
HAL Id: tel-03525163
https://theses.hal.science/tel-03525163

Submitted on 13 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Applications of the renormalisation group equations :
from Grand Unification theories to epidemiology

Corentin Cot

To cite this version:
Corentin Cot. Applications of the renormalisation group equations : from Grand Unification theories
to epidemiology. Physics [physics]. Université de Lyon, 2021. English. �NNT : 2021LYSE1181�.
�tel-03525163�

https://theses.hal.science/tel-03525163
https://hal.archives-ouvertes.fr


THÈSE de DOCTORAT DE L’UNIVERSITÉ DE LYON
Opérée au sein de :

l’Université Claude Bernard Lyon 1

Ecole Doctorale ED 52
Physique et astrophysique de Lyon

Spécialité de doctorat : Physique des particules théorique
Discipline : Physique

Soutenue publiquement le 14/09/2021, par :
Corentin Cot

Applications of the Renormalisation Group equations

From Grand Unification theories to epidemiology

Devant le jury composé de :

Francesco Sannino Président

Professeur,

University of Southern Denmark - University of Napoli Federico II

Sacha Davidson Rapporteur

Directrice de recherche, Université de Montpellier

Veronica Sanz Rapporteur

Professeur, University of Sussex

Nuria Rius Examinatrice

Chercheuse, University of Valencia

Marc Barthélemy Examinateur

Chercheur, Institut de Physique Théorique - CEA Saclay

Giacomo Cacciapaglia Examinateur

Directeur de recherche, Institut de Physique des 2 Infinis de Lyon

Stefan Hohenegger Examinateur

Maître de conférence, Université Claude Bernard de Lyon

Aldo Deandrea Directeur de thèse

Professeur, Université Claude Bernard de Lyon

Alan Cornell Invité

Professeur, University of Johannesburg



Applications of the Renormalisation Group
equations :

From Grand Unification theories to epidemiology

Corentin Cot

1



Acknowledgements

I would like to thank first Aldo for having me as a PhD student and for his precious help
throughout the thesis. Even if the first year had its difficulties, he helped me when I was stuck
and offered me the opportunity to work on my own rapidly. I want to show my gratitude also
to Giacomo for the very interesting projects he allowed me to join and for all the time spent
speaking about physics, its philosophical implications and its relations to fields I would never
imagine to work on. I cannot discuss about such projects without thanking Francesco for all he
has done for this thesis. His strong will to study the applications physics may have on various
fields from data science to economy definitely gave me the momentum to work on unexpectedly
rich projects. Our very efficient trio with Giacomo was one of the main reason I worked so
hard on these projects. A big thank also to Alan for the really interesting discussions we had
throughout these three years and for his valuable help among the correction of the thesis. I
would like to thank Anna and Maria for the fresh ideas they provided me from data science
and for the very interesting works we were allowed to achieve together. Thank you also to
Stefan and Michele for the really rich point-of-views they shared with me regarding the links
between theoretical models and epidemiology.

Remerciements chaleureux à Sylvie pour m’avoir aidé sans arrêt tout au long de la thèse.
Sans les débats animés que nous avions au laboratoire, les journées lors des confinements étaient
bien plus longues. Un grand merci à Anella pour les discussions au sujet des meilleurs coins
pour balader et pour les séminaires que tu as organisés qui ont été d’indispensables évasions
intellectuelles lors des deux premières années de thèse. Merci aussi à Anne et Dany qui nous ont
permis d’organiser nombre d’événements pour les doctorants et à Aurélien, Lucas et Martin
sans qui les goûters et la visite du CERN n’auraient pas eu lieu. Un grand remerciement
évidemment à Corinne qui a été plus qu’un ange gardien pour les doctorants et pour l’aide
qu’elle a apporté dans les difficultés rencontrées. Merci aussi à ma marraine de thèse Nathalie
pour les rares mais très intéressantes discussions que nous avons pu avoir ensemble.

Je remercie évidemment tous les doctorants pour la bonne ambiance que nous avons pu
avoir avant que les confinements ne bousculent nos habitudes. Un merci particulier à Shahram,
Lysandra, Lara, mais aussi Fabio et Paul avec qui j’ai partagé l’ambiance du meilleur bureau du
laboratoire et qui ont su me supporter durant ces trois ans. Un remerciement tout particulier
à Grégoire, mon voisin de thèse. Merci pour toutes nos discussions, moments de loisirs mais
surtout pour ton aide indispensable dans la correction de la thèse. J’aimerais exprimer aussi
une gratitude bien particulière à ma famille, Christophe, Corinne, Clément, Louis, Colette...
pour leur support et l’inspiration qu’il m’ont donné tout au long de ces trois années, mais
aussi bien avant. Finalement, je voudrais remercier Perrine pour tout ce qu’elle m’a apporté,
dans les bons comme dans les mauvais moments de la thèse. Sans quelqu’un d’aussi acharné
dans le travail à mes côtés pour me motiver, cette thèse n’aurait pas pu en arriver à ce qu’elle
est aujourd’hui.

Among all the advice and helps I received from a lot of different persons through a small
conversation or interesting presentations, some of them weren’t cited here but I want to thank
all of them for allowing me to write this work the way it is now. This thesis is somewhat also
the result of the work from all these persons.

2



Publications

Publications related to the thesis :

➔ Minimal SU(5) Asymptotic Grand Unification
G. Cacciapaglia, A. S. Cornell, C. Cot and A. Deandrea
https://arxiv.org/abs/2012.14732

➔ Second wave COVID-19 pandemics in Europe : a temporal playbook
G. Cacciapaglia, C. Cot and F. Sannino
https://www.nature.com/articles/s41598-020-72611-5

➔ Mining Google and Apple mobility data : Temporal Anatomy for COVID-19 Social Dis-
tancing
C. Cot, G. Cacciapaglia and F. Sannino
https://www.nature.com/articles/s41598-021-83441-4

➔ Multiwave pandemic dynamics explained : How to tame the next wave of infectious
diseases
G. Cacciapaglia, C. Cot and F. Sannino
https://www.nature.com/articles/s41598-021-85875-2

➔ Impact of US vaccination strategy on COVID-19 wave dynamics
G. Cacciapaglia, C. Cot, A. Sigridur Islind, M. Óskarsdóttir, F. Sannino
https://www.nature.com/articles/s41598-021-90539-2

➔ The field theoretical ABC of epidemic dynamics
G. Cacciapaglia, C. Cot, M. Della Morte, S. Hohenegger, F. Sannino, S. Vatani
https://arxiv.org/abs/2101.11399

➔ Epidemiological theory of virus variants
G. Cacciapaglia, C. Cot, A. de Hoffer, S. Hohenegger, F. Sannino and S. Vatani
To appear

Other publications :

➔ Naturalness of lepton non-universality and muon g-2
Giacomo Cacciapaglia, Corentin Cot, Francesco Sannino
https://arxiv.org/abs/2104.08818

3

https://arxiv.org/abs/2012.14732
https://www.nature.com/articles/s41598-020-72611-5
https://www.nature.com/articles/s41598-021-83441-4
https://www.nature.com/articles/s41598-021-85875-2
https://www.nature.com/articles/s41598-021-90539-2
https://arxiv.org/abs/2101.11399
https://arxiv.org/abs/2104.08818


Applications des équations du groupe de renormalisa-

tion : Des théories de Grande Unification à l’épidémio-

logie.

Résumé :

Depuis son développement il y a presque cent ans, le principe du Groupe de Renormalisa-
tion a permis de repousser les limites de notre compréhension de la physique au delà de l’échelle
atomique et d’en prédire les aspects qu’elle présenterait en allant vers l’infiniment petit. Il a
aidé à la réalisation d’importantes améliorations de notre compréhension de divers domaines
de la physique, de la théorie quantique des champs à la physique du solide. Le Groupe de
Renormalisation décrit l’invariance des observables par rapport à l’échelle d’énergie considérée
et permet d’étudier l’évolution que cela induit sur les constantes de couplages en fonction de
cette échelle. Une des plus importantes prédictions qu’il amène est la théorie de Grande Uni-
fication dans laquelle les interactions fondamentales (électromagnétisme, interactions faible et
forte) ne devienne plus qu’une unique force émanant à haute énergie. Cette possibilité permet-
trait de décrire la physique des premiers instants après le Big Bang selon des lois simples se
basant sur une unique symétrie. Bien que les théories de grande unification standards voient
cette unification comme un point d’intersection entre les courbes d’évolution des couplages,
ma thèse propose de la voir comme un procédé asymptotique pour lequel les couplages de
jauge tendent à s’unifier en étant amenés vers un point fixe commun dans l’ultra-violet. La
grande unification asymptotique introduit de nouvelles particules permettant de s’affranchir
de la désintégration du proton, d’avoir un candidat à la matière noire et de reproduire l’asy-
métrie baryonique observée dans l’Univers. Le modèle minimal en SU(5) avec une dimension
supplémentaire compactifiée sera présenté en détail, mais de plus grand groupes de symétrie
permettraient d’introduire de nouveaux aspects prometteurs à la théorie.
En parallèle, le groupe de renormalisation a aussi été employé pour étudier la pandémie de
COVID-19 qui a débuté à la fin de l’année 2019 et qui est toujours un sujet d’inquiétude au
moment où cette thèse est rédigée. Grâce à une nouvelle méthode appelée Groupe de Renor-
malisation épidémique inspirée par le formalisme de la théorie quantique des champs, il permet
d’intégrer des procédés complexes, comme la distanciation sociale ou l’interaction entre régions
grâce à l’utilisation d’équations différentielles simples. Alors que les derniers modèles d’épi-
démiologie développés deviennent de plus en plus précis, leur complexité croissante les rend
plus gourmands en temps d’exécution et moins transparents pour comprendre les scénarios de
propagation, de son côté, l’équation du groupe de renormalisation épidémique n’a besoin que
de deux paramètres dans une unique équation différentielle pour reproduire l’évolution d’une
unique vague épidémique. Bien que cette méthode soit assez simple pour pouvoir réaliser une
analyse détaillée sur un ordinateur portable en peu de temps, elle a montré une grande pré-
cision même pour des prédictions sur plusieurs mois. De nouveaux ajouts peuvent, de plus, y
être intégrés aisément permettant de décrire par exemple des vagues multiples, l’apparition de
variants mais aussi la vaccination.
Les points de vues originaux offerts par les équations du groupe de renormalisation permettent
donc d’ouvrir de nouvelles frontières à l’étude de la théorie quantique des champs pour laquelle
elle a été développée à la base, mais aussi pour l’épidémiologie. Ces méthodes pourraient même
être étendues à des domaines bien plus variés tels que l’économie ou la chimie.
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Applications of the Renormalisation Group equations :

From Grand Unification theories to epidemiology

Summary :

Since the introduction in the early fifties of the Renormalisation Group (RG) scheme, our
comprehension of physics below the atomic scale has been greatly advanced with important
improvements in multiple domains of physics, from quantum field theory to solid-state physics.
The Renormalisation Group scheme describes the invariance of observables with respect to the
energy scale of the process considered and reveals constraints on the evolution of the coupling
strength. One of the main ideas arising from their study are Grand Unification Theories
(GUT) in which fundamental interactions (electromagnetism, weak and strong forces) become
one unique force at very high energy, this therefore advocates for the existence of a simple
symmetry description of physics just after the Big Bang. While standard GUT see unification
as a crossing between the running coupling constants, my thesis proposes to view it as an
asymptotic process where gauge couplings tend to unify by running toward a common limit
being an attractive UV fixed point. The asymptotic Grand Unification Theories introduce new
particles removing issues concerning the proton decay, proposing dark matter candidates, and
reproducing the baryon asymmetry observed in the Universe. The minimal model on SU(5)
with one compactified extra-dimension will be presented, but larger symmetry groups could
be involved to introduce promising features to the model.
In addition, the RG has allowed us to investigate the COVID-19 pandemic, that began towards
the end of 2019 and is still a major concern at the time when this thesis was written. With
a totally new framework called the epidemic Renormalisation Group (eRG) inspired by the
quantum field theory formalism, an integration of complex features has been possible, such as
social distancing and interactions between countries in a simple modeling scheme. While the
latest classical epidemiological models tend to become more precise, their increasing complexity
make them computationally time consuming and less transparent when trying to understand
the scenario of spreading. On the other hand, the simplest epidemic Renormalisation Group
equation needs only two parameters in one differential equation to reproduce a simple wave.
Despite its simplicity allowing it to run on a simple personal computer even for complex
analysis, our new framework has shown an important level of precision for predictions even a
few months into the future. Adding new features to the equations is also straightforward, just
like interactions between fields or fixed point can be integrated in quantum field theory.
These original viewpoints offered by the RG equations open new frontiers not only for the
study of quantum field theory and for epidemiology, but also extend to others various fields
ranging from chemistry to economies.
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1 Introduction

Following the revolution of quantum mechanics in the beginning of the twentieth century,
the development of subatomic physics and its description of the nature of matter began a rich
journey of discovery for science. Quantum Field Theory (QFT) [1, 2] and its framework to
describe the known particles and interactions, the Standard Model (SM) [3, 4, 5], lead to an
unprecedented precision of measurements in the history of physics. Within this description of
the Universe through symmetries, it allows for the prediction of the observable quantities va-
lues such as decay rates and cross sections, but also the effective estimations of the Lagrangian
parameters within the theory, such as particle masses or coupling constants. It has provided
numerous theoretical predictions, later measured experimentally such as the discovery of the
massive gauge bosons W and Z [6, 7] or more recently the Higgs boson [8, 9]. Agreement
between theoretical predictions and experimental observations has never been so great than
within the SM. For example, the most precise quantities computed have yielded agreement up
to the twelfth decimal between theory [10, 11] and experiment [12]. The model is so robust
that any tiny deviation from its predictions [13, 14, 15] creates keen interest in the scientific
community as proposals for extensions to the SM [16] to explain the discrepancy are made.

One of the predictions offered by QFT is the Renormalisation Group (RG) [17] and the
associated Equations (RGE) which give rise to the beta functions [18, 19, 20]. Their purpose
is to show through differential equations, the evolution of the Lagrangian parameters as de-
pendant on the energy at which the theory is considered. This allows for predictions of the
value of quantities for different energy scales in experiments ranging from the early Compton
scattering at keV scale experiments [21] to the record breaking 13 TeV reached at the Large
Hadron Collider (LHC) [22]. RGE are also useful in understanding the limits in which theories
are well defined [23, 24]. For example, this can show that Quantum Chromo-Dynamics (QCD)
is non-perturbative below a certain energy scale, thus hadronic models are needed to replace
QCD there. In a similar way, above a certain scale, Quantum Electro-Dynamics (QED) needs
to be embed within the electroweak model to describe the physics accurately at higher scales.

Among all its achievements, the SM suffers from yet unexplained features which may
change our understanding of the Universe. One of the main problems comes from the behavior
of the SM at very high energies. The SM can explain physics processes accurately up to the
ElectroWeak (EW) scale, but then predicts that no new phenomenology would arise until we
reach eighteen orders of magnitudes above the EW symmetry breaking scale that is the Planck
scale at which the strength of gravity would become comparable to the others interactions and
therefore could not be neglected [25]. This is equivalent to not knowing what is happening
in the length range of 10−17 m to 10

−35 m. The ratio between these bounds is equivalent to
comparing the size of the Earth with the size of an atom. The "void" predicted by the SM
in this very large discrepancy between these two scales creates what is called the Hierarchy
problem, and suggests that something may exist between these scales. Moreover, the evolution
of the coupling constants in the SM, as given by the RGE, shows that some of them would
go to infinite values before reaching the Planck scale. This divergence is the sign of an incon-
sistency in the theory at large energy scales [26] as was argued to advocate that QED is an
effective theory. Fortunately, this unpleasant problem could be removed if the gauge couplings
run toward an unique point. Supposing that the three interactions unify at this point, their
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unified coupling evolution being described by another group could avoid dangerous infinities
up to the Planck scale. Such models [27, 28] are called Grand Unification Theories (GUT)
[29] and drove important interest in deriving a unified description of the Universe. However,
this unification cannot precisely occur at one unique point in the SM unless new ingredients
such as SuperSymmetry (SUSY) are added [30, 31]. No experiments have yet observed any
supersymmetric particles, something which has created concerns and dampered hopes about
SUSY in the scientific community [32, 33, 34]. Moreover, GUT cannot be disentangled from
the prediction of the proton decay [35], a process that has never been observed experimentally
[36], and so it considerably constrains models by pushing the unification to very high energies.

One of the other main issue in the Standard Model is Dark Matter (DM). This first arose
due to a disagreement between the dynamical evolution of large structures in the Universe
and the estimation of the visible matter within these structures [37], as was first pointed out
in 1884 and measured more precisely later [38]. This could be explained by admitting the
existence of a non-visible matter interacting through gravitation with visible matter, as first
proposed by Oort in 1932 [39] and consolidated in 1970 by the work of Rubin and Ford [40].
These particles could also explain gravitational lensing effects [41, 42], structures in the cosmic
microwave background [43] and multiple other observations but these are yet to be measured
directly experimentally [44].

Therefore, there is a need for new theories involving description of both unification and
dark matter candidates. Among these possible theories, extra-dimensional theories have been
of great interest, as they were developed first to unify gravitation and the other interactions
[45, 46, 47]. Through a different unification paradigm, this thesis presents extra-dimensional
models seeing unification as an asymptotic effect instead of a crossing point. It primarily re-
moves the above problems that were systematically encountered in standard GUT, forbidding
the proton decay and proposing a DM candidate, but it also gives the opportunity to think
the unification in a different way.

The framework employed to describe the Renormalisation Group can also be applied in
completely different domains. Along with the spreading of the coronavirus SARS-CoV-2 and
its related disease the COVID-19 pandemic [48], a renewed interest in epidemiological mo-
dels has emerged in the scientific community from 2020. The century-old SIR compartmental
model [49, 50] developed after the Spanish Influenza pandemic that had spread during and
after the first World War had been intensively used and modified to take into account various
aspects of the spreading of diseases [51, 52]. For complex study these models require a lot of
input parameters in order to improve their accuracy at reproducing data, thus their complexity
gives rise to a lack of predictability and leads to longer computation times in order to reach
a usable result. Therefore, a simpler and more comprehensive framework is needed to study
the spread of viruses. Surprisingly, Renormalisation Group has brought an original point of
view to epidemiology and the mathematical tools developed within QFT through the newly
developed epidemic Renormalisation Group (eRG) [53] served this purpose. In a single master
equation the method can be employed to simulate [54, 55], predict [56, 57] and understand
[58, 59] the evolution of the pandemic across different geographic scales. The eRG has brought
about a simple visualisation of the interaction between regions just like an interaction between
fields could be modeled. Similarly, the multiple waves and the endemic phases of the pande-
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mic can be thought in terms of fixed points of the RGE. A careful description of the effects of
vaccination campaigns, or of the emergence of new variants, can also be added to the master
equation. While the eRG was developed along with the COVID-19 pandemic, it could also be
adapted to other past or future pandemics that may threaten humanity.

This thesis is organised as follows : in chapter 2 we will introduce the Renormalisation
Group approach. We start by presenting the main features of the Standard Model, then by
showing the problems related to infinities in the calculations, we will see how renormalisa-
tion and regularisation methods have to be employed to tame these infinities. We will also
investigate the implication of the renormalisation scheme on the evolution of the parameters
of the theory using the Renormalisation Group framework through the β-function. We will
finally study the equations in the Standard Model and see the consequences of having fixed
points. In chapter 3 we introduce Grand Unification theories, first by showing how and why
standard Grand Unification had been developed and what its limits are. We then investigate
extra-dimensional theories and the mathematical description of such models. Finally, through
the new asymptotic Grand Unification paradigm, we present the minimal model and how it
addresses the problems of standard unification. In chapter 4 we introduce the process used
to study the behavior of pandemics through the Renormalisation Group equations. We first
introduce the simplest epidemiological models, focusing on their similarities and limits. We
then introduce the epidemic Renormalisation Group framework on simple waves first seeing
how correlation with mobility can be extracted, then adding interaction and multiple waves
features in it. We finally deal with other add-on, such as vaccination, mutations or other di-
seases. We conclude with a discussion of possible extensions to the two directions of the thesis
in chapter 5.
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2 Renormalisation group

2.1 The Standard Model

2.1.1 Symmetries and particle content

The Standard Model (SM) [2, 1, 60] is probably the most successful theory in the his-
tory of physics. It is defined within the Quantum Field Theory mathematical formalism and
proposes to describe all the particles detected and, in the scope of symmetries, three of the
four known fundamental interactions of physics within a coherent framework. The forces it
describes are the electromagnetism, responsible for the interaction between electrically char-
ged particles, allowing the existence of the stable structure of atoms and interactions between
them in molecules, the weak force, responsible for some nuclear reactions such as β decay
and for flavour violating processes in nature and finally the strong interaction, accountable
for the stability of the atom nucleus and of its components but also for most of the mass of
matter. Including the gravitational interaction in this description is one of the main challenges
of physics and while several theories such as string theories [61] or quantum loop gravity try
[62] to integrate it in the SM, their phenomenological predictions are pushed to very high ener-
gies. We will limit the range of the theories presented in this thesis to energies lower than the
Planck mass which represents the scale for which gravitational strength becomes comparable
to subatomic forces.

In the Hamilton’s description, any physical theory is associated to a quantity allowing
to derive the equations of motion associated to the fields considered in the theory called the
action. In the SM, this quantity SSM is invariant under the following symmetry group :

GSM = P4 ⊗ SU(3)c ⊗ SU(2)L ⊗ U(1)Y ,

where P4 is the 4-dimensional Poincaré group related to the invariance under special relativity
transformations. The three other groups are gauge groups associated with internal symmetry
of the fields. SU(3)c refers to the Quantum Chromo-Dynamic (QCD) group, representing
the strong interaction, SU(2)L represents the group in which left-handed fermions and the
Higgs boson are coupled and U(1)Y refers to the hypercharge group. The non-simple group
SU(2)×U(1) is also called the ElectroWeak (EW) group as it contains the electromagnetism
and weak interactions that would appear through spontaneous symmetry breaking. Those
three groups give rise to a set of gauge fields that are the mediators of the three subatomic
forces. Gauge fields are described by vector-transforming mathematical objects of spin 1 and
are called gauge bosons, the term boson referring to spin-integer particles as opposed to fer-

mions with half-integer spin particles.

The photon γ is the gauge boson associated with electromagnetism. In the SM, it has
no mass and is described by the electromagnetic field Aµ whose Abelian characteristics allow it

to commute with himself. The three massive gauge bosons W
± and Z0 are associated with

the weak interaction. They are given masses due to the spontaneous symmetry breaking of
the SU(2) × U(1) group and are described by the non-Abelian fields W+

µ , W−

µ and Z
0
µ. Fi-

nally, the eight gluons fields ga are gauge bosons responsible for the strong force stemming
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directly from the Quantum Chromodynamics (QCD) group SU(3)c and are massless.

In the SM, it exists another boson whose spin is zero and can therefore be described by a
scalar field. This particle is called the Higgs boson h and is at the origin of the EW symmetry
breaking. Its interactions with fundamental particles give rise to mass terms in the Lagran-
gian thanks to the Higgs mechanism. The Higgs boson is also the latest fundamental particle
discovered by the scientific community in 2012 and is therefore heavily studied.

The Standard Model also contains fermions composing what we call matter. Fermions can
be separated into two sub-groups having different interactions in the SM : the leptons that
are only sensitive to the electromagnetic and weak forces and the quarks that are sensitive to
all interactions including the strong force. Each fermion category is composed by three copies
of two particles as shown in Table 1, each copy being called generation or family.

Generation Quarks Leptons
up-type quark down-type quark charged lepton neutrinos

1 up u down d electron e electronic νe
2 charm c strange s muon µ muonic νµ
3 top t bottom b tau τ tau ντ

Table 1 – Fermion content of the Standard Model.

However, most of the matter we interact with everyday is composed by only the three
charged fermions of the first generation, saying the up and down quarks embedded into the
protons and neutrons composing atomic nucleus and the electrons interacting with the nuclei
to form atoms. The other particles are either weakly interacting with visible matter (as all
the neutrinos) either unstable, decaying into lighter particles. Their short life time forces us to
investigate their properties only in high energy processes such as cosmic rays or high energy
physics experiments. All these particles can be easily integrated within the Standard Model
by deriving the associated Lagrangian representing all the interactions and properties of the
particles in a single equation.

2.1.2 Standard Model Lagrangian

The Lagrangian LSM associated with the SM can be written :

LSM = −
1

4
FµνF

µν
−

1

4
W

a
µνW

aµν
−

1

4
G
b
µνG

bµν

+ ilL /DlL + ieR /DeR + iqL /DqL + iuR /DuR + idR /DdR
+ (lLφc)YleR + (qLφ)YddR + (qLφc)YuuR + h.c

+ ∣Dµφ∣2 + µ
2
φ

†
φ + λ (φ†

φ)2 ,
(1)
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where the repeated indices are summed according to the Einstein summation rule explained in
the appendix A. a, b are gauge indices being summed over the dimension of the adjoint space
of the groups, /D = ∂µγ

µ
− igCT

a
C
a
µγ

µ is the covariant derivative, where the γµ are the Dirac
gamma matrices, gA is the coupling constant associated with the gauge field C

a
µ belonging to

any of the gauge group. F,W,G are the field strength tensors defined by :

Fµν = ∂µBν − ∂µBν ,

W
a
µν = ∂µW

a
ν − ∂µW

a
ν + ig2f

abc
SU(2)W b

µW
c
ν ,

W
a
µν = ∂µW

a
ν − ∂µW

a
ν + ig3f

abc
SU(3)W b

µW
c
ν ,

(2)

where the fabc are the structure constants and g1, g2 and g3 are the coupling constants asso-
ciated with the groups U(1), SU(2) and SU(3) respectively. l, q, e, u and d are the fermion
fields and φ, the scalar field in which the Higgs boson is embedded. All the fields are functions
of space and time and takes their values in irreducible representations of the SM group GSM .

Each field is associated to local gauge operators U(x) leaving the Lagrangian invariant
according to the transformations :

ψ(x) → U(x)ψ(x) . (3)

The transformations can be rewritten in terms of the gauge group generators such that :

U(x) = eiqψTa , (4)

where q is the charge of the field ψ associated with the SM subgroup and T a are the subgroup
generators which are defined in Appendix A. The charges of the fermions fields under the three
SM groups are listed in 2.

Name Multiplets Fields SU(3)c ⊗ SU(2)L ⊗ U(1)Y
Lepton doublet lL eL (1,2,−1

2
)

νL
Charged lepton singlet eR (1,1,−1)
Quark doublet qL uL (3,2, 1

6
)

dL

Up-type quark singlet uR (3,1, 2
3
)

Down-type quark singlet dR (3,1,−1

3
)

Table 2 – Quantum charges of the fermion fields in the SM group.

As a naive first guess, one can think that the fermion kinetic term could be written ψ/∂ψ.
However, this expression is not invariant under the gauge transformations. Therefore, we need
to add a term coupling the gauge bosons to the fermion to restore the symmetry such that /∂
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is replaced by /D = /∂ − igAT
a
A
a
µ that is what we called the covariant derivative.

Discovered in 2012 [8, 9] after being predicted by Brout, Englert and Higgs [63, 64], the
Higgs boson is an major piece of the Standard Model. It is accountable for the electroweak
symmetry breaking giving rise to fundamental particle masses through Lagrangian terms. The
Higgs boson is integrated within the Lagrangian via gauge invariant operators among which

the terms µ2φ†
φ and λ (φ†

φ)2 are known as the Higgs potential and will be studied in details
in section 2.1.3.

The Higgs field comes with interaction terms in what is called the Yukawa sector where
the fermions and the Higgs boson are coupled. In these operators, the Higgs that is an SU(2)-
doublet is always contracted with a fermion doublet and a fermion singlet. These parts give
rise to mass terms for the fermions after the Higgs develop a non-zero vacuum expectation
value due to its potential, thus inducing the EW symmetry breaking.
The fermion families are embedded in flavor multiplets such that :

eR =

⎛⎜⎜⎝
eR
µR
τR

⎞⎟⎟⎠ , lL =

⎛⎜⎜⎝
l
e
L

l
µ

L

l
τ
L

⎞⎟⎟⎠ , uR =

⎛⎜⎜⎝
uR
cR
tR

⎞⎟⎟⎠ , dR =

⎛⎜⎜⎝
dR
sR
bR

⎞⎟⎟⎠ , qL =

⎛⎜⎜⎝
q
u
L

q
c
L

q
t
L

⎞⎟⎟⎠ . (5)

The subscripts L/R refers to the chirality of the field where the right-handed (R) fields
are singlets and left-handed (L) doublets can be decomposed for each family as :

l
e
L = (νeL

e
−

L
) , q

u
L = (uL

dL
) . (6)

Therefore, in flavor space, fermions can be rotated without changing the Lagrangian, using
orthogonal matrices U and V (where orthogonality is defined in Appendix A) and following
the transformations :

lL → UllL , eR → UeeR,

qL → VqqL , uR → UuuR , dR → UddR .
(7)

Yukawa matrices as shown in the Lagrangian are just generic matrices, but using these
transformations, the lepton Yukawa matrix can be diagonalised, so we can consider it directly
as :

Yl =
⎛⎜⎜⎝
Ye

Yµ
Yτ

⎞⎟⎟⎠ , (8)

where each eigenvalue correspond to a lepton flavor (electron, muon and tau). For the quark
sector, the two matrices cannot be diagonalised simultaneously. The convention in the Standard
Model is to take Yd diagonal and to keep Yu standard. It is possible then to choose Vq, Vu, Vd
and an appropriate orthogonal matrix V such that :

Yd = VqŶdVd , Yu = V ŶuVu ,

Ŷd =
⎛⎜⎜⎝
Yd

Ys
Yb

⎞⎟⎟⎠ , Ŷu =

⎛⎜⎜⎝
Yu

Yc
Yt

⎞⎟⎟⎠ .
(9)
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Doing the transformation for the Yukawa quark terms in the Lagrangian, we can finally
write the quark Yukawa terms as :

(qLφ) ŶddR + (qLφc)VŶuuR , (10)

where V = V
T
q V is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix [65, 66] that

is responsible for the flavor-mixing charged current in the SM. This matrix is the reason why
mass-states of up-type quarks are different from weak interacting states.

2.1.3 Electroweak symmetry breaking

A crucial part of the Standard Model is the electroweak symmetry breaking. In the SM
Lagrangian, mass terms for the gauge bosons are forbidden because they do not conserve
the gauge symmetries, however, the gauge bosons W and Z are massive which seems to
contradict the previous affirmation. Their mass terms can actually be derived thanks to the
non-zero Vacuum Expectation Value (VEV) the Higgs boson gets at low energy which causes
the electroweak symmetry to spontaneously break. This VEV can be derived by looking at
the Higgs potential :

V (φ) = −µ
2∣φ∣2 + λ∣φ∣4 . (11)

At low energy, the theory will be driven to its ground state that is obtained at a minimum
of this potential. The expression in equation (11) is shown in Figure 1.

0
v

2

0

- λv2
4

|Φ|

V
(|
Φ|)

Figure 1 – Higgs potential as a function of ∣φ∣. The red dot shows that gauge invariant
value while the green dot shows the global minimum that breaks the explicitly the symmetry.

One can see that the minimum is different from ∣φ∣ = 0, therefore the potential drives the
theory to a state that is not gauge invariant anymore. One can remark that even if a minimum
does not respect the gauge symmetry, the set of minimums of the potential is gauge invariant.
This is the principle of spontaneous symmetry breaking, while the potential is still symmetric
with respect to SU(2), the theory will be pushed to a set of solutions that is gauge-invariant
but for which each solution isn’t. In the case of the Higgs potential, the minimum is reached
when :

∣φ∣2 = µ
2

2λ
=
v
2

2
, (12)
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giving the field a non-zero vacuum expectation value within a set of solutions that are just
different up to a complex phase. Therefore, a perturbative state around the ground state for
the Higgs SU(2) doublet can be written as :

φ = e
iπa(x)⋅σa ( 0

v+h(x)√
2

) , (13)

where σ are the three generators of SU(2), π(x) are the Goldstone fields that are unphysical
massless scalar fields appearing thanks to the symmetry breaking. Finally, h(x) is the physical
Higgs field. Replacing this expression in the Higgs potential gives :

− µ
2 (v + h(x)√

2
)2 + λ (v + h(x)√

2
)4 = λv2h(x)2 + λvh(x)3 + λ

4
h(x)4 − λv

2

4
. (14)

These terms can be identified respectively as a mass term for the Higgs boson associated
to mh =

√
λv, a trilinear and a quartic couplings between Higgs fields and a constant term

that shows the change of the ground state but is unphysical so can be neglected.

In the same way, the dynamical term associated to the gauge fields W a and B associated
with the electroweak group SU(2) × U(1) can be expanded such that :

∣Dµφ∣2 =1

2
(( 0

∂µh
) − i ( 0

h + v
) (g1Bµ + g2σ

a
W

a
µ)) (( 0

∂
µ
h
) + i ( 0

h + v
) (g1Bµ

+ g2σ
a
W

a,µ))
=
1

2
∂µh∂

µ
h +

1

8
(h + v)2 (g22 (W 1

µ − iW
2
µ) (Wµ1

+ iW
µ2) + (g2W 3

µ − g1Bµ)2)
=
1

2
∂µh∂

µ
h +

g
2
2v

2

4
W

+

µW
µ
− + (g22 + g

2
1) v28 ZµZµ + interactions-terms ,

(15)
where the last line was obtained by defining the fields W± and Z such that :

W
±

µ =

W
1
µ ∓ iW

2
µ√

2
, Zµ =

g2W
3
µ − g1Bµ√
g22 + g21

. (16)

In the last line of equation (15), we derived the Higgs boson kinetic term and the mass
terms for the Z and W bosons associated to the weak interaction where :

mW =
g2
2
v , mZ =

√
g22 + g21
2

v . (17)

The photon field can also be added by defining :

Aµ =

g1W
3
µ + g2Bµ√
g22 + g21

. (18)

No mass term is associated to this field leaving the photon with its standard massless
description. The transformation of W 3 and B in A and Z fields can be seen as a rotation via
the following relation :

(A
Z
) = ( cos (θW ) sin (θW )

−sin (θW ) cos (θW )) ( BW 3) , (19)
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where :
cos (θW ) = g2√

g22 + g21

, sin (θW ) = g1√
g22 + g21

. (20)

θW is known as the weak mixing angle or Weinberg angle and is an active sector of
the experimental research because it can constrain theoretical models beyond the Standard
Model. The Weinberg angle is also involved in the relations between the massive bosons masses
and between the gauge group coupling constant g2 and the electric charge e :

mW

mZ
= cos (θW ) , e = g2sin (θW ) . (21)

The most precise measure obtained is cos(θW ) = 0.88147±0.00013 [67] which is one of the
most precise measures in particle physics.

The charge associated to the photon field is the standard electric charge Q defined by :

Q =
y

2
+ σ3 , (22)

where y is the charge related to the U(1) group also called hypercharge. Finally, the elec-
troweak symmetry breaking has an effect on the Yukawa sector giving mass to the fermions.
The Yukawa terms in the Lagrangian can be rewritten :

LY = (lLφc) ŶleR + (qLφ) ŶddR + (q̃Lφc)VŶuũR + h.c

=
vYl√
2
(eLeR + eReL) + vYd√

2
(dLdR + dRdL) + vYu√

2
(uLuR + uRuL) +O (h(x)) . (23)

The last equality is obtained because the three Ŷ -matrices are diagonal in flavour space
and considering that the mass states of up-type quarks fields are defined by the matrices uL
and uR such that :

ũL = V
†
uL , ũR = uR . (24)

The last line of equation (23) shows that mass terms can be generated thanks to the
electroweak symmetry breaking and fermions are thus associated to the masses :

mfi =
vY

i
f√
2
. (25)

We saw that the electroweak symmetry breaking is essential to derive the Standard Model
particles and their characteristics. We will now investigate how to predict observable values
theoretically and why Renormalisation Group is needed in order to understand the energy
dependence of theories such as the Standard Model.

2.2 Renormalisation theory

2.2.1 Feynman rules

Using symmetries and action principles, Quantum Field Theory (QFT) is yet the simplest
way to describe particle physics models. It has been shown that quantities and observables
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in QFT can be calculated by using diagrams describing contributions to the full processes
considered : The Feynman diagrams. Most of the quantities derived in QFT can be predic-
ted calculating transition amplitudes Ai→f , whose norm corresponds to the probability for a
process transforming an initial state i into the final state f to occur. Initial and final states
are called asymptotic states symbolising the fact that states do not interact anymore and are
well separated. In order to calculate these transition amplitudes, the quantum operator S is
needed, such that :

Ai→f = ⟨i∣S∣f⟩ , (26)

where ⟨∣ and ∣⟩ are the bra and ket notations where the bra corresponds to a linear form
transforming a vector into a complex number and the ket is acting as a vector. Therefore,⟨i∣S∣f⟩ can be thought as a matrix element of S.

The S-matrix cannot be computed in general but can be estimated using perturbation
theory. The principle of perturbation theory is to develop from an analytical interaction-free
theory a model in which an interaction term is added whose contribution is small. The theory
will then be expanded in terms of powers of the small interaction around the bare theory as
we did for the Higgs field next to its minimum in equation (13). This expansion can be derived
thanks to the LSZ theorem allowing to link elements of the S-matrix with time-ordered
correlation functions. As a general example, taking n particles in the initial state and m in
the final states for scalar quantum fields φ(x) of defined momentum p1, ...pn+m, states ∣i⟩ and⟨f∣ can be written :

∣i⟩ = √
2∣p1...√2∣pna†

p1 (−∞) ...a†
pn (−∞) ∣Ω⟩ , (27)

⟨f∣ = √
2∣pn+1...√2∣pn+m ⟨Ω∣ apn+1 (∞) ...apn+m (∞) , (28)

where ∣Ω⟩ is the vacuum of the interacting theory (which can be different from the vacuum
of the free theory written ∣0⟩) and the a†

p (t) (respectively ap (t)) are operators creating (des-
troying) a particle of momentum p at the time t and are thus called creation (annihilation)
operators. Then, the matrix element can be written :

⟨i∣S∣f⟩ = n+m

∏
k=1

[i∫ d4
xke

−ipkxk (□k +m
2)] ⟨Ω∣T{φ(x1)...φ(xn+m)}∣Ω⟩ , (29)

where □i = ( ∂

∂x
µ

i

)2 and T{...} refers to the time-ordering product putting all operators from

the later times to the left of operators from earlier time. Finally, this expression can be written
in terms of product of two-point functions thanks to the Wick theorem :

T{φ(x1)φ(x2)...φ(xn)} =∶ φ(x1)φ(x2)...φ(xn) + all possible contractions ∶ , (30)

where ∶ ... ∶ represents the normal ordering moving all the creation operators a† to the left
and all annihilation operators a to the right and the term contraction refers to the process
of associating all fields together by pairs to get a Feynman propagator for each pair. Feynman
propagators are related to Green’s functions linking two point of space-time together and will
be seen later when showing Feynman rules. Normal ordering allows to make some of the terms
of the matrix element vanish thanks to the free theory vacuum relation such that :

a ∣Ω⟩ = 0 , (31)
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and leaves us only with the fully contracted terms giving Feynman propagators. These propa-
gators allow to show the connection between space-time points as lines and therefore to show
the sum of all possible contractions using diagrams.

