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Introduction

Introduction

MAnkind marvels at Artificial Intelligence (AI) date back to as early as the antiquity.

For instance, in the greek mythology, Talos is described as an automaton made of bronze

that is tasked to protect Europa, the mother of King Minos, in the island of Crete. In

the ancient Chinese Liezei Taoist book, an “artificer” builds a human-shaped automaton

that could be mistaken by a live human. Mary Shelly’s Frankeintein is an example of

AI depicted in more recent literature, but that still pre-dates one of the biggest steps in

mankind history that has since shaped our understanding (and expectations) of AI: the

computer.

With the computational power yielded by the development of computers during the

Second World War, computer scientists started to theorize the feasibility of true AI and

what it should be like. The prestigious computer scientist Alan Turing even published a

paper describing a method to identify if a machine is thinking: the famous Turing Test.

Later advances in symbolic processing allowed by computers in the early 50s culminated

in the recognition of AI as field with the Darthmouth Workshop in 1956. The years that

followed were marked by great enthusiasm by the community, with a multitude of AI

applications being developed, such as natural language processing and problem solving

algorithms. However, due to hardware limitations, the development hit a barrier and, in

1974, started what is now know was “AI winter”, a period where interest was decreased

due to disbelief of community in the capabilities of such systems. While some spikes

of interest have happened in the 80s, AI would only be regarded with enthusiasm again

decades later.

Contemporary to the first developments in AI and later AI winter was the Cold War.

This period was marked by constant dispute between the Western Bloc, i.e., Capitalist

bloc, and the Eastern bloc, i.e., Communist bloc. These two blocs were in a constant

arms race in a variety of domains in order to assert their political ideology and influence.

Results of this dispute were, for example, proxy wars in what were known as Third World
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countries, nuclear weapon development, and, notably for this thesis, the Space Race. Fol-

lowing the ballistic developments motivated by the second world war, one of the ways

that both blocs started to display power was through space exploration. Notable achieve-

ments were the launch of the first artificial satellite (Sputinik 1) and the first human in

space (Yuri Gagarin) by the Union of Soviet Socialist Republics (USSR) and the manned

expeditions to the Moon (Apollo program) by the United States of America (USA). With

the interest in spaceflight came many scientific and engineering questions. In this thesis,

the focus is on the problem that was first described in [1]. The development of Integrated

Circuit (IC)s started in the late 50s and were of great importance for space exploration.

In fact, the ICs were used in the Apollo Guidance Computer (AGC), responsible for guid-

ance and control of the Apollo spacecrafts. However, as stated [1], the space environment

was not only hazardous to humans, but to ICs as well. Communication satellites were

showing unexpected behaviors as their circuitry was triggering in an anomalous fashion.

The authors, through an experiment using an electron microscope, showed that ionizing

particles could indeed provoke unintended triggering of the IC, effectively causing soft-

errors, i.e. non-permanent errors in which bits of the system have their value inverted

(bitflips). They also showed that the expected error rate extracted from their experiments

agrees with the error rate observed in a satellite in orbit, corroborating the claim that the

faults were caused by cosmic rays.

From that point on, it was evident that space posed an additional challenge due to the

way it affects electronics. This raised the question of whether such effects could happen

inside the Earth atmosphere. Later, in 1996 [2], E. Normand showed that, in fact, the

same effects observed in space could happen at ground level. The difference resides in

the type of particles that cause these effects. Earth’s atmosphere and magnetic field work

together to shield the planet from cosmic radiation. However, when cosmic rays collide

with particles in the Earth’s atmosphere, neutrons are released at different levels of energy.

These neutrons are capable of producing bitflips, just as cosmic rays.

While research on the effects of radiation developed through the late 70s and 80s, AI

was stagnated and still facing some disbelief. It was not until the 90s that the enthusiasm

would came back. Developments in semiconductor technology made computers reach a

new height in terms of processing power. This allowed for some major breakthroughs,

such as the development of an AI that beat the chess grandmaster Garry Kasparov [3]. In
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the early 2000s, also pushed by the developments in processing power, ML has started to

gain more notoriety. ML is a branch of AI in which the focus is to develop algorithms

that learn from data. As more and more people started to gain access to the internet,

the amount of usable data skyrocketed opening many opportunities for ML applications.

For instance, it was at this time that web companies started to analyze their user’s data

to provide personalized experiences, i.e., the first development of recommender systems.

Furthermore, various entities promoted competitions to instigate researchers and encour-

age the development of ML applications. For instance, the company Netflix, at the time

an online DVD-rental company - held an open competition, namely The Netflix Prize, in

which the goal was to predict the rating a user would give for a movie based on the previ-

ous ratings he/she has assigned to other movies. Also at this time, The American Defense

Advanced Research Projects Agency (DARPA) held multiple self-driven cars competi-

tions [4].

During the 2000s and the 2010s, as technology was getting more and more ubiquitous,

so was machine learning. During this time, making calls became just minor functionalities

of smartphones as they evolved into very capable devices. Home automation devices,

such as Amazon Alexa and the Google Home, reached the selves. Even websites evolved

into personalized experiences tailored towards each of its user. ML was behind all these

advances. However, these solutions often require hefty processing power, which these

devices cannot provide. The solution, in these cases, is to forward the data to be analyzed

to the cloud. While this solution is acceptable in these cases, not all applications can rely

on a connection to a server. For instance, self-driven cars relying on internet connection

would be disastrous. Thus, there has been movements towards edge-AI. The idea is to

embedded the ML computation to the devices closer to the sensors that capture data, i.e.

the ML is placed on the edge. Works have been conducted to port the models over to

platforms that are candidates to for edge processing, such as Graphic Processor Unit

(GPU)s, Field-Programmable Gate Array (FPGA)s and microcontrollers.

Edge-AI has also started to find its way in space applications. The Perseverance Mars

rover, launched in July 2020 and which landed on Mars in February 2021, implements

Edge-AI. Embedded in the rover is the Planetary Instrument for X-ray Lithochemistry

(PIXL), an equipment designed to look for traces of ancient microscopic life. AI models

are used to better point the instrument to the intended location [5]. The rover also used
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AI to help on its landing. This is especially important as the distance between Mars and

Earth makes that a signal takes from 5 to 20 minutes to travel between the planets, making

it impossible to pilot the craft remotely from Earth. Apart from the rover, companies

and universities have been investigating the usage of AI in nanosatellites. An example

is the Lockheed Martin joint project with the University of Southern California for the

development of the La Jument nanosatellites, specifically for testing ML implementations

in space.

Critical systems are systems in which a failure may lead to catastrophic or costly

results. For instance, a failure in a self-driven vehicle may cause the loss of a human

life. A failure on a rover on Mars may turn billions of dollars in investment into a very

expensive robotic decoration to the landscape of Mars. As ML is being embedded in such

systems, and they are subject to radiation induced faults, be it at ground level, avionic

altitudes and on space, it is important to understand how these faults affect these systems.

In this sense, the objective of this thesis is to evaluate the reliability of machine learning

models implemented in different hardware platforms.

In this work, the reliability of three popular ML models against radiation induced

faults was studied. These models are: Artificial Neural Network (ANN), SVM and Ran-

dom Forest (RF). To estimate their reliability, two approaches were used. The first was

fault emulation. As mentioned, radiation induced faults may result in bitflips. To eval-

uate how these bitflips affect the algorithms, they are implemented on a device and the

memory of such device is manipulated to artificially invert the values of bits. In doing

so, it is possible to evaluate the impact of such faults on the system while also identifying

which parts of the system are the most sensitive. The second method used was accelerated

testing. As the time expected for a fault to happen is long, the target devices containing

the ML algorithms are placed in front of artificial radiation sources that surpasses natural

fluxes by various orders of magnitudes. This way, months or even years of real-life system

exposure is simulated in a fraction of the time, allowing for an estimation of fault rate and

behavior of the system in the real environment. In terms of the devices used, two SVM

models were implemented using FPGA. Furthermore, implementations of the three ML

models in microcontrollers were also studied. All these solutions were also tested using

fault injection as a complimentary study.

This thesis is organized as follows: Chapter 1 describes the terminology related to the
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radiation testing of components and systems. Chapter 2 contains a review on ML and the

algorithms used in this work. Chapter 3 presents the first evaluation of the reliability of

a SVM under the effect of fast neutrons. The algorithm was implemented in FPGA and

tested using a fast neutron source and fault emulation techniques. Chapter 4 complements

this work by testing two SVM models implemented in FPGA under the effect of ther-

mal neutrons by also performing an accelerated test using a radiation source and a fault

emulation campaign. Chapter 5 analyses the effect of fast neutrons in microcontroller

implementations of ANN, SVM and RF using a custom fault emulator. In Chapter , the

same ML algorithms are tested using a neutron source. Chapter 7 introduces a custom

fault emulator implemented to serve as tool in this thesis. Chapter 8 presents the final

remarks.
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1.1. Soft Error Taxonomy

In this Chapter, a review on radiation testing of components and systems is presented.

The terminology and definitions used in this thesis are discussed.

1.1 Soft Error Taxonomy

As defined in the JESD89A standard [6], soft errors are any type of non-destructive

functional disruption of a system normal execution induced by any type of radiation. A

taxonomy of soft errors is present in Figure 1.1. Each type of Soft Error is described in

the sequence.

Figure 1.1: Taxonomy of Soft Errors, according to [6]

1.1.1 Single-Bit Upset (SBU)

A Single-Bit Upset (SBU) is when a particle causes a bit of a memory element to change

from its expected. Examples of memory elements are Random Access Memories (RAMs),

latches and registers. It is worth nothing that no permanent damage is done to the com-

ponents, i.e., the memory still operates correctly but it holds an erroneous value. If the

erroneous value is overwritten before being used, the system will not present an unex-

pected behavior.
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1.1.2 Multiple-Bit Upset (MBU)

With the ever-increasing miniaturization of devices, memory cells are getting physically

close to each other with every new technological step. This makes so that a single particle

may be capable to cause bit upsets in multiple memory cells, causing a Multiple-Bit Upset

(MBU). It is important to notice that MBU refers to a single event causing multiple bits

to flip, and not multiple events each causing a bit to change.

1.1.3 Single-Event Transient (SET)

When a particle hits a semiconductor device, it may transfer energy to it, causing transient

pulse in the circuit. In analog systems, this can be very problematic, as disturbances in a

signal may cause the system to fail, e. g. the pulse may be amplified by an operational

amplifier. In digital system, SET may interfere with the combinational logic of the circuit.

This disturbance may be capture by a memory element, possibly leading to unwanted

behavior [7].

1.1.4 Single-Event Functional Interrupt (SEFI)

A Single Event Functional Interrupt (SEFI) is a soft error which causes the system to lose

its functionality. For example, a soft error may attack a control bit, making the system

reset, hang or malfunction. The system must be recoverable without power cycling for

the event to be considered a SEFI. Also, no permanent damage incurs in the circuit.

1.1.5 Single-Event Latch-up (SEL)

Similar to a SEFI, a Single Event Latch-Up (SEL) is a soft error that causes the system

to lose its functionality, but different than a SEFI, it is only recoverable through power

cycling, i.e. turning the system off and back on. It happens when a particle passes through

a sensitive part of the circuit, creating an abnormal high-current state. As noted in [6],

a common example is when a particle induces the creation of parasitic bipolar (p-n-p-n),

effectively shorting power to ground.
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1.2. Metrics

1.2 Metrics

In this Section, the metrics related to radiation testing are presented and discussed.

1.2.1 Particle Flux

The particle flux (φ ), commonly referred to simply as flux in the context of radiation test-

ing, is the rate in which particles reach a component per unit of area. As so, it is expressed

in particle/s/cm2. In whichever physical environment a component is executing, be it

ground level, avionic altitudes or in space, it is constantly being bombarded with a spec-

trum of particles at multiple energies, each environment having it is own characteristics.

For instance, in space, cosmic rays contribute the most to particle spectrum, which in

turn makes the flux of protons, alpha particle and heavy ions the highest. At ground and

avionics level, due to Earth’s natural protection, the flux of cosmic ray-related particles

is lower. However, secondary particles are generated when cosmic rays collide with oxy-

gen and nitrogen atoms in the atmosphere releasing neutrons, which are in turn the most

common particles at ground and avionics altitude [8].

Knowing the particle flux of an environment allows for the design of experiments to

simulate it. Particle accelerators are great tools to not only mimic a environment (even

though partially) but to perform accelerated testing. They can provide fluxes that are

orders of magnitude higher than natural fluxes, allowing for the emulation of months (or

even years) of the real environment. For example, for some of the experiments described

in this work, the GENEPi2 [9] 14 MeV accelerator from the Laboratoire de physique

subatomique et de cosmologie de Grenoble (LPSC) has been used, in which we have used

fluxes of roughly 106 neutrons/s/cm2. The natural flux of 14 MeV neutrons at ground

level is roughly 5∗10−2neutrons/s/cm2 [10], with the GENEPi2 flux being 2∗107 times

larger than it. Thus, 1 hour of testing in the GENEPi2 equipment is equivalent to 2.281

years in the real environment.

1.2.2 Fluence

Fluence Φ represents the total number of particles per cm2 that have traversed an environ-

ment in a time interval ∆t. It is represented as the integral of the flux over time, described

in Equation 1.1:
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Φ =
∫ t f

t0
φ(t)dt (1.1)

where ∆t = t0− t1 are the initial and final time of the interval being measurement,

respectively, and φ(t) represents the flux as a function of time. As it is a product between

flux (particle/s/cm2) and time, the result measuring unit is particle/cm2. Fluence is

particularly useful to define further metrics, such as cross-section Failure in Time (FIT),

to be described in the sequence.

1.2.3 Cross-section

Cross-section is a useful tool to quantify the radiation effects on a hardware platform or

system. It describes the probability of a single particle causing a failure in the system.

Thus, it is expressed as shown in Equation 1.2:

σ =
N f

Φ
(1.2)

where N f is the number of failures identified during the irradiation with the fluence

Φ. Assuming that a fault is a result of a single particle interacting with the component,

the measurement unit for the cross-section is cm2.

It is common to distinguish between static and dynamic cross-sections. Static cross-

section measures the sensitivity of a hardware platform agnostic of an application. For

example, static cross-section of a Dynamic Random Access Memory (DRAM) memory is

the probability of a particle to cause a bit flip in a cell. In this case, a way to measure the

static cross-section is to load a pattern on the memory, irradiate it, count the number of

failures and use Equation 1.2. On the other hand, dynamic cross-section represents the

probability of a particle to cause a fault when a application is being run on a platform,

e. g. a machine learning algorithm running on an FPGA. It takes into account that the

application itself may mask some faults, e.g., faults outside the memory space being used

may not need to a failure, providing a metric that represents the system as whole.

While the dynamic cross-section is the most useful when it comes to the final imple-

mentation of system. Measuring the dynamic cross-section is expensive due to the cost

of radiation campaign. To overcome this, it is possible to estimate the it from the static

cross-section, which may be provided by the platform vendor. They can be related by
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Equation 1.3.

σdynamic ≈ σstatic ∗θsystem (1.3)

with θsystem being the probability of a fault becoming a failure, which can be estimated

through fault injection campaigns.

1.2.4 Soft Error Rate (SER)

Soft Error Rate (SER) is the rate of soft error observed in a system in a given environment

[7]. A popular way to express it is through FIT. 1 FIT is equivalent to 1 failure per 1

billion hours. It is calculated using Equation 1.4:

FIT = σ ∗φenv ∗109 (1.4)

where σ is the system cross-section and φevn is the environment flux expressed in

particle/cm2/h. 109 represents 1 billion hours, as per the definition of FIT.
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Chapter 2. Revision on Machine Learning

In this Chapter, the ML terminology and techniques are described. Furthermore, a

review of the algorithms studied is presented.

