic structural waveguides in section. 2.2.
The model are validated in Section 2.3. Section 2.4 shows the 1D model used to explore the
variability of band gap as a function of various structural parameters. A numerical optimisation
of a periodic structure is proposed in Section 2.5. This optimisation is based on the simplex method
algorithm.The experimental set-up used to validate the model for the reflection problem is then
presented in Section 2.6 as well as the experimental methodology and results.

2.2 1D models of periodic structural waveguides using
the Floquet method

A 1D phononic crystal waveguide made of a periodic distribution of a unit cell consisting of two
different hollow cylinders made of aluminium and nylon (see Fig. 2.1) is optimised. Considering lossy
constitutive materials, the eigenvalue problems of the three types of waves are analytically solved by
imposing continuity conditions between the different parts of the unit cell and Floquet-Bloch periodic
conditions at its extremities. The three problems are combined via a minimizing algorithm in order
to reach the geometry of the 1D phononic crystal pipe that exhibits an absolute band gap of target
center frequency and target bandwidth. Full wave 3D finite element simulations and experimental
caracterization of a demonstrator of finite size are in good agreement with the analytical results. The
results show dips in the transfer functions associated with the predicted absolute band gap.
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Figure 2.1 – Scheme of the modeled phononic crystal pipe. (a) and (b) show lateral and
cross sectional schematic representation of the modeled phononic crystal pipe, respectively.The
delimited region of length ltot represents the unit cell

2.2.1 Definition of the waveguide
A detailed scheme with the geometrical parameters of the system is shown in Fig. 2.1(a-b).

Each segment of the unit cell is assumed to be a thin-walled pipe of annular cross-section. We define
γ = l2/ltot as the length ratio and β = R2/R1 as the outer radius ratio. The inner radius Rint
is constant for the two segments of the unit cell. These two geometrical parameters will be used
to describe the geometry in the optimisation procedure. The 1D phononic crystal pipe is made of
aluminium and nylon, considered as linear and isotropic elastic materials. The nylon is characterized
by its Young modulus EN = 2.3 GPa, its density ρN = 1240 kg/m3 and its Poisson ratio νN = 0.3.
The aluminium characteristics are EA = 71 GPa, ρA = 2170 kg/m3 and νA = 0.3.

All the parameters defining this periodic guide are listed in the table 2.1. The ratios of length
γ and outside radius β between segments 1 and 2 allow to control the contrasts of geometry of the
unit cell. For all the cases presented in this document, the internal radius R1 will always be kept
constant between sections 1 and 2 in order to represent a tube geometry where only the external
radius is structured.

parameters definition
ltot total length of the unit cell [m]
l1 = (1 − γ) × ltot length of the first segment [m]
l2 = γ × ltot length of the second segment [m]
γ length ratio
R1 external radius of the first segment [m]
R2 = β × R1 radius of the second section of the unit cell [m]
β outer radius ratio
Rint internal radius [m]
E Young modulus [Pa]
ρ density [kg/m3]
ν Poisson’s ratio

Table 2.1 – Topological and material parameters from which the unit cell of the Fig. 2.1 is
defined.
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2.2.2 Floquet-Bloch model of the longitudinal and torsional waves
dispersion

Motion equation

Here we consider harmonic wave motion with the time convention eıωt . In what follows the
subindex i = N,A refers to each section of the unit cell (Nylon and Aluminum, respectively) and the
superindex w = l , t represents the wave type (longitudinal and torsional, respectively). On the one
hand, the propagation of longitudinal and torsional waves in the i-th part of the unit cell is modeled
by a 1D Helmholtz equation [18]

∂2uw
i

∂x2 + (kw
i )2uw

i = 0, (2.1)

where uw
i is the displacement of the wave w of the i-th segment of the unit cell. kw

i = ω
cw

i
is the

wave number with cw
i =

√
Ew

i /ρi the speed of the wave and E l
i = Ei is the Young modulus and

E t
i ≡ Gi = Ei/2(1 + νi) is the shear modulus and νi the Poisson ratio.

General solution

Wave solutions of Eq. 2.1 write

uw
i (x) = Ai1eikw

i x + Ai2e−ikw
i x , (2.2)

where Ai j are unknown amplitudesrepresent the left,rigth going waves respectively, j = 1, 2 .

Condition of continuity

At the interfaces between Nylon and Aluminum waveguide sections Fig 2.1(a), the displacement
continuity and equilibrium equations write

uw
1 (l1) = uw

2 (l1),
uw

2 (ltot) = uw
3 (ltot),

(2.3)

and
E1S1

∂uw
1 (l1)
∂x = E2S2

∂uw
2 (l1)
∂x ,

E2S2
∂uw

2 (ltot)
∂x = E3S3

∂uw
3 (ltot)
∂x ,

(2.4)

respectively, where Si is the cross section area.

Condition of periodicity

The periodicity is described by the Floquet conditions

uw
1 (0) = eikb uw

3 (ltot),
∂uw

1 (0)
∂x = eikb

∂uw
3 (ltot)
∂x ,

(2.5)

where kb is the unknown Bloch wavenumber.

Linear system

Applying conditions (2.3-2.5) to solution (2.2) leads to a linear system M(ω, kb)·A = 0 such as:
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(2.6)
For each given ω of a frequency range of interest, the values of kb (complex) that satisfies

det(M) =0 are found numerically using the Muller method [167].

2.2.3 Floquet-Boch model for flexural wave dispersion following
Timoshenko theory

On the other hand, flexural waves are described using the Timoshenko’s beam theory [79,
138, 168–170] that takes into account shear deformation and rotational inertia effects. Although this
framework is based on low frequency assumptions, it makes possible to analyse the propagation at
higher frequencies or for thicker beams than the Euler-Bernoulli’s theory.

Equation of motion

Following Timoshenko assumptions from which shear deformation and rotational inertia effects
are considered, the flexural displacement vi satisfies

Ei
ρi

∂4vi
∂x4 + ω2

(
1 + Ei

κiGi

)
∂2vi
∂x2 +

(
Siω

2

Ii
− ρi Iiω4

κiGi

)
vi = 0, (2.7)

where κi , Si , and Ii are respectively the shear coefficient, the cross-section area and quadratic
moment. In order to obtain the eigenvalue problem whose solutions give the complex dispersion
relation, kb = k(ω)ltot/π, we apply the continuity boundary conditions at the interfaces between
each segment of the unit cell as well as the Floquet-Bloch periodic conditions at its extremities

General solution

The solution of Eq.(2.7) writes as a combination of 4 waves

vi(x) = Bi1eiki1x + Bi2e−ki2x + Bi3e−iki3x + Bi4eki4x , (2.8)

where ki is the flexural wavenumber and Bi1 to Bi4 unknown amplitudes.

Condition of continuity

At the interfaces between Nylon and Aluminum pipe sections (see Fig. 2.1(a)), the continuity
and equilibrium equations write

v1(l1) = v2(l1) , v2(ltot) = v3(ltot),
Ψ1(l1) = Ψ2(l1) , Ψ2(ltot) = Ψ3(ltot),
M1(l1) = M2(l1) , M2(ltot) = M3(ltot),
Q1(l1) = Q2(l1) , Q2(ltot) = Q3(ltot),

(2.9)

where Ψi is the slope, Mi the bending moment and Qi the shear force.
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Condition of periodicity

The periodicity is described by the Floquet conditions

v1(0)=eikb v3(ltot),
Ψ1(0)=eikb Ψ3(ltot),
M1(0)=eikb M3(ltot),
Q1(0)=eikb Q3(ltot),

(2.10)

where kb is the unknown Bloch wavenumber.

Linear system

The equations (2.8-2.10) lead to a linear system such as M(ω, kb) · B = 0 with M a [12x12]
matrix. For each given ω of a frequency range of interest, the values of kb (complex) that satisfies
det(M) =0 are found numerically to provide the dispersion relation using the Muller method [167].

By solving each 1D model this way we obtain the dispersion relations for all types of waves
in the phononic crystal pipe. Solutions obtained by the previous semi-analytical methodology are
compared to reference solutions provided by 3D elasticity finite element simulations (solid mechanics
COMSOL package [84]).

2.3 Validation of the 1D models
This section presents a set of comparative results obtained by the Floquet model and by ref-

erence models in three cases of varying complexity. The objective is to evaluate the accuracy of the
1D approximation of the wave models used in the typical configurations of the studied guides. For
each case presented in Fig. 2.2, the topology of the unit cell is given at the top and the dispersion
diagrams are presented below.

(a) (b)

Figure 2.2 – Validation of the Floquet method by comparison with reference results in the cases
of uniform structural guide (a), single-material phononic crystal guide (b).
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The basic case of the uniform guide with no discontinuities in cross-section and material is first
considered in Fig. 2.2(a). For the second configuration, Fig. 2.2(b), the waveguide has a variation of
its cross-section for a specified length l1, this change of cross-section is repeated periodically in order
to obtain a single-material phononic crystal. The dual-material configuration, Fig. 2.3, is obtained
by modifying both the cross-section of the guide and the material of which it is composed, which
has the effect of impacting more directly on the propagation of longitudinal and torsional waves.

2.3.1 Uniform waveguides
For the Floquet model, the geometry of the uniform unit cell is defined as the series connection

of two identical aluminium sections. In this basic configuration, the dispersion relationships for each
type of wave are analytically computed by the following expressions:

kf = ±

(
−((−DρS − κSGρI)ω2) ±

√
(−DρS − κSGρI)ω2)2 − 4DκSG(−κS2Gρω2 + ρ2SIω4)

2DκSG

) 1
2

, for flexural, (with D = EI the rigidity),

kc =
√

E
ρ
ω, for longitudinal,

kt =
√

E
ρ
ω, for torsional.

(2.11)
The superposition of the results in Fig. 2.2(a) constitutes a primary validation of the numerical
implementation of the Floquet method.

2.3.2 Periodic waveguides
In a second phase, validation is done for two periodic configurations defined in Fig. 2.2(b) and

Fig. 2.3. The reference solutions selected for the comparisons are obtained by a 3D elasticity model
solved by the finite element method applied to a unit cell whose incoming (at x = 0) and outgoing
(at x = ltot) faces are associated with Floquet conditions translating the Eq. 2.5 and Eq. 2.10. These
models are implemented in the COMSOL environment [84].

For the single-material periodic configuration, the results in Fig. 2.2(b), on a periodic aluminium
cell, are in good agreement with the reference results, for the longitudinal (blue), torsional (green) and
bending (red) wave dispersion obtained by the Timoshenko beam model.There are some differences
between the analytical and numerical results that increase with frequency, these differences result from
the limitations of the theoretical models used to produce the dispersion diagrams, the assumption
used has variations with the finite element models as the frequency rises.
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Figure 2.3 – Analysis of the dispersion relation of a periodic two-material cell with ltot = 0.1
m; Real part of the dispersion relation with γ = 0.2, R1 = 8 mm and β = 0.5 calculated both
by the semi-analytical model (coloured points, (•) longidutinal, (•) in flexion and (•) in torsion)
and by the full 3D FEM simulation (open circles ◦). The colour scale of the deformation fields
is chosen arbitrarily in order to clarify the meaning, with red areas corresponding to maximum
deformation and blue areas to minimum deformation.

Figure. 2.3 shows the real part of the dispersion relation for a phononic crystal pipe with the
following geometry: ltot = 0.1 m, γ = 0.2, R1 = 8 mm and β = 0.5. This specific geometry is an
example extract from the later parametric variation, section. 2.4. The dispersion diagram is calcu-
lated by considering the viscoelastic losses for aluminium and nylon via the complex Young’s modulus
E c

i = Ei(1 + ıηi) with ηA = 1e-4 and ηN = 4e-2. Coloured dots (each colour a wave type) represent
the results obtained from the semi-analytical model while gray circles represent the FEM reference
solutions. Results are in very good agreement and so the semi-analytical modeling is well validated.
However, some disagreements appear for flexural waves at high frequencies (dispersion branch just
under 20 kHz) due to the expected limitations of the Timoshenko’s beam model. Anyway, the dis-
persion relation obtained for this geometrical layout exhibit a wide absolute band gap in the range
[3 − 10] kHz.

Moreover, the combined use of these three 1D models is of great interest for the calculation
costs. For example, using a desktop computer with an Intel Xeon processor clocked at 3GHz and 16
GB of RAM, the calculation time for a complete dispersion diagram is less than 2min by the Floquet
method and around 20 min by the finite element method. These low calculation times make it possi-
ble to envisage without prohibitive cost numerous parametric variations as in the Section 2.4 or even
numerical optimisations as in the Section 2.5. These semi-analytical 1D models are therefore well
suited for pre-dimensioning. The 3D finite element elastic model then allows the final performance
frequency template to be corrected and specified on an already optimised case at a low numerical cost.
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2.4 Evolution on the absolute bandgap based on para-
metric variations

The objective of this section is to evaluate the performance of the vibratory filtering
characteristics that can be achieved in the case of a very simple unit cell topology involving two
uniform sections. In Fig. 2.4 the colored areas represented the range of frequencies limited by the
upper and the lower frequency edge of the band gap. Each wave type is represented by its coloured
area (flexural in red, longitudinal in blue, torsional in green) with the center frequency represented by
a continuous red line. The evolution of these band gaps are studied as a function of the variations in
the total length of the cell ltot (Fig. 2.4(1)), the length ratio γ (Fig. 2.4(2)) and the outside diameter
contrast β (Fig. 2.4(3)). In this section, the parameters vary independently of each other.

Figure 2.4 – Evolution of the band gap of the bending (red), longitudinal (blue) and torsional
(green) waves in the cases of a single-material aluminium cell (a) and of a two-material
aluminium/nylon cell (b), as a function of the variations of the total length of the cell ltot
for γ = 0.5 and β = 0.5 (1); the outer radius contrast β for γ = 0.5 and ltot = 0.1m (2); the
length ratio γ for β = 0.5 and ltot = 0.1m (3). All simulations are performed for R1 = 8mm.

2.4.1 Monomaterial waveguides
The first parametric variation (Fig. 2.4(a)) concerns the case of an aluminium single-material

cell for which E = 71 GPa, ρ = 2170 kg/m3 and ν = 0.3. The basic topology around which the
variations are made is such that ltot = 0.1 m, γ = 0.5, R1 = 8 mm and β = 0.5. Regardless of the
type of wave considered, band gaps of attractive frequency width and frequency position exploitable
for the application context appear.
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The following trends emerge from the results and illustrate the sensitivity of the band gaps to
the geometry of the system:

• The total length of the ltot cell controls the frequency position of the band gaps (Fig. 2.4(a.1)):
fc decreases when ltot increases. This result is expected and already observed in many contexts
of use of periodic media. Furthermore, the relative width of the band gaps in relation to the
center frequency changes modestly with ltot .

• The β contrast (Fig. 2.4(a.2)) controls the frequency width of the band gaps. Results indi-
cate that β essentially controls band gaps bandwidth and has a relatively weaker effect on
their central frequencies. Such tendency has already been observed in the case of monolitic
corrugated beams [84]. Also note that in the particular case of the uniform guide (β = 1), the
closure of the band gaps is well found.

• The length ratio γ (Fig. 2.4(a.3)) acts in a more complex way on the characteristics of the
features of the band gaps: variations of the same order of magnitude appear for both center
frequency and bandwidth.

Independently of these trends it is difficult to obtain a configuration where the band gaps of
each type of wave are combined in order to obtain an "absolute band gap". Only extreme topologies
that are inapplicable in practice can lead to total bandgaps in very high frequencies (Fig. 2.4(a.1)
for ltot < 0.07 and Fig. 2.4(a.2) for β < 1.6). The frequency differences between the bands can be
interpreted by the differences in the order of magnitude of the velocities of the 3 types of waves in
such a single-material guide.

2.4.2 Bimaterial waveguides
A two-material aluminium/nylon cell with the same geometry as in the single-material case is

now considered (Fig. 2.4(b)). The introduction of Nylon is intended to reduce the equivalent celerity
of compressional and torsional waves, thereby lowering their typical Bragg band frequencies to the
same range as for bending waves. The nylon characteristics used are E = 4 GPa, ρ = 1240 kg/m3

and ν = 0.3.

The results of Fig. 2.4(b) show that the introduction of nylon makes it possible to obtain
absolute band gaps for topologies that are acceptable in practice. This triple vibratory filtering effect
is obtained in the range [3.8− 8] kHz for ltot = 0.075 m in Fig. 2.4(b.1) or [4− 11] kHz for γ = 0.2
in Fig. 2.4(b.3), for example. In this case the second flexural band gap and the first longitudinal
and torsional band gaps are involved. These full filtering effects involve the second band, the first
being positioned too low in frequency. Subsequently, the aim will be to optimise the alignment of
this second band with the first compression and torsion bands.

The parametric variations shown in Fig. 2.4(b.2) reveal several interesting results. First, there
are band gap closings, as for torsional waves for β = 1.75, for example. This closing effect is recently
used as the initial point of the topological edge states [171].

The previous variations show that the evolution of the band gaps does not follow simple rules
from which the dimensioning of a filter is possible in order to reach a targeted filtering template.
On the contrary, it appears that the topological parameters control the characteristics of the total
bandgap in a combined way.
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Analogously, Fig. 2.4(b.3) shows the evolution of the band gaps as γ changes. Both the center
frequency and width display non monotonous variations of the same range. In particular, some optimal
band widths appear around γ = 0.2. Finally γ has a more complex effect on the band gap features
that do not follow any clearly identifiable law.

However, Fig. 2.6 shows that it is difficult to tune by hand the absolute band gap to a target
band. In order to achieve this goal, a numerical optimization procedure is proposed below.

2.5 Numerical optimization of the absolute band gap
based on Nelder-Mead algorithm

2.5.1 Nelder-mead algorithm
A Nelder-Mead local minimisation algorithm [172] is used in this work to provide the

geometrical parameters of a phononic crystal pipe with an absolute band gap defined from both
a target center frequency f0 and a target band width ∆f0. The set of parameters subject to the
optimisation is defined as X = [ltot , γ,R1, β]. The cost function F is defined as a weighted sum of
two convergence indicators and reads

F = αfc If c + α∆f I∆f . (2.12)

The weighting coefficients αfc and α∆f are adjustable such that αfc +α∆f = 1 and the convergence
indicators are defined by

I∆f =
∣∣∣∣1 − ∆f − ∆f0

∆f + ∆f0

∣∣∣∣ , (2.13)

If c =
∣∣∣∣1 − fc − f0

fc + f0

∣∣∣∣ , (2.14)

with ∆f =min
(

f (i)
max
)

-max
(

f (i)
min

)
the absolute band width and fc = 1

2

[
max

(
f (i)
min

)
+ min

(
f (i)
max
)]

the center frequency. f (i)
max ,min represents the upper (index max) and lower (index min) edges of the

band gap for the i-th wave where the subindex i represents each type of wave type i = F , L,T for
flexural, longitudinal and torsional waves respectively. Ifc and I∆f evaluate the deviation between the
band gap features fc and ∆f and the target features f0 and ∆f0, respectively. These definitions are
chosen so that the cost function is unitary (0 < F < 1).