In the end, all the theorems we have seen allow to derive rules that can be simply explai-
ned in terms of diagrams. Each piece of the diagrams can be expressed by a mathematical
expression giving the contribution to the quantity of interest. As a simple example, we show
here the Feynman rules in Quantum Electro-Dynamics (QED) :

γ γ =
−i

p2 + iǫ̃
[gµν − (1 − ξ) pµpν

p2
] ,

ψ ψ =

i (/p +m)
p2 −m2

+ iǫ̃
,

ψ1

γ

ψ2

= −ieγ
µ
δ (p1 + p2 − pγ) ,

where p corresponds to the momentum associated with the propagator, ǫ̃ is a parameter allo-
wing to avoid poles when integrating over the momentum and which should be brought to 0 at
the end of the calculation. gµν is the metric tensor defined as Diag(+,−,−,−), ξ is the gauge
parameter from which the final result should be independent as any choice should lead to the
same result for the S-matrix due to its gauge invariance, the slashed notation /p corresponds
to the contraction with the Dirac matrices γµ, defined in Appendix A, such that /p = pµγµ.

This set of Feynman rules is sufficient to derive all the relevant quantities associated within
QED. The Feynman diagrams associated to a physical quantity are an infinite set of diagrams
that allows to approximate it using perturbation theory. For example, when trying to evaluate
the interactions between two electrons, we have to compute the following diagrams :

e
−

e
−

e
−

e
−

,

e
−

e
−

e
−

e
−

,

e
−

e
−

e
−

e
−

, ... (32)

where ... refers to the infinite number of diagrams that can be added to calculate the interac-
tion, while here we just represent some diagrams up to the one-loop order.

The process shown by each diagram alone shouldn’t be taken as a real occurring process,
because it exhibits virtual particles with nonphysical characteristics. This can be seen by
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looking, for example, at the diagram in equation (33).

e
−

1

e
+

2

e
−

3

e
+

4 . (33)

It is possible to compute the four-vector for each particle and find that in the center-of-mass
reference frame, we have :

k̃
2
= −4E

2
≠ m

2
= 0 , (34)

where k̃ is the photon four-vector and E is the energy of each electron in the center-of-mass
reference frame. This result shows that the photon four-vector does not respect the on-shell
condition k̃2 = E2

−p
2
= m

2, thus we call it an off-shell particle. This result can be understood
in the light of the Heisenberg uncertainty principle ∆t∆E >

h̵

2
, where ∆t represents the time

of the process and ∆E the uncertainty on the energy associated. In the diagram considered
before, the virtual photon appear and disappear so fast that ∆t is really small forcing ∆E

to be higher than the energy of each electron. Such particle cannot be observed as it clearly
violates the laws of relativity, thus, virtual particles shouldn’t be considered as real particles
and Feynman diagrams shouldn’t be considered as real processes. They are just practical
mathematical tools to study a process through perturbation theory.

2.2.2 Renormalisation principle

Calculating diagrams sometimes exhibits infinite quantities that seems to imply that the
theory doesn’t work. This is the case for most of the loop diagrams such as a vacuum polari-
sation diagram :

γ γ

. (35)

Neglecting fermion masses and taking only the divergent part, this diagram behaves as :

iM ≈ ∫ +∞

0

d4
k(2π)4 k

2

(k2 −∆ + iǫ̃)2 ≈ ∫ +∞

0

kdk → ∞ . (36)

This integral is, indeed, infinite. This result was first found by Weisskopf in 1934 [68] and
used by Bethe in 1947 [69] when trying to calculate the diagram contributions to the Lamb
Shift [70]. In Weisskopf calculation, infinities came from very short wavelength photons, which
can be attributed to very large momentum k in our diagram calculation. It exists, in fact,
methods to get rid of the infinities and give finite results to the diagram calculations. Different
methods can be used and are called regularisation schemes.
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As a first example, one can put an UV cut-off regulator Λ as an upper boundary for the
integral over d4

k instead of the ∞ boundary in equation (36). This can be interpreted as
supposing that the model considered is valid until an upper energy scale. This brings for the
diagram calculation a finite value that depends on Λ. However, summing all the contributions
participating to any observable up to a certain order gives a result that doesn’t depend any-
more on Λ if the symmetries of the theory are respected.

Other techniques can be used to pass through the infinity problem, among which dimen-
sional regularisation will be often used throughout the thesis. This regularisation consists in
considering that the theory is no longer four-dimensional but instead described within d di-
mensions. The final trick would be to make d tend to the standard 4 dimensions. In a more
practical way, one can consider that d = 4 − ǫ and drive ǫ to 0 at the end of the calculation.
One shouldn’t mistake the dimensional parameter ǫ and the term ǫ̃ used to avoid the mass
poles in the propagators. As calculations don’t depend on the parameter Λ in the UV cut-off
regularisation, the final result in dimensional regularisation will not depend on ǫ. This funda-
mental result has profound consequences on the interpretation of the theory and will be the
reason why the Renormalisation Group and the associated equations emerge and can give us
important predictions on the energy scale dependence of the theory.

Before discussing the Renormalisation Group, let’s take a simple example with the calcula-
tion of the photon propagator correction diagrams to illustrate the dimensional regularisation
method. The full expression of the vacuum polarisation diagram shown in equation (35) is :

iΠµν = (−ie)2 ∫ d4
k(2π)4 Tr [γµ (−/p + /k +m) γν (/k +m)]

((p − k)2 −m2
+ iǫ̃) (k2 −m2

+ iǫ̃) . (37)

We first use trace formulas (as shown in Appendix A), drop terms linear in k as they would
give 0 contributions because of the oddness of the integral and keep only terms proportional
to gµν as we also have a term proportional to pµpν that will be added later for simplicity.
Introducing the Feynman parameter x and changing the integration variable such that kµ →

kµ + pµ (1 − x), we get :

iΠµν = 4ie
2 ∫ d4

k(2π)4 ∫
1

0

dx
2kµkν − gµν [k2 − x(1 − x)p2 −m

2]
(k2 + p2x(1 − x) −m2

+ iǫ̃)2 . (38)

Considering now that instead of 4 dimensions, the calculation is held in arbitrary d dimen-
sions and using the formula kµkν =

1

d
k
2
gµν , we obtain :

iΠµν = 4ie
2
µ
4−d

gµν ∫ ddk(2π)d ∫
1

0

dx
2kµkν − gµν [k2 − x(1 − x)p2 −m

2]
(k2 + p2x(1 − x) −m2

+ iǫ̃)2 , (39)

where µ is the dimensionful energy scale factor with mass dimension 1 allowing to keep
the same dimension of the diagram calculation for any d as will be explained in the case of
extra-dimensional theory in equation (139).
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Now, taking ∆ = m
2
− p

2
x(1 − x) and using formulas in Appendix A, we get :

iΠµν = −8p
2
gµν

e
2

(2π) d2 µ4−dΓ (2 − d

2
)∫ 1

0

dxx(1 − x) ( 1

m2
− p2x(1 − x))

2− d
2

. (40)

Finally, by replacing d = 4 − ǫ and adding the missing pµpν term, we obtain :

iΠµν = −
e
2

2π2
(p2gµν − pµpν)∫ 1

0

dxx(1 − x) [2ǫ + ln ( µ̃
2

m2
− p2x(1 − x)) +O (ǫ)] . (41)

Multiple information can be extracted from this result. First, we see that the infinity seen
before comes now from the term 2/ǫ when ǫ is pushed to 0. Then, the tensor can be separated
from the infinite part by considering the following definition :

iΠµν = i (−p2gµν + pµpν) e2Π (p2) , (42)

where :

Π (p2) = 1

2π2
∫ 1

0

dxx (1 − x) [2ǫ + ln ( µ̃
2

m2
− p2x(1 − x))] . (43)

Now that we have seen the calculation, we can use the vacuum polarisation diagram result
to see how renormalisation works to define a quantity. The diagram we considered participate
to the correction to the photon propagator such that if at tree level, we have :

iG
tree
µν = =

−i (gµν − pµpν

p2
)

p2 + iǫ̃
, (44)

then, considering the value of the propagator at 1-loop would give :

iG
one-loop
µν = +

=

−i (gµν − pµpν

p2
)

p2 + iǫ̃
+

−i

p2 + iǫ̃
iΠµν

−i

p2 + iǫ̃

= −i (gµν − pµpν

p2
) 1 − e

2
Π (p2)

p2 + iǫ̃

= i (1 − e
2
Π (p2))Gtreeµν .

(45)

Then, we can clearly see the correction to the tree level propagator. Unfortunately, this
correction is still infinite, which is non-sense as perturbation theory should take into account
small quantities in comparison with the free theory. In order to see how to get rid of this
inconsistency, we need to introduce the corrected Fourier transformed Coulomb potential Ṽ (p)
defined through :

iG
one-loop
µν =

−i (gµν − pµpν

p2
)

e2
Ṽ (p) . (46)

Ṽ is such that at tree-level we obtain the classical Fourier transform Coulomb potential
and at one-loop, we find :

Ṽ (p) = e2 1 − e
2
Π(p2)
p2

. (47)
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In order to renormalise the theory, we need to redefine the coupling e by setting a condition
at a reference scale. As a general case, by taking a reference momentum p0, we can define the
renormalised coupling as :

e
2
R ≡

Ṽ (p20)
p20

. (48)

Replacing in equation (47), we obtain :

e
2
R = e

2
− e

4
Π(p20) . (49)

Solving this equation for the bare coupling e as a function of eR up to order e4R gives :

e
2
= e

2
R + e

4
RΠ(p20) +O (e6R) . (50)

Π(p20) is infinite, so e is infinite as well, but because e is a Lagrangian parameter and is not
an observable, we don’t need it to be finite and physical, while eR should be as it represents
the macroscopic electron charge we measure in experiment. Taking now the definition of the
Coulomb potential in (47) and replacing the equation (50) in it would give up to order e4R :

p
2
Ṽ (p2) = e2R − e

4
R [Π(p2) −Π(p20)] +O (e4R) . (51)

In order to reproduce the macroscopic electric charge, let’s take the momentum p0 = 0

corresponding to a length scale of r0 = +∞. Replacing Π by the expression obtained in
equation (43), we then have :

Π(p2) −Π(0) = −
1

2π2
∫ 1

0

dxx(1 − x)ln (1 − p
2

m2
x(1 − x)) . (52)

First, we can see that the infinity stemming from the term 1/ǫ disappeared and so ǫ can be
put to 0, keeping the integral in equation (52) finite and giving us therefore a finite prediction
for the Coulomb potential :

Ṽ (p2) = e
2
R

p2
[1 + e

2
R

2π2
∫ 1

0

dxx(1 − x)ln (1 − p
2

m2
x(1 − x)) +O(e4R)] . (53)

We then have a finite perturbative expansion for the Coulomb potential and for the renor-
malised coupling eR which is finite as well. This computation shows that the measured electric
charge is eR and is clearly different from the bare coupling constant defined in the Lagrangian
of the theory e due to equation (49).

Now that we have a finite expression for the Coulomb potential, we will see how it can
give predictions and how it was proven to work on the specific example of Lamb shift. Let’s
first take the small-momentum limit such that ∣p2∣ ≪ m

2, we then obtain for the integral in
(52) :

∫ 1

0

dxx(1 − x)ln (1 − p
2

m2
x(1 − x)) ≈ ∫ 1

0

dxx(1 − x) [− p
2

m2
x(1 − x)] = −

p
2

20m2
, (54)
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implying :

Ṽ (p2) = e
2
R

p2
−

e
4
R

60π2m2
+ ... . (55)

By Fourier transform this result, we obtain :

V (r) = −
e
2
R

4πr
−

e
4
R

60π2m2
δ(r) . (56)

We then obtain the classical Coulomb potential corresponding to the free theory and a
small correction known as the Uehling term. This correction factor contributes to the degene-
racy of the 2S1/2 and 2P1/2 levels in the energy spectrum of the hydrogen atom due to the fact
that only the L = 0 atomic orbitals have a non-zero value at r = 0. This creates a degeneracy
between the two levels, because in the tree-level description of the hydrogen atom, their energy
depends only on the value of the quantum number n. The energy difference between the two
levels is known as the Lamb shift measured in 1947 by Wallis Lamb [70] and the Uehling term
reduces the 2S1/2 frequency by 27 MHz which is a small but measurable contribution to the-
total Lamb shift of 1057 MHz. This effect and the reliability with theory was one of the major
points that convinced people of the accuracy of quantum field theory and renormalisation.

The other limit is to consider, now, large momenta such that m2
≪ ∣p2∣ giving :

Ṽ (p2) = e
2
R

p2
+

e
4
R

2π2p2
∫ 1

0

dxx(1 − x)ln(1 − p
2

m2
x(1 − x)) +O(e6R)

≈
e
2
R

p2
+

e
4
R

2π2p2
ln(− p

2

m2
)∫ 1

0

dxx(1 − x) +O(e6R)
=
e
2
R

p2
(1 + e

2
R

12π2
ln (− p

2

m2
)) +O(e6R) .

(57)

In this specific example, −p2 is positive, so the logarithm is real. This expression can then
be rewritten in term of an effective coupling constant such that :

Ṽ (p2) = e
2
eff(p2)
p2

, (58)

with :

e
2
eff(p2) = e2R (1 + e

2
R

12π2
ln(−p2

m2
)) , (59)

where for simplicity, we took the renormalisation condition eR ≡ eeff(m).
Then, we see that for any scale p, the corrected potential looks like a Coulomb potential

with a charge eeff(p2) instead of eR and that this effective coupling evolves with the momen-
tum. The higher the ∣p2∣ is (or the smaller distances are) the higher the effective coupling
becomes. One of the interpretation of this evolution of the QED coupling constant with res-
pect to the energy (or the distance) can be explained as due to the screening of the charge
by virtual particles pairs constantly created in the vacuum. Therefore, the closer we are to an
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electron, the more you see it "naked" from its shell of charged virtual particles which influences
the value of eeff that can be measured at this scale. This interpretation means that the "real"
charge of the electron e = eeff (p2 = ∞) is non-accessible. The charge observed at low energy
scale can be obtained only by calculating its effective value taking into account the screening
of other particles.

In order to show the scale dependence, it is interesting to see what happen by merging
several one-loop diagrams together and summing the different diagrams such that :

iGµν = + + + ...

=

−i (gµν − pµpν

p2
)

e2
e
2
R

p2

⎡⎢⎢⎢⎢⎢⎢⎢⎣1 +
e
2
R

12π2
ln(−p2

m2
) + ( e

2
R

12π2
ln (−p2

m2
))2 + ...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

−i (gµν − pµpν

p2
)

e2
e
2
R

p2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
e
2
R

1 −
e2R
12π2 ln (−p2

m2 )
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

⇒ Ṽ (p2) = 1

p2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
e
2
R

1 −
e2R
12π2 ln (−p2

m2 )
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

(60)

Then, the effective coupling constant can be written :

e
2
eff(p2) = e

2
R

1 −
e2R
12π2 ln (−p2

m2 ) , (61)

which is known as a running coupling due to its dependence on the parameter p2. The last
equation can also be rewritten as :

1

e2eff(p2) =
1

e2R
−

1

12π2
ln (−p2

m2
) . (62)

One of the interesting feature about the Renormalisation Group is that the result obtained
in equation (62) would have been identical by changing the renormalisation condition for any
other reference scale µ, instead of the reference scale m we were using here, such that :

1

e2eff(p2) =
1

e2eff(µ2) −
1

12π2
ln (−p2

µ2
) . (63)

Knowing any scale value allows to predict the whole evolution of the parameter with energy.
This property is one of the major advantages of the Renormalisation Group in studying the
asymptotic behavior of a theory from a single value. Returning to equation (62), the left-hand
side is independent from µ, we can derive both sides of the equation with respect to µ, giving :

0 = −
2

e3eff

deeff
dµ

+
1

12π2
2
µ . (64)
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Reorganising it, we finally obtain :

β (eeff) = µdeeff
dµ

=
e
3
eff

12π2
, (65)

which is the first example of what we will call a Renormalisation Group equation (RGE).
The function β (eeff) shown in the right hand-side is what is called a beta-function and will
have an important role throughout the rest of the thesis as it is a scale-invariant function that
does not depend on the energy scale µ directly.

The β-function can always be extracted from the calculation of the relevant diagrams
contributing to the the perturbation series for the parameter we want to renormalise. In order
to simplify the method to extract β, we will explain how to use the formalism of counterterms.
As a basic example, we take the QED Lagrangian that can be written :

L
0
QED = −

1

4
(∂µA0

ν − ∂νA
0
µ)2 + ψ

0 (i/∂ − e0 /A0
−m0)ψ0

, (66)

where the superscript 0 refers to the bare quantities (parameters and fields) while the super-
script R will be used for renormalised ones. Renormalised quantities can be define thanks to
renormalisation factors Z through the following relations :

ψ
0
=

√
Z2ψ

R
, A

0
µ =

√
Z3A

R
µ , m0 = ZmmR , e0 = ZeeR . (67)

Indeed, the renormalisation factors Z should be equal to 1 at the tree-level in order to
reproduce the Feynman rules with bare parameters. Going further in the perturbation orders,
it is thus natural to consider perturbation terms to Z such that :

Z = 1 + δ , (68)

where δ is called a counterterm. Thanks to this definition, the QED Lagrangian can be rewrit-
ten showing the contribution from the counterterms :

LQED = L
0
QED −

δ3
4
(∂µARν − ∂νA

R
µ )2 + δ2ψ

R (i/∂ − δmmR)ψR − δ1eRψ
R /ARψR , (69)

where δ1 = δeδ2
√
δ3. Therefore, counterterms can be taken into account by adding new Feyn-

man rules associated to their Lagrangian terms giving the following rules :

= δ3

−i (gµν − kµkν

k2
)

k2 + iǫ̃
,

=

i (δ2/p − (δm + δ2)mR)
p2 + iǫ̃

,

= −iδ1eRγµ .

(70)

These counterterms are undefined unless we specify renormalisation conditions thanks to
what the infinite contributions from loop diagrams and a finite part depending on the sub-
traction scheme will be absorbed by the counterterms.
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Deducing from the conditions the expression for each δ, we are now able to compute the
Renormalisation Group equations. One just have to express the bare parameter in terms of the
renormalised one. Then, deriving both sides of the equation with respect to the dimensionful
energy scale µ, we obtain the RGE. For example, if we want the RGE for the mass of the
fermion, we have :

m0 = ZmmR ,

⇒µ
dm0

dµ
= 0 = µ

dmR

dµ
+ µ

dδm
dµ

,

⇒βm = µ
dmR

dµ
= −µ

dδm
dµ

.

(71)

It is now straightforward to derive the Renormalisation Group equation by replacing the
value of the counterterm calculated thanks to the renormalisation condition and the substrac-
tion scheme.

2.3 Renormalisation Group and beta function

2.3.1 Renormalisation Group Equations

One of the major differential equation stemming from the Renormalisation Group is the
Callan-Symanzik equation [18, 19]. To show how to derive it in a simple example, let’s study
a theory called the φ4 − theory built with a massive scalar and a four-leg interaction given by
the following Lagrangian :

Lφ4 = −
1

2
φ (□ +m

2)φ −
1

4!
λφ

4
. (72)

In the massless version of this theory (m = 0), shifting the energy scale µ yields the

following transformations for the Lagrangian quantities and the n-leg Green’s functions G(n)
via renormalisation :

µ→ µ + δµ , λ→ λ + δλ ,

φ = Zφ ≈ (1 − δ1)φ , G
(n)
0 = Z

n
G

(n)
≈ (1 − nδ1)G(n)

.
(73)

Since the bare Green’s function does not depend on the energy scale, deriving it with
respect to µ gives the following relation between the couplings shifts :

0 =
dG

(n)
0

dµ
=

dZnG(n)
dµ

= −n
∂δ1
∂µ

G
(n)

+
∂G

(n)
∂µ

+
∂G

(n)
∂λ

∂λ

∂µ
. (74)

Multiplying each side of the equation by µ and defining the quantities :

β (λ) = µ∂λ
∂µ

, γ (λ) = −µ
∂δ1
∂µ

, (75)

yields the Callan-Symanzik equation :

(µ ∂

∂µ
+ β (λ) ∂

∂λ
+ nγ (λ))G(n)

= 0 , (76)
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where β is the beta-function (we already saw an example in equation (65)) and γ is called
the anomalous dimension showing the scale dependence of the theory. In a scale-invariant
description, space-time dilation such that x → Cx rescale any operator by the value Cγ0 ,
where γ0 is the scaling dimension of the operator. This is not true anymore in scale-dependent
schemes, where the rescaling is achieved instead using Cγ0+γ(λ) showing the scale-dependence
of the operator clearly through the anomalous dimension. Equation (75) also shows that β
and γ are dimensionless because λ and δ1 are as well. Therefore, the only scale in the theory
being µ, they do not depend on it and are thus scale-invariant functions depending only on
λ. β and γ can be seen respectively as showing the energy-scale dependence of the coupling λ
and respectively of the renormalised field. Therefore, equation (75) allows to see in a general
expression what are the dependence of any renormalised quantity on the energy-scale.

The Callan-Symanzik equation was one of the first historical differential equation derived
in the light of the RG. It was found later that it can be closely related to a growing bacteria
experiments [71, 1]. To illustrate this analogy, let’s take a unidimensional pipe containing a
fluid whose velocity is v(x) inhabited by bacteria cells whose growth rate ρ(x) is dependent on
the space coordinate, for example because of more light or more food deposed at some specific
points. The bacteria density is given for any time t by D(x, t) and is solution to the following
differential equation : ( ∂

∂t
+ v(x) ∂

∂x
− ρ(x))D(x, t) = 0 . (77)

Equations (75) and (77) can be related by considering the following replacements :

ln ( µµ0 ) ↔
t

t0
, λ↔ x , β (λ) ↔ v(x) ,

nγ (λ) ↔ −ρ(x) , G
(n) (λ, µ) ↔ D(x, t) . (78)

Through these relations, we can see that the evolution of the parameters of the theory
with respect to the energy scale can be understood as a moving fluid element of bacteria
whose growth rate influence its value. Indeed, we will see in section 2.3.3 that the Renorma-
lisation Group equations can be visualised using flows diagrams just like we could do with
hydro-dynamical experiments and that a similar analogy was performed to relate QFT with
epidemiology in section 4.2.1.

As we saw before, the independence of any observable O on both the dimensionful energy-
scale µ (or the cut-off regulator Λ or the dimensional regularisation parameter ǫ) implies that
it exists a scale-invariant function β

A
for any Lagrangian parameter A associated with the

calculation of O such that :

µ
dA
dµ

=
dA

dln(µ) = βA (A) . (79)

The most important property here is to see that β depends only on A and not on the
energy scale µ. Therefore, for any Lagrangian parameter in the theory a differential equation
exists at any perturbation order. The beta function is fundamental in QFT as it allows to see
the evolution of the parameters depending on the energy scale. This is of prime importance,
for example, when we want to predict the value of the coupling constant depending on the
energy of the center of mass in a collider experiment like in the LHC. Most of the time, this
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β-function will be a polynomial in the parameter A.

Some famous examples of the β-function are shown hereafter. For the one-loop factor αe
in Quantum Electro Dynamics (QED), defined by αe =

e
2

eff

4π
at first order, the β-function is :

2πβαe = 2π
dαe

dln(µ) =
4

3
α
2
e . (80)

For the one-loop factor αs in Quantum Chromo-Dynamics (QCD) at first order :

2πβαs = 2π
dαs

dln(µ) = (1
3
nq −

11

2
)α2

s , (81)

where nq corresponds to the number of quarks accessible at the scale considered. Solving these
equations for αe(mZ) = 0.0073 and αs(mZ) = 0.1179 [67], we obtain the running as shown in
Figure 2.

Non-
perturbative
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Freedom

αeαs
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α i

Figure 2 – Running of the QED and QCD one-loop factors at first order.

Figure 2 shows that the two running couplings have really different behaviors. First, loo-
king at the QED one-loop factor, we can see that it goes from 0 in the low-energy part (called
InfraRed or IR part) to infinity when approaching high energies (Ultra-Violet or UV part)
next to the value t ≈ 630 corresponding to µ = 10

286 eV. This scale is clearly not accessible in
any experiments and is, in fact, even higher than the Planck mass. This infinity value reached
for a finite energy scale is called a Landau pole and tends to say that the theory would not
be consistent after this scale. This is a hint to see that QED is not the correct model to study
processes at very high energy.

Looking now at the QCD one-loop factor, we can see an opposed trend. While there exists
a Landau pole in the IR now, the coupling is going to 0 in the UV. The latter behaviour is
what we call asymptotic freedom. This explains why high-energy processes are less coupled
in QCD and that the theory is perturbative for high energies. This is no longer the case
when going to the IR as the one-loop factor becomes big. For values of αs higher than one, we
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consider that the theory is no longer perturbative. Such condition is obtained at a typical scale
corresponding to the mass of the lightest hadron : the π0. This accounts for the impossibility to
use QCD below the hadronisation scale, where quarks and gluons confine into bigger structures
called hadrons and can no longer be considered as separated objects but studied instead in
hadronic models.

2.3.2 Standard Model Renormalisation Group equations

Now that we saw some examples of the Renormalisation Group equations, we will see
how to derive them for the Standard Model couplings. In order to do that, one needs first to
compute the RGE for a general non-Abelian gauge theory, also called Yang-Mills theory. As
we saw before, to find the RGE, we need to calculate the contributions of all the diagrams
involved up to a defined perturbation order. In the most general theory on a group SU(N)
the Lagrangian can be written :

L
0
YM = −

1

4
(F a0µν)2 − 1

2ξ
(∂µAa0µ )2 + ψ

0

i (i /D −m0)ψ0
i +

»»»»»Dµφ
0»»»»»2 −M

2
0
»»»»»φ0»»»»»2 . (82)

To renormalise the gauge coupling g at one loop, we need to consider the following dia-
grams :

M1 ∶ , M2 ∶ , M3 ∶
,

M4 ∶ , M5 ∶
,

M6 ∶ , M7 ∶ .

(83)

For simplicity, we wish to consider the renormalised Lagrangian, in the Feynman gauge
ξ = 1 but as we saw before, this doesn’t change the final result. Using the renormalisation
factors Z, related with the counterterms by the relation Z = 1 + δ, the Lagrangian can be
written :

L
R
YM =L

0
YM −

1

4
δ3 (∂µAaRν − ∂νA

aR
µ )2 + δ2ψ

R

i (i/∂ − δmmR)ψRi + δ1gRA
aR
µ ψ

R

i γ
µ
T
a
ijψ

R
j .

(84)
Then, using the one-loop diagrams listed in equation (83), we can extract the values of

the counterterms in dimensional regularisation (d = 4 − ǫ) that will be useful to define the
Renormalisation Group equation :

δ1 =
1
ǫ ( g

2

16π2
) [−2CF − 2C2 (G)] ,

δ2 =
1
ǫ ( g

2

16π2
) [−2CF ] ,

δ3 =
1
ǫ ( g

2

16π2
) [10

3
C2 (G) − 8

3
nfT (Rf) − 2

3
nsT (Rs)] ,

(85)
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where we consider nf fermions in the representation Rf of SU(N), ns scalars in representation
Rs and the factors C (G), CF and T (R) are the group factors defined in Appendix A.

Now, we need to specify the relation between the bare charge g0 and the renormalised
charge gR. In dimensional regularisation, we then have, for the gauge coupling Lagrangian
term :

µ
ǫ

2 gRZ1A
aR
µ ψ

R

i γ
µ
T
a
ijψ

R
j = µ

ǫ

2 gR
Z1

Z2

√
Z3

A
a0
µ ψ

0

i γ
µ
T
a
ijψ

0
j = g0A

a
µ0ψ

0

i γ
µ
T
a
ijψ

0
j , (86)

implying :

g0 = gR
Z1

Z2

√
Z3

µ
ǫ

2 ,

⇒ µ
dg0
dµ

= 0 = µ
d
dµ

[gR Z1

Z2

√
Z3

µ
ǫ

2] ,

⇒ β (gR) = µdgR
dµ

= gR [− ǫ
2
− µ

d
dµ

(δ1 − δ2 −
1

2
δ3)] .

(87)

Since the counterterms δ depend on µ only through gR, we find :

β (gR) = −
ǫ

2
gR − gRµ

dgR
dµ

d
dgR

(δ1 − δ2 −
1

2
δ3) = −

ǫ

2
gR +

ǫ

2
g
2
R

d

dgR
(δ1 − δ2 −

1

2
δ3) . (88)

Replacing the counterterms by their values in equation (85) and taking the limit ǫ → 0,
we finally obtain :

β (gR) = −
g
3
R

16π2
[11
3
C2 (G) − 1

3
nsT (Rs) − 4

3
nfT (Rf)] . (89)

For the Standard Model subgroups, we can derive these coefficients by considering that
fermions and scalars are only in the fundamental representation of SU(N) groups and gauge
vectors are always in the adjoint representation. Therefore, we have T (Rf) = T (Rs) = 1

2
and

C2(G) = N .

For SU(3), the Higgs is not color-charged while 6 fermions are colored, the quarks. Thus,
ns = 0 and nf = 6 which gives :

− (11
3
C2 (G) − 1

3
nsT (Rs) − 4

3
nfT (Rf)) = −7 . (90)

For SU(2), the Higgs field is a weak-doublet and there are 6 left-handed fermion doublets.
Then, ns = 1 and nf = 6 :

− (11
3
C2 (G) − 1

3
nsT (Rs) − 4

3
nfT (Rf)) = −

19

6
. (91)

The two coefficients derived here allow to derive the beta function expressions for the
Standard Model subgroups gauge coupling constants. Unfortunately, the hypercharge U(1)
group coefficient is defined up to a normalisation factor that depends on the group they can
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be embedded in. For example, in an SU(5) Grand Unified Theory, that will be seen in section
3.1.1, the coefficient for U(1) is 41/10. Therefore, the Renormalisation Group equations for
the Standard Model couplings in an SU(5) Grand Unified theory are :

16π
2
β1 (g1) = 41

10
g
3
1 , 16π

2
β2 (g2) = −

19

6
g
3
2 , 16π

2
β3 (g2) = −7g

3
3 . (92)

We can immediately see that the one-loop gauge beta-functions in the SM depends on g

only as g3, meaning that other couplings will not influence the running. This is no longer the
case by going to higher perturbation order and for the Yukawa sector.

Considering now the heavy fermions Yukawa couplings (i.e top, bottom and tau) in the
Standard model, by a similar calculation, we obtain at one-loop :

16π
2
βt (yt) = [9

2
y
2
t +

3

2
y
2
b + y

2
τ −

17

20
g
2
1 −

9

4
g
2
2 − 8g

2
3] yt , (93)

16π
2
βb (yb) = [9

2
y
2
b +

3

2
y
2
t + y

2
τ −

1

4
g
2
1 −

9

4
g
2
2 − 8g

2
3] yb , (94)

16π
2
βτ (yτ) = [5

2
y
2
τ + 3y

2
t + 3y

2
b −

9

4
(g21 + g

2
2)] yτ . (95)

(96)

This shows that, even at one-loop, Yukawa running coupling constants depend on the other
couplings unlike the gauge beta-functions. It is then mandatory to study first the running of
the gauge couplings then using the solutions to derive the Yukawa running couplings.

2.3.3 Fixed points

One can remark that for some values A
∗ the β-function vanishes such that

βA (A∗) = 0 (97)

Those values are called fixed-points and are the sign of a scale invariant behavior of the
model. A theory featuring an UV fixed-point may not be an effective field theory and could
thus well explain the physics up to any scale.

As a trivial example of a fixed point, taking all parameters to be equal to 0, solutions to
the RGE are all constants and are thus equal to 0. Such solution is called a Gaussian fixed

point, because it represents the Lagrangian of a free theory with a massless field and therefore
the path integral of the action is a Gaussian. Solving the equations (96) for positive initial
conditions, we can see from the sign of the coefficient that g2 and g3 will run to 0 in the UV
showing that the Gaussian fixed point is UV-attractive. On the other hand, g1 will be driven
to infinity because of the UV-repulsiveness of the Gaussian fixed point leading to a Landau
pole.

Indeed, in the one-loop SM RGE, only the Gaussian fixed point exists, but other models
show non-trivial fixed points (i.e with at least one non-zero fixed point). We will see that
theories showing a beta-function for a parameter A of the type :

βA (A) = −b0A + b1A
2 (98)
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presents interesting features concerning their fixed point. As a simple example, let’s study the
φ
4-theory Lagrangian as considered in equation (72). The RGE for the coupling λ and the

dimensionless mass m̃R (µ) ≡ 1

µ
mR (µ) are given at second order in dimensional regularisation

by :

βλ (λ) = −ǫλ +
3

16π2
λ
2
=

3

16π2
λ(λ −

16π
2
ǫ

3
) ,

βm̃2 (m̃2) = (−2 + λ

16π2
) m̃2

.

(99)

The equations admit the standard Gaussian fixed point but also a non-trivial fixed point
for :

λ
∗

1 =
16π

2
ǫ

3
, m̃

2∗
= 0 . (100)

Such non-trivial fixed point is called a Wilson-Fisher (WF) fixed point and can be obtained
by going to extra-dimensions such that ǫ ≠ 0. This gives an interesting behavior for the running
of the parameters λ and m2 depending on their initial conditions as can be seen in Figure 3 for
d = 5. An RG flow plot is shown there where the arrows indicate the running the parameters
would have if their initial conditions was along this line, following increasing µ. This figure can
be understood through the hydrodynamical bacteria growth analogy performed in equation
(77) where the increasing µ can be seen as going forward in time. Each line represents the
trajectory of a fluid element due to the current.

We can see that for any initial value λ(t0) < λ
∗

1 , the parameters will run to the Gaussian
fixed points. On the other-hand, for λ(t0) > λ

∗

1 , the system will be driven to infinity hitting
a Landau pole. Therefore, we call the WF fixed point UV-repulsive (or IR-attractive), while
the gaussian fixed point is UV-attractive (or IR-repulsive).

This attractiveness can be studied by looking directly at the evolution of the beta-function
with respect to the associated parameter. By looking at the beta-function in the case of the
φ
4-theory as shown in the bottom-left plot of Figure 3, we can see that there are three regions.

The first green region for λ below 0 shows positive values for the β-function. This positiveness
drives the system up toward the Gaussian fixed point. In the red part, β becomes negative,
running down the system again to the Gaussian fixed point. Finally, in the second green part
above the Wilson-Fischer fixed point, the β-function is again positive, but this time, the sys-
tem will be driven to infinity. This shows the UV-attractiveness of the Gaussian fixed point
and the UV-repulsiveness of the WF fixed point.

Therefore, one can look at the derivative of the β-function at the fixed points. These values
θ are called scaling exponents and represent the strength of the attractiveness of the fixed point.
If θ is negative (positive) at the fixed point, the latter is UV-attractive (UV-repulsive). For
example, in the case of the φ4-theory, we have :

∂βλ (λ)
∂λ

= −ǫ +
6

16π2
λ , (101)

which gives for the fixed points :

θ0 =
∂βλ (0)
∂λ

= −ǫ , θλ∗1 =
∂βλ (λ∗1 )

∂λ
= ǫ . (102)
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Figure 3 – Top plot : Renormalisation Group flow for the φ4 − theory in dimension 5 (i.e
ǫ = 1) in the space of parameters (m̃2,λ). The two fixed points are represented by a dot,
where the gaussian is in green and the Wilson-Fischer in red. Bottom-right plot : β-function
for the parameter λ. The red (green) part corresponds to the negative (positive) values of the
β−function. Bottom-left plot : Running of the parameter λ for the condition λ(0) = 1.

Then, we see directly that in extra-dimensions (i.e ǫ > 0), the derivative is negative for
the Gaussian fixed point and positive for the WF fixed point. The trend is opposite when
going to lower dimensions than 4 (i.e ǫ < 0). In this case, the Gaussian fixed point becomes
UV-repulsive and the WF one is UV-attractive.

Another example of non trivial fixed point can be seen in Banks-Zaks theories [72]. Such
theory is obtained when, if going further in the perturbation theory, the Renormalisation
Group equation for a parameter α can be written :

βα (α) = −b0α
3
+ b1α

5
+O (α7) . (103)

Such β-function exhibits multiple fixed points that are :

α
∗

0 = 0 , (α∗

±)2 = b0
b1
. (104)
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We see directly that the non trivial fixed points are reals only if the coefficients b0 and b1
are of the same sign. In the case where the non-trivial fixed points are real and smaller than
1 (i.e for which the perturbation theory holds), they are called Banks-Zaks (BZ) fixed points.
Looking at the derivative of the beta function, we obtain the following scaling exponents at
the fixed points :

∂β (α∗

0 )
∂α

= 0 ,
∂β (α∗

±)
∂α

= 2
b
2
0

b1
. (105)

Therefore, the UV-attractiveness of the non-trivial fixed points depends only on the sign of
the coefficient b1, while for the Gaussian fixed point, this cannot be seen from the derivative. In
Figure 4, the evolution of the β-function in the specific example of b0 = 1 and b1 = 2 is shown.
For b1 > 0 (and b0 > 0), we can see that the non-trivial fixed points are UV-repulsive, while
the Gaussian fixed point is UV-attractive. The attractiveness of each fixed points is opposite
by taking b1 < 0 (and b0 < 0).
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Figure 4 – β-function of the BZ theory for b0 = 1 and b1 = 2.