2.1 Definitions

2.1.1 Dataset

A dataset is a collection of data of a particular problem. An example of a famous dataset

is the Fisher’s Iris flower dataset [11]. The dataset is a collection of measurements, sepal

and petal length and width, of multiple specimen of Iris flowers, a flower genus, of three

different species: Setosa, Virginica and Versicolor. The data was collected by E. Anderson

and became famous when R. Fisher [11] used statistical learning techniques to design a

classifier capable to predict the species of an Iris flower from its measurements. Other

examples of datasets are shown in [12].

A dataset may be labelled or unlabeled. A labeled dataset contains the expected output

of its samples. For instance, the Fisher Iris dataset, the class of each specimen is known.

This allows for the training of machine learning models to be used to infer an output over a

sample whose class is unknown. On the other hand, an unlabeled dataset is not annotated.

This type of dataset is often used for clustering problems. Figure 2.1 shows an example

of labeled and unlabeled datasets.

2.1.2 Input Sample

An input sample is a single instance that follows the structure of the dataset of which

some information is unknown and a machine learning technique is going to be used to

predict this information. For example, for the Fisher Iris dataset, an input sample is the

measurements of a flower whose class is unknown. The goal of the machine learning

algorithm is to predict the class of this input sample.

2.1.3 Feature

A feature is one of the dimensions of a sample. For example, as mentioned, the Iris

flower dataset is a set of measurements of multiple specimens of Iris flowers. These
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2.1. Definitions

Figure 2.1: (a) Illustrative example of a labeled dataset. (b)Illustrative example of an
unlabeled dataset.

measurements are sepal length, sepal width, petal length and petal width. Each of these

measurements is a feature, i.e., each sample is composed of 4 features/dimensions.

2.1.4 Supervised Learning

Supervised Learning is a subset of the machine learning algorithm that performs the learn-

ing over a labeled dataset. The workflow of supervised learning algorithms is often di-

vided in two distinct phases: learning and classification. During the learning phase, a

training algorithm to generate a mathematical model that maps samples of a dataset to

their expected labels. The dataset used for this learning phase is referred to as training

dataset. In the classification phase, the generated model is used to classify samples whose

labels are unknown. For instance, for self-driving cars, a dataset of road pictures (sam-

ples) associated with the action that should be taken, such as breaking or turning (label)

could be used to train a model. On a real-life environment, a camera could be mounted

on a car, input pictures to the model (input samples), which would output the action that

should be taken. Please note that this is an oversimplification of the self-driving car appli-

cation and it is used only with illustrative purpose. An illustration of a supervised learning

is shown inf Figure 2.2-(a).
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2.1.5 Unsupervised Learning

Different than supervised learning, unsupervised learning algorithm performs learning

on unlabeled datasets. For examples, a machine learning design may have access to a

dataset of emails and want to develop a model that is capable of distinguishing between

spam and regular mail. However, the dataset is unlabeled, meaning that the mails are not

identified as spam or not. To goal of an unsupervised learning algorithm is to identify

the underlying structure of data and group them accordingly, i.e., find clusters of data.

Unsupervised learning is illustrated in Figure 2.2-(b).

Figure 2.2: (a) Illustrative example of a labeled dataset. (b)Illustrative example of a
unlabeled dataset.

2.1.6 Classification

The goal in a classification problem is to derive a function X → Y , s.t. X ∈ IRn, n being

the number of features in the input dataset, Y being a discrete set. For instance, the Iris

Flower problem [11] is an example of classification problem. The output set Y is defined

as {setosa,virginica,versicolor}. In a more semantic definition, a classification consists

predicting the class of an unknown sample based on its characteristics.

18



2.2. Artificial Neural Networks (ANN)

2.1.7 Regression

A regression problem, similar to a classification problem, also consists in finding a X→Y

function, s.t. X ∈ IRn, n being the number of features in the input dataset, but differently

than classification, Y is a continuous value. An example is the Boston housing problem

[13]. The dataset contains information concerning housing in the Boston Mass, U.S.A.

The goal is to estimate the value of real-state based on this information. As “value” is a

continuous variable, this is a regression problem.

2.2 Artificial Neural Networks (ANN)

ANN is a classical machine learning technique, with its first dating to the 40s, with

the work of McCulloch and Pitts [14]. In their paper, the authors mention that due to

the characteristics of biological neurons, their behavior could be treated as propositional

logic. At that moment, the idea was embraced by the community and other related works

exploring the technique were developed. However, the research on the topic reached a

plateau at the end of the 60s due to limited processing power at the time. The interest

resurged in the mid-80s [15] with the rise of parallel processing and, in recent years,

their popularity only grew, being implemented in platforms such as GPUs [16, 17] and

FPGA [18].

Figure 2.3: Structure of a Perceptron/Neuron

As mentioned, the idea of the ANN is inspired on the way biological neurons be-
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have. In biology, neurons receive a series of inputs (neurotransmitters) on their dendrite,

and, depending on what was received, forwards neurotransmitters over its axon. The

analogous “artifical” neuron is shown in Figure 2.3. The neuron receives a set of inputs

{x1,x2, ...,xn}. Each input is multiplied with a weight {w1,w2, ...,wn} and the results are

summed. This process is also known as Multiply-ACcumulate (MAC) operation. The

result is then evaluated on an activation function σ . A structure composed of a single

neuron as portrayed in Figure 2.3 is called a Perceptron. While limited, a Perceptron

works a binary classifier, i.e., a classifier capable of distinguishing between two classes.

For example, let’s take a dataset with only two classes {A,B}. A perceptron can be trained

to output positive values for samples of the class A, while outputting negative values for

samples belonging to the class B by carefully selecting a proper activation function. A

possible candidate to achieve this behavior is a using the σ(x) = tanh(x).

As discussed, the perceptron is somewhat limited, being restricted to binary problems.

Furthermore, it was shown in [19] that a perceptron is incapable of learning the XOR

function. To overcome this, the idea of multi-layer networks was introduced. The neurons

are organized in a layered manner, as shown in Figure 2.4. The general idea is that a

neuron is going to receive the outputs of the neurons in the preceding layer, perform the

MAC operations and forward to the next layer, hence why this topology is also known

as feed-forward neural network. The structure is divided in three segments: the input

layer, the hidden layers and the output layer. The neurons in the input layer are solely

responsible to inject the inputs to the neurons of the next layer. The number of neurons in

this layer is exactly the number of dimensions, i.e., features, of the dataset. The majority

of the learning often takes place in the hidden layers. The number of layers as well as

the number of neurons per layers are variable, to be defined the neural network designer.

The output layer, similar to the input layer, has its size tied to the dataset being used. The

number of neurons is exactly the number of classes of the problem at hand, each neuron

specifically representing one of the classes, which makes a neural network intrinsically

capable of performing multiclass classification.
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Figure 2.4: Structure of a Artificial Neural Network

2.3 Support Vector Machine (SVM)

SVM is a classification algorithm belonging to the group of supervised machine learn-

ing techniques [20]. The algorithm addresses the problem of binary classification, i.e., a

problem in which an observation (herein an input vector) has to be classified in one of two

possible classes. Being a supervised machine learning technique, its workflow requires

two phases, each one performed with a different algorithm: one for training Sequential

Minimal Optimization (SMO) algorithm) and another for classification (SVM algorithm).

Figure 2.5 presents an application of a SVM-based classification able to indicate

whether an astronaut reaches a risky condition to have a cardiac problem – for instance,

according to her/his heartbeat rate while moving or speeding on a treadmill in a space

station.

An input vector for the SVM algorithm is a pair (heartbeatrate,speed), which are

referred to as features or dimensions. The set of all measured pairs (heartbeatrate,speed)

is defined as a feature space. In order to train the SVM algorithm, i.e. to model the SVM

algorithm equation, a set of input vectors – herein called training vectors – is required. The

training vectors are indeed a subset of the feature space, however, the class of them are

known beforehand, e.g., input vectors from people whose cardiac conditions are known.
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Human Heartbeat Rate
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Figure 2.5: An SVM algorithm equation (linear classifier) trained to classify the heartbeat
condition. The horizontal axis represents the human heartbeat rate, while the vertical axis
represents the human movement speed.

At the training phase, the SMO algorithm uses the training vectors to calculate the

weights of the linear function that better separates input vectors from the two classes,

for example in Fig. 2.5: class “No heart problem" and class “Has heart problem", and

the training vectors respectively represented by blue dots and red stars. The calculated

weights, therefore, model a linear classifier dividing the elements of the two classes, i.e.

they model the SVM algorithm equation.

Formally, a tuple (~xi,yi) defines a training vector, in which the support vector ~xi ∈ IR2

in the example: heartbeat rate and speed features – both belonging to the set of real

numbers – that are measurements performed on a person i. Moreover, the class yi ∈

{−1,1}, and in the example: −1 and 1 represent respectively the class “No heart problem"

and the class “Has heart problem".

At the classification phase, the trained SVM algorithm is able to classify an input

vector whose class is unknown, e.g., if the heartbeat rate and speed of an astronaut running

on a treadmill indicate either “No heart problem" or “Has heart problem". The SVM

algorithm equation to classify an input vector~x with an unknown class is thus defined as:

score(~x) =
n

∑
i=1

αiyi(~xi ·~x)+b (2.1)

Each αi is a weight, found at the training phase and associated with its respective

training vector (~xi,yi). The weights αi shape the linear classifier (i.e. the SVM algorithm
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equation). At the training phase, the SMO algorithm also calculates the bias factor b. The

sign of the score(~x) determines the class of the input vector~x, in the example: positive for

“Has heart problem" and negative for “No heart problem".

2.3.1 Multiclass SVM

Even though, originally, SVM was created to perform binary classification. However, it

may be extended to fit multiclass problems. This is achieved by dividing the dataset into

subsets so it is possible to use binary classification. The two most popular techniques

are One-vs-One and One-vs-All. In this work, we made use of One-vs-One, which is

explained in the sequence. One-vs-All was left out for the sake of brevity.

In the One-vs-One approach, a binary classifier is trained for each pair of classes.

For instance, if there are three possible classes, e.g. {A,B,C}, a classifier is trained only

with samples from classes {A,B} in order to classify unknown samples between classes

A and B. Another one is trained with samples from classes {A,C} to classify an unknown

simple into either A or C. A classifier for {B,C} is also trained. To infer a class for an

unknown sample, it is evaluated on the three trained SVMs, each one inferring one class.

The class that is the most inferred is chosen as the final class. For example, if SVM {A,B}

outputs A, SVM {A,C} outputs A and SVM {B,C} outputs B, as A has been inferred twice

whereas B was only inferred once and C has not been inferred, the final class is A

2.4 Random Forest

RF is a supervised learning algorithm that performs the learning by building a collec-

tion Binary Decision Trees (BDT). To understand its model, it necessary to discuss the

workflow of BDTs.

The idea of a BDTs is to partition the training dataset in two, trying to group elements

of the same class together. The same process is then applied to each of these partitions

recursively, up until the partitions have only examples of a single class. This process can

be represented using binary trees, as illustrated in Figure 2.6. Each non-leaf node contains

the partitioning function, while the leafs contain only an identifier representing the class

of the elements it contains. To classify an input sample using a BDT, the input sample
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Figure 2.6: Example of partitioning performed by BDT

is evaluated in the partitioning function of the root node, which will direct it to either the

left or right child node. This process is repeated recursively until a leaf is reached. The

class assigned to the input sample is the class represented by the leaf reached.

While BDTs work by themselves as supervised learning algorithms, they are prone to

overfitting the data. As mentioned, the partitioning is done until they contain members

of a single class. This is particularly problematic for datasets that contain outliers, i. e.

samples of class that differ from other elements of the same class, or noisy data. The

algorithm will try to accommodate these examples in the partitioning process, which may

create a BDT that does not generalise well over the training dataset. A way to try to

overcome this is building a “forest”, i.e. a collection of BDTs. Each tree is trained

over slightly modified versions of the dataset generated using bagging, also known as

bootstrap sampling. Each new dataset is generated by performing uniform sampling with

replacement on the original dataset. The number of datasets and, consequentially the

number of BDTs trained is defined by the machine learning designer and varies from case

to case. To classify an input sample using the forest generated, it is first classified all the

trees generated then, the most common class among the results is the final classification

of the RF.
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Chapter 3. Support Vector Machine under Radiation Effects

3.1 Introduction

Machine learning algorithms have been increasing in popularity in both academic

and industry because of their capacity to learn from existing data, and to predict future

outcomes. Those two features, learning and predicting, have motivated the use of this type

of algorithm in many applications such as medical diagnostics [21], robot intelligence

[22], and geoscience/aerospace domain [23]. What all these application have in common

is the need to identify a pattern – in a raw amount of data – and to decide which action

has to be taken based on the pattern classification.

Among machine learning algorithms, the SVM, described in Section 2.3, has been

extensively used over the past years for pattern recognition and data mining. The SVM

has high generalization capacity and robustness in both data classification and regression.

SVMs are more commonly used in classification problems because they are based on the

idea of finding a hyperplane that best divides a dataset into classes. In other words, SVM

separates the elements of a dataset in classes that have similar properties. However, since

the amount of data are increasing in size and complexity, the necessity of providing some

alternatives to accelerate the performance of the SVM classification is still a current issue.

In the sense of accelerating the SVM classification, this algorithm has been imple-

mented in FPGAs [24]. Nevertheless, FPGAs are considered sensitive to radiation ef-

fects [25], especially Static Random Access Memory (SRAM)-based FPGAs on which

particle-induced transient faults may corrupt their configuration memory in a effect also

known as Single Event Upset (SEU)s. Transient faults are indeed able to change three

elements in an FPGA: the configuration of a routing connection; the configuration of a

Look-Up Table (LUT); and the data inside of an embedded Block RAM memory (BRAM).

As the effects might be persistent, a new bitstream must be loaded to the FPGA to cor-

rect it. Furthermore, a transient fault is able to invert a Flip-Flop (FF) of a Configuration

Logic Block (CLB) of the user’s sequential logic. In this case, the next load of the FF may

correct this fault.

Recent works have studied the effects of radiation-induced transients faults on hard-

ware implementations of machine learning algorithms, such as ANNs and Convolutional

Neural Networks [26–28] and Bayesian machines [29]. To the best of our knowledge,

however, no related work has been studied the radiation effects on SVM. In this Chapter,
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we present the first assessment of an FPGA-implemented SVM architecture under radi-

ation effects by looking at how induced transient faults affect its behavior. An extensive

fault emulation campaign and experimental radiation tests with a 14-MeV neutron gener-

ator beam have been carried out to analyze SVM responses. The radiation test campaign

has been performed in GENEPi2 neutron accelerator [9] using an Artix-7 FPGA.

3.2 Case-Study SVM Architecture

Depending on the application, a software-implemented SVM algorithm is continu-

ously demanded to classify input vectors ~x, consuming energy and occupying computa-

tional resources that could be reallocated to other tasks. A hardware-implemented SVM

algorithm is an effective alternative solution to accelerate the computation and to save the

energy of systems.

Training and SVM-based classification phases have been implemented in hardware as

an Application-Specific Integrated Circuit (ASIC) in [30, 31] and by using an FPGA in

[24, 32] to speed up the SVM algorithm execution. Furthermore, related works have also

implemented in hardware only the SVM-based classification phase [31] [24], conducting

the training phase in software platforms such as MATLAB or LibSVM [33], and enabling

further energy savings in ASICs used to make preliminary offline inference.

3.2.1 State-of-the-Art SVM in Hardware

Several solutions have been proposed for implementing SVM classification in hardware

[24,30,31]. The implementation in [31] multiplies the Support Vector (SV)s with an input

vector all in parallel. This has been done to achieve maximum performance to suit their

application (voltage-droop prediction), which demands a very fast classification time. The

limitation of this approach is being able to generate only linear and second-order poly-

nomial classifiers. To overcome this limitation, works [24] and [30] have implemented

non-linear classification by using a COordinate Rotation DIgital Computer (CORDIC)

algorithm, which requires solely hardware-friendly functions (e.g., shift and sum opera-

tions) to approximate the calculations over some clock cycles. Likewise in [31], the opera-

tions with the SVs and an input vector are also performed in parallel in [24] and [30]. The
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CORDIC algorithm-based implementations have higher memory requirements in com-

parison with [31] because look-up tables are used to approximate exponential functions

and more clock cycles are needed to output an answer. However, they generate more

complex classifiers.

