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Abstract 

Replacing SF6 in electrical devices has been a central concern of the electrical industry for years. 

Indeed, SF6 is the gas with the highest known global warming power. For many years alternatives to 

SF6 have been studied without success. Hydrofluoroolefins have good aptitudes for substituting SF6 in 

medium voltage gas insulated systems.  

In this context, preliminary studies have revealed the potential of HFO-1234ze(E) as an 

insulating gas for medium voltage switchgear. The objective of this work is to gather data and 

knowledge for the sizing of medium voltage devices with HFO-1234ze(E). Experimental results include 

measurements of breakdown voltages obtained under various conditions of voltage (DC, impulse 

shock), pressure (0.1 to 0.3 MPa), inter-electrode distance (10 to 100 mm), and electrodes shape. This 

wide range of configurations made it possible to highlight two very distinct breakdown modes 

comparable to those present in SF6. When the field is strongly inhomogeneous, the most critical 

geometry for electrical devices, the breakdown is "controlled by the propagation" of pre-discharges. The 

leaders propagate in the inter-electrode space by steeps at velocity of the order of 106 m/s without 

necessarily leading to breakdown. When the field becomes more homogeneous, the breakdown becomes 

"controlled by initiation". When a pre-discharge initiates, it systematically leads to breakdown. Pressure 

plays an important role in initiation voltage as opposed to breakdown voltage. Finally, one of the 

important results of this work is the highlighting of the complex influence between the degradation of 

HFO, the presence of solid particles at the surface of the electrode and the loss of dielectric strength in 

nearly homogeneous field after a single breakdown. 

Keywords: Medium voltage GIS, dielectric strength, hydrofluoroolefin (HFO-1234ze(E)), 

electrical characterization, visualizations 
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General Introduction 

This PhD work is part of a wider research program aiming at replacing SF6 in medium voltage 

devices. SF6 is a gas with excellent dielectric properties (its breakdown voltage is about three times that 

of air), very widely used in high voltage systems, either for dielectric insulation or for current 

interruption in circuit breakers. Unfortunately, it is the most powerful greenhouse gas [1]. The use of 

SF6 has been severely restricted in recent years [2], [3]. In the last decades, manufacturers of gas-

insulated switchgear (GIS) have reduced the size of compartments and improved their devices to reduce 

SF6 leakage [4]. However, measurements of atmospheric SF6 content show an ever-increasing trend with 

an even increasing growth rate in recent years. Therefore, substituents should be found. 

Hydrofluoroolefin HFO-1234 ze(E) was selected as a potential candidate for replacement of SF6 

in MV GIS. This gas is part of the so-called "4th generation" refrigerant gas. It is notably used as a 

refrigerating fluid in air conditioning, as a propellant gas (in aerosols) or as a blowing agent (foams) [5]. 

So, this gas is widely available and very well documented (non-toxic, low Global Warming Potential, 

and zero Ozone Depletion Potential) [6]. The first studies show the insulating potential of HFO [7], 

namely a high dielectric strength (in a uniform field) of the order of 80% that of SF6. The objective of 

this thesis is to provide an exhaustive study of the dielectric properties of HFO in a wide range of 

configurations (pressure, distance, enhancement factor), and of its stability in real MV switchgear. The 

product design rules must be adapted and redefined accordingly. 

The first chapter focuses on the context of electrical insulation at medium voltage, and on 

breakdown phenomena in gases. The experimental techniques are discussed in Chapter 2. Chapter 3 

focuses on the study of the behaviour of the HFO in divergent field. Experiments concerning the 

characterization of the leaders (propagation velocity, stopping lengths, …) for various gas pressure are 

carried out. Spectroscopy measurements are also performed, a study of the breakdown voltage as a 

function of the pressure and the distance is presented. Chapter 4 deals on breakdown measurements in 

the HFO under a quasi-homogeneous field, i.e. configurations representative of medium voltage devices. 

The problems related to the degradation of the breakdown properties of HFO after breakdown will be 

investigated, and design rules will be extracted from these measurements. 
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1.Chapter 1: Context of the study: gaseous insulation in 
MV devices, and breakdown physical processes 

1.I. Introduction 

The question of alternatives to SF6 is already quite old. In the 1970s and 1980s, intense research 

aimed to identify gases with insulating properties “superior” to those of SF6 [8]. In 1997, SF6 was listed 

in the Kyoto protocol. Today's research is focused on alternatives which are not necessarily better than 

SF6, but which show at least similar insulating capacity and significantly less impact on the environment. 

SF6 in high voltage gas-insulated switchgear (GIS) has two quite distinct functions [8]: 

1. High voltage insulation, 

2. Arc extinction and current interruption in circuit breakers. 

In modern medium voltage GIS, SF6 acts often only as a gaseous insulator, since breaking can 

be performed with vacuum interrupters. 

1.II. Context: Usage, restriction, and substitution of sulfur 

hexafluoride SF6  

Besides atmospheric air, sulfur hexafluoride (SF6) is the most widely used gas in the electrical 

industry. Among the 8,000 tons of SF6 produced annually, around 80% of this is consumed by the energy 

industry for switchgear.  

Switchgear is a broad term that covers a range of equipment that can carry, switch and interrupt 

currents in a power supply system under normal and abnormal (fault) conditions, for the protection and 

control of the power supply system [9]. The application of SF6 to the switchgear can have two distinct 

roles; to isolate live components at different voltage (eg. Phase-to-phase and phase-to-earth), and to 

interrupt the arc when opening the circuit breaker contacts. 

The main types of HV systems using SF6 either as insulator or as breaking fluid are (see Table 

1. 1):  
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Table 1. 1 : Typical SF6 use conditions in MV and HV electrical equipment [6] 

 

SF6 density at 20°C and 0.1 MPa is 6.139 kg/m3, nearly five times that of air. Its molecular 

weight is 146.06. It is colorless and odorless. The volumetric specific heat of SF6 is 3.7 times greater 

than that of air. This has important consequences for reducing the heating effects in electrical equipment. 

SF6 has a very high dielectric strength (Figure 1. 1) thanks to fluorine's highly electronegative 

properties, yielding in a very short lifetime of free electrons, because they combine with SF6 molecules 

to form heavy ions with low mobility. Thus, the probability of dielectric breakdown by avalanche is 

reduced. The deionization time constant is extremely low, in the order of 0.25 ms. The dielectric strength 

of SF6 is about 2.5 times higher than that of air under the same conditions.  
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Our study focuses only on MV GIS used in medium voltage, for which the gas plays a role of 

insulating gas only (current interruption and arc quenching properties are not considered). 

1.II.A. Greenhouse effect and use of SF6 

Extremely potent and long-lived greenhouse gas emissions could irreversibly alter the climate 

on a millennium scale [10]. SF6 has a very pronounced absorption band at an infrared frequency where 

the earth's atmosphere is relatively transparent and therefore absorbs radiation 42,000 times more 

efficiently than CO2. The Intergovernmental Panel on Climate Change (IPCC) currently reports a 

lifetime in the atmosphere of 3,200 years and a global warming potential (GWP) value of 23,500 (100-

year time horizon) [11], assuming that photolysis of SF6 by ultraviolet (UV) radiation is the main 

removal process. Due to its very long lifetime, SF6 accumulates in the atmosphere. 

Global Warming Potential is the ratio of the warming effect caused by a substance to the 

warming caused by a similar mass of carbon dioxide. Thus, the GWP of CO2 is set to 1 [12]. This means 

that one kilogram of SF6 released into the atmosphere is equivalent to 23.5 tons of CO2. 

The annual emission of SF6 into the atmosphere has increased sharply since the 1960s 

(approximately 2 kt (kilotons) in 1978 to reach a peak of 6.4 kt in 1995). Data collected in 2018 indicate 

that the emission of SF6 continues to increase (7.2 kt in 2008) [13], despite all the regulatory actions. 

Due to its very long lifetime, SF6 released into the atmosphere accumulates and contributes to 

global warming. SF6 was listed by the Kyoto Protocol in 1997 as a remarkable greenhouse gas whose 

emissions must be reduced. Since 1995, two different sampling programs have measured the level of 

sulfur hexafluoride in the atmosphere. Measurements with weather balloons began in 1995 with eight 

stations and continue today at 15 locations [14]. In addition to these probe balloons, a four-channel gas 

Figure 1. 1 : Impact of the distance between the electrodes on the breakdown voltage in uniform field [116] 
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chromatograph was developed in 1998 (called CATS) to measure the level of SF6 in the atmosphere 

[15]. CATS gas chromatographs are currently deployed at six sites and take measurements hourly. The 

red line shows an increase of 0.24 ppt per year of SF6.  

 

Among the 8,000 tons of SF6 produced annually, around 80% of this is consumed by the energy 

industry for switchgear [9]. Typical examples of switchgear include circuit breakers, fuses, and 

insulators. The application of SF6 to the switchgear can have two distinct roles; to isolate live 

components from the earth and to interrupt the arc when opening the circuit breaker contacts. The main 

types of HV systems using SF6 either as insulator or as breaking fluid are:  

• GIS (gas insulated switchgear for high voltage in indoor and outdoor applications);  

• Assemblies of HV and GIL devices (gas insulated lines).  

Our study focuses only on GIS used in medium voltage, where SF6 plays a role of insulating 

gas. 

1.II.B. Policy and standards 

1.II.B.i. Environmental policy 

Regulation CE n°517/2014 [16], which entered into force in January 2015, aims to reduce 

fluorinated greenhouse gases, including SF6. The applied policy hopes to see an 80% reduction in 

fluorinated gas emissions by 2035. This long-term goal indicates that there may be a stricter policy or 

amendments in the future that will induce more restrictions on the use and emissions of SF6. 

The United States announced the US CLEAN Future Act for Climate Leadership to reduce 

greenhouse gas pollution by 50% from 2005 levels by 2030, and net zero greenhouse gas pollution 

Figure 1. 2 : Quantity of SF6 in the Earth's atmosphere between 1995 and 2019 [117] 
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greenhouse by 2050. The European Commission has announced the Green Deal, with an objective of 

climate neutrality and without net greenhouse gas emissions by 2050 [6]. 

1.II.B.ii. Switchgear testing policy 

A number of alternative media to SF6 are still in their development phase, there are no 

standardized methods to test and validate these technologies. An attempt is given in [6]. One can also 

refer to the available SF6 standards, for gas handling, but an attention should be paid to specific risks 

(inflamability, toxicity, …) of these new molecules and mixtures. In the end, the new SF6-free 

switchgear has to respect the product standard, independently of the insulation medium, as IEC 62271 

“High-voltage switchgear and control-gear” (especially part 1: Common specifications, and part 200: 

AC metal-enclosed switchgear and control-gear for rated voltages above 1 kV and up to and including 

52 kV). 

1.II.B.iii. Considerations for testing and validating SF6 alternatives 

For MV GIS (as for example an RMU “Ring Main Unit” in Figure 1. 3), the breaking of current 

can be performed using vacuum interrupters. This PhD thesis will not discuss the interruption 

performance of new gases. Insulating gas (SF6 or new gas) is used around this vacuum interrupter to 

prevent any breakdown outside the vacuum interrupter, and also in other parts of the system. Since SF6 

has very good insulation properties, operation at rather low pressure (< 0.15 MPa) is possible, keeping 

a reduced size of the devices, which constitutes a practical and economical advantage. 

 
Figure 1. 3 : MV GIS 
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All equipment must undergo various tests to ensure reliable operation for long duration 

(30 years), and the safety of consumer, that are defined by standardization committees: IEC for 

international products, but also IEEE for the USA, GB/DL for China, just to name a few. 

Concerning insulation and dielectric: 

• The IEC 60071 defines standardized overvoltage ratings for the medium and high 

voltage equipment (see Figure 1. 4). A real lightning stroke can induce a stress of several 

millions of volts overvoltage. However, considering all the voltage surge protections, 

the IEC 60071 defines standardized voltage ratings and impulses shape that are 

representative of real overvoltage that could appear on the network. The so called “Basic 

Insulation Level (BIL) is a standardized voltage wave with a fast-rising edge of 1.2 µs 

and a halfway fall time of 50 µs. 

• The IEC 60060 describe the test facility from a laboratory point of view: procedure, 

equipment, and the applied statistics to treat the results. 

• The IEC 62271-1 and -200 define the application of the procedure on a real switchgear. 

 

Table 1. 2 : Rated insulation levels for rated voltages [17] 

Rated AC voltage (kV) 

(RMS value) 

Lightning impulse withstand 

voltage (kV) (peak value) 

Power-frequency withstand voltage 

(kV) (RMS value during 60 seconds) 

7.2 60 20 

12 75 28 

17.5 95 38 

24 125 50 

36 170 70 

The insulation of the device must be designed to withstand, without damage, a fixed minimum 

impulse voltage defined by the BIL level. The operating voltage level of surge protection devices should 

 

Figure 1. 4 : Representative overvoltage forms and tests defined by standard IEC 60071 [118] 
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be less than the minimum withstands of the equipment. For example, for a device operating under AC 

at 24 kV or less, its resistance to a lightning impulse must be greater than 125 kV (Table 1. 2). 

1.III. Reduction and replacement strategies of SF6 

The environmental impact of SF6 can be minimized: 

• By the reduction of its emission (less leakage in products, more recycling, control of 

life cycle). This started in the ’90 after the Kyoto protocol. 

• By its replacement with alternative insulation technologies, with a lower GWP. 

1.III.A. Recovery and recycling of SF6 

To supervise the recovery and recycling of SF6, international procedures such as the IEC 60373 

standards [18] or the Cigré guide [19] have been put in place. These practical guides share know-how 

concerning the recovery and recycling SF6 used. These procedures also standardize the purity of reusable 

SF6. After the life of the device, SF6 may contain impurities (air, humidity and by-products generated 

during electric shocks). After its life cycle, SF6 is treated to eliminate these by-products and thus be able 

to be reused if the quantity of by-products after treatment remains below an authorized threshold. With 

increasingly efficient SF6 recovery and purification technologies, this method can significantly reduce 

SF6 emissions into the atmosphere. 

1.III.B. Use of mixtures 

Another strategy is to reduce the amount of SF6 by using mixtures coupling a small amount of 

SF6 with environmentally friendly gases (air, nitrogen (N2), CO2). For electrical insulation, only SF6-N2, 

CO2 or air mixtures are useful. Indeed, a synergy is observed with these three mixtures for low 

concentrations of SF6 [20].  

The increase in dielectric performance is significant at low levels of SF6. This synergy makes it 

possible to obtain a higher dielectric strength than pure N2, air or CO2 by considerably reducing the 

quantities of SF6 used. These mixtures are also economically interesting (abundant in the atmosphere). 

These blends have been used successfully in the electrical industry, for example, in circuit 

breakers where very low temperature operation is required [21]. More recently, it has been used for 

second generation gas-insulated transmission lines (GIL) [22], which have been on the market since 

2001 (e.g. GIL 220 kV at Palexpo in Geneva, Switzerland) [23]. 
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1.III.C. Alternatives gases to SF6 

1.III.C.i. Requirements 

The search for alternative gas to SF6 that can be used in electrical equipment has been going on 

for several years given the large ecological challenges. Potential candidates for the replacement of SF6 

must meet several criteria [8]. 

First, the intrinsic properties of the gas, depending on its chemical structure, must be taken into 

account. These properties are independent of the application and the environment in which a gas is 

placed. Indeed, to be a good substitute, the dielectric strength of the gas is fundamental and must be 

high. The properties providing high dielectric strength are those leading to reduce the number of 

electrons present in an electrically stressed gas. The gas must then: 

• Be an electronegative gas to capture free electrons and prevent avalanche phenomena 

which are at the origin of discharge initiation and propagation; 

• Having a small ionization cross section and high ionization energy to prevent ionization 

phenomena by collision of electrons; 

• Have a high collision cross section which allows to slow down the free electrons 

remaining in the gas. This will prevent them from being accelerated by the action of the 

electric field and thus delay the formation of the seed electrons of the discharge. 

Another basic parameter is the liquefaction temperature which must be high (high vapor 

pressure). This liquefaction temperature must be lower than the minimum operating temperature of the 

equipment at the selected operating pressure. Thermal stability over long periods of time at temperatures 

above 400 K is also required. Thermal stability is expressed by two criteria: 

• The decomposition temperature of the gas must be higher than the maximum 

temperature that could occur in the equipment under operation; 

• The gas must not ignite in a decomposition reaction caused by partial discharges. 

In addition, the gas must be chemically inert relative to other parts of electrical equipment to 

prevent wear, non-toxic (for maintenance and technical personnel), and non-explosive [6]. 

Next, the gas must exhibit suitable “extrinsic” properties. These properties describe the behavior 

of the gas in interaction with its environment and its behavior under external influences such as 

discharges and electrical breakdown. To be used in MV equipment, a dielectric gas should: 

• Not undergo any extensive decomposition; 

• Lead to no polymerization; 
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• Do not form any conductive deposit (carbon layers or other deposits); 

• Be non-corrosive and non-reactive to metals, insulators, and seals; 

• Do not give any toxic and reactive by-product upon discharge; 

• Show a high breakdown voltage under various field configurations: uniform and non-

uniform electric fields; 

• Be insensitive to the surface roughness of metal and to moving metal particles; 

• Do not give rise to any adverse reaction with humidity and impurities. 

Finally, the gas must be environmentally friendly. It should not contribute to global warming, 

deplete the ozone layer or persist in the environment for long periods. The critical parameters that have 

the most impact on the environment are the ozone depletion potential (ODP) and the global warming 

potential (GWP).   

1.III.C.ii. Proposed solutions 

The first research about the general behaviour of gas insulations began in the mid-20th century. 

Subsequent studies of potential SF6 replacements were particularly intense in the 1980s, mainly focused 

on pure gases. Several gases are today widely studied, such as fluoroketone or fluoronitrile, both for 

insulation and current breaking at very high voltage. This thesis concerns the replacement of SF6 for 

medium voltage applications only (up to 52 kV). In modern MV GIS, the breaking of current is made 

in vacuum interrupters. The SF6 replacement gas for MV GIS does therefore not need to have the same 

breaking properties (thermal conductivity and self-healing) as SF6, but only a good insulating property 

at medium voltage levels. 

Pure gases naturally present in the Earth's atmosphere (O2, CO2, N2) are commonly used at high 

pressure as insulating materials and as a means of extinguishing the electric arc in high voltage switches. 

They are the most suitable candidates for the environment given their low ozone depletion potential 

(ODP). Dry air and gas mixtures exhibit better dielectric strength than that of N2 or CO2 alone [24]. The 

dielectric strength of CO2 is greater than that of N2 under pulse voltage [25]. The pressure of CO2 must 

be three times that of SF6 to achieve the same level of insulation performance. Air is present in large 

quantities and costs nothing, presents no toxicity and no risk to humans or the environment. However, 

air has a low dielectric strength (30% that of SF6 in homogeneous field) [26]. The insulation distances 

must therefore be greater leading to larger devices. This problem can be overcome by increasing the 

operating pressure of air-insulated devices. 

Trifluoroiodomethane (CF3I) has excellent dielectric properties equivalent to SF6. Its GWP is 

equivalent to CO2, its ozone depletion potential is less than 0.08 [27] and its lifetimes in the atmosphere 

is very short. Its boiling point is 25°C at 0.5 MPa (SF6 filling pressure in GIS). To prevent it from 



Chapter 1: Context of the study: gaseous insulation in MV devices, and breakdown physical 

processes 

11 

boiling, it is used with a gas buffer such as CO2. A 60% mixture of CF3I and CO2 has insulating 

characteristics similar to pure SF6 [28]. However, CF3I is a moderately toxic gas [29]; it is classified as 

a type 3 mutagen [30]. It should therefore be handled with care.  

Fluoroketone has a boiling point of 24°C. Due to this high boiling point, the gaseous state of 

this chemical element is maintained at a pressure lower than atmospheric pressure. Fluoroketones can 

only be used as an additive at a pressure below the saturated vapor pressure. Fluoroketones do not 

exhibit, after ionization in the plasma state, a recomposition capacity similar to that of SF6. Therefore 

the quantity of fluoroketone, present in the gaseous state in an apparatus, decreases as the number of arc 

extinctions obtained in this apparatus increases. Fluoroketones C5F10O (C5Fk) and C6F12O (C6FK) have 

very low toxicity in their pure state and exhibit high dielectric strength, and show an extremely low 

global warming potential (GWP) [31]. Hyrenbach et al. [32] have shown that the dielectric performance 

of the C5FK gas mixture is superior to that of the C6FK mixture (but only 12% that of SF6). C4FK 

mixtures gave even better results but these mixtures must be excluded because of their toxicity. 

Heptafluoro-iso-butyronitrile or gaseous fluoronitrile belongs to the family of fluorinated 

nitriles. Fluoronitrile has been synthesized and marketed under the name NOVECTM4710. Fluoronitrile 

has a high liquefaction temperature (-4.7°C). Therefore, fluoronitriles must be mixed with other buffer 

gases such as CO2, dry air or N2. The global warming potential (GWP) of fluoronitrile gas is less than 

2400 and its ozone depletion potential (ODP) is zero. Recent tests and analyses performed on the 

NOVEC 4710 conclude that this gas is not CMR (Carcinogens Mutagenic Reprotoxic) and that the TLV 

TWA (Threshold Limit Values-Time Weighted Average) is equal to 65 ppm [33], [34]. 

Hydrofluoroolefins (HFO) have a low GWP but also a zero ODP. These fluids are widely used 

in the refrigeration industry. Their low toxicity is widely documented. It would be possible to use the 

HFO only for medium voltage GIS where the current breaking does not take place in the gas. Indeed, 

without an electric arc, HFO does not degrade and has a dielectric strength close to SF6. This gas will 

be described in detail in the next section. 

1.IV. Properties of the gas studied in this work: HFO-1234 ze (E) 

Hydrofluoroolefins are synthetic gases manufactured and patented by Honeywell, they are part 

of the fourth generation of refrigerants marketed under the name SOLSTICE®. Several gases can be 

found in the hydrofluoroolefin family, HFO-1234yf (2,3,3,3-Tetrafluoropropene) and HFO-1234ze 

(1,3,3,3-tetrafluoroprop-1-ene) are the most known [35], to which the ASHARE standard has assigned 

the nomenclature R-1234ze. For HFO-1234ze, there are two isomers. The two molecules have the same 

chemical formula C3H2F4, but are differentiated by the geometric structure (Figure 1. 5).  
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This isomerism confers different physical properties as shown in Table 1. 3. Unlike HFO1234ze, 

HFO1234yf is slightly flammable under near normal conditions, which disqualifies it from the list of 

potential substitutes for SF6.  

Table 1. 3 : Properties of hydrofluoroolefin 

Gas R1234ze(E) R1234ze(Z) R1234yf 

SF6 

Reference 

Chemical formula CHF=CHCF3 CHF=CHCF3 CH2=CFCF3 

[36], [37]  

Molecular weight 

(kg/mol) 
114,04 146.045 

Critical temperature (°C) 109,40 153,60 94,70 45,55 

Critical pressure (MPa) 3,64 3,97 3,38 3.78 

Boiling temperature 

(at 0.101 MPa)  
-18,95 9,00 -29,50 -64 

Global warming potential 

(GWP CO2 = 1) 
1 6 6 22800 

Ozone Depletion Potential 

(ODP)  
0 0 0 0 

Lifetimes (years) 0,045 - 0,029 850 

Inflammability 
21°C No  

Slightly 

flammable 
No 

[35]  

100°C 7-12%  - No 

 

  

Figure 1. 5 : Molecular structure of HFO-1234ze (E) and HFO-1234ze (Z) [35] 
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Even though they have the same global warming potential, their thermodynamic properties are 

quite different [36], notably the boiling point. HFO-1234ze(E) seems to be the most interesting for 

electrical applications (low boiling temperatures and low flammability). 

1.IV.A. Physical and environmental properties of HFO-1234ze (E) 

Hereinafter, HFO-1234ze (E) is abbreviated as HFO for ease of reading. 

1.IV.A.i. GWP and ODP 

With a GWP of 1, HFO-1234ze(E) has a very short lifetime in the atmosphere of about 15 days 

[38]. Ozone Depletion Potential (ODP) is the ratio of the impact of a chemical on ozone to the impact 

of a similar mass of CFC-11. Thus, the ODP of CFC-11 is set to 1 [12]. With an ODP of 0, HFO does 

not contribute to the depletion of the ozone layer. 

