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Abstract
Mixtures of experts (MoE) models are a ubiquitous tool for the analysis of heterogeneous data across
many fields including statistics, bioinformatics, pattern recognition, economics, and medicine, among
many others. They provide conditional constructions for regression in which the mixture weights, along
with the component densities, are explained by the predictors, allowing for flexibility in the modeling
of data arising from complex data generating processes. In this thesis, we study the approximation
capabilities and model estimation and selection properties, of a wide variety of mixture distributions,
with a particular focus on a rich family of MoE models in a high-dimensional setting, including MoE
models with Gaussian experts and softmax or Gaussian gating functions, which are the most popular
choices and are powerful tools for modeling complex non-linear relationships between responses and
predictors that arise from different subpopulations. We consider both the theoretical statistical and
methodological aspects, and the numerical tools, related to the conception of these models, as well as
to their data-driven estimation and model selection.

More precisely, in this thesis, we first review the universal approximation properties of classical
mixture distributions in order to prepare the theoretical framework and to clarify some unclear and
vague statements in the literature, before considering them in the context of MoE models. In par-
ticular, we prove that, to an arbitrary degree of accuracy, location-scale mixtures of a continuous
probability density function (PDF) can approximate any continuous PDF, uniformly, on a compact
set; and location-scale mixtures of an essentially-bounded PDF can approximate any PDF in Lebesgue
spaces. Then, after improving upon approximation results in the context of unconditional mixture dis-
tributions, we study the universal approximation capabilities of MoE models in a variety of contexts,
including conditional density approximation and approximate Bayesian computation (ABC). Given
input and output variables are both compactly supported, we provide denseness results in Lebesgue
spaces for conditional PDFs. Moreover, we prove that the quasi-posterior distribution resulting from
ABC with surrogate posteriors built from finite Gaussian mixtures using an inverse regression ap-
proach, converges to the true one, under standard conditions. Finally, we establish non-asymptotic
risk bounds that take the form of weak oracle inequalities, provided that lower bounds on the penalties
hold true, in high-dimensional regression scenarios for a variety of MoE regression models, includ-
ing Gaussian-gated and softmax-gated Gaussian MoE, based on an inverse regression strategy or a
Lasso penalization, respectively. In particular, our oracle inequalities show that the performance in
Jensen–Kullback–Leibler type loss of our penalized maximum likelihood estimators are roughly com-
parable to that of oracle models if we take large enough the constants in front of the penalties, whose
forms are only known up to multiplicative constants and proportional to the dimensions of models.
Such theoretical justifications of the penalty shapes motivate us to make use of the slope heuristic
criterion to select several hyperparameters, including the number of mixture components, the amount
of sparsity (the coefficients and ranks sparsity levels), the degree of polynomial mean functions, and
the potential hidden block-diagonal structures of the covariance matrices of the multivariate predictor
or response variable. To support our theoretical results and the statistical study of non-asymptotic
model selection in a variety of MoE models, we perform numerical studies by considering simulated
and real data, which highlight the performance of our finite-sample oracle inequality results.

Keywords: Mixture of experts; mixture models; universal approximation; penalized maximum
likelihood; feature selection; non-asymptotic model selection; high-dimensional statistics; Lasso; regu-
larization; inverse regression; Wasserstein distance; EM algorithm; MM algorithm; proximal-Newton;
coordinate ascent; clustering; classification; prediction; approximate Bayesian computation.
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individuel” or “CSI”), Professor Mustapha Lebbah and Professor Francesco Amoroso, for several
helpful comments concerning on the progression of my Ph.D. and the working environment during the
preparation of this thesis.

Furthermore, a very special thanks to Professor Eric Ricard for his kindness and support as a
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1.1 Mixture of experts modelling framework

Mixture of experts (MoE) models, originally introduced as neural networks (NNs) in Jacobs et al.
(1991) and Jordan & Jacobs (1994), where they were used to model complex and heterogeneous data
generating processes (DGPs). The main idea of MoE is a divide-and-conquer principle that proposes
dividing a complex problem into a set of simpler subproblems and then one or more specialized
problem-solving tools, or experts, are assigned to each of the subproblems. A schematic diagram of
an MoE model as a NN is provided in Figure 1.1.
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Chapter 1. Introduction

MoE are flexible models that generalize the classical finite mixture models as well as finite mixtures
of regression models (McLachlan & Peel, 2000, Section 5.13), and are widely used in statistics and
machine learning, thanks to their flexibility and the abundance of applicable statistical estimation
and model selection tools. Their flexibility comes from allowing the mixture weights (or the gating
functions, gating networks) to depend on the explanatory variables, along with the component densities
(or experts). This permits the modeling of data arising from more complex data generating processes
than the classical finite mixtures and finite mixtures of regression models, whose mixing parameters are
independent of the covariates. Due to their flexibility, MoE can be used in many statistical problems,
namely to cluster or classify data, to estimate conditional densities, to conduct regression analysis and
to analyze regression outcomes. Detailed reviews on practical and theoretical aspects of MoE models
can be found in Yuksel et al. (2012), Masoudnia & Ebrahimpour (2014) and Nguyen & Chamroukhi
(2018).

Input 
 

ExpertKExpertk Expert1

Gating 
network

Gate1

Gatek

GateK

Output 

Figure 1.1: Schematic diagram of the NN architecture of a K-component MoE model.

Statistically, we consider a regression framework and aim at capturing the potential nonlinear
relationship between a multivariate response Y and a vector of covariates X. Here and subsequently,(
X[n],Y[n]

)
:= (Xi,Yi)i∈[n], [n] = {1, . . . , n} , n ∈ N?, denotes a random sample, and x and y stands

for the observed values of the random variables X and Y, respectively. We assume that the response
variable Y depends on the explanatory variable X through a regression-type model. The explana-
tory variable goes by different names, such as covariate, predictor, independent variable, feature,
or sometimes just variable. The response variable is often called the output or dependent variable.
Throughout this thesis, we will use all of these terms interchangeably.

Firstly, we focus on a natural starting point for setting up a more probabilistic MoE model, of-
ten called “direct application” of mixture modelling; see Titterington et al., 1985 for more details.
Then, we will specify an alternative perspective on mixture modelling in Sections 1.1.1 and 1.1.2
that provide an “analytic” view, complementary to this “synthetic” or “generative” view. Regarding
the former perspective, suppose that the population from which we are sampling is heterogeneous,
i.e., given an input X = x, there are multiple groups (that can be interpreted as clusters), indexed
by k ∈ [K], present in the population in proportions gk (x;ω) , k ∈ [K], where ω is some parame-

2



1.1. Mixture of experts modelling framework

ter vector parametrising the input-dependent proportions function gk (x; ·), with gk (x;ω) > 0, and∑K
k=1 gk (x;ω) = 1. In this way, there is a latent unobserved random variable representation of the

mixture model (usually called latent or allocation variables), involving the latent cluster membership
of each observation, denoted by Z ∈ [K],K ∈ N?, where Z = k if observation y given the input x
belongs to cluster k for k ∈ [K]. Next, the conditional relationship between Z and the input X can
be characterized by

p (Z = k|X = x) = gk (x;ω) . (1.1.1)

Then, we can characterize the relationship between the output y and the input X by

p (y|X = x, Z = k) = φk (y;θk (x)) , (1.1.2)

where θk (x) is some parameter vector and, given an input x, φk (·;θk (x)) is a probability density
function (PDF). We can imagine that given an input X = x, the observed output y, drawn from the
population, is generated in two step: firstly, the group Z is drawn from a multinomial distribution with
a single trial and probabilities equal to g (x;ω) = (gk (x;ω))k∈[K]; and secondly, given X = x, Z = k,
the output y is drawn from φk (y;θk (x)).

Note that this two-stage sampling gives exactly the same models in analytic views, see (1.1.4) and
(1.1.15) for more details, for the conditional distribution of y|x. Indeed, via characterizations (1.1.1)
and (1.1.2), and by using the law of total probability, we can characterize the marginal relationship
between the response and the input, unconditional on Z, via the expression

p (y|X = x) =

K∑
k=1

p (y|X = x, Z = k) p (Z = k|X = x)

=
K∑
k=1

gk (x;ω)φk (y;θk (x)) =: sψ(y|x), (1.1.3)

where ψ = (ω,θ) is the vector of all parameter elements that are required in characterizing (1.1.3),
see Figure 1.2 for more details.

For a better comparison between a standard MoE regression model (in which all model parameters
are functions of covariates) and the special cases, where some of the model parameters do not depend
on covariates, the four models in the MoE framework are presented in Figure 1.3; see also Fruhwirth-
Schnatter et al. (2019, Chapter 12) for more detail. In the context of regression, MoE models with
Gaussian experts and softmax or Gaussian gating functions are the most popular choices and are pow-
erful tools for modeling more complex non-linear relationships between responses and predictors that
arise from different subpopulations. This is largely studied because of their universal approximation
properties, see Chapter 2 for more details, which have been extensively studied for not only finite
mixture models (Genovese & Wasserman, 2000, Rakhlin et al., 2005, Nguyen, 2013, Ho et al., 2016a,b,
Nguyen et al., 2020d,b) but also conditional densities of MoE models (Jiang & Tanner, 1999a, Norets
et al., 2010, Nguyen et al., 2016, Ho et al., 2019, Nguyen et al., 2019, 2021a).

More precisely, Chapter 2 (see also Section 1.4) provides a detailed exposition of these universal
approximation properties. In particular, we prove that, to an arbitrary degree of accuracy, location-
scale mixtures of a continuous PDF can approximate any continuous PDF, uniformly, on a compact
set; and for any finite p ≥ 1, location-scale mixtures of an essentially-bounded PDF can approximate
any PDF, in the Lp norm. Moreover, given input and output variables that are both compactly
supported, we demonstrate the richness of the class of MoE models by proving denseness results in
Lebesgue spaces for conditional PDFs.

In this thesis, we wish to firstly investigate MoE models with Gaussian gating functions for clus-
tering and regression, first introduced by Xu et al. (1995), which extended the original MoE models
of Jacobs et al. (1991). Based on the works of Nguyen et al. (2021c,b), we refer to these models
as Gaussian-gated localized MoE (GLoME) models and block-diagonal covariance for localized mix-
ture of experts (BLoME) models, to be developed in Chapter 3. It is worth pointing out that the
BLoME models generalize GLoME models by utilizing a parsimonious covariance structure, via block-
diagonal structures for covariance matrices in the Gaussian experts. It is also interesting to point out
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Input 
 

ExpertKExpertk Expert1

Gating 
network

Gate1

Gatek

GateK

Output 
 

Step 2: Sample , 

 

"Analytic" views: 

 
 

Latent or allocation variables :
 

, 

 if the observation  given   

 
"Generative'' view: two-stage sampling 

 
Step 1: Sample , 

 

Figure 1.2: Analytic and generative views of a K-component MoE model.
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(a) Mixture model
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(b) MoE regression model
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(c) Simple MoE regression model

ω Z x

yθ

n

(d) Standard MoE regression model

Figure 1.3: Based on the graphical model representation, namely the presence or absence of edges
between the covariates x and the latent variable Z and response variable y, there are four special cases
of MoE regression models. More precisely, in Figure 1.3a, p(y, Z|x) = p(y|Z)p(Z); in Figure 1.3b,
p(y, Z|x) = p(y|x, Z)p(Z); in Figure 1.3c, p(y, Z|x) = p(y|Z)p(Z|x); and in Figure 1.3d, p(y, Z|x) =
p(y|x, Z)p(Z|x). This figure is inspired from Fruhwirth-Schnatter et al. (2019, Chapter 12, Fig. 12.2).

that supervised Gaussian locally-linear mapping (GLLiM) and block-diagonal covariance for Gaussian
locally-linear mapping (BLLiM) models in Deleforge et al. (2015c) and Devijver et al. (2017) are affine
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1.1. Mixture of experts modelling framework

instances of GLoME and BLoME models, respectively, where linear combination of bounded functions
are considered instead of affine for mean functions of Gaussian experts.

Next, Chapter 4 is devoted to the study of MoE models with softmax gating functions based
on the idea of the original MoE models of Jacobs et al. (1991). In Chapter 4, we obtain what
will be referred to as linear-combination-of-bounded-functions softmax-gated block-diagonal mixture
of experts (LinBoSGaBloME) regression models. In particular, we simply refer to affine instances
of LinBoSGaBloME models as softmax-gated mixture of experts (SGaME) regression models. One
of the main drawbacks of LinBoSGaBloME models is the difficulty of applying an EM algorithm,
which requires an internal iterative numerical optimization procedure (e.g., MM algorithm, iteratively-
reweighted least squares, proximal Newton-type procedure, Newton-Raphson algorithm) to update the
softmax parameters. GLoME and BLoME models overcome this problem by using the Gaussian gating
network that enables us to link GLoME with finite mixtures of Gaussian models. Given its mixture
model foundation, the maximization with respect to the parameters of the gating network can be solved
analytically within the EM algorithm framework, which decreases the computational complexity of
the estimation routine. Furthermore, we then can also make use of well established theoretical results
for finite mixture models.

In spite of the fact that the MoE nomenclature has its origins in the machine learning literature
(Jacobs et al., 1991), SGaME models have been broadly applied to numerous areas of science, technol-
ogy and business, for the tasks of classification, clustering, and regression: switching regression models
(Quandt, 1972), concomitant variable latent class models (Dayton & Macready, 1988), latent class
regression models (DeSarbo & Cron, 1988), mixed models (Wang et al., 1996), functional data analysis
and signal processing (Chamroukhi et al., 2009, Samé et al., 2011, Chamroukhi et al., 2013a), finite
smooth mixtures (Li et al., 2011), image classification and semantic segmentation tasks (Wang et al.,
2020), modeling neural connectivity Bock & Fine (2014), segmentation of spectral images (Cohen &
Le Pennec, 2014), climatic change modeling (Nguyen & McLachlan, 2014), phone activity recognition
(Lee & Cho, 2014), heterogeneity modeling in neural connectivity data (Eavani et al., 2016), rein-
forcement learning (He et al., 2016), the tasks of language modeling and machine translation (Shazeer
et al., 2017), multi-modal deep generative models on different sets of modalities including a challenging
image-language dataset (Shi et al., 2019), anomaly detection (Yu et al., 2021), just to name a few.

The important point to note here is that both GLoME and BLoME models have been also thor-
oughly studied in the statistics and machine learning literatures and their forms appear in many dif-
ferent guises, including localized MoE (Ramamurti & Ghosh, 1996, 1998, Moerland, 1999, Bouchard,
2003), normalized Gaussian networks (Sato & Ishii, 2000), MoE modeling of priors in Bayesian non-
parametric regression (Norets & Pelenis, 2014, Norets & Pati, 2017), cluster-weighted modeling (In-
grassia et al., 2012), GLLiM in inverse regression (Deleforge et al., 2015c), BLLiM model (Devijver
et al., 2017), deep mixture of linear inverse regressions (Lathuilière et al., 2017), hierarchical Gaussian
locally linear mapping structured mixture (HGLLiM) model (Tu et al., 2019), multiple-output Gaus-
sian gated mixture of linear experts (Nguyen et al., 2019), and approximate Bayesian computation
with surrogate posteriors using GLLiM (Forbes et al., 2021).

From now on, we are interested in estimating the law of the random variable Y conditionally on
X. The following assumptions will be needed throughout the chapter. We assume that the covariates
X are independent but not necessarily identically distributed. The assumptions on the responses Y
are stronger: conditional on X[n], the Yi, i ∈ [n], are independent, and each Y follows a law with true
(but unknown) PDF s0 (·|X = x), which is approximated via MoE models.

1.1.1 GLoME and BLoME models

Motivated by an inverse regression framework where the role of predictor and response variables should
be exchanged such that Y = (Yj)j∈[L] , [L] = {1, . . . , L}, becomes the input and X = (Xj)j∈[D] plays

the role of a multivariate output, we consider the following GLoME model, defined by (1.1.4) (see also
in Nguyen et al., 2021c). This construction goes back to the work of Li (1991), Deleforge et al. (2015c),
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Chapter 1. Introduction

and Perthame et al. (2018). In this way, we define its corresponding conditional PDF as follows:

sψK,d(x|y) =
K∑
k=1

gk (y;ω)φD (x;υk,d(y),Σk) , (1.1.4)

gk (y;ω) =
πkφL (y; ck,Γk)∑K
j=1 πjφL (y; cj ,Γj)

· (1.1.5)

Here, gk(·;ω) and φD (·;υk,d(·),Σk), k ∈ [K], K ∈ N?, d ∈ N?, are called Gaussian gating functions
(networks) and Gaussian experts, respectively. Furthermore, we decompose the parameters of the
model as follows: ψK,d = (ω,υd,Σ) ∈ ΩK×ΥK,d×VK =: ΨK,d, ω = (π, c,Γ) ∈ (ΠK−1 ×CK × V ′K) =:
ΩK , π = (πk)k∈[K], c = (ck)k∈[K], Γ = (Γk)k∈[K], υd = (υk,d)k∈[K] ∈ ΥK,d, and Σ = (Σk)k∈[K] ∈ VK .

Note that ΠK−1 =
{

(πk)k∈[K] ∈ (R+)
K
,
∑K

k=1 πk = 1
}

is a K − 1 dimensional probability simplex,

CK is a set of K-tuples of mean vectors of size L×1, V ′K is a set of K-tuples of elements in S++
L , where

S++
L denotes the collection of symmetric positive definite matrices on RL, ΥK,d is a set of K-tuples

of mean functions from RL to RD depending on a degree d (e.g., a degree of polynomials), and VK

is a set containing K-tuples from S++
D .

Recall that GLLiM and BLLiM models are affine instances of GLoME and BLoME models and
are especially useful for high-dimensional regression data since there exist link functions between the
inverse and forward conditional density, see Figure 1.4 for comprehensive classification and nomencla-
ture of standard MoE regression models with Gaussian gating networks. Note that the principle of
inverse regression is only useful when the functions υk,d(y) are linear, because there is then no explicit
way to express the law of Y|X from that of X|Y for higher degree of polynomials. However, to have
more consistent notations with the previous affine results of GLLiM, BLLiM models from Deleforge
et al. (2015c), Devijver et al. (2017), we decide to use the inverse regression frameworks instead of the
forward one.

Next, we describe a characterization of GLLiM and BLLiM models. A GLLiM model, as originally
introduced in Deleforge et al. (2015c), is used to capture the nonlinear relationship between the
response and the set of covariates in high-dimensional regression data, typically in the case when
D � L, by the K locally affine mappings:

Y =
K∑
k=1

I (Z = k) (A∗kX + b∗k + E∗k) . (1.1.6)

Here, I is an indicator function and Z is a latent variable capturing a cluster relationship, such that
Z = k if Y originates from cluster k ∈ [K]. Cluster specific affine transformations are defined by
matrices A∗k ∈ RL×D and vectors b∗k ∈ RL. Furthermore, E∗k are error terms capturing both the
reconstruction error due to the local affine approximations and the observation noise in RL.

Following the common assumption that E∗k is a zero-mean Gaussian vector with covariance matrix
Σ∗k ∈ RL×L, it holds that

p (Y = y|X = x, Z = k;ψ∗K) = φL (y; A∗kx + b∗k,Σ
∗
k) , (1.1.7)

where we denote by ψ∗K the vector of model parameters and φL is the PDF of a Gaussian distribution
of dimension L. In order to enforce the affine transformations to be local, X is defined as a mixture
of K Gaussian components as follows:

p (X = x|Z = k;ψ∗K) = φD (x; c∗k,Γ
∗
k) , p (Z = k;ψ∗k) = π∗k, (1.1.8)

where c∗k ∈ RD,Γ∗k ∈ RD×D, π∗ = (π∗k)k∈[K] ∈ Π∗K−1, and Π∗K−1 is the K− 1 dimensional probability
simplex. Then, according to formulas for conditional multivariate Gaussian variables and the following
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Gaussian gating 
networks

Gaussian expert 
 means 

1-block-diagonal
covariance matrices

Affine

Multi-block-diagonal
covariance matrices

GLLiM BLLiM

1-block-diagonal
covariance matrices

Multi-block-diagonal
covariance matrices

GLoME BLoME

Linear combination
of  

bounded functions 

GLLiM: Gaussian Locally-Linear Mapping

BLLiM: Block-diagonal covariance Gaussian Locally-Linear Mapping

GLoME: Gaussian-gated Localized MoE

BLoME: Block-diagonal covariance Gaussian-gated Localized MoE

Figure 1.4: A comprehensive classification and nomenclature of standard MoE regression models with
Gaussian gating networks.

hierarchical decomposition

p (Y = y,X = x;ψ∗K) =

K∑
k=1

p (Y = y|X = x, Z = k;ψ∗K) p (X = x|Z = k;ψ∗K) p (Z = k;ψ∗K) ,

=
K∑
k=1

π∗kφD (x; c∗k,Γ
∗
k)φL (y; A∗kx + b∗k,Σ

∗
k) ,

we obtain the following forward conditional density (Deleforge et al., 2015c):

p (Y = y|X = x;ψ∗K) =
K∑
k=1

π∗kφD (x; c∗k,Γ
∗
k)∑K

j=1 π
∗
jφD

(
x; c∗j ,Γ

∗
j

)φL (y; A∗kx + b∗k,Σ
∗
k) , (1.1.9)

where ψ∗K = (π∗,θ∗K) ∈ ΠK−1 ×Θ∗K =: Ψ∗K . Here, θ∗K = (c∗k,Γ
∗
k,A

∗
k,b

∗
k,Σ

∗
k)k∈[K] and

Θ∗K =
(
RD × S++

D (R)× RL×D × RL × S++
L (R)

)K
.

Without assuming anything further on the structure of the parameters, the dimension of the model
(denoted by dim (·)), is defined as the total number of parameters that have to be estimated, as follows:

dim (Ψ∗K) = K

(
1 +D(L+ 1) +

D(D + 1)

2
+
L(L+ 1)

2
+ L

)
− 1.
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Chapter 1. Introduction

It is worth mentioning that dim (ΨK) can be very large compared to the sample size (see, e.g.,
Deleforge et al., 2015c, Devijver et al., 2017, Perthame et al., 2018 for more details in their real data
sets) whenever D is large and D � L. Furthermore, it is more realistic to make assumptions on the
residual covariance matrices Σ∗k of error vectors E∗k rather than on Γ∗k (cf. Deleforge et al., 2015c,
Section 3). This justifies the use of the inverse regression trick from Deleforge et al. (2015c), which
leads a drastic reduction in the number of parameters to be estimated.

More specifically, in (1.1.9), the roles of input and response variables should be exchanged such
that Y becomes the covariates and X plays the role of the multivariate response. Therefore, its
corresponding inverse conditional density is defined as a Gaussian locally-linear mapping (GLLiM)
model, based on the previous hierarchical Gaussian mixture model, as follows:

p (X = x|Y = y, Z = k;ψK) = φD (x; Aky + bk,Σk) , (1.1.10)

p (Y = y|Z = k;ψK) = φL (y; ck,Γk) , p (Z = k;ψk) = πk, (1.1.11)

p (X = x|Y = y;ψK) =

K∑
k=1

πkφL (y; ck,Γk)∑K
j=1 πjφL (y; cj ,Γj)

φD (x; Aky + bk,Σk) , (1.1.12)

where Σk is aD×D covariance structure (usually diagonal, chosen to reduce the number of parameters)
automatically learnt from data, and ψK is the set of parameters, denoted by ψK = (π,θK) ∈ ΠK−1×
ΘK =: ΨK . An intriguing feature of the GLLiM model is described in Lemma 1.1.1, which is proved
in Section 3.2.5.1.

Lemma 1.1.1. The parameter ψ∗K in the forward conditional PDF, defined in (1.1.9), can then be
deduced from ψK in (1.1.12) via the following one-to-one correspondence:

θK =


ck
Γk
Ak

bk
Σk


k∈[K]

7→


c∗k
Γ∗k
A∗k
b∗k
Σ∗k


k∈[K]

=


Akck + bk

Σk + AkΓkA
>
k

Σ∗kA
>
k Σ−1

k

Σ∗k(Γ
−1
k ck −A>k Σ−1

k bk)(
Γ−1
k + A>k Σ−1

k Ak

)−1


k∈[K]

∈ Θ∗K , (1.1.13)

with the note that π∗ ≡ π.

We wish to provide some simulated examples of GLoME regression models on 1-dimensional data
sets, that is, with L = D = 1. We construct simulated data sets following two scenarios: a well-
specified (WS) case in which the true forward conditional density s∗0, which can be estimated via an
affine Gaussian mean instance of GLoME, namely GLLiM model, based on inverse conditional PDF
sψK,d using inverse regression strategy, belongs to the class of proposed models:

s∗0(y|x) =
φ(x; 0.2, 0.1)

φ(x; 0.2, 0.1) + φ(x; 0.8, 0.15)
φ(y;−5x+ 2, 0.09)

+
φ(x; 0.8, 0.15)

φ(x; 0.2, 0.1) + φ(x; 0.8, 0.15)
φ(y; 0.1x, 0.09),

and a misspecified (MS) case, whereupon such an assumption is not true:

s∗0(y|x) =
φ(x; 0.2, 0.1)

φ(x; 0.2, 0.1) + φ(x; 0.8, 0.15)
φ
(
y;x2 − 6x+ 1, 0.09

)
+

φ(x; 0.8, 0.15)

φ(x; 0.2, 0.1) + φ(x; 0.8, 0.15)
φ
(
y;−0.4x2, 0.09

)
.

Here we assume that the true number of mixture components K0 = 2.
Figures 1.5a and 1.5e show some typical realizations of 2000 data points arising from the WS and

MS scenarios. Note that by using GLLiM, the penalized maximum likelihood estimator of GLLiM, as
introduced in Section 1.2.3 and Chapter 3, performs well in the WS setting (Figures 1.5b to 1.5d). In
the MS case, we expect our procedure, namely the GLLiM-EM algorithm introduced in Section 3.2.3,
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1.1. Mixture of experts modelling framework

using slope heuristic, see Section 1.2.4 for more details, to automatically balance the model bias
and its variance (Figures 1.5f to 1.5h), which leads to the choice of a complex model, with 4 mixture
components. This observation will be elaborated upon in the subsequent descriptions and experiments,
see Sections 1.2.3, 1.2.4 and 3.2.3, respectively.

In the BLoME model, we wish to make use of block-diagonal structures by replacing Σk and VK

by Σk (Bk) and VK (B), defined in (1.1.14), respectively (see, e.g., Devijver et al., 2017, Devijver
& Gallopin, 2018, Nguyen et al., 2021b). This block-diagonal structures for covariance matrices
are not only used for a trade-off between complexity and sparsity but also motivated by some real
applications, where we want to perform prediction on data sets with heterogeneous observations and
hidden graph-structured interactions between covariates; for instance, for gene expression data sets in
which conditionally on the phenotypic response, genes interact with few other genes only, i.e., there
are small modules of correlated genes (see Devijver et al., 2017, Devijver & Gallopin, 2018 for more
details). To be more precise, for k ∈ [K], we decompose Σk (Bk) into Gk blocks, Gk ∈ N?, and we

denote by d
[g]
k the set of variables into the gth group, for g ∈ [Gk], and by card

(
d

[g]
k

)
the number

of variables in the corresponding set. Then, we define Bk =
(
d

[g]
k

)
g∈[Gk]

to be a block structure for

the cluster k, and B = (Bk)k∈[K] to be the covariate indexes into each group for each cluster. In this
way, to construct the block-diagonal covariance matrices, up to a permutation, we make the following
definition: VK (B) = (Vk (Bk))k∈[K], for every k ∈ [K],

Vk (Bk) =


Σk (Bk) ∈ S++

D

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Σk (Bk) = Pk


Σ

[1]
k 0 . . . 0

0 Σ
[2]
k . . . 0

0 0
. . . 0

0 0 . . . Σ
[Gk]
k

P−1
k ,

Σ
[g]
k ∈ S

++

card
(
d

[g]
k

), ∀g ∈ [Gk]


, (1.1.14)

where Pk corresponds to the permutation leading to a block-diagonal matrix in cluster k. It is worth
pointing out that outside the blocks, all coefficients of the matrix are zeros and we also authorize
reordering of the blocks: e.g., {(1, 3) ; (2, 4)} is identical to {(2, 4) ; (1, 3)}, and the permutation in-
side blocks: e.g., the partition of 4 variables into blocks {(1, 3) ; (2, 4)} is the same as the partition
{(3, 1) ; (4, 2)}.

It is interesting to point out that GLLiM and BLLiM models in Deleforge et al. (2015c), Devijver
et al. (2017) are affine instances of GLoME and BLoME models, respectively, where linear combi-
nation of bounded functions (e.g., polynomials) are considered instead of affine mean functions for
the Gaussian experts. The BLLiM framework aims to model a sample of high-dimensional regression
data issued from a heterogeneous population with hidden graph-structured interaction between covari-
ates. In particular, the BLLiM model is considered as a good candidate for performing model-based
clustering and for predicting the response in situations affected by the “curse of dimensionality” phe-
nomenon, where the number of parameters could be larger than the sample size. Indeed, to deal with
high-dimensional regression problems, the BLLiM model is based on an inverse regression strategy,
which inverts the role of the high-dimensional predictor and the multivariate response. Therefore,
the number of parameters to estimate is drastically reduced. More precisely, BLLiM utilizes GLLiM,
described in Deleforge et al. (2015a,c), in conjunction with a block-diagonal structure hypothesis on
the residual covariance matrices to make a trade-off between complexity and sparsity.

This prediction model is fully parametric and highly interpretable. For instance, it might be
useful for the analysis of transcriptomic data in molecular biology to classify observations or predict
phenotypic states, as for example disease versus non disease or tumor versus normal (Golub et al., 1999,
Nguyen & Rocke, 2002, Lê Cao et al., 2008). Indeed, if the predictor variables are gene expression data
measured by microarrays or by the RNA-seq technologies and the response is a phenotypic variable,
situations affected by the BLLiM not only provides clusters of individuals based on the relation between
gene expression data and the phenotype, but also implies a gene regulatory network specific to each
cluster of individuals (see Devijver et al., 2017 for more details).

9



Chapter 1. Introduction

●●
●

●
●●

●
●

●
●●

● ●

●

● ●

●

● ●

●

●

●
●

●

●
●

●

●● ●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●● ●
●

●●
●

●

● ●

● ●

●
●

●
●

●●

●

●●

●

●
●

●
●

●
●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

● ●
●

●
●

●
●●

●

●

●

●

●

●
● ●

● ●
●

●

●
●● ●

●

●

●
● ●

● ●
●

●

●
●

●
●

●
● ●

●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

● ●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
● ●●

●

●
●

●
●

●

●● ●●
●

●

●

●

● ●
●

●

●
●

●●
●●

●● ●
●

●

●

●●
●

● ●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

● ●

●

●●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●
●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●●

● ●
●

●

●

●
●

●●

●
●

● ●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●
●

●

● ●

●

●
●

●

●

● ●
● ●

●

●

●
●

●

●●

●●●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●●

●●

●

●

●
●● ●

●

●

●
● ●

●●●

●

●
● ●

●
●

●

●● ●

●

●
●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

● ●●
● ●

●
●

●

●

● ●
●

●
●

●
●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●
● ●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●●

●

●●

●

●

●●
●

●

●

●
●

●

●
●

●●

●

● ●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

● ● ●

●

●

● ●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●●
● ●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●●
●

●

●

●
●

● ● ●

● ●
●

●

●●

●

●
●

●
●

● ●
●

● ●

● ●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●●
●●

●

●
●

●
●

●●

●
●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

● ●●

●

●

●

●
●

●
●

● ●

●
●

●●●
● ●●
●

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

● ●

●

● ●

●●
●

●

●
●

● ●

●
●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●● ●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●
●●

●● ●

●

●

●● ●
●

●

●●

●
●

●

●

●

●●

●

●●

●

●●

●
●

●

●

●

●

● ●● ●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

●

●●

●●

●

● ●

●
● ●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●
●

●● ●
●●

●

●

●●●

●

●

●

●

●

●

●
●

●●

●

●
● ●

●
●

●

●

●
●

●

●
●

● ●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●
●

●

● ●
●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●●

●●

●

●

●

●

●
●

−2.5

0.0

2.5

5.0

0 1 2

X

Y

(a) Typical realization of an WS example
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(e) Typical realization of an MS example
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Figure 1.5: Clustering deduced from the estimated conditional density of GLoME by a maximum a
posteriori probability (MAP) principle with 2000 data points of the examples from the WS and MS
scenarios. The dash and solid black curves present the true and estimated mean functions.
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1.2. Model selection in mixtures of experts regression models

1.1.2 SGaME and LinBoSGaBloME models

We will consider the statistical frameworks in which we model a sample of high-dimensional regression
data issued from a heterogeneous population via a suitable MoE model with softmax gating functions.
We emphasize that the dimension of the input X ∈ X ⊂ Rp and/or the output Y ∈ Y ⊂ Rq variable
are/is typically much higher than the sample size n. In this thesis, based on the original MoE models
from Jacobs et al. (1991), we aim to establish a MoE model with softmax gating functions as generic
as possible such that it can be used to handle with high-dimensional regression datasets and to study
oracle inequalities. To do that, we first define sψK (y|x) to be a conditional PDF of MoE model as
follows:

sψK (y|x) =

K∑
k=1

gw,k (x)φq (y;υk(x),Σk (Bk)) , where, (1.1.15)

gw,k (x) =
exp (wk(x))∑K
l=1 exp (wl(x))

,w(x) = (wk(x))k∈[K] . (1.1.16)

Here, gw,k (·) and φq (·;υk(·),Σk (Bk)) , k ∈ [K], are called softmax gating functions (or gating net-
works) and Gaussian experts, respectively. Note that for every x ∈ X , (gw,k (x))k∈[K] ∈ ΠK−1.

Furthermore, we decompose the set of model parameters as follows: ψK = (w,υ,Σ) ∈WK ×ΥK ×
VK (B) =: ΨK , w = (wk)k∈[K] ∈WK , υ = (υk)k∈[K] ∈ ΥK , and Σ (B) = (Σk (Bk))k∈[K] ∈ Σk (Bk).
It is worth noting that WK and ΥK are sets of K-tuples of functions defined in logistic schemes
(weights) and mean functions from Rp to R+ and Rp to Rq, respectively; and Σk (Bk) is a set contain-
ing K-tuples of S++

q with the block-diagonal structures defined in (1.1.14), where S++
q denotes the

collection of symmetric positive definite matrices on Rq. Since we need to bound the model complexity
using the dimension of model, we have to restrict our attention to LinBoSGaBloME models, where
WK and ΥK are defined as the linear combination of a finite set of bounded functions whose coeffi-
cients belong to a compact set. When the dimension of both inputs and outputs are not too large, we
do not need to select relevant variables. Then, we can work on the previous LinBoSGaBloME models
with general structures for means, weights and multi-block-diagonal covariance matrices. In some situ-
ation, we do not need to take into account the trade-off between complexity and sparsity for covariance
matrices, in LinBoSGaBloME models, we can consider 1-block-diagonal covariance matrices, which is
well studied in Montuelle et al. (2014) and will be referred to be as linear-combination-of-bounded-
functions softmax-gated mixture of experts (LinBoSGaME) regression models. However, to deal with
high-dimensional data and to simplify the interpretation of sparsity, in LinBoSGaBloME model, we
propose to utilize polynomials for the weights of the softmax gating functions and the Gaussian expert
means, which will be referred to as polynomial softmax-gated block-diagonal mixture of experts (PS-
GaBloME) regression models. In particular, we simply refer to affine instances of LinBoSGaBloME
models as softmax-gated mixture of experts (SGaME) regression models. Compared to the general
PSGaBloME model, SGaME model is defined based on 1-block-diagonal covariance matrices. This
means that we do not impose the potential hidden graph-structured interactions between covariate
variables. Furthermore, instead of using a linear combination of a finite set of bounded functions
whose coefficients belong to a compact set, SGaME models utilize the linear functions for both the
weights of softmax gating networks and the means of Gaussian experts. The readers are referred to
Figure 1.6 for comprehensive classification and nomenclature of standard MoE regression models with
softmax gating networks.

1.2 Model selection in mixtures of experts regression models

It is worth pointing out that several hyperparameters must be estimated to construct BLoME and
PSGaBloME regression models, including the number of mixtures components (or clusters), the block
structure of large covariance matrices specific of each cluster (the size and the number of blocks), the
degree of polynomials appearing in gating networks and Gaussian mean experts, the relevant variables
and rank sparse models in PSGaBloME. Data driven choices of hyperparameters of learning algorithms
belong to the model selection class of problems, which has attracted much attention in statistics and
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Chapter 1. Introduction
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networks

Logistic schemes 
and Gaussian 
expert means

1-block-diagonal
covariance matrices 
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LinBoSGaBloME
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SGaME: Softmax-Gated MoE

PSGaBloME: Polynomial Softmax-Gated Block-diagonal MoE

LinBoSGaME: Linear-combination-of-Bounded-functions Softmax-Gated MoE

LinBoSGaBloME: Linear-combination-of-Bounded-functions Softmax-Gated Block-diagonal MoE

Figure 1.6: A comprehensive classification and nomenclature of standard MoE regression models with
softmax gating networks.

machine learning over the last 50 years (Akaike, 1974, Mallows, 1973, Anderson & Burnham, 2002,
Massart, 2007). This is a particular instance of the estimator (or model) selection problem: given a
family of estimators, how do we choose, using data, one among them whose risk is as small as possible?
Note that penalization is one of the main strategies proposed for model selection. It suggests to choose
the estimator minimizing the sum of its empirical risk and some penalty terms corresponding to how
well the model fits the data, while avoiding overfitting.

In this thesis, we are interested in controlling and accounting for model complexity when selecting
the best number of mixture components of a model. In general, model selection is often performed
using the Akaike information criterion (AIC; Akaike, 1974) or the Bayesian information criterion (BIC;
Schwarz et al., 1978). An important limitation of these criteria, however, is that they are only valid
asymptotically. This implies that there are no finite sample guarantees when using AIC or BIC, for
choosing between different levels of complexity. Their use in small sample settings is thus ad hoc. To
overcome such difficulties, Birgé & Massart (2007) proposed a novel approach, called slope heuristics,
supported by a non-asymptotic oracle inequality. This method leads to an optimal data-driven choice
of multiplicative constants for penalties. Recent reviews and practical issues regarding the slope
heuristic can be found in Baudry et al. (2012), Arlot (2019), and the references given therein.

It should be stressed that a general model selection result, originally established by Massart (2007,
Theorem 7.11), guarantees a penalized criterion leads to a good model selection and the penalty
being only known up to multiplicative constants and proportional to the dimensions of models. In
particular, such multiplicative constants can be calibrated by the slope heuristic approach in a finite
sample setting. Then, in the spirit of the concentration inequality-based methods developed in Mas-
sart (2007), Massart & Meynet (2011), and Cohen & Le Pennec (2011), a number of finite-sample
oracle results have been established for the least absolute shrinkage and selection operator (LASSO)
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1.2. Model selection in mixtures of experts regression models

(Tibshirani, 1996) and general penalized maximum likelihood estimators (PMLE). These results in-
clude the works for high dimensional Gaussian graphical models (Devijver & Gallopin, 2018), Gaussian
mixture model selection (Maugis & Michel, 2011b,a), finite mixture regression models (Meynet, 2013,
Devijver, 2015a,b, 2017b,a), SGaME models without considering high-dimensional setting (Montuelle
et al., 2014).

No attempt has been made in the literature to develop a finite-sample oracle inequality for MoE
regression models framework for high-dimensional data. In this thesis, to the best of our knowledge,
we are the first to provide finite-sample oracle inequalities for several high-dimensional MoE regression
models, including the GLoME model (Nguyen et al., 2021c, Section 3.2), BLoME model (Nguyen et al.,
2021b, Section 3.3), SGaME model using LASSO (Nguyen et al., 2020c, Section 4.2), and PSGaBloME
model (Section 4.3). In particular, our proof strategy makes use of recent novel approaches comprising
a model selection theorem for the maximum likelihood estimator (MLE) among a random subcollec-
tion (Devijver, 2015b), a non-asymptotic model selection result for detecting a good block-diagonal
structure in high-dimensional graphical models (Devijver & Gallopin, 2018) and a reparameterization
trick to bound the metric entropy of the Gaussian gating parameter space in GLoME models (Nguyen
et al., 2021c), see also Section 3.2 for more details. Note that for the Gaussian gating parameters,
the technique for handling the logistic weights in the SGaME models of Montuelle et al. (2014) is not
directly applicable to the GLoME or BLoME framework, due to the quadratic form of the canonical
link. Therefore, we propose a reparameterization trick1 to bound the metric entropy of the Gaussian
gating parameters space; see Equation (3.2.25) and Section 3.2.5.2 for more details. Furthermore, in
Nguyen et al. (2021c, Theorem 3.2.3), see also Section 3.2, we extend one of corollaries (in which the
authors used linear combination of bounded functions for the functions in softmax gating networks)
from Montuelle et al. (2014, Theorem 1) to the quadratic form of the canonical link from gating
networks, see more details in Equation (3.2.25) and Lemma 3.2.10.

Among of the main contributions of this thesis are the important theoretical results: finite-
sample oracle inequalities that provide non-asymptotic bounds on the risks, and lower bounds on
the penalty functions that ensure non-asymptotic theoretical controls on the estimators under the
Jensen–Kullback–Leibler loss. These oracle inequalities also provide some theoretical justifications of
the penalty shapes when using the slope heuristic for GLLiM, GLoME, BLLiM, BLoME, SGaME,
and PSGaBloME models. We emphasize that although the finite-sample oracle inequalities compare
performances of our estimators with the best model in the collection, they also allow us to well ap-
proximate a rich class of conditional densities if we take enough degree of polynomials of Gaussian
expert means (belongs to DΥ) and/or enough clusters (among the set K) in the context of mixture
of Gaussian experts (Jiang & Tanner, 1999a, Mendes & Jiang, 2012, Nguyen et al., 2016, Ho et al.,
2019, Nguyen et al., 2021a). This leads to the upper bounds on the risks being small, for DΥ and K
well-chosen.

Especially, aside from important theoretical issues regarding the tightness of the bounds, the way
to integrate a priori information and the minimax analysis of our proposed PMLE, we hope that our
finite-sample oracle inequalities and corresponding interesting numerical experiments help to partially
answer the two following important questions raised in the area of MoE regression models: (1) What
number of mixture components K should be chosen, given the sample size n, and (2) Whether it
is better to use a few complex experts or combine many simple experts, given the total number of
parameters. Note that, such problems are considered in the work of Mendes & Jiang (2012, Proposition
1), where the authors provided some qualitative insights and only suggested a practical method for
choosing K and d involving a complexity penalty or cross-validation. Furthermore, their model is only
for a non-regularized maximum-likelihood estimation, and thus is not suitable in the high-dimensional
setting.

In this thesis, we will consider the parameter selection problem as a model selection problem, by
constructing a collection of models, with more or less clusters, complex or simple experts controlling
via the orders of polynomial of weights and Gaussian experts, high or low rank sparse models, and

1Note that we only use this nomenclature to perform a change of variables of the Gaussian gating parameters space
of GLoME models via the logistic weights of SGaME models. This reparameterization trick does not stand for the
well-known one of Variational Autoencoders (VAEs) in the deep learning literature (see Kingma & Welling, 2013, for
more details).
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Chapter 1. Introduction

more or less active coefficients. Then, it will remain to choose a model among this collection. In
general, let us denote by S = (Sm)m∈M the collection of models that we consider, indexed by M. It
is worth pointing out that, in contrary to what one might think, having a collection of models that
is too large can be detrimental, for example by selecting inconsistent estimators (Bahadur, 1958) or
suboptimal estimators (Birgé & Massart, 1993). This is the called model selection paradigm.

Before discussing the finite-sample oracle inequalities for model selection via penalization in MoE
regression models, we review some standard facts regarding estimation by contrast minimization.

1.2.1 Minimum contrast estimation

The minimum contrast estimation method is based on the existence of a contrast function, denoted
by γ, fulfilling the fundamental property that the unknown conditional PDF satisfies

s0 = arg min
t∈S

EX,Y [γ(t,X,Y)] .

In this way we obtain what will be referred to as the associated loss function, denoted l, that is defined
via

l (s0, t) = EX,Y [γ(t,X,Y)]− EX,Y [γ(s0,X,Y)] , ∀t ∈ S.

Let us define some empirical contrast γn (based on the observation
(
X[n],Y[n]

)
:= (Xi,Yi)i∈[n]) such

that

∀t ∈ S, γn(t) =
1

n

n∑
i=1

γ (t,Xi,Yi) .

For the model m, a minimum contrast estimator ŝm of s0 is a minimizer of the empirical contrast γn
over Sm, i.e., ŝm = arg mint∈Sm

γn(t). The idea is that, under reasonable conditions, γn(t) converges
to EX,Y [γ(t,X,Y)], and that there is some hope to get a sensible estimator of s0, at least if s0 belongs
(or is close enough) to model Sm. To measure the quality of such an estimator, we make use of the
following risk R (ŝm) = EX[n],Y[n]

[l (s0, ŝm)].
For example, in the density estimation framework, the popular maximum likelihood estimator is

a minimum contrast estimator. Indeed, we assume that the sample (Xi,Yi)i∈[n] has the density s0

w.r.t. a measure µ and consider another density t w.r.t. the same measure. Then, the negative log-
likelihood − ln [t (y|x)] is the maximum likelihood contrast, and the corresponding loss function is the
Kullback–Leibler divergence defined by KL (s0, t) =

∫
s0 ln

(
s0
t

)
dµ. For a fuller treatment regarding

other examples of contrast for regression, classification and Gaussian white noise, we refer the reader
to Massart (2007).

1.2.2 The model choice paradigm

The purpose is to select the “best” estimator among the collection (ŝm)m∈M. Let Sm̂ be the model
selected by a given model selection procedure. We will denote by ŝm̂ the selected estimator and
emphasize that both ŝm (for any m) and m̂ are built from the same sample

(
X[n],Y[n]

)
. This

procedure has been well studied from both an asymptotic and a non-asymptotic point of view.
Ideally, for a given n and a given dataset, one would like to consider m∗ minimizing the risk

EX[n],Y[n]
[l (s0, ŝm)], with respect to m ∈M. In other words,

m∗ ∈ arg min
m∈M

l (s0, ŝm) . (1.2.1)

The minimum contrast estimator ŝm∗ on the corresponding model Sm∗ is called an oracle. This
terminology has previously been introduced by Donoho & Johnstone (1994). Unfortunately, since the
loss l (s0, ŝm) depends on the unknown sample distribution s0, thus so does m∗ and the oracle ŝm∗

should not be an estimator of s0. However, this oracle can serve as a benchmark for building any data
driven selection procedure among the collection of estimators (ŝm)m∈M . It is now natural to consider
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1.2. Model selection in mixtures of experts regression models

data-driven criteria to select an estimator which tends to mimic an oracle. In other words, we would
like the risk of the selected estimator ŝm̂, i.e., EX[n],Y[n]

[l(s0, ŝm̂)], to be as close as possible to the
risk of an oracle, i.e., EX[n],Y[n]

[l(s0, ŝm∗)].
It is worth pointing out that the non-asymptotic approach (see, e.g., Massart, 2007, Wainwright,

2019 for the complete bibliography) differs from the usual asymptotic point of view in the sense that
the number as well as the dimensions of the models in M may depend on n. We wish to construct
a model selection procedure such that the selected model Sm̂ is optimal. For instance, it fulfills the
following oracle inequality

l (s0, ŝm̂) ≤ C1l (s0, ŝm∗) +
C2

n
(1.2.2)

with C1 as close to 1 as possible and C2/n a remainder term. The oracle inequality is said to be exact
if C1 = 1. We expect that this inequality holds either in expected value or with high probability. In
particular, when such results are too difficult to be achieved, it suffices to obtain a weaker form:

EX[n],Y[n]
[l (s0, ŝm̂)] ≤ C1 inf

m∈M
EX[n],Y[n]

[l (s0, ŝm∗)] +
C2

n
. (1.2.3)

1.2.3 Model selection via penalization

Now, let us describe how to select a model via minimizing a penalized criterion, to reach a bias/variance
compromise. Indeed, we can decompose the loss into a bias and a variance parts as follows:

l (s0, ŝm) = EX,Y [γ(ŝm,X,Y)]− EX,Y [γ(s0,X,Y)]

= EX,Y [γ(sm,X,Y)]− EX,Y [γ(s0,X,Y)]− EX,Y [γ(sm,X,Y)] + EX,Y [γ(ŝm,X,Y)]

= l (s0, sm)︸ ︷︷ ︸
bias

+EX,Y [γ(ŝm,X,Y)− γ(sm,X,Y)]︸ ︷︷ ︸
variance

,

where sm = arg mint∈Sm
EX,Y [γ(t,X,Y)] is one of the best approximations of s0 in Sm. It is worth

pointing out that in order to minimize the bias, we need a complex model, which fits very closely to
the data; and to minimize the variance, we should not consider too complex models, in order to avoid
overfitting of the data.

The main methods to account for such model selection procedures are cross-validation and hold-
out (see, e.g., Arlot & Celisse, 2010, Maillard, 2020 for the complete bibliography), or penalized
criteria. It is emphasized that the main difficulty in carrying out the cross-validation and hold-out is
time complexity, particularly in high-dimensional setting. Therefore, the choice of penalization criteria
seems to the best adapted to our high-dimensional MoE regression models.

Let us describe the method in more details. The model selection via penalization procedure consists
in considering some proper penalty function pen: M→ R+ and taking m̂ that minimizes the penalized
criterion, defined as γn(ŝm) + pen(m) over M. This means that we select

m̂ = arg min
m∈M

{γn(ŝm) + pen(m)} . (1.2.4)

In other words, in the context of the maximum likelihood estimator for the regression case, for a given
choice of pen(m), the selected model Sm̂ is chosen as the one whose index is an η′-almost minimizer
of the sum of the negative log-likelihood (NLL) and this penalty:

n∑
i=1

− ln (ŝm̂ (xi|yi)) + pen (m̂) ≤ inf
m∈M

(
n∑
i=1

− ln (ŝm (xi|yi)) + pen(m)

)
+ η′. (1.2.5)

Here, ŝm is defined as the η-minimizer of the NLL:

n∑
i=1

− ln (sŝm (xi|yi)) ≤ inf
sm∈Sm

n∑
i=1

− ln (sm (xi|yi)) + η, (1.2.6)
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where the error term η is necessary when the infimum may not be unique or even not be reached.
Note that ŝm̂ is then called the η′-penalized likelihood estimator and depends on both the error terms
η and η′. From hereon in, the terms “best data-driven model or estimate” and “selected model or
estimator” are both used to indicate that it satisfies (1.2.5).

We emphasize that choosing the penalty is tricky but obviously necessary. The construction of
such functions in the context of maximum likelihood estimator goes back to the work of Akaike and
Schwarz, see respectively Akaike (1974) and Schwarz et al. (1978). They proposed the now classic AIC
and BIC criteria, the two most widely known and pervasively used tools in statistical model selection,
where the penalty is respectively establish as follows:

penAIC(m) = Dm,

penBIC(m) =
ln(n)Dm

2
,

where Dm is the dimension of the model m, and n is the size of the sample considered. These
well-known penalized criteria have been widely studied (see, e.g., Anderson & Burnham, 2002) and
based on asymptotic approximations. Therefore, such criteria may be wrong in a non-asymptotic
context. More precisely, AIC and BIC are based on Wilks’ theorem and a Bayesian approach, see,
e.g., Cavanaugh & Neath (2019) and Neath & Cavanaugh (2012), respectively, for recent reviews on
the conceptual and theoretical foundations. At the same time, Mallows (1973), and later Craven &
Wahba (1978) proposed other famous penalized criteria: Mallows’s Cp and generalized cross-validation
(GCV), respectively, in the context of linear regression. Mathematically, Mallows obtained

penMallows(m) =
2Dmσ

2

n
,

where σ2 is noise level of the true regression model which is unknown (if it does exist) and σ2 is thus
difficult to estimate. Similarly, the solution proposed by the GCV method is based on cross-validation
to choose the unknown tunning parameter (which best value is actually σ2). Thus, again, we have to
estimate an unknown parameter.

1.2.4 Slope heuristics

Motivated by some recent works on concentration inequalities, Birgé & Massart (2001) introduced the
slope heuristic, which is a non-asymptotic methodology to select a model from a collection of models.
This slope heuristics allows us to choose an optimal penalties from data which are known up to a
multiplicative constant κ. Let us describe the ideas of this heuristic. In this framework, the penalty
shape is then adapted as penshape (·) and an unknown constant κopt exists such that

penopt : m ∈M 7→ κoptpenshape (m)

is an optimal penalty. In order to select the oracle model via using (1.2.1) and (1.2.4), we are looking
for a penalty close to the following penalty function:

M3m 7→ pen(m) = l (s0, ŝm)− γn(ŝm).

However, since s0 is unknown in practice, we will try to approach this quantity by decomposing it
into:

l (s0, ŝm)− γn(ŝm) = EX,Y [γ (ŝm,X,Y)]− EX,Y [γ (s0,X,Y)]− γn(ŝm)

= EX,Y [γ (ŝm,X,Y)]− EX,Y [γ (sm,X,Y)]︸ ︷︷ ︸
νm

+ [γn(sm)− γn(ŝm)]︸ ︷︷ ︸
ν̂m

+ EX,Y [γ (sm,X,Y)]− EX,Y [γ (s0,X,Y)]︸ ︷︷ ︸
(1)

− [γn(sm)− γn(s0)]︸ ︷︷ ︸
(2)

−γn(s0). (1.2.7)

Here, νm is an “estimation error” term, ν̂m is an empirical “estimation error” term. We will denote
by ∆n (sm) = (1)− (2), which corresponds to the difference between the “bias” term and its empirical
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version. Note that γn(s0) does not depend on m, the main idea is to estimate the following ideal
penalty, defined as pen∗ (m) = νm + ν̂m + ∆n (sm), from the data in order to build an optimal penalty
function. Then, (1.2.7) implies that

l (s0, ŝm)− γn(ŝm) = pen∗ (m)− γn(s0), ∀m ∈M. (1.2.8)

Next, we wish to prove the following oracle inequality

l (s0, ŝm̂) + [pen (m̂)− pen∗ (m̂)] ≤ inf
m∈M

{l (s0, ŝm) + [pen (m)− pen∗ (m)]} . (1.2.9)

Indeed, by definition of the ideal penalty by (1.2.8), and the fact that m̂ ∈ M, it holds that for all
m ∈M,

l (s0, ŝm̂) + [pen (m̂)− pen∗ (m̂)] = γn(ŝm̂) + pen (m̂)− γn(s0)

≤ γn(ŝm) + pen (m)− γn(s0) (using (1.2.4))

= l (s0, ŝm) + [pen (m)− pen∗ (m)] (using (1.2.8)).

The important point to note here is the form of (1.2.9) motivates us to look for a penalty close to
the ideal penalty to obtain an oracle inequality. According to the expression of the ideal penalty
pen∗ (m) = νm + ν̂m + ∆n (sm), both νm and ∆n (sm) depend on the unknown conditional PDF s0.
Therefore, it is natural to try to relate the penalty function to the empirical estimation error term ν̂m.

To accomplish this task, from a theoretical point of view, Birgé & Massart, in Birgé & Massart
(2001, 2007) proposed and proved for the first time the slope heuristics method in the context of
Gaussian homoscedastic least squares regression with fixed design. They prove that there exists a
minimal penalty, penmin (m) = ν̂m, namely such that the dimension and the risk of models selected
with lighter penalties become very large, whereas higher penalties should select models with “rea-
sonable” complexity. Furthermore, they show that considering a penalty equal to twice this minimal
penalty allows to select a model close to the oracle model in terms of risk.

More precisely, given the chosen penalty as pen(m) = κν̂m, the penalized criterion can be written
as

crit(m) = (1− κ)γn (ŝm) + κγn (sm) .

Therefore, three cases occur:

� if κ = 1 then crit(m) = γn (sm), which concentrates around its expectation EX,Y [γ (sm,X,Y)] =
l (s0, sm)︸ ︷︷ ︸

bias

+EX,Y [γ(s0,X,Y)] for large n: this procedure selects a model minimizing the bias and

does not take into account the variance, which leads to such criterion has “a significant proba-
bility”2 of selecting a too complex model;

� if κ < 1 then when the complexity goes up, the criterion always goes down because of the two
terms in crit(m) being dropping: the selected models is always one of the most complex ones;

� if κ > 1 then the criterion rises with the complexity of the most complex models due to the fact
that of ruling out the corresponding bias terms (these models almost have the same bias): the
dimension of the selected models will be more reasonable.

The first point of the slope heuristics is ν̂m ≈ νm since ν̂m is the empirical counterpart of νm. In
particular, it is expected that we can control the fluctuation of ∆n (sm) around its zero expectations
through concentration results. Therefore, we can approximate the ideal penalty as twice the minimal
penalty due to the fact that

pen∗ (m) = νm + ν̂m + ∆n (sm) ≈ 2ν̂m.

2Note that when κ = 1, the probability to select a too complex model is in general positive but strictly below 1.
Actually, this is general with slope heuristics / minimal penalty algorithms: with a data-driven criterion (hence a bit
random), when the penalty is exactly at the minimal level, the selected model complexity is highly random (we are just
at the critical state of the phase transition) Arlot (2019).
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Thus, in practice, the main remaining issue is to determine the minimal penalty ν̂m. To this end, on
the data set

(
X[n],Y[n]

)
; either we look for the greatest jump of complexity of the selected model as a

function of the multiplicative constant κ in the penalty or we look at the asymptotic slope of a linear
regression between the penalty shape penshape (·) and the contrast value γn (sm) for the most complex
models, which will be referred to as dimension jump or data-driven slope estimation, respectively. In
this way, we obtain the minimal penalty, and we multiply it by two to obtain the optimal penalty.
For a deeper discussion of the principle of slope heuristics, we refer the reader to Baudry et al. (2012),
Arlot (2019) and the references given therein. Figures 1.7a and 1.7b illustrate these ideas.

We emphasize that from a practical point of view, we use the so-called CAPUSHE (CAlibrating
Penalty Using Slope HEuristics) package in R (Arlot et al., 2016, Baudry et al., 2012) to implement the
dimension jump and the data-driven slope estimation approaches. In practice, using slope heuristic is
effective when an optimal penalty penopt(·) = κoptpenshape(·) is known up to a multiplicative factor.
It is worth pointing out that the keystone of the slope heuristics is that

κopt

2 penshape(m) is a good
estimate of ŝm and provides a minimal penalty. Generally speaking, the penshape(·) can be chosen
as the complexity measure, when its definition is not obvious a priori. This complexity measure is
typically the model dimension Dm or the number of free parameters needed to be estimated.

From a theoretical point of view, in this thesis, we contribute several non-asymptotic oracle in-
equalities, Theorems 1.2.2 and 1.2.3, which provide non-asymptotic bounds on the risks, and lower
bounds on the penalty functions that ensure non-asymptotic theoretical controls on the estimators
under the Jensen–Kullback–Leibler loss. These oracle inequalities also provide some theoretical jus-
tifications of the penalty shapes when using the slope heuristic for the corresponding MoE regression
models. More precisely, penalized likelihood criteria are proposed in Chapters 3 and 4 to select best
data-driven MoE regression models among a specific model collection. These criteria depend on un-
known constants which can be calibrated in practical situations by slope heuristic. In particular, in
order to work with conditional PDF in several MoE regression models, we wish to make use of a
model selection theorem for MLE among a random subcollection (cf. Devijver, 2015b, Theorem 5.1
and Devijver & Gallopin, 2018, Theorem 7.3), which is an extension of a whole collection of conditional
densities from Cohen & Le Pennec (2011, Theorem 2), and of Massart (2007, Theorem 7.11), working
only for density estimation.

1.2.5 Asymptotic analysis of a parametric model

By using (1.2.2), (1.2.3) and (1.2.9), we prove that it is natural to try to relate the non-asymptotic
model selection procedure, in particular the slope heuristic, to the oracle inequalities, which are
described in Sections 1.2.6 to 1.2.8. Section 1.2.5 was intended as an attempt to explain in more
details why we should pay more attention to the non-asymptotic upper bound via providing the
drawbacks of asymptotic analysis of a parametric model.

We should now specify our goodness criteria. In the maximum likelihood approach, the Kullback–
Leibler divergence is the most natural loss function, which is defined for two densities s and t by

KL(s, t) =

{∫
RD ln

(
s(y)
t(y)

)
s(y)dy if sdy is absolutely continuous w.r.t. tdy,

+∞ otherwise.

However, to take into account the structure of inverse conditional densities and the random covariates
Y[n], we consider the tensorized Kullback–Leibler divergence KL⊗n, defined as:

KL⊗n(s, t) = EY[n]

[
1

n

n∑
i=1

KL (s (·|Yi) , t (·|Yi))

]
, (1.2.10)

if sdy is absolutely continuous w.r.t. tdy, and +∞ otherwise. Note that if the predictors are fixed,
this divergence is the classical fixed design type divergence in which there is no expectation. We refer
to our result as a weak oracle inequality, because its statement is based on a smaller divergence, when
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Figure 1.7: Illustration of the slope heuristic with 2000 data points of the examples from the WS
scenarior. In Figure 1.7a we estimate κ via using κ̂dj the largest jump of complexity. We then select
a model that minimizes the penalized log-likelihood by κopt = 2κ̂dj. In Figure 1.7b, we estimate κ by
looking for the asymptotic slope of a linear regression between the penalty shape penshape (·) and the
contrast value γn (sm) for the most complex models.

compared to KL⊗n, namely the tensorized Jensen-Kullback–Leibler divergence:

JKL⊗n
ρ (s, t) = EY[n]

[
1

n

n∑
i=1

1

ρ
KL (s (·|Yi) , (1− ρ) s (·|Yi) + ρt (·|Yi))

]
, (1.2.11)

with ρ ∈ (0, 1). We note that JKL⊗n
ρ was first used in Cohen & Le Pennec (2011). However, a version

of this divergence appears explicitly with ρ = 1
2 in Massart (2007), and it is also found implicitly in

Birgé et al. (1998). This loss is always bounded by 1
ρ ln 1

1−ρ but behaves like KL⊗n, when t is close to
s. The main tools in the proof of such a weak oracle inequality are deviation inequalities for sums of
random variables and their suprema. These tools require a boundedness assumption on the controlled
functions which is not satisfied by − ln sm

s0
, and thus also not satisfied by KL⊗n. Therefore, we consider

instead the use of JKL⊗n
ρ . In particular, in general, it holds that Cρ d2⊗n ≤ JKL⊗n

ρ ≤ KL⊗n, where

Cρ = 1
ρ min

(
1−ρ
ρ , 1

)(
ln
(

1 + ρ
1−ρ

)
− ρ
)

(see Cohen & Le Pennec 2011, Prop. 1) and d2⊗n is a

tensorized extension of the squared Hellinger distance d2⊗n, defined by

d2⊗n(s, t) = EY[n]

[
1

n

n∑
i=1

d2 (s (·|Yi) , t (·|Yi))

]
.

Moreover, if we assume that, for any m ∈ M and any sm ∈ Sm, s0dλ � smdλ, then (see Montuelle
et al., 2014, Cohen & Le Pennec, 2011)

Cρ
2 + ln ‖s0/sm‖∞

KL⊗n(s0, sm) ≤ JKL⊗n
ρ (s0, sm). (1.2.12)

We will consider a parametric model of inverse conditional PDFs to which the true inverse condi-
tional PDF s0 does not necessary belongs as follows:

Sm =
{

(x,y) 7→ sψm(x|y) =: sm(x|y) : ψm ∈ Ψm ⊂ Rdim(Sm)
}
.
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This construction of misspecified model, i.e., s0 /∈ Sm, goes back to the work of White (1982) for
density estimation. For a treatment of a more general case for conditional PDFs, we refer the reader
to Cohen & Le Pennec (2011). Section 1.2.5 contains a brief summary of such classical results without
proofs via Theorem 1.2.1.

Theorem 1.2.1 (White, 1982, Cohen & Le Pennec, 2011). Suppose that the model Sm is identifiable
(for MoE regression models, see, e.g., Jiang & Tanner, 1999c, Hennig, 2000) and there are the
existences of the dim (Sm)× dim (Sm) matrices A (ψm) and B (ψm) defined by:

[A (ψm)]k,l = E

[
1

n

n∑
i=1

∫ −∂2 ln sψm

∂ψm,k∂ψm,l
(x|Yi) s0 (x|Yi) dλ

]
,

[B (ψm)]k,l = E

[
1

n

n∑
i=1

∫
∂ ln sψm

∂ψm,k
(x|Yi)

∂ ln sψm

∂ψm,l
(x|Yi) s0 (x|Yi) dλ

]
.

We define ψ∗m to be the elements of arg minψm∈Ψm
KL⊗n (s0, sψm). Then, under some strong regu-

larity assumptions on ψm 7→ sψm, EX[n],Y[n]
[KL⊗n (s0, ŝm)] is asymptotically equivalent to

KL⊗n
(
s0, sψ∗m

)
+

1

2n
tr
(
B (ψ∗m) A (ψ∗m)−1

)
.

In particular, when s0 ∈ Sm, it holds that s0 = sψ∗m ,A (ψ∗m) = B (ψ∗m) . Therefore, the previous
asymptotic equivalent of EX[n],Y[n]

[KL⊗n (s0, ŝm)] becomes the classical parametric one, namely,

KL⊗n
(
s0, sψ∗m

)︸ ︷︷ ︸
=0

+
1

2n
dim (Sm) .

Theorem 1.2.1 depends heavily on the asymptotic normality of
√
n
(
ψ̂m −ψ∗m

)
. One may ask

whether this is still true if this normality does not hold. Several works are devoted to the study of the
non-asymptotic normality: extension in non parametric case or non-identifiable model, often called
Wilk’s phenomenon (see Wilks, 1938 for more details); generalization of the corresponding Chi-Square
goodness-of-fit test (Fan et al., 2001); finite sample deviation of the corresponding empirical quantity
in a bounded loss setting (Boucheron & Massart, 2011). Motivated by the work of Cohen & Le Pennec
(2011, 2013), with as few assumptions on the collection of conditional PDFs Sm as possible, we are
initially interested in finding a non-asymptotic upper bound of type

EX[n],Y[n]

[
KL⊗n (s0, ŝm)

]
≤

(
inf

ψm∈Ψm

KL⊗n (s0, sψm) +
1

2n
dim (Sm)

)
+ C2

1

n
.

However, in reality, we obtained the following weaker upper bound (oracle inequalities)

EX[n],Y[n]

[
JKL⊗n

ρ (s0, ŝm)
]
≤ C1

(
inf

ψm∈Ψm

KL⊗n (s0, sψm) +
κ

n
Dm

)
+ C2

1

n
.

Indeed, by technical problems, we have to replace the left hand KL⊗n (s0, ŝm) by a smaller divergence
JKL⊗n

ρ (s0, ŝm) and the constant C1 = 1+ε, ε > 0, can not be equal 1. Furthermore, κ is a constant that
depends on ε and the model complexity term Dm replaces the dimension term dim (Sm). However, this
result allows us to have the right bias/variance trade-off flavor and recover usual minimax properties
of specific estimators.

Here and subsequently, in order to establish our oracle inequalities, we need to assume that the
input space is a bounded set and make explicit some classical boundedness conditions on the parameter
space.
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1.2. Model selection in mixtures of experts regression models

1.2.6 Weak oracle inequality for GLoME models

In GLoME regression models, we choose the degree of polynomials d and the number of components
K among finite sets DΥ = [dmax] and K = [Kmax], respectively, where dmax ∈ N? and Kmax ∈ N?
may depend on the sample size n. We wish to estimate the unknown inverse conditional density
s0 by conditional densities belonging to the following collection of inverse models (Sm)m∈M, M =
{(K, d) : K ∈ K, d ∈ DΥ},

Sm =
{

(x,y) 7→ sψK,d(x|y) =: sm(x|y) : ψK,d = (ω,υd,Σ) ∈ Ω̃K ×ΥK,d ×VK

}
. (1.2.13)

Here, Ω̃K are bounded Gaussian gating parameter vectors, ΥK,d is defined as a linear combination
of a finite set of bounded functions whose coefficients belong to a compact set, and VK are bounded
positive definite covariance matrices, see (1.2.14), (1.2.16) (or more general (1.2.15)), and (1.2.17),
respectively, for more details.

More precisely, assume that there exist deterministic positive constants aπ, Ac, aΓ, AΓ, Ω̃K is
defined by

Ω̃K = {ω ∈ ΩK : ∀k ∈ [K], ‖ck‖∞ ≤ Ac, aΓ ≤ m (Γk) ≤M (Γk) ≤ AΓ, aπ ≤ πk} , (1.2.14)

where m(A) and M(A) stand for, respectively, the modulus of the smallest and largest eigenvalues
of any matrix A. Following the same structure for the means of Gaussian experts from Montuelle
et al. (2014), the set ΥK,d will be chosen as a tensor product of compact sets of moderate dimension
(e.g., a set of polynomials of degree smaller than d, whose coefficients are smaller in absolute values
than TΥ). More specifically, ΥK,d = ⊗k∈[K]Υk,d =: ΥK

k,d, where Υk,d = Υb,d, ∀k ∈ [K], and

Υb,d =

y 7→

(
d∑
i=1

α
(j)
i ϕΥ,i(y)

)
j∈[D]

=: (υd,j(y))j∈[D] : ‖α‖∞ ≤ TΥ

 . (1.2.15)

Here, d ∈ N?, TΥ ∈ R+, and (ϕΥ,i)i∈[d] is a collection of bounded functions on Y. In particular, we

focus on the bounded Y case and assume that Y = [0, 1]L, without loss of generality. In this case,
ϕΥ,i can be chosen as monomials with maximum (non-negative) degree d: yr =

∏L
l=1 yrl

l . Recall that
a multi-index r = (rl)l∈[L] , rl ∈ N? ∪ {0} ,∀l ∈ [L], is an L-tuple of nonnegative integers. We define

|r| =
∑L

l=1 rl and the number |r| is called the order or degree of yr. Then, ΥK,d = ΥK
p,d, where

Υp,d =

y 7→

 d∑
|r|=0

α
(j)
r yr


j∈[D]

=: (υd,j(y))j∈[D] : ‖α‖∞ ≤ TΥ

 . (1.2.16)

Note that any covariance matrix Σk can be decomposed into the form BkPkAkP
>
k , such that Bk =

|Σk|1/D is a positive scalar corresponding to the volume, Pk is the matrix of eigenvectors of Σk

and Ak the diagonal matrix of normalized eigenvalues of Σk; B− ∈ R+, B+ ∈ R+, A (λ−, λ+) is a
set of diagonal matrices Ak, such that |Ak| = 1 and ∀i ∈ [D], λ− ≤ (Ak)i,i ≤ λ+; and SO(D) is
the special orthogonal group of dimension D. In this way we obtain what is known as the classical
covariance matrix sets described by Celeux & Govaert (1995) for Gaussian parsimonious clustering
models, defined by

VK =

{(
BkPkAkP

>
k

)
k∈[K]

: ∀k ∈ [K], B− ≤ Bk ≤ B+,Pk ∈ SO(D),Ak ∈ A (λ−, λ+)

}
. (1.2.17)

The following Theorem 1.2.2 provides a lower bound on the penalty function, pen(m), which
guarantees that the PMLE for GLoME models selects a model that performs almost as well as the
best model. Note that, in Section 1.2.10.2, we briefly prove Theorem 1.2.2, which is then restated as
Theorem 3.2.3. The readers are referred to Section 3.2.4 for a comprehensive proof, see also Nguyen
et al. (2021c).
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Theorem 1.2.2 (Oracle inequality for GLoME models). Assume that we observe
(
x[n],y[n]

)
, arising

from an unknown conditional density s0. Given a collection of GLoME models, S = (Sm)m∈M,
defined by (1.2.13), there is a constant C such that for any ρ ∈ (0, 1), for any m ∈ M, zm ∈ R+,
Ξ =

∑
m∈M e−zm <∞ and any C1 > 1, there is a constant κ0 depending only on ρ and C1, such that

if for every index m ∈M,

pen(m) ≥ κ [(C + lnn) dim (Sm) + zm] with κ > κ0,

then the η′-penalized likelihood estimator ŝm̂, defined in (1.2.5), satisfies

EX[n],Y[n]

[
JKL⊗n

ρ (s0, ŝm̂)
]
≤ C1 inf

m∈M

(
inf

sm∈Sm

KL⊗n (s0, sm) +
pen(m)

n

)
+
κ0C1Ξ

n
+
η + η′

n
.

(1.2.18)

1.2.7 Weak oracle inequality for BLoME models

In the framework of BLoME models, we choose the degree of polynomials d and the number of
components K among finite sets DΥ = [dmax] and K = [Kmax], respectively, where dmax ∈ N?
and Kmax ∈ N? may depend on the sample size n. Moreover, B is selected among a list of can-
didate structures (Bk)k∈[K] ≡ (B)k∈[K], where B denotes the set of all possible partitions of the
covariables indexed by [D], for each cluster of individuals. We wish to estimate the unknown condi-
tional density s0 by conditional densities belonging to the following collection of models: (Sm)m∈M,

M =
{

(K, d,B) : K ∈ K, d ∈ DΥ,B ∈ (B)k∈[K]

}
,

Sm =
{

(x,y) 7→ sψK,d(x|y) : ψK,d = (ω,υd,Σ (B)) ∈ Ω̃K ×ΥK,d ×VK (B)
}
, (1.2.19)

where Ω̃K , ΥK,d, and VK (B) are defined in (1.2.14), (1.2.16) (or more general (1.2.15)), and (1.1.14),
respectively.

For the block-diagonal covariances of Gaussian experts, we assume that there exist some positive
constants λm and λM such that, for every k ∈ [K],

0 < λm ≤ m (Σk (Bk)) ≤M (Σk (Bk)) ≤ λM . (1.2.20)

Note that this is a quite general assumption and is also used in the block-diagonal covariance selection
for Gaussian graphical models of Devijver & Gallopin (2018).

In theory, we would like to consider the whole collection of models (Sm)m∈M. However, the
cardinality of B is large; its size is a Bell number. Even for a moderate number of variables D, it is
not possible to explore the set B, exhaustively. We restrict our attention to a random subcollection
BR of moderate size. For example, we can consider the BLLiM procedure from Devijver et al. (2017,
Section 2.2).

Note that the constructed collection of models with block-diagonal structures for each cluster of
individuals is designed, for example, by the BLLiM procedure from Devijver et al. (2017), where each
collection of partition is sorted by sparsity level. Nevertheless, our finite-sample oracle inequality,
Theorem 1.2.3, still holds for any random subcollection of M, which is constructed by some suitable
tools in the framework of BLoME regression models. Note that Theorem 1.2.3 is restated as Theo-
rem 3.3.2 and is fully proved in Section 3.3.3, see also Nguyen et al. (2021b). We highlight our main
contribution and briefly establish its proof in Section 1.2.11.

Theorem 1.2.3 (Oracle inequality for BLoME models). Let (x[n],y[n]) be the observations coming
from an unknown conditional density s0. For each m = (K, d,B) ∈ (K ×DΥ × B) ≡ M, let Sm be
define by (1.2.19). Assume that there exists τ > 0 and εKL > 0 such that, for all m ∈ M, one can
find s̄m ∈ Sm, such that

KL⊗n (s0, s̄m) ≤ inf
t∈Sm

KL⊗n (s0, t) +
εKL
n
, and s̄m ≥ e−τs0.
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1.2. Model selection in mixtures of experts regression models

Next, we construct some random subcollection (Sm)
m∈M̃ of (Sm)m∈M by letting M̃ ≡

(
K ×DΥ × BR

)
⊂

M such that BR is a random subcollection B, of moderate size. Consider the collection (ŝm)
m∈M̃ of

η-log likelihood minimizers satisfying (1.2.6) for all m ∈ M̃. Then, there is a constant C such that
for any ρ ∈ (0, 1), and any C1 > 1, there are two constants κ0 and C2 depending only on ρ and C1

such that, for every index, m ∈M, ξm ∈ R+, Ξ =
∑

m∈M e−ξm <∞ and

pen(m) ≥ κ [(C + lnn) dim(Sm) + (1 ∨ τ)ξm] ,

with κ > κ0, the η′-penalized likelihood estimator ŝm̂, defined as in (1.2.5) on the subset M̃ ⊂ M,
satisfies

EX[n],Y[n]

[
JKL⊗n

ρ (s0, ŝm̂)
]
≤ C1EX[n],Y[n]

[
inf

m∈M̃

(
inf
t∈Sm

KL⊗n (s0, t) + 2
pen(m)

n

)]
+ C2(1 ∨ τ)

Ξ2

n
+
η′ + η

n
.

1.2.8 Weak oracle inequality for PSGaBloME models

1.2.8.1 Linear combination of bounded functions for the weights and the means

We follow the idea from Montuelle et al. (2014) to restrict our attention on a finite set of bounded
functions whose coefficients belong to a compact set. It is worth mentioning that such quite general
setting includes the polynomial basis when the predictors are bounded, the suitable renormalized
wavelet dictionaries as well as the Fourier basis on an interval. More precisely, we first define the
following two collection of bounded functions for the weights and means: X 3 x 7→ (θW,d (x))d∈[dW] ∈
[−1, 1]dw and X 3 x 7→ (θΥ,d (x))d∈[dΥ] ∈ [−1, 1]dΥ , where dw ∈ N? and dΥ ∈ N? indicate its degrees,
respectively. Then, by making use of these collections, we are able to define the corresponding desired
bounded spaces via tensorial constructions as follows:

WK,dW
= {0} ⊗WK−1,W =

{
X 3 x 7→

dW∑
d=1

ωdθW,d (x) ∈ R : max
d∈[dW]

|ωd| ≤ TW

}
,

ΥK,dΥ
= ΥK ,Υ =

X 3 x 7→

(
dΥ∑
d=1

β
(z)
d θΥ,d (x)

)
z∈[q]

: max
d∈[dΥ],z∈[q]

∣∣∣β(z)
d

∣∣∣ ≤ TΥ

 . (1.2.21)

When p and q are not too large, we do not need to select relevant variables and/or use rank
sparse models. We do not need to select relevant variables. Then, we can work on the previous Lin-
BoSGaBloME models with general structures for means, weights and multi-block-diagonal covariance
matrices or with LinBoSGaME models as in Montuelle et al. (2014). However, in PSGaBloME mod-
els, to handle with high-dimensional data and to simplify the interpretation of sparsity, we propose
to utilize polynomials for weights and polynomial regression models for the softmax gating functions
and the means of Gaussian experts as follows:

WK,dW
= {0} ⊗WK−1,W =

X 3 x 7→
dW∑
|α|=0

ωαxα ∈ R : max
α∈A
|ωα| ≤ TW

 ,

ΥK,dΥ
=

{
X 3 x 7→

(
βk0 +

dΥ∑
d=1

βkdx
d

)
k∈[K]

: max {|||βkd|||∞ : k ∈ [K], d ∈ ({0} ∪ [dΥ])} ≤ TΥ

}
.

(1.2.22)

Here, note that the multi-index α = (αt)t∈[p] , αt ∈ N?
⋃
{0} =: N,∀t ∈ [p], is an p-tuple of nonneg-

ative integers that satisfies xα =
∏p
j=1 x

αj
j and |α| =

∑p
t=1 αt. Then, for all l ∈ [dW], we define

A =
⋃dW
l=0Al, Al =

{
α = (αt)t∈[p] ∈ Np, |α| = l

}
. The number |α| is called the order or degree of

monomials xα. By using the well-known stars and bars methods, e.g., Feller (1957, Chapter 2),
the cardinality of the set A, denoted by card (A), equals

(
dW+p
p

)
. Note that, for all d ∈ [dΥ], we
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define xd as
(
xdj

)
j∈[p]

for the means, which are often used for polynomial regression models. More-

over, given any matrix A ∈ Rq×p, the following notations are used for matrix norms: the max norm

|||A|||∞ = maxi∈[q],j∈[p]

∣∣∣[A]i,j

∣∣∣, the 2-norm ‖A‖2 = sup‖x‖2=1

∣∣x>Ax
∣∣ = supλ∈vp(A) |λ|, where vp(A)

denotes the spectrum of A, and the Frobenius norm ‖A‖2F =
∑q

i=1

∑p
j=1

∣∣∣[A]i,j

∣∣∣2. Then, it holds

that ‖A‖2 ≤ ‖A‖F , ‖A‖2 ≤
√
qp|||A|||∞, and for any x ∈ Rp, ‖x‖2 ≤

√
p ‖x‖∞, ‖Ax‖2 ≤ ‖A‖2 ‖x‖2,

e.g., Golub & Van Loan (2013, Chapter 2).

1.2.8.2 Variable selection via selecting relevant variables

The Lasso estimator, originally established by Tibshirani (1996), is a classical choice for variable
selection and has been extended to deal with multiple multivariate regression models for column
sparsity using the Group-Lasso estimator (Yuan & Lin, 2006). Note that the Group-Lasso penalty
can be used to select a subset of variables for one choice of regularization parameter in the Lasso-Rank
procedure, as done, e.g., Devijver (2015b, 2017a,b) or to get a ranking of the variables, as done, e.g.,
in Bach (2008).

Recall that, for all k ∈ [K], d ∈ [dΥ], βkd is the matrix of d-th term of regression coefficients,
Σk (Bk) is the covariance matrix in the mixture component k, and the gk is the mixture proportion k
with the α-th order term of its monomials is ωkα. Furthermore, given a regressor x, for all k ∈ [K],
for all d ∈ [dΥ] and for all z ∈ [q],

[
βkdx

d
]
z

=
∑p

j=1 [βkd]z,j x
d
j is the z-th component of the d-th

terms of means for the mixture components k. In particular, for all l ∈ [dW], j ∈ [p], we define

ω
[j,l]
k =

{
ωkα ∈ R : α = (αt)t∈[p] ∈ Al,αj > 0

}
.

We have to deal with high-dimensional data where we estimate many coefficients while given a
small number of target variables. Therefore, we need to focus on selecting relevant variables via the
notion of irrelevant indices in Definition 1.2.4.

Definition 1.2.4 (Relevant variables in PSGaBloME models). A couple (Yz,Xj) and its corre-
sponding indices (z, j) ∈ [q] × [p] are said to be irrelevant if, for all k ∈ [K], d ∈ [dΥ], l ∈ [dW],

[βkd]z,j = 0,ω
[j,l]
k = 0. This means that the variable Xj does not explain the variable Yz for the

regression models. A couple and its corresponding indices are relevant if they are not irrelevant.
A model is said to be sparse if there are few of relevant variables. We denote by J the set of in-
dices (z, j) of relevant couples (Yz,Xj). Then, we define the set of relevant variables (columns) as
Jω = {j ∈ [p] : ∃z ∈ [q], (z, j) ∈ J}. We denote by A[Jω ] and b[Jω ] the matrix and vector with vectors
0 on the columns indexed by the set JCω and values 0 on the set JCω , respectively. Here, JCω is the
complement of the set Jω.

Remark that J ⊂ P ([q]× [p]) and Jω ⊂ P ([q]), where P ([q]× [p]) contains all subsets of [q]× [p].
In our context, we focus on the Group-Lasso estimator to detect relevant variables, where the groups
correspond to the columns. Therefore, if for all k ∈ [K], d ∈ [dΥ], a matrix βkd has card (Jω)
relevant columns, there are q card (Jω) coefficients to be estimated instead of qp per clusters and
coefficient matrices. This leads to the number of parameters to be estimated is then drastically
reduced when card (Jω) � p. Furthermore, such column sparsity may enhance the interpretation
since the responses are described by only few relevant columns. To construct the regularization for
coefficients of polynomial functions, we can consider the sparse Group-Lasso estimator from Simon
et al. (2013) and Hastie et al. (2015, Chapter 4).

1.2.8.3 Rank sparse models

This approach is based on rank sparse models, introduced by Anderson et al. (1998). More precisely,
if regression matrices have low-rank or at least can be well approximated by low-rank matrices, then
its corresponding regression models are called rank sparse. In the PSGaBloME model, for every
k ∈ [K], d ∈ [L], the matrix βkd is fully determined by Rkd (p+ q −Rkd) coefficients if it has rank
Rkd. This advantage will be very useful because the total parameters to estimate may be smaller than
the sample size nq. It is worth noting that such low-rank estimation generalizes the classical principal
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component analysis for reducing the dimension of multivariate data and appears in many applications:
e.g., Friston et al. (2003, 2019, analysis of fMRI image data), Anderson et al. (1998, analysis of EEG
data decoding).

By combining the previous rank and column sparsity, we consider the matrices of regression co-
efficients βkd of rank Rkd and a vector of ranks R = (Rkd)k∈[K],d∈[dΥ] belongs to [card (Jω) ∧ q]dΥK ,
where in general, a ∧ b = min (a, b) and a ∨ b = max (a, b).

We describe in more detail the collection of PSGaBloME models with relevant variables and rank
sparse models in the sequel.

1.2.8.4 Collection of models

To simplify the notations, L and D stand for
(dW+card(Jω)

card(Jω)

)
and dΥ, which are related to the dimensions

of WK,dW
and ΥK,dΥ

, respectively. Combining all the previous structures defined in Sections 1.2.8.1

to 1.2.8.3 , given m = (K,L,D,B,J,R) ∈ N?×N?×N?× (Bk)k∈[K]×P ([q]× [p])× [card (Jω) ∧ q]DK ,
some real positive constants Au,v > 0, Aσ > 0, we obtain the following model:

Sm =
{

(x,y) 7→ sψ(K,L,D,B,J,R)
(y|x) =: sm(y|x) : ψ(K,LW,DΥ,B,J,R) ∈ Ψ(K,LW,DΥ,B,J,R)

}
,

ψ(K,L,D,B,J,R) =

(
(ωkα)

[Jω ]
k∈[K],α∈A ,

(
βk0,

(
βRkdkd

)
d∈[D]

)
k∈[K]

, (Σk (Bk))k∈[K]

)
∈
(
RL
)K−1 ×Υ(K,D,B,J,R) ×VK (B) =: Ψ(K,L,D,B,J,R),

Υ(K,D,B,J,R) =

{(
βk0,

(
βRkdkd

)[Jω ]

d∈[D]

)
k∈[K]

∈
(
Rq×1 ×

(
Rq×p

)D)K
: ∀k ∈ [K],∀d ∈ [D],

βRkdkd =

Rkd∑
r=1

[σkd]r [ukd]•,r

[
v>kd

]
r,•
, rank

(
βRkdkd

)
= Rkd,∀r ∈ [Rkd] , [σkd]r < Aσ,

max
k∈[K],d∈[dΥ],r∈[Rkd]

{
‖βk0‖∞ ,

∥∥∥[ukd]•,r

∥∥∥
∞
,

∥∥∥∥[v>kd]r,•
∥∥∥∥
∞

}
≤ Au,v

}
. (1.2.23)

In the above, for k ∈ [K], d ∈ [D], [σkd]r , r ∈ [Rkd], denote the singular values of βRkdkd , with cor-

responding orthogonal unit vectors
(

[ukd]•,r

)
r∈[Rkd]

and
([

v>kd
]
r,•

)
r∈[Rkd]

(Strang, 2019, I.8). The

dimension of Sm is

dim (Sm) = (K − 1)L+ qK +

K∑
k=1

D∑
d=1

Rkd (card (Jω) + q −Rkd) +

K∑
k=1

Gk∑
g=1

card
(
d

[g]
k

)(
card

(
d

[g]
k

)
+ 1
)

2
.

Remark that the collection of models in (1.2.23) is generally large and therefore not tractable in
practice. This motivates us to restrict the numbers of componentsK, the orders of mononomial weights
L and polynomial means D among finite sets K = [Kmax], L = [Lmax] and D = [Dmax], respectively,
where Kmax ∈ N?, Lmax ∈ N? and Dmax ∈ N? may depend on the sample size n. Furthermore, we
focus on a (potentially random) subcollection J of P ([q]× [p]), the controlled size being required
in high-dimension case. Moreover, the number of possible vectors of ranks considered is reduced by
working on a subset (potentially random) R(K,J,D) of [card (Jω) ∧ q]DK .

In particular, recall that B is selected among a list of candidate structures (Bk)k∈[K] ≡ (B)k∈[K],
where B denotes the set of all possible partitions of the covariables indexed by [p] for each cluster of
individuals. It is worth mentioning that the size of B (Bell number) is very large even for a moderate
number of variables p. This prevents us to consider an exhaustive exploration of the set B. Motivated
by the recent novel work from Devijver & Gallopin (2018), for each cluster k ∈ [K], we restrict our
attention to the sub-collection Bk,Λ = (Bk,λ)λ∈Λ of Bk. Here Bk,Λ is the partition of the variables corre-

sponding to the block-diagonal structure of the adjacency matrix Ek,λ =
[
I
{∣∣∣[Sk]z,z′∣∣∣ > λ

}]
z∈[q],z′∈[q]

,

which is based on the thresholded absolute value of the sample covariance matrix Sk in each cluster
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k ∈ [K]. It is important to point out that the class of block-diagonal structures detected by the graph-
ical lasso algorithm when the regularization parameter varies is identical to the block-diagonal struc-
tures Bk,λ detected by the thresholding of the sample covariance for each cluster k ∈ [K] (Mazumder
& Hastie, 2012).

Finally, given Sm defined as in (1.2.23), our full model collection and random subcollection of
PSGaBloME models are defined, respectively, as follows:

S = {Sm : m ∈M} ,M = K × L×D × (Bk)k∈[K] × P ([q]× [p])× [card (Jω) ∧ q]DmaxK , (1.2.24)

S̃ =
{
Sm : m ∈ M̃

}
,M̃ = K × L×D × (Bk,Λ)k∈[K] × J ×R(K,J,Dmax). (1.2.25)

1.2.8.5 Weak Oracle inequality

Note that in this thesis, see Section 4.3 for more details, the block-diagonal structures, the rele-
vant variables and rank sparse models are designed, for instance, by the Lasso +l2-Rank procedure
in Section 4.3.5. Nevertheless, our finite-sample oracle inequality in Theorem 1.2.5, still holds for
any random subcollection of M which is constructed by some suitable tools in the framework of
PSGaBloME regression models. Note that Theorem 1.2.5 is restated as Theorem 4.3.2 with a com-
prehensive proof in Section 4.3.3. Furthermore, the readers can find the main difficulties regarding
the proof of Theorem 1.2.5 in Section 1.2.11.8.

Theorem 1.2.5 (Oracle inequality for PSGaBloME models). Let (x[n],y[n]) be the observations aris-
ing from the unknown conditional density s0. For each m ≡ (K,L,D,B,J,R) ∈ M, let Sm be given
by (1.2.23). Assume that there exists τ > 0 and εKL > 0 such that, for all m ∈ M, one can find
s̄m ∈ Sm such that

KL⊗n (s0, s̄m) ≤ inf
t∈Sm

KL⊗n (s0, t) +
εKL
n
, and s̄m ≥ e−τs0.

Furthermore, we construct a random subcollection (Sm)
m∈M̃ of (Sm)m∈M as in (1.2.25) and consider

the collection (ŝm)
m∈M̃ of η-log likelihood minimizers defined in (1.2.6). Then, there is a constant C

such that for any ρ ∈ (0, 1), and any C1 > 1, there are two constants κ0 and C2 depending only on ρ
and C1 such that, for every index m ∈M, ξm ∈ R+, Ξ =

∑
m∈M e−ξm <∞,

pen(m) ≥ κ [(C + lnn) dim(Sm) + (1 ∨ τ)ξm] , κ > κ0,

the η′-penalized likelihood estimator ŝm̂, defined in (1.2.5) on the subset M̃ instead of M, satisfies

EX[n],Y[n]

[
JKL⊗n

ρ (s0, ŝm̂)
]
≤ C1EX[n],Y[n]

[
inf

m∈M̃

(
inf
t∈Sm

KL⊗n (s0, t) + 2
pen(m)

n

)]
+ C2(1 ∨ τ)

Ξ2

n
+
η′ + η

n
.

1.2.9 An l1-oracle inequality for the Lasso estimator in SGaME regression models

1.2.9.1 Fixed predictors and number of components with linear Gaussian mean func-
tions

Inspired by the framework in Meynet (2013) and Devijver (2015a), the explanatory variables xi and
the number of components K ∈ N? are both fixed. We assume that the observed xi, i ∈ [n], are finite.
Without loss of generality, we choose to rescale x, so that ‖x‖∞ ≤ 1. Therefore, we can assume that
the explanatory variables xi ∈ X = [0, 1]p, for all i ∈ [n]. Note that such a restriction is also used in
Devijver (2015a). Under only the assumption of bounded parameters, we provide a lower bound on
the Lasso regularization parameter λ, which guarantees an oracle inequality. Note that in this non-
random explanatory variables setting, we focus on the Lasso for its l1-regularization properties rather
than as a model selection procedure, as in the case of random explanatory variables and unknown K,
as in Montuelle et al. (2014), Nguyen et al. (2021c,b), see also Sections 1.2.6 to 1.2.8.
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1.2. Model selection in mixtures of experts regression models

For simplicity, we consider the case where the means of Gaussian experts are linear functions of
the explanatory variables; i.e.,

Υ =

{
υ : X 7→ υβ(x) := (βk0 + βkx)k∈[K] ∈ (Rq)K

∣∣∣∣β = (βk0,βk)k∈[K] ∈ B =
(
Rq×(p+1)

)K}
,

where βk0 and βk are respectively the q× 1 vector of bias and the q× p regression coefficients matrix
for the kth expert.

In summary, we wish to estimate s0 via conditional densities belonging to the class:

{(x,y) 7→ sψ(y|x) |ψ = (γ,β,Σ) ∈ Ψ} , (1.2.26)

where Ψ = Γ×Ξ, and Ξ = B × V .
From hereon in, for a vector x ∈ Rp, we assume that x = (x1, . . . , xp) is in the column form.

Similarly, the parameter of the entire model, ψ = (γ,β,Σ), is also a column vector, where we consider
any matrix as a vector produced using vec(·): the vectorization operator that stacks the columns of a
matrix into a vector.

1.2.9.2 Boundedness assumption on the softmax gating and Gaussian parameters

We shall restrict our study to estimate s0 by conditional PDFs belonging to the model class S, which
has boundedness assumptions on the softmax gating and Gaussian expert parameters. Specifically,
we assume that there exists deterministic constants Aγ , Aβ, aΣ, AΣ > 0, such that ψ ∈ Ψ̃, where

Γ̃ =

{
γ ∈ Γ | ∀k ∈ [K], sup

x∈X

(
|γk0|+

∣∣∣γ>k x
∣∣∣) ≤ Aγ} ,

Ξ̃ =

{
ξ ∈ Ξ | ∀k ∈ [K], max

z∈{1,...,q}
sup
x∈X

(|[βk0]z|+ |[βkx]z|) ≤ Aβ, aΣ ≤ m
(
Σ−1
k

)
≤M

(
Σ−1
k

)
≤ AΣ

}
,

Ψ̃ = Γ̃× Ξ̃. (1.2.27)

Since

aG :=
exp (−Aγ)∑K
l=1 exp (Aγ)

≤ sup
x∈X ,γ∈Γ̃

exp
(
γk0 + γ>k x

)∑K
l=1 exp

(
γl0 + γ>l x

) ≤ exp (Aγ)∑K
l=1 exp (−Aγ)

=: AG,

there exists deterministic positive constants aG, AG, such that

aG ≤ sup
x∈X ,γ∈Γ̃

gk (x;γ) ≤ AG. (1.2.28)

We wish to use the model class S of conditional PDFs to estimate s0, where

S =
{

(x,y) 7→ sψ(y|x)
∣∣∣ψ = (γ,β,Σ) ∈ Ψ̃

}
. (1.2.29)

To simplify the proofs, we shall assume that the true density s0 belongs to S. That is to say, there
exists ψ0 = (γ0,β0,Σ0) ∈ Ψ̃, such that s0 = sψ0 .

Since we are working with conditional PDFs and not with classical densities, we define the following
adapted Kullback–Leibler information, that takes into account the structure of conditional PDFs. For
fixed explanatory variables (xi)1≤i≤n, we consider the average loss function

KLn(s, t) =
1

n

n∑
i=1

KL (s (·|xi) , t (·|xi)) =
1

n

n∑
i=1

∫
Rq

ln

(
s (y|xi)
t (y|xi)

)
s (y|xi) dy. (1.2.30)

However, since we want to handle high-dimensional data, we have to regularize the maximum likeli-
hood estimator (MLE) in order to obtain reasonable estimates. Here, we shall consider l1-regularization
and the associated so-called Lasso estimator, which is the l1-norm penalized MLE defined as follows:

ŝLasso(λ) := arg min
sψ∈S

{
− 1

n

n∑
i=1

ln (sψ (yi|xi)) + penλ(ψ)

}
, (1.2.31)
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where λ ≥ 0 is a regularization parameter to be tuned, ψ = (γ,β,Σ) and

penλ(ψ) = λ
∥∥∥ψ[1,2]

∥∥∥
1

:= λ
(∥∥∥ψ[1]

∥∥∥
1

+
∥∥∥ψ[2]

∥∥∥
1

)
, (1.2.32)∥∥∥ψ[1]

∥∥∥
1

= ‖γ‖1 =
K∑
k=1

p∑
j=1

|γkj | , (1.2.33)

∥∥∥ψ[2]
∥∥∥

1
= ‖vec(β)‖1 =

K∑
k=1

p∑
j=1

q∑
z=1

∣∣∣[βk]z,j∣∣∣ . (1.2.34)

From now on, we denote ‖β‖p (p ∈ {1, 2,∞}) by the induced p-norm of a matrix , which differs from
‖vec(β)‖p.

Note that penλ(ψ) is a Lasso regularization term encouraging sparsity for both the gating and
expert parameters. Recall that this penalty is also studied in Khalili (2010), Chamroukhi & Huynh
(2018), and Chamroukhi & Huynh (2019), in which the authors studied the univariate case: Y ∈ R.
Notice that, without considering the l2-norm, the penalty function considered in such frameworks
belongs to our framework and the l1-oracle inequality from Theorem 1.2.7 can be obtained for it.

Indeed, by considering λ = min
{
λ

[1]
1 , . . . , λ

[1]
K , λ

[2]
1 , . . . , λ

[2]
K ,

λ[3]

2

}
, the condition for a regularization

parameter’s lower bound, (1.2.36) from Theorem 1.2.7, can also be applied to model their models ,
which leads to an l1-oracle inequality.

1.2.9.3 An l1-oracle inequality for the Lasso estimator

In this section, Theorem 1.2.7 provides an l1-oracle inequality for SGaME regression models. It is
one the contributions of this thesis and is motivated by the problem studied in Meynet (2013) and
Devijver (2015a).

Firstly, we aim to prove that the negative of differential entropy (see its definition, e.g., from
Mansuripur (1987, Chapter 9)) of the true unknown conditional density s0 ∈ S, defined in (1.2.26), is
finite, see more in Lemma 1.2.6, which is restated in Lemma 4.2.1 and is proved in Section 4.2.4.3.

Lemma 1.2.6 (Differential entropy of SGaME regression model with boundedness assumptions on pa-

rameter spaces). There exist a nonnegative constant Hs0 = max {0, lnCs0}, Cs0 = (2π)−q/2
(
2A−1

Σ

)−q/2
,

such that

max

{
0, sup
x∈X

∫
Rq

ln (s0 (y|x)) s0 (y|x) dy

}
≤ Hs0 <∞. (1.2.35)

Note that Theorem 1.2.7 is restated as Theorem 4.2.2. Furthermore, it is briefly and fully proved
in Sections 1.2.12 and 4.2.3.3, respectively, see also Nguyen et al. (2020c).

Theorem 1.2.7 (l1-oracle inequality for SGaME regression models). We observe
(
x[n],y[n]

)
∈ ([0, 1]p × Rq),

coming from the unknown conditional mixture of Gaussian experts regression models s0 := sψ0 ∈ S,
cf. (1.2.29). We define the Lasso estimator ŝLasso(λ), by (1.2.31), where λ ≥ 0 is a regularization
parameter to be tuned. Then, if

λ ≥ κKB
′
n√
n

(
q lnn

√
ln(2p+ 1) + 1

)
, (1.2.36)

B′n = max (AΣ, 1 +KAG)
(
1 + 2q

√
qAΣ

(
5A2

β + 4AΣ lnn
))
, (1.2.37)
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for some absolute constants κ ≥ 148, the estimator ŝLasso(λ) satisfies the following l1-oracle inequality:

EY[n]

[
KLn

(
s0, ŝ

Lasso(λ)
)]
≤
(
1 + κ−1

)
inf
sψ∈S

(
KLn (s0, sψ) + λ

∥∥∥ψ[1,2]
∥∥∥

1

)
+ λ

+

√
K

n

(
eq/2−1πq/2

A
q/2
Σ

+Hs0

)√
2qAγ

+ 302q

√
K

n
max (AΣ, 1 +KAG)

(
1 + 2q

√
qAΣ

(
5A2

β + 4AΣ lnn
))

×K

(
1 +

(
Aγ + qAβ +

q
√
q

aΣ

)2
)
. (1.2.38)

(1.2.39)

Next, we state the following Theorem 1.2.8, which is an l1-ball MoE regression model selection the-
orem for l1-penalized maximum conditional likelihood estimation in the Gaussian mixture framework.
Note that Theorem 1.2.7 is an immediate consequence of Theorem 1.2.8. Furthermore, Theorem 1.2.8
is restated as Theorem 4.2.3 and is proved in Section 4.2.3.4, see also Nguyen et al. (2020c).

Theorem 1.2.8. Assume that we observe
(
x[n],y[n]

)
with unknown conditional Gaussian mixture

PDF s0. For all m ∈ N?, consider the l1-ball

Sm =
{
sψ ∈ S,

∥∥∥ψ[1,2]
∥∥∥

1
≤ m

}
, (1.2.40)

and let ŝm be a ηm-ln-likelihood minimizer in Sm for some ηm ≥ 0:

− 1

n

n∑
i=1

ln (ŝm (yi|xi)) ≤ inf
sm∈Sm

(
− 1

n

n∑
i=1

ln (sm (yi|xi))

)
+ ηm. (1.2.41)

Assume that, for all m ∈ N?, the penalty function satisfies pen(m) = λm, where λ is defined later.
Then, we define the penalized likelihood estimator ŝm̂, where m̂ is defined via the satisfaction of the
inequality

− 1

n

n∑
i=1

ln (ŝm̂ (yi|xi)) + pen(m̂) ≤ inf
m∈N?

(
− 1

n

n∑
i=1

ln (ŝm (yi|xi)) + pen(m)

)
+ η, (1.2.42)

for some η ≥ 0. Then, if

λ ≥ κKB
′
n√
n

(
q lnn

√
ln(2p+ 1) + 1

)
, (1.2.43)

B′n = max (AΣ, 1 +KAG)
(
1 + 2q

√
qAΣ

(
5A2

β + 4AΣ lnn
))
, (1.2.44)

for some absolute constants κ ≥ 148, then

EY[n]
[KLn (s0, ŝm̂)] ≤

(
1 + κ−1

)
inf
m∈N?

(
inf

sm∈Sm
KLn (s0, sm) + pen(m) + ηm

)
+ η

+

√
K

n

(
eq/2−1πq/2

A
q/2
Σ

+Hs0

)√
2qAγ

+ 302q

√
K

n
max (AΣ, 1 +KAG)

(
1 + 2q

√
qAΣ

(
5A2

β + 4AΣ lnn
))

×K

(
1 +

(
Aγ + qAβ +

q
√
q

aΣ

)2
)
. (1.2.45)
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1.2.10 Our contributions for weak oracle inequalities in deterministic collection
of MoE models via Theorem 1.2.2

The deterministic collection of MoE models include GLLiM, GLoME, SGaME and LinBoSGaME
models where weak oracle inequalities were well studied for last two models via a general conditional
density model selection theorem of Cohen & Le Pennec (2011, Theorem 2), see also Cohen & Le Pennec
(2013, Theorem 2.2.) and Montuelle et al. (2014, Theorem 2). We first summarize this general model
selection theorem and the techniques that Montuelle et al. (2014) used to control the bracketing entropy
of LinBoSGaME models with softmax gating networks in Sections 1.2.10.1 and 1.2.10.2, respectively.
Then, we explain why such techniques can not be directly applied to our collection of GLoME models
via Section 1.2.10.3 to highlight the main challenges and our contributions.

1.2.10.1 A general conditional density model selection theorem for deterministic collec-
tion of models

Before stating a general model selection for conditional density, we have to present some regularity
assumptions.

First, we need an information theory type assumption to control the complexity of our collection.
We assume the existence of a Kraft-type inequality for the collection (Massart, 2007, Barron et al.,
2008).

Assumption 1.2.1 (K). There is a family (zm)m∈M of non-negative numbers and a real number Ξ
such that

Ξ =
∑

m∈M
e−zm < +∞.

For technical reasons, a seperability assumption always satisfied in the setting of this paper, is
also required. It is a mild condition, which is classical in empirical process theory (Van Der Vaart &
Wellner, 1996, van de Geer, 2000). This assumption allows us to work with a countable subset.

Assumption 1.2.2 (Sep). For every model Sm in the collection S, there exists some countable subset
S′m of Sm and a set X ′m with ι (X \ X ′m) = 0, where ι denotes Lebesgue measure, such that for every
t ∈ Sm, there exists some sequence (tk)k≥1 of elements of S′m, such that for every y ∈ Y and every

x ∈ X ′m, ln (tk (x|y))
k→+∞−−−−→ ln (t (x|y)).

Next, recall that the bracketing entropy of a set S with respect to any distance d, denoted by
H[·],d((δ, S)), is defined as the logarithm of the minimal number N[·],d (δ, S) of brackets [t−, t+] covering
S, such that d(t−, t+) ≤ δ. That is,

N[·],d (δ, S) := min

{
n ∈ N? : ∃t−1 , t

+
1 , . . . , t

−
n , t

+
n s.t d(t−k , t

+
k ) ≤ δ, S ⊂

n⋃
k=1

[
t−k , t

+
k

]}
, (1.2.46)

where the bracket s ∈
[
t−k , t

+
k

]
is defined by t−k (x,y) ≤ s(x,y) ≤ t+k (x,y), ∀(x,y) ∈ X × Y.

We also need the following important assumption on Dudley-type integral of these bracketing
entropies, which is utilized often in empirical process theory (Van Der Vaart & Wellner, 1996, van de
Geer, 2000, Kosorok, 2007).

Assumption 1.2.3 (H). For every model Sm in the collection S, there is a non-decreasing function
φm such that δ 7→ 1

δφm(δ) is non-increasing on (0,∞) and for every δ ∈ R+,∫ δ

0

√
H[·],d⊗n (δ, Sm (s̃, δ))dδ ≤ φm(δ),

where Sm (s̃, δ) = {sm ∈ Sm : d⊗n (s̃, sm) ≤ δ}. The model complexity of Sm is then defined as Dm

=nδ2
m, where δm is the unique root of 1

δφm(δ) =
√
nδ.
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1.2. Model selection in mixtures of experts regression models

Observe that the model complexity does not depend on the bracketing entropies of the global
models Sm, but rather on those of smaller localized sets Sm (s̃, δ). Now we are able to state an
important weak oracle inequality, Theorem 1.2.9, from Cohen & Le Pennec (2011).

Theorem 1.2.9 (Theorem 2 from Cohen & Le Pennec 2011). Assume that we observe
(
x[n],y[n]

)
,

arising from an unknown conditional density s0. Let S = (Sm)m∈M be an at most countable con-
ditional density model collection. Assume that Assumption 3.2.1 (K), Assumption 3.2.2 (Sep), and
Assumption 3.2.3 (H) hold for every model Sm ∈ S. Then, for any ρ ∈ (0, 1) and any C1 > 1, there
is a constant κ0 depending only on ρ and C1, such that for every index m ∈M,

pen(m) ≥ κ
(
nδ2

m + zm
)

with κ > κ0 and δm is the unique root of 1
δφm(δ) =

√
nδ, such that the η′-penalized likelihood estimator

ŝm̂ satisfies

EX[n],Y[n]

[
JKL⊗n

ρ (s0, ŝm̂)
]
≤ C1 inf

m∈M

(
inf

sm∈Sm

KL⊗n (s0, sm) +
pen(m)

n

)
+
κ0C1Ξ

n
+
η + η′

n
.

(1.2.47)

For the sake of generality, this Theorem 1.2.9 is relatively abstract. Since the assumptions of the
previous Theorem 1.2.9 are as general as possible. But from the practical point of view, a natural
question is the existence of interesting model collections that satisfy these assumptions. We will sketch
of the proof fo LinBoSGaME models of Montuelle et al. (2014, Theorem 1) and show that their result
can not directly applicable to the GLoME setting. The main reason is that the technique for handling
the linear combination of bounded functions for the weight functions of logistic schemes of Montuelle
et al. (2014) is not valid for the Gaussian gating parameters in GLoME models. Therefore, we propose
a reparameterization trick3 to bound the metric entropy of the Gaussian gating parameters space; see
Equation (1.2.50) for more details.

1.2.10.2 Sketch of the proof for LinBoSGaME models

To prove the main conditional density model selection theorem for LinBoSGaME models, Montuelle
et al. (2014, Theorem 1), the authors have to make use of Theorem 1.2.9. Then, they need to prove that
their collection of LinBoSGaME models have to satisfy Assumption 1.2.1 (K), Assumption 1.2.2 (Sep),
and Assumption 1.2.3 (H). However, they did not prove Assumption 1.2.1 (K) and Assumption 1.2.2
(Sep) and considered them as assumptions on their LinBoSGaME models because of the complexity
of LinBoSGaME models and technical reasons. Therefore, the main difficulty remains on verifying
Assumption 1.2.3 (H) via several bracketing entropy controls of the linear combination of bounded
functions for the weight functions of logistic schemes.

Firstly, they define the following distance over conditional densities:

sup
y
dx(s, t) = sup

y∈Y

(∫
X

(√
s(x|y)−

√
t(x|y)

)2
dx

)1/2

.

This leads straightforwardly to d2⊗n(s, t) ≤ supy d
2
x(s, t). Then, they also define

sup
y
dk
(
g, g′

)
= sup

y∈Y

(
K∑
k=1

(√
gk(y)−

√
g′k(y)

)2
)1/2

,

for any gating functions g and g′. To this end, given any densities s and t over X , the following
distance, depending on y, is constructed as follows:

sup
y

max
k

dx(s, t) = sup
y∈Y

max
k∈[K]

dx (sk(·,y), tk(·,y)) = sup
y∈Y

max
k∈[K]

(∫
X

(√
sk(x,y)−

√
tk(x,y)

)2
dx

)1/2

.

3Recall that we only use this nomenclature to perform a change of variables of the Gaussian gating parameters space
of GLoME models via the logistic weights of SGaME models. This reparameterization trick does not stand for the
well-known one of Variational Autoencoders (VAEs) in the deep learning literature (see Kingma & Welling, 2013, for
more details).
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Then, they prove that definition of complexity of model Sm in Assumption 1.2.3 (H) is related to an
classical entropy dimension with respect to a Hellinger type divergence d⊗n, due to Proposition 1.2.10.

Proposition 1.2.10 (Proposition 2 from Cohen & Le Pennec 2011). For any δ ∈ (0,
√

2], such that
H[·],d⊗n (δ, Sm) ≤ dim(Sm)

(
Cm + ln

(
1
δ

))
, the function

φm (δ) = δ
√

dim (Sm)

(√
Cm +

√
π +

√
ln

(
1

min (δ, 1)

))
satisfies Assumption 1.2.3 (H). Furthermore, the unique solution δm of 1

δφm (δ) =
√
nδ, satisfies

nδ2
m ≤ dim(Sm)

(
2
(√

Cm +
√
π
)2

+

(
ln

n(√
Cm +

√
π
)2

dim (Sm)

)
+

)
.

Therefore, Proposition 1.2.10 implies that Assumption 1.2.3 (H) can be proved via Lemma 1.2.11.

Lemma 1.2.11. For any δ ∈ (0,
√

2], the collection of LinBoSGaME models, S = (Sm)m∈M, satisfies

H[·],d⊗n (δ, Sm) ≤ dim(Sm)

(
Cm + ln

(
1

δ

))
.

Lemma 1.2.11 is then obtained by decomposing the entropy terms between the softmax gating
functions and the Gaussian experts. Note that both LinBoSGaME and GLoME models share the
same structures of Gaussian experts mean, recall Figures 1.4 and 1.6 for more details. Therefore,
we only highlight our contributions regarding the control of bracketing entropy for the parameter of
gating network compared to Montuelle et al. (2014). To do that, the author rewrite the softmax gating
parameters’ space in (1.1.16) as follows:

WK,dW
= {0} ⊗WK−1,W =

{
Y 3 y 7→

dW∑
d=1

ωdθW,d (y) ∈ R : max
d∈[dW]

|ωd| ≤ TW

}
, (1.2.48)

PK =

Y 3 y 7→

(
ewk(y)∑K
l=1 e

wl(y)

)
k∈[K]

=: (gw,k (y))k∈[K] ,w ∈WK,dW

 .

Then, they also require the definition of metric entropy of the set WK : Hd‖sup‖∞
(δ,WK), which

measures the logarithm of the minimal number of balls of radius at most δ, according to a distance
d‖sup‖∞ , needed to cover WK where

d‖sup‖∞

(
(sk)k∈[K] , (tk)k∈[K]

)
= max

k∈[K]
sup
y∈Y
‖sk(y)− tk(y)‖2 , (1.2.49)

for any K-tuples of functions (sk)k∈[K], (tk)k∈[K] and ‖sk(y)− tk(y)‖2 is the Euclidean distance in

RL. By using Lemma 5 and Proposition 2 from Montuelle et al. 2014, see also Lemma 3.2.9 for
more detail, Lemma 1.2.11 holds true if we can prove Lemma 1.2.12. Note that the first inequality of
Lemma 1.2.12 comes from Montuelle et al. (2014, Lemma 4) and describes relationship between the
bracketing entropy of PK and the entropy of WK .

Lemma 1.2.12. For all δ ∈ (0,
√

2], there exists a constant CWK
such that

H[·],supy dk

(
δ

5
,PK

)
≤ Hd‖sup‖∞

(
3
√

3δ

20
√
K − 1

,WK

)
≤ dim (WK)

(
CWK

+ ln

(
20
√
K − 1

3
√

3δ

))
.

By the nice linear property from the construction of linear combination of a finite set of bounded
functions whose coefficients belong to a compact set, in the argument from Montuelle et al. (2014, Proof
of Part 1 of Lemma 1, Page 1689), the second inequality of Lemma 1.2.12 is then easily established
as follows. However, this will be not the case for our Lemma 1.2.13, which is used for controlling the
bracketing entropy not only for many standard MoE regression models with Gaussian gating networks,
see Section 1.2.10.3 for more details.
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Proof of the second inequality of Lemma 1.2.12. Note that for all

w = (0, wk)k∈[K−1] ∈WK,dW
, v = (0, vk)k∈[K−1] ∈WK,dW

,

it holds that

d‖sup‖∞ (w − v) = max
k∈[K−1]

‖wk − vk‖∞ = max
k∈[K−1]

sup
y∈Y

∣∣∣∣∣
dW∑
i=1

ωw
k,iθW,i(y)−

dW∑
i=1

ωv
k,iθW,i(y)

∣∣∣∣∣
≤ max

k∈[K−1]

dW∑
i=1

∣∣ωw
k,i − ωv

k,i

∣∣ sup
y∈Y
|θW,i(y)|︸ ︷︷ ︸
≤1

≤ dW max
k∈[K−1],i∈[dW]

∣∣ωw
k,i − ωv

k,i

∣∣ .

Therefore, we obtain

Hd‖sup‖∞

(
3
√

3δ

20
√
K − 1

,WK

)
≤ Hd‖sup‖∞

(
3
√

3δ

20
√
K − 1dW

,
{
ω ∈ R(K−1)dW : ‖ω‖∞ ≤ TW

})

≤ (K − 1)dW ln

(
1 +

20
√
K − 1dWTW

3
√

3δ

)
≤ (K − 1)dW ln

(√
2 +

20
√
K − 1dWTW

3
√

3
+ ln

(
1

δ

))
.

1.2.10.3 Our contributions on the proof for GLoME models

To prove Theorem 1.2.2, we also need to make use of Theorem 1.2.9 from Cohen & Le Pennec (2011,
2013). Then, our model collection has to satisfy Assumption 1.2.1 (K), Assumption 1.2.2 (Sep), and
Assumption 1.2.3 (H).

As in the proof of LinBoSGaME models, Assumption 1.2.1 (K) and Assumption 1.2.2 (Sep) can
be easily verified. In our proof for GLoME models, as a complementary to the proof for LinBoSGaME
models, we consider an explicit example where the model is defined byM = K×DΥ = [Kmax]×[dmax],
Kmax, dmax ∈ N?, leads to the Assumption 3.2.1 (K) is always satisfied. It is interesting to find the
optimal family (zm)m∈M satisfying Assumption 1.2.1 (K). To the best of our knowledge, this question
is only partially answered in some special cases of MoE regression models, e.g., Gaussian finite
mixture model as in Figure 1.3 (a) Maugis & Michel (2011b), finite mixture of Gaussian regression
models as in Figure 1.3 (b). However, for the standard MoE regression models as in Figure 1.3 (d),
e.g., LinBoSGaME and GLoME models, such question still remains open due to the complexity of
models. We hope to resolve this important and interesting problem in our future work. Furthermore,
remark that the Assumption 1.2.2 (Sep) is true when we consider Gaussian densities Massart (2007).

Therefore, our model has only to satisfy the remaining Assumption 1.2.3 (H). Following the same
strategy as in the proof of LinBoSGaME models, the main task for GLoME models is to prove
Lemma 1.2.13, which is similar but much more difficult compared to Lemma 1.2.12.

Another important contribution lies on the numerical experiments in Section 3.2.3. Note that our
main objective here is to investigate how well the empirical tensorized Kullback–Leibler divergence
between the true model (s∗0) and the selected model ŝ∗m̂ follows the finite-sample oracle inequality
of Theorem 1.2.2, as well as the rate of convergence of the error term. Therefore, we focus on 1-
dimensional data sets, that is, with L = D = 1. Beyond the statistical estimation and model selection
objectives considered here, the dimensionality reduction capability of GLLiM in high-dimensional
regression data, typically D � L, can be found in (Deleforge et al., 2015c, Section 6).