One of the most important example of BZ theory is obtained for a general non-abelian
gauge theory in SU(Nc) with Nf massless charged fermions. At the second-order in pertur-
bation theory, the gauge coupling RGE coefficients are :

b0 =
1

16π2
1

3
(11Nc − 2Nf) , b1 = −

1(16π2)2 (343 N2
c −

1

2
Nf (2N2

c − 1

Nc
+

20

3
Nc)) . (106)

If one wants to reproduce the asymptotic freedom of the QCD and avoid Landau poles,
the theory needs to be driven from an IR-attractive fixed point to an UV-attractive gaussian
fixed point, therefore requires b1 > 0 and b0 > 0. The two conditions gives boundaries on Nf

and Nc such that :
34N

3
c

12N2
c − 3

< Nf <
11

2
Nc . (107)

In the specific case of massless fermions in QCD, for which Nc = 3, we should then have
8.7 < Nf < 16.5. As Nf = 6, this condition is not fulfilled, then the theory hits a Landau pole
in the IR.
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Such behavior shows that the parameter can simply run from one fixed point to another
and this will be of prime importance in our applications of the Renormalisation Group equa-
tions in the next parts.

The last type of fixed points needed to be introduce for the following parts are the complex
fixed points. In a general technicolor SU(Nc) gauge theory [73, 74], the β-function at two-loops
can be written :

β (α) = −bα
2
− cα

3
− dα

4
+ ... , (108)

where the coefficients b, c and d depend again on Nc the number of technicolors and Nf the
number of fermions sensible to the technicolors. For some values of Nf and Nc next to a critical
condition, the β-function can be rewritten :

β (α) = −α
2 ((α − 1)2 − δ) , (109)

where δ = 1− b. If δ is positive, equation (109) shows that it exists two non-trivial fixed points
that are :

α
∗

± = 1 ±
√
δ . (110)

One can remark also that if δ = 0, the two non-trivial merge into a unique fixed point for
α
∗
= 1. Finally, if δ < 0, the equation (109) can be rewritten :

β (α) = −α
2 (α − 1 + i

√∣δ∣) (α − 1 − i
√∣δ∣) , (111)

where we can see that there are, now, no real non-trivial fixed points anymore. However, it
exists two complex values that are :

α
∗

± = 1 ± i
√
δ . (112)

The complex fixed points are part of the walking dynamics introduced in [75, 76]. The
term "walking" is related to the behavior of the solution of the RGE next to the real part of
the fixed points. Figure 5 presents the solution of equation (109) for different choices of δ and
for an initial condition α(0) = 2.

δ = 0δ = -0.01δ = -0.125δ = -0.3
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Figure 5 – Solutions of equation (109) for different values of δ where t =ln(µ/µ0).
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We can directly see that, when α = 0, the system cannot go through the real non-trivial
fixed point α∗

= 1 to reach the Gaussian one. However, in the case where δ is negative, we can
see that the complex fixed point cannot be reached because of the function α being always
real. In the case δ = −0.01, we can see that the system is sensible to the complex fixed points
because they slow the running next to their real part making them "walk" instead. At the real
part, we have :

β (Re (α∗

±)) = δ ⇒ α (t) ≈ δt , (113)

whose value is clearly reduced in comparison to values away from the fixed point. After being
slowed down, the system will start running again being driven toward the Gaussian fixed point.
However, the system is sensible to the complex fixed points only if the value is smaller than a
critical value. Equation (109) shows that a local minimum for β is reached α =

1

4
(3−√

1 + 8δ)
and a local maximum for α =

1

4
(3+√

1 + 8δ). Therefore, these maximas can be obtained only
if δ > −1/8 = δc and the complex fixed points effects are visible only in this case. The cases at
the limit and below it can be seen in Figure 5 for δ = −1/8 = 0.125 and δ = −0.3. There, the
system is driven toward the Gaussian fixed without being slowed down much by the complex
fixed points.

Walking dynamics allows technicolor models to have power-scaling properties [77], to deve-
lop scale-invariant behavior [78] and suppressed flavor-changing neutral currents [79]. Complex
fixed points will be studied in more details in section 4.2.4 following their use in the epidemio-
logical Renormalisation Group framework.

Now that we have seen different types of RGE and their associated fixed points, we will
see how it can be used to improve Grand Unification theories through a new paradigm.
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3 Grand Unification theories

3.1 Classical Grand Unification

3.1.1 SU(5) model description

Unification consists in considering that separated symmetries can be embedded into an
unique group describing an unique coupling constant such that the three subgroups respon-
sible for strong, weak and electromagnetic interactions weren’t separated in the first moments
of the Universe.

As a first example of an unification, the electroweak symmetry breaking proposed by Gla-
show, Weinberg and Salam [3, 4, 5] was aiming at explaining the masses of the W± and Z

0

gauge vectors and to take into account the interactions between the leptons and their masses
within the SU(2)×U(1) gauge group as explained in section 2.1.3. This mechanism allows to
embed different leptons within multiplets of SU(2). Therefore, the electroweak model could
be though as a unification of the weak and electromagnetic forces but also of the left-handed
fermions. However, the non-simple gauge group SU(2)×U(1) still describe two independents
coupling constants while a true unification should involve only one.

To achieve a true unification, Georgi and Glashow [80] first tried to integrate the EW group
in a larger group having only one coupling constant. Alas, none of the possible groups (SU(3),
SU(3) × SU(3) or SU(6)) involves the fractional charges of the quarks. Therefore, any true
unification should also embed the QCD group SU(3) such that the larger group G contains
the whole SM symmetry SU(3) × SU(2) × U(1). In such model, leptons and quarks must lie
together in the same irreducible representations of the unified group. This imply that some
of the gauge fields carry both lepton and baryon number. As G includes the unbroken group
SU(3)×U(1), it needs to be at least of rank 4 and only seven rank 4 Lie groups involving only
one coupling and containing SU(3) exist. As the fermion content of the Standard Model is a
complex representation whose complex conjugate is not equivalent, the group G should have
the same property. Among all the groups, only SU(3) × SU(3) and SU(5) are of this type.
Moreover, SU(3)× SU(3) is excluded according to the non-existence of fractional charges for
the quarks as was explained before for the electroweak unification. In the end, only SU(5) can
be considered as a minimal group containing the Standard Model group and having a unique
coupling constant. Indeed, we focused here only on the rank 4 groups, but larger groups could
be considered as well and will be discussed later.

The SU(5) model is the minimal Grand Unification Theory (GUT) possible. One can
write the representations of the unified group as a sum of the representations of the subgroups.
For example, the anti-fundamental 5 representation of SU(5) transforms under the subgroup
SU(3) × SU(2) × U(1) like :

5 = (3,1, 1
3
)⊕ (1,2,−1

2
) . (114)

Therefore, this decomposition can represent the right handed down-type antiquark d
c
R

and the left-handed lepton doublet lL. In the same way, the antisymmetric 10 representation
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transforms like :

10 = (3,2, 1
6
)⊕ (3,1, 2

3
)⊕ (1,1, 1) , (115)

thus including the colored left handed quark doublet qL, the right handed up-type antiquark
uR and the right handed antilepton singlet ecR. In addition, the singlet representation 1 trans-
forming as :

1 = (1,1, 0) , (116)

can also be added to the model, representing the right handed antineutrino νcR. Specifying the
SU(5) representations in terms of the SM fields, one can write :

ψ1 = (ν) , ψ5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d
c
1

d
c
2

d
c
3

e
−

−νe

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ψ10 =

1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 u
c
3 −u

c
2 −u1 −d1

−u
c
3 0 u

c
1 −u2 −d2

u
c
2 −u

c
1 0 −u3 −d3

u1 u2 u3 0 −e
c

d1 d2 d3 e
c

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (117)

where the quarks subscripts refers to their QCD SU(3) charge. Therefore, it is possible to
embed the entire SM fermion content by creating a copy of a 10, a 5 and a 1 representations
of SU(5) for each fermion family. This integration leads to what is called a fermion unification.

The Higgs boson can also be embedded in a fundamental 5 representation giving rise to a
new colored multiplet H and the standard Higgs doublet φ such that :

φ5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1

H2

H3

φ+
−φ0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (118)

Going to the gauge sector, the bosons can be integrated within the 24 adjoint representa-
tion of SU(5) that transforms under the SM group as :

24 = (8,1, 0)⊕ (1,3, 0)⊕ (1,1, 0)⊕ (3,2,−5

6
)⊕ (3,2, 5

6
) , (119)

representing the eight generators of SU(3) (i.e the gluons ga), the three generators of SU(2)
W

a, the generator B of U(1) and two new colored off-diagonal doublets X and Y . In an
adapted generator basis, the 24 representation matrix can then be written :

A24 =
1√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G11 −
2B√
30

G12 G13 X
c
1 Y

c
1

G21 G22 −
2B√
30

G23 X
c
2 Y

c
2

G31 G32 G33 −
2B√
30

X
c
3 Y

c
3

X1 X2 X3
W3√
2
+

2B√
30

W
+

Y1 Y2 Y3 W
−

−
W3√
2
+

2B√
30

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (120)

This decomposition includes the whole gauge content of the Standard Model but also in-
cludes the off-diagonal bosons X and Y . These fields are called "lepto-quarks" due to the
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fact that they carry both lepton and baryon number and violate the conservation of both of
them. This characteristic lead to the proton decay prediction that will constrain a lot the GUT
models.

The first phenomenological implication of the SU(5) Grand Unification is that it could
explain the baryon asymmetry observed in the Universe. Due to the abundance of the matter
over the antimatter in our actual Universe, an excess should have been produced just after
the Big Bang. As pointed by Sakharov [81], a matter excess is possible only if the baryon
number B is not conserved, if both C and CP symmetries are violated, and if the process
happens during a phase of non-equilibrium. In the case of the SU(5) model, we already saw
that B is not conserved due to lepto-quarks. Moreover, at the high energy density of the early
Universe, the masses of the lepto-quark X and Y were accessible. Then, when the Universe
cooled down to temperatures lower than the lepto-quark masses, their only fate was to decay
into pure matter via processes such as X → uu or Y → ud. The excess of matter created
should be small, because if most of the matter annihilated with antimatter, this leaves an
enormous quantity of photons in comparison to matter as is observed experimentally :

Nγ

Nb
≈ 10

10
. (121)

Another important implication of the Georgi-Glashow model is the relation between the
charges of the quarks and the leptons. As the charge operator Q is constructed thanks to the
U(1) generator and because all generators must have a vanishing trace, we have for the 5

representation :
Tr (Qψ5) = 3Q(dc) +Q(e−) +Q(νe) = 0 ,

⇒Q(d) = −Q(dc) = 1

3
Q(e−) = −

1

3
e .

(122)

In the same way for the 10 representation :

Tr (Qψ10) = 3Q(u) + 3Q(d) +Q(e−) = 0 ,

⇒Q(u) = 2

3
e .

(123)

These results imply that the charge of the quarks must be 2/3 and −1/3 of that of the
electron, quantizing the charges of all fermion particles through this relation.

Unfortunately, Grand Unification also imply unwanted phenomenological features. In the
classical SM group, isolated protons cannot decay due to the conservation of the baryon number
and to the fact that they are the lightest hadron existing [82]. The β+ radiation converting
the proton in a neutron by emitting a positron and a neutrino is not a proton decay as it
emerges from the interaction with the nucleus and therefore the proton is not isolated in this
case. In the Georgi-Glashow SU(5) GUT, the baryon number is no longer conserved and
processes involving a proton decay appear. This would be a sign that matter is unstable and
more precisely that the hydrogen atom should decay on a sufficiently long time. At tree-level,
the simplest Feynman diagram involving a proton decay consists in the annihilation of a left-
handed and a right-handed up quarks, yielding a X+ boson, decaying then into a positron and
a left-handed anti-down quark of opposite chiralities following the process :

uL + uR → X
+
→ e

+

L/R + dR/L . (124)
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Considering that the anti-down quark and the remaining down quark from the proton
confine together to form a neutral pion π

0, the overall process of a proton decay can be
written :

p→ e
+
+ π

0
. (125)

Other decaying processes are allowed for the proton, but none as strong as the e+π0 branch.
By decaying through the lepto-quark X+, the lifetime of the proton can be derived using the
naive formula :

τp ≈
M

4
X

α2
5m

5
p

, (126)

where MX is the lepto-quark mass, α5 =
g
2

5

4π
is the one-loop factor in SU(5) and mp is the

proton mass. However, the proton decay was never observed experimentally, driving the lower
limit of the proton lifetime to τp > 10

34
− 10

35 years [83]. Considering that the preferred value
for the one-loop factor is α5 ≈ 1/24 as will be seen later, we finally find that :

MX > 10
16 GeV . (127)

Thus, the proton decay phenomenology drives the lepto-quark mass to very high energies,
which constrains significantly the model. The experimental bounds make the simplest SU(5)
GUT models, including the one described here, to be completely excluded [84].

In addition to this, the masses of the X and Y bosons induces big contributions from
gauge loops diagram to radiative corrections to the Higgs mass. This leads to corrections of the
order ∆m

2
h = O (M2

X) that are of multiple orders of magnitude higher than the actual Higgs
mass, which is unlikely to happen in a perturbation theory. Therefore, these corrections would
need to be compensate by "fine-tuning" relations between them. This problem can be solved
considering different additional features to the GUT model among which supersymmetry that
will be seen later.

3.1.2 Running couplings and unification interpretation

We saw previously in section 2.3.2 that the RGE for the three couplings in the SM can be
written :

16π
2dgi

dt
= big

3
i , (128)

where i can take values from 1 to 3, bi = (41/10,−19/6,−7) and t = ln(µ/mZ) where µ is the
scale of energy density and mZ is the Z boson mass.

Taking as initial conditions for the coupling constants the measured values at the electro-
weak scale : gi(t = 0) = (0.45, 0.66, 1.2) [67], the runnings of the couplings constants show an
interesting behavior. It can be seen in Figure 6 that they become closer as t increases and that
they seem to cross at specific energy scales. These crossings are identified, in GUT models, as
the unification scales.

However, one can remark that the three couplings don’t all cross at the same point and
that the two couplings of the electroweak group g2 and g1 meet before they reach the QCD
coupling g3. This is in contradiction with the possibility to create a unified group for the
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Figure 6 – Evolution of the SM couplings constants g3 (full line), g2 (small dashed line)
and g1 (dashed line) solutions of the RGE as function of the energy density.

SU(2)×U(1) electroweak group as discussed in subsection 3.1.1. The only possibility allowed
is to unify the three couplings at the exact same scale, therefore to have the three running
couplings to cross at a unique point, which is called exact unification. We could argue that
going at higher orders in the perturbation theory, additional contributions could make the
crossing points closer from each other and achieve an exact unification. Unfortunately, adding
higher orders do not change the results, a single unification point is excluded by more than 8
standard deviations in the SM [85]. Theoretically, α3 meets the crossing point of α1 and α3

for a starting value close to α3(mZ) = 0.07, while the measured value is 0.119 ± 0.002. This
means that unification can only be obtained if new physics enters between the electroweak
and the Planck scale. This pushed forward the idea of supersymmetrical models.

Supersymmetry (SUSY) consists in introducing a symmetry transforming particles of spin
j into particles of spin j ± 1

2
, adding therefore a complete copy of the SM particle content,

transforming bosons into fermions and conversely. The new set of particles are called the su-
perpartners of the SM particles or sparticles. It has been shown that the SUSY is the only
additional symmetry of the S-matrix allowed by a weaker set of assumptions [82]. While SUSY
particles have yet no experimental evidence, their appealing properties have rushed the scien-
tific community to study it abundantly.

Among these interesting features, SUSY solves the fine-tuning problem discussed in section
3.1.1 due to the fact that loop corrections contain both fermions and bosons in the loops,
which, according to the Feynman rules, contribute with an opposite sign giving the following
correction term :

∆m
2
h ≈ O (α) ∣M2

F −M
2
B∣ ≈ O (10−2)M2

SUSY , (129)

where MSUSY represents the typical mass scale at which sparticles start to appear. The masses
of the superpartners would not be the same for each sparticle, but we have considered in first
approximation that there is no mass splitting between them. This implies that the fine-tuning
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problem would vanish if the superpartners are not too heavy compared to their associated
particles. Requiring that the radiative corrections are not much larger than the Higgs mass,
this would imply that MSUSY < 10

3 GeV.

Therefore, at the SUSY scale (around 1 TeV), the superpartners would start contributing
to the renormalisation of the gauge couplings and then have an effect on their running above
this scale. The RGE in the Minimal SuperSymmetrical Model (MSSM) version for the gauge
couplings of the SU(5) GUT are at one-loop [86] :

dgi
dt

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
b
SM
i

g
3

i

16π2 for µ <MSUSY

b
SUSY
i

g
3

i

16π2 for µ >MSUSY

, (130)

where we can see that the values of the coefficients bi change if the energy scale is below or
above the SUSY scale. Indeed, for µ >MSUSY, SUSY effects appear and they start contributing
to the RGE. The coefficients bSM

i and bSUSY
i are defined as :

b
SM

=

⎛⎜⎜⎝
0

−22/3
−11

⎞⎟⎟⎠ +Ng

⎛⎜⎜⎝
4/3
4/3
4/3

⎞⎟⎟⎠ +Nh

⎛⎜⎜⎝
1/10
1/6
0

⎞⎟⎟⎠ , (131)

b
SUSY

=

⎛⎜⎜⎝
0

−6

−9

⎞⎟⎟⎠ +Ng

⎛⎜⎜⎝
2

2

2

⎞⎟⎟⎠ +Nh

⎛⎜⎜⎝
3/10
1/2
0

⎞⎟⎟⎠ , (132)

where Ng is the number of fermion generation and Nh the number of Higgs doublets in the
theory. In the case of three fermion generations and one Higgs doublet, we then have

b
SM

=

⎛⎜⎜⎝
41/10
−19/6
−7

⎞⎟⎟⎠ , b
SUSY

=

⎛⎜⎜⎝
63/10
1/2
−3

⎞⎟⎟⎠ . (133)

Thanks to the appearance of SUSY particles contribution in the RGE, an exact unification
is now possible as can be seen in Figure 7. The kink visible for t = 3.3 corresponds to the
SUSY scale where the parameters bi changes. The value of this scale needs to be tuned in
order to allow the exact unification. We can see that for a value of MSUSY = 10

3.4 GeV, we
can find almost the exact unification scale close to MSU(5) = 10

17 GeV. Almost, because at
one-loop, it is not possible to find the exact unification for any value of the SUSY scale. A
more accurate calculation done at two-loops [87] (and even at three-loop [88]), including mixed
terms between different gauge and Yukawa couplings, can find an exact unification and gives
the following results :

MSUSY = 10
3.4±0.9±0.4GeV ,

MSU(5) = 10
15.8±0.3±0.1GeV .

(134)

The first error originates from the uncertainty related to the coupling constants experimental
values, while the second error is due to the uncertainty in the mass splittings between the
SUSY particles.
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Figure 7 – Evolution of the gauge couplings constants for the Minimal supersymmetric
Model of SU(5) GUT. Gray lines represent the scale of SUSY and the scale of unification,
where MSUSY = 10

3.4 GeV and MSU(5) ≈ 10
17 GeV.

We can see first thatMSUSY is close to the range limit we found for the fine-tuning problem.
This result gave a new interest in supersymmetrical models in the scientific community. One
of the other major point to advocate the SUSY importance is that exact unification can also
be reached only for three generations of fermions or less, showing that it is not easy to obtain
it. Nevertheless, exact unification does not prove supersymmetry, while sparticles observation
should. However, for now, there are no experimental sign of SUSY. Supersymmetry introduces
also another difficulty called the triplet-doublet splitting problem. Just like standard GUT, in
SUSY GUT, the proton decay can be mediated via the colored Higgs triplet H. As we saw
before for the lepto-quarks, this decay imposes that its mass has to be higher than 10

16 GeV.
Unlike lepto-quarks, the colored Higgs H is embedded in a fundamental multiplet 5 of SU(5)
with the standard Higgs doublet φh whose mass remains close to the electroweak scale, so 14
orders lower than the H mass. This difference is then another problem of fine-tuning that can
be related to the hierarchy problem asking why the ratio between GUT scale and ordinary
physics scale is so big. Such problem is solved through interesting proposals extending the
model to new physics [89, 90, 91, 92, 93], but in most SUSY models, this persists.

Nevertheless, the most important constraints concern the coupling constant unification
combined with the proton lifetime lower limits and their agreement with experimental data.
These requirements exclude the Standard Model [94], the Georgi-Glashow SU(5) GUT model,
the minimal SU(5) SUSY GUT model and other more complicated models. Adding also the
fact that lightest sparticles are still not observed in LHC data, all the possible models presented
above are not realistic in their simplest definitions. Moreover, the triplet-doublet splitting
problem is still not solved in MSSM GUT. One can argue that to save GUT models, we need
to involve bigger groups of unification such as SO(10). Another possibility is to imagine a new
unification paradigm in which the theory is free of both constraining conditions. That is the
case of the asymptotic Grand Unification we will present in section 3.3, but before introducing
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it, we need to show the characteristics of extra-dimensional models.

3.2 Extra-dimensional theories

3.2.1 Extra-dimensions principle

Quantum Field Theory is mainly developed in four dimensions (three spatial and one tem-
poral dimensions), allowing to describe our world as we perceive it in our daily experience.
However, it is also possible to consider that the four dimensions we feel are just an effective
description of a higher dimensional description that can only be seen at higher energies. The
simplest way to understand why these extra-dimensions are invisible to us is to imagine one
compactified extra-dimension. The term compactified means that the dimension is rolled on
itself. A simple analogy to this is to imagine a paper sheet, which represents a two-dimensional
space. This paper can be fold back on itself to give it the shape of a cylinder. The folded di-
mension is called compactified and we denote R, the radius of compactification, the radius of
the circular section of the cylinder. If we were able to make R smaller and smaller until we
reach a scale for which our eyes cannot distinguish it anymore (for example R = 1 µm), we
could just see a small line, that we could interpret as a one-dimensional space. In that sense,
the compactified dimension still exists but we cannot see it with our eyes. To be able to make
it visible, we would need to have experiments reaching an energy high enough to see physical
processes affected by the compactified dimension.

The compactification can be realised on different mathematical objects called orbifolds.
This latter refers to topological spaces that are locally identified as Euclidian space and that
can be modelled by a quotient of open subsets of R

n over finite group actions. As a basic
example, a circle, denoted S1, define a compactified unidimensional space where the boundary
condition are periodical. This imply that for any field χ, we have χ (y = y0 +R) = Uχ (y = y0)
where the matrix U is unitary (Unitary matrices are explained in Appendix A) and y refers to
the fifth-dimensional space coordinate. While the S1 orbifold is simple, it will not be sufficient
to generate the chirality for the SM fields or to allows for a symmetry breaking from the unified
group into the Standard Model group. This is why we need to introduce more complicated
orbifolds.

The S1/ (Z2 × Z
′

2) orbifold can be defined by taking a simple S1 orbifold of compactifica-
tion radius R and adding two parity boundary conditions at two different points y0 and y1 as
can be seen in Figure 8. The Z2 denominator acts as if we were to glue a copy (mirrored or
not) of an arc of S1 with itself at one of the boundary. Therefore, the two Z2 confer two copies
with different eigenvalues glued at the two boundary points. The complete fifth-dimension can
thus be fully characterised by only studying the interval [y0; y1]. The parities are such that
fields obey to the following boundary conditions :

χ (y = y0 − y) = P0χ (y = y0 + y) , (135)

χ (y = y1 − y) = P1χ (y = y1 + y) , (136)

where P0 and P1 are called the parity operator. Their eigenvalues can only be +1 or −1 due
to the fact that P

2
= I. Therefore, in this orbifold, every field is defined by its two parity
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eigenvalues at the boundary points that will be written (±0,±1) where the subscripts will be
abandoned in the following parts for simplicity. By taking the two conditions in equation (136)
at their specific points y0 and y1, we can see that the parity eigenvalues define the boundary
conditions on the fields or on their derivative values :

χ (y = y1) = ±χ (y = y1) ⇒ χ (y = y1) = 0 (Dirichlet) if ± = − ,

∂χ

∂y ∣y=y1 = − ±
∂χ

∂y ∣y=y1 ⇒
∂χ

∂y ∣y=y1 = 0 (Neumann) if ± = + .
(137)

We can see here that each eigenvalue can be identified as either Dirichlet or Neumann
boundary conditions. These relations will be necessary to derive the expression of the Fourier
modes as will be seen in section 3.2.2.

As in any dimension, the action should always be adimensional, it implies that the Lagran-
gian should be of dimension md, where d is the number of dimensions considered in the model.
Therefore, the mass dimensions of the Lagrangian parameters and the field should differ in
extra-dimensions. First, let’s see what happens in 4D and especially for the mass dimensions
in the SM. Starting from the Lagrangian of mass dimension 4 in equation (1), we see directly
that : [φ4D] = 1 , [A4D] = 1 , [ψ4D] = 3

2
,

[λ4D] = 0 , [µ4D] = 1 , [y4D] = 0 , [g4D] = 0 .
(138)

Considering now any d-dimensional theory, the mass dimensions become :

[φED] = d − 2

2
, [AED] = d − 2

2
, [ψED] = d − 1

2
,

[λED] = 4 − d , [µED] = 1 , [yED] = 4 − d

2
, [gED] = 4 − d

2
.

(139)

The factor µ
ǫ

2 needed in dimensional regularisation in equation (86) is a consequence of
the change in mass dimensions for the gauge couplings g due to the relation d = 4 − ǫ. Other
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changes are expected to happen in the mathematics behind the Lagrangian terms. For example
in five-dimensions, the slashed operator is replaced by an extra-dimensional version such that :

/p = pµγµ → pMγ
M
, (140)

where M goes from 1 to d. One needs to be careful with the extra-dimensional indices here as
the range 0 to 3 is often used for the four dimensions description but then the extra-dimensional
indices start at 5, representing the fifth-dimension for clarity. Therefore, the fourth index is of-
ten not considered and we will use in the following for the indices the range 0, 1, 2, 3, 5, ..., d. γ5

is the fifth-Dirac matrix which is defined as γ5 = iγ0γ1γ2γ3. The momentum is also extended
with a fifth-component that is the projection of the total momentum on the fifth dimension
space. Similarly, the derivative operator ∂5 with respect to the fifth spatial coordinate is added
in ∂M .

In the same way, the gauge tensors are rewritten as :

F
a
µν → F

a
MN = ∂MA

a
N − ∂NA

a
M + igf

abc
A
b
MA

c
N , (141)

where again A5 corresponds to the fifth component of the gauge vector. A5 will play an
important roles in Gauge-Higgs Unification theories that will be shown later in section 3.2.3.

3.2.2 Mathematical tools

Extra-dimensional theories are difficult to understand in a direct way and to simplify their
interpretation, the best approach is often to make them look like four-dimensional ones. Ma-
thematical tools have been developed to understand the features of extra-dimensional theories
and will be presented hereafter.

Among all of them, Kaluza-Klein (KK) modes are the most commonly used in the case of a
compactified extra-dimension. Theorised by Kaluza and Klein [46, 47] in their attempt to unify
electromagnetism and gravity, KK modes can be seen as Fourier modes in the decomposition
over the fifth component of any field and this has consequences on the particles mass spectrum.
In an S

1/ (Z2 × Z
′

2), the Fourier decomposition depends on the eigenvalues of the parity
operators. Following the different eigenvalues, the fields can then be decomposed as :

(+,+) ∶ χ̂ =

√
2

πR
(χ0 (xµ) + √

2

+∞

∑
n=1

χn (xµ) cos (2n y
R
)) ,

(−,−) ∶ χ̂ =
2√
πR

+∞

∑
n=1

χn (xµ) sin (2n y
R
) ,

(−,+) ∶ χ̂ =
2√
πR

+∞

∑
n=1

χn (xµ) sin ((2n − 1) y
R
) ,

(+,−) ∶ χ̂ =
2√
πR

+∞

∑
n=1

χn (xµ) cos ((2n − 1) y
R
) ,

(142)

where the xµ are the four-dimensional Minkowski coordinates, y is the fifth dimension and n

is what is called the KK number corresponding to the Fourier number. We can directly see
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from the expansion that only (+,+) fields admit a non-vanishing n = 0 mode. Such modes are
called zero-modes.

We want know to replace the expansions in equation (142) in the Lagrangian terms and
integrate over the fifth-component to have a four-dimensional expression in order to see the
consequences of the KK modes on the theory interpretation. Taking first the fifth component
kinetic Lagrangian term for the fermion fields and remembering that fermions with opposed
chiralities have opposed boundary conditions, we obtain :

∫
πR

2

0

dyψ̂(+,+)∂5ψ̂(−,−) =
+∞

∑
n=1

2n

R
ψn (xµ)ψn (xµ) , (143)

∫
πR

2

0

dyψ̂(+,−)∂5ψ̂(−,+) =
+∞

∑
n=1

2n − 1

R
ψn (xµ)ψn (xµ) . (144)

These results show that the 5-dimensional field kinetic term can be rewritten as a sum of
massive 4D fields that are the KK modes. The lightest non-zero mode has a mass of the order
1/R. This explains why a small compactification radius, will push the KK modes to very high
energy and therefore only zero-modes will be accessible at scale below the compactification
scale. The same result is obtained for gauge and scalar fields in 5-dimensions.

KK modes also obey to selection rules at vertices. These rules can be extracted again from
the Lagrangian interaction terms. For example, expanding the KK fields in the gauge-fermion
Lagrangian term gives :

∫
πR

2

0

dyig5ψ̂
†(+,+)γµÂaµT aψ̂(+,+) =ig5

√
2

πR
ψ

†
0γ
µ
A

0
µψ0

+ig5

√
2

πR

+∞

∑
n=1

(ψ†
0γ
µ
A
an
µ T

a
ψn + ψ

†
nγ

µ
A
an
µ T

a
ψ0 + ψ

†
nγ

µ
A
a0
µ T

a
ψn)

+ig5
1√
πR

+∞

∑
n=1

+∞

∑
m=1

+∞

∑
k=1

ψ
†
nγ

µ
A
am
µ T

a
ψk∆

c
3(n,m, k) ,

(145)
where ∆

c
3(n,m, k) = δn,−m−k+ δn,m+k+ δm,n+k+ δk,m+n is the selection rule for three non-zero

KK modes. This can be interpreted as and energy conservation rule. This conservation imply
that either n = m+ k, either m = n+ k, either k = n+m meaning that the energy associated
with the masses of the three fields is conserved if we consider that the mass of the nth-KK
mode can be written n/R.

All these results show that having a compactified extra-dimension can be seen has adding
an infinite tower of massive copies of Standard Model particles. This interpretation will sim-
plify the calculations for extra-dimensional model predictions.

Another mathematical tool frequently used is the mixed-momentum space propagator.
While KK modes were derived thanks to a fully momenta-description expression, we will
now see propagators where the coordinates considered are split between momentum and space

48



phase. Momentum-space propagators consider the four standard dimensions in the momentum
space and the fifth in coordinate space. In this framework, a generic scalar propagator in the
orbifold S1 takes the form :

G
5D
S1 (χ, y, y′) = cos (χ (πR − ∣y − y

′∣))
2χsin (χπR) where χ =

√
k2 −m2

+ iǫ , (146)

where k is the 4-dimensional momentum, y is the fifth space coordinate and m is the 5D mass
of the scalar field. In the orbifold S

1/ (Z2 × Z
′

2), due to the identifications y ⟺ −y and
y ⟺ πR − y, we would have instead the following expression respecting the symmetries :

G (χ, y, y′) =G5D
S1 (χ, y − y

′) ±0 G
5D
S1 (χ, y + y

′)
±1G

5D
S1 (χ, y + y

′
− πR) ±0 ±1G

5D
S1 (χ, y − y

′
+ πR) , (147)

where ±0 and ±1 corresponds to the parity eigenvalues of the field at the boundary points
y0 = 0 and y1 = πR/2. Mixed momentum-space propagators [95] have been used for radiative
corrections in finite-temperature field theories [96].

One other possibility to look at 5D fields is to think about the connection between two
points in a topological way. With a compactified extra-dimension, there are multiple paths to
connect two points in space. By considering that the starting point and the ending point are
identical, the connection can be established by turning around the compactified dimension or
not. Such connections can be decomposed in a series over nw the number of rotations around
the compactified dimension. The modes in this decomposition are called winding modes and nw
is the winding number. Therefore, for any 5D space coordinate y, we have the identification :

y = y + 2nwπR . (148)

In order to derive the propagators decomposed in winding modes, let’s take the simple
example of a massless scalar field whose green-function is described in mixed momentum-
space [97] such that : (p2 − ∂

2
y) G̃ (p, ∣y − y

′∣) = δ (y − y
′) , (149)

where y, y′ ∈ [0, 2πR]. The Green’s function solution of this equation is then :

G̃ (p, ∣y − y
′∣) = e

−p∣y−y′∣
p + iǫ̃

. (150)

As the dimension is compactified, we can identify the coordinates y′ and y
′
+ 2πnwR.

Therefore, the real propagator should take into account any winding around the compactified
dimension. By summing over the winding modes, we have the following full propagator :

G̃Full (p, ∣y − y
′∣) = +∞

∑
nw=−∞

e
−p∣y−y′+2nwπR∣

p + iǫ̃
. (151)

In this decomposition, we see that for nw ≠ 0, the propagator is exponentially shrinked for
high momentum, therefore loop integrals over momenta will be finite. This is no longer the
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case for nw = 0 were an infinite contribution appears due to the condition y = y
′ and because

the propagator behave as 1/p. Therefore, the winding modes technology allows to separate
the infinite contribution, that is completely carried by the zero-mode, from the finite parts.
This is due to the fact that zero-mode are the only modes taking into account small distances
connections that are responsible for UV divergences. This is one of the main advantages of the
winding modes, while in the Kaluza-Klein description, each mode carries a part of the infinities.

Now that we have seen some of the mathematical tools, we will use them to study the
couplings evolution in extra-dimensional theories. As they are simpler to employ, KK modes
will allow us to understand the extra-dimensional derivation of the RGE. The equations will
depend on the coefficients derived at the SM scale, but once the compactification scale is
reached, the first KK mode will start to contribute to the beta function as we have seen for
SUSY in section 3.1.2. While the contributions in the SM are logarithmic, the KK contributions
exhibit a power-law behavior as explained in [98, 99]. In the case where µR ≫ 1, in good
approximation, the calculation consists in computing the contribution from one KK state and
then define the number of states contributing up to the scale µ. For one extra dimension,
we saw in equations (143) and (144) that the masses of the KK modes contained in the
tower are multiples of the scale R−1. Therefore, up to µ the number of KK modes is S (µ) =
µ/R−1

= µR. This contribution is taken into account by adding to the beta function, above
the compactification scale µ = R

−1, the term :

βSM → βSM + (S (µ) − 1)βKK , (152)

where βKK is the contribution from one KK mode. We have already seen that for one extra-
dimension, we have S(t) = µR above the compactification scale and S(t) = 1 below it.
Therefore, S is continuous and consequently the β-function is as well. As argued before, at the
compactification scale R−1, we start to see the fifth dimension and its effects thanks to the first
KK mode appearing. The higher we go in the energy scale, the larger the S (µ) term becomes
as more KK modes are involved. Finally, the asymptotic behavior of the beta function will
only give the term :

β ≡ S (µ)βKK . (153)

Indeed, it seems that the beta function explodes as it is proportional to µ. Fortunately, as
we saw in section 3.2.1, when going to higher extra-dimensions, renormalised couplings will
acquire mass dimensions and will need to be redefined. They will often behaves as µ−1 in
5-dimensions and still give the possibility to be driven towards a non-trivial UV fixed point as
we will see in the case of the asymptotic Grand Unification in section 3.3. Before looking at
it, let’s see one example of extra-dimensional model through the Gauge-Higgs Unification.

3.2.3 An example of an extra-dimensional model : Gauge-Higgs Unification

In extra-dimensional models, polarisations of the gauge vectors aligned with higher dimen-
sions can be considered as independent scalar fields. If we identify one of these fields as being
the Higgs boson, its interactions with the fermions would be related to the gauge couplings
giving the opportunity to achieve a unification with the Yukawa sector. Such theories are called
Gauge-Higgs Unification theories (GHU) and have been heavily studied [100, 101, 102]. We
will present in this section the main features and implications of GHU on the simplest model
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[103].

In this model, we consider a five-dimensional theory where the extra-dimension is com-
pactified on a S1/Z2 orbifold with a gauge group GGHU = SU(3) containing the electroweak
group. GGHU is broken to SU(2) × U(1) thanks to the Z2 parity matrix defined as :

P =

⎛⎜⎜⎝
−1

−1

1

⎞⎟⎟⎠ . (154)

P allows us to decompose the generators of SU(3) into generators of SU(2)×U(1), where
the W ’s, the B and the additional off-diagonal fields can be defined as :

AM =

⎛⎜⎜⎜⎝
W

3
M W

1
M + iW

2
M H

1
M + iH

2
M

W
1
M − iW

2
M −W

3
M H

3
M + iH

4
M

H
1
M − iH

2
M H

3
M − iH

4
M BM

⎞⎟⎟⎟⎠ . (155)

After the SU(3) → SU(2) × U(1) symmetry breaking, the extra-dimensional component
of the 5D gauge fields, A5, appears as a scalar [104]. Thus, the off-diagonal components of the
A5 gauge vector, H1

5 + iH
2
5 and H

3
5 + iH

4
5 , form a charged scalar doublet sharing the same

quantum numbers as the standard Higgs boson. Moreover, on a S1/Z2 orbifold, with the cor-
rect boundary conditions, the doublet radiatively generates a finite potential [105, 106] that
could lead to the spontaneous symmetry breaking of the electroweak symmetry. Therefore, the
zero-mode of this doublet could be identified to the Higgs boson.

These models are of interest because they could resolve the hierarchy problem by forbidding
mass term corrections for the Higgs, due to its gauge invariance. Moreover, GHU models can
create gauge-Yukawa asymptotic unification [107]. In the specific example of the GGHU =

SU(3) model, the Renormalisation Group equations for the gauge couplings are given by :

16π
2dgi

dt
= b

SM
i g

3
i + (S(t) − 1) bGHU

i g
3
i , (156)

where we recall that t =ln(µ/mZ), mZ is the Z boson mass and S(t) = 1 if µ < 1/R and
S(t) = µR = mZRe

t above the compactification scale. The coefficients are defined such that :

b
SM

=

⎛⎜⎜⎝
41/10
−19/6
−7

⎞⎟⎟⎠ , b
GHU

=

⎛⎜⎜⎝
−17/6
−17/2
−17/2

⎞⎟⎟⎠ . (157)

In addition, the top-Yukawa can also be added to the theory, where its running is given
by :

dyt
dt

= (cSM
t + (S(t) − 1) cGHU

t ) y3t + (dSM
i + (S(t) − 1) dGHU

i ) ytg2i , (158)

where :

c
SM
t = 9/2 , c

GHU
t = 21/2 , d

SM
=

⎛⎜⎜⎝
−5/12
−9/4
−8

⎞⎟⎟⎠ , d
GHU

=

⎛⎜⎜⎝
−35/24
−39/8
−4

⎞⎟⎟⎠ . (159)
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Figure 9 – Running of the gauge couplings and top Yukawa in the SU(3) GHU model with
R

−1
= 5 TeV. The compactification scale is represented by the vertical gray line.