1.IV.A.ii. Boiling point 

The boiling point (Tb) is, by definition, the temperature at which and below which the gas is 

liquefied at a pressure of 0.1 MPa [12]. For example, SF6 has a boiling point of Tb = -64°C [39] and can 

therefore be used at very low operating temperatures (generally between -5°C and -25°C) without risk 

of condensation. The boiling point of HFO is -19°C (see Table 1. 3), which is suitable for MV 

applications where the minimum operating temperature most commonly requested by customers is -

15°C [39]. 

1.IV.A.iii. Flammability 

 

Flammability is a very important criterion in any gas application. HFO is completely non-

flammable at temperatures below 30°C (Figure 1. 6) [40], [36]. When used in a system, HFO can become 

midly-flammable in air if leaked [35]. However, the risk is limited, as HFO requires 10 times more 

Figure 1. 6 : Flammability threshold of HFO-1234ze (E) as a function of air percentage and temperature [35] 
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concentration and 250,000 times more energy than hydrocarbons to become flammable, but only at 

temperatures above 30°C.  

If a flame would appear, the effect of that flame would be extremely mild. Indeed, its very low 

heat of combustion (5 times less than propane) associated with an ultra-low combustion rate would not 

be sufficient to propagate a fire.  

1.IV.A.iv. Toxicity 

HFO has been shown to be non-toxic, non-carcinogenic, non-toxic for reproduction and non-

mutagen [40] neither on man nor on flora and fauna [41]. The American Industrial Hygiene Association 

(AIHA) Workplace Environmental Exposure Level Committee recommended 800 ppm as the 8-hour 

time-weighted average exposure limit for HFO [42]. 

1.IV.A.v. Compatibility with materials 

In an MV device, the insulation gas is often in direct contact with different types of materials 

(grease, polymers, metals, etc.). Honeywell has performed a two-week compatibility test with several 

polymers, elastomers and some metals (stainless steel, copper, brass and aluminium) immersed in HFO-

1234ze (E) and has shown good compatibility with most of these materials [35]. In addition, Préve et al 

[43] performed accelerated compatibility tests, in which the gas was contacted with many materials 

found in the MV tank for a period of 30 days at elevated temperature and pressure in order to accelerate 

the phenomena of aging. The results showed very good compatibility with these materials. Jarahnejad 

[40] states, however, that it is best to keep HFO1234ze (E) separate from alkali metals (e.g. potassium) 

to avoid a likely reaction.  

1.IV.A.vi. Degradation by electrical discharges 

Previous studies have reported that the degradation of HFO (E) generates solid by products in 

the form of very fine black dust [7]. 

Piccoz et al. [44] studied the decomposition products of HFO (E) and different mixtures by 

dielectric barrier discharge (DBD). Figure 2.5 shows the change in the concentration of gases after 5 

hours of DBD treatment as a function of the voltage applied (as a percentage of their initial concentration 

before DBD treatment). For HFO-1234ze (E) (curve 2 Figure 1. 7), after 5 hours of treatment at 10 kV, 

only 10% of HFO-1234ze (E) was broken down into by-products. Moreover, the addition of 25% N2 to 

HFO-1234ze (E) decreases this degradation percentage (curve 7 Figure 1. 7). 

The formation of toxic decomposition products in HFO1234ze (E) was studied in [44]. 

Measurement of the amount of toxic products (CF4, C2F4, C3F6 and CF3=CH) produced during the 

decomposition of HFO (E) reveals that pure HFO (E) has a relatively low resistance to the discharge. 

Therefore, it appears that HFO cannot be used in breakers, and only for pure dielectric insulation. 
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Dilution of HFO-1234ze (E) with nitrogen significantly reduces the degree of gas conversion 

by discharges. However, the results of these studies have been obtained for much more intense discharge 

regimes than those occurring in real systems, if HFO is used only for insulation. Therefore, the proposed 

use for dielectric insulation in high voltage electrical equipment requires preliminary long-term 

experiments at high voltage in real devices, to quantify the degradation rate in more realistic conditions. 

 

Zhai et al. [45] established a mechanism map for the combustion reaction of R1234ze (E) into 

stable products (ignition by electric spark, 298.15 K, 0.1 MPa). In addition, chemical reaction equations 

have been proposed to describe the stoichiometric combustion of R1234ze (E) under different 

conditions.  

  

Figure 1. 7 : Evolution of the concentration of source gases in their decomposition products after 5 hours of DBD 

treatment as a function of the voltage applied (as a percentage of their initial concentration before the DBD treatment). 

1, C5K mixed in decomposition products at 18.5% C5K: 81.5% dry air; 2, HFO-1234ze (E) in the decomposition 

products of pure HFO-1234ze (E); 3, C5K in the decomposition products of pure C5K; 4, C5K in the decomposition 

products of the mixture 12% C5K: 88% N2; 5, total concentration of C5K, HFO-1234ze (E) and CO2 in the 

decomposition products of the mixture at 9% C5K: 56% HFO-1234ze (E): 35% CO2; 6, total concentration of C5K and 

HFO-1234ze (E) in the decomposition products of the mixture at 9% C5K: 57.5% HFO-1234ze (E): 33.5% N2; 7, HFO-

1234ze (E) in the decomposition products of the mixture at 75% HFO-1234ze (E): 25% N2. All concentrations are given 

as percentage by volume [44] 
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1.IV.B. Dielectric properties of HFO: preliminary investigations 

carried out at G2Elab 

 

Figure 1. 8 from [7] represents the Paschen plot obtained in a uniform field curve with HFO in 

comparison with air and SF6 with an inter-electrode space of 5 mm. The critical field of SF6 is 90 kV/cm 

and that of HFO is 79 kV/cm. As previously reported [43], breakdown measurements in HFO are slightly 

below those in SF6. On average, breakdown voltages in HFO represent 83% of those measured in SF6 

with the same conditions, and 250% of those measured in air.  

 

During these experiments requiring numerous breakdown tests, solid back deposits were 

observed on the electrodes following a hundred breakdowns [7] but the dielectric strength of the HFO 

Figure 1. 8 : Comparison of breakdown measurements obtained in HFO, SF6, and dry Air in the 

same conditions, versus (Pressure x distance) product. DC ramp 1 kV/s, d = 5 mm, plan-plan. [7] 

Figure 1. 9 : Evolution of breakdown voltage of HFO subjected to repeated breakdown measurements under DC ramp. 

P = 0.1 MPa, d = 3 mm [7] 
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was not affected even after a hundred flashovers (Figure 1. 9). This effect was probably due to a low 

discharge energy, due to the presence of a high limiting resistor in the circuit. 

Figure 1. 10 to Figure 1. 12 shows the measurements of impulse breakdown voltages Ub 

obtained in point-plane geometry at different pressure, together with the corresponding time to 

breakdown tb. Ub show a moderate increase with pressure (Figure 1. 12). Shorter times to breakdown 

are observed at higher pressure and voltage. Plotting tb versus breakdown voltage (Figure 1. 11) shows 

a clear correlation, with a uniform decrease whatever the pressure. 

 

Once again, no obvious decrease of the breakdown voltage was recorded in this study, when 

repetitive impulse breakdown tests were done without changing the gas (Figure 1. 10).  

 

Figure 1. 10 : Measurement of breakdown voltage Vb in point-plane geometry and corresponding time to 

breakdown tb in HFO under impulse voltage. (Rc = 0.5 mm, d = 5 cm) [7] 

Figure 1. 11 : Time to breakdown tb versus breakdown voltage Vb in HFO at 

different pressure under impulse voltage. (Rc =0.5 mm, d = 5 cm) [7] 
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In HFO (Figure 1. 12) as in SF6 a moderate increase of breakdown voltage in divergent field 

versus pressure was observed, and the difference between HFO and SF6 reduces when pressure is 

increased. At atmospheric pressure, the breakdown voltage of HFO in point-plan gap is 74% that of SF6, 

and 94% at 0.3 MPa. 

 

 

Figure 1. 12 : Breakdown voltage versus pressure in point-plane geometry under impulse voltage, 

in HFO, SF6 and dry Air. (Rc = 0.5 mm, d = 5 cm) [7] 

Figure 1. 13 : Photographs of pre-breakdown discharges in HFO at voltages lower than 

the breakdown voltage. (Rc = 0.5 mm, d = 5 cm, P = 0.2 MPa) [7] 
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In [7], photographs of pre-breakdown discharges were taken in HFO (Figure 1. 13) at a voltage 

lower than the breakdown voltage (i.e., no breakdown occurred after these discharges). In HFO, the pre-

breakdown discharges consist of a propagating luminous channel which stops at a certain distance from 

the plane when the voltage is lower than the breakdown voltage. In most experiments, only one 

propagating channel was observed. Its length increases rapidly with voltage and breakdown occurs when 

the channels reach the flat electrode. Its shape, as well as the associated transient currents formed by 

series of fast pulses, are reminiscent of the propagation of stepped leaders, typical of electronegative 

gases. Similar phenomena have been previously described in SF6. 

Since the discharge initiation voltages are slightly lower than the breakdown voltages Ub, the 

values of Ub measured here in the divergent field in HFO and SF6 represent the minimum voltage 

required to induce the propagation of the leader up to the plane. Figure 1. 12 shows that this "propagation 

voltage" is slightly lower in HFO compared to SF6, and does not much depend much on pressure. The 

propagation velocity is estimated from 5 104 to 105 m/s, almost identical to those already reported for 

SF6. 

1.V. Breakdown physical processes in gases 

Gases are almost perfect insulators since they include a very small proportion of charged 

particles. When subjected to an electric field, the gases allow a very weak current to flow (a few femto-

amperes for a few centimeters of air under a few tens of volts). However, when they are subjected to a 

sufficient electric field, they can allow a much greater current to flow when pre-breakdown and 

breakdown phenomenon occur. Depending on the experimental conditions (pressure, configuration of 

the electric field, type of voltage applied, etc.), pre-breakdown phenomena can be of different types [46]. 

1.V.A. Electronic avalanche 

When a seed electron (free electron) in a gas is subjected to an electric field E, it is accelerated 

and acquires energy. If the energy is sufficient, the electron can ionize a gas molecule by collision, which 

creates new free electrons. The phenomenon of ionization is opposed to the phenomenon of attachment 

by gas molecules. When E exceeds a critical value (Ecrit), ionization becomes preponderant over 

attachment. Then, new electrons can be accelerated and in turn ionize gas molecules (Figure 1. 14). This 

constitutes the electronic avalanche mechanism. It can lead, under certain conditions, to gas breakdown. 
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With plane and parallel electrodes separated by a distance d, n being the number of electrons in 

a plane of abscissa x, n0 the number of initial electrons (at the cathode at x = 0) and 𝛼̅⁡the net ionization 

coefficient (𝛼 = ⁡𝛼 − 𝜂, with  the ionization coefficient and η the attachment coefficient), we obtain: 

𝑑𝑛(𝑥) = ⁡ 𝛼̅⁡𝑛(𝑥)𝑑𝑥,⁡which gives by integration 𝑛(𝑥) = ⁡𝑛0⁡exp⁡(𝛼̅𝑑). 

The current is then given by: 

𝐼 = 𝑒⁡𝑛(𝑑) = ⁡ 𝐼0 exp(𝛼̅𝑑) (1) 

With I0 = e.n0. 

Experimentally, equation (1) is only valid for d < ds where ds is the critical distance for which 

the current increases faster than expected, and leads to breakdown. In such conditions, new phenomena 

appear, not only defined by the coefficients α and η. For example, the emission of secondary electrons 

at the cathode produces new avalanches. Depending on the conditions (pressure, nature and state of the 

gas and the electrodes, etc.), secondary electrons are produced by various secondary processes such as 

the collision of positive ions or photons at the cathode. Townsend improved the previous equations by 

introducing the "generalized secondary ionization coefficient γ", which represents all possible secondary 

processes. 

𝑛(𝑑) = 𝑛0
𝑒𝛼𝑑

1 − 𝛾(𝑒𝛼𝑑 − 1)
(2) 

𝐼 = 𝐼0
𝑒𝛼𝑑

1 − 𝛾(𝑒𝛼𝑑 − 1)
⁡ (3) 

Equation (3) describes the variation, observed experimentally, of the current with the distance 

d. The current has an infinite value when its denominator vanishes, this is called the Townsend 

breakdown criterion: 

1 − 𝛾(𝑒𝛼𝑑 − 1) = 0 (4) 

This current divergence however has no physical significance because in practice the current is 

limited by the resistance of the electrical circuit. 

Volume ionization Secondary emission at the cathode 

Figure 1. 14 : Townsend avalanche principle [119] 
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This first breakdown criterion (Townsend breakdown mechanism) is based on a series of 

successive avalanches. In SF6, the corresponding critical electric field is about three times higher than 

for air (90 kV/cm.bar versus 30 kV/cm.bar for air). 

1.V.B. Origin of the initial electrons 

The electronic avalanche can exist only if an initial electron starts the series of ionizing shocks. 

There exist natural radioactive sources capable of ionizing gas, mainly by α and  radiation. However, 

in systems with a metallic enclosure (test cells, shielded stations), this radiation is attenuated. The 

contribution of terrestrial radioactivity is normally around 10-4 electrons.s-1.cm-3.Pa-1 [47] but in shielded 

systems this value is reduced to around 2.10-5 electrons.s-1.cm-3.Pa-1. The contribution of cosmic 

radiation is then comparable and amounts to about 2.10-5 electrons.s-1.cm-3.Pa-1 [48]. 

Under positive voltage polarity, collisional detachment appears to be the main source of seed 

electrons. Niemeyer et al. [49] states that ions are created by cosmic rays, and lost by ion-ion 

recombination or by collisions with metallic components. Ions, accelerated by the field, collide with 

atoms and release their free electron. The creation rate is approximately 10 ion pairs/cm3.s.bar. The 

mobility of ions in air is approximately 2 cm²/V.s. Under negative polarity, the field emission from the 

electrode is considered. 

1.V.C. Paschen's law 

At the beginning of the century, Paschen showed experimentally that the breakdown voltage of 

a gas in homogeneous electric field is a function of the product (pressure * distance between electrodes): 

Ucl = f (Pds) (Figure 1. 15). Townsend's theory makes it possible to account for this variation 

satisfactorily. However, to eliminate the influence of temperature, it is however preferable to replace the 

pressure P, at a given temperature, by the density N (at T = 300K, 0.1 MPa = 105 Pa), which provides: 

Ucl = f(Nds) 

If we assume an energy balance of electrons in the gas, the coefficients  and 𝛼̅ are functions 

only of the reduced electric field E/N. The breakdown criterion can therefore be written by setting: 

 
𝛼

𝑁

̅ = 𝑔 (
𝐸

𝑁
) and 

ag

𝛼̅
= ℎ (

𝐸

𝑁
) 

Moreover, with ⁡
𝐸𝑐𝑙

𝑁
=

𝑈𝑐𝑙

𝑁𝑑𝑠
 : 

ℎ (
𝑈𝑐𝑙

𝑁𝑑𝑠
) [exp (𝑔 (

𝑈𝑐𝑙

𝑁𝑑𝑠
)𝑁𝑑𝑠) − 1] = 1 (5) 
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The functions h and g are determined from measurements of the ionization and secondary 

emission coefficients. Equation (5) shows that the breakdown voltage Ucl is only a function of the 

product Nds. 

 

In the Paschen plot, three types of breakdown can be identified (Figure 1. 15): 

• Townsend breakdown, around the Paschen minimum, due to electronic avalanches; 

• Streamer type breakdown, for high P.d products; 

• Pseudo-spark type breakdown, for weak P.d products. 

At very low values of the product Pd, the breakdown voltage increases even when Pd decreases. 

Indeed, for low pressures the mean free path of the electron becomes larger than the inter-electrode gap, 

and electrons are able to pass through it without encountering a single gas molecule. The proposed 

mechanisms involve the release of gas or vapour from electrodes, thus breakdown takes place in this 

gas or vapour [50]. 

For high values of Pd, the measured breakdown value Ucl becomes less than the value provided 

for by Paschen's law. The breakdown voltage then depends on the pressure and the distance separately. 

These deviations are attributed to the nature of electrodes and to the "magnification" of the electrode 

roughness as the pressure increases [50], [51]. 

Pedersen demonstrated that the electric field must be very close to a perfectly uniform field for 

the Townsend avalanche mechanism to occur, and for Paschen's law to be valid. Such field can only be 

reached between electrodes of almost infinite dimensions. In a real configuration, the condition for 

Paschen's law application is [52] : 

Figure 1. 15 : Paschen curve for air and SF6 at 20°C in logarithmic scales from [120] 



Chapter 1: Context of the study: gaseous insulation in MV devices, and breakdown physical 

processes 

23 

𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒 − 𝐸𝑚𝑖𝑛

𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒
<

𝑀

𝑁𝑑
(6) 

With Eaverage and Emin the average and minimum electric field in the gap. M depends on constants of the 

gas considered, and indicates the sensitivity of the gas to field reinforcements on electrodes: the weaker 

M, the more sensitive the gas, and the largest deviations from Paschen's law for low Nd values. 

1.VI. Streamer phenomenon 

1.VI.A. Principle 

Townsend's breakdown theory is characterized by the continuous development of electronic 

avalanches by secondary emission processes. It has been very successful in explaining breakdown 

phenomena under various discharge conditions over the past century. In the years 1930-1940, Raether 

was able to observe, at high pd values (> 103 Pa.m), breakdown characteristics too fast to be explained 

by a Townsend mechanism. Raether on the one hand, Meek et. Loeb [53] on the other hand, proposed 

the basis of a new breakdown theory, known as streamer breakdown, taking into account the effects of 

the space charge of the electronic avalanche. 

In this theory, the breakdown process still begins with an electronic avalanche. However, the 

multiplication of charges in this first avalanche is so great that the space charge at its head creates a field 

of the same order of magnitude as the applied field. Thus an avalanche-streamer transition occurs. 

According to the criterion established by Meek [54], this transition occurs when the number of electrons 

exceeds a critical threshold of Ncr = 108 [47]. 

Raether formulated another criterion close to that of Meek, described by the integral equation 

(7): 

ln𝑁𝑐𝑟 = ∫ (𝛼 − ℎ)𝑑𝑥 = ⁡𝐾𝑠𝑡𝑟

𝑥

0

(7) 

with x is the distance from the origin of the avalanche, Ncr the number of electrons in the critical 

avalanche and (a − h) = ⁡ a̅⁡ the effective ionization coefficient. The streamer criterion is met for a 

certain value Kstr. The value originally obtained by Reather was Kstr = 18 and it shows a good agreement 

with Meek’s theory. 

We thus observe the propagation of a weakly ionized channel (called “streamer” or “ionization 

wave”) between electrodes. The space charge in the streamer head creates a high local field which allows 

the formation of secondary electronic avalanches Figure 1. 16. This channel develops extremely rapidly 

and can propagate in regions where the applied field is too weak for an effective ionization reaction to 
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take place. Typical velocity are around 106 m/s, much faster than Townsend breakdown phenomena 

(∼103 m/s). Many aspects of the streamer mechanism, such as propagation and branching processes, 

remain a very active field of research. 

In non-uniform field there exists a marked difference between a positive streamer (when the 

electrode under high field is positive) and negative. In a positive streamer, photons at the head of the 

avalanche create secondary avalanches by photoionization, and possibly by photo-detachment from 

negative ions (Figure 1. 16). 

  

Due to the differences between the mobility of ions and electrons, the streamer head has a high 

charge concentration. As the streamer propagates, the head leaves behind it a more or less neutral imprint 

that looks like a weakly ionized plasma, usually called a filament. 

The main propagation mechanism of a positive streamer is based on photoionization. Some 

species excited during the avalanche are able to emit a photon energetic enough to ionize a neutral 

molecule. The new electrons trigger a second electronic avalanche. Once it reaches the streamer head, 

the latter is neutralized, and ions left in the front form the new streamer head. 

For negative streamers, the electrons drift upstream, so “seed” electrons created by 

photoionization are not necessary. 

1.VI.B. Propagation velocity of streamers 

Many researchers have studied the formation and propagation of streamers in air. Briels et al. 

[55] characterized the streamers by their length, radius, charge, and field. They observed that for the 

same voltage, positive streamers propagate faster and their diameter is approximately 10 % larger than 

negative streamers. They proposed an empirical law for the velocity and diameter of positive and 

negative streamers: 

𝑣 = 0.5𝑑2⁡[𝑚𝑚−1𝑛𝑠−1] (8) 

Figure 1. 16 : Positive streamer. a: development of the 

streamer; b: lines of fields at the head of the streamer 
Figure 1. 17 : Negative streamer. a: development of the 

streamer; b: lines of fields at the head of the streamer 
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Luque et al [56] modelled streamers of both polarities in plane to plane and point-to-plane 

geometries. Their results are in agreement with the work of Briels. The velocity of positive streamers 

was described by the same empirical equation (Equation (8)), without any adjustment parameter. The 

slower velocity of the negative streamers is believed to be due to the broadening of the streamer head, 

as a result of the drifting of electrons, which causes a decrease of field at the streamer head. 

The average velocity of streamers in air is around 106 m/s (Figure 1. 18). With such a velocity, 

the crossing time in an interval of 5 cm is 50 ns, i.e. small compared to the typical timescale of a 

lightning pulse of 1.2/50 μs. 

1.VI.C. Propagation length of streamers 

  

Figure 1. 18 : Velocity of positive and negative streamers in air at atmospheric 

temperature and pressure as a function of the voltage (gap = 4 cm, Rc = 15 µm) [55] 

Figure 1. 19 : Time-integrated photographs of positive (left column) and negative (right 

column) streamers in air in a space of 40 mm in air at 0.1 MPa (Rc = 15 µm) [55] 
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At low voltages, positive and negative discharges in air are remarkably different (Figure 1. 19). 

Positive discharges initiate at lower voltages than negative discharges. 

As the voltage increases, positive streamers in air fill the inter-electrode space, whereas 

negatives only form a cloud of light around the tip (see Figure 1. 19). In addition, positive discharges 

are much more branched than the negative one.  

1.VI.D. Streamer radius 

 

Briels el al. [55] measured the variation of the streamer diameter as a function of the voltage. 

As shown in Figure 1. 20, an increase in voltage causes an increase in the radius of the positive and 

negative streamers. 

1.VI.E. Structure 

Two main phases can be distinguished within streamers. The first corresponds to the 

propagation of the primary streamer from the anode towards the cathode. It propagates as a light spot 

which gives the light trail shown in streak image of Figure 1. 22. The time scale t, giving a 

correspondence between the discharge current (Figure 1. 21) and the streak image (Figure 1. 22), is 

shown by broken lines. The sudden increase in the current pulse corresponds to the arrival of the primary 

streamer at the cathode with a velocity estimated to about 105 m/s. The development of a secondary 

streamer is observed from the time where the primary streamer arrives at the cathode [57]. 

Figure 1. 20 : Diameters of positive and negative streamers in air according 

to the applied voltage (P = 0.1 MPa, Rc = 15 µm and d = 40 mm) [55] 
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The development of the secondary streamer limits the current drop just after the current peak. 

The propagation of primary and secondary streamers create thin ionized channels. 

1.VI.F. Transition to breakdown 

Streamers, in strongly divergent fields, can propagate to the plane without leading to 

breakdowns. The process of transition to breakdown is complex, and not well understood [58]. Several 

authors [59] [60] discuss a gradual increase in temperature, inducing a decrease in density in the channel, 

and consequently an increase of the reduced E/N field. If E/N exceeds the critical field, a new phase of 

massive ionization can occur, leading to the transition to the arc. 

Two cases are to be distinguished for the streamer: 

• In a divergent field (Figure 1. 23), the initiation and propagation of the streamer does 

not constitute a breakdown criterion. Indeed, the streamer propagates to the plane 

without leading to breakdown; 

Figure 1. 21 : Pulse form of a corona discharge in positive polarity in dry air under conditions of high 

continuous voltage (U = 7.2 kV, d = 7 mm, tip-plane configuration, P = 0.1 MPa) [57] 

Figure 1. 22 : Image of a streak camera of a positive corona discharge (U = 7.2 kV, d = 7 mm, tip-

plane configuration, P = 0.1 MPa) [57] 
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• In a homogeneous field, the appearance of a streamer systematically leads to 

breakdown. In the latter case, the streamer criterion constitutes a valid breakdown 

criterion.  