Numerical simulations, the results of which are shown in Fig. 2.4, based on the wave models
described Section 2.2 show that it is possible to obtain an absolute band gap, a frequency band
where any type of wave is damped. However, it is hard to control the band gap features (bandwidth
and center frequency) only from manual variations of the unit cell parameters. Hence, the three wave
models are combined in an optimization procedure in order to find the set of geometrical parameters
that lead to an absolute band whose features reach target bandwidth ∆f0 and a center frequency f0.

To do that, we use the Nelder-Mead local minimization algorithm [172] as available in the
MatLab function fminsearch.m and whose iterative process is represented in Fig. 2.5. Following the
initialization step, for each iteration n, up to 5 methods are successively applied to find a new set
of parameters Xn+1 that leads to optimize a cost function F . Note that 0 < F < 1 and that the
optimization aims to reach F = 1.
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Figure 2.5 – Schematic representation of the Nelder-Mead algorithm [172].

Moreover, to ensure convergence towards slender pipe-like, non-aberrant and manufacturable
geometries, the values of the geometrical parameters are restricted to the following ranges:

• l1>3R1 and l2>3R2 to ensure a slender pipe geometry,
• 0<γ<1 to obtain a non-aberrant geometry,
• Rint=2 mm is imposed for all simulations,
• 4mm<R1<λalu/12 (with λalu the flexural wavelength in the aluminium for f = 2 kHz), which

corresponds to sufficiently thick pipe walls to be manufacturable, but sufficiently small cross-
section so that Timoshenko assumptions remain valid (an error of 5% at 2kHz with FEM
results as reference is for example tolerated),

• 4mm<R2<λnyl/12 (with λnyl the bending wavelength in nylon for f = 2 kHz), for the same
reasons as R1,

• β<0.8 and β>1.2 to ensure a minimum diameter contrast which facilitates the assembly of
the pipe sections.
For all following cases, the set of parameters is initialized with [ltot , γ,R1, β] = [60 mm, 0.5, 8

mm, 0.5], in agreement with results obtained in Fig. 2.6 where non optimized absolute band gap is ob-
tained. The optimized geometry is assumed to be converged when when both (Fn−1−Fn)/Fn < 1%
and (Xn−1 − Xn)/Xn < 1% stop conditions are simultaneously reached.

2.5.2 Analysis of performance optimisation for various weightings of
F

Figure 2.6 reports some typical results we obtained when studying the impact of the weighting
coefficients αfc and α∆f on the convergence of F . In Fig. 2.6 the absolute target band is arbitrary
chosen according to the results obtained in Fig. 2.4, the frequency band [3 − 7] kHz is selected to
be close to the configurations used for the parametric variation . The results in Fig. 2.6 show that
convergence is easily ensured and several cell geometrical settings can be found for a same target
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band, depending on the weights coefficients. Given the restrictions to the set of parameter X, these
geometries remain relatively similar and so the variation of the parameters is about 10% around their
average value in the 3 reported cases.

Tors.

Longi.

F(a.1) (b.1)

(a.2) (c.2)(b.2)

(c.1)

Figure 2.6 – Convergence of F , If c and I∆f with the number of iterations (upper part),
and associated optimized dispersion diagrams (lower part) when considering 3 couples of
weighting coefficients: (a) [αfc , α∆f ]=[1/2, 1/2], leading to X=[97.1 mm, 0.42, 7.9 mm, 0.58];
(b) [αfc , α∆f ]=[5/6, 1/6], leading to X=[79.9 mm, 0.5, 8.7 mm, 0.48]; (c) [αfc , α∆f ]=[1/6, 5/6],
leading to X=[81.4 mm, 0.47, 7.2 mm, 0.58]. The target absolute band gap is [3; 7] kHz, that is
f0 = 5 kHz and ∆f0 = 4 kHz. See Tab. 2.2 for detailed results.

A more detailed analysis of the results in Fig. 2.6 leads to the following interpretations:

• When the weighting is the same for I∆f and Ifc (Fig. 2.6(a)), the fastest feature to converge
is the band width. The center frequency appears to converge more slowly. Many other opti-
mizations not presented here confirm this general trend.

• When Ifc is over-weighted (αfc =5α∆f , Fig. 2.6(b)) in order to compensate for the slower con-
vergence of the center frequency, the overall convergence is significantly accelerated: about
40% fewer iterations are required to reach the target without degrading I∆f (see detailed val-
ues in Tab. 2.2). This confirms the ease of obtaining the desired band width without error.

34



• When I∆f is over-weighted (α∆f =5ααfc , Fig. 2.6(c), the convergence is greatly accelerated
(70% less iterations) due to the already fast convergence of I∆f . But by the same, the con-
vergence of Ifc being more slowly and under-weighted, the resulting absolute band gap is a
well-dimensioned bandwidth but with an inaccurate center frequency.

In order to extend the analysis, Tab. 2.2 reports the results from a set of optimization cases.
Mainly, the high values obtained for Ifc and I∆f whatever the target illustrate the ability of the
procedure to well find out the design of a phononic crystal pipe with desired filtering template.
Generally, the results well confirm the trends figured out in Fig. 2.6 but some results highlight more
difficult cases where either the number of iterations required is increased or the accuracy of the
optimized performances with respect to the target is reduced. These cases typically correspond to
wide band gaps centered at low frequency.

weights target [kHz] result [kHz] convergence
αf c α∆f f0 ∆f0 fc ∆f Nb it. F If c I∆f

1/2 1/2

5 4 5.02 4 97 99.9% 99.8% 100%
5 2 5 2 80 100% 100% 100%
3 4 3.84 4 120 93.86% 87.72% 100%
3 2 3 2 121 100% 100% 100%

5/6 1/6

5 4 4.96 4.04 59 99.58% 99.6% 99.5%
5 2 4.92 2.08 42 99% 99.19% 98.04%
3 4 3.02 3.28 110 98.07% 99.67% 90.11%
3 2 3.01 2.02 77 99.78% 99.83% 99.5%

1/6 5/6

5 4 6.11 3.98 28 98.13% 90.01% 99.75%
5 2 4.72 1.96 36 98.68% 97.12% 98.99%
3 4 6.08 4 73 94.35% 66.08% 100%

‘ 3 2 4720 2 79 96.29% 77.72% 100%

Table 2.2 – Detailed values obtained for the converged cost function F and its deviation
indicators I∆f and Ifc for a set of optimization cases defined by 4 absolute band targets, each
associated with three weighting configurations.

2.6 Study of an experimental demonstrator
The objective of this section is to experimentally verify the absolute filtering effects. This

verification is carried out on a straight-line demonstrator of finite length consisting of a periodic
bi-material as defined above.

2.6.1 Design of the experimental demonstrator
The optimisation procedure is applied to the solution of the semi-analytical eigenvalue prob-

lems described above with a target absolute band gap 3 kHz to 6 kHz, which is a typical range of
interest for injection applications in the context of automotive industry [17]. A detailed study of the
optimisation is given in section. 2.5, the choice of weighting coefficients which allow to obtain a fast
convergence and a precise result of the cost function are [αfc , α∆f ] = [5/6, 1/6] see at Fig. 2.6(b),
this case leads to a the following topology [ltot , γ,R1, β] = [79.9 mm, 0.5, 8.7 mm, 0.48].
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For reasons of simplicity of fabrication, the radius finally retained are R1 = 8 mm and R2 = 4
mm. Preliminary tests, in order to equalise the first numerical and experimental resonance frequen-
cies, also lead to correcting the values of Young’s moduli and loss factors. The values obtained are
Ealu = 75 GPa, Enyl = 2.6 GPa and are considered frequency independent later. From these param-
eters an optimisation procedure is carried out under the same weighting conditions but only on the
parameter space X = [ltot ; γ]. The optimal geometry of the 1D phononic crystal pipe obtained under
these conditions and without considering material losses is X = [87 mm, 0.44, 7.5 mm, 0.5].

A sectional view of the designed unit cell is shown in Fig. 2.7(a). The aluminium/nylon sec-
tions are assembled by forced interlocking, which avoids the use of glue and therefore minimises the
introduction of unwanted losses.

A 6-cell demonstrator is simulated by the finite element method applied to a 3D elasticity
model of the structure. The mesh is represented in Fig. 2.7(b). Free/free boundary conditions are
applied to all external surfaces. At the lower end, 3 cases of harmonic point loads are studied: loading
in flexion (Fz, in red) or in pure compression (Fx, in blue), loading off-center with respect to the axis
of revolution (Ox̃) and in an oblique direction according to the normal to the cut edge, which allows
the excitation of the 3 types of wave of interest (Ffull, in grey). At the other end of the system, the
acceleration response is measured at 2 points symmetrically positioned with respect to the axis of
revolution.

x

y

z

Ffull

Fx

Fz

a1

a2

49 mm

1
5
 m

m

8
 m

m

4
 m

m

10 mm 10 mm

39 mm

59 mm

Aluminium Nylon

(b)

(a) (c) (d)

(e)

(f)

Figure 2.7 – Pictures of the fabricated phononic crystal tube. The nylon and aluminum
sections are force-fitted together, holding the assembly together without the use of glue and
thus minimizing unwanted losses. Sizing of a total filter demonstrator: (a) view of the view of
the longitudinal cross section of the cell showing the interlocking assembly of the sections; (b)
6 cell digital demonstrator FEM mesh with representation of the 3 load cases and measurement
points. (c) Experimental setup; (d) Detail of the 2 face-to-face three-axis accelerometers; (e)
view of the 2 aluminium/nylon unit cells of the demonstrator; (f) view of the shaker excitation
implemented in the oblique position such that all wave types are excited.

2.6.2 Experimental set-up
From the optimised geometry in the conservative case, the dispersion relation of the phononic

crystal pipe shown in Fig. 2.8(a) is calculated in the dissipative case, by considering the viscoelastic
losses for both aluminium and nylon via the complex Young modulus E c

i = Ei(1+ıηi) with ηA = 1e-4
and ηN = 4e-2. Each wave type displays band gaps where the real part of the wavenumber is low

36



while imaginary part is high (see coloured patches in Fig. 2.8(b)). In the target range of frequen-
cies, band gaps are well overlapping, the obtained absolute band gap is [3.2-5.7] kHz (grey patch in
Fig. 2.8(a)), which is slightly narrower than the target, due to the losses.

In the experimental set-up the demonstrator is suspended vertically from a rigid gallows
mounted on an optical breadboard. A shaker (LDS V201) excites the demonstrator at its bottom
end with a harmonic point force F = Fx .x + Fy .y + Fz .z (see axis definition in Fig. 2.1(a-b)) with a
step-by-step sine in the range [0-10] kHz with a frequency step of 5 Hz.

The acceleration response a = ax .x +ay .y +az .z is measured at the upper end by 2 three-axial
accelerometers (PCB 356A01) that face each other (Fig. 2.7(d)). This experimental situation is also
numerically simulated from a full wave 3D FEM model in order to compare transfer functions. Only
the oblique case is pictured on the enlarged view of the figure Fig. 2.7(f). The unit is controlled by
an LMS by Siemens SCADAS Mobile SPM 50 acquisition system. Each measurement is averaged
over 3 acquisitions.

2.6.3 Results
The numerical and experimental results obtained on the demonstrator are gathered in Fig. 2.8.

The dispersion diagrams (Fig. 2.8(a, b)) obtained with the Floquet-Bloch Models (colour points) and
finite element (grey circles) methods are compared with the transfer functions simulated and mea-
sured on the demonstrator (Fig. 2.8(c, d, e)). The analysis is based on 3 types of transfer functions:
∥a/Ffull∥ in the case of the oblique excitation of the 3 movements (Fig. 2.8(e)), ∥az/Fz∥ in the
case of pure bending excitation (Fig. 2.8(c)), ∥ax/Fx∥ in the case of pure compression excitation
(Fig. 2.8(d)). The accelerations a, az and ax are obtained by averaging the signals a1 and a2 from
the 2 accelerometers.

Figure 2.8 – Numerical analysis and experimental characterisation of the optimal phononic
crystal pipe: (a) real part and (b) imaginary part of the optimised complex dispersion relation
obtained by the Floquet-Bloch method and considering the viscoelastic losses (see main text).
(•) longidutinal, (•) flexural and (•) torsional; measured (light line) and simulated (dark line)
acceleration transfer functions in the (c) flexural, (d) longitudinal, (e) full loading cases; 3D
views of the simulated total displacement in the full loading case at (f) 900 Hz where all wave
types propagate, (g) 2500 Hz where only flexural band gap is opened and (h) 4500 Hz whithin
the absolute band gap.

Figure 2.8(c) represents both numerical and experimental transfer functions |az/F | in the flex-
ural loading case. The measurements corroborate very well with the simulations especially in the low
frequency passband and at the lower frequencies of the band gaps symbolised by coloured areas. Note

37



that in this case of pure flexural loading. Unwanted bend/longitudinal couplings in the experimental
set-up disturb the numerically predicted abrupt attenuation at the opening of the band gap at 2 kHz.
It should also be noted that a filtering effect due to the first Bragg bandgap in the range [0.45−0.6]
kHz is identifiable both numerically and experimentally. The transfer functions show an attenuation
of about 70 dB in the frequency range corresponding to the predicted flexural band gap.

The same trend is exhibited in Fig. 2.8(d) which plots the transfer functions |ax/F | in the
longitudinal loading case. The full loading case is shown in Fig. 2.8(e) with the highlight of a strong
attenuation in the transfer function |a/F | in the range corresponding to the predicted absolute band
gap. It is also interesting to note that finite size effects can be seen at low frequencies with peaks of
the transfer function corresponding to the Fabry-Pérot resonances of the system.

Because of the frequency dependence of the Young’s moduli and of the loss factors (which
are assumed here to be constant). Some deviation in frequency and amplitude may occur at
higher frequencies. The typical values of these deviations vary with movement, indicating a possible
anisotropy of the material properties.

To complete the analysis, 3D views of the simulated total displacement field (operational de-
flection shapes) are shown in Fig. 2.8(f-h). At 900 Hz where all wave types propagate (Fig. 2.8(f)),
the superposition of all motions results in a complex total displacement field. At 2.5 kHz (Fig. 2.8(g))
the field mainly exhibits the longitudinal component, the flexural component being strongly attenu-
ated due to band gap effect. At 4.5 kHz (Fig. 2.8(h)) the total field vanishes close to the excitation
due to the total filtering effect associated to the absolute band gap.

2.7 Conclusions
We have applied the concept of absolute band gap to a two-material phononic crystal pipe.

Three 1D analytical Floquet-Bloch models giving the dispersion of both longitudinal, flexural and
torsional waves considering losses have been combined in an optimisation procedure to reach a unit
cell design that exhibit absolute band gaps with target features. The hand-ability and reliability of
such design methodology has been shown through a set of cases. On the top of that, the study of
a 6-cells demonstrator have shown both numerically and experimentally some dips of the transfer
functions corresponding to the absolute band gap analytically predicted, bringing a second main
insight. These results have shown how absolute band gaps in the high frequency domain can be
applied to mitigate vibrations that may result in structure borne sound in some industrial systems.
The design and optimisation of such phononic crystal pipes could be extended considering for example
an enclosed pressurized liquid, hence considering couplings between acoustic and elastic waves.
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3.1 Introduction
In the previous chapter, the concept of absolute band gap was explored by considering Bragg

diffraction in pipes with periodic material and geometrical properties. The results showed attractive
performances for the design of multi-wave filters. However, modifying the pipe properties as it was
done can be inappropriate in many application falling within the industrial context of the thesis for
other engineering considerations as thermal or chemical behavior, mechanical strength, long-term
aging, manufacturing process, ...

The aim of the chapter is to evaluate how multi-wave filtering but also absorbing features
can be obtained by adopting an "additive" strategy that consists of inserting resonators on a host
homogeneous elastic waveguide without changing its material and geometrical properties. In prac-
tice, the host waveguide under study in this chapter is a cylindrical pipe made in steel on which a
set of annular resonators are mounted. The key point is to correctly tune the resonators to selected
frequencies and according to the different wave types of interest. We focus on a frequency band
around 1kHz, inspired by industrial issues.

This chapter is organised as follows. First, the dynamic behavior of a resonator is presented
in section 3.2. In section 3.3 the reflection and transmission coefficients are calculated. Then several
waveguide configurations are studied. In a first step as a vibration filter with two gradually tuned
resonator configurations in section 3.4, in a second step as a vibration absorber with a gradually
tuned flexural absorber and an absolute absorber configuration in section 3.5. The experimental set-
up used to validate the model for the reflection problem is then presented in section 3.6 as well as
the experimental methodology and results.

3.2 Dynamic behaviour of locally resonant structures
The geometry adopted in this chapter is based on the same application context as before, i.e.

a hollow cylindrical pipe. The local resonator chosen is a steel annular ring mounted on a rubber
ring. The objective of this section is to define the parameters associated with the resonators, their
resonance frequencies as well as the movements that can be associated with them.

3.2.1 Design of a local resonator on a beam
Figure 3.1 shows an example of a ring resonator, (a), and its associated parameters, as well as

the different motions of the mass-spring system, (b.1) to (b.4). In Fig. 3.1(a) the annular mass-spring
system is characterized by the following parameters: a section of a steel pipe of mass Ms , length
ls = 0.02 m, and thickness rext − rint = 1 mm; a rubber ring of length, l , and thickness, rk − rext .
A steel ring of mass, M, and thickness rm − rk completes the local resonator.

Figures 3.1(b) shows the different motions associated with the resonator modes. The mode
shown in Fig. 3.1(b.1) shows a translational motion of the mass along the y direction (y -translation).
In the case of a symmetric cylindrical structure, this motion also exists in z-translation. The mode
shown in Fig. 3.1(b.2) shows x -translation motion of the mass. The mode shown in Fig. 3.1(b.3)
shows a rotational motion of the mass around the z-axis (z-rotation). In the case of a symmetric
cylindrical structure, this motion also exists in y -rotation. The mode shown in Fig. 3.1(b.4) shows a
motion of the mass in x -rotation.
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Steel support pipes

Steel mass ring

Rubber sti�ness ring

a)

m

Figure 3.1 – 3D view of the considered annular resonators mounted on a host pipe (a) ; schematic
representation of the motion associated to the 4 resonances admitted by such resonator (b): y -
translation (b.1), x -translation (b.2), z-rotation (rotation around z) (b.3), x -rotation (b.4)

These movements can be coupled with the waves propagating in the guide: y -translation and
z-rotation with flexural waves, x -translation with longitudinal waves and x -rotation with torsional
waves. At the resonance frequencies of these resonators, it is possible to obtain filtering or absorbing
effects.
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3.2.2 Analytical model of the resonant frequency

The resonance frequencies are determined by ωr =
√

k(Y ,X)
M for translational motion and by

ωr =
√

k(θx ,θz )
J for rotational motion, with J the rotational inertia. The mass of the ring, M, can be

easily estimated or measured. The stiffness, k, can be estimated with Eqs. 3.1, from the literature
[145, 173]:

k(Y ) = π(5+3.29H2)Gl
loge(rk/rext) ,

k(X) = 2πGl
loge(rk/rext) ,

k(θx ) = 4πGlr2
ext r2

k
r2
k −r2

ext
,

(3.1)

with H = l
(rext+rk)loge(rext/rk) .