The top-Yukawa running is plotted in Figure 9. We can see here an example of asymptotic
unification. Couplings are not unified by crossing at an unique point, but are instead attracted
to the same fixed point in the UV. This model is not a Grand Unification Theory as the
couplings are not embedded in an unique group but in SU(3)GHU × SU(3)c. In order to have
asymptotic Grand Unification, we will have to imagine a different framework.

3.3 Asymptotic Grand Unification

3.3.1 Model description

We propose in this part a new definition for a Grand Unified Theory, where unification is
achieved by an asymptotic process instead of a crossing of the running coupling constants. In
order to do that, we need to consider a model with one extra dimension. This extra-dimension
is compactified on an S1/ (Z2 × Z

′

2) orbifold of radius R and with boundary points y0 = 0 and
y1 = πR/2. Each one of the two boundary points is associated with the parity matrices P0

and P1. In addition to the extra-dimension, we also consider that the Standard Model gauge
group, GSM = SU(3)×SU(2)×U(1), is contained within the unified group GaGUT. The parity
matrices imply the following relations [108] for the gauge fields AaM :

(P0) ⇒ { A
a
µ(x,−y) = P0A

a
µ(x, y)P †

0 ,

A
a
5(x,−y) = −P0A

a
5(x, y)P †

0 ,
(160)

(P1) ⇒ { A
a
µ(x, πR − y) = P1A

a
µ(x, y)P †

1 ,

A
a
5(x, πR − y) = −P1A

a
5(x, y)P †

1 ,
(161)

where M is the 5D Lorentz index, a is the generator index of the GaGUT group and A5 is the
polarisation along the fifth compact dimension.

As a minimal model, we will consider first that the unifying group is SU(5). This group can
break into GSM by considering a symmetry breaking caused by the parity matrices eigenvalues
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at the two boundary points. The symmetry breaking should occur at y = 0 to give the SM
group. Therefore, one needs the following parity matrix expressions :

P0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

1

−1

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, P1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

1

1

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (162)

According to the definition of the parity matrices, we see that the symmetry breaking
occurs because the boundary conditions on the y0 brane are not SU(5) invariant. This can be
seen from the relations for the generators of SU(5) :

P0T
a
SMP

−1
0 = T

a
SM , P0T

a
XP

−1
0 = −T

a
X , (163)

where the T aSM are the GSM generators and the T aX are the off-diagonal generators. Therefore,
the 24-representation multiplet of SU(5) can be decomposed in the same way as in equation
(120). We recall that parity-odd fields respect Dirichlet boundary conditions (i.e. the vanishing
of the field at the boundary), while parity-even fields respect Neumann boundary conditions
(i.e. the vanishing of the derivative of the field at the boundary). As discussed in section 3.2.2,
fields in five dimensions can be decomposed into towers of KK modes, whose characteristics
depend on the parities under the Z2 and Z

′

2 symmetries, which we denote (±,±). Of the four
combinations, only the (+,+) case features a zero mode, implying that it can be associated
with a SM field. Only the unbroken vector gauge fields of SU(3)×SU(2)×U(1) have double-
Neumann boundary conditions, and can thus develop a zero-mode, in agreement with the fact
that they are the only gauge fields visible at the SM scale.

The Higgs boson is embedded in a bulk scalar field φ5, transforming as a fundamental 5
of SU(5), with parities :

(P0) ⇒ φ5(x,−y) = −P0φ5(x, y) ,(P1) ⇒ φ5(x, πR − y) = +P1φ5(x, y) . (164)

As in standard SU(5) GUT models, the Higgs, φh, is accompanied by a QCD-triplet scalar
H :

φ5 = (H
φh

) , (165)

where H has no zero mode due to the Dirichlet boundary conditions on the y = 0 boundary.
At this stage, the particle content of the multiplets is identical to the standard GUT SU(5)
theory, except for the origin of the symmetry breaking.

Models of Grand Unification with one extra-dimension have already been studied. In these
models unification was achieved by having an unique crossing point for the running coupling
constants like standard GUT [109, 110, 111]. However, if the gauge symmetry is broken due
to the parity boundary conditions, it is no longer possible to have the SM fermions embedded
into bulk multiplets. This is due to the fact that the SM fermions should have a zero-mode,
thus they must have the (+,+) boundary conditions. However, because of the P0 operator,
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the boundary conditions of the fields in the 5 and 10 multiplets of SU(5) cannot be identical.
Therefore, multiplets cannot be filled as in equation (117), and bulk fermion unification cannot
be achieved in extra-dimensional models. One way to resolve this is to localise the fields on
a brane [109, 112, 113, 114] or to include a supersymmetrical sector [115]. However, in the
most simple extra-dimensional models, the requirements to have the unification of the gauge
couplings at a single point and to the embed of SM fermions in the same multiplets cannot be
fulfilled at the same time. In the new model we will present here, we do not initially address
this requirements, and try to understand the unification in a new way.

To start with, we will describe the fermion content of the model. For fermion fields with
unspecified chirality, the parity eigenvalues notation will always be related to the left-handed
version, remembering that opposite chiralities have opposite eigenvalues. The SM fermions will
be incorporated within 5 different representations for the fermion multiplets : 1, 5, 5, 10 and
10, having the following parity conditions :

(P0) ⇒
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1(x,−y) = −γ5ψ1(x, y) ,
ψ5(x,−y) = +P0γ5ψ5(x, y) ,
ψ5(x,−y) = +P

†
0γ5ψ5(x, y) ,

ψ10(x,−y) = +P0γ5ψ10(x, y)P T0 ,

ψ10(x,−y) = +P
†
0γ5ψ10(x, y)P∗

0 ;

(166)

(P1) ⇒
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ1(x, πR − y) = −γ5ψ1(x, y) ,
ψ5(x, πR − y) = +P1γ5ψ5(x, y) ,
ψ5(x, πR − y) = −P

†
1γ5ψ5(x, y) ,

ψ10(x, πR − y) = −P1γ5ψ10(x, y)P T1 ,

ψ10(x, πR − y) = +P
†
1γ5ψ10(x, y)P∗

1 ,

(167)

where γ5 is the fifth-Dirac matrix in the diagonal Weyl representation.

These relations imply that fermion multiplets are built with fields having zero modes,
corresponding to the SM fermions and new fields without zero modes, due to their parity
eigenvalues and with masses of the order of the compactification scale. These components
fields can be seen by writting the multiplets’ content as :

ψ1L/R = NL/R , ψ5L/R = ( b
L
c)
L/R , ψ5L/R = (Bc

l
)
L/R ,

ψ10L/R =
1√
2
(T c q

T
c)
L/R , ψ10L/R =

1√
2
(t Q

c

τ
)
L/R ,

(168)

where the superscript c indicates the 4D charge conjugate, and capitalised letters indicate the
additional fields that do not have a zero mode. We will call these components "Indalo" fields
and denoted them as �

m−∩-fields. Indalo means "Creation" in the Zulu language and the symbol is
also called "Indalo", but refers to a geometric figure found in Spain from prehistoric drawings.
�
m−∩-fields are written with the capital letter corresponding to the SM field with whom they share
their SM quantum numbers. The charges of all the multiplets components are listed in Table
3. In the last two columns we indicate the presence of a zero mode and the mass of the lightest
non-zero KK mode.

54



Field (Z2,Z
′

2) SM Zero mode First KK mass

l (+,+) (1,2,−1/2) √
2/R

L (+,−) − 1/R
τ (−,−) (1,1,−1) √

2/R
T (−,+) − 1/R
N (−,−) (1,1, 0) √

2/R
q (+,+) (3,2, 1/6) √

2/R
Q (+,−) − 1/R
t (−,−) (3,1, 2/3) √

2/R
T (−,+) − 1/R
b (−,−) (3,1,−1/3) √

2/R
B (−,+) − 1/R
φh (+,+) (1,2, 1/2) √

2/R
H (−,+) (3,1,−1/3) − 1/R
Bµ (+,+) (1,1, 0) √

2/R
W

a
µ (+,+) (1,3, 0) √

2/R
G
b
µ (+,+) (8,1, 0) √

2/R
Xµ (−,+) (3,2,−5/6) − 1/R

Table 3 – Quantum numbers and parities of the fields. Fields with zero modes, appearing
in the Standard Model, are within boxes, and for the fermions we indicate the parities of the
left-handed chirality.

The lightest tier of KK modes, with mass mKK = 1/R, is populated by the fields without
a zero mode. They constitute a complete copy of the SM fermion families, the QCD-charged
Higgs H and the off-diagonal SU(5) vector Xµ. As will be seen later, all these fields play a
special role in this model, thus we collectively name them Indalo also.

As seen earlier, due to the parity at the y = 0 boundary, it is not possible to embed all
the SM fermions in the same bulk fermion multiplet. Therefore, we introduced five multiplets.
This model naturally produces a "fake GUT" [116] structure in the fermion sector, where
gauge couplings unify but fermions do not. An important consequence of this property is that
the Yukawa couplings are not required to unify as we obtained in Gauge-Higgs Unification in
section 3.2.3.

With the set of fields introduced above, we can write down the most general bulk Lagran-
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gian as follows :

LSU(5) = −
1

4
F

(a)
MNF

(a)MN
−

1

2ξ
(∂µAµ − ξ∂5Ay)2

+ iψ5
/Dψ5 + iψ5

/Dψ5 + iψ10
/Dψ10 + iψ10

/Dψ10 + iψ1
/∂ψ1

− (√2Yτ ψ5ψ10φ
∗

5 +

√
2Yb ψ5ψ10φ

∗

5 +
1

2
Yt ǫ5 ψ10ψ10φ5 + Yν ψ1ψ5φ5 + h.c.)

+ ∣DMφ5∣2 − V (φ5) , (169)

where DM = ∂M − ig
a
T
a
A
a
M with T a being the SU(5) generators in the appropriate represen-

tation, and ǫ5 is the 5-dimensional Levi-Civita tensor with gauge indices. The V (φ5) term is a
generic potential for the scalar field, which is responsible for generating the non-zero vacuum
expectation value for the Higgs zero mode, involved in electroweak symmetry breaking. We
also recall that gauge and Yukawa couplings, via dimensional analysis in 5D, have a scaling
mass dimension of −1/2.

The normalisation of the Yukawa couplings is chosen to reproduce the SM definitions
for the zero modes. Expanding the SU(5) multiplets with respect to their components, the
Yukawa couplings yield the following terms :

ψ1ψ5φ5 = Nφhl +NHB
c
,√

2 ψ5ψ10φ
∗

5 = bφ
∗

hq − L
c
H

∗
q − L

c
φ
∗

hT
c
+ ǫ3bH

∗
T
c
,√

2 ψ10ψ5φ
∗

5 = −τφ
∗

hl −Q
c
H

∗
l +Q

c
φ
∗

hB
c
− ǫ3tH

∗
B
c
,

1

2
ǫ5ψ10ψ10φ5 = tφhq + tHT

c
+ τHT

c
+QcφhT

c
+ ǫ3Q

c
Hq ,

(170)

where ǫ3 is the Levi-Civita tensor which contracts with the QCD SU(3) indices. It can be
seen from the above equations that each Yukawa coupling contains only one term between
pure SM fields, corresponding to the standard Yukawa terms in the SM. Once normalised to
dimensionless 4D couplings such that yf = Yf/√2πR, they correspond exactly to the SM Yu-
kawa couplings. By extension, we can generate the full flavour structure of the SM by adding
two more copies for each fermion generation. The only source of flavour violation source in
this model is from the SM CKM matrix, and we thus avoid the strong flavour bounds [117, 118].

As seen in standard GUT models, the strong constraints usually arise from proton decay
considerations, such as baryon violating couplings of the QCD-charged scalar H and of the
lepto-quark bosons X and Y [27, 119]. However, the violation of baryon and lepton number
in standard GUT models occurs because the SM fields are embedded in the same SU(5) mul-
tiplet, while in our model they are not by construction.

In order to show baryon and lepton number conservation, we will show how to extract
their values for each field. Let us first assign to each field in equation (169) a U(1) charge,
such that :

ψ1 → e
iα1ψ1, ψ5 → e

iα5ψ5, ψ5 → e
iα5ψ5 ,

ψ10 → e
iα10ψ10, ψ10 → e

iα10ψ10 ,

φ5 → e
iαφφ5, AX → e

iαXAX .

(171)
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As all the kinetic terms involve quadratic contributions for each field, they automatically
respect this global U(1) symmetry. Focusing on the Yukawa terms, it is possible to extract
relations between the different charges defined here by imposing the invariance of the terms
under this global transformation. Therefore, we obtain :

Yτψ10ψ5φ
∗

5 → e
−αφ−α10+α5Yτψ10ψ5φ5 ⇒ α5 = α10 + αφ ,

Ybψ5ψ10φ
∗

5 → e
−αφ−α5+α10Ybψ5ψ10φ5 ⇒ α10 = α5 + αφ ,

Ytψ10ψ10φ5 → e
αφ−α10+α10Ytψ10ψ10φ5 ⇒ α10 = α10 + αφ ,

Yνψ1ψ5φ5 → e
αφ−α1+α5Yνψ1ψ5φ5 ⇒ α1 = α5 + αφ .

(172)

The charges for the off-diagonal bosons can be constrained also with the covariant deriva-
tive terms in the Lagrangian, where :

− igψ5AXψ5 → −ige
−α5+γX+α5ψ5AXψ5 ⇒ αX = 0 . (173)

Relating all the equations, we finally find :

α5 = α10 + αφ = α10 + 2αφ = α5 + 3αφ = α1 + 2αφ . (174)

Thus, without αX , for which we already know its value, we are left with 6 unknown variables
and 4 independent equations. It is therefore possible to express all the charges as functions
of only two parameters. We decide for simplicity to define α5 = α and αφ = β. Adding the
charges of each multiplet component to the other global U(1) symmetry : the hypercharges
Y , to degenerate the charges in the multiplets components, we obtain the values gathered in
Table 4. Since the Higgs doesn’t have any baryon or lepton number, we need β = −1/2 in
order to have a vanishing charge. Thus, we directly replace the value of β = −1/2 in the last
column of the table showing the sum of the U(1) charges.

It can be seen from Table 4 that there exist similar charges for the different field types,
such that they can be placed into four categories :

➔ SM lepton charge : α − 1/2.
➔ SM quark charge : α + 7/6.
➔ �

m−∩-quark charge : α + 1/3.
➔ �

m−∩-lepton charge : α + 2.

In order to reproduce the standard baryon (B) and lepton (L) numbers, we have to
constrain α. For B, we need to ensure that the SM leptons have a zero baryon number,
this can be done by taking α = 1/2 and normalising the charges by 1/5 to give a 1/3 charge
for the SM quark fields. Similarly, by taking α = −7/6 and rescaling by a factor −3/5, we
obtain a zero charge for the SM quarks, and a charge 1 for SM lepton fields corresponding to
L. Finally, the values B and L for each field are summarised in the first two columns of Table
5.

The existence of the charges B and L ensures that no proton decay is allowed in this
aGUT model. Therefore the unification scale and the compactification scale are free to be at
low energy in comparison to the standard GUTs. Furthermore, all �

m−∩-states carry both B and L
charges, in values that are half of the SM charges. This implies that it is not possible for them
to decay into pure SM fields. This property makes the lightest �

m−∩-field stable, and a potential
candidate for dark matter, as we will study in section 3.3.3.
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U(1) symmetries
SU(5) fields SM fields U(1) Y U(1) + Y

ψ5 B
c
R α 1/3 α + 1/3

lL -1/2 α - 1/2

ψ5 bR α - 3β -1/3 α + 7/6

L
c
L 1/2 α + 2

ψ10 T
c
R α - 2β - 2/3 α + 1/3

T
c
R 1 α + 2
qL 1/6 α + 7/6

ψ10 tR α - β 2/3 α + 7/6

τR -1 α - 1/2

Q
c
L -1/6 α + 1/3

ψ1 N α − 2β 0 α − 1/2
φ5 H β -1/3 −5/6

φh 1/2 0

AX AX 0 -5/6 -5/6

Table 4 – Global U(1) charges for the SU(5) fields. The last column is obtained by summing
the additional U(1) charge and the hypercharges by replacing β with −1/2 in order to have a
zero charge for the Higgs.

3.3.2 Running of the couplings

In traditional GUT model building, the gauge couplings are supposed to run towards a
common point at a given high scale. Therefore, the interesting feature of the Renormalisation
Group equations is the relative evolution of the couplings. The same approach has been consi-
dered in GUT models in extra dimensions [109, 120, 111, 121].

Here we will see a different scenario where it is the SU(5) invariant running, provided
by the bulk KK modes, that drives the unification of the gauge couplings asymptotically at
high energy. This possibility was first noted in [122], and applied to gauge-Higgs unification
models in [123, 107, 124, 125], as seen before in section 3.2.3. We recall that the RGEs for
the gauge couplings are SM-like up to the compactification scale R−1, where the effects of
the KK modes enter. As in standard SU(5) models, we will follow the evolution of the SM
sub-groups SU(3)×SU(2)×U(1) couplings gi = {g1, g2, g3}, where the hypercharge coupling

is normalised as g1 =
√

5

3
g
′. The RGEs can be written as [126] :

2π
dαi
dt

= b
SM
i α

2
i + (S(t) − 1) baGUT

α
2
i , (175)

where again the coupling strength αi = g
2
i /4π, t = ln(µ/mZ), mZ is the Z boson mass, and
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Multiplets Fields L B Q Q3

ψ5 B
c
R 1/2 1/6 1/3 0
τL 1 0 -1 -1

νL 1 0 0 1

ψ5 bR 0 1/3 -1/3 0

T
c
L -1/2 1/2 1 1

N
c
L -1/2 1/2 0 -1

ψ10 T
c
R 1/2 1/6 -2/3 0

T
c
R -1/2 1/2 1 0

tL 0 1/3 2/3 1

bL 0 1/3 -1/3 -1

ψ10 tR 0 1/3 2/3 0

τR 1 0 -1 0

T
c
L 1/2 1/6 -2/3 -1
B
c
L 1/2 1/6 1/3 1

ψ1 N 1 0 0 0

φ5 H 1/2 -1/6 -1/3 0

φ
+

0 0 1 1

φ0 0 0 0 -1

AX X 1/2 -1/6 -4/3 -1
Y 1/2 -1/6 -1/3 1

Table 5 – Lepton and baryon numbers for the components of the SU(5) multiplets. We also
indicate their electromagnetic charge Q and weak isospin Q3.

the SM coefficients can be read :

b
SM

=

⎛⎜⎜⎝
41/10
−19/6
−7

⎞⎟⎟⎠ . (176)

The second term in equation (175) includes the contributions of the KK states contained
in the function S(t) defined, as we have seen in section 3.2.2, by :

S(t) = { µR = mZRe
t for µ > 1/R ,

1 for mZ < µ < 1/R . (177)

As the KK modes tend to appear in complete multiplets of SU(5), all the gauge couplings
receive the same five-dimensional beta function, given by using the relation derived in equation
(89). In the minimal model with SU(5), we consider ng fermion generations of one 5 and 5-
representation associated to T (RF ) = 1/2 and one 10 and 10 with T (RA) = 3/2. We also take
into account one Higgs multiplet in the 5-representation (T (Rs) = 1/2) and 5 fifth-component
of the gauge vectors that can be considered as scalars in the fundamental representation as
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well. Therefore, we have ns = 6. Finally, the Casimir of the adjoint in SU(5) gives C2 (G) = 5.
Using the equation (89), we thus obtain :

b
aGUT

= −
11

3
C2 (G) + 1

3
nsT (Rs) + 4

3
2ng (T (RF ) + T (RA)) = −

52

3
+

16

3
ng , (178)

For 3 families, as we will consider in the following parts, we find b
aGUT

= −4/3. As
explained in section 3.2.1, the 4D one-loop factor α will develop a mass dimension when going
to 5D. In order to keep it dimensionless, we need to redefine it such that :

α̃i = { αi(t) for µ < 1/R ,
αi(t)S(t) for µ > 1/R . (179)

For 3 families of fermions and taking the Z mass scale values {g01, g02, g03} = {0.45, 0.66, 1.2},
we show in Figure 10 the solutions for the α̃i. The appearance of the 5D effects is visible at
the scale 1/R, where the running behavior changes sharply. Thanks to the baryon and lepton
number conservation, this scale can be low, so it was chosen to be R−1

= 10 TeV as a benchmark
in this plot.

α3˜α2˜α1˜

0 5 10 15 20 25

0.01

0.10

1

10

t

α i˜

Figure 10 – Running of the gauge couplings through the dimensionless one-loop factors α̃i,
with R

−1
= 10 TeV. The range of t corresponds to the Z mass (t = 0) and the reduced 5D

Planck mass.

One can see that the couplings never cross like in standard GUTs. However, they get very
close and tend to the same value asymptotically in the UV. This value corresponds to the
UV safe fixed point of the 5D theory [127, 123]. A clearer approach to study the asymptotic
behavior of the gauge couplings is to rewrite the RGE in terms of the dimensionless one-loop
factors α̃i at large energies. There, the RGEs are the same for all gauge couplings and are
written :

2π
dα̃i
dt

= 2π
d (αiS(t))

dt
= 2παiS(t) + b

SM
i α

2
iS(t) + (S(t) − 1) baGUT

α
2
iS(t)

= 2πα̃i + (baGUT
+

1

S(t) (bSM
i − b

aGUT)) α̃2
i .

(180)

60



For very high energies, we have µ≫ 1/R, thus S(t) ≫ 1. Keeping only the leading terms
in S(t)−1, the RGEs become :

2π
dα̃i
dt

≈ 2πα̃i + b
aGUT

α̃
2
i = 2πα̃i (1 + b

aGUT

2π
α̃i) . (181)

The beta-function here looks like a Wilson-Fisher RGE as was derived in equation (99)
where extra-dimensions create a non-trivial fixed point. There, the beta function vanishes at
the fixed points :

α̃
∗

i (IR) = 0 , α̃
∗

i (UV ) = −
2π

baGUT
, (182)

respectively the IR and the UV fixed points. The positiveness of the one-loop gauge factor
imply that the UV fixed point only exists for baGUT

< 0. Therefore, using the result in equa-
tion (178), we see that the existence of the fixed point requires ng ≤ 3. For 4 or more bulk
generations, the asymptotic unification would fail because the fixed point would be negative
and thus unreachable.

For 3 bulk generations, using the value baGUT
= −4/3, we find :

α̃
∗

i =
3π

2
. (183)

The coupling fixed point being greater than 1, its value is apparently non-perturbative.
However, the extra-dimensional loop factor definition differs from the 4D one and one needs
to use the following definition :

α̃d =
Ω(d)(2π)d 4πα̃ , (184)

where Ωd is the d-dimensional solid angle defined by :

Ωd =
2π

d

2

Γ (d
2
) . (185)

For d = 5 and 3 fermion generations, we find :

α̃5 =
α̃
∗

i

3π2
=

1

2π
< 1 . (186)

Therefore, the theory remains perturbative at high energies once the extra-dimensional
nature of the theory is fully taken into account. Increasing R−1 does not change the picture
qualitatively.

For the running, we take as an upper bound the 5D reduced Planck mass MPl
5 [128], which

corresponds to the largest value of t shown in the plot. MPl
5 is related to the 4D reduced

Planck Mass MPl
4 by the following relation :

(MPl
4 )2 ≈ R (MPl

5 )3 . (187)
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The plot in Figure 10 is realised taken shows that the couplings become indistinguishable
at the scale t ≈ 10. This scale is well below the 5D reduced Planck mass. As the couplings seem
to behave as one above it, the scale at which their differences cannot be seen anymore can be
thought as an unification scale. As the unification is asymptotic, one could argue that this scale
is arbitrary and that true unification never really occurs. The aim of the aGUT philosophy is
to consider that unification happens, in fact, differently and to see it as an approximation. The
expression in Equation (181) shows the same behavior for any gauge coupling and was obtai-
ned thanks to the approximation µ ≫ R

−1. Therefore, considering fully the extra-dimension
allows the gauge couplings to evolve in a similar way, thus showing an unified behavior. This
also forces any unification to happen well above the compactification scale.

Considering now the Yukawa sector, as argued before, the Yukawa couplings do not unify.
The study of Yukawa running is still important to make sure that no Landau pole is reached
below the 5D Planck mass, ensuring the consistency of the theory.

Due to the fact that the gauge couplings enter in the Yukawa beta function at one loop, the
calculation of the Yukawa running is more difficult to achieve than the gauge one. Moreover,
the coupled terms concerns not only the SM gauge couplings, but also the couplings associated
with the massive �

m−∩-gauge bosons AX . The running of these couplings is totally independent
from the SM gauge couplings below the unification scale and therefore we don’t know anything
about how it would behave. To take into account this uncertainty in the Yukawa running, we
compute the mixed gauge-Yukawa contribution between the compactification and the unifica-
tion scales using a single 5D coupling g5 whose values are taken between the extreme values in
the SM g5 = g1 and g5 = g3. The variation between the two will be considered as a systematic
uncertainty in the Yukawa running. In the following, we will only consider the third generation
of Yukawa couplings, as they feature the largest strengths.

First, in the SM the four Yukawa couplings run according to the following RGEs :

2π
dαt
dt

»»»»»»»SM
= [9

2
αt +

3

2
αb + ατ + αν −

17

20
α1 −

9

4
α2 − 8α3]αt , (188)

2π
dαb
dt

»»»»»»»SM
= [9

2
αb +

3

2
αt + ατ + αν −

1

4
α1 −

9

4
α2 − 8α3]αb , (189)

2π
dατ
dt

»»»»»»»SM
= [5

2
ατ + 3αt + 3αb −

1

2
αν −

9

4
(α1 + α2)]ατ , (190)

2π
dαν
dt

»»»»»»»SM
= [5

2
αν + 3αt + 3αb −

1

2
ατ −

9

20
α1 −

9

4
α2]αν , (191)

where αf = y
2
f/4π. These equations will be used for the running of the Yukawa couplings

between the EW scale and the compactification scale.

In order to derive the beta functions above the compactification scale, we will first use
the formalism of counterterms similarly as what was seen in section 2.3.2, to derive the beta-
function. We will see as a general example, a Yukawa coupling between a scalar, a fermion and
an anti-fermion field. Therefore, the renormalised propagator of the fermion called ψ1 can be
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written :

iG
R
ψ1

=
1

Z1

i/p −m0
1

+ loops =
1

1 + δ1

i/p −mR
1 − δm1

mR
1

+ loops , (192)

where "loops" refers to loop-diagrams contributing to the renormalisation of the propagator.
Expanding at first order, we have :

iG
R
ψ1

≈ (1 − δ1) i/p −mR
1

(1 + δm1
m
R
1/p −mR
1

) + loops

=
i/p −mR

1

+
i/p −mR

1

(i(δ1/p − (δ1 + δm)mR
1 )) i/p −mR

1

+ loops .

(193)

The one-loop diagram contributions can always be written such as :

loops =
i/p −mR

1

(iΣ1/p − iΣ
m
1 m

R
1 ) i/p −mR

1

, (194)

with Σ1 representing the loops diagram contributions proportional to /p and Σ
m
1 the contribu-

tions proportional to m1. Replacing the loops expression in the renormalised propagator, we
finally have :

iG
R
ψ1

=
i/p −mR

1

+
i/p −mR

1

(i ((δ1 + Σ1) /p − (δ1 + δm1
+ Σ

m
1 )mR

1 )) i/p −mR
1

. (195)

By requiring to have only the first term and therefore making the second term in Equation
(195) vanishing, we need :

δ1 = −Σ1 , δm1
= Σ1 − Σ

m
1 . (196)

Using similar methods for the anti-fermion ψ2 and scalar φ propagators counterterms for
and for the coupling, we finally have the set of equations :

δ1 = −Σ1 , δ2 = Σ2 , δφ = −Σφ , δCoupling = ΣCoupling , (197)

where Σ1 refers to contributions proportional to /p in the renormalisation of the fermion pro-
pagator, Σ2 to contributions proportional to /p in the renormalisation of the anti-fermion pro-

pagator, Σφ, contributions proportional to p2 in the renormalisation of the scalar propagator,
and Σcoupling contributions to the renormalisation of the Yukawa vertex.

Now, using the relations between bare and renormalised parameters, we have :

ψ
0
1 =

√
Z1ψ

R
1 , ψ0

2 =

√
Z2ψ

R
2 , φ

0
=

√
Zφφ

R
,

y
0
ψ0
2ψ

0
1φ

0
= ZCouplingy

R
ψR2 ψ

R
1 φ

R
.

(198)

Therefore, focusing on the renormalisation factor of the Yukawa coupling and using di-
mensional regularisation where d = 4 − ǫ, we have :

y
0
=

ZCoupling√
Z1Z2Zφ

y
R
µ
ǫ

2 = Zyy
R
µ
ǫ

2 ,

⇒ 0 =
d
dµ

( ZCoupling√
Z1Z2Zφ

y
R
µ
ǫ

2) .

(199)
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Replacing Zi = 1 + δi, taking the first order in the counterterms and neglecting to su-
perscript R for simplicity, we obtain the expression of the Yukawa β-function function of the
different diagram contributions :

βy = −
ǫ

2
y −

ǫ

2
y
2 d
dy

(δCoupling −
1

2
(δ1 + δφ + δ2))

= −
ǫ

2
y −

ǫ

2
y
2 d
dy

(ΣCoupling +
1

2
(Σ1 + Σφ) − 1

2
Σ2) .

(200)

Now we need to consider the diagrams calculations in order to find the expressions for the
Σi. The Feynman rules of the minimal SU(5) aGUT are specified in Appendix B.1 and allow
to compute the diagram contributions to the beta-function as listed in Appendix B.2 for the
top-Yukawa.

Adding all the parts for the bulk top Yukawa beta function above the compactification
scale, we obtain the following RGE with respect to t = ln (µ/mZ) :

16π
2dYt

dt

»»»»»»»aGUT
=Y

3
t (1

2
3!2! +

1

2
3!2! + 2 × 4!1!) + YtY

2
ν (2)

+ YtY
2
τ (1

2
+ 2 × 2 + 2) + YtY

2
b (1

2
+ 2 × 2 + 2)

+ Ytg
2
5 (−6 × 2 × 6

5
− 3

12

5
− 2 ×

12

5
+

1

2

18

5
+

1

2

18

5
)

+ Ytg
2
5ξ (−2 × 12

5
+

18

5
+

18

5
+

12

5
+ 2

−6

5
− 2

6

5
) ,

(201)

where, as explained before, we computed the coefficients of the gauge contribution with an
unified gauge coupling g5. The sum of the contributions shows that the gauge-parameter ξ
vanishes as expected by the gauge-invariance. Then, the one loop RGE gives :

16π
2dYt

dt

»»»»»»»aGUT
= 60Y

3
t +

13

2
YtY

2
τ +

13

2
YtY

2
b + 2YtY

2
ν −

114

5
Ytg

2
5 . (202)

Rescaling, using the correspondence for the coupling in the SM Yt = yt/2, Yb =

√
2yb,

Yτ =

√
2yτ and Yν = yν as seen in Equation (170), we find :

16π
2dyt

dt

»»»»»»»aGUT
= 15(yt)3 + 13yt(yτ)2 + 13yt(yb)2 + 2yty

2
ν −

114

5
ytg

2
5 , (203)

Similarly, for the other Yukawas couplings in the bulk, written in terms of αf , we obtain :

2π
dαt
dt

= 2π
dαt
dt

»»»»»»»SM + (S(t) − 1) (15αt + 13ατ + 13αb + 2αν −
114

5
α5)αt ,

2π
dαb
dt

= 2π
dαb
dt

»»»»»»»SM + (S(t) − 1) (11αb + 39

2
αt + 8ατ + 2αν −

93

5
α5)αb ,

2π
dατ
dt

= 2π
dατ
dt

»»»»»»»SM + (S(t) − 1) (11ατ + 39

2
αt + 8αb +

9

2
αν −

93

5
α5)ατ ,

2π
dαν
dt

= 2π
dαν
dt

»»»»»»»SM + (S(t) − 1) (5αν + 12αt + 8αb + 18ατ − 6α5)αν .
(204)
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To keep a dimensionless definition for the running coupling, we will express it in terms of
α̃f , as defined in Equation (179). To check first for the possibility to have an UV fixed point
for the Yukawa running, we start by looking at the presence of zeros for the beta function for
large energies. Like in the gauge case, we can express the RGEs in terms of α̃f and expand at
the leading order in 1/Rµ. This gives :

2π
dα̃t
dt

≈ 2πα̃t + (15α̃t + 13α̃τ + 13α̃b + 2α̃ν −
114

5
α̃5) α̃t ,

2π
dα̃b
dt

≈ 2πα̃b + (11α̃b + 39

2
α̃t + 8α̃τ + 2α̃ν −

93

5
α̃5) α̃b ,

2π
dα̃τ
dt

≈ 2πα̃τ + (11α̃τ + 39

2
α̃t + 8α̃b +

9

2
α̃ν −

93

5
α̃5) α̃τ ,

2π
dαν
dt

≈ 2παν + (5αν + 12αt + 8αb + 18ατ − 6α5)αν .
(205)

Solving these equations thanks to the gauge fixed point value in Equation (182), we find
for the non-trivial fixed points in the general case of ng generations :

α̃
∗

t = −
14(2777 − 140ng)π
3585(13 − 4ng) , α̃

∗

b =

(55889 − 1160ng)π
2390(13 − 4ng) ,

α̃
∗

τ = −
(42671 − 1640ng)π
2390(13 − 4ng) , α̃

∗

ν =

336(176 − 5ng)π
1195(13 − 4ng) . (206)

The fact that the zeroes for the top and tau Yukawas are always negative for ng ≤ 3 implies
the absence of a completely safe fixed point in the case of bulk-described Yukawa couplings.
Thus, the only physical possibility to keep all Yukawa couplings in the bulk is that they may
run to zero in the UV. Because of the small neutrino mass, we will ignore the running of yν
when solving the RGE in the following parts. Taking the EW scale values for :

yt(0) = 0.991 , yb(0) = 0.023 , yτ(0) = 0.0102 , (207)

the running is pushed toward the asymptotically free point only if the compactification scale
agrees to :

R
−1

≳ R
−1
c = 3 ⋅ 10

5 TeV . (208)

The Yukawa running for two compactification scales above and two below the critical value
are shown in Figure 11. We recall that the bands correspond to the systematic uncertainties
derived from the ignorance of the running of the off-diagonal gauge boson couplings.

For smaller values of the compactification scale, the UV behavior of the bulk Yukawa cou-
plings cannot be determined, because of the systematic uncertainties. In these cases, anything
can happens, either the running hits a Landau pole, either it is driven to an asymptotic free
description.

This is well illustrated by looking at the RGE of the top Yukawa alone, assuming that the
other Yukawas are negligible. In this case, the top RGE can be approximated at very high
energies by :

2π
dα̃t
dt

≈ (2π + 15α̃t −
114

5
α̃5) α̃t . (209)
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Figure 11 – Running of the bulk Yukawas as compared to the gauge running couplings.
The couplings are solved up from the EW scale to the 5D reduced Planck mass. In the top
row, we show two sample values of compactification scales below the critical value while in the
bottom row, the two choices of R−1 shown are above the critical value. The bands indicate
the systematic uncertainty from the gauge couplings, while the SM value of the top Yukawa
at the EW scale is indicated by the blue tick at t = 0.

Then, alone, the top Yukawa has a non-trivial UV fixed point defined by :

α̃
∗

t =
1

15
(114

5
α̃
∗

5 − 2π) =

(41 + 40ng)π
75(13 − 4ng) =

161

75
π , (210)

where the value in the last equality is obtained for 3 fermion families. Therefore, solving the
RGE with the UV fixed point as a boundary condition at the reduced 5D Planck mass, the
range predicted by the uncertainties for the top Yukawa at the EW scale always includes its
SM value. This can be seen in Figure 12 where small blue lines at t = 0 shows the EW value.
Therefore, the top Yukawa may run to the fixed point or to zero if the RGE trajectory lies
below the critical one. This shows that the theory could be consistent even for R−1 below the
threshold in Equation (208) but that we cannot know.

However, solving first the top-Yukawa alone down from its fixed point then running up the
bottom and tau Yukawa from their SM values with the top mixed terms gives the behavior as
seen in Figure 13. In fact, neglecting first all Yukawas except the top, and taking it and the
gauge couplings at their UV fixed point, the high-energy beta functions for the other Yukawas
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Figure 12 – Top bulk Yukawa as compared to the gauge couplings solved down from the
UV fixed point imposed at the 5D Planck scale for four sample values of the compactification
scales.

can be approximated by :

2π
dα̃b
dt

≈
399π

25
α̃b , 2π

dα̃τ
dt

≈
399π

25
α̃τ , 2π

dα̃ν
dt

≈
469π

25
α̃ν . (211)

This shows that no non-trivial fixed point can be found as only the Gaussian fixed point
is allowed for them. It shows also that if the top Yukawa is solved from its UV fixed point
alone, the other Yukawas would increase too fast at high energies. Therefore, the top Yukawa
UV fixed point is excluded, and the only feasible possibility is that all bulk Yukawa couplings
run to zero.

After having explored the possibility of having all the Yukawa in the bulk, we will now
focus on the effect of localising them on a brane. Localising the Yukawa consists in forcing
the interaction to occur at a specific boundary brane (i.e for a specific fifth coordinate) by
adding a delta-function in the Lagrangian term. This modification is equivalent for the Yukawa
running as considering that the fermions are localised on the same brane. For simplicity, and
to preserve the GUT principle, we will consider the case where the localisation is held on the
y = πR/2 brane, where the SU(5) symmetry is not broken. Thus, the localised Yukawa cou-
plings have the same form than the bulk ones in Equation (169) with an additional delta factor.

In the case of a localised coupling, the KK selections rules are different from the ones
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Figure 13 – Top Yukawa run down from its fixed point then running up bottom and tau
Yukawa from their SM values for four sample values of the compactification scales.

derived in Equation (145) for the bulk case. This is due to the delta factor that will change
the result of the integral over the extra-dimension. Therefore, integrating the localised Yukawa
Lagrangian term for all-(+,+) fields gives :

∫
πR

2

0

dyyδ (y − πR

2
)ψ̂†(+,+)φ̂(+,+)ψ̂(+,+) = y

√
2

πR
ψ

†
0φ0ψ0

+ y
2√
πR

+∞

∑
n=1

(−1)n (ψ†
nφ0ψ0 + ψ

†
0φnψ0 + ψ

†
0φ0ψn)

+ y
2
√
2√

πR

+∞

∑
n,m=1

(−1)n+m (ψ†
nφmψ0 + ψ

†
nφ0ψm + ψ

†
0φnψm)

+ y
4√
πR

+∞

∑
n,m,k=1

(−1)n+m+k
ψ

†
nφmψk .

