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Abstract

Keywords: graphene, quantum Hall, helical edge transport, Fabry-Pérot interferometer.

In the quantum Hall regime, the Coulomb interactions lead to the emergence of various highly
correlated electronic phases exhibiting striking statistical and topological properties. The recent
development of high mobility graphene van der Waals heterostructures has opened up new op-
portunities for the study of these phases. In this PhD thesis, we developed new types of nanos-
tructures that could enable to probe and exploit some of the unique properties of the correlated
quantum Hall phases developing in graphene.

Using high-k dielectric SrTiO3 substrates, we fabricated graphene devices where a phase ex-
hibiting a helical edge transport develops at charge neutrality and at low magnetic fields. We
show that this helical quantum Hall phase stems from the screening of the long-range Coulomb
interaction by the substrate. We demonstrate that this helical edge transport survives over micron
long distances and is robust up to a temperature of 110 K, thus providing a promising platform to
investigate topological superconductivity.

We also successfully fabricated encapsulated graphene heterostructures equipped with quan-
tum point contacts in series that operate as quantum Hall Fabry-Pérot interferometers. We demon-
strate that these devices display gate-tunable oscillations that arise from the Aharonov-Bohm
effect in remarkable agreement with theory. We investigate the quantum coherence of electron
transport in these interferometers and the possibility to operate a coherent double Fabry-Pérot
interferometer. We show that our graphene Fabry-Pérot interferometers also exhibit an intriguing
transport regime where Aharonov-Bohm oscillations have a halved periodicity. We finally inves-
tigate the possibility to make interference in the fractional quantum Hall regime and we unveil
the existence of phase jumps in Aharonov-Bohm oscillations which cannot be interpreted as sig-
natures of anyonic statistics. Our work demonstrates that graphene devices offer a new platform
to investigate the physics of quantum Hall Fabry-Pérot interferometers and open up new paths
towards the probing of anyon physics emerging the fractional quantum Hall regime.
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Résumé

Mots-clés: graphène, effet Hall quantique, transport hélical, interferomètre de Fabry-Pérot.

En régime d’effet Hall quantique, les interactions coulombiennes entrainent la formation de nom-
breuses phases électroniques hautement corrélées arborant des propriétés topologiques et des
statistiques hors du commun. Le récent développement des hétérostructures de graphène de
haute mobilité a offert de nouvelles opportunités pour l’étude de ces phases. Dans ce travail de
thèse, nous avons développé de nouvelles nanostructures qui permettent de sonder et d’exploiter
certaines des propriétés uniques des phases corrélées se développant en régime d’effet Hall quan-
tique dans le graphène.

En utilisant des substrats de SrTiO3 à haute constante diélectrique, nous avons fabriqué des
dispositifs dans lesquels un transport hélical apparaît au point de neutralité et à bas champs mag-
nétiques. Nous montrons que cette phase hélicale se développe grâce à l’écrantage de l’interaction
coulombienne longue portée par le substrat. Dans cette phase le transport reste hélical sur des
distances micrométriques et jusqu’à 110 K ce qui en fait un système de choix pour l’étude de la
superconductivité topologique.

La seconde partie de cette thèse a consisté en la réalisation d’interféromètres de Fabry-Pérot
en régime d’effet Hall quantique à base d’hétérostructures de graphène encapsulé équipées de
contacts ponctuels quantiques. Nous démontrons l’existence, dans ces dispositifs, d’oscillations
Aharonov-Bohm contrôlables par des grilles électrostatiques, en parfait accord avec les prédic-
tions théoriques. Nous étudions la cohérence du transport électronique dans ces interféromètres
ainsi que la possibilité de mettre en place un double interféromètre dans lequel le transport reste
cohérent. Par ailleurs, nous montrons qu’il existe, dans ces interféromètres, un régime de trans-
port particulier dans lequel les oscillations Aharonov-Bohm ont une périodicité réduite de moitié.
Nous étudions, enfin, la possibilité de réaliser des expériences d’interférométrie en régime d’effet
Hall quantique fractionnaire et nous mettons en évidence l’existence de sauts de phases dans les
oscillations Aharonov-Bohm ne pouvant pas être interprétés comme des signatures de statistiques
anyoniques. Notre travail montre que les dispositifs à base de graphène offrent de nouvelles op-
portunités pour l’étude des interféromètres de Fabry-Pérot en régime d’effet Hall quantique et
ouvrent de nouvelles perspectives pour explorer la physique des anyons émergeant en régime
fractionnaire.
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Introduction

In 1980, K. von Klitzing and coworkers [1] discovered that two dimensional electron gas placed in
strong perpendicular magnetic fields and at low temperatures have remarkable electronic trans-
port properties. Investigating the transport in silicon MOSFET devices above 13 T, they observed
the formation of transverse resistance Rxy plateaus appearing as they changed the carrier density
in their sample. Surprisingly, these plateaus were in coincidence with cancellations of the longi-
tudinal resistance Rxx and they were precisely quantized. Von Klitzing et al. indeed found that
the conductance on these plateaus was an integer multiple of the conductance quantum e2/h.1

Soon after, in 1982, Tsui et al. [2] observed that such Rxy plateaus were also emerging at fractional
values of e2/h. These two novel phenomena were respectively named integer quantum Hall and
fractional quantum Hall effects.

It was rapidly understood that electron-electron interactions would play a crucial role in the
quantum Hall physics and that they would give rise to a wealth of highly correlated electronic
phases having exciting properties. In particular, it was early predicted that the fractional quantum
Hall states would host quasiparticles carrying fractional electric charges [3] and having anyonic
statistics [4, 5], i.e. being neither bosons nor fermions. Likewise, some quantum Hall phases
developing in the integer regime were predicted to host charged excitations having a skyrmionic
spin textures [6]. The existence of such remarkable topological properties has driven research on
quantum Hall physics for 40 years. It is still very active, as many questions remain unanswered,
and it regularly leads to fundamental breakthroughs.

Since its discovery in 2004 [7] and the evidencing of its particular quantum Hall effect in
2005 [8, 9], graphene has revealed to be an interesting playground for the investigations of the
physics of the integer and fractional quantum Hall effects [10–12] and the study of their topologi-
cal properties [13]. In particular, the recent development of graphene Van der Waals heterostruc-
tures enabled to explore the coupling between quantum Hall effect and other condensed matter
phenomena like Moiré superlattice physics [14] or superconductivity [15] which had not been
addressed before. Many efforts are currently under way to implement elaborated gate-tunable
(hybrid) devices, like quantum point contacts [16], in these heterostructures in the prospect of
probing and manipulating the topological excitations developing in the graphene quantum Hall
phases.

In this PhD work, we have successfully fabricated and investigated high mobility graphene
devices dedicated to the study of correlated quantum Hall phases and the harvesting of their
topological properties. We have studied them through transport measurements. The present
manuscript is separated in two parts dedicated to the two types of samples studied during this
thesis: graphene devices on SrTiO3 and graphene devices with multiple split gates used as quan-
tum Hall Fabry-Pérot interferometers.

In the first part, we present an approach that we have developed to induce the formation of
the ferromagnetic quantum Hall phase in charge neutral graphene using SrTiO3 substrates. In
chapter 1, we review the physics of the integer quantum Hall effect in graphene and show that
interactions lead to the formation of broken symmetry states. We discuss the consequences of this
phenomena at charge neutrality describing the different competing ground states which exist and
their properties. In chapter 2, we show that one can favour the formation of a helical quantum Hall
phase in charge neutral graphene by using the dielectric screening provided by SrTiO3 substrates.

1The resistance quantum h/e2 ' 25 813 Ω is also known as the von Klitzing constant.
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We present transport measurements demonstrating the robustness of the helical edge transport
induced with such strategy. It offers a promising platform to probe topological superconductivity.

In the second part, we focus on quantum Hall Fabry-Pérot interferometers. In chapter 3, we re-
view the physics and the functioning of these quantum Hall edge channel interferometers and ex-
plain how they allow to investigate the existence of anyons in the fractional quantum Hall regime.
We also discuss previous experiments performed in such devices fabricated in GaAs/AlGaAs het-
erostructures and discuss the detrimental effect of Coulomb interactions in these interferometers.
We then focus on graphene split-gated devices and show that they can be operated as such Fabry-
Pérot interferometers. In chapter 4, we explain how we preliminary characterize the transport
in graphene devices with multiple split gates before performing interferometry experiments. In
chapter 5, we evidence that such devices behave as prototypical quantum Hall Fabry-Pérot in-
terferometers in the integer regime. We show that they exhibit high-visibility Aharonov-Bohm
interference in remarkable agreement with the non-interacting theory. Yet, in chapter 6, we show
that it also exists a regime where Aharonov-Bohm oscillations display a halved periodicity. We
discuss the manifestations of this regime in our graphene devices and its specificities. In chap-
ter 7, we present the results of our theoretical and experimental investigations of coherent trans-
port through a double quantum Hall Fabry-Pérot interferometer. Finally, in chapter 8, we discuss
our attempts to make interference with fractional edge modes at fractional bulk filling factors but
also in an unusual regime with quantum point contacts at fractional transmissions and with the
bulk at integer filling. In this second configuration, we unveil the existence of peculiar transport
regime where the Aharonov-Bohm oscillations display clear phase jumps that mimic the signa-
tures expected for anyonic statistics.
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Chapter 1

Integer quantum Hall effect in
monolayer graphene
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In this first chapter, we present the physics of the integer quantum Hall (QH) effect in graphene.
We begin a brief presentation of the basic electronic properties of graphene and of its QH effect in
absence of interactions. We then consider the effect of electron-electron interactions in the integer
QH regime focusing on the so-called quantum Hall ferromagnetism. Finally, we discuss the spe-
cial case of the ground state of charge neutral graphene in magnetic field.

1.1 Quantum Hall effect of non-interacting Dirac fermions in graphene

In this section, we discuss the non-interacting quantum Hall effect emerging in graphene. We
remind the basic electronic properties of graphene at zero magnetic field and then present how
they evolve when graphene is placed in high magnetic field. We explain how the integer QH
regime emerges from the Laudau quantization and what are its signature in graphene samples.
The derivations of the results presented here, as well as further theoretical predictions, are re-
viewed for example in ref. [17–19].

1.1.1 Band structure and transport at zero magnetic field

Graphene is an atomic monolayer of carbon atoms arranged in a honeycomb lattice. The unit cell is
composed of two atoms separated by a = 0.142 nm. The honeycomb lattice is usually decomposed
in two different triangular sublattices A and B as shown in Fig. 1.1.A. The corresponding Brillouin
zone also forms a honeycomb lattice with two inequivalent corner points labelled K and K′. The
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electronic transport in graphene arises from the electrons occupying the out-of-plane 2pz orbitals
of carbon atoms. They are delocalized and, using tight binding methods, one can calculate the
electronic band structure of graphene which is depicted in Fig. 1.1.B.
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FIGURE 1.1: Graphene basic electronic properties. A, Carbon atoms organized in a honeycomb lattice
forming a graphene sheet. The honeycomb lattice is decomposed in two triangular sublattices labelled A
and B. B, Graphene band structure. Inset: Dirac cone at K point. Adapted from ref. [20].

It is composed of two symmetric bands, touching each others at points K and K′. Each carbon
atom has only one electron in its 2pz orbital which is either spin up or spin down. In contrast,
each state of the electronic band structure is spin degenerate. Therefore, in undoped graphene,
the valence band is completely filled whereas the conduction band is empty. The Fermi level
thus lies at zero energy and the Fermi surface is reduced to the points K and K′. Physics at low
energies is governed by the Dirac Hamiltonian and by the linear dispersion relation nearby these
two points :

ε = ±h̄vF|−→q |, (1.1)

where
−→
k = −→q +

−→
K (′) is the wave vector such that |−→q | � −→K (′) and vF = 106 m/s is the Fermi

velocity. In this expression, the signs + and − correspond to the conduction and valence band.
The Dirac cones originating from K and K′ points are energy degenerate leading to an addi-

tional valley degeneracy on top of the usual spin degeneracy. The low energy spectrum can thus
be considered as a single fourfold degenerate Dirac cone. Note that the band structure of graphene
is associated with a non trivial π Berry phase [8].

As natural graphene is a gapless semi metal, it can be doped by field effect via application
of a voltage on a metallic gate electrode. Application of a positive, respectively negative, gate
voltage allows to accumulate, resp. deplete charges, in the flake populating the conduction, resp.
valence band, with electrons, resp. holes. It enables to study the transport in both electron-doped
and hole-doped regime but also to investigate how the transport within a sample is affected by
changes of doping.

1.1.2 Graphene Landau levels

When graphene is placed in a perpendicular magnetic field, its band structure is modified and the
Dirac cone splits into a discrete set of energy levels as sketched in Fig. 1.2.A. These energy levels
are called Landau levels (LLs) and their energies are given by :
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EN = ±vF

√
2h̄e|N|B, (1.2)

where N ∈ Z is the Landau level index. In this expression, ± denotes the sign of N. It is positive,
respectively negative, for electron-like and respectively hole-like LLs (i.e. LLs emerging from
energy states respectively in the conduction and in the valence bands). The N = 0 LL equally
belongs to both the conduction and the valence bands and it always lies at zero energy. It is
usually said to be half composed of electron-like states and half composed of hole-like states.

The dispersion of LL energies with the magnetic field B is plotted in Fig. 1.2.B. It shows that
the LLs are not equidistantly spaced in energy and that the spacing between adjacent LLs, i.e. the
cyclotron gap h̄ωc, decreases at higher values of |N|. This is a direct consequence of the

√
|N|B

scaling of LL energies.
Each LL is highly degenerate and its degeneracy nLL is fixed by the density of magnetic flux

Φ = BS threading the graphene sample of surface S. It is given by nLL = 4 Φ
Φ0

where Φ0 = h
e is

the flux quantum and where the factor 4 accounts for the fourfold spin and valley degeneracies
in graphene. Thus, there are four states available per flux quantum in each LL. Each of this state
occupies a surface δA = 2πl2

B of the sample where:

lB =

√
h̄

eB
= 26 nm at 1 T, (1.3)

is the magnetic length i.e. the characteristic length scale governing the physics at high magnetic
fields and the typical spatial extension of the wavefunctions in such regime.
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FIGURE 1.2: Graphene Landau levels. A, Splitting of the Dirac cones into both electron-like (blue) and
hole-like (red) fourfold degenerate Landau levels in perpendicular magnetic field. Note the existence of a
zero energy LL half electron-like and half hole-like. Adapted from ref. [20]. B, Dispersion of LL energies
with magnetic field B. C, Density of states (DOS) of graphene LLs. In real samples, the LLs are broadened
because of the potential disorder in the sample.

Importantly, the wavefunctions of valley degenerate eigenstates have spatial structures which
depend on the LL index. In particular, in the N = 0 LL, the states in one valley reside only in one
sublattice: their wavefunctions vanish on the other sublattice. Hence, there is a direct equivalence
between the valleys and the sublattices in the N = 0 LL. In contrast, in the other LLs, eigenstates
in a given valley have wavefunctions equally shared between both sublattices.
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The filling of LLs can be characterized by the filling factor ν defined as:

ν =
nΦ0

B
= 4

nS
nLL

, (1.4)

where n is the charge carrier density in the sample. ν takes an integer value of 4(N + 1
2 ) = 2(2N +

1) when the Nth Landau level is completely filled with electrons and when the higher LLs are
empty. This is a consequence of the existence of a zero energy LL equally shared between electrons
and holes and of the fourfold degeneracy. Note that in this expression the 1

2 shift also reflects the
existence of the π Berry phase.

Considering their large degeneracy, one can ideally consider LLs as flat bands having a large
density of state. Yet, in real samples, LLs are broadened by disorder as sketched in Fig. 1.2.C.
When the LL broadening Γ is small compared to the cyclotron gap, Γ � h̄ωc , the sample is in
the QH regime where quantized resistance plateaus can be observed [21, 22]. This is the regime
studied in this manuscript.

1.1.3 Graphene QH edge channels.

Landau levels nearby graphene edges: armchair and zigzag edges

The previous LL spectrum can be derived considering that the graphene sample is infinite. Yet,
a real 2D sample always has finite dimensions delimited by some edges. They can be modelled
by a strong confining potential which extends over a limited space region and which modifies the
energy spectrum at the edges. In magnetic field, it leads to a bending of the LLs [22].
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FIGURE 1.3: Zigzag and armchair edges

In graphene samples, the confinement actually depends on the form of the physical edges
which can be either armchair or zigzag (see Fig. 1.3). To calculate the energy dispersion of graphene
LLs nearby these edges, one needs to take into account the specific boundary conditions for the
electronic wavefunctions in each case [23–25]. At an armchair edge, the last line of carbon atoms is
composed of atoms belongings to both sublattices. Thus, the wavefunction should vanish on both
sublattices at the edge. In contrast, at a zigzag edge, the carbon atoms of the last line all belong to
the same sublattice. Thus, the wavefunction must only cancel on the other sublattice at the edge.

The LL dispersions were computed by Brey and Fertig [23, 27] using tight-biding model and
by Abanin and Levitov [24, 25] using Dirac continuum model leading to similar results. We now
discuss the results of second approach which are shown in Fig. 1.4. It displays the evolution of LL
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K, K’ K K’

Armchair Zigzag Zigzag
Edge Bulk Edge Bulk Edge Bulk

FIGURE 1.4: Graphene LL bending at the edges. LL bending approaching an edge in a graphene sample.
The position of the edge is marked by the black dashed lines. In both cases, N 6= 0 electron/hole-like LLs
disperse upward/downward as a result of the confinement. A, Nearby an armchair edge, the two valleys
admixe and all LLs split in two dispersing spin degenerate branches. B, Nearby a zigzag edge, the valley
degeneracy is lifted and the LL bending depends on the valley considered. For the N = 0 LL, the states
in one valley form a single dispersionless branch whereas the states in the other valley form two branches
dispersing in opposite directions. Red and green lines emphasize the energy difference between the states
of the N = 1 LL in the two valleys (K in red and K′ in green). Adapted from ref. [26].

energies for a half-infinite graphene plane approaching either an armchair edge at position y = 0
or a zigzag edge at position x = 0 marked by black dashed lines.1

In the armchair case, N 6= 0 electron-like, respectively hole-like, LLs bend upward, respec-
tively downward and split into two branches approaching the edges. Likewise, the N = 0 LL
splits into two branches dispersing in opposite direction. These splittings result from a lifting of
the valley degeneracy. It is a consequence of the boundary condition at the edge which imposes
that the two valleys admixe. All branches are spin degenerate.

In the zigzag case, one should distinguish the two valleys. Like in the armchair case, the N > 0
and N < 0 LLs bend respectively upward and downward approaching the edges. Yet, at a given
position, the energy of each bent LL actually depends on the valley considered (see for example
green and red lines corresponding to the energies of the N = 1 LL states respectively in K and K′

valley at pylB = 0) [28]. The valley degeneracy is also lifted at the edge.
For the N = 0 LL, the situation is more complex because of the mixing of this LL with disper-

sionless surface modes that exist along a zigzag edge. For one valley, the dispersion is similar to
that of the armchair case edge: the N = 0 LL splits into two dispersing branches. For the other val-
ley, the N = 0 LL remains at zero-energy because the bulk wavefunction naturally vanishes after
the last line of carbon atoms (due to the valley-sublattice equivalence) and thus already satisfies
the boundary condition. Note that in a zigzag ruban, the last carbons atoms of the two opposite
edges belong to different sublattices. Hence, the spectra for the two valleys are exchanged at the
two different edges.

1The dispersions are displayed in momentum space rather in real space. Yet, in the LL theory, there is a simple
duality relation between momentum and position provided a suitable gauge choice. In a 2D geometry, infinite along
y direction and finite along x direction, one can show that the eigenstate wavefunctions are plane waves propagating

along y direction and spatially localized in the x direction. A state in the Nth LL with momentum py = h̄(ky − K(′)
y ) is

centered around x = kyl2
B and has a spatial extension about

√
2|N|+ 1 lB in x direction. Hence, the LL dispersion in

momentum space gives information about the LL dispersion in real space.
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Formation of QH edge channels

This LL bending has deep consequences on the electronic transport and, in particular, it leads to
the formation of one dimensional conductive edge channels. To explain it, we consider Fig. 1.5.A
which shows a sketch of the LL dispersion for an armchair ruban infinite along the x direction and
of finite width in the y direction.
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FIGURE 1.5: Formation of graphene QH edge channels. A, Schematic of the bending of graphene LLs in an
armchair rubban. Electron-like LLs are represented in blue and hole-like LLs are represented in red. When
the Fermi energy EF lies between two adjacent LLs in the bulk, it crosses some of the bent LLs at the edges
resulting in the formation of conductive edge channels. B, Semiclassical picture of QH edge channels. In
the bulk, the charge carriers have a cyclotron orbital motion. 1D conductive channels formed by skipping
orbits appear at the edges of the sample. Their propagation direction is imposed by the magnetic field.

When the Fermi energy EF lies in the cyclotron gap between two adjacent LLs, the bulk of the
sample is insulating. In contrast, at the edges, EF crosses some of the bent LLs. Thus it exists low
energy states all along each samples edges. They form one dimensional edge channels called QH
edge channels. The carriers populating these channels have finite group velocities given by:

vx =
1
h̄

∂εN

∂kx
=

1
eB

∂εN

∂y
, (1.5)

where εN is the energy of the Nth bent LL. They propagate in opposite direction along opposite
edges: they are chiral. The chirality of the charge carriers motion is actually imposed by the
direction of the magnetic field. In a semi-classical picture, the QH edge channels can be seen as
the results of the cyclotron orbital motion of electrons and the formation of so-called skipping
orbits at the edges depicted in Fig. 1.5.B.

The edge states propagate along equipotential lines at the edges of the sample. As pointed by
M. Buttïkker [29], the backscattering along a given edge is suppressed as all edge states propa-
gate in the same direction. Backscattering can only occur if counterpropagating edge channels are
brought sufficiently close such that electrons can tunnel from one edge to the other. This situa-
tion usually does not occur in real samples because the opposite edges are separated by several
microns long distances. We note that hole-like and electron-like edge channels have opposite di-
rections of propagation along a given edge.

According to the above section, in doped graphene, when EF lies between the N and N + 1 LL,
there are 2(2N + 1) of such chiral edge channels appearing at the edge of the sample. It does not
matter whether the edge is zigzag, armchair or even a combination of both like in real samples.
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1.1.4 Transport signatures of QH effect in graphene samples.

The QH effect is a direct consequence of the emergence of such chiral and conductive edge chan-
nels in an otherwise insulating bulk. Since backscattering is suppressed along a given edge, QH
edge channels can be considered as unidirectional 1D conductive quantum channels having per-
fect transmissions [29]. Applying Landauer-Büttiker formalism to a six-terminal Hall bar geom-
etry (Fig. 1.6.A), one can demonstrate that all the contacts on the upper arm of the Hall-bar have
the potential of the source contact whereas all the contacts on the lower arm have that of the drain
contact. Hence, we have:

Gxy = I/Vxy = M
e2

h
and Rxx = Vxx/I = 0, (1.6)

where M is the number of edge channels along each edge which is fixed by the number of dis-
persing branches crossing the Fermi level at the edges. Similarly, in a two-terminal geometry
(Fig. 1.6.B), one can show that:

G2t = I/V2t = M
e2

h
. (1.7)
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Gxy = 2(2M+1) and  Rxx = 0 G2t = 2(2M+1)

FIGURE 1.6: QH signatures in various geometries of graphene samples. A, Six-terminal Hall bar geome-
try. Due to the absence of backscattering, there is no potential drop, such that the voltage measured at the
contacts on the upper edge, resp. on the lower edge, are the same than that of the source contact Vs, resp.
of the drain contact Vd. The signatures of the QH effect are a quantization of Gxy together with a vanishing
of Rxx. B, Two-terminal geometry. The signature of the QH effect is a quantization of the two-terminal
conductance.

The quantized transport regime is observed when the Fermi level lies in the cyclotron gap
between adjacent LLs. In contrast, when it lies in the middle of a LL, there are some bulk states
extending in the sample and percolating between the two edges. They provide a backscattering
mechanism and it results in a lose of quantization. Ideally, this last situation should always be
observed. Indeed, the LLs should be perfectly flat bands and there should be no state in the
cyclotron gap. The observation of a robust quantized transport regime may look surprising in this
regard.

However, in real samples, the LLs are broadened because of the potential disorder and their
density of states are peaks with a finite energy width (see Fig 1.7). The Fermi level can lie either
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in the middle of the peaks or in the tails. In the first case, the situation is the same than the one
described above and the transport is not quantized. In the second case, the bulk states at the Fermi
level remain localized on small regions of the sample . There is no backscattering between the two
edges and the transport remains quantized [22].

In graphene samples, one can continuously adjust the LL energies or the Fermi level by chang-
ing either the magnetic field or the carrier density with the back gate. In both cases, the relative
position of EF compared to that of the LLs is gradually changed and the Fermi level successively
lies in different LLs. Hence, there is an alternation of quantized and not quantized transport
regimes leading to the observation the famous QH resistance plateaus.

The direct consequence of the graphene relativistic LL spectrum [30], or equivalently of the LL
dispersion at the edges of graphene, is that the QH plateaus followed a sequence given by:

Gxy = 2
e2

h
(2M + 1), (1.8)

where the factor 2 arises from the spin degeneracy. The observation of such a sequence of QH
plateaus in 2005 [8, 9] unambiguously demonstrated that the graphene low energy band structure
is described by the 2D Dirac equation. It is worth noticing, that in graphene, the QH regime can be
reached even at room temperature [31] due to the large cyclotron gap between N = 0 and N = ±1
LLs which is about 420

√
B[T]K.
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FIGURE 1.7: Graphene QH plateaus. A, Density of states (DOS) of graphene LLs. Each LL can be repre-
sented as a peak in the DOS with finite width. B, Typical signatures of graphene QH effect in six-terminal
Hall bar geometry. When the Fermi level lies in the tail of a LL peak (orange dashed line), there is no
backscattering in the sample and the transport is quantized. When the Fermi level lies in the middle of a
LL (green dashed line), there is some backscattering in the sample and the transport is no longer quantized.
Adapted from ref. [8].

1.2 Quantum Hall ferromagnetism in graphene

So far, we did not consider the effect of interactions which play a significant role in the QH physics.
In this section, we include the interactions and present their main consequence in the IQH regime,
that is, the emergence of the quantum Hall ferromagnetism. We discuss its effect on the transport
properties. We conclude this section by considering specifically the case of the QH ground state
at charge neutrality.
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The effects discussed here are only visible in high mobility samples and at sufficiently large
magnetic fields. These samples are fabricated either by using suspended graphene devices [10,
11], by putting graphene on top of a h-BN flake [32], or by encapsulating it between two h-BN
flakes [33]. The origin of the mobility increase with the use of h-BN flakes are discussed in the
Appendix 12.

1.2.1 Landau level degeneracy lifting induced by exchange interactions

In absence of interactions, the graphene LLs are fourfold degenerate and have an approximate
SU(4) symmetry. It originates from both SU(2) spin and pseudospin = valley symmetries which
can be combined and viewed as an effective SU(4) isospin [13, 18]. These degeneracies can be
lifted by interactions and an initially fourfold degenerate LL can split into a set of sub-LLs with
a lower or even no degeneracy. It leads to the appearance of IQH plateaus outside the sequence
of eq. (1.8). When both the spin and valley degeneracies are lifted in every LL, we observe a QH
plateau of transverse conductance for any integer multiple of e2

h as shown in Fig. 1.8. The QH
states associated with these additional plateaus are referred as broken symmetry states.

FIGURE 1.8: Signatures of broken symmetry states in graphene devices. In high mobility samples and
at sufficiently large magnetic fields, QH plateaus of transverse resistance Rxy = h

e2ν
are observed for every

integer values of ν. Plateaus outside the sequence of eq. (1.8) and the corresponding minima of Rxx mark
the emergence of broken symmetry states. Increasing the temperature, these minima become rapidly less
pronounced whereas the Rxx minima at ν = −2,−6 and −10 do not evolve significantly. It shows that the
gaps separating broken symmetry states are significantly smaller than the cyclotron gaps. Inset : Arrhenius
plots for ν = −4 at different magnetic fields showing that the transport gap increases with B and decreases
with T. Taken from ref. [13].

The exchange interaction, i.e combination of both the repulsive Coulomb interaction and the
Pauli exclusion principle, is at the origin of the degeneracy lifting. In spin degenerate electron
system, it favours the formation of ferromagnetic ground states which have antisymmetric orbital
wavefunctions mimizing the Coulomb energy. In particular, in fully ferromagnetic states, the spin
component of the many-body wavefunction is completely symmetric. Therefore, the orbital part
of the wavefunction must be fully antisymmetric and it naturally vanishes when electrons are
brought close to one another. It lowers the Coulomb repulsion experienced by the electrons [34].
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In metals, the exchange interactions can induce a ferromagnetic instability. It leads to a spon-
taneous electronic band splitting and a partial spin polarization of the system even in absence of
magnetic field. Such spontaneous symmetry breaking can occur because it allows to lower the
overall Coulomb energy. Yet, it is also accompanied by an increase of kinetic energy. Thus, ferro-
magnetism only appears when the gain in interaction energy overcomes the cost in kinetic energy.
The spin polarization is only partial because of the competition between both effects.

Likewise, in the QH regime, the exchange interaction also leads to a spontaneous symme-
try breaking and a splitting of the LLs into sub-LLs: this is the quantum Hall ferromagnetism
(QHF). Compared to ferromagnetic materials, this effect is enhanced because the LLs are per-
fectly flat bands and thus there is no kinetic energy cost associated with the degeneracy lifting.
In graphene, an initial spin-valley degenerate LLs splits into quartets of sub-LLs separated by
interaction-induced exchange gaps.

The broken symmetry states that develop at integer filling factors have a finite polarization in
the SU(4) isospin space. An example of such spontaneous symmetry breaking is represented in
Fig. 1.9.A. In this example, all electrons in the lowest-sub LL have spin down and belong to the
K valley while electrons in the second lowest sub-LL have spin down but belong to the K′ valley.
The overall broken symmetry state is therefore a spin-polarized valley-singlet state.
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FIGURE 1.9: Quantum Hall ferromagnetism in graphene. A, Splitting of a half filled fourfold degenerate
LL into a quartet of spin and valley-polarized sub-LLs due to exchange interactions. The polarisation of
the broken symmetry states depends on the strength of the different symmetry breaking terms which lift
spin or/and valley degeneracies. B, The QHF and the splitting of LLs into quartets of broken symmetry
states can be observed when the magnetic field and the mobility are increased. The broken symmetry states
appearing at half LL fillings are observed at lower fields/mobilities than those at quarter fillings.

The relevant energy scale quantifying the effect of exchange interactions is given by the long-
range part of Coulomb interaction εC , i.e. its value evaluated for the average distance between
the electrons [18, 35, 36]. Knowing that lB is the characteristic distance between nearby electrons
within a LL, we can estimate it as:

εC =
e2

4πε0εrlB
≈ 162

√
B[T]K, (1.9)

for encapsulated graphene devices assuming εr = εBN ≈ 4 (for graphene directly on silicon sub-
strate εC ≈ 130

√
B[T]K [35]).

Even though it is a large energy scale, the QHF has visible effects only in high mobility samples
or at sufficiently large magnetic fields as sketched in Fig. 1.9.B. Indeed, the observation of broken
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symmetry states requires that the exchange gaps become larger than the disorder broadening of
LLs. It was demonstrated by K. Nomura and A. H. MacDonald [37], who also derived a Stoner
criterion enabling to estimate the critical field above which the broken symmetry states could be
observed for samples of an arbitrary mobility.

The detrimental effect of disorder explains why, in graphene on silicon devices, the first QHF
signatures were only reported in the best samples and at very high magnetic fields (B > 20 T) [38,
39]. Comparatively, in later experiments, with suspended graphene devices [10, 11] or in graphene
on h-BN samples [13], the first broken symmetry states were observed at magnetic fields of a few
Teslas.

1.2.2 Symmetry breaking terms and polarization of broken symmetry states

If the long-range Coulomb interaction is driving the QHF, it does not favour any specific polar-
ization in the spin-valley isospin space because the corresponding term in the Hamiltonian of the
system is SU(4) symmetric [18, 35]. The precise polarization taken for each broken symmetry state
is determined by a competition between other terms which do not conserve the SU(4) symmetry.

The first effect coming in mind is the Zeeman effect which promotes spin polarization. It
favours a alignment of the spin opposite to the direction of the magnetic field. The corresponding
energy scale is given by :

εZ = gµBB ≈ 1.3 Btot[T] K, (1.10)

where g ≈ 2 is the Landé factor and µB = 0.67 K.T−1 is the Bohr magneton and Btot =
√

B2
⊥ + B2

‖
is the total magnetic field (B⊥ is the out-of-plane component and B‖ is the in-plane component).

The lattice-scale Coulomb interactions, especially the on-site repulsion and the nearest-neighbour
repulsion, are also breaking SU(4) symmetry. They can favour both valley and/or spin orders
depending on the relative strength of the different effects [18, 35, 36, 40–42]. In particular, one
may expect that the on-site repulsion favours spin ordering. In contrast, the nearest-neighbour
repulsion rather favours some valley polarization especially in N = 0 LL because of the valley-
sublattice equivalence. The energy scale associated with the lattice-scale Coulomb interactions is
given by [43]:

εe−e ≈
a
lB

εC ≈ 1 B[T] K. (1.11)

Finally, the electron-phonon interactions can also lead to a breaking of the valley symmetry.
Optical phonons result in distorsions of the graphene lattice and they can drive a Peierls instability
lowering the electronic energy. The most relevant phonons are the in-plane ones and in particular
A1 and B1 modes which generate Kekulé distortions [44] i.e. a dimerization of one third of the
electronic bonds (see Fig. 1.10.A). These distortions lead to a modulation of the nearest-neighbour
hopping parameter [45] and they couple the two valleys as they are associated with a characteristic

wavevector
−→
G =

−→
K −

−→
K′ [18]. Therefore, Kekulé distortions break the valley degeneracy and

they are expected to favour XY valley ordering in the N = 0 LL [46, 47]. The effect of these
phonon-induced instabilities are further strengthened by the Coulomb interactions. D. M. Basko
and I. L. Aleiner indeed demonstrated that the latter enhance the coupling with A1 phonons [48].
Likewise, Hou and coworkers suggested that the nearest-neighbour Coulomb repulsion reinforces
the Kekulé instabilities [45, 47]. The characteristic energy scale associated with Kekulé distortions
is about [47]:

εkek ≈ 1.86 B[T] K. (1.12)

The out-of plane phonons were also predicted to induce a valley degeneracy lifting in N = 0
LL [49] but this effect is claimed to be weak compared to that of Kekulé distortions [36].
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FIGURE 1.10: Kekulé distortions and relevant in-plane optical phonons for graphene QHF. A, Schematic
of Kekulé distorsions. The dimerization occurs on one third of the bonds. They are shortened leading
to a modulation of the nearest-neighbour hopping term. B, Relevant optical phonon modes for QHF [36]
classified according to ref. [48]. The Kekulé distortions are due to A1 and B1 modes.

All these energy scales are two orders of magnitude smaller than the Coulomb energy εC and
they are all really similar. Thus, the polarization of the broken symmetry states cannot be straight-
forwardly predicted and it actually depends on a delicate balance between the different symmetry
breaking terms.

The development of high mobility graphene samples on h-BN allowed to probe experimen-
tally the competition between the spin and valley polarizations in the different LLs. In ref. [13],
A. Young and coworkers observed the full degeneracy lifting and well-defined broken symmetry
states in all LLs at 14 T. Thus, they were able to measure the gaps between the broken symmetry
states and studied their dependence with both out-of-plane and in-plane magnetic fields. They
demonstrated that the broken symmetry states which develop at half-filling of N 6= 0 LLs are
spin-polarized valley-singlet states. In contrast, they found a spin-singlet valley-polarized state at
ν = 0. The authors also measured the corresponding activation gaps and found that they were too
large to be explained only by the Zeeman effect. Hence, they demonstrated that the gaps between
broken symmetry states were indeed exchange-induced gaps.

Finally, Young et al. also showed that the field dependences of the gaps were consistent with
a transport mediated by both spin and valley-textured skyrmions. It confirmed some of the theo-
retical predictions that were derived in the framework of graphene SU(4) QHF [35, 50].

1.3 Quantum Hall ferromagnetism at charge neutrality and helical quan-
tum Hall phase

The consequences of the QHF in the N = 0 LL raised a lot of interests both theoretically and exper-
imentally. In particular, the fate of the ν = 0 broken symmetry state was extensively investigated
because it can exhibit a helical edge transport. This is subject of this section. We first explain how
such helical edge transport can emerge and why its existence is strongly related to the physics
of QHF. We then show that it exists different ground states possible at charge neutrality and we
review their properties based on past theoretical studies. We finally present the results of experi-
mental investigations on the subject.

1.3.1 Helical edge transport at charge neutrality

In their early investigations of the LL dispersion in graphene, Abanin and Levitov [24] as well as
Fertig and Brey [27] noticed that the QH transport at charge neutrality could be helical in presence
of a spin splitting.
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FIGURE 1.11: Helical edge transport and possible scenarios of N = 0 LL splitting. A, In absence of
interactions, the Zeeman effect leads to the emergence of helical edge transport at charge neutrality. B,
When interactions predominantly lift the spin degeneracy, the helical edge transport remains. C, When
interactions predominantly lead to a lifting of the valley degeneracy, the graphene is insulating both in the
bulk and at the edges.

In absence of interaction, it exists thanks to the Zeeman effect. The latter leads to a splitting of
the zeroth LL into two spin-polarized valley degenerate sub-LLs as depicted in Fig. 1.11. Each of
these sub-LL splits into one hole-like and one electron-like branch at the edges (we assumed here
that the edges are armchair for simplicity). Hence, at charge neutrality, there is a crossing between
two branches with opposite spins such that the graphene is insulating in the bulk but conductive
at the edges. The sample indeed exhibits spin filtered counter propagative helical edge states, that
are similar to those of the quantum spin Hall effect in 2D topological insulators [51–59], and it thus
displays a finite quantized conductance [24, 51, 60, 61]. These helical edge channels are particu-
larly interesting for practical applications like spintronics [62] but also for fundamental research
to probe topological superconductivity and harvest of Majorana zero energy excitations [63, 64].
At first sight, inducing their formation in graphene seems straightforward.

FIGURE 1.12: Graphene helical edge states. Counterpropagating spin filtered edge states which can ap-
pear at charge neutrality in graphene sample due to the QHF.

When one adds the effect interactions and thus of the QHF, the emergence of helical edge
transport is no longer guaranteed. In a simplified picture [18, 65], the transport properties of the
ground states actually depend on which degeneracy is predominantly lifted when the magnetic
field is increased and whether the ν = 0 ground state is preferably valley or spin-polarized. If
the exchange gap opening at ν = 0 is associated with the lifting of the spin degeneracy (Zeeman
spin splitting enhanced by the exchange interactions) (Fig. 1.11.B), the situation is the same than
the one described above: the bulk is insulating and helical edge channels appear. However, if the
valley splitting is predominant (Fig. 1.11.C), there is no crossing of hole and electron-like branches
at charge neutrality such that the sample is completely insulating both in the bulk and at the edges.
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This shows that the QHF can give rise to very different QH states at charge neutrality depend-
ing on the balance between symmetry breaking terms. The competition between these states and
the possible existence of a phase exhibiting a helical edge transport have motivated several re-
search works.

1.3.2 Competing ground states at charge neutrality

Four possible ground states

The study of the ν = 0 ground state was subject to many theoretical studies [35, 36, 40–42, 66, 67].
It was finally found that there are four possible many-body ground states [36] which are shown in
Fig. 1.13.

A B

C D

F phase CAF phase

CDW phase KD phase

FIGURE 1.13: Many-body ground states possible for charge neutral graphene in the QH regime. A, The
ferromagnetic phase (F) exhibits a helical edge transport. B, The canted antiferromagnetic (CAF), C, charge
density wave (CDW) and, D, Kekulé distortions (KD) phases are insulating both in the bulk and at the
edges. Adapted from ref. [20].

From the above discussion, we understand that the phase exhibiting helical edge transport
appears when all electrons within the N = 0 LL have the same spin polarization. It corresponds
to the ground state depicted in Fig. 1.13.A which is the ferromagnetic (F) phase. It is a spin-
polarized valley-singlet state with one spin down electron above each carbon atom.

In three other cases, the sample is both gapped in the bulk and at the edges. The phase depicted
in Fig. 1.13.B is named canted antiferromagnetic (CAF) phase and it exhibits a spin density wave
order. In this case, there is one electron located above each carbon atom and the spins are canted
with respect to the magnetic field direction. The electrons on different sublattices have spins
with opposite canting angle such that the ground state has a partial spin polarization along the
field direction. When the Zeeman effect is negligible compared to the other symmetry breaking
terms, this phase tends to a purely antiferromagnetic (AF) phase where the spins on the different
sublattices are anti-parallel and lie in the graphene plane [36, 61, 67].

The ground states depicted in Fig. 1.13.C and Fig. 1.13.D correspond respectively to the charge
density wave (CDW) and Kekulé distorsions (KD) phases. They are fully valley-polarized spin-
singlet states. In the first case, all charge carriers in the N = 0 LL reside on one sublattice and thus
in one valley. In the second case, the electrons in the N = 0 LL are delocalized above one third of
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the chemical bonds between carbons atoms thus the state has a K + eiθK′ polarization in the valley
Bloch sphere. It is an XY valley (pseudospin) ordered phase [46].

Competition between the ground states

We now summarize the results of these theoretical works regarding the impact of each symmetry
breaking terms in determining the ν = 0 ground state.

First, according to previous discussions, the Zeeman effect was found to favour the forma-
tion of the F phase [36, 41, 68]. In contrast, it was found that the coupling with the in-plane
phonons [46, 47], respectively the out-of-plane phonons [49], promotes the formation of KD, re-
spectively CDW phases.

On the other hand, the effect of the lattice-scale electron-electron interactions is more difficult
to predict. Some early mean-field approaches found a promotion of the F phase by the on-site
repulsion while the repulsion between the adjacent sites was found to induce the CDW order [35,
40]. Yet, some other theoretical and numerical investigations [41, 42] unveiled a competition be-
tween the AF and CDW phases depending on the balance between the lattice-scale repulsions.
Therefore, it appeared that these lattice-scale electron-electron interactions had a non trivial effect
in determining the ν = 0 ground state.
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FIGURE 1.14: ν = 0 phase diagram. A, Energetically favourable phase as a function of the valley
anisotropies uz and u⊥. uz and u⊥ quantify the energy cost associated with a valley polarization respec-
tively at the poles and in the equator of the valley/pseudospin Bloch sphere represented in B. Top panel in
A: Evolution of the spin polarization along the magnetic field direction as a function of u⊥ along the white
dotted line. The spin polarization decreases in the CAF phase going away from the phase boundary with
the F phase. Adapted from ref. [36].

To take account all effects together, M. Kharitonov proposed in 2012 a mean-field and extended
theoretical model [36]. Thanks to it, he was able to draw the ν = 0 ground state phase diagram
showed in Fig. 1.14.A. He found that the phase favoured actually depends on the relative strength
of the Zeeman energy εZ and of the valley anisotropies uz and u⊥. The latter are parameters
quantifying the energy cost associated with valley polarization respectively at the poles and in the
equator of the valley pseudospin Bloch sphere shown in Fig. 1.14.B.

Using his model, Kharitonov recovered the results of previous theoretical works. Yet, he
also highlighted that the contributions of lattice-scale interactions to the anisotropies are strongly
renormalized by the long-range Coulomb interaction. Kharitonov notices that such renormaliza-
tion effect is so strong that it can lead to large changes in the amplitude of the valley anistropies
and even changes of their sign. Considering that there is a large uncertainty on the bare values of
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the on-site electron-electron interactions [35, 36, 40, 41], he claimed that it is impossible to predict
which ground state emerges in real samples.

The phase diagram of Kharitonov was found to be correct beyond mean-field using exact diag-
onalization techniques [69]. It was also recovered very recently in an another approach allowing
to investigate the skyrmionic excitations at ν = 0 [70].

Edge dispersions

The four phases not only have different spin and valley polarizations but they also have different
edge properties. In particular, looking at the simplified picture of section 1.3.1, we expect the F
phase to have gapless spin-textured edge excitations whereas all the other phases must be gapped
at the edges. It was actually confirmed by several theoretical investigations [27, 41, 67, 68].

M. Kharitonov calculated the energy dispersions in the AF, CAF and F phases approaching an
armchair edge. For this purpose, he used his mean-field approach and he followed the ideas that
had been developed to study the non-interacting case [67]. The three spectra that he calculated are
displayed in Fig. 1.15. In the bulk, they are basically identical: they are all composed of two pairs
of degenerate levels that are separated by an exchange gap ∆bulk. At the edges, the dispersion are
different for the three phases. In the AF phase, Fig. 1.15.A, the highest energy levels bend upward
whereas the lowest energy levels bend downward such that ∆edge ≥ ∆bulk.

A B C

FIGURE 1.15: Energy dispersions of the AF, CAF and F phase approaching the edges. In the bulk, the
spectra are composed of two pairs of degenerate levels, separated by a gap ∆bulk. Approaching this edge,
the dispersion of the degenerate pairs changes depending on the ground state. A, In the AF phase, the two
pairs disperse in opposite directions. B, In the CAF phase, the pairs split into two branches. Two levels
have a non-monotonic dispersion and the gap at the edges ∆edge is smaller than in the bulk. C, In the F
phase, the pairs also split into two spin-polarized branches with opposite bendings. Two levels cross at the
edge which leads to a helical edge transport at charge neutrality. Adapted from ref. [67].

Adding a Zeeman splitting, the AF phase transforms into a CAF phase which leads to a modifi-
cation of the edge dispersion as shown in Fig. 1.15.B. The degenerate pairs now split approaching
the edges. In each pair, there is one level whose dispersion is not affected and a second level
which have a non-monotonic dispersion. The second levels of each pair bend towards each other
approaching the edges up to a point where their dispersions reverse. It leads to a reduction of the
gap at the edges.

Due to this reduction of gap, the CAF phase exhibits an activated charge transport nearby
charge neutral point mediated by some edge modes [67, 71] as shown in Fig. 1.16. These edge
modes are formed of counterpropagating channels and they have some spin textures [61, 71–74].
Therefore, their properties are close to that of the helical edge channels but they are not protected
against backscattering because their spin textures are not perfectly anti-aligned.

When the Zeeman energy reaches its threshold value, the CAF phase transforms into a F phase
(Fig. 1.15.C). The gap closes at the edge and the energy dispersion is that of the non-interacting
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A B

FIGURE 1.16: Edge states in the CAF phase. A, Schematic of the energy dispersion in the CAF phase
approaching an armchair edge. The arrows represent the spin orientations and the open/filled circles
represent the two sublattices. Nearby charge neutrality the system exhibits an edge transport mediated by
spin-textured edge channels. The wavefunctions for edge states are equally shared between both sublattices
because of the valley admixing. B, Schematic representation of the bulk and the edge polarization in such
regime. Adapted from ref. [61].

theory with helical edge transport at ν = 0. This work clearly evidenced the existence of a contin-
uous phase transition between the F phase and the AF phase.

In 2015, A. Knothe and T. Jolicoeur calculated the edge dispersions in the KD and CDW phases
extending Kharitonov’s approach [73]. These dispersion actually correspond to that displayed
in Fig. 1.11.C, i.e. four distinct levels with the two negative energy levels having an hole-like
dispersion and the two positive energy levels having an electron-like dispersion. As expected for
these two phases, the system is both insulating in the bulk and at the edges.

These calculations together with most of the previous studies [41, 68] actually get rid of the
possible variation of the bulk order parameter approaching the edges. Yet, it may influence the
edge properties. It was early pointed out by Fertig and Brey [27] who showed that, in the F phase,
the system cannot sustain its bulk order parameter at the edges. It must form a domain wall,
described by chiral Luttinger liquid theory, that supports gapless charged excitations.

Taking such effect into account, A. Knothe and T. Jolicoeur found that for some values of the
Zeeman energy, the F phase could also be gapped in the sample [73, 75]. More surprisingly, they
found that in the KD phase, there might be zero to four levels crossing at charge neutrality. Hence,
their investigations suggest that the direct one-to-one correspondence between the transport prop-
erties and the identification of ground state may be impossible. Yet, these conclusions have to be
taken with caution, as emphasized by the authors themselves, because their perturbative treat-
ment lose its validity as we get closer to the edges.

