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General Introduction

The studies of fluid flow at the nanoscale has shown significant rise due to its potential
applicability in different field of studies including soft matter, medical science, mechanics
and engineering. At nanometric length scales, the solid-liquid interaction at the interface
is one of the dominant factor, which governs the fluid behaviors [1, 2]. These behaviours
are evident in the science of interfaces and mechanics where the continuum concept of
mechanics break down at the nanoscale [3] and the granularity of the matter at the
molecular size becomes important [4–6]. Many of the macroscale mechanical phenomena,
such as, lubricated friction, take their origin at the nanoscale and thus they can best be
explained by the experiments at those scales. This quest has led to the use of experimental
tools such as Surface Force Apparatus (SFA) and Atomic Force Microscope (AFM) that
allow measurements at nanometric length scale.

In this work, we have used the colloidal AFM in dynamic mode to study the rheological
properties of thin soft polymeric film and the friction between polystyrene microspheres
at the nanoscale. Ducker and Butt [7] had developed the colloidal probe technique back
in 1991 where a probe of known geometry is attached to the tip of an AFM cantilever.
This technique allows to measure the interaction force between the two colloidal particles
or between the colloidal particle and a plane substrate. For each specific application, the
geometry of the probe is chosen to optimise the spatial resolution and the force sensitivity.
In addition to the flexibility in the choice of the material and the geometry of the probe,
the well-defined geometry of the probe provides an easier and accurate interpretation of
data in term of the theoretical model [8, 9].

Mechanical characterization of soft surfaces
For the successful development and wide use of nano-devices, an accurate and well-
understood mechanical characterization of the materials at nanoscale is prerequisite [10].
The characterization techniques such as nanoindentation, optical tweezers and AFM-
based methods are used to investigate the mechanical properties of materials. The knowl-
edge of nano-mechanical traits has been utilized to develop new materials and structures.
For instance, study of the mechanics of cells and tissues has led to the development of
the biomimetic materials, structures for the tissue engineering and artificial implanta-
tion [11,12].

Among the characterization techniques, AFM is one of an effective and reliable tool,
which can be used to characterize the chemical [13], electrical [14, 15] and mechani-
cal [10, 12, 16–18] properties of the materials with nanometric resolution. In standard
operation, an AFM tip, which acts as an indenter, is used to probe mechanical properties
of the sample surface. The interaction of the probe and sample is recorded to extract
the mechanical traits such as hardness, viscoelasticity etc. However, there are limitations
in indentation experiment for soft materials due to the vulnerability, fragility and con-
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tribution of the surface energy [18]. Non-contact measuring technique in a liquid was
developed with SFA where the contactless interaction allows to measure the surface elas-
ticity [19–21]. However, in SFA the choice of sample thickness and frequency range due to
the macroscopic size of the probe are a few of constraint in the wide use of the technique.
On the other hand, in an AFM smaller probes are used and it allows working in the large
frequency range.

In contactless technique using an AFM, the mechanical properties of the soft sample
are studied by measuring the nano-hydrodynamic interaction between a probing oscil-
lating sphere and the substrate in liquid environment [22, 23]. The fluid flow in micro-
confinement along with the soft surfaces induces the elastohydrodynamic (EHD) cou-
pling [24]. This scenario is very common in biological systems [25] and the tribology of
lubricated contacts [26]. In the former case, the flow of red blood cells in veins and arter-
ies, lubrication of the eye in ocular cavity and synovial joints are a few example of EHD
coupling. During the lubricated contact, the friction, wears and tears are significantly re-
duced due to deformation under the influence of the viscous force of the fluid. The EHD
force during the lubricated contact generates the lift force in the approaching surfaces.
The induced lift force is highlighted in many research woks, including the rolling cylinder
near a soft wall [27], sphere near a soft wall [28] and a colloidal probe in proximity to the
PDMS substrates [29]. In short, the drainage of fluid at the confined gap generate hydro-
dynamic stress to induce the deformation of the soft surface and based on this coupling,
the mechanical traits of the soft interfaces are extracted without solid-solid contact.

Using an AFM, the technique based on the vibrating probe offer an additional advan-
tage to study the mechanical properties at different vibration frequencies. Usually, the fre-
quency dependent rheology of soft solids are probed at macroscale with conventional shear
rheometers where the sample is fixed between the two rotating parallel plates [30–32]. Im-
posing a rotating displacement on one plate and measurement of the applied torque on
the other one, allows to extract the mechanical traits such as, the complex shear modulus
of the system. This method requires a perfect contact between the sample and the plates
of the rheometer. The dynamic colloidal AFM method is a good candidate to probe the
EHD interaction at nanoscale for different vibration frequencies without such constraint.
It allows working in large frequency range from 20Hz up to few kHz, depending on the
resonance frequency of the cantilever [33–35].

Friction at nanoscale
Friction may be one of the physical phenomena that is ubiquitous in nature but still less
understood. It is the science of interacting surfaces in relative motion. Leonardo D. Vinci
recorded first systematic study of the friction, but Amonton is highly accredited due to
formulation of the friction laws. With development and advancement of tools and tech-
nology, the access to the nanometric length scale has revealed that the smooth looking
surfaces are rough at smaller scale and the real contact between two solids is a fraction
of the apparent contact [36, 37]. Based on these facts, it was proposed that the contact
between two surfaces occurs at some microscopic points, which are named as asperities
in the literature. Hence, Friction between two sliding surfaces is the outcome of interde-
pendent mechanical behaviors of asperities, which are regularly being formed, deformed
and ruptured [38].

The study of nanotribology aims to characterize, understand and control the friction,
wears and adhesion in a system. It is primarily accomplished by performing the lat-
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eral force measurement in an AFM-based characterization technique, where the torque
produced in the cantilever is monitored during the contact-mode scanning perpendicu-
lar to the long-axis of the cantilever [39]. Mate et al. [40] has credit of introducing the
technique for the first time in the experimental field. They built a scanning force mi-
croscope and studied lateral deflection of tungsten wire through optical interferometry.
In AFM-based friction measurements, the interaction between the cantilever tip and the
sample surface enlarge imitates the interaction of the asperities. The classical contact
problems are commonly interpreted using famous Hertz contact model where the stress-
strain relation between the elastic curved bodies is described with-in elastic limit [41],
but, the mono-asperity contact model is largely used to describe the contact between the
asperities [42, 43].

Several studies have highlighted the role of nanoscale repulsive and the frictional forces
in the suspensions. The rheology of solid particles suspensions strongly depends on the na-
ture of interaction between the particles. It was not much before when the hydrodynamic
interaction between the solid particles was assumed to be the dominant factor in the rheol-
ogy of suspensions. However, recent findings have revealed the pivotal role of the frictional
contact between the solid particles in the rheology of the suspensions [44–49]. Several rhe-
ological phenomena, such as shear-thinning, shear-thickening, anisotropic normal stress,
are exhibited by the suspension depending on the concentration and the applied shear
rate. For instance, shear-thinning phenomenon is a typical non-Newtonian behavior of
suspensions, which is attributed to the interparticle and the fluid-particle interaction [49].
The discontinuous shear-thickening in highly concentrated non-Brownian suspension is
another important phenomenon, which is also explained by the frictional contact between
the particles [47,50,51].

In all, the dominant role of frictional contact in the rheology of the suspensions in-
dicates a close link between the microscopic (friction) and macroscopic (viscosity) phe-
nomena. Using an AFM, the interaction between the colloidal probe and the microsphere
provides direct insight to the microscopic origin of friction, whereas, the rheometer is a
better alternative for the macroscopic studies of the suspension. The viscosity of sus-
pension can be measured in rotating parallel plate geometry by imposing the stress steps
whose duration varies depending upon the intensity of the stress. To summarize the fact
that the correlation between the viscosity of the suspension and the friction may allows to
predict the rheology of moderately concentrated suspension from the microscopic contact
law [52].

For the friction studies, we were part of a multidisciplinary collaborating project. The
project partners include: polymer chemistry team of Eric Drokenmuller in IMP (Lyon
University) who was responsible for synthesis of functional microparticles with controlled
diameter, stiffness and surface properties; the numerical rheology team of François Peters
in InPhyNi (Nice Sophia-Antipolis University) who had worked on the numerical simula-
tion of the microscopic contact laws; the experimental rheology team of Elisabeth Lemaire
in InPhyNi (Nice Sophia-Antipolis University) had performed the rheological experiments
for validation of the numerical results; and finally, we were responsible for the roughness
characterization and friction measurement between the contacting microspheres.
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The manuscript is organized as follows:

� In chapter 1 we will present the tools and techniques used during this experimental
work. We will introduce the experimental setup and the process in the preparation
of the colloidal probe. A brief discussion will also cover the working principle of the
piezoelectric actuation stage and lock-in amplifier.

� In chapter 2 we will present different methods for the calibration of an AFM can-
tilever. Different methods, such as calibration using the geometry of the cantilever,
added mass method, Sader method, thermal noise and hydrodynamic drag method,
will be part of the discussion for both vertical and lateral calibrations of the can-
tilever. For the vertical force calibration, we will use the hydrodynamic drag method
to measure the normal spring constant of the cantilever. This method has been cho-
sen over the other because of the simplicity of the operation and higher accuracy
for the calibration of the colloidal probe. Similarly, for the lateral force calibration,
we will perform a hydrodynamic drag experiment where the viscous drag force and
the torque on the AFM probe close to a laterally moving substrate will be mea-
sured. The hydrodynamic drag induces a twist of the cantilever, and subsequently
changes the lateral deflection signals. The linear fit of the plot between the torque
produced in the cantilever and the change in lateral deflection signal will give the
lateral conversion factor.

� In chapter 3 we will discuss the viscoelastic properties of soft and thin Poly DiMethyl
Siloxane (PDMS) films. The measurements will be performed by oscillating a col-
loidal probe normal to the film. We will be interested in contactless hydrodynamic
interaction resulting from the nanoscale flows between the probe and sample at
different excitation frequencies. To examine the interaction at a very small dis-
tance, we perform numerical calculation by solving the Navier-Stokes equation in
the framework of lubrication approximation. Using the numerical estimations, we
will fit the experimental results and extract the loss and storage moduli at different
working frequencies.

� In chapter 4 we will present the measurement of the friction between polystyrene
microparticles using the dynamic AFM method. Our measurement will be aiming to
validate Lobry’s model that links the viscosity to the friction and also links the shear
thinning to the load-dependent friction coefficient. The normal and friction forces
between two approaching microspheres will be measured by recording the deflection
and the twist produced in the colloidal probe, respectively. The friction coefficient
and its variation with the normal force will be determined. Our collaborators will
perform the rheometric experiments for the measurement of the viscosity of the
suspensions (made of same particles that will be used in the AFM experiment) for
several particle volume fractions. The measured friction coefficient and viscosity of
the suspension will be introduced in Lobry’s model to check its validity.
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Chapter 1

Instruments and Techniques used in
this Thesis

Contents
1.1 Atomic Force Microscope . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Operating Modes of an AFM . . . . . . . . . . . . . . . . . . . 7

1.1.2 Force Distance curve . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Experimental Techniques and Instruments . . . . . . . . . . . 9

1.2.1 Colloidal Probes . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Roughness Measurement . . . . . . . . . . . . . . . . . . . . . . 12

1.2.3 Piezoelectric Actuator . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.4 Lock in Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 The characteristics of the probes . . . . . . . . . . . . . . . . . 18

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1 Atomic Force Microscope

Scanning Tunneling Microscope (STM), which was invented back in 1981, enables the
topographic imaging at atomic scale [53, 54]. In STM operations, an extremely sharp
conducting tip is used to sense the surface. When the tip is brought very close to the
probing surface, a bias voltage applied between the tip and surface allows electrons to
tunnel through the vacuum between the tip and the surface. This tunneling current is a
function of the applied voltage, the local charge density of the sample and the tip-sample
separation. The topographic properties of the surface are acquired by monitoring the
current during the scanning of the surface. However, one of the major limitation in STM
was the requirement of a conductive surface for the study. This paved way for further
research and led to the invention of atomic force microscope [55]. In AFM, the deflection
of the cantilever that interacts with the probed surface is measured.

AFM has become one of the empowering technology for high-precision studies of ma-
terials and biological samples [56]. It provides valuable information about the material
properties such as its elasticity, hardness, adhesion, surface charge density, etc. This
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1.1. Atomic Force Microscope

technology is not only having higher application aspects than its competitors, but it
also enables imaging of both insulator and conductive materials, up to atomic resolution.
Moreover, AFM allows the measurement of interaction forces in the liquids [16,57,58].

Figure 1.1: Bioscope II AFM used for the experiments.

Figure 1.2: Schematic of an AFM.

The Bioscope II AFM (Bruker, USA), shown in figure 1.1, was used for the experi-
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Instruments and Techniques used in this Thesis

mental work presented in this thesis. The schematic of the AFM is shown in figure 1.2.
An AFM cantilever with a sharp tip is fixed in the cantilever holder and mounted on the
AFM head. The optical lever technique [59] was used to measure the deflection of the
cantilever. A laser beam reflects from the back side of the AFM cantilever tip that is
usually coated with some reflective material, like gold or aluminum to increase its optical
reflectivity. The reflected beam falls on the four quadrants photosensitive detector. When
the tip and the surface interact, the cantilever deflects and the position of the reflected
beam on the detector changes. This modifies the electrical signal produced by the photo
diode. These signals from the detector are used to measure the force between the tip and
the sample [16].

1.1.1 Operating Modes of an AFM

An AFM operates in the following two modes: static mode (contact mode) and dy-
namic mode.

Static Mode
This is the basic mode of operation where the cantilever remains in contact with sample
during the scanning. In the course of scanning the topography of the sample induces a
vertical deflection of the cantilever. In order to maintain a constant deflection, a feedback
loop is set to impose a vertical displacement to the piezo corresponding to the local height
of the sample. Thus, the cantilever follows the pattern and the height profile of the sample
is recorded. Usually, a soft cantilever is preferably used to avoid sample deformation.

The effect of large lateral force (frictional force) during scanning is one of the greatest
challenges in the static mode. This technique can be destructive for both the AFM tip
and the sample, especially when probing a fragile biological sample [60]. Moreover, this
may also cause instability in the feedback loop [61]. These limitations (in the static mode)
were the stimulus for the development of the dynamic mode AFM [62].

Dynamic Mode
In this mode of operation, the cantilever is excited using an external and known value of
force. As soon as the cantilever comes in contact with the sample, the amplitude and the
phase of the deflection signal changes. The oscillation amplitude and the phase variations
are measured to extract the interaction force and atomic scale properties of the sample.

Amplitude Modulation (AM) AFM [55] and Frequency Modulation (FM) AFM [63]
are two basic operation modes in dynamic force measurement. In the AM AFM mode,
the excitation frequency is fixed at a well-defined value (generally close to the resonance
frequency) and the amplitude and the phase of the cantilever oscillation are measured. The
frequency close to the resonance ensures maximum response oscillations. In this mode,
the amplitude’s variation is not instant, but behaves on a timescale t ∼ Q/f . A better
sensitivity is obtained for a high-quality factor, but it is detrimental in time response.
During the imaging of topographies, the amplitude is kept constant at a given value via a
feedback loop [64]. In addition to the topographic imaging, the phase image (refers to the
monitoring of the phase lag between the input and output signal) is recorded that helps
to distinguish the regions with different mechanical properties in a heterogeneous sample.
The phase shift reflects the changes in the mechanical properties of the sample surface.
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1.1. Atomic Force Microscope

In FM AFM mode, the change in the resonance frequency and damping are measured
for a cantilever that is excited at its resonance. The resonance frequency of the cantilever
depends on the force of interaction between the probe and the substrate. This technique
not only gives high dynamic sensitivity along with high-quality factor, but the time re-
sponse is also not very high [65, 66]. During the imaging, a feedback is used to keep the
cantilever oscillating at the resonance frequency. The amplitude of the cantilever oscilla-
tion tends to decrease because of dissipation during the interaction with the sample, but
feedback monitors the excitation force to keep the constant oscillation of amplitude [63].

The dynamic mode is further classified into two: the intermittent contact mode and
the non-contact mode. First, in the intermittent contact mode the AFM tip is oscillated
at high amplitudes, thereby, switching in both attractive and repulsive force regions;
two, in the non-contact mode the tip is mainly located in attractive force region and the
tip is oscillated at smaller amplitudes closer to the substrate. Nevertheless, in both of
these dynamic mode cases the applied load will be far less than that of the static mode.
That is why, the dynamic mode AFM is considered as a better choice to study the soft
samples [67–69].

1.1.2 Force Distance curve

A force–distance curve [16] is a presentation of the force experienced by the AFM
cantilever versus the distance between the AFM tip and the sample surface (see figure 1.3).
The AFM tip and the sample approach each other till the contact and then get separated
by moving the tip or the sample in the z-direction, i.e. perpendicular to the sample surface,
using a piezoelectric actuator. Two signals, the deflection of the cantilever Zc and the
displacement of the piezo Zp are acquired while varying the tip–sample distance. The
conversion of the deflection into a force and of the piezo displacement into the tip–sample
distance are explained below.

According to the two directions of movement, a force–distance curve is described by
the approach (blue curve in figure 1.3) and retraction (red curve in figure 1.3) curves. A
force–distance curves is roughly divided into three regions: the zero line, the discontinuity
and the contact line.

� We obtain the zero line when the distance between the AFM tip and sample is so
large that no measurable force is acting between them.

� The region where the tip snaps abruptly onto the sample surface or detaches from
sample surface is defined as the discontinuity region. In the approach curve the tip
snaps abruptly to the sample at small distance when the gradient of the attractive
force exceeds the spring constant of the cantilever, whereas, in the retract curve
it detaches from the sample when the force (the cantilever deflection × stiffness)
exceeds the adhesion force.

� The contact line represents the part of curve where the tip is in contact with the
sample. The AFM cantilever tip is pushed against the sample and probably indent-
ing it. The deflection sensitivity is also deduced from the contact line.

For the smaller cantilever deflection, the force is given by F = kcZc. Where kc is the
spring constant of the cantilever and F is the force applied on the cantilever. Once Zc
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Instruments and Techniques used in this Thesis

Figure 1.3: Schematic of a typical AFM cantilever deflection/force against the tip-sample
separation. The blue line is depicting the approach of the probe to the sample, while
the red line is for the retraction of the cantilever. The curve in the attractive region is
depicting the force of adhesion during the contact.

and kc are known (see section 2.2 for the measurement of the deflection and section 2.2.5
for the calibration of the cantilever), the applied force can be calculated by multiplying
them.