 

1.VI.G. Modelling of streamers 

For many years, many research groups have been working on the modelling of streamers, but 

the tree structure of streamers ("branching") remains complex to simulate. 

Several strategies have been adopted, leading to various more or less sophisticated discharge 

models in the literature: 

• behaviour models [56], [61], 

• particles models [62]: the gas is studied under its microscopic particulate aspect. The 

microscopic approach is based on the resolution either direct or by Monte Carlo-type 

methods of the Boltzmann equation; 

• fluids models [63]: the behaviour of gas is studied as a whole as a continuous medium 

thanks to hydrodynamic equations. 

The exhaustive description of these models will not be presented here. 

1.VII. Leader phenomenon 

1.VII.A. Principle 

The leader is a “secondary” discharge process that follows the formation of streamers. This 

occurs due to heating of the streamer channel by electrons. Unlike the case of Townsend and streamer 

mechanisms, the leader mechanism leads to the formation of a high temperature channel (T > 1500 K), 

Figure 1. 23 : Probability of occurrence in air with a tip radius r = 0.5 mm and a gap d = 10 cm [58]. 
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and therefore very conductive. The mean Eld field along the leader channel can reach values of the order 

of 1 kV/cm (Eld << Ecr). Its formation strongly depends on the gas nature. In air, leaders appear for high 

values of the product pressure*distance (Pd > 100 cm.bar), while in SF6 the threshold is Pd > 1 cm.bar 

[64]. 

Table 1. 4 : Classification of breakdown mechanism in terms of pd values in air [47] 

10-4 < pd < 0.3 bar.cm 
Townsend’s breakdown with a predominant secondary cathode emission. 

Typical discharge regime of glow discharges. 

0.3 < pd < 5 bar.cm 
Townsend and streamer breakdown can be observed depending on 

conditions (electrode geometry, applied voltage, etc.). 

5 < pd < 100 bar.cm 

The Townsend theory fails, streamer breakdown dominates. Faster 

breakdown process, at much lower fields than ones predicted by the 

Paschen’s curve. Secondary cathode emission can be ignored 

pd > 100 bar.cm 
Leader breakdown mechanism. At atmospheric pressure, the leader 

mechanism becomes predominant in gaps  1 m. 

 

Table 1. 5 : Classification of breakdown mechanism in terms of pd values in SF6 [65] 

pd  0.3 bar.cm Streamer 

pd  1 bar.cm Leader channel 

 

 

In non-uniform electrode geometry, the local maximum field may be greater than the critical 

field. This allows the development of an electronic avalanche confined to the strong field area (corona). 

Figure 1. 24 : Development of a leader in SF6 (P = 0.15 MPa, U = 200 kV, Rc = 1 mm). Scanning camera image (high), 

applied voltage and current associated with leader steps (low) [66]. 
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Under certain conditions (high pressure, electronegative gas), a discharge can however propagate 

further, while the minimum field is much lower than the critical field. In this case, the discharge 

propagates in successive steps, according to the following sequence [64], [66] Figure 1. 24: 

• Development of a corona of streamers in the strong field area. By concentration of the 

current in a small area of the corona, heating of the gas leading to the formation of a 

first leader channel; 

• Rapid development of an ionization zone at the head of this leader channel, 

accompanied by a brief re-illumination of the channel and a current peak; 

• Pause time  at the end of which the ionization zone turns into a new section of the 

leader channel, and creates a new ionization zone in front of the discharge. 

Studies show that the leader channel is strongly heated, its temperature being higher than the 

dissociation temperature of the gas. In SF6 this implies T  3000 K. This strongly conductive channel 

behaves like a “virtual electrode” at the end of which a corona is formed at every step. Compared to the 

streamer, the leader presents a single channel, much warmer and conductive. The average breakdown 

field can then be much smaller than the critical field of the gas. 

The time interval between two leader steps (that is, the time between the formation of a corona 

and the completion of the transition from streamer to leader) can be divided into a "delay time tl", after 

which the leader becomes observable, and a "tls leader propagation time”. The “leader propagation time” 

is the total formation of the leader which can be subdivided into “time steps tps”, characteristics of the 

extensions of the leaders (Figure 1. 25).  When the leader propagates to the ground plane, breakdown 

occurs systematically. 

 

  

Figure 1. 25 : Schematic diagram of leader development. tc, time of formation of the first corona; tl, leader training 

time; tps, progression time of the precursor; tls, leader training time; tBD, breakdown time. Adapted from [121]. 
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1.VII.B. Propagation velocity of leaders 

Seeger et al. [67] measured leader propagation velocity in SF6 at around 104 m/s. These results 

are confirmed by the studies of Chatterton et al. [68] who measured leader propagation velocity in 

various electronegative gases, between 104 and 105 m/s. 

1.VIII. Additional parameters influencing electric discharges and 

breakdown properties in applications 

1.VIII.A. Electrode geometry and surface roughness 

1.VIII.A.i. Corona stabilisation process in divergent fields 

The influence of geometry will be explained by distinguishing two typical cases: quasi-

homogeneous and divergent field. One way to measure the distortion of the electric field is to express 

the “field utilization” factor 𝑧⁡ = ⁡
𝐸𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝐸𝑚𝑎𝑥𝑖𝑚𝑢𝑛
⁡ or “enhancement factor” 𝜂 =

1

𝑧
⁡. 

 

In divergent field (tip-plane,  large), the strengthening of the electric field leads to a corona 

discharge near the tip. The space-charge (Figure 1. 26) reduces the maximum field near the electrode, 

and thus an increased voltage is required to initiate the leader process, and the breakdown voltage is 

raised [69]. This effect called “corona stabilization” only exists in strongly divergent geometries.  

In strongly divergent electric field, the corona threshold voltage is significantly lower than the 

breakdown voltage. The corona threshold voltage always increases linearly with pressure (Figure 1. 27), 

but the breakdown voltage follows another variation. It increases with pressure before decreasing until 

reaching the threshold voltage corona effect for a pressure value called critical pressure. The breakdown 

voltage then merges with the corona threshold voltage and increases again with the pressure. 

Figure 1. 26 : Charge distribution of corona effect [69] 
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1.VIII.A.ii. Surface condition of the electrodes 

The surface condition of electrodes especially that of the cathode, can locally modify the electric 

field and therefore the breakdown voltage of the gas. Many studies have been carried out on this subject 

in different gases. 

In air, at atmospheric pressure, Feet et al [70] demonstrated that for quasi-uniform and non-

uniform fields, the microscopic field enhancement due to surface roughness has a very limited effect on 

the breakdown voltage, even at high degrees of surface roughness (> 200 µm). In SF6, in a uniform field, 

with electrodes of maximum roughness Rmax, the breakdown voltage will follow the Paschen curve as 

long as the product P.Rmax is less than 40 bar.μm [71]. 

1.VIII.B. Applied voltage wave shape 

Under uniform field, the presence of seed electrons is necessary for the discharge to start. The 

probability that a seed electron is present in the high field region is equal to 1 for long duration DC or 

AC voltages, but lower during an impulse voltage of small duration. The time between the application 

of voltage and the moment a seed electron appears is called the “statistical delay time”. The application 

of a field greater than the critical field will not systematically lead to breakdown [72]. Thus, under a 

short duration impulse the breakdown voltage gets a statistical character, and we can determine the 

voltage level corresponding to some breakdown probability (usually 5%, 10% or 50%). 

  

Figure 1. 27 : Voltage versus pressure characteristic of SF6 and a 75% SF6-25% N2 mixture for a point-plane 

gap and lighting impulse (1.2/50 µs) [122] 
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In an inhomogeneous field, the phenomenon is more complex and two cases must be 

distinguished: 

• For low pressures when corona stabilization is effective, a pulsed voltage allows less 

time for the space charge to form. The stabilization effect is lower, which leads to a 

reduced breakdown voltage compared to the alternating or DC wave. 

• Beyond a critical pressure, breakdown occurs systematically if the voltage is sufficient 

and if a seed electron is present: the breakdown voltage is then a statistical quantity and 

is larger under a pulse wave [65]. 

1.VIII.C. Impurities in the gas 

The influence of impurities (mainly humidity) on the breakdown voltage strongly depends on 

the geometry of the electrodes, on the nature and on the pressure of the gases [73]. 

In air, the influence of humidity on dielectric strength is small. For relative humidity values 

below 80 %, the breakdown voltage increases slightly with increasing humidity [74]. The presence of 

water molecules, which are denser than gas, slows down the avalanche phenomenon. For SF6, humidity 

favors the leader mechanism, and above all it plays an important role on the nature of the decomposition 

by-products of SF6. Under alternating voltage, it favours the appearance of a stabilized corona [75]. 

1.IX. Conclusions and outline of thesis 

The development of alternative gases to SF6 is a major challenge for reducing the impact of high 

voltage electrical installations on the environment. Hydrofluoroolefin constitutes a promising 

replacement solution for medium voltage systems, due to its low environmental impact, its non-toxicity, 

and its availability. 

As discussed in this chapter, a few studies already described the dielectric strength and the basic 

characteristics of the discharges in the HFO in strongly divergent fields. The degradation of HFO due 

to discharges was observed, but a negligible influence on breakdown values in divergent fields was 

reported. To design and optimize the use of HFO in practical insulations, it is necessary to much better 

characterize and understand the behaviour of discharges. In the context of an application to medium 

voltage gas-insulated switchgear, several very specific characteristics of this application are scarcely (or 

not at all) represented in the literature, and therefore require significant additional experimental studies: 

• The behavior of the HFO when subjected to a strong quasi-uniform electric field; 

• The influence of electrode geometry and pressure on the behavior of the HFO; 
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• The effect of degradation due to discharges on the dielectric strength of the HFO, and 

the main parameters relevant for the gas degradation. 

Chapter 2 describes the experimental approach implemented, via the presentation of the 

experimental device and the physical diagnostics deployed to characterize the discharges generated. The 

methods used to evaluate the breakdown voltage in the application context are also presented. 

Chapter 3 corresponds to the experimental characterization of the physical properties of pre-

discharges in a strongly divergent field.  

• The fundamental characteristics of the pre-discharges generated in the HFO by a pulse 

wave are compared to that of air and SF6 as a function of pressure, applied voltage and 

electrode geometry. The different breakdown processes in the HFO (streamer and 

leaders) will be evoked to understand its behavior. The properties of leaders will be 

evaluated by high speed images, streak recording, and optical emission spectroscopy. 

Electrical properties will be determined by time-resolved current and voltage 

measurements, to describe leaders as they propagate. 

• The study of “breakdown modes”, either controlled by initiation or propagation 

depending on geometry, and leading to rather different influence of pressure; 

• The proposition of first design rules under strongly divergent field for the application 

in MV devices. 

Chapter 4 is devoted to the dielectric properties of the HFO under conditions closer to those of 

the application, namely a quasi-homogeneous field. 

• A significant degradation of the HFO properties with breakdown will be demonstrated 

in a quasi-homogeneous field. The evolution of the breakdown voltage and the delay 

time in a homogeneous field will be studied under different pressure and waveform 

conditions, and gap geometry. 

• The parameters of the HFO degradation will be studied according to the energy injected 

into the discharge, highlighting the influence of the dust deposit formed on the 

electrodes. Physico-chemical measurements of the degraded gas and dust will provide 

information on the degradation of HFO. 

• A conclusion, taking up the results of chapters 3 and 4, will allow us to discuss the 

design rules applicable in MV with the HFO. 

The conclusion will include a summary of the main results obtained, discuss the capacity of 

HFO to replace SF6, and present perspectives associated with this work.  
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2.CHAPTER 2: Materials and methods 

2.I. Gases 

HFO-1234ze(E) or trans-1,3,3,3-tetrafluoropropene comes from the company Inventec 

performance chemicals with a purity greater than 99.5% and a water content of less than 50 ppm. Sulfur 

hexafluoride, SF6, comes from the same company with a purity greater than 99.9%. The air used comes 

from Air Liquide with a purity greater than 99.999%.  

2.II. Description of the test cell  

The test cell has been designed to perform measurements up to 0.3 MPa absolute pressure and 

200 kV maximum voltage. The cell (Figure 2. 1) consists of a cylindrical PVC structure, with two quartz 

windows to allow visualization of the discharges. For filling the cell, the filling circuit is different from 

the pumping circuit to avoid polluting the cell with discharge by-products during filling. 

 

2.III. Electrode configurations 

The inhomogeneous fields ( > 10) are chosen for a more convenient study of pre-discharge 

phenomena with low statistical delays, and for studying the worst breakdown conditions in MV devices 

(occurring e.g. at triple point). Weakly heterogeneous fields ( < 10) are chosen to study the behaviour 

Figure 2. 1 : Test cell for measurements up to 0.3 MPa and 200 kV maximum 
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of the gas under conditions close to those present in MV devices. The electrode configurations (Table 

2. 1) consist of an upper electrode connected to high voltage. This electrode shape was changed 

depending on the experiments carried out. It can be a point electrode (radius of curvature: Rc = 0.2 or 

0.5 mm) or a sphere (Rc = 1.2 mm, 2 mm, 5 mm or 10 mm). The material of these electrodes is stainless 

steel. The lower electrode is a 15 cm diameter aluminium disc connected to ground.  

Table 2. 1: Representation of the different geometries studied 

Strongly inhomogeneous Weakly inhomogeneous Homogeneous 

  

 

Rc (mm) d (mm)  Rc (mm) d (mm)  Rogowski profile,  = 1,1 

0,2 
10 28 

1,2 
10 7 

 

50 90 50 21 

0,5 

10 13 2 50 14 

20 22 3,5 10 3,5 

50 40 

5 

10 2,5 

100 64 20 4 

 

50 7 

10 
10 1,7 

20 2,5 

A characteristic parameter of the studied geometry is the enhancement factor of the field 

𝜂 =  
𝐸𝑚𝑎𝑥

𝐸𝑚𝑜𝑦
. The closer η is to 1, the more homogeneous the field. In order to characterize this parameter, 

simulations with the ComsolTM software are carried out for the various geometries studied in order to 

calculate the maximum field Emax at the tip electrode. Simulations were also carried out with another 

electromagnetism software (GetDP) [76], [77] 

Figure 2. 2 is an example of simulation of the maximum electric field for a geometry with a 

radius of curvature (rod-plane with Rc = 0.5 mm), an applied voltage of 1 V and an inter-electrode 

distance (d = 10 mm). In these simulations, the maximum values of the electric field are concentrated 

d = 5 mm 
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around the electrode brought to the high voltage, i.e. the upper electrode. It is important to consider a 

mesh domain at least three times greater than the inter-electrode distance to obtain a correct result. 

 

Figure 2. 3 shows the distribution of the voltage and Figure 2. 4 shows the distribution of the 

electric field with a maximum of 1.6 V/mm. To obtain a value of the maximum field closest to reality, 

the whole electrode support (Figure 2. 5) was also modelled. In this case, the value of the maximum 

field at 1 V is 1.32 V/mm instead of 1.6 V/mm with a simplified configuration (rod-plane in Figure 2. 

2, variation of 18%). Therefore, all calculations of the maximum field were obtained while respecting 

the real electrode configuration of the experiment. 

         

Figure 2. 6 represents the field enhancement factor  for the different geometries studied. The 

field reinforcement factor  varies from 90 for the most inhomogeneous geometries to 1.5 for the most 

homogeneous geometries. 

  

Figure 2. 2 : Example of modelling of the field for a needle with a radius of curvature of 0.5 mm 

and an inter-electrode distance of 10 mm for an applied voltage of 1 V 

Figure 2. 3 : Electrical potentiel obtained (Rc = 0.5 mm 

and d = 50 mm) 

Figure 2. 4 : Example of modelling of the maximum field 

Emax (V/mm) (Rc = 0.5 mm and d = 50 mm) 
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Figure 2. 5 : Calculation of the maximum field in the real configuration of the study (point of radius 

of curvature 0.5 mm and inter-electrode distance of 10 mm) 

Figure 2. 6 : Field enhancement factor for the different geometries studied 
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2.IV. High voltage generators 

The voltages used during the tests are DC or pulse, each type requiring a specific generator.  

2.IV.A. Direct voltage 

 

DC voltage experiments were carried out to characterize the degradation of the gas as a function 

of the energy injected (chapter 4). Time-resolved arc voltage is measured with a NorthStar PVM-5 high 

voltage probe (60 kV, 120 MHz). The breakdown current is measured at ground level with a current 

probe (Stangenes model N°0.5-0.01, risetime = 20 ns). In order to modify the energy injected into the 

discharge, the non-inductive carbon resistor R2 (10 Ω to 1 kΩ) was modified to obtain the different 

energies. Voltage is applied with a ramp of 500V/s. When measurements are performed without R2 and 

C, the energy dissipated into the arc is limited by the charge of the parasitic capacitance Cp of the test 

cell and connections. The measured value of this capacitance Cp is 22 pF. 

2.IV.B. Impulse voltage 

The setup (see Figure 2. 9) includes a Marx pulse generator, voltage divider, series resistor, test 

cell, oscilloscope, intensified camera, photomultiplier, and computer. These test devices are placed in a 

Faraday cage and controlled by a control desk outside the cage.  

Figure 2. 7 : Schematic representation of the configuration used for the DC breakdown measurements 
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A pulse voltage is characterized by its amplitude, its rise time tm (time taken for the signal to go 

from 10% to 90% of its maximum value) and its fall time td (time taken for the signal to decrease from 

its maximum value down to 50% of this, see Figure 2. 10). 

Figure 2. 8 : Photograph of the test system 

Test cell 

Photomultiplier 

Optical fiber 
transmitter 

Series resistor Marx generator 

Capacitive 
divider 

Figure 2. 9 : Schematic representation of the configuration used for the impulse breakdown measurements 
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A Marx generator is used to obtain this type of voltage; it is a set of resistors, spark gaps and 

capacitors arranged in 5 stages such that the capacitors are charged in parallel under a maximum voltage 

of 100 kV, and are connected in series at the desired instant thanks to spark gaps: the available maximum 

voltage is then 500 kV, neglecting the losses.  

The series and parallel resistors respectively determine the rise time and the fall time of the 

voltage wave. Their values were chosen in order to obtain two types of impulse waves during the 

experiments. In the first case, we used a standard lightning shock wave LI (tm = 1.2 s, td = 50 s) in 

accordance with the standards for testing electrical equipment. The second wave used has a shorter rise 

time and a longer fall time, to get a more constant voltage during the initiation and propagation of the 

discharge STI (tm = 0.8 s; td = 1400 s).  

The voltage is measured via a very high voltage capacitive divider. For impulse waves, this is a 

capacitive divider (Cmesure = 150 pF) in parallel with the cell. The electrical signals are recorded with a 

Tektronix MDO 3054 digital oscilloscope with a bandwidth of 500 MHz and a high-velocity sampling 

rate of 2.5 G/s. The current associated with the generation and propagation of gas discharge phenomena 

is measured on the tip electrode side using an optical fiber coupling system made in the laboratory. Its 

bandwidth is 100 Mhz. The transient currents are measured across a 5  resistance in series with the 

electrode and the system is protected against over-currents due to breakdowns by spark gaps connected 

in parallel.  

Current measurements on the high voltage side offer many advantages over measurements made 

at ground level. In particular, during the rising edge of the voltage, only the charging current of the point 

extremity is measured (a few mA). Provided this current is smaller than discharge current, discharges 

(e.g. streamers) can be detected even during the voltage rise. 

STI 

LI 

Figure 2. 10 : Characteristic parameters of a pulse wave 
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2.IV.C. Breakdown voltage measurement procedures 

The purpose of these measurements is to obtain comparative breakdown voltage values for a 

large range of configurations. Breakdown voltage varies as a function of several parameters such as 

voltage polarity, geometry of electrodes, distance between electrode, etc. The measurements usually 

show some scatter, and it is necessary to perform several measurements for each configuration, in order 

to appreciate the statistical scatter. 

2.IV.C.i.  Method 1: Experimental procedure to determine the probability of occurrence of PD and 

breakdown: “multiple steps method”. 

In addition to the breakdown voltage measurements, the initiation voltage of pre-disruptive 

phenomena is characteristic of gases. To obtain this information, the following method has been applied. 

At a fixed voltage 15 voltage shots are taken and the number of pre-discharges and/or breakdowns are 

counted. Thus, the probability of pre-discharges and breakdowns occurrence is obtained. Then the 

voltage is increased by 5 kV steps, the procedure stops when the breakdown probability is 100%. 

According to the standard CEI-60060, this procedure corresponds to the “class 1” test method. With this 

method any probability of breakdown can be determined (1% to 99%).  

Figure 2. 11 : Discharge current measuring device on the high voltage side 



CHAPTER 2: Materials and methods 

43 

 

2.IV.C.ii. Method 2: Experimental procedure for breakdown measurements: “up and down” method 

Several different procedures can be used to measure breakdown voltages. In our investigations, 

the procedure described below is used. It provides a good repeatability of measurements, and it’s close 

to the industrial procedure used for validation of apparatus. 

 

The measurement starts from 15 kV (i.e. the minimum value which can be applied with our 

Marx generator). The applied voltage is raised by 2 kV steps until breakdown (Figure 2. 13). The time 

between each shot is fixed to 30 s. After breakdown, the voltage is lowered by 10 kV and raised again 

up to breakdown. This process was repeated 15 times for each sample. According to CEi-60060, this 

Figure 2. 12 : Experimental “multiple steps” procedure to determine the 

probability of occurrence of PD and breakdown 

Figure 2. 13 : Experimental procedure for breakdown measurements 
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procedure corresponds to “class 2” methods. With this method the probability of breakdown is estimated 

at around 25%. 

2.V. Optical measurements 

2.V.A. Measurement of photo-currents 

The light emitted during the propagation of the discharge is measured by a photomultiplier (RTC 

56AVP) placed in front of a window of the test cell and connected to a 50  input of the oscilloscope. 

This photomultiplier detects light with a wavelength between 300 nm and 600 nm. An adjustable 

diaphragm makes it possible to limit the quantity of light received below the saturation threshold of the 

photomultiplier.  

2.V.B. Intensified camera 

To visualize the discharges, a high-speed gated image intensifier (Hamamatsu C9546-03) was 

used to capture a "snapshot" of the high velocity phenomena occurring in extremely short time frames, 

by means of a gate operation (down to 3 ns). The spectral response of the intensifier is between 200 and 

800 nm. The intensifier is coupled to a Hamamatsu C11440 digital camera in order to obtain an image. 

The lens used has a focal length of 50 mm. 

2.V.C. Measurements of streamers and leader propagation velocity 

 
Figure 2. 14 : Characteristic measurements of voltage, current, camera signal and light emission 
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From the measurements of photo-currents and currents coupled to imaging, a propagation 

velocity of the pre-discharges is obtained. For this, the voltage, current, camera and photo-current signals 

are synchronized with a resolution less than 1 ns in order to correct measurements from experimental 

delays in cables, photomultiplier, and current probe. Thus in Figure 2. 14, the propagation time of the 

phenomenon is obtained (ti - tend). With the camera, the corresponding propagation length lp of the 

phenomenon is extracted (Figure 2. 15). Then the velocity is simply calculated:⁡𝑣 =
𝑙𝑝

𝑡𝑖−𝑡𝑒𝑛𝑑
. From these 

images, the diameter D of the streamers or leaders is also measurable. 

2.V.D. Spectroscopic measurements 

The light emitted by the discharge is recorded by a 2D CCD detector. This light is analyzed by 

an Acton Research Corporation spectrograph of the Spectra-Pro 300i model with a focal length of 

300 mm and an f/4 aperture. This spectrograph is equipped with three gratings: one of 150 lines/mm 

and two of 1200 lines/mm. 

Table 2. 2 : Characteristics of the arrays of the ARC spectrograph 

Network (lines/mm) Spectral window (mm) Blaze (nm) Dispersion (nm/pixels) 

150 260 500 0.507 

1200 33 300 0.065 

1200 33 750 0.065 

The photo-detector is cooled with liquid nitrogen, and background noise is minimal when the 

temperature is around - 130°C. Geographical segmentation of the discharge channel is carried out using 

the CCD control software, which allows several areas of the visualized space to be recorded. It is thus 

p 

Figure 2. 15 : Image  of a streamer being propagated in the air (Rc = 0,5 mm and  d = 50 mm) allowing to 

measure the length of propagation lp 
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possible, for example, to define 7 lines of five pixels in width. These lines are adjacent and cover an 

area centered on the fault. 2D CCD has a definition of 512*512 pixels. The device function 

(spectrograph + CCD) can be described by a Gaussian of width at half height equal to 0.12 nm for 

gratings at 1200 lines/mm. 