3.2.2 SVM Architecture Design

As our dataset is linearly separable, further described in Subsection 3.2.3, we opted for

the approach in [31] with a first order, i.e. linear, classifier to explore its benefits in

terms of memory requirements and performance. Figure 3.1 shows the case-study SVM

architecture. In addition, we have calculated the αiyi products beforehand, reducing one

multiplication for each SV ~xi, and further optimizing the SVM architecture. The final

implementation is completely combinatorial. The circuit is composed by three main parts:

the Multipliers, the Adders and the Output, as illustrated in Figure 3.1.

The SVM architecture adopted a 16-bit fixed-point representation, 8 bits being dedi-

cated to representing the real part, following the ideas in [24,30,31]. Through simulations,

we have confirmed that the representation is enough to avoid possible overflows and also

to maintain sufficient precision. The primary inputs are composed of 32 bits (16 for each

dimension of the input vector). The primary outputs are composed of 49 bits to maintain

the calculation precision.

3.2.3 Set of Input Vectors

The target set of input vectors (dataset) has been obtained from Monte-Carlo simulations

representing current peaks and global delays obtained from golden ICs and faulty ICs

[34]. The input vector is 2-dimensional, and 150 input vectors have been obtained from

golden IC samples and 150 input vectors from faulty IC samples. The dimensions are

thus:

• Dimension 1: global delay

• Dimension 2: current peak

This set of input vectors is sufficient to distinguish faulty asynchronous IC samples

from fault-free asynchronous IC samples [34]. The set of input vectors has been parti-
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tioned into 2 subsets of the same size, one for training and another for classification, each

one with 75 golden IC samples and 75 faulty IC samples. A SVM model has been gener-

ated by using MATLAB. From this model, we have obtained the α’s and their respective

support vectors~xi. In total, 50 support vectors~xi have been generated at the training phase.

OutputAddersMultipliers

Figure 3.1: Overview of the hardware-implemented SVM architecture design.

3.3 SVM Architecture Assessment Through Fault Emu-

lation Campaign

This section assesses the ability of the case-study SVM architecture to tolerating tran-

sient faults. We have used a fault-injection method able to emulate transient faults in an

FPGA-implemented SVM architecture.

3.3.1 Device Under Test (DUT)

The DUT is a fully combinational SVM architecture design using fixed-point represen-

tation for its support vectors ~xi and wights αi (cf. section 3.2). The target platform is

a Zynq-7000 [35], which is composed of two main parts: the Processing System (PS),

consisting of an ARM Cortex-A9, and the Programmable Logic (PL), a Xilinx Artix-7

FPGA. The Zynq-7000 has been used on the ZedBoard development board The SVM
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architecture was implemented in PL part by using VHDL. The resource utilization of the

PL is shown in Table 3.1.

The SVM algorithm depends fundamentally on multiplications, cf. section 2.3. Most

modern FPGAs, including the Artix-7, have Digital Signal Processing units (DSPs), which

implement multiplications in dedicated hardware. All the multiplications of the DUT have

been mapped in the DSPs, which is the reason why DSP resources are prominent in Ta-

ble 3.1.

Table 3.1: Resource utilization of the PL (Artix-7)

Resource Utilization Elements

Flip-Flops (FFs) 1.65 % 1751

Digital Signal Processing units (DSPs) 40% 88

Look-Up Tables (LUTs) 7.24% 3854

3.3.2 Assessment metrics

We have assessed the case-study SVM architecture under transient faults by stimulating

different input vectors~x at its primary inputs, observing the related results score(~x) at its

primary outputs, and classifying them into three types:

• No Failure: the result at the primary outputs of the SVM architecture does not

differ from the golden reference (i.e. fault-free output vector);

• Tolerable Failure: there is a mismatch between the result at the SVM primary

outputs and the golden reference, however, the resulting class is correct, i.e. the

sign of the result at the primary outputs is equal to the sign of the golden reference;

• Critical Failure: there is a mismatch between the result at the SVM primary out-

puts and the golden reference, and the resulting class is not correct.

In order to assess the rate of critical failures provoked by the emulation of a single

transient fault on a node n of the SVM architecture design, we define the following metric:

CriticalFailureRate(n) =
# CriticalFailures(n)

# InputVectors
(3.1)

32



3.3. SVM Architecture Assessment Through Fault Emulation Campaign

in which # CriticalFailures(n) is the total number of critical failures provoked by a

single transient fault injected at node n of the SVM architecture design, and # InputVectors

is the total number of vectors tested at the primary inputs of the SVM architecture with

the node n under the same fault emulation.

3.3.3 Fault Emulation Method

Figure 3.2 illustrates the workflow proposed to apply the fault emulation method on SVM

architecture. The method emulates transient faults based on an in-house tool proposed

in [36–38]. Initially, the HDL description of the SVM is used to obtain the first synthesis

in Step 1 . In this step, the synthesis of the SVM is targeted for a specific FPGA (an

Artix-7 in our proposed architecture). We consider Synplify FPGA synthesis software as

it allows exporting a netlist, which is necessary in further steps.

Fault Injection
Campaign

Bitstream
Generation

MODNET

SVM
Synthesis

2

1

4

3

SVM
HDL code

SVM
Netlist

Modified
Netlist

Experiment
Synthesis

Figure 3.2: Workflow of the FPGA-based fault emulation method

In Step 2 , the netlist is used as input for the MODify NETlist (MODNET) tool [38].

The output of MODNET is a modified (but functionally equivalent) Netlist with a large

number of extra input signals used to access all memory cells and logic blocks of the

design to inject faults in the SVM. The resulting synthesis of the modified netlist includes

some additional combinational circuitry to the design.
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MODNET tool adds a multiplexer at the outputs of the LUTs and logic gates of the

netlist to either enable faults at these nodes or disable them by using the signal INJ, cf.

Figure 3.3.

MUX

 
contro

l

LUT6

A
Fault Injection Node (n)

C
D
E
F

Inj

B

Figure 3.3: Structure of the fault injection node

In Step 3 , a campaign controller is integrated within the modified Netlist for the

target FPGA. The campaign controller is implemented in a soft-core processor that is in

charge of managing the transient fault emulation campaign by being directly wired to the

SVM architecture modified by MODNET. To this end, the netlist obtained in Step 2

is synthesized in the Electronic Design Interchange Format (EDIF) and then attached to

the processor via a direct interface. The resulting bitstream implementing the complete

circuit (controller and SVM) is thus generated and implemented in the target FPGA.

Finally, the FPGA-based experiment in Step 4 can be directly executed from the

soft-core processor without requiring additional or external hardware support. Indeed,

the whole fault emulation campaign (including the post-processing of the results), are

conveniently encoded in the processor software. By accessing high-speed interfaces con-

necting the SVM, the software executes several iterations of fault-injection experiments

with different data inputs and fault nodes. The MicroBlaze processor uses an UART to

communicate with the outside to report the status of the experiment and its final results.

In summary, Figure 3.4 shows the framework of the method that we have applied to

perform the fault emulation campaign, which is integrated into a single FPGA where the

SVM and the experiment controller are instantiated and connected by an Advanced eX-
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tensible Interface (AXI). The MicroBlaze uses this communication channel to configure

the transient fault emulations in the components already intervened by MODNET (INJ

signals), as well as to configure the input and read the output values of the SVM. In this

particular case, the MicroBlaze processor (campaign controller) is a master, whereas the

SVM is a slave. The results of the fault emulation campaign are presented in subsec-

tion 3.3.4.

UART 
Interface

SVM score(x)Fault-injection data
and SVM input vectors 

Soft-core Microprocessor

Primary Inputs Primary Outputs

000 1111...

PL

FPGA

000 1111...

000 1111...

000 1111...

000 1111...

000 1111...

SVM

Figure 3.4: Framework of the method used to perform the fault emulation campaign.

3.3.4 Results of the Fault Emulation Campaign

The fault emulation campaign has been configured to extensively analyze the behavior of

the SVM architecture in the presence of faults. The MODNET tool (step 2 in Figure 3.2)

has identified in the SVM architecture 1350 nodes to be assessed through a transient fault

emulation campaign. For each node, a fault has been injected successively for the set of

150 input vectors. It is important to note that the node holds the fault over the entire clock

cycle. For each fault emulation, the primary outputs of the SVM architecture have been

compared with the correct result (golden), and each observed failure has been logged in

the campaign controller.

It is worth mentioning that 58.8% of the faults have been injected on the outputs of

the LUTs connected at the DSP outputs (the Multipliers), while 29.3% of the faults have

been injected on the outputs of the LUTs that are in charge of computing the Adders part.

The rest of the faults (approximately 11.9%) have been injected on the outputs of the
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LUTs used by the configuration signals of the SVM architecture. After an extensive fault

emulation campaign covering several nodes of the SVM architecture, encompassing a

total of 202,500 faults injected in the SVM architecture, results show that more than 29%

of emulated single transient faults provoked a critical failure in the SVM architecture.

It means that 71% of the fault emulations led to either tolerable failure or no failure.

Figure 3.5 presents the histogram of the rates of critical failures (Equation 3.1) provoked

by the emulation of single transient faults on the nodes of the SVM architecture design.

The results indicate that most nodes are quite sensitive to transient faults (critical failure

rates between 20% and 60%), and only a small number of them has a critical failure rate

higher than 60%. Such considerable critical failure rates on several nodes suggests that

the fault masking effects are low due to the parallel configuration of the operators and

the short path between the primary inputs and outputs of the SVM architecture. Selective

mitigation techniques could be applied to make more robust such nodes with high critical

failure rate.

Figure 3.5: Histogram of the critical failure rate of the injection nodes on the SVM archi-
tecture as given by Equation 3.1

Figure 3.6 shows the correlation among the most critical failure rate nodes and their

relative position in the SVM’s circuitry. It is worth mentioning that those nodes were

extracted from the FPGA LUTs, and their relative positions are logically represented

into the Figure 3.1. The results plotted in the Figure 3.6 correspond to the 18 nodes

with a CritiaclFailureRate > 60%. As indicate in the figure, the most critical faults are

distributed in the SVM architecture. In regard to the multipliers, all the eight critical
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components are positioned in the first logical level of the multiplier, i.e., they are LUTs

that receive the first computation of the DSPs with most significant bits. Analyzing the

region of the Adders, we can see that eight other faults/nodes can be classified as critical.

Unlike the multiplier results, where critical faults are significantly positioned in the first

logical level of the SVM architecture, failures in the Adders are diffused in the circuit. It

means that the critical failures can occur in different stages of the combinational Adders’

circuitry. When the fault injections are performed in Output, only faults happening close

or on the actual sign bit cause critical failures. Even though the most susceptible LUTs

are spread out in the architecture, they can be mapped. The very small number of LUTs

with a high CriticalFailureRate, as shown by Figure 3.6, suggests that hardening could

be done on these LUTs to improve the SVM fault tolerance with low area overhead.

Figure 3.6: Histogram representing the correlation among the most critical failure rate
(Equation 3.1) nodes and their position relative to the SVM’s circuitry implemented in a
FPGA.

3.4 Radiation Test Experiment and Results

This section describes the radiation experiments conducted with a neutron source and

an analysis of the obtained and assessed results.
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3.4.1 Radiation Test Set-Up

A radiation campaign has been performed at the GENEPi2 neutron source, at the Labo-

ratory of Subatomic Physics & Cosmology (LPSC), in Grenoble (France) [9]. Unlike the

LANSCE neutron beam, which ranges from 10-MeV to 750-MeV having a flux that is

106 higher than the natural neutron flux of this spectrum at 40,000 ft. [10], the GENEPi2

is a 14-MeV neutron generator with a maximum flux that exceeds the natural flux of 14-

MeV neutrons at 40,000 ft. by a factor of 1010. The board was irradiated for 6 hours and

45 minutes, yielding a total neutron fluence of 1.944∗1010 n∗ cm−2 and an average flux

of 8∗105 n∗cm−2/s. Note that we did not use the maximum flux of the accelerator. with

an environment temperature of 18°C. A polyethylene shielding with a hole was placed in

front of the ZedBoard to protect parts other than the Zynq-7000.

The architecture used for the radiation test has a minor difference from the one used in

Section 3.3 and is shown in Figure 3.7. While in the fault emulation campaign the FPGA

has been driven by MicroBlaze, in this radiation test experiment we adopted the ARM

as controller for the SVM. However, the SVM architecture design on the PL remained

unchanged. In order to reduce the number of input bits sent from the ARM to the SVM

architecture, we instantiated a small controller that had 32-bit wide to store the set of input

vectors tested on the FPGA.The controller fetches the data from the memory and forwards

it to the SVM. It then retrieves the output and exposes it through an AXI interconnect.

Figure 3.8 shows a picture of the test set-up.

The ARM processor provides the controller on the FPGA with the index of the input

vector to be tested, as the input vectors are stored in a ROM in the PL, and reads the result.

It then forwards the result through the serial port. The L2 cache of the ARM processor

has been disabled to reduce the probability of faults affecting the PS [39].

3.4.2 Radiation Test Method

Figure 3.9 presents the method we have used during the radiation test experiment. The

set of input vectors is continuously running in the FPGA. The radiation is able to alter the

configuration SRAM, which contains the FPGA bitstream, i.e. it is able to create an error.

This error may then lead to an alteration of the SVM calculation structure, mathemati-

cally changing the classification function. The score of an input vector evaluated in this
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faulty SVM may deviate from its expected result, i.e., we analyze the primary outputs of

the SVM architecture, and then we compare them with a golden reference. We use this

property to identify when an error has happened. Whenever an error has been identified,

we rerun the entire set of input vectors on the faulty SVM to classify each input vector

according to the metrics in Subsection 3.3.2, and finally, we log the results. When it is

done rerunning the input vectors, the FPGA is reset to erase the error, and the process

is restarted. It is worth noting that the errors detected during the radiation test could be

either from SEUs or Single Event Multiple Upsets (SEMU), the latter becoming more im-

portant in recent technology nodes. A SEMU happens when a single particle affects more

than one adjacent memory elements, which is becoming more likely with the shrinking of

transistor size [40].

Zynq-7000®

PS (ARM® Cortex A9) PL (Xilinx® Artix-7)

Input
Generator

Controller
(Input Vectors)

SVM

Sample
Number

SVM
Result

Host
Computer

Output
Processor

ZedBoard

FPGA board

FPGAProcessor

SVM
Result

Bitstream

Figure 3.7: Zynq-7000 set-up under radiation test

3.4.3 Assessment of Radiation Test Results

During the neutron radiation test campaign, we have identified 13 errors, of which 2

crashed the FPGA and 11 errors that allowed it to continue to produce results. Even

though crashes have been responsible for 15% of the total number of errors, they are not

related to the case-study SVM architecture design but due to a fault in the device per-

forming the serial communication with the control computer. The obtained static cross-
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Figure 3.8: FPGA board installed at the GENEPi2 accelerator neutron facility
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Figure 3.9: Method used on the radiation test

section and the FIT are respectively 5.65 ∗ 10−10 cm2 and 7.91, considering New York’s

14 n/(cm2 ·h) neutron flux at sea-level [2].

A total of 1650 input vectors have been evaluated on SVMs with an altered behavior

due to errors, as the 150 input vectors have been input to the SVM when an error has

been identified. Of those, 1168 continued to output the expected result (No Failure), 92

have been considered as Critical Failure and the remaining 390 as Tolerable Failures. As

shown in Figure 3.10, only 5% of the evaluated input vectors have resulted in Critical

Failure. When there is an error, there is a 95% chance that the error will not lead to a

misclassification. The full report, showing the classification of each input vector on each

error is shown in Figure 3.11. Each column in this figure represents an input vector evalu-
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Table 3.2: State-of-the-art of Machine Learning test under radiation effects

Work
ML

Algorithm
Dataset

Errors Provoking

Tolerable Failure

Integrated

System

Techn.