The tip-sample distance is calculated by adding the cantilever deflection and the piezo
position i.e. D = Zc + Zp [16, 70].

1.2 Experimental Techniques and Instruments

1.2.1 Colloidal Probes

The AFM probes have distinctive features such as, the shape, length and the tip size
of the cantilever and are chosen according to the experimental needs. In the early years,
the cantilevers used in an AFM experiment were made from the wires and designed in
different shapes, but the development of micro-fabricated techniques completely replaced
those initial techniques. Micro-fabricated cantilevers were invented by C. F. Quate [71,72]
and Wolter [73] that are still used in AFM measurements. The cantilevers used in this
research work are triangular (V-shaped) and rectangular in shape, as shown in figure
1.4(a) and 1.4(b), respectively. Instead of using these bare cantilevers we glued a sphere
to the tip of these cantilevers to obtain a colloidal probe [7, 74].
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Figure 1.4: The type of cantilevers used in this research work: on the top (a) V-shaped
cantilever (SNL -10 wide (B), Bruker) used in viscoelastic experiments (b) Rectangular
cantilever (NSG-11 tipless, long 130µm length and width 35 µm, NT-MDT) used in
friction experiments (c) and (d) are cantilever holders used in air and liquid, respectively.

Colloidal probes are commonly used in rheological AFM experiments because of their
numerous advantages, such as: first, colloidal probes offer a large area of contact that
allows quantitative measurement of force at higher sensitivity [16]; second, the colloidal
probe has well-defined interaction geometry (usually spheres are used) and provides an
easier interpretation of the data in terms of theoretical models [75]; third, colloidal probes
give flexibility in choosing the material and its geometry [76]. In this thesis the colloidal
probes are used to measure the viscoelastic properties of PDMS substrates and the friction
between the polystyrene microspheres.

The cantilever used in experiment is fixed in the holder, before placing the holder on
the head of the AFM. The holders used in this research work are shown in figure 1.4(c,
d). The holder in figure 1.4(c) is used for the experiments in air while the holder in figure
1.4(d), also mentioned as liquid cell, is used in liquid environment.

How to obtain a Colloidal probe
A locally made three-axis moveable stage is used to attach a sphere to an AFM cantilever
tip. The stage is placed on an optical microscope (B2 series, Motic microscope) platform
to focus on the cantilever tip. The moveable stage on the microscope platform is shown
in figure 1.6(a). The colloidal probes are obtained in the following steps (see figure 1.5) :
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Figure 1.5: In series of figures the process to obtain a colloidal probes is depicted.

� The microparticles are rinsed in pure water and then cleaned in ethanol solution
under ultrasonic tratment for a long time.

� We wash and rinse a glass substrate with pure water and repeated the process with
ethanol. We use a jet of filtered air to dry the substrate after each washing. A few
drops from the well-shaked ethanol solution are spread on this glass substrate. After
the evaporation of the ethanol, the clean microspheres are left on the substrate.

� We fix the AFM cantilever on to the leg of the three-axis moveable stage and place
under microscope to focus on the tip. The leg is tilted at an angle of 13◦ with the
horizontal direction.

� We prepare and deposit a thin epoxy glue (Araldite) layer on the glass substrate.
While observing it in the microscope, the cantilever tip is moved down towards the
glue and after a gentle touch we moved back the wet tip.

� Afterwards the glass substrate containing the glue is replaced with the substrate
having the spheres on it. We focus on one of the sphere on the substrate and moved
down the cantilever with the wet tip to make a contact with the sphere.

� We maintain the wet tip and sphere in contact for several minutes for cross link of
epoxy glue. Then we move the cantilever with attached microsphere away from the
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substrate to obtain the colloidal probe.

After glueing the sphere, we measured the size of the spherical probe using an optical
microscope. We have used the calibrated slide (Motic) having discs of diameter of
70µm and 150µm for the calibration of pixels of the camera (DCC 1545, ThorLabs).
As an example, a colloidal probe is shown in figure 1.6(b) and the radius of the
attached microsphere is measured as 40µm.

Figure 1.6: (a) The three axis moveable stage on microscope platform that is used to
glue sphere to the AFM tip. (b) A colloidal probe image: microsphere with diameter of
80µm is glued to rectangular cantilever (NSG-11/tipless) (c) 150µm disc is shown from
calibrated slide (Motic), which is used for the calibration of the optical images.

1.2.2 Roughness Measurement

The roughness of the spheres is obtained from the AFM image of the sphere. The
substrate with glued microspheres is fixed on the multi-axis piezo stage, and a standard
cantilever (having a sharp tip) is used to perform the roughness measurement. After
adjusting the laser on the cantilever, we centered the cantilever tip to one of the sphere
on substrate using optical microscope. For precise centering, we engaged the probe with
a sphere and by adjusting the x- and y-axis piezo offset, we obtain the exact center of
the probed sphere. We perform scanning at 90◦ scan angle, so each line of the image
is obtained by scanning the sphere in direction perpendicular to the long axis of the
cantilever. An example is shown in figure 1.7, where the 3D AFM height image and
section analysis for a microsphere are presented.

12



Instruments and Techniques used in this Thesis

Figure 1.7: (a) The 3D AFM height image and (b) height section analysis for a microsphere
are shown.

1.2.3 Piezoelectric Actuator

In our measurements, we required to scan the sample either in vertical or lateral
direction depending on the experiment. For this purpose, we have used a multi-axis piezo
stage (MAD CITY LABS) with a large travel range to control the position of the sample
(see figure 1.8). The device gives high load capacity, fast time response and subnanometer
resolution.

Figure 1.8: Image of the three-axis Piezo stage (NanoT series, Mad City Labs) used in
this experimental work.

However, in practical applications there exist hysteresis characteristics in piezoelectric
materials, which seriously affects the control accuracy of the piezoelectric stage [77]. The
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piezo was deriven under closed loop using the controller model (NanoT series, Mad City
Labs). In this technology, the resistive strain gauges sensors are mounted on the piezo-
electric. These are specifically designed for the closed-loop configurations, which allows
to reduce the hysteresis in the displacement of the piezo when the input driving voltage
is varied.

An accurate calibration of the piezo for the applied voltages is mandatory to obtain a
quantitative information about the piezo displacement.

Vertical Displacement Calibration
The vertical displacement of the piezo is calibrated using an optical camera. This is one
of the simple methods. A microscopic calibrated slide (Motic), which is having calibrated
grids and the calibrated discs of diameter of 70µm and 150µm, is fixed on the piezo
stage. We track the motion of one of the disc for the given driving voltage and frequency.
The piezo displacement is obtained by observing the extreme positions of the disc. The
piezo calibration at driving frequency of 0.1Hz and different driving amplitude is pre-
sented in figure 1.9. The linear fitting of the data points gives the piezo displacement as
4.88±0.03µm/V .

Figure 1.9: The measured amplitude of the piezo displacement is shown versus the driving
amplitude. The linear fit (black line) gives piezo displacement per unit driving voltage as
4.88±0.03µm/V .

Lateral Displacement Calibration
The lateral displacement of the piezo is calibrated using a calibrated grating having a
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pitch of 0.9µm. The piezo is imposed to oscillate laterally after the cantilever comes in
contact with the grating. We have recorded both the voltage applied to the piezo and the
cantilever deflection to count the number of peaks for the given value of the input (applied
voltage and frequency). By multiplying the number of peaks to the pitch of the grating,
the piezo displacement is obtained. For the case of a driving amplitude of 2V and the
driving frequency of 25Hz, we count 20 peaks that corresponds to a piezo displacement
of 18µm (see figure 1.10). However, it is observed that the oscillation amplitude of the
piezo decreases for the large driving frequencies at the same driving amplitude, as shown
in table 1.1. The piezo displacement reduce to 6.04µm at driving frequency of 50Hz for
the same driving amplitude (i.e. 2V ).

Figure 1.10: The piezo calibration for two driving frequencies at different driving ampli-
tudes is presented. The linear fit (black line) gives the amplitude of the piezo displacement
per volt for the respective driving frequency. The values are extracted as 9.46µm/V and
3.02µm/V for the driving frequency of 25Hz and 50Hz, respectively.

Table 1.1: The measured lateral displacement values at driving amplitude of 1V are shown
at different driving frequencies.

Driving frequency Piezo lateral displacement
(Hz) (µm)
25 9.46
50 3.02
100 1.25

In figure 1.10, the measured amplitude of piezo displacement is plotted against the
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driving amplitude. We obtain piezo displacement of 9.46µm/V and 3.02µm/V for the
driving frequency of 25Hz and 50Hz, respectively.

Furthermore, during the experiment, we have also recorded the output of the piezo
(in volts) to be sure about the exact value of the vertical and lateral displacements. The
measured value is converted to nanometer by multiplying to the standard per volt value for
the vertical (4.9µm/V ) and lateral (20µm/V , at driving frequency of 1Hz) displacement.
As an example, the lateral output signal of the piezo at the driving frequency of 100Hz
and driving amplitude of 1V is shown in figure 1.11. We have extracted the value for the
amplitude of the output signal by fitting the curve using sine wave equation as 1.25 ±
0.1µm.

Figure 1.11: The measured lateral output signal of the piezo is shown for the driving
frequency of 100Hz and the driving amplitude of 1V . The amplitude of the lateral
displacement is extracted as 1272nm.

1.2.4 Lock in Amplifier

Lock-in amplifiers are used to measure the signal amplitude and the phase in relation
to a defined reference signal. It can be thought of as a band pass filter, which is having a
small bandwith and high quality factor. It is capable of extracting signals even in noisy
environments. It extracts signals in a defined band of frequency around the reference
frequency and effectively rejects all the other frequencies. A low pass filter set up is used
to measure the amplitude and the phase in relation to the reference. In principle, a lock-in
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amplifier mixes the input signal with the reference signal (figure 1.12 mixer) and that is
followed by passing it through a low pass filter to obtain the output (figure 1.12 low pass
filter) [66].

Figure 1.12: Schematic diagram for the working of the lock in amplifier.

The time constant and Dynamic Reserve (DR) play an important role in the standard
operation of the lock-in amplifier. The time constant displayed on the front panel of the
lock-in amplifier, is the time response of the low-pass filter. The time response is adjusted
to provide an optimal balance of the responsiveness and the stability. For instance,
when the time constant is very low, the lock-in gives an abrupt voltage response to a
change in the input signal, but the voltage reading is hardly stable enough for the precise
measurement. On the other hand, when the time constant is high, the voltage reading is
stable but the change in the input signal for high frequency responses can not be measured.

The DR is also a controllable parameter and is defined as the largest acceptable noise-
to-signal ratio. The actual value of the DR is not displayed on the panel but can be
adjusted from high to low. It should be kept as low as possible without overloading the
system. For a digital lock-in amplifier, the high DR results in more output noise from the
analog to digital converter. The DR is expressed in decibels (dB) and calculated using
the following relation:

DR = 20× log10

(︃
2

sens

)︃
− ACgain (1.1)

Where sens is the sensitivity (displayed on the front panel), which can be set to any value
between 10nV to 1V according to the experimental requirement. ACgain is set to 0dB
i.e. to the input limit of 1.6V during the experiments.

For the measurements presented in chapter 3, we have used lock-in amplifier (DSP
7280, Signal Recovery), as shown in figure 1.13, to excite the cantilever. The motion of
cantilever is detected at excitation frequency and driving amplitude, while using internal
reference signal. The cantilever deflection (vertical or lateral, depending on the experi-
ment) is set as the input of the lock-in amplifier. The output amplitude A(V ) and phase ϕ
(rad) of the cantilever oscillation are obtained from the output (rear panel) of the lock-in
amplifier. These output signals are recorded using an analog to digital (A/D) acquisition
board (PCI-4462, National InstrumentUSA).
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Figure 1.13: Lock in Amplifier model 7280 DSP used in experimental work.

1.3 The characteristics of the probes

A few of fundamental characteristics of this research work are enumerated as follow:

Spring Constant (Vertical Stiffness) of the cantilever
In order to measure the deflection caused by the interaction forces, the information re-
garding the vertical stiffness of the cantilever is necessary. In contact, the force Fz (also
referred as the normal force Fn) that deflects the cantilever in the vertical direction is
given as Fz = Fn = Zckc (figure 1.14(a)).

Torsional or Lateral Spring Constant of the cantilever
The lateral force Fl is typically used in the surface friction measurements where the can-
tilever is used to scan the surface in the direction perpendicular to the long axis of the
cantilever. This results in a twist in the cantilever and subsequently, the lateral output
voltage at the detector changes. The measured lateral voltage Vy is then converted to
force using the calibration values [78,79].

If y and ky are the lateral displacement and the lateral spring constant of the can-
tilever, the lateral force will be given by: Fl = ykl.

Figure 1.14: (a) the bending of cantilever for the applied force is shown (b) cantilever
at normal position in the middle and it twisted for the applied lateral force in opposite
direction to lateral displacement.
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Effective Mass of the cantilever
In case of one dimensional motion of the cantilever having uniform cross-sectional area
A, the effective mass m∗ of the cantilever will be defined as: [80]

m∗ = ρA

∫︂ l

0

(χ(x))2dx, (1.2)

and
m∗

m
=

1

l

∫︂ l

0

(χ(x))2dx =
1

4
. (1.3)

Where ρ is the density, l is the length and χ(x) is the beam profile of the cantilever (see
section 2.2.1). Equation 1.3 tells us that the ratio m∗/m is mode independent and that
the effective mass of the cantilever is constant, which is equal to 1/4 of geometric mass [81].

Resonant Frequency
The successive peaks of resonance are obtained by exciting the system with the small
amplitude oscillation at varying driving frequencies. The resonance is indicated by the
peak of the amplitude as the function of the frequency [82]. However, the amplitude shift
to a lower value for the succeeding resonances.

The angular frequency ω0 of the oscillator relates to the cantilever stiffness and its
effective mass as:

ω0 =

√︃
kc
m∗ . (1.4)

Quality Factor
The quality factor Q of a cantilever specifies the damping present in the system. The
bulk quality factor of the cantilever is given by:

Q =
m∗ω

γb
, (1.5)

where ω is the oscillation of cantilever in the fluid and γb is the bulk damping coefficient
of the cantilever in the absence of the interaction force. For a cantilever of length l and
width w, the resulting damping coefficient is given by following expression [83]:

γb = ρf
π2

4
w2lωΓi, (1.6)

where Γi is the imaginary part of the hydrodynamic function (see section 2.2.3, for details)
[84]. An additional force (−γintV ) is exerted on the cantilever during the hydrodynamic
interaction with the sample and the total force is given as:

F = −γtotV = −(γint + γb)V, (1.7)

where V is the velocity of the cantilever and the total damping γtot is the sum of γint the
damping due to the squeezed fluid and γb the bulk damping [85]. Thus the qulity factor
is given as:

Q =
m∗ω

γb + γint
, (1.8)
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1.4 Conclusion

AFM is introduced as a valuable tool to perform topographic imaging and interaction
force measurements. This is followed by a disscussion about the method to obtain a
colloidal probe. A few of the characteristics of the AFM probe are highlighted. The
experimental techniques including the roughness characterization of the spheres and the
calibration of the piezo are also presented.
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2.1 Introduction

Atomic force microscopy has found gradual increase in number of applications, but
a quantitative and comprehensive measurement cannot be materialized without a cali-
bration of the AFM cantilever. Irrespective of the mode of operation, the signals are
measured in volts and that need to be calibrated accurately for the calculation of force.
In short, the cantilever calibration is the primary requirement to conduct AFM studies.

Usually manufacturers provide the value of the spring constant of the cantilevers, but
those are not highly accurate. In addition, attachment of the sphere to the cantilever, in
many experiments, also alters the spring constant because of the length variation. Thus,
it is necessary for the handler to conduct proper calibration of the spring constant of
the cantilever. Many calibration techniques have been introduced over the years, but no
single method can be considered as the ultimate solution to the problem. The sections
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2.2 and 2.3 cover different methodologies used to calibrate the vertical and the lateral
stiffness, respectively. This will not only provide a thorough comparison between various
methods used for the calibration but will also help to analyze different methods suitable
for different experiments.

2.2 Normal Spring Constant Calibration

The simplest description for the normal spring constant of the cantilever is that it
relates the applied load to the subsequent bend of the cantilever. It is expressed using
the following relation [86]:

kc =
F

Zc

. (2.1)

The bending of the cantilever causes a change in the position of the reflected laser on
the photo sensitive detector, and as a result changes the measured signal. If ∆Vn is the
change in the signal then the deflection of the cantilever is expressed as:

Zc =
∆Vn

β
, (2.2)

where β is the deflection calibration factor that is obtained from the slope data.

The deflection Zc (in volts) is recorded using an acquisition card (see figure 2.1(a)). It
is important to note that the deflection sensitivity depends upon the laser intensity and
the photo dectector sensitivity. We have used the deflection sensitivity, obtained from the
linear fit of the slope data as β = 0.024V/nm (as shown in inset of fig 2.1(a)), to convert
the measured signal in volts to nanometer (see figure 2.1(b)) [16]. Finally, the distance
between the probe and the substrate is obtained by adding the deflection Zc and the the
piezo displacement Zp as D = Zc + Zp (see figure 2.1(c)).

In next section a detailed discussion covers various methods for the vertical calibration
of the cantilever.

2.2.1 Geometry of Cantilever

In this work, both, the rectangular and triangular shape cantilevers are used in differ-
ent set of experiments.

Retangular Cantilever
In static situation, the expression for the deflection of a rectangular cantilever (having
length l, width w and thickness e) that is deflected by a constant force (see figure 2.2(a))
is given as:

EI
∂3Z(x)

∂x3
= −F. (2.3)

Where E is the Young modulus of the cantilever, I is the moment of inertia (for a rectan-
gular beam I = we3/12 ) and Z is deflection of the cantilever in z direction. Integrating

equation 2.3 with boundary conditions ∂Z(x=0)
∂x

= 0, ∂
2Z(x=l)
∂x2 = 0 and Z(x = 0) = 0 will

gives:
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Figure 2.1: Force-distance curve is obtained using the V-shaped cantilever (SNL−10) on
the mica surface in a liquid (a) the measured cantilever deflection Zc is shown as function
of piezo displacement ZP . Inset of the figure shows the fit (black solid lines) to obtain
the sensitivity (β = 0.024 V/nm) for the conversion of the measured deflection in volts to
nanometer. (b) Zc in nanometer as function of ZP . (c) Zc is shown versus the distance
D, with D = Zc + ZP .