 

In order to obtain usable electric discharge spectra, it is necessary to accumulate light on a high 

number of breakdowns. In practice, the CCD is opened for 300 seconds during which about fifty voltage 

pulses are applied. The conditions are chosen to systematically trigger either a leader discharge or a 

streamer. For the breakdown, an acquisition of 20 seconds on a single breakdown is carried out. 

  

Discharge 

5 division of 

the landfills 

Figure 2. 16 : Representation of the segmentation of the 2D CCD 
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3.Chapter 3: Breakdown modes, and characterisation of 
pre-disruptive phenomena in HFO in divergent field 

This chapter presents the different discharge regimes and breakdown modes recorded in HFO 

in a highly inhomogeneous field. Their phenomenology will be described and discussed (pre-breakdown 

mechanism, propagation velocity, stopping length, etc…). In identical conditions, experiments will be 

also carried out in SF6 to highlight the main differences between these electronegative gases. Although 

this work is mainly focused on HFO, some results will be also obtained in air, since this gas may also 

constitute an alternative to SF6 for medium voltage insulation. Lastly, the results obtained in a strongly 

divergent field will be analysed in order to derive practical consequences for the design of MV 

switchgear insulation with HFO. 

3.I. Definitions of “propagation” and “initiation”-controlled 

breakdown 

3.I.A. Introduction 

Figure 3. 1 shows an example of an oscillogram obtained during a breakdown experiment, in a 

strongly divergent field. The three curves represent the applied voltage (black), the discharge current 

(blue) and the light emitted by the discharge (dark cyan). Current and light appear as negative signals 

due to measurement systems (photomultiplier, and current probe). 

  

Figure 3. 1 : Oscillogram of an experiment leading to breakdown in HFO 

(Rc = 0.5 mm, d = 50 mm, P = 0.1 MPa) 
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From this recording, four types of information are extracted: 

• The instantaneous initiation voltage Ui: it corresponds to the first peak of light (and 

current) emitted by the pre-discharge; 

• The breakdown voltage UBD: it is obtained just before the applied voltage drops 

suddenly at the moment of breakdown; 

• The initiation delay ti: this is the delay for the appearance of a first discharge. It is 

measured at the time of the first current or light peak. The origin of time is arbitrarily 

taken at the onset of voltage rise; 

• The breakdown delay tBD: it is taken at the moment when the voltage drops suddenly. 

Two breakdown modes have been identified in HFO depending on the geometry. For very 

divergent fields, light emission as well as current peaks are observed without systematically leading to 

breakdown (Figure 3. 2). These phenomena constitute partial discharges (PDs). When the applied 

voltage is increased, the amount of light and current pulses is larger, and the discharge propagation 

lengths increases until the plane electrode at the breakdown instant (Figure 3. 3). 

  

  

Figure 3. 2 : Leader not leading to breakdown in HFO 

(Ua = 86 kV, Rc = 0.2 mm, d = 50 mm, P = 0.1 MPa) 

Figure 3. 3 : Leader leading to breakdown in HFO 

(Ua = 94 kV, Rc = 0.2 mm, d = 50 mm, P = 0.1 MPa) 
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On the other hand, when the field distribution is more homogeneous, no phenomenon of pre-

discharges preliminary to the breakdown is visible at voltage lower than UBD. Every pre-breakdown 

phenomenon initiated propagate very quickly to breakdown. It is very difficult to obtain an image of 

pre-breakdown phenomenon due to the very short time between initiation and breakdown ( 200 ns). 

 

These two different breakdown modes have been observed in HFO in a variety of conditions 

(electrode geometry and pressure), and will be discussed more thoroughly in chapters 3 and 4. Since 

these modes will be frequently used in the following text to classify experiments into two categories, 

we will summarize their main features in the next section. 

3.I.B. Discharge initiation and breakdown initiation frequency 

Depending on the enhancement field factor (which depends on Rc and d), a statistical frequency 

of occurrence of pre-discharges and breakdowns can be determined. From the current and voltage 

measurements (Figure 3. 1), the initiation voltage Ui and the breakdown voltage UBD are measured in 

order to plot the occurrence probability frequency graphs, using the “multiple steps” method (see 

2.IV.C.i p.42) 

In a very inhomogeneous field (Figure 3. 5 for  = 40 and  = 21), the initiation voltage is lower 

than the breakdown voltage and increases with pressure, whereas the breakdown voltage remains almost 

unchanged when the pressure increases. In a more homogeneous field ( = 7) the breakdown voltage is 

equal to the pre-discharge initiation voltage, and increases with pressure. 

  

Figure 3. 4 : Breakdown in degraded HFO (Ua = 73 kV, Rc = 5 mm, d = 10 mm, P = 0.1 MPa) 
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Rc = 0.5 mm, d = 50 mm, η = 40 Rc = 1.2 mm, d = 50 mm, η = 21 

  

Rc = 5 mm, d = 50 mm, η = 7  

 

 

Figure 3. 5 : Frequency of initiation and breakdown as a function of the pressure obtained on 15 shots “multiple steps” 

method. 

To further illustrate the difference between the strongly and weakly inhomogeneous cases, 

Figure 3. 6 and Figure 3. 7 represent the instantaneous initiation voltage Ui as a function of the maximum 

applied voltage Ua. With a strongly divergent field (Figure 3. 6), the initiation voltage remains almost 

constant as the applied voltage Ua increases. In this case, the initiation of the discharge occurs during 

voltage rise at a nearly constant voltage for fixed pressure. The breakdown is not determined by the 

onset of initiation, but occurs at higher voltage, when discharges are able to propagate up to the opposite 

electrode (see next sections). In a strongly divergent field, we will then speak of breakdown “controlled 

by propagation”. The measured breakdown voltage UBD represents the voltage required to induce 

propagation up to the plane (Ui < UBD). 

When the field is more homogeneous (Figure 3. 7), the initiation voltage is equal to the 

maximum applied voltage (i.e. discharge appear after the voltage rise), and also to the breakdown 

voltage. Indeed, when a pre-discharge is initiated, it systematically leads to breakdown. We will then 
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speak of breakdown “controlled by initiation”: the measured breakdown voltage UBD represent the 

voltage required to initiate a discharge (Ui  UBD). 

  

When the breakdown is controlled by propagation (Figure 3. 6), the increase in pressure slightly 

increases the initiation voltage Ui of discharges (+ 50% between 0.1 and 0.2 MPa). When breakdown is 

controlled by initiation, the increase in pressure also increases the initiation voltage (+ 100% between 

0.1 and 0.2 MPa). In the latter case, since UBD = Ui in inhomogeneous field (Figure 3. 7), increasing the 

pressure will significantly increase the breakdown voltage of HFO. 

3.I.C. Summary of tests carried out for propagation-controlled 

breakdown 

Since two breakdown modes have been identified, it is interesting to know at which field 

enhancement factor  the breakdown mode transition occurs (Figure 3. 8). The figure includes numerous 

experiments (in divergent and quasi-homogeneous field) carried out in a wide range of electrode radii 

Rc (from 0.2 to 10 mm), and gap distances d (from 10 to100 mm). It appears that   10 constitutes a 

reasonable criterion able to distinguish between breakdown modes. 

  

Figure 3. 6 : Initiation voltage Ui as a function of the 

applied voltage Ua in a very inhomogeneous field in 

HFO (Rc = 0.5 mm, d = 50 mm, η = 84) 

Figure 3. 7 : Initiation voltage Ui as a function of the 

applied voltage Ua in a weakly inhomogeneous field in 

HFO (Rc = 5 mm, d = 50 mm, η = 2.5) 
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When Ui < UBD (η > 10), breakdown is controlled by propagation of the discharges. If 

Ui  Ua = UBD (η > 10), the breakdown is controlled by initiation. In a real medium voltage system, the 

design will be optimized to achieve a low  (usually  < 10), and breakdown should be controlled by 

initiation. However, under exceptional circumstances, local high field ( > 10) may occur (for instance 

around triple points, or with moving metallic particles). The problem of discharges occurring along solid 

surfaces constitutes another issue that will not be considered in this work. Either initiation and/or 

propagation of discharges can be influenced by surfaces, and the criteria for initiation or propagation-

controlled breakdown may hence by modified. 

The measurements presented in Figure 3. 8 were obtained using repetitive breakdown tests, i.e. 

in slightly degraded gas. The measurements obtained when  < 10 will be detailed in chapter 4. Table 

3. 1 presents a summary of the experimental conditions used for the tests detailed in this chapter when 

 > 10. 

  

Figure 3. 8 : Difference between the initiation voltage and the breakdown voltage as a 

function of the field strengthening factor (𝜂 =
𝐸𝑚𝑎𝑥

𝐸𝑚𝑜𝑦
, P = 0.1 MPa). 



Chapter 3: Breakdown modes, and characterisation of pre-disruptive phenomena in HFO in 

divergent field 

53 

 

  

Gas Rc (mm) Gap (mm) η
Pressure 

(MPa)
Polarity Ui (kV) ti (µs) UBDm (kV) tBD (µs)

0.13 + 42 ± 2 1 ± 0,1

0.13 - 69 ± 4 2 ± 1

0.13 + 48 ± 6 1,3 ± 0,2

0.13 - 60 ± 2 2 ± 1,4

0.01 15 ± 3 0,4 ± 0,3 23 ± 1 6

0.02 21 ± 2 0,3 ± 0,1 49 1,5

0.03 32 ± 13 0,3 ± 0,1 64 1,4

0.03 43 ± 13 0,6 ± 0,2 75 1,4

0.05 34 ± 6 0,2 ± 0,& 82 1,2

0.1 50 ± 4 0,8 ± 0,1 90 ± 7 1,7 ± 0,4

0.2 60 ± 7 0,5 ± 0,1 93 ± 5 1,4 ± 0,2

0.3 76 ± 6 0,6 ± 0,1 102 ± 2 1,1 ± 0,1

0.01 18 0,3 32 3

0.05 58 ± 15 0,3± 0,2 115 ± 12 16

0.1 105 ± 25 0,5 ± 0,2 157 ± 7 2,5 ± 0,5

0.01 24 ± 4 3 ± 2 45 ± 4 3 ± 2

0.02 59 ± 13 1 ± 0,4 65 ± 3 1,3± 0,4

0.05 33 ± 3 0,2 ± 0,1 95 ± 0,5 1,3 ± 0,2

0.07 59 ± 15 0,7 ± 0,5 103 ± 4 1,4 ± 0,2

0.1 70 ± 12 0,4 ± 0,1 120 ± 7 1,2 ± 0,3

0.2 85 ± 14 0,4 ± 0,1 124 ± 6 1,2 ± 0,2

0.3 81 ± 17 0,5 ± 0,1 115 ± 5 1,3 ± 0,4

0.01 40 ± 2 1,5 ± 0,1 45 ± 1 16 ± 5

0.05 68 ± 11 0,2 ± 0,1 144 ± 7 1,7 ± 0,2

0.1 201 ± 6 2 ± 0,2

0.1 37 ± 6 0,5 ± 0,2 55 ± 1 3 ± 1

0.2 33 ± 8 0,2 ± 0,1 84 ± 1 15 ± 6

0.3 51 ± 7 0,4 ± 0,2 97 ± 1 10 ± 2

0.1 44 ± 6 0,4 ± 0,2 89 ± 5 15 ± 5

0.2 30 ± 10 0,3 ± 0,2 160 ± 10 30 ± 20

10 13 0.1 + 26 ± 2 0,6 ± 0,4 36 ± 2 0,8 ± 0,1

20 22 0.1 + 34 ± 4 0,3 ± 0,1 56 ± 1 1 ± 0,1

0.1 + 39 ± 3 1,8 ± 0,3 85 ± 3 1,6 ± 0,5

0.15 + 50 ± 1 1,6 ± 0,1 80 ± 2 0,8 ± 0,2

0.2 + 61 ± 3 1,3 ± 0,1 88 ± 3 0,8 ± 0,6

100 64 0.1 + 60 ± 7 0,3 ± 0,1 115 ± 2 2,6 ± 0,3

0.1 + 57 ± 2 1,8 ± 0,2 79 ± 2 2 ± 0,5

0.15 + 63 ± 4 0,6 ± 0,3 86 ± 4 1 ± 0,2

0.2 + 71 ± 3 1 ± 0,6 87 ± 3 1 ± 0,2

0.1 + 68 ± 3 2,4 ± 0,8 81 ± 4 2 ± 0,5

0.15 + 71 ± 2 1 ± 0,8 82 ± 4 1 ± 0,2

0.2 + 82 ± 2 0,8 ± 0,3 86 ± 1 0,8 ± 0,1

Air 0.1 + 71 ± 5 21 ± 30

SF6 0.1 + 99 ± 5 5 ± 30

HFO 5 100 11 0.1 + 113 ± 3 1,3 ±  0,5 121 ±  4 3,3 ± 0,4

50 86

2 50 14

HFO

0,5
50 40

1,2 50 21

HFO

0,2 10 28

SF6

-

SF6

+

-

Air

+

-

HFO

+

0,2 50 86

86500,2

0,2

Table 3. 1 : List of conditions studied in this chapter when breakdown is controlled by propagation 
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3.I.D. Degradation of HFO in divergent field 

All the measurements presented in this chapter 3 were carried out in HFO having undergone 

many breakdowns with a low energy (< 1 J, see chapter 4, p.90). An irregular layer constituted by very 

fine black dust is visible on electrodes (Figure 3. 9), but does not affect the dielectric strength of HFO 

(Figure 3. 10). When repetitive breakdown are produced, no marked decrease of UBD is recorded, as 

previously reported in [7] with similar divergent field conditions. The results of chapter 3 were obtained 

mainly with degraded HFO, but no difference with undegraded HFO was observed in such divergent 

field. Chapter 4 will provide a quantitative study of HFO degradation, as a function of the energy 

dissipated in the discharge. 

 

  

Figure 3. 9 : Fine dust deposits on the electrodes after 15 breakdowns in point plane geometry 

in HFO (Rc = 0.5 mm, d = 10 mm, P = 0.1 MPa) 

Figure 3. 10 : « Up and down » method in HFO for 15 breakdowns ((Rc = 0.5 mm, d = 10 mm, P = 0.1 MPa) 
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3.II. Characterisation of pre-disruptive phenomena in strongly 

divergent field in HFO 

As discussed in Chapter 1, there exists two main pre-discharge processes in conditions relevant 

to MV insulation: streamers and leaders. The occurrence of these phenomena will be studied in HFO, 

and compared with air and SF6. 

3.II.A. Identification of pre-breakdown phenomena 

In air, at pressure close to 0.1 MPa, for centimeter distances, it is well known that the pre-

disruptive phenomena are streamers (Table 3. 2). These streamers propagate in the inter-electrode space 

to the plane without systematically leading to breakdown [55]. As the pressure increases, streamers 

propagate less easily, and their propagation lengths decrease significantly. Another characteristic of 

streamers is visible on the current signals obtained (Figure 3. 11). The streamer propagates as a single 

“jump” from the tip to the plane. It is associated with a fast current pulse with a short rise time (10-

50 ns) and a longer almost exponential tail (200-500 ns). When streamers propagate, a sharp drop in the 

electric field at the point electrode occurs due to the formation of a positive space charge [78]. The 

streamer is constituted of multiples branches propagating simultaneously (Table 3. 2). 

 

For SF6, at atmospheric pressure, a single very luminous channel is visible in the image in Table 

3. 2. On light and current signals, several successive peaks during propagation are visible. These 

recordings are characteristic of stepped leader propagation [65]. As the pressure increases, the length of 

the leaders decreases only slightly [79]. At low pressure (0.01 MPa), a clear change is observable. 

Several luminous channels are present as well as a single current peak. These features correspond to the 

same phenomena as in air, i.e. transition to streamers in SF6. 

Figure 3. 11 : Current of positive streamer in air (Rc = 0.2 mm, d = 50 mm, P = 0.1 MPa, Ua = 36 kV) 
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In HFO, the phenomena are almost identical to those observed in SF6. Namely, leader 

phenomena at 0.1 and 0.3 MPa, with several successive current peaks and a single bright channel during 

propagation, and streamers at low pressure (0.1 MPa) with numerous weakly luminous channels, and a 

single current pulse. From these observations, in highly inhomogeneous geometry, the HFO behaves as 

SF6 in terms of pre-discharge process. This conclusion is not very surprising, since HFO includes 

electronegative fluorine atoms. 

Table 3. 2 : Photo and current-voltage characteristic of pre-discharge phenomena in air, HFO, SF6, at different pressures in 

strongly divergent fields in positive polarity (Rc = 0.2 mm and d = 50 mm) 

P 0.01 MPa 0.1 MPa 0.3 MPa 

A
ir

 Too fast phenomena for 

recording 

 

 

Ua = 37 kV Ua = 58 kV 
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The less numerous measurements obtained in negative polarity present a different aspect from 

the positive polarity. For air, at 0.1 MPa, the negative discharges form very prominent cloud. This is 

related to the fact that lateral electron drift suppresses field enhancement in negative streamers. The 

streamer is more diffuse, it is difficult to observe branches. Our measurements indicate that the inception 

and propagation processes of positive and negative streamers in ambient air are quite different. In our 

measurements, the minimum delay for the opening of the camera (blue curve Table 3. 3) was 200 ns. 

Ua = 24 kV 
Ua = 83 kV 

Ua = 88 kV 

Ua = 37 kV Ua = 107 kV Ua = 105 kV 
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The initiation delay of streamers is of the same order of magnitude, or below. Our images correspond 

therefore to the end of the propagation of streamers, and do not show the entire propagation. 

In HFO at 0.1 MPa, the leaders still propagate, but the propagation lengths are shorter than in 

positive polarity. At low pressure (0.01 MPa), the discharge regime is of the streamer type in HFO and 

SF6, as in positive polarity. 

Table 3. 3 : Photo and current-voltage characteristic of pre-discharge phenomena in air, HFO, SF6, at different pressures in 

strongly divergent fields in negative polarity (Rc = 0.2 mm and d = 50 mm) 

P 0.01 MPa 0.1 MPa 

A
ir

 

 

 

 

Ua = - 65 kV 
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Breakdown voltage too high 

  

Ua = - 26 kV 
Ua = - 136 kV 

Ua = - 36 kV 
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3.II.B. Propagation velocity 

The behavior of the pre-discharge in the HFO is compared to that of air and SF6 in a divergent 

field. From the images and oscillograms in Table 3. 2 and Table 3. 3, the length and the propagation 

time of the streamers or leaders is obtained for air, SF6, and HFO. From these measurements, the 

propagation velocity can be calculated. 

3.II.B.i. Propagation velocity and streamer shape in air 

In air, from 0.1 to 0.3 MPa, only streamers are observed in positive polarity (Figure 3. 12). At 

0.1 MPa, the streamers in air propagate always up to the plane. For 0.2 and 0.3 MPa, the propagation 

length of the streamers depends on the applied voltage. Two important facts are noted: 

• For a fixed pressure, the streamer propagation velocity increases with the voltage. 

• For a fixed voltage, the propagation velocity of propagation decreases with the pressure.  

The calculated velocity is between 105 and 106 m/s in agreement with previous measurements 

(perform at 0.1 MPa [55]). The increase in pressure decreases the propagation velocity in air (Figure 3. 

12) [80]. When the pressure increases, the density of the gas increases, the collision number of particles 

also increases and the streamers propagation is impeded. 

In air, the transition from streamers to leaders could not be studied. Indeed, this transition occurs 

at products pressure x distance much higher (approximately 0.1 MPa/m). 

  

Figure 3. 12 : Velocity of  positive streamers in air as a function of voltage and pressure 

(Rc = 0.2 mm, d = 50 mm, error bar: standard deviation) with the results of [55] 
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In negative polarity, fewer measurements could be carried out (due to the voltage limit of the 

test cell: 200 kV) but the observation is the same: the pressure decreases the propagation velocity of 

streamers. 

 

From measurements made in air, the observed diameters of the streamers as a function of the 

pressure are shown in Figure 3. 14. The diameter of the streamers increases with voltage and decreases 

with pressure.  

 

These measurements present a large difference compared to the results published by Briels et al 

[55], and various factors may explain this difference. First, the applied voltage wave is different. Briels 

made his study with an impulse with a very fast rising front (< 150 ns), and a duration of more than 

Figure 3. 13 : Velocity of propagation of negative streamers in air as a function of voltage 

and pressure (Rc = 0.2 mm, d = 50 mm, error bar: standard deviation) 

Figure 3. 14 : Diameter of streamers in air as a function of voltage for different pressures 

(Propagation velocity of pre-disruptive phenomena in air as a function of pressure in positive 

polarity (Rc = 0.2 mm, d = 50 mm, max/min error bar) with the results of [55] 
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50 ns. The diameter of the streamers is strongly impacted by the rise time of the wave [81]. In addition, 

measuring the diameter of the streamers may show variations according to the method used. Depending 

on where the diameter is measured (close to the tip or the plane), the result is not the same. Also, 

depending on the gain of the camera and on the light intensity, the width of the streamer observed is 

different. 

Conversely, the velocity of streamers as a function of the diameter shows a good match between 

the results of Briels et al [55] and our measurements. At 0.1 MPa, for a diameter of 0.5 mm, the 

propagation velocity is close to 106 m/s. As the diameter of the streamer increases at higher voltage, the 

propagation velocity also increases. As the pressure increases, the velocity and diameter of the streamers 

decrease.  

 

3.II.B.ii. Propagation velocity for SF6 

In SF6 a large range of pressure has been investigated to observe the transition from streamer to 

leader. Three areas on Figure 3. 19 can be distinguished:  

• At low pressure (0.01 MPa), the breakdown is of the streamer type, and the velocity is 

of the order of 106 m/s as for streamers in air.  

• At intermediate pressure (0.02 to 0.05 MPa), it is difficult to define exactly the type of 

discharges: this constitutes a transition zone between the streamer and the leader. The 

average velocity is around 105 m/s 

• For pressures greater than 0.07 MPa, the breakdown is of leader type. Considering the 

scatter of measurements, the influence of pressure on the velocity of leaders is not 

Figure 3. 15 : Propagation velocity of streamers as a function of diameter and air 

pressure (Rc = 0.2 mm, d = 50 mm, max/min error bar) with the results of [55] 
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obvious. On the other hand, whatever the pressure, the increase of the voltage increases 

the leader propagation velocity. 

 

In negative polarity (Figure 3. 17), the conclusions are similar as in positive polarity, despite the 

few measurements that could be carried out. 

 

3.II.B.iii. Propagation velocity for HFO 

In HFO, the same 3 zones defined in SF6 are observed. 

• At low pressure (0.01 MPa), the breakdown is also of the streamer type, and its velocity 

is of the order of 106 m/s, like with streamers in air and SF6.  

Figure 3. 16 : Velocity of propagation in positive polarity in SF6 as a function of voltage and 

pressure (Rc = 0.2 mm, d = 50 mm, error bar: standard deviation) 

Figure 3. 17 : Velocity of propagation in negative polarity in SF6 as a function of voltage and pressure 

(Rc = 0.2 mm, d = 50 mm, error bar: standard deviation) 
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• At intermediate pressure (0.02 MPa), this is a transition zone between the streamer and 

the leader. 

• For pressures greater than 0.05 MPa, the breakdown is of leader type. In this case the 

pressure has no effect on the leader velocity. Whatever the pressure, the increase of the 

voltage increases the propagation velocity of leaders. 

When the pressure increases, the streamer propagation velocity (around 106 m/s) decreases 

whatever the gas nature. In HFO and SF6, the streamer-to-leader transitions are visible between 0.02 and 

0.05 MPa, and the propagation velocity drops from 106 to 104 m/s. In this transition area, the large error 

bars reflect a random number of streamers and/or leaders occurring. Above 0.05 MPa, the propagation 

velocity of leaders remains constant in the HFO and SF6 whatever the pressure, evidencing the large 

physical difference between streamer and leader processes. In contrast with streamers, leaders are 

constituted by a hot and therefore very conductive ionized channel ( 2000°C). 

 

In negative polarity, few measurements were carried out due to a breakdown voltage greater 

than 200 kV in the HFO and SF6. From the available data, the conclusions are similar to positive polarity: 

• The velocity of the streamers is around 106 m/s and decreases with pressure (Figure 3. 

13). 