For the Gaussian gating parameters, to make use of the first inequality from Lemma 1.2.12 of
Montuelle et al. (2014), we propose the following reparameterization trick of the Gaussian gating
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space, which is defined in (1.1.5), via the logistics scheme PK and the nonlinear space WK as follows:

WK =
{
Y 3 y 7→ (ln (πkφL (y; ck,Γk)))k∈[K] =: (wk(y;ω))k∈[K] = w (y;ω) : ω ∈ Ω̃K

}
, (1.2.50)

PK =

Y 3 y 7→

(
ewk(y)∑K
l=1 e

wl(y)

)
k∈[K]

=: (gw,k (y))k∈[K] ,w ∈ WK

 . (1.2.51)

We aim to provide the following important upper bound for metric entropy of nonlinear space Lemma 1.2.13,
which play a key step for controlling the bracketing entropy not only for GLoME models but also for
any standard MoE regression models with Gaussian gating networks, e.g., BLoME models, see again
Figure 1.3 (d) and Figure 1.4 for comprehensive descriptions of this general class.

Lemma 1.2.13. For all δ ∈ (0,
√

2], there exists a constant CWK
such that

Hd‖sup‖∞

(
3
√

3δ

20
√
K − 1

,WK

)
≤ dim (WK)

(
CWK

+ ln

(
20
√
K − 1

3
√

3δ

))
.

Proof of Lemma 1.2.13. Note that Lemma 1.2.13 is obtained by proving that there exists a constant
CWK

such that ∀δ ∈ (0, 2],

Hd‖sup‖∞
(δ,WK) ≤ dim (WK)

(
CWK

+ ln

(
1

δ

))
, (1.2.52)

where dim (WK) = K − 1 +KL+K L(L+1)
2 .

In order to establish the proof for (1.2.52), we have to construct firstly the δπ-covering ΠK−1,ω of
ΠK−1 via Lemma 1.2.14, which is proved in Section 1.2.10.4.

Lemma 1.2.14 (Covering number of probability simplex with maximum norm). Given any δπ > 0,
any π ∈ ΠK−1, we can choose π̂ ∈ ΠK−1,ω, an δπ-covering of ΠK−1, so that maxk∈[K] |πk − π̂k| ≤ δπ.
Furthermore, it holds that

N (δπ,ΠK−1, ‖·‖∞) ≤ K (2πe)K/2

δK−1
π

. (1.2.53)

Then, by definition of the covering number, (1.2.52) is obtained immediately via Lemma 1.2.15,
which controls the covering number of WK and is proved in Section 1.2.10.5.

Lemma 1.2.15. Given a bounded set Y in RL such that Y =
{
y ∈ RL : ‖y‖∞ ≤ CY

}
, it holds that

WK has a covering number satisfied N
(
δ,WK , d‖sup‖∞

)
≤ Cδ− dim(WK), for some constant C.

Indeed, Lemma 1.2.15 implies the desired result by noting that

Hd‖sup‖∞
(δ,WK) = lnN

(
δ,WK , d‖sup‖∞

)
≤ ln

[
C

δdim(WK)

]
= dim (WK)

[
1

dim (WK)
lnC + ln

(
1

δ

)]
= dim (WK)

(
CWK

+ ln

(
1

δ

))
.

1.2.10.4 Proof of Lemma 1.2.14

Note that Genovese & Wasserman (2000, Lemma 2) provide a result for controlling a δπ-Hellinger
bracketing of ΠK−1. However, such result can not be applied for our Lemma 1.2.14 since they use
δπ-Hellinger bracketing entropy while we use δπ-covering number for the probability complex with
maximum norm.

Given any π = (πk)k∈[K] ∈ ΠK−1, let ξ = (ξk)k∈[K] where ξk =
√
πk,∀k ∈ [K]. Then π ∈ ΠK−1 if

and only if ξ ∈ Q+ ∩ U , where U is the surface of the unit sphere and Q+ is the positive quadrant of
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RK . Next, we divide the unit cube in RK into disjoint cubes with sides parallel to the axes and sides
of length δπ/

√
K. Let (Cj)j∈[N ] is the subset of these cubes that have non-empty intersection with

Q+ ∩ U . For any j ∈ [N ], let νj = (νj,k)k∈[K] be the center of the cube Cj and ν2
j =

(
ν2
j,k

)
k∈[K]

.

Then {νj}j∈[N ] is a δπ/
(

2
√
K
)

-covering of Q+∩U , since we have for any ξ = (ξk)k∈[K] ∈ Q+∩U ,

there exists j0 ∈ [N ] such that ξ ∈ Cj0 , and

‖ξ − νj0‖∞ = max
k∈[K]

|ξk − νj0,k| ≤
δπ

2
√
K
. (1.2.54)

Therefore, it follows that ΠK−1,ω :=
{
ν2
j

}
j∈[N ]

is a δπ-covering of ΠK−1, since for any π = (πk)k∈[K] ∈

ΠK−1, (1.2.54) leads to the existence of j0 ∈ [N ], such that∥∥π − ν2
j0

∥∥
∞ = max

k∈[K]

∣∣ξ2
k − ν2

j0,k

∣∣ = max
k∈[K]

{|ξk − νj0,k| |ξk + νj0,k|} ≤
δπ

2
√
K

max
k∈[K]

|ξk + νj0,k| ≤
δπ√
K
≤ δπ,

where we used the fact that maxk∈[K] |ξk + νj0,k| ≤ 2. Now, it remains to count the number of cubes
N . Let Ta = {z ∈ Q+ : ‖z‖2 ≤ a} and let C =

⋃
j∈[N ] Cj . Note that C ⊂ T1+δπ − T1−δπ ≡ T , and so

Volume(T ) ≥ Volume(C) = N

(
δπ√
K

)K
.

Note that here we use the notation π for the Archimedes’ constant, which differs from π = (πk)k∈[K]

for the mixing proportion of the GLoME model. Then, we define VK (a) = aKπK/2 as the vol-

ume of a sphere of radius a. Since z! ≥ zze−z and (1 + δπ)K − (1− δπ)K = K
∫ 1+δπ

1−δπ z
K−1dz ≤

2δπK (1 + δπ)K−1, it follows that

N (δπ,ΠK−1, ‖·‖∞) ≤ N ≤ Volume (C)(
δπ/
√
K
)K =

1

2K
VK (1 + δπ)− VK (1− δπ)(

δπ/
√
K
)K

=
1

2K

[
(1 + δπ)K − (1− δπ)K

]
(
δπ/
√
K
)K πK/2

(K/2)!
≤
(πe

2

)K/2 [(1 + δπ)K − (1− δπ)K
]

δKπ

≤ K (2πe)K/2

δK−1
π

.

1.2.10.5 Proof of Lemma 1.2.15

In order to find an upper bound for a covering number ofWK , we wish to construct a finite δ-covering
WK,ω of WK , with respect to the distance d‖sup‖∞ . That is, given any δ > 0,w (·;ω) ∈ WK , we aim
to prove that there exists w (·; ω̂) ∈WK,ω such that

d‖sup‖∞ (w(·;ω),w(·; ω̂)) = max
k∈[K]

sup
y∈Y
|wk(y;ω)−wk (y; ω̂)| ≤ δ. (1.2.55)

In order to accomplish such task, given any positive constants δc, δΓ, δπ, and any k ∈ [K], let us define

F = {Y 3 y 7→ ln (φL (y; c,Γ)) : ‖c‖∞ ≤ Ac, aΓ ≤ m (Γ) ≤M (Γ) ≤ AΓ} ,

Fck =
{

ln (φL (·; ck,Γk)) : ln (φL (·; ck,Γk)) ∈ F ,

ck,j ∈ {−CY + lδc/L : l = 0, . . . , d2CYL/δce} , j ∈ [L]
}
, (1.2.56)

Fck,Γk =

{
ln (φL (·; ck,Γk)) : ln (φL (·; ck,Γk)) ∈ Fck ,

[vec (Γk)]i,j = γi,j
δΓ
L2

; γi,j = γj,i ∈ Z ∩
[
−
⌊L2AΓ

δΓ

⌋
,
⌊L2AΓ

δΓ

⌋]
, i ∈ [L], j ∈ [L]

}
, (1.2.57)

WK,ω = {w (·;ω) : w (·;ω) ∈ WK ,∀k ∈ [K], ln (φL (·; ck,Γk)) ∈ Fck,Γk ,π ∈ ΠK−1,ω} . (1.2.58)
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Here, d·e and b·c are ceiling and floor functions, respectively, and vec (·) is an operator that stacks
matrix columns into a column vector. In particular, we denote ΠK−1,ω as a δπ-covering of ΠK−1, which
is defined in Lemma 1.2.14. By the previous definition, it holds that ∀k ∈ [K], Fck,Γk ⊂ Fck ⊂ F ,
and WK,ω ⊂ WK .

Next, we claim that WK,ω is a finite δ-covering of WK with respect to the distance d‖sup‖∞ . To
do this, for any w (·;ω) = (ln (πkφL (·; ck,Γk)))k∈[K] ∈ WK , ln (φL (·; ck,Γk)) ∈ F ,π ∈ ΠK−1, and for
any k ∈ [K], by (3.2.43), we first choose a function ln (φL (·; ĉk,Γk)) ∈ Fck so that

‖ĉk − ck‖1 =
L∑
j=1

|ĉk,j − ck,j | ≤ L
δc
L

= δc.

Furthermore, by (1.2.57), we can obtain a result to construct the covariance matrix lattice. That is,

any ln (φL (·; ĉk,Γk)) ∈ Fck can be approximated by ln
(
φL

(
·; ĉk, Γ̂k

))
∈ Fck,Γk such that

∥∥∥vec
(
Γ̂k

)
− vec (Γk)

∥∥∥
1
≡
∥∥∥vec

(
Γ̂k − Γk

)∥∥∥
1

=

L∑
i=1

L∑
j=1

∣∣∣∣[vec
(
Γ̂k − Γk

)]
i,j

∣∣∣∣ ≤ L2δΓ
L2

= δΓ.

Note that since for any k ∈ [K], (y, ck, vec (Γk)) 7→ ln (φL (y; ck,Γk)) is differentiable, it is also
continuous w.r.t. y and its parameters ck and Γk. Thus, for every fixed y ∈ Y, for every ĉk, ck ∈ X
with ĉk ≤ ck, and for every Γ̂k, Γk, where vec

(
Γ̂k

)
≤ vec (Γk), we can apply the mean value theorem

(see Duistermaat & Kolk 2004, Lemma 2.5.1) to ln (φL (y; ·,Γk)) and ln (φL (y; ĉk, ·)) on the intervals

[ĉk, ck] and
[
vec
(
Γ̂k

)
, vec (Γk)

]
for some zck ∈ (ĉk, ck) and zΓk ∈

(
vec
(
Γ̂k

)
, vec (Γk)

)
, respectively,

to get

ln (φL (y; ĉk,Γk))− ln (φL (y; ck,Γk)) = (ĉk − ck)
>∇ck ln (φL (y; zck ,Γk)) ,

ln
(
φL

(
y; ĉk, Γ̂k

))
− ln (φL (y; ĉk,Γk)) =

(
vec
(
Γ̂k

)
− vec (Γk)

)>
∇vec(Γk) ln (φL (y; ĉk, zΓk)) .

Moreover, (y, ck, vec (Γk)) 7→ ∇ck ln (φL (y; zck ,Γk)) and (y, ck, vec (Γk)) 7→ ∇vec(Γk) ln (φL (y; ĉk, zΓk))

are continuous functions on the compact set U := Y × Y × [aΓ, AΓ]L
2

leads to they attain minimum
and maximum values (see Duistermaat & Kolk 2004, Theorem 1.8.8). That is, we can set

0 < (Cc)
>
1,...,L := max

k∈[K]
sup

(y,ck,vec(Γk))∈U
|∇ck ln |φL (y; ck,Γk)|| <∞,

0 < (CΓ)>1,...,L2 := max
k∈[K]

sup
(y,ck,vec(Γk))∈U

∣∣∇vec(Γk) ln |φL (y; ck,Γk) (x)|
∣∣ <∞.

Therefore, by the Cauchy–Schwarz inequality, we have

sup
y∈Y
|ln (φL (y; ĉk,Γk))− ln (φL (y; ck,Γk))| ≤ |ĉk − ck|> (Cc)

>
1,...,L = Cc ‖ĉk − ck‖1 ≤ Ccδπ,

sup
y∈Y

∣∣∣ln(φL (y; ĉk, Γ̂k

))
− ln (φL (y; ĉk,Γk))

∣∣∣ ≤ CΓ

∥∥∥vec
(
Γ̂k − Γk

)∥∥∥
1
≤ CΓδΓ,

and by using the triangle inequality, it follows that

max
k∈[K]

sup
y∈Y

∣∣∣ln(φL (y; ĉk, Γ̂k

))
− ln (φL (y; ck,Γk))

∣∣∣ ≤ Ccδc + CΓδΓ. (1.2.59)

Moreover, for every π ∈ ΠK−1, Lemma 1.2.14 implies that we can choose π̂ ∈ ΠK−1,ω so that
maxk∈[K] |πk − π̂k| ≤ δπ. Notice that [aπ,∞) 3 t 7→ ln(t), aπ > 0 is a Lipschitz continuous function
on [aπ,∞]. Indeed, by the mean value theorem, it holds that there exists c ∈ (t1, t2), such that

|ln (t1)− ln (t2)| = ln′(c) |t1 − t2| ≤
1

aπ
|t1 − t2| , for all t1, t2 ∈ [aπ,∞). (1.2.60)
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Therefore, (1.2.55) can be obtained by the following evaluation

d‖sup‖∞ (w(·;ω),w(·; ω̂)) = max
k∈[K]

sup
y∈Y

∣∣∣ln (πkφL (y; ck,Γk))− ln
(
π̂kφL

(
y; ĉk, Γ̂k

))∣∣∣
= max

k∈[K]
sup
y∈Y

∣∣∣ln (πk)− ln (π̂k) + ln (φL (y; ck,Γk))− ln
(
φL

(
y; ĉk, Γ̂k

))∣∣∣
≤ max

k∈[K]
|ln (πk)− ln (π̂k)|+ max

k∈[K]
sup
y∈Y

∣∣∣ln (φL (y; ck,Γk))− ln
(
φL

(
y; ĉk, Γ̂k

))∣∣∣
≤ 1

aπ
max
k∈[K]

|πk − π̂k|+ Ccδc + CΓδΓ (using (3.2.47) and (1.2.59))

≤ δπ
aπ

+ Ccδc + CΓδΓ (using Lemma 1.2.14) ≤ δ

3
+
δ

3
+
δ

3
= δ,

where we choose δπ = δaπ
3 , δc = δ

3Cµ
, δΓ = δ

3CΓ
. Finally, we get the covering number

N
(
δ,WK ,d‖sup‖∞

)
≤ card (WK,ω) =

[
2CYL

δc

]KL [2AΓL
2

δΓ

]L(L+1)
2

K

N (δπ,ΠK−1, ‖·‖∞)

=
C

δKL+K
L(L+1)

2
+K−1

=
C

δdim(WK)
,

where

C = (6CcCYL)KL
(
6CΓAΓL

2
)L(L+1)

2
K
(

3

aπ

)K−1

K (2πe)K/2 .

1.2.11 Our contributions for weak oracle inequalities in random subcollection of
MoE models via Theorems 1.2.3 and 1.2.5

The deterministic collection of MoE models include BLLiM, BLoME, PSGaBloME and LinBoSGaBloME
models where weak oracle inequalities were only well studied for finite mixture of Gaussian regression
models via a model selection theorem for MLE among a random subcollection of models in regression
framework of Devijver (2015b, Theorem 5.1), see also Devijver & Gallopin (2018, Theorem 7.3). This
is an extension of a whole collection of conditional densities from Cohen & Le Pennec (2011, Theorem
2), and of Massart (2007, Theorem 7.11), working only for density estimation. In Section 1.2.11.1,
we first summarize this theorem and the techniques that Devijver (2017a) used to control the brack-
eting entropy of finite mixture of Gaussian regression models with joint rank and variable selection
for parsimonious estimation in a high-dimensional framework. Then, we explain why such techniques
can not be directly applied to our collection of BLLiM, BLoME, PSGaBloME and LinBoSGaBloME
models to highlight the main challenges and our contributions.

1.2.11.1 A model selection theorem for MLE among a random subcollection

We can now state the main result of (Devijver, 2015b, Theorem 5.1) for the model selection theorem
for MLE among a random subcollection.

Theorem 1.2.16 (Theorem 5.1 from Devijver (2015b)). Let
(
x[n],y[n]

)
be observations coming from

an unknown conditional density s0. Let the model collection S = (Sm)m∈M be an at most countable
collection of conditional density sets. Assume that Assumption 1.2.1 (K), Assumption 1.2.2 (Sep),
and Assumption 1.2.3 (H) hold for every m ∈M. Let εKL > 0, and s̄m ∈ Sm, such that

KL⊗n (s0, s̄m) ≤ inf
t∈Sm

KL⊗n (s0, t) +
εKL
n

;

and let τ > 0, such that

s̄m ≥ e−τs0. (1.2.61)
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Introduce (Sm)
m∈M̃, a random subcollection of (Sm)m∈M. Consider the collection (ŝm)

m∈M̃ of η-log

likelihood minimizer satisfying (1.2.6) for all m ∈ M̃. Then, for any ρ ∈ (0, 1), and any C1 > 1, there
are two constants κ0 and C2 depending only on ρ and C1, such that, for every index m ∈M,

pen(m) ≥ κ (Dm + (1 ∨ τ)ξm) ,

with κ > κ0, and where the model complexity Dm is defined in Assumption 1.2.3 (H), the η′-penalized

likelihood estimator ŝm̂, defined as in (1.2.5) on the subset M̃ ⊂M, satisfies

EX[n],Y[n]

[
JKL⊗n

ρ (s0, ŝm̂)
]
≤ C1EX[n],Y[n]

[
inf

m∈M̃

(
inf
t∈Sm

KL⊗n (s0, t) + 2
pen(m)

n

)]
+ C2(1 ∨ τ)

Ξ2

n
+
η′ + η

n
.

1.2.11.2 Sketches of the proofs for our BLoME and PSGaBloME models

To work with conditional density estimation in the BLoME and PSGaBloME regression models, it
is natural to make use of Theorem 1.2.9. However, it is worth mentioning that, because the model
collection constructed by the BLLiM Devijver et al. (2017) and our Lasso+l2-MLE and Lasso+l2-Rank
procedures, see Section 4.3.5 for more details, are both random, we have to use a model selection
theorem for MLE among a random subcollection (cf. Devijver, 2015b, Theorem 5.1 and Devijver &
Gallopin, 2018, Theorem 7.3). This is the extension of Cohen & Le Pennec (2011, Theorem 2), which
dealt with conditional density estimation but not with random subcollection, and of Massart (2007,
Theorem 7.11), working only for density estimation.

Then, we explain how we use Theorem 1.2.16 to get the oracle inequalities, Theorems 1.2.3
and 1.2.5. To this end, our model collections of BLoME and PSGaBloME models have to satisfy
some regularity assumptions, which are briefly and fully proved in Sections 1.2.11.3, 1.2.11.8, 3.3.3
and 4.3.3, respectively. For BLoME models, the main difficulty in proving our oracle inequality lies in
bounding the bracketing entropy of the Gaussian gating functions and Gaussian experts with block-
diagonal covariance matrices. To overcome the former issue, we follow a reparameterization trick of
the Gaussian gating parameters space (Nguyen et al., 2021c). For the second one, we utilize the recent
novel result on block-diagonal covariance matrices in Devijver & Gallopin (2018). While to work with
PSGaBloME models, we have to control the bracketing entropy of the weights and means restricted
on relevant variables as well as rank sparse models, and in particular with block-diagonal covariance
matrices for PSGaBloME model. To overcome the former issue, we need to extend the strategies
from Montuelle et al. (2014), Devijver (2017a). For the second one, we need to extend the result on
block-diagonal covariance matrices from Gaussian graphical models in Devijver & Gallopin (2018) to
standard MoE regression models, based on some ideas of Gaussian mixture models from Genovese &
Wasserman (2000), Maugis & Michel (2011b).

1.2.11.3 Our contributions on BLoME models

It should be stressed that all we need is to verify that Assumption 1.2.3 (H), Assumption 1.2.2 (Sep)
and Assumption 1.2.1 (K) hold for every m ∈ M. According to the result from Devijver (2015b,
Section 5.3), Assumption 1.2.2 (Sep) holds when we consider Gaussian densities and the assumption
defined by (1.2.61) is true if we assume further that the true conditional density s0 is bounded and
compactly supported. Furthermore, since we restricted d and K to DΥ = [dmax] and K = [Kmax],
respectively, it is true that there exists a family (ξm)m∈M and Ξ > 0 such that, Assumption 1.2.1 (K)
is satisfied. Therefore, the proof for the remaining Assumption 1.2.3 (H) is our contribution. Next,
we explain that to the best of our knowledge, there are no results that can be directly applied to
Assumption 1.2.3 (H) for BLoME models due to their complexity with the Gaussian gating functions
and Gaussian experts with block-diagonal covariance matrices. This highlights our contributions with
this challenge problem compared to the works of Genovese & Wasserman (2000), Maugis & Michel
(2011b), Devijver (2015b, 2017a), Devijver & Gallopin (2018), Montuelle et al. (2014).

By using Lemma 1.2.11, Assumption 1.2.3 (H) holds true if we can prove that for any δ ∈ (0,
√

2],
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the collection of LinBoSGaME models, S = (Sm)m∈M, satisfies

H[·],d⊗n (δ, Sm) ≤ dim(Sm)

(
Cm + ln

(
1

δ

))
. (1.2.62)

Proof of 1.2.62. Note that (1.2.62) can be established by first decomposing the entropy term between
the Gaussian gating functions and the Gaussian experts. Motivated by our reparameterization trick
of the Gaussian gating space in Section 1.2.10.3, we define for PK viaWk and Gaussian experts GK,d,B
as follows.

WK =
{
Y 3 y 7→ (ln (πkφ (y; ck,Γk)))k∈[K] =: (wk(y;ω))k∈[K] = w (y;ω) : ω ∈ Ω̃K

}
,

PK =

Y 3 y 7→

(
ewk(y)∑K
l=1 e

wl(y)

)
k∈[K]

=: (gk (y; w))k∈[K] ,w ∈ WK

 , and

GK,d,B =
{
X × Y 3 (x,y) 7→ (φ (x;υk,d(y),Σk (Bk)))k∈[K] : υd ∈ ΥK,d,Σ(B) ∈ VK(B)

}
.

There are two possible ways to decompose the bracketing entropy of Sm based on different distances.
For the first approach, we can use Lemma 1.2.17 (Montuelle et al., 2014, Lemma 5):

Lemma 1.2.17. For all δ ∈ (0,
√

2] and m ∈M,

H[·],supy dx
(δ, Sm) ≤ H[·],supy dk

(
δ

5
,PK

)
+H[·],supy maxk dx

(
δ

5
,GK,d,B

)
.

As mentioning in Appendix B.2.1 from Montuelle et al. (2014), Lemma 1.2.17 boils down to as-
suming that Y is bounded. Furthermore, they also claim that this boundedness assumption can
be relaxed when using smaller distance d⊗n but bounding the corresponding bracketing entropy be-
comes much more challenging. We successful weaken such boundedness assumption via utilizing the
smaller distance: d⊗n, for the bracketing entropy of Sm although bounding such bracketing entropy
for WK and GK,B becomes much more challenging. This is one of our contributions regarding the
controlling bracketing entropy of BLoME models. Consequently, this leads to the second approach
via Lemma 1.2.18 (Montuelle et al., 2014, Lemma 6).

Lemma 1.2.18. For all δ ∈ (0,
√

2],

H[·],d⊗n (δ, Sm) ≤ H[·],dPK

(
δ

2
,PK

)
+H[·],dGK,d,B

(
δ

2
,GK,d,B

)
,

where

d2
PK
(
g+, g−

)
= EY[n]

[
1

n

n∑
i=1

d2
k

(
g+ (Yi) , g

−(Yi)
)]

= EY[n]

[
1

n

n∑
i=1

K∑
k=1

(√
g+
k (Yi)−

√
g−k (Yi)

)2
]
,

d2
GK,d,B

(
φ+, φ−

)
= EY[n]

[
1

n

n∑
i=1

K∑
k=1

d2
x

(
φ+
k (·,Yi) , φ

−
k (·,Yi)

)]

= EY[n]

[
1

n

n∑
i=1

K∑
k=1

∫
X

(√
φ+
k (x,Yi)−

√
φ+
k (x,Yi)

)2

dx

]
.

Next, we make use of Lemma 1.2.19, which is proved in Section 1.2.11.4, to provide an upper bound
on the bracketing entropy of Sm and PK on the corresponding distances d⊗n and dPK , respectively.

Lemma 1.2.19. It holds that

d⊗n(s, t) ≤ sup
y
dx(s, t), and H[·],d⊗n (δ, Sm) ≤ H[·],supy dx

(δ, Sm) , (1.2.63)

dPK
(
g+, g−

)
≤ sup

y
dk(g

+, g−), and H[·],dPK

(
δ

2
,PK

)
≤ H[·],supy dk

(
δ

2
,PK

)
. (1.2.64)

39



Chapter 1. Introduction

Lemmas 1.2.18 and 1.2.19 imply that

H[·],d⊗n (δ, Sm) ≤ H[·],supy dk

(
δ

2
,PK

)
+H[·],dGK,d,B

(
δ

2
,GK,d,B

)
.

Based on this metric, one can first relate the bracketing entropy of PK to Hd‖sup‖∞
(δ,WK), and then

obtain the upper bound for its entropy via Lemma 1.2.13.
Then, we present our main contribution for BLoME models via Lemma 1.2.20. This lemma allows

us to construct the Gaussian brackets to handle the metric entropy for Gaussian experts, which is
established in Section 1.2.11.5.

Lemma 1.2.20.

H[·],dGK,d,B

(
δ

2
,GK,d,B

)
≤ dim (GK,d,B)

(
CGK,d,B + ln

(
1

δ

))
. (1.2.65)

Finally, (3.3.8) can easily proved via Lemmas 1.2.13 and 1.2.20.

1.2.11.4 Proof of Lemma 1.2.19

We first aim to prove that d2⊗n(s, t) ≤ supy d
2
x(s, t). Indeed, by definition, it follows that

d2⊗n (s, t) = EY[n]

[
1

n

n∑
i=1

d2
x (s (·|Yi) , t (·|Yi))

]
=

1

n

n∑
i=1

EY[n]

[
d2

x (s (·|Yi) , t (·|Yi))
]

=
1

n

n∑
i=1

∫
Y
d2

x (s (·|y) , t (·|y)) sx,0(y)dy ≤ sup
y
d2

x (s, t)
1

n

n∑
i=1

∫
Y
sx,0(y)dy = sup

y
d2

x (s, t),

where sx,0 denotes that marginal PDF of s0, w.r.t. x. Consequently, it holds that d⊗n(s, t) =√
d2⊗n(s, t) ≤

√
supy d

2
x(s, t) = supy dx(s, t). To prove that

H[·],d⊗n (δ, Sm) ≤ H[·],supy dx
(δ, Sm) ,

it is sufficient to check that

N[·],d⊗n (δ, Sm) ≤ N[·],supy dx
(δ, Sm) .

By using the definition of bracketing entropy in (1.2.46) and d⊗n(s, t) ≤ supy dx(s, t), given

A =

{
n ∈ N? : ∃t−1 , t

+
1 , . . . , t

−
n , t

+
n s.t sup

y
dx(s, t)

(
t−k , t

+
k

)
≤ δ, Sm ⊂

n⋃
k=1

[
t−k , t

+
k

]}
,

B =

{
n ∈ N? : ∃t−1 , t

+
1 , . . . , t

−
n , t

+
n s.t d⊗n

(
t−k , t

+
k

)
≤ δ, Sm ⊂

n⋃
k=1

[
t−k , t

+
k

]}
,

it leads to that A ⊂ B and then (1.2.63) follows, since

N[·],supy dx(s,t) (δ, Sm) = minA ≥ minB = N[·],d⊗n (δ, Sm) .

With the similar argument as in the proof of (1.2.63), it holds that dPK (g+, g−) ≤ supy dk(g
+, g−)

and (1.2.64) is proved.

1.2.11.5 Proof of Lemma 1.2.20

It is worth mentioning that without any structures on covariance matrices of Gaussian experts from
the collection M, Lemma 1.2.20 can be proved using Proposition 2 from Montuelle et al. (2014) and
Montuelle et al. (2014, Appendix B.2.3), for constructing of Gaussian brackets to deal with the Gaus-
sian experts. However, dealing with block-diagonal covariance matrices with random subcollection is
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much more challenging. We have to establish more constructive bracketing entropies in the spirits of
Maugis & Michel (2011b), Devijver (2015b), Devijver & Gallopin (2018).

Given any k ∈ [K], by defining

Gd,Bk
= {X × Y 3 (x,y) 7→ φ (x;υk,d(y),Σk (Bk)) =: φk : υk,d ∈ Υk,d,Σk (Bk) ∈ Vk(Bk)} ,

(1.2.66)

it follows that GK,d,B =
∏K
k=1 Gd,Bk

, where
∏

stands for the cartesian product. By using Lemma 1.2.21,
which is proved in Section 1.2.11.6, it follows that

H[·],dGK,d,B

(
δ

2
,GK,d,B

)
≤

K∑
k=1

H[·],dGd,Bk

(
δ

2
√
K
,Gd,Bk

)
. (1.2.67)

Lemma 1.2.21. Given GK,d,B =
∏K
k=1 Gd,Bk

, where Gd,Bk
is defined in (1.2.66), it holds that

N[·],dGK,d,B

(
δ

2
,GK,d,B

)
≤

K∏
k=1

N[·],dGd,Bk

(
δ

2
√
K
,Gd,Bk

)
,

where for any φ+, φ− ∈ GK,d,B and any φ+
k , φ

−
k ∈ Gd,Bk

, k ∈ [K],

d2
GK,d,B

(
φ+, φ−

)
= EY[n]

[
1

n

n∑
i=1

K∑
k=1

d2
(
φ+
k (·,Yi) , φ

−
k (·,Yi)

)]
,

d2
Gd,Bk

(
φ+
k , φ

−
k

)
= EY[n]

[
1

n

n∑
i=1

d2
(
φ+
k (·,Yi) , φ

−
k (·,Yi)

)]
.

Lemma 1.2.20 is proved via (1.2.67) and Lemma 1.2.22, which is proved in Section 1.2.11.7.

Lemma 1.2.22. By defining Gd,Bk
as in (1.2.66), for all δ ∈ (0,

√
2], it holds that

H[·],dGd,Bk

(
δ

2
,Gd,Bk

)
≤ dim (Gd,Bk

)

(
CGd,Bk + ln

(
1

δ

))
, where (1.2.68)

DBk
=

Gk∑
g=1

card
(
d

[g]
k

)(
card

(
d

[g]
k

)
− 1
)

2
,

CGd,Bk =

DBk
ln
(

6
√

6λMD
2(D−1)

λmDBk

)
+ dim (Υk,d) ln

(
6
√

2D exp
(
CΥk,d

)
√
λm

)
dim (Gd,Bk

)
.

Indeed, (1.2.67) and (1.2.68) lead to

H[·],dGK,d,B

(
δ

2
,GK,d,B

)
≤

K∑
k=1

H[·],dGd,Bk

(
δ

2
√
K
,Gd,Bk

)

≤
K∑
k=1

dim (Gd,Bk
)

(
CGd,Bk + ln

(√
K
)

+ ln

(
1

δ

))
≤ dim (GK,d,B)

(
CGK,d,B + ln

(
1

δ

))
.

Here, CGK,d,B =
∑K

k=1CGd,Bk+ln
(√

K
)

and note that dim (GK,d,B) =
∑K

k=1 dim (Gd,Bk
), dim (Gd,Bk

) =

DBk
+ dim (Υk,d), dim (Υk,d) = DdΥk,d

, CΥk,d
=
√
DdΥk,d

TΥk,d
(in cases where linear combination

of bounded functions are used for means, i.e., Υk,d = Υb) or dim (Υk,d) = D
(dΥk,d

+L

L

)
, CΥk,d

=
√
D
(dΥk,d

+L

L

)
TΥk,d

(in cases where we use polynomial means, i.e., Υk,d = Υp).

41



Chapter 1. Introduction

1.2.11.6 Proof of Lemma 1.2.21

By the definition of the bracketing entropy in (1.2.46), for each k ∈ [K], let
{[
φl,−k , φl,+k

]}
1≤l≤NGd,Bk

be a minimal covering of δk brackets for dGd,Bk of Gd,Bk
, with cardinality NGd,Bk . This leads to

∀l ∈
[
NGd,Bk

]
, dGd,Bk

(
φl,−k , φl,+k

)
≤ δk.

Therefore, we claim that the set
{∏K

k=1

[
φl,−k , φl,+k

]}
1≤l≤NGd,Bk

is a covering of δ
2 -bracket for dGK,d,B

of GK,d,B with cardinality
∏K
k=1N[·],dGd,Bk

(δk,Gd,Bk
). Indeed, let any φ = (φk)k∈[K] ∈ GK,d,B. Conse-

quently, for each k ∈ [K], φk ∈ Gd,Bk
, there exists l(k) ∈

[
NGd,Bk

]
, such that

φ
l(k),−
k ≤ φk ≤ φ

l(k),+
k , d2

Gd,Bk

(
φ
l(k),+
k , φ

l(k),−
k

)
≤ (δk)

2 .

Then, it follows that φ ∈ [φ−, φ+] ∈
{∏K

k=1

[
φl,−k , φl,+k

]}
1≤l≤NGd,Bk

, with φ− =
(
φ
l(k),−
k

)
k∈[K]

, φ+ =(
φ
l(k),+
k

)
k∈[K]

, which implies that
{∏K

k=1

[
φl,−k , φl,+k

]}
1≤l≤NGd,Bk

is a bracket covering of GK,d,B.

Now, we want to verify that the size of this bracket is δ/2 by choosing δk = δ
2
√
K
, ∀k ∈ [K]. It

follows that

d2
GK,d,B

(
φ−, φ+

)
= EY[n]

[
1

n

n∑
i=1

K∑
k=1

d2
(
φ
l(k),−
k (·,Yi) , φ

l(k),+
k (·,Yi)

)]

=
K∑
k=1

EY[n]

[
1

n

n∑
i=1

d2
(
φ
l(k),−
k (·,Yi) , φ

l(k),+
k (·,Yi)

)]

=

K∑
k=1

d2
Gd,Bk

(
φ
l(k),−
k , φ

l(k),+
k

)
≤ K

(
δ

2
√
K

)2

=

(
δ

2

)2

.

To this end, by definition of a minimal δ2 -bracket covering number for GK,d,B, Lemma 1.2.21 is proved.

1.2.11.7 Proof of Lemma 1.2.22

To provide the upper bound of the bracketing entropy in (1.2.68), our technique is adapted from
the work of Genovese & Wasserman (2000) for unidimensional Gaussian mixture families, which is
recently generalized to multidimensional case by Maugis & Michel (2011b) for Gaussian mixture
models. Furthermore, we make use of the results from Devijver & Gallopin (2018) to deal with block-
diagonal covariance matrices, Vk (Bk) , k ∈ [K], and from Montuelle et al. (2014) to handle the means
of Gaussian experts Υk,d, k ∈ [K].

The main idea in our approach is to define firstly a net over the parameter spaces of Gaussian
experts, Υk,d × Vk (Bk) , k ∈ [K], and to construct a bracket covering of Gd,Bk

according to the
tensorized Hellinger distance. Note that dim (Gd,Bk

) = dim (Υk,d) + dim (Vk (Bk)).

Step 1: Construction of a net for the block-diagonal covariance matrices. Firstly, for
k ∈ [K], we denote by Adj (Σk (Bk)) the adjacency matrix associated to the covariance matrix Σk (Bk).
Note that this matrix of size D2 can be defined by a vector of concatenated upper triangular vectors.
We are going to make use of the result from Devijver & Gallopin (2018) to handle the block-diagonal
covariance matrices Σk (Bk), via its corresponding adjacency matrix. To do this, we need to construct

a discrete space for {0, 1}D(D−1)/2, which is a one-to-one correspondence (bijection) with

ABk
= {ABk

∈ SD ({0, 1}) : ∃Σk (Bk) ∈ Vk (Bk) s.t Adj (Σk (Bk)) = ABk
} ,

where SD ({0, 1}) is the set of symmetric matrices of size D taking values on {0, 1}.
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Then, we want to deduce a discretization of the set of covariance matrices. Let h denotes Hamming
distance on {0, 1}D(D−1)/2 defined by

d(z, z′) =
n∑
i=1

I
{
z 6= z′

}
, for all z, z′ ∈ {0, 1}D(D−1)/2 .

Let {0, 1}D(D−1)/2
Bk

be the subset of {0, 1}D(D−1)/2 of vectors for which the corresponding graph has

structure Bk =
(
d

[g]
k

)
g∈[Gk]

. Corollary 1 and Proposition 2 from Supplementary Material A of Devijver

& Gallopin (2018) imply that there exists some subset R of {0, 1}D(D−1)/2, as well as its equivalent
Adisc

Bk
for adjacency matrices such that, given ε > 0, and

S̃disc
Bk

(ε) =

{
Σk (Bk) ∈ S++

D (R) : Adj (Σk (Bk)) ∈ Adisc
Bk

, [Σk (Bk)]i,j = σi,jε, σi,j ∈
[
−λM
ε

,
λM
ε

]⋂
Z
}
,

it holds that∥∥∥Σk (Bk)− Σ̃k (Bk)
∥∥∥2

2
≤ DBk

2
∧ ε2,∀

(
Σk (Bk) , Σ̃k (Bk)

)
∈
(
S̃disc

Bk
(ε)
)2

s.t. Σk (Bk) 6= Σ̃k (Bk) ,

card
(
S̃disc

Bk
(ε)
)
≤

(⌊
2λM
ε

⌋
D (D − 1)

2DBk

)DBk

, (1.2.69)

DBk
= dim (Vk (Bk)) =

Gk∑
g=1

card
(
d

[g]
k

)(
card

(
d

[g]
k

)
− 1
)

2
. (1.2.70)

By choosing ε2 ≤ DBk
2 , given Σk (Bk) ∈ Vk (Bk), then there exists Σ̃k (Bk) ∈ S̃disc

Bk
(ε), such that∥∥∥Σk (Bk)− Σ̃k (Bk)

∥∥∥2

2
≤ ε2. (1.2.71)

Step 2: Construction of a net for the mean functions. Based on Σ̃k (Bk), we can construct
the following bracket covering of Gd,Bk

by defining the nets for the means of Gaussian experts. The
proof of Lemma 1, page 1693, from Montuelle et al. (2014) implies that

N[·],supy‖·‖2
(
δΥk,d

,Υk,d

)
≤

(
exp

(
CΥk,d

)
δΥk,d

)dim(Υk,d)

.

Here dim (Υk,d) = DdΥk,d
, and CΥk,d

=
√
DdΥk,d

TΥk,d
in the general case or dim (Υk,d) = D

(dΥk,d
+L

L

)
,

and CΥk,d
=
√
D
(dΥk,d

+L

L

)
TΥk,d

in the special case of polynomial means. Then, by the definition of
bracketing entropy in (1.2.46), for any minimal δΥk,d

-bracketing covering of the means from Gaussian

experts, denoted by GΥk,d

(
δΥk,d

)
, it is true that

card
(
GΥk,d

(
δΥk,d

))
≤

(
exp

(
CΥk,d

)
δΥk,d

)dim(Υk,d)

. (1.2.72)

Therefore, given α > 0, which is specified later, we claim that the set[l, u]

∣∣∣∣∣∣∣∣
l(x,y) = (1 + 2α)−D φ

(
x; υ̃k,d(y), (1 + α)−1 Σ̃k (Bk)

)
,

u(x,y) = (1 + 2α)D φ
(
x; υ̃k,d(y), (1 + α) Σ̃k (Bk)

)
,

υ̃k,d ∈ GΥk,d

(
δΥk,d

)
, Σ̃k (Bk) ∈ S̃disc

Bk
(ε)

 ,
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is a δΥk,d
-brackets set over Gd,Bk

. Indeed, let X × Y 3 (x,y) 7→ f(x,y) = φ (x;υk,d(y),Σk (Bk)) be
a function of Gd,Bk

, where υk,d ∈ Υk,d and Σk (Bk) ∈ Vk (Bk). According to (1.2.71), there exists

Σ̃k (Bk) ∈ S̃disc
Bk

(ε), such that ∥∥∥Σk (Bk)− Σ̃k (Bk)
∥∥∥2

2
≤ ε2.

By definition of GΥk,d

(
δΥk,d

)
, there exists υ̃k,d ∈ GΥk,d

(
δΥk,d

)
, such that

sup
y∈Y
‖υ̃k,d(y)− υk,d(y)‖22 ≤ δ

2
Υk,d

. (1.2.73)

Step 3: Upper bound of the number of the bracketing entropy. Next, we wish to make use
of Lemma 1.2.23 to evaluate the ratio of two Gaussian densities.

Lemma 1.2.23 (Proposition C.1 from Maugis & Michel (2011b)). Let φ (·;µ1,Σ1) and φ (·;µ2,Σ2)
be two Gaussian densities. If Σ2 −Σ1 is a positive definite matrix then for all x ∈ RD,

φ (x;µ1,Σ1)

φ (x;µ2,Σ2)
≤

√
|Σ2|
|Σ1|

exp

[
1

2
(µ1 − µ2)> (Σ2 −Σ1)−1 (µ1 − µ2)

]
.

The following Lemma 1.2.24 allows us to fulfill the assumptions of Lemma 1.2.23.

Lemma 1.2.24 (Similar to Lemma B.8 from Maugis & Michel (2011b)). Assume that 0 < ε <
λ2
m/9, and set α = 3

√
ε/λm. Then, for every k ∈ [K], (1 + α) Σ̃k (Bk) − Σk (Bk) and Σk (Bk) −

(1 + α)−1 Σ̃k (Bk) are both positive definite matrices. Moreover, for all x ∈ RD,

x>
[
(1 + α) Σ̃k (Bk)−Σk (Bk)

]
x ≥ ε ‖x‖22 , x>

[
Σk (Bk)− (1 + α)−1 Σ̃k (Bk)

]
x ≥ ε ‖x‖22 .

Proof of Lemma 1.2.24. For all x 6= 0, since sup
λ∈vp(Σk(Bk)−Σ̃k(Bk)) |λ| =

∥∥∥Σk (Bk)− Σ̃k (Bk)
∥∥∥

2
≤ ε,

where vp denotes the spectrum of matrix, −ε ≥ −λm/3, and α = 3ε/λm, it follow that

x>
[
(1 + α) Σ̃k (Bk)−Σk (Bk)

]
x = (1 + α) x>

[
Σ̃k (Bk)−Σk (Bk)

]
x + αx>Σk (Bk) x

≥ − (1 + α)
∥∥∥Σ̃k (Bk)−Σk (Bk)

∥∥∥
2
‖x‖22 + αλm ‖x‖22

≥ (αλm − (1 + α) ε) ‖x‖22 = (αλm − αε− ε) ‖x‖22

≥
(

2

3
αλm − ε

)
‖x‖22 = ε ‖x‖22 > 0, and

x>
[
Σk (Bk)− (1 + α)−1 Σ̃k (Bk)

]
x = (1 + α)−1 x>

[
Σk (Bk)− Σ̃k (Bk)

]
x +

(
1− (1 + α)−1

)
x>Σk (Bk) x

≥
(
αλm − ε

1 + α

)
‖x‖22 =

2ε

1 + α
‖x‖22 ≥ ε ‖x‖

2
2 > 0 ( since 0 < α < 1) .

By Lemma 1.2.23 and the same argument as in the proof of Lemma B.9 from Maugis & Michel
(2011b), given 0 < ε < λm/3, where ε is chosen later, and α = 3ε/λm, we obtain

max

{
l(x,y)

f(x,y)
,
f(x,y)

u(x,y)

}
≤ (1 + 2α)−

D
2 exp

(
‖υk,d(y)− υ̃k,d(y)‖22

2ε

)
. (1.2.74)

Because ln (·) is a non-decreasing function, ln (1 + 2α) ≥ α,∀α ∈ [0, 1]. Combined with (1.2.73) where
δ2
Υk,d

= Dαε, we conclude that

max

{
ln

(
l(x,y)

f(x,y)

)
, ln

(
f(x,y)

u(x,y)

)}
≤ −D

2
ln (1 + 2α) +

δ2
Υk,d

2ε
≤ −D

2
α+

δ2
Υk,d

2ε
= 0.

This means that l(x,y) ≤ f(x,y) ≤ u(x,y), ∀(x,y) ∈ X × Y. Hence, it remains to bound the size of
bracket [l, u] w.r.t. dGd,Bk . To this end, we aim to verify that d2

Gd,Bk
(l, u) ≤ δ

2 . To do that, we make

use of the following Lemma 1.2.25.
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Lemma 1.2.25 (Proposition C.3 from Maugis & Michel (2011b)). Let φ (·;µ1,Σ1) and φ (·;µ2,Σ2)
be two Gaussian densities with full rank covariance. It holds that

d2 (φ (·;µ1,Σ1) , φ (·;µ2,Σ2))

= 2

{
1− 2D/2 |Σ1Σ2|−1/4

∣∣Σ−1
1 + Σ−1

2

∣∣−1/2
exp

[
−1

4
(µ1 − µ2)> (Σ1 + Σ2)−1 (µ1 − µ2)

]}
.

Therefore, using the fact that cosh(t) = e−t+et

2 , Lemma 1.2.25 leads to, for all y ∈ Y:

d2(l(·,y), u(·,y)) =

∫
X

[
l(x,y) + u(x,y)− 2

√
l(x,y)u(x,y)

]
dx

= (1 + 2α)−D + (1 + 2α)D − 2

+ d2
(
φ
(
·; υ̃k,d(y), (1 + α)−1 Σ̃k (Bk)

)
, φ
(
·; υ̃k,d(y), (1 + α) Σ̃k (Bk)

))
= 2 cosh [D ln (1 + 2α)]− 2

+ 2

[
1− 2D/2

[
(1 + α)−1 + (1 + α)

]−D/2 ∣∣∣Σ̃k (Bk)
∣∣∣−1/2 ∣∣∣Σ̃k (Bk)

∣∣∣1/2]
= 2 cosh [D ln (1 + 2α)]− 2 + 2− 2 [cosh (ln (1 + α))]−D/2

= 2g (D ln (1 + 2α)) + 2h (ln (1 + α)) ,

where g(t) = cosh(t)− 1 = e−t+et

2 − 1, and h(t) = 1− cosh(t)−D/2. The upper bounds of terms g and
h separately imply that, for all y ∈ Y,

d2(l(·,y), u(·,y)) ≤ 2

(
2 cosh

(
1√
6

)
α2D2 +

1

4
α2D2

)
≤ 6α2D2 =

δ2

4
,

where we choose α = 3ε
λm
, ε = δλm

6
√

6D
, ∀δ ∈ (0, 1], D ∈ N?, λm > 0, which appears in (1.2.74) and satisfies

α = δ
2
√

6D
and 0 < ε < λm

3 . Indeed, studying functions g and h yields

g′(t) = sinh(t), g′′(t) = cosh(t) ≤ cosh(c),∀t ∈ [0, c], c ∈ R+,

h′(t) =
D

2
cosh(t)−D/2−1 sinh(t),

h′′(t) =
D

2

(
−D

2
− 1

)
cosh(t)−D/2−2 sinh2(t) +

D

2
cosh(t)−D/2

=
D

2

(
1−

(
D

2
+ 1

)(
sinh(t)

cosh(t)

)2
)

cosh(t)−D/2 ≤ D

2
,

where we used the fact that cosh(t) ≥ 1. Then, since g(0) = 0, g′(0) = 0, h(0) = 0, h′(0) = 0, by
applying Taylor’s Theorem, it is true that

g(t) = g(t)− g(0)− g′(0)t = R0,1(t) ≤ cosh(c)
t2

2
, ∀t ∈ [0, c],

h(t) = h(t)− h(0)− h′(0)t = R0,1(t) ≤ D

2

t2

2
≤ D2

2

t2

2
,∀t ≥ 0.

We wish to find an upper bound for t = D ln (1 + 2α), D ∈ N?, α = δ
2
√

6D
, δ ∈ (0, 1]. Since ln is an

increasing function, then we have

t = D ln

(
1 +

δ√
6D

)
≤ D ln

(
1 +

1√
6D

)
≤ D 1√

6D
=

1√
6
, ∀δ ∈ (0, 1],

since ln
(

1 + 1√
6D

)
≤ 1√

6D
, ∀D ∈ N?. Then, since ln (1 + 2α) ≤ 2α,∀α ≥ 0,

g (D ln (1 + 2α)) ≤ cosh

(
1√
6

)
(D ln (1 + 2α))2

2
≤ cosh

(
1√
6

)
D2

2
4α2,

h (ln (1 + α)) ≤ D2

2

(ln (1 + α))2

2
≤ D2α2

4
.
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Note that the set of δ/2-brackets [l, u] over Gd,Bk
is totally defined by the parameter spaces S̃disc

Bk
(ε)

and GΥk,d

(
δΥk,d

)
. This leads to an upper bound of the δ/2-bracketing entropy of Gd,Bk

evaluated

from an upper bound of the two set cardinalities. Hence, given any δ > 0, by choosing ε = δλm
6
√

6D
,

α = 3ε
λm

= δ
2
√

6D
, and δ2

Υk,d
= Dαε = D δ

2
√

6D
δλm

6
√

6D
= δ2λm

72D , it holds that

N[·],dGd,Bk

(
δ

2
,Gd,Bk

)
≤ card

(
S̃disc

Bk
(ε)
)
× card

(
GΥk,d

(
δΥk,d

))
≤

(⌊
2λM
ε

⌋
D (D − 1)

2DBk

)DBk
(

exp
(
CΥk,d

)
δΥk,d

)dim(Υk,d)

(using (1.2.70) and (1.2.72))

≤

(
2λM6

√
6D

δλm

D (D − 1)

2DBk

)DBk
(

6
√

2D exp
(
CΥk,d

)
δ
√
λm

)dim(Υk,d)

=

(
6
√

6λMD
2 (D − 1)

λmDBk

)DBk
(

6
√

2D exp
(
CΥk,d

)
√
λm

)dim(Υk,d)(
1

δ

)DBk
+dim(Υk,d)

.

Finally, by definition of bracketing entropy in (1.2.46), we obtain

H[·],dGd,Bk

(
δ

2
,Gd,Bk

)
≤ DBk

ln

(
6
√

6λMD
2 (D − 1)

λmDBk

)
+ dim (Υk,d) ln

(
6
√

2D exp
(
CΥk,d

)
√
λm

)

+ (DBk
+ dim (Υk,d)) ln

(
1

δ

)
= dim (Gd,Bk

)

(
CGd,Bk + ln

(
1

δ

))
,

where dim (Gd,Bk
) = DBk

+ dim (Υk,d) and

CGd,Bk =

DBk
ln
(

6
√

6λMD
2(D−1)

λmDBk

)
+ dim (Υk,d) ln

(
6
√

2D exp
(
CΥk,d

)
√
λm

)
dim (Gd,Bk

)
.

1.2.11.8 Our contributions on PSGaBloME models

Note that the proof of Theorem 1.2.5 follows the same idea from Section 1.2.11.3 for which we con-
structed to prove weak oracle inequality of BLoME models. The only different is that one need to take
into account the joint rank and variable selection for parsimonious estimation in a high-dimensional
framework. Therefore, we only highlight the main different results which must be adapted to such
frameworks for controlling the bracketing entropy of PSGaBloME models, see more in Section 1.2.11.9.
This is our first contribution for PSGaBloME models. Another important contribution lies on our
constructions for Lasso+l2-MLE and Lasso+l2-Rank procedures to deal with high-dimensional data
in PSGaBloME models. Such procedures are inspired by the ideas from Khalili (2010), Stadler et al.
(2010), Devijver (2015b, 2017a,b).

These procedures are decomposed into three main steps. First, we construct a model collection,
with models more or less sparse, with more or less mixture components and with more or less terms
in polynomial of weights and means. Second, we refit estimations with the MLE or estimate the
parameters by MLE under rank constraint on the restricted set of relevant columns. To this end, a
model is selected thanks to the slope heuristic, which is a data-driven criterion based on non-asymptotic
theory. In particular, this leads to a classification or clustering according to the MAP principle
on the selected model. It is important to emphasize that since we have to deal with multivariate
responses in PSGaBloME regression models, we propose new penalty functions in (1.2.81) and the
corresponding generalized EM algorithm in Section 1.2.11.11, see also Section 4.3.6 for a comprehensive
detail. Finally, Sections 1.2.11.10 and 1.2.11.11 are devoted in our contribution regarding the practical
point of view of PSGaBloME regression models via the previous Lasso+l2-MLE and Lasso+l2-Rank
procedures.
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1.2.11.9 Controlling the bracketing entropy of PSGaBloME models

The bracketing entropy of PSGaBloME models can be controlled via the following definitions:

P(K,L,Jω) =

{
X 3 x 7→ gw,k (x) =

exp (wk(x))∑K
l=1 exp (wl(x))

,w = (wk)k∈[K] ∈WK,dW,Jω

}
,

W(K,dW,Jω) = {0} ⊗WK−1
Jω

,A[Jω ] =
{
α = (αt)t∈[p] ∈ A : αj > 0, j ∈ [Jω]

}
,

WJω =

X 3 x 7→ w (x) =

dW∑
|α|=0

ωαxα : α ∈ A[Jω ],max
α∈A
|ωα| ≤ TW

 ,

G(K,D,B,J,R) =
{
X × Y 3 (x,y) 7→ (φq (x;vk(y),Σk (Bk)))k∈[K] : v ∈ Υ(K,D,B,J,R),Σ(B) ∈ VK(B)

}
.

As in Section 1.2.11.3, the most difficult task lies on proving the following Lemma 1.2.26, allowing us
to construct the Gaussian brackets to handle with the entropy metric for Gaussian experts, which is
comprehensively established in Section 4.3.4.2.

Lemma 1.2.26. For all δ ∈ (0,
√

2],

H[·],dG(K,D,B,J,R)

(
δ

2
,G(K,D,B,J,R)

)
≤ dim

(
G(K,D,B,J,R)

)(
CG(K,D,B,J,R)

+ ln

(
1

δ

))
.

To prove Lemma 1.2.26, step 2 is the main different result compared to the previous 3 steps for proof
of Lemma 1.2.22, which requires more work to prove. Before presenting one of our main contributions,
we need to define Given any k ∈ [K], we first define the following set and its corresponding distance:

G(D,Bk,J,Rk) =
{
X × Y 3 (x,y) 7→ φq

(
y;υ(D,J,Rk)(x),Σk (Bk)

)
: υ(D,J,Rk) ∈ Υ(D,J,Rk),Σk (Bk) ∈ Vk(Bk)

}
,

d2
G(D,Bk,J,Rk)

(
φ+
k , φ

−
k

)
= EX[n]

[
1

n

n∑
i=1

d2
(
φ+
k (Xi, ·) , φ−k (Xi, ·)

)]
.

Step 2: Construction of a net for the Gaussian expert mean functions. We claim that
given any δΥ(D,J,Rk)

> 0, any υ(D,J,Rk) ∈ Υ(D,J,Rk), there exist a minimal covering of δk-bracket

GΥ(D,J,Rk)

(
δΥ(D,J,Rk)

)
and a function υ̃(D,J,Rk) ∈ GΥ(D,J,Rk)

(
δΥ(D,J,Rk)

)
such that

sup
x∈X

∥∥υ̃(D,J,Rk)(x)− υ(D,J,Rk)(x)
∥∥2

2
≤ δ2

Υ(D,J,Rk)
, (1.2.75)

card
(
GΥ(D,J,Rk)

(
δΥ(D,J,Rk)

))
≤

exp
(
CΥ(D,J,Rk)

)
δΥ(D,J,Rk)

dim
(
Υ(D,J,Rk)

)
. (1.2.76)

To accomplish this, we use the singular value decomposition of βRkdkd =
∑Rkd

r=1 [σkd]r [ukd]•,r
[
v>kd
]
r,•,

k ∈ [K], d ∈ [D], with [σkd]r , r ∈ [Rkd], denote the singular values of βRkdkd , with corresponding

orthogonal unit vectors
(

[ukd]•,r

)
r∈[Rkd]

and
([

v>kd
]
r,•

)
r∈[Rkd]

. Then, we construct υ̃(D,J,Rk)(x) =

β̃k0 +
∑D

d=1 β̃
Rkd
kd xd, where β̃k0 and β̃Rkdkd =

∑Rkd
r=1 [σ̃kd]r [ũkd]•,r

[
ṽ>kd
]
r,•, k ∈ [K], d ∈ [D], are de-

termined so that (1.2.75) and (1.2.76) are satisfied. Note that for each k ∈ [K], d ∈ [D], it holds
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that ∥∥υ̃(D,J,Rk)(x)− υ(D,J,Rk)(x)
∥∥

2
=

∥∥∥∥∥β̃k0 − βk0 +
D∑
d=1

(
β̃Rkdkd − β

Rkd
kd

)
xd

∥∥∥∥∥
2

≤
∥∥∥β̃k0 − βk0

∥∥∥
2

+

D∑
d=1

∥∥∥(β̃Rkdkd − β
Rkd
kd

)
xd
∥∥∥

2

≤ √q
∥∥∥β̃k0 − βk0

∥∥∥
∞

+ p
√
q

D∑
d=1

∣∣∣∣∣∣∣∣∣β̃Rkdkd − β
Rkd
kd

∣∣∣∣∣∣∣∣∣
∞

∥∥∥xd∥∥∥
∞

≤ √q
∥∥∥β̃k0 − βk0

∥∥∥
∞

+ p
√
q

D∑
d=1

∣∣∣∣∣∣∣∣∣β̃Rkdkd − β
Rkd
kd

∣∣∣∣∣∣∣∣∣
∞
,

where we used the fact that for all d ∈ [D], x ∈ X ,
∥∥xd∥∥∞ ≤ 1 as X = [0, 1]p. Thus, (1.2.75) is

immediately followed if we now choose β̃k0 and β̃Rkdkd such that

√
q
∥∥∥βk0 − β̃k0

∥∥∥
∞
≤
δΥ(D,J,Rk)

2
, (1.2.77)∣∣∣∣∣∣∣∣∣βRkdkd − β̃

Rkd
kd

∣∣∣∣∣∣∣∣∣
∞
≤
δΥ(D,J,Rk)

2Dp
√
q
. (1.2.78)

Let us now see how to construct β̃k0 to get (1.2.77). This task can be accomplished if for all k ∈ [K],
z ∈ [q], we set

B = Z ∩

[⌊
−Au,v

2
√
q

δΥ(D,J,Rk)

⌋
,

⌊
Au,v

2
√
q

δΥ(D,J,Rk)

⌋]
,

[
β̃k0

]
z

= arg min
b∈B

∣∣∣∣∣[βk0]z −
δΥ(D,J,Rk)

2
√
q

b

∣∣∣∣∣ .
Next, let us now see how to construct β̃Rkdkd to get (1.2.78). The boundedness assumption in (4.3.6)
implies that∣∣∣∣∣∣∣∣∣βRkdkd − β̃

Rkd
kd

∣∣∣∣∣∣∣∣∣
∞

= max
z∈[q],j∈[p]

∣∣∣∣∣
Rkd∑
r=1

(
[σkd]r [ukd]z,r

[
v>kd

]
r,j
− [σ̃kd]r [ũkd]z,r

[
ṽ>kd

]
r,j

)∣∣∣∣∣
= max

z∈[q],j∈[p]

∣∣∣∣∣
Rkd∑
r=1

(
([σkd]r − [σ̃kd]r) [ukd]z,r

[
v>kd

]
r,j

− [σ̃kd]r

(
[ũkd]z,r − [ukd]z,r

) [
ṽ>kd

]
r,j

− [σ̃kd]r [ukd]z,r

([
v>kd

]
r,j
−
[
ṽ>kd

]
r,j

))∣∣∣∣∣
≤ max

r∈[Rkd]
|[σkd]r − [σ̃kd]r| max

z∈[q],j∈[p]

Rkd∑
r=1

∣∣∣∣[ukd]z,r [v>kd]r,j
∣∣∣∣

+ max
z∈[q],r∈[Rkd]

∣∣∣[ũkd]z,r − [ukd]z,r

∣∣∣max
j∈[p]

Rkd∑
r=1

∣∣∣∣[σ̃kd]r [ṽ>kd]r,j
∣∣∣∣

+ max
r∈[Rkd],j∈[p]

∣∣∣∣[v>kd]r,j − [ṽ>kd]r,j
∣∣∣∣max
z∈[q]

Rkd∑
r=1

∣∣∣[σ̃kd]r [ukd]z,r

∣∣∣
≤ RkdA2

u,v max
r∈[Rkd]

|[σkd]r − [σ̃kd]r|

+RkdAu,vAσ

(
max

z∈[q],r∈[Rkd]

∣∣∣[ũkd]z,r − [ukd]z,r

∣∣∣+ max
r∈[Rkd],j∈[p]

∣∣∣∣[v>kd]r,j − [ṽ>kd]r,j
∣∣∣∣) .
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Therefore, (1.2.78) is immediately implied if we now choose [σ̃kd]r, [ũkd]z,r and
[
ṽ>kd
]
r,j

such that

max
r∈[Rkd]

|[σkd]r − [σ̃kd]r| ≤
δΥ(D,J,Rk)

6RkdA2
u,vDp

√
q
,

max
z∈[q],r∈[Rkd]

∣∣∣[ũkd]z,r − [ukd]z,r

∣∣∣ ≤ δΥ(D,J,Rk)

6RkdAu,vAσDp
√
q
,

max
r∈[Rkd],j∈[p]

∣∣∣∣[v>kd]r,j − [ṽ>kd]r,j
∣∣∣∣ ≤ δΥ(D,J,Rk)

6RkdAu,vAσDp
√
q
.

This task can be accomplished as follows: for all r ∈ [Rkd], j ∈ [p], z ∈ [q], set

S = Z ∩

[
0,

⌊
Aσ

6RkdA
2
u,vDp

√
q

δΥ(D,J,Rk)

⌋]
,

[σ̃kd]r = arg min
ζ∈S

∣∣∣∣∣[σkd]r − δΥ(D,J,Rk)

6RkdA2
u,vDp

√
q
ζ

∣∣∣∣∣ ,
U = Z ∩

[⌊
−Au,v

6RkdAu,vAσDp
√
q

δΥ(D,J,Rk)

⌋
,

⌊
Au,v

6RkdAu,vAσDp
√
q

δΥ(D,J,Rk)

⌋]
,

[ũkd]z,r = arg min
µ∈U

∣∣∣∣∣[ukd]z,r − δΥ(D,J,Rk)

6RkdAu,vAσDp
√
q
µ

∣∣∣∣∣ ,[
ṽ>kd

]
r,j

= arg min
υ∈U

∣∣∣∣∣[v>kd]r,j − δΥ(D,J,Rk)

6RkdAu,vAσDp
√
q
υ

∣∣∣∣∣ .

Note that, according to Strang (2019, I.8), we only need to determine the vectors

((
[ũkd]z,r

)
z∈[q−r]

)
r∈[Rkd]

and

((
[ṽkd]r,j

)
j∈[card(Jω)−r]

)
r∈[Rkd]

since the remaining elements of such vectors belong to the the

nullspace of βRkdkd and βRkd>kd . The number of total free parameters in the previous two vectors are

Rkd∑
r=1

(q − r) = Rkd

(
2q −Rkd − 1

2

)
,

Rkd∑
r=1

(card (Jω)− r) = Rkd

(
2 card (Jω)−Rkd − 1

2

)
.

To this end, for all k ∈ [K], d ∈ [D], and z ∈ [q], we let

[
β̃Rkdkd

]
z,j

=

{∑Rkd
r=1 [σ̃kd]r [ũkd]z,r

[
ṽ>kd
]
r,j

if j ∈ Jω,

0 if j ∈ JCω .
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In particular, (1.2.76) is proved by the following entropy controlling

card
(
GΥ(D,J,Rk)

(
δΥ(D,J,Rk)

))
≤

[
4Au,v

√
q

δΥ(D,J,Rk)

]q D∏
d=1

[
6RkdAσA

2
u,vDp

√
q

δΥ(D,J,Rk)

]Rkd [
12RkdAσA

2
u,vDp

√
q

δΥ(D,J,Rk)

]Rkd(q+card(Jω)−Rkd−1)

=

exp
(
CΥ(D,J,Rk)

)
δΥ(D,J,Rk)

dim
(
Υ(D,J,Rk)

)
, where

dim
(
Υ(D,J,Rk)

)
= q +

D∑
d=1

Rkd (q + card (Jω)−Rkd) , CΥ(D,J,Rk)
=

ln
(
C(D,J,Rk)

)
dim

(
Υ(D,J,Rk)

) ,
and C(D,J,Rk) = [4Au,v

√
q]q
[
12RkdAσA

2
u,vDp

√
q
]∑D

d=1 Rkd(q+card(Jω)−Rkd)
2−

∑D
d=1Rkd .

1.2.11.10 Lasso+l2-MLE and Lasso+l2-Rank procedures

For the sake of simplicity, both the weights of softmax gating networks and the means of Gaussian
experts are defined as the following simple polynomial functions:

WK,dW
= {0} ⊗WK−1,

WK−1 =

{
X 3 x 7→ wk (x) = ωk0 +

L∑
l=1

ω>klx
l, ∀k ∈ [K − 1] : max

l∈[L]
|ωkl| ≤ TW

}
,

ΥK,D =

X 3 x 7→

(
βk0 +

D∑
d=1

βkdx
d

)
k∈[K]

: max {|||βkd|||∞ : k ∈ [K], d ∈ ({0} ∪ [D])} ≤ TΥ

 .

However, our finite-sample oracle inequality still holds for a more general case when we utilize general
polynomials, defined in (1.2.22), for weights of the gating networks.

Model collection construction of PSGaBloME regression models

We firstly fix K ∈ K, L ∈ L and D ∈ D. To detect the relevant indices and construct the set J ∈ J , by
generalizing the idea from Khalili (2010), Stadler et al. (2010), Devijver (2015b, 2017a,b), we utilize
an l2-penalized log-likelihood functions instead of the log-likelihood and combine with two l1-penalties
on the terms of polynomials from weights and the means. It is worth mentioning that in order to
deal with PSGaBloME model, we must extend the results from Khalili (2010), Stadler et al. (2010) to
multivariate response Y ∈ Rq and the results from Devijver (2015b, 2017a,b) to mixture of polynomial
experts with any arbitrarily degree of weights and mean functions. More precisely, we consider

ψ̂Lasso +l2(λ) = arg min
ψ∈Ψ(K,L,D,J,R)

{
− 1

n

n∑
i=1

ln (sψ (yi|xi)) + penλ(ψ)

}
, (1.2.79)

sψ(y|x) =

K∑
k=1

gk (x;ω)φq (y;υk,β(x),Σk) ,ψ =
(
ωk0, (ωkl)l∈[L] ,βk0, (βkd)d∈[D] ,Σk

)
k∈[K]

,

(1.2.80)

penλ(ψ) =

K∑
k=1

L∑
l=1

λ
[1]
kl ‖ωkl‖1 +

K∑
k=1

D∑
d=1

λ
[2]
kd ‖Qkβkd‖1 +

λ[3]

2

K∑
k=1

L∑
l=1

‖ωkl‖22 , Q>k Qk = Σ−1
k .

(1.2.81)

Here, λ =

((
λ

[1]
kl

)
k∈[K],l∈[L]

,
(
λ

[2]
kd

)
k∈[K],d∈[D]

, λ
[3]

2

)
is a vector of non-negative regularization param-

eters, for any k ∈ [K], l ∈ [L], d ∈ [D], ‖ωkl‖1 =
∑p

j=1

∣∣∣[ωkl]j∣∣∣, ‖Qkβkd‖1 =
∑p

j=1

∑q
z=1

∣∣∣[Qkβkd]z,j

∣∣∣,
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‖ωkl‖22 =
∑p

j=1 [ωkl]
2
j is the Euclidean norm in Rp, and the Cholesky decomposition Σ−1

k = Q>k Qk

defines Qk for all k ∈ [K]. Remark that the first two terms from (1.2.81) are the usual l1-estimator,
called the Lasso estimator, while the l2 penalty function for the gating network is added to avoid
wildly large positive and negative estimates of the regression coefficients corresponding to the mixing
proportions. This behavior can be observed in logistic/multinomial regression when the number of
potential features is large and highly correlated (e.g., Park & Hastie (2008), Bunea et al. (2008)).
However, this also affects the sparsity of the regularization model, which is confirmed from numerical
experiments from Chamroukhi & Huynh (2018), Chamroukhi & Huynh (2019).

Computing those estimators leads to construct the relevant variables set. For a fixed number of
mixture components K ∈ K, fixed degrees L ∈ L and D ∈ D of polynomials from mean and weight
functions, denote by GK,L,D a candidate of grid of regularization parameters. Fixing a regularization
parameter λ ∈ GK,L,D, we could then use a generalized EM algorithm which is originally introduced by
Dempster et al. (1977) and is extended for PSGaBloME models with univariate response, e.g., Jordan
& Jacobs (1994), Khalili (2010), Chamroukhi & Huynh (2018), Chamroukhi & Huynh (2019), Huynh
& Chamroukhi (2019), to compute the Lasso +l2 estimator, and construct the set of relevant variables
J(K,L,D,λ), saying the non-zero coefficients. We denote by J the random collection of all these sets,

J =
⋃
K∈K

⋃
L∈L

⋃
D∈D

⋃
λ∈GK,L,D

J(K,L,D,λ). (1.2.82)

Refitting

The Lasso+l2-MLE procedure

The second step consists of approximating the MLE

ŝ(K,L,D,J) = arg min
t∈S(K,L,D,J)

{
− 1

n

n∑
i=1

ln (t (yi|xi))

}
, (1.2.83)

which can be accomplished by using an EM algorithm for each model (K,L,D,J) ∈ K × L×D × J .
Remark that we estimate all parameters, to reduce bias induced by the Lasso +l2 estimator. The
reason why we need to refit the Lasso +l2 estimator can be referred to Devijver (2015b, Section 2.3).

The Lasso+l2-Rank procedure

We use the generalized EM algorithm to estimate the parameters by MLE under rank constraint on
the restricted set of relevant columns.

Model selection

The third step is devoted to model selection. We follow the framework from Devijver (2017b, Section
3) to select the refitted model rather than selecting the regularization parameter. Instead of using an
asymptotic criterion, such as BIC or AIC, we use the slope heuristic, originally introduced by Birgé &
Massart (2007) and recently reviewed by Baudry et al. (2012) and Arlot (2019), which is a data-driven
non-asymptotic criterion for selecting a model among a collection of models. For an oracle inequality
to only justify the penalty shape when using slope heuristic used here, see Theorem 1.2.5 for more
details.

1.2.11.11 Generalized EM algorithm

Note that we will not present in an exhaustive way the generalized EM algorithm here. The readers
can find its description in more details in Section 4.3.6. However, we would like to highlight our
contributions as follows. The EM algorithm (Dempster et al., 1977, McLachlan & Krishnan, 1997)
is most commonly known as a technique to produce MLEs in settings where the data under study is
incomplete or when optimization of the likelihood would be simplified if an additional set of variables
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were known. The iterative EM algorithm consists of an expectation (E) step followed by a maximiza-
tion (M) step. Generally, during the E step the conditional expectation of the complete (i.e. observed
and unobserved) data log-likelihood is computed, given the data and current parameter values. In the
M step the expected log-likelihood is maximized with respect to the model parameters. The imputa-
tion of latent variables often makes maximization of the expected log-likelihood more feasible. The
log-likelihood function of the PSGaBloME model is

L (ψ) =
n∑
i=1

ln

[
K∑
k=1

gk (xi;ω)φq (yi;υk,β(xi),Σk)

]
.

It is difficult to directly obtain MLEs from this likelihood. In the EM framework, to alleviate this,
the data are augmented by imputing for each incomplete observed-data vector (xi,yi)i∈[n], the K-
dimensional binary random variable zi = (zik)k∈[K] (which is also called the latent (unobserved)
random variable or the allocation variable in the mixture model context). This latent variable has a
1-of-K representation in which a particular element zik is equal to 1 and all other elements are equal to
0. More precisely, for any i ∈ [n], k ∈ [K], zik is an indicator binary-valued variable such that zik = 1
if the ith pair (xi,yi) is generated from the kth expert component and zik = 0 otherwise. Here, for
any i ∈ [n], given the predictor xi, zi are unobserved i.i.d. random variables following a multinomial
distribution:

zi|xi ∼ Mult
(

1, (gk (xi;ω))k∈[K]

)
.

The EM algorithm for solving (1.2.83) firstly requires the construction of the penalized complete-data
log-likelihood

PLc (ψ, z) = Lc (ψ, z)− penλ(ψ), (1.2.84)

penλ(ψ) =
K∑
k=1

L∑
l=1

λ
[1]
kl ‖ωkl‖1 +

K∑
k=1

D∑
d=1

λ
[2]
kd ‖Qkβkd‖1 +

λ[3]

2

K∑
k=1

L∑
l=1

‖ωkl‖22 , Q>k Qk = Σ−1
k ,

via the standard complete-data log-likelihood

Lc (ψ, z) =

n∑
i=1

K∑
k=1

zik ln [gk (xi;ω)φq (yi;υk,β(xi),Σk)] .

The generalized EM, or GEM, algorithm addresses the problem of an intractable M-step. Instead
of aiming to maximize the conditional expectation of PLc (ψ) with respect to ψ, it seeks instead to
change the parameters in such a way as to increase its value. Then, the GEM algorithm for the
PSGaBloME model in its general form runs as follows. After starting with an initial solution ψ(0),
it alternates between the following steps until convergence (e.g., when there is no longer significant
change in the relative variation of the regularized log-likelihood).

It is important to emphasize that one of the main difficulty in the generalized EM algorithm for
mixture model is an optimization problem in a generalized M-step. Motivated by the recent novel
works from Chamroukhi & Huynh (2019), Huynh & Chamroukhi (2019) for SGaME model with
linear mean Gaussian experts and scalar responses, we propose and compare three approaches for
maximizing objective function in Generalized M-step based on a majorization–minimization (MM)
algorithm, a coordinate ascent algorithm and proximal Newton-type method. These approaches have
some advantages since they do not use any approximate for the penalty function, and have a separate
structure which avoid matrix inversion. Note that we extend the work from Chamroukhi & Huynh
(2019), Huynh & Chamroukhi (2019) to devise a novel MM algorithm for the PSGaBloME model with
polynomial mean of Gaussian functions and multivariate responses.

1.2.12 Our contributions for l1-oracle inequality for the Lasso estimator via The-
orem 1.2.8

1.2.12.1 Sketch of the proof.

Motivated by the idea from Meynet (2013) and Devijver (2015a), we study the Lasso as the solution
of a penalized maximum likelihood model selection procedure over countable collections of models in
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an l1-ball. Therefore, the main Theorem 1.2.7 is an immediate consequence of Theorem 1.2.8, which
is an l1-ball MoE regression model selection theorem for l1-penalized maximum conditional likelihood
estimation in the Gaussian mixture framework. The proof of Theorem 1.2.8 can be deduced from
Proposition 4.2.4 and Proposition 4.2.5, which address the cases for large and small values of Y.

Note that as the same contribution of the works of Devijver (2015a), which extended the Meynet
(2013) to multivariate, Proposition 4.2.4 constitutes our main technical contribution, mainly on mul-
tivariate calculation. Its proof follows the arguments developed in the proof of a more general model
selection theorem for maximum likelihood estimators: Massart (2007, Theorem 7.11). More precisely,
the proof of Proposition 4.2.4 is in the spirit of Vapnik’s method of structural risk minimization, which
is established initially in Vapnik (1982) and briefly summarized in Section 8.2 in Massart (2007). In
particularly, to obtain an upper bound of the empirical process in expectation, we shall use concen-
tration inequalities combined with symmetrization arguments.

1.2.12.2 Our contributions

Our first contribution is Lemma 1.2.6, which helps to relax an assumption on the true unknown
conditional density s0. In fact both Meynet (2013, Page 660, Equation (4.28)) and Devijver (2015a,
Page 661, the last inequality at the bottom) used the following assumption s0 ≤ 1.

Our second contribution lies in controlling the deviation supfm∈Fm |νn (−fm)| appearing in Lemma 1.2.27
and from (1.2.85). More precisely, let m ∈ N?, we have

sup
fm∈Fm

|νn (−fm)| = sup
fm∈Fm

∣∣∣∣∣ 1n
n∑
i=1

(
fm (Yi|xi)− EY[n]

[fm (Yi|xi)]
)∣∣∣∣∣ . (1.2.85)

Lemma 1.2.27. Let Mn > 0. Consider the event

T =

{
max
i=1,...,n

‖Yi‖∞ = max
i=1,...,n

max
z∈{1,...,q}

|[Yi]z| ≤Mn

}
,

and set

Bn = max (AΣ, 1 +KAG)
(

1 + q
√
q (Mn +Aβ)2AΣ

)
, and (1.2.86)

∆m′ = m′
√

ln(2p+ 1) lnn+ 2
√
K

(
Aγ + qAβ +

q
√
q

aΣ

)
. (1.2.87)

Then, on the event T , for all m′ ∈ N?, and for all t > 0, with probability greater than 1− e−t,

sup
fm′∈Fm′

|νn (−fm′)|1T ≤
4KBn√

n

[
37q∆m′ +

√
2

(
Aγ + qAβ +

q
√
q

aΣ

)√
t

]
. (1.2.88)

To control the deviation of (1.2.85), we shall use concentration and symmetrization arguments.
To do that, we have to provide new upper bounds with some adjustments compared to the works of
Meynet (2013) and Devijver (2015a) via Lemmas 1.2.28 to 1.2.30. To do that, we let Mn > 0 and
consider the event

T =

{
max
i=1,...,n

‖Yi‖∞ = max
i=1,...,n

max
z∈{1,...,q}

|[Yi]z| ≤Mn

}
,

and put Bn = max (AΣ, 1 +KAG)
(

1 + q
√
q (Mn +Aβ)2AΣ

)
.

Lemma 1.2.28. On the event T , for all m ∈ N?,

sup
fm∈Fm

‖fm‖n 1T ≤ 2KBn

(
Aγ + qAβ +

q
√
q

aΣ

)
=: Rn. (1.2.89)
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Lemma 1.2.29. Let δ > 0 and m ∈ N?. On the event T , we have the following upper bound of the
δ-packing number of the set of functions Fm, equipped with the metric induced by the norm ‖·‖n:

M (δ, Fm, ‖·‖n)

≤ (2p+ 1)
72B2

nq
2K2m2

δ2

(
1 +

18BnKqAβ
δ

)K (
1 +

18BnKAγ
δ

)K (
1 +

18BnKq
√
q

aΣδ

)K
.

Via the upper bounds provided in Lemmas 1.2.28 and 1.2.29, we can apply Lemma 6.1 in Massart,
2007, see also Lemma 4.2.9 for more details, to get an upper bound on EY[n]

[
supfm∈Fm

∣∣ 1
n

∑n
i=1 εifm(Yi|xi)

∣∣].
We thus obtain the following results.

Lemma 1.2.30. Let m ∈ N?, consider (ε1, . . . , εn), a Rademacher sequence independent of (Y1, . . . ,Yn).
Then, on the event T ,

EY[n]

[
sup

fm∈Fm

∣∣∣∣∣ 1n
n∑
i=1

εifm(Yi|xi)

∣∣∣∣∣
]
≤ 74KBnq√

n
∆m, (1.2.90)

∆m := m
√

ln(2p+ 1) lnn+ 2
√
K

(
Aγ + qAβ +

q
√
q

aΣ

)
. (1.2.91)

In particular, the proofs of Lemmas 1.2.28 and 1.2.29, require an upper bound on the uniform
norm of the gradient of ln sψ, for sψ ∈ S from SGaME models, which is more complex and difficult
compared to the class of finite mixture of Gaussian regression models. More precisely, we provide the
following Lemma 1.2.31, where the upper bound is used to modify the upper bound in Lemmas 1.2.28
and 1.2.29.

Lemma 1.2.31. Given sψ, as described in (1.2.28), it holds that

sup
x∈X

sup
ψ∈Ψ̃

∥∥∥∥∂ ln (sψ(·|x))

∂ψ

∥∥∥∥
∞
≤ G(·),

G : Rq 3 y 7→ G(y) = max (AΣ, 1 +KAG)
(

1 + q
√
q (‖y‖∞ +Aβ)2AΣ

)
. (1.2.92)

Finally, we also correct some errors regarding the upper bounds from l1-oracle inequalities from
Meynet (2013), Devijver (2015a).

1.2.12.3 Discussions and comparisons

Theorem 1.2.7 is non-asymptotic: the number n of observations is fixed while the number of covariates
p can grow with respect to n, and in fact can be much larger than n. Note that, as in Khalili (2010),
the true order K of the MoE model (the true number of experts in our model) is assumed to be known.
From a pragmatic perspective, one may estimate it via the AIC of Akaike (1974), the BIC of Schwarz
et al. (1978), or slope heuristic of Birgé & Massart (2007), see also Section 1.2.4. Our result follows
directly the lineage of research of Meynet (2013) and Devijver (2015a). In fact, our theorem combined
Vapnik’s structural risk minimization paradigm (e.g., Vapnik, 1982) and theory of model selection for
conditional density estimation (e.g., Cohen & Le Pennec, 2011), which is an extended version of the
density estimation results from Massart (2007).

A great amount of attention has been paid to obtaining a lower bound for λ, cf. (1.2.36), in the
oracle inequality, with optimal dependence on p and q, which are the only parameters not to be fixed
and which can grow the possibility that p � n. In fact, the condition that κ ≥ 148 is implied by
Theorem 1.2.8, namely, the following conditions:

λ ≥ κKB
′
n√
n

(
q lnn

√
ln(2p+ 1) + 1

)
,

B′n = max (AΣ, 1 +KAG)
(
1 + 2q

√
qAΣ

(
5A2

β + 4AΣ lnn
))
,
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for some absolute constants κ ≥ 148. Such conditions are obtained from the proof of Theorem 1.2.8,
which requires the results of Proposition 4.2.4. In the proof of Proposition 4.2.4, the original condition
for κ is as follows: let κ ≥ 1 and assume that pen(m) = λm, for all m ∈ N? with

λ ≥ κ4KBn√
n

(
37q lnn

√
ln(2p+ 1) + 1

)
.

Then, to simplify the constant on the lower bound for λ, we replaced 4×37κ, κ ≥ 1 by κ′ = 4×37κ ≥
148.

Note that, we recover the same dependence of form
√

ln (2p+ 1) as for the homogeneous linear

regression in Stadler et al. (2010) and of form
√

ln (2p+ 1) (lnn)2

√
n

for the mixture Gaussian regression

models in Meynet (2013). On the contrary, the dependence on q for the mixture of multivariate
Gaussian regression models in Devijver (2015a) was of form q2 + q, while we obtain the form q2√q,
here. The main reason is that we need to control the larger class, S, of the finite mixture of experts
models with softmax gating functions and Gaussian experts, and we use a different technique to
evaluate the upper bound on the uniform norm of the gradient for each element in S. Furthermore,
the dependence on n for the homogeneous linear regression in Stadler et al. (2010) was of order 1√

n
,

while we have an extra (lnn)2 factor, here. In fact, the same situation can be found in the l1-oracle
inequalities of Meynet (2013), and Devijver (2015a). As explained in Meynet (2013), using a non-linear
Kullback–Leibler information leads to a scenario where the linearity arguments developed in Stadler
et al. (2010) with the quadratic loss function can not be exploited. Instead, we need to use the entropy
arguments to handle our model, which leads to an extra (lnn)2 factor. Motivated by the frameworks
from Meynet (2013), Devijver (2015a), we have paid attention to giving an explicit dependence not
only on n, p and q, but also on the number of mixture components K as well as on the regressors and
Aβ, AΣ, AG–all the quantities bounding the parameters of the model. However, we should be aware
of the fact that these dependences may not be optimal. In our lower bound, we obtain the factor
K2 dependence instead of K, as in Meynet (2013), Devijver (2015a). This can be explained via the
fact that we used another technique to handle the more complex model when dealing with the upper
bound on the uniform norm of the gradient of ln sψ, for sψ ∈ S, in Lemma 4.2.14. We refer to Meynet
(2013, Remark 5.8) for some data sets for which the dependence on K might be reduced to an order
of
√
K for the mixture Gaussian regression models. Establishing the optimal rates for such problems

is still open.
We further note that our theorem ensures that there exists a λ sufficiently large for which the

estimate has good properties, but does not give an explicit value for λ. However, in Theorem 1.2.7, we
provide at least the lower bound for the value of λ via the bound λ ≥ κC(p, q, n,K), where κ ≥ 148,
even though this value is obviously overly pessimistic. A possible solution for calibrating penalties from
the data are the AIC and BIC approaches, motivated by asymptotic arguments. Another method is the
slope heuristic introduced first by Birgé & Massart (2007) and further discussed in Baudry et al. (2012),
which is a non-asymptotic criterion for selecting a model among a collection of models. Such strategy,
however, will not be further considered here as the implementations will result in an overextension of
the length and scope of the manuscript. Furthermore, the technical developments required for such
methods is non-trivial and constitutes a significant research direction that we hope to pursue in the
future. We refer the reader to the numerical experiments from Montuelle et al. (2014) (using the slope
heuristic), and Chamroukhi & Huynh (2018), and Chamroukhi & Huynh (2019) (using BIC), for the
practical implementation of penalization methods in the framework of MoE regression models.

As in Devijver (2015a), we suppose that the regressors belong to X = [0, 1]p, for simplicity.
However, the arguments in our proof are valid for covariates of any scale.

To the best of our knowledge, we are the first to prove the non-asymptotic l1-oracle inequality of
Theorem 1.2.7, for the mixture of Gaussian experts regression models with l1-regularization. Note
that by extending the theoretical developments for mixture of linear regression models in Khalili &
Chen (2007), a standard asymptotic theory for MoE models is established in Khalili (2010). Therefore,
our non-asymptotic result in Theorem 1.2.7 can be considered as complementary to such asymptotic
results for SGaME regression models.

Theorem 1.2.7 is also complementary to Theorem 1.2.5 and Theorem 1 of Montuelle et al. (2014),
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who also considered SGaME models. Notice that they focused on model selection and obtained a weak
oracle inequality for the penalized MLE, while we aimed to study the l1-regularization properties of
the Lasso estimators. However, we can compare their procedure with Theorem 1.2.8.

The main reason explaining their result being considered a weak oracle inequality is that we can
see that Theorem 1.2.5 and Theorem 1 of Montuelle et al. (2014) use difference divergence on the left
(the JKL⊗n

ρ , tensorized Jensen–Kullback–Leibler divergence), and on the right (the KL⊗n, tensorized
Kullback–Leibler divergence). However, under a strong assumption, the two divergences are equivalent
for the conditional PDFs considered. This strong assumption is nevertheless satisfied, if we assume
that X is compact, as is the case of X = [0, 1]p in Theorem 1.2.8, s0 is compactly supported, and the
regression functions are uniformly bounded, and there is a uniform lower bound on the eigenvalues of
the covariance matrices.

To illustrate the strictness of the compactness assumption for s0, we only need to consider s0 as a
univariate Gaussian PDF, which obviously does not satisfy such a hypothesis. Therefore, in such case,
Theorem 1.2.5 and Theorem 1 in Montuelle et al. (2014) are actually weaker than Theorem 1.2.8, with
respect to the compact support assumption on the true conditional PDF s0. On the contrary, the only
assumption used to establish Theorem 1.2.8 is the boundedness of the parameters of the mixtures,
which is also assumed in Theorem 1.2.5 and in Montuelle et al. (2014, Theorem 1).

Note that the constant 1 + κ−1 from the upper bound in Theorem 1.2.8 and C1 from Theo-
rem 1.2.5 can not be taken to be equal to 1. This fact is consequential when s0 does not belong
to the approximation class, i.e., when the model is misspecified. This problem also occurred in the
l1-oracle inequalities from Meynet (2013) and Devijver (2015a). Deriving an oracle inequality such
that 1 + κ−1 = 1, for the Kullback–Leibler loss, is still an open problem. However, one way to handle
this difficulty is to use the approximation capacity of the class MoE regression models (cf. Nguyen
et al. 2021a, 2019, 2020d,b). Indeed, if we take a large enough number of mixture components,
K, we could approximate well a wide class of densities, then the term on the first right-hand side,(
1 + κ−1

)
infsψ∈S

(
KLn (s0, sψ) + λ

∥∥ψ[1,2]
∥∥

1

)
, in which S depends on K, is small for K well-chosen.

In the next Section 1.3, we study the approximation capabilities of mixtures of experts models in
a variety of contexts, including conditional density approximation and approximate Bayesian com-
putation, after providing improvements upon approximation results in the context of unconditional
mixture distributions.

1.3 Approximation capabilities of the mixtures of experts models

1.3.1 Finite mixture models

Define (U, ‖·‖U) to be a normed vector space (NVS), and let x ∈
(
Rd, ‖·‖2

)
, for some d ∈ N?, where

‖·‖2 is the Euclidean norm. Let f : Rd → R be a function satisfying f ≥ 0 and
∫
fdλ = 1, where λ

is the Lebesgue measure. We say that f is a probability density function (PDF) on the domain Rd
(which we will omit for brevity, from hereon in). Let g : Rd → R be another PDF and define the
functional class Mg =

⋃
m∈N?M

g
m, where

Mg
m =

{
hgm : hgm (·) =

m∑
i=1

ci

σdi
g

(
· − µi
σi

)
, µi ∈ Rd, σi ∈ R+, c ∈ Πm−1, i ∈ [m]

}
,

c> = (c1, . . . , cm), R+ = (0,∞), a probability simplex defined by

Πm−1 =

{
(πi)i∈[m] ∈ Rm|∀i ∈ [m] , πi > 0,

m∑
i=1

πi = 1

}
, (1.3.1)

[m] = {1, . . . ,m} ,m ∈ N?, and (·)> is the matrix transposition operator. We say that any
hgm ∈Mg

m is a m-component location-scale finite mixture of the PDF g.
The study of PDFs in the class Mg

m is an evergreen area of applied and technical research, in
statistics. We point the interested reader to the many comprehensive books on the topic, such as
Everitt & Hand (1981), Titterington et al. (1985), McLachlan & Basford (1988), Lindsay (1995),
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McLachlan & Peel (2000), Frühwirth-Schnatter (2006), Schlattmann (2009), Mengersen et al. (2011),
and Fruhwirth-Schnatter et al. (2019).

Much of the popularity of finite mixture models stem from the folk theorem, which states that for
any density f , there exists an h ∈ Mg

m, for some sufficiently large number of components m ∈ N?,
such that h approximates f arbitrarily closely, in some sense. Examples of this folk theorem come in
statements such as: “provided the number of component densities is not bounded above, certain forms
of mixture can be used to provide arbitrarily close approximation to a given probability distribution”
(Titterington et al., 1985, p. 50), “the [mixture] model forms can fit any distribution and significantly
increase model fit” (Walker & Ben-Akiva, 2011, p. 173), and “a mixture model can approximate
almost any distribution” (Yona, 2010, p. 500). Other statements conveying the same sentiment are
reported in Nguyen & McLachlan (2019). There is a sense of vagary in the reported statements, and
little is ever made clear regarding the technical nature of the folk theorem.

In order to proceed, we require the following definitions. We say that f is compactly supported
on K ⊂ Rd, if K is compact and if 1K{f = 0, where 1X is the indicator function that takes value 1

when x ∈ X and 0, elsewhere, and (·){ is the set complement operator (i.e., X{ = Rd\X). Here, X is a
generic subset of Rd. Furthermore, we say that f ∈ Lp (X) for any 1 ≤ p <∞, if

‖f‖Lp(X) =

(∫
|1Xf |p dλ

)1/p

<∞,

and for p =∞, if

‖f‖L∞(X) = inf {a ≥ 0 : λ ({x ∈ X : |f(x)| > a}) = 0} <∞,

where we call ‖·‖Lp(X) the Lp-norm on X. When X = Rd, we shall write ‖·‖Lp(Rd) = ‖·‖Lp . Denote

the class of all bounded functions on X by

B (X) = {f ∈ L∞ (X) : ∃a ∈ [0,∞) , such that |f (x)| ≤ a,∀x ∈ X}

and write
‖f‖B(X) = sup

x∈X
|f (x)| .

For brevity, we shall write B
(
Rd
)

= B, and ‖f‖B(Rd) = ‖f‖B.

In addition, we define the so-called Kullback–Leibler divergence, see Kullback & Leibler (1951),
between any two PDFs f and g on X as

KLX (f, g) =

∫
1Xf log

(
f

g

)
dλ.

In Nguyen & McLachlan (2019), the approximation of PDFs f by the classMg
m was explored in a

restrictive setting. Let {hgm} be a sequence of functions that draw elements from the nested sequence
of sets {Mg

m} (i.e., hg1 ∈M
g
1, h

g
2 ∈M

g
2, . . . ). The following result of Zeevi & Meir (1997) was presented

in Nguyen & McLachlan (2019), along with a collection of its implications, such as the results of from
Li & Barron (1999) and Rakhlin et al. (2005).

Theorem 1.3.1 (Zeevi & Meir, 1997). If

f ∈ {g : 1Kg ≥ β, β > 0} ∩ L2 (K)

and g are PDFs and K is compact, then there exists a sequence {hgm} such that

lim
m→∞

‖f − hgm‖L2(K) = 0 and lim
m→∞

KLK (f, hgm) = 0.

Although powerful, this result is restrictive in the sense that it only permits approximation in the
L2 norm on compact sets K, and that the result only allows for approximation of functions f that are
strictly positive on K. In general, other modes of approximation are desirable, in particular approxi-
mation in Lp-norm for p = 1 or p = ∞ are of interest, where the latter case is generally referred to
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as uniform approximation. Furthermore, the strict-positivity assumption, and the restriction on com-
pact sets limits the scope of applicability of Theorem 1.3.1. An example of an interesting application
of extensions beyond Theorem 1.3.1 is within the L1-norm approximation framework of Devroye &
Lugosi (2001).

Let g : Rd → R again be a PDF. Then, for each m ∈ N?, we define

N g
m =

{
h : h (x) =

m∑
i=1

ci
1

σdi
g

(
x− µi
σi

)
, µi ∈ Rd, σi ∈ R+, ci ∈ R, i ∈ [m]

}
,

which we call the set of m-component location-scale linear combinations of the PDF g. In the past,
results regarding approximations of PDFs f via functions η ∈ N g

m have been more forthcoming. For
example, in the case of g = φ, where

φ (x) = (2π)−n/2 exp
(
−‖x‖22 /2

)
, (1.3.2)

is the standard normal PDF. We denote the class of continuous functions and uniformly continuous
functions by C and Cu, respectively. The classes of bounded continuous shall be denoted by Cb = C∩B.

We have the result that for every PDF f , compact set K ⊂ Rd, and ε > 0, there exists an m ∈ N?
and h ∈ N φ

m, such that ‖f − h‖L∞(K) < ε (Sandberg, 2001, Lem. 1). Furthermore, upon defining the
set of continuous functions that vanish at infinity by

C0 =
{
f ∈ C : ∀ε > 0, ∃ a compact K ⊂ Rd, such that ‖f‖L∞(K{) < ε

}
,

we also have the result: for every PDF f ∈ C0 and ε > 0, there exists an m ∈ N? and h ∈ N φ
m, such

that ‖f − h‖L∞ < ε (Sandberg, 2001, Thm. 2). Both of the results from Sandberg (2001) are simple
implications of the famous Stone–Weierstrass theorem (cf. Stone (1948) and De Branges (1959)).

To the best of our knowledge, the strongest available claim that is made regarding the folk theorem,
within a probabilistic or statistical context, is that of (DasGupta, 2008, Thm. 33.2). Let {ηgm} be a
sequence of functions that draw elements from the nested sequence of sets {N g

m}, in the same manner
as {hgm}. We paraphrase the claim without loss of fidelity, as follows.

Claim 1.3.2. If f, g ∈ C are PDFs and K ⊂ Rd is compact, then there exists a sequence {ηgm}, such
that

lim
m→∞

‖f − ηgm‖L∞(K) = 0.

Unfortunately, the proof of Claim 1.3.2 is not provided within DasGupta (2008). The only reference
of the result is to an undisclosed location in Cheney & Light (2000), which, upon investigation, can
be inferred to be Theorem 5 of (Cheney & Light, 2000, Ch. 20). It is further notable that there is no
proof provided for the theorem. Instead, it is stated that the proof is similar to that of Theorem 1 in
(Cheney & Light, 2000, Ch. 24), which is a reproduction of the proof for (Xu et al., 1993, Lem. 3.1).

There is a major problem in applying the proof technique of (Xu et al., 1993, Lem. 3.1) in order
to prove Claim 1.3.2. The proof of (Xu et al., 1993, Lem. 3.1) critically depends upon the statement
that “there is no loss of generality in assuming that f (x) = 0 for x ∈ Rd\2K”. Here, for a ∈ R+,
aK =

{
x ∈ Rd : x = ay, y ∈ K

}
. The assumption is necessary in order to write any convolution with

f and an arbitrary continuous function as an integral over a compact domain, and then to use a
Riemann sum to approximate such an integral. Subsequently, such a proof technique does not work
outside the class of continuous functions that are compactly supported on aK. Thus, one cannot verify
Claim 1.3.2 from the materials of Xu et al. (1993), Cheney & Light (2000), and DasGupta (2008),
alone.

Some recent results in the spirit of Claim 1.3.2 have been obtained by Nestoridis & Stefanopoulos
(2007) and Nestoridis et al. (2011), using methods from the study of universal series (see for example
in Nestoridis & Papadimitropoulos (2005)).

Let

W =

f ∈ C0 :
∑
y∈Zd

sup
x∈[0,1]d

|f (x+ y)| <∞
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denote the so-called Wiener’s algebra (see, e.g., Feichtinger (1977)) and let

V =
{
f ∈ C0 : ∀x ∈ Rd, |f (x)| ≤ β (1 + ‖x‖2)−d−θ , β, θ ∈ R+

}
be a class of functions with tails decaying at a faster rate than o

(
‖x‖d2

)
. In Nestoridis et al. (2011),

it is noted that V ⊂ W. Further, let

Cc =
{
f ∈ C : ∃ a compact set K, such that 1K{f = 0

}
,

denote the set of compactly supported continuous functions. The following Theorem 1.3.3 was proved
in Nestoridis & Stefanopoulos (2007).

Theorem 1.3.3 (Nestoridis & Stefanopoulos, 2007, Thm. 3.2). If g ∈ V, then the following statements
hold.

(a) For any f ∈ Cc, there exists a sequence {ηgm} (ηgm ∈ N g
m), such that

lim
m→∞

‖f − ηgm‖L1
+ ‖f − ηgm‖L∞ = 0.

(b) For any f ∈ C0, there exists a sequence {ηgm} (ηgm ∈ N g
m), such that

lim
m→∞

‖f − ηgm‖L∞ = 0.

(c) For any 1 ≤ p <∞ and f ∈ Lp, there exists a sequence {ηgm} (ηgm ∈ N g
m), such that

lim
m→∞

‖f − ηgm‖Lp = 0.

(d) For any measurable f , there exists a sequence {ηgm} (ηgm ∈ N g
m), such that

lim
m→∞

ηgm = f , almost everywhere.

(e) If ν is a σ-finite Borel measure on Rd, then for any ν-measurable f , there exists a sequence {ηgm}
(ηgm ∈ N g

m), such that
lim
m→∞

ηgm = f,

almost everywhere, with respect to ν.

The result was then improved upon, in Nestoridis et al. (2011), whereupon the more general space
W was taken as a replacement for V, in Theorem 1.3.3. Denote the class of bounded continuous
functions by Cb = C ∩ L∞. The following theorem was proved in Nestoridis et al. (2011).

Theorem 1.3.4 (Nestoridis et al., 2011, Thm. 3.2). If g ∈ W, then the following statements are true.

(a) The conclusion of Theorem 1.3.3(a) holds, with Cc replaced by C0 ∩ L1.

(b) The conclusions of Theorem 1.3.3(b)–(e) hold.

(c) For any f ∈ Cb and compact K ⊂ Rd, there exists a sequence {ηgm}, such that

lim
m→∞

‖f − ηgm‖L∞(K) = 0.

Utilizing the techniques from Nestoridis & Stefanopoulos (2007), Bacharoglou (2010) proved a
similar set of results to Theorem 1.3.3, under the restriction that f is a non-negative function with

support R, using g = φ (i.e. g has form (1.3.2), where d = 1) and taking
{
hφm
}

as the approximating

sequence, instead of {ηgm}. That is, the following result is obtained.

59



Chapter 1. Introduction

Theorem 1.3.5 (Bacharoglou, 2010, Cor. 2.5). If f : R → R+ ∪ {0}, then the following statements
are true.

(a) For any PDF f ∈ Cc, there exists a sequence
{
hφm
}

(hφm ∈Mφ
m), such that

lim
m→∞

∥∥∥f − hφm∥∥∥L1

+
∥∥∥f − hφm∥∥∥L∞ = 0.

(b) For any f ∈ C0, such that ‖f‖L1
≤ 1, there exists a sequence

{
hφm
}

(hφm ∈Mφ
m), such that

lim
m→∞

∥∥∥f − hφm∥∥∥L∞ = 0.

(c) For any 1 < p < ∞ and f ∈ C ∩ Lp, such that ‖f‖L1
≤ 1, there exists a sequence

{
hφm
}

(hφm ∈Mφ
m), such that

lim
m→∞

∥∥∥f − hφm∥∥∥Lp = 0.

(d) For any measurable f , there exists a sequence
{
hφm
}

(hφm ∈Mφ
m), such that

lim
m→∞

hφm = f , almost everywhere.

(e) For any PDF f ∈ C, there exists a sequence
{
hφm
}

(hφm ∈Mφ
m), such that

lim
m→∞

∥∥∥f − hφm∥∥∥L1

= 0.

Theorem 1.3.5 is restrictive in two ways. First, it does not permit characterization of approximation
via the class Mg

m for any g except the normal PDF φ. Although φ is traditionally the most common
choice for g in practice, the modern mixture model literature has seen the use of many more exotic
component PDFs, such as the student-t PDF and its skew and modified variants (see, e.g., Peel &
McLachlan, 2000, Forbes & Wraith, 2014, and Lee & McLachlan, 2016). Thus, its use is somewhat
limited in the modern context. Furthermore, modern applications tend to call for d > 1, further
restricting the impact of the result as a theoretical bulwark for finite mixture modeling in practice. A
remark in Bacharoglou (2010) states that the result can generalized to the case where g ∈ V instead
of g = φ. However, no suggestions were proposed, regarding the generalization of Theorem 1.3.5 to
the case of d > 1.

In Section 2.1, we prove a novel set of results that largely generalize Theorem 1.3.5. Using tech-
niques inspired by Donahue et al. (1997) and Cheney & Light (2000), we are able to obtain a set
of results regarding the approximation capability of the class of m-component mixture models Mg

m,
when g ∈ C0 or g ∈ V, and for any d ∈ N?. By definition of V, the majority of our results extend
beyond the proposed possible generalizations of Theorem 1.3.5.

Motivated by the incomplete proofs of Xu et al. (1993, Lem 3.1) and Theorem 5 from Cheney
& Light (2000, Chapter 20), as well as the restricted results of Nestoridis & Stefanopoulos (2007),
Bacharoglou (2010), and Nestoridis et al. (2011), in Section 2.1, see also in Nguyen et al. (2020d),
we establish and prove Theorem 1.3.6 regarding sequences of PDFs {hgm} from Mg. Note that Theo-
rem 1.3.6 is restated as Theorem 2.1.1 and proved in Section 2.1.

Theorem 1.3.6 (Nguyen et al., 2020d, Theorem 5). If we assume that f and g are PDFs and that
g ∈ C0, then the following statements are true.

(a) For any f ∈ C0, there exists a sequence {hgm} (hgm ∈Mg
m), such that

lim
m→∞

‖f − hgm‖L∞ = 0.
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(b) For any f ∈ Cb and compact K ⊂ Rd, there exists a sequence {hgm} (hgm ∈Mg
m), such that

lim
m→∞

‖f − hgm‖L∞(K) = 0.

(c) For any 1 < p <∞ and f ∈ Lp, there exists a sequence {hgm} (hgm ∈Mg
m), such that

lim
m→∞

‖f − hgm‖Lp = 0.

(d) For any measurable f , there exists a sequence {hgm} (hgm ∈Mg
m), such that

lim
m→∞

hgm = f , almost everywhere.

(e) If ν is a σ-finite Borel measure on Rd, then for any ν-measurable f , there exists a sequence {hgm}
(hgm ∈Mg

m), such that

lim
m→∞

hgm = f,

almost everywhere, with respect to ν.

If we assume instead that g ∈ V, then the following statement is also true.

(f) For any f ∈ C, there exists a sequence {hgm} (hgm ∈Mg
m), such that

lim
m→∞

‖f − hgm‖L1
= 0.

In particular, in Section 2.2, see also in Nguyen et al. (2020b), we establish Theorem 1.3.7 which
improves upon Theorem 1.3.6 in a number of ways. More specifically, while statements (a), (d), and
(e) still hold under the same assumptions as in Theorem 1.3.6; statement (b) from Theorem 1.3.6
is improved by relaxing the assumption on the PDF g, for further details see statement (a) of The-
orem 1.3.7; and statement (c) and (f) from Theorem 1.3.6 is drastically improved to apply to any
f ∈ L1 and g ∈ L∞, see more in statement (b) of Theorem 1.3.7. The goal of Section 2.2 is to seek the
weakest set of assumptions in order to establish approximation theoretical results over the widest class
of probability density problems. We note in particular that our improvement with respect to statement
(b) from Theorem 1.3.6 yields exactly the result of Theorem 5 from Cheney & Light (2000, Chapter
20), which was incorrectly proved (see also DasGupta, 2008, Theorem 33.2). Moreover, it is good to
point out that extending Theorem 1.3.4 (c) from Cb to C for f can immediately established as follows:
on a compact K, since f is a continuous function, it is always bounded, therefore f̃ = min {f, supK f}
is a bounded continuous function which coincides with f on K. So it suffices to apply the result to f̃
to deduce that it is still true with f . The same argument applies to conclusion (b) of Theorem 1.3.6,
which is later restated as Theorem 2.1.1. Then, the interest of such a remark is to better demonstrate
that what is difficult here to obtain our new Theorem 1.3.7, which is restated as Theorem 2.2.1, it is
to relax the assumptions made on g, and not the assumption made on f .

Theorem 1.3.7 (Nguyen et al., 2020b, Theorem 2). Let hgm ∈Mg
m denote an m-component location

finite mixture PDF. If we assume that f and g are PDFs, then the following statements are true.

(a) If f, g ∈ C and K ⊂ Rd is a compact set, then there exists a sequence {hgm}∞m=1 ⊂Mg, such that

lim
m→∞

‖f − hgm‖B(K) = 0.

(b) For p ∈ [1,∞), if f ∈ Lp and g ∈ L∞, then there exists a sequence {hgm}∞m=1 ⊂Mg, such that

lim
m→∞

‖f − hgm‖Lp = 0.

Note that Theorem 1.3.7 is restated as Theorem 2.2.1 and proved in Section 2.2.
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1.3.2 Mixture of experts models

Let W = Y×X, where X ⊆ Rd and Y ⊆ Rq, for d, q ∈ N?. Suppose that the input and output random
variables, X ∈ X and Y ∈ Y, are related via the conditional PDF in the functional class:

F =

{
f : W→ [0,∞) |

∫
Y
f|X (y,x) dλ (y) = 1,∀x ∈ X

}
,

where λ denotes the Lebesgue measure. The MoE approach seeks to approximate the unknown target
conditional PDF f by a function of the MoE form:

m|X (y,x) =
K∑
k=1

Gatek (x) Expertk (y) ,

where Gate = (Gatek)k∈[K] ∈ GK ([K] = {1, . . . ,K}), Expert1, . . . ,ExpertK ∈ E , and K ∈ N?. Here,

we say that m is a K-component MoE model with gates arising from the class GK and experts arising
from E , where E is a class of PDFs with support Y.

The most popular choices for GK are the parametric softmax and Gaussian gating classes:

GKS =

{
Gate = (Gatek (·;γ))k∈[K] |∀k ∈ [K] ,Gatek (·;γ) =

exp
(
ak + b>k ·

)∑K
l=1 exp

(
al + b>l ·

) ,γ ∈ GK
S

}

and

GKG =

{
Gate = (Gatek (·;γ))k∈[K] |∀k ∈ [K] ,Gatek (·;γ) =

πkφ (·;νk,Σk)∑K
l=1 πlφ (·;νl,Σl)

,γ ∈ GK
G

}
,

respectively, where

GK
S =

{
γ = (a1, . . . , aK , b1, . . . , bK) ∈ RK ×

(
Rd
)K}

and

GK
G =

{
γ = (π,ν1, . . . ,νK ,Σ1, . . . ,ΣK) ∈ ΠK−1 ×

(
Rd
)K
× SKd

}
.

Here,

φ (·;ν,Σ) = |2πΣ|−1/2 exp

[
−1

2
(· − ν)>Σ−1 (· − ν)

]
is the multivariate normal density function with mean vector ν and covariance matrix Σ, π> =
(π1, . . . , πK) is a vector of weights in the K − 1 probability simplex ΠK−1, defined in (1.3.1), and Sd
is the class of d × d symmetric positive definite matrices. The softmax and Gaussian gating classes
were first introduced by Jacobs et al. (1991) and Xu et al. (1995), respectively. Typically, one chooses
experts that arise from some location-scale class:

Eψ =

{
gψ (·;µ, σ) : Y→ [0,∞) |gψ (·;µ, σ) =

1

σq
ψ

(
· − µ
σ

)
,µ ∈ Rq, σ ∈ (0,∞)

}
,

where ψ is a PDF, with respect to Rq in the sense that ψ : Rq → [0,∞) and
∫
Rq ψ (y) dλ (y) = 1.

We shall say that f ∈ Lp (W) for any p ∈ [1,∞) if

‖f‖p,W =

(∫
W
|1Wf |p dλ (z)

)1/p

<∞,

where 1W is the indicator function that takes value 1 when z ∈W, and 0 otherwise. Further, we say
that f ∈ L∞ (W) if

‖f‖∞,W = inf {a ≥ 0|λ ({z ∈W| |f (z)| > a}) = 0} <∞.
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We shall refer to ‖·‖p,W as the Lp norm on W, for p ∈ [0,∞], and where the context is obvious, we
shall drop the reference to W.

Suppose that the target conditional PDF f is in the class Fp = F ∩ Lp. We address the problem
of approximating f , with respect to the Lp norm, using MoE models in the softmax and Gaussian
gated classes,

Mψ
S =

{
mψ
K : W→ [0,∞) |mψ

K (y,x) =
K∑
k=1

Gatek (x) gψ (y;µk, σk) ,

gψ ∈ Eψ ∩ L∞,Gate ∈ GKS ,µk ∈ Y, σk ∈ (0,∞) , k ∈ [K] ,K ∈ N?
}
, (1.3.3)

and

Mψ
G =

{
mψ
K : W→ [0,∞) |mψ

K (y,x) =
K∑
k=1

Gatek (x) gψ (y;µk, σk) ,

gψ ∈ Eψ ∩ L∞,Gate ∈ GKG ,µk ∈ Y, σk ∈ (0,∞) , k ∈ [K] ,K ∈ N?
}

, (1.3.4)

by showing that both Mψ
S and Mψ

G are dense in the class Fp, when X = [0, 1]d and Y is a compact
subset of Rq. Our denseness results are enabled by the indicator function approximation result of
Jiang & Tanner (1999b), and the finite mixture model denseness theorems of Nguyen et al. (2020b)
and Nguyen et al. (2020d).

Our Theorems 1.3.8 and 1.3.9, Lemma 1.3.10, and Corollary 1.3.11 contribute to an enduring
continuity of sustained interest in the approximation capabilities of MoE models. Related to our results
are contributions regarding the approximation capabilities of the conditional expectation function of
the classes Mψ

S and Mψ
G, see definitions in (1.3.3) and (1.3.4), respectively, (Jiang & Tanner, 1999b,

Krzyzak & Schafer, 2005, Mendes & Jiang, 2012, Nguyen et al., 2016, 2019, Wang & Mendel, 1992,
Zeevi et al., 1998) and the approximation capabilities of subclasses of Mψ

S and Mψ
G, with respect to

the Kullback–Leibler divergence (Jiang & Tanner, 1999a, Norets et al., 2010, Norets & Pelenis, 2014).
Our results can be seen as complements to the Kullback–Leibler approximation theorems of Norets
et al. (2010) and Norets & Pelenis (2014), by the relationship between the Kullback–Leibler divergence
and the L2 norm (Zeevi & Meir, 1997). That is, when f > 1/κ, for all (y,x) ∈W and some constant
κ > 0, we have that the integrated conditional Kullback–Leibler divergence considered by Norets &
Pelenis (2014):∫

X
D
(
f|X (·,x) ‖mψ

K (·,x)
)

dλ (x) =

∫
X

∫
Y
f|X (y,x) log

f|X (y,x)

mψ
K (y,x)

dλ (y) dλ (x)

satisfies ∫
X
D
(
f|X (·,x) ‖mψ

K (·,x)
)

dλ (x) ≤ κ2
∥∥∥f −mψ

K

∥∥∥2

2,W
,

and thus a good approximation in the integrated Kullback–Leibler divergence is guaranteed if one
can find a good approximation in the L2 norm, which is guaranteed by our main results. Note that
Theorem 1.3.8 is restated as Theorem 2.3.1 and proved in Section 2.3.3.1.

Theorem 1.3.8. Assume that X = [0, 1]d for d ∈ N? and Y is a compact subset in Rq, q ∈ N?. For

any f ∈ F ∩C, any p ∈ [1,∞), there exists a sequence
{
mψ
K

}
K∈N?

⊂Mψ
S , where ψ ∈ C (Rq) is a PDF

on support Rq, such that limK→∞

∥∥∥f −mψ
K

∥∥∥
p

= 0.

Since convergence in Lebesgue spaces does not imply point-wise modes of convergence, the following
result is also useful and interesting in some restricted scenarios. Here, we note that the mode of
convergence is almost uniform, which implies almost everywhere convergence and convergence in

measure (cf. Bartle 1995, Lem 7.10 and Thm. 7.11). The almost uniform convergence of
{
mψ
K

}
K∈N?
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to f in the following result is to be understood in the sense of Bartle (1995, Def. 7.9). That is, for every

δ > 0, there exists a set Uδ ⊂W with λ (W) < δ, such that
{
mψ
K

}
K∈N?

converges to f , uniformly on

W\Uδ. Note that Theorem 1.3.9 is restated as Theorem 2.3.2 and proved in Section 2.3.3.2.

Theorem 1.3.9. Assume that X = [0, 1] and Y is a compact subset in Rq, q ∈ N?. For any f ∈ F ∩C,

there exists a sequence
{
mψ
K

}
K∈N?

⊂ Mψ
S , where ψ ∈ C (Rq) is a PDF on support Rq, such that

limK→∞m
ψ
K = f , almost uniformly.

The following Lemma 1.3.10 establishes the connection between the gating classes GKS and GKG .
Note that Lemma 1.3.10 is restated as Lemma 2.3.3 and proved in Section 2.3.4.1.

Lemma 1.3.10. For each K ∈ N?, GKS ⊂ GKG . Further, if we define the class of Gaussian gating
vectors with equal covariance matrices:

GKE =

{
Gate = (Gatek (·;γ))k∈[K] |∀k ∈ [K] ,Gatek (·;γ) =

πkφ (·;νk,Σ)∑K
l=1 πlφ (·;νl,Σ)

,γ ∈ GK
E

}
,

where

GK
E =

{
γ = (π,ν1, . . . ,νK ,Σ) ∈ ΠK−1 ×

(
Rd
)K
× Sd

}
,

then GKE ⊂ GKS .

By using Lemma 1.3.10, Theorems 1.3.8 and 1.3.9 imply the following Corollary 1.3.11, regarding
the approximation capability of the classMψ

G. Note that Corollary 1.3.11 is restated as Corollary 2.3.4
in Section 2.3.

Corollary 1.3.11. Theorems 1.3.8 and 1.3.9 hold when Mψ
S is replaced by Mψ

G in their statements.

1.4 Universal approximation for mixture of experts models in ap-
proximate Bayesian computation

Approximate Bayesian computation (ABC) (see, e.g., Sisson et al. 2018) appears as a natural can-
didate for addressing problems, where there is a lack of availability or tractability of the likelihood.
Such cases occur when the direct model or data generating process is not available, but is available as
a simulation procedure; e.g., when the data generating process is characterized as a series of ordinary
differential equations, as in Mesejo et al. (2016), Hovorka et al. (2004). In addition, typical features or
constraints that can occur in practice are that: (1) the observations y are high-dimensional, because
they represent signals in time or spectra, as in Schmidt & Fernando (2015), Bernard-Michel et al.
(2009), Ma et al. (2013); and (2) the parameter θ, to be estimated, is itself multi-dimensional with
correlated dimensions so that independently predicting its components is sub-optimal; e.g., when
there are known constraints such as when the parameter elements are concentrations or probabilities
that sum to one (Deleforge et al., 2015a, Lemasson et al., 2016, Bernard-Michel et al., 2009).

The fundamental idea of ABC is to generate parameter proposals θ in a parameter space Θ using
a prior distribution π(θ) and accept a proposal if the simulated data z for that proposal is similar
to the observed data y, both in an observation space Y. This similarity is usually measured using a
distance or discriminative measure D and a simulated sample z is retained if D(z,y) is smaller than a
given threshold ε. In this simple form, the procedure is generally referred to as rejection ABC. Other
variants are possible and often recommended, for instance using MCMC or sequential procedures (e.g.,
Del Moral et al., 2012, Buchholz & Chopin, 2019), but we will focus on the rejection version for the
purpose of Section 2.4.