Node
Event

[27] ANN
Iris

Flowers
64%

FPGA

(Artix-7)
28nm Neutrons

[26] ANN
Iris

Flowers
65%

FPGA

(Artix-7)
28nm Heavy Ions

[27] CNN MNIST ∼74%
FPGA

(UltraScale+)
16nm Neutrons

[28]
CNN

(YOLO)
MNIST 92%

GPU

(Tesla K40)
28nm Neutrons

[28]
CNN

(YOLO)
MNIST 82%

GPU

(Titan X)
16nm Neutrons

This SVM
Fault

Detection
73%

FPGA

(Artix-7)
28nm Neutrons

ated on one of the errors identified during the test. The colors represent the classification

of the error according to the metrics in Subsection 3.3.2. Only one of the errors caused

the majority of the input vectors to be misclassified. This has been possibly an error very

close to the primary output. This error has forced every primary output to a negative

score, effectively classifying every input vector to the same class. However, the majority

of the errors did not seem to deviate the classification function by much, as the vast of

the input vectors remained classified correctly, which suggest a good level of tolerance to

errors built-in in the algorithm.

In terms of errors, Figure 3.12 presents a report of the radiation-induced errors that

provoked tolerable and critical failures in the SVM architecture during the radiation cam-

paign. As shown in Figure 3.11, 3 of 11 errors caused at least one of the input vectors

to be misclassified. This indicates that 27% of the errors identified during the radiation

test caused the SVM architecture to produce a critical failure. This result suggests that

the case-study SVM architecture indeed has a level of intrinsic fault tolerance, however,

more information is needed to better identify the nodes that cause critical failures.

On an FPGA-designed SVM architecture, errors may change a xi, a α or the calcula-

tion logic shown in Equation 2.1. These reshape and/or dislocate the linear classifier. If
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there is an error on one of the less significant bits of a xi or α , the separator displacement

may be so small that most of the input vectors are still classified correctly, even though

their score, i.e. the output from the classification function, changes. Mathematically, the

algorithm is an accumulation (the Adders in Figure 3.1) of the dot product of the support

vectors and the input vectors each weighted by an α (these operations performed by the

Multipliers illustrated in Figure 3.1). If a fault happens on the Multipliers, depending

on the bit, the result would not change much. As the result is an accumulation of the

complete set of support vectors, a small change in one does not interfere much, e.g., an

input vector with a golden score of 1.8 is classified with a score of 1.5, still being classi-

fied correctly. The same is true for the Adders. Changes in the least significant bits are

less likely to compromise the algorithm as they are not likely to accumulate to a point

of disturbing the sign bit. It is worth pointing out that different input sample will suffer

differently. An input sample that is close to the linear classifier, e.g., score of 0.2, will

be more easily misclassified as a small perturbation can already make it negative. This

indicates that the distribution of the input samples is important to the intrinsic fault toler-

ance of the algorithm. Our classes are well separated, which made our samples have high

scores, corroborating with the fault tolerance. In addition, The output is composed of 49

bits representing the score. While the 48 least significant bits are part of the calculation,

they are irrelevant to final result, as only the sign bit indicates the class. This indicates

already a high level of fault tolerance. Thus, even faults that occur very close to the output

of the system may be tolerated.

Figure 3.10: Percentages of the total number of situations originated by the 11 neutron
radiation-induced errors that have been detected provoking either a failure (critical or
tolerable) or no failure
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Figure 3.11: Map of the failures provoked by the neutron radiation-induced errors in
function of the input vectors ~x that have been tested. The row numbers (1 to 11) repre-
sent the labels attributed to the radiation-induced errors and the column numbers (1 to
150) represent the labels attributed to the input vectors. Each color point means if the
radiation-induced error provoked a critical failure (red point), a tolerable failure (blue
point), or no failure (green).

Figure 3.12: Percentages of the 11 neutron radiation-induced errors that have detected
provoking either critical failures (at least one) or tolerable failures (at the worst case)

The most harmful effects are modifications on the most significant bits of the support

vectors ~xi, weights αi, or changes in the operators (as the technique is implemented in an

FPGA). Only one of the 11 non-crashing radiation-induced errors led the majority of the

input vectors to be misclassified (critical failure). This indicates that, for the case-study

SVM architecture, this type of error is less likely to happen. This compliments the results

found during the

Results from both radiation test and fault emulation campaigns suggest that a hardware-

implemented SVM technique does have an intrinsic fault tolerance, as identified in other

similar experiments with different Machine Learning algorithms [26, 29]. It is worth

pointing out that no fault-tolerance mechanisms have been included in the case-study

SVM architecture.
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3.4.4 Comparison with State-of-the-Art Works

Evaluation of machine learning algorithms under radiation effects is still a new topic

with few works published. In [26], the authors evaluated the intrinsic fault tolerance of

Artificial Neural Networks (ANN) implemented in FPGA under Heavy Ions. In [26], the

authors investigate the fault tolerance of both ANNs and Convolutional Neural Network

(CNN), a variant of ANN which is very popular in image processing application, also

on FPGA but evaluated under neutron effects. In [28], the authors evaluated the fault

tolerance of CNNs in GPUs. These works are summarised in Table 3.2.

Our implementation achieved a higher percentage of errors provoking tolerable failure

when compared to the ANNs implemented in the same FPGA [26,27], the Xilinx®Artix-

7, which suggests that the SVM may have an higher intrinsic fault tolerance when com-

pared to ANNs. Furthermore, it also has a fault tolerance comparable to the CNN in [27]

implemented in an FPGA in a 16-nm technology. As mentioned in Subsection 3.3.4, the

applied dataset may have an impact in the fault-tolerance. A more complete investigation

is to be further investigated. When comparing to GPU implementations of CNNs, while

GPUs present better fault tolerance, FPGA implementations cannot be ruled out as they

may be faster for some applications [41].

3.5 Conclusions

Radiation test results provided in this work suggest that the target FPGA-designed

SVM architecture is robust to most single transient faults we have studied. However a

considerable number of radiation-induced errors (more than 25 %) is able to provoke crit-

ical failures. Previous works on other machine learning techniques, such as the Bayesian

Machines [29] (not evaluated under radiation) and ANNs/CNNs [26–28] have also shown

that these techniques do have a built-in fault tolerance. The contribution of this Chapter

is the assessment of the intrinsic fault tolerance of a SVM architecture. This is of great

interest, especially when it comes to safety-critical applications.
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4.1 Introduction

The effects of radiation induced transients have been studied in multiple hardware

implementations of machine learning algorithms. ANNs and Convolutional Neural Net-

works have been analyzed in [26–28], while [29] focused on Bayesian Machines and the

work in Chapter 3, published in [42], on Binary SVM. In this Chapter, the literature (and

the work in Chapter 3) is extended by studying the effects of thermal neutrons on hard-

ware implemented SVMs by assessing the effects of radiation in Multiclass SVMs. In

this work, we first-handedly investigate these effects by conducting a thermal neutron ra-

diation campaign and an extensive fault injecting campaign on a Binary and a Multiclass

SVM to better understand how the radiation affects them. Furthermore, we compare the

results of a Multiclass SVM to the ones of a Binary SVM. The radiation test campaign has

been performed using the D50 thermal neutron source at the Institut Laue-Languevin [43].

The fault injection campaign was based on partial configuration of the SVM bitstream.

Both campaigns made use of a Zynq-7000 System-on-Chip (SoC) as test vehicle.

4.2 Case-Study SVM Architectures

In this Section, we present the SVM architectures used for this work. Two SVMs

were implemented, a binary and a multiclass. The SVM algorithm is described in Section

2.3. The design choices follow those of the work presented in Chapter 3, discussed in

Section 3.2. For both SVMs, only the classification step was implemented.

4.2.1 Binary SVM Architecture Design

The binary SVM design used in this work is the same used in Chapter 3. Its more in-depth

description is presented Subsection 2.3. The dataset used was also the same, described

in Subsection 3.2.3, but, in order to better exercise the circuit, 116 randomly generated

samples were added to the dataset after training was done.
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4.2.2 Multiclass SVM Architecture Design

As discussed in Subsection 2.3.1, a Multiclass SVM is composed by a collection of Binary

SVMs aggregated by a voter. In this work, each Binary SVM was implemented following

the description in Subsection 3.2.2, using the same value representation. The voter was

not implemented in the FPGA, outputting the score of all the SVMs. It is up to the client

application to evaluate the score and perform the voting. The designed circuit is also fully

combinational.

4.2.3 Set of Input Vectors for the Multiclass SVM

For the Multiclass SVM, the dataset chosen was the Iris flowers [11]. It is originally a

4-dimensional dataset that contains 150 samples of three different species of Iris flowers

(50 of each): setosa, virginica and versicolor. Only two dimensions have been kept for

this experiment as they hold enough information for training a performant SVM classifier.

The dimensions are:

• Dimension 1: Petal length

• Dimension 2: Petal width

This dataset has been partitioned in a training set and a classification set, with 75

samples (25 of each species) each. The training set has been used to train a One-vs-One

Multiclass SVM, yielding three Binary SVMs, 2 SVMs with 2 Support Vectors~xi and one

with 16 Support Vectors ~xi. Following the idea used in Subsection 4.2.1, 116 randomly

generated samples were added to better cover the architecture designed.

4.3 SVM Reliability Assessment Through Emulated Fault

Injection

Emulated fault injection was used in this work to cross-validate results from radia-

tion experiments and further investigate areas of improvement in the Design Under Test

(DUT).
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Compared to emulated fault injection, accelerated irradiation experiments provide a

better approximation to the use of the DUT in real environment and can provide a more

comprehensive test coverage reaching all relevant structures of the integrated circuit.

However, radiation experiments are less powerful in pinpointing the DUT submodules

more susceptible to SEUs that could be candidate to mitigation strategies leveraging DUT

reliability. This section describes the fault injection methodology and the results obtained.

4.3.1 Fault Injection Set-up

The test vehicle used in fault injection is a ZedBoard development board which is equipped

with a Xilinx Zynq-7000 MPSoC hosting the DUT. The Zynq-7000 device is divided in

two main parts that are a dual core Processing System (PS) based on Arm® Cortex®-A9

and a SRAM-based FPGA Programmable Logic (PL) that, for this device part number,

uses technology equivalent to a Xilinx 7 Series Artix-7 FPGA.

The SVM computation core, implemented in VHDL, is wholly hosted in the FPGA

(PL) side of the Zynq-7000. A small part of the application, implemented as software

in C language, is hosted in the ARM (PS) side of the device and is responsible mostly

by coordination and reporting tasks, not playing relevant role in the computation effort.

However, between these two parts of software and SVM core, there is a communication

infrastructure, based on AMBA AXI interface, with some modules also implemented in

the FPGA side through the use of parameterizable Intellectual Property (IP) design blocks

provided by the FPGA manufacturer. The resource utilization and frequency of operation

for both the Binary and Multiclass SVMs are shown in Table 4.1.

Binary Multiclass

Frequency 133 MHz 133 MHz

LUT 7% 5%

LUTRAM 1% 1%

FF 2% 2%

BRAM 1% 1%

DSP 40% 28%

IO 1% 1%

Table 4.1: Resource utilization of Zynq-7000 for the Binary and Multiclass SVMs.
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That accessory communication infrastructure using prebuilt IP blocks is relevant to

fault injection because, while implemented in FPGA, it is also susceptible to SEUs, and,

while implemented by third party vendors, it is not prone to modifications or improve-

ments by mitigation techniques that could be used in the SVM core.

To tackle this difference, a slightly different bitstream was used in fault injection

where the communication infrastructure and the SVM core where placed in different re-

gions of the FPGA allowing to study the contribution of these two parts to the overall

DUT reliability. With this approach, faults could be injected in either part, separately, to

analyze the individual contributions for DUT reliability, or in both parts simultaneously,

for comparability with radiation results. It is worth noting that the AXI communication

infrastructure was present in radiation experiments, being evidenced here only for the

convenience of the analysis of fault injection results.

To further accelerate fault injection campaigns, part of the diagnostic logic was em-

bedded in the ARM processor. The ARM application and FPGA bitstream were loaded

from the Flash memory present at the ZedBoard development board. The board reset was

implemented by power cycling using an automated power switch controlled by the fault

injection campaign script running at the host computer.

Finally, an additional module was implemented in the FPGA to support fault injection.

This module is based on Xilinx Internal Configuration Access Port (ICAP) and allows

communication with the host computer that also runs the fault injection campaign script.

This fault injection module, coded in VHDL, was not present in radiation experiments.

This setup used for fault injection is depicted in Figure 4.1.

4.3.2 Assessment Metrics

In this work, bit-flips in the Configuration Random-Access Memory (CRAM) caused by

radiation are referred to as fault. FF bit-flips are not possible as our design is fully com-

binational. Faults may halt the system execution or corrupt its outputs. When it halts the

execution, it is defined herein as a Crash Failure. When it continues to output values,

each output is classified using the same metrics as in Subsection 4.3.2.

Whenever a fault that has not crashed the system is detected, the entire dataset is run

over the classifier. Each of the input samples score is logged for further classification into

either Critical Failure, a Tolerable Failure or Masked Fault.
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Figure 4.1: Zynq-7000 set-up under fault injection

4.3.3 Fault Injection Methodology

The total volatile memory available at Zynq-7000 device used in these experiments, in-

cluding cache and RAM memory used by the processor system and the data and configu-

ration memory used by the FPGA, amounts to approximately 32 mebibits.

The Xilinx Vivado design synthesis tool reports a total of 24.5 mebibits in the FPGA

side for the device in use, of which approximately 4,9 mebibits (20%) corresponds to

memory available to user data in the form of BRAM. Conversely, the remaining 19.6

mebibits (80%) is mostly CRAM that holds configuration for BRAM blocks, DSP blocks,

CLB blocks and configuration for all possible signal routing throughout the FPGA switch

boxes. The fault injection tool used in this work is targeted specifically to that 80% of

FPGA memory relative to the CRAM memory.

In Xilinx 7 Series FPGAs the memory is organized in frames of 101 words of 32

bits. A frame is the minimal unit of CRAM memory that can be read or written to the

FPGA using the Xilinx ICAP hardware block available at Xilinx 7 Series FPGAs. This

is the same hardware block shared with the initial configuration of the FPGA or the par-
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tial dynamic reconfiguration of the FPGA, but now used to read or write a single frame

instead of loading or reading back the whole memory or a block of memory that holds a

retargetable module.

The emulated fault injection can be implemented, therefore, by reading a single CRAM

memory frame, changing its value and writing the frame back into the CRAM memory.

The injection flow used in this work [44] is presented in the sequence. The approach

followed, named random-accumulated, consists in injecting faults in randomized posi-

tions in the CRAM memory region occupied by the DUT. After each fault injected the

DUT is exercised with the completed set of input samples. The outputs are then logged

according to 4.3.2. Those faults are accumulated in memory until a Crash failure is de-

tected and then all faults are cleaned up by reprogramming the FPGA. This process is

repeated until a significant number of events is collected. Then, a reliability curve is de-

rived from the data. This curve is generated in order to visualize how the reliability falls

when faults start to accumulate, i.e., the percentage of the dataset that was misclassified

by the number of accumulated faults. This approach aims in emulating the accumulation

of SEUs on the CRAM memory during the DUT operation, where one emulated fault

injected would be equivalent to the number of particles given by the static cross section

of the underlying device.

All the DUT modules targeted by fault injection were constrained to a rectangular

CRAM memory region of 2,070 frames of 3,232 bits amounting to 6,690,240 bits. As an

FPGA is a general-purpose device that is being programmed to a particular application,

not all these CRAM bits are effectively used by the DUT as many CLB, BRAM, DSP

blocks and most of the signal routing paths throughout the FPGA fabric remains unused.