• In HFO and SF6, the increase in pressure causes a change in the propagation mode from 

streamer to leader. Consequently, the velocity of propagation is closer to that of the 

leaders, namely 104 m/s (Figure 3. 19 and Figure 3. 17). 

Figure 3. 18 : Velocity of propagation in positive polarity in the HFO as a function of 

voltage and pressure (Rc = 0.2 mm, d = 50 mm, error bar: standard deviation) 
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The previous measurements were obtained from images and oscilloscope recordings with a 

fixed radius of curvature (0.2 mm) and distance (50 mm) for different pressure. Provided leaders induce 

immediately breakdown when they touch the plane, another method to estimate velocities can be 

obtained from the gap distance and the propagation time, calculated as tp = tBD - ti. From the large panel 

of measurements carried out (Table 3. 1), the propagation times and therefore the average propagation 

velocity of the leaders propagating to breakdown in different geometries can be extracted. Figure 3. 20 

presents the set of measurements obtained for  > 10. The color of the symbols represents the different 

distances, and their shape the different radius of curvatures. 

 

Figure 3. 19 : Velocity of propagation in negative polarity in HFO as a function of voltage and 

pressure (Rc = 0.2 mm, d = 50 mm, error bar: standard deviation) 

Figure 3. 20 : Propagation time of pre-discharge in HFO leading to breakdown in positive 

polarity (P = 0.1 MPa) 
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Propagation times in the HFO deduced from breakdown measurements at P = 0.1 MPa are 

between 0.1 and 3 µs (Figure 3. 20). When the gap distance increases, the propagation time logically 

also increases.  

Figure 3. 21 shows the propagation time plotted versus voltage at different pressures with a 

fixed distance of 50 mm. The shape of the symbols represents the different Rc and the pressure is 

represented by the color. Considering the scatter of measurements, it is almost impossible to clearly 

observe an influence of pressure and electrode radius. For a fixed voltage, the pressure and the radius of 

curvature hardly modify the propagation time of the leaders. On the other hand, when the applied voltage 

increases, whatever the pressure and the radius of curvature, the propagation time decreases on average. 

 

From the data in Figure 3. 21, the average leader propagation velocity (Figure 3. 22) is calculated 

by dividing the distance (50 mm) by the propagation time. The propagation velocity of leader in the 

HFO, although scattered, increases from about 2 to 9 104 m/s versus voltage, whatever the pressure and 

electrode radius. This result is in good agreement with the velocity measurements obtained from the 

camera (Figure 3. 18 for voltages greater than 70 kV). At other distances, similar velocities can be 

deduced (Figure 3. 20), but not enough data were collected to check the influence of voltage such as in 

Figure 3. 22. 

  

Figure 3. 21 : Propagation time of pre-discharge in HFO leading to breakdown in positive 

polarity (d = 50 mm) 
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3.II.C. Stopping length of leaders in HFO and SF6 

An important characteristic of leaders is the length to which they are able to propagate without 

leading to breakdown. Figure 3. 23 illustrates the “stopping length” ls of leaders in HFO and SF6 as a 

function of pressure and voltage. The stopping length increases versus voltage, and when leaders reach 

the counter electrode (d = 50 mm), breakdown occurs. The figure shows marked differences between 

the two gases.  

 

First, the development of leaders in HFO starts at voltages lower than in SF6 (- 30 kV on 

average) regardless of the pressure. Second, leader stopping length grows more slowly in SF6 compared 

Figure 3. 22 : Propagation velocity as a function of voltage in the degraded HFO for different Rc and pressure (d = 50 mm) 

Figure 3. 23 : Stopping length of leader phenomena in a highly inhomogeneous field in 

HFO and SF6 (Rc = 0.2 mm, d = 50 mm, max/min error bar) 
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to HFO: the applied voltage must be increased by 50 kV between initiation of the first leaders to 

breakdown in SF6, and only by 30 kV in HFO. These two observations allow us to conclude that leaders 

are initiated and propagate more easily in the HFO compared to SF6. These properties are consistent 

with the slightly lower breakdown voltages recorded in HFO in divergent field compared to SF6. 

In HFO, increasing the pressure to 0.2 MPa, induces no change in stopping length. At 0.3 MPa, 

slightly lower lengths are recorded, inducing a moderate increase of breakdown voltage. Similar 

conclusions are obtained in SF6. In both cases, the pressure has a small impact on propagation. 

In negative polarity (Figure 3. 24), the very few available data shows that the behaviour is 

similar to positive polarity, but for much higher voltages. 

 

3.II.D. Temporal development of streamers and leaders 

The aim of this section is to describe the sequence of phenomena leading to breakdown in a 

strongly divergent field. Our objective is to determine if the behaviour of HFO is fully comparable to 

that of SF6, and obtain a more precise description of pre-discharge propagation. 

On Table 3. 4, the scale and position of images obtained with the streak camera were adjusted 

to fit the time base of current and light measurements with the oscilloscope.  

  

Figure 3. 24 : Stopping length of leader phenomena in a highly inhomogeneous field 

in the HFO (Rc = 0.2 mm, d = 50 mm, max/min error bar) 
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Table 3. 4 : Streak camera images in air, HFO, and SF6 as a function of pressure, and synchronized recordings of current 

and light emission (Rc = 0.2 mm, and d = 50mm) 

P 0.01 MPa 0.1 MPa 0.3 MPa 

A
ir

 

 

 

 

H
F

O
 

 
 

 

Ua = 58 kV 

Ua = 18 kV 

Ua = 88 kV 

Ua = 100 kV 
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In SF6 and HFO for pressures of 0.1 and 0.3 MPa, the phenomenon of stepped leaders [65] 

characterizing electronegative gases is clearly identified. The current peaks correspond to the 

propagation of the leader steps, followed by a pause time before the next reillumination. As the pressures 

is increased, the leader steps become progressively smaller and the time interval between steps becomes 

shorter. The number of re-illumination and the pause time between 2 successive steps depends on the 

pressure and the nature of the gas. 

In air, at 0.1 MPa, phenomena leading to breakdown decompose in 2 main stages. First, the 

streamer propagates to the plane (1st current peak); we will speak of “primary streamer”. The second 

process is called “secondary streamer”. In the HFO at low pressure (0.01 MPa), there is a single streamer 

current peak, due to a single streamer propagating to the plane without systematically leading to 

breakdown. 

3.II.E. Pause time between leader steps 

Niemeyer [64] showed that an increase in pressure decreases the time between 2 re-illumination 

in SF6. It is difficult to give an exact time value between these 2 re-illuminations, but the figures in Table 

3. 4 in SF6 and in Figure 3. 25 show obviously a greater number of re-illuminations during the same 

time when the pressure increases, for SF6 and HFO.  

Ua = 117 kV 
Ua = 117 kV 
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Qiu et al. [80], [81] have shown that the time between 2 re-illuminations varies according to 

1/UaP (Figure 3. 26), and also that the initiation time varies as 1/P². This delay could not be measured 

due to the high speed of the phenomena. 

 

This delay could not be measured because of the excessively high velocity of the phenomena. 

Our measurements in HFO and SF6 show a good match with the results published in [83]. 

Figure 3. 25 : Total number of leader steps as a function of the pressure in the HFO and SF6 in positive polarity 

(Rc = 0.2 mm, d = 50 mm, P = 0.1 MPa, max/min error bar) 

Figure 3. 26 : Time between 2 re-illuminations in HFO and SF6 as a function of the product 

U*P with comparison with the data of Qiu (Rc = 0.2 mm, d = 50 mm and A = 1680) [83] 
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3.II.F. Leader step length 

Average leader step lengths were measured and are shown as a function of pressure in Figure 3. 

27. While there is clearly some uncertainty in the measured values, an inverse dependence of pressure 

is shown. 

 

Niemeyer and Pinnekamp [64] developed a simplified model for leader propagation, assuming 

that leader step progression is controlled by the range over which streamers can develop from the 

previous leader tip. By making a number of hypotheses, they show that the length of the step l can be 

expressed by the equation: 

𝑙 = ⁡
𝛾

(
𝐸
𝑃)𝑆𝑡

×⁡
𝑈

𝑃
⁡ (9)

 

where U is the applied potential, P the gas pressure, (E/P)st is the reduced field (around 4 kV/mm-

1.bar-1) and γ is a constant. Based on comparisons with step length measurements, Niemeyer and 

Pinnekamp concluded that equation 9 was valid in the range 1 mm < l < 30 mm with the constant γ = 0.3. 

By taking again the results published in [79], and by adding the measurements carried out in the 

HFO and the SF6 (Figure 3. 28), the variation of lengths of leaders steps roughly agrees with data of 

[79], but the limited pressure range investigated (0.1 to 0.3 MPa) prevents further conclusion. 

  

Figure 3. 27 : Leader step lengths in SF6 and HFO as a function of pressure (Rc = 0.2 mm, d = 50 mm) in 

comparison with the results of Chalmers et al. [79] (Rc = 0.05 mm, d = 30 mm) 
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3.II.G. Spectroscopy of emitted light 

A diagnostic technique commonly used for the investigation of gas discharges is the optical 

emission spectroscopy. This method can give information about a number of plasma properties, such 

as rotational and vibrational temperatures (Trot, Tvib), electron density and temperature (Ne, Te), etc.  

Spectroscopy measurements were performed in air, HFO and SF6 either at the time of 

breakdown, or for non-breakdown pre-disruptive phenomena in strongly divergent field ( = 86). These 

discharge phenomena do not propagate exactly along the gap axis. This complicates the acquisitions, by 

reducing the amount of light collected by the spectrometer entrance slit. To reduce this problem, the 

acquisitions were carried out for 8 minutes for series of 30 leaders. 

Figure 3. 29 shows the typical emission spectra of the streamer in air in the range 200–500 nm 

and the identification of the respective bands of the second positive system of molecular nitrogen N2 

(C3+
u-B

3+
g). To obtain the rotational temperature of N2 the simulated spectral profiles of N2 obtained 

from two simulation programs (SpecairTM and a simulated code) are compared with the measured ones, 

as shown in Figure 3. 30. We get the values of the rotational temperature Tr when a best fit between the 

two profile is achieved. Rotational temperature measurements are very important for gases discharges 

because the translational temperature inside a plasma (i.e. gas temperature) can be obtained by 

measuring Tr. Indeed, the nitrogen molecule has a nearly Maxwellian distribution among the rotational 

sublevels of a nitrogen emission spectrum, and rotational-translational relaxation mechanisms are 

nonadiabatic, which implies a fast equilibrium between rotational and translational degrees of freedom. 

Figure 3. 30 shows an example of an experimental spectrum compared with a calculated spectrum with 

Figure 3. 28 : Leader step length as a function of V/p for HFO and SF6 and adapted from Niemeyer [79] 
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Trot = 400 K. The vibrational temperature typically has values that lie between the gas temperature and 

the electron temperature [84]. 

During the breakdown phase, line emissions of neutral nitrogen and oxygen atoms can occur 

due to electron impact excitation of ground state atomic species, by direct dissociative excitation of 

N2/O2 molecules or by dissociative electronic recombination. The most important N I atomic emissions 

are NIR multiplets (3s 4P– 3p 4S0), (3s 4P–3p 4P0), (3s 4P–3p 4D0) and (3s 2
P–3p 2D0) at 746, 820, 868 

and 939. In the case of atomic oxygen, three multiplets, (3s 5S0 – 3p 5P), (3s 3S0–3p 3P) and (3d 5D0 – 3p 

5P), occurring at 777, 845 and 927 nm seem to be prominent. 

Iron I and II were also observed near the tip, linked to erosion of the tip during breakdowns. The 

excitation temperature was determined using relative line intensity method by using the iron and 

nitrogen spectral line, which was found to be in the range 9000 – 10000 K. 

In order to measure the Stark broadening precisely, the Ha half width was corrected to account 

for Van der Waals broadening (see Annex), the electron density was estimated to Ne = 1023 m-3. 

 

Figure 3. 29 : A typical emission spectrum from streamer in air exhibiting N2 (C3-B3) with assigned 

vibrational quantum numbers v'-v' (Rc = 0.2 mm, d = 50 mm, P = 0.1 MPa) spectrum not corrected 
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In SF6, in both cases (leaders and breakdowns), F I was visualized (Figure 3. 31) at an excitation 

temperature of 7000 K. This is the excitation temperature, and not the gas temperature. 

 

HFO is a complex gas, and many excited species are present. We find Fe I and II linked to the 

erosion of the electrode. There are also F I and II, C2, and C I naturally present in the HFO molecule. 

The electron densities obtained with Stark broadening of the Hβ and Hα lines are in the range 

(6.5 – 10) × 1022 m-3 (Figure 3. 32). Spectroscopic measurements of the C2 transition are illustrated in 

Figure 3. 33 and Figure 3. 34 which show spectra obtained in the breakdown phase and in the leader 

Figure 3. 30 : Example of comparison between second positive nitrogen system simulated by Specair (red) 

and measured experimentally (black) in air during the streamer discharge (Rc = 0.2 mm, d = 50 mm, 

P = 0.1 MPa) spectrum corrected (Tv = 5000 K, Tr = 500 K) 

Figure 3. 31 : Example of experimental spectrum of leader in SF6 (black) with a best fit synthetic spectrum of FI line 

(red). The experimental spectrum is corrected for the wavelength depending on sensitivity of the spectrometer 

(Rc = 0.2 mm, d = 50 mm, P = 0.1 MPa) 
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phase respectively. The rotational temperature was determined by fitting the spectrum with SPECAIR. 

The best-fit SPECAIR spectrum yields a rotational temperature of 5000 K in the breakdown phase and 

in the leader phase. However, the spectrum in Figure 3. 33, seems to show non-Boltzmann behaviour in 

the C2 rotational population distribution. 

The results of the analysis are presented in Table 3. 5. In the case of streamer in air, the gas 

temperature remains low (400 K) while the temperature in the case of leader in HFO reaches 5000 K. 

 

 

Figure 3. 32 : Example of experimental spectrum of breakdown in HFO (black) with a best fit synthetic spectrum of H  

line (red). The experimental spectrum is corrected for the wavelength depending sensitivity of the spectrometer 

(Rc = 0.2 mm, d = 50 mm, P = 0.1 MPa) 

Figure 3. 33 : Example of comparison between the spectrum of C2 simulated with Specair (red) 

and the one observed experimentally in HFO during the breakdown (black) with 

(Tv = Tr = 5000 K, Rc = 0.2 mm, d = 50 mm, P = 0.1 MPa, Ua = 86 kV) 
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Table 3. 5 highlights the species identified by spectroscopy as well as the corresponding 

temperature in air, HFO and SF6. 

Table 3. 5 : Different species identified in HFO, SF6 and air with corresponding temperatures 

Gas 
Pre-disruptive phenomenon Breakdown 

Species Temperature (K) Species Temperature (K) Ne (m
-3) 

Air 

(streamers) 
N2 

Tr = 400 50 
N I Texc = 9000  500  

O I   

Tv = 3000 500 
Fe I and II Texc = 10000  500  

H   Ne = 1023 m-3 

HFO 

(leaders) 

C2 
Tr = 5000 500 

Tv = 5300 500 

H  
 

Ne = 6.5-8.1022 m-3 

H  Ne = 1023 m-3 

Fe I and II Texc = 10000  500  

H  Weak 
F I and II Texc = 12000  500  

C2 Tr = 5000  500  

SF6 F I Texc = 7000 500 
F I Texc = 10000  500  

S II Texc = 9000  500  

 

  

Figure 3. 34 : Example of comparison between the spectrum of C2 simulated with Specair (red) and the 

one observed experimentally in HFO during the breakdown (black) with (Te = 10000 k, Tv = 5300 K and 

Tr = 5000 K, Rc = 0.2 mm, d = 50 mm, P = 0.1 MPa, Ua = 67 kV) 
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3.II.H. Conclusions 

The phenomenological behaviour of the HFO discharges in divergent field is very similar to that 

of SF6. Stepped leaders propagating at a velocity of 104 m/s are seen, which velocity is independent of 

the pressure. The time between re-illuminations is proportional to 1/UP and the step propagation length 

is dependent on the inverse of the pressure. 

A clear difference between SF6 and HFO is however illustrated by the stopping length of the 

leaders. The leader initiation voltage is lower in HFO than in SF6. The difference between initiation and 

breakdown voltage is also smaller in HFO than in SF6. Negative polarity is less critical than positive 

polarity, showing much higher initiation and breakdown voltage.  

In air, the propagation regime is of the streamer type (between 0.5 and 0.15 MPa/cm) with a 

velocity of 106 m/s. This propagation regime is also found in HFO and SF6 for product 

pressure x distance less than 0.1 MPa/cm, i.e. in conditions not relevant of applications. 

3.III. Breakdown voltage measurements in a divergent field and 

consequences for insulation design 

3.III.A. Comparison of HFO with air and SF6 

Dielectric design rules for MV switchgear are derived from the electric strength of the gas, 

determined in realistic field distributions, and with standardized voltage impulses. Generally, the 

positive lightning impulse wave is the most critical, and is thus used for the design. 

Breakdown voltages were measured using the “up and down” statistical method, relevant to 

characterize self-restoring dielectric materials (such as gases), and/or insulation with a very limited 

impact of the degradation due to repetitive breakdown experiments (Figure 3. 35 and Figure 3. 36). 
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If we consider the breakdown voltage obtained with the "up and down" method for  = 40, 

UBD = 81 kV (Figure 3. 35). This voltage corresponds to a breakdown probability of 23 % determined 

with multiple steps method in Figure 3. 5 for  = 40. For  = 21, with the "up and down" method, the 

breakdown voltage is 78.5 kV (Figure 3. 36), this voltage corresponds to a breakdown probability of 

16 % in Figure 3. 5 for  = 21. The "up and down" method used to obtain the breakdown voltage of the 

different gases gives an estimate of the breakdown probability at  20 %.  

Figure 3. 37 and Figure 3. 38 compare the inhomogeneous field impulse breakdown voltage 

(Rc = 0.2 mm and d = 50 mm) of air, SF6 and HFO. Very inhomogeneous fields distributions constitute 

a critical configuration, normally absent in a GIS. 

  

Figure 3. 35 : « Up and down » breakdown measurement for HFO (Rc = 0.5 mm, d = 50 mm, P = 0.1 MPa,  = 40) 

Figure 3. 36 : « Up and down » breakdown measurement for HFO (Rc = 1.2 mm, d = 50 mm, P = 0.1 MPa,  = 21) 
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In positive polarity (Figure 3. 37), at 0.1 MPa, the breakdown voltage of the HFO is 80 % that 

of SF6 and 150 % that of air. At 0.3 MPa, the breakdown voltage for the 3 gases is approximately the 

same (about 110 kV). When the breakdown regime is of the leader type, the increase in pressure does 

not influence very much the breakdown voltage (HFO and SF6 for pressures greater than 0.1 MPa). 

Conversely, when the breakdown regime is of the streamer type, the increase of pressure induces a large 

increase of the breakdown voltage (for HFO and, SF6 at P < 0.05 MPa and for air at all pressures). 

 

  

Figure 3. 37 : Average of 15 breakdown voltage in air, SF6 and HFO as a function of the pressure in 

positive polarity (Rc = 0.2 mm, d = 50 mm, max/min error bar) “up and down” method. 

Figure 3. 38 : Average of 15 breakdown voltage in air, SF6 and HFO as a function of the pressure in negative 

polarity (Rc = 0.2 mm, d = 50 mm, max/min error bar) “up and down” method. 
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An interesting characteristic is the difference between the initiation voltage and the breakdown 

voltage. In air (streamer mode), the initiation and breakdown voltage increases with pressure (+ 60% 

between 0.1 and 0.3 MPa, Figure 3. 39). This means that streamers already propagate at a voltage 2-

3 times lower than the breakdown voltage. In this case the breakdown criteria is not the initiation of the 

streamer, nor its propagation to the plane [58]. The measured breakdown voltage UBD represents the 

voltage requiered to induce a transition from streamer to breakdown, involving secondary streamers. In 

the same streamer regime in HFO and SF6 at 0.01 MPa, this difference between UBD and Ui is smaller 

(about 15 kV in both cases at 0.01 MPa Figure 3. 40). This means that the transition from a streamer to 

a breakdown arc occurs more easily in HFO and SF6 compared to air. 

Figure 3. 39 : Difference between initiation and breakdown voltage in positive polarity 

as a function of pressure for air(Rc = 0.2 mm, d = 50 mm, max/min error bar) 

Figure 3. 40 : Difference between initiation and breakdown voltage in positive polarity as a 

function of pressure for HFO and SF6 (Rc = 0.2 mm, d = 50 mm, max/min error bar) 
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Concerning streamers, a common hypothesis is that there exists a “stability field”, i.e. a minimal 

field allowing streamers to propagate. This field would also be the characteristic field present inside the 

streamer. This hypothesis is guided by the empirical observation that the ratio of applied voltage over 

maximal streamer length is approximately constant for a fixed gas and polarity, in point–plane and 

plane-plane geometry. This ratio has the dimension of an electric field. From Figure 3. 37, stability fields 

(Emean = Ua/d) for streamers can be determined in air at 0.1 MPa, SF6 at and HFO at 0.01 MPa. Table 3. 

6 shows the stability field obtained, and the comparison with values from the literature. 

Table 3. 6 : Value of the stabilization field from the literature and experimental 

Gas 
Estabilisation 

(kV/cm/bar) 
References 

Estabilisation experimental 

(kV/cm/bar) 

Air 4.4-5 [85], [86] 6.2 – 7.4 

SF6 40 – 50 [87] 48 – 46  

HFO No data 30 

In air, the stabilization field must be greater than 5 kV/cm/bar for streamers to propagate up to 

the plane. In our measurements, the average field is greater than 6 kV/cm/bar, and streamers logically 

propagated up to the plane. 

In SF6 at 0.01 MPa, the experimental stabilization field is greater than the theoretical one, and 

streamers also propagated to the plane. 

In HFO at 0.01 MPa the stabilization field is not known. From our measurements, the 

stabilization field of streamers is approximately 30 kV/cm/bar, i.e. slightly lower than in SF6. 

Concerning leaders in HFO and SF6 (P > 0.05 MPa), Ui increases when the pressure increases 

but the breakdown voltage is much less affected. The values of leader initiation voltages in SF6 are 

higher than in HFO (+ 30% at 0.01 and 0.1 MPa) in agreement with those derived the stopping length 

plot (Figure 3. 23). 

3.III.B. Consequences for the insulation design in HFO under impulse 

voltage with inhomogeneous field 

Several practical first conclusions can be derived from the data obtained under inhomogeneous 

field, regarding the insulation design under impulse voltage  

3.III.B.i. Leader minimum propagation voltage versus distance. 

In point-plane gap, Chalmers et al [79] show that when the pressure is lower than P1 (Figure 3. 

41), the breakdown in SF6 is of the streamer type and increases with pressure (a). Above P1, when the 

applied voltage wave is of pulsed type, breakdown results from leader propagation, and the breakdown 
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voltage shows a plateau (b). Under AC or DC, it goes through a maximum value due to corona 

stabilisation, and then decreases. The streamer onset voltage increases linearly with the pressure, and 

becomes equal to the breakdown voltage at a pressure noted Pc that depends on the geometry. This 

critical pressure decreases when the field becomes more homogeneous. 

The increase at low pressure (a) and the plateau (b) are also observed in our measurements with 

HFO under impulse (Figure 3. 42), with P1 about 0.05 MPa. In our measurements, the critical pressure 

Pc is equal to 0.2 MPa for Rc = 2 mm. For other Rc, it would be necessary to take measurements at higher 

pressures.  

 
Figure 3. 41 : Idealised V/P characteristic for a point-plane gap in SF6 [79] 
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On Figure 3. 42 it is interesting to observe that the initiation voltage increases with electrode 

radius Rc and pressure. Conversely, above 0.05 MPa the breakdown voltage UBD (i.e. the voltage 

required for leader propagation up to the plane) remains almost unchanged when Rc and pressure are 

changed. When distance is increased (Figure 3. 43), the breakdown voltage (i.e. leader propagation 

voltage Up) increases, since leaders must cross a longer distance to induce breakdown (their stopping 

length increases with voltage, see Figure 3. 23).  

With the available data, it is possible to show the influence of the distance on the leader 

propagation voltage (see Figure 3. 23). This plot can be fitted according to: 

𝑈𝑝 = 14.1341 ×⁡𝑑0.45291 (9) 

with Up the voltage in kV, and d the distance in mm. 