(212)

We see here, that in the case of a localised interaction, a vertex can couple three fields
with any KK number. So there is no selection rules anymore in this case.

Investigating whether or not the different couplings in the Lagrangian will enter in the
beta-functions, we need to focus on the linear divergences as they are the only one contribu-
ting to the β-functions above the compactification scale. We can see in Equation (212) that the
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addition of the δ-function factors changes the divergences. Comparing with Equation (145),
we see that there is one more sum over the KK number for every term. Therefore, localising a
coupling adds one more power of divergence. Due to this fact, it can be shown that localised
interactions will not contribute to the beta function of neither bulk couplings, neither other
localised interactions.

These new selection rules will also change the contributions of the KK modes in the
diagrams involved in the Yukawa beta-function as listed in Tables 13 and 14. In order to show
the differences with the bulk case, we will take the example of the self-energy diagram for the
fermion propagator. We denote in the diagrams yB for bulk coupling and yL for the localised
case and write explicitly the KK number of the propagators under parenthesis. In the case of
the renormalisation of a bulk coupling, the only possibility was to have :

ψ
(0)

yB
(0)

yB

(n)
(n)

yB
φ
(0)

ψ(0)

, (213)

showing that the KK numbers of the internal propagators can be any integer n in the loop.
The other internal propagator is forced to have a KK number of 0 due to the KK conservation
at the final vertex. In the case of the beta-function of a localised Yukawa, there are now two
different possibilities for the coupling with localised fields :

ψ
(0)

yB
(0)

yB

(n)
(n)

yL
φ
(0)

ψ(0)

,

ψ
(0)

yB
(2n)

yB

(n)
(n)

yL
φ
(0)

ψ(0)

. (214)

Here, we see that the contribution of such diagrams to the beta function of a localised
Yukawa is twice the contribution obtained in the bulk case. This result is applicable for all the
other diagrams in the case where all the Yukawa couplings are localised and only the gauged
are in the bulk. Moreover, in this specific case, the linear running, contributing to the beta
functions, is due to loops involving only bulk fields, namely the gauge ones. Therefore, we find
that the gauge contribution is the same as for the bulk Yukawas in Equation (204) with an
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Figure 14 – Running of the localised Yukawa couplings compared to the bulk gauge ones
for two extreme sample values of the compactification scale.

additional factor of two. Thus giving :

2π
dαt
dt

= 2π
dαt
dt

»»»»»»»SM − 2(S(t) − 1)114
5
α5αt ,

2π
dαb
dt

= 2π
dαb
dt

»»»»»»»SM − 2(S(t) − 1)93
5
α5αb ,

2π
dατ
dt

= 2π
dατ
dt

»»»»»»»SM − 2(S(t) − 1)93
5
α5ατ ,

2π
dαν
dt

= 2π
dαν
dt

»»»»»»»SM − 2(S(t) − 1)6α5αν .

(215)

Numerically, the localised Yukawas always run to the asymptotically free fixed point in
the UV, for any value of R−1 as shown for two extreme choices of the compactification scale in
Figure 14. Thus, the "all-localised configuration" always leads to a consistent Yukawa sector
for the SU(5) aGUT model.

Investigating now the possibility of having both bulk and localised Yukawas, we will list
the different possibilities. Starting first with only the top in the bulk and all the other localised,
we have the following RGE :

2π
dαt
dt

= 2π
dαt
dt

»»»»»»»SM + (S(t) − 1) (15αt − 114

5
α5)αt

2π
dαb
dt

= 2π
dαb
dt

»»»»»»»SM + 2 (S(t) − 1) (39
2
αt −

93

5
α5)αb

2π
dατ
dt

= 2π
dα

SM
τ

dt

»»»»»»»»»SM + 2 (S(t) − 1) (39
2
αt −

93

5
α5)ατ

2π
dαν
dt

= 2π
dαν
dt

»»»»»»»SM + 2 (S(t) − 1) (12αt − 6α5)αν

(216)

This leads to the same asymptotic behavior as the one considered by neglecting all the
Yukawas coupling except the top and specified in Equation (211) leaving us with the only
possibility to have all couplings driven to 0.
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We scrutinise now the case where only the ν-Yukawa is localised gives the following asymp-
totic behavior :

α̃
∗

t =

14 (10ng − 19)π
555(13 − 4ng) , α̃

∗

b =

3(73 + 20ng)π
370(13 − 4ng) ,

α̃
∗

τ =

3(73 + 20ng)π
370(13 − 4ng) , α̃

∗

ν = 0 .

(217)

Here, we see that for 1 < ng < 3, it exists a non-trivial fixed point for both the top, bottom
and tau Yukawas. In the case of 3 fermion generations, solving the heavy fermion Yukawa
RGEs from their UV fixed points gives the running as shown in Figure 15.
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Figure 15 – Bulk top, bottom and tau Yukawa run down from their fixed point for four
sample values of the compactification scale. The small lines on the right of the plots specify
the EW values of the couplings.

Even if the fixed points are positives for all the heavy fermions Yukawas couplings, we see
that the running cannot account for the electroweak values. Moreover, we see that the top is
always smaller than bottom and tau Yukawas. This hierarchy is conserved if we take the other
choices for ng such that :

ng = 3 ∶ α̃
∗

t =
154

555
π , α̃

∗

b =
399

270
π , α̃

∗

τ =
399

270
π , α̃

∗

ν = 0 ,

ng = 2 ∶ α̃
∗

t =
14

2775
π , α̃

∗

b =
339

1850
π , α̃

∗

τ =
339

1850
π , α̃

∗

ν = 0 .

(218)
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Therefore, reaching the non-trivial UV fixed points gives again scenarios that are not
consistent. Without going into more details, in a more general way, no other scenario non-
discussed in this part is consistent and in order to summarise the coherent possibilities, we list
hereafter the allowed Yukawa scenarios :

➔ All-bulk Yukawas : For R−1
≳ R

−1
c , all the couplings run to 0. For R−1

≲ R
−1
c , anything

can happen.

➔ All-localised Yukawas : For any R−1, all Yukawas are driven to 0.

This shows that realistic scenarios exist for the Yukawa couplings, but they do not give
much information on the compactification scale. They only allows to exclude non-trivial fixed
points for the Yukawas couplings.

3.3.3 Baryogenesis

As discussed in the previous sections, the �
m−∩-partners of the SM particles have non-standard

baryon number assignments as is recapped in Table 5, preventing them from decaying into
SM fields. Therefore, the lightest stable �

m−∩-state would be a stable massive particle that is a
natural candidate for dark matter. Because the mass splitting between the lowest KK modes
is induced by loops [129] and due to the Higgs, the lightest state should naturally be the
�
m−∩ left-handed electron neutrino N .

However, N is embedded in a doublet, so its annihilation and co-annihilation cross-sections
suppress the thermal relic density, which is thus not enough to generate the required relic den-
sity for dark matter. Furthermore, the interactions with the Z boson are excluded by the null
outcome of Direct Detection experiments [130, 131, 132]. Therefore, the left-handed �

m−∩-neutrino
can account only for a small fraction of the total actual dark matter relic density. In our case,
the direct detection bounds creates a strong limit on this production, thus providing conser-
vative bounds on the radius of the extra dimension. This requires the �

m−∩ relic density to be
below one part in 10

11 when compared to the baryon one. For this value, one cannot neglect
the thermal relic density anymore and the densities would be above the experimental excluded
bounds. This analysis shows that the minimal model, as presented so far, is disfavored by
cosmology.

A well known way out of this problem was first used in supersymmetry [133] and consists of
generating a Majorana mass for the Dirac field, so that the two components are split into two
Majorana mass eigenstates. However, this route is forbidden in this model because Majorana
fields cannot exist in 5 dimensions.

Therefore, we will investigate the possibility of adding a new field taking the place of N
as lightest �

m−∩-state. In our model building, the simplest way we used to generate the neutrino
masses was to introduce of a singlet field, ψ1, corresponding to the SM right-handed neutrino.
For a complete fermion symmetry, we could also introduce a second singlet, ψ′

1. Note that
having a second singlet allows us to combine all the fermion fields into a 16 and a 16 of an
SO(10) symmetry group for each family through the decomposition in SU(5) × U(1) :

16 → (10, 1)⊕ (5,−3)⊕ (1, 5) . (219)
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φ5 ψ5 ψ5

H : µH B
c
R : −µBR bR : µbR

φ
+

: µ+ τL : µτL T
c
L : −µTL

φ0 : µ0 νL : µνL N
c
L : −µNL

ψ10 ψ10 A
a
µ

T
c
R : −µTR tR : µtR W

+
: µW

T
c
R : −µTR

τR : µτR X : µX
tL : µtL T

c
L : −µTL Y : µY

bL : µbL B
c
L : −µBL

Table 6 – Chemical potentials associated to the relevant fields, where the SM ones correspond
to the zero modes and the �

m−∩ ones to the lowest KK tier.

Such decomposition shows that SO(10) could integrate the fields studied in the minimal
SU(5) model in a simpler and more natural way. The parities for the additional field are the
same than the ones for the original singlet ψ1. This new field allows us to add also the following
bulk Yukawa couplings to the Lagrangian :

∆L = Yν ′ψ
′

1ψ5φ
∗

5 + h.c. . (220)

The field ψ1 contained a right-handed zero mode, which corresponds to a right-handed
neutrino NR. Thus, the coupling Yν generates a Dirac mass for the right-handed neutrinos,
and is thus bound to be extremely small. On the other hand, ψ′

1 has no zero mode, and the
lightest KK mode corresponds to an �

m−∩-singlet denoted S. The Yukawa coupling Yν ′ ensures
that S has the same baryon and lepton numbers as the �

m−∩-neutrino N that were seen in Table 3.

Thanks to the �
m−∩-states carrying both baryon and lepton number, a relic density can be

generated at the EW phase transition together with the baryon asymmetry. This mechanism
can be used to generate an asymmetric dark matter relic density [134].

To estimate the �
m−∩-particles induced relic density produced during baryogenesis, we will

employ the usual calculation using the chemical potential equilibrium for every species of
particles active at the EW phase transition [135]. The precise dynamics of the phase transition
in extra-dimensions are complicated [136], therefore, we will only provide, here, an estimate.

The states we consider here are the lowest tier of the KK modes and their associated
chemical potentials, are listed in Table 6. All other states are heavier and their contributions
are thus negligible. Furthermore, we assume that the three families of fermions share the same
chemical potentials. The relationships between them are extracted from the interaction terms
in the Lagrangian, which allow to express all the chemical potentials with only four of them,
chosen to be µtL , µW , µH and µ0. In order to keep the Yukawa Lagrangian terms in Equation
(169) invariant under the global U(1) charge related with the chemical potentials, we need the
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following relationships :

µH = −µTR − µbR = µbL + µNL = µtL + µTL = −µBR − µtR = µτL + µTL

= µνL + µBL = µτR + µTR = µtR + µTR = −µTL − µbL = −µBL − µtL ,

µ0 = µbL − µbR = µTL − µTR = µTR − µTL = µtR − µtL = µBL − µBR = µτL − µτR ,

µ+ = µNL − µTR = µtR − µbL = µtL − µbR = µTL − µBR = µνL − µτR .

(221)

We also have, for the gauge terms :

µW = µTL − µBL = µνL − µτL = µNL − µTL = µtL − µbL = µ+ − µ0 ,

µX = µτL + µBR = µbR + µTL = −µtL − µTR = µbL + µTR = −µtR − µTL = µτR + µBL ,

µY = µνL + µBR = µbR + µNL = −µbL − µTR = µtL + µTR = −µtR − µBL = µτR + µTL .

(222)

At the freeze-out temperature Tf , the matter-antimatter asymmetry for each field of mass
M can be written as [137] :

n = n+ − n− = ddof T
3
f

µ

Tf

σ (M
Tf
)

6
, (223)

where µ is the energy scale, ddof is the degrees of freedom multiplicity and :

σ(z) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

6

4π2
∫ ∞

0

dxx2cosh−2 (1
2

√
x2 + z2) for fermions ,

6

4π2
∫ ∞

0

dxx2sinh−2 (1
2

√
x2 + z2) for bosons .

(224)

The σ function is normalised such that it is equal to 1 for massless fermions and to 2 for
massless bosons. Considering now that only the �

m−∩-particles and the top quark have a non-
negligible mass, in order to keep the particle density to 1 for the others SM fermions and 2 for
the SM bosons, the total density of each species is given in Table 7.

Field Density Field Density
t 3(2+σt)(µtL+µtR) b 9(µbL + µbR)
ν 3(µνL) φ

−
2µφ−

τ 3(µτL + µτR) h 2µh
T 18σT (µTL + µTR) B 18σB(µBL+µBR)
N 6σNµNL

T 6σT (µTL
+ µTR

)
X 3σXµX Y 3σY µY
H 3σHµH

Table 7 – Normalised particle densities for each field.
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Using the charges listed in Table 5, the total charge density of the Universe and the total
weak isospin density can be written as :

Q
Tot

=
2

3
3(2 + σt)(µtL + µtR) − 1

3
(3)(3)(µbL + µbR) − 3(µτL + µτR) − 2(2)µW + 2µ+

− 1(3σT )(µTL + µTR) − 1

3
(3)(3σB)(µBL + µBR)

+
2

3
(3)(3σT )(µTL + µTR) − 4

3
(3)σXµX −

1

3
(3)σY µY −

1

3
(3)σHµH ,

Q
Tot
3 = 3(2 + σt)(µtL) − 9(µbL) − 3(µτL − µνL) − 4µW + 2(µ+ − µ0) + 6(µTLσT − µNLσN )

+ 18(µTLσT − µBLσB) + 3(σY µY − σXµX) .
(225)

All these parts also allow to calculate the total baryon number stored separately in the SM
and in the �

m−∩-sectors. They will depend on the total densities of each species given in Table 7
at any temperature T . Once the �

m−∩-particles emerge from thermal equilibrium, they will decay
directly into S, because it is the lightest one, and will release a part of their baryon number to
the SM sector again. For example, it can be seen in Table 5 that the �

m−∩-quarks T and B have a
−1/6 baryon number, while S has baryon number −1/2. Therefore, a 1/3 baryon number will
be released in the SM sector through the decay of T in S. This applies as well to the �

m−∩-bosons
H, X and Y , while T and S share the same baryon number. Consequently, after freeze-out,
the baryon numbers in the SM-sector and in S can be expressed as :

BSM =
1

3
3(2 + σt)(µtL + µtR) + 1

3
9(µbL + µbR) + 1

3
3(σHµH + σXµX + σY µY )

+
1

3
18σB(µBL + µBR) + 1

3
18σT (µTL + µTR) ,

BS = −
1

2
(3σN (µNL) + 3σT (µTL + µTR) + 3(σHµH + σXµX + σY µY )

+ 9σB(µBL + µBR) + 9σT (µTL + µTR)) .
(226)

Using the relations in Equation (222) and assuming for simplicity that all �
m−∩-states have

the same mass (i.e. σT = σB = σT = σN ≡ σF and σX = σY = σH), the total baryon numbers
can be written :

BSM = (10 + 2σt − 24σF )µtL + (12σF − 6 − σX)µW + (3σX − 24σF )µH + (σt − 1)µ0 ,
BS =

3

2
(30σFµtL + (σX − 14σF )µW + (18σF − 3σX)µH + 2σFµ0) . (227)

Now, the relic density can be express using the mass density of S divided by the SM mass
density. This can can now be expressed using the baryon number density such that :

ΩS

Ωb
=

2mS BS

mp BSM
, (228)

where the factor 2 is caused by the half baryon number of S and mp is the proton mass repre-
senting the typical scale of the lightest baryons.
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In the same way, the total electric charge and the total weak isospin as written in equation
(225) can be simplified using the same relations. Consequently, we can write them :

Q
Tot

= 4(σt − 1)µtL + (10 + 24σF + 4σX)µW − (12 + 2σF + 4σX)µH
+ (12 + 2σt + 24σF − 3σX)µ0 ,

Q
Tot
3 = 3(σt − 1)µtL + (10 + 12σF + 3σX)µW − 6σXµ0 .

(229)

Now, in order to reduce the number of degrees of freedom for the chemical potentials, we
need to consider relations due to the EW phase transition, where we assume that it can be of
first or second order. The first relation to take into account is due to the electroweak B + L

anomaly. This violation allows the existence of exchange processes between two minimas of
the EW potential that correspond to the creation of a nν state from each generation out of
the vacuum. Such vacuum transitions are called "sphaleron processes" and impose relations
among the chemical potentials. All �

m−∩-particles are vector-like, therefore they do not contribute
to the sphaleron rate, so that the same relationship holds as in the SM [135] :

3(µtL + 2µbL) + 3µνL = 3µtL − 2µW + 2µH = 0 . (230)

In addition, the order of the EW phase transition gives two more equations leading, toge-
ther with the sphaleron condition, to the possibility to describes the baryon numbers with an
unique chemical potential that will vanish in the relic density expression. Let’s start with a
first order phase transition. It is characterised by the vanishing of the total charge and total
weak isospin, such that QTot

= Q
Tot
3 = 0. Considering that the mass of all �

m−∩-particles particles
are the same in first approximation (i.e σX = σF ), the potential can thus be written :

µH = −µt
3(96 + 392σ + 483σ

2
+ 40σt + 88σσt + 4σ

2
t )

2(120 + 378σ + 447σ2 + 20σt + 30σσt) ,

µW = −µt
3(−12 + 7σ + 18σ

2
+ 10σt + 29σσt + 2σ

2
t )

120 + 378σ + 447σ2 + 20σt + 30σσt
,

µ0 = −µt
134 + 366σ + 135σ

2
+ 46σt − 6σσt

120 + 378σ + 447σ2 + 20σt + 30σσt
.

(231)

Replacing the relations in equation (228), the relic density ratio is now given by :

ΩS

Ωb

»»»»»»»1st

= 2
mN

mp
2
2236 + 9624σ + 7785σ

3
+ 36σσt (92 + 7σt) + 4σt (266 + 15σt) + 36σ

2 (443 + 103σt)
3σ (5949σ2 + 18σ (229 + 7σt) − 4 (−352 + σt + 6σ2t )) .

(232)
Similarly, in a second order phase transition, the vanishing of the total charge is required

but the weak isospin condition is replaced by the vanishing of the Higgs chemical potential,
such that QTot

= µ0 = 0. This gives the following relic density ratio :

ΩS

Ωb

»»»»»»»2nd

= 2
mN

mp

128 + 40σt + 6σ (133 + 85σ + 28σt)
3σ (−43 + 147σ − 8σt) . (233)

We can see that the ratio only depends on the mass of the Indalo S and the temperature of
the phase transition T∗. The results are shown in Figure 16, where the relic density ratio is plot
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Figure 16 – 1st order (left panel) and 2nd order (right panel) phase transition results. Values
of the S relic density as a function of the mass for T∗

= vSM (solid black), vSM/2 (dashed
red) and 2vSM (dashed blue). The green shaded region is excluded by the over-closure of the
Universe.

as a function of the S mass for three different values of the EW phase transition temperature.
The region in green is excluded by the over-closure of the Universe [138], generating a lower
bound on the KK mass scale. This pushes the mass of the lightest �

m−∩-fermion above 1 to 10
TeV, depending on the temperature of the phase transition. At such large values of the masses
it can be seen from the figure that there are only minor differences between the two types of
phase transitions. Taking the lower bounds for the S relic density, its mass should lie between
1 and 6 TeV depending on the temperature of the EW phase transition, where the central
value is obtained for :

mKK = 2.4 TeV for T∗
= vSM . (234)

This favoured mass was therefore used for one of the compactification scale samples shown
in the previous Yukawas coupling scenarios.

We saw in this part coherent scenarios for the minimal model of asymptotic Grand Unifi-
cation in SU(5). While the model has appealing features, forbidding the proton decay, propo-
sing a tangible dark matter candidate and having reasonable layout for the Yukawa content, it
lacks phenomenology predictions and natural behaviors for the Yukawa couplings. As discus-
sed briefly before, models embedded in larger group such as SO(10) or flipped SU(5) could be
of interest to solve the inconsistencies and propose a more natural unification of the fermion
fields. However, this minimal model allowed us to illustrate the principle of asymptotic Grand
Unification and to see how it can address problems encounters in standard Grand Unification.
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4 Epidemiology and Renormalisation Group

4.1 Epidemiologic models

Mathematical modeling are of great interest to study the evolution of transmissible di-
seases across human population. Following the historical journey of epidemiology [139] started
with the first model simulation an epidemic evolution proposed by Daniel Bernoulli in 1760
[140] aiming at measuring the increase in life expectancy of the population allowed by the
elimination of a major threat at the time : the smallpox. The discipline took a significant leap
a hundred years later when Pasteur and Koch find out that infectious diseases are caused by
living organisms creating a crucial analogy between epidemics and population evolution [141].
Therefore, inspired by the chemical kinetics models developed earlier [142, 143, 144] and the
law of mass action, the pioneering work of Ross and Hudson [49, 50] gave rise to the first
compartmental models for epidemiology proposed in 1927 [145]. Explaining pandemics was of
prime importance at this time after the outbreak of the Spanish flu pandemic that started in
1918. Compartmental models are consider to be the starting point of the field of epidemiology.
The purpose of this discipline is to understand the spreading of a disease, in order to model,
in a temporal and spatial viewpoint, the scenario of an epidemic event and to prevent a new
episode. In this part, we will first list different examples of the main models used in epide-
miology and the relations between them. Then, in section 4.2, we will introduce the newly
conceived epidemic Renormalisation Group (eRG) and see how this new model improves the
understanding of the data related to the COVID-19 pandemic.

4.1.1 Compartmental models (deterministic approach)

Among the models used in epidemiology, the compartmental ones have become the main
framework in which simulation are made by epidemiologists. Inspired by chemical reactions ki-
netics [146, 147], compartmental models propose to study different type of populations through
differential equations. To illustrate the principle of compartmental models, we focus on the
simplest example : the SI model. In this model, we consider a constant population of N indi-
viduals who can be either Susceptible (S) either Infected (I). Therefore, the total population
fulfill the equation N = S(t)+I(t) for any time t, where S(t) and I(t) correspond respectively
to the total number of susceptible and infected individuals among the total population. The
two sub-populations are also coupled thanks to the following differential equations :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dS
dt

= −γS(t)I(t) ,
dI
dt

= γS(t)I(t) . (235)

where γ is called the infection rate, with a dimension of inverse time and represents how
fast the susceptible individuals can turn into infectious through the influence of ill neighbours.
The conservation of the population is ensured by the fact that the sum of the two differential
equations yields 0. The population conservation rule allows also to rewrite the second line
in equation (235) to make it look like a Wilson-Fischer Renormalisation Group equation as
shown in Equation (99) :

dI
dt

= γI(t) (N − I(t)) . (236)
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We can clearly see two fixed points for I = 0 and I = N , corresponding to the invariant
periods before and after the epidemic episode. The SI model is one of the few epidemiological
models where the solutions are analytical functions. In this case, they are given by :

I(t) = Ne
γt

b + eγt
, S(t) = Nb

b + eγt
, (237)

where b is the integration constant. b can be seen as a time-shifting of the function following
the relation :

Ne
γ(t−t0)

1 + eγ(t−t0) =
Ne

γt

eγt0 + eγt
⇒ b = e

γt0 . (238)

The function for I(t) is called a logistic function and is commonly used in several do-
mains of physics and biophysics as it shows transitional behavior between two scale invariant
domains. The evolution of S(t) and I(t) is shown in the top left plot of Figure 17.

While the SI model is the simplest compartmental one, the most used nowadays by epi-
demiological teams is the SIR model, adding to the SI model a Recovered (R) individuals
compartment. R symbolise individuals who recovered from the disease after being infected but
we can also integrate the ones who died from it. Therefore, the R compartment is also some-
times called Removed. Each sub-population evolution can be expressed now by the following
equations : ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= −γS(t)I(t) ,
dI
dt

= γS(t)I(t) − ǫI(t) ,
dR
dt

= ǫI(t) .
(239)

where ǫ is called the recovery rate and quantify the speed at which infected individuals
recovers (or dies). It represents also the inverse time during which an individual stay infected.

This model allows to see the "wave" of infected by looking at the compartment I(t) di-
rectly, where I(t) represents now the number of "active" infected at the time t. The solutions
for a sample of parameters are shown in the top-right panel of Figure 17.

The SIR yields two different regimes for the number of infected depending on the values
of γ and ǫ. This can be seen by looking at the differential equation for I(t) in equation (239).
Its derivative is positive for :

γS(t)I(t) > ǫI(t) ⇒ γ
ǫ S(t) > 1 . (240)

Equation (240) shows that the maximum of the number of active infected is reached when
S(t) = ǫ

γ
. Moreover, in the beginning of the epidemic episode, we can consider that S(0) ≈ 1.

Therefore, the condition (240) to have an increase of the number of active infected becomes :

σ =
γ
ǫ > 1 , (241)

where σ is also called the basic reproduction number denoted R0. σ can be interpreted as
the average number of susceptible individuals that will be infected by a single infectious one.
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Such definition can be derived by remembering that γ represents the inverse of the average
time before a susceptible person gets infected by an infectious neighbour τγ = γ

−1 and ǫ

represents the inverse of the average time during which an infectious person stays infected
τǫ = ǫ

−1. Thus, the mean number of infected neighbours by one individual during the average
period of infection τǫ is :

R0 =
τǫ
τγ

=
γ
ǫ = σ . (242)

Depending on the value of σ, it is possible to extract two distinct behaviors from the initial
conditions of the model, considering that S(0) ≈ 1 :

➔ For σ < 1 : the pandemic will die out shortly after it started, I(t) shrinking from I(0)
to 0 monotonously.

➔ For σ > 1 : the pandemic rises to a maximum higher than I(0) then goes down to 0

giving to the pandemic a wave pattern through the function I(t).
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Figure 17 – Top panel : SI model (left) and SIR model (right) for the following parameters
γ = 0.2, N = 1, I(0) = 0.01 and ǫ = 0.1 for the SIR model. Bottom panel : Asymptotic values
of the number of susceptibles and the cumulative number of infected in the SIR model for
different values of σ and I(0) = 0.01.

The reproduction number R0 is often used in epidemiology to quantify the efficiency of
the social distancing measures [148]. In order to contain a pandemic, the main goal of models
simulating the effects of measures is to maintain R0 under 1 to decrease the number of newly
infected persons.

Studying now the asymptotic behavior of the model, we can see that there are numerous
differences between the SI and the SIR model. However, it is possible to write the SIR
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equations in (239) in a similar way as for the SI model in (235) by considering another
compartment Ic(t) = I(t) + R(t) which corresponds to the cumulative number of infected
individuals and allows to rewrite the SIR equation to make it look almost like the SI equation.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dS
dt

= −γS(t)I(t) ,
dIc
dt

= γS(t)I(t) . (243)

However, because Ic and I become more and more different as the epidemic evolves, the
asymptotic behavior will differ anyway between SI and SIR. The asymptotic value of I(t)
is always N in the SI model while it is always 0 in the SIR model. On the other hand, the
asymptotic value of the Ic population is not unique and depends on the parameter σ (through
the parameters γ and ǫ) and on I(0) as shown in the bottom plot in Figure 17. It is possible to
compute the dependence of the final value of Ic by noticing that it exist a conserved quantity
G(t) defined as :

G(t) = S(t)eσR(t)
, (244)

such that :

dG
dt

= (dS
dt

+ σ
dR
dt
S(t)) eσR(t)

= (−γ + σǫ)S(t)I(t)eσR(t)
= 0 . (245)

This invariance implies that G is constant and that for any time t, there is a relation
between S(t) and S(0). By considering that the initial number of recovered is R(0) = 0, for
any time t, we have G(t) = G(0) = S(0) and we have :

S(t) = S(0)e−σ(1−I(t)−S(t)) . (246)

Taking a sufficiently large time such that I(t) = 0, we can solve the last equation to express
S (∞), and thus Ic (∞), in terms of I(0) and σ :

Ic (∞) = 1 − S (∞) = 1 +
1
σW [σe−σ (I(0) − 1)] , (247)

where W is the W-Lambert function defined such that :

If y = xe
x , then W (y) = x . (248)

The dependence of the asymptotic value of Ic(t) on σ can be seen in the bottom plot of
Figure 17. As argued before, we can see that the total number of infected starts being quan-
titative when σ > 1 and grows to any values from 0 to N for different choices of σ.

The SIR model can also be extended by allowing for reinfection of the recovered popula-
tion. This would model a disease where immunity exists only for a certain time which is the
case, for example, considering seasonal flu. We will focus on the case of flu in section 4.3.3.
The reinfection can be modeled using the equations :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= −γS(t)I(t) + ζR(t) ,
dI
dt

= γS(t)I(t) − ǫI(t) ,
dR
dt

= ǫI(t) − ζR(t) ,
(249)
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where ζ can be seen as the inverse of the average time of immunity before becoming susceptible
again.

Other more complex models have been investigated, adding for example the compartments
of Deaths (D) associated with a "death rate" different from the recovery rate, Exposed (E)
representing susceptible who have been infected but are not yet infectious, Quarantined (Q)
where an infected get quarantined and cannot infect anymore and many more other compart-
ments [149].

4.1.2 Percolation models (stochastic approach)

Even though compartmental models reproduce the behavior of a pandemic accurately, it
doesn’t give any information on the microscopic scale of the process. This is why models simu-
lating the spread of the infection at the unit level have been investigated. They are the most
direct way, yet more computer time-consuming, to look at a pandemic from the fundamental
scale of individuals. Among them are the lattice simulations, in which individuals are repre-
sented by the lattice nodes of a grid. The sites can be in different states such as susceptible or
infected as we saw for compartmental models. The disease is spread with a certain probability
to the neighbours of infected nodes, following an established set of rules. Introducing proba-
bilities, lattice models, therefore, have to be employed using discretised time steps and any
general result is extracted after taking the average over several simulations to reduce stochastic
effects. As will be seen in the following, even simple models of this type show features such as
criticality and time-scaling symmetries.

A larger class of stochastic processes are the percolation models, which generally speaking
consist of sites scattered in space that can be connected together through links. One can
distinguish two types of percolation models :

➔ Bond percolation models : Points have a fixed space coordinate and the links between
them are created randomly. Lattices simulations in various spatial dimensions and shapes
are the most common example.

➔ Site percolation models : The position of the points is random, while the links between
different points are created based on rules related to their coordinates.

It also exists complex models involving both characteristics, but we will not consider them.
In any percolation model, the probability that two points are connected to each other through
a chain of links is called the pair connectedness and is of prime importance to know how a
system could evolve. Assuming there are infinitely many sites, it is possible to distinguish
whether the structure is made of only local clusters in which finitely many sites are connected
or whether it is in a percolating state where infinitely many sites are connected. Going from
one state to the other usually depends on the value of the probability p that a link exists
between two neighbouring sites. Therefore, the transition from local to percolation state can
be described as a phase transition. Close to the critical value pc, the system lies in the same
universality class of several other models, implying that analog quantities will have the same
characteristic power law behaviour in the different theories. As an example, the probability
P (p) for a system to be in the percolating state takes the form :

limp→pcP (p) ≈ (p − pc)ν , (250)
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where ν is called a critical exponent. Models within the same universality class share the same
critical exponents despite the fact that the concrete details of the theory and in particular the
meaning of the quantity P may be very different. This connection makes clear the similarities
between percolation and other models and explain why many of them have been studied ex-
tensively.

The simplest possibility for a stochastic model is to consider that each site represents only
one individual within a population scattered on a finite two-dimensional squared lattice Γ. The
individuals are generated at the knots of the grid and can be either Susceptible (S), Infected (I)
or Recovered (R). They follow the rules through an algorithm driven by two basic mechanisms
that simulate the evolution of the disease in discretised time steps. The laws represents the
infection by an infectious neighbour and the recovery from the disease. In the following, we
will point out some of the key-features of this model as functions of two parameters :

➔ The infection probability 0 < pγ < 1 for an infectious individual to infect a susceptible
neighbouring site. At each step of time t, if a susceptible site is next to, at least, one
infected knot, a random number is generated between 0 and 1. If this number is smaller
than pγ , the site becomes infected at the next time step t + 1. If this number is higher,
the site remains susceptible.

➔ The recovery probability 0 < pǫ < 1 for an infectious individual to recover from the
disease. At each time step t, if a site is infected, a random number is generated. If this
number is smaller than pǫ, then the site becomes recovered. If not, it remains infected.
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Figure 18 – Top plots : Lattice simulation at different times (t = 0, 50, 100, 150, 200) with a
unique initial infected in the middle of the (100× 100) lattice as initial condition and pγ = 0.3

and pǫ = 0.2. White dots are susceptible individuals, black dots are infected ones and brown
are recovered. Bottom plot : Evolution of the total number of susceptible, infected, recovered
and cumulative infected for each step of time in the simulation.
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We will consider in this simple model that infectious individuals can infect only their closest
neighbours. In Figure 18, we can see the evolution of the quantities generated in the simula-
tion described before considering only one infectious individual in the center of the lattice as
an initial condition. The cumulative number of infected Ic as show in the bottom plot seems
to have a similar behavior as for SIR model. For example, at large times t, the asymptotic
number of infected, which is a function of (pγ , pǫ) can be substantially different [55]. This was
also obtained by varying γ and ǫ in SIR model. However, multiple differences should be taken
into account between stochastic and deterministic models. First, we can see in this simulation
that boundary conditions were imposed. Here the spreading stops when it reaches the borders
and this influences the evolution of the virus. Indeed, if we had considered periodic boundary
condition, the final solution would be different. In a second time, we can argue that taking a
squared lattice has an effect on the evolution of the virus. Triangle or hexagonal lattices would
have given different results due to the different number of neighbours for one knot. Finally, we
have considered here that only the closest neighbours can be infected by a ill knot and that
the infection probability doesn’t depend on the number of infected neighbours. It would be
possible to define a radius in which a site can affect its neighbours and to make the probability
dependent on the number of ill neighbours or their distance. The model presented above was
the simplest one, but not representative of what can be done for lattice models. To have a
more general point of view, one needs to look at clear connections between percolation models
and compartmental model.

To make the connection with compartmental models clearer, we will now study a new
model where sub-populations S, I and R can be stacked at space-time points. We then show
the time evolution of a disease by dividing the individuals that are present at a given lattice
site x ∈ Γ into three classes [150] such that :

➔ Susceptible where nSx is the number of susceptible individuals at x.

➔ Infectious where nIx is the number of infectious individuals at x.

➔ Recovered where nRx is the number of removed individuals at x.

The processes for nearest neighbour x and x′ in the model are :

n
S
x + n

I
x′ → n

I
x + n

I
x′ , Infection rate γ̂ ,

n
I
x → n

R
x , Recovery rate ǫ̂ .

(251)

By considering the process as deterministic and the variables nSx , nIx and nRx as continuous
functions of time, the processes can be expressed with first order differential equations :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dn
S
x

dt
(t) = −γ̂n

S
x(t) ∑

x′∈e

n
I
x′(t) ,

dn
I
x

dt
(t) = −ǫ̂n

I
x(t) + γ̂n

S
x(t) ∑

x′∈e

n
I
x′(t) ,

dn
R
x

dt
(t) = ǫ̂nIx(t) .

(252)
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where the sums extend over the nearest neighbours of site x : e(x). This set of equation implies
that the total quantity of individuals is conserved for any time t such that :

N = ∑
x∈Γ

(nSx(t) + n
I
x(t) + n

R
x (t)) . (253)

It is then natural to define the percentage of representation of each compartment over the
total population using the following definitions :

S(t) = 1

N
∑
x∈Γ

n
S
x(t) , I(t) = 1

N
∑
x∈Γ

n
I
x(t) , R(t) = 1

N
∑
x∈Γ

n
R
x (t) , (254)

such that S(t)+I(t)+R(t) = 1 for any time t. Taking the mean field approximation such that
the sums in Equation (252) can be rewritten in terms of I(t), we finally obtain the equations :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= −γ̂qS(t)I(t) ,
dI
dt

= γ̂qS(t)I(t) − ǫ̂I(t) ,
dR
dt

= ǫ̂I(t) ,
(255)

where q is the number of nearest neighbours. Thus, by redefining γ = γ̂q and ǫ = ǫ̂, we exactly
obtain the equations of the standard SIR model shown in equation (239). Therefore, taking a
deterministic approach and the mean-field approximation is sufficient to go from percolation
models to compartmental models.

We saw here that multiple models can be used represent the outbreak of an epidemic
from a microscopic to a macroscopic point of view or from a deterministic or a stochastic
approach. Each model described above can be related with one another but each one has its
particularities. We will now see a new point of view given through the Renormalisation Group
equations scope.

4.2 Epidemic Renormalisation Group equations

4.2.1 eRG basics

The time dependence of the data for the cumulative number of infected reported cases
shows the same characteristic behaviour for different epidemic and various regions of the
world. Looking at the Hong Kong SARS 2003 outbreak, as well as the COVID-19 pandemic
during the spring of 2020, it has been shown that logistic functions are of prime importance
when studying the cumulative number of infected [53]. The same observation has been done
for the total number of hospitalisation, people admitted in reanimation and number of deaths,
but we will follow mostly the cumulative number of infected in the next parts. As an example,
data for the first wave of COVID-19 in four sample countries from four different continents
are shown in Figure 19.

We can see from the figure that the evolution for the first wave is similar in each country,
no matter what continent they belong to. The cumulative number of infected cases seems
to follow the opposite trend shown in Figure 3 in the case of Wilson-Fischer fixed point.
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Figure 19 – Cumulative number of infected cases of the first wave of COVID-19 for 4 dif-
ferent countries (United Kingdom, South Africa, Brazil and Japan) from 4 different continents,
showing the universality of the evolution of the disease.

The two periods before and after the wave are showing a quasi-constant number of cumula-
tive infected corresponding to what we called a fixed point in QFT as explained in section
2.3.3. This evolution can be easily understood by going back shortly to compartmental models.

Starting from the equation we extracted before in the case of the SI model in Equation
(236), we can redefine NγSI = γ and N = a giving :

dI
dt

= γI(t) (1 − I(t)
a ) . (256)

This equation will be the starting point of the study of an epidemic episode through our
new framework. To show its relation with Renormalisation Group, we can expand this equation
to obtain :

dI
dt

= γI(t) − γ
aI(t)2 . (257)

Comparing this to the general beta function obtained in equation (98) showing non-trivial
fixed points, one can identify the following quantities :

ln ( µµ0 ) ↔ −
t

t0
, A(µ) ↔ I(t) , βA ↔ −

dI
dt

,

b0 ↔ γ , b1 ↔
γ
a .