The geometry of the resonators can be adapted to choose the target resonance frequency.
The mass of the resonator is chosen according to its length to obtain a frequency of 1 kHz,
M(ωr , l) = ρmπ(r2

m − r2
k )l = kX ,Y (l)/ω2

r . The configurations are shown in Fig. 3.2 according
to the targeted eigenmode: red (a) for y -translation, blue (b) for x -translation and green (d) for
x -rotation. The low computational cost of analytical methods allows the implementation of early de-
sign tools. A large number of configurations can be rapidly tested to carry out an optimization process.

3.2.3 Numerical parametric variation of ring resonators and associ-
ated resonance frequencies

To check if the geometries identified analytically with Eqs. 3.1 are correct, a numerical
simulation is set up. Its considers a steel ring of variable mass M and a rubber ring of variable
lenght l . The inner boundary of the rubber ring is clamped. In Fig. 3.2, sets of geometries are
explored by varying the ratios, M/Ms and l/ls . Mass M varies from 0.05 × Ms to 2 × Ms . Lenght
l varies from 0.05 × ls to 0.5 × ls . Two types of rubber are explored, a 2 mm thick rubber with
Young’s modulus 0.77E6 Pa from the literature [145] (Fig. 3.2(a)), and a 1 mm thick rubber ring
with Young’s modulus 2.866E6 Pa from Continental Automotive datasheets (Fig. 3.2(b, c, d)). The
colormap is between 500 Hz and 1 kHz.

Figure 3.2(a) shows the evolution of the eigen freqency of the y -translation mode whose motion
is illustrated by the 3D view. Geometrical configurations leading to an eigen frequency of 1 kHz are
depicted by a red square while the red line goes for the results obtained by the analytical model. By
the same, Fig. 3.2(b),(c) and (d) correspond to x -translation, z-rotation and x -rotation resonances,
respectively. Note that no analytical model is presented for z-rotation motion. The results show that
the analytical estimation of eigen frequencies is only suitable for x -translation and x -rotation modes.
In the following, only numerical modeling is considered to ensure accurate predictions.
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Figure 3.2 – Map representation of the evolution of the eigen frequencies of the ring resonator
for varying ring length l and mass M. Resonant rings have 4 solid body movements that can be
associated to a type of wave. The curves represent the operating points for a resonator tuned to
1 kHz, respectively □ for y -translation or z-translation, ⋆ for x -translation, ◦ for z-rotation or
y -rotation, and ◁ for x -rotation. The straight line are for the analytical calculation.

3.3 Reflection and transmission coefficients of locally
resonant structures

The objective of this section is to calculate the reflection and transmission coefficients from
simulated vibratory fields. Two resonator configurations are studied. A filter configuration, Fig. 3.3,
with a transmission and reflection calculation, and an absorber configuration, Fig. 3.4 with a purely
reflection calculation.

Figure 3.3 shows the filter configuration, the objective of the filter is to minimize the vibration
transmission. The configuration consists of a steel tube on which is mounted a ring resonator. A
force is applied to one end of the waveguide according to the chosen movement, flexural to study the
impact of the resonator on the flexural waves, longitudinal to study the impact on the transmission
of the longitudinal wave. The displacement field is identified on the upstream (x1, x2, x3, x4) and
downstream (x5, x6, x7, x8) points. The PMLs at the ends of the guide are used in order to avoid the
spureous reflections the end of the waveguide.
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Figure 3.3 – Schematic diagram for the numerical calculation of the R and T coefficients in the
case of configuration of the guide as a flexural vibration filter.

Figure 3.4 shows absorption configuration, the objective of a vibration absorber is to maximize
the absorption of the reflected wave. The configuration consists of a steel pipe with a ring resonator
mounted at its end. A force is applied to one end of the waveguide according to the chosen motion.
Flexural to study the impact of the resonator on the flexural waves, longitudinal to study the impact
on the transmission of the longitudinal wave. The displacement field is identified on the upstream
points (x1, x2, x3, x4). The end of the waveguide is either clamped (Fig. 3.4(a)) or free (Fig. 3.4(b)).
The resonator is placed near the end of the waveguide.

b)

Clamp

PML

F
a)

Figure 3.4 – Schematic diagram for the numerical calculation of the R-factor in the case of a
configuration of the guide as an absorber with recessed termination (a), with free termination
(b).

Considering a host cylinder on which aring resonator is inserted, the flexural displacement field
vi(xi , ω) that is simulated can be analysed following a wave base decomposition such as:

vi(xi , ω) = Bw
1 (ω)eiki xi + Bw

2 (ω)e−ki xi + Bw
3 (ω)e−iki xi + Bw

4 (ω)eki xi , (3.2)
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with ki = (ρS
EI ω

2) 1
4 the wavenumber and Bw

+ and Bw
− the unknown amplitudes of the waves propagat-

ing to x+ and x− respectively. The superindex w can be u or d for waves upstream or downstream
of the resonator, respectively [31].

Considering 8 point of interest as shown in Fig. 3.3 where the field can be picked up, the set
of unknown wave amplitudes satifies the following linear system:

v(x1, ω)
v(x2, ω)

...
v(x7, ω)
v(x8, ω)

 =


eiki x1 e−ki x1 e−iki x1 eki x1

eiki x2 e−ki x2 e−iki x2 eki x2

...
...

...
...

eiki x7 e−ki x7 e−iki x7 eki x7

eiki x8 e−ki x8 e−iki x8 eki x8




Bu

1 (ω)
Bu

2 (ω)
...

Bd
3 (ω)

Bd
4 (ω)

 . (3.3)

In the far field, kxi >> 1, the ratio between the incident and reflected wave gives the reflection
coefficient R and the ratio between the incident wave upstream and downstream of the resonator
gives the transmission coefficient T . After inversion, the reflection and transmission coefficients for
an x+ incoming propagative wave are respectively:

R+ = Bu
2 (ω)

Bu
1 (ω) ,

T+ = Bd
1 (ω)

Bu
1 (ω) .

(3.4)

These reflection and transmission coefficients depend on the characteristics of the materials
used for both the waveguide and the resonators, in particular the complex Young’s modulus of the
rubber. When we introduce losses with a complex Young’s modulus, E ′ = E (1+iη), the incident wave
cannot be perfectly reflected anymore, it is partially absorbed by the resonator. This absorption, intro-
duced by the complex Young’s modulus, is quantified by an absorption coefficient α = 1−|R|2−|T |2 .

3.3.1 Study of the variation of the parameters of a local resonator
In this section, the resonators are numerically characterized and variations of several parame-

ters are performed to characterize the behaviour of the resonators. A filter configuration (Fig. 3.5)
and an absorber configuration (Fig. 3.6) are implemented.

A schematic of the vibrational filter is shown, Fig. 3.5(a), along with the transmission and
reflection coefficients for a resonator tuned to 1 kHz (b). A schematic of the vibration absorber is
shown, Fig. 3.6(a), as well as the reflection and absorption coefficients for a resonator tuned to 1 kHz
(b). The following parametric variations are studied: resonator mass with the resonator geometries
identified in section 3.2 (Fig. 3.5(c)), damping introduced by the rubber (Fig. 3.5(d)), and distance
of the resonator from the end of the waveguide (Fig. 3.6(c)).

In the configuration of a vibration filter, this absorption will have a negative impact on the
filtering effects by influencing the transmission coefficient. But in the case of a vibration absorber,
we will try to maximize the absorption because it will allow to obtain a low reflection coefficient,
which means that a large part of the incident wave will be absorbed.

Waveguide in filter configuration

In this section, the parametric variations are applied on the resonator which allows to obtain
a vibratory filter effect. According to the chosen motion, flexural in red, or longitudinal, in blue, the
waveguide is excited with either a flexural or longitudinal force, (see Fig. 3.5(a)).
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In Fig. 3.5(b), the red curve is obtained for a resonator tuned at 1kHz for a flexural motion.
The blue curve is obtained for a resonator tuned at 1kHz for a longitudinal motion. The reflection
and transmission coefficients are calculated according to the method described in section. 3.3. The
chosen resonator configuration leads to a quasi-zero transmission, |T | → 0 and a quasi-perfect re-
flection, |R| → 1. ∆f represents the frequency range where the transmission is less than half of its
minimum value, and for reflection half of its maximum value.

Figure 3.5(c) shows the evolution of ∆f when both the length and mass (external radius)
of the ring of the resonator are increased, keeping the resonance at 1 kHz. The complete set of
configurations is detailed in Tab. 3.1. We can see that the heavier the resonator, the wider is the
transmission drop.

Resonator no l/ls m/ms Resonator no l/ls m/ms

Flexural

1 0.14 0.22

Longitudinal

1 0.09 0.35
2 0.20 0.35 2 0.14 0.58
3 0.26 0.52 3 0.18 0.75
4 0.29 0.65 4 0.22 0.92
5 0.33 0.77 5 0.26 1.06
6 0.37 0.92 6 0.29 1.23
7 0.41 1.06 7 0.33 1.38
8 0.44 1.20 8 0.37 1.54
9 0.48 1.35 9 0.41 1.69
10 0.50 1.43 10 0.44 1.86

Table 3.1 – Flexural and longitudinal ring resonators parameters for a 1kHz tuning. Each
configuration can be link with Fig. 3.2

Figure 3.5(d)shows the influence of adding damping in the system. Damping is introduced as
a loss factor η into the Young’s modulus of the rubber E ′

rubber = Erubber (1 + iη). The minimum
value of the transmission coefficient, maximum of the reflection coefficient and maximum of the
absorption coefficient α is plotted for each value of η adopted.

The addition of a damping factor has a direct influence on the transmission and reflection
factors. When it increases, the transmission factor goes from zero to close to 1, and from perfect
reflection to almost zero. If we consider the absorption coefficient, it evolves differently depending
on the type of rubber used. We note that there is a value η for which the absorption α is maximum,
α = 0.5, which is obtained when the two values |R| and |T | are equal |R| = |T | = 0.5 [54].

In the case of a vibration filter, we want to obtain an effect where the transmission of vibration
will be zero, i.e. |T | = 0. In this case, ηfilter = 0 is a solution to obtain a perfect filtering effect.
This value is used to design resonant vibration filters. In the case of a vibration absorber, we seek to
obtain a waveguide where the absorption will be maximum for the targeted frequency range. In this
case, ηlongi = 2% and ηflex = 10% allow to obtain an absorption effect. These values are used to
design vibration absorbers.
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Figure 3.5 – Illustration of the principle of functioning of a vibration filter made of a resonator,
(a). Example of a filter effect with any resonator tuned for 1 kHz, with a structural damping
value in the rubber η = 0, (b). Evolution of the flexural (◦) and longitudinal (◦) values of ∆f
for the configurations described in Tab. 3.1, (c). Evolution of the limit value of a vibration filter
according to the evolution of the structural damping factor η (d).

Waveguide in absorption configuration

As done in previous sections, here parametric variations are applied on the resonator which
allows to obtain a vibration absorption effect. Depending on the chosen motion, flexural in red, or
longitudinal in blue, the waveguide is excited by a flexural or longitudinal force (see Fig. 3.6(a)).

In Fig. 3.6(b), the curve is obtained for 10th resonator tuned at 1kHz from Tab. 3.1 in flexural
motion. The reflection and absorption coefficients are calculated according to the method described
in section. 3.3. The chosen resonator configuration allows to obtain a quasi-zero reflection, |R| → 0
and a quasi-perfect absorption, |α| → 1. The curves in Fig. 3.6(b) are obtained for a maximum
introduced damping of η = 10% for the rubber used for the flexural resonator, which explains why
we do not obtain an absorption value, α = 1, for longitudinal wave.

In Fig. 3.6(c) the distance Il between the resonator and the free end of the waveguide is
gradually increased. The minimum value of the reflection coefficient and the maximum value of
the absorption coefficient are plotted. The distance on the x -axis is expressed as a function of the
flexural wavelength for the target value of 1 kHz, λflex (1 kHz) = csteel

f = 0.35 m. The position of
the resonator has a strong influence on the maximum absorption allowed by the absorber. When the
resonator is located on a node of the deformation field, it interacts weakly with the host structure.
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This results in a lower absorption. When it is located on an anti-node, it interacts more with the host
structure, resulting in near perfect absorption. We note that the absorption of longitudinal modes is
not affected by the range of values taken by Il .

This influence of the spacing between the resonator and the waveguide termination deserves
to be further developed through numerical and analytical models. In our case we will just consider
carefully the position that each resonator will take, see Fig. 3.6(c).

Flex

Longi

PML

F

Figure 3.6 – Example of absorption effect with a resonator tuned for 1 kHz in flexural, with
a structural damping value in the rubber η = 10%, (b). Evolution of the threshold value of a
vibration absorber as a function of the distance Il between the resonator and the free end of the
waveguide. (c).

3.4 Examples of vibration filter configurations
In this section, examples of resonators in the vibration filter configuration are studied. The

objective is to achieve a stop band for one or more types of waves. The objective is to minimize
the vibration transmission to obtain a filter effect, for flexural waves in a first step, and for flexural
waves and longitudinal waves simultaneously in the same range of frequencies in a second step. The
filters are designed to have a broadband frequency effect. The use of a series of resonators with close
resonance frequencies allows to enlarge the stop band [42].

3.4.1 Parameters of ring resonators
The resonators are chosen from the numerical calculation, and are gathered in Tab. 3.2. They

are selected close in frequency so that the attenuation peaks overlap over part of the chosen frequency
range. Ideally, an optimization process can be used to obtain a perfect filter for a wide frequency
range using a coupled resonator configuration. However, the cost of numerical calculation does not
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allow us to consider it. In our case, we rely on the previous curves and estimate that a 50 Hz gap
between the resonance frequencies of the flexural resonators (25Hz for the longitudinal ones) allows
us to obtain an overlap of the resonancesand to approach a wide frequency band filter configuration.

Flexural resonator Frequency [Hz] l/ls m/ms
ω4 850 0.5 2
ω3 900 0.5 1.7917
ω2 950 0.5 1.6042
ω1 1000 0.5 1.4375

Longitudinal resonator Frequency [Hz] l/ls m/ms
ω4 875 0.44375 1.9583
ω3 900 0.48125 2
ω2 925 0.5 1.9792
ω1 950 0.5 1.4375

Table 3.2 – Flexural and longitudinal resonator parameters for graded vibration filters

3.4.2 Design of a graded flexural filter

A first set of resonators tuned for flexural is assembled on a waveguide, with the objective of
calculating the reflection and transmission coefficients of the set of resonators.

In Fig. 3.7(a) the waveguide is excited in flexural at one end. The far field scattering matrix

S =
(

T R+

R− T

)
is obtained from two numerical simulations and allows to evaluate the transmission

coefficient |T | (in −−), the reflection coefficients of the forward |R+| (in −−) and backward |R−|
(in . . .) waves. The resonators in the order [ω1, ω2, ω3, ω4] show the reflection coefficient |R+|. The
resonators in the order [ω4, ω3, ω2, ω1] give the reflection coefficient |R−|. Notice that in the farfield
the problem corresponds to a 1D reciprocal and non-symmetric scattering problem.

Despite the non-optimized coupling between the resonators, the addition of resonators in series
provides a broadband filtering effect around a target frequency (Fig. 3.7(b)). While a frequency band
ranging from 850 Hz to 1000 Hz is expected, the observed filtered frequency band ranges from 850
Hz to 1200 Hz. The interaction between the host structure and the resonators, but also between
the resonators themselves, has the effect of shifting the resonance frequency of the resonators. This
coupling between the components of the vibratory filter leads to a wide frequency band where a
vibratory filter effect is observed. The numerical results presented in this figure are obtained for res-
onators without structural damping η = 0, which allows to maximize the effects of the filter. In this
case, we notice that |R+| = |R−|.
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a)
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Figure 3.7 – Coefficient of reflection (|R+|, |R−|) and transmission ([T |) of a graded filter
without structural damping η = 0. The geometry of the resonators is available Tab. 3.2. The
reflection coefficients obtained for the forward (|R+| in −−) and return (|R−| in . . .) waves are
superposed.

With a series of resonators it is possible to obtain a broadband filter. However, it is expected
that the rubber ring will introduce some damping. In the following section we study the influence of
the addition of a damping η on the transmission and reflection coefficients of the graded vibratory
filter.

In Fig. 3.8 the Young’s modulus of the rubber introduces a damping η = 10%. Coefficients
|α+| and |α−| identify the proportion of the wave that is absorbed by the resonator array. The peaks
of transmission decrease are no longer marked and the behavior of the resonators appears more
coupled (a). The behavior of the reflection (|R+|, |R−|) and absorption (|α+|, |α−|) coefficients is
more affected by the introduced damping (b)(c). In the frequency band from 850 Hz to 1000 Hz, the
forward waves are absorbed by the resonators. We note that the absorption coefficients are higher
than |α| = 0.5 which shows an interaction of the resonators between them. A part of the waves
reflected by the downstream resonators interacts again with the upstream resonators which leads to
an absorption comparable with that obtained for the vibration absorbers.
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a)

b)

c)

Figure 3.8 – Coefficient of reflection, transmission and absorption of a graded vibration filter
with structural damping η = 10%. The geometry of the resonators is available Tab. 3.2. The
reflection coefficients is obtain for the forward (|R+| in −−) and return (|R−| in . . .) waves. Due
to the presence of damping, η ̸= 0, we see an absorption effect, α ̸= 0.

3.4.3 Design of a graded multi-wave filter
After obtaining a vibration filter for the flexural waves, tuned resonators for the longitudinal

waves are added to the waveguide. The objective is to minimize the transmission of the longitudinal
wave to obtain a filter for several types of waves in a common frequency band.

In Fig. 3.9(a), the vibration filter consists of the resonators from the Tab. 3.2, tuned for flexural
and longitudinal waves. To obtain the flexural transmission and reflection coefficients, a force F is
applied in the y direction perpendicular to the end of the guide. To obtain the longitudinal transmis-
sion and reflection coefficients a force F is applied in the x direction parallel to the end of the guide.
As illustrated by the red and blue arrows respectively. At first we consider a structural damping η = 0.