This equation provides the breakdown voltage (with a probability of about 20 %) that may occur 

in slightly degraded HFO, whatever the pressure and electrode radius, provided breakdown is in 

propagation-controlled mode (i.e.  > 10). A similar variation is observed in SF6, with breakdown 

voltage about 30 % higher. 

Figure 3. 42 : Initiation and breakdown voltage in positive polarity as a function of pressure for HFO ( d = 50 mm, 

max/min error bar) 
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The slope of the Up(d) plot in Figure 3. 43 corresponds to the average longitudinal field existing 

along the leader channel [88]. In HFO, the slope at 0.1 MPa is 0.9 kV/mm, compared to 1.6 kV/mm in 

SF6. This confirms that leader propagation in HFO is easier (more conducting channel), as previously 

concluded from stopping length measurements. Figure 3. 43 also confirms that leader propagation does 

not depends on Rc. 

3.III.B.ii. Criterion for leader initiation 

In the general case, breakdown in HFO can then be described with two typical parameters: 

• An initiation voltage Ui that depends on pressure and electrode radius Rc; 

• A “total propagation voltage” Up almost independent on pressure and radius Rc, that 

changes with distance d. Up is provided by equation 9. 

Depending on parameters (Rc, d, P), two typical cases can occur: 

• when Ui < Up, breakdown is propagation-controlled, and UBD  Up; 

• when Ui > Up, breakdown is initiation-controlled, and UBD  Ui. 

In propagation-controlled conditions  > 10), the Figure 3. 43 shows the variation of the 

propagation voltage Up versus distance, directly providing the value of breakdown voltage whatever the 

electrode radius and pressure. Below this curve, no breakdown can occur in HFO. It should be noted 

that Up in HFO is 70 % that of SF6, whatever the distance. 

In initiation-controlled mode, since initiation is primarily related to the maximum field in the 

gap, it is interesting to calculate the maximum field Ei occurring at the initiation voltage Ui with different 

electrode geometries (Rc, d). As the distance increases with fixed Rc (Figure 3. 43), the breakdown 

Figure 3. 43 : Leader propagation voltage Up in HFO as a function of distance (P = 0.1 MPa). 
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voltage increases, but Ei remains constant for HFO and SF6 (Figure 3. 44). When the radius of curvature 

Rc, is increased, Ei decreases. This shows that the maximum field in the gap does not constitutes a 

sufficient criterion to predict the initiation voltage. This has been observed in gases since a long time.  

A much better criterion is provided by the “streamer criterion” (∫ 𝑎̅⁡𝑑𝑥 = ⁡𝐾𝑠𝑡𝑟
𝑥

0
), considering 

that the initial avalanche must reach a minimum size to initiate a discharge (see chapter 1). Unfortunately 

data required to calculate this criterion in HFO (multiplication and attachment parameters) are not 

available today in the literature. Comparisons between the streamer criterion and measurements in air 

and SF6 will be carried out in next chapter 4, with less divergent field. 

Figure 3. 44 also shows that Ei with HFO and SF6 with Rc = 0.2 mm and 1.2 mm are close. 

Notice that this conclusion is valid for HFO slightly degraded by repetitive low energy discharges in our 

experiments. This suggests that methods already used to predict initiation in SF6 would provide a 

reasonable estimation for HFO. This assumption will be discussed in chapter 4. 

Figure 3. 45 shows Ei in HFO for the different radius of curvature at different pressure for a 

distance of 50 mm. At 0.2 MPa, the initiation field is higher than at 0.1 MPa. The pressure has indeed 

an effect on the initiation but not on the propagation nor on the breakdown in divergent field. A more 

elaborated analysis of initiation, integrating results obtained with initiation–controlled breakdown 

conditions will be presented in next chapter. 

 

Figure 3. 44 : Value of the initiation field Ei as a function of the distance when the breakdown is controlled by propagation 

(P = 0.1 and 0.2 MPa) 

P = 0.1 MPa P = 0.2 MPa 



Chapter 3: Breakdown modes, and characterisation of pre-disruptive phenomena in HFO in 

divergent field 

87 

 

3.III.B.iii. Influence of high voltage impulse shape. 

In addition to breakdown voltage measurements, the initiation and breakdown delay times 

provide additional information relevant for the practical properties of the gas. 

Figure 3. 46 and Figure 3. 47 showing ti and tBD versus calculated maximum field Ei at the tip 

are complicated to understand because they represent all measurements made when the breakdown is 

controlled by the propagation. Let's focus only on the position of the points, and not on the electrode 

configuration, nor on the pressure used. 

• Zone A corresponds to a time lower than the rise time of the pulse wave used (0.8 µs). 

Pre-discharges phenomena in HFO (Figure 3. 46) appear nearly always during this rise 

time with propagation-controlled conditions. Therefore, ti does not represents a purely 

statistical delay time, but it is strongly affected by the rise time of the wave;  

• Zone B in Figure 3. 46 shows that longer initiation times up to 2 µs can be observed 

only at low Ei values, i.e. with large Rc > 1 mm. This tendency will be confirmed in 

chapter 4 with larger Rc. 

Figure 3. 45 : Value of the initiation field Ei as a function of Rc when the breakdown is controlled by 

propagation in HFO (d = 50 mm) 
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Figure 3. 47 illustrates the breakdown delay time tBD in HFO (i.e. the sum of ti + leader 

propagation time). The majority of breakdowns occurs around the maximum voltage (between 1 and 

4 µs in zone B). In our measurements the fall time of the voltage wave is long (1400 µs). However, since 

tBD < 4 µs, one may conclude that with the shorter 1.2/50 µs standard wave (fall time at half value: 

50 µs), no large impact on measured breakdown voltage should occur. One again, this conclusion is 

valid only for slightly degraded HFO. We will see in the next chapter that large deviations from this 

conclusion will occur with less divergent fields and non-degraded HFO. 

Figure 3. 46 : Delay time to initiation when the breakdown is controlled by propagation in 

HFO in positive polarity 

Figure 3. 47 : Delay time to breakdown when the breakdown is controlled by propagation in HFO in positive polarity 
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Comparable short breakdown delays (a few µs) are seen both in degraded HFO and SF6 (Figure 

3. 48). In air, the breakdown delay time in identical conditions is much greater. This phenomenon is 

related to the long statistical delay for initiation of discharges in the air (up to more than 20 µs in Figure 

3. 20.) One may conclude than in air, the high voltage impulse shape should get a larger influence 

compared to SF6 and HFO. A slight increase of breakdown voltage should occur in air with shorter 

impulse such as the standard lighting pulse. 

  

Figure 3. 48 : Average of 15 breakdown delay time as a function of voltage for air, 

HFO and SF6 (Rc = 0.2 mm, d = 50 mm, max/min error bar) in positive polarity 
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4.Chapter 4: Characterization of HFO in a weakly 
divergent field and study of gas degradation 

4.I. Introduction 

As detailed in the previous chapter, depending on the geometry two breakdown modes have 

been identified. In inhomogeneous field, the breakdown is controlled by the propagation of the pre-

discharges (Chapter 3) and in a quasi-homogeneous field, the breakdown is controlled by the initiation 

of these pre-discharges (Figure 3. 8,  < 10).  

In this chapter, only breakdown controlled by initiation will be studied, in the electrode 

configurations of Table 4. 1 with  < 10. 

Table 4. 1 : Electrode configurations studied in this chapter 

Rc (mm) d (mm)  Gas Pressure (MPa) Polarity Wave 

2 
10 5 

HFO 
0.1 + STI 

20 8 0.1 + STI 

3.5 10 3.2 HFO 0.13 +/- LI 

5 

10 2.5 HFO, SF6, air 0.1 to 0.3 +/- STI, DC 

20 4 HFO 0.1 + STI 

50 7 HFO 0.1, 0.15, 0.2 +/- STI 

10 
10 1.8 HFO 0.1 + STI 

20 2.5 HFO 0.1 + STI 

 

4.II. Breakdown voltage and delay time to breakdown in HFO in 

quasi-homogeneous field 

4.II.A. Examples of breakdown voltage measurements in HFO 

When the field is quasi-homogeneous, a large difference is observed between the breakdown 

voltage of the 1st experiment within a series and the following ones. A significant drop of dielectric 

strength is observed between the first breakdown and the following. Figure 4. 1, Figure 4. 2, and Figure 

4. 3 illustrate this phenomenon. These measurements are obtained when the electrodes and the test cell 

are initially well cleaned (with ethanol), and when the HFO is new at the beginning of series. 
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Figure 4. 1 : Up and down measurement series in HFO including 120 shots (Rc = 5 mm, d = 50 mm, 

P = 0.1 MPa,  = 7) 

Figure 4. 2 : Up and down measurement series in HFO including 80 shots (Rc= 5 mm, d = 10 mm, 

P = 0.1 MPa,  = 2.5)  
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Whatever the distance or the pressure, the observation is the same: a large drop of the dielectric 

strength immediately occurs after the first breakdown, and UBD becomes stable afterwards. For the rest 

of the discussion, the 1st breakdown UBD1 and the average of subsequent breakdown voltage UBDm are to 

be distinguished. 

Table 4. 2 shows all the breakdown voltages measured for the different geometries where the 

breakdown is controlled by the initiation. The initiation of subsequent discharges is strongly facilitated 

by the gas degradation occurring during the first shot. The relative drop of UBD is larger when the field 

factor  is lower. 

Table 4. 2 : Breakdown voltage measurements of HFO in different electrode configurations (impulse voltage of positive 

polarity) 

Rc (mm) d (mm)  P (MPa) UBD1 (kV) UBDmean (kV) UBD1/UBDmean 

2 
10 5 0.1 65 41  1 1.58 

20 8 0.1 75  52  3 1.45 

3.5 10 3.2 0.1 94 78  3 1.20 

5 

10 2.5 

0.1 120  11 55  5 2.18 

0.2 141 94  2 1.50 

0.3 236 121  3 1.95 

20 4 0.1 125 64  2 1.95 

50 7 0.1 163 93  3 1.75 

10 
10 1.8 0.1 112 68  6 1.65 

20 2.5 0.1 171 84  2 2.03 

 

  

Figure 4. 3 : Up and down measurement series in HFO for different pressure (Rc = 10 mm, d = 20 mm,  =2.5) 

P = 0.1 MPa 
P = 0.2 MPa 
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4.II.B. Breakdown voltage in HFO in comparison with air and SF6 in 

weakly divergent field 

In this part, the values quoted as “new HFO” corresponds to the values of the first breakdown. 

New HFO corresponds to a well cleaned test cell, electrodes, and HFO having undergone no previous 

discharges. No statistical treatment was carried out on these values provided the small number of data 

obtained, due to the difficulty of repeating these experiments many times. The values quoted as 

“degraded HFO” corresponds to the average of the breakdown voltage UBDm consecutive to the 1st. 

 

When the HFO is new, its dielectric strength is clearly higher to that of SF6 (130 % of SF6 at 

0.1 MPa and 160 % at 0.3 MPa, Figure 4. 4). Since the breakdown is controlled by the initiation, the 

pressure has a large positive influence on the dielectric strength in the three gases. 

After the 1st breakdown, the breakdown voltage of the HFO drops to 80 % that of the SF6, and 

remains higher than that of the air. No similar drop is recorded in air and SF6, and no comparable effect 

was previously reported in other gases in the literature. At 0.1 MPa, the degraded HFO unfortunately 

shows properties similar to air, and 50 % better at 0.3 MPa. 

Figure 4. 4 : Breakdown voltage in air, HFO and SF6 as a function of pressure. Up and down 

method, quasi-homogeneous field ( = 2.5, Rc = 5 mm, d = 10 mm, max/min error bar) 
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Another information concerns the polarity. In negative polarity, the first breakdown value in 

HFO is lower than in positive, contrary to other gases. However, no difference is observed between the 

1st negative breakdown and the following ones (Figure 4. 5). In degraded HFO, the situation becomes 

comparable with other gases (i.e. lower breakdown voltage in positive polarity). The dielectric strength 

of HFO in negative polarity is 60 % that of SF6 and comparable to air. The very specific behaviour of 

HFO can be summarized by its unexpectedly high breakdown strength in positive polarity, in “clean” 

conditions. 

4.II.C. Geometries influencing the loss of dielectric strength of HFO 

 

Figure 4. 5 : Influence of the polarity on the breakdown voltage in a quasi-homogeneous field (Up and down method, 

η = 2.5, Rc = 5 mm, d = 10 mm, P = 0.1 Mpa, max/min error bar) 

Figure 4. 6 : Difference between the 1st breakdown voltage UBD1 and the average breakdown voltage 

UBDmean depending on the amplification factor of the field  (P = 0.1 MPa) 
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In all cases, when initiation controls breakdown, immediately after the first breakdown the 

breakdown voltage becomes stable (standard deviation less than 5 kV). Figure 4. 6 shows that the loss 

of dielectric strength is observed when the field amplification factor  is less than 10, i.e. when 

breakdown is controlled by initiation. It is obvious that gas degradation during 1st breakdown has a large 

influence on initiation in positive polarity, and negligible on leader propagation. 

As this loss of dielectric strength is related to initiation, it is relevant discuss it in terms of 

maximum field Emax at the high voltage electrode, i.e. where initiation occurs. To assess the influence of 

geometry, the difference (in percentage) between the first breakdown (UBD1) and the average breakdown 

voltage (UBDmean) is plotted versus the maximum field (Ei) calculated at the breakdown voltage (i.e. at 

the initiation voltage) in Figure 4. 7. 

 

For values of Ei greater than 30 kV/mm, the 1st breakdown has no deleterious effect. When the 

values of Ei are less than 30 kV/mm (at 0.1 MPa), the 1st breakdown occur at a value clearly greater than 

the following. 

4.II.D. Delay to breakdown 

In order to better understand the consequences of degradation, the study of the breakdown delay 

time provides additional information (Figure 4. 8 and Figure 4. 9). The breakdown time with either new 

or degraded HFO is close to 2 µs when Ei > 30 kV/mm. When the maximum field is lower 

(Ei < 30 kV/mm), a large difference appears between the delay time of the 1st breakdown tBD1 and the 

subsequent ones. tBD1 shows a large scatter, and may rise to 100 µs (Figure 4. 8). The lower the field, 

the higher the maximum delay. Following the 1st breakdown, the breakdown delay times return to a 

Figure 4. 7 : Maximum initiation field at the electrode as a function of the difference between UBD1 and UBDm (P = 0.1 MPa) 

Ei (kV/mm) 



Chapter 4: Characterization of HFO in a weakly divergent field and study of gas degradation 

96 

“normal” value of less than 10 µs, even at low field. In the degraded HFO (Figure 4. 9) delays become 

comparable to SF6 in identical conditions (Figure 4. 10), i.e. less than 10 µs. 

In a weakly inhomogeneous field ( < 10, Ei < 30 kV/mm at 0.1 MPa), the gas degradation by 

the 1st breakdown strongly facilitates the initiation of subsequent discharges. If a standard lighting wave 

was used (voltage drop of 50 % at 50 µs), breakdown would not occur with delay times greater than 

50 µs. This indicates that the breakdown voltage with new HFO would be even higher with a 

standardized lightning impulse than with our long duration impulse. Conversely, this phenomenon 

should not occur in degraded HFO when tBD < 10 µs. 

 

Figure 4. 8 : Delay time for the 1st breakdown in the HFO as a function of the geometry (P = 0.1 MPa). Orange line 

corresponds to the voltage rise time 
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4.II.E. Propagation velocity 

The propagation time deduced from breakdown measurements (tBD – ti) mainly depends on the 

applied voltage. Figure 4. 11 shows that when the voltage increases, the propagation time decrease. 

Shorter propagation times are also logically recorded at shorter distances (10 and 20 mm), but quite few 

data were obtained in such conditions.  

  

Figure 4. 9 : Average delay time to breakdown in the HFO as a function of the geometry (P = 0.1 Mpa, 

max/min error bar). Orange line corresponds to the voltage rise time 

Figure 4. 10 : Average delay time to breakdown in the SF6 as a function of the geometry (P = 0.1 Mpa, max/min error 

bar). Orange line corresponds to the voltage rise time 
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From the propagation time (Figure 4. 11), the propagation velocity is calculated (Figure 4. 12). 

In this figure, the data obtained in divergent field and propagation-controlled conditions (chapter 3) are 

plotted with those obtained here in initiation-controlled conditions. The increase of propagation velocity 

when the applied voltage is raised at fixed distance is observed over a wider voltage range, whatever the 

pressure and electrode radius. The propagation velocity increases by nearly one decade (3 x 104 to 

3 x 105 m/s) when the voltage is doubled. 

 

  

Figure 4. 11 : Propagation time as a function of voltage, and pressure in the degraded HFO (Rc = 5 mm, d = 50 mm) 

Figure 4. 12 : Propagation velocity as a function of pressure in the degraded HFO for different Rc and 

pressure (d = 50 mm) 
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4.III. Origin of the drop of initiation field in HFO after the 1st 

breakdown 

4.III.A. Influence of test cell cleaning and gas renewal 

Different experiments were performed (in a single configuration Rc = 5 mm, d = 10 mm, and 

 = 2.5) in order to better understand this effect. In this configuration Figure 4. 13, the 1st breakdown is 

at UBD1 = 120 kV and the average of the following breakdowns at UBDm = 55 kV. 

 

To understand the origin of the loss of dielectric strength of the HFO, the following experiments 

are carried out: 

1. After 20 breakdowns in the HFO, the gas remained in the cell for 48 hours. After this 

time, a new series of measurements was carried out. Figure 4. 13 shows that despite 

waiting, the breakdown voltage remains around 60 kV; 

2. Several series of measurements were carried out by changing the gas after a breakdown 

(without opening or cleaning the cell). In the Figure 4. 13, the renewal of gas does not 

make it possible to restore the initial dielectric properties of the HFO, and the scatter is 

very important, from 120 to 60 kV; 

3. Only the HV electrode is cleaned and the HFO is replaced. In this case, the breakdown 

voltage remains quite low (66% of the 1st breakdown);  

4. Only the plane electrode and the cell walls are cleaned, and the HFO is replaced. In this 

case, the voltage is 72% that of the 1st breakdown. 

Figure 4. 13 : Various tests to understand the origin of the loss of dielectric strength after the 1st breakdown 

(Rc = 5 mm, d = 10 mm, P = 0.1 MPa) 

1 

2 

3 
4 
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These measurements suggest that the presence of fine powder by-product (on the electrodes, on 

the cell walls, and possibly in the gas volume) has a major influence on breakdown: only the complete 

cleaning allows restoring the initial breakdown value.  

4.III.B. Evidence of the influence of solid by-products on discharge 

initiation 

To further evaluate the effect of the pollution by powder on the dielectric strength, another 

procedure was followed with two different geometries. The first geometry for a η = 9 (Rc = 1.2 mm and 

d = 10 mm, Figure 4. 15) and the second with a η = 2.5 (Rc = 5 mm and d = 10 mm, Figure 4. 14).  

• A first series of 30 shots was carried out in SF6 with the test cell initially cleaned. This 

series corresponds to the fresh SF6 of Figure 4. 14 for  = 2.5, and Figure 4. 15 for 

 = 9. This gives us the initial breakdown voltage of SF6 in the 2 configurations; 

• SF6 was replaced by HFO, without opening the test cell. With 30 shots, we obtain the 

UBD1 and the UBDm of HFO. After the first shot, a deposit of thin black powder formed 

on electrodes and the breakdown dropped. This series corresponds to the column 

“Replace SF6 with HFO” in Figure 4. 14, and Figure 4. 15; 

• HFO was replaced by SF6 without opening or cleaning anything. In Figure 4. 14, and 

Figure 4. 15, the SF6 breakdown voltage is now equivalent to that of degraded HFO 

after the 1st breakdown. The powder deposit on the electrodes therefore has a large effect 

on the dielectric strength of both HFO and SF6, by facilitating discharge initiation in 

both gases; 

• Finally, we put HFO back in place of SF6. This showed a slight increase in dielectric 

strength of the HFO, but without restoring its initial properties.  
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Figure 4. 14 : Measurement sequence in HFO and SF6 to evaluate the effect of the powder deposit on the 

dielectric strength ( = 2.5, P = 0.1 MPa, up and down method) 

Figure 4. 15 : Measurement sequence in HFO and SF6 to evaluate the effect of the deposit on the dielectric strength 

of the HFO ( = 9, P = 0.1 MPa, up and down method) 

Figure 4. 16 : Black dust deposits on the HV electrode after 15 breakdowns in the HFO 

(Rc = 5 mm, d =20 mm, P= 0.1 MPa) 
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In addition to the effect on breakdown voltage, surface pollution of electrodes with dust by-

product has an effect on delay time, as previously described in HFO. In Figure 4. 17, the breakdown 

delay time of the new HFO is greater than 100 µs at a higher voltage than that of SF6 with clean 

electrodes. When measurements are carried out in SF6 with a deposit on the electrodes, the breakdown 

voltage of SF6 is lower, and the breakdown delay times considerably reduced (< 10 µs) and less 

scattered. This effect is even more marked in HFO with polluted electrodes. 

Thanks to this series of measurements, it is possible to conclude that the deposit of powder by-

product on the electrodes is mainly responsible for the loss of dielectric strength after the 1st breakdown. 

This fine black powder facilitates considerably the initiation of discharges in positive polarity, which 

initiation voltage is divided by 2, and initiation delay divided by ~ 30. Since the statistical initiation 

delay time is usually attributed to the random apperance of an initial electron able to trigger the discharge 

process, one may suppose that the apparence of such electron is facilitated by the presence of powder. 

No similar effect was previously reported in the litterature, and no simple mechanism can be postulated. 

 

4.IV. Characterization of HFO degradation by energy and FTIR 

measurements 

4.IV.A.  Breakdown energy measurements under uniform field 

The impact of the energy injected during breakdown was studied in order to characterize the 

degradation of the HFO. 

  

Figure 4. 17 : Delay to breakdown in HFO and SF6 before and after degradation (P = 0.1 MPa,  = 2.5) 



Chapter 4: Characterization of HFO in a weakly divergent field and study of gas degradation 

103 

DC breakdown measurements under uniform field were carried out to record the energy actually 

dissipated in the discharge. To measure the arc energy, it is necessary to measure accurately the voltage 

across the arc and the current. The measurement of the energy of a transient arc is a difficult task that 

requires a careful validation, since many experimental artefacts may induce measurements errors, or 

even make measurements impossible: 

• During breakdown, very large 
𝑑𝑉

𝑑𝑡
 and 

𝑑𝑖

𝑑𝑡
 occur, inducing strong electromagnetic 

perturbations, oscillations due the circuit inductance, and energy dissipation in the 

external circuit when large current flow; 

• Measuring the transient arc voltage requires careful attention. The voltage probe is first 

submitted to a fast transient step from the applied voltage (~ 30 kV) down to the arc 

voltage (100 to 1000 V, i.e. about 1 % of applied voltage) after some 10 ns. The probe 

response to such large and fast step must be precisely checked, in order to provide 

trustable arc voltage measurements. Even small errors on probe equilibrium (i.e. 

overshoot, undershoot, ringing) can lead to large errors. 

 

The circuit used was described on Figure 2. 7. The HV probe measures the applied voltage 

before breakdown (approximately 30 kV), and the arc voltage after breakdown. In order to verify the 

validity of this measurement, measurements under different conditions were carried out. Figure 4. 18 

shows different measurements of arc voltage following breakdown, as a function of distance, pressure, 

and gas nature. Distance and pressure were chosen to provide a similar breakdown voltage (about 

30 kV), and thus an identical initial transient step applied to the probe. By changing the distance, gas, 

and pressure conditions, the arc voltage should be changed. Figure 4. 18 indeed shows a different 

Figure 4. 18 : Voltage measured across the post-breakdown arc in HFO and 

nitrogen for different pressure and distance (plane-plane) 
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response of the probe depending on the conditions, whereas the initial voltage step remained unchanged. 

We can thus confirm that the measurement of the arc voltage via the probe is correct, and not due to an 

experimental artefact (inadequate response of the probe, overshoot, undershoot or ringing should not 

depend on the gas nature). 

Figure 4. 19 is an example of a current and voltage measurement obtained in HFO at 0.1 MPa 

with and without the external circuit composed by R2 and C. With R2 and C, the recording mainly shows 

the post-breakdown arc voltage and current flowing for about 20 s. At the initial instant of breakdown, 

high frequency oscillations are observed for some 10 ns, due to the large 
𝑑𝑉

𝑑𝑡
 and  

𝑑𝑖

𝑑𝑡
 . 