Those memory bits effectively required to program the FPGA to a particular application

can be called essential bits [45]. In the case of the DUT in our experiments, the Xilinx

Vivado synthesis tool reported a number of 1,059,559 essential bits in the case of the

Binary SVM (Section 4.2.1) and 728,455 bits in the case of the Multiclass SVM (Section

4.2.2).

The diagnostic collected from DUT allowed the classification of each CRAM bit ac-

cording to the criteria already defined in Section 4.3.2.
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4.3.4 Results

During random-accumulated fault injection campaigns, the two DUT for Binary and Mul-

ticlass SVM were tested in three different physical floorplans on the FPGA, allowing

faults to be injected separately on the SVM core, on the accessory communication mod-

ules and on all modules together.

Several fault injection campaigns were executed to explore the DUT reliability under

accumulated faults amounting to more than 106 faults injected.

Although the rate of fault injection and the SEUs produced by thermal neutron irradi-

ation shall differ at least by a factor relative to the device static cross section, the relative

rank of the reliability curves is consistent among the experiments, as can be observed

comparing Figure 4.2(a).

For the fault injection campaigns, whose results are presented on Figure 4.2(a), any

failure, either tolerable or critical, were considered as a functional failure. Additional

fault injection campaigns were executed with a relatively lax criteria where only critical

failures, that is when the SVM produced an incorrect classification, was considered as a

functional failure. These results are presented on Figure 4.2(b). This is a sound criterion

when the SVM is used as a classifier because only the final SVM classification and its

semantic meaning are relevant. It is worth noting that, in this implementation of SVM,

the classification depends only on the signal bit of the numbers at the SVM primary output

and not on the magnitude of those numbers.

In Figure 4.2(a) and (b), it is noticeable that the Binary SVM is less reliable than the

Multiclass version, as the reliability curve falls quicker. In [46], the authors have showed

that the Binary SVM has a level of intrinsic fault tolerance. A more in-depth discussion on

the reasons in presented later in Subsection 4.4.5. In our experiment, we have shown that

the Multiclass SVM may be even more reliable. It is worth noting that more experiments

should be conducted, as other factors may have played a role, such as the different datasets

used.

Another aspect explored using fault injection was the impact of the microprocessor

interface logic compared to the main SVM computation core. For this, fault injection

campaigns were executed injecting faults only over the SVM core and only over the in-

terface modules. The results are also presented on Figure 4.2(a) and 4.2(b), where we

can observe that the overall DUT reliability is dominated by the SVM core with a sig-
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nificantly higher reliability at the interface logic. This suggests that, despite the use of

the third-party interface modules, there is still room for major improvements in the DUT

reliability by implementing fault tolerance techniques to mitigate SEUs on the SVM core.

It is to be noted that the BRAM was used by the interface modules in order to store the

input samples. In a real-world situation, this would probably not be needed, as input sam-

ples would be generated by the environment, thus making the reliability numbers of the

BRAM in our study not relevant.
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4.4 Radiation Test Experiment and Results

This section describes the radiation experiments of both the Binary and Multiclass

SVMs conducted with a thermal neutron source and an analysis of the obtained results.

4.4.1 Radiation Test Set-Up

The thermal neutron test has been conducted at the Platform for Advanced Character-

isation (PAC-G), hosted by Institut Laue-Languevin (ILL), using the D50 thermal neu-

tron source. Previous papers [43] have demonstrated the relevance of the usage of this

equipment to perform reliability testing. It provides a thermal neutron beam with a

spectrum ranging from few microelectronvolts to around 100 meV, with a peak around

13 meV. The captured flux (i.e. equivalent flux of 25 meV) is adjustable from 0 to

1010 neutrons / (s ·cm2). To keep parts of the board other than circuit, the board has

been protected by a polyethylene sheet with a hole above the target chip. Each SVM

architecture was tested individually with a constant flux of 6.94·106 neutrons / (s ·cm2).

The Binary SVM was tested for 2 hours and 20 minutes, yielding a total fluence of

5.83·1010 neutrons / cm2, and the Multiclass SVM was tested for 3 hours and 8 min-

utes, giving a total fluence of 7.833·1010 neutrons / cm2.

In order to test both of the SVM architectures (Binary and Multiclass) designed, we

have made use of the set-up is illustrated in Figure 3.7. The test vehicle used was a

ZedBoard, that embeds a Zynq-7000 SoC. This is the same model of board and same part

number used in our fault injection experiments, described in 4.3.1. On the PL part, two

components have been instantiated: one of the SVM architectures, marked as SVM in

the figure, and an indexed list of its respective input vectors, named the controller. The

controller, when given an index, outputs to the SVM the input sample at that index. For

example, when given as input the number 8, it will place on the instantiated SVM primary

inputs the eighth input sample. The SVM module would contain either the Binary or

the Multiclass SVM at a time, i.e. the Binary SVM and Multiclass SVM were tested

separately. On the PS part, one module is responsible send to the controller the indexes

while a second module reads the output of the SVM through an AXI interconnect and

forwards it to a host PC through a serial port. The L2 cache of the ARM processor has

been disabled to reduce the probability of faults affecting the PS [39]. No scrubbing
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mechanism nor the Xilinx Soft Error Mitigation (SEM) core IP were instantiated. We are

aware that these IPs would be very useful in a final implementation, as they would not

let errors accumulate. However, these tools have a time delay in order to detect/correct

the fault. This may still be not sufficient in a short term for our design, as it is fully

combinational. Thus, these IPs were left off to observe a worst-case scenario.

4.4.2 Radiation Test Method

The radiation test methodology follows the one used in the work in Chapter 3, being the

same for both the Binary and Multiclass SVM. One architecture was tested at a time. As

for the previous, the set of input vectors is continually ran on the SVM instantiated in the

FPGA. Whenever a fault is identified - by detecting a deviation in the output from the

expected output - the set of input vectors is rerun twice on the platform, following by a

reset and a reflash of the FPGA.

Figure 4.3: FPGA board installed at the D50 thermal neutron accelerator facility
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4.4.3 Radiation Test Results for the Binary SVM

During the neutron radiation test campaign, we have identified 24 errors, of which 3

crashed the FPGA and 21 errors that allowed it to continue to produce results. No transient

faults have been identified. Even though crashes have been responsible for 12.5% of the

total number of errors, they are not related to the case-study SVM architecture design but

due to either a fault in the device performing the serial communication with the control

computer, i.e. the PS, or on the on the AXI module instantiated on the FPGA fabric,

which can cause the PS to hang if it fails to perform a proper handshake. The obtained

static cross-section and the FIT are respectively 4.11·10−10 cm2 and 2.67, considering

New York’s flux at sea level (6.5 thermal neutrons / (h ·cm2)) [43].

4695 samples were processed by the Binary SVM with radiation-induced errors. Note

that the total number of samples is not a direct product between the number of input

sample and the number of faults, as it would be expected by the methodology described

in Subsection 4.4.2. This is the case as in some cases, the FPGA would halt after a fault

before reevaluating the complete set of input vectors. Of the total number of samples

evaluated, 7% resulted in critical failures, while 21.4% have been tolerable failures and

the majority, 71.6% were masked faults. From these results, it is noticeable that it is more

likely for an error not to critically interfere with the application in this study case, as in

93% of the cases, the final classification of a sample would still be correct, recreating

roughly the results in [46]. It is worth nothing that no fault mitigating or correction has

been implemented on the Binary SVM, with the overall error resilience being an intrinsic

characteristic of the algorithm.

4.4.4 Radiation Test Results for the Multiclass SVM

On the radiation campaign of the Multiclass SVM, a total of 16 faults were identified, of

which 2 caused crashes. Again, the radiation induced crashes are out of the scope of this

work . The obtained cross-section is 2.042·10−10cm2 with a FIT of 1.32 using New York

thermal neutron flux at sea level.

A total of 2884 samples has been evaluated in the implemented Multiclass SVM,

of which 2049 have been classified as masked fault, 799 as tolerable failure, and 36 as

critical failure. As observed on the Binary SVM, the Multiclass SVM also has an intrinsic
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tolerance to faults. The results indicate that only 1.2% of the evaluated samples on faulty

Multiclass SVMs have been misclassified. Furthermore, only 3 out of 14 faults that had

not crashed the FPGA have led to at least one critical failure.

4.4.5 Assessment of Results and Comparison of the SVM Architec-

tures

First, we are going to discuss the effect of radiation-induced faults in Binary SVMs. On

FPGA implementations of a Binary SVM, errors mathematically change the classifica-

tion function (Equation 2.1) as they change either an xi, an α or the calculation logic. The

location of error may have a great importance on how it impacts the architecture. Errors

on the least important bits of an xi or α can potentially cause a small displacement of the

classifier, making it less probable that a sample is misclassified. In terms of the architec-

ture, the algorithm is a series of multiplications performed in parallel accumulated in a

series of additions. This structure suggests that changes in the least significant bits are less

likely to greatly impact the score of a sample, not causing a critical error. For example,

an input sample that when evaluated on the SVM should output a score of 2.0, may have

its score change to 1.9 if an error happened on the least significant bit, being still classi-

fied correctly. However, if an error happens on the most significant bits, the result could

become -2.0, which would be a critical error as the signal of the score represents the final

class. Note that different samples are affected differently in the event of a fault. Samples

that have scores closer to zero are more likely to be misclassified, being sensible even

to changes on not so important bits. For instance, a sample that has an original score of

0.2 is more easily made negative than a sample with score of 2. Thus, the distribution of

the samples in regard to the classifier has a great impact on the intrinsic reliability of the

algorithm. On the other hand, the training algorithm of the SVM maximizes the distance

between samples of different classes, i.e making the score of samples as high as possible,

corroborating to an augmented reliability, but still highly dependent of the dataset. Fi-

nally, the output of the case-study SVM is composed of 49 bits, of which 48 are irrelevant

for the calculation, only the sign bit being used for the final result. This indicates a high

level of fault tolerance even to faults close to the output. All these properties translated

into a 93% level of tolerance to faults for the case-study Binary SVM.
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As mentioned in Subsection 2.3.1, Multiclass SVMs are made of a composition of Bi-

nary SVM, thus inheriting the intrinsic reliability properties previously discussed. How-

ever, our Multiclass SVM presented even higher levels of fault-tolerance in comparison

to purely Binary SVM, only having a 1% rate of critical errors, suggesting that it is more

reliable than the Binary counterpart. This behavior has also been present in the fault-

injection campaign, as shown in Figure 4.2(b), in which the reliability of the Binary falls

more rapidly than the one of the Multiclass. One possible explanation is that parts of

the Multiclass SVM are irrelevant when evaluating a sample. For example, in our case,

there were three possible classes for an unknown sample: virginica, versicolor and se-

tosa. As the Multiclass SVM for this study follows the One-vs-One approach, described

in Subsection 2.3.1, three Binary SVMs have been trained, one for each pair of classes.

Assuming that an unknown sample should be classified as virginica, the result of the Bi-

nary SVM to classify between versicolor and setosa is irrelevant as long as the output of

the other two remain correct. Therefore, Multiclass SVMs may build an extra level of

reliability when compared Binary SVMs, which is indicated by the radiation results. It is

worth pointing out that the datasets used have been different, which may have an impact

in the levels of reliability. Further evaluation using both fault injections and radiation tests

would be needed to better compare the difference in terms of reliability between the two

architectures.

4.4.6 Comparison with State-of-the-Art Works

Few authors have explored the radiation effects on machine learning algorithms as it is still

a new field. The intrinsic fault tolerance of an FPGA implementation of ANN is evaluated

in [26], in which the authors perform a fault injection campaign along with a heavy ion

campaign. The work is complemented in [27], where the same architecture along with an

FPGA implementation of a CNN, a very popular variant of ANN for image processing

applications, have been evaluated under the effect of neutrons. GPU implementations of

CNNs have also been evaluated under neutron radiation in [28].

In [26, 27], the authors have made used of the same dataset that we have used for

our Multiclass SVM to train an ANN. Also, they have used the same FPGA platform.

When comparing with their results, the authors have found that 65% of the faults led only

to tolerable failures. In our case, we achieved 79% in respect to that, suggesting that
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SVMs may have a higher reliability in comparison to ANNs. We have also had reliability

figures comparable to those of [28], even though the datasets used are different, but still

with multiple output classes. Using GPU and CNNs, the authors have found that around

82% of the faults in one configuration bit of their GPUs would lead to no critical error.

When comparing to GPU implementations of CNNs, while GPUs present better fault

tolerance, FPGA implementations cannot be ruled out as they may be faster for some

applications [41].

4.5 Conclusions

This work presents the first evaluation of SVMs under thermal neutron radiation along

with the first assessment of radiation effects on Multiclass SVMs. Furthermore, both ar-

chitectures were also thoroughly evaluated with an extensive fault injection campaign to

correlate with the radiation results. On both the radiation and fault injection campaigns,

the Multiclass SVM presented an overall higher reliability when compared to a Binary

SVM. It is worth noting that neither designs had any error detection nor error correc-

tion mechanisms implemented, suggesting that the Multiclass SVM has a higher intrinsic

reliability. Also, in our experiment, the Multiclass SVM performed better in terms of reli-

ability than an ANN trained for the same dataset, suggesting that it may be more reliable.
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5.1. Introduction

5.1 Introduction

Researchers have started to investigate the impact of radiation-induced soft errors on

the reliability of ML techniques. For instance, the authors in [47] [48] examine effects

of soft errors in CNNs. In [26] [27], different CNN implementations have been analyzed

using an FPGA-based fault injection approach, which emulates the occurrence of faults

by modifying the bitstream configuration. In turn, Santos et al. [49] investigate how the

presence of soft errors in GPUs can reduce the reliability of a CNN. Rosa et al. [50]

investigate the impact of soft error on an automotive vehicle application that is based on

CNN. Results show that the occurrence of soft errors affects the vehicle travel. Authors

in [51] have proposed a framework that performs fault injection at specific Deep Neural

Network (DNN) design points across the weights, activations, and hidden states. Results

show that the resilience varies across DNNs depending on the model and data type. While

[29] has conducted soft error resilience analysis of Bayesian machines, the work in [42]

has focused on a binary support vector machine implemented in an FPGA.

Different from the above works, this Chapter assesses and compares the reliability of

two ML algorithms – feed-forward ANN and SVM – running on a popular low-power pro-

cessor (Arm Cortex-M4) under effects of radiation-induced soft errors. Gathered results

have been obtained through neutron radiation tests conducted with a neutron generator as

well as an emulation-based fault injection campaign to better understand how radiation-

induced soft errors affect the reliability of the case-study ML algorithms.

5.2 Case-Study ML Algorithm Models

In this work, two prominent ML algorithm models that have been studied in this work:

ANN and SVM. Both models are commonly used in classification tasks, which consist of

previously learning underlying behaviors of a set of known data through a training phase,

allowing a computing system (at a later time) classifying new data observations (herein

input vectors) accordingly. A more in-depth description of the models is presented in

Chapter 2.
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5.3 Fault Injection-Based Assessment Method

This section describes the method for assessing the reliability of the case-study ML al-

gorithm running under effects of radiation-induced soft errors. This is based on campaigns

of single fault injections (single soft errors) that are emulated during the execution of the

case-study program (herein an ML algorithm) – running natively on the target computing

System Under Test (SUT) – and remotely configured via the popular software debugger

GNU Debugger (GDB) from a control computer. The SUT is composed of a target low-

power processor, data memory, program memory, and on-board peripheral devices able to

communicate with an external control computer. The fault emulator is further described

in Chapter 7.