In Fig. 3.9(b) the transmission coefficient |T | of the longitudinal waves does not allow to
observe a frequency band with a filter effect, the lack of coupling between the resonators leads to the
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presence of several peaks of transmission decrease which are not coupled between them. A flexural
filtering effect is observed for a frequency range from 850 Hz to 1100 Hz. We note a peak at 1150 Hz
due to the flexural movement of one of the longitudinal resonators, as illustrated by the operational
deflection shape.

a)

b)

Figure 3.9 – Coefficient of reflection and transmission of a graded filter type vibration filter
without structural damping η = 0. The geometry of the resonators is available Tab. 3.2. The
reflection coefficients is obtain for the forward (|R+| in −−) and return (|R−| in . . .) waves.

The lack of structural damping does not allow a wide frequency band to be filtered out for
longitudinal and flexural waves. However, as discussed earlier, adding η damping to the Young’s mod-
ulus of the rubber changes the shape of the transmission and reflection coefficients. In the following,
ηflex = 10% damping is added for the flexural resonators and ηlongi = 2% damping is added to the
longitudinal resonators (see section 3.3.1).

Figure 3.10 studies the influence of the addition of damping on the vibration filter. For flexural
waves the influence of damping is similar to that observed previously in section 3.4.2. The resonators
provide a high absorption between 850 Hz and 1000 Hz. For longitudinal waves, the peaks of the
transmission coefficients |T | are more coupled together but only allow to reach a coefficient |T | = 0.5
(a). The reflection coefficient (|R+|, |R−|) and the absorption coefficient (|α+|, |α−|) are slightly
different depending on the direction of propagation of the wave. As with the flexural resonators in
the direction of travel we obtain an absorption higher than |α| = 0.5 which implies a cumulative
absorption effect between the different resonators (b), (c).
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Figure 3.10 – Coefficient of reflection, transmission and absorption of a graded filter type
vibration filter with structural damping ηflex = 10% and ηlongi = 2%. The geometry of the
resonators is available Tab. 3.2. The reflection coefficients is obtain for the forward (|R+| in
−−) and return (|R−| in . . .) waves.

The use of several resonators tuned for both flexural and longitudinal waves allows us to obtain
a vibratory filter effect from 850 Hz to 950 Hz for several types of waves. However, the transmission
drop allowed by the filter is unequal depending on the wave type. The chosen resonator geometry
is more efficient for flexural waves. We also note that these configurations with several resonators
allow to obtain similar effects to the vibratory absorbers when we introduce damping.

3.5 Examples of vibration absorber configuration
In this section, we look for application cases of the local resonators previously characterized

but for the absorbing configuration. The objective is to obtain response configurations to industrial
problems by using absorption. In the two cases presented in vibration absorber configuration, the
objective is to obtain a maximum vibration absorption effect. The first configuration uses tuned
resonators for flexural waves. The second configuration uses a resonator tuned for flexural waves, a
resonator tuned for longitudinal waves and a resonator tuned for torsional waves. The objective is to
obtain a maximum asorption at a given frequency for the three types of waves.
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3.5.1 Design of a graded flexural absorber
In this configuration a vibration absorber is made of the same resonator assembly as in the

section 3.4.2, see Tab. 3.2.

In Fig. 3.11(a), the waveguide is excited in flexural at one end, a series of 4 resonators is

attached to the clamped end of a waveguide. The far field scattering matrix S =
(

T R+

R− T

)
is

obtained from a numerical simulations. For the vibration absorber configuration, the structural loss
factor η is chosen according to section 3.3.1, i.e. η = 10% for the flexural resonators.

Despite the non-optimized coupling between the resonators, the addition of resonators in series
provides a broadband absorbing effect around a target frequency (Fig. 3.11(b)). While a frequency
band ranging from 850 Hz to 1000 Hz is expected, the observed filtered frequency band ranges from
750 Hz to 1200 Hz. The frequency shift is not the same as that observed in the case of a vibratory
filter. The position on the waveguide influences the coupling between the resonators and the host
structure. In this case, an optimization would allow to adjust the coupling between the waves in
order to obtain a perfect absorption effect |α| = 1. In the absence of analytical results correlated to
numerical calculation methods, the calculation cost of an optimization is too high.

Clamp

PML

F

Figure 3.11 – Vibration absorber configuration with 4 resonators attached to the clamped end
of the waveguide (a). Reflection and absorption coefficient of a graded trapping type vibration
absorber with structural damping in rubber η = 10%. The geometry of the resonators is available
Tab. 3.2 (b).
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3.5.2 Design of a tuned vibration absolute absorber
After having obtained a vibration absorber for the flexural waves, the objective is to obtain a

frequency where the absorption is maximum for the three types of wave treated, i.e. flexural, lon-
gitudinal and torsional waves. To obtain this vibration absorber, longitudinal, flexural and torsional
resonators are placed on the free end of the waveguide. The position of the resonators is established
according to section 3.3.1.

Table. 3.3 gives the parameters used to configure the resonators to create a waveguide that
will act as a vibration absorber for longitudinal, flexural and torsional waves. As we have seen in the
previous figures, the interaction between the resonators and the host waveguide leads to a shift in the
frequency where a filter or absorption effect is obtained. This shift is particularly marked for flexural
resonators. In order to obtain a maximum of absorption for the three types of waves at the same
frequency, we choose to tune the flexural resonator differently from the longitudinal and torsional
resonators. The structural damping of the rubber η is chosen according to section 3.3.1, i.e. η = 10%
for the rubber of the flexural resonator and η = 2% for the rubber of the longitudinal and torsional
resonators.

Resonator l [mm] rk [mm] rM[mm] Frequency [Hz]
Flexural 10 8 10.4 850

Longitudinal 8 7 9.5 950
Torsional 10 7 8.75 950

Table 3.3 – Parameters of the resonators for the absolute type vibration absorber.

Figure 3.12(a) shows the configuration with three resonators positioned at the free end of the
waveguide. A flexural force applied to the other end of the waveguide. The reflection coefficient and
the absorption coefficient for the flexural waves are shown in red. Similarly, a longitudinal force, in
blue, and a torsional moment, in green, give the associated reflection and absorption coefficients for
the corresponding polarizations.

The reflection and absorption coefficients show an effect centered around 950 Hz for flexural,
longitudinal and torsional waves. The effect of the flexural resonator allows us to obtain an absorption
for a wide frequency band. The peaks obtained for the longitudinal and torsion waves are narrower.
The absorption allows to obtain a non-negligible reflection coefficient, |R| > 0.5 for three types of
waves centered on the same frequency.
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Figure 3.12 – Reflection and absorption coefficient of an absolute vibration absorber with
optimized structural damping according to Fig. 3.5. The absorber consists of three resonators:
one tuned for flexural waves (−), one for longitudinal waves (−), and the third for torsional
waves (−).

The proposed configurations make it possible to obtain a vibratory filter effect for a frequency
band slightly larger than that expected. A vibration absorption effect is obtained for three types of
waves at a given frequency.

3.6 Experimental evidence of peak absorbance
A series of experimental demonstrators is set up to confirm the presence of an absorption

effect when one or more resonators are attached to a host waveguide. The objective is to obtain
a measurable vibration absorption effect correlated to a numerical estimate. In this experimental
demonstration, the difficulties encountered to measure the reflection coefficients on the pipe de-
scribed in section 3.6.2, and the manufacturing delays of the cylindrical resonators led us to adopt a
waveguide of rectangular section.

3.6.1 Experimental set-up
Figure 3.13 shows the configuration for the waveguide suspended in parallel to the ground.

Measurements are made along the waveguide at 21 points equidistant by 1 cm and located on the
neutral axis to avoid torsional components (a). An impact hammer (b) excites the structure with
flexural motion. The displacement field is obtained with a single axis accelerometer (c). The resonator
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is placed at a distance dr from the end of the waveguide (d).

a)

d)

LMS Scada Mobile SPM 50

c)b)

Figure 3.13 – Diagram of the measurement performed to obtain the reflection coefficient of
a structure composed of a host element and one or more resonant elements (a). Picture of
the impact hammer (b) used to excite the structure, the single-axis accelerometer (c) and the
experimental setup with a resonator on a host waveguide (d)

The reflection coefficient is measured experimentally from the frequency response measure-
ments performed on the 21 measurement points. The flexural displacement W (xi , ω) measured at
point xi for a given angular frequency ω is considered to be equal to:

W (xi , ω) = A(ω)eikxi + B(ω)e−ikxi + C(ω)ekxi + D(ω)e−kxi . (3.5)

The set of W (xi , ω) for each measurement point can be written in a matrix format [54] such
as 

W (x1, ω)
W (x2, ω)

...
W (x21, ω)

 =


eikx1 e−ikx1 ekx1 e−kx1

eikx2 e−ikx2 ekx2 e−kx2

...
...

...
...

eikx21 e−ikx21 ekx21 e−kx21




A(ω)
B(ω)
C(ω)
D(ω)

 . (3.6)

The amplitudes A(ω) and B(ω) can be derived from Eq. 3.6 which form an overdetermined
system. From these amplitudes, the reflection coefficient of the propagating and evanescent waves
can be deduced for any ω as:

Rexp(ω) = A(ω)
B(ω) . (3.7)

This method of calculating the reflection coefficient is first applied to the host waveguide,
without resonator, which should theoretically have a perfect reflection coefficient |Rexp(ω)|2 = 1
and a zero absorption coefficient α = 1 − |R|2 = 0. In a second step, once a satisfactory result is
obtained, a measurement will be performed with a resonator of a given frequency, then a series of
resonators.
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3.6.2 Measurement of the reflection coefficient of the host material
Two types of waveguides are compared, as shown in Fig. 3.14: a steel cylinder of diameter 12

mm and thickness 1 mm (a); and a beam of rectangular cross section 20 × 10 mm (b). Each guide
is one meter long.

Figure 3.14(a) shows the reflection coefficient and associated phase of a steel pipe. The struc-
ture is excited in flexural by an impact hammer, represented by a black arrow. The measurement
shows an incident around 1500 Hz. This incident is unexpected, in the case of a waveguide with-
out treatment we expect a reflection coefficient close to |R|2 = 1. The cylindrical geometry makes
the measurements delicate. Indeed, the impact hammer slides easily on the surface of the cylinder
and the alignment of the accelerometer and the impact point on the neutral axis is difficult to achieve.

Figure. 3.14(b) shows a coefficient |R2| > 1 on the first frequencies. From 700 Hz the reflection
coefficient is close to |R2| = 1. The low frequency peaks can be explained by measurement errors
with the impact hammer, insufficient resolution of the measurement points or an imperfect surface
condition, evanescent waves also have an effect.

Figure 3.14 – Reflection coefficient of an incident flexural wave on a hollow cylindrical steel
structure, 12 mm external diameter, 1 mm thick (a). Reflection coefficient of an incident flexural
wave on a rectangular aluminium structure, 20 × 10 mm (b).

The rectangular waveguide section gives more satisfactory results than the cylindrical waveg-
uide. The peaks due to the experimental measurement are not localized in the frequency band of
interest, around 1 kHz. The rectangular section also allows to decouple the two flexural waves. The
resonators are sized to interact with one of the two polarizations of the flexural wave on a rectangular
aluminum waveguide.

3.6.3 Measurement of the frequency of a local resonator
The properties of elastic materials are not well documented by the manufacturers. Previous

numerical work has been based on information from the literature [145, 173]. A measurement of the
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resonance frequencies of the resonators is performed (Fig. 3.15) by experimentally identifying the
modes obtained for a given resonator configuration. The objective is to experimentally obtain the
pumping mode of the resonator to extract the Young’s modulus and the damping coefficients η of
the rubber.

A numerical simulation, in black dotted lines, is superposed on the measured curves, to check
if the measured Young’s modulus is correct (Fig. 3.15(a)). The colors of the curves correspond to
the measurement points identified on the photograph. A resonator is assembled with a rubber pad
20×20×5 mm and a steel mass of 40 g is fixed on the rubber pad. In order to determine experimen-
tally its resonances, the beam is embedded as close as possible to the resonator (b). Measurements
are made with a differential fiber optic vibrometer on a series of points. A series of impacts is made
by the hammer to excite the pumping mode of the resonator. The different points of measurement
allow to measure the different modes of the structure. The measured frequency response allows to
isolate the different modes. The vibrometer being a single point, the direction of acquisition is the
same as the laser. In our case it corresponds to the flexural of the host beam and the compression
of the rubber pad by the steel mass.

The performed excitation helps the acquisition of the pumping mode of the resonator, in y -
translation, it is this mode that we seek to identify. Figure. 3.15(c) to (f) show the calculation of
eigenvalues from the numerical model allowing us to identify the eigenmodes of the system. These
modes are partially visible on the experimental frequency responses. We identify the oscillation mode
around the beam at 200 Hz (c), the mass rotation mode, x -rotation and z-rotation at 590 Hz (d),
and the pumping mode, y -translation at 720 Hz (e). Numerically, the rotation of the mass, y -rotation
at 230 Hz (f), is identified but the experimental setup does not allow it to be excited.
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Figure 3.15 – Frequency response of the different measurement points on the structure. In black
dots the frequency response calculated by a finite element model (a). Picture of the experimental
setup with the identified measurement points (b). 3D views of the simulated displacement fields
for the eigenmode at 190 Hz (c), 590 Hz (d), 720 Hz (e), 230 Hz (f).
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Measurements with a mass of 40 g allow us to experimentally identify the frequencies of the
pumping mode and to deduce the characteristics of the rubber: Young’s modulus E = 3.3E6 Pa and
η = ∆f−3db

fpumps
= 0.2 [7]. Once the rubber parameters are known, it is possible to numerically predict

the performance of a vibration absorber before implementing it. The resonance frequency of the
resonator is determined by the properties of the rubber and the added mass. Adding a 40 g mass
gives a resonant frequency of 720 Hz. A mass of 60 g gives a resonant frequency of 600 Hz, and a
mass of 90 g a resonant frequency of 490 Hz.

3.6.4 Parametric variation of Numerical design of resonators
As previously seen in section 3.3.1, the position of the resonator on the waveguide will influence

these absorption performances. In this section, we numerically vary the position of the resonators on
the waveguide. The objective is to obtain the distances dr for which the resonator allows to obtain
a maximum absorption.

Figure 3.16 shows the influence of the resonator position, dr (see Fig. 3.13), on the reflection
coefficient of the structure. When the resonator is close to the end of the structure, dr < 0.05 m,
the effect of the resonator is shifted with respect to the resonant frequency of the resonator. This
frequency results from a coupling between the resonator and the host structure. For each resonator,
a position is identified by a red cross. These positions are chosen to obtain a broadband effect
by superimposing the frequency bands where the reflection coefficient drops. The 40 g resonator,
Fig. 3.16(a), is placed at dr = 0. The 60 g resonator, Fig. 3.16(b), is placed at dr = 0.15 m. The
90 g resonator, Fig. 3.16(c), is placed at dr = 0.08 m

40g
60g

90g

a) b) c)

Figure 3.16 – Mapping of the reflection coefficient as a function of resonator position tuned to
720 Hz (a), 600 Hz (b) and 490 Hz (c). The red cross indicates the selected resonator positions.

The maps presented are from experimental simulations: before integrating a set of three res-
onators on the waveguide it is necessary to experimentally validate the case of a single resonator on
the host structure.
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3.6.5 Evidence of the absorption peak
This section compares experimental and numerical results for vibration absorbers. A first

demonstrator with one resonator is implemented to validate the numerical predictions. A second
demonstrator is then implemented with three resonators to observe a broadband effect.

Host structure with a single resonator

Figure 3.17 shows the reflection coefficient and the associated phase of a 40 g resonator placed
at the end of a host beam. The experimental results, in red, are compared to the numerical simula-
tions, in black. The structure is excited in flexural by an impact hammer. The reflection coefficient
shows an absorption effect from 900 Hz to 1200 Hz. The incident that appears around 1200 Hz is the
torsion mode of the rectangular waveguide. The impact of the hammer is probably not perfectly on
the neutral axis on the beam which has the effect of exciting the torsion mode. Due to the coupling
effect identified earlier, between the resonator and the host waveguide, the resonant frequency of the
isolated resonator (720 Hz) is not visible.

The numerical and experimental data follow the same trend. A poor approximation of the
rubber parameters or a lack of knowledge of the properties of the host structure, may explain the
frequency shift between the two data sets.
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Figure 3.17 – Reflection coefficient and associated phase, experimental in red− and numerical
in black −, of a rectangular aluminium waveguide with a resonator of mass 40 g. The excitation
point of the structure is shown with an arrow on the 3D model.

By adding a resonator to the waveguide, vibration absorption, |α| = 1 − |R|2, is achieved for
flexural waves. By using a series of resonators tuned to a slightly different frequency than the first
resonator, we seek to achieve a broadband effect.
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Host structure with an array of resonators

As highlighted in section 3.5.1, the expected effect of adding multiple resonators to a host
structure is a coupling between absorption peaks to achieve a broadband effect. Figures 3.18 and
3.19 show the experimental and numerical reflection coefficients obtained for a waveguide with three
resonators arranged at its end. Two configurations are represented: the first one with the resonators
placed on the host structure according to the configurations that are highlighted in Fig. 3.16 and the
second with a new parametric variation to optimize the coupling between the resonators.

Figure 3.18 shows the reflection coefficient and associated phase of a rectangular aluminum
waveguide with three resonators. One of mass 40 g placed at the end of the waveguide, one of mass
60 g placed at a distance dr = 150 mm, and one of mass 90 g placed at a distance dr = 80 mm.
The reflection coefficient shows a drop from 450 Hz to 1500 Hz due to the resonators tuned from
490 Hz to 720 Hz implying an increase of absorption. The numerical and experimental curves are
well correlated with each other. Nevertheless, the absorption peaks could be more coupled to each
other.
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Figure 3.18 – Reflection coefficient and associated phase, experimentally in red− and
numerically in black−, of a rectangular aluminium waveguide with 3 resonators of a mass of
40 g placed at a distance dr = 0 mm from the end of the waveguide, a mass of 60 g placed at
a distance of dr = 150 mm, and a mass of 90 g placed at a distance dr = 80 mm.

In order to obtain an absorption frequency range where the absorption peaks induced by each
resonator are more tightly coupled to each other, it is interesting to consider the influence that each
resonator will have on the others when choosing its position on the host structure. The mapping
(Fig. 3.19(a)) is obtained by varying the dr position of a resonator from 30 mm to 120 mm sur-
rounded by a resonator at one end dr = 0 mm and another at dr = 150 mm. A configuration
dr = 60 mm, where the resonators are coupled, is identified by a red cross.