In the case of a rejection algorithm, selected samples are drawn from the so-called ABC quasi-
posterior, which is an approximation to the true posterior π(θ | y). Under conditions similar to
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1.4. Universal approximation for mixture of experts models in approximate Bayesian computation

that of Bernton et al. (2019), regarding the existence of a PDF fθ(z) for the likelihood, the ABC
quasi-posterior depends on D and on a threshold ε, and can be written as

πε(θ | y) ∝ π(θ)

∫
Y

1{D(y,z)≤ε} fθ(z) dz . (1.4.1)

More specifically, the similarity between z and y is generally evaluated based on two components: the
choice of summary statistics s(·) to account for the data in a more robust manner, and the choice of
a distance to compare the summary statistics. That is, D(y, z) in (1.4.1) should then be replaced by
D(s(y), s(z)), whereupon we overload D to also denote the distance between summary statistics s(·).

However, there is no general rule for constructing good summary statistics for complex models
and if a summary statistic does not capture important characteristics of the data, the ABC algorithm
is likely to yield samples from an incorrect posterior (Blum et al., 2013, Fearnhead & Prangle, 2012,
Gutmann et al., 2018). Great insight has been gained through the work of Fearnhead & Prangle
(2012), who introduced the semi-automatic ABC framework and showed that under a quadratic loss,
the optimal choice for the summary statistic of y was the true posterior mean of the parameter:
s(y) = E[θ | y]. This conditional expectation cannot be calculated analytically but can be estimated
by regression using a learning data set prior to the ABC procedure itself.

In Fearnhead & Prangle (2012), it is suggested that a simple regression model may be enough
to approximate E[θ | y], but this has since been contradicted, for instance by Jiang et al. (2017)
and Wiqvist et al. (2019), who show that the quality of the approximation can matter in practice.
Still focusing on posterior means as summary statistics, they use deep neural networks that capture
complex non-linear relationships and exhibit much better results than standard regression approaches.
However, deep neural networks remain very computationally costly tools, both in terms of the required
size of training data and number of parameters and hyperparameters to be estimated and tuned.

In Section 2.4, see also Forbes et al. (2021), our first contribution is to investigate an alternative
efficient way to construct summary statistics, in the same vein as semi-automatic ABC, but based on
posterior moments, not restricted to the posterior means. Although this natural extension was already
proposed in Jiang et al. (2017), it requires the availability of a flexible and tractable regression model,
able to capture complex non-linear relationships and to provide posterior moments, straightforwardly.
As such, Jiang et al. (2017) did not consider an implementation of the procedure. For this purpose,
the GLLiM method (Deleforge et al., 2015c), that we recall in Section 2.4.1, appears as a good
candidate, with properties that balance between the computationally expensive neural networks and
the simple standard regression techniques. In contrast to most regression methods that provide only
pointwise predictions, GLLiM provides, at low cost, a parametric estimation of the full true posterior
distributions. In particular, we prove universal theorems that the quasi-posterior distribution resulting
from ABC with surrogate posteriors built from GLLiM converges to the true one, under standard
conditions, see more in Section 2.4.3. Using a learning set of parameters and observations couples,
GLLiM learns a family of finite Gaussian mixtures whose parameters depend analytically on the
observation to be inverted. For any observed data, the true posterior can be approximated as a
Gaussian mixture, whose moments are easily computed in closed form and turned into summary
statistics for subsequent ABC sample selection.

More precisely, we provide two types of results, below. In the first result (Theorem 1.4.1), the
true posterior is used to compare samples y and z. This result aims at providing insights on the
proposed quasi-posterior formulation and at illustrating its potential advantages. In the second result
(Theorem 1.4.2), a surrogate posterior is learned and used to compare samples. Conditions are specified
under which the resulting ABC quasi-posterior converges to the true posterior.

1.4.1 Convergence of the ABC quasi-posterior

In this section, we assume a fixed given observed y and the dependence on y is omitted from the
notation, when there is no confusion.

Let us first recall the standard form of the ABC quasi-posterior, omitting summary statistics from
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the notation:

πε(θ | y) ∝ π(θ)

∫
Y

1{D(y,z)≤ε} fθ(z) dz . (1.4.2)

If D is a distance and D(y, z) is continuous in z, the ABC posterior in (1.4.2) can be shown to have
the desirable property of converging to the true posterior when ε tends to 0 (see Prangle et al., 2018).

The proof is based on the fact that when ε tends to 0, due to the property of the distance D,
the set {z ∈ Y : D(y, z) ≤ ε}, defining the indicator function in (1.4.2), tends to the singleton {y}
so that consequently z in the likelihood can be replaced by the observed y, which then leads to an
ABC quasi-posterior proportional to π(θ)fθ(y) and therefore to the true posterior as desired (see also
Rubio & Johansen, 2013, Bernton et al., 2019). It is interesting to note that this proof is based on
working on the term under the integral only and is using the equality, at convergence, of z to y, which
is actually a stronger than necessary assumption for the result to hold. Alternatively, if we first rewrite
(1.4.2) using Bayes’ theorem, it follows that

πε(θ | y) ∝
∫
Y

1{D(y,z)≤ε} π(θ) fθ(z) dz ∝
∫
Y

1{D(y,z)≤ε} π(θ | z) π(z) dz . (1.4.3)

That is, when accounting for the normalizing constant:

πε(θ | y) =

∫
Y 1{D(y,z)≤ε} π(θ | z) π(z) dz∫

Y 1{D(y,z)≤ε} π(z) dz
. (1.4.4)

Using this equivalent formulation, we can then replace D(y, z) by D(π(· | y), π(· | z)), with D now
denoting a distance on densities, and obtain the same convergence result when ε tends to 0. More
specifically, we can show the following general result. Let us define our ABC quasi-posterior as,

qε (θ | y) ∝ π(θ)

∫
Y

1{D(π(·|y),π(·|z))≤ε} fθ(z) dz,

which can be written as

qε (θ | y) =

∫
Y 1{D(π(·|y),π(·|z))≤ε}π (θ | z)π (z) dz∫

Y 1{D(π(·|y),π(·|z))≤ε}π (z) dz
. (1.4.5)

The following Theorem 1.4.1 shows that qε (· | y) converges to π (· | y) in total variation, for fixed y.
Note that Theorem 1.4.1 is restated as Theorem 2.4.1 and proved in Section 2.4.6.1.

Theorem 1.4.1. For every ε > 0, let Aε = {z ∈ Y : D (π (· | y) , π (· | z)) ≤ ε}. Assume the following:

(A1) π (θ | ·) is continuous for all θ ∈ Θ, and supθ∈Θ π (θ | y) <∞;

(A2) There exists a γ > 0 such that supθ∈Θ supz∈Aγ π (θ | z) <∞;

(A3) D (·, ·) : Π×Π→ R+ is a metric on the functional class Π = {π (· | y) : y ∈ Y};

(A4) D (π (· | y) , π (· | z)) is continuous, with respect to z.

Under (A1)–(A4), qε (· | y) in (1.4.5) converges in total variation to π (· | y), for fixed y, as ε→ 0.

It appears that what is important is not to select z’s that are close (and at the limit equal) to
the observed y but to choose z’s so that the posterior π( · | z) (the term appearing in the integral in
(1.4.3)) is close (and at the limit equal) to π( · | y). And this last property is less demanding than
z = y. Potentially, there may be several z’s satisfying π( · | z) = π( · | y), but this is not problematic
when using (1.4.3), while it is problematic when following the standard proof as in Bernton et al.
(2019).
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1.4.2 Convergence of the ABC quasi-posterior with surrogate posteriors

In most ABC settings, based on data discrepancy or summary statistics, the above consideration and
result are not useful because the true posterior is unknown by construction and cannot be used to
compare samples. However this principle becomes useful in our setting, which is based on surrogate
posteriors. While the previous result can be seen as an oracle of sorts, it is more interesting in practice
to investigate whether a similar result holds when using surrogate posteriors in the ABC likelihood.
This is the goal of Theorem 1.4.2 below, which we prove for a restricted class of target distribution
and of surrogate posteriors that are learned as mixtures.

We now assume that X = Θ×Y is a compact set and consider the following classHX of distributions
on X , HX = {gϕ : ϕ ∈ Ψ}, with constraints on the parameters, Ψ being a bounded parameter set. In
addition the densities in HX are assumed to satisfy for any ϕ,ϕ′ ∈ Ψ, there exist arbitrary positive
scalars a, b and B such that

for all x ∈ X , a ≤ gϕ(x) ≤ b and sup
x∈X
| log gϕ(x)− log gϕ′(x)| ≤ B‖ϕ−ϕ′‖1 .

We denote by pK a K-component mixture of distributions from HX and defined for all y ∈ Y,
pK,N (· | y) as follows:

∀θ ∈ Θ, pK,N (θ | y) = pK
(
θ | y;φ∗K,N

)
,

with φ∗K,N the maximum likelihood estimator (MLE) for the data set DN = {(θn,yn), n ∈ [N ]},
generated from the true joint distribution π(·, ·):

φ∗K,N = arg max
φ∈Φ

N∑
n=1

log
(
pK(θn,yn;φ)

)
.

In addition, for every ε > 0, let AK,Nε,y =
{
z ∈ Y : D

(
pK,N (· | y) , pK,N (· | z)

)
≤ ε
}

and qK,Nε denote
the ABC quasi-posterior defined with pK,N by

qK,Nε (θ | y) ∝ π(θ)

∫
Y

1{D(pK,N (·|y),pK,N (·|z))≤ε} fθ(z) dz . (1.4.6)

Note that Theorem 1.4.2 is restated as Theorem 2.4.2 and proved in Section 2.4.6.2.

Theorem 1.4.2. Assume the following: X = Θ× Y is a compact set and

(B1) For joint density π, there exists Gπ a probability measure on Ψ such that, with gϕ ∈ HX ,
π(x) =

∫
Ψ gϕ(x) Gπ(dϕ);

(B2) The true posterior density π(· | ·) is continuous both with respect to θ and y;

(B3) D (·, ·) : Π × Π → R+ ∪ {0} is a metric on a functional class Π, which contains the class{
pK,N (· | y) : y ∈ Y,K ∈ N?, N ∈ N?

}
. In particular, D

(
pK,N (· | y) , pK,N (· | z)

)
= 0, if and

only if pK,N (· | y) = pK,N (· | z);

(B4) For every y ∈ Y, z 7→ D
(
pK,N (· | y) , pK,N (· | z)

)
is a continuous function on Y.

Then, under (B1)–(B4), the Hellinger distance DH

(
qK,Nε (· | y) , π (· | y)

)
converges to 0 in some

measure λ, with respect to y ∈ Y and in probability, with respect to the sample {(θn,yn) , n ∈ [N ]}.
That is, for any α > 0, β > 0, it holds that

lim
ε→0,K→∞,N→∞

Pr
(
λ
({

y ∈ Y : D2
H

(
qK,Nε (· | y) , π (· | y)

)
≥ β

})
≤ α

)
= 1. (1.4.7)

In Section 2.4, our second contribution is to propose to compare directly the full surrogate posterior
distributions provided by GLLiM, without reducing them to their moments. So doing, we introduce
the idea of functional summary statistics, which also requires a different notion of the usual distances
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or discrepancy measures to compare them. Recent developments in optimal transport-based distances
designed for Gaussian mixtures (Delon & Desolneux, 2020, Chen et al., 2019) match perfectly this
need via the so-called Mixture-Wasserstein distance as referred to in Delon & Desolneux (2020), and
denoted throughout the text as MW2. There exist other distances between mixtures that are tractable,
and among them the L2 distance is also considered in this work.

As an alternative to semi-automatic ABC, in the works of Nguyen et al. (2020a), Jiang et al.
(2018), Bernton et al. (2019), Park et al. (2016), Gutmann et al. (2018), the difficulties associated
with finding efficient summary statistics were bypassed by adopting, respectively, the Energy Distance,
a Kullback–Leibler divergence estimator, the Wasserstein distance, the Maximum Mean Discrepancy
(MMD), and classification accuracy to provide a data discrepancy measure. Such approaches compare
simulated data and observed data by looking at them as i.i.d. samples from distributions, respectively
linked to the simulated and true parameter, except for Bernton et al. (2019) and Gutmann et al. (2018)
who proposed solutions to also handle time series. We suspect that to be effective, these methods
require that the observed and simulated data contain each a moderately large number of samples.
Typically, they cannot be applied if we observe only one limited sample related to the parameter to
be recovered. This is a major difference with the approach that we propose.

We propose not to compare samples from distributions, but comparing directly the distributions
by their surrogates using distances between distributions. It is always possible to use the previous
data discrepancies by simulating first samples from the distributions to be compared but this is
likely to be computationally sub-optimal. We can instead use the same Wasserstein, Kullback–Leibler
divergence, etc., but in their population versions rather than in their empirical versions. As an example,
a Wasserstein-based distance can be computed between Mixtures of Gaussians, thanks to the recent
work of Delon & Desolneux (2020) and Chen et al. (2019). Closed form expressions also exist for the
L2 distance, for the MMD with a Gaussian RBF kernel, or a polynomial kernel (see Sriperumbudur
et al., 2010, Muandet et al., 2012) and for the Jensen–Rényi divergence of degree two (see Wang et al.,
2009). Kristan et al. (2011) also proposed an algorithm based on the so-called inscented transform in
order to compute the Hellinger distance between two Gaussian mixtures, although it is unclear what
the complexity of this algorithm is.

To emphasize the difference to more standard summaries, we refer to our surrogate posteriors as
functional summary statistics. The term has already been used by Soubeyrand et al. (2013) in the ABC
context in their attempts to characterize spatial structures (e.g. spatial point processes) using statistics
that are functions (e.g. correlograms or variograms). Their approach is different in spirit in that it
does not address the issue of choosing the summary statistics. Given some functional statistics whose
definition and nature may change for each considered model, their goal was to optimize the distances to
compare them so as to extract the best information on the parameters of interest. Soubeyrand et al.
(2013) propose a weighted L2 distance to compare such statistics. In our proposal, the functional
statistics are probability distributions. They arise as a way to bypass the summary statistics choice,
but in this work, we make use of existing metrics to compare them, without optimization.

1.5 Outline and Contributions

The rest of the manuscript is organized as follows. In Chapter 2, we present our first main contributions
by establishing theoretical approximation results of MoE models over the widest class of PDFs and
conditional PDFs, under the weakest set of assumptions, from the works:

(C1) TrungTin Nguyen, Hien D Nguyen, Faicel Chamroukhi, and Geoffrey J McLachlan. Ap-
proximation by finite mixtures of continuous density functions that vanish at infinity. Cogent
Mathematics & Statistics, volume 7, page 1750861. Cogent OA, 2020.
Link: https://www.tandfonline.com/doi/full/10.1080/25742558.2020.1750861
(Nguyen et al., 2020d).

(C2) Hien Duy Nguyen, TrungTin Nguyen, Faicel Chamroukhi, and Geoffrey McLachlan. Approx-
imations of conditional probability density functions in Lebesgue spaces via mixture of experts
models. Journal of Statistical Distributions and Applications, 8(1), 13, 2021.
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Link: https://doi.org/10.1186/s40488-021-00125-0
(Nguyen et al., 2021a).

(C3) TrungTin Nguyen, Faicel Chamroukhi, Hien D Nguyen, and Geoffrey J McLachlan. Ap-
proximation of probability density functions via location-scale finite mixtures in Lebesgue spaces.
arXiv preprint arXiv:2008.09787. To appear, Communications in Statistics - Theory and Meth-
ods, 2021.
Link: https://arxiv.org/pdf/2008.09787.pdf
(Nguyen et al., 2020b).

We established universal approximation theorems for mixture distributions as well as MoE models.
More precisely, we proved that to an arbitrary degree of accuracy, location-scale mixtures of a con-
tinuous PDF can approximate any continuous PDF, uniformly, on a compact set; and for any finite
p ≥ 1, location-scale mixtures of an essentially-bounded PDF can approximate any PDF, in the Lp
norm. Furthermore, we demonstrated the richness of the class of MoE models by proving denseness
results in Lebesgue spaces for conditional PDFs, when the input and output variables are both com-
pactly supported. In another contribution of this thesis subject at large, we considered MoE models
in the Bayesian framework. Then, we proved that the quasi-posterior distribution resulting from ap-
proximate Bayesian computation (ABC) with surrogate posteriors built from finite Gaussian mixtures
using an inverse regression approach, converges to the true one, under standard conditions via the
following work:

(C4) Florence Forbes, Hien Duy Nguyen, TrungTin Nguyen, and Julyan Arbel. Approximate
Bayesian computation with surrogate posteriors. hal-03139256. 2021. Link: https://hal.archives-
ouvertes.fr/hal-03139256v2/document
(Forbes et al., 2021).

In Chapters 3 and 4, we establish non-asymptotic risk bounds that take the form of weak oracle
inequalities, provided that lower bounds on the penalties hold true, in high-dimensional regression sce-
narios for a variety of MoE regression models, including Gaussian-gated and softmax-gated Gaussian
MoE, based on an inverse regression strategy or a Lasso penalization, respectively. In particular, our
oracle inequalities show that the performance in Jensen–Kullback–Leibler type loss of our penalized
maximum likelihood estimators are roughly comparable to that of oracle models if we take large enough
the constants in front of the penalties, whose forms are only known up to multiplicative constants
and proportional to the dimensions of models. These motivate us to make use of the slope heuristic
criterion to select several hyperparameters, including the number of mixture components, the amount
of sparsity (the coefficients and ranks sparsity levels), the degree of polynomial mean functions, and
the potential hidden block-diagonal structures of the covariance matrices of the multivariate predictor
or response variable. To support our theoretical results and the statistical study of non-asymptotic
model selection in a variety of MoE models, we perform numerical studies by considering simulated
and real data, which highlight the performance of our finite-sample oracle inequality results.

In particular, the works from Chapter 3 constitute our second main contributions for the non-
asymptotic model selection in a GLoME regression model and a BLoME regression model from the
works:

(C5) TrungTin Nguyen, Hien Duy Nguyen, Faicel Chamroukhi, and Florence Forbes. A non-
asymptotic penalization criterion for model selection in mixture of experts models.
arXiv preprint arXiv:2104.02640. 2021. Link: https://arxiv.org/pdf/2104.02640.pdf
(Nguyen et al., 2021c).

(C6) TrungTin Nguyen, Faicel Chamroukhi, Hien Duy Nguyen, and Florence Forbes. Non-asymptotic
model selection in block-diagonal mixture of polynomial experts models.
arXiv preprint arXiv:2104.08959. 2021. Link: https://arxiv.org/pdf/2104.08959.pdf
(Nguyen et al., 2021b).

Last but not least, our third main contributions for the non-asymptotic joint rank and variable
selection results in a PSGaBloME regression models are provided via Chapter 4 from the works:
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(C7) TrungTin Nguyen, Hien D Nguyen, Faicel Chamroukhi, and Geoffrey J McLachlan. An l1-
oracle inequality for the lasso in mixture of experts regression models.
arXiv preprint arXiv:2009.10622. 2020. Link: https://arxiv.org/pdf/2009.10622.pdf
(Nguyen et al., 2020c).

(C8) Joint rank and variable selection by a non-asymptotic model selection in mixture of polynomial
experts models. Ongoing work.

Note that these models are useful for high-dimensional heterogeneous data, where the number of
explanatory variables can be much larger than the sample size and there exist potential hidden graph-
structured interactions between variables.

Finally, Chapter 5 concludes the manuscript and discusses perspectives. In particular, we suggest
several conjectures and open problems as future research directions.
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Chapter 2

Approximation capabilities of the
mixtures of experts models

Chapter 2 is based on the following works:

(C1) TrungTin Nguyen, Hien D Nguyen, Faicel Chamroukhi, and Geoffrey J McLachlan. Ap-
proximation by finite mixtures of continuous density functions that vanish at infinity. Cogent
Mathematics & Statistics, volume 7, page 1750861. Cogent OA, 2020.
Link: https://www.tandfonline.com/doi/full/10.1080/25742558.2020.1750861
(Nguyen et al., 2020d).

(C2) Hien Duy Nguyen, TrungTin Nguyen, Faicel Chamroukhi, and Geoffrey McLachlan. Ap-
proximations of conditional probability density functions in Lebesgue spaces via mixture of ex-
perts models. Journal of Statistical Distributions and Applications, 8(1), 13, 2021. Link:
https://doi.org/10.1186/s40488-021-00125-0
(Nguyen et al., 2021a).

(C3) TrungTin Nguyen, Faicel Chamroukhi, Hien D Nguyen, and Geoffrey J McLachlan. Ap-
proximation of probability density functions via location-scale finite mixtures in Lebesgue spaces.
arXiv preprint arXiv:2008.09787. To appear, Communications in Statistics - Theory and Meth-
ods, 2021. Link: https://arxiv.org/pdf/2008.09787.pdf
(Nguyen et al., 2020b).

(C4) Florence Forbes, Hien Duy Nguyen, TrungTin Nguyen, and Julyan Arbel. Approximate
Bayesian computation with surrogate posteriors. hal-03139256. 2021. Link: https://hal.archives-
ouvertes.fr/hal-03139256v2/document
(Forbes et al., 2021).
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In Chapter 1, we introduced the necessary concepts and main results of the approximation and
model selection capabilities of the MoE models. In Chapter 2, we present our first contributions of
the approximation capabilities within these models in more details compared to Section 1.3. More
precisely, we aim to prove that to an arbitrary degree of accuracy, location-scale mixtures of a con-
tinuous PDF can approximate any continuous PDF, uniformly, on a compact set; and for any finite
p ≥ 1, location-scale mixtures of an essentially-bounded PDF can approximate any PDF, in the Lp
norm. Moreover, given input and output variables are both compactly supported, we demonstrate
the richness of the class of MoE models by proving denseness results in Lebesgue spaces for condi-
tional PDFs. In another contribution of this Ph.D. subject at large, we considered MoE models in
the Bayesian framework. Then, we proved that the quasi-posterior distribution resulting from ap-
proximate Bayesian computation (ABC) with surrogate posteriors built from finite Gaussian mixtures
using an inverse regression approach, converges to the true one, under standard conditions.

Chapter 2 proceeds as follows. Our main theorems regarding the approximation by finite mixtures
of continuous density functions that vanish at infinity and location-scale finite mixtures in Lebesgue
spaces are stated and proved in the Section 2.1 and Section 2.2, respectively. In particular, all the
proofs of Theorem 2.1.1 (or equivalently Theorem 1.3.6)(a)+(d)+(e), which are later strictly improved
by Theorem 2.2.1 (or equivalently Theorem 1.3.7), are not presented in Section 2.1 and can be found in
Nguyen et al. (2020d). These universal approximation results are then extended to conditional PDFs
via MoE models in Lebesgue spaces in Section 2.3. Universal approximation for MoE in approximate
Bayesian computation is presented in Section 2.4.

2.1 Approximation by finite mixtures of continuous density func-
tions that vanish at infinity

The remainder of Section 2.1 is devoted to proving the following Theorem 2.1.1.

Theorem 2.1.1 (Nguyen et al., 2020d, Theorem 5). If we assume that f and g are PDFs and that
g ∈ C0, then the following statements are true.

(a) For any f ∈ C0, there exists a sequence {hgm} (hgm ∈Mg
m), such that

lim
m→∞

‖f − hgm‖L∞ = 0.

(b) For any f ∈ Cb and compact K ⊂ Rd, there exists a sequence {hgm} (hgm ∈Mg
m), such that

lim
m→∞

‖f − hgm‖L∞(K) = 0.
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(c) For any 1 < p <∞ and f ∈ Lp, there exists a sequence {hgm} (hgm ∈Mg
m), such that

lim
m→∞

‖f − hgm‖Lp = 0.

(d) For any measurable f , there exists a sequence {hgm} (hgm ∈Mg
m), such that

lim
m→∞

hgm = f , almost everywhere.

(e) If ν is a σ-finite Borel measure on Rd, then for any ν-measurable f , there exists a sequence {hgm}
(hgm ∈Mg

m), such that
lim
m→∞

hgm = f,

almost everywhere, with respect to ν.

If we assume instead that g ∈ V, then the following statement is also true.

(f) For any f ∈ C, there exists a sequence {hgm} (hgm ∈Mg
m), such that

lim
m→∞

‖f − hgm‖L1
= 0.

2.1.1 Technical preliminaries

Before we begin to prove the main theorem, we establish some technical results regarding our class of
component densities C0. Let f, g ∈ L1 and denote the convolution of f and g by f ?g = g ?f . Further,
we denote the sequence of dilates of g by

{
gk : gk (x) = kdg (kx) , k ∈ N?

}
. The following result is an

alternative to Lemma 2.1.6 and Corollary 2.1.7. Here, we replace a boundedness assumption on the
approximand, in the aforementioned theorem by a vanishing at infinity assumption, instead.

Lemma 2.1.2. Let g be a PDF and f ∈ C0. Then,

lim
k→∞

‖gk ? f − f‖L∞ = 0.

Proof. It suffices to show that for any ε > 0, there exists a k (ε) ∈ N?, such that ‖gk ? f − f‖L∞ < ε,
for all k ≥ k (ε). By Lemma 2.1.8, f ∈ Cb, and thus ‖f‖L∞ <∞. By making the substitution z = kx,
we obtain for each k ∫

gk (x) dλ =

∫
kdg (kx) dλ =

∫
g (z) dλ = 1.

By Corollary 2.1.7, we obtain limk→∞
∫

1{x:‖x‖2>δ}gkdλ = 0 and thus we can choose a k (ε), such that∫
1{x:‖x‖2>δ}gkdλ <

ε

4 ‖f‖L∞
.

Since g is a PDF, we have

|(gk ? f) (x)− f(x)| =
∣∣∣∣∫ gk (y) [f (x− y)− f (x)] dλ (y)

∣∣∣∣
≤
∫
gk (y) |f (x− y)− f (x)|dλ (y) .

By uniform continuity, for any ε > 0, there exists a δ (ε) > 0 such that |f (x− y)− f (x)| < ε/2, for
any x, y ∈ Rd, such that ‖y‖2 < δ (ε) (Lemma 2.1.8). Thus, on the one hand, for any δ (ε), we can
pick a k (ε) such that∫

1{y:‖y‖2>δ(ε)}gk (y) |f (x− y)− f (x)| dλ (y) ≤ 2 ‖f‖L∞

∫
1{y:‖y‖2>δ(ε)}gkdλ

≤ 2 ‖f‖L∞ ×
ε

4 ‖f‖L∞
=
ε

2
, (2.1.1)
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and on the other hand∫
1{y:‖y‖2≤δ(ε)}gk (y) |f (x− y)− f (x)| dλ (y) ≤ ε

2

∫
1{y:‖y‖2≤δ(ε)}gkdλ

≤ ε

2
× 1 =

ε

2
. (2.1.2)

The proof is completed by summing (2.1.1) and (2.1.2).

Lemma 2.1.3. If f ∈ C0 is such that f ≥ 0, and ε > 0, then there exists a h ∈ Cc, such that 0 ≤ h ≤ f ,
and

‖f − h‖L∞ < ε

Proof. Since f ∈ C0, there exists a compact K ⊂ Rd such that ‖f‖L∞(K{) < ε/2. By Lemma 2.1.9,

there exists some g ∈ Cc, such that 0 ≤ g ≤ 1 and 1Kg = 1. Let h = gf , which implies that h ≥ 0
and 0 ≤ h ≤ f . Furthermore, notice that 1K (f − h) = 0 and ‖h‖L∞ ≤ ‖f‖L∞ , by construction. The
proof is completed by observing that

‖f − h‖L∞ = ‖f − h‖L∞(K{)

≤ ‖f‖L∞(K{) + ‖h‖L∞(K{)

≤ 2 ‖f‖L∞(K{) < ε.

For any δ > 0, uniformly continuous function f , let

w (f, δ) = sup
{x,y∈Rd:‖x−y‖2≤δ}

|f (x)− f (y)|

denote the modulus of continuity of f . Furthermore, define the diameter of a set X ⊂ Rd by diam (X) =
supx,y∈X ‖x− y‖2 and denote an open ball, centered at x ∈ Rd with radius r > 0 by B (x, r) ={
y ∈ Rd : ‖x− y‖2 < r

}
.

Notice that the class Mg
m can be parameterized as

Mg
m =

{
h : h (x) =

m∑
i=1

cik
d
i g (kix− zi) , zi ∈ Rd, ki ∈ R+, c ∈ Πm−1, i ∈ [m]

}
,

where ki = 1/σi and zi = µi/σi. The following result is the primary mechanism that permits us to
construct finite mixture approximations for convolutions of form gk ? f . The argument motivated by
the approaches taken in (Cheney & Light, 2000, Thm 1, Ch. 24), (Nestoridis & Stefanopoulos, 2007,
Lem. 3.1), and (Nestoridis et al., 2011, Thm. 3.1).

Lemma 2.1.4. Let f ∈ C and g ∈ C0 be PDFs. Furthermore, let K ⊂ Rd be compact and h ∈ Cc,
where 1K{h = 0 and 0 ≤ h ≤ f . Then for any k ∈ N?, there exists a sequence {hgm}, such that

lim
m→∞

‖gk ? h− hgm‖L∞ = 0.

Proof. It suffices to show that for any k ∈ N? and ε > 0, there exists a sufficiently large enough
m(ε) ∈ N? so that for all m ≥ m(ε), hgm ∈Mg

m such that

‖gk ? h− hgm‖L∞ < ε. (2.1.3)

For any k ∈ N?, we can write

(gk ? h) (x) =

∫
gk (x− y)h (y) dλ (y)

=

∫
1{y:y∈K}gk (x− y)h (y) dλ (y)

=

∫
1{y:y∈K}k

dg (kx− ky)h (y) dλ (y)

=

∫
1{z:z∈kK}g (kx− z)h

(z
k

)
dλ (z) .
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Here, kK is continuous image of a compact set, and hence is compact (cf. (Rudin, 1976, Thm.
4.14)). By Lemma 2.1.10, for any δ > 0, there exists κi ∈ Rd (i ∈ [m− 1], m ∈ N?), such that
kK ⊂

⋃m−1
i=1 B (κi, δ/2). Further, if Bδi = kK ∩ B (κi, δ/2), then we have kK =

⋃m−1
i=1 Bδi . We can

obtain a disjoint covering of kK by taking Aδ1 = B1 and Aδi = Bδi \
⋃i−1
j=1 Bδj (i ∈ [m− 1]) and noting

that kK =
⋃m−1
i=1 Aδi , by construction (cf. (Cheney & Light, 2000, Ch. 24)). Furthermore, each Aδi is

a Borel set and diam
(
Aδi
)
≤ δ.

For convenience, let Πδ
m =

{
Aδi : i ∈ [m− 1]

}
denote the disjoint covering, or partition, of kK. We

seek to show that there exists an m ∈ N? and Πδ
m, such that∥∥∥∥∥gk ? h−

m∑
i=1

cik
d
i g (kix− zi)

∥∥∥∥∥
L∞

< ε,

where ki = k,

ci = k−d
∫

1{z:z∈Aδi}h (z/k) dλ(z),

and zi ∈ Aδi , for i ∈ [m− 1].

Further, zm ∈ Aδm−1 and cm = 1 −
∑m−1

i=1 ci, with km chosen as follows. By Lemma 2.1.8, g ≤
C < ∞ for some positive C. Then,

∥∥cmkdmg (kmx− zm)
∥∥
L∞ ≤ cmk

d
mC. We may choose km so that

kdm = ε/ (2cmC), so that ∥∥∥cmkdmg (kmx− zm)
∥∥∥
L∞
≤ ε

2
.

Since 0 ≤ h ≤ f , the sum of ci (i ∈ [m− 1]) satisfies the inequality

m−1∑
i=1

ci = k−d
m−1∑
i=1

∫
1{z:z∈Aδi}h

(z
k

)
dλ = k−d

∫
1{z:z∈kK}h

(z
k

)
dλ

=

∫
1{x:x∈K}hdλ ≤

∫
1{x:x∈K}fdλ ≤

∫
fdλ = 1.

Thus, 0 ≤ cm ≤ 1, and our construction implies that hgm ∈Mg
m, where

hgm (x) =
m∑
i=1

cik
d
i g (kix− zi)∀x ∈ Rn.

We can bound the left-hand side of (2.1.3) as follows:

∥∥gk ? h− hmg ∥∥L∞
≤

∥∥∥∥∥(gk ? h) (x)−
m−1∑
i=1

cik
d
i g (kix− zi)

∥∥∥∥∥
L∞

+
∥∥cmkdmg (kmx− zm)

∥∥
L∞

≤

∥∥∥∥∥(gk ? h) (x)−
m−1∑
i=1

cik
d
i g (kix− zi)

∥∥∥∥∥
L∞

+
ε

2

=

∥∥∥∥∥
∫

1{z:z∈kK}g (kx− z)h
( z
k

)
dλ (z)

−
m−1∑
i=1

∫
1{z:z∈Aδi}g (kx− zi)h

( z
k

)
dλ (z)

∥∥∥∥∥
L∞

+
ε

2

≤
m−1∑
i=1

∫
1{z:z∈Aδi} ‖g (kx− z)− g (kx− zi)‖L∞

h
( z
k

)
dλ (z) +

ε

2
. (2.1.4)

Since

‖kx− z − (kx− zi)‖2 = ‖z − zi‖2 ≤ diam
(
Aδi
)
≤ δ,

we have |g (kx− z)− g (kx− zi)| ≤ w (g, δ), for each i ∈ [m− 1]. Since limδ→0w (g, δ) = 0 (cf.
(Makarov & Podkorytov, 2013, Thm. 4.7.3)), we may choose a δ (ε) > 0 so that w (g, δ (ε)) < ε/

(
2kd
)
.
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We may proceed from (2.1.4) as follows:∥∥gk ? h− hmg ∥∥L∞ ≤ w (g, δ (ε))

∫
1{z:z∈kK}h

(z
k

)
dλ+

ε

2

= w (g, δ (ε)) kd
∫
hdλ+

ε

2

≤ w (g, δ (ε)) kd +
ε

2

<
ε

2
+
ε

2
= ε. (2.1.5)

To conclude the proof, it suffices to choose an appropriate sequence of partitions Π
δ(ε)
m ,m ≥ m(ε), for

some large but finite m(ε), so that (2.1.4) and (2.1.5) hold, which is possible by Lemma 2.1.10.

For any r ∈ N?, let B̄r =
{
x ∈ Rd : ‖x‖2 ≤ r

}
be a closed ball of radius r, centered at the origin.

Lemma 2.1.5. If f ∈ L1, such that f ≥ 0, then

lim
r→∞

∥∥f − 1B̄rf
∥∥
L1

= 0.

Proof. By construction, each element of the sequence
{
1B̄rf

}
(r ∈ N?) is measurable, 0 ≤ 1B̄rf ≤ f ,

and
lim
r→∞

1B̄rf = f ,

point-wise. We obtain our conclusion via the Lebesgue dominated convergence theorem.

2.1.2 Proof of Theorem 2.1.1(a)

We now proceed to prove each of the parts of Theorem 2.1.1. To prove Theorem 2.1.1(a) it suffices to
show that for every ε > 0, there exists a hgm ∈Mg

m, such that ‖f − hgm‖L∞ < ε.
Start by applying Lemma 2.1.3 to obtain h ∈ Cc, such that 0 ≤ h ≤ f and ‖f − h‖L∞ < ε/2.

Then, we have

‖f − hgm‖L∞ ≤ ‖f − h‖L∞ + ‖h− hgm‖L∞
<
ε

2
+ ‖h− hgm‖L∞ . (2.1.6)

The goal is to find a hgm, such that ‖h− hgm‖L∞ < ε/2. Since h ∈ Cc, we may find a compact

K ⊂ Rd such that ‖h‖L∞(K{) = 0. Apply Lemma 2.1.2 to show the existence of a k (ε), such that

‖h− gk ? h‖L∞ <
ε

4
,

for all k ≥ k (ε). With a fixed k = k (ε), apply Lemma 2.1.4 to show that there exists a hgm ∈ Mg
m,

such that ∥∥gk(ε) ? h− hgm
∥∥
L∞

<
ε

4
.

By the triangle inequality, we have

‖h− hgm‖L∞ ≤
∥∥h− gk(ε) ? h

∥∥
L∞

+
∥∥gk(ε) ? h− hgm

∥∥
L∞

<
ε

4
+
ε

4
=
ε

2
. (2.1.7)

The proof is complete by substitution of (2.1.7) into (2.1.6).

2.1.3 Proof of Theorem 2.1.1(d) and Theorem 2.1.1(e)

A combination of Lusin’s theorem and Urysohn’s lemma, see more detail in Lemma 2.1.9, renders a
sequence of continuous functions with compact support (gk)k∈N? converging to f almost everywhere.

By Theorem 2.1.1(a), for each k ∈ N?, there exists a sequence {hgmk} that uniformly converges
to gk, that is, ‖hgmk − gk‖∞ < 1/k, ∀k ∈ N?. Thus, by Lemma 2.1.14, {hgmk} almost uniformly
converges to gk and also converges almost everywhere, to gk, with respect to any measure ν. We prove
Theorem 2.1.1(d) by setting ν = λ, and we prove Theorem 2.1.1(e) by not specifying ν.
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2.1.4 Comments and discussion

2.1.4.1 Relationship to Theorem 1.3.1

In the proof of Theorem 1.3.1, the famous Hilbert space approximation result of Jones (1992) and
Barron (1993) was used to bound the L2 norm between any approximand f ∈ L2 and a convex
combination of bounded functions in L2. This approximation theorem is exactly the p = 2 case of the
more general theorem of Donahue et al. (1997), as presented in Lemma 2.1.13. Thus, one can view
Theorem 2.1.1(c) as the p ∈ (1,∞) generalization of Theorem 1.3.1.

2.1.4.2 The class W is a proper subset of the class C0

Here, we comment on the nature of class W, which was investigated by Bacharoglou (2010) and
Nestoridis et al. (2011). We recall that Bacharoglou (2010) conjectured that Theorem 1.3.5 generalizes
from g = φ to g ∈ V. In Theorem 2.1.1(a)–(e), we assume that g ∈ C0. We can demonstrate that
g ∈ C0 is a strictly weaker condition than g ∈ V or g ∈ W.

For example, consider the function in g : R→ R such that g (x) = 0 if x < 0 and

g (x) =

∞∑
i=1

22i

i

[
(x− i+ 1)2i 1{i−1≤x<i−1/2} + (x− i)2i 1{i−1/2≤x<i}

]
if x ≥ 0,

and note that ∫
1(−1/2,1/2)

(2x)2i

i
dλ =

1

2i2 + i
<

1

i2
.

Since
∑∞

i=1

(
1/i2

)
= π2/6, g ∈ L1. Furthermore, g is continuous since all stationary points of g are

continuous. In R, g ∈ C0 if

lim
x→±∞

g (x) = 0.

For x ≤ 0, we observe that g = 0 and thus the left limit is satisfied. On the right, for any 1/ε > 0,
we have x (ε) ≥ dεe − 1/2, so that g (x) < 1/ε, for all x > x (ε), where d·e is the ceiling operator.
Therefore, g ∈ C0.

Within each interval i − 1 ≤ x < i, we observe that g is locally maximized at x = i − 1/2. The
local maximum corresponding to each of these points is 1/i. Thus g /∈ W, since

∞∑
i=1

1

i
<
∑
y∈Z

sup
x∈[0,1]

|g (x+ y)| ,

where
∑∞

i=1 (1/i) =∞. Furthermore, g /∈ V since V ⊂ W.

2.1.4.3 Convergence in measure

Along with the conclusions of Theorem 2.1.1(d) and (e), Lemma 2.1.14 also implies convergence in
measure. That is, if ν is a σ-finite Borel measure on Rd, then for any ν-measurable f , there exists a
sequence {hgm}, such that for any ε > 0,

lim
m→∞

υ
({
x ∈ Rd : |f (x)− hgm (x)| ≥ ε

})
= 0.

2.1.5 Technical results

Throughout Section 2.1, we utilize a number of established technical results. For the convenience of
the reader, we append these results within Section 2.1.5. Sources from which we draw the unproved
results are provided in Section 2.1.6.
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Lemma 2.1.6. Let {gk} be a sequence of PDFs in L1 and for every δ > 0

lim
k→∞

∫
1{x:‖x‖2>δ}gkdλ = 0.

Then, for all f ∈ Lp and 1 ≤ p <∞,

lim
k→∞

‖gk ? f − f‖Lp = 0.

Furthermore, for all f ∈ Cb and any compact K ⊂ Rd,

lim
k→∞

‖gk ? f − f‖L∞(K) = 0.

The sequences {gk} from Lemma 2.1.6 are often called approximate identities or approximations of
the identity. A simple construction of approximate identities is by taking dilations gk (x) = kdg (kx),
which yields the following corollary.

Corollary 2.1.7. Let g be a PDF. Then the sequence of dilations
{
gk : gk (x) = kdg (kx)

}
, satisfies

the hypothesis of Lemma 2.1.6 and hence permits its conclusion.

Lemma 2.1.8. The class C0 is a subset of Cb. Furthermore, if f ∈ C0, then f is uniformly continuous.

Lemma 2.1.9 (Urysohn’s Lemma). If K ⊂ Rd is compact, then there exists some g ∈ Cc, such that
0 ≤ g ≤ 1 and 1Kg = 1.

Lemma 2.1.10. If X ⊂ Rd is bounded, then for any r > 0, X can be covered by
⋃m
i=1 B (xi, r) for

some finite m ∈ N?, where xi ∈ Rd and i ∈ [m].

Lemma 2.1.11. If 0 < p < q < r ≤ ∞, then Lp ∩ Lr ⊂ Lq.

Let Γ : R→ R be the usual gamma function, defined as Γ (z) =
∫

1(0,∞)x
z−1 exp (−x) dλ.

Lemma 2.1.12. If f ∈ Lp and g ∈ L1, for 1 ≤ p ≤ ∞, then f ? g exists and we have ‖f ? g‖Lp ≤
‖g‖L1

‖f‖Lp.

Lemma 2.1.13. Let G ⊂ Lp, for some 1 ≤ p < ∞, and let f ∈ Conv (G). For any K > 0, such that
‖f − α‖Lp < K, for all α ∈ G, there exists a hm ∈ Convm (G), such that

‖f − hm‖Lp ≤
CpK

m1−1/α
,

where α = min {p, 2}, and

Cp =

1 if 1 ≤ p ≤ 2,
√

2
[√

πΓ
(
p+1

2

)]1/p
if p > 2.

Lemma 2.1.14. In any measure ν, uniform convergence implies almost uniform convergence, and
almost uniform convergence implies almost everywhere convergence and convergence in measure, with
respect to ν.

2.1.6 Sources of results

Lemma 2.1.6 is reported as Theorem 9.3.3 in Makarov & Podkorytov (2013) (see also Theorem 2 of
(Cheney & Light, 2000, Ch. 20)). The proof of Corollary 2.1.7 can be taken from that of Theorem
4 of (Cheney & Light, 2000, Ch. 20). Lemma 2.1.8 appears in Conway (2012), as Proposition 1.4.5.
Lemma 2.1.9 is taken from Corollary 1.2.9 of Conway (2012). Lemma 2.1.10 appears as Theorem
1.2.2 in Conway (2012). Lemma 2.1.11 can be found in (Folland, 1999, Prop. 6.10). Lemma 2.1.12
can be found in (Makarov & Podkorytov, 2013, Thm. 9.3.1). Lemma 2.1.13 appears as Corollary
2.6 in Donahue et al. (1997). Lemma 2.1.14 can be obtained from the definition of almost uniform
convergence, Lemma 7.10, and Theorem 7.11 of Bartle (1995).
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2.2 Universal approximation theorems for location-scale finite mix-
tures in Lebesgue spaces

Section 2.2 progresses as follows. The main result of this Section 2.2 is stated in Section 2.2.1.
Technical preliminaries to the proof of the main result are presented in Section 2.2.2. The proof
is then established in Section 2.2.3. Additional technical results required throughout the paper are
reported in the Section 2.2.4.

2.2.1 Main result

Theorem 2.2.1 (Nguyen et al., 2020b, Theorem 2). Let hgm ∈ Mg denote an m-component location
finite mixture PDF. If we assume that f and g are PDFs, then the following statements are true.

(a) If f, g ∈ C and K ⊂ Rd is a compact set, then there exists a sequence {hgm}∞m=1 ⊂Mg, such that

lim
m→∞

‖f − hgm‖B(K) = 0.

(b) For p ∈ [1,∞), if f ∈ Lp and g ∈ L∞, then there exists a sequence {hgm}∞m=1 ⊂Mg, such that

lim
m→∞

‖f − hgm‖Lp = 0.

2.2.2 Technical preliminaries

Notice that Mg
m can be parameterized via dilates. That is, we can write

Mg
m =

{
hgm : hgm (·) =

m∑
i=1

cik
d
i g (ki × · − kiµi) , µi ∈ Rd, ki ∈ R+, c ∈ Πm−1, i ∈ [m]

}
,

where ki = 1/σi.
Define (U, ‖·‖U) to be a normed vector space (NVS) and let F be a subset of U, and denote the

convex hull of F by conv (F) is the smallest convex subset in U that contains F (cf. Brezis, 2010,
Chapter 1). By definition, we may write

conv (F) =

∑
i∈[m]

αifi : fi ∈ F, α ∈ Πm−1, i ∈ [m] ,m ∈ N?
 ,

where α> = (α1, . . . , αm).
Define the class of “basic” densities, which will serve as the approximation building blocks, as

follows
Gg =

{
kdg (k × · − kµ) , µ ∈ Rd, k ∈ R+

}
,

and suppose that we can choose a suitable NVS (U, ‖·‖U), such that Gg ⊂ Mg ⊂ U. Then, by
definition, it holds that Mg is a convex hull of Gg.

For u ∈ U and r > 0, we define the open and closed balls of radius r, centered around u, by:

B (u, r) = {v ∈ U : ‖u− v‖U < r} ,

and
B (u, r) = {v ∈ U : ‖u− v‖U ≤ r} ,

respectively. For brevity, we also write Br = B (0, r) and Br = B (0, r). A set F ⊂ U is open, if for
every u ∈ F, there exists an r > 0, such that B (u, r) ⊂ F. We say that F is closed if its complement
is open, and by definition, we say that U and the empty set are both closed and open.

We call the smallest closed set containing F its closure, and we denote it by F. A sequence {um} ⊂ U
converges to u ∈ U, if limm→∞ ‖um − u‖U = 0, and we denote it symbolically by limm→∞ um = u.
That is, for every ε > 0, there exists an N (ε) ∈ N?, such that m ≥ N (ε) implies that ‖um − u‖U < ε.
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By Lemma 2.2.6, we can write the closure of F as

F =
{
u ∈ U : u = lim

m→∞
um, um ∈ F

}
and hence

Mg =
{
h ∈ U : h = lim

m→∞
hgm, h

g
m ∈Mg

}
.

Thus, by definition, it holds that Mg is a closed and convex subset of U.
If f ∈ C is a PDF on Rd, we denote its support by

suppf =
{
x ∈ Rd : f (x) 6= 0

}
and furthermore, we denote the set of compactly supported continuous functions by

Cc = {f ∈ C : suppf is compact} .

For open sets V ⊂ Rd, we will write f ≺ V as shorthand for f ∈ Cc, 0 ≤ f ≤ 1, and suppf ⊂ V.
The following lemmas permit us to prove the primary technical mechanism that is used to prove

our main result presented in Theorem 2.2.1.

Lemma 2.2.2. Let f ∈ C be a PDF. Then, for every compact K ⊂ Rd, we can choose h ∈ Cc, such
that supph ⊂ Br, 0 ≤ h ≤ f , and h = f on K, for some r ∈ R+.

Proof. Since K is bounded, there exists some r ∈ R+, such that K ⊂ Br. Lemma 2.2.10 implies that
there exists a function u ≺ Br, such that u (x) = 1, for all x ∈ K. We can then set h = uf to obtain
the desired result of Lemma 2.2.2.

Lemma 2.2.3. Let h ∈ Cc, such that supph ⊂ Br, 0 ≤ h, and
∫
hdλ ≤ 1, and let g ∈ C be a PDF.

Then, for any k ∈ R+, there exists a sequence {hgm}∞m=1 ⊂Mg, so that

lim
m→∞

‖gk ? h− hgm‖B(Br) = 0. (2.2.1)

Furthermore, if g ∈ Cub , we have the stronger result that

lim
m→∞

‖gk ? h− hgm‖B = 0. (2.2.2)

Proof. It suffices to show that given any r, k, ε ∈ R+, there exists a sufficiently large m (ε, r, k) ∈ N?
such that for all m ≥ m (ε, r, k), there exists a hgm ∈Mg

m satisfying

‖gk ? h− hgm‖B(Br) < ε. (2.2.3)

First, write

(gk ? h) (x) =

∫
gk (x− y)h (y) dλ (y) =

∫
1{y:y∈Br}gk (x− y)h (y) dλ (y)

=

∫
1{y:y∈Br}k

dg (kx− ky)h (y) dλ (y) =

∫
1{z:z∈Brk}g (kx− z)h

(
z

y

)
dλ (z) ,

where Brk is a continuous image of a compact set, and hence is also compact (cf. Rudin, 1976, Theorem
4.14). By Lemma 2.1.10, for any δ > 0, there exist κi ∈ Rd (i ∈ [m− 1], for some m ∈ N?), such that
Brk ⊂

⋃m−1
i=1 B (κi, δ/2). Further, if Bδi = Bδrk = Brk ∩ B (κi, δ/2), then Brk =

⋃m−1
i=1 Bδi . We can hence

obtain a disjoint covering of Brk by taking Aδ1 = Bδ1, and Aδi = Bδi \
⋃i−1
j=1 Bδj (i ∈ [m− 1]) (cf. Cheney

& Light, 2000, Chapter 24). Notice that Brk =
⋃m−1
i=1 Aδi , each Aδi is a Borel set, and diam

(
Aδi
)
≤ δ,

by construction.

We shall denote the disjoint cover of Brk by Πδ
m =

{
Aδi
}m−1

i=1
. We seek to show that there exists

an m ∈ N? and Πδ
m, such that ∥∥∥∥∥gk ? h−

m∑
i=1

cik
d
i g (kix− zi)

∥∥∥∥∥
B(Br)

< ε,
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where ki = k, ci = k−d
∫

1{z:z∈Aδi}h (z/k) dλ (z), and zi ∈ Aδi , for i ∈ [m− 1]. We then set zm = 0

and cm = 1−
∑m−1

i=1 ci. Here, cm depends only on r and ε. Suppose that cm > 0. Then, since g 6= 0,
there exists some s ∈ R+ such that Cs = supw∈Bs g (w) > 0. We can choose

km = min

{
s

r
,

(
ε

2cmCs

)1/d
}

,

so that ‖g (km × ·)‖B(Br) ≤ Cs and

‖g (km × ·)‖B(Br) ≤
cmεCs
2cmCs

= ε/2.

Moreover, if we assume that g ∈ Cub , then there exists a constant C ∈ (0,∞) such that ‖g‖B ≤ C. In
this case, we can choose kdm = ε/ (2cmC) to obtain∥∥∥cmkdmg (km × · − zm)

∥∥∥
B
≤ ε/2.

Since 0 ≤ h and
∫
hdλ ∈ [0, 1], the sum

∑m−1
i=1 ci satisfies the inequalities:

0 ≤
m−1∑
i=1

ci = k−d
m−1∑
i=1

∫
1{z:z∈Aδi}h

(z
k

)
dλ (z)

= k−d
∫

1{z:z∈kK}h
(z
k

)
dλ (z) =

∫
1{x:x∈K}hdλ ≤ 1.

Thus, cm ∈ [0, 1], and our construction of hgm implies that hgm =
∑m

i=1 cik
d
i g (kix− zi) ∈Mg

m.

We can then bound the left-hand side of (2.2.3) as follows:

‖gk ? h− hgm‖B(Br) ≤

∥∥∥∥∥gk ? h−
m−1∑
i=1

cik
d
i g (ki × · − zi)

∥∥∥∥∥
B(Br)

+
∥∥∥cmkdmg (km × · − zm)

∥∥∥
B(Br)

≤

∥∥∥∥∥gk ? h−
m−1∑
i=1

cik
d
i g (ki × · − zi)

∥∥∥∥∥
B(Br)

+
ε

2

=

∥∥∥∥∥
∫

1{z:z∈Brk}g (kx− z)h
(z
k

)
dλ (z)−

m−1∑
i=1

∫
1{z:z∈Aδi}g (kx− zi)h

(z
k

)
dλ (z)

∥∥∥∥∥
B(Br)

+
ε

2

≤
m−1∑
i=1

∫
1{z:z∈Aδi} |g (kx− z)− g (kx− zi)|h

(z
k

)
dλ (z) +

ε

2
. (2.2.4)

Since x ∈ Br, z ∈ Aδi , and zi ∈ Brk, it holds that ‖kx− zi‖2 = ‖kx− z‖2 ≤ 2rk, and

‖kx− z − (kx− zi)‖2 = ‖z − zi‖2 ≤ diam
(
Aδi
)
≤ δ.

Note that g ∈ C, and thus g is uniformly continuous on the compact set B2rk, implying that

|g (kx− z)− g (kx− zi)| ≤ w (g, 2rk, δ) ,

for each i ∈ [m− 1], where

w (g, r, δ) = sup
{
|g (x)− g (y)| : ‖x− y‖2 ≤ δ and x, y ∈ Br

}
81



Chapter 2. Approximation capabilities of the mixtures of experts models

denotes a modulus of continuity. Since limδ→0w (g, 2rk, δ) = 0 (cf. Makarov & Podkorytov, 2013,
Theorem 4.7.3), we may choose a δ (ε, r, k) > 0, such that

w (g, 2rk, δ (ε, r, k)) <
ε

2kd
.

We then proceed from (2.2.4) as follows:

‖gk ? h− hgm‖B(Br) ≤ w (g, 2rk, δ (ε, r, k))

∫
1{z:z∈Brk}h

(z
k

)
dλ (z) +

ε

2

= w (g, 2rk, δ (ε, r, k)) kd
∫
hdλ+

ε

2

≤ w (g, 2rk, δ (ε, r, k)) kd +
ε

2
<
ε

2
+
ε

2
= ε. (2.2.5)

To conclude the proof of (2.2.1), it suffices to choose an appropriate sequence of partitions Π
δ(ε,r,k)
m ,

such that m ≥ m (ε, r, k), for some sufficiently large m (ε, r, k), so that (2.2.4) and (2.2.5) hold. This is
possible via Lemma 2.1.10. When g ∈ Cub , we notice that (2.2.4) and (2.2.5) both hold for all x ∈ Rd.
Thus, we have the stronger result of (2.2.2).

We present the primary tools for proving Theorem 2.2.1 in the following pair of lemmas. The first
one in Lemma 2.2.4 permits the approximation of convolutions of the form gk ? f in the L1 functional
space, and the second presented in Lemma 2.2.5 generalizes this first result to the spaces Lp, where
p ∈ [1,∞), under an essentially bounded assumption.

Lemma 2.2.4. If f and g are PDFs in the NVS
(
L1, ‖·‖L1

)
, then Mg ⊂ L1 and gk ? f ∈ L1, for

every k ∈ R+. Furthermore, there exists a sequence {hgm}∞m=1 ⊂Mg, such that

lim
m→∞

‖gk ? f − hgm‖L1
= 0.

Proof. For any k ∈ R+, we can show that gk ∈ L1, since

‖gk‖L1
=

∫
gkdλ =

∫
kdg (kx) dλ (x) =

∫
gdλ = 1.

If hgm ∈ Mg
m, then hgm ∈ L1, since it is a finite sum of functions in L1, and thus, Mg ⊂ L1. Note

that since f is a PDF, we have f ∈ L1, and by Lemma 2.2.11, we also have that gk ? f ∈ L1. By
Lemma 2.2.12, it then follows that

‖gk ? f‖L1
=

∫
gk ? fdλ

=

∫ [∫
gk (x− y) f (y) dλ (y)

]
dλ (x)

=

∫ [∫
gk (x− y) dλ (x)

]
f (y) dλ (y)

= ‖gk‖L1
‖f‖L1

= 1

By definition of of the closure ofMg in L1, it suffices to show that for any k ∈ R+, gk?f ∈Mg. We
seek a contradiction by assuming that gk ? f /∈ Mg. Then, we can choose A =Mg and B = {gk ? f}
so that A,B ⊂ L1 are nonempty convex subsets, such that A ∩ B = ∅. Furthermore, A is closed
and B is compact. By Lemma 2.2.7, there exists a continuous linear functional φ ∈ L∗1, such that
φ (v) < α < φ (w), for all v ∈ A and w ∈ B. By definition of B, for all v ∈Mg ⊂ L1 we have

φ (v) < α < φ (gk ? f) .

By Lemma 2.2.9, with φ ∈ L∗1, there exists a unique function u ∈ L∞, such that, for all v ∈ L1,

φ (v) =

∫
u (x) v (x) dλ (x) .
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If we let v = gk (· − µ) ∈Mg ⊂ L1, then we obtain the inequalities

sup
µ∈Rd

∫
u (x) gk (x− µ) dλ (x) < α <

∫
u (x) (gk ? f) (x) dλ (x) .

The left-hand inequality can be reduced as follows:

α <

∫
u (x) (gk ? f) (x) dλ (x)

=

∫
u (x)

[∫
gk (x− µ) f (µ) dλ (µ)

]
dλ (x)

=

∫
f (µ)

[∫
u (x) gk (x− µ) dλ (x)

]
dλ (µ)

< α

∫
f (µ) dλ (µ) = α,

where the third line is due to Lemma 2.2.12 and the final equality is because f is a PDF. This yields
the sought contradiction.

Lemma 2.2.5. If f, g ∈ L∞ are PDFs in the NVS
(
L∞, ‖·‖Lp

)
, for p ∈ [1,∞), then, Mg ⊂ Lp and

gk ? f ∈ Lp, for any k ∈ R+. Furthermore, there exists a sequence {hgm}∞m=1 ⊂Mg, such that

lim
m→∞

‖gk ? f − hgm‖Lp = 0.

Proof. We obtain the result for p = 1 via Lemma 2.2.4. Otherwise, since g ∈ L1 ∩ L∞, we know that
g ∈ Lp and gk ∈ Lp, for each k ∈ R+, via Lemma 2.1.11. For any hgm ∈ Mg

m, we then have hgm ∈ Lp
via finite summation, and hence Mg ∈ Lp. Since f ∈ L1, Lemma 2.2.11 implies that gk ? f ∈ Lp. By
definition of the closure of Mg, it suffices to show that gk ? f ∈ Mg, for any k ∈ R+. This can be
achieved by seeking a contradiction under the assumption that gk ? f /∈ Mg and using Lemma 2.2.8
in the same manner as Lemma 2.2.9 is used in the proof of Lemma 2.2.4.

2.2.3 Proof of the main result

2.2.3.1 Proof of Theorem 2.2.1 (a)

To prove the statement (a) of Theorem 2.2.1, it suffices to show that there exists a sufficiently large
m (ε,K) ∈ N?, such that for all m ≥ m (ε,K), there exists a hgm ∈ Mg

m, such that ‖f − hgm‖B(K) < ε,

for any ε > 0 and compact set K ⊂ Rd.
First, Lemma 2.2.2 implies that we can choose a h ∈ Cc, such that supp h ⊂ Br, 0 ≤ h ≤ f , and

h = f on K, for some r > 0, where K ⊂ Br. We then have ‖f − h‖B(K) = 0.
Since h ∈ Cc ⊂ Cub , Lemma 2.1.6 and Corollary 2.1.7 then imply that there exists a k (ε) ∈ R+,

such that for all k ≥ k (ε), ‖h− gk ? h‖B(K) < ε/2. We shall assume that k ≥ k (ε), from hereon in.
Lemma 2.2.3 then implies that there exists an m (ε, r, k) ∈ N?, such that for any m ≥ m (ε, r, k),

there exists a hgm ∈ Mg
m, such that ‖gk ? h− hgm‖B(K) < ‖gk ? h− h

g
m‖B(Br) < ε/2. The triangle

inequality then completes the proof.

2.2.3.2 Proof of Theorem 2.2.1 (b)

To prove the statement (a) of Theorem 2.2.1, it suffices to show that there exists a sufficiently large
m (ε) ∈ N?, such that for all m ≥ m (ε), there exists a hgm ∈ Mg

m, such that ‖f − hgm‖Lp < ε, for any
ε > 0.

First, Lemma 2.1.6 and Corollary 2.1.7 imply that there exists a k (ε) ∈ R+, such that for any
k ≥ k (ε), it follows that ‖f − gk ? f‖Lp < ε/2. We shall assume k ≥ k (ε), from hereon in.

Lemma 2.2.4 and 2.2.5 imply that there exists an m (ε) ∈ N?, such that for all m ≥ m (ε), there
exists a hgm ∈ Mg

m, such that ‖gk ? f − hgm‖Lp < ε/2. The triangle inequality then completes the
proof.
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2.2.4 Technical results

We state a number of technical results that are used throughout Section 2.2 in Section 2.2.4.

Lemma 2.2.6 (Folland, 1999, Proposition 0.22). Let (U, ‖·‖U) be an NVS, and let F ⊂ U and u ∈ U.
Then the following statements are equivalent: (a) u ∈ F; (b) B (u, r) ∩ F 6= ∅, for all r > 0; and (c)
there exists a sequence {um} ⊂ F that converges to u.

Let U be a locally convex linear topological space over R and recall that a functional is a function
defined on U (or some subspace of U), with values in R. We denote the due space of U (the space of
all continuous linear functions on U) by U∗.

Lemma 2.2.7 (Second geometric form of the Hahn-Banach theorem, see, e.g., Brezis, 2010, Theorem
1.7). Let A,B ⊂ U be two nonempty convex subsets, such that A∩B 6= ∅. Assume that A is closed and
that B is compact. Then, there exists a continuous linear functional φ ∈ U∗, such that its corresponding
hyperplane H = {u ∈ U : φ (u) = α} (α ∈ R) strictly separates A and B. That is, there exists some
ε > 0, such that φ (u) ≤ α − ε and φ (v) ≥ α + ε, for all u ∈ A and v ∈ B. Or, in other words,
supu∈A φ (u) < infv∈B φ (v).

Lemma 2.2.8 (Riesz representation theorem for Lp, p > 1, see, e.g., Brezis, 2010, Theorem 4.11).
If p ∈ R+, and φ ∈ (Lp)∗, then, there exists a unique function u ∈ Lq, such that for all v ∈ Lq,

φ (v) =

∫
u (x) v (x) dλ (x) ,

where 1/p+ 1/q = 1.

Lemma 2.2.9 (Riesz representation theorem for L1, see, e.g., Brezis, 2010, Theorem 4.14). If φ ∈
(L1)∗, then there exists a unique u ∈ L∞, such that for all v ∈ L1,

φ (v) =

∫
u (x) v (x) dλ (x) .

Lemma 2.2.10 (Rudin, 1987, Theorem 2.13). Let V1, . . . ,Vn be open subsets of Rd, and let K be
a compact set, such that K ⊂

⋃n
i=1 Vi. Then, there exists functions hi ≺ Vi (i ∈ [n]), such that∑n

i=1 hi (x) = 1, for all x ∈ K. The set {hi} is referred to as the partition of unity on K, subordinated
to the cover {Vi}.

Lemma 2.2.11 (Folland, 1999, Proposition 8.8). If f ∈ Lp (1 ≤ p ≤ ∞) and g ∈ L1, then f ? g exists
and we have ‖f ? g‖Lp ≤ ‖f‖Lp ‖f‖L1

. Furthermore, if p and q are such that 1/p+1/q = 1, then f ∈ Lp
and g ∈ Lq, then f ? g exists, is bounded and uniformly continuous, and ‖f ? g‖L∞ ≤ ‖f‖Lp ‖f‖Lq . In
particular, if p ∈ R+, then f ? g ∈ C0.

Lemma 2.2.12 (Fubini’s Theorem, see, e.g., Rudin, 1987, Theorem 8.8). Let (X,X , ν1) and (Y,Y, ν2)
be σ-finite measure spaces, and assume that f is a (X × Y) -measurable function on X× Y. If∫

X

[∫
Y
|f (x, y)| dν1 (x)

]
dν2 (y) <∞,

then∫
X×Y
|f | d (ν1 × ν2) =

∫
X

[∫
Y
|f (x, y)| dν1 (x)

]
dν2 (y) =

∫
Y

[∫
X
|f (x, y)| dν2 (y)

]
dν1 (x) <∞.

2.3 Universal approximation theorems for mixture of experts mod-
els in Lebesgue spaces

Section 2.3 proceeds as follows. The main result is presented in Section 2.3.1. Technical lemmas are
provided in Section 2.3.2. The proofs of our results are then presented in Section 2.3.3. Proofs of
required lemmas that do not appear elsewhere are provided in Section 2.3.4.
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2.3. Universal approximation theorems for mixture of experts models in Lebesgue spaces

2.3.1 Main results

Theorem 2.3.1. Assume that X = [0, 1]d for d ∈ N? and Y is a compact subset in Rq, q ∈ N?. For

any f ∈ F ∩C, any p ∈ [1,∞), there exists a sequence
{
mψ
K

}
K∈N?

⊂Mψ
S , where ψ ∈ C (Rq) is a PDF

on support Rq, such that limK→∞

∥∥∥f −mψ
K

∥∥∥
p

= 0.

Since convergence in Lebesgue spaces does not imply point-wise modes of convergence, the following
result is also useful and interesting in some restricted scenarios. Here, we note that the mode of
convergence is almost uniform, which implies almost everywhere convergence and convergence in

measure (cf. Bartle 1995, Lem 7.10 and Thm. 7.11). The almost uniform convergence of
{
mψ
K

}
K∈N?

to f in the following result is to be understood in the sense of Bartle (1995, Def. 7.9). That is,

for every δ > 0, there exists a set Uδ ⊂ W with λ (W) < δ, such that
{
mψ
K

}
K∈N?

converges to f ,

uniformly on W\Uδ.

Theorem 2.3.2. Assume that X = [0, 1] and Y is a compact subset in Rq, q ∈ N?. For any f ∈ F ∩C,

there exists a sequence
{
mψ
K

}
K∈N?

⊂ Mψ
S , where ψ ∈ C (Rq) is a PDF on support Rq, such that

limK→∞m
ψ
K = f , almost uniformly.

The following result establishes the connection between the gating classes GKS and GKG .

Lemma 2.3.3. For each K ∈ N?, GKS ⊂ GKG . Further, if we define the class of Gaussian gating vectors
with equal covariance matrices:

GKE =

{
Gate = (Gatek (·;γ))k∈[K] |∀k ∈ [K] ,Gatek (·;γ) =

πkφ (·;νk,Σ)∑K
l=1 πlφ (·;νl,Σ)

,γ ∈ GK
E

}
,

where

GK
E =

{
γ = (π,ν1, . . . ,νK ,Σ) ∈ ΠK−1 ×

(
Rd
)K
× Sd

}
,

then GKE ⊂ GKS .

By applying Lemma 2.3.3, Theorems 2.3.1 and 2.3.2 imply the following Corollary 2.3.4, regarding
the approximation capability of the class Mψ

G.

Corollary 2.3.4. Theorems 2.3.1 and 2.3.2 hold when Mψ
S is replaced by Mψ

G in their statements.

Remark 2.3.5. To the best of our knowledge,our Theorems 2.3.1 and 2.3.2 are the first theorems
to study universal approximation theorems in Lebesgue and continuous spaces for the approximation
capabilities of MoE models with gating networks in subclasses ofMψ

S andMψ
G. This contributes to an

enduring continuity of sustained interest in the approximation capabilities of MoE models. Related to
our results are contributions regarding the approximation capabilities of the conditional expectation
function of the classesMψ

S andMψ
G, see definitions in (1.3.3) and (1.3.4), respectively, (Jiang & Tanner,

1999b, Krzyzak & Schafer, 2005, Mendes & Jiang, 2012, Nguyen et al., 2016, 2019, Wang & Mendel,
1992, Zeevi et al., 1998) and the approximation capabilities of subclasses ofMψ

S andMψ
G, with respect

to the Kullback–Leibler divergence (Jiang & Tanner, 1999a, Norets et al., 2010, Norets & Pelenis,
2014). Our results can be seen as complements to the Kullback–Leibler approximation theorems of
Norets et al. (2010) and Norets & Pelenis (2014), by the relationship between the Kullback–Leibler
divergence and the L2 norm (Zeevi & Meir, 1997). That is, when f > 1/κ, for all (y,x) ∈ W and
some constant κ > 0, we have that the integrated conditional Kullback–Leibler divergence considered
by Norets & Pelenis (2014):∫

X
D
(
f|X (·,x) ‖mψ

K (·,x)
)

dλ (x) =

∫
X

∫
Y
f|X (y,x) log

f|X (y,x)

mψ
K (y,x)

dλ (y) dλ (x)
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satisfies ∫
X
D
(
f|X (·,x) ‖mψ

K (·,x)
)

dλ (x) ≤ κ2
∥∥∥f −mψ

K

∥∥∥2

2,W
,

and thus a good approximation in the integrated Kullback–Leibler divergence is guaranteed if one can
find a good approximation in the L2 norm, which is guaranteed by our main results.

2.3.2 Technical lemmas

Let Kn =
{

(k1, . . . , kd) ∈ [n]d
}

and κ : Kn →
[
nd
]

be a bijection for each n ∈ N?. For each

(k1, . . . , kd) ∈ Kn and k ∈
[
nd
]
, we define Xnk = Xnκ(k1,...,kd) =

∏d
i=1 Inki , where Inki = [(ki − 1) /n, ki/n)

for ki ∈ [n− 1], and Inn = [(n− 1) /n, 1].

We call {Xnk}k∈[nd] a fine partition of X, in the sense that X = [0, 1]d =
⋃nd

k=1 Xnk , for each n, and

that λ (Xnk) = n−d gets smaller, as n increases. The following result from Jiang & Tanner (1999b)
establishes the approximation capability of softmax gates.

Lemma 2.3.6 (Jiang & Tanner, 1999b, p. 1189). For each n ∈ N?, p ∈ [1,∞) and ε > 0, there exists
a gating function

Gate = (Gatek (·;γ))k∈[nd] ∈ G
nd

S

for some γ ∈ Gnd

S , such that

sup
k∈[nd]

∥∥∥1{x∈Xnk} −Gatek (·;γ)
∥∥∥
p,X
≤ ε.

When, d = 1, we have also the following almost uniform convergence alternative to Lemma 2.3.6.

Lemma 2.3.7. Let X = [0, 1]. Then, for each n ∈ N?, there exists a sequence of gating functions:{
Gatel = (Gatek (·;γl))k∈[nd]

}
l∈N?

⊂ GnS ,

defined by {γl}l∈N? ⊂ Gn
S, such that

Gatek (·;γl)→ 1{x∈Xnk},

almost uniformly, simultaneously for all k ∈
[
nd
]
.

For PDF ψ on support Rq, define the class of finite mixture models by

Hψ =

{
hψK : Rq → [0,∞) |hψK (y) =

K∑
k=1

ckgψ (y;µk, σk) ,

gψ ∈ Eψ ∩ L∞, (ck)k∈[K] ∈ ΠK−1,µk ∈ Y, σk ∈ (0,∞) , k ∈ [K] ,K ∈ N?
}

.

We require the following result, from Nguyen et al. (2020b), regarding the approximation capabilities
of Hψ.

Lemma 2.3.8 (Nguyen et al., 2020b, Theorem 2.2.1(b)). If f ∈ C (Y) is a PDF on Y, ψ ∈ C (Rq)
is a PDF on Rq, and Y ⊂ Rq is compact, then there exists a sequence

{
hψK

}
K∈N?

⊂ Hψ, such that

limK→∞

∥∥∥f − hψK∥∥∥B(Y)
= 0.
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2.3.3 Proofs of main results

2.3.3.1 Proof of Theorem 2.3.1

To prove the result, it suffices to show that for each ε > 0, there exists a mψ
K ∈M

ψ
S , such that∥∥∥f −mψ

K

∥∥∥
p
< ε.

The main steps of the proof are as follows. We firstly approximate f|X (y,x) by

υn (y,x) =
nd∑
k=1

1{x∈Xnk}f|X (y,xnk) , (2.3.1)

where xnk ∈ Xnk , for each k ∈
[
nd
]
, such that

‖f − υn‖p <
ε

3
, (2.3.2)

for all n ≥ N1 (ε), for some sufficiently large N1 (ε) ∈ N?. Then we approximate υn (y,x) by

ηn (y,x) =
nd∑
k=1

Gatek (x;γn) f|X (y,xnk) , (2.3.3)

where γn ∈ Gnd

S and Gate = (Gatek (·;γn))k∈[nd] ∈ G
nd

S , so that

‖υn − ηn‖p ≤ sup
k∈[nd]

∥∥∥Gatek (·;γ)− 1{x∈Xnk}
∥∥∥
p,X

nd∑
k=1

∥∥f|X (·,xnk)
∥∥
p,Y <

ε

3
, (2.3.4)

using Lemma 2.3.6.
Finally, we approximate ηn (y,x) by mψ

Kn
(y,x), where

mψ
Kn

(y,x) =

nd∑
k=1

Gatek (x;γ)hknk (y,xnk) (2.3.5)

and

hknk (y,xnk) =

nk∑
i=1

cki gψ

(
y;µki , σ

k
i

)
∈ Hψ (2.3.6)

for nk ∈ N? (k ∈
[
nd
]
), such that Kn =

∑nd

k=1 nk. Here, we establish that there exists N2 (ε, n,γn) ∈
N?, so that when nk ≥ N2 (ε, n,γn),

∥∥∥ηn −mψ
Kn

∥∥∥
p
≤ sup

k∈[nd]
‖Gatek (·;γ)‖p,X

nd∑
k=1

∥∥∥f (·|xnk)− hknk (·|xnk)
∥∥∥
p,Y

<
ε

3
. (2.3.7)

Results (2.3.2)–(2.3.7) then imply that for each ε > 0, there exists N1 (ε), γn, and N2 (ε, n,γn),

such that for all Kn =
∑nd

k=1 nk, where nk ≥ N2 (ε, n,γn) (for each k ∈
[
nd
]
) and n ≥ N1 (ε). The

following inequality results from an application of the triangle inequality:∥∥∥f −mψ
Kn

∥∥∥
p
≤ ‖f − υn‖p + ‖υn − ηn‖p +

∥∥∥ηn −mψ
Kn

∥∥∥
p
< 3× ε

3
= ε.

We now focus our attention to proving each of the results: (2.3.2)–(2.3.7). To prove (2.3.2), we
note that since f is uniformly continuous (because W = Y× X is compact, and f ∈ C), there exists a
function (2.3.1) such that for all ε > 0,

sup
(y,x)∈W

∣∣f|X (y,x)− υ (y,x)
∣∣ < ε. (2.3.8)
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We can construct such an approximation by considering the fact that as n increases, the diameter
δn = supk∈nd diam (Xnk) of the fine partition goes to zero. By the uniform continuity of f , for every
ε > 0, there exists a δ (ε) > 0, such that if ‖(y1,x1)− (y2,x2)‖ < δ (ε), then |f (y1|x1)− f (y2|x2)| <
ε, for all pairs (y1,x1) , (y2,x2) ∈ W. Here, ‖·‖ denotes the Euclidean norm. Furthermore, for any
(y,x) ∈W, we have

∣∣f|X (y,x)− υn (y,x)
∣∣ =

∣∣∣∣∣∣
nd∑
k=1

1{x∈Xnk}
[
f|X (y,x)− f|X (y,xnk)

]∣∣∣∣∣∣
≤

nd∑
k=1

1{x∈Xnk}
∣∣f|X (y,x)− f|X (y,xnk)

∣∣ , (2.3.9)

by the triangle inequality.
Since xnk ∈ Xnk , for each k and n, we have the fact that ‖(y,x)− (y,xnk)‖ < δn for (y,x) ∈ Y×Xnk .

By uniform continuity, for each ε, we can find a sufficiently small δ (ε), such that
∣∣f|X (y,x)− f|X (y,xnk)

∣∣ <
ε, if ‖(y,x)− (y,xnk)‖ < δ (ε), for all k. The desired result (2.3.8) can be obtained by noting that the
right hand side of (2.3.9) consists of only one non-zero summand for any (y,x) ∈W, and by choosing
n ∈ N? sufficiently large, so that δn < δ (ε).

By (2.3.8), we have the fact that υn → f , point-wise. We can bound υn as follows:

υn (y,x) ≤
np∑
i=1

1{x∈Xnk} sup
ζ∈Y,ξ∈X

f (ζ, ξ) = sup
ζ∈Y,ξ∈X

f (ζ, ξ) , (2.3.10)

where the right-hand side is a constant and is therefore in Lp, since W is compact. An application of
the Lebesgue dominated convergence theorem in Lp then yields (2.3.2).

Next we write

‖υn − ηn‖p =

∥∥∥∥∥∥
nd∑
k=1

1{x∈Xnk}f|X (y,xnk)−
nd∑
k=1

Gatek (x;γn) f|X (y,xnk)

∥∥∥∥∥∥
p

≤
nd∑
k=1

∥∥∥[1{x∈Xnk} −Gatek (x;γn)
]
f|X (y,xnk)

∥∥∥
p

.

Since the norm arguments are separable in x and y, we apply Fubini’s theorem to get

‖υn − ηn‖p =
nd∑
k=1

∥∥∥[1{x∈Xnk} −Gatek (x;γn)
]∥∥∥

p,X

∥∥f|X (y,xnk)
∥∥
p,Y

≤ sup
k∈[nd]

∥∥∥[1{x∈Xnk} −Gatek (x;γn)
]∥∥∥

p,X

nd∑
k=1

∥∥f|X (y,xnk)
∥∥
p,Y

Because f ∈ B and nd is finite, for any fixed n ∈ N?, we have C1 (n) =
∑nd

k=1

∥∥f|X (y,xnk)
∥∥
p,Y <∞.

For each ε > 0, we need to choose a γn ∈ Gnd

S , such that

sup
k∈[nd]

∥∥∥[1{x∈Xnk} −Gatek (x;γn)
]∥∥∥

p,X
<

ε

3C1 (n)
,

which can be achieved via a direct application of Lemma 2.3.6. We have thus shown (2.3.4).
Lastly, we are required to approximate f|X (y,xnk) for each k ∈

[
nd
]
, by a function of form (2.3.6).

Since Y is compact and f and ψ are continuous, we can apply of Lemma 2.3.8, directly. Note that
over a set of finite measure, convergence in ‖·‖B implies convergence in Lp norm, for all p ∈ [1,∞] (cf.
Oden & Demkowicz 2010, Prop. 3.9.3).
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We can then write (2.3.5) as

mψ
Kn

(y,x) =
nd∑
k=1

exp
(
an,k + b>n,kx

)
∑nd

l=1 exp
(
an,l + b>n,lx

)hknk (y,xnk)

=

nd∑
k=1

nk∑
i=1

exp
(
an,k + b>n,kx

)
∑nd

l=1 exp
(
an,l + b>n,lx

) cki∑nk
l=1 c

k
l

gψ

(
y;µki , σ

k
i

)

=
nd∑
k=1

nk∑
i=1

exp
(

log cki + an,k + b>n,kx
)

∑nd

l=1

∑nk
j=1 exp

(
log ckj + an,l + b>n,lx

)gψ (y;µki , σ
k
i

)
, (2.3.11)

where γn =
(
an,1, . . . , an,nd , bn,1, . . . , bn,nd

)
. From (2.3.11), we observe that mψ

Kn
∈ Mψ

S , with Kn =∑nd

k=1 nk.

To obtain (2.3.7), we write

∥∥∥ηn −mψ
Kn

∥∥∥
p

=

∥∥∥∥∥∥
nd∑
k=1

Gatek (x;γn) f|X (y,xnk)−
nd∑
k=1

Gatek (x;γ)hknk (y,xnk)

∥∥∥∥∥∥
p

≤
nd∑
k=1

∥∥∥Gatek (x;γn)
[
f|X (y,xnk)− hknk (y,xnk)

]∥∥∥
p

.

By separability and Fubini’s theorem, we then have

∥∥∥ηn −mψ
Kn

∥∥∥ ≤ nd∑
k=1

‖Gatek (x;γn)‖p,X
∥∥∥f|X (y,xnk)− hknk (y,xnk)

∥∥∥
p,Y

≤ sup
k∈[nd]

‖Gatek (x;γn)‖p,X
nd∑
k=1

∥∥∥f|X (y,xnk)− hknk (y,xnk)
∥∥∥
p,Y

.

Let C2 (n,γn) = supk∈[nd] ‖Gatek (x;γn)‖p,X. Then, we apply Lemma 2.3.8 nd times to establish

the existence of a constant N2 (ε, n,γn) ∈ N?, such that for all k ∈
[
nd
]

and nk ≥ N2 (ε, n,γn),∥∥∥f|X (y,xnk)− hknk (y,xnk)
∥∥∥
p,Y
≤ ε

3C2 (n,γn)nd
.

Thus, we have ∥∥∥ηn −mψ
Kn

∥∥∥ ≤ C2 (n,γn)× nd × ε

3C2 (n,γn)nd
=
ε

3
,

which completes our proof.

2.3.3.2 Proof of Theorem 2.3.2

The proof is procedurally similar to that of Theorem 2.3.1 and thus we only seek to highlight the
important differences. Firstly, for any ε > 0, we approximate f|X (y,x) by υn (x|y) of form (2.3.1),
with d = 1. Result (2.3.2) implies uniform convergence, in the sense that there exists an N1 (ε) ∈ N?,
such that for all n ≥ N1 (ε),

‖f − υn‖B <
ε

3
. (2.3.12)

We now seek to approximate υn by ηn of form (2.3.3), with γn = γl for some l ∈ N?. Upon
application of Lemma 2.3.7, it follows that for each k ∈

[
nd
]

and ε > 0, there exists a measurable set
Bk (ε) ⊆ X, such that
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λ (Bk (ε)) <
ε

ndλ (Y)

and ∥∥∥Gatek (·;γl)− 1{x∈Xnk}
∥∥∥
B(B{

k(ε))
<
ε

3

for all l ≥Mk (ε, n), for some Mk (ε, n) ∈ N?. Here, (·){ is the set complement operator.

Since f ∈ B, we have the bound C (n) =
∑nd

k=1

∥∥f|X (y,xnk)
∥∥
B(Y)

<∞. Write B (ε) =
⋃nd

k=1 Bk (ε).

Then, B{ (ε) =
⋂nd

k=1 B{k (ε),

λ (B (ε)) ≤
nd∑
k=1

λ
(
B{k (ε)

)
<

ε

λ (Y)
,

and ∥∥∥Gatek (·;γl)− 1{x∈Xnk}
∥∥∥
B(B{(ε))

≤ min
k∈[nd]

∥∥∥Gatek (·;γl)− 1{x∈Xnk}
∥∥∥
B(B{

k(ε))
<

ε

3C (n)
,

for all l ≥M (ε, n) = maxk∈[nd]Mk (ε, n). Here we use the fact that the supremum over some intersect

of sets is less than or equal to the minimum of the supremum over each individual set.

Upon defining C (ε) = Y× B (ε) ⊂W, we observe that

λ (C (ε)) = λ (B (ε))λ (Y) ≤ ε

λ (Y)
× λ (Y) = ε,

and C (ε) ⊂ Y× B (ε). Note also that

(Y× B (ε)){ = W\ (Y× B (ε)) = Y× B{ (ε)

and

C{ (ε) =
(
Y× B{ (ε)

)
∪
(
Y{ × B (ε)

)
∪
(
Y{ × B{ (ε)

)
.

It follows that

‖υn − ηn‖B(C{(ε)) ≤ max
{
‖υn − ηn‖B(Y×B{(ε)) , ‖υn − ηn‖B(Y{×B(ε)) , ‖υn − ηn‖B(Y{×B{(ε))

}
.

Since Y{ × B (ε) and Y{ × B{ (ε) are empty, via separability, we have

‖υn − ηn‖B(C{(ε)) = ‖υn − ηn‖B(Y×B{(ε))

= sup
z∈Y×B{(ε)

∣∣∣∣∣∣
nd∑
k=1

[
1{x∈Xnk} −Gatek (x;γl)

]
f|X (y,xnk)

∣∣∣∣∣∣
≤ sup
z∈Y×B{(ε)

nd∑
k=1

∣∣∣1{x∈Xnk} −Gatek (x;γl)
∣∣∣ f|X (y,xnk)

≤
nd∑
k=1

sup
z∈Y×B{(ε)

∣∣∣1{x∈Xnk} −Gatek (x;γl)
∣∣∣ f|X (y,xnk)

=

nd∑
k=1

∥∥∥1{x∈Xnk} −Gatek (x;γl)
∥∥∥
B(B{(ε))

∥∥f|X (y,xnk)
∥∥
B(Y)

≤ sup
k∈[n]

∥∥∥1{x∈Xnk} −Gatek (x;γl)
∥∥∥
B(B{(ε))

nd∑
k=1

∥∥f|X (y,xnk)
∥∥
B(Y)

.
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Recall that the
∑nd

k=1

∥∥f|X (y,xnk)
∥∥
B(Y)

= C (n) <∞ and that we can choose l ≥M (ε, n) so that

sup
k∈[n]

∥∥∥1{x∈Xnk} −Gatek (x;γl)
∥∥∥
B(B{(ε))

<
ε

3C (n)
,

and thus
‖υn − ηn‖B(C{(ε)) <

ε

3C (n)
× C (n) =

ε

3
, (2.3.13)

as required.
Finally, by noting that for each k ∈

[
nd
]
, both (2.3.6) and f (·|xnk) are continuous over Y, we apply

Lemma 2.3.8 to obtain an N2 (ε, n, l) ∈ N?, such that for any ε > 0 and nk ≥ N2 (ε, n, l), we have∥∥∥f (·|xnk)− hknk (·|xnk)
∥∥∥
B(Y)

<
ε

3M1n
.

Here M1 = supk∈[nd] ‖Gatek (·;γl)‖B(X) <∞, since Gatek (x;γl) is continuous in x, and X is compact.

Therefore, for all Kn =
∑nd

k=1 nk, nk ≥ N2 (ε, n, l),∥∥∥ηn −mψ
Kn

∥∥∥
B
≤ sup

k∈[nd]
‖Gatek (x;γl)‖B(X)

nd∑
k=1

∥∥∥f (·|xnk)− hknk (·|xnk)
∥∥∥
B(Y)

= M1 × nd ×
ε

3M1nd
=
ε

3
. (2.3.14)

In summary, via (2.3.12), (2.3.13), and (2.3.14), for each ε > 0, for any ε > 0, there exists a

C (ε) ⊂ W and constants N1 (ε) ,M (ε, n) , N2 (ε, n, l) ∈ N?, such that for all Kn =
∑nd

k=1 nk, with
nk ≥ N2 (ε, n, l), l ≥M (ε, n), and n ≥ N1 (ε), it follows that λ (C (ε)) < ε, and∥∥∥f −mψ

Kn

∥∥∥
B(C{(ε))

≤ ‖f − υn‖B(C{(ε)) + ‖υn − ηn‖B(C{(ε)) +
∥∥∥ηn −mψ

Kn

∥∥∥
B(C{(ε))

≤ ‖f − υn‖B + ‖υn − ηn‖B(C{(ε)) +
∥∥∥ηn −mψ

Kn

∥∥∥
B

< 3× ε

3
= ε.

This completes the proof.

2.3.4 Proofs of lemmas

2.3.4.1 Proof of Lemma 2.3.3

We firstly prove that any gating vector from GKS can be equivalently represented as an element of GKG .
For any x ∈ Rd, d ∈ N?, k ∈ [K], ak ∈ R, bk ∈ Rd, and K ∈ N?, choose νk = bk, τk = ak + b>k bk/2
and

πk = exp (τk) /

K∑
l=1

exp (τl) .

This implies that
∑K

l=1 πl = 1, πl > 0, for all l ∈ [K], and

exp
(
ak + b>k x

)∑K
l=1 exp

(
ak + b>k x

) =
exp

(
τk − v>k vk/2 + v>k x

)∑K
l=1 exp

(
τl − v>l vl/2 + v>l x

)
=

exp (τk) exp
(
− (x− νk)> (x− νk) /2

)
∑K

l=1 exp (τl) exp
(
− (x− νl)> (x− νl) /2

)
=

πk (2π)−d/2 exp
(
− (x− νk)> (x− νk) /2

)
∑K

l=1 πl (2π)−d/2 exp
(
− (x− νl)> (x− νl) /2

)
=

πkφ (x;νk, I)∑K
l=1 πlφ (x;νl, I)

,
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where I is the identity matrix of appropriate size. This proves that GKS ⊂ GKG .
Next, to show that GKE ⊂ GKS , we write

πkφ (x;νk,Σ)∑K
l=1 πlφ (x;νl,Σ)

=
πk |2πΣ|−1/2 exp

(
− (x− νk)>Σ−1 (x− νk) /2

)
∑K

l=1 πl |2πΣ|−1/2 exp
(
− (x− νl)>Σ−1 (x− νl) /2

)
=

1∑K
l=1 exp

(
− log

(
π−2
l /π−2

k

)
/2− (x− νl)>Σ−1 (x− νl) /2− (x− νk)>Σ−1 (x− νk) /2

) ,

and note that

(x− νl)>Σ−1 (x− νl)− (x− νk)>Σ−1 (x− νk)
=− 2 (νl − νk)>Σ−1x+ (νl + νk)

>Σ−1 (νl − νk) .

Thus, we have

πkφ (x;νk,Σ)∑K
l=1 πlφ (x;νl,Σ)

=
1∑K

l=1 exp
(
− log

(
π−2
l /π−2

k

)
/2− (νl + νk)

>Σ−1 (νl − νk) /2− (νl − νk)>Σ−1x
) .

Next, notice that we can write

exp
(
ak + b>k x

)∑K
l=1 exp

(
al + b>l x

) =
1∑K

l=1 exp
(
αl + β>l x

) ,

where αl = al − ak and βl = βl − βk. We now choose ak and bk, such that for every l ∈ [K],

αl = al − ak = −1

2
log

(
π−2
l

π−2
k

)
− 1

2

(
ν>l Σ−1νl − ν>k Σ−1νk

)
,

and
βl = βl − βk = ν>l Σ−1 − ν>k Σ−1.

To complete the proof, we choose

ak = log (πk)−
1

2
ν>k Σ−1νk

and bk = ν>k Σ−1, for each k ∈ [K].

2.3.4.2 Proof of Lemma 2.3.7

For l ∈ [0,∞), write

Gatek (x, l) =
exp ([x− ck] lk)∑n
i=1 exp ([x− ci] li)

,

where x ∈ X = [0, 1], and ck = (k − 1) / (2k). We identify that Gate = (Gatek (x, l))k∈[n] belongs to
the class GnS . The proof of the Section 4 Proposition from Jiang & Tanner (1999b) reveals that for all
k ∈ [n],

Gatek (x, l)→ 1{x∈Ink}
almost everywhere in λ, as l→∞. The result then follows via an application of Egorov’s theorem (cf.
Folland 1999, Thm. 2.33).
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2.4 Universal approximation for mixture of experts models in ap-
proximate Bayesian computation

The Gaussian Locally Linear Mapping (GLLiM) model is briefly described in Section 2.4.1. A first ex-
ploitation of GLLiM combined with the semi-automatic ABC principle of Fearnhead & Prangle (2012)
is presented in Section 2.4.2.1. Our extension, using functional summary statistics, is then described
in Section 2.4.2.2. The approach’s theoretical universal approximation properties are investigated in
Section 2.4.3 and the practical performance is illustrated in Section 2.4.4, both on synthetic and real
data. An appendix gathers additional illustration and detailed proofs, while the code can be found at
https://github.com/Trung-TinNGUYEN/GLLiM-ABC. Finally, Section 5.2 concludes the Section 2.4
and discusses perspectives.

2.4.1 Parametric posterior approximation with Gaussian mixtures

A learning set DN = {(θn,yn), n ∈ [N ]} is built from the joint distribution that results from the prior
π(θ) on θ and the likelihood fθ, where [N ] = {1, . . . , N}. The idea is to capture the relationship
between θ and y with a joint probabilistic model for which computing conditional distributions and
moments is straightforward. For the choice of the model to fit to DN , we propose to use the so-called
Gaussian Locally Linear Mapping (GLLiM) model (Deleforge et al., 2015c) for its ability to capture
non-linear relationships in a tractable manner, based on flexible mixtures of Gaussian distributions.
GLLiM can be considered within the class of inverse regression approaches, such as sliced inverse
regression (Li, 1991), partial least squares (Cook & Forzani, 2019), mixtures of regressions approaches
of different variants, e.g. mixtures of experts (Nguyen et al., 2019, 2021a), see also in Section 2.3,
cluster weighted models (Ingrassia et al., 2012), and kernel methods (Nataraj et al., 2018). In contrast
to deep learning approaches (see Arridge et al. 2019, for a survey), GLLiM provides for each observed y,
a full posterior probability distribution within a family of parametric models {pG(θ | y; φ),φ ∈ Φ}. To
model non-linear relationships, it uses a mixture of K linear models. More specifically, the expression
of pG(θ | y; φ) is analytical and available for all y with φ being independent of y:

pG(θ | y;φ) =
K∑
k=1

ηk(y) N (θ;Aky + bk,Σk), (2.4.1)

where N ( · ;µ,Σ) denotes the Gaussian pdf with mean µ and covariance matrix Σ and ηk(y) =
πkN (y; ck,Γk)/

∑K
j=1 πjN (y; cj ,Γj), see Section 3.2.1.4 for greater details. This distribution involves

a number of parameters:

φ = {πk, ck,Γk,Ak, bk,Σk}Kk=1.

One interesting property of this parametric model is that the mixture setting provides guarantees that,
when choosing K large enough, it is possible to approximate any reasonable relationship (Nguyen et al.,
2019, 2020b, 2021a). The parameter φ can be estimated by fitting a GLLiM model to DN using an
Expectation-Maximization (EM) algorithm. Details on the model and its estimation are provided in
Deleforge et al. (2015c).

Fitting a GLLiM model to DN therefore results in a set of parametric distributions {pG(θ |
y,φ∗K,N ), y ∈ Y}, which are mixtures of Gaussian distributions and can be seen as a parametric
mapping from y values to posterior pdfs on θ. The parameter φ∗K,N is the same for all conditional
distributions and does not need to be re-estimated for each new instance of y. When required, it is
straightforward to compute the expectation and covariance matrix of pG(θ | y;φ∗K,N ) in (2.4.1):

EG
[
θ | y;φ∗K,N

]
=

∫
Θ
pG(θ | y;φ∗K,N )θdθ =

K∑
k=1

ηk(y)

∫
Θ
N (θ;A∗ky + b∗k,Σ

∗
k)θdθ

=

K∑
k=1

ηk(y) (A∗ky + b∗k) . (2.4.2)
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VarG[θ | y;φ∗K,N ] = EG
[
θθ> | y;φ∗K,N

]
− EG[θ | y;φ∗K,N ] EG[θ | y;φ∗K,N ]>

=
K∑
k=1

ηk(y)

∫
Θ
N (θ;A∗ky + b∗k,Σ

∗
k)θθ

>dθ − EG[θ | y;φ∗K,N ] EG[θ | y;φ∗K,N ]>

=

K∑
k=1

ηk(y)
[
Σ∗k + (A∗ky + b∗k)(A

∗
ky + b∗k)

>
]
− EG[θ | y;φ∗K,N ] EG[θ | y;φ∗K,N ]>.

(2.4.3)

Expression (2.4.2) then provides approximate posterior means and can be directly used in a semi-
automatic ABC procedure. In addition, summary statistics extracted from the covariance matrix
(2.4.3) can also be included and is likely to improve the ABC selection as illustrated in Section 2.4.4.

2.4.2 Extended semi-automatic ABC

Semi-automatic ABC refers to an approach introduced in Fearnhead & Prangle (2012), which has
since then led to various attempts and improvements, see e.g. Jiang et al. (2017) and Wiqvist et al.
(2019), without dramatic deviation from the original ideas.

2.4.2.1 Extension to extra summary vectors

A natural idea is to use the approximate posterior expectation provided by GLLiM in (2.4.2) as the
summary statistic s of data y, s(y) = EG[θ | y;φ∗K,N ], and then to apply standard ABC algorithms,
e.g. a rejection ABC. It provides a first attempt to combine GLLiM and ABC procedures and has the
advantage over neural networks of being easier to estimate without the need for huge learning data
sets and hyperparameter tuning.

However, one advantage of GLLiM over most regression methods is not to reduce to pointwise
predictions and to provide full posteriors as output. The posteriors can then be used to provide
other posterior moments as summary statistics. The same standard ABC procedure as before can be
applied but now with s1(y) = EG[θ | y;φ∗K,N ] and s2(y) = VarG[θ | y;φ∗K,N ], as given by (2.4.3).
In Section 2.4.4, we show examples where s2 is restricted to the posterior log-variances, i.e. the
logarithms of the diagonal elements of the posterior covariance matrix.

As illustrated in Section 2.4.4, it is easy to construct examples where the posterior expectations,
even when well-approximated, do not perform well as summary statistics. Providing a straightforward
and tractable way to add other posterior moments is then already an interesting contribution. However,
to really make the most of the GLLiM framework, we propose to further exploit the fact that GLLiM
provides more than the means, variances or other moments.

2.4.2.2 Extension to functional summary statistics

Instead of comparing simulated z’s to the observed y, or equivalently their summary statistics, we
propose to compare the pG(θ | z,φ∗K,N )’s to pG(θ | y,φ∗K,N ), as given by (2.4.1). As approximation
of the true posteriors, these quantities are likely to capture the main characteristics of θ without
committing to the choice of a particular moment. The comparison requires an appropriate distance
that needs to be a mathematical distance between distributions. The equivalent functional distance to
the L2 distance can still be used, as can the Hellinger distance or any other divergence. A natural choice
is the Kullback–Leibler divergence, but computing Kullback–Leibler divergences between mixtures is
not straightforward. Computing the Energy statistic (e.g., Nguyen et al., 2020a) appears at first to be
easier but in the end that would still resort to Monte Carlo sums. Since model (2.4.1) is parametric,
we could also compute distances between the parameters of the mixtures that depend on y. That is for

k ∈ [K], between the mixing proportions η∗k(y) =
π∗kN (y;c∗k,Γ

∗
k)∑K

j=1 π
∗
jN (y;c∗j ,Γ

∗
j )

and conditional means A∗ky + b∗k.

But this may lead us back to the usual issue with distances between summary statistics and also we
may have to face the label switching issue, not easily handled within ABC procedures.
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Recently, interesting developments regarding the Wasserstein distance and Gaussian mixtures have
emerged (Delon & Desolneux, 2020, Chen et al., 2019), introducing an optimal transport-based dis-
tance between Gaussian mixtures. We recall the definition of this distance, denoted by MW2 in
Section 2.4.5 and describe our next ABC procedure, referred to as GLLiM-MW2-ABC. The L2 dis-
tance between mixtures is also very straightforward to compute and recalled in Section 2.4.5, leading
to another procedure, which we call GLLiM-L2-ABC. Both procedures are referred to as functional
GLLiM-ABC procedures. We will often write GLLiM-D-ABC to include both cases and possibly other
distances D.

The semi-automatic ABC extensions that we propose are all summarized in Algorithm 1. To
be general, Algorithm 1 is presented with two simulated data sets, one for training GLLiM and
constructing the surrogate posteriors, and one for the ABC selection procedure itself, but the same
data set could be used as in semi-automatic ABC (Fearnhead & Prangle, 2012). For rejection ABC,
the selection also requires the user to fix a threshold ε. It is common practice to set ε to a quantile
of the computed distances. GLLiM then requires the choice of K, the number of Gaussians in the
mixtures. K can be chosen using asymptotic model selection criteria (see Deleforge et al., 2015c), or
non-asymptotic model selection in Chapters 3 and 4, e.g., slope heuristic (Nguyen et al., 2021c,b),
but its precise value is not critical, all the more so if GLLiM is not used for prediction, directly. See
details in Section 2.4.4.

Algorithm 1 GLLiM-ABC algorithms – Vector and functional variants

1: Inverse operator learning. Apply GLLiM on a training set DN = {(θn,yn), n ∈ [N ]} to estimate, for
any z ∈ Y, the K-Gaussian mixture pG(θ | z,φ∗K,N ) in (2.4.1) as a first approximation of the true posterior
π(θ | z), where φ∗K,N does not depend on z.

2: Distances computation. Consider another simulated set EM = {(θm, zm),m ∈ [M ]}. For a given
observed y, do one of the following for m ∈ [M ]:

Vector summary statistics. (Section 2.4.2.1)

GLLiM-E-ABC: Compute summary statistics s1(zm)=EG[θ | zm;φ∗K,N ] (2.4.2).

GLLiM-EV-ABC: Compute both s1(zm) and s2(zm) by considering also posterior log-variances
derived from (2.4.3).

In both cases, compute standard distances between summary statistics.

Functional summary statistics. (Section 2.4.2.2)

GLLiM-MW2-ABC: Compute MW2(pG(· | zm;φ∗K,N ), pG(· | y;φ∗K,N )).

GLLiM-L2-ABC: Compute L2(pG(· | zm;φ∗K,N ), pG(· | y;φ∗K,N )).

3: Sample selection. Select the θm values that correspond to distances under an ε threshold (rejection ABC)
or apply an ABC procedure that can handle distances, directly.

4: Sample use. For a given observed y, use the produced sample of θ values to compute a closer approximation
of π(θ | y).

2.4.3 Universal approximation properties

Before illustrating the proposed GLLiM-D-ABC procedures performance, we investigate the theoretical
properties of our ABC quasi-posterior defined via surrogate posteriors.

Let X = Θ × Y and (X ,F) be a measurable space. Let λ be a σ-finite measure on F . When-
ever we mention below that a probability measure Pr on F has a density, we will understand that
it has a Radon–Nikodym derivative with respect to λ (λ can typically be chosen as the Lebesgue
measure on the Euclidean space). For all p ∈ [1,∞) and f, g in appropriate spaces, let Dp (f, g) =(∫
|f(x)− g(x)|p dλ(x)

)1/p
denote the Lp distance and D2

H (f, g) =
∫
(
√
f(x) −

√
g(x))2dλ(x) be the

squared Hellinger distance. When not specified otherwise, let D be an arbitrary distance on Y or on
densities, depending on the context. We further denote the Lp norm for vectors by ‖ · ‖p.

In a GLLiM-D-ABC procedure, the ABC quasi-posterior is constructed as follows. Let pK,NG (θ |
y) = pG(θ | y;φ∗K,N ) be the surrogate conditional distribution of form (2.4.1), learned from a pre-
liminary GLLiM model with K components and using a learning set DN = {(θn,yn), n ∈ [N ]}.
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This conditional distribution is a K-component mixture, which depends on a set of learned parame-
ters φ∗K,N , independent of y. The GLLIM-D-ABC quasi-posterior resulting from the GLLiM-D-ABC
procedure then depends both on K,N and the tolerance level ε and can be written as

qK,NG,ε (θ | y) ∝ π(θ)

∫
Y

1{D(pK,NG ( · |y), pK,NG ( · |z))≤ε} fθ(z) dz , (2.4.4)

where D is a distance on densities such as the MW2 and L2 metrics, which are both proper distances
(see Section 2.4.5).

We provide two types of results, below. In the first result (Theorem 2.4.1), the true posterior
is used to compare samples y and z. This result aims at providing insights on the proposed quasi-
posterior formulation and at illustrating its potential advantages. In the second result (Theorem 2.4.2),
a surrogate posterior is learned and used to compare samples. Conditions are specified under which
the resulting ABC quasi-posterior converges to the true posterior.

2.4.3.1 Convergence of the ABC quasi-posterior

In this section, we assume a fixed given observed y and the dependence on y is omitted from the
notation, when there is no confusion.

Let us first recall the standard form of the ABC quasi-posterior, omitting summary statistics from
the notation:

πε(θ | y) ∝ π(θ)

∫
Y

1{D(y,z)≤ε} fθ(z) dz . (2.4.5)

If D is a distance and D(y, z) is continuous in z, the ABC posterior in (2.4.5) can be shown to have
the desirable property of converging to the true posterior when ε tends to 0 (see Prangle et al., 2018).

The proof is based on the fact that when ε tends to 0, due to the property of the distance D,
the set {z ∈ Y : D(y, z) ≤ ε}, defining the indicator function in (2.4.5), tends to the singleton {y}
so that consequently z in the likelihood can be replaced by the observed y, which then leads to an
ABC quasi-posterior proportional to π(θ)fθ(y) and therefore to the true posterior as desired (see also
Rubio & Johansen, 2013, Bernton et al., 2019). It is interesting to note that this proof is based on
working on the term under the integral only and is using the equality, at convergence, of z to y, which
is actually a stronger than necessary assumption for the result to hold. Alternatively, if we first rewrite
(2.4.5) using Bayes’ theorem, it follows that

πε(θ | y) ∝
∫
Y

1{D(y,z)≤ε} π(θ) fθ(z) dz ∝
∫
Y

1{D(y,z)≤ε} π(θ | z) π(z) dz . (2.4.6)

That is, when accounting for the normalizing constant:

πε(θ | y) =

∫
Y 1{D(y,z)≤ε} π(θ | z) π(z) dz∫

Y 1{D(y,z)≤ε} π(z) dz
. (2.4.7)

Using this equivalent formulation, we can then replace D(y, z) by D(π(· | y), π(· | z)), with D now
denoting a distance on densities, and obtain the same convergence result when ε tends to 0. More
specifically, we can show the following general result. Let us define our ABC quasi-posterior as,

qε (θ | y) ∝ π(θ)

∫
Y

1{D(π(·|y),π(·|z))≤ε} fθ(z) dz,

which can be written as

qε (θ | y) =

∫
Y 1{D(π(·|y),π(·|z))≤ε}π (θ | z)π (z) dz∫

Y 1{D(π(·|y),π(·|z))≤ε}π (z) dz
. (2.4.8)

The following theorem shows that qε (· | y) converges to π (· | y) in total variation, for fixed y. The
proof is detailed in Section 2.4.6.1.
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Theorem 2.4.1. For every ε > 0, let Aε = {z ∈ Y : D (π (· | y) , π (· | z)) ≤ ε}. Assume the following:

(A1) π (θ | ·) is continuous for all θ ∈ Θ, and supθ∈Θ π (θ | y) <∞;

(A2) There exists a γ > 0 such that supθ∈Θ supz∈Aγ π (θ | z) <∞;

(A3) D (·, ·) : Π×Π→ R+ is a metric on the functional class Π = {π (· | y) : y ∈ Y};

(A4) D (π (· | y) , π (· | z)) is continuous, with respect to z.

Under (A1)–(A4), qε (· | y) in (2.4.8) converges in total variation to π (· | y), for fixed y, as ε→ 0.

It appears that what is important is not to select z’s that are close (and at the limit equal) to
the observed y but to choose z’s so that the posterior π( · | z) (the term appearing in the integral in
(2.4.6)) is close (and at the limit equal) to π( · | y). And this last property is less demanding than
z = y. Potentially, there may be several z’s satisfying π( · | z) = π( · | y), but this is not problematic
when using (2.4.6), while it is problematic when following the standard proof as in Bernton et al.
(2019).

2.4.3.2 Convergence of the ABC quasi-posterior with surrogate posteriors

In most ABC settings, based on data discrepancy or summary statistics, the above consideration and
result are not useful because the true posterior is unknown by construction and cannot be used to
compare samples. However this principle becomes useful in our setting, which is based on surrogate
posteriors. While the previous result can be seen as an oracle of sorts, it is more interesting in practice
to investigate whether a similar result holds when using surrogate posteriors in the ABC likelihood.
This is the goal of Theorem 2.4.2 below, which we prove for a restricted class of target distribution
and of surrogate posteriors that are learned as mixtures.

We now assume that X = Θ×Y is a compact set and consider the following classHX of distributions
on X , HX = {gϕ : ϕ ∈ Ψ}, with constraints on the parameters, Ψ being a bounded parameter set. In
addition the densities in HX are assumed to satisfy for any ϕ,ϕ′ ∈ Ψ, there exist arbitrary positive
scalars a, b and B such that

for all x ∈ X , a ≤ gϕ(x) ≤ b and sup
x∈X
| log gϕ(x)− log gϕ′(x)| ≤ B‖ϕ−ϕ′‖1 .

We denote by pK a K-component mixture of distributions from HX and defined for all y ∈ Y,
pK,N (· | y) as follows:

∀θ ∈ Θ, pK,N (θ | y) = pK
(
θ | y;φ∗K,N

)
,

with φ∗K,N the maximum likelihood estimate (MLE) for the data set DN = {(θn,yn), n ∈ [N ]},
generated from the true joint distribution π(·, ·):

φ∗K,N = arg max
φ∈Φ

N∑
n=1

log
(
pK(θn,yn;φ)

)
.

In addition, for every ε > 0, let AK,Nε,y =
{
z ∈ Y : D

(
pK,N (· | y) , pK,N (· | z)

)
≤ ε
}

and qK,Nε denote
the ABC quasi-posterior defined with pK,N by

qK,Nε (θ | y) ∝ π(θ)

∫
Y

1{D(pK,N (·|y),pK,N (·|z))≤ε} fθ(z) dz . (2.4.9)

Theorem 2.4.2. Assume the following: X = Θ× Y is a compact set and

(B1) For joint density π, there exists Gπ a probability measure on Ψ such that, with gϕ ∈ HX ,
π(x) =

∫
Ψ gϕ(x) Gπ(dϕ);

(B2) The true posterior density π(· | ·) is continuous both with respect to θ and y;
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(B3) D (·, ·) : Π × Π → R+ ∪ {0} is a metric on a functional class Π, which contains the class{
pK,N (· | y) : y ∈ Y,K ∈ N?, N ∈ N?

}
. In particular, D

(
pK,N (· | y) , pK,N (· | z)

)
= 0, if and

only if pK,N (· | y) = pK,N (· | z);

(B4) For every y ∈ Y, z 7→ D
(
pK,N (· | y) , pK,N (· | z)

)
is a continuous function on Y.

Then, under (B1)–(B4), the Hellinger distance DH

(
qK,Nε (· | y) , π (· | y)

)
converges to 0 in some

measure λ, with respect to y ∈ Y and in probability, with respect to the sample {(θn,yn) , n ∈ [N ]}.
That is, for any α > 0, β > 0, it holds that

lim
ε→0,K→∞,N→∞

Pr
(
λ
({

y ∈ Y : D2
H

(
qK,Nε (· | y) , π (· | y)

)
≥ β

})
≤ α

)
= 1. (2.4.10)

Sketch of the proof of Theorem 2.4.2. For all θ ∈ Θ,y ∈ Y, the quasi-posterior (2.4.9) can be
written equivalently as

qK,Nε (θ | y) =

∫
Y
KK,N
ε (z; y)π (θ | z) dz,

with KK,N
ε (z; y) =

1{D(pK,N (·|y),pK,N (·|z))≤ε}π (z)∫
Y 1{D(pK,N (·|y),pK,N (·|z̃))≤ε}π (z̃) dz̃

,

where KK,N
ε (·; y) is a pdf, with respect to z ∈ Y, with compact support AK,Nε,y ⊂ Y, by definition of

AK,Nε,y and (B4). Using the relationship between Hellinger and L1 distances (see details in Section 2.4.6.2
relations (2.4.19) and (2.4.20)), it then holds that

D2
H

(
qK,Nε (· | y) , π (· | y)

)
≤ 2DH

(
π(· | zK,Nε,y ), π (· | y)

)
, (2.4.11)

where there exists zK,Nε,y ∈ BK,N
ε,y with

BK,N
ε,y = arg max

z∈AK,Nε,y

D1 (π (· | z) , π (· | y)) .

The next step is to bound the right-hand side of (2.4.11) using the triangle inequality with respect to
the Hellinger distance DH. Consider the limit point zK,N0,y defined as zK,N0,y = limε→0 zK,Nε,y . Since for

each ε > 0, zK,Nε,y ∈ AK,Nε,y it holds that zK,N0,y ∈ A
K,N
0,y , where AK,N0,y =

⋂
ε∈Q+

AK,Nε,y . By continuity of D,

AK,N0,y =
{
z ∈ Y : D

(
pK,N (· | z) , pK,N (· | y)

)
= 0
}

and AK,N0,y =
{
z ∈ Y : pK,N (· | z) = pK,N (· | y)

}
,

using (B3). The distance on the right-hand side of (2.4.11) can then be decomposed in three parts,

DH

(
π
(
· | zK,Nε,y

)
, π (· | y)

)
≤ DH

(
π
(
· | zK,Nε,y

)
, π(· | zK,N0,y )

)
+DH

(
π(· | zK,N0,y ), pK,N (· | y)

)
+DH

(
pK,N (· | y) , π (· | y)

)
. (2.4.12)

The first term in the right-hand side can be made close to 0 as ε goes to 0 independently of K and N .
The two other terms are of the same nature, and the definition of zK,N0,y yields pK,N (· | y) = pK,N (· |
zK,N0,y ).

Using the fact that π(· | ·) is a uniformly continuous function in (θ,y) on a compact set X and

taking the limit ε → 0, yields limε→0D
2
H

(
π(· | zK,Nε,y ), π(· | zK,N0,y )

)
= 0 in measure λ, with respect to

y ∈ Y. Since this result is true whatever the data set DN , it also holds in probability with respect to
DN . That is, given any α1 > 0, β1 > 0, there exists ε (α1, β1) > 0 such that for any 0 < ε < ε (α1, β1),

Pr
(
λ
({

y ∈ Y : D2
H

(
π(· | zK,Nε,y ), π(· | zK,N0,y )

)
≥ β1

})
≥ α1

)
= 0.

Next, we prove that

D2
H

(
π(· | zK,N0,y ), pK,N (· | y)

)(
equal to D2

H

(
π(· | zK,N0,y ), pK,N (· | zK,N0,y )

))
and D2

H

(
pK,N (· | y), π(· | y)

)
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both converge to 0 in measure λ, with respect to y and in probability, with respect to DN . Such con-
vergence can be obtained via Rakhlin et al. (2005, Corollary 2.2), and Lemma 2.4.5 in Section 2.4.6.3,
which provides the guarantee that we can choose a measurable function y 7→ zK,N0,y . Equation (2.4.10)
in Theorem 2.4.2 follows from the triangle inequality (2.4.12). A detailed proof is provided in Sec-
tion 2.4.6.2.

Remark 2.4.3. The GLLiM model involving multivariate unconstrained Gaussian distributions does
not satisfy the conditions of Theorem 2.4.2 so that pK,N cannot be replaced by pK,NG in the theorem.
However as illustrated in Rakhlin et al. (2005), truncated Gaussian distributions with constrained
parameters can meet the restrictions imposed in the theorem. We are not aware of any more general
result involving the MLE of Gaussian mixtures. The GLLiM model could as well be replaced by another
model satisfying the conditions of the theorem but for practical applications, this model would need
to have computational properties such as the tractability of the estimation of its parameters and needs
to be efficient in multivariate and potentially high-dimensional settings.

2.4.4 Numerical experiments

Most benchmark examples in ABC correspond to unimodal and light tailed posterior distributions.
Such settings may not be the most appropriate to show differences and discriminate between the
performance of our methods. We therefore consider settings that are simple in terms of dimension and
complexity but exhibit posterior distributions with characteristics such as bimodality and heavy tails.
A first set of two synthetic examples is considered with parameters in dimensions 1 or 2 and bimodal
posterior distributions (Section 2.4.4.1). A third example is derived from a real application in sound
source localization, where the posterior distribution has mass on four 1D manifolds (Section 2.4.4.2).
All of these examples are run for a single observation in d = 10 dimensions.

To circumvent the choice of an arbitrary summary statistic, Fearnhead & Prangle (2012) showed
that the best summary statistic, in terms of the minimal quadratic loss, was the posterior mean. This
posterior mean is not known and needs to be approximated. In Fearnhead & Prangle (2012) a regres-
sion approach is proposed to provide a way to compute summary statistics prior to the ABC rejection
sampling, itself. In this section, the transformations used for the regression part are (1, y, y2, y3, y4)
following the procedure suggested in the abctools package (Nunes & Prangle, 2015). We refer to this
procedure as semi-automatic ABC. We did not try to optimise the procedure using other transforma-
tions but did not notice systematic improvements when increasing the number of polynomial terms,
for instance. This approach using the posterior mean is further developed in Jiang et al. (2017),
where a multilayer perceptron deep neural network regression model is employed and replaces the
linear regression model of Fearnhead & Prangle (2012). The deep neuronal network with multiple
hidden layers considered by Jiang et al. (2017) offers stronger representational power to approximate
the posterior mean and hence to learn an informative summary statistic, when compared to linear
regression models. Improved results were obtained by Jiang et al. (2017), but we did not compare our
approach to their method. As our current examples are of relatively small dimension d, we also did
not draw comparisons with discrepancy-based ABC techniques such as WABC (Bernton et al., 2019)
or classification ABC (Gutmann et al., 2018), which are designed for a more data-rich setting.

The performance of the four proposed GLLiM-ABC schemes summarized in Algorithm 1 is com-
pared to that of semi-automatic ABC. All reported results are obtained with a simple rejection scheme
as per instances implemented in the abc R package (Csillery et al., 2012). The other schemes avail-
able in the abc package have been tested but no notable performance differences were observed. In
regards to the final sample thresholding (i.e., choice of ε), following common practice, all methods
retain samples for which the distance to the observation is under a small (e.g. 0.1%) quantile of all
computed distances.

The xLLiM R package, available on the CRAN, is used to learn a GLLiM model with K compo-
nents and an isotropic constraint, from a set DN of N simulations from the true model. The isotropic
GLLiM is simpler than the fully-specified GLLiM and we observed that it provided surrogate poste-
riors of sufficient quality for the ABC selection scheme. The exact meaning of this constraint can be
found in Deleforge et al. (2015c), Perthame et al. (2017). Another set of simulated couples (θ,y) of
size M is generally used for the ABC rejection scheme unless otherwise specified.
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2.4.4.1 Non-identifiable models

It is straightforward to construct models that lead to multimodal posteriors by considering likelihoods
that are invariant by some transformation.