(258)

These relations allow us to see the connection between epidemiology and QFT via the
Wilson-Fischer or Banks-Zaks fixed points we studied in section 2.3.3. It also gives the oppor-
tunity to link it with the asymptotic Grand Unification through equation (181), showing the
universality of the RGE to describe different processes.
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As we saw in the case of compartmental models, the solution for equation (256) is analytical
and has the form of a logistic function defined by the equation :

I(t) = ae
γt

b + eγt
. (259)

Therefore, the parameter a corresponds to the asymptotic number of infected cases at the
end of the epidemic wave, because any logistic function has the following asymptotic values :

lim
t→−∞

I(t) = 0 , lim
t→+∞

I(t) = a , (260)

corresponding to the zeros of the derivative. The parameter γ, with the dimension of a rate,
measures how fast the number of infections increases, while b corresponds to a time shifting
of the entire curve as was seen in equation (238). We can also notice that the parameters γ
and a can be removed from the differential equation by rescaling the function and the time
variable such that :

β̃ =
df̃
dτ

, τ = γt , f̃ (τ) = f ( τ
γ
)

a , (261)

while a is incorporated by a mere normalisation giving the fixed points 0 and 1, γ can be
thought of as a "time dilation" parameter. Once the normalised solutions are shown in the
local time τ , all epidemic waves reveal the same temporal shape. In order to compare the
different regions, we will, however, keep a and γ for the data analysis.

The logistic function stemming from equation (256) allows to fit the actual data and to
extract γ and a for any country. Looking at the cumulative number of infected for Italy in
Figure 20, where full lines are fits and dots are daily data, we can see that the logistic function
is enough to fit it, but seems to depend strongly on the earlier and later times of the wave.
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Figure 20 – Data for Italy’s first wave for the cumulative number of infected (left plot) and
daily number of new infected (right plot) and logistic function fit for different range of data
(lightest blue for t from 1 to 60, then darker fits for 80, 100 and 120.

In the figure, the fits for different range are shown where the lightest curve is performed for
t from 1 to 60, then the darker curves goes to 80, 100 and 120. The fits parameters obtained
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for the first wave in Italy for the different range of fits are :

a =

⎛⎜⎜⎜⎜⎜⎜⎝
129663

179960

213769

225753

⎞⎟⎟⎟⎟⎟⎟⎠ , γ =

⎛⎜⎜⎜⎜⎜⎜⎝
0.184

0.133

0.105

0.095

⎞⎟⎟⎟⎟⎟⎟⎠ . (262)

a and γ depend strongly on the range of the data studied. This is caused by an interplay
between the parameters a and γ, as shown in [151]. However, it seems from the left plot of
Figure 20 that the last fit is better at reproducing the data. Moreover, we can see from the
same figure that the derivative of the logistic function is symmetrical with respect to the peak
timing, while it is not the case for the data. Pushing the end of the fit further make the logistic
function fit away from the peak, losing some accuracy on the parameter γ but gaining in the
parameter a accuracy. The asymmetry observed in the data can be due to the fact that the
situation within a country evolve thanks to social distancing measures or change in behavior.
This possibility has been analysed by taking into account possible effects of social distancing
measures, such as lockdown, on the data and will be seen in section 4.2.2.

We saw already that the features shown by the data could be studied thanks to an equation
similar to Renormalisation Group equation. Therefore, in order to relate the spread of a disease
to the Wilsonian RG approach, in the same way we related the QFT parameters to the
hydrodynamic evolution of bacteria in a pipe in equation (78), a dictionary was developed
linking the parameters from both models :

➔ The time variable is associated to the negative logarithm of the energy scale µ, with
reference time t0 and reference scale µ0, such that we have :

t

t0
↔ −ln ( µµ0 ) . (263)

For simplicity, we will consider t0 = 1 in the following. For such identification, the dif-
ferential equation presented in (256) is similar to the gauge coupling RGE in a theory
with an interactive fixed point in the IR [72] such as BZ fixed points, as seen in section
2.3.3.

➔ The quantity studied in epidemiology, mostly the cumulative number of infected Ic, can
be associated to a coupling constant in the RGE. The epidemic coupling strength is
defined as a monotonic, derivable and bijective function φ of the epidemic quantity such
that :

α(t) ↔ φ(Ic(t)) . (264)

We will mostly consider the case φ(x) = x throughout the thesis but in [53, 56, 58, 59],
we considered it as being the natural logarithm φ(x) = ln(x). The logarithm definition
will be explicitly shown by the mention (log) next to the fit parameters a in the following
tables. The different choices of φ are justified by a more or less better fit to the actual
data of the COVID-19 pandemic.
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➔ The beta function, that is function of the coupling strength, is defined as the time-
derivative of the epidemic coupling strength :

β ≡
dα

dln ( µ

µ0
) = −

dα
dt

↔ −
dφ (Ic)

dt
= −

dφ
dIc

dIc(t)
dt

. (265)

Since φ is a monotonic function, fixed points of the β-function correspond to zeroes of
the derivative of Ic, denoted I

∗

c and α
∗
= φ(I∗c ) is the epidemic coupling at the fixed

point. Any fixed point can be characterised through the scaling exponents :

θ =
dβ
dα

»»»»»»»α∗

, (266)

which are negative for a UV-repulsive fixed point and positive for an UV-attractive one.

Thanks to this dictionary the features of epidemiology have clear relations with Renor-
malisation Group equation in QFT and will allow us to study the spread of epidemics in the
scope of RG through the epidemic Renormaisation Group (eRG).

4.2.2 Correlation with mobility data

In order to look for any correlation between social distancing measures and effects on the
epidemic evolution, we used open-source mobility data from Google and Apple accessible on
the following websites : google.com/covid19/mobility/ and covid19.apple.com/mobility as ex-
plained in [58]. The sets show different data collected in a different way. Google data shows
movement trends by region, across different categories of places including working places, re-
sidential locations, grocery shops, parks ... The data represents how time spent in categorised
places by visitors changed using geotracking from the Google maps application. It shows the
evolution of mobility as compared to a reference period defined as the median value of the
five weeks interval from the 3rd of January to the 6th of February 2020, predating the spread
of the virus in Europe and in the US. As categories, we will only use the “Residential” and
“Workplaces” percentage changes, that best describe the change in people’s behaviour after
the implementation of social distancing measures. On the other hand, Apple data represents
a relative volume of direction requests on the Apple maps application per country, region,
sub-region or city, as compared to a baseline volume defined on the 13th of January 2020.
We will only use, from Apple, information about “Driving” and “Walking” percentage change,
because "Transit" data is not accessible for all regions. We assume that the two categories
represent the time spent by people away from home. For the US states, only “Driving” data is
available, so we will not use the "Walking" category for them.

We decided to focus our analysis on several European countries and on all the US states,
in order to have comparable data. Looking at the raw mobility shown in Figure 21 for the
extremes cases of mobility change for Europe (Spain and Sweden) and in the US (New York
state and Wyoming), we can see directly that the regions had a drop in workplace, driving and
walking percentages and a rise in the residential percentage just after the first wave started
growing exponentially. This can be related to social distancing measures taken at the region
level such as the lockdowns imposed for example in Spain or in New York, but also to changes
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Figure 21 – Raw Google and Apple mobility data during the first wave of COVID-19 in
2020 for Europe (left) and the US (right). The time scale is shifted so that the beginning of
the social distancing measures, defined by a 20% drop in Google’s Workplace indicator shown
by the first vertical grey line, coincides for the two sampled countries or states. The other two
vertical lines mark the end of the 6 and 8 week averaging periods respectively. The Highest
Mobility regions are shown in orange and the Lowest Mobility one in blue : for Europe, Sweden
(orange) and Spain (blue) ; for the US, Wyoming (orange) and New York (blue).

in population self-behavior, even if no measures were taken. This is the case for Sweden and
Wyoming where a similar change is visible even if no lockdowns were imposed.

Google mobility data shows also the week periodicity caused by weekends. This is ea-
sily explained by the fact that before any social distancing measures were taken, people were
staying more at home and going less to work during the weekend, reducing the percentage
of modification during the COVID-19 first wave as compared to the reference period. In the
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same way, Apple shows periodicity for the data before the social distancing measures. This is
due to the fact that the reference day was taken on a Monday, showing strong differences with
weekend days after social distancing measures have been taken. To avoid such artifacts, we
decided to study the mobility reduction by averaging it on several weeks. Another particularity
is that the mobility data rises (or decreases for the residential data) shortly after it dropped.
Unfortunately, the increase is much slower than the reduction making impossible to define an
clear ending date to the measures.

For all the other countries and states studied, a similar drop (or rise for the residential
percentage) is observed. This drop can be used to define a starting date for the social distan-
cing effects that we considered more accurate than governmental social measures imposition
dates for two reasons. First, as said before, some countries didn’t impose any measures, so
this drop is the only way to define a beginning to mobility changes. Secondly, some countries
imposed social distancing measures but gave several days before applying them completely to
let people coming back to their family home or to decide where to spend the lockdown. So,
days when measures had an effect are more easily accessible using mobility data. In order to
have a universal and trustful reference for the starting point, we decided to specify that this
timing was reached whenever the working places data dropped for the first time below -20%.
As can be seen from Figure 21, at this specific reference time, all the other mobility data have
a similar change comforting us in the relevance of this choice. While defining a starting point
of the social distancing measures is easy, defining an ending point is much more difficult. From
Figure 21, we can see that, after reaching a minimum, the mobility data is rising slowly and
really differently for the various counties and states of the study.

To improve our confidence in the mobility data relevance, we decided to compare the
different sets of mobility data. In order to get rid of the week periodicity and as it is almost
impossible to define a social distancing measures period because the ending point is not well
defined, we decided to average the mobility data over 6 and 8 weeks after the beginning of
the measures. The two choices are defined to be of the order of the official lockdown duration
imposed in Europe and in the US and to show the stability over the arbitrary choice of the
averaging period. Comparisons between the different mobility indicators are shown in Figure
22. In these "tadpoles" plots, the head of the tadpole represents the averaged mobility value
over 6 weeks after the beginning of social distancing measures, while the tail of the tadpole
represents the averaged value over 8 weeks. Looking at the first row of plots, we can clearly see
that within the same dataset (from Google or Apple), the indicators we choose are strongly
correlated for both Europe and the US. This tendency is still visible for the second and third
rows showing correlation between Google and Apple mobility categories. Moreover, we can
clearly see that the US states mobility averaging distribution is more compact than for Europe
showing a more universal response to the pandemic in America than in Europe. Finally, these
plots show that even if datasets are obtained from different methods, they are in agreement
and this strengthen our confidence in the coherence of the mobility categories we choose.

To compare the mobility of different regions, it will be useful to combine the different data
into a single value that will allow us to classify the states and countries. Such value is called
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Figure 22 – Tadpole plots showing correlations between the four mobility reduction cate-
gories : Residential and Workplace from Google, Driving and Walking from Apple (Walking is
not available for the US). The head of the tadpoles corresponds to the averaged value over 6
weeks after the social distancing measures begins, while the tail indicates the 8 week average.
The colour code in the tadpole plots reflects the immobility indicator range defined in Figure
23

the "immobility indicator" (noted /M) and is defined by :

/M (region) = ∑
j∈ cat.

∣pj (region)∣
max [∣pj∣] , (267)

where the sum is over the category of mobility data : "Workingplaces", "Residential", "Wal-
king" (only for Europe) and "Driving". ∣pj (region)∣ is the absolute value of the average
percentage variation in each category labelled by j. For each mobility type, we divide by the
maximal value observed in the pool of regions. Note that for European countries we have four
categories, so that 0 < /M < 4, while for the US states we have 3 categories, so that 0 < /M < 3.
We use this indicator to rank the European countries and the American states from the ones
with high mobility (HM) (i.e small /M) to the one with low mobility (LM) (i.e large /M). The
values of the immobility indicator we obtain for the European countries under study and US
states are shown in Figure 23. The colour code ranges from the highest mobility region in
bright red to the lowest one in cyan, with gradient proportional to the value of the immobility
indicator and was also used for Figure 22.
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Figure 23 – Top panel : The two maps represent respectively the European and US states
with different shades of mobility from the highest (HM) in bright red to the lowest (LM)
in cyan. Bottom panel : Immobility indicator for the European countries and the US states.
Values of /M are shown for Europe on the top and the US at the bottom. The colour code
corresponds to the ranking of each European country and each US state.

Now that we are able to define and classify the different mobility in the regions, one can
wonder if it is possible to see any correlation between the mobility reduction intensity and the
parameters of the logistic functions used to fit the epidemiological data. This could show if
the strength of the measures has an impact on the spread of the virus. To this end, we fit the
data for the cumulative number of infected cases for the countries studied for the first wave
from the website "OurWorldInData" accessible here : https://ourworldindata.org/coronavirus .
Then, we compare the fit parameter γ of the logistic function with the mobility data, giving
the "race-cars" plots in Figure 24.

Unfortunately, we can see that no clear correlation exists between mobility data and the
parameters γ. This may have multiple explanations. First, we can expect that mobility data
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Figure 24 – Infection rate compared to the mobility data. Race-car plots showing the
fitted infection rates γ versus the Google and Apple mobility categories. The vertical segment
indicates the difference between 6 weeks (dot) and 8 weeks averages while the horizontal bars
indicate the fit error on γ.

only represents a small part of the total change in behavior adopted to curb the evolution of
the virus. For example, it does not take into account mask wearing, cultural and shopping
places closures, hand-washing habits, measures against big gatherings... while these variations
may have influence the virus evolution [152, 153]. Secondly, γ represents an integrated infection
rate over the whole wave period. It may not represent clearly the effects of social distancing
measures as these effects could be hidden within the fitting period. In order to test the last
possibility, we will study the hypothesis of a variation of the infection rate after the social
distancing measures were imposed.

In this part, we suppose that the social distancing measures had an effect on the evolution
of the pandemic, but only on the parameter γ. For simplicity, we consider that the Social
Distancing (SD) measures are taken at the time t0 = 0. Supposing that the effects due to SD
are delayed, we represent this delay by arguing that the change in the infection rate happens
at a specific time ∆t after the measures are taken. Therefore, the wave can be split into three
different time periods represented in Figure 25. Period A represents the period before SD
measures are taken, period B corresponds to the period after SD measures are taken but
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before they start to have an effect on the evolution of the epidemic and finally C is the period
after the effects are fully acting on the infection rate.
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Figure 25 – Evolution of α2γ function in comparison with the standard logistic function.
Region A is taking place before any social distancing measures are imposed, region B corres-
ponds to the period between the beginning of SD measures and when they start having an
effect on the infection rate and finally region C corresponds to the period after the effects are
fully considered.

The assumption of a change in γ can be achieved by supposing different equations for the
epidemic strength α for the region A + B and for the region C such that :

dα
dt

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
γBα(t) (1 − α(t)

a
) for t < ∆t ,

γCα(t) (1 − α(t)
a

) for t > ∆t ,

(268)

where γB represents the infection rate in the period A + B, before social distancing measures
effects and γC in the period C after the effects are taken into account. A differential equation
valid on different domains is common as what was seen in the Renormalisation Group in the
case of supersymmetry in equation (130) or for the asymptotic Grand Unification in equation
(175). Therefore, one can interpret this equation as involving a phase transition between a
time period without any SD effects and one where they are fully considered and for which the
coupling γ changes. As shown in equation (259), each part of the differential equation has an
analytical solution which happens to be a logistic function. By connecting the two solutions
such that the reconstructed function is continuous, we obtain the following solution :

α2γ(t) = { a e
γBt

b+eγBt
for t < ∆t ,

a e
γCt

be(γC−γB )∆t
+eγCt

for t > ∆t .
(269)

α2γ is defined to be a continuous function, but cannot be derived at the time t = ∆t. More
complex models could investigate a smoother variation, by introducing a transitional function
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driving γB to γC smoothly during period B. However, the choice of the transitional function
would be arbitrary and introduce more parameters. On the other hand, α2γ is defined by five
parameters (a, γB, γC , b and ∆t), so two more than a standard logistic function. As γB and
γC should differ, we define the percentage of variation in the infection rate ∆γ as :

∆γ =
γC − γB
γB

. (270)

Before using the function α2γ on real data, it needs to be tried on a Monte Carlo (MC)
simulation to show its effectiveness. MC data are randomly generated around an average value
following the function α2γ within one standard deviation [Ni −

√
Ni, Ni +

√
Ni], where Ni is

the cumulative number of cases per day as predicted by the generating function. We generated
500 independent sets of mock data, where one is shown in Figure 26. Then, fitting the MC
data using a simple logistic function, we find it is not enough to extract the parameters used
to generate the data as can be seen in Table 8. We see that the parameters a and b are
underestimated and that the fitted γ seems to be an average of the values for γB and γC . On
the other hand, a fit realised with the function α2γ seems to recreate accurately the generation
parameters. It can be shown that the accuracy depends on the value of a due to the increased
uncertainties in the generation of the data. For a = 100, we can determine the value of ∆t

within a range of one week and ∆γ with an accurate precision below 2%. Moreover, generating
data where γB = γC , equivalent to a simple logistic function generation, the function α2γ fails
to predict ∆t and ∆γ by fitting random values as can be seen in Appendix C.1. Therefore,
if the fits on real data show values narrowly distributed around a certain average, this would
show that the data may certainly behave as in a 2-γ scenario. Having acquired confidence in
the method, we now apply it to the real data.

α2 γ fit
Logistic fit

0 50 100 150 200
0

20

40

60

80

100

t

α(t)

Figure 26 – Sample of the Monte-Carlo generation (black dots) and the associated fits for
a logistic function (orange) and for the function α2γ (blue). The vertical gray line represents
the time t = ∆t.

In order to extract ∆t in a straightforward way, we decided to fit only the data starting
at the day defined to be the starting of social distancing measures (i.e. when "workingplaces"
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generated α2γ fit logistic fit
a 100 100.0(4) 98.4(3)
γB 0.1 0.100(2) ø
γC 0.05 0.050(2) ø
γ ø ø 0.077(1)
b 100 100(7) 41(2)
∆t 50 50(1) ø
∆γ -0.5 −0.50(2) ø

Table 8 – Parameters obtained for the MC data fits using a logistic function and the function
α2γ defined in equation (269). Data generation parameters are shown in the second column.

data is first reduced by 20%). The results for the pool of countries and US states are shown
in Figure 27.

As can be seen from the top histograms, most regions display a similar ∆t. By fitting the
distributions to a Gaussian function, we find that to the two sigma level we have ∆t = 2.7±1.7

weeks for Europe and ∆t = 3.3±1.6 weeks for the US. The high compatibility of the two ranges
shows the emergence of a universal time scale before social distancing measures start being
effective on the data. Another important result is the general and strong reduction of the
infection rate measured within and after ∆t both for Europe and the US, as shown in Figure
27. As expected, ∆γ is negative, following a reduction in γ caused by the social distancing
measures. Here also, reductions are concentrated mostly between −20% and −40% for Euro-
pean countries and between −20% and −70% for the US states. These results comfort the idea
that social distancing measures had an effect on the evolution of the pandemic, however, the
comparison between the averaging mobility data and the infection rates still doesn’t show any
correlation as can be seen in Appendix C.2. Then, the 2− γ description was useful to extract
a typical time delay for SD measures to have an effect and to show that there is a significant
reduction in the infection rate, but is not enough to show any effect related to the strength of
the mobility reductions.

Now that we saw that the simplest eRG equation can be used to explain the evolution of
the pandemics, we will try to embed in it other epidemiological features such as the interaction
between different countries.

4.2.3 Interacting eRG

While we have only considered yet the evolution of the disease for isolated regions, the
interactions between them allow to understand the spreading scenario or the timing of the
waves. For any country other than the one in which the first infection appeared, the emergence
of the COVID-19 was caused by an interaction with an infected country through travelling
passengers. In order to take into account this interaction, we consider an eRG equation for
each region considered and add interaction term between them. Associating the evolution for
each country thanks to the subscript i, the interaction eRG equation can be written :

dIi
dt

= γiIi(t) (1 − Ii(t)
ai

) +∑
j

kij

Ni
(Ij(t)
Ii(t) − 1) , (271)
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Figure 27 – SD effects delay ∆t (top) and percentage variation in the infection rate ∆γ

(bottom) for the European countries (left) and US states considered (right). Colors follows
the ones used through the immobility indicator in the maps in Figure 23.

where Ni is the population in region i and the terms kij are the number of travelers from region
j to region i per time unit. The matrix kij is considered symmetric here such that there are as
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Figure 28 – SD effects delay ∆t (top) and percentage variation in the infection rate ∆γ

(bottom for the European countries (left) and US states considered (right) in the form of
histograms, for Europe and the US separately, highlighting that ∆t clusters around similar
values.

much travellers from j to i than there are from i to j, in order to impose the invariance of the
population within each region. The interaction term shows that if the situation is identical in
two different regions, then the term would vanish, seeing them as a unique isolated country. In
any other case, the most infected region will inevitably inject more infectious individual in the
less infected region. This model has been studied in details in [154] showing the importance of
border controls before any infection happens within the country, while border controls become
inefficient once the country is sufficiently infected. In this situation, only social distancing
measures can efficiently curb the disease propagation. One of the important property of the
interactive eRG equation is that the values of the kij matrix control mainly the timing of the
beginning of the wave but doesn’t change much the following curve that can still be fitted
with a logistic function. This is due to the fact that once the exponential phase of the wave
has started the second term in equation (271) becomes negligible.

As a first step to check the validity of this model to represent real data, we try to use it to
simulate the spread of the first wave of COVID-19 in the United States [59]. The US are consi-
dered to be sufficiently large to show delayed evolution of the epidemics across its states and
sufficiently homogeneous in the way data is collected. We also decided to split the 50 states of
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the US into the 9 census divisions which are : New-England (NE), Mid-Atlantic (MA), South
Atlantic (SA), East South Central (ESC), West South Central (WSC), East North Central
(ENC), West North Central (WNC), Mountains (M) and Pacific (P). The division locations
are shown in the top-left panel of Figure 29 and their state composition is shown in table 16
in the Appendix C.3. The choice to study the spread at the census divisions scale is motivated
by the fact that states have very different demographic distribution. A state-by-state mathe-
matical modeling, therefore, is challenged by statistical artifacts.

Looking at the situation in the whole US in the top-right panel of Figure 29, we can see
different waves whose peaks happen in the beginning of April, in the middle of July and in
the period from November to January.
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Figure 29 – Top-left panel : Location of each census division considered. Number of new
infected cases per day in the whole United States (top-right panel) and in each division (bottom
panels).

The two first bumps cannot be considered as two separate waves because they didn’t hap-
pen in the same locations. Indeed, as can be seen in the bottom panels of Figure 29, the wave
in April was mostly located in the New England and South Atlantic divisions which are located
next to each other in the North-East part of the country. SA contains the city of New York
that was the main place affected by the pandemic at the beginning of March. The virus came
in the US mainly in New York where flights connections with abroad destinations are very
important. Moreover, the states in the NE division are very well connected to the city of New
York, as it as at the limit between the divisions. Some people are also living in NE states but
working in NY, allowing the virus to spread easily there. We can also see a small bump in ENC
and WNC divisions around the same time that were maybe related to Chicago infections, but
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as they didn’t involved as many cases as in NE and MA, we didn’t consider them as a first wave.

Then, we can see that another peak happens in the middle of July and that for this wave,
while nothing can be seen for the two divisions previously cited (MA and NE), it is well visible
in SA, ESC, WSC, M and P. Those divisions compose the south and the west part of the
country that are holidays destinations during summer. The scenario suspected there is that
the virus came in New York, infected the city, then spread across the country thanks to the
holiday travelling.

In order to corroborate this scenario, we first try to find what values of kij are needed to
reproduce the first wave if the pandemic was due only to the interaction between the Mid-
Atlantic division and any other division (i.e. kij ≠ 0 only if i = 2 is the Mid-Atlantic division).
In order to do that, we start by fitting the first wave happening in each division with a logistic
function to extract their parameters a and γ as shown in Table 9. Then, replacing them in
equation (271) and solving it for each division j by taking as a seed region the MA data and
just changing the value of k2j , the most accurate values defined by using a χ2 method are listed
in the first row of Table 10. The kij values represent, here, the number of travellers per week
in million. We can clearly see that the values for SA, ESC, WSC, ENC, WNC, M and P are
between 5×10

−4 and 5.3×10
−3, in agreement with the values obtained for a similar simulation

for Europe in [56]. Therefore, the number of travellers from MA to other divisions reproduced
with this method is between 500 and 5300 per week, which is a reasonable estimate. Moreover,
one can see that the k value between New England and Mid-Atlantic is 0.72, corresponding to
720, 000 travellers per week so a 100 times larger than the ones for the other divisions. This
is in agreement with what we argued before about the strong link between states from NE
next to New York city where workers lives while working in NY. Similarly, we can see that the
second strongest coupling is with the Pacific division containing California states with which
New York has strong flight connections. However, the presence of a small peak of infections
for ENC and WNC, around March is problematic. This feature cannot originate from the MA
division, as that would imply a k-value of order 10, which is clearly unrealistic. We therefore
decided to fit the value with the second bump of the division data.

While this scenario is interesting, it does not reproduce well the reality as it doesn’t take
into account the couplings between other divisions than MA. Now that we gained confidence
in the fact that the kij matrix can be generated with a reasonable number of travellers, we will
investigate the possibility to derive it with mobility data. We saw that the second bump of the
first wave was happening in southern and western divisions, that are also holidays locations.
Because of the long distance involved to reach it from NE and MA divisions, we expect that
travels are made essentially by planes. Therefore, we decided to use open access flight data to
quantify the matrix kij . The data is available on the website opensky-network.org and gives the
number of flights between the different states of the US on a daily basis. It is straightforward
to deduce the number of flights between the census divisions, by just summing over the states
composing them. However, this data doesn’t give the actual number of passengers. Therefore,
we will use an average number of person per flights n to compute the kij matrix.

With the help of data, we can reduce the 81 parameters required to fill the kij matrix to a
single one : n. To have a realistic matrix for kij , we first take the mean number of flights from
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Division First wave parameters (fitted) Second wave parameters
a (log) γ a γ

NE 9.397(7) 0.416(7) 11.006 0.214

MA 9.496(7) 0.516(9) 10.882 0.206

SA 9.691(5) 0.370(3) 10.885 0.185

ESC 9.63(2) 0.331(6) 11.201 0.207

WSC 9.720(6) 0.340(3) 10.713 0.213

ENC 8.88(3) 0.300(8) 11.074 0.250

WNC 8.66(2) 0.342(6) 11.060 0.263

M 9.478(9) 0.330(4) 11.089 0.213

P 9.33(1) 0.291(5) 11.535 0.171

Table 9 – Logistic parameters used for the simulations. The left column shows the para-
meters obtained through fitting the first wave while the right column features the parameters
determined in December 2020 for the second wave.

division i to division j during the period from April 1st to May 31st for the first wave. Then,
we multiply the number of flights by n, and normalise it by 10

6 to have it in millions following
the definition of kij . We again use the value ai and γi already derived by fitting the data
with a simple logistic function. Then, we consider the number of cases at the end of March as
initial conditions for the seed region MA and 0 for the others. Then, solving the interactive
eRG equations using these initial conditions, the values of ai, γi and varying the number n
involved in the data-derived matrix elements kij , we check which value of n gives the most
accurate scenario. We also decided to keep the value of kij = 0.72 for the coupling between NE
and MA as there the travels are mostly done by car and cannot be reproduced using flight data.

For the first wave, the optimal average number of passengers is found to be n = 10. Note
that this value do not correspond to the real number of passengers in the flights. In fact, the
values of the couplings kij also take into account the probability of the passengers to carry the
infection as compared to the average in the division of origin. When the value is low it might
suggest that the sample of passengers in a flight is less infectious than average, as people with
symptoms tend not to travel. Controls at airports may also contribute to this reduction by
refusing infected persons. The key information we extract from the flight data is the relative
flux of travellers among different divisions. The values kij obtained for this choice of n are
shown in the middle section of Table 10. We can clearly see that the couplings are, again, of
the order 10

−4
− 10

−3 and the solutions of the eRG equations are shown in Figure 30 where
dots represent the data and lines show the solutions of the interactive eRG equations.

We can see that, except for the closest divisions SA, ESC, ENC and WNC, the behaviors
are well reproduced giving confidence in the possibilities offered by the interactive eRG. The
difference for ENC and WNC can be related to the fact that the wave was already there before
as discussed previously. For SA and ESC, it could be caused by car travels from the east coast
to the south of the country that are not represented by the flight data. On the other hand,
it is astonishing to see that the divisions far from MA divisions (WSC, M and P) are well
reproduced as the mobility interactions are mostly due to flights for them.
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kij values (first wave fits)
Division NE MA SA ESC WSC ENC WNC M P
MA 0.72 0 0.0014 0.00075 0.0017 0.0023 0.0005 0.002 0.0053

First wave kij values (Flight data, from April 1
st

to May 31
st
)

Division NE MA SA ESC WSC ENC WNC M P
NE 0 0.72 0.0045 0.00088 0.00087 0.0024 0.00052 0.00067 0.00091

MA 0.72 0 0.019 0.0056 0.0041 0.012 0.0025 0.0031 0.0059

SA 0.0043 0.018 0 0.0085 0.013 0.019 0.0057 0.0050 0.0067

ESC 0.00092 0.0053 0.0093 0 0.0051 0.0068 0.0023 0.0035 0.0065

WSC 0.00095 0.0038 0.014 0.0055 0 0.0092 0.0054 0.011 0.010

ENC 0.0025 0.012 0.018 0.0063 0.0086 0 0.0082 0.0079 0.0099

WNC 0.00038 0.0022 0.0056 0.0019 0.0046 0.0070 0 0.0055 0.0027

M 0.00050 0.0020 0.0042 0.0026 0.011 0.0072 0.0043 0 0.028

P 0.00084 0.0055 0.0063 0.0050 0.010 0.0092 0.0033 0.030 0

Second wave kij values (Flight data, from September 1
st

to October 31
st
)

Division NE MA SA ESC WSC ENC WNC M P
Reg-X 0.0066 0.028 0.029 0.013 0.019 0.027 0.014 0.03 0.03

NE 0 0.72 0.0028 0.00046 0.00031 0.0015 0.00026 0.00041 0.00082

MA 0.72 0. 0.011 0.002 0.0017 0.0064 0.0013 0.0021 0.0029

SA 0.0026 0.011 0 0.005 0.005 0.0096 0.003 0.0033 0.0035

ESC 0.00041 0.0019 0.0051 0 0.0019 0.0028 0.00087 0.0012 0.0015

WSC 0.00028 0.0015 0.0049 0.0018 0 0.0028 0.0016 0.004 0.0034

ENC 0.0014 0.0062 0.0089 0.0028 0.003 0 0.0039 0.0043 0.0045

WNC 0.00024 0.0013 0.0028 0.0009 0.0017 0.0038 0 0.0028 0.0016

M 0.00032 0.0017 0.0029 0.0011 0.0054 0.004 0.0026 0 0.014

P 0.00074 0.0028 0.0032 0.0014 0.0046 0.0041 0.0018 0.015 0

Table 10 – Values of the kij entries among the US divisions. Top section : Values between
Mid-Atlantic (MA) and the other divisions obtained from fits of the first wave timing. Central
and bottom sections : Complete matrix obtained using flight data (except the entries between
MA and NE) for the first wave (from April 1st to May 31st 2020) and the second (from
September 1st to October 31st 2020), respectively.

We then tried to apply the same method for the second wave which happened in the begin-
ning of October 2020 in the US. For that wave, the fit parameters weren’t accessible when the
study was realised in December 2020 as the wave wasn’t over, thus we couldn’t have the correct
parameters a and γ from a fit. Therefore, we tried different possibilities for the parameters to
predict the evolution of that wave before taking the best values as listed in the right column
of Table 9. We also decided to take as a seed region an average sum of all the divisions with
a wave peak occurring in the July-August period (i.e. SA, ESC, NSC, ENC, WNC, M and P)
normalised by the total population within these divisions that we call Region-X. Finally, we
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Figure 30 – Simulation of the spread of the first wave (left plots) and the second wave (right
plots) using flight-data-derived kappa matrix as gathered in Table 10. For the first wave, the
MA division is used as a seed region, while for the second wave a combination of the first
waves among divisions acts as the seed region (Region-X)

used the data of the average number of flights per day from September 1st to October 31st

and choose n = 5 giving the values of the kij matrix in the table at the bottom of Table 10.

Again, we can see that the values are of the order 10
−4

− 10
−3. The data was later actualised

as of the date of the 28th of February 2021 (while we recall that the study was realised in the
middle of December 2020) at the time when the peak of the waves already happened. The
updated data is shown in the right plots of Figure 30. We can see that the parameters predic-
ted before were accurate for almost all the divisions, with a problem for the Pacific division.
Once again, the interactive eRG shows its accuracy at forecasting the evolution of future waves.

One other point is that the waves for the period between October 2020 and February 2021
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seem to appear almost at the same time in opposition to what we saw for the first wave. This
observation can be explained by looking at the geographical distribution of the pandemic.
Such distribution can be studied by looking at an indicator of the uniformity of the epidemic
using the new cases incidence for each division. This indicator can be followed week by week
via a χ2-like variable defined by the following expression :

χ
2(t) = 1

9

9

∑
i=1

( I
′

i(t)⟨I ′(t)⟩ − 1)2 , (272)

where I ′i(t) is the number of new cases per day averaged within 7 days around the time t
in division i and ⟨I ′(t)⟩ is the mean value of the same quantity over the 9 divisions. The

parameter χ2 quantifies the geographical diffusion of the SARS-CoV-2 virus in the US : the
smaller its value, the more uniform the pandemic is spread across the whole country. The
evolution of the indicator is shown in Figure 31. Due to statistical uncertainties, the value of
the indicator between the wave doesn’t mean much. We will thus focus on the value it takes
during the waves represented by the grey bands. We can see that during the first peak in April
(light gray shade), the value of χ2 is large, signalling that the epidemic diffusion is localised in
few divisions, which is in agreement with the localisation of the first wave mainly in New York.
During the second peak of the first wave (gray shade), the value has dropped, signalling that
the epidemic has been spreading to all divisions. Finally, the data for the second wave (dark
gray shade) shows that χ2 has shrink towards zero, as expected for a more diffuse incidence
of infections.
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Figure 31 – Evolution of the uniformity indicator χ2 over time on a daily basis averaged
over 7 days around. The shaded bands indicate the period when epidemic peaks are recorded.

The study of the χ2 shows that the epidemic is now well spread within the whole country
and may explain why peaks appear at similar time for the different divisions for the second
and third waves. A similar study of the geographical uniformity indicator has been realised
for several other countries showing the same behavior as shown in [57]. Then, we have seen
that the interactive-eRG model is good enough to reproduce the spreading scenario within
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the United States using flight data and could also be extended using boat, train or car transit
data to make the study more precise.

The interactive-eRG equation has been also used to predict the second-wave of COVID-
19 that happened in September 2020 in Europe as is shown in [56]. Different scenarios were
investigated by playing with the couplings (i.e. the kij matrix elements) for the countries
considered in the study, but also for an abroad infected region called "region-X" from where
the infected cases during the summer were coming, starting the second wave. Simulations of
an infection coming from region-X to all the countries have been investigated, but also for an
infection from region-X to only some countries in Europe, infecting in a second step the rest
of Europe. This last scenario is represented in Figure 32 where in this scenario, France was
taken as the intermediate seed country.

Figure 32 – Illustration of the connections kij between Region-X, France and the other
countries considered in this study. Each line represents an exchange of infected cases. The line
pointing outside the map represents the connection to Region-X, modeling an inflow from a
source outside the pool of countries in the simulation.

As we didn’t use the mobility data for this study, random value generations for kij were
needed. Consequently, we propose first a scenario where the Region-X, denoted by the subscript
0, is represented by the number of cases of the rest of the world. Then, Region-X and the
countries considered in the study are connected using random generations for the k matrix in
the range 10−3 < kij < 10

−2 (scenario a). We also propose another scenario where the couplings
k0j , between Region-X and the others countries, are reduced by a factor 10 (scenario b) and
by a factor 100 (scenario c), while the other couplings don’t change. At the time the study was
held, there was no sign of a second wave in most European countries. Therefore, we decide to
use, for the eRG equations simulating a coming wave, the same parameters a and γ obtained
by fitting the first wave. As argued before, the timing of the wave generated by the interactive
eRG equation depends strongly on the values of the k matrix and therefore the timing of the
peak as well. Solving the equations for 100 generations of the k matrix and averaging the
timing of the next peak over the simulations, we obtain the following values in Figure 33 for
the timing versus the infection rate of the countries considered.

The results from the three scenarios show fairly small error bars related to the uncer-
tainty on our knowledge of the kij couplings. Recalling that we vary the couplings within a
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Figure 33 – Peak timing, in calendar weeks, versus the infection rate γ for scenario a, b

and c. These results were obtained by averaging the outcome over 100 simulation of the kij
values, while the error bars indicate one standard deviation.

factor of 10, it is impressive to see that values of the matrix doesn’t change much the peak
timing. However, the peak position also depends crucially on the value of the infection rates.
Comparing the results in each set of simulations, we discover a clear correlation between the
timing of the peak and the infection rate γ of each country. The higher is the infection rate
the sooner the peak is reached, as expected. The timing spans over 20 weeks between all the
countries. Furthermore, comparing the results for the three scenarios, we see that reducing the
couplings with Region-X systematically delay the peaks, in accordance with previous results
for the US. Quantitatively, a reduction of a factor ten in the coupling to Region-X delays the
peaks by about three weeks. Following the possible interpretations of Region-X, a reduction of
the couplings to this region can be seen as the effect of travel bans. Overall, the peak timing
ranges from end of July 2020 to beginning 2021. As an additional result, no clear correlation
between the peak timing and the value of ai across the countries we studied was observed.

The three scenarios studied are simple, therefore, they do not reproduce the situation as
was observed as of the date of the 5th of August 2020. In reality, multiple countries were
already showing signs of a second wave at this time as can be seen from Figure 34 for Croatia.