Figure 3.19(b) shows the reflection coefficient and associated phase of a rectangular aluminum
waveguide with three resonators. One of mass 40 g placed at the end of the waveguide, one of mass
60 g placed at a distance dr = 60 mm, and one of mass 90 g placed at a distance dr = 150 mm.
The reflection coefficient shows an absorption from 500 Hz to 1500 Hz. This absorption band is more
homogeneous than the one obtained by the configuration presented in Fig. 3.18.
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Figure 3.19 – Mapping of the reflection coefficients as a function of the position of the resonator
of a mass of 60 g, the resonator of 40 g being placed at the end of the guide and the resonator
of 90 g being fixed at 150 mm, (a). Reflection coefficient and associated phase, experimental in
red− and numerical in black−, of a rectangular aluminium waveguide with 3 resonators of a 40
g mass placed at a distance dr = 0 mm from the end, a 60 g mass placed at a distance dr = 60
mm, and a 90 g mass placed at a distance dr = 150 mm, (b).

This result shows that it is possible to obtain a broadband absorption effect with a set of res-
onators. The position and the choice of the resonators are determining a relevant absorption effect.
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3.7 Conclusions
This chapter has shown the possibility of obtaining a filter or an absorber, for a given fre-

quency band for several types of waves, by using local resonators. The waveguide chosen for the
study comes from the industrial context of the thesis and has a cylindrical geometry. This geometry
is not very suitable for experimental manipulation and is simplified hereafter to facilitate the exper-
imental demonstration. The implementation of resonators on the waveguide allows us to transform
this guide into a vibration filter. The effect of vibratory absorption is obtained when the losses induced
by the damping of the material constituting the resonator are sufficiently high.

The first models made of a set of resonators on a host structure are interested in vibratory
filters. The results obtained show a decrease in the transmission of the incident flexural wave for a
frequency range from 900 Hz to 1200 Hz. In the case of vibratory absorbers, the modeling of a set
of resonators allows to obtain an absorption effect of the flexural wave for a frequency range of 800
Hz to 1200 Hz. The case of a vibratory absorber for flexural waves being the simplest to realize, it
is on this configuration that an experimental demonstrator has been realized. An assembly of three
resonators thus makes it possible to obtain an absorption effect of the flexural waves for a range of
frequency from 800 Hz to 1400 Hz.

The work carried out shows that the use of local resonators allows to obtain filter and vibratory
absorption effects. Depending on the parameters of the different resonators, it is possible to obtain
broadband effects for different types of waves. The advantage of locally resonante structures is that
they allow to keep the structural integrity of the structure to be treated, which makes them fast and
inexpensive solutions for various geometries.
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4.1 Introduction
The work developed in the two previous chapters focuses specifically on the design of two

architectures of vibro-acoustic waveguides, able to control either the transmission (design of filters)
or the absorption (design of absorbers). Material and geometrical parameters are set in order to open
so called absolute band gap in which band gaps are obtained for all wave types in the same frequency
range. In this chapter, we propose to illustrate the interest of this type of filters by presenting three
case studies with the idea of examining the relevance of an integration in an application or industrial
context.

The three proposed case studies use variants of the phononic crystal constructed in Chap. 2.
In section 4.2, the effect of a curvature introduced on the waveguide is examined. In section 4.3,
the interest of the absolute filter effect is highlighted by coupling the waveguide to a radiating plane
panel (vibroacoustic coupling in light fluid). Section 4.4 concerns a waveguide filled with water (vi-
broacoustic coupling in heavy fluid).

4.2 Effect of the curvature of the waveguide on the
transmission of vibratory waves

The axis of the waveguide studied in Chap. 2 is straight. When the section of the waveguide
is symmetrical with respect to its main symmetry axis, the flexural and longitudinal movements are
decoupled. It is with this assumption that the model of Chap. 2 has been developed.

In many practical applications, for reasons of space, straight waveguides are often have long
bends or curved segments. In Fig. 4.1, the waveguide between points A and B is excited by a source
(pump located upstream) and coupled to a receiving member (injection rail located downstream).
The AB tube is clearly not rectilinear. This situation is easily encountered in practice.

Vibration source, Pump

Elastic waveguide, fuel pipe

Radiating element, injector rail

A

B

Figure 4.1 – Overview of an internal combustion engine injection system in which the fuel
pressure pump (right) acts as a vibration source, the pipe as a structural waveguide transmitting
the vibrations and the injection rail as a receiver from which the vibrations propagate to the
entire engine block and result in the radiation of noise by surface elements (e.g. firewall, not
shown here).
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4.2.1 1D phononic crystal curved waveguides
The introduction of a curvature in the medium, localized in a bend, or distributed on a con-

sequent portion of the duct has for main effect to couple the vibratory movements of flexural and
longitudinal. We propose to examine the effect of this coupling on the vibratory transmission of the
phononic crystal.

Figure 4.2 shows the straight and curved waveguide geometries. The curved waveguides stud-
ied consist of n cells, organized along a circular arc. Each arc has a radius r = (ltotn− l2)/(θπ/180),
where l2 is the length of the nylon segment of the cell, ltot is the total length of the cell and the
parameter θ gives the orientation of the last cell. Several orientations are compared, a straight waveg-
uide with θ = 0◦ and 3 curved waveguides with θ = 15◦, 30◦ and 160◦. These three examples of
curvatures are chosen to observe the impact of a more and more pronounced curve. The waveguides
are excited by a longitudinal force on the section of the first cell, the acceleration ay is measured,
perpendicular to the waveguide axis at its end.

Figure 4.2 – Diagram of the waveguides, with the applied force and measured acceleration
identified, (a).

Figure 4.3(a) shows the accelerance transfer function ay/Fx , where ay correspond to the flex-
ural motion and Fx denotes the applied force in tne x direction. The phononic crystal provides band
gaps for the flexural waves, represented by the red area between 1.8 kHz to 5.5 kHz, and for the
longitudinal waves between 3 kHz to 7 kHz, represented by the blue area, the absolute band gap of
the straight waveguide is from 3 kHz to 5.5 kHz where the two areas overlap.

For θ = 0◦ the flexural and longitudinal movements are decoupled in the case of the straight
waveguide. The longitudinal excitation imposed on the waveguide does not allow to observe any
flexural movements. The red dotted curve shown in Fig. 4.3(a) corresponds to the numerical noise at
a level much lower, of the order of 100 dB, than that obtained for curved guides even in the absolute
band gap.

When the waveguide is bent, the movements are no longer decoupled and the longitudinal
excitation generates a flexural movement in the waveguide. This coupling effect is clearly seen in the
frequency responses at 15◦, 30◦ and 160◦ for the curved waveguides: the amplitudes of the frequency
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responses (ay/Fx ) of the curved waveguides are much higher than that of the straight waveguide.
The frequency responses associated with the weakly curved waveguides (15◦ and 30◦) have identical
structures but show an amplitude shift of about 10dB, which is almost independent of frequency.
For the strongly curved waveguide (160◦), the frequency response is qualitatively similar to those
calculated for the weak curvatures (15◦ and 30◦). However, the differences between this highly curved
waveguide and the low curvature waveguides are significant above 6 kHz (i.e., beyond the absolute
band gap).

The behavior of the system can be analyzed by means of the operational deflection shapes of
the curved waveguide at particular frequencies (see Fig. 4.3):

• For an excitation at 1.5 kHz (Fig. 4.3(b)), which is below the flexural wave band gap, [1.8-5
kHz], longitudinal excitation generates large flexural displacements due to curvature-related
coupling. These displacements are even more important as the curvature is important.

• For an excitation at 2.5 kHz, (see Fig. 4.3(c)), located in the band gap of the flexural waves,
these flexural movements exist. This would not be the case if the guide were straight. Therefore,
it is the coupling induced by the curvature that generates the existence of these flexural
movements.

• For an excitation at 4kHz (see Fig. 4.3(d)), located in the absolute bandgap, the displacements
are concentrated in the first cells of the waveguide, which is characteristic of a lack of
propagation. The absolute filter then plays its role.

0°

[dB]

b)

a)

x

Figure 4.3 – Frequency response of straight and curved waveguides, (a). The coloured areas show
the gap bands, predicted in Chap. 2, flexural, in red , and longitudinale, in blue, the absolute gap
band is located at the intersection of these two. The operational deflection shapes, representing
the displacement of the waveguides at different frequencies of interest are shown. At 1.5 kHz
outside any band gap the presence of a curve leads to the generation of flexural waves, (b). At
2.5 kHz in the band gap for flexural waves the operational deflection shapes are dominated by
longitudinal motions, (c). At 4 kHz within the absolute band gap where displacement field is
rapidly damped (d).
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The simulations presented in this section show that the absolute (i.e., longitudinal and flexural)
and partial (flexural only) band gaps calculated for a straight waveguide can be used to analyze the
characteristics of a curved waveguide. It is shown that in the absolute band gap, the operational
deformations of the curved waveguide remain confined near the excitation, which is a signature of
low vibrational transmission. In the partial band gap (of the straight waveguide), this is not the case
because the curvature effect induces a coupling between longitudinal and flexural motions, which
finally allows the transmission of flexural waves. The existence of an absolute band gap guarantees
a low transmission, even in the presence of curvature.

4.2.2 1D phononic crystal waveguide with a bent segment
Curved segments used in pipes can have a localized character, as suggested in Fig. 1.1 and

not only distributed as studied in section 4.2.1. We propose the study of localized bends, starting
with a single bent segment configuration.

Figure 4.4 shows the geometries of the straight waveguide (a) and two straigth waveguide
separated with a bent segment (b). The guides with a bent segment are built with a center cell
introducing a curvature at the angle θ. This central cell is made with a circular arc of radius
r = (ltot/2)/(tan(θπ/360)), where the parameter θ gives the orientation of the last cell.

Several orientations are compared: a straight waveguide with θ = 0◦, and three guides with a
bent segment with θ = 5◦, 15◦ and 45◦. These four examples are chosen to observe the impact of
an increasing angle of curvature. All waveguides are excited by a unitary longitudinal force on the
input section of the first cell. The acceleration ay is measured perpendicular to the waveguide axis,
at its end, in order to highlight the flexural motions.

a)

Figure 4.4 – Reference straight waveguide, with the applied force and measured acceleration
identified, (a). Bent waveguide, with the applied force and measured acceleration identified, (b).

Figure 4.5(a) shows the acceleration ay for the four chosen orientations. As mentioned previ-
ously, the flexural band gap is shown in red and the longitudinal band gap in blue. The flexural and
longitudinal movements are decoupled in the case of the straight waveguide, θ = 0. The longitudinal
excitation imposed on the waveguide does not allow the observation of flexural motions. When the
central cell is curved the motions are no longer decoupled, the longitudinal excitation then generates
a flexural motion in the waveguide. This coupling effect appears distinctly with frequency responses of
5◦,15◦, and 45◦ bent waveguides. Increasing the cell curvature angle increases the coupling between
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longitudinal and flexural wave propagation. The frequency responses follow the same trend and show
an amplitude shift of about 10 dB increasing with the curvature angle.

The operational deformations at particular frequencies show (see Fig. 4.5):
• For an excitation at 1.5 kHz (Fig. 4.5(b)), which is below the flexural wave band gap, as before

the longitudinal excitation generates flexural displacements due to the coupling related to the
bent segment.

• For an excitation at 2.5 kHz, (see Fig. 4.5(c)), located in the band gap of the flexural waves, a
flexural motion exists at the bent segment. This bend causes the coupling between longitudinal
excitation and flexural movements of the guide.

• For an excitation at 4kHz (see Fig. 4.5(d)), located in the absolute bandgap, the displacements
are confined near the excitation. As in the case of the uniformly curved waveguide, this is
characteristic of a lack of propagation.
As in the previous section, the presented simulations show that the absolute (i.e., longitudinal

and flexural) and partial (flexural only) bandgaps calculated for a straight waveguide can be used
to analyze the characteristics of a waveguide with a bent segment. The coupling between longitudi-
nal and flexural motions does not result in low vibration transmission in the partial band gap (of a
straight waveguide). However, the existence of an absolute band gap ensures low transmission, even
in the presence of a bent segment.

0°

[dB]

b)

a)

b

d

x

Figure 4.5 – Frequency response of straight and bent waveguides, (a). The operational deflection
shapes represent the displacement of the waveguides at different frequencies of interest. The first
at 1.5 kHz, outside any band gap (b). The second at 2.5 kHz belinging to the band gap for flexural
waves (c). The third at 4 kHz within the absolute band gap (d).
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4.2.3 1D phononic crystal waveguide with several bent segments
As suggested in Fig. 4.1, curved segments can be multiple in a tube. Section 4.2.2, proposes

waveguides with one curved segment. This section proposes to study the configuration of two suc-
cessive bent segments.

Figure 4.6 compares a waveguide with one bent segment at 45◦, (a) with a waveguide with
two bent segments, one at 15◦ and the other at 30◦, (b). This example focuses on the influence
on wave propagation in the waveguide of a two bent segments structure versus a one bent segment
structure. As before, we look at the flexural acceleration induced by longitudinal excitation.

x

45°

45°

30°15°

Figure 4.6 – Schematic of the reference waveguide, with the applied force and measured
acceleration identified, (a). Schematic of the waveguide with two bent cells, with the applied
force and measured acceleration identified, (b).

Figure 4.7(a) shows the accelerance (ay/Fx ), wich are characterize the coupling between lon-
gitudinal and flexural motions. in the flexural wave direction. The curve obtained for the waveguide
with one bent section at 45◦ is shown in dotted line. The curve obtained for the waveguide with two
bent sections is shown as a solid line. In both configurations, we observe a coupling of the longitudinal
waves with the flexural waves. As before, we observe an attenuation in the frequency band associated
with the absolute band gap. Both curves follow the same trend, with the frequency response of the two
bent segments waveguide slightly lower by about 10 dB than the one bent segment waveguide. At 6
kHz, the trend reverses with the response of the two bent section waveguide being higher than 30 dB.

The operational deformations at particular frequencies show (see Fig. 4.7):

• For an excitation at 1.5 kHz (Fig. 4.7(b)), which is below the flexural wave band gap, as before
the longitudinal excitation generates flexural displacements due to the coupling related to the
bent segments. Note that the displacement is less important near the excitation for the guide
with two bent segments.

• For an excitation at 2.5 kHz, (see Fig. 4.7(c)), located in the band gap of the flexural waves,
a flexural motion exists at the bent segments. In the case of the waveguide with two bent
segments the coupling is visible at each bend.

• For an excitation at 4kHz (see Fig. 4.7(d)), located in the absolute bandgap, the displacements
are confined near the excitation. The lack of wave propagation prevents the curved segments
from playing a role.
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Figure 4.7 – Frequency response of the one segment bent waveguide and the two segments bent
waveguide (a). The coloured areas show the flexural, red , and longitudinal, blue, band gaps,
with the absolute band gap located at the junction of the two. The 3D fields, representing the
displacement of the waveguides at different frequencies of interest. The first at 1.5 kHz, outside
any band gap(b). The second at 2.5 kHz, belonging to the band gap for flexural waves (c). The
third at 4 kHz within the absolute band gap (d).

The frequency responses of both configurations follow the same trend. We observe a slight
shift, probably due to the modification of the geometry of the bent cells. We observe that the transfer
function |ay/Fx | has a globally lower modulus in the case of the waveguide with two bent segments.
The coupling between longitudinal and deflection movements is therefore globally weaker when the
pipe has two bent segments.

Figure 4.8 is a second example of a waveguide with several curved cells. A straight waveguide
(a) is compared to an example of a waveguide where the two bent segments lead to a zero angle,
(b). A first section is curved at 15◦ and a second section is curved at −15◦.

The flexural and longitudinal movements are decoupled in the case of the straight waveguide.
The longitudinal excitation imposed on the straight waveguide does not allow the observation of
flexural movements. In Fig. 4.9(a) the frequency response of the straight waveguide, red dashed
curve, is at a level much lower than that observed with a waveguide with two bent segments, solid
curve.

The frequency response |ay/Fx | has a significant module in a configuration with two curved
cells. The low level of |ay/Fx | shows the existence of a flexural band gap above 1.8 kHz. As shown
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in the previous sections the operational deformations (Fig. 4.9(b) to (c)) show the coupling between
longitudinal excitation and flexural displacements at the bent segments ((b) and (c)) and the prop-
agation of flexural and longitudinal displacements stopped by the absolute band gap.(d).

0°a)

Figure 4.8 – Schematic of the reference waveguide, with the applied force and measured
acceleration identified, (a). Schematic of the waveguide with two bent cells, with the applied
force and measured acceleration identified, (b).

b)

[dB]

a)

x

0°

15° 15°

Figure 4.9 – Frequency response of straight, dot line, and two-cell, straigth line, bent waveguides,
(b). The coloured areas show the flexural, red , and longitudinal, blue, band gaps, with the
absolute band gap located at the junction of the two. The operational deflection shapes, represent
the displacement of the waveguides at different frequencies of interest. The first at 1.5 kHz
outside any band gap (c). The second at 2.5 kHz belonging to band gap for flexural waves (d).
The third at 4 kHz within the absolute band gap(e).

To conclude, the three configurations studied above are demonstrating that wave conversion
phenomenon is induced when curvature is present in the waveguide. It occurs both for local bends
and for for curved segments. If the waveguide is designed as in Chap. 2 that is in order to have an
absolute band gap, it ensures that this wave conversion phenomenon will not induce unwanted wave
transmission. This shows the advantage brought by the absolute band gap.
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4.3 Acoustic radiation from a plate coupled to a vibra-
tional filter made of a 1D phononic crystal waveguide

Up to now, we have analyzed the vibrational properties of a 1D phononic crystal waveguide
analyzing different effects due to the possibly curvature of it. Now, we increase the complexity of the
system by coupling the 1D phononic waveguide to a plate that can radiate acoustic waves. The goal
is to show how the absolute band gap of the phononic crystal waveguide can be used to reduce the
vibrations transmited to the plate in this frequency range and as a consequence reduce the acoustic
radiation produced by the plate. The interest of this system is directly related to the industrial prob-
lem analyzed in this work, in which a source is connected to the structured waveguide, which itself
transmits the vibrations to an organ that can produce acoustic radiation (plate). It is the acoustic
radiation of this plate that is the subject of the section.

4.3.1 Set-up of a 1D phononic crystal waveguide coupled to a
radiating plate

The set-up is shown in Fig. 4.10(a). The 1D phononic crystal waveguide is excited by a longi-
tudinal force as indicated by the blue arrow. The 1D phononic crystal waveguide is the one optimized
in the Chap. 2 to obtain an absolute band gap in the frequency range from 3 kHz to 5.5 kHz. This
1D phononic crystal waveguide presents two unit cells introducing two angles of curvature. In this
case we have chosen 15◦ as an example. The periodic waveguide is coupled to a circular steel plate
of radius 0.15 m and thickness 1 mm. This plate is considered clamped along its perimeter. The
plate is connected to a fluid domain from the radiation side, as shown in Fig. 4.10(b), a spherical
half-space, of radius 0.2 m,. The fluid domain is air. For the numerical simulations we consider a
perfectly matched layer domain, of thickness 0.05 m, around the fluid one in order to avoid the
spureous reflections and to simulate the Sommerfeld conditions of radiation.