∂Z(x)

∂x
=

F

EI

(︃
lx− x2

2

)︃
, (2.4)

and

Z(x) =
F

EI

(︃
lx2

2
− x3

6

)︃
. (2.5)

At the end of the cantilever, equations 2.4 and 2.5 become:

∂Z(x = l)

∂x
=

Fl2

2EI
=

F

kc

3

2l
=

3

2l
Z(x = l), (2.6)
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and

Z(x = l) =
F

EI

l3

3
. (2.7)

Using the equations 2.1 and 2.7, the spring constant of the cantilever is defined as:

kc =
3EI

l3
=

Ewe3

4l3
, (2.8)

and this equation is applicable when w << l.

Usually optical deflection method is used to measure the cantilever motion. In this
method, the inclination at the end of the beam ∂Z(x=l)

∂x
is measured instead of the cantilever

deflection Z(x = l) itself. Using equation 2.6, the deflection of the cantilever is related to
the inclination at the end of the cantilever as [87]:

Zc = Z(x = l) =
2l

3

∂Z(x = l)

∂x
. (2.9)

Figure 2.2: schematic of (a) rectangular and (b) triangular (V-shaped) cantilever.

In dynamic situation, the bending of the cantilever is given by Euler-Bernoulli equation
as:

EI
∂4Z

∂x4
+ ρwe

∂2Z

∂t2
= 0. (2.10)

Where ρ is the density of the material. A solution for equation 2.10 is given in the
following form:

Z(x, t) = χ(x)a(t). (2.11)

In equation 2.11 χ(x) is the beam profile of the cantilever and a(t) is the amplitude of
the cantilever oscillation. After inserting equation 2.11 in equation 2.10 and seperating
the variables in equation 2.10, we get:

∂2a(t)

∂t2
= −ω2a(t), (2.12)
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and
∂4χ(x)

∂x4
=

α4

l4
χ(x), (2.13)

where

α4 =
12ρω2l4

Ee2
, (2.14)

with ω being the angular frequency of the cantilever. At the end of the cantilever, χ(x)
must satisfy the following boundary conditions [87–89]:

χ(0) = 0;
∂χ(0)

∂x
= 0;

∂2χ(l)

∂x2
= 0;

∂3χ(l)

∂x3
= 0;

We obtain the expression for χ(x) as:

χ(x) =
1

2

(︃
(cos

α

l
x− cosh

α

l
x)− (

cosα + coshα

sinα + sinhα
)(sin

α

l
x− sinh

α

l
x)

)︃
, (2.15)

where
cosα coshα + 1 = 0. (2.16)

The solution of equation 2.16 gives values for the α for the respective modes of the
cantilever vibration. The values for the first six modes are presented in table 2.1.

Table 2.1: The values for αi, (i is the mode number), are given for the free end of the
cantilever.

i 1 2 3 4 5 6
αi 1.875 4.694 7.855 10.995 14.137 17.279

By inserting equation 2.11 and 2.15 into equation 2.9, we obtain a time-dependent
relation for the deflection of the cantilever (measured using the optical deflection method)
for the corresponding modes:

Zc(t)i =
2αi

3

sinαi sinhαi

sinαi + sinhαi

a(t)i. (2.17)

The prefactor multiplying to the amplitude indicates that the cantilever deflection is
deduced from the measurement of the inclination of the cantilever [87,88].

The cantilever stiffness ki for each mode i is given as:

ki =
α4
i

12
kc. (2.18)

V-shaped (triangular) cantilever:
These types of cantilevers (as shown in figure 2.2(b)) are calibrated using the parallel
beam approximation. In this approximation the legs of the V-shaped cantilever are con-
sidered to be two rectangular beams attached at a point. Thus the analytical solution
in case of the rectangular cantilever can be doubled to obtain the results for a V-shaped
cantilever. Correspondingly, the spring constant (equation 2.8) will be [90–92]:
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kc =
Ewe3

2l3
. (2.19)

Since, commercially available AFM cantilever are designed through Microelectrome-
chanical System (MEMS) process, which means that geometries and shapes of the can-
tilevers can deviate from the aimed parameters. For instance, in the case of triangular
cantilevers, most of the practically used cantilevers are not exactly V-shaped and hence
the spring constant changes with slight change in the cantilever length or shape. More-
over, two rectangular beams are not really parallel, but skewed. So, equation 2.19 is no
longer valid to obtain an accurate value for the spring constant. Keeping in view the
complexities, various authors came up with different incremental changes to the basic
equation (equation 2.19) for a V-shaped cantilever. Sader and White [93] expressed this
in the following way:

kc =
Ewe3

2l3

(︃
1 +

4w3

b3

)︃−1

, (2.20)

where b is the distance between the two beams of the V-shaped cantilever.

It should be noted that the equations (2.8, 2.19 and 2.20) are applicable, when the
load is applied exactly at the tip of the free end of the cantilever. However, there is a
possibility that the load might be applied at finite distance ∆l back from the end of the
cantilever. This results in a variation in the value of the spring constant, and now the

spring constant versus the length will be
(︁

l
l−∆l

)︁3
.

In our experimental work we used colloidal probes with microspheres larger in size
than the tip of the AFM cantilevers. It makes it even more complicated for an accurate
measurement of the point of loading along the length. We did not rely on this method
for the measurement of the spring constant of the AFM cantilever.

2.2.2 Added Mass Method

In this method, which is also known as Cleveland method, the spring constant is de-
termined by measuring the shift in the resonant frequency ω0 of the oscillating cantilever
following the addition of a known mass at the free end of the cantilever [94–96]. Typi-
cally,the attached mass is spherical in shape. The relation between the added mass Ms

and the resonance frequency is given by:

ω0 = 2πf =

√︃
kc

Ms +m∗ , (2.21)

or

Ms =
kc
ω2
0

−m∗, (2.22)

In order to find the exact value of the normal spring constant, several experiments are
required by attaching different masses at the end of the cantilever. The slope of the plot
Ms ∝ ω−2

0 yields a straight line that gives the spring constant of the cantilever.

The largest uncertainty with this method is the estimation of the added mass, which is
usually obtained with the measurement of the diameter of added mass. Additionally, the
position of the added mass from the base of the cantilever is also important, since, this
significantly affects the resonance frequency. Typically, optical microscope with image
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capturing ability is used to measure the diameter of the sphere and position of the sphere
on the beam. The complexity and time-demanding nature of the process add to its
disadvantages.

2.2.3 Normal Sader Method

This method involves the measurement of the resonance frequency ωf and the quality
factor Q for a rectangular cantilever immersed in a fluid. The dimensions of the cantilever
are determined using optical microscope, while resonance frequency and quality factor are
obtained by measuring the thermal noise spectrum or by exciting the cantilever [83, 86].
Normal spring constant is given by the following relation provided that the quality factor
needs to be greater than unity and that the length of the cantilever is larger than the
width, which in turn is larger than the thickness of the cantilever [97].

kc = 0.1906ρfw
2lQω2

fΓi(ωf ), (2.23)

where ρf is the fluid density and Γi is the imaginary part of the hydrodynamic function.
The hydrdodynamic function of an oscillating rectangular cantilever of infinite length
depends on the Reynolds number Re. This parameter gives relative influence of the
inertial and the viscous force, and expressed by:

Re =
ρfw

2ω

4η
, (2.24)

where η is the fluid viscosity. For the cantilever oscillating in the fluid, one needs to

consider an additional characterstic length δ =
√︂

2η
ρfωf

, which is penetration depth length

of the acoustic wave in fluid. Now the Re becomes a simple ratio of two lengths i.e.
Re = w2

2δ2
[83, 84,98,99].

For the values of the Re ranging between the 1 and 1000, the assumptotic expression
for the hydrodynamic function Γ(ωf ) = Γr(ωf ) + jΓi(ωf ) is given as:

Γ(ωf ) = a1 + a2
δ

w
+ j

[︁
b1

δ

w
+ b2(

δ

w
)2
]︁
, (2.25)

and the parameters are: a1 = 1.0553, a2 = 3.7997, b1 = 3.8018, and b2 = 2.7364 [84].

Although this method was developed for bare cantilevers, but Green et al [86] proposed
that equation 2.23 also holds for a cantilever, which is loaded with a sphere at the tip
provided that the size of the sphere is smaller than the width of the cantilever. However,
when the sphere diameter becomes comparable to or exceeds the width of the cantilever,
the flow around the cantilever changes and as a result the energy dissipated per cycle also
changes, which leads to an error in the calculation of the spring constant using equation
2.23.

Due to this limitation, we did not use this method for the calibration, since the di-
ameter of the spheres (collidal probes) used in this work were exceeding the width of the
cantilever.
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2.2.4 Thermal Noise Method

Equipartition theorem method
The motion of the cantilever induced by the thermal excitation was measured while setting
the sampling frequency and number of points in a proportional ratio. The experiment is
performed in pure water far from the substrate (mica). After adjusting the laser on the
tip of the probe, the temporal signals are recorded.

Figure 2.3: schematic is showing an oscillating AFM cantilever in fluid. The oscillation
is induced by the Langevin forces.

The deflection of the cantilever for each mode is given by equation 2.17. The vibration
of the cantilever is induced by the thermal excitation force. At thermal equilibrium every
independent mode i is described by harmonic oscillator driven by fluctuating noise force
with the mean value of energy equal to (kBT )/2. Where kB is Boltzmann’s constant and
T is the absolute temperature (Kelvin). Thus the mean square amplitude ⟨a2i ⟩ at the free
end of the cantilever for mode i is:

⟨a2i ⟩ =
kBT

ki
. (2.26)

From equation 2.18 and 2.17, we have:

⟨Z2
c ⟩ =

∞∑︂
i=0

4α2
i

9

(︃
sinαi sinhαi

sinαi + sinhαi

)︃2

⟨a2i ⟩, (2.27)

and using equation 2.26 we get:

⟨Z2
c ⟩ =

16

3

kBT

kc

∞∑︂
i=0

1

α2
i

(︃
sinαi sinhαi

sinαi + sinhαi

)︃2

. (2.28)

The sum is estimated numerically as:

∞∑︂
i=0

1

α2
i

(︃
sinαi sinhαi

sinαi + sinhαi

)︃2

=
1

4
. (2.29)
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Finally the equipartition theorem is:

kc⟨Z2
c ⟩ =

4

3
kBT, (2.30)

where ⟨Z2
c ⟩ is the cantilever deflection from mean position measured using the optical

deflection method.

In figure 2.4, the measured thermal vibration of the cantilever (MLCT type B, Bruker)
is presented. The value of ⟨Z2

c ⟩ is measured as 0.25 ± 0.05nm2. Using equation 2.30 the
spring constant was determined as kc = 0.022± 0.005N/m [87].

Figure 2.4: Temporal signal of the thermal vibration of the cantilever (MLCT type B,
Bruker) is depicted with sampling frequency of 200kHz. The spring constant of the
cantilever was determined as 0.022± 0.005N/m.

Power spectral density method
The stiffness of the cantilever can be obtained using the power spectral density (PSD)
of the cantilever thermal vibration. If F(T )i is the thermal force acting on the cantilever,
then the cantilever motion for mode i is expressed as:

m∗aï + γbai̇ + kiai = F(T )i, (2.31)

where γb is the bulk damping. Using Fourier transformation, we have:

F(T )i(ω) = (−m∗ω2 + jωγb + ki)ai(ω), (2.32)
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and

|ai(ω)|2 =
|F(T )i(ω)|2/m∗

(ω2
i − ω2)2 + (ωωi/Qi)2

. (2.33)

The quality factor and thermal noise force for mode i are given by Qi = m∗ωi/γb and
|F(T )i(ω)|2 = γbkBT , respectively [100]. The power spectral density is expressed as:

PSD(ai, ω) =
2kBTωi/Qi

πm∗
(︃
(ω2

i − ω2)2 + (ωωi/Qi)2
)︃ . (2.34)

In an AFM experiment, the cantilever deflection is obtained using cantilever inclination
(equation 2.17), So the equation of the PSD for mode i is given as:

PSD(Zc, ωi) =

[︃
4α2

i

9

(︃
sinαi sinhαi

sinαi + sinhαi

)︃2
2kBT/Qi

πkiωi

(︃
(1− (ω/ωi)2)2 + (ωωi/Qi)2

)︃]︃
, (2.35)

and for the all modes it will be:

PSD(Zc, ω) =
∞∑︂
i=1

[︃
4α2

i

9

(︃
sinαi sinhαi

sinαi + sinhαi

)︃2
2kBT/Qi

πkiωi

(︃
(1− (ω/ωi)2)2 + (ωωi/Qi)2

)︃]︃
.

(2.36)

In order to present the power spectral density in the frequency domain, we use
PSD(Zc, ω) = 2πPSD(Zc, f), then the equation 2.35 is expressed as:

PSD(Zc, fi) =

[︃
4α2

i

9

(︃
sinαi sinhαi

sinαi + sinhαi

)︃2
2kBT/Qi

πkiωi

(︃
(1− (f/fi)2)2 + (ffi/Qi)2

)︃]︃
. (2.37)

The power spectral density of the cantilever is the superposition of the contribution
from all modes. As the frequency, spring constant and quality factor are independent
parameters, equation 2.37 allows independent measurement of all these parameters from
a single measurement of power spectral density of the cantilever [101].

In figure 2.5, the power spectral density for the cantilever motion is calculated from
the measured temporal signal of the thermal vibration shown in figure 2.4. The first
three modes of cantilever vibration are shown. The fitting curve for the first mode of
the cantilever vibration is presented in figure 2.6. From the fitting, we obtained: f1 =
2948Hz, Q1 = 1.5 and k1 = 0.023 ± 0.005N/m. Likewise, for second mode we obtained:
f2 = 25240Hz, Q2 = 2.35 and k2 = 0.87± 0.02N/m.
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Figure 2.5: Power spectral density measured for the cantilever (MLCT type B, Bruker)
at sampling frequency of 200kHz.

Figure 2.6: From figure 2.5 the first mode of the PSD curve is fitted using equation 2.37.
The values extracted as: f1=2948Hz, Q1=1.5 and k1=0.023±0.005 N/m.

2.2.5 Hydrodynamic Drag Method

All the techniques discussed above for the normal spring constant calibrations have
their own set of advantages and limitations. But above all, these techniques are suitable
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for the determination of the stiffness of the bare cantilevers. Since, the colloidal probes
are used in most of our experimental work, and none of those methods give accurate
value for the stiffness of the colloidal probes. The presence of the particle (spheres of
known geometry) at the free end of the cantilever changes the point of loading onto the
cantilever, and as a result changes the stiffness.

The drainage force method is one of the simplest and most applicable methods for a
colloidal probe calibration. The schematic is shown in figure 2.7. It is equally applicable
for all types of cantilever provided that the radius of the colloidal probe and the viscosity
η of the fluid are known. In this method, we measure the hydrodynamic force experienced
by the sphere that is moving towards a hard substrate in a liquid [102].

Figure 2.7: Schematic for a colloidal probe approaches a hard substrate at velocity V0 in
a viscous fluid.

For small Reynolds number and for very small gap i.e. D <<
√
2RD, the flow

is described using the Navies-Stokes and the continuity equation in the framework of
lubrication approximation as:

η
∂2Vr

∂z2
= −∂P

∂r
, (2.38a)

∂P

∂z
= 0. (2.38b)

∂Vz

∂z
+

1

r

∂

∂r
(rVr) = 0, (2.38c)

Where Vr is the radial component of velocity, Vz is the vertical component of velocity
and P is liquid hydrodynamic pressure. If the instantaneous distance between the sphere
and the substrate is D and the sphere is approaching the substrate, which is placed at
z = 0, with velocity of V0, then the parabolic approximation gives the thickness of the
confined liquid as h(r) = D + r2/2R.

Integrating equation 2.38a, we have:

Vr =
1

η

(︃
∂P

∂r

z2

2
+ a0z + b0

)︃
, (2.39)
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Applying initial boundary conditions of no slip at z = 0 and z = h, we get:

Vr =
1

2η

∂P

∂r
z(z − h). (2.40)

Integrating equation 2.38b, after inserting Vr from equation 2.40 and applying initial
boundary conditions for the velocity at z = 0 and z = h. We get:

Vz(z = h) = V0 =
1

12ηr

∂

∂r

(︃
rh3∂P

∂r

)︃
, (2.41)

and from 2.41 we have:
∂P

∂r
=

6ηrV0

h3
. (2.42)

The hydrodynamic force Fh between the sphere and the substrate is calculated as:

Fh =

∫︂ ∞

0

P (r)2πrdr, (2.43)

Integrating equation 2.42 and then equation 2.43. we obtain [103]:

Fh = 6πηV0
R2

D
. (2.44)

This equation is valid for the distances that satisfy the lubrication approximation (D <<√
2RD). For the general case, Brenner [104] has formulated an equation for hydrodynamic

drag force acting on a sphere that moves toward a solid plane in a fluid, as:

F = 6πηRV0λ, (2.45)

where λ is the correction to the stoke’s law and given as:

λ =
4

3
sinhα

∞∑︂
n=1

n(n+ 1)

(2n− 1)(2n+ 3)

[︃
2 sinh(2n+ 1)α + (2n+ 1) sinh 2α

4 sinh2(n+ 0.5)α− (2n+ 1) sinh2 α

]︃
, (2.46)

where α = cosh−1(R/D) is the ratio of sphere radius to the sphere-sample separation.
For a distance too large than the sphere radius λ ∼ 1; equation 2.45 becomes:

F = 6πηRV0. (2.47)

For the case of small distance where the sphere radius is larger than the distance, the
λ ∼ R/D,

F = 6πηRV0
R

D
. (2.48)

This relation is used to calculate the drag force on the sphere attached to an AFM
cantilever. In quasi-static equilibrium condition the hydrodynamic force will induce the
static deflection in the colloidal probe, and the measured force F = kcZc relates to the
equation 2.48 as:

6πηV0
R2

D
= kcZc, (2.49)

or
Zc

V0

=
6πηR2

kc

1

D
. (2.50)
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Where kc is the spring constant of the cantilever. First we convert the measured deflection
signal from volt to nanometer (see section 2.2) and than we obtain the spring constant in
N/m using the equation 2.50 as discribed below.

We present here the calibration of the cantilever, which is used chapter 4, where a
polystyrene microsphere of radius R = 20 ± 0.5µm is glued to a rectangular cantilever
(NSG-11/tipless) to obtain a colloidal probe. A freshly cleaved mica sheet, which was used
as substrate, fixed on the piezo stage that controls the approaching velocity. A few drops
of solution (with viscosity measured as η = 49 ± 1mPa.s) is poured in to immerse the
colloidal probe close to the substrate. We first calibrated the photodiode sensitivity on a
hard silicon substrate at low velocity of 400nm/s to obtaine the sensitivity β = 0.037V/nm
(that allows to convert the vertical deflection in volts to defelection in nm). Then the
deflection signals were recorded to obtain the force in nN versus distance for lager velocity.
The relative velocity was obtained by doing time derivative of the distance [105].