1.3.3 Experimental investigations of the ground state at charge neutrality

In the experiments with a magnetic field perpendicular to the sample, a strong insulating phase
is always observed in different types of samples [10–13, 16, 26, 38, 61, 76, 77]. Therefore, it seems
that the F phase is usually not favoured and that one has to find specific strategies to induce its
formation.

A. Young and coworkers implemented a remarkable solution. In ref. [61], they studied trans-
port in graphene on h-BN samples and used a magnetic field with a large in-plane component to
increase the relative strength of the Zeeman effect. Using this approach, they indeed managed to
favour the F phase. They observed characteristic transport signatures of helical edge transport but
only with an in-plane component exceeding 30 T. The authors observed a continuous increase of
the conductivity at charge neutrality when they increased B‖ (Fig. 1.17.B). Performing simultane-
ous capacitance measurements, they also noticed that this transition was not accompanied by a
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closure of ν = 0 bulk gap (Fig. 1.17.C). These features were interpreted as signatures of a transition
from the CAF to the F phase driven by the increase of the Zeeman splitting.

More recently, Li and coworkers performed scanning tunnelling measurement on graphene on
graphite and they made a direct imaging of a KD phase developing at ν = 0 shown in Fig. 1.18.
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FIGURE 1.17: Inducing the F phase by enhancement of the Zeeman effect. A, Two-terminal conductance
measurements in a graphene on h-BN sample with a tilted magnetic field. The out-of-plane component is
kept constant at B⊥ = 1.5 T while the in-plane component is increased. QH plateaus at G2t = ±2,±1 e2/h
do not change wheareas the conductance at ν = 0 continuously increases from 0 to approximately 2 e2/h,
the value expected for helical edge transport. B, Capacitance and, C, two-terminal transport measurements
in a similar sample with fixed B⊥ = 2.5 T. The capacitance of the system shows dips when the bulk is
gapped at integer filling factors. The sample at ν = 0 becomes more conductive as the in-plane magnetic
field is increased, whereas the capacitance does not change. It reveals that the bulk gap does not close
during the transition. The finite conductivity can thus only arise from an edge transport. Adapted from
ref. [61].

Therefore, the nature of the QH ground state at charge neutrality remains elusive and further
investigations are needed. On the other hand, it would be interesting to find other strategies en-
abling to favour the helical quantum Hall phase and benefit from its specific transport properties.
In the next chapter, we propose and study another solution to induce the F phase in monolayer
graphene. It consists in modifying the effects of lattice-scale interactions and reducing their renor-
malization by the long-range Coulomb interactions via suitable substrate screening.
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FIGURE 1.18: Scanning tunnelling imaging of the KD phase at 9 T. Adapted from ref. [78]
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The ferromagnetic (F) ground state of charge neutral graphene in magnetic field, which ex-
hibits helical edge transport, is experimentally difficult to induce. Indeed, the lattice-scale anisotropies
usually favour other competing ground states. In this chapter, we demonstrate that the long-range
Coulomb interactions in high mobility graphene heterostructures can be screened by a high-k di-
electric substrate that enables to induce the formation of this helical QH phase.

After a discussion about the underlying mechanisms, we present the specificities of the a high-
k dielectric substrate used: the strontium titanate oxyde SrTiO3. We then detail how the nanofab-
rication processes should be adapted to benefit from its screening properties. We present several
transport experiments performed in graphene devices on SrTiO3 evidencing the existence of a he-
lical quantum Hall phase in such systems at charge neutrality. Finally, we discuss its breakdown
at high temperatures and high magnetic fields.
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2.1 Use of SrTiO3 substrate to induce the helical quantum Hall phase

2.1.1 Substrate screening of Coulomb interactions in the quantum Hall regime

According to ref. [36], the lattice-scale anisotropies which determine the ground state of charge
neutral graphene in magnetic field, are strongly renormalized by the long-range Coulomb inter-
actions. Therefore, to induce the formation of the F phase at charge neutrality, one can think about
modifying the strength of the long-range Coulomb potential: it allows to affect these anisotropies
indirectly by mitigating the renormalization effect.

As the Coulomb energy scale is given by εC = e2

4πε0εrlB
, it can be tuned by putting graphene

on top of a substrate with a high dielectric constant εr. This strategy implies to have an efficient
substrate screening and thus to place the graphene flake close enough to the high-k substrate.
As we also need high mobility to get broken symmetry states emerging at few Teslas, we must
fabricate graphene heterostructures with sufficiently thin bottom h-BN and deposit them on the
substrate as depicted in Fig. 2.1.

Top h-BN

SrTiO 

Graphene

Vbg

AuAu

Au

Ultra-thin bottom h-BN

3

FIGURE 2.1: Schematic of a typical high mobility graphene heterostructure on SrTiO3. The bottom h-BN
is chosen such that dBN ≤ 5 nm. It allows to benefit from a strong substrate screening even at large magnetic
fields. The graphene can be doped by applying a voltage on a back-gate electrode placed on the opposite
face.

The condition on the thickness of the h-BN spacer separating the graphene from the substrate
can be more quantitatively assessed by evaluating the Coulomb potential experienced by charge
carriers in such heterostructures. Assuming that the bottom h-BN is thin, that the top h-BN is
much thicker, such that it can be considered as infinitely thick, and that the substrate is also in-
finitely thick, the Coulomb potential reads [79]:

V(r) =
e2

4πε0εBNr

1− εS − εBN

εS + εBN

r√
r2 + 4d2

BN

 =
e2

4πε0εBNr
S(r/dBN, εS), (2.1)

where r is the typical distance between charges carriers, εS the substrate dielectric constant and
dBN is the thickness of the bottom h-BN. Thus, we see that in such devices, the Coulomb potential
is indeed reduced by a factor S providing εS > εBN ' 4. This factor decreases when the distance
to the substrate decreases or when εS is increased as shown in Fig. 2.2.

Importantly, Fig. 2.2 also shows that the effect of the substrate dielectric constant is significant
only when r is comparable or larger than dBN in agreement with the previous discussion. Besides,
we note that to reduce the Coulomb potential by one order of magnitude, one needs both to have
εS ≥ 100 and r/dBN ≥ 4.
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FIGURE 2.2: Substrate induced screening. Evolution of the screening factor S(r/dBN, εS) for various sub-
strate dielectric constants εS with the ratio r/dBN of the typical distance between charge carriers over the
thickness of the bottom h-BN. The screening factor decreases with r/dBN and εS. The effect of the substrate
screening starts to be significant typically when r/dBN ≥ 1. It converges at large r/dBN values towards
an asymptotic limit which decreases with εS. The saturation appears at smaller r/dBN values when εS is
smaller reducing the efficiency of the screening for intermediate εS values.

In the quantum Hall regime, the typical distance between charge carriers is given by the mag-

netic length lB =
√

h̄
eB which is also the relevant length scale to consider for the screening of

Coulomb interactions. In this regime, the reduced Coulomb energy scale reads as:

ε∗C = εC

1− εS − εBN

εS + εBN

lB√
l2
B + 4d2

BN

 =
e2

4πε0εBNlB

1− εS − εBN

εS + εBN

lB√
l2
B + 4d2

BN

 . (2.2)

Considering that lB ≤ 26 nm above 1 T and decreases with the magnetic field, we see that
the graphene must be placed only a few nanometers away from the underlying substrate to ben-
efit from a significant substrate screening effect. Thus, if we hope to induce the formation of the
F ground state using a high-k dielectric substrate, we must fabricate h-BN/graphene/h-BN het-
erostructures with only few nanometers thick bottom h-BN.

2.1.2 SrTiO3: a very high-k dielectric of interest for graphene heterostructures

To benefit from a large substrate-induced screening, one can think about depositing the stack on
a metallic material, like for example a graphite flake or a gold electrode, which virtually has an
infinite dielectric constant. However, practically, it is extremely challenging to realize as we use
of few nanometers thick bottom h-BN. It greatly increases the risk of connecting the graphene
and the metallic plane underneath during the device fabrication, especially while etching for the
contacts.

That’s why we rather decided to use a high-k insulating substrate and focused our efforts on
strontium titanate oxyde SrTiO3. This material is a quantum paraelectic material where long-range
ferroelectric ordering is destroyed by quantum fluctuations [80, 81]. It has a very large dielectric
constant εSTO which decreases with temperature and ranges typically from 102 at 300 K to 104 at
4 K [82]. This exceptional dielectric property has two advantages.
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First, it allows the SrTiO3 substrates to screen Coulomb interactions in the quantum Hall
regime very efficiently provided that the bottom h-BN is thin enough (i.e. when lB > dBN). The
mitigation of the Coulomb energy (see eq. (2.2)) is clearly evidenced in Fig. 2.3.A and Fig. 2.3.B
where the evolution of ε∗C with the magnetic field B is plotted for different thickness of bottom h-
BN. The screening is particularly strong in samples with dBN ≤ 5 nm where a significant reduction
of the Coulomb energy is observed. As evidenced in Fig. 2.3.B, ε∗C varies strongly with B in these
samples, much more than in standard dielectric environments (situation equivalent to dBN = ∞).
In particular, at low fields ε∗C scales as B3/2, whereas it scales as B1/2 in standard samples. The
substrate screening is then enhanced at low fields and ε∗C even becomes smaller or of the same
order of magnitude than the Zeeman energy in the samples with ultra-thin bottom h-BN.
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FIGURE 2.3: Reduction of the Coulomb energy scale ε∗C in graphene heterostructures on SrTiO3. Evo-
lution of ε∗C for different bottom h-BN thickness dBN, A, in linear scale and, B, log-log scale . In A the
evolution of the magnetic length lB is displayed as an help to determine when dBN ≤ lB. In B, the Zeeman
energy εZ is reported to show that in samples with ultrathin h-BN it becomes comparable to ε∗C. Note that
the situation where dBN = ∞ is equivalent to the case of standard devices on silicon substrates.

Second, the large dielectric constant of SrTiO3 allows to use directly a 0.5 mm thick substrate
as a back-gate dielectric even at high temperatures. To make a quantitative comparison, we can
calculate the equivalent planar capacitance C = ε0εr

d formed by a graphene flake on Si++/SiO2
substrate with d = 300 nm oxide thickness of dielectric constant εSiO2 = 3.9 and compare it with
the capacitance formed by a graphene flake on a d = 0.5 mm thick SrTiO3 substrate with εSTO ≈
104. The corresponding capacitance, respectively CSiO2 = 1.2 × 10−4 F/m2 and CSTO = 1.8 ×
10−4 F/m2, are very similar confirming that a thick SrTiO3 substrate can be used directly as a
back-gate dielectric.

2.1.3 Fabrication of graphene heterostructures on SrTiO3

We fabricated several high mobility graphene devices on SrTiO3. The fabrication process is similar
to that reported in Appendix 12 for devices on Si++/SiO2 substrate up to a few details.

First, according to previous discussions, the heterostructures must be fabricated using bottom
h-BN with thicknesses dBN . 10 nm. Once the heterostructures are assembled, they are deposited
on the polished side of a 500 µm thick SrTiO3 [100] substrate freshly cleaned with a hydrofluoric
acid buffered solution (7:1 volume ratio) for 30 seconds [83].
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A B

10 µm10 µm

FIGURE 2.4: Van der Waals heterostructures on SrTiO3. A, Image with enhanced contrast of a graphene
heterostructure with a 3.3 nm bottom h-BN (indicated by a red arrow) on a stamp. B, Image of the same
heterostructure after deposition on the SrTiO3 substrate with normal contrast. The bottom h-BN and the
graphene are hardly/not visible. Inset : Device fabricated after processing of the heterostructure.

To fabricate a device from the initial stack, e-beam lithography is used to have a good spatial
resolution in the position and shape of the nanostructures. However, specific cares should be
taken to perform e-beam lithography because the insulating nature of the thick substrate results
in charge accumulations during the exposure. It leads to aberrations and distortions during the
lithography. To prevent it, before the exposure, the e-beam resist can be covered by either a thin
conductive resit films (Electra 92 AR-PC 5090) or a few nanometer thick gold film. These films
help to drain the charges during the exposure and enable to perform reproducible and reliable
e-beam lithographies on SrTiO3. Before the e-beam resit development, the additional layers must
be removed by rinsing the sample respectively in deionized water for one minute (Electra resist)
or in a KI/I2 solution for a few seconds (gold thin film).

The rest of the fabrication process (markerfield, deposition of electrical contacts and gate elec-
trodes) does not differ from the one of devices on silicon substrate. Yet, we note that a careful
processing of optical images of the devices is needed because of the very low contrast of graphene
and ultra-thin h-BN on SrTiO3 (see Fig. 2.4).

2.2 Samples studied and their transport characteristics at zero magnetic
field

2.2.1 Devices studied

We fabricated several graphene devices on SrTiO3 with thin bottom h-BN and characterized their
transport properties. They are presented in Fig. 2.5 and their characteristics are summarized in
Table 2.1. All the heterostructures were assembled with the Van der Waals pick-up method and
for most of them we used bottom h-BN with thicknesses below 5 nm. Sample BNGrSTO-09 was
purposely made with a 61 nm thick bottom h-BN to confirm the necessity of having a thin h-BN
to benefit from SrTiO3 screening in the quantum Hall regime. The contacts in BNGrSTO-04, 05, 07
and 09 samples were made in a single step by a direct etching of the stack in the resist lines imme-
diately followed by a Cr/Au evaporation. For BNGrSTO-VH02 and VH-03 samples, the contacts
were made in two steps. First, the heterostructures were etched into a Hall bar geometry using a
hardened HSQ resist mask and on a second lithography step, a Cr/Au bilayer was deposited on
the etched graphene edges.
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BNGrSTO-04 BNGrSTO-05 BNGrSTO-07

10 µm

BNGrSTOVH-02 BNGrSTOVH-03 BNGrSTO-09

2 µm 1 µm

5 µm10 µm10 µm

3 µm

Device a

Device b

FIGURE 2.5: Optical images of the samples on SrTiO3 studied. The edges of the graphene flakes (pristine
or etched) are represented by red lines.

Sample Contacts Graphene Bottom h-BN Mobility
number dimensions (µm) thickness (nm) (cm2.V−1.s−1)

BNGrSTO-04 3 4× 5 5 75 000
BNGrSTO-05 4 1.6× 2.2 3.3 20 000
BNGrSTO-07 6 6× 3 3.2 40 000

BNGrSTOVH-02 8 15× 2 5 130 000
BNGrSTOVH-03a 8 15× 3 4 50 000
BNGrSTOVH-03b 8 15× 3 4 50 000

BNGrSTO-09 6 8× 3 61 200 000

TABLE 2.1: Characteristics of samples on SrTiO3 studied.
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2.2.2 Hysteresis of back-gate sweeps for devices on SrTiO3

Below 35 K, SrTiO3 is a quantum paraelectric material composed of several microscale to nanoscale
ferroelectric-like domains [84–88]. They can influence the transport properties in graphene espe-
cially because they move when the back-gate voltage is changed [86]. Similarly, it exists dipoles
on the surface of SrTiO3 which are sensitive to changes of back-gate voltage. Both the dynamics of
the domains and of the dipoles relaxation are very long with typical time scales of several minutes
or even hours, and they are strongly dependent on the strength of the electric field applied [89].

All of this results in non-linearities and in an hysteresis of the dielectric constant of SrTiO3
[90] appearing while performing back-gate voltage sweeps. This leads to a shift in the position
of Dirac point between upward and downward sweeps. Likewise, the Dirac point can be shifted
if the voltage range spanned is changed [89]. To limit this hysteresis, upward and downward
sweeps are always performed within the same voltage range (typically from 0 to 30 V at 4 K) and
under the same conditions. It allows to have reproducible sweeps, to stabilize the position of the
Dirac point and it ensures that the density, at a given back-gate voltage, is the same for different
sweeps performed in the same direction.
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FIGURE 2.6: Back-gate hysteresis. Evolution of the longitudinal resistance with back-gate voltage in sam-
ple BNGrSTO-09. The Dirac peak appears respectively at 17 and 20.4 V for upward and downward sweeps
because of the strong dielectric hysteresis of the substrate. Inset : Contact configuration during the mea-
surements. Contacts in grey are floating.

2.2.3 Characterization of the devices at zero and low magnetic fields

Mobility of the devices

Before studying the devices in the quantum Hall regime, we preliminarily study transport at
zero/low magnetic fields. In particular, we characterize their Hall mobility µ and the dielectric
constant εSTO of the SrTiO3 substrates which are relevant quantities to consider for the study of
the formation of the helical quantum Hall phase.

Both can be extracted from classical Hall measurements and back-voltage sweeps at zero mag-
netic field. The evolution of the Hall resistance Rxy with back-gate voltage Vbg allows to evaluate
n the charge carrier density (positive for electrons and negative for holes) at fixed Vbg as n = B

Rxy e
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where B is the magnetic field at which Hall measurements are performed. 1 An example of such
estimation of the charge carrier density based on Hall measurements is given in Fig. 2.7.C. The
resulting Hall mobility, given by µ = 1

n e R�
with R� the longitudinal sheet resistance, is displayed

in Fig. 2.7.D.
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FIGURE 2.7: Extraction of the charge carrier density and mobility based on Hall measurements. A,
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sample BNGrSTOVH-03a. B, Evolution of the longitudinal resistance Rxx with the back-gate voltage Vbg at
zero magnetic field. Inset: Contact configuration during the measurements. Contacts in grey are floating.
C, Charge carrier density n calculated from B. D, Hall mobility calculated from B and C after polynomial
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The resulting mobilities are summarized in Table 2.1 and displayed Fig 2.8. Most of the sam-
ples with thin bottom h-BN have a mobility above 40 000 cm2.V−1.s−1 at high carrier density
which is sufficient to observe the formation of broken symmetry states at intermediate magnetic
fields of a few Teslas.

The samples BNGrSTO-04 and BNGrSTO-05 do not have a geometry or contacts that allow to
perform Hall measurements. Thus to estimate the mobility, we use the sheet resistance 10 V away
from the Dirac point and an estimate of the density at such voltage based on Hall measurements
performed in other devices with a more suitable geometry.

1For a proper evaluation, we anti-symmetrize the value of the Hall resistance with respect to B to get rid of the
geometry of the device.



2.2. Samples studied and their transport characteristics at zero magnetic field 33

0 10 20 30
0

1

2

3

4

 
M

ob
ili

ty
 μ

 (1
05  c

m
2 .V

-1
.s

-1
)

BNGrSTOVH-02
BNGrSTOVH-03a
BNGrSTOVH-03b
BNGrSTO-09
BNGrSTO-07

Back-gate voltage Vbg(V) 

FIGURE 2.8: Mobility of the samples on SrTiO3 with a Hall bar geometry

Substrate dielectric constant at 4 K

The Hall measurements also enable us to estimate the dielectric constant of each SrTiO3 sub-
strate using the graphene devices as charge sensors through the Hall effect. The density n in
the graphene flake is given by:

n =
Cbg

e
∆Vbg, (2.3)

where ∆Vbg = Vbg − VCNP
bg is the voltage applied on the back-gate shifted by the voltage where

charge neutral point (CNP) is reached and where Cbg is the equivalent planar capacitance. The
latter can be decomposed as a sum of two contributions arising from bottom h-BN and SrTiO3
substrate capacitance such that:

1
Cbg

=
dSTO + dBN

εr
=

1
CSTO

+
1

CBN
=

dSTO

εSTO
+

dBN

εBN
, (2.4)

where dSTO and dBN are the thicknesses of the SrTiO3 substrate and bottom h-BN flake and where
εSTO, εBN and εr are the dielectric constant of the SrTiO3 substrate, bottom h-BN flake and of the
overall system. Considering that dBN � dSTO, we can express εr as:

εr =
εSTO

1 + dBN
dSTO

εSTO
εBN

(2.5)

At low temperatures, εBN ≈ 3− 4 and εSTO ∼ 104 and for the samples with a few nanometers
thick BN spacer dBN

dSTO

εSTO
εBN
. 0.1. Thus, in these devices, the effective back-gate capacitance is mainly

determined by εSTO and εr ≈ εSTO. Even in BNGrSTO-09 where dBN = 61 nm, dBN
dSTO

εSTO
εBN
. 1 and

thus εr provides a good order of magnitude for εSTO (as εSTO
2 ≤ εr < εSTO)

The dielectric constants at 4 K measured in the different devices are shown in Fig. 2.9. εr varies
between the different substrates and typically ranges between 5000 and 70000 in agreement with
previous measurements for εSTO at low temperatures. εSTO varies significantly with the back-
gate voltage depending on the sample as a result of the non-linear dielectric properties of SrTiO3.
Surprisingly, εSTO values in BNGrSTOVH-03 sample are quite different for the two devices and
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the device BNGrSTOVH-03b displays an exceptionally high dielectric constant exceeding 70000 at
Vbg = 0 V.
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FIGURE 2.9: Dielectric properties of SrTiO3 substrate at 4 K. Relative dielectric constants of the plane
capacitance formed by the graphene and the back-gate electrode for samples on SrTiO3. εr values are
computed from the same Hall measurements than the ones used to evaluate the mobilities µ of the devices.

2.3 Helical quantum Hall edge transport at CNP in samples with thin
bottom h-BN

We now discuss the transport in the quantum Hall regime for devices on SrTiO3 and show that a
helical edge transport emerges at charge neutrality in devices with a thin bottom h-BN. To facili-
tate the comparison between different experiments and different samples, all the plots displaying
evolution of resistances with back-gate voltages are shifted such that CNP lies at Vbg = 0 V. Most
of the measurements presented are performed at 4 K, otherwise the temperature during measure-
ments is explicitly mentioned.

2.3.1 Evidence of non-local helical edge transport in BNGrSTO-07 sample

The effects of SrTiO3 screening, and the emergence of the helical quantum Hall phase in samples
with thin bottom h-BN, appear by measuring resistance of the devices in two-terminal configura-
tions at intermediate magnetic fields (typically around 2 T). To illustrate it, we start by focussing
on the sample BNGrSTO-07 which shows characteristic features.

Fig. 2.10.A displays the evolution of the two-terminal resistance in this device with both the
magnetic field B and the back-gate voltage Vbg for a given contact configuration drawn in inset.
We see that in this device the quantized resistance plateaus ν = ±2 and ν = ±6, characteristic of
the QH effect in graphene, appear above 1 T whereas the ν = 1 broken symmetry state emerges
above 5 T. It is consistent with the sample’s mobility.

Remarkably, the device displays a finite conductance at charge neutrality which remains con-
stant over a long range of magnetic field from 1.5 T to about 4 T as we can see in Fig. 2.10.B and
Fig. 2.10.C. At higher fields, the resistance approximately increases exponentially with B but re-
mains below 100 kΩ at 14 T. This is in sharp contrast with the transport characteristics measured
in devices on silicon substrate where a strong insulating phase develops with the magnetic field
before the emergence of broken symmetry states at ν = ±1 [12, 13, 76]. This observation indicates
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that some conduction occurs in the sample at charge neutrality suggesting that the ground state
could be the F phase.
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FIGURE 2.10: Helical quantum Hall plateau at charge neutrality in BNGrSTO-07 sample. A, Evolution of
the two-terminal resistance R2t in BNGrSTO-07 sample with respect to back-gate voltage Vbg and magnetic
field B at 4 K. On top of the standard ν = 1, 2 plateaus, an anomalous quantized h

e2 resistance plateau
arises at CNP between 1.5 and 4 T (delimited by dashed lines). Inset: Schematic of the contact configura-
tion considered. Black contacts are floating. The red and blue arrows on the helical edge channels indicate
the direction of the current between contacts, and A indicates the ampmeter. B, Two-terminal conductance
G2t =

1
R2t

versus Vbg extracted from A for different magnetic fields. In addition to the ± 2e2

h and the ± 6e2

h

characteristic of graphene QH effect, a clear e2

h plateau develops at CNP consistent with the value expected

for helical edge transport (dashed line). The 6e2

h plateau actually appears around 5.6 e2

h because of the wire
resistance. C, Resistance at CNP versus magnetic field extracted from A evidencing the presence of a re-
sistance plateau between 1.5 T and 4 T. At higher magnetic fields, R2t increases with B but remains below
100 kΩ at 14 T contrary to standard samples on silicon substrate which usually display a very strong insu-
lating phase.

Even more surprisingly, the constant conductance at charge neutrality is quantized to e2

h as
shown in Fig. 2.10.B. We now show that this value is consistent with a helical edge transport
regime.

Along a free sample edge, backscattering between the counterpropagating edge channels of
single helical pair is fully suppressed because the two edge channels have opposite spin polariza-
tion. The transmission of helical edge states is supposedly perfect along a free edge. In contrast,
in a metallic contact, the carriers lose their spin coherence and thus the two helical edge channels
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are equilibrated at the contacts [60, 61]. Therefore a helical edge section between two contacts can
be seen as single resistor of quantized resistance RQ = h

e2 as represented in Fig. 2.11.A [61].

⇄

A

NL=2  
NR=2 ⇄

A

RQ

RQ RQ

RQ

VL VR RQ = h/e2

VL VR

A

B

FIGURE 2.11: Equivalence between a contact configuration and an electric circuit in the helical edge
transport regime. A, A helical edge section between adjacent contacts, respectively at electric potential VL
and VR, can be modelled by a resistor RQ = h

e2 . B, A given contact configuration can be modelled by an
electric circuit composed of two branches of RQ resistors in series. Each branch represents an edge of the
device between the source and drain contacts. The numbers of resistors in each branch, NL and NR, are
respectively given by the numbers of helical edge sections on the left (L) edge and on the right (R) edge of
the device.

The two-terminal resistance value in the helical edge transport can then be calculated by mod-
elling the device by the equivalent resistor network. It is composed of two branches representing
the left and right edges connecting the source and drain contacts and which both contribute to
the transport. Each branch is composed of N resistors in series which represent the N helical edge
sections between the source and drain contact along the edge considered. Therefore, the two ter-
minal resistance R2t is given by:

R2t =
h
e2

(
1

NL
+

1
NR

)−1

, (2.6)

where NL and NR are respectively the number of helical edge sections between source and drain
contacts on the left (L) edge and on the right (R) edge of the device [61, 91] (see also Appendix 9 for
derivation). Fig. 2.11.B displays the equivalent circuit corresponding to the contact configuration
used for measurements of Fig. 2.10. We note that, that in this case, the resistance measured at
charge neutrality is fully consistent with the expected value R2t =

h
e2

( 1
2 +

1
2

)−1
= h

e2 .
Similarly, this formula can be used to demonstrate the existence of a helical edge transport by

changing NL and NR and seeing if the resistance varies accordingly. Fig 2.12 shows R2t measured
at 2.5 T for other contact configurations, with different source/drain contacts and different num-
ber of edge sections. At CNP, the value of two-terminal resistance measured fits with the value
calculated from eq. (2.6) evidencing that the transport is indeed mediated by helical edge states at
charge neutrality.
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different contact configurations. At CNP, R2t reaches values expected for helical edge transport, indicated
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the current between contacts, and A indicates the ampmeter. NL and NR indicate the number of helical
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As helical edge channels drive the current all along the edge of the devices, the device should
display a finite resistance even when the voltage probes are far from the source and drain contacts.
In four-terminal contact configuration, we thus expect to measure a non-local resistance given by:

RNL = R2t
NV

NI
, (2.7)

where NV is the number of helical edge sections between the two voltage probes and NI is the
number of helical edge sections between the source and drain contacts on the side where the
voltage probes are put [91] (see also Appendix 9). Fig 2.13.A displays the evolution of both R2t
and RNL with the back-gate voltage for the non-local configuration sketched in inset at 2.5 T. At
charge neutrality, both resistances reach a value consistent with the ones expected for helical edge
transport.

Notably, RNL is not negligible only at CNP, where its exceeds 5 kΩ. It cannot be explained by
a diffusive transport in the device for which the non-local resistance is given by:

RNL ≈ R� exp(−π
L
w
), (2.8)

where L is the distance between the source/drain contacts and the voltage probe and w is the
width of the graphene flake [92]. Considering the device geometry, it would result in only a
few tenth of Ohms non-local resistance inconsistent with the large non-local signal measured at
CNP. We must also note that both RNL and R2t values at CNP stay constant over the same field
range as shown in Fig 2.13.B and thus the two plateaus seem correlated. All these features give
further evidences that transport is mediated by helical edge channels at charge neutrality in the
intermediate magnetic field regime.



38 Chapter 2. Helical quantum Hall phase in charge neutral graphene on SrTiO3

Magnetic �eld B (T)

Re
si

st
an

ce
  R

 (k
Ω

)

B = 2.5 T
 RNL

 R2t

Re
si

st
an

ce
 a

t C
N

P 
R  (k

Ω
)

5/6 h/e2

1/6 h/e2

0 5 10

0

5

10

15

20

25

30

35

A B

 RNL
 R2t

Back-gate voltage Vbg (V)

5/6 h/e2

-10 -5 0 5 10

0

5

10

15

20

25

1/6 h/e2

A

V

NL=5   NR=1
NI=5   NV=1

FIGURE 2.13: Evidence of non-local edge transport. A, Evolution of the two-terminal R2t and of the non-
local resistances RNL in BNGrSTO-07 sample with Vbg at 2.5 T. At CNP, both resistances display large values
consistent with helical edge transport. RNL > 5 kΩ indicative that the transport is non diffusive at CNP. B,
Evolution of R2t and RNL with magnetic field B at CNP. Both resistances show a helical resistance plateau
between 1.5 and 6 T. Inset: Schematic of the contact configuration. NL and NR indicate the number of
helical edge sections between the source and drain contacts respectively on the left and the right edge of
the device. NV and NI indicate the number helical edge sections respectively between the voltage probes
and between the source and drain contacts on the edges where the voltage probes are placed.

2.3.2 Evidence of non-local helical edge transport in other samples

Similar signatures of helical edge transport were also observed in the other samples at charge
neutrality and low/intermediate magnetic fields. The systematic observation of such features in
different samples shows that the use of SrTiO3 substrate screening allows to induce the formation
of the F phase at ν = 0 in a reliable and reproducible way.

BNGrSTO-04 sample

Fig. 2.14 presents two-terminal transport measurements performed in BNGrSTO-04 sample in a
similar fashion than Fig. 2.10. In this sample, a 2

3
h
e2 plateau appears at charge neutrality between

1 and 3 T (see Fig. 2.14.A and Fig. 2.14.C) consistent with the expected value for helical edge
transport given the contact configuration. At higher magnetic fields, the resistance departs from
its expected value and increases with B. In the field range where helical edge transport is observed,
a change of the contact configuration results in a change of the resistance measured at CNP which
displays a value consistent with helical edge transport as shown in Fig. 2.14.D.

BNGrSTO-05 sample

Fig. 2.15 presents two-terminal transport measurements performed in BNGrSTO-05 sample in a
similar fashion than Fig. 2.10. A 3

4
h
e2 resistance plateau appears at charge neutrality between 1

and 2.6 T (Fig. 2.15.B. and Fig. 2.15.C) as expected for helical edge transport given the contact
configuration considered.
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FIGURE 2.14: Evidence of helical edge transport in BNGrSTO-04 sample. A, Evolution of the two-
terminal resistance R2t with back-gate voltage Vbg and magnetic field B at 4 K (red contact configuration in
B). On top of the standard ν = 1, 2 plateaus, an anomalous quantized 2h

3e2 resistance plateau arises at CNP
between 1 and 3 T (delimited by the dashed lines). B, Contact configurations studied. A, C, and D, are
obtained in the configuration depicted in red. C, Two-terminal conductance G2t versus Vbg extracted from

A for different magnetic fields. G2t displays ± 2e2

h and 6e2

h plateaus characteristic of graphene QH effect and

reaches approximately 3e2

2h at CNP, consistent with the value expected for helical edge transport (dashed

line). D, Resistance at CNP versus B extracted from A evidencing the presence of a 3e2

2h resistance plateau
between 1 T and 3 T. At higher magnetic fields, R2t increases with the magnetic field almost exponentially
with B but remains below 200 kΩ at 14 T. E, Evolution of R2t with Vbg for the two contact configurations
depicted in B. At CNP, the resistances reach the values expected for helical edge transport in both cases.
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FIGURE 2.15: Evidence of helical edge transport in BNGrSTO-05 sample. A, Evolution of the two-
terminal resistance R2t with back-gate voltage Vbg and magnetic field B at 4 K. On top of the ν = 2 plateau,
an anomalous quantized 3h

4e2 resistance plateau arises at CNP between 1 and 2.5 T (delimited by the dashed
lines). Inset: Contact configuration considered. B, Two-terminal conductance G2t versus Vbg extracted

from A for different magnetic fields. The conductance displays plateaus at ± 2e2

h and − 6e2

h characteristic of

graphene QH effect and reaches approximately 4e2

3h at CNP consistent with the value expected for helical
edge transport (dashed line). C, Resistance at CNP versus magnetic field extracted from A evidencing the
presence of a resistance plateau between 1 T and 2.5 T consistent with the value expected for the helical
edge transport (dashed line). At higher magnetic fields, R2t increases with B almost exponentially with the
magnetic field but remains below 300 kΩ at 14 T.

BNGrSTOVH-03a sample

Fig. 2.16 presents the evolution of the two-terminal resistance R2t with B and Vbg for a given
contact configuration (depicted in inset). Contrary to previous data, the measurements presented
were performed in dilution fridge at a temperature of 70 mK and with an ac-voltage excitation of
100 µV.

In this sample, a finite conductance plateau of approximately 2e2

3h appears at charge neutrality
point between 2.5 and 7 T marking the formation of the helical phase. Above 7 T, the resistance
increases exponentially with the magnetic field up to about 10 MΩ at 14 T. Note that the resistance
measured at high magnetic fields is larger than in previous measurements because of the lower
temperature during the measurements.
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FIGURE 2.16: Evidence of helical edge transport in BNGrSTOVH-03a sample. A, Evolution of the two-
terminal resistance R2t with back-gate voltage Vbg and magnetic field B at 70 mK. A finite resistance plateau,
indicated by the dashed line, arises at CNP between 2.5 and 7 T with a value close to 3h

2e2 the expected value
helical edge transport. Inset: Contact configuration considered. B, Two-terminal conductance G2t (after
subtraction of wire resistance) versus Vbg extracted from A for different magnetic fields. G2t displays ± 2e2

h

and ± 6e2

h plateaus characteristic of graphene QH effect and shows a 2e2

3h plateau at CNP consistent with the
value expected for helical edge transport (dashed line). C, Resistance at CNP versus B extracted from A
evidencing the presence of a resistance plateau between 2.5 T and 7 T consistent with the value expected
for the helical edge transport (dashed line). At higher magnetic fields, R2t increases with B exponentially.

The observation of helical edge transport signatures in these measurements provide us further
information. Considering the voltage excitation used and the temperature, we should be able to
resolve edge gaps of about 1 K. This is much smaller than the reduced Coulomb energy scale in
this sample that is already ε∗C ≈ 27 K at 2.5 T. Thus, we can reasonably assume that the exchange
gap at ν = 0 is larger than 1 K for B > 2.5 T. In this regard, the helical edge transport signatures
observed can hardly be attributed to an activated transport at the edges of a CAF phase. It would
imply that the edge gap would be smaller than 1 K even at 7 T and hence that the CAF phase
would be very close to the transition. This is rather unlikely.

Likewise, one may argue that we could not resolve the edge gap because the sample would
have a high amount of disorder in the sample. This hypothesis seems unlikely considering its
mobility and the fact that we observe signatures of broken symmetry states at ν = 1, 3, 4 at 14 T
in this sample as shown in Fig. 2.17.
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BNGrSTOVH-02 sample

Finally, Fig. 2.18 presents the evolution of the two-terminal resistance measured at charge neu-
trality in BNGrSTOVH-02 sample for measurements performed at 1.5 T with different contact
configurations.
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FIGURE 2.18: Evidence of helical edge transport in BNGrSTOVH-02 sample. A, Evolution of the two-
terminal resistances R2t with back-gate voltage Vbg at 1.5 T for different contact configurations. At CNP,
R2t reaches the values expected for helical edge transport, indicated by coloured dashed lines, in all the
displayed configurations. B, Schematics of the contact configurations. Black contacts are floating. The red
and blue arrows on the helical edge channels indicate the direction of the current between contacts, and A
indicates the ampmeter. NL and NR indicate the numbers of helical edge sections between the source and
drain contacts respectively on the left and the right edge of the device.
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For the six configurations presented, the resistance at charge neutrality reaches the value ex-
pected for helical edge transport. Contrary to the samples presented above, this device was etch-
defined such that the graphene edges are not pristine. It shows that the edge roughness induced
by the plasma etching does not hinder the appearance of the helical edge transport regime.

2.4 Evidencing the origin of the helical quantum Hall phase

As demonstrated above, in graphene samples on SrTiO3 substrate with thin bottom h-BN, a clear
helical edge transport regime arises in the quantum Hall regime and at charge neutrality. The
observation of this specific transport regime unambiguously points towards the formation of a F
ground state at ν = 0 in this type of device. Yet, one may still wander if indeed it arises because
the substrate provides a strong screening or because of a different effect. To discard this second
possibility, we must investigate the importance of the screening. Also one must verify that the
ground state is gapped in the bulk as expected for the F phase.

2.4.1 Key role of the substrate screening

To check that the helical edge transport arises because of the screening provided by the SrTiO3
substrate, we purposely fabricated a sample, BNGrSTO-09 with a 61 nm thick h-BN spacer sub-
strate. With such a thick bottom h-BN, the distance between the graphene and the substrate is too
far from the latter to provide a significant screening (lB > 60 nm when B 6 0.18 T) such that the
Coulomb energy is not reduced as shown in Fig. 2.3.
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FIGURE 2.19: Influence of bottom h-BN thickness on the substrate screening. A, Evolution of the four-
terminal resistance R4t at CNP with B in samples with two very different bottom h-BN thicknesses dBN.
BNGrSTO-07 have a thin bottom h-BN and exhibits a resistance plateau (dashed line) at intermediate
magnetic fields consistent with a helical edge transport. It departs to a weak insulating phase at higher
fields. In contrast, BNGrSTO-09, which have a thick h-BN, displays a very strong insulating phase even at
low/intermediate magnetic fields. Note that above 5 T, we have a saturation as we reach the noise level of
our current amplifier. B, Contact configurations considered for both samples.
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The evolution of the four-terminal longitudinal resistance in this sample is displayed in Fig. 2.19
as well as the evolution of the resistance for a similar configuration in sample BNGrSTO-07. Con-
trary to the samples with thin bottom h-BN, in BNGrSTO-09 sample, the resistance diverges very
rapidly the B and exceeds 100 kΩ above 1 T. It marks the formation of a strong insulating phase
which develops with the magnetic field as already reported in other measurement performed in
high mobility devices on SiO2. Above 4 T, the resistance saturates above 100 MΩ because of the
noise level of the current amplifier. These stark differences show that the insulating phases devel-
oping in each case are fundamentally different. These two samples must have different ground
states at ν = 0 one being insulating at the edges, the other being the F phase which displays a
helical edge transport. It clearly shows that the substrate screening of Coulomb interactions is
indeed at the origin of the formation of the helical quantum Hall phase.

2.4.2 Existence of a bulk gap

To complement previous experiments, it is necessary to probe the existence of bulk gap at CNP
in the helical regime. For this purpose, the devices with a Hall-bar like geometry are not suitable
since the bulk is short-circuited by the edge channels. We thus fabricated a device with a Corbino
geometry following ref. [93, 94], where the graphene is contacted in the middle of the flake allow-
ing to probe only bulk transport and to get rid of any contribution from the edges.

STO

h-BN
Graphite
Graphene

A B C

D E F

10 µm

FIGURE 2.20: Fabrication of a device with Corbino geometry on SrTiO3 subsrate. A, Initial Van der Waals
heterostructure. B, Etching of large holes in the top h-BN/graphite flakes. C, Deposition of an additional
h-BN flake. D, Etching of smaller holes, down to the bottom h-BN, in the center of the first set of holes.
E, Deposition of a Cr/Au bilayer to make contacts with graphene. F, Optical image of a Corbino device
studied in Fig. 2.21 (two-terminal measurements are performed between contacts denoted by red arrows).
Graphene edges are indicated by the red line.

The fabrication of such sample is presented in Fig. 2.20. First, a thin h-BN/graphene/h-BN
heterostructure is first placed on SrTiO3 substrate and then covered by an additional graphite/h-
BN layer (Fig. 2.20.A). The latter graphite flake is used as a screening layer and allows to get rid of
the local doping induced by the deposition of metal on the capping h-BN. Without this layer, the
graphene doping below the contact lines connected to the inner contacts would be different from
the rest of the flake. It would result in the formation of pn or nn’ junctions and thus some QH
edge channels would connect the graphene edges to the inner contact. A serie of holes are then
etched in the top h-BN and the graphite layer at positions where the graphene will be contacted
(Fig. 2.20.B). Another h-BN flake is deposited on top of the etched heterostructure (Fig. 2.20.C) and
a second set of holes, with a smaller radius, is then etched in the overall heterostructure, down
to the bottom h-BN, exactly at the same position than the first set. (Fig. 2.20.D). Finally, a Cr/Au
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bilayer is deposited in the small holes to make one-dimensional contacts (Fig. 2.20.E). The prior
etching of the graphite/h-BN layer into larger holes prevents from having connections between
the graphite and the graphene flakes. An optical image of the device fabricated following this
process is presented in Fig. 2.20.F.

Measurements of the two-terminal resistance with B and Vbg in this device are shown on
Fig. 2.21 in form of a Landau fan diagram. They were performed between both contacts denoted
with red arrows in Fig. 2.20.F.
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FIGURE 2.21: Transport in Corbino geometry. Evolution of the two-terminal resistance R2t in the Corbino
device shown in Fig. 2.20.F measured between the contacts marked with red arrows. Two main resistance
peaks (white dashed lines), indicative of the gap opening at ν = ±2, appear starting from 1.5 T. An addi-
tional central peak (red dashed line) is observed and indicates the presence of a bulk gap at ν = 0 in the
field range where the helical edge transport is observed. Above 5 T, the gaps corresponding to the ν = ±1
broken symmetry states also open.

We observe the emergence of two main insulating peaks dispersing with magnetic field start-
ing from approximately 1.5 T. In a Corbino geometry, the resistance peaks mark the opening of
gaps in the density of states between Landau levels or broken symmetry states. Thus the two
main insulating peaks, which disperse in opposite gate direction, can be easily identified as the
opening of the cyclotron gaps between N = 0 and N = ±1 Landau levels (filling factors ν = ±2).
Between these two peaks, a central peak also emerges above 1.5 T and it does not disperse with
the magnetic field. This peak marks the opening of a gap at ν = 0. Finally, two additional satellite
peaks, dispersing with B, also appear above 5 T between ν = ±2 and ν = 0 states. They corre-
spond respectively to the broken symmetry states at ν = ±1.
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Importantly, we note that the gap at ν = 0 appears at similar magnetic field than the helical
edge transport plateaus in the other samples and it does not close when the magnetic field is
increased. It shows that in the helical regime, the charge transport only occurs at the edges and
not in the bulk of the graphene flake. It reinforces the demonstration that the ν = 0 ground state
in our screened graphene devices on SrTiO3 is indeed the F phase gapped in the bulk and gapless
at the edge.

2.5 Robustness of the helical edge transport

We now investigate the robustness of the helical phase against the magnetic field and the temper-
ature and discuss its breakdown at high magnetic fields or temperatures.

2.5.1 Phase diagram of helical edge transport
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FIGURE 2.22: Phase diagram of quantized helical edge transport regime in BNGrSTO-07 sample. A,
Two-terminal resistance R2t versus back-gate voltage Vbg measured at various temperatures and a magnetic
field of B = 4 T. Note that the back-gate voltage is renormalized using the position of the ν = ±2 plateaus
to compensate the temperature-dependence of the substrate dielectric constant. B, Two-terminal resistance
at CNP, RCNP, for the same data as in A. Inset: Contact configuration used for data in A and B figures.
C, Two-terminal resistance RCNP at the CNP versus magnetic field B and temperature T for the contact
configuration shown in the inset. The resistance reaches the value expected for helical edge transport 2e2

3h
over a large range of temperatures and magnetic fields. The stars indicate the points of the phase diagram
where RCNP has been checked by measuring different contact configurations. The green stars indicate when
RCNP is matching the quantized helical edge transport value while the red stars indicate that RCNP does not
match the expected value (see Fig. 2.23). The dashed curve is a guide for the eyes showing the approximate
limits of the regime of helical edge transport.
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We studied the evolution of the quantized resistance at CNP with respect to both the temper-
ature T and the magnetic field B in BNGrSTO-07 sample. Two relevant examples are given in
Fig. 2.22.A and Fig. 2.22.B. At fixed magnetic field B = 4 T, the resistance at CNP remains close
to the expected value for helical edge transport on a very large of temperature from 5 to 90 K as
shown in Fig. 2.22.A. More surprisingly, when the temperature is increased, the resistance at CNP
departs from its expected value towards insulation at higher magnetic fields and even survives
up to 10 T at 90 K.

Similarly, Fig. 2.22.C shows the evolution of the two-terminal resistance at CNP over both
large temperature and field ranges for another contact configuration. RCNP retains its expected
value over a wide range of temperature and magnetic field delimited approximately by the black
dashed line. To ascertain this boundary, the value of the two-terminal resistance was checked
at different points of the phase diagram indicated by stars. In the helical edge transport region
(green stars), the resistance at CNP reaches its expected helical value for the three different contact
configurations investigated while outside it (red stars) RCNP is above the value expected for helical
transport as shown in Fig. 2.23.
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FIGURE 2.23: Resistance at CNP at the boundary of the helical transport regime. A, Two-terminal resis-
tance RCNP at charge neutrality for different points of the (B, T) phase diagram (stars in Fig. 2.22.C) nearby
the boundary of the region where quantized helical edge transport is observed. In the helical regime (green
stars), RCNP reaches its expected helical values for the different configurations considered (dashed lines)
whereas outside this region (red stars) RCNP is notably above the expected value. B, Corresponding contact
configurations.

Above 110 K, the quantization of the helical edge transport is no longer observed. We can
therefore infere that helical edge states retain their topological protection against backscattering
over 1.1 µm (edge section’s length in the device studied) at 110 K and thus over longer distances at
lower temperatures. The helical edge transport regime is particularly robust especially compared
to the one observed in standard topological insulator. For examples, in HgTe/CdHgTe quantum
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wells, the helical edge transport was observed in micron long distance but at temperatures of only
a few Kelvins [56] while in WTe2, quantum spin Hall transport signatures were observed up to
100 K but only over 100 nm distances [58]. The helical quantum Hall phase in graphene seems to
have a much longer inelastic scattering length than the ones measured in time-reversal symmetric
topological insulator.

The breakdown of the quantized helical edge transport with the temperature increase cannot
be attributed to the lowering of the SrTiO3 dielectric constant. Indeed, the latter remains suffi-
ciently high, εSTO ∼ 103 above 100 K [82], such that the screening provided by the substrate is
only weakly affected in samples with thin h-BN (see Fig. 2.2). Thermal activation of bulk charge
carriers can also be discarded as it would lead to a decrease of the resistance at CNP with increas-
ing temperatures contrary to what we observe experimentally. Therefore, the helical transport
regime most likely breaks at high temperatures due to an activation of inelastic processes.

A possible explanation might be provided by the work of J. L. Lado and J. Fernández-Rossier.
In ref. [95], they numerically investigate the spatial evolution of the magnetic properties of the
AF/CAF/F phases in finite size samples with both armchair and zigzag edges. According to
them, there are some localized magnetic moments at graphene zigzag edges which result from
the presence of the surfaces states. They found these local spin moments can induce spin-mixing
and that they can generate inelastic backscattering of the helical edge channels depending on their
orientations. At higher temperatures, we expect these spin moments to fluctuate which would
enhance their effect on the backscattering. Such scenario would explain the dependence observed
experimentally and could be relevant as a graphene edge is composed of several patches of zigzag
terminations.