This system is numerically analyzed by using COMSOL Multiphysics. In particular for the vi-
broacoustic coupling, we have used the already existing acoustic-structure interaction modul. The
continuity condition between solid and fluid is introduced in the boundaries separating the plate
domain and the fluid one. It allows to compute the acoustic pressure in the fluid domain produced
by the flexural motion of the plate.
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Coupled plate

Periodically designed 

waveguide

Plate clamped along its perimeter

Perfectly Matched Layer (PML)
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Figure 4.10 – Diagram of the coupling of a phononic crystal vibration filter with a resonant
plate. The waveguide is curved by 15◦ on two cells and excited longitudinally. The plate is coupled
to the waveguide by its center and will act as a "speaker" by diffusing the vibrations transmitted
through the guide, (a). Numerical model of a bent phononic crystal coupled to a clamped circular
steel plate. The plate is coupled to an infinite spherical half-space, with perfectly matched layer
(b)
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4.3.2 Radiated acoustic power of a 1D phononic crystal waveguide
coupled to a radiating plate

The sound power, Pray , radiated by the plate surface, Splate , is a global indicator characterizing
the acoustic radiation of the plate. It is given by:

Pray = 1
2Re

(∫
Splate

|p v⋆| ∂S
)

. (4.1)

where p and v are the pressure and velocity on the plate surface.

Figure. 4.11 shows several simulated configurations for which different types of waveguides are
connected to the same radiating plate. The selected configuration is placed above the curve giving
the radiated acoustic power. A snapshot shows the operational displacement of the waveguide and
the acoustic field: at 4 kHz, this frequency belongs to the absolute band gap of the phononic crystal.
The color scale is identical for all representations of Fig. 4.11. The one of the right tube is used as
a reference to fix this scale. The acoustical levels obtained for the different representation can thus
be compared.

In the reference case, Fig. 4.11(a), the waveguide is a straight aluminum tube of 8 mm diame-
ter and 2 mm thickness. Its longitudinal motion is directly coupled to the flexural motion of the plate,
producing effective radiation in the acoustic domain, as seen in the numerically calculated domain.

In Fig. 4.11(b), the waveguide is a 8 mm diameter and 2 mm thick aluminum tube with two
bent segments at 15◦ and −15◦. The longitudinal movement is coupled at the bent segments of the
waveguide with a flexural movement. The plate is not only excited by the longitudinal movement of
the beam but also by the flexural moment generated at its end, which produces acoustic radiation by
the plate. At 4 kHz, the 3D view shows an operational deflection shape with a huge amplitude due to
the presence of bent segments in the waveguide. These both longitudinal and flexural displacements
in the waveguide also result in strong acoustic radiation.

In Fig. 4.11(c), the waveguide is a single-material periodic tube that takes the dimensions of
the phononic crystal from Chap. 2, an 8 mm diameter, 38 mm long aluminum section and a 16 mm
diameter, 47 mm long aluminum section, periodized throughout the guide. The periodic waveguide
also has two bent segments at 15◦ and −15◦. The periodic waveguide structure has a flexural band
gap from 2 kHz to 3 kHz but no absolute band gap. At 4 kHz no mode is particularly excited which
explains a less visible radiation for this frequency range.

In Fig. 4.11(d), the waveguide is the bi-material phononic crystal, a 16 mm diameter alu-
minum section of length 47 mm and a 8 mm diameter nylon section of length 38 mm, periodized
over the entire guide. The waveguide has two bent segments at 15◦ and −15◦. For this phononic
crystal the bandwidth is between 3 kHz and 5.5 kHz. The radiated acoustic energy is in accordance
with what one would expect with a strong decrease in the frequency band where the absolute band
gap is located. However, it can be noted that upstream of this frequency band, the radiated power
seems slightly higher than that observed in the other guides. The 3D view shows that the waveguide
displacement is concentrated in the first cells near the longitudinal excitation and is not transmitted
to the plate, which does not radiate.

In Fig. 4.11, the radiated powers of the straight (a), curved (b) and periodic (c) waveguides
vary with frequency but are of the same order of magnitude. Over the entire frequency range [0-
7kHz], the average power is of the order of 10−5 W for the unit excitation applied to the waveguide
input.
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For the architecturally designed waveguide (bi-material with phononic crystal (d)) the radiated
power is between 10−16 and 10−13 W in the range [3-6 kHz]. This level is more than 8 decades
lower than the average radiated power in the untreated configurations (a,b,c). The interest of the
architectural waveguide is demonstrated here in that it considerably reduces the acosutic radiation
in the absolute band gap.
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Figure 4.11 – Schematic, radiated power and 3D views, at 4 kHz, of the displacement and
sound pressure fields for 4 configurations. Straight aluminum pipe coupled to a steel plate, (a).
Bent aluminum pipe coupled to a steel plate, (b). Bent aluminum phononic crystal pipe coupled
to a steel plate, (c). Bent phononic crystal pipe in bi-material, aluminum and nylon, coupled to
a steel plate, (d).

In order to observe the improvement brought by the PC waveguide, we define an indicator, IL,
based on the comparison of the radiated sound power, Pref , by a plate connected to an aluminum
pipe (without periodicity) with two curved segments versus the radiated power, PPC , by a plate
connected to a bi-material PC waveguide with the same two curved segments as follows :

77



IL = 10log10(Pref /PPC ). (4.2)

In Fig. 4.12(a) on the graph the red area delineates the flexural band gap, the blue area delin-
eates the longitudinal band gap, the absolute band gap is from 3 kHz to 5.5 kHz where the two areas
overlap. The graph highlights the previously observed results. Replacing the aluminum waveguide
by a dual material phononic crystal slightly increases the radiated noise level, up to 3 kHz. In the
absolute band gap, from 3 kHz to 5.5 kHz, the radiated noise level is strongly attenuated before
rising again once out of the absolute band gap.

The operational deflection shape, at 2.6 kHz (Fig. 4.12(b)) illustrates the displacement of
the longitudinally excited phononic crystal waveguide and the acoustic pressure field radiated by the
coupled plate, out of the absolute band gap. The longitudinal displacement is coupled to flexural
displacements at the bent sections leading to a strong radiation from the plate. In Fig. 4.12(a), on
the graph the red area delineates the flexural band gap, the blue area delineates the longitudinal band
gap, the absolute band gap is from 3 kHz to 5.5 kHz where the two areas overlap. The insertion
loss indicator, highlights the previously observed results. Replacing the aluminum waveguide with a
dual material phononic crystal slightly increases the radiated noise level, up to 3 kHz. In the absolute
band gap, from 3 kHz to 5.5 kHz, the radiated noise level is strongly attenuated before rising again
once out of the absolute band gap.

Figure 4.12(c) shows two snapshots taken at 3.2 kHz. On the left, the displacement of the
aluminum waveguide excites the plate, resulting in strong acoustic radiation. On the right, the wave
propagation in the bi-material phononic crystal is attenuated, resulting in weak acoustic radiation.
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Figure 4.12 – Attenuation of the field radiated by a plate coupled to a bi-material phononic
crystal compared to the same plate coupled to an untreated pipe, (a). The 3D views illustrate
the solid displacement field in the pipe and the plate and illustrate the acoustic pressure field in
the spherical half-space coupled to the plate. The frequency of interest is outside the absolute
band gap, at 2.6 kHz, for the bi-material phononic crystal (b), and inside the absolute band gap,
at 3.2 kHz, for a thin aluminum waveguide, (left) compared to the bi-material phononic crystal
(right) (c).
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The vibratory filter obtained with the phononic crystal developed in Chap. 2 keeps its properties
in the targeted frequency band. The presence of an absolute band gap allows to limit the acoustic
propagation of a plate coupled to the waveguide.

4.4 Influence of a heavy fluid on the vibration filtering
properties of a 1D phononic crystal pipe

The presence of a fluid can influence the wave propagation in the waveguide and must be taken
into account when designing the periodic filter. In the initial context (Fig. 4.1) the pump pressurizes
the fuel which is conveyed through the tube to the injection rail. The content of the waveguide is
then fuel under pressure. To simplify the calculations, we choose here to consider the fluid as water
at atmospheric pressure. A mass effect is expected to be added to the waveguide to disrupt the wave
propagation compared to the empty waveguide considered so far. Figure. 4.13 shows the dispersion
diagram of a periodic cell loaded or unloaded with a heavy fluid, here water.

The dispersion diagram (Fig. 4.13(a)) shows the analytical color curves and numerical simula-
tions for an empty infinite periodic waveguide (o), and compares them to the numerical simulations
of an infinite periodic waveguide loaded with water (•). The operational deflection shapes illustrate
three cases of eigenforms that can be related to the propagation of a wave type in the loaded waveg-
uide. Fig. 4.13(b), shows the flexural displacement of the solid part of the waveguide. Fig. 4.13(c),
shows the propagation of an acoustic wave in the fluid part of the guide. Figure 4.13(d) shows the
propagation of a longitudinal wave in the solid part of the guide.
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Figure 4.13 – Real part of the dispersion relation of a bi-material phononic crystal pipe obtained
from 3D finite element numerical simulations without (o) or with (•) a heavy fluid (water)
enclosed in the pipe. As comparison, the results obtained from the analytical models without
added fluid are also reported ( flexural (•), longitudinal (•) and (•) torsional waves), (a). 3D
views of the eigen shapes at selected frequencies for kbLtot/π = 1 show the coupled motions
between the solid displacement of the pipe and the acoustic pressure in the water column enclosed
in the pipe, 5.5 kHz (b), 4.2 kHz (c) and 3 kHz (d)
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Figure 4.14 presents the 3D view already observed in Fig. 4.13(c), the scales, of colors and
deformation, have been adjusted in order to observe the coupling between the waves moving in the
acoustic domain and in the elastic domain. We observe in the nylon cylinders a deformation of the
structure according to the pressure differential in the fluid.
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Figure 4.14 – 3D views of the eigen shapes at 4.2 Hz for kbLtot/π = 1 show the coupled
motions between the solid displacement of the pipe and the acoustic pressure in the water
column enclosed in the pipe (Zoom of Fig. 4.13(c)).

The differences between with and without fluid loading are due to the coupling between the
different waves excited in the system, in particular between the pressure wave in the water and the
elastic wave in the pipe. The propagation of the flexural wave is impacted around 5 kHz, due to
the additional mass of the water. We observe the emergence on the dispersion diagram of a curve
associated with the propagation of an acoustic wave in the fluid. The presence of an acoustic band
gap is due to the coupling between the elastic structure and the fluid, it is a phenomenon similar to
that used to obtain band gaps in pipes with periodically arranged resonators [157]. This interesting
result shows that a complete band gap for both sound and elastic waves is possible.

A finite structure, composed of 7 periodic cells, is numerically simulated (Fig. 4.15). The water
column is excited at the input with a unitary plane incident wave. The COMSOL Plane wave radia-
tion module provides an anechoic termination at the end. The ratio between the incoming Pin and
outgoing Pout pressure is displayed, in gray. The ratio between the incoming ain and outgoing aout
elastic wave in displayed, in blue for the longitudinal wave and in red for the flexural. The acoustic
band gap observed in Fig. 4.13 and indicated by the gray area, allows to obtain an attenuating effect
on the propagation of a plane wave.

The propagation of a plane wave in the fluid leads to a displacement of the waveguide (see
Fig. 4.15(a)). This interaction is made possible by the bi-material structure of the waveguide resulting
in a periodic change of the boundaries of the fluid column. In the frequency range of the acoustic
band gap, the propagation is rapidly attenuated in both the elastic and acoustic propagation (see
Fig. 4.15(b)). The propagation of flexural waves is impacted by the pass band from 5 kHz to 5.5 kHz.
Outside the acoustic band gap (Fig. 4.15(c)) the plane wave propagation is no longer attenuated,
unlike the elastic wave propagation which is damped. It can be seen on the 3D view that the nylon
sections are deformed by the propagation of the acoustic wave in the fluid column, but there is no
propagation of an elastic wave, the aluminum sections remaining slightly impacted.
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Figure 4.15 – Real part of the dispersion relation of a bi-material phononic crystal pipe obtained
from 3D finite element numerical simulation, frequency response of a finite structure composed
of 7 cells. The fluid inside the waveguide is excited with a piston generating a plane wave at
x = 0 (waveguide input). 3D views of the deformation at 2 kHz (a), 5 kHz (b), 8 kHz (c)

A finite structure consisting of 7 periodic cells and an aluminum cap, is numerically simulated.
In Fig. 4.16, the structure is excited by an unitary oblique incident force on the cap surface. Longitu-
dinal and flexural elastic waves propagate through the waveguide and an acoustic wave is generated
by the displacement of the cap. A anechoic acoustic boundary is placed at the end of the waveguide
simulating the continuity of the water column.

Figure 4.16(a), at 4.5 kHz elastic and acoustic band gap lead to a damping. Figure 4.16(b),
the band gap for flexural waves from 5 kHz to 5.5 kHz results in a propagation of flexural waves
visible on the graph and the 3D view. Outside the acoustic band gap at 8 kHz (see Fig. 4.16(c)), we
observe the same results as in Fig. 4.15(c), the acoustic wave propagates in the water column but
the elastic waves are rapidly damped.

As in Chap. 2 with the phononic crystal waveguide, the longitudinal waves are impacted at
the exit of the absolute band gap by the flexural waves. Nevertheless, the loaded waveguide allows
to obtain two absolute band gaps from 4.2 kHz to 5 kHz and from 5.5 kHz to 6.8 kHz.
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Figure 4.16 – Real part of the dispersion relation of a bi-material phononic crystal pipe obtained
from 3D finite element numerical simulation, frequency response of a finite structure composed
of 7 cells. The fluid inside the waveguide is excited with a plane wave radiation. 3D views of the
dlectionshapes at 4.5 kHz (a). 5.25 kHz (b). 8 kHz (c)
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4.5 Conclusion
This chapter presents the study of several applications of a bi-material phononic crystal tube.

The objective is to highlight the elements of complexity that appear when the system developed
in the laboratory evolves towards an integration in the industrial environment. These elements of
complexity are addressed by the curve of the waveguide, the coupling with a radiating plate and the
presence of a heavy fluid inside the waveguide. In the design of the bi-material phononic crystal,
the obtaining of an absolute band gap is valid for a simple waveguide and this chapter is interested
in verifying if these elements of complexity are detrimental to the efficiency of the vibratory filter
previously obtained.

The complexity of a waveguide with bent segments until 45◦ leads to the appearance of wave
conversion effects, the longitudinal waves will excite the flexural structure and reciprocally. The re-
sults showed that an absolute band gap from 3 kHz to 6 kHz, filtering the flexural, torsional and
longitudinal waves, allows to predict these wave conversion effects and to filter their propagation
for a targeted frequency band. Thus, in this frequency band the radiating structure coupled to the
waveguide is not excited, which limits the acoustic propagation. The two-material phononic crystal
is still valid and effective for a curved waveguide coupled to a plate as a vibration filter but also as
an acoustic filter.

The loading of a hollow waveguide by a fluid introduces not only vibration but also acoustic
wave propagation. When designing the phononic crystal, only the propagation of vibration waves is
taken into account. However, the bi-material phononic crystal can also achieve a band gap from 4.2
kHz to 6.8 kHz in the acoustic domain. The superposition of the vibration and acoustic band gaps
allows to obtain a vibro-acoustic filter for a targeted frequency band. Because the hollow waveguide
optimization process targeted a frequency band for vibrational waves, the acoustic wave bandgap ob-
tained by adding a fluid does not match the vibrational bandgap from 3 kHz to 6 kHz. In future work,
the optimization process could consider acoustic waves to achieve the desired vibro-acoustic band gap.
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5.1 Conclusions
The main objective of this thesis was the realisation of a multi-wave vibration filter, or ab-

sorber, for a target frequency range. Several approaches have been studied to design a multi-wave
filter, or absorber.

Periodic structures have the effect of creating frequency bands in which the propagation of a
wave is strongly attenuated. These frequency bands are commonly called band gaps in the case of in-
finite periodic structures. They are present for different types of elastic waves, longitudinal, torsional
and flexural. In general case, the band gaps associated with each type of wave are not necessarily in
the same frequency range.

Locally resonant structures have the effect of creating frequency bands in which the transmis-
sion of a vibration wave is strongly attenuated due to the resonance of the building blocks. Depending
on the configuration of the resonator and its position on the waveguide, it is also possible to obtain
an absorption effect if losses are considered. These filtering and absorption effects exist for different
types of elastic, longitudinal, torsion and flexural waves. It is possible to obtain a broadband frequency
range by combining a series of resonators.

The application of the proposed design to cases of increasing complexity, allows to judge the
relevance of the proposed system in the hypothesis of an industrial integration. The influence of the
waveguide geometry on its vibration filtering properties has been investigated. The influence of the
coupling with a radiating element has been investigated. The influence of the presence of a heavy
fluid on a periodic cell has been investigated.

The main contributions presented in this work are summarised below as well as the perspectives
of this research.
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Design of multi-wave vibration filter based on Phononic Crystal pipes with absolute
bandgap.

In Chapter 2 a design of a vibrating filter based on phononic crystals has been developed.
Three 1D analytical Floquet-Bloch models giving the dispersion of longitudinal, flexural and tor-
sional waves, taking into account losses, were combined in an optimization procedure to achieve a
unit cell design that has absolute band gaps with target frequency characteristics. The applicabil-
ity and reliability of this design methodology has been demonstrated through a series of cases. In
addition, the study of a 6-cells demonstrator showed both numerically and experimentally drops in
transfer functions corresponding to the analytically predicted absolute bandgap, providing a second
main insight. These results showed how absolute bandgaps in the high frequency domain can be
applied to mitigate vibrations that can lead to structure-borne noise in some industrial systems.

Design of 1D multi-wave vibration filters and absorbers based on tunable local
resonators loaded in pipes.

In Chapter 3 several designs of vibration filter and vibration absorber are developed. Three res-
onators tuned for flexural, longitudinal and torsional waves, taking into account losses, are combined
to achieve configurations that exhibit absolute attenuation (filter) and absorption (absorber) around
the target frequencies for the selected wave type. A series of cases is detailed to show the practical
application and results of such a design.

With an analytical code, and an optimization, it is possible to obtain an overlap between the
reflection coefficients of the different resonators. As the numerical calculations are relatively expen-
sive, an optimization of the resonator parameters has not been performed. Ideally, each resonator is
designed and placed in such a way that to obtain attenuation and absorption over a wide frequency
band.