The deflection of the cantilever Zc and the velocity for one of the measurements are
shown in figure 2.8. As we reduce the gap between the sphere and the substrate, the
cantilever starts to deflects away under the influence of the hydrodynamic force. The
relative velocity is the difference between the velocity imposed by the piezo displacement
and the velocity at which the cantilever deflect away. At the proximity of the substrate,
the deflection of the cantilever increases and the relative velocity decreases.

Figure 2.8: For the cantilever used in chapter 4, the cantilever deflection (red square) and
relative velocity (blue circle) are shown as function of tip-sample separation.

The measured drag force is the sum of the drag force on the cantilever beam and
the drag on the sphere. But when the distance between the sphere and the substrate is
smaller than the sphere radius, then drag force is dominated by the drag on the sphere,
so we neglect the drag on the cantilever.
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In the above relation (equation 2.50) the only unknown parameter is the spring con-
stant of the cantilever. In figure 2.9, we present the ratio of the cantilever deflection to
the approaching velocity versus the distance. We obtained the spring constant of the can-
tilever as kc = 3.9± 0.1N/m, by fitting the curve using equation 2.50. It is observed that
very close to the substrate, the validity of equation 2.50 may be affected due to the con-
tribution of the partial boundary slip. Additionally, the roughness of the colloidal probe
and electrostatic force also affect the accuracy of the measurements at smaller separation.
To avoid these aspects, we have used the data for the distance larger than 200nm.

Figure 2.9: For the calibration of the cantilever used in chapter 4, we present the ratio
of the the cantilever deflection to the approaching velocity versus the distance. The
solid black line is the fitting using equation 2.50, which gives the spring constant of the
cantilever as kc = 3.9± 0.1N/m.

Similarly, the cantilever used in chapter 3 was calibrated using this drainage method.
The ratio of the approaching velocity to the cantilever deflection versus the distance
are presented in figure 2.10. The fitting using equation 2.50 gives the force constant as
kc = 0.25± 0.2N/m.

35



2.3. Lateral Force Calibration

Figure 2.10: For the calibration of the cantilever used in chapter 3, we present the ratio
of the approaching velocity to the cantilever deflection versus the distance. The spring
constant of the cantilever is obtained by fitting the data in linear region (dark sold line).
From the fitting we obtained kc = 0.25± 0.2N/m.

2.3 Lateral Force Calibration

Lateral force calibration is more challenging than the normal force calibration because
of the difficulty in determining the lateral deflection sensitivity. Additionally, the lateral
spring constant is much larger than the normal spring constant of the cantilever [78, 79].
Over the last two decades, several methods are developed for the lateral force calibration.
Keeping in view the wide acceptability and usage of LFM as a technique, the search for an
established and precise lateral calibration technique is inevitable [106]. Once the lateral
calibration factor is obtained, then the multiplication with the change in lateral signal
∆Vl gives the lateral force Fl :

Fl = α∆Vl, (2.51)

with α being lateral conversion factor [16].

In this section we will discuss different calibration methods in analogy to the techniques
used for the normal force calibration.

2.3.1 Geometry of Cantilever

The torsion constant is a geometrical property of the rectangular beam, which gives
the relation between the angle of twist θ and applied torque τ . This constant along with
the geometry of the beam gives the torsional stiffness kϕ as:
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kϕ =
τ

θ
=

GJ

l
, (2.52)

where kϕ is the torsional spring constant or torque constant in newton-meter per radian,
G is the shear modulus and J is torsion constant. For a rectangular bar, axis passing
through the base of the bar, the torsion constant will be J = we3/3. Applying this to the
case of a rectangular cantilever, the torsional spring constant kϕ for an AFM cantilever is
described as:

kϕ =
Ge3w

3l
. (2.53)

If the rectangular cantilever has a tip or for the colloidal probe, the torsional stiffness
relates to the lateral stiffness kl by the following relation:

kl =
kϕ

(h+ e/2)2
, (2.54)

with h is the torsional moment of arm, it corresponds to the distance from the point
of action of the lateral force (that acts on the end of tip) to the twisting axis of the
cantilever. In the case of a colloidal probe, its the colloidal diameter plus the neutral axis
of the cantilever that gives moment of arm.

The lateral spring constant is related to the normal spring constant by:

kc
kl

=
3E

4G
(
h

l
)2. (2.55)

The relation between the Young modulus and the shear modulus is given as: E = 2(1+v)G.
For an isotropic materials with positive Poisson’s ratio the Young modulus of the cantilever
is always greater than the shear modulus [107]. For a rectangular cantilever having a tip
of height h of a few micrometers, the square of ratio between h and l is smaller, which in
turn gives smaller value for the ratio between the normal and lateral spring constant [16].
Whereas, in case of a colloidal probe with a large sphere, the torsional moment of arm
h (h = 2R) becomes large and thus the ratio between the two spring constant is also
expected to be large.

2.3.2 Torsional Sader Method

This method is derived in an analogy to the normal Sader method. Considering the
case of a rectangular cantilever where the length of the cantilever is larger than its width
and the width is greater than the thickness of the cantilever, the torsional spring constant
kϕ is given by [83]:

kϕ =
1

3π2
ρw3elω2

t(vac), (2.56)

where ρ is the cantilever density and ωt(vac) is the radial resonant frequency for torsional
vibrations in vaccum. This equation 2.56 is of limited use because of difficulties in mea-
suring the cantilever geometry. In addition, the assumption for the cantilever density
being homogeneous is not always valid [86]. Thus for the case, when the quality factor
of the cantilever’s torsional resonance peak is greater than one, ωt(vac) is related to the
torsional resonant frequency in fluid ωt by the following relation:

ωt(vac) = ωt

(︃
1 +

3πρfw

2ρh
Γt
r(ωt)

)︃1/2

, (2.57)
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and also we have [108]:

ρe =
3πρfw

2

[︃
QtΓ

t
i(ωt)− Γt

r(ωt)

]︃
, (2.58)

where ρf is the fluid density, Qt is quality factor of torsional resonance peak, Γt
i(ωt) and

Γt
r(ωt) are the imaginary and the real part of hydrodynamic function, respectively. By

inserting equation 2.57 and 2.58 in equation 2.56, we obtain the required expression for
the torsional spring constant at the end of the cantilever as [83,108]:

kϕ = 0.1592ρfw
4lQtω

2
tΓ

t
i(ωt). (2.59)

This equation is only valid when Qt >> 1.

2.3.3 Torsional Cleveland Method

The normal Cleveland method (added mass method) is extended for the calibration
of torsional spring constant of an arbitrary geometry. The torsional spring constant in
relation to the radial resonanant frequency ωt is given as,

ω2
t =

kϕ
Je

, (2.60)

where Je is the effective mass moment of inertia of the cantilever. For a colloidal probe,
equation 2.60 is modified as:

ω2
t =

kϕ
Je + J

, (2.61)

where J is the mass moment of inertia for the added mass, which is assessed using Parallel
axis theorem provided that the diameter of the added spherical mass is greater than the
thickness of the cantilever [109]:

J =
7

5
MsR

2, (2.62)

Where Ms and R are the mass and radius of the added spherical mass, respectively.
Inserting equation 2.62 in equation 2.61, we have:

ω2
t =

kϕ
7/5MsR2 + Je

, (2.63)

The above relation is rearranged by replacing the mass with the density ρ and radius of
the sphere.

28πρR5

15
=

kϕ
ω2
t

− Je. (2.64)

Following the torsional resonant frequency measurements for different spherical masses
attached to the end of cantilever, the linear plot of 28πρR5

15
against ω−2

t gives the torsional
spring constant kϕ of the cantilever [86].

2.3.4 Thermal Noise Method

In an analogy of section 2.2.4, this method can be used for the lateral (torsional angle
measurement). The equivalent equation for a sphere executing thermal torsional vibration
is given as:

1

2
KBT =

1

2
kϕ⟨ϕ2⟩, (2.65)
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where ⟨ϕ2⟩ is in radians and depicts the mean square angular displacement of the can-
tilever. The torsional angle of the cantilever relates to the lateral voltage change Vy as:

ϕ = sVy, (2.66)

where s is the angular inverse optical lever sensitivity and measured in radian per volts
[110].

2.3.5 Hydrodynamic Drag Method

The lateral force calibration, such as for the normal force calibration, is generally
comprises of two steps: measurements of optical lateral sensitivity (nm/V ) and deter-
mination of lateral spring constant of cantilever (nN/µm). However, an one-step lateral
force calibration method is used in this work. In this method, the lateral force/torque
conversion factor kl

t in (µN.µm/V ) is measured in a viscous fluid by applying the lateral
forces of known magnitude to the AFM colloidal probe, which is placed close to the sub-
strate. The one-step calibration method has an additional advantage of doing non-contact
measurements that minimize the risk of damage to the probe.

In this work, we opted for in situ hydrodynamic method for lateral calibration of
our cantilevers. In this method, the probe is placed close to the substrate immersed in
a viscous liquid. The lateral motion of the substrate generates a creeping Couette flow,
which induces a twist in the AFM colloidal probe by exerting viscous drag force and torque
on the probe. The working principle and experimental set up are illustrated in figure 2.11.
The colloidal probe is fixed in the liquid cell and placed close to a freshly cleaved mica
substrate (that is fixed on piezo stage) in a solution having viscosity of η = 49mPa.s. In
order to induce the lateral motion of the substrate, the frequency and the voltage of the
piezo are set to the desired values using a function generator. It is noteworthy that the
distances ho between the sphere and the substrate must satisfying the condition ho

R
< 1.

We repeated the experiment for different distances and different frequencies [111].

The direction of shear U , force and torque produced are shown in figure 2.11. The
force F and the torque τ exerted by the fluid onto the sphere are given as:

F = 6πηRUf ∗, (2.67)

τ = 8πηRUτ ∗, (2.68)

where f ∗ and τ ∗ are the normalized scaler force and torque, respectively. These normalized
quantities can be positive or negative depending only upon the ratio ho/R, and are given
by the asymptotic formula of Goldmen et al as:

f ∗ = c1 ln
ho

R
+ c2, (2.69)

τ ∗ = c3 ln
ho

R
+ c4, (2.70)

where the interpolation coefficients are: c1 = −8/15, c2 = 0.9588, c3 = 1/10 and c4 =
0.1895 [112,113].

It is observed that the lateral voltage change Vy for a bare cantilever is negligible
as compared to the colloidal probe under the same experimental conditions. Therefore,
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Figure 2.11: Schematic illustration for hydrodynamic lateral force calibration. An AFM
colloidal probe placed close a substrate in a viscous liquid having lateral velocity U . The
direction of viscos drag force and torque are shown that are result of the creeping couette
flow.

it is concluded that the twist in the cantilever is mostly due to the drag force and the
torque acting on the sphere. Additionally, it is also assume that the viscous loading on
the colloidal probe is applied to the center of the sphere. However, for very small distance
the hydrodynamic force center might not be identical to the geometrical center of the
colloidal probe, because the fluid motion around the sphere close to the substrate is not
exactly symmetric. It was proposed that the offset in the centers needs to be considered
if ho/R < 0.05 [114]. This ratio was always greater than 0.25 in our experiments, so we
did not consider the center offset in our measurements.

The total torque experienced by the probe is τtot = RF + τ , and using equations 2.67,
2.68, 2.69 and 2.70 we write it as:

τtot = 6πηR2U

[︃
− 8

15
ln

ho

R
+ 0.9588 +

8

60
ln

ho

R
+

8

6
0.1895

]︃
(2.71)

Using the above relation, we have calculated the total torque applied to the cantilever for
a given velocity and distance.

After placing the probe close to the substrate, the lateral motion of the substrate
is tuned (from low to high) by varying the amplitude of the lateral oscillation at given
frequency and distance. For the given piezo input values, the lateral displacement of
the piezo is recorded to obtain the lateral velocity. Using the sine wave equation, the
amplitude of the lateral velocity is calculated by fitting the velocity-time plot. Figure
2.12 shows an example of the measurement.

The torsion of the cantilever is measured by acquiring the lateral deflection of the can-
tilever. This enables us to know the amplitude of the lateral voltage change Vy produced
as a result of twist in the cantilever. The measured lateral voltage change Vy versus time
at different velocities and distances is shown in figure 2.13. An increase in the amplitude
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of the lateral deflection is observed: when the substrate is moved at a higher velocity
(figure 2.13(a) and also when the AFM probe is closer to the substrate (figure 2.13(b)).
Thus, we conclude that the torsion of the cantilever increases with increasing velocity and
also with the decreasing sphere-substrate distance.

Figure 2.12: Examples of lateral velocity as function of time at different scanning speed.

Figure 2.13: The torsion of the cantilever Vy as a function of time(a) the torsion Vy is
plotted for different lateral scanning velocities but at same distance of 5.83µ m. (b)the
torsion Vy is plotted for same scanning speed amplitude of 2 µm/s for different distances.

The tip-substrate separation is controlled using step motor in small steps movement
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of 1µm. Once the velocity, distance and amplitude of lateral voltage are measured, the
total torque produced in the cantilever is obtained using equation 2.71. The plot of the
total torque produced versus the lateral voltage change shows a linear increase, as shown
in figure 2.14. The linear fit of the plot gives the lateral torque conversion factor kl

t.

Figure 2.14: Hydrodynamic calibration of the conversion factor kl
t(N.m/V ) in liquid:

Applied torque versus the lateral deflection. The measurement was performed in solutions
of (water + glycerol solution with viscosity 49cSt) and at working frequency of 120Hz.
The dashed (fitting) line gives lateral force conversion factor for all the distances. We
have choosen kl

t = 1.31× 10−11N.m/V from small tip-substrate separation.

The calibrated lateral force conversion factor (see figure 2.14) at different distances
gives slightly different values. One of the reasons for the deviation of kl

t is the error in the
determination of the tip-substrate separation. The uncertainty in the measurement of h0

is possibly contributed by two factors: first, the sphere did not seem to return to the same
position after each traverse during the determination of ho and it is inevitable because of
nonlinearity and creep of the motor [111]; second, we have ignored the cantilever drag,
which more likely modifies the flow around the colloidal probe. The relative contribution
of this effect on the torque becomes smaller as the tip-substrate separation decreases, but
reducing the distance to too low value induces an error in the evaluation of the torque.
We have found that ho ≈ 6µm appears to be a good compromise that gave a conversion
factor as kl

t = 1.31× 10−11N.m/V .

42



Calibrations

2.4 Conclusion

In this chapter, we have presented different calibration techniques and highlighted
the practical limits in each method. It is concluded that among all the methods, the
hydrodynamic drag method gave an accurate value for the spring constant of the colloidal
probe. The practical implementation of other methods has its own set of constraints.
For instance, in the thermal noise method, the attachment of the probe to the cantilever
tip induces a torque due to motion in x-axis. This motion contributes to the thermal
vibration of the probe in z-axis and resulting in a false estimation of the spring constant
of the cantilever. The Sader method was developed specifically for the bare cantilevers.
In added mass method, the complexities and difficulties in the measurement of the size
and position of the sphere on the cantilever add to its disadvantages. The uncertainty
and error in the calibration of the colloidal probes using the geometry of the cantilever
method are caused by the variation in length, difficulty in thickness measurement and
inhomogeneous density of the cantilever.

The hydrodynamic force method is used to calibrate the lateral and vertical force.
The hydrodynamic force will be experienced by a colloidal probe in a viscous fluid. For
the case of vertical spring constant calibration, the hydrodynamic force is measured by
recording the deflection of the colloidal probe. The drainage method is adopted because of
its simplicity and higher accuracy compared to other methods. In case of the lateral force
calibration, the hydrodynamic drag method is used to obtain the lateral force conversion
factor. Here a laterally moving substrate generates creeping Couette flow, whicht induces a
torsion of the colloidal probe. From the plot of the applied torque to the cantilever versus
the lateral deflection amplitude (volts), we have computed the lateral force conversion
factor (by the linear fit of the plotted data).
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Chapter 3

Viscoelastic Properties of PDMS
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3.1 Introduction

Mechanical properties of thin soft solids are of great interest for many emerging ap-
plications including photonics, microelectronics, and biosensors [115]. The mechanical
traits of thin surfaces differ significantly from those of the bulk materials because of
theire reduced dimensions, large surface-to-volume ratio and unique microstructure. The
qualitative difference between the thin soft solids and stiff materials is observed in elastic
instabilities during adhesion [116, 117] and Schallamach waves in friction [41, 118]. The
mechanical features such as the hardness, adhesion, elastic modulus and yield strength
are critical for the comprehensive investigation of a thin film [119].

Methods, such as the tensile testing, bending tests and indentations are used for the
mechanical characterizations of the materials. For a thin film, AFM is one of the tools
that allows excellent force sensitivity, surface imaging and nanomechanical characteriza-
tion measurements. AFM probe of known shape is used as nano-indenter to measure the
variation of the cantilever deflection versus the indentation in the sample under applied
normal compression [16, 18, 120–122]. Using an AFM, it is possible to perform nanome-
chanical characterization of materials with modulus in range of kPa to GPa [34, 123].
However, there are limitations in the measurement of elastic moduli for the soft and bio-
logical samples using a direct contact method. There is often a strong adhesion observed
between the sample and the probe. It is not only difficult to account for the adhesion,
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but the contact area in the adhesive contact is also difficult to measure [124, 125]. In
addition, the sample damage and the probe contamination may also occur during these
measurements, especially for the biological samples [126].

Contactless measurement is an alternative to the direct contact methods. Here, the
nano-hydrodynamic interaction between a probing sphere and a soft sample in liquid
environment makes it possible to assess the mechanical properties of the sample surface
[22, 23]. At a small gap between a vibrating sphere and the substrate, the generated
hydrodynamic pressure becomes large enough to induce deformation of the substrate,
which leads to the elastohydrodynamic (EHD) coupling. Over the years, various tools and
methods have been developed to probe the mechanical properties of the soft interfaces.
Using the dynamic surface force apparatus, team of Elisabeth Charlaix has performed
mechanical characterization of surfaces of various rigidity ranging from soft surface to the
hard surface like glass at low frequencies (i.e. less than 100Hz) [19, 21, 127]. Guan et al
have used vibrating nano-needle glued to the AFM cantilever to probe the viscoelastic
properties of the PDMS surfaces [128] and living cells [129]. In these measurements,
they fixed the probed frequency to a single value given by the resonance frequency of
the cantilever. Nonetheless, the technique based on the vibrating the probe close to a
substrate inspired to probe the rheological properties at different frequencies.