Such countries will be called "seed countries" and are Belgium, Bosnia, Croatia, Czech
Republic, Greece, Netherlands, Serbia, Slovakia, Slovenia and Spain, as can be seen from
Figure 62 in Appendix C.4. There, the second wave was already well installed. The ki0 and
other parameters ai and γi for each of these country were tuned in order to fit the available
data from the second wave. As an example, for Croatia we fixed k0i = 0.1 and rescaled the first
wave parameters γi and ai respectively by the factors 0.6 and 1.06, to obtain the result shown
in 34. This implies that Croatia had a high number of travellers during summer, as indicated
by the large value of the coupling ki0 with Region-X. Many countries, after reaching the peak
of the first wave, featured also a period with a linear growth of the infected cases. This phase
is called endemic period and is common in epidemiology when having multiple waves. To
better fit the second wave data by including this period, we added the following term to the
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Figure 34 – Total number infected cases for Croatia updated to the 5th of August with
respect to the theoretical curve (orange line) used to calibrate the simulation for the countries
having signs of a second wave at the time. The vertical line shows where the second wave
simulation begins.

solution at the time when the first wave reached the plateau :

δI (t > t0) = θi (t − t0) , (273)

where θi is the constant number of new cases per time unit during the endemic period and is
equal to 0 for Croatia. t0 represents the time at which the plateau starts. This term will be
discussed in section 4.2.4, as the linear growth can be understood more deeply using complex
fixed points. We have repeated the same tuning for the other countries cited before and the
values fitted are listed in Appendix C.4. As in the scenario a-c, we decided to take the same
parameters ai and γi fitted for the first wave in the other countries considered, allowing them
to vary within 10%. The parameters are listed in Table 17 in Appendix C.4 as well. Once
the parameters are defined, we finally couple the seed countries to the rest of the European
countries by taking kij = 0.5 × 10

−3 for all i, j ≠ 0, allowing them to vary within 10% and
k0j = 0 for the non-seed countries. We will call this more realistic scenario "e" in agreement
with notation in [56].

The results showing the evolution for France, Italy and the UK in this scenario are pre-
sented in Figure 35 while solutions for others countries are shown in Figure 63 in Appendix
C.4.

The results show different trends among the countries. For example, the first wave happe-
ned first in Italy, then in France, while for the second wave, our predictions shows the inverse.
Moreover, because we took the same γi and ai than during the first wave for each non-seed
country, we already suspected at that time that the height of the second wave would not be
the same. As social distancing measures and testing campaigns would be very different from
the unprepared period at the beginning of 2020, both parameters would have different values
than the first wave. As argued before, the most important information extracted from the
interactive-eRG is the timing of the next wave, which was well anticipated. Looking at the
updated data as of the date of 30th of August 2020 in Figure 36, we see that the beginning of
the second wave was well anticipated, but not the long term behavior.
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Figure 35 – Solutions of the interactive-eRG for scenario e for France, Italy and the UK.
We show the time evolution of the total number of infected cases in the top panel and the
new infected in the bottom panel. The bands are generated by varying the infection rates γi
within 10%.
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Figure 36 – Epidemiological data (red), adjourned to the 30th of August 2020, for six sample
countries compared to the simulation. For all countries, except Croatia, the second wave from
case e simulation is anticipated by 4 weeks, thus in agreement with the results of case a. The
bands are generated by varying the infection rates γi within 10%.

We can see directly from these results that France second wave seems to appear 1 week
earlier than what was expected earlier in the predicted scenario while it happens 1 week later
for Finland. In any case, the simulations seem to reproduce the starting of the second wave
data with a good timing.

Therefore, we saw that adding the interactive term to the eRG equation allows us to
simulate scenarios of infections at a country but also at a continent level. Nevertheless, multiple
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waves and endemic periods cannot yet be described using the interactive eRG equations. We
will need to add new features to the eRG formalism in order to describe them

4.2.4 Complex fixed points in epidemiolgy

Now that the behavior of a single wave has been modeled in the eRG formalism, we can
push further to see what happens when having multiple waves. First, we saw in most countries
that between two waves, there is a period called "endemic", where the number of new cases
remains constant, giving a linear evolution for the cumulative number of cases. This behavior
can be explained by modeling it with the additional term in equation (273). While this term
was introduced to simplify the modeling for the second wave in Europe, it was found in [57]
that it can also be generated by introducing complex fixed points, as discussed in section 2.3.3,
within the eRG using the following equation :

dα
dt

=γiα(t) ((1 − I(t)
a )2 + δ)p0

=γα(t) ((1 − α(t)
a − i

√
δ) (1 − α(t)

a + i
√
δ))p0 , (274)

where δ > 0 is the parameter controlling the endemic period intensity and p0 is the power
acting on the steepness of the wave whose value is p0 = 1/2 in the case of the simplest eRG
seen before. We see directly from the second line of equation (274) that two fixed points are
generated and both are complex. These fixed points are conjugate of each other and are defined
by :

α
∗

± = a (1 ± i
√
δ) . (275)

We will often refer to the endemic period by calling it strolling phase as it can be related
to walking dynamics. Complex fixed points are the cause of the strolling period when the
number of new cases remains constant. Due to the fact that the number of infected cases has
to be real, if the complex fixed point is UV-attractive, the coupling will run to the real part
of the fixed point. Taking equation (274) for the real part of the fixed points a, we obtain :

dα
dt

(Re (α∗

±)) = γaδp0 . (276)

We see that this value is positive, therefore it creates new cases even if we are close to a
fixed point. As α will never reach any complex fixed point, it will go through them to reach
the next fixed point, or infinity if there are no other fixed point. This generate the strolling
phase followed by a new wave, which is exactly what happens in epidemic scenarios of multiple
waves seen in the data. Such scenario is shown in Figure 37 for a unique couple of complex
fixed points described by the equation (274). In top panel, the function −∣β(α)∣ is shown as
function of the real and imaginary parts of α, where a trajectory from the initial condition
is shown in red. In the bottom panels, the solutions α(t) and α

′(t) are plotted for different
values of δ. We can see that fixed points give a period of linear evolution for the solutions.

In order to be free from the dependence on the parameters γ and a that we already studied
before and focus in more details on the impact of the parameters δ and p0, we redefine equation
(274) using the normalisation explained in equation (261) to obtain :

− βCeRG (α) = 1
aγ

dα(t)
dt

=
α
a [(1 − α

a )2 + δ0]p0 . (277)
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Figure 37 – Top panel : −∣β(α)∣ function of Re(α) and Im(α) showing the initial fixed
point (blue), the two complex fixed points (black) and the trajectory of a fully real solution.
Bottom panel : Evolution of solutions and their derivative for α(t) = I(t) and a = 1, γ = 0.1,
p0 = 0.65 and different values of δ : 0 (blue), 0.05 (yellow), 0.1 (green) and 0.18 (red).

Such equation is called a CeRG β-function for "Complex epidemic Renormalisation Group".
In this redefinition, the number of new cases during the strolling phase is given only by δ

p0 .
For now, it has only three fixed points : 0 and the two complex fixed points. Therefore, after
going through the complex fixed points, the solutions will be driven to infinity. To avoid this,
one can add other fixed points (complex or not) to the equation to account for multiple waves.
Redefining the CeRG equation to integrate more fixed points, we have :

− βMultiwave (α) = I
a [(1 − I

a)2 + δ0]p0 w

∏
k=1

[(1 − ζk
I
a)2 + δk]pk , (278)

where w + 1 is the number of waves and each intermediate wave (i.e for any k smaller than
w) presents also a parameter δk > 0 which creates a strolling phase between each wave and
δw = 0 such that the wth wave is the last one to happen. ζk is the factor between the real part
of the k-th wave fixed point and of the first wave fixed point. Therefore, the consecutive fixed
points are defined by :

α
∗

k,± =
a

ζk
(1 ± i

√
δk) . (279)
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In order to sort the waves by their temporal appearances and to ensure that the next fixed
point is higher than the previous one, we should have 0 < ζk+1 < ζk < 1 for any k.
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Figure 38 – Top-left plot : Dependence of the solutions on ζ1. Top-right plot : Dependence
on δ0. Bottom-left plot : Dependence on p0. Bottom-right plot : Dependence on p1. If nothing
is specified, the parameters used are : γ = 0.1, a = 1, I0 = 0.001, ζ = 0.5, δ = 0.001 and
p0 = p1 = 0.5.

The effects of the parameters ζ1, δ0, p0 and p1 on the solutions are shown in Figure 38 for
the specific case of only two waves. We can see, first, that changing ζ1 (top-left panel) changes
the height of the second wave peak, in agreement with equation (279). We can also see that
it changes slightly the timing of the second peak and the height of the first wave. Secondly,
changing δ0 (top-right panel) changes the constant number of cases during the strolling phase
as expected. The higher δ0 is, the higher the constant number of cases becomes. Moreover,
we can see that δ0 has also an impact on the timing of the next wave, delaying it when going
to smaller values. This effect will be of prime importance to understand why controlling the
endemic phase allows to control the timing of the next wave. Finally, we can see that changing
p0 or p1 (bottom panels) have very different consequences. It doesn’t change the total number
of cases nor the constant number of new cases during the strolling phases, but while p0 seems
to drive the timing of the next wave, p1 affects the height of the next wave. One can see that
all the parameters have an impact on the timing of the peak of the next wave, but not with
the same intensity. Moreover, while ζ1 and p1 seems to flatten the curve, δ0 and p0 delay the
beginning of the exponential growth.

We want now to see how multiple waves can appear when looking at the derivative of the
solutions. In the case of two waves, fixing the parameters p1 = 1/2 and ζ1 = 0.5, the maximas
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of the solutions are given by :

α
±

max = 1 ±

√
p0 − δ0
1 + p0

, α
0
max = 1 . (280)

The values of the maximas as functions of δ0 are shown in the left plot of Figure 39 where
p0 = 1/2. It clearly shows that, because of the square root function in equation (280), there
are two different regimes depending on the value of δ0. Below the critical value δ0 = p0, there
are three different solutions, while above, only the solution α

0
max = 1 survives as can be seen

in the right plot of Figure 39 showing the β-function for two sample values of δ0 below and
above the critical value. Therefore, no intermediate wave is observed for a too high value of
δ0, because the strolling phase becomes more important than the real part of the intermediate
fixed point. Similar phase transition are observed for any other set of values p0, p1 and ζ1.
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Figure 39 – Left panel : Maximas of the solutions versus δ0. Right plot : β-function for two
different sample values of δ0 below and above the critical value. Plots obtained for p0 = p1 =

ζ1 = 1/2.
We are now interested to know the time difference between the peaks of each wave in

order to know how to control it. The delay ∆tpeaks can be obtained thanks to the following
equation :

∆tpeaks = ∫ α
+

max

α−
max

dx
−βmultiwave (x) . (281)

In order to see the dependence of the delay on the strolling phase parameters, one other
interesting quantity to calculate is the constant number of new cases during the strolling phase
St. This can be obtained by approximating the beta-function to the real part of the complex
fixed point. We then have the relation for a two-wave description :

St ≡
dα
dt ∣strolling

= −βmultiwave (1) = δp0 (1 − ζ1)p1 . (282)

Plotting now the time delay between the two peaks as a function of St as shown in Figure
40, we can see that the strolling number St is crucial in order to delay the next wave. In a
CeRG scenario, it is needed to lower St as much as possible to prepare for the next epidemic
episode. Delaying a peak can be an effective way to increase the time allocated for a vaccination
campaign for example. It is therefore of prime importance to control the strolling period.
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Figure 40 – Dependence of the time delay between the two peaks of new infections ∆tpeak,
as a function of the strolling number St for different values of p0, where p0 = 0.5 (blue),
p0 = 0.55 (green) and p0 = 0.6 (red). The CeRG parameters are fixed to the following values :
p1 = 0.65, ζ1 = 0.5.

The CeRG model was put to use on real data in [57] aiming at forecasting the situation for
several countries around the world in Fall 2020. As can be seen for the case of Japan in Figure
41 where α(t) = I(t) corresponding to the cumulative number of cases, the CeRG-equation
has been solved for the two waves happening between June and December 2020. This solution
was obtained thanks to the parameters a = 63150, γ = 0.103, δ0 = 4.9× 10

−2
, p0 = 0.7, p1 = 0.6

and ζ1 = 0.4.

Figure 41 – Evolution of the cumulative and number of new infected cases in Japan (red
dots) as of the end of November 2020 and CeRG solution for parameters a = 63150, γ =

0.103, δ0 = 4.9 × 10
−2
, p0 = 0.7, p1 = 0.6 and ζ1 = 0.4 (blue curves).
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This study has been held for multiple other countries for which some are shown in Appendix
C.5. However, updating the data as of the beginning of may 2021, it seems that the forecasting
were not as accurate as expected. This can be seen in the top panel of Figure 42 for Japan.
We can see that the number of cases has been underestimated because of an unexpected
additional peak happening in the middle of January 2021. This may be caused by change in
social distancing measures in Japan or to new year eve celebrations.
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Figure 42 – Updated evolution of the number of new cases (red dots) in Japan (top panel)
and in the UK (bottom panel) as of the date of 12th of May 2021 and their CeRG solutions
(blue curves).

Another interesting case of a deviation from our forecasting needs to be discussed. Indeed,
United Kingdom had a really interesting behavior from the end of 2021. We can see in the
bottom panel of Figure 42 that until the end of November 2020, our forecasting was in agree-
ment with the data, but in the beginning of December, a new unexpected wave appeared being
higher and steeper than the previous ones. As we will see later in section 4.3.2, the December’s
wave was caused by a new variant of the virus, the B.1.1.7 or Alpha variant, that was driving
most of the European waves in the beginning of 2021. This ruled out our predictions computed
only for one species of the virus. Therefore, in order to explain the latest waves, we will need
to embed the variant description in our equations.

The other factor that was not considered at that time is the vaccination effect. Indeed, by
the end of November 2020, some vaccine started to be distributed across the world, changing
the number of cases consequently. In order to take into account these effects, we will study
how it affects the data in section 4.3.1.
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4.3 Vaccination, mutations and other disease

4.3.1 Vaccination

The emergence of the COVID-19 pandemics and the fear to live periodical episodes of
infection for a long time has driven the motivation to prepare an effective vaccine and fast
vaccination campaigns [155]. The 9th of November 2020, Pfizer announced that their vaccine
was 90% effective [156]. This was followed by the announcement of the other vaccines along
the month [157] launching the race to buy and administrate vaccines as soon as possible. The
first person vaccinated was a 90-year old woman in the United Kingdom the 8th of December
2020. Then, the United States started their vaccination the 20th of December 2020. Anticipa-
ting the effects of a vaccination campaign is important to avoid new waves before a sufficient
proportion of the population is immune to the COVID-19.

In order to have a rough idea of the effects of a vaccination campaign on the population,
we will explore first the introduction of the vaccine through lattice simulation. This lattice
simulation was ruled by the same laws explained in section 4.1.2 including susceptible, infected
and recovered knots to which we add a new compartment called vaccinated (V ). Susceptible
individuals can turn into vaccinated and remains in this category until the end, like for recovery
states. The vaccination campaign can be implemented in different ways, but we decided to
look at the effect of a vaccination on a certain percentage of the initial population on the
evolution of the pandemic. This is done by putting randomly a defined percentage Rv of the
total population in the vaccinated compartment as initial condition on a 100×100 grid. Then,
we let the simulation runs with the same rules as before and try to fit the evolution of the
cumulative number of infected with a simple logistic function. Some of the fits for different
values of Rv are shown in the top panel of Figure 43. Then comparing the fits parameters
values versus the Rv taken for the simulation, we obtain the plots in the bottom panels of
Figure 43.

These results show that for Rv < 24%, a and γ are reduced linearly with Rv. Fitting the
data with a linear function gives the following parameters as shown by the red lines in bottom
panels of Figure 43 with respect to the percentage Rv :

a (Rv) = 9592 − 10600Rv ≈ 10000 (1 −Rv) ,
γ (Rv) = 0.07921 − 0.092Rv ≈ 0.08 (1 −Rv) . (283)

Therefore, we find that a(Rv) and γ(Rv) are obtained by reducing their values as compared
to the one they have without vaccination a0 = a(0) and γ0 = γ(0) by a factor Rv such that :

a(Rv) = a0 (1 −Rv) , γ(Rv) = γ0 (1 −Rv) . (284)

On the other hand, b doesn’t seem to be strongly affected by the percentage of vaccinated
nodes on this span of Rv. For Rv > 24%, we observe that the fits cannot be realised because the
infectious wave will not be able to affect an important number of nodes as can be seen in the
plots in Figure 44 showing the lattice simulation for different times and as can be compared
to the non-vaccine simulation shown previously in Figure 18. One can think that the value
24% represents the required vaccination percentage of the population needed to forbid any
future wave within a country to happen. However, this limit is obtained because the epidemic
spread is stuck within a structure of static vaccinated person. In reality, individuals should
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Figure 43 – Top panel : Cumulative number of infected nodes for some of the simulations
(dots) and their logistic function fits (plain lines). Bottom panel : a, γ and b fit parameters
versus the initial percentage of vaccinated nodes Rv on a 100× 100 grid. Plain lines shows the
linear fits over the data obtained. The lattice parameters are pγ = 0.6 and pǫ = 0.4.

move allowing the disease to spread by jumping over the vaccinated nodes. If this limit exists,
it should be well above the one found here.

Figure 44 – Lattice simulation for Rv = 39% at different times of the simulation. White
dots are susceptible nodes, green are infected, brown are recovered and black are vaccinated.

The results obtained in the lattice simulation can be used to allow the parameters γ and a
to evolve in the eRG equations along with the vaccination campaign. Assuming now that the
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vaccination process is time-dependent and that Rv(t) is a function of t, we can describe an
infinitesimal process of vaccination. Let’s compute the variation in γ for an infinitesimal time
delay dt. Thanks to the vaccination, γ will evolve according to an equation depending on the
percentage of vaccination realised during the time interval that is equal to dRv

dt
dt. Therefore,

thanks to the lattice study, we have :

γ(t + dt) = γ(t) + dγ(t) = γ(tv) (1 − dRv
dt

dt) ,

⇒
dγ(t)

dt
= −γ(tv)dRv(t)

dt
.

(285)

where γ(tv) is the infection rate before the start of the vaccination campaign. Assuming for
simplicity that the population is vaccinated linearly in a time interval ∆t starting from the date
tv until the percentage reaches Rmaxv , we define the "vaccination rate" as being the parameter
c = R

max
v /∆t. The solution for the time-dependent effective infection rate is then :

γ(t) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ(tv) for t < tv ,
γ(tv) (1 − c(t − tv)) for tv < t < tv +∆t ,

γ(tv) (1 −Rv) for tv +∆t < t .

(286)

To find the variation for a(t) within the vaccination interval tv to tv + ∆t, we assume
that the not-yet-infected individuals are vaccinated at the same rate c as the total population,
including the ones that have been already infected. Indeed, the evolution of the parameter in
the lattice simulation suppose that the initial population is either susceptible either vaccinated,
therefore through an eRG equation a(0) in equation (284) should be thought as the total
population minus the cumulative number of infected. Thus, at any given time, the variation in
the number of individuals that will be exposed to the infection is proportional to the difference
ã(t) = a(t) − I(t). This leads to the following differential equation in the general case :

ã(t + dt) = a(t) + da(t) − I(t) − dI(t) = (a(t) − I(t)) (1 − dRv(t)
dt

dt) ,

⇒
da(t)

dt
= − (a(t) − I(t)) dRv(t)

dt
.

(287)

Therefore, in the case of a linear vaccination, we have :

da(t)
dt

= −c (a(t) − I(t)) . (288)

Unlike for γ, this equation depends on I(t) and thus needs to be solved in a coupled system
with the eRG one. Note that without vaccination, this derivative is zero, so outside of the time
interval [tv, tv +∆t], a is constant just like γ.

We then make use of this new set of coupled equations to see the effects of a vaccination
campaign in the scope of the United States vaccination campaign [59]. We have solved the
eRG equations for the second wave in the US divisions as what was done in section 4.2.3, with
the addition of the reduction of ai and γi, as detailed in equations (285) and (288). We show
the result for two sample divisions in Figure 45 for different weekly vaccination rates c (dashed
curves) as compared to the same solutions without vaccines (solid curves).
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Figure 45 – Evolution of the number of infections without vaccination (c = 0) and with
a vaccination rate of 0.64%/week, 1%/week and 2%/week starting on December 14th and
stopping at 20% of the population vaccinated. We show the results for two sample divisions :
South Atlantic and West North Central.

We can see from the figure that any vaccination rate c creates an important flattening of
the epidemic curve for South Atlantic, where the vaccination started earlier than the peak of
the infection wave. In the other extreme case, represented by WNC, the vaccine is ineffective
at changing the current wave because the peak has already been reached before the vaccination
campaign started.

The assumption of a constant vaccination rate does not agree, in fact, with the data on
the vaccination in the US given by the New York Times website https://www.nytimes.com.
One needs to distinguish in the data two kinds of scenarios for the vaccination. Some vaccines,
as Astra-Zeneca and Pfizer, need two doses in order to be fully efficient, we can study the
possibility that at least one dose is efficient to lead to an immunisation, that we call partial
vaccination, or the possibility that only the persons with two doses, or one dose for the "one-
injection" vaccines, such as the Johnson and Johnson’s one, are fully immune. Such possibility
is called full vaccination. These two cases are shown in Figure 46 where darker points are
associated with partial vaccination and lighter dots with full vaccination. These two scenarios
give uncertainty bands on the real situation, as one injection can lead to partial immunisation.

We can see in the data that the vaccination rate is not constant but instead can be more
or less represented by a linear function. Then, we consider the case in which the vaccination
rate c(t) is time-dependent and described by the function :

c(t) = u(t − tv) , (289)

where tv is, again, the time at which the vaccination campaign started and u is the vaccina-
tion rate slope in days−2. Such evolution would, indeed, lead to a percentage of vaccinated
individuals that is quadratic with time, such that :

Rv(t) = u

2
(t − tv)2 . (290)

This equation allows us to estimate a rough value of u such that, if we have a percentage
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Figure 46 – Number of new vaccinations per million inhabitants in each division. The darker
curves represents the number of new partially vaccinated persons and the lighter curve shows
the new fully vaccinated ones.

of vaccinated person within a division at the actual date t1 > tv of Rmax
v = Rv(t1), we can

consider that :

u =
2R

max
v(t1 − tv)2 , (291)

allowing us to evaluate the slope of the vaccination rate by just using the updated percentage
of vaccinated person. Once u is found, we can apply it to the time-dependent parameters in
the simulation such that :

dγ(t)
dt

= −u(t − tv)γ(tv) , (292)

da(t)
dt

= −u(t − tv) (a(t) − I(t)) . (293)

Using these equations and the vaccination values for the US divisions listed in Table 11 as
of the date of 24th of march 2021 and redoing the simulation for the second wave, as the one
realised in Figure 30, gives the behavior shown in Figure 47. The full vaccination scenario is
considered to start four weeks after the partial vaccination as the standard duration between
the two doses.

These simulations show that the vaccination campaigns have no strong effect on the wave
happening in the beginning of 2021, even more if they started after the peak. On the contrary,
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R
max
v Slope u

Division Code Partial Full Partial Full
New England NE 30.1 16.4 0.00450 0.00641

Mid-Atlantic MA 27.8 14.1 0.00415 0.00554

South Atlantic SA 24.3 13.5 0.00363 0.00530

East South Central ESC 23.1 12.6 0.00345 0.00492

West South Central WSC 23.0 11.9 0.00344 0.00467

East North Central ENC 25.6 14.7 0.00382 0.00575

West North Central WNC 26.3 14.9 0.00393 0.00584

Mountain M 25.7 14.8 0.00386 0.00579

Pacific P 26.6 14.0 0.00397 0.00548

Table 11 – Percentage of the population vaccinated with at least one dose and with two
doses in each US division as of the date of 24th of march 2021.
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Figure 47 – Simulation of the second wave with a quadratic vaccination campaign based
on the data listed in Table 11.

to maximise the effect of the vaccination campaign, one needs to start it between two waves.
This could also reduce the chances of infection in vaccination places, because less persons can
be infected within these periods. In any case, the next wave following the campaign will be
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strongly reduced by the campaign.

Another interesting features to look when using the eRG formalism are the vaccination
strategies. Different policies have been investigated before starting the campaigns [158] and
adopted later. The strategies were concerning the vaccination prioritisation of an age group
or job categories within the population. The main decisions were aiming at vaccinating first
the most vulnerable categories as was done in most European countries, to vaccination of
workers and exposed individuals as was achieved in the US [159]. Due to the availability of the
data, we will mostly focus on the method adopted relative to the age of the target population.
Without any assumption on the vaccination, looking at the age categories brings interesting
observations. Let’s first look at the case of Italy in the top panels of Figure 48.
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Figure 48 – Left panels : Number of new infections per 100, 000 people within the age
categories in Italy (top) and Denmark (bottom). Right panels : Weighted percentage of new
infected cases per age group stacked on top of each others in Italy and Denmark.

Are shown in the figure the number of new infected cases per 100, 000 persons within the
age group and the weighted percentage for six different age groups that are under 15, 15/24,
25/49, 50/64, 65/79 and above 80 years as can be open accessed on the website ecdc.europa.eu .
The age groups are made comparable thanks to the normalisation by the population within
each group. Therefore, we can directly see from the top-left plot that the number of cases for
the 80+ group was really important during the first wave. This is also observed in a more
subtle way in the bottom-left panel for Denmark and can have multiple explanations. Italy
had a very important number of cases in March 2020 within retirement houses in the north of
the country. Therefore an important number of tests has been realised in these places that may
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show a more accurate number of the number of infected cases for the 80+ than within the rest
of the population, increasing the representation from this age group in the data. Moreover,
when looking at the second wave in November 2020 in Italy, we can see that the height of the
wave of the 80+ is of the same order of the one for 15/24, 25/49 and 50/64 indicating that the
tests were more widely performed and that there are no clear age group being more infected
than the others in this wave.

Finally, looking at the last wave in March 2021, it seems that the number of new infec-
tions for 80+ seems to be small in comparison to the other categories. This, again, could have
multiple explanations. As we will see later, the last wave in Italy was mostly caused by a new
variant of the virus first identified in UK. Effects on younger people has been a controversial
issue [160], but it was suggested that they were more affected by variants. The most accurate
explanation, however, is that this is the effect of the vaccination campaign. As a comparison,
looking at the situation in Denmark in the bottom panels of Figure 48, we see that a wave
occur in March-April 2021, but not for 65/79 nor 80+, suggesting that the vaccination cam-
paign was effective enough to contain the wave for these age groups.

Indeed, when comparing the vaccination percentage in Italy and Denmark in Figure 49 as
given on the website ecdc.europa.eu , we see that Denmark was faster at vaccinating individuals.
This allowed the last wave to be fully contained for the elder groups. Similar results have been
obtained for other European countries and could be used to study through the eRG formalism
the effects of different strategies on the behavior of the next waves expected.

This kind of study could also be achieved for countries where the vaccination campaigns
were faster such as United Kingdom or Israel, as the effects on the epidemiological data could be
easier to see. Moreover, one can study the campaign in other countries with different strategies
like in the United States to see if the effects are the same. However, the vaccination is not
completely a salvation for the World as the virus mutates rapidly creating more resistant copies
that can delay the end of the crisis by being more resistant to the vaccine. We will investigate
this property in the next part.

4.3.2 Mutations

The SARS-CoV-2 virus is part of the Coronaviruses family that are known to mutate fre-
quently. Mutations are due to random modifications in the RNA nucleotide chain of the virus
when it replicates within a cell. These modifications can change the proteins encoded by the
RNA and therefore can change the behavior of the virus. Most of the time, the mutations
change nothing or create a weaker version of the virus that will disappear as it is disfavored
by natural selection. However, it can also create more efficient mutations that can represent
a threat for the future. For example, mutations has led to the opening of the spike protein
of the virus, that is responsible for the interaction between a human cell and the virus [161].
This opening allowed faster spreading within the human cells and thus higher infection rates
of the virus or different sensibilities to tests and vaccines. Therefore, any mutation can delay
the end of the global pandemics further [162] even if the vaccination for previous variants is
achieved worldwide.

As saw in the bottom panel of Figure 42 for the case of UK, variants of the original virus
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Figure 49 – Percentage of the population within each age groups vaccinated with one dose
(left) or two doses (right) for Italy (top) and Denmark (bottom).

also lead to changes in the epidemic behavior. The mutations that persist and become domi-
nants over the others are either called Variants of Interest (VoI) (also called Variants Under
Investigation (VUI)) if they don’t show yet any change in infectiousness or Variant of Concern
(VoC) if studies have shown that their transmission is stronger than previous variants. Se-
veral of them have been identified by the month of June 2021, among which, there are the
variant B.1.1.7 also called Alpha, first described in England and whose infectiousness has been
evaluated to be 50 to 70 % more than preexisting ones [163], the variant B.1.351 or Beta,
first observed in South Africa, which seems to be resistant to some versions of the vaccine
[164, 165], the variant P.1 or Gamma, first sequenced in Japan but originating from Brazil,
the variant B.1.429 and B.1.427 or Epsilon, first discovered in California, the variant B.1.617
or Delta originating from India and other variants that will not be discussed in details here.

Variants are a really crucial aspect of the pandemics as they can drive a faster spread of
the disease and curb the effects of social distancing that are adapted only to the preexisting
variant. In a more dangerous way, it can also resist to vaccines [166] and therefore postpone the
end of the crisis to the next campaign of vaccination. However, while data on the positiveness
of tests to all kind of variant of the virus are open-sources, details on the evolution of a
specific variant across the population are not easily accessible. This is due to the fact that
to have the information on a variant, a sequencing of the nucleotide chain has to be done,
which is longer and more expensive than a test. Therefore, there are less data on sequencing
than on testing and that will give problems of statistics for some countries when studying the
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evolution of the variants. Fortunately, data on the sequencing are accessible on the GISAID
website gisaid.org/ . As the number of sequencings is smaller than the number of tests, it is not
possible to have access to the type of variant for each test. Instead, we decided to use a naive
derivation of the actual number of variant-associated tests over the total number of tests. In
order to do this, we need first to calculate the ratio of representation of the variant of concern
among the total sequences pVoC(t) realised at any date t. pVoC(t) is defined by the number of
sequences associated to the variant N

Seq

VoC(t) divided by the total number of sequences N
Seq

All (t)
such that :

pVoC(t) = N
Seq

VoC(t)
N

Seq

All (t) . (294)

Once we have access to the time-dependant percentage, we assume that the ratio of variant
among all the tests is the same as the ratio among all the sequencing and then consider that
the actual number of new cases associated to the variant I ′VoC(t) is defined by :

I
′

VoC(t) = I ′(t) × pVoC(t) . (295)

This naive definition gives an accurate result only if the number of sequences is comparable
with the number of tests. This is why we will first concentrate our study on the case of the
United Kingdom where the number of sequencing available on GISAID is the highest in the
world by June 2021. The results for the analysis are shown in Figure 50.

In the top-left panel, we show in gray dashed the number of sequences realised per day
in UK averaged over seven days around together with the sequences associated to the variant
B.1.1.7 in orange and the variant B.1.617 in brown. We can see that before September 2020,
the number of sequencing was below 1000 per day, while after it oscillates between 1000 and
3000 sequences per day which is more acceptable. Because of the statistical uncertainties, we
show the percentage of the variant from September together with its errors bands. In the top
right panel, the percentage of representation of the B.1.1.7 variant using equation (294) is
shown in orange with errors bars defined by :

∆pVoC(t) = 1/√NSeq

All (t) . (296)

Looking at the evolution of the percentage, it presents a transitional evolution and be-
comes dominant in December 2020. Due to the shape of the curve, we decided to fit it with a
logistic function. The fit is shown in the same panel as a orange plain line and has the following
parameters a = 0.97, γ = 0.076. This transitional behavior using logistic function is typical
of a natural selection process. The variant B.1.1.7 being more infectious than its partners, it
dominates more and more the infections and therefore becomes the main reproducing sequence
as the time goes. This behavior will allow us to create a hierarchy of dominance between the
variants thanks to their interactions with one another. Another feature to point out is the fact
that by the end of April 2021, the percentage decreases. This is due to the appearance of the
variant B.1.617 (Delta) within the country that seems to take over the B.1.1.7 (Alpha). The
number of sequences associated to this variant is also shown in the top-left panel. Fitting the
percentage associated to this new variant, we obtain a = 1.00, g− > 0.113. The fact that the
parameter γ associated to the Delta variant is higher than the one for the alpha seems to show
that its spreading would be faster than any previous variant. This is in agreement with biolo-
gical results that tend to indicate that the Delta variant is 60% more infectious than the Alpha.
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Figure 50 – Evolution of the number of the variants B.1.1.7 (Alpha) and B.1.617 (Delta)
cases in the United Kingdom. Top-left panel : Number of sequences realised per day average
over seven days. Top-right panel : Percentage of the VoC over the total sequences using equa-
tion (294). Bottom-left panel : Number of cases per day using the equation (295). Bottom-right
panel : Number of new cases (dots) in the United Kingdom and fits (lines) associated with
each wave. Gray dashed curves are showing the values for all the variants integrated, yellow
curves are for the B.1.1.7 variant, brown curves for the B.1.617 variant and green curves for
all variants except B.1.1.7.

The bottom-left panel shows the number of new cases for all variants in dashed gray, for
the B.1.1.7 variant as defined with the naive method in equation (295) in orange, for the
B.1.617 variant in brown and for the rest of the variants in green. The last curve is obtained
by subtracting to the data on all the cases, the data for the variants of concern. Looking at
the number of new cases per day derived with our naive method, we can clearly see that the
peak occurring from the end of December 2020 to February 2021 and that was totally missed
in the CeRG analysis shown in Figure 42, is mostly caused by the B.1.1.7 variant and that
the others variants are shrinking in the same period. Moreover, the orange curve seems to be
really smooth and add more confidence in the naive method we used to derive it. Looking at
the green curve now, we can see that the wave has a strange behavior. It created the wave
in October-November 2020, but also a second bump in December-January. Therefore, B.1.1.7
cannot be fully taken as responsible for the second bump. One explanation to this is that UK
imposed a lockdown from October to November 2020 and measures were lifted mid-November
before being reset in the beginning of December 2020. This could be related also to the celebra-
tions of the end of the year, reuniting families and spreading the virus. The strange behavior of
the green curve can thus be explained by a change in social distancing that may have restarted
the infections of preexisting variants. Another possibility is that the second bump may have
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been caused by a single variant that is integrated out over the others variants and may have
his own wave in December 2020. Another interesting point to discuss is the situation by the
date at which the thesis is written in June 2021. One can see that the number of new cases is
rising again suggesting a new coming wave, mostly caused by the Delta variant. If this is true,
it would mean that the vaccination campaign in the UK will not be efficient enough to curb
a new episode. Studying the evolution of variants through the eRG is therefore crucial for the
future of the crisis.

It is possible to fit each wave easily with a logistic function to compare the parameters
obtained. The comparison between the fits (plain lines) and the data (dots) can be seen in the
bottom-right panel of Figure 50 for the number of new cases, while the fit parameters for the
three waves are listed in Table 12.

Wave Fit parameters
Number VoC a γ

1 Others 2137(12) 0.0668(5)
2 Others 1153(15) 0.097(2)
3 B.1.1.7 2534(10) 0.0993(7)

Table 12 – Parameters of the three logistic function fits of the number of new cases for the
variant B.1.1.7 and the other variants.

These results show directly that the UK variant has an higher infection rate than the other
variants. It is even possible to compare their percentage of difference, such that comparing the
first wave of other variant and the Alpha variant wave, we have :

∆γVoC =
γVoC − γOthers-1

γOthers-1
= 0.488 . (297)

This 49% of difference can be compared to the 50% − 70% obtained in biological studies
[163].

Similar interesting results have been realised for South Africa, Brazil, California state and
India and are shown in Figure 51. It can be seen from it that the different waves can be
understood as coming from only one variant. The case of South Africa is really interesting as
the two waves are clearly originating from different variants and the B.1.351 (beta) variant
seems to have infected more persons. In the cases of California and India, waves from different
variant seem to happen at the same time, similarly to what was observed for UK. In the case
of Brazil, as the country didn’t impose any social distancing measures, waves cannot be clearly
identified, but it can be seen that the appearance of the P.1 (gamma) variant increased the
infectiousness of the virus by the end of January 2021.

Another way to improve our understanding on the variants is to see how they interact with
each other. Multiple countries have already faced three different classes of variant of concern
since the beginning of the pandemic. This is the case for UK, California or India. We already

127



South Africa

A
p
r
2
0

M
a
y
2
0

J
u
n
2
0

J
u
l
2
0

A
u
g
2
0

S
e
p
2
0

O
c
t
2
0

N
o
v
2
0

D
e
c
2
0

J
a
n
2
1

F
e
b
2
1

M
a
r
2
1

A
p
r
2
1

M
a
y
2
1

J
u
n
2
1

Total cases

B.1.351

Other variants

0

5

10

15

20

25

30

35

N
e
w
c
a
s
e
s
p
e
r
1
0
0
k

California

A
u
g
2
0

S
e
p
2
0

O
c
t
2
0

N
o
v
2
0

D
e
c
2
0

J
a
n
2
1

F
e
b
2
1

M
a
r
2
1

A
p
r
2
1

M
a
y
2
1

J
u
n
2
1

Total cases

B.1.427

Other variants

0

20

40

60

80

100

120

N
e
w
c
a
s
e
s
p
e
r
1
0
0
k

Brazil

M
a
r
2
0

A
p
r
2
0

M
a
y
2
0

J
u
n
2
0

J
u
l
2
0

A
u
g
2
0

S
e
p
2
0

O
c
t
2
0

N
o
v
2
0

D
e
c
2
0

J
a
n
2
1

F
e
b
2
1

M
a
r
2
1

A
p
r
2
1

M
a
y
2
1

J
u
n
2
1

Total cases

P.1

Other variants

0

10

20

30

40

N
e
w
c
a
s
e
s
p
e
r
1
0
0
k

India

M
a
r
2
0

A
p
r
2
0

M
a
y
2
0

J
u
n
2
0

J
u
l
2
0

A
u
g
2
0

S
e
p
2
0

O
c
t
2
0

N
o
v
2
0

D
e
c
2
0

J
a
n
2
1

F
e
b
2
1

M
a
r
2
1

A
p
r
2
1

M
a
y
2
1

J
u
n
2
1

Total cases

B.1.1.7

B.1.617

Other variants

0

5

10

15

20

25

30

N
e
w
c
a
s
e
s
p
e
r
1
0
0
k

Figure 51 – Evolution of the number of new cases per 100, 000 inhabitants for the most
dominant variant using Equation (294) for 4 samples countries : South Africa, California,
Brazil and India.