2.5.2 Breakdown of helical edge transport with magnetic field

In Fig. 2.22.C, it is worth inspecting at the boundaries of the helical edge transport regime with
the magnetic field. The low field limit is virtually constant with the temperature (B ≈ 0.7 T) and is
most probably fixed by the mobility of the sample that limits the observability of the ν = 0 broken
symmetry state [37]. On the other hand, the high field limit shows a rather unexpected behaviour
as it increases linearly with T.

This second trend is confirmed when studying the evolution of resistance at charge neutral-
ity away from helical edge transport regime in BNGrSTOVH-02 sample. Fig 2.24.A displays the
Arrhenius plots of the four-terminal resistance of the device for different magnetic fields. For
1 < B ≤ 6 T the device exhibits helical edge transport signatures and RCNP stays constant with
both B and the temperature between 4.2 and 7.1 K (a temperature range where εSTO is almost
constant). For B & 6 T, the sample is outside the helical regime and RCNP shows an activated tem-
perature dependence. The activation gaps ∆, computed from these plots, evolves linearly with B
as displayed in Fig. 2.25. Such scaling is consistent with the behaviour observed in the previous
phase diagram.

This linear dependence differs from the theoretical expectations which predict that the charge
activation gap is set by the Coulomb energy and scales as

√
B [18]. This last scaling is actually

recovered rather quantitatively when similar measurements are performed on sample BNGrSTO-
09 which has a thick bottom h-BN. In this case, the activation gap, calculated from Ahrrenius plots
in Fig 2.24.B, shows a clear

√
B dependence which can be fitted with a disorder-free activation gap

∆∗ ≈ 0.4 εC consistent with an activation energy set by the long-range Coulomb interaction.



2.5. Robustness of the helical edge transport 49

0.15 0.2 0.25

10 0

10 2

10 4

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

B  (T)

1/T  (K-1)

Re
si

st
an

ce
 R

CN
P 

(k
Ω

) 
A B

0.02 0.04 0.06 0.08 0.1

1/T  (K-1)

10 0

10 2

10 4

0
0.5
1
1.5
2
3
4
5
6
7
8
9
10
11
12
13
14

B  (T)

Re
si

st
an

ce
 R

CN
P 

(k
Ω

) 
FIGURE 2.24: Arrhenius plots at CNP in two types of devices on SrTiO3. Evolution of the four-terminal
longitudinal resistance at the charge neutrality RCNP versus inverse temperature 1/T for different magnetic
field values. Arrhenius plots are respectively measured for sample BNGrSTOVH-02 in A and for sample
BNGrSTO-09 in B. The first has a thin bottom h-BN and displays helical edge transport at intermediate mag-
netic fields. The latter has a thick bottom h-BN and shows a strongly insulating behaviour (see Fig. 2.19).
Note that measurements in A were performed on a temperature range where the dielectric constant of the
substrate is almost constant.
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FIGURE 2.25: Evolution of intercation-induced opening with magnetic field. Activation energy gap ∆
extracted from Ahrrenius plot presented in Fig. 2.24 for the two samples with different bottom h-BN thick-
ness dBN. The sample with a thick bottom h-BN (blue dots) shows an activation energy which scales as

√
B

while the sample with a thin bottom h-BN shows an activation energy scaling linearly with B outside the
helical edge transport regime translating the opening of an edge gap. Dashed lines are respectively fits of
the linear and of the α

√
B− Γ dependence. The fitted parameter α = 64 K.T−1/2 correspond to a disorder-

free activation energy gap ∆∗ ' 0.4 εC consistent with an activation energy set by the long-range Coulomb
interaction. The intercept Γ = 28 K gives an estimation the disorder-broadening of Landau levels.



50 Chapter 2. Helical quantum Hall phase in charge neutral graphene on SrTiO3

The breakdown of the helical edge transport could originate from an opening of a gap in the
edge excitation similar to that happening at the CAF/F transition. Different scenarios can explain
such opening. First, it may arises from a phase transition from the F phase to another ground
ν = 0 ground states especially the CAF phase [61]. It may occur because the substrate screening
is less efficient at higher magnetic fields as lB decreases. Such a transition should occur without
the closure of the bulk gap [36]. It is consistent to what we observe in devices with a Corbino
geometry (see Fig. 2.21) where the ν = 0 bulk gap emerges at 1.5 T and remains visible up to 14 T.
Likewise, the interactions terms breaking U(1) symmetry can drive a phase transition from the F
phase to phases with gapped edge excitations while increasing the magnetic field [74].

Other scenarios involving helical Luttinger nature [27] of the gapless edge modes of the F
phase may also be envisioned. Tikhonov and coworkers indeed demonstrated that the coupling
between the helical edge modes and the 2D bulk spin waves may lead to some backscattering [71].
Similarly, Huang and Cazalilla found that the combination of disorder and electron-electron in-
teractions in the helical edge channels can lead to their backscattering [96]. One can also spec-
ulate, by analogy with predictions made for 2D topological insulators, that the enhancement of
electron-electron interactions with the magnetic field may lead to the emergence of two-particles
backscattering processes [51, 97]. Further investigations are needed to understand the underlying
mechanisms behind the breakdown of the helical phase with the magnetic field.

2.6 Conclusion

In this chapter, we have demonstrated that the helical edge transport in charge neutral graphene
under perpendicular magnetic field can be favoured by using a SrTiO3 high-k dielectric substrate.
Provided the bottom h-BN is thin enough, it allows to reduce significantly the Coulomb interac-
tions within the graphene flake and restore the predominance of the spin splitting over the valley
splitting in the graphene QHF at ν = 0. Such strategy allows to fabricate graphene heterostruc-
tures exhibiting a robust helical edge transport at low-intermediate magnetic fields up to 110 K
and over micron long distances.

This helical quantum Hall phase is particularly promising further applications as well as fun-
damental research. Efforts to couple it to superconductivity in the prospect of investigating Majo-
rana zero-energy modes physics are under way [98]. On the other hand, the substrate engineering
strategy presented here offers new opportunities to tune electronic interactions in Van der Waals
heterostructures and provides a tool to study a wealth of physics phenomena in such systems.
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graphene devices
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Chapter 3

Probing anyon physics with quantum
Hall Fabry-Pérot interferometers
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The major part of this PhD work was dedicated to the experimental study of QH Fabry-Pérot
(FP) interferometer in high mobility graphene heterostructures. In this introduction chapter, we
focus on these devices and explain how QH FP interferometers allow to probe the properties of
the quasiparticles forming the QH edge channels.

We begin by discussing the specificities of anyonic quasiparticles emerging in the fractional
regime. We then present the QH FP interferometers and we explain how the investigation of
quantum interference in these devices enable to evidence the properties of anyonic quasiparticles.
Afterwards, we make a review of past experimental and theoretical studies of such devices fo-
cussing on the consequences of charging effects. We then present recent achievements that led to
major breakthroughs in the field. We conclude this chapter by discussing the possibility to per-
form QH interferometry in graphene heterostructures.

3.1 Anyons in the fractional quantum Hall effect

In this section, we present a specific type of quasiparticles called anyons, which emerge in the
fractional regime. A very recent review on the subject can be found in ref. [99].
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3.1.1 Concept of anyons

In quantum mechanics it is usually said that there are only two types of particles with differ-
ent statistics namely the bosons and the fermions. The above assumption is valid in 3D system
whereas in 2D systems it exists some quasiparticles whose exchange statistics is neither bosonic
nor fermionic [100]. These quasiparticles are called anyons [101].

The essence of anyons is readily captured with their unusual exchange statistics. In the sim-
plest case, when two anyons are exchanged, their two-particles wavefunctions Ψ acquired a non
trivial phase factor. It can be written as:

Ψ(−→r2 ,−→r1 ) = eiθΨ(−→r1 ,−→r2 ), (3.1)

where −→ri are the anyon positions and θ is the statistical phase. θ is different from 0 or ±π such
that after a double exchange of the two anyons (two successive exchanges in the same direction
of rotation), the wavefunction does not return to its original value contrary to what happens with
bosons or fermions. Note that such a double exchange is equivalent to the rotation of one anyon
around the other as depicted in Fig. 3.1, and it is usually referred as a braiding operation. In a sys-
tem of several anyons with such statistics, the many-body wavefunction picks up a total phase of
e2iNθ when one anyon is moved along a close loop enclosing N other anyons. Likewise, the phase
factor acquired after M successive braidings performed in the same direction is e2iMθ . It actually
does not depend on the exact order followed to perform the braiding operations. Therefore, the
anyons following such statistics are referred as Abelian anyons.

Ψ(r1,r2)                           

e2iθ Ψ(r1,r2)≠Ψ(r1,r2)                              

1 2

2D plane

x

y

FIGURE 3.1: Abelian anyonic statistics. The braiding of one Abelian anyon around another leads to the
appearance of a non trivial statistical phase in the two-particle wavefunction.

It also exists anyons with even more complex statistics: the non-Abelian anyons. In a sys-
tem composed of non-Abelian anyons at given positions, there are several quasi-degenerate low-
energy eigenstates possible for the system. The eigenstates form a Hilbert space [99, 102, 103].
Each braiding operation is associated with an unitary transformation within the Hilbert space
(provided it is performed fast enough compared to the vanishingly small energy difference be-
tween eigenstates). These transformations can be different from simple multiplications of the
many-body wavefunction by a phase factor and thus they do not necessarily commute with each
others. That’s why it is said that these anyons follow non-Abelian statistics.

These last anyons are particularly interesting for topological quantum computation [103, 104].
Indeed, as the quasi-degenerate eigenstates form a Hilbert space, one can encode information
on the eigenstate taken by the system. The operations can then be performed by making braiding
operations. Such system is intrinsically protected against decoherence because it undergoes a non-
trivial evolution only when the anyons are braided. Likewise, it is protected against unitary errors
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occurring while performing gate operations. Indeed, the braidings only depend on the topology
of the quasiparticles trajectories and are insensitive to their exact geometry or the dynamic of the
quasiparticles.

Evidencing the existence of such quasiparticles is thus of particular interest both for funda-
mental research and potentially for applied research on a long term perspective.

3.1.2 Emergence of anyons in the fractional quantum Hall effect

The transport signatures appearing in the fractional quantum Hall (FQH) regime cannot be ex-
plained in the non-interacting LL framework. Similarly to the QHF, they rather indicate the open-
ings of interaction-induced gaps inside partially-filled LLs and the formation of highly correlated
electronic phases. The lowest-energy excitations of these phases are expected to be anyons and
supposed to carry fractional charges.

It was first suggested by R. Laughlin in 1983. In ref. [3], he studied the FQH phases developing
at filling factors ν = 1

m , where m is an odd integer, and he proposed a many-body wavefunction to
describe them. With numerical simulations, he demonstrated that this wavefunction was partic-
ularly relevant to describe the ground-state properties at such filling fractions. Thanks to that, he
showed that these FQH phases are incompressible quantum fluids whose elementary excitations
carry a fractional charge −e∗ = − e

m . Following this work, Halperin together with Arovas and
coworkers demonstrated that these fractionally charged quasiparticles are also Abelian anyons
characterized by an exchange phase θ = π

m [4, 5]. These conclusions were then extended to many
other odd-denominator fractions observed experimentally (see Fig. 3.2.A) [4, 5, 105–109].1

Few years after the observation of odd-denominator fractions [116], clear QH signatures were
observed at ν = 5

2 in high mobility GaAs/AlGaAs heterostructures [117]. This state has raised
a lot of interests because the first theoretical investigations [118] predicted that its low energy-
excitations could be non-Abelian anyons usable for topological quantum computation [103, 119,
120]. Yet, the exact nature of this state still remains under debate. Likewise, other even-denominator
states were observed in GaAs/AlGaAs heterostructures [121] and some of them can be non-
Abelian states.

Therefore, probing the properties of FQH states is particularly relevant in order to investigate
the physics of anyons.

3.1.3 Experimental evidence of anyons properties in the fractional QH regime

Theoretical investigations also demonstrated that FQH states support chiral gapless edge modes [124]
which are similar to the IQH edge channels [125, 126]. The low-energy excitations of these edge
modes are actually the fractionally charged anyons discussed above [127]. The existence of these
edge channels gives rise to the quantized transport regime [128] but it also enables to probe the
properties of the anyons via suitable transport measurements.

In particular, shot noise measurements performed with gate-tunable quantum point contacts
(QPCs) [129] were early proposed as a way to probe the existence of fractional charges [130, 131].
These experiments were rapidly implemented in GaAs/AlGaAs heterostructures by two groups
from Weizmann Institute and CEA-Saclay [132, 133]. They demonstrated that the FQH edge chan-
nels appearing at ν = 1

3 are indeed composed of quasiparticles with an effective charge−e∗ = − e
3 .

Since that, similar experiments evidenced the existence of fractionally quasiparticles at different
filling fractions, for instance, −e∗ = − e

3 at ν = 2
3 [134], −e∗ = − e

5 at ν = 2
5 , −e∗ = − e

7 at
ν = 3

7 [135] and −e∗ = − e
4 at ν = 5

2 [136]. Likewise, current noise measurements perfomed in
more elaborated devices [137–139] were also proposed to probe the fractional statistics of anyons.

1The description of the different theories developed to describe the FQH effect (hierarchy theory [4, 110], composite
fermions theory [111, 112], etc.) are beyond the scope of this manuscript. They are reviewed and explained for example
in ref. [102, 113–115]. These references also discuss the case of the state developing at ν = 5

2 .
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A B

FIGURE 3.2: Fractional quantum Hall effect in GaAs/AlGaAs heterostructures. A, Typical signatures
of FQH states measured GaAs/AlGaAs heterostructures. Many odd-denominator fractions are observed.
Taken from ref. [122]. B, QH signatures at ν = 5

2 . Taken from ref. [123].

One of these experiments was implemented recently by Bartolomei and coworkers providing a
first direct measure of the π

3 exchange phase of Laughlin quasiparticles of the ν = 1
3 state [140].

On the other hand, the non-Abelian statistics of ν = 5
2 quasiparticles in GaAs heterostructures

have also been probed indirectly via heat transport measurements by Banerjee and coworkers. In
ref. [141], they measured the thermal conductance at filling factor ν = 5

2 and found that it was
κ ' 2.5 κ0 = 2.5 π2kB

3h . According to the authors, such value, that is a half integer multiple value of
the thermal conductance quantum κ0, demonstrates the existence of Majorana modes at the edges
of the ν = 5

2 state. They are expected to appear only in non-Abelian ground states.
In graphene, the proofs demonstrating the existence of fractionally charged anyons remain

scarce most probably due to the difficulty to fabricate fully gate-tunable QPCs (see section 3.4.2).
Yet, studying tunnelling in QH antidots, Mills and coworkers measured the charge of quasiparti-
cles emerging at ν = ± 1

3 and they found that is was approximately − e
3 [142].

Thus, there are already several evidence that quasiparticles developing in the FQH effect are
anyons carrying fractional charges.

3.2 Quantum Hall Fabry-Pérot interferometers

In parallel to these approaches, Chamon, Freed, Kivelson, Sondhi and Wen proposed another
strategy to study the properties of anyons appearing in the FQH regime [143]. It consists in study-
ing quantum interference arising in a mesoscopic physics device called quantum Hall Fabry-Pérot
(FP) interferometer which is the experimental system studied during this PhD work.

This section is devoted to QH FP interferometers. In the first part, we present the theory of QH
FP interferometers and explain how they allow to probe the property of the quasiparticles forming
the QH edge channels. In the second part, we make a review of both theoretical and experimental
investigations of QH FP interferometry in GaAs/AlGaAs heterostructures.



3.2. Quantum Hall Fabry-Pérot interferometers 57

3.2.1 A multiple path electronic interferometer

The QH FP interferometer proposed by Chamon and coworkers is schematized in Fig 3.3.A. It
is composed of two sets of contacts (yellow) separated by a FP cavity formed by two quantum
point contacts (QPCs) in series (red). The device is also equipped with a plunger gate which is
placed between the two QPCs just along the edges of the 2DEG.2 It can also have a back gate that
enables to tune the charge carrier density in the device. Fig 3.3.B shows a real device, fabricated
in GaAs/AlGaAs heterostructures by the Harvard group, illustrating the concept.

B

A B

FIGURE 3.3: Quantum Hall Fabry-Pérot interferometer. A, Schematic of a QH FP interferometer. The
contacts are coloured in yellow, the QPCs in red and the plunger gate in orange. The interfering electron
edge channel (blue line) follow the edges of the 2DEG and the edges of the gates. It is partially reflected by
the two QPCs and the quasiparticles can tunnel from one edge to the other (blue dotted line). B, Scanning
electron micrograph of a QH FP interferometer fabricated in GaAs/AlGaAs heterostructures studied in
Harvard group. Adapted from ref. [144].

The QPCs are defined by split gates deposited above the 2DEG. The resulting constriction
in the 2DEG can be tuned by changing the voltage applied on the gate-electrodes [129]. In the
QH regime [145], they act as tunable beamsplitters for the edge channels and they allow to tune
the number of bulk edge channels passing through the constrictions. One can also adjust the
transmission of a given edge channel by changing the voltage VQPC applied on the gate electrodes
to tune the potential/filling factor in the constriction [129]. An example is depicted in Fig. 3.4.

The two QPCs are in series and they partially reflect the same QH edge channel. As a result,
the quasiparticles in this edge channel can follow different paths: they can either be transmit-
ted directly through both QPCs or they can make one or several loop(s) inside the cavity before
leaving it. The transmission of the device is then the result of the interference between these dif-
ferent trajectories. The QH FP interferometer, like its optical analogue, is therefore a multiple-path
interferometer contrary to the QH Mach-Zehnder interferometer [146] which is a two-path inter-
ferometer.

The transmission of the QH FP interferometer TFP was calculated by Chamon et al. within a
non-interacting theory using the scattering matrix formalism [143]. It can be written as:

TFP =
T1T2

1 + R1R2 − 2
√

R1R2 cos(ϕ)
, (3.2)

2Such a plunger gate was actually absent in the original paper of Chamon and coworkers [143]. Instead, they
propose to use a central gate placed above the bulk of the FP cavity that allows to deplete or accumulate locally charges
in the bulk of the FP interferometer. The current devices mostly have plunger gates rather than central gates.
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where Ti are the transmission coefficients of the QPCs, Ri = 1− Ti their reflection coefficients and
where ϕ is the phase accumulated when the quasiparticles make a winding inside the cavity. In
weak backscattering limit, that is Ri � 1, it simplifies to:

TFP = 1− R1 − R2 + 2
√

R1R2 cos(ϕ). (3.3)
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FIGURE 3.4: Quantum point contact in the QH regime. A, Evolution of conductance or equivalently of the
edge channel transmission with the split-gate voltage VQPC < 0 V. B, C, D, Edge channel configurations
nearby the QPC for the three split-gate voltages indicated by the color dots on the transmission curve.

3.2.2 Aharonov-Bohm interference

The first effect at the origin of interference in the QH FP interferometer is the Aharonov-Bohm
(AB) effect. Indeed, when quasiparticles make a loop inside the FP cavity, they accumulate an AB
phase ϕAB because of the applied magnetic field B. This AB phase reads as:

ϕAB =
2πΦ
Φ∗0

=
2πBA

Φ∗0
, (3.4)

where Φ∗0 = h
e∗ is the effective magnetic flux quantum experienced by the quasiparticles with

effective charge −e∗ and A is the area enclosed by the trajectory of the interfering edge channel
inside the FP cavity.
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Experimentally, one can observe AB interference in FP interferometer by measuring the evo-
lution of the resistance/conductance of the device with ϕAB. The first way to tune the AB phase is
to change the magnetic field. The corresponding oscillations period ∆B =

Φ∗0
A is basically constant

and independent of the average magnetic field value but it depends on the effective charge of the
quasiparticles. ϕAB can also be tuned by applying a negative voltage Vpg on the plunger gate. It
changes the local potential at the edges, modifies the edge channel trajectories in the vicinity of
the plunger gate and thus it enables to tune the effective surface A of the interferometer as shown
in Fig. 3.5. Assuming that the change of surface is proportional to the change of plunger-gate
voltage [147–149], one expects the gate-voltage period of AB oscillations to scale as 1/B. These
two parameters allows a fine tuning of ϕAB and to make precise studies of AB oscillations in QH
FP interferometers.

VpgVpg

Decreasing Vpg

FIGURE 3.5: Tuning of electron edge channel trajectory with a plunger gate. Evolution of an edge channel
trajectory nearby the plunger gate with the voltage Vpg < 0 V applied on it. Decreasing Vpg allows to repel
the edge channel away from the gate and to reduce the effective interferometer surface.

3.2.3 Effect of exchange statistics

At fractional filling factors, the presence of quasiparticles localized inside the bulk of the interfer-
ometer also leads to a shift of the phase accumulated along the interfering loop. This phase shift
arises because the anyons in the interfering edge channel are braided around the localized ones
(see Fig. 3.6). Assuming that they are Nqp Abelians quasiparticles localized in the bulk of the FP
interferometer, one may write the effective AB phase as [143, 148, 150, 151]:

ϕAB =
2πBA

Φ∗0
+ δϕstat =

2πBA
Φ∗0

+ 2Nqpθ, (3.5)

where δϕstat is the statistical phase term and θ is the exchange phase of the anyonic quasiparticles
(see eq. (3.1)). This formula is valid both in the integer and fractional regimes. In the former case,
δϕstat = 2π such that the contribution of the statistical phase in the AB oscillations is unobservable.
In the fractional regime, δϕ may be different from 2π (e.g. θ = π

m for Laughlin states ν = 1
m )

leading to the appearance of discrete phase jumps in the AB oscillations each time Nqp changes.
Such a change may occur irregularly in experiments when the magnetic field or the plunger-gate
voltage are slightly varied.

Thus, as anticipated by Chamon and coworkers [143], the study of AB oscillations in the QH
FP interferometers provides an experimental way to unveil both the fractional statistics and the ef-
fective charge of anyons. The former could be unveiled by observing and measuring phase jumps
in AB oscillations with fractional edge channels. The latter could be evidenced by comparing the
field periods of AB oscillations in the integer and fractional regimes. Yet, the authors mentioned
that this study must be performed at fixed bulk filling factor (requiring the presence of a back gate
in the device). Otherwise, the bulk QH droplet may adjust its area or additional quasiparticles
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may localize in the bulk to accommodate the flux change and to keep the filling fraction constant
such that a flux period of Φ0 = h

e would be restored.
Later theoretical works focusing on the ν = 5

2 demonstrated that the study of AB interference
in QH FP interferometers also allows to evidence non-Abelian anyonic statistics. They should
manifest as successions of regimes where AB oscillations can be measured and of regimes where
no interference can be observed depending on the parity of the number of localized quasiparti-
cles [103, 150, 152–155]. This is the so-called "even-odd" effect.

=B

FIGURE 3.6: Anyon braiding in a QH FP interferometer. When the QH FP interferometer is operated in the
fractional regime, the quasiparticles (blue dots) in the interfering edge channel make loop around the ones
localized in the bulk of the FP cavity. The Fabry-Pérot geometry naturally allows to make anyon braiding.

3.2.4 Bias-induced oscillations

In a QH FP interferometer, quantum interference can also emerge from the modification of the
energies of the interfering quasiparticles. Indeed, an energy change of δε with respect to the
Fermi energy translates into a shift of the quasiparticles wavevector given by δk = δε/h̄v, where v
edge-excitation velocity. It then results in the accumulation of a dynamic phase shift δϕdyn which
adds to the AB phase. It can be written as:

δϕdyn =
2Lδε

h̄v
, (3.6)

where L is the average distance between the two QPCs (2L is the perimeter of the cavity). Hence,
the tuning of δϕdyn allows to unveil additional quantum oscillations.

Experimentally, these oscillations can be probed by the application of a source-drain dc-voltage
bias Vdc. When such bias is applied, the incident wavepackets no longer have a fixed and well-
defined energy. They rather have a finite energy bandwidth of e∗Vdc and thus they can be decom-
posed into spectral components with different energies. Each spectral component carries a part of
the total current flowing through the device and its contribution depends on the FP transmission
at the corresponding energy. Therefore, the oscillations of the FP transmission with the quasipar-
ticles energy δε translate into oscillations of the total conductance of the device with Vdc.

Chamon and coworkers calculated the integrated transmission and thus the conductance of
the FP interferometer in such configuration. They indeed found that both quantities oscillate
with Vdc but they also highlighted the existence of a decay of the oscillations amplitude with
the bias. This fading actually results from the internal dephasing between the different energy
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components of a single wavepacket. The typical period of bias-induced oscillations and the energy
scale associated with the amplitude fading were found to be fixed by the Thouless energy ETh = hv

L
that is the typical energy associated with the travel of the quasiparticles between QPCs.

Likewise, Chamon et al. predicted an exponential decay of oscillations amplitude with the
temperature on a scale fixed by ETh because of thermal smearing. The exact scalings of these two
decays were found to depend on the properties of the QH edge channels enabling to probe the
chiral Luttinger liquid nature of fractional edge channels [124].

In the integer regime, the study of bias-induced oscillations allows to extract interesting infor-
mation about the edge channel properties in the device. In this case, the differential conductance
δG can be expressed as:

δG = δG0 cos
(

2π
Φ
Φ0

)
cos

(
2π

eLVdc

hv

)
, (3.7)

where δG0 is the oscillations amplitude. Then, one can measure the edge-excitation velocity v from
the period of bias-induced oscillations. v describes the sharpness of the edge potential in the FP
interferometer. It also characterizes the robustness of the quantum interference against intrinsic
dephasing mechanisms according to the above discussion.

Therefore, the study of bias-induced oscillations in QH FP interferometers provides comple-
mentary information about edge channels physics and the coherence of the quantum transport in
both the integer and fractional regimes.

3.3 QH FP interferometry in GaAs/AlGaAs heterostructures

In this section, we make a review of the research work on QH FP interferometers. We mainly
focus on the effect of Coulomb interactions that have long hindered the observation of fractional
statistics and that have been deeply studied in GaAs/AlGaAs heterostructures. We explain how
the electrostatic interactions can lead to conductance oscillations and discuss how they prevent the
observation of anyonic signatures based on previous experiments and theoretical investigations.
We then describe what were the strategies found to mitigate these charging effects. We finally
discuss the status of QH FP interferometry in the fractional regime.

3.3.1 Aharonov-Bohm vs Coulomb-dominated oscillations

Unexpected magnetic field periods in early experiments

The first observation of AB-like oscillations in FP geometry and in the integer regime is anterior
to the original proposal of Chamon et al. It was reported in 1989 by B. J. Van Wees and cowork-
ers [156] who studied the transport through a large dot. The latter was defined by two QPCs
shown in Fig. 3.7.A and 3.7.B and subjected to a perpendicular magnetic field. In this device, Van
Wees and coworkers observed conductance oscillations with the magnetic field arising only when
the two QPCs were partially pinched (Fig. 3.7.C-E) as one would expect in such geometry.

However, the authors measured oscillation periods ∆B which were inconsistent with the AB
period expected considering the size of their device. They also found some surprising depen-
dences of ∆B with the magnetic field or with the interfering edge channel (∆B varied by a factor 4
between interference with the second edge channel and interference with the fifth edge channel).
Such features were not expected within the AB framework but they were observed in different
studies performed in quantum dots [157, 158].

Likewise, in the first experiments aiming purposely to perform QH FP interferometry [159–
161], similar features were also observed. Indeed, in the integer QH regime, Camino and cowork-
ers observed AB-like oscillations and they found a proportionality between 1/∆B and the con-
striction filling factor inconsistent with the non-interacting theory.
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A

B

C

D

E

FIGURE 3.7: First observation of AB-like oscillations in Fabry-Pérot geometry. A, Schematic of the device
studied in ref. [156]: it is composed of a small 2DEG disk defined by two QPCs. B, Zoom on the dot with
the edge channels configuration. The two QPCs are pinched to partially reflect the inner edge channel.
C, D, E, AB-like conductance oscillations. The period of the oscillations largely changes depending on
the interfering edge channel pinched or on the magnetic field which is not expected in the theory of non-
interacting QH FP interferometers. Adapted from ref. [156].

These unexpected observations were poorly understood at that time. They were actually the
first evidence of charging effects in the small FP interferometer whose consequences had not been
anticipated initially by Chamon and coworkers.

A simple model evidencing the role of charging effects

The first theoretical explanations were provided in ref. [162] by B. Rosenow and B. I. Halperin.
They demonstrated that Coulomb-blockade effects could also lead to resistance oscillations with
magnetic field in QH FP interferometers. To draw their conclusions, the authors proposed an
instructive model describing how the electrostatic couplings in the FP cavity affect the QH trans-
port. We now follow their approach to get an insight of the effect of Coulomb interactions.

We consider a QH FP interferometer operating in the integer regime with the innermost edge
channel interfering and equipped with a back gate.3 We assume that the filling factor of the con-
strictions fc is an integer and that the bulk is at higher filling factor fb such that fc < fb < fc + 1.
Then, there are fc filled and one partially filled LLs in the bulk of the FP cell. These bulk LLs form
a compressible island located in the center of the device which is separated from the edge channels
by an incompressible region [163]. This island is supposed to be quasi-isolated i.e. weakly tunnel
coupled to both the interfering edge channel and the leads (red and blue dashed lines in Fig. 3.8).
Thus the island charge must be discrete and it has a finite charging energy EC. We expect the con-
ductance of the FP interferometer to depend on this charging energy because of the electrostatic
coupling between the island and the interfering edge channel.

3Most of the results derived in this part hold for a plunger gate.
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fc channels

FIGURE 3.8: Simplified model describing transport in QH FP interferometer in presence of charging ef-
fects. Sketch of QH FP interferometer operating with the innermost edge channel. The shaded regions rep-
resent compressible regions. They are fc edge channels transmitted through the constriction and a partially
filled ( fc + 1)th LL. In the center of the cavity, they form a quasi-isolated island whose charge is discrete. The
island is electrostatically coupled to the interfering edge channel and to a back gate (not represented here).
Transport through the device is the result of a balance between three types of tunnelling events: forward
tunnelling between the leads and the island (horizontal blue dashed lines), backward tunnelling between
opposite edge states through the island (diagonal red dashed lines) and backward tunnelling across the
constrictions (vertical black dashed lines). Adapted from ref. [162].

The key aspect of this model is that EC depends on the magnetic flux in the FP cavity. Any
increase of the flux δΦ results in an increase of the LL degeneracy and thus leads to the addition
of electrons in the fC filled bulk LLs. There is a net flow of electrons through the incompressible
stripe towards the island. These extra electrons create a charge imbalance that leads to an increase
the island charging energy. It can be compensated if electrons tunnel out from the island or by an
increase of the back-gate voltage. In particular, if the flux is increased by Φ0, there are fc electrons
added to the filled LL and we expect fc electrons to tunnel outside the island.

With similar considerations, Rosenow and Halperin calculated the island charging energy. It
can be written as:

EC =
e2

2Ci
( fc

δΦ
Φ0

+ N − Ngate)
2, (3.8)

where Ci is the capacitance of the island, N is the number of extra-electron added into the island
by tunnelling processes and where Ngate = Ci

e Vgate is the number of electrons attracted to the
island by changing the gate voltage Vgate. In this expression, fc

δΦ
Φ0

+ N − Ngate is the total charge
imbalance in the island.

Looking at eq. (3.8), it readily appears that an electron can tunnel outside the island each time
the flux is increased by δΦ = Φ0

fC
and that EC oscillates with the magnetic field with a period

∆B = Φ0
A fc

.
These oscillations generate periodic variations of the electrostatic potential in the FP cavity.

Thus, they lead to a periodic modulation of the energy-dependent phase shift acquired by the
interfering quasiparticles. Taking into account this effect, Rosenow and Halperin demonstrated
that the oscillations of conductance in the QH FP interferometers could be written as:

δG ∼
〈

cos
(

2π
Φ
Φ0
− 2π

2∆X

ETh
( fc

δΦ
Φ0

+ Ni − Ngate)

)〉
N

, (3.9)

where ∆X is a parameter describing the energy shift associated with the addition/removal of one
electron in the island. In this expression, 〈...〉N is an appropriate thermal average other the number
of extra charges in the island N that is weighted by the Boltzmann factor associated with the
corresponding charging energies EC(N).
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This model therefore predicts two oscillation regimes. In the low-coupling regime, that is
2∆X
ETh
� 1, the oscillations observed have a Φ0 periodicity and correspond to the non-interacting AB

oscillations. In the strong-coupling regime, that is 2∆X
ETh
≈ 1 , the oscillations have a Φ0

fc−1 periodicity4

and mainly arise from Coulomb interactions in the FP cell. In this case, the gate period ∆Vg of the
conductance oscillations is constant and fixed by the island capacitance. This second regime was
actually the one observed in early experiments discussed in section 3.3.1. It explains the scaling of
the magnetic field periods with the constriction filling factor fc reported at that time.

This model shows that the Coulomb interactions between localized states and the interfering
edge channel can significantly impact the transport through a QH FP interferometer. It also high-
lights the competition between the standard AB oscillations and the so-called Coulomb-dominated
oscillations, which are more likely to emerge in small interferometers.

Rosenow and Halperin also extended their model to the fractional regime. Assuming that the
filling factor in the QPCs was fc = r

s and that quasiparticles tunnelling had an effective charge
−e∗ = − e

s , they found a charging energy:

E∗C =
e2

2Ci

1
s2 (r

δΦ
Φ0

+ Ni − sNgate)
2. (3.10)

This expression shows that the gate period of the oscillations with fractional quasiparticles
∆V∗g =

∆Vg
s is reduced compared to that measured with electrons. It provides a way to evidence

the existence of fractional charges experimentally.

Two competing oscillation regimes

Following this theory, the competition between the two regimes was investigated into details in
the IQH effect. Several interferometry experiments were carried out at Harvard university [147]
and at Weizmann Institute [164]. They were performed using QH FP interferometers having dif-
ferent sizes (varying from 2 to 20 µm2), different gate designs and several edge channels configura-
tions were studied. Thanks to their investigations, both groups were able to confirm the existence
of two oscillation regimes and they also recovered the theoretical predictions of the above model.

Importantly, the two groups demonstrated that it was possible to distinguish experimentally
the origin of the resistance oscillations by studying their evolution with both B and Vpg: oscilla-
tions were found to form lines with negative slopes in the AB regime whereas they were found to
form lines with positive (or zero) slopes in the Coulomb-dominated regime (see Fig. 3.9).

These two different behaviours can be readily understood. In the first case, the constant re-
sistance lines correspond to constant AB phase / constant flux lines. Therefore, to keep the de-
vice resistance constant, one needs to maintain the flux enclosed by the interfering edge channel
constant. It requires to compensate any increase of the magnetic field by a lowering of the inter-
ferometer surface, as δΦ ' δBA + BδA, and thus to lower the plunger-gate voltage such that the
constant resistance lines have a negative slope (see Fig. 3.9.A).

In the Coulomb-dominated regime, the constant resistance lines correspond to constant charg-
ing energy lines. Considering eq. (3.8), we see that the charging energy is kept constant by increas-
ing simultaneously the flux and the gate voltage such that constant resistance line have a positive
slope (see Fig. 3.9.A). Ofek and coworkers [164] suggested that, in this regime, small increases of
the magnetic field were accompanied by a shrinkage of the surface enclosed by the interfering
edge state. This shrinkage is driven by the Coulomb interactions: the system adapts its area to
keep the magnetic flux constant preventing any increase of the charging energy [164].

In 2011, an extended theoretical model was developed by Halperin, Stern, Neder and Rosenow [148]
to describe the transport in QH FP interferometers in presence of electrostatic interactions. The

4Equivalently a Φ0
fT

periodicity where fT is the number of fully transmitted edge channels.
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A B

FIGURE 3.9: Experimental signatures of Aharonov-Bohm and Coulomb-dominated oscillations. Evo-
lution of the resistance with magnetic field B and gate voltage VC in two different GaAs/AlGaAs QH FP
interferometers. A, The 2.0 µm2 device operates in the Coulomb-dominated regime where the resistance os-
cillations draw lines with a positive slope. B, The 18.0 µm2 device operates in the Aharonov-Bohm regime
where the resistance oscillations draw lines with a negative slope. Adapted from ref. [147].

model treats both AB and Coulomb-dominated oscillations in a common framework. Halperin
and coworkers showed that the oscillation regime of a given FP device is actually determined by
a ratio of capacitances:

ξ =
Ceb

Ceb + Cb
, (3.11)

where Cb is the capacitance between states localized in bulk of the FP cavity and the gate, and Ceb
is the effective capacitance characterizing the coupling between localized states and the interfering
edge channel. Halperin et al. thus demonstrated that there is a transition from the AB regime
(ξ � 1) to the Coulomb-dominated regime (ξ ∼ 1) with a full range of intermediate cases where
both types of oscillations coexist as shown in Fig 3.10. With their new theory, they were able
to recover the predictions of the first theoretical model as well as the experimental signatures
observed in the two extreme regimes, in particular, the opposite slopes of constant resistance lines
in the B−Vpg plane. Similar conclusions were also obtained in another theoretical work by S. Ngo
Dinh and D. Bagrets [165].

Aharonov-Bohm 
regime (ξ ≪ 1)

Coulomb-dominated 
regime (ξ ∼ 1)

FIGURE 3.10: Transition from Aharonov-Bohm oscillations to Coulomb-dominated oscillations in QH
FP interferometers. Evolution of the 2D pattern formed by the resistance oscillations in the magnetic
field/gate voltage plane depending on the value of ξ . Pure AB oscillations (ξ � 1) form lines with neg-
ative slopes while Coulomb-dominated oscillations (ξ ∼ 1) form lines with positive slopes. A transition
exists between the two extreme regimes where both types of oscillations coexist. Intermediate regimes are
characterized by 2D rhombis lattice patterns. Adapted from ref. [148].
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Halperin and coworkers also generalized the model for interference with Abelian anyons in
fractional regime. Importantly, in weak backscattering limit, they showed that to probe anyonic
statistics, the QH FP interferometer must be operating in the AB regime (or potentially in a
less-favoured intermediate regime). In the Coulomb-dominated regime, the phase shifts were
predicted to be unobservable. In this case, the addition/removal of one quasiparticle in the bulk
generates a modulation of the effective interferometer surface. Both effects modify the phase
accumulated by the interfering quasiparticles and Halperin and coworkers found that the total
phase shift was actually 2π. It prevents to measure the contribution of the statistical phase in the
Coulomb-dominated regime.

Mitigation of charging effects using elaborated device designs

In experiments performed at Harvard university [147] and at Weizmann Institute [164], the AB
regime was only observed in large devices having areas exceeding 15 µm2. Unfortunately, such
interferometers were not operating in the fractional regime because the interfering path lengths
were too large compared to the limited phase coherence lengths in FQH edge channels. It rapidly
appeared necessary to find solutions enabling to fabricate smaller devices operating in the AB
regime.

A lot of efforts have been made to fabricate GaAs/AlGaAs FP interferometers with elaborated
designs mitigating charging effects. The first solution proposed was to cover the FP cavity with a
top gate (see Fig 3.11.A) in order to increase the bulk capacitance Cb and to screen the Coulomb
interactions. Such strategy was actually already used in ref. [147, 164] but it was found to be
inefficient when the devices had areas below 12 µm2 [166]. Another solution proposed by the
Weizmann group [149] was to put an ohmic contact (Fig 3.11.B) in the center of the FP. It reduces
the device charging energy but it also allows the charge in the bulk to vary continuously rather
than discretely. Such strategy was found to be efficient in the IQH effect enabling to operate few
micron squares devices in the AB regime. Yet, no AB interference in the fractional regime have
been reported with such devices.

A B C

FIGURE 3.11: Implementation of advanced screening strategies in GaAs QH FP interferometers. Scan-
ning electron micrographs of QH FP interferometers fabricated in AlGaAs/GaAs heterostructures with de-
signs mitigating charging effects. A, Small top-gated devices operate in the CD regime despite an enhanced
bulk capacitance. Adapted from ref. [166]. B, Devices with a central grounded ohmic contact operate in
the AB regime. Adapted from ref. [149]. C, Devices with a nearby grounded ohmic contact operate in the
intermediate regime. Adapted from ref. [149].

Likewise, some other designs where the ohmic contact was placed at the edges of the FP cavity
(Fig 3.11.C), were also implemented [149]. Such designs led to FP interferometers operating in the
intermediate regime [149]. Studying these last devices, Sivan and coworkers confirmed that the
Coulomb interactions are responsible of periodic changes of the effective interferometer area [149].

In 2019, Manfra’s group in Purdue university finally found an efficient solution [167] to work in
FQH regime. Using multilayer GaAs/AlGaAs heterostructures (Fig. 3.13.A), they fabricated small
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FP interferometers in quantum wells which were encapsulated between two screening layers.
These layers were placed only a few tenths of nanometers away from the central quantum well
and were providing a significant screening of interactions in the FP interferometers. Using such
devices, Nakamura and coworkers observed, for the first time, AB oscillations in the fractional
regime [167] some of them displaying phase jumps consistent with the signatures expected for
anyonic statistics [151].

3.3.2 Interferometry in the fractional regime

Although, interferometry with fractional edge states was long limited to the study of the Coulomb-
dominated regime, it has provided several interesting informations about quasiparticles in the
FQH effect. In this section, we make a short review of experiments performed in such regime and
discuss their conclusions.

The first experiments were carried out by Camino et al. using the same device they had used
to study the integer regime [160, 161] and therefore most probably in the Coulomb-dominated
regime. Working at filling factor ν = 1

3 , they observed oscillations having a gate periodicity of
about one third of the one they measured at ν = 1. Hence, they showed that the interfering
quasiparticles had effective charges − e

3 as one would expect at ν = 1
3 [168]. Thus, they were able

to confirm the results of shot noise measurements with their interferometry experiments. Camino
et al. also investigated other configurations in the FQH regime but their other results still remain
not understood [159, 169].

A

B C D E

FIGURE 3.12: Coulomb-dominated oscillations with fractional edge channels in GaAs in QH FP interfer-
ometers. A, Evolution of the diagonal resistance RD (black line) and transverse resistance Rxy with the mag-
netic field B. Resistance oscillations appear at the edges of both integer (blue insets) and fractional (orange
insets) RD plateaus. B, C, D, E, Evolution of RD with magnetic field variation δB and plunger-gate voltage
VB displaying Coulomb-dominated oscillations respectively at constriction filling factors fc = 1, 2, 2

3 and 4
3 .

Adapted from ref. [144].

Few years after, the Weizmann [164] and Harvard groups [144] reported the observation of
Coulomb-dominated oscillations with ν = 1

3 and 2
5 , respectively ν = 1

3 , 2
3 , 4

3 and 5
3 , edge channels

interfering (see Fig. 3.12). They inferred the existence of fractionally charged quasiparticles from
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the gate-voltage periods of the oscillations. In particular, McClure and coworkers [144] demon-
strated the existence − e

3 charged quasiparticles in the ν = 1
3 , 2

3 , 4
3 and 5

3 edge channels by com-
paring the gate-voltage periods measured in both the integer and fractional regimes. Similar con-
clusions were drawn more recently by the study of Coulomb resonances in a large quantum dot
operated at filling factors ν = 1

3 and 2
3 [170].

McClure and coworkers also studied the temperature dependence of the oscillations in the two
regimes [144]. In both cases, they observed an exponential decay of the amplitude of the oscilla-
tions. The fractional oscillations were found to decay much faster with temperature highlighting
their fragility and their sensitivity to dephasing mechanisms.

The observation of AB oscillations with fractional edge channels interfering by Nakamura and
coworkers complemented the previous results but also unveiled new puzzling features.

In ref. [167], Nakamura and coworkers reported the observation of oscillations with ν =
1
3 and 2

3 edge channels interfering. In the first case, they reported a gate period consistent with
the existence of charged − e

3 quasiparticles confirming previous results performed in Coulomb-
dominated regime [167]. More surprisingly, they measured a magnetic field period ∆B = 22.2 mT
for experiments performed with ν = 1

3 interfering anomalously large compared to the one mea-
sured in the integer regime ∆B = 5.7 mT. Such difference may be partially explained assuming
that their AB oscillations had a Φ∗0 = 3Φ0 periodicity although the experiments were not per-
formed at fixed filling factor: the observation of such magnetic field superperiod can indeed be
expected in devices with screening layers [171]. Yet, even with this assumption, the period mea-
sured at ν = 1

3 remains surprisingly large compared to that measured in the integer regime.
Contrastingly, in experiments with the ν = 2

3 edge channel interfering, Nakamura et al. mea-
sured a magnetic field period of 5.5 mT nearly equal to that measured in the integer regime. They
also measured a gate-voltage period consistent with quasiparticles having a charge−e. Therefore,
it appeared that their oscillations at ν = 2

3 were arising from electron tunnelling contrary to pre-
vious measurements performed in Coulomb-dominated devices at the same filling factor. Such
discrepancy was explained by the complex edge structure of the ν = 2

3 state that can host several
edge modes depending on the edge potentials and on reconstruction effects. The signatures ob-
served were actually consistent with the edge structure predicted by A. H. MacDonald where the
edge is supposed to be composed of one −e charged mode and a counter-propagating e

3 charged
mode [125].5 The existence of several edge modes might also explain the reduction of the visibility
observed for interference at ν = 2

3 compared to that of interference at ν = 1
3 .

In ref. [151], Nakamura and coworkers performed additional interferometry experiments at
ν = 1

3 in another device and they observed discrete 2π
3 phase jumps in the AB oscillations (see

Fig. 3.13.C). These phase jumps were consistent with the signatures expected for the localization
of Laughlin quasiholes providing the first direct measurement of braiding statistics in FP interfer-
ometers. In addition to this ground-breaking finding, Nakamura and coworkers also highlighted
the possible existence of dephasing mechanisms specific to anyon physics thanks to both tempera-
ture dependence and out-of-equilibrium transport measurements. Such mechanisms may explain
the difficulty to observe interference in the fractional regime.

Finally, we mention the earlier results of Willet and coworkers who focussed mostly on per-
forming FP interferometry experiments at ν = 5

2 [174]. They managed to make interference at this
filling factor and they observed both gate-induced and magnetic-field induced oscillations. They
were attributed to interference arising from either charged− e

4 quasiparticles or charged− e
2 quasi-

particles [175, 176] and alternations between the two oscillations regimes within same device were
also reported. These results seem consistent with transport signatures expected for some ν = 5

2
non-Abelian ground states [150, 152, 154, 155]. However, they remain controversial notably due to

5Other structures involved either a − 2e
3 charged edge mode with a counter-propagating charge neutral mode [172]

or two − e
3 charged mode [173].
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absence of 2D plots demonstrating that the devices were operating in the AB regime and because
the analysis of the authors is based on study of oscillations with poorly defined periods.

A

B C

FIGURE 3.13: AB interference with fractional edge channels and evidence of anyonic statistics in QH FP
interferometers. A, Multilayer GaAs/AlGaAs heterostructures used in Manfra’s group to fabricate small
QH FP interferometers showing AB oscillations in the fractional regime. The FP interferometer is fabricated
in the central well and the two other wells are used as screening layers mitigating charging effects in the
interferometer. Adapted from ref. [167]. B, Scanning electron micrograph of one interferometer fabricated
in such heterostructure. A top gate (green) covers the sample to further reduce charging effects. Adapted
from ref. [167]. C, AB oscillations measured at ν = 1

3 in such device. Discrete − 2π
3 phase jumps (diagonal

dashed lines) appear in the oscillations. They are consistent with additions of quasiholes in the bulk of the
FP interferometer. Adapted from ref. [151].

3.3.3 Turning to another material

The previous investigations in GaAs/AlGaAs heterostructures have revealed that the QH FP in-
terferometers are powerful tools to probe the properties of the fractional edge channels. Yet, they
have also showed that the Coulomb interactions have a detrimental effect in small FP interfer-
ometers preventing the observation of anyonic statistics. Mitigating these charging effects in
GaAs/AlGaAs devices has proven to be particularly challenging and it requires the implemen-
tation of elaborated device designs or the growth of complex multilayer heterostructures. On
the other hand, the fractional QH edge channels in GaAs/AlGaAs heterostructures are subject to
edge reconstructions [163, 177–179]. It gives rise to the emergence of neutral modes [172, 173, 180–
182] which may hindered QH interferometry [182, 183] or generate additional dephasing mecha-
nisms [184].

Therefore, it seems necessary to explore QH FP interferometry in other 2DEGs that exhibit dif-
ferent configurations of electrostatics or edges. It would possibly enable to investigate the physics
of FP interfermeters in systems where charging effects have a reduced impact. It would also en-
able to confirm the universality of anyon physics in the FQH effect that is supposed to emerge in
any material.