Usually, the frequency dependent rheology of soft solid is probed at macroscale with
conventional shear rheometers where the sample is fixed between the two rotating parallel
plates [30–32]. Imposing a rotating displacement on one plate and measurement of the
applied torque on the other one, allows to extract the complex shear modulus of the
system. This method requires a perfect contact between the sample and the plates of
the rheometer. The dynamic colloidal AFM method is a good candidate to probe the
EHD interaction at nanoscale for different vibration frequencies without such constraint.
It allows working in large frequency range from 20Hz up to few kHz, depending on the
resonance frequency of the cantilever [33–35].

In this work, we performed viscoelasticity measurements of the soft and thin polymeric
films using the dynamic colloidal AFM technique. The measurements for the mechanical
response of a thin soft solid (PDMS) are presented as a function of the separation between
the probe and the substrate. From the mechanical response, the loss and storage moduli
of the soft solid are obtained. The measured viscoelasticity of the thin PDMS sample
for different frequencies are in good agreement with the Chasset-Thirion model for the
frequency response of a soft gel. Our measurements demonstrate that the contactless
colloidal AFM technique is a powerful tool for probing the soft interface over the wide
range of excitation frequencies.

3.2 Experimental Details

3.2.1 PDMS sample preparation

PDMS samples were prepared on cover-slips (with a size of 24 mm× 24 mm) using
the spin-coating method. The uncross-linked PDMS and the curing agent (Sylgard 184,
Dow Corning) were mixed in a weight ratio of (71:1) and then degassed in a vacuum. A
droplet of solution spin-coated on the cover-slip for a minute to obtain the PDMS sample
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with a thickness of 26 ± 3µm. For an efficient cross-linking these coated substrates are
cured at 50◦ C for 24 hours in an oven.

3.2.2 Dynamic AFM Method

The experiments were performed using an AFM (Bioscope II, Bruker), which is equipped
with a liquid cell (DTFML-DDHE) that allows working in a liquid environment. The
schematic for the experimental setup is shown in figure 3.1. The colloidal probe was ob-
tained by gluing a borosilicate sphere of radius R=55±1µm at the tip of a silicon nitride
cantilever (SNL-10, Bruker, USA). The sample was fixed on the piezo stage, which was
used to control the distance between the sphere and the sample by imposing the verti-
cal displacement to the substrate at low velocity. Dodecane, having viscosity of η=1.34
mPa.s, was used as the working liquid in the experiment. The stiffness of the cantilever
kc = 0.25± 0.2N/m was determined using the drainage method (see section 2.2.5).

We have used signal access module (Nanoscope III, Bruker) that allows to control
the input signal of the AFM (driving frequency and amplitude) and also gives access
to the measured output signal of the AFM (deflection, lateral deflection etc.). The DC
component of the cantilever deflection was recorded and the AC component was used as
an input to lock-in amplifier (Signal Recovery, 7280 DSP) to measure the amplitude A
and the phase φ of the cantilever oscillation.

Figure 3.1: The schematic for the experimental setup based on dynamic collidal AFM
method is shown. A colloidal probe is vibrating close to the substrate in a viscous liquid.
The cantilever motion is the sum of the deflection and the base oscillation.

The base of the cantilever was oscillated using the piezo with driving amplitude of Ab

and frequency ω. Meanwhile, the substrate on multi-axis piezo stage is monitored to ap-
proach the oscillating probe. The amplitude A and the phase φ of the cantilever deflection
were recorded as a function of the piezo displacement. The deflection of the cantilever
was also recorded and used to determine the tip-sample separation. It is observed that
in a liquid environment (i.e. for low quality factors), the amplitude of the cantilever will
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not be very large compare to the base displacement. Thus, the cantilever motion will be
the sum of the base and the deflection oscillation of the cantilever [130–132].

If the instantaneous deflection of the cantilever is X = Aej(ωt+φ) and the base displace-
ment of the cantilever is given by Zb = Abe

jωt, then the total displacement of cantilever
is given as:

Z = Aej(ωt+φ) + Abe
jωt. (3.1)

The motion of the cantilever is given by the harmonic oscillator model as:

m∗Z̈ + γbŻ + kcZ = Fd + Fh. (3.2)

Wherem∗ and kc are the effective mass and spring constant the cantilever, respectively.
While, Fd is the driving force in liquid and Fh is the force corresponding to the interaction
between the tip and the sample. For the oscillations with an amplitude smaller than the
interaction length; the Interaction force is linearized and given as Fh = −(kintZ + γintŻ).
This expression comprises of two terms: a conservative one (kintZ) and dissipative one
(γintŻ). Here γint and kint are the interaction damping and stiffness, respectively. The
equation 3.2 is rearranged as:

m∗Z̈ + γbŻ + kcZ = Fd − kint − γintŻ. (3.3)

The driving force is induced by the displacement of the cantilever base and calculated
as [132–134] :

Fd = (m∗ω2 − jωγb)βAde
jωt, (3.4)

where β ≈ 1.565 [131].

However, in a real experiment, part of the cantilever excitation comes from the can-
tilever base vibration and the other part comes from the acoustic waves that propogates
from the piezo-actuator through the fluid. The accurate determination of the contribution
of the acoustic wave is not an easy task, since it depends on the geometry and the fixation
of the cantilever in the holder. It is much easier to measure the whole driving force for a
given cantilever in a liquid. The general expression for the total driving force in a liquid
far from the substrate (which means the interaction force is neglected) can be written
as [132]:

Fd = (F1 + jF2)e
jωt. (3.5)

In the above relation, the term F1 is in phase with the base vibration, while F2 is the
phase quadrature. The expression for these terms is obtained by inserting equation 3.1
and 3.5 in equation 3.2, and using Fh = 0 :

F1 = kcAfree

[︃(︃
1−

(︃
ω

ω0

)︃2)︃
cosφfree −

(︃
ω

ω0Q

)︃
sinφfree

]︃
, (3.6a)

F2 = kcAfree

[︃(︃
1−

(︃
ω

ω0

)︃2)︃
sinφfree +

(︃
ω

ω0Q

)︃
cosφfree

]︃
. (3.6b)

Where Q is quality factor, ω0 is resonance of the cantilever,while Afree and φfree are the
amplitude and the phase of the cantilever far from the substrate, respectively. During the
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tip-sample interaction, the interaction stiffness and damping come into play and equation
3.3 is written as:

m∗Z̈ + (γb + γint)Ż + (kc + kint)Z = (F1 + jF2)e
jωt − (kint + jωγint)Abe

jωt, (3.7)

and under the study condition,

kint + jωγint =
F1 + jF2 + (m∗ω2 − kc − jωγb)Ae

jφ

Aejφ + Ab

=
F1 + jF2 + [(ω/ω0)

2 − 1− jω/ω0Q]kcAe
jφ

Aejφ + Ab

, (3.8)

By separating the real and imaginary part of the equation 3.8, we obtain the expressions
for the interaction damping and stiffness as:

ωγint
kc

=

− AF1

AbkcAb
sinφ+ F2

kcAb

(︃
1 + A

Ab
cosφ

)︃
− A

Ab
sinφ

(︃
1− ω2

ω2
0

)︃
− Aω

Abω0Q

(︃
A
Ab

+ cosφ

)︃
1 +

(︃
A
Ab

)︃2

+ 2 A
Ab

cosφ

,

(3.9a)

kint
kc

= −1+
ω2

ω2
0

+

AF1

AbkcAb
cosφ+ AF2

AbkcAb
sinφ+

(︃
1 + A

Ab
cosφ

)︃(︃
1− ω2

ω2
0

)︃
+ F1

kcAb

Aω
Abω0Q

sinφ

1 +

(︃
A
Ab

)︃2

+ 2 A
Ab

cosφ

.

(3.9b)
Moreover, the expressions for the amplitude and the phase of the cantilever deflection
were obtained as :

A = β
Ab

√︁
(ω2 − kint/m∗)2 + (γtotωω0/γbQ)2√︁

(kint/m∗ + ω2
0 − ω2)2 + (γtotωω0/γbQ)2

, (3.10a)

φ = − arccos

(︃
m∗ω2 − kint√︁

(m∗ω2 − kint)2 + (γtotω)2

)︃
+arccos

(︃
−m∗ω2 + kc − kint√︁

(m∗ω2 − kc − kint)2 + (γtotω)2

)︃
,

(3.10b)
where γtot = γb + γint is the total damping. When the AFM cantilever is far from
the surface, the above equations (3.10a and 3.10b) for the amplitude and phase of the
cantilever are expressed as:

A = β
Abω

√︁
(ω2 + ω0/Q)2√︁

(ω2
0 − ω2)2 + (ωω0/Q)2

, (3.11a)

φ = − arccos

(︃
ω2√︁

ω4 + (ωω0/Q)2

)︃
+ arccos

(︃
ω2
0 − ω2√︁

(ω2 − ω2
0)

2 + (ωω0/Q)2

)︃
. (3.11b)

We excited the cantilever far from the substrate and recorded the amplitude Afree (red
circles) and phase φfree (blue squares) as function of the oscillation frequency, as shown
in figure 3.2. The black solid line is the fitting curve using equation 3.11a. We extracted
the resonance frequency ω0/2π = 1375Hz± 5Hz and the quality factor Q = 2.8± 0.1 for
the cantilever. The driving forces F1 and F2 versus the frequencies are shown in figure 3.3.
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Figure 3.2: Amplitude (red circles) and phase (blue boxes) measured far from the PDMS
(71:1) surface in viscous liquid dodecane. The solid line is the fit using the equation 3.11a
and we obtained ω0/2π=1375±5Hz and Q = 2.8± 0.1.

Figure 3.3: The real F1 and imaginary F2 components of the driving force are shown.
These components were calculated from the amplitude and phase data in figure 3.2 using
equation 3.6a and 3.6b.

These force curves were calculated from the data shown in figure 3.2, and using equation
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3.6a and 3.6b for F1 and F2, respectively.

In order to obtain the base oscillation Ab, we have performed an experiment on a
silicon surface that is hard enough to neglect the sample deformation, and thus the in-
teraction is purely viscous. The interaction damping tends to infinity at D → 0 (i.e.
very close to the substrate), and the amplitude (see blue line, inset of figure 3.4) of the
cantilever oscillation tends to be the base oscillation (A → Ab) [132]. In our experiment,
the amplitude of the base oscillation is determined as the measured amplitude just before
contact on the silicone surface. The amplitude of the base oscillation is determined as
Ab=3.1 nm at excitation frequency of ω/2π=500 Hz, as shown in figure 3.4. The inter-
action damping and stiffness are determined using the equations 3.9a and 3.9b, and the
determined parameters (Ab, Q, ω0/π, F1, F2 and piezo displacement).

Figure 3.4: The cantilever deflection Zc is shown as function of the piezo displacement
Zp on the silicon substrate. The oscillation frequency is set to 500Hz. Inset shows the
measured amplitude and phase versus the distance for both silicone and PDMS (71:1)
substrates.

Figure 3.5 shows the interaction damping and stiffness between the sphere and the
silicon surface. The interaction damping increases as the tip-sample separation decreases,
while the stiffness is zero, as there will be no elastic interaction in case of the hard
substrate.

The interaction damping and stiffness for PDMS (71:1) substrate are shown in figure
3.6. The dynamic force response (see the inset of figure 3.6) shows two regimes in relation
to the tip-sample separation. At large distance, the response is dominated by the damping
and recovers the asymptotic expression of the hydrodynamic damping between a sphere
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Figure 3.5: The calculated damping ωγint/kc (red circles) and stiffness kint/kc (blue boxes)
are shown versus the distance on the silicone substrate. The driving frequency is set to
500Hz.

Figure 3.6: The interaction stiffness (in blue squares) and damping (in red circle) versus
tip-sample separation at driving frequency of 500Hz. These values are calculated from
the data for amplitude and phase shown in figure 3.4. The interactions are also presented
in the log-log scale in the inset of the figure.

and the hard substrate as 6πηR2ω/D [20]. In this regime the flow pressure is too small to
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make any significant contribution to the deformation of the surface. With further decrease
in the distance, we start to get the elastic component of the force response. Lastly, very
close to the substrate the damping and the stiffness saturate to a constant value, where
the damping does not diverge as 1/D because the fluid is no longer being expelled from
the gap between the sample and the probe. The elastic surface does not sustain the
viscous pressure and accommodates for most of the probes displacements [20,21,128].

3.3 Analytical Solution for Viscoelastic Response: A

Simple Model

A nanoscale flow induced by an oscillating sphere close to a soft substrate result in a
hydrodynamic coupling between the sphere and the substrate. The response is obtained
for small oscillation amplitudes compare to the distance D, which means the deformation
of the sample will also be small compare to D. The typical distance over which the flow
probes the surface and the fluid in the gap generates dynamic pressure is specified by the
hydrodynamic radius (

√
2RD).

The force response with its elastic kint and viscous part ωγint, here after mentioned as
G′ and G′′, respectively, is presented as function of the distance in figure 3.6. These curves
display a power law regime as: at large distance the response is dominated by viscous
damping and it scales as 1/D, whereas, the compliance of elastomer appears at small
distance through the elastic part of the response and scales as 1/D5/2 . As the distance
decreases, both the elastic and the viscous parts saturate to a constant value. This power
law is the signature of a semi-infinite substrate having a thickness much larger than the
hydrodynamic probe radius [20].

It is of interest to describe this scaling with a semi-quantitative model. A model
scheme in figure 3.7 is used to fit the data. This model assumes that the system reacts as
if two elements are placed in series. The fluid having a damping coefficient (6πηR2ω/D)
applies pressure over the area 2πRD. The substrate responds to this localized stress as
a semi-infinite medium, with stiffness k∗ = πE∗

√
2RD [135]. Here, the complex modulus

E∗ = E ′ + jE ′′ of PDMS layer is considered to model its viscoelastic properties. The real
part corresponds to the elastic modulus and imaginary part to the viscous one.

The dynamic force response G of this spring-dashpot in series is given by the following
relations.

G = G′ + jG′′, (3.12)

and

G =

(︃
1

k∗ +
1

jωγ

)︃−1

. (3.13)

In equation 3.13 the k∗ has both viscous k′′ = πE ′′
√
2RD and elastic k′ = πE ′

√
2RD

components. Using equation 3.12 and 3.13, we express the mechanical impedances in the
following relations:

G′′ = ωγ

(︃
π2E ′2(2RD) + πE ′′

√
2RD(πE ′′

√
2RD + ωγ)

π2E ′2(2RD) + (πE ′′
√
2RD + ωγ)2

)︃
, (3.14a)

G′ = (ωγ)2
(︃

πE ′
√
2RD

π2E ′2(2RD) + (πE ′′
√
2RD + ωγ)2

)︃
. (3.14b)
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Figure 3.7: Spring and dashpot model corresponding to the experimental setup. The
liquid (damping coefficient (6πηR2/D)) applies pressure on the substrate. The soft PDMS
modulus is complex having both viscous and elastic part.

In order to extract the effective modulus of the sample, the measured mechanical
impedances were fitted using the simple model, as shown in figure 3.8. We observed a dis-
crepancy at small distance for both elastic and viscous components. However, the model
works reasonably well for large distance response. By fitting the data for large distances,
we have extracted: E ′ = 3.1 ± 0.2kPa and E ′′ = 2.6 ± 0.3kPa at driving frequency of
500Hz. We observe a behavior of G′ ∼ D1/2 and G′′ ∼ D1/2 in the low distance regime,
which means a drastic drop in hydrodynamic force and infinite defromation. This is not
possible, since the deformation of the sample cannot exceed the oscillation of the sphere.
Note that even if the material is assumed to be pure elastic, this model fails to fit the low
distance response (i.e. saturation part of elastic and viscous impedances).