Ill-posed inverse problems

Here, we consider inverse problems for which the solution is not unique. This setting is quite common in
practice and can occur easily when the forward model exhibits some invariance, e.g., when considering
the negative of the parameters. A simple way to model this situation consists of assuming that the
observation y is generated as a realization of

y = F (θ) + ε,

where F is a deterministic theoretical model coming from experts and ε is a random variable expressing
the uncertainty both on the theoretical model and on the measurement process. A common assumption
is that ε is distributed as a centered Gaussian noise. Non-identifiability may then arise when F (−θ) =
F (θ). Following this generative approach, a first simple example is constructed with a Student t-
distributed noise leading to the likelihood:

fθ(y) = Sd(y;µ2Id, σ
2Id, ν),

where Sd(·;µ2Id, σ
2Id, ν) is the pdf of a d-variate Student t-distribution with a d-dimensional location

parameter with all dimensions equal to µ2, diagonal isotropic scale matrix σ2 Id and degree-of-freedom
(dof) parameter ν. Recall that for a Student t-distribution, a diagonal scale matrix is not inducing
independent dimensions so that y is not a set of i.i.d. univariate Student t observations. The dof
controls the tail heaviness; i.e., the smaller the value of ν, the heavier the tail. In particular, for ν ≤ 2,
the variance is undefined, while for ν ≤ 1 the expectation is also undefined. In this example, we set
σ2 = 2, ν = 2.1, and µ is the parameter to estimate.

For all compared procedures, we set d = 10, K = 10, N = M = 105, and the tolerance level ε
to the 0.1% quantile of observed distances, so that all selected posterior samples are of size 100. To
visualize posterior samples densities, we use a density estimation procedure based on the ggplot2 R
package with a Gaussian kernel.

Figure 2.1 shows the true and the compared ABC posterior distributions for a 10-dimensional
observation y, simulated under a process with µ = 1. The true posterior exhibits the expected
symmetry with modes close to the values: µ = 1 and µ = −1. The simple rejection ABC procedure
based on GLLiM expectations (GLLiM-E-ABC) and the semi-automatic ABC procedure both show
over dispersed samples with wrongly located modes. The GLLiM-EV-ABC exhibits two well located
modes but does not preserve the symmetry of the true posterior. The distance-based approaches,
GLLiM-L2-ABC and GLLiM-MW2-ABC both capture the bimodality. GLLiM-MW2-ABC is the only
method to estimate a symmetric posterior distribution with two modes of equal importance. Note,
however, that in term of precision, the posterior distribution estimation remains difficult considering
an observation of size only d = 10.

This simple example shows that the expectation as a summary statistic suffers from the presence
of two equivalent modes, while the approaches based on distances are more robust. There is a clear
improvement in complementing the summary statistics with the log-variances. Although in this case,
this augmentation provides a satisfying bimodal posterior estimate, it lacks the expected symmetry
of the two modes. The GLLiM-MW2-ABC procedure has the advantage of exhibiting a symmetric
posterior estimate, that is more consistent with the true posterior.

In the following subsection we present another case that cannot be cast as the above generating
process but also exhibit a transformation invariant likelihood.

Sum of moving average models of order 2 (MA(2))

Moving average (MA) models are commonly studied in the ABC literature, see e.g. Marin et al.
(2012), Jiang et al. (2018), Nguyen et al. (2020a). An example using MA(1) processes is provided in
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Figure 2.1: Non identifiable Student t-distribution. ABC posterior distributions from the selected sam-
ples. GLLiM-L2-ABC in blue, GLLiM-MW2-ABC in black, semi-automatic ABC in green, GLLiM-E-
ABC (expectations) in red and GLLiM-EV-ABC (expectations and log-variances) in dotted red line.
The true posterior is shown in purple. The dashed lines indicate the µ (equivalent) values used to
generate the observation.

Forbes et al. (2021, Section 6.1.2). In this section, we consider MA(2) models. The MA(2) process is
a stochastic process (y′t)t∈N? defined by

y′t = zt + θ1zt−1 + θ2zt−2,

where {zt} is an i.i.d. sequence, according to a standard normal distribution and θ1 and θ2 are
scalar parameters. A standard identifiability condition is imposed on this model leading to a prior
distribution uniform on the triangle described by the inequalities

−2 < θ1 < 2, θ1 + θ2 > −1, θ1 − θ2 < 1 .

We consider a transformation that consists of taking the opposite sign of θ1 and keeping θ2 un-
changed. The considered observation corresponds then to a series obtained by summing the two MA
models, defined below

y′t = zt + θ1zt−1 + θ2zt−2, y′′t = z′t − θ1z
′
t−1 + θ2z

′
t−2, yt = y′t + y′′t ,

where {zt} and {z′t} are both i.i.d. sequences, generated from a standard normal distribution. It follows
that a vector of length d, y = (y1, . . . , yd)

>, is distributed according to a multivariate d-dimensional
centered Gaussian distribution with a Toeplitz covariance matrix whose first row is (2(θ2

1 + θ2
2 +

1), 0, 2θ2, 0, . . . , 0). The likelihood is therefore invariant by the transformation proposed above, and
so is the uniform prior over the triangle. It follows that the posterior is also invariant by the same
transformation and can then be chosen so as to exhibit two symmetric modes.

For all procedures, we set K = 80 and N = M = 105, and ε to the 1% distance quantile, so that
all selected posterior samples are of size 1000. An observation of size d = 10 is simulated from the
model with θ1 = 0.7 and θ2 = 0.5. ABC posterior distribution estimates are shown in Figure 2.2.

The level sets of the true posterior can be computed from the exact likelihood and a grid of values
for θ1 and θ2. For the setting used in this thesis, none of the considered ABC procedures is fully
satisfactory, in that the selected samples are all quite dispersed. This is mainly due to the relatively
low size of the observation (d = 10). This can also be observed in Marin et al. (2012) (Figures 1 and
2), where ABC samples are less dispersed for a size of d = 100 and quite spread off when d is reduced
to d = 50, even when the autocovariance is used as summary statistic.

Despite the relative spread of the parameters accepted after the ABC rejection, the posterior
marginals, shown in Figure 2.2, provide an interesting comparison. GLLiM-D-ABC and GLLiM-EV-
ABC procedures show symmetric θ1 values, in accordance with the symmetry and bimodality of the
true posterior. The use of the L2 or MW2 distances does not lead to significant differences. GLLiM-
E-ABC and semi-automatic ABC behave similarly and do not capture the bimodality on θ1, but the
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Figure 2.2: Sum of MA(2) models. Posterior marginals from the samples selected with a 1% quantile
(1000 values): semi-automatic ABC (green), GLLiM-L2-ABC (blue), GLLiM-MW2-ABC (black),
GLLiM-E-ABC (red) and GLLiM-EV-ABC (dotted red). The true marginal posteriors are shown in
purple. The dashed lines show the values used to simulate the observation θ1 = 0.7 and θ2 = 0.5.

addition of the posterior log-variances in GLLiM-EV-ABC improves on GLLiM-E-ABC. These results
suggest that although GLLiM may not provide good approximations of the first posterior moments, it
can still provide good enough approximations of the surrogate posteriors in GLLiM-D-ABC. For θ2,
all posteriors are rather close to the true posterior marginal except for semi-automatic ABC which
shows a mode at a wrong location when compared to the true posterior.

2.4.4.2 Sound source localization

The next two examples are constructed from a real sound source localization problem in audio process-
ing. Although microphone arrays provide the most accurate sound source localization, setups limited
to two microphones, e.g. Beal et al. (2003), Hospedales & Vijayakumar (2008), are often considered
to mimic binaural hearing that resembles the human head with applications such as autonomous hu-
manoid robot modelling. Binaural localization cues (Wang & Brown, 2006) include interaural time
difference (ITD), interaural level difference (ILD) and interaural phase difference (IPD).

Two microphone setup

We first consider an artificial two microphone setup in a 2D scene. The object of interest is a sound
source located at an unknown position θ = (x, y). The two microphones are assumed to be located at
known positions, respectively denoted by m1 and m2. A good cue for the sound source localization is
the interaural time difference (ITD). The ITD is the difference between two times: the time a sound
emitted from the source is acquired by microphone 1 at m1 and the time at microphone 2 at m2.
ITD values are widely used by auditory scene analysis methods (Wang & Brown, 2006).

The function F that maps a location θ onto an ITD observation is

F (θ) =
1

c
(‖θ −m1‖2 − ‖θ −m2‖2), (2.4.13)

where c is the sound speed in real applications but set to 1 in our example for the purpose of illustration.
The important point is that an ITD value does not correspond to a unique point in the scene space,
but rather to a whole surface of points. In fact, each isosurface defined by (2.4.13) is represented by
one sheet of a two-sheet hyperboloid in 2D. Hence, each ITD observation constrains the location of the
auditory source to lie on a 1D manifold. The corresponding hyperboloid is determined by the sign of
the ITD. In our example, to create a multimodal posterior, we modify the usual setting by taking the
absolute value of the ITD so that solutions can now lie on either of the two hyperboloids. In addition
we assume that ITDs are observed with some Student t noise that implies heavy tails and possible
outliers. Although the ITD is a univariate measure, we consider a more general d dimensional setting
by defining the following Student t likelihood, y = (y1, . . . , yd) and ITD(θ) =| ‖θ−m1‖2−‖θ−m2‖2 |,
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where

fθ(y) = Sd(y; ITD(θ)Id, σ
2Id, ν) . (2.4.14)

The above likelihood corresponds to a d-variate Student t-distribution with a d-dimensional location
parameter with all dimensions equal to ITD(θ), diagonal isotropic scale matrix equal to σ2 Id and
degree-of-freedom (dof) parameter ν.

The parameter space is assumed to be Θ = [−2, 2] × [−2, 2] and the prior on θ is assumed to be
uniform on Θ. The microphones’ positions are m1 = (−0.5, 0) and m2 = (0.5, 0). We assume ν = 3
and σ2 = 0.01. The true θ is set to θ = (1.5, 1) and we simulate a 10-dimensional y following model
(2.4.14).

The four ABC methods using GLLiM and semi-automatic ABC are compared. Results are reported
in Forbes et al. (2021, Section 6.2.1).

Two pairs of microphones setting

We build on the previous example to design a more complex setting. Two pairs of microphones are
considered respectively located at ((−0.5, 0), (0.5, 0)) and ((0,−0.5), (0, 0.5)). The ITD vectors are
assumed to be measured with equal probability either from the first pair or from the second pair. It
results a likelihood that is a mixture of two equal weight components both following the previous model
but for different microphones locations. The 10-dimensional observation y is generated from a source
at location (1.5, 1). Depending on whether this observation is coming from the first pair or second
pair component, it results a true posterior as shown in Figure 2.4 (h) or one with non-intersecting
hyperbolas. The contour plot indicates that the observation corresponds to the ((0,−0.5), (0, 0.5))
pair. A sample obtained using the Metropolis–Hastings algorithm, as implemented in the R package
mcmc (Geyer & Jonhson, 2020), is shown in Figure 2.4 (d).

The GLLiM model used consists of K = 20 Gaussian components with an isotropic constraint. A
selected sample of 1000 values is retained by thresholding the distances under the 0.1% quantile. In
a first test, semi-automatic ABC and GLLiM use the same data set of size M = 106 which is also
used for the rejection ABC part. Selected samples are shown in Figure 2.3. The mixture provided by
GLLiM as an approximation of the true posterior (Figure 2.3 (d)) well captures the main posterior
parts. This GLLiM posterior is a 20-component Gaussian mixture of form (2.4.1). The true posterior
expectations are all zero and are thus not informative about the location parameters. However, a
correct structure can be seen in the GLLiM-E-ABC sample, in contrast to the semi-automatic one
that shows no structure as expected. Adding the posterior log-variance estimations has a good impact
on the selected sample, which is only marginally different from the GLLiM-D-ABC samples. This
suggests that the posterior log-variances are very informative on the location parameters.

When GLLiM is first learned with a smaller data set of size N = 105 and different from the
rejection ABC data set, results slightly degrade, but not significantly so (Figure 2.4). More badly
localized estimations can be seen in the samples of Figure 2.4 (a,b), but the GLLiM-D-ABC samples
are well localized and are not really impacted by this difference in the GLLiM learning step. In this
case the improvement of GLLiM-D-ABC over GLLiM-EV-ABC is clearer.

2.4.5 Appendix: Distances between Gaussian mixtures

2.4.5.1 Optimal transport-based distance between Gaussian mixtures

Delon & Desolneux (2020), Chen et al. (2019) have introduced a distance specifically designed for
Gaussian mixtures based on the Wasserstein distance. In an optimal transport context, by restricting
the possible coupling measures (i.e., the optimal transport plan) to a Gaussian mixture, they propose
a discrete formulation for this distance. This makes it tractable and suitable for high dimensional
problems, while in general using the standard Wasserstein distance between mixtures is problematic.
Delon & Desolneux (2020) refer to the proposed new distance as MW2, for Mixture Wasserstein.

The MW2 definition makes first use of the tractability of the Wasserstein distance between two
Gaussians for a quadratic cost. The standard quadratic cost Wasserstein distance between two Gaus-
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(d) GLLiM mixture (e) Semi-automatic ABC (f) GLLiM-L2-ABC

Figure 2.3: Sound source localization with a mixture of two microphones pairs. GLLiM is learned
with the largest data set of size M = 106. Selected samples using (a) GLLiM posterior expectations,
(b) GLLiM posterior expectations and log variances, (c) MW2 distances, (d) the approximate GLLiM
posterior for the observed data, (e) semi-automatic ABC, (f) L2 distances. Black points on the dotted
line are the microphones positions. The fifth black point is the true sound source localization.

sian pdfs g1(·) = N (· ;µ1,Σ1) and g2(·) = N (· ;µ2,Σ2) is (see Delon & Desolneux 2020),

W2
2(g1, g2) = ‖µ1 − µ2‖22 + trace

(
Σ1 + Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2
)
.

Section 4 of Delon & Desolneux (2020) shows that the MW2 distance between two mixtures can
be computed by solving the following discrete optimization problem. Let f1 =

∑K1
k=1 π1k g1k and by

f2 =
∑K2

k=1 π2k g2k be two Gaussian mixtures. Then,

MW2
2(f1, f2) = min

w∈Π(π1,π2)

∑
k,l

wkl W2
2(g1k, g2l) , (2.4.15)

where π1 and π2 are the discrete distributions on the simplex defined by the respective weights of
the mixtures and Π(π1, π2) is the set of discrete joint distributions w = (wkl, k ∈ [K1], l ∈ [K2]),
whose marginals are π1 and π2. Finding the minimizer w∗ of (2.4.15) boils down to solving a simple
discrete optimal transport problem, where the entries of the K1×K2 dimensional cost matrix are the
W2

2(g1k, g2l) quantities.
As implicitly suggested above, MW2 is indeed a distance on the space of Gaussian mixtures; see

Delon & Desolneux (2020). In particular, for two Gaussian mixtures f1 and f2, MW2 satisfies the
equality property according to which MW2(f1, f2) = 0 implies that f1 = f2. In our experiments, the
MW2 distances were computed using the transport R package (Schuhmacher et al., 2020).

2.4.5.2 L2 distance between Gaussian mixtures

The L2 distance between two Gaussian mixtures is also closed form. Denote by f1 =
∑K1

k=1 π1k g1k and

f2 =
∑K2

k=1 π2k g2k two Gaussian mixtures,

L2
2(f1, f2) =

∑
k,l

π1kπ1l〈g1k, g1l〉+
∑
k,l

π2kπ2l〈g2k, g2l〉 − 2
∑
k,l

π1kπ2l〈g1k, g2l〉, (2.4.16)
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2.4. Universal approximation for mixture of experts models in approximate Bayesian computation
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(e) GLLiM mixture (f) Semi-automatic ABC (g) GLLiM-L2-ABC (h) True posterior

Figure 2.4: Sound source localization with a mixture of two microphones pairs. GLLiM is learned on
a first data set of size N = 105 while ABC is run using the largest data set of size M = 106. Selected
samples using (a) GLLiM posterior expectations, (b) GLLiM posterior expectations and log variances,
(c) MW2 distances, (d) a Metropolis–Hastings algorithm, (e) the approximate GLLiM posterior for
the observed data, (f) semi-automatic ABC, (g) L2 distances, and (h) contours of the true posterior
distribution. Black points on the dotted line are the microphones positions. The fifth black point is
the true sound source localization.

where 〈·, ·〉 denotes the L2 scalar product, which is closed form for two Gaussian distributions g1 and
g2 and given by 〈g1, g2〉 = N (µ1;µ2,Σ1 + Σ2). The L2 distance can be evaluated in O(K1K2) time.
We do not discuss the different properties of the various possible distances but the distance choice
has a potential impact on the associated GLLiM-D-ABC procedure. This impact is illustrated in the
experimental Section 2.4.4.

2.4.6 Appendix: Proofs

2.4.6.1 Proof of Theorem 2.4.1

We follow steps similar to the proof of Proposition 2 in Bernton et al. (2019). The ABC quasi-posterior
can be written as

qε (θ | y) =

∫
Y
Kε (z; y)π (θ | z) dz,

where Kε(z; y) ∝ 1{D(π(·|y),π(·|z)))≤ε} π(z) denotes the density evaluated at some z of the prior trun-
cated to Aε. Kε(·; y) is a probability density function (pdf) in z ∈ Y with compact support Aε ⊂ Y
by definition of Aε and (A4). It follows that

|qε (θ | y)− π (θ | y)| ≤
∫
Y
Kε (z; y) |π (θ | z)− π (θ | y)| dz

≤ sup
z∈Aε
|π (θ | z)− π (θ | y)|

= |π (θ | zε)− π (θ | y)| ,

for some zε ∈ Aε, where the second inequality is due to the fact that Kε (·; y) is a pdf, and the last
equality is due to (A1) and the compacity of Aε.
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Since for each ε > 0, zε ∈ Aε, we have limε→0 zε ∈ A0, where A0 =
⋂
ε∈Q+

Aε. Then, using that by
continuity of D, A0 = {z ∈ Y : D(π(· | z), π(· | y)) = 0}, it follows from the equality property of D,
that A0 = {z ∈ Y : π(· | z) = π(· | y)}. Taking the limit ε→ 0 yields

|π (θ | zε)− π (θ | y)| → |π (θ | y)− π (θ | y)| = 0

and hence |qε (θ | y)− π (θ | y)| → 0, for each θ ∈ Θ.
By (A2), we have

sup
θ∈Θ

qε (θ | y) = sup
θ∈Θ

∫
Y
Kε (z; y)π (θ | z) dz

≤ sup
θ∈Θ

sup
z∈Aγ

π (θ | z) <∞,

for some γ, so that ε ≤ γ. Finally, by the bounded convergence theorem, we have

lim
ε→0

∫
Θ
|qε (θ | y)− π (θ | y)| dθ = lim

ε→0
‖qε (· | y)− π (· | y)‖1 = 0.

2.4.6.2 Proof of Theorem 2.4.2

We now provide a detailed proof of Theorem 2.4.2. Given any α > 0, β > 0, we claim that

lim
ε→0,K→∞,N→∞

Pr
(
λ
({

y ∈ Y : D2
H

(
qK,Nε (· | y) , π (· | y)

)
≥ β

})
≤ α

)
= 1;

or equivalently, for any α > 0, β > 0, γ > 0, we wish to find ε (α, β, γ) > 0, K (α, β, γ) ∈ N?, and
N (α, β, γ) ∈ N? so that for all ε < ε (α, β, γ) ,K ≥ K (α, β, γ) , N ≥ N (α, β, γ):

Pr
(
λ
({

y ∈ Y : D2
H

(
qK,Nε (· | y) , π (· | y)

)
≥ β

})
> α

)
≤ γ. (2.4.17)

To prove (2.4.17), we first recall that we can rewrite qK,Nε as follows, for all θ ∈ Θ,y ∈ Y,

qK,Nε (θ | y) =

∫
Y
KK,N
ε (z; y)π (θ | z) dz,

KK,N
ε (z; y) =

1{D(pK,N (·|y),pK,N (·|z))≤ε}π (z)∫
Y 1{D(pK,N (·|y),pK,N (·|z))≤ε}π (z) dz

, (2.4.18)

where KK,N
ε (·; y) is a pdf on z ∈ Y with compact support AK,Nε,y ⊂ Y by definition of AK,Nε,y and (B4).

The Hellinger distance DH, between two densities f and g in appropriate spaces, is related to the
L1 distance D1 as follows, see Zeevi & Meir (1997, Lemma 1),(

1

2
D1 (f, g)

)2

≤ D2
H (f, g) ≤ D1 (f, g) . (2.4.19)

Applying successively the right-hand-side of (2.4.19), the definition of qK,Nε and the fact thatKK,N
ε (·; y)

is a pdf, we can write

D2
H

(
qK,Nε (· | y) , π (· | y)

)
≤ D1

(
qK,Nε (· | y) , π (· | y)

)
=

∫
Θ

∣∣qK,Nε (θ | y)− π (θ | y)
∣∣ dλ (θ)

≤
∫

Θ

∫
Y
KK,N
ε (z; y) |π (θ | z)− π (θ | y)| dλ (z) dλ (θ)

=

∫
Y
KK,N
ε (z; y)

∫
Θ
|π (θ | z)− π (θ | y)| dλ (θ) dλ (z)

≤ sup
z∈AK,Nε,y

∫
Θ
|π (θ | z)− π (θ | y)| dλ (θ) .

106



2.4. Universal approximation for mixture of experts models in approximate Bayesian computation

Then using Makarov & Podkorytov (2013, Corollary 7.1.3) and the continuity of π(· | ·) (B2), it follows
that z 7→ D1 (π (· | z) , π (· | y)) is a continuous function for every y ∈ Y. As AK,Nε,y is compact, since

zK,Nε,y ∈ BK,N
ε,y = arg max

z∈AK,Nε,y

D1 (π (· | z) , π (· | y)) ,

sup
z∈AK,Nε,y

D1 (π (· | z) , π (· | y)) = D1

(
π
(
· | zK,Nε,y

)
, π (· | y)

)
,

and using the left-hand-side of (2.4.19), we finally get that

D2
H

(
qK,Nε (· | y) , π (· | y)

)
≤ 2DH

(
π
(
· | zK,Nε,y

)
, π (· | y)

)
. (2.4.20)

Consider the limit point zK,N0,y defined as zK,N0,y = limε→0 zK,Nε,y . Since for each ε > 0, zK,Nε,y ∈ AK,Nε,y

then zK,N0,y ∈ A
K,N
0,y , whereAK,N0,y =

⋂
ε∈Q+

AK,Nε,y . By continuity ofD, AK,N0,y =
{
z ∈ Y : D

(
pK,N (· | z) , pK,N (· | y)

)
= 0
}

and AK,N0,y =
{
z ∈ Y : pK,N (· | z) = pK,N (· | y)

}
, using (B3).

The distance on the right-hand side of (2.4.20) can then be bounded by three terms using the
triangle inequality for the Hellinger distance DH,

DH

(
π
(
· | zK,Nε,y

)
, π (· | y)

)
≤ DH

(
π
(
· | zK,Nε,y

)
, π(· | zK,N0,y )

)
+DH

(
π(· | zK,N0,y ), pK,N (· | y)

)
+DH

(
pK,N (· | y) , π (· | y)

)
. (2.4.21)

The first term on the right-hand side can be made close to 0 as ε goes to 0 independently of K and
N . The two other terms are of the same nature as the definition of zK,N0,y yields pK,N (· | y) = pK,N (· |
zK,N0,y ).

Therefore, we first prove that limε→0D
2
H

(
π(· | zK,Nε,y ), π(· | zK,N0,y )

)
= 0 pointwise i.e. for each y.

Indeed, since π(· | ·) is a uniformly continuous function in (θ,y), given any y ∈ Y, α1 > 0, there exists
δ(α1) > 0 such that for all zK,N0,y ∈ A

K,N
0,y ⊂ Y,

sup
θ∈Θ

∣∣∣π (θ | z)− π(θ | zK,N0,y )
∣∣∣ ≤ α1,∀z ∈ Y,

∣∣∣z− zK,N0,y

∣∣∣ < δ(α1). (2.4.22)

Furthermore, since Θ is a subset of a compact set, λ (Θ) < ∞. Hence, by using the fact that
limε→0 zK,Nε,y = zK,N0,y ∈ AK,N0,y pointwise with respect to y and choosing z = zK,Nε,y in (2.4.22), we
obtain that given any y ∈ Y, and α1 > 0, there exists δ(α1) > 0, and ε (δ(α1)) > 0 such that

∀0 < ε < ε (δ(α1)),
∣∣∣zK,Nε,y − zK,N0,y

∣∣∣ < δ(α1). Using (2.4.19) and (2.4.22), it follows for any ε such that

0 < ε < ε (δ(α1)),

D2
H

(
π
(
· | zK,Nε,y

)
, π(· | zK,N0,y )

)
≤ D1

(
π
(
· | zK,Nε,y

)
, π(· | zK,N0,y )

)
≤ sup
θ∈Θ

∣∣∣π (θ | zK,Nε,y

)
− π(θ | zK,N0,y )

∣∣∣λ (Θ)

≤ α1λ (Θ) . (2.4.23)

Such convergence also holds in measure λ. Given any α1 > 0, β1 > 0, there exists ε (α1, β1) > 0 such
that for any 0 < ε < ε (α1, β1),

λ
({

y ∈ Y : D2
H

(
π
(
· | zK,Nε,y

)
, π(· | zK,N0,y )

)
≥ β1

})
≤ α1. (2.4.24)

Then, since (2.4.24) is true whatever the value of {(θn,yn) , n ∈ [N ]}, sampled from the joint π(·, ·),
it also holds, in probability with respect to the data set, that

Pr
(
λ
({

y ∈ Y : D2
H

(
π
(
· | zK,Nε,y

)
, π(· | zK,N0,y )

)
≥ β1

})
> α1

)
= 0. (2.4.25)
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Next, we prove thatD2
H

(
π(· | zK,N0,y ), pK,N (· | y)

)
, equal toD2

H

(
π(· | zK,N0,y ), pK,N (· | zK,N0,y )

)
, andD2

H

(
pK,N (· | y), π(· | y)

)
both converge to 0 in measure λ, with respect to y and in probability with respect to the sample
{(θn,yn) , n ∈ [N ]}.

We first focus on D2
H

(
pK,N (· | y) , π (· | y)

)
. Using the monotonicity of the Lebesgue integral and

a result from Tsybakov (2008, Lemma 2.4) indicating that the squared Hellinger distance can be
bounded by the Kullback–Leibler (KL) divergence, it follows that∫

Y
D2
H

(
pK,N (· | y) , π (· | y)

)
dλ(y) ≤

∫
Y

KL
(
π(· | y), pK,N (· | y)

)
dλ(y).

Then since π(y) ≥ aλ(Θ)∫
Y

KL
(
π(· | y), pK,N (· | y)

)
dλ(y) ≤ 1

aλ(Θ)

∫
Y
π(y) KL

(
π(· | y), pK,N (· | y)

)
dλ(y)

≤ 1

aλ(Θ)
KL
(
π, pK,N

)
, (2.4.26)

where in the last right-hand side, the Kullback–Leibler divergence is on the joint densities π and
pK,N and the inequality is coming from a standard relationship between Kullback–Leibler divergences
between joint and conditional distributions, i.e.

KL
(
π, pK,N

)
=

∫
Y
π(y) KL

(
π(· | y), pK,N (· | y)

)
dλ(y) +

∫
Y
π(y) log

(
π(y)

pK,N (y)

)
dλ(y) ,

with the last integral being a positive Kullback–Leibler divergence. Using Corollary 2.2 in Rakhlin
et al. (2005) (see details in Section 2.4.6.3), we can show that KL

(
π, pK,N

)
tends to 0 in probability as

K and N tends to infinity. It follows that D2
H

(
pK,N (· | y) , π (· | y)

)
converges to 0 in L1 distance with

respect to y. Using Tao (2011, 1.5. Modes of convergence), D2
H

(
pK,N (· | y) , π (· | y)

)
also converges

to 0 in measure λ with respect to y, and in probability with respect to the sample {(θn,yn) , n ∈ [N ]}
as K →∞, N →∞.

That is, given any α2 > 0, β2 > 0, γ2 > 0, there exists K (α2, β2, γ2) ∈ N?, N (α2, β2, γ2) ∈ N? such
that for any K ≥ K (α2, β2, γ2), N ≥ N (α2, β2, γ2),

Pr
(
λ
({

y ∈ Y, D2
H

(
pK,N (· | y) , π (· | y)

)
≥ β2

})
> α2

)
≤ γ2. (2.4.27)

To show that the same as (2.4.27) also holds when replacing y by zK,N0,y in D2
H , we need to

show some measurability property with respect to λ. Lemma 2.4.5, together with its proof in Sub-
section 2.4.6.3, guaranties first that the map y 7→ zK,N0 (y) = zK,N0,y is measurable. Since y 7→
D2
H

(
pK,N (· | y) , π (· | y)

)
is a continuous function (using (B4) and Makarov & Podkorytov 2013,

Corollary 7.1.3), the measurability of the map implies that

D2
H

(
pK,N (· | zK,N0,y ), π(· | zK,N0,y )

)
is also a measurable function (see Tao 2011, 1.3.2. Measurable

functions). Consequently Tao (2011, Lemma 1.3.9 Equivalent notions of measurability) the set{
y ∈ Y : D2

H

(
pK,N (· | zK,N0,y ), π(· | zK,N0,y )

)
≥ β2

}
is a measurable set with respect to λ. In addition by

the monotonicity of λ and the defintion of zK,N0,y , the measure of this set satisfies for any β2 > 0,

λ({y ∈ Y :D2
H(pK,N (· | zK,N0,y ), π(· | zK,N0,y )) ≥ β2})≤λ({y ∈ Y :D2

H(pK,N (· | y), π(· | y)) ≥ β2}).

Then (2.4.27) implies that

Pr
(
λ
({

y ∈ Y : D2
H

(
pK,N (· | zK,N0,y ), π(· | zK,N0,y )

)
≥ β2

})
> α2

)
≤ γ2. (2.4.28)

Finally, (2.4.17) can be deduced from (2.4.25), (2.4.27) and (2.4.28) by choosing α1 = α2 = α/3,
β1 = β2 = β2/36, γ2 = γ/2, ε (α, β, γ) = ε (α1, β1), K (α, β, γ) = K (α2, β2, γ2) and N (α, β, γ) =
N (α2, β2, γ2) .
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2.4.6.3 Auxiliary results

Use of Corollary 2.2 of Rakhlin et al. (2005)

In this section, we claim that under the conditions of Theorem 2.4.2, we can prove that KL
(
π, pK,N

)
→

0, in probability as K →∞, N →∞.
To do so we use the following Lemma 2.4.4 coming from Rakhlin et al. (2005). Let us recall thatHX

is a parametric family of pdfs on X , HX = {gϕ,ϕ ∈ Ψ}. The set of continuous convex combinations
associated with HX is defined as

C = conv (HX )=

{
f : f(x)=

∫
Ψ
gϕ (x)G (dϕ) , gϕ ∈ HX , G is a probability measure on Ψ

}
.

We write KL (π, C) = inf
g∈C

KL (π, g).

The class of K-component mixtures on HX is then defined as

CK = convK(HX ) =

{
f : f(x) =

K∑
k=1

ckgϕk (x) , c ∈ SK−1, gϕk ∈ HX

}
(2.4.29)

where SK−1 =
{

(c1, . . . , cK) ∈ RK :
∑K

k=1 ck = 1, ck ≥ 0, k ∈ [K]
}

.

The result from Rakhlin et al. (2005) is recalled in the following Lemma.

Lemma 2.4.4 (Corollary 2.2. from Rakhlin et al. (2005)). Let X = Θ × Y be a compact set. Let π
be a target density π such that 0 < a ≤ π(x) ≤ b, for all x ∈ X . Assume that the distributions in HX
satisfy, for any ϕ,ϕ′ ∈ Ψ,

for all x ∈ X , 0 < a ≤ gϕ(x) ≤ b
and sup

x∈X

∣∣log gϕ(x)− log gϕ′(x)
∣∣ ≤ B‖ϕ−ϕ′‖1 ,

and that the parameter set Ψ is a cube with side length A with a, b, A,B arbitrary positive scalars.
Let {(θn,yn), n ∈ [N ]} be realizations from the joint distribution π(·, ·) and denote by pK,N the K-
component mixture MLE in CK .
Then, with probability at least 1− exp (−t),

KL
(
π, pK,N

)
≤ KL (π, C) +

c1

K
+

c2√
N

+
c3

√
t√

N
,

where c1, c2 and c3 are positive scalars depending only on a, b, A,B and on the dimension of X (see
Rakhlin et al. (2005) for the exact expressions).

Assumption (B1) in Theorem 2.4.2 then implies that π ∈ C so that KL (π, C) = 0. Using
Lemma 2.4.4, it follows that for all t > 0, for all K ∈ N?, and for all N ∈ N?,

Pr

(
KL
(
π, pK,N

)
≤ c1

K
+

c2√
N

+
c3

√
t√

N

)
≥ 1− exp (−t) . (2.4.30)

Choosing t = N1/2, (2.4.30) becomes

1− Pr

(
KL
(
π, pK,N

)
≤ c1

K
+

c2√
N

+
c3

N1/4

)
≤ exp

(
−N1/2

)
. (2.4.31)

Therefore, for any γ1 > 0, γ2 > 0, there exist K(γ1, γ2) ∈ N?, and N(γ1, γ2) ∈ N? so that for all
K ≥ K(γ1, γ2) and N ≥ N(γ1, γ2),

c1

K
+

c2√
N

+
c3

N1/4
≤ γ1,

exp
(
−N1/2

)
≤ γ2.
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From which we deduce using (2.4.31) that for all K ≥ K(γ1, γ2) and all N ≥ N(γ1, γ2),

1− Pr
(
KL
(
π, pK,N

)
≤ γ1

)
≤ γ2,

that is
lim

K→∞,N→∞
Pr
(
KL
(
π, pK,N

)
≤ γ1

)
= 1,

which achieves the desired result that KL
(
π, pK,N

)
→ 0, in probability as K →∞, N →∞ .

Proof of the measurability of zK,N0,y (Lemma 2.4.5)

We wish to make use of the result from (Aliprantis & Border, 2006, Theorem 18.19 Measurable
Maximum Theorem) to prove that we can choose a measurable function y 7→ zK,N0,y . More specifically
this is guarantied by the following Lemma 2.4.5 which is proved below.

Background. The required materials for this lemma and the proof arise from Aliprantis & Border
(2006), Chapter 18. The main concepts are recalled below.

Let f be a function on a product space Y × Z, such that f : Y × Z → X . Assume that (Y,F) is
a measurable space.

The function f (y, z) is said to be Caratheodory, if f is continuous in z ∈ Z and measurable in
y ∈ Y.

By definition, a correspondence ζ from a set Y to a set Z assigns each y ∈ Y to a subset ζ (y) ∈ Z.
We write this relationship as ζ : Y � Z.

A correspondence ζ : Y � Z is measurable (weakly measurable) if ζ` (F ) ∈ F for each closed (open)
subset F of Z, where ζ` is the so-called lower inverse of ζ defined as ζ` (F ) = {z ∈ Z : ζ (y) ∩ F 6= ∅}.

Lemma 18.7 from Aliprantis & Border (2006) states the following: Suppose that f : Y × Z → X
is Caratheodory, where (Y,F) is a measurable space, Z is a metrizable space, and X is a topological
space. For each subset H of X , define the correspondence ζH : Y � Z by

ζH (y) = {z ∈ Z : f (y, z) ∈ H} .

If H is open, then ζH is a measurable correspondence.

Corollary 18.8 from Aliprantis & Border (2006) states the following: Suppose that f : Y ×Z → X
is Caratheodory, where (Y,F) is a measurable space, Z is a metrizable space, and X is a topological
space. Define the correspondence ζ : Y � Z by

ζ (y) = {z ∈ Z : f (y, z) = 0} .

If Z is compact, then ζ is a measurable correspondence.

Furthermore, we have the fact that the countable unions of measurable correspondences are also
measurable. We say that ζ : Y � Z admits a measurable selector, if there exists a measurable function
f : Y → Z, such that f (y) ∈ ζ (y), for each y ∈ Y.

Theorem 18.19 (Measurable Maximum Theorem) from Aliprantis & Border (2006) then states the
following. Let Z be a separable metrizable space and (Y,F) be a measurable space. Let ζ : Y � Z be
a weakly measurable correspondence with nonempty compact values, and suppose that f : Y×Z → R
is Caratheodory. Define m : Y → R by

m (y) = max
z∈ζ(y)

f (y, z) ,

and define µ : Y � Z to be its maximizers:

µ (y) = {z ∈ ζ (y) : f (y, z) = m (y)} .

Then 1) the value function m is measurable, 2) the argmax correspondence µ has nonempty and
compact values, 3) the argmax correspondence µ is measurable and admits a measurable selector.

In our context, the use of Theorem 18.19 above takes the form of Lemma 2.4.5.
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Lemma 2.4.5. Under the assumptions in Theorem 2.4.2 and with the following definitions,

AK,Nε,y =
{
z ∈ Y : D

(
pK,N (· | y) , pK,N (· | z)

)
≤ ε
}

and AK,N0,y =
⋂
ε∈Q+

AK,Nε,y ,

BK,N
ε,y = arg max

z∈AK,Nε,y

D1 (π (· | z) , π (· | y)) and BK,N
0,y =

⋂
ε∈Q+

BK,N
ε,y ,

so thatAK,N0,y =
{
z ∈ Y : pK,N(· | y)−pK,N(· | z)=0

}
andBK,N

0,y =arg max
z∈AK,N0,y

D1(π(· | z), π(· | y)). Then, we

can always choose an argmax correspondence y� BK,N
0,y , which is measurable and admits a measurable

selector.

Proof of Lemma 2.4.5. Let us define the correspondence ζK,N0 : Y � Y so that ζK,N0 (y) = AK,N0,y .
We claim that this correspondence is a weakly measurable correspondence with nonempty compact
values. Indeed, we firstly define the function fK,N (y, z) = pK,N (· | y)− pK,N (· | z), and notice that

fK,N : Y × Y → R

is Caratheodory, since it is a continuous function in z and measurable in y by the continuity of pK,N .
Then, by using the (Aliprantis & Border, 2006, Corollary 18.8) and the fact that Y is compact, it
follows that

ζK,N0 (y) =
{
z ∈ Y : fK,N (y, z) = 0

}
is measurable. Then, it is also weakly measurable (see Aliprantis & Border 2006, Lemma 18.2).
Furthermore, ζK,N0 has nonempty compact values since for any y ∈ Y, ζK,N0 (y) always contains y,

and ζK,N0 (y) =
[
fK,N (y, ·)

]−1
({0}) is a compact set since the inverse image of continuous function

fK,N (y, ·) of compact set is also compact.
Then, since we assume that (y, z) 7→ D1 (π (· | z) , π (· | y)) is a continuous function in z and

measurable in y, then it is also a Caratheodory function. We also remark that BK,N
0,y can be written

as a argmax correspondence

BK,N
0,y = arg max

z∈ζK,N0 (y)

D1 (π (· | z) , π (· | y)) .

By using the result from Aliprantis & Border, 2006, Theorem 18.19, Measurable Maximum Theorem,
we conclude that the the argmax correspondence BK,N

0,y is measurable and admits a measurable selector,

that is, we can always choose a measurable function y 7→ zK,N0,y ∈ B
K,N
0,y .
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Chapter 3

Model selection in the Gaussian-gated
localized mixture of experts regression
model

Chapter 3 is based on the following works:

(C5) TrungTin Nguyen, Hien Duy Nguyen, Faicel Chamroukhi, and Florence Forbes. A non-
asymptotic penalization criterion for model selection in mixture of experts models.
arXiv preprint arXiv:2104.02640. 2021. Link: https://arxiv.org/pdf/2104.02640.pdf
(Nguyen et al., 2021c).

(C6) TrungTin Nguyen, Faicel Chamroukhi, Hien Duy Nguyen, and Florence Forbes. Non-asymptotic
model selection in block-diagonal mixture of polynomial experts models.
arXiv preprint arXiv:2104.08959. 2021. Link: https://arxiv.org/pdf/2104.08959.pdf
(Nguyen et al., 2021b).
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Note that we have already highlighted the main oracle inequalities without detailed proofs re-
garding non-asymptotic model selection results for GLoME and BLoME models in high-dimensional
scenarios based on an inverse regression strategy in Sections 1.2.6 and 1.2.7. In particular, our oracle
inequalities show that the performance in Jensen–Kullback–Leibler type loss of our penalized maxi-
mum likelihood estimators are roughly comparable to that of oracle models if we take large enough
the constants in front of the penalties, whose forms are only known up to multiplicative constants
and proportional to the dimensions of models. Such theoretical justifications of the penalty shapes
motivate us to make use of the slope heuristic criterion to select several hyperparameters, including the
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number of mixture components, the degree of polynomial mean functions, and the potential hidden
block-diagonal structures of the covariance matrices of the multivariate predictor or response variable.
In Chapter 3, we aim to present such non-asymptotic oracle inequalities in as much detail as possible.

3.1 Introduction

In Chapter 3, we examine MoE models with Gaussian gating functions, first introduced by Xu et al.
(1995), for clustering and regression. From hereon in, we refer to these models as the Gaussian-gated
localized MoE (GLoME) and the block-diagonal localized mixture of polynomial experts (BLoME)
models, to be developed in Sections 3.2 and 3.3, respectively. Furthermore, we refer to MoE models
with softmax gating functions as softmax-gated MoE (SGaME). Note that the BLoME model general-
izes the GLoME model by enjoying a parsimonious covariance structure, via block-diagonal structures
for covariance matrices in the Gaussian experts.

It is worth mentioning that both GLoME and BLoME models have been thoroughly studied in
the statistics and machine learning literatures under several contexts: localized MoE (Ramamurti &
Ghosh, 1996, 1998, Moerland, 1999, Bouchard, 2003), normalized Gaussian networks (Sato & Ishii,
2000), MoE modeling of priors in Bayesian nonparametric regression (Norets & Pelenis, 2014, Norets
& Pati, 2017), cluster-weighted modeling (Ingrassia et al., 2012), supervised Gaussian locally-linear
mapping (GLLiM) in inverse regression (Deleforge et al., 2015c), block-diagonal covariance for Gaus-
sian locally-linear mapping (BLLiM) model (Devijver et al., 2017), deep mixture of linear inverse
regressions (Lathuilière et al., 2017) and multiple-output Gaussian gated mixture of linear experts
(Nguyen et al., 2019). It is also interesting to point out that supervised GLLiM in Deleforge et al.
(2015c) is an affine instance of a GLoME model, where linear combination of bounded functions are
considered instead of affine for mean functions of Gaussian experts.

One of the main disadvantages of SGaME models is the difficulty of applying an EM algorithm,
which requires an internal iterative numerical optimization procedure (e.g., iteratively-reweighted least
squares, Newton-Raphson algorithm) to update the softmax parameters. To overcome this problem,
we instead use the Gaussian gating network that enables us to link GLoME with finite mixtures of
Gaussian models. Then, the maximization with respect to the parameters of the gating network can be
solved analytically with the EM algorithm framework, which decreases the computational complexity
of the estimation routine. Furthermore, we then can also make use of well established theoretical
results for finite mixture models.

In this work, we are interested in controlling and accounting for model complexity when selecting
the best data-driven number of mixture components of a model. In general, model selection is often
performed using the Akaike information criterion (AIC) or the Bayesian information criterion (BIC)
(Akaike, 1974, Schwarz et al., 1978). An important limitation of these criteria, however, is that
they are only valid asymptotically. This implies that there are no finite sample guarantees when
using AIC or BIC, for choosing between different levels of complexity. The slope heuristic of Birgé
& Massart (2007), supported by a non-asymptotic oracle inequality, is a method that permits finite
sample inference in place of AIC and BIC. Recent reviews and practical issues regarding the slope
heuristic can be found in Baudry et al. (2012) and Arlot (2019). It should be stressed that a general
model selection result, originally established by Massart (2007, Theorem 7.11), guarantees a penalized
criterion leads to a good model selection and the penalty being only known up to multiplicative
constants and proportional to the dimensions of models. In particular, such multiplicative constants
can be calibrated by the slope heuristic approach in a finite sample setting.

Following the concentration inequality-based methods for likelihood penalization of Massart (2007),
Massart & Meynet (2011) and Cohen & Le Pennec (2011), a number of finite-sample oracle results
have been established for the least absolute shrinkage and selection operator (LASSO) (Tibshirani,
1996) and general penalized maximum likelihood estimators (PMLE). These results include the works
of Meynet (2013) and Devijver (2015a,b, 2017a) for finite mixture regression models, and Montuelle
et al. (2014) and Nguyen et al. (2020c) for SGaME models. However, to the best of our knowledge, in
Sections 3.2 and 3.3 (see also in Nguyen et al., 2021c,b), we are the first to provide finite-sample oracle
inequalities for PMLE of GLoME and BLoME models, via Theorems 3.2.3 and 3.3.2, respectively.
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Note that for the Gaussian gating parameters, the technique for handling the logistic weights in
the SGaME models of Montuelle et al. (2014) is not directly applicable to the GLoME or BLoME
framework, due to the quadratic form of the canonical link. Therefore, we propose a reparameterization
trick to bound the metric entropy of the Gaussian gating parameters space; see Equation (3.2.25) and
Section 3.2.5.2 for more details. Furthermore, in Nguyen et al. (2021c, Theorem 3.2.3), see also
Section 3.2, we extend one of corollaries (in which the authors used linear combination of bounded
functions for the functions in softmax gating networks) from Montuelle et al. (2014, Theorem 1) to
the quadratic form of the canonical link from gating networks, see more details in Equation (3.2.25)
and Lemma 3.2.10.

The main contribution of Chapter 3 is a theoretical result: a non-asymptotic oracle bound on
the risk that provides the lower bound on the regularization parameters that ensures non-asymptotic
control of the estimator Kullback–Leibler loss for the GLoME or BLoME model.

The goal of this chapter is to study the conditions on penalty functions that guarantee the weak
oracle inequality for GLoME and BLoME models. As such, the rest of Chapter 3 is organized as follows.
In Sections 3.2.1 and 3.3.1, we introduce the notations and frameworks for GLoME and BLoME
models with corresponding special cases, GLLiM and BLLiM models, respectively. In Sections 3.2.2.2
and 3.3.2, we state the main results of Chapter 3: weak oracle inequalities satisfied by the PMLEs.
Our results are then illustrated via numerical experiments in Section 3.2.3. Sections 3.2.4 and 3.3.3
are devoted to the proofs of the main results, based on a general model selection theorem. The proofs
of technical lemmas can be found in Sections 3.2.5 and 3.3.4.

3.2 A non-asymptotic model selection in the Gaussian-gated local-
ized mixture of experts regression model

3.2.1 Notation and framework

We consider a regression framework and aim at capturing the potential nonlinear relationship between
the multivariate response Y = (Yj)j∈[L] , [L] = {1, . . . , L}, and the set of covariates X = (Xj)j∈[D].

Let (Xi,Yi)i∈[n] ∈ (X × Y)n ⊂
(
RD × RL

)n
be a random sample, and let x and y denote the observed

values of the random variables X and Y, respectively.

3.2.1.1 GLoME models

We consider an extension of the MoE model of Xu et al. (1995), which extended the original MoE
from Jacobs et al. (1991) to a regression setting. More specifically, we consider the following GLoME
model, defined by (3.2.1), which is motivated by an inverse regression framework where the role of
input and response variables should be exchanged such that Y becomes the covariates and X plays
the role of a multivariate response. Then its corresponding conditional density is defined as follows:

sψK,d(x|y) =

K∑
k=1

gk (y;ω)φD (x;υk,d(y),Σk) , (3.2.1)

gk (y;ω) =
πkφL (y; ck,Γk)∑K
j=1 πjφL (y; cj ,Γj)

. (3.2.2)

Here, gk(·;ω) and φD (·;υk,d(·),Σk), k ∈ [K], K ∈ N?, d ∈ N?, are called Gaussian gating functions
and Gaussian experts, respectively. Furthermore, we decompose the parameters of the model as
follows: ψK,d = (ω,υd,Σ) ∈ ΩK ×ΥK,d ×VK =: ΨK,d, ω = (π, c,Γ) ∈ (ΠK−1 ×CK × V ′K) =: ΩK ,
π = (πk)k∈[K], c = (ck)k∈[K], Γ = (Γk)k∈[K], υd = (υk,d)k∈[K] ∈ ΥK,d, and Σ = (Σk)k∈[K] ∈ VK .

Note that ΠK−1 =
{

(πk)k∈[K] ∈ (R+)
K
,
∑K

k=1 πk = 1
}

is a K − 1 dimensional probability simplex,

CK is a set of K-tuples of mean vectors of size L × 1, V ′K is a sets of K-tuples of elements in S++
L ,

where S++
L denotes the collection of symmetric positive definite matrices on RL, ΥK,d is a set of

K-tuples of mean functions from RL to RD depending on a degree d (e.g., a degree of polynomials),
and VK is a set containing K-tuples from S++

D .
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In order to establish our oracle inequality, Theorem 3.2.3, we need to assume that Y is a bounded
set in RL and make explicit some classical boundedness conditions on the parameter space.

3.2.1.2 Gaussian gating functions

For a matrix A, let m(A) and M(A) be, respectively, the modulus of the smallest and largest eigenval-
ues of A. We shall restrict our study to bounded Gaussian gating parameter vectors ω = (π, c,Γ) ∈
ΩK . Specifically, we assume that there exist deterministic positive constants aπ, Ac, aΓ, AΓ, such that
ω belongs to Ω̃K , where

Ω̃K = {ω ∈ ΩK : ∀k ∈ [K], ‖ck‖∞ ≤ Ac, aΓ ≤ m (Γk) ≤M (Γk) ≤ AΓ, aπ ≤ πk} . (3.2.3)

We denote the space of gating functions as

PK =

{
g = (gk (·;ω))k∈[K] : ∀k ∈ [K], gk (y;ω) =

πkφL (y; ck,Γk)∑K
j=1 πjφL (y; cj ,Γj)

,ω ∈ Ω̃K

}
.

3.2.1.3 Gaussian experts

Following the same structure for the means of Gaussian experts from Montuelle et al. (2014), the
set ΥK,d will be chosen as a tensor product of compact sets of moderate dimension (e.g., a set of
polynomials of degree smaller than d, whose coefficients are smaller in absolute values than TΥ). Then,
ΥK,d is defined as a linear combination of a finite set of bounded functions whose coefficients belong
to a compact set. This general setting includes polynomial bases when the covariates are bounded,
Fourier bases on an interval, as well as suitably renormalized wavelet dictionaries. More specifically,
ΥK,d = ⊗k∈[K]Υk,d =: ΥK

k,d, where Υk,d = Υb,d, ∀k ∈ [K], and

Υb,d =

y 7→

(
d∑
i=1

α
(j)
i ϕΥ,i(y)

)
j∈[D]

=: (υd,j(y))j∈[D] : ‖α‖∞ ≤ TΥ

 . (3.2.4)

Here, d ∈ N?, TΥ ∈ R+, and (ϕΥ,i)i∈[d] is a collection of bounded functions on Y. In particular, we

focus on the bounded Y case and assume that Y = [0, 1]L, without loss of generality. In this case,
ϕΥ,i can be chosen as monomials with maximum (non-negative) degree d: yr =

∏L
l=1 yrl

l . Recall that
a multi-index r = (rl)l∈[L] , rl ∈ N? ∪ {0} ,∀l ∈ [L], is an L-tuple of nonnegative integers. We define

|r| =
∑L

l=1 rl and the number |r| is called the order or degree of yr. Then, ΥK,d = ΥK
p,d, where

Υp,d =

y 7→

 d∑
|r|=0

α
(j)
r yr


j∈[D]

=: (υd,j(y))j∈[D] : ‖α‖∞ ≤ TΥ

 . (3.2.5)

For the covariances of Gaussian experts, we follow the classical covariance matrix sets described by
Celeux & Govaert (1995). In general situation, sets VK depend on the noise model chosen. Formally,
we consider the set

VK =

{(
BkPkAkP

>
k

)
k∈[K]

: ∀k ∈ [K], B− ≤ Bk ≤ B+,Pk ∈ SO(D),Ak ∈ A (λ−, λ+)

}
, (3.2.6)

where any covariance matrix Σk can be decomposed into the form BkPkAkP
>
k , such that Bk = |Σk|1/D

is a positive scalar corresponding to the volume, Pk is the matrix of eigenvectors of Σk and Ak the
diagonal matrix of normalized eigenvalues of Σk; B− ∈ R+, B+ ∈ R+, A (λ−, λ+) is a set of diagonal
matrices Ak, such that |Ak| = 1 and ∀i ∈ [D], λ− ≤ (Ak)i,i ≤ λ+; and SO(D) is the special orthogonal
group of dimension D. For example, in the most general case, we can assume that the matrices VK are
different for all Gaussian experts. Alternatively, they can share the same volume or diagonalization
matrix.

Next, a characterization of GLLiM model, an affine instance of GLoME model, is described in
Section 3.2.1.4 and is especially useful for high-dimensional regression data.
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3.2.1.4 High-dimensional regression via GLLiM models

A GLLiM model, as originally introduced in Deleforge et al. (2015c), is used to capture the nonlinear
relationship between the response and the set of covariates from a high-dimensional regression data,
typically in the case when D � L, by the K locally affine mappings:

Y =

K∑
k=1

I (Z = k) (A∗kX + b∗k + E∗k) . (3.2.7)

Here, I is an indicator function and Z is a latent variable capturing a cluster relationship, such that
Z = k if Y originates from cluster k ∈ [K]. Cluster specific affine transformations are defined by
matrices A∗k ∈ RL×D and vectors b∗k ∈ RL. Furthermore, E∗k are an error terms capturing both the
reconstruction error due to the local affine approximations and the observation noise in RL.

Following the common assumption that E∗k is a zero-mean Gaussian variable with covariance matrix
Σ∗k ∈ RL×L, it holds that

p (Y = y|X = x, Z = k;ψ∗K) = φL (y; A∗kx + b∗k,Σ
∗
k) , (3.2.8)

where we denote by ψ∗K the vector of model parameters and φL is the probability density function
(PDF) of a Gaussian distribution of dimension L. In order to enforce the affine transformations to be
local, X is defined as a mixture of K Gaussian components as follows:

p (X = x|Z = k;ψ∗K) = φD (x; c∗k,Γ
∗
k) , p (Z = k;ψ∗k) = π∗k, (3.2.9)

where c∗k ∈ RD,Γ∗k ∈ RD×D, π∗ = (π∗k)k∈[K] ∈ Π∗K−1, and Π∗K−1 is the K− 1 dimensional probability
simplex. Then, according to formulas for conditional multivariate Gaussian variables and the following
hierarchical decomposition

p (Y = y,X = x;ψ∗K) =

K∑
k=1

p (Y = y|X = x, Z = k;ψ∗K) p (X = x|Z = k;ψ∗K) p (Z = k;ψ∗K) ,

=
K∑
k=1

π∗kφD (x; c∗k,Γ
∗
k)φL (y; A∗kx + b∗k,Σ

∗
k) ,

we obtain the following forward conditional density (Deleforge et al., 2015c):

p (Y = y|X = x;ψ∗K) =
K∑
k=1

π∗kφD (x; c∗k,Γ
∗
k)∑K

j=1 π
∗
jφD

(
x; c∗j ,Γ

∗
j

)φL (y; A∗kx + b∗k,Σ
∗
k) , (3.2.10)

where ψ∗K = (π∗,θ∗K) ∈ ΠK−1 ×Θ∗K =: Ψ∗K . Here, θ∗K = (c∗k,Γ
∗
k,A

∗
k,b

∗
k,Σ

∗
k)k∈[K] and

Θ∗K =
(
RD × S++

D (R)× RL×D × RL × S++
L (R)

)K
.

Without assuming anything on the structure of parameters, the dimension of the model (denoted by
dim (·)), is defined as the total number of parameters that has to be estimated, as follows:

dim (Ψ∗K) = K

(
1 +D(L+ 1) +

D(D + 1)

2
+
L(L+ 1)

2
+ L

)
− 1.

It is worth mentioning that dim (ΨK) is very large compared to the sample size (see, e.g., Deleforge
et al., 2015c, Devijver et al., 2017, Perthame et al., 2018 for more details in their real data sets)
whenever D � n and D � L. Furthermore, it is more realistic to make assumption on the residual
covariance matrices Σ∗k of error vectors E∗k rather than on Γ∗k (cf. Deleforge et al., 2015c, Section 3).
This justifies the use of the inverse regression trick from Deleforge et al. (2015c), which leads a drastic
reduction in the number of parameters to be estimated.
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More specifically, in (3.2.10), the roles of input and response variables should be exchanged such
that Y becomes the covariates and X plays the role of the multivariate response. Therefore, its
corresponding inverse conditional density is defined as a Gaussian locally-linear mapping (GLLiM)
model, based on the previous hierarchical Gaussian mixture model, as follows:

p (X = x|Y = y, Z = k;ψK) = φD (x; Aky + bk,Σk) , (3.2.11)

p (Y = y|Z = k;ψK) = φL (y; ck,Γk) , p (Z = k;ψk) = πk, (3.2.12)

p (X = x|Y = y;ψK) =
K∑
k=1

πkφL (y; ck,Γk)∑K
j=1 πjφL (y; cj ,Γj)

φD (x; Aky + bk,Σk) , (3.2.13)

where Σk is aD×D covariance structure (usually diagonal, chosen to reduce the number of parameters)
automatically learnt from data and ψK is the set of parameters, denoted by ψK = (π,θK) ∈ ΠK−1×
ΘK =: ΨK . An intriguing feature of the GLLiM model is described in Lemma 3.2.1, which is proved
in Section 3.2.5.1.

Lemma 3.2.1. The parameter ψ∗K in the forward conditional PDF, defined in (3.2.10), can then be
deduced from ψK in (3.2.13) via the following one-to-one correspondence:

θK =


ck
Γk
Ak

bk
Σk


k∈[K]

7→


c∗k
Γ∗k
A∗k
b∗k
Σ∗k


k∈[K]

=


Akck + bk

Σk + AkΓkA
>
k

Σ∗kA
>
k Σ−1

k

Σ∗k(Γ
−1
k ck −A>k Σ−1

k bk)(
Γ−1
k + A>k Σ−1

k Ak

)−1


k∈[K]

∈ Θ∗K , (3.2.14)

with the note that π∗ ≡ π.

3.2.1.5 Collection of GLoME models

In this paper, we choose the degree of polynomials d and the number of components K among finite
sets DΥ = [dmax] and K = [Kmax], respectively, where dmax ∈ N? and Kmax ∈ N? may depend on the
sample size n. We wish to estimate the unknown inverse conditional density s0 by conditional densities
belonging to the following collection of inverse models (Sm)m∈M, M = {(K, d) : K ∈ K, d ∈ DΥ},

Sm =
{

(x,y) 7→ sψK,d(x|y) =: sm(x|y) : ψK,d = (ω,υd,Σ) ∈ Ω̃K ×ΥK,d ×VK =: Ψ̃K,d

}
, (3.2.15)

where Ω̃K , ΥK,d and VK are define previously in (3.2.3), (3.2.5) (or more general (3.2.4)) and (3.2.6),
respectively.

Remark 3.2.2. It is worth mentioning that we can also define the collection of the forward models
in the same framework as in (3.2.15). More precisely, the unknown forward conditional density s∗0 is
estimated via the following collection of forward model S∗ = (S∗m)m∈M, with M = K ×DΥ, and

S∗m =
{

(x,y) 7→ sψ∗K (y|x) =: s∗m(y|x) : ψ∗K = (ω∗,υ∗d,Σ
∗) ∈ Ω̃∗K ×Υ∗K,d ×V∗K =: Ψ̃∗K,d

}
, (3.2.16)

where Ω̃∗K , Υ∗K,d and V∗K are define similar to (3.2.3), (3.2.5) (or more general (3.2.4)) and (3.2.6),
respectively.

Note that for sake of simplicity of notation via avoiding the utilization of “∗” on the parameters,
we focus on the collection of inverse models, S, which is defined in (3.2.15), as we are motivated
by the inverse conditional densities (3.2.13) of the GLLiM models. However, our finite-sample oracle
inequality, Theorem 3.2.3, holds for any collection of GLoME models satisfying the required regularity
conditions. In particular, Theorem 3.2.3 can be applied to the forward model S∗ = (S∗m)m∈M,
established in (3.2.16), if we consider y and x as realizations of predictors and response variables,
respectively.
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3.2.2 Weak oracle inequality

3.2.2.1 Penalized maximum likelihood estimator and losses

In the context of PMLE, given the collection of conditional densities Sm, we aim to estimate s0 by
the η-minimizer ŝm of the negative log-likelihood (NLL):

n∑
i=1

− ln (sŝm (xi|yi)) ≤ inf
sm∈Sm

n∑
i=1

− ln (sm (xi|yi)) + η, (3.2.17)

where the error term η is necessary when the infimum may not be unique or even not be reached.
As always, using the NLL of the estimate in each model as a criterion is not sufficient. It is

an underestimation of the risk of the estimate and this leads to choosing models that are too com-
plex. By adding a suitable penalty pen(m), one hopes to compensate between the variance term,
KL⊗n(s0, ŝm)− infsm∈Sm

KL⊗n (s0, sm), and the bias, infsm∈Sm
KL⊗n (s0, sm), where KL⊗n is defined

later. For a given choice of pen(m), the selected model Sm̂ is chosen as the one whose index is an
η′-almost minimizer of the sum of the NLL and this penalty:

n∑
i=1

− ln (ŝm̂ (xi|yi)) + pen (m̂) ≤ inf
m∈M

(
n∑
i=1

− ln (ŝm (xi|yi)) + pen(m)

)
+ η′. (3.2.18)

Note that ŝm̂ is then called the η′-penalized likelihood estimator and depends on both the error terms
η and η′. From hereon in, the term selected model or best data-driven model or estimate is used to
indicate that it satisfies the definition in (3.2.18).

In the maximum likelihood approach, the Kullback–Leibler divergence is the most natural loss
function, which is defined for two densities s and t by

KL(s, t) =

{∫
RD ln

(
s(y)
t(y)

)
s(y)dy if sdy is absolutely continuous w.r.t. tdy,

+∞ otherwise.

However, to take into account the structure of conditional densities and the random covariates Y[n],
we consider the tensorized Kullback–Leibler divergence KL⊗n, defined as:

KL⊗n(s, t) = EY[n]

[
1

n

n∑
i=1

KL (s (·|Yi) , t (·|Yi))

]
, (3.2.19)

if sdy is absolutely continuous w.r.t. tdy, and +∞ otherwise. Note that if the predictors are fixed,
this divergence is the classical fixed design type divergence in which there is no expectation. We refer
to our result as a weak oracle inequality, because its statement is based on a smaller divergence, when
compared to KL⊗n, namely the tensorized Jensen-Kullback–Leibler divergence:

JKL⊗n
ρ (s, t) = EY[n]

[
1

n

n∑
i=1

1

ρ
KL (s (·|Yi) , (1− ρ) s (·|Yi) + ρt (·|Yi))

]
,

with ρ ∈ (0, 1). We note that JKL⊗n
ρ was first used in Cohen & Le Pennec (2011). However, a version

of this divergence appears explicitly with ρ = 1
2 in Massart (2007), and it is also found implicitly in

Birgé et al. (1998). This loss is always bounded by 1
ρ ln 1

1−ρ but behaves like KL⊗n, when t is close to
s. The main tools in the proof of such a weak oracle inequality are deviation inequalities for sums of
random variables and their suprema. These tools require a boundedness assumption on the controlled
functions which is not satisfied by − ln sm

s0
, and thus also not satisfied by KL⊗n. Therefore, we consider

instead the use of JKL⊗n
ρ . In particular, in general, it holds that Cρ d2⊗n ≤ JKL⊗n

ρ ≤ KL⊗n, where

Cρ = 1
ρ min

(
1−ρ
ρ , 1

)(
ln
(

1 + ρ
1−ρ

)
− ρ
)

(see Cohen & Le Pennec 2011, Prop. 1) and d2⊗n is a

tensorized extension of the squared Hellinger distance d2⊗n, defined by

d2⊗n(s, t) = EY[n]

[
1

n

n∑
i=1

d2 (s (·|Yi) , t (·|Yi))

]
.
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Moreover, if we assume that, for any m ∈ M and any sm ∈ Sm, s0dλ � smdλ, then (see Montuelle
et al., 2014, Cohen & Le Pennec, 2011)

Cρ
2 + ln ‖s0/sm‖∞

KL⊗n(s0, sm) ≤ JKL⊗n
ρ (s0, sm). (3.2.20)

3.2.2.2 Main result

The following result provides a lower bound on the penalty function, pen(m), which guarantees that
the PMLE selects a model that performs almost as well as the best model.

Theorem 3.2.3 (Weak oracle inequality). Assume that we observe
(
x[n],y[n]

)
, arising from an un-

known conditional density s0. Given a collection of GLoME models, S = (Sm)m∈M, there is a
constant C such that for any ρ ∈ (0, 1), for any m ∈ M, zm ∈ R+, Ξ =

∑
m∈M e−zm < ∞ and any

C1 > 1, there is a constant κ0 depending only on ρ and C1, such that if for every index m ∈ M,
pen(m) ≥ κ [(C + lnn) dim (Sm) + zm] with κ > κ0, then the η′-penalized likelihood estimator ŝm̂,
defined in (3.2.17) and (3.2.18), satisfies

EX[n],Y[n]

[
JKL⊗n

ρ (s0, ŝm̂)
]
≤ C1 inf

m∈M

(
inf

sm∈Sm

KL⊗n (s0, sm) +
pen(m)

n

)
+
κ0C1Ξ

n
+
η + η′

n
.

(3.2.21)

Remark 3.2.4. As per the SGaME models from Montuelle et al. (2014), we also have to deal with
three potential issues: the differences of divergence on the left (JKL⊗n

ρ ) and the right (KL⊗n) hand

side, C1 > 1, and the relationship between pen(m)
n and the variance.

The first issue is important as in general we have JKL⊗n
ρ (s0, sm) ≤ KL⊗n(s0, sm). However,

(3.2.20) ensures that the two divergences are equivalent under regularity conditions. Namely, when

sup
m∈M

sup
sm∈Sm

‖s0/sm‖∞ <∞.

Such a strong assumption is satisfied as long as X is compact, s0 is compactly supported, and the
regression functions are uniformly bounded, and under the condition that there is a uniform lower
bound on the eigenvalues of the covariance matrices.

For a fixed collection M and s0 /∈ S, the error bound converge to C1 infsm∈Sm
KL⊗n (s0, sm) as

n → ∞, which may be large. To reinforce the power of Theorem 3.2.3, it would be very interesting
to prove the consistency result for ŝm̂ where M =Mn grows with the number of observations, using
results from approximation theory in the sense of KL⊗n. Moreover, we believe that it would be
nontrivial to establish a similar adaptive conditional density as in Maugis-Rabusseau & Michel (2013,
Theorem 2.9). Therefore, we leave such interesting problems for future research. Nevertheless, as we
consider GLoME models, some recent results from Nguyen et al. (2019, 2021a) imply that if we take a
sufficiently large number of mixture components, we can approximate a broad class of densities, and
thus the term on the right hand side is small for K sufficiently large. This improves the error bound
even when s0 does not belong to Sm for any m ∈ M. We aim to provide an oracle inequality with
C1 = 1 in future work, which is similar with Rigollet (2012), Dalalyan & Sebbar (2018) .

For the last issue, we claim that pen(m)
n is approximately proportional to the asymptotic variance

in the parametric case: dim(Sm)
n . We shall consider the condition (3.2.22) for GLoME models. As

shown in the proof of Theorem 3.2.3, in fact we can replace the assumption on pen(m) by a milder
one. More precisely, given a constant C, which we specify later, there is a constant κ0 depending only
on ρ and C1, such that with κ > κ0, for every index m ∈M, we may set

pen(m) ≥ κ

dim(Sm)

2
(√

C +
√
π
)2

+

ln
n(√

C +
√
π
)2

dim (Sm)


+

+ zm

 . (3.2.22)
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Furthermore, based on the Appendix B.4 from Cohen & Le Pennec (2011), we can make explicit the
dependence of the constant κ0, with respect to ρ and C1 as follows. For any ρ ∈ (0, 1) and C1 > 1,
define εpen = 1− 1

C1
. Then κ0 is determined by

κ0 =

κ′0 (κ′1 + κ′2)2

(√
1 +

72Cρεpen

ρκ′0(κ′1+κ′2)
2 + 1

)
2Cρεpen

+
18

ρ
,

where εd is a given positive constant and

κ′0 =
2 (2 + εd)

1 + εd
, κ′1 =

1√
ρ (1− ρ)

(
3κ′3
√

2 + 12 + 16

√
1− ρ
ρ

)
, κ′3 ≤ 27, κ′2 =

1√
ρ (1− ρ)

(
42 +

3

4
√
κ′0

)
.

For example, if ρ = 1
2 , C1 = 2, εd = 1, κ′3 = 27, then εpen = 1− 1

C1
= 1

2 , κ′0 = 3, κ′1 = 2(81
√

2+28) =

56 + 162
√

2, κ′2 = 2(42 +
√

3
4 ) = 84 +

√
3

2 , and

Cρ =
1

ρ
min

(
1− ρ
ρ

, 1

)(
ln

(
1 +

ρ

1− ρ

)
− ρ
)

= 2

(
ln 2− 1

2

)
= 2 ln 2− 1,

κ0 =

κ′0 (κ′1 + κ′2)2

(√
1 + 72(2 ln 2−1)

κ′0(κ′1+κ′2)
2 + 1

)
2 ln 2− 1

+ 36

=

3
(

140 + 162
√

2 +
√

3
2

)2
(√

1 + 72(2 ln 2−1)

3
(

140+162
√

2+
√

3
2

)2 + 1

)
2 ln 2− 1

+ 36

≈ 2126069.

According to the previous example, we can see that the theoretical penalty is lower bound by κ0,
which can be too large in practice. This result is not surprising since according to Cohen & Le Pennec
(2011, Appendix B.4, page 40, line 7), if we choose εd small enough then κ0 scales proportionally to

1

Cρρ(1− ρ)εpen
=

ρ

(1− ρ)2
(

ln
(

1 + ρ
1−ρ

)
− ρ
)

and thus explodes to +∞ when ρ goes to 1 and C1 goes to 1. Therefore, it is important to study a
natural question whether the constant κ0 appearing in the penalty can be estimated from the data
without loosing a theoretical guaranty on the performance? No definite answer exists so far for MoE
regression models, however at least our numerical experiment in Section 3.2.3 shows that the slope
heuristic proposed by Birgé & Massart (2007) may lead to a good practical solution. In particular, we
seek to mathematically and fully justify the slope heuristic in MoE regression models as in least-squares
regression on a random (or fixed) design with regressogram (projection) estimators, respectively Birgé
& Massart (2007), Arlot & Massart (2009), Arlot & Bach (2009), Arlot (2019). We summerize this
interesting and important problem in Open Problem 5.4.5.

Remark 3.2.5. The main drawback of the previous weak oracle inequality is using different diver-
gences and requiring some strong assumptions for the inequality to be considered a proper oracle
inequality. To illustrate the strictness of the compactness assumption for s0, we only need to consider
s0 as a univariate Gaussian PDF, which obviously does not satisfy such a hypothesis. This motivates
us to investigate more an l1-oracle inequality of GLoME with the LASSO estimator, which is an
extension of Nguyen et al. (2020c, Theorem 3.1) for SGaME and is considered as an l1-ball model
selection procedure. Such an l1-oracle inequality can be considered as a complementary to the Theo-
rem 3.2.3. In particular, the most intriguing property of the l1-oracle inequality is that it requires only
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the boundedness assumption of the parameters of the model, which is also required in Theorem 3.2.3,
as well as in Stadler et al. (2010), Meynet (2013), Devijver (2015a), Nguyen et al. (2020c). Note that
such a mild assumption is quite common when working with MLE (cf. Baudry 2009, Maugis & Michel
2011b), to tackle the problem of the unboundedness of the likelihood at the boundary of the parameter
space McLachlan & Peel 2000, Redner & Walker 1984, and to prevent it from diverging. Nevertheless,
by using the smaller divergence: JKL⊗n

ρ (or more strict assumptions on s0 and sm, with the same
divergence KL⊗n as ours), Theorem 3.2.3 obtain a faster rate of convergence of order 1/n, while in
the l1-oracle inequality, we can only obtain a rate of convergence of order 1/

√
n. It is important to

emphasize that we can relatively compare the rate of convergences of PLMEs and Lasso estimators if
the error terms 1/n of the oracle inequalities resulting from the penalization and the 1/

√
n of the l1-

oracle inequality are both dominant concerning all other constants. Therefore, in the case where there
is no guarantee of a compact support of s0 or uniformly bounded regression functions, the l1-oracle
inequality gives a theoretical foundation for the l1-ball model selection procedure, with the order of
convergence of 1/

√
n, with only the boundedness assumption on the parameter space.

3.2.3 Numerical experiments

Note that https://github.com/Trung-TinNGUYEN/NamsGLoME-Simulation contains our numerical
experiments in Section 3.2.3, which are written in the R programming language (R Core Team, 2020).

3.2.3.1 The procedure

We illustrate our theoretical results in settings similar to those considered by Chamroukhi et al.
(2010) and Montuelle et al. (2014), regarding simulated as well as real data sets. We first observe n
random samples

(
x[n],y[n]

)
from an forward conditional density s∗0, and look for the best data-driven

estimate among s∗m ∈ S∗m,m ∈M, defined in (3.2.16). We considered the simple case where the mean
experts are linear functions, which leads to GLoME and supervised GLLiM are identical models. Our
aim is to estimate the best data-driven number of components K, as well as the model parameters.
As described in more detail in Deleforge et al. (2015c), we use a GLLiM-EM algorithm to estimate
the model parameters for each K, and select the optimal model using the penalized approach that
was described earlier. More precisely, in the following numerical experiments, the GLoME model is
learned using functons from a package xLLiM, available on CRAN. It targets to solve the inverse
regression problem, defined in (3.2.13), and obtain the inverse maximum likelihood estimators (MLE)
(ŝm (xi|yi))i∈[N ], m ∈M, then via (3.2.14), we obtain the forward MLE (ŝ∗m (yi|xi))i∈[N ], m ∈M.

According to the general procedure for model selection, we first compute the forward MLE for each
model m ∈ M, where M = K. Then, we select the model that satisfies the definition (3.2.18) with
pen(m) = κdim(S∗m), where κ is a positive hyperparameter. In particularly, we need a data-driven
method to choose κ, even though our Theorem 3.2.3 and Remark 3.2.2 guarantee that there exists
a κ large enough for which the estimate has the desired properties. According to the AIC or the
BIC, we can select κ = 1 or κ = lnn

2 . An important limitation of these criteria, however, is that
they are based on asymptotic theory. To overcome this difficulty, the slope heuristic was proposed
by Birgé & Massart (2007) (see, also Baudry et al. 2012). Furthermore, our Theorem 3.2.3 provides
some theoretical justifications for the shapes of penalty functions when utilizing the slope heuristic
approach in a finite sample setting. Thus, we shall concentrate our attention on the slope heuristic
for choosing the number of mixture components in our numerical experiments.

3.2.3.2 Simulated data sets

Note that our main objective here is to investigate how well the empirical tensorized Kullback–Leibler
divergence between the true model (s∗0) and the selected model ŝ∗m̂ follows the finite-sample oracle
inequality of Theorem 3.2.3, as well as the rate of convergence of the error term. Therefore, we
focus on 1-dimensional data sets, that is, with L = D = 1. Beyond the statistical estimation and
model selection objectives considered here, the dimensionality reduction capability of GLLiM in high-
dimensional regression data, typically D � L, can be found in (Deleforge et al., 2015c, Section 6).
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We construct simulated data sets following two scenarios: a well-specified (WS) case in which the
true forward conditional density belongs to the class of proposed models:

s∗0(y|x) =
φ(x; 0.2, 0.1)

φ(x; 0.2, 0.1) + φ(x; 0.8, 0.15)
φ(y;−5x+ 2, 0.09)

+
φ(x; 0.8, 0.15)

φ(x; 0.2, 0.1) + φ(x; 0.8, 0.15)
φ(y; 0.1x, 0.09),

and a misspecified (MS) case, whereupon such an assumption is not true:

s∗0(y|x) =
φ(x; 0.2, 0.1)

φ(x; 0.2, 0.1) + φ(x; 0.8, 0.15)
φ
(
y;x2 − 6x+ 1, 0.09

)
+

φ(x; 0.8, 0.15)

φ(x; 0.2, 0.1) + φ(x; 0.8, 0.15)
φ
(
y;−0.4x2, 0.09

)
.

Figures 3.1a and 3.1e show some typical realizations of 2000 data points arising from the WS and MS
scenarios. Note that by using GLoME, our estimator performs well in the WS setting (Figures 3.1b
to 3.1d). In the MS case, we expect our algorithm to automatically balance the model bias and
its variance (Figures 3.1f to 3.1h), which leads to the choice of a complex model, with 4 mixture
components. This observation will be elaborated upon in the subsequent experiments.

Firstly, by using the capushe (CAlibrating Penalities Using Slope HEuristics) package in R (Arlot
et al., 2016, Baudry et al., 2012), we can select the penalty coefficient, along with the number of
mixture components K. This heuristic comprises two possible criteria: the slope criterion and the
jump criterion. The first criterion consists of computing the asymptotic slope of the log-likelihood
(Figure 3.2), drawn according to the model dimension, and then penalizing the log-likelihood by twice
the slope times the model dimension. Regarding the second criterion, one aims to represent the
dimension of the selected model according to κ (Figure 3.3), and find κ̂, such that if κ < κ̂, then
the dimension of the selected model is large, and of reasonable size, otherwise. The slope heuristic
prescribes then the use of κ = 2κ̂. In our simulated data sets, Figure 3.4 shows that the jump criterion
appears to work better. The slope criterion sometimes chooses very highly complex models in the WS
case, with the problem exacerbated in the MS case.

Next, a close inspection shows that the bias-variance trade-off differs between the two examples.
We run our experiment over 100 trials with K ∈ K = [20], using both the jump and slope criteria.
The first remark is that the best data-driven choice of K = 2 appears to be selected with very high
probability, even for large n = 10000 in the WS case. This can be observed in Figures 3.4a, 3.4b,
3.4e and 3.4f. In the MS case, the best data-driven choice for K should balance between the model
approximation error term and the variance one, which is observed in Figures 3.4c, 3.4d, 3.4g and 3.4h.
Here, the larger the number of samples n, the larger the value of K that is selected as optimal.

From hereon in, we focus on the jump instead of slope criterion, due to its stability regarding
the choice of K. We wish to measure the performances of our chosen GLoME models in term of
tensorized Kullback–Leibler divergence, KL⊗n, which can not be calculated exactly in the case of
Gaussian mixtures. Therefore, we evaluate the divergence using a Monte Carlo simulation, since
we know the true density. We should note that the variability of this randomized approximation
has been verified to be negligible in practice, which is also supported in the numerical experiments
by Montuelle et al. (2014). More precisely, we compute the Monte Carlo approximation for the
tensorized Kullback–Leibler divergence as follows. First, note that the Monte Carlo approximation
for tensorized Kullback–Leibler divergence between the true model (s∗0) and the selected model ŝ∗m̂
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Figure 3.1: Clustering deduced from the estimated conditional density of GLoME by a MAP principle
with 2000 data points of example WS and MS. The dash and solid black curves present the true and
estimated mean functions.
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3.2. A non-asymptotic model selection in the Gaussian-gated localized mixture of experts regression
model
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(b) Example MS with 2000 data points
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Figure 3.2: Plot of the selected model dimension using the slope criterion.

can be approximated as

KL⊗n (s∗0, ŝ
∗
m̂) = EX[n]

[
1

n

n∑
i=1

KL (s∗0 (·|xi) , ŝ∗m̂ (·|xi))

]

≈ 1

n

n∑
i=1

KL (s∗0 (·|xi) , ŝ∗m̂ (·|xi)) (using 1 data point to approximate EX [·])

=
1

n

n∑
i=1

1

ny

ny∑
j=1

ln

(
s∗0 (yi,j |xi)
ŝ∗m̂ (yi,j |xi)

)
,

where the data xi, i ∈ [n], and (yi,j)j∈[ny ] are drawn from s∗0 (·|xi). Then, EX[n],Y[n]

[
KL⊗n

(
s∗0, ŝ

∗
m̂

)]
is approximated again by averaging over Nt = 100 Monte Carlo trials. Therefore, the simulated data
used for approximation can be written as (xi,yi,j)t with i ∈ [n], j ∈ [ny] , t ∈ [Nt].

Based on the approximation, Figure 3.5 shows the box plots and the mean of the tensorized
Kullback–Leibler divergence over 100 trials, based on the jump criterion. Our box-plots confirm that
the mean tensorized Kullback–Leibler divergence between ŝ∗K and s∗0, over K ∈ {1, . . . , 20} number
of mixture components, is always larger than the mean of tensorized Kullback–Leibler divergence
between the penalized estimator ŝ∗

K̂
and s∗0, which is consistent with Theorem 3.2.3. In particularly,

if the true model belongs to our nested collection, the mean tensorized Kullback–Leibler divergence
seems to behave like dim(S∗m)

2n (shown by a dotted line), which can be explained by the AIC heuristic.
More precisely, we firstly assume that

S∗m =
{
X × Y 3 (x,y) 7→ s∗m := sψ∗m(y|x) : ψ∗m ∈ Ψ∗m ⊂ Rdim(S∗m)

}

is identifiable and make some strong regularity assumptions on ψ∗m 7→ s∗ψm . Further, we assume the
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Figure 3.3: Plot of the selected model dimension using the jump criterion.
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(b) 10000 WS data points using jump criterion
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(c) 2000 MS data points using jump criterion
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(e) 2000 WS data points using slope criterion
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(f) 10000 WS data points using slope criterion

Selected number of classes

E
m

pi
ric

al
 P

ro
ba

bi
lit

y

5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

(g) 2000 MS data points using slope criterion
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Figure 3.4: Comparison histograms of selected K between WS and MS cases using jump and slope
criteria over 100 trials.
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(b) Example WS with 10000 data points
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(c) Example MS with 2000 data points
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Figure 3.5: Box-plot of the tensorized Kullback–Leibler divergence according to the number of mixture
components using the jump criterion over 100 trials. The tensorized Kullback–Leibler divergence of
the penalized estimator ŝ

K̂
is shown in the right-most box-plot of each graph.

existence of dim (S∗m)× dim (S∗m) matrices A (ψ∗m) and B (ψ∗m), which are defined as follows:

[A (ψ∗m)]k,l = EX[n]

[
1

n

n∑
i=1

∫ −∂2 ln sψ∗m
∂ψ∗m,k∂ψ

∗
m,l

(y|xi) s∗0 (y|xi) dy

]
,

[B (ψ∗m)]k,l = EX[n]

[
1

n

n∑
i=1

∫
∂ ln sψ∗m
∂ψ∗m,k

(y|xi)
∂ ln sψ∗m
∂ψ∗m,l

(y|xi) s∗0 (y|xi) dy

]
.

Then, the results from White (1982) and Cohen & Le Pennec (2011) imply that EX[n],Y[n]
[KL⊗n (s∗0, ŝ

∗
m)]

is asymptotically equivalent to

KL⊗n
(
s∗0, sψ∗∗m

)
+

1

2n
tr
(
B (ψ∗∗m) A (ψ∗∗m)−1

)
,

where we defined ψ∗∗m = arg minsψ∗m∈S
∗
m

KL⊗n
(
s∗0, sψ∗m

)
.

In particularly, EX[n],Y[n]
[KL⊗n (s∗0, ŝ

∗
m)] becomes asymptotically equivalent to 1

2n dim (S∗m), when-
ever s∗0 belongs to the model collection S∗m. Furthermore, even though there is no theoretical guarantee,

the slope of the mean error in the misspecified case seems also to grow at the same rate as dim(S∗m)
2n ,

for large enough number of mixture components (K ≥ 6 in the WS case and K ≥ 9 in the MS case).

Figure 3.6 shows that the error decays when the sample size n grows, when using the penalty
based on the jump criterion. The first remark is that we observed the error decay is of order t/n, as
predicted in by the theory, where t is some constant, as expected in the well-specified case. The rate
of convergence for the misspecified case seems to be slower.
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Figure 3.6: Tensorized Kullback–Leibler divergence between the true and selected densities based on
the jump criterion, represented in a log-log scale, using 30 trials. A free least-square regression with
standard error and a regression with slope −1 were added to stress the two different behavior for each
graph.

3.2.3.3 Ethanol data set

We now consider the use of GLoME models for performing clustering and regression tasks on a
real data set. Following the numerical experiments from Young (2014) and Montuelle et al. (2014),
we demonstrate our model on the ethanol data set of Brinkman (1981). The data comprises of 88
observations, which represent the relationship between the engine’s concentration of nitrogen oxide
(NO) emissions and the equivalence ratio (ER), a measure of the air-ethanol mix, used as a spark-
ignition engine fuel in a single-cylinder automobile test (Figures 3.8a and 3.8e). Our goal is then to
estimate the parameters of a GLoME model, as well as the number of mixture components.

More precisely, we first use the EM algorithm from the xLLiM package to compute the forward
PMLE of (3.2.1), for each K ∈ [12], on the Ethanol data set. Then, based on the slope heuristic
(Figure 3.7), we select the best data-driven model. Given the estimators of the model chosen, we obtain
the estimated conditional density and clustering by applying the maximum a posteriori probability
(MAP) rule (Figures 3.8 and 3.9).

Because we only have 88 data points and roughly 6 parameters per class, the EM algorithm is
strongly dependent on the random initialization of the parameters. One solution is that we can
modify slightly that procedure in order to guarantee that at least 10 points are assigned to each class
so that the estimated parameters are more stable (cf. Montuelle et al. 2014). In this work, we wish
to investigate how well our proposed PMLE performs for detecting the best data-driven number of
mixture components for the GLoME model. Thus, we run our experiment over 100 trials with different
initializations for the EM algorithm. Histograms of selected values of K are presented in Figures 3.7a
to 3.7d. Notice that it is quite unlikely that the true conditional PDF of Ethanol data set belongs to
our hypothesised collection of GLoME models. In fact, this phenomenon has been observed in the MS
case, Figure 3.4, on the simulated data set. We think this is due to the simplistic affine models used
in our experiments. Furthermore, it seems that the jump criterion outperformed the slope criterion
in the stability of order selection for GLoME models, as previously observed.

Based on the highest empirical probabilities in all situations, our procedure selects K = 4 compo-
nents, which is consistent with the results from Montuelle et al. (2014). It is worth noting that if we
consider the regression of NO with respect to ER, our proposed PMLE of GLoME performs very well
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for both the clustering and regression tasks (Figure 3.9). Here, instead of considering the variable NO
as the covariate, we use it as the response variable. Then, the resulting clustering, the estimated mean
function (black curve) and mixing probabilities are more easily interpretable. This is very similar to
the results obtained in Montuelle et al. (2014).

3.2.4 Proofs of the oracle inequality

To work with conditional density estimation in the GLoME regression models, in Section 3.2.4.1, we
need to present a general theorem for model selection, Theorem 3.2.6, a generalization of Theorem 7.11
from Massart (2007), from Cohen & Le Pennec (2011, Theorem 2) and Montuelle et al. (2014, Theorem
2). Then, we explain how we can use Theorem 3.2.6 to obtain the oracle inequality Theorem 3.2.3 in
Section 3.2.4.2. To this end, our model collection has to satisfy some regularity assumptions, which is
proved in Section 3.2.5.2 and Section 3.2.5.5. The main difficulty to proving our weak oracle inequality
lies in bounding the bracketing entropy of the Gaussian gating functions of the GLoME model. To
overcome this difficulty, we propose a reparameterization trick to bound the metric entropy of the
Gaussian gating parameters space.

3.2.4.1 General model selection for conditional density

Before stating a general model selection for conditional density, we have to present some regularity
assumptions.

First, we need an information theory type assumption to control the complexity of our collection.
We assume the existence of a Kraft-type inequality for the collection (Massart, 2007, Barron et al.,
2008).

Assumption 3.2.1 (K). There is a family (zm)m∈M of non-negative numbers and a real number Ξ
such that

Ξ =
∑

m∈M
e−zm < +∞.

For technical reasons, a seperability assumption always satisfied in the setting of this paper, is
also required. It is a mild condition, which is classical in empirical process theory (Van Der Vaart &
Wellner, 1996, van de Geer, 2000). This assumption allows us to work with a countable subset.

Assumption 3.2.2 (Sep). For every model Sm in the collection S, there exists some countable subset
S′m of Sm and a set X ′m with ι (X \ X ′m) = 0, where ι denotes Lebesgue measure, such that for every
t ∈ Sm, there exists some sequence (tk)k≥1 of elements of S′m, such that for every y ∈ Y and every

x ∈ X ′m, ln (tk (x|y))
k→+∞−−−−→ ln (t (x|y)).

Next, recall that the bracketing entropy of a set S with respect to any distance d, denoted by
H[·],d((δ, S)), is defined as the logarithm of the minimal number N[·],d (δ, S) of brackets [t−, t+] covering
S, such that d(t−, t+) ≤ δ. That is,

N[·],d (δ, S) := min

{
n ∈ N? : ∃t−1 , t

+
1 , . . . , t

−
n , t

+
n s.t d(t−k , t

+
k ) ≤ δ, S ⊂

n⋃
k=1

[
t−k , t

+
k

]}
, (3.2.23)

where the bracket s ∈
[
t−k , t

+
k

]
is defined by t−k (x,y) ≤ s(x,y) ≤ t+k (x,y), ∀(x,y) ∈ X × Y.

We also need the following important assumption on Dudley-type integral of these bracketing
entropies, which is utilized often in empirical process theory (Van Der Vaart & Wellner, 1996, Kosorok,
2007, van de Geer, 2000).

Assumption 3.2.3 (H). For every model Sm in the collection S, there is a non-decreasing function
φm such that δ 7→ 1

δφm(δ) is non-increasing on (0,∞) and for every δ ∈ R+,∫ δ

0

√
H[·],d⊗n (δ, Sm (s̃, δ))dδ ≤ φm(δ),
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(d) Based on ER and slope criterion
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Figure 3.7: Histogram of selected K of GLoME on Ethanol data set based on NO and ER using
slope heuristic. We plot the jump and slope criteria corresponding to the models chosen with highest
empirical probabilities.
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(a) Raw Ethanol data set based on NO.
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(b) Clustering by GLoME based on NO.
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(d) 2D view of the same conditional density on NO.

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

1

2

3

4

0.7 0.9 1.1

Equivalence Ratio

N
O

(e) Raw Ethanol data set based on ER.
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(f) Clustering by GLoME based on ER.
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(h) 2D view of the same conditional density.

Figure 3.8: Estimated conditional density with 4 components based upon on the covariate NO or ER
from the Ethanol data set.
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(a) Clustering based on NO
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(b) Clustering based on ER
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(d) Gating network probabilities based on ER

Figure 3.9: Clustering of Ethanol data set. The black curves present the estimated mean functions.
The size of the component mean functions corresponds to the posterior mixture proportions.

where Sm (s̃, δ) = {sm ∈ Sm : d⊗n (s̃, sm) ≤ δ}. The model complexity Dm of Sm is then defined as
nδ2

m, where δm is the unique root of 1
δφm(δ) =

√
nδ.

Observe that the model complexity does not depend on the bracketing entropies of the global
models Sm, but rather on those of smaller localized sets Sm (s̃, δ). Now we are able to state an
important weak oracle inequality from Cohen & Le Pennec (2011).

Theorem 3.2.6 (Theorem 2 from Cohen & Le Pennec 2011). Assume that we observe
(
x[n],y[n]

)
,

arising from an unknown conditional density s0. Let S = (Sm)m∈M be an at most countable con-
ditional density model collection. Assume that Assumption 3.2.1 (K), Assumption 3.2.2 (Sep), and
Assumption 3.2.3 (H) hold for every model Sm ∈ S. Then, for any ρ ∈ (0, 1) and any C1 > 1, there
is a constant κ0 depending only on ρ and C1, such that for every index m ∈M,

pen(m) ≥ κ
(
nδ2

m + zm
)

with κ > κ0 and δm is the unique root of 1
δφm(δ) =

√
nδ, such that the η′-penalized likelihood estimator

ŝm̂ satisfies

EX[n],Y[n]

[
JKL⊗n

ρ (s0, ŝm̂)
]
≤ C1 inf

m∈M

(
inf

sm∈Sm

KL⊗n (s0, sm) +
pen(m)

n

)
+
κ0C1Ξ

n
+
η + η′

n
.

(3.2.24)

3.2.4.2 Proof of the Theorem 3.2.3

Sketch of the proof of the Theorem 3.2.3 To prove Theorem 3.2.3, we need to apply Theo-
rem 3.2.6. Then, our model collection has to satisfy Assumption 3.2.1 (K), Assumption 3.2.2 (Sep),
and Assumption 3.2.3 (H). Since our model is defined by M = K × DΥ = [Kmax] × [dmax], the As-
sumption 3.2.1 (K) is always satisfied. It is interesting to find the optimal family (zm)m∈M satisfying
Assumption 3.2.1 (K), but that is beyond the scope of this paper. The Assumption 3.2.2 (Sep) is
true when we consider Gaussian densities. Therefore, our model has only to satisfy the remaining
Assumption 3.2.3 (H). Here, we only present the main steps to prove the Assumption 3.2.3 (H). All
the technical details are deferred to Section 3.2.5.2 and Section 3.2.5.5. It is worth noting that a
similar procedure has been proposed by Montuelle et al. (2014) in the context of SGaME models.
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Firstly, we require the following distance over conditional densities:

sup
y
dx(s, t) = sup

y∈Y

(∫
X

(√
s(x|y)−

√
t(x|y)

)2
dx

)1/2

.

This leads straightforwardly to d2⊗n(s, t) ≤ supy d
2
x(s, t). Then, we also define

sup
y
dk
(
g, g′

)
= sup

y∈Y

(
K∑
k=1

(√
gk(y)−

√
g′k(y)

)2
)1/2

,

for any gating functions g and g′. To this end, given any densities s and t over X , the following
distance, depending on y, is constructed as follows:

sup
y

max
k

dx(s, t) = sup
y∈Y

max
k∈[K]

dx (sk(·,y), tk(·,y)) = sup
y∈Y

max
k∈[K]

(∫
X

(√
sk(x,y)−

√
tk(x,y)

)2
dx

)1/2

.

Note that definition of complexity of model Sm in Assumption 3.2.3 (H) is related to an classical
entropy dimension with respect to a Hellinger type divergence d⊗n, due to Proposition 3.2.7.

Proposition 3.2.7 (Proposition 2 from Cohen & Le Pennec 2011). For any δ ∈ (0,
√

2], such that
H[·],d⊗n (δ, Sm) ≤ dim(Sm)

(
Cm + ln

(
1
δ

))
, the function

φm (δ) = δ
√

dim (Sm)

(√
Cm +

√
π +

√
ln

(
1

min (δ, 1)

))
satisfies Assumption 3.2.3 (H). Furthermore, the unique solution δm of 1

δφm (δ) =
√
nδ, satisfies

nδ2
m ≤ dim(Sm)

(
2
(√

Cm +
√
π
)2

+

(
ln

n(√
Cm +

√
π
)2

dim (Sm)

)
+

)
.

Therefore, Proposition 3.2.7 implies that Assumption 3.2.3 (H) is proved via Lemma 3.2.8.

Lemma 3.2.8. For any δ ∈ (0,
√

2], the collection of GLoME models, S = (Sm)m∈M, satisfies

H[·],d⊗n (δ, Sm) ≤ dim(Sm)

(
Cm + ln

(
1

δ

))
.

Lemma 3.2.8 is then obtained by decomposing the entropy terms between the Gaussian gating
functions and the Gaussian experts. For the Gaussian gating parameters, the technique for han-
dling the logistic weights of Montuelle et al. (2014) is not directly applicable to the GLoME setting.
Therefore, we propose the following reparameterization trick of the Gaussian gating space PK :

WK =
{
Y 3 y 7→ (ln (πkφL (y; ck,Γk)))k∈[K] =: (wk(y;ω))k∈[K] = w (y;ω) : ω ∈ Ω̃K

}
,

PK =

Y 3 y 7→

(
ewk(y)∑K
l=1 e

wl(y)

)
k∈[K]

=: (gw,k (y))k∈[K] ,w ∈WK

 . (3.2.25)

We also require the definition of metric entropy of the set WK : Hd‖sup‖∞
(δ,WK), and of the set ΥK,d:

Hd‖sup‖∞
(δ,ΥK,d), which measure the logarithm of the minimal number of balls of radius at most δ,

according to a distance d‖sup‖∞ , needed to cover WK and ΥK,d, respectively, where

d‖sup‖∞

(
(sk)k∈[K] , (tk)k∈[K]

)
= max

k∈[K]
sup
y∈Y
‖sk(y)− tk(y)‖2 , (3.2.26)

for any K-tuples of functions (sk)k∈[K] and (tk)k∈[K]. Here, sk, tk : Y 3 y 7→ sk(y), tk(y) ∈ RL, ∀k ∈
[K], and given y ∈ X , k ∈ [K], ‖sk(y)− tk(y)‖2 is the Euclidean distance in RL.

Since
∑K

k=1 gw,k (y) = 1,∀y ∈ Y,∀w ∈ WK , Lemma 3.2.8 is proved due to the following
Lemma 3.2.9 by using the fact that H[·],d⊗n (δ, Sm) ≤ H[·],supy dx

(δ, Sm), which is obtained by def-

inition of bracketing entropy and d⊗n(s, t) ≤ supy dx(s, t).
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Lemma 3.2.9 (Lemma 5 from Montuelle et al. 2014). Let

WK =
{
Y 3 y 7→ (ln (πkφL (y; ck,Γk)))k∈[K] =: (wk(y;ω))k∈[K] = w (y;ω) : ω ∈ Ω̃K

}
,

PK =

Y 3 y 7→

(
ewk(y)∑K
l=1 e

wl(y)

)
k∈[K]

=: (gw,k (y))k∈[K] ,w ∈WK

 , and

GK,d =
{
X × Y 3 (x,y) 7→ (φD (x;vk,d(y),Σk))k∈[K] : υd ∈ ΥK,d,Σ ∈ VK

}
.

For all δ ∈ (0,
√

2] and m ∈M,

H[·],supy dx
(δ, Sm) ≤ H[·],supy dk

(
δ

5
,PK

)
+H[·],supy maxk dx

(
δ

5
,GK,d

)
.

By making use of the Lemma 3.2.9, the remaining task is to control the bracketing entropy of the
Gaussian gating functions and experts separately via Lemmas 3.2.10 and 3.2.11, which are proved in
Sections 3.2.5.2 and 3.2.5.5, respectively.

Lemma 3.2.10. For all δ ∈ (0,
√

2], there exists a constant CWK
such that

H[·],supy dk

(
δ

5
,PK

)
≤ Hd‖sup‖∞

(
3
√

3δ

20
√
K
,WK

)
≤ dim (WK)

(
CWK

+ ln

(
20
√
K

3
√

3δ

))
.

Lemma 3.2.11. For all δ ∈ (0,
√

2], there exists a constant CGK,d such that

H[·],supy maxk dx

(
δ

5
,GK,d

)
≤ dim (GK,d)

(
CGK,d + ln

(
1

δ

))
. (3.2.27)

To this end, Lemma 3.2.9 allows us to conclude that given C = CWK
+ ln

(
5Kmax

√
Kmax

aW

)
+ CGK,d ,

H[·],supy dx
(δ, Sm) ≤ H[·],supy dk

(
δ

5
,PK

)
+H[·],supy maxk dx

(
δ

5
,GK,d

)
≤ dim(Sm)

(
C + ln

(
1

δ

))
.

Then, Proposition 3.2.7 leads to

nδ2
m ≤ dim(Sm)

2
(√

C +
√
π
)2

+

ln
n(√

C +
√
π
)2

dim (Sm)


+

 .

Finally, Theorem 3.2.6 implies that for any given collection of GLoME models (Sm)m∈M, the oracle
inequality of Theorem 3.2.3 is satisfied when

pen(m) ≥ κ

dim(Sm)

2
(√

C +
√
π
)2

+

ln
n(√

C +
√
π
)2

dim (Sm)


+

+ zm

 .

3.2.5 Appendix: Lemma proofs

3.2.5.1 Proof of Lemma 3.2.1

In Section 3.2.5.1, we aim to provide the proof of one-to-one correspondence defines the link between
the inverse and forward conditional distributions not only for the special case of Gaussian distribution
in (3.2.14) but also for elliptical distributions (cf. Cambanis et al., 1981, Fang et al., 1990). It is worth
mentioning that the multivariate normal distribution, multivariate t-distribution and multivariate
Laplace distribution are some instances of elliptical distributions (cf. Frahm, 2004, Chapter 1, Hult &
Lindskog 2002). In fact, a statement similar to the following has been proved in the linear regression
setting in (Devijver & Perthame, 2020, Section 2.2). We include a proof for mixture of regression
models for completeness, which can be considered as an extension to the aforementioned result.
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Elliptically symmetric distributions

Note that we will provide the proof of Lemma 3.2.1 by using some general results regarding elliptical
distributions.

Definition 3.2.12. Let X be a D-dimensional random vector. Then X is said to be elliptically
distributed (or simply elliptical) if and only if there exist a vector µ ∈ RD, a positive semidefinite
matrix Σ ∈ RD×D and a function φ : R+ → R such that the characteristic function t 7→ ϕX−µ(t) of
X−µ corresponds to t 7→ φ

(
t>Σt

)
, t ∈ RD. We write X ∼ ED (µ,Σ, φ) to denote that X is elliptical.

The function φ is referred to as the characteristic generator ofX. WhenD = 1 the class of elliptical
distributions coincides with the class of univariate symmetric distributions. Thanks to Proposition
1 from Frahm (2004), it holds that every affinely transformed elliptical random vector is elliptically
distributed. Moreover, the following stochastic representation theorem, Theorem 3.2.13, shows that
the converse is true if the transformation matrix has full rank.

Theorem 3.2.13 (Theorem 1 from Cambanis et al., 1981). Let X be a D-dimensional random vector.
Then X ∼ ED (µ,Σ, φ) with rank(Σ) = k if and only if

X = µ+RΛU (k),

where U (k) is a k-dimensional random vector uniformly distributed on the unit hypersphere with k −
1 dimensions Sk−1 =

{
x ∈ RD : ‖x‖2 = 1

}
, R is a non-negative random variable with distribution

function F related to φ being stochastically independent of U (k), µ ∈ RD and Σ = ΛΛ> is a rank
factorization of Σ where Λ ∈ RD×k with rank(Λ) = k.

Note that via the transformation matrix Λ, the spherical random vector U (k) produces elliptically
contoured density surfaces, whereas the generating random variable R determines the distribution’s
shape, in particular the heaviness of the distribution’s tails. Further, µ determines the location of the
random vector X. The matrix Σ is called the dispersion matrix or scatter matrix of X. Therefore, it
holds that every elliptical distribution belongs to a location-scale-family (Kelker, 1970) defined by an
underlying spherical standard distribution.

Example 3.2.14 (Multivariate normal distribution). Let µ ∈ RD and Λ ∈ RD×k such that Σ :=
ΛΛ> ∈ RD×D is positive definite. The random vector X ∼ φD (µ,Σ) is elliptically distributed since

X is representable as X = µ +
√
χ2
kΛU

(k). The underlying spherical standard distribution is the

standard normal distribution. Further, since s 7→ exp(−s/2) is the characteristic generator for the
class of normal distributions, the characteristic function of X − µ corresponds to t 7→ φX−µ(t) =
exp

(
−t>Σt

)
, t ∈ Rd.

We next describe some important results on the conditional distributions of elliptical random
vectors (cf. Cambanis et al., 1981, Corollary 5, Frahm, 2004, Chapter 1).

Theorem 3.2.15. Let X ∼ ED (µ,Σ, φ) with rank(Σ) = k. It holds that:

(a) E (X) = µ.

(b) var (X) =
E(R2)
k Σ = −2φ′(0)Σ, if φ is differentiable at 0.

(c) The sum of independent elliptically distributed random vector with the same dispersion matrix Σ
is elliptically too. Furthermore, the sum of two dependent elliptical random vectors with the same
dispersion matrix, which are dependent only through their radial parts R, is also elliptical (Hult
& Lindskog, 2002, Thereorem 4.1). More precisely, let R and R̃ be nonnegative random variables

and let X := µ +RZ ∼ ED (µ,Σ, φ) and X̃ := µ̃ + R̃Z̃ ∼ ED
(
µ̃,Σ, φ̃

)
, where

(
R, R̃

)
, Z, and

Z̃ are independent. Then X + X̃ ∼ ED (µ+ µ̃,Σ, φ∗).
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(d) Affine transformation: every affinely transformed and particularly every linearly combined ellipti-
cal random vector is elliptical, too. More formally, for any b ∈ RL, A ∈ RL×D, and Y = b + AX
where X = µ + RΛU (k) with Λ ∈ RD×k, it follows that Y ∼ EL

(
b + Aµ,AΛΛ>A>, φ

)
=

EL
(
b + Aµ,AΣA>, φ

)
since

Y = b + A
(
µ+RΛU (k)

)
= (Aµ+ b) +RAΛU (k). (3.2.28)

(e) Marginal distribution: let Pm ∈ {0, 1}m×D (m ≤ D) be a permutation and deletion matrix, i.e., Pm
has only binary entries of 0’s and 1’s and PmP>m = Im. So the transformation PmX =: Y permutes
and deletes certain components of X such that Y is a k-dimensional random vector containing
the remaining components of X and having a (multivariate) marginal distribution with respect to
the joint distribution of X. Then by (3.2.28), we obtain Y ∼ Em

(
Pmµ,PmΣP>m, φ

)
since

Y = Pm
(
µ+RΛU (k)

)
= Pmµ+RPmΛU (k). (3.2.29)

(f) Conditional distribution: let X = (X1,X2), where X1 is a k-dimensional sub-vector of X, and

let Σ =

(
Σ11 Σ12

Σ21 Σ22

)
∈ RD×D. Provided the conditional random vector X2|X1 = x1 exists, it

is also elliptically distributed: X2|(X1 = x1) ∼ ED−k (µ∗,Σ∗, φ∗). Moreover, it can be presented
stochastically by

X2| (X1 = x1) = µ∗ +R∗U (D−k)Γ∗

and U (D−k) is uniformly distributed on S(D−k−1), and

R∗ = R
√

1− β|
(
R
√
βU (k) = Σ−1

11 (x1 − µ1)
)
,

µ∗ = µ2 + Σ21Σ
−1
11 (x1 − µ1) ,

Σ∗ = Σ22 −Σ21Σ
−1
11 Σ12.

where β ∼ Beta (k/2, (D − k)/2) and R, β,U (k) and U (D−k) are mutually independent, and Σ∗ =
(Γ∗)> Γ∗.

Relation between forward and inverse regression

Proposition 1 from Deleforge et al. (2015c), a multivariate extension of Ingrassia et al. (2012), leads
to a link between GLLiM, defined in (3.2.13) models, and a Gaussian mixture model on the joint
variable [X; Y]. This result motivates us to establish the general proof for the relationship between
forward and inverse mixture of elliptical regression models. More precisely, we consider the following
generative model, conditionally on the cluster label:

[X; Y] | (Z = k) ∼ EL+D (mk,Vk, φ) , (3.2.30)

where EL+D denotes an elliptical distribution of dimension D + L, and are mk and Vk its location
and scale parameters, respectively.

When applying the inverse regression strategy in the context of mixture of elliptical locally-linear
mapping, the key point is to account for (3.2.31):

X =
K∑
k=1

I (Z = k) (AkY + bk + Ek) , (3.2.31)

where A∗k ∈ RD×L and vector b∗k ∈ RD, and Ek is an error term capturing both the reconstruction
error due to the local affine approximation and the observation noise in RD, into the parameterization
of mk and Vk. Given Z = k, it follows from (3.2.30) that Y is also elliptical distribution by using
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Theorem 3.2.15 (e) and Y can be assumed to have a location ck ∈ RL and a scale matrix Γk ∈ RL×L.
We assume further that the error term Ek ∼ E (0, φek ,Σk) is an unobserved centered elliptical random
noise with residual covariance matrix Σk of type φek , and is independent of Y. Then, using (3.2.31)
and Theorem 3.2.15, we have

E (X| (Z = k)) = E (AkY + bk + Ek) = Akck + bk,
var (X| (Z = k)) = var (AkY + bk + Ek) = var (AkY) + var (Ek) = AkΓkA

>
k + Σk,

cov (X,Y| (Z = k)) = cov (AkY + bk + Ek,Y) = AkΓk, cov (Y,X) = cov (Y,AkY) = Γ>k A>k ,

mk =

[
Akck + bk

ck

]
,

Vk =

[
Σk + AkΓkA

>
k AkΓk

(AkΓk)
> Γk

]
.

(3.2.32)

Note that in the forward and inverse regression problems of elliptical locally-linear mapping (con-
taining the Gaussian case (3.2.8), (3.2.9), (3.2.11) and (3.2.12)), by using Theorem 3.2.15, the joint
distribution defined in (3.2.30) allows us to consider a mixture of linear regression problem, charac-
terized by the following marginal and conditional distributions:

X| (Z = k) ∼ ED (c∗k,Γ
∗
k, φ) , (3.2.33)

Y| (X, Z = k) = A∗kX + b∗k + E∗k, (3.2.34)

Y| (Z = k) ∼ ED (ck,Γk, φ) , (3.2.35)

X| (Y, Z = k) = AkY + bk + Ek, (3.2.36)

where Ek ∼ E (0, φek ,Σk) and E∗k ∼ E
(
0, φe∗k ,Σ

∗
k

)
.

Then, we claim that the joint distribution, defined in (3.2.30) and (3.2.32), leads to the marginal
and the conditional distributions of Equations (3.2.33) to (3.2.36) and to a mapping between their
mean and variance parameters. Indeed, by using conditioning properties of elliptical distributions, see
more in Theorem 3.2.15, implies the following marginal for X and conditional distribution for Y given
X as follows:

X| (Z = k) ∼ ED
(
Akck + bk,Σk + AkΓkA

>
k , φ

)
, (3.2.37)

Y| (X, Z = k) ∼ EL
(
myx

k ,Σ
yx
k , φ̃

)
, (3.2.38)

where the explicit expression of the characteristic function φ̃ can be found in Cambanis et al. (1981,
Corollary 5), and

myx
k = ck + Γ>k A>k

(
Σk + AkΓkA

>
k

)−1
(X−Akck − bk) ,

Σyx
k = Γk − Γ>k A>k

(
Σk + AkΓkA

>
k

)−1
AkΓk =

(
Γ−1
k + A>k Σ−1

k Ak

)−1
,

with the fact that the last equality is the Woodbury matrix identity. Note that the locations and
scale matrices of the conditional distribution do not depend upon the third parameter of the joint
distribution, and consequently, we do not describe the explicit expression for φ̃. We then utilize again
the Woodbury matrix identity and the symmetric property of Γ to identify (3.2.33) and (3.2.34) with
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(3.2.37) and (3.2.38), respectively, which implies the following important connections:

c∗k = Akck + bk,Γ
∗
k = Σk + AkΓkA

>
k ,Σ

∗
k =

(
Γ−1
k + A>k Σ−1

k Ak

)−1
,

A∗k = Γ>k A>k

(
Σk + AkΓkA

>
k

)−1

= Γ>k A>k Σ−1
k − Γ>k A>k Σ−1

k Ak

(
Γ−1
k + A>k Σ−1

k Ak

)−1
A>k Σ−1

k

=
[
Γk

(
Γ−1
k + A>k Σ−1

k Ak

)
− ΓkA

>
k Σ−1

k Ak

] (
Γ−1
k + A>k Σ−1

k Ak

)−1
A>k Σ−1

k

=
(
Γ−1
k + A>k Σ−1

k Ak

)−1
A>k Σ−1

k = Σ∗kA
>
k Σ−1

k ,

b∗k = ck + Γ>k A>k

(
Σk + AkΓkA

>
k

)−1
(−Akck − bk)

= ck +
(
Γ−1
k + A>k Σ−1

k Ak

)−1
A>k Σ−1

k (−Akck − bk)

=
(
Γ−1
k + A>k Σ−1

k Ak

)−1 [(
Γ−1
k + A>k Σ−1

k Ak

)
ck + A>k Σ−1

k (−Akck − bk)
]

= Σ∗k(Γ
−1
k ck −A>k Σ−1

k bk).

Therefore, the desired results then are obtained by using the fact that the multivariate normal distri-
bution not only has the property of having Gaussian marginal and conditional distributions (Bishop,
2006, Sections 2.3.1 and 2.3.2) but also belongs to elliptical distributions (detailed in Example 3.2.14).
Furthermore, it should be stressed that several versions of multivariate t-distributions (e.g., Section
5.5, page 94 of Kotz & Nadarajah (2004), Ding (2016)) have the previous property. This leads to
the inverse regression model based on the multivariate t-distributions (Perthame et al., 2018). It will
be interesting to find other sub-classes of elliptically contoured distributions that have the closedness
property on marginal and conditional distribution so that the previous inverse regression trick can be
applied.

3.2.5.2 Proof of Lemma 3.2.10

Note that the first inequality of Lemma 3.2.10 comes from Montuelle et al. (2014, Lemma 4) and
describes relationship between the bracketing entropy of PK and the entropy of WK . Therefore,
Lemma 3.2.10 is obtained by proving that there exists a constant CWK

such that ∀δ ∈ (0, 2],

Hd‖sup‖∞
(δ,WK) ≤ dim (WK)

(
CWK

+ ln

(
1

δ

))
, (3.2.39)

where dim (WK) = K − 1 +KL+K L(L+1)
2 .

In order to establish the proof for (3.2.39), we have to construct firstly the δπ-covering ΠK−1,ω of
ΠK−1 via Lemma 3.2.16, which is proved in Section 3.2.5.3.

Lemma 3.2.16 (Covering number of probability simplex with maximum norm). Given any δπ > 0,
any π ∈ ΠK−1, we can choose π̂ ∈ ΠK−1,ω, an δπ-covering of ΠK−1, so that maxk∈[K] |πk − π̂k| ≤ δπ.
Furthermore, it holds that

N (δπ,ΠK−1, ‖·‖∞) ≤ K (2πe)K/2

δK−1
π

. (3.2.40)

Then, by definition of the covering number, (3.2.39) is obtained immediately via Lemma 3.2.17,
which controls the covering number of WK and is proved in Section 3.2.5.4.

Lemma 3.2.17. Given a bounded set Y in RL such that Y =
{
y ∈ RL : ‖y‖∞ ≤ CY

}
, it holds that

WK has a covering number satisfied N
(
δ,WK ,d‖sup‖∞

)
≤ Cδ− dim(WK), for some constant C.
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Indeed, Lemma 3.2.17 implies the desired result by noting that

Hd‖sup‖∞
(δ,WK) = lnN

(
δ,WK , d‖sup‖∞

)
≤ ln

[
C

δdim(WK)

]
= dim (WK)

[
1

dim (WK)
lnC + ln

(
1

δ

)]
= dim (WK)

(
CWK

+ ln

(
1

δ

))
.

3.2.5.3 Proof of Lemma 3.2.16

Note that Genovese & Wasserman (2000, Lemma 2) provide a result for controlling a δπ-Hellinger
bracketing of ΠK−1. However, such result can not be applied for our Lemma 3.2.16 since they use
δπ-Hellinger bracketing entropy while we use δπ-covering number for the probability complex with
maximum norm.

Then π ∈ ΠK−1 if and only if ξ ∈ Q+ ∩ U , where U is the surface of the unit sphere and Q+

is the positive quadrant of RK . Next, we divide the unit cube in RK into disjoint cubes with sides
parallel to the axes and sides of length δπ/

√
K. Let (Cj)j∈[N ] is the subset of these cubes that have

non-empty intersection with Q+ ∩ U . For any j ∈ [N ], let νj = (νj,k)k∈[K] be the center of the cube

Cj and ν2
j =

(
ν2
j,k

)
k∈[K]

.

Then {νj}j∈[N ] is a δπ/
(

2
√
K
)

-covering of Q+∩U , since we have for any ξ = (ξk)k∈[K] ∈ Q+∩U ,

there exists j0 ∈ [N ] such that ξ ∈ Cj0 , and

‖ξ − νj0‖∞ = max
k∈[K]

|ξk − νj0,k| ≤
δπ

2
√
K
. (3.2.41)

Therefore, it follows that ΠK−1,ω :=
{
ν2
j

}
j∈[N ]

is a δπ-covering of ΠK−1, since for any π = (πk)k∈[K] ∈

ΠK−1, (3.2.41) leads to the existence of j0 ∈ [N ], such that

∥∥π − ν2
j0

∥∥
∞ = max

k∈[K]

∣∣ξ2
k − ν2

j0,k

∣∣ = max
k∈[K]

{|ξk − νj0,k| |ξk + νj0,k|} ≤
δπ

2
√
K

max
k∈[K]

|ξk + νj0,k| ≤
δπ√
K
≤ δπ,

where we used the fact that maxk∈[K] |ξk + νj0,k| ≤ 2. Now, it remains to count the number of cubes
N . Let Ta = {z ∈ Q+ : ‖z‖2 ≤ a} and let C =

⋃
j∈[N ] Cj . Note that C ⊂ T1+δπ − T1−δπ ≡ T , and so

Volume(T ) ≥ Volume(C) = N

(
δπ√
K

)K
.