The method assesses the classification reliability of a ML algorithm under the influ-

ence of single soft errors by counting how often it classifies an input vector correctly,

i.e. if the ML algorithm properly identifies the previously-defined class of the input vec-

tor. Furthermore, the method also assesses the ML algorithm’s inability to tolerate soft

errors provoking either Computing Crashes or Critical Failures. The method workflow

comprises five phases (Figure 5.1): (1) generation of golden reference results; (2) speci-

fication of fault injection profiles; (3) fault injection campaign; (4) assessment of results;

and (5) statistical analysis of results.
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Figure 5.1: Fault injection-based method for assessing the reliability of an ML algorithm
(case-study program) running on a low-power processor (SUT subcircuit) under effects
of single soft errors.

Generation of Golden Reference Results

The case-study ML algorithm is natively executed in the SUT under fault-free circum-

stances (no presence of faults) in order to generate its golden reference results.
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Specification of Fault Injection Profiles

In order to compare the reliability of different case-study ML algorithms under possible

scenarios of single soft errors in volatile memory elements of the processor, each case

study is assessed under the same set of fault injection profiles, which is defined according

to the pseudo-code in Algorithm 1.

From the population of possible input vectors, a small sample is randomly selected.

The same criterion is applied to the population of fault injection instants at which a mem-

ory bit is inverted for modeling a single soft error. Each fault injection instant is simplified

here as a discrete time unit represented by the execution period of each instruction of the

case-study program.

For the sake of separately analyzing the single soft error impact on the processor mem-

ory bits, the criterion of assessment and comparison is set to exclusively cover all memory

bits of the processor registers, considering thus the hypothesis that the data memory, pro-

gram memory, and other on-board peripheral devices are protected by soft error mitigation

techniques.

Algorithm 1 Set of Fault Injection Profiles
1: for x in [small sample of input vectors] do
2: for y in [small sample of fault injection instants] do
3: for z in [set of processor registers] do
4: for w in [set of processor register bits] do
5: FaultInjectionProfile(x, y, z, w)

Fault Injection Campaign

Each fault injection profile is remotely emulated in the SUT through the command “set" in

the software debugger GDB executed in the control computer. The case-study ML algo-

rithm is thus run several times on the SUT according to Algorithm 1, each run emulating

a different fault injection profile and providing a result from the computation of a given

input vector by the ML algorithm.

Assessment of Results

In order to assess the algorithms, the output (or lack of output) of the implementation is

compared with a golden reference. This output is then assigned a label as described in

67



Chapter 5. Assessment of Machine Learning Algorithms for Near-Sensor Computing
Through Fault Emulation

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

SP (R13)
LR (R14)
PC (R15)

20% 40% 60% 80%Fault Injection Instant
(% of executed instructions)

31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

SP (R13)
LR (R14)
PC (R15)

20% 40% 60% 80%Fault Injection Instant
(% of executed instructions)

31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0

No Failures
Tolerable Failures

Computing Crashes
Critical Failures

ANN

No Failures
Tolerable Failures

Computing Crashes
Critical Failures

SVM

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

SP (R13)
LR (R14)
PC (R15)

20% 40% 60% 80%Fault Injection Instant
(% of executed instructions)

31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9

SP (R13)
LR (R14)
PC (R15)

20% 40% 60% 80%Fault Injection Instant
(% of executed instructions)

31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0 31…….….24….……….16……………8.…..…...….0

No Failures
Tolerable Failures

Computing Crashes
Critical Failures

ANN

No Failures
Tolerable Failures

Computing Crashes
Critical Failures

SVM

Figure 5.2: Snapshots of the fault injection instants in the processor register map for ANN
(top) and SVM (bottom) algorithms using the same set of input vectors. This shows which
registers are further stimulated and therefore the most susceptible to radiation-induced
soft errors.

Section 4.3.2.

Statistical Analysis of Results

Equation 5.1 below analyzes the ratio of the total number of Critical Failures to the total

number of fault injection profiles assessed according to the specification in Algorithm 1.

Similar equations compile also the ratios of Computing Crashes, Tolerable Failures, and

No Failures. As the described method assesses the same scenarios of single soft errors as

well as the same dataset, these equations allow thus comparing different ML algorithms,

suggesting the most reliable solutions for correctly classifying input vectors of a given

dataset even though the processor is upset by single soft errors.

%CriticalFailures =
#CriticalFailures×100
#FaultIn jectionPro f iles

(5.1)

The fault injection campaign in accordance with Algorithm 1 requires the emulation

of a large number of fault injection profiles that would make the assessment impractical if

small samples are not taken from the populations of possible input vectors, fault injection

instants, processor registers, and processor register bits [52]. Hence, a small sample of

input vectors, a small sample of fault injection instants, and the entire populations of

processor registers and processor register bits are combined through the aforementioned

68



5.4. Fault Injection-Based Assessment

equations, being considered each one a small sample of a normally distributed population.

The traditional Student’s t-distribution based on such samples of small size is thus applied

to estimate the means of these populations.

5.4 Fault Injection-Based Assessment

This section analyzes results of experiments that have been carried out applying the

method described in Section 5.3 for comparing the case-study ML algorithms defined in

Section 5.2.

5.4.1 Description of Experiments

The STM32 NUCLEO-L45RE-P development kit has been used as the SUT, which in-

cludes the low-power processor Arm Cortex-M4. While the SVM algorithm has been

implemented in C language, the ANN algorithm has been optimized using the STM32

X-CUBE-AI package, which is a software that generates program code from a high-level

description of an ANN. The Iris flower dataset [11] has been used to train both case-study

ML algorithms before the fault injection campaign. The dataset consists of samples repre-

senting flowers from three different species. The fault injection campaign experiment has

indeed assessed ML algorithms already trained, while operating for classifying samples

(herein input vectors) of a dataset. The program code of the case-study ML algorithms

have been loaded one at a time into the SUT using GDB. Furthermore, a custom-built

script automates the implementation of the pseudo-code in Algorithm 1 for both case-

study ML algorithms.

For the specification of fault injection profiles according to section 5.3, one sample

(input vector) has been randomly taken from each flower specie to maintain the diversity

of the original dataset, making thus the small sample of input vectors defined in Algo-

rithm 1. On the other hand, the small sample of fault injection instants has been taken

considering the following criterion: firstly injecting a single soft error when 20% of the

instructions of the case-study program (ANN or SVM) have been executed. After in a new

run of the case-study ML algorithm, when 40% of the instructions have been executed,

and so on for 40%, 60%, and 80%. Regarding the set of processor registers, only the ones
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used by the case-study ML algorithms have been assessed, covering all their bits. The

only register that the method is not able to assess is the $CONTROL as a fault injected

causes the GDB to disconnect from the SUT.

5.4.2 Analysis of Results by Register

Figure 5.2 shows effects of single soft errors in processor registers when running the case-

study ML algorithms, both classifying the same set of input vectors from the Iris flower

dataset. The revealed situations are illustrated by general-purpose registers (from R0 to

R9) and control registers (SP, LR, and PC).

For general-purpose registers, most faults have produced No Failure. These registers

are normally used to manipulate data and implement calculations. In this sense, if the

program has a large number of variables or intensive calculations, it is possible to fre-

quently back up its values in the system stack, and depending on the moment when an

error occurs, a register can no longer be used or be naturally rewritten by the code, which

explains most non-occurrence of failures. When a injected fault manifests a failure (in-

cluding crashes), Figure 5.2 shows that a Computing Crash is more likely to occur. As

general-purpose registers are used to store pointers to tables that contain the weights used

by the ML algorithm, an error in them may cause the program to fail whenever it tries

to use it to access the weights. However, the most dangerous is when a register bit flips

and it is storing an intermediate calculation value from the ML algorithm. This error can

spread silently to the final values and affect (Critical Failures) or not (Tolerable Failures)

the final classification issued.

On the other hand, control registers are always very sensitive to faults, as they are

directly linked to memory. For example, the PC register contains the address of the next

instruction to be executed by the processor. If one of its bits flips, the code may jump to

an invalid memory location or interrupt the execution flow. In regard to LR, the failures

are more likely to happen due to the different levels of nested function calls. In the SVM,

there are no nested function calls, while there are in the ANN. When a nested function

call takes place, a common practice is to store the LR value, which contains the return

address of the current function being executed, in the system stack at the beginning of a

function and reload the value before returning. Therefore, our SVM implementation is

more sensitive to faults on the LR w.r.t the ANN, as shown in Figure 5.2. In contrast, SP
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Figure 5.3: Summary of situations induced by the fault injection campaign in the ANN
and SVM algorithms.

is more sensitive to ANN than SVM, as our implementation makes heavy use of the stack.

Analysis of Global Results

Figure 5.3 presents the summary of the fault injection campaigns for the ANN and SVM

algorithms. The values have been calculated as shown in section 5.3, combining all re-

sults.

Looking closely in Figure 5.3, Critical Failures, although crucial, are very rare, falling

below 2% for both ML algorithms. This shows the robustness of the output presented

by the two ML algorithms when they do not stop by Computing crashes. In general,

Figure 5.3 suggests that the SVM algorithm presents a slightly better reliability than the

ANN when under the influence of single soft errors.

5.5 Radiation Test-Based Assessment

The case-study ML algorithm ANN has been tested under a neutron generator in the

same SUT used in the fault injection campaign. The experiment has been conducted at

the TOMOH9 beam line located at the ILL. The TOMOH9 is a tomography beam line

with a spectrum of neutron energy between 1 to 2 MeV and a flux during the experiment

on the order of 1.8·105 neutrons / (cm2 ·s).

The SUT has been irradiated for 4 hours and 30 minutes, yielding a total fluence of

2.916·109 neutrons / cm2. During this period, 24 faults have been detected, accounting

for a cross-section of 8.230·10−9 cm2. Among those, 3 faults have provoked Critical

Failures, 19 faults have led the SUT to Computing Crashes, and 2 faults have manifested

71



Chapter 5. Assessment of Machine Learning Algorithms for Near-Sensor Computing
Through Fault Emulation

as Tolerable Failures. Note that the high number of Computing Crashes in the radiation

test corroborates the results obtained in the fault injection campaign, which shows the

Computing Crashes are the most common situations, suggesting that possible solutions

of soft error mitigation should preferentially focus on addressing them.

5.6 Conclusions

This work provides findings suggesting the case-study ML algorithm SVM is slightly

more reliable than the ANN to classify the same data observations under scenarios of

single soft errors in the processor. In addition, neutron radiation tests of the ANN show

that the majority of detected faults produces Computing Crashes, being them naturally

detectable without any additional fault detection technique but requiring to compute again

the ANN operation.
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6.1 Introduction

In this Chapter, the assessment of the effects of radiation-induced faults on low-power

implementations of SVM and ANN conducted in Chapter 5 is expanded. The implemen-

tations of both models were evaluated through neutron radiation tests conducted with a

neutron generator. Furthermore, a third algorithm was also evaluated: the RF. Thus, in

this work, three traditional ML models from three distinct families, i.e. models with dif-

ferent behaviors, selected based on their popularity and applicability – feed-forward ANN

from family of neural networks, SVM from statistical learning and RF from the group of

decision trees – running on a low-power are assessed and compared.

6.2 Case-Study Machine Learning Models

This section briefly describes three prominent ML models that have been studied in

this work: ANN, SVM and RF. These models are commonly used in classification tasks,

which consist of previously learning underlying behaviors of a set of known data through

a training phase, allowing a computing system (at a later time) classifying new data ob-

servations (herein input vectors) accordingly. The models are described in Chapter 2

6.3 Implemented Case-Study ML Algorithms

This section describes the ML models implementations used for this work along with

the dataset that has been used to train them. We have used the STM32 Nucleo-L45RE-P

board as target, which is an option for Endpoint-AI applications. We refer to the board

as SUT onwards. The implementations were designed to output the mathematical values

calculated by the ML models, herein defined as score. For this work, we have used the

Iris flower dataset [11] to train and evaluate the algorithms.

ANN Implementation

To generate our ANN model, we have used the Keras Machine Learning framework. For

the ANN structure, we have opted for and ANN with 1 hidden layer with 8 neurons along
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with the input and output layers, with 4 and 3 neurons, respectively, as it was enough to

achieve good precision on our dataset. The generated model was extracted and coded in

C to execute in our target platform. The model is composed of a 67 weights. The output

of the implemented ANN model is the output of the three neurons in the output layer. Our

implementation uses 1.53 kB of RAM and 0.09 kB of the Flash on our SUT.

SVM Implementation:

The SVM model was trained using the MATLAB implementation of the SVM training

algorithm using our training dataset. As we have used the One-vs-One model, the training

algorithm generates three binary SVM models for Iris dataset, one to distinguish between

Setosa and Virginica, one between Virginica and Versicolor and one between Setosa and

Versicolor. The generated models, i.e. Support Vectors, αs and bias, were extracted

and coded in C to execute in our target platform. The Setosa x Virginina and the Setosa x

Versicolor models are composed of 2 pairs of SVs and αs, while the Virginica x Versicolor

model is compose of 16 pairs of Svs and αs. The output of our implementation is the

numerical results of each binary SVM. This is done to allow for better observability of

deviations in the expected behavior. In terms of memory usage, 2.13 kB of RAM and

13.15 kB of Flash storage were used.

RF Implementation:

For RF implementation, we trained our model using Scikit-Learn. For the RF structure,

we have used 10 BDTs. After the training, the obtained BDTs had the following number

of nodes: 3, 5, 5, 10, 4, 8, 7, 5, 7, 7. As for the other model, the weights and structure

of the BDTs were extracted and coded in C. The output of the final implementation is the

output of the 10 BDTs. The memory usage of the implementation was 18.03 kB of RAM

and 0.09 kB of Flash.
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6.4 Radiation Test Assessment

6.4.1 Radiation Test Set-Up

The case-study ML models have been tested using the GENEPi2 neutron acceleration

facility at Laboratory of Subatomic Physics & Cosmology (LPSC), Grenoble. The equip-

ment generates a 14 MeV neutron beam with a flux with a maximum flux greater than

the 14 MeV neutron flux at 40,000 ft by a factor of 1010. The SUT is placed directly in

front of the accelerator at a distance of 5cm and then the flux is calibrated remotely. The

SUT is connected to a control computer outside the radioactive chamber through an USB

cable. The communication between the SUT and the control computer was protected with

a checksum. A schematic of the set-up is shown in Figure 6.1. Figure 6.2 shows a picture

of the set-up assembled in the facility.

GENEPi2
14MeV neutrons
6.09 ·106 n/cm2/s

STM32 Nucleo

Machine Learning Model

Inputs Vectors
ML Model

Results

Figure 6.1: Schematic of the test setup for the radiation campaign.

Figure 6.2: SUT mounted in the GENEPi2 14 MeV neutron source.

As mentioned in Section 6.3, each ML model implemented outputs a score. Due to ra-

diation induced effects, the score output may deviate from the golden reference. To assess
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the effect of radiation induced faults to evaluate an ML implementation effectiveness, a

score output from SUT is classified using the metrics defined in Subsection 3.3.2.

Herein we define faults as radiation induced events in the SUT, also referred to as

SEUs. A failure is a consequence of a fault, observed analyzing the primary output of the

system.

Each ML model is loaded in the SUT at a time by the the control computer. The

control computer then sends one input vector at time to the SUT and waits for the output.

Once it receives the results, the control computer compares the result to a golden reference

and classifies it following the metrics in Subsection 6.4.1. If a tolerable or critical failure is

detected, it is certain that a fault has occurred in the SUT. Then, the complete set of input

vectors is reevaluated in the SUT and logged to verify if the fault affects future executions

of the algorithms. Only the results obtained when a failure is present are accounted. When

this process is finished, the board is erased and reprogrammed to prevent the accumulation

of errors. The SUT is also reprogrammed if a communication error is detected.

6.4.2 Radiation Test Results

The SUT has been irradiated for a total of 14 hours and 16 minutes, yielding a total fluence

of 3.79·1011 n/cm2 (average flux of 6.9·106 n/cm2/s) distributed among the ML models

accordingly. The distribution of campaign time and fluence as well as the number of

faults and the cross-section of each implementation is presented in Table 6.1. Figure 6.3

presents the percentages of the types of failures and the absolute numbers of each. A more

detailed map of how some of the faults identified affect the effectiveness of the algorithms

is show in Figure 6.4.