For an absolute determination of the elastic and viscous moduli of the PDMS soft
layer, Vincent Bertin (one of the collaborator in ESPCI Paris, PSL Research University)
extended the model of Leroy and Elisabeth [20] to viscoelastic materials, which shows a
good agreement with experimental measurements in all distance regimes. The model is
described briefly in the next section.
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Figure 3.8: The real and imaginary part of the force response is shown for the PDMS
(71:1) substrate at driving frequency of 500Hz. The black solid lines correspond to the
equations 3.14a and 3.14a to extract the modulus of the sample. By fitting the large
distance response, we have obtained: E ′ = 3.1± 0.2kPa and E ′′ = 2.6± 0.3kPa

3.4 Hydrodynamic Model for Viscoelastic Response

In order to rationalize the experimental data, a lubrication model was developed to
describe the viscoelastic response of the samples. The schematic for a viscoelastic interac-
tion of the PDMS film and a spherical probe immersed in viscous liquid is shown in figure
3.9. The spherical probe, which is at distance D from the substrate, oscillates vertically
with a nanometric amplitude Z << D. The motion of the spherical probe creates an
oscillating drainage flow and induces pressure on the PDMS substrate. The mechanical
impedance, which is a ratio between the hydrodynamic force Fh and the amplitude of the
sphere oscillation, is expressed as:

G(D) =
Fh

Z
. (3.15)

The vertical flow is negligible compared to the lateral force, when D ≪ R and the
liquid thickness in the gap obeys Reynold equation. The flow rate conservation gives the
lubrication equation as [136]:

∂h(r, t)

∂t
=

1

12ηr

∂

∂r

(︃
rh(r, t)3

∂

∂r
P (r, t)

)︃
, (3.16)

where P is the hydrodynamic pressure, r denotes the radial variable and h(r, t) is the
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Figure 3.9: Schematic shows a supported elastic PDMS layer stressed by an oscillating
spherical probe through the drainage of a viscous liquid.

fluid thickness, which is given as:

h(r, t) = D +
r2

2R
+ Z(t) + u(r, t), (3.17)

where u(r, t) is the deformation of surface and Z(t) = A cosωt is the cantilever oscillation.
The amplitude of the base oscillation and the sample deformation are very small compare
to the gap distance D, and thus equation 3.16 is linearized to form:

∂Z(t)

∂t
+

∂u(r, t)

∂t
=

∂

∂r

[︃
r

(︃
D +

r2

2R

)︃3
∂

∂r
P (r)

]︃
. (3.18)

The cantilever motion, the surface deformation and excess pressure are assumed to take
time dependence in the form of: ∂Z(t)

∂t
= iωZ(t), u(r, t) = u(r)eiωt and P (r, t) = P (r)eiωt,

respectively. Using these values, equation 3.18 becomes,

12ηriω

(︃
Z + u(r)

)︃
=

∂

∂r

[︃
r

(︃
D +

r2

2R

)︃3
∂

∂r
P̃ (r, ω)

]︃
. (3.19)

Integrating equation 3.19 with respect to radial variable r, we get:

∂

∂r
P (r) =

6iηωrZ(︃
D + r2

2R

)︃3 +
12iηω

r

(︃
D + r2

2R

)︃3

∫︂ r

0

ru(r)dr. (3.20)

The PDMS film is incompressible (i.e. Poission’s ratio v = 0.5) and assumed to be a
semi-infinite viscoelastic material with complex Young’s modulus (E∗), which includes
both the loss modulus E ′′(ω) and storage modulus E ′(ω) [20]. Therefore, the deformation
u is related to the axisymmetric pressure field through:

ˆ︁u(k) = 2 ˜︁P (k)

E∗(ω)k
, (3.21)
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with

ˆ︁u(k) = ∫︂ ∞

0

J0(kr)u(r)rdr

ˆ︁P (k) =

∫︂ ∞

0

J0(kr)P (r)rdr

(3.22)

The ˆ︁u(k) and ˆ︁P (k) are the zeroth order Hankel transform of the deformation and the
pressure, respectively.The J0 is the zeroth order Bessel function of first kind. Thus the
deformation of the sample will be:

u(r) =

∫︂ ∞

0

J0(kr)ˆ︁u(k)kdk =

∫︂ ∞

0

J0(kr)
3 ˆ︁P (k, ω)

2E∗ dk, (3.23)

Inserting equation 3.23 in equation 3.20 and using the relation between the zeroth order
J0 and first order J1 Bessel function, we obtain:

∂

∂r
P (r) =

6iηωrZ(︃
D + r2

2R

)︃3 +
18iηω(︃

D + r2

2R

)︃3

E∗(ω)

∫︂ ∞

0

J1(kr) ˆ︁P (k)

k
dk. (3.24)

We introduce the variables:

x =
r√
2RD

, q = k
√
2RD, p =

PD2

ηRZω
,Dc = 8R

(︃
3ηω

4E ′(ω)

)︃2/3

, B(ω) =
E ′′

E ′ ,

then equation 3.24 can be expressed as:

∂

∂x
p(x) =

12ix

(1 + x2)3
+

3i

(1 + x2)3

(︃
Dc

D

)︃3/2
1− iB

1 +B2

∫︂ ∞

0

J1(qx)ˆ︁p(q, ω)
q

dq, (3.25)

At first order Hankel transform of the equation 3.25 leads to a Fredholm equation for the
dimensionless pressure:

ˆ︁p(q) = 3i

2
qK1(q)− 3i

(︃
Dc

D

)︃3/2
1− iB

1 +B2

∫︂ ∞

0

ˆ︁P (q′)dq′
∫︂ ∞

0

J1(qx)J1(q
′x)

qq′(1 + x2)3
xdx, (3.26)

where K1 being first order modified Bessel function of second kind. The mechanical
impedance is then given by [20]:

G(D) = − 1

Z

∫︂ ∞

0

2πrP (r)dr =
4πηωR2

D
ˆ︁p(q = 0), (3.27)

which is rescaled as:

G(D) =
6πηR2ω

Dc

gc

(︃
Dc

D
,B

)︃
,where gc

(︃
Dc

D
,B

)︃
= − 4D

6Dc

ˆ︁p(q = 0). (3.28)

The function gc(
Dc

D
, B) is a dimensionless complex function and is calculated numerically

using the equation 3.26. At large distance D >> Dc, the response is dominated by the
viscous component and the asymptotic expression of the hydrodynamic damping between
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a sphere and the substrate restores. The asymptotic expression for the force response in
this regime (i.e. D > Dc) is given by:

G(D) =
6πηR2ω

D

(︃
i+

9π2

512

(︃
Dc

D

)︃3/2
1

1 +B2

)︃
. (3.29)

When the D < Dc , the elastic and viscous components of the force response saturate
to a constant value. This is due to the fact that the indentation of the surface cannot
exceed the amplitude of the sphere oscillation and the sample deformation accomodates
the sphere motion. Besides a residual damping that occurs outside the gap due to the
viscous flow, part of the damping occurs inside the soft PDMS due to the loss modulus of
the soft PDMS. This later contribution increases as the oscillation frequency increases, and
dominates at high frequencies. From the numerical calculation, we obtain the asymptotic
value for G′′ for small distances, which is given by:

G′′ =
6πηR2ω

Dc

(1.16 + 1.32B(ω)), (3.30)

The above equation is valid for small B, typically B < 2, which is always valid for a gel.

Figure 3.10a and 3.10b show the dimensionless mechanical impedance GDc/6πηR
2ω

as a function of the dimensionless distance D/Dc for the PDMS(71:1) substrate for two
excitation frequencies of 50Hz and 500Hz, respectively. We have obtained the values
for the elastic E ′ and the viscous E ′′ moduli by fitting the curves using equation 3.28
(solid lines). The values are extracted as E ′ = 1.6 ± 0.2kPa, E ′′ = 0.6 ± 0.1kPa and
E ′ = 3.2 ± 0.3kPa, E ′′ = 2.1 ± 0.2kPa at the excitation frequency of 50Hz and 500Hz,
respectively. Moreover, the comparison between figure 3.10a and 3.10b shows that the real
and imaginary parts of impedance crosses for the low excitation frequency and saturates
to the same value at small distances, whereas for the higher frequencies, they do not cross
and the imaginary part is larger than the real one at all distances. Furthermore, the
dimensionles imaginary part increases as the frequency increases. Thus, we can deduce
that the dissipation is more pronounced at large frequency, which means the increase with
frequency is larger for loss modulus E ′′ than for the storage modulus E ′ (B increases as
the frequency increases).

The extracted elastic modulus E ′ and viscous modulus E ′′ at different oscillation
frequencies are shown in figure 3.11. Both loss and storage modulus increase with the
increase of the excitation frequency. The PDMS (71:1) substrate, which is used in the
experiment, is considered as a soft gel and the frequency dependence of the complex
modulus is modeled by the Chasset-Thirion equation as [32,137,138]:

E(ω) = E ′(ω) + iE ′′(ω) = E0(1 + (jωt)n). (3.31)

Where E0 is the static Young’s modulus (ω = 0). The relaxation time t (which is
regarded as the time duration for the spontaneous recovery of the deformation after the
removal of external force) and the exponent n, (having values between 1/2 and 2/3 [139]),
depend on the sample preparations, curing procedure and stoichiometric ratio between
the PDMS and the curing agent. In figure 3.11 the solid lines are the fitting curves for
both elastic and viscous moduli, which gives the values E0 = 1± 0.1kPa, n = 0.5± 0.02
and t = 3± 0.2ms. Note here that, the obtained relaxation time is in the range of value
obtained from the Kelvin-Voigt model [140] where η

E0
≈ 2 ∼ 3ms with E0 ≈ 1kPa and

η ≈ 2 ∼ 3Pa.s.
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Figure 3.10: The normalized mechanical impedance is shown against the normalized
distance for two oscillation frequencies. The black solid lines are the fitting curve (using
equation 3.28) used to extract the loss E ′′ and the storage E ′ moduli. (a) The extracted
values are E ′ = 1.6± 0.2kPa, E ′′ = 0.6± 0.1kPa at the oscillation frequency of 50Hz (b)
and when the oscillation frequency set to 500Hz, we have obtained: E ′ = 3.2 ± 0.3kPa
and E ′′ = 2.1± 0.2kPa.
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Figure 3.11: The extracted storage modulus E ′ (red) and loss modulus E ′′ (blue) for
different excitation frequencies. The solid lines are the fitting using equation 3.31, and
we obtained the parameters in the equation as: E0 = 1 ± 0.1kPa, n = 0.5 ± 0.02 and
t = 3± 0.2ms.

3.5 Contact Mechanics

In order to check the validity of our measurement for the static modulus of the sample, we
have analyzed the DC component of the cantilever deflection. The measured cantilever
deflection versus the piezo displacement allows to construct the force indentation curve.
The indentation δ is obtained by subtracting the cantilever deflection from the piezo
displacement and zero displacement is defined as the position where the deflection of the
cantilever increases sharply.

Several models of applied mechanics can be used depending on the shape of the AFM
tip and the sample surface. For an elastic and infinitely thick sample the classical Hertz’s
model is the widely used model that describe the mechanics between two contacting
bodies. For an applied load F the interaction of the AFM cantilever with an elastic
half-space is given by Hertz as [135,141,142]:

F =
4E0

3(1− v2)
R1/2δ3/2. (3.32)

To minimize the contributions of the adhesion force and elasto-capillary effect [121,
143], we performed the analysis only on the regime of large indentation. But for large
indentation, the value of the contact radius

√
Rδ becomes comparable to the thickness h

of the sample. Thus, the classical Hertz model for an incompressible sample (Poisson’s
ratio v = 0.5) should be corrected to [122]:
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F =
16

9
E0R

1/2δ3/2
[︃
1 + 1.133ε+ 1.283ε2 + 0.769ε3 + 0.0975ε4

]︃
, (3.33)

with ε =
√
Rδ/h. The prefactor multiplied to the Hertz equation accounts for the finite

thickness of the sample and must be taken into consideration.

Using equation 3.33 the fit (black solid line) of the force versus indentation curve
is presented in the figure 3.12. The fit, which is for the indentation in the range of
0.5µm− 2µm, gives static Young’s modulus as E0 = 0.9± 0.05kPa. The extracted value
coincides to the value obtained from the fitting of the contactless measurement using
equation 3.31.

Figure 3.12: The quasi-static force versus the indentation δ. The black solid line is the
fitting curve using equation 3.33 that gives the static modulus as E0 = 0.9± 0.05kPa.

3.6 Conclusion and Perspective

The damping and stiffness coefficients of the tip-sample interaction are obtained using
dynamic AFM method. The viscoelastic response measurements at different excitation
frequencies for a PDMS (71:1) sample are performed without the solid-solid contact. This
is achieved using a colloidal probe, which is vibrated vertically close to the PDMS surface
to generate nanoscale flows. This viscous flow leads to the elastohydrodynamic coupling
with a deformable surface. A simple (spring-dashpot) model was developed to extract
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the viscoelastic response of the PDMS sample. The model worked reasonably well for
the large distance response, but a discrepancy observed in small distance regime. Based
on the lubrication theory, we have developed a new model that relates the viscoelasticity
of the PDMS sample to the mechanical force applied on the colloidal probe. Using this
model and from the measurement of the mechanical impedance of the interaction, we have
extracted the complex modulus for a wide range of frequencies. The extracted moduli as
a function of the frequency are in good agreement with the Chasset-Thirion model. In
order to validate the static modulus of the sample, we have also performed the quasi-static
measurements and the findings are comparable with dynamic measurements using the
non-contact method. In short, this method paves the way for a contactless investigation
of the mechanical behaviors of thin polymers coatings, bubbles and soft biological layers
in liquid environments for a wide range of frequencies.

It is an on-going project and will be extended further to characterize the viscoelastic
properties of the various mixing ratios of PDMS at the wide range of excitation frequency.
The PDMS substrates will be prepared in different mass ratio (higher cross-linked ratios)
to perform the mechanical characterization. However, a single model with a finite number
of parameters for the viscoelastic samples cannot describe the behavior of all materials due
to the use of different relaxation mechanisms at different frequency scales. The Chasset-
Thirion model, which was developed for the frequency response of the soft gel, might fail
to capture the frequency response of these PDMS substrates. That is for, we also project
to derive a theoretical model to fit the extracted storage and loss moduli for these samples
to obtain their rheological properties at wide range of excitation frequencies.

The broader aspect of applications of this study provide a strong motivation for the
study of hydrodynamic interaction in presence of deformable substrate. In continuation
of this, the viscocapillary measurements at air-water interface is performed by one of our
team member. They performed interfacial rheology of air-water interface in the absence
of any direct contact at different excitation frequencies using the dynamic colloidal AFM
technique. They probed the capillary deformation due to hydrodynamic pressure and
used the numerical solution of Navier-Stokes equation in combination of Young-Laplace
equation to fit the experimental results. The numerical calculation showed good agree-
ment with the measurements and gave the surface tension of the bubble interface without
direct contact.
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Chapter 4

Friction between Polystyrene
Microspheres
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4.1 Introduction

Concentrated suspensions of solid particles are present in technologies such as paints,
coating, food materials, transport, drugs, and natural flows. The immense significance and
wide occurrence of the suspensions have attracted researchers in the last two decades. The
studies have revealed that a variety of non-Newtonian behaviors such as shear-thickening,
shear-thinning, anisotropic normal stress, etc. are exhibited by the particle suspension
rheology. Several features are highlighted in the literature [52, 144–148] to explain the
origin of these behaviors. Some of these behaviors originate due to possible complexities
(such as, the liquid is non-Newtonian, the particles may be of irregular shape, etc.) in the
suspensions themselves. Additionally, the coupling between the flow, frictional contact
between the particles, and spatial organization of particles in suspensions (microstructure)
[149] also elaborate these behaviors. Nonetheless, it is noted that even a simple model for
a suspension made up of non-Brownian (NB) and singly disperse particles in Newtonian
liquid show non-Newtonian behaviors [52].

Several numerical [44–46], theoritical [47] and experimental [48,49] work are evidence
to the fact that the inter-particle friction has a significance influence on the rheology of the
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concentrated suspensions. Seto et al. [50], Mari et al. [51] and Wyart et al. [47] proposed
to explain that the contact force leads to the explanation of Discontinuous Shear Thicken-
ing (DST), which is observed in the highly concentrated NB suspension. They proposed
two cases in relation of pressure: at low pressure,two neighboring particles, separated by
the gap filled with liquid, will interact via hydrodynamic force; at high pressure, the over-
whelming of the repulsive forces between the micro-particles leads to the frictional contact
between them . This model has given rise to several experimental validation including
those of Guy [150], Clavaud [151], Comtet [48] and Hsu [152]. In the first two cases,
authors have compared rheology of several suspensions whose DST characteristics stress
tuned either by varying the particle size [150] or by the range of repulsive force between
the particles [151]. Comtet et al. [48] performed direct measurement of frictional interac-
tion between the pair of particle using quartz tuning fork based AFM, They observed a
transition from lubricated contact at low load to frictional contact beyond critical load.
They established a quantitative relationship between the critical load and the stress asso-
ciated with DST. Hsu et al. [152] combined the tuning of the DST transition by varying
the roughness of the particles and measurements of friction coefficient using the AFM.
Their results explicitly show a strong link between the rheology of the suspensions and
tribological properties of the particles.

Shear-thinning (define to be the decrease in the viscosity with the increasing shear
rate) is a typical non-Newtonian behavior of the suspension, which was observed in many
experimental results and attributed to the interparticle and fluid-particle interaction.
Different mechanism, such as particle structuring under shear, frictional and adhesive
interparticle interactions have been proposed in the literature to explain the origin of
the shear thinning [144]. It was first explained by Acrivos et al. [153] back in 1994.
They observed an apparent shear-thinning due to disparity in densities of the liquid
and of the particles, when the viscosity of a NB suspension measured in the couette
device. The origin of the phenomena in non-adhesive NB suspensions was not clear
untill Chatte et al. [49] proved that the shear-thinning take place for higher stress than
the DST characterstic stress. They confirmed that the interparticle interactions plays a
strong role in determining shear thinning behaviour and the shear-thinning was found
to be dominated by the frictional contact at high load. They used quartz-tuning fork
based AFM to measure friction coefficient between two types of Polyvinyl Chloride (PVC)
particles in liquid dinch (which is a solvent act as a plasticizer for particles). They
also measured viscosity of the suspension based on type of particle and they confirm
that there is a strong correlation between the value of jamming fraction (extrapolated
from viscosity measurement at given volume fraction) and measured friction coefficient.
This was first experimental proof that showed a relation between the shear thinning
and friction. Around the same time, a model was proposed on bootstrap mechanism
of friction where friction coefficient is a decreasing function of sliding speed between the
particles [154]. This was followed by a scenario proposed by Lobry et al. [52], which showed
that the quantitative study of the shear thinning is possible by properly modelling the
contact between the particles. It was based on the assumption that in shear flow the
particles come into contact via one or a few roughnesses.

Since at smaller (nanometric) length scale, when two macroscopic surfaces are brought
in contact, unlike topographies end up in very little actual physical contact amongst
surfaces. In this case, it is expected that the friction coefficient will no longer be constant,
unlike to what happens for the macroscopic contact [155] . In Lobry model roughness
are represented by the hemispheres whose radius is of the order of one thousandth of
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radius of the sphere. More and Ardekani [148] also used Lobry’s model to study influence
of roughness size on viscosity of suspensions. In their numerical studies both Tanner et
al. [154] and Lobry et al. [52] used mono-contact friction model proposed by Brizmer [42],
where the contact between a plane and perfectly smooth surface (single asperity) was
considered. This microscopic friction model opens up possibility that the viscosity depends
on the applied stress.

This work is dedicated to the rheology of NB suspensions with a focus on the role of the
inter-particle friction in shear-thinning behavior. A quantitative experimental validation
of Lobry’s model, which links the viscosity to the friction and the shear-thinning to the
load-dependent friction coefficient, will be presented. An AFM will be used to measure
the friction coefficient between the polystyrene micro-spheres, immersed in Newtonian
fluid, at different normal load. The cantilever twist and deflection will be recorded to
obtain the friction and the normal force, respectively. The friction coefficient and its
variation in a long range values of the normal force will be determined. The viscosity of
the suspension of these particles (for several particle volume fraction) will be measured in
rheometric experiment by our collaborators (team of Elisabeth Lemaire). The measured
friction coefficient and the viscosity of suspension will be compared to the predictions of
the Lobry model.

Here we will first present the summary of the mono-asperity contact under the com-
bined normal and tangential loading. Then we will present our experimental data and
their comparison to the Lobry model.

4.2 Mono Asperity Contact Model

Bowden and Tabor [36,37] simplified the Amonton’s law, which was widely being used
to explain friction. However it is not simple in single point contact like in an AFM exper-
iment, where the contacts are not fully plastic, rather there is a range from fully elastic
deformation to no deformation at all. Tabor has described fully plastic contact while,
Hertz [156] has focused on elastic contact. The elastic-plastic spherical contact in coa-
lesced normal and tangential loading is a conventional problem in contact mechanics. For
the first time, Mindlin and Deresiewicz have solved the combined normal and tangential
loading of elastic spherical contact [157,158], but the elastic-plastic mono-asperity contact
model by Brizmer et al. [42, 43] best explain the elastic-plastic contact problem. They
proposed that under combined loading central stick region is surrounded by slip zone and
when tangential loading increases, the central region shrinks and at last vanishes. This is
when sliding begins which satisfies Coulomb’s friction law.