3.4 QH FP interferometry in graphene

As we have seen in the previous chapters, monolayer graphene in Van der Waals heterostructures
is a particularly interesting material for the study of QH effect. It naturally appears as an alterna-
tive platform to fabricate and study QH FP interferometers. Indeed, as we show in the first part
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of this section, the 2DEG in encapsulated graphene devices exhibits all the necessary features to
perform QH interferometry experiments. Yet, until now, QH interferometry has remained little
addressed in graphene because the fabrication of gate-tunable QPCs has proven to be particularly
challenging. We also discuss this issue in the following and explain how one can solve it.

3.4.1 A material of interest for QH FP interferometry

Many aspects of high-mobility encapsulated graphene heterostructures make them particularly
suitable and interesting candidates for QH interferometry.

A

B

FIGURE 3.14: Fractional quantum Hall effect in graphene heterostructures. A, Signatures of ν = k
3 frac-

tional QH states in graphene on h-BN devices. Taken from ref. [12]. B, Observation of fractional QH states
with even denominator fractions in N = 2 LL in encapsulated graphene devices. Taken from ref. [185].

First, the quality of state of the art graphene devices fabricated nowadays enables to observe
a rich variety of highly-correlated QH states. All broken-symmetry states [13] were already ob-
served in graphene on h-BN devices [32] as well as many ν = k

3 fractional states [12] as illus-
trated in Fig. 3.14.A. The use of graphite back gate in these devices then allowed to observe
these fractional states, even at intermediate magnetic field (down to 5 T), as well as additional
odd-denominators fractions [76] demonstrating the robustness of FQH states in graphene Van der
Waals heterostructures. Likewise, encapsulated graphene devices were found to display several
FQH states [16] especially when they are equipped with a graphite back gate and/or graphite top
gates [93, 94, 186]. These last devices also enabled to unveil the existence of even-denominator
fractional quantum Hall states [185, 187] which can possibly host non-Abelian quasiparticles exci-
tations (Fig. 3.14.B). Hence, these encapsulated graphene devices seem particularly interesting for
anyons physics.

Furthermore, the valley degree of freedom, together with the SU(4) LL symmetry, give rise
to rich physics at fractional fillings and allow the existence of a large variety of possible FQH
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states [18, 188, 189]. Some of them are expected to have no analogous in GaAs/AlGaAs het-
erostructures [190, 191]. It might be interesting to probe their properties with FP interferometers.

On the other hand, the edge channel reconstruction may be limited in graphene heterostruc-
tures with graphite back gate. Scanning tunnelling microscopy experiments were performed by
Li and coworkers in graphene on graphite substrate [192]. They revealed an absence of QH edge
channel reconstruction that is characteristic of atomically sharp confinement. It was attributed to
the very close-proximity between the 2DEG and the metallic substrate. Therefore, one may envi-
sion to limit the fractional edge channel reconstruction in encapsulated graphene heterostructures
using a graphite back gate and a thin bottom h-BN. It would potentially enable to observe AB
oscillations with fractional edge channels more easily.

Finally, these encapsulated graphene devices also allow to study the coupling between super-
conductivity and QH effect [15, 193] or to induce non-local superconducting correlations in the
QH edge channels [194, 195]. It offers the possibility to generate Majorana zero-energy modes in
such heterostructures that are of interest for topological quantum computation [196, 197]. They
might be conveniently manipulated with QH FP interferometers.

3.4.2 The challenge of fabricating QPCs in graphene

Despite these different assets, the fabrication of QH interferometers in graphene has long suffered
from the difficulty to fabricate fully tunable QPCs. It requires to have high mobility samples where
equilibration between QH edge channels is limited.

Edge channel mixing and equilibration

In standard 2DEGs, the application of a negative voltage on a gate depletes the electron gas be-
neath by rejecting the Fermi level in the band gap. This property is used to force the edge channels
to pass in the constriction of a QPC. In contrast, in gapless graphene, the application of a negative
gate voltage generates a hole doping and the formation of pn interfaces. In the QH regime, it
leads to an accumulation of localized hole-like edge channels beneath the gate electrodes which
circulate along the gate-electrode edges in the same direction than the bulk electron edge channels
(see Fig. 3.15). The presence of these hole edge channels can lead to a short-circuiting of the QPCs
in low mobility samples.

Indeed, in such samples, there is no valley degeneracy lifting in the bulk. Thus, at the pn
junctions, the electron-like and the hole-like edge channels of the N = 0 LL hybridize and form
one single valley degenerate electron-hole interface state [198].6 Therefore, there are some current
redistribution and some charge transfers between the N = 0 electron edge channels and hole edge
channels at the pn junctions.

Hence, in a npn geometries, a part of the current injected in the N = 0 electron edge channels
at one side of the junction is transferred into the edge channels at the other side of the junction
via the localized N = 0 hole edge channels of the p region. Consequently, one cannot pinch
completely the N = 0 LL edge channels with a QPC or control completely their transmissions.

This mode mixing is actually not limited to the N = 0 LL in disordered samples. Indeed,
in early investigations of the QH transport across top-gated [199–202] or split-gated [203], unex-
pected quantized resistance plateaus were observed in the bipolar regime. Abanin and Levitov
demonstrated theoretically that these plateaus were arising from a complete mode mixing at the
pn junctions [204]. It leads to equilibration of the chemical potentials of the QH edge channels and
thus to some current redistributions at the pn interfaces which forbid to operate a split gate as a
full-fledged QPC.

6Note that although the valley degeneracy is lifted at a physical edge, it is preserved at the pn junctions (provided
it is smooth on the scale of the lattice constant)
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FIGURE 3.15: Mode mixing at a disordered graphene npn junction. The spin degenerate electron-like
(blue lines) and hole-like (red lines) edge channels propagate along the same direction at the pn interfaces.
The valley degeneracy, which is lifted along physical edges, is restored at the pn junctions. In the zeroth LL,
electron and hole edge channels hybridize and form a single valley degenerate mode (violet line). Other
edge channels also mix such that equilibration and charge transfers occur between the electron and the hole
edge channels (black arrows).

Theoretical investigations were conducted to understand in more details how such mode mix-
ing arises [205–208]. They showed that the latter is enhanced by disorder and by the dephasing
occurring when charges are scattered between edge states. It explains why a complete mode mix-
ing was observed in the first devices on silicon oxide: there was a high level of disorder in these
devices.

Limited equilibration in high mobility samples

Fortunately, in higher quality devices with lower amounts of disorder, mode mixing and equili-
bration are reduced. It was first evidenced by Amet and coworkers who studied QH transport
in graphene on h-BN samples having suspended top gates [209]. Taking advantage of the quality
of their devices, they manage to study them in the regime of full degeneracy lifting and they ob-
served that the equilibration processes were limited to the broken symmetry states with the same
spin polarization. They also reported, that at high magnetic fields, equilibration was strongly
suppressed supposedly due to the formation of an insulating ν = 0 stripe at the pn interface sep-
arating electron and hole edge channels. The existence of such insulating stripe was confirmed
soon after by Morikawa and coworkers in encapsulated graphene devices [210]. It was used to
make a coherent AB interferometers.

Following a similar approach, our group studied the QH edge channel transport across high
mobility encapsulated graphene samples equipped with split gates [16, 211]. Equilibration at pn
interfaces was found to be spin-selective, limited to the N = 0 LL in the bipolar regime and
reduced at higher magnetic fields. Furthermore, our group demonstrated that split gates could
be used in h-BN/graphene/h-BN graphene heterostructures to make fully gate-tunable QPCs
operating with both the IQH and FQH channels without equilibration [16, 211]. This work opened
the path towards the fabrication of elaborated QH interferometers.7

3.4.3 Current status of QH interferometry in graphene

Up to now, the QH interferometry in graphene has remained very little investigated hindered by
the difficulties in fabricating QPCs.

7A graphene QPC can also be operated in a unipolar regime where the filling factor below the gate electrodes is
lower than that of the bulk. In such configuration, some of the outer electron edge channels can cross the gated region
while the inner ones are forced to pass in the QPC constriction.
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A B

FIGURE 3.16: Graphene Mach-Zehnder QH interferometer using pn junction. A, Schematic of a Mach-
Zehnder interferometer fabricated in encapsulated graphene heterostructure using a pn junction and the
selective equilibration in the N = 0 LL. The different spin states are indicated by different colors of edge
states (green or violet). In ultraclean pn junctions, intervalley scattering and equilibration (dashed line)
only occur at points where the pn junction meets the edges of graphene flake. These points act as two
beamsplitters defining an effective Mach-Zehnder interferometer. B, Transconductance oscillations mea-
sured in a graphene Mach-Zehnder interferometer as a function of filling factors νB and νT of the n and p
regions at 9 T. Adapted from ref. [212].

Following the pioneer work of Morikawa and coworkers [210], most of the experiments fo-
cussed on the use of pn junctions in encapsulated graphene heterostructures. Wei and coworkers
confirmed that, in ultraclean pn junctions, equilibration was indeed limited to edge channels in
the N = 0 LL having the same spin. They also demonstrated, that in such samples, the charge
transfers were only occurring at the points where the pn junctions meet the physical edges of
graphene. They used this property to realize Mach-Zehnder interferometers formed by the copra-
pagating electron and hole edge channels of the zeroth LL (see Fig. 3.16).

Similar results were recovered shortly after by P. Makk and coworkers. Yet, they also demon-
strated that the coherent AB oscillations in these devices are likely to coexist with other inco-
herent magnetoconductance oscillations complicating the interpretation of transport measure-
ments [213]. More elaborated and gate-tunable versions of such Mach-Zehnder interferometers
were implemented recently by P. Brasseur and coworkers to investigate the physics of magnons
in the integer QH regime [214, 215].

At the same time, only one group reported the fabrication of a graphene QH FP interfer-
ometer [216]. The device, that is shown in Fig. 3.17.A, was made from disordered CVD grown
graphene transferred on silicon oxide substrate and etched to define split gates (the device does
not have plunger gate). Zhang et al. observed a few Coulomb-dominated oscillations in their
device (Fig. 3.17.B and Fig. 3.17.C). The data they presented clearly suffer from the low mobility
of the sample and the absence of degeneracy lifting. This work is only a very first step towards
the study of QH FP interferometers in graphene samples and one needs to make higher quality
samples to perform such experiments.

Using the expertise of our group in the fabrication of gate-tunable QPC in encapsulated graphene
devices, we succeed to fabricate and study some high mobility QH FP graphene interferometers.
In the next chapters, we present the results of our investigations of QH transport in such devices.
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A B C

FIGURE 3.17: QH FP interferometer in CVD graphene. A, AFM image of a QH FP interferometer made out
of CVD graphene flake which was selectively etched. B, Diagonal resistance variations ∆RD as a function
of magnetic field B revealing oscillations arising from quantum interference with QH edge channels. Inset:
Fourier transform of oscillations. C, Evolution of the resistance of the device with B and the voltage VL1&L2
applied on the QPC showing that the device operates in the Coulomb-dominated regime. Adapted from
ref. [216].
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Following the fabrication process described in Appendix 12, we fabricated several high mobil-
ity graphene devices equipped with split gates in series. These devices were aimed at performing
QH FP interferometry experiments. In this chapter, we present how we preliminarily characterize
such split-gated devices before operating them as QH FP interferometers. In particular, we detail
the transport measurements performed both at zero and high magnetic fields that allow to show
that the split gates indeed act as QPCs. We also present in this chapter the experimental set-up.
Most of the results presented in thesis were obtained on a sample, BNGr74, that showed good
performances in the IQH effect. Therefore, we focus here only on this sample.

4.1 Presentation of BNGr74 sample and of the experimental set-up

We begin by the presentations of BNGr74 sample, of the experimental set-up and of the measure-
ment procedures.

The Van der Waals heterostructure

Fig 4.1 presents optical images of the graphene heterostructure used to fabricate BNGr74 device.
It is composed of a h-BN/graphene/h-BN stack deposited on top of a thin graphite flake used as
a back gate.
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A B

10 µm 5 µm

Top h-BN

Bottom h-BN

Graphite

Graphene

FIGURE 4.1: BNGr74 Van der Waals heterostructures. Optical images, A, of the full graphite/h-
BN/graphene/h-BN heterostructure with a zoom, B, on the part where the graphene flake is located. In B,
the substrate is covered with PMMA to enhance the visibility of the graphene flake.

The respective flake thicknesses are summarized in Table 4.1. Fig 4.1.B presents an alternative
image of the stack which was covered with PMMA resist enhancing the visibility of the graphene.
Its position is marked by the red line. A part of the graphene is going outside the graphite back
gate and thus the device was fabricated only on the part lying above the graphite flake.

Sample Top h-BN Bottom h-BN Graphite
thickness (nm) thickness (nm) thickness (nm)

BNGr74 22 18 4

TABLE 4.1: Thicknesses of the flakes used. The thicknesses of the h-BN and graphite layers are measured
by atomic force microscopy.

A multiple QH FP interferometer device

From this heterostructure, we fabricated a device displayed in Fig 4.2 and schematized in Fig. 4.3.
It is composed of two sets of three ohmic contacts which are separated by three split gates in series
used as QPCs. We respectively labelled them QPC1,2,3 from the left to the right (see Fig. 4.2).
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FIGURE 4.2: BNGr74 multiple QH FP interferometer. Optical image of the multiple QH FP interferometer
fabricated from the BNGr74 stack. 1D Cr/Au ohmic contacts appear in yellow and Pd gate electrodes
deposited on top of the capping h-BN appear in light grey. The graphite flake is contacted both by a 1D
contact and by a 2D surface contact made on a purposely uncovered part.
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To be able to operate the split gates as QPC, one should be careful about the design of the gate
electrodes and especially the size of the gap separating them. Indeed, the larger is the gap between
the split-gate electrodes the higher is the voltage required to pinch the QPC. Hence, QPCs with
very large gap may be impossible to close with reasonable voltages. On the other hand, QPCs with
very narrow gaps may have poorly define saddle point potential and thus may be very delicate to
tune.

In samples with graphite back gate, the split gates and the back gate are typically at the same
distances from the graphene plane. The gates and the graphene are separated by h-BN in the two
cases. Hence, the existence of a saddle point potential depends on the ability of the back gate to
screen the electric field generated by the split-gates electrodes. In this sample, the graphite back
gate is only 18 nm away from the graphene imposing stringent conditions for the design of the
split-gate electrodes.

Suitable sizes for the QPCs gaps can be determined by making self-consistent electrostatic nu-
merical simulations. In ref. [217] (Supplementary Information section 1), our group showed that
one can compute the spatial evolution of the electrostatic potential V(x, y) and of the charge den-
sity σ(x, y) in graphene split-gated devices with given geometries. These calculations, repeated
for different split-gate Vsg/back-gate Vbg voltages, can be used to extract the local capacitance
Csg(x, y) to the split gates that is given by σ(x, y) = −Cbg(Vbg − V(x, y)) − Csg(Vsg − V(x, y))
where Cbg is the geometric capacitance to the back gate.1 It allows to extract the capacitance in the
QPC constriction and to study its evolution with the gap width.

Contacts

Plunger gate

Top h-BN

Bottom h-BN

Graphite 
back gate

Graphene

QPC2 

QPC1 

QPC3 

FIGURE 4.3: Schematic of BNGr74 heterostructure and of the multiple QH FP interferometer device.

Hermann Sellier, a member of QuNES team, carried out such simulations for different QPC
gap widths in geometries close to that of our sample. He found, that to obtain a split-gate over
QPC capacitances ratio of about 2, which is suitable in practise, the gap should be about few
tenths of nanometers (typically between 20 and 60 nm). This is more restrictive and more difficult
to realize than fabricating QPCs in devices with silicon oxide back gate. Indeed, in the these last
devices, split-gate gaps of about 150 nm allow to operate the QPCs [16, 217–219].

Scanning electron micrograph of the three QPCs are presented in Fig. 4.4. There is a 20 nm gap
between the electrodes defining QPC2 and QPC3 whereas the two electrodes forming in QPC1 are
unintentionally connected. This short-circuit does not hinder the QPC operation as demonstrated
in section 4.4.

1Further explanations are provided in chapter 5 where similar simulations were used to study the plunger gate
electrostatics.
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QPC1 QPC2 QPC3

A B C

100 nm100 nm100 nm

FIGURE 4.4: QPCs of BNGr74 device. SEM images of the three QPCs of BNGr74 devices. Split-gates
electrodes forming QPC1 are connected while the gaps between QPC2 and QPC3 electrodes are respectively
of 21 and 20 nm.

The three QPCs define three FP interferometers with different sizes which can be operated by
partially closing two of the three QPCs. We name small, medium and large interferometer, the FP
cavities defined by respectively closing QPC2/QPC3, QPC1/QPC2 and QPC1/QPC3 whose geo-
metric characteristics are summarized in Table 4.2. In this device, one can also study the coupling
between two QH FP cavities in series using the three QPCs simultaneously. In this configuration,
we say that the device operates as a double QH FP interferometer.

QH FP QPCs used Ageo L
interferometer (µm2) (µm)

Small QPC2/QPC3 3.1± 0.4 4.3± 0.5
Medium QPC1/QPC2 10.7± 1.2 7.2± 0.5

Large QPC1/QPC3 14.7± 1.8 9.0± 0.5
Double QPC1/QPC2/QPC3 13.8± 1.6 11.5± 0.9

TABLE 4.2: Characteristics of the different QH FP interferometers in BNGr74 sample. The QPCs used
in each interferometers are reported. Geometrical areas Ageo and average interfering path length L (i.e
half of the FP cavity’s perimeter 2L) are estimated from the lithographic design and optical images. The
uncertainties on the values of Ageo and L reflect the uncertainty δx ' ±150 nm we have on the exact
position of the graphene’s edges on the optical images.

Inside each FP cavity, additional gate electrodes are placed above the pristine edges of graphene
to define the plunger gates used to shift the edge channel trajectory and modulate the surface en-
closed by the interfering one (see Fig. 4.5).

Experimental set-up and measurement procedure

All transport measurements were performed in a dilution fridge (Fig. 4.6.A) reaching a base tem-
perature of 10 mK equipped with a superconducting solenoid (Fig. 4.6.B) enabling to generate a
maximum perpendicular magnetic field of 16 T. The dilution fridge used was highly filtered. Its
wiring is shown in Fig. 4.7. It was designed such that the thermal noise in the wires remains lower
than the noise level of our voltage amplifiers (0.7 nV/

√
Hz). The wiring also enables to filter the

thermal radiations between the different cooling stages.
To study the transport in this sample, we used a low-frequency ac-voltage excitation, ranging

typically from 5 µV for interferometry experiments to 50 µV for the characterization. We measured



4.1. Presentation of BNGr74 sample and of the experimental set-up 79

the current I flowing in the sample as well as the diagonal VD, longitudinal Vxx and Hall Vxy
voltage drops according to the contact configuration displayed in Fig. 4.5 using standard lock-in
measurements. For simplicity, we do not distinguish longitudinal resistances Rxx calculated from
Vxx or Vxx2 as they are equivalent especially in the QH regime.

The voltage and current signals were amplified using room-temperature amplifiers placed in a
home-made box (Fig. 4.6.C and Fig. 4.6.D) thermoregulated with a chiller at 25± 0.1◦ C. It allows
to get rid of thermal offsets in the input voltages. The QPCs and the back gate were polarized
using high-stability voltage sources whereas plunger gates were polarized using a DAC with 21
bits resolution. The set-up was used to study all the graphene QH FP interferometers presented
in the manuscript.
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FIGURE 4.5: SEM image of the multiple QH FP interferometer and contact configuration. False-coloured
electron micrograph of BNGr74 device. The contacts, the QPCs and the plunger gates are respectively
coloured in yellow, orange and red. The edges of the graphene flakes are represented by white dashed
line and the trajectory of an interfering electron edge channel is represented in blue. The different gate
voltages applied during interferometry experiments are noted in black. The sample is measured in voltage
polarization by application of a 5 µV ac-voltage excitation on top of which a dc-voltage bias can be added.
The current is measured at the drain contact with a current amplifier. The position of the voltage probes
used to measure the diagonal RD = VD/I, longitudinal Rxx = Vxx/I or Rxx = Vxx2/I and Hall resistances
Rxy = Vxx/I are labelled with four distinct colors.
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A B C
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FIGURE 4.6: Measurement set-up. A, Dilution fridge. B, Superconducting solenoid C, 3D design of the
metallic structure of the home-made thermoregulated box. The metallic structure is cooled via cooper pipes
which are filled of water thermalized by a chiller. Design by Florent Blondelle. D, Image of the home-made
thermoregulated box. The amplifiers are placed inside the box during the interferometry experiments to get
ride of thermal offset drifts. The metallic structure is fully surrounded by thick polystyrene slabs allowing
to isolate the thermoregulated part of the box. E, F, Photos of the set-up during transport measurements.
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FIGURE 4.7: Dilution fridge wiring and filtering. Before entering in the cryostat all signals are filtered
using LC π-filters that reject the radiofrequency noise. There is 25 lines in the fridge. One is used to apply
a voltage on the silicon back gate. The 24 others can be used either for measurements or to apply voltages
on the gates of the samples. Up to the 4 K stage, the wires are made of highly conductive copper-beryllium
alloy to limit thermal noise. Between the 4 K and 10 mK, the wires are made of stainless steel that are
graphitized to reduce electric noise coming from friction. They also limit thermal conduction between 4 K
and 10 mK stages. Before going to the samples, the twisted pairs pass in a RF copper powder filter. It filters
thermal radiations coming from sources at higher temperatures. The lowest part of the dilution fridge is
made of oxygen-free high thermal conductivity copper to ensure a good thermalization of the sample. For
the same reason, the last wires connecting the sample to the lines are made of silver. The signal is further
filtered on the sample holder thanks to capacitors connected to the ground.
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4.2 Device characterization at zero magnetic field

We begin with the characterization of the transport properties at zero magnetic field.

4.2.1 Field effect characteristic

Fig 4.8 displays the evolution of Rxx in the device with back-gate voltage Vbg. Rxx exhibits two
resistance peaks reaching a few tenths of kilo-Ohms : a main peak at Vbg = −70 mV and a second
one at Vbg = 30 mV. It contrasts with the usual transport characteristics observed in standard Hall-
bar graphene devices (for example Fig 2.6 of Chapter 2) where a single peak at CNP is observed.
The second Dirac point actually reflects the existence of a graphene region where the doping is
different from that of the rest of the sample.
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FIGURE 4.8: Zero magnetic field transport characterisation. Evolution of the longitudinal resistance of
the device Rxx with the back-gate voltage Vbg at 4 K. The sample displays two resistance peaks around
Vbg = −70 mV and Vbg = 30 mV in contrast with standard transport characteristics in graphene. All the
top gates are floating. Inset: Zoom on the low resistance part of the plot.

From this measurement, we can have a first indication of the quality of the sample. At large
electron doping for Vbg = 1 V, Rxx drops to 170 Ω leading to a sheet resistance R� = 42.5 Ω
(assuming there are four squares between the voltage probes). This relatively low value is a hint
of the good quality of the sample.

4.2.2 Characterization of the split gates

The origin of the doping inhomogeneities clearly appears by studying the transport through the
split gates at B = 0 T. Fig 4.9 displays color-coded maps of the evolution of Rxx with both Vbg and
VQPC the voltage applied on one given split gate while the others are kept floating.
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FIGURE 4.9: Split-gate characterization at zero magnetic field. A, B, C, Evolution of the longitudinal
resistance of the device Rxx with the back-gate voltage Vbg and the split-gate voltage VQPC1,2,3 at 4 K. The
horizontal lines at Vbg = −40 mV (red arrows) correspond to the CNP in the bulk graphene, whereas the
diagonal lines (blue arrows) correspond to the CNP in the graphene beneath the active split gate. They
intersect at (VQPC, Vbg) ' (0.38 V,−0.04 V) as a result of the local hole doping induced by the palladium
electrodes. The second horizontal lines (orange arrows), appearing at Vbg = 0.18, 0.12, 0.18 V, evidence the
existence of a local doping beneath non-active split gates resulting in a shift of the CNP.

All the maps display four quadrants separated by two horizontal lines and a diagonal line.
The most resistive horizontal line (red arrow), which appears at Vbg = −40 mV in all the three
maps, corresponds to the CNP of the graphene bulk. The diagonal line (blue arrow) corresponds
to the CNP in the graphene region beneath the active split gate in agreement with previous studies
of graphene devices equipped with a single top gate (see ref. [16, 217, 218, 220, 221] for example).
They intersect respectively at positive split-gate voltage values (see Table 4.3) reflecting the local
doping induced by the split-gate electrodes. It arises from the difference between the work func-
tions of palladium and graphene [222]. The slopes of the diagonal lines provide the ratios Csg/Cbg
of the capacitances between the active split gate and the back gate which are reported in Table 4.3.

QPC Position of CNP beneath the QPC Capacitance ratio
(VQPC, Vbg) Csg/Cbg

QPC1 (0.38 V,−0.04 V) 0.83
QPC2 (0.4 V,−0.04 V) 0.86
QPC3 (0.36 V,−0.04 V) 0.86

TABLE 4.3: QPC characteristics at zero field

The second horizontal line (orange arrow), already highlighted in Fig. 4.9, is usually not ob-
served in devices with a single top gate. It results from the contribution of the graphene regions
located beneath the two floating palladium split gates. Even though they are not active, they shift
locally the position of the Dirac point resulting in the second horizontal resistance line. Its posi-
tion varies between Vbg = 0.12 V and 0.18 V in the three maps reflecting a sensitivity to the past
charging states of the floating gate electrodes and the intrinsic differences between the gates.
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FIGURE 4.10: Fabry-Pérot interference beneath the split gates at zero field. Evolution of the derivative
of longitudinal resistance dRxx/dVQPC with the back-gate voltage Vbg and the split-gate voltage VQPC. At
fixed Vbg, oscillations in dRxx/dVQPC with VQPC clearly appear. They disperse with Vbg and Vtg. It shows
the existence of FP oscillations characteristic of ballistic transport in the region beneath the active split gate.
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FIGURE 4.11: Fabry-Pérot interference beneath QPC1. Zoom on Fig. 4.10.A map.

Fig. 4.10 displays color-coded maps of the derivative of the longitudinal resistance with respect
to the split-gate voltage dRxx/dVQPC for the three QPCs. The three maps, are almost identical and
exhibit the same typical features in the bipolar regimes (see also Fig. 4.11).

They highlight the existence of pseudo-periodic resistance oscillations appearing in the bipolar
regimes at fixed Vbg. These oscillations disperse both with VQPC and Vbg and are usually referred
as FP oscillations. They arise from quantum interference between ballistic electron trajectories in
the top-gated regions. The observation of well-defined FP oscillations in each maps demonstrates
that the transport beneath the three split gates, which are about 300 nm wide, is ballistic [202, 217,
220, 223–226].
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4.3 Transport characterization in the quantum Hall regime

We now focus on the magneto-transport characteristics of the device and especially the transport
in the QH regime.

4.3.1 Bulk Landau fan diagram

Fig. 4.12 presents the evolution of Rxx and 1/Rxy in the device in the form of a Landau fan dia-
gram measured at 20 mK. During the measurement, a VQPC = 0.3 V voltage was applied on each
QPCs to compensate most of the hole doping induced by the palladium electrodes and ensure
a quasi isodensity in the graphene flake. The sample displays typical QH features starting from
0.5 T with the robust graphene QH states corresponding to filling factors ν = 2 e2

h (2N + 1) firstly
appearing followed by the formation of broken symmetry-states at higher magnetic fields. The
latter is marked by the apparition of additional minima in Rxx. The full degeneracy lifting occurs
above 5 T and 3 T respectively for electron-type and hole-type broken symmetry states and a very
strong insulating phase develops at CNP even at low magnetic field. In the zeroth Landau level,
the ν = ±1 broken symmetry states develops above 4 T.
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FIGURE 4.12: Landau fan diagram. A, Evolution of Rxx and, and B, 1/Rxy with B and V showing clear
QH features in the device. QH signatures appear starting from 0.5 T and broken-symmetry states develop
above 2 T with a full degeneracy lifting above 5 T. In A, some of the electron integer QH states developing
with the magnetic field are labelled. Measurements performed at 20 mK with 5 µV ac-voltage excitation.

It is worth noticing that, despite the full degeneracy lifting, the Hall conductance is not well
quantized or does not display clear plateaus in |N| > 1 LLs. It is especially visible for broken-
symmetry states as shown in Fig. 4.13. It results from the existence of a residual backscattering
in the sample which may arise from the incomplete compensation of the doping induced by the
QPC electrodes. The quantization of Rxy for the broken symmetry states is better on the electron
side than on the hole side, especially for ν = ±1 states thus we decided to focus only on the first
for interferometry experiments.
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FIGURE 4.13: Quantized Hall conductance. Linecuts of the fan diagram displayed in Fig. 4.12.B. Features
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graphene QH effect (black dashed lines). Signatures of ν = 1 broken-symmetry state appear starting from
4 T while plateaus corresponding to other broken-symmetry states develop at higher fields. Quantization
in N = 1 LL is imperfect even at high magnetic fields because of the existence of a residual backscattering.

4.3.2 Estimation of back-gate capacitance and mobility

The Hall measurements performed at B = ±0.1 T allow to estimate the charge carrier density
n and the mobility µ in the device which are displayed in Fig. 4.14. In Fig. 4.14.A, we note that
n displays a non-linear dependence to Vbg. It may arise from the incomplete compensation of
the doping induced by the palladium electrodes (VQPC = 0.3 V for the measurement whereas
VCNP

QPC = 0.38 V). From this measurement, we can obtain an estimation of the back-gate capacitance
Cbg which ranges between 1.46 and 2.0 mF/m2. It gives a h-BN dielectric constant ranging from
3.0 and 4.1 consistent with previous measurements [227]. In Fig. 4.14.B, we see that µ reaches
130 000 cm2.V−1.s−1 at a carrier density of n = 1012 cm−2 density.

In a Landau fan diagram, the dispersion of the Rxx minima provides another way to evaluate
Cbg. Assuming that the latter does not depend on B and Vbg and remembering that ν = nΦ0

B and

n =
Cbg

e (Vbg −VCNP
bg ), we can write the relation:

νBe
Φ0

= Cbg(Vν
bg −VCNP

bg ), (4.1)

which gives the back-gate voltage Vν
bg to apply to reach filling factor ν at given field. This re-

lation can be used with ν = 2, 6, 10 states to estimate Cbg based on the positions of Rxx min-
ima/cancellations in the fan diagram as they mark when the corresponding integer filling factors
are reached.

We performed this analysis for similar measurements performed at 4 K. Fig. 4.15.A displays
the positions of the Rxx minima/cancellation for filling factors ν = 2, 6, 10. For a given QH state,
Rxx minima occur at Vν

bg values which scales linearly with B in agreement with eq. (4.1). The data

are rearranged in Fig. 4.15.B where the evolution of νBe
Φ0

versus (Vν
bg −VCNP

bg ) is plotted.
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We see that all the data points almost collapse on a single line consistent with eq. (4.1). Linear
fits for each QH state enable to estimate an average value of the back-gate capacitance Cbg =

1.45 mF/m2 in agreement with the lower bound obtained with previous method. We note that for
ν = 6 and 10 states the linear fit do not pass by the origin at B = 0 T but rather at (Vν

bg −VCNP
bg ) =

0.06 and 0.08 V quantitatively consistent with the small mismatch between the doping in the bulk
and below the gate electrodes. Comparatively, the fit for ν = 2 pass by the origin and leads
to a slightly large value of Cbg. The differences observed simply reflect the fact that the ν = 2
appears at a lower density and closer to the CNP. It is thus more sensitive to the incomplete
doping compensation. For latter analysis, we keep this last value of back-gate capacitance Cbg =

1.45 mF/m2 obtained as it is directly estimated from the QH physics.
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4.4 QPC characterization at 14 T

We conclude this chapter by presenting the characterization of the transport through the three
QPCs at 14 T. For this purpose, we measured for each QPCs the evolution of the diagonal conduc-
tance GD = I/VD in the device with respect to both Vbg and VQPC. During these measurements
the non active split-gate were kept floating.

4.4.1 Evidence that the split gates operate as QPCs

Fig. 4.16 displays the evolution of GD with VQPC and Vbg at 14 T in form of color-coded maps on top
of which two series of lines are reported. Horizontal lines indicate the back-gate voltages where
integer bulk filling factors νb are reached, while diagonal lines indicate points in the VQPC − Vbg
plane where integer filling factors νsg are reached beneath the active split gate. These two sets of
lines were plotted using the positions of CNP below each split-gates extracted from Fig. 4.9, the
capacitance ratios Csg/Cbg of Table 4.3 and the back-capacitance Cbg estimated from the positions
of QH plateaus.
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FIGURE 4.16: QPC conductance maps at 14 T. A, B, C, Diagonal conductance GD versus split-gate voltages,
VQPC, and back-gate voltages, Vbg, for the three QPCs of the device. During a measurement, only one QPC
is studied and the two other split gates are kept floating. Lines corresponding to integer bulk filling factors
νb and integer filling factors beneath the split gate νsg are reported. The slope of the diagonal stripes
corresponds to the capacitance ratio between the QPC constriction and the back gate. This slope is 2.7 and
2.4 times smaller than the zero-field slope for QPC2 and QPC3. It is 1.4 smaller for QPC1 because of the
absence of gap between the two split-gates electrodes.

The three maps display all the characteristic features of graphene QPCs operating in the QH
regime [16, 211]. In particular, they show diagonal stripes of nearly constant and quantized GD
appearing at VQPC 6 0 V. They have smaller slopes than that of the constant νsg lines. It high-
lights the existence of smaller capacitive couplings in the constrictions. These couplings can be
characterized by capacitance ratios CQPC/Cbg (see Table 4.4) which are indeed lower than the ones
measured at zero field. Hence, the diagonal stripes identified the gate voltages where it exits
a saddle point potential that is characteristic of split gates operating as QPCs [129]. It is worth
noticing that such saddle point potential exists even in the QPC1 despite the short-circuit between
split-gate electrodes.
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QPC CQPC/Cbg

QPC1 0.58
QPC2 0.31
QPC3 0.36

TABLE 4.4: QPC characteristics at 14 T

In the gate-voltages ranges where GD shows diagonal stripes, we can readily interpret the
value of GD as a measure of the edge channel transmission. Indeed, according to Büttiker, in the
QH regime [29]:

GD =
e2

h
NQPC, (4.2)

where NQPC is number of bulk edge channels transmitted through the QPC constriction. Hence,
we see that the latter can be controlled by changing the gate voltages. In particular, one can induce
the successive reflections of each bulk QH edge channel by decreasing VQPC at fixed Vbg.
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FIGURE 4.17: QPC transmission curves at 14 T. Evolution of the diagonal conductance GD as a function of
split-gate voltages VQPC at fixed back-gate voltage Vbg of 0.54 V in A, and 0.88 V in B. During each measure-
ment, only one QPC is active and the two others are either floating or grounded. Quantized conductance
plateaus appear after each reflection of a QH edge channel by the active QPC.

Some examples of individual QPC transmission plots obtained at fixed Vbg = 0.54 V and
0.88 V (bulk filling factors of νb ' 1.6 and 2.5) are displayed in Fig. 4.17. In Fig. 4.17.A, we
see that, for each QPC, GD displays a e2

h plateau for VQPC > 0 and drops continuously down
to zero when VQPC is lowered below a certain threshold. It shows that, we are able to tune the
transmission of the ν = 1 edge channel in each QPC by adjusting the corresponding gate voltage.
It allows to set interferometry experiments with this edge channel in all FP cavities. Similarly,
in Fig. 4.17.B, GD = 2e2

h , e2

h and GD ' 0 plateaus appear when VQPC is lowered evidencing the
successive reflections of the two edge channels of the zeroth Landau level in each QPC.

4.4.2 Effect of non-active split gates

A more detailed analysis a GD map and its comparison with the Hall conductance map 1/Rxy
enable to unveil the effect of the floating gate electrodes in the QH regime. In Fig. 4.18.A, when
VQPC & 0 V, the diagonal quantized GD stripes become horizontal bands. They mark the voltage
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ranges where the active QPC is not inducing any backscattering and thus they should coincide
with bulk QH plateaus. This is not what we observe we observe in Fig. 4.18.A and Fig. 4.18.B. The
horizontal GD stripes instead appear to be shifted towards higher bulk filling factors.
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FIGURE 4.18: QPC3 map compared to the Hall conductance map at 14 T. A, Diagonal conductance GD
versus split-gate voltage, VQPC, and back-gate voltage, Vbg, for QPC3. B, Inverse of the transverse Hall
resistance 1/Rxy versus VQPC and Vbg. The vertical dashed white line indicates the split-gate voltage that
compensates the hole doping induced by the split-gate electrodes (isodensity in the bulk and beneath the
active split gate) determined from Fig. 4.9. The diagonal lines delineate the diagonal bands of constant GD
in the QPC map that are conductance plateaus given by the number of transmitted edge channels through
the QPC. For a single QPC, these lines should become horizontal when they intersect the isodensity line
and they should delimit the bulk QH plateaus. The shift between the actual position of the horizontal GD
stripes and their expected positions (given by the plain white lines) reflects the existence of a backscattering
induced by the hole-doping below non active split-gates.

This shift can also be evidenced by a simple geometric construction. For a single QPC, the
crossover between the diagonal and horizontal bands should occur at split-gate voltages corre-
sponding to the isodensity condition [16, 211], i.e at VQPC3 = 0.36 V here (white horizontal dotted
line). So, by following the transitions between diagonal GD bands, we can plot the expected po-
sitions for the horizontal GD stripes, represented by white plain lines in Fig. 4.18.A. They indeed
coincide with the bulk QH plateaus or integer filling factors as we can see in Fig. 4.18.B.

This construction shows that the shift in the position of horizontal GD bands is a consequence
of having multiple QPCs in series. It can be expected because GD is measured across the whole
device. Hence, its value is also affected by the transmission of non-active split gates and gives
the number of edge channels transmitted through the whole device rather than only through the
active QPC.

From zero field characterization in section 4.9, we know that the graphene is hole-doped below
the non-active QPCs. It induces a backscattering of the innermost QH edge channel at integer νb
and it consequently results in a lowering of GD value. This backscattering can be suppressed with
a sufficient increase of the whole graphene doping. This is consistent with the upward shift of the
horizontal bands what we observed experimentally. We can then assess that this shift originates
from the hole-doping below the non active split-gates.
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4.4.3 Consequences for interferometry experiments

Considering the above analysis, one must be careful while setting an interferometry experiment
because the non-active split gates can generate undesirable backscattering for the interfering edge
channel. To prevent it, one must either compensate the induce hole-doping by application of a
suitable split-gate voltage or work at high enough back-gate voltages.

For all interferometry experiments presented in the next chapters, we worked at back-gate
voltage where the QPC transmission plots show well-quantized plateaus despite the contribution
of the two non-active split gates. More particularly, for the experiments performed at 14 T, we
used back-gate voltages close to Vbg = 0.54 V and 0.88 V where the transmission plots displayed
in Fig. 4.17 were measured. In both cases, we measured 1/Rxy = 2e2

h indicating that two edge
channels were propagating in the bulk. At Vbg = 0.54 V the inner edge channel was fully back-
reflected by the non active QPC while at Vbg = 0.88 V it was fully transmitted. In each case, the
non-active QPC did not have influence on the AB interference measured by partially closing the
two other QPCs.
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In this chapter, we demonstrate that high mobility graphene devices equipped with QPCs
in series can be operated as QH FP interferometers in the integer regime. We present typical
interferometry experiments evidencing the existence of quantum interference. We further show
that graphene QH FP interferometers operate in the AB regime even when they have few micron
squares areas. We then investigate the robustness of the quantum interference through the study
of bias-induced oscillations and of the temperature dependence of AB oscillations.

All the measurements presented in this chapter were obtained on BNGr74 sample, presented
in previous chapter, except the results discussed in section 5.1.4.

5.1 Aharonov-Bohm interference in graphene QH FP interferometers

In this section, we demonstrate the existence of AB interference in graphene split-gated devices
and discuss the absence of Coulomb-dominated oscillations even in the small size devices.

5.1.1 Gate-induced oscillations

We first focus on experiments where quantum interference are unveiled by sweeping the plunger-
gate voltage at fixed magnetic field. We show typical results obtained in the three interferometers.
We then discuss the electrostatics of the plunger gate and show that it gives first indications of the
origin of the oscillations.
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High visibility plunger-gate-induced oscillations

We begin by presenting a typical experiment performed at 14 T in the small FP interferometer of
BNGr74 sample. The back-gate voltage was set to 0.533 V corresponding to a bulk filling factor
νb = 1.5 and the transmissions of the outer edge channel through the QPC2 and QPC3 were
respectively set to 60 % and 47 %. Fig. 5.1 displays the evolution the diagonal resistance RD with
the voltage Vpg2 applied on one of the two plunger gate between the two QPCs (see Fig. 4.5).

In Fig. 5.1.C, we see that a continuous decrease of Vpg2 induces clear resistance oscillations.
These oscillations appear starting from Vpg2 ' −0.3 V and persist over the full range of voltage
spanned down to Vpg2 = −4 V. They evidence the existence of quantum interference in the device
whose origin remains to determine. Thus, we see that the device indeed operates as a QH FP
interferometer. The observation of more than 280 oscillations in Fig. 5.1.C shows that the inter-
ferometer is very stable and widely tunable with the plunger gate. The oscillations have a large
amplitude of several tenths of kiloOhms evidencing the high level of coherence in the device. It
can also be assessed from the visibility V of the oscillations given by:

V =
Rmax

D − Rmin
D

Rmax
D + Rmin

D
, (5.1)

where Rmax
D are respectively the resistance minimum and maximum value. V is larger than 40 %

in this experiment demonstrating that the quantum transport is highly coherent in this device.
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FIGURE 5.1: High visibility gate-tunable quantum interference in the small FP interferometer. A, B, C,
Diagonal resistance oscillations observed with change of plunger-gate voltage Vpg2 for an interferometry
experiment performed in the small FP interferometer at 15 mK and 14 T. The back-gate voltage is set to
Vbg = 0.533 V corresponding to a bulk filling factor νb = 1.5 and the QPCs partially reflect the outer edge
channel. In A and B, resistance oscillations observed over small Vpg2 ranges. In C, oscillations over the full
range of voltage spanned. Inset: Schematic of the gates configuration. Active QPCs and plunger gates are
respectively represented in red and orange.

Such large resistance oscillations persisting all along a large range of plunger-gate voltage
can also be observed in the medium and large FP interferometers as displayed in Fig. 5.2. They
demonstrate that the two other devices are also operating as QH FP interferometers. The visibility
of the oscillations in each case is smaller than in the experiment with the small FP cavity but
it remains relatively high as it reaches respectively about 20 % and 15 % for the medium and
the large interferometers. A quantitative analysis of the influence of the FP dimensions on the
coherence is addressed in section 5.3.3.
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FIGURE 5.2: High visibility gate-tunable quantum interference in the medium and large FP interfer-
ometers. Diagonal resistance oscillations observed versus plunger-gate voltages Vpg for interferometry
experiments performed in A, B, C, the medium and in D, E, F, the large interferometers (same experimen-
tal conditions than Fig. 5.1). Insets: Schematics of the gates configuration. Active QPCs and plunger gates
are respectively represented in red and orange.

Evolution of the frequency of the oscillations with the plunger-gate voltage

In Fig. 5.1.C, we see that the period of the oscillations ∆Vpg2 increases when Vpg2 is lowered. This
observation is corroborated by looking at the oscillations on smaller voltage ranges in Fig. 5.1.A
and Fig. 5.1.B. Similar evolutions are also observed in experiments performed in the two other
interferometers shown in Fig. 5.2.

The evolution of the oscillations period can be tracked by computing the Fourier transform
of the oscillations restricted to a small Vpg2 window that is slid over the entire Vpg2 range. The
evolution of the resulting Fourier amplitude as a function of the plunger-gate voltage Vpg2 and the
plunger-gate-voltage frequency is shown in Fig. 5.3.

In this color-coded map, a clear peak at fpg2 = 1/∆Vpg2 is observed all along the voltage range
spanned together with an additional peak corresponding to the second harmonic mostly visible
at large negative Vpg2 (see individual linecut in inset of Fig. 5.3). We note that the emergence of
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the oscillations at Vpg2 ' −0.3 V coincides with the charge neutrality below the plunger-gate (red
dashed line).
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FIGURE 5.3: Fourier transform of gate-induced oscillations. Evolution of the Fourier amplitude of the
resistance oscillations shown in Fig. 5.1.C with the plunger-gate voltage Vpg2 and the plunger-gate-voltage
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an integer. Oscillations with a small voltage period emerge at Vpg2 ' −0.3 V corresponding to the CNP
below the plunger gate. Inset: Linecut at Vpg2 = −3.3 V evidencing the presence of a second harmonic
(blue arrow).

The frequency fpg2 of the main peak in Fig. 5.3 clearly decreases when Vpg2 is lowered con-
firming the tendency previously observed. The frequency drops fastly around Vpg2 ' −0.3 V and
it continues to decrease as Vpg2 is lowered but more and more slowly. This evolution can be intu-
itively understood assuming the device is operating in the AB regime.

Initially, at Vpg2 = 0 V, the interfering outer edge channel propagates below the plunger gate
along the graphene edges as shown in Fig. 5.4.A. As Vpg2 is decreased, the CNP is reached below
the plunger gate at Vpg2 ' −0.3 V and the interfering outer edge channel is expelled out from
the area beneath the plunger gate. This expulsion occurs within a small Vpg2 range and leads to a
rapid change of the area enclosed by this edge channel. It results in fast oscillations.

At lower plunger-gate voltages, holes are accumulated below the gate and the interfering edge
channel propagates along the pn interface which follows the gate edges (Fig.5.4.B and Fig.5.4.C).
The oscillations then arise because a decrease of Vpg2 leads to a smooth displacement of the pn
junction inward the FP cell. The progressive distancing (Fig.5.4.C) of the pn junction from the gate
edges also results in a reduction of the capacitive coupling that explains the continuous decrease
of the oscillations frequency observed. Therefore, the Vpg2-dispersion of the oscillations frequency
simply reflects the plunger-gate electrostatics.

We systematically observed such dispersions for experiments performed in different samples
(see section 5.1.4) and for experiments performed with different conditions within the same FP
interferometer. As an example, Fig. 5.5 displays the Fourier amplitude maps obtained for mea-
surements performed in the small FP interferometer, at different magnetic fields and with different
interfering edge channels. They all display the same typical features. It evidences the common
origin of such dispersion. Importantly, we observe that at fixed Vpg2, the frequency fpg2 of the
oscillations increases with the magnetic field B.
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Vpg2 ⩽ -0.3 V Vpg2 ≳ 0 V Vpg2 ≪-0.3 V 
A B C

FIGURE 5.4: Tuning of the edge channel trajectory with the plunger-gate at negative voltages. Schematics
of edge channel trajectories in the vicinity of the plunger gate. A, When Vpg2 & 0 V, the filling factor below
the plunger gate is νpg2 . 0.7. Hence, the interfering outer edge channel (navy blue line) can propagate
along the graphene edges (plain black line) beneath the plunger gate (orange) while the inner edge channel
(green-blue) must circulate outside the gated region following the gate edges. B, As the CNP is reached
below the plunger gate (Vpg2 ' −0.3 V), the outer channel is expelled outside the gated region and prop-
agates close to the gate edges. C, At more negative voltage, the interfering edge channel circulates further
away from the gate edges because the pn junction shifts towards the bulk of the interferometer.
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FIGURE 5.5: Fourier transforms of resistance oscillations for different experimental conditions. Fourier
amplitudes of the resistance oscillations observed in the small interferometer for different configurations of
magnetic field and interfering edge channel.