Table 6.1: Distribution of the irradiation time among the ML models and the identified
failures

ML

model

Radiation

Time

14 MeV

Neutron Fluence
Faults Cross-section

ANN 4h53min 1.21·1011 n/cm2 10 8.23·10−11cm2

SVM 3h54min 9.81·1010 n/cm2 7 7.13·10−11cm2

RF 5h26min 1.5·1011 n/cm2 6 4.43·10−11cm2
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Figure 6.3: Results obtained during the radiation test logged according to Subsec-
tion 6.4.1.

As per Figure 6.3, the three ML models have not presented critical failures in the ma-

jority of the cases, with the SVM having the largest percentage of critical failures at 24%,

ANN having 6% and no critical failure being observed on our RF implementation. The

results indicate that, for the three ML learning, in the majority of the cases, the radiation

induced faults do not cause deviations important enough to result in misclassification. It

is worth pointing out that no protection mechanics was implemented, suggesting that they

retain a certain level effectiveness under radiation intrinsically.

Figure 6.4 shows that faults affect more than one input vector for ANN. One possible

cause for this are radiation induced faults on weights stored in the memory of our im-

plementation. As mentioned in Section 6.2, the ANN is composed by a layered set of

neurons, each neuron performing a weighted addition of the results of the neurons just

before it. Thus, changes on weights are one of the possible causes for deviations on the

score. In addition to it, internally, the neurons are implemented as loops. Faults on the

memory positions or registers storing loop bounds may cause loops to stop early and out-

put unpredictable results. Both weights and loop bounds reside in the memory of our

SUT, being loaded onto registers whenever they are needed. If a particle attacks these
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Figure 6.4: Effect of some of the identified faults on the in input dataset. Each line
represents an identified fault and the columns represent input vectors of the input dataset.
For instance, The top left square indicates that the input vector 0 output was classified as
no failure when a fault was identified on the ANN.

values while they are on memory (and given that these values are assumed as constants

in our implementation), it is very likely that this fault may generate multiple failures, as

every subsequent input vector will be evaluated with now incorrect weight/loop bounds.

On the other hand, if a particle affects these values while they are on registers, it may only

affect the current input vector being evaluated, as the incorrect value will not propagate

to memory, thus not affecting future calculations, but this behavior, even though possible,

was not observed in our experiment.

On the SVM, Figure 6.4 indicates that faults have a tendency to provoke tolerable

failures. Mathematically, the SVM is close to the ANN, being constituted mainly of

a MAC operations. Thus, we expected that the profile of the generated failures would

have been similar, but the rate of tolerable failures on the SVM was far superior than the

ANN. We will investigate the reason behind it in with further fault injection and radiation

campaigns. Also, it is still unclear why Fault 3 in Figure 6.4 had an elevated number of

critical failures, which we plan to evaluate further.

RF was the only ML model in which no critical failures were observed, as shown

in Figures 6.3 and 6.4. One of the possible reason for this behavior is that the RF model

relies on the independent output of 10 substructures (10 BDTs) to perform a classification,

while the ANN and the SVM results are not totally independent of each other. As these

10 substructures are independent and only vote for the final class, a fault on one may
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cause one of the votes to be wrong, while the others maintain the final classification

correct. Furthermore, the number of tolerable errors for the RF is also lower than the

SVM and ANN. One hypothesis is that the ANN and the SVM directly output the results

of mathematical calculations, while the RF outputs the constant values stored in the leaves

of its BDTs. As weights only control how the tree is traversed in the RF, if a radiation

induced fault in a weight does not change the path followed when evaluating a sample or

if affects a node that is not used for a specific input vector, the fault will not generate a

failure. Besides that, for the SVM and the ANN, a faulty weight will effectively be used

on the classifier mathematical calculation and is more likely to propagate to the output, i.e.

failure. Finally, our RF implementation made heavy use of dynamic allocation. Hence,

we plan to investigate if this could have been one of the reasons it did not present critical

failures in our experiment.

6.5 Conclusions

This Chapter provides evidences of the effectiveness of three ML implementations

(ANN, SVM, and RF) under neutron radiation effects. All the implementations have

presented a certain level of effectiveness under radiation effect even without protection

mechanisms. Furthermore, the RF model presented the overall best effectiveness, with

no critical failures being identified, which may be a consequence of how the model is

intrinsically constructed, but further evaluation is necessary.
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Chapter 7. Development of a Fault Emulation Tool

7.1 Introduction

As mentioned in Chapter 1, fault injection is a viable way to analyse how a system

may behaves when exposed to the effects of radiation. In this Chapter, a tool for fault

emulation, i.e. injecting faults on the physical device itself, developed under the scope of

this thesis is presented. It uses a popular debugging tool as back-end, the GDB, allowing

the fault emulator to be ported to any platform that supports it. As proof of concept, the

fault emulator was used in two different platforms: an STM32 Nucleo microcontroller

and a Raspberry Pi. On the STM32 target, the implementations of 3 ML algorithms

were tested. The results of this experiment are show in Chapter 5. In the Raspberry

Pi, an implementation of the Novel Quartenion Kalman Filter (NQKF) algorithm was

conducted. While the NQKF algorithm is not in the scope of the thesis, this experiment

allowed for further validation of the developed fault emulator.

7.2 State-of-the-Art

Fault emulation is highly dependent of the target platform. For instance, the strategies

for emulating faults on an FPGA are vastly different than the ones for emulating on a

microcontroller or a GPU. On FPGAs, there are two major approaches: intrusive and

non-intrusive. Examples of intrusive are works FITO [53] and NETFI [54], the latter

having being used in Chapter 3. The idea on intrusive techniques is to modify the netlist

of the target system to allow for faults to be emulated. In the FITO tool, a list of faults to

be injected is provided to the fault emulator. Then, for each fault in the list, the original

synthesizable code is modified as to contain intended fault. The newly generated code is

then emulated on an FPGA. On the other hand, NETFI modifies the synthesis libraries

in order to add extra logic gates on the system which allow for the emulation of bitflips.

These logic gates are then externalized as primary inputs of the system to be piloted by
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a soft-core processor instantiated in the FPGA fabric. These techniques are useful to

estimate the failure rate of ASIC before it is sent to production, as the modifications in the

netlist conducted reflect the effects of radiation on physical parts of the circuit at a gate

level. On the other hand, non-intrusive techniques rely on changing the configuration

memory of the FPGA. An example is the technique used in [26] and in Chapter 4. The

tool uses partial reconfiguration to flip one bit of the configuration memory at a time,

simulating one of the effects radiation has on memory-based FPGAs. Different than the

intrusive technique, this allows for an estimation of the failure rate when the FPGA is

the final platform intended for system. Furthermore, for ASIC development, tools like

Cadence Incisive and Mentor ModelSim allow for fault injections at an Register-Transfer

Level (RTL) level without emulation.
Emulating faults on GPUs and microcontrollers bring other challenges. If the RTL for

the system is available, it wpuild be possible to emulate the architecture on an FPGA and

use the aforementioned techniques. However, the RTL of commercial versions of such

products often is not available. For these cases, debug tools are helpful allies. In [55], the

authors make use of the debug tools specific for the their target platform as a mechanism

for fault emulation. In [56], the authors use the GDB debug tool to manipulate the register

files of GPUs. In this work, similar to [56], a fault emulation tool is built based on GDB,

but instead of targeting GPUs, the main target are microcontrollers and processors.

7.3 Implemented Solution
The fault emulation suite was implemented using GDB, an open source debugger, as

back-end, thus integrating with any platform that has support to it. In general, a debugger

is used to control the execution of a target program with much more observability than

when ran natively. The fault emulator is implemented as a Python library that provides a

level of abstraction to an underlying child GDB project. At its initialization, the fault em-

ulator spawns a child GDB process and controls it to inject the faults. The debugger has

some key features that allow for the implementation of a fault emulator, notably break-

points, stepping, and the read and write access to memory position and registers, which

have been abstracted as function calls in the fault emulator.
Breakpoints are used to interrupt the execution at specific line of codes. Often, the
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user wants to explore the effect of faults in specific points of the execution. By using

breakpoints, he/she can select in which points to interrupt the execution in order to inject

a fault. The fault emulator library provides a function to allow the user to straightfor-

wardly set breakpoints. When the execution is interrupted, the injection of the fault is

done by performing writing operation to either the memory or an specific register, which

is supported by GDB and abstracted by the fault emulation library. In order to have a

better control of how many bits are being changed, the fault emulator also provides a read

function, also for memory and registers. With this function, the user is able to read the

current value of the register he/she wants to affect, change as many bits as desired and

write back the result.

Being implemented as library grants flexibility to the user. The order in which faults

are going to be injected as well as the number of bits and positions is completely con-

trollable. Also, if the target program needs to communicate with other programs to, for

instance, receive inputs, this can be integrated with the fault emulation control in the same

script. In terms of logging the results, as the needs vary depending on the target program,

it is left to the user to write its own, but this is done using standard Python.

7.4 Proofs of Concept

The fault emulation library was used in two platforms. They are described in the

sequence.

7.4.1 STM32 Nucleo Target

The first work conducted had as target a STM32 Nucleo-L452RE-P development board,

which comprises an Arm Cortex M4 processor. The goal was to evaluate the effect of

faults on three ML algorithms executing on the board. Porting the fault emulator to this

platform was possible as the GDB is supported by the Nucleo framework.

The overall fault emulation architecture for the STM32 is presented in Figure 7.1.

The Nucleo board is very limited in terms of resources, not being able to run GDB nor

the fault emulator embedded on it. The GDB support for the board is done through a

GDB server running on a host computer that interacts with a JTAG probe embedded in
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the board. When a GDB server is open, it waits for a connection of client GDB process

via the network. Debugging commands issued on the client are forwarded to the server,

which will manipulate the board to perform the command. The original implementation

described in Section 7.3 underwent small modifications to allow for its child GDB process

to access the GDB server.

To validate the implementation, the fault injector was used to analyse the reliability of

three ML algorithms. The results are presented in Chapter 5.

Figure 7.1: Fault emulator architecture.

7.4.2 Raspberry Pi Target

To further explore the possibilities opened by the fault emulator, it has also been ported

to a Raspberry Pi 4B board, which embeds Quad core Cortex-A72 (ARM v8). Different

than the use-case described in Subsection 7.4.1, the fault emulation on the Raspberry Pi

4B is self-contained, i.e. there is not a need for a control computer. As the board is

capable of running full-fledged operating systems, it is possible to run GDB embedded on

it, eliminating the need for a host computer.

Target algorithm

The fault emulator was used to test reliability of an implementation of the NQKF al-

gorithm. The NQKF is an attitude estimation algorithm, a common requirement for
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nanosatellites and Unmanned Aerial Vehicles (UAVs). Normally, such applications con-

tain a variety of sensors, the most common types being gyroscopes, magnetometers and

accelerometers. The NQKF analyses the data from these sensors and estimates the atti-

tude, i.e. the orientation, of the physical system. On UAVs, for instance, this is particu-

larly useful for the implementation of stabilization algorithms.

The algorithm uses quaternions to represent the attitude of the physical systems. This

approach provides advantages over the more intuitive Euler angles (φ ,θ ,ψ , or roll, pitch

and yaw), as the latter is subject to singularities, i.e. points where the attitude is not

defined, and gimbal locks, i.e. a loss of a degree of freedom in the representation due to

how the attitude is currently being represented. The NQKF stores the current quaternion

representation of the system. It then samples the sensors and updates it accordingly. The

inner details of the NQKF algorithm were left out as they are out of the scope this thesis.

Fault Emulation campaign

The NQKF was implemented in C++ and compiled for the Raspberry Pi 4B. In order to

test it, a test case was generated. A set of 10 subsequent artificial samples of gyroscope,

magnetometer and accelerometer were generated. The fault injection campaign was then

conducted in the following steps: (1) Generation of Golden Reference; (2) Generation of

Fault Injection Profiles; (3) Fault Injection Campaign; (4) Evaluation of Results.

1) Generation of Golden Reference: First, the NQKF is executed using the artificially

generated samples in order to obtain the expected output of the algorithm., i.e. the golden

reference.

2) Generation of Fault Injection Points: A set of fault injection points is generated.

These faults are used by the fault emulator to pilot the fault emulation campaign. The

fault points generated are described in Algorithm 2. For each register in the processor,

random execution points in the algorithm timeline are chosen. Then, for each bit of the

register (one at a time) and for each at each of the 10 artificially generated samples, a fault

is injected. Note that, at most one bitflip is injected at a time.

3) Fault Injection Campaign: Each fault injection point is emulated in the SUT, one

at a time. The NQKF implementation is executed until the random breakpoint. Then, a

bitflip is forced in the bit position indicated. The program execution is resumed and the

output is logged.
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Algorithm 2 Generation of fault injection points
1: for x in [set of processor registers] do
2: for y in [small sample of random breakpoints] do
3: for z in [set of processor register bit] do
4: for i in [range from 0 to 9] do
5: FaultInjection(x, y, z, samples[i])

4) Evaluation of Results: For each fault injected, the algorithm is run to completion.

The output is stored and classified as follows:

- Match: The output matches the golden reference.

- Mismatch: At least one bit of output differs from the golden reference.

- Crash: The program halts or returns invalid data.

Fault Emulation Results

A total of 48,000 faults were injected during the campaign. Of these, 46,410 (96.69%)

caused no perturbation in the system, i.e. the output of the system matched the golden

reference even with a fault being present (Match). Crashes were the most common type

of failures, amounting to 1500 (3.12%). Mismatches were the least common outcome,

with a total of 92 (0.19%) having been identified.

The distribution of the results per register is shown in Figure 7.2. Failures (Crashes

or Mismatches) were only on observed on the registers sp and r11, the latter also referred

to as fp. In terms of the Crashes, they were all caused due to illegal memory access.

A modern Operating System (OS) implements memory access mechanism. Whenever a

process tries to access a memory region that has not been previously allocated, the OS

intervenes by sending a SIGSEV signal to the process. If this signal is not captured and

treated, it causes the process to crash with the Segmentation Fault error message. The sp

and r11 registers control the access to the process stack, which is used to store variables

and implement function calls. If fault happens on them, it is possible that the process

will not behave correctly anymore. For instance, the address stored may now point to an

invalid address. Whenever it is used, i.e. whenever the stack is accessed, it will cause a

memory violation. With a small change in the value, the register may still contain a valid

address, but the whole workflow of program could be compromised. For instance, if the

return address is expected to be at sp−4 and a variable is on sp−8 and if sp is deviated

by 4 due to a fault, the program may access the variable memory position and interpret it
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as the return address of the function. This could cause the program to jump to an invalid

memory position, causing a memory violation.
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Figure 7.2: Results of the Raspberry Pi fault injection campaign organised by register.

Mismatches were also observed when faults were injected on the sp. As mentioned,

the sp is used to access the process stack, which store the value of variables. A fault

sp may cause it advance one memory position. Supposing that a variable A is located

normally at sp−8 and that a variable B is on sp−12, if the sp advanced one position due

to a fault, the content of the variable A may be read when the program actually intended

to fetch B. If this is a value that is used as part of the calculation of the NQKF algorithm,

it may affect the output, leading to a Mismatch. Further investigation is still needed to

prove this hypothesis.

Moreover, no failures were detected when injecting faults on general purpose regis-

ters, even though they are possible. A general purpose register may, for instance, contain

input data, intermediate results and even the output of the system. Affecting this data

could lead to a Mismatch, but that was not observed in the experiment. Furthermore,

these registers may contain array indexes or memory pointers. A fault in these cases

could lead to either an access of invalid position, leading to a Crash, or the access to a

valid but yet not intended memory position, potentially leading to a Mismatch. A possi-

ble reason for not observing such failures is that the implementation itself contains a large

number of variables and pointers, more than the number of general purpose registers. This

may cause the program to constantly back-up the registers values on the stack. If a fault is

injected on register whose value has been backed up to the stack, the fault may be masked
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as the program may fetch the data from the stack before using it. Further examination of

the results is necessary to confirm this hypothesis.