An Elastic-Plastic Single Asperity Contact Model
Consider two rough spherical surfaces of radius a1, a2 are in contact and the contact
is materialized through surface asperities (see figure 4.1). It is presumed that the con-
tact occurs between one asperity of radius hr and smoothed patch of the second surface.
In original work of Brizmer et al [42] the sphere was made up of elastic linear istropic
hardening materials and the Hook’s and Prandtl-Reuss constitutive laws governed the
stress-strain relation in elastic and plastic regimes, respectively.

The friction coefficient is a ratio between the frictional force Ff and the normal load
Fn, and a correlation was fitted to the variation of the frictional force to the load. The
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following two regimes are identified for the value of the normal load: one; when the load is
smaller than the critical value Lc (at the given value of load the transition from elastic to
plastic regime), the elastic effect dominates and the friction coefficient relates with load
as (Fn/Lc)

1/3; two; when the load is larger than the critical value, the sphere experiences
increasing plastic deformation and the friction coefficient slowly reduces to a constant
value.

Figure 4.1: A sketch of the sphere in contact with an asperity of another sphere. The
radius of the asperity is hr and the distance between the spheres is defined by S.

A correlation between the normal load and the surface overlap (δ = hr − S) is also
provided, which takes into account the transition from elastic to plastic regime. Addition-
ally the influence of hysteresis of contact (that is related to the plasticity of the material)
is neglected here. The normal force in the elastic regime (δ ≤ δc, L ≤ Lc ) is given by the
following relation:

Fn = Lc

(︃
δ

δc

)︃3/2

, (4.1)

whereas, in plastic regime (δ > δc, L > Lc ) the normal force is shown as [52]:

Fn = Lc

(︃
δ

δc

)︃3/2[︃
1− exp

(︃
1

1− ( δ
δc
)β

)︃]︃
. (4.2)

Where Lc and δc are the critical normal load and surface overlap, respectively, and β =
0.174 + 0.08v. The von Mises yield principle (that suggest yielding of ductile material
begins when the elastic energy of distortion reaches a critical value) [159] is used to
analysis the inception of plastic deformation for ductile materials with poisson’s ratio in
the range of 0.2 ≤ v ≤ 0.5 [160, 161]. The von Mises stress expression along z-axis (i.e
normal to surface) at any point for applied force is used to assess critical normal load and
surface overlap at yield inception as:

Lc = Lc
π3

6
Y C3

v

(︃
hr

2(1− v2)Y

E

)︃2

, (4.3)
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δc = δchr

(︃
πCv

(1− v2)Y

E

)︃2

. (4.4)

Here Y is the yield strength of the material and Cv = 1.234+1.256v is the function of
Poisson’s ratio. The over-bare term, i.e. Lc critical load (in equation 4.3) and δc critical
overlap (in equation 4.4) are characteristics of full stick conditions. For smaller Poisson
ratio these characteristics are considerably smaller as compare to the same parameters in
slip. The reason for this is mentioned as the high tangential stresses in contact under the
stick. But, for higher value of v tangential stresses in stick conditions are substantially
low and it gives similar value for critical load and critical surface overlap as in slip condi-
tions. For Poisson ratio (0.2 ≤ v ≤ 0.5) the critical load and critical surface overlap are
approximated as:

Lc = [8.88v − 10.13(v2 + 0.089)], (4.5)

δc = [6.82v − 7.83(v2 + 0.0586)]. (4.6)

In the original work, Brizmer et al [42,43] have considered a flat rigid surface in contact
with a sphere and this was swapped to the case of two spheres in contact. Here, we will
focus on an asperity-sphere contact and requal the principle findings of Lobry’s model.

In Lobry’s model [52] for the case of stick phase, the tangential force has been designed
as linear spring like force as [44,161,162]:

Ff = kty, (4.7)

with y is the tangential displacement and the kt is the tangential stiffness. The relative
tangential displacement of two surfaces is estimated as the integral of slip velocity during
the contact [45]. For elastic spherical contact under full stick, Mindlin [157] gave analytical
solution for the tangential stiffness of the junction as:

kt =
Ff

y
=

4Ea

2− v
, (4.8)

with a =
√
Rδ is the contact radius. Using equation 4.8 and the classical Hertz equation

Fn = 4ER1/2δ3/2/3(1− v2), we obtain:

Ff

Fn

= 3
1− v2

2− v

y

δ
, (4.9)

or

kt = 3
1− v2

2− v

Fn

δ
. (4.10)

The above relation shows that the tangential stiffness is a function of Poisson’s ratio and
the normal force intensity. In order to be more consistent with the earlier work [44,45], and
in particularly to fit the experimental data obtained by Shafer et al. [163], the prefactor
in the above equation was estimated as [52]:

kt =
2

7

Fn

δ
, (4.11)
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the coeffcient 2/7 is smaller than the 3(1 − v2)/(2 − v) as originally estimated by the
Brizmer et al. [42].

Equation 4.7 for the case of the stick phase is |Ff | < µ|Fn|. Whereas, for the slip
phase the tangential force is given as:

|Ff | = µ|Fn|
Ff

|Ff |
, (4.12)

with µ is the static and dynamic friction coefficient.

Friction Coefficient
It is mentioned earlier that the elastic–plastic contact behavior over wide range of the
normal load starts from the elastic and extends to the elastic-plastic contact. Brizmer et
al [42] have shown that for the smaller value of the normal load, the dimensionless tan-
gential load Ff/Fn against dimensionless tangential displacement y/δ shows a constant
behavior. But as the tangential loading increases, the junction becomes more and more
plastic and ultimately at a certain value of friction coefficient µ, tangential stiffness disap-
pears completely, which is marked as the sliding inception [160]. The friction coefficient
at sliding inception as a function of the normal load has the following forms [42,43] :

µ = 0.27 coth

[︃
0.27

(︃
|Fn|
Lc

)︃0.35]︃
. (4.13)

This expression accounts for transitions from elastic to plastic deformation, where the
friction coefficient decreases with increase in normal force and at last levels off at high
load. In elastic regime µ ∝ (Lc/Fn)

0.35 is nearly in agreement with Hertz contact law,

where the relation between the normal force and contact area is a ∝ F
2/3
n . At higher

values of normal force, the material in contact zone undergoes plastic deformation and
gives constant friction coefficient at µ = 0.27.

4.3 Materials and Method

Materials
We have used polystyrene particles (Dynoseeds TS40 from Microbeads), with nominal
radius of 20µm for the friction studies. These particles were also used by our collabora-
tors in InPhyNi, Universite Cote d’Azur in Nice in rheometric experiment. They made
a suspension in mixture of water, Ucon oil (75-H-9000, Dow) and 1.5% aqueous solution
of zinc bromide. We have used the same liquid having viscosity of 50mPa.s in our AFM
measurements of friction between the microspheres.

AFM Probe and Samples preparation
For friction study between the microspheres, the probing sphere of radius 20µm was glued
to rectangular cantilevers (NSG 11/tipless) while the probed spheres were glued on to a
glass substrate. For the roughness measurements, we used an AFM cantilever (PPP-Cont)
having a sharp tip of height 10µm and radius of curvature less than 10nm.

For the sample preparation a clean microscope glass slide was coated with a thin epoxy
glue (Araldite) layer. Then the spheres were manually dispersed on the sticky surface.
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After a while, jet of filtered air was used to remove the non-sticked spheres from the
substrate. These microparticles glued to the substrate (see figure 4.2) were used in the
friction and the roughness measurements.

Figure 4.2: The optical image of polystyrene (TS40) spheres glued on a glass substrate.

Experimental Setup
We performed experiment using AFM (Bioscope II, Bruker) equipped with liquid cell
(DTFML-DD-HE, Bruker) that allows working in liquid environment. The experimental
setup is shown in figure 4.3.

Figure 4.3: Experimental setup for the friction measurements.

After successful vertical and lateral calibration of the cantilever on a flat hard substrate
(see chapter 2), we replace the hard substrate with the microspheres glued substrate on
the piezo stage. The probing sphere on the cantilever tip is positioned a few millimeters
above the glass substrate and a few drops of a liquid are poured in to form a thin liquid
layer that has immersed both the probed and the probing spheres. After adjusting the
laser at the tip of the cantilever, the AFM motor is used to approach the colloidal probe
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to one of the spheres on the substrate. We have centered the probe and the probing
sphere using the optical microscope and also we have used the AFM in image mode for
finer centering. The photodiode signals are recorded to measure both the vertical and the
lateral forces. We have also recorded the output of the piezo in the y-direction to be sure
about the lateral displacement.

The results for the roughness characterization and the friction (static and dynamic)
measurements of the polystyrene spheres are discussed in the next section.

4.4 Experimental Measurements

4.4.1 Roughness Characterization of Polystyrene Microspheres

The topography and the friction images are obtained in contact mode with the resolution
of 512×512 pixel2. The set point (described as the applied load) is kept at 0.3V for whole
set of experiments. We have performed the experiment at scan rate of 1Hz and scan sizes
of 20µm× 20µm and 5µm× 5µm. Images are recorded on several spheres to obtain an
average value for the roughness of the spheres.

In figure 4.4(a), we present a 3D AFM image of polystyrene microsphere obtained
in contact mode for the scan size of 5µm× 5µm. Figure 4.4(b) is showing the height
section of the 3D image. We have removed the local curvature deviation by flattening the
sphere image using plan fit at 3rd order for both x and y axis, shown in figure 4.4(c). In
standard operations, the plane fit command figures out a polynomial of selectable order
and subtract it from each scan line of image. The order and direction (either in x, y or
both) of plane fit are required to be set for the particular operation. Since the plane fit of
the order 0th, 1st, 2nd and 3rd are applied to center the data, remove the tilts, remove the
2nd and 3rd order bow, respectively. To go further, the height section for the plan fitted
image is presented in figure 4.4d at different position (shown in different colors). The
root mean squared roughness (Rq) on the image of polystyrene microsphere is measured
as Rq = 20± 0.2nm and peak to peak value is of the order of 100nm (see figure 4.4d).

We have also performed quasi-static force measurements between the polystyrene mi-
crospheres to extract the adhesion force. The experiment was performed in a solution of
water + ZnBr. The sphere-glued substrate on the piezo stage was imposed to approach
the colloidal probe at velocity of 6µm/s. The measured cantilever deflection versus the
piezo displacement allow to construct the force curve. The value of the adhesion force is
extrapolated from the retract curve as Fadh ≈ 18± 2nN .

From the microscopic model requaled in section 4.2 the dimensionless parameters
(R, hr, δc) and Lc are identified from the relevant length and force scales, respectively.
Here the hr is given by the value peak to peak obtained from image in figure 4.4d. The
inter-particle force is quantified by the critical force Lc and we have estimated the critical
force Lc ∼ 30nN using equation 4.3 with hr ∼ 100nm E ∼ 3GPa, Y ∼ 73MPa and
v = 0.33 [164].
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Figure 4.4: An AFM image of polystyrene sphere: (a) 3D AFM height image for sphere
in scan size of 5µm× 5µm. (b) Height section for the image (a). (c) 3rd order plan fit of
the image from which we obtain Rq=20 ± 0.2nm. (d) The height section of plane fitted
image at different positions i c.

4.4.2 Static Friction Measurement

The sharp tip cantilever is replaced with the polystyrene sphere glued cantilever in the
liquid cell. During the typical experiment, the micro particles (the colloidal probe and
glued spheres on the substrate) are immersed in aqueous solution of zinc bromide for the
quasi-static friction measurements. The colloidal probe is centered to one of the spheres
on the substrate and we have measured vertical load and frictional force by recording the
AFM photodiode signals. The vertical deflection of the cantilever for each set point (set
point was varied from 0.1V to 7V ) is recorded, which gives the normal force by multiplying
the cantilever deflection to the spring constant kc = 3.4N/m of the cantilever. The lateral
deflection of the cantilever is also recorded after setting the input to the y-direction of
the piezoelectric actuator that has induced a lateral movement of 10µm in the substrate.

Typically, the frictional characteristics of a sample are studied by analyzing the friction
curves. In figure 4.5, the friction curves are presented for the different set of the applied
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load. We observe an increase in the lateral deflection as per classical frictional laws, which
state that the friction force increases with the increasing load. The lateral deflection
variation Vy is measured for the given applied load from the friction curve. Knowing
the lateral conversion factor kl

t (discussed in section 2.3.5), the torque produced in the
cantilever is given by τ = kl

tVy. Subsequently, the friction force is deduced using the
relation Ff = τ/2R.

Figure 4.5: Lateral deflection of the cantilever is shown for different set of the applied
load.

Once the measured signals are converted to the forces (i.e. normal and friction force),
the friction coefficient µ of the polystyrene microspheres can be obtained by the ratio of
the two force. In figure 4.6 we present the measured friction force versus the normal force
and it is observed that at low load the relation between the two forces is not strictly linear.
The friction coefficient versus the load is presented in figure 4.7. The friction coefficient
measured for the larger applied loads has shown a deviation from the general pattern of
the variation of µ with Fn. The measurements for the larger applied loads, are performed
last in the given set of experiments, so most probably due to long time duration the
normal force varies because of the variation in the photodiode response (drift). Although,
the quasi-static measurements hardly lead to a reliable quantitative results, but still the
variation of the friction coefficient with the load in measurements made in quasi-static
mode gave same tendency to what is obtained in the dynamic mode measurements that
will be shown in the next section.
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Figure 4.6: The friction force versus the applied load: The measured vertical and lateral
deflections at different set points are converted to the normal and the friction force,
respectively. The linear fit (at low load (solid line) and at high load (dashed line)) shows
that at low load the relation between the friction and the load is not linear.

Figure 4.7: The measured static friction coefficient is presented as function of the applied
load.

72



Friction between Polystyrene Microspheres

4.4.3 Dynamic Friction Measurement

In this section, we present the friction measurement using the dynamic mode AFM.
After the vertical alignment of the colloidal probe to one of the spheres on the substrate,
we have imposed the simultaneous vertical motion and the lateral oscillation of the sub-
strate. The substrate is moved vertically at a low velocity of 0.1µm/s to approach the
colloidal probe, while for the lateral oscillation, the driving amplitude is varied around
1µm at the driving frequency of 25, 50 and 100Hz (see figure 4.8). We have obtained both
the normal and the lateral force profile for the two approaching polystyrene microspheres.

Figure 4.8: The schematic for the experimetal setup based on dynamic AFM method.
A colloidal probe is shown in contact with a sphere, which is glued on an oscillating
substrate.

Normal Force
The multiplication of the normal spring constant of the cantilever to the measured vertical
deflection gives the normal force. As an example the normal force is shown against the
piezo displacement in figure 4.9. The normal force increases as the microspheres come in
contact. The vertical velocity of the substrate is sufficiently small to neglect the vertical
lubricating hydrodynamic force. It is observed that an oscillation is induced in the normal
force (see the inset of figure 4.9), which is contributed by the horizontal oscillation of the
substrate. The quasi-periodic component of the normal force comes from the curvature
of the spheres. The effect of particle curvature on AFM measurement of the normal and
the lateral forces was studied in details and it was concluded that this effect could be
very important if the particle size is not very large compare to the amplitude of lateral
oscillation of the substrate [165]. However, in our study the particles of radius 20µm are
used in the experiments and the vibration amplitude of the substrate is in the order of
a micron, so we can neglect this effect. Additionally, the curvature effect is nullified by
considering the measurements of the normal and the lateral force over at a sufficiently
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Figure 4.9: Normal force versus the piezo displacement is shown for working frequency of
25Hz and y-direction amplitude of 1.05µm. The blue curve is the measured force while
the red line is the force averaged over a period of oscillation of the substrate. Inset of the
figure is the zoom of variation of the load verus the piezo position.

small interval of the lateral oscillation where the variation of normal force is small in
comparison with its mean value. That is the reason, we have considered only the central
region for each quasi-cycle so that normal force varies less than 10% from its mean value.

Friction Force
In figure 4.10, the measurements corresponding to the lateral deflection (before and after
the contact) are presented. As the two approaching particles come in contact, the lateral
deflection signal increases with the increasing load. In the inset of the figure, we zoomed
in to observe the signal variation. For the same data, the friction curve versus the lateral
displacement is presented in figure 4.11 for one period. As discussed in section 4.4.2, the
friction force between the two spheres is deduced using the measured lateral deflection
signal in volts.

In figure 4.12, we presented the typical friction versus load curve measured at oscillat-
ing frequency of 25Hz and amplitude of lateral displacement of one micron. The friction
force increases nonlinearly with the normal force leading to a decreasing friction coeffcient
with the increasing normal force. As discussed earlier that for quasi-cycle, we considered
only the mean value of normal force, and in this region, the friction coefficient is defined
as:

µ =
⟨F up

f ⟩ − ⟨F down
f ⟩

2Fmean
n

, (4.14)

Where F up
f - F down

f are the frictional force recorded when the substrate moves to the right
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Figure 4.10: The measured lateral signals as function of the spheres separation for working
frequency of 25Hz and y-direction amplitude of 1.05µm are presented. The Inset of figure
is zoomed in look at the voltage variation corresponding to the lateral deflection.

(y′ > 0) and to the left (y′ < 0), respectively. In figure 4.13 the typical variation of normal
and frictional force during a cycle are shown. In equation 4.14 the symbol ⟨...⟩ mean an
average over the chosen interval of lateral displacement [166].

Friction Coefficient
Series of experiments were performed for the friction coefficient measurements between
different pairs of the polystyrene microparticles at different driving frequencies and differ-
ent lateral driving amplitudes. The variation of the friction coefficient µ is plotted against
the normal force in figure 4.14. This figure shows the measured friction coefficient for 12
realizations and the averaged friction coefficient shown with a solid blue line. It is observed
that µ decreases for increasing normal force and reaches a plateau at higher load, which is
in conformity with the mono-asperity contact model. A significant variation is observed
in the measured friction coefficient from one realization to another. These variations are
not because of any experimental uncertainty, but due to spatial variation of local friction
coefficient, especially when taking into account the surface roughness. The characteristic
extension of surface roughness is, more or less, of the order of one micron and that is of
the order of magnitude of lateral displacement set during the friction experiment. That
is why, it is not surprising that the local friction coefficient changes from one realization
to another. The mean friction coefficient is fitted with a Brizmer-like model [42], where
the friction coefficient is fixed to 0.18 at infinite normal load with two free parameters Lc

and n. The resulting friction coefficient is expressed as:

µ = 0.18 coth

(︃
0.18

(︃
Fn

Lc

)︃n)︃
, (4.15)
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Figure 4.11: From the data of figure 4.10, lateral deflection is shown against the recorded
piezo lateral output signal.