These results illustrate how local resonators can be applied to attenuate and absorb vibrations
in a waveguide with little additional mass and space. This type of resonator also has the main ad-
vantage of being easy to add to an already existing device, at the end of the design, or adapted to
a specific use, electric motor for the automotive industry for example.

Cases study based on industrial situations of multi-wave vibration filter pipes.

In Chapter 4 the previously developed designs are numerically confronted with situations com-
mon in the industrial context. The objective is to highlight the elements of complexity that appear
when we start to think about the integration of systems developed in the laboratory in an industrial
environment. The topics discussed are the curvature of the waveguide, the coupling with a radiating
plate and the presence of a heavy fluid inside the waveguide.

An absolute band gap that filters out flexural, torsional, and longitudinal waves has the ad-
vantage of avoiding the wave conversion effects that occur in a waveguide with curved sections.
The filtered waves will not excite the radiating structure coupled to the waveguide, thus limiting
acoustic propagation. However, the presence of fluid inside the waveguide introduces a new type of
propagation that was not anticipated when the phononic crystal was designed. The acoustic wave is
impacted by the design of the pipe. The bandgap frequencies associated with the acoustic wave are
not optimal because they were not controlled during the optimization process.
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5.2 Perspectives
The work done in this thesis has led to potential results with possibilities to be applied: A

damped frequency range, for longitudinal, flexural and torsional waves, can be obtained with a
phononic crystal waveguide. A range of filtered or absorbed frequencies is can also be obtained with
a series of resonators added locally on a waveguide.

This work can be completed by the following axes:

In the case of waveguides based on phononic crystals, the design and optimization of crys-
tal phononic waveguide could be extended to consider a liquid inside the waveguide under some
pressure. This will allow to take into account the couplings between acoustic and elastic waves.
In order to obtain a multi-wave filter anticipating these drawbacks, it is necessary to add the pre-
diction of the acoustic wave band gaps in the design and optimization process of the phononic crystal.

In the case of waveguides with local resonators, it is necessary to develop an analytical model
taking into account the couplings between the waveguide and the resonator in order to predict its
behavior more accurately. Once this analytical model is reliable, an optimization process can be per-
formed to obtain a damped frequency range around a target frequency. A connection with laboratories
specialized in polymers and their characterizations would also be a positive point for the conception
and design of custom resonators.
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ABSTRACT

The vibration filtering properties of a phononic crystal pipe whose unit cell consists of two segments of different materials and cross sections
are studied numerically and experimentally. Such an architected bi-material pipe leads to the alignment of the dispersion branches in the
same frequency ranges for all types of waves (flexural, longitudinal, and torsional), leading to an absolute bandgap. Each motion is studied by
a 1D model in which the propagation of Floquet–Bloch waves in lossy media is considered. Numerical optimization is based on the simplex
algorithm and aims to control both the central frequency and the bandwidth of the absolute bandgap on a selected target. Experimental char-
acterization of a demonstrator confirms the filtering effects due to partial and absolute bandgaps even in the presence of quite high structural
damping.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0007532

The mitigation of noise pollution is a major societal challenge for
which extensive research has been conducted1 and NVH (Noise,
Vibration, and Harshness) departments have been widely integrated
notably in the transportation industry. Structure-borne sound results
from bending vibrations and their couplings with other types of waves,
due to the complex geometries classically encountered in industrial
systems.2 An effective reduction in the radiated sound levels then
requires us to mitigate all types of waves. In this context, the approach
presented here concerns the design of “total filters” that can be
inserted into engine components acting as structural waveguides that
transmit vibrations to other components able to radiate sound. To
reach such total filter features, the design strategy is based on the con-
cept of absolute bandgap.

The control of elastic waves by periodic structures has been dra-
matically developed during the last few decades by using Phononic
Crystals (PCs)3,4 as analogously done for light waves by Photonic
crystals.5 These systems, made of either periodic distributions of scat-
terers embedded in a physically dissimilar host material or simply peri-
odic geometries, are driven by a particular dispersion relation showing
bandgaps,6,7 ranges of frequencies produced by the Bragg interference
in which the propagation of waves is forbidden.8 Significant progress
has been made on the control of flexural or longitudinal waves by
PCs showing different applications including filtering,9,10 wave

trapping,11,12 wave-guiding,13 focusing by refracting14,15 or scattering16

waves, and self-collimation,17,18 among others.4 One of the main chal-
lenges of PCs has been the design of absolute bandgaps over which the
propagation of all elastic waves is forbidden, whatever their polarization
and wave vector.

PCs with a fluid-type host medium, known as sonic crystals,9

have theoretically and experimentally reported absolute bandgaps in
broad ranges of frequencies.10,19,20 These systems represent the most
simple PC as only longitudinal waves are propagating in the medium.
Perhaps the most known application of sonic crystals is the design of
tunable sound screens.21–23 However, once the host medium is a solid,
the problem becomes more complex as different polarisation can be
excited in the system. In this case, theoretical evidence of absolute
bandgaps is also widely reported in the literature. 1D PCs exhibiting
absolute bandgaps have been analyzed by the transfer matrix
method,24 and recently, 1D PCs with alternating materials in the radial
and axial directions have been used to show absolute bandgaps.25

Two-dimensional (2D) PC slabs consisting of either solid26 or
piezoelectric27 inclusions placed periodically in an isotropic host mate-
rial have been theoretically analyzed, showing absolute bandgaps with
a variable bandwidth for elastic waves of any polarization and inci-
dence. Bulk 2D PCs have also been proposed for bulk wave attenua-
tion with solid28 or magnetostrictive29 inclusions. Using specialized
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genetic algorithms, 2D PCs formed from silicon and solid voids have
been optimized to obtain unit cell designs exhibiting absolute bandg-
aps for both in- and out-of-plane motions.30

From the experimental point of view, absolute bandgaps have
also been reported in the literature. 2D binary solid/solid composite
media with cylindrical inclusions embedded in an epoxy resin matrix
showed dips of transmission, evidencing the presence of absolute
bandgaps.31 More recently, the presence of absolute bandgaps in pil-
lared PC slabs has been shown by double-vibrator three-components32

and temperature-driven adaptive systems.33 3D PCs made of face-
centered cubic unit cells composed of a single material have been used
to experimentally show ultra-wide absolute bandgaps.34,35 Recently,
3D load-bearing architected lattices, composed of a single material,
have been designed for presenting broadband frequency bandgaps for
all directions and polarizations for airborne sound and elastic vibra-
tions simultaneously.36 However, although 2D and 3D PCs have been
widely validated experimentally, less attention has been paid to the
experimental analysis of 1D cases acting simultaneously on longitudi-
nal, flexural, and torsional waves. The control of vibrations in such 1D
PC systems can impact the design of piping systems, which can be
exploited in areas such as the automotive industry, heat exchanger
tubes in chemical plants, oil pipelines, marine risers, and pump
discharge lines, among others.37

In this work, we apply the concept of absolute bandgap in order
to design and experimentally validate 1D PC pipes able to mitigate
longitudinal, flexural, and torsional waves in the same target band. A
1D PC pipe made of a unit cell consisting of two different hollow
cylinders made of aluminum and nylon (see Fig. 1) is optimized.
Considering lossy constitutive materials, the eigenvalue problems of
the three types of waves are analytically solved by imposing continuity
conditions between the different parts of the unit cell and
Floquet–Bloch periodic conditions at its extremities. The three prob-
lems are combined via a minimizing algorithm in order to reach the
geometry of the 1D PC pipe that exhibits an absolute bandgap of target
central frequency and bandwidth. Full 3D finite element simulations
and experimental characterization of a demonstrator of finite size are
in good agreement and show dips in the transfer functions associated
with the predicted absolute bandgap.

Figures 1(a)–1(d) show the images of the 1D bi-material PC pipe
used in the experiments. A detailed scheme with the geometrical
parameters of the system is shown in Figs. 1(e) and 1(f). Each segment
of the unit cell is assumed to be a thin-walled pipe of annular cross sec-
tion. We define c ¼ l2=ltot as the length ratio and b ¼ R2=R1 as the
outer radius ratio. The inner radius Rint is constant for the two seg-
ments of the unit cell. These two geometrical parameters will be used
to describe the geometry in the optimization procedure. The 1D PC
pipe is made of aluminum and nylon, considered as linear and isotro-
pic elastic materials. Nylon is characterized by its Young modulus
EN ¼ 2:3 GPa, its density qN ¼ 1240 kg/m3, and its Poisson ratio
�N ¼ 0:3. The aluminum characteristics are EA¼ 71GPa, qA ¼ 2170
kg/m3, and �A ¼ 0:3.

Here, we consider harmonic wave motion with the time conven-
tion eıxt . In what follows, the subindex i ¼ N;A and the superindex
w ¼ l; t will represent each segment of the unit cell and the wave type
(longitudinal, l, or torsional, t), respectively. On the one hand, the
propagation of longitudinal and torsional waves in the i-th part of the
unit cell is modeled by a 1D Helmholtz equation,38

@2uwi
@x2
þ ðkwi Þ

2uwi ¼ 0; (1)

where uwi is the displacement of wave w of the i-th segment of the unit

cell. kwi ¼ x
cwi
is the wave number, with cwi ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Ew
i =qi

p
being the speed

of the wave; El
i ¼ Ei is the Young modulus, and Et

i � Gi ¼ Ei=2
ð1þ �iÞ is the shear modulus.

On the other hand, flexural waves are described using
Timoshenko’s beam theory39,40 that takes into account shear deforma-
tion and rotational inertia effects. Even this framework is based on low
frequency assumptions; this makes it possible to analyze the propaga-
tion at higher frequencies or for thicker beams than with
Euler–Bernoulli’s theory. Following Timoshenko assumption, the flex-
ural displacement vi satisfies the motion equation,

Ei
qi

@4vi
@x4
þ x2 1þ Ei

jiGi

� �
@2vi
@x2
þ Six2

Ii
� qiIix

4

jiGi

� �
vi ¼ 0; (2)

where ji, Si, and Ii are the shear coefficient, the cross-sectional area,
and quadratic moment, respectively. In order to obtain the eigenvalue
problem whose solutions give the complex dispersion relation,
kb ¼ kðxÞltot=p, we apply the continuity boundary conditions at the
interfaces between each segment of the unit cell as well as the

FIG. 1. Scheme and images of the manufactured PC pipe. Nylon and aluminum
sections are nested by force fitting, which holds the assembly together without the
use of glue and, therefore, minimizes unwanted losses. (a) Experimental setup; (b)
details of the 2 face-to-face three-axis accelerometers; (c) view of the 2 aluminum/
nylon unit cells of the demonstrator; (d) view of the shaker excitation implemented
at the oblique position such that all wave types are excited. (e) and (f) show lateral
and cross-sectional schematic representation of the modeled PC pipe, respectively.
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Floquet–Bloch periodic conditions at its extremities (see the supple-
mentary material for more details). The resulting set of equations leads
to a linear system Mðx; kbÞ:B ¼ 0, where for each given x of a fre-
quency range of interest, the values of kb satisfying det(M)¼ 0 are
found numerically to provide the dispersion relation. By solving each
1D model in this way, we obtain the dispersion relations for all types
of waves in the PC pipe. Solutions obtained by the previous semi-
analytical methodology are compared with reference solutions pro-
vided by 3D elasticity finite element simulations (solid mechanics
COMSOL package).

Figure 2(a) shows the real part of the dispersion relation for a PC
pipe with the following geometry: ltot¼ 0.1 m, c ¼ 0:2; R1 ¼ 8 mm,
and b ¼ 0:5. Colored dots (each color a wave type) represent the
results obtained from the semi-analytical model, while gray circles rep-
resent the FEM reference solutions. The results are in very good agree-
ment, and so the semi-analytical modeling is well validated. However,
some disagreements appear for flexural waves at high frequencies (dis-
persion branch just under 20 kHz) due to the expected limitations of
Timoshenko’s beam model. Anyway, the dispersion relation obtained
for this geometrical layout exhibits a wide absolute bandgap in the
range of [3–10] kHz.

Figure 2(b) shows the evolution of the bandgaps as b changes.
Each colored patch in the plot encloses the frequencies between the
lower and the upper edge of the bandgap. The results indicate that b
essentially controls the bandgap bandwidth and has a relatively weak
effect on their central frequencies. Such tendency has already been
observed in the case of monolithic corrugated beams.41

Analogously, Fig. 2(b) shows the evolution of the bandgaps as c
changes. Both the central frequency and the width display

nonmonotonous variations of the same range. In particular, some
optimal band widths appear around c ¼ 0:2. Finally, c has a more
complex effect on the bandgap features that do not follow any clearly
identifiable law. Anyway, there are some configurations for which all
bandgaps overlap, creating an absolute bandgap. This feature is
obtained in the range of ½4� 10� kHz for c ¼ 0:2, for example. In this
case, the second flexural bandgap and the first longitudinal and tor-
sional bandgaps are involved. However, Figs. 2(b) and 2(c) show that
it is difficult to tune by hand the absolute bandgap to a target band. In
order to achieve this goal, a numerical optimization procedure is pro-
posed below.

A Nelder–Mead local minimisation algorithm42 is used in this
work to provide the geometrical parameters of a PC pipe with an abso-
lute bandgap defined from both a target central frequency f0 and a tar-
get bandwidth Df0. The set of parameters subject to the optimization
is defined as X ¼ ½ltot ; c;R1; b�. It is worth noting here that the first
unit cell segment will be made of aluminum and the second one of
nylon. The cost function f is defined as a weighted sum of two con-
vergence indicators and reads

f ¼ afc Ifc þ aDf IDf : (3)

The weighting coefficients afc and aDf are adjustable such that
afc þ aDf ¼ 1, and the convergence indicators are defined by

IDf ¼
����1� Df � Df0

Df þ Df0

����; (4)

Ifc ¼
����1� fc � f0

fc þ f0

����; (5)

with Df ¼min ðf ðiÞmaxÞ�max ðf ðiÞminÞ being the absolute bandwidth and
fc ¼ 1

2 ½maxðf ðiÞminÞ þminðf ðiÞmaxÞ� the central frequency. f ðiÞmax;min repre-
sents the upper (index max) and lower (index min) edges of the
bandgap for the i-th wave, where the subindex i represents each type
of wave type i ¼ F; L;T for flexural, longitudinal, and torsional waves,
respectively. Ifc and IDf evaluate the deviation between the bandgap
features fc and Df and the target features f0 and Df0, respectively.
These definitions are chosen so that the cost function is unitary
(0 <f < 1).

This optimization procedure is applied to the solution of the
semi-analytical eigenvalue problems described above with a target
absolute bandgap of [3–6] kHz, which is a typical range of interest for
injection applications in the context of automotive industry.43 A
detailed study of the optimization is given in the supplementary
material and concludes that to ensure both accuracy and fast conver-
gence, the best choice for the weighting coefficient of the cost function
is ½afc ; aDf � ¼ ½5=6; 1=6�. The optimal geometry of the 1D PC pipe
obtained under these conditions and without considering material
losses is X ¼ ½87mm; 0:44; 7:5mm; 0:5�. From the optimized geome-
try in the conservative case, the final complex dispersion relation of
the PC pipe shown in Fig. 3(a) is calculated considering the viscoelastic
losses for both aluminum and nylon via the complex Young modulus
Ec
i ¼ Eið1þ ıgiÞ, with gA ¼ 1 � 10�4 and gN ¼ 4 � 10�2. Each

wave type displays bandgaps where the real part of the wavenumber is
low, while imaginary part is high [see the colored patches in Fig. 3(b)].
In the target range of frequencies, bandgaps are well overlapping, and
the obtained absolute bandgap is [3.2–5.7] kHz [gray patch in
Fig. 3(a)], which is slightly narrower than the target, due to the losses.

FIG. 2. Analysis of the dispersion relation of a bi-material PC pipe with ltot¼ 0.1 m;
(a) Real part of the dispersion relation with c ¼ 0:2; R1 ¼ 8 mm, and b ¼ 0:5 cal-
culated by both the semi-analytical model (colored dots, (blue) longitudinal, (red)
flexural, and (green) torsional) and 3D full FEM simulation (open circles �); (b) and
(c) evolution of the bandgap widths (colored patches) and mid frequencies (lines)
for the three wave types [the same color legend as in (a)] as a function of (b) b
with c ¼ 0:5 and (c) c with b ¼ 0:5. ltot¼ 0.1 m. The horizontal black line denotes
the configuration leading to the dispersion graph in (a).
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In order to experimentally evaluate the vibration mitigation per-
formances due to the absolute bandgap of the infinite PC pipe, a finite
pipe demonstrator with 6 unit cells is manufactured [Fig. 1(a)]. In the
experimental setup, the demonstrator is suspended vertically from
rigid gallows mounted on an optical breadboard. A shaker (LDS
V201) excites the demonstrator at its bottom end with a harmonic
point force F ¼ Fx:x þ Fy:y þ Fz:z [see the axis definition in
Figs. 1(e) and 1(f)] with a step-by-step sine in the range of [0–10] kHz
with a frequency step of 5Hz. 3 cases are considered: “flexural loading”
such as Fz 6¼ 0 and Fx ¼ Fy ¼ 0 (when the shaker is perpendicular to
the pipe x-axis, only flexural waves are excited), “longitudinal loading”
such as Fx 6¼ 0 and Fy ¼ Fz ¼ 0 (when the shaker is aligned with the
pipe x-axis, only longitudinal waves are excited), and “full loading”
such as Fx;y;z 6¼ 0 as shown in Fig. 1(d) where the force of the shaker is
applied obliquely on a cut plane and off-centre with respect to the pipe
x-axis so that all wave types are generated. The acceleration response
a ¼ ax:x þ ay:y þ az:z is measured at the upper end using 2 three-
axial accelerometers (PCB 356A01) that face each other [Fig. 1(b)]. This
experimental situation is also numerically simulated from a full wave
3D FEMmodel in order to compare transfer functions.

Figure 3(c) represents both numerical and experimental transfer
functions jaz=Fj in the flexural loading case. The transfer functions
show an attenuation of about 70 dB in the frequency range corre-
sponding to the predicted flexural bandgap. The same trend is exhib-
ited in Fig. 3(d) that plots the transfer functions jax=Fj in the
longitudinal loading case. Finally, the full loading case is shown in
Fig. 3(e), evidencing a strong attenuation in the transfer function ja=Fj
in the range corresponding to the predicted absolute bandgap. It is
also worth noting that finite size effects can be seen at low frequencies
with peaks of the transfer function corresponding to the Fabry–P�erot
resonances of the system.