Note that here we use the notation π for the Archimedes’ constant, which differs from π = (πk)k∈[K]

for the mixing proportion of the GLoME model. Then, we define VK (a) = aKπK/2 as the vol-

ume of a sphere of radius a. Since z! ≥ zze−z and (1 + δπ)K − (1− δπ)K = K
∫ 1+δπ

1−δπ z
K−1dz ≤

2δπK (1 + δπ)K−1, it follows that

N (δπ,ΠK−1, ‖·‖∞) ≤ N ≤ Volume (C)(
δπ/
√
K
)K =

1

2K
VK (1 + δπ)− VK (1− δπ)(

δπ/
√
K
)K

=
1

2K

[
(1 + δπ)K − (1− δπ)K

]
(
δπ/
√
K
)K πK/2

(K/2)!
≤
(πe

2

)K/2 [(1 + δπ)K − (1− δπ)K
]

δKπ

≤ K (2πe)K/2

δK−1
π

.
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3.2.5.4 Proof of Lemma 3.2.17

In order to find an upper bound for a covering number of WK , we wish to construct a finite δ-covering
WK,ω of WK , with respect to the distance d‖sup‖∞ . That is, given any δ > 0,w (·;ω) ∈WK , we aim
to prove that there exists w (·; ω̂) ∈WK,ω such that

d‖sup‖∞ (w(·;ω),w(·; ω̂)) = max
k∈[K]

sup
y∈Y
|wk(y;ω)−wk (y; ω̂)| ≤ δ. (3.2.42)

In order to accomplish such task, given any positive constants δc, δΓ, δπ, and any k ∈ [K], let us define

F = {Y 3 y 7→ ln (φL (y; c,Γ)) : ‖c‖∞ ≤ Ac, aΓ ≤ m (Γ) ≤M (Γ) ≤ AΓ} ,

Fck =
{

ln (φL (·; ck,Γk)) : ln (φL (·; ck,Γk)) ∈ F ,

ck,j ∈ {−CY + lδc/L : l = 0, . . . , d2CYL/δce} , j ∈ [L]
}
, (3.2.43)

Fck,Γk =

{
ln (φL (·; ck,Γk)) : ln (φL (·; ck,Γk)) ∈ Fck ,

[vec (Γk)]i,j = γi,j
δΓ
L2

; γi,j = γj,i ∈ Z ∩
[
−
⌊L2AΓ

δΓ

⌋
,
⌊L2AΓ

δΓ

⌋]
, i ∈ [L], j ∈ [L]

}
, (3.2.44)

WK,ω = {w (·;ω) : w (·;ω) ∈WK ,∀k ∈ [K], ln (φL (·; ck,Γk)) ∈ Fck,Γk ,π ∈ ΠK−1,ω} . (3.2.45)

Here, d·e and b·c are ceiling and floor functions, respectively, and vec (·) is an operator that stacks
matrix columns into a column vector. In particular, we denote ΠK−1,ω as a δπ-covering of ΠK−1, which
is defined in Lemma 3.2.16. By the previous definition, it holds that ∀k ∈ [K], Fck,Γk ⊂ Fck ⊂ F ,
and WK,ω ⊂WK .

Next, we claim that WK,ω is a finite δ-covering of WK with respect to the distance d‖sup‖∞ . To
do this, for any w (·;ω) = (ln (πkφL (·; ck,Γk)))k∈[K] ∈ WK , ln (φL (·; ck,Γk)) ∈ F ,π ∈ ΠK−1, and
for any k ∈ [K], by (3.2.43), we first choose a function ln (φL (·; ĉk,Γk)) ∈ Fck so that

‖ĉk − ck‖1 =
L∑
j=1

|ĉk,j − ck,j | ≤ L
δc
L

= δc.

Furthermore, by (3.2.44), we can obtain a result to construct the covariance matrix lattice. That is,

any ln (φL (·; ĉk,Γk)) ∈ Fck can be approximated by ln
(
φL

(
·; ĉk, Γ̂k

))
∈ Fck,Γk such that

∥∥∥vec
(
Γ̂k

)
− vec (Γk)

∥∥∥
1
≡
∥∥∥vec

(
Γ̂k − Γk

)∥∥∥
1

=
L∑
i=1

L∑
j=1

∣∣∣∣[vec
(
Γ̂k − Γk

)]
i,j

∣∣∣∣ ≤ L2δΓ
L2

= δΓ.

Note that since for any k ∈ [K], (y, ck, vec (Γk)) 7→ ln (φL (y; ck,Γk)) is differentiable, it is also
continuous w.r.t. y and its parameters ck and Γk. Thus, for every fixed y ∈ Y, for every ĉk, ck ∈ X
with ĉk ≤ ck, and for every Γ̂k, Γk, where vec

(
Γ̂k

)
≤ vec (Γk), we can apply the mean value theorem

(see Duistermaat & Kolk 2004, Lemma 2.5.1) to ln (φL (y; ·,Γk)) and ln (φL (y; ĉk, ·)) on the intervals

[ĉk, ck] and
[
vec
(
Γ̂k

)
, vec (Γk)

]
for some zck ∈ (ĉk, ck) and zΓk ∈

(
vec
(
Γ̂k

)
, vec (Γk)

)
, respectively,

to get

ln (φL (y; ĉk,Γk))− ln (φL (y; ck,Γk)) = (ĉk − ck)
>∇ck ln (φL (y; zck ,Γk)) ,

ln
(
φL

(
y; ĉk, Γ̂k

))
− ln (φL (y; ĉk,Γk)) =

(
vec
(
Γ̂k

)
− vec (Γk)

)>
∇vec(Γk) ln (φL (y; ĉk, zΓk)) .

Moreover, (y, ck, vec (Γk)) 7→ ∇ck ln (φL (y; zck ,Γk)) and (y, ck, vec (Γk)) 7→ ∇vec(Γk) ln (φL (y; ĉk, zΓk))

are continuous functions on the compact set U := Y × Y × [aΓ, AΓ]L
2

leads to they attain minimum
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and maximum values (see Duistermaat & Kolk 2004, Theorem 1.8.8). That is, we can set

0 < (Cc)
>
1,...,L := max

k∈[K]
sup

(y,ck,vec(Γk))∈U
|∇ck ln |φL (y; ck,Γk)|| <∞,

0 < (CΓ)>1,...,L2 := max
k∈[K]

sup
(y,ck,vec(Γk))∈U

∣∣∇vec(Γk) ln |φL (y; ck,Γk) (x)|
∣∣ <∞.

Therefore, by the Cauchy–Schwarz inequality, we have

sup
y∈Y
|ln (φL (y; ĉk,Γk))− ln (φL (y; ck,Γk))| ≤ |ĉk − ck|> (Cc)

>
1,...,L = Cc ‖ĉk − ck‖1 ≤ Ccδπ,

sup
y∈Y

∣∣∣ln(φL (y; ĉk, Γ̂k

))
− ln (φL (y; ĉk,Γk))

∣∣∣ ≤ CΓ

∥∥∥vec
(
Γ̂k − Γk

)∥∥∥
1
≤ CΓδΓ,

and by using the triangle inequality, it follows that

max
k∈[K]

sup
y∈Y

∣∣∣ln(φL (y; ĉk, Γ̂k

))
− ln (φL (y; ck,Γk))

∣∣∣ ≤ Ccδc + CΓδΓ. (3.2.46)

Moreover, for every π ∈ ΠK−1, Lemma 3.2.16 implies that we can choose π̂ ∈ ΠK−1,ω so that
maxk∈[K] |πk − π̂k| ≤ δπ. Notice that [aπ,∞) 3 t 7→ ln(t), aπ > 0 is a Lipschitz continuous function
on [aπ,∞]. Indeed, by the mean value theorem, it holds that there exists c ∈ (t1, t2), such that

|ln (t1)− ln (t2)| = ln′(c) |t1 − t2| ≤
1

aπ
|t1 − t2| , for all t1, t2 ∈ [aπ,∞). (3.2.47)

Therefore, (3.2.42) can be obtained by the following evaluation

d‖sup‖∞ (w(·;ω),w(·; ω̂)) = max
k∈[K]

sup
y∈Y

∣∣∣ln (πkφL (y; ck,Γk))− ln
(
π̂kφL

(
y; ĉk, Γ̂k

))∣∣∣
= max

k∈[K]
sup
y∈Y

∣∣∣ln (πk)− ln (π̂k) + ln (φL (y; ck,Γk))− ln
(
φL

(
y; ĉk, Γ̂k

))∣∣∣
≤ max

k∈[K]
|ln (πk)− ln (π̂k)|+ max

k∈[K]
sup
y∈Y

∣∣∣ln (φL (y; ck,Γk))− ln
(
φL

(
y; ĉk, Γ̂k

))∣∣∣
≤ 1

aπ
max
k∈[K]

|πk − π̂k|+ Ccδc + CΓδΓ (using (3.2.47) and (3.2.46))

≤ δπ
aπ

+ Ccδc + CΓδΓ (using Lemma 3.2.16) ≤ δ

3
+
δ

3
+
δ

3
= δ,

where we choose δπ = δaπ
3 , δc = δ

3Cµ
, δΓ = δ

3CΓ
. Finally, we get the covering number

N
(
δ,WK , d‖sup‖∞

)
≤ card (WK,ω) =

[
2CYL

δc

]KL [2AΓL
2

δΓ

]L(L+1)
2

K

N (δπ,ΠK−1, ‖·‖∞)

=
C

δKL+K
L(L+1)

2
+K−1

=
C

δdim(WK)
,

where

C = (6CcCYL)KL
(
6CΓAΓL

2
)L(L+1)

2
K
(

3

aπ

)K−1

K (2πe)K/2 .

3.2.5.5 Proof of Lemma 3.2.11

Note that Lemmas 1 and 2 from Montuelle et al. (2014) imply that there exists a constant CΥK,d
=

ln
(√

2 +
√
DdTΥ

)
(when ΥK,d = ΥK

b,d) or CΥK,d
= ln

(√
2 +
√
D
(
d+L
L

)
TΥ

)
(when ΥK,d = ΥK

p,d) such

that, ∀δ ∈
(
0,
√

2
)
,

Hd‖sup‖∞
(δ,ΥK,d) ≤ dim (ΥK,d)

(
CΥK,d

+ ln
1

δ

)
. (3.2.48)

Next, we rely on Proposition 3.2.18 for constructing of Gaussian brackets to for the Gaussian
experts.

142



3.3. A non-asymptotic model selection in the block-diagonal localized mixture of experts regression
model

Proposition 3.2.18 (Proposition 2 from Montuelle et al. 2014). Let κ ≥ 17
29 and γκ =

25(κ− 1
2

)

49(1+ 2κ
5 )

.

For any 0 < δ ≤
√

2, any D ≥ 1, and any δΣ ≤ 1

5
√
κ2 cosh( 2κ

5 )+ 1
2

δ
D , let (υd, B,A,P) ∈ ΥK,d ×

[B−, B+] × A (λ−, λ+) × SO(D) and
(
υ̃d, B̃, Ã, P̃

)
∈ ΥK,d × [B−, B+] × A (λ−,+∞) × SO(D), and

define Σ = BPAP>, Σ̃ = B̃P̃ÃP̃>,

t− (x,y) = (1 + κδΣ)−D φD

(
x; υ̃d(y), (1 + δΣ)−1 Σ̃

)
and t+ (x,y) = (1 + κδΣ)D φD

(
x; υ̃d(y), (1 + δΣ) Σ̃

)
.

If 

∀y ∈ Y, ‖υd(y)− υ̃d(y)‖2 ≤ DγκL−λ− λ−λ+
δ2
Σ

(1 + 2
25δΣ)−1B̃ ≤ B ≤ B̃

∀i ∈ [D],
∣∣∣A−1

i,i − Ã−1
i,i

∣∣∣ ≤ 1
10

δΣ
λ+

∀x ∈ RD,
∥∥∥Px− P̃x

∥∥∥ ≤ 1
10
λ−
λ+
δΣ ‖x‖

then [t−, t+] is a δ
5 Hellinger bracket such that t−(x,y) ≤ φD (x;υd(y),Σ) ≤ t+(x,y).

Then, following the same argument as in Montuelle et al. (2014, Appendix B.2.3), Proposi-
tion 3.2.18 allows us to construct nets over the spaces of the means, the volumes, the eigenvector
matrices, the normalized eigenvalue matrices and then control the bracketing entropy of GK,d. More
precisely, three different contexts are considered for the mean, volume and matrix parameters. They
can be all known (? = 0), unknown but common to all classes (? = c), unknown and possibly different
for every class (? = K). For example, [vK , B0,P0,A0] denotes a model in which only mean vectors
are assumed to be free. Then, we obtain

H[·],supy maxk dx

(
δ

5
,GK,d

)
≤ dim (GK,d)

(
CGK,d + ln

(
1

δ

))
, (3.2.49)

where dim (GK,d) = Zv,? + ZB,? + D(D−1)
2 ZP,? + (D − 1)ZA,?. Here, Zv,K = dim (ΥK,d) , Zv,c =

dim (Υ1) , Zv,0 = 0, ZB,0 = ZP,0 = ZA,0 = 0, ZB,c = ZP,c = ZA,c = 1, ZB,K = ZP,K = ZA,K = K,
and given a universal constant cU ,

CGK,d = ln

(
5D

√
κ2 cosh

(
2κ

5

)
+

1

2

)
+ CΥK,d

+
1

2
ln

(
λ+

DγkB−λ
2
−

)

+ ln

4 + 129 ln
(
B+

B−

)
10

+
D(D − 1)

2
ln (cU ) + ln

(
10λ+

λ−

)
+ ln

(
4

5
+

52λ+

5λ−
ln

(
λ+

λ−

))
.

3.3 A non-asymptotic model selection in the block-diagonal local-
ized mixture of experts regression model

It is interesting to point out that block-diagonal covariance for Gaussian locally-linear mapping
(BLLiM) model in Devijver et al. (2017) is an affine instance of a BLoME model, where linear combi-
nation of bounded functions (e.g., polynomials) are considered instead of affine mean functions for the
Gaussian experts. The BLLiM framework aims to model a sample of high-dimensional regression data
issued from a heterogeneous population with hidden graph-structured interaction between covariates.
In particular, the BLLiM model is considered as a good candidate for performing a model-based clus-
tering and predicting the response in situations affected by the curse of dimensionality phenomenon,
where the number of parameters could be larger than the sample size. Indeed, to deal with high-
dimensional regression problems, the BLLiM model, initially proposed by Li (1991), is based on an
inverse regression strategy, which inverts the role of the high-dimensional predictor and the multivari-
ate response. Therefore, the number of parameters to estimate is drastically reduced. More precisely,
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BLLiM utilizes the Gaussian locally-linear mapping (GLLiM), described in Deleforge et al. (2015a,c),
and Perthame et al. (2018), in conjunction with a block-diagonal structure hypothesis on the residual
covariance matrices to make a trade-off between complexity and sparsity.

This prediction model is fully parametric and highly interpretable. For instance, it might be
useful for the analysis of transcriptomic data in molecular biology to classify observations or predict
phenotypic states, as for example disease versus non disease or tumor versus normal (Golub et al.,
1999, Nguyen & Rocke, 2002, Lê Cao et al., 2008). Indeed, if predictor variables are gene expression
data measured by microarrays or by the RNA-seq technologies and the response is a phenotypic
variables, situations affected by the BLLiM not only provides clusters of individuals based on the
relation between gene expression data and the phenotype but also implies a gene regulatory network
specific for each cluster of individuals (see Devijver et al. (2017) for more details).

It is worth noting that two hyperparameters must be estimated to construct a BLLiM model: the
number of mixtures components (or clusters) and the block structure of large covariance matrices
specific of each cluster (the size and the number of blocks). Data driven choices of hyperparameters of
learning algorithms belong to the model selection class of problems, which has attracted much attention
in statistics and machine learning over the last 50 years (Akaike, 1974, Mallows, 1973, Anderson &
Burnham, 2002, Massart, 2007). This is a particular instance of the estimator (or model) selection
problem: given a family of estimators, how do we choose, using data, one among them whose risk is as
small as possible? Note that penalization is one of the main strategies proposed for model selection.
It suggests to choose the estimator minimizing the sum of its empirical risk and some penalty terms
corresponding to how well the model fits the data, while avoiding overfitting.

In general, model selection can be performed using the Akaike information criterion (AIC) or
the Bayesian information criterion (BIC) (Akaike, 1974, Schwarz et al., 1978). Nevertheless, these
approaches are asymptotic, which implies that there are no finite sample guarantees for choosing be-
tween different levels of complexity. Their use in small sample settings is thus ad hoc. To overcome
such difficulties, Birgé & Massart (2007) proposed a novel approach, called slope heuristics, supported
by a non-asymptotic oracle inequality. This method leads to an optimal data-driven choice of mul-
tiplicative constants for penalties. Practical issues and recent surveys for the slope heuristic can be
found in Baudry et al. (2012), and Arlot (2019).

It should be stressed that a general model selection result, originally established by Massart (2007,
Theorem 7.11), guarantees a penalized criterion leads to a good model selection and the penalty
being only known up to multiplicative constants and proportional to the dimensions of models. In
particular, such multiplicative constants can be calibrated by the slope heuristic approach in a finite
sample setting. Then, in the spirit of the concentration inequality-based methods developed in Massart
(2007), Massart & Meynet (2011), and Cohen & Le Pennec (2011), a huge number of finite-sample
oracle results have been proposed in several statistical frameworks including high dimensional Gaussian
graphical models (Devijver & Gallopin, 2018), Gaussian mixture model selection (Maugis & Michel,
2011b,a), finite mixture regression models (Meynet, 2013, Devijver, 2015a,b, 2017b,a), softmax-gated
mixture of experts (SGaME) (Montuelle et al., 2014, Nguyen et al., 2020c), and Gaussian-gated
localized MoE (GLoME) models (Nguyen et al., 2021c). However, to the best of our knowledge, we
are the first to provide a finite-sample oracle inequality: Theorem 3.3.2, for the BLoME regression
model. In particular, our proof strategy makes use of recent novel approaches comprising a model
selection theorem for maximum likelihood estimator (MLE) among a random subcollection (Devijver,
2015b), a non-asymptotic model selection result for detecting a good block-diagonal structure in high-
dimensional graphical models (Devijver & Gallopin, 2018) and a reparameterization trick to bound
the metric entropy of the Gaussian gating parameter space in GLoME models (Nguyen et al., 2021c),
see also Section 3.2 for more details.

The main contribution of Section 3.3 is an important theoretical result: a finite-sample oracle
inequality that provides a non-asymptotic bound on the risk, and a lower bound on the penalty
function that ensures such non asymptotic theoretical control on the estimator under the Kullback–
Leibler loss. It also provides a theoretical justification for the penalty shape when using the slope
heuristic for the BLoME as well as BLLiM models.

The rest of Section 3.3 is organized as follows. In Section 3.3.1, we discuss the model construction
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and framework for BLoME and BLLiM models. Then, we present the main results of Section 3.3,
an oracle inequality satisfied by the penalized maximum likelihood of BLoME, in Section 3.3.2. Sec-
tion 3.3.3 is devoted to the proof of these main results based on a general model selection theorem.
Proofs of lemmas are provided in Section 3.3.4.

3.3.1 Notation and framework

3.3.1.1 BLoME models

In order to accommodate a potential hidden graph-structured interaction and make a trade-off between
complexity and sparsity, we consider an extension of the GLoME model from Nguyen et al. (2021c),
which generalized the SGaME and GLLiM models (Jacobs et al., 1991, Xu et al., 1995, Deleforge et al.,
2015c). More specifically, we consider the following BLoME model, defined by (3.3.1), which is moti-
vated by an inverse regression framework, where the role of response variables and high-dimensional
predictors are exchanged such that the response Y becomes the covariate and the predictor X plays
the role of a multivariate response.

Then the BLoME model is defined by the following conditional density:

sψK,d(x|y) =
K∑
k=1

gk (y;ω)φD (x;υk,d(y),Σk (Bk)) , (3.3.1)

with

gk (y;ω) =
πkφL (y; ck,Γk)∑K
j=1 πjφL (y; cj ,Γj)

. (3.3.2)

Here, gk(·;ω) and φD (·;υk,d(·),Σk (Bk)) , k ∈ [K], K ∈ N?, d ∈ N?, are called Gaussian gat-
ing functions and Gaussian experts, respectively. Furthermore, we decompose the parameters of
the model as follows: ψK,d = (ω,υd,Σ (B)) ∈ ΩK × ΥK,d × VK (B) =: ΨK,d, ω = (π, c,Γ) ∈
(ΠK−1 ×CK × V ′K) =: ΩK , π = (πk)k∈[K], c = (ck)k∈[K], Γ = (Γk)k∈[K], υd = (υk,d)k∈[K] ∈ ΥK,d,

and Σ (B) = (Σk (Bk))k∈[K] ∈ VK (B). Note that ΠK−1 =
{

(πk)k∈[K] ∈ (R+)
K
,
∑K

k=1 πk = 1
}

is a

K − 1 dimensional probability simplex, CK is a set of K-tuples of mean vectors of size L× 1, V ′K is a
sets of K-tuples of elements in S++

L , where S++
L denotes the collection of symmetric positive definite

matrices on RL, ΥK,d is a set of K-tuples of mean functions from RL to RD depending on a degree d
(e.g., a degree of polynomials), and VK (B) is a set containing K-tuples from S++

D with the following
block-diagonal structures defined in (3.3.3) (Devijver et al., 2017, Devijver & Gallopin, 2018).

More precisely, for k ∈ [K], we decompose Σk (Bk) into Gk blocks, Gk ∈ N?, and we denote by

d
[g]
k the set of variables into the gth group, for g ∈ [Gk], and by card

(
d

[g]
k

)
the number of variables in

the corresponding set. Then, we denote by Bk =
(
d

[g]
k

)
g∈[Gk]

a block structure for the cluster k, and

B = (Bk)k∈[K] the covariate indexes into each group for each cluster. Hence, up to a permutation, we
can construct the following block-diagonal covariance matrices: VK (B) = (Vk (Bk))k∈[K], for every
k ∈ [K],

Vk (Bk) =


Σk (Bk) ∈ S++

D

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Σk (Bk) = Pk


Σ

[1]
k 0 . . . 0

0 Σ
[2]
k . . . 0

0 0
. . . 0

0 0 . . . Σ
[Gk]
k

P−1
k ,

Σ
[g]
k ∈ S

++

card
(
d

[g]
k

), ∀g ∈ [Gk]


, (3.3.3)

where Pk corresponds to the permutation leading to a block-diagonal matrix in cluster k. It is worth
mentioning that outside the blocks, all coefficients of the matrix are zeros and we also authorize
reordering of the blocks: e.g., {(1, 3) ; (2, 4)} is identical to {(2, 4) ; (1, 3)}, and the permutation in-
side blocks: e.g., the partition of 4 variables into blocks {(1, 3) ; (2, 4)} is the same as the partition
{(3, 1) ; (4, 2)}.
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Remark 3.3.1. The block-diagonal structures for covariance matrices (Σk (Bk))k∈[K], defined in
(3.3.3), are not only used for a trade-off between complexity and sparsity but also motivated by some
real applications, where we want to perform prediction on data sets with heterogeneous observations
and hidden graph-structured interactions between covariates. For instance, for gene expression data set
in which conditionally on the phenotypic response, genes interact with few other genes only, i.e., there
are small modules of correlated genes (see Devijver et al., 2017, Devijver & Gallopin, 2018 for more
details).

In order to establish our oracle inequality, Theorem 3.3.2, we need to assume that Y is a bounded
set in RL and make explicit some classical boundedness conditions on the parameter space, see Sec-
tions 3.2.1.2 and 3.2.1.3 for more details.

In particular, for the block-diagonal covariances of Gaussian experts, we assume that there exist
some positive constants λm and λM such that, for every k ∈ [K],

0 < λm ≤ m (Σk (Bk)) ≤M (Σk (Bk)) ≤ λM . (3.3.4)

Note that this is a quite general assumption and is also used in the block-diagonal covariance selection
for Gaussian graphical models of Devijver & Gallopin (2018).

Next, a characterization of BLLiM model, an affine instance of BLoME model, is described in
Section 3.3.1.2 and is especially useful for high-dimensional regression data. Note that the BLLiM
model relies on an inverse regression trick from a GLLiM model (Deleforge et al., 2015c) and the
block-diagonal structure hypothesis on the residual covariance matrices (Devijver & Gallopin, 2018).

3.3.1.2 High-dimensional regression via BLLiM models

A BLLiM model, as originally introduced in Devijver et al. (2017), is used to capture the nonlinear
relationship between the response and the set of covariates, imposed by a potential hidden graph-
structured interaction, from a high-dimensional regression data, typically in the case when D � L,
by the following K locally affine mappings:

Y =
K∑
k=1

I (Z = k) (A∗kX + b∗k + E∗k) . (3.3.5)

Note that BLLiM model follows the same framework as GLLiM model, defined in Section 3.2.1.4,
except for the fact that BLLiM model imposes the block-diagonal structures on (Σk)k∈[K], established
in (3.3.3), to make a trade-off between complexity and sparsity.

3.3.1.3 Collection of BLoME models

In this paper, we choose the degree of polynomials d and the number of components K among finite
sets DΥ = [dmax] and K = [Kmax], respectively, where dmax ∈ N? and Kmax ∈ N? may depend on
the sample size n. Moreover, B is selected among a list of candidate structures (Bk)k∈[K] ≡ (B)k∈[K],
where B denotes the set of all possible partitions of the covariables indexed by [D], for each cluster of
individuals. We wish to estimate the unknown conditional density s0 by conditional densities belonging

to the following collection of models: (Sm)m∈M, M =
{

(K, d,B) : K ∈ K, d ∈ DΥ,B ∈ (B)k∈[K]

}
,

Sm =
{

(x,y) 7→ sψK,d(x|y) : ψK,d = (ω,υd,Σ (B)) ∈ Ω̃K ×ΥK,d ×VK (B) =: Ψ̃K,d (B)
}
. (3.3.6)

In theory, we would like to consider the whole collection of model (Sm)m∈M. However, the cardinality
of B is large; its size is a Bell number. Even for a moderate number of variables D, it is not possible to
explore the set B, exhaustively. We restrict our attention to a random subcollection BR of moderate
size. For example, we can consider the BLLiM procedure from Devijver et al. (2017, Section 2.2).

In Section 3.3.2, we state our main contribution: a finite-sample oracle type inequality, which
ensures that if we have penalized the log-likelihood in an approximate approach, we are able to select
a model, which is as good as the oracle.
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3.3.2 Main result on oracle inequality

Note that in Section 3.3, the constructed collection of models with block-diagonal structures for each
cluster of individuals is designed, for example, by the BLLiM procedure from Devijver et al. (2017),
where each collection of partition is sorted by sparsity level. Nevertheless, our finite-sample oracle
inequality still holds for any random subcollection of M, which is constructed by some suitable tools
in the framework of BLoME regression models.

Theorem 3.3.2 (Oracle inequality). Let (x[n],y[n] be the observations coming from an unknown
conditional density s0. For each m = (K, d,B) ∈ (K ×DΥ × B) ≡ M, let Sm be define by (3.3.6).
Assume that there exists τ > 0 and εKL > 0 such that, for all m ∈ M, one can find s̄m ∈ Sm, such
that

KL⊗n (s0, s̄m) ≤ inf
t∈Sm

KL⊗n (s0, t) +
εKL
n
, and s̄m ≥ e−τs0.

Next, we construct some random subcollection (Sm)
m∈M̃ of (Sm)m∈M by letting M̃ ≡

(
K ×DΥ × BR

)
⊂

M such that BR is a random subcollection B, of moderate size, as described in Section 3.3.1.3. Con-
sider the collection (ŝm)

m∈M̃ of η-log likelihood minimizers satisfying (3.2.17) for all m ∈ M̃. Then,
there is a constant C such that for any ρ ∈ (0, 1), and any C1 > 1, there are two constants κ0 and C2

depending only on ρ and C1 such that, for every index, m ∈ M, ξm ∈ R+, Ξ =
∑

m∈M e−ξm < ∞
and

pen(m) ≥ κ [(C + lnn) dim(Sm) + (1 ∨ τ)ξm] ,

with κ > κ0, the η′-penalized likelihood estimator ŝm̂, defined as in (3.2.18) on the subset M̃ ⊂ M,
satisfies

EX[n],Y[n]

[
JKL⊗n

ρ (s0, ŝm̂)
]
≤ C1EX[n],Y[n]

[
inf

m∈M̃

(
inf
t∈Sm

KL⊗n (s0, t) + 2
pen(m)

n

)]
+ C2(1 ∨ τ)

Ξ2

n
+
η′ + η

n
.

Remark 3.3.3. In Theorem 3.3.2, the finite-sample oracle inequality compares performances of our
estimator with the best model in the collection. However, Theorem 3.3.2 allows us to approximate
well a rich class of conditional densities if we take enough degree of polynomials of Gaussian expert
means and/or enough clusters in the context of mixture of Gaussian experts (Jiang & Tanner, 1999a,
Mendes & Jiang, 2012, Nguyen et al., 2016, Ho et al., 2019, Nguyen et al., 2021a). This leads to the
term on the right hand side being small, for DΥ and K well-chosen.

Furthermore, in the context of MoE regression models, our non-asymptotic oracle inequality, The-
orem 3.3.2, can be considered as a complementary result to a classical asymptotic theory (Khalili,
2010, Theorems 1,2, and 3), to a finite-sample oracle inequality on the whole collection of models
(Montuelle et al., 2014, Nguyen et al., 2021c) and to an l1-oracle inequality focusing on the Lasso
estimation properties rather than the model selection procedure (Nguyen et al., 2020c).

In particular, aside from important theoretical issues regarding the tightness of the bounds, the
way to integrate a priori information and the minimax analysis of our proposed PMLE, we hope
that our finite-sample oracle inequalities and corresponding interesting numerical experiments help to
partially answer the two following important questions raised in the area of MoE regression models:
(1) What number of mixture components K should be chosen, given the sample size n, and (2)
Whether it is better to use a few complex experts or combine many simple experts, given the total
number of parameters. Note that, such problems are considered in the work of Mendes & Jiang (2012,
Proposition 1), where the authors provided some qualitative insights and only suggested a practical
method for choosing K and d involving a complexity penalty or cross-validation. Furthermore, their
model is only for a non-regularized maximum-likelihood estimation, and thus is not suitable in the
high-dimensional setting.
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3.3.3 Proof of the oracle inequality

Sketch of the proof To work with conditional density estimation in the BLoME regression models,
in Section 3.3.3.1, we need to present a general theorem for model selection: Theorem 3.3.4. It is worth
mentioning that, because the model collection constructed by the BLLiM procedure is random, we
have to use a model selection theorem for MLE among a random subcollection (cf. Devijver, 2015b,
Theorem 5.1 and Devijver & Gallopin, 2018, Theorem 7.3), which is an extension of a whole collection
of conditional densities from Cohen & Le Pennec (2011, Theorem 2), and of Massart (2007, Theorem
7.11), working only for density estimation. Then, we explain how we use Theorem 3.3.4 to get the oracle
inequality: Theorem 3.3.2 in Section 3.3.3.2. To this end, our model collection has to satisfy some
regularity assumptions, which are proved in Section 3.3.4. The main difficulty in proving our oracle
inequality lies in bounding the bracketing entropy of the Gaussian gating functions of the BLoME
model and Gaussian experts with block-diagonal covariance matrices. To overcome the former issue,
we follow a reparameterization trick of the Gaussian gating parameters space (Nguyen et al., 2021c).
For the second one, we utilize the recent novel result on block-diagonal covariance matrices in Devijver
& Gallopin (2018).

3.3.3.1 Model selection theorem for MLE among a random subcollection

Before stating the general theorem, we begin by discussing our assumptions. We work here in a
more general context, with (X,Y) ∈ X × Y, and (Sm)m∈M defining a model collection indexed by
M. Follow the same framework in Section 3.2.4.1, we aim to make use of Assumption 3.2.1 (K),
Assumption 3.2.2 (Sep), and Assumption 3.2.3 (H).

We can now state the main result of (Devijver, 2015b, Theorem 5.1) for the model selection theorem
for MLE among a random subcollection.

Theorem 3.3.4 (Theorem 5.1 from Devijver (2015b)). Let
(
x[n],y[n]

)
be observations coming from

an unknown conditional density s0. Let the model collection S = (Sm)m∈M be an at most countable
collection of conditional density sets. Assume that Assumption 3.2.1 (K), Assumption 3.2.2 (Sep),
and Assumption 3.2.3 (H) hold for every m ∈M. Let εKL > 0, and s̄m ∈ Sm, such that

KL⊗n (s0, s̄m) ≤ inf
t∈Sm

KL⊗n (s0, t) +
εKL
n

;

and let τ > 0, such that

s̄m ≥ e−τs0. (3.3.7)

Introduce (Sm)
m∈M̃, a random subcollection of (Sm)m∈M. Consider the collection (ŝm)

m∈M̃ of η-log

likelihood minimizer satisfying (3.2.17) for all m ∈ M̃. Then, for any ρ ∈ (0, 1), and any C1 > 1,
there are two constants κ0 and C2 depending only on ρ and C1, such that, for every index m ∈M,

pen(m) ≥ κ (Dm + (1 ∨ τ)ξm) ,

with κ > κ0, and where the model complexity Dm is defined in Assumption 3.2.3, the η′-penalized
likelihood estimator ŝm̂, defined as in (3.2.18) on the subset M̃ ⊂M, satisfies

EX[n],Y[n]

[
JKL⊗n

ρ (s0, ŝm̂)
]
≤ C1EX[n],Y[n]

[
inf

m∈M̃

(
inf
t∈Sm

KL⊗n (s0, t) + 2
pen(m)

n

)]
+ C2(1 ∨ τ)

Ξ2

n
+
η′ + η

n
.

In the next section, we apply Theorem 3.3.4 to prove Theorem 3.3.2. Consequently, the penalty
can be chosen roughly proportional to the intrinsic dimension of the model, and thus of the order of
the variance.
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3.3.3.2 Proof of Theorem 3.3.2

It should be stressed that all we need is to verify that Assumption 3.2.3 (H), Assumption 3.2.2 (Sep)
and Assumption 3.2.1 (K) hold for every m ∈ M. According to the result from Devijver (2015b,
Section 5.3), Assumption 3.2.2 (Sep) holds when we consider Gaussian densities and the assumption
defined by (3.3.7) is true if we assume further that the true conditional density s0 is bounded and
compactly supported. Furthermore, since we restricted d and K to DΥ = [dmax] and K = [Kmax],
respectively, it is true that there exists a family (ξm)m∈M and Ξ > 0 such that, Assumption 3.2.1
(K) is satisfied. Therefore, the main steps of the proof for the remaining Assumption 3.2.3 (H) are
presented in this Section 3.3.3.2. All technical results are deferred to Section 3.3.4.

Note that the definition of complexity of model Sm in Assumption 3.2.3 (H) is related to a classical
entropy dimension of a compact set w.r.t. a Hellinger type divergence d⊗n, thanks to the following
Proposition 3.3.5, which is established in (Cohen & Le Pennec, 2011, Proposition 2).

Proposition 3.3.5 (Proposition 2 from Cohen & Le Pennec (2011)). If, for any δ ∈ (0,
√

2], H[.],d⊗n (δ, Sm) ≤
dim(Sm)

(
Cm + ln

(
1
δ

))
, then the function

φm (δ) = δ
√

dim (Sm)

(√
Cm +

√
π +

√
ln

(
1

min (δ, 1)

))
satisfies Assumption 3.2.3 (H). Furthermore, the unique solution δm of 1

δφm (δ) =
√
nδ satisfies

nδ2
m ≤ dim(Sm)

(
2
(√

Cm +
√
π
)2

+

(
ln

n(√
Cm +

√
π
)2

dim (Sm)

)
+

)
.

Then, Assumption 3.2.3 (H) is proved via Proposition 3.3.5 using the fact that

H[.],d⊗n (δ, Sm) ≤ dim(Sm)

(
Cm + ln

(
1

δ

))
, (3.3.8)

where Cm is a constant depending on the model. Before proving the previous statement (3.3.8), we
need to define the following distance over conditional densities:

sup
y
dx(s, t) = sup

y∈Y

(∫
X

(√
s(x|y)−

√
t(x|y)

)2
dx

)1/2

.

This leads straightforwardly to d2⊗n(s, t) ≤ supy d
2
x(s, t). Then, we also define

sup
y
dk
(
g, g′

)
= sup

y∈Y

(
K∑
k=1

(√
gk(y)−

√
g′k(y)

)2
)1/2

,

for any gating functions g and g′. To this end, given any densities s and t over X , the following
distances, depending on y, is constructed as follows:

sup
y

max
k

dx(s, t) = sup
y∈Y

max
k∈[K]

dx (sk(·,y), tk(·,y)) = sup
y∈Y

max
k∈[K]

(∫
X

(√
sk(x,y)−

√
tk(x,y)

)2
dx

)1/2

.

Then (3.3.8) can be established by first decomposing the entropy term between the Gaussian
gating functions and the Gaussian experts. Indeed, there are two possible ways to decompose the
bracketing entropy of Sm based on the reparameterization trick (Nguyen et al., 2021c), for PK viaWk

and Gaussian experts GK,d,B.

WK =
{
Y 3 y 7→ (ln (πkφ (y; ck,Γk)))k∈[K] =: (wk(y;ω))k∈[K] = w (y;ω) : ω ∈ Ω̃K

}
,

PK =

Y 3 y 7→

(
ewk(y)∑K
l=1 e

wl(y)

)
k∈[K]

=: (gk (y; w))k∈[K] ,w ∈ WK

 , and

GK,d,B =
{
X × Y 3 (x,y) 7→ (φ (x;υk,d(y),Σk (Bk)))k∈[K] : υd ∈ ΥK,d,Σ(B) ∈ VK(B)

}
.

For the first approach, we can use Lemma 3.3.6 (Montuelle et al., 2014, Lemma 5):
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Lemma 3.3.6. For all δ ∈ (0,
√

2] and m ∈M,

H[·],supy dx
(δ, Sm) ≤ H[·],supy dk

(
δ

5
,PK

)
+H[·],supy maxk dx

(
δ

5
,GK,d,B

)
.

As mentioning in Appendix B.2.1 from Montuelle et al. (2014), Lemma 3.3.6 boils down to assuming
that Y is bounded. To weaken this assumption, we are going to use the smaller distance: d⊗n, for
the bracketing entropy of Sm although bounding such bracketing entropies for WK and GK,B becomes
much more challenging. Consequently, this leads to the second approach via Lemma 3.3.7 (Montuelle
et al., 2014, Lemma 6).

Lemma 3.3.7. For all δ ∈ (0,
√

2],

H[·],d⊗n (δ, Sm) ≤ H[·],dPK

(
δ

2
,PK

)
+H[·],dGK,d,B

(
δ

2
,GK,d,B

)
,

where

d2
PK
(
g+, g−

)
= EY[n]

[
1

n

n∑
i=1

d2
k

(
g+ (Yi) , g

−(Yi)
)]

= EY[n]

[
1

n

n∑
i=1

K∑
k=1

(√
g+
k (Yi)−

√
g−k (Yi)

)2
]
,

d2
GK,d,B

(
φ+, φ−

)
= EY[n]

[
1

n

n∑
i=1

K∑
k=1

d2
x

(
φ+
k (·,Yi) , φ

−
k (·,Yi)

)]

= EY[n]

[
1

n

n∑
i=1

K∑
k=1

∫
X

(√
φ+
k (x,Yi)−

√
φ+
k (x,Yi)

)2

dx

]
.

Next, we make use of Lemma 3.3.8, which is proved in Section 3.3.4.1, to provide an upper bound
on the bracketing entropy of Sm (PK) on distances d⊗n (dPK ), respectively.

Lemma 3.3.8. It holds that

d⊗n(s, t) ≤ sup
y
dx(s, t), and H[·],d⊗n (δ, Sm) ≤ H[·],supy dx

(δ, Sm) , (3.3.9)

dPK
(
g+, g−

)
≤ sup

y
dk(g

+, g−), and H[·],dPK

(
δ

2
,PK

)
≤ H[·],supy dk

(
δ

2
,PK

)
. (3.3.10)

Lemmas 3.3.7 and 3.3.8 imply that

H[·],d⊗n (δ, Sm) ≤ H[·],supy dk

(
δ

2
,PK

)
+H[·],dGK,d,B

(
δ

2
,GK,d,B

)
.

We next define the metric entropy of the set WK : Hd‖sup‖∞
(δ,WK), which measures the logarithm

of the minimal number of balls of radius at most δ, according to a distance d‖sup‖∞ , needed to cover
WK , where

d‖sup‖∞

(
(sk)k∈[K] , (tk)k∈[K]

)
= max

k∈[K]
sup
y∈Y
‖sk(y)− tk(y)‖2 , (3.3.11)

for any K-tuples of functions (sk)k∈[K] and (tk)k∈[K]. Here, sk, tk : Y 3 y 7→ sk(y), tk(y) ∈ RL,∀k ∈
[K], and given y ∈ Y, k ∈ [K], ‖sk(y)− tk(y)‖2 is the Euclidean distance in RL.

Based on this metric, one can first relate the bracketing entropy of PK to Hd‖sup‖∞
(δ,WK), and

then obtain the upper bound for its entropy via Lemma 3.3.9. It is worth mentioning that for the
Gaussian gating parameters, the technique for handling the logistic weights of Montuelle et al. (2014)
is not directly applicable to the BLoME setting. Therefore, by using the previous reparameterization
trick, Nguyen et al. (2021c, Lemmas 5.4 and 5.8) allow for the control of the metric entropy of the
parameters of Gaussian gating functions.
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Lemma 3.3.9 (Lemmas 5.5 from Nguyen et al. (2021c) ). For all δ ∈ (0,
√

2],

H[·],supy dk

(
δ

2
,PK

)
≤ Hd‖sup‖∞

(
3
√

3δ

8
√
K
,WK

)
≤ dim (WK)

(
CW + ln

(
8
√
K

3
√

3δ

))
,

where CY := supy∈Y ‖y‖∞ <∞ whenever Y is bounded, U := Y × Y × [aΓ, AΓ]L
2

,

CW :=
1

dim (WK)
lnC0, C0 := (6CcCYL)KL

(
6CΓAΓL

2
)L(L+1)

2
K
(

3

aπ

)K−1

K (2πe)K/2 ,

0 < (Cc)
>
1,...,L := max

k∈[K]
sup

(y,ck,vec(Γk))∈U
|∇ck ln |φL(y; ck,Γk)|| <∞,

0 < (CΣ)>1,...,L2 := max
k∈[K]

sup
(y,ck,vec(Γk))∈U

∣∣∇vec(Γk) ln |φL(y; ck,Γk)|
∣∣ <∞,

and vec(·) denotes the vectorization operator that stacks the columns of a matrix into a vector.

Lemma 3.3.10 allows us to construct the Gaussian brackets to handle the metric entropy for
Gaussian experts, which is established in Section 3.3.4.2.

Lemma 3.3.10.

H[·],dGK,d,B

(
δ

2
,GK,d,B

)
≤ dim (GK,d,B)

(
CGK,d,B + ln

(
1

δ

))
. (3.3.12)

Finally, (3.3.8) is proved via Lemmas 3.3.9 and 3.3.10. Indeed, with the fact that dim(Sm) =
dim(WK) + dim (GK,d,B), it follows

H[·],d⊗n (δ, Sm)

≤ H[·],supy dk

(
δ

2
,PK

)
+H[·],dGK,d,B

(
δ

2
,GK,d,B

)
≤ dim (WK)

(
CW + ln

(
8
√
K

3
√

3δ

))
+ dim (GK,d,B)

(
CGK,d,B + ln

(
1

δ

))

= dim (Sm)

[
dim (WK)

dim (Sm)

(
CW + ln

(
8
√
K

3
√

3

)
+ ln

(
1

δ

))
+

dim (GK,d,B)

dim (Sm)

(
CGK,d,B + ln

(
1

δ

))]

= dim(Sm)

(
Cm + ln

(
1

δ

))
, where

Cm =
dim(WK)

dim(Sm)

(
CW + ln

(
8
√
K

3
√

3

))
+

dim (GK,d,B)CGK,d,B
dim (Sm)

≤ CW + ln

(
8
√
Kmax

3
√

3

)
+ CGK,d,B := C.

It is interesting that the constant C does not depend on the dimension dim (Sm) of the model, thanks to
the hypothesis that CW is common for every model Sm in the collection. Therefore, Proposition 3.3.5

implies that, give C = 2
(√

C +
√
π
)2

, the model complexity Dm satisfies

Dm ≡ nδ2
m ≤ dim(Sm)

2
(√

C +
√
π
)2

+

ln
n(√

C +
√
π
)2

dim (Sm)


+

 ≤ dim(Sm) (C + lnn) .

To this end, Theorem 3.3.4 implies that when a collection of BLoME models (Sm)m∈M with
the penalty functions satisfies pen(m) ≥ κ [dim(Sm) (C + lnn) + (1 ∨ τ)ξm] with κ > κ0, the oracle
inequality in Theorem 3.3.2 holds.
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3.3.4 Appendix: Lemma proofs

3.3.4.1 Proof of Lemma 3.3.8

We first aim to prove that d2⊗n(s, t) ≤ supy d
2
x(s, t). Indeed, by definition, it follows that

d2⊗n (s, t) = EY[n]

[
1

n

n∑
i=1

d2
x (s (·|Yi) , t (·|Yi))

]
=

1

n

n∑
i=1

EY[n]

[
d2

x (s (·|Yi) , t (·|Yi))
]

=
1

n

n∑
i=1

∫
Y
d2

x (s (·|y) , t (·|y)) sx,0(y)dy ≤ sup
y
d2

x (s, t)
1

n

n∑
i=1

∫
Y
sx,0(y)dy = sup

y
d2

x (s, t),

where sx,0 denotes that marginal PDF of s0, w.r.t. x. Consequently, it holds that d⊗n(s, t) =√
d2⊗n(s, t) ≤

√
supy d

2
x(s, t) = supy dx(s, t). To prove that

H[·],d⊗n (δ, Sm) ≤ H[·],supy dx
(δ, Sm) ,

it is sufficient to check that

N[·],d⊗n (δ, Sm) ≤ N[·],supy dx
(δ, Sm) .

By using the definition of bracketing entropy in (3.2.23) and d⊗n(s, t) ≤ supy dx(s, t), given

A =

{
n ∈ N? : ∃t−1 , t

+
1 , . . . , t

−
n , t

+
n s.t sup

y
dx(s, t)

(
t−k , t

+
k

)
≤ δ, Sm ⊂

n⋃
k=1

[
t−k , t

+
k

]}
,

B =

{
n ∈ N? : ∃t−1 , t

+
1 , . . . , t

−
n , t

+
n s.t d⊗n

(
t−k , t

+
k

)
≤ δ, Sm ⊂

n⋃
k=1

[
t−k , t

+
k

]}
,

it leads to that A ⊂ B and then (3.3.9) follows, since

N[·],supy dx(s,t) (δ, Sm) = minA ≥ minB = N[·],d⊗n (δ, Sm) .

With the similar argument as in the proof of (3.3.9), it holds that dPK (g+, g−) ≤ supy dk(g
+, g−)

and (3.3.10) is proved.

3.3.4.2 Proof of Lemma 3.3.10

It is worth mentioning that without any structures on covariance matrices of Gaussian experts from
the collection M, Lemma 3.3.10 can be proved using Proposition 2 from Montuelle et al. (2014) and
Montuelle et al. (2014, Appendix B.2.3), for constructing of Gaussian brackets to deal with the Gaus-
sian experts. However, dealing with block-diagonal covariance matrices with random subcollection is
much more challenging. We have to establish more constructive bracketing entropies in the spirits of
Maugis & Michel (2011b), Devijver (2015b), Devijver & Gallopin (2018).

Given any k ∈ [K], by defining

Gd,Bk
= {X × Y 3 (x,y) 7→ φ (x;υk,d(y),Σk (Bk)) =: φk : υk,d ∈ Υk,d,Σk (Bk) ∈ Vk(Bk)} ,

(3.3.13)

it follows that GK,d,B =
∏K
k=1 Gd,Bk

, where
∏

stands for the cartesian product. By using Lemma 3.3.11,
which is proved in Section 3.3.4.3, it follows that

H[·],dGK,d,B

(
δ

2
,GK,d,B

)
≤

K∑
k=1

H[·],dGd,Bk

(
δ

2
√
K
,Gd,Bk

)
. (3.3.14)
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Lemma 3.3.11. Given GK,d,B =
∏K
k=1 Gd,Bk

, where Gd,Bk
is defined in (3.3.13), it holds that

N[·],dGK,d,B

(
δ

2
,GK,d,B

)
≤

K∏
k=1

N[·],dGd,Bk

(
δ

2
√
K
,Gd,Bk

)
,

where for any φ+, φ− ∈ GK,d,B and any φ+
k , φ

−
k ∈ Gd,Bk

, k ∈ [K],

d2
GK,d,B

(
φ+, φ−

)
= EY[n]

[
1

n

n∑
i=1

K∑
k=1

d2
(
φ+
k (·,Yi) , φ

−
k (·,Yi)

)]
,

d2
Gd,Bk

(
φ+
k , φ

−
k

)
= EY[n]

[
1

n

n∑
i=1

d2
(
φ+
k (·,Yi) , φ

−
k (·,Yi)

)]
.

Lemma 3.3.10 is proved via (3.3.14) and Lemma 3.3.12, which is proved in Section 3.3.4.4.

Lemma 3.3.12. By defining Gd,Bk
as in (3.3.13), for all δ ∈ (0,

√
2], it holds that

H[·],dGd,Bk

(
δ

2
,Gd,Bk

)
≤ dim (Gd,Bk

)

(
CGd,Bk + ln

(
1

δ

))
, where (3.3.15)

DBk
=

Gk∑
g=1

card
(
d

[g]
k

)(
card

(
d

[g]
k

)
− 1
)

2
,

CGd,Bk =

DBk
ln
(

6
√

6λMD
2(D−1)

λmDBk

)
+ dim (Υk,d) ln

(
6
√

2D exp
(
CΥk,d

)
√
λm

)
dim (Gd,Bk

)
.

Indeed, (3.3.14) and (3.3.15) lead to

H[·],dGK,d,B

(
δ

2
,GK,d,B

)
≤

K∑
k=1

H[·],dGd,Bk

(
δ

2
√
K
,Gd,Bk

)

≤
K∑
k=1

dim (Gd,Bk
)

(
CGd,Bk + ln

(√
K
)

+ ln

(
1

δ

))
≤ dim (GK,d,B)

(
CGK,d,B + ln

(
1

δ

))
.

Here, CGK,d,B =
∑K

k=1CGd,Bk+ln
(√

K
)

and note that dim (GK,d,B) =
∑K

k=1 dim (Gd,Bk
), dim (Gd,Bk

) =

DBk
+ dim (Υk,d), dim (Υk,d) = DdΥk,d

, CΥk,d
=
√
DdΥk,d

TΥk,d
(in cases where linear combination

of bounded functions are used for means, i.e., Υk,d = Υb) or dim (Υk,d) = D
(dΥk,d

+L

L

)
, CΥk,d

=
√
D
(dΥk,d

+L

L

)
TΥk,d

(in cases where we use polynomial means, i.e., Υk,d = Υp).

3.3.4.3 Proof of Lemma 3.3.11

By the definition of the bracketing entropy in (3.2.23), for each k ∈ [K], let
{[
φl,−k , φl,+k

]}
1≤l≤NGd,Bk

be a minimal covering of δk brackets for dGd,Bk of Gd,Bk
, with cardinality NGd,Bk . This leads to

∀l ∈
[
NGd,Bk

]
, dGd,Bk

(
φl,−k , φl,+k

)
≤ δk.

Therefore, we claim that the set
{∏K

k=1

[
φl,−k , φl,+k

]}
1≤l≤NGd,Bk

is a covering of δ
2 -bracket for dGK,d,B

of GK,d,B with cardinality
∏K
k=1N[·],dGd,Bk

(δk,Gd,Bk
). Indeed, let any φ = (φk)k∈[K] ∈ GK,d,B. Conse-

quently, for each k ∈ [K], φk ∈ Gd,Bk
, there exists l(k) ∈

[
NGd,Bk

]
, such that

φ
l(k),−
k ≤ φk ≤ φ

l(k),+
k , d2

Gd,Bk

(
φ
l(k),+
k , φ

l(k),−
k

)
≤ (δk)

2 .
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Then, it follows that φ ∈ [φ−, φ+] ∈
{∏K

k=1

[
φl,−k , φl,+k

]}
1≤l≤NGd,Bk

, with φ− =
(
φ
l(k),−
k

)
k∈[K]

, φ+ =(
φ
l(k),+
k

)
k∈[K]

, which implies that
{∏K

k=1

[
φl,−k , φl,+k

]}
1≤l≤NGd,Bk

is a bracket covering of GK,d,B.

Now, we want to verify that the size of this bracket is δ/2 by choosing δk = δ
2
√
K
, ∀k ∈ [K]. It

follows that

d2
GK,d,B

(
φ−, φ+

)
= EY[n]

[
1

n

n∑
i=1

K∑
k=1

d2
(
φ
l(k),−
k (·,Yi) , φ

l(k),+
k (·,Yi)

)]

=

K∑
k=1

EY[n]

[
1

n

n∑
i=1

d2
(
φ
l(k),−
k (·,Yi) , φ

l(k),+
k (·,Yi)

)]

=
K∑
k=1

d2
Gd,Bk

(
φ
l(k),−
k , φ

l(k),+
k

)
≤ K

(
δ

2
√
K

)2

=

(
δ

2

)2

.

To this end, by definition of a minimal δ2 -bracket covering number for GK,d,B, Lemma 3.3.11 is proved.

3.3.4.4 Proof of Lemma 3.3.12

To provide the upper bound of the bracketing entropy in (3.3.15), our technique is adapted from the
work of Genovese & Wasserman (2000) for unidimensional Gaussian mixture families, which is then
generalized to multidimensional case by Maugis & Michel (2011b). Furthermore, we make use of the
results from Devijver & Gallopin (2018) to deal with block-diagonal covariance matrices, Vk (Bk) , k ∈
[K], and from Montuelle et al. (2014) to handle the means of Gaussian experts Υk,d, k ∈ [K]. The main
idea is to define firstly a net over the parameter spaces of Gaussian experts, Υk,d×Vk (Bk) , k ∈ [K],
and to construct a bracket covering of Gd,Bk

according to the tensorized Hellinger distance. Note that
dim (Gd,Bk

) = dim (Υk,d) + dim (Vk (Bk)).

Step 1: Construction of a net for the block-diagonal covariance matrices. Firstly, for
k ∈ [K], we denote by Adj (Σk (Bk)) the adjacency matrix associated to the covariance matrix Σk (Bk).
Note that this matrix of size D2 can be defined by a vector of concatenated upper triangular vectors.
We are going to make use of the result from Devijver & Gallopin (2018) to handle the block-diagonal
covariance matrices Σk (Bk), via its corresponding adjacency matrix. To do this, we need to construct

a discrete space for {0, 1}D(D−1)/2, which is a one-to-one correspondence (bijection) with

ABk
= {ABk

∈ SD ({0, 1}) : ∃Σk (Bk) ∈ Vk (Bk) s.t Adj (Σk (Bk)) = ABk
} ,

where SD ({0, 1}) is the set of symmetric matrices of size D taking values on {0, 1}.
Then, we want to deduce a discretization of the set of covariance matrices. Let h denotes Hamming

distance on {0, 1}D(D−1)/2 defined by

d(z, z′) =

n∑
i=1

I
{
z 6= z′

}
, for all z, z′ ∈ {0, 1}D(D−1)/2 .

Let {0, 1}D(D−1)/2
Bk

be the subset of {0, 1}D(D−1)/2 of vectors for which the corresponding graph has

structure Bk =
(
d

[g]
k

)
g∈[Gk]

. Corollary 1 and Proposition 2 from Supplementary Material A of Devijver

& Gallopin (2018) imply that there exists some subset R of {0, 1}D(D−1)/2, as well as its equivalent
Adisc

Bk
for adjacency matrices such that, given ε > 0, and

S̃disc
Bk

(ε) =

{
Σk (Bk) ∈ S++

D (R) : Adj (Σk (Bk)) ∈ Adisc
Bk

, [Σk (Bk)]i,j = σi,jε, σi,j ∈
[
−λM
ε

,
λM
ε

]⋂
Z
}
,
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it holds that∥∥∥Σk (Bk)− Σ̃k (Bk)
∥∥∥2

2
≤ DBk

2
∧ ε2,∀

(
Σk (Bk) , Σ̃k (Bk)

)
∈
(
S̃disc

Bk
(ε)
)2

s.t. Σk (Bk) 6= Σ̃k (Bk) ,

card
(
S̃disc

Bk
(ε)
)
≤

(⌊
2λM
ε

⌋
D (D − 1)

2DBk

)DBk

, (3.3.16)

DBk
= dim (Vk (Bk)) =

Gk∑
g=1

card
(
d

[g]
k

)(
card

(
d

[g]
k

)
− 1
)

2
. (3.3.17)

By choosing ε2 ≤ DBk
2 , given Σk (Bk) ∈ Vk (Bk), then there exists Σ̃k (Bk) ∈ S̃disc

Bk
(ε), such that∥∥∥Σk (Bk)− Σ̃k (Bk)

∥∥∥2

2
≤ ε2. (3.3.18)

Step 2: Construction of a net for the mean functions. Based on Σ̃k (Bk), we can construct
the following bracket covering of Gd,Bk

by defining the nets for the means of Gaussian experts. The
proof of Lemma 1, page 1693, from Montuelle et al. (2014) implies that

N[·],supy‖·‖2
(
δΥk,d

,Υk,d

)
≤

(
exp

(
CΥk,d

)
δΥk,d

)dim(Υk,d)

.

Here dim (Υk,d) = DdΥk,d
, and CΥk,d

=
√
DdΥk,d

TΥk,d
in the general case or dim (Υk,d) = D

(dΥk,d
+L

L

)
,

and CΥk,d
=
√
D
(dΥk,d

+L

L

)
TΥk,d

in the special case of polynomial means. Then, by the definition of
bracketing entropy in (3.2.23), for any minimal δΥk,d

-bracketing covering of the means from Gaussian

experts, denoted by GΥk,d

(
δΥk,d

)
, it is true that

card
(
GΥk,d

(
δΥk,d

))
≤

(
exp

(
CΥk,d

)
δΥk,d

)dim(Υk,d)

. (3.3.19)

Therefore, given α > 0, which is specified later, we claim that the set[l, u]

∣∣∣∣∣∣∣∣
l(x,y) = (1 + 2α)−D φ

(
x; υ̃k,d(y), (1 + α)−1 Σ̃k (Bk)

)
,

u(x,y) = (1 + 2α)D φ
(
x; υ̃k,d(y), (1 + α) Σ̃k (Bk)

)
,

υ̃k,d ∈ GΥk,d

(
δΥk,d

)
, Σ̃k (Bk) ∈ S̃disc

Bk
(ε)

 ,

is a δΥk,d
-brackets set over Gd,Bk

. Indeed, let X × Y 3 (x,y) 7→ f(x,y) = φ (x;υk,d(y),Σk (Bk)) be
a function of Gd,Bk

, where υk,d ∈ Υk,d and Σk (Bk) ∈ Vk (Bk). According to (3.3.18), there exists

Σ̃k (Bk) ∈ S̃disc
Bk

(ε), such that ∥∥∥Σk (Bk)− Σ̃k (Bk)
∥∥∥2

2
≤ ε2.

By definition of GΥk,d

(
δΥk,d

)
, there exists υ̃k,d ∈ GΥk,d

(
δΥk,d

)
, such that

sup
y∈Y
‖υ̃k,d(y)− υk,d(y)‖22 ≤ δ

2
Υk,d

. (3.3.20)

Step 3: Upper bound of the number of the bracketing entropy. Next, we wish to make use
of Lemma 3.3.13 to evaluate the ratio of two Gaussian densities.

Lemma 3.3.13 (Proposition C.1 from Maugis & Michel (2011b)). Let φ (·;µ1,Σ1) and φ (·;µ2,Σ2)
be two Gaussian densities. If Σ2 −Σ1 is a positive definite matrix then for all x ∈ RD,

φ (x;µ1,Σ1)

φ (x;µ2,Σ2)
≤

√
|Σ2|
|Σ1|

exp

[
1

2
(µ1 − µ2)> (Σ2 −Σ1)−1 (µ1 − µ2)

]
.
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The following Lemma 3.3.14 allows us to fulfill the assumptions of Lemma 3.3.13.

Lemma 3.3.14 (Similar to Lemma B.8 from Maugis & Michel (2011b)). Assume that 0 < ε <
λ2
m/9, and set α = 3

√
ε/λm. Then, for every k ∈ [K], (1 + α) Σ̃k (Bk) − Σk (Bk) and Σk (Bk) −

(1 + α)−1 Σ̃k (Bk) are both positive definite matrices. Moreover, for all x ∈ RD,

x>
[
(1 + α) Σ̃k (Bk)−Σk (Bk)

]
x ≥ ε ‖x‖22 , x>

[
Σk (Bk)− (1 + α)−1 Σ̃k (Bk)

]
x ≥ ε ‖x‖22 .

Proof of Lemma 3.3.14. For all x 6= 0, since sup
λ∈vp(Σk(Bk)−Σ̃k(Bk)) |λ| =

∥∥∥Σk (Bk)− Σ̃k (Bk)
∥∥∥

2
≤ ε,

where vp denotes the spectrum of matrix, −ε ≥ −λm/3, and α = 3ε/λm, it follow that

x>
[
(1 + α) Σ̃k (Bk)−Σk (Bk)

]
x = (1 + α) x>

[
Σ̃k (Bk)−Σk (Bk)

]
x + αx>Σk (Bk) x

≥ − (1 + α)
∥∥∥Σ̃k (Bk)−Σk (Bk)

∥∥∥
2
‖x‖22 + αλm ‖x‖22

≥ (αλm − (1 + α) ε) ‖x‖22 = (αλm − αε− ε) ‖x‖22

≥
(

2

3
αλm − ε

)
‖x‖22 = ε ‖x‖22 > 0, and

x>
[
Σk (Bk)− (1 + α)−1 Σ̃k (Bk)

]
x = (1 + α)−1 x>

[
Σk (Bk)− Σ̃k (Bk)

]
x +

(
1− (1 + α)−1

)
x>Σk (Bk) x

≥
(
αλm − ε

1 + α

)
‖x‖22 =

2ε

1 + α
‖x‖22 ≥ ε ‖x‖

2
2 > 0 ( since 0 < α < 1) .

By Lemma 3.3.13 and the same argument as in the proof of Lemma B.9 from Maugis & Michel
(2011b), given 0 < ε < λm/3, where ε is chosen later, and α = 3ε/λm, we obtain

max

{
l(x,y)

f(x,y)
,
f(x,y)

u(x,y)

}
≤ (1 + 2α)−

D
2 exp

(
‖υk,d(y)− υ̃k,d(y)‖22

2ε

)
. (3.3.21)

Because ln (·) is a non-decreasing function, ln (1 + 2α) ≥ α,∀α ∈ [0, 1]. Combined with (3.3.20) where
δ2
Υk,d

= Dαε, we conclude that

max

{
ln

(
l(x,y)

f(x,y)

)
, ln

(
f(x,y)

u(x,y)

)}
≤ −D

2
ln (1 + 2α) +

δ2
Υk,d

2ε
≤ −D

2
α+

δ2
Υk,d

2ε
= 0.

This means that l(x,y) ≤ f(x,y) ≤ u(x,y), ∀(x,y) ∈ X × Y. Hence, it remains to bound the size of
bracket [l, u] w.r.t. dGd,Bk . To this end, we aim to verify that d2

Gd,Bk
(l, u) ≤ δ

2 . To do that, we make

use of the following Lemma 3.3.15.

Lemma 3.3.15 (Proposition C.3 from Maugis & Michel (2011b)). Let φ (·;µ1,Σ1) and φ (·;µ2,Σ2)
be two Gaussian densities with full rank covariance. It holds that

d2 (φ (·;µ1,Σ1) , φ (·;µ2,Σ2))

= 2

{
1− 2D/2 |Σ1Σ2|−1/4

∣∣Σ−1
1 + Σ−1

2

∣∣−1/2
exp

[
−1

4
(µ1 − µ2)> (Σ1 + Σ2)−1 (µ1 − µ2)

]}
.
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Therefore, using the fact that cosh(t) = e−t+et

2 , Lemma 3.3.15 leads to, for all y ∈ Y:

d2(l(·,y), u(·,y)) =

∫
X

[
l(x,y) + u(x,y)− 2

√
l(x,y)u(x,y)

]
dx

= (1 + 2α)−D + (1 + 2α)D − 2

+ d2
(
φ
(
·; υ̃k,d(y), (1 + α)−1 Σ̃k (Bk)

)
, φ
(
·; υ̃k,d(y), (1 + α) Σ̃k (Bk)

))
= 2 cosh [D ln (1 + 2α)]− 2

+ 2

[
1− 2D/2

[
(1 + α)−1 + (1 + α)

]−D/2 ∣∣∣Σ̃k (Bk)
∣∣∣−1/2 ∣∣∣Σ̃k (Bk)

∣∣∣1/2]
= 2 cosh [D ln (1 + 2α)]− 2 + 2− 2 [cosh (ln (1 + α))]−D/2

= 2g (D ln (1 + 2α)) + 2h (ln (1 + α)) ,

where g(t) = cosh(t)− 1 = e−t+et

2 − 1, and h(t) = 1− cosh(t)−D/2. The upper bounds of terms g and
h separately imply that, for all y ∈ Y,

d2(l(·,y), u(·,y)) ≤ 2

(
2 cosh

(
1√
6

)
α2D2 +

1

4
α2D2

)
≤ 6α2D2 =

δ2

4
,

where we choose α = 3ε
λm
, ε = δλm

6
√

6D
, ∀δ ∈ (0, 1], D ∈ N?, λm > 0, which appears in (3.3.21) and satisfies

α = δ
2
√

6D
and 0 < ε < λm

3 . Indeed, studying functions g and h yields

g′(t) = sinh(t), g′′(t) = cosh(t) ≤ cosh(c),∀t ∈ [0, c], c ∈ R+,

h′(t) =
D

2
cosh(t)−D/2−1 sinh(t),

h′′(t) =
D

2

(
−D

2
− 1

)
cosh(t)−D/2−2 sinh2(t) +

D

2
cosh(t)−D/2

=
D

2

(
1−

(
D

2
+ 1

)(
sinh(t)

cosh(t)

)2
)

cosh(t)−D/2 ≤ D

2
,

where we used the fact that cosh(t) ≥ 1. Then, since g(0) = 0, g′(0) = 0, h(0) = 0, h′(0) = 0, by
applying Taylor’s Theorem, it is true that

g(t) = g(t)− g(0)− g′(0)t = R0,1(t) ≤ cosh(c)
t2

2
, ∀t ∈ [0, c],

h(t) = h(t)− h(0)− h′(0)t = R0,1(t) ≤ D

2

t2

2
≤ D2

2

t2

2
,∀t ≥ 0.

We wish to find an upper bound for t = D ln (1 + 2α), D ∈ N?, α = δ
2
√

6D
, δ ∈ (0, 1]. Since ln is an

increasing function, then we have

t = D ln

(
1 +

δ√
6D

)
≤ D ln

(
1 +

1√
6D

)
≤ D 1√

6D
=

1√
6
, ∀δ ∈ (0, 1],

since ln
(

1 + 1√
6D

)
≤ 1√

6D
, ∀D ∈ N?. Then, since ln (1 + 2α) ≤ 2α,∀α ≥ 0,

g (D ln (1 + 2α)) ≤ cosh

(
1√
6

)
(D ln (1 + 2α))2

2
≤ cosh

(
1√
6

)
D2

2
4α2,

h (ln (1 + α)) ≤ D2

2

(ln (1 + α))2

2
≤ D2α2

4
.

Note that the set of δ/2-brackets [l, u] over Gd,Bk
is totally defined by the parameter spaces S̃disc

Bk
(ε)

and GΥk,d

(
δΥk,d

)
. This leads to an upper bound of the δ/2-bracketing entropy of Gd,Bk

evaluated
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from an upper bound of the two set cardinalities. Hence, given any δ > 0, by choosing ε = δλm
6
√

6D
,

α = 3ε
λm

= δ
2
√

6D
, and δ2

Υk,d
= Dαε = D δ

2
√

6D
δλm

6
√

6D
= δ2λm

72D , it holds that

N[·],dGd,Bk

(
δ

2
,Gd,Bk

)
≤ card

(
S̃disc

Bk
(ε)
)
× card

(
GΥk,d

(
δΥk,d

))
≤

(⌊
2λM
ε

⌋
D (D − 1)

2DBk

)DBk
(

exp
(
CΥk,d

)
δΥk,d

)dim(Υk,d)

(using (3.3.17) and (3.3.19))

≤

(
2λM6

√
6D

δλm

D (D − 1)

2DBk

)DBk
(

6
√

2D exp
(
CΥk,d

)
δ
√
λm

)dim(Υk,d)

=

(
6
√

6λMD
2 (D − 1)

λmDBk

)DBk
(

6
√

2D exp
(
CΥk,d

)
√
λm

)dim(Υk,d)(
1

δ

)DBk
+dim(Υk,d)

.

Finally, by definition of bracketing entropy in (3.2.23), we obtain

H[·],dGd,Bk

(
δ

2
,Gd,Bk

)
≤ DBk

ln

(
6
√

6λMD
2 (D − 1)

λmDBk

)
+ dim (Υk,d) ln

(
6
√

2D exp
(
CΥk,d

)
√
λm

)

+ (DBk
+ dim (Υk,d)) ln

(
1

δ

)
= dim (Gd,Bk

)

(
CGd,Bk + ln

(
1

δ

))
,

where dim (Gd,Bk
) = DBk

+ dim (Υk,d) and

CGd,Bk =

DBk
ln
(

6
√

6λMD
2(D−1)

λmDBk

)
+ dim (Υk,d) ln

(
6
√

2D exp
(
CΥk,d

)
√
λm

)
dim (Gd,Bk

)
.
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Chapter 4

Joint rank and variable selection in the
softmax-gated block-diagonal mixture
of experts regression model

Chapter 4 is based on the following works:

(C7) TrungTin Nguyen, Hien D Nguyen, Faicel Chamroukhi, and Geoffrey J McLachlan. An l1-
oracle inequality for the lasso in mixture of experts regression models.
arXiv preprint arXiv:2009.10622. 2020. Link: https://arxiv.org/pdf/2009.10622.pdf
(Nguyen et al., 2020c).

(C8) Joint rank and variable selection by a non-asymptotic model selection in mixture of polynomial
experts models. Ongoing work.
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Recall that in Sections 1.2.8 and 1.2.9, we highlighted the main oracle inequalities without detailed
proofs regarding an l1-oracle inequality satisfied by the Lasso estimator in SGaME models and a weak
oracle type inequality satisfied by PMLEs is constructed for PSGaBloME models, which is particularly
useful for nonlinear regression models for high-dimensional heterogeneous data. In particular, our
oracle inequalities show that the performance in Jensen–Kullback–Leibler type loss of our penalized
maximum likelihood estimators are roughly comparable to that of oracle models if we take large enough
the constants in front of the penalties, whose forms are only known up to multiplicative constants
and proportional to the dimensions of models. Such theoretical justifications of the penalty shapes
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motivate us to make use of the slope heuristic criterion to select several hyperparameters, including
the number of mixture components, the amount of sparsity (the coefficients and ranks sparsity levels),
the degree of polynomial mean functions, and the potential hidden block-diagonal structures of the
covariance matrices of the multivariate predictor or response variable. In Chapter 4, we aim to present
such non-asymptotic oracle inequalities in as much detail as possible.

4.1 Introduction

We recall that MoE models are used to estimate the conditional distribution of a random variable Y ∈
Rq, given certain features from n observations {xi}i∈[n] = {(xi1, . . . , xip)}i∈[n] ∈ (Rp)n, where q, p, n ∈
N?, [n] := {1, . . . , n}, n ∈ N? denotes the positive integer numbers, and Rp means the p-dimensional
real number. The use of MoE models in the high-dimensional regression setting, when the number
of explanatory variables can be much larger than the sample size, remains a challenge, particularly
from a theoretical point of view, where there is still a lack of results in the literature regarding both
statistical estimation and model selection. In such settings, we are required to reduce the dimension
of the problem by seeking the most relevant relationships, to avoid numerical identifiability problems.

In Chapter 4, we focus on the use of an l1-penalized maximum likelihood estimator (PMLE), as
originally proposed as the Lasso by Tibshirani (1996), which tends to produce sparse solutions and
can be viewed as a convex surrogate for the non-convex l0-penalization problem. These methods have
attractive computational and theoretical properties (cf. Fan & Li, 2001). First introduced in Tibshirani
(1996) for the linear regression model, the Lasso estimator has since been extended to many statistical
problems, including for high-dimensional regression of non-homogeneous data by using finite mixture
regression models as considered by Khalili & Chen (2007), Stadler et al. (2010), and Lloyd-Jones et al.
(2018). In Stadler et al. (2010), they consider scalar response, i.e., q = 1, and it is assumed that, for
i ∈ [n], the observations yi, conditionally on Xi = xi, come from a conditional density sψ0(·|xi), which
is a finite mixture of K ∈ N? Gaussian conditional densities with mixing proportions (π0,1, . . . , π0,K),
where

Yi|Xi = xi ∼ sψ0(yi|xi) =
K∑
k=1

π0,kφ(yi;β
>
0,kxi, σ

2
0,k). (4.1.1)

Here

φ(·;µ, σ2) =
1√
2πσ

exp

(
−(· − µ)2

2σ2

)
is the univariate Gaussian probability density function (PDF), with mean µ ∈ R and variance σ2 ∈ R+,
and ψ0 = (π0,k,β0,k, σ0,k)k∈[K] is the vector of model parameters.

Then, considering a model S, defined by the form (4.1.1). To estimate the true generative model
sψ0 , Stadler et al. (2010) proposed a Lasso-regularization based estimator, which consists of a min-
imiser of the penalized negative conditional log-likelihood that is defined by

ŝLasso(λ) = arg min
sψ∈S

{
− 1

n

n∑
i=1

ln (sψ (yi|xi)) + penλ(ψ)

}
,

penλ(ψ) = λ

K∑
k=1

πk

p∑
j=1

∣∣σ−1
k βkj

∣∣ , λ > 0,ψ = (πk,βk, σk)k∈[K] . (4.1.2)

For this estimator, the authors provided an l0-oracle inequality, satisfied by ŝLasso(λ), conditional on
the restricted eigenvalue condition and margin condition, which leads to link the Kullback-Leibler loss
function to the l2-norm of the parameters.

Another direction of study regarding ŝLasso(λ) is to look at its l1-regularization properties; see, for
example, Massart & Meynet (2011), Meynet (2013), and Devijver (2015a). As indicated by Devijver
(2015a), contrary to results for the l0 penalty, some results for the l1 penalty are valid with no
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assumptions, neither on the Gram matrix nor on the margin. However, such results can be achieved
only at a rate of convergence of 1/n, rather than at order 1/

√
n.

In the framework of finite mixtures of Gaussian regression models, Meynet (2013) considered the
case for a univariate response, and Devijver (2015a) extended these results to the case of a multivari-
ate responses, i.e., the Gaussian conditional PDF in (4.1.1) is replaced by a multivariate Gaussian
PDF of the form φ (·;µ,Σ) with mean vector µ and a covariance matrix Σ. In particular, Devijver
(2015a) considered an extension of the Lasso-estimator (4.1.2), with a regularization term defined by

penλ(ψ) = λ
∑K

k=1

∑p
j=1

∑q
z=1

∣∣∣[βk]z,j∣∣∣.
In Section 4.2, we shall extend such result for the finite mixture of Gaussian regressions models,

which is considered as a special case of the MoE models, where only the mixture components depend
on the features, to the more general mixture of Gaussian experts regression models with softmax
gating functions, as defined in (4.2.1). Since each mixing proportion is modeled by a softmax function
of the covariates, the dependence on each feature appears both in the experts PDFs and in the
mixing proportion functions (gating functions), which allows us to capture more complex non-linear
relationships between the response and predictors arising from different subpopulations, compared to
the finite mixture of Gaussian regression models. This is demonstrated via numerical experiments in
several articles such as Nguyen & Chamroukhi (2018), Chamroukhi & Huynh (2018), and Chamroukhi
& Huynh (2019).

In the context of studying the statistical properties of the penalized maximum likelihood approach
for MoE models with softmax gating functions, we may consider the prior works of Khalili (2010)
and Montuelle et al. (2014). In Khalili (2010), for feature selection, two extra penalty terms are ap-
plied to the l2-penalized conditional log-likelihood function. Their penalized conditional log-likelihood
estimator is given by

ŝPL(λ) = arg min
sψ∈S

{
− 1

n

n∑
i=1

ln (sψ (yi|xi)) + penλ(ψ)

}
, (4.1.3)

sψ(y|x) =

K∑
k=1

gk (x;γ)φ
(
y;βk0 + β>k x, σ2

k

)
,ψ = (γk,βk, σk)k∈[K] , (4.1.4)

penλ(ψ) =
K∑
k=1

λ
[1]
k

p∑
j=1

|γkj |+
K∑
k=1

λ
[2]
k

p∑
j=1

|βkj |+
λ[3]

2

K∑
k=1

‖γk‖22 , (4.1.5)

where λ =
(
λ

[1]
1 , . . . , λ

[1]
K , λ

[2]
1 , . . . , λ

[2]
K ,

λ[3]

2

)
is a vector of non-negative regularization parameters, S

contains all functions of form (4.1.4), ‖·‖22 is the Euclidean norm in Rp, and

gk (x;γ) =
exp

(
γk0 + γ>k x

)∑K
l=1 exp

(
γl0 + γ>l x

)
is a softmax gating function. Note that the first two terms from (4.1.5) are the normal Lasso functions
(l1 penalty function), while the l2 penalty function for the gating network is added to excessively
wildly large estimates of the regression coefficients corresponding to the mixing proportions. This
behavior can be observed in logistic/multinomial regression when the number of potential features is
large and highly correlated (see e.g., Park & Hastie, 2008 and Bunea et al., 2008). However, this also
affects the sparsity of the regularization model, which is confirmed via the numerical experiments of
Chamroukhi & Huynh (2018) and Chamroukhi & Huynh (2019).

By extending the theoretical developments for mixture of linear regression models in Khalili &
Chen (2007), standard asymptotic theorems for MoE models are established in Khalili (2010). More
precisely, under several strict regularity conditions on the true joint density function sψ0(y,x) and the

choice of tuning parameter λ, the estimator of the true parameter vector ψ̂PL
n (λ), defined via ŝPL(λ)

from (4.1.3) but using the Scad penalty function from Fan & Li (2001), instead of Lasso, is proved
to be both consistent in feature selection and maintains root-n consistency. Differing from Scad, for
Lasso, the estimator ψ̂PL

n (λ) cannot achieve both properties, simultaneously. In other words, Lasso is
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consistent in feature selection but introduces bias to the estimators of the true nonzero coefficients.
Therefore, our non-asymptotic result in Theorem 4.2.2 can be considered as a complement to such
asymptotics for MoE regression models with softmax gating functions. To obtain our oracle inequality,
Theorem 4.2.2, we shall restrict our study to the Lasso estimator without the l2-norm. While studying
the oracle inequality within the context of the (l1 + l2)-norm may also be interesting. It has been
demonstrated, in Huynh & Chamroukhi (2019), that the regularized maximum-likelihood estimation
of MoE models for generalized linear models, better encourages sparsity under the l1-norm, compared
to when using the (l1 + l2)-norm, which may affect sparsity. However, in Section 4.2, we shall not
consider such approaches.

To the best of our knowledge, we are the first to study the l1-regularization properties of the MoE
regression models. The main contribution of Section 4.2 is a theoretical result: an oracle inequality,
that provides the lower bound on the regularization parameter of the Lasso penalty that ensures such
non-asymptotic theoretical control on the Kullback-Leibler loss of the Lasso estimator for SGaME
models. More precisely, we assume that we have n observations,

(
x[n],y[n]

)
∈ ([0, 1]p × Rq), where

x[n] are fixed values, coming from the unknown conditional mixture of Gaussian experts regression

models s0 := sψ0 ∈ S, cf. (4.2.6), and a Lasso estimator ŝLasso(λ), defined as in (4.2.8), where λ ≥ 0
is a regularization parameter to be tuned. Then, if λ ≥ κ c1 lnn√

n
for some absolute constant κ ≥ 148,

the estimator ŝLasso(λ) satisfies the following l1-oracle inequality:

EY[n]

[
KLn

(
s0, ŝ

Lasso(λ)
)]
≤
(
1 + κ−1

)
inf
sψ∈S

(
KLn (s0, sψ) + λ

∥∥∥ψ[1,2]
∥∥∥

1

)
+ λ+

√
K

n
c2 lnn,

where we suppress the dependence of positive constants c1, c2 on p, q,K, and boundedness constants
defining our conditional class S, for the sake of ease of interpretation. For the explicit dependences,
we refer the reader to Theorem 4.2.2.

Next, in Section 4.3, we focus on joint rank and variable selection by a non-asymptotic model
selection via weak oracle inequalities. Note that, in Section 4.3, we proposed a Lasso+l2-Rank proce-
dure for PSGaBloME regression models to deal with high-dimensional data. This allows us to study
the model selection procedure instead of investigating the l1-regularization properties for the Lasso
estimator. Furthermore, the results from Section 4.3 extend the LinBoSGaME from Montuelle et al.
(2014, Theorem 1) for handling high-dimensional data via selecting relevant variables and low-rank
regression matrices. Note that, these weak oracle inequalities also extend the results of some simple
MoE models from Devijver (2015b, 2017a), Devijver & Gallopin (2018) to one of the most general
MoE models, namely LinBoSGaBloME models. A detailed comparison between our work and their
results can be found in Section 1.2.11.

Note that our results in Sections 4.2 and 4.3 are non-asymptotic; i.e., the number of observations n
is fixed, while the number of predictors p and the dimension of the response q can grow, with respect to
n, and can be much larger than n. Good discussions regarding non-asymptotic statistics are provided
in Massart (2007) and Wainwright (2019).

The goal of Chapter 4 is to provide lower bounds of penalty functions that guarantee an l1-oracle
inequality or a weak oracle inequality for softmax-gated MoE models, which is particularly useful
for nonlinear regression models for high-dimensional heterogeneous data. As such, the remainder of
Chapter 4 progresses as follows. In Sections 4.2.1 and 4.3.1.1, we discuss constructions and frameworks
of SGaME and PSGaBloME regression models, respectively. Then, we establish an l1-oracle inequality
satisfied by the Lasso estimator in SGaME models in Section 4.2.2. Furthermore, a weak oracle type
inequality satisfied by PMLEs is constructed for PSGaBloME regression models in Section 4.3.2. Next,
Sections 4.2.3 and 4.3.3 are devoted to the corresponding proofs of these main results. The proof of
technical lemmas and additional technical results can be found in Sections 4.2.4, 4.2.5 and 4.3.4,
respectively.
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4.2 An l1-oracle inequality for the Lasso estimator in the softmax-
gated mixture of experts regression models

4.2.1 Notation and framework

4.2.1.1 SGaME models

We consider the statistical framework in which we model a sample of high-dimensional regression data
generated from a heterogeneous population via the mixtures of Gaussian experts regression models
with Gaussian gating functions, named softmax-gated MoE (SGaME) regression models. We observe
n independent couples ((xi,yi))i∈[n] ∈ (X × Rq)n ⊂ (Rp × Rq)n (p, q, n ∈ N?), where typically p � n,
xi is fixed and yi is a realization of the random variable Yi, for all i ∈ [n]. We assume that X is a
compact set of Rp. We also assume that the response variable Yi depends on the set of explanatory
variables (covariates) through a regression-type model. The conditional probability density function
(PDF) of the model is approximated by SGaME models.

More precisely, we assume that, conditionally to the {xi}i∈[n], {Yi}i∈[n] are independent and
identically distributed with conditional density s0 (·|xi), which is approximated by a MoE model. Our
goal is to estimate this conditional density function s0 from the observations.

For any K ∈ N?, the K-component MoE model can be defined as

MoE (y|x; θ) =
K∑
k=1

gk (x;γ) fk (y|x;η) ,

where gk (x;γ) > 0 and
∑K

k=1 gk (x;γ) = 1, and fk (y|x;η) is a conditional PDF (cf. Nguyen &
Chamroukhi, 2018). In our proposal, we consider the MoE model of Jordan & Jacobs (1994), which
extended the original MoE from Jacobs et al. (1991), for a regression model. More precisely, we utilize
the following mixtures of Gaussian experts regression models with softmax gating functions:

sψ(y|x) =
K∑
k=1

gk (x;γ)φ (y;υk(x),Σk) , (4.2.1)

to estimate s0, where given any k ∈ [K], φ (·;υk,Σk) is the multivariate Gaussian density with mean
υk, which is a function of x that specifies the mean of the kth component, and with covariance matrix
Σk. Here, (υ,Σ) := ((υ1, . . . ,υK) , (Σ1, . . . ,ΣK)) ∈ (Υ× V ), where Υ is a set of K-tuples of mean
functions from X to Rq and V is a sets of K-tuples of symmetric positive definite matrices on Rq, and
the softmax gating function gk (x;γ) is defined as in (4.2.2):

gk (x;γ) =
exp (wk(x))∑K
l=1 exp (wl(x))

, wk(x) = γk0 + γ>k x,γ =
(
γk0,γ

>
k

)
k∈[K]

∈ Γ = R(p+1)K . (4.2.2)

We shall define the parameter vector ψ in the sequel.

Fixed predictors and number of components with linear mean functions

Inspired by the framework in Meynet (2013) and Devijver (2015a), the explanatory variables xi and
the number of components K ∈ N? are both fixed. We assume that the observed xi, i ∈ [n], are finite.
Without loss of generality, we choose to rescale x, so that ‖x‖∞ ≤ 1. Therefore, we can assume that
the explanatory variables xi ∈ X = [0, 1]p, for all i ∈ [n]. Note that such a restriction is also used in
Devijver (2015a). Under only the assumption of bounded parameters, we provide a lower bound on
the Lasso regularization parameter λ, which guarantees an oracle inequality. Note that in this non-
random explanatory variables setting, we focus on the Lasso for its l1-regularization properties rather
than as a model selection procedure, as in the case of random explanatory variables and unknown K,
as in Montuelle et al. (2014).

For simplicity, we consider the case where the means of Gaussian experts are linear functions of
the explanatory variables; i.e.,

Υ =

{
υ : X 7→ υβ(x) := (βk0 + βkx)k∈[K] ∈ (Rq)K

∣∣∣∣β = (βk0,βk)k∈[K] ∈ B =
(
Rq×(p+1)

)K}
,
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where βk0 and βk are respectively the q× 1 vector of bias and the q× p regression coefficients matrix
for the kth expert.

In summary, we wish to estimate s0 via conditional densities belonging to the class:

{(x,y) 7→ sψ(y|x) |ψ = (γ,β,Σ) ∈ Ψ} , (4.2.3)

where Ψ = Γ×Ξ, and Ξ = B × V .
From hereon in, for a vector x ∈ Rp, we assume that x = (x1, . . . , xp) is in the column form.

Similarly, the parameter of the entire model, ψ = (γ,β,Σ), is also a column vector, where we consider
any matrix as a vector produced using vec(·): the vectorization operator that stacks the columns of a
matrix into a vector.

Boundedness assumption on the softmax gating and Gaussian parameters

We shall restrict our study to estimate s0 by conditional PDFs belonging to the model class S, which
has boundedness assumptions on the softmax gating and Gaussian expert parameters. Specifically,
we assume that there exists deterministic constants Aγ , Aβ, aΣ, AΣ > 0, such that ψ ∈ Ψ̃, where

Γ̃ =

{
γ ∈ Γ | ∀k ∈ [K], sup

x∈X

(
|γk0|+

∣∣∣γ>k x
∣∣∣) ≤ Aγ} ,

Ξ̃ =

{
ξ ∈ Ξ | ∀k ∈ [K], max

z∈{1,...,q}
sup
x∈X

(|[βk0]z|+ |[βkx]z|) ≤ Aβ, aΣ ≤ m
(
Σ−1
k

)
≤M

(
Σ−1
k

)
≤ AΣ

}
,

Ψ̃ = Γ̃× Ξ̃. (4.2.4)

Since

aG :=
exp (−Aγ)∑K
l=1 exp (Aγ)

≤ sup
x∈X ,γ∈Γ̃

exp
(
γk0 + γ>k x

)∑K
l=1 exp

(
γl0 + γ>l x

) ≤ exp (Aγ)∑K
l=1 exp (−Aγ)

=: AG,

there exists deterministic positive constants aG, AG, such that

aG ≤ sup
x∈X ,γ∈Γ̃

gk (x;γ) ≤ AG. (4.2.5)

We wish to use the model class S of conditional PDFs to estimate s0, where

S =
{

(x,y) 7→ sψ(y|x)
∣∣∣ψ = (γ,β,Σ) ∈ Ψ̃

}
. (4.2.6)

To simplify the proofs, we shall assume that the true density s0 belongs to S. That is to say, there
exists ψ0 = (γ0,β0,Σ0) ∈ Ψ̃, such that s0 = sψ0 .

4.2.1.2 Losses and the penalized maximum likelihood estimator

In maximum likelihood estimation, we consider the Kullback-Leibler information as the loss function,
which is defined for densities s and t by

KL(s, t) =

{∫
Rq ln

(
s(y)
t(y)

)
s(y)dy if sdy is absolutely continuous with respect to tdy,

+∞ otherwise.

Since we are working with conditional PDFs and not with classical densities, we define the following
adapted Kullback-Leibler information that takes into account the structure of conditional PDFs. For
fixed explanatory variables (xi)1≤i≤n, we consider the average loss function

KLn(s, t) =
1

n

n∑
i=1

KL (s (·|xi) , t (·|xi)) =
1

n

n∑
i=1

∫
Rq

ln

(
s (y|xi)
t (y|xi)

)
s (y|xi) dy. (4.2.7)
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The maximum likelihood estimation approach suggests to estimate s0 by the conditional PDF sψ
that maximizes the likelihood, conditioned on (xi)1≤i≤n, defined as

ln

(
n∏
i=1

sψ (yi|xi)

)
=

n∑
i=1

ln (sψ (yi|xi)) .

Or equivalently, that minimizes the empirical contrast:

− 1

n

n∑
i=1

ln (sψ (yi|xi)) .

However, since we want to handle high-dimensional data, we have to regularize the maximum likeli-
hood estimator (MLE) in order to obtain reasonable estimates. Here, we shall consider l1-regularization
and the associated so-called Lasso estimator, which is the l1-norm penalized MLE and is defined as in
(4.1.2) but with a modified penalty function as follows:

ŝLasso(λ) := arg min
sψ∈S

{
− 1

n

n∑
i=1

ln (sψ (yi|xi)) + penλ(ψ)

}
, (4.2.8)

where λ ≥ 0 is a regularization parameter to be tuned, ψ = (γ,β,Σ) and

penλ(ψ) = λ
∥∥∥ψ[1,2]

∥∥∥
1

:= λ
(∥∥∥ψ[1]

∥∥∥
1

+
∥∥∥ψ[2]

∥∥∥
1

)
, (4.2.9)∥∥∥ψ[1]

∥∥∥
1

= ‖γ‖1 =
K∑
k=1

p∑
j=1

|γkj | , (4.2.10)

∥∥∥ψ[2]
∥∥∥

1
= ‖vec(β)‖1 =

K∑
k=1

p∑
j=1

q∑
z=1

∣∣∣[βk]z,j∣∣∣ . (4.2.11)

From now on, we denote ‖β‖p (p ∈ {1, 2,∞}) by the induced p-norm of a matrix; see Definition 4.2.18,
which differs from ‖vec(β)‖p.

Note that penλ(ψ) is a Lasso regularization term encouraging sparsity for both the gating and
expert parameters. Recall that this penalty is also studied in Khalili (2010), Chamroukhi & Huynh
(2018), and Chamroukhi & Huynh (2019), in which the authors studied the univariate case: Y ∈ R.
Notice that, without considering the l2-norm, the penalty function considered in (4.1.5) belongs to
our framework and the l1-oracle inequality from Theorem 4.2.2 can be obtained for it. Indeed, by

considering λ = min
{
λ

[1]
1 , . . . , λ

[1]
K , λ

[2]
1 , . . . , λ

[2]
K ,

λ[3]

2

}
, the condition for a regularization parameter’s

lower bound, (4.2.13) from Theorem 4.2.2, can also be applied to model (4.1.3), which leads to an
l1-oracle inequality.

4.2.2 An l1-oracle inequality for the Lasso estimator

In this section, we state Theorem 4.2.2, which is proved in Section 4.2.3.3. This result provides an
l1-oracle inequality for the Lasso estimator for mixtures of Gaussian experts regression models with
softmax gating functions. It is the primary contribution of this article and is motivated by the problem
studied in Meynet (2013) and Devijver (2015a).

Firstly, we aim to prove that the negative of differential entropy (see its definition, e.g., from
Mansuripur (1987, Chapter 9)) of the true unknown conditional density s0 ∈ S, defined in (4.2.1), is
finite, see more in Lemma 4.2.1, which is proved in Section 4.2.4.3.

Lemma 4.2.1 (Differential entropy of SGaME regression model with boundedness assumptions on pa-

rameter spaces). There exist a nonnegative constant Hs0 = max {0, lnCs0}, Cs0 = (2π)−q/2
(
2A−1

Σ

)−q/2
,

such that

max

{
0, sup
x∈X

∫
Rq

ln (s0 (y|x)) s0 (y|x) dy

}
≤ Hs0 <∞. (4.2.12)
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Theorem 4.2.2 (l1-oracle inequality from Nguyen et al., 2020c, Theorem 3.1). We observe
(
x[n],y[n]

)
∈

([0, 1]p × Rq), coming from the unknown conditional mixture of Gaussian experts regression models
s0 := sψ0 ∈ S, cf. (4.2.6). We define the Lasso estimator ŝLasso(λ), by (4.2.8), where λ ≥ 0 is a
regularization parameter to be tuned. Then, if

λ ≥ κKB
′
n√
n

(
q lnn

√
ln(2p+ 1) + 1

)
, (4.2.13)

B′n = max (AΣ, 1 +KAG)
(
1 + 2q

√
qAΣ

(
5A2

β + 4AΣ lnn
))
, (4.2.14)

for some absolute constants κ ≥ 148, the estimator ŝLasso(λ) satisfies the following l1-oracle inequality:

EY[n]

[
KLn

(
s0, ŝ

Lasso(λ)
)]
≤
(
1 + κ−1

)
inf
sψ∈S

(
KLn (s0, sψ) + λ

∥∥∥ψ[1,2]
∥∥∥

1

)
+ λ

+

√
K

n

(
eq/2−1πq/2

A
q/2
Σ

+Hs0

)√
2qAγ

+ 302q

√
K

n
max (AΣ, 1 +KAG)

(
1 + 2q

√
qAΣ

(
5A2

β + 4AΣ lnn
))

×K

(
1 +

(
Aγ + qAβ +

q
√
q

aΣ

)2
)
. (4.2.15)

Next, we state the following Theorem 4.2.3, which is an l1-ball MoE regression model selection the-
orem for l1-penalized maximum conditional likelihood estimation in the Gaussian mixture framework.
Note that Theorem 4.2.2 is an immediate consequence of Theorem 4.2.3.

Theorem 4.2.3. Assume that we observe ((xi,yi))i∈[n] with unknown conditional Gaussian mixture
PDF s0. For all m ∈ N?, consider the l1-ball

Sm =
{
sψ ∈ S,

∥∥∥ψ[1,2]
∥∥∥

1
≤ m

}
, (4.2.16)

and let ŝm be a ηm-ln-likelihood minimizer in Sm for some ηm ≥ 0:

− 1

n

n∑
i=1

ln (ŝm (yi|xi)) ≤ inf
sm∈Sm

(
− 1

n

n∑
i=1

ln (sm (yi|xi))

)
+ ηm. (4.2.17)

Assume that, for all m ∈ N?, the penalty function satisfies pen(m) = λm, where λ is defined later.
Then, we define the penalized likelihood estimator ŝm̂, where m̂ is defined via the satisfaction of the
inequality

− 1

n

n∑
i=1

ln (ŝm̂ (yi|xi)) + pen(m̂) ≤ inf
m∈N?

(
− 1

n

n∑
i=1

ln (ŝm (yi|xi)) + pen(m)

)
+ η, (4.2.18)

for some η ≥ 0. Then, if

λ ≥ κKB
′
n√
n

(
q lnn

√
ln(2p+ 1) + 1

)
, (4.2.19)

B′n = max (AΣ, 1 +KAG)
(
1 + 2q

√
qAΣ

(
5A2

β + 4AΣ lnn
))
, (4.2.20)

for some absolute constants κ ≥ 148, then

EY[n]
[KLn (s0, ŝm̂)] ≤

(
1 + κ−1

)
inf
m∈N?

(
inf

sm∈Sm
KLn (s0, sm) + pen(m) + ηm

)
+ η

+

√
K

n

(
eq/2−1πq/2

A
q/2
Σ

+Hs0

)√
2qAγ

+ 302q

√
K

n
max (AΣ, 1 +KAG)

(
1 + 2q

√
qAΣ

(
5A2

β + 4AΣ lnn
))

×K

(
1 +

(
Aγ + qAβ +

q
√
q

aΣ

)2
)
. (4.2.21)
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Theorem 4.2.2 provides information about the performance of the Lasso as an l1 regularization
estimator for mixtures of Gaussian experts regression models. If the regularization parameter λ is
properly chosen, the Lasso estimator, which is the solution of the l1-penalized empirical risk mini-
mization problem, behaves in a comparable manner to the deterministic Lasso (or so-called oracle),
which is the solution of the l1-penalized true risk minimization problem, up to an error term of order
λ. Note that the best model defined via

inf
sψ∈S

(
KLn (s0, sψ) + λ

∥∥∥ψ[1,2]
∥∥∥

1

)
(4.2.22)

is the one with the smallest l1-penalized true risk. However, since we do not have access to the true
density s0, we can not select that best model, which we call the oracle. The oracle is by definition
the model belonging to the collection that minimizes the l1-penalized risk (4.2.22), which is generally
assumed unknown.

To the best of our knowledge, Theorem 2.8 from Maugis-Rabusseau & Michel (2013) is the only
result in the literature which studies the minimax estimator for Gaussian mixture models. We believe
that the establishment of such an extension to MoE regression models is not trivial. We hope to
overcome such a challenge in the future.

4.2.3 Proof of the oracle inequality

Sketch of the proof. Motivated by the idea from Meynet (2013) and Devijver (2015a), we study
the Lasso as the solution of a penalized maximum likelihood model selection procedure over countable
collections of models in an l1-ball. Therefore, the main Theorem 4.2.2 is an immediate consequence of
Theorem 4.2.3, which is an l1-ball MoE regression model selection theorem for l1-penalized maximum
conditional likelihood estimation in the Gaussian mixture framework. The proof of Theorem 4.2.3
can be deduced from Proposition 4.2.4 and Proposition 4.2.5, which address the cases for large and
small values of Y. Proposition 4.2.4 constitutes our main technical contribution. Its proof follows the
arguments developed in the proof of a more general model selection theorem for maximum likelihood
estimators: Massart (2007, Theorem 7.11). More precisely, the proof of Proposition 4.2.4 is in the
spirit of Vapnik’s method of structural risk minimization, which is established initially in Vapnik
(1982) and briefly summarized in Section 8.2 in Massart (2007). In particularly, to obtain an upper
bound of the empirical process in expectation, we shall use concentration inequalities combined with
symmetrization arguments.

4.2.3.1 Main propositions used in this proof

Theorem 4.2.3 can be deduced from the two following propositions, which address the cases for large
and small values of Y.

Proposition 4.2.4. Assume that we observe ((xi,yi))i∈[n], with unknown conditional PDF s0. Let
Mn > 0 and consider the event

T =

{
max
i=1,...,n

‖Yi‖∞ = max
i=1,...,n

max
z∈{1,...,q}

|[Yi]z| ≤Mn

}
.

For all m ∈ N?, consider the l1-ball

Sm =
{
sψ ∈ S,

∥∥∥ψ[1,2]
∥∥∥

1
≤ m

}
and let ŝm be a ηm-ln-likelihood minimizer in Sm, for some ηm ≥ 0:

− 1

n

n∑
i=1

ln (ŝm (yi|xi)) ≤ inf
sm∈Sm

(
− 1

n

n∑
i=1

ln (sm (yi|xi))

)
+ ηm.

167



Chapter 4. Joint rank and variable selection in the softmax-gated block-diagonal mixture of experts
regression model

Assume that for all m ∈ N?, the penalty function satisfies pen(m) = λm, where λ is defined later.
Then, we define the penalized likelihood estimator ŝm̂ with m̂ defined via the inequality

− 1

n

n∑
i=1

ln (ŝm̂ (yi|xi)) + pen(m̂) ≤ inf
m∈N?

(
− 1

n

n∑
i=1

ln (ŝm (yi|xi)) + pen(m)

)
+ η, (4.2.23)

for some η ≥ 0. Then, if

λ ≥ κKBn√
n

(
q lnn

√
ln(2p+ 1) + 1

)
,

Bn = max (AΣ, 1 +KAG)
(

1 + q
√
q (Mn +Aβ)2AΣ

)
,

for some absolute constants κ ≥ 148, then

EY[n]
[KLn (s0, ŝm̂)1T ] ≤

(
1 + κ−1

)
inf
m∈N?

(
inf

sm∈Sm
KLn (s0, sm) + pen(m) + ηm

)
+

302K3/2qBn√
n

(
1 +

(
Aγ + qAβ +

q
√
q

aΣ

)2
)

+ η. (4.2.24)

Proposition 4.2.5. Consider s0, T , and ŝm as defined in Proposition 4.2.4. Denote by T C the
complement of T ,i.e.,

T C =

{
max
i=1,...,n

‖Yi‖∞ = max
i=1,...,n

max
z∈{1,...,q}

|[Yi]z| > Mn

}
.

Then,

EY[n]
[KLn (s0, ŝm̂)1T C ] ≤

(
eq/2−1πq/2

A
q/2
Σ

+Hs0

)√
2KnqAγe

−
M2
n−2MnAβ

4AΣ .

Theorem 4.2.3, and Propositions 4.2.4 and 4.2.5 are proved in Sections 4.2.3.4 to 4.2.3.6, respec-
tively.

4.2.3.2 Additional notation

We first introduce some definitions and notations that we shall use in the proofs. For any measurable
function f : R→ R, consider its empirical norm

‖f‖n :=

√√√√ 1

n

n∑
i=1

f2 (yi|xi),

and its conditional expectation

EY|X=x [f ] := E [f (Y|X) |X = x] =

∫
Rq
f(y|x)s0(y|x)dy,

as well as its empirical process

Pn(f) :=
1

n

n∑
i=1

f (Yi|xi) , (4.2.25)

with expectation

P (f) =
1

n

n∑
i=1

E [f (Yi|xi)] =
1

n

n∑
i=1

∫
Rq
f (y|xi) s0 (y|xi) dy (4.2.26)

168



4.2. An l1-oracle inequality for the Lasso estimator in the softmax-gated mixture of experts
regression models

and the recentered process

νn(f) := Pn(f)− P (f) =
1

n

n∑
i=1

[
f (yi|xi)−

∫
Rq
f (y|xi) s0 (y|xi) dy

]
. (4.2.27)

For all m ∈ N?, recall that we consider the model

Sm =
{
sψ ∈ S,

∥∥∥ψ[1,2]
∥∥∥

1
≤ m

}
,

and define

Fm =

{
fm = − ln

(
sm
s0

)
= ln(s0)− ln(sm), sm ∈ Sm

}
. (4.2.28)

By using the basic properties of the infimum: for every ε > 0, there exists xε ∈ A, such that xε <
inf A+ ε. Then let δKL > 0 for all m ∈ N?, and let ηm ≥ 0. It holds that there exist two functions ŝm
and sm in Sm, such that

Pn (− ln ŝm) ≤ inf
sm∈Sm

Pn (− ln sm) + ηm, and (4.2.29)

KLn (s0, sm) ≤ inf
sm∈Sm

KLn (s0, sm) + δKL. (4.2.30)

Define

f̂m := − ln

(
ŝm
s0

)
, and fm := − ln

(
sm
s0

)
. (4.2.31)

Let η ≥ 0 and fix m ∈ N?. Further, define

M̂(m) =
{
m′ ∈ N?|Pn (− ln ŝm′) + pen(m′) ≤ Pn (− ln ŝm) + pen(m) + η

}
. (4.2.32)

4.2.3.3 Proof of Theorem 4.2.2

Let λ > 0 and define m̂ to be the smallest integer such that ŝLasso(λ) belongs to Sm̂, i.e., m̂ :=⌈∥∥ψ[1,2]
∥∥

1

⌉
≤
∥∥ψ[1,2]

∥∥
1

+ 1. Then using the definition of m̂, (4.2.8), (4.2.16), and S =
⋃
m∈N? Sm, we

get

− 1

n

n∑
i=1

ln
(
ŝLasso(λ) (yi|xi)

)
+ λm̂

≤ − 1

n

n∑
i=1

ln
(
ŝLasso(λ) (yi|xi)

)
+ λ

(∥∥∥ψ[1,2]
∥∥∥

1
+ 1
)

= inf
sψ∈S

(
− 1

n

n∑
i=1

ln (sψ (yi|xi)) + λ
∥∥∥ψ[1,2]

∥∥∥
1

)
+ λ

= inf
m∈N?

(
inf

sψ∈Sm

(
− 1

n

n∑
i=1

ln (sψ (yi|xi)) + λ
∥∥∥ψ[1,2]

∥∥∥
1

))
+ λ

= inf
m∈N?

 inf
sψ∈S,‖ψ[1,2]‖

1
≤m

(
− 1

n

n∑
i=1

ln (sψ (yi|xi)) + λ
∥∥∥ψ[1,2]

∥∥∥
1

)+ λ

≤ inf
m∈N?

(
inf

sm∈Sm

(
− 1

n

n∑
i=1

ln (sm (yi|xi)) + λm

))
+ λ,

which implies

− 1

n

n∑
i=1

ln
(
ŝLasso(λ) (yi|xi)

)
+ pen(m̂) ≤ inf

m∈N?

(
− 1

n

n∑
i=1

ln (ŝm (yi|xi)) + pen(m)

)
+ η
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with pen(m) = λm, η = λ, and ŝm is a ηm-ln-likelihood minimizer in Sm, with ηm ≥ 0 defined by
(4.2.17). Thus, ŝLasso(λ) satisfies (4.2.18) with ŝLasso(λ) ≡ ŝm̂, i.e.,

− 1

n

n∑
i=1

ln (ŝm̂ (yi|xi)) + pen(m̂) ≤ inf
m∈N?

(
− 1

n

n∑
i=1

ln (ŝm (yi|xi)) + pen(m)

)
+ η. (4.2.33)

Then, Theorem 4.2.3 implies that if

λ ≥ κKB
′
n√
n

(
q lnn

√
ln(2p+ 1) + 1

)
,

B′n = max (AΣ, 1 +KAG)
(
1 + 2q

√
qAΣ

(
5A2

β + 4AΣ lnn
))
,

for some absolute constants κ ≥ 148, it holds that

EY[n]

[
KLn

(
s0, ŝ

Lasso(λ)
)]
≤
(
1 + κ−1

)
inf
sψ∈S

(
KLn (s0, sψ) + λ

∥∥∥ψ[1,2]
∥∥∥

1

)
+ λ

+

√
K

n

(
eq/2−1πq/2

A
q/2
Σ

+Hs0

)√
2qAγ

+ 302q

√
K

n
max (AΣ, 1 +KAG)

(
1 + 2q

√
qAΣ

(
5A2

β + 4AΣ lnn
))

×K

(
1 +

(
Aγ + qAβ +

q
√
q

aΣ

)2
)
,

as required.

4.2.3.4 Proof of Theorem 4.2.3

Let Mn > 0 and κ ≥ 148. Assume that, for all m ∈ N?, the penalty function satisfies pen(m) = λm,
with

λ ≥ κKBn√
n

(
q lnn

√
ln(2p+ 1) + 1

)
. (4.2.34)

We derive, from Propositions 4.2.4 and 4.2.5, that any penalized likelihood estimator ŝm̂ with m̂,
satisfying

− 1

n

n∑
i=1

ln (ŝm̂ (yi|xi)) + pen(m̂) ≤ inf
m∈N?

(
− 1

n

n∑
i=1

ln (ŝm (yi|xi)) + pen(m)

)
+ η,

for some η ≥ 0, yields

EY[n]
[KLn (s0, ŝm̂)] =EY[n]

[KLn (s0, ŝm̂)1T ] + EY[n]
[KLn (s0, ŝm̂)1T c ]

≤
(
1 + κ−1

)
inf
m∈N?

(
inf

sm∈Sm
KLn (s0, sm) + pen(m) + ηm

)
+

302K3/2qBn√
n

(
1 +

(
Aγ + qAβ +

q
√
q

aΣ

)2
)

+ η

+

(
eq/2−1πq/2

A
q/2
Σ

+Hs0

)√
2KnqAγe

−
M2
n−2MnAβ

4AΣ . (4.2.35)

To obtain inequality (4.2.21), it only remains to optimize the inequality (4.2.35), with respect Mn.
Since the two terms depending on Mn, in (4.2.35), have opposite monotonicity with respect to Mn,
we are looking for a value of Mn such that these two terms are of the same order with respect to
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n. Consider the positive solution Mn = Aβ +
√
A2
β + 4AΣ lnn of the equation

X(X−2Aβ)
4AΣ

− lnn = 0.

Then, on the one hand,

e
−
M2
n−2MnAβ

4AΣ
√
n = e− lnn√n =

1√
n
.

On the other hand, using the inequality (a+ b)2 ≤ 2(a2 + b2), we have

Bn = max (AΣ, 1 +KAG)
(

1 + q
√
q (Mn +Aβ)2AΣ

)
= max (AΣ, 1 +KAG)

(
1 + q

√
qAΣ

(
2Aβ +

√
A2
β + 4AΣ lnn

)2
)

≤ max (AΣ, 1 +KAG)
(
1 + 2q

√
qAΣ

(
5A2

β + 4AΣ lnn
))
,

hence (4.2.35) implies (4.2.21). Indeed, it holds that

EY[n]
[KLn (s0, ŝm̂)] ≤

(
1 + κ−1

)
inf
m∈N?

(
inf

sm∈Sm
KLn (s0, sm) + pen(m) + ηm

)
+ η

+

√
K

n

e
q
2
−1πq/2

A
q/2
Σ

√
2qAγ

+ 302q

√
K

n
max (AΣ, 1 +KAG)

(
1 + 2q

√
qAΣ

(
5A2

β + 4AΣ lnn
))

×K

(
1 +

(
Aγ + qAβ +

q
√
q

aΣ

)2
)
. (4.2.36)

4.2.3.5 Proof of Proposition 4.2.4

For every m′ ∈ M̂(m), from (4.2.32), (4.2.31), and (4.2.29), we obtain

Pn

(
f̂m′
)

+ pen(m′) = Pn (ln(s0)− ln (ŝm′)) + pen(m′) (using (4.2.31))

≤ Pn (ln(s0)− ln (ŝm)) + pen(m) + η (using (4.2.32))

≤ Pn (ln(s0)− ln (sm)) + ηm + pen(m) + η (using (4.2.29))

= Pn
(
fm
)

+ pen(m) + ηm + η (using (4.2.31)),

which implies that

P
(
f̂m′
)

+ pen(m′) ≤ P
(
fm
)

+ pen(m) + νn
(
fm
)
− νn

(
f̂m′
)

+ η + ηm.

Taking into account (4.2.7) and (4.2.25), we obtain

KLn(s0, ŝm′) =
1

n

n∑
i=1

∫
Rq

ln

(
s0 (y|xi)
ŝm′ (y|xi)

)
s0 (y|xi) dy

=
1

n

n∑
i=1

∫
Rq
f̂m′ (y|xi) s0 (y|xi) dy (using (4.2.31))

=
1

n

n∑
i=1

E
[
f̂m′ (yi|xi)

]
= P

(
f̂m′
)

(using (4.2.25)).

Similarly, we also obtain KLn(s0, sm) = P
(
fm
)
. Hence (4.2.30) implies that

KLn(s0, ŝm′) + pen(m′)

≤ KLn(s0, sm) + pen(m) + νn
(
fm
)
− νn

(
f̂m′
)

+ η + ηm

≤ inf
sm∈Sm

KLn (s0, sm) + pen(m) + νn
(
fm
)
− νn

(
f̂m′
)

+ ηm + δKL + η. (4.2.37)
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All that remains is to control the deviation of −νn
(
f̂m′
)

= νn

(
−f̂m′

)
. To handle the randomness of

f̂m′ , we shall control the deviation of supfm′∈Fm′ νn (−fm′), since f̂m′ ∈ Fm′ . Such control is provided
by Lemma 4.2.6.

Control of deviation

Lemma 4.2.6. Let Mn > 0. Consider the event

T =

{
max
i=1,...,n

‖Yi‖∞ = max
i=1,...,n

max
z∈{1,...,q}

|[Yi]z| ≤Mn

}
,

and set

Bn = max (AΣ, 1 +KAG)
(

1 + q
√
q (Mn +Aβ)2AΣ

)
, and (4.2.38)

∆m′ = m′
√

ln(2p+ 1) lnn+ 2
√
K

(
Aγ + qAβ +

q
√
q

aΣ

)
. (4.2.39)

Then, on the event T , for all m′ ∈ N?, and for all t > 0, with probability greater than 1− e−t,

sup
fm′∈Fm′

|νn (−fm′)|1T ≤
4KBn√

n

[
37q∆m′ +

√
2

(
Aγ + qAβ +

q
√
q

aΣ

)√
t

]
. (4.2.40)

Proof. The proof appears in Section 4.2.4.1.

From (4.2.37) and (4.2.40), we derive that on the event T , which means that we multiply the
considered term by the indicator function 1T , for all m ∈ N?, and t > 0, with probability larger than
1− e−t,

KLn(s0, ŝm′) + pen(m′) ≤ inf
sm∈Sm

KLn (s0, sm) + pen(m) + νn
(
fm
)
− νn

(
f̂m′
)

+ ηm + δKL + η.

≤ inf
sm∈Sm

KLn (s0, sm) + pen(m) + νn
(
fm
)

+ ηm + δKL + η

+
4KBn√

n

[
37q∆m′ +

√
2

(
Aγ + qAβ +

q
√
q

aΣ

)√
t

]
≤ inf
sm∈Sm

KLn (s0, sm) + pen(m) + νn
(
fm
)

+ ηm + δKL + η

+
4KBn√

n

[
37q∆m′ +

1

2

(
Aγ + qAβ +

q
√
q

aΣ

)2

+ t

]
, if m′ ∈ M̂(m).

(4.2.41)

Here we get the last inequality using the fact that

2ab ≤ a2 + b2 for b =
√
t, and a =

(
Aγ + qAβ +

q
√
q

aΣ

)
/
√

2.

It remains to sum up the tail bounds (4.2.41) over all possible values of m ∈ N? and m′ ∈ M̂(m).
To get an inequality valid on a set of high probability, we need to adequately choose the value of the
parameter t, depending on m ∈ N? and m′ ∈ M̂(m). Let z > 0, for all m ∈ N? and m′ ∈ M̂(m), and
apply (4.2.41) to obtain t = z + m + m′. Then, on the event T , for all m,m′ ∈ N?, with probability
larger than 1− e−(z+m+m′),

KLn(s0, ŝm′) + pen(m′) ≤ inf
sm∈Sm

KLn (s0, sm) + pen(m) + νn
(
fm
)

+ ηm + δKL + η

+
4KBn√

n

[
37q∆m′ +

1

2

(
Aγ + qAβ +

q
√
q

aΣ

)2

+
(
z +m+m′

)]
,

if m′ ∈ M̂(m). (4.2.42)
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Here, (4.2.42) is equivalent to

KLn(s0, ŝm′)− νn
(
fm
)
≤ inf

sm∈Sm
KLn (s0, sm) +

[
pen(m) +

4KBn√
n

m

]
+ ηm + δKL + η

+

[
4KBn√

n

(
37q∆m′ +m′

)
− pen(m′)

]
+

4KBn√
n

[
1

2

(
Aγ + qAβ +

q
√
q

aΣ

)2

+ z

]
. (4.2.43)

Note that with probability larger than 1 − e−z, (4.2.42) holds simultaneously for all m ∈ N? and

m′ ∈ M̂(m). Indeed, by defining the event

∩
(m,m′)∈N?×M̂(m)

Ωm,m′ = {w : w ∈ Ω such that the event in (4.2.42) holds} ,

it holds that, on the event T ,

P
(
∩

(m,m′)∈N?×M̂(m)
Ωm,m′

)
≥ P

(
∩(m,m′)∈N?×N?Ωm,m′

)
= 1− P

(
∪(m,m′)∈N?×N?Ω

C
m,m′

)
≥ 1−

∑
(m,m′)∈N?×N?

P
(
ΩC
m,m′

)
≥ 1−

∑
(m,m′)∈N?×N?

e−(z+m+m′)

= 1− e−z
( ∑
m∈N?

e−m

)2

≥ 1− e−z,

where we get the last inequality by using the the geometric series

∞∑
m=1

(
e−1
)m

=
∞∑
m=0

(
e−1
)m − 1 =

1

1− e−1
− 1 =

e

e− 1
− 1 =

1

e− 1
< 1.

Taking into account (4.2.39), we get

KLn(s0, ŝm′)− νn
(
fm
)
≤ inf

sm∈Sm
KLn (s0, sm) +

[
pen(m) +

4KBn√
n

m

]
+ ηm + δKL + η

+

[
4KBn√

n

(
37q lnn

√
ln(2p+ 1) + 1

)
m′ − pen(m′)

]
+

4KBn√
n

[
1

2

(
Aγ + qAβ +

q
√
q

aΣ

)2

+ 74q
√
K

(
Aγ + qAβ +

q
√
q

aΣ

)
+ z

]
.

(4.2.44)

Now, let κ ≥ 1 and assume that pen(m) = λm, for all m ∈ N? with

λ ≥ κ4KBn√
n

(
37q lnn

√
ln(2p+ 1) + 1

)
. (4.2.45)
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Then, (4.2.44) implies

KLn(s0, ŝm′)− νn
(
fm
)
≤ inf

sm∈Sm
KLn (s0, sm) +

[
λm+

4KBn√
n

m

]
+ ηm + δKL + η

+

4KBn√
n

(
37q lnn

√
ln(2p+ 1) + 1

)
︸ ︷︷ ︸

≤λκ−1

m′ − λm′


+

4KBn√
n

[
1

2

(
Aγ + qAβ +

q
√
q

aΣ

)2

+ 74q
√
K

(
Aγ + qAβ +

q
√
q

aΣ

)
+ z

]

≤ inf
sm∈Sm

KLn (s0, sm) +

pen(m) +
4KBn√

n
m︸ ︷︷ ︸

≤κ−1 pen(m)

+ ηm + δKL + η

+
[
λκ−1m′ − λm′

]︸ ︷︷ ︸
≤0

+
4KBn√

n

[
1

2

(
Aγ + qAβ +

q
√
q

aΣ

)2

+ 74q
√
K

(
Aγ + qAβ +

q
√
q

aΣ

)
+ z

]
≤ inf

sm∈Sm
KLn (s0, sm) +

(
1 + κ−1

)
pen(m) + ηm + δKL + η

+
4KBn√

n

[
1

2

(
Aγ + qAβ +

q
√
q

aΣ

)2

+ 74q
√
K

(
Aγ + qAβ +

q
√
q

aΣ

)
+ z

]
.