7.5 Conclusions

In this Chapter, a fault emulator developed in the context of this thesis is presented.

The tool was developed using GDB, an open-source debugger, as back-end. Due to the

popularity of the GDB, various platforms provide support to it, which grants great flex-

ibility to the fault emulator. In this work, the fault emulator was used in two different

platforms with vastly different configurations, a Nucleo STM32 and a Raspberry Pi. In

the Nucleo STM32, implementations of ML algorithms were tested, with the results being

presented in Chapter 5. In the Raspberry Pi target, an implementation of a NQKF was

tested. While the NQKF algorithm is out of the scope of the thesis, this experiment was

useful to validate the tool. In this test, most of the faults injected in the NQKF imple-

mentation did not lead to failure, with registers sp and r11 being identified as the most

sensitive.
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The general public often questions the amount governments spend on space programs,

but space exploration, among innumerous other benefits, uncovered mechanisms that have

threatened every electronic computing system built: radiation induced faults. Today, every

commercial plane that has automatic guidance system, i.e. autopilot, has to account for

such effects, as not doing so would risk an uncountable number lives. Furthermore, due

to the unprecedented success of ML, it is important to assess how they fare against this

effects. In fact, experiments have been done on using ML algorithms for self driven cars

and, at the time of this these, there is ML algorithm on the multibillion dollar project on

the surface of Mars. A failure on the first example could cost the loss of human life, while

on the second one, it could harm an expensive mission. In this thesis, the reliability of

multiple ML was assessed through both accelerated testing, i.e. radiation campaigns, and

fault emulation. In this chapter, the results and contributions obtained during this work

are summarized are discussed. A final discussion on the perspectives for the future is also

presented to close the discussions of this thesis.

8.1 Contributions to FPGA implementation of Machine

Learning

In the first two chapters of this thesis, the reliability of 2 FPGA implementations were

evaluated. In the Chapter 3, the evaluation of the reliability of a binary SVM under the

effect of radiation induced faults is presented, being the first work in the literature where

an implementation of a SVM was irradiated. In this experiment, a custom implementation

of the algorithm was first evaluated through a fault emulation campaign, which showed

that the implemented model contained an intrinsic level of fault tolerance, meaning that

even without any protection mechanism, it was capable to mitigate part of faults. To

complement the fault emulation study, a irradiation campaign was conducted. In this

campaign, it was also observed that the implementation had an intrinsic level of fault

tolerance. Compared to the state of the art, the preliminary results of this first experiment

showed that the SVM implementation had a marginal advantage in terms of reliability to

other implementations of ML algorithms
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Following this work, in Chapter 4, the work on the previous chapter is expanded by

performing similar experiments on a multiclass SVM and on the same binary SVM FPGA

implementations in order compare the reliability of both. This was the first work in the

literature to evaluate the the reliability of a multiclass SVM under radiation effects and the

first to test SVM implementations under the effects of thermal neutrons. First, extensive

fault emulation campaigns were performed on both implementations. This showed that

that the multiclass SVM had an advantage over the binary SVM in terms of intrisic relia-

bility, i.e. reliability when no protection mechanism is implemented. After the fault em-

ulation campaigns, both implementations were irradiated using a thermal neutron source,

in which the result corroborated what was observed in the fault emulation campaigns, as

the multiclass SVM also exhibited better reliability when compared to the binary SVM.

A possible reason for this behaviour is that the multiclass SVM is composed of multiple

binary SVMs, each trained for a subset of the training dataset. This intrinsically creates

some redundancy. For instance, for the case-study in this work, the multiclass SVM was

composed of three binary SVMs. A correct classification relies at most on the result of

only two of these. If a fault affects binary SVM of which the result does not matter, the

fault is tolerated, which may be the reason of the increased reliability of the multiclass

SVM.

It is important to notice that these results are preliminary and, while they raise the

discussion and present some insights, there are still some open questions. First, only two

datasets were used for these SVMs. Different datasets possibly yield different levels of

reliability. For instance, in datasets where the input vectors lie closer to the classification

border, it is possible that faults are more likely to lead to failure. Minor perturbations on

the weights of the classification function may more easily be noticeable in these cases.

A second question is how different architectures impact on the reliability of SVMs. In

this work, only combinatorial implementations were used. Alternative architectures, such

as pipeline implementations, could affect how faults interact with systems. Furthermore,

while both FPGA SVM implementations in this work presented intrinsic fault tolerance,

this level may not be enough for critical systems. Thus, investigating further hardening

techniques may be necessary in these cases.
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8.2 Contributions on Low-Power Processor

Implementations of Machine Learning

In Chapters 5 and 6, the reliability of low-power processor implementation of ML

models were investigated. In Chapter 5, the assessment of a SVM and an ANN is con-

ducted. The evaluation followed the same pattern used for the FPGA implementations,

as both a fault emulation and a radiation campaign were conducted. The fault emulation

campaign was performed by emulating failures in the registers of the processor used. In

this situation, the SVM presented a slightly advantage over the ANN in terms of reliabil-

ity, as it crashed less, while also masking, i.e. No failure, and tolerating more faults than

its counterpart. Furthermore, the majority of the faults that were not masked led to Com-

puting Crashes, which may be less harmful than a Critical Failure. A Computing Crash is

easily detectable. While it is definitely not ideal, a fail safe protocol may be put into place

in this scenario. A critical failure, on the other hand, is silent and may cause the system to

make an erroneous decision, which could potentially be more harmful. In this work, only

the ANN implementations was evaluated under radiation. The fault profile corroborated

that one observed in the fault injections.

A more profound radiation campaign was conducted in the work presented in Chap-

ter 6. An assessment of low-power processor implementations of SVM, ANN and RF

was conducted. It was the first work in the literature in which a RF implementation was

irradiated. While the three were capable to mitigate faults, the results have shown that,

among the three algorithms, RF presented the highest level of reliability. In fact, during

the campaign, no misclassifications, i.e. no critical failures, were detected on the RF,

suggesting it possibly is the most reliable between the three tested. It is worth mention-

ing that no protection mechanisms were implemented, with the tolerance level being to

intrinsic construction of the algorithms. In terms of the reason for the RF presenting the

highest reliability, a possibility is that, by construction, it has mechanisms that may pro-

vide redundancy. It is made by a collection of independent BDTs, and the collection as

whole may compensate for a fault on one.

There are still open questions in regards to reliability of ML algorithms implemented

in low-power processors. Further experiments are needed to explore parameters that may

affect their reliability. For instance, different datasets may change how these three algo-
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rithms behave when a fault is present. Also, the structures of an ANN and of a RF models

are defined the designer before training. For ANNs, it is up for the designer to the de-

signer to choose the number of layers in the model as well as the number of neurons in

each layer. For RFs, the number of BDTs is also chosen by the designer. In these cases,

the different configurations may lead to different levels of reliability. Furthermore, fault

injection/emulation campaigns are needed to better map the most sensitive points in these

implementations to allow for the design of efficient hardening mechanisms.
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8.3 Perspectives: Reliable Machine Learning

At the rate that ML applications are evolving, the tendency is that they will permeate

more and more our lives as time goes by. Autonomous cars, which have been theorize

fora for so long now, are closer to become a reality than ever. Space applications are using

ML as well. Thus, studies like the ones in this thesis must continue in order to better un-

derstand how these techniques behave under the effects of radiation induced faults from a

safety and cost perspective. In addition, the platforms which are being used to embed ML

in such systems are evolving as well. In this thesis, implementation using Commercial

off-the-shelf (COTS) were studied, which are great alternatives for space application such

as nanosatellites. On the other hand, some companies, such as Tesla, have been invest-

ing in the design of their own proprietary platform, developing their own custom ASICs.

Evidently, these novel platforms must be validated, but understanding the intricacies of

the algorithms may greatly aid designers to develop more reliable platforms, which po-

tentially could be achieved through testing COTS as well. For instance, in Chapter 6, it

was shown that RF possibly, by construction, has and advantage over its counterparts. If

these is further explored and confirmed, incorporating RFs in these systems could result

in less need for redundancy, saving area and energy.

Presently, there is a lot of research (and hope) on the potential of ANNs. The ANN

studied in this work is a classical example of the technique. Studying it allows for a com-

prehension of core strengths and issues of the techniques. However, modern implemen-

tations of ANNs, specially the ones used for image processing are much more complex

in terms of structure. In fact, they may come in various shapes and sizes, with layers that

are not necessarily composed by the classic neuron, feedback nodes and other variations.

They are all built following the foundations of the classical implementations, thus making

the assessing it possibly highlight issues or raise ideas that could benefit all variations of

ANNs, even though they should each be studied as well.
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Assessement of Edge Machine-Learning
Systems under Radiation-Induced Effect

Résumé
Les algorithmes d’apprentissage automatique (ML) ont gagné popularité ces
dernières années, en fournissant des solutions simples à une large gamme
d’applications, comme les moteurs de recherche, les systèmes de recommanda-
tion, la robotique et même les voitures autonomes. Comme le dernier exemple
suggère, le ML a gagné de la place même sur les systèmes critiques, y compris les
applications au niveau terrestre, avioniques et spatiales. Toutefois, certaines exi-
gences doivent être respectées dans de tels systèmes, vu que les fautes sont soit
coûteuses, soit désastreuses (ou les deux) dans ces scénarios. Premièrement, ces
systèmes ont souvent une puissance de computation limitée sur leurs composants.
Deuxièmement, les fautes induit par la radiation sont également une préoccupa-
tion majeure, spécialement aux altitudes avioniques et dans l’espace, mais toujours
suffisamment pertinents pour les applications au niveau terrestre. En explorant
ces requis, cette thèse évalue les effets de la radiation sur des implémentations
d’algorithmes d’apprentissage automatique en périphérie proéminentes. Initiale-
ment, des implémentations FPGA de l’algorithme Support Vector Machine (SVM)
ont été évaluées sous les effets de la radiation des neutrons rapides et thermiques,
des particules qui doivent être pris en compte surtout pour les applications au sol
et avioniques. Cette évaluation a été complémenté par deux différentes techniques
d’injection des fautes pour mieux comprendre les effets des fautes sur les systèmes.
Ces tests ont montré que les implémentations aient un certain niveau de tolérance
intrinsèque aux fautes. Suite à ce travail, les implémentations de trois algorithmes -
Réseaux de neurones artificiels (ANN), Random Forest (RF) et SVM – implémentés
dans des microcontrôleurs commerciaux (cartes de développement STM32 Nucleo)
ont été évaluées sous les effets des neutrons rapides. Encore une fois, en suivant
la tendance observée sur les implémentations FPGA, ils ont présenté une tolérance
intrinsèque aux fautes. En plus, l’implémentation du RF a pu tolérer toutes les
fautes induites par la radiation. Ce travail a également été complémenté par une
campagne d’injection de fautes. L’outil utilisé pour ce dernier a été développé dans
le cadre de la thèse.

Mots-clés : Apprentissage Automatique; Informatique en Périphérie ; Effets
de la Radiation; Systèmes Embarqués

Abstract
Machine learning (ML) algorithms have grown in popularity in recent years, providing
straightforward solutions to a wide range of applications, such as search engines,
recommendation systems, robotics and even self-driven cars. As the last example
suggests, ML has been gaining its space even on critical systems, including ground,
avionics and space applications. However, there are requirements that need to be
met in such systems, as faults are either costly or disastrous (or both) in these sce-
narios. First, often these systems have limited processing power on their embedded
components. Secondly, radiation induced faults are also a major concern, specially
at avionics altitudes and on space, but still relevant enough for ground level appli-
cations. Exploring these requirements, this thesis evaluates the radiation effects
on edge implementation of prominent machine learning algorithms. Initially, FPGA
implementations of Support Vector Machine (SVM) algorithm have been evaluated
under the effects of both fast and thermal neutron radiation, particles that should be
considered for ground and avionic applications. This evaluation was complemented
using two different fault injection techniques to better understand the effects of faults
on the systems. These tests have shown that the implementations had a certain
level of intrinsic fault tolerance. Following this work, the implementations of three Al-
gorithms - Artificial Neural Networks (ANN), Random Forest (RF) and SVM - using
off-the-shelf micro-controllers (STM32 Nucleo development boards) have been eval-
uated under the effects of fast neutrons. Again, following the trend observed on the
FPGA implementations, they presented intrinsic fault tolerance. Furthermore, the
RF implementation was able to tolerate all the radiation induced failures. This work
was also complemented by a fault injection campaign. The tool used was developed
within the context of the thesis.

Keywords : Machine Learning; Edge Computing; Radiation Effects; Embed-
ded Systems


	Acknowledgements
	Introduction
	Radiation testing of Components and Systems
	Soft Error Taxonomy
	Single-Bit Upset (SBU)
	Multiple-Bit Upset (MBU)
	Single-Event Transient (SET)
	Single-Event Functional Interrupt (SEFI)
	Single-Event Latch-up (SEL)

	Metrics
	Particle Flux
	Fluence
	Cross-section
	Soft Error Rate (SER)


	Revision on Machine Learning
	Definitions
	Dataset
	Input Sample
	Feature
	Supervised Learning
	Unsupervised Learning
	Classification
	Regression

	Artificial Neural Networks (ANN)
	Support Vector Machine (SVM)
	Multiclass SVM

	Random Forest

	Support Vector Machine under Radiation Effects
	Introduction
	Case-Study SVM Architecture
	State-of-the-Art SVM in Hardware
	SVM Architecture Design
	Set of Input Vectors

	SVM Architecture Assessment Through Fault Emulation Campaign
	Device Under Test (DUT)
	Assessment metrics
	Fault Emulation Method
	Results of the Fault Emulation Campaign

	Radiation Test Experiment and Results
	Radiation Test Set-Up
	Radiation Test Method
	Assessment of Radiation Test Results
	Comparison with State-of-the-Art Works

	Conclusions 

	Effects of Thermal Neutron Radiation on a Hardware-Implemented Machine Learning Algorithm
	Introduction
	Case-Study SVM Architectures
	Binary SVM Architecture Design
	Multiclass SVM Architecture Design
	Set of Input Vectors for the Multiclass SVM

	SVM Reliability Assessment Through Emulated Fault Injection
	Fault Injection Set-up
	Assessment Metrics
	Fault Injection Methodology
	Results

	Radiation Test Experiment and Results
	Radiation Test Set-Up
	Radiation Test Method
	Radiation Test Results for the Binary SVM
	Radiation Test Results for the Multiclass SVM
	Assessment of Results and Comparison of the SVM Architectures
	Comparison with State-of-the-Art Works

	Conclusions

	Assessment of Machine Learning Algorithms for Near-Sensor Computing Through Fault Emulation
	Introduction
	Case-Study ML Algorithm Models
	Fault Injection-Based Assessment Method
	Fault Injection-Based Assessment
	Description of Experiments
	Analysis of Results by Register

	Radiation Test-Based Assessment
	Conclusions

	Assessment of Machine Learning Algorithms for Near-Sensor Computing under Radiation Soft Errors
	Introduction
	Case-Study Machine Learning Models
	Implemented Case-Study ML Algorithms
	Radiation Test Assessment
	Radiation Test Set-Up
	Radiation Test Results

	Conclusions

	Development of a Fault Emulation Tool
	Introduction
	State-of-the-Art
	Implemented Solution
	Proofs of Concept
	STM32 Nucleo Target
	Raspberry Pi Target

	Conclusions

	Conclusions
	Contributions to FPGA implementation of Machine Learning
	Contributions on Low-Power Processor  Implementations of Machine Learning
	Perspectives: Reliable Machine Learning

	Bibliography
	List of Figures
	List of Tables
	List of Publications and Presentations
	List of Publications and Presentations
	International Journals
	Conferences

	Glossary
	Acronym List