To complete the analysis, 3D views of the simulated total dis-
placement field in the full loading case are shown in Figs. 3(f)–3(h). At
900Hz where all wave types propagate [Fig. 3(f)], the superposition of
all motions results in a complex total displacement field. At 2.5 kHz
[Fig. 3(g)], the field mainly exhibits the longitudinal component, with
the flexural component being strongly attenuated due to the bandgap

effect. At 4.5 kHz [Fig. 3(h)], the total field vanishes close to the excita-
tion due to the total filtering effect associated with the absolute
bandgap.

To summarize, we apply the concept of absolute bandgap to a bi-
material PC pipe. Three 1D analytical Floquet–Bloch models giving the
dispersion of longitudinal, flexural, and torsional waves considering
losses are combined in an optimization procedure to reach a unit cell
design that exhibit absolute bandgaps with target features. The hand
ability and reliability of such design methodology are shown through a
set of cases detailed in the supplementary material, which brings a first
main insight. On the top of that, the study of a 6-cell demonstrator
shows both numerically and experimentally dips of the transfer func-
tions corresponding to the absolute bandgap analytically predicted,
bringing a second main insight. These results illustrate how absolute
bandgaps in the high frequency domain can be applied to mitigate
vibrations that may result in structure-borne sound in some industrial
systems. In further works, the design and optimization of such PC
pipes would be extended considering an enclosed pressurized liquid,
hence considering couplings between acoustic and elastic waves.

See the supplementary material for both the analytical wave dis-
persion models and the numerical optimization procedure and its
application to a set of optimization cases.

The authors thank the Vitesco Technologies company and
ANRT French agency who funded this research, Julien Nicolas and
Stanislas Renard who manufactured the demonstrator, and F�elix
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1D Model of periodic waveguide with
locally resonant structures

B.1 Floquet Bloch model for longitudinal and torsional
waves dispersion

The model shown in Chap. 2 is valid for a cell composed of two segments. In order to be able
to add resonators on a periodic cell it is necessary to slightly modify the model so that it can express
the presence of a spring mass. As shown in Fig.3.1, the resonant system is placed at the intersection
of two segments. Although theoretically these two segments may have their own characteristics, for
practical reasons it is preferable that the segments surrounding a resonator are identical.

The addition of a resonator impacts the continuity and equilibrium equations between two
segment of the unit cell,Eq. 2.5, taking into account the force Fxu(xn) is the force applied by the
mouvement X (xn) of the resonator on the waveguide in the longitudinal direction, see Fig. 3.1(b.2).
It can be expressed as follows

uw
n−1(xn) = uw

n (xn),
∂uw

n−1(xn)
∂x − kl(X (xn) − u(xn)), = ∆E∆S ∂uw

n (xn)
∂x ,

−kl(X (xn) − u(xn)) = M ∂2X(xn)
∂x2 = −Fxu(xn),

X (xn) =
(

kl
kl−Mω2

)
,

Fx = kl(1 − kl
kl−ω2M ),

∂uw
n−1(xn)
∂x − F θx

x uw
n−1(xn) = ∆E∆S ∂uw

n (xn)
∂x ,

(B.1)

with ∆E = En
En−1

the ratio between the Young’s moduli of the segments n − 1and n, ∆S = Sn
Sn−1

the
ratio of segment areas n − 1, n. For the torsional eigenfrequency the force Fθx = kt(1 − kt

kt−ω2Jt
)

applied by the resonator on the waveguide, Jt = M(r2
m+r2

k )
2 see Fig. 3.1(b.4) is express similarly.

uw
n−1(xn) = uw

n (xn),
∂uw

n−1(xn)
∂x − Fθx uw

n−1(xn) = ∆E∆S ∂uw
n (xn)
∂x ,

(B.2)

The addition of resonators has also led to the periodic cell being considered as being composed
of n segments, so that several resonators can be added to a periodic cell. The changes applied to
the calculation of dispersion diagrams for longitudinal and torisonal waves also apply to flexural waves.
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B.2 Floquet Bloch model for flexural wave dispersion
Each resonator impacts the beam segment on which it is placed with a force of Fy v(xn) for

the flexural mode, Y (xn) displacement of the mass M, see Fig. 3.1(b.1), and an force of Fθz for the
oscillatory mode, θz(xn) displacement of the mass M, see Fig. 3.1(b.3).

The condition set then applies up to the n section,

vn−1(xn) = vn(xn)
Ψn−1(xn) = Ψn(xn)

Mn−1(xn) − ko(θz(xn) − ∂v(xn)
∂x ) = Mn(xn)

Qn−1(xn) − kf (Y (xn) − v(xn)) = Qn(xn),

(B.3)

Which can be simplified with

−kf (Y (xn) − v(xn)) = M ∂2Y (xn)
∂x2 = −Fy v(xn),

Y (xn) =
(

kf
kf −Mω2

)
Fy = kf (1 − kf

kf −ω2M )
(B.4)

and

−ko(∂v(xn)
∂x − v(xn)) = Jo

∂2θz (xn)
∂x2 = −Fo

∂v(xn)
∂x ,

(−Joω
2 + ko)θz(xn) = ko

∂v(xn)
∂x ,

θz(xn) =
(

ko
ko−Joω2

)
Fo = ko(1 − ko

ko−ω2M )

(B.5)

with Jo = M(r2
m+r2

k )
4 + Ml2

12

This allows us to rewrite Eq. B.3 :

vn−1(xn) = vn(xn)
Ψn−1(xn) = Ψn(xn)

Mn−1(xn) − Fo
∂v(xn)
∂x = Mn(xn)

Qn−1(xn) − Fy v(xn) = Qn(xn),

(B.6)

The interface and periodicity conditions between cells, Eq. 2.9, in the case of a periodic struc-
ture with n segment can be written as follows :

the linking conditions between the last section of the cell, section n and the first section of the
next cell, section n + 1 become :

vn(xn) = vn+1(xn)
Ψn(xn) = Ψn+1(xn)
Mn(xn) = Mn+1(xn)
Qn(xn) = Qn+1(xn).

(B.7)

The periodicity of the system is translated by the Floquet conditions which are written at the
junction between the last and the first section of the next cell,

v1(0)=eikb vn(xn)
Ψ1(0)=eikb Ψn(xn)
M1(0)=eikb Mn(xn)
Q1(0)=eikb Qn(xn)

(B.8)
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Eq. B.7 and Eq. B.8 are relevant for the flexural equations but similar reasoning can be applied
for longitudinal and torsional waves.

This calculation method is relevant in the case of a waveguide consisting of a set of periodic
cells. In the further part of the chapter, the effect of a single resonator, or a set of different resonators,
on the waveguide is determined. In order to identify this influence, the reflection and transmission
coefficients are calculated.

B.3 Reflection and transmission coefficients of locally
resonant structures

Longitudinal and torsional wave propagation

For longitudinal and torsional waves the resonator can be represented using transfer matrix
method [38], to analyze the wave propagation in the waveguide modeled by a 1D Helmholtz equation.

∂2uw
i

∂x2 + (kw
i )2uw

i = 0, (B.9)

where uw
i is the displacement of the wave. k = ω

cl
is the wave number with cl =

√
E/ρi the speed

of the wave.

Figure B.1 – Locally resonant mass spring with longitudinal excitation

Consider the locally resonant structure as shown in Fig. B.1, the force incident wave aeikx are
partly reflected and partly transmitted. The ratios of the reflected and transmitted waves amplitudes
to those of the incident waves depend on the characteristics of the resonator. Suppressing the eiωt

time dependance for clarity, the beam displacement is given by:

u(x) = aeikx + be−ikx , upstream.
u(x) = ceikx + de−ikx , downstream. (B.10)

The reflected and transmitted waves are expressed as:

ceikx = Taeikx .
be−ikx = Raeikx . (B.11)

The scattering matrix S express the effect of the resonator on the support structure,
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(
c
d

)
= S

(
a
b

)
,. (B.12)

The resonator, placed "in parallel" to the longitudinal and torsional wave propagation, produce
a discontinuity of velocity:

S =
(

1 0
Da 1

)
=

(
TM11 TM12

TM21 TM22

)
. (B.13)

with Da = (M.kl,t .ω2)
(kl,t−M.ω2) .

From Eq. B.13, the reflection and transmission coefficients can be written as:

R =
TM11 +

TM12
(iEkS)−1 −

TM21
iEkS −TM22

TM11 +
TM12

(iEkS)−1 +
TM21
iEkS +TM22

,

T = 2eikxx=0

TM11 +
TM12

(iEkS)−1 +
TM21
iEkS +TM22

,

(B.14)

Therefore,

R = −
Da

i .E .k.S
2+ Da

i .E .k.S
,

T = 2
2+ Da

i .E .k.S
,

(B.15)

with Da describes the resonant character of the system by taking into account its resonant fre-
quency, and can be expressed as Da = Mω2

1−
(

ω
ωa

)2 with ωa =
√

kl,t
M the resonant frequency of the system.

We note that when the frequency of the incident wave ω tends towards ωa we have
limω→ωa Da(ω) = +∞ which implies limω→ωa R(ω) = 1 and limω→ωa T (ω) = 0 which means that
the incident wave will be totally reflected and not transmitted.

These reflection and transmission coefficients depend on the characteristics of the materials
used for the waveguide and the resonators, in particular the complex Young modulus of the rubber.
When losses are introduced with a complex Young’s modulus, E ′ = E (1 + ηi), the incident wave will
no longer be totally reflected and not transmitted. The absorption coefficient α = 1 − |R|2 − |T |2
quantifies the portion of the wave that will be absorbed by the losses induced by the complex Young’s
modulus of the resonator. In the case of a configuration with a single resonator the absorption is
maximal at limω→ωa α(ω) = 1 − |R|2 − |T |2 = 0.5 when |R| = 1 − |T | = 0.5 [54].

Flexural wave propagation

For flexural waves, the calculation of the transmission and reflection coefficients, is based on
El-Khatib works [50]. In the present case, we evaluate the vibrations in the far field, i.e. that the
incident wave is induced by the application of a force sufficiently distant from the resonator and that
the measuring point are also far from both source and resonator. This assumption allows evanes-
cent waves to be excluded from the calculation. Consider the locally resonant structure as shown in
Fig. B.2, the incident wave vincident are partly reflected and partly transmitted. The ratios of the
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reflected and transmitted wave amplitudes to those of the incident waves depend on the character-
istics of the resonator and of the waveguide. Assuming Euler-Bernouilli conditions, the flexural wave
propagation is modeled with:

∂4v(x)
∂x4 − k4v(x) = 0, (B.16)

where k4 = ρSω2

EI is the flexural wavenumber, S the cross section, I the quadratic moment.

Figure B.2 – Locally resonant mass spring with flexural excitation

Consider the locally resonant structure as shown in Fig. B.2, the incident wave vincident is partly
reflected, partly transmitted and partly absorbed if losses are considered. The ratios of the reflected
and transmitted wave amplitudes to those of the incident waves depend on the characteristics of the
resonator and on the waveguide. The absorption of the resonator is defined as α = 1 − |T |2 − |R|2
where T and R are the transmission and reflection coefficients. Suppressing the eiωt time dependence
for clarity, the beam displacement is given by:

vi(x) = aeikx + aNe−kx + be−ikx + bNekx , (B.17)

The complex amplitudes of the incident, v incident , reflected, vreflected and transmitted, vtransmitted ,
waves are composed by propagative and evanescent waves:

vincident =
(

a
aN

)
, vreflected =

(
b

bN

)
, vtransmitted =

(
c

cN

)
(B.18)

The transmitted and reflected waves can be expressed as [50]:

(
c

cN

)
= t

(
a

aN

)
,

(
b

bN

)
= r

(
a

aN

)
. (B.19)

The reflection and transmission matrice can be expressed considering the continuity and equi-
librium condition,

vincident(xn) + vreflected(xn) = vtransmitted(xn)
Ψincident(xn) + Ψreflected(xn) = Ψtransmitted(xn)
Mincident(xn) + Mreflected(xn) = Mtransmitted(xn)
Qincident(xn) + Qreflected(xn) − Fy v(xn) = Qtransmitted(xn),

(B.20)

with

Fy = kf (1 − kf
kf −ω2M ). (B.21)
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Assuming that we are in far field condition, the reflection and transmission coefficients can be
expressed by R = |c/a| and T = |b/a| which gives according to El-Khatib [50]:

T = Ω2−(1+γ
√

Ω)
(Ω2−(1+γ.

√
Ω.(1+1i))) ,

R = 1 −
∣∣∣1 + ie−2ikxn

(
γ
√

Ω
Ω2(1+γ

√
Ω(1+1i))

)∣∣∣ , (B.22)

With γ = πM
2ρSλa

, λa = 2π
( ρS

EI ω
2
a)4 , Ω = ω

ωa
, ωa =

√
kf
M .

The analytical reflection and transmission coefficients obtained are compared in Fig. B.3 with
results obtained numerically for a structure composed of a steel ring on a rubber ring forming a local
resonator positioned on a support beam as defined in Fig. 3.1(a).

Figure B.3, shows the analytical results by the solid line. We do not consider structural damping
in the materials, E ′

rubber = Erubber (1 + ηi) with η = 0, wich lead to the absence of the absorption
α = 1−|R|2−|T |2 = 0. It can be seen that for a resonator we obtain at the corresponding resonance
frequency a peak of total reflection |R| = 1 and zero transmission |T | = 0 for the flexural mode, in
red. The torsional mode, in green, and the longitudinal mode, in blue, have also a peak in reflection
and transmission but less pronounced with a smaller frequency range, the frequency position of these
peaks corresponds to the frequencies of the longitudinal and torsional modes.

In this section the transmission and reflection coefficients of a resonator, obtained analytically
and numerically, are compared. Figure B.3, the analytical results, straight line, are obtained analyti-
cally from Eqs. B.15 and B.22. The numerical results, dot line, are obtained from a numerical model
described in Chap. 3.

We observe a slight shift in frequency between the results obtained by the numerical and ana-
lytical methods, this is probably due to the mass of the support which is not taken into account in the
same way between analytical and numerical methods. The visible differences between the two models
are due to the inclusion in the numerical calculation of the coupling between the host structure and
the resonator, Chap. 3. The model considers the resonator and its influence on the waveguide but
also the influence of the waveguide on the resonator, which leads to a modification of the resonance
frequency. The assumption of a local resonator adopted for the analytical calculation shows here its
limits.

Another important difference is the influence of the flexural resonator, which is underestimated
by the analytical model. The transmission value is relatively well correlated, but this is not the case
for the reflection value, the numerical values illustrate a reflection coefficient that has much more
impact than that predicted by the analytical method. Also around 500 Hz there is an impact on the
numerical reflection coefficient, the red dotted curve. This corresponds to the oscillating resonance
mode illustrated in Fig. 3.1(b.3), a mode whose influence is not predicted by the analytical model
used, only the flexural motion Fig. 3.1(b.1) is calculated.
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Figure B.3 – Comparison between the numerical, dotted line, and analytical, solid line values
of a local resonator. The reflection |R| and transmission |T | values are plotted for each type of
movement through the waveguide. Longitudinal waves in blue (•), torsional in green (•), flexural
in red (•).

Despite a close estimate of the transmission coefficients for the three calculated wave types,
the analytical method described here, does not give a sufficiently close estimate of the finite element
reflection coefficients. However, for simpler resonator geometries it is possible that the analytical
method could become competitive with the numerical method.
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Titre : Conduits périodiques et localement résonants pour le contrôle des ondes vibratoires en contexte
industriel

Mot clés : Guide d’ondes à cristal phononique, Filtre anti-vibration, Absorbeur de vibrations, Structure à
résonance locale, Contrôle des vibrations multi-ondes.

Résumé : La maîtrise des vibrations structurelles
est un sujet récurrent dans l’industrie. Le contexte
de l’industrie automobile ne fait pas exception, car
les vibrations et le confort acoustique ne sont pas
seulement un argument de vente mais aussi une
contrainte législative. Une automobile, qu’elle soit à
propulsion thermique ou électrique, doit faire face à
d’importants problèmes de vibrations.

Le système peut être représenté par trois élé-
ments : une source de vibrations (par exemple,
un moteur ou une pompe), un guide d’ondes (une
conduite de carburant, un câble d’alimentation) et
un élément rayonnant (une cloison pare-feu, une
rail d’injection). Dans ce travail, l’accent est mis sur
le guide d’ondes et sur la manière de le transfor-
mer pour qu’il empêche les vibrations de la source
d’atteindre l’élément rayonnant. Ce travail explore
les effets de l’atténuation et de l’absorption des vi-
brations permises par la conception d’un filtre de

vibrations multi-ondes basé sur un cristal phono-
nique et la conception de filtres et d’absorbeurs de
vibrations multi-ondes 1D basés sur des résona-
teurs locaux. Les cristaux phononiques permettent
d’obtenir des effets de filtrage avec l’obtention de la
bande interdite. Les résonateurs locaux sont utilisés
pour obtenir des effets d’atténuation ou d’absorption
vibratoire.

Le potentiel applicatif de ce type de système
dans le contexte automobile est ensuite discuté au-
tour des effets liés à la courbure d’un guide d’ondes,
à son couplage avec une plaque rayonnante et enfin
à l’influence d’un fluide lourd dans un guide d’ondes
périodique. A travers cette thèse, des modèles ana-
lytiques, des simulations numériques et des expé-
riences sont utilisés pour valider le comportement
physique des systèmes présentés. Ceci permet de
proposer des conceptions pour contrôler la propa-
gation vibratoire dans un guide d’ondes.

Title: Periodic and locally resonant waveguides for vibration control in an industrial context

Keywords: Phononic crystal waveguide, Vibration filter, Vibration absorber, Locally resonant structure,
Multi-wave vibration control

Abstract: The control of structural vibrations is a
recurrent topic in industry. The automotive industry
is no exception, as vibration and acoustic comfort
are not only a selling point but also a legislative con-
straint. An automobile, whether thermally or elec-
trically driven, has to deal with significant vibration
problems.

The system can be represented by three ele-
ments: a vibration source (e.g., engine or pump), a
waveguide (e.g., fuel line, power cable), and a radi-
ating element (e.g., firewall or fuel rail). In this work,
the focus is on the waveguide and how to transform
it so that it prevents source vibrations from reach-
ing the radiating element. This work explores the
effects of vibration attenuation and absorption en-
abled by the design of a phononic crystal based

multi-wave vibration filter and the design of local
resonator based 1D multi-wave vibration filters and
absorbers. Phononic crystals are used to achieve
filtering effects with band gap achievement. Local
resonators are used to obtain attenuation or vibra-
tion absorption effects.

The applicative potential of this type of system
in the automotive context is then discussed around
the effects related to the curvature of a waveguide,
its coupling with a radiating plate and finally the in-
fluence of a heavy fluid in a periodic waveguide.
Through this thesis, analytical models, numerical
simulations and experiments are used to validate
the physical behavior of the presented systems. This
allows to propose designs to control the vibratory
propagation in a waveguide.
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