Next, using the inequality 2ab ≤ β−1a2 +β−1b2 for a =
√
K, b = K

(
Aγ + qAβ +

q
√
q

aΣ

)
, and β =

√
K,

and the fact that K ≤ K3/2, for all K ∈ N?, it follows that

KLn(s0, ŝm′)− νn
(
fm
)

≤ inf
sm∈Sm

KLn (s0, sm) +
(
1 + κ−1

)
pen(m) + ηm + δKL + η

+
4Bn√
n

[
qK3/2

2

(
Aγ + qAβ +

q
√
q

aΣ

)2

+ 74q
√
KK

(
Aγ + qAβ +

q
√
q

aΣ

)
︸ ︷︷ ︸

37q×2ab

+Kz

]

≤ inf
sm∈Sm

KLn (s0, sm) +
(
1 + κ−1

)
pen(m) + ηm + δKL + η

+
4Bn√
n

[
37qK1/2 +

75qK3/2

2

(
Aγ + qAβ +

q
√
q

aΣ

)2

+Kz

]
. (4.2.46)

By (4.2.23) and (4.2.32), m̂ belongs to M̂(m), for all m ∈ N?, so we deduce from (4.2.46) that on the
event T , for all z > 0, with probability greater than 1− e−z,

KLn(s0, ŝm̂)− νn
(
fm
)
≤ inf

m∈N?

(
inf

sm∈Sm
KLn (s0, sm) +

(
1 + κ−1

)
pen(m) + ηm

)
+ η + δKL

+
4Bn√
n

[
37qK1/2 +

75qK3/2

2

(
Aγ + qAβ +

q
√
q

aΣ

)2

+Kz

]
. (4.2.47)

By integrating (4.2.47) over z > 0, using the fact that for any non-negative random variable Z and
any a > 0,E [Z] = a

∫
z≥0 P(Z > az)dz. Then, note that E

[
νn
(
fm
)]

= 0, and that δKL > 0 can be
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chosen arbitrary small, we obtain that

EY[n]
[KLn(s0, ŝm̂)1T ] ≤ inf

m∈N?

(
inf

sm∈Sm
KLn (s0, sm) +

(
1 + κ−1

)
pen(m) + ηm

)
+ η

+
4Bn√
n

[
37qK1/2 +

75qK3/2

2

(
Aγ + qAβ +

q
√
q

aΣ

)2

+K

]

≤ inf
m∈N?

(
inf

sm∈Sm
KLn (s0, sm) +

(
1 + κ−1

)
pen(m) + ηm

)
+ η

+
4Bn√
n

[
37qK3/2 +

75qK3/2

2

(
Aγ + qAβ +

q
√
q

aΣ

)2

+ qK3/2

]

≤ inf
m∈N?

(
inf

sm∈Sm
KLn (s0, sm) +

(
1 + κ−1

)
pen(m) + ηm

)
+ η

+
302K3/2qBn√

n

(
1 +

(
Aγ + qAβ +

q
√
q

aΣ

)2
)
. (4.2.48)

4.2.3.6 Proof of Proposition 4.2.5

By the Cauchy-Schwarz inequality,

EY[n]
[KLn (s0, ŝm̂)1T C ] ≤

√
EY[n]

[
KL2

n (s0, ŝm̂)
]√

P (T C). (4.2.49)

We seek to bound the two terms of the right-hand side of (4.2.49).

For the first term, let us bound KL (s0 (·|x) , sψ (·|x)), for all sψ ∈ S and x ∈ X . Let sψ ∈ S and
x ∈ X . Then, we obtain,

KL (s0 (·|x) , sψ (·|x)) =

∫
Rq

ln

(
s0(y|x)

sψ(y|x)

)
s0(y|x)dy

=

∫
Rq

ln (s0(y|x)) s0(y|x)dy −
∫
Rq

ln (sψ(y|x)) s0(y|x)dy

≤ −
∫
Rq

ln (sψ(y|x)) s0(y|x)dy +Hs0 , ∀x ∈ X (using (4.2.12)) . (4.2.50)
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Thus, for all y ∈ Rq,

ln (sψ(y|x)) s0(y|x)

= ln

[
K∑
k=1

gk (x;γ)

(2π)q/2 det(Σk)1/2
exp

(
−

(y − (βk0 + βkx))>Σ−1
k (y − (βk0 + βkx))

2

)]

×
K∑
k=1

g0,k (x;γ)

(2π)q/2 det(Σ0,k)1/2
exp

(
−

(y − (β0,k0 + β0,kx))>Σ−1
0,k (y − (β0,k0 + β0,kx))

2

)

≥ ln

[
K∑
k=1

aG det(Σ−1
k )1/2

(2π)q/2
exp

(
−
(
y>Σ−1

k y + (βk0 + βkx)>Σ−1
k βkx (βk0 + βkx)

))]

×
K∑
k=1

aG det(Σ−1
0,k)

1/2

(2π)q/2
exp

(
−
(
y>Σ−1

0,ky + (β0,k0 + β0,kx)>Σ−1
0,k (β0,k0 + β0,kx)

))
(

using (4.2.5) and −(a− b)>A(a− b)/2 ≥ −(a>Aa+ b>Ab), e.g., a = y, b = βk0 + βkx, A = Σk

)
≥ ln

[
K∑
k=1

aGa
q/2
Σ

(2π)q/2
exp

(
−
(
y>Σ−1

k y + (βk0 + βkx)>Σ−1
k βkx (βk0 + βkx)

))]

×
K∑
k=1

aGa
q/2
Σ

(2π)q/2
exp

(
−
(
y>Σ−1

0,ky + (β0,k0 + β0,kx)>Σ−1
0,k (β0,k0 + β0,kx)

))
(using (4.2.4))

≥ ln

[
K
aGa

q/2
Σ

(2π)q/2
exp

(
−
(
y>y + qA2

β

)
AΣ

)]
×K

aGa
q/2
Σ

(2π)q/2
exp

(
−
(
y>y + qA2

β

)
AΣ

)
(using (4.2.4)) ,

(4.2.51)

where, in the last inequality, we use the fact that for all u ∈ Rq. By using the eigenvalue decomposition
of Σ1 = P>DP ,∣∣∣u>Σ1u

∣∣∣ =
∣∣∣u>P>DPu∣∣∣ ≤ ‖Pu‖2 ≤M(D) ‖Pu‖22 ≤ AΣ ‖u‖22 ≤ AΣq ‖u‖2∞ ,

where in the last inequality, we used the fact that (4.2.82). Therefore, setting u =
√

2AΣy and
h(t) = t ln t, for all t ∈ R, and noticing that h(t) ≥ h

(
e−1
)

= −e−1, for all t ∈ R, and from (4.2.50)
and (4.2.51), we get that

KL (s0 (·|x) , sψ (·|x))

≤ −
∫
Rq

[
ln

[
K
aγa

q/2
Σ

(2π)q/2
exp

(
−
(
y>y + qA2

β

)
AΣ

)]
K
aγa

q/2
Σ

(2π)q/2
exp

(
−
(
y>y + qA2

β

)
AΣ

))
dy

= −
Kaγa

q/2
Σ e−qA

2
βAΣ

(2AΣ)q/2

∫
Rq

[
ln

(
K
aγa

q/2
Σ

(2π)q/2

)
− qA2

βAΣ −
u>u

2

]
e−

u>u
2

(2π)q/2
du

= −
Kaγa

q/2
Σ e−qA

2
βAΣ

(2AΣ)q/2
EU

[[
ln

(
K
aγa

q/2
Σ

(2π)q/2

)
− qA2

βAΣ −
U>U

2

]]
(with U ∼ Nq(0, Iq))

= −
Kaγa

q/2
Σ e−qA

2
βAΣ

(2AΣ)q/2

[
ln

(
K
aγa

q/2
Σ

(2π)q/2

)
− qA2

βAΣ −
q

2

]

= −
Kaγa

q/2
Σ e−qA

2
βAΣ− q2

(2π)q/2 (AΣ)q/2
eq/2πq/2 ln

(
Kaγa

q/2
Σ e−qA

2
βAΣ− q2

(2π)q/2

)

≤ eq/2−1πq/2

A
q/2
Σ

, (4.2.52)
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where we used the fact that t ln(t) ≥ −e−1, for all t ∈ R. Then, for all sψ ∈ S,

KLn (s0, sψ) =
1

n

n∑
i=1

KL (s0 (·|xi) , sψ (.|xi)) ≤
eq/2−1πq/2

A
q/2
Σ

+Hs0 ,

and note that ŝm̂ ∈ S, thus

√
E
[
KL2

n (s0, ŝm̂)
]
≤ eq/2−1πq/2

A
q/2
Σ

+Hs0 . (4.2.53)

We now provide an upper bound for P
(
T C
)
:

P
(
T C
)
≤ EY[n]

[
n∑
i=1

P (‖Yi‖∞ > Mn)

]
. (4.2.54)

For all i ∈ [n],

Yi|xi ∼
K∑
k=1

gk (xi;γ)Nq (βk0 + βkxi,Σk) ,

so we see from (4.2.54) that we need to provide an upper bound on P (|Yx| > Mn), with

Yx ∼
K∑
k=1

gk (x;γ)Nq (βk0 + βkx,Σk) ,x ∈ X .

First, using Chernoff’s inequality for a centered Gaussian variable (see Lemma 4.2.23), and the fact
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that ψ belongs to the bounded space Ψ̃ (defined by (4.2.4)), and that
∑K

k=1 gk (x;γ) = 1, we get

P (‖Yx‖∞ > Mn)

=

∫
{‖y‖∞>Mn}

K∑
k=1

gk (x;γ)

(2π)q/2 det(Σk)1/2
exp

(
−

(y − (βk0 + βkx))>Σ−1
k (y − (βk0 + βkx))

2

)
dy

=

K∑
k=1

gk (x;γ)

(2π)q/2 det(Σk)1/2

∫
{‖y‖∞>Mn}

exp

(
−

(y − (βk0 + βkx))>Σ−1
k (y − (βk0 + βkx))

2

)
dy

=
K∑
k=1

gk (x;γ)P
(
‖Yx,k‖∞ > Mn

)
≤

K∑
k=1

gk (x;γ)

q∑
z=1

P
(∣∣[Yx,k]z

∣∣ > Mn

)
=

K∑
k=1

gk (x;γ)

q∑
z=1

(
P
(
[Yx,k]z < −Mn

)
+ P

(
[Yx,k]z > Mn

))
=

K∑
k=1

gk (x;γ)

q∑
z=1

(
P

(
U >

Mn − [βk0 + βkx]z

[Σk]
1/2
z,z

)
+ P

(
U <

−Mn − [βk0 + βkx]z

[Σk]
1/2
z,z

))

=

K∑
k=1

gk (x;γ)

q∑
z=1

(
P

(
U >

Mn − [βk0 + βkx]z

[Σk]
1/2
z,z

)
+ P

(
U >

Mn + [βk0 + βkx]z

[Σk]
1/2
z,z

))

≤
K∑
k=1

gk (x;γ)

q∑
z=1

e− 1
2

(
Mn−[βk0+βkx]z

[Σk]1/2z,z

)2

+ e
− 1

2

(
Mn+[βk0+βkx]z

[Σk]1/2z,z

)2 (using Lemma 4.2.23, (4.2.93))

≤ 2

K∑
k=1

gk (x;γ)

q∑
z=1

e
− 1

2

(
Mn−|[βk0+βkx]z|

[Σk]1/2z,z

)2

= 2
K∑
k=1

gk (x;γ)

q∑
z=1

e
− 1

2

M2
n−2Mn|[βk0+βkx]z|+|[βk0+βkx]|2z

[Σk]z,z

≤ 2
K∑
k=1

gk (x;γ)

q∑
z=1

e
− 1

2

M2
n−2Mn|[βk0+βkx]z|+|[βk0+βkx]|2z

[Σk]z,z ≤ 2KAγqe
−
M2
n−2MnAβ

2AΣ , (4.2.55)

where

Yx,k ∼ Nq (βk0 + βkx,Σk) ,

Yx,k ∼ N
(

[βk0 + βkx]z , [Σk]z,z

)
, and

U =
[Yx,k]z − [βx]z

[Σk]
1/2
z,z

∼ N (0, 1),

and using the facts that e
− 1

2

|[βk0+βkx]|2z
AΣ ≤ 1 and max1≤z≤q

∣∣∣[Σk]z,z

∣∣∣ ≤ ‖Σk‖2 = M (Σk) = m
(
Σ−1
k

)
≤

AΣ. We derive from (4.2.54) and (4.2.55) that

P (T c) ≤ 2KnqAγe
−
M2
n−2MnAβ

2AΣ , (4.2.56)

and finally from (4.2.49), (4.2.53), and (4.2.56), we obtain

EY[n]
[KLn (s0, ŝm̂)1T C ] ≤

(
eq/2−1πq/2

A
q/2
Σ

+Hs0

)√
2KnqAγe

−
M2
n−2MnAβ

4AΣ . (4.2.57)

178



4.2. An l1-oracle inequality for the Lasso estimator in the softmax-gated mixture of experts
regression models

4.2.4 Proofs of technical lemmas

4.2.4.1 Proof of Lemma 4.2.6

First, we give some tools to prove Lemma 4.2.6. Recall that

‖f‖n =

√√√√ 1

n

n∑
i=1

f2 (yi|xi),

for any measurable function f .
Let m ∈ N?, we have

sup
fm∈Fm

|νn (−fm)| = sup
fm∈Fm

∣∣∣∣∣ 1n
n∑
i=1

(
fm (Yi|xi)− EY[n]

[fm (Yi|xi)]
)∣∣∣∣∣ . (4.2.58)

To control the deviation of (4.2.58), we shall use concentration and symmetrization arguments. We
shall first use the following concentration inequality, which can be found in Boucheron et al. (2013).

Lemma 4.2.7 (See Boucheron et al., 2013). Let Z1, . . . ,Zn be independent random variables with
values in some space Z and let F be a class of real-valued functions on Z. Assume that there exists
Rn, a non-random constant, such that supf∈F ‖f‖n ≤ Rn. Then, for all t > 0,

P

(
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

[f(Zi)− E [f (Zi)]]

∣∣∣∣∣ > E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

[f(Zi)− E [f (Zi)]]

∣∣∣∣∣
]

+ 2
√

2Rn

√
t

n

)
≤ e−t. (4.2.59)

Then, we propose to bound E
[
supf∈F

∣∣ 1
n

∑n
i=1 [f(Zi)− E [f (Zi)]]

∣∣] due to the following sym-
metrization argument. The proof of this result can be found in Van Der Vaart & Wellner (1996).

Lemma 4.2.8 (See Lemma 2.3.6 in Van Der Vaart & Wellner, 1996). Let Z1, . . . ,Zn be independent
random variables with values in some space Z and let F be a class of real-valued functions on Z. Let
(ε1, . . . , εn) be a Rademacher sequence independent of (Z1, . . . ,Zn). Then,

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

[f(Zi)− E [f (Zi)]]

∣∣∣∣∣
]
≤ 2E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Zi)

∣∣∣∣∣
]
. (4.2.60)

From (4.2.60), the problem is to provide an upper bound on

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Zi)

∣∣∣∣∣
]
.

To do so, we shall apply the following lemma, which is adapted from Lemma 6.1 in Massart (2007).

Lemma 4.2.9 (See Lemma 6.1 in Massart, 2007). Let Z1, . . . ,Zn be independent random variables
with values in some space Z and let F be a class of real-valued functions on Z. Let (ε1, . . . , εn) be a
Rademacher sequence, independent of (Z1, . . . ,Zn). Define Rn, a non-random constant, such that

sup
f∈F
‖f‖n ≤ Rn. (4.2.61)

Then, for all S ∈ N?,

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Zi)

∣∣∣∣∣
]
≤ Rn

(
6√
n

S∑
s=1

2−s
√

ln [1 +M (2−sRn,F , ‖.‖n)] + 2−S

)
, (4.2.62)

where M (δ,F , ‖.‖n) stands for the δ-packing number (see Definition 4.2.20) of the set of functions F ,
equipped with the metric induced by the norm ‖·‖n.
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In our case, from (4.2.58), we apply a conditional version of Lemmas 4.2.7–4.2.9 to F = Fm,
(Z1, . . . ,Zn) = (Y1|x1, . . . ,Yn|xn), and f(Zi) = fm (Yi|xi), so as to control supfm∈Fm |νn (−fm)|. On
the one hand, we see from (4.2.61) that we need an upper bound of supfm∈Fm ‖fm‖n. On the other
hand, we see from (4.2.62) that we need to bound the entropy of the set of functions Fm, equipped
with the metric induced by the norm ‖·‖n. Such bounds are provided by the two following lemmas.

Let Mn > 0 and consider the event

T =

{
max
i=1,...,n

‖Yi‖∞ = max
i=1,...,n

max
z∈{1,...,q}

|[Yi]z| ≤Mn

}
,

and put Bn = max (AΣ, 1 +KAG)
(

1 + q
√
q (Mn +Aβ)2AΣ

)
.

Lemma 4.2.10. On the event T , for all m ∈ N?,

sup
fm∈Fm

‖fm‖n 1T ≤ 2KBn

(
Aγ + qAβ +

q
√
q

aΣ

)
=: Rn. (4.2.63)

Proof. See Section 4.2.4.2.

Lemma 4.2.11. Let δ > 0 and m ∈ N?. On the event T , we have the following upper bound of the
δ-packing number of the set of functions Fm, equipped with the metric induced by the norm ‖·‖n:

M (δ, Fm, ‖·‖n)

≤ (2p+ 1)
72B2

nq
2K2m2

δ2

(
1 +

18BnKqAβ
δ

)K (
1 +

18BnKAγ
δ

)K (
1 +

18BnKq
√
q

aΣδ

)K
.

Proof. See Section 4.2.4.2.

Lemma 4.2.12 (Lemma 5.9 from Meynet, 2013). Let δ > 0 and (xij)i=1,...,n;j=1,...,p ∈ Rnp. There

exists a family B of (2p+ 1)‖x‖
2
max,n/δ

2

vectors in Rp, such that for all β ∈ Rp, with ‖β‖1 ≤ 1, where
‖x‖2max,n = 1

n

∑n
i=1 maxj∈{1,...,p} x

2
ij, there exists β′ ∈ B, such that

1

n

n∑
i=1

 p∑
j=1

(
βj − β′j

)
xij

2

≤ δ2.

Proof. See in the proof of Lemma 5.9 Meynet (2013).

Via the upper bounds provided in Lemmas 4.2.10 and 4.2.11, we can apply Lemma 4.2.9 to get an
upper bound on EY[n]

[
supfm∈Fm

∣∣ 1
n

∑n
i=1 εifm(Yi|xi)

∣∣]. We thus obtain the following results.

Lemma 4.2.13. Let m ∈ N?, consider (ε1, . . . , εn), a Rademacher sequence independent of (Y1, . . . ,Yn).
Then, on the event T ,

EY[n]

[
sup

fm∈Fm

∣∣∣∣∣ 1n
n∑
i=1

εifm(Yi|xi)

∣∣∣∣∣
]
≤ 74KBnq√

n
∆m, (4.2.64)

∆m := m
√

ln(2p+ 1) lnn+ 2
√
K

(
Aγ + qAβ +

q
√
q

aΣ

)
. (4.2.65)

Proof. See Section 4.2.4.2.

Now using (4.2.64) and applying both Lemmas 4.2.7 and 4.2.8 to F = Fm, (Z1, . . . ,Zn) =
(Y1|x1, . . . ,Yn|xn) and f(Zi) = fm (Yi|xi), we get for all m ∈ N? and t > 0, with probability
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greater than 1− e−t,

sup
fm∈Fm

|νn (−fm)|

= sup
fm∈Fm

∣∣∣∣∣ 1n
n∑
i=1

(
fm (Yi|xi)− EY[n]

[fm (Yi|xi)]
)∣∣∣∣∣

≤ EY[n]

[
sup

fm∈Fm

∣∣∣∣∣ 1n
n∑
i=1

(
fm (Yi|xi)− EY[n]

[fm (Yi|xi)]
)∣∣∣∣∣
]

+ 2
√

2Rn

√
t

n
(Lemma 4.2.7)

≤ 2EY[n]

[
sup

fm∈Fm

∣∣∣∣∣ 1n
n∑
i=1

εif(Yi|xi)

∣∣∣∣∣
]

+ 2
√

2Rn

√
t

n
(using Lemma 4.2.8)

≤ 148KBnq√
n

∆m + 4
√

2KBn

(
Aγ + qAβ +

q
√
q

aΣ

)√
t

n(
using Lemma 4.2.13 and Rn = 2KBn

(
Aγ + qAβ +

q
√
q

aΣ

))
≤ 4KBn√

n

[
37q∆m +

√
2

(
Aγ + qAβ +

q
√
q

aΣ

)√
t

]
.

4.2.4.2 Proofs of Lemmas 4.2.10–4.2.13

The proofs of Lemmas 4.2.10–4.2.11 require an upper bound on the uniform norm of the gradient of
ln sψ, for sψ ∈ S. We begin by providing such an upper bound.

Lemma 4.2.14. Given sψ, as described in (4.2.6), it holds that

sup
x∈X

sup
ψ∈Ψ̃

∥∥∥∥∂ ln (sψ(·|x))

∂ψ

∥∥∥∥
∞
≤ G(·),

G : Rq 3 y 7→ G(y) = max (AΣ, 1 +KAG)
(

1 + q
√
q (‖y‖∞ +Aβ)2AΣ

)
. (4.2.66)

Proof. Let sψ ∈ S, with ψ = (γ,β,Σ). From now on, we consider any x ∈ X , any y ∈ Rq, and any
k ∈ [K]. We can write

ln (sψ(y|x)) = ln

(
K∑
k=1

gk (x;γ)φ (y;βk0 + βkx,Σk)

)
= ln

(
K∑
k=1

fk(x,y)

)
,

gk (x;γ) =
exp (wk(x))∑K
l=1 exp (wl(x))

, wk(x) = γk0 + γ>k x,

φ (y;βk0 + βkx,Σk) =
1

(2π)q/2 det(Σk)1/2
exp

(
−

(y − (βk0 + βkx))>Σ−1
k (y − (βk0 + βkx))

2

)
,

fk(x,y) = gk (x;γ)φ (y;βk0 + βkx,Σk)

=
gk (x;γ)

(2π)q/2 det(Σk)1/2
exp

[
−1

2
(y − (βk0 + βkx))>Σ−1

k (y − (βk0 + βkx))

]
.

By using the chain rule, for all l ∈ [K],

∂ ln (sψ(y|x))

∂γl0
=

K∑
k=1

fk(x,y)

gk (x;γ)
∑K

k=1 fk(x,y)

∂gk (x;γ)

∂wl(x)

∂wl(x)

∂γl0︸ ︷︷ ︸
=1

, and

∂ ln (sψ(y|x))

∂
(
γ>l x

) =

K∑
k=1

fk(x,y)

gk (x;γ)
∑K

k=1 fk(x,y)

∂gk (x;γ)

∂wl(x)

∂wl(x)

∂
(
γ>l x

)︸ ︷︷ ︸
=1

.

181



Chapter 4. Joint rank and variable selection in the softmax-gated block-diagonal mixture of experts
regression model

Furthermore,

∂gk (x;γ)

∂wl(x)
=

∂

∂wl(x)

(
exp (wk(x))∑K
l=1 exp (wl(x))

)

=

∂
∂wl(x) exp (wk(x))∑K

l=1 exp (wl(x))
− exp (wk(x))(∑K

l=1 exp (wl(x))
)2

∂

∂wl(x)

K∑
i=1

exp (wi(x))

(
using

∂

∂x

(
f(x)

g(x)

)
=
f ′(x)g(x)− g′(x)f(x)

g2(x)

)
=

δlk exp (wk(x))∑K
l=1 exp (wl(x))

− exp (wk(x))∑K
l=1 exp (wl(x))

exp (wl(x))∑K
l=1 exp (wl(x))

= gk (x;γ) (δlk − gl (x;γ)) , where δlk =

{
1 if l = k,

0 if l 6= k.

Therefore, we obtain

∣∣∣∣∣∂ ln (sψ(y|x))

∂
(
γ>l x

) ∣∣∣∣∣ =

∣∣∣∣∂ ln (sψ(y|x))

∂γl0

∣∣∣∣
=

∣∣∣∣∣
K∑
k=1

fk(x,y)

gk (x;γ)
∑K

k=1 fk(x,y)
gk (x;γ) (δlk − gl (x;γ))

∣∣∣∣∣
=

∣∣∣∣∣
K∑
k=1

fk(x,y)∑K
k=1 fk(x,y)

(δlk − gl (x;γ))

∣∣∣∣∣
≤

∣∣∣∣∣
K∑
k=1

(δlk − gl (x;γ))

∣∣∣∣∣
(

since
fk(x,y)∑K
k=1 fk(x,y)

≤ 1

)

=

∣∣∣∣∣1−
K∑
k=1

gl (x;γ)

∣∣∣∣∣ = |1−Kgl (x;γ)|

≤ 1 +Kgl (x;γ) ≤ 1 +KAG (using (4.2.5)) .

Similarly, by using the fact that ψ belongs to the bounded space Ψ̃, fl(x,y)/
∑K

k=1 fk(x,y) ≤ 1,

∥∥∥∥∂ ln (sψ(y|x))

∂βl0

∥∥∥∥
∞

=

∥∥∥∥∂ ln (sψ(y|x))

∂ (βlx)

∥∥∥∥
∞

=

∥∥∥∥∥ fl(x,y)∑K
k=1 fk(x,y)

∂

∂ (βl0 + βlx)

[
−1

2
(y − (βl0 + βlx))>Σ−1

l (y − (βl0 + βlx))

]∥∥∥∥∥
∞

≤
∥∥∥∥ ∂

∂ (βl0 + βlx)

[
−1

2
(y − (βl0 + βlx))>Σ−1

l (y − (βl0 + βlx))

]∥∥∥∥
∞

=
∥∥Σ−1

l (y − (βl0 + βlx))
∥∥
∞ ≤

∥∥Σ−1
l

∥∥
∞ ‖(y − (βl0 + βlx))‖∞ (using (4.2.83))

≤ √q
∥∥Σ−1

l

∥∥
2

(‖y‖∞ + ‖βl0 + βlx‖∞) (using (4.2.88))

≤ √qM
(
Σ−1
l

)
(‖y‖∞ + ‖βl0 + βlx‖∞) (using (4.2.87))

≤ √qAΣ (‖y‖∞ +Aβ) (using (4.2.4)) .

Now, we need to calculate the gradient w.r.t. to the covariance matrices of the Gaussian experts.
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To do this, we need the following result: given any l ∈ [K], υl = βl0 + βlx, it holds that

∂

∂Σl
φ (x;υl,Σl)

=
∂

∂Σl

[
(2π)−p/2 det(Σl)

−1/2 exp

(
−

(x− υl)>Σ−1
l (x− υl)

2

)]

= φ (x;υl,Σl)

[
−1

2

∂

∂Σl

(
(x− υl)>Σ−1

l (x− υl)
)

+ det(Σl)
1/2 ∂

∂Σl

(
det(Σl)

−1/2
)]

= φ (x;υl,Σl)

[
1

2
Σ−1
l (x− υl) (x− υl)>Σ−1

l −
1

2
det(Σl)

−1 ∂

∂Σl
(det(Σl))

]
= φ (x;υl,Σl)

[
1

2
Σ−1
l (x− υl) (x− υl)>Σ−1

l −
1

2
det(Σl)

−1 det(Σl)
(
Σ−1
l

)>]
= φ (x;υl,Σl)

1

2

[
Σ−1
l (x− υl) (x− υl)>Σ−1

l −
(
Σ−1
l

)>]︸ ︷︷ ︸
T (x,υl,Σl)

, (4.2.67)

noting that

∂

∂Σl

(
(x− υl)>Σ−1

l (x− υl)
)

= −Σ−1
l (x− υl) (x− υl)>Σ−1

l (using Lemma 4.2.16) , (4.2.68)

∂

∂Σl
(det(Σl)) = det(Σl)

(
Σ−1
l

)>
(using Jacobi formula, Lemma 4.2.17) . (4.2.69)

For any l ∈ [K],∣∣∣∣∣∣∂ ln (sψ(y|x))

∂
(

[Σl]z1,z2

)
∣∣∣∣∣∣ ≤

∥∥∥∥∂ ln (sψ(y|x))

∂Σl

∥∥∥∥
2

(using (4.2.87))

=

∣∣∣∣∣ fl(x,y)∑K
k=1 fk(x,y)

∣∣∣∣∣
∥∥∥∥ ∂

∂Σl

[
−1

2
(y − (βl0 + βlx))>Σ−1

l (y − (βl0 + βlx))

]∥∥∥∥
2

≤
∥∥∥∥ ∂

∂Σl

[
−1

2
(y − (βl0 + βlx))>Σ−1

l (y − (βl0 + βlx))

]∥∥∥∥
2

=
1

2

∥∥∥Σ−1
l (y − (βl0 + βlx)) (y − (βl0 + βlx))>Σ−1

l −
(
Σ−1
l

)>∥∥∥
2

(using (4.2.67))

≤ 1

2

[
AΣ +

√
q
∥∥∥(y − (βl0 + βlx)) (y − (βl0 + βlx))>

∥∥∥
∞
A2

Σ

]
(using (4.2.88))

≤ 1

2

[
AΣ + q

√
q (‖y‖∞ +Aβ)2A2

Σ

]
(using (4.2.4)) ,

where, in the last inequality given a = y − (βl0 + βlx), we use the fact that∥∥∥aa>∥∥∥
∞

= max
1≤i≤q

q∑
j=1

∣∣∣[aa>]i,j

∣∣∣ = max
1≤i≤q

q∑
j=1

|aiaj | = max
1≤i≤q

|ai|
q∑
j=1

|aj | ≤ q ‖a‖2∞ .

Thus,

sup
x∈X

sup
ψ∈Ψ̃

∥∥∥∥∂ ln (sψ(y|x))

∂ψ

∥∥∥∥
∞

≤ max

[
1 +KAG,

√
q (‖y‖∞ +Aβ)AΣ,

1

2

[
AΣ + q

√
q (‖y‖∞ +Aβ)2A2

Σ

] ]

≤ max

[
1 +KAG,max (AΣ, 1)

(
1 + q

√
q (‖y‖∞ +Aβ)2AΣ

)]
≤ max (AΣ, 1 +KAG)

(
1 + q

√
q (‖y‖∞ +Aβ)2AΣ

)
=: G(y),
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where we use the fact that

√
q (‖y‖∞ +Aβ)AΣ =: θ ≤ 1 + θ2 = 1 + q (‖y‖∞ +Aβ)2A2

Σ

≤ max (AΣ, 1)
(

1 + q
√
q (‖y‖∞ +Aβ)2AΣ

)
.

Proof of Lemma 4.2.10

Let m ∈ N? and fm ∈ Fm. By (4.2.28), there exists sm ∈ Sm, such that fm = − ln (sm/s0). For
all x ∈ X , let ψ(x) =

(
γk0,γ

>
k x,βk0,βkx,Σk

)
k∈[K]

be the parameters of sm (·|x). In our case, we

approximate f(ψ) = ln (sψ (yi|xi)) around ψ0(xi) by the n = 0th degree Taylor polynomial of f(ψ).
That is,∣∣∣∣∣∣∣ln

(sm)︸︷︷︸
sψ

(yi|xi)

− ln (s0 (yi|xi))

∣∣∣∣∣∣∣ =: |f(ψ)− f(ψ0)| = |R0(ψ)| (defined in Lemma 4.2.24)

≤ sup
x∈X

sup
ψ∈Ψ̃

∥∥∥∥∂ ln (sψ(yi|x))

∂ψ

∥∥∥∥
∞
‖ψ (xi)−ψ0 (xi)‖1 .

First applying Taylor’s inequality and then Lemma 4.2.14 on the event T . For all i ∈ [n], it holds that

|fm (yi|xi)|1T = |ln (sm (yi|xi))− ln (s0 (yi|xi))|1T

≤ sup
x∈X

sup
ψ∈Ψ̃

∥∥∥∥∂ ln (sψ(yi|x))

∂ψ

∥∥∥∥
∞
‖ψ (xi)−ψ0 (xi)‖1 1T

≤ max (AΣ, 1 +KAG)
(

1 + q
√
q (Mn +Aβ)2AΣ

)
︸ ︷︷ ︸

=:Bn

‖ψ (xi)−ψ0 (xi)‖1 (using Lemma 4.2.14)

≤ Bn
K∑
k=1

(
|γk0 − γ0,k0|+

∣∣∣γ>k xi − γ>0,kxi
∣∣∣

+ ‖βk0 − β0,k0‖1 + ‖βkxi − β0,kxi‖1 + ‖vec (Σk −Σ0,k)‖1

)

≤ 2Bn

K∑
k=1

(
|γk0|+

∣∣∣γ>k xi

∣∣∣+ ‖βk0‖1 + ‖βkxi‖1 + q ‖Σk‖1
)

(using (4.2.85))

≤ 2KBn (Aγ + q ‖βk0‖∞ + q ‖βkxi‖∞ + q
√
q ‖Σk‖2) (using (4.2.4), (4.2.80), (4.2.81), (4.2.89))

≤ 2KBn

(
Aγ + qAβ +

q
√
q

aΣ

)
(using (4.2.4)) .

Therefore,

sup
fm∈Fm

‖fm‖n 1T ≤ 2KBn

(
Aγ + qAβ +

q
√
q

aΣ

)
=: Rn.

Proof of Lemma 4.2.11

Let m ∈ N?, f [1]
m ∈ Fm, and x ∈ [0, 1]p. By (4.2.28), there exists s

[1]
m ∈ Sm, such that f

[1]
m =

− ln
(
s

[1]
m /s0

)
. Introduce the notation s

[2]
m ∈ S and f

[2]
m = − ln

(
s

[2]
m /s0

)
. Let

ψ[1](x) =
(
γ

[1]
k0 ,γ

[1]
k x,β

[1]
k0 ,β

[1]
k x,Σ

[1]
k

)
k∈[K]

, and ψ[2](x) =
(
γ

[2]
k0 ,γ

[2]
k x,β

[2]
k0 ,β

[2]
k x,Σ

[2]
k

)
k∈[K]

,
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be the parameters of the PDFs s
[1]
m (·|x) and s

[2]
m (·|x), respectively. By applying Taylor’s inequality

and then Lemma 4.2.14 on the event T , for all i ∈ [n], it holds that

∣∣∣f [1]
m (yi|xi)− f [2]

m (yi|xi)
∣∣∣1T =

∣∣∣ln(s[1]
m (yi|xi)

)
− ln

(
s[2]
m (yi|xi)

)∣∣∣1T
≤ sup

x∈X
sup
ψ∈Ψ̃

∣∣∣∣∂ ln (sψ(yi|x))

∂ψ

∣∣∣∣ ∥∥∥ψ[1] (xi)−ψ[1] (xi)
∥∥∥

1
1T (using Taylor’s inequality in Lemma 4.2.24)

≤ max (AΣ, C(p,K))
(

1 + q
√
q (Mn +Aβ)2AΣ

)
︸ ︷︷ ︸

Bn

∥∥∥ψ[1] (xi)−ψ[2] (xi)
∥∥∥

1
(using Lemma 4.2.14)

≤ Bn
K∑
k=1

(∣∣∣γ[1]
k0 − γ

[2]
k0

∣∣∣+
∣∣∣γ[1]>

k xi − γ[2]>

k xi

∣∣∣
+
∥∥∥β[1]

k0 − β
[2]
k0

∥∥∥
1

+
∥∥∥β[1]

k xi − β[2]
k xi

∥∥∥
1

+
∥∥∥vec

(
Σ

[1]
k −Σ

[2]
k

)∥∥∥
1

)
.

By the Cauchy-Schwarz inequality, (
∑m

i=1 ai)
2 ≤ m

∑m
i=1 a

2
i (m ∈ N?), we get

∣∣∣f [1]
m (yi|xi)− f [2]

m (yi|xi)
∣∣∣2 1T

≤ 3B2
n

[(
K∑
k=1

∣∣∣γ[1]>

k xi − γ[2]>

k xi

∣∣∣)2

+

(
K∑
k=1

q∑
z=1

∣∣∣[β[1]
k xi

]
z
−
[
β

[2]
k xi

]
z

∣∣∣)2

+
(∥∥∥β[1]

0 − β
[2]
0

∥∥∥
1

+
∥∥∥γ[1]

0 − γ
[2]
0

∥∥∥
1

+
∥∥∥vec

(
Σ[1] −Σ[2]

)∥∥∥
1

)2
]

≤ 3B2
n

[
K

K∑
k=1

 p∑
j=1

γ
[1]>

kj xij −
p∑
j=1

γ
[2]>

kj xij

2

+Kq

K∑
k=1

q∑
z=1

 p∑
j=1

[
β

[1]
k

]
z,j
xij −

p∑
j=1

[
β

[2]
k

]
z,j
xij

2

+
(∥∥∥β[1]

0 − β
[2]
0

∥∥∥
1

+
∥∥∥γ[1]

0 − γ
[2]
0

∥∥∥
1

+
∥∥∥vec

(
Σ[1] −Σ[2]

)∥∥∥
1

)2
]
,

and

∥∥∥f [1]
m − f [2]

m

∥∥∥2

n
1T =

1

n

n∑
i=1

∣∣∣f [1]
m (yi|xi)− f [2]

m (yi|xi)
∣∣∣2 1T

≤ 3B2
nK

K∑
k=1

1

n

n∑
i=1

 p∑
j=1

γ
[1]
kj xij −

p∑
j=1

γ
[2]
kj xij

2

︸ ︷︷ ︸
=:a

+ 3B2
nKq

K∑
k=1

q∑
z=1

1

n

n∑
i=1

 p∑
j=1

[
β

[1]
k

]
z,j
xij −

p∑
j=1

[
β

[2]
k

]
z,j
xij

2

︸ ︷︷ ︸
=:b

+ 3B2
n

(∥∥∥β[1]
0 − β

[2]
0

∥∥∥
1

+
∥∥∥γ[1]

0 − γ
[2]
0

∥∥∥
1

+
∥∥∥vec

(
Σ[1] −Σ[2]

)∥∥∥
1

)2
.
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So, for all δ > 0, if

a ≤ δ2/
(
36B2

n

)
,

b ≤ δ2/
(
36B2

n

)
,∥∥∥β[1]

0 − β
[2]
0

∥∥∥
1
≤ δ/ (18Bn) ,∥∥∥γ[1]

0 − γ
[2]
0

∥∥∥
1
≤ δ/ (18Bn) , and∥∥∥vec

(
Σ[1] −Σ[2]

)∥∥∥
1
≤ δ/ (18Bn) ,

then
∥∥∥f [1]

m − f [2]
m

∥∥∥2

n
1T ≤ δ2/4. To bound a and b, we can write

a = Km2
K∑
k=1

1

n

n∑
i=1

 p∑
j=1

γ
[1]
kj

m
xij −

p∑
j=1

γ
[2]
kj

m
xij

2

, and

b = Kqm2
K∑
k=1

q∑
z=1

1

n

n∑
i=1

 p∑
j=1

[
β

[1]
k

]
z,j

m
xij −

p∑
j=1

[
β

[2]
k

]
z,j

m
xij


2

.

Then, we apply Lemma 4.2.12 to obtain
γ

[1]
k,.

m =

(
γ

[1]
kj

m

)
j∈[q]

and

[
β

[1]
k

]
z,.

m =

([
β

[1]
k

]
z,j

m

)
j∈[q]

, for all

k ∈ [K], z ∈ [q]. Since s
[1]
m ∈ Sm, and using (4.2.16), we have

∥∥∥γ[1]
k

∥∥∥ ≤ m and
∥∥∥vec

(
β

[1]
k

)∥∥∥
1
≤ m,

which leads to
∑p

j=1

∣∣∣∣γ[1]
kj

m

∣∣∣∣ ≤ 1 and
∑q

z=1

∑p
j=1

∣∣∣∣∣
[
β

[1]
k

]
z,j

m

∣∣∣∣∣ ≤ 1, respectively. Furthermore, given x ∈

X = [0, 1]p, we have ‖x‖2max,n = 1. Thus, there exist families A of (2p+ 1)36B2
nK

2m2/δ2

vectors and B
of (2p+ 1)16B2

nq
2K2m2/δ2

vectors of Rp, such that for all k ∈ [K], z ∈ [q], γ
[1]
k,., and

[
β

[1]
k

]
z,.

, there exist

γ
[1]
k,. ∈ A and

[
β

[2]
k

]
z,.
∈ B, such that

1

n

n∑
i=1

 p∑
j=1

γ
[1]
kj

m
xij −

p∑
j=1

γ
[2]
kj

m
xij

2

≤ δ2

36B2
nK

2m2
, and

1

n

n∑
i=1

 p∑
j=1

[
β

[1]
k

]
z,j

m
xij −

p∑
j=1

[
β

[2]
k

]
z,j

m
xij


2

≤ δ2

36B2
nq

2K2m2
,

which leads to a ≤ δ2/36B2
n and b ≤ δ2/36B2

n. Moreover, (4.2.4) leads to

∥∥∥β[1]
0

∥∥∥
1

=
K∑
k=1

∥∥∥β[1]
0k

∥∥∥
1
≤ Kq

∥∥∥β[1]
0k

∥∥∥
∞
≤ KqAβ (using (4.2.80)) ,

∥∥∥γ[1]
0

∥∥∥
1

=

K∑
k=1

∣∣∣γ[1]
0k

∣∣∣ ≤ KAγ , and

∥∥∥vec
(
Σ[1]

)∥∥∥
1

=

K∑
k=1

∥∥∥vec
(
Σ

[1]
k

)∥∥∥
1
≤
Kq
√
q

aΣ
.
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Therefore, on the event T ,

M (δ, Fm, ‖·‖n) ≤ N (δ/2, Fm, ‖·‖n) (using Lemma 4.2.22)

≤ card(A) card(B)N

(
δ

18Bn
, BK

1 (KqAβ) , ‖·‖1
)

N

(
δ

18Bn
, BK

1 (KAγ) , ‖·‖1
)
N

(
δ

18Bn
, BK

1

(
Kq
√
q

aΣ

)
, ‖·‖1

)
≤ (2p+ 1)

72B2
nq

2K2m2

δ2

(
1 +

18BnKqAβ
δ

)K (
1 +

18BnKAγ
δ

)K (
1 +

18BnKq
√
q

aΣδ

)K
.

Proof of Lemma 4.2.13

Let m ∈ N?. From Lemma 4.2.10, on the event T ,

sup
fm∈Fm

‖fm‖n 1T ≤ 2KBn

(
Aγ + qAβ +

q
√
q

aΣ

)
=: Rn. (4.2.70)

From Lemma 4.2.11, on the event T for all S ∈ N?,

S∑
s=1

2−s
√

ln [1 +M (2−sRn, Fm, ‖·‖n)]

≤
S∑
s=1

2−s
√

ln [2M (δ, Fm, ‖·‖n)] with δ = 2−sRn

≤
S∑
s=1

2−s

[
√

ln 2 +
6
√

2BnqKm

δ

√
ln (2p+ 1)

+

√
K ln

[(
1 +

18BnKqAβ
δ

)(
1 +

18BnKAγ
δ

)(
1 +

18BnKq
√
q

aΣδ

)]]

≤
S∑
s=1

2−s

[
√

ln 2 +
2s6
√

2BnqKm

Rn

√
ln (2p+ 1)

+

√
K ln

[(
1 +

2s18BnKqAβ
Rn

)(
1 +

2s18BnKAγ
Rn

)(
1 +

2s18BnKq
√
q

aΣRn

)]]
. (4.2.71)

Notice from (4.2.70), that Rn ≥ 2KBn max
(
Aγ , qAβ,

q
√
q

aΣ

)
. Moreover, it holds that 1 ≤ 2s+3, and∑S

s=1 2−s = 1 − 2−S ≤ 1,
∑S

s=1 (
√
e/2)

s ≤
√
e/ (2−

√
e), and since for all s ∈ N?, es ≥ s, and thus
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2−s
√
s ≤ (

√
e/2)

s
. Therefore, from (4.2.71):

S∑
s=1

2−s
√

ln [1 +M (2−sRn, Fm, ‖·‖n)]

≤
S∑
s=1

2−s

[
√

ln 2 +
2s6
√

2BnqKm

Rn

√
ln (2p+ 1) +

√
K ln [(2s+132) (2s+132) (2s+132)]

]

=

S∑
s=1

2−s

[
√

ln 2 +
2s6
√

2BnqKm

Rn

√
ln(2p+ 1) +

√
K
√

3 ((s+ 1) ln 2 + 2 ln 3)

]

≤ 6
√

2BnKqm

Rn

√
ln(2p+ 1)S +

√
K
√

3 ln 2

S∑
s=1

2−s
√
s+
√

ln 2
(

1 +
√

3K
)

+
√

6 ln 3K

≤ 6
√

2BnKqm

Rn

√
ln(2p+ 1)S +

√
K
√

3 ln 2
S∑
s=1

(√
e

2

)s
+
√

ln 2
(

1 +
√

3K
)

+
√

6 ln 3K

≤ 6
√

2BnqKm

Rn

√
ln(2p+ 1)S +

√
K ln 2

( √
3e

2−
√
e

+ 1 +
√

3 +

√
6 ln 3

ln 2

)
︸ ︷︷ ︸

=:C1

. (4.2.72)

Then, from (4.2.62) and (4.2.72), for all S ∈ N?:

E

[
sup

fm∈Fm

∣∣∣∣∣ 1n
n∑
i=1

εifm(Zi)

∣∣∣∣∣
]
≤ Rn

[
6√
n

(
6
√

2BnKmq

Rn

√
ln(2p+ 1)S +

√
K ln 2C1

)
+ 2−S

]
.

(4.2.73)

We choose S = lnn/ ln 2 so that the two terms depending on S in (4.2.73) are of the same order. In
particular, for this value of S, 2−S ≤ 1/n, and we deduce from (4.2.73) and (4.2.70) that

EZ[n]

[
sup

fm∈Fm

∣∣∣∣∣ 1n
n∑
i=1

εifm(Zi)

∣∣∣∣∣
]

≤ 36
√

2BnKmq√
n

√
ln(2p+ 1)

lnn

ln 2
+ 2KBn

(
Aγ + qAβ +

q
√
q

aΣ

)(
6
√

ln 2C1

√
K√
n

+
1

n

)

≤ BnKmq√
n

√
ln(2p+ 1) lnn

36
√

2

ln 2︸ ︷︷ ︸
≈73.45

+
K
√
K√
n

Bn

(
Aγ + qAβ +

q
√
q

aΣ

)
2
(

6
√

ln 2C1 + 1
)

︸ ︷︷ ︸
≈141.32

<
74KBn√

n

[
mq
√

ln(2p+ 1) lnn+ 2
√
K

(
Aγ + qAβ +

q
√
q

aΣ

)]
.

4.2.4.3 Proof of Lemma 4.2.1

Since ln(z) is concave in z, Jensen’s inequality implies that ln (EZ [Z]) ≥ EZ [ln (Z)], where Z is a
random variable. Thus, for all x ∈ X , Jensen’s inequality and Lemma 4.2.15 lead us the following
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upper bound∫
Rq

ln (s0 (y|x)) s0 (y|x) dy

=

∫
Rq

ln [s0 (y|x)]

K∑
k=1

[gk (x; γ0)φ (y; v0k(x),Σ0k)] dy

=
K∑
k=1

gk (x; γ0)

∫
Rq

ln [s0 (y|x)]φ (y; v0k(x),Σ0k) dy

≤
K∑
k=1

gk (x; γ0) ln

[∫
Rq
s0 (y|x)φ (y; v0k(x),Σ0k) dy

]

=
K∑
k=1

gk (x; γ0) ln

[∫
Rq

K∑
l=1

gl (x; γ0)φ (y; v0l(x),Σ0l)φ (y; v0k(x),Σ0k) dy

]

=

K∑
k=1

gk (x; γ0) ln

[
K∑
l=1

gl (x; γ0)

∫
Rq
φ (y; v0l(x),Σ0l)φ (y; v0k(x),Σ0k) dy

]

≤
K∑
k=1

gk (x; γ0) ln

[
K∑
l=1

gl (x; γ0)Cs0

]
, Cs0 = (2π)−q/2

(
2A−1

Σ

)−q/2
, (using Lemma 4.2.15)

= lnCs0 <∞. (4.2.74)

Therefore, we obtain

max

{
0, sup
x∈X

∫
Rq

ln (s0 (y|x)) s0 (y|x) dy

}
≤ max {0, lnCs0} =: Hs0 <∞.

Next, we state the following important Lemma Lemma 4.2.15, which is used in the proof of Lemma 4.2.1.

Lemma 4.2.15. There exists a positive constant Cs0 := (2π)−q/2
(
2A−1

Σ

)−q/2
, 0 < Cs0 < ∞, such

that for all k ∈ [K], l ∈ [L],∫
Rq
φ (y; v0l(x),Σ0l)φ (y; v0k(x),Σ0k) dy < Cs0 , ∀x ∈ X . (4.2.75)

Proof of Lemma 4.2.15. Firstly, for all k ∈ [K], l ∈ [L], given

clk(x) = Clk
[
Σ−1

0l v0l(x) + Σ−1
0k v0k(x)

]
, Clk =

(
Σ−1

0l + Σ−1
0k

)−1
,

Lemma 4.2.25 leads to∫
Rq

[φ (y; v0l(x),Σ0l)φ (y; v0k(x),Σ0k)] dy

= Z−1
lk

∫
Rq
φ (y; clk(x), Clk) dy︸ ︷︷ ︸

=1

, where

= (2π)−q/2 det (Σ0l + Σ0k)
−1/2 exp

(
−1

2
(v0l(x)− v0k(x))> (Σ0l + Σ0k)

−1 (v0l(x)− v0k(x))

)
(4.2.76)

Next, since the determinant is the product of the eigenvalues, counted with multiplicity, and Weyl’s
inequality, see e.g., Lemma 4.2.26, for all k ∈ [K], l ∈ [L], we have

det (Σ0l + Σ0k) ≥ [m (Σ0l + Σ0k)]
q

≥ [m (Σ0l) +m (Σ0k)]
q (using (4.2.96) from Lemma 4.2.26)

=
[
M
(
Σ−1

0l

)−1
+M

(
Σ−1

0k

)−1
]q

≥
(
2A−1

Σ

)q
(using boundedness assumptions in (4.2.4)) .
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Therefore, for all k ∈ [K], l ∈ [L], it holds that

det (Σ0l + Σ0k)
−1/2 ≤

(
2A−1

Σ

)−q/2
(using boundedness assumptions in (4.2.4)) . (4.2.77)

Since (Σ0l + Σ0k)
−1 is a positive definite matrix, it holds that

(v0l(x)− v0k(x))> (Σ0l + Σ0k)
−1 (v0l(x)− v0k(x)) ≥ 0, ∀x ∈ X , l ∈ [L], k ∈ [K].

Then, since the exponential function is increasing, ∀x ∈ X , l ∈ [L], k ∈ [K], we have

exp

(
−1

2
(v0l(x)− v0k(x))> (Σ0l + Σ0k)

−1 (v0l(x)− v0k(x))

)
≤ exp(0) = 1. (4.2.78)

Finally, from (4.2.76), (4.2.77) and (4.2.78), we obtain∫
Rq

[φ (y; v0l(x),Σ0l)φ (y; v0k(x),Σ0k)] dy ≤ (2π)−q/2
(
2A−1

Σ

)−q/2
=: Cs0 <∞.

4.2.5 Technical results

We denote the vector space of all q-by-q real matrices by Rq×q (q ∈ N?):

A ∈ Rq×q ⇐⇒ A = (Ai,j) =

A1,1 · · · A1,q
...

...
Aq,1 · · · Aq,q

 , Ai,j ∈ R.

If a capital letter is used to denote a matrix (e.g., A,B), then the corresponding lower-case letter
with subscript i, j refers to the (i, j)th entry (e.g., Ai,j , Bi,j). When required, we also designate the
elements of a matrix with the notation [A]i,j or A (i, j). Denote the q-by-q identity and zero matrices
by Iq and 0q, respectively.

Lemma 4.2.16 (Derivative of quadratic form, Magnus & Neudecker, 2019). Assume that X and a
are non-singular matrix in Rq×q and vector in Rq×1, respectively. Then

∂a>X−1a

∂X
= −X−1aa>X−1.

Lemma 4.2.17 (Jacobi’s formula, Theorem 8.1 from Magnus & Neudecker, 2019). If X is a differ-
entiable map from the real numbers to q-by-q matrices,

d

dt
det (X(t)) = tr

(
Adj (X(t))

dX(t)

dt

)
.

In particular,

∂ det (X)

∂X
= (Adj (X))> = det (X)

(
X−1

)>
.

Definition 4.2.18 (Operator (induced) p-norm). We recall an operator (induced) p-norms of a matrix
A ∈ Rq×q (q ∈ N?, p ∈ {1, 2,∞}),

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

= max
x6=0

∥∥∥∥∥A
(

x

‖x‖p

)∥∥∥∥∥
p

= max
‖x‖p=1

‖Ax‖p , (4.2.79)

where for all x = (xi)i∈[q] ∈ Rq,

‖x‖∞ ≤ ‖x‖1 =

q∑
i=1

|xi| ≤ q ‖x‖∞ , (4.2.80)

‖x‖2 =

(
q∑
i=1

|xi|2
) 1

2

=
(
x>x

) 1
2 ≤ ‖x‖1 ≤

√
q ‖x‖2 , and (4.2.81)

‖x‖∞ = max
1≤i≤q

|xi| ≤ ‖x‖2 ≤
√
q ‖x‖∞ . (4.2.82)
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Lemma 4.2.19 (Some matrix p-norm properties, Golub & Van Loan, 2012). By definition, we always
have the important property that for every A ∈ Rq×q and x ∈ Rq,

‖Ax‖p ≤ ‖A‖p ‖x‖p , (4.2.83)

and every induced p-norm is submultiplicative, i.e., for every A ∈ Rq×q and B ∈ Rq×q,

‖AB‖p ≤ ‖A‖p ‖B‖p . (4.2.84)

In particular, it holds that

‖A‖1 = max
1≤j≤q

q∑
i=1

|Aij | ≤
q∑
j=1

q∑
i=1

|Aij | := ‖vec(A)‖1 ≤ q ‖A‖1 , (4.2.85)

‖vec(A)‖∞ := max
1≤i≤q,1≤j≤q

|Aij | ≤ ‖A‖∞ = max
1≤j≤q

q∑
i=1

|Aij | ≤ q ‖vec(A)‖∞ , (4.2.86)

‖vec(A)‖∞ ≤ ‖A‖2 = λmax(A) ≤ q ‖vec(A)‖∞ , (4.2.87)

where λmax is the largest eigenvalue of a positive definite symmetric matrix A. The p-norms, when
p ∈ {1, 2,∞}, satisfy

1
√
q
‖A‖∞ ≤ ‖A‖2 ≤

√
q ‖A‖∞ , (4.2.88)

1
√
q
‖A‖1 ≤ ‖A‖2 ≤

√
q ‖A‖1 . (4.2.89)

Given δ > 0, we need to define the δ-packing number and δ-covering number.

Definition 4.2.20 (δ-packing number,e.g., Definition 5.4 from Wainwright, 2019). Let (F , ‖·‖) be a
normed space and let G ⊂ F . With (gi)i=1,...,m ∈ G, {g1, . . . , gm} is an δ-packing of G of size m ∈ N?, if
‖gi − gj‖ > δ,∀i 6= j, i, j ∈ {1, . . . ,m}, or equivalently,

⋂n
i=1B (gi, δ/2) = ∅. Upon defining δ-packing,

we can measure the maximal number of disjoint closed balls with radius δ/2 that can be “packed”
into G. This number is called the δ-packing number and is defined as

M (δ,G, ‖·‖) := max {m ∈ N? : ∃δ-packing of G of size m} . (4.2.90)

Definition 4.2.21 (δ-covering number, Definition 5.1 from Wainwright, 2019). Let (F , ‖·‖) be a
normed space and let G ⊂ F . With (gi)i=1,...,n ∈ G, {g1, . . . , gn} is an δ-covering of G of size n if
G ⊂ ∪ni=1B (gi, δ), or equivalently, ∀g ∈ G, ∃i such that ‖g − gi‖ ≤ δ. Upon defining the δ-covering,
we can measure the minimal number of closed balls with radius δ, which is necessary to cover G. This
number is called the δ-covering number and is defined as

N (δ,G, ‖·‖) := min {n ∈ N? : ∃δ-covering of G of size n} . (4.2.91)

The covering entropy (metric entropy) is defined as follows H‖.‖ (δ,G) = ln (N (δ,G, ‖·‖)).

The relation between the packing number and the covering number is described in the following
lemma.

Lemma 4.2.22 (Lemma 5.5 from Wainwright, 2019). Let (F , ‖·‖) be a normed space and let G ⊂ F .
Then

M (2δ,G, ‖·‖) ≤ N (δ,G, ‖·‖) ≤M (δ,G, ‖·‖) .

Lemma 4.2.23 (Chernoff’s inequality, e.g., Chapter 2 in Wainwright, 2019). Assume that the random
variable has a moment generating function in a neighborhood of zero, meaning that there is some
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constant b > 0 such that the function ϕ(λ) = E
[
eλ(U−µ)

]
exists for all λ ≤ |b|. In such a case, we may

apply Markov’s inequality to the random variable Y = eλ(U−µ), thereby obtaining the upper bound

P (U − µ ≥ a) = P
(
eλ(U−µ) ≥ eλt

)
≤

E
[
eλ(U−µ)

]
eλt

.

Optimizing our choice of λ so as to obtain the tightest result yields the Chernoff bound

ln (P (U − µ ≥ a)) ≤ sup
λ∈[0,b]

{
λt− ln

(
E
[
eλ(U−µ)

])}
. (4.2.92)

In particular, if U ∼ N (µ, σ) is a Gaussian random variable with mean µ and variance σ2. By a
straightforward calculation, we find that U has the moment generating function

E
[
eλU
]

= eµλ+σ2λ2

2 , valid for all λ ∈ R.

Substituting this expression into the optimization problem defining the optimized Chernoff bound
(4.2.92), we obtain

sup
λ≥0

{
λt− ln

(
E
[
eλ(U−µ)

])}
= sup

λ≥0

{
λt− σ2λ2

2

}
= − t2

2σ2
,

where we have taken derivatives in order to find the optimum of this quadratic function. So, (4.2.92)
leads to

P (X ≥ µ+ t) ≤ e−
t2

2σ2 , for all t ≥ 0. (4.2.93)

Recall that a multi-index α = (α1, . . . , αp) , αi ∈ N?, ∀i ∈ [p] is an p-tuple of non-negative integers.
Let

|α| =
p∑
i=1

αi, α! =

p∏
i=1

αi!,

xα =

p∏
i=1

xαii ,x ∈ Rp, ∂αf = ∂α1
1 ∂α2

2 · · · ∂
αp
p =

∂|α|f

∂xα1
1 ∂xα2

2 · · · ∂x
αp
p
.

The number |α| is called the order or degree of α. Thus, the order of α is the same as the order of
xα as a monomial or the order of ∂α as a partial derivative.

Lemma 4.2.24 (Taylor’s Theorem in Several Variables from Duistermaat & Kolk, 2004). Suppose
f : Rp 7→ R is in the class Ck+1, of continuously differentiable functions, on an open convex set S. If
a ∈ S and a+ h ∈ S, then

f(a+ h) =
∑
|α|≤k

∂αf(a)

α!
hα +Ra,k(h),

where the remainder is given in Lagrange’s form by

Ra,k(h) =
∑

|α|=k+1

∂αf(a+ ch)
hα

α!
for some c ∈ (0, 1),

or in integral form by

Ra,k(h) = (k + 1)
∑

|α|=k+1

hα

α!

∫ 1

0
(1− t)k∂αf(a+ th)dt.

In particular, we can estimate the remainder term if |∂αf(x)| ≤M for x ∈ S and |α| = k + 1, then

|Ra,k(h)| ≤ M

(k + 1)!
‖h‖k+1

1 , ‖h‖1 =

p∑
i=1

|hi|.
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Recall that the multivariate Gaussian (or Normal) distribution has a joint density given by

φ (y;µ; Σ) = (2π)−q/2 det (Σ)−1/2 exp

(
−1

2
(y − µ)>Σ−1 (y − µ)

)
, (4.2.94)

where µ is the mean vector (of length q) and Σ is the symmetric, positive definite covariance matrix
(of size q× q). Then, we have the following well-known Gaussian identity, see more in Lemma 4.2.25.

Lemma 4.2.25 (Product of two Gaussians, see e.g., Equation (A.7) in Williams & Rasmussen
(2006)). The product of two Gaussians gives another (un-normalized) Gaussian

φ (y; a,A)φ (y; b, B) = Z−1φ (y; c, C) ,where, (4.2.95)

c = C
(
A−1a+B−1b

)
and C =

(
A−1 +B−1

)−1
,

Z−1 = (2π)−q/2 det (A+B)−1/2 exp

(
−1

2
(a− b)> (A+B)−1 (a− b)

)
.

We recall the following inequality of Hermann Weyl, see e.g., Horn & Johnson (2012, Theorem
4.3.1)

Lemma 4.2.26 (Weyl’s inequality, e.g., Theorem 4.3.1 from Horn & Johnson (2012)). Let A,B ∈
Rq×q be Hermitian and let the respective eigenvalues of A,B, and A+B be {λi (A)}i∈[q], {λi (B)}i∈[q],
and {λi (A+B)}i∈[q], each algebraically nondecreasing order as follows:

m (A) = λ1 (A) ≤ λ2 (A) ≤ . . . ≤ λq (A) = M (A) .

Then, for each i ∈ [q],

λi (A+B) ≤ λi+j (A) + λq−j (B) , j ∈ {0} ∪ [q − i],
λi−j+1 (A) + λj (B) ≤ λi (A+B) , j ∈ [i].

In particular, we have

M (A+B) ≤M (A) +M (B) ,

m (A+B) ≥ m (A) +m (B) . (4.2.96)

Given vectors z, z′ ∈ Rn and an index k ∈ [n], we define a new vector z\k as follows

z
\k
j :=

{
zj if j 6= k,

z′j if j = k.
(4.2.97)

4.3 Joint rank and variable selection by a non-asymptotic model
selection in the softmax-gated block-diagonal mixture of experts
regression model

The goal of Section 4.3 is to provide a treatment regarding penalizations that guarantee an Lasso +l2-
Rank-oracle inequality of PSGaBloME. As such, the remainder of the article progresses as follows. In
Section 4.3.1, we discuss the construction the framework for PSGaBloME regression models and its
collection of models. Section 4.3.5 is aimed to introduce the Lasso +l2-Rank procedure for PSGaBloME
regression models to deal with high-dimensional data. In Section 4.3.2, we state one of the main results
of this thesis: a finite-sample oracle inequality satisfied by PMLEs in PSGaBloME regression models.
Section 4.3.3 is devoted to the proof of these main results based on a general model selection theorem.
Some conclusions and proofs of lemmas can be founded in Section 5.4 and Section 4.3.4, respectively.
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4.3.1 Notation and framework

4.3.1.1 PSGaBloME models

We will consider the statistical frameworks in which we model a sample of high-dimensional regression
data issued from a heterogeneous population via a suitable MoE model with softmax gating functions.
We emphasize that the dimension of the input X ∈ X ⊂ Rp and/or the output Y ∈ Y ⊂ Rq variable
are/is typically much higher than the sample size n.

In Section 4.3, based on the original MoE models from Jacobs et al. (1991), we aim to establish
a MoE model with softmax gating functions as generic as possible such that it can be used to handle
with high-dimensional regression datasets and to study oracle inequalities. To do that, we first define
sψK (y|x) to be a conditional PDF of MoE model as follows:

sψK (y|x) =
K∑
k=1

gw,k (x)φq (y;υk(x),Σk (Bk)) , where, (4.3.1)

gw,k (x) =
exp (wk(x))∑K
l=1 exp (wl(x))

,w(x) = (wk(x))k∈[K] . (4.3.2)

Here, gw,k (·) and φq (·;υk(·),Σk (Bk)) , k ∈ [K], are called softmax gating functions (or gating net-
works) and Gaussian experts, respectively. Note that for every x ∈ X , (gw,k (x))k∈[K] ∈ ΠK−1.

Furthermore, we decompose the set of model parameters as follows: ψK = (w,υ,Σ) ∈WK ×ΥK ×
VK (B) =: ΨK , w = (wk)k∈[K] ∈WK , υ = (υk)k∈[K] ∈ ΥK , and Σ (B) = (Σk (Bk))k∈[K] ∈ Σk (Bk).
It is worth noting that WK and ΥK are sets of K-tuples of functions defined in logistic schemes
(weights) and mean functions from Rp to R+ and Rp to Rq, respectively; and Σk (Bk) is a set contain-
ing K-tuples of S++

q with the block-diagonal structures defined in (1.1.14), where S++
q denotes the

collection of symmetric positive definite matrices on Rq. Since we need to bound the model complexity
using the dimension of model, we have to restrict our attention to LinBoSGaBloME models, where
WK and ΥK are defined as the linear combination of a finite set of bounded functions whose coeffi-
cients belong to a compact set. When the dimension of both inputs and outputs are not too large, we
do not need to select relevant variables. Then, we can work on the previous LinBoSGaBloME models
with general structures for means, weights and multi-block-diagonal covariance matrices. In some situ-
ation, we do not need to take into account the trade-off between complexity and sparsity for covariance
matrices, in LinBoSGaBloME models, we can consider 1-block-diagonal covariance matrices, which is
well studied in Montuelle et al. (2014) and will be referred to be as linear-combination-of-bounded-
functions softmax-gated mixture of experts (LinBoSGaME) regression models. However, to deal with
high-dimensional data and to simplify the interpretation of sparsity, in LinBoSGaBloME model, we
propose to utilize polynomials for the weights of the softmax gating functions and the Gaussian expert
means, which will be referred to as polynomial softmax-gated block-diagonal mixture of experts (PS-
GaBloME) regression models. In particular, we simply refer to affine instances of LinBoSGaBloME
models as softmax-gated mixture of experts (SGaME) regression models.

In order to establish our oracle inequality, Theorem 4.3.2, we need to assume that X is a bounded
set in Rp and make explicit some classical boundedness conditions on the parameter space. We further
assume that the covariates X belong to an hypercube, e.g., X = [0, 1]p, for the simplicity of notation.
In particular, just for the interpretation of sparsity, the weights of softmax gating functions and
means of Gaussian experts are considered as monomials and polynomial functions of the explanatory
variables, respectively.

Linear combination of bounded functions for the weights and the means

We follow the idea from Montuelle et al. (2014) to restrict our attention on a finite set of bounded
functions whose coefficients belong to a compact set. It is worth mentioning that such quite general
setting includes the polynomial basis when the predictors are bounded, the suitable renormalized
wavelet dictionaries as well as the Fourier basis on an interval. More precisely, we first define the
following two collections of bounded functions for the weights and means: X 3 x 7→ (θW,d (x))d∈[dW] ∈
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[−1, 1]dw and X 3 x 7→ (θΥ,d (x))d∈[dΥ] ∈ [−1, 1]dΥ , where dw ∈ N? and dΥ ∈ N? indicate its degrees,
respectively. Then, by making use of these collections, we are able to define the corresponding desired
bounded spaces via tensorial constructions as follows:

WK,dW
= {0} ⊗WK−1,W =

{
X 3 x 7→

dW∑
d=1

ωdθW,d (x) ∈ R : max
d∈[dW]

|ωd| ≤ TW

}
,

ΥK,dΥ
= ΥK ,Υ =

X 3 x 7→

(
dΥ∑
d=1

β
(z)
d θΥ,d (x)

)
z∈[q]

: max
d∈[dΥ],z∈[q]

∣∣∣β(z)
d

∣∣∣ ≤ TΥ

 . (4.3.3)

We do not need to select relevant variables. Then, we can work on the previous LinBoSGaBloME
models with general structures for means, weights and multi-block-diagonal covariance matrices or with
LinBoSGaME models as in Montuelle et al. (2014). However, in PSGaBloME models, to handle with
high-dimensional data and to simplify the interpretation of sparsity, we propose to utilize polynomials
for weights and polynomial regression models for the softmax gating functions and the means of
Gaussian experts as follows:

WK,dW
= {0} ⊗WK−1,W =

X 3 x 7→
dW∑
|α|=0

ωαxα ∈ R : max
α∈A
|ωα| ≤ TW

 , (4.3.4)

ΥK,dΥ
=

{
X 3 x 7→

(
βk0 +

dΥ∑
d=1

βkdx
d

)
k∈[K]

: max {|||βkd|||∞ : k ∈ [K], d ∈ ({0} ∪ [dΥ])} ≤ TΥ

}
.

Here, note that the multi-index α = (αt)t∈[p] , αt ∈ N?
⋃
{0} =: N, ∀t ∈ [p], is an p-tuple of nonnegative

integers that satisfies xα =
∏p
j=1 x

αj
j and |α| =

∑p
t=1 αt. Then, for all l ∈ [dW], we define A =⋃dW

l=0Al, Al =
{
α = (αt)t∈[p] ∈ Np, |α| = l

}
. The number α is called the order or degree of monomials

xα. By using the well-known stars and bars methods, e.g., Feller (1957, Chapter 2), the cardinality
of the set A, denoted by card (A), equals

(
dW+p
p

)
. Note that, for all d ∈ [dΥ], we define xd as(

xdj

)
j∈[p]

for the means, which are often used for polynomial regression models. Moreover, given

any matrix A ∈ Rq×p, the following notations are used for matrix norms: the max norm |||A|||∞ =

maxi∈[q],j∈[p]

∣∣∣[A]i,j

∣∣∣, the 2-norm ‖A‖2 = sup‖x‖2=1

∣∣x>Ax
∣∣ = supλ∈vp(A) |λ|, where vp(A) denotes

the spectrum of A, and the Frobenius norm ‖A‖2F =
∑q

i=1

∑p
j=1

∣∣∣[A]i,j

∣∣∣2. Then, it holds that ‖A‖2 ≤
‖A‖F , ‖A‖2 ≤

√
qp|||A|||∞, and for any x ∈ Rp, ‖x‖2 ≤

√
p ‖x‖∞, ‖Ax‖2 ≤ ‖A‖2 ‖x‖2, e.g., Golub &

Van Loan (2013, Chapter 2).

Gaussian expert covariance matrices

For the block-diagonal covariances of Gaussian experts, we assume that there exist some positive
constants λm and λM such that, for every k ∈ [K],

0 < λm ≤ m (Σk (Bk)) ≤M (Σk (Bk)) ≤ λM . (4.3.5)

Note that this is a quite general assumption and is also used in the block-diagonal covariance
selection for Gaussian graphical models of Devijver & Gallopin (2018).

On Convergence Rates of Mixtures of Polynomial Experts We should refer to Mendes &
Jiang (2012) for discussing about the optimal convergence rate on a mixture of experts structure where
K experts are mixed, with each expert being related to a polynomial regression model of order dΥ.

When using PSGaBloME to study complex data with high number of responses and covariates,
the number of parameters could be quickly larger than the sample sizes. Following the same spirit
of the frameworks in Devijver (2015b, 2017a,b), the extension from a linear model of Bunea et al.
(2012) to finite mixture models, we propose to work with parsimonious models combing two well-
know approaches: selecting relevant variables and rank sparse models; Section 4.3.1.2, respectively.
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4.3.1.2 High-dimensional regression via variable selection and rank sparse models

Variable selection via selecting relevant variables

The Lasso estimator, originally established by Tibshirani (1996), is a classical choice and has been
extended to deal with multiple multivariate regression models for column sparsity using the Group-
Lasso estimator (Yuan & Lin, 2006). Note that the Group-Lasso penalty can be used to select a
subset of variables for one choice of regularization parameter in the Lasso-Rank procedure, as done,
e.g., Devijver (2015b, 2017a,b) or to get a ranking of the variables, as done, e.g., in Bach (2008).

Recall that, for all k ∈ [K], d ∈ [dΥ], βkd is the matrix of d-th term of regression coefficients,
Σk (Bk) is the covariance matrix in the mixture component k, and the gk is the mixture proportion k
with the α-th order term of its monomials is ωkα. Furthermore, given a regressor x, for all k ∈ [K],
for all d ∈ [dΥ] and for all z ∈ [q],

[
βkdx

d
]
z

=
∑p

j=1 [βkd]z,j x
d
j is the z-th component of the d-th

terms of means for the mixture components k. In particular, for all l ∈ [dW], j ∈ [p], we define

ω
[j,l]
k =

{
ωkα ∈ R : α = (αt)t∈[p] ∈ Al,αj > 0

}
.

We have to deal with high-dimensional data where we estimate many coefficients while given a
small number of target variables. Therefore, we need to focus on selecting relevant variables via the
notion of irrelevant indices in Definition 4.3.1.

Definition 4.3.1 (Relevant variables in PSGaBloME models). A couple (Yz,Xj) and its corre-
sponding indices (z, j) ∈ [q] × [p] are said to be irrelevant if, for all k ∈ [K], d ∈ [dΥ], l ∈ [dW],

[βkd]z,j = 0,ω
[j,l]
k = 0. This means that the variable Xj does not explain the variable Yz for the

regression models. A couple and its corresponding indices are relevant if they are not irrelevant.
A model is said to be sparse if there are few of relevant variables. We denote by J the set of in-
dices (z, j) of relevant couples (Yz,Xj). Then, we define the set of relevant variables (columns) as
Jω = {j ∈ [p] : ∃z ∈ [q], (z, j) ∈ J}. We denote by A[Jω ] and b[Jω ] the matrix and vector with vectors
0 on the columns indexed by the set JCω and values 0 on the set JCω , respectively. Here, JCω is the
complement of the set Jω.

Remark that J ⊂ P ([q]× [p]) and Jω ⊂ P ([q]), where P ([q]× [p]) contains all subsets of [q]× [p].
In our context, we focus on the Group-Lasso estimator to detect relevant variables, where the groups
correspond to the columns. Therefore, if for all k ∈ [K], d ∈ [dΥ], a matrix βkd has card (Jω)
relevant columns, there are q card (Jω) coefficients to be estimated instead of qp per clusters and
coefficient matrices. This leads to the number of parameters to be estimated is then drastically
reduced when card (Jω) � p. Furthermore, such column sparsity may enhance the interpretation
since the responses are described by only few relevant columns. To construct the regularization for
coefficients of polynomial functions, we can consider the sparse Group-Lasso estimator from Simon
et al. (2013) and Hastie et al. (2015, Chapter 4).

Rank sparse models

This approach is based on rank sparse models, introduced by Anderson et al. (1998). More precisely,
if regression matrices have low rank or at least can be well approximated by low-rank matrices, then
its corresponding regression models are called rank sparse. In the PSGaBloME model, for every
k ∈ [K], d ∈ [L], the matrix βkd is fully determined by Rkd (p+ q −Rkd) coefficients if it has rank
Rkd. This advantage will be very useful because the total parameters to estimate may be smaller than
the sample size nq. It is worth noting that such low-rank estimation generalizes the classical principal
component analysis for reducing the dimension of multivariate data and appears in many applications:
e.g., Friston et al. (2003, 2019, analysis of fMRI image data), Anderson et al. (1998, analysis of EEG
data decoding).

By combining the previous rank and column sparsity, we consider the matrices of regression co-
efficients βkd of rank Rkd and a vector of ranks R = (Rkd)k∈[K],d∈[dΥ] belongs to [card (Jω) ∧ q]dΥK ,
where in general, a ∧ b = min (a, b) and a ∨ b = max (a, b).

We describe in more detail the collection of models with relevant variables and rank sparse models
in the sequel.
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4.3.1.3 Collection of models

To simplify the notations, L and D stand for
(dW+card(Jω)

card(Jω)

)
and dΥ, which are related to the dimen-

sions of WK,dW
and ΥK,dΥ

, respectively. Combining all the previous structures in Sections 4.3.1.1

and 4.3.1.2 , given m = (K,L,D,B,J,R) ∈ N?×N?×N?×(Bk)k∈[K]×P ([q]× [p])×[card (Jω) ∧ q]DK ,
some real positive constants Au,v > 0, Aσ > 0, we obtain the following model:

Sm =
{

(x,y) 7→ sψ(K,L,D,B,J,R)
(y|x) =: sm(y|x) : ψ(K,L,D,B,J,R) ∈ Ψ(K,L,D,B,J,R)

}
,

ψ(K,L,D,B,J,R) =

(
(ωkα)

[Jω ]
k∈[K],α∈A ,

(
βk0,

(
βRkdkd

)
d∈[D]

)
k∈[K]

, (Σk (Bk))k∈[K]

)
∈
(
RL
)K−1 ×Υ(K,D,B,J,R) ×VK (B) =: Ψ(K,L,D,B,J,R),

Υ(K,D,B,J,R) =

{(
βk0,

(
βRkdkd

)[Jω ]

d∈[D]

)
k∈[K]

∈
(
Rq×1 ×

(
Rq×p

)D)K
: ∀k ∈ [K], ∀d ∈ [D],

βRkdkd =

Rkd∑
r=1

[σkd]r [ukd]•,r

[
v>kd

]
r,•
, rank

(
βRkdkd

)
= Rkd,∀r ∈ [Rkd] , [σkd]r < Aσ,

max
k∈[K],d∈[dΥ],r∈[Rkd]

{
‖βk0‖∞ ,

∥∥∥[ukd]•,r

∥∥∥
∞
,

∥∥∥∥[v>kd]r,•
∥∥∥∥
∞

}
≤ Au,v

}
. (4.3.6)

In the above, for k ∈ [K], d ∈ [D], [σkd]r , r ∈ [Rkd], denote the singular values of βRkdkd , with cor-

responding orthogonal unit vectors
(

[ukd]•,r

)
r∈[Rkd]

and
([

v>kd
]
r,•

)
r∈[Rkd]

(Strang, 2019, I.8). The

dimension of Sm is

dim (Sm) = (K − 1)L+ qK +

K∑
k=1

D∑
d=1

Rkd (card (Jω) + q −Rkd) +

K∑
k=1

Gk∑
g=1

card
(
d

[g]
k

)(
card

(
d

[g]
k

)
+ 1
)

2
.

Remark that the collection of models in (4.3.6) is generally large and therefore not tractable in
practice. This motivates us to restrict the numbers of components K, the orders of monomial weights
L and polynomial means D among finite sets K = [Kmax], L = [Lmax] and D = [Dmax], respectively,
where Kmax ∈ N?, Lmax ∈ N? and Dmax ∈ N? may depend on the sample size n. Furthermore, we
focus on a (potentially random) subcollection J of P ([q]× [p]), the controlled size being required
in high-dimension case. Moreover, the number of possible vectors of ranks considered is reduced by
working on a subset (potentially random) R(K,J,D) of [card (Jω) ∧ q]DK .

In particular, recall that B is selected among a list of candidate structures (Bk)k∈[K] ≡ (B)k∈[K],
where B denotes the set of all possible partitions of the covariables indexed by [p] for each cluster of
individuals. It is worth mentioning that the size of B (Bell number) is very large even for a moderate
number of variables p. This prevents us to consider an exhaustive exploration of the set B. Motivated
by the recent novel work from Devijver & Gallopin (2018), for each cluster k ∈ [K], we restrict our
attention to the sub-collection Bk,Λ = (Bk,λ)λ∈Λ of Bk. Here Bk,Λ is the partition of the variables corre-

sponding to the block-diagonal structure of the adjacency matrix Ek,λ =
[
I
{∣∣∣[Sk]z,z′∣∣∣ > λ

}]
z∈[q],z′∈[q]

,

which is based on the thresholded absolute value of the sample covariance matrix Sk in each cluster
k ∈ [K]. It is important to point out that the class of block-diagonal structures detected by the graph-
ical lasso algorithm when the regularization parameter varies is identical to the block-diagonal struc-
tures Bk,λ detected by the thresholding of the sample covariance for each cluster k ∈ [K] (Mazumder
& Hastie, 2012).

Finally, given Sm defined as in (4.3.6), our full model collection and random subcollection are
defined, respectively, as follows:

S = {Sm : m ∈M} ,M = K × L×D × (Bk)k∈[K] × P ([q]× [p])× [card (Jω) ∧ q]DmaxK , (4.3.7)

S̃ =
{
Sm : m ∈ M̃

}
,M̃ = K × L×D × (Bk,Λ)k∈[K] × J ×R(K,J,Dmax). (4.3.8)
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4.3.2 Oracle inequality

In Section 4.3.2, we state our main contribution, a finite-sample oracle type inequality, which ensures
that if we have penalized the log-likelihood in an approximate approach, we are able to select a
model which is as good as the oracle. Note that in Section 4.3, the block-diagonal structures, the
relevant variables and rank sparse models are designed, for example, by the Lasso +l2-Rank procedure
in Section 4.3.5. Nevertheless, our finite-sample oracle inequality in Theorem 4.3.2 still holds for
any random subcollection of M which is constructed by some suitable tools in the framework of
PSGaBloME regression models.

Theorem 4.3.2 (Oracle inequality). Let (xi,yi)i∈[n] be the observations arising from the unknown
conditional density s0. For each m ≡ (K,L,D,B,J,R) ∈ M, let Sm be define by (4.3.7). Assume
that there exists τ > 0 and εKL > 0 such that, for all m ∈M, one can find s̄m ∈ Sm such that

KL⊗n (s0, s̄m) ≤ inf
t∈Sm

KL⊗n (s0, t) +
εKL
n
, and s̄m ≥ e−τs0.

Furthermore, we construct a random subcollection (Sm)
m∈M̃ of (Sm)m∈M as in (4.3.8) and consider

the collection (ŝm)
m∈M̃ of η-log likelihood minimizers defined in (3.2.17). Then, there is a constant

C such that for any ρ ∈ (0, 1), and any C1 > 1, there are two constants κ0 and C2 depending only on
ρ and C1 such that, for every index m ∈M, ξm ∈ R+, Ξ =

∑
m∈M e−ξm <∞,

pen(m) ≥ κ [(C + lnn) dim(Sm) + (1 ∨ τ)ξm] , κ > κ0,

the η′-penalized likelihood estimator ŝm̂, defined in (3.2.18) on the subset M̃ instead of M, satisfies

EX[n],Y[n]

[
JKL⊗n

ρ (s0, ŝm̂)
]
≤ C1EX[n],Y[n]

[
inf

m∈M̃

(
inf
t∈Sm

KL⊗n (s0, t) + 2
pen(m)

n

)]
+ C2(1 ∨ τ)

Ξ2

n
+
η′ + η

n
.

Remark 4.3.3. This finite-sample oracle inequality, Theorem 4.3.2, compares performances of our
estimator with the best model in the collection. However, Theorem 4.3.2 allows us to approximate
well a rich class of conditional densities if we take enough degree of monomials and/or polynomials
of weights and Gaussian expert means, respectively, or enough clusters in the context of mixture of
Gaussian experts (Jiang & Tanner, 1999a, Mendes & Jiang, 2012, Nguyen et al., 2016, Ho et al., 2019,
Nguyen et al., 2021a). This leads to the term on the right hand side being small, for L,D, and K
well-chosen.

Especially, aside from important theoretical issues regarding the tightness of the bounds, the way
to integrate a priori information and the minimax analysis of our proposed PMLE, we hope that our
finite-sample oracle inequalities and corresponding interesting numerical experiments help to partially
answer the two following important questions raised in the area of MoE regression models: (1) What
number of mixture components K should be chosen, given the sample size n, and (2) Whether it
is better to use a few complex experts or combine many simple experts, given the total number of
parameters. Note that, such problems are considered in the work of Mendes & Jiang (2012, Proposition
1), where the authors provided some qualitative insights and only suggested a practical method for
choosing K and d involving a complexity penalty or cross-validation. Furthermore, their model is only
for a non-regularized maximum-likelihood estimation, and thus is not suitable in the high-dimensional
setting.

Furthermore, in the context of MoE regression models, our non-asymptotic oracle inequality, The-
orem 4.3.2, can be considered as a complementary result to a classical asymptotic theory (Khalili,
2010, Theorems 1,2, and 3), to a finite-sample oracle inequality on the whole collection of models in
low-dimensional setting (Montuelle et al., 2014, Nguyen et al., 2021c). Furthermore, Theorem 4.3.2
also complements alternative structures of MoE using Gaussian gating functions instead of softmax
functions, e.g., GLoME and BLoMPE models in Nguyen et al. (2021c,b), a practical point of view
of regularized MLE and feature selection (Chamroukhi & Huynh, 2018, Chamroukhi & Huynh, 2019,
Huynh & Chamroukhi, 2019), and to an l1-oracle inequality focusing on the Lasso estimation proper-
ties rather than the model selection procedure (Nguyen et al., 2020c), see also in Section 4.2 for more
details.
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4.3.3 Proof of the oracle inequality

Sketch of the proof To work with conditional density estimation in the PSGaBloME regression
models, in Section 4.3.3.1, we need to reuse again the general theorem for model selection, Theo-
rem 3.3.4. It is worth mentioning that because of working on random subcollection, we have to use
a model selection theorem for MLE among a random subcollection (cf., Devijver, 2015b, Theorem
5.1 or Devijver & Gallopin, 2018, Theorem 7.3). This is the extension of Cohen & Le Pennec (2011,
Theorem 2), which dealt with conditional density estimation but not with random subcollection, and
of Massart (2007, Theorem 7.11), working only for density estimation. Then, we explain how we use
Theorem 3.3.4 to get the oracle inequality, Theorem 4.3.2, in Section 4.3.3.1. To this end, our model
collection has to satisfy some regularity assumptions, which are proved in Section 4.3.4. The main
difficulties in proving our oracle inequality lies in bounding the bracketing entropy of the weights and
means restricted on relevant variables as well as rank sparse models, and in particular with block-
diagonal covariance matrices for PSGaBloME model. To overcome the former issue, we adapt the
strategies from Montuelle et al. (2014), Devijver (2017a). For the second one, we make use of the
recent novel result on block-diagonal covariance matrices in Devijver & Gallopin (2018) for Gaussian
mixture models from Genovese & Wasserman (2000), Maugis & Michel (2011b).

In the next section, we show how Theorem 3.3.4 can be utilized to prove Theorem 4.3.2. In
particular, the penalty can be chosen roughly proportional to the intrinsic dimension of the model,
and thus of the order of the variance.

4.3.3.1 Proof of Theorem 4.3.2

It should be stressed that all we need is to verify that Assumption 3.2.1 (K), Assumption 3.2.2 (Sep)
and Assumption 3.2.3 (H) hold for every m ∈ M. According to the result from Devijver (2015b,
Section 5.3), Assumption 3.2.2 (Sep) holds when we consider Gaussian densities and the assumption
defined by (3.3.7) is true if we assume further that the true conditional density s0 is bounded and
compactly supported. Furthermore, since we restricted to finite collection of models, it is true that
there exists a family (ξm)m∈M and Ξ > 0 such that Assumption 3.2.1 (K) is satisfied. Therefore, the
only remaining step of the proof for Assumption 3.2.3 (H) is presented in Section 4.3.3.1. All technical
results are deferred to Section 4.3.4.

Note that the definition of model complexity in Assumption 3.2.3 (H) is related to a classical
entropy dimension of a compact set w.r.t. a Hellinger type divergence d⊗n, thanks to the following
Proposition 4.3.4, which is established in (Cohen & Le Pennec, 2011, Proposition 2).

Proposition 4.3.4 (Proposition 2 from Cohen & Le Pennec (2011)). If we have

H[.],d⊗n (δ, Sm) ≤ dim(Sm)

(
Cm + ln

(
1

δ

))
, for any δ ∈ (0,

√
2], then the function

φm (δ) = δ
√

dim (Sm)

(√
Cm +

√
π +

√
ln

(
1

min (δ, 1)

))

satisfies Assumption 3.2.3 (H). Furthermore, the unique solution δm of 1
δφm (δ) =

√
nδ satisfies

nδ2
m ≤ dim(Sm)

(
2
(√

Cm +
√
π
)2

+

(
ln

n(√
Cm +

√
π
)2

dim (Sm)

)
+

)
.

Then, we calim that Proposition 4.3.4 implies Assumption 3.2.3 (H) because of the fact that

H[.],d⊗n (δ, Sm) ≤ dim(Sm)

(
Cm + ln

(
1

δ

))
, (4.3.9)

where Cm is a constant depending on the model. Next, recall that the definition from (4.3.8) is defined
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as follows:

Sm =
{

(x,y) 7→ sψ(K,L,D,B,J,R)
(y|x) =: sm(y|x) : ψ(K,L,D,B,J,R) ∈ Ψ(K,L,D,B,J,R)

}
,

ψ(K,L,D,B,J,R) =

(
(ωkα)

[Jω ]
k∈[K],α∈A ,

(
βk0,

(
βRkdkd

)
d∈[D]

)
k∈[K]

, (Σk (Bk))k∈[K]

)
∈
(
RL
)K−1 ×Υ(K,D,B,J,R) ×VK (B) =: Ψ(K,L,D,B,J,R),

Υ(K,D,B,J,R) =

{(
βk0,

(
βRkdkd

)|J|
d∈[D]

)
k∈[K]

∈
(
Rq×1 ×

(
Rq×p

)D)K
:

∀k ∈ [K], ∀d ∈ [D], rank
(
βRkdkd

)
= Rkd

}
. (4.3.10)

We also require some additional definitions of the following sets:

P(K,L,Jω) =

{
X 3 x 7→ gw,k (x) =

exp (wk(x))∑K
l=1 exp (wl(x))

,w = (wk)k∈[K] ∈WK,dW,Jω

}
, (4.3.11)

W(K,dW,Jω) = {0} ⊗WK−1
Jω

,A[Jω ] =
{
α = (αt)t∈[p] ∈ A : αj > 0, j ∈ [Jω]

}
, (4.3.12)

WJω =

X 3 x 7→ w (x) =

dW∑
|α|=0

ωαxα : α ∈ A[Jω ],max
α∈A
|ωα| ≤ TW

 ,

G(K,D,B,J,R) =
{
X × Y 3 (x,y) 7→ (φq (x;vk(y),Σk (Bk)))k∈[K] : v ∈ Υ(K,D,B,J,R),Σ(B) ∈ VK(B)

}
.

Moreover, given any g+,g− ∈ P(K,L,Jω) and φ+, φ− ∈ G(K,D,B,J,R), let us define

d2
P(K,L,Jω)

(
g+,g−

)
= EX[n]

[
1

n

n∑
i=1

d2
k

(
g+ (Xi) ,g

−(Xi)
)]
,

d2
G(K,D,B,J,R)

(
φ+, φ−

)
= EX[n]

[
1

n

n∑
i=1

K∑
k=1

d2
y

(
φ+
k (·Xi) , φ

−
k (·Xi)

)]
.

Then (4.3.9) can be established by first decomposing the entropy term between the softmax gating
functions and the Gaussian experts via Lemma 4.3.5, which is immediately obtained from Montuelle
et al. (2014, Lemma 6), an extension of the results in Genovese & Wasserman (2000, Theorem 2),
Ghosal & van der Vaart (2001), Cohen & Le Pennec (2011, Lemma 7) and Cohen & Le Pennec (2013).

Lemma 4.3.5. For all δ ∈ (0,
√

2], it holds that

H[·],d⊗n (δ, Sm) ≤ H[·],dP(K,L,Jω)

(
δ

2
,P(K,L,Jω)

)
+H[·],dG(K,D,B,J,R)

(
δ

2
,G(K,D,B,J,R)

)
.

We next define the metric entropy of the set W(K,dW,Jω): Hd‖sup‖∞
(δ,W(K,dW,Jω)), which measures

the logarithm of the minimal number of balls of radius at most δ, according to a distance d‖sup‖∞ ,
needed to cover W(K,dW,Jω) where

d‖sup‖∞

(
(sk)k∈[K] , (tk)k∈[K]

)
= max

k∈[K]
sup
x∈X
‖sk(x)− tk(x)‖2 , (4.3.13)

for any K-tuples of functions (sk)k∈[K] and (tk)k∈[K]. Here, sk, tk : X 3 x 7→ sk(x), tk(x) ∈ Rp, ∀k ∈
[K], and given x ∈ X , k ∈ [K], ‖sk(x)− tk(x)‖2 is the Euclidean distance in Rp.

Based on this metric, one can first relate the bracketing entropy of P(K,L,Jω) toHd‖sup‖∞
(δ,W(K,dW,Jω)),

and then obtain the upper bound for its entropy via Lemma 4.3.6, which is proved in Section 4.3.4.1.
Note that Lemma 4.3.6 is a variation around the Lemma 4 from Montuelle et al. (2014) and is adapted
for random subcollection on some relevant variables.
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Lemma 4.3.6. For all δ ∈ (0,
√

2],

H[·],dP(K,L,Jω)

(
δ

2
,P(K,L,Jω)

)
≤ Hd‖sup‖∞

(
3
√

3δ

8
√
K − 1

,W(K,dW,Jω)

)

≤ dim
(
W(K,dW,Jω)

)(
CW(K,dW,Jω)

+ ln

(
8
√
K − 1

3
√

3δ

))
, (4.3.14)

where dim
(
W(K,dW,Jω)

)
= (K − 1)L, and CW(K,dW,Jω)

= ln
(√

2 + TWL

3
√

3

)
.

Lemma 4.3.7 allows us to construct the Gaussian brackets to handle with the entropy metric for
Gaussian experts, which is established in Section 4.3.4.2.

Lemma 4.3.7. For all δ ∈ (0,
√

2],

H[·],dG(K,D,B,J,R)

(
δ

2
,G(K,D,B,J,R)

)
≤ dim

(
G(K,D,B,J,R)

)(
CG(K,D,B,J,R)

+ ln

(
1

δ

))
. (4.3.15)

Finally, (4.3.9) is proved via Lemmas 4.3.5 to 4.3.7. Indeed, with the fact that dim(Sm) =
dim

(
W(K,dW,Jω)

)
+ dim

(
G(K,D,B,J,R)

)
, it follows that

H[·],d⊗n (δ, Sm) ≤ H[·],dP(K,L,Jω)

(
δ

2
,P(K,L,Jω)

)
+H[·],dG(K,D,B,J,R)

(
δ

2
,G(K,D,B,J,R)

)
≤ dim

(
W(K,dW,Jω)

)(
CW(K,dW,Jω)

+ ln

(
8
√
K − 1

3
√

3δ

))
+ dim

(
G(K,D,B,J,R)

)(
CG(K,D,B,J,R)

+ ln

(
1

δ

))
=: dim(Sm)

(
Cm + ln

(
1

δ

))
, where

Cm =
dim

(
W(K,dW,Jω)

)
dim(Sm)

(
CW(K,dW,Jω)

+ ln

(
8
√
K − 1

3
√

3

))
+

dim
(
G(K,D,B,J,R)

)
CG(K,D,B,J,R)

dim (Sm)

≤ CW(K,dW,Jω)
+ ln

(
8
√
Kmax − 1

3
√

3

)
+ CG(K,D,B,J,R)

:= C.

It is interesting that the constant C does not depend on the dimension of the model m thanks to
the hypothesis that CW(K,dW,Jω)

is common for every model m in the collection. Therefore, Proposi-

tion 4.3.4 implies that, given C = 2
(√

C +
√
π
)2

, the model complexity Dm satisfies

Dm ≡ nδ2
m ≤ dim(Sm)

2
(√

C +
√
π
)2

+

ln
n(√

C +
√
π
)2

dim (Sm)


+

 ≤ dim(Sm) (C + lnn) .

To this end, Theorem 3.3.4 implies that to a collection of BLoME models S = (Sm)m∈M with
the penalty functions satisfies pen(m) ≥ κ [dim(Sm) (C + lnn) + (1 ∨ τ)ξm] with κ > κ0 the oracle
inequality of Theorem 4.3.2 holds.

4.3.4 Appendix: Lemma proofs

4.3.4.1 Proof of Lemma 4.3.6

We follow a technical proof of (Montuelle et al., 2014, Appendix B.2.2) with an adaption to random
subcollection of relevant variables. Recall that we defined the following sets:

P(K,L,Jω) =

{
X 3 x 7→ gw,k (x) =

exp (wk(x))∑K
l=1 exp (wl(x))

,w = (wk)k∈[K] ∈WK,dW,Jω

}
,

W(K,dW,Jω) = {0} ⊗WK−1
Jω

,A[Jω ] =
{
α = (αt)t∈[p] ∈ A : αj > 0, j ∈ [Jω]

}
,

WJω =

X 3 x 7→ w (x) =

dW∑
|α|=0

ωαxα ∈ R : α ∈ A[Jω ],max
α∈A
|ωα| ≤ TW

 .
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Following the same argument from the proof of (Montuelle et al., 2014, Lemma 4), it holds that

H[·],dP(K,L,Jω)

(
δ

2
,P(K,L,Jω)

)
≤ Hd‖sup‖∞

(
3
√

3δ

8
√
K − 1

,W(K,dW,Jω)

)
.

Next, we need to find an upper bound of Hd‖sup‖∞

(
3
√

3δ
8
√
K−1

,W(K,dW,Jω)

)
. Note that for all w,v ∈

W(K,dW,Jω), we obtain the following important inequality

d‖sup‖∞ (w,v) = max
k∈[K−1]

sup
x∈X

∣∣∣∣∣∣
dW∑
|α|=0

ωw
k,αxα −

dW∑
|α|=0

ωv
k,αxα

∣∣∣∣∣∣
≤ max

k∈[K−1]

dW∑
|α|=0

∣∣ωw
k,α − ωv

k,α

∣∣ sup
x∈X

xα ≤ card
(
A[Jω ]

)
max

k∈[K−1],α∈A[Jω ]

∣∣ωw
k,α − ωv

k,α

∣∣ .
Therefore, given the fact that card

(
A[Jω ]

)
=
(dW+card(Jω)

card(Jω)

)
= L, for all δ ∈ (0,

√
2], it holds that

H[·],dP(K,L,Jω)

(
δ

2
,P(K,L,Jω)

)
≤ Hd‖sup‖∞

(
3
√

3δ

8
√
K − 1

,W(K,dW,Jω)

)

≤ H‖·‖∞

(
3
√

3δ

8
√
K − 1L

,
{
ω ∈ R(K−1)L : ‖ω‖∞ ≤ TW

})

≤ (K − 1)L ln

(
1 +

8
√
K − 1TWL

3
√

3δ

)
= (K − 1)L

[
ln

(√
2 +

TWL

3
√

3

)
+ ln

(
8
√
K − 1

3
√

3δ

)]
= dim

(
W(K,dW,Jω)

)(
CW(K,dW,Jω)

+ ln

(
8
√
K − 1

3
√

3δ

))
.

4.3.4.2 Proof of Lemma 4.3.7

It is worth mentioning that without restriction for relevant variables, rank sparse models on the means
and structures on covariance matrices of Gaussian experts from the collectionM, the upper bound of
bracketing entropy of Gaussian experts from Lemma 4.3.7 is implied immediately from the Proposition
2 of Montuelle et al. (2014) and arguments in Montuelle et al. (2014, Appendix B.2.3). However, in
order to overcome the much more challenging problems with random subcollection based on relevant
variables, rank sparse models on the means and block-diagonal covariance matrices, we have to reply
on a much more constructive bracketing entropy in the spirits of works developed in Maugis & Michel
(2011b), Montuelle et al. (2014), Devijver (2015b, 2017a), Devijver & Gallopin (2018).

Given any k ∈ [K], we first define the following set and its corresponding distance:

G(D,Bk,J,Rk) =
{
X × Y 3 (x,y) 7→ φq

(
y;υ(D,J,Rk)(x),Σk (Bk)

)
: υ(D,J,Rk) ∈ Υ(D,J,Rk),Σk (Bk) ∈ Vk(Bk)

}
,

d2
G(D,Bk,J,Rk)

(
φ+
k , φ

−
k

)
= EX[n]

[
1

n

n∑
i=1

d2
(
φ+
k (Xi, ·) , φ−k (Xi, ·)

)]
. (4.3.16)

Then, it follows that G(K,D,B,J,R) =
∏K
k=1 G(D,Bk,J,Rk), where

∏
stands for the cartesian product, and

Lemma 4.3.8, established in Section 4.3.4.2.

Lemma 4.3.8. Given G(K,D,B,J,R) =
∏K
k=1 G(D,Bk,J,Rk), it holds that

H[·],dG(K,D,B,J,R)

(
δ

2
,G(K,D,B,J,R)

)
≤

K∑
k=1

H[·],dG(D,Bk,J,Rk)

(
δ

2
√
K
,G(D,Bk,J,Rk)

)
.
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Next, we claim that Lemma 4.3.7 is implied immediately via Lemma 4.3.8 and the following
important Lemma 4.3.9, which is proved in Section 4.3.4.2.

Lemma 4.3.9. For all δ ∈ (0,
√

2] and k ∈ [K], there exists a constant CG(D,Bk,J,Rk)
such that

H[·],dG(D,Bk,J,Rk)

(
δ

2
,G(D,Bk,J,Rk)

)
≤ dim

(
G(D,Bk,J,Rk)

)(
CG(D,Bk,J,Rk)

+ ln

(
1

δ

))
. (4.3.17)

To this end, by combining the previous two Lemmas 4.3.8 and 4.3.9, we have

H[·],dG(K,D,B,J,R)

(
δ

2
,G(K,D,B,J,R)

)
≤

K∑
k=1

dim
(
G(D,Bk,J,Rk)

)(
CG(D,Bk,J,Rk)

+ ln
(√

K
)

+ ln

(
1

δ

))
= dim

(
G(K,D,B,J,R)

)(
CG(K,D,B,J,R)

+ ln

(
1

δ

))
.

Here, dim
(
G(K,D,B,J,R)

)
=
∑K

k=1 dim
(
G(D,Bk,J,Rk)

)
, dim

(
G(D,Bk,J,Rk)

)
= dim

(
Υ(D,J,Rk)

)
+ DBk

,

CG(K,D,B,J,R)
=
∑K

k=1CG(D,Bk,J,Rk)
+ ln

(√
K
)

, DBk
= dim (Vk (Bk)) =

∑Gk
g=1

card
(
d

[g]
k

)(
card

(
d

[g]
k

)
+1
)

2 .

Proof of Lemma 4.3.8

It is sufficient to verify that

N[·],dG(K,D,B,J,R)

(
δ

2
,G(K,D,B,J,R)

)
≤

K∏
k=1

N[·],dG(D,Bk,J,Rk)

(
δ

2
√
K
,G(D,Bk,J,Rk)

)
.

By (3.2.23), for each k ∈ [K], let
{[
φl,−k , φl,+k

]}
1≤l≤NG(D,Bk,J,Rk)

be a minimal covering of δk-bracket

for dG(D,Bk,J,Rk)
of G(D,Bk,J,Rk) with cardinality N[·],dG(D,Bk,J,Rk)

(
δk,G(D,Bk,J,Rk)

)
=: NG(D,Bk,J,Rk)

. By

definition, we have

∀l ∈
[
NG(D,Bk,J,Rk)

]
, dG(D,Bk,J,Rk)

(
φl,−k , φl,+k

)
≤ δk.

This leads to the set
{∏K

k=1

[
φl,−k , φl,+k

]}
1≤l≤NG(D,Bk,J,Rk)

is a covering of δ/2-bracket for dG(K,D,B,J,R)

of G(K,D,B,J,R) with cardinality
∏K
k=1NG(D,Bk,J,Rk)

. Indeed, let any φ = (φk)k∈[K] ∈ G(K,D,B,J,R).

Consequently, for each k ∈ [K], φk ∈ G(D,Bk,J,Rk), and there exists l(k) ∈
[
NG(D,Bk,J,Rk)

]
, such that

φ
l(k),−
k ≤ φk ≤ φ

l(k),+
k , d2

G(D,Bk,J,Rk)

(
φ
l(k),+
k , φ

l(k),−
k

)
≤ (δk)

2 .

Then, it follows that φ ∈ [φ−, φ+] ∈
{∏K

k=1

[
φl,−k , φl,+k

]}
1≤l≤NG(D,Bk,J,Rk)

, with φ− =
(
φ
l(k),−
k

)
k∈[K]

, φ+ =(
φ
l(k),+
k

)
k∈[K]

, which leads to
{∏K

k=1

[
φl,−k , φl,+k

]}
1≤l≤NG(D,Bk,J,Rk)

is a bracket covering of G(K,D,B,J,R).

Now, we want to verify that the size of this bracket is δ/2 via choosing δk = δ
2
√
K
, ∀k ∈ [K]. It

holds that

d2
G(K,D,B,J,R)

(
φ−, φ+

)
= EX[n]

[
1

n

n∑
i=1

K∑
k=1

d2
(
φ
l(k),−
k (Xi, ·) , φl(k),+

k (Xi, ·)
)]

=

K∑
k=1

EX[n]

[
1

n

n∑
i=1

d2
(
φ
l(k),−
k (Xi, ·) , φl(k),+

k (Xi, ·)
)]

=

K∑
k=1

d2
G(D,Bk,J,Rk)

(
φ
l(k),−
k , φ

l(k),+
k

)
≤ K

(
δ

2
√
K

)2

=

(
δ

2

)2

.

Finally, Lemma 4.3.8 is followed by the definition of a minimal δ/2-bracket covering number for
G(K,D,B,J,R).
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Proof of Lemma 4.3.9

We need to bound the bracketing entropy in (4.3.17). In particular, we make use of the ideas from
Maugis & Michel (2011b), which is the extension to multidimensional Gaussian mixture of Genovese
& Wasserman (2000), to define a net over the parameter space of Gaussian experts. Next, we aim to
construct a bracket covering of G(D,Bk,J,Rk) according to the tensorized Hellinger distance, dG(D,Bk,J,Rk)

based on Gaussian dilatations. To this end, our technique is adapted from the results of Devijver
(2015b, 2017a) to handle the means of Gaussian experts restricted on relevant variables and rank
sparse models and of Devijver & Gallopin (2018) to deal with block-diagonal covariance matrices
Vk (Bk) , k ∈ [K].

Step 1: Construction of a net for the block-diagonal covariance matrices. Firstly, for a
given matrix Σk(Bk) ∈ Vk (Bk) , k ∈ [K], we denote by Adj (Σk(Bk)) the adjacency matrix associated
to the covariance matrix Σk(Bk). Note that this matrix of size D2 can be defined by a vector
of concatenated upper triangular vectors. We are going to make use of the result from Devijver
& Gallopin (2018) to handle the block-diagonal covariance matrices Σk (Bk), via its corresponding

adjacency matrix. To do this, we need to construct a discrete space for {0, 1}q(q−1)/2, which is a
one-to-one correspondence (bijection) with

ABk
= {ABk

∈ Sq ({0, 1}) : ∃Σk (Bk) ∈ Vk (Bk) s.t Adj (Σk (Bk)) = ABk
} ,

where Sq ({0, 1}) is the set of symmetric matrices of size D taking values on {0, 1}.
Then, we want to deduce a discretization of the set of covariance matrices. Let h denotes Hamming

distance on {0, 1}q(q−1)/2 defined by

d(z, z′) =
n∑
i=1

I
{
z 6= z′

}
, for all z, z′ ∈ {0, 1}q(q−1)/2 .

Let {0, 1}q(q−1)/2
Bk

be the subset of {0, 1}q(q−1)/2 of vectors for which the corresponding graph has

structure Bk =
(
d

[g]
k

)
g∈[Gk]

. Then, given any ε > 0, Corollary 1 and Proposition 2 from Supplementary

Material A of Devijver & Gallopin (2018) lead to that there exists some subset R of {0, 1}q(q−1)/2, as
well as its equivalent Adisc

Bk
for adjacency matrices satisfy∥∥∥Σk (Bk)− Σ̃k (Bk)

∥∥∥2

2
≤ DBk

2
∧ ε2,∀

(
Σk (Bk) , Σ̃k (Bk)

)
∈
(
S̃disc

Bk
(ε)
)2

s.t. Σk (Bk) 6= Σ̃k (Bk) ,

card
(
S̃disc

Bk
(ε)
)
≤

(⌊
2λM
ε

⌋
D (D − 1)

2DBk

)DBk

, (4.3.18)

DBk
= dim (Vk (Bk)) =

Gk∑
g=1

card
(
d

[g]
k

)(
card

(
d

[g]
k

)
− 1
)

2
, where (4.3.19)

S̃disc
Bk

(ε) =

{
Σk (Bk) ∈ S++

q (R) : Adj (Σk (Bk)) ∈ Adisc
Bk

, [Σk (Bk)]i,j = σi,jε, σi,j ∈
[
−λM
ε

,
λM
ε

]⋂
Z
}
.

Therefore, by choosing ε2 ≤ DBk
2 , given Σk (Bk) ∈ Vk (Bk), there exists Σ̃k (Bk) ∈ S̃disc

Bk
(ε), such that∥∥∥Σk (Bk)− Σ̃k (Bk)

∥∥∥2

2
≤ ε2. (4.3.20)

Based on Σ̃k (Bk), we can construct the following bracket covering of G(D,Bk,J,Rk) via defining
suitable nets for the means of Gaussian experts. More precisely, given any δΥ(D,J,Rk)

> 0, we claim
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that the set [l, u]

∣∣∣∣∣∣∣∣∣
l(x,y) = (1 + 2α)−D φ

(
y; υ̃(D,J,Rk)(x), (1 + α)−1 Σ̃k (Bk)

)
,

u(x,y) = (1 + 2α)D φ
(
y; υ̃(D,J,Rk)(x), (1 + α) Σ̃k (Bk)

)
,

υ̃(D,J,Rk) ∈ GΥ(D,J,Rk)

(
δΥ(D,J,Rk)

)
, Σ̃k (Bk) ∈ S̃disc

Bk
(ε)

 ,

is an δΥ(D,J,Rk)
-brackets set over G(D,Bk,J,Rk) where the constant α > 0 and function X 3 x 7→

υ̃(D,J,Rk) (x) and its corresponding space GΥ(D,J,Rk)

(
δΥ(D,J,Rk)

)
will be specified later. Indeed,

we consider any function X × Y 3 (x,y) 7→ f(x,y) = φ
(
y;υ(D,J,Rk)(x),Σk (Bk)

)
that belongs to

G(D,Bk,J,Rk), where υ(D,J,Rk) ∈ Υ(D,J,Rk) and Σk (Bk) ∈ Vk (Bk). According to (4.3.20), there exists

Σ̃k (Bk) ∈ S̃disc
Bk

(ε) such that ∥∥∥Σk (Bk)− Σ̃k (Bk)
∥∥∥2

2
≤ ε2.

Step 2: Construction of a net for the mean functions. We claim that given any δΥ(D,J,Rk)
> 0,

any υ(D,J,Rk) ∈ Υ(D,J,Rk), there exist a minimal covering of δk-bracket GΥ(D,J,Rk)

(
δΥ(D,J,Rk)

)
and a

function υ̃(D,J,Rk) ∈ GΥ(D,J,Rk)

(
δΥ(D,J,Rk)

)
such that

sup
x∈X

∥∥υ̃(D,J,Rk)(x)− υ(D,J,Rk)(x)
∥∥2

2
≤ δ2

Υ(D,J,Rk)
, (4.3.21)

card
(
GΥ(D,J,Rk)

(
δΥ(D,J,Rk)

))
≤

exp
(
CΥ(D,J,Rk)

)
δΥ(D,J,Rk)

dim
(
Υ(D,J,Rk)

)
. (4.3.22)

To accomplish this, we use the singular value decomposition of βRkdkd =
∑Rkd

r=1 [σkd]r [ukd]•,r
[
v>kd
]
r,•,

k ∈ [K], d ∈ [D], with [σkd]r , r ∈ [Rkd], denote the singular values of βRkdkd , with corresponding

orthogonal unit vectors
(

[ukd]•,r

)
r∈[Rkd]

and
([

v>kd
]
r,•

)
r∈[Rkd]

. Then, we construct υ̃(D,J,Rk)(x) =

β̃k0 +
∑D

d=1 β̃
Rkd
kd xd, where β̃k0 and β̃Rkdkd =

∑Rkd
r=1 [σ̃kd]r [ũkd]•,r

[
ṽ>kd
]
r,•, k ∈ [K], d ∈ [D], are de-

termined so that (4.3.21) and (4.3.22) are satisfied. Note that for each k ∈ [K], d ∈ [D], it holds
that

∥∥υ̃(D,J,Rk)(x)− υ(D,J,Rk)(x)
∥∥

2
=

∥∥∥∥∥β̃k0 − βk0 +

D∑
d=1

(
β̃Rkdkd − β

Rkd
kd

)
xd

∥∥∥∥∥
2

≤
∥∥∥β̃k0 − βk0

∥∥∥
2

+

D∑
d=1

∥∥∥(β̃Rkdkd − β
Rkd
kd

)
xd
∥∥∥

2

≤ √q
∥∥∥β̃k0 − βk0

∥∥∥
∞

+ p
√
q

D∑
d=1

∣∣∣∣∣∣∣∣∣β̃Rkdkd − β
Rkd
kd

∣∣∣∣∣∣∣∣∣
∞

∥∥∥xd∥∥∥
∞

≤ √q
∥∥∥β̃k0 − βk0

∥∥∥
∞

+ p
√
q

D∑
d=1

∣∣∣∣∣∣∣∣∣β̃Rkdkd − β
Rkd
kd

∣∣∣∣∣∣∣∣∣
∞
,

where we used the fact that for all d ∈ [D], x ∈ X ,
∥∥xd∥∥∞ ≤ 1 as X = [0, 1]p. Thus, (4.3.21) is

immediately followed if we now choose β̃k0 and β̃Rkdkd such that

√
q
∥∥∥βk0 − β̃k0

∥∥∥
∞
≤
δΥ(D,J,Rk)

2
, (4.3.23)∣∣∣∣∣∣∣∣∣βRkdkd − β̃

Rkd
kd

∣∣∣∣∣∣∣∣∣
∞
≤
δΥ(D,J,Rk)

2Dp
√
q
. (4.3.24)

205



Chapter 4. Joint rank and variable selection in the softmax-gated block-diagonal mixture of experts
regression model

Let us now see how to construct β̃k0 to get (4.3.23). This task can be accomplished if for all k ∈ [K],
z ∈ [q], we set

B = Z ∩

[⌊
−Au,v

2
√
q

δΥ(D,J,Rk)

⌋
,

⌊
Au,v

2
√
q

δΥ(D,J,Rk)

⌋]
,

[
β̃k0

]
z

= arg min
b∈B

∣∣∣∣∣[βk0]z −
δΥ(D,J,Rk)

2
√
q

b

∣∣∣∣∣ .

Next, let us now see how to construct β̃Rkdkd to get (4.3.24). The boundedness assumption in (4.3.6)
implies that

∣∣∣∣∣∣∣∣∣βRkdkd − β̃
Rkd
kd

∣∣∣∣∣∣∣∣∣
∞

= max
z∈[q],j∈[p]

∣∣∣∣∣
Rkd∑
r=1

(
[σkd]r [ukd]z,r

[
v>kd

]
r,j
− [σ̃kd]r [ũkd]z,r

[
ṽ>kd

]
r,j

)∣∣∣∣∣
= max

z∈[q],j∈[p]

∣∣∣∣∣
Rkd∑
r=1

(
([σkd]r − [σ̃kd]r) [ukd]z,r

[
v>kd

]
r,j

− [σ̃kd]r

(
[ũkd]z,r − [ukd]z,r

) [
ṽ>kd

]
r,j

− [σ̃kd]r [ukd]z,r

([
v>kd

]
r,j
−
[
ṽ>kd

]
r,j

))∣∣∣∣∣
≤ max

r∈[Rkd]
|[σkd]r − [σ̃kd]r| max

z∈[q],j∈[p]

Rkd∑
r=1

∣∣∣∣[ukd]z,r [v>kd]r,j
∣∣∣∣

+ max
z∈[q],r∈[Rkd]

∣∣∣[ũkd]z,r − [ukd]z,r

∣∣∣max
j∈[p]

Rkd∑
r=1

∣∣∣∣[σ̃kd]r [ṽ>kd]r,j
∣∣∣∣

+ max
r∈[Rkd],j∈[p]

∣∣∣∣[v>kd]r,j − [ṽ>kd]r,j
∣∣∣∣max
z∈[q]

Rkd∑
r=1

∣∣∣[σ̃kd]r [ukd]z,r

∣∣∣
≤ RkdA2

u,v max
r∈[Rkd]

|[σkd]r − [σ̃kd]r|

+RkdAu,vAσ

(
max

z∈[q],r∈[Rkd]

∣∣∣[ũkd]z,r − [ukd]z,r

∣∣∣+ max
r∈[Rkd],j∈[p]

∣∣∣∣[v>kd]r,j − [ṽ>kd]r,j
∣∣∣∣) .

Therefore, (4.3.24) is immediately implied if we now choose [σ̃kd]r, [ũkd]z,r and
[
ṽ>kd
]
r,j

such that

max
r∈[Rkd]

|[σkd]r − [σ̃kd]r| ≤
δΥ(D,J,Rk)

6RkdA2
u,vDp

√
q
,

max
z∈[q],r∈[Rkd]

∣∣∣[ũkd]z,r − [ukd]z,r

∣∣∣ ≤ δΥ(D,J,Rk)

6RkdAu,vAσDp
√
q
,

max
r∈[Rkd],j∈[p]

∣∣∣∣[v>kd]r,j − [ṽ>kd]r,j
∣∣∣∣ ≤ δΥ(D,J,Rk)

6RkdAu,vAσDp
√
q
.
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This task can be accomplished as follows: for all r ∈ [Rkd], j ∈ [p], z ∈ [q], set

S = Z ∩

[
0,

⌊
Aσ

6RkdA
2
u,vDp

√
q

δΥ(D,J,Rk)

⌋]
,

[σ̃kd]r = arg min
ζ∈S

∣∣∣∣∣[σkd]r − δΥ(D,J,Rk)

6RkdA2
u,vDp

√
q
ζ

∣∣∣∣∣ ,
U = Z ∩

[⌊
−Au,v

6RkdAu,vAσDp
√
q

δΥ(D,J,Rk)

⌋
,

⌊
Au,v

6RkdAu,vAσDp
√
q

δΥ(D,J,Rk)

⌋]
,

[ũkd]z,r = arg min
µ∈U

∣∣∣∣∣[ukd]z,r − δΥ(D,J,Rk)

6RkdAu,vAσDp
√
q
µ

∣∣∣∣∣ ,[
ṽ>kd

]
r,j

= arg min
υ∈U

∣∣∣∣∣[v>kd]r,j − δΥ(D,J,Rk)

6RkdAu,vAσDp
√
q
υ

∣∣∣∣∣ .
Note that, according to Strang (2019, I.8), we only need to determine the vectors

((
[ũkd]z,r

)
z∈[q−r]

)
r∈[Rkd]

and

((
[ṽkd]r,j

)
j∈[card(Jω)−r]

)
r∈[Rkd]

since the remaining elements of such vectors belong to the the

nullspace of βRkdkd and βRkd>kd . The number of total free parameters in the previous two vectors are

Rkd∑
r=1

(q − r) = Rkd

(
2q −Rkd − 1

2

)
,

Rkd∑
r=1

(card (Jω)− r) = Rkd

(
2 card (Jω)−Rkd − 1

2

)
.