A
u
g
2
0

S
e
p
2
0

O
c
t
2
0

N
o
v
2
0

D
e
c
2
0

J
a
n
2
1

F
e
b
2
1

M
a
r
2
1

A
p
r
2
1

M
a
y
2
1

California

B.1.427

B.1.1.7

0

20

40

60

80

100

120

P
e
rc
e
n
ta
g
e
o
f
V
.O
.C

F
e
b
2
0

M
a
r
2
0

A
p
r
2
0

M
a
y
2
0

J
u
n
2
0

J
u
l
2
0

A
u
g
2
0

S
e
p
2
0

O
c
t
2
0

N
o
v
2
0

D
e
c
2
0

J
a
n
2
1

F
e
b
2
1

M
a
r
2
1

A
p
r
2
1

M
a
y
2
1

J
u
n
2
1

India

B.1.1.7

B.1.617

0

20

40

60

80

100

120

P
e
rc
e
n
ta
g
e
o
f
V
.O
.C

Figure 52 – Evolution of the percentage for the main variants of concerns for California
(left) and India (right).

saw in the top-right panel of Figure 50 that the Alpha variant was taken over by the Delta
variant. This percentage evolution is also shown for California and India in Figure 52.

These plots seem to show that the Alpha variant is stronger than the Epsilon variant in
California, while the Delta was taking over the Alpha in UK. However, due to statistical uncer-
tainty for India, it is not possible to classify the Alpha and Delta variant. These observations
are in agreement with the biological data showing that Epsilon is weaker than Alpha who is
weaker than Delta.

From the results obtained by data analysis, we can wonder how to integrate the variants
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to the eRG formalism. Two scenarios can be envisioned : One with an interaction between the
variants (scenario (i)) and one without (scenario (ii)). For the first scenario, the derivation
can be extracted by looking naively at what would happen in an SI model having two different
infected compartments, calling it an SII model, such that :

dS
dt

= −γ1S(t)I1(t) − γ2S(t)I2(t) ,
dI1
dt

= γ1S(t)I1(t) ,
dI2
dt

= γ2S(t)I2(t) .
(298)

Considering that the population is conserved, we have the condition N = S(t)+I1(t)+I2(t)
for any time t and therefore we would have for I1(t) by replacing S(t) :

dI1
dt

= γ1I1(t) (N − I1(t) − I2(t))
= Nγ1I1(t) (1 − I1(t)

N
) − γ1I1(t)I2(t) . (299)

A similar equation can be extracted for I2(t), by just exchanging 1 ⇔ 2. This equation
looks like the original eRG equation in equation (256) with an additional interaction term
between I1 and I2. The most important effect of this interaction term is to contain the less
infectious variant and to make him disappear faster. While this scenario seems interesting, the
interaction term is, in fact not realistic in the case of the COVID-19 as due to the limited
population that is accessible to the infection. In a pandemic like COVID-19, a small percentage
of the population is infected in reality and thus this exchange term would not be interesting
enough.

The other scenario consists in considering that the population is big enough so that the
two compartments can infect independent populations. This can be seen from equation (299)
by taking I2(t) ≪ N where this approximation make the interaction term negligible. Indeed,
once I2(t) ≈ N in the SII model, the interaction term will start contributing again and this is
not what we want. Therefore, we need to introduce new equations. The independence of each
compartment would mean that the parameter a in the eRG equation would be different from
the total population and, therefore, the mutations can be described as two independent eRG
equations such that :

dI1
dt

= γ1I1(t) (1 − I1(t)
a1

) ,

dI2
dt

= γ2I2(t) (1 − I2(t)
a2

) .

(300)

As it was investigated in the Wilson-Fischer case in Figure 3, we can study the flow
diagrams associated with the two variables I1 and I2 for each scenario. This is shown in Figure
53. One can see there the difference of paradigm between the two possibilities. In scenario
(i) the limiting condition is the population and is defined already at the beginning of the
outbreak forbidding the pandemic to reach the top-right part of the flow chart corresponding
to I1 + I2 > N . On the other hand, for scenario (ii), the total number of cases for each
compartment is defined only at the end of the pandemic.
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Figure 53 – Flow diagrams for each scenario with the values N = a1 = a2 = 100, γ1 = 0.1

and γ2 = 0.2. The attractive fixed points are shown in green, as for scenario (i) it is the line
I2 = N − I1 and the repulsive are shown in red.

The scenario (ii) seems, at first, less interesting as we have already investigated the case of
the simple eRG equation and its logistic function solution, but looking at what the sum of two
well separated logistic function gives, we may wonder if the mutations were not driving the
pandemic before the apparition of the variants of concern. In a really simple example shown
in Figure 54, we can clearly see that the period between the two waves shows a number of new
infected that is not going to 0 such as during a strolling phase. A similar behavior was seen
in the case of complex fixed points in the CeRG model in section 4.2.4.
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Figure 54 – Solutions of two simple eRG equations such that a1 = 1, a2 = 1.2, γ1 = 0.1,
γ2 = 0.05, b1 = 100 and b2 = 1000 and their sum, showing a strolling phase between the two
waves.

Another interesting point of view to investigate this possibility is to see how real world
data behave in flow diagrams according to scenario (ii). The results are shown in Figure 55.

Fixed points of interest which are p0 = (0, 0), p1 = (a1, 0), p2 = (0, a2) and p3 = (a1, a2)
are specified in the plots. The four fixed points are represented by a dot whose color depends
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Figure 55 – Flow diagrams for scenario (ii) and for the four countries considered : South
Africa, California, Brazil and UK. The flow diagram parameters are obtained by fitting the
data.

on its attractiveness : green if attractive in all directions, Orange if attractive in one direction
and repulsive for the other and red if repulsive for all directions. For South Africa and Brazil,
as the waves are well separated, the flow goes first toward the fixed point p1 but close before
reaching it, it is deviated toward another fixed point that is p3. In the case of United Kingdom
and even more for California, the waves of different variants happen at the same time, so the
flow is pushed toward the center of the diagram. Therefore, in the case of well separated waves,
time spent next to the fixed point p1 can be seen as a strolling phase.

This could be an explanation for the endemic phase if we imagine that this period is
driven by mutations that are not distinguished from the other variants. Such mutants could
have created small waves keeping the strolling period constant before a new VoC would have
driven a much higher wave. Such possibility will certainly be investigated later when more
sequencing data will be available, but allows to imagine scenarios to integrate variant in the
eRG formalism that are investigated in [167].

Now that we have seen the potential threat represented by the variants and how they
can be modeled within the framework, one can wonder if the eRG method could have been
employed to other pandemics that happened before and that would happen in the future. We
will investigate this possibility in the next subsection.

131



4.3.3 Others pandemics

Before 2020 and the COVID-19 outbreak, the World was more concerned about seasonal
Influenza pandemics, HIV spreading or other more localised viruses. We will therefore try to
study the application of the eRG framework for other types of pandemics.

First, let’s look at the specific case of seasonal influenza, also called flu. Flu is studied since
decades and countries don’t really take social distancing measures to curb its evolution. The-
refore, data is less affected by social behavior than for COVID-19, giving precious information
on the intrinsic properties of the virus. The flu pandemics are periodical, happening often du-
ring winter in the Northern Hemisphere and disappearing as soon as the spring is there. This
is due to the sensibility of the influenza virus to weather conditions within the country. The
UV rays depleting the virus shell once exposed, their light concentration in winter cannot stop
viruses from circulating. Moreover, the wind and the cold winter temperature bring people to
stay more into confined places and thus the viruses spread in the air are more stable, infecting
other individuals more easily than during summer.
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Figure 56 – Top panel : Weekly number of Influenza-Like Ill patients (ILI) admitted in
US hospitals from 1997 to 2021. Bottom panel : Percentage of ILI patients over all admitted
patients in the US.

In Figure 56 are shown the weekly number of patients admitted in the US hospital because
of a disease related to flu ("Influenza-Like Illness" or ILI) in the top panel and the percentage
they represent over the entire people admitted to hospitals from 1997 in the bottom panel.
The seasonal periodicity is clearly visible. As this was done in the northern hemisphere, we
can expect that a similar trend would happen in southern hemisphere countries during the
"southern winters" from June to September. This aspect could also be the reason why the
pandemics restart every year.The flu could migrate from the north to the south around April
and come back in October, thanks to the interaction between the two hemispheres. The mu-
tations that may happen during a wave within one of the hemisphere could also explain why
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immunised persons from a past wave can become susceptible again for the next wave. In this
sense, simulating the interaction between the northern hemisphere and southern one using the
formalism seen in section 4.2.3 could be an asset to see how travels influence the appearance
of a new wave.

We can also see in the bottom plot of Figure 56 that the height of the waves seen through
the percentage of ILI in US hospitals from one year to another can be very different. This effect
can be studied by fitting the waves using a logistic function and compare the fit parameters.
The results are shown in Figure 57.
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Figure 57 – Top panel : Evolution of the cumulative number of ILI patients in the US
(dots) for each year and the fits associated to them (plain lines). Bottom panel : Logistic fit
parameters a and γ obtained for each year.

One can observe from the top panel that the fits seem to be accurate, except for the 2009
period due to the appearance of two waves during this year. We can see from the bottom plots
that while the total number of ILI patients a for each wave increases with time, the infection
rate γ decreases to stabilise around 0.15. This could be explained by the improvement in the
treatment of the disease in the hospitals, allowing more people to be accepted, thus increasing
a and reducing the infection rate thanks to the vaccination.
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One other point to discuss is the behavior during the winter 2020-2021. Looking at Figure
56, it seems that no pandemic happened in the US related to flu. This could have multiple
explanations. First, we can think that this could be related to the social distancing measures
imposed thanks to the COVID-19 crisis allowing the flu to be contained this year. However,
this could be also related to the fact that hospitals might have been filled by COVID-19 pa-
tients in the winter and people infected with flu could not have been accepted in hospitals,
due to the limited the number of patients allowed during this period.

Looking now at the evolution of the pandemic at the state level within the US as shown in
the top panel of Figure 58 for the specific example of the 2014-2015 pandemic, we can see that
the flu epidemic seems to start in states from the south east and then spread in the north.
This scenario happens for almost all years since 2011. This can be illustrated even more by
comparing the situation in Texas and in the New York state in the bottom panel of Figure
58. In this figure, both the exponential growth and the peak timing happen always few weeks
earlier for Texas than for New York. This scenario was also observed in [168]. Therefore, the
evolution of the flu epidemic within the USA could be simulated using an interactive eRG
between the states as was achieved in section 4.2.3.
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Figure 58 – Top panel : Weekly evolution of the percentage of ILI patients in states hos-
pitals for the 2014-2015 flu epidemic episode (from left to right then top to down). The color
represents the percentage of ILI from a scale of 0 % in white to 15 % in red. Bottom panel :
Weekly evolution of the percentage of ILI patients for New York and Texas states.

Another pandemic of interest that has a really different timescale behavior is caused by the
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HIV (for Human immunodeficiency Virus) and its related disease AIDS (Acquired Immuno-
Deficiency Syndrome) [169]. From its first description in 1981, the disease has rapidly created
a global concern as approximately 75 millions of persons have been infected by the virus and
around 30 millions of them died because of it since the beginning of the pandemic according
to the website unaids.org . Looking at the data from South Africa in Figure 59, we can clearly
see the shape of a wave for the number of new HIV cases, as compared to what was obtained
for the COVID-19 pandemic as shown in Figure 20. One can remark that for AIDS the wave
span on multiple years instead of weeks for COVID-19. Therefore, the HIV spread is slower
due to its propagation mode. Indeed, AIDS can be transmitted by sexual contacts or blood
transfusions but not with airborne infectious material [170, 171]. This time scale can be seen
also by fitting the data for South Africa with a logistic function. We obtain a = 1.12×10

7 and
γ− > 0.24 years−1. Therefore, studying the evolution of AIDS and its transmission across the
World using eRG models could be straightforward and will certainly be investigated in the
future.
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Figure 59 – Number of new HIV cases and cumulative number of HIV cases for South
Africa (dots) and the fits associated (plain lines).

As we have seen, the eRG analysis can be performed for other pandemics, but going a
step further, one could also imagine to simulate the emergence of a new pandemic somewhere
and model how it would spread over the world. Human activities have led to the multipli-
cation of epidemics from a direct impact (Deforestation, development of cities...) leading to
more transmission from wild animals, such as bats, to human due to increasing interactions
between them. This could be caused also by an indirect impact due to global warming causing
the thawing of the permafrost crust mostly in Russia and Canada [172]. This melting could
release new pathogens [173] that were imprisoned in ice. By supposing that a new pandemic
would emerge from forest or permafrost edges, we could then predict how it would infect the
world and prepare an answer to curb its possible evolution before it’s too late.

Using the eRG formalism have led to various study of the dynamics of the COVID-19 and
other pandemics and we saw that it can be extended in a simple way to new features. Besides
the simplicity of the framework, it allows to extract precious information from the evolution
of the pandemics and to predict what would happen in the future.
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5 Discussion and conclusion

Throughout this thesis, we have seen the importance of the Renormalisation Group equa-
tions through two main axes. It allowed us to go further in our interpretation of physics beyond
the Standard Model but also to study fields beyond the scope of particles, investigating how
it could model the COVID-19 outbreak.

Defining a new paradigm for the Grand Unification seeing it as an asymptotic process ins-
tead of a crossing of the couplings is one the major achievement shown in the thesis. Through
extra-dimensional models introducing new particles, the Indalo(�m−

∩)-fields, the running gauge
coupling constants were pushed toward a unique non-trivial fixed point as was illustrated
through the minimal SU(5) description. The main advantage of aGUT models is that they
are free from proton decay due to the conservation of the baryon and lepton number unlike
standard GUT, because lepto-quarks bosons are replaced by Indalo-SM bosons. This allows
the model to have a low-energy compactification scale, granting more freedom on the pheno-
menology of the model. Moreover, a dark matter candidate naturally stems from the models,
allowing to reproduce the baryogenesis and to put constraints on the mass of the �

m−∩-particles.
Scenarios in which the Yukawa sector is free from Landau poles exist in the SU(5) model,
however they do not propose clear phenomenological bounds. In the case where all Yukawa
couplings are in the bulk, no phenomenology can be extracted up to a critical compactification
scale R−1

c = 3 ⋅10
5 TeV. Above this scale, any Yukawa couplings is driven to an asymptotically

free point. For Yukawa couplings all localised, any scenario would give an asymptotically free
behavior. Eventhough the Yukawa sector doesn’t give much information, the SU(5) model
is just the minimal version of aGUT and can be extended to larger groups such as SO(10)
that could allow to embed the six fermion multiplets used in SU(5) in only two representa-
tions of SO(10) giving a more appealing shape to the model. Moreover, aGUT models could
bring explanation to experimental disagreements with the SM such as the muon g-2 anomaly.
Asymptotic Grand Unification is a new field and will definitely bring more insights on possible
models for the physics beyond the Standard Model.

Following the specific case of the COVID-19 crisis spreading around the world at the end
of 2019, we also saw that the Renormalisation Group formalism can bring a new framework
called the epidemic Renormalisation Group (eRG). Compared to compartmental or lattice
models, the eRG concept granted, through a single differential equation, a better adaptability
to additional features. From the basic one-wave in a single region, it allowed to understand the
impact of the mobility reductions and of border controls on the spreading of the COVID-19
pandemic in Europe and in the US. Thanks to the addition of an interaction term, the eRG
also provided a working scenario of how waves can spread thanks to mobility transports in a
big region. Using this, the timing of the coming waves has been forecasted using the interac-
tions between the countries modeled thanks to mobility data. In a similar way they allowed us
to change the paradigm of Grand Unification, the fixed points technology granted a new point
of view on the multiple waves behavior of the epidemic. Successive waves and endemic periods
can be modeled through successive fixed points being complex for intermediate waves or not
for the final wave. Simulating the spread with fixed points allows to forecast the evolution
of the pandemic on a longer period. Then, variants and vaccination campaigns effects were
introduced via modifications of the original equation explaining the behavior of the COVID-19
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crisis in the beginning of 2021 at which time the vaccination campaign velocity and mutations
spread will determine when the end of the crisis will happen. We finally saw that all the fea-
tures developed specifically for the COVID-19 can be also used to study other viruses such
as seasonal influenza or AIDS and could allow to simulate the outbreak and the spread of a
future pandemic accross the World.

The improvements brought by the RG equations are mainly due to the strong adaptation of
the differential equations to new features. The fixed points technology brought a new scope to
see the evolution of models. From a unique non-trivial point providing the asymptotic Grand
Unification to several complex fixed points indicating multiple waves in the evolution of a
pandemic, the RGE allowed a renewing interested in interdisciplinary projects. Such framework
could even be applied to other fields based on spreading dynamics such as chemistry, social
science or economy.
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Appendices

A Mathematical formulas

A.1 Group generators

Throughout this thesis, the Einstein notation is used where the sum over indices is impli-
citly used when superscripts and subscripts are repeated such as :

xay
a
≡ ∑

a

xay
a
. (301)

The set of n × n orthogonal matrices is a group called the orthogonal group and denoted
O(n). Orthogonal matrices Q are such that :

QQ
T
= Q

T
Q = In . (302)

The set of n × n unitary matrices is a group called the unitary group and denoted U(n).
Unitary matrices U are such that :

UU
†
= U

†
U = In . (303)

The groups SO(n) and SU(n) are called "special" if we add the condition on the deter-
minant of any matrix M from the group such that :

DetM = +1 . (304)

Symmetry groups can be fully generated by a minimal set of matrix T which are called
group generators and allows any matrix A in the group to be written :

A = αaT
a
, (305)

where any αa ∈ R.

For SU(2), the generators σ, called the Pauli matrices, can be written :

σ1 =
1

2
(0 1

1 0
) , σ2 =

1

2
(0 −i

i 0
) , σ3 =

1

2
(1 0

0 −1
) . (306)

For SU(3), the generators τ , called the Gell-Mann matrices, can be written :

τ1 =
1

2

⎛⎜⎜⎝
0 1 0

1 0 0

0 0 0

⎞⎟⎟⎠ , τ2 =
1

2

⎛⎜⎜⎝
0 −i 0

i 0 0

0 0 0

⎞⎟⎟⎠ , τ3 =
1

2

⎛⎜⎜⎝
1 0 0

0 −1 0

0 0 0

⎞⎟⎟⎠ , τ4 =
1

2

⎛⎜⎜⎝
0 0 1

0 0 0

1 0 0

⎞⎟⎟⎠ ,

τ5 =
1

2

⎛⎜⎜⎝
0 0 −i

0 0 0

i 0 0

⎞⎟⎟⎠ , τ6 =
1

2

⎛⎜⎜⎝
0 0 0

0 0 1

0 1 0

⎞⎟⎟⎠ , τ7 =
1

2

⎛⎜⎜⎝
0 0 0

0 0 −i

0 i 0

⎞⎟⎟⎠ , τ8 =
1√
6

⎛⎜⎜⎝
1 0 0

0 1 0

0 0 −2

⎞⎟⎟⎠ .

(307)

138



We can also derive the Dirac matrices γ that are essential to understand the spinor struc-
tures of the fermion fields. The γ matrices are defined such that :

γ0 = (I2 0

0 I2
) , γi = ( 0 σi

−σi 0
) , (308)

where I2 is the 2 × 2 identity matrix and σi are the Paul matrices.

In addition, the fifth-gamma matrix γ5 is defined as :

γ
5
≡ iγ

0
γ
1
γ
2
γ
3
. (309)

The gamma matrices satisfy the following relations :

{γµ, γν} = γµγν + γ
ν
γ
µ
= 2g

µν
, {γ5, γν} = 0 , (310)

γ
µ
γµ = 4 , γ

µ
γ
ν
γµ = −2γ

ν
, γ

µ
γ
ν
γ
ρ
γµ = 4g

νρ
. (311)

The relations involving the trace over the spinor space are :

Tr [γµ] = Tr [γ5] = Tr [odd number of γ] = 0 , (312)

Tr [γµγν] = 4g
µν
, (313)

Tr [γµγνγαγβ] = 4 (gµνgαβ − γ
µα
g
νβ

+ g
µβ
g
να) . (314)

A.2 Group factors formulas

For the generators of a group representation RF , T a, the structure constants f are defined
such that : [T a, T b] = T aT b − T

b
T
a
= igf

ab
c T

c
. (315)

Similarly, Casimir invariants are defined by :

Tr (T aT b) = T (RF ) δab, T
a
T
a
= CF1, fabcfabd = C(G)δcd . (316)

A.3 Dimensional regularisation

The following integrals are needed to achieve the diagram calculations in dimensional
regularisation :

∫ ddk(2π)d k
2

(k2 −∆ + iǫ̃)2 = −
d

2

i

(2π) d2
1

∆1− d
2

Γ (2 − d

2
) , (317)

∫ ddk(2π)d 1(k2 −∆ + iǫ̃)2 =
i

(2π) d2
1

∆2− d
2

Γ (4 − d

2
) . (318)
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B One loop Yukawa beta-function diagrams calcula-

tions

B.1 Feynman rules

We compile here the Feynman rules in the SU(5) aGUT required in order to calculate the
diagrams :

For the φ propagator :

φi φj ↔ iδ
ij

+∞

∑
n=1

1

k2 −m2
n + iǫ̃

. (319)

For the ψ fermion propagator :

ψi ψj ↔ iδ
ij (pµγµ +mn) +∞

∑
n=1

1

p2 −m2
n + iǫ̃

. (320)

For the ψ anti-fermion propagator :

ψ
i

ψ
j

↔ iδij (−pµγµ +mn) +∞

∑
n=1

1

p2 −m2
n + iǫ̃

. (321)

For the Aµ propagator :

A
a
µ A

b
ν ↔ −iδab [gµν − (1 − ξ) kµkν

k2
] +∞

∑
n=1

1

k2 −m2
n + iǫ̃

. (322)

For the A5 propagator :

A
a
5 A

b
5 ↔ iδab

+∞

∑
n=1

1

k2 − ξ (mn)2 + iǫ̃
. (323)

For the Yτ vertex :

ψ
i

5

Yτ
φ

†j
5

ψ10kl

↔ iY
kl
τ ij = i

yτ
2

(δki δlj − δ
l
iδ
k
j ) . (324)

For the Yb vertex :

ψ10kl

Yb
φ

†j
5

ψ5

i

↔ iY
kl
b ij = i

yb
2
(δki δlj − δ

l
iδ
k
j ) . (325)

140



For the Yt vertex :

ψ10jk

Yt

φ5i

ψ10lm

↔ iY
ijklm
t = iytǫ

ijklm
, (326)

where ǫijklm is the Levi-Civita tensor of order 5.

For the Yν vertex :
ψ1

Yν

φ5i

ψ5

j

↔ iY
i
ν j = iyνδ

i
j . (327)

For the ψRAµψR vertex :

ψ
A
i

±ig
A
a
µ

ψ
B

j

↔ ±igδijγ
µ
T
aAB
R . (328)

For the ψRA5ψR vertex :

ψ
A
i

∓ig
A
a
5

ψBj

↔ −igδijγ
5
T
aAB
R . (329)

For the φ†
φAµ vertex :

φi
p1

ga

p2

A
a
µ

φ
†j

↔ igaδij(p1 − p2)µT aj i . (330)
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For the φ†
φAµAν vertex :

φi

g
2
a

A
a
µ

A
b
νφ

†j

↔ 2igagbδijgµν . (331)

For the φ†
φA5 vertex :

φi

ga
A
a
5

φ
†j

↔ −igδijT
a,i
j

n −m

R
. (332)

For the φ†
φA5A5 vertex :

φi

g
2
a

A
a
5

A
b
5φ

†j

↔ 2igagbδij . (333)
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B.2 Relevant diagrams for the Yukawa calculation

Feynman diagram Momentum contribution SU(5) generator factor

ψ1

φ

ψ2

iM ≈ −i
1

16π2

2

ǫ
−yty

2

b ǫ
ijklm

, −yty
2

τ ǫ
ijklm

.

ψ1 ψ1

iM ≈
1

2
× i

1

16π2

1

ǫ
12y

3

t ǫ
ijklm

, yty
2

b ǫ
ijklm

.

ψ2 ψ2

iM ≈ −
1

2
× (−i 1

16π2

1

ǫ)
12y

3

t ǫ
ijklm

, yty
2

τ ǫ
ijklm

.

φ φ

iM ≈
1

2
× i

1

16π2

4

ǫ 24y
3

t ǫ
ijklm

, 2yty
2

b ǫ
ijklm

, 2yty
2

τ ǫ
ijklm

,

yty
2

νǫ
ijklm

, yty
2

ν ′ǫ
ijklm

.

ψ1

φ

ψ2 iM ≈ i
g
2

16π2
(3 + ξ) 2ǫ

−
12

5
ytǫ

ijklm
.

ψ1 ψ1

iM ≈
1

2
× i

g
2

16π2
ξ
2

ǫ

18

5
ytǫ

ijklm
.

Table 13 – Relevant brane top-Yukawa renormalisation diagrams - 1.
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Feynman diagram Momentum contribution SU(5) generator factor

ψ2 ψ2

iM ≈ −
1

2
× (−i g

2

16π2
ξ
2

ǫ)
18

5
ytǫ

ijklm
.

φ φ

iM ≈
1

2
× (−i g

2

16π2
(3 − ξ) 2ǫ)

12

5
ytǫ

ijklm
.

ψ1

φ

ψ2

iM ≈ i
g
2

16π2
ξ
2

ǫ
−
6

5
ytǫ

ijklm
.

ψ1

φ

ψ2

iM ≈ −i
g
2

16π2
ξ
2

ǫ

6

5
ytǫ

ijklm
.

ψ1

A5 φ

ψ2

iM ≈ −i
g
2

16π2

2

ǫ
2
6

5
ytǫ

ijklm
.

ψ1

A5

ψ1

iM ≈
1

2
× (i g

2

16π2

1

ǫ) 24

5
ytǫ

ijklm
.

ψ2

A5

ψ2

iM ≈ −
1

2
× (−i g

2

16π2

1

ǫ)
24

5
ytǫ

ijklm
.

Table 14 – Relevant brane top-Yukawa renormalisation diagrams - 2.
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B.3 Calculation in the Standard Model

For the renormalisation of the top Yukawa beta function in the Standard Model group
SU(3)×SU(2)×U(1) with latin letters for SU(2) indices and greek letters for SU(3) indices,
we have :

16π
2dY

iγ
t jδ

dt
= −2Y

kǫ
b jδY

lζ

b iǫǫ
k
mY

mγ
t lζ +

1

2
(Y iǫ

t jδY
lζ
t kǫY

kγ
t lζ + Y

kǫ
t jδY

lζ
t kǫY

iγ
t lζ + Y

kǫ
b jδY

lζ

b kǫY
iγ
t lζ)

+ (Y kγ
t jδY

lζ
t kǫY

iǫ
t lζ + Y

kγ
t jδY

lζ

b kǫY
iǫ
b lζ + Y

kγ
t jδY

l
τ kY

i
τ l)

+g
2
2 ((1 − α2)T ak2 jT

al
2 kY

iγ
t lδ − (2 + α2)Y kγ

t jδT
al
2 kT

ai
2 l − 2(1 − α2)T al2 jY

kγ
t lδT

ai
2 k)

+g
2
3 (−2(4 − α3)T bǫ3 δY

iζ
t jǫT

bγ
3 ζ + (1 − α3)Y iǫ

t jδT
bζ
3 ǫT

bγ
3 ζ + (1 − α3)T bǫ3 δT

bζ
3 ǫY

iγ
t jζ)

+g
2
1 (−1

9
2(4 − α0) + 4

9
(1 − α0) + 1

36
(1 − α0) − 1

4
(2 + α0) + −1

3
2(1 − α0) − −1

12
2(1 − α0))Y iγ

t jδ ,

(334)
where the αi = 1 − ξi are the gauge parameters. Using the explicit expression of the Yukawa
tensors such that :

Y
iγ
t jδ = ytδ

i
jδ
γ

δ , Y
iγ

b jδ = ybδ
i
jδ
γ

δ , Y
iγ
τ jδ = yτδ

i
jδ
γ

δ , (335)

taking βt =
dyt
dt

and factorising the αi terms, we find :

16π
2
βt =

1

2
(y3tTr (δ2) + y

3
t + yty

2
b + 2y

3
tTr (δ3) + 2yty

2
bTr (δ3) + 2yty

2
τ − 4yty

2
b)

+g
2
2yt (T a2 T a2 − 2T

a
2 T

a
2 − 2T

a
2 T

a
2 ) + α2g

2
2yt (−T a2 T a2 − T

a
2 T

a
2 + 2T

a
2 T

a
2 )

+g
2
3yt (−8T b3T b3 + T

b
3T

b
3 + T

b
3T

b
3) + α3g

2
3yt (2T b3T b3 − T

b
3T

b
3 − T

b
3T

b
3)

+g
2
1yt (49 +

1

36
−

8

9
−

2

3
+

1

6
−

1

2
) + α0g

2
1 (−4

9
−

1

36
+

2

9
+

2

3
−

1

6
−

1

4
) .

(336)

We see that terms proportional to the αi disappear and we finally have :

16π
2
βt
»»»»»SM =

9

2
y
3
t +

3

2
y
2
byt + y

2
τyt −

9

4
g
2
2yt − 8g

2
3yt −

17

12
g
2
1yt . (337)

Using the same method for yb and yτ , we can find :

16π
2
βb
»»»»»SM =

9

2
y
3
b +

3

2
y
2
t yb + y

2
τyb −

1

4
g
2
1yb −

9

4
g
2
2yb − 8g

2
3yb , (338)

16π
2
βτ

»»»»»SM =
9

2
y
3
τ + 3y

2
t yτ + 3y

2
byτ −

9

4
g
2
1yτ −

9

4
g
2
2yτ . (339)
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C Epidemic Renormalisation Group

C.1 Monte-Carlo simulation

Generating the MC data via a logistic function with a unique γ now and fitting it with
the function α2γ gives the following result for the fit parameters :

Generated α2γ fit Logistic fit
a 100 100.0(3) 100.0(3)
γB ø 0.1(2) ø
γC ø 0.100(1) ø
γ 0.1 ø 0.100(1)
b 100 115(47) 100(6)
∆t ø 3(3) ø
∆γ ø 0(45) ø

Table 15 – Parameters obtained for the generated data fits using a logistic function and the
function α2γ defined in equation (269). Data generation parameters are : a = 100, γ = 0.1, b =

100.
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C.2 2 − γ function fit parameters vs mobility data

Plotting the values of the fit parameters obtained using the function α2γ along with the
mobility parameters averaged values shows no clear correlation :
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Figure 60 – Mobility categories versus ∆t for European countries and US states.
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Figure 61 – Mobility categories versus ∆γ for European countries and US states.
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C.3 US divisions composition

Division composition
Division names Code States within the division
New England NE Massachusetts, Connecticut, New Hampshire, Maine, Rhode Island and Vermont

Mid-Atlantic MA New York, Pennsylvania, New Jersey, Maryland and Delaware

South Atlantic SA Florida, Georgia, North Carolina, Virginia, South Carolina and West Virginia

East South Central ESC Tennessee, Alabama, Kentucky and Mississippi

West South Central WSC Texas, Louisiana, Oklahoma and Arkansas

East North Central ENC Illinois, Ohio, Michigan, Indiana and Wisconsin

West North Central WNC Missouri, Minnesota, Iowa, Kansas, Nebraska, South Dakota and North Dakota

Mountains M Arizona, Colorado, Utah, Nevada, New Mexico, Idaho, Montana and Wyoming

Pacific P California, Washington, Oregon, Hawaii and Alaska

Table 16 – States of the US integrated into the 9 census divisions. Maryland and Delaware
are moved from South Atlantic to Mid-Atlantic.

C.4 Second European waves

The values of the ki0, the rescaling factors for γ, a, and the parameters of the linear growth
for the 10 seed countries are as follow :

BEL BOS HRV CZE GRE NLD SER SLK SLN SPA
ki0 0.01 0.12 0.3 0.1 0.01 0.01 0.5 0.02 0.035 0.3

γi scaling 1 0.7 0.6 0.6 1 1 0.7 0.8 0.6 0.85

ai scaling 1 1.3 1.06 1.06 1 1 1.05 1 0.95 1

θi 60 0 0 40 7 35 35 1 1 30

tpl 20 − − 20 20 20 20 20 20 20
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Figure 62 – Total number infected cases (updated to the 5th of August) with respect to
the theoretical curve (orange line) used to calibrate the simulation for the countries having
signs of a second wave at the time. The vertical line shows where the second wave simulation
begins.
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Figure 63 – Time evolution for the cumulative number of infected and new cases for the
nordic European countries, from the simulation starting at week 25. The bands are generated
by varying the infection rates γi within 10%.
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First wave parameters Second wave simulation peak timing
a (log) γ case a case b case c case e

Austria 7.463(7) 0.99(25) 30.4(4) 32.4(5) 34.7(5) 34.8 + 0.9 − 0.7

Belgium 8.53(2) 0.55(2) 34.6(7) 37.9(6 41.4(5 33.8
∗
+ 0.8 − 0.7

Bosnia 7.88(24) 0.41(2) 33.9(6) 37.4(5) 41.0(5) 33.4
∗
+ 0.7 − 0.6

Croatia 6.268(7) 0.71(2) 30.9(6) 33.5(7) 36.6(7) 27.7
∗
+ 0.1 − 0.1

Czechia 9.085(14) 0.56(3) 33.5(7) 36.8(6) 40.2(5) 32.7
∗
+ 0.6 − 0.5

Denmark 7.667(8) 0.40(1) 35.6(6) 39.2(5) 42.7(5) 39.9 + 1.3 − 1.1

Finland 7.190(5) 0.385(6) 35.4(6) 39.0(5) 42.5(5) 39.8 + 1.3 − 1.1

France 7.711(6) 0.58(12) 36.0(6) 39.3(5) 42.6(4) 41.1 + 1.4 − 1.2

Germany 7.679(7) 0.62(2) 35.8(6) 39.0(5) 42.3(5) 39.9 + 1.4 − 1.1

Greece 5.537(9) 0.57(2) 32.5(6) 35.8(5) 39.2(4) 31.7
∗
+ 0.6 − 0.5

Hungary 6.022(9) 0.47(1) 33.9(6) 37.4(5) 40.9(5) 38.1 + 1.1 − 0.9

Ireland 8.580(8) 0.60(2) 33.1(7) 36.1(7) 39.5(6) 36.6 + 1.0 − 0.9

Italy 8.304(4) 0.429(8) 39.1(6) 42.8(4) 46.1(5) 43.9 + 1.7 − 1.4

Netherlands 7.904(5) 0.525(8) 35.2(7) 38.6(6) 42.1(5) 34.3
∗
+ 0.9 − 0.7

Norway 7.356(6) 0.58(2) 32.7(6) 35.8(7) 39.3(6) 36.4 + 1.0 − 0.8

Poland 7.13(3) 0.182(7) 45.7(5) 49.3(6) 52.6(6) 54.6 + 2.7 − 2.2

Portugal 10.323(14) 0.517(22) 34.7(7) 38.1(6) 41.6(5) 38.7 + 1.2 − 1.0

Serbia 9.323(12) 0.628(17) 32.6(6) 35.6(6) 38.9(5) 29.2
∗
+ 0.3 − 0.3

Slovakia 5.67(2) 0.59(4) 31.7(7) 34.8(7) 38.2(6) 30.7
∗
+ 0.5 − 0.4

Slovenia 7.299(7) 0.656(17) 30.7(6) 33.5(7) 36.7(6) 29.7
∗
+ 0.3 − 0.3

Spain 8.747(8) 0.46(1) 38.2(7) 41.8(5) 45.2(5) 33.8
∗
+ 0.8 − 0.7

Sweden 11.56(4) 0.162(8) 47.8(5) 51.3(5) 54.6(6) 55.8 + 2.9 − 2.4

Switzerland 8.196(3) 0.72(1) 32.4(6) 35.1(7) 38.1(7) 35.8 + 1.0 − 0.8

UK 8.353(7) 0.368(7) 41.0(6) 44.6(4) 48.0(5) 46.2 + 2.0 − 1.6

Table 17 – Left block : parameters fitted from the first wave. Right block : median peak
time of the second wave in 2020 calendar weeks for the four simulation scenarios (cases a, b,
c and e), with 1 standard deviation. For cases a, b and c, the median and errors only take
into account the 100 simulations, differing by randomly generated matrices kij . For case e, we
include the interval spanned by varying the γi within 10% from the fitted values, where the
results marked with an asterisk correspond to the seed countries with a beginning of second
wave, as of the 5th of August 2020.
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C.5 Multiwave and CeRG

Following the analysis using the CeRG model, the plots hereafter show the forecast for the
starting waves for various countries :

Figure 64 – Evolution of the cumulative and number of new cases for France, Italy, Germany
and UK (red dots) and the solutions of the CeRG equations using parameters accessible in
Table 18.
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Figure 65 – Evolution of the total and number of new cases for Spain, Denmark, Saudi
Arabia and South Africa (red dots) and the solutions of the CeRG equations using parameters
accessible in Table 18.
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Countries CeRG parameters
a γ δ0 p0 p1 ζ1

France 61 × 10
3

0.058 1.0 × 10
3

0.55 0.6 0.5

Italy 41 × 10
3

0.091 1.0 × 10
3

0.55 0.6 0.5

UK 26 × 10
3

0.082 1.0 × 10
3

0.55 0.6 0.5

Germany 22 × 10
3

0.070 1.0 × 10
3

0.55 0.6 0.5

Spain 36 × 10
3

0.078 1.0 × 10
3

0.55 0.6 0.5

Switzerland 40 × 10
3

0.127 1.0 × 10
3

0.55 0.6 0.5

Netherlands 31 × 10
3

0.092 1.0 × 10
3

0.55 0.6 0.5

Belgium 45 × 10
3

0.157 1.0 × 10
3

0.55 0.6 0.5

Denmark 15 × 10
3

0.071 1.0 × 10
3

0.55 0.6 0.5

Iceland 11 × 10
3

0.114 1.0 × 10
3

0.55 0.6 0.5

Canada 17 × 10
3

0.055 1.0 × 10
3

0.55 0.6 0.5

South Africa 12 × 10
3

0.102 2.2 × 10
3

0.56 0.6 0.45

Bolivia 13 × 10
3

0.057 1.2 × 10
4

0.51 0.6 0.45

Saudi Arabia 10 × 10
3

0.058 1.3 × 10
3

0.51 0.6 0.5

Australia 772 0.122 8.4 × 10
6

0.52 0.6 0.5

Japan 500 0.103 4.9 × 10
2

0.7 0.6 0.4

South Korea 180 0.191 5.7 × 10
3

0.6 0.6 0.45

Table 18 – Parameters for the CeRG forecast for the last waves.
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