The study of the magnetic-field dependence of the oscillations period allows to probe their
origin. In pure AB regime, the only effect of the plunger gate is to modulate the effective surface
A of the interferometer and a voltage period ∆Vpg2 = 1/ fpg2 corresponds to change of AB area
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by ∆A = Φ0
B . Besides, we can assume that the area variation scales linearly with the plunger-gate

voltage in the limit of small voltage changes [148, 149]. Thus, we can write ∆A = α∆Vpg2 where α
is the gate lever arm which accounts for the evolution of the area enclosed by the interfering edge
channel with the plunger-gate. Hence, in the AB regime, we expect:

fpg2

B
=

α

Φ0
. (5.2)

As a consequence, all the frequencies normalized by the magnetic field should collapse on the
same curve. In Fig. 5.6, the evolution of the rescaled frequencies fpg2/B is plotted as a function
of Ṽpg2 = Vpg2 − V∗pg2, i.e. the plunger-gate voltage shifted by V∗pg2 the voltage associated with
expulsion of the outer or inner edge channel from the area beneath the plunger gate (i.e. νpg2 = 0
or 1 respectively). All the data points corresponding to the different experiments indeed collapse
into a single curve, except for the experiments at 4 T and 5 T which are shifted to higher rescaled
frequencies. It is in good agreement with the above predictions and it provides a first indication
that the device operates in the AB regime. It also shows that the plunger-gate allows to tune
the magnetic flux in the FP interferometer over wide ranges of both plunger-gate voltages and
magnetic fields.
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FIGURE 5.6: Magnetic field dependence of the frequency of gate-induced oscillations. Evolution of the
main peak frequency fpg2 rescaled by the magnetic field B as a function of Ṽpg2, the plunger-gate voltage
shifted with respect to the voltage that expels the interfering edge channel in several experiments. The data
points for different interferometry experiments collapse onto a single curve, except for the low field data.
The solid black line is an electrostatics simulation of the pn junction displacement with the plunger-gate
voltage.

Plunger-gate electrostatics

The evolution of the lever arm α with the plunger-gate encodes the displacement of the pn junction
with the lowering of Vpg2. To evidence it, we present in Fig. 5.7 the results of 2D electrostatic
simulations carried out by Hermann Sellier a member of QuNES team. These simulations consist
in computing the electrostatic potential V(x) in a graphene sheet nearby a plunger gate in the
2D geometry depicted in Fig. 5.7.A. They were performed for different values of the plunger-gate
voltage Vpg and at fixed back-gate voltage Vbg allowing to determine the evolution of the position
of the pn interface xpn with Vpg.
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For a given set of gate voltages Vpg and Vbg, the solution V(x) can be calculated self-consistently
assuming that the local charge density σ(x) is given by:

σ(x) = −e sign
(
V(x)

) e2V(x)2

πh̄2v2
F

, (5.3)

where vF = 106 m/s is the Fermi velocity in graphene. Once the solution is computed for a given
couple of voltages (Vpg, Vbg), one can extract the local plunger-gate capacitance Cpg(x) (which
includes quantum capacitance contribution) that is given by:

σ(x) = −Cbg
(
Vbg −V(x)

)
− Cpg(x)

(
Vpg −V(x)

)
, (5.4)

where Cbg = ε0εBN/db is the back-gate geometric capacitance that is fixed by the bottom h-BN
thickness db and its dielectric constant εBN.

This local plunger-gate capacitance Cpg(x) is actually independent of the values taken for Vpg
and Vbg in the simulation. Therefore, one can use the vale of Cpg(x) extracted from one simulation
to calculate V(x) for another set of gate voltages using eq. (5.4). It enables to compute the potential
for other gate voltages without the need of solving again the full self-consistent electrostatic prob-
lem. This efficient approach is based on the work of Liu who demonstrated that such graphene
electrostatics problems could be solved equivalently via iterative resolution Poisson-Dirac prob-
lem or via determination of the local capacitances [228].

For our simulations, the self-consistent problem was solved using a modified version of MaxFEM
(http://www.usc.es/en/proxectos/maxfem), an electromagnetic simulation software based on
the finite-element method. It was calculated on a mesh grid extending over of 1 µm in vertical
and 2 µm in horizontal that was computed using Gmsh (http://gmsh.info). The simulations were
performed using the experimental values of h-BN thicknesses (dt = 22 nm and db = 18 nm for the
top and bottom h-BN), of the dielectric constant (εBN = 3), and assuming that the graphite was
behaving as a perfect metal. The back-gate voltage was fixed at Vbg = 0.53 V corresponding to the
conditions of experiments displayed in Fig. 5.1.

The spatial variation of the potential energy E(x) = −eV(x) in the graphene nearby the
plunger gate that was computed for different plunger-gate voltages is plotted in Fig. 5.7.B. The
intersects between the E(x) plots and the zero-energy line give the positions xpn of the pn inter-
face for different Vpg. It moves away from the gate edge (x = 0) as Vpg is decreased (the potential
energy beneath the gate increased). The corresponding evolution of xpn with Vpg is plotted in
Fig. 5.7.C. In this figure, the formation of the pn interface occurs at −0.65 V corresponding to the
CNP below the plunger gate. This value is consistent with the experiments where oscillations ap-
pears at Vpg ' −0.3 V taking into account the hole doping of induced by the palladium electrodes

(VCNP
QPC ' 0.38 V). From these plots, the displacement rate of the pn interface dxpn

dVpg
can be computed

and its evolution with Vpg is displayed in Fig. 5.7.D. It recovers all the features observed experi-
mentally : the formation of the pn junction followed by its fast displacement when it is expelled
outside the area covered by the plunger gate, and a decrease of the displacement rate of the pn
interface as more and more negative Vpg are applied.

The displacement rate computed enables to calculate the non-linear lever arm α = Lpg ×
dxpn
dVpg

of the plunger gate where Lpg is the contour length. The quantity α/Φ0 can be directly compared
to the rescaled frequencies fpg2/B. It is represented in Fig. 5.6 by the black line and it agrees quan-
titatively with the experimental points. This demonstrates that the evolution of the oscillations
frequency fpg2 with Vpg2 is only determined by the displacement of the pn interface. It confirms
that the effect of the plunger gate in our to device is only to modulate the effective surface of the
interferometer as one would expect in the AB regime.
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Note that Lpg remains an adjustable parameter because the position of the graphene edges is
known with an uncertainty of ±150 nm. To reproduce the measurements a plunger-gate contour
of Lpg = 1.8 µm was used in good agreement with the expected lithographic length of 1.5 µm.
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FIGURE 5.7: Simulations of plunger-gate electrostatics. A, Schematic of the electrostatics problem consid-
ered. B, Self-consistent electrostatic energy profiles E = −eV in the graphene flake for a back-gate voltage
Vbg = 0.53 V and different plunger-gate voltages Vpg. C, Position of the pn interface with respect to the

gate edge as a function of Vpg. D, Displacement rate of the pn interface dxpn
dVpg

with respect to Vpg.

5.1.2 Magnetic-field-induced oscillations

To demonstrate that the devices are operating as QH FP interferometers we must show that re-
sistance oscillations can not only be generated by changing the plunger-gate voltage but also by
changing the magnetic field. For this purpose, we performed interferometry experiments where
the plunger-gate voltage was kept constant and the magnetic field was swept continuously at the
minimum rate available with the magnet (0.18 mT/s) around 14 T. Fig. 5.8 presents the evolution
of RD measured in experiments with both outer or inner edge channel interfering.

Clear resistance oscillations appears when the magnetic field is varied except in Fig. 5.8.F
where the oscillations are irregular and have a small amplitude. This is expected considering
that this last experiment was performed in the largest and the least coherent device. Also this ex-
periment was performed with the inner edge channel interfering resulting in a smaller oscillations
amplitude compared to that measured with the outer edge channel interfering. In the medium and
large interferometers, two sets of coexisting oscillations can be distinguished: the overall signal
appears as rapid oscillations with small magnetic field period on top of an oscillating background
with a much larger magnetic field period. The period of the fast resistance oscillations decreases
with the size of the FP interferometer.



5.1. Aharonov-Bohm interference in graphene QH FP interferometers 101

Magnetic �eld variation δB (mT) 
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FIGURE 5.8: Magnetic-field-induced oscillations at 14 T. Diagonal resistance oscillations observed by
sweeping the magnetic field around 14 T in the three QH FP interferometers for experiments performed
A, B, C, with the outer edge channel and D, E, F, with the inner edge channel.
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At this point, we already notice that oscillations are visible even in experiments with the out-
ermost edge channel is interfering. It discards the possibility that the devices operate in the
Coulomb-dominated regime. Indeed, in this regime, one should observe no magnetic field de-
pendence of resistance oscillations when the outermost edge channel is interfering [148, 149, 164].
Thus, these measurements already show that the devices operate either in the AB or intermediate
regime.

To identify the origin of each sets of oscillations, we computed the Fourier transform of each
field sweep. They are displayed in Fig. 5.9 and they are typically composed of one or two peaks.
We now focus on the main peaks marked by the red arrows and on the secondary features marked
by the blue arrows. Their positions in the reciprocal space are respectively reported in Table 5.1
and Table 5.2 as well as the corresponding magnetic field periods and the equivalent Aharonov-
Bohm surfaces.
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FIGURE 5.9: Fourier amplitudes of the magnetic-field-induced oscillations at 14 T. Fourier amplitudes of
the resistance oscillations displayed in Fig. 5.8 versus magnetic-field frequency fB.

For the experiments in the small interferometers, the main peak frequencies correspond to AB
areas of 3.1 and 3.3 µm2 which are close to the lithographic area of FP cavity Ageo = 3.1 µm2. It
shows that the resistance oscillations emerge from the winding of the electrons in the FP cavity
as expected for AB oscillations. A small second harmonic peak is even distinguishable in the
spectrum corresponding to the experiment with the outer edge channel. Likewise, for experiment
with the outer edge channel in the medium interferometer, the frequencies of the main and second
peaks correspond to areas of 10.6 and 21.1 µm2 which can be readily attributed to interference
processes corresponding to one and two loops inside the medium FP cavity.

For the experiment in the medium interferometer with the inner edge channel and the exper-
iments in the large interferometer, the situation is different. The main Fourier peaks appear at
low frequencies and correspond to oscillations with large magnetic field period ranging typically
between 3 and 7 mT. They can be attributed to the background oscillations discussed above. The
equivalent AB areas range between 0.5 and 1.3 µm2. It roughly fits with once or twice the area
covered by one split gate (1.8/2.7 µm×0.3 µm= 0.5/0.8 µm2 ). Yet, the exact origin of such oscil-
lations is unclear. It may arise from a periodic modulation of the transmission of the (non active)
split gates with the magnetic field which would also explain the periodic visibility drop observed
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in Fig. 5.8.E. We note that such low frequency modulation also exists in the experiment with the
outer edge channel interfering in the medium interferometer (green peak in Fig. 5.9.B).

In these experiments, the second Fourier peaks are more easily understood as they appears
at frequencies corresponding to AB areas of 10.5, 15.2 and 14.9 µm2 in good agreement with
the lithographic area of the devices used in each experiments. It shows that the fast magnetic
field oscillations with the small periods emerge from interference processes corresponding to one
lop inside either the medium or the large FP cavity. We nevertheless note that the blue peak in
Fig. 5.9.E hardly emerges from the noisy background reflecting the irregular form of the oscilla-
tions in Fig. 5.8.F.

QH FP Interfering Main peak Corresponding AB area Origin
cavity edge channel frequency fB (mT−1) period ∆B (mT) AAB (µm2)
Small Outer 0.74± 0.17 1.35± 0.31 3.1± 0.7 Interferometer
Small Inner 0.79± 0.03 1.27± 0.05 3.3± 0.1 Interferometer

Medium Outer 2.57 0.39 10.6 Interferometer
Medium Inner 0.16 6.25 0.7 Split gates ?

Large Outer 0.23± 0.07 4.35± 1.32 1.0± 0.3 Split gates ?
Large Inner 0.18± 0.04 5.56± 1.23 0.7± 0.2 Split gates ?

TABLE 5.1: Fourier analysis of magnetic-field-induced oscillations: main peaks. Frequencies fB of the
main peaks (red arrows) in the Fourier amplitudes of oscillations displayed in Fig. 5.8, corresponding peri-
ods ∆B and Aharonov-Bohm areas AAB = Φ0/∆B. The uncertainties are given when there are two close-by
peaks or when the peak is wide and when we can approximate its width.

QH FP Interfering Second peak Corresponding AB area Origin
cavity edge channel frequency f ∗B (mT−1) period ∆B∗ (mT) A∗AB (µm2) (+ Comments)
Small Outer ≈ 1.5 ≈ 0.67 ≈ 6.2 Second harmonic

(hardly visible)
Small Inner X X X X

Medium Outer ≈ 5.1 ≈ 0.20 21.1 Second harmonic
Medium Inner 2.54± 0.03 0.39± 0.01 10.5± 0.1 Interferometer

Large Outer 3.67± 0.25 0.27± 0.02 15.2± 1.0 Interferometer
Large Inner ≈ 3.6 ≈ 0.28 ≈ 14.9 Interferometer

(hardly visible)

TABLE 5.2: Fourier analysis of magnetic-field-induced oscillations: second peaks. Frequencies f ∗B of the
second peaks (blue arrows) in the Fourier amplitudes of oscillations displayed in Fig. 5.8, corresponding
periods ∆B∗ and Aharonov-Bohm areas A∗AB = Φ0/∆B∗. The uncertainties are given when there are two
close-by peaks or when the peak is wide and when we can approximate its width.

5.1.3 Evidencing the origin of the oscillations

The nature of quantum interference observed, i.e AB or Coulomb dominated, can be straightfor-
wardly determined by measuring the evolution of resistance oscillations with both the magnetic
field and the plunger-gate voltage. Indeed, the pattern formed by the oscillations is directly re-
lated to the sensitivity of the device to charging effects [147–149, 164, 165] as discussed in chapter 3
section 3.3.1.

Thus we systematically investigated the magnetic-field dependence of the gate-induced os-
cillations. To do that we recorded the evolution of RD oscillations generated by sweeping the
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plunger-gate voltage regularly while letting the magnetic field decay spontaneously with the mag-
net in persistent mode (decay rate of 0.14 mT/hour at 14 T).

This approach was preferred over measurements performed by changing directly current sup-
plied in the magnet between each sweep because the magnet resolution is about 0.2 mT. It is com-
parable to the AB period expected for the large interferometer which prevents the observation
magnetic-field-induced oscillations generated when the field is changed discretely. Also, when
the current is delivered inside the magnet it generates some noise which affects the visibility of
the oscillations.

Fig. 5.10 presents the result of such measurements performed at 14 T in the three interferome-
ters for both interference with the inner and the outer edge channel. In all these color-coded maps
(sometimes referred as "pyjama" maps), extrema of RD form diagonal lines with negative slopes in
the B−Vpg plane. It unambiguously demonstrates that the three different FP interferometers are
operating in the AB regime. It is worth noting that the small FP interferometer is also operating in
AB regime despite its small geometrical area Ageo = 3.1 µm2. In contrast, GaAs/AlGaAs devices
with comparable sizes and similar designs, i.e. without central ohmic contact or other advanced
screening architectures, usually operate in Coulomb-dominated regime [144, 147, 149, 164].
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FIGURE 5.10: Pyjama maps at 14 T. Evolution of the diagonal resistance RD with small changes of magnetic
field δB and of plunger-gate voltage Vpg around 14 T. A, B, C, Experiments with the outer edge channel
respectively for the small, medium and large FP interferometers. D, E, F, Experiments with the inner edge
channel respectively for the small, medium and large FP interferometers. The extrema of RD form lines
with negative slopes characteristic of AB oscillations. Insets: Schematics of the device with active QPCs
(red) and plunger gates (orange).
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From these measurements (actually performed over longer plunger-gate voltage and field
ranges than the ones displayed in Fig. 5.10), we can also estimate the field periods of AB oscil-
lations that are gathered in Table 5.3. These periods are consistent with the ones estimated from
field sweeps shown in the previous section and thus the corresponding AB areas are in good
agreement with the surface of FP cavities.

QH FP Interfering Period AB area
cavity edge channel period ∆B (mT) AAB µm2

Small Outer 1.32 3.1
Small Inner 1.23 3.4

Medium Outer 0.40 10.4
Medium Inner 0.39 10.6

Large Outer 0.27 15.3
Large Inner 0.27 15.3

TABLE 5.3: Aharonov-Bohm periods extracted from pyjama maps. Period ∆B and Aharonov-Bohm areas
AAB = Φ0/∆B extracted from the pyjama maps (same measurements than Fig. 5.10 over larger δB and Vpg
scales). Magnetic field periods are estimated from the time evolution of the resistance and the field decay
rate (0.14 mT/hour at 14 T).

5.1.4 AB oscillations in other devices

In addition to the sample (BNGr74) presented above, we performed similar interferometry ex-
periments in three other graphene QH FP interferometers fabricated in different heterostructures.
It allowed us to confirm the reproducibility of our results and that AB oscillations could also be
observed in other devices. Fig. 5.11 and Fig. 5.12 presents respectively optical and SEM images of
these devices and the characteristics of the heterostructures are summarized in Table 5.4.

CBA

10 µm 10 µm 10 µm

BNGr76 BNGr64 BNGr30

FIGURE 5.11: Optical images of other graphene QH FP interferometers. A, BNGr76 device and B, BNGr64
device and C, BNGr30 device. BNGr76 has a graphite back gate contrary to the other samples. Only the
large interferometer of BNGr64 sample was investigated because the QPCs of the small device were not
operating.

These devices are based on a common design (split-gated QPCs + plunger gate above graphene
pristine edges) but each sample has some specificities. In particular, BNGr30 and BNGr64 are
only composed of h-BN/graphene/h-BN flake and do not have a graphite back gate whereas
the BNGr76 heterostructure has one. Also, contrary to other devices, the BNGr30 heterostructure
was priorly etched before any metal deposition and the plunger-gate electrodes fully cover the
graphene pristine edges.
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1 µm 1 µm

A B

BNGr64 BNGr30

FIGURE 5.12: SEM images of other graphene QH FP interferometers. False-coloured scanning electron
micrographs of A, BNGr64 and B, BNGr30 devices. The graphene edges are represented by the white
dotted line. The contacts, QPCs and plunger gates are coloured in yellow, red and orange.

Sample Top h-BN Bottom h-BN Graphite Split-gate Geometric
thickness (nm) thickness (nm) thickness (nm) gap (nm) area Ageo (µm2)

BNGr76 31 20 6 65/65 (design) 2.25
BNGr64 20 50 148 / 159 11.5
BNGr30 25 15 129 / 140 10.1

TABLE 5.4: Characteristics of other samples. The thicknesses of the h-BN and graphite layers are mea-
sured by atomic force microscopy. The gap size of the split-gate electrodes is measured by scanning elec-
tron microscopy except for BNGr76 sample where the values indicated correspond to the gap size in the
lithography design. The geometric areas Ageo are based on the lithography design.

Results of interferometry measurements performed in each device are presented in Fig. 5.13,
5.14 and 5.15. In all devices, after suitable tuning of the QPCs, we observe gate-induced resistance
oscillations which persist over long ranges of plunger-gate voltage as shown in Fig. 5.13.C, 5.14.C
and 5.15.C. It appears that devices with silicon oxide back gate have a lower stability (background
resistance drifts and spurious phase jumps in the oscillations) and display oscillations with smaller
visibilities than the devices with graphite back gate.

The zooms on the oscillations over limited voltage range and the Fourier transforms of the
resistance oscillations highlight, for each case, the decrease of the oscillations frequency with the
lowering plunger-gate voltage similar to what we observed in BNGr74 sample. It gives a first
indication that oscillations also arise from AB effect in the three other devices.

Pyjamas maps for the three devices, shown in Fig. 5.13.E, 5.14.E and 5.15.E, confirmed that
the devices operate in the AB regime. Their magnetic field periods give AB surfaces which are
consistent with the lithographic area of the FP cavities (see Table 5.5). The observation of such
oscillations in devices with different designs and in different experimental conditions shows that
the charging effects are intrinsically limited in graphene QH FP interferometer based on Van der
Waals heterostructures.
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Device Bulk filling Interfering Number of bulk Period AB area
factor νb edge channel edge channel ∆B (mT) AAB (µm2)

BNGr76 ' 1.7 Outer 2 2.1 2.0
BNGr64 ' 1.1 Outer 1 0.42 9.9
BNGr30 ' 2.3 Inner 2 0.37 11.2

TABLE 5.5: Parameters for pyjama maps with other devices. The periods ∆B and Aharonov-Bohm areas
AAB = Φ0/∆B are extracted from the pyjama maps displayed in Fig. 5.13.E, Fig. 5.14.E and Fig. 5.15.E
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FIGURE 5.13: Resistance oscillations in sample BNGr76. A, B, C, Resistance oscillations induced by chang-
ing the plunger-gate voltage Vpg in interferometry experiments with the outer edge channel interfering at
14 T (two edge channels in the bulk). A and B show zooms on smaller Vpg ranges of the resistance os-
cillations. D, Amplitude of the Fourier transform of resistance oscillations presented in C with respect to
the plunger-gate voltage Vpg and the frequency fpg. A continuous decrease of the oscillations frequency is
observed while decreasing Vpg. E, Evolution of the resistance oscillations as a function of the plunger-gate
voltage Vpg and the magnetic field variation δB. The constant resistance lines have a negative slope char-
acteristic of oscillations arising from Aharonov-Bohm effect. Contrary to similar measurements performed
in other devices, the pyjama map in E is measured by changing the magnetic field by small increments
between each plunger-gate voltage sweep.
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FIGURE 5.14: Resistance oscillations in sample BNGr64. A, B, C, Resistance oscillations induced by chang-
ing the plunger-gate voltage Vpg in interferometry experiments with the inner edge channel at 14 T. Clear
resistance oscillations, on top of a continuous increase of the mean resistance of the device as shown in C. A
and B show zooms on smaller Vpg ranges of the resistance oscillations. D, Amplitude of the Fourier trans-
form of resistance oscillations presented in C with respect to the plunger-gate voltage Vpg and the frequency
fpg. A continuous decrease of the oscillations frequency is observed while decreasing Vpg. E, Evolution of
the resistance oscillations as a function of the plunger-gate voltage Vpg and the magnetic field variation δB
after subtraction of a resistance background for each plunger-gate voltage sweep. The constant δRD lines
have a negative slope characteristic of oscillations arising from Aharonov-Bohm effect. Note that for these
experiments, there is only one edge channel in the bulk of the sample.
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FIGURE 5.15: Resistance oscillations in sample BNGr30. A, B, C, Resistance oscillations induced by a
change of the plunger-gate voltage Vpg in interferometry experiments with the inner edge state at 14 T.
The abrupt change in C of the mean resistance value at Vpg ≈ −1.2 V and Vpg ≈ −0.2 V might originate
from instabilities of the QPCs. A and B show zooms on smaller Vpg ranges of the resistance oscillations. D,
Amplitude of the Fourier transform of resistance oscillations presented in C with respect to the plunger-
gate voltage Vpg and the corresponding voltage frequency fpg. A continuous decrease of the oscillations
frequency is observed while decreasing Vpg. The divergence at Vpg ≈ −1.2 V is an artefact arising from
the rapid change of the mean resistance value at this plunger-gate voltage. E, Evolution of the resistance
oscillations with both the plunger-gate voltage Vpg and the magnetic field variation δB after subtraction of
a resistance background for each plunger-gate voltage sweep. The constant δRD lines have a negative slope
characteristic of oscillations induced by the Aharonov-Bohm effect.
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5.1.5 Mitigation of charging effects in graphene Van der Waals heterostructures

To understand why we do not observe the Coulomb-dominated regime in our graphene FP inter-
ferometers, we follow the approach proposed by Halperin and cowokers and try to estimate the
parameter ξ = Ceb

Cb+Ceb
determining in which regime the interferometers operate. We thus need to

estimate the relevant capacitances describing the electrostatics of the FP interferometers.

Bulk capacitance Cb

The bulk capacitance Cb refers to the capacitance between the electrons in the central part of the
FP cavity (the island in Rosenow and Halperin model) and the different gate electrodes.

For the device with graphite back gates, the bulk capacitance is mostly given by Cb = Cbg Ageo
where Cbg is the effective back-gate capacitance and Ageo is the geometrical area. For our small FP
cavity in BNGr74 sample, we obtain Cb = 4.5× 10−15 F (corresponding to a bulk charging energy
of EC = e2

2Cb
= 18 µeV) and similarly, for BNGr76 sample, where Cbg = 1.36 mF/m2 , we obtain

Cb = 3.1× 10−15 F.
In devices without graphite back gate, the back-gate capacitance is composed of two capac-

itance in series corresponding respectively to the 285 nm thick SiO2 layer (εSiO2 = 3.9) and the
bottom h-BN (εBN = 3 here). It gives Cbg = 99 µF/m2 and Cbg = 0.11 mF/m2 respectively for
BNGr64 and BNGr30 devices. Therefore, the Cbg is reduced by one order of magnitude in device
without graphite back-gate. The corresponding bulk capacitance is Cb = 1.1× 10−15 F in both
BNGr64 and BNGr30 devices.

On top of this bulk-to-back-gate capacitance, one needs to add the contribution of the gate
electrodes resting atop the 20-30 nm thick capping h-BN. It provides an additional parallel capac-
itive coupling leading to an increase of Cb and a reduction of the overall bulk charging energy.
This contribution probably plays a significant role in devices on silicon substrate and may become
the main contribution to the bulk capacitance. However it is difficult to evaluate it because these
top gates are not located directly above the bulk island.

Edge-to-bulk capacitive coupling Ceb

The second relevant parameter to evaluate is Ceb, the capacitive coupling between the edge chan-
nel and the bulk. To estimate it, we use the theoretical analysis developed by Evans and cowork-
ers. In ref. [229], they proposed a model describing the transport through a dot in the QH regime.
The dot is supposed to be composed of a conducting island surrounded by to a conducting ring
much like in the simplified model of FP interferometers where we have a compressible island sur-
rounded by the interfering edge channel.

In ref. [229], Evans and coworkers suggest that the problem is equivalent to that of two parallel
conducting stripes capacitively coupled. Thus, one can calculate Ceb by calculating the charge
distribution induced by a potential difference between the two stripes. The latter depends on two
parameters: a the distance separating the stripe and d the characteristic distance over which the
influence of the potential difference is screened. In the real system, a is the typical width of the
incompressible stripe separating the bulk from the edge channels, that can be assumed to be given
by the magnetic length lB (6.9 nm at 14 T) for simplicity. In the limit 2d� a, Evans and coworkers
assessed that the mutual capacitance is:

Ceb =
2LεBNε0

2π2 ln
(

4d
a

)
. (5.5)

For our devices with a graphite back-gate electrode, d is basically fixed by the thickness of the
bottom h-BN, that is d ' 20 nm in both case. Thus, we can estimate that Ceb = 2.8× 10−17 F for the
small interferometer of BNGr74 sample and Ceb = 2.3× 10−17 F for BNGr76 device (L ' 3.5 µm).
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Likewise, we expect that Ceb remains of the same order of magnitude for the other devices
because the gates above the FP cavity are also typically 20 nm away from the graphene. For our
BNGr64 and BNGr30 devices, which respectively have perimeters 2L = 15.1 and 13.3 µm, it gives
Ceb = 5.0× 10−17 and 4.4× 10−17 F. Alternatively, in these device one may take, d = dSiO2 + db,
that is the sum of the thickness of the oxide layer dSiO2 and the thickness of the bottom h-BN db.
In this case, we get Ceb = 10.7× 10−17 and 9.2× 10−17 F.

Note that, this approximation relies on the value taken for a. One may expect a to be larger
because of edge channel reconstructions according to the work of Chklovskii and coworkers [163].
Yet, this effect may still remain limited due to the proximity between the top gates and the graphene
flake.

Discussion

From these calculations, we can estimate the parameter ξ = Ceb
Cb+Ceb

. We obtain ξ = 0.006 for
the small interferometer of BNGr74 sample and ξ = 0.007 for the device BNGr76 which both
have a graphite back gate. On the other hand, for the devices with silicon back gate, we obtain
ξ = 0.04− 0.09 � 1. In all the cases, ξ � 1 consistent with the observation of oscillations in the
AB dominated regime.

The above analysis reveals the important role of the back-gate electrodes in graphene QH inter-
ferometers. Their systematic presence provides efficient screening of charging effects and a large
gate-to-bulk capacitance that enables to observe Aharonov-Bohm interference. It is obviously true
in devices with graphite back gate because the latter is only a few tenths of nanometers from the
graphene flake but it also remains valid in devices with silicon oxide back-gate despite a reduction
by one order of magnitude of the effective back gate capacitance Cbg. Similarly, the close proxim-
ity of top-gate electrodes probably helps to screen the interactions between the interfering edge
channel and the compressible bulk.

5.2 Aharonov-Bohm interference at positive plunger-gate voltages

We now consider experiments where positive voltages are applied on the plunger gates. This
regime is rather unsual because one usually applies negative voltages on the plunger gates to
repel the interfering edge channel, tune its trajectory and modulate the effective interferometer
surface

5.2.1 Observations of resistance oscillations at positive plunger-gate voltages

In this unusual configuration, we also observe resistance oscillations. A typical example is shown
in Fig. 5.16. It displays the extension of the measurements presented in Fig. 5.1. Similarly to the
oscillations observed at negative plunger-gate voltages, these oscillations have large amplitude
and persist over the full range of voltage spanned. However, they have a rather irregular shape
and their frequency evolves non-monotonously with Vpg2. This observation is confirmed by look-
ing at the oscillations on limited voltage ranges (Fig. 5.16.A. and Fig. 5.16.B) but also by looking
at the evolution of the Fourier amplitude with the plunger-gate voltage Vpg2 (Fig. 5.17). Similar
oscillations can actually be observed in the three interferometers of BNGr74 sample, but also in
BNGr76 sample, and for both outer or inner edge channel interfering.
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FIGURE 5.16: Resistance oscillations at positive plunger-gate voltages. Evolution of the resistance with
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To know whether these oscillations arise from AB interference or from charging effects, we
studied their magnetic field dependence. Fig. 5.18 displays a pyjama-map measured at positive
plunger-gate voltages in an experiment where the inner edge channel is interfering. Like in the
previous experiments, the resistance oscillations draw lines with negative slopes in the δB−Vpg2
plane. They are distorted because of the irregular shape and the irregular spacing between the
oscillations. Thus, in this configuration, the interferometer also operates in the AB regime. It is
further confirmed by estimating the magnetic field period of resistance oscillations: it is about 1.1
mT and it corresponds to an AB surface of 3.8 µm2 in agreement with the dimensions of the small
cavity.
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FIGURE 5.18: Pyjama map at positive plunger-gate voltages. Evolution of the diagonal resistance RD in
the small FP interferometer of BNGr74 sample versus magnetic field variation δB and plunger-gate voltage
Vpg2 at positive voltages. Experiment with inner edge channel interfering performed at 14 T.

5.2.2 Tuning of the AB phase at positive plunger-gate voltages

We can wander how the change of plunger-gate voltage allows to observed these AB oscillations
in this situation. In this purpose, we should consider how the edge channel trajectories nearby the
plunger-gate evolves at positive voltages. Such evolution is schematized in Fig. 5.19.

At small plunger-gate voltages Vpg2, the filling factor below the plunger gate is νpg2 ≈ 1.
Then, the outer edge channel propagates below the gated region whereas the inner edge channel
is forced to circulate around the edges of the gate as shown in Fig 5.19.A. As Vpg2 is increased,
the inner edge channel trajectory evolves: it progressively goes more and more beneath the gate
and, at νpg2 ' 2, it directly crosses the gated region. In the meantime, the potential experienced
by the outer edge channel decreases and its trajectory also shifts: it progressively gets closer to the
graphene edges.

Likewise, when Vpg2 is further increased, such that νpg2 > 2 , both edge channel trajectories
shift towards the graphene edge as depicted in Fig. 5.19.B. Therefore, the increase of Vpg2 leads to
an increase of the area of the interfering loop and an increase of the AB phase exactly like in the
negative plunger-gate voltage regime. This surface modulation is however less efficient because
there is a sharp confining potential nearby pristine graphene edges. Nevertheless, it explains the
emergence of AB oscillations at positive voltages.
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Vpg2 ≫ 0 V Vpg2 ≳ 0 V
A C

Vpg2  � 0 V
B

FIGURE 5.19: Edge channel trajectories around the plunger gate at postive voltages. A, At small positive
voltages Vpg2, such that νpg2 ≈ 1, only the outer edge channel (navy blue) can pass below the gated region
(orange) while the inner one (green-blue) circulates following the gate edges (dotted line). B, Increasing
Vpg2, we reach νpg2 & 2 and the two edge channels can circulate below the gated region following the
graphene edges (black thick line). In this regime, any increase of Vpg2 results in a shift of edge channel
trajectories towards the graphene edges. C, At even higher voltages, νpg2 > 2, the trajectories of the bulk
edge channels are shifted further towards the graphene edges and localized electrons states (sky blue)
appear beneath the gate.

Yet, others effects may also lead to a change of the phase of the interfering electrons:
- First, as the position of the interfering edge channel shifts towards the graphene edges, its

velocity might also change because the confining potential evolves rapidly. Such change would
lead to a variation the dynamic phase acquired by the electrons.

- On the other hand, at high Vpg2 (νpg2 > 2), there are additional electrons edge channels
localized below the plunger gate as depicted in Fig. 5.19.C. These localized states are close to the
bulk edge channels and likely to interact with them. Thus, they may modify the trajectory of the
interfering one depending on their exact locations and on their charging states that both evolve
with the gate voltage.

Hence, the exact mechanism under the emergence of AB oscillations at positive gate voltage
is probably quite complex and not only linked with the surface modulation. All the above phe-
nomena may modify the phase of the interfering electrons and may compete leading to the non-
monotonic evolution of the oscillations frequency observed. We also note that, in this regime, the
potential disorder along the graphene edges may also have a significant impact.

5.3 Study of coherence and of dephasing effects

We now focus on the study of the coherence and the dephasing mechanisms affecting the visibility
of quantum oscillations in BNGr74 FP interferometers. We begin by investigating the bias-induced
oscillations and study how these oscillations evolve depending on the dimensions of the FP inter-
ferometer. We show that this evolution is consistent with the theory of Fabry-Pérot interferometers
operating in the AB regime. We then focus on the temperature dependence of AB oscillations and
evidence the key role of thermal broadening in the limitation of oscillations visibility. Finally, we
show how we can estimate the phase coherence length taking advantage of the geometry of our
device.

5.3.1 Study of bias-induced oscillations

As discussed in chapter 3 section 3.2.4, quantum interference can also emerge with the application
of a dc-voltage bias. In the weak backscattering limit, the amplitude of differential resistance
oscillations δRD in presence of a dc-voltage bias can be written as:

δRD = δR0 cos
(

2π
Φ
Φ0

)
cos

(
2π

eLVdc

hv

)
, (5.6)
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where δR0 is the oscillations amplitude, L is the interfering path length i.e. the average distance
between the two QPCs and v is the edge-excitation velocity. In this expression, the period of bias-
induced oscillations ∆Vdc = hv/eL is fixed by the ballistic Thouless energy ETh = hv/L associated
with the time of flight τ = L/v of the interfering electrons between the QPCs.

The observation of such checkerboard patterns was already reported in GaAs/AlGaAs FP
interferometers [151, 167, 230, 231] and the study of these bias-induced oscillations has revealed
to be a powerful tool to probe the properties of the edge channels [151, 167, 230] as well as the
dephasing mechanisms appearing at finite bias [165, 231, 232].

Out-of-equilibrium transport measurements

We investigated this effect in the three FP interferometers of BNGr74 sample by studying how the
differential diagonal resistance evolves with a dc-voltage bias Vdc applied in the source contact
(see Fig. 4.5 in chapter 4). For these measurements, both ac and dc components of the diagonal
voltage VD were recorded. It allows to extract the evolution of RD with Vdc

D the exact voltage
difference generated between both sides of the interferometer after application of the dc-voltage
bias Vdc at the source contact.

The results of out-of-equilibrium transport measurements performed at 14 T with both outer
and inner edge channel interfering are shown respectively in Fig. 5.20.A-C and Fig. 5.21.A-C.
They display the evolution of the diagonal resistance variations δRD with both the plunger-gate
voltage Vpg and the dc diagonal voltage Vdc

D (δRD is the diagonal resistance after subtraction of a
background δRD(Vpg, Vdc) = RD(Vpg, Vdc)− RD(Vdc) where RD(Vdc) is the mean value of RD at a
given bias Vdc).

In these figures, the color-coded maps present checkerboard-like patterns. It highlights the
existence of the two sets of oscillations expected theoretically: the AB oscillations, which appear
when Vpg is changed at fixed bias and the bias-induced oscillations that arise at fixed Vpg. The
characteristic periods ∆Vdc (Table 5.6) of these second oscillations are similar to the ones reported
for GaAs devices of comparable sizes. We note that the period of bias-induced oscillations de-
creases with the size of the interferometer and it actually scales as 1/L in agreement with eq. (5.6)
(see Fig. 5.24).

The observation of such oscillations is another proof that our graphene devices behave as QH
FP interferometers and follow the theory of Chamon and coworkers [143]. Nevertheless, contrary
to eq. (5.6), we note that the oscillations rapidly fade at large Vdc

D values showing the existence
energy relaxation processes at finite bias.

Effect of an asymmetric biasing

Still, there is another major difference between our experimental results and eq. (5.6): the checker-
boards Fig. 5.20.A-B and Fig. 5.21.A-B are tilted especially for the small interferometer.

Such tilt had never been reported before in GaAs/AlGaAs FP interferometers although the lit-
erature provides few ideas about its potential origin. In ref. [230], McClure and coworkers briefly
discuss the impact of the way to apply the voltage bias and they emphasize that eq. (5.6) is actu-
ally only valid when the voltage bias Vdc is applied on the sample symmetrically i.e. with +Vdc/2
voltage on the source contact and −Vdc/2 voltage on the drain contact. The situation is rather
different in experiments: the bias is usually applied asymmetrically only at the source contact for
convenience. In this condition, according to McClure and coworkers, we should ideally observe a
diagonal stripe pattern. Such predictions were recovered by S. Ngo Dinh in ref. [230, 232] and he
showed that, at first order, the differential diagonal resistance oscillations reads as:

δR = δR0 cos
(

2π
Φ
Φ0
− 2π

2L
hv

eVdc

)
. (5.7)
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In practise, such pattern is not observed. Everything happens as if the potential drop at both
QPCs was effectively symmetrized even when the bias is applied asymmetrically.
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FIGURE 5.20: Out-of-equilibrium transport in interferometry experiments with the outer edge channel.
A, B, C, Differential diagonal resistance variations δRD, after background subtraction, versus plunger-gate
voltage Vpg and dc component of the diagonal voltage Vdc

D for interferometry experiments with the outer
edge channel in the small, medium and large interferometers. Typical checkerboard patterns are observed
with a significant tilt for the smallest interferometers revealing incomplete symmetrization of the poten-
tial drop. D, E, F, Numerical simulations of resistance oscillations induced by changes of voltage bias
and plunger-gate voltage that reproduce the data presented in A, B and C, respectively. The simulation
incorporates an asymmetric potential drop at the two QPCs and a Gaussian envelope used to reproduce
out-of-equilibrium decoherence at high bias. Asymmetry factor x = 0.2, 0.1 and x = 0.02 are respectively
used for D, E and F.
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FIGURE 5.21: Out-of-equilibrium transport in interferometry experiments with the inner edge channel.
A, B, C, Differential diagonal resistance variations δRD, after background subtraction, versus plunger-gate
voltage Vpg and dc component of the diagonal voltage Vdc

D for interferometry experiments with the inner
edge channel in the small, medium and large interferometers. Typical checkerboard patterns are observed
with a significant tilt for the smallest interferometers revealing incomplete symmetrization of the poten-
tial drop. D, E, F, Numerical simulations of resistance oscillations induced by changes of voltage bias
and plunger-gate voltage that reproduce the data presented in A, B and C, respectively. The simulation
incorporates an asymmetric potential drop at the two QPCs and a Gaussian envelope used to reproduce
out-of-equilibrium at high bias. Asymmetry factor x = 0.16, 0.1 and x = 0.02 are respectively used for D, E
and F.
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In experiments presented in Fig. 5.20.A-C and Fig. 5.21.A-C, the voltage bias is also applied
only at the source contact. For the large interferometer, straight checkerboard patterns are ob-
served. Contrastingly, for the medium and especially the small interferometers, the oscillations
form a pattern which is an intermediate case between the checkerboard and the diagonal stripe
patterns. It shows that the potential drop can indeed be effectively symmetrized in FP interferom-
eters but also that this symmetrization effect can be reduced in small size interferometers.

To confirm that the asymmetry of the potential drop is at the origin of the tilts of the checker-
board patterns, we derived the theoretical expression giving the evolution of the amplitude of the
differential resistance oscillations in presence an asymmetric potential drop at the two QPCs. In
the weak backscattering limit, it reads as:

δR = δR0

[
β cos

(
2π

Φ
Φ0
− 2π

2L
hv

eβVdc

)
+ β cos

(
2π

Φ
Φ0

+ 2π
2L
hv

eβVdc

)]
, (5.8)

where x ∈ [− 1
2 , 1

2 ] is a factor describing the asymmetry of the potential drop, β = 1
2 + x and

β = 1
2 − x. In this framework, the electrons coming from the source have an energy −eβVdc

whereas the electrons coming from the drain have an energy eβVdc. The full derivation of eq. (5.8)
is provided in Appendix 10. Note that it reduces to respectively eq. (5.6) and eq. (5.7) in the limit
where x = 0 (symmetric potential drop) and x = 1

2 (completely asymmetric potential drop).
Using this expression and adding a Gaussian envelope which takes into account the effect of

dephasing at large bias (see next subsection), we can reproduce these out-of-equilibrium transport
measurements with simulations as shown in Fig. 5.20.D-F and Fig. 5.21.D-F. These simulations re-
cover all experimental features and in particular, they reproduce with a remarkable agreement the
tilts of the checkerboard patterns we observed. It demonstrates that these tilts are a consequence
of an asymmetric potential drop. It also confirms that the originally fully asymmetric biasing is
at least partially symmetrized in the FP interferometers. This self-symmetrization of the potential
drop appears to be less efficient when the dimensions of the interferometer are reduced as sug-
gested by larger values of x (see Table 5.6).

The actual asymmetry of the potential drop at the two QPCs reflects how the electrochemical
potential inside the FP cavity adjusts itself between the source and drain potentials. It mainly
results from a balance between two competing effects. On one hand, like in quantum dots, it is
affected by the capacitive couplings with the gates and the contacts such that the potential in the
FP cell depends on the relative strengths of the electrostatic couplings. On the other hand, the FP
potential also depends on energy relaxation processes which favour equilibration of FP chemical
potential with the contact potentials. They are likely to symmetrize the potential drop because of
Coulomb interactions within the dot [230, 232]. Therefore, the observation of tilted checkerboard
pattern and thus of an incomplete symmetrization of the potential drop in our smallest devices
may either reflect the large couplings to the gates or a less effective chemical potential equilibration
in graphene.

Extraction of the Thouless energy

Considering how well our model reproduces the shape of the experimental data, we can use it
to extract the corresponding Thouless energies ETh = hv/L. In this purpose, we studied the
evolution of the amplitude of the Fourier amplitude of AB oscillations with the voltage bias and
compared it with theoretical expectations derived from our generalized model. Indeed, the latter
predicts that the amplitude of the flux-periodic oscillations should oscillates with Vdc with the
following dependence:

A (Vdc) =

√
cos2

(
2π

eVdc

ETh

)
+ 4x2 sin2

(
2π

eVdc

ETh

)
(5.9)
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This expression is derived in Appendix 10 and it allows to evaluate ETh by fitting the evolution
of Fourier amplitude with Vdc with the above formula. In this purpose, one has to first calculate
the Fourier amplitude of gate-induced oscillations at fixed bias, then to extract its values at the
plunger-gate frequency corresponding to that of AB oscillations and to fit its evolution with Vdc.
Note that for the analysis, we did not used the asymmetry factors as x fitting parameters but we
rather fixed their values at the ones determined from simulations in previous subsection.

Fig. 5.22 shows such evolutions for out-of-equilibrium transport measurements corresponding
to Fig. 5.20.A-C and Fig. 5.21.A-C (blue dots). The Fourier amplitudes display a lobe structure con-
sistent with eq. (5.9) but the amplitude of the oscillations rapidly fades at large bias and vanishes
typically after one voltage period. This decay, that is not predicted in an non-interacting model,
must be taken into account to fit the data.
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FIGURE 5.22: Decay of bias-induced oscillations. Fourier amplitudes of the AB oscillations displayed in
Fig. 5.20.A-C and Fig. 5.21.A-C versus diagonal dc-voltage Vdc

D . The amplitudes display a lobe structure
and rapidly decay at finite bias. Fits of the experimental data (blue dots) with eq. (5.10) (red line) and
eq. (5.11) (orange line) allow to extract the period of bias-induced oscillations.

In GaAs FP interferometers, such a rapid fading of the bias-induced oscillations with the bias
was already reported [230, 231]. In ref. [230], McClure and coworkers observed an exponential de-
cay of the oscillation amplitude with the bias. This dependence was recovered few years after by
S. Ngo Dinh in theroretical investigations and he found that it was likely to emerge from Coulomb
interactions within the FP cavity [165]. We thus fitted our data with:

A(Vdc, ∆Vexpo) exp
(
−2πχ

|Vdc|
∆Vexpo

)
(5.10)

where χ is a phenomenological parameter that describes how fast the oscillations vanish with
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voltage bias, and ∆Vexpo is the period of the resistance oscillations for this exponential decay. In
Fig. 5.22, the results of such fits are reported with the red lines. A good agreement between the
model and the data is found for the three interferometers. This phenomenological model however
does not capture the absence of secondary lobes in experiments which suggests that the decay of
the oscillations is faster than exponential.

We also considered a second phenomenological model that assumes a Gaussian decay of the
oscillations amplitude with bias. Such dependence was originally observed in Mach-Zehnder
interferometers [233, 234] but was also reported in FP interferometers by Yamauchi and coworkers
in ref. [231]. Investigations in Mach-Zehnder inferometers revealed that such Gaussian decay may
arise from phase fluctuations of the interfering edge channel due to Coulomb interactions or the
charge noise in the non-interfering edge channels [234–236]. Hence, we also fitted the data with:

A(Vdc, ∆Vgauss) exp

(
−

V2
dc

2V0
2

)
(5.11)

where V0 is the voltage scale characterizing the width of the Gaussian envelope, and ∆Vgauss is the
period of the resistance oscillations for this Gaussian decay. The fits with this model are displayed
in Fig. 5.22 with the orange lines. They also reproduce well the experimental data.

The parameters extracted from the fits with both models are summarized in Table 5.6. Voltage
periods ∆Vexpo and ∆Vgauss extracted in the two cases are really close and they provide a reliable
estimate of the corresponding Thouless energies. As shown in Fig. 5.24, they scale as 1/L as
expected theoretically and they do not change much for experiments performed with either inner
or the outer edge channel. The damping rates χ extracted for the model with an exponential decay
range from 0.2 to 0.45 evidencing a fast blurring of the oscillations at finite bias. Similarly, the V0
values extracted for the model with a Gaussian decay scale as 1/L and are typically two/three
times smaller than ∆Vgauss consistent with observation of Yamauchi and coworkers [231]. The
qualitative difference between the two models is that the exponential decay fits slightly better the
amplitude of the first lobe, especially for data obtained with the small interferometer, but fails to
reproduce the vanishing of the second ones, whereas the Gaussian model is less accurate for the
first lobe but shows a suppressed second lobe.

QH FP Interfering ∆Vexpo χ ∆Vgauss V0 Asymmetry
cavity edge channel (µV) (µV) (µV) factor x
Small Outer 134 0.42 128 40 0.2
Small Inner 162 0.39 151 49 0.16

Medium Outer 83 0.42 81 25 0.1
Medium Inner 70 0.26 70 30 0.1

Large Outer 57 0.35 61 21 0.02
Large Inner 57 0.29 57 23 0.02

TABLE 5.6: Fitting parameters for the different models of bias-induced oscillation decay. Voltage period
∆Vexpo for the exponential decay model, χ damping rate for the exponential decay model, voltage period
∆Vgauss for the Gaussian decay model, V0 width of the Gaussian envelope, x asymmetry factor (parameter
fixed for the fits and adjusted priorly to reproduce data with numerical simulations displayed in Fig. 5.20.A-
C and Fig. 5.21.A-C).
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5.3.2 Temperature-induced dephasing

Exponential decay of oscillations amplitude

The change of the temperature is also expected to affect significantly the coherent transport in
the device. To investigate this effect, we studied systemically the evolution of the oscillations
amplitude with the temperature in the three interferometers in experiments with the outer edge
channel interfering.