To this end, for all k ∈ [K], d ∈ [D], and z ∈ [q], we let[
β̃Rkdkd

]
z,j

=

{∑Rkd
r=1 [σ̃kd]r [ũkd]z,r

[
ṽ>kd
]
r,j

if j ∈ Jω,

0 if j ∈ JCω .

In particular, (4.3.22) is proved by the following entropy controlling

card
(
GΥ(D,J,Rk)

(
δΥ(D,J,Rk)

))
≤

[
4Au,v

√
q

δΥ(D,J,Rk)

]q D∏
d=1

[
6RkdAσA

2
u,vDp

√
q

δΥ(D,J,Rk)

]Rkd [
12RkdAσA

2
u,vDp

√
q

δΥ(D,J,Rk)

]Rkd(q+card(Jω)−Rkd−1)

=

exp
(
CΥ(D,J,Rk)

)
δΥ(D,J,Rk)

dim
(
Υ(D,J,Rk)

)
, where

dim
(
Υ(D,J,Rk)

)
= q +

D∑
d=1

Rkd (q + card (Jω)−Rkd) , CΥ(D,J,Rk)
=

ln
(
C(D,J,Rk)

)
dim

(
Υ(D,J,Rk)

) ,
and C(D,J,Rk) = [4Au,v

√
q]q
[
12RkdAσA

2
u,vDp

√
q
]∑D

d=1 Rkd(q+card(Jω)−Rkd)
2−

∑D
d=1Rkd .

Step 3: Upper bound of the number of the bracketing entropy for G(D,Bk,J,Rk). Next, in
order to evaluate the ratio of two Gaussian densities, we make use of Lemma 4.3.10.

Lemma 4.3.10 (Proposition C.1 from Maugis & Michel (2011b)). Let φ (·;µ1,Σ1) and φ (·;µ2,Σ2)
be two Gaussian densities. If Σ2 −Σ1 is a positive definite matrix then for all y ∈ Rq,

φ (y;µ1,Σ1)

φ (y;µ2,Σ2)
≤

√
|Σ2|
|Σ1|

exp

[
1

2
(µ1 − µ2)> (Σ2 −Σ1)−1 (µ1 − µ2)

]
.
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Then, Lemma 4.3.11 allows us to fulfill the assumptions of Lemma 4.3.10.

Lemma 4.3.11 (Similar to Lemma B.8 from Maugis & Michel (2011b)). Assume that 0 < ε <
λ2
m/9, and set α = 3

√
ε/λm. Then, for every k ∈ [K], (1 + α) Σ̃k (Bk) − Σk (Bk) and Σk (Bk) −

(1 + α)−1 Σ̃k (Bk) are both positive definite matrices. Moreover, for all y ∈ Rq,

y>
[
(1 + α) Σ̃k (Bk)−Σk (Bk)

]
y ≥ ε ‖y‖22 , y>

[
Σk (Bk)− (1 + α)−1 Σ̃k (Bk)

]
y ≥ ε ‖y‖22 .

Proof of Lemma 4.3.11. For all y 6= 0, since sup
λ∈vp(Σk(Bk)−Σ̃k(Bk)) |λ| =

∥∥∥Σk (Bk)− Σ̃k (Bk)
∥∥∥

2
≤ ε,

−ε ≥ −λm/3, and α = 3ε/λm, it follow that

y>
[
(1 + α) Σ̃k (Bk)−Σk (Bk)

]
y = (1 + α) y>

[
Σ̃k (Bk)−Σk (Bk)

]
y + αy>Σk (Bk) y

≥ − (1 + α)
∥∥∥Σ̃k (Bk)−Σk (Bk)

∥∥∥
2
‖y‖22 + αλm ‖y‖22

≥ (αλm − (1 + α) ε) ‖y‖22 = (αλm − αε− ε) ‖y‖22

≥
(

2

3
αλm − ε

)
‖y‖22 = ε ‖y‖22 > 0, and

y>
[
Σk (Bk)− (1 + α)−1 Σ̃k (Bk)

]
y = (1 + α)−1 y>

[
Σk (Bk)− Σ̃k (Bk)

]
y +

(
1− (1 + α)−1

)
y>Σk (Bk) y

≥
(
αλm − ε

1 + α

)
‖y‖22 =

2ε

1 + α
‖y‖22 ≥ ε ‖y‖

2
2 > 0.

By using Lemma 4.3.10 and the same argument as in the proof of Lemma B.9 from Maugis &
Michel (2011b), given 0 < ε < λm/3, where ε is chosen later, and α = 3ε/λm, we obtain

max

{
l(x,y)

f(x,y)
,
f(x,y)

u(x,y)

}
≤ (1 + 2α)−

q
2 exp

(∥∥υ(D,J,Rk)(x)− υ̃(D,J,Rk)(x)
∥∥2

2

2ε

)
. (4.3.25)

Because ln (·) is a non-decreasing function, ln (1 + 2α) ≥ α,∀α ∈ [0, 1]. Combined with (4.3.21) where
δ2
Υ(D,J,Rk)

= qαε, we conclude that

max

{
ln

(
l(x,y)

f(x,y)

)
, ln

(
f(x,y)

u(x,y)

)}
≤ −q

2
ln (1 + 2α) +

δ2
Υ(D,J,Rk)

2ε
≤ −q

2
α+

δ2
Υ(D,J,Rk)

2ε
= 0.

This means that l(x,y) ≤ f(x,y) ≤ u(x,y), ∀(x,y) ∈ X × Y. Hence, it remains to bound the size of
bracket [l, u] w.r.t. dG(D,Bk,J,Rk)

.

To this end, we aim to verify that d2
G(D,Bk,J,Rk)

(l, u) ≤ δ
2 . To accomplish this, we make use of

Lemma 4.3.12.

Lemma 4.3.12 (Proposition C.3 from Maugis & Michel (2011b)). Let φ (·;µ1,Σ1) and φ (·;µ2,Σ2)
be two Gaussian densities with full rank covariance. It holds that

d2 (φ (·;µ1,Σ1) , φ (·;µ2,Σ2))

= 2

{
1− 2q/2 |Σ1Σ2|−1/4

∣∣Σ−1
1 + Σ−1

2

∣∣−1/2
exp

[
−1

4
(µ1 − µ2)> (Σ1 + Σ2)−1 (µ1 − µ2)

]}
.

208



4.3. Joint rank and variable selection by a non-asymptotic model selection in the softmax-gated
block-diagonal mixture of experts regression model

Therefore, using the fact that cosh(t) = e−t+et

2 , Lemma 4.3.12 leads to, for all x ∈ X ,

d2(l(x, ·), u(x, ·)) =

∫
Y

[
l(x,y) + u(x,y)− 2

√
l(x,y)u(x,y)

]
dy

= (1 + 2α)−q + (1 + 2α)q − 2

+ d2
(
φ
(
·; υ̃(D,J,Rk)(x), (1 + α)−1 Σ̃k (Bk)

)
, φ
(
·; υ̃(D,J,Rk)(x), (1 + α) Σ̃k (Bk)

))
= 2 cosh [q ln (1 + 2α)]− 2

+ 2

[
1− 2q/2

[
(1 + α)−1 + (1 + α)

]−q/2 ∣∣∣Σ̃k (Bk)
∣∣∣−1/2 ∣∣∣Σ̃k (Bk)

∣∣∣1/2]
= 2 cosh [q ln (1 + 2α)]− 2 + 2− 2 [cosh (ln (1 + α))]−q/2

= 2g (q ln (1 + 2α)) + 2h (ln (1 + α)) ,

where g(t) = cosh(t)− 1 = e−t+et

2 − 1, and h(t) = 1− cosh(t)−q/2. The upper bounds of terms g and
h separately imply that, for all y ∈ Y,

d2(l(x, ·), u(x, ·)) ≤ 2

(
2 cosh

(
1√
6

)
α2q2 +

1

4
α2q2

)
≤ 6α2q2 =

δ2

4
,

where we choose α = 3ε
λm
, ε = δλm

6
√

6q
, ∀δ ∈ (0, 1], q ∈ N?, λm > 0, which appears in (4.3.25) and satisfies

α = δ
2
√

6q
and 0 < ε < λm

3 . Indeed, studying functions g and h yields

g′(t) = sinh(t),g′′(t) = cosh(t) ≤ cosh(c), ∀t ∈ [0, c], c ∈ R+,

h′(t) =
q

2
cosh(t)−q/2−1 sinh(t),

h′′(t) =
q

2

(
−q

2
− 1
)

cosh(t)−q/2−2 sinh2(t) +
q

2
cosh(t)−q/2

=
q

2

(
1−

(q
2

+ 1
)( sinh(t)

cosh(t)

)2
)

cosh(t)−q/2 ≤ q

2
,

where we used the fact that cosh(t) ≥ 1. Then, since g(0) = 0,g′(0) = 0, h(0) = 0, h′(0) = 0, by
applying Taylor’s Theorem, it is true that

g(t) = g(t)− g(0)− g′(0)t = R0,1(t) ≤ cosh(c)
t2

2
, ∀t ∈ [0, c],

h(t) = h(t)− h(0)− h′(0)t = R0,1(t) ≤ q

2

t2

2
≤ q2

2

t2

2
,∀t ≥ 0.

We wish to find an upper bound for t = q ln (1 + 2α), q ∈ N?, α = δ
2
√

6q
, δ ∈ (0, 1]. Since ln(·) is an

increasing function, then we have

t = q ln

(
1 +

δ√
6q

)
≤ q ln

(
1 +

1√
6q

)
≤ q 1√

6q
=

1√
6
,∀δ ∈ (0, 1],

since ln
(

1 + 1√
6q

)
≤ 1√

6q
, ∀q ∈ N?. Then, since ln (1 + 2α) ≤ 2α,∀α ≥ 0,

g (q ln (1 + 2α)) ≤ cosh

(
1√
6

)
(q ln (1 + 2α))2

2
≤ cosh

(
1√
6

)
q2

2
4α2,

h (ln (1 + α)) ≤ q2

2

(ln (1 + α))2

2
≤ q2α2

4
.

Next, note that the set of δ/2-brackets [l, u] over G(D,Bk,J,Rk) is totally defined by the parameter

spaces S̃disc
Bk

(ε) and GΥ(D,J,Rk)

(
δΥ(D,J,Rk)

)
. This leads to an upper bound of the δ/2-bracketing
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entropy of G(D,Bk,J,Rk) is evaluated from an upper bound of the two set cardinalities. Hence, given

any δ > 0, by choosing ε = δλm
6
√

6q
, α = 3ε

λm
= δ

2
√

6q
, and δ2

Υ(D,J,Rk)
= qαε = q δ

2
√

6q
δλm
6
√

6q
= δ2λm

72q , it holds

that

N[·],dG(D,Bk,J,Rk)

(
δ

2
,G(D,Bk,J,Rk)

)
≤ card

(
S̃disc

Bk
(ε)
)
× card

(
GΥ(D,J,Rk)

(
δΥ(D,J,Rk)

))

≤

(⌊
2λM
ε

⌋
q (q − 1)

2DBk

)DBk

exp
(
CΥ(D,J,Rk)

)
δΥ(D,J,Rk)

dim
(
Υ(D,J,Rk)

)
(using (4.3.19) and (4.3.22))

≤

(
2λM6

√
6q

δλm

q (q − 1)

2DBk

)DBk

6
√

2q exp
(
CΥ(D,J,Rk)

)
δ
√
λm

dim
(
Υ(D,J,Rk)

)

=

(
6
√

6λMq
2 (q − 1)

λmDBk

)DBk

6
√

2q exp
(
CΥ(D,J,Rk)

)
√
λm

dim
(
Υ(D,J,Rk)

)(
1

δ

)DBk
+dim

(
Υ(D,J,Rk)

)
.

To this end, note that dim
(
G(D,Bk,J,Rk)

)
= DBk

+ dim
(
Υ(D,J,Rk)

)
, we obtain

H[·],dG(D,Bk,J,Rk)

(
δ

2
,G(D,Bk,J,Rk)

)
= ln

(
N[·],dG(D,Bk,J,Rk)

(
δ

2
,G(D,Bk,J,Rk)

))

≤ DBk
ln

(
6
√

6λMq
2 (q − 1)

λmDBk

)
+ dim

(
Υ(D,J,Rk)

)
ln

6
√

2q exp
(
CΥ(D,J,Rk)

)
√
λm


+
(
DBk

+ dim
(
Υ(D,J,Rk)

))
ln

(
1

δ

)
= dim

(
G(D,Bk,J,Rk)

)(
CG(D,Bk,J,Rk)

+ ln

(
1

δ

))
,

where CG(D,Bk,J,Rk)
=

DBk
ln

(
6
√

6λMq2(q−1)

λmDBk

)
+dim

(
Υ(D,J,Rk)

)
ln

 6
√

2q exp

(
CΥ(D,J,Rk)

)
√
λm


dim

(
G(D,Bk,J,Rk)

) .

4.3.5 The Lasso+l2-MLE and Lasso+l2-Rank procedures

Inspired by the ideas from Khalili (2010), Stadler et al. (2010), Devijver (2015b, 2017a,b), we propose
Lasso+l2-MLE and Lasso+l2-Rank procedures for PSGaBloME regression models to deal with high-
dimensional heterogeneous data. Note that the Lasso+l2-MLE procedure takes advantage of the
MLE, whereas the Lasso+l2-Rank procedure takes advantage of the low-rank structures of regression
coefficients Qkβkd, k ∈ [K], d ∈ [D], where Qk is defined by the Cholesky decomposition of the
positive-definite matrix Σ−1

k , namely Σ−1
k = Q>k Qk.

These procedures are decomposed into three main steps. First, we construct a model collection,
with models more or less sparse, with more or less mixture components and with more or less terms
in polynomial of weights and means. Second, we refit estimations with the MLE or estimate the
parameters by MLE under rank constraint on the restricted set of relevant columns. To this end, a
model is selected thanks to the slope heuristic, which is a data-driven criterion based on non-asymptotic
theory. In particular, this leads to a classification or clustering according to the MAP principle on the
selected model.
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It is important to emphasize that since we have to deal with multivariate responses in PSGaBloME
regression models, we propose new penalty functions in (4.3.29) and the corresponding generalized
EM algorithm in Section 4.3.6.

Note that in order to apply the finite-sample oracle inequality for relevant columns selected by the
Group-Lasso estimator, we have to require further some specific conditions, e.g., good discussions in
Devijver (2017a, Section 4.2), Bunea et al. (2012, Section 2), and Lounici et al. (2011, results on the
Group-Lasso estimators).

For the sake of simplicity, both the weights of softmax gating networks and the means of Gaussian
experts are defined as the following simple polynomial functions:

WK,dW
= {0} ⊗WK−1,

WK−1 =

{
X 3 x 7→ wk (x) = ωk0 +

L∑
l=1

ω>klx
l, ∀k ∈ [K − 1] : max

l∈[L]
|ωkl| ≤ TW

}
,

ΥK,D =

X 3 x 7→

(
βk0 +

D∑
d=1

βkdx
d

)
k∈[K]

: max {|||βkd|||∞ : k ∈ [K], d ∈ ({0} ∪ [D])} ≤ TΥ

 .

However, our finite-sample oracle inequality still holds for a more general case when we utilize general
polynomials, defined in (4.3.4), for weights of the gating networks. Furthermore, we consider 1-
block-diagonal covariance matrices. This means that we do not need to select the potential hidden
graph-structured interactions between variables B.

Note that identifiability of a model is crucial for any valid statistical inference. Thus, motivated by
the first results in the identifiability of MoE models from Jiang & Tanner (1999c), Hennig (2000) as
well as recent works from Khalili (2010), Chamroukhi & Huynh (2019), Huynh & Chamroukhi (2019)
for penalized cases, instead of considering an unrestricted parameterization of the MoE network from

(4.3.2), we consider the gating parameters as follows: for all k ∈ [K − 1],ω>k =
(
ωk0,

(
ω>kl
)
l∈[L]

)
,

ω>K =
(
ωK0,

(
ω>Kl

)
l∈[L]

)
=
(

0, (0l)l∈[L]

)
, ω =

(
ω>k
)
k∈[K−1]

, gK (x;ω) = 1−
∑K−1

j=1 gj (x;ω) with

gk (x;ω) =
exp (wk(x))

1 +
∑K−1

j=1 exp (wj(x))
, wk (x) = ωk0 +

L∑
l=1

ω>klx
l. (4.3.26)

4.3.5.1 Model collection construction

We firstly fix K ∈ K, L ∈ L and D ∈ D. To detect the relevant indices and construct the set J ∈ J , by
generalizing the idea from Khalili (2010), Stadler et al. (2010), Devijver (2015b, 2017a,b), we utilize
an l2-penalized log-likelihood functions instead of the log-likelihood and combine with two l1-penalties
on the terms of polynomials from weights and the means. It is worth mentioning that in order to
deal with PSGaBloME model, we must extend the results from Khalili (2010), Stadler et al. (2010) to
multivariate response Y ∈ Rq and the results from Devijver (2015b, 2017a,b) to mixture of polynomial
experts with any arbitrarily degree of weights and mean functions. More precisely, we consider

ψ̂Lasso +l2(λ) = arg min
ψ∈Ψ(K,L,D,J,R)

{
− 1

n

n∑
i=1

ln (sψ (yi|xi)) + penλ(ψ)

}
, (4.3.27)

sψ(y|x) =

K∑
k=1

gk (x;ω)φq (y;υk,β(x),Σk) ,ψ =
(
ωk0, (ωkl)l∈[L] ,βk0, (βkd)d∈[D] ,Σk

)
k∈[K]

,

(4.3.28)

penλ(ψ) =

K∑
k=1

L∑
l=1

λ
[1]
kl ‖ωkl‖1 +

K∑
k=1

D∑
d=1

λ
[2]
kd ‖Qkβkd‖1 +

λ[3]

2

K∑
k=1

L∑
l=1

‖ωkl‖22 , Q>k Qk = Σ−1
k .

(4.3.29)
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Here, λ =

((
λ

[1]
kl

)
k∈[K],l∈[L]

,
(
λ

[2]
kd

)
k∈[K],d∈[D]

, λ
[3]

2

)
is a vector of non-negative regularization param-

eters, for any k ∈ [K], l ∈ [L], d ∈ [D], ‖ωkl‖1 =
∑p

j=1

∣∣∣[ωkl]j∣∣∣, ‖Qkβkd‖1 =
∑p

j=1

∑q
z=1

∣∣∣[Qkβkd]z,j

∣∣∣,
‖ωkl‖22 =

∑p
j=1 [ωkl]

2
j is the Euclidean norm in Rp, and the Cholesky decomposition Σ−1

k = Q>k Qk

defines Qk for all k ∈ [K]. Remark that the first two terms from (4.3.29) are the usual l1-estimator,
called the Lasso estimator, while the l2 penalty function for the gating network is added to avoid
wildly large positive and negative estimates of the regression coefficients corresponding to the mixing
proportions. This behavior can be observed in logistic/multinomial regression when the number of
potential features is large and highly correlated (e.g., Park & Hastie (2008), Bunea et al. (2008)).
However, this also affects the sparsity of the regularization model, which is confirmed from numerical
experiments from Chamroukhi & Huynh (2018), Chamroukhi & Huynh (2019).

Computing those estimators leads to construct the relevant variables set. For a fixed number of
mixture components K ∈ K, fixed degrees L ∈ L and D ∈ D of polynomials from mean and weight
functions, denote by GK,L,D a candidate of grid of regularization parameters. Fixing a regularization
parameter λ ∈ GK,L,D, we could then use a generalized EM algorithm which is originally introduced by
Dempster et al. (1977) and is extended for PSGaBloME models with univariate response, e.g., Jordan
& Jacobs (1994), Khalili (2010), Chamroukhi & Huynh (2018), Chamroukhi & Huynh (2019), Huynh
& Chamroukhi (2019), to compute the Lasso +l2 estimator, and construct the set of relevant variables
J(K,L,D,λ), saying the non-zero coefficients. We denote by J the random collection of all these sets,

J =
⋃
K∈K

⋃
L∈L

⋃
D∈D

⋃
λ∈GK,L,D

J(K,L,D,λ). (4.3.30)

4.3.5.2 Refitting

The Lasso+l2-MLE procedure

The second step consists of approximating the MLE

ŝ(K,L,D,J) = arg min
t∈S(K,L,D,J)

{
− 1

n

n∑
i=1

ln (t (yi|xi))

}
, (4.3.31)

which can be accomplished by using an EM algorithm for each model (K,L,D,J) ∈ K × L×D × J .
Remark that we estimate all parameters, to reduce bias induced by the Lasso +l2 estimator. The
reason why we need to refit the Lasso +l2 estimator can be referred to Devijver (2015b, Section 2.3).

The Lasso+l2-Rank procedure

We use the generalized EM algorithm to estimate the parameters by MLE under rank constraint on
the restricted set of relevant columns.

4.3.5.3 Model selection

The third step is devoted to model selection. We follow the framework from Devijver (2017b, Section
3) to select the refitted model rather than selecting the regularization parameter. Instead of using an
asymptotic criterion, such as BIC or AIC, we use the slope heuristic, originally introduced by Birgé &
Massart (2007) and recently reviewed by Baudry et al. (2012) and Arlot (2019), which is a data-driven
non-asymptotic criterion for selecting a model among a collection of models. For an oracle inequality
to only justify the penalty shape when using slope heuristic used here, see Section 4.3.2 for more
details.

4.3.6 Generalized EM algorithm for the Lasso +l2 estimator

The EM algorithm (Dempster et al., 1977, McLachlan & Krishnan, 1997) is most commonly known as a
technique to produce MLEs in settings where the data under study is incomplete or when optimization
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of the likelihood would be simplified if an additional set of variables were known. The iterative EM
algorithm consists of an expectation (E) step followed by a maximization (M) step. Generally, during
the E step the conditional expectation of the complete (i.e. observed and unobserved) data log-
likelihood is computed, given the data and current parameter values. In the M step the expected
log-likelihood is maximized with respect to the model parameters. The imputation of latent variables
often makes maximization of the expected log-likelihood more feasible.

The log-likelihood function of the PSGaBloME model is

L (ψ) =

n∑
i=1

ln

[
K∑
k=1

gk (xi;ω)φq (yi;υk,β(xi),Σk)

]
. (4.3.32)

It is difficult to directly obtain MLEs from this likelihood. In the EM framework, to alleviate this,
the data are augmented by imputing for each incomplete observed-data vector (xi,yi)i∈[n], the K-
dimensional binary random variable zi = (zik)k∈[K] (which is also called the latent (unobserved)
random variable or the allocation variable in the mixture model context). This latent variable has a
1-of-K representation in which a particular element zik is equal to 1 and all other elements are equal to
0. More precisely, for any i ∈ [n], k ∈ [K], zik is an indicator binary-valued variable such that zik = 1
if the ith pair (xi,yi) is generated from the kth expert component and zik = 0 otherwise. Here, for
any i ∈ [n], given the predictor xi, zi are unobserved i.i.d. random variables following a multinomial
distribution:

zi|xi ∼ Mult
(

1, (gk (xi;ω))k∈[K]

)
. (4.3.33)

The EM algorithm for solving (4.3.31) firstly requires the construction of the penalized complete-
data log-likelihood

PLc (ψ, z) = Lc (ψ, z)− penλ(ψ), (4.3.34)

penλ(ψ) =
K∑
k=1

L∑
l=1

λ
[1]
kl ‖ωkl‖1 +

K∑
k=1

D∑
d=1

λ
[2]
kd ‖Qkβkd‖1 +

λ[3]

2

K∑
k=1

L∑
l=1

‖ωkl‖22 , Q>k Qk = Σ−1
k ,

via the standard complete-data log-likelihood

Lc (ψ, z) =
n∑
i=1

K∑
k=1

zik ln [gk (xi;ω)φq (yi;υk,β(xi),Σk)] . (4.3.35)

The generalized EM, or GEM, algorithm addresses the problem of an intractable M-step. Instead
of aiming to maximize the conditional expectation of PLc (ψ) with respect to ψ, it seeks instead to
change the parameters in such a way as to increase its value. Then, the GEM algorithm for the
PSGaBloME model in its general form runs as follows. After starting with an initial solution ψ(0),
it alternates between the following steps until convergence (e.g., when there is no longer significant
change in the relative variation of the regularized log-likelihood).

4.3.6.1 E-step

The E-step computes the conditional expectation of the penalized complete-data log-likelihood (4.3.34),
given the observed data (xi,yi)i∈[n] under the current parameter vector ψ(t), t being the current iter-
ation number of the EM algorithm:

Qpen

(
ψ;ψ(t)

)
= Q

(
ψ;ψ(t)

)
− penλ(ψ), where

Q
(
ψ;ψ(t)

)
= Ez|x,y,ψ(t)

[
Lc (ψ, z) | (xi,yi)i∈[n] ,ψ

(t)
]

=

n∑
i=1

K∑
k=1

Ez|x,y,ψ(t)

[
zik|xi,yi,ψ(t)

]
ln [gk (xi;ω)φq (yi;υk,β(xi),Σk)]

=
n∑
i=1

K∑
k=1

τ
(t)
ik ln [gk (xi;ω)φq (yi;υk,β(xi),Σk)] . (4.3.36)
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Here,

τ
(t)
ik = Ez|x,y,ψ(t)

[
zik|xi,yi,ψ(t)

]
= P

(
zik = 1|xi,yi,ψ(t)

)
=

P
(
zik = 1,xi,yi,ψ

(t)
)

P
(
xi,yi,ψ(t)

)
=

P
(
zik = 1|xi,ψ(t)

)
P
(
yi|zik = 1,xi,ψ

(t)
)∑K

l=1 P
(
zil = 1,xi,yi,ψ(t)

) P (xi)︸ ︷︷ ︸
=1

(since xi are deterministic predictors)

=
gk
(
xi;ω

(t)
)
φq

(
yi;υk,β(t)(xi),Σ

(t)
k

)
∑K

l=1 gl
(
xi;ω(t)

)
φq

(
yi;υl,β(t)(xi),Σ

(t)
l

) (4.3.37)

is the posterior probability that the data pair (xi,yi) belongs to the kth expert. This step therefore

only requires the computation of the conditional component probabilities τ
(t)
ik (i ∈ [n]) for each of the

K experts.

4.3.6.2 Generalized M-step

The generalized M-step aims to update the parameters via improving the value of Qpen

(
ψ;ψ(t)

)
w.r.t. ψ, which can be written as

Qpen

(
ψ;ψ(t)

)
= Qpen

(
ω;ψ(t)

)
+Qpen

(
β,Σ;ψ(t)

)
, where (4.3.38)

Qpen

(
ω;ψ(t)

)
=

n∑
i=1

K∑
k=1

τ
(t)
ik ln [gk (xi;ω)]−

K∑
k=1

L∑
l=1

λ
[1]
kl ‖ωkl‖1 −

λ[3]

2

K∑
k=1

L∑
l=1

‖ωkl‖22 ,

Qpen

(
β,Σ;ψ(t)

)
=

n∑
i=1

K∑
k=1

τ
(t)
ik ln [φq (yi;υk,β(xi),Σk)]−

K∑
k=1

D∑
d=1

λ
[2]
kd ‖Qkβkd‖1 ,Q

>
k Qk = Σ−1

k .

Note that in order to maximize Qpen

(
ψ;ψ(t)

)
with respect to model parameters ψ, in (4.3.38), we

utilize the standard fact that Qpen

(
ψ;ψ(t)

)
can be decomposed in terms of independent expressions for

gate and expert models. In this way, the M-step can be performed independently for gate and expert
parameters (Moerland, 1997, Peralta & Soto, 2014). In our problem, each of these optimizations has
an additional term given by the respective regularization term which is similar to a regularized logistic
regression in Lee et al. (2006).

The parameter ω are therefore separated updated by maximizing the function

Qpen

(
ω;ψ(t)

)
=

n∑
i=1

K∑
k=1

τ
(t)
ik wk (xi)−

n∑
i=1

ln

[
1 +

K−1∑
k=1

exp (wk (xi))

]
−

K∑
k=1

L∑
l=1

λ
[1]
kl ‖ωkl‖1

− λ[3]

2

K∑
k=1

L∑
l=1

‖ωkl‖22 , wk(xi) = ωk0 +

L∑
l=1

ω>klx
l
i, ∀k ∈ [K − 1]. (4.3.39)

Motivated by the recent novel works from Chamroukhi & Huynh (2019), Huynh & Chamroukhi (2019)
for SGaME model with linear mean Gaussian experts and scalar responses, we propose and compare
three approaches for maximizing (4.3.39) based on a majorization–minimization (MM) algorithm, a
coordinate ascent algorithm and proximal Newton-type method. These approaches have some advan-
tages since they do not use any approximate for the penalty function, and have a separate structure
which avoid matrix inversion. Note that we extend the work from Chamroukhi & Huynh (2019), Huynh
& Chamroukhi (2019) to devise a novel MM algorithm for the PSGaBloME model with polynomial
mean of Gaussian functions and multivariate responses.

The task of determining the maximizers of (4.3.39) may be complicated by various factors that
fall outside the scope of the traditional optimization. Such factors include the lack of differentiability
of the objective functions, e.g., Qpen

(
ω;ψ(t)

)
, or difficulty in obtaining closed-form solutions to

the first-order condition (FOC) equation ∇ωQpen

(
ω;ψ(t)

)
= 0, where ∇ω is the gradient operator
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with respect to ω. To overcome such difficulties, De Leeuw (1977) presented an MM algorithm
for multidimensional scaling contemporary with the classic Dempster et al. (1977) paper on EM
algorithms, then Hunter & Lange (2000) proposed the MM algorithm framework to solve the quantile
regression via iterative minimization of surrogate functions. MM algorithms are particularly attractive
due to the monotonicity and thus stability of their objective sequences as well as global convergence of
their limits, in general settings. A comprehensive treatment of the theory and implementation of MM
algorithms for various problems can be found Hunter & Lange (2004), Lange (2016), Nguyen (2017).

MM algorithm for updating the gating network

Definition 4.3.13 (Philosophy of the MM Algorithm, e.g., Hunter & Lange (2004), Nguyen (2017)).
Let θs denote a fixed value of the parameter θ, and let G

(
θ; θ(r)

)
represent a real-value function of θ

whose form depends on θ(r). The function G
(
θ; θ(r)

)
is said to minorize F (θ) at the point θ(r) if and

only if for all θ, it holds that

F (θ) ≥ G
(
θ; θ(r)

)
, F

(
θ(r)
)
≥ G

(
θ; θ(r)

)
. (4.3.40)

In other words, the surface θ 7→ G
(
θ; θ(r)

)
lies below the surface F (θ) and is tangent to it at the point

θ = θ(r). Suppose we wish to obtain

θ̂ = arg max
θ∈Θ

F (θ), (4.3.41)

for some difficulty to manipulate objective function F , where Θ is a subset of some Euclidean space.
In the maximization step of the MM algorithm, we maximize the surrogate function G

(
θ; θ(r)

)
, rather

than the function F (θ) itself. Let θ(0) be some initial value and θ(r) be the rth iterate. We say that
θ(r+1) is the (r + 1)th iterate of an MM algorithm if it satisfies

θ(r+1) = arg max
θ∈Θ

G
(
θ; θ(r)

)
. (4.3.42)

By Definition 4.3.13, we can deduce the monotonicity property of all MM algorithms. Indeed, we
can show that the MM algorithm forces F (θ) uphill, because (4.3.42) and (4.3.40) imply that

F (θ(r)) = G
(
θ(r); θ(r)

)
≤ G

(
θ(r+1); θ(r)

)
≤ F (θ(r)). (4.3.43)

If G
(
θ; θ(r)

)
is well constructed, then we can avoid matrix inversion when maximizing it.

Next, we devise the surrogate function for Qpen

(
ω;ψ(t)

)
via Lemma 4.3.14.

Lemma 4.3.14. The objective function Qpen

(
ω;ψ(t)

)
is minorized at ω(r) by

G
(
ω;ω(r),ψ(t)

)
=

n∑
i=1

K∑
k=1

τ
(t)
ik wk (xi) +H

(
ω;ω(r)

)
−

K∑
k=1

L∑
l=1

λ
[1]
kl ‖ωkl‖1

− λ[3]

2

K∑
k=1

L∑
l=1

‖ωkl‖22 , wk(xi) = ωk0 +

L∑
l=1

ω>klx
l
i, ∀k ∈ [K − 1], (4.3.44)

where H
(
ω;ω(r)

)
minorizes −

∑n
i=1 ln

[
1 +

∑K−1
k=1 exp (wk (xi))

]
and is defined as follows:

n∑
i=1

−K−1∑
k=1

gk
(
xi;ω

(r)
)∑L

l=0

∑p
j=1 exp

[
(Lp+ 1)

(
ωklj − ω

(r)
klj

)
xlij

]
Lp+ 1

− lnC
(r)
i +

C
(r)
i − 1

C
(r)
i

 .
Proof of Lemma 4.3.14. Firstly, we claim that if ω > 0, then the function− ln (1 + ω) can be minorized
by

− ln
(

1 + ω(r)
)
− ω − ω(r)

1 + ω(r)
, at ω(r) > 0. (4.3.45)
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Note that (4.3.45) is proved if, given any ω(r) > 0, we have

− ln (1 + ω) ≥ − ln
(

1 + ω(r)
)
− ω − ω(r)

1 + ω(r)
,∀ω > 0, or equivalently

ln

(
1 + ω

1 + ω(r)

)
≤ ω − ω(r)

1 + ω(r)
, ∀ω > 0. (4.3.46)

Let x = 1+ω
1+ω(r) , ω > 0. Then, (4.3.46) is obtained from the following standard logarithm inequality

ln(x) ≤ x− 1, ∀x > 0.

Indeed, if x ≥ 1, let f(x) = ln(x) − x + 1. Thus, f ′(x) = 1−x
x . So f is monotonically decreasing

and f(x) ≤ f(1) = 0,∀x ≥ 1. This means that ln(x) ≤ x − 1, ∀x ≥ 1. Now, if 0 < x < 1, we
have − ln(x) =

∫ 1
x
dt
t . Since 1 ≤ 1

t ≤
1
x , ∀x ≤ t ≤ 1, we have,

∫ 1
x dt ≤

∫ 1
x
dt
t ≤

∫ 1
x
dt
x or equivalently,

1− x ≤ − ln(x) ≤ 1−x
x . So,

x− 1

x
≤ ln(x) ≤ x− 1,∀0 < x < 1.

One of the virtues of applying inequality (4.3.45) in defining a surrogate function is that it elimi-

nates the log terms w.r.t. model parameters. Then, (4.3.45) implies that − ln
[
1 +

∑K−1
k=1 exp (wk (xi))

]
is minorized by

− ln

[
1 +

K−1∑
k=1

exp
(
w

(r)
k (xi)

)]
−

∑K−1
k=1

[
exp (wk (xi))− exp

(
w

(r)
k (xi)

)]
1 +

∑K−1
k=1 exp

(
w

(r)
k (xi)

)
= − lnC

(r)
i −

K−1∑
k=1

exp
(
w

(r)
k (xi)

)
exp

(
wk(xi)− w

(r)
k (xi)

)
C

(r)
i

+
C

(r)
i − 1

C
(r)
i

.

Here, C
(r)
i = 1 +

∑K−1
k=1 exp

(
w

(r)
k (xi)

)
. Now we wish to apply the weighted arithmetic-geometric

mean inequality to the exponential functions exp
(
wk(xi)− w

(r)
k (xi)

)
to separate parameters. This

feature is critically important in high-dimensional problems because it reduces optimization over xi
in potential large p-dimension to a sequence of one-dimensional optimizations over each component
xij , i ∈ [n], j ∈ [p].

Recall the weighted arithmetic-geometric mean inequality. Consider nonnegative numbers x1, . . . , xp
and positive weights α1, . . . , αp with

∑p
j=1 αj = 1. Then, the weighted arithmetic-geometric mean

inequality reads

p∏
j=1

x
αj
j ≤

p∑
j=1

αjxj , or equivalently with yj = lnxj , exp

 p∑
j=1

αjyj

 ≤ p∑
j=1

αj exp (yj) (4.3.47)

with equality if and only if all xj are equal.

The weighted arithmetic-geometric mean inequality implies that

exp
(
wk(xi)− w

(r)
k (xi)

)
= exp

(
ωk0 − ω

(r)
k0 +

L∑
l=1

(
ω>kl − ω

(r)>
kl

)
xli

)

= exp

ωk0 − ω
(r)
k0 +

L∑
l=1

p∑
j=1

(
ωklj − ω

(r)
klj

)
xlij


≤ exp (Lp+ 1)

Lp+ 1

L∑
l=0

p∑
j=1

exp
[(
ωklj − ω

(r)
klj

)
xlij

]
, (4.3.48)
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where ω
(r)
k0j = ω

(r)
k0 , ωk0j = ωk0, x

0
ij = 1,∀j ∈ [p] and the equality holds when

(
ωk0, (ωkl)l∈[L]

)
=(

ω
(r)
k0 ,
(
ω

(r)
kl

)
l∈[L]

)
.

Therefore, −
∑n

i=1 ln
[
1 +

∑K−1
k=1 exp (wk (xi))

]
is minorized by H

(
ω;ω(r)

)
, defined as follows:

n∑
i=1

−K−1∑
k=1

exp
(
w

(r)
k (xi)

)∑L
l=0

∑p
j=1 exp

[
(Lp+ 1)

(
ωklj − ω

(r)
klj

)
xlij

]
C

(r)
i (Lp+ 1)

− lnC
(r)
i +

C
(r)
i − 1

C
(r)
i


=

n∑
i=1

−K−1∑
k=1

gk
(
xi;ω

(r)
)∑L

l=0

∑p
j=1 exp

[
(Lp+ 1)

(
ωklj − ω

(r)
klj

)
xlij

]
Lp+ 1

− lnC
(r)
i +

C
(r)
i − 1

C
(r)
i

 .

Lemma 4.3.14 allows us to maximize Qpen

(
ω;ψ(t)

)
via its surrogate function G

(
ω;ω(r),ψ(t)

)
,

which benefits the elimination the log terms w.r.t. model parameters and avoiding matrix inversion in
high-dimensional problems via separating of parameters. Next, we aim to decompose G

(
ω;ω(r),ψ(t)

)
according to parameters as follows:

G
(
ω;ω(r),ψ(t)

)
= G

(
ωk0;ω(r),ψ(t)

)
+

K∑
k=1

L∑
l=1

p∑
j=1

G
(
ωklj ;ω

(r),ψ(t)
)

+ I(ω(r)), (4.3.49)

where I(ω(r)) is only function of ω(r). Here, for all k ∈ [K], j ∈ [p], l ∈ {0} ∪ [L], we have

G
(
ωk0;ω(r),ψ(t)

)
=

n∑
i=1

τ
(t)
ik wk0 −

n∑
i=1

gk
(
xi;ω

(r)
)

exp
[
(Lp+ 1)

(
ωk0 − ω

(r)
k0

)]
Lp+ 1

, (4.3.50)

and

G
(
ωklj ;ω

(r),ψ(t)
)

=
n∑
i=1

τ
(t)
ik x

l
ijwklj −

n∑
i=1

gk
(
xi;ω

(r)
)

exp
[
(Lp+ 1)xlij

(
ωklj − ω

(r)
klj

)]
Lp+ 1

− λ[1]
kl |ωklj | −

λ[3]

2
ω2
klj . (4.3.51)

Then, by maximizing (4.3.50), we can update the ωk0 via solving the first-order condition∇ωk0
G
(
ωk0;ω(r),ψ(t)

)
=

0, where

∇ωk0
G
(
ωk0;ω(r),ψ(t)

)
=

n∑
i=1

τ
(t)
ik − (Lp+ 1) exp

[
(Lp+ 1)

(
ωk0 − ω

(r)
k0

)] ∑n
i=1 gk

(
xi;ω

(r)
)

Lp+ 1
.

Then, we obtain

ω
(r+1)
k0 = ω

(r)
k0 +

1

Lp+ 1
ln

[ ∑n
i=1 τ

(t)
ik∑n

i=1 gk
(
xi;ω(r)

)] . (4.3.52)

Remark that G
(
ωklj ;ω

(r),ψ(t)
)

is a concave and univariate function w.r.t. wklj . Therefore, we can
maximize it globally w.r.t. each coefficient wklj separately and then avoid matrix inversion. Indeed,
note that

G
(
ωklj ;ω

(r),ψ(t)
)

= U
(
ωklj ;ω

(r),ψ(t)
)
− λ[1]

kl |ωklj | =


U
(
ωklj ;ω

(r),ψ(t)
)
− λ[1]

kl ωklj , if ωklj > 0,

U
(
0;ω(r),ψ(t)

)
, if ωklj = 0,

U
(
ωklj ;ω

(r),ψ(t)
)

+ λ
[1]
kl ωklj , if ωklj < 0,
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where

U
(
ωklj ;ω

(r),ψ(t)
)

=

n∑
i=1

τ
(t)
ik x

l
ijwklj −

n∑
i=1

gk
(
xi;ω

(r)
)

exp
[
(Lp+ 1)xlij

(
ωklj − ω

(r)
klj

)]
Lp+ 1

− λ[3]

2
ω2
klj .

Remark that G
(
·;ω(r),ψ(t)

)
is a smooth concave function on both R+ and R−. We therefore can use

one-dimensional generalized Newton-Raphson (GNR) algorithm to find the global maximizers of these
functions and compare with G

(
0;ω(r),ψ(t)

)
so that we have

ω
(r+1)
klj = arg max

ωklj

G
(
ωklj ;ω

(r),ψ(t)
)
. (4.3.53)

After starting from an initial value s = 0, ω
(0)
klj = ω

(r)
klj , at each iteration s of the GNR, according to

the following updating rule:

ω
(s+1)
klj = ω

(s)
klj −

(
∂2G

(
ωklj ;ω

(r),ψ(t)
)

∂2ωklj

)−1 ∣∣∣∣∣
ω

(s)
klj

∂G
(
ωklj ;ω

(r),ψ(t)
)

∂ωklj

∣∣∣∣∣
ω

(s)
klj

. (4.3.54)

Here, the scalar gradient and Hessian are respectively given by:

∂G
(
ωklj ;ω

(r),ψ(t)
)

∂ωklj
=


∂U(ωklj ;ω(r),ψ(t))

∂ωklj
− λ[1]

kl , if ωklj > 0,

∂U(ωklj ;ω(r),ψ(t))
∂ωklj

+ λ
[1]
kl , if ωklj < 0,

∂2G
(
ωklj ;ω

(r),ψ(t)
)

∂2ωklj
=
∂2U

(
ωklj ;ω

(r),ψ(t)
)

∂2ωklj
, if ωklj 6= 0. (4.3.55)

Note that we have

∂U
(
ωklj ;ω

(r),ψ(t)
)

∂ωklj
=

n∑
i=1

τ
(t)
ik x

l
ij −

n∑
i=1

xlijgk

(
xi;ω

(r)
)

exp
[
(Lp+ 1)xlij

(
ωklj − ω

(r)
klj

)]
− λ[3]ωklj ,

∂2U
(
ωklj ;ω

(r),ψ(t)
)

∂2ωklj
= − (Lp+ 1)

n∑
i=1

xl2ijgk

(
xi;ω

(r)
)

exp
[
(Lp+ 1)xlij

(
ωklj − ω

(r)
klj

)]
− λ[3].

Remark 4.3.15. Although one of the virtues of the MM algorithm in high-dimensional problems is
that it allows us to update the parameters separately and then avoids matrix inversion, we have to
deal with some drawbacks.

Coordinate ascent algorithm for updating the gating network

Motivated by Tseng (1988, 2001), we aim to use the coordinate ascent algorithm to update the

parameters ω =
(
ωk0, (ωkl)l∈[L]

)
k∈[K]

of the gating networks.

We first use a univariate Newton-Raphson algorithm to update ωk0. By starting with initial

value r = 0, ω
(0)
k0 = ω

(t)
k0 , we can use one-dimensional generalized Newton-Raphson (GNR) algorithm

to approximate the global maximizers of a univariate concave function Qpen

(
ωk0;ψ(t)

)
in order to

update ω
(r)
k0 by

ω
(r+1)
k0 = arg max

ωk0

Qpen

(
ωk0;ψ(t)

)
, where

Qpen

(
ωk0;ψ(t)

)
=

n∑
i=1

τ
(t)
ik

(
ωk0 +

L∑
l=1

ω>klx
l
i

)
−

n∑
i=1

ln

[
1 +

K−1∑
k=1

exp

(
ωk0 +

L∑
l=1

ω>klx
l
i

)]
. (4.3.56)
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Here, r denotes the r loop of the coordinate ascent algorithm. After starting from an initial value

s = 0, ω
(0)
k0 = ω

(r)
k0 , at each iteration s of the GNR, according to the following updating rule:

ω
(s+1)
k0 = ω

(s)
k0 −

(
∂2Qpen

(
ωk0;ψ(t)

)
∂2ωk0

)−1 ∣∣∣∣∣
ω

(s)
k0

∂Qpen

(
ωk0;ψ(t)

)
∂ωk0

∣∣∣∣∣
ω

(s)
k0

. (4.3.57)

Here s denotes the inner GNR iteration number, the scalar gradient and Hessian are respectively given
by

∂Qpen

(
ωk0;ψ(t)

)
∂ωk0

=
n∑
i=1

τ
(t)
ik −

n∑
i=1

exp
(
ωk0 +

∑L
l=1ω

>
klx

l
i

)
Ci (ωk0)

,

∂2Qpen

(
ωk0;ψ(t)

)
∂2ωk0

= −
n∑
i=1

exp
(
ωk0 +

∑L
l=1ω

>
klx

l
i

) [
Ci (ωk0)− exp

(
ωk0 +

∑L
l=1ω

>
klx

l
i

)]
Ci (ωk0)2 ,

Ci (ωk0) = 1 +

K−1∑
u=1

exp

(
ωu0 +

L∑
l=1

ω>ulx
l
i

)
.

With the same idea, each coefficient ωkl, l 6= 0, is updated at each time in a cyclic way, while fixing
the other parameters to their previous values. With this setting, we have

Qpen

(
ωkl;ψ

(t)
)

= U
(
ωklj ;ψ

(t)
)
− λ[1]

kl |ωklj | =
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kl ωklj , if ωklj < 0,
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Note that U
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(t)
)
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[1]
kl ωklj and U

(
ωklj ;ψ

(t)
)

+ λ
[1]
kl ωklj are both smooth concave functions

on both R+ and R−. We therefore can use one-dimensional generalized Newton-Raphson (GNR)

algorithm with initial value ω
(0)
klj = ω

(t)
klj to find the global maximizers of these functions and compare

with G
(
0;ψ(t)

)
in order to update ω

(r)
klj by

ω
(r+1)
klj = arg max

ωklj

G
(
ωklj ;ψ

(t)
)
. (4.3.58)

Here, r denotes the r loop of the coordinate ascent algorithm. After starting from an initial value

s = 0, ω
(0)
klj = ω

(r)
klj , at each iteration s of the GNR, according to the following updating rule:

ω
(s+1)
klj = ω

(s)
klj −

(
∂2G

(
ωklj ;ψ

(t)
)

∂2ωklj
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)

∂ωklj
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ω

(s)
klj

, (4.3.59)

Here s denotes the inner GNR iteration number, the scalar gradient and Hessian are respectively given
by:

∂G
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)
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=
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(
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(t)
)

∂2ωklj
, if ωklj 6= 0. (4.3.60)
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Note that we have
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l
ij −

n∑
i=1

xlij exp
(
ωk0 +

∑L
l=1ω

>
klx

l
i

)
Ci (ωklj)

− λ[3]ωklj ,

∂2U
(
ωklj ;ψ

(t)
)

∂2ωklj
= −

n∑
i=1

xl2ij exp
(
ωk0 +

∑L
l=1ω

>
klx

l
i

) [
Ci (ωklj)− exp

(
ωk0 +

∑L
l=1ω

>
klx

l
i

)]
Ci (ωklj)

2 − λ[3],

Ci (ωklj) = 1 +
K−1∑
u=1

exp

(
ωu0 +

L∑
l=1

ω>ulx
l
i

)
.

For other parameters, we fix their previous values ω
(r+1)
abc = ω

(r)
abc, a ∈ [K]\{k} , b ∈ [L]\{l} , c ∈ [p]\{j}.

Remark 4.3.16. The main virtue of the coordinate ascent algorithm in high-dimensional problems is
that it allows us to update the parameters separately and then avoids matrix inversion. Furthermore,
it holds that the parameter ωklj may change during the algorithm even after they shrink to zero at
an earlier stage of the algorithm, which overcome this weakness of the MM algorithm.

Proximal Newton-type procedure for updating the gating network

Definition 4.3.17 (Proximal Newton-type methods, e.g., Lee et al. (2014)). Assume that we want
to solve an optimization problem given by

arg max
x∈Rn

f(x) = g(x) + h(x), (4.3.61)

with a composite function f where g is a concave function, continuously differentiable loss function,
and h is a concave but not necessarily differentiable penalty function or regularizer (e.g., Lasso, elastic
net, . . .). Proximal Newton-type methods approximate only the smooth part g with a local quadratic
function of the form:

f̂s(x) = g(xs) +∇g (xs)
> (x− xs) +

1

2
(x− xs)>Hs (x− xs) + h(x), (4.3.62)

where ∇g (xs) is the gradient vector of g at xs and Hs is an approximation to the Hessian matrix
∇2g(xs). If we choose Hs = ∇2

g (xs), we obtain the proximal Newton method. In this method, one uses

an iterative algorithm with initial value x0 and in which at step s minimizes the proximal function f̂s(x)
instead of f and searches for the next value xs+1 based on the solution of (4.3.62) that will improve
the value of f , i.e., f (xs+1) < f (xs) by using a back tracking line research until the algorithm
convergences. A generic proximal Newton-type method can be found in Algorithm 2.

Algorithm 2 A generic proximal Newton-type procedure

1: Starting point x0 ∈ dom f .
2: while Stopping condition is satisfied do
3: Choose Hs, a positive definite approximation to the Hessian.
4: Solve the subproblem for a search direction:

∇xs ← arg min
d

∇g (xs)
> d+

1

2
dHsd+ h (xs + d) .

5: Select ts with a backtracking line search.
6: Update: xs+1 ← xs + ts∇xs.
7: end while

In this part, we propose two approaches for updating the gating network parameters ω via maxi-
mizing Qpen

(
ω;ψ(t)

)
based on the proximal Newton and the proximal Newton-type methods defined

in Definition 4.3.17.
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Firstly, the proximal Newton method is used to approximate only the smooth part of (4.3.39)
given by

I
(
ω;ψ(t)

)
=

n∑
i=1

K∑
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τ
(t)
ik wk(xi)−
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]
,
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L∑
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l
i,∀k ∈ [K − 1]. (4.3.63)

Then, its Taylor expansion at current s iteration is provided by
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, (4.3.64)

where∇ωI
(
ω(s);ψ(t)

)
and∇2

ωI
(
ω(s);ψ(t)

)
are the gradient vector and the Hessian matrix of I

(
ω;ψ(t)

)
at ω(s), respectively. Then, let us define the proximal function as follows:
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Next, one uses an iterative algorithm with initial value ω(0) and in which at step s minimizes the
proximal function Q̃

(
ω;ψ(t)

)
instead of Q

(
ω;ψ(t)

)
and searches for the next value ω(s+1) based on

the solution of (4.3.65) that will improve the value of Q, i.e., Q
(
ω(s);ψ(t)

)
< Q

(
ω(s+1);ψ(t)

)
by

using a back tracking line research until the algorithm convergences. Note that we can effectively solve
the local quadratic form from (4.3.65) via several good algorithms such as coordinate ascent.

Updating the Gaussian expert networks

For the penalized MoE models with univariate response variables, performing the update for the
Gaussian experts network parameters corresponds to solving K separated weighted Lasso problems
(see Chamroukhi & Huynh (2019, Section 3.3.3) for more details). However, for multivariate case, we
propose a new method to deal with the following complex objective function
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. (4.3.66)

Since (4.3.66), optimizing Qpen

(
β,Σ;ψ(t)

)
w.r.t. (β,Σ) is equivalent to maximize Qpen

(
Γ,Q;ψ(t)

)
w.r.t. (Γ,Q) = (Γkd,Qk)k∈[K],d∈[D]∪{0}.
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Motivated by Tseng (1988, 2001), we aim to use the block coordinate ascent algorithm to up-
date the parameters (Γ,Q) = (Γk,Qk)k∈[K] = (Γkd,Qk)k∈[K],d∈[D]∪{0} of the expert networks. A

simple calculation shows that Qpen

(
Γ,Q;ψ(t)

)
can be decoupled for each components into k distinct

optimization problem of the form
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Note that Qk is a diagonal matrix of size q × q, defined by the Cholesky decomposition of a diagonal
matrix Σ−1

k .
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5.1 Approximation capabilities of the mixtures of experts models

Using recent results mixture model approximation results Nguyen et al. (2020b) and Nguyen et al.
(2020d), and the indicator approximation theorem of Jiang & Tanner (1999b) (cf. Section 2.3.2),
in Section 2.3, we have proved two approximation theorems (Theorems 2.3.1 and 2.3.2) regarding
the class of softmax gated MoE models with experts arising from arbitrary location-scale families of
conditional density functions. Via an equivalence result (Lemma 2.3.3), the results of Theorems 2.3.1
and 2.3.2 also extend to the setting of Gaussian gated MoE models (Corollary 2.3.4), which can be
seen as a generalization of the softmax gated MoE models.

Although we explicitly make the assumption that X = [0, 1]d, for the sake of mathematical argu-
ment (so that we can make direct use of Lemma 2.3.6), a simple shift-and-scale argument can be used
to generalize our result to cases where X is any generic compact domain. The compactness assumption
regarding the input domain is common in the MoE and mixture of regression models literature, as
per the works of Jiang & Tanner (1999b), Norets et al. (2010), Montuelle et al. (2014), Pelenis (2014),
Devijver (2015a), Devijver (2015b), and Nguyen et al. (2020c).

Open Problem 5.1.1. The assumption permits the application of the result to the settings where
the inputs X is assumed to be non-random design vectors that take value on some compact set X.
This is often the case when there is only a finite number of possible design vector elements for which
X can take. Otherwise, the assumption also permits the scenario where X is some random element
with compactly supported distribution, such as uniformly distributed, or beta distributed inputs. Un-
fortunately, the case of random X over an unbounded domain (e.g., if X has multivariate Gaussian
distribution) is not covered under our framework. An extension to such cases would require a more
general version of Lemma 2.3.6, which we believe is a nontrivial direction for future work.

Like the input, we also assume that the output domain is restricted to a compact set Y. However,
the output domain of the approximating class of MoE models is unrestricted to Y and thus the
functions (i.e., we allow ψ to be a PDF over Rq). The restrictions placed on Y is also common in
the mixture approximation literature, as per the works of Zeevi & Meir (1997), Li & Barron (1999),
and Rakhlin et al. (2005), and is also often made in the context of nonparametric regression (see, e.g.,
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Györfi et al., 2002 and Cucker & Zhou, 2007). Here, our use of the compactness of Y is to bound the
integral of vn, in (2.3.10).

Open Problem 5.1.2. A more nuanced approach, such as via the use of a generalized Lebesgue
spaces (see e.g., Castillo & Rafeiro, 2016 and Cruz-Uribe & Fiorenza, 2013), may lead to result for
unbounded Y. This is another exciting future direction of our research program.

A trivial modification to the proof of Lemma 2.3.8 allows us to replace the assumption that
f is a PDF with a sub-PDF assumption (i.e.,

∫
Y fdλ ≤ 1), instead. This in turn permits us to

replace the assumption that f (·|x) is a conditional PDF in Theorems 2.3.1 and 2.3.2 with sub-PDF
assumptions as well (i.e., for each x ∈ X,

∫
Y f (y|x) dλ (y) ≤ 1). Thus, in this modified form, we

have a useful interpretation for situations when the input Y is unbounded. That is, when Y is
unbounded, we can say that the conditional PDF f can be arbitrarily well approximated in Lp norm

by a sequence
{
mψ
K

}
K∈N?

of either softmax or Gaussian gated MoEs over any compact subdomain Y of

the unbounded domain of Y . Thus, although we cannot provide guarantees of the entire domain of Y ,
we are able to guarantee arbitrary approximate fidelity over any arbitrarily large compact subdomain.
This is a useful result in practice since one is often not interested in the entire domain of Y , but only
on some subdomain where the probability of Y is concentrated. This version of the result resembles
traditional denseness results in approximation theory, such as those of Cheney & Light (2000, Ch.
20).

Finally, our results can be directly applied to provide approximation guarantees for a large num-
ber of currently used models in applied statistics and machine learning research. Particularly, our
approximation guarantees are applicable to the recent MoE models of Ingrassia et al. (2012), Cham-
roukhi et al. (2013b), Ingrassia et al. (2014), Deleforge et al. (2015c,b), Chamroukhi (2017, 2016a),
Kalliovirta et al. (2016), and Perthame et al. (2018), among many others. Here, we may guarantee
that the underlying data generating processes, if satisfying our assumptions, can be adequately well
approximated by sufficiently complex forms of the models considered in each of the aforementioned
work. Furthermore, establishing the convergence rates of the MLE for full Gaussian MoE, including
SGaME, GLoME, and BLoMPE models, is an interesting and important question.

Open Problem 5.1.3. Exploiting the connection between the algebraic independence and a certain
class of partial differential equations (Nguyen, 2013, Ho & Nguyen, 2016, 2019) maybe allows us
to extend the convergence rates and minimax lower bounds for parameter estimation in the work of
Ho et al. (2019). Note that such extension from an over-specified Gaussian mixtures of experts with
covariate-free gating networks (or often called mixture of Gaussian regression models) to full Gaussian
MoE is not trivial. This future work requires an appropriate generalization of the transportation
distance to capture the variation of parameters from the gating networks.

5.2 Universal approximation for mixture of experts models in ap-
proximate Bayesian computation

In Section 2.4, the issue of choosing summary statistics was revisited. We built on the seminal work
of Fearnhead & Prangle (2012) and their semi-automatic ABC by replacing the approximate posterior
expectations with functional statistics; namely approximations of the posterior distributions. These
surrogate posterior distributions were obtained in a preliminary learning step, based on an inverse
regression principle. This is original with respect to most standard regression procedures, which
usually provide only point-wise predictions, i.e. first order moments. So doing, we not only could
compute approximate posterior moments of higher orders as summary statistics but, more generally,
approximate full posterior distributions. More specifically, this learning step was based on the so-called
GLLiM model, which provides surrogate posteriors in the parametric family of Gaussian mixtures.
Preliminary experiments showed that although the posterior moments provided by GLLiM were not
always leading to better results than that provided by semi-automatic ABC, the use of the full surrogate
posteriors was always an improvement.
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To handle distributions as summary statistics, our procedure required appropriate distances. We
investigated an L2 and a Wassertein-based distance (MW2), which are both tractable for mixtures of
Gaussians. No significant differences between the two distances have been observed in our experiments
but the MW2 distance appeared to be more robust in the sense of being less sensitive to small variations
in the compared distributions.

Open Problem 5.2.1. Among aspects that have not been thoroughly investigated in this work, we
could refine the way to choose this tolerance level ε or combine GLLiM with more sophisticated ABC
schemes than the simple rejection scheme. In particular, using other ways to choose ε is needed to
investigate more in future research, e.g., cross-validation, hold-out.

In this current work, our proposal applies to the ABC settings, where, for a given parameter value,
only one observation (that is possibly multi-dimensional) is available at a time. Such settings are of
practical importance as they are typical of inverse problems, where many observations are measured
but for different parameter values, due to experimental limitations or costs. In addition, even when
more than one observation is available, it is common to use summary statistics. For instance, in their
g-and-k distribution experiment, Fearnhead & Prangle (2012) consider, for a true given parameter, a
sample of 104 observations, but reduce it to 100 features to apply the regression step of their semi-
automatic procedure. Similarly, Drovandi & Pettitt (2011) reduce their sample of 104 observations to
a vector of 7 octiles. So doing their analyses imply the one observation scenario, that we consider.

In contrast, methods using discrepancies (Bernton et al., 2019, Jiang et al., 2018) can handle
samples directly and bypass the need for summary statistics. However, they require a relatively large
number of generally i.i.d. observations for both the true and simulated parameters.

Open Problem 5.2.2. The current implementation of GLLiM is not adapted to the multiple observa-
tion case but a straightforward modification of the underlying EM algorithm would allow to extend this
work to the case of i.i.d. samples. For computational reasons, as for the semi-automatic procedure,
the preliminary regression step in standard GLLiM is not adapted to the multiple observation case.
Therefore, an important future direction is to extend this work to the case of i.i.d. samples.

This requires the modification of the standard GLLiM procedure to maintain its approximation
quality and computational efficiency. With this in mind, an important feature of GLLiM, not illus-
trated in this paper, is to allow the application of ABC procedures in high dimensional settings and to
address the curse of dimensionality that is usually encountered in standard summary statistics based
ABC. The rest of our proposal would then be easily adapted.

Another interesting perspective would be to investigate the use of GLLiM in the context of synthetic
likelihood (SL) approaches. When used in a Bayesian framework, SL techniques can be viewed as
alternatives to ABC in which the intractable likelihood is replaced by an estimator of the likelihood
(Price et al., 2018). Since the seminal work of Wood (2010), several estimators have been proposed
(e.g. Ong et al., 2018, An et al., 2019, 2020, Frazier & Drovandi, 2021), often derived from auxiliary
models (Drovandi et al., 2015).

Open Problem 5.2.3. In the ABC framework of Section 2.4, GLLiM was used to provide approximate
posteriors but these posteriors are themselves coming from approximate likelihoods that could lead to
new SL procedures. Investigating more in this potential direction will be an important question for
future research.

At last, in principle, any other method that is able to provide approximate surrogate posteriors
could be used in place of GLLiM to produce the functional summaries.

Open Problem 5.2.4. Besides the family of mixture of experts models which are similar to GLLiM,
mixture density networks (Bishop, 1994) or normalizing flows (Dinh et al., 2015, Kruse et al., 2021)
are potential candidates. To our knowledge, other common neural networks, like most regression
techniques, would not be appropriate as they only focus on point-wise predictions.

Open Problem 5.2.5. It would be interesting to refine our consistency results by looking at the rate
of convergence; either towards the posterior distribution with the same spirit as in Frazier et al. (2018),
or directly by studying the statistical properties of the GLLiM-ABC algorithm. We now add this as
our priority open question problem.
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5.3 Model selection in the Gaussian-gated localized mixture of poly-
nomial experts regression model

In Chapter 3, we have studied the PMLEs for GLoME and BLoMPE regression models. Our main
contributions are non-asymptotic risk bounds that take the form of weak oracle inequalities, provided
that lower bounds on the penalties hold true. Furthermore, aside from important theoretical issues
regarding the tightness of the bounds of the PMLE, we hope that our contribution helps to popularize
GLoME models, as well as GLLiM models and slope heuristics, by giving some theoretical foundations
for model selection technique in this area and demonstrating some interesting numerical schemes and
experiments.

Open Problem 5.3.1. Recall that the main methods to account for the model selection procedures
are cross-validation and hold-out (see, e.g., Arlot & Celisse, 2010, Maillard, 2020 for the complete
bibliography), or penalized criteria. In this thesis, we focused on the PMLEs for high-dimensional
GLoME and BLoMPE regression models. However, one may ask whether we can establish such similar
weak oracle inequalities for hold-out and cross-validation procedure in the context of MoE regression
models. We wish to resolve this interesting question in future research.

Note that some recent attempts have been made to develop the estimation of non-standard MoEs,
the theory regarding their approximation capacity, as well as their applications in functional data
analysis and signal processing. For a recent account of the theory, we refer the reader to the works of
estimation methodology for non-standard MoE models with Laplace, Student-t, and skew-t experts, see
e.g., Nguyen & McLachlan (2016), Perthame et al. (2018), Chamroukhi (2016a,b, 2017), respectively.

Open Problem 5.3.2. In particular, we aim to provide an extension of the finite-sample oracle
inequality, Theorems 3.2.3 and 3.3.2, to a more general framework where Gaussian experts are replaced
by another distributions, e.g., Student t-distributions, elliptical distributions, in the future work.

Open Problem 5.3.3. In Theorems 3.2.3 and 3.3.2, we can only obtain weak oracle inequalities,
i.e., C1 > 1. We aim to provide “exact” oracle inequalities with C1 = 1 in future work. To our
knowledge, this issue has not been solved in PMLEs with Kullback-Leibler loss but only with L2 norm
or aggregation of a finite number of densities as in Rigollet (2012), Dalalyan & Sebbar (2018).

Open Problem 5.3.4. Note that in Chapter 3, we only aim to construct an upper bound and do
not focus on the important question of the existence of a corresponding lower bound. To the best
of our knowledge, providing a minimax analysis of our proposed estimator is still an open question.
Furthermore, it is not trivial to extend the lower bound result regarding Gaussian mixtures, as presented
in Maugis-Rabusseau & Michel (2013, Theorem 2.8), to the context of GLoME models. However, we
wish to provide such minimax analysis in future research.

Note that few theoretical confidence intervals have been studied for predicting a new response
from a predictor in the era of high-dimensional data, in particular for MoE regression models. For
Lasso based estimators, the standard works on deriving confidence regions for slope coefficient and
statistical testing of sparsity for linear model are Javanmard & Montanari (2014, approximate inverse
of the Gram matrix), van de Geer et al. (2014, desparsifying Lasso), Zhang & Zhang (2014, relaxed
projection), Janková & van de Geer (2015, extensions for generalised linear model with subdifferential
loss), Meinshausen (2015, for groups of variables), Stucky & van de Geer (2018, linear regression
models with structured sparsity), Lee et al. (2016, exact post-selection inference) among others. those
results rely on strong assumptions on the design and those results rely on strong assumptions on the
design and remain difficult to be implemented.

Open Problem 5.3.5. To overcome this problem, Devijver & Perthame (2020) proposed an explicit
asymptotic prediction regions for the response to address the linear regression problem for elliptical
distributions under an inverse regression approach rather than sparse regression. Therefore, we aim
to extend this model to generalized linear model by considering other distributions of the noise of the
inverse model or by our GLoME and BLoME models for future work.
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5.4 Joint rank and variable selection in the softmax-gated block-
diagonal mixture of experts regression model

In Section 4.2, we have studied an l1-regularization estimator for finite mixtures of Gaussian experts
regression models with softmax gating functions. Our main contribution is the proof of the l1-oracle
inequality that provides the lower bound on the regularization of the Lasso that ensures non-asymptotic
theoretical control on the Kullback-Leibler loss of the estimator. Other than some remaining questions
regarding the tightness of the bounds and the form of penalization functions, we believe that our
contribution helps to further popularize mixtures of Gaussian experts regression models by providing
a theoretical foundation for their application in high-dimensional problems.

Open Problem 5.4.1. First of all, the Theorem 4.3.2 of Section 4.3 was announced without support-
ing of numerical experiments. Therefore, in future work, we aim to test our algorithms in Section 4.3.5
and apply and evaluate our methods both on simulated and real datasets to understand how they work
in practice.

Open Problem 5.4.2. Next, in Section 4.2, we focused on a simplified but standard setting in
which the means of the experts are linear functions, with respect to explanatory variables. Although
simplified, this model captures the core of the MoE regression problem, which is the interactions among
the different mixture components. We believe that the general techniques that we develop here can be
extended to more general experts, such as Gaussian experts with polynomial means (e.g., Mendes &
Jiang, 2012) or even with hierarchical MoE for exponential family regression models in Jiang & Tanner
(1999a). But we leave such nontrivial developments for future work.

Open Problem 5.4.3. In Lemma 2.3.3, we established the connection between the softmax-gated,
GKS , and Gaussian gating network, GKG , namely GKS ⊂ GKG . Therefore, one may conjecture that the
l1-oracle inequality as in Theorem 4.2.2 for GLoME model instead of SGaME model still hold or not.
However, we leave this interesting problem for future research.

As pointed out by Arlot (2019), model-selection performance can be improved empirically by
overpenalizing a bit the penalty function, see e.g., Arlot & Baudry (2002), Arlot (2007, Chapter 11),
Arlot (2009, Section 6.3.2, in the regression setting), Arlot & Lerasle (2016, Figure 3, in least-squares
density estimation)

Open Problem 5.4.4. In particular, for histogram selection in density estimation, Saumard &
Navarro (2021) (see also Saumard, 2019 and Saumard, 2010 for a deeper comparison between their
overpenalization strategy and slope heuristics as well as AIC for small sample sizes) proposed a new
corrected version of the AIC criterion based on a natural way to overpenalize automatically. Therefore,
we aim to investigate the choosing from data an appropriate overpenalization factor in the framework
of MoE regression models in future research.

Open Problem 5.4.5. Furthermore, we would like to mathematically and fully justify the slope
heuristic in MoE regression models as in least-squares regression on a random (or fixed) design with
regressogram (projection) estimators, respectively Birgé & Massart (2007), Arlot & Massart (2009),
Arlot & Bach (2009), Arlot (2019).
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Arridge, S., Maass, P., Öktem, O., & Schönlieb, C.-B. (2019). Solving Inverse Problems Using Data-
Driven Models. Acta Numerica, 28, 1–174. (Cited on page 93.)

229



Bibliography

Bach, F. R. (2008). Bolasso: Model Consistent Lasso Estimation through the Bootstrap. In Proceedings
of the 25th International Conference on Machine Learning, ICML ’08 (pp. 33–40). New York, NY,
USA: Association for Computing Machinery. (Cited on pages 24, 196, and 283.)

Bacharoglou, A. (2010). Approximation of probability distributions by convex mixtures of Gaussian
measures. Proceedings of the American Mathematical Society, 138(7), 2619–2628. (Cited on pages 59,

60, 77, 268, and 269.)

Bahadur, R. R. (1958). Examples of inconsistency of maximum likelihood estimates. Sankhya: The
Indian Journal of Statistics, (pp. 207–210). (Cited on pages 14 and 258.)

Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal function.
IEEE Transactions on Information Theory, 39(3), 930–945. (Cited on page 77.)

Barron, A. R., Huang, C., Li, J., & Luo, X. (2008). The MDL principle, penalized likelihoods, and
statistical risk. Festschrift in Honor of Jorma Rissanen on the Occasion of his 75th Birthday, (pp.
33–63). (Cited on pages 30 and 130.)

Bartle, R. G. (1995). The Elements Of Integration And Lebesgue Measure. Wiley. (Cited on pages 63,

64, 78, 85, and 272.)
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Résumé long en français

Résumé

Les modèles de mélanges d’experts (MoE) sont omniprésents dans l’analyse de données hétérogènes
dans de nombreux domaines, notamment en statistique, bioinformatique, reconnaissance des formes,
économie et médecine, entre autres. Ils fournissent des constructions conditionnelles pour la régression
dans lesquelles les poids du mélange, ainsi que les densités de ses composants, sont expliqués par les
prédicteurs. Ceci qui permet une meilleur flexibilité dans la modélisation de données provenant de
processus générateurs complexes. Dans cette thèse, nous étudions les capacités d’approximation et
les propriétés d’estimation et de sélection de modèle d’un large éventail de distributions mélange,
avec un accent particulier sur une riche famille de modèles MoE dans un cadre de grande dimension;
Cela inclut les modèles MoE avec des experts gaussiens et des poids de mélanges (appelés gating
network) modélisés par des fonctions softmax ou gaussiennes normalisées, qui sont les choix les plus
populaires et sont des outils puissants pour modéliser des relations non linéaires complexes entre les
réponses et les prédicteurs qui proviennent de différentes sous-populations. Nous considérons à la fois
les aspects théoriques, statistiques et méthodologiques, et les outils numériques, liés à la conception
de ces modèles, ainsi qu’à leur estimation à partir de données et à la sélection du meilleur modèle.

Plus précisément, dans cette thèse, nous passons d’abord en revue les propriétés d’approximation
universelles des mélanges de densités classiques afin de préparer le cadre théorique et de clarifier cer-
taines affirmations vagues et peu claires dans la littérature, avant de les considérer dans le contexte des
modèles MoE. En particulier, nous prouvons que, à un degré de précision arbitraire, les mélanges de
translatées-dilatées d’une fonction de densité de probabilité (FDP) continue peuvent approximer toute
FDP continue, uniformément, sur un ensemble compact; et les mélanges de translatées dilatées d’une
FDP essentiellement bornée peuvent approximer toute FDP dans les espaces de Lebesgue. Ensuite,
après avoir apporté des améliorations aux résultats d’approximation dans le contexte des mélanges
inconditionnels, nous étudions les capacités d’approximation universelles des modèles MoE dans une
variété de contextes, y compris en approximation de densité conditionnelle et en calcul bayésien ap-
proximatif (ABC). Étant donné des variables d’entrée et de sortie toutes deux à support compact,
nous prouvons que les MoE pour les FDP conditionnelles sont denses dans les espaces de Lebesgue.
Ensuite, nous prouvons que la distribution quasi-postérieure résultant de l’ABC avec des postérieurs
de substitution construits à partir de mélanges gaussiens finis en utilisant une approche de régression
inverse, converge vers la vraie distribution, dans des conditions standard. Enfin, nous nous concentrons
sur les prédicteurs et les réponses de grande dimension. Par la suite, nous établissons des résultats non
asymptotiques de sélection de modèle dans des scénarios de régression à grande dimension, pour une
variété de modèles de régression MoE, y compris GLoME et SGaME, en s’appyuant sur une stratégie
de régression inverse ou une pénalisation Lasso, respectivement. Ceux-ci incluent des résultats pour
la sélection du nombre de composantes du mélange d’experts, ainsi que pour la sélection jointe de
variable et des rangs des matrices de covariances. En particulier, ces résultats fournissent garanties
théoriques fortes: une inégalité d’oracle en échantillon fini satisfaite par l’estimateur de maximum de
vraisemblance pénalisé avec une perte de type Jensen-Kullback-Leibler et une justification théorique
de la forme de la pénalité pour utiliser l’heuristique de pente, par rapport aux critères asymptotiques
classiques. Cela permet de calibrer les fonctions de pénalité, connues seulement à une constante mul-
tiplicative près, étant donnés complexité de la (sous-)collection aléatoire considérée de modèles MoE,
y compris le nombre de composantes du mélange, le degré de sparsité (les coefficients et les niveaux
de sparsité des rangs des matrices de covariances), le degré des fonctions moyennes polynomiales, et
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les structures potentielles de diagonales par bloc cachées des matrices de covariance du prédicteur
ou de la réponse multivariée. Enfin, pour étayer nos résultats théoriques et l’étude statistique de la
sélection non asymptotique de modèles dans une variété de modèles MoE, nous réalisons des études
numériques en considérant des données simulées et réelles, qui mettent en évidence la performance de
nos résultats, y compris celles d’inégalités d’oracle à échantillon fini.

Mots-clés

Mélange d’experts; modèles de mélange; approximation universelle; maximum de vraisemblance pénalisé;
sélection de variables, sélection de modèle non asymptotique; statistiques à grande dimension; Lasso;
régularisation l1; distance de Wasserstein; algorithme EM; algorithme MM; proximal-Newton; clus-
tering; classification; régression inverse; calcul bayésien approximatif.

Contexte scientifique

Les modèles de mélange d’experts (MoE), initialement introduits dans Jacobs et al. (1991) et Jordan
& Jacobs (1994), sont des modèles flexibles qui généralisent les modèles classiques de mélange fini
ainsi que les modèles de mélange fini pour la régression (McLachlan & Peel, 2000, Section 5.13), et
sont largement utilisés en statistique et en apprentissage automatique, grâce à leur flexibilité et à
l’abondance d’outils d’estimation statistique et de sélection de modèles applicables. Leur flexibilité
provient du fait que les poids des mélanges (appelés gating network) peuvent dépendre des variables
explicatives, ainsi que des densités des composants (ou des experts). Cela permet de modéliser des
données issues de processus de génération de données plus complexes que les mélanges finis classiques
et les modèles de mélange fini pour la régression, dont les paramètres de mélange sont indépendants
des covariables. En raison de leur flexibilité, les MoE peuvent être utilisés dans de nombreux problèmes
statistiques, notamment pour regrouper ou classer des données, pour estimer des densités condition-
nelles, pour effectuer des analyses de régression et pour analyser les résultats des régressions. Des
examens détaillés des aspects pratiques et théoriques des modèles MoE sont disponibles dans Yuksel
et al. (2012), Masoudnia & Ebrahimpour (2014) et Nguyen & Chamroukhi (2018).

Sur le plan statistique, nous considérons un cadre de régression et visons à capturer la relation
non linéaire potentielle entre une réponse multivariée Y et un vecteur de covariables X. Ici et par la
suite,

(
X[n],Y[n]

)
:= (Xi,Yi)i∈[n], [n] = {1, . . . , n} , n ∈ N?, désigne un échantillon aléatoire, et x et y

représentent les valeurs observées des variables aléatoires X et Y, respectivement. Nous supposons que
la variable de réponse Y dépend de la variable explicative X à travers un modèle de type régression.
La variable explicative porte différents noms, tels que covariable, prédicteur, variable indépendante,
caractéristique, ou parfois simplement variable. La variable de réponse est souvent appelée variable
de sortie ou variable dépendante. Tout au long de cette thèse, nous utiliserons tous ces termes de
manière interchangeable.

Tout d’abord, nous nous concentrons sur un point de départ naturel pour mettre en place un modèle
de MoE plus probabiliste, souvent appelé “application directe” de la modélisation des mélanges;
voir Titterington et al., 1985 pour plus de détails. Ensuite, nous préciserons une autre perspec-
tive sur la modélisation des mélanges dans (5.4.4) et (5.4.15) qui fournissent une vue “analytique”,
complémentaire à cette vue “synthétique”. En ce qui concerne la première perspective, supposons que
la population à partir de laquelle nous échantillonnons est hétérogène, c’est-à-dire qu’étant donné une
entrée X = x, il existe de multiples groupes (qui peuvent être interprétés comme des clusters), indexés
par k ∈ [K], présents dans la population dans des proportions gk (x;ω) , k ∈ [K], où ω est un vecteur
de paramètres définissant la fonction de proportion dépendant de l’entrée gk (x; ·), avec gk (x;ω) > 0,
et
∑K

k=1 gk (x;ω) = 1. Ainsi, il existe une représentation de variable aléatoire latente non observée du
modèle de mélange (généralement appelée latent ou variables d’allocation), impliquant l’appartenance
latente de chaque observation à un groupe, désignée par Z ∈ [K],K ∈ N?, où Z = k si l’observation y
étant donné l’entrée x appartient au groupe k pour k ∈ [K]. Ensuite, la relation conditionnelle entre
Z et l’entrée X peut être caractérisée par

p (Z = k|X = x) = gk (x;ω) . (5.4.1)
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Alors, nous pouvons caractériser la relation entre la sortie y et l’entrée X par

p (y|X = x, Z = k) = φk (y;θk (x)) , (5.4.2)

où θk (x) est un vecteur de paramètres et, étant donné une entrée x, φk (·;θk (x)) est une fonction
de densité de probabilité (FDP). Nous pouvons imaginer qu’étant donné une entrée X = x, la sortie
observée y, tirée de la population, est générée en deux étapes: premièrement, le groupe Z est tiré d’une
distribution multinomiale avec un seul essai et des probabilités égales à gk (x;ω); et deuxièmement,
étant donné X = x, Z = k, la sortie y est tirée de φk (y;θk (x)).

Notez que cet échantillonnage en deux étapes donne exactement les mêmes modèles en vue ana-
lytique, voir (5.4.4) et (5.4.15) pour plus de détails, pour la distribution conditionnelle de y|x. En
effet, via les caractérisations (5.4.1) et (5.4.2), et en utilisant la loi de probabilité totale, nous pouvons
caractériser la relation marginale entre la réponse et l’entrée, inconditionnelle sur Z, via l’expression

p (y|X = x) =
K∑
k=1

p (y|X = x, Z = k) p (Z = k|X = x)

=

K∑
k=1

gk (x;ω)φk (y;θk (x)) =: sψ(y|x), (5.4.3)

où ψ = (ω,θ) est le vecteur de tous les éléments de paramètre qui sont nécessaires pour caractériser
(5.4.3).

Pour une meilleure comparaison entre un modèle de régression standard MoE (dans lequel tous
les paramètres du modèle sont des fonctions des covariables) et les cas particuliers, où certains des
paramètres du modèle ne dépendent pas des covariables, les quatre modèles du cadre MoE sont
présentés dans Figure 5.1; voir également Fruhwirth-Schnatter et al. (2019, Chapitre 12) pour plus de
détails.

L’idée principale de la MoE est un principe de division et de conquête qui propose de diviser un
problème complexe en un ensemble de sous-problèmes plus simples, puis d’affecter un ou plusieurs
outils de résolution de problèmes spécialisés, ou experts, à chacun de ces sous-problèmes. Dans le
contexte de la régression, les modèles MoE avec des experts gaussiens et des poids de mélanges (appelés
gating network) modélisés par des fonctions softmax ou gaussiennes normalisées, qui sont les choix les
plus populaires et sont des outils puissants pour modéliser des relations non linéaires complexes entre
les réponses et les prédicteurs qui proviennent de différentes sous-populations. Ceci est largement
étudié en raison de leurs propriétés d’approximation universelles, voir Chapter 2 pour plus de détails,
qui ont été largement étudiées non seulement pour les modèles de mélange fini (Genovese & Wasserman,
2000, Rakhlin et al., 2005, Nguyen, 2013, Ho et al., 2016a,b, Nguyen et al., 2020d,b) mais aussi les
densités conditionnelles des modèles MoE (Jiang & Tanner, 1999a, Norets et al., 2010, Nguyen et al.,
2016, Ho et al., 2019, Nguyen et al., 2019, 2021a).

Plus précisément, dans Chapter 2, nous passons d’abord en revue les propriétés d’approximation
universelles des mélanges de densités classiques afin de préparer le cadre théorique et de clarifier
certaines affirmations vagues et peu claires dans la littérature, avant de les considérer dans le contexte
des modèles MoE. En particulier, nous prouvons que, à un degré de précision arbitraire, les mélanges
de translatées-dilatées d’une fonction de densité de probabilité (FDP) continue peuvent approximer
toute FDP continue, uniformément, sur un ensemble compact; et les mélanges de translatées dilatées
d’une FDP essentiellement bornée peuvent approximer toute FDP dans les espaces de Lebesgue.
Ensuite, après avoir apporté des améliorations aux résultats d’approximation dans le contexte des
mélanges inconditionnels, nous étudions les capacités d’approximation universelles des modèles MoE
dans une variété de contextes, y compris en approximation de densité conditionnelle et en calcul
bayésien approximatif (ABC). Étant donné des variables d’entrée et de sortie toutes deux à support
compact, nous prouvons que les MoE pour les FDP conditionnelles sont denses dans les espaces de
Lebesgue. Ensuite, nous prouvons que la distribution quasi-postérieure résultant de l’ABC avec des
postérieurs de substitution construits à partir de mélanges gaussiens finis en utilisant une approche
de régression inverse, converge vers la vraie distribution, dans des conditions standard.
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(b) Modèle de régression du MoE

ω Z x

yθ

n
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Figure 5.1: Selon la représentation graphique du modèle, à savoir la présence ou l’absence de
bords entre les covariables x et la variable latente Z et la variable réponse y, il existe qua-
tre cas particuliers de modèles de régression à mélange d’experts. Plus précisément, dans Fig-
ure 5.1a, p(y, Z|x) = p(y|Z)p(Z); dans Figure 5.1b, p(y, Z|x) = p(y|x, Z)p(Z); dans la Figure 5.1c,
p(y, Z|x) = p(y|Z)p(Z|x); et dans la Figure 5.1d, p(y, Z|x) = p(y|x, Z)p(Z|x). Cette figure est
inspirée du Fruhwirth-Schnatter et al. (2019, Chapitre 12, Fig. 12.2).

Dans cette thèse, nous souhaitons tout d’abord étudier les modèles MoE avec des experts gaussiens
et des poids de mélanges modélisés par gaussiennes normalisées pour le clustering et la régression, in-
troduits pour la première fois par Xu et al. (1995), qui ont étendu les modèles MoE originaux de
Jacobs et al. (1991). En nous basant sur les travaux de Nguyen et al. (2021c,b), nous désignons
ces modèles sous le nom de modèles de MoE localisés gaussiens (�Gaussian-gated localized MoE�,
GLoME) et de modèles de mélange localisé bloc-diagonal d’experts (�block-diagonal covariance for
localized mixture of experts�, BLoME), qui seront développés dans Chapter 3. Il est intéressant
de souligner que les modèles BLoME généralisent les modèles GLoME en utilisant une structure de
covariance parcimonieuse, via des structures bloc-diagonales pour les matrices de covariance dans les
experts gaussiens. Il est également intéressant de souligner que les modèles supervisés de cartogra-
phie gaussienne localement linéaire (�Gaussian locally-linear mapping�, GLLiM) et de covariance
bloc-diagonale pour la cartographie gaussienne localement linéaire (�block-diagonal covariance for
Gaussian locally-linear mapping�, BLLiM) dans Deleforge et al. (2015c) et Devijver et al. (2017)
sont des instances affines des modèles GLoME et BLoME, respectivement, où la combinaison linéaire
de fonctions bornées est considérées au lieu d’affines pour les fonctions moyennes des experts gaussiens.

Ensuite, le Chapter 4 est consacré à l’étude des modèles de MoE avec des fonctions de gating
softmax. Dans Chapter 4, nous obtenons ce que nous appellerons combinaison linéaire de fonc-
tions bornées modèles de régression à mélange d’experts bloc-diagonal à fonctions de gating softmax
(�linear-combination-of-bounded-functions softmax-gated block-diagonal mixture of experts�, Lin-
BoSGaBloME).En particulier, nous nous référons simplement aux instances affines des modèles Lin-
BoSGaBloME en tant que des modèles de régression MoE à fonctions de gating softmax (�softmax-
gated mixture of experts�, SGaME). L’un des principaux inconvénients des modèles SGaME est
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la difficulté d’appliquer un algorithme EM, qui nécessite une procédure d’optimisation numérique
itérative interne (e.g., algorithme MM, moindres carrés pondérés par itération, procédure proximale
de type Newton, algorithme de Newton-Raphson) pour mettre à jour les paramètres de la softmax.
Les modèles GLoME et BLoME surmontent ce problème en utilisant le réseau de gating gaussien qui
nous permet de lier GLoME à des mélanges finis de modèles gaussiens. Étant donné son fondement
de modèle de mélange, la maximisation par rapport aux paramètres du réseau de déclenchement peut
être résolue analytiquement dans le cadre de l’algorithme EM, ce qui réduit la complexité de calcul
de la routine d’estimation. En outre, nous pouvons également utiliser des résultats théoriques bien
établis pour les modèles de mélange finis.

Malgré le fait que la nomenclature des MoE trouve son origine dans la littérature sur l’apprentissage
automatique (Jacobs et al., 1991), les modèles SGaME ont été largement appliqués à de nombreux
domaines scientifiques, technologiques et commerciaux, pour les tâches de classification, de clustering
et de régression; modèles de régression par commutation (Quandt, 1972), modèles de classe latente à
variables concomitantes (Dayton & Macready, 1988), modèles de régression à classes latentes (DeSarbo
& Cron, 1988), modèles mixtes (Wang et al., 1996), analyse des données fonctionnelles et traitement
du signal (Chamroukhi et al., 2009, Samé et al., 2011, Chamroukhi et al., 2013a), mélanges lisses
finis (Li et al., 2011), classification d’images et segmentation sémantique tâches (Wang et al., 2020),
modélisation de la connectivité neuronale (Bock & Fine, 2014), segmentation d’images spectrales
(Cohen & Le Pennec, 2014), modélisation des changements climatiques (Nguyen & McLachlan, 2014),
reconnaissance de l’activité téléphonique (Lee & Cho, 2014), modélisation de l’hétérogénéité dans les
données de connectivité neuronale (Eavani et al., 2016), l’apprentissage par renforcement (He et al.,
2016), les tâches de modélisation du langage et de traduction automatique (Shazeer et al., 2017), les
modèles génératifs profonds multimodaux sur différents ensembles de modalités, y compris un ensemble
de données image-langage difficile (Shi et al., 2019), la détection d’anomalies (Yu et al., 2021), pour
n’en citer que quelques-uns.

Il est important de noter ici que les modèles GLoME et BLoME ont également fait l’objet d’études
approfondies dans la littérature sur les statistiques et l’apprentissage automatique et que leurs formes
apparaissent sous de nombreuses formes différentes, notamment les modèles MoE localisés (Ramamurti
& Ghosh, 1996, 1998, Moerland, 1999, Bouchard, 2003), les réseaux gaussiens normalisés (Sato &
Ishii, 2000), modélisation MoE des prieurs dans la régression non paramétrique bayésienne (Norets &
Pelenis, 2014, Norets & Pati, 2017), modélisation cluster-weighted (Ingrassia et al., 2012), GLLiM dans
la régression inverse (Deleforge et al., 2015c), modèle BLLiM (Devijver et al., 2017), mélange profond
de régressions inverses linéaires (Lathuilière et al., 2017), modèle de mélange structuré de cartographie
gaussienne localement linéaire hiérarchique (HGLLiM) (Tu et al., 2019), mélange gaussien à sorties
multiples mélange d’experts linéaires (Nguyen et al., 2019), et calcul bayésien approximatif avec des
postérieurs de substitution à l’aide de GLLiM (Forbes et al., 2021).

À partir de maintenant, nous nous intéressons à l’estimation de la loi de la variable aléatoire Y
conditionnellement à X. Les hypothèses suivantes seront nécessaires tout au long de la thèse. Nous
supposons que les covariables X sont indépendantes mais pas nécessairement distribuées de manière
identique. Les hypothèses sur les réponses Y sont plus fortes: conditionnellement à X[n], les Yi, i ∈ [n],
sont indépendants, et chaque Y suit une loi avec une FDP vraie (mais inconnue) s0 (·|X = x), qui est
approximée via un modèle GLoME, BLoME ou SGaME.

Modèles GLoME et BLoME

Motivé par une stratégie de régression inverse où les rôles des variables prédicteurs et des variables
réponses doivent être échangés de telle sorte que Y = (Yj)j∈[L] , [L] = {1, . . . , L}, devient l’entrée

et X = (Xj)j∈[D] joue le rôle d’une sortie multivariée, nous considérons le modèle GLoME suivant,

défini par (5.4.4) (voir aussi dans Nguyen et al., 2021c). Cette construction remonte aux travaux de
Li (1991), Deleforge et al. (2015c), et Perthame et al. (2018). De cette manière, nous définissons la
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FDP conditionnelle correspondante comme suit:

sψK,d(x|y) =
K∑
k=1

gk (y;ω)φD (x;υk,d(y),Σk) , (5.4.4)

gk (y;ω) =
πkφL (y; ck,Γk)∑K
j=1 πjφL (y; cj ,Γj)

· (5.4.5)

Ici, gk(·;ω) et φD (·;υk,d(·),Σk), k ∈ [K], K ∈ N?, d ∈ N?, sont appelés respectivement gaussiennes
normalisées et experts gaussiens. En outre, nous décomposons les paramètres du modèle comme
suit: ΨK,d = (ω,υd,Σ) ∈ ΩK × ΥK,d × VK =: ΨK,d, ω = (π, c,Γ) ∈ (ΠK−1 ×CK × V ′K) =:
ΩK , π = (πk)k∈[K], c = (ck)k∈[K], Γ = (Γk)k∈[K], υd = (υk,d)k∈[K] ∈ ΥK,d, et Σ = (Σk)k∈[K] ∈

VK . Remarquons que ΠK−1 =
{

(πk)k∈[K] ∈ (R+)
K
,
∑K

k=1 πk = 1
}

est un simplex de probabilité de

dimension K − 1, CK est un ensemble de K-tuples de vecteurs moyens de taille L × 1, V ′K est un
ensemble de K-tuples d’éléments dans S++

L , où S++
L désigne la collection de matrices symétriques

définies positives sur RL, ΥK,d est un ensemble de K-tuples de fonctions moyennes de RL à RD
dépendant d’un degré d (e.g., un degré de polynômes), et VK est un ensemble contenant K-tuples
de S++

D .
Ensuite, nous décrivons une caractérisation des modèles GLLiM, une instance affine des modèles

GLoME, qui est particulièrement utile pour les données de régression à grande dimension.
Un modèle GLLiM, tel que présenté à l’origine dans Deleforge et al. (2015c), est utilisé pour

capturer la relation non linéaire entre la réponse et l’ensemble des covariables dans des données de
régression de grande dimension, typiquement dans le cas où D � L, par des K mappings localement
affines:

Y =
K∑
k=1

I (Z = k) (A∗kX + b∗k + E∗k) . (5.4.6)

Ici, I est une fonction indicatrice et Z est une variable latente capturant une relation de grappe, telle
que Z = k si Y provient de la grappe k ∈ [K]. Les transformations affines spécifiques aux clusters
sont définies par les matrices A∗k ∈ RL×D et les vecteurs b∗k ∈ RL. De plus, E∗k sont des termes
d’erreur capturant à la fois l’erreur de reconstruction due aux approximations affines locales et le
bruit d’observation dans RL.

Suivant l’hypothèse commune que E∗k est un vecteur gaussien de moyenne nulle avec une matrice
de covariance Σ∗k ∈ RL×L, il s’avère que

p (Y = y|X = x, Z = k;ψ∗K) = φL (y; A∗kx + b∗k,Σ
∗
k) , (5.4.7)

où nous désignons par ψ∗K le vecteur des paramètres du modèle et φL est la FDP d’une distribution
gaussienne de dimension L. Afin d’imposer que les transformations affines soient locales, X est défini
comme un mélange de K composantes gaussiennes comme suit:

p (X = x|Z = k;ψ∗K) = φD (x; c∗k,Γ
∗
k) , p (Z = k;ψ∗k) = π∗k, (5.4.8)

où c∗k ∈ RD,Γ∗k ∈ RD×D, π∗ = (π∗k)k∈[K] ∈ Π∗K−1, et Π∗K−1 est le simplex de probabilité de dimension
K − 1. Ensuite, selon les formules pour les variables gaussiennes multivariées conditionnelles et la
décomposition hiérarchique suivante

p (Y = y,X = x;ψ∗K) =
K∑
k=1

p (Y = y|X = x, Z = k;ψ∗K) p (X = x|Z = k;ψ∗K) p (Z = k;ψ∗K) ,

=

K∑
k=1

π∗kφD (x; c∗k,Γ
∗
k)φL (y; A∗kx + b∗k,Σ

∗
k) ,
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nous obtenons la densité conditionnelle directe suivante (Deleforge et al., 2015c):

p (Y = y|X = x;ψ∗K) =
K∑
k=1

π∗kφD (x; c∗k,Γ
∗
k)∑K

j=1 π
∗
jφD

(
x; c∗j ,Γ

∗
j

)φL (y; A∗kx + b∗k,Σ
∗
k) , (5.4.9)

où ψ∗K = (π∗,θ∗K) ∈ ΠK−1 ×Θ∗K =: Ψ∗K . Ici, θ∗K = (c∗k,Γ
∗
k,A

∗
k,b

∗
k,Σ

∗
k)k∈[K] et

Θ∗K =
(
RD × S++

D (R)× RL×D × RL × S++
L (R)

)K
.

Sans rien supposer de plus sur la structure des paramètres, la dimension du modèle (désignée par
dim (·)), est définie comme le nombre total de paramètres qui doivent être estimés, comme suit:

dim (Ψ∗K) = K

(
1 +D(L+ 1) +

D(D + 1)

2
+
L(L+ 1)

2
+ L

)
− 1.

Il convient de mentionner que dim (ΨK) peut être très grand par rapport à la taille de l’échantillon
(voir, par exemple, Deleforge et al., 2015c, Devijver et al., 2017, Perthame et al., 2018 pour plus de
détails dans leurs ensembles de données réelles) lorsque D est grand et D � L. En outre, il est plus
réaliste de faire des hypothèses sur les matrices de covariance résiduelle Σ∗k des vecteurs d’erreur E∗k
plutôt que sur Γ∗k (cf. Deleforge et al., 2015c, Section 3). Cela justifie l’utilisation de l’astuce de
régression inverse de Deleforge et al. (2015c), qui conduit à une réduction drastique du nombre de
paramètres à estimer.

Plus précisément, dans (5.4.9), les rôles des variables d’entrée et de réponse doivent être échangés de
sorte que Y devienne les covariables et que X joue le rôle de la réponse multivariée. Par conséquent, sa
densité conditionnelle inverse correspondante est définie comme suit un modèle de cartographie gaussi-
enne localement linéaire (GLLiM), basé sur le modèle de mélange gaussien hiérarchique précédent,
comme suit:

p (X = x|Y = y, Z = k;ψK) = φD (x; Aky + bk,Σk) , (5.4.10)

p (Y = y|Z = k;ψK) = φL (y; ck,Γk) , p (Z = k;ψk) = πk, (5.4.11)

p (X = x|Y = y;ψK) =
K∑
k=1

πkφL (y; ck,Γk)∑K
j=1 πjφL (y; cj ,Γj)

φD (x; Aky + bk,Σk) , (5.4.12)

où Σk est une structure de covariance D×D (généralement diagonale, choisie pour réduire le nombre
de paramètres) apprise automatiquement à partir des données, et ψK est l’ensemble des paramètres,
noté ψK . de paramètres, désigné par ψK = (π,θK) ∈ ΠK−1 × ΘK =: ΨK . Une caractéristique
intrigante du modèle GLLiM est décrite dans Lemma 5.4.1, qui est prouvée dans Section 3.2.5.1.

Lemma 5.4.1. Le paramètre ψ∗K dans la FDP conditionnelle avant, défini dans (5.4.9), peut alors
être déduit de ψK dans (5.4.12) via la correspondance biunivoque suivante:

θK =


ck
Γk
Ak

bk
Σk


k∈[K]

7→


c∗k
Γ∗k
A∗k
b∗k
Σ∗k


k∈[K]

=


Akck + bk

Σk + AkΓkA
>
k

Σ∗kA
>
k Σ−1

k

Σ∗k(Γ
−1
k ck −A>k Σ−1

k bk)(
Γ−1
k + A>k Σ−1

k Ak

)−1


k∈[K]

∈ Θ∗K , (5.4.13)

avec la remarque que π∗ ≡ π.

Nous souhaitons fournir quelques exemples simulés de modèles de régression GLoME sur des
ensembles de données à 1 de dimension, c’est-à-dire avec L = D = 1. Nous construisons des ensembles
de données simulées suivant deux scénarios: un cas bien spécifié (WS) cas dans lequel la véritable
densité conditionnelle avant s∗0, qui peut être estimée via une instance de moyenne gaussienne affine
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de GLoME, à savoir le modèle GLLiM, basé sur la FDP conditionnelle inverse sψK,d en utilisant une
stratégie de régression inverse, appartient à la classe des modèles proposés:

s∗0(y|x) =
φ(x; 0.2, 0.1)

φ(x; 0.2, 0.1) + φ(x; 0.8, 0.15)
φ(y;−5x+ 2, 0.09)

+
φ(x; 0.8, 0.15)

φ(x; 0.2, 0.1) + φ(x; 0.8, 0.15)
φ(y; 0.1x, 0.09),

et un cas mal spécifié (MS), dans lequel une telle hypothèse n’est pas vraie:

s∗0(y|x) =
φ(x; 0.2, 0.1)

φ(x; 0.2, 0.1) + φ(x; 0.8, 0.15)
φ
(
y;x2 − 6x+ 1, 0.09

)
+

φ(x; 0.8, 0.15)

φ(x; 0.2, 0.1) + φ(x; 0.8, 0.15)
φ
(
y;−0.4x2, 0.09

)
.

Nous supposons ici que le vrai nombre de composantes du mélange K0 = 2. Les figures 5.2a et 5.2e
montrent quelques réalisations typiques de 2000 points de données provenant des scénarios WS et MS.
Notez qu’en utilisant GLLiM, notre estimateur l’estimateur de maximum de vraisemblance pénalisé
de GLLiM, tel qu’introduit dans Chapter 3, est performant dans le cadre du WS (Figures 5.2b à 5.2d).
Dans le cas de l’EM, nous attendons notre procédure, à savoir l’algorithme GLLiM-EM introduit dans
Section 3.2.3, utilisant l’heuristique de pente, voir Section 5.4 pour plus de détails, pour équilibrer
automatiquement le biais du modèle et sa variance (Figures 5.2f à 5.2h), ce qui conduit au choix d’un
modèle complexe, avec 4 de composantes de mélange.

Dans le modèle BLoME, nous souhaitons utiliser les structures bloc-diagonales en remplaçant Σk

et VK par Σk (Bk) et VK (B), définies respectivement dans (5.4.14), (voir, e.g., Devijver et al., 2017,
Devijver & Gallopin, 2018, Nguyen et al., 2021b). Ces structures bloc-diagonales pour les matrices de
covariance ne sont pas seulement utilisées pour un compromis entre la complexité et la sparsité, mais
sont également motivées par certaines applications réelles, où nous voulons effectuer une prédiction
sur des ensembles de données avec des observations hétérogènes et des interactions cachées structurées
en graphe entre les covariables; par exemple, pour les ensembles de données d’expression génique
dans lesquels, conditionnellement à la réponse phénotypique, les gènes interagissent uniquement avec
quelques autres gènes, c’est-à-dire qu’il existe de petits modules de gènes corrélés (voir Devijver et al.,
2017, Devijver & Gallopin, 2018 pour plus de détails). Pour être plus précis, pour k ∈ [K], on

décompose Σk (Bk) en Gk blocs, Gk ∈ N?, et nous désignons par d
[g]
k l’ensemble des variables dans le

gième groupe, pour g ∈ [Gk], et par card
(
d

[g]
k

)
le nombre de variables dans l’ensemble correspondant.

Ensuite, nous définissons Bk =
(
d

[g]
k

)
g∈[Gk]

comme une structure de blocs pour le cluster k, et B =

(Bk)k∈[K] comme les indices de covariables dans chaque groupe pour chaque cluster. De cette façon,
pour construire les matrices de covariance diagonales par blocs, jusqu’à une permutation, nous faisons
la définition suivante: VK (B) = (Vk (Bk))k∈[K], pour chaque k ∈ [K],

Vk (Bk) =


Σk (Bk) ∈ S++

D

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Σk (Bk) = Pk


Σ

[1]
k 0 . . . 0

0 Σ
[2]
k . . . 0

0 0
. . . 0

0 0 . . . Σ
[Gk]
k

P−1
k ,

Σ
[g]
k ∈ S

++

card
(
d

[g]
k

), ∀g ∈ [Gk]


, (5.4.14)

où Pk correspond à la permutation conduisant à une matrice bloc-diagonale dans le cluster k. Il
est utile de préciser qu’en dehors des blocs, tous les coefficients de la matrice sont des zéros et nous
autorisons également le réordonnancement des blocs: e.g., {(1, 3) ; (2, 4)} est identique à {(2, 4) ; (1, 3)},
et la permutation à l’intérieur des blocs: e.g., la partition de 4 variables en blocs {(1, 3) ; (2, 4)} est la
même que la partition {(3, 1) ; (4, 2)}.

Il est intéressant de souligner que les modèles GLLiM et BLLiM dans Deleforge et al. (2015c),
Devijver et al. (2017) sont des instances affines des modèles GLoME et BLoME, respectivement, où
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(d) Probabilités du réseau de portes
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(e) Réalisation typique d’un exemple de
MS
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régression

0.00

0.25

0.50

0.75

−1 0 1 2

X

 M
ixi

ng
 p

ro
ba

bi
liti

es

(h) Probabilités du réseau de portes

Figure 5.2: Clustering déduit de la densité conditionnelle estimée de GLoME par un principe MAP
avec 2000 points de données des exemples des scénarios WS et MS. Les courbes noires en tirets et
pleines présentent les fonctions moyennes réelles et estimées.

la combinaison linéaire de fonctions bornées (e.g., polynômes) est considérée au lieu de fonctions
moyennes affines pour les experts gaussiens. Le cadre BLLiM vise à modéliser un échantillon de
données de régression de grande dimension provenant d’une population hétérogène avec une interaction
cachée structurée en graphe entre les covariables. En particulier, le modèle BLLiM est considéré
comme un bon candidat pour effectuer un clustering basé sur le modèle et pour prédire la réponse
dans des situations affectées par le phénomène de “malédiction de la dimensionnalité”, où le nombre de
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paramètres pourrait être plus grand que la taille de l’échantillon. En effet, pour traiter les problèmes
de régression à grande dimension, le modèle BLLiM est basé sur une stratégie de régression inverse,
qui inverse le rôle du prédicteur à grande dimension et de la réponse multivariée. Par conséquent, le
nombre de paramètres à estimer est considérablement réduit. Plus précisément, BLLiM utilise GLLiM,
décrit dans Deleforge et al. (2015a,c), en conjonction avec une hypothèse de structure bloc-diagonale
sur les matrices de covariance résiduelles pour faire un compromis entre la complexité et la sparsité.

Ce modèle de prédiction est entièrement paramétrique et hautement interprétable. Par exemple,
il pourrait être utile pour l’analyse des données transcriptomiques en biologie moléculaire pour classer
les observations ou prédire les états phénotypiques, comme par exemple la maladie par rapport à la
non-maladie ou la tumeur par rapport à la normale (Golub et al., 1999, Nguyen & Rocke, 2002, Lê
Cao et al., 2008). En effet, si les variables prédictives sont des données d’expression génique mesurées
par des microarrays ou par les technologies RNA-seq et que la réponse est une variable phénotypique,
les situations affectées par le BLLiM ne fournissent pas seulement des clusters d’individus basés sur
la relation entre les données d’expression génique et le phénotype, mais implique également un réseau
de régulation génique spécifique à chaque groupe d’individus (voir Devijver et al., 2017 pour plus de
détails).

Modèles SGaME et LinBoSGaBloME

Nous allons considérer les cadres statistiques dans lesquels nous modélisons un échantillon de données
de régression de grande dimension issu d’une population hétérogène via le modèle SGaBloME. Nous
soulignons que la dimension de la variable d’entrée X ∈ X ⊂ Rp et/ou de la variable de sortie
Y ∈ Y ⊂ Rq est typiquement beaucoup plus élevée que la taille de l’échantillon n. Dans cette thèse,
en se basant sur les modèles MoE originaux de Jacobs et al. (1991), nous cherchons à établir un modèle
MoE avec des fonctions softmax aussi générique que possible afin qu’il puisse être utilisé pour traiter
des ensembles de données de régression à haute dimension et pour étudier les inégalités d’oracle. Pour
ce faire, nous définissons d’abord sψK (y|x) comme une FDP conditionnelle du modèle MoE comme
suit :

sψK (y|x) =

K∑
k=1

gw,k (x)φq (y;υk(x),Σk (Bk)) , où, (5.4.15)

gw,k (x) =
exp (wk(x))∑K
l=1 exp (wl(x))

,w(x) = (wk(x))k∈[K] . (5.4.16)

Ici, gw,k (·) et φq (·;υk(·),Σk (Bk)) , k ∈ [K], sont appelés respectivement fonctions softmax et experts
gaussiens. Notez que pour chaque x ∈ X , (gw,k (x))k∈[K] ∈ ΠK−1. En outre, nous décomposons

l’ensemble des paramètres du modèle comme suit: ψK = (w,υ,Σ) ∈ WK ×ΥK ×VK (B) =: ΨK ,
w = (wk)k∈[K] ∈ WK , υ = (υk)k∈[K] ∈ ΥK , et Σ (B) = (Σk (Bk))k∈[K] ∈ Σk (Bk). Il convient
de noter que WK et ΥK sont des ensembles de K-tuples de poids et de fonctions moyennes de Rp
à R+ et de Rp à Rq, respectivement; et Σk (Bk) est un ensemble contenant K-tuples de S++

q avec
les structures bloc-diagonales définies dans (5.4.14), où S++

q désigne la collection de matrices définies
positives symétriques sur Rq. Puisque nous devons limiter la complexité du modèle en utilisant la
dimension du modèle, nous devons restreindre notre attention aux modèles LinBoSGaBloME, où WK

et ΥK sont définis comme la combinaison linéaire d’un ensemble fini de fonctions bornées dont les
coefficients appartiennent à un ensemble compact. Lorsque la dimension des entrées et des sorties
n’est pas trop grande, nous n’avons pas besoin de sélectionner des variables pertinentes. Nous pou-
vons alors travailler sur les modèles LinBoSGaBloME précédents avec des structures générales pour
les moyennes, les poids et les matrices de covariance multi-blocs-diagonales. Dans certaines situations,
nous n’avons pas besoin de prendre en compte le compromis entre complexité et sparsité pour les ma-
trices de covariance, dans les modèles LinBoSGaBloME, nous pouvons considérer des matrices de co-
variance 1-block-diagonales, ce qui est bien étudié dans Montuelle et al. (2014) et sera appelé�linear-
combination-of-bounded-functions softmax-gated mixture of experts�. (LinBoSGaME). Cependant,
pour traiter des données à grande dimension et pour simplifier l’interprétation de la sparsité, dans
le modèle LinBoSGaBloME, nous proposons d’utiliser des polynômes pour les poids des fonctions de
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softmax et des moyennes d’experts gaussiennes, qui seront appelés�polynomial softmax-gated block-
diagonal mixture of experts�. (PSGaBloME). En particulier, nous appelons simplement les instances
affines des modèles LinBoSGaBloME des modèles de régression �mélange d’experts softmax-gated�
(SGaME).

Sélection du modèle dans les modèles de régression de mélanges d’experts

Il convient de souligner que plusieurs hyperparamètres doivent être estimés pour construire des modèles
de régression BLoME et SGaBloME, notamment le nombre de composantes du mélange, le degré de
sparsité (les coefficients et les niveaux de sparsité des rangs des matrices de covariances), le degré
des fonctions moyennes polynomiales, et les structures potentielles de diagonales par bloc cachées
des matrices de covariance du prédicteur ou de la réponse multivariée. Les choix d’hyperparamètres
d’algorithmes d’apprentissage basés sur les données appartiennent à la classe de problèmes de sélection
de modèles, qui a attiré beaucoup d’attention en statistique et en apprentissage automatique au cours
des 50 dernières années: (Akaike, 1974, Mallows, 1973, Anderson & Burnham, 2002, Massart, 2007).
Il s’agit d’une instance particulière du problème de sélection d’un estimateur (ou d’un modèle): étant
donné une famille d’estimateurs, comment choisir, à l’aide des données, l’un d’entre eux dont le risque
est le plus faible possible? Notez que la pénalisation est l’une des principales stratégies proposées
pour la sélection de modèles. Elle suggère de choisir l’estimateur qui minimise la somme de son risque
empirique et de certains termes de pénalité correspondant à la façon dont le modèle s’ajuste aux
données, tout en évitant le surajustement.

Dans cette thèse, nous nous intéressons au contrôle et à la prise en compte de la complexité du
modèle lors de la sélection du meilleur nombre de composantes de mélange d’un modèle. En général,
la sélection de modèles est souvent effectuée à l’aide du critère d’information d’Akaike (AIC; Akaike,
1974) ou du critère d’information bayésien (BIC; Schwarz et al., 1978). Une limitation importante de
ces critères, cependant, est qu’ils ne sont valables qu’asymptotiquement. Cela implique qu’il n’y a pas
de garantie d’échantillon fini lorsqu’on utilise l’AIC ou le BIC, pour choisir entre différents niveaux de
complexité. Leur utilisation dans des contextes de petits échantillons est donc ad hoc. Pour surmonter
ces difficultés, Birgé & Massart (2007) a proposé une nouvelle approche, appelée heuristique de pente,
soutenue par une inégalité oracle non-asymptotique. Cette méthode conduit à un choix optimal, basé
sur les données des constantes multiplicatives pour les pénalités. L’heuristique de pente de Birgé &
Massart (2007), soutenue par une inégalité oracle non asymptotique, est une méthode qui permet
l’inférence par échantillons finis au lieu de l’AIC et du BIC. Des revues récentes et des questions
pratiques concernant l’heuristique de pente peuvent être trouvées dans Baudry et al. (2012), Arlot
(2019), et les références qui y sont données.

Il convient de souligner qu’un résultat général de sélection de modèles, établi à l’origine par Massart
(2007, Theorem 7.11), garantit qu’un critère pénalisé conduit à une bonne sélection de modèles et que
la pénalité n’est connue que jusqu’à des constantes multiplicatives et proportionnelles aux dimensions
des modèles. En particulier, de telles constantes multiplicatives peuvent être calibrées par l’approche
heuristique de la pente dans un cadre d’échantillon fini. Ensuite, dans l’esprit des méthodes basées
sur l’inégalité de concentration développées dans Massart (2007), Massart & Meynet (2011), et Cohen
& Le Pennec (2011), un certain nombre de résultats d’oracle à échantillon fini ont été établis pour
l’opérateur de sélection et de rétrécissement le plus faible possible. (LASSO), (Tibshirani, 1996) et
les estimateurs généraux de maximum de vraisemblance pénalisés (PMLE). Ces résultats incluent les
travaux pour les modèles graphiques gaussiens de grande dimension (Devijver & Gallopin, 2018), la
sélection de modèles à mélange gaussien (Maugis & Michel, 2011b,a), les modèles de régression à
mélange fini (Meynet, 2013, Devijver, 2015a,b, 2017b,a), modèles SGaME sans tenir compte de la
grande dimension (Montuelle et al., 2014).

Aucune tentative n’a été faite dans la littérature pour développer une inégalité d’oracle à échantillon
fini pour le cadre des modèles de régression MoE pour les données de grande dimension. Dans cette
thèse, à notre connaissance, nous sommes les premiers à fournir des inégalités oracle à échantillon fini
pour plusieurs modèles de régression MoE de grande dimension, y compris le modèle GLoME (Nguyen
et al., 2021c, Section 3.2), modèle BLoME (Nguyen et al., 2021b, Section 3.3), modèle SGaME utilisant
LASSO (Nguyen et al., 2020c, Section 4.2), et modèle SGaBloME (Section 4.3). En particulier, notre
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stratégie de preuve utilise de nouvelles approches récentes comprenant un théorème de sélection de
modèle pour l’estimateur du maximum de vraisemblance (MLE) parmi une sous-collection aléatoire
(Devijver, 2015b), un résultat de sélection de modèle non asymptotique pour la détection d’une bonne
structure bloc-diagonale dans les grands modèles graphiques (Devijver & Gallopin, 2018) et une astuce
de reparamétrisation pour limiter l’entropie métrique de l’espace des paramètres de déclenchement
gaussien dans les modèles GLoME (Nguyen et al., 2021c), voir également Section 3.2 pour plus de
détails. Notez que pour les paramètres gaussiens normalisés, la technique de traitement des poids
logistiques dans les modèles SGaME de Montuelle et al. (2014) n’est pas directement applicable au
cadre GLoME ou BLoME, en raison de la forme quadratique du lien canonique. Par conséquent, nous
proposons un reparameterization trick1 pour limiter l’entropie métrique de l’espace des paramètres
gaussiens normalisés; voir Equation (3.2.25) et Section 3.2.5.2 pour plus de détails. En outre, dans
Nguyen et al. (2021c, Theorem 3.2.3), voir également Section 3.2, nous étendons les résultats de
Montuelle et al. (2014, Theorem 1) lorsqu’on utilise des fonctions linéaires à la forme quadratique du
lien canonique des gating networks.

Parmi les principales contributions de cette thèse figurent d’importants résultats théoriques: des
inégalités d’oracle à échantillon fini qui fournissent des limites non-asymptotiques sur les risques, et des
limites inférieures sur les fonctions de pénalité qui assurent des contrôles théoriques non-asymptotiques
sur les estimateurs sous la perte de Jensen–Kullback–Leibler. Ces inégalités d’oracle fournissent
également des justifications théoriques solides pour les formes de pénalité lors de l’utilisation de
l’heuristique de pente pour les modèles GLLiM, GLoME, BLLiM, BLoME, SGaME et SGaBloME.
Nous soulignons que, bien que les inégalités d’oracle à échantillon fini comparent les performances
de nos estimateurs avec le meilleur modèle de la collection, elles nous permettent également de bien
approximer une classe riche de densités conditionnelles si nous prenons suffisamment de degrés de
polynômes de moyennes d’experts gaussiens (appartient à DΥ) et/ou suffisamment de clusters (parmi
l’ensemble K) dans le contexte du mélange d’experts gaussiens (Jiang & Tanner, 1999a, Mendes &
Jiang, 2012, Nguyen et al., 2016, Ho et al., 2019, Nguyen et al., 2021a). Cela conduit à ce que les
bornes supérieures des risques soient petites, pour DΥ et K bien choisis.

En particulier, en dehors des questions théoriques importantes concernant la rigueur des bornes, la
manière d’intégrer l’information a priori et l’analyse minimax de notre PMLE proposé, nous espérons
que nos inégalités d’oracle à échantillon fini et les expériences numériques intéressantes correspondantes
aideront à répondre partiellement aux deux questions importantes suivantes soulevées dans le domaine
des modèles de régression MoE : (1) Quel nombre de composantes de mélange K devrait être choisi,
étant donné la taille de l’échantillon n, et (2) S’il est préférable d’utiliser quelques experts complexes
ou de combiner plusieurs experts simples, étant donné le nombre total de paramètres. Notez que, de
tels problèmes sont considérés dans le travail de Mendes & Jiang (2012, Proposition 1), où les auteurs
ont fourni quelques aperçus qualitatifs et ont seulement suggéré une méthode pratique pour choisir
K et d impliquant une pénalité de complexité ou une validation croisée. En outre, leur modèle ne
concerne qu’une estimation de maximum de vraisemblance non régularisée et ne convient donc pas au
cadre à haute dimension.