Without R2 and C, only the initial oscillations are seen, and almost no post-breakdown arc 

current. In this case, the available energy is limited by the initial charge of the parasitic cell capacitance 

Cp = 22 pF (Figure 2. 7). This energy (Wp = Cp.U
2/2 = 10 mJ @ 30 kV) is dissipated during the pre-

breakdown phase (leader), and possibly during a very short arc phase (not measurable). The measured 

voltage does not drop to zero after breakdown, probably because the limited energy does not allows 

establishing a high current conducting arc.  

 

With an external circuit (R2, C), the current injected in the arc is limited by the resistance R2. 

When R2 decreases (Figure 4. 21), the current flowing in the arc is larger, but for a shorter duration. 

Table 4. 3 shows typical values of the post-breakdown arc current and duration versus R2. These 

measurements are achievable due to the presence of the series resistor R2 that limits the arc current and 

prevents oscillations. With R2 = 0 Ω, large oscillations due to the circuit inductance prevents such 

measurements. 

  

Figure 4. 19 : Example of measurement of voltage and breakdown current in the HFO (plane-plane, 

d = 5 mm, P = 0.1 MPa, Ua = 34 kV, R2 = 1000 Ω and without R2C) 

R2 = 1000 Ω Without R2C 
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Table 4. 3 : Arc current and duration for the different values of R2 (UBD = 44 kV) 

R2 (Ω) Iarc (A) tarc 50% (µs) 

1000 30 4 

100 250 0.8 

10 1500 0.4 

 

From voltage and current, it is possible to calculate the post-breakdown arc resistance (𝑅𝑎𝑟𝑐 =

⁡𝑈𝑎𝑟𝑐 ⁡/⁡𝐼𝑎𝑟𝑐 Figure 4. 21). Immediately after breakdown, the arc resistance is very low (a few ohms). As 

the current decreases, the arc cools down and is resistance increases. The arc energy is obtained by 

integrating the power (𝐸𝑎𝑟𝑐 =⁡∫ 𝑈𝑎𝑟𝑐 ⁡× ⁡ 𝐼𝑎𝑟𝑐 ⁡𝑑𝑡
𝑡

0
 Figure 4. 22). 

  

Figure 4. 20 : Arc current for different resistances R2 = 1000 and 100 Ω (UBD = 44 kV) 

Figure 4. 21 : Transient arc resistance in HFO ((plane-plane, d = 5 mm, P = 0.1 MPa, Ua = 34 kV, 

R2 = 1000 and 100 Ω) 

R2 = 1000 Ω R2 = 100 Ω 
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Figure 4. 23 shows the evolution of the arc energy as a function of resistance R2 and gas nature. 

This graph represents the arc energy at slightly different voltages. By plotting the percentage of the arc 

energy compared to the initial capacitor energy (Wc = C. U2/2), the 3 curves are superimposed (Figure 

4. 24). Depending on R2 the arc energy varies from 4 to 45 % of the capacitor energy. The remaining of 

energy is dissipated in the external circuit. Breakdown experiments carried out with the Marx generators 

involved a series resistor of 1 kΩ, and an equivalent capacitor (from 5 to 10 nF depending on the number 

of stages used). Therefore, a small arc energy < 1 J was involved in these tests. 

 

  

Figure 4. 22 : Arc power and energy in HFO (plane-plane, d = 5 mm, P = 0.1 MPa, Ua = 34 kV, R2 = 1000Ω) 

Figure 4. 23 : Variation of the energy dissipated in the arc as a function of the series resistance and the 

gas (plan-plan, d = 5 mm) 
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Regardless of the energy injected into the arc (Figure 4. 25), the breakdown voltage of the 3 

gases remains logically unchanged. From DC breakdown measurements under uniform field (Figure 4. 

25), the reduced field (E/N) is obtained for the different gases in Table 4. 4. For SF6 and HFO, the 

estimation of E/N (from our measurements) is close to the theoretical value in the literature (1.2 times 

higher see Table 4. 4). For air, the calculation is fairly good, but for nitrogen, the difference is very 

important. The theoretical field E/N represents the minimum value for the formation of a discharge. The 

measured E/N field is always higher than the theoretical one, thus allowing the formation of a discharge. 

 

  

Figure 4. 24 : Arc energy as a percentage of the maximum energy stored in capacitor (plan-plan, d = 5 mm) 

Figure 4. 25 : Average DC breakdown voltage in nitrogen, air, SF6 and HFO in a homogeneous field as a function of 

energy (d = 5 mm, plane-plane, DC) 
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From Figure 4. 25, the reduced field (E/N) is deduced for the different gases in Table 4. 4. 

Table 4. 4 : Comparison between E/N in the literature and the E/N obtained in the DC breakdown measurements with 

uniform field 

 (E/N)cr (Td) References 
(E/N)breakdown plan-plan (Td) 

Measurements (Figure 4. 25) 

(E/N)breakdown 

plan-plan/(E/N)cr 

Air 

94.7 [89] 

158 

1.67 

99.4 [90] 1.59 

98.5 [91] 1.60 

Nitrogen 60 [92] 150 2.50 

HFO 
305 [93] 

366 
1.20 

302 Figure 1. 8 [7] 1.21 

SF6 

359 [94] 

408 

1.14 

360 [95]–[97] 1.13 

361 [98] 1.13 

362 [99], [100] 1.12 

 

4.IV.B. Correlation of arc energy with breakdown voltage drop in HFO 

Breakdown energy measurements were also made in a quasi-homogeneous field (Rc = 5 mm, 

d = 20 mm) more representative of MV GIS design. Depending on the arc energy, the powder deposit 

visible on electrodes after 10 breakdowns is more or less important, regardless of the polarity. When the 

energy is low (0.3 J with R2 = 1000 Ω), a uniform black layer is visible on the sphere electrode brought 

to the HV, and a large difference is noted between the 1st breakdown and the following ones (87 % in 

negative polarity Figure 4. 26 and 63 % in positive polarity of UBD1 Figure 4. 27). 

When the energy increases (2.3 J with R2 = 10 Ω), almost no (or very few) deposits are still 

visible on the electrodes, and a small difference is observed between the 1st breakdown and the following 

ones (100 % in negative polarity Figure 4. 26 and 80 % in positive polarity Figure 4. 27 of UBD1). 

Surprisingly, the higher the discharge energy, the lower the powder deposition and the loss of dielectric 

strength. In addition, the degradation is lower in negative polarity. Increasing the energy per shot slightly 

increases the average breakdown voltage of repetitive shots. This result was quite unexpected and 

counter intuitive. We may make the hypothesis that with a larger arc energy, the more intense shock 

wave produced contributes to detach and sweep the fine black dust from electrodes. 
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As with impulse voltage, the same unexpected observation is made here in DC, namely that the 

negative polarity is more critical for fresh HFO. When the HFO is degraded, the breakdown voltage 

becomes the same between the 2 polarities ( 40 kV) 

Table 4. 5 : Comparison of the breakdown voltage in the HFO between the DC and the impulse (Rc = 5 mm, d = 20 mm, 

P = 0.1 MPa) 

 Fresh HFO UBD1 (kV) Degraded HFO UBD (kV) 

STI 125 64 

DC 60 39 

STI/DC 2.1 1.6 

 

Table 4. 5 shows that the breakdown voltage is lower in DC compared to the impulse voltage. 

This difference observed in nearly all dielectric materials is explained by the influence of the statistical 

delay time with impulse voltage, linked to the occurrence of a seed electron leading to breakdown. Under 

Figure 4. 26 : Influence of energy on the stability of breakdowns and powder deposits on electrodes with negative 

polarity (Rc = 5 mm, d = 20 mm, P = 0.1 MPa) 

Figure 4. 27 : Influence of energy on the stability of breakdowns and powder deposits on electrodes with 

positive polarity electrodes (Rc = 5 mm, d = 20 mm, P = 0.1 MPa) 
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DC (or even AC), this delay has no influence, since voltage is applied for a long duration, and the 

breakdown voltage is minimum. 

4.IV.C. Correlation of energy with HFO degradation: pressure 

measurements 

To study the degradation of HFO as a function of energy, measurements were made with 

repetitive DC breakdown of controlled energy, together with a precise measurement of the pressure and 

temperature to monitor the gas decomposition. The following hypothesis is formulated: as solid by-

products are produced, the gas pressure may decrease due to gas consumption. To see this pressure drop, 

the total energy dissipated within a fixed gas volume by repetitive discharges was fixed to 1 kJ. The 

energy of breakdown depends on the series resistance R2. 4 situations were studied, with the total number 

of breakdowns adapted to keep a constant total energy  1 kJ: 

• Without resistance R2 and capacitance C, the maximum possible arc energy comes from 

the parasitic capacitance of the test cell (20 mJ at 42 kV). To obtain a total energy 

Et = 1000 J, the number of breakdowns is nBD = 49470; 

• with 1400 Ω resistance and 5 nF capacitance, the arc energy is EBD = 200 mJ, the 

number of breakdowns nBD = 5000 (total energy Et = 1000 J); 

• with 100 Ω resistance and 5 nF capacitance, EBD = 1.5 J, the number of breakdowns 

nBD = 668 (total energy Et = 1002 J); 

• with 10 Ω resistance and 5 nF capacitance, EBD = 2.5 J, the number of breakdowns 

nBD = 401 (total energy Et = 1002 J). 

The gas pressure was measured before and after the application of 1 kJ discharges. Figure 4. 28 

shows the results obtained. Preliminary experiments carried out with N2, showed no pressure drop after 

1 kJ arc dissipation, which is logical since discharges in N2 produce no by-products (either solid or 

gaseous). 

In HFO, pressure drops from 0.2 to 5 % of the initial pressure (0.1 MPa) were recorded. For an 

identical total energy (1 kJ), the pressure drop is much larger when a large number of breakdowns of 

low energy occurs (i.e. without R2 and C). The pressure drop is clearly linked to the nature of the 

discharge, and not only to the total energy. Without R2 and C, almost no post-breakdown arc exists, but 

a large number of low-energy breakdown (leaders and presumably very short arcs) was applied. We can 

therefore conclude that the majority of the degradation occurs during the initial breakdown phase of low 

energy (leaders), and that the degradation induced by the post-breakdown arc is considerably smaller. 
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4.V. Physico-chemical characterization of HFO degradation 

A physico-chemical investigation was also undertaken to try to characterize the degradation of 

the gas, and the solid by-product powder. 

 

As shown in the previous section, the fastest and easiest way to degrade a large amount of HFO 

is to apply a continuous voltage (45 kV) to the plane-sphere electrode system (Rc = 5 mm, d = 10 mm, 

 = 2.5) without R2 and C. The same circuit, the same electrodes as in the previous part were used, i.e. 

an injected energy of  40 kJ was dissipated after 75 minutes ( 500 J/min). A considerable amount of 

powder was produced (Figure 4. 29) leading to accumulations of thickness up to 1 mm on the cell walls. 

Figure 4. 28 : Pressure variation in the HFO as a function of the energy of one 

breakdown (Rc = 5 mm, d = 10 mm, P = 0.1 MPa) 

Figure 4. 29 : Deposit within the test cell after 75 minutes of DC application 
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The amount was lower on electrodes, confirming that the powder is swept by discharges. Despite this 

deposit, the breakdown voltage remained unchanged ( 45 kV). 

To see the evolution of the gas composition over time, HFO samples were taken at different 

times. These samples were analysed by gaseous FTIR (Figure 4. 30). The FTIR identifies the chemical 

bonds of gas. For fresh HFO, the characteristic bonds of HFO are present. Namely the C=C double bond 

at 1698 cm- 1, the vibrations of the C-F3 bonds at 1336 and 1106 cm-1, the vibration of the CF3 bond at 

1336 cm-1 and the vibration of the C-C bond at 883 cm-1. 

Even after 75 minutes of voltage application with a large amount of powder produced and about 

40 kJ of energy injected, no new peaks or peak shifts were observed. In this case, the FTIR measurement 

is not quantitative, in fact it is difficult to strictly control the number of moles introduces in the 

measurement cell. Additional RAMAN measurements and gas phase chromatography (not available 

during this work) could provide more information. 

 

Table 4. 6 : Experimental and calculated vibrational frequencies (cm-1) for HFO [101] 

IR (gas) Assignment Experimental 

1698 Very strong (C=C) 1698 

1336 Very strong s(CF3) 1336 

1160 Very strong (C-F) 1160 

1106 Very strong as(CF3) 1106 

883 Weak (C-C) 885 

Figure 4. 30 : FTIR of HFO gas after 20, 30 and 75 minutes 



Chapter 4: Characterization of HFO in a weakly divergent field and study of gas degradation 

113 

Infrared measurements were also carried out on the powder formed by the HFO (Figure 4. 31). 

In this case, the C-F bonds (1215 and 1143 cm-1) are visible. The C=C double bond (1600 cm-1) is not 

visible in the powder deposits. 

 

 

Figure 4. 32 shows the surface condition of the electrodes before and after the series of 

breakdowns. Thanks to an EDX analysis, spectral analysis shows a main presence of carbon (Figure 4. 

33): in fact, the presence of the double bond C=C in the backbone of HFO molecule makes it easier to 

dissociate. Fluorine and oxygen are also present. Aluminium is the electrode metal and some copper 

impurities were originally present on the electrode raw material. Carbon and fluorine came from the gas 

molecule, whereas oxygen could be formed by the reaction of the gas with the residual humidity while 

arcing occurs, or from a possible presence of Al2O2 layer that result usually from the reaction of 

aluminium with the ambient oxygen. Unfortunately, the EDX analysis can only identify the nature of 

atoms, but cannot give information about the nature of molecules present [102]. 

  

Figure 4. 31 : FTIR on HFO powder by-product 

Figure 4. 32 : Images of clean and polluted electrode surface obtained by SEM [102] 



Chapter 4: Characterization of HFO in a weakly divergent field and study of gas degradation 

114 

 

The decomposition of HFO and the formation of carbon powder are very complex phenomena. 

It would be necessary to make more detailed studies on the decomposition mode of this molecule. In 

[45], the main gases formed by decomposition of HFO-1234ze(E) are HF, C2H2, C2HF, and CHF3. The 

presence of HF was ascertained by the important etching of the test cell windows made of quartz: after 

degradation experiments, these windows became opaque. In addition to the drop of breakdown strength, 

the presence of aggressive by-products constitutes another drawback of HFO. In SF6, production of HF 

is also observed, but in the presence of water. 

These measurements did not allow to fully characterize the HFO decomposition pattern but 

confirmed the formation of carbon deposits with traces of fluorine. 

4.VI. Conclusions: design rules of insulation with HFO 

In addition to conclusions already obtained from divergent field experiments (chapter 3), several 

other practical consequences can be derived from measurements in homogeneous field in this chapter. 

The main result obtained here is the large deleterious influence of HFO degradation on its 

practical insulating properties when the field is moderately divergent, i.e. a situation relevant of 

applications. New HFO in a clean environment provides breakdown properties higher than SF6 in 

positive polarity (Figure 4. 4), and lower after degradation. In addition, the influence of degradation 

appears quite complex since it varies with electrode geometry (Figure 4. 6) and discharge energy (Figure 

4. 27). The largest degradation occurs when numerous discharges of low energy are present. 

 

  

Figure 4. 33 : EDX-Spectral analysis of the dusty layer on electrodes after breakdown tests in HFO-1234ze(E) [102] 



Chapter 4: Characterization of HFO in a weakly divergent field and study of gas degradation 

115 

In a practical medium voltage system, discharges should not occur in normal service, but it is 

impossible to ascertain that a system will never experience discharges, that may occur in particular 

occasions: 

• during tests (e.g. with lightning impulse) with large overvoltage compared to the 

nominal AC level; 

• in the presence of partial discharges, that sometimes exist for long durations during 

service in aged switchgear. 

Partial discharges refer to a case where a large number of discharges of low intensity occur, 

which unfortunately corresponds to the worst situation for HFO: the accumulated energy for long 

periods of time can lead to a 10 times more severe HFO degradation (Figure 4. 28) compared to a single 

high energy discharge. A 50 pC partial discharge (PD) in a 20 kV system dissipates about 1 µJ per PD. 

With the pessimistic hypothesis that 1 PD occurs at each AC period, 4.3 x 106 PDs occurs every day, 

corresponding to 4.3 Joules dissipation. After 1 year, the accumulated energy will exceed 1 kJ, i.e. an 

energy producing large HFO degradation (Figure 4. 29). Of course, this rough estimation should be 

corrected regarding the actual parameters in a real system (HFO volume, PD amplitudes, etc.). 

Nevertheless, the influence of HFO degradation must be considered if this gas is used in a 

practical system, to ensure its reliability over long durations. 

In the following part, we try to establish basic principles for the design of insulation with HFO. 

This is a complicated task since the basic properties allowing calculating the classical “streamer 

criterion” are not known in HFO. These considerations will mainly consider the case of degraded HFO 

since scarce data corresponding to “new HFO” could be obtained. 

4.VI.A. Initiation field in HFO in the investigated geometries 

In addition to initiation fields already obtained in non-uniform field, the results obtained with 

more uniform field allows a more complete description. Based on Figure 3. 44 and Figure 3. 45, the 

initiation field as a function of distance for Rc = 5 and 10 mm can be added. Whatever the radius of 

curvature or the pressure, the initiation field of degraded HFO are slightly lower that of SF6 (Figure 4. 

34). In addition, the pressure increases the initiation voltage of the pre-discharges regardless of the radius 

of curvature in the degraded HFO (Figure 4. 35). 
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Figure 4. 36 represents the initiation field depending on the radius of curvature, calculated with: 

• the initiation voltage (Ei at Ui) in degraded HFO; 

• the 1st breakdown voltage (E1 at UBD1) in the fresh HFO.  

P = 0.1 MPa P = 0.2 MPa 

Figure 4. 34 : Value of the maximum field Ei as a function of the distance (P = 0.1 and 0.2 MPa) for degraded HFO 

Figure 4. 35 : Value of initiation field Ei as a function of Rc for degraded HFO (d = 50 mm) 
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The difference of initiation fields between new and degraded HFO is maximum when the 

breakdown field is low, which occurs in quasi uniform field with large Rc. The difference decreases 

when calculated initiation fields on the electrode increase, i.e. in more divergent field with low Rc. 

The 2 curves in Figure 4. 36 can be fitted as: 𝐸𝑚𝑎𝑥 = exp⁡(𝑎 +
𝑏

𝑅𝑐+𝑐
) with Rc the radius of 

curvature of electrode in mm, Emax the maximum electric field in kV/mm, a, b, c: fitting parameters 

Table 4. 7 : Parameter of equation 𝐸𝑚𝑎𝑥 = 𝑒𝑥𝑝⁡(𝑎 +
𝑏

𝑅𝑐+𝑐
) for the curves showing in Figure 4. 36 

Equation number Parameters a b c 

1 (blue curve) Initiation in degraded HFO 2.30 1.30 0.41 

2 (red curve) Initiation in fresh HFO  2.95 1.00 0.60 

 

This equation represents an interesting first design criterion: depending on the radius of 

curvature, the initiation field is calculated. If the field is lower than equation 1 (Table 4. 7), no discharge 

or pre-discharge should occur. If the applied field strength is greater than equation 2, the probability of 

breakdown in the degraded HFO is greater than 20 % (probability obtained with up and down method). 

Unfortunately, this criterion valid for sphere-plane geometry cannot be generalized to any practical 

geometry. 

Figure 4. 36 : Initiation field as a function of the radius of curvature  

1 Degraded HFO 

2 Fresh HFO 
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4.VI.B. Use of the streamer criterion 

4.VI.B.i. Uniform field under DC voltage 

The criterion mainly used in the electrical industry for design of insulation is the streamer 

criterion. Electrical discharges in gases often start from a local electron impact–ionization avalanche, 

which becomes sufficiently large for self-propagation due to its own space charge. The associated 

condition of this so-called avalanche-to-streamer transition (or streamer inception) is often modelled by 

the integral equation: ∫ 𝑎𝑒𝑓𝑓⁡𝑑𝑥 = 𝐾
𝑥𝑐𝑟
0

. The length xcr is the distance at which the electric field falls to 

the critical field Ecr. This concept was initially developed for discharges in homogeneous fields. 

Unfortunately, eff is not known today in HFO. It is however possible to compare it with measurements 

and streamer criteria calculated in air and SF6. 

From the measurements obtained in DC in plane-plane geometry, Figure 4. 37 represents the 

streamer criterion for air and SF6, in comparison with the breakdown voltage measurements. In a uniform 

field, the streamer criterion corresponds quite well to the breakdown voltage (Figure 4. 37). When a 

streamer is initiated, it leads directly to breakdown. 

 

4.VI.B.ii. Moderately divergent field ( = 2.5) under DC and impulse voltage 

Similar investigations were carried out with a moderately divergent field (Rc = 5 mm, 

d = 10 mm, and  = 2.5). Figure 4. 38 compares the streamer criterion with the breakdown voltage of 

air and SF6 under impulse STI and DC. On the plot, the color represents the measurement conditions, 

and the symbol shape the gas. In SF6 and HFO, DC breakdown measurements at 0.3 MPa were not 

possible due to the 100 kV limitation of the power supply.  

Figure 4. 37 : Streamer criteria for air and SF6 in plane-plane geometry for d = 50 mm 
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In air and SF6, the streamer criterion corresponds to the breakdown voltage in DC, as in uniform 

field. On the other hand, a large difference exists between DC and STI breakdown voltage. Table 4. 8 

lists the measured “impulse factor” (STI voltage/DC voltage) for the different pressures in the 3 gases.  

Such correction coefficients can be used to adapt the calculated streamer criteria valid under DC 

to STI measurements. At fixed pressure (e.g. 0.1 MPa), air shows the highest impulse factor (2.1), 

followed by SF6 (1.6), and HFO (1.3). At 0.2 MPa, the ranking of gases is identical, but the differences 

are lower (resp. 1.7, 1.4, 1.3). These correction coefficients are deduced from experiments and cannot 

be calculated from the streamer theory. They are related to the availability of seed electrons on a short 

time scale, i.e. a hardly predictable parameter. 

 

Table 4. 8 : Breakdown voltage in DC and STI, and streamer criteria in air, HFO degraded and SF6 (Rc = 5 mm, 

d = 10 mm) 

Gas P (MPa) UBD STI (kV) UBD DC (kV) Ustreamer criteria STI/Ustreamer STI/DC 

Air 

0.1 55 26 22 2.5 2.1 

0.2 68 40 38 1.8 1.7 

0.3 81 50 53 1.5 1.6 

HFO 

(degraded) 

0.1 60 45 - - 1.3 

0.2 94 72 - - 1.3 

0.3 121 Too high - - - 

SF6 

0.1 80 50 42 1.9 1.6 

0.2 124 87 83 1.5 1.4 

0.3 159 Too high 126 1.3 - 

Figure 4. 38 : Criterion of streamer in air and SF6 and  comparison with measurements in DC and STI (Rc = 5 mm, 

d = 10 mm, K = 20 for air and K = 11 for SF6) 
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Table 4. 9 : STI breakdown voltage comparison for HFO and SF6 (Rc = 5 mm, d = 10 mm) 

P (MPa) UBD STI SF6 (kV) UBD STI HFO (kV) %UBD 

0.1 80 60 0.75 

0.2 124 94 0.76 

0.3 159 121 0.76 

 

In HFO the streamer criterion cannot be calculated. On Figure 4. 38, it is obvious that the 

evolution with pressure of breakdown voltage (under DC and STI) as well as streamer criteria in air is 

different from electronegative gases SF6 and HFO. From 0.1 to 0.3 MPa, the breakdown voltage in air 

increases only by 47%, whereas it is doubled in SF6 and degraded HFO. 

It is interesting to observe that the ratio of STI breakdown voltage (degraded HFO/SF6) remains 

remarkably constant (0.76) whatever the pressure, provided breakdown is controlled by initiation (Table 

4. 9). This conclusion is based on the limited conditions (Rc, d) used to investigate SF6 in this study. It 

would be very interesting to extend this to other conditions, in order to check the validity of a fixed ratio.  

With the assumption that degraded HFO withstands 76% of SF6 in all conditions, a simple 

design method can be suggested: 

• calculate the breakdown voltage in SF6 using the “standard” method already used 

(streamer criterion and suitable correction coefficient); 

• apply a de-rating factor of 0.76. 

4.VI.B.iii. Divergent field 

In a divergent field, pre-discharges occur at much lower voltages than breakdown. The 

breakdown voltage represents the voltage required for complete leader propagation in electronegative 

gases, or the voltage required for a streamer/arc transition in air. It is therefore difficult to justify using 

the streamer criterion to predict breakdown voltages. As shown in Figure 4. 39 and Figure 4. 40, the 

streamer criterion considerably underestimates the breakdown voltage. It is logically closer to the 

initiation voltage of discharges. From these calculations, it is clear that the streamer criteria is of little 

help to predict breakdown voltage in very divergent fields. The empirical formula derived from 

experiments (Figure 3. 43) provides a much better estimation of breakdown voltage in divergent fields 

( < 10), only dependent on the gap distance. 



Chapter 4: Characterization of HFO in a weakly divergent field and study of gas degradation 

121 

 

 

 

  

Figure 4. 39 : Streamer criteria for air (Rc = 0.2 mm, d = 50 mm,  = 86, K = 20) 

Figure 4. 40 : Streamer criteria for SF6 (Rc = 0.2 mm, d = 50 mm,  = 86, K = 11) 
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General conclusion 

The work carried out during this PhD project aims to study the dielectric properties of HFO-

1234ze(E) in order to replace SF6 in medium voltage GIS. 

In this context, experimental and theoretical investigations were carried out with several 

objectives: 

1. Provide a good knowledge of the discharge process in HFO, by comparing it to air and 

SF6, two reference gases used in the electrical industry; 

2. Study and characterize the dielectric behavior of the HFO in a wide variety of electrode 

configurations, from very divergent to quasi-uniform field; 

3. Derive design rules for MV applications. 

Several candidates are presently studied for the replacement of SF6 in electrical systems. Our 

choice was focused on HFO presenting good assets: non-toxic, non-carcinogenic, good compatibility 

with materials, and availability. Preliminary work had shown the potential of HFO, mainly in very 

divergent fields. A more precise study, carried out in this study, was necessary in order to further 

characterize the behavior of HFO subjected to different types of electrical stress. The main results 

obtained can be summarized as follows. 

I. Pre-disruptive phenomena  

In the degraded HFO, the characteristics of pre-breakdown phenomena generated by a point 

electrode are very similar to those previously reported in the literature with other electronegative gases 

such as SF6. 

• Streamers are created at pd < 2.5 MPa/mm and leaders for pd > 2.5 MPa/mm; 

• Leaders' appearance voltages are higher in negative polarity than in positive polarity; 

• Their initiation field increases with increasing pressure; 

• The propagation of leaders is almost independent on pressure. It mainly depends on the 

applied voltage and gap distance; 

• The velocity of leaders, from 104 to 105 m/s mainly depends on the applied voltage. 

The major differences between leaders in SF6 and HFO is illustrated by the stopping length 

measurements:  

1. leaders in HFO are initiated at lower voltage;  

2. once initiated, their propagation up to the opposite electrode occurs at lower voltage. 
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These differences explain the lower breakdown voltage recorded in HFO, both in divergent 

fields (where propagation is a key factor), and quasi uniform fields (where initiation induces 

breakdown). 

II. Breakdown voltage 

A wide range of field enhancement factor ( from 1 to 100) and of pressure (0.1 to 0.3 MPa) 

has been investigated in order to evaluate the breakdown properties of HFO. As a main result, two 

distinct breakdown modes were identified in the HFO. 

• In quasi-homogeneous field ( < 10) the breakdown is controlled by the initiation of 

leaders. When a leader is initiated, it systematically leads to breakdown. When the HFO 

is new and electrodes clean, the impulse breakdown voltage of HFO is significantly 

higher than that of SF6 (up to 160 %). After a single breakdown, the degradation of HFO 

produces fine dust that deposits on electrodes. As a consequence of dust on electrodes, 

the positive leader initiation voltage, and hence the breakdown voltage, suddenly drops, 

and becomes lower than in SF6 (76 % that of SF6). In degraded HFO, increasing the 

pressure has a positive impact on breakdown, that is doubled between 0.1 and 0.3 MPa. 

Measurements suggest that the design of insulation in degraded HFO could be simply 

done by calculating the breakdown voltage in SF6 using the streamer criterion, and 

applying a de-rating factor of 0.76.  

• In strongly divergent field ( > 10), the breakdown is controlled by the propagation of 

leaders. Leaders lead to breakdown as soon as they reach the opposite electrode. Under 

these conditions, the breakdown voltage is of the order of 80 % that of SF6. The 

degradation of HFO does not affect these dielectric properties. Increasing the pressure 

has a very limited impact on breakdown, since leader propagation is rather insensitive 

to pressure. To improve the breakdown voltage, only the inter-electrode distance has a 

significant influence. 

For MV GIS, HFO could be used as an insulating gas, and not as a cutoff gas since it gets 

degraded by arcs. Experiments show that the degradation is enhanced with numerous breakdown of low 

energy, as compared to a single discharge of equivalent energy. 

Taking advantage of the very good properties of HFO in clean conditions would require to 

design insulation with zero breakdown probability (during service and tests), and very low level of 

partial discharges to prevent HFO degradation on the long term. The long breakdown time of the new 

HFO (> 10 µs), also suggests that with a normalized LI wave (1.2/50 µs), the breakdown voltage should 



General conclusion 

124 

be even higher than with the long duration wave used here. Testing conditions should be also carefully 

studied, since breakdown in negative polarity becomes lower than positive in new HFO. 

Another more conservative strategy would be to design insulation with parameters relevant for 

degraded HFO (i.e. corresponding to 75% of SF6 withstand at the same pressure), with the possibility to 

enhance pressure to reach the same insulation level as SF6. In quasi-uniform field, degraded HFO @ 

0.25 MPa shows the same breakdown voltage as SF6 @ 0.15 MPa 
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Perspectives 

The dielectric properties of HFO have been studied over a wide range of conditions. Certain 

aspects remain however to be developed, both to better understand the discharge mechanisms and the 

degradation of HFO due to discharges, and to better assess its properties in industrial systems. 

The physical characterization of discharges in HFO could be supplemented by more detailed 

measurements by emission spectroscopy. In this study, the excited species temperatures are studied 

throughout the discharge created with a pulse wave. The temperature of the gas could be determined 

and the evolution of the presence of excited species along the discharge could be considered. This will 

give information about the degradation process of HFO. 

The identification of the by-products of HFO-1234ze(E) and their properties (toxicity, GWP, 

etc.) is very important, it could be carried out by RAMAN or by infrared spectroscopy techniques. The 

reaction of these products with other materials inside a switchgear should also be studied to predict any 

potential hazards associated with the use of this gas. 

Concerning the characterization of HFO gas with the view to use it in medium voltage 

applications, and predict its breakdown strength, several additional investigations could be done: 

1. change the electrode material. The present study was carried out with stainless steel as 

the material of the electrode. It would be interesting to carry out similar studies with 

different electrode materials (aluminium, copper, brass) to evaluate the effect of this 

material on the drop of discharge initiation field after gas degradation; 

2. take measurements with a standardized lightning wave, to better fit with the actual 

testing conditions of devices; 

3. carry out statistical study of breakdown oriented to very low breakdown probabilities. 

One way to avoid the problems related to HFO degradation could be to design systems 

with a “zero” breakdown probability, taking advantage of the very good breakdown 

properties of new HFO, higher than SF6. A special attention should be paid to 

breakdown in negative polarity, that becomes the weak point in such conditions, 

contrary to most gases. The problem would be that characterization of new HFO is very 

time-consuming; 

4. measure swarm parameters would allow calculating the streamer criteria and enhance 

breakdown prediction; 

5. extend the comparison with SF6 to other geometries, as suggested in the previous 

section, in order to further validate the ratio SF6/degraded HFO; 
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6. investigate gas mixtures (see p.146). Tatarinov et al [44] have shown that the addition 

of nitrogen in HFO strongly decreases the conversion rate of HFO by discharges; 

7. further investigate the influence of solids. In medium voltage devices, insulating solids 

are in contact with the gas. It would be necessary to study the behavior of HFO 

discharges along an insulating surface in order to validate its potential use (see p.147). 
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Annexe 1: Spectroscopy of emitted light 

For atomic species 

The spectroscopic parameters of selected spectral lines in this work have been derived from the 

available atomic spectra database [103], [104]. 

Determination of Texc 

The excitation temperature, Texc, is determined by fitting a thermal distribution to the 

appropriately weighted intensities of a set of atomic transitions for a specific atomic species in the 

plasma. In our experiments, the atomic species used is iron, fluor… 

A key assumption in this analysis of Texc is that atomic line and the electrons are each in thermal 

equilibrium. If the plasma is shown to be in or near local thermodynamic equilibrium (LTE), then this 

assumption is valid. The condition of LTE specifies that all temperatures in the plasma are equal except 

the blackbody radiation temperature. LTE requires that the collisional processes dominate the radiative 

processes in the plasma. Griem [105] has established a criterion for the determination of a plasma's 

proximity to LTE. This formulation places a lower limit on the electron density. The Griem criterion 

states 

𝑁𝑒 ≥ 9 × 1011 (
∆𝐸

𝐸𝐻
)
3

√
𝑇𝑒
𝐸𝐻

 

Where Ne is the electron density in cm-3, ∆E is the energy level difference between the ground-

state and the first ionization state, EH is the ionization potential for hydrogen (13.6 eV), and Te is the 

electron temperature. Evaluating the equation for an electron temperature of approximately 1 eV and 

for a ∆E corresponding to the ionization potential for the N2 molecule (15.6 eV) results in an electron 

density threshold of ∼3 x 1017 m-3 for LTE. This value is well below the electron densities for the 

breakdown phase. Therefore, based on the Griem criteria the assumption of LTE is believed to be valid 

for the breakdown phase. 
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The specific case of hydrogen lines 

A set of tables of the Stark width of the Balmer series of hydrogen, was provided by Gigosos 

and Cardeñoso in 1996 [106]. These tables are available for Ne between 1020 m−3 and ~1025 m−3 and Te 

between 2,245 K and 224,856 K for different reduced masses of the emitter-perturbed pair μ in the range 

0.5-2.0 amu. Their utilization is straightforward and convenient. 

Table 1 : Hydrogen transition 

  (nm) Transition 

H 656.3 3d  2p 

H 486.1 4d  2p 

 

Figure 1 : Spectrum of a breakdown in the air (Rc = 0.2 mm, d = 50 mm, P = 0.1 MPa) corrected spectrum 
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For molecular species 

The energy of the levels for a diatomic molecule, in Born-Oppenheimer approximation may 

written by  

𝐸 = ℎ𝑐[𝑇𝑒 + 𝐺(u) + 𝐹u(𝐽) 

Te, G() and F(J) are the electric, vibrational and rotational term energies respectively; h is the 

Planck’s constant, and c is the velocity of light in vacuum. The vibrational levels can be described by 

an anharmonic oscillator: 

𝐺(u) = w𝑒 (u +
1

2
) − w𝑒𝑥𝑒(u +

1

2
)² 

Concerning the distribution of the rotational levels for given vibrational level and electronic 

state, one has: 

𝐹u(𝐽) = 𝐵u𝐽(𝐽 + 1) − 𝐷u𝐽
2(𝐽 + 1)2… 

which 𝐵u = 𝐵𝑒 − a𝑒 (u +
1

2
) + g𝑒 (u +

1

2
)
2
+⋯ and 𝐷u = 𝐷𝑒 − b𝑒 (u +

1

2
) + ⋯  where B 

and D are rotational and centrifugal distortion rotational constants e, exe and ee the vibrational 

constant and Be, e, e, De, e the spectroscopic constants. 

The intensity of line of vibrational-rotational transition can be expressed as: 

𝐼
u′u′′
𝐽′𝐽′′

= 𝐶
𝑆𝐽

′𝐽′′𝑞u′u′′

l4
exp⁡(−

𝐸u
𝑘𝑇u

)exp⁡(−
𝐸𝑟
𝑘𝑇𝑟

) 

Figure 2 : Experimental spectrum and simulated spectrum of N I for breakdown in air 

(Rc = 0.2 mm, d = 50 mm, P = 0.1 MPa) corrected spectrum 
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Where 𝑆𝐽
′𝐽′′  are Hönl-London factors for rotational transition, 𝑞𝑢′𝑢′′ is the Franck-Codon factor 

for vibrational transition, E and T are energy and temperatures; ‘’ and ‘r’ refer to the vibrational and 

rotational transition correspondingly, the C parameter includes constants and concentration of particles 

inconsequential to our relative method for defining temperatures. Hönl-London were taken from [], 

Franck-Condon factors from [107]. 

If the rotational states are in equilibrium, they are distributed according to a Boltzmann law: 

𝑁𝑢 =
𝑁0⁡𝑔𝑢
𝑄(𝑇𝑟)

𝑒
−𝐸𝑢

𝑘⁄ 𝑇𝑟 ⁡ 

N and N0 are the numbers of molecules in level u and in the ground state respectively, Q is the 

partition function, which depends on the rotational temperature, gu is the statistical weight of level u, Eu 

the energy of this level and k the Boltzmann constant. 

The second positive band system of N2 (C-B) corresponds to the radiation transitions between 

the electronic states of C 3u and B 3g, with electronic energies at 11.03 eV and 7.35 eV, respectively. 

Due to the strong interaction of the spin and the orbital angular momenta, three rotational terms F1, F2 

and F3 are obtained [Budo]: 

𝐹1(𝐽) = 𝐵𝑣 [𝐽(𝐽 + 1) − √𝑦1 + 4𝐽(𝐽 + 1) −
2

3

𝑦2 − 2𝐽(𝐽 + 1)

𝑦1 + 4𝐽(𝐽 + 1)
] − 𝐷𝑣(𝐽 −

3

2
)4 

𝐹2(𝐽) = 𝐵𝑣 [𝐽(𝐽 + 1) −
4

3

𝑦2 − 2𝐽(𝐽 + 1)

𝑦1 + 4𝐽(𝐽 + 1)
] − 𝐷𝑣(𝐽 −

1

2
)4 

𝐹3(𝐽) = 𝐵𝑣 [𝐽(𝐽 + 1) − √𝑦1 + 4𝐽(𝐽 + 1) −
2

3

𝑦2 − 2𝐽(𝐽 + 1)

𝑦1 + 4𝐽(𝐽 + 1)
] − 𝐷𝑣(𝐽 −

3

2
)4 

 

𝑦1⁡ = Λ2𝑌(𝑌 − 4) +
4

3
 

𝑦2⁡ = 𝛬2𝑌(𝑌 − 1) +
4

9
 

𝑌 =
𝐴𝑣
𝐵𝑣

 

Y measures the coupling strength between the spin and the orbital angular momentum. 

Table 2 shows the Franck–Condon factors for C -B transition. The molecular constants of the 

C3u state and B3g state of N2 molecule are listed in Table 3 and Table 4.  
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Table 2 : Franck-Condon factors of the 3u  B3g system N2 [107] 

’’ ’ = 0 ’ = 1 ’ = 2 ’ = 3 ’ = 4 

0 0.45100 0.39430 0.13340 0.02036 0.00096 

1 0.32760 0.02145 0.34120 0.25380 0.05392 

2 0.14680 0.20310 0.02415 0.21010 0.33270 

3 0.05211 0.19810 0.06313 0.08854 0.12300 

4 0.01617 0.11040 0.16060 0.00451 0.10850 

5 0.00461 0.04712 0.13880 0.09324 0.00458 

6 0.00124 0.01726 0.07948 0.12980 0.04084 

 

Table 3 : Spectroscopic constants of electronic state C3u of N2 

 [108] [109] [110] [111] [112] 

Te (cm-1) 89136.88 89147 88977.9 88977.84 89136.88 

we (cm-1) 2047.178 2035.1 2047.178 2047.178 2047.7800 

exe (cm-1) 28.4450 17.08 28.4450 28.4450 28.9788 

eye (cm-1) 2.08833 -2.15 2.08833 2.05533 2.24731 

eze (cm-1) -0.5350  0.5350 -0.5350 -0.55145 

Be (cm-1) 1.82473 1.8259 1.82473 1.82173 1.82677 

e (cm-1) 0.01868 0.0197 0.018683 0.018683 0.024 

re (Å) 1.1486 1.1482 1.1487 1.148688  

De x 10-6 (cm-1)   5.80   

 

Table 4 : Spectroscopic constants of electronic stateB2u
+ of N2 

 [108] [109] [110] [111] [112] [113] 

Te (cm-1) 25461.46 25461.5 25566.1 151233.5 25461.11 25461.5 

e (cm-1) 2419.84 2419.84 2419.84 2419.84 2424.14 2419.84 

exe (cm-1) 23.18 23.19 23.19 23.19 24.07 23.19 

eye (cm-1) -0.537 -05375 -0.5375  -0.30 -.5375 

eze (cm-1) -0.0495    -0.0667  

Be (cm-1) 2.07456 2.083 2.085 2.073 2.08507 2.083 

e (cm-1) 0.024 0.0195  0.020 0.0212 0.0195 

re (Å) 1.0742 1.075 1.075 1.07772  0.1075 

De x 10-6 (cm-1) 6.17  6.2    
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Annexe 2: Streamer criteria 

For air, 
𝑎𝑒𝑓𝑓

𝑁
= 4. 10−20 exp (−

985
𝐸

𝑁
+43

) − 30. 10−24⁡(𝑚2)  94 < E/N < 1500 (Td) 

For SF6, 
𝑎𝑒𝑓𝑓

𝑁
= −9. 10−20 exp (−

𝐸
𝑁⁄

2875
) + 8. 10−20⁡(𝑚2)  360 < E/N < 5000 (Td) 

In plan-plan, ∫ 𝑎𝑒𝑓𝑓⁡𝑑𝑥 = 𝐾
𝑥𝑐𝑟
0

 simplified in 𝑎𝑒𝑓𝑓⁡𝑑 = 𝐾 
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Annexe 3: Observations during post-breakdown in HFO 

Measurements and observations are still inexplicable regarding current and light recorded 

during the post-breakdown arc in HFO. These measurements were carried out with the STI wave, in 

HFO degraded in a quasi-homogeneous field (Rc = 5 mm, d = 50 mm, P = 0.1 MPa).  

The Figure 3 shows the voltage during a breakdown in HFO and air and the corresponding 

current. For an equivalent voltage (90 kV), the duration during which the current circulates during the 

post-breakdown arc is 30 s for the 2 gases. 

 

 

Figure 4 shows the corresponding light emission recorded by a photodiode. It is observed that 

in air, the arc emits light for less than 10 µs. In the HFO, at an equivalent voltage, the duration of light 

emission during the post-breakdown arc is greater than 100 µs.  

Figure 3 : Current of arc and applied voltage in air and HFO (STI, Rc = 5 mm, d = 50 mm, P = 0.1 MPa) 

Figure 4 : Light emission recorded by a photodiode during a breakdown 

in the air and the HFO (STI, Rc = 5 mm, d = 50 mm, P = 0.1 MPa) 
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Figure 5 is obtained with a high speed camera. As in Figure 4, light is visible in the HFO after 

100 µs, after breakdown. One can observe luminous "packets" in the inter-electrode space which 

gradually extinguish. These light emissions could be associated to particles in suspension, which will 

later be deposited on the walls of the cell and on the electrodes. 

 

  

Figure 5 : Image of emitted light 100 µs after breakdown in HFO 

(Rc = 5 mm, d = 50 mm, P = 0.1 MPa, Ua = 90 kV) 
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Assuming that the dust particles are charged, measurements were performed by applying a DC 

voltage between 2 impulses to sweep them. Figure 6 and Figure 7 do not show any gain in the breakdown 

voltage with DC voltage, whatever the gas used. 

 

 

 

  

Figure 6 : (Rc = 2 mm, d = 50 mm, P = 0.1 MPa) 

Figure 7 : (Rc = 5 mm, d = 10 mm, P = 0.1 MPa) 
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Annexe 4: Perspectives 

Gas characterization, study of mixtures 

Tatarinov et al [44] have shown that the addition of nitrogen in HFO strongly decreases the 

conversion rate of HFO by discharges. No information was however provided on the production of dust 

by-product. We may verify that the addition of nitrogen (25% in [44]) in the HFO also decreases the 

deposit formation on electrodes. Chachereau et al [114] also studied theoretically the possible synergy 

between HFO and nitrogen (Figure 8). According to this study, it seems that a synergy effect is not 

present between HFO and CO2 or N2 (such synergistic effect exits with SF6 in N2), but no breakdown 

measurements were provided to confirm this conclusion. Hösl et al. [115] obtained a positive synergy 

for a mixture of 60 % HFO with 40 % SF6, with a reduced E/N field of 425 Td (Figure 9). However, the 

objective is to totally remove SF6 in future applications. 

 
Figure 8 : Reduced critical electric field as a function of HFO1234ze or SF6 mole fraction in N2 or CO2 [114] 
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Effects of insulating solids on breakdown in HFO 

In addition to breakdown in gas, an important aspect for MV application is the breakdown along 

solid insulating surfaces. This aspect has not been investigated here. Preliminary studies have shown 

good compatibility between HFO and various solids, despite the presence of dust deposits as shown in 

the Figure 10. The breakdown voltages obtained in the presence of solids are relatively close in air, SF6 

and degraded HFO for epoxy/silica and PPA in very divergent fields. However, as shown in Figure 11, 

a more marked degradation (channel) may occur with HFO, depending on the solid nature. This channel 

is probably responsible for the progressive loss of dielectric strength with HFO after numerous 

breakdown experiments in Figure 10. To ensure long-term reliability, such interaction between 

discharges and solids should be thoroughly investigated. 

 

Figure 9 : Critical field strength (E/N)crit of mixtures of SF6 with HFO1234ze(E). In blue circles, a measurement 

series at pressures of 360- 480 Pa is shown. In red crosses, we used higher, variable pressures from 4-12 kPa. In 

black squares, breakdown results (E/N)bd for the mixture of SF6 with C3F6 is given at pressure of 67 kPa [115]. 

Figure 10 : Breakdown voltages solid/gas insulation with PPA and Epoxy with SF6, dry air and HFO1234zeE [7] 
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Figure 11 : Epoxy samples after 20 breakdown degradation in different gases at 0.2 MPa [7] 
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Le remplacement du SF6 dans les appareils électriques est au centre des préoccupations de 

l’industrie électrique depuis des années. En effet, le SF6 est le gaz présentant le pouvoir de réchauffement 

climatique le plus élevée connu. Depuis de nombreuses années des alternatives au SF6 sont étudiées sans 

succès. Les hydrofluorooléfines présentent de bonnes aptitudes pour substituer le SF6 dans les systèmes 

isolés au gaz en moyenne tension. 

Dans ce contexte, des études préliminaires ont révélé le potentiel du HFO-1234ze(E) en tant que 

gaz isolant pour de l’appareillages moyenne tension. L’objectif de ce travail est de générer des données 

et des connaissances pour le dimensionnement d’appareils moyenne tensions avec du HFO-1234ze(E). 

Les résultats expérimentaux incluent des mesures de tensions de claquage obtenues dans diverses 

conditions de tension (DC, choc impulsionnel), de pression (de 0.1 à 0.3 MPa), de distance inter-

électrode (10 à 100 mm), et de forme d’électrodes. Cette large gamme de configurations a permis de 

mettre en évidence deux modes de claquage bien distincts et comparable à ceux présents dans le SF6. 

Quand le champ est fortement inhomogène, géométrie la plus critique pour les appareils électriques, le 

claquage est « contrôlé par la propagation » de leaders. Les leaders se propagent dans l’espace inter-

électrodes par sauts à des vitesses de l’ordre de 106 m/s sans nécessairement conduire au claquage. 

Quand le champ devient plus homogène, le claquage devient « contrôlé par l’initiation ». Quand une 

pré-décharge s’initie, elle conduit systématiquement au claquage. La pression joue un rôle important sur 

la tension d’initiation. En fin, l’un des résultats importants de ces travaux est la mise en évidence de 

l’influence complexe entre la dégradation du HFO, la présence de particules solides à la surface de 

l’électrode et la perte de tenue diélectrique en champ quasi-homogène après un seul claquage.  

 

Mots-clés : Appareillage moyenne tension, rigidité diélectrique, hydrofluorooléfine (HFO-

1234ze(E)), caractérisation électrique, visualisations 
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