Fig. 5.23.A shows a typical evolution for experiments performed in the small interferometer.
It clearly appears that amplitude of the resistance oscillations decreases fastly as the temperature
increases and no oscillations can actually be observed in this interferometer above 200 mK. We
observed even faster decay in the medium (oscillations disappear above 100 mK) and large inter-
ferometer (oscillations disappear above 65 mK). The decay of the oscillations amplitude is actually
exponential as revealed by Fig. 5.23.B where the evolutions of Fourier amplitudes of AB oscilla-
tions are plotted. A fit of the data with e−T/T0 allows to extract the characteristic temperature
scales T0 associated with the decay and we remark that T0 decreases when the dimensions of the
interferometer increases.
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FIGURE 5.23: Exponential decay of oscillations amplitude with temperature. A, Temperature evolution
of the resistance oscillations versus plunger-gate voltage Vpg2 for the small interferometer. B, Exponential
decays of the Fourier amplitudes of the resistance oscillations for the three interferometers.

Similar exponential decays of oscillations amplitude are commonly observed in GaAs QH FP
interferometers in both AB and Coulomb-dominated regimes with integer [144, 166, 167, 231] and
fractional edge channels [144, 151] as well as in Mach-Zehnder interferometers [146, 231, 237, 238].
In FP interferometers, different effects can lead to such dependence, e.g. thermal broadening [143],
the dephasing induced by the noisy environment [231] or the electrostatics of the system [148].

Thermal broadening

In the non-interacting theory of Chamon and coworkers [143], the increase of the temperature is
expected to lead to an exponential decrease of the oscillations amplitude due to thermal broaden-
ing (also called thermal averaging/smearing). At finite temperatures, wavepackets of interfering
electrons have a kBT energy bandwidth. Thus, they are composed of different spectral components
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that all generate their own set of quantum interference. The resistance oscillations measured ex-
perimentally then result from the sum of the contributions coming from each single component.
While propagating inside the FP cavities, the different spectral components are progressively de-
phased with respect to each other which leads to a progressive blurring of the measured oscil-
lations. This blurring is more and more significant as the perimeter of the interferometer or the
temperature are increased and it ultimately results in a complete washout of the oscillations.

Chamon and coworkers calculated the effect of thermal broadening in their non-interacting
theory of FP interferometers [143]. They found that it leads to a reduction of the amplitude of the
oscillations by a factor:

Λ(T, L) =
πkBT2L/h̄v

sinh(πkBT2L/h̄v)
=

4π2kBT/ETh

sinh(4π2kBT/ETh)
, (5.12)

which indeed decreases when T or L increases. This relation, that remains valid even in presence
of an asymmetric potential drop (see Appendix 11), confirms that thermal broadening is intrinsi-
cally linked with the time of flight of interfering electrons in the FP cavity as intuited above. At
high temperature, the above expression leads to an approximate exponential dependence of the
oscillations amplitude with the temperature given by:

e−πkBT2L/h̄v = e−4π2kBT/ETh = e−T/T0 , (5.13)

where T0 = ETh
4π2kB

is the characteristic temperature scale of the exponential decay. Eq. 5.13 allows
to check whether the blurring of the interference signal with the temperature arises from thermal
broadening or from another effect: one simply has to compare the Thouless energies ETh = e∆Vdc
extracted from out-of-equilibrium transport measurements and the characteristic energy scales
4π2kBT0 associated with the thermal decay of the oscillations amplitude.
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FIGURE 5.24: Thouless energies and thermal broadening. Evolution of the energy scales as a function
of 1/L. Thouless energies ETh = e∆Vdc are extracted from fits displayed in Fig. 5.22 and are compared
to energy scales 4π2kBT0 extracted from the temperature dependence of resistance oscillations. All energy
scales follow a 1/L dependence as expected. For the outer edge channel, both ETh and 4π2kBT0 coincide ev-
idencing that the decay of the oscillation amplitude with the temperature is limited by thermal broadening.
The dashed line is a linear fit for the data obtained with the outer edge channel which allows to estimate an
edge excitation velocity of 1.4× 105 m/s.
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Fig. 5.24 shows the evolution of these two energy scales extracted from separated measure-
ments with the inverse path length 1/L. It clearly evidences that ETh and 4π2kBT0 scales as 1/L
and also that two energy scales coincide for a given interferometer. It is in remarkable agreement
with theoretical predictions and it demonstrates that the exponential decay of oscillations am-
plitude mainly arises from thermal broadening. Therefore, we can estimate the edge-excitation
velocity v from a linear fit of the data points coming from the two types of measurements. We
found v ' 1.4× 105 m/s for the experiments with the outer edge. It is of the same order of magni-
tude that the ones measured in GaAs QH interferometers [167, 230, 239] though somehow higher.

5.3.3 Estimation of the phase coherence length

Size-dependence analysis

Besides thermal broadening, other effects (the noise in the non interfering edge channel [235] or
the electrostatic coupling with the compressible bulk [230] for example) can affect coherence. They
lead to a limitation of the oscillations visibility even at zero temperature and thus to a finite phase
coherence length. To estimate Lφ, the phase coherence length associated with extrinsic effects (i.e
other mechanisms than thermal broadening), we followed an approach proposed by P. Roulleau
and coworkers [238] and study the evolution of the visibility V of coherent oscillations with the
dimensions of our graphene FP interferometers. In this framework, we assume that V is given by:

V = V0
2L/LT

sinh(2L/LT)
exp

(
− 2L

Lφ(T)

)
, (5.14)

where LT = hv
2π2kBT is the thermal length i.e. the characteristic length associated with the decay

of the visibility due to thermal broadening at temperature T (see eq. (5.12) in previous section),
Lφ(T) is the phase coherence length associated with extrinsic effects, 2L is the the perimeter of the
FP cavity and V0 is the asymptotic limit reached by the visibility when L tends to zero.

One can make a few comments about eq. (5.14). First, Lφ(T) actually depends on the tem-
perature and is very likely to decrease when T increases because of the enhancement of inelastic
dephasing effects. Also, in this expression, the thermal broadening and the other extrinsic de-
phasing mechanisms are purposely separated. Experimentally, they add up and it results in an
effective decoherence length given by 1/L∗φ(T) = 1/LT + 1/Lφ for the limit of long interfering
path lengths. Finally, we note that this expression is valid for 2L above Lφ. For smaller perimeters,
the decrease of V with Lφ(T) is not exponential anymore and V should saturate to a particular vis-
ibility below unity. Eq. (5.14) nevertheless provides a way to estimate Lφ by fitting the evolution
of V with 2L at fixed temperature.

Experimentally, the apparent oscillations visibility can be strongly affected by external param-
eters not related to dephasing mechanisms. In particular, the noise in the measurement set-up or
charge noise in the gates can significantly affect it. We performed this length-dependence analysis
by considering our best visibility data obtained for the three sizes of interferometers. We evaluate
the electron temperature at our base temperature to be T ' 20 mK, which corresponds approx-
imately to the temperature below which the T-dependence of the visibility saturates. For ex-
periments with the inner edge channel, we extracted the visibility through Gmax−Gmin

(Gmax−e2/h)+(Gmin−e2/h) ,
which subtracts the conductance contribution of the fully transmitted outer edge channel.

Fig. 5.25 shows the evolution of these visibilities V with the perimeter of the interferometers
2L. For comparison, the decrease of the visibility induced by the thermal broadening at 20 mK
is shown with the solid red line (eq. (5.14) with Lφ(T) infinite and an edge state velocity v '
1.4× 105 m/s giving LT = 17 µm. For both experiments with the outer and experiments the inner
edge channel, a fast decrease of V with 2L is observed which cannot be explained by the effect
of thermal broadening. The best visibilities for both interfering edge channels are virtually the
same except for the data in the large interferometer with the inner edge channel, which shows a
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significant drop compared to the data with the outer one. It probably reflects that the tuning of
the QPC could have been improved. We thus discard it for our semi-quantitative analysis.
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FIGURE 5.25: Phase coherence length Lφ. Evolution of the best visibilities V with the perimeter 2L of the
interferometers obtained in experiments at base temperature with the outer (blue dots) and the inner (red
dots) edge channel. The red solid line shows the thermal broadening contribution. Fitting the data (black
dashed line) with eq. (5.14) and discarding the inner edge channel experiment for the large interferometer,
we extract a coherence length of 10 µm at 20 mK.

By fitting the visibility decay, we extract a phase coherence length Lφ ' 10 µm at 20 mK con-
sistent with the observation of relatively high visibility oscillations in our large interferometers. It
is smaller or comparable to the perimeter length, which justifies the exponential decrease used in
eq. (5.14) (the saturation would appear for smaller perimeters as the ones studied here).

Comparison with other QH interferometers

It is instructive to compare our value of the phase coherence length with that measured in previous
works on QH interferometers.

In GaAs/AlGas Mach-Zehnder interferometers, the phase coherence length are usually sig-
nificantly larger. In 2008, Roulleau and coworkers measured a phase coherence length of 20 µm
at 20 mK [238]. It was then shown that the coherence length could be increased by designing
the device geometry such that the non-intefering edge channel make closed loops in the interfer-
ometer [240, 241]. With such a strategy, Duprez and coworkers measured a coherence length of
0.25 mm at 10 mK such that they managed to observe AB interference in devices with arm length
of 0.1 mm [242].

Likewise, in graphene Mach-Zehnder interferometers, Wei and coworkers observed high vis-
ibility conductance oscillations in a device with a 22 µm long gate at 20 mK [212]. Hence, we can
think that the phase coherence length in such samples exceeds tenths of microns. These predic-
tions are somehow confirmed by the PhD work of Paul Brasseur [215]. Following the approach
of Roulleau et al. [238], he studied the evolution of oscillations visibility in graphene pn junctions
with both the temperature and the junction length and he extrapolated that the phase coherence
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length was about 0.37 mm at 20 mK.1 Thus, we can assume that the dephasing in our device is not
due to the presence of pn junctions.

On the other hand, the phase coherence length is usually not estimated in FP devices. Yet, in
ref. [166], Choi and coworkers evaluated it in a 12 µm2 GaAs/AlGaAs device with a central ohmic
contact. They found a 35 µm coherence length at 30 mK, that is, three times larger than in our
device.

Therefore, we believe that the coherence in our graphene FP devices can still be enhanced by
improving the device design and its quality. In particular, fully gate-defined devices with graphite
gate electrodes seem promising as discussed below.

5.4 Conclusion

In this chapter, we have demonstrated that high mobility graphene encapsulated heterostructures
equipped with a series of split-gates allows to fabricate QH Fabry-Pérot interferometers. Oper-
ating the device with the edge channels of the zeroth Landau levels, we observed widely gate-
tunable quantum interference which arise from Aharonov-Bohm effects and have a high visibility.
We have shown that the systematic presence of a back gate in graphene QH FP interferometers
intrinsically mitigates charging effects, especially when they are equipped with graphite back
gate. It allows to fabricate small size interferometers operating in the AB regime without the
need of complex interferometer design. The investigations of out-equilibrium transport measure-
ments and of the dephasing mechanisms comply with most theoretical predictions of Chamon
and coworkers regarding non-interacting FP interferometers.

In the meantime, Y. Ronen and coworkers from Philip Kim’s group also fabricated and studied
a fully gate-defined graphene QH FP interferometer [243]. Their device shown in (see Fig 5.26.A)
was fabricated from a h-BN/graphene/h-BN heterostructure encapsulated between two graphite
flakes. The bottom graphite flake was used as a back gate. The top flake was selectively etched
to make the different gates of the samples: the QPCs, the plunger-gate but also a central gate
defining a 3 µm2 FP cavity (see Fig 5.26.B). Ronen and coworkers measured both high visibility
AB and bias-induced oscillations with ν = 1, 2 and 3 edge channels interfering (Fig 5.26.C and
Fig 5.26.D) and they observed several of the experimental features discussed in this chapter (for
instance the tilted checkerboard patterns).

Y. Ronen and coworkers also estimated the phase coherence length in their device and they
found that it was about 8 µm at 60 mK. It is similar to that measured in our device though at higher
temperatures. It reflects the higher level coherence in their device reached thanks to the graphite
gates. They provide a strong screening isolating the interfering channels from its environment
(they basically act as the screening wells of devices fabricated by the Purdue group [151, 167]).
The higher coherence may also arise from the use of graphite top gates which were shown to
generate a lower amount of disorder than metal electrodes [186].

Our work, together with the parallel study of Ronen et al., clearly show that graphene Van der
Waals heterostructures are suitable platforms for QH FP interferometry. They offer new opportu-
nities to confirm and complete the results obtained in GaAs devices and potentially to unveil new
phenomena. In particular, they provide a new system to investigate the physics of anyons.

1Yet, one has to be cautious about this result considering that the longest junctions studied was 1.5 µm long. The
estimation of the phase coherence length has to be confirmed by making similar studies with junctions at least one
order of magnitude longer.
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A B
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FIGURE 5.26: Fully-gate defined graphene QH FP interferometers fabricated in Philip Kim’s group. A,
Scanning electron micrograph of the device. The device is fabricated from a h-BN/graphene/h-BN het-
erostructure encapsulated between two graphite flakes. The top graphite flake is etched to define the QPCs,
the plunger gate and the FP cavity. The contacts are coloured in yellow and the air bridges contacting the
graphite top gates are coloured in blue. Scale bare is 2 microns. B, Schematics of the edge channels and of
the contact configurations in the device. C, Pyjama map measured at 8 T with inner edge channel interfer-
ing at bulk filling factor νb = 2. D, Corresponding out-of-equilibrium transport measurements. Note that
the checkerboard pattern is tilted like in our interferometers. Adapted from ref. [243].
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Period halving of Aharonov-Bohm
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In this short chapter, we focus on a specific interference regime characterised by the emergence
of AB oscillations with a halved periodicity. After an introduction about previous work on the
subject, we show that this regime of oscillations also appears in graphene FP interferometers under
certain conditions and we discuss some of its specificities.

6.1 Period halving of AB oscillations in GaAs QH FP interferometers

In ref. [166], the Weizmann group reported the observation of a new interference regime in GaAs
FP interferometers where AB oscillations had a Φ∗0 = h

2e periodicity. They observed this regime
in several devices with different designs and they found that it appeared in experiments with
the outermost edge channel interfering and at sufficient large filling factors (νb > 2.5 in their
experiments). At high filling factors νb > 4.5, they recovered the standard AB regime. Similar
features were observed few years after by the group of Purdue university also in experiments
with the outermost edge channel interfering and at filling factors νb > 1.8 [167].

To investigate the origin of this specific oscillation regime, Choi, Sivan and coworkers per-
formed several elaborated interferometry experiments and shot noise measurements [166, 244]. It
allowed them to make important observations:

- they found that, in the new oscillation regime, the effective charge of the interfering quasi-
particle was −e∗ = −2e

- they observed that these peculiar oscillations had a similar visibility and a similar resilience
against temperature-induced dephasing than the standard AB oscillations,

- they noticed that the h
2e periodic oscillations were washed out when the non-interfering ν = 2

edge channel was dephased in stark contrast with what happens with standard AB interference.
- they reported a surprising dependence of the periodicity of the h

2e periodic oscillations with
the flux enclosed by the ν = 2 edge channel.

Thanks to these experiments, Sivan, Choi and coworkers were able to show that the unusual
AB oscillations were arising from electron-electron interactions between the ν = 1 and the ν = 2
edge channels.
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Some of these experimental findings were recovered later on in a theoretical work by Frigeri,
Scherer and Rosenow in ref. [245]. They confirmed that such unusual regime could exist and they
found that it is favoured when the electrostatic coupling between the ν = 1 and the ν = 2 edge
channels is strong. Yet, their model was only derived for filling factors 2 < νb < 3 thus it did not
capture the disappearance of the interaction-induced oscillations at filling factors νb > 4.5. Also,
their model did not explain the charge −2e measured in the shot noise experiments.

Therefore, the exact underlying mechanism giving rise to this regime still remains elusive up
to now.

6.2 AB interference with halved periods in graphene FP interferome-
ters

6.2.1 Signatures of AB oscillations with halved periodicities in graphene FP interfer-
ometers

In graphene FP interferometers, such peculiar AB oscillations can also be observed.
They appear more distinctly in the largest devices. Fig. 6.1.A and Fig. 6.1.B display pyjama

maps measured in the large FP cavity in experiments with the outer edge channel interfering and
at bulk filling factors of νb ' 1.6 and νb ' 2.5 respectively. These two maps show resistance
oscillations that arise from AB interference and which clearly have different periodicities: both
the gate and the magnetic field periods in Fig. 6.1.B are approximately halved compared to that in
Fig. 6.1.A. Fig. 6.1.A, that was already presented in last chapter, corresponds to the standard AB
regime whereas Fig. 6.1.B corresponds to the unusual regime observed in ref. [166].

It is further confirmed by the magnetic field period in Fig. 6.1.B which is about 0.13 mT. It
gives an AB surface of 15.9 µm2, consistent with the dimensions of the device, if we assume that
the oscillations have a Φ∗0 = h

2e periodicity. It clearly evidences the existence of such h
2e periodic

AB oscillations in graphene FP interferometers.
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FIGURE 6.1: Halving of the period of Aharonov-Bohm interference in the large FP cavity of BNGr74
sample. Evolution of the diagonal resistance RD versus magnetic field variation δB and plunger-gate volt-
age Vpg2 in experiments with the outer edge channel interfering. A, At bulk filling factor νb ' 1.6 and B,
νb ' 2.5. Measurements performed at 14 T.

Fig. 6.2 shows a linecut of Fig. 6.1.B along the white dotted line. We observe that the am-
plitude of the resistance oscillations is periodically modulated: one oscillation out of two has
a slightly lower amplitude. It reveals that h

2e periodic AB oscillations coexist with very weak
standard AB oscillations which slightly modulate the amplitude of the former. Such coexistence
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between the two regimes was already reported by Choi and coworkers in Supplementary infor-
mation of ref. [166] but at much larger filling factor νb ' 4.5.
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FIGURE 6.2: Coexistence of two sets of AB oscillations in the large FP cavity of BNGr74 sample. Linecut
of Fig. 6.1.B along whit dotted line. h

2e periodic AB oscillations display a weak amplitude modulation
highlighting the weak contribution of standard AB interference to the coherent transport.

In the small graphene FP interferometers, these interaction-induced AB oscillations, and their
coexistence with standard AB oscillations, manifest in a different way. Fig. 6.3 displays gate-
induced oscillations measured in the small FP cavity with the outer edge channel interfering and
at νb = 2.3. Contrary to the previous measurements, the oscillations have an irregular shape.
Looking at the oscillations on a limited plunger-gate voltage range (Fig. 6.3.B), we see that this
shape actually results from a beating between two sets of oscillations with different frequencies.
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FIGURE 6.3: Coexistence of two sets of AB oscillations in the small FP cavity of BNGr74 sample. Evo-
lution of the resistance with the plunger-gate voltage Vpg2 in an experiment with the outer edge channel
interfering at νb ' 2.3. A, Full voltage range spanned. B, Zoom on a limited range. Measurement per-
formed at 14 T.

The evolution of the Fourier amplitude of these resistance oscillations with the plunger-gate
voltage is displayed in Fig. 6.4.A. It confirms the coexistence of the two oscillating components
with different frequencies and it shows that both have the same Vpg2 dispersion.
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We notice that one oscillating component has a frequency approximately twice larger than the
other one. From the experiments presented in previous chapter, we can easily identify the low
frequency component has being the standard AB oscillations.
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FIGURE 6.4: Size dependence of h/2e periodic AB-like oscillations. Evolution of Fourier amplitude of
resistance oscillations with plunger-gate voltage Vpg and frequency fpg in interferometry experiments with
the outermost edge channel interfering in BNGr74 sample. A, In the small FP cavity, νb ' 2.3, B, in the
medium FP cavity, νb ' 2.3 and C, in the large FP cavity, νb ' 2.5. AB and AB’ labeled the two types of
Aharonov-Bohm oscillations which are respectively h

e and approximately h
2e periodic. In A, the AB and the

AB’ oscillations coexist resulting in a beating in the oscillations (see Fig. 6.3). In B, the resistance oscillations
mostly arise from AB’ interference except around Vpg1 = −1.3 V where the contribution of AB interference
leads to a beating in the resistance oscillations. In C, only the AB’ oscillations are observed. Note that the
plunger gate used in A and C is different from that used in B.

One then may believe that the high frequency component corresponds to the second harmonic.
Yet, this is inconsistent with its large Fourier amplitude especially if we consider the relatively
high transmission of the device in this experiment (T ' 55− 60 %). Therefore, this high frequency
component can only be interpreted as the signature of AB oscillations approximately h

2e periodic
coexisting with standard AB oscillations. Contrary to the previous case, the contribution of the
two types of interference to the coherent transport are similar.

To evaluate more quantitatively the ratio of the frequencies, we fitted the Vpg2-dispersions of

the frequencies in the two traces (Fig. 6.5.A) with two rational fractions of the form p1Vpg2+p2

V2
pg2+q1Vpg2+q2

.

The results of these fits are shown in form of the solid lines in Fig. 6.5.A. Fig. 6.5.B shows the
ratio of the frequencies calculated using these fits. It is displayed on a voltage range which is
far from the plunger-gate voltage where the frequencies diverge. This ratio is virtually constant
and it is about 2.1 to 2.2. It demonstrates unambiguously that the periodicity of the second set of
oscillations is approximately halved compared to that of standard AB oscillations. Importantly,
we remark that the two frequencies are not perfectly commensurate in this case. It explains the
beating and the amplitude modulation observed in Fig. 6.3.

These two examples evidence that the regime where the AB oscillations have a halved or ap-
proximately halved periodicity is not specific to GaAs/AlGaAs FP interferometers. For the rest of
this section, we note AB’ this new regime of oscillations.

6.2.2 Specificities of halved-period AB oscillations in graphene FP interferometers

We now discuss different aspects and properties of the AB’ oscillations that we observed in our
graphene devices.
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FIGURE 6.5: Frequencies of two types of AB oscillations in the small FP interferometer at 14 T. A, Evo-
lution of the frequencies fpg2 of the two sets of oscillations in the experiment displayed in Fig. 6.3 with the
plunger-gate voltage Vpg2. The frequencies, which are extracted from the Fourier transform in Fig. 6.4.A,
are fitted with rational fractions to extract the average frequency ratio. B, Ratio of the frequencies calcu-
lated from the fits in A. The ratio is constant and its value varies typically between 2.1 and 2.2 far from the
plunger-gate voltage where the frequencies diverge.

Dependence with the dimensions of the interferometer

The above experiments revealed that the dimensions of the FP interferometers may affect the
manifestation of the AB’ oscillations and their coexistence with AB oscillations. In the small inter-
ferometers, they manifest in a beating in the resistance oscillations as the AB’ oscillations coexist
with the AB oscillations that still have a significant contribution to the quantum transport. In con-
trast, in the large interferometers the resistance oscillations mostly arise from the AB’ regime and
the signatures of the AB regime are hardly visible. These observations are supported by additional
experiments.

On the one hand, in experiments performed in the medium interferometer, the contribution of
AB oscillations in the resistance oscillations is significantly smaller than that of AB’ oscillations.
Fig. 6.4.B shows the Fourier amplitude of resistance oscillations measured in the medium FP cavity
in a configuration similar to that of Fig. 6.3 and Fig. 6.1.B. A careful look at this figure reveals the
existence of two sets of oscillations drawing two traces in the color coded-map: a clear one and a
weaker one, which mostly appears around Vpg = −1.3 V, at approximately halved frequency (see
black arrows). The weak trace actually corresponds to the standard AB oscillations.

In this experiment, the contribution of the standard AB oscillations mostly appears on a small
range of plunger-gate voltage. In this voltage range, we observe a beating in the oscillations
similar to that observed in the small interferometer (Fig. 6.6.A). Outside this voltage range, the
oscillations are regular (Fig. 6.6.B) although we distinguish an amplitude modulation reminiscent
of that observed in Fig. 6.2.

Thus, the results of the experiments in the medium FP interferometer are somehow an inter-
mediate case between what we observe in the small FP interferometer, where both the AB and the
AB’ oscillations have significant contributions over the full range of voltage spanned (Fig. 6.4.A),
and what happens in the large interferometer, where we hardly or do not distinguish the contri-
bution of AB oscillations (Fig. 6.4.C).

The coexistence of the two regimes in the small interferometers is also observed in BNGr76
device (2.25 µm2). It readily appears in the form of a beating in the resistance oscillations measured
and in the appearance of two clear traces in their Fourier transform as shown respectively in
Fig. 6.7 and in Fig. 6.8.A.
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FIGURE 6.6: Coexistence of two sets of AB oscillations in the medium FP cavity of BNGr74 sample.
Evolution of the resistance with the plunger-gate voltage Vpg1 in an experiment with the outer edge channel
interfering at νb ' 2.3. A, Around Vpg1 = −1.3 V, both AB and AB’ interference coexist and both contribute
significantly to the transport leading to a beating in the resistance oscillations. B, Around Vpg1 = −2.55 V,
the resistance oscillations mostly arise from AB’ oscillations.

The ratio of the frequencies extracted from fits of the data is displayed in Fig. 6.8.B. Like in
the small interferometer of BNGr74 sample, we see that this ratio is almost constant, about 2.1 to
2.3, explaining the beating pattern observed. It further confirms the size dependence observed in
BNGr74 sample.

Influence of the tuning of the QPCs

The coexistence between the two regimes is also affected by the tuning of the QPCs. We performed
seven experiments with different transmissions of the QPCs in the small FP device. In six out of
seven configurations, we clearly observed a coexistence of AB and AB’ oscillations leading to some
beatings in the resistance oscillations.

Yet, we also found one particular set of split-gate voltages, where the contribution of AB inter-
ference was very weak compared to that of AB’ interference such that the oscillations measured
in the small interferometer did not display a beating pattern (see Fig. 6.9). There was no obvious
reason explaining the differences between both cases: the coexistence between AB and AB’ oscil-
lations was observed at similar, higher and lower transmissions than that used for the experiment
displayed in Fig. 6.9.

Anyway, the coexistence of the two sets of oscillations may not only depend on the size of the
interferometer but also on the tuning of the QPCs.

Enhanced visibility of h/2e periodic oscillations

Otherwise, it is interesting to note that, in the large FP cavity, the AB’ oscillations have a high
visibility which varies typically between 30 % and 40 %. This is significantly higher than the vis-
ibilities usually obtained for standard AB oscillations in this device. It points towards a different
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origin of these peculiar oscillations in agreement with the previous investigations in GaAs FP in-
terferometers.
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FIGURE 6.7: Interaction-induced oscillations in BNGr76 sample. Evolution of the resistance with the
plunger-gate voltage Vpg in an experiment with the outer edge channel interfering at νb ' 2.4. A, Full
voltage range spanned. B, Zoom on a limited range.
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FIGURE 6.8: Fourier amplitude of AB-like interaction-induced oscillations in BNGr76 FP interferometer.
A, Evolution of Fourier amplitude of resistance oscillations displayed in Fig. 6.7 with plunger-gate voltage
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frequencies calculated from the fits of the frequencies. The ratio is virtually constant and its value is about
2.1 to 2.3 far from the plunger-gate voltage where the frequencies diverge.
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FIGURE 6.9: Suppression of standard AB oscillations in the small FP cavity of BNGr74 sample. For
one specific tuning of the split-gate voltages, we measured resistance resistance oscillations arising mainly
from AB’ interference with virtually no contribution of standard AB interference. A, Resistance oscillations
measured over a limited voltage range. The oscillations have a regular periodic shape. B, Fourier transform
of resistance oscillations over the full voltage range spanned. Only the trace characteristic of AB’ oscillations
is observed. Experiments at νb ' 2.3 with the outer edge channel interfering.

Conditions of emergence of the h/2e periodic oscillations

Finally, we can have an idea of the conditions necessary to observe AB’ oscillations because we
performed several interferometry experiments in both oscillations regimes.

In this purpose, it is instructive to reconsider Fig. 5.5 of chapter 5 that we discussed previ-
ously. It displays the Fourier amplitudes of resistance oscillations measured at different magnetic
fields and with different edge channel interfering in the small FP cavity of BNGr74 sample. In all
the Fourier maps except Fig. 5.5.D, there is only a single trace and we previously showed that it
corresponds to the standard AB oscillations. These measurements were performed at bulk filling
factors 2.5 6 νb 6 2.7 for the experiments with the inner edge channel and at 1.5 6 νb 6 1.8 for
the experiments with the outer edge channel.

In contrast, in Fig. 5.5.D (which is also presented in Fig. 6.10.B), two traces can be observed
showing the coexistence of two sets of oscillations with one having a frequency about twice to
three times (see below) larger than the other. We previously identified the low frequency oscil-
lations as the standard AB oscillations and we can assumed that the high frequency oscillations
are the manifestations of AB’ oscillations. This experiment was performed with the outer edge
interfering at bulk filling factor νb ' 2.

Hence, in our experiments, the AB’ regime seems to appear only in experiments where the
outer edge channel interferes and at bulk filling factors νb ≥ 2. This is in good agreement with the
experimental findings made in GaAs FP interferometers [166, 167, 244].

Frequency tripling ?

We finally report an unexpected feature observed in the experiment at 8 T and νb ' 2 in the small
interferometer of BNGr74 sample. Fig. 6.10.A presents the gate-induced oscillations measured
in this case. Like in the other experiments, we observe a clear beating in the resistance oscilla-
tions resulting from the coexistence of the two types of AB oscillations with non-commensurate
frequencies. Yet, here we notice that there are approximately three AB’ oscillations for each AB
oscillation.

This is confirmed by the Fourier transform of the oscillations in Fig. 6.10.B and the frequency
ratio (Fig. 6.10.C) calculated from fits of the dispersions of the frequencies. Far from the divergence
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of the oscillation frequencies, it is approximately constant and its values ranges from 2.6 to 2.8.
Therefore, the intriguing AB’ oscillations manifest rather as oscillations with a triple frequency in
this experiment.
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FIGURE 6.10: Tripling of the frequency of AB oscillations at 8 T in the small interferometer of BNGr74
sample. A, Gate-induced oscillations measured at 8 T with the outer edge interfering at νb ' 2. The co-
existence of two sets of oscillations, one having a frequency three times larger then the other, appears in
the form of a beating in the oscillations. B, Fourier transform of resistance oscillations over the full voltage
range spanned. The two traces correspond to the AB and AB’ oscillations. C, Ratios of the frequencies
extracted from fits of the data. Far from the plunger-gate voltage where the frequencies diverge, the fre-
quency ratio is approximately constant and its values varies between 2.6 to 2.8.

6.3 Conclusion

In this chapter, we discussed about a peculiar oscillation regime in FP interferometer where AB
oscillations have halved or approximately halved periodicities. These oscillations, that were first
observed in GaAs/AlGaAs devices, can also be observed in graphene QH FP interferometers
under similar experimental conditions.

Yet, in graphene FP devices, they manifest in a different ways depending on the size of the
interferometer. In large interferometers, the resistance oscillations virtually only arise from these
period-halved interference. In small devices, both types of oscillations coexist, have similar con-
tributions to the quantum transport but they do not have commensurate frequencies resulting in
a beating in the oscillations. The size dependence observed in our experiments may help to deter-
mine the exact mechanism giving rise to such oscillations.

Likewise, it would be particularly interesting to perform shot noise measurements in the small
interferometers: it would allow to determine what is the effective charge of the quasiparticles
interfering in the regime where the frequencies are incommensurate. It may also help to identify
the origin of these peculiar oscillations.
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In ref. [246], Das Samar and coworkers proposed a FP device specifically designed to manipu-
late non-Abelian anyons at filling factor ν = 5/2 and to use them to perform topological quantum
computation. The device originally proposed was composed of three QPCs in series with a dot be-
tween the split-gate electrodes of the central QPC. In the prospect of implementing such a device,
it is necessary to investigate what are the signatures of coherent transport in FP interferometers
with three QPCs in series. To our knowledge, such study has never been reported so far.

In this section, we present the results of both our theoretical and experimental investigations
of the coherent transport in such double FP configuration. The experiments presented here were
performed in BNGr74 sample which has the suitable geometry with three QPCs in series.

7.1 Theory of coherent transport in a double QH FP interferometer

In this section, we derive the theoretical expression giving the transmission of a double FP inter-
ferometer composed of two FP cavities in series which are coherently coupled. We then discuss
how the Fourier analysis of resistance oscillations in the device allows to distinguish whether the
transport remains coherent or not in such interferometer.

We consider a QH FP interferometer composed of three QPCs in series similar to that depicted
in Fig. 7.1.A. Following, the approach of Chamon and coworkers [143], we derive the transmission
of such device using the scattering matrix formalism. We do not consider the contribution of the
dynamic phase shift here and we only work at zero dc-voltage bias.

The transmission and reflection amplitudes of a single Fabry-Pérot interferometer with two
QPCs reads:

tFP(ϕAB) =
t1t2eiϕAB

1− r′1r2ei2ϕAB
, (7.1)

t′FP(ϕAB) =
t′1t′2eiϕAB

1− r′1r2ei2ϕAB
, (7.2)

rFP(ϕAB) = r1 +
r2t1t′1ei2ϕAB

1− r′1r2ei2ϕAB
, (7.3)
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r′FP(ϕAB) = r′2 +
r′1t′2t2ei2ϕAB

1− r′1r2ei2ϕAB
, (7.4)

with 2ϕAB the Aharonov-Bohm phase accumulated by electrons after one loop in the cavity, ti (t′i)
the transmission amplitude, and ri (r′i) the reflection amplitude of QPCi for the right (left) moving
particles.

B

Vpg1  Vpg2  φ1(B,Vpg1) φ2(B,Vpg2)

φ3(B,Vpg1,Vpg2)=φ1+φ2

A B

φ4(B,Vpg1,Vpg2)=φ1- φ2

FIGURE 7.1: Double QH FP interferometry. A, Schematic of a graphene double FP interferometer in a
configuration of partial backscattering of the inner edge channel. The central QPC can either reflect an
incoming electron from the left cavity (blue arrow) or the right cavity (green arrow), or transmit coher-
ently an electron from one cavity to the other (yellow arrows). In the latter case, the electrons pick up the
Aharonov-Bohm phase given by the combined areas of the small and medium interferometers. In higher
order processes, the electrons make multiple loops in the two cavities. B, Schematics of the cavities involved
in the different interference processes in a double FP cavity. φ1,2,3,4 are the corresponding Aharonov-Bohm
phases, indicated with the magnetic field and plunger-gate voltages that modulate them.

The total transmission amplitude ttot of two coupled FP cavities can be calculated using the
transmission and reflection amplitudes of one FP cavity and the transmission and reflection am-
plitudes of a third QPC. Thus, using the previous expressions, we have:

ttot(ϕ1, ϕ2) =
tFP(ϕ1)t3eiϕ2

1− r′FP(ϕ1)r3ei2ϕ2
, (7.5)

where 2ϕ1 and 2ϕ2 are the Aharonov-Bohm phases accumulated by the electrons after one loop in
the cavity between QPC1 and QPC2 and between QPC2 and QPC3, respectively.

Using |ti|2 = |t′i|2 = Ti, |ri|2 = |r′i |2 = Ri and the relation r′i = −r̄it′i/t̄i (the overline indicates
complex conjugate), we can express the transmission as:

Ttot(φ1, φ2) =
T1T2T3

|1−
√

R1R2eiφ1 −
√

R2R3eiφ2 +
√

R1R3ei(φ1+φ2)|2
=

T1T2T3

D
, (7.6)

where φ1 and φ2 are the Aharonov-Bohm phases acquired when the electrons make a loop into the
medium and small cavities respectively (including the phase factor from the reflection amplitudes
of the QPCs). In absence of voltage bias, the transmission Ttot gives directly the oscillating part of
the diagonal conductance Gosc

D = e2

h
T1T2T3

D . Likewise, the oscillating part of the diagonal resistance
oscillations is given by:

Rosc
D =

h
e2

D
T1T2T3

. (7.7)
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The oscillating factor D can be written as:

D = 1 + R1R2 + R3R2 + R1R3 − 2(1 + R3)
√

R1R2 cos(φ1)− 2(1 + R1)
√

R2R3 cos(φ2)

+ 2
√

R1R3 cos(φ1 + φ2) + 2R2
√

R1R3 cos(φ1 − φ2),
(7.8)

or equivalently as :

D = 1 + R1R2 + R3R2 + R1R3 − 2(1 + R3)
√

R1R2 cos(φ1)− 2(1 + R1)
√

R2R3 cos(φ2)

+ 2T2
√

R1R3 cos(φ1 + φ2) + 4R2
√

R1R3 cos(φ1) cos(φ2).
(7.9)

In these expressions, four oscillation frequencies appear, namely, φ1, φ2, φ3 = φ1 + φ2 and φ4 =
φ1 − φ2. The terms in φ3 and φ4 in eq. (7.8) result from coherent interference through the two
interferometers. In particular, the φ3 term includes the contribution of the trajectory where the
electrons make a loop inside the coupled cavities without being reflected by the central QPC.

Importantly, these two components do not have the same prefactors: the amplitude of the φ3
oscillations is larger than the amplitude of the φ4 oscillations. The latter is even negligible in the
weak backscattering limit. In contrast, in a situation where the transport through the double cavity
would be incoherent, one would expect the appearance of term in the form of cos(φ1)× cos(φ2) =
1
2 [cos(φ3) + cos(φ4)] which would lead to equal amplitudes of φ3 and φ4 oscillating components.

Therefore, the comparison between the amplitudes of each component allows to distinguish
both scenarios.

Fourier transform analysis

Relating this model to the geometry of our device (see Fig. 7.1.A), we can ascribe to each of these
four Aharonov-Bohm phases a coupling to the relevant plunger gates:

φ1 '
2π

Φ0
(δA1B + A1δB) =

2π

Φ0
(α1Vpg1B + A1δB), (7.10)

φ2 '
2π

Φ0
(δA2B + A2δB) =

2π

Φ0
(α2Vpg2B + A2δB), (7.11)

φ3 '
2π

Φ0
[(δA1 + δA2)B + (A1 + A2)δB] =

2π

Φ0

[
(α1Vpg1 + α2Vpg2)B + (A1 + A2)δB

]
, (7.12)

φ4 '
2π

Φ0
[(δA1 − δA2)B + (A1 − A2)δB] =

2π

Φ0

[
(α1Vpg1 − α2Vpg2)B + (A1 − A2)δB

]
, (7.13)

where A1 and A2 are the areas of the medium and small cavities respectively, Vpg1 and Vpg2 the
plunger-gate voltages that tune these areas and α1 and α2 their lever arms. In these expressions,
there are three parameters which can be tuned experimentally to generate resistance oscillations:
Vpg1, Vpg2 and B (or equivalently δB). The parameters affecting the values of each AB phases are
summarized in Fig. 7.1.B.

The four phases depend differently on the three tuning parameters. Thus, it is possible to eval-
uate the amplitude of each oscillating component by making the Fourier transform of resistance
oscillations arising when we tune two of the three parameters. Figure 7.2 displays the positions of
peaks appearing in the Fourier space for oscillations induced by changes of either both plunger-
gate voltages (Fig. 7.2.A), or of one plunger-gate voltage and of the magnetic field (Fig. 7.2.B-C).
In the three situations, the Fourier maps display four distinct peaks that correspond to each oscil-
lating component.1

1The Fourier maps are centrosymmetric.
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In all the configurations, the peaks corresponding to the four different components are sepa-
rated in the Fourier space (in particular in the situations corresponding to Fig. 7.2.A and Fig. 7.2.B).
It allows to compare the amplitudes of the φ3 and φ4 components in experiments and to assess
whether the transport through the double FP cavity remains coherent or not.
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FIGURE 7.2: Fourier analysis of double QH FP interferometry experiments. A, B, C, Positions in recipro-
cal space of the normalized oscillation frequencies for the three different configurations of interferometry
experiments (assuming A1 = 3A2). Each peak is labelled with its Aharonov-Bohm phase. Top schematics
depict the active QPCs (red) and plunger gates (orange) in each experiment. The parameters used to tune
the Aharonov-Bohm phases in each case are indicated above the corresponding schematic.

7.2 Experimental evidence of coherent transport in a double FP cavity

Having derived a theoretical model for a double QH FP interferometer, we can now focus on the
experiments and compare them with this theory. In this section, we present experimental results
obtained by studying BNGr74 sample in double FP configuration where the three QPCs were set
at partial reflection of a given edge channel. We show typical resistance oscillations observed in
such configuration, perform their Fourrier analysis and discuss it.

7.2.1 Resistance oscillations in double FP geometry

Operating BNGr74 device in a double FP configuration, we performed systematic studies of the
evolution of resistance oscillations with the different tunable parameters. The most relevant re-
sults are shown in Fig. 7.3 that displays 2D color-coded maps of the diagonal resistance RD versus
plunger-gate voltages and/or magnetic field in the three possible configurations.

Fig. 7.3.A shows the evolution of RD with Vpg1 and Vpg2 in an experiment where the three
QPCs are tuned at partial transmission of the outer edge channel. We see that RD oscillates with
both voltages and that the resistance oscillations draw a regular 2D pattern. It highlights the
flux modulations in both the small and medium cavities and it confirms that the three QPCs are
partially reflecting the same edge channel.

Similarly, Fig. 7.3.B displays a pyjama map obtained by measuring the evolution of RD with
Vpg2 and δB (experiment with the inner edge channel). It shows a diagonal stripe pattern, char-
acteristic of AB oscillations in the small cavity, with an additional wiggling. The magnetic field
period, associated with this wiggling, is about 0.4 mT and corresponds to the AB period expected
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for the medium cavity. It shows that the wiggling originates from AB oscillations in the medium
interferometer which is in series with the small one.

Finally, Fig. 7.3.C displays the last configuration where the evolution of RD with Vpg1 and δB
is measured (experiments with the outer edge channel). This color-coded map shows a diagonal
stripe pattern, reminiscent of the AB oscillations in the medium cavity, on top of large resistance
oscillations (vertical bands). These last oscillations do not depend on Vpg1 and are periodic with
δB. Their magnetic field period is about 1.1 mT and corresponds to the AB period expected for
oscillations in the small FP cavity. Again, it shows the coupling between the two FP cavities.
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FIGURE 7.3: Aharonov-Bohm interference in a double FP cavity. A, Diagonal resistance RD versus
plunger-gate voltages Vpg1 and Vpg2 (outer edge channel interfering). B, Diagonal resistance RD versus
magnetic field variation δB and plunger-gate voltage Vpg2 (inner edge channel interfering). C, Diagonal
resistance RD versus magnetic field variation δB and plunger-gate voltage Vpg1 (outer edge channel inter-
fering). Resistance oscillations in the three pyjama-maps display features characteristic of Aharonov-Bohm
interference in both the small and the medium cavities showing that the device operate as a double QH FP
interferometer. Schematics : Active QPCs (red) and plunger-gates (orange). Measurements performed at
B = 14 T.

7.2.2 Fourier analysis

In all these experiments, features characteristic of AB oscillations in both the medium and the
small cavities are observed. To investigate the coherence of the transport through the couple cav-
ities, we computed and analysed 2D Fourier transforms of the resistance oscillations measured
according to the previous discussion. Fig. 7.4 shows the color-coded maps of the Fourier ampli-
tudes for the measurements of Fig. 7.3. They all display three or four distinct Fourier peaks whose
positions are reported in Table 7.1. The presence of these peaks, and their respective positions in
each measurement configuration, are consistent with our theoretical expectations. We now detail
their different origins.

In Fig. 7.4.A, the two main peaks with the largest amplitudes (in the positive quadrant) are
located at frequencies ( fpg1, fpg2) = (53 V−1, 0 V−1) and (0 V−1, 60 V−1) and thus correspond to
oscillations which are only affected by the change of one of the two plunger-gate voltage. Hence,
they can be directly attributed to the AB interference respectively in the medium and the small
cavities (component oscillating with φ1 and φ2). These peaks have the largest amplitudes as they
are associated with first order processes. Similarly, the main peaks in Fig. 7.4.B-C can be readily
attributed to the AB oscillations respectively in the medium and small interferometers. In this
two cases, the magnetic field frequencies fB of the oscillations fit with the AB surfaces of the
corresponding cavities (see Table 7.2).
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Experiments Frequencies Frequencies of Frequencies Frequencies
of φ1 peak of φ2 peak of φ3 peak of φ4 peak

Fig. 7.3.A 53 V−1, 0 V−1 0 V−1, 60 V−1 53 V−1, 60 V−1 hardly visible
Fig. 7.3.B 2.54 mT−1, 0 V−1 0.79 mT−1, 90 V−1 3.49 mT−1, 90 V−1 -1.75 mT−1, 90 V−1

Fig. 7.3.C 2.60 mT−1, 45 V−1 0.87 mT−1, 0 V−1 3.47 mT−1, 45 V−1 hardly visible

TABLE 7.1: Coordinates of the peaks in the reciprocal spaces in double FP experiments.

Experiments AB area for AB area for of AB area for AB area for
φ1 peak (µm2) φ2 peak (µm2) φ3 peak (µm2) φ4 peak (µm2)

Fig. 7.3.B 10.5 3.3 14.4 7.2
Fig. 7.3.C 10.8 3.6 14.4 x

TABLE 7.2: AB areas associated with the peaks in the reciprocal spaces.

A third peak, corresponding to the component oscillating with φ3, is also visible in the three
Fourier spaces. It appears at finite plunger-gate-voltage frequencies which are equal to that of the
φ1 or φ2 peak as expected considering that φ3 = φ1 + φ2. Likewise, its magnetic field frequency
corresponds approximately to the sum of that of the main peaks. This is expected as this peak is
associated with interference processes that involve a loop inside the double cavity formed by the
addition of the small and the medium ones in series.

This peak should come with a fourth one associated with the AB phase φ4 = φ1 − φ2. It can be
observed in Fig. 7.4.B but it can hardly be seen in Fig. 7.4.A and Fig. 7.4.C. In all the configurations,
the Fourier amplitude of this last peak is smaller than the amplitude of the φ3 peak as expected
from eq.( 7.8).

This actually shows that the φ3 peak is mainly the result of the interference process for which
the electron wavefunctions interfere coherently after passing twice (back and forth) through the
partially-transmitting middle QPC. It demonstrates the coherent coupling of the two FP cavities
and it is consistent with the 10 µm coherence length estimated for our device.
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7.3 Conclusion

In this chapter, we focused on double QH FP interferometers composed of three QPCs in series.
We derived a theoretical model to describe the coherent transport in such device. We found a
remarkable agreement between our predictions and our experiments allowing us to demonstrate,
with a Fourier analysis of the oscillations, that the transport remains coherent in the double FP
configuration.

This study provides a first step towards the experimental study of devices with multiple FP
cavities in series. It might be extended to the FQH regime for the probing of quasiparticles prop-
erties with novel device geometries.
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The ultimate purpose of QH FP interferometry is to evidence the existence of anyonic quasi-
particles by studying AB interference in FQH regime. During this thesis, we managed to fabricate
a sample, BNGr76, where we observed clearly the formation of fractional states. In this chap-
ter, we present our attempts to make interference with fractional edge channels in this device.
We begin by presenting the transport signatures observed in this sample, which demonstrate the
formation of fractional edge states both in the bulk and in the QPCs. We shortly show results
obtained in the integer regime before presenting unexpected features that we observed trying to
make interference at fractional transmissions of the QPCs but at integer bulk filling factors. We
finally present interferometry experiments performed at fractional bulk filling factor.

8.1 Signatures of fractional QH states in graphene QH FP interferome-
ters.

8.1.1 Characteristics of BNGr76 sample

The device studied in this section is BNGr76 device, which was already presented in section 5.1.4.
It is shown in Fig. 8.1. It is a single QH FP interferometer equipped with a graphite back gate.
The mobility of the bulk graphene in this sample is about 120.000 cm2.V−1.s−1 at a density n =
1012 cm−2. It corresponds to a mean free path about 1.4 µm. The geometric characteristics and the
different gate capacitances are gathered respectively in Table 8.1 and Table 8.2.

The geometric characteristics and the different gate capacitances are gathered respectively in
Table 8.1 and Table 8.2.
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FIGURE 8.1: BNGr76 QH FP interferometer. A, Optical image of the device. B, 3D schematic of the device.

Top h-BN Bottom h-BN Graphite Split-gate Geometric Path length
thickness (nm) thickness (nm) thickness (nm) gap (nm) area Ageo (µm2) L (µm)

31 20 6 65/65 (design) 2.25± 0.25 3.5± 0.4

TABLE 8.1: Geometric characteristics of BNGr76 device. The thicknesses of the h-BN and graphite layers
are measured by atomic force microscopy. The geometric area Ageo and the QPC gap sizes are extracted
from the lithographic design (no SEM image available at the time of the writing).

Back-gate Charge neutral point Capacitance ratios Capacitance ratios
capacitance (mF/m2) in the whole sample at 0 T Csg1,2/Cbg at 14 T CQPC1,2/Cbg

1.36 (Vbg, VQPC) = (−0.04 V, 0.48 V) 0.65, 0.65 0.29, 0.43

TABLE 8.2: Split-gate characteristics in BNGr76 sample. The doping induced by the palladium gate elec-
trodes can be compensated by application of a +0.48 V voltage on the split-gate electrodes.

8.1.2 Formation of fractional QH states in the bulk

We now focus on the QH transport in this device. We begin by discussing Fig. 8.2 which shows
the evolution of the longitudinal resistance Rxx of the sample with both back-gate voltage Vbg and
magnetic field B in the form of Landau fan diagram. For this measurement, Rxx was measured
between two contacts located on each side of the FP cavity and a positive voltage was applied on
each QPC to compensate the doping induced by the palladium gate electrodes.

In this sample, signatures of QH effect appear above 0.5 T and the ν = 1 broken symmetry
state emerges starting from 3 T. The full degeneracy lifting of the N = 1 LL occurs approximately
around 10 T (although ν = 5 is not well-defined). At higher fields, above 12 T, Rxx shows minima
in the transitions between two successive integer QH states. For instance, in Fig. 8.2.B, these min-
ima (red arrows) clearly appear between ν = 2, 3, 4 and 5 states. These features disperse linearly
in the Vbg-B plane as highlighted by the red arrows in Fig. 8.2.A and become more pronounced
as the magnetic field is increased. They are the signatures of gap openings associated with the
formation of fractional QH states in the bulk.

The emergence of these states also clearly appears in Fig. 8.3. It displays the diagonal conduc-
tance GD of the sample as a function of the back-gate voltage at 14 T. During this measurement a
voltage of +0.48 V was applied on the QPCs to compensate the hole-doping induced by the pal-
ladium gate electrodes. In Fig. 8.3.B, we observe all the integer filling factor plateaus appearing
successively as we increase the back-gate voltage. Yet, in the transitions between integer plateaus,
GD shows fractional plateaus appearing approximately at GD = e2

h (M + 1
3 ) and GD = e2

h (M + 2
3 )
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where M is an integer. These additional plateaus mark the formation of fractional states of the
ν = k

3 family.
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FIGURE 8.2: Landau fan diagram of BNGr76 sample. A, Evolution of the longitudinal resistance Rxx
measured between both sides of the interferometer with respect to the magnetic field B and the back-gate
voltage Vbg. B, Linecut at 14 T. The resistance minima (red arrows) in the transitions between the integer
plateaus mark the opening of gaps and the formation of fractional QH states in the bulk.

From these two measurements, we see that in our sample there are clear signatures of ν =
8
3 , 10

3 , 11
3 , 14

3 and 15
3 states forming in the bulk as well as weaker signatures of states forming at

ν = 1
3 , 2

3 , 4
3 and ν = 7

3 .

8.1.3 Signatures of fractional edge channels in the QPCs

The formation of fractional QH edge channels can also be observed by studying the evolution of
the QPCs transmission with the split-gate voltages. Fig. 8.4 displays the evolution of the diagonal
conductance GD with the voltage applied on one QPC. For these measurements, a positive voltage
of VQPC = 0.48 V was applied on the other QPC such that it does not induce any backscattering.
Thus, in this map, the value of GD directly indicates the transmission of the QPC considered.

The color-coded maps are similar to that discussed section 4.4: they display quantized GD
stripes with a slope lower than that of the split gates at zero field (dotted lines). It proves that the
split gates indeed act as QPCs. Yet, we observe a few differences compared to the QPC transmis-
sion maps discussed previously.

First, contrary to the maps of Fig 4.4, the positions of the horizontal GD bands match rather well
with the bulk integer fillings determined from capacitance measurements. It shows that indeed
the second QPCs does not induce backscattering. Likewise the conductance is well quantized on
the diagonal stripe even in the N = 1 LL.
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Between integer QH plateaus, additional plateaus appear marking the formation of FQH states at filling
factors ν = k

3 . Black dotted lines indicates when GD = k
3

e2

h . For these measurements, a voltage of 0.48 V is
applied on the QPCs such that the whole graphene flake is at isodensity. Inset in E: Zoom at low back-gate
voltages after corrections. At low back-gate voltages, the signal has a large out-of-phase component. We
take it into account by plotting the modulus of the impedance. It allows to unveiled the formation of a e2

3h
plateaus which could not be seen otherwise.
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FIGURE 8.4: BNGr76 QPC characteristics at 14 T. Evolution of the diagonal conductance GD with the back-
gate voltage and the voltage VQPC applied on the split-gate electrodes of one QPC. During these measure-
ments, a positive voltage of 0.48 V is applied on the other QPC such that it does not induce any backscat-
tering. The two maps show all the typical features characteristic of split gates operating as QPC in the QH
regime. GD diagonal bands are well quantized even in the N = 1 LL. The transitions between quantized
GD diagonal stripes are noisy at small voltages (typically −0.5 V ≤ VQPC ≤ 0.5 V) whereas they are smooth
at more negative voltages. These noisy transitions are due to the reconstruction of fractional QH states in
the QPCs.

Another important feature in these maps is that the transitions between quantized GD stripes
have different shape depending on the split-gate voltage. It can be readily seen in Fig. 8.5 which
shows linecuts of Fig. 8.4 at fixed back-gate voltages. At large negative voltages, typically for
VQPC1 < −1 V and VQPC2 < −0.5 V, the transitions are rather smooth and continuous although
we observe a few resonances or reentrances in the QPCs (see for instance sky blue plots around
VQPC1 ' −1.8 V and VQPC2 ' −1.1 V). These features are commonly observed in our split-gated
QPCs [16, 211] and they were already present in the QPCs of BNGr74 sample (see QPC2 map in
Fig. 4.16).

In contrast, at low voltages, for −1 V < VQPC1 < 1 V and −0.5 < VQPC2 < 1 V, additional
features appear. Indeed, when we start to pinch the innermost edge channel, we observe the pres-
ence of kinks or small plateaus in the transition between integer plateaus. These features appear
on smaller voltage ranges than the previous resonances and approximately at GD = e2

h (M+ 1
3 ) and

GD = e2

h (M + 2
3 ) (black dotted lines). They mark the voltage ranges where fractional states form

in the QPC constrictions. These plateaus are noisy compared to the integer plateaus and there
are actually composed of several sharp peaks and dips as we can see for instance in Fig 8.6.A for
QPC1. Such features are the signatures of the (resonant) tunnelling between counterpropagating
fractional QH edge channels in the QPCs. They reflect the chiral Luttinger liquid nature of this
fractional edge states [247–252] (the resonances associated with the tunnelling of the ν = 7

3 state
were studied by K. Zimmermann in her PhD thesis [211]). These resonances tend to disappear
when we apply a dc-voltage bias in addition to the ac-voltage excitation as we can see in Fig. 8.6.B.
At large voltage bias, they vanish and the ν = 4

3 and 5
3 fractional plateaus appear in both QPC1

and QPC2, although they are not clearly marked in the latter, corroborating our interpretation.
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B, for QPC2. The black dotted lines indicate when GD = k

3
e2

h . Noisy fractional plateaus appear in the
QPCs transmission. These plateaus are composed of several resonances appearing when we start to pinch
the QPCs and backscatter the innermost edge channel. When the QPCs are more pinched, the transitions
between the integer plateaus become smooth and do not show any plateaus.

We note that the ν = 5
3 state was not visible in Fig. 8.2 and Fig. 8.3. It suggests that the smooth

electrostatic potential in the QPC favours the reconstruction of this fractional state that does not
form in the bulk. A recent paper by Khanna and cowokers indeed suggests that reconstructed
fractionnal edge modes may appear at the boundaries of integer QH states in presence of a smooth
potential [253]. We also stress that fractional QH plateaus mainly appear in the transition between
the first integer plateaus i.e. only when the innermost integer edge channel is reflected and when
the other integer edge modes pass below the split gates.

Fig. 8.5 and Fig. 8.6 show that we can control the transmissions of fractional edge channels
when the bulk is at integer filling factor. Likewise, we can also selectively backscatter some frac-
tional edge channels with our QPCs when the bulk is at fractional filling factors. Fig. 8.7 shows
transmissions plots measured at back-gate voltages of Vbg = 0.47 V and Vbg = 1.15 V where we ob-
served plateaus GD = 4

3
e2

h and GD = 8
3

e2

h in Fig. 8.3. In Fig. 8.7, we indeed notice that GD displays
the corresponding fractional plateau around VQPC = 0.48 V which is the voltage where the doping
of palladium electrode is fully compensated. When VQPC is lowered the conductance continuously
drops down to e2

h or 2e2

h showing that we can tune the transmission of the corresponding fractional
QH edge channels. Note that the transitions present some resonances as discussed above. In
Fig. 8.7.B, some of them may arise from the tunnelling between counterpropagating ν = 7

3 edge
channels.

Thus, in our interferometer, we can make two types of interferometry experiments with frac-
tional edge channel: either at fractional or at integer bulk filling factors.
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A, without a dc-voltage bias and, B, with a 800 µV voltage bias. The resonances associated with the tun-
nelling of fractional QH edge channels disappear at high voltage bias and 4
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appear. The black arrows indicate the QPC set points for the experiments discussed in section 8.3.1. Mea-
surements performed at 14 T.
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Vbg = 0.47 V. B, Vbg = 1.15 V. At these voltages, the bulk graphene is respectively at filling factors νb ' 4

3

and νb ' 8
3 as indicated by the presence of the corresponding GD plateaus at 4

3
e2

h and 8
3

e2

h when the QPCs

are open. The conductance lowers down to e2

h and 2e2

h when VQPC is decreased showing that one can tune
the transmissions of the ν = 4

3 and ν = 8
3 edge channels in each QPCs exactly like in the integer case.

Measurements performed at 14 T.
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8.2 Experiments with integer edge channels

Before presenting the results of our investigations of the fractional regime, we begin by showing
some results obtained with the integer edge channels of the N = 0 LL and with a compressible
bulk. They will be compared to the results obtained with fractional edge channels interfering in
the next sections.
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FIGURE 8.8: Gate-induced oscillations with integer edge channels interfering. Diagonal resistances oscil-
lations measured in BNGr76 device while sweeping the plunger-gate voltage Vpg in experiments with, A,
the outer edge channel interfering and, B, inner edge channel interfering. The measurements are performed
at 14 T respectively at filling factors νb ' 1.7 and νb ' 2.5. C and D, Corresponding Fourier transforms.

Fig. 8.8.A and Fig. 8.8.B present gate-induced oscillations measured with respectively the outer
and the inner edge channel interfering at 14 T. Clear and stable oscillations are observed over the
full range of voltage spanned in the two cases. They display the same features than the gate-
induced oscillations observed in BNGr74 devices. We notice that the average resistance is nearly
constant over the whole range of plunger-gate voltage.
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The Fourier transforms of theses resistance oscillations are displayed in Fig. 8.8.C and Fig. 8.8.D.
They are really similar to the ones computed for the experiments performed in the multiple QH
FP interferometer (chapter 5). We recover the decrease of the frequency of the oscillations with the
lowering of the plunger-gate voltage starting from the voltage where the interfering edge channel
is expelled away from the gated region.

The pyjamas maps corresponding to the two sets of experiments are shown on Fig. 8.9. In
the two cases, the resistance oscillations form lines with negative slopes demonstrating that the
device operates in the AB regime. The magnetic field periods extracted from these pyjama maps
are respectively ∆B = 2.1 mT for the experiment with the outer edge channel interfering and
∆B = 2.7 mT for the experiment with the inner edge interfering. The corresponding AB areas are
respectively of 2 µm2 and 1.5 µm2. This is consistent with the expected lithographic size of the
device (2.25± 0.25 µm2) thought somehow smaller.
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FIGURE 8.9: Pyjama maps with integer edge channels interfering. Evolution of the diagonal resistance
RD in BNGr76 device with the magnetic-field variation δB and the plunger-gate voltage Vpg in experiments
with, A, the outer edge channel interfering and, B, inner edge channel interfering. The resistance oscilla-
tions form lines with a negative slope characteristic of AB regime.

8.3 Experiments with fractional edge channels at integer bulk filling
factors

In this section, we present the results of experiments where we tried to make interference with
fractional edge channels at integer bulk filling factors. This configuration is unusual because, as
far as we know, the experiments in GaAs/AlGaAs heterostructures explored the fractional QH
regime mostly at fractional bulk filling factors. In graphene devices, we can access this unusual
regime easily thanks to the back gate which allows to tune precisely the electron density in the
interferometer at any magnetic field. We investigated this regime at different back-gate voltages
corresponding to integer bulk filling factors νb ' 1 and 2, with the QPCs tuned in the fractional
transmission plateaus 5

3 and 2
3 .

We begin by discussing the results obtained at νb ' 1.9 (Vbg = 0.72 V at 14 T) with the QPCs
tuned to partially reflect the ν = 5

3 state (blue stars in Fig. 8.10). We demonstrate that AB oscil-
lations appear in this regime and that they display unexpected phase jumps. We then show that
similar phase jumps can also be observed at νb ' 1.0 (Vbg = 0.37 V at 14 T) with the QPCs tuned
to partially reflect the ν = 2

3 state (yellow stars in Fig. 8.10). We also demonstrate that this new
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oscillation regime comes with other specific features and we finally discuss its possible origins as
well as the implications of our experiments.
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8.3.1 Experiments at bulk filling factor νb ' 2 with νQPC ' 5
3

Gate-induced oscillations at νb ' 2

νQPC=5/3

νb=2

FIGURE 8.11: Edge channel configuration for the experiments at νb ' 2 and νQPC ' 5
3 . The QPCs are

set in the voltage ranges where the transmission plots show sharp resonances that we attributed to the
tunnelling of the reconstructed ν = 5

3 state. Considering the split-gate voltages used, we can assume that
the ν = 1 edge channel pass beneath the QPCs.

We first discuss a series of experiments performed at back-gate voltage Vbg = 0.72 V and at 14 T.
This back-gate voltage corresponds to the central part of the 2e2

h plateaus in Fig. 8.3.E and to a
bulk filling factor νb ' 1.9 such that the bulk of the FP is incompressible. For these experiments,
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we also tuned the voltages applied on the split-gates around VQPC1 ' −0.43 V and VQPC2 '
−0.11 V such that they lie in the voltage ranges where the QPCs show resonances or kinks in the
transmissions plots of Fig. 8.6 (black arrows). These resonances seem to arise from the pinching
of the reconstructed ν = 5

3 state in the QPCs.
At these split-gate and back-gate voltages, the ν = 1 integer edge channel circulates beneath

the split-gate electrodes of QPC2 and potentially also beneath those of QPC1 as one can see in
Fig. 8.10 (blue stars). Indeed, the filling factors beneath the split gates are respectively of νsg1 =
0.44 and νsg2 = 0.94 for QPC1 and QPC2. Therefore, we conjecture that the system is in the
configuration depicted in Fig. 8.11.

Fig. 8.12 and Fig. 8.13 show resistance oscillations measured in such configuration. Like in
the previous cases, the resistance oscillations are observed over the full range of plunger-gate
voltage spanned. Likewise, their period increases when Vpg is decreased in agreement with all
our previous measurements
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FIGURE 8.12: Resistance oscillations measured at νb ' 1.9 with νQPC ' 5
3 . Evolution of the resistance

with the plunger-gate voltage Vpg. C, Full voltage range spanned. Clear resistance oscillations appear on
top of variations of the resistance background with the plunger-gate voltage. A and B, Zooms on limited
voltage ranges. The back-gate voltage is set to Vbg = 0.72 V such that the bulk is incompressible and
the QPC voltages are set to VQPC1 = −0.43 V and VQPC2 = −0.11 V in the voltages ranges where the
transmission plots show resonances attributed to the tunnelling of the ν = 5

3 state in the QPCs. Experiments
performed at 14 T.

Yet, contrary to previous experiments, we note that the mean resistance value varies signifi-
cantly when the plunger-gate voltage is changed. These variations of the resistance background
are not reproducible as we can see by comparing measurements shown Fig. 8.12 and Fig. 8.13
that were performed exactly under the same conditions and in a few hours time lapse. This is
somehow expected. We conjecture that a large variation of the plunger-gate voltage is likely to
affect the electrostatic potential and the charge offset nearby the QPCs even with limited cross-
talk between the gate. Such change then leads to large variations of the transmission because the
QPCs are tuned in the voltage ranges where they display sharp resonances. These variations of
the resistance are not reproducible as they depend on the past charging state of the gates and on
charge relaxation.
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FIGURE 8.13: Resistance oscillations measured at νb ' 1.9 with νQPC ' 5

3 (second sweep). Evolution of
the resistance with the plunger-gate voltage Vpg. C, Full voltage ranged spanned. Clear resistance oscil-
lations appear on top of variations of the resistance background with the plunger-gate voltage. A and B,
Zooms on limited voltage ranges. The measurements are performed a few hours after the ones displayed
in Fig. 8.12. We note that the resistance background is different from that of Fig. 8.12.C although the QPCs
were not detuned.

The Fourier transforms of these two sets of resistance oscillations are shown in Fig. 8.14.A and
Fig. 8.14.B. Both are very similar to that displayed in Fig. 8.8.C and Fig. 8.8.D for the integer case.
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FIGURE 8.14: Fourier amplitudes of resistance oscillations measured at νb ' 1.9 with νQPC ' 5
3 . A

and B, Evolution of Fourier amplitudes of resistance oscillations respectively displayed in Fig. 8.12.C and
Fig. 8.13.C with plunger-gate voltage Vpg and frequency fpg. The vertical dashed lines indicate constant
integer filling factors below the plunger gate νpg.

We notice that the frequency of the oscillations increases fastly approaching the voltage where
the filling factor below the plunger gate reaches νpg = 1. This is consistent with either the ν = 5

3
or ν = 2 edge channel interfering. Comparing carefully the Fourier transforms in Fig. 8.8.D and
in Fig. 8.14, we note that the frequency of the oscillations is higher in the latter case. It can be seen,
for example, by looking at the frequencies for plunger-gate voltages corresponding to νpg = −4:
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in Fig. 8.8.D, fpg ' 40 V−1 when νpg = −4 whereas fpg ' 60 V−1 when νpg = −4 in Fig. 8.14.A
and Fig. 8.14.B.

Phase jumps in AB oscillations at νb ' 2

We now present the corresponding pyjama map in Fig. 8.15. Fig. 8.15.B displays the raw data
and shows that, during the measurements, there are large variations of the transmission of the
FP interferometer with the magnetic field which are reminiscent of the variations of resistance
background with the plunger-gate voltage observed in Fig. 8.12.C and Fig. 8.13.C.
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FIGURE 8.15: Pyjama map measured at νb ' 1.9 with νQPC ' 5
3 (n◦1). Evolution of the diagonal resistance

with the magnetic field variation δB and the plunger-gate voltage Vpg. A, With and, B, without subtraction
of a resistance background for each gate-voltage sweep. The AB oscillations present an anomalously large
magnetic field period (≈ 14 mT). C, Zoom on limited field and gate-voltage ranges. In A, some lines with
positive slopes (arrows) crossed the AB oscillations. Along these lines, the AB oscillations present some
phase shifts. Measurement performed starting from B = 13.95 T and at Vbg = 0.72 V.

Fig. 8.15.A shows the same data after subtraction of a resistance background for each plunger-
gate voltage sweep. It highlights the dispersion of the resistance oscillations with the magnetic
field. Like in Fig. 8.9, the constant resistance lines have a negative slope characteristic of oscilla-
tions arising from AB effect.



158 Chapter 8. Investigations of the fractional regime in graphene FP interferometers

Yet, we observe important differences compared to the previous measurements. First, the
magnetic-field period of AB oscillations is anomalously large: it is approximately of 14 mT cor-
responding to an area of 0.3 µm2 about one order of magnitude smaller than the real size of the
device. For δB ≥ 70 mT, the oscillations even have no dependence with the magnetic field.

Likewise, in the pyjama map, we also see that there are lines with positive slopes. They are
marked by arrows in Fig. 8.15.A. Along these lines, we distinguish slight phase shifts in the AB
oscillations leading to apparent drops of the oscillations amplitude. The existence of such phase
shifts is not expected here and cannot be attributed to the localization of anyonic quasiparticles
since we work at integer bulk filling and since the cyclotron gap at 14 T is about 135 meV= 1565 K.

These phase shifts are not some measurement artefacts. First, we performed a few measure-
ments without detuning the QPC. We observed that the most visible line (red arrow in Fig. 8.15.A)
appears reproducibly at the same position in the different experiments, independently of range of
magnetic field spanned and of the direction of the field variation (see Fig. 8.16).
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FIGURE 8.16: Reproducibility of the line with phase shifts. Pyjama maps measured repetitively for dif-
ferent ranges of field spanned. A, Data displayed in Fig. 8.15.A. B is varied from 13.95 T to 14.05 T. B, B is
varied from 14.03 T to 13.97 T. C, B is varied from 14.15 T to 13.85 T. All axis are shifted such that δB = 0 mT
corresponds to a field of 13.95 T. The line along which the phase shifts occur can be distinguished in each
case. It appears virtually at the same position in the three color-coded maps.

On the other hand, these phase shifts also appear in other experiments. We performed addi-
tional measurements with similar QPCs settings and at the same back-gate voltage after detuning
of the gate voltages. The results of these measurements are presented in Fig. 8.17 and Fig. 8.18.
They display the same features than Fig. 8.15. Indeed, the pyjama maps show resistance oscilla-
tions that seem to form lines with slightly negative slopes and thus to originate from Aharonov-
Bohm effect. However, their magnetic field period is very large and can hardly be determined.

Furthermore, in these color-coded maps, we readily notice the presence of lines with posi-
tive slopes along which the oscillations display phase jumps like in previous measurements. In
Fig. 8.17 and Fig. 8.18, these phase jumps are much more pronounced than in Fig. 8.15. The lines
along which the phase jumps occur are irregular: they do not appear periodically, they have differ-
ent slopes and their slopes can even vary depending on the plunger-gate voltage and the magnetic
field.

Moreover, we observe that during these measurements there were also large changes of re-
sistance background as the magnetic field was varied. It appears that the position of the lines
with phase jumps are not correlated with the values of the average resistance (see for instance in
Fig. 8.17).
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FIGURE 8.17: Pyjama map measured at νb ' 1.9 with νQPC ' 5
3 (n◦2). Evolution of the diagonal resistance

with the magnetic field variation δB and the plunger-gate voltage Vpg. A, With and, B, without subtraction
of a resistance background for each gate-voltage sweep. The oscillations have nearly no magnetic field
dependence. C, Zoom on limited field and gate-voltage ranges. Some lines crossing the AB oscillations
can be distinguished. Along these lines, the AB oscillations present clear phase shifts. Measurements
performed starting from B = 14.03 T and at Vbg = 0.72 V.
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FIGURE 8.18: Pyjama map measured at νb ' 1.9 with νQPC ' 5
3 (n◦3). Evolution of the diagonal resistance

with the magnetic field variation δB and the plunger-gate voltage Vpg. A, With and, B, without subtraction
of a resistance background for each gate-voltage sweep. The AB oscillations have an anomalously large
magnetic field period (≈ 20 mT). C, Zoom on limited field and gate-voltage ranges. Some lines crossing
the AB oscillations can be distinguished in three color-coded maps. Along these lines, the AB oscillations
present clear phase shifts. Measurements performed starting from B = 14.05 T and at Vbg = 0.72 V.
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We also performed similar experiments at back-gate voltage of 0.74 V, corresponding to a bulk
filling factor of ν ' 2 at 14 T, slightly above that of previous measurements and with the QPCs
tuned in the voltage ranges where the transmission plots display resonances (see Fig. 8.19). The
pyjama map measured in this case is shown in Fig. 8.20. It displays clear AB oscillations having
a period of 5.6 mT, which is more than twice larger than the periods measured with integer edge
channel interfering (the corresponding AB area is about 0.74 µm2). This pyjama map also exhibits
a line where the AB oscillations display clear phase jumps.
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FIGURE 8.19: QPC transmissions at Vbg = 0.74 V. Evolution of the diagonal conductance GD with the volt-
age applied on the split-gate electrodes VQPC. Although the quantization is imperfect, the integer plateaus
can clearly be distinguished. Several resonances can be observed in QPC1 after the flat 2e2

h plateau. Like-

wise a resonance around GD = 5
3

e2

h in QPC2 is observed. The black arrows mark the voltages applied on
the QPCs for the experiment displayed in Fig. 8.20. Measurements performed at 14.1 T.

Therefore, these peculiar AB oscillations with large magnetic field periods and phase jumps
are a robust feature of experiments performed at νb ≈ 2 with the QPCs set in the resonances
corresponding to the tunnelling of ν = 5

3 state.
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FIGURE 8.20: Pyjama map with measured at νb ' 2.0 with νQPC ' 5
3 (n◦3). Evolution of the diagonal re-

sistance with the magnetic field variation δB and the plunger-gate voltage Vpg. A, With and, B, without sub-
traction of a resistance background for each gate-voltage sweep. The AB oscillations have an anomalously
large magnetic field period (5.6 mT). C, Zoom on limited field and gate-voltage ranges. In the color-coded
map, we observe a line with a positive slope that crosses the AB oscillations. Along this line, the AB oscil-
lations present clear phase shifts. Measurements performed starting from B = 14.1 T and at Vbg = 0.74 V.
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8.3.2 Experiments at bulk filling factor νb ' 1 with νQPC ' 2
3

Gate-induced oscillations at νb ' 1

νQPC=2/3

νb=1

FIGURE 8.21: Edge channel configuration for the experiments at νb ' 1 and νQPC ' 2
3 . The QPCs are

set in the voltage ranges where the transmission plots show sharp resonances that we attributed to the
tunnelling of the ν = 2

3 state.

We performed similar experiments at back-gate voltage of Vbg = 0.37 V corresponding to a bulk
filling factor of νb ' 1 at 14 T. Fig. 8.22.A and Fig. 8.22.B display the evolution of the transmission
of the QPCs with the split-gate voltages respectively at zero and high dc-voltage bias.
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3
e2

h and 1
3

e2

h conductance plateaus appear. The green
and black arrows mark the voltages applied on the QPCs for the experiments displayed respectively in
Fig. 8.25 and Fig. 8.26. Experiments performed at 14 T.

Again, at zero bias, we observe that the transmission plots display several resonances after
the e2

h plateaus. These resonances most probably arise from the tunnelling of the ν = 2
3 state as
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suggested by the corresponding transmission plateaus at high voltage bias. We performed two
series of experiments at this back voltage and with the QPCs tuned in the voltage ranges where
we observe resonances. The setting points for the QPCs in each case are indicated in Fig 8.22.A
by the black and green arrows. With this setting, we can assume that the ν = 2

3 edge channel is
interfering and that the edge channel configuration in the interferometer corresponds to the one
depicted in Fig. 8.21.

In Fig. 8.23, we display the gate-induced oscillations measured in the configuration corre-
sponding to the green arrows and we show their Fourier transform in Fig. 8.24.
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The resistance oscillations are also observed over the full range of voltage spanned and the
evolution of the frequency with the plunger-gate voltage is similar to that of other experiments.

The oscillations frequency drops rapidly nearby the voltage corresponding νpg = 0 as we
would expect for either ν = 1 or ν = 2

3 edge channel interfering. We also note that the frequency
of the oscillations is similar to what we measured in Fig. 8.14.

Phase jumps in AB oscillations at νb ' 1

The corresponding pyjama map is displayed in Fig. 8.25. It shows AB oscillations crossed by
two lines along which phase jumps occur. Contrary to the previous experiments, in Fig. 8.25 the
magnetic field period of AB oscillation is 2.6 mT similar to that measured in Fig. 8.9.B with integer
edge channels. During these experiments, there were also large variations of the transmission of
the device as we can see in Fig. 8.25.B. Yet, these variations do not seem to affect the lines along
which the phase jumps occur.
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FIGURE 8.25: Pyjama map measured at νb ' 1.0 with νQPC ' 2
3 . Evolution of the diagonal resistance with

the magnetic field variation δB and the plunger-gate voltage Vpg. A, With and, B, without subtraction of
a resistance background for each gate-voltage sweep. The AB oscillations have the same magnetic field
period than in the integer regime (2.6 mT). C, Zoom on limited field and gate-voltage ranges. In the color-
coded map, we observe lines with positive slopes that cross the AB oscillations. Along these lines, the
AB oscillations present clear phase shifts. Measurements performed starting from B = 14.05 T and at
Vbg = 0.37 V.
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Likewise, in the configuration corresponding to the black arrows in Fig. 8.22, we also observe
AB oscillations with a 2.6 mT period as shown in the pyjama map in Fig. 8.26. These oscillations
are also crossed by two lines with positive slope marked by a decrease of the amplitude of the
oscillations. It also seems that some phase jumps occur along these lines although we can not
assess it firmly because of the lack of resolution of these measurements.

Therefore, the observation of phase jumps in the AB oscillations, in configurations where the
bulk is at integer filling factors and where the QPCs are tuned in the resonances of the fractional
QH states, is robust.

-80 -65 -50

-1.72

-1.67

-1.62

-2.5 0 2.5

-90 -60 -30

-1.9

-1.8

-1.7

-1.6

35 65 95

-90 -60 -30

-1.9

-1.8

-1.7

-1.6

-2.5 0 2.5

Resistance RD (kΩ)

Magnetic �eld variation δB (mT)

Pl
un

ge
r-

ga
te

 v
ol

ta
ge

 V
pg

 (V
) 

Magnetic �eld variation δB (mT)

δRD (kΩ)

Magnetic �eld variation δB (mT)

δRD (kΩ)

Pl
un

ge
r-

ga
te

 v
ol

ta
ge

 V
pg

 (V
) 

A

B C

FIGURE 8.26: Pyjama map measured at νb ' 1.0 with νQPC ' 2
3 (n◦2). Evolution of the diagonal resistance

with the magnetic field variation δB and the plunger-gate voltage Vpg. A, With and, B, without subtraction
of a resistance background for each gate-voltage sweep. The AB oscillations have the same magnetic field
period than in the integer regime (2.6 mT). C, Zoom on limited field and gate-voltage ranges. In the color-
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amplitude of the oscillations decreases. Measurements performed starting from B = 14.1 T and at Vbg =
0.37 V.
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8.3.3 Comparison with experiments with integer edge channels

To get further information about this regime with phase jumps, we performed additional experi-
ments and compared the results obtained for integer edge channel interfering at non-integer fill-
ing factors with the results obtained at integer filling factors and with the QPCs tuned at fractional
transmissions.

Comparison of the frequencies of gate-induced oscillations

First, we compared more systematically the frequency of gate-induced oscillations in the two
regimes to confirm our observations. In this purpose, we performed the same analysis than in
section 5.1.1 and compared the evolution of the rescaled frequency with the plunger-gate voltage
after suitable voltage shifts depending on the interfering edge channel. The result of this analysis
is displayed in Fig. 8.27. For the experiments with the QPCs are tuned such that νQPC = 5

3 and
νQPC = 2

3 , we assume that the interfering edge channel is expelled outside from the gated-region
when the filling factor below the plunger gate reaches respectively νpg = 1 and νpg = 0.

Fig. 8.27 shows that the rescaled frequencies collapse into two distinct curves depending on
the type of experiment. The data points corresponding to the experiments performed with integer
edge channel interfering form a single plot, as expected according to section 5.1.1, whereas the
data points corresponding to the experiments performed at fractional QPCs fillings formed virtu-
ally the same curve shifted towards higher frequencies. It confirms our previous observations.
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FIGURE 8.27: Comparison of oscillations frequency. Evolution of the rescaled oscillation frequencies
fpg/B with the shifted plunger-gate voltages Ṽpg for the two types of interferometry experiments. The data
for the two types of measurements collapse on two very similar curves. The curves draw by each set of data
points are fitted with rational fractions to extract the average frequencies at fixed plunger-gate voltage.

We emphasize that the different sets of points reported for the experiments at integer bulk
filling factors and fractional QPCs fillings were obtained for different QPCs tunings or magnetic
fields. It shows that the frequencies measured in the two cases are robust and we actually see that
these frequencies all rescale on the same plot. It suggests a common origin of the peculiar features
observed in both the experiments with νQPC ' 5

3 and with νQPC ' 2
3 .

To evaluate the ratio of the average frequencies, we fitted the experimental points with two
rational fractions of the form p1Vpg+p2

V2
pg+q1Vpg+q2

. It allows to get rid of the individual variations in each

measurement. Fig. 8.28 displays the evolution of the frequency ratio η with the plunger-gate
voltage calculated using the two fits in Fig. 8.27. η increases when Vpg is lowered and it saturates to
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1.6 at large negative voltages. Yet, we note that the variations of the frequency ratio at Vpg > −2 V
may be artefacts resulting from the fluctuations between different experiments together with the
fast variation of the oscillations frequency at low plunger-gate voltages.
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FIGURE 8.28: Ratio of the frequencies. Evolution of the ratio η of the frequencies measured in the two
types of experiments with plunger-gate voltage Vpg. η is calculated from the fits in Fig. 8.27 (blue and red
lines). At large negative plunger-gate voltages, η saturates to 1.6.

In the pure AB regime, the frequency of the oscillations fpg is given by:

fpg

B
=

α

Φ∗0
=

e∗

e
α

Φ0
, (8.1)

where α is the plunger-gate lever arm (see section 5.1.1 for the integer case and ref. [99, 167] for the
fractional case). Thus, the variation of the frequencies between the two types of experiments can
have different origins : it can either reflect a change of gate-lever arm or a change in the effective
charge of the interfering quasiparticles.

If we assume that the gate-lever arm α is constant then the increase of frequency would reflect
a change in the effective charge of the interfering quasiparticles which would be −e∗ ' −1.6 e. It
would imply that interference would not arise from simple electrons but either from fractionally
charged quasiparticles or complex edge excitations although no theory predicts such an effective
charge to our knowledge. We remark that this −e∗ ' −1.6 e effective charge somehow coincides
with the QPCs filling factors in the experiments where νQPC ' 5

3 .
Alternatively, if the interfering quasiparticles are electrons then the increase of the frequency

implies that α would be increased by a factor 1.6. It would mean that the electrostatics associated
with the displacement of the pn junction nearby the plunger gate would be somehow modified
when the bulk is incompressible. This seems unlikely.

Comparison between out-of-equilibrium transport measurements

We also performed out-of-equilibrium transport measurements in both regimes. Fig. 8.29.A-C
show the results of these experiments with either the outer or inner integer edge channel interfer-
ing and a compressible bulk or at bulk filling factor νb ' 1.9 and with νQPC ' 5

3 .
We first note that the checkerboard patterns of Fig. 8.29.B and Fig. 8.29.C are very similar to

that described in section 5.3.1. They present a tilt that is due to the limited syummetrization of the
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potential drop in the small graphene FP interferometer. Yet, we notice that the secondary lobes
in Fig. 8.29.B are weakly defined and can hardly be distinguished especially on the negative bias
side. On the other hand, the checkerboard pattern of Fig. 8.29.A measured with the inner edge
interfering at νb ' 1.7 is distorted and its shape cannot be described by the non-interacting theory
(eq. (5.8)) even taking into account the effect of an asymmetric potential drop.
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FIGURE 8.29: Out-of-equilibrium transport measurements for the two types of interferometry experi-
ments. Differential diagonal resistance variations δRD, after background subtraction, versus plunger-gate
voltage Vpg and measured dc diagonal voltage Vdc

D . Experiments with A, the outer edge channel interfer-
ing at νb ' 1.7, B, the inner edge channel interfering at νb ' 2.5, and C, νQPC ' 5

3 and νb ' 1.9. D, E, F,
Evolution of the Fourier amplitudes of AB oscillations with the dc diagonal voltage Vdc

D . The fits of the data
with eq. (5.8) with exponential and Gaussian envelopes are respectively displayed in red and orange.

Fig. 8.29.A Fig. 8.29.B Fig. 8.29.C
∆Vdc ' 130 µV ∆Vdc ' 100 µV ∆Vdc = 58 µV

TABLE 8.3: Voltage periods of bias-induced oscillations for the experiments displayed in Fig. 8.29.
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Fig. 8.29.D-F displays the evolution of the Fourier amplitudes of AB oscillations with the dc-
voltage bias for the three measurements. We notice that the lobe structure in Fig. 8.29.F is close to
that discussed in chapter 5. It allows us to extract the corresponding voltage period by fitting the
data with the non-interacting theoretical model. The results of the fits with both a Gaussian and
an exponential envelopes and an asymmetry factor x = 0.09 are shown respectively in orange and
red. They both give a period ∆Vdc = 58 µV.

In Fig. 8.29.E, the minima between the second and the third lobes are not pronounced and
thus the evolution of the Fourier transform amplitude cannot be well fitted. Yet, the period of
bias-induced oscillations can still be estimated from the positions of the lobes/nodes and we find
∆Vdc ' 100 µV. Similarly, we can extract a voltage period ∆Vdc ' 130 µV from Fig. 8.29.D. In this
case, the fits of lobe structure are better although the checkerboard pattern observed cannot be
described by the non-interacting theory.

Thus, we note that the period of bias-induced oscillations measured for the experiment where
νQPC ' 5

3 is reduced compared to the ones measured with integer edge channels and a compress-
ible bulk: it is divided by a factor 1.7 compared to the experiment with the inner edge interfering
and by a factor 2.2 compared to the experiment with the outer edge interfering. In the AB regime,
this reduction translates either a change of the edge-excitation velocity, a change of interfering
path length (or combination of both effects) or a change of the effective charge of interfering quasi-
particles.

In the first case, the edge channel velocity would vary from v = 1.1 × 105 m.s−1 and v =
8.4× 104 m.s−1 for experiments shown in Fig. 8.29.A-B to v = 4.9× 104 m.s−1 for the experiment
shown in Fig. 8.29.C (taking L = 3.5 µm). Such large variations of the edge-excitation velocity may
arise from the change of filling factor. Indeed, in ref. [167], Nakamura and coworkers performed
similar out-of-equilibrium transport measurements with the edge channels of N = 0 LL. They
observed large and non-monotonic variations of the velocity with the bulk filling factor. Similar
variations were also reported in GaAs Mach-Zehnder interferometers in ref. [239]. Yet, we stress
that in these experiments the filling factor is varied through changes of magnetic field contrary to
our experiments: it can also influence the strength of electron-electron interactions modifying the
edge velocity.

Besides, a reduction of the interfering path length by a factor 2 seems unlikely: it would likely
result in a distancing of the interfering edge channel with the plunger gate inconsistent with the
increase of oscillations frequency observed. Thus, if it exists, the reduction of the path is most
probably accompanied by a reduction of the velocity. A reduction of the path length would also
be consistent with the anomalously large AB periods measured.

8.3.4 Discussion

To summarize, when we operate the FP interferometer at integer filling factors (incompressible
bulk) and with the QPCs tuned at fractional transmissions, we observe several unexpected fea-
tures in the AB oscillations. First, the pyjama maps display clear phase jumps and they have an
anomalously large magnetic field period at filling factor 2. Second, the frequency of gate-induced
oscillations is significantly increased compared to that measured in experiments at non-integer
filling factor with integer edge channel. Finally, the period of bias-induced oscillations is reduced
by a similar factor.

Origin of the oscillations

The exact origin of such unexpected features remains unclear. Different scenarios might be at the
origin of the features observed.

We remark that there are two major differences between the experiments of section 8.2 and
the experiments section 8.3. In the first case, we work with integer edge channel and the bulk
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is compressible i.e νb is close to half integer values. In the second case, we presumably make
interference with fractional edge channels although the bulk is incompressible and an integer
filling factor. Therefore, the differences observed between the two types of experiments can either
reflect a change in the nature of the quasiparticles interfering or they can reflect the existence of
unexpected effects appearing when the bulk is incompressible.

To disentangle both effects, it would be necessary to make further studies over large ranges
of bulk filling factor and for different edge channel configurations. Alternatively, it would be
particularly relevant to perform shot noise experiments in both configurations. It would allow to
unveil whether interference arise from quasiparticles with an anomalous charge(−1.6e) or from
electrons or even from complex edge channel excitations (as suggested for example to explain the
halving of AB oscillations [166, 244]).

If the oscillations indeed originate from interference of fractional quasiparticles, our experi-
ments raise fundamental questions. One may indeed wonder how such interference can appear
when the fractional edge channel only reconstruct in the QPCs and not in the bulk of the interfer-
ometer. One may also wonder what are the edge structures of ν = 5

3 and ν = 2
3 states and how

they can explain the differences (magnetic field periods) and the similarities (plunger-gate-voltage
frequencies) observed in our different experiments.

On the other hand, we cannot discard that the features observed here are sample dependent.
Thus, it would be important to repeat our experiments in other devices with different sizes and
different designs to see whether these phenomena are robust and universal or not.

Finally, another possibility is that these features emerge from Coulomb interactions even if the
device apparently operates in the AB regime. In the experiments with integer edge channels, we
observed some variations of the field periods. It suggest that the charging effects may still have
an appreciable effect although they are weak. According to Feldman and Halperin in ref. [99], the
existence of residual charging effects can explain why we observe anomalously large AB periods.
They argue that, when the FP bulk is incompressible, the magnetic field period of AB oscillations
is given by:

∆B =
eΦ0

e∗A
(1− ξ

νin

νin − νout
)−1, (8.2)

where e∗ is the effective charge of the interfering quasiparticle (assumed here to be particle-like),
ξ is the parameter presented in section 3.3.1 characterising the origin of oscillations and where νin
and νout(< νin) are respectively the filling factors corresponding to the interfering edge channel
and the filling factor corresponding to the fully transmitted edge channels. Therefore, any weak
Coulomb interactions can lead to an increase of the magnetic field period at integer filling factors
similar to what we observed experimentally.

We can use this formula to evaluate ξ in the configurations where we observed anomalously
large magnetic field periods. For the experiments with νQPC = 5

3 , we can assume that we have
νin = 5

3 and νout =
4
3 or potentially νin = 5

3 and νout = 1. Taking e∗/e = 1.6, A = 2.25 µm2 and
∆B = 5.6 mT (Fig. 8.20), we get ξ ' 0.16 in the first case and ξ ' 0.32 in the second case. Likewise,
if we take e∗/e = 1, we get ξ ' 0.13 in the first case and ξ ' 0.27 in the second case. These values
are rather large and seem incompatible with the AB regime observed with integer edge channels.1

Consequences of our experiments

The most important observation is that discrete phase jumps can also appear in AB oscillations at
integer bulk filling factors. These phase jumps are very similar to that expected at fractional bulk
filling factors but they cannot be attributed to the localization of anyonic quasiparticles in the bulk
of the FP cell. It suggests that different phenomena can lead to the emergence of such features and

1If we take larger values of ∆B, we obtain larger values of ξ and ξ saturates to νin−νout
νin

in the limit where ∆B = 0 mT.
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they cannot be directly interpreted as signatures of anyonic statistics even at fractional bulk filling
factors.

This has important consequences in the prospect of probing anyonic statistic with FP interfer-
ometers and clearly complicates the analysis of the experiments at fractional fillings. In particular,
our experiments raise questions about the interpretations of the results of Nakamura and cowork-
ers [151, 167] especially considering that our data look very similar to theirs (pyjama maps with
anomalously large magnetic field periods and phase jumps).

Further investigations must be thus conducted to understand how such non-anyonic phase
jumps can appear and to determine a way that allows to discriminate the different types of phase
jumps.

8.4 Experiments at fractional bulk filling factors

We now present some measurements performed at fractional bulk filling factors. Despite several
attempts, we most of time failed to observe oscillations in this case. In the N = 0 LL, we did not
succeed in making interference. In the N = 1 LL, our effort were partially spoilt by the existence of
a cross-talk between the QPCs preventing to have a control on which edge channel was interfering.

Nevertheless, we still managed to observe some resistance oscillations working at bulk filling
factor νb ' 7

3 that we now discuss.
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FIGURE 8.30: QPC transmissions at νb ' 7
3 . Evolution of diagonal conductance GD with the split-gate

voltages at back-gate voltage Vbg = 1.055 V corresponding to a bulk filling factor νb ' 7
3 . When the QPCs

are fully open (VQPC = 0.48 V) a fractional conductance plateaus GD ' 2.2 e2

h appears marking the formation
of the ν = 7

3 QH state in the bulk. The black arrows indicate the QPCs tuning for the experiments discussed
of Fig. 8.31. Measurements performed at 14 T.

Fig. 8.30 displays the QPC transmission plots measured at back-gate voltage Vbg = 1.055 V
where the ν = 7

3 state develops at 14 T. The formation of this state is marked by the emergence of
a GD ' 2.2 e2

h plateaus when the QPCs are open.
At this filling factor, the tuning of the QPCs is particularly difficult. Indeed, as we can see in

Fig 8.30, the transitions between the GD ' 2.2 e2

h and GD ' 2e2

h plateaus are particularly abrupt in
both QPCs and the pinching of ν = 7

3 state occurs in a voltage range of about 25 mV. This enhances
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the sensitivity of the QPCs to the electrostatic environment and to the charge noise. Likewise, the
transmission of the whole FP device is thus very hard to tune.

Despite these difficulties, we managed to observe some resistance oscillations at this filling
factor. Fig. 8.31.C presents the evolution of RD with the plunger-gate voltage Vpg measured after
tuning of the QPCs. Contrary to the experiments with integer edge channels, the background
resistance is not flat but it shows several resistance peaks on top of a 13 kΩ resistance background.

These peaks seem to appear by series of a few peaks approximately regularly spaced but the
average spacing changes with the plunger-gate voltage. For instance, it is about 150-200 mV for
−1 V < Vpg < 0 V whereas it is about 350 mV for −4 V < Vpg < −2.5 V. These peaks do not
originate from modifications of the QPC potential induced by the change of plunger-gate voltage:
we indeed checked that there was no significant cross-talk between the QPCs and the plunger gate
at this specific back-gate voltage.

When the resistance increases above the 13 kΩ background, for example on a resistance peak,
oscillations appear as highlighted by Fig. 8.31.A and Fig. 8.31.B. These oscillations vanish or be-
come undistinguishable from the noise when the average resistance decreases and this behaviour
was consistently observed for different experiments with similar QPCs tunings.
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FIGURE 8.31: Resistance oscillations at νb ' 7
3 . Evolution of the diagonal resistance RD with the plunger-

gate voltage Vpg. C, Full voltage range spanned. Resistance peaks appear on top of a 13 kΩ background.
Some oscillations emerge when the resistance increases on a peak. A and B, Zooms on limited voltage
ranges. Experiment performed at 14 T and at Vbg = 1.055 V.

The Fourier transform of the resistance oscillations, obtained after subtraction of the back-
ground including the peaks, is shown in Fig. 8.32. It confirms that oscillations appear on small
voltage ranges and that they emerge when the resistance increases on a peak. The evolution of the
frequency of the oscillations seems similar to that we observed previously: it decreases with Vpg.

We now discuss the origin of these oscillations. We first remark that the resistance background
is always larger than 13 kΩ and that the resistance peaks go up to 14.1 kΩ. Such values correspond
to conductances GD < 2e2

h that are apparently inconsistent with interference emerging from the
partial backscattering of the ν = 7

3 state. It seems that the latter is completely backscattered by
the QPCs and thus that the oscillations arise from a residual backscattering of inner integer edge
channel. This apparent inconsistency can be a measurement artefact coming from the existence



174 Chapter 8. Investigations of the fractional regime in graphene FP interferometers

of an out-of-phase signal and the imprecisions we have on the exact value of the resistance.2 It
would also explain why the conductance drops below 2e2

h when the QPCs are closed (see Fig. 8.30).
This scenario where the oscillations arise from a residual backscattering of ν = 2 edge channel

is also inconsistent with the Fourier transform in Fig. 8.32: the oscillations frequency does not
diverge when νpg > 1. It contrasts with what we observed for AB interference with the inner edge
channel interfering where the resistance oscillations appear when νpg = 1. On the contrary, if we
assume that interference arise from the ν = 7

3 state, we expect the oscillations to appear when
νpg ≈ 2 in agreement with what we observe experimentally.
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FIGURE 8.32: Fourier transform of resistance oscillations at νb ' 7
3 . Evolution of Fourier amplitude of

resistance oscillations displayed in Fig. 8.31.C after subtraction of a background which includes the resis-
tance peaks. The large Fourier amplitudes at low frequencies are due to the imperfect subtraction of the
background and mark the plunger-gate voltages where resistance peak occur.

It is also instructive to compare the frequency of the oscillations in Fig. 8.31 to the dispersions
measured in the different experiments of this chapter. Fig. 8.33 shows the evolution of the rescaled
frequencies with the shifted plunger-gate voltages for the different types of edge channel config-
urations studied with the data discussed in this section. For the experiments with νb = 7

3 , the
plunger-gate voltages were shifted assuming that the interfering edge channel is expelled outside
from the plunger gate when νpg = 2.

We observe that the data for the experiment at νb = 7
3 collapse on the plot drawn by the

experiments where the QPCs were tuned at fractional filling factors and the bulk was at integer
filling factor. It shows that the two types of measurements have common characteristics and
somehow supports the hypothesis that interference arise from the partial backscattering of the
ν = 7

3 state.

2When we take that the real part of the complex impedance, we obtain a background of 11.5 kΩ with peaks going
up to 12.4 kΩ. Alternatively, when we take the modulus of the impedance, the resistance background is about 12.5 kΩ
and the peaks reach 13.6 kΩ. Thus, there is an ambiguity on the exact value of the resistance and on the edge channel
configuration.
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FIGURE 8.33: Comparison of oscillations frequency. Evolution of the rescaled oscillations frequencies
fpg/B with the shifted plunger-gate voltages Ṽpg for the different types of interferometry experiments.
The data points obtained in the experiment where νb = 7

3 rescale with the data points corresponding to
experiments where the bulk is at integer filling factor and the QPCs at fractional fillings.

Unfortunately, we did not manage to measure a pyjama map for these oscillations. It prevents
us to assess whether these oscillations arise from AB interference or charging effects.

8.5 Conclusion and perspectives

In this chapter, we investigated FP interferometry with fractional QH edge channels in our graphene
devices. We discussed what are the typical signatures of FQH in graphene FP interferometers and
how they manifest in split-gated devices. We presented our attempts to make interferometry with
fractional edge channels both at integer and fractional filling factors.

In the first case, we tuned the QPCs at fractional fillings νQPC = 5
3 and νQPC = 2

3 states and
we unveiled a robust oscillation regime where AB interference present non-anyonic phase jumps
accompanied with an anomalously large magnetic field period. We investigated the characteristics
of gate induced oscillations in such regime and out-of-equilibrium transport in this regime and
found major differences with the results obtained with integer channels interfering at non-integer
bulk filling factor. The existence of such non-anyonic phase jumps has deep consequences for the
interpretation of interferometry experiments with fractional edge channels: it implies that anyonic
signatures in AB oscillations can be mimicked by other phenomena. They must be identified and
studied in the prospects of evidencing braiding statistics with QH FP interferometers.

We also presented our attempts to set interferometry experiments at fractional bulk factor νb =
7
3 where we observed a few resistance oscillations when trying to pinch the fractional edge modes.
Our study of the plunger-gate-voltage dispersion of the oscillation frequency provided indications
that interference observed indeed were arising from the pinching of the fractional edge modes.

FP interferometry in the fractional regime in graphene devices was also investigated in ref. [243]
by Y. Ronen and coworkers. In their high quality device, they observed the formation of fractional
QH states down to 3 T. Likewise at 8 T, they had robust fractional QH states developing in their
sample, with large gaps, and they managed to observe AB interference arising from integer edge
modes at νb = 8

3 and νb = 10
3 . Yet, they did not succeed in making interference with fractional

edge modes despite the superior quality of their device. The absence of interference with frac-
tional edge modes was attributed to an insufficient radio frequency filtering and to the relatively
high electron temperature at which their measurements were performed (60 mK).
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We nevertheless believe that their double graphite-gated devices are extremely promising in
the prospect of probing fractional statistics because of the very low level of disorder in this sample
and of the high screening environment provided by the graphite gates. Such a screening has
proven to be very important to access AB interference with fractional edge channels [151, 167].

We finally stress that the investigations of the FQH effect in graphene and of FP interferometry
would greatly benefit from shot noise measurements. It would allow to determine the effective
charge of quasiparticles at different filling factors and to determine the edge structures. Such
experiments in graphene are now accessible with gate-tunable QPCs.
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Conclusion and perspectives

In this PhD work, we successfully fabricated and investigated two new types of high mobility
encapsulated graphene devices aiming at probing and harvesting the topological properties of
quantum Hall phases: graphene devices on SrTiO3 where a helical quantum Hall phase appears
at charge neutrality and graphene devices with multiple split gates in series operated as quantum
Hall Fabry-Pérot interferometers.

Helical edge transport in graphene devices on SrTiO3

We developed a new strategy based on subtrate engineering to induce the formation of a quantum
Hall phase exhibiting helical edge transport at charge neutrality. For this purpose, we fabricated
encapsulated graphene devices with few nanometers thick bottom h-BN that we deposited on top
of high-k dielectric SrTiO3 substrates.

We evidenced that a robust helical edge transport appears in such devices at charge neutral-
ity and at intermediate magnetic fields. We demonstrated that this helical quantum Hall phase
emerges thanks to the screening provided by the substrate which allows to restore the predomi-
nance of the spin splitting terms over the valley splitting terms. We showed that the helical edge
transport survives over micron long distances and up to 110 K. We finally discussed its breakdown
with magnetic field and temperature.

Our work provides a new platform for the investigation of topological superconductivity and
the physics of Majorana modes in graphene heterostructures [98]. Alternatively, our substrate
engineering strategy also offers new perspectives to investigate the physics of highly correlated
electronic phases developing thanks to Coulomb interactions like, for instance, in twisted multi-
layer graphene devices.

Graphene quantum Hall Fabry-Pérot interferometers

We also fabricated encapsulated graphene devices equipped with a series of split gates used as
quantum point contacts and we demonstrated that these devices operate as quantum Hall Fabry-
Pérot interferometers.

In the integer regime, we investigated several aspects of the quantum coherent transport in
this device. On the first hand, we observed gate-tunable resistance oscillations in these devices.
We evidenced that they arise from Aharonov-Bohm effect and studied how the electrostatics of
the plunger-gate affect these oscillations. On the other hand, we probed the oscillations emerging
with the application of the dc-voltage bias, together with the coherence of the Aharonov-Bohm
oscillations in our devices, and we studied how both are affected by the dimensions of the inter-
ferometers. We showed that our experimental results are in remarkable agreement with the theory
of non-interacting theory of quantum Hall Fabry-Pérot interferometers.

We also investigated the existence of a peculiar regime transport, that was previously evi-
denced in GaAs/AlGaAs devices, where Aharonov-Bohm oscillations have a halved periodicity.
We demonstrated that such regime also exists in graphene devices. We showed that it appears
under similar conditions and that it can coexist with the standard Aharonov-Bohm regime in
graphene devices. We also evidenced that, in our small graphene interferometers, the frequencies
of the two types of oscillations are not commensurate.
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Besides, we derived a theoretical model describing the quantum transport in an interferome-
ter with three quantum point contacts in series and we applied it to unveil the coherence of the
transport in a double interferometer.

We finally discussed our attempts to make interference with fractional edge channels at frac-
tional filling factor and in an unusual configuration with the quantum point contacts at fractional
transmissions and the bulk at integer filling. In the latter case, we discovered an intriguing oscil-
lation regime where Aharonov-Bohm oscillations display phase jumps mimicking the signatures
of braiding statistics. The existence of such unexpected phase jumps has important consequences
in the prospect of probing anyons physics with quantum Hall Fabry-Pérot interferometers.

Our work demonstrates that graphene is a suitable and promising platform for the study of
quantum Hall Fabry-Pérot interferometers. It also shows the high tunability offered by graphene
split-gate devices which allows to investigate unusual experimental configurations and unveil
new phenomena. These advanced devices open up new opportunities to investigate the rich
physics of anyons in the fractional quantum Hall effect and exploit their topological properties.

Our investigations also open the path towards the development of a new generation of hybrid
mesoscopic devices where the coupling between quantum Hall effect and superconductivity is
probed via coherent transport measurements [254]. In particular, graphene Fabry-Pérot interfer-
ometers may be useful to investigate the superconducting correlations induced in quantum Hall
edge channels [194] or the coherence in chiral Andreev edge states [195]. They may also be used
to probe the topological excitations emerging in such hybrid devices [196, 197]. Efforts are under
way to develop new graphene quantum Hall interferometers with superconducting contacts in
our group.
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Chapter 9

Quantized resistance values for helical
edge transport

In this section, we focus on the helical edge transport regime and we derive the expressions giving
the values of resistance expected depending on the contact configuration.

Modelling by an electric circuit.

Along a free sample edge, the backscattering between the counterpropagating edge channels of
a single helical pair is fully suppressed because the two edge channels have opposite spin polar-
ization. The transmission of helical edge states is thus supposedly perfect along a free edge. In
contrast, in a metallic contact, the carriers lose their spin coherence and thus the two helical edge
channels are equilibrated. Therefore an helical edge section between two contacts can be seen as
single resistor of quantized resistance RQ = h

e2 as represented in Fig. 9.1.A.
Remembering that in real devices, there are two edges connecting the source and drain con-

tacts, we can calculate the resistance values expected in helical edge transport regime by modelling
the device by an equivalent electric circuit. This circuit is composed of two parallel branches of
RQ resistors in series symbolizing the two graphene edges between the source and drain contacts.
Each branch is composed of N resistors in series which represent the N helical edge sections be-
tween the source and drain contacts along the edge considered. An example of such modelling is
shown in Fig. 9.1.B.

Two-terminal resistance.

We now derive the formula giving the values of the two terminal resistance expected in the helical
edge transport regime depending on the contact configuration. We consider the general circuit
schematized in Fig. 9.2 which modelled any graphene Hall-bar device operating in the helical
edge transport regime. We first compute the two-terminal resistance R2t = U/I. The application
of Kirchhoff circuit laws gives:

I1 =
U

N1RQ
and I2 =

U
N2RQ

, (9.1)

thus we have:

I =
U
RQ

(
1

N1
+

1
N2

)
, (9.2)

and finally:

R2t =
U
I
=

h
e2

(
1

N1
+

1
N2

)−1

, (9.3)
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which is the formula giving the R2t depending on the contact configuration i.e. depending on the
number of helical edge sections between source and drain contacts along both edges.

⇄

A

NL=2  
NR=2 ⇄

A

RQ

RQ RQ

RQ

VL VR RQ = h/e2

VL VR

A

B

FIGURE 9.1: Equivalence between a contact configuration and an electric circuit in the helical edge trans-
port regime. A, A helical edge section between adjacent contacts, respectively at electric potential VL and
VR, can be modelled by a resistor RQ = h

e2 . B, A given contact configuration can then be modelled by an
electric circuit composed of two branches of RQ = h

e2 resistors in series. Each branch represents an edge of
the device between the source and drain contact. The numbers of resistor in each branch, NL and NR, are
respectively given by the numbers of helical edge sections on the left (L) edge and on the right (R) edge of
the device.

Four-terminal/Non-local resistance.

Using the same model electric circuit, we can also derive the values of resistance expected for any
non-local or four terminal configurations (which are equivalent in helical edge transport regime).
In Fig. 9.2, it corresponds to R4t = V/I. V can be easily expressed considering the voltage division
in the second circuit branch:

V = U
NV

N2
= U

NV

NI
, (9.4)

where NI is the number of helical edge sections between source and drain contacts along the edge
where the voltage probes are placed. Using this expression, we easily recover:

R4t =
V
I
=

U
I

NV

NI
= R2t

NV

NI
. (9.5)
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FIGURE 9.2: Generalized equivalent electric circuit .
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Chapter 10

Bias-induced oscillations with
asymmetric potential drop

Here, we derive the formula for the transmission of a QH-FP interferometer as a function of mag-
netic field and voltage bias using the scattering matrix formalism as in ref. [143], but taking into
account a possible asymmetric potential drop at the two QPCs.

The transmission of a non-interacting QH Fabry-Pérot interferometer reads:

t(ε, Φ) =
t1t2eiπ Φ

Φ0
+i Lε

h̄v

1− r′1r2e2iπ Φ
Φ0

+i 2Lε
h̄v

, (10.1)

where 2π Φ
Φ0

is the Aharonov-Bohm phase, 2Lε
h̄v the dynamic phase accumulated by electrons after

one winding in the cavity of length 2L, t1 and t2 the transmission amplitudes of QPC1 and QPC2
for right moving particles, r′1 the reflection amplitude for left-movers at QPC1 and r2 the reflection
amplitude for right-movers at QPC2.

The transmission probability is:

T(ε, Φ) =
| t1 |2| t2 |2

1+ | r′1r2 |2 −2 | r′1r2 | cos(2π Φ
Φ0

+ 2Lε
h̄v + ϕ)

, (10.2)

where ϕ is a constant phase factor which depends on the scattering phase of the QPCs. Given that
| r1,2 |2 = | r′1,2 |

2 = R1,2 and | t1,2 |2 = T1,2, we can rewrite (10.2) as

T(ε, Φ) =
T1T2

1 + R1R2 − 2
√

R1R2 cos(2π Φ
Φ0

+ 2Lε
h̄v + ϕ)

, (10.3)

In the weak backscattering limit, Ri � 1, and omitting the constant phase term ϕ, we obtain
at first order:

T(ε, Φ) = 1− R1 − R2 + 2
√

R1R2 cos
(

2π
Φ
Φ0

+
2Lε

h̄v

)
. (10.4)

We then consider a finite dc-voltage bias V applied between source and drain contacts. We
note q = −e < 0 the electron charge. Depending on the energy relaxation processes consecutive
to the current flow, and on the electrostatic coupling between the cavity, the back gate, the source
and the drain, the electrochemical potential in the cavity will adjust itself at a value intermediate
between that of the source and that of the drain. The right-movers coming from the source contact
have an energy qV+ = qV( 1

2 + x) = qVβ with respect to the chemical potential within FP cavity
and the left-movers coming from the drain have an energy qV− = −qV( 1

2 − x) = −qVβ. In these
expressions, x ∈ [− 1

2 , 1
2 ] is the voltage bias asymmetry factor. x = 0 corresponds to a symmetric

biasing with V+ = V
2 and V− = −V

2 , meaning that the potential drop is the same across both
QPCs. When x = 1

2 (or equivalently x = − 1
2 ) the bias is completely asymmetric, V+ = V and
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V− = 0 (or equivalently V+ = 0 and V− = −V), the potential drop only occurs at one QPC while
the FP cavity is at the potential of one of the two contacts.

At zero temperature, the current through the device is given by I = q
h

∫ qV+

qV− T(ε, Φ)dε. In the
weak backscattering limit, it writes:

I =
q
h

∫ qV+

qV−

[
1− R1 − R2 + 2

√
R1R2 cos

(
2π

Φ
Φ0

+
2Lε

h̄v

)]
dε = I0 + Iosc, (10.5)

where I0 = e2

h (1− R1 − R2)V is the constant part of the current and Iosc is the oscillating part of
the current which writes:

Iosc =
e2

h
2
√

R1R2
h̄v

2Lq

[
sin
(

2π
Φ
Φ0

+
2L
h̄v

qVβ

)
− sin

(
2π

Φ
Φ0
− 2L

h̄v
qVβ

)]
. (10.6)

The corresponding differential conductance is then:

dIosc

dV
= gosc

[
β cos

(
2π

Φ
Φ0
− 2L

h̄v
eVβ

)
+ β cos

(
2π

Φ
Φ0

+
2L
h̄v

eVβ

)]
, (10.7)

with gosc =
e2

h 2
√

R1R2 and restoring q = −e.
When the potential drop at the constrictions is symmetrical, that is, V+ = V/2 and V− =

−V/2, we have β = β = 1
2 (x = 0) and then:

dIosc

dV
= gosc cos

(
2π

Φ
Φ0

)
cos

(
2π

L
hv

eV
)

, (10.8)

leading to a checkerboard pattern with a period versus bias voltage which is equal to the ballistic
Thouless energy : e∆V = hv/L = ETh.

If the bias is completely asymmetrical, for example when V+ = V and V− = 0 with β = 1 and
β = 0 (x = 1

2 ), we obtain:
dIosc

dV
= gosc cos

(
2π

Φ
Φ0
− 2π

2L
hv

eV
)

, (10.9)

that draws a diagonal strip pattern with a period versus bias voltage (at fixed magnetic field)
which is equal to half the Thouless energy. Any intermediate value of x leads to a mixed pattern,
that is, a tilted checkerboard as observed in our experiment.

Note that the measured diagonal resistance δRD = −dIosc
dV ( h

e2 )
2 shows exactly the same oscilla-

tory features as the conductance in the weak backscattering limit. This latter expression is used for
simulations displayed in Fig. 5.20.A-C and Fig. 5.21.A-C that reproduce with a good agreement
the tilting of the checkerboard pattern observed experimentally.

We now derive the evolution of the Fourier transform amplitude of AB oscillations with the
bias. For this calculation, we note ϕAB = 2π Φ

Φ0
and ϕV = 2π LeV

hv . Eq. (10.7) can then be written as:

dIosc

dV
= gosc

[
β cos (ϕAB − 2βϕV) + β cos

(
ϕAB + 2βϕV

)]
, (10.10)

Using Euler formulas, one can write previous expression as:

dIosc

dV
=

gosc

2

(
eiϕAB(βe−2iβϕV + βe2iβϕV ) + c.c.

)
, (10.11)
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where c.c. denotes the complex conjugate term. Therefore, the Fourier transform of AB oscillations
reads as:

FFT(ϕAB) =
gosc

2

(
βe−2iβϕV + βe2iβϕV

)
, (10.12)

and its amplitude can be written as:

|FFT(ϕAB)|2 =
gosc2

4

[
β2 + β

2
+ 2ββ cos

(
2(β + β)ϕV

)]
, (10.13)

|FFT(ϕAB)|2 =
g2

osc
4

[
1
2
+ 2x2 + 2(

1
4
− x2) cos(2ϕV)

]
, (10.14)

|FFT(ϕAB)|2 =
g2

osc
4

[
1
2
+ 2x2 + 2(

1
4
− x2)(2 cos2(ϕV)− 1)

]
, (10.15)

|FFT(ϕAB)|2 =
g2

osc
4
[
4x2 sin2(ϕV) + cos2(ϕV)

]
. (10.16)

Restoring ϕV = 2π LeV
hv = 2π eV

ETh
, we finally get :

|FFT(ϕAB)| =
gosc

2

√
cos2(2π

eV
ETh

) + 4x2 sin2(2π
eV
ETh

) =
gosc

2
A( eV

ETh
). (10.17)

Thus the amplitude of AB interference oscillates with V with a period given by ETh.
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Chapter 11

Thermal averaging of oscillations
amplitude

The effect of temperature on the visibility of the Aharonov-Bohm oscillations has been calculated
by Chamon and coworkers [143] in the limit of weak backscattering and at finite bias voltage for
a symmetric potential drop at the two constrictions. This calculation considers only the thermal
averaging of the interference and does not introduce decoherence by inelastic scattering or energy
relaxation at finite bias.

Here we explain in details the calculation in the symmetric case and then extend the result
to the case of an asymmetric potential drop as observed in our device. In the following, we use
the expression of the transmission coefficient obtained in the previous section in the limit of weak
backscattering:

T(ε, Φ) = 1− R1 − R2 +
√

R1R2

(
ei2πΦ/Φ0 ei2Lε/h̄v + e−i2πΦ/Φ0 e−i2Lε/h̄v

)
. (11.1)

Symmetric potential drop

Assuming a symmetric potential drop at the two constrictions as in ref. [143], the current at finite
temperature T and finite voltage V is given by:

I(Φ, V, T) =
q
h

∫ +∞

−∞
T(ε, Φ)

(
1

1 + e(ε−
qV
2 )/kBT

− 1

1 + e(ε+
qV
2 )/kBT

)
dε, (11.2)

where q = −e < 0 is the electron charge. Using the expression of the transmission coefficient in
the limit of weak back-scattering, the current writes:

I(Φ, V, T) =
q2

h
(1− R1 − R2)V −

q
h

√
R1R2

(
ei2πΦ/Φ0 H(V, T) + e−i2πΦ/Φ0 H(V, T)∗

)
, (11.3)

where we introduce the function:

H(V, T) =
∫ +∞

−∞
ei2Lε/h̄v

(
1

1 + e(ε−
qV
2 )/kBT

− 1

1 + e(ε+
qV
2 )/kBT

)
dε. (11.4)

By changing the variable in the integral, it becomes:

H(V, T) =
(

ei qV
2 2L/h̄v − e−i qV

2 2L/h̄v
) ∫ +∞

−∞
ei2Lε/h̄v 1

1 + eε/kBT dε, (11.5)
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where the choice of a symmetric potential drop influences only the term in the parenthesis. The
calculation of the integral gives:

∫ +∞

−∞
ei2Lε/h̄v 1

1 + eε/kBT dε = −i2πkBT
+∞

∑
n=0

e−ωn2L/h̄v =
−i2πkBT

2 sinh(πkBT2L/h̄v)
, (11.6)

where ωn = (2n + 1)πkBT are the Matsubara frequencies, with n ∈ Z. In this case of a symmetric
potential drop, the function H(V, T) is real and writes:

H(V, T) = sin(
qVL
h̄v

)
2πkBT

sinh(πkBT2L/h̄v)
. (11.7)

The current finally writes:

I(Φ, V, T) = G0V − q
h

√
R1R2 2 cos(2π

Φ
Φ0

) sin(
qVL
h̄v

)
2πkBT

sinh(πkBT2L/h̄v)
, (11.8)

which is equivalent to equations (16) and (18) in ref. [143]. The differential conductance writes:

G(Φ, V, T) = G0 −
q2

h

√
R1R2 2 cos(2π

Φ
Φ0

) cos(
qVL
h̄v

)
πkBT2L/h̄v

sinh(πkBT2L/h̄v)
, (11.9)

which forms a checkerboard pattern as a function of field and voltage. At high temperature, the
amplitude of these oscillations decreases exponentially with a dependence of the form:

e−πkBT2L/h̄v = e−4π2kBT/ETh = e−T/T0 , (11.10)

where ETh = hv/L is the ballistic Thouless energy which corresponds to the oscillation period q∆V
versus bias voltage, and T0 is the fitting parameter of the exponential temperature dependence
which is related to the Thouless energy by:

4π2kBT0 = ETh = q∆V. (11.11)

Asymmetric potential drop

In case of an asymmetric potential drop at the two constrictions, the potential energy is qV+ =
βqV at the source contact and qV− = −β̄qV at the drain contact, with β = 1

2 + x and β̄ = 1
2 − x

with the parameter x ∈ [− 1
2 , 1

2 ] characterizing the asymmetry of the potential drop. The current
at finite temperature T and finite voltage V is then given by:

I(Φ, V, T) =
q
h

∫ +∞

−∞
T(ε, Φ)

(
1

1 + e(ε−βqV)/kBT
− 1

1 + e(ε+β̄qV)/kBT

)
dε. (11.12)

Following the same calculations as above now gives the function:

H(V, T) = eixqV2L/h̄v sin(
qVL
h̄v

)
2πkBT

sinh(πkBT2L/h̄v)
, (11.13)

which contains a complex phase factor. The current writes:

I(Φ, V, T) = G0V − q
h

√
R1R2 2 cos(2π

Φ
Φ0

+ x
qV2L

h̄v
) sin(

qVL
h̄v

)
2πkBT

sinh(πkBT2L/h̄v)
, (11.14)
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which is modified only by the term xqV2L/h̄v in the cosine function. The differential conductance
writes:

G(Φ, V, T) = G0 −
q2

h

√
R1R2 2 g(Φ, V)

πkBT2L/h̄v
sinh(πkBT2L/h̄v)

, (11.15)

where the oscillation term:

g(Φ, V) = cos(2π
Φ
Φ0

+ x
qV2L

h̄v
) cos(

qVL
h̄v

)− 2x sin(2π
Φ
Φ0

+ x
qV2L

h̄v
) sin(

qVL
h̄v

), (11.16)

gives a titled checkerboard pattern as a function of field and voltage for x 6= 0. Indeed, restoring
q = −e we have:

g(Φ, V) =
1
2

cos(2π
Φ
Φ0

+ (1− 2x)
LeV
h̄v

) +
1
2

cos(2π
Φ
Φ0
− (1 + 2x)

LeV
h̄v

)

+ x cos(2π
Φ
Φ0
− (1 + 2x)

LeV
h̄v

)− x cos(2π
Φ
Φ0

+ (1− 2x)
LeV
h̄v

),
(11.17)

such that:

g(Φ, V) = β cos(2π
Φ
Φ0
− 2πβ

2LeV
hv

) + β cos(2π
Φ
Φ0

+ 2πβ
2LeV

hv
). (11.18)

Comparing eq. (11.9) and eq. (11.16), we note that the temperature dependence is not affected
by the asymmetry of the potential drop at the constrictions. The fitting parameter T0 of the expo-
nential temperature dependence is still related to the ballistic Thouless energy by 4π2kBT0 = ETh.
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From the past fifteen years, the quality of the graphene devices has been improving. Major
breakthroughs, especially the use of h-BN flakes as substrates for graphene and the development
of Van der Waals heterostructures, have allowed to significantly lower the level of disorder in
the samples and have enabled the study of a wealth of mesoscopic phenomena. New fabrica-
tion processes are still being proposed nowadays. In this chapter, we present the fabrication of
high mobility graphene heterostructures used to study coherent transport in the QH regime. We
start by briefly reviewing the major improvements in the fabrication processes and we emphasize
the role of the underlying substrate. We then describe how we fabricate high mobility Van der
Waals heterostructures in our group and how we make QH FP interferometers based on these
heterostructures.

12.1 Review of the major breakthroughs in the fabrication of graphene
heterostructures

In the beginning, the graphene devices were fabricated by contacting directly graphene flakes
exfoliated on silicon substrate [8, 9]. The mobility of these devices was limited by the substrate
roughness, that favoured the appearance of corrugations in graphene [255], but also by the scat-
tering induced by the charged impurities trapped in silicon substrates [256, 257].

To get rid of these effects, suspended graphene samples were developed. They enabled the
first studies of FQH effect in graphene [258, 259] at the cost of some limitations on the device
geometries and functionalities.

The first major breakthrough which led to an improvement the mobility was the use of h-BN
as a substrate for graphene [32]. h-BN has several physical and chemical properties making it
the best substrate for the study of electrons transport in graphene. First, it is a layered material
which can be mechanically exfoliated to obtain atomically flat flakes and it has a honeycomb
crystallographic structure very similar to that of graphene. There is only a 1.7 % lattice mismatch
between the two materials and thus, graphene on h-BN has a reduced amount of mechanical
strains and corrugations compared to graphene deposited directly on silicon substrates. Second,
h-BN is an insulator with a large bandgap (' 5.97 eV), a moderate dielectric constant (εBN ranging
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from 2 to 4 [227]) and a rather large breakdown electric field (' 0.7 V.nm−1) making it a good
gate dielectric for graphene devices. Finally, h-BN is inert, free of dangling bonds and of charge
traps such that it does not affect the electronic transport properties of a graphene flake which is
deposited atop it.

Therefore, one can significantly improve the mobility of graphene devices by transferring the
graphene flakes on top of h-BN using polymer films. It was first demonstrated by C. Dean and
coworkers in 2010 who showed that the mobility of graphene devices could be improved by one
order of magnitude using h-BN flakes [32]. It allowed the investigation of the QHF [13] and the
FQHE [12] in details.

The transfer techniques were rapidly improved and adapted to deposit the h-BN/graphene
heterostructures on top of exfoliated graphite flakes used as back gates. It further improves the
mobility of graphene devices because the graphite flakes screen the charged impurities trapped
in the underlying substrate without generating additional corrugations in the h-BN/graphene
heterostructure (contrary to others metallic gates). This strategy was used to investigate delicate
phenomena associated with QH effect in h-BN/graphene heterostructures such as the physics of
the Hofstadter’s butterfly [14] and the physics of the composite fermions [76].

FIGURE 12.1: Schematics of the fabrication of a high mobility h-BN/graphene/h-BN heterostructures. A
PDMS (polydimethylsiloxane) stamp coated with a sticky PPC (polypropylene carbonate) layer is prelim-
inary used to detach a first h-BN flake from a silicon substrate. The stamp with the capping h-BN is then
approached to the graphene flake and brought into contact with it such that the h-BN flake covers fully
the graphene flake. Van der Waals interactions developed between h-BN and graphene allowing to detach
it from silicon substrate by removing the stamp. The overall h-BN/graphene heterostructure is finally de-
posited on a second h-BN layer by repeating the process and melting the polymers before removing the
stamp. Taken from ref. [33].

The second critical breakthrough was the development of encapsulated graphene devices i.e
h-BN/graphene/h-BN heterostructures (refered as stacks) in 2013 by Wang and coworkers [33].
The method consists in taking advantage of the strong Van der Waals interactions that developed
between 2D layered materials to encapsulate graphene between two h-BN flakes. It allows to
protect it against any external contaminations.

The fabrication of the heterostructure is depicted in Fig. 12.1. It begins by picking up a first
h-BN flake from the silicon substrate using a stamp with a sticky polymer. The stamp with the
h-BN flake is then approached to a graphene flake and the two flakes are brought in contact.
Thanks to the Van der Waals interactions developing between the flakes, the graphene binds to
the h-BN which allows to detach the graphene flake from its substrate. This operation is repeated
to pick-up a second h-BN flake. Once the h-BN/graphene/h-BN heterostructure is formed, it is
released either on a virgin substrate or on another flake (like a graphite one) by simply melting
the polymer on the stamp. During the fabrication of the heterostructures, the graphene flake is
not exposed to any polymer residues. It remains clean and only very few impurities are trapped
in the stack reducing significantly the amount of disorder in the sample.
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Since the h-BN/graphene interfaces are atomically flat, the encapsulation of graphene allows
to isolate it fully from its external environment [33]. Yet, it must be contacted to perform transport
measurements. That’s why, Wang and cowokers developed a specific process to connect graphene
to metallic leads without exposing it. This process is sketched in Fig. 12.2.

After the encapsulation, the stack is selectively plasma-etched to uncover the edges of graphene
at given places where a suitable metal combination is then deposited. It enables to make good one
dimensional electrical contacts without uncovering the whole graphene flake as demonstrated
by Wang et al. [33]. Thus, all along the lithographic processing, the graphene remains protected
against any organic contamination (polymers, solvents, resist residues, etc.) thanks to the capping
h-BN. It prevents the deterioration of its mobility.

This fabrication method is now the standard process followed to fabricate clean and high mo-
bility samples where the transport can be ballistic over tenths of microns [260]. Recent studies
nevertheless suggested that the mobility in this type of devices might still be intrinsically limited
by random strain fluctuations [261–263].

The capping h-BN has another advantage: it can also be used as a gate dielectric for local
metallic top gates. Therefore, graphene encapsulation also enables to define clean pn interfaces
with limited equilibration in the QH regime and which are suitable for QH interferometry [16,
210, 212].

A B

FIGURE 12.2: Edge contacts in encapsulated graphene heterostructures. A, Schematics of the fabrication
of edge contacts in high mobility encapsulated graphene devices. A h-BN/graphene/h-BN heterostructure
is fabricated, deposited on a substrate. Then, it is plasma-etched selectively to uncover graphene edges at
specific places defined with a lithography step (for example using a resist mask). The metal is deposited
on the edges of the heterostructure to make one dimensional contacts with the graphene along the exposed
edges. B, Scanning transmission electron micrograph of an edge contact in an encapsulated graphene het-
erostructure and corresponding false-coloured electron energy-loss image showing the one dimensional
interface between graphene and the metallic lead. Adapted from ref. [33].

Finally, more recent studies focused on the use of graphite flakes as top gates. It was demon-
strated that the use of such top gates significantly facilitates the formation of FQH states in graphene
[93, 187]. It also appeared that the devices with graphite top gates have a lower amount of dis-
order than the devices with metal-evaporated top gates and that a pre-patterning of the graphite
gates (using plasma-etching) even enhances the quality of the devices [186]. Likewise, Ronen and
coworkers demonstrated that the QPCs made from graphite flakes are particularly suitable for
FP interferometry [243]. It opens up new perspectives for the fabrication of very high mobility
devices dedicated to interferometry experiments with fractional edge states.
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12.2 Fabrication of graphene QH FP interferometers

We now detail how we make Van der Waals heterostructures in our group and how we process
them to fabricate graphene QH FP interferometers. All the processes presented in this section
can be directly used or adapted to fabricate other types of devices for transport measurements in
graphene. Especially, we use similar processes to make devices on SrTiO3 substrates (the speci-
ficities related to the fabrication of these devices are given in chapter 2).

12.2.1 Fabrication of high mobility encapsulated graphene heterostructures

Exfoliation of graphite and h-BN crystals

The graphene, graphite and h-BN flakes, which are the basic materials composing our devices,
are all fabricated via mechanical exfoliation [7, 264]. Macroscopic crystals (natural for the graphite
and synthesised for the h-BN [265]) are placed on an adhesive tape which is repeatedly folded and
unfolded on itself. It cleaves the crystals into thinner and thinner flakes homogeneously spread
on a small area of the tape as shown in Fig. 12.4.A. The latter is then put into contact with a
clean substrate, gently rubbed on it during a few minutes, and peeled off slowly such that cleaved
crystals remain stuck on the substrate (see Fig. 12.4.B). This method allows to obtain flakes with
various heights varying from monolayer flake to few microns thick crystals. We use doped silicon
substrate with a typical oxide layer of 285 nm for the exfoliations because the monolayer graphene
flakes have a sufficient contrast on such substrate [266].

A B

Si++/SiO2 
substrate

Graphite or 
graphene �ake

Adhesive tape

Graphite crystal

FIGURE 12.3: Graphene exfoliation. A, Exfoliation of graphene flakes from natural graphite crystals. The
adhesive tape is repeatedly folded on itself to cleave the crystals into thinner and thinner layers spread on
an uniform area of the tape. The latter is then put in contact with a clean substrate. B, After a gentle rubbing,
the adhesive tape is peeled off slowly from the substrate (red arrow) and some of the graphite/graphene
flakes remain stuck on it. Adapted from ref. [20].

Identifying suitable flakes

Once the exfoliated flakes are deposited on the substrate, they have to be sorted to identify which
ones are suitable to fabricate high mobility heterostructures. Indeed, the flakes must fulfil different
criteria.

The h-BN flakes have to be perfectly flat i.e. free from atomic terraces, wrinkles or cracks on
large areas (minimum 10× 20 µm2). They should also be clean and free from any glue residue
coming from the exfoliation process. Finally, their heights should typically range from 15 to 40
nm to fit with the technical constrains imposed by the nanofabrication process.

For the graphene flakes, they must be perfectly clean, not folded on their edges and they
should not show any sign of mechanical defects (holes, cracks, etc.). Crucially, we must check
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that the flakes are indeed monolayer graphene and not few layer graphene which have different
electronic properties [65]. The graphite flakes, used as back gates must also be clean, flat and
relatively thin with a thickness varying typically from 3 to 15 nm.

A first sorting is done by looking carefully at the flakes with a high quality optical microscope
equipped with an image processing software. The h-BN and graphite flakes which have the good
thicknesses can be easily recognised because they appear with a characteristic blue, respectively
violet, color on the substrate. The careful processing of the images of the flakes (by changing the
contrast, color balance, etc.) allows to distinguish most of the defects or of the contaminations on
the flakes and to see whether they are flat or not. The monolayer graphene flakes can be segregated
from few layers graphene flakes because the contrast of the flakes on the substrate is proportional
to the number of layers.

Once, the suitable flakes are selected, their cleanliness and flatness can be checked using atomic
force microscopy. It sometimes leads us to discard some flakes which looked clean and flat on
optical images. Ideally, this check has to be done for every flakes to make very high quality
samples.

20 µm

FIGURE 12.4: Graphene flakes. Optical image of graphite flakes. A graphene flake is encircled in white
dashed line. The contrast of the flakes increases with the number of layers enabling to distinguish mono-
layer graphene from few layer graphene or thin graphite flakes. Note that the color of graphite flakes on
the substrate turns from violet to blue above a certain number of layers.

0 25 50
Height (nm)A B

10 µm 10 µm

FIGURE 12.5: h-BN flake. A, Optical image and B, atomic force microscope topographic image of a clean
h-BN flake. The h-BN flakes of suitable thickness appear a characteristic blue color on silicon substrates.
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Assembling the heterostructures

Once suitable flakes have been found, they can be stacked using Van der Waals pick-up technique.
Here we present briefly the set up used and discuss how we proceed in our group.

Transfer set-up used :

To detach the flakes from a substrate, we must place the stamp above the substrate and bring
them into contact very precisely precisely at the position of the flake. To perform this operation,
we use a set-up, shown in Fig. 12.6, specially designed to make stacks. It is composed of three
main elements: an optical microscope, a mobile stage placed below the microscope and on which
the substrate can be fixed and, finally, a micro manipulator which holds the stamp and which is
installed on a separate platform.

The 3D position of the stage is controlled by piezoelectric motors. It allows to adjust the sub-
strate’s position with a precision in the micron range and to align precisely a flake under the
microscope objective. Likewise, the micro manipulator allows to adjust the 3D position of the
stamp - a glass slide with a solid PDMS dome covered by a sacrificial sticky PPC layer - above a
specific part of the substrate with a precision of few microns. Taking advantages of the control
we have on both the stamp and the stage positions, we can make a controlled contact between the
apex of the stamp and a chosen part of the substrate.

Optical microscope connected 
to a high quality live camera

Substrate with exfoliated �akes

Micromanipulator
XYZ stage with piezoelectric motors

controlled via a computer software and a joystick
Temperature controller

Stamp = glass slide with PDMS 
droplet covered with PPC �lm 

FIGURE 12.6: Transfer microscope. Photos of the transfer set-up used to assemble Van der Waals het-
erostructures. The set up is composed of a high quality optical microscope, a XYZ stage controlled by
piezoelectric motors and a micromanipulator where the stamp is placed. It enables to pick-up and stack
flakes with a precision of about one micron on the alignment of the flakes.

Pick-up method and assembling:

The contact between the stamp and the substrate is not directly done on the flake to pick-up itself
but rather in its close vicinity. Once it is established, the stamp is approached and pressed on the
substrate to expand progressively the contact area. When the limit of the contact area is only few
microns away from the flake, the temperature of the substrate is increased by heating the stage. It
results in an expansion of the PPC on the substrate which gradually covers the flake with a limited
risk of damaging it. An example is shown in Fig. 12.7. Once the flake is fully covered by the sticky
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polymer, we stop the heating and let the system cool down which tightens the PPC. It generates a
strong strain on the polymer film which allows to pick-up the flake when the contact is broken.

The process is repeated to pick-up the other flakes. Before each contact, the flake on the sub-
strate is carefully aligned with the heterostructure on the stamp to make sure that the latter is
exactly above the former. After the first contact and the temperature increase, the partial stack
covers the flake on the substrate and Van der Waals interactions develop between the two al-
lowing the pick-up. An example of an assembling of a h-BN/graphene/h-BN stack is shown in
Fig 12.8

When, all the flakes are stacked on the stamp, the heterostructure is released either on a virgin
substrate or on top of another flake by repeating the previous process and increasing the temper-
ature up to the melting point of the PPC.

Temperature increase

100 µm 100 µm 100 µm

FIGURE 12.7: Expansion of the PPC with the temperature. Evolution of the PPC front with the temperature
when the stamp is in contact with the substrate. Initially, the contact zone (blue-yellow circle) does not cover
the flake to pick-up (encircled in red). By increasing the temperature, the PPC expands on the substrate and
it smoothly covers the flake.

A B C

D E F

Top h-BN Graphene Bottom h-BN

Top h-BN Top h-BN + Graphene Top h-BN + Graphene + Bottom h-BN

32.57 µm

28.76 µm
51.61 µm

28.41 µm

3.16 µm

12.78 µm

20 µm 10 µm 20 µm

10 µm 10 µm 10 µm

FIGURE 12.8: Assembling of a h-BN/graphene/h-BN stack. A, B, C, Optical images of the flakes used to
make the heterostructure. D, E, F, Optical images of the heterostructure on the stamp after the successive
pick-ups. The final heterostructure released on the substrate is shown in Fig 12.10
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Annealing

During the fabrication of the heterostructure, bubbles can be trapped between the flakes or be-
tween the stack and the substrate. If they are located above or below the graphene, they can affect
the electronic transport in the final device. Thus, the device should be placed in a region of the
heterostructure which is large enough and (nearly) completely free of bubbles. To increase the
chances of finding such an area, the stack is annealed by heating it to a few hundreds of degrees
with a lamp in a vacuum chamber shown in Fig. 12.9.

Turbo 
pump

High power lamp

Sample 
holder 

Vacuum
chamber

A B

FIGURE 12.9: Annealing set-up. A, Overall set-up. The vacuum chamber is encircled in red. B, Zoom
on the vacuum chamber. The sample is fixed on a cooper plate in the chamber and placed under a high
power lamp for the annealing. The vacuum chamber is pumped with a turbo pump. The position of the
lamp above the chamber can be changed to heat either directly the sample or the underlying cooper plate
depending on the annealing conditions we want to achieve.

This annealing gives some mobility to the bubbles which can be expelled outside the stack
or which can coalesce at some given points of the heterostructure. Therefore, the annealing can
widen the bubble free regions in the stack as shown in Fig. 12.10. The results are unfortunately
uncertain because of the random motion of the bubbles. The annealing can have simply no effect
or sometimes it can even damage the heterostructure. Consequently, this step might be repeated
several times with different conditions (final temperature of the substrate, time of heating, time
of prior pumping, transient regime, etc.) before obtaining a suitable result. In our set-up, these
conditions are tuned using a homemade computer software which allows to change the instanta-
neous power applied on the lamp at a given time of the process.

12.2.2 Lithographic processing and fabrication of the QH FP interferometers

After annealing, the stack can be processed and transformed into a graphene QH FP interfer-
ometer. The nanofabrication process involves several electron beam lithography steps that are
discussed in next paragraphs. They are performed using a dedicated and commercial apparatus
working with a beam voltage of 80 kV and with an interferometric platform. It allows to design
features with a spatial resolution below a few tenths of nanometers and to align the structures
made during different steps with a precision better than a hundred of nanometers. Such perfor-
mances allow us to have a good reliability in the fabrication of the interferometers.
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A B

10 µm10 µm

FIGURE 12.10: Annealing of Van der Waals heterostructures. Images of a heterostructure before and after
annealing. A, Before annealing, many bubbles are trapped between the different flakes or between the
flakes and the substrate preventing from finding a bubble free area. B, After annealing, some of bubbles
have been released outside the stack and others have merged into larger bubbles leaving nearly bubble
free areas (the substrate is covered with PMMA resist to facilitate to localization of the graphene in the
heterostructure).

Markerfield and pads

To place precisely the gates and the contacts of the interferometer, the exact position of the graphene
in the substrate must be known very accurately. Thus, we make a first lithography step which con-
sists in metallizing a fields of square markers in the overall sample. They form an array and define
a set of Cartesian coordinates on the substrate which can be used to locate structures or flakes on
its surface. These marks are used to align the electron beam during the exposure. They are also use
to incorporate precisely optical images of the substrate and of the stack in the lithography design
software. It allows to place accurately the different structures in the interferometer design and to
insolate the resist at the good positions in other lithography steps. The precision in the positioning
of the structures is about two hundred nanometers and is mainly limited by the resolution of the
images.

In the same step, we usually define and deposit also metallic pads, with typical dimensions of
a few hundred of microns, which will be use for the wire bonding of the sample.

Contacts fabrication

The electrical contacts are made in a second lithography step. We begin by taking optical images of
heterostructure that are processed to enhance the visibility of the graphene and we integrate them
to the lithographic design. Thanks to them, we can place precisely the contacts above the graphene
edges in the lithography design. These contacts are separated in two sets and we purposely leave
a free area between both sets where the gates of the interferometers will be deposited on a later
step. We designed the lines connecting the contacts to the pads in the same time. The lithography
is performed and after the development, we etch the heterostructure directly in the PMMA lines
using a reactive ion etching machine with CHF3/O2 mixture. The etching time is adapted to etch
fully the capping h-BN and uncover the graphene edges without etching completely the bottom
h-BN (a prior AFM imaging of the individual flakes or the overall stack is required to know their
thickness). Immediately after the etching, a Cr/Au bilayer is deposited using high vacuum ebeam
evaporation to make good one dimensional electrical contacts [33].

Note that contrary to the original process proposed by Wang et al. [33], our contacts are made
in a single lithographic step and without the use of a hardened HSQ resist mask. It drastically
limits the risk to contaminate of the graphene edges which are exposed after etching and it allows
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to improve the reliability of the contact process. An example of such contact fabrication is shown
in Fig. 12.11.

On the other hand, the regularity and the reproducibly of the etching process are critical. The
etching rate must be known precisely to adapt the etching time finely for each heterostructure.
Any under-etching would result in absence of electrical contact while any over-etching would
lead to gate leakages in devices with a graphite back gate. Consequently, during this thesis, the
parameters of the etching program (gas flow, pressure, applied RF power, etc.) were carefully
optimized to improve the reliability of the contact processing.

A B C

10 µm 10 µm 10 µm

FIGURE 12.11: Contact lithography. A, Optical image of a device after development of the lithography
performed to define the contacts. B, Optical image of the device after plasma etching of the heterostructure
in the resist lines. Note the color difference between the lines passing only on capping h-BN (pink) and lines
passing on top of the complete stack (blue). It shows the fine tuning of the etching time which is sufficient
to uncover the graphene edges without etching the entire heterostructure. C, Optical image of the device
after deposition of a Cr/Au bilayer in the resist lines after etching.

QPCs and gates fabrication

The final step consists in depositing the different gates of the interferometer. The procedure is
similar to the one described in previous paragraph although there is no etching of the stack at this
step. Using images of the heterostructure, we place the QPCs in the lithography design in the free
space between the two sets of contacts.

A B

10 µm10 µm

FIGURE 12.12: Gate lithography. A, Optical image of a device after development of the lithography per-
formed to define the gates. B, Optical image of the device after deposition of the palladium gates in the
resist lines.

The size of the gap is chosen depending on the type of device : typically 100 to 200 nm for
the devices with a SiO2 back gate and 20 to 60 nm for the devices with a graphite back gate. The
position of the plunger gates is more carefully adjusted above the edges of the graphene flake: we



12.2. Fabrication of graphene QH FP interferometers 203

make sure that their extremity goes only a few hundreds of nanometers beyond the edges. The
shape and the position of the gate electrodes can be changed to cover bubbles trapped nearby the
graphene edges and to limit their effect on the electron transport in the graphene. After exposure
and development, the gates are directly deposited atop the capping h-BN by ebeam evaporation
in the resist lines. An example of such gate fabrication is shown in Fig. 12.12.

The choice of the metal used to make the gates is crucial: it determines the resolution of the
gaps we can achieve and the reproducibility we have on it. After different tests, we decided to use
palladium rather than gold to make our electrostatic gates. This metal has different advantages. It
sticks well to h-BN flakes, even without an adhesion layer, and it does not oxidise. Importantly, the
palladium grains formed during the ebeam evaporation are small compared to that of other metal
like gold. They have a typical diameter of 10-20 nm, and they form a continuous film which allows
to have clean and well-defined gate edges as shown in Fig. 12.13. This helps limiting equilibration
at the pn junctions. This reduced granularity also allows to obtain QPC gaps below 60 nm with
a limited risk of having a metal particle at the apex of one electrode. The latter would spoil the
operation of the QPC.

100 nm

FIGURE 12.13: Palladium QPC. Scanning electron micrograph of a palladium QPC. The gap between the
electrodes is 20 nm. The metal has a reduced granularity and forms a nearly continuous film. The edges of
the electrodes are clean and clearly defined limiting equilibration.
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