Dans cette thèse, nous considérerons le problème de sélection des paramètres comme un problème
de sélection de modèles, en construisant une collection de modèles, avec plus ou moins de clusters, des
experts complexes ou simples contrôlant via les ordres de polynômes des poids et des experts gaussiens,
des modèles sparse de rang élevé ou faible, et des coefficients plus ou moins actifs. Il restera ensuite
à choisir un modèle parmi cette collection. De manière générale, désignons par S = (Sm)m∈M la
collection de modèles que nous considérons, indexée parM. Il est utile de souligner que, contrairement
à ce que l’on pourrait penser, avoir une collection de modèles trop importante peut être préjudiciable,
par exemple en sélectionnant des estimateurs incohérents (Bahadur, 1958) ou sous-optimaux (Birgé
& Massart, 1993). C’est ce qu’on appelle le paradigme de la sélection de modèles.

Avant de discuter des inégalités d’oracle à échantillon fini pour la sélection de modèle par pénalisation
dans les modèles de régression MoE, nous passons en revue quelques faits standard concernant

1Notez que nous utilisons cette nomenclature uniquement pour effectuer un changement de variables de l’espace des
paramètres gaussiens normalisés des modèles GLoME via les poids logistiques des modèles SGaME. Cette astuce de
reparamétrisation ne correspond pas à celle, bien connue, des auto-encodeurs variationnels (VAE) dans la littérature sur
l’apprentissage profond (voir Kingma & Welling, 2013, pour plus de détails).
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l’estimation par minimisation de contraste.

Estimation par minimisation du contraste

La méthode d’estimation par minimisation du contraste repose sur l’existence d’une fonction de con-
traste, notée γ, remplissant la propriété fondamentale que le FDP conditionnel inconnu satisfait

s0 = arg min
t∈S

EX,Y [γ(t,X,Y)] .

De cette manière, nous obtenons ce que nous appellerons la fonction de perte associée, notée l, qui est
définie par

l (s0, t) = EX,Y [γ(t,X,Y)]− EX,Y [γ(s0,X,Y)] , ∀t ∈ S.

Définissons un certain contraste empirique γn (basé sur l’observation
(
X[n],Y[n]

)
:= (Xi,Yi)i∈[n]) tel

que

∀t ∈ S, γn(t) =
1

n

n∑
i=1

γ (t,Xi,Yi) .

Pour le modèle m, un estimateur de contraste minimal ŝm de s0 est un minimiseur du contraste
empirique γn sur Sm, i.e., ŝm = arg mint∈Sm

γn(t). L’idée est que, dans des conditions raisonnables,
γn(t) converge vers EX,Y [γ(t,X,Y)], et qu’il y a un certain espoir d’obtenir un estimateur sensible
de s0, du moins si s0 appartient (ou est assez proche) au modèle Sm. Pour mesurer la qualité d’un tel
estimateur, nous faisons usage de la risque suivante R (ŝm) = EX[n],Y[n]

[l (s0, ŝm)].
Par exemple, dans le cadre de l’estimation de la densité, l’estimateur populaire du maximum

de vraisemblance est un estimateur du contraste minimum. En effet, on suppose que l’échantillon
(Xi,Yi)i∈[n] a la densité s0 w.r.t. une mesure µ et on considère une autre densité t w.r.t. la même
mesure. Alors, le log-vraisemblance négatif − ln [t (y|x)] est le contraste de vraisemblance maximum,
et la fonction de perte correspondante est la divergence de Kullback–Leibler définie par KL (s0, t) =∫
s0 ln

(
s0
t

)
dµ. Pour un traitement plus complet concernant d’autres exemples de contraste pour la

régression, la classification et le bruit blanc gaussien, nous renvoyons le lecteur à Massart (2007).

Le paradigme du choix du modèle

Le but est de sélectionner le “meilleur” estimateur parmi la collection (ŝm)m∈M. Soit Sm̂ le modèle
sélectionné par une procédure de sélection de modèle donnée. Nous désignerons par ŝm̂ l’estimateur
sélectionné et soulignerons que tant ŝm (pour tout m) que m̂ sont construits à partir du même
échantillon

(
X[n],Y[n]

)
. Cette procédure a été bien étudiée tant d’un point de vue asymptotique que

non asymptotique.
Idéalement, pour un n donné et un ensemble de données donné, on aimerait considérer m∗ min-

imisant le risque EX[n],Y[n]
[l (s0, ŝm)], par rapport à m ∈M. En d’autres termes,

m∗ ∈ arg min
m∈M

l (s0, ŝm) . (5.4.17)

L’estimateur de contraste minimal ŝm∗ sur le modèle correspondant Sm∗ est appelé un oracle. Cette
terminologie a été introduite précédemment par Donoho & Johnstone (1994). Malheureusement,
puisque la perte l (s0, ŝm) dépend de la distribution d’échantillon inconnue s0, il en va de même
pour m∗ et l’oracle ŝm∗ ne devrait pas être un estimateur de s0. Cependant, cet oracle peut servir
de référence pour construire toute procédure de sélection pilotée par les données parmi la collection
d’estimateurs (ŝm)m∈M . Il est maintenant naturel de considérer des critères pilotés par les données
pour sélectionner un estimateur qui tend à imiter un oracle. En d’autres termes, nous voudrions que
le risque de l’estimateur sélectionné ŝm̂, i.e., EX[n],Y[n]

[l(s0, ŝm̂)], pour être aussi proche que possible
du risque d’un oracle, i.e., EX[n],Y[n]

[l(s0, ŝm∗)].
Il convient de souligner que l’approche non-asymptotique (voir, e.g., Massart, 2007, Wainwright,

2019 pour la bibliographie complète) diffère du point de vue asymptotique habituel dans le sens où
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le nombre ainsi que les dimensions des modèles dans M peuvent dépendre de n. Nous souhaitons
construire une procédure de sélection de modèles telle que le modèle sélectionné Sm̂ soit optimal. Par
exemple, il remplit l’inégalité d’oracle suivante

l (s0, ŝm̂) ≤ C1l (s0, ŝm∗) +
C2

n
(5.4.18)

avec C1 aussi proche de 1 que possible et C2/n un terme résiduel. L’inégalité de l’oracle est dite exacte
si C1 = 1. Nous nous attendons à ce que cette inégalité tienne en valeur attendue ou avec une forte
probabilité. En particulier, lorsque de tels résultats sont trop difficiles à obtenir, il suffit d’obtenir une
forme plus faible:

EX[n],Y[n]
[l (s0, ŝm̂)] ≤ C1 inf

m∈M
EX[n],Y[n]

[l (s0, ŝm∗)] +
C2

n
. (5.4.19)

Motivation pourquoi l’asymptotique échoue.

Sélection de modèle via la pénalisation

Décrivons maintenant comment sélectionner un modèle via la minimisation d’un critère pénalisé,
pour atteindre un compromis biais/variance. En effet, nous pouvons décomposer la perte en une
approximation et une estimation une partie biais et une partie variance comme suit:

l (s0, ŝm) = EX,Y [γ(ŝm,X,Y)]− EX,Y [γ(s0,X,Y)]

= EX,Y [γ(sm,X,Y)]− EX,Y [γ(s0,X,Y)]− EX,Y [γ(sm,X,Y)] + EX,Y [γ(ŝm,X,Y)]

= l (s0, sm)︸ ︷︷ ︸
biais

+EX,Y [γ(ŝm,X,Y)− γ(sm,X,Y)]︸ ︷︷ ︸
variance

,

où sm = arg mint∈Sm
EX,Y [γ(t,X,Y)] est l’une des meilleures approximations de s0 dans Sm. Il

convient de souligner que pour minimiser le biais, nous avons besoin d’un modèle complexe, qui
s’ajuste très étroitement aux données; et pour minimiser la variance, nous ne devons pas considérer
des modèles trop complexes, afin d’éviter un surajustement des données.

Les principales méthodes pour tenir compte de ces procédures de sélection de modèles sont la
validation croisée et le hold-out (voir, e.g., Arlot & Celisse, 2010, Maillard, 2020 pour la bibliographie
complète), ou les critères pénalisés. Il est souligné que la principale difficulté dans l’exécution de la
validation croisée et du hold-out est la complexité du temps, en particulier dans un cadre à grande
dimension. Par conséquent, le choix de critères de pénalisation semble le mieux adapté à nos modèles
de régression MoE à grande dimension.

Décrivons la méthode plus en détail. La procédure sélection de modèle par pénalisation consiste
à considérer une fonction de pénalité pen: M→ R+ et à prendre m̂ qui minimise le critère pénalisé,
défini comme γn(ŝm) + pen(m) sur M. Cela signifie que nous choisissons

m̂ = arg min
m∈M

{γn(ŝm) + pen(m)} . (5.4.20)

En d’autres termes, dans le contexte de l’estimateur du maximum de vraisemblance pour le cas de
la régression, pour un choix donné de pen(m), le meilleur modèle Sm̂. est choisi comme celui dont
l’indice est un η′-almost minimiseur de la somme de la log-vraisemblance négative (NLL) et de cette
pénalité:

n∑
i=1

− ln (ŝm̂) (yi|xi)) + pen (m̂) ≤ inf
m∈M

(
n∑
i=1

− ln (ŝm (yi|xi)) + pen(m)

)
+ η′. (5.4.21)

Ici, ŝm est défini comme le η-minimiseur de la NLL:

n∑
i=1

− ln (sŝm) (yi|xi)) ≤ inf
sm∈Sm

n∑
i=1

− ln (sm (yi|xi)) + η, (5.4.22)
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où le terme d’erreur η est nécessaire lorsque l’infimum peut ne pas être unique ou même ne pas être
atteint. Notez que ŝm̂ est alors appelé l’estimateur de vraisemblance pénalisé par η′ et dépend à la
fois des termes d’erreur η et η′. À partir de maintenant, le terme le meilleur modèle ou estimation
basé sur les données sont tous deux utilisés pour indiquer qu’il satisfait (5.4.21).

Nous soulignons que le choix de la pénalité est délicat mais évidemment nécessaire. La construction
de telles fonctions dans le contexte de l’estimateur du maximum de vraisemblance remonte aux travaux
d’Akaike et de Schwarz, voir respectivement Akaike (1974) et Schwarz et al. (1978). Ils ont proposé
les désormais classiques critères AIC et BIC, les deux outils les plus connus et les plus outils les plus
utilisés dans la sélection de modèles statistiques, où la pénalité est respectivement établie comme suit:

penAIC(m) = Dm,

penBIC(m) =
ln(n)Dm

2
,

où Dm est la dimension du modèle m, et n est la taille de l’échantillon considéré. Ces critères pénalisés
bien connus ont été largement étudiés (voir, e.g., Anderson & Burnham, 2002) et sont basés sur des
approximations asymptotiques. Par conséquent, ces critères peuvent être erronés dans un contexte
non asymptotique. Plus précisément, l’AIC et le BIC sont basés sur le théorème de Wilks et une
approche bayésienne, voir, respectivement, e.g., Cavanaugh & Neath (2019) et Neath & Cavanaugh
(2012), pour des revues récentes sur les fondements conceptuels et théoriques. Parallèlement, Mallows
(1973), et plus tard Craven & Wahba (1978) ont proposé d’autres critères pénalisés célèbres: le Cp de
Mallows et la validation croisée généralisée (GCV), respectivement, dans le contexte de la régression
linéaire. Mathématiquement, Mallows a obtenu

penMallows(m) =
2Dmσ

2

n
,

où σ2 est le niveau de bruit du vrai modèle de régression qui est inconnu (s’il existe) et σ2 est donc
difficile à estimer. De même, la solution proposée par la méthode GCV est basée sur la validation
croisée pour choisir le paramètre de réglage inconnu (dont la meilleure valeur est en fait σ2). Ainsi,
une fois encore, nous devons estimer un paramètre inconnu.

Heureistique de pente

Motivé par certains travaux récents sur les inégalités de concentration, Birgé & Massart (2001) a intro-
duit l’heuristique de pente, qui est une méthodologie non-asymptotique permettant de sélectionner un
modèle parmi une collection de modèles. Cette heuristique de pente nous permet de choisir une pénalité
optimale à partir de données qui sont connues jusqu’à une constante multiplicative κ. Décrivons les
idées de cette heuristique. Dans ce cadre, la forme de la pénalité est alors adaptée comme penshape (·)
et il existe une constante inconnue κopt telle que

penopt : m ∈M 7→ κoptpenshape (m)

est une pénalité optimale. Afin de sélectionner le modèle d’oracle en utilisant (5.4.17) et (5.4.20), nous
recherchons une pénalité proche de la fonction de pénalité suivante:

M3m 7→ pen(m) = l (s0, ŝm)− γn(ŝm).

Cependant, comme s0 est inconnu en pratique, nous allons essayer d’approcher cette quantité en la
décomposant en:

l (s0, ŝm)− γn(ŝm) = EX,Y [γ (ŝm,X,Y)]− EX,Y [γ (s0,X,Y)]− γn(ŝm)

= EX,Y [γ (ŝm,X,Y)]− EX,Y [γ (sm,X,Y)]︸ ︷︷ ︸
νm

+ [γn(sm)− γn(ŝm)]︸ ︷︷ ︸
ν̂m

+ EX,Y [γ (sm,X,Y)]− EX,Y [γ (s0,X,Y)]︸ ︷︷ ︸
(1)

− [γn(sm)− γn(s0)]︸ ︷︷ ︸
(2)

−γn(s0). (5.4.23)
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Ici, νm est un terme “erreur d’estimation”, ν̂m est un terme “erreur d’estimation” empirique. Nous
désignerons par ∆n (sm) = (1) − (2), ce qui correspond à la différence entre le terme “biais” et sa
version empirique. Notez que γn(s0) ne dépend pas de m, l’idée principale est d’estimer la pénalité
idéale suivante, définie comme pen∗ (m) = νm + ν̂m + ∆n (sm), à partir des données afin de construire
une fonction de pénalité optimale. Ensuite, (5.4.23) implique que

l (s0, ŝm)− γn(ŝm) = pen∗ (m)− γn(s0), ∀m ∈M. (5.4.24)

Ensuite, nous souhaitons prouver l’inégalité d’oracle suivante

l (s0, ŝm̂) + [pen (m̂)− pen∗ (m̂)] ≤ inf
m∈M

{l (s0, ŝm) + [pen (m)− pen∗ (m)]} . (5.4.25)

En effet, par définition de la pénalité idéale par (5.4.24), et le fait que m̂ ∈ M, il s’avère que pour
tous les m ∈M,

l (s0, ŝm̂) + [pen (m̂)− pen∗ (m̂)] = γn(ŝm̂) + pen (m̂)− γn(s0)

≤ γn(ŝm) + pen (m)− γn(s0) (using (5.4.20))

= l (s0, ŝm) + [pen (m)− pen∗ (m)] (using (5.4.24)).

Le point important à noter ici est que la forme de (5.4.25) nous incite à rechercher une pénalité
proche de la pénalité idéale pour obtenir une inégalité oracle. Selon l’expression de la pénalité idéale
pen∗ (m) = νm + ν̂m + ∆n (sm), tant νm que ∆n (sm) dépendent du FDP conditionnel inconnu s0.
Par conséquent, il est naturel d’essayer de relier la fonction de pénalité au terme d’erreur d’estimation
empirique ν̂m.

Pour accomplir cette tâche, d’un point de vue théorique, Birgé & Massart (2001, 2007) ont proposé
et prouvé pour la première fois la méthode heuristique de pente dans le contexte de la régression
par moindres carrés homoscédastiques gaussiens avec plan fixe. Ils prouvent qu’il existe une peine
minimale, penmin (m) = ν̂m, à savoir telle que la dimension et le risque des modèles sélectionnés
avec des pénalités plus légères deviennent très grands, alors que des pénalités plus élevées devraient
sélectionner des modèles d’une complexité “raisonnable”. En outre, ils montrent que si l’on considère
une pénalité égale à deux fois cette pénalité minimale permet de sélectionner un modèle proche du
modèle de l’oracle en termes de risque.

Plus précisément, étant donné la pénalité choisie comme pen(m) = κν̂m, le critère pénalisé peut
être écrit comme suit

crit(m) = (1− κ)γn (ŝm) + κγn (sm) .

Par conséquent, trois cas se présentent:

� si κ = 1 alors crit(m) = γn (sm), qui se concentre autour de son espérance EX,Y [γ (sm,X,Y)] =
l (s0, sm)︸ ︷︷ ︸

biais

+EX,Y [γ(s0,X,Y)] pour de grands n:cette procédure sélectionne un modèle min-

imisant le biais et ne prend pas en compte la variance, ce qui conduit à un tel critère a une
forte probabilité de sélectionner un modèle trop complexe;

� si κ < 1 ensuite, lorsque la complexité augmente, le critère diminue toujours car les deux termes
de crit(m) sont en chute libre: les modèles sélectionnés sont toujours parmi les plus complexes;

� si κ > 1 puis le critère augmente avec la complexité des modèles les plus complexes du fait de
l’élimination des termes de biais correspondants (ces modèles ont presque le même biais): la
dimension des modèles sélectionnés sera plus raisonnable.

Le premier point de l’heuristique de pente est ν̂m ≈ νm puisque ν̂m est la contrepartie empirique de
νm. En particulier, on s’attend à pouvoir contrôler la fluctuation de ∆n (sm) autour de son espérance
zéro grâce aux résultats de la concentration. Par conséquent, nous pouvons approximer la pénalité
idéale comme étant le double de la pénalité minimale en raison du fait que

pen∗ (m) = νm + ν̂m + ∆n (sm) ≈ 2ν̂m.
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Ainsi, en pratique, le principal problème restant est de déterminer la pénalité minimale ν̂m. À cette
fin, sur l’ensemble de données (Xi,Yi)i∈[n]; soit on recherche le plus grand saut de complexité du
modèle sélectionné en fonction de la constante multiplicative κ de la pénalité, soit on regarde la pente
asymptotique d’une régression linéaire entre la forme de la pénalité penshape (·) et la valeur de contraste
γn (sm) pour les modèles les plus complexes, que l’on appellera saut de dimension ou estimation de la
pente dirigée par les donnees, respectivement. De cette façon, nous obtenons la pénalité minimale, et
nous la multiplions par deux pour obtenir la pénalité optimale. Pour une discussion plus approfondie
du principe des heuristiques de pente, nous renvoyons le lecteur à Baudry et al. (2012), Arlot (2019)
et aux références qui y sont données. Figures 5.3a and 5.3b illustrent ces idées.
Nous soulignons que, d’un point de vue pratique, nous utilisons la méthode dite CAPUSHE (CAl-
ibrating Penalty Using Slope HEuristics) package in R (Arlot et al., 2016, Baudry et al., 2012)
pour mettre en œuvre les approches de saut de dimension et d’estimation de la pente basée sur
les données. En pratique, l’utilisation de l’heuristique de pente est efficace lorsqu’une pénalité opti-
male penopt(·) = κoptpenshape(·) est connue jusqu’à un facteur multiplicatif. Il convient de souligner
que la clé de voûte de l’heuristique de pente est que

κopt

2 penshape(m) est une bonne estimation de
ŝm et fournit une pénalité minimale. De manière générale, le penshape(·) peut être choisi comme
mesure de complexité, lorsque sa définition n’est pas évidente a priori. Cette mesure de complexité est
généralement la dimension du modèle Dm ou le nombre de paramètres libres nécessaires à l’estimation.

D’un point de vue théorique, dans cette thèse, nous apportons plusieurs inégalités d’oracle non-
asymptotiques, Theorems 1.2.2 and 1.2.3, qui fournissent des limites non asymptotiques sur les risques,
et des limites inférieures sur les fonctions de pénalité qui assurent des contrôles théoriques non asymp-
totiques sur les estimateurs sous la perte de Jensen–Kullback–Leibler. Ces inégalités d’oracle four-
nissent également certaines justifications théoriques des formes de pénalité lors de l’utilisation de
l’heuristique de pente pour les modèles de régression MoE correspondants. Plus précisément, des
critères de vraisemblance pénalisés sont proposés dans Chapters 3 and 4 pour sélectionner les meilleurs
modèles de régression MoE basés sur des données parmi une collection spécifique de modèles. Ces
critères dépendent de constantes inconnues qui peuvent être calibrées dans des situations pratiques par
une heuristique de pente. En particulier, afin de travailler avec la FDP conditionnelle dans plusieurs
modèles de régression MoE, nous souhaitons faire usage d’un théorème de sélection de modèle pour
MLE parmi une sous-collection aléatoire (cf. Devijver, 2015b, Théorème 5.1 et Devijver & Gallopin,
2018, Théorème 7. 3), qui est une extension de toute une collection de densités conditionnelles de Co-
hen & Le Pennec (2011, Théorème 2), et de Massart (2007, Théorème 7.11), fonctionnant uniquement
pour l’estimation de densité.

Dans la section suivante, nous résumons les contributions de la thèse.

Contributions de la thèse

Le reste du manuscrit est organisé comme suit.

Contribution du Chapitre 1

Chapter 1 est consacré à l’état de l’art. En outre, nous soulignons également les principales contribu-
tions dans les autres chapitres de notre thèse.

Contribution du Chapitre 2

Dans le Chapter 2, nous présentons nos premières contributions principales en établissant des résultats
d’approximation théorique des modèles de mélanges d’experts sur la plus large classe de FDP et de
FDP conditionnels, sous le plus faible ensemble d’hypothèses, à partir des travaux:

(C1) TrungTin Nguyen, Hien D Nguyen, Faicel Chamroukhi, and Geoffrey J McLachlan. Ap-
proximation by finite mixtures of continuous density functions that vanish at infinity. Cogent
Mathematics & Statistics, volume 7, page 1750861. Cogent OA, 2020.
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Figure 5.3: Illustration de l’heuristique de pente avec 2000 points de données des exemples du scénarior
WS. Dans Figure 5.3a nous estimons κ en utilisant κ̂dj le plus grand saut de complexité. Nous
choisissons ensuite un modèle qui minimise la log-vraisemblance pénalisée par κopt = 2κ̂dj. Dans
Figure 5.3b, nous estimons κ en recherchant la pente asymptotique d’une régression linéaire entre la
forme de la pénalité penshape (·) et la valeur de contraste γn (sm) pour les modèles les plus complexes.

Link: https://www.tandfonline.com/doi/full/10.1080/25742558.2020.1750861
(Nguyen et al., 2020d).

(C2) Hien Duy Nguyen, TrungTin Nguyen, Faicel Chamroukhi, and Geoffrey McLachlan. Approx-
imations of conditional probability density functions in Lebesgue spaces via mixture of experts
models. Journal of Statistical Distributions and Applications, 8(1), 13, 2021.
Link: https://doi.org/10.1186/s40488-021-00125-0
(Nguyen et al., 2021a).

(C3) TrungTin Nguyen, Faicel Chamroukhi, Hien D Nguyen, and Geoffrey J McLachlan. Ap-
proximation of probability density functions via location-scale finite mixtures in Lebesgue spaces.
arXiv preprint arXiv:2008.09787. To appear, Communications in Statistics - Theory and Meth-
ods, 2021.
Link: https://arxiv.org/pdf/2008.09787.pdf
(Nguyen et al., 2020b).

Plus précisément, dans Chapter 2, nous passons d’abord en revue les propriétés d’approximation
universelles des mélanges de densités classiques afin de préparer le cadre théorique et de clarifier
certaines affirmations vagues et peu claires dans la littérature, avant de les considérer dans le contexte
des modèles MoE. En particulier, nous prouvons que, à un degré de précision arbitraire, les mélanges
de translatées-dilatées d’une fonction de densité de probabilité (FDP) continue peuvent approximer
toute FDP continue, uniformément, sur un ensemble compact; et les mélanges de translatées dilatées
d’une FDP essentiellement bornée peuvent approximer toute FDP dans les espaces de Lebesgue.
Ensuite, après avoir apporté des améliorations aux résultats d’approximation dans le contexte des
mélanges inconditionnels, nous étudions les capacités d’approximation universelles des modèles MoE
dans une variété de contextes, y compris en approximation de densité conditionnelle et en calcul
bayésien approximatif (ABC). Étant donné des variables d’entrée et de sortie toutes deux à support
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compact, nous prouvons que les MoE pour les FDP conditionnelles sont denses dans les espaces de
Lebesgue Dans une autre contribution du sujet de cette thèse au sens large, nous avons considéré les
modèles MoE dans le cadre bayésien. Ensuite, nous prouvons que la distribution quasi-postérieure
résultant de l’ABC avec des postérieurs de substitution construits à partir de mélanges gaussiens finis
en utilisant une approche de régression inverse, converge vers la vraie distribution, dans des conditions
standard via les travaux suivants:

(C4) Florence Forbes, Hien Duy Nguyen, TrungTin Nguyen, and Julyan Arbel. Approximate
Bayesian computation with surrogate posteriors. hal-03139256. Under Review, Statistics and
Computing, February 2021.
Link: https://hal.archives-ouvertes.fr/hal-03139256v2/document
(Forbes et al., 2021).

Plus précisément, nous cherchons à résumer les principaux théorèmes de ce chapitre.

Capacités d’approximation des modèles de mélanges finis

On définit (E, ‖·‖E) comme un espace vectoriel normé (NVS), et soit x ∈
(
Rd, ‖·‖2

)
, pour un certain

nombre de d ∈ N?, où ‖·‖2 est la norme euclidienne. Soient f : Rd → R est une fonction satisfaisant
f ≥ 0 et

∫
fdλ = 1, où λ est la mesure de Lebesgue. Nous disons que f est une fonction de FDP sur

le domaine Rd (que nous que nous omettrons pour des raisons de brièveté, à partir de maintenant).
Soit g : Rd → R est un autre FDP et définissons la classe fonctionnelle Mg =

⋃
m∈N?M

g
m, où

Mg
m =

{
hgm : hgm (·) =

m∑
i=1

ci

σdi
g

(
· − µi
σi

)
, µi ∈ Rd, σi ∈ R+, c ∈ Πm−1, i ∈ [m]

}
,

c> = (c1, . . . , cm), R+ = (0,∞), un simplex de probabilité défini par

Πm−1 =

{
(πi)i∈[m] ∈ Rm|∀i ∈ [m] , πi > 0,

m∑
i=1

πi = 1

}
, (5.4.26)

[m] = {1, . . . ,m} ,m ∈ N?, et (·)> est l’opérateur de transposition de matrice.
Nous disons que tout hgm ∈ Mg

m est un mélange fini à m-composant de translatées dilatées de la
FDP g.

L’étude des FDP dans la classe Mg
m est un domaine de recherche appliquée et technique toujours

d’actualité, en particulier dans le domaine de la recherche appliquée et technique, en statistique. Nous
renvoyons le lecteur intéressé aux nombreux ouvrages complets sur le sujet, tels que Everitt & Hand
(1981), Titterington et al. (1985), McLachlan & Basford (1988), Lindsay (1995), McLachlan & Peel
(2000), Frühwirth-Schnatter (2006), Schlattmann (2009), Mengersen et al. (2011), and Fruhwirth-
Schnatter et al. (2019).

Une grande partie de la popularité des modèles de mélange fini provient du théorème populaire,
qui stipule que pour toute densité f , il existe un h ∈ Mg

m, pour un nombre suffisamment grand de
composantes m ∈ N?, de sorte que h se rapproche de f de manière arbitraire, dans un certain sens.
Des exemples de ce théorème populaire apparaissent dans des déclarations telles que: “à condition que
le nombre de densités composantes n’est pas borné ci-dessus, certaines formes de de mélange peuvent
être utilisées pour fournir une approximation arbitrairement proche d’une distribution de probabilité
donnée” (Titterington et al., 1985, p. 50), “les formes de modèles [le mélange] peuvent s’ajuster
à n’importe quelle distribution et augmenter significativement l’ajustement du modèle” (Walker &
Ben-Akiva, 2011, p. 173), et “un modèle de modèle de mélange peut approcher presque n’importe
quelle distribution” (Yona, 2010, p. 500). D’autres déclarations exprimant le même sentiment sont
rapportées dans Nguyen & McLachlan (2019). Il y a un sentiment de flou dans les déclarations
rapportées, et la nature technique du théorème populaire n’est jamais clairement établie.

Afin de poursuivre, nous avons besoin des définitions suivantes. Nous disons que f est supporté de
manière compacte sur le sous-ensemble K ⊂ Rd, si K est compact et si 1K{f = 0, où 1X est la fonction

indicatrice qui prend valeur 1 lorsque x ∈ X et 0, ailleurs, et (·){ est l’opérateur de complémentation
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d’ensemble (c’est-à-dire, X{ = Rd\X). Ici, X est un sous-ensemble générique de Rd. De plus, nous
disons que f ∈ Lp (X) pour tout 1 ≤ p <∞, si

‖f‖Lp(X) =

(∫
|1Xf |p dλ

)1/p

<∞,

et pour p =∞, si

‖f‖L∞(X) = inf {a ≥ 0 : λ ({x ∈ X : |f(x)| > a}) = 0} <∞,

où l’on appelle ‖·‖Lp(X) la Lp-norm sur X. Lorsque X = Rd, nous écrirons ‖·‖Lp(Rd) = ‖·‖Lp . Dénotons

la classe de toutes les fonctions bornées sur X par

B (X) = {f ∈ L∞ (X) : ∃a ∈ [0,∞) , such that |f (x)| ≤ a,∀x ∈ X}

et on écrit
‖f‖B(X) = sup

x∈X
|f (x)| .

Par souci de concision, nous écrirons B
(
Rd
)

= B, et ‖f‖B(Rd) = ‖f‖B.

En outre, nous définissons la divergence dite de Kullback–Leibler, voir Kullback & Leibler (1951),
entre deux FDP quelconques f et g sur X, comme suit

KLX (f, g) =

∫
1Xf log

(
f

g

)
dλ.

Soit g : Rd → R à nouveau un FDP. Alors, pour chaque m ∈ N?, nous définissons

N g
m =

{
h : h (x) =

m∑
i=1

ci
1

σdi
g

(
x− µi
σi

)
, µi ∈ Rd, σi ∈ R+, ci ∈ R, i ∈ [m]

}
,

que nous appelons l’ensemble des m-composant combinaisons linéaires de translatées dilatées de la
FDP g. Dans le passé, les résultats concernant les approximations des FDP f par l’intermédiaire de
fonctions η ∈ N g

m ont été plus nombreux. Par exemple, dans le cas de g = φ, où

φ (x) = (2π)−n/2 exp
(
−‖x‖22 /2

)
, (5.4.27)

est la FDP normale standard. Nous désignons la classe des fonctions continues et uniformément
continues par C et Cu, respectivement. Les classes de fonctions continues bornées sont désignées par
Cb = C ∩ B.

Nous avons le résultat que pour tout FDP f , ensemble compact K ⊂ Rd, et ε > 0, il existe un
m ∈ N? et h ∈ N φ

m, tels que ‖f − h‖L∞(K) < ε. (Sandberg, 2001, Lem. 1). De plus, en définissant
l’ensemble des fonctions continues qui disparaissent à l’infini par

C0 =
{
f ∈ C : ∀ε > 0, ∃ une compacte K ⊂ Rd, tel que ‖f‖L∞(K{) < ε

}
,

nous avons également le résultat suivant: pour chaque FDP f ∈ C0 et ε > 0, il existe un m ∈ N? et
h ∈ N φ

m, de telle sorte que ‖f − h‖L∞ < ε (Sandberg, 2001, Thm. 2). Les deux résultats de Sandberg
(2001) sont des implications simples du célèbre théorème de Stone–Weierstrass (cf. Stone (1948) et De
Branges (1959)). Dans Nguyen & McLachlan (2019), l’approximation de FDPs f par la classe Mg

m a
été explorée dans un cadre restrictif. Soit {hgm} une séquence de fonctions qui tirent des éléments de
la séquence imbriquée d’ensembles {Mg

m} (c’est-à-dire, hg1 ∈M
g
1, h

g
2 ∈M

g
2, . . . ).

A notre connaissance, la revendication la plus forte qui est disponible concernant le théorème
populaire, dans un contexte probabiliste ou statistique, est celle de (DasGupta, 2008, Thm. 33.2).
Soit {ηgm} est une séquence de fonctions qui tirent des éléments de la séquence imbriquée d’ensembles
{N g

m}, de la même façon que {hgm}. Nous paraphrasons l’affirmation sans perte de fidélité, comme
suit.
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Claim 5.4.2. Si f, g ∈ C sont des FDP et que K ⊂ Rd est compact, alors il existe une séquence {ηgm},
telle que

lim
m→∞

‖f − ηgm‖L∞(K) = 0.

Malheureusement, la preuve de Claim 5.4.2 n’est pas fournie dans DasGupta (2008). La seule
référence du résultat est à un endroit non divulgué dans le document Cheney & Light (2000), qui,
après enquête enquête, on peut en déduire qu’il s’agit du théorème 5 du (Cheney & Light, 2000, Ch.
20). Il est également à noter qu’aucune preuve n’est fournie pour ce théorème. Au lieu de cela, il est
indiqué que la preuve est similaire à celle du Théorème 1 dans (Cheney & Light, 2000, Ch. 24), qui
est une reproduction de la preuve de (Xu et al., 1993, Lem. 3.1).

Il y a un problème majeur à appliquer la technique de preuve de (Xu et al., 1993, Lem. 3.1)
afin de prouver Claim 5.4.2. La preuve de (Xu et al., 1993, Lem. 3.1) dépend de façon critique
de l’affirmation selon laquelle “il n’y a pas de perte de généralité en supposant que f (x) = 0 pour
x ∈ Rd\2K”. Ici, pour a ∈ R+, aK =

{
x ∈ Rd : x = ay, y ∈ K

}
. Cette hypothèse est nécessaire

afin d’écrire toute convolution avec f et une fonction continue arbitraire comme une intégrale sur un
domaine compact, et ensuite d’utiliser une somme de Riemann pour approximer une telle intégrale.
Par la suite, une telle technique de preuve ne fonctionne pas en dehors de la classe des fonctions
continues qui sont supportées de manière compacte sur aK. Ainsi, on ne peut pas vérifier Claim 5.4.2
à partir des matériaux de Xu et al. (1993), Cheney & Light (2000), et DasGupta (2008), seuls.

Certains résultats récents dans l’esprit de Claim 5.4.2 ont été été obtenus par Nestoridis & Ste-
fanopoulos (2007) et Nestoridis et al. (2011), en utilisant des méthodes issues de l’étude des séries
universelles (voir par exemple dans Nestoridis & Papadimitropoulos (2005)).

Soit

W =

f ∈ C0 :
∑
y∈Wd

sup
x∈[0,1]d

|f (x+ y)| <∞


désignent l’algèbre dite de Wiener (voir, par exemple, Feichtinger (1977)) et laissons

V =
{
f ∈ C0 : ∀x ∈ Rd, |f (x)| ≤ β (1 + ‖x‖2)−d−θ , β, θ ∈ R+

}
soit une classe de fonctions dont la queue se désintègre à un rythme plus rapide que o

(
‖x‖d2

)
. Dans

Nestoridis et al. (2011), il est noté que V ⊂ W. En outre, soit

Cc =
{
f ∈ C : ∃ a compact set K, such that 1K{f = 0

}
,

dénote l’ensemble des fonctions continues à support compact. La Theorem 5.4.3 suivante a été prouvée
dans Nestoridis & Stefanopoulos (2007).

Theorem 5.4.3 (Nestoridis & Stefanopoulos, 2007, Thm. 3.2). Si g ∈ V, alors les affirmations
suivantes sont vraies.

(a) Pour tout f ∈ Cc, il existe une séquence {ηgm} (ηgm ∈ N g
m), telle que

lim
m→∞

‖f − ηgm‖L1
+ ‖f − ηgm‖L∞ = 0.

(b) Pour tout f ∈ C0, il existe une séquence {ηgm} (ηgm ∈ N g
m), telle que

lim
m→∞

‖f − ηgm‖L∞ = 0.

(c) Pour tout 1 ≤ p <∞ et f ∈ Lp, il y a existe une séquence {ηgm} (ηgm ∈ N g
m), telle que

lim
m→∞

‖f − ηgm‖Lp = 0.

(d) Pour tout mesurable f , il existe une séquence {ηgm} (ηgm ∈ N g
m), telle que

lim
m→∞

ηgm = f , presque partout.
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(e) Si ν est une σ-finite mesure de Borel sur Rd, alors pour tout ν-measurable f , il existe une
séquence {ηgm} (ηgm ∈ N g

m), telle que

lim
m→∞

ηgm = f,

presque partout, par rapport à ν.

Ce résultat a ensuite été amélioré, dans Nestoridis et al. (2011), où l’espace plus général W a
été pris comme un remplacement pour V, dans Theorem 5.4.3. On désigne la classe des fonctions
continues bornées par Cb = C ∩ L∞. Le théorème suivant a été prouvé dans Nestoridis et al. (2011).

Theorem 5.4.4 (Nestoridis et al., 2011, Thm. 3.2). Si g ∈ W, alors les affirmations suivantes sont
vraies.

(a) La conclusion de Theorem 5.4.3 (a) est vraie, avec Cc remplacé par C0 ∩ L1.

(b) Les conclusions de Theorem 5.4.3 (b)–(e) sont valables.

(c) Pour tout f ∈ Cb et tout K ⊂ Rd compact, il existe une séquence {ηgm}, telle que

lim
m→∞

‖f − ηgm‖L∞(K) = 0.

En utilisant les techniques de Nestoridis & Stefanopoulos (2007), Bacharoglou (2010) a prouvé un
ensemble de résultats similaires à ceux de Theorem 5.4.3, sous la restriction que f est une fonction
non-négative avec support R, en utilisant g = φ (c’est-à-dire que g a la forme (5.4.27), où d = 1) et

en prenant
{
hφm
}

comme la séquence d’approximation, au lieu de {ηgm}. C’est-à-dire qu’on obtient le

résultat suivant est obtenu.

Theorem 5.4.5 (Bacharoglou, 2010, Cor. 2.5). Si f : R→ R+ ∪{0}, alors les affirmations suivantes
sont vraies.

(a) Pour tout FDP f ∈ Cc, il existe une séquence
{
hφm
}

(hφm ∈Mφ
m), telle que

lim
m→∞

∥∥∥f − hφm∥∥∥L1

+
∥∥∥f − hφm∥∥∥L∞ = 0.

(b) Pour tout f ∈ C0, tel que ‖f‖L1
≤ 1, il existe une séquence

{
hφm
}

(hφm ∈Mφ
m), telle que

lim
m→∞

∥∥∥f − hφm∥∥∥L∞ = 0.

(c) Pour tout 1 < p <∞ et f ∈ C∩Lp, tel que ‖f‖L1
≤ 1, il existe une séquence

{
hφm
}

(hφm ∈Mφ
m),

de telle sorte que

lim
m→∞

∥∥∥f − hφm∥∥∥Lp = 0.

(d) Pour tout mesurable f , il existe une séquence
{
hφm
}

(hφm ∈Mφ
m), de telle sorte que

lim
m→∞

hφm = f , presque partout.

(e) Pour tout FDP f ∈ C, il existe une séquence
{
hφm
}

(hφm ∈Mφ
m), de telle sorte que

lim
m→∞

∥∥∥f − hφm∥∥∥L1

= 0.
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Le Theorem 5.4.5 est restrictif de deux manières. Premièrement, il ne permet pas la caractérisation
de l’approximation via la classe Mg

m pour tout g sauf la normale FDP φ. Bien que φ soit tradition-
nellement le choix le plus courant pour g dans la pratique, la littérature moderne sur les modèles de
mélange a vu l’utilisation de nombreuses densités de probabilité de composantes plus exotiques, telles
que la densité de probabilité de student-t et ses variantes obliques et modifiées (voir, par exemple,
Peel & McLachlan, 2000, Forbes & Wraith, 2014, et Lee & McLachlan, 2016). Ainsi, son utilisation
est quelque peu limitée dans le contexte moderne. En outre, les applications modernes ont tendance
à exiger d > 1, ce qui limite encore plus l’impact du résultat en tant que rempart théorique pour la
modélisation des mélanges finis dans la pratique. Une remarque dans Bacharoglou (2010) indique que
le résultat peut être généralisé au cas où g ∈ V au lieu de g = φ. Cependant, aucune suggestion n’a
été proposée, concernant la généralisation de Theorem 5.4.5 au cas de d > 1.

Dans Section 2.1, nous prouvons un nouvel ensemble de résultats qui généralisent largement The-
orem 5.4.5. En utilisant des techniques inspirées de Donahue et al. (1997) et Cheney & Light (2000),
nous sommes en mesure d’obtenir un ensemble de résultats concernant la capacité d’approximation de
la classe des modèles de mélanges m-composant Mg

m, lorsque g ∈ C0, ou g ∈ V, et pour tout d ∈ N?.
Par définition de V, la majorité de nos résultats s’étendent au-delà des généralisations possibles pro-
posées de Theorem 5.4.5.

Motivé par les preuves incomplètes de Xu et al. (1993, Lem 3.1) et du Théorème 5 de Cheney &
Light (2000, Chapitre 20), ainsi que par les résultats restreints de Nestoridis & Stefanopoulos (2007),
Bacharoglou (2010), et Nestoridis et al. (2011), dans Section 2.1, voir aussi dans Nguyen et al. (2020d),
nous établissons et prouvons Theorem 5.4.6 concernant les suites de FDPs {hgm} à partir de Mg.

Theorem 5.4.6 (Nguyen et al., 2020d, Théorème 5). Si nous supposons que f et g sont des FDP et
que g ∈ C0, alors les affirmations suivantes sont vraies.

(a) Pour tout f ∈ C0, il existe une séquence {hgm} (hgm ∈Mg
m), de telle sorte que

lim
m→∞

‖f − hgm‖L∞ = 0.

(b) Pour tout f ∈ Cb et tout K ⊂ Rd compact, il existe une séquence {hgm} (hgm ∈Mg
m), telle que

lim
m→∞

‖f − hgm‖L∞(K) = 0.

(c) Pour tout 1 < p <∞ et f ∈ Lp, il existe une séquence {hgm} (hgm ∈Mg
m), telle que

lim
m→∞

‖f − hgm‖Lp = 0.

(d) Pour tout mesurable f , il existe une séquence {hgm} (hgm ∈Mg
m), de telle sorte que

lim
m→∞

hgm = f , presque partout.

(e) Si ν est une σ-finite mesure de Borel sur Rd, alors pour tout ν-measurable f , il existe une
séquence {hgm} (hgm ∈Mg

m), telle que

lim
m→∞

hgm = f,

presque partout, par rapport à ν.

Si nous supposons plutôt que g ∈ V, alors l’affirmation suivante est également vraie.

(f) Pour tout f ∈ C, il existe une séquence {hgm} (hgm ∈Mg
m), de telle sorte que

lim
m→∞

‖f − hgm‖L1
= 0.
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De plus, dans Section 2.2, voir aussi dans Nguyen et al. (2020b), nous établissons Theorem 5.4.7
qui améliore Theorem 5.4.6 de plusieurs façons. Plus précisément, alors que les énoncés (a), (c), (d)
et (e) sont toujours valables sous les mêmes hypothèses que dans Theorem 5.4.6; l’affirmation (b)
de Theorem 5.4.6 est améliorée pour s’appliquer à une plus grande classe de fonction cible f ∈ C,
pour plus de détails voir l’affirmation (a) de Theorem 5.4.7; et l’énoncé (f) de Theorem 5.4.6 est
drastiquement amélioré pour s’appliquer à tout f ∈ L1 et g ∈ L∞, voir plus dans l’énoncé (b) de
Theorem 5.4.7. Le but de Section 2.2 est de rechercher l’ensemble d’hypothèses le plus faible afin
d’établir des résultats théoriques d’approximation sur la classe la plus large possible de problèmes de
densité de probabilité. Nous notons en particulier que notre amélioration par rapport à l’affirmation
(b) de Theorem 5.4.6 donne exactement le résultat du théorème 5 de Cheney & Light (2000, Chapitre
20), qui a été prouvé de manière incorrecte (voir aussi DasGupta, 2008, Théorème 33.2).

Theorem 5.4.7 (Nguyen et al., 2020b, Théorème 2). Détachons hgm ∈Mg comme un m-composante
d’un mélange fini FDP. Si nous supposons que f et g sont des FDP, alors les affirmations suivantes
sont vraies.

(a) Si f, g ∈ C et que K ⊂ Rd est un ensemble compact, alors il existe une séquence {hgm}∞m=1 ⊂Mg,
tel que

lim
m→∞

‖f − hgm‖B(K) = 0.

(b) Pour p ∈ [1,∞), si f ∈ Lp et g ∈ L∞, alors il existe une séquence {hgm}∞m=1 ⊂Mg, tel que

lim
m→∞

‖f − hgm‖Lp = 0.

Modèle de mélange d’experts

Soit W = Y × X, où X ⊆ Rd et Y ⊆ Rq, pour d, q ∈ N?. Supposons que les variables aléatoires
d’entrée et de sortie, X ∈ X et Y ∈ Y, soient liées via la FDP conditionnelle f (y|x) dans la classe
fonctionnelle:

F =

{
f : W→ [0,∞) |

∫
Y
f (y|x) dλ (y) = 1,∀x ∈ X

}
,

où λ désigne la mesure de Lebesgue. L’approche MoE cherche à d’approximer la FDP conditionnelle
inconnue de la cible f par une fonction de la forme MoE:

m (y|x) =
K∑
k=1

Gatek (x) Expertk (y) ,

où Gate = (Gatek)k∈[K] ∈ GK ([K] = {1, . . . ,K}), Expert1, . . . ,ExpertK ∈ E , et K ∈ N?. Nous

disons ici que m est un modèle K-composant de MoE avec des portes issues de la classe GK et des
experts issus de la classe E , où E est une classe de FDPs avec support Y.

Les choix les plus populaires pour GK sont les classes paramétriques softmax et gaussienne:

GKS =

{
Gate = (Gatek (·;γ))k∈[K] |∀k ∈ [K] ,Gatek (·;γ) =

exp
(
ak + b>k ·

)∑K
l=1 exp

(
al + b>l ·

) ,γ ∈ GK
S

}
et

GKG =

{
Gate = (Gatek (·;γ))k∈[K] |∀k ∈ [K] ,Gatek (·;γ) =

πkφ (·;νk,Σk)∑K
l=1 πlφ (·;νl,Σl)

,γ ∈ GK
G

}
,

respectivement, où

GK
S =

{
γ = (a1, . . . , aK , b1, . . . , bK) ∈ RK ×

(
Rd
)K}

et

GK
G =

{
γ = (π,ν1, . . . ,νK ,Σ1, . . . ,ΣK) ∈ ΠK−1 ×

(
Rd
)K
× SKd

}
.
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Ici,

φ (·;ν,Σ) = |2πΣ|−1/2 exp

[
−1

2
(· − ν)>Σ−1 (· − ν)

]
est la fonction de densité normale multivariée avec un vecteur moyen ν et une matrice de covariance
Σ, π> = (π1, . . . , πK) est un vecteur de poids dans le simplex de probabilité de K − 1 ΠK−1, défini
dans (5.4.26), et Sd est la classe des matrices définies positives symétriques d×d. Les classes de gating
softmax et gaussien ont été introduites respectivement par Jacobs et al. (1991) et Xu et al. (1995).
En général, on choisit des experts qui proviennent d’une certaine classe de translatées dilatées:

Eψ =

{
gψ (·;µ, σ) : Y→ [0,∞) |gψ (·;µ, σ) =

1

σq
ψ

(
· − µ
σ

)
,µ ∈ Rq, σ ∈ (0,∞)

}
,

où ψ est une FDP, par rapport à Rq au sens où que ψ : Rq → [0,∞) et
∫
Rq ψ (y) dλ (y) = 1.

Nous dirons que f ∈ Lp (W) pour tout p ∈ [1,∞) si

‖f‖p,W =

(∫
W
|1Wf |p dλ (z)

)1/p

<∞,

On appellera ‖·‖p,W la la norme Lp sur W, pour p ∈ [0,∞], et lorsque le contexte est évident, nous
laisserons tomber la référence à W.

Supposons que la FDP conditionnelle cible f soit dans la classe Fp = F ∩ Lp. Nous abordons le
problème de l’approximation de f , par rapport à la classe norme Lp, à l’aide de modèles MoE dans
les classes softmax et gaussiennes,

Mψ
S =

{
mψ
K : W→ [0,∞) |mψ

K (y|x) =
K∑
k=1

Gatek (x) gψ (y;µk, σk) ,

gψ ∈ Eψ ∩ L∞,Gate ∈ GKS ,µk ∈ Y, σk ∈ (0,∞) , k ∈ [K] ,K ∈ N?
}
, (5.4.28)

et

Mψ
G =

{
mψ
K : W→ [0,∞) |mψ

K (y|x) =

K∑
k=1

Gatek (x) gψ (y;µk, σk) ,

gψ ∈ Eψ ∩ L∞,Gate ∈ GKG ,µk ∈ Y, σk ∈ (0,∞) , k ∈ [K] ,K ∈ N?
}

, (5.4.29)

en montrant queMψ
S etMψ

G sont denses dans la classe Fp, lorsque X = [0, 1]d et Y est un sous-ensemble
compact de Rq. Nos résultats de densité sont rendus possibles par le résultat d’approximation de fonc-
tion indicatrice de Jiang & Tanner (1999b), et les théorèmes de densité de modèle de mélange fini
de Nguyen et al. (2020b) et Nguyen et al. (2020d). Nos Theorems 5.4.8 and 5.4.9, Lemma 5.4.10,
and Corollary 5.4.11 dans Section 2.3 contribuent à une continuité durable de l’intérêt porté aux
capacités d’approximation des modèles MoE. En relation avec nos résultats, des contributions con-
cernant les capacités d’approximation de la fonction d’espérance conditionnelle des classes Mψ

S et

Mψ
G, voir les définitions dans (5.4.28) et (5.4.29), respectivement, (Jiang & Tanner, 1999b, Krzyzak &

Schafer, 2005, Mendes & Jiang, 2012, Nguyen et al., 2016, 2019, Wang & Mendel, 1992, Zeevi et al.,
1998) et les capacités d’approximation des sous-classes deMψ

S etMψ
G, par rapport à la divergence de

Kullback–Leibler (Jiang & Tanner, 1999a, Norets et al., 2010, Norets & Pelenis, 2014). Nos résultats
peuvent être considérés comme des compléments aux théorèmes d’approximation de Kullback–Leibler
de Norets et al. (2010) et Norets & Pelenis (2014), par la relation entre la divergence de Kullback-
Leibler et la norme L2 (Zeevi & Meir, 1997). C’est-à-dire que lorsque f > 1/κ, pour tout (x,y) ∈W
et une certaine constante κ > 0, nous avons que la divergence de Kullback–Leibler conditionnelle
intégrée considérée par Norets & Pelenis (2014):∫

X
D
(
f (·|x) ‖mψ

K (·|x)
)

dλ (x) =

∫
X

∫
Y
f (y|x) log

f (y|x)

mψ
K (y|x)

dλ (y) dλ (x)
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satisfait à ∫
X
D
(
f (·|x) ‖mψ

K (·|x)
)

dλ (x) ≤ κ2
∥∥∥f −mψ

K

∥∥∥2

2,W
,

et donc une bonne approximation de la divergence de Kullback-Leibler intégrée est garantie si l’on
peut trouver une bonne approximation de la norme L2, ce qui est garanti par nos principaux résultats.

Theorem 5.4.8. Supposons que X = [0, 1]d. pour d ∈ N?. Pour tout f ∈ F ∩ C, tout p ∈ [1,∞), et

tout ensemble compact Y ⊂ Rq, q ∈ N?, il existe une suite
{
mψ
K

}
K∈N?

⊂ Mψ
S , où ψ ∈ C (Rq) est un

PDF sur support Rq, telle que limK→∞

∥∥∥f −mψ
K

∥∥∥
p

= 0.

Puisque la convergence dans les espaces de Lebesgue n’implique pas de modes de convergence
ponctuels de convergence, le résultat suivant est également utile et intéressant dans certains scénarios
restreints. Ici, nous notons que le mode de convergence est presque uniforme, ce qui implique une
convergence presque partout et une convergence en mesure (cf. Bartle 1995, Lem 7.10 et Thm. 7.11).

La convergence presque uniforme de
{
mψ
K

}
K∈N?

vers f dans le résultat suivant est à comprendre au

sens de Bartle (1995, Def. 7.9). C’est-à-dire que pour chaque δ > 0, il existe un ensemble Eδ ⊂ W
avec λ (W) < δ, tel que

{
mψ
K

}
K∈N?

converge vers f , uniformément sur W\Eδ.

Theorem 5.4.9. Supposons que X = [0, 1]. Pour tout f ∈ F ∩ C, et tout ensemble compact Y ⊂ Rq,
q ∈ N?, il existe une suite

{
mψ
K

}
K∈N?

⊂ Mψ
S , où ψ ∈ C (Rq) est un PDF sur support Rq, tel que

limK→∞m
ψ
K = f , presque uniformément.

Le résultat suivant établit la connexion entre les classes de gating classes GKS et GKG .

Lemma 5.4.10. Pour chaque K ∈ N?, GKS ⊂ GKG . De plus, si nous définissons la classe des vecteurs
de gaussiennes normalisées avec des matrices de covariance égales:

GKE =

{
Gate = (Gatek (·;γ))k∈[K] |∀k ∈ [K] ,Gatek (·;γ) =

πkφ (·;νk,Σ)∑K
l=1 πlφ (·;νl,Σ)

,γ ∈ GK
E

}
,

où

GK
E =

{
γ = (π,ν1, . . . ,νK ,Σ) ∈ ΠK−1 ×

(
Rd
)K
× Sd

}
,

then GKE ⊂ GKS .

Nous pouvons appliquer directement Lemma 5.4.10 pour établir le suivant corollaire à Theo-
rem 5.4.8 et 5.4.9, concernant la capacité d’approximation de la classe Mψ

G.

Corollary 5.4.11. Theorem 5.4.8 et 5.4.9 tiennent lorsque Mψ
S est remplacé par Mψ

G dans leurs
énoncés.

Une approximation universelle pour les modèles de mélange d’experts dans le calcul
bayésien approximatif

Le calcul bayésien approximatif (ABC) (voir, e.g., Sisson et al. 2018) apparâıt comme un candidat
naturel pour traiter les problèmes, où il y a un manque de disponibilité ou de tractabilité de la
vraisemblance. De tels cas se produisent lorsque le modèle direct ou le processus de génération de
données n’est pas disponible, ou de manière analytique, mais est disponible en tant que procédure
de simulation; e.g., lorsque le processus de génération de données est caractérisé comme une série
d’équations différentielles ordinaires, comme dans Mesejo et al. (2016), Hovorka et al. (2004). En
outre, les caractéristiques ou contraintes typiques qui peuvent se produire dans la pratique sont les
suivantes: (1) les observations y sont de grande dimension, car elles représentent des signaux dans le
temps ou des spectres, comme dans Schmidt & Fernando (2015), Bernard-Michel et al. (2009), Ma
et al. (2013); et (2) le paramètre θ, à estimer, est lui-même multidimensionnel avec des dimensions
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corrélées de sorte que la prédiction indépendante de ses composants est sous-optimale; e.g., lorsqu’il
existe des contraintes connues, comme lorsque les éléments du paramètre sont des concentrations
ou des probabilités dont la somme est égale à un (Deleforge et al., 2015a, Lemasson et al., 2016,
Bernard-Michel et al., 2009).

L’idée fondamentale de l’ABC est de générer des propositions de paramètres θ dans un espace de
paramètres Θ en utilisant une distribution a priori π(θ) et d’accepter une proposition si les données
simulées z pour cette proposition sont similaires aux données observées y, toutes deux dans un espace
d’observation Y. Cette similarité est généralement mesurée à l’aide d’une mesure de distance ou de
discrimination D et un échantillon simulé z est retenu si D(z,y) est inférieur à un seuil donné ε. Sous
cette forme simple, la procédure est généralement appelée rejet ABC. D’autres variantes sont possibles
et souvent recommandées, par exemple l’utilisation de MCMC ou de procédures séquentielles. (e.g.,
Del Moral et al., 2012, Buchholz & Chopin, 2019), mais nous nous concentrerons sur la version de
rejet pour les besoins de Section 2.4.

Dans le cas d’un algorithme de rejet, les échantillons sélectionnés sont tirés de ce que l’on appelle le
quasi-postérieur ABC, qui est une approximation du vrai postérieur π(θ | y). Dans des conditions sim-
ilaires à celles de Bernton et al. (2019), concernant l’existence d’une FDP fθ(z) pour la vraisemblance,
le quasi-postérieur ABC dépend de D et d’un seuil ε, et peut être écrit comme suit

πε(θ | y) ∝ π(θ)

∫
Y

1D(y,z)≤ε} fθ(z) dz . (5.4.30)

Plus précisément, la similarité entre z et y est généralement évaluée sur la base de deux éléments: le
choix de statistiques sommaires s(·) pour rendre compte des données de manière plus robuste, et le
choix d’une distance pour comparer les statistiques sommaires. Autrement dit, D(y, z) dans (1.4.1)
devrait alors être remplacé par D(s(y), s(z)), après quoi nous surchargeons D pour qu’il désigne
également la distance entre les statistiques sommaires s(·).

Cependant, il n’existe pas de règle générale pour construire de bonnes statistiques sommaires pour
les modèles complexes et si une statistique sommaire ne capture pas les caractéristiques importantes
des données, l’algorithme ABC est susceptible de produire des échantillons d’une (Blum et al., 2013,
Fearnhead & Prangle, 2012, Gutmann et al., 2018) incorrecte. Les travaux des auteurs suivants ont
permis de mieux comprendre la situation Fearnhead & Prangle (2012), qui a introduit le cadre semi-
automatique. Cette espérance conditionnelle ne peut pas être calculée analytiquement mais peut être
estimée par régression en utilisant un ensemble de données d’apprentissage avant la procédure ABC
elle-même.

Dans Fearnhead & Prangle (2012), il est suggéré qu’un simple modèle de régression peut suffire
pour approximer E[θ | y], mais cela a depuis été contredit, par exemple par Jiang et al. (2017) et
Wiqvist et al. (2019), qui montrent que la qualité de l’approximation peut avoir de l’importance en
pratique. Toujours en se concentrant sur les moyennes postérieures comme statistiques sommaires,
ils utilisent des réseaux neuronaux profonds qui capturent des relations non linéaires complexes et
présentent de bien meilleurs résultats que les approches de régression standard. Toutefois, les réseaux
neuronaux profonds restent des outils très coûteux en termes de calcul, tant en ce qui concerne la taille
requise des données d’apprentissage que le nombre de paramètres et d’hyperparamètres à estimer et
à régler.

Dans Section 2.4, voir aussi Forbes et al. (2021), notre première contribution est d’étudier une
autre manière efficace de construire des statistiques sommaires, dans la même veine que l’ABC semi-
automatique, mais basée sur les moments postérieurs, sans se limiter aux moyennes postérieures. Bien
que cette extension naturelle ait déjà été proposée dans Jiang et al. (2017), elle nécessite la disponibilité
d’un modèle de régression flexible et traçable, capable de capturer des relations non linéaires complexes
et de fournir des moments postérieurs, de manière directe. Par conséquent, Jiang et al. (2017) n’a
pas envisagé une mise en œuvre de la procédure. À cette fin, la méthode GLLiM (Deleforge et al.,
2015c), que nous rappelons dans Section 2.4.1, apparâıt comme un bon candidat, avec des propriétés
qui s’équilibrent entre les réseaux neuronaux coûteux en calcul et les techniques de régression standard
simples.

Contrairement à la plupart des méthodes de régression qui ne fournissent que des prédictions
ponctuelles, GLLiM fournit, à faible coût, une estimation paramétrique des véritables distributions
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postérieures complètes. En particulier, nous prouvons des théorèmes universels selon lesquels la distri-
bution quasi-postérieure résultant de ABC avec des postérieurs de substitution construits à partir de
GLLiM converge vers la vraie, dans des conditions standard, voir plus dans Section 2.4.3. En utilisant
un ensemble de couples de paramètres et d’observations, GLLiM apprend une famille de mélanges
gaussiens finis dont les paramètres dépendent analytiquement de l’observation à inverser. Pour toute
donnée observée, la vraie postérieure peut être approximée comme un mélange gaussien, dont les
moments sont facilement calculés en forme fermée et transformés en statistiques sommaires pour la
sélection ultérieure d’échantillons ABC.

Plus précisément, nous fournissons deux types de résultats, ci-dessous. Dans le premier résultat
(Theorem 5.4.12), le vrai postérieur est utilisé pour comparer les échantillons y et z. Ce résultat vise
à donner un aperçu de la formulation quasi-postérieure proposée et à illustrer ses avantages potentiels.
Dans le deuxième résultat (Theorem 5.4.13), un postérieur de substitution est appris et utilisé pour
comparer les échantillons. Les conditions sous lesquelles le quasi-postérieur ABC résultant converge
vers le vrai postérieur sont spécifiées.

Convergence du quasi-postérieur ABC

Dans cette section, nous supposons un observateur donné fixe y et la dépendance à l’égard de y est
omise de la notation, lorsqu’il n’y a pas de confusion.

Rappelons d’abord la forme standard du quasi-postérieur ABC, en omettant les statistiques som-
maires dans la notation:

πε(θ | y) ∝ π(θ)

∫
Y

1{D(y,z)≤ε} fθ(z) dz . (5.4.31)

Si D est une distance et D(y, z) est continu dans z, on peut montrer que le postérieur ABC dans
(5.4.31) a la propriété souhaitable de converger vers le vrai postérieur lorsque ε tend vers 0 (see
Prangle et al., 2018).

La preuve repose sur le fait que lorsque ε tend vers 0, en raison de la propriété de la distance D,
l’ensemble {z ∈ Y : D(y, z) ≤ ε}, définissant la fonction indicatrice dans (5.4.31), tend vers le singleton
{y} de sorte que, par conséquent, z dans la vraisemblance peut être remplacé par le y observé, ce
qui conduit alors à un quasi-postérieur ABC proportionnel à π(θ)fθ(y) et donc au vrai postérieur
comme souhaité (voir aussi Rubio & Johansen, 2013, Bernton et al., 2019). Il est intéressant de noter
que cette preuve est basée sur le travail sur le terme sous l’intégrale seulement et utilise l’égalité, à
la convergence, de z à y, qui est en fait une hypothèse plus forte que nécessaire pour que le résultat
tienne. Sinon, si nous réécrivons d’abord (5.4.31) en utilisant le théorème de Bayes, il s’ensuit que

πε(θ | y) ∝
∫
Y

1D(y,z)≤ε} π(θ) fθ(z) dz ∝
∫
Y

1D(y,z)≤ε} π(θ | z) π(z) dz . (5.4.32)

C’est-à-dire, en tenant compte de la constante de normalisation:

πε(θ | y) =

∫
Y 1D(y,z)≤ε} π(θ | z) π(z) dz∫

Y 1D(y,z)≤ε} π(z) dz
. (5.4.33)

En utilisant cette formulation équivalente, nous pouvons alors remplacer D(y, z) par D(π(· | y), π(· |
z)), avec D désignant maintenant une distance sur les densités, et obtenir le même résultat de con-
vergence lorsque ε tend vers 0. Plus précisément, nous pouvons montrer le résultat général suivant.
Définissons notre quasi-postérieur ABC comme,

qε (θ | y) ∝ π(θ)

∫
Y

1D(π(·|y),π(·|z))≤ε} fθ(z) dz,

qui peut s’écrire comme suit

qε (θ | y) =

∫
Y 1{D(π(·|y),π(·|z))≤ε}π (θ | z)π (z) dz∫

Y 1{D(π(·|y),π(·|z))≤ε}π (z) dz
. (5.4.34)

Le théorème suivant montre que qε (· | y) converge vers π (· | y) en variation totale, pour un y fixe.
La preuve est détaillée dans Section 2.4.6.1.
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Theorem 5.4.12. Pour chaque ε > 0, soit Aε = {z ∈ Y : D (π (· | y) , π (· | z)) ≤ ε}. Supposons ce
qui suit:

(A1) π (θ | ·) est continue pour tout θ ∈ Θ, et supθ∈Θ π (θ | y) <∞;

(A2) Il existe un γ > 0 de telle sorte que supθ∈Θ supz∈Aγ π (θ | z) <∞;

(A3) D (·, ·) : Π×Π→ R+ est une métrique sur la classe fonctionnelle Π = {π (· | y) : y ∈ Y};

(A4) D (π (· | y) , π (· | z)) est continue, par rapport à z.

Sous (A1)–(A4), qε (· | y) in (5.4.34) converge en variation totale vers π (· | y), pour fixe y, comme
ε→ 0.

Il apparâıt que l’important n’est pas de choisir des z proches (et à la limite égaux) aux y observés
mais de choisir des z tels que la postérieure π( · | z) (le terme apparaissant dans l’intégrale dans
(5.4.32)) est proche (et à la limite égal) à π( · | y). Et cette dernière propriété est moins exigeante que
z = y. Potentiellement, il peut y avoir plusieurs z satisfaisant π( · | z) = π( · | y), mais cela n’est pas
problématique lorsque l’on utilise (5.4.32), alors que cela est problématique lorsque l’on suit la preuve
standard comme dans Bernton et al. (2019).

Convergence du quasi-postérieur ABC avec des postérieurs de substitution

Dans la plupart des contextes ABC, basés sur la divergence des données ou les statistiques sommaires,
la considération et le résultat ci-dessus ne sont pas utiles car la vraie postérieure est inconnue par
construction et ne peut pas être utilisée pour comparer des échantillons. Cependant, ce principe
devient utile dans notre cadre, qui est basé sur des postérieurs de substitution. Bien que le résultat
précédent puisse être considéré comme une sorte d’oracle, il est plus intéressant en pratique d’étudier si
un résultat similaire est valable lors de l’utilisation de postérieurs de substitution dans la vraisemblance
ABC. C’est l’objectif de Theorem 5.4.13 ci-dessous, que nous prouvons pour une classe restreinte de
distribution cible et de postérieurs de substitution qui sont appris comme des mélanges. Une preuve
détaillée est fournie dans Section 2.4.6.2.

Nous supposons maintenant que X = Θ × Y est un ensemble compact et considérons la classe
suivante HX de gaussiennes isotropes sur X , HX = {gϕ : ϕ ∈ Ψ}, avec contraintes sur les paramètres,
Ψ étant un ensemble de paramètres bornés. De plus, les densités dans HX sont supposées satisfaire
pour tout ϕ,ϕ′ ∈ Ψ, il existe des scalaires positifs arbitraires a, b et B tels que

pour tout x ∈ X , a ≤ gϕ(x) ≤ b et sup
x∈X
| log gϕ(x)− log gϕ′(x)| ≤ B‖ϕ−ϕ′‖1 .

Il est montré dans Deleforge et al. (2015c) qu’un modèle GLLiM est un mélange gaussien conjoint sur
Θ× Y sous une paramétrisation spécifique. Nous désignons par pK un mélange à K composantes de
distributions de HX et défini pour tous les y ∈ Y, pK,N (· | y) comme suit:

∀θ ∈ Θ, pK,N (θ | y) = pK
(
θ | y;φ∗K,N

)
,

avec φ∗K,N l’estimateur du maximum de vraisemblance (MLE) pour l’ensemble de données DN =
{(θn,yn), n ∈ [N ]}, généré à partir de la vraie distribution conjointe π(·, ·):

φ∗K,N = arg max
φ∈Φ

N∑
n=1

log
(
pK(θn,yn;φ)

)
.

De plus, pour chaque ε > 0, soit AK,Nε,y =
{
z ∈ Y : D

(
pK,N (· | y) , pK,N (· | z)

)
≤ ε
}

et qK,Nε désignent
le quasi-postérieur ABC défini avec pK,N par

qK,Nε (θ | y) ∝ π(θ)

∫
Y

1{D(pK,N (·|y),pK,N (·|z))≤ε} fθ(z) dz . (5.4.35)

Theorem 5.4.13. Supposons ce qui suit: X = Θ× Y est un ensemble compact et
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(B1) Pour une densité jointe π, il existe Gπ une mesure de probabilité sur Ψ telle que, avec gϕ ∈ HX ,
π(x) =

∫
Ψ gϕ(x) Gπ(dϕ);

(B2) La densité postérieure vraie π(· | ·) est continue à la fois par rapport à θ et à y;

(B3) D (·, ·) : Π × Π → R+ ∪ {0} est une métrique sur une classe fonctionnelle Π, qui contient la
classe

{
pK,N (· | y) : y ∈ Y,K ∈ N?, N ∈ N?

}
. En particulier, D

(
pK,N (· | y) , pK,N (· | z)

)
= 0,

si et seulement si pK,N (· | y) = pK,N (· | z);

(B4) Pour chaque y ∈ Y, z 7→ D
(
pK,N (· | y) , pK,N (· | z)

)
est une fonction continue sur Y.

Alors, sous (B1)–(B4), la distance de Hellinger DH

(
qK,Nε (· | y) , π (· | y)

)
converge vers 0 dans une

certaine mesure λ, par rapport à y ∈ Y et en probabilité, par rapport à l’échantillon {(θn,yn) , n ∈ [N ]}.
C’est-à-dire que pour tout α > 0, β > 0, il s’avère que

lim
ε→0,K→∞,N→∞

Pr
(
λ
({

y ∈ Y : D2
H

(
qK,Nε (· | y) , π (· | y)

)
≥ β

})
≤ α

)
= 1. (5.4.36)

Dans Section 2.4, notre deuxième contribution est de proposer de comparer directement les distri-
butions postérieures de substitution complètes fournies par GLLiM, sans les réduire à leurs moments.
Ce faisant, nous introduisons l’idée de statistiques sommaires fonctionnelles, qui nécessitent également
une notion différente des mesures de distance ou de divergence habituelles. Les développements récents
des distances optimales basées sur le transport et conçues pour les mélanges gaussiens (Delon & Des-
olneux, 2020, Chen et al., 2019) répondent parfaitement à ce besoin via la distance dite de Mixture-
Wasserstein telle que mentionnée dans Delon & Desolneux (2020), et dénotée dans le texte comme
MW2. Il existe d’autres distances entre les mélanges qui sont traitables, et parmi elles la distance L2

est également considérée dans ce travail.
Comme alternative à l’ABC semi-automatique, dans les travaux de Nguyen et al. (2020a), Jiang

et al. (2018), Bernton et al. (2019), Park et al. (2016), Gutmann et al. (2018), les difficultés associées
à la recherche de statistiques sommaires efficaces ont été contournées en adoptant, respectivement,
la distance énergétique, un estimateur de divergence de Kullback–Leibler, la distance de Wasserstein,
la divergence moyenne maximale (MMD) et la précision de la classification pour fournir une mesure
de divergence des données. Ces approches comparent les données simulées et les données observées
en les considérant comme des échantillons i.i.d. de distributions, respectivement liées au paramètre
simulé et au paramètre vrai, à l’exception de Bernton et al. (2019) et Gutmann et al. (2018) qui
ont proposé des solutions pour traiter également les séries temporelles. Nous soupçonnons que pour
être efficaces, ces méthodes nécessitent que les données observées et simulées contiennent chacune un
nombre modérément élevé d’échantillons. Typiquement, elles ne peuvent pas être appliquées si nous
n’observons qu’un seul échantillon limité lié au paramètre à récupérer. C’est une différence majeure
avec l’approche que nous proposons.

Nous proposons de ne pas comparer les échantillons des distributions, mais de comparer directe-
ment les distributions par leurs substituts en utilisant les distances entre les distributions. Il est
toujours possible d’utiliser les écarts de données précédents en simulant les premiers échantillons des
distributions à comparer, mais cela risque d’être sous-optimal sur le plan informatique. Nous pouvons
à la place utiliser les mêmes divergences de Wasserstein, Kullback–Leibler, etc., mais dans leurs ver-
sions population plutôt que dans leurs versions empiriques. À titre d’exemple une distance basée sur
Wasserstein peut être calculée entre des mélanges de gaussiens, grâce aux travaux récents de Delon &
Desolneux (2020) et Chen et al. (2019). Notez qu’il ne s’agit pas à proprement parler de la distance de
Wasserstein, mais d’une distance basée sur Wasserstein. Des expressions sous forme fermée existent
également pour la distance L2, pour la MMD avec un noyau RBF gaussien ou un noyau polynomial
(see Sriperumbudur et al., 2010, Muandet et al., 2012) et pour la divergence de Jensen–Rényi de degré
deux (see Wang et al., 2009). Kristan et al. (2011) ont également proposé un algorithme basé sur ce
que l’on appelle la transformée ascendante afin de calculer la distance de Hellinger entre deux mélanges
gaussiens, bien que la complexité de cet algorithme ne soit pas claire.

Pour souligner la différence avec les résumés plus standard, nous nous référons à nos a posteriori
de substitution comme à des statistiques sommaires fonctionnelles. Le terme a déjà été utilisé par
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Soubeyrand et al. (2013) dans le contexte ABC dans leurs tentatives de caractériser les structures
spatiales (e.g. processus ponctuels spatiaux) en utilisant des statistiques qui sont des fonctions (e.g.
corrélogrammes ou variogrammes). Leur approche est différente dans l’esprit car elle n’aborde pas la
question du choix des statistiques sommaires. Étant donné certaines statistiques fonctionnelles dont
la définition et la nature peuvent changer pour chaque modèle considéré, leur objectif est d’optimiser
les distances pour les comparer afin d’extraire la meilleure information sur les paramètres d’intérêt.
Soubeyrand et al. (2013) proposent une distance L2 pondérée pour comparer de telles statistiques.
Dans notre proposition, les statistiques fonctionnelles sont des distributions de probabilité. Elles
apparaissent comme un moyen de contourner le choix des statistiques sommaires, mais dans ce travail,
nous utilisons des métriques existantes pour les comparer, sans optimisation.

Contribution du Chapitre 3

Dans le Chapter 3, nous fournissons une sélection de modèle non-asymptotique pour une variété
de modèles de régression MoE, dans des scénarios de grande dimension, basée sur une stratégie de
régression inverse. En particulier, ces résultats fournissent une garantie théorique solide: une inégalité
d’oracle en échantillon fini satisfaite par l’estimateur du maximum de vraisemblance pénalisé avec une
perte de type Jensen-Kullback-Leibler, pour soutenir le critère heuristique de pente dans un cadre
d’échantillon fini, par rapport aux critères asymptotiques classiques. Cela permet de calibrer les
fonctions de pénalité, connues jusqu’à une constante multiplicative, et à la complexité de la (sous-
)collection aléatoire considérée de modèles MoE, y compris le nombre de composantes du mélange,
le degré des fonctions moyennes polynomiales et les structures diagonales en bloc cachées potentielles
des matrices de covariance de la variable prédicteur ou de la variable réponse multivariée.

En particulier, les travaux de Chapter 3 constituent nos deuxièmes contributions principales pour
la sélection non-asymptotique de modèles dans un modèle de régression GLoME et un modèle de
régression BLoME des travaux:

(C5) TrungTin Nguyen, Hien Duy Nguyen, Faicel Chamroukhi, and Florence Forbes. A non-
asymptotic penalization criterion for model selection in mixture of experts models.
arXiv preprint arXiv:2104.02640. Under revision, Electronic Journal of Statistics, 2021.
Link: https://arxiv.org/pdf/2104.02640.pdf
(Nguyen et al., 2021c).

(C6) TrungTin Nguyen, Faicel Chamroukhi, Hien Duy Nguyen, and Florence Forbes. Non-asymptotic
model selection in block-diagonal mixture of polynomial experts models.
arXiv preprint arXiv:2104.08959. Under revision, Journal of Multivariate Analysis, 2021.
Link: https://arxiv.org/pdf/2104.08959.pdf
(Nguyen et al., 2021b).

Ici et par la suite, afin d’établir nos inégalités d’oracle, nous devons supposer que l’espace d’entrée
est un ensemble limité et expliciter certaines conditions classiques de limitation sur l’espace des
paramètres.

Le but de la section suivante était d’expliquer plus en détail pourquoi nous devrions accorder
plus d’attention à la borne supérieure non asymptotique en présentant les inconvénients de l’analyse
asymptotique d’un modèle paramétrique.

Analyse asymptotique d’un modèle paramétrique

Nous prouvons qu’il est naturel d’essayer de relier la procédure de sélection de modèle non-asymptotique,
en particulier l’heuristique de pente, aux inégalités d’oracle.

Nous devons maintenant spécifier nos critères de goodness. Dans l’approche du maximum de
vraisemblance, la divergence de Kullback–Leibler est la fonction de perte la plus naturelle, qui est
définie pour deux densités s et t par

KL(s, t) =

{∫
RD ln

(
s(y)
t(y)

)
s(y)dy si sdy est absolument continue w.r.t. tdy,

+∞ autrement.
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Cependant, pour prendre en compte la structure des densités conditionnelles inverses inverses et des
covariables aléatoires Y[n], nous considérons la divergence de Kullback-Leibler tensorisée KL⊗n, définie
comme:

KL⊗n(s, t) = EY[n]

[
1

n

n∑
i=1

KL (s (·|Yi) , t (·|Yi))

]
, (5.4.37)

si sdy est absolument continu w.r.t. tdy, et +∞ sinon. Notez que si les prédicteurs sont fixes, cette
divergence est la divergence classique de type plan fixe dans laquelle il n’y a pas d’espérance. Nous
appelons notre résultat une inégalité d’oracle faible, car son énoncé est basé sur une divergence plus
petite, comparée à KL⊗n, à savoir la divergence de Jensen-Kullback-Leibler tensorisée:

JKL⊗n
ρ (s, t) = EY[n]

[
1

n

n∑
i=1

1

ρ
KL (s (·|Yi) , (1− ρ) s (·|Yi) + ρt (·|Yi))

]
, (5.4.38)

avec ρ ∈ (0, 1). Nous notons que JKL⊗n
ρ a été utilisé pour la première fois dans Cohen & Le Pennec

(2011). Cependant, une version de cette divergence apparâıt explicitement avec ρ = 1
2 dans Massart

(2007), et on la trouve aussi implicitement dans Birgé et al. (1998). Cette perte est toujours bornée
par 1

ρ ln 1
1−ρ mais se comporte comme KL⊗n, lorsque t est proche de s. Les principaux outils de

la preuve d’une telle inégalité d’oracle faible sont les inégalités de déviation pour les sommes de
variables aléatoires et leurs suprêmes. Ces outils nécessitent une hypothèse de bornage sur les fonctions
contrôlées qui n’est pas satisfaite par− ln sm

s0
, et donc pas non plus satisfaite par KL⊗n. Par conséquent,

nous considérons plutôt l’utilisation de JKL⊗n
ρ . En particulier, en général, il est vrai que Cρ d2⊗n ≤

JKL⊗n
ρ ≤ KL⊗n, où Cρ = 1

ρ min
(

1−ρ
ρ , 1

)(
ln
(

1 + ρ
1−ρ

)
− ρ
)

(voir Cohen & Le Pennec 2011, Prop. 1)

et d2⊗n est une extension tensorisée de la distance de Hellinger au carré d2⊗n, définie par

d2⊗n(s, t) = EY[n]

[
1

n

n∑
i=1

d2 (s (·|Yi) , t (·|Yi))

]
.

De plus, si nous supposons que, pour tout m ∈ M et tout sm ∈ Sm, s0dλ � smdλ, alors (voir
Montuelle et al., 2014, Cohen & Le Pennec, 2011)

Cρ
2 + ln ‖s0/sm‖∞

KL⊗n(s0, sm) ≤ JKL⊗n
ρ (s0, sm). (5.4.39)

Nous considérerons un modèle paramétrique de FDP conditionnelles inverses auquel la vraie FDP
conditionnelle inverse s0 n’appartient pas nécessairement comme suit:

Sm =
{

(x,y) 7→ sψm(x|y) =: sm(x|y) : ψm ∈ Ψm ⊂ Rdim(Sm)
}
.

Cette construction de modèle mal spécifié, i.e., s0 /∈ Sm, remonte aux travaux de White (1982) pour
l’estimation de densité. Pour un traitement d’un cas plus général pour les FDP conditionnels, nous
renvoyons le lecteur à Cohen & Le Pennec (2011). Section 5.4 contient un bref résumé de ces résultats
classiques sans preuves via Theorem 5.4.14.

Theorem 5.4.14 (White, 1982, Cohen & Le Pennec, 2011). Supposons que le modèle Sm soit identi-
fiable (pour les modèles de régression MoE, voir, e.g., Jiang & Tanner, 1999c, Hennig, 2000) et qu’il
existe les dim (Sm)× dim (Sm) matrices A (ψm) et B (ψm) définies par:

[A (ψm)]k,l = E

[
1

n

n∑
i=1

∫ −∂2 ln sψm

∂ψm,k∂ψm,l
(x|Yi) s0 (x|Yi) dλ

]
,

[B (ψm)]k,l = E

[
1

n

n∑
i=1

∫
∂ ln sψm

∂ψm,k
(x|Yi)

∂ ln sψm

∂ψm,l
(x|Yi) s0 (x|Yi) dλ

]
.
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Nous définissons ψ∗m comme étant les éléments de arg minψm∈Ψm
KL⊗n (s0, sψm). Alors, sous cer-

taines hypothèses de régularité forte sur ψm 7→ sψm, EX[n],Y[n]
[KL⊗n (s0, ŝm)] est asymptotiquement

équivalent à

KL⊗n
(
s0, sψ∗m

)
+

1

2n
tr
(
B (ψ∗m) A (ψ∗m)−1

)
.

En particulier, lorsque s0 ∈ Sm, il s’avère que s0 = sψ∗m ,A (ψ∗m) = B (ψ∗m) . Par conséquent,
l’équivalent asymptotique précédent de EX[n],Y[n]

[KL⊗n (s0, ŝm)] devient l’équivalent paramétrique clas-
sique, c’est-à-dire,

KL⊗n
(
s0, sψ∗m

)︸ ︷︷ ︸
=0

+
1

2n
dim (Sm) .

Theorem 5.4.14 dépend fortement de la normalité asymptotique de
√
n
(
ψ̂m −ψ∗m

)
. On peut se

demander si cela est toujours vrai si cette normalité ne tient pas. Plusieurs travaux sont consacrés à
l’étude de la normalité non-asymptotique: extension au cas non paramétrique ou modèle non identi-
fiable, souvent appelé phénomène de Wilk (voir Wilks, 1938 pour plus de détails); généralisation du
“Chi-Square goodness-of-fit test” correspondant (Fan et al., 2001); écart en échantillon fini de la quan-
tité empirique correspondante dans un cadre de perte bornée (Boucheron & Massart, 2011). Motivés
par les travaux de Cohen & Le Pennec (2011, 2013), avec aussi peu d’hypothèses que possible sur
la collection de FDP conditionnelles Sm, nous sommes initialement intéressés par la recherche d’une
borne supérieure non asymptotique de type

EX[n],Y[n]

[
KL⊗n (s0, ŝm)

]
≤

(
inf

ψm∈Ψm

KL⊗n (s0, sψm) +
1

2n
dim (Sm)

)
+ C2

1

n
.

Cependant, en réalité, nous avons obtenu la borne supérieure plus faible suivante (inégalités d’oracle)

EX[n],Y[n]

[
JKL⊗n

ρ (s0, ŝm)
]
≤ C1

(
inf

ψm∈Ψm

KL⊗n (s0, sψm) +
κ

n
Dm

)
+ C2

1

n
.

En effet, par problème technique, nous devons remplacer la divergence de gauche KL⊗n (s0, ŝm) par
une divergence plus petite JKL⊗n

ρ (s0, ŝm) et la constante C1 = 1 + ε, ε > 0, ne peut pas être égale à 1.
De plus, κ est une constante qui dépend de ε et le terme de complexité du modèle Dm remplace le terme
de dimension dim (Sm). Cependant, ce résultat nous permet d’avoir la bonne saveur du compromis
biais/variance et de récupérer les propriétés minimax habituelles des estimateurs spécifiques.

Ici et par la suite, afin d’établir nos inégalités d’oracle, nous devons supposer que l’espace d’entrée
est un ensemble borné et rendre explicites certaines conditions de bornage classiques sur l’espace des
paramètres.

Inégalité d’Oracle pour les modèles GLoME

Dans les modèles de régression GLoME, nous choisissons le degré des polynômes d et le nombre de
composantes K parmi des ensembles finis DΥ = [dmax] et K = [Kmax], respectivement, où dmax ∈ N?
et Kmax ∈ N? peuvent dépendre de la taille de l’échantillon n. Nous souhaitons estimer la densité
conditionnelle inverse inconnue s0 par des densités conditionnelles appartenant à la collection suivante
de modèles inverses (Sm)m∈M, M = {(K, d) : K ∈ K, d ∈∈ DΥ},

Sm =
{

(x,y) 7→ sψK,d(x|y) =: sm(x|y) : ψK,d = (ω,υd,Σ) ∈ Ω̃K ×ΥK,d ×VK

}
. (5.4.40)

Ici, Ω̃K sont des vecteurs de paramètres de gaussiennes normalisées bornés, ΥK,d est défini comme
une combinaison linéaire d’un ensemble fini de fonctions bornées dont les coefficients appartiennent à
un ensemble compact, et VK sont des matrices de covariance définies positives bornées, voir (5.4.41),
(5.4.43) (ou plus généralement (5.4.42)), et (5.4.44), respectivement, pour plus de détails.
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Plus précisément, supposons qu’il existe des constantes positives déterministes aπ, Ac, aΓ, AΓ, Ω̃K

est défini par

Ω̃K = {ω ∈ ΩK : ∀k ∈ [K], ‖ck‖∞ ≤ Ac, aΓ ≤ m (Γk) ≤M (Γk) ≤ AΓ, aπ ≤ πk} , (5.4.41)

où m(A) et M(A) représentent, respectivement, le module de la plus petite et de la plus grande valeur
propre de toute matrice A. Suivant la même structure pour les moyennes des experts gaussiens de
Montuelle et al. (2014), l’ensemble ΥK,d sera choisi comme un produit tensoriel d’ensembles compacts
de dimension modérée (e.g., un ensemble de polynômes de degré inférieur à d, dont les coefficients sont
plus petits en valeur absolue que TΥ). Plus précisément, ΥK,d = ⊗k∈[K]Υk,d =: ΥK

k,d, où Υk,d = Υb,d,
∀k ∈ [K], et

Υb,d =

y 7→

(
d∑
i=1

α
(j)
i ϕΥ,i(y)

)
j∈[D]

=: (υd,j(y))j∈[D] : ‖α‖∞ ≤ TΥ

 . (5.4.42)

Ici, d ∈ N?, TΥ ∈ R+, et (ϕΥ,i)i∈[d] est une collection de fonctions bornées sur Y. En particulier,

nous nous concentrons sur le cas de Y borné et supposons que Y = [0, 1]L, sans perte de généralité.
Dans ce cas, les ϕΥ,i peuvent être choisis comme des monômes de degré maximal (non négatif) d:

yr =
∏L
l=1 yrl

l . Rappelons qu’un multi-index r = (rl)l∈[L] , rl ∈ N? ∪ {0} , ∀l ∈ [L], est un L-tuple

d’entiers non négatifs. Nous définissons |r| =
∑L

l=1 rl et le nombre |r| est appelé l’ordre ou le degré
de yr. Alors, ΥK,d = ΥK

p,d, où

Υp,d =

y 7→

 d∑
|r|=0

α
(j)
r yr


j∈[D]

=: (υd,j(y))j∈[D] : ‖α‖∞ ≤ TΥ

 . (5.4.43)

Notez que toute matrice de covariance Σk peut être décomposée sous la forme BkPkAkP
>
k , telle que

Bk = |Σk|1/D est un scalaire positif correspondant au volume, Pk est la matrice des vecteurs propres de
Σk et Ak la matrice diagonale des valeurs propres normalisées de Σk; B− ∈ R+, B+ ∈ R+, A (λ−, λ+)
est un ensemble de matrices diagonales Ak, telles que |Ak| = 1 and ∀i ∈ [D], λ− ≤ (Ak)i,i ≤ λ+; et
SO(D) est le groupe orthogonal spécial de dimension D. De cette façon, nous obtenons ce que l’on
appelle les ensembles classiques de matrices de covariance décrits par Celeux & Govaert (1995) pour
les modèles gaussiens de clustering parcimonieux, définis par

VK =

{(
BkPkAkP

>
k

)
k∈[K]

: ∀k ∈ [K], B− ≤ Bk ≤ B+,Pk ∈ SO(D),Ak ∈ A (λ−, λ+)

}
. (5.4.44)

La Theorem 5.4.15 suivante fournit une borne inférieure sur la fonction de pénalité, pen(m), qui
garantit que le PMLE pour les modèles GLoME sélectionne un modèle qui est presque aussi performant
que le “meilleur” modèle. Les preuves détaillées apparâıtront dans Section 3.2.4, voir aussi Nguyen
et al. (2021c).

Theorem 5.4.15 (Inégalité Oracle pour les modèles GLoME). Supposons que nous observions
(
x[n],y[n]

)
,

provenant d’une densité conditionnelle inconnue s0. Étant donné une collection de modèles GLoME,
S = (Sm)m∈M, définie par (5.4.40), il existe une constante C telle que pour toute ρ ∈ (0, 1), pour
toute m ∈ M, zm ∈ R+, Ξ =

∑
m∈M e−zm <∞ et tout C1 > 1, il existe une constante κ0 dépendant

uniquement de ρ et de C1, telle que si pour tout indice m ∈M, pen(m) ≥ κ [(C + lnn) dim (Sm) + zm]
avec κ > κ0, alors l’estimateur de vraisemblance pénalisé par η′ est le suivant ŝm̂, défini dans (5.4.21),
satisfait à

EX[n],Y[n]

[
JKL⊗n

ρ (s0, ŝm̂)
]
≤ C1 inf

m∈M

(
inf

sm∈Sm

KL⊗n (s0, sm) +
pen(m)

n

)
+
κ0C1Ξ

n
+
η + η′

n
.

(5.4.45)
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Inégalité d’Oracle pour les modèles BLoME

Dans le cadre des modèles BLoME, nous choisissons le degré des polynômes d et le nombre de com-
posantes K parmi des ensembles finis DΥ = [dmax] et K = [Kmax], respectivement, où dmax ∈ N? et
Kmax ∈ N? peuvent dépendre de la taille de l’échantillon n. De plus, B est sélectionné parmi une
liste de structures candidates (Bk)k∈[K] ≡ (B)k∈[K], où B désigne l’ensemble de toutes les partitions
possibles des covariables indexées par [D], pour chaque cluster d’individus. Nous souhaitons estimer
la densité conditionnelle inconnue s0 par des densités conditionnelles appartenant à la collection de

modèles suivante: (Sm)m∈M, M =
{

(K, d,B) : K ∈ K, d ∈ DΥ,B ∈ (B)k∈[K]

}
,

Sm =
{

(x,y) 7→ sψK,d(x|y) : ψK,d = (ω,υd,Σ (B)) ∈ Ω̃K ×ΥK,d ×VK (B)
}
, (5.4.46)

où Ω̃K , ΥK,d, et VK (B) sont définis dans (5.4.41), (5.4.43) (ou plus généralement (5.4.42)), et (5.4.14),
respectivement.

Pour les covariances bloc-diagonales des experts gaussiens, nous supposons qu’il existe certaines
constantes positives λm et λM telles que, pour chaque k ∈ [K],

0 < λm ≤ m (Σk (Bk)) ≤M (Σk (Bk)) ≤ λM . (5.4.47)

Notez qu’il s’agit d’une hypothèse assez générale et qu’elle est également utilisée dans la sélection de
covariance bloc-diagonale pour les modèles graphiques gaussiens de Devijver & Gallopin (2018).

En théorie, nous aimerions considérer toute la collection de modèles (Sm)m∈M. Cependant, la
cardinalité de B est grande; sa taille est un nombre de Bell. Même pour un nombre modéré de
variables D, il n’est pas possible d’explorer l’ensemble B, de manière exhaustive. Nous limitons notre
attention à une sous-collection aléatoire BR de taille modérée. Par exemple, nous pouvons considérer
la procédure BLLiM de Devijver et al. (2017, Section 2.2).

Notez que la collection construite de modèles avec des structures bloc-diagonales pour chaque
groupe d’individus est conçue, par exemple, par la procédure BLLiM de Devijver et al. (2017), où
chaque collection de partition est triée par niveau de sparsité. Néanmoins, notre inégalité d’oracle
à échantillon fini, Theorem 5.4.16, tient toujours pour toute sous-collection aléatoire de M, qui est
construite par certains outils appropriés dans le cadre des modèles de régression BLoME. Pour les
preuves, nous renvoyons le lecteur à Section 3.3.3, voir aussi Nguyen et al. (2021b).

Theorem 5.4.16 (Inégalité Oracle pour les modèles BLoME). Soit (x[n],y[n]) les observations provenant
d’une densité conditionnelle inconnue s0. Pour chaque m = (K, d,B) ∈ (K ×DΥ × B) ≡ M, laissez
Sm être défini par (5.4.46). Supposons qu’il existe τ > 0 et εKL > 0 tels que, pour tout m ∈ M, on
peut trouver s̄m ∈ Sm, tel que

KL⊗n (s0, s̄m) ≤ inf
t∈Sm

KL⊗n (s0, t) +
εKL
n
, et s̄m ≥ e−τs0.

Ensuite, nous construisons une sous-collection aléatoire (Sm)
m∈M̃ of (Sm)m∈M en laissant M̃ ≡(

K ×DΥ × BR
)
⊂ M tel que BR est une sous-collection aléatoire B, de taille modérée. Considérons

la collection (ŝm)
m∈M̃ de η-log likelihood minimizers satisfaisant (5.4.22) pour tous les m ∈ M̃.

Alors, il existe une constante C telle que pour tout ρ ∈ (0, 1), et tout C1 > 1, il existe deux constantes
κ0 et C2 dépendant uniquement de ρ et de C1 telles que, pour tout indice, m ∈ M, ξm ∈ R+,
Ξ =

∑
m∈M e−ξm <∞ et

pen(m) ≥ κ [(C + lnn) dim(Sm) + (1 ∨ τ)ξm] ,

avec κ > κ0, l’estimateur de vraisemblance pénalisé ŝm̂, défini comme dans (5.4.21) sur le sous-

ensemble M̃ ⊂M, satisfait à

EX[n],Y[n]

[
JKL⊗n

ρ (s0, ŝm̂)
]
≤ C1EX[n],Y[n]

[
inf

m∈M̃

(
inf
t∈Sm

KL⊗n (s0, t) + 2
pen(m)

n

)]
+ C2(1 ∨ τ)

Ξ2

n
+
η′ + η

n
.
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Contribution du Chapitre 4

Dans le Chapter 4, nous établissons des résultats non asymptotiques de sélection de modèle dans
des scénarios de régression à grande dimensio pour SGaME et SGaBloME, en s’appyuant sur une
une pénalisation Lasso. Ceux-ci incluent des résultats pour la sélection du nombre de composantes
du mélange d’experts, ainsi que pour la sélection jointe de variable et des rangs des matrices de
covariances. En particulier, ces résultats fournissent une garantie théorique forte: une inégalité d’oracle
en échantillon fini satisfaite par l’estimateur de maximum de vraisemblance pénalisé avec une perte
de type Jensen-Kullback-Leibler, pour soutenir l’heuristique de pente dans un cadre d’échantillon fini,
par rapport aux critères asymptotiques classiques. Cela permet de calibrer les fonctions de pénalité,
connues seulement à une constante multiplicative près, étant donnés complexité de la (sous-)collection
aléatoire considérée de modèles MoE, y compris le nombre de composantes du mélange, le degré de
sparsité (les coefficients et les niveaux de sparsité des rangs des matrices de covariances), le degré
des fonctions moyennes polynomiales, et les structures potentielles de diagonales par bloc cachées des
matrices de covariance du prédicteur ou de la réponse multivariée.

Enfin, nos troisièmes contributions principales pour les résultats non asymptotiques pour la sélection
jointe de variable et des rangs des matrices de covariances dans un modèle de régression SGaBloME
sont fournies via Chapter 4 des travaux:

(C7) TrungTin Nguyen, Hien D Nguyen, Faicel Chamroukhi, and Geoffrey J McLachlan. An l1-
oracle inequality for the lasso in mixture of experts regression models.
arXiv preprint arXiv:2009.10622. Under revision, ESAIM: Probability and Statistics, 2020.
Link: https://arxiv.org/pdf/2009.10622.pdf
(Nguyen et al., 2020c).

(C8) Joint rank and variable selection by a non-asymptotic model selection in mixture of polynomial
experts models. Working paper.

Notez que ces modèles sont utiles pour les données hétérogènes de grande dimension, où le nombre
de variables explicatives peut être beaucoup plus grand que la taille de l’échantillon et où il existe des
interactions potentielles cachées de type graphe structuré entre les variables.

Inégalité d’Oracle pour les modèles SGaBloME

Combinaison linéaire de fonctions bornées pour les poids et les moyennes

Nous suivons l’idée de Montuelle et al. (2014) de restreindre notre attention sur un ensemble fini de
fonctions bornées dont les coefficients appartiennent à un ensemble compact. Il convient de men-
tionner que ce cadre assez général inclut la base polynomiale lorsque les prédicteurs sont bornés,
les dictionnaires d’ondelettes renormalisés appropriés ainsi que la base de Fourier sur un intervalle.
Plus précisément, nous définissons d’abord les deux collections suivantes de fonctions bornées pour les
poids et les moyennes: X 3 x 7→ (θW,d (x))d∈[dW] ∈ [−1, 1]dw et X 3 x 7→ (θΥ,d (x))d∈[dΥ] ∈ [−1, 1]dΥ ,
où dw ∈ N? et dΥ ∈ N? indiquent ses degrés, respectivement. Ensuite, en utilisant ces collections,
nous sommes en mesure de définir les espaces bornés souhaités correspondants via des constructions
tensorielles comme suit:

WK,dW
= {0} ⊗WK−1,W =

{
X 3 x 7→

dW∑
d=1

ωdθW,d (x) ∈ R : max
d∈[dW]

|ωd| ≤ TW

}
,

ΥK,dΥ
= ΥK ,Υ =

X 3 x 7→

(
dΥ∑
d=1

β
(z)
d θΥ,d (x)

)
z∈[q]

: max
d∈[dΥ],z∈[q]

∣∣∣β(z)
d

∣∣∣ ≤ TΥ

 .

Lorsque p et q ne sont pas trop grands, nous n’avons pas besoin de sélectionner les variables
pertinentes et/ou d’utiliser des modèles à rangs épars. Nous pouvons alors travailler sur les structures
précédentes pour les moyennes et les poids comme cela a été fait dans Montuelle et al. (2014), Nguyen
et al. (2021c), voir aussi Theorems 5.4.15 and 5.4.16. Cependant, afin de traiter des données de grande
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dimension et de simplifier l’interprétation de la sparsité, nous proposons d’utiliser des monômes pour
les poids et des modèles de régression polynomiaux pour les fonctions softmax et les moyennes des
experts gaussiens, i.e.,

WK,dW
= {0} ⊗WK−1,W =

X 3 x 7→
dW∑
|α|=0

ωαxα ∈ R : max
α∈A
|ωα| ≤ TW

 ,

ΥK,dΥ
=

{
X 3 x 7→

(
βk0 +

dΥ∑
d=1

βkdx
d

)
k∈[K]

: max {|||βkd|||∞ : k ∈ [K], d ∈ ({0} ∪ [dΥ])} ≤ TΥ

}
.

Notons ici que le multi-indice α = (αt)t∈[p] , αt ∈ N?
⋃
{0} =: N, ∀t ∈ [p], est un p-tuple d’entiers

non négatifs qui satisfait à xα =
∏p
j=1 x

αj
j et |α| =

∑p
t=1 αt. Alors, pour tout l ∈ [dW], on définit

A =
⋃dW
l=0Al, Al =

{
α = (αt)t∈[p] ∈ Np, |α| = l

}
. Le nombre α est appelé l’ordre ou le degré des

monômes xα. En utilisant les méthodes bien connues des étoiles et des barres, e.g., Feller (1957,
Chapitre 2), la cardinalité de l’ensemble A, noté par card (A), est égale à

(
dW+p
p

)
. Notez que, pour tout

d ∈ [dΥ], on définit xd comme
(
xdj

)
j∈[p]

pour les moyennes, qui sont souvent utilisées pour les modèles

de régression polynomiale. De plus, étant donné toute matrice A ∈ Rq×p, les notations suivantes

sont utilisées pour les normes de matrice: la norme de médicale |||A|||∞ = maxi∈[q],j∈[p]

∣∣∣[A]i,j

∣∣∣, la

2-norm ‖A‖2 = sup‖x‖2=1

∣∣x>Ax
∣∣ = supλ∈vp(A) |λ|, où vp(A) désigne le spectre de A, et la norme

de Frobenius ‖A‖2F =
∑q

i=1

∑p
j=1

∣∣∣[A]i,j

∣∣∣2. Alors, il tient que ‖A‖2 ≤ ‖A‖F , ‖A‖2 ≤
√
qp|||A|||∞, et

pour tout x ∈ Rp, ‖x‖2 ≤
√
p ‖x‖∞, ‖Ax‖2 ≤ ‖A‖2 ‖x‖2, e.g., Golub & Van Loan (2013, Chapitre 2).

Sélection de variables via la sélection de variables pertinentes

L’estimateur Lasso, établi à l’origine par Tibshirani (1996), est un choix classique pour la sélection de
variables et a été étendu pour traiter les modèles de régression multivariés multiples pour la sparsité
des colonnes à l’aide de l’estimateur Group-Lasso (Yuan & Lin, 2006). Notez que la pénalité Group-
Lasso peut être utilisée pour sélectionner un sous-ensemble de variables pour un choix de paramètre
de régularisation paramètre de régularisation dans la procédure Lasso-Rank, comme fait, (Devijver,
2015b, 2017a,b) ou pour obtenir un classement des variables, comme fait, par exemple, dans Bach
(2008).

Rappelons que, pour tout k ∈ [K], d ∈ [dΥ], βkd est la matrice du d-ième terme des coefficients de
régression, Σk (Bk) est la matrice de covariance dans la composante du mélange k, et le gk est la pro-
portion du mélange k dont le terme de α-ième ordre de ses monômes est ωkα. De plus, étant donné un
régresseur x, pour tout k ∈ [K], pour tout d ∈ [dΥ] et pour tout z ∈ [q],

[
βkdx

d
]
z

=
∑p

j=1 [βkd]z,j x
d
j

est la z-ième composante des d-ième termes de moyennes pour les composantes du mélange k. En par-

ticulier, pour tous les l ∈ [dW], j ∈ [p], nous définissons ω
[j,l]
k =

{
ωkα ∈ R : α = (αt)t∈[p]Al,αj > 0

}
.

Nous devons traiter des données de grande dimension où nous estimons de nombreux coefficients
tout en ayant un petit nombre de variables cibles. Par conséquent, nous devons nous concentrer sur
la sélection des variables pertinentes via la notion d’indices non pertinents dans Definition 5.4.17.

Definition 5.4.17 (Variables pertinentes dans les modèles SGaBloME). . Un couple (Yz,Xj) et ses
indices correspondants (z, j) ∈ [q] × [p] sont dits irrelevant si, pour tout k ∈ [K], d ∈ [dΥ], l ∈ [dW],

[βkd]z,j = 0,ω
[j,l]
k = 0. Cela signifie que la variable Xj n’explique pas la variable Yz pour les modèles

de régression. Un couple et ses indices correspondants sont pertinents s’ils ne sont pas non pertinents.
On dit d’un modèle qu’il est clairsemé s’il y a peu de variables pertinentes. Nous désignons par J
l’ensemble des indices (z, j) des couples pertinents (Yz,Xj). Ensuite, nous définissons l’ensemble des
variables pertinentes (colonnes) comme Jω = {j ∈ [p] : ∃z ∈ [q], (z, j) ∈ J}. Nous désignons par A[Jω ]

et b[Jω ] la matrice et le vecteur avec des vecteurs 0 sur les colonnes indexées par l’ensemble JCω et des
valeurs 0 sur l’ensemble JCω , respectivement. Ici, JCω est le complément de l’ensemble Jω.
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Remarquez que J ⊂ P ([q]× [p]) and Jω ⊂ P ([q]), où P ([q]× [p]) contient tous les sous-ensembles
de [q]× [p].

Dans notre contexte, nous nous concentrons sur l’estimateur de Group-Lasso pour détecter les
variables pertinentes, où les groupes correspondent aux colonnes. Par conséquent, si pour tous les
k ∈ [K], d ∈ [dΥ], une matrice βkd possède card (Jω) colonnes pertinentes, il y a q card (Jω) coefficients
à estimer au lieu de qp par groupes et matrices de coefficients. Le nombre de paramètres à estimer
est alors considérablement réduit lorsque card (Jω) � p. De plus, une telle sparsité de colonnes
peut améliorer l’interprétation puisque les réponses sont décrites par seulement quelques colonnes
pertinentes. Pour construire la régularisation des coefficients des fonctions polynomiales, nous pouvons
considérer l’estimateur clairsemé de Group-Lasso de Simon et al. (2013) et Hastie et al. (2015, Chapitre
4).

Modélisation à faible rang et éparse

Cette approche est basée sur les modèles à rangs épars, introduits par Anderson et al. (1998). Plus
précisément, si les matrices de régression ont un rang faible ou du moins peuvent être bien approximées
par des matrices de faible rang, alors les modèles de régression correspondants sont dits de rang
clairsemé. Dans le modèle SGaBloME, pour chaque k ∈ [K], d ∈ [L], la matrice βkd est entièrement
déterminée par Rkd (p+ q −Rkd) coefficients si elle a un rang Rkd. Cet avantage sera très utile car le
total des paramètres à estimer peut être inférieur à la taille de l’échantillon nq. Il convient de noter que
cette estimation de rang faible généralise l’analyse classique en composantes principales pour réduire
la dimension des données multivariées et apparâıt dans de nombreuses applications: e.g., Friston et al.
(2003, 2019, analyse des données d’image IRMf), Anderson et al. (1998, analyse du décodage des
données EEG).

En combinant la sparsité de rang et de colonne précédente, on considère les matrices de coef-
ficients de régression βkd de rang Rkd et un vecteur de rangs R = (Rkd)k∈[K],d∈[dΥ] appartient à

[card (Jω) ∧ q]dΥK , où en général, a ∧ b = min (a, b) et a ∨ b = max (a, b).
Nous décrivons plus en détail la collection de modèles SGaBloME avec des variables pertinentes

et des modèles à rangs épars dans la suite.

Collection de modèles

Pour simplifier les notations, L et D représentent
(dW+card(Jω)

card(Jω)

)
et dΥ, qui sont liées aux dimensions de

WK,dW
et ΥK,dΥ

, respectivement. En combinant toutes les structures précédentes définies dans étant

donné m = (K,L,D,B,J,R) ∈ N? × N?N? × (Bk)k∈[K] × P ([q]× [p]) × [card (Jω) ∧ q]DK , quelques
constantes positives réelles Au,v > 0, Aσ > 0, on obtient le modèle suivant:

Sm =
{

(x,y) 7→ sψ(K,L,D,B,J,R)
(y|x) =: sm(y|x) : ψ(K,L,D,B,J,R) ∈ Ψ(K,L,D,B,J,R)

}
,

ψ(K,L,D,B,J,R) =

(
(ωkα)

[Jω ]
k∈[K],α∈A ,

(
βk0,

(
βRkdkd

)
d∈[D]

)
k∈[K]

, (Σk (Bk))k∈[K]

)
∈
(
RL
)K−1 ×Υ(K,D,B,J,R) ×VK (B) =: Ψ(K,L,D,B,J,R),

Υ(K,D,B,J,R) =

{(
βk0,

(
βRkdkd

)[Jω ]

d∈[D]

)
k∈[K]

∈
(
Rq×1 ×

(
Rq×p

)D)K
: ∀k ∈ [K],∀d ∈ [D],

βRkdkd =

Rkd∑
r=1

[σkd]r [ukd]•,r

[
v>kd

]
r,•
, rank

(
βRkdkd

)
= Rkd,∀r ∈ [Rkd] , [σkd]r < Aσ,

max
k∈[K],d∈[dΥ],r∈[Rkd]

{
‖βk0‖∞ ,

∥∥∥[ukd]•,r

∥∥∥
∞
,

∥∥∥∥[v>kd]r,•
∥∥∥∥
∞

}
≤ Au,v

}
. (5.4.48)

Dans ce qui précède, pour k ∈ [K], d ∈ [D], [σkd]r , r ∈ [Rkd], désignent les valeurs singulières de βRkdkd ,

avec les vecteurs unitaires orthogonaux correspondants
(

[ukd]•,r

)
r∈[Rkd]

et
([

v>kd
]
r,•

)
r∈[Rkd]

(Strang,
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2019, I. 8 ). La dimension de Sm est

dim (Sm) = (K − 1)L+ qK +
K∑
k=1

D∑
d=1

Rkd (card (Jω) + q −Rkd) +
K∑
k=1

Gk∑
g=1

card
(
d

[g]
k

)(
card

(
d

[g]
k

)
+ 1
)

2
.

Remarquons que la collection de modèles dans (5.4.48) est généralement grande et donc non
traitable en pratique. Cela nous motive à restreindre le nombre de composantes K, les ordres des poids
mononomiaux L et des moyennes polynomiales D parmi des ensembles finis K = [Kmax], L = [Lmax] et
D = [Dmax], respectivement, où Kmax ∈ N?, Lmax ∈ N? et Dmax ∈ N? peuvent dépendre de la taille de
l’échantillon n. En outre, nous nous concentrons sur une sous-collection (potentiellement aléatoire) J
de P ([q]× [p]), la taille contrôlée étant requise dans le cas de haute dimension. De plus, le nombre de
vecteurs de rangs possibles considérés est réduit en travaillant sur un sous-ensemble (potentiellement
aléatoire) R(K,J,D) de [card (Jω) ∧ q]DK .

En particulier, rappelons que B est sélectionné parmi une liste de structures candidates (Bk)k∈[K] ≡
(B)k∈[K], où B désigne l’ensemble de toutes les partitions possibles des covariables indexées par [p]
pour chaque groupe d’individus. Il convient de mentionner que la taille de B (nombre de Bell) est très
grande même pour un nombre modéré de variables p. Cela nous empêche d’envisager une exploration
exhaustive de l’ensemble B. Motivés par les nouveaux travaux récents de Devijver & Gallopin (2018),
pour chaque groupe k ∈ [K], nous limitons notre attention à la sous-collection Bk,Λ = (Bk,λ)λ∈Λ de
Bk. Ici Bk,Λ est la partition des variables correspondant à la structure bloc-diagonale de la matrice

d’adjacence Ek,λ =
[
I
{∣∣∣[Sk]z,z′∣∣∣ > λ

}]
z∈[q],z′∈[q]

, qui est basé sur la valeur absolue seuillée de la

matrice de covariance de l’échantillon Sk dans chaque cluster k ∈ [K]. Il est important de souligner
que la classe de structures bloc-diagonales détectées par l’algorithme graphique du lasso lorsque le
paramètre de régularisation varie est identique aux structures bloc-diagonales Bk,λ détectées par le
seuillage de la covariance de l’échantillon pour chaque cluster k ∈ [K] (Mazumder & Hastie, 2012).

Enfin, étant donné Sm défini comme dans (5.4.48), notre collection complète de modèles et notre
sous-collection aléatoire de modèles SGaBloME sont définies, respectivement, comme suit:

S = {Sm : m ∈M} ,M = K × L×D × (Bk)k∈[K] × P ([q]× [p])× [card (Jω) ∧ q]DK , (5.4.49)

S̃ =
{
Sm : m ∈ M̃

}
,M̃ = K × L×D × (Bk,Λ)k∈[K] × J ×R(K,J,D). (5.4.50)

Inégalité d’Oracle

Notez que dans cette thèse, voir Section 4.3 pour plus de détails, les structures bloc-diagonales, les
variables pertinentes et les modèles à rangs épars sont conçus, par exemple, par la procédure Lasso +l2-
Rank dans Section 4.3.5. Néanmoins, notre inégalité d’oracle d’échantillon fini dans Theorem 5.4.18,
qui est prouvée dans Section 4.3.3, tient toujours pour toute sous-collection aléatoire de M qui est
construite par certains outils appropriés dans le cadre des modèles de régression SGaBloME.

Theorem 5.4.18 (Inégalité Oracle pour les modèles SGaBloME). Soit (x[n],y[n]) les observations
découlant de la densité conditionnelle inconnue s0. Pour chaque m ≡ (K,L,D,B,J,R) ∈M, laissez
Sm être donné par (5.4.48). Supposons qu’il existe τ > 0 et εKL > 0 de sorte que, pour tous les
m ∈M, on puisse trouver s̄m ∈ Sm tel que

KL⊗n (s0, s̄m) ≤ inf
t∈Sm

KL⊗n (s0, t) +
εKL
n
, et s̄m ≥ e−τs0.

De plus, nous construisons une sous-collection aléatoire (Sm)
m∈M̃ de (Sm)m∈M comme dans (5.4.50)

et considérer la collection (ŝm)
m∈M̃ de η- minimiseurs de log-vraisemblance définis dans (5.4.22).

Alors, il existe une constante C telle que pour tout ρ ∈ (0, 1), et tout C1 > 1, il existe deux constantes
κ0 et C2 dépendant uniquement de ρ et de C1 telles que, pour tout indice m ∈ M, ξm ∈ R+, Ξ =∑

m∈M e−ξm <∞,

pen(m) ≥ κ [(C + lnn) dim(Sm) + (1 ∨ τ)ξm] , κ > κ0,
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l’estimateur de vraisemblance pénalisé η′ ŝm̂, défini dans (5.4.21) sur le sous-ensemble M̃ au lieu de
M, satisfait à

EX[n],Y[n]

[
JKL⊗n

ρ (s0, ŝm̂)
]
≤ C1EX[n],Y[n]

[
inf

m∈M̃

(
inf
t∈Sm

KL⊗n (s0, t) + 2
pen(m)

n

)]
+ C2(1 ∨ τ)

Ξ2

n
+
η + η′

η
.

Contribution du Chapitre 5

Enfin, Chapter 5 conclut le manuscrit et discute des perspectives. En particulier, nous suggérons
plusieurs conjectures et problèmes ouverts comme futures directions de recherche.
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Model Selection and Approximation in High-dimensional Mixtures of Experts Models:
From Theory to Practice

Abstract: In this thesis, we study the approximation capabilities, model estimation and selection
properties, of a rich family of mixtures of experts (MoE) models in a high-dimensional setting, in-
cluding MoE with Gaussian experts and softmax (SGaME) or Gaussian gating functions (GLoME).
Firstly, we improve upon universal approximation results in the context of unconditional mixture dis-
tributions, and study such capabilities for MoE models in a variety of contexts, including conditional
probability density functions (PDF) approximation and approximate Bayesian computation. More
precisely, we prove that to an arbitrary degree of accuracy, location-scale mixtures of a continuous
PDF can approximate any continuous PDF, uniformly, on a compact set; location-scale mixtures of an
essentially bounded PDF, resp. of conditional PDF, can approximate any PDF, resp. any continuous
conditional PDF whenever the input and output variables are both compactly supported, in Lebesgue
spaces. Next, we establish non-asymptotic risk bounds that take the form of weak oracle inequalities,
provided that lower bounds on the penalties hold true, in high-dimensional regression scenarios for a
variety of MoE regression models, including GLoME and SGaME, based on an inverse regression strat-
egy or a Lasso penalization, respectively. We show that the performance in Jensen–Kullback–Leibler
type loss of our penalized maximum likelihood estimator is roughly comparable to that of oracle
model, given large enough the constant in front of the penalty. This penalty is only known up to a
multiplicative constant, proportional to the dimension of model and is calibrated by slope heuristic
criterion. Finally, to support our theoretical results and the statistical study of non-asymptotic model
selection in a variety of MoE models, we perform numerical studies by considering simulated and real
data, which highlight the performance of our finite-sample oracle inequality results.
Keywords: Mixture of experts; mixture models; universal approximation; penalized maximum like-
lihood; non-asymptotic model selection; high-dimensional statistics; Lasso; EM algorithm; ABC.

***
Sélection et approximation de modèle dans les modèles de mélange d’experts de grande

dimension: de la théorie à la pratique

Résumé: Dans cette thèse, nous étudions les capacités d’approximation et les propriétés d’estimation
et de sélection de modèles, d’une riche famille de mélanges d’experts (MoE) dans un cadre de grande
dimension. Cela inclut des MoE avec experts gaussiens et fonctions softmax (SGaME) ou gaussiennes
normalisées (GLoME) pour modéliser la distribution de la variable latente conditionnellement aux
experts. Tout d’abord, nous améliorons les résultats d’approximation universelle dans les mélanges
inconditionnels, et étudions ces capacités d’approximation pour les MoE dans une variété de contextes,
y compris en approximation de fonctions de densités de probabilité (FDP) conditionnelles et en calcul
bayésien approximatif. Plus précisément, nous prouvons qu’à un degré de précision arbitraire, les
mélanges de translatées dilatées d’une FDP continue peuvent approximer toute FDP continue, uni-
formément, sur un ensemble compact; les mélanges de translatées dilatées d’une FDP essentiellement
bornée, resp. d’une FDP conditionnelle, peuvent approcher toute FDP, resp. toute FDP conditionnelle
continue lorsque les variables d’entrée et de sortie sont toutes deux à support compact, dans les espaces
de Lebesgue. Par la suite, nous établissons des limites de risque non-asymptotiques qui prennent la
forme d’inégalités d’oracle faibles, à condition que les limites inférieures des pénalités soient vraies,
dans des scénarios de régression à grande dimension, pour une variété de modèles de régression MoE, y
compris GLoME et SGaME, en s’appyuant sur une stratégie de régression inverse ou une pénalisation
Lasso, respectivement. Nous montrons que la performance en perte de type Jensen-Kullback-Leibler
de notre estimateur de maximum de vraisemblance pénalisé est à peu près comparable à celle du
modèle oracle, si la constante devant la pénalité est suffisamment grande. Cette pénalité n’est connue
que jusqu’à une constante multiplicative, proportionnelle à la dimension du modèle et est calibrée par
un critère heuristique de pente. Enfin, pour appuyer nos résultats théoriques et l’étude statistique de la
sélection non-asymptotique de modèles dans une variété de modèles de MoE, nous réalisons des études
numériques en considérant des données simulées et réelles, qui mettent en évidence la performance de
nos résultats notamment ceux d’inégalités d’oracle en échantillon fini.
Mots-clés: Mélange d’experts; mélange de lois; approximation universelle; maximum de vraisem-
blance pénalisé; sélection non-asymptotique de modèle; grande dimension; Lasso; algorithme EM.
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