Figure 4.12: Measured frictional force is presented as function of the normal force for the
working frequency of 25Hz and y-direction amplitude of 1.05µm.
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Figure 4.13: (a) The normal and (b) the frictional force variations are shown versus the
lateral position of the substrate during one period of oscillation. To calculate the friction
coefficient, we select the data (blue circles) for which the normal force deviates less than
10% from its mean value.

and the best fit was obtained for Lc = 33.2nN and n = 0.54.

The different curves of the friction coefficient shown in figure 4.14 are averaged and
shown in figure 4.15. We have also reported (on the same figure 4.15) the fitting of the
averaged friction coefficient using equation 4.15 and also with original Brizmer model
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Figure 4.14: The measured friction coefficient for different particle pairs at different fre-
quencies (25, 50 and 100Hz) and different lateral displacement amplitudes (ranging from
600 to 2000nm) is depicted against the normal force. The solid blue line is the mean
friction coefficient averaged over all realizations.

(equation 4.13). At very small load, our experimental results are fairly in good agreement
with the Brizmer model, but then Brizmer’s model predicts a much slower decrease in
friction coefficient in comparison to our measurements. This difference is not surprising
and unexpected. As, the Brizmer’s model considers an idealized contact between a plane
and hemisphere, while in our case, the roughness geometry is much more complex. In
addition to this, it is not necessary that the law of friction should strictly obey the
Brizmer’s model.

For a quantitative comparison between the microscopic friction and average rheological
properties of the suspensions, it is required to obtain a relationship between inter-particle
normal force and the shear stress σ. Lobry et al [52] showed that characteristic normal
force that controls the friction and thus the suspension viscosity is proportional to the
shear stress:

Fn =
6πR2σ

1.69
(4.16)

The 1.69 is a rescaling factor introduced for the model to fit with constant friction coef-
ficient simulation of Gallier et al [44].

In the upcoming section, we present the viscosity measurement in the rheometric
experiment to compare it with friction coefficient measurements.
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Figure 4.15: The averaged friction coefficient of polystyrene spheres as function of normal
force. We fit the friction coefficient using equation 4.15 (black solid line) that gives fitting
values Lc =33.2nN and n =0.54. For sake of comparison the original results of Brizmer
theoretical model is also shown (dashed line).

4.4.4 Viscosity Measurement of Suspension

The viscosity of the suspension of polystyrene particles was measured for several particle
volume fraction in the rheometric experiment by our collaborators (team of Elisabeth
Lemaire) in InPhyNi, Universite C0te d’Azur in Nice. They prepared suspensions by
suspending polystyrene particles in mixture of (water + ucon oil and zinc bromide). The
mixture was made so that the density of liquid matches the density of particles, which
was measured as 1045±4 gram/cm3.

The viscosity of the suspension has been measured in a rotating parallel plate with the
radius of the disks R=30mm and the gap height h between the two plates set to 1.2mm
(see figure 4.16). The gap between the plates is equal to the diameter of 30 particles, which
means we can neglect the wall structuring effect [167]. This geometry of the rotating plate
provides advantages, like, there will be no migration [168] or very slow migration [169].

However, the varying shear rate over the gap is one of difficulties in using such geometry
for the study of non-Newtonian materials. To account for the shear rate variation, from
0 at the center to the γ̇R = ΩR/h at the rim with Ω being angular velocity, the Mooney-
Rabinovitch correction is used to correct the shear stress.

σR =
σrheo

4

(︃
3 +

d lnσrheo

d ln γ̇R

)︃
, (4.17)
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Figure 4.16: Schematic of a parallel plate rheometer. The gap between the fixed and
rotating plates (of radius R = 30mm) is set to h = 1.2mm.

where σrheo = 2Γ/πR3 with Γ being the applied torque by the rheometer. The viscosity
is then obtained as:

η =
σR

γ̇R

(4.18)

Viscosity is measured by imposing the stress steps whose duration varies depending
upon the intensity of the stress. Indeed, the steady viscosity of the suspension is only
reached when its microstructure is at equilibrium. Here, the normalized viscosity ηs is
used, which is defined as the ratio of suspension viscosity to the suspending fluid viscosity.

The variation of ηs with the shear stress at different concentration (particle volume
fraction) is shown in figure 4.17. The viscosity of the suspension increases as the shear
stress decreases, regardless of the volume fraction value. The expression for the normalized
viscosity using Lobry Model [52] is given as:

ηs =
α(µ(Σ))

1− ϕ
ϕm(µ(Σ))

. (4.19)

Where Σ is the normalized shear stress and expressed as:

Σ =
6πa2σ

1.69Lc

=
Fn

Lc

, (4.20)

where α(µ) and ϕm(µ) are deduced from numerical simulation performed at various con-
stant values of the friction coefficient, and are given by:

α(µ) = α∞ + (α0 − α∞)
exp(−Xα arctanµ)− exp(−πXα/2)

1− exp(−πXα/2)

ϕm(µ) = ϕ∞
m + (ϕ0

m − ϕ∞
m )

exp(−Xp arctanµ)− exp(−πXp/2)

1− exp(−πXp/2)

(4.21)
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The normalized viscosity as function of shear stress, which is computed for different
particle volume fractions using the model (equation 4.19), is presented in figure 4.17. All
the rheological (fitting) parameters except for ϕ0

m and ϕ∞
m are used as same from the Lobry

model [52]. The ϕ0
m and ϕ∞

m are taken here as 0.65 and 0.55 instead of 0.7 and 0.546,
respectively.

Figure 4.17: Normalized viscosity is shown as function of shear stress. The symbols repre-
sent the experimental measurements performed with suspension of polystyrene particles.
The solid (orange) lines are calculations using the model (4.19) with only two free param-
eters are ϕ0

m and ϕ∞
m . Note that viscosity data obtained for stresses that correspond to

the force range in which the friction coefficient has been measured.

Figure 4.17 shows a good agreement between the experimental results and the Lobry
model. This quantitative agreement predicts that the rheology of the concentrated non-
Brownian suspensions is actually controlled by the frictional properties of the particles, as
proposed by several authors [49,151,154]. Moreover, it validates many of hypotheses made
by Lobry [52], and in particular, the choice to describe the contact between the particles
by Brizmer-like mono asperity contact model. The variation of µ with Fn measured
by an AFM for the normal forces of the same magnitude as experienced by particles in
sheared suspensions is qualitatively close to that predicted by the Brizmer model [42]. The
agreement between the experimental results and the model also shows that the rescaling
factor 1.69 (in equation 4.16) used by Lobry et al. to link the normal force and the shear
stress is the right one. In short, the numerical simulations by Lobry et al. carried out
with constant friction coefficient have made it possible to propose fitting laws for linking
the viscosity to the friction coefficient.
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4.5 Conclusion and Perspective

We have presented a quantitative experimental validation of the model proposed by
Lobry et al. [52]. This model links viscosity to the friction coefficient and, in particular,
shear-thinning to the load-dependent friction coefficient. To this aim, the dynamic AFM
measurements between the polystyrene microspheres is performed to determine the fric-
tion coefficient and its variation with the applied load. In order to avoid the curvature
effect in the measurements of the normal and the lateral force, the amplitude of lateral
displacement for particle-glued substrate (on piezo stage) is kept around a micron. The
measured friction coefficient is observed to decrease with the increasing load and reaches
a plateau at the sufficiently high load, which is contrary to the constant friction coefficient
usually observed for the macroscopic contacts. This behavior suggests that the actual con-
tact between the two microspheres involves small number of the asperities, as proposed
by mono-asperity contact model. We have observed a slight disparity when the measured
friction coefficient is compared to the scenario proposed by Brizmer et al. [42]. This lack
of correspondence may be explained by the fact that the topography of the surface is
more complicated than the ideal hemisphere considered by Brizmer et al.. Nonetheless,
our measurements display same trend like mono-asperity contact model, so we have fitted
the measured friction coefficient with a Brizmer-like model.

Lobry model is used to compare the measured friction coefficient (AFM measure-
ments) and the viscosity measurements (rheometeric experiment). A correlation is ob-
served between the decrease in the friction coefficient and decrease in the viscosity, which
unambiguously validate the scenario proposed by the Lobry et al.. This also highlights a
close link between the microscopic friction properties of the particles and the macroscopic
rheological behavior of the suspension. To conclude with the fact that this is an effective
and accurate methodology, which quantitatively predicts the rheology of the moderately
concentrated NB suspension from the microscopic contact law.

Our measurements bridge the nano and macro scale measurements and open a broad
perspective by highlighting the importance of the local interactions in the understanding
of the overall rheological behaviors of the suspensions. Keeping in view the fact that
the friction between the particles is greatly influenced by the intrinsic properties of the
materials (such as its viscoelastic properties), the idea of reproducing this work with the
particles of different materials to validate the scenario mentioned in this chapter would
be interesting. A step further, it would be particularly relevant for soft materials where
the viscoelastic mechanical effects dominate the friction between the materials. Since
the nanoscale friction in soft surfaces (such as biological and soft polymeric interfaces)
with relevant modulus offers excellent opportunities for future interdisciplinary research
to tackle a variety of global challenges including the reduction in energy consumption to
the biological tissue repair.

In addition to the viscoelasticity, the surface chemistry and topographies are crucial
factors to interpret the surface tribology. To this aim, we project to perform the friction
measurements between the particles having particular surface properties, such as the
surface is electrically charged or grafted with some polymer brushes, to explore new
aspects.

The fluid flows around the interacting particles is another intricate subject, which has
attracted the researcher due to their wide occurrence and applications. In our experiment,
we added Ucon oil in to water to increase the viscosity of the suspending fluid. This
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allowed us to perform the rheology measurements over a wide range of shear stress and
still have a low Reynold number. However, it is more likely that all or part of the surfactant
gets removed during the washing of the particles. The particles are then possibly subject
to the adhesive force, which we have observed in AFM measurements. This leads us to
another aspect for the future studies where for the case of adhesive suspension, it would be
interesting to characterize the adhesion forces and establish a quantitative link between the
adhesion (characterized using an AFM) and rheology (stress threshold, shear-thinning).
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General Conclusion

This thesis work has been accomplished in to two parts. In the first part, We have
studied the elastohydrodynamic coupling between a vibrating colloidal probe and a soft
PDMS substrate using the dynamic AFM and we have extracted the rheological prop-
erties of the soft PDMS sample. In the second part, we have performed lateral force
measurement to extract the friction coeffcient and AFM imaging to extract the roughness
profile of polystyrene microspheres.

In AFM-based experiments a cantilever (probe) is used to sense the sample surface. An
accurate calibration of the AFM cantilever is the primary requirement for the quantitative
and comprehensive AFM studies. The hydrodynamic drag technique has been used for
the vertical and the lateral calibrations of the colloidal probe. It allows determination of
the spring constant of the cantilever in a viscous liquid by measuring the deflection (for
the vertical calibration) and the twist (for the lateral calibration) of the cantilever. In
the former case, the normal spring constant of the cantilever was obtained by measuring
the deflection for a known hydrodynamic drag force on the colloidal probe, which was
approaching the substrate perpendicularly. In the case of the lateral force calibration,
a laterally moving substrate generated a creeping Couette flow and as a result induced
a torsion of the AFM probe. The spherical geometry of the colloidal probe enabled the
analytical calculation of the drag force and torque exerted on the probe. Fitting the
measured lateral signal with the analytical expression of the calculated torque gave the
lateral force conversion factor.

In first part of the thesis, the viscoelastic rheological properties of thin polymer films
were obtained using non-contact AFM technique at different excitation frequencies. The
experiments were carried out in a liquid using the colloidal AFM in dynamic mode.
The dynamic colloidal AFM method allows to probe the elastohydrodynamic interaction
at nanoscale for a large range of vibration frequencies. The nanoscale flow induced by
the oscillation of the colloidal probe provides a hydrodynamic force acting on the film.
The force response obtained as function of the distance displays a power law regime:
at large distance the response is dominated by the viscous damping and it scales as
1/D; The compliance of the elastomer appears through a small elastic contribution in
the mechanical impedance and it scales as 1/D5/2. As the gap distance is reduced both
viscous and elastic contributions increases and saturate to constant values at very small
tip-sample separations. From the measured mechanical response, we have obtained the
storage and loss moduli of the thin film. The experimental results were in a qualitative
agreement with the simplified spring-dashpot model. A discrepancy was observed between
the experimental findings and simple model at small distance. Therefore, a numerical
solution of a viscoelastic soft-lubrication model was derived. The experimental results
shown good agreement with the numerical calculations, which allowed us to measure the
storage and loss moduli for a broad range of frequencies. The measured moduli versus
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the frequency showed a good agreement with the Chasset-Thirion model. In order to
validate our measurements, we have also performed a force-indentation measurement to
extract the value of the Young’s modulus (E0) of the sample, which was comparable to
the outcomes of the dynamic mode measurements. In short, this contactless technique is
a relevant alternative to direct contact techniques for the study of viscoelastic properties
of soft and fragile samples including nanobubbles, lives cell and tissues.

The second part of the thesis aimed to understand and provide a quantitative link
between the microscopic (frictional) properties of microparticles and the macroscopic be-
havior of suspensions made of these particles. For this purpose, we performed experiments
for the quantitative measurement of friction between polystyrene microparticles by mea-
suring the deflection and the twist produced in the colloidal probe using the dynamic
AFM method. We have measured the friction coefficient for different values of applied
normal force (varied from 10 to 1000nN). The friction coefficient has been observed to
decrease with an increasing load, which is contrary to usual constant behavior for the
case of contacting macroscopic bodies. This behavior suggests that the contact between
the particles involves a small number of asperities and shows the same trend as the one
explained by the mono-asperity contact model. At small load, the friction coefficient de-
creases and reaches a plateau at high load. It is basically a transition from the fully elastic
to plastic contacts marked by the characteristic force Lc. This decrease in friction coeffi-
cient makes it possible to accurately describe the shear-thinning phenomena observed in
rheological measurements.

The correlation between the decrease in friction coefficient (measured using an AFM)
and decrease in viscosity (measured in rheometric experiment) unambiguously support
the scenario proposed by Lobry. It also highlights the close link between the microscopic
friction properties of the particles and macroscopic rheological behavior of the suspension.
This led to the conclusion that Lobry’s model is an effective mechanism, which quanti-
tatively predict the rheology of moderately concentrated non-Brownian suspensions from
the microscopic contact law.

In short, all the measurements are evidence to the fact that the dynamic colloidal
AFM technique is a powerful tool to study the surface properties in a confined geometry.

As a perspective for the viscoelastic measurements, we project to extend the work to
viscoelastic characterization of the PDMS with various cross-linked densities. However,
a single model with a finite number of parameters for the viscoelastic samples cannot
describe the behavior of all materials due to different relaxation mechanisms at different
frequency scales. The Chasset-Thirion model, which was developed for the frequency re-
sponse of the soft gel, might fail to capture the frequency response of the PDMS substrates
with higher cross-linked densities. That is for, we also project to derive a theoretical model
to fit the extracted storage and loss moduli for those samples to obtain their rheologi-
cal properties at wide range of excitation frequencies. Nonetheless, the broader aspect
of applications of this study provide a strong motivation for the study of hydrodynamic
interaction between soft and fragile samples.

As a perspective of our investigation of friction between the polystyrene microspheres,
we project to reproduce this experiment with the particles of different materials. As, the
friction between the particles is greatly influenced by the intrinsic properties (such as
its viscoelastic properties) of the materials, so the idea of reproducing this work with the
particles of different materials to validate the scenario would be interesting. A step further,
it would be particularly relevant for soft materials where the viscoelastic mechanical effects
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dominate the friction between the materials. In addition to this, the surface chemistry and
topographies are crucial factors to interpret the surface tribology. To this aim, the friction
measurements between the particles having particular surface properties, such as the
surface is electrically charged or grafted with some polymer brushes, would be interesting.
Lastly, for the case of adhesive suspension, it would be interesting to characterize the
adhesion forces and establish a quantitative link between the adhesion (characterized
using an AFM) and rheology (stress threshold, shear-thinning).
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[35] Enrique A López-Guerra and Santiago D Solares. On the frequency dependence
of viscoelastic material characterization with intermittent-contact dynamic atomic
force microscopy: avoiding mischaracterization across large frequency ranges. Beil-
stein Journal of Nanotechnology, 11(1):1409–1418, 2020.

[36] F. P. Dowson and D. Tabor. The Frictions and Lubrication of Solids. Oxford
University Press, 1950.

[37] F.P Bowden and D. Tabor. Mechanism of Metallic Friction. Nature, 150(3798):197–
199, 1942.

[38] Yifei Mo, Kevin T Turner, and Izabela Szlufarska. Friction laws at the nanoscale.
Nature, 457(7233):1116–1119, 2009.

89



Bibliography

[39] James L Bosse, Sungjun Lee, Andreas Sø Andersen, Duncan S Sutherland, and
Bryan D Huey. High speed friction microscopy and nanoscale friction coefficient
mapping. Measurement Science and Technology, 25(11):115401, 2014.

[40] C Mathew Mate, Gary M McClelland, Ragnar Erlandsson, and Shirley Chiang.
Atomic-scale friction of a tungsten tip on a graphite surface. pages 226–229, 1987.

[41] K.L. Johnson, K. Kendall, and A.D. Roberts. Surface energy and the contact of
elastic solids. Proceedings of the Royal Society of London Series A, 324(1558):301–
313, 1971.

[42] Victor Brizmer, Yuri Kligerman, and I. Etsion. Elastic–plastic spherical contact
under combined normal and tangential loading in full stick. Tribology Letters, 25:61–
70, 01 2007.

[43] V Brizmer, Y Kligerman, and I Etsion. The effect of contact conditions and material
properties on the elasticity terminus of a spherical contact. International journal of
solids and structures, 43(18-19):5736–5749, 2006.

[44] Stany Gallier, Elisabeth Lemaire, François Peters, and Laurent Lobry. Rheology
of sheared suspensions of rough frictional particles. Journal of Fluid Mechanics,
757:514–549, 2014.

[45] Francois Peters, Giovanni Ghigliotti, Stany Gallier, Frederic Blanc, Elisabeth
Lemaire, and Laurent Lobry. Rheology of non-brownian suspensions of rough
frictional particles under shear reversal: A numerical study. Journal of rheology,
60(4):715–732, 